view libs/commons-math-2.1/docs/apidocs/src-html/org/apache/commons/math/distribution/AbstractContinuousDistribution.html @ 13:cbf34dd4d7e6

commons-math-2.1 added
author dwinter
date Tue, 04 Jan 2011 10:02:07 +0100
parents
children
line wrap: on
line source

<HTML>
<BODY BGCOLOR="white">
<PRE>
<FONT color="green">001</FONT>    /*<a name="line.1"></a>
<FONT color="green">002</FONT>     * Licensed to the Apache Software Foundation (ASF) under one or more<a name="line.2"></a>
<FONT color="green">003</FONT>     * contributor license agreements.  See the NOTICE file distributed with<a name="line.3"></a>
<FONT color="green">004</FONT>     * this work for additional information regarding copyright ownership.<a name="line.4"></a>
<FONT color="green">005</FONT>     * The ASF licenses this file to You under the Apache License, Version 2.0<a name="line.5"></a>
<FONT color="green">006</FONT>     * (the "License"); you may not use this file except in compliance with<a name="line.6"></a>
<FONT color="green">007</FONT>     * the License.  You may obtain a copy of the License at<a name="line.7"></a>
<FONT color="green">008</FONT>     *<a name="line.8"></a>
<FONT color="green">009</FONT>     *      http://www.apache.org/licenses/LICENSE-2.0<a name="line.9"></a>
<FONT color="green">010</FONT>     *<a name="line.10"></a>
<FONT color="green">011</FONT>     * Unless required by applicable law or agreed to in writing, software<a name="line.11"></a>
<FONT color="green">012</FONT>     * distributed under the License is distributed on an "AS IS" BASIS,<a name="line.12"></a>
<FONT color="green">013</FONT>     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.<a name="line.13"></a>
<FONT color="green">014</FONT>     * See the License for the specific language governing permissions and<a name="line.14"></a>
<FONT color="green">015</FONT>     * limitations under the License.<a name="line.15"></a>
<FONT color="green">016</FONT>     */<a name="line.16"></a>
<FONT color="green">017</FONT>    package org.apache.commons.math.distribution;<a name="line.17"></a>
<FONT color="green">018</FONT>    <a name="line.18"></a>
<FONT color="green">019</FONT>    import java.io.Serializable;<a name="line.19"></a>
<FONT color="green">020</FONT>    <a name="line.20"></a>
<FONT color="green">021</FONT>    import org.apache.commons.math.ConvergenceException;<a name="line.21"></a>
<FONT color="green">022</FONT>    import org.apache.commons.math.FunctionEvaluationException;<a name="line.22"></a>
<FONT color="green">023</FONT>    import org.apache.commons.math.MathException;<a name="line.23"></a>
<FONT color="green">024</FONT>    import org.apache.commons.math.MathRuntimeException;<a name="line.24"></a>
<FONT color="green">025</FONT>    import org.apache.commons.math.analysis.UnivariateRealFunction;<a name="line.25"></a>
<FONT color="green">026</FONT>    import org.apache.commons.math.analysis.solvers.BrentSolver;<a name="line.26"></a>
<FONT color="green">027</FONT>    import org.apache.commons.math.analysis.solvers.UnivariateRealSolverUtils;<a name="line.27"></a>
<FONT color="green">028</FONT>    <a name="line.28"></a>
<FONT color="green">029</FONT>    /**<a name="line.29"></a>
<FONT color="green">030</FONT>     * Base class for continuous distributions.  Default implementations are<a name="line.30"></a>
<FONT color="green">031</FONT>     * provided for some of the methods that do not vary from distribution to<a name="line.31"></a>
<FONT color="green">032</FONT>     * distribution.<a name="line.32"></a>
<FONT color="green">033</FONT>     *<a name="line.33"></a>
<FONT color="green">034</FONT>     * @version $Revision: 925812 $ $Date: 2010-03-21 11:49:31 -0400 (Sun, 21 Mar 2010) $<a name="line.34"></a>
<FONT color="green">035</FONT>     */<a name="line.35"></a>
<FONT color="green">036</FONT>    public abstract class AbstractContinuousDistribution<a name="line.36"></a>
<FONT color="green">037</FONT>        extends AbstractDistribution<a name="line.37"></a>
<FONT color="green">038</FONT>        implements ContinuousDistribution, Serializable {<a name="line.38"></a>
<FONT color="green">039</FONT>    <a name="line.39"></a>
<FONT color="green">040</FONT>        /** Serializable version identifier */<a name="line.40"></a>
<FONT color="green">041</FONT>        private static final long serialVersionUID = -38038050983108802L;<a name="line.41"></a>
<FONT color="green">042</FONT>    <a name="line.42"></a>
<FONT color="green">043</FONT>        /**<a name="line.43"></a>
<FONT color="green">044</FONT>         * Solver absolute accuracy for inverse cum computation<a name="line.44"></a>
<FONT color="green">045</FONT>         * @since 2.1<a name="line.45"></a>
<FONT color="green">046</FONT>         */<a name="line.46"></a>
<FONT color="green">047</FONT>        private double solverAbsoluteAccuracy = BrentSolver.DEFAULT_ABSOLUTE_ACCURACY;<a name="line.47"></a>
<FONT color="green">048</FONT>    <a name="line.48"></a>
<FONT color="green">049</FONT>        /**<a name="line.49"></a>
<FONT color="green">050</FONT>         * Default constructor.<a name="line.50"></a>
<FONT color="green">051</FONT>         */<a name="line.51"></a>
<FONT color="green">052</FONT>        protected AbstractContinuousDistribution() {<a name="line.52"></a>
<FONT color="green">053</FONT>            super();<a name="line.53"></a>
<FONT color="green">054</FONT>        }<a name="line.54"></a>
<FONT color="green">055</FONT>    <a name="line.55"></a>
<FONT color="green">056</FONT>        /**<a name="line.56"></a>
<FONT color="green">057</FONT>         * Return the probability density for a particular point.<a name="line.57"></a>
<FONT color="green">058</FONT>         * @param x  The point at which the density should be computed.<a name="line.58"></a>
<FONT color="green">059</FONT>         * @return  The pdf at point x.<a name="line.59"></a>
<FONT color="green">060</FONT>         * @throws MathRuntimeException if the specialized class hasn't implemented this function<a name="line.60"></a>
<FONT color="green">061</FONT>         * @since 2.1<a name="line.61"></a>
<FONT color="green">062</FONT>         */<a name="line.62"></a>
<FONT color="green">063</FONT>        public double density(double x) throws MathRuntimeException {<a name="line.63"></a>
<FONT color="green">064</FONT>            throw new MathRuntimeException(new UnsupportedOperationException(),<a name="line.64"></a>
<FONT color="green">065</FONT>                    "This distribution does not have a density function implemented");<a name="line.65"></a>
<FONT color="green">066</FONT>        }<a name="line.66"></a>
<FONT color="green">067</FONT>    <a name="line.67"></a>
<FONT color="green">068</FONT>        /**<a name="line.68"></a>
<FONT color="green">069</FONT>         * For this distribution, X, this method returns the critical point x, such<a name="line.69"></a>
<FONT color="green">070</FONT>         * that P(X &amp;lt; x) = &lt;code&gt;p&lt;/code&gt;.<a name="line.70"></a>
<FONT color="green">071</FONT>         *<a name="line.71"></a>
<FONT color="green">072</FONT>         * @param p the desired probability<a name="line.72"></a>
<FONT color="green">073</FONT>         * @return x, such that P(X &amp;lt; x) = &lt;code&gt;p&lt;/code&gt;<a name="line.73"></a>
<FONT color="green">074</FONT>         * @throws MathException if the inverse cumulative probability can not be<a name="line.74"></a>
<FONT color="green">075</FONT>         *         computed due to convergence or other numerical errors.<a name="line.75"></a>
<FONT color="green">076</FONT>         * @throws IllegalArgumentException if &lt;code&gt;p&lt;/code&gt; is not a valid<a name="line.76"></a>
<FONT color="green">077</FONT>         *         probability.<a name="line.77"></a>
<FONT color="green">078</FONT>         */<a name="line.78"></a>
<FONT color="green">079</FONT>        public double inverseCumulativeProbability(final double p)<a name="line.79"></a>
<FONT color="green">080</FONT>            throws MathException {<a name="line.80"></a>
<FONT color="green">081</FONT>            if (p &lt; 0.0 || p &gt; 1.0) {<a name="line.81"></a>
<FONT color="green">082</FONT>                throw MathRuntimeException.createIllegalArgumentException(<a name="line.82"></a>
<FONT color="green">083</FONT>                      "{0} out of [{1}, {2}] range", p, 0.0, 1.0);<a name="line.83"></a>
<FONT color="green">084</FONT>            }<a name="line.84"></a>
<FONT color="green">085</FONT>    <a name="line.85"></a>
<FONT color="green">086</FONT>            // by default, do simple root finding using bracketing and default solver.<a name="line.86"></a>
<FONT color="green">087</FONT>            // subclasses can override if there is a better method.<a name="line.87"></a>
<FONT color="green">088</FONT>            UnivariateRealFunction rootFindingFunction =<a name="line.88"></a>
<FONT color="green">089</FONT>                new UnivariateRealFunction() {<a name="line.89"></a>
<FONT color="green">090</FONT>                public double value(double x) throws FunctionEvaluationException {<a name="line.90"></a>
<FONT color="green">091</FONT>                    double ret = Double.NaN;<a name="line.91"></a>
<FONT color="green">092</FONT>                    try {<a name="line.92"></a>
<FONT color="green">093</FONT>                        ret = cumulativeProbability(x) - p;<a name="line.93"></a>
<FONT color="green">094</FONT>                    } catch (MathException ex) {<a name="line.94"></a>
<FONT color="green">095</FONT>                        throw new FunctionEvaluationException(ex, x, ex.getPattern(), ex.getArguments());<a name="line.95"></a>
<FONT color="green">096</FONT>                    }<a name="line.96"></a>
<FONT color="green">097</FONT>                    if (Double.isNaN(ret)) {<a name="line.97"></a>
<FONT color="green">098</FONT>                        throw new FunctionEvaluationException(x,<a name="line.98"></a>
<FONT color="green">099</FONT>                            "Cumulative probability function returned NaN for argument {0} p = {1}", x, p);<a name="line.99"></a>
<FONT color="green">100</FONT>                    }<a name="line.100"></a>
<FONT color="green">101</FONT>                    return ret;<a name="line.101"></a>
<FONT color="green">102</FONT>                }<a name="line.102"></a>
<FONT color="green">103</FONT>            };<a name="line.103"></a>
<FONT color="green">104</FONT>    <a name="line.104"></a>
<FONT color="green">105</FONT>            // Try to bracket root, test domain endoints if this fails<a name="line.105"></a>
<FONT color="green">106</FONT>            double lowerBound = getDomainLowerBound(p);<a name="line.106"></a>
<FONT color="green">107</FONT>            double upperBound = getDomainUpperBound(p);<a name="line.107"></a>
<FONT color="green">108</FONT>            double[] bracket = null;<a name="line.108"></a>
<FONT color="green">109</FONT>            try {<a name="line.109"></a>
<FONT color="green">110</FONT>                bracket = UnivariateRealSolverUtils.bracket(<a name="line.110"></a>
<FONT color="green">111</FONT>                        rootFindingFunction, getInitialDomain(p),<a name="line.111"></a>
<FONT color="green">112</FONT>                        lowerBound, upperBound);<a name="line.112"></a>
<FONT color="green">113</FONT>            }  catch (ConvergenceException ex) {<a name="line.113"></a>
<FONT color="green">114</FONT>                /*<a name="line.114"></a>
<FONT color="green">115</FONT>                 * Check domain endpoints to see if one gives value that is within<a name="line.115"></a>
<FONT color="green">116</FONT>                 * the default solver's defaultAbsoluteAccuracy of 0 (will be the<a name="line.116"></a>
<FONT color="green">117</FONT>                 * case if density has bounded support and p is 0 or 1).<a name="line.117"></a>
<FONT color="green">118</FONT>                 */<a name="line.118"></a>
<FONT color="green">119</FONT>                if (Math.abs(rootFindingFunction.value(lowerBound)) &lt; getSolverAbsoluteAccuracy()) {<a name="line.119"></a>
<FONT color="green">120</FONT>                    return lowerBound;<a name="line.120"></a>
<FONT color="green">121</FONT>                }<a name="line.121"></a>
<FONT color="green">122</FONT>                if (Math.abs(rootFindingFunction.value(upperBound)) &lt; getSolverAbsoluteAccuracy()) {<a name="line.122"></a>
<FONT color="green">123</FONT>                    return upperBound;<a name="line.123"></a>
<FONT color="green">124</FONT>                }<a name="line.124"></a>
<FONT color="green">125</FONT>                // Failed bracket convergence was not because of corner solution<a name="line.125"></a>
<FONT color="green">126</FONT>                throw new MathException(ex);<a name="line.126"></a>
<FONT color="green">127</FONT>            }<a name="line.127"></a>
<FONT color="green">128</FONT>    <a name="line.128"></a>
<FONT color="green">129</FONT>            // find root<a name="line.129"></a>
<FONT color="green">130</FONT>            double root = UnivariateRealSolverUtils.solve(rootFindingFunction,<a name="line.130"></a>
<FONT color="green">131</FONT>                    // override getSolverAbsoluteAccuracy() to use a Brent solver with<a name="line.131"></a>
<FONT color="green">132</FONT>                    // absolute accuracy different from BrentSolver default<a name="line.132"></a>
<FONT color="green">133</FONT>                    bracket[0],bracket[1], getSolverAbsoluteAccuracy());<a name="line.133"></a>
<FONT color="green">134</FONT>            return root;<a name="line.134"></a>
<FONT color="green">135</FONT>        }<a name="line.135"></a>
<FONT color="green">136</FONT>    <a name="line.136"></a>
<FONT color="green">137</FONT>        /**<a name="line.137"></a>
<FONT color="green">138</FONT>         * Access the initial domain value, based on &lt;code&gt;p&lt;/code&gt;, used to<a name="line.138"></a>
<FONT color="green">139</FONT>         * bracket a CDF root.  This method is used by<a name="line.139"></a>
<FONT color="green">140</FONT>         * {@link #inverseCumulativeProbability(double)} to find critical values.<a name="line.140"></a>
<FONT color="green">141</FONT>         *<a name="line.141"></a>
<FONT color="green">142</FONT>         * @param p the desired probability for the critical value<a name="line.142"></a>
<FONT color="green">143</FONT>         * @return initial domain value<a name="line.143"></a>
<FONT color="green">144</FONT>         */<a name="line.144"></a>
<FONT color="green">145</FONT>        protected abstract double getInitialDomain(double p);<a name="line.145"></a>
<FONT color="green">146</FONT>    <a name="line.146"></a>
<FONT color="green">147</FONT>        /**<a name="line.147"></a>
<FONT color="green">148</FONT>         * Access the domain value lower bound, based on &lt;code&gt;p&lt;/code&gt;, used to<a name="line.148"></a>
<FONT color="green">149</FONT>         * bracket a CDF root.  This method is used by<a name="line.149"></a>
<FONT color="green">150</FONT>         * {@link #inverseCumulativeProbability(double)} to find critical values.<a name="line.150"></a>
<FONT color="green">151</FONT>         *<a name="line.151"></a>
<FONT color="green">152</FONT>         * @param p the desired probability for the critical value<a name="line.152"></a>
<FONT color="green">153</FONT>         * @return domain value lower bound, i.e.<a name="line.153"></a>
<FONT color="green">154</FONT>         *         P(X &amp;lt; &lt;i&gt;lower bound&lt;/i&gt;) &amp;lt; &lt;code&gt;p&lt;/code&gt;<a name="line.154"></a>
<FONT color="green">155</FONT>         */<a name="line.155"></a>
<FONT color="green">156</FONT>        protected abstract double getDomainLowerBound(double p);<a name="line.156"></a>
<FONT color="green">157</FONT>    <a name="line.157"></a>
<FONT color="green">158</FONT>        /**<a name="line.158"></a>
<FONT color="green">159</FONT>         * Access the domain value upper bound, based on &lt;code&gt;p&lt;/code&gt;, used to<a name="line.159"></a>
<FONT color="green">160</FONT>         * bracket a CDF root.  This method is used by<a name="line.160"></a>
<FONT color="green">161</FONT>         * {@link #inverseCumulativeProbability(double)} to find critical values.<a name="line.161"></a>
<FONT color="green">162</FONT>         *<a name="line.162"></a>
<FONT color="green">163</FONT>         * @param p the desired probability for the critical value<a name="line.163"></a>
<FONT color="green">164</FONT>         * @return domain value upper bound, i.e.<a name="line.164"></a>
<FONT color="green">165</FONT>         *         P(X &amp;lt; &lt;i&gt;upper bound&lt;/i&gt;) &amp;gt; &lt;code&gt;p&lt;/code&gt;<a name="line.165"></a>
<FONT color="green">166</FONT>         */<a name="line.166"></a>
<FONT color="green">167</FONT>        protected abstract double getDomainUpperBound(double p);<a name="line.167"></a>
<FONT color="green">168</FONT>    <a name="line.168"></a>
<FONT color="green">169</FONT>        /**<a name="line.169"></a>
<FONT color="green">170</FONT>         * Returns the solver absolute accuracy for inverse cum computation.<a name="line.170"></a>
<FONT color="green">171</FONT>         *<a name="line.171"></a>
<FONT color="green">172</FONT>         * @return the maximum absolute error in inverse cumulative probability estimates<a name="line.172"></a>
<FONT color="green">173</FONT>         * @since 2.1<a name="line.173"></a>
<FONT color="green">174</FONT>         */<a name="line.174"></a>
<FONT color="green">175</FONT>        protected double getSolverAbsoluteAccuracy() {<a name="line.175"></a>
<FONT color="green">176</FONT>            return solverAbsoluteAccuracy;<a name="line.176"></a>
<FONT color="green">177</FONT>        }<a name="line.177"></a>
<FONT color="green">178</FONT>    }<a name="line.178"></a>




























































</PRE>
</BODY>
</HTML>