diff libs/commons-math-2.1/docs/userguide/linear.html @ 10:5f2c5fb36e93

commons-math-2.1 added
author dwinter
date Tue, 04 Jan 2011 10:00:53 +0100
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/libs/commons-math-2.1/docs/userguide/linear.html	Tue Jan 04 10:00:53 2011 +0100
@@ -0,0 +1,362 @@
+<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
+
+
+
+
+
+
+
+
+
+
+
+<html xmlns="http://www.w3.org/1999/xhtml">
+  <head>
+    <title>Math - The Commons Math User Guide - Linear Algebra</title>
+    <style type="text/css" media="all">
+      @import url("../css/maven-base.css");
+      @import url("../css/maven-theme.css");
+      @import url("../css/site.css");
+    </style>
+    <link rel="stylesheet" href="../css/print.css" type="text/css" media="print" />
+        <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1" />
+      </head>
+  <body class="composite">
+    <div id="banner">
+                    <span id="bannerLeft">
+    
+            Commons Math User Guide
+    
+            </span>
+                    <div class="clear">
+        <hr/>
+      </div>
+    </div>
+    <div id="breadcrumbs">
+          
+  
+
+  
+    
+  
+  
+    
+              <div class="xright">      
+  
+
+  
+    
+  
+  
+    
+  </div>
+      <div class="clear">
+        <hr/>
+      </div>
+    </div>
+    <div id="leftColumn">
+      <div id="navcolumn">
+           
+  
+
+  
+    
+  
+  
+    
+                   <h5>User Guide</h5>
+            <ul>
+              
+    <li class="none">
+                    <a href="../userguide/index.html">Contents</a>
+          </li>
+              
+    <li class="none">
+                    <a href="../userguide/overview.html">Overview</a>
+          </li>
+              
+    <li class="none">
+                    <a href="../userguide/stat.html">Statistics</a>
+          </li>
+              
+    <li class="none">
+                    <a href="../userguide/random.html">Data Generation</a>
+          </li>
+              
+    <li class="none">
+              <strong>Linear Algebra</strong>
+        </li>
+              
+    <li class="none">
+                    <a href="../userguide/analysis.html">Numerical Analysis</a>
+          </li>
+              
+    <li class="none">
+                    <a href="../userguide/special.html">Special Functions</a>
+          </li>
+              
+    <li class="none">
+                    <a href="../userguide/utilities.html">Utilities</a>
+          </li>
+              
+    <li class="none">
+                    <a href="../userguide/complex.html">Complex Numbers</a>
+          </li>
+              
+    <li class="none">
+                    <a href="../userguide/distribution.html">Distributions</a>
+          </li>
+              
+    <li class="none">
+                    <a href="../userguide/fraction.html">Fractions</a>
+          </li>
+              
+    <li class="none">
+                    <a href="../userguide/transform.html">Transform Methods</a>
+          </li>
+              
+    <li class="none">
+                    <a href="../userguide/geometry.html">3D Geometry</a>
+          </li>
+              
+    <li class="none">
+                    <a href="../userguide/optimization.html">Optimization</a>
+          </li>
+              
+    <li class="none">
+                    <a href="../userguide/ode.html">Ordinary Differential Equations</a>
+          </li>
+              
+    <li class="none">
+                    <a href="../userguide/genetics.html">Genetic Algorithms</a>
+          </li>
+          </ul>
+                                           <a href="http://maven.apache.org/" title="Built by Maven" class="poweredBy">
+            <img alt="Built by Maven" src="../images/logos/maven-feather.png"></img>
+          </a>
+                       
+  
+
+  
+    
+  
+  
+    
+        </div>
+    </div>
+    <div id="bodyColumn">
+      <div id="contentBox">
+        <div class="section"><h2><a name="a3_Linear_Algebra"></a>3 Linear Algebra</h2>
+<div class="section"><h3><a name="a3.1_Overview"></a>3.1 Overview</h3>
+<p>
+           Linear algebra support in commons-math provides operations on real matrices
+           (both dense and sparse matrices are supported) and vectors. It features basic
+           operations (addition, subtraction ...) and decomposition algorithms that can
+           be used to solve linear systems either in exact sense and in least squares sense.
+        </p>
+</div>
+<div class="section"><h3><a name="a3.2_Real_matrices"></a>3.2 Real matrices</h3>
+<p>
+          The <a href="../apidocs/org/apache/commons/math/linear/RealMatrix.html">
+          RealMatrix</a> interface represents a matrix with real numbers as 
+          entries.  The following basic matrix operations are supported:
+          <ul><li>Matrix addition, subtraction, multiplication</li>
+<li>Scalar addition and multiplication</li>
+<li>transpose</li>
+<li>Norm and Trace</li>
+<li>Operation on a vector</li>
+</ul>
+</p>
+<p>
+         Example:
+         <div class="source"><pre>
+// Create a real matrix with two rows and three columns
+double[][] matrixData = { {1d,2d,3d}, {2d,5d,3d}};
+RealMatrix m = new Array2DRowRealMatrix(matrixData);
+
+// One more with three rows, two columns
+double[][] matrixData2 = { {1d,2d}, {2d,5d}, {1d, 7d}};
+RealMatrix n = new Array2DRowRealMatrix(matrixData2);
+
+// Note: The constructor copies  the input double[][] array.
+
+// Now multiply m by n
+RealMatrix p = m.multiply(n);
+System.out.println(p.getRowDimension());    // 2
+System.out.println(p.getColumnDimension()); // 2
+
+// Invert p, using LU decomposition
+RealMatrix pInverse = new LUDecompositionImpl(p).getSolver().getInverse();
+         </pre>
+</div>
+</p>
+<p>
+        The three main implementations of the interface are <a href="../apidocs/org/apache/commons/math/linear/Array2DRowRealMatrix.html">
+        Array2DRowRealMatrix</a> and <a href="../apidocs/org/apache/commons/math/linear/BlockRealMatrix.html">
+        BlockRealMatrix</a> for dense matrices (the second one being more suited to
+        dimensions above 50 or 100) and <a href="../apidocs/org/apache/commons/math/linear/SparseRealMatrix.html">
+        SparseRealMatrix</a> for sparse matrices.
+        </p>
+</div>
+<div class="section"><h3><a name="a3.3_Real_vectors"></a>3.3 Real vectors</h3>
+<p>
+          The <a href="../apidocs/org/apache/commons/math/linear/RealVector.html">
+          RealVector</a> interface represents a vector with real numbers as 
+          entries.  The following basic matrix operations are supported:
+          <ul><li>Vector addition, subtraction</li>
+<li>Element by element multiplication, division</li>
+<li>Scalar addition, subtraction, multiplication, division and power</li>
+<li>Mapping of mathematical functions (cos, sin ...)</li>
+<li>Dot product, outer product</li>
+<li>Distance and norm according to norms L1, L2 and Linf</li>
+</ul>
+</p>
+<p>
+          The <a href="../apidocs/org/apache/commons/math/linear/RealVectorFormat.html">
+          RealVectorFormat</a> class handles input/output of vectors in a customizable
+          textual format.
+        </p>
+</div>
+<div class="section"><h3><a name="a3.4_Solving_linear_systems"></a>3.4 Solving linear systems</h3>
+<p>
+          The <code>solve()</code> methods of the <a href="../apidocs/org/apache/commons/math/linear/DecompositionSolver.html">DecompositionSolver</a>
+          interface support solving linear systems of equations of the form AX=B, either
+          in linear sense or in least square sense. A <code>RealMatrix</code> instance is
+          used to represent the coefficient matrix of the system. Solving the system is a
+          two phases process: first the coefficient matrix is decomposed in some way and
+          then a solver built from the decomposition solves the system. This allows to
+          compute the decomposition and build the solver only once if several systems have
+          to be solved with the same coefficient matrix.
+        </p>
+<p>
+          For example, to solve the linear system
+          <pre>
+           2x + 3y - 2z = 1
+           -x + 7y + 6x = -2
+           4x - 3y - 5z = 1
+          </pre>
+          Start by decomposing the coefficient matrix A (in this case using LU decomposition)
+          and build a solver
+          <div class="source"><pre>
+RealMatrix coefficients =
+    new Array2DRowRealMatrix(new double[][] { { 2, 3, -2 }, { -1, 7, 6 }, { 4, -3, -5 } },
+                       false);
+DecompositionSolver solver = new LUDecompositionImpl(coefficients).getSolver();
+          </pre>
+</div>
+
+          Next create a <code>RealVector</code> array to represent the constant
+          vector B and use <code>solve(RealVector)</code> to solve the system
+          <div class="source"><pre>
+RealVector constants = new RealVectorImpl(new double[] { 1, -2, 1 }, false);
+RealVector solution = solver.solve(constants);
+          </pre>
+</div>
+
+          The <code>solution</code> vector will contain values for x
+          (<code>solution.getEntry(0)</code>), y (<code>solution.getEntry(1)</code>), 
+          and z (<code>solution.getEntry(2)</code>) that solve the system.
+        </p>
+<p>
+          Each type of decomposition has its specific semantics and constraints on
+          the coefficient matrix as shown in the following table. For algorithms that
+          solve AX=B in least squares sense the value returned for X is such that the
+          residual AX-B has minimal norm. If an exact solution exist (i.e. if for some
+          X the residual AX-B is exactly 0), then this exact solution is also the solution
+          in least square sense. This implies that algorithms suited for least squares
+          problems can also be used to solve exact problems, but the reverse is not true. 
+        </p>
+<p><table class="bodyTable"><tr class="a"><td><font size="+2">Decomposition algorithms</font></td>
+</tr>
+<tr class="b"><font size="+1"><td>Name</td>
+<td>coefficients matrix</td>
+<td>problem type</td>
+</font></tr>
+<tr class="a"><td><a href="../apidocs/org/apache/commons/math/linear/LUDecomposition.html">LU</a></td>
+<td>square</td>
+<td>exact solution only</td>
+</tr>
+<tr class="b"><td><a href="../apidocs/org/apache/commons/math/linear/CholeskyDecomposition.html">Cholesky</a></td>
+<td>symmetric positive definite</td>
+<td>exact solution only</td>
+</tr>
+<tr class="a"><td><a href="../apidocs/org/apache/commons/math/linear/QRDecomposition.html">QR</a></td>
+<td>any</td>
+<td>least squares solution</td>
+</tr>
+<tr class="b"><td><a href="../apidocs/org/apache/commons/math/linear/EigenDecomposition.html">eigen decomposition</a></td>
+<td>square</td>
+<td>exact solution only</td>
+</tr>
+<tr class="a"><td><a href="../apidocs/org/apache/commons/math/linear/SingularValueDecomposition.html">SVD</a></td>
+<td>any</td>
+<td>least squares solution</td>
+</tr>
+</table>
+</p>
+<p>
+          It is possible to use a simple array of double instead of a <code>RealVector</code>.
+          In this case, the solution will be provided also as an array of double.
+        </p>
+<p>
+          It is possible to solve multiple systems with the same coefficient matrix 
+          in one method call.  To do this, create a matrix whose column vectors correspond 
+          to the constant vectors for the systems to be solved and use <code>solve(RealMatrix),</code>
+          which returns a matrix with column vectors representing the solutions.
+        </p>
+</div>
+<div class="section"><h3><a name="a3.5_Eigenvalueseigenvectors_and_singular_valuessingular_vectors"></a>3.5 Eigenvalues/eigenvectors and singular values/singular vectors</h3>
+<p>
+          Decomposition algorithms may be used for themselves and not only for linear system solving.
+          This is of prime interest with eigen decomposition and singular value decomposition.
+        </p>
+<p>
+          The <code>getEigenvalue()</code>, <code>getEigenvalues()</code>, <code>getEigenVector()</code>,
+          <code>getV()</code>, <code>getD()</code> and <code>getVT()</code> methods of the
+          <code>EigenDecomposition</code> interface support solving eigenproblems of the form
+          AX = lambda X where lambda is a real scalar.
+        </p>
+<p>The <code>getSingularValues()</code>, <code>getU()</code>, <code>getS()</code> and
+        <code>getV()</code> methods of the <code>SingularValueDecomposition</code> interface
+        allow to solve singular values problems of the form AXi = lambda Yi where lambda is a
+        real scalar, and where the Xi and Yi vectors form orthogonal bases of their respective
+        vector spaces (which may have different dimensions).
+        </p>
+</div>
+<div class="section"><h3><a name="a3.6_Non-real_fields_complex_fractions_..."></a>3.6 Non-real fields (complex, fractions ...)</h3>
+<p>
+          In addition to the real field, matrices and vectors using non-real <a href="../apidocs/org/apache/commons/math/FieldElement.html">field elements</a> can be used.
+          The fields already supported by the library are:
+          <ul><li><a href="../apidocs/org/apache/commons/math/complex/Complex.html">Complex</a></li>
+<li><a href="../apidocs/org/apache/commons/math/fraction/Fraction.html">Fraction</a></li>
+<li><a href="../apidocs/org/apache/commons/math/fraction/BigFraction.html">BigFraction</a></li>
+<li><a href="../apidocs/org/apache/commons/math/util/BigReal.html">BigReal</a></li>
+</ul>
+</p>
+</div>
+</div>
+
+      </div>
+    </div>
+    <div class="clear">
+      <hr/>
+    </div>
+    <div id="footer">
+      <div class="xright">&#169;  
+          2003-2010
+    
+          
+  
+
+  
+    
+  
+  
+    
+  </div>
+      <div class="clear">
+        <hr/>
+      </div>
+    </div>
+  </body>
+</html>