diff geotemco/lib/jszip/jszip-inflate.js @ 0:b12c99b7c3f0

commit for previous development
author Zoe Hong <zhong@mpiwg-berlin.mpg.de>
date Mon, 19 Jan 2015 17:13:49 +0100
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/geotemco/lib/jszip/jszip-inflate.js	Mon Jan 19 17:13:49 2015 +0100
@@ -0,0 +1,780 @@
+/*
+ * Port of a script by Masanao Izumo.
+ *
+ * Only changes : wrap all the variables in a function and add the 
+ * main function to JSZip (DEFLATE compression method).
+ * Everything else was written by M. Izumo.
+ *
+ * Original code can be found here: http://www.onicos.com/staff/iz/amuse/javascript/expert/inflate.txt
+ */
+
+if(!JSZip) {
+   throw "JSZip not defined";
+}
+
+/*
+ * Original:
+ *   http://www.onicos.com/staff/iz/amuse/javascript/expert/inflate.txt
+ */
+
+(function(){
+  // the original implementation leaks a global variable.
+  // Defining the variable here doesn't break anything.
+  var zip_fixed_bd;
+
+/* Copyright (C) 1999 Masanao Izumo <iz@onicos.co.jp>
+ * Version: 1.0.0.1
+ * LastModified: Dec 25 1999
+ */
+
+/* Interface:
+ * data = zip_inflate(src);
+ */
+
+/* constant parameters */
+var zip_WSIZE = 32768;		// Sliding Window size
+var zip_STORED_BLOCK = 0;
+var zip_STATIC_TREES = 1;
+var zip_DYN_TREES    = 2;
+
+/* for inflate */
+var zip_lbits = 9; 		// bits in base literal/length lookup table
+var zip_dbits = 6; 		// bits in base distance lookup table
+var zip_INBUFSIZ = 32768;	// Input buffer size
+var zip_INBUF_EXTRA = 64;	// Extra buffer
+
+/* variables (inflate) */
+var zip_slide;
+var zip_wp;			// current position in slide
+var zip_fixed_tl = null;	// inflate static
+var zip_fixed_td;		// inflate static
+var zip_fixed_bl, fixed_bd;	// inflate static
+var zip_bit_buf;		// bit buffer
+var zip_bit_len;		// bits in bit buffer
+var zip_method;
+var zip_eof;
+var zip_copy_leng;
+var zip_copy_dist;
+var zip_tl, zip_td;	// literal/length and distance decoder tables
+var zip_bl, zip_bd;	// number of bits decoded by tl and td
+
+var zip_inflate_data;
+var zip_inflate_pos;
+
+
+/* constant tables (inflate) */
+var zip_MASK_BITS = new Array(
+    0x0000,
+    0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
+    0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff);
+// Tables for deflate from PKZIP's appnote.txt.
+var zip_cplens = new Array( // Copy lengths for literal codes 257..285
+    3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
+    35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0);
+/* note: see note #13 above about the 258 in this list. */
+var zip_cplext = new Array( // Extra bits for literal codes 257..285
+    0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
+    3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99); // 99==invalid
+var zip_cpdist = new Array( // Copy offsets for distance codes 0..29
+    1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
+    257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
+    8193, 12289, 16385, 24577);
+var zip_cpdext = new Array( // Extra bits for distance codes
+    0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
+    7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
+    12, 12, 13, 13);
+var zip_border = new Array(  // Order of the bit length code lengths
+    16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15);
+/* objects (inflate) */
+
+function zip_HuftList() {
+    this.next = null;
+    this.list = null;
+}
+
+function zip_HuftNode() {
+    this.e = 0; // number of extra bits or operation
+    this.b = 0; // number of bits in this code or subcode
+
+    // union
+    this.n = 0; // literal, length base, or distance base
+    this.t = null; // (zip_HuftNode) pointer to next level of table
+}
+
+function zip_HuftBuild(b,	// code lengths in bits (all assumed <= BMAX)
+		       n,	// number of codes (assumed <= N_MAX)
+		       s,	// number of simple-valued codes (0..s-1)
+		       d,	// list of base values for non-simple codes
+		       e,	// list of extra bits for non-simple codes
+		       mm	// maximum lookup bits
+		   ) {
+    this.BMAX = 16;   // maximum bit length of any code
+    this.N_MAX = 288; // maximum number of codes in any set
+    this.status = 0;	// 0: success, 1: incomplete table, 2: bad input
+    this.root = null;	// (zip_HuftList) starting table
+    this.m = 0;		// maximum lookup bits, returns actual
+
+/* Given a list of code lengths and a maximum table size, make a set of
+   tables to decode that set of codes.	Return zero on success, one if
+   the given code set is incomplete (the tables are still built in this
+   case), two if the input is invalid (all zero length codes or an
+   oversubscribed set of lengths), and three if not enough memory.
+   The code with value 256 is special, and the tables are constructed
+   so that no bits beyond that code are fetched when that code is
+   decoded. */
+    {
+	var a;			// counter for codes of length k
+	var c = new Array(this.BMAX+1);	// bit length count table
+	var el;			// length of EOB code (value 256)
+	var f;			// i repeats in table every f entries
+	var g;			// maximum code length
+	var h;			// table level
+	var i;			// counter, current code
+	var j;			// counter
+	var k;			// number of bits in current code
+	var lx = new Array(this.BMAX+1);	// stack of bits per table
+	var p;			// pointer into c[], b[], or v[]
+	var pidx;		// index of p
+	var q;			// (zip_HuftNode) points to current table
+	var r = new zip_HuftNode(); // table entry for structure assignment
+	var u = new Array(this.BMAX); // zip_HuftNode[BMAX][]  table stack
+	var v = new Array(this.N_MAX); // values in order of bit length
+	var w;
+	var x = new Array(this.BMAX+1);// bit offsets, then code stack
+	var xp;			// pointer into x or c
+	var y;			// number of dummy codes added
+	var z;			// number of entries in current table
+	var o;
+	var tail;		// (zip_HuftList)
+
+	tail = this.root = null;
+	for(i = 0; i < c.length; i++)
+	    c[i] = 0;
+	for(i = 0; i < lx.length; i++)
+	    lx[i] = 0;
+	for(i = 0; i < u.length; i++)
+	    u[i] = null;
+	for(i = 0; i < v.length; i++)
+	    v[i] = 0;
+	for(i = 0; i < x.length; i++)
+	    x[i] = 0;
+
+	// Generate counts for each bit length
+	el = n > 256 ? b[256] : this.BMAX; // set length of EOB code, if any
+	p = b; pidx = 0;
+	i = n;
+	do {
+	    c[p[pidx]]++;	// assume all entries <= BMAX
+	    pidx++;
+	} while(--i > 0);
+	if(c[0] == n) {	// null input--all zero length codes
+	    this.root = null;
+	    this.m = 0;
+	    this.status = 0;
+	    return;
+	}
+
+	// Find minimum and maximum length, bound *m by those
+	for(j = 1; j <= this.BMAX; j++)
+	    if(c[j] != 0)
+		break;
+	k = j;			// minimum code length
+	if(mm < j)
+	    mm = j;
+	for(i = this.BMAX; i != 0; i--)
+	    if(c[i] != 0)
+		break;
+	g = i;			// maximum code length
+	if(mm > i)
+	    mm = i;
+
+	// Adjust last length count to fill out codes, if needed
+	for(y = 1 << j; j < i; j++, y <<= 1)
+	    if((y -= c[j]) < 0) {
+		this.status = 2;	// bad input: more codes than bits
+		this.m = mm;
+		return;
+	    }
+	if((y -= c[i]) < 0) {
+	    this.status = 2;
+	    this.m = mm;
+	    return;
+	}
+	c[i] += y;
+
+	// Generate starting offsets into the value table for each length
+	x[1] = j = 0;
+	p = c;
+	pidx = 1;
+	xp = 2;
+	while(--i > 0)		// note that i == g from above
+	    x[xp++] = (j += p[pidx++]);
+
+	// Make a table of values in order of bit lengths
+	p = b; pidx = 0;
+	i = 0;
+	do {
+	    if((j = p[pidx++]) != 0)
+		v[x[j]++] = i;
+	} while(++i < n);
+	n = x[g];			// set n to length of v
+
+	// Generate the Huffman codes and for each, make the table entries
+	x[0] = i = 0;		// first Huffman code is zero
+	p = v; pidx = 0;		// grab values in bit order
+	h = -1;			// no tables yet--level -1
+	w = lx[0] = 0;		// no bits decoded yet
+	q = null;			// ditto
+	z = 0;			// ditto
+
+	// go through the bit lengths (k already is bits in shortest code)
+	for(; k <= g; k++) {
+	    a = c[k];
+	    while(a-- > 0) {
+		// here i is the Huffman code of length k bits for value p[pidx]
+		// make tables up to required level
+		while(k > w + lx[1 + h]) {
+		    w += lx[1 + h]; // add bits already decoded
+		    h++;
+
+		    // compute minimum size table less than or equal to *m bits
+		    z = (z = g - w) > mm ? mm : z; // upper limit
+		    if((f = 1 << (j = k - w)) > a + 1) { // try a k-w bit table
+			// too few codes for k-w bit table
+			f -= a + 1;	// deduct codes from patterns left
+			xp = k;
+			while(++j < z) { // try smaller tables up to z bits
+			    if((f <<= 1) <= c[++xp])
+				break;	// enough codes to use up j bits
+			    f -= c[xp];	// else deduct codes from patterns
+			}
+		    }
+		    if(w + j > el && w < el)
+			j = el - w;	// make EOB code end at table
+		    z = 1 << j;	// table entries for j-bit table
+		    lx[1 + h] = j; // set table size in stack
+
+		    // allocate and link in new table
+		    q = new Array(z);
+		    for(o = 0; o < z; o++) {
+			q[o] = new zip_HuftNode();
+		    }
+
+		    if(tail == null)
+			tail = this.root = new zip_HuftList();
+		    else
+			tail = tail.next = new zip_HuftList();
+		    tail.next = null;
+		    tail.list = q;
+		    u[h] = q;	// table starts after link
+
+		    /* connect to last table, if there is one */
+		    if(h > 0) {
+			x[h] = i;		// save pattern for backing up
+			r.b = lx[h];	// bits to dump before this table
+			r.e = 16 + j;	// bits in this table
+			r.t = q;		// pointer to this table
+			j = (i & ((1 << w) - 1)) >> (w - lx[h]);
+			u[h-1][j].e = r.e;
+			u[h-1][j].b = r.b;
+			u[h-1][j].n = r.n;
+			u[h-1][j].t = r.t;
+		    }
+		}
+
+		// set up table entry in r
+		r.b = k - w;
+		if(pidx >= n)
+		    r.e = 99;		// out of values--invalid code
+		else if(p[pidx] < s) {
+		    r.e = (p[pidx] < 256 ? 16 : 15); // 256 is end-of-block code
+		    r.n = p[pidx++];	// simple code is just the value
+		} else {
+		    r.e = e[p[pidx] - s];	// non-simple--look up in lists
+		    r.n = d[p[pidx++] - s];
+		}
+
+		// fill code-like entries with r //
+		f = 1 << (k - w);
+		for(j = i >> w; j < z; j += f) {
+		    q[j].e = r.e;
+		    q[j].b = r.b;
+		    q[j].n = r.n;
+		    q[j].t = r.t;
+		}
+
+		// backwards increment the k-bit code i
+		for(j = 1 << (k - 1); (i & j) != 0; j >>= 1)
+		    i ^= j;
+		i ^= j;
+
+		// backup over finished tables
+		while((i & ((1 << w) - 1)) != x[h]) {
+		    w -= lx[h];		// don't need to update q
+		    h--;
+		}
+	    }
+	}
+
+	/* return actual size of base table */
+	this.m = lx[1];
+
+	/* Return true (1) if we were given an incomplete table */
+	this.status = ((y != 0 && g != 1) ? 1 : 0);
+    } /* end of constructor */
+}
+
+
+/* routines (inflate) */
+
+function zip_GET_BYTE() {
+    if(zip_inflate_data.length == zip_inflate_pos)
+	return -1;
+    return zip_inflate_data.charCodeAt(zip_inflate_pos++) & 0xff;
+}
+
+function zip_NEEDBITS(n) {
+    while(zip_bit_len < n) {
+	zip_bit_buf |= zip_GET_BYTE() << zip_bit_len;
+	zip_bit_len += 8;
+    }
+}
+
+function zip_GETBITS(n) {
+    return zip_bit_buf & zip_MASK_BITS[n];
+}
+
+function zip_DUMPBITS(n) {
+    zip_bit_buf >>= n;
+    zip_bit_len -= n;
+}
+
+function zip_inflate_codes(buff, off, size) {
+    /* inflate (decompress) the codes in a deflated (compressed) block.
+       Return an error code or zero if it all goes ok. */
+    var e;		// table entry flag/number of extra bits
+    var t;		// (zip_HuftNode) pointer to table entry
+    var n;
+
+    if(size == 0)
+      return 0;
+
+    // inflate the coded data
+    n = 0;
+    for(;;) {			// do until end of block
+	zip_NEEDBITS(zip_bl);
+	t = zip_tl.list[zip_GETBITS(zip_bl)];
+	e = t.e;
+	while(e > 16) {
+	    if(e == 99)
+		return -1;
+	    zip_DUMPBITS(t.b);
+	    e -= 16;
+	    zip_NEEDBITS(e);
+	    t = t.t[zip_GETBITS(e)];
+	    e = t.e;
+	}
+	zip_DUMPBITS(t.b);
+
+	if(e == 16) {		// then it's a literal
+	    zip_wp &= zip_WSIZE - 1;
+	    buff[off + n++] = zip_slide[zip_wp++] = t.n;
+	    if(n == size)
+		return size;
+	    continue;
+	}
+
+	// exit if end of block
+	if(e == 15)
+	    break;
+
+	// it's an EOB or a length
+
+	// get length of block to copy
+	zip_NEEDBITS(e);
+	zip_copy_leng = t.n + zip_GETBITS(e);
+	zip_DUMPBITS(e);
+
+	// decode distance of block to copy
+	zip_NEEDBITS(zip_bd);
+	t = zip_td.list[zip_GETBITS(zip_bd)];
+	e = t.e;
+
+	while(e > 16) {
+	    if(e == 99)
+		return -1;
+	    zip_DUMPBITS(t.b);
+	    e -= 16;
+	    zip_NEEDBITS(e);
+	    t = t.t[zip_GETBITS(e)];
+	    e = t.e;
+	}
+	zip_DUMPBITS(t.b);
+	zip_NEEDBITS(e);
+	zip_copy_dist = zip_wp - t.n - zip_GETBITS(e);
+	zip_DUMPBITS(e);
+
+	// do the copy
+	while(zip_copy_leng > 0 && n < size) {
+	    zip_copy_leng--;
+	    zip_copy_dist &= zip_WSIZE - 1;
+	    zip_wp &= zip_WSIZE - 1;
+	    buff[off + n++] = zip_slide[zip_wp++]
+		= zip_slide[zip_copy_dist++];
+	}
+
+	if(n == size)
+	    return size;
+    }
+
+    zip_method = -1; // done
+    return n;
+}
+
+function zip_inflate_stored(buff, off, size) {
+    /* "decompress" an inflated type 0 (stored) block. */
+    var n;
+
+    // go to byte boundary
+    n = zip_bit_len & 7;
+    zip_DUMPBITS(n);
+
+    // get the length and its complement
+    zip_NEEDBITS(16);
+    n = zip_GETBITS(16);
+    zip_DUMPBITS(16);
+    zip_NEEDBITS(16);
+    if(n != ((~zip_bit_buf) & 0xffff))
+	return -1;			// error in compressed data
+    zip_DUMPBITS(16);
+
+    // read and output the compressed data
+    zip_copy_leng = n;
+
+    n = 0;
+    while(zip_copy_leng > 0 && n < size) {
+	zip_copy_leng--;
+	zip_wp &= zip_WSIZE - 1;
+	zip_NEEDBITS(8);
+	buff[off + n++] = zip_slide[zip_wp++] =
+	    zip_GETBITS(8);
+	zip_DUMPBITS(8);
+    }
+
+    if(zip_copy_leng == 0)
+      zip_method = -1; // done
+    return n;
+}
+
+function zip_inflate_fixed(buff, off, size) {
+    /* decompress an inflated type 1 (fixed Huffman codes) block.  We should
+       either replace this with a custom decoder, or at least precompute the
+       Huffman tables. */
+
+    // if first time, set up tables for fixed blocks
+    if(zip_fixed_tl == null) {
+	var i;			// temporary variable
+	var l = new Array(288);	// length list for huft_build
+	var h;	// zip_HuftBuild
+
+	// literal table
+	for(i = 0; i < 144; i++)
+	    l[i] = 8;
+	for(; i < 256; i++)
+	    l[i] = 9;
+	for(; i < 280; i++)
+	    l[i] = 7;
+	for(; i < 288; i++)	// make a complete, but wrong code set
+	    l[i] = 8;
+	zip_fixed_bl = 7;
+
+	h = new zip_HuftBuild(l, 288, 257, zip_cplens, zip_cplext,
+			      zip_fixed_bl);
+	if(h.status != 0) {
+	    alert("HufBuild error: "+h.status);
+	    return -1;
+	}
+	zip_fixed_tl = h.root;
+	zip_fixed_bl = h.m;
+
+	// distance table
+	for(i = 0; i < 30; i++)	// make an incomplete code set
+	    l[i] = 5;
+	zip_fixed_bd = 5;
+
+	h = new zip_HuftBuild(l, 30, 0, zip_cpdist, zip_cpdext, zip_fixed_bd);
+	if(h.status > 1) {
+	    zip_fixed_tl = null;
+	    alert("HufBuild error: "+h.status);
+	    return -1;
+	}
+	zip_fixed_td = h.root;
+	zip_fixed_bd = h.m;
+    }
+
+    zip_tl = zip_fixed_tl;
+    zip_td = zip_fixed_td;
+    zip_bl = zip_fixed_bl;
+    zip_bd = zip_fixed_bd;
+    return zip_inflate_codes(buff, off, size);
+}
+
+function zip_inflate_dynamic(buff, off, size) {
+    // decompress an inflated type 2 (dynamic Huffman codes) block.
+    var i;		// temporary variables
+    var j;
+    var l;		// last length
+    var n;		// number of lengths to get
+    var t;		// (zip_HuftNode) literal/length code table
+    var nb;		// number of bit length codes
+    var nl;		// number of literal/length codes
+    var nd;		// number of distance codes
+    var ll = new Array(286+30); // literal/length and distance code lengths
+    var h;		// (zip_HuftBuild)
+
+    for(i = 0; i < ll.length; i++)
+	ll[i] = 0;
+
+    // read in table lengths
+    zip_NEEDBITS(5);
+    nl = 257 + zip_GETBITS(5);	// number of literal/length codes
+    zip_DUMPBITS(5);
+    zip_NEEDBITS(5);
+    nd = 1 + zip_GETBITS(5);	// number of distance codes
+    zip_DUMPBITS(5);
+    zip_NEEDBITS(4);
+    nb = 4 + zip_GETBITS(4);	// number of bit length codes
+    zip_DUMPBITS(4);
+    if(nl > 286 || nd > 30)
+      return -1;		// bad lengths
+
+    // read in bit-length-code lengths
+    for(j = 0; j < nb; j++)
+    {
+	zip_NEEDBITS(3);
+	ll[zip_border[j]] = zip_GETBITS(3);
+	zip_DUMPBITS(3);
+    }
+    for(; j < 19; j++)
+	ll[zip_border[j]] = 0;
+
+    // build decoding table for trees--single level, 7 bit lookup
+    zip_bl = 7;
+    h = new zip_HuftBuild(ll, 19, 19, null, null, zip_bl);
+    if(h.status != 0)
+	return -1;	// incomplete code set
+
+    zip_tl = h.root;
+    zip_bl = h.m;
+
+    // read in literal and distance code lengths
+    n = nl + nd;
+    i = l = 0;
+    while(i < n) {
+	zip_NEEDBITS(zip_bl);
+	t = zip_tl.list[zip_GETBITS(zip_bl)];
+	j = t.b;
+	zip_DUMPBITS(j);
+	j = t.n;
+	if(j < 16)		// length of code in bits (0..15)
+	    ll[i++] = l = j;	// save last length in l
+	else if(j == 16) {	// repeat last length 3 to 6 times
+	    zip_NEEDBITS(2);
+	    j = 3 + zip_GETBITS(2);
+	    zip_DUMPBITS(2);
+	    if(i + j > n)
+		return -1;
+	    while(j-- > 0)
+		ll[i++] = l;
+	} else if(j == 17) {	// 3 to 10 zero length codes
+	    zip_NEEDBITS(3);
+	    j = 3 + zip_GETBITS(3);
+	    zip_DUMPBITS(3);
+	    if(i + j > n)
+		return -1;
+	    while(j-- > 0)
+		ll[i++] = 0;
+	    l = 0;
+	} else {		// j == 18: 11 to 138 zero length codes
+	    zip_NEEDBITS(7);
+	    j = 11 + zip_GETBITS(7);
+	    zip_DUMPBITS(7);
+	    if(i + j > n)
+		return -1;
+	    while(j-- > 0)
+		ll[i++] = 0;
+	    l = 0;
+	}
+    }
+
+    // build the decoding tables for literal/length and distance codes
+    zip_bl = zip_lbits;
+    h = new zip_HuftBuild(ll, nl, 257, zip_cplens, zip_cplext, zip_bl);
+    if(zip_bl == 0)	// no literals or lengths
+	h.status = 1;
+    if(h.status != 0) {
+	if(h.status == 1)
+	    ;// **incomplete literal tree**
+	return -1;		// incomplete code set
+    }
+    zip_tl = h.root;
+    zip_bl = h.m;
+
+    for(i = 0; i < nd; i++)
+	ll[i] = ll[i + nl];
+    zip_bd = zip_dbits;
+    h = new zip_HuftBuild(ll, nd, 0, zip_cpdist, zip_cpdext, zip_bd);
+    zip_td = h.root;
+    zip_bd = h.m;
+
+    if(zip_bd == 0 && nl > 257) {   // lengths but no distances
+	// **incomplete distance tree**
+	return -1;
+    }
+
+    if(h.status == 1) {
+	;// **incomplete distance tree**
+    }
+    if(h.status != 0)
+	return -1;
+
+    // decompress until an end-of-block code
+    return zip_inflate_codes(buff, off, size);
+}
+
+function zip_inflate_start() {
+    var i;
+
+    if(zip_slide == null)
+	zip_slide = new Array(2 * zip_WSIZE);
+    zip_wp = 0;
+    zip_bit_buf = 0;
+    zip_bit_len = 0;
+    zip_method = -1;
+    zip_eof = false;
+    zip_copy_leng = zip_copy_dist = 0;
+    zip_tl = null;
+}
+
+function zip_inflate_internal(buff, off, size) {
+    // decompress an inflated entry
+    var n, i;
+
+    n = 0;
+    while(n < size) {
+	if(zip_eof && zip_method == -1)
+	    return n;
+
+	if(zip_copy_leng > 0) {
+	    if(zip_method != zip_STORED_BLOCK) {
+		// STATIC_TREES or DYN_TREES
+		while(zip_copy_leng > 0 && n < size) {
+		    zip_copy_leng--;
+		    zip_copy_dist &= zip_WSIZE - 1;
+		    zip_wp &= zip_WSIZE - 1;
+		    buff[off + n++] = zip_slide[zip_wp++] =
+			zip_slide[zip_copy_dist++];
+		}
+	    } else {
+		while(zip_copy_leng > 0 && n < size) {
+		    zip_copy_leng--;
+		    zip_wp &= zip_WSIZE - 1;
+		    zip_NEEDBITS(8);
+		    buff[off + n++] = zip_slide[zip_wp++] = zip_GETBITS(8);
+		    zip_DUMPBITS(8);
+		}
+		if(zip_copy_leng == 0)
+		    zip_method = -1; // done
+	    }
+	    if(n == size)
+		return n;
+	}
+
+	if(zip_method == -1) {
+	    if(zip_eof)
+		break;
+
+	    // read in last block bit
+	    zip_NEEDBITS(1);
+	    if(zip_GETBITS(1) != 0)
+		zip_eof = true;
+	    zip_DUMPBITS(1);
+
+	    // read in block type
+	    zip_NEEDBITS(2);
+	    zip_method = zip_GETBITS(2);
+	    zip_DUMPBITS(2);
+	    zip_tl = null;
+	    zip_copy_leng = 0;
+	}
+
+	switch(zip_method) {
+	  case 0: // zip_STORED_BLOCK
+	    i = zip_inflate_stored(buff, off + n, size - n);
+	    break;
+
+	  case 1: // zip_STATIC_TREES
+	    if(zip_tl != null)
+		i = zip_inflate_codes(buff, off + n, size - n);
+	    else
+		i = zip_inflate_fixed(buff, off + n, size - n);
+	    break;
+
+	  case 2: // zip_DYN_TREES
+	    if(zip_tl != null)
+		i = zip_inflate_codes(buff, off + n, size - n);
+	    else
+		i = zip_inflate_dynamic(buff, off + n, size - n);
+	    break;
+
+	  default: // error
+	    i = -1;
+	    break;
+	}
+
+	if(i == -1) {
+	    if(zip_eof)
+		return 0;
+	    return -1;
+	}
+	n += i;
+    }
+    return n;
+}
+
+function zip_inflate(str) {
+    var out, buff;
+    var i, j;
+
+    zip_inflate_start();
+    zip_inflate_data = str;
+    zip_inflate_pos = 0;
+
+    buff = new Array(1024);
+    out = "";
+    while((i = zip_inflate_internal(buff, 0, buff.length)) > 0) {
+	for(j = 0; j < i; j++)
+	    out += String.fromCharCode(buff[j]);
+    }
+    zip_inflate_data = null; // G.C.
+    return out;
+}
+
+//
+// end of the script of Masanao Izumo.
+//
+
+// we add the compression method for JSZip
+if(!JSZip.compressions["DEFLATE"]) {
+  JSZip.compressions["DEFLATE"] = {
+    magic : "\x08\x00",
+    uncompress : zip_inflate
+  }
+} else {
+  JSZip.compressions["DEFLATE"].uncompress = zip_inflate;
+}
+
+})();
+
+// enforcing Stuk's coding style
+// vim: set shiftwidth=3 softtabstop=3: