view libs/commons-math-2.1/docs/apidocs/src-html/org/apache/commons/math/ode/nonstiff/AdamsNordsieckTransformer.html @ 13:cbf34dd4d7e6

commons-math-2.1 added
author dwinter
date Tue, 04 Jan 2011 10:02:07 +0100
parents
children
line wrap: on
line source

<HTML>
<BODY BGCOLOR="white">
<PRE>
<FONT color="green">001</FONT>    /*<a name="line.1"></a>
<FONT color="green">002</FONT>     * Licensed to the Apache Software Foundation (ASF) under one or more<a name="line.2"></a>
<FONT color="green">003</FONT>     * contributor license agreements.  See the NOTICE file distributed with<a name="line.3"></a>
<FONT color="green">004</FONT>     * this work for additional information regarding copyright ownership.<a name="line.4"></a>
<FONT color="green">005</FONT>     * The ASF licenses this file to You under the Apache License, Version 2.0<a name="line.5"></a>
<FONT color="green">006</FONT>     * (the "License"); you may not use this file except in compliance with<a name="line.6"></a>
<FONT color="green">007</FONT>     * the License.  You may obtain a copy of the License at<a name="line.7"></a>
<FONT color="green">008</FONT>     *<a name="line.8"></a>
<FONT color="green">009</FONT>     *      http://www.apache.org/licenses/LICENSE-2.0<a name="line.9"></a>
<FONT color="green">010</FONT>     *<a name="line.10"></a>
<FONT color="green">011</FONT>     * Unless required by applicable law or agreed to in writing, software<a name="line.11"></a>
<FONT color="green">012</FONT>     * distributed under the License is distributed on an "AS IS" BASIS,<a name="line.12"></a>
<FONT color="green">013</FONT>     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.<a name="line.13"></a>
<FONT color="green">014</FONT>     * See the License for the specific language governing permissions and<a name="line.14"></a>
<FONT color="green">015</FONT>     * limitations under the License.<a name="line.15"></a>
<FONT color="green">016</FONT>     */<a name="line.16"></a>
<FONT color="green">017</FONT>    <a name="line.17"></a>
<FONT color="green">018</FONT>    package org.apache.commons.math.ode.nonstiff;<a name="line.18"></a>
<FONT color="green">019</FONT>    <a name="line.19"></a>
<FONT color="green">020</FONT>    import java.util.Arrays;<a name="line.20"></a>
<FONT color="green">021</FONT>    import java.util.HashMap;<a name="line.21"></a>
<FONT color="green">022</FONT>    import java.util.Map;<a name="line.22"></a>
<FONT color="green">023</FONT>    <a name="line.23"></a>
<FONT color="green">024</FONT>    import org.apache.commons.math.fraction.BigFraction;<a name="line.24"></a>
<FONT color="green">025</FONT>    import org.apache.commons.math.linear.Array2DRowFieldMatrix;<a name="line.25"></a>
<FONT color="green">026</FONT>    import org.apache.commons.math.linear.Array2DRowRealMatrix;<a name="line.26"></a>
<FONT color="green">027</FONT>    import org.apache.commons.math.linear.DefaultFieldMatrixChangingVisitor;<a name="line.27"></a>
<FONT color="green">028</FONT>    import org.apache.commons.math.linear.FieldDecompositionSolver;<a name="line.28"></a>
<FONT color="green">029</FONT>    import org.apache.commons.math.linear.FieldLUDecompositionImpl;<a name="line.29"></a>
<FONT color="green">030</FONT>    import org.apache.commons.math.linear.FieldMatrix;<a name="line.30"></a>
<FONT color="green">031</FONT>    import org.apache.commons.math.linear.MatrixUtils;<a name="line.31"></a>
<FONT color="green">032</FONT>    <a name="line.32"></a>
<FONT color="green">033</FONT>    /** Transformer to Nordsieck vectors for Adams integrators.<a name="line.33"></a>
<FONT color="green">034</FONT>     * &lt;p&gt;This class i used by {@link AdamsBashforthIntegrator Adams-Bashforth} and<a name="line.34"></a>
<FONT color="green">035</FONT>     * {@link AdamsMoultonIntegrator Adams-Moulton} integrators to convert between<a name="line.35"></a>
<FONT color="green">036</FONT>     * classical representation with several previous first derivatives and Nordsieck<a name="line.36"></a>
<FONT color="green">037</FONT>     * representation with higher order scaled derivatives.&lt;/p&gt;<a name="line.37"></a>
<FONT color="green">038</FONT>     *<a name="line.38"></a>
<FONT color="green">039</FONT>     * &lt;p&gt;We define scaled derivatives s&lt;sub&gt;i&lt;/sub&gt;(n) at step n as:<a name="line.39"></a>
<FONT color="green">040</FONT>     * &lt;pre&gt;<a name="line.40"></a>
<FONT color="green">041</FONT>     * s&lt;sub&gt;1&lt;/sub&gt;(n) = h y'&lt;sub&gt;n&lt;/sub&gt; for first derivative<a name="line.41"></a>
<FONT color="green">042</FONT>     * s&lt;sub&gt;2&lt;/sub&gt;(n) = h&lt;sup&gt;2&lt;/sup&gt;/2 y''&lt;sub&gt;n&lt;/sub&gt; for second derivative<a name="line.42"></a>
<FONT color="green">043</FONT>     * s&lt;sub&gt;3&lt;/sub&gt;(n) = h&lt;sup&gt;3&lt;/sup&gt;/6 y'''&lt;sub&gt;n&lt;/sub&gt; for third derivative<a name="line.43"></a>
<FONT color="green">044</FONT>     * ...<a name="line.44"></a>
<FONT color="green">045</FONT>     * s&lt;sub&gt;k&lt;/sub&gt;(n) = h&lt;sup&gt;k&lt;/sup&gt;/k! y(k)&lt;sub&gt;n&lt;/sub&gt; for k&lt;sup&gt;th&lt;/sup&gt; derivative<a name="line.45"></a>
<FONT color="green">046</FONT>     * &lt;/pre&gt;&lt;/p&gt;<a name="line.46"></a>
<FONT color="green">047</FONT>     *<a name="line.47"></a>
<FONT color="green">048</FONT>     * &lt;p&gt;With the previous definition, the classical representation of multistep methods<a name="line.48"></a>
<FONT color="green">049</FONT>     * uses first derivatives only, i.e. it handles y&lt;sub&gt;n&lt;/sub&gt;, s&lt;sub&gt;1&lt;/sub&gt;(n) and<a name="line.49"></a>
<FONT color="green">050</FONT>     * q&lt;sub&gt;n&lt;/sub&gt; where q&lt;sub&gt;n&lt;/sub&gt; is defined as:<a name="line.50"></a>
<FONT color="green">051</FONT>     * &lt;pre&gt;<a name="line.51"></a>
<FONT color="green">052</FONT>     *   q&lt;sub&gt;n&lt;/sub&gt; = [ s&lt;sub&gt;1&lt;/sub&gt;(n-1) s&lt;sub&gt;1&lt;/sub&gt;(n-2) ... s&lt;sub&gt;1&lt;/sub&gt;(n-(k-1)) ]&lt;sup&gt;T&lt;/sup&gt;<a name="line.52"></a>
<FONT color="green">053</FONT>     * &lt;/pre&gt;<a name="line.53"></a>
<FONT color="green">054</FONT>     * (we omit the k index in the notation for clarity).&lt;/p&gt;<a name="line.54"></a>
<FONT color="green">055</FONT>     *<a name="line.55"></a>
<FONT color="green">056</FONT>     * &lt;p&gt;Another possible representation uses the Nordsieck vector with<a name="line.56"></a>
<FONT color="green">057</FONT>     * higher degrees scaled derivatives all taken at the same step, i.e it handles y&lt;sub&gt;n&lt;/sub&gt;,<a name="line.57"></a>
<FONT color="green">058</FONT>     * s&lt;sub&gt;1&lt;/sub&gt;(n) and r&lt;sub&gt;n&lt;/sub&gt;) where r&lt;sub&gt;n&lt;/sub&gt; is defined as:<a name="line.58"></a>
<FONT color="green">059</FONT>     * &lt;pre&gt;<a name="line.59"></a>
<FONT color="green">060</FONT>     * r&lt;sub&gt;n&lt;/sub&gt; = [ s&lt;sub&gt;2&lt;/sub&gt;(n), s&lt;sub&gt;3&lt;/sub&gt;(n) ... s&lt;sub&gt;k&lt;/sub&gt;(n) ]&lt;sup&gt;T&lt;/sup&gt;<a name="line.60"></a>
<FONT color="green">061</FONT>     * &lt;/pre&gt;<a name="line.61"></a>
<FONT color="green">062</FONT>     * (here again we omit the k index in the notation for clarity)<a name="line.62"></a>
<FONT color="green">063</FONT>     * &lt;/p&gt;<a name="line.63"></a>
<FONT color="green">064</FONT>     *<a name="line.64"></a>
<FONT color="green">065</FONT>     * &lt;p&gt;Taylor series formulas show that for any index offset i, s&lt;sub&gt;1&lt;/sub&gt;(n-i) can be<a name="line.65"></a>
<FONT color="green">066</FONT>     * computed from s&lt;sub&gt;1&lt;/sub&gt;(n), s&lt;sub&gt;2&lt;/sub&gt;(n) ... s&lt;sub&gt;k&lt;/sub&gt;(n), the formula being exact<a name="line.66"></a>
<FONT color="green">067</FONT>     * for degree k polynomials.<a name="line.67"></a>
<FONT color="green">068</FONT>     * &lt;pre&gt;<a name="line.68"></a>
<FONT color="green">069</FONT>     * s&lt;sub&gt;1&lt;/sub&gt;(n-i) = s&lt;sub&gt;1&lt;/sub&gt;(n) + &amp;sum;&lt;sub&gt;j&lt;/sub&gt; j (-i)&lt;sup&gt;j-1&lt;/sup&gt; s&lt;sub&gt;j&lt;/sub&gt;(n)<a name="line.69"></a>
<FONT color="green">070</FONT>     * &lt;/pre&gt;<a name="line.70"></a>
<FONT color="green">071</FONT>     * The previous formula can be used with several values for i to compute the transform between<a name="line.71"></a>
<FONT color="green">072</FONT>     * classical representation and Nordsieck vector at step end. The transform between r&lt;sub&gt;n&lt;/sub&gt;<a name="line.72"></a>
<FONT color="green">073</FONT>     * and q&lt;sub&gt;n&lt;/sub&gt; resulting from the Taylor series formulas above is:<a name="line.73"></a>
<FONT color="green">074</FONT>     * &lt;pre&gt;<a name="line.74"></a>
<FONT color="green">075</FONT>     * q&lt;sub&gt;n&lt;/sub&gt; = s&lt;sub&gt;1&lt;/sub&gt;(n) u + P r&lt;sub&gt;n&lt;/sub&gt;<a name="line.75"></a>
<FONT color="green">076</FONT>     * &lt;/pre&gt;<a name="line.76"></a>
<FONT color="green">077</FONT>     * where u is the [ 1 1 ... 1 ]&lt;sup&gt;T&lt;/sup&gt; vector and P is the (k-1)&amp;times;(k-1) matrix built<a name="line.77"></a>
<FONT color="green">078</FONT>     * with the j (-i)&lt;sup&gt;j-1&lt;/sup&gt; terms:<a name="line.78"></a>
<FONT color="green">079</FONT>     * &lt;pre&gt;<a name="line.79"></a>
<FONT color="green">080</FONT>     *        [  -2   3   -4    5  ... ]<a name="line.80"></a>
<FONT color="green">081</FONT>     *        [  -4  12  -32   80  ... ]<a name="line.81"></a>
<FONT color="green">082</FONT>     *   P =  [  -6  27 -108  405  ... ]<a name="line.82"></a>
<FONT color="green">083</FONT>     *        [  -8  48 -256 1280  ... ]<a name="line.83"></a>
<FONT color="green">084</FONT>     *        [          ...           ]<a name="line.84"></a>
<FONT color="green">085</FONT>     * &lt;/pre&gt;&lt;/p&gt;<a name="line.85"></a>
<FONT color="green">086</FONT>     *<a name="line.86"></a>
<FONT color="green">087</FONT>     * &lt;p&gt;Changing -i into +i in the formula above can be used to compute a similar transform between<a name="line.87"></a>
<FONT color="green">088</FONT>     * classical representation and Nordsieck vector at step start. The resulting matrix is simply<a name="line.88"></a>
<FONT color="green">089</FONT>     * the absolute value of matrix P.&lt;/p&gt;<a name="line.89"></a>
<FONT color="green">090</FONT>     *<a name="line.90"></a>
<FONT color="green">091</FONT>     * &lt;p&gt;For {@link AdamsBashforthIntegrator Adams-Bashforth} method, the Nordsieck vector<a name="line.91"></a>
<FONT color="green">092</FONT>     * at step n+1 is computed from the Nordsieck vector at step n as follows:<a name="line.92"></a>
<FONT color="green">093</FONT>     * &lt;ul&gt;<a name="line.93"></a>
<FONT color="green">094</FONT>     *   &lt;li&gt;y&lt;sub&gt;n+1&lt;/sub&gt; = y&lt;sub&gt;n&lt;/sub&gt; + s&lt;sub&gt;1&lt;/sub&gt;(n) + u&lt;sup&gt;T&lt;/sup&gt; r&lt;sub&gt;n&lt;/sub&gt;&lt;/li&gt;<a name="line.94"></a>
<FONT color="green">095</FONT>     *   &lt;li&gt;s&lt;sub&gt;1&lt;/sub&gt;(n+1) = h f(t&lt;sub&gt;n+1&lt;/sub&gt;, y&lt;sub&gt;n+1&lt;/sub&gt;)&lt;/li&gt;<a name="line.95"></a>
<FONT color="green">096</FONT>     *   &lt;li&gt;r&lt;sub&gt;n+1&lt;/sub&gt; = (s&lt;sub&gt;1&lt;/sub&gt;(n) - s&lt;sub&gt;1&lt;/sub&gt;(n+1)) P&lt;sup&gt;-1&lt;/sup&gt; u + P&lt;sup&gt;-1&lt;/sup&gt; A P r&lt;sub&gt;n&lt;/sub&gt;&lt;/li&gt;<a name="line.96"></a>
<FONT color="green">097</FONT>     * &lt;/ul&gt;<a name="line.97"></a>
<FONT color="green">098</FONT>     * where A is a rows shifting matrix (the lower left part is an identity matrix):<a name="line.98"></a>
<FONT color="green">099</FONT>     * &lt;pre&gt;<a name="line.99"></a>
<FONT color="green">100</FONT>     *        [ 0 0   ...  0 0 | 0 ]<a name="line.100"></a>
<FONT color="green">101</FONT>     *        [ ---------------+---]<a name="line.101"></a>
<FONT color="green">102</FONT>     *        [ 1 0   ...  0 0 | 0 ]<a name="line.102"></a>
<FONT color="green">103</FONT>     *    A = [ 0 1   ...  0 0 | 0 ]<a name="line.103"></a>
<FONT color="green">104</FONT>     *        [       ...      | 0 ]<a name="line.104"></a>
<FONT color="green">105</FONT>     *        [ 0 0   ...  1 0 | 0 ]<a name="line.105"></a>
<FONT color="green">106</FONT>     *        [ 0 0   ...  0 1 | 0 ]<a name="line.106"></a>
<FONT color="green">107</FONT>     * &lt;/pre&gt;&lt;/p&gt;<a name="line.107"></a>
<FONT color="green">108</FONT>     *<a name="line.108"></a>
<FONT color="green">109</FONT>     * &lt;p&gt;For {@link AdamsMoultonIntegrator Adams-Moulton} method, the predicted Nordsieck vector<a name="line.109"></a>
<FONT color="green">110</FONT>     * at step n+1 is computed from the Nordsieck vector at step n as follows:<a name="line.110"></a>
<FONT color="green">111</FONT>     * &lt;ul&gt;<a name="line.111"></a>
<FONT color="green">112</FONT>     *   &lt;li&gt;Y&lt;sub&gt;n+1&lt;/sub&gt; = y&lt;sub&gt;n&lt;/sub&gt; + s&lt;sub&gt;1&lt;/sub&gt;(n) + u&lt;sup&gt;T&lt;/sup&gt; r&lt;sub&gt;n&lt;/sub&gt;&lt;/li&gt;<a name="line.112"></a>
<FONT color="green">113</FONT>     *   &lt;li&gt;S&lt;sub&gt;1&lt;/sub&gt;(n+1) = h f(t&lt;sub&gt;n+1&lt;/sub&gt;, Y&lt;sub&gt;n+1&lt;/sub&gt;)&lt;/li&gt;<a name="line.113"></a>
<FONT color="green">114</FONT>     *   &lt;li&gt;R&lt;sub&gt;n+1&lt;/sub&gt; = (s&lt;sub&gt;1&lt;/sub&gt;(n) - s&lt;sub&gt;1&lt;/sub&gt;(n+1)) P&lt;sup&gt;-1&lt;/sup&gt; u + P&lt;sup&gt;-1&lt;/sup&gt; A P r&lt;sub&gt;n&lt;/sub&gt;&lt;/li&gt;<a name="line.114"></a>
<FONT color="green">115</FONT>     * &lt;/ul&gt;<a name="line.115"></a>
<FONT color="green">116</FONT>     * From this predicted vector, the corrected vector is computed as follows:<a name="line.116"></a>
<FONT color="green">117</FONT>     * &lt;ul&gt;<a name="line.117"></a>
<FONT color="green">118</FONT>     *   &lt;li&gt;y&lt;sub&gt;n+1&lt;/sub&gt; = y&lt;sub&gt;n&lt;/sub&gt; + S&lt;sub&gt;1&lt;/sub&gt;(n+1) + [ -1 +1 -1 +1 ... &amp;plusmn;1 ] r&lt;sub&gt;n+1&lt;/sub&gt;&lt;/li&gt;<a name="line.118"></a>
<FONT color="green">119</FONT>     *   &lt;li&gt;s&lt;sub&gt;1&lt;/sub&gt;(n+1) = h f(t&lt;sub&gt;n+1&lt;/sub&gt;, y&lt;sub&gt;n+1&lt;/sub&gt;)&lt;/li&gt;<a name="line.119"></a>
<FONT color="green">120</FONT>     *   &lt;li&gt;r&lt;sub&gt;n+1&lt;/sub&gt; = R&lt;sub&gt;n+1&lt;/sub&gt; + (s&lt;sub&gt;1&lt;/sub&gt;(n+1) - S&lt;sub&gt;1&lt;/sub&gt;(n+1)) P&lt;sup&gt;-1&lt;/sup&gt; u&lt;/li&gt;<a name="line.120"></a>
<FONT color="green">121</FONT>     * &lt;/ul&gt;<a name="line.121"></a>
<FONT color="green">122</FONT>     * where the upper case Y&lt;sub&gt;n+1&lt;/sub&gt;, S&lt;sub&gt;1&lt;/sub&gt;(n+1) and R&lt;sub&gt;n+1&lt;/sub&gt; represent the<a name="line.122"></a>
<FONT color="green">123</FONT>     * predicted states whereas the lower case y&lt;sub&gt;n+1&lt;/sub&gt;, s&lt;sub&gt;n+1&lt;/sub&gt; and r&lt;sub&gt;n+1&lt;/sub&gt;<a name="line.123"></a>
<FONT color="green">124</FONT>     * represent the corrected states.&lt;/p&gt;<a name="line.124"></a>
<FONT color="green">125</FONT>     *<a name="line.125"></a>
<FONT color="green">126</FONT>     * &lt;p&gt;We observe that both methods use similar update formulas. In both cases a P&lt;sup&gt;-1&lt;/sup&gt;u<a name="line.126"></a>
<FONT color="green">127</FONT>     * vector and a P&lt;sup&gt;-1&lt;/sup&gt; A P matrix are used that do not depend on the state,<a name="line.127"></a>
<FONT color="green">128</FONT>     * they only depend on k. This class handles these transformations.&lt;/p&gt;<a name="line.128"></a>
<FONT color="green">129</FONT>     *<a name="line.129"></a>
<FONT color="green">130</FONT>     * @version $Revision: 810196 $ $Date: 2009-09-01 15:47:46 -0400 (Tue, 01 Sep 2009) $<a name="line.130"></a>
<FONT color="green">131</FONT>     * @since 2.0<a name="line.131"></a>
<FONT color="green">132</FONT>     */<a name="line.132"></a>
<FONT color="green">133</FONT>    public class AdamsNordsieckTransformer {<a name="line.133"></a>
<FONT color="green">134</FONT>    <a name="line.134"></a>
<FONT color="green">135</FONT>        /** Cache for already computed coefficients. */<a name="line.135"></a>
<FONT color="green">136</FONT>        private static final Map&lt;Integer, AdamsNordsieckTransformer&gt; CACHE =<a name="line.136"></a>
<FONT color="green">137</FONT>            new HashMap&lt;Integer, AdamsNordsieckTransformer&gt;();<a name="line.137"></a>
<FONT color="green">138</FONT>    <a name="line.138"></a>
<FONT color="green">139</FONT>        /** Initialization matrix for the higher order derivatives wrt y'', y''' ... */<a name="line.139"></a>
<FONT color="green">140</FONT>        private final Array2DRowRealMatrix initialization;<a name="line.140"></a>
<FONT color="green">141</FONT>    <a name="line.141"></a>
<FONT color="green">142</FONT>        /** Update matrix for the higher order derivatives h&lt;sup&gt;2&lt;/sup&gt;/2y'', h&lt;sup&gt;3&lt;/sup&gt;/6 y''' ... */<a name="line.142"></a>
<FONT color="green">143</FONT>        private final Array2DRowRealMatrix update;<a name="line.143"></a>
<FONT color="green">144</FONT>    <a name="line.144"></a>
<FONT color="green">145</FONT>        /** Update coefficients of the higher order derivatives wrt y'. */<a name="line.145"></a>
<FONT color="green">146</FONT>        private final double[] c1;<a name="line.146"></a>
<FONT color="green">147</FONT>    <a name="line.147"></a>
<FONT color="green">148</FONT>        /** Simple constructor.<a name="line.148"></a>
<FONT color="green">149</FONT>         * @param nSteps number of steps of the multistep method<a name="line.149"></a>
<FONT color="green">150</FONT>         * (excluding the one being computed)<a name="line.150"></a>
<FONT color="green">151</FONT>         */<a name="line.151"></a>
<FONT color="green">152</FONT>        private AdamsNordsieckTransformer(final int nSteps) {<a name="line.152"></a>
<FONT color="green">153</FONT>    <a name="line.153"></a>
<FONT color="green">154</FONT>            // compute exact coefficients<a name="line.154"></a>
<FONT color="green">155</FONT>            FieldMatrix&lt;BigFraction&gt; bigP = buildP(nSteps);<a name="line.155"></a>
<FONT color="green">156</FONT>            FieldDecompositionSolver&lt;BigFraction&gt; pSolver =<a name="line.156"></a>
<FONT color="green">157</FONT>                new FieldLUDecompositionImpl&lt;BigFraction&gt;(bigP).getSolver();<a name="line.157"></a>
<FONT color="green">158</FONT>    <a name="line.158"></a>
<FONT color="green">159</FONT>            BigFraction[] u = new BigFraction[nSteps];<a name="line.159"></a>
<FONT color="green">160</FONT>            Arrays.fill(u, BigFraction.ONE);<a name="line.160"></a>
<FONT color="green">161</FONT>            BigFraction[] bigC1 = pSolver.solve(u);<a name="line.161"></a>
<FONT color="green">162</FONT>    <a name="line.162"></a>
<FONT color="green">163</FONT>            // update coefficients are computed by combining transform from<a name="line.163"></a>
<FONT color="green">164</FONT>            // Nordsieck to multistep, then shifting rows to represent step advance<a name="line.164"></a>
<FONT color="green">165</FONT>            // then applying inverse transform<a name="line.165"></a>
<FONT color="green">166</FONT>            BigFraction[][] shiftedP = bigP.getData();<a name="line.166"></a>
<FONT color="green">167</FONT>            for (int i = shiftedP.length - 1; i &gt; 0; --i) {<a name="line.167"></a>
<FONT color="green">168</FONT>                // shift rows<a name="line.168"></a>
<FONT color="green">169</FONT>                shiftedP[i] = shiftedP[i - 1];<a name="line.169"></a>
<FONT color="green">170</FONT>            }<a name="line.170"></a>
<FONT color="green">171</FONT>            shiftedP[0] = new BigFraction[nSteps];<a name="line.171"></a>
<FONT color="green">172</FONT>            Arrays.fill(shiftedP[0], BigFraction.ZERO);<a name="line.172"></a>
<FONT color="green">173</FONT>            FieldMatrix&lt;BigFraction&gt; bigMSupdate =<a name="line.173"></a>
<FONT color="green">174</FONT>                pSolver.solve(new Array2DRowFieldMatrix&lt;BigFraction&gt;(shiftedP, false));<a name="line.174"></a>
<FONT color="green">175</FONT>    <a name="line.175"></a>
<FONT color="green">176</FONT>            // initialization coefficients, computed from a R matrix = abs(P)<a name="line.176"></a>
<FONT color="green">177</FONT>            bigP.walkInOptimizedOrder(new DefaultFieldMatrixChangingVisitor&lt;BigFraction&gt;(BigFraction.ZERO) {<a name="line.177"></a>
<FONT color="green">178</FONT>                /** {@inheritDoc} */<a name="line.178"></a>
<FONT color="green">179</FONT>                @Override<a name="line.179"></a>
<FONT color="green">180</FONT>                public BigFraction visit(int row, int column, BigFraction value) {<a name="line.180"></a>
<FONT color="green">181</FONT>                    return ((column &amp; 0x1) == 0x1) ? value : value.negate();<a name="line.181"></a>
<FONT color="green">182</FONT>                }<a name="line.182"></a>
<FONT color="green">183</FONT>            });<a name="line.183"></a>
<FONT color="green">184</FONT>            FieldMatrix&lt;BigFraction&gt; bigRInverse =<a name="line.184"></a>
<FONT color="green">185</FONT>                new FieldLUDecompositionImpl&lt;BigFraction&gt;(bigP).getSolver().getInverse();<a name="line.185"></a>
<FONT color="green">186</FONT>    <a name="line.186"></a>
<FONT color="green">187</FONT>            // convert coefficients to double<a name="line.187"></a>
<FONT color="green">188</FONT>            initialization = MatrixUtils.bigFractionMatrixToRealMatrix(bigRInverse);<a name="line.188"></a>
<FONT color="green">189</FONT>            update         = MatrixUtils.bigFractionMatrixToRealMatrix(bigMSupdate);<a name="line.189"></a>
<FONT color="green">190</FONT>            c1             = new double[nSteps];<a name="line.190"></a>
<FONT color="green">191</FONT>            for (int i = 0; i &lt; nSteps; ++i) {<a name="line.191"></a>
<FONT color="green">192</FONT>                c1[i] = bigC1[i].doubleValue();<a name="line.192"></a>
<FONT color="green">193</FONT>            }<a name="line.193"></a>
<FONT color="green">194</FONT>    <a name="line.194"></a>
<FONT color="green">195</FONT>        }<a name="line.195"></a>
<FONT color="green">196</FONT>    <a name="line.196"></a>
<FONT color="green">197</FONT>        /** Get the Nordsieck transformer for a given number of steps.<a name="line.197"></a>
<FONT color="green">198</FONT>         * @param nSteps number of steps of the multistep method<a name="line.198"></a>
<FONT color="green">199</FONT>         * (excluding the one being computed)<a name="line.199"></a>
<FONT color="green">200</FONT>         * @return Nordsieck transformer for the specified number of steps<a name="line.200"></a>
<FONT color="green">201</FONT>         */<a name="line.201"></a>
<FONT color="green">202</FONT>        public static AdamsNordsieckTransformer getInstance(final int nSteps) {<a name="line.202"></a>
<FONT color="green">203</FONT>            synchronized(CACHE) {<a name="line.203"></a>
<FONT color="green">204</FONT>                AdamsNordsieckTransformer t = CACHE.get(nSteps);<a name="line.204"></a>
<FONT color="green">205</FONT>                if (t == null) {<a name="line.205"></a>
<FONT color="green">206</FONT>                    t = new AdamsNordsieckTransformer(nSteps);<a name="line.206"></a>
<FONT color="green">207</FONT>                    CACHE.put(nSteps, t);<a name="line.207"></a>
<FONT color="green">208</FONT>                }<a name="line.208"></a>
<FONT color="green">209</FONT>                return t;<a name="line.209"></a>
<FONT color="green">210</FONT>            }<a name="line.210"></a>
<FONT color="green">211</FONT>        }<a name="line.211"></a>
<FONT color="green">212</FONT>    <a name="line.212"></a>
<FONT color="green">213</FONT>        /** Get the number of steps of the method<a name="line.213"></a>
<FONT color="green">214</FONT>         * (excluding the one being computed).<a name="line.214"></a>
<FONT color="green">215</FONT>         * @return number of steps of the method<a name="line.215"></a>
<FONT color="green">216</FONT>         * (excluding the one being computed)<a name="line.216"></a>
<FONT color="green">217</FONT>         */<a name="line.217"></a>
<FONT color="green">218</FONT>        public int getNSteps() {<a name="line.218"></a>
<FONT color="green">219</FONT>            return c1.length;<a name="line.219"></a>
<FONT color="green">220</FONT>        }<a name="line.220"></a>
<FONT color="green">221</FONT>    <a name="line.221"></a>
<FONT color="green">222</FONT>        /** Build the P matrix.<a name="line.222"></a>
<FONT color="green">223</FONT>         * &lt;p&gt;The P matrix general terms are shifted j (-i)&lt;sup&gt;j-1&lt;/sup&gt; terms:<a name="line.223"></a>
<FONT color="green">224</FONT>         * &lt;pre&gt;<a name="line.224"></a>
<FONT color="green">225</FONT>         *        [  -2   3   -4    5  ... ]<a name="line.225"></a>
<FONT color="green">226</FONT>         *        [  -4  12  -32   80  ... ]<a name="line.226"></a>
<FONT color="green">227</FONT>         *   P =  [  -6  27 -108  405  ... ]<a name="line.227"></a>
<FONT color="green">228</FONT>         *        [  -8  48 -256 1280  ... ]<a name="line.228"></a>
<FONT color="green">229</FONT>         *        [          ...           ]<a name="line.229"></a>
<FONT color="green">230</FONT>         * &lt;/pre&gt;&lt;/p&gt;<a name="line.230"></a>
<FONT color="green">231</FONT>         * @param nSteps number of steps of the multistep method<a name="line.231"></a>
<FONT color="green">232</FONT>         * (excluding the one being computed)<a name="line.232"></a>
<FONT color="green">233</FONT>         * @return P matrix<a name="line.233"></a>
<FONT color="green">234</FONT>         */<a name="line.234"></a>
<FONT color="green">235</FONT>        private FieldMatrix&lt;BigFraction&gt; buildP(final int nSteps) {<a name="line.235"></a>
<FONT color="green">236</FONT>    <a name="line.236"></a>
<FONT color="green">237</FONT>            final BigFraction[][] pData = new BigFraction[nSteps][nSteps];<a name="line.237"></a>
<FONT color="green">238</FONT>    <a name="line.238"></a>
<FONT color="green">239</FONT>            for (int i = 0; i &lt; pData.length; ++i) {<a name="line.239"></a>
<FONT color="green">240</FONT>                // build the P matrix elements from Taylor series formulas<a name="line.240"></a>
<FONT color="green">241</FONT>                final BigFraction[] pI = pData[i];<a name="line.241"></a>
<FONT color="green">242</FONT>                final int factor = -(i + 1);<a name="line.242"></a>
<FONT color="green">243</FONT>                int aj = factor;<a name="line.243"></a>
<FONT color="green">244</FONT>                for (int j = 0; j &lt; pI.length; ++j) {<a name="line.244"></a>
<FONT color="green">245</FONT>                    pI[j] = new BigFraction(aj * (j + 2));<a name="line.245"></a>
<FONT color="green">246</FONT>                    aj *= factor;<a name="line.246"></a>
<FONT color="green">247</FONT>                }<a name="line.247"></a>
<FONT color="green">248</FONT>            }<a name="line.248"></a>
<FONT color="green">249</FONT>    <a name="line.249"></a>
<FONT color="green">250</FONT>            return new Array2DRowFieldMatrix&lt;BigFraction&gt;(pData, false);<a name="line.250"></a>
<FONT color="green">251</FONT>    <a name="line.251"></a>
<FONT color="green">252</FONT>        }<a name="line.252"></a>
<FONT color="green">253</FONT>    <a name="line.253"></a>
<FONT color="green">254</FONT>        /** Initialize the high order scaled derivatives at step start.<a name="line.254"></a>
<FONT color="green">255</FONT>         * @param first first scaled derivative at step start<a name="line.255"></a>
<FONT color="green">256</FONT>         * @param multistep scaled derivatives after step start (hy'1, ..., hy'k-1)<a name="line.256"></a>
<FONT color="green">257</FONT>         * will be modified<a name="line.257"></a>
<FONT color="green">258</FONT>         * @return high order derivatives at step start<a name="line.258"></a>
<FONT color="green">259</FONT>         */<a name="line.259"></a>
<FONT color="green">260</FONT>        public Array2DRowRealMatrix initializeHighOrderDerivatives(final double[] first,<a name="line.260"></a>
<FONT color="green">261</FONT>                                                         final double[][] multistep) {<a name="line.261"></a>
<FONT color="green">262</FONT>            for (int i = 0; i &lt; multistep.length; ++i) {<a name="line.262"></a>
<FONT color="green">263</FONT>                final double[] msI = multistep[i];<a name="line.263"></a>
<FONT color="green">264</FONT>                for (int j = 0; j &lt; first.length; ++j) {<a name="line.264"></a>
<FONT color="green">265</FONT>                    msI[j] -= first[j];<a name="line.265"></a>
<FONT color="green">266</FONT>                }<a name="line.266"></a>
<FONT color="green">267</FONT>            }<a name="line.267"></a>
<FONT color="green">268</FONT>            return initialization.multiply(new Array2DRowRealMatrix(multistep, false));<a name="line.268"></a>
<FONT color="green">269</FONT>        }<a name="line.269"></a>
<FONT color="green">270</FONT>    <a name="line.270"></a>
<FONT color="green">271</FONT>        /** Update the high order scaled derivatives for Adams integrators (phase 1).<a name="line.271"></a>
<FONT color="green">272</FONT>         * &lt;p&gt;The complete update of high order derivatives has a form similar to:<a name="line.272"></a>
<FONT color="green">273</FONT>         * &lt;pre&gt;<a name="line.273"></a>
<FONT color="green">274</FONT>         * r&lt;sub&gt;n+1&lt;/sub&gt; = (s&lt;sub&gt;1&lt;/sub&gt;(n) - s&lt;sub&gt;1&lt;/sub&gt;(n+1)) P&lt;sup&gt;-1&lt;/sup&gt; u + P&lt;sup&gt;-1&lt;/sup&gt; A P r&lt;sub&gt;n&lt;/sub&gt;<a name="line.274"></a>
<FONT color="green">275</FONT>         * &lt;/pre&gt;<a name="line.275"></a>
<FONT color="green">276</FONT>         * this method computes the P&lt;sup&gt;-1&lt;/sup&gt; A P r&lt;sub&gt;n&lt;/sub&gt; part.&lt;/p&gt;<a name="line.276"></a>
<FONT color="green">277</FONT>         * @param highOrder high order scaled derivatives<a name="line.277"></a>
<FONT color="green">278</FONT>         * (h&lt;sup&gt;2&lt;/sup&gt;/2 y'', ... h&lt;sup&gt;k&lt;/sup&gt;/k! y(k))<a name="line.278"></a>
<FONT color="green">279</FONT>         * @return updated high order derivatives<a name="line.279"></a>
<FONT color="green">280</FONT>         * @see #updateHighOrderDerivativesPhase2(double[], double[], Array2DRowRealMatrix)<a name="line.280"></a>
<FONT color="green">281</FONT>         */<a name="line.281"></a>
<FONT color="green">282</FONT>        public Array2DRowRealMatrix updateHighOrderDerivativesPhase1(final Array2DRowRealMatrix highOrder) {<a name="line.282"></a>
<FONT color="green">283</FONT>            return update.multiply(highOrder);<a name="line.283"></a>
<FONT color="green">284</FONT>        }<a name="line.284"></a>
<FONT color="green">285</FONT>    <a name="line.285"></a>
<FONT color="green">286</FONT>        /** Update the high order scaled derivatives Adams integrators (phase 2).<a name="line.286"></a>
<FONT color="green">287</FONT>         * &lt;p&gt;The complete update of high order derivatives has a form similar to:<a name="line.287"></a>
<FONT color="green">288</FONT>         * &lt;pre&gt;<a name="line.288"></a>
<FONT color="green">289</FONT>         * r&lt;sub&gt;n+1&lt;/sub&gt; = (s&lt;sub&gt;1&lt;/sub&gt;(n) - s&lt;sub&gt;1&lt;/sub&gt;(n+1)) P&lt;sup&gt;-1&lt;/sup&gt; u + P&lt;sup&gt;-1&lt;/sup&gt; A P r&lt;sub&gt;n&lt;/sub&gt;<a name="line.289"></a>
<FONT color="green">290</FONT>         * &lt;/pre&gt;<a name="line.290"></a>
<FONT color="green">291</FONT>         * this method computes the (s&lt;sub&gt;1&lt;/sub&gt;(n) - s&lt;sub&gt;1&lt;/sub&gt;(n+1)) P&lt;sup&gt;-1&lt;/sup&gt; u part.&lt;/p&gt;<a name="line.291"></a>
<FONT color="green">292</FONT>         * &lt;p&gt;Phase 1 of the update must already have been performed.&lt;/p&gt;<a name="line.292"></a>
<FONT color="green">293</FONT>         * @param start first order scaled derivatives at step start<a name="line.293"></a>
<FONT color="green">294</FONT>         * @param end first order scaled derivatives at step end<a name="line.294"></a>
<FONT color="green">295</FONT>         * @param highOrder high order scaled derivatives, will be modified<a name="line.295"></a>
<FONT color="green">296</FONT>         * (h&lt;sup&gt;2&lt;/sup&gt;/2 y'', ... h&lt;sup&gt;k&lt;/sup&gt;/k! y(k))<a name="line.296"></a>
<FONT color="green">297</FONT>         * @see #updateHighOrderDerivativesPhase1(Array2DRowRealMatrix)<a name="line.297"></a>
<FONT color="green">298</FONT>         */<a name="line.298"></a>
<FONT color="green">299</FONT>        public void updateHighOrderDerivativesPhase2(final double[] start,<a name="line.299"></a>
<FONT color="green">300</FONT>                                                     final double[] end,<a name="line.300"></a>
<FONT color="green">301</FONT>                                                     final Array2DRowRealMatrix highOrder) {<a name="line.301"></a>
<FONT color="green">302</FONT>            final double[][] data = highOrder.getDataRef();<a name="line.302"></a>
<FONT color="green">303</FONT>            for (int i = 0; i &lt; data.length; ++i) {<a name="line.303"></a>
<FONT color="green">304</FONT>                final double[] dataI = data[i];<a name="line.304"></a>
<FONT color="green">305</FONT>                final double c1I = c1[i];<a name="line.305"></a>
<FONT color="green">306</FONT>                for (int j = 0; j &lt; dataI.length; ++j) {<a name="line.306"></a>
<FONT color="green">307</FONT>                    dataI[j] += c1I * (start[j] - end[j]);<a name="line.307"></a>
<FONT color="green">308</FONT>                }<a name="line.308"></a>
<FONT color="green">309</FONT>            }<a name="line.309"></a>
<FONT color="green">310</FONT>        }<a name="line.310"></a>
<FONT color="green">311</FONT>    <a name="line.311"></a>
<FONT color="green">312</FONT>    }<a name="line.312"></a>




























































</PRE>
</BODY>
</HTML>