view texts/XML/archimedes/el/arist_mecha_108_el_1982.xml @ 6:22d6a63640c6

moved texts from SVN https://it-dev.mpiwg-berlin.mpg.de/svn/mpdl-project-content/trunk/texts/eXist/
author casties
date Fri, 07 Dec 2012 17:05:22 +0100
parents
children
line wrap: on
line source

<?xml version="1.0"?>
<archimedes xmlns:xlink="http://www.w3.org/1999/xlink" >
<info>
    <author>Pseudo-Aristotle</author>
    <title>Problemata Mechanica</title> 
    <date>1982</date>
    <place>Padova</place>
    <translator></translator>
    <lang>el</lang>
    <cvs_file>arist_mecha_108_el_1982.xml</cvs_file>
    <cvs_version></cvs_version>
    <locator>108.xml</locator>
</info>
<text>
<front></front>
<body>
<chap>
<p n="1">


  <s id="g0110101">
<pb xlink:href="080/01/001.jpg" ed="Bekker" n="847a"></pb>
Θαυμάζεται 
τῶν 
μὲν 
κατὰ 
φύσιν 
συμβαινόντων, 
ὅσων 
<lb></lb>
ἀγνοεῖται 
τὸ 
αἴτιον, 
τῶν 
δὲ 
παρὰ 
φύσιν, 
ὅσα 
γίνεται 
διὰ 
<lb></lb>
τέχνην 
πρὸς 
τὸ 
συμφέρον 
τοῖς 
ἀνθρώποις. 
</s>

<s id="g0110102">
ἐν 
πολλοῖς 
γὰρ 
<lb></lb>

φύσις 
ὑπεναντίον 
πρὸς 
τὸ 
χρήσιμον 
ἡμῖν 
ποιεῖ· 
</s>
<s id="g0110103">

μὲν 
<lb></lb>
γὰρ 
φύσις 
ἀεὶ 
τὸν 
αὐτὸν 
ἔχει 
τρόπον 
καὶ 
ἁπλῶς, 
τὸ 
δὲ 
<lb></lb>
χρήσιμον 
μεταβάλλει 
πολλαχῶς. 
</s>
</p>
<p n="2">
<s id="g0110201">
ὅταν 
οὖν 
δέῃ 
τι 
παρὰ 
<lb></lb>

φύσιν 
πρᾶξαι, 
διὰ 
τὸ 
χαλεπὸν 
ἀπορίαν 
παρέχει 
καὶ 
δεῖται 
<lb></lb>
τέχνης. 
</s>
<s>
διὸ 
καὶ 
καλοῦμεν 
τῆς 
τέχνης 
τὸ 
πρὸς 
τὰς 
τοιαύτας 
<lb></lb>
ἀπορίας 
βοηθοῦν 
μέρος 
μηχανήν. 
</s>
<s id="g0110202">
καθάπερ 
γὰρ 
ἐποίησεν 
<lb></lb>
Ἀντιφῶν 

ποιητής, 
οὕτω 
καὶ 
ἔχει· 
τέχνῃ 
γὰρ 
κρατοῦμεν, 
<lb></lb>
ὧν 
φύσει 
νικώμεθα. 
</s>
<s id="g0110203">

τοιαῦτα 
δέ 
ἐστιν 
ἐν 
οἷς 
τά 
τε 
ἐλάττονα 
<lb></lb>
κρατεῖ 
τῶν 
μειζόνων, 
καὶ 
τὰ 
ῥοπὴν 
ἔχοντα 
μικρὰν 
κινεῖ 
<lb></lb>
βάρη 
μεγάλα, 
καὶ 
πάντα 
σχεδὸν 
ὅσα 
τῶν 
προβλημάτων 
<lb></lb>
μηχανικὰ 
προσαγορεύομεν. 
</s>
</p>
<p n="3">
<s id="g0110301">
ἔστι 
δὲ 
ταῦτα 
τοῖς 
φυσικοῖς 
<lb></lb>
προβλήμασιν 
οὔτε 
ταὐτὰ 
πάμπαν 
οὔτε 
κεχωρισμένα 
λίαν, 
<lb></lb>
ἀλλὰ 
κοινὰ 
τῶν 
τε 
μαθηματικῶν 
θεωρημάτων 
καὶ 
τῶν 
<lb></lb>

φυσικῶν· 
τὸ 
μὲν 
γὰρ 
ὣς 
διὰ 
τῶν 
μαθηματικῶν 
δῆλον, 
τὸ 
<lb></lb>
δὲ 
περὶ 

διὰ 
τῶν 
φυσικῶν. 
</s>
</p>
<p n="4">
<s id="g0120101">
περιέχεται 
δὲ 
τῶν 
<pb xlink:href="080/01/002.jpg" ed="Bekker" n="847b"></pb>
<lb></lb>
ἀπορουμένων 
ἐν 
τῷ 
γένει 
τούτῳ 
τὰ 
περὶ 
τὸν 
μοχλόν. 
</s>
<s id="g0120102">
ἄτοπον 
γὰρ 
<lb></lb>
εἶναι 
δοκεῖ 
τὸ 
κινεῖσθαι 
μέγα 
βάρος 
ὑπὸ 
μικρᾶς 
ἰσχύος, 
<lb></lb>

καὶ 
ταῦτα 
μετὰ 
βάρους 
πλείονος· 

γὰρ 
ἄνευ 
μοχλοῦ 
κινεῖν 
<lb></lb>
οὐ 
δύναταί 
τις, 
τοῦτο 
ταὐτὸ 
βάρος, 
προσλαβὼν 
ἔτι 
τὸ 
<lb></lb>
τοῦ 
μοχλοῦ 
βάρος, 
κινεῖ 
θᾶττον. 
</s>
<s id="g0120103">
πάντων 
δὲ 
τῶν 
τοιούτων 
<lb></lb>
ἔχει 
τῆς 
αἰτίας 
τὴν 
ἀρχὴν 

κύκλος. 
</s>
<s id="g0120104">
καὶ 
τοῦτο 
εὐλόγως 
<lb></lb>
συμβέβηκεν· 
ἐκ 
μὲν 
γὰρ 
θαυμασιωτέρου 
συμβαίνειν 
τι 
<lb></lb>
θαυμαστὸν 
οὐδὲν 
ἄτοπον, 

</s>
</p>
<p n="5">
<s id="g0120201">
θαυμασιώτατον 
δὲ 
τὸ 
τἀναντία 
<lb></lb>
γίνεσθαι 
μετ&#039; 
ἀλλήλων. 
</s>
<s id="g0120202">

δὲ 
κύκλος 
συνέστηκεν 
ἐκ 
τοιούτων· 
</s>
<s id="g0120203">
<lb></lb>
εὐθὺς 
γὰρ 
ἐκ 
κινουμένου 
τε 
γεγένηται 
καὶ 
μένοντος, 
ὧν 

<lb></lb>
φύσις 
ἐστὶν 
ὑπεναντία 
ἀλλήλοις. 
ὥστ&#039; 
ἐνταῦθα 
ἔστιν 
ἐπιβλέψασιν 
<lb></lb>

ἧττον 
θαυμάζειν 
τὰς 
συμβαινούσας 
ὑπεναντιώσεις 
<lb></lb>
περὶ 
αὐτόν. 
</s>
<s id="g0120204">
πρῶτον 
μὲν 
γὰρ 
τῇ 
περιεχούσῃ 
γραμμῇ 
τὸν 
<lb></lb>
κύκλον 
πλάτος 
οὐθὲν 
ἐχούσῃ, 
τἀναντία 
πως 
προσεμφαίνεται, 
<lb></lb>
τὸ 
κοῖλον 
καὶ 
τὸ 
κυρτόν. 
</s>
<s id="g0120205">
ταῦτα 
δὲ 
διέστηκεν 
ἀλλήλων 
<lb></lb>
ὃν 
τρόπον 
τὸ 
μέγα 
καὶ 
τὸ 
μικρόν· 
ἐκείνων 
τε 
γὰρ 
<lb></lb>
μέσον 
τὸ 
ἴσον 
καὶ 
τούτων 
τὸ 
εὐθύ. 
διὸ 
μεταβάλλοντα 
εἰς 

<lb></lb>
ἄλληλα 
τὰ 
μὲν 
ἀναγκαῖον 
ἴσα 
γενέσθαι 
πρότερον 

<pb xlink:href="080/01/003.jpg" ed="Bekker" n="848a"></pb>
<lb></lb>
τῶν 
ἄκρων 
ὁποτερονοῦν, 
τὴν 
δὲ 
γραμμὴν 
εὐθεῖαν, 
ὅταν 
ἐκ 
κυρτῆς 
<lb></lb>
εἰς 
κοῖλον 

πάλιν 
ἐκ 
ταύτης 
γίνηται 
κυρτὴ 
καὶ 
περιφερής. 
<lb></lb>
ἓν 
μὲν 
οὖν 
τοῦτο 
τῶν 
ἀτόπων 
ὑπάρχει 
περὶ 
τὸν 
κύκλον, 
</s>
</p>
<p n="6">
<s id="g0120301">
<lb></lb>
δεύτερον 
δὲ 
ὅτι 
ἅμα 
κινεῖται 
τὰς 
ἐναντίας 
κινήσεις· 
<lb></lb>
ἅμα 
γὰρ 
εἰς 
τὸν 
ἔμπροσθεν 
κινεῖται 
τόπον 
καὶ 
τὸν 
ὄπισθεν. 

</s>
<s id="g0120302">
<lb></lb>

τε 
γράφουσα 
γραμμὴ 
τὸν 
κύκλον 
ὡσαύτως 
ἔχει· 
ἐξ 
<lb></lb>
οὗ 
γὰρ 
ἄρχεται 
τόπου 
τὸ 
πέρας 
αὐτῆς, 
εἰς 
τὸν 
αὐτὸν 
τοῦτον 
τόπον 
<lb></lb>
ἔρχεται 
πάλιν· 
συνεχῶς 
γὰρ 
κινουμένης 
αὐτῆς 
τὸ 
ἔσχατον 
<lb></lb>
πάλιν 
ἀπῆλθε 
πρῶτον, 
ὥστε 
καὶ 
φανερὸν 
ὅτι 
μετέβαλεν 
<lb></lb>
ἐντεῦθεν. 
</s>
<s id="g0120303">
διό, 
καθάπερ 
εἴρηται 
πρότερον, 
οὐδὲν 
ἄτοπον 
τὸ 
<lb></lb>
πάντων 
εἶναι 
τῶν 
θαυμάτων 
αὐτὸν 
ἀρχήν. 

</s>
</p>
<p n="7">
<s id="g0120401">
τὰ 
μὲν 
οὖν 
περὶ 
<lb></lb>
τὸν 
ζυγὸν 
γινόμενα 
εἰς 
τὸν 
κύκλον 
ἀνάγεται, 
τὰ 
δὲ 
περὶ 
<lb></lb>
τὸν 
μοχλὸν 
εἰς 
τὸν 
ζυγόν, 
τὰ 
δ&#039; 
ἄλλα 
πάντα 
σχεδὸν 
τὰ 
<lb></lb>
περὶ 
τὰς 
κινήσεις 
τὰς 
μηχανικὰς 
εἰς 
τὸν 
μοχλόν. 
</s>
<s id="g0120402">
ἔτι 
δὲ 
<lb></lb>
διὰ 
τὸ 
μιᾶς 
οὔσης 
τῆς 
ἐκ 
τοῦ 
κέντρου 
γραμμῆς 
μηθὲν 
ἕτερον 
<lb></lb>

ἑτέρῳ 
φέρεσθαι 
τῶν 
σημείων 
τῶν 
ἐν 
αὐτῇ 
ἰσοταχῶς, 
ἀλλ&#039; 
ἀεὶ 
<lb></lb>
τὸ 
τοῦ 
μένοντος 
πέρατος 
πορρώτερον 
ὂν 
θᾶττον, 
πολλὰ 
τῶν 
θαυμαζομένων 
<lb></lb>
συμβαίνει 
περὶ 
τὰς 
κινήσεις 
τῶν 
κύκλων· 
περὶ 
<lb></lb>
ὧν 
ἐν 
τοῖς 
ἑπομένοις 
προβλήμασιν 
ἔσται 
δῆλον. 
</s>
</p>
<p n="8">
<s id="g0120501">
διὰ 
δὲ 
τὸ 
<lb></lb>
τὰς 
ἐναντίας 
κινήσεις 
ἅμα 
κινεῖσθαι 
τὸν 
κύκλον, 
καὶ 
τὸ 
<lb></lb>
μὲν 
ἕτερον 
τῆς 
διαμέτρου 
τῶν 
ἄκρων, 
ἐφ&#039; 
οὗ 
τὸ 
Α, 
εἰς 
τοὔμπροσθεν 
<lb></lb>

κινεῖσθαι, 
θάτερον 
δέ, 
ἐφ&#039; 
οὗ 
τὸ 
Β, 
εἰς 
τοὔπισθεν, 
<lb></lb>
κατασκευάζουσί 
τινες 
ὥστ&#039; 
ἀπὸ 
μιᾶς 
κινήσεως 
πολλοὺς 
ὑπεναντίους 
<lb></lb>
ἅμα 
κινεῖσθαι 
κύκλους, 
ὥσπερ 
οὓς 
ἀνατιθέασιν 
ἐν 
<lb></lb>
τοῖς 
ἱεροῖς 
ποιήσαντες 
τροχίσκους 
χαλκοῦς 
τε 
καὶ 
σιδηροῦς. 
</s>
<s id="g0120502">
<lb></lb>
εἰ 
γὰρ 
εἴη 
τοῦ 
ΑΒ 
κύκλου 
ἁπτόμενος 
ἕτερος 
κύκλος 
ἐφ&#039; 
οὗ 
<lb></lb>
ΓΔ, 
τοῦ 
κύκλου 
τοῦ 
ἐφ&#039; 
οὗ 
ΑΒ 
κινουμένης 
τῆς 
διαμέτρου 
<lb></lb>
εἰς 
τοὔμπροσθεν, 
κινηθήσεται 

ΓΔ 
εἰς 
τοὔπισθεν 
τοῦ 
κύκλου 
<lb></lb>
τοῦ 
ἐφ&#039; 
οὗ 
Α, 
κινουμένης 
τῆς 
διαμέτρου 
περὶ 
τὸ 
αὐτό. 

</s>
<s id="g0120503">
εἰς 
<lb></lb>
τοὐναντίον 
ἄρα 
κινηθήσεται 

ἐφ&#039; 
οὗ 

ΓΔ 
κύκλος 
τῷ 
ἐφ&#039; 
<lb></lb>
οὗ 
τὸ 
ΑΒ· 
καὶ 
πάλιν 
αὐτὸς 
τὸν 
ἐφεξῆς, 
ἐφ&#039; 
οὗ 
ΕΖ, 
εἰς 
<lb></lb>
τοὐναντίον 
αὑτῷ 
κινήσει 
διὰ 
τὴν 
αὐτὴν 
αἰτίαν. 
</s>
<figure id="id.080.01.003.1.jpg" xlink:href="080/01/003/1.jpg"></figure>
</p>
<p n="9">
<s id="g0120601">
τὸν 
αὐτὸν 
δὲ 
<lb></lb>
τρόπον 
κἂν 
πλείους 
ὦσι, 
τοῦτο 
ποιήσουσιν 
ἑνὸς 
μόνου 
κινηθέντος. 

</s>
<s id="g0120602">
<lb></lb>
ταύτην 
οὖν 
λαβόντες 
ὑπάρχουσαν 
ἐν 
τῷ 
κύκλῳ 
τὴν 
<lb></lb>
φύσιν 
οἱ 
δημιουργοὶ 
κατασκευάζουσιν 
ὄργανον 
κρύπτοντες 
<lb></lb>
τὴν 
ἀρχήν, 
ὅπως 

τοῦ 
μηχανήματος 
φανερὸν 
μόνον 
τὸ 
<lb></lb>
θαυμαστόν, 
τὸ 
δ&#039; 
αἴτιον 
ἄδηλον. 
<pb xlink:href="080/01/004.jpg" ed="Bekker" n="848b"></pb>
<lb></lb>
</s>
</p>
<p n="10">
<s id="g0120701prop01">
Πρῶτον 
μὲν 
οὖν 
τὰ 
συμβαίνοντα 
περὶ 
τὸν 
ζυγὸν 
ἀπορεῖται, 

<lb></lb>
διὰ 
τίνα 
αἰτίαν 
ἀκριβέστερά 
ἐστι 
τὰ 
ζυγὰ 
τὰ 
μείζω 
<lb></lb>
τῶν 
ἐλαττόνων. 
</s>
<s id="g0120702">
τούτου 
δὲ 
ἀρχή, 
διὰ 
τί 
ποτε 
ἐν 
τῷ 
κύκλῳ 
<lb></lb>

πλεῖον 
ἀφεστηκυῖα 
γραμμὴ 
τοῦ 
κέντρου 
τῆς 
ἐγγὺς 
τῇ 
<lb></lb>
αὐτῇ 
ἰσχύι 
κινουμένης 
θᾶττον 
φέρεται 
τῆς 
ἐλάττονος; 
</s>
<s id="g0120703">
τὸ 
<lb></lb>
γὰρ 
θᾶττον 
λέγεται 
διχῶς· 
</s>

<s id="g0120704">
ἄν 
τε 
γὰρ 
ἐν 
ἐλάττονι 
χρόνῳ 
<lb></lb>
ἴσον 
τόπον 
διεξέλθῃ, 
θᾶττον 
εἶναι 
λέγομεν, 
καὶ 
ἐὰν 
ἐν 
ἴσῳ 
<lb></lb>
πλείω. 
</s>
<s id="g0120705">

δὲ 
μείζων 
ἐν 
ἴσῳ 
χρόνῳ 
γράφει 
μείζονα 
κύκλον· 
<lb></lb>

γὰρ 
ἐκτὸς 
μείζων 
τοῦ 
ἐντός. 
</s>
<s id="g0120706">
αἴτιον 
δὲ 
τούτων 
ὅτι 
φέρεται 
<lb></lb>
δύο 
φορὰς 

γράφουσα 
τὸν 
κύκλον. 
</s>

<s id="g0120707">
ὅταν 
μὲν 
οὖν 
ἐν 
λόγῳ 
<lb></lb>
τινὶ 
φέρηται, 
ἐπ&#039; 
εὐθείας 
ἀνάγκη 
φέρεσθαι 
τὸ 
φερόμενον, 
<lb></lb>
καὶ 
γίνεται 
διάμετρος 
αὐτὴ 
τοῦ 
σχήματος 

ποιοῦσιν 
αἱ 
<lb></lb>
ἐν 
τούτῳ 
τῷ 
λόγῳ 
συντεθεῖσαι 
γραμμαί. 
</s>
<s id="g0120708">
ἔστω 
γὰρ 

λόγος 
<lb></lb>
ὃν 
φέρεται 
τὸ 
φερόμενον, 
ὃν 
ἔχει 

ΑΒ 
πρὸς 
τὴν 
ΑΓ· 
<lb></lb>
καὶ 
τὸ 
μὲν 
ΑΓ 
φερέσθω 
πρὸς 
τὸ 
Β, 

δὲ 
ΑΒ 
ὑποφερέσθω 
<lb></lb>
πρὸς 
τὴν 
ΗΓ· 
ἐνηνέχθω 
δὲ 
τὸ 
μὲν 
Α 
πρὸς 
τὸ 
Δ, 

δὲ 
ἐφ&#039; 

<lb></lb>

ΑΒ 
πρὸς 
τὸ 
Ε. 
εἰ 
οὖν 
ἐπὶ 
τῆς 
φορᾶς 

λόγος 
ἦν 
ὃν 

<lb></lb>
ΑΒ 
ἔχει 
πρὸς 
τὴν 
ΑΓ, 
ἀνάγκη 
καὶ 
τὴν 
ΑΔ 
πρὸς 
τὴν 
<lb></lb>
ΑΕ 
τοῦτον 
ἔχειν 
τὸν 
λόγον. 
</s>
<s id="g0120709">
ὅμοιον 
ἄρα 
ἐστὶ 
τῷ 
λόγῳ 
τὸ 
<lb></lb>
μικρὸν 
τετράπλευρον 
τῷ 
μείζονι, 
ὥστε 
καὶ 

αὐτὴ 
διάμετρος 
<lb></lb>
αὐτῶν, 
καὶ 
τὸ 
Α 
ἔσται 
πρὸς 
Ζ. 
</s>
<figure id="id.080.01.004.1.jpg" xlink:href="080/01/004/1.jpg"></figure>
</p>
<p n="11">

<s id="g0120801">
τὸν 
αὐτὸν 
δὴ 
τρόπον 
<lb></lb>
δειχθήσεται 
κἂν 
ὁπουοῦν 
διαληφθῇ 

φορά· 
αἰεὶ 
γὰρ 
<lb></lb>
ἔσται 
ἐπὶ 
τῆς 
διαμέτρου. 
</s>
<s id="g0120802">
φανερὸν 
οὖν 
ὅτι 
τὸ 
κατὰ 
τὴν 
διάμετρον 
<lb></lb>
φερόμενον 
ἐν 
δύο 
φοραῖς 
ἀνάγκη 
τὸν 
τῶν 
πλευρῶν 
<lb></lb>
φέρεσθαι 
λόγον. 
</s>
<s id="g0120803">
εἰ 
γὰρ 
ἄλλον 
τινά, 
οὐκ 
οἰσθήσεται 
κατὰ 
<lb></lb>

τὴν 
διάμετρον. 
</s>
<s id="g0120804">
ἐὰν 
δὲ 
ἐν 
μηδενὶ 
λόγῳ 
φέρηται 
δύο 
φορὰς 
<lb></lb>
κατὰ 
μηδένα 
χρόνον, 
ἀδύνατον 
εὐθεῖαν 
εἶναι 
τὴν 
φοράν. 
</s>
<s id="g0120805">
<lb></lb>
ἔστω 
γὰρ 
εὐθεῖα. 
</s>
<s id="g0120806">
τεθείσης 
οὖν 
ταύτης 
διαμέτρου, 
καὶ 
παραπληρωθεισῶν 
<lb></lb>
τῶν 
πλευρῶν, 
ἀνάγκη 
τὸν 
τῶν 
πλευρῶν 
λόγον 
<lb></lb>
φέρεσθαι 
τὸ 
φερόμενον· 
τοῦτο 
γὰρ 
δέδεικται 
πρότερον. 

</s>
<s id="g0120807">
οὐκ 
<lb></lb>
ἄρα 
ποιήσει 
εὐθεῖαν 
τὸ 
ἐν 
μηδενὶ 
λόγῳ 
φερόμενον 
μηδένα 
<lb></lb>
χρόνον. 
</s>
<s id="g0120808">
ἐὰν 
γάρ 
τινα 
λόγον 
ἐνεχθῇ 
ἐν 
χρόνῳ 
τινί, 
τοῦτον 
<lb></lb>
ἀνάγκη 
τὸν 
χρόνον 
εὐθεῖαν 
εἶναι 
φορὰν 
διὰ 
τὰ 
προειρημένα. 
</s>
<s id="g0120809">
<lb></lb>
ὥστε 
περιφερὲς 
γίνεται, 
δύο 
φερόμενον 
φορὰς 
ἐν 
μηθενὶ 
<lb></lb>

λόγῳ 
μηθένα 
χρόνον. 
</s>
</p>
<p n="12">
<s id="g0120901">
ὅτι 
μὲν 
τοίνυν 

τὸν 
κύκλον 
γράφουσα 
<lb></lb>
φέρεται 
δύο 
φορὰς 
ἅμα, 
φανερὸν 
ἔκ 
τε 
τούτων, 
<lb></lb>
καὶ 
ὅτι 
τὸ 
φερόμενον 
κατ&#039; 
εὐθεῖαν 
ἐπὶ 
τὴν 
κάθετον 
<pb xlink:href="080/01/005.jpg" ed="Bekker" n="849a"></pb>
<lb></lb>
ἀφικνεῖται, 
ὥστε 
εἶναι 
πάλιν 
αὐτὴν 
ἀπὸ 
τοῦ 
κέντρου 
κάθετον. 
</s>
</p>
<p n="13">
<s id="g0121001">

<lb></lb>
ἔστω 
κύκλος 

ΑΒΓ, 
τὸ 
δ&#039; 
ἄκρον 
τὸ 
ἐφ&#039; 
οὗ 
Β 
φερέσθω 
<lb></lb>
ἐπὶ 
τὸ 
Δ· 
ἀφικνεῖται 
δέ 
ποτε 
ἐπὶ 
τὸ 
Γ. 
</s>
<s id="g0121002">
εἰ 
μὲν 
οὖν 
ἐν 
τῷ 
<lb></lb>
λόγῳ 
ἐφέρετο 
ὃν 
ἔχει 

ΒΔ 
πρὸς 
τὴν 
ΔΓ, 
ἐφέρετο 
ἂν 
<lb></lb>
τὴν 
διάμετρον 
τὴν 
ἐφ&#039; 

ΒΓ. 
</s>
<s id="g0121003">
νῦν, 
δέ 
ἐπείπερ 
ἐν 
οὐδενὶ 
<lb></lb>
λόγῳ, 
ἐπὶ 
τὴν 
περιφέρειαν 
φέρεται 
τὴν 
ἐφ&#039; 

ΒΕΓ. 
</s>

<figure id="id.080.01.005.1.jpg" xlink:href="080/01/005/1.jpg"></figure>
</p>
<p n="14">
<s id="g0121101">
ἐὰν 
<lb></lb>
δὲ 
δυοῖν 
φερομένοιν 
ἀπὸ 
τῆς 
αὐτῆς 
ἰσχύος 
τὸ 
μὲν 
ἐκκρούοιτο 
<lb></lb>
πλεῖον 
τὸ 
δὲ 
ἔλαττον, 
εὔλογον 
βραδύτερον 
κινηθῆναι 
<lb></lb>
τὸ 
πλεῖον 
ἐκκρουόμενον 
τοῦ 
ἔλαττον 
ἐκκρουομένου· 

δοκεῖ 
<lb></lb>
συμβαίνειν 
ἐπὶ 
τῆς 
μείζονος 
καὶ 
ἐλάττονος 
τῶν 
ἐκ 
τοῦ 
<lb></lb>
κέντρου 
γραφουσῶν 
τοὺς 
κύκλους. 
</s>
<s id="g0121102">

διὰ 
γὰρ 
τὸ 
ἐγγύτερον 
<lb></lb>
εἶναι 
τοῦ 
μένοντος 
τῆς 
ἐλάττονος 
τὸ 
ἄκρον 

τὸ 
τῆς 
μείζονος, 
<lb></lb>
ὥσπερ 
ἀντισπώμενον 
εἰς 
τοὐναντίον, 
ἐπὶ 
τὸ 
μέσον 
βραδύτερον 
<lb></lb>
φέρεται 
τὸ 
τῆς 
ἐλάττονος 
ἄκρον. 
</s>
</p>
<p n="15">
<s id="g0121201">
πάσῃ 
μὲν 
οὖν 
<lb></lb>
κύκλον 
γραφούσῃ 
τοῦτο 
συμβαίνει, 
καὶ 
φέρεται 
τὴν 
μὲν 
<lb></lb>
κατὰ 
φύσιν 
τὴν 
δὲ 
παρὰ 
φύσιν 
κατὰ 
τὴν 
περιφέρειαν, 
<lb></lb>

εἰς 
τὸ 
πλάγιον 
καὶ 
τὸ 
κέντρον. 
μείζω 
δ&#039; 
ἀεὶ 
τὴν 
παρὰ 
<lb></lb>
φύσιν 

ἐλάττων 
φέρεται· 
διὰ 
γὰρ 
τὸ 
ἐγγύτερον 
εἶναι 
τοῦ 
<lb></lb>
κέντρου 
τοῦ 
ἀντισπῶντος 
κρατεῖται 
μᾶλλον. 
</s>
</p>
<p n="16">
<s id="g0121301">
ὅτι 
δὲ 
μεῖζον 
<lb></lb>
τὸ 
παρὰ 
φύσιν 
κινεῖται 

ἐλάττων 
τῆς 
μείζονος 
τῶν 
ἐκ 
τοῦ 
<lb></lb>
κέντρου 
γραφουσῶν 
τοὺς 
κύκλους, 
ἐκ 
τῶνδε 
δῆλον. 
</s>
<s id="g0121302">
ἔστω 

<lb></lb>
κύκλος 
ἐφ&#039; 
οὗ 
ΒΓΔΕ, 
καὶ 
ἄλλος 
ἐν 
τούτῳ 
ἐλάττων, 
<lb></lb>
ἐφ&#039; 
οὗ 
ΧΝΜΞ, 
περὶ 
τὸ 
αὐτὸ 
κέντρον 
τὸ 
Α· 
καὶ 
ἐκβεβλήσθωσαν 
<lb></lb>
αἱ 
διάμετροι, 
ἐν 
μὲν 
τῷ 
μεγάλῳ, 
ἐφ&#039; 
ὧν 
ΓΔ 
<lb></lb>
καὶ 
ΒΕ, 
ἐν 
δὲ 
τῷ 
ἐλάττονι 
αἱ 
ΜΧ 
ΝΞ· 
καὶ 
τὸ 
ἑτερόμηκες 
<lb></lb>
παραπεπληρώσθω, 
τὸ 
ΔΨΡΓ. 
εἰ 
δὴ 

ΑΒ 
γράφουσα 
<lb></lb>
κύκλον 
ἥξει 
ἐπὶ 
τὸ 
αὐτὸ 
ὅθεν 
ὡρμήθη 
ἐπὶ 
τὴν 
ΑΕ, 
δῆλον 
<lb></lb>
ὅτι 
φέρεται 
πρὸς 
αὑτήν. 
</s>
<s id="g0121303">
ὁμοίως 
δὲ 
καὶ 

ΑΧ 
πρὸς 
τὴν 

<lb></lb>
ΑΧ 
ἥξει. 
</s>
<s id="g0121304">
βραδύτερον 
δὲ 
φέρεται 

ΑΧ 
τῆς 
ΑΒ, 
ὥσπερ 
<lb></lb>
εἴρηται, 
διὰ 
τὸ 
γίνεσθαι 
μείζονα 
τὴν 
ἔκκρουσιν 
καὶ 
ἀντισπᾶσθαι 
<lb></lb>
μᾶλλον 
τὴν 
ΑΧ. 
</s>
</p>
<p n="17">
<s id="g0121401">
ἤχθω 
δὲ 

ΑΘΗ, 
καὶ 
ἀπὸ 
<lb></lb>
τοῦ 
Θ 
κάθετος 
ἐπὶ 
τὴν 
ΑΒ 

ΘΖ 
ἐν 
τῷ 
κύκλῳ, 
καὶ 
πάλιν 
<lb></lb>

ἀπὸ 
τοῦ 
Θ 
ἤχθω 
παρὰ 
τὴν 
ΑΒ 

ΘΩ, 
καὶ 

ΩΥ 
<lb></lb>
ἐπὶ 
τὴν 
ΑΒ 
κάθετον, 
καὶ 

ΗΚ. 
</s>
<s id="g0121402">
αἱ 
δὴ 
ἐφ&#039; 
ὧν 
ΩΥ 
καὶ 
<lb></lb>
ΘΖ 
ἴσαι. 

ἄρα 
ΒΥ 
ἐλάττων 
τῆς 
ΧΖ· 
</s>
<s id="g0121403">
αἱ 
γὰρ 
ἴσαι 
<lb></lb>
εὐθεῖαι 
ἐπ&#039; 
ἀνίσους 
κύκλους 
ἐμβληθεῖσαι 
πρὸς 
ὀρθὰς 
τῇ 
<lb></lb>
διαμέτρῳ 
ἔλαττον 
τμῆμα 
ἀποτέμνουσι 
τῆς 
διαμέτρου 
ἐν 
<lb></lb>
τοῖς 
μείζοσι 
κύκλοις, 
ἔστι 
δὲ 

ΩΥ 
ἴση 
τῇ 
ΘΖ. 

</s>
<s id="g0121404">
ἐν 
<pb xlink:href="080/01/006.jpg" ed="Bekker" n="849b"></pb>
<lb></lb>
ὅσῳ 
δὴ 
χρόνῳ 

ΑΘ 
τὴν 
ΧΘ 
ἐνηνέχθη, 
ἐν 
τοσούτῳ 
χρόνῳ 
ἐν 
<lb></lb>
τῷ 
κύκλῳ 
τῷ 
μείζονι 
μείζονα 
τῆς 
ΒΩ 
ἐνήνεκται 
τὸ 
ἄκρον 
<lb></lb>
τῆς 
ΒΑ. 
</s>
<figure id="id.080.01.006.1.jpg" xlink:href="080/01/006/1.jpg"></figure>
</p>
<p n="18">
<s id="g0121501">

μὲν 
γὰρ 
κατὰ 
φύσιν 
φορὰ 
ἴση, 

δὲ 
παρὰ 
<lb></lb>

φύσιν 
ἐλάττων· 

δὲ 
ΒΥ 
τῆς 
ΖΧ 
ἐλάττων. 
</s>
<s id="g0121502">
δεῖ 
δὲ 
ἀνάλογον 
εἶναι, 
<lb></lb>
ὡς 
τὸ 
κατὰ 
φύσιν 
πρὸς 
τὸ 
κατὰ 
φύσιν, 
τὸ 
παρὰ 
φύσιν 
<lb></lb>
πρὸς 
τὸ 
παρὰ 
φύσιν. 
</s>
<s id="g0121503">
μείζονα 
ἄρα 
περιφέρειαν 
διελήλυθε 
<lb></lb>
τὴν 
ΗΒ 
τῆς 
ΩΒ. 
</s>
<s id="g0121504">
ἀνάγκη 
δὲ 
τὴν 
ΗΒ 
ἐν 
τούτῳ 
τῷ 
χρόνῳ 
<lb></lb>

διεληλυθέναι· 
</s>
<s id="g0121505">
ἐνταῦθα 
γὰρ 
ἔσται, 
ὅταν 
ἀνάλογον 
ἀμφοτέρως 
<lb></lb>
συμβαίνῃ 
τὸ 
παρὰ 
φύσιν 
πρὸς 
τὸ 
κατὰ 
φύσιν. 
</s>
<s id="g0121506">
εἰ 
δὴ 
<lb></lb>
μεῖζόν 
ἐστι 
τὸ 
κατὰ 
φύσιν 
ἐν 
τῇ 
μείζονι, 
καὶ 
τὸ 
παρὰ 
φύσιν 
<lb></lb>
μᾶλλον 
ἂν 
ἐνταῦθα 
συμπίπτοι 
μοναχῶς, 
</s>
<s id="g0121507">
ὥστε 
τὸ 
Β 
ἐνηνέχθαι 
<lb></lb>

ἂν 
τὴν 
ΒΗ 
ἐν 

τὸ 
ἐφ&#039; 
οὗ 
Χ 
σημεῖον. 
ἐνταῦθα 
γὰρ 
<lb></lb>
κατὰ 
φύσιν 
μὲν 
γίνεται 
τῷ 
Β 
σημείῳ 
τὸ 
ΚΗ. 
̔ἔστι 
γὰρ 
<lb></lb>
αὐτὴ 
ἀπὸ 
τοῦ 
Η 
κάθετος̓, 
παρὰ 
φύσιν 
δὲ 
ἐς 
τὸ 
ΚΒ. 
</s>
<s id="g0121508">
ἔστι 
<lb></lb>
δὲ 
ὡς 
τὸ 
ΗΚ 
πρὸς 
τὸ 
ΚΒ, 
τὸ 
ΘΖ 
πρὸς 
τὸ 
ΖΧ. 
φανερὸν 
<lb></lb>
δὲ 
ἐὰν 
ἐπιζευχθῶσιν 
ἀπὸ 
τῶν 
ΒΧ 
ἐπὶ 
τὰ 
ΗΘ. 
</s>
<s id="g0121509">
εἰ 
δὲ 
<lb></lb>
ἐλάττων 

μείζων 
τῆς 
ΗΒ 
ἔσται, 
ἣν 
ἠνέχθη 
τὸ 
Β, 
οὐχ 
ὁμοίως 

<lb></lb>
ἔσται 
οὐδὲ 
ἀνάλογον 
ἐν 
ἀμφοῖν 
τὸ 
κατὰ 
φύσιν 
πρὸς 
τὸ 
<lb></lb>
παρὰ 
φύσιν. 
</s>
<s id="g0121510">
δι&#039; 
ἣν 
μὲν 
τοίνυν 
αἰτίαν 
ἀπὸ 
τῆς 
αὐτῆς 
<lb></lb>
ἰσχύος 
φέρεται 
θᾶττον 
τὸ 
πλέον 
ἀπέχον 
τοῦ 
κέντρου 
σημεῖον, 
καὶ 
μείζω 
γράφει 

μείζων 
<lb></lb>
δῆλον 
διὰ 
τῶν 
εἰρημένων· 
</s>
</p>
<p n="19">
<s id="g0130101">
διότι 
δὲ 
τὰ 
μὲν 
μείζω 
ζυγὰ 
<lb></lb>

ἀκριβέστερά 
ἐστι 
τῶν 
ἐλαττόνων, 
φανερὸν 
ἐκ 
τούτων. 
</s>
<s id="g0130102">
γίνεται 
<lb></lb>
γὰρ 
τὸ 
μὲν 
σπάρτον 
κέντρον 
̔μένει 
γὰρ 
τοῦτὀ, 
τὸ 
δὲ 
ἐπὶ 
<lb></lb>
ἑκάτερον 
μέρος 
τῆς 
πλάστιγγος 
αἱ 
ἐκ 
τοῦ 
κέντρου. 
</s>
<s id="g0130103">
ἀπὸ 
οὖν 
<lb></lb>
τοῦ 
αὐτοῦ 
βάρους 
ἀνάγκη 
θᾶττον 
κινεῖσθαι 
τὸ 
ἄκρον 
τῆς 
<lb></lb>
πλάστιγγος, 
ὅσῳ 
ἂν 
πλεῖον 
ἀπέχῃ 
τοῦ 
σπάρτου, 
</s>
<s id="g0130104">

καὶ 
ἔνια 
<lb></lb>
μὲν 
μὴ 
δῆλα 
εἶναι 
ἐν 
τοῖς 
μικροῖς 
ζυγοῖς 
πρὸς 
τὴν 
αἴσθησιν 
<lb></lb>
ἐπιτιθέμενα 
βάρη, 
ἐν 
δὲ 
τοῖς 
μεγάλοις 
δῆλα 
</s>
<s id="g0130105">
οὐθὲν 
γὰρ 
<lb></lb>
κωλύει 
ἔλαττον 
κινηθῆναι 
μέγεθος 

ὥστε 
εἶναι 
τῇ 
ὄψει 
<lb></lb>
φανερόν. 
</s>
<s id="g0130106">
ἐπὶ 
δὲ 
τῆς 
μεγάλης 
πλάστιγγος 
ποιεῖ 
ὁρατὸν 
τὸ 
<lb></lb>
αὐτὸ 
βάρος 
μέγεθος. 

</s>
<s id="g0130107">
ἔνια 
δὲ 
δῆλα 
μὲν 
ἐπ&#039; 
ἀμφοῖν 
ἐστίν, 
<lb></lb>
ἀλλὰ 
πολλῷ 
μᾶλλον 
ἐπὶ 
τῶν 
μειζόνων 
διὰ 
τὸ 
πολλῷ 
<lb></lb>
μεῖζον 
γίνεσθαι 
τὸ 
μέγεθος 
τῆς 
ῥοπῆς 
ὑπὸ 
τοῦ 
αὐτοῦ 
βάρους 
<lb></lb>
ἐν 
τοῖς 
μείζοσι. 
</s>
<s id="g0130108">
καὶ 
διὰ 
τοῦτο 
τεχνάζουσιν 
οἱ 
ἁλουργοπῶλαι 
<lb></lb>
πρὸς 
τὸ 
παρακρούεσθαι 
ἱστάντες, 
τό 
τε 
σπάρτον 
<lb></lb>
οὐκ 
ἐν 
μέσῳ 
τιθέντες, 
καὶ 
μόλυβδον 
τῆς 
φάλαγγος 
εἰς 
<lb></lb>

θάτερον 
μέρος 
ἐγχέοντες, 

τοῦ 
ξύλου 
τὸ 
πρὸς 
τὴν 
ῥίζαν 
<lb></lb>
πρὸς 

βούλονται 
ῥέπειν 
ποιοῦντες, 

ἐὰν 
ἔχῃ 
ὄζον· 
<pb xlink:href="080/01/007.jpg" ed="Bekker" n="850a"></pb>
<lb></lb>
βαρύτερον 
γὰρ 
ἐν 

μέρος 

ῥίζα 
τοῦ 
ξύλου 
ἐστίν, 

δὲ 
ὄζος 
ῥίζα 
<lb></lb>
τίς 
ἐστιν. 
</s>
</p>
<p n="20">
<s id="g0130201prop02">
<lb></lb>
Διὰ 
τί, 
ἐὰν 
μὲν 
ἄνωθεν 

τὸ 
σπαρτίον, 
ὅταν 
κάτωθεν 
<lb></lb>
ῥέψαντος 
ἀφέλῃ 
τὸ 
βάρος, 
πάλιν 
ἀναφέρεται 
τὸ 
ζυγόν, 
<lb></lb>

ἐὰν 
δὲ 
κάτωθεν 
ὑποστῇ, 
οὐκ 
ἀναφέρεται 
ἀλλὰ 
μένει; 
</s>
<s id="g0130202">

<lb></lb>
διότι 
ἄνωθεν 
μὲν 
τοῦ 
σπαρτίου 
ὄντος 
πλεῖον 
τοῦ 
ζυγοῦ 
γίνεται 
<lb></lb>
τὸ 
ἐπέκεινα 
τῆς 
καθέτου; 
τὸ 
γὰρ 
σπαρτίον 
ἐστὶ 
κάθετος. 
<lb></lb>
ὥστε 
ἀνάγκη 
ἐστὶ 
κάτω 
ῥέπειν 
τὸ 
πλέον, 
ἕως 
ἂν 
ἔλθῃ 

<lb></lb>
δίχα 
διαιροῦσα 
τὸ 
ζυγὸν 
ἐπὶ 
τὴν 
κάθετον 
αὐτήν, 
ἐπικειμένου 
<lb></lb>
τοῦ 
βάρους 
ἐν 
τῷ 
ἀνεσπασμένῳ 
μορίῳ 
τοῦ 
ζυγοῦ. 
</s>
<s id="g0130203">
<lb></lb>

ἔστω 
ζυγὸν 
ὀρθὸν 
τὸ 
ἐφ&#039; 
οὗ 
ΒΓ, 
σπαρτίον 
δὲ 
τὸ 
ΑΔ. 
ἐκβαλλόμενον 
<lb></lb>
δὴ 
τοῦτο 
κάτω 
κάθετος 
ἔσται 
ἐφ&#039; 
ἧς 

ΑΔΜ. 
</s>
<s id="g0130204">
<lb></lb>
ἐὰν 
οὖν 
ἐπὶ 
τὸ 
Β 

ῥοπὴ 
ἐπιτεθῇ 
ἔσται, 
τὸ 
μὲν 
Β 
οὗ 
τὸ 
Ε, 
<lb></lb>
τὸ 
δὲ 
Γ 
οὗ 
τὸ 
Ζ, 
ὥστε 

δίχα 
διαιροῦσα 
τὸ 
ζυγὸν 
πρῶτον 
<lb></lb>
μὲν 
ἦν 

ΔΜ 
τῆς 
καθέτου 
αὐτῆς, 
ἐπικειμένης 
δὲ 
τῆς 
ῥοπῆς 
<lb></lb>
ἔσται 

ΔΘ· 
ὥστε 
τοῦ 
ζυγοῦ 
ἐφ&#039; 

ΕΖ 
τὸ 
ἔξω 
τῆς 
καθέτου 
<lb></lb>
τῆς 
ἐφ&#039; 
ἧς 
ΑM, 
τοῦ 
ἐν 

ΘΠ, 
μείζω 
τοῦ 
ἡμίσεος. 
</s>
<s id="g0130205">

<lb></lb>
ἐὰν 
οὖν 
ἀφαιρεθῇ 
τὸ 
βάρος 
ἀπὸ 
τοῦ 
Ε, 
ἀνάγκη 
κάτω 
φέρεσθαι 
<lb></lb>
τὸ 
Ζ· 
ἔλαττον 
γάρ 
ἐστι 
τὸ 
Ε. 
</s>
<s id="g0130206">
ἐὰν 
μὲν 
οὖν 
ἄνω 
τὸ 
<lb></lb>
σπαρτίον 
ἔχῃ, 
πάλιν 
διὰ 
τοῦτο 
ἀναφέρεται 
τὸ 
ζυγόν. 
</s>
<figure id="id.080.01.007.1.jpg" xlink:href="080/01/007/1.jpg"></figure>
<s id="g0130207">
ἐὰν 
<lb></lb>
δὲ 
κάτωθεν 

τὸ 
ὑποκείμενον, 
τοὐναντίον 
ποιεῖ· 
πλεῖον 
γὰρ 
<lb></lb>
γίνεται 
τοῦ 
ἡμίσεος 
τοῦ 
ζυγοῦ 
τὸ 
κάτω 
μέρος 

ὡς 

κάθετος 

<lb></lb>
διαιρεῖ 
ὥστε 
οὐκ 
ἀναφέρεται· 
κουφότερον 
γὰρ 
τὸ 
ἐπηρτημένον. 
</s>
<s id="g0130208">
<lb></lb>
ἔστω 
ζυγὸν 
τὸ 
ἐφ&#039; 
οὗ 
ΝΞ, 
τὸ 
ὀρθόν, 
κάθετος 
δὲ 

<lb></lb>
ΚΛΜ. 
δίχα 
δὴ 
διαιρεῖται 
τὸ 
ΝΞ. 
</s>
<s id="g0130209">
ἐπιτεθέντος 
δὲ 
βάρους 
<lb></lb>
ἐπὶ 
τὸ 
Ν, 
ἔσται 
τὸ 
μὲν 
Ν 
οὗ 
τὸ 
Ο, 
τὸ 
δὲ 
Ξ 
οὗ 
τὸ 
Ρ, 

δὲ 
<lb></lb>
ΚΛ 
οὗ 
τὸ 
ΛΘ, 
ὥστε 
μεῖζόν 
ἐστι 
τὸ 
ΚΟ 
τοῦ 
ΛΡ 
τῷ 
ΘΚΛ. 
</s>
<s id="g0130210">

<lb></lb>
καὶ 
ἀφαιρεθέντος 
οὖν 
τοῦ 
βάρους 
ἀνάγκη 
μένειν· 
ἐπίκειται 
<lb></lb>
γὰρ 
ὥσπερ 
βάρος 

ὑπεροχὴ 

τοῦ 
ἡμίσεος 
τοῦ 
ἐν 

τὸ 
Κ. 
</s>
<figure id="id.080.01.007.2.jpg" xlink:href="080/01/007/2.jpg"></figure>
</p>
<p n="21">
<s id="g0130301prop03">
<lb></lb>
Διὰ 
τί 
κινοῦσι 
μεγάλα 
βάρη 
μικραὶ 
δυνάμεις 
τῷ 
μοχλῷ, 
<lb></lb>
ὥσπερ 
ἐλέχθη 
καὶ 
κατ&#039; 
ἀρχήν, 
προσλαβόντι 
βάρος 
<lb></lb>
ἔτι 
τὸ 
τοῦ 
μοχλοῦ; 
ῥᾷον 
δὲ 
τὸ 
ἔλαττόν 
ἐστι 
κινῆσαι 
βάρος, 
<lb></lb>
ἔλαττον 
δέ 
ἐστιν 
ἄνευ 
τοῦ 
μοχλοῦ. 

</s>
<s id="g0130302">

ὅτι 
αἴτιόν 
ἐστιν 

μοχλός, 
<lb></lb>
ζυγὸν 
ὢν 
κάτωθεν 
ἔχον 
τὸ 
σπαρτίον 
καὶ 
εἰς 
ἄνισα 
διῃρημένον; 
<lb></lb>
τὸ 
γὰρ 
ὑπομόχλιόν 
ἐστι 
τὸ 
σπαρτίον· 
μένει 
<lb></lb>
γὰρ 
ἄμφω 
ταῦτα, 
ὥσπερ 
τὸ 
κέντρον. 
</s>
<s id="g0130303">
ἐπεὶ 
δὲ 
θᾶττον 
ὑπὸ 
<lb></lb>
τοῦ 
ἴσου 
βάρους 
κινεῖται 

μείζων 
τῶν 
ἐκ 
τοῦ 
κέντρου, 
ἔστι 
δὲ 
<lb></lb>
τρία 
τὰ 
περὶ 
τὸν 
μοχλόν, 
τὸ 
μὲν 
ὑπομόχλιον, 
σπάρτον 
<lb></lb>

καὶ 
κέντρον, 
δύο 
δὲ 
βάρη, 

τε 
κινῶν 
καὶ 
τὸ 
κινούμενον· 
<pb xlink:href="080/01/008.jpg" ed="Bekker" n="850b"></pb>
<lb></lb>

οὖν 
τὸ 
κινούμενον 
βάρος 
πρὸς 
τὸ 
κινοῦν, 
τὸ 
μῆκος 
πρὸς 
τὸ 
μῆκος 
<lb></lb>
ἀντιπέπονθεν. 
</s>
<s id="g0130304">
αἰεὶ 
δὲ 
ὅσῳ 
ἂν 
μεῖζον 
ἀφεστήκῃ 
τοῦ 
ὑπομοχλίου, 
<lb></lb>
ῥᾷον 
κινήσει. 
</s>
<s id="g0130305">
αἰτία 
δέ 
ἐστιν 

προλεχθεῖσα, 
ὅτι 

<lb></lb>
πλεῖον 
ἀπέχουσα 
ἐκ 
τοῦ 
κέντρου 
μείζονα 
κύκλον 
γράφει. 
</s>

<s id="g0130306">
ὥστε 
<lb></lb>
ἀπὸ 
τῆς 
αὐτῆς 
ἰσχύος 
πλέον 
μεταστήσεται 
τὸ 
κινοῦν 
τὸ 
<lb></lb>
πλεῖον 
τοῦ 
ὑπομοχλίου 
ἀπέχον. 
</s>
<s id="g0130307">
ἔστω 
μοχλὸς 
ἐφ&#039; 
οὗ 
ΑΒ, 
<lb></lb>
βάρος 
δὲ 
ἐφ&#039; 

τὸ 
Γ, 
τὸ 
δὲ 
κινοῦν 
ἐφ&#039; 

τὸ 
Δ, 
ὑπομόχλιον 
<lb></lb>
ἐφ&#039; 

τὸ 
Ε, 
</s>
<s id="g0130308">
τὸ 
δὲ 
ἐφ&#039; 

τὸ 
Δ 
κινῆσαν 
ἐφ&#039; 

τὸ 
Η, 
κινούμενον 
<lb></lb>

δὲ 
τὸ 
ἐφ&#039; 
οὗ 
Γ, 
βάρος 
ἐφ&#039; 
οὗ 
Κ. 
</s>
<figure id="id.080.01.008.1.jpg" xlink:href="080/01/008/1.jpg"></figure>
</p>
<p n="22">
<s id="g0130401prop04">
<lb></lb>
Διὰ 
τί 
οἱ 
μεσόνεοι 
μάλιστα 
τὴν 
ναῦν 
κινοῦσιν; 
</s>
<s id="g0130402">

διότι 
<lb></lb>

κώπη 
μοχλός 
ἐστιν; 
ὑπομόχλιον 
μὲν 
γὰρ 

σκαλμὸς 
γίνεται 
<lb></lb>
̔μένει 
γὰρ 
δὴ 
τοῦτὀ, 
τὸ 
δὲ 
βάρος 

θάλαττα, 
ἣν 
<lb></lb>
ἀπωθεῖ 

κώπη· 

δὲ 
κινῶν 
τὸν 
μοχλὸν 

ναύτης 
ἐστίν. 

</s>
<s id="g0130403">
<lb></lb>
ἀεὶ 
δὲ 
πλέον 
βάρος 
κινεῖ, 
ὅσῳ 
ἂν 
πλέον 
ἀφεστήκῃ 
τοῦ 
ὑπομοχλίου 
<lb></lb>

κινῶν 
τὸ 
βάρος· 
</s>
<s id="g0130404">
μείζων 
γὰρ 
οὕτω 
γίνεται 

ἐκ 
<lb></lb>
τοῦ 
κέντρου, 

δὲ 
σκαλμὸς 
ὑπομόχλιον 
ὢν 
κέντρον 
ἐστίν. 
</s>
<s id="g0130405">
ἐν 
<lb></lb>
μέσῃ 
δὲ 
τῇ 
νηῒ 
πλεῖστον 
τῆς 
κώπης 
ἐντός 
ἐστιν· 
καὶ 
γὰρ 

<lb></lb>

ναῦς 
ταύτῃ 
εὐρυτάτη 
ἐστίν, 
ὥστε 
πλεῖον 
ἐπ&#039; 
ἀμφότερα 
ἐνδέχεσθαι 
<lb></lb>
μέρος 
τῆς 
κώπης 
ἑκατέρου 
τοίχου 
ἐντὸς 
εἶναι 
τῆς 
<lb></lb>
νεώς. 
</s>
<s id="g0130406">
κινεῖται 
μὲν 
οὖν 

ναῦς 
διὰ 
τὸ 
ἀπερειδομένης 
τῆς 
κώπης 
<lb></lb>
εἰς 
τὴν 
θάλασσαν 
τὸ 
ἄκρον 
τῆς 
κώπης 
τὸ 
ἐντὸς 
προϊέναι 
<lb></lb>
εἰς 
τὸ 
πρόσθεν, 
</s>
<s id="g0130407">
τὴν 
δὲ 
ναῦν 
προσδεδεμένην 
τῷ 
σκαλμῷ 
συμπροϊέναι, 
<lb></lb>

τὸ 
ἄκρον 
τῆς 
κώπης. 

</s>
<s id="g0130408">

γὰρ 
πλείστην 
θάλασσαν 
<lb></lb>
διαιρεῖ 

κώπη, 
ταύτῃ 
ἀνάγκη 
μάλιστα 
προωθεῖσθαι· 
πλείστην 
<lb></lb>
δὲ 
διαιρεῖ 

πλεῖστον 
μέρος 
ἀπὸ 
τοῦ 
σκαλμοῦ 
τῆς 
κώπης 
<lb></lb>
ἐστίν. 
</s>
<s id="g0130409">
διὰ 
τοῦτο 
οἱ 
μεσόνεοι 
μάλιστα 
κινοῦσιν· 
μέγιστον 
γὰρ 
<lb></lb>
ἐν 
μέσῃ 
νηῒ 
τὸ 
ἀπὸ 
τοῦ 
σκαλμοῦ 
τῆς 
κώπης 
τὸ 
ἐντός 
ἐστιν. 
</s>
</p>
<p n="23">

<s id="g0130501prop05">
<lb></lb>
Διὰ 
τί 
τὸ 
πηδάλιον 
μικρὸν 
ὄν, 
καὶ 
ἐπ&#039; 
ἐσχάτῳ 
τῷ 
<lb></lb>
πλοίῳ, 
τοσαύτην 
δύναμιν 
ἔχει 
ὥστε 
ὑπὸ 
μικροῦ 
οἴακος 
καὶ 
<lb></lb>
ἑνὸς 
ἀνθρώπου 
δυνάμεως, 
καὶ 
ταύτης 
ἠρεμαίας, 
μεγάλα 
κινεῖσθαι 
<lb></lb>
μεγέθη 
πλοίων; 
</s>
<s id="g0130502">

διότι 
καὶ 
τὸ 
πηδάλιόν 
ἐστι 
μοχλός, 
<lb></lb>
καὶ 
μοχλεύει 

κυβερνήτης. 

μὲν 
οὖν 
προσήρμοσται 
<lb></lb>
τῷ 
πλοίῳ, 
γίνεται 
ὑπομόχλιον, 
τὸ 
δὲ 
ὅλον 
πηδάλιον 

<lb></lb>

μοχλός,, 
τὸ 
δὲ 
βάρος 

θάλασσα, 

δὲ 
κυβερνήτης 

κινῶν. 
</s>
<s id="g0130503">
<lb></lb>
οὐ 
κατὰ 
πλάτος 
δὲ 
λαμβάνει 
τὴν 
θάλασσαν, 
ὥσπερ 

κώπη, 
<lb></lb>
τὸ 
πηδάλιον. 
οὐ 
γὰρ 
εἰς 
τὸ 
πρόσθεν 
κινεῖ 
τὸ 
πλοῖον, 
ἀλλὰ 
<lb></lb>
κινούμενον 
κλίνει, 
πλαγίως 
τὴν 
θάλατταν 
δεχόμενον. 
</s>
<s id="g0130504">
ἐπεὶ 
<lb></lb>
γὰρ 
τὸ 
βάρος 
ἦν 

θάλασσα, 
τοὐναντίον 
ἀπερειδόμενον 
κλίνει 
<lb></lb>
τὸ 
πλοῖον. 
τὸ 
γὰρ 
ὑπομόχλιον 
εἰς 
τοὐναντίον 
<pb xlink:href="080/01/009.jpg" ed="Bekker" n="851a"></pb>

<lb></lb>
στρέφεται, 

θάλασσα 
δὲ 
ἐντός· 
ἐκεῖνο 
δὲ 
εἰς 
τὸ 
ἐκτός. 
τούτῳ 
δὲ 
ἀκολουθεῖ; 
<lb></lb>
τὸ 
πλοῖον 
διὰ 
τὸ 
συνδεδέσθαι. 
</s>
<s id="g0130505">

μὲν 
οὖν 
κώπη 
κατὰ 
<lb></lb>
πλάτος 
τὸ 
βάρος 
ὠθοῦσα 
καὶ 
ὑπ&#039; 
ἐκείνου 
ἀντωθουμένη 
εἰς 
τὸ 
<lb></lb>
εὐθὺ 
προάγει· 
τὸ 
δὲ 
πηδάλιον, 
ὥσπερ 
κάθηται 
πλάγιον, 
<lb></lb>
τὴν 
εἰς 
τὸ 
πλάγιον, 

δεῦρο 

ἐκεῖ, 
ποιεῖ 
κίνησιν. 
</s>
<s id="g0130506">
ἐπ&#039; 
ἄκρου 
<lb></lb>

δὲ 
καὶ 
οὐκ 
ἐν 
μέσῳ 
κεῖται, 
ὅτι 
ῥᾷστον 
τὸ 
κινούμενον 
κινῆσαι 
<lb></lb>
ἀπ&#039; 
ἄκρου 
κινοῦν. 
</s>
<s id="g0130507">
τάχιστα 
γὰρ 
φέρεται 
τὸ 
πρῶτον 
μέρος 
<lb></lb>
διὰ 
τὸ 
ὥσπερ 
ἐν 
τοῖς 
φερομένοις 
ἐπὶ 
τέλει 
λήγειν 
τὴν 
φοράν, 
<lb></lb>
οὕτω 
καὶ 
τοῦ 
συνεχοῦς 
ἐπὶ 
τέλους 
ἀσθενεστάτη 
ἐστὶν 

φορά. 
<lb></lb>
εἰ 
δὲ 
ἀσθενεστάτη, 
ῥᾳδία 
ἐκκρούειν. 
</s>
<s id="g0130508">
διά 
τε 
δὴ 
ταῦτα 
ἐν 
τῇ 
<lb></lb>
πρύμνῃ 
τὸ 
πηδάλιόν 
ἐστι, 
καὶ 
ὅτι 
ἐνταῦθα 
μικρᾶς 
κινήσεως 

<lb></lb>
γενομένης 
πολλῷ 
μεῖζον 
τὸ 
διάστημα 
ἐπὶ 
τῷ 
ἐσχάτῳ 
γίνεται, 
<lb></lb>
διὰ 
τὸ 
τὴν 
ἴσην 
γωνίαν 
ἐπὶ 
μείζονα 
καθῆσθαι, 
καὶ 
ὅσῳ 
<lb></lb>
ἂν 
μείζους 
ὦσιν 
αἱ 
περιέχουσαι. 
</s>
<s id="g0130509">
δῆλον 
δὲ 
ἐκ 
τούτου 
καὶ 
δι&#039; 
ἣν 
<lb></lb>
αἰτίαν 
μᾶλλον 
προέρχεται 
εἰς 
τοὐναντίον 
τὸ 
πλοῖον 


τῆς 
<lb></lb>
κώπης 
πλάτη· 
τὸ 
αὐτὸ 
γὰρ 
μέγεθος 
τῇ 
αὐτῇ 
ἰσχύϊ 
κινούμενον 
<lb></lb>
ἐν 
ἀέρι 
πλέον 

ἐν 
τῷ 
ὕδατι 
πρόεισιν. 
</s>
<s id="g0130510">

ἔστω 
γὰρ 

<lb></lb>
ΑΒ 
κώπη, 
τὸ 
δὲ 
Γ 

σκαλμός, 
τὸ 
δὲ 
Α 
τὸ 
ἐν 
τῷ 
πλοίῳ, 

<lb></lb>
ἀρχὴ 
τῆς 
κώπης, 
τὸ 
δὲ 
Β 
τὸ 
ἐν 
τῇ 
θαλάττῃ. 
</s>
<s id="g0130511">
εἰ 
δὴ 
τὸ 
Α 
<lb></lb>
οὗ 
τὸ 
Δ 
μετακεκίνηται, 
τὸ 
Β 
οὐκ 
ἔσται 
οὗ 
τὸ 
Ε· 
ἴση 
γὰρ 

<lb></lb>
ΒΕ 
τῇ 
ΑΔ. 
ἴσον 
οὖν 
μετακεχωρηκὸς 
ἔσται. 
</s>
<s id="g0130512">
ἀλλ&#039; 
ἦν 
ἔλαττον. 
<lb></lb>
ἔσται 
δὴ 
οὗ 
τὸ 
Ζ 

τὸ 
Θ. 
ἄρα 
τοίνυν 
τὴν 
ΑΒ, 
καὶ 
οὐχ 

τὸ 

<lb></lb>
Γ, 
καὶ 
κάτωθεν. 
ἐλάττων 
γὰρ 

ΒΖ 
τῆς 
ΑΔ, 
ὥστε 
καὶ 
<lb></lb>

ΘΖ 
τῆς 
ΔΘ· 
ὅμοια 
γὰρ 
τὰ 
τρίγωνα. 
</s>
<s id="g0130513">
καθεστηκὸς 
δὲ 
<lb></lb>
ἔσται 
καὶ 
τὸ 
μέσον, 
τὸ 
ἐφ&#039; 
οὗ 
Γ· 
εἰς 
τοὐναντίον 
γὰρ 
τῷ 
ἐν 
τῇ 
<lb></lb>
θαλάττῃ 
ἄκρῳ 
τῷ 
Β 
μεταχωρεῖ, 
ᾗπερ 
τὸ 
ἐν 
τῷ 
πλοίῳ 
<lb></lb>
ἄκρον 
τὸ 
Α 
</s>
<s id="g0130514">
μὴ 
ἐχώρει 
οὗ 
τὸ 
Δ. 
ὥστε 
μετακινηθήσεται 
τὸ 
<lb></lb>

πλοῖον, 
καὶ 
ἐκεῖ 
οὗ 

ἀρχὴ 
τῆς 
κώπης 
μεταφέρεται. 
</s>
<figure id="id.080.01.009.1.jpg" xlink:href="080/01/009/1.jpg"></figure>
<figure id="id.080.01.009.2.jpg" xlink:href="080/01/009/2.jpg"></figure>
<s id="g0130515">
τὸ 
δ&#039; 
<lb></lb>
αὐτὸ 
καὶ 
τὸ 
πηδάλιον 
ποιεῖ, 
πλὴν 
ὅτι 
εἰς 
τὸ 
πρόσθεν 
οὐδὲν 
<lb></lb>
συμβάλλεται 
τῷ 
πλοίῳ, 
ὥσπερ 
ἐλέχθη 
ἐπὶ 
ἄνω, 
ἀλλὰ 
<lb></lb>
μόνον 
τὴν 
πρύμναν 
εἰς 
τὸ 
πλάγιον 
ἀπωθεῖ 
ἔνθα 

ἔνθα· 
εἰς 
<lb></lb>
τοὐναντίον 
γὰρ 

πρῷρα 
οὕτω 
νεύει. 
</s>
<s id="g0130516">

μὲν 
δὴ 
τὸ 
πηδάλιον 

<lb></lb>
προσέζευκται, 
δεῖ 
οἷόν 
τι 
τοῦ 
κινουμένου 
μέσον 
νοεῖν, 
καὶ 
ὥσπερ 
<lb></lb>

σκαλμὸς 
τῇ 
κώπῃ· 
τὸ 
δὲ 
μέσον 
ὑποχωρεῖ, 


οἴαξ 
μετακινεῖται. 
</s>
<s id="g0130517">
<lb></lb>
ἐὰν 
μὲν 
εἴσω 
ἄγῃ, 
καὶ 

πρύμνα 
δεῦρο 
μεθέστηκεν· 
<lb></lb>

δὲ 
πρῷρα 
εἰς 
τοὐναντίον 
νεύει· 
ἐν 
γὰρ 
τῷ 
αὐτῷ 
<lb></lb>
οὔσης 
τῆς 
πρῴρας 
τὸ 
πλοῖον 
μεθέστηκεν 
ὅλον. 
</s>
<figure id="id.080.01.009.3.jpg" xlink:href="080/01/009/3.jpg"></figure>
</p>
<p n="24">
<s id="g0130601prop06">

<lb></lb>
Διὰ 
τί, 
ὅσῳ 
ἂν 

κεραία 
ἀνωτέρα 
ᾖ, 
θᾶττον 
πλεῖ 
τὰ 
<lb></lb>
πλοῖα 
τῷ 
αὐτῷ 
ἱστίῳ 
καὶ 
τῷ 
αὐτῷ 
πνεύματι; 
</s>
<s id="g0130602">

διότι 
γίνεται 
<lb></lb>

μὲν 
ἱστὸς 
μοχλός, 
ὑπομόχλιον 
δὲ 
τὸ 
ἑδώλιον 
ἐν 
<pb xlink:href="080/01/010.jpg" ed="Bekker" n="851b"></pb>
<lb></lb>

ἐμπέπηγεν, 

δὲ 
δεῖ 
κινεῖν 
βάρος, 
τὸ 
πλοῖον, 
τὸ 
δὲ 
κινοῦν 
<lb></lb>
τὸ 
ἐν 
τῷ 
ἱστίῳ 
πνεῦμα. 
</s>
<s id="g0130603">
εἰ 
δ&#039; 
ὅσῳ 
ἂν 
πορρώτερον 

τὸ 
ὑπομόχλιον, 

<lb></lb>
ῥᾷον 
κινεῖ 
καὶ 
θᾶττον 

αὐτὴ 
δύναμις 
τὸ 
αὐτὸ 
<lb></lb>
βάρος, 

οὖν 
κεραία 
ἀνώτερον 
ἀγομένη 
καὶ 
τὸ 
ἱστίον 
πορρώτερον 
<lb></lb>
ποιεῖ 
τοῦ 
ἑδωλίου 
ὑπομοχλίου 
ὄντος. 
</s>
</p>
<p n="25">
<s id="g0130701prop07">
<lb></lb>
Διὰ 
τί, 
ὅταν 
ἐξ 
οὐρίας 
βούλωνται 
διαδραμεῖν 
μὴ 
οὐρίου 
<lb></lb>
τοῦ 
πνεύματος 
ὄντος, 
τὸ 
μὲν 
πρὸς 
τὸν 
κυβερνήτην 
τοῦ 
ἱστίου 
<lb></lb>
μέρος 
στέλλονται, 
τὸ 
δὲ 
πρὸς 
τὴν 
πρῷραν 
ποδιαῖον 
ποιησάμενοι 
<lb></lb>

ἐφιᾶσιν; 
</s>
<s id="g0130702">

διότι 
ἀντισπᾶν 
τὸ 
πηδάλιον 
πολλῷ 
μὲν 
<lb></lb>
ὄντι 
τῷ 
πνεύματι 
οὐ 
δύναται, 
ὀλίγῳ 
δέ, 

ὑποστέλλονται. 
</s>
<s id="g0130703">
<lb></lb>
προάγει 
μὲν 
οὖν 
τὸ 
πνεῦμα, 
εἰς 
οὔριον 
δὲ 
καθίστησι 
τὸ 
<lb></lb>
πηδάλιον, 
ἀντισπῶν 
καὶ 
μοχλεῦον 
τὴν 
θάλατταν. 
</s>
<s id="g0130704">
ἅμα 
<lb></lb>
δὲ 
καὶ 
οἱ 
ναῦται 
μάχονται 
τῷ 
πνεύματι· 
ἀνακλίνουσι 
γὰρ 

<lb></lb>
ἐπὶ 
τὸ 
ἐναντίον 
ἑαυτούς. 
</s>
</p>
<p n="26">
<s id="g0130801prop08">
<lb></lb>
Διὰ 
τί 
τὰ 
στρογγύλα 
καὶ 
περιφερῆ 
τῶν 
σχημάτων 
<lb></lb>
εὐκινητότερα; 
</s>
<s id="g0130802">
τριχῶς 
δὲ 
ἐνδέχεται 
τὸν 
κύκλον 
κυλισθῆναι· 
<lb></lb>

γὰρ 
κατὰ 
τὴν 
ἁψῖδα, 
συμμεταβάλλοντος 
τοῦ 
κέντρου, 
<lb></lb>
ὥσπερ 

τῆς 
ἁμάξης 
τροχὸς 
κυλίεται· 

περὶ 
τὸ 
κέντρον 

<lb></lb>
μόνον, 
ὥσπερ 
αἱ 
τροχιλέαι, 
τοῦ 
κέντρου 
μένοντος· 

παρὰ 
<lb></lb>
τὸ 
ἐπίπεδον, 
τοῦ 
κέντρου 
μένοντος, 
ὥσπερ 

κεραμεικὸς 
τροχὸς 
<lb></lb>
κυλίνδεται. 
</s>
<s id="g0130803">
εἰ 
μὲν 
δὴ 
τάχιστα 
τὰ 
τοιαῦτα, 
διά 
τε 
τὸ 
<lb></lb>
μικρῷ 
ἅπτεσθαι 
τοῦ 
ἐπιπέδου, 
ὥσπερ 

κύκλος 
κατὰ 
στιγμήν, 
<lb></lb>
καὶ 
διὰ 
τὸ 
μὴ 
προσκόπτειν· 
ἀφέστηκε 
γὰρ 
τῆς 
γῆς 
<lb></lb>

γωνία. 
</s>
<s id="g0130804">

καὶ 
ἔτι 

ἂν 
ἀπαντήσῃ 
σώματι, 
πάλιν 
τούτου 
<lb></lb>
κατὰ 
μικρὸν 
ἅπτεται. 
</s>
<figure id="id.080.01.010.1.jpg" xlink:href="080/01/010/1.jpg"></figure>
<s id="g0130805">
εἰ 
δ&#039; 
εὐθύγραμμον 
ἦν, 
τῇ 
εὐθείᾳ 
<lb></lb>
ἐπὶ 
πολὺ 
ἥπτετο 
ἂν 
τοῦ 
ἐπιπέδου. 
</s>
<s id="g0130806">
ἔτι 

ῥέπει 
ἐπὶ 
τὸ 
βάρος, 
<lb></lb>
ταύτῃ 
κινεῖ 

κινῶν. 
ὅταν 
μὲν 
γὰρ 
πρὸς 
ὄρθιον 

διάμετρος 
<lb></lb>

τοῦ 
κύκλου 
τῷ 
ἐπιπέδῳ, 
ἁπτομένου 
τοῦ 
κύκλου 
κατὰ 
στιγμὴν 
<lb></lb>

τοῦ 
ἐπιπέδου, 
ἴσον 
τὸ 
βάρος 
ἐπ&#039; 
ἀμφότερα 
διαλαμβάνει 
<lb></lb>

διάμετρος· 
ὅταν 
δὲ 
κινῆται, 
εὐθὺς 
πλέον 
ἐφ&#039; 

<lb></lb>
κινεῖται, 
ὥσπερ 
ῥέπον. 
ἐντεῦθεν 
εὐκινητότερον 
τῷ 
ὠθοῦντι 
εἰς 
<lb></lb>
τοὔμπροσθεν· 
ἐφ&#039; 

γὰρ 
ῥέπει 
ἕκαστον, 
εὐκίνητόν 
ἐστιν, 
<lb></lb>
εἴπερ 
καὶ 
τὸ 
ἐπὶ 
τὸ 
ἐναντίον 
τῆς 
ῥοπῆς 
δυσκίνητον. 
</s>
<s id="g0130807">
ἔτι 
λέγουσί 
<lb></lb>
τινες 
ὅτι 
καὶ 

γραμμὴ 

τοῦ 
κύκλου 
ἐν 
φορᾷ 
ἐστὶν 
<lb></lb>
ἀεί, 
ὥσπερ 
τὰ 
μένοντα, 
διὰ 
τὸ 
ἀντερείδειν, 
οἷον 
καὶ 
τοῖς 
<lb></lb>

μείζοσι 
κύκλοις 
ὑπάρχει 
πρὸς 
τοὺς 
ἐλάττονας. 
</s>
<s id="g0130808">
θᾶττον 
γὰρ 
<lb></lb>
ὑπὸ 
τῆς 
ἴσης 
ἰσχύος 
κινοῦνται 
οἱ 
μείζους 
καὶ 
τὰ 
βάρη 
κινοῦσι, 
<lb></lb>
διὰ 
τὸ 
ῥοπήν 
τινα 
ἔχειν 
τὴν 
γωνίαν 
τὴν 
τοῦ 
μείζονος 
<lb></lb>
κύκλου 
πρὸς 
τὴν 
τοῦ 
ἐλάττονος, 
καὶ 
εἶναι 
ὅπερ 

διάμετρος 
<lb></lb>
πρὸς 
τὴν 
διάμετρον. 
ἀλλὰ 
μὴν 
πᾶς 
κύκλος 
μείζων 
<pb xlink:href="080/01/011.jpg" ed="Bekker" n="852a"></pb>
<lb></lb>
πρὸς 
ἐλάττονα· 
ἄπειροι 
γὰρ 
οἱ 
ἐλάττονες. 
</s>
<s id="g0130809">

εἰ 
δὲ 
καὶ 
πρὸς 
ἕτερον 
<lb></lb>
ἔχει 
ῥοπὴν 

κύκλος, 
ὁμοίως 
δὲ 
εὐκίνητος, 
καὶ 
ἄλλην 
ἂν 
<lb></lb>
ἔχοι 
ῥοπὴν 

κύκλος 
</s>
<s id="g0130810">
καὶ 
τὰ 
ὑπὸ 
κύκλου 
κινούμενα, 
κἂν 
μὴ 
<lb></lb>
τῇ 
ἁψῖδι 
ἅπτηται 
τοῦ 
ἐπιπέδου, 
ἀλλ&#039; 

παρὰ 
τὸ 
ἐπίπεδον, 
<lb></lb>

ὡς 
αἱ 
τροχιλέαι· 
καὶ 
γὰρ 
οὕτως 
ἔχοντα 
ῥᾷστα 
κινοῦνται 
<lb></lb>
καὶ 
κινοῦσι 
τὸ 
βάρος. 
</s>
<s id="g0130811">

οὐ 
τῷ 
κατὰ 
μικρὸν 
ἅπτεσθαι 
καὶ 

<lb></lb>
προσκρούειν, 
ἀλλὰ 
δι&#039; 
ἄλλην 
αἰτίαν. 
</s>
<s id="g0130812">
αὕτη 
δέ 
ἐστιν 

εἰρημένη 
<lb></lb>
πρότερον, 
ὅτι 
ἐκ 
δύο 
φορῶν 
γεγένηται 

κύκλος, 
ὥστε 
<lb></lb>
μίαν 
αὐτῶν 
αἰεὶ 
ἔχειν 
ῥοπήν, 
καὶ 
οἷον 
φερόμενον 
αὐτὸν 
<lb></lb>
αἰεὶ 
κινοῦσιν 
οἱ 
κινοῦντες, 
ὅταν 
κινῶσι 
κατὰ 
τὴν 
περιφέρειαν 
<lb></lb>
ὁπωσοῦν. 
φερομένην 
γὰρ 
αὐτὴν 
κινοῦσιν· 
</s>
<s id="g0130813">
τὴν 
μὲν 
γὰρ 
εἰς 
<lb></lb>

τὸ 
πλάγιον 
αὐτοῦ 
κίνησιν 
ὠθεῖ 
τὸ 
κινοῦν, 
τὴν 
δὲ 
ἐπὶ 
τῆς 
<lb></lb>
διαμέτρου 
αὐτὸς 
κινεῖται. 
</s>
</p>
<p n="27">
<s id="g0130901prop09">
<lb></lb>
Διὰ 
τί 
τὰ 
διὰ 
τῶν 
μειζόνων 
κύκλων 
αἰρόμενα 
καὶ 
<lb></lb>
ἑλκόμενα 
ῥᾷον 
καὶ 
θᾶττον 
κινοῦμεν; 
οἷον 
καὶ 
αἱ 
τροχιλέαι 
<lb></lb>
αἱ 
μείζους 
τῶν 
ἐλαττόνων, 
καὶ 
αἱ 
σκυτάλαι 
ὁμοίως. 
</s>
<s id="g0130902">

<lb></lb>

διότι 
ὅσῳ 
ἂν 
μείζων 

ἐκ 
τοῦ 
κέντρου 
ᾖ, 
ἐν 
τῷ 
ἴσῳ 
χρόνῳ 
<lb></lb>
πλέον 
κινεῖται 
χωρίον, 
</s>
<s id="g0130903">
ὥστε 
καὶ 
τοῦ 
ἴσου 
βάρους 
ἐπόντος 
<lb></lb>
ποιήσει 
τὸ 
αὐτό, 
ὥσπερ 
εἴπομεν 
καὶ 
τὰ 
μείζω 
ζυγὰ 
τῶν 
<lb></lb>
ἐλαττόνων 
ἀκριβέστερα 
εἶναι. 
</s>
<s id="g0130904">
τὸ 
μὲν 
γὰρ 
σπαρτίον 
ἐστὶ 
<lb></lb>
κέντρον, 
τοῦ 
δὲ 
ζυγοῦ 
αἱ 
ἐπὶ 
τάδε 
τοῦ 
σπαρτίου 
αἱ 
ἐκ 
τοῦ 
<lb></lb>
κέντρου. 

</s>
</p>
<p n="28">
<s id="g0131001prop10">
<lb></lb>
Διὰ 
τί 
ῥᾷον, 
ὅταν 
ἄνευ 
βάρους 
ᾖ, 
κινεῖται 
τὸ 
ζυγόν, 
<lb></lb>

ἔχον 
βάρος; 
</s>
<s id="g0131002">
ὁμοίως 
δὲ 
καὶ 
τροχὸς 

ἄλλο 
τοιοῦτο 
τὸ 
<lb></lb>
βαρύτερον 
μὲν 
μεῖζον 
δὲ 
τοῦ 
ἐλάττονος 
καὶ 
κουφοτέρου. 
</s>
<s id="g0131003">

<lb></lb>

ὅτι 
οὐ 
μόνον 
εἰς 
τοὐναντίον 
τὸ 
βαρύ, 
ἀλλὰ 
καὶ 
εἰς 
τὸ 
πλάγιον 
<lb></lb>
δυσκίνητόν 
ἐστιν. 
</s>
<s id="g0131004">
ἐναντίον 
γὰρ 
τῇ 
ῥοπῇ 
κινῆσαι 
χαλεπῶς, 
<lb></lb>
ἐφ&#039; 

δὲ 
ῥέπει, 
ῥᾳδίως· 
εἰς 
δὲ 
τὸ 
πλάγιον 
οὐ 
ῥέπει. 
</s>
</p>
<p n="29">
<s id="g0131101prop11">
<lb></lb>
Διὰ 
τί 
ἐπὶ 
τῶν 
σκυτάλων 
ῥᾷον 
τὰ 
φορτία 
κομίζεται 
<lb></lb>

ἐπὶ 
τῶν 
ἁμαξῶν, 
ἐχουσῶν 
τῶν 
μὲν 
μεγάλους 
τροχούς, 
<lb></lb>

τῶν 
δὲ 
μικρούς; 
</s>
<s id="g0131102">

διότι 
ἐπὶ 
τῶν 
σκυτάλων 
οὐδεμίαν 
ἔχει 
<lb></lb>
πρόσκοψιν, 
τὸ 
δὲ 
ἐπὶ 
τῶν 
ἁμαξῶν 
τὸν 
ἄξονα, 
καὶ 
προσκόπτει 
<lb></lb>
αὐτῷ· 
ἔκ 
τε 
γὰρ 
τῶν 
ἄνωθεν 
πιέζει 
αὐτὸν 
καὶ 
ἐκ 
<lb></lb>
τῶν 
πλαγίων. 
</s>
<s id="g0131103">
τὸ 
δὲ 
ἐπὶ 
τῶν 
σκυτάλων 
ἐπὶ 
δύο 
τούτων 
κινεῖται, 
<lb></lb>
τῇ 
τε 
κάτω 
χώρᾳ 
ὑποκειμένῃ 
καὶ 
τῷ 
βάρει 
τῷ 
<lb></lb>
ἐπικειμένῳ· 
ἐπ&#039; 
ἀμφοτέρων 
γὰρ 
τούτων 
κυλίεται 
τῶν 
τόπων 

<lb></lb>

κύκλος 
καὶ 
φερόμενος 
ὠθεῖται. 
</s>
</p>
<p n="30">
<s id="g0131201prop12">
<lb></lb>
Διὰ 
τί 
πορρωτέρω 
τὰ 
βέλη 
φέρεται 
ἀπὸ 
τῆς 
σφενδόνης 
<lb></lb>

ἀπὸ 
τῆς 
χειρός; 
καίτοι 
κρατεῖ 
γε 

βάλλων 
τῇ 
<pb xlink:href="080/01/012.jpg" ed="Bekker" n="852b"></pb>
<lb></lb>
χειρὶ 
μᾶλλον 

ἀπαρτήσας 
τὸ 
βάρος. 
</s>
<s id="g0131202">
καὶ 
ἔτι 
οὕτω 
μὲν 
δύο 
βάρη 
<lb></lb>

κινεῖ, 
τό 
τε 
τῆς 
σφενδόνης 
καὶ 
τὸ 
βέλος, 
ἐκεῖνως 
δὲ 
τὸ 
<lb></lb>
βέλος 
μόνον. 
</s>
<s id="g0131203">
πότερον 
ὅτι 
ἐν 
μὲν 
τῇ 
σφενδόνῃ 
κινούμενον 
τὸ 
<lb></lb>
βέλος 
ῥίπτει 

βάλλων 
̔περιαγαγὼν 
γὰρ 
κύκλῳ 
πολλάκις 
<lb></lb>
ἀφίησιν̓, 
</s>
<s id="g0131204">
ἐκ 
δὲ 
τῆς 
χειρὸς 
ἀπὸ 
τῆς 
ἠρεμίας 

ἀρχή· 
<lb></lb>
πάντα 
δὲ 
εὐκινητότερα 
κινούμενα 

ἠρεμοῦντα. 
</s>
<s id="g0131205">


διά 
τε 
<lb></lb>
τοῦτο, 
καὶ 
διότι 
ἐν 
μὲν 
τῷ 
σφενδονᾶν 

μὲν 
χεὶρ 
γίνεται 
<lb></lb>
κέντρον, 

δὲ 
σφενδόνη 

ἐκ 
τοῦ 
κέντρου· 
ὅσῳ 
ἂν 

μείζων 
<lb></lb>

ἀπὸ 
τοῦ 
κέντρου, 
κινεῖται 
θᾶττον. 

δὲ 
ἀπὸ 
τῆς 
χειρὸς 
<lb></lb>
βολὴ 
πρὸς 
τὴν 
σφενδόνην 
βραχεῖα 
ἐστίν. 
</s>
</p>
<p n="31">
<figure id="id.080.01.012.1.jpg" xlink:href="080/01/012/1.jpg"></figure>
<s id="g0131301prop13">
<lb></lb>
Διὰ 
τί 
ῥᾷον 
κινοῦνται 
περὶ 
τὸ 
αὐτὸ 
ζυγὸν 
οἱ 
μείζους 
<lb></lb>

τῶν 
ἐλαττόνων 
κόλλοπες, 
καὶ 
οἱ 
αὐτοὶ 
ὄνοι 
οἱ 
λεπτότεροι 
<lb></lb>
ὑπὸ 
τῆς 
αὐτῆς 
ἰσχύος 
τῶν 
παχυτέρων; 
</s>
<s id="g0131302">

διότι 

μὲν 
ὄνος 
<lb></lb>
καὶ 
τὸ 
ζυγὸν 
κέντρον 
ἐστίν, 
τὰ 
δὲ 
ἀπέχοντα 
μεγέθη 
αἱ 
ἐκ 
<lb></lb>
τοῦ 
κέντρου; 
θᾶττον 
δὲ 
κινοῦνται 
καὶ 
πλέον 
ἀπὸ 
τῆς 
αὐτῆς 
<lb></lb>
ἰσχύος 
αἱ 
τῶν 
μειζόνων 
κύκλων 

αἱ 
τῶν 
ἐλαττόνων· 
ὑπὸ 
<lb></lb>
τῆς 
αὐτῆς 
γὰρ 
ἰσχύος 
θᾶττον 
μεθίσταται 
τὸ 
ἄκρον 
τὸ 
πορρώτερον 
<lb></lb>
τοῦ 
κέντρου. 
</s>

<s id="g0131303">
διὸ 
πρὸς 
μὲν 
τὸ 
ζυγὸν 
τοὺς 
κόλλοπας 
<lb></lb>
ὄργανα 
ποιοῦνται, 
οἷς 
ῥᾷον 
στρέφουσιν· 
ἐν 
δὲ 
τοῖς 
λεπτοῖς 
<lb></lb>
ὄνοις 
πλεῖον 
γίνεται 
τὸ 
ἔξω 
τοῦ 
ξύλου, 
αὕτη 
δὲ 
γίνεται 
<lb></lb>

ἐκ 
τοῦ 
κέντρου. 
</s>
</p>
<p n="32">
<s id="g0131401prop14">
<lb></lb>
Διὰ 
τί 
τὸ 
αὐτὸ 
μέγεθος 
ξύλον 
ῥᾷον 
κατεάσσεται 
περὶ 
<lb></lb>
τὸ 
γόνυ, 
ἐὰν 
ἴσον 
ἀποστήσας 
τῶν 
ἄκρων 
ἐχόμενος 
καταγνύῃ, 
<lb></lb>


παρὰ 
τὸ 
γόνυ 
ἐγγὺς 
ὄντος· 
καὶ 
ἐὰν 
πρὸς 
τὴν 
γῆν 
<lb></lb>
ἐρείσας 
καὶ 
τῷ 
ποδὶ 
προσβὰς 
πόρρωθεν 
τῇ 
χειρὶ 
καταγνύῃ, 
<lb></lb>

ἐγγύθεν; 

διότι 
ἔνθα 
μὲν 
τὸ 
γόνυ 
κέντρον, 
ἔνθα 
δὲ 

<lb></lb>
πούς. 
</s>
<s id="g0131402">
ὅσῳ 
δ&#039; 
ἂν 
πορρώτερον 

τοῦ 
κέντρου, 
ῥᾷον 
κινεῖται 
<lb></lb>
ἅπαν. 
κινηθῆναι 
δὲ 
ἀνάγκη 
καταγνύμενον. 
</s>
</p>
<p n="33">
<s id="g0131501prop15">
<lb></lb>

Διὰ 
τί 
περὶ 
τοὺς 
αἰγιαλοὺς 
αἱ 
καλούμεναι 
κρόκαι 
στρογγύλαι 
<lb></lb>
εἰσίν, 
ἐκ 
μακρῶν 
τῶν 
λίθων 
καὶ 
ὀστράκων 
τὸ 
ἐξ 
<lb></lb>
ὑπαρχῆς 
ὄντων; 
</s>
<s id="g0131502">

διότι 
τὰ 
πλεῖον 
ἀπέχοντα 
τοῦ 
μέσου 
ἐν 
<lb></lb>
ταῖς 
κινήσεσι 
θᾶττον 
φέρεται. 
</s>
<s id="g0131503">
τὸ 
μὲν 
γὰρ 
μέσον 
γίνεται 
<lb></lb>
κέντρον, 
τὸ 
δὲ 
διάστημα 

ἐκ 
τοῦ 
κέντρου. 
</s>
<s id="g0131504">

ἀεὶ 
δὲ 

μείζων 
<lb></lb>
ἀπὸ 
τῆς 
ἴσης 
κινήσεως 
μείζω 
γράφει 
κύκλον. 
τὸ 
δ&#039; 
ἐν 
<lb></lb>
ἴσῳ 
χρόνῳ 
μείζω 
διεξιὸν 
θᾶττον 
φέρεται. 
τὰ 
δὲ 
φερόμενα 
<lb></lb>
θᾶττον 
ἐκ 
τοῦ 
ἴσου 
ἀποστήματος 
σφοδρότερον 
τύπτει. 
τὰ 
δὲ 
<lb></lb>
τύπτοντα 
μᾶλλον 
καὶ 
αὐτὰ 
τύπτεται 
μᾶλλον. 
</s>
<s id="g0131505">
ὥστε 
ἀνάγκη 
<lb></lb>
θραύεσθαι 
αἰεὶ 
τὰ 
πλέον 
ἀπέχοντα 
τοῦ 
μέσου. 
τοῦτο 
δὲ 
<lb></lb>
πάσχοντα 
ἀνάγκη 
γίνεσθαι 
περιφερῆ. 
</s>

<s id="g0131506">
ταῖς 
δὲ 
κρόκαις 
<pb xlink:href="080/01/013.jpg" ed="Bekker" n="853a"></pb>
<lb></lb>
διὰ 
τὴν 
τῆς 
θαλάττης 
κίνησιν, 
διὰ 
τὸ 
μετὰ 
τῆς 
θαλάττης 
κινεῖσθαι, 
<lb></lb>
συμβαίνει 
ἀεὶ 
ἐν 
κινήσει 
εἶναι 
καὶ 
κυλιομέναις 
<lb></lb>
προσκόπτειν. 
</s>
<s id="g0131507">
τοῦτο 
δὲ 
ἀνάγκη 
μάλιστα 
συμβαίνειν 
αὐτοῖς 
<lb></lb>
τοῖς 
ἄκροις. 
</s>
</p>
<p n="34">

<s id="g0131601prop16">
<lb></lb>
Διὰ 
τί, 
ὅσῳ 
ἂν 

μακρότερα 
τὰ 
ξύλα, 
τοσούτῳ 
ἀσθενέστερα 
<lb></lb>
γίνεται, 
καὶ 
κάμπτεται 
αἰρόμενα 
μᾶλλον, 
κἂν 

<lb></lb>
τὸ 
μὲν 
βραχύ, 
ὅσον 
δίπηχυ, 
λεπτόν, 
τὸ 
δὲ 
ἑκατὸν 
πηχῶν 
<lb></lb>
παχύ; 
</s>
<s id="g0131602">

διότι 
μοχλὸς 
γίνεται 
καὶ 
βάρος 
καὶ 
ὑπομόχλιον 
<lb></lb>
ἐν 
τῷ 
αἴρεσθαι 
τοῦ 
ξύλου 
τὸ 
μῆκος; 
</s>
<s id="g0131603">
τὸ 
μὲν 
γὰρ 
πρῶτον 
μέρος 

<lb></lb>
αὐτοῦ, 


χεὶρ 
αἴρει, 
οἷον 
ὑπομόχλιον 
γίνεται, 
τὸ 
δ&#039; 
<lb></lb>
ἐπὶ 
τῷ 
ἄκρῳ 
βάρος. 
</s>
<s id="g0131604">
ὥστε 
ὅσῳ 
ἂν 

μακρότερον 
τὸ 
ἀπὸ 
τοῦ 
<lb></lb>
ὑπομοχλίου, 
τοσούτῳ 
ἀνάγκη 
κάμπτεσθαι 
μᾶλλον· 
ὅσῳ 
<lb></lb>
γὰρ 
ἂν 
πλέον 
ἀπέχῃ 
τοῦ 
ὑπομοχλίου, 
τοσούτῳ 
ἀνάγκη 
<lb></lb>
κάμπτεσθαι 
μεῖζον. 
</s>
<s id="g0131605">
ἀνάγκη 
οὖν 
αἴρεσθαι 
τὰ 
ἄκρα 
τοῦ 
<lb></lb>

μοχλοῦ. 
</s>
<s id="g0131606">
ἐὰν 
οὖν 

καμπτόμενος 

μοχλός, 
ἀνάγκη 
αὐτὸν 
<lb></lb>
κάμπτεσθαι 
μᾶλλον 
αἰρόμενον. 
ὅπερ 
συμβαίνει 
ἐπὶ 
τῶν 
<lb></lb>
ξύλων 
τῶν 
μακρῶν· 
ἐν 
δὲ 
τοῖς 
βραχέσιν 
ἐγγὺς 
τὸ 
ἔσχατον 
<lb></lb>
τοῦ 
ὑπομοχλίου 
γίνεται 
τοῦ 
ἠρεμοῦντος. 
</s>
</p>
<p n="35">
<s id="g0131701prop17">
<lb></lb>
Διὰ 
τί 
τῷ 
σφηνὶ 
ὄντι 
μικρῷ 
μεγάλα 
βάρη 
διίσταται 
<lb></lb>

καὶ 
μεγέθη 
σωμάτων, 
καὶ 
θλῖψις 
ἰσχυρὰ 
γίνεται; 
</s>
<s id="g0131702">

διότι 
<lb></lb>

σφὴν 
δύο 
μοχλοί 
εἰσιν 
ἐναντίοι 
ἀλλήλοις, 
ἔχει 
δὲ 
ἑκάτερος 
<lb></lb>
τὸ 
μὲν 
βάρος 
τὸ 
δὲ 
ὑπομόχλιον, 

καὶ 
ἀνασπᾷ 

<lb></lb>
πιέζει. 
</s>
<s id="g0131703">
ἔτι 
δὲ 

τῆς 
πληγῆς 
φορὰ 
τὸ 
βάρος, 

τύπτει 
καὶ 
<lb></lb>
κινεῖ, 
ποιεῖ 
μέγα· 
</s>
<s id="g0131704">

καὶ 
διὰ 
τὸ 
κινούμενον 
κινεῖν 
τῇ 
ταχυτῆτι 
<lb></lb>
ἰσχύει 
ἔτι 
πλέον. 
μικρῷ 
δὲ 
ὄντι 
τῷ 
μοχλῷ 
μεγάλαι 
δυνάμεις 
<lb></lb>
ἀκολουθοῦσι· 
διὸ 
λανθάνει 
κινῶν 
παρὰ 
τὴν 
ἀξίαν 
τοῦ 
μεγέθους. 
</s>
<s id="g0131705">
<lb></lb>
ἔστω 
σφὴν 
ἐφ&#039; 

ΑΒΓ, 
τὸ 
δὲ 
σφηνούμενον 
ΔΕΗΖ. 
<lb></lb>
μοχλὸς 
δὴ 
γίνεται 

ΑΒ, 
βάρος 
δὲ 
τὸ 
τοῦ 
Β 
κάτωθεν, 
<lb></lb>
ὑπομόχλιον 
δὲ 
τὸ 
ΖΔ. 
ἐναντίος 
δὲ 
τούτῳ 
μοχλὸς 
τὸ 
ΒΓ. 
</s>
<s id="g0131706">
<lb></lb>

δὲ 
ΑΓ 
κοπτομένη 
ἑκατέρᾳ 
τούτων 
χρῆται 
μοχλῷ· 
ἀνασπᾷ 

<lb></lb>
γὰρ 
τὸ 
Β. 
</s>
<figure id="id.080.01.013.1.jpg" xlink:href="080/01/013/1.jpg"></figure>
</p>
<p n="36">
<figure id="id.080.01.013.2.jpg" xlink:href="080/01/013/2.jpg"></figure>
<s id="g0131801prop18">
<lb></lb>
Διὰ 
τί, 
ἐάν 
τις 
δύο 
τροχιλέας 
ποιήσας 
ἐπὶ 
δυσὶ 
ξύλοις 
<lb></lb>
συμβάλλουσιν 
ἑαυτοῖς 
ἐναντίως 
αὑταῖς 
κύκλῳ 
περιβάλῃ 
<lb></lb>
καλώδιον, 
ἔχον 
τὸ 
ἄρτημα 
ἐκ 
θατέρου 
τῶν 
ξύλων, 
<lb></lb>
θάτερον 
δὲ 

προσερηρεισμένον 

προστεθειμένον 
κατὰ 
τὰς 
<lb></lb>

τροχαλίας, 
ἐὰν 
ἕλκῃ 
τις 
τῇ 
ἀρχῇ 
τοῦ 
καλωδίου, 
μεγάλα 
<lb></lb>
βάρη 
προσάγει, 
κἂν 

μικρὰ 

ἕλκουσα 
ἰσχύς; 
</s>
<s id="g0131802">

διότι 
τὸ 
<lb></lb>
αὐτὸ 
βάρος 
ἀπὸ 
ἐλάττονος 
ἰσχύος, 
εἰ 
μοχλεύεται, 
ἐγείρεται, 
<lb></lb>

ἀπὸ 
χειρός; 

δὲ 
τροχιλέα 
τὸ 
αὐτὸ 
ποιεῖ 
τῷ 
<pb xlink:href="080/01/014.jpg" ed="Bekker" n="853b"></pb>
<lb></lb>
μοχλῷ, 
ὥστε 

μία 
ῥᾷον 
ἕλξει, 
καὶ 
ἀπὸ 
μιᾶς 
ὁλκῆς 
τοῦ 
<lb></lb>
κατὰ 
χεῖρα 
πολὺ 
ἕλξει 
βαρύτερον. 
τοῦτο 
δ&#039; 
αἱ 
δύο 
τροχιλίαι 
<lb></lb>
πλέον 

διπλασίῳ 
τάχει 
αἴρουσαι. 

</s>
<s id="g0131803">
ἔλαττον 
γὰρ 
<lb></lb>
ἔτι 

ἑτέρα 
ἕλκει 

εἰ 
αὐτὴ 
καθ&#039; 
ἑαυτὴν 
εἷλκεν, 
ὅταν 
<lb></lb>
παρὰ 
τῆς 
ἑτέρας 
ἐπιβληθῇ 
τὸ 
σχοινίον· 
ἐκείνη 
γὰρ 
ἔτι 
<lb></lb>
ἔλαττον 
ἐποίησε 
τὸ 
βάρος. 
</s>
<s id="g0131804">
καὶ 
οὕτως 
ἐὰν 
εἰς 
πλείους 
ἐπιβάλληται 
<lb></lb>
τὸ 
καλώδιον, 
ἐν 
ὀλίγαις 
τροχιλέαις 
πολλὴ 
γίνεται 
<lb></lb>
διαφορά, 

ὥστε 
ὑπὸ 
τῆς 
πρώτης 
τοῦ 
βάρους 
ἕλκοντος 
<lb></lb>

τέτταρας 
μνᾶς, 
ὑπὸ 
τῆς 
τελευταίας 
ἕλκεσθαι 
πολλῷ 
<lb></lb>
ἐλάττω. 
</s>
<s id="g0131805">
καὶ 
ἐν 
τοῖς 
οἰκοδομικοῖς 
ἔργοις 
ῥᾳδίως 
κινοῦσι 
μεγάλα 
<lb></lb>
βάρη· 
μεταφέρουσι 
γὰρ 
ἀπὸ 
τῆς 
αὐτῆς 
τροχιλέας 
<lb></lb>
ἐφ&#039; 
ἑτέραν, 
καὶ 
πάλιν 
ἀπ&#039; 
ἐκείνης 
εἰς 
ὄνους 
καὶ 
μοχλούς· 
<lb></lb>
τοῦτο 
δὲ 
ταὐτόν 
ἐστι 
τῷ 
ποιεῖν 
πολλὰς 
τροχιλέας. 
</s>
</p>
<p n="37">
<s id="g0131901prop19">
<lb></lb>

Διὰ 
τί, 
ἐὰν 
μέν 
τις 
ἐπιθῇ 
ἐπὶ 
τὸ 
ξύλον 
πέλεκυν 
μέγαν 
<lb></lb>
καὶ 
φορτίον 
μέγα 
ἐπ&#039; 
αὐτῷ, 
οὐ 
διαιρεῖ 
τὸ 
ξύλον, 

τι 
καὶ 
<lb></lb>
λόγου 
ἄξιον· 
ἐὰν 
δὲ 
ἄρας 
τὸν 
πέλεκύν 
τις 
πατάξῃ 
αὐτῷ, 
<lb></lb>
διασχίζει, 
ἔλαττον 
βάρος 
ἔχοντος 
τοῦ 
τύπτοντος 
πολὺ 
μᾶλλον 
<lb></lb>

τοῦ 
ἐπικειμένου 
καὶ 
πιεζοῦντος; 
</s>
<s id="g0131902">

διότι 
πάντα 
τῇ 
κινήσει 
<lb></lb>
ἐργάζεται, 
καὶ 
τὸ 
βαρὺ 
τὴν 
τοῦ 
βάρους 
κίνησιν 
λαμβάνει 
<lb></lb>
μᾶλλον 
κινούμενον 

ἠρεμοῦν; 

</s>
<s id="g0131903">
ἐπικείμενον 
οὖν 
εὐ 
κινεῖται 
τὴν 
<lb></lb>
τοῦ 
βάρους 
κίνησιν, 
φερόμενον 
δὲ 
ταύτην 
τε 
καὶ 
τὴν 
τοῦ 
<lb></lb>
τύπτοντος. 
</s>
<s id="g0131904">
ἔτι 
δὲ 
καὶ 
γίνεται 
σφὴν 

πέλεκυς· 

δὲ 
σφὴν 
<lb></lb>
μικρὸς 
ὢν 
μεγάλα 
διίστησι 
διὰ 
τὸ 
εἶναι 
ἐκ 
δύο 
μοχλῶν 
<lb></lb>
ἐναντίως 
συγκειμένων. 
</s>
</p>
<p n="38">

<figure id="id.080.01.014.1.jpg" xlink:href="080/01/014/1.jpg"></figure>
<s id="g0132001prop20">
<lb></lb>
Διὰ 
τί 
αἱ 
φάλαγγες 
τὰ 
κρέα 
ἱστᾶσιν 
ἀπὸ 
μικροῦ 
ἀρτήματος 
<lb></lb>
μεγάλα 
βάρη, 
τοῦ 
ὅλου 
ἡμιζυγίου 
ὄντος; 
οὗ 
μὲν 
γὰρ 
<lb></lb>
τὸ 
βάρος 
ἐντίθεται, 
κατήρτηται 
μόνον 

πλάστιγξ, 
ἐπὶ 
θάτερον 
<lb></lb>
δὲ 

φάλαγξ 
ἐστὶ 
μόνον. 
</s>
<s id="g0132002">

ὅτι 
ἅμα 
συμβαίνει 
ζυγὸν 
<lb></lb>
καὶ 
μοχλὸν 
εἶναι 
τὴν 
φάλαγγα; 
ζυγὸν 
μὲν 
γὰρ, 

<lb></lb>
τῶν 
σπαρτίων 
ἕκαστον 
γίνεται 
τὸ 
κέντρον 
τῆς 
φάλαγγος. 
τὸ 

<lb></lb>
μὲν 
οὖν 
ἐπὶ 
θάτερα 
ἔχει 
πλάστιγγα, 
τὸ 
δὲ 
ἐπὶ 
θάτερα 
ἀντὶ 
<lb></lb>
τῆς 
πλάστιγγος 
τὸ 
σφαίρωμα, 

τῷ 
ζυγῷ 
ἔγκειται, 
ὥσπερ 
<lb></lb>
εἴ 
τις 
τὴν 
ἑτέραν 
πλάστιγγα 
καὶ 
τὸν 
σταθμὸν 
ἐπιθείη 
ἐπὶ 
τὸ 
<lb></lb>
ἄκρον 
τῆς 
πλάστιγγος· 
</s>
<s id="g0132003">
δῆλον 
γὰρ 
ὅτι 
ἕλκει 
τοσοῦτον 
βάρος 
<lb></lb>
ἐν 
τῇ 
ἑτέρᾳ 
κείμενον 
πλάστιγγι. 
</s>
<s id="g0132004">
ὅπως 
δὲ 
τὸ 
ἓν 
ζυγὸν 
πολλὰ 
<lb></lb>


ζυγά, 
τοιαῦτα 
τὰ 
σπαρτία 
πολλὰ 
ἔγκειται 
ἐν 
τῷ 
τοιούτῳ 
<lb></lb>
ζυγῷ, 
ὧν 
ἑκάστου 
τὸ 
ἐπὶ 
τάδε 
ἐπὶ 
τὸ 
σφαίρωμα 
τὸ 
ἥμισυ 
<lb></lb>
τῆς 
φάλαγγός 
ἐστι, 
καὶ 

σταθμὸς 
δι&#039; 
ἴσου 
τῶν 
ἀπ&#039; 
ἀλλήλων 
<lb></lb>
τῶν 
σπαρτίων 
κινουμένων, 
ὥστε 
συμμετρεῖσθαι 
πόσον 
<pb xlink:href="080/01/015.jpg" ed="Bekker" n="854a"></pb>
<lb></lb>
βάρος 
ἕλκει 
τὸ 
ἐν 
τῇ 
πλάστιγγι 
κείμενον· 
ὥστε 
γινώσκειν, 
ὅταν 
<lb></lb>
ὀρθὴ 

φάλαγξ 
ᾖ, 
ἀπὸ 
ποίου 
σπάρτου 
πόσον 
βάρος 
ἔχει 

<lb></lb>
πλάστιγξ, 
καθάπερ 
εἴρηται. 
</s>
<s id="g0132005">
ὅλως 
μέν 
ἐστι 
τοῦτο 
ζυγόν, 
ἔχον 

<lb></lb>
μίαν 
μὲν 
πλάστιγγα, 
ἐν 

ἵσταται 
τὸ 
βάρος, 
τὴν 
δ&#039; 
ἑτέραν, 
<lb></lb>
ἐν 

τὸ 
σταθμὸν 
ἐν 
τῇ 
φάλαγγι. 
</s>
<s id="g0132006">
διὸ 
σφαίρωμά 
ἐστιν 

<lb></lb>
φάλαγξ 
ἐπὶ 
θάτερον. 
τοιοῦτον 
δὲ 
ὂν 
πολλὰ 
ζυγά 
ἐστι, 
καὶ 
<lb></lb>
τοσαῦτα 
ὅσαπέρ 
ἐστι 
τὰ 
σπαρτία. 
</s>
<s id="g0132007">
ἀεὶ 
δὲ 
τὸ 
ἐγγύτερον 
<lb></lb>
σπαρτίον 
τῆς 
πλάστιγγος 
καὶ 
τοῦ 
ἱσταμένου 
βάρους 
μεῖζον 
ἕλκει 
<lb></lb>

βάρος, 
διὰ 
τὸ 
γίνεσθαι 
τὴν 
μὲν 
φάλαγγα 
πᾶσαν 
μοχλὸν 
<lb></lb>
ἀνεστραμμένον 
̔ὑπομόχλιον 
μὲν 
γὰρ 
τὸ 
σπαρτίον 
<lb></lb>
ἕκαστον 
ἄνωθεν 
ὄν, 
τὸ 
δὲ 
βάρος 
τὸ 
ἐνὸν 
ἐν 
τῇ 
πλάστιγγἰ, 
</s>
<s id="g0132008">
<lb></lb>
ὅσῳ 
δ&#039; 
ἂν 
μακρότερον 

τὸ 
μῆκος 
τοῦ 
μοχλοῦ 
τοῦ 
ἀπὸ 
τοῦ 
<lb></lb>
ὑπομοχλίου, 
τοσούτῳ 
ἐκεῖ 
μὲν 
ῥᾷον 
κινεῖ, 
ἐνταῦθα 
δὲ 
σήκωμα 
<lb></lb>
ποιεῖ, 
καὶ 
ἵστησι 
τὸ 
πρὸς 
τὸ 
σφαίρωμα 
βάρος 
τῆς 
<lb></lb>
φάλαγγος. 
</s>
</p>

<p n="39">
<s id="g0132101prop21">
<lb></lb>
Διὰ 
τί 
οἱ 
ἰατροὶ 
ῥᾷον 
ἐξαιροῦσι 
τοὺς 
ὀδόντας 
προσλαμβάνοντες 
<lb></lb>
βάρος 
τὴν 
ὀδοντάγραν 

τῇ 
χειρὶ 
μόνῃ 
ψιλῇ; 
</s>
<s id="g0132102">
<lb></lb>
πότερον 
διὰ 
τὸ 
μᾶλλον 
ἐξολισθαίνειν 
διὰ 
τῆς 
χειρὸς 
τὸν 
<lb></lb>
ὀδόντα 

ἐκ 
τῆς 
ὀδοντάγρας; 

μᾶλλον 
ὀλισθαίνει 
τῆς 
<lb></lb>
χειρὸς 

σίδηρος, 
καὶ 
οὐ 
περιλαμβάνει 
αὐτὸν 
κύκλῳ· 
μαλθακὴ 
<lb></lb>
γὰρ 
οὖσα 

σὰρξ 
τῶν 
δακτύλων 
καὶ 
προσμένει 
μᾶλλον 
<lb></lb>

καὶ 
περιαρμόττει. 
</s>
<s id="g0132103">
ἀλλ&#039; 
ὅτι 

ὀδοντάγρα 
δύο 
μοχλοί 
<lb></lb>
εἰσιν 
ἀντικείμενοι, 
ἓν 
τὸ 
ὑπομόχλιον 
ἔχοντες 
τὴν 
σύναψιν 
<lb></lb>
τῆς 
θερμαστρίδος· 
</s>
<s id="g0132104">
τοῦ 
ῥᾷον 
οὖν 
κινῆσαι 
χρῶνται 
τῷ 
ὀργάνῳ 
<lb></lb>
πρὸς 
τὴν 
ἐξαίρεσιν. 
</s>
<s id="g0132105">
ἔστω 
γὰρ 
τῆς 
ὀδοντάγρας 
τὸ 
μὲν 
ἕτερον 
<lb></lb>

ἄκρον 
ἐφ&#039; 

τὸ 
Α, 
τὸ 
δὲ 
ἕτερον, 
τὸ 
Β, 

ἐξαιρεῖ· 

<lb></lb>
δὲ 
μοχλὸς 
ἐφ&#039; 

ΑΔΖ, 

δὲ 
ἄλλος 
μοχλὸς 
ἐφ&#039; 

<lb></lb>
ΒΓΕ, 
ὑπομόχλιον 
δὲ 
τὸ 
ΓΘΔ· 

δὲ 
ὀδοὺς 
ἐφ&#039; 
οὗ 
Ι 
σύναψις· 
<lb></lb>

δὲ 
τὸ 
βάρος. 
</s>
<figure id="id.080.01.015.1.jpg" xlink:href="080/01/015/1.jpg"></figure>
<s id="g0132106">
ἑκατέρῳ 
οὖν 
τῶν 
ΒΖ 
καὶ 
ἅμα 
λαβὼν 
<lb></lb>
κινεῖ. 
ὅταν 
δὲ 
κινήσῃ, 
ἐξεῖλε 
ῥᾷον 
τῇ 
χειρὶ 

τῷ 
<lb></lb>
ὀργάνῳ. 
</s>
</p>

<p n="40">
<s id="g0132201prop22">
<lb></lb>
Διὰ 
τί 
τὰ 
κάρυα 
ῥᾳδίως 
καταγνύουσιν 
ἄνευ 
πληγῆς 
ἐν 
<lb></lb>
τοῖς 
ὀργάνοις 

ποιοῦσι 
πρὸς 
τὸ 
καταγνύναι 
αὐτά; 
πολλὴ 
<lb></lb>
γὰρ 
ἀφαιρεῖται 
ἰσχὺς 

τῆς 
φορᾶς 
καὶ 
βίας. 
ἔτι 
δὲ 
σκληρῷ 
<lb></lb>
καὶ 
βαρεῖ 
συνθλίβων 
θᾶττον 
ἂν 
κατάξαι 

ξυλίνῳ 
καὶ 
κούφῳ 
<lb></lb>
τῷ 
ὀργάνῳ. 

διότι 
οὕτως 
ἐπ&#039; 
ἀμφότερα 
θλίβεται 
ὑπὸ 
δύο 
<lb></lb>
μοχλῶν 
τὸ 
κάρυον, 
τῷ 
δὲ 
μοχλῷ 
ῥᾳδίως 
διαιρεῖται 
τὰ 
<lb></lb>
βάρη; 
</s>

<s id="g0132202">
τὸ 
γὰρ 
ὄργανον 
ἐκ 
δύο 
σύγκειται 
μοχλῶν, 
ὑπομόχλιον 
<lb></lb>
ἐχόντων 
τὸ 
αὐτό, 
τὴν 
συναφὴν 
ἐφ&#039; 
ἧς 
τὸ 
Α. 
</s>
<s id="g0132203">
<pb xlink:href="080/01/016.jpg" ed="Bekker" n="854b"></pb>
<lb></lb>
ὥσπερ 
οὖν 
εἰ 
ἦσαν 
ἐκβεβλημέναι, 
ὑφ&#039; 
ὧν 
κινουμένων 
εἰς 
τὰ 
τῶν 
<lb></lb>
ΓΔ 
ἄκρα 
αἱ 
ΕΖ 
συνήγοντο 
ῥᾳδίως 
ἀπὸ 
μικρᾶς 
ἰσχύος· 
</s>
<figure id="id.080.01.016.1.jpg" xlink:href="080/01/016/1.jpg"></figure>
<s id="g0132204">
<lb></lb>
ἣν 
οὖν 
ἐν 
τῇ 
πληγῇ 
τὸ 
βάρος 
ἐποίει, 
ταύτην 

κρείττων 
ταύτης, 
<lb></lb>


τὸ 
ΕΓ 
καὶ 
ΖΔ, 
μοχλοὶ 
ὄντες 
ποιοῦσι· 
τῇ 
ἄρσει 
γὰρ 
<lb></lb>
εἰς 
τοὐναντίον 
αἴρονται, 
καὶ 
θλίβοντες 
καταγνύουσι 
τὸ 
ἐφ&#039; 

Κ. 
</s>
<s id="g0132205">
<lb></lb>
δι&#039; 
αὐτὸ 
δὲ 
τοῦτο 
καὶ 
ὅσῳ 
ἂν 
ἐγγύτερον 

τῆς 
Α 
τὸ 
Κ, 
συντρίβεται 
<lb></lb>
θᾶττον· 
ὅσῳ 
γὰρ 
ἂν 
πλεῖον 
ἀπέχῃ 
τοῦ 
ὑπομοχλίου 
<lb></lb>

μοχλός, 
ῥᾷον 
κινεῖ 
καὶ 
πλεῖον 
ἀπὸ 
τῆς 
ἰσχύος 
τῆς 
αὐτῆς. 
</s>
<s id="g0132206">
<lb></lb>
ἔστιν 
οὖν 
τὸ 
μὲν 
Α 
ὑπομόχλιον, 

δὲ 
ΔΑΖ 
μοχλός, 
καὶ 

<lb></lb>
ΓΑΕ. 

</s>
<s id="g0132207">
ὅσῳ 
ἂν 
οὖν 
τὸ 
Κ 
ἐγγυτέρω 

τῆς 
γωνίας 
τῶν 
Α, 
<lb></lb>
τοσούτῳ 
ἐγγύτερον 
γίνεται 
τῆς 
συναφῆς 
τῶν 
Α· 
τοῦτο 
δέ 
ἐστι 
<lb></lb>
τὸ 
ὑπομόχλιον. 
</s>
<s id="g0132208">
ἀνάγκη 
τοίνυν 
ἀπὸ 
τῆς 
αὐτῆς 
ἰσχύος 
συναγούσης 
<lb></lb>
τὸ 
ΖΕ 
αἴρεσθαι 
πλέον. 
</s>
<s id="g0132209">
ὥστε 
ἐπεί 
ἐστιν 
ἐξ 
ἐναντίας 
<lb></lb>

ἄρσις, 
ἀνάγκη 
θλίβεσθαι 
μᾶλλον· 
τὸ 
δὲ 
μᾶλλον 
θλιβόμενον 

<lb></lb>
κατάγνυται 
θᾶττον. 
</s>
</p>
<p n="41">
<s id="g0132301prop23">
<lb></lb>
Διὰ 
τί 
φερομένων 
δύο 
φορὰς 
ἐν 
τῷ 
ῥόμβῳ 
τῶν 
ἄκρων 
<lb></lb>
σημείων 
ἀμφοτέρων, 
οὐ 
τὴν 
ἴσην 
ἑκάτερον 
αὐτῶν 
εὐθεῖαν 
διέρχεται, 
<lb></lb>
ἀλλὰ 
πολλαπλασίαν 
θάτερον; 
</s>
<s id="g0132302">

αὐτὸς 
δὲ 
λόγος 
καὶ 
<lb></lb>
διὰ 
τί 
τὸ 
ἐπὶ 
τῆς 
πλευρᾶς 
φερόμενον 
ἐλάττω 
διέρχεται 
τῆς 

<lb></lb>
πλευρᾶς. 
τὸ 
μὲν 
γὰρ 
τὴν 
ἐλάττω 
διάμετρον, 

δὲ 
τὴν 
<lb></lb>
μείζω 
πλευρὰν, 
καὶ 

μὲν 
μίαν, 
τὸ 
δὲ 
δύο 
φέρεται 
<lb></lb>
φοράς. 
</s>
<s id="g0132303">
φερέσθω 
γὰρ 
ἐπὶ 
τῆς 
ΑΒ 
τὸ 
μὲν 
Α 
πρὸς 
τὸ 
Β, 
τὸ 
<lb></lb>
δὲ 
Β 
πρὸς 
τὸ 
Δ 
τῷ 
αὐτῷ 
τάχει· 
φερέσθω 
δὲ 
καὶ 

ΑΒ 
<lb></lb>
ἐπὶ 
τῆς 
ΑΓ 
παρὰ 
τὴν 
ΓΔ 
τῷ 
αὐτῷ 
τάχει 
τούτοις. 
</s>
<figure id="id.080.01.016.2.jpg" xlink:href="080/01/016/2.jpg"></figure>
<s id="g0132304">
ἀνάγκη 

<lb></lb>
δὴ 
τὸ 
μὲν 
Α 
ἐπὶ 
τῆς 
ΑΔ 
διαμέτρου 
φέρεσθαι, 
τὸ 
δὲ 
Β 
ἐπὶ 
<lb></lb>
τῆς 
ΒΓ, 
καὶ 
ἅμα 
διεληλυθέναι 
ἑκατέραν, 
καὶ 
τὴν 
ΑΒ 
τὴν 
<lb></lb>
ΑΓ 
πλευράν. 
</s>
<s id="g0132305">
ἐνηνέχθω 
γὰρ 
τὸ 
μὲν 
Α 
τὴν 
ΑΕ, 

δὲ 
<lb></lb>
ΑΒ 
τὴν 
ΑΖ, 
καὶ 
ἔστω 
ἐκβεβλημένη 

ΖΗ 
παρὰ 
τὴν 
ΑΒ, 
<lb></lb>
καὶ 
ἀπὸ 
τοῦ 
Ε 
πεπληρώσθω. 
</s>
<s id="g0132306">
ὅμοιον 
οὖν 
γίνεται 
τὸ 
παραπληρωθὲν 
<lb></lb>

τῷ 
ὅλῳ. 
</s>
<s id="g0132307">
ἴση 
ἄρα 

ΑΖ 
τῇ 
ΑΕ, 
ὥστε 
τὸ 
Α 
<lb></lb>
ἐπὶ 
τῆς 
πλευρᾶς 
ἐνήνεκται 
τῆς 
ΑΕ. 

δὲ 
ΑΒ 
τὴν 
ΑΖ 
<lb></lb>
εἴη 
ἂν 
ἐνηνεγμένη. 
ἔσται 
ἄρα 
ἐπὶ 
τῆς 
διαμέτρου 
κατὰ 
τὸ 
Θ. 
</s>
<s id="g0132308">
<lb></lb>
καὶ 
αἰεὶ 
δὲ 
ἀνάγκη 
αὐτὸ 
φέρεσθαι 
κατὰ 
τὴν 
διάμετρον. 
<lb></lb>
καὶ 
ἅμα 

πλευρὰ 

ΑΒ 
τὴν 
πλευρὰν 
τὴν 
ΑΓ 
δίεισι, 
<lb></lb>
καὶ 
τὸ 
Α 
τὴν 
διάμετρον 
δίεισι 
τὴν 
ΑΔ. 
</s>

<s id="g0132309">
ὁμοίως 
δὲ 
δειχθήσεται 
<lb></lb>
καὶ 
τὸ 
Β 
ἐπὶ 
τῆς 
ΑΓ 
διαμέτρου 
φερόμενον. 
ἴση 
<lb></lb>
γάρ 
ἐστιν 

ΒΕ 
τῇ 
ΒΗ. 
</s>
<s id="g0132310">
παραπληρωθέντος 
οὖν 
ἀπὸ 
τοῦ 
Η, 
<lb></lb>
ὅμοιόν 
ἐστι 
τῷ 
ὅλῳ 
τὸ 
ἐντός. 
καὶ 
τὸ 
Β 
ἐπὶ 
τῆς 
διαμέτρου 
<lb></lb>
ἔσται 
κατὰ 
τὴν 
σύναψιν 
τῶν 
πλευρῶν, 
καὶ 
ἅμα 
δίεισιν 
<pb xlink:href="080/01/017.jpg" ed="Bekker" n="855a"></pb>
<lb></lb>

τε 
πλευρὰ 
τὴν 
πλευρὰν 
καὶ 
τὸ 
Β 
τὴν 
ΒΓ 
διάμετρον. 
</s>

<s id="g0132311">
<lb></lb>
ἅμα 
ἄρα 
καὶ 
τὸ 
Β 
τὴν 
πολλαπλασίαν 
τῆς 
ΑΒ 
δίεισι 
<lb></lb>
καὶ 

πλευρὰ 
τὴν 
ἐλάττονα 
πλευράν, 
τῷ 
αὐτῷ 
τάχει 
φερόμενα, 
<lb></lb>
καὶ 

πλευρὰ 
μείζω 
τοῦ 
Α 
διελήλυθε 
μίαν 
φορὰν 
<lb></lb>
φερομένη. 
</s>
<s id="g0132312">
ὅσῳ 
γὰρ 
ἂν 
ὀξύτερος 
γένηται 

ῥόμβος, 

<lb></lb>
μὲν 
διάμετρος 

ἐλάττων 
γίνεται, 

δὲ 
ΒΓ 
μείζων, 

δὲ 
<lb></lb>
πλευρὰ 
τῆς 
ΒΓ 
ἐλάττων. 
</s>

<s id="g0132313">
ἄτοπον 
γάρ, 
ὥσπερ 
ἐλέχθη, 
τὸ 
<lb></lb>
δύο 
φορὰς 
φερόμενον 
ἐνίοτε 
βραδύτερον 
φέρεσθαι 
τοῦ 
μίαν, 
<lb></lb>
καὶ 
ἀμφοτέρων 
ἰσοταχῶν 
σημείων 
δοθέντων 
μείζω 
διεξιέναι 
<lb></lb>
θάτερον. 
</s>
<s id="g0132314">
αἴτιον 
δὲ 
ὅτι 
τοῦ 
μὲν 
ἀπὸ 
τῆς 
ἀμβλείας 
φερομένου 
<lb></lb>
σχεδὸν 
ἐναντίαι 
ἀμφότεραι 
γίνονται, 
ἥν 
τε 
αὐτὴ 
<lb></lb>
φέρεται 
καὶ 
ἣν 
ὑπὸ 
τῆς 
πλευρᾶς 
ὑποφέρεται, 
</s>
<s id="g0132315">

τοῦ 
δὲ 
ἀπὸ 
<lb></lb>
τῆς 
ὀξείας 
συμβαίνει 
φέρεσθαι 
ἐπὶ 
τὸ 
αὐτό. 
συνεπουρίζει 
<lb></lb>
γὰρ 

τῆς 
πλευρᾶς 
τὴν 
ἐπὶ 
τῆς 
διαμέτρου· 
καὶ 
ὅσῳ 
ἂν 
<lb></lb>
τὴν 
μὲν 
ὀξυτέραν 
ποιήσῃ, 
τὴν 
δὲ 
ἀμβλυτέραν, 

μὲν 
βραδυτέρα 
<lb></lb>
ἔσται, 

δὲ 
θάττων. 
</s>
<s id="g0132316">
αἱ 
μὲν 
γὰρ 
ἐναντιώτεραι 
γίνονται 
<lb></lb>
διὰ 
τὸ 
ἀμβλυτέραν 
γίνεσθαι 
τὴν 
γωνίαν, 
αἱ 
δὲ 
<lb></lb>
μᾶλλον 
ἐπὶ 
τὰ 
αὐτὰ 
διὰ 
τὸ 
συνάγεσθαι 
τὰς 
γραμμάς. 
<lb></lb>

τὸ 
μὲν 
γὰρ 
Β 
σχεδὸν 
ἐπὶ 
τὸ 
αὐτὸ 
φέρεται 
κατ&#039; 
ἀμφοτέρας 
<lb></lb>
τὰς 
φοράς· 
</s>
<s id="g0132317">
συνεπουρίζεται 
οὖν 

ἑτέρα, 
καὶ 
ὅσῳ 
ἂν 
<lb></lb>
ὀξυτέρα 
γίνηται 

γωνία, 
τοσούτῳ 
μᾶλλον. 
τὸ 
Α 
δὲ 
ἐπὶ 
<lb></lb>
τοὐναντίον· 
αὐτὸ 
μὲν 
γὰρ 
πρὸς 
τὸ 
Β 
φέρεται, 

δὲ 
πλευρὰ 
<lb></lb>
ὑποφέρει 
αὐτὸ 
πρὸς 
τὸ 
Δ. 
</s>
<s id="g0132318">
καὶ 
ὅσῳ 
ἂν 
ἀμβλυτέρα 

γωνία 
<lb></lb>
ᾖ, 
ἐναντιώτεραι 
αἱ 
φοραὶ 
γίνονται· 
εὐθυτέρα 
γὰρ 


<lb></lb>
γραμμὴ 
γίνεται. 
</s>
<s id="g0132319">
εἰ 
δ&#039; 
ὅλως 
εὐθεῖα 
γένοιτο, 
παντελῶς 
ἂν 
<lb></lb>
εἴησαν 
ἐναντίαι. 

δὲ 
πλευρὰ 
ὑπ&#039; 
οὐθενὸς 
κωλύεται 
μίαν 
<lb></lb>
φερομένη 
φοράν. 
εὐλόγως 
οὖν 
τὴν 
μείζω 
διέρχεται. 
</s>
</p>
<p n="42">
<s id="g0132401prop24">
<lb></lb>
Ἀπορεῖται 
διὰ 
τί 
ποτε 

μείζων 
κύκλος 
τῷ 
ἐλάττονι 
<lb></lb>
κύκλῳ 
ἴσην 
ἐξελίττεται 
γραμμήν, 
ὅταν 
περὶ 
τὸ 
αὐτὸ 
κέντρον 

<lb></lb>
τεθῶσι; 
χωρὶς 
δὲ 
ἐκκυλιόμενοι, 
ὥσπερ 
τὸ 
μέγεθος 
αὐτῶν 
<lb></lb>
πρὸς 
τὸ 
μέγεθος 
ἔχει, 
οὕτως 
καὶ 
αἱ 
γραμμαὶ 
αὐτῶν 
<lb></lb>
γίνονται 
πρὸς 
ἀλλήλας. 
</s>
<s id="g0132402">
ἔτι 
δὲ 
ἑνὸς 
καὶ 
τοῦ 
αὐτοῦ 
κέντρου 
<lb></lb>
ὄντος 
ἀμφοῖν, 
ὁτὲ 
μὲν 
τηλικαύτη 
γίνεται 

γραμμὴ 
ἣν 
<lb></lb>
ἐκκυλίονται, 
ἡλίκην 

ἐλάττων 
κύκλος 
καθ&#039; 
αὑτὸν 
ἐκκυλίεται, 
<lb></lb>
ὁτὲ 
δὲ 
ὅσην 

μείζων. 
</s>
<s id="g0132403">

ὅτι 
μὲν 
οὖν 
μείζω 
ἐκκυλίεται 
<lb></lb>

μείζων, 
φανερόν. 
γωνία 
μὲν 
γὰρ 
δοκεῖ 
κατὰ 
τὴν 
<lb></lb>
αἴσθησιν 
εἶναι 

περιφέρεια 
ἑκάστου 
τῆς 
οἰκείας 
διαμέτρου, 
<lb></lb>

τοῦ 
μείζονος 
κύκλου 
μείζων, 

δὲ 
τοῦ 
ἐλάττονος 
ἐλάττων, 
<lb></lb>
ὥστε 
τὸν 
αὐτὸν 
τοῦτον 
ἕξουσι 
λόγον, 
καθ&#039; 
ἃς 
<pb xlink:href="080/01/018.jpg" ed="Bekker" n="855b"></pb>
<lb></lb>
ἐξεκυλίσθησαν 
αἱ 
γραμμαὶ 
πρὸς 
ἀλλήλας 
κατὰ 
τὴν 
αἴσθησιν. 
</s>
<s id="g0132404">
ἀλλὰ 
μὴν 
<lb></lb>
καὶ 
ὅτι 
τὴν 
ἴσην 
ἐκκυλίονται, 
ὅταν 
περὶ 
τὸ 
αὐτὸ 
κέντρον 

<lb></lb>
κείμενοι 
ὦσι, 
δῆλον· 
καὶ 
οὕτως 
γίνεται 
ὁτὲ 
μὲν 
ἴση 
τῇ 
<lb></lb>
γραμμῇ 
ἣν 

μείζων 
κύκλος 
ἐκκυλίεται, 
ὁτὲ 
δὲ 
ἐλάττων. 
</s>
<figure id="id.080.01.018.1.jpg" xlink:href="080/01/018/1.jpg"></figure>
</p>
<p n="43">
<s id="g0132405">
<lb></lb>
ἔστω 
γὰρ 
κύκλος 

μείζων 
μὲν 
ἐφ&#039; 
οὗ 
τὰ 
ΔΖΓ, 

δὲ 
<lb></lb>
ἐλάττων 
ἐφ&#039; 
οὗ 
τὰ 
ΕΗΒ, 
κέντρον 
δὲ 
ἀμφοῖν 
τὸ 
Α· 
καὶ 
<lb></lb>
ἣν 
μὲν 
ἐξελίττεται 
καθ&#039; 
αὑτὸν 

μέγας, 

ἐφ&#039; 
ἧς 
ΖΙ 
ἔστω, 
<lb></lb>
ἣν 
δὲ 

ἐλάττων 
καθ&#039; 
αὑτόν, 

ἐφ&#039; 
ἧς 
ΗΚ, 
ἴση 
τῇ 
ΑΖ. 

</s>
<s id="g0132406">
<lb></lb>
ἐὰν 
δὴ 
κινῶ 
τὸν 
ἐλάττονα, 
τὸ 
αὐτὸ 
κέντρον 
κινῶ 
ἐφ&#039; 
οὗ 
<lb></lb>
τὸ 
Α· 

δὲ 
μέγας 
προσηρμόσθω. 
ὅταν 
οὖν 

ΑΒ 
ὀρθὴ 
γένηται 
<lb></lb>
πρὸς 
τὴν 
ΗΚ, 
ἅμα 
καὶ 

ΑΓ 
γίνεται 
ὀρθὴ 
πρὸς 
τὴν 
<lb></lb>
ΖΛ, 
ὥστε 
ἔσται 
ἴσην 
ἀεὶ 
διεληλυθυῖα, 
τὴν 
μὲν 
ΗΚ, 
ἐφ&#039; 
<lb></lb>

ΗΒ 
περιφέρεια, 
τὴν 
δὲ 
ΖΛ 

ἐφ&#039; 
ἧς 
ΖΓ. 
</s>
<s id="g0132407">
εἰ 
δὲ 
τὸ 
<lb></lb>
τέταρτον 
μέρος 
ἴσην 
ἐξελίττεται, 
δῆλον 
ὅτι 
καὶ 

ὅλος 
κύκλος 

<lb></lb>
τῷ 
ὅλῳ 
κύκλῳ 
ἴσην 
ἐξελιχθήσεται, 
ὥστε 
ὅταν 

ΒΗ 
<lb></lb>
γραμμὴ 
ἔλθῃ 
ἐπὶ 
τὸ 
Κ, 
καὶ 

ΖΓ 
ἔσται 
περιφέρεια 
ἐπὶ 
<lb></lb>
τῆς 
ΖΛ, 
καὶ 

κύκλος 
ὅλος 
ἐξειλιγμένος. 
</s>
<s id="g0132408">
ὁμοίως 
δὲ 
καὶ 
<lb></lb>
ἐὰν 
τὸν 
μέγαν 
κινῶ, 
ἐναρμόσας 
τὸν 
μικρόν, 
τοῦ 
αὐτοῦ 
κέντρου 
<lb></lb>
ὄντος, 
ἅμα 
τῇ 
ΑΓ 

ΑΒ 
κάθετος 
καὶ 
ὀρθὴ 
ἔσται, 

<lb></lb>
μὲν 
πρὸς 
τὴν 
ΖΙ, 

δὲ 
πρὸς 
τὴν 
ΗΘ. 
</s>
<s id="g0132409">

ὥστε 
ὅταν 
ἴσην 

<lb></lb>
μὲν 
τῇ 
ΗΘ 
ἔσται 
διεληλυθυῖα, 

δὲ 
τῇ 
ΖΙ, 
καὶ 
γένηται 
<lb></lb>
ὀρθὴ 
πάλιν 

ΖΑ 
πρὸς 
τὴν 
ΖΛ 
καὶ 

ΑΓ 
ὀρθὴ 
πάλιν, 
<lb></lb>
ὡς 
τὸ 
ἐξ 
ἀρχῆς 
ἔσονται 
ἐπὶ 
τῶν 
ΘΙ. 
</s>
<s id="g0132410">
τὸ 
δὲ 
μήτε 
στάσεως 
<lb></lb>
γινομένης 
τὸ 
μεῖζον 
τῷ 
ἐλάττονι, 
ὥστε 
μένειν 
τινὰ 
χρόνον 
<lb></lb>
ἐπὶ 
τοῦ 
αὐτοῦ 
σημείου· 
κινοῦνται 
γὰρ 
συνεχῶς 
ἄμφω 
ἀμφοτεράκις. 
<lb></lb>
μὴ 
ὑπερπηδόντος 
τοῦ 
ἐλάττονος 
μηθὲν 
σημεῖον, 
<lb></lb>

τὸν 
μὲν 
μείζω 
τῷ 
ἐλάττονι 
ἴσην 
διεξιέναι, 
τὸν 
δὲ 
τῷ 
μείζονι, 
<lb></lb>
ἄτοπον. 
</s>
<s id="g0132411">
ἔτι 
δὲ 
μιᾶς 
κινήσεως 
οὔσης 
ἀεὶ 
τὸ 
τὸ 
<lb></lb>
κινούμενον 
κέντρον 
ὁτὲ 
μὲν 
τὴν 
μεγάλην 
ὁτὲ 
δὲ 
τὴν 
ἐλάττονα 
<lb></lb>
ἐκκυλίεσθαι 
θαυμαστόν. 
</s>
<s id="g0132412">
τὸ 
γὰρ 
αὐτὸ 
τῷ 
αὐτῷ 
τάχει 
φερόμενον 
<lb></lb>
ἴσην 
πέφυκε 
διεξιέναι· 
τῷ 
αὐτῷ 
δὲ 
τάχει 
ἴσην 
ἐστὶ 
<lb></lb>
κινεῖν 
ἀμφοτεράκις. 

</s>
<s id="g0132413">
ἀρχὴ 
δὲ 
ληπτέα 
ἥδε 
περὶ 
τῆς 
αἰτίας 
<lb></lb>
αὐτῶν, 
ὅτι 

αὐτὴ 
δύναμις 
καὶ 
ἴση 
τὸ 
μὲν 
βραδύτερον 
<lb></lb>
κινεῖ 
μέγεθος, 
τὸ 
δὲ 
ταχύτερον. 
</s>
<s id="g0132414">
εἰ 
δή 
τι 
εἴη 

μὴ 
πέφυκεν 
<lb></lb>
ὑφ&#039; 
ἑαυτοῦ 
κινεῖσθαι, 
ἐὰν 
τοῦτο 
ἅμα 
καὶ 
αὐτὸ 
κινῇ 
τὸ 
πεφυκὸς 
<lb></lb>
κινεῖσθαι, 
βραδύτερον 
κινηθήσεται 

εἰ 
αὐτὴ 
καθ&#039; 
<lb></lb>
αὑτὴν 
ἐκινεῖτο. 
</s>

<s id="g0132415">
καὶ 
ἐὰν 
μὲν 
πεφυκὸς 

κινεῖσθαι, 
μὴ 
συγκινῆται 
<lb></lb>
δὲ 
μηθέν, 
ὡσαύτως 
ἕξει. 
</s>
<s id="g0132416">
καὶ 
ἀδύνατον 
δὴ 
κινεῖσθαι 
<lb></lb>
πλέον 

τὸ 
κινοῦν· 
οὐ 
γὰρ 
τὴν 
αὑτοῦ 
κινεῖται 
κίνησιν, 
<pb xlink:href="080/01/019.jpg" ed="Bekker" n="856a"></pb>
<lb></lb>
ἀλλὰ 
τὴν 
τοῦ 
κινοῦντος. 
</s>
<s id="g0132417">
εἴη 
δὴ 
κύκλος 

μὲν 
μείζων 
τὸ 
Α, 

δὲ 
<lb></lb>
ἐλάττων 
ἐφ&#039; 

Β. 
εἰ 
ὠθοίη 
δ&#039; 

ἐλάττων 
τὸν 
μείζω, 
μὴ 

<lb></lb>
κυλιομένου 
αὐτοῦ, 
φανερὸν 
ὅτι 
τοσοῦτον 
δίεισι 
τῆς 
εὐθείας 
<lb></lb>

μείζων, 
ὅσον 
ἐώσθη 
ὑπὸ 
τοῦ 
ἐλάττονος. 
τοσοῦτον 
δέ 
γε 
<lb></lb>
ἐώσθη 
ὅσον 

μικρὸς 
ἐκινήθη. 
ἴσην 
ἄρα 
τῆς 
εὐθείας 
διεληλύθασιν. 
</s>
<s id="g0132418">
<lb></lb>
ἀνάγκη 
τοίνυν 
καὶ 
εἰ 
κυλιόμενος 

ἐλάττων 
τὸν 
<lb></lb>
μείζω 
ὠθοίη, 
κυλισθῆναι 
μὲν 
ἅμα 
τῇ 
ὤσει, 
τοσοῦτον 
δ&#039; 
ὅσον 
<lb></lb>

ἐλάττων 
ἐκυλίσθη, 
εἰ 
μηθὲν 
αὐτὸς 
τῇ 
αὐτῇ 
κινήσει 
κινεῖται. 
</s>
<s id="g0132419">
<lb></lb>

ὡς 
γὰρ 
καὶ 
ὅσον 
ἐκίνει, 
τοσοῦτον 
κεκινῆσθαι 
ἀνάγκη 
<lb></lb>
τὸ 
κινούμενον 
ὑπ&#039; 
ἐκείνου. 
ἀλλὰ 
μὴν 

τε 
κύκλος 
τοσοῦτον 
<lb></lb>
ἐκίνησε 
τὸ 
αὐτό 
κύκλῳ 
τε 
καὶ 
ποδιαίαν 
̔ἔστω 
γὰρ 
τοσοῦτον 
<lb></lb>

ἐκινήθἠ, 
καὶ 

μέγας 
ἄρα 
τοσοῦτον 
ἐκινήθη. 
</s>
<s id="g0132420">
ὁμοίως 
<lb></lb>
δὲ 
κἂν 

μέγας 
τὸν 
μικρὸν 
κινήσῃ, 
ἔσται 
κεκινημένος 

μικρὸς 
<lb></lb>
ὡς 
καὶ 

μείζων. 
</s>
<s id="g0132421">
καθ&#039; 
αὑτὸν 
μὲν 
δὴ 
κινηθεὶς 
ὁποτεροσοῦν, 

<lb></lb>
ἐάν 
τε 
ταχὺ 
ἐάν 
τε 
βραδέως· 
τῷ 
αὐτῷ 
δὲ 
τάχει 
<lb></lb>
εὐθὺς 
ὅσην 

μείζων 
πέφυκεν 
ἐξελιχθῆναι 
γραμμήν. 
ὅπερ 
<lb></lb>
καὶ 
ποιεῖ 
τὴν 
ἀπορίαν, 
ὅτι 
οὐκέτι 
ὁμοίως 
ποιοῦσιν 
ὅταν 
συναρμοσθῶσιν. 
<lb></lb>
τὸ 
δ&#039; 
ἔστιν, 
εἰ 

ἕτερος 
ὑπὸ 
τοῦ 
ἑτέρου 
κινεῖται 
<lb></lb>
οὐχ 
ἣν 
πέφυκεν, 
οὐδὲ 
τὴν 
αὑτοῦ 
κίνησιν. 
</s>
<s id="g0132422">
οὐθὲν 
γὰρ 
<lb></lb>
διαφέρει 
περιθεῖναι 
καὶ 
ἐναρμόσαι 

προσθεῖναι 
ὁποτερονοῦν 
<lb></lb>
ὁποτέρῳ· 
ὁμοίως 
γάρ, 
ὅταν 

μὲν 
κινῇ 

δὲ 
κινῆται 
ὑπὸ 

<lb></lb>
τούτου, 
ὅσον 
ἂν 
κινῇ 
ἅτερος, 
τοσοῦτον 
κινηθήσεται 
ἅτερος. 
</s>
<s id="g0132423">
<lb></lb>
ὅταν 
μὲν 
οὖν 
προσκείμενον 
κινῇ 

προσκρεμάμενον, 
οὐκ 
ἀεὶ 
<lb></lb>
κυλίει 
τις· 
ὅταν 
δὲ 
περὶ 
τὸ 
αὐτὸ 
κέντρον 
τεθῶσιν, 
ἀνάγκη 
<lb></lb>
κυλίεσθαι 
ἀεὶ 
τὸν 
ἕτερον 
ὑπὸ 
τοῦ 
ἑτέρου. 
</s>
<s id="g0132424">
ἀλλ&#039; 
οὐθὲν 
ἧττον 
<lb></lb>
οὐ 
τὴν 
αὑτοῦ 
κίνησιν 
ἅτερος 
κινεῖται, 
ἀλλ&#039; 
ὥσπερ 
ἂν 
εἰ 
μηδεμίαν 
<lb></lb>
εἶχε 
κίνησιν. 
κἂν 
ἔχῃ, 
μὴ 
χρῆται 
δ&#039; 
αὐτῇ, 
ταὐτὸ 

<lb></lb>
συμβαίνει. 
</s>
<s id="g0132425">
ὅταν 
μὲν 
οὖν 

μέγας 
κινῇ 
ἐνδεδεμένον 
τὸν 
μικρόν, 
<lb></lb>

μικρὸς 
κινεῖται 
ὅσηνπερ 
οὗτος· 
ὅταν 
δὲ 

μικρός, 
<lb></lb>
πάλιν 

μέγας 
ὅσην 
οὗτος. 
χωριζόμενος 
δὲ 
ἑκάτερος 
αὑτὸν 
<lb></lb>
κινεῖ 
αὐτός. 
</s>
<s id="g0132426">
ὅτι 
δὲ 
τοῦ 
αὐτοῦ 
κέντρου 
ὄντος 
καὶ 
κινοῦντος 
<lb></lb>
τῷ 
αὐτῷ 
τάχει 
συμβαίνει 
ἄνισον 
διεξιέναι 
αὐτοὺς 
γραμμήν, 
<lb></lb>

παραλογίζεται 

ἀπορῶν 
σοφιστικῶς. 
</s>
<s id="g0132427">
τὸ 
αὐτὸ 
μὲν 
<lb></lb>
γάρ 
ἐστι 
κέντρον 
ἀμφοῖν, 
ἀλλὰ 
κατὰ 
συμβεβηκός, 
ὡς 
<lb></lb>
μουσικὸν 
καὶ 
λευκόν· 
τὸ 
γὰρ 
εἶναι 
ἑκατέρου 
κέντρου 
τῶν 
<lb></lb>
κύκλων 
οὐ 
τῷ 
αὐτῷ 
χρῆται. 
</s>
<s id="g0132428">
ὅταν 
μὲν 
οὖν 

κινῶν 


<lb></lb>
μικρός, 
ὡς 
ἐκείνου 
κέντρον 
καὶ 
ἀρχή, 
ὅταν 
δὲ 

μέγας, 
ὡς 
<lb></lb>
ἐκείνου. 

</s>
<s id="g0132429">
οὔκουν 
τὸ 
αὐτὸ 
κινεῖ 
ἁπλῶς, 
ἀλλ&#039; 
ἔστιν 
ὥς. 
</s>
</p>
<p n="44">
<figure id="id.080.01.019.1.jpg" xlink:href="080/01/019/1.jpg"></figure>
<s id="g0132501prop25">
<lb></lb>
Διὰ 
τί 
τὰς 
κλίνας 
ποιοῦσι 
διπλασιοπλεύρους, 
τὴν 
<pb xlink:href="080/01/020.jpg" ed="Bekker" n="856b"></pb>
<lb></lb>
μὲν 
ἓξ 
ποδῶν 
καὶ 
μικρῷ 
μείζω 
πλευράν, 
τὴν 
δὲ 
τριῶν; 
καὶ 
<lb></lb>
διὰ 
τί 
ἐντείνουσιν 
οὐ 
κατὰ 
διάμετρον; 
</s>
<s id="g0132502">


τὸ 
μὲν 
μέγεθος 
τηλικαύτας, 
<lb></lb>
ὅπως 
τοῖς 
σώμασιν 
ὦσι 
σύμμετροι; 
γίνονται 
<lb></lb>
γὰρ 
οὕτω 
διπλασιόπλευροι, 
τετραπήχεις 
μὲν 
τὸ 
μῆκος, 
διπήχεις 
<lb></lb>
δὲ 
τὸ 
πλάτος. 
</s>
<s id="g0132503">
ἐντείνουσι 
δὲ 
οὐ 
κατὰ 
διάμετρον 
ἀλλ&#039; 
<lb></lb>
ἀπ&#039; 
ἐναντίας, 
ὅπως 
τά 
τε 
ξύλα 
ἧττον 
διασπᾶται· 
τάχιστα 
<lb></lb>
γὰρ 
σχίζεται 
κατὰ 
φύσιν 
διαιρούμενα 
ταύτῃ, 
καὶ 
ἑλκόμενα 
<lb></lb>
πονεῖ 
μάλιστα. 
</s>

<s id="g0132504">
ἔτι 
ἐπειδὴ 
δεῖ 
βάρος 
δύνασθαι 
τὰ 
<lb></lb>
σπαρτία 
φέρειν, 
οὕτως 
ἧττον 
πονέσει 
λοξοῖς 
τοῖς 
σπάρτοις 
<lb></lb>
ἐπιτιθεμένου 
τοῦ 
βάρους 

πλαγίοις. 
</s>
<s id="g0132505">
ἔτι 
δὲ 
ἔλαττον 
οὕτω 
<lb></lb>
σπαρτίον 
ἀναλίσκεται. 
</s>
<s id="g0132506">
ἔστω 
γὰρ 
κλίνη 

ΑΖΗΙ, 
καὶ 
δίχα 
<lb></lb>
διῃρήσθω 

ΖΗ 
κατὰ 
τὸ 
Β. 
ἴσα 
δὴ 
τρυπήματα 
ἐστιν 
<lb></lb>

ἐν 
τῇ 
ΖΒ 
καὶ 
ἐν 
τῇ 
ΖΑ. 
καὶ 
γὰρ 
αἱ 
πλευραὶ 
ἴσαι 
εἰσίν· 
<lb></lb>

γὰρ 
ὅλη 
ΖΗ 
διπλασία 
ἐστίν. 
</s>
<s id="g0132507">
ἐντείνουσι 
δ&#039; 
ὡς 
γέγραπται, 
<lb></lb>
ἀπὸ 
τοῦ 
Α 
ἐπὶ 
τὸ 
Β, 
εἶτα 
οὗ 
τὸ 
Γ, 
εἶτα 
οὗ 
τὸ 
Δ, 
εἶτα 
οὗ 
<lb></lb>
τὸ 
Θ, 
εἶτα 
οὗ 
τὸ 
Ε. 
καὶ 
οὕτως 
ἀεί, 
ἕως 
ἂν 
εἰς 
γωνίαν 
<lb></lb>
καταστρέψωσιν 
ἄλλην· 
</s>
<figure id="id.080.01.020.1.jpg" xlink:href="080/01/020/1.jpg"></figure>
<s id="g0132508">
δύο 
γὰρ 
ἔχουσι 
γωνίαι 
τὰς 
ἀρχὰς 
<lb></lb>

τοῦ 
σπαρτίου. 
</s>
<s id="g0132509">
ἴσα 
δέ 
ἐστι 
τὰ 
σπαρτία 
κατὰ 
τὰς 
κάμψεις, 
<lb></lb>
τό 
τε 
ΑΒ 
καὶ 
ΒΓ 
τῷ 
ΓΔ 
καὶ 
ΔΘ. 
καὶ 
τὰ 
ἄλλα 
δὲ 
<lb></lb>
τὰ 
τοιαῦτά 
ἐστιν, 
ὅτι 
οὕτως 
ἔχει 

αὐτὴ 
ἀπόδειξις. 
</s>
<s id="g0132510">

μὲν 
<lb></lb>
γὰρ 
ΑΒ 
τῇ 
ΕΘ 
ἴση· 
ἴσαι 
γάρ 
εἰσιν 
αἱ 
πλευραὶ 
τοῦ 
<lb></lb>
ΒΗΚΑ 
χωρίου, 
καὶ 
τὰ 
τρυπήματα 
ἴσα 
διέστηκεν. 
</s>
<s id="g0132511">


δὲ 
ΒΗ 
ἴση 
<lb></lb>
τῇ 
ΚΑ· 

γὰρ 
Β 
γωνία 
ἴση 
τῇ 
Η. 
ἐν 
ἴσοις 
γὰρ 

μὲν 
<lb></lb>
ἐκτός, 

δὲ 
ἐντός· 
καὶ 

μὲν 
Β 
ἐστὶν 
ἡμίσεια 
ὀρθῆς· 

<lb></lb>
γὰρ 
ΖΒ 
ἴση 
τῇ 
ΖΑ· 
καὶ 
γωνία 
δὲ 

κατὰ 
τὸ 
Ζ 
ὀρθή. 
</s>
<s id="g0132512">

<lb></lb>
δὲ 
Β 
γωνία 
ἴση 
τῇ 
κατὰ 
τὸ 
Η· 

γὰρ 
κατὰ 
τὸ 
Ζ 
ὀρθή, 
<lb></lb>
ἐπειδὴ 
διπλασιόπλευρον 
τὸ 
ἑτερόμηκες 
καὶ 
πρὸς 
μέσον 
κέκλασται. 
<lb></lb>
ὥστε 

ΑΓ 
τῇ 
ΕΗ 
ἴση. 
ταύτῃ 
δὲ 

ΚΘ· 
παράλληλος 
<lb></lb>

γάρ. 
ὥστε 

ΒΓ 
ἴση 
τῇ 
ΚΘ. 

δὲ 
ΓΕ 
τῇ 
ΔΘ. 
</s>
<s id="g0132513">
<lb></lb>
ὁμοίως 
δὲ 
καὶ 
αἱ 
ἄλλαι 
δείκνυνται 
ὅτι 
ἴσαι 
εἰσὶν 
αἱ 
κατὰ 
<lb></lb>
τὰς 
κάμψεις 
δύο 
ταῖς 
δυσίν. 
</s>
<s id="g0132514">
ὥστε 
δῆλον 
ὅτι 
τὰ 
τηλικαῦτα 
<lb></lb>
σπαρτία 
ὅσον 
τὸ 
ΑΒ, 
τέσσαρα 
τοσαῦτ&#039; 
ἔνεστιν 
ἐν 
τῇ 
κλίνῃ· 
</s>
<s id="g0132515">
<lb></lb>
ὅσον 
δ&#039; 
ἐστὶ 
τὸ 
πλῆθος 
τῶν 
ἐν 
τῇ 
ΖΗ 
πλευρᾷ 
τρυπημάτων, 
<lb></lb>

καὶ 
ἐν 
τῷ 
ἡμίσει 
τῷ 
ΖΒ 
τὰ 
ἡμίση. 
</s>
<s id="g0132516">
ὥστε 
ἐν 
τῇ 
ἡμισείᾳ 
<lb></lb>
κλίνῃ 
τηλικαῦτα 
μεγέθη 
σπαρτίων 
ἐστὶν 
ὅσον 
τῷ 
ΒΑ 
ἔνεστι, 
<lb></lb>
τοσαῦτα 
δὲ 
τὸ 
πλῆθος 
ὅσαπερ 
ἐν 
τῷ 
ΒΗ 
τρυπήματα. 
</s>
<s id="g0132517">
<lb></lb>
ταῦτα 
δὲ 
οὐδὲν 
διαφέρει 
λέγειν 

ὅσα 
ἐν 
τῇ 
ΑΖ 
καὶ 
ΒΖ 
<lb></lb>
τὰ 
συνάμφω. 
</s>
<figure id="id.080.01.020.2.jpg" xlink:href="080/01/020/2.jpg"></figure>
<s id="g0132518">

εἰ 
δὲ 
κατὰ 
διάμετρον 
ἐνταθῇ 
τὰ 
σπαρτία, 
<lb></lb>
ὡς 
ἐν 
τῇ 
ΑΒΓΔ 
κλίνῃ 
ἔχει, 
τὰ 
ἡμίσεά 
εἰσιν 
οὐ 
<pb xlink:href="080/01/021.jpg" ed="Bekker" n="857a"></pb>
<lb></lb>
τοσαῦτα 
ὅσα 
αἱ 
αἱ 
πλευραὶ 
ἀμφοῖν, 
αἱ 
ΑΖ 
ΖΗ· 
τὰ 
ἴσα 
δέ, 
<lb></lb>
ὅσα 
ἐν 
τῷ 
ΑΖΒΖ 
τρυπήματα 
</s>
<s id="g0132519">
ἔνεστιν. 
μείζονες 
δέ 
εἰσιν 
αἱ 
<lb></lb>
ΑΖΒΖ 
δύο 
οὖσαι 
τῆς 
ΑΒ. 
ὥστε 
καὶ 
τὸ 
σπαρτίον 
μεῖζον 
τοσούτῳ 
<lb></lb>
ὅσον 
αἱ 
πλευραὶ 
ἄμφω 
μείζους 
εἰσὶ 
τῆς 
διαμέτρου. 
</s>
<figure id="id.080.01.021.1.jpg" xlink:href="080/01/021/1.jpg"></figure>

</p>
<p n="45">
<s id="g0132601prop26">
<lb></lb>
Διὰ 
τί 
χαλεπώτερον 
τὰ 
μακρὰ 
ξύλα 
ἀπὸ 
τοῦ 
ἄκρου 
<lb></lb>
φέρειν 
ἐπὶ 
τῷ 
ὤμῳ 

κατὰ 
τὸ 
μέσον, 
ἴσου 
τοῦ 
βάρους 
ὄντος; 
</s>
<s id="g0132602">
<lb></lb>
πότερον 
ὅτι 
σαλευομένου 
τοῦ 
ξύλου 
τὸ 
ἄκρον 
κωλύει 
φέρειν, 
<lb></lb>
μᾶλλον 
ἀντισπῶν 
τῇ 
σαλεύσει 
τὴν 
φοράν; 

κἂν 
<lb></lb>
μηθὲν 
κάμπτηται 
μηδ&#039; 
ἔχῃ 
πολὺ 
μῆκος, 
ὅμως 
χαλεπώτερον 
<lb></lb>
φέρειν 
ἀπ&#039; 
ἄκρου; 
ἀλλ&#039; 
ὅτι 
καὶ 
ῥᾷον 
αἴρεται 
ἀπ&#039; 

<lb></lb>
ἄκρου 

ἐκ 
μέσου, 
διὰ 
τὸ 
αὐτὸ 
καὶ 
φέρειν 
οὕτω 
ῥᾴδιον. 
</s>
<s id="g0132603">
<lb></lb>
αἴτιον 
δὲ 
ὅτι 
ἐκ 
μέσου 
μὲν 
αἰρόμενον 
ἀεὶ 
ἐπικουφίζει 
ἄλληλα 
<lb></lb>
τὰ 
ἄκρα, 
καὶ 
θάτερον 
μέρος 
τὸ 
ἐπὶ 
θάτερον 
εὖ 
αἴρει. 
<lb></lb>
ὥσπερ 
γὰρ 
κέντρον 
γίνεται 
τὸ 
μέσον, 

ἔχει 
τὸ 
αἶρον 

<lb></lb>
φέρον. 
</s>
<s id="g0132604">
εἰς 
τὸ 
ἄνω 
οὖν 
κουφίζεται 
ἑκάτερον 
τῶν 
ἄκρων 
εἰς 
<lb></lb>
τὸ 
κάτω 
ῥέπον. 
ἀπὸ 
δὲ 
τοῦ 
ἄκρου 
αἰρόμενον 

φερόμενον 
οὐ 

<lb></lb>
ποιεῖ 
τοῦτο, 
ἀλλ&#039; 
ἅπαν 
τὸ 
βάρος 
ῥέπει 
ἐφ&#039; 
ἓν 
μέσον, 
εἰς 
<lb></lb>
ὅπερ 
αἴρεται 

φέρεται. 
</s>
<s id="g0132605">
ἔστω 
μέσον 
ἐφ&#039; 
οὗ 
Α, 
ἄκρα 
ΒΓ. 
</s>
<s id="g0132606">
<lb></lb>
αἰρομένου 
οὖν 

φερομένου 
κατὰ 
τὸ 
Α, 
τὸ 
μὲν 
Β 
κάτω 
<lb></lb>
ῥέπον 
ἄνω 
αἴρει 
τὸ 
Γ, 
τὸ 
δὲ 
Γ 
κάτω 
ῥέπον 
τὸ 
Β 
ἄνω 
αἴρει· 
<lb></lb>
ἅμα 
δὲ 
αἰρόμενα 
ἄνω 
ποιεῖ 
ταῦτα. 
</s>
<figure id="id.080.01.021.2.jpg" xlink:href="080/01/021/2.jpg"></figure>

</p>
<p n="46">
<s id="g0132701prop27">
<lb></lb>
Διὰ 
τί, 
ἐὰν 

λίαν 
μακρὸν 
τὸ 
αὐτὸ 
βάρος, 
χαλεπώτερον 
<lb></lb>
φέρειν 
ἐπὶ 
τοῦ 
ὤμου, 
κἂν 
μέσον 
φέρῃ 
τις, 

ἐὰν 
<lb></lb>
ἔλαττον 
ᾖ; 
</s>
<s id="g0132702">
πάλαι 
ἐλέχθη 
ὡς 
οὐκ 
ἔστιν 
αἴτιον 

σάλευσις· 
<lb></lb>
ἀλλ&#039; 

σάλευσις 
νῦν 
αἴτιόν 
ἐστιν. 
</s>
<s id="g0132703">
ὅταν 
γὰρ 

μακρότερον, 

<lb></lb>
τὰ 
ἄκρα 
σαλεύεται, 
ὥστε 
εἴη 
ἂν 
καὶ 
τὸν 
φέροντα 
χαλεπώτερον 
<lb></lb>
φέρειν 
μᾶλλον. 
</s>
<s id="g0132704">
αἴτιον 
δὲ 
τοῦ 
σαλεύεσθαι 
μᾶλλον, 
<lb></lb>
ὅτι 
τῆς 
αὐτῆς 
κινήσεως 
οὔσης 
μεθίσταται 
τὰ 
ἄκρα, 
ὅσῳπερ 
<lb></lb>
ἂν 

μακρότερον 
τὸ 
ξύλον. 
</s>
<s id="g0132705">

μὲν 
γὰρ 
ὦμος 
κέντρον, 
ἐφ&#039; 
<lb></lb>
οὗ 
τὸ 
Α 
̔μένει 
γὰρ 
τοῦτὀ, 
αἱ 
δὲ 
ΑΒ 
καὶ 
ΑΓ 
αἱ 
ἐκ 
τοῦ 
<lb></lb>

κέντρου. 
ὅσῳ 
δ&#039; 
ἂν 

μεῖζον 
τὸ 
ἐκ 
τοῦ 
κέντρου 

τὸ 
ΑΒ 
<lb></lb>

καὶ 
τὸ 
ΑΓ, 
πλέον 
μεθίσταται 
μέγεθος. 
δέδεικται 
δὲ 
<lb></lb>
τοῦτο 
πρότερον. 
</s>
<figure id="id.080.01.021.3.jpg" xlink:href="080/01/021/3.jpg"></figure>
</p>
<p n="47">
<figure id="id.080.01.021.4.jpg" xlink:href="080/01/021/4.jpg"></figure>
<s id="g0132801prop28">
<lb></lb>
Διὰ 
τί 
ἐπὶ 
τοῖς 
φρέασι 
τὰ 
κηλώνεια 
ποιοῦσι 
τοῦτον 
τὸν 
<lb></lb>
τρόπον; 
προστιθέασι 
γὰρ 
βάρος 
ἐν 
τῷ 
ξύλῳ 
τὸν 
μόλιβδον, 
<lb></lb>
ὄντος 
βάρους 
τοῦ 
κάδου 
αὐτοῦ, 
καὶ 
κενοῦ 
καὶ 
πλήρους 
ὄντος. 

</s>
<s id="g0132802">
<lb></lb>

ὅτι 
ἐν 
δυσὶ 
χρόνοις 
διῃρημένου 
τοῦ 
ἔργου 
̔βάψαι 
γὰρ 
δεῖ, 
<lb></lb>
καὶ 
τοῦτ&#039; 
ἄνω 
ἑλκύσαἰ 
συμβαίνει 
καθιέναι 
μὲν 
κενὸν 
<pb xlink:href="080/01/022.jpg" ed="Bekker" n="857b"></pb>
<lb></lb>
ῥᾳδίως, 
αἴρειν 
δὲ 
πλήρη 
χαλεπῶς; 
</s>
<s id="g0132803">
λυσιτελεῖ 
οὖν 
μικρῷ 
βραδύτερον 
<lb></lb>
εἶναι 
τὸ 
καταγαγεῖν 
πρὸς 
τὸ 
πολὺ 
κουφίσαι 
τὸ 
<lb></lb>
βάρος 
ἀνάγοντι. 
τοῦτο 
οὖν 
ποιεῖ 
ἐπ&#039; 
ἄκρῳ 
τῷ 
κηλωνείῳ 

<lb></lb>

μόλιβδος 
προσκείμενος 


λίθος. 
</s>
<s id="g0132804">
καθιμῶντι 
μὲν 
γὰρ 
γίνεται 
<lb></lb>
βάρος 
μεῖζον 

εἰ 
μόνον 
κενὸν 
δεῖ 
κατάγειν 
τὸν 
κάδον· 
<lb></lb>
ὅταν 
δὲ 
πλήρης 
ᾖ, 
ἀνάγει 

μόλιβδος, 


τι 
ἂν 

<lb></lb>
τὸ 
προσκείμενον 
βάρος. 
</s>
<s id="g0132805">
ὥστ&#039; 
ἐστὶ 
ῥᾷον 
αὐτῷ 
τὰ 
ἄμφω 
<lb></lb>

ἐκείνῳ. 
</s>
</p>

<p n="48">
<figure id="id.080.01.022.1.jpg" xlink:href="080/01/022/1.jpg"></figure>
<s id="g0132901prop29">
<lb></lb>
Διὰ 
τί, 
ὅταν 
φέρωσιν 
ἐπὶ 
ξύλου 

τινος 
τοιούτου 
δύο 
<lb></lb>
ἄνθρωποι 
ἴσον 
βάρος, 
οὐχ 
ὁμοίως 
θλίβονται, 
ἐὰν 
μὴ 
ἐπὶ 
<lb></lb>
τῷ 
μέσῳ 

τὸ 
βάρος, 
ἀλλὰ 
μᾶλλον 
ὅσῳ 
ἂν 
ἐγγύτερον 

<lb></lb>
τῶν 
φερόντων; 
</s>
<s id="g0132902">

διότι 
μοχλὸς 
μὲν 
γίνεται 
οὕτως 
ἐχόντων 
<lb></lb>
τὸ 
ξύλον, 
τὸ 
δὲ 
βάρος 
ὑπομόχλιον, 
</s>

<s id="g0132903">

δὲ 
ἐγγύτερος 
τοῦ 
<lb></lb>
βάρους 
τῶν 
φερόντων 
τὸ 
βάρος 
τὸ 
κινούμενον, 
ἅτερος 
δὲ 
<lb></lb>
τῶν 
φερόντων 
τὸ 
βάρος 

κινῶν. 
</s>
<s id="g0132904">
ὅσῳ 
γὰρ 
πλέον 
ἀπέχει 
τοῦ 
<lb></lb>
βάρους, 
τοσούτῳ 
ῥᾷον 
κινεῖ, 
καὶ 
θλίβει 
μᾶλλον 
τὸν 
ἕτερον 
<lb></lb>
εἰς 
τὸ 
κάτω, 
ὥσπερ 
ἀντερείδοντος 
τοῦ 
βάρους 
τοῦ 
ἐπικειμένου 
<lb></lb>
καὶ 
γινομένου 
ὑπομοχλίου. 
</s>
<s id="g0132905">

ἐν 
μέσῳ 
δὲ 
ὑποκειμένου 
τοῦ 
<lb></lb>
βάρους, 
οὐδὲν 
μᾶλλον 
ἅτερος 
θατέρῳ 
γίνεται 
βάρος, 
οὐδὲ 
<lb></lb>
κινεῖ, 
ἀλλ&#039; 
ὁμοίως 
ἑκάτερος 
ἑκατέρῳ 
γίνεται 
βάρος. 
</s>
</p>
<p n="49">
<s id="g0133001prop30">
<lb></lb>
Διὰ 
τί 
οἱ 
ἀνιστάμενοι 
πάντες 
πρὸς 
ὀξεῖαν 
γωνίαν 
τῷ 
<lb></lb>
μηρῷ 
ποιήσαντες 
τὴν 
κνήμην 
ἀνίστανται, 
καὶ 
τῷ 
θώρακι 
<lb></lb>
πρὸς 
τὸν 
μηρόν; 
εἰ 
δὲ 
μή, 
οὐκ 
ἂν 
δύναιντο 
ἀναστῆναι. 
</s>
<s id="g0133002">

πότερον 
<lb></lb>
ὅτι 
τὸ 
ἴσον 
ἠρεμίας 
πανταχοῦ 
αἴτιον, 

δὲ 
ὀρθὴ 
γωνία 
<lb></lb>
τοῦ 
ἴσου, 
καὶ 
ποιεῖ 
στάσιν· 
διὸ 
καὶ 
φέρεται 
πρὸς 
ὁμοίας 
<lb></lb>
γωνίας 
τῇ 
περιφερείᾳ 
τῆς 
γῆς. 
οὐ 
γὰρ 
ὅτι 
καὶ 
πρὸς 
ὀρθὴν 
<lb></lb>
ἔσται 
τῷ 
ἐπιπέδῳ. 
</s>
<s id="g0133003">

ὅτι 
ἀνιστάμενος 
γίνεται 
ὀρθός, 
ἀνάγκη 
<lb></lb>
δὲ 
τὸν 
ἑστῶτα 
κάθετον 
εἶναι 
πρὸς 
τὴν 
γῆν. 
</s>
<s id="g0133004">
εἰ 
οὖν 
μέλλει 

<lb></lb>
ἔσεσθαι 
πρὸς 
ὀρθήν, 
τοῦτο 
δέ 
ἐστι 
τὸ 
τὴν 
κεφαλὴν 
ἔχειν 
<lb></lb>
κατὰ 
τοὺς 
πόδας, 
καὶ 
γίνεσθαι 
δὴ 
ὅτε 
ἀνίσταται. 
</s>
<s id="g0133005">
ὅταν 
μὲν 
<lb></lb>
οὖν 
καθήμενος 
ᾖ, 
παράλληλον 
ἔχει 
τὴν 
κεφαλὴν 
καὶ 
τοὺς 
<lb></lb>
πόδας, 
καὶ 
οὐκ 
ἐπὶ 
μιᾶς 
εὐθείας. 
</s>
<figure id="id.080.01.022.2.jpg" xlink:href="080/01/022/2.jpg"></figure>
<s id="g0133006">

κεφαλὴ 
Α 
ἔστω, 
θώραξ 
<lb></lb>
ΑΒ, 
μηρὸς 
ΒΓ, 
κνήμη 
ΓΔ. 

</s>
<s id="g0133007">
πρὸς 
ὀρθὴν 
δὲ 
γίνεται 
<lb></lb>

τε 
θώραξ 
ἐφ&#039; 
ὧν 
ΑΒ 
τῷ 
μηρῷ 
καὶ 

μηρὸς 
τῇ 
κνήμῃ 
<lb></lb>
οὕτως 
καθημένῳ. 
ὥστε 
οὕτως 
ἔχοντα 
ἀδύνατον 
ἀναστῆναι. 
</s>
<s id="g0133008">
<lb></lb>
ἀνάγκη 
δὲ 
ἐγκλῖναι 
τὴν 
κνήμην 
καὶ 
ποιεῖν 
τοὺς 
πόδας 
ὑπὸ 
<lb></lb>
τὴν 
κεφαλήν. 
</s>
<s id="g0133009">
τοῦτο 
δὲ 
ἔσται, 
ἐὰν 

ΓΔ 
ἐφ&#039; 
ἧς 
τὰ 
ΓΖ 
<lb></lb>

γένηται, 
καὶ 
ἅμα 
ἀναστῆναι 
συμβήσεται, 
καὶ 
ἔχειν 
<pb xlink:href="080/01/023.jpg" ed="Bekker" n="858a"></pb>
<lb></lb>
ἐπὶ 
τῆς 
αὐτῆς 
ἴσης 
τὴν 
κεφαλήν 
τε 
καὶ 
τοὺς 
πόδας. 

δὲ 
ΓΖ 
<lb></lb>
ὀξεῖαν 
ποιεῖ 
γωνίαν 
πρὸς 
τὴν 
ΒΓ. 
</s>
</p>
<p n="50">
<s id="g0133101prop31">
<lb></lb>
Διὰ 
τί 
ῥᾷον 
κινεῖται 
τὸ 
κινούμενον 

τὸ 
μένον, 
οἷον 
<lb></lb>
τὰς 
ἁμάξας 
θᾶττον 
κινουμένας 
ὑπάγουσιν 

ἀρχομένας; 
</s>
<s id="g0133102">
<lb></lb>


ὅτι 
χαλεπώτατον 
μὲν 
τὸ 
εἰς 
τοὐναντίον 
κινούμενον 
κινῆσαι 
<lb></lb>
βάρος; 
ἀφαιρεῖται 
γάρ 
τι 
τῆς 
τοῦ 
κινοῦντος 
δυνάμεως, 
κἂν 
<lb></lb>
πολὺ 
θᾶττον 
ᾖ· 
ἀνάγκη 
γὰρ 
βραδυτέραν 
γίνεσθαι 
τὴν 
ὦσιν 
<lb></lb>
τοῦ 
ἀντωθουμένου. 
</s>
<s id="g0133103">
δεύτερον 
δέ, 
ἐὰν 
ἠρεμῇ· 
ἀντιτείνει 
γὰρ 
καὶ 
<lb></lb>
τὸ 
ἠρεμοῦν. 
</s>
<s id="g0133104">
τὸ 
δὲ 
κινούμενον 
ἐπὶ 
τὸ 
αὐτὸ 
τῷ 
ὠθοῦντι 
ὅμοιον 
<lb></lb>
ποιεῖ 
ὥσπερ 
ἂν 
εἰ 
αὐξήσειέ 
τις 
τὴν 
τοῦ 
κινοῦντος 
δύναμιν 

<lb></lb>
καὶ 
ταχυτῆτα· 

γὰρ 
ὑπ&#039; 
ἐκείνου 
ἂν 
ἔπασχε, 
τοῦτο 
αὐτὸ 
<lb></lb>
ποιεῖ 
εἰς 
τὸ 
πρὸ 
ὁδοῦ 
κινούμενον. 
</s>
</p>
<p n="51">
<s id="g0133201prop32">
<lb></lb>
Διὰ 
τί 
παύεται 
φερόμενα 
τὰ 
ῥιφέντα; 
</s>
<s id="g0133202">
πότερον 
ὅταν 
<lb></lb>
λήγῃ 

ἰσχὺς 

ἀφεῖσα, 

διὰ 
τὸ 
ἀντισπᾶσθαι, 

διὰ 
<lb></lb>
τὴν 
ῥοπήν, 
ἐὰν 
κρείττων 

τῆς 
ἰσχύος 
τῆς 
ῥιψάσης; 

</s>
<s id="g0133203">

ἄτοπον 
<lb></lb>
τὸ 
ταῦτ&#039; 
ἀπορεῖν, 
ἀφέντα 
τὴν 
ἀρχήν. 
</s>
</p>
<p n="52">
<s id="g0133301prop33">
<lb></lb>
Διὰ 
τί 
φέρεταί 
τι 
οὐ 
τὴν 
αὑτοῦ 
φοράν, 
μὴ 
ἀκολουθοῦντος 
<lb></lb>
καὶ 
ὠθοῦντος 
τοῦ 
ἀφέντος; 
</s>
<s id="g0133302">

δῆλον 
ὅτι 
ἐποίησε 
τοιοῦτον 
<lb></lb>

τὸ 
πρῶτον 
ὡς 
θάτερον 
ὠθεῖν, 
καὶ 
τοῦθ&#039; 
ἕτερον· 
</s>
<s id="g0133303">
παύεται 
δέ, 
<lb></lb>
ὅταν 
μηκέτι 
δύνηται 
ποιεῖν 
τὸ 
προωθοῦν 
τὸ 
φερόμενον 
ὥστε 
<lb></lb>
ὠθεῖν, 
καὶ 
ὅταν 
τὸ 
τοῦ 
φερομένου 
βάρος 
ῥέπῃ 
μᾶλλον 
τῆς 
<lb></lb>
εἰς 
τὸ 
πρόσθεν 
δυνάμεως 
τοῦ 
ὠθοῦντος. 
</s>
</p>
<p n="53">
<s id="g0133401prop34">
<lb></lb>
Διὰ 
τί 
οὔτε 
τὰ 
ἐλάττονα 
οὔτε 
τὰ 
μεγάλα 
πόρρω 
φέρεται 
<lb></lb>

ῥιπτούμενα, 
ἀλλὰ 
δεῖ 
συμμετρίαν 
τινὰ 
ἔχειν 
πρὸς 
<lb></lb>
τὸν 
ῥιπτοῦντα; 
</s>
<s id="g0133402">
πότερον 
ὅτι 
ἀνάγκη 
τὸ 
ῥιπτούμενον 
καὶ 
<lb></lb>
ὠθούμενον 
ἀντερείδειν 
ὅθεν 
ὠθεῖται; 
</s>
<s id="g0133403">
τὸ 
δὲ 
μηθὲν 
ὑπεῖκον 
διὰ 
<lb></lb>
μέγεθος 

μηδὲν 
ἀντερεῖσαν 
δι&#039; 
ἀσθένειαν 
οὐ 
ποιεῖ 
ῥῖψιν 
<lb></lb>
οὐδὲ 
ὦσιν. 
</s>
<s id="g0133404">

τὸ 
μὲν 
οὖν 
πολὺ 
ὑπερβάλλον 
τῆς 
ἰσχύος 
τῆς 
<lb></lb>
ὠθούσης 
οὐθὲν 
ὑπείκει, 
τὸ 
δὲ 
πολὺ 
ἀσθενέστερον 
οὐδὲν 
ἀνερείδει. 
</s>
<s id="g0133405">
<lb></lb>

ὅτι 
τοσοῦτον 
φέρεται 
τὸ 
φερόμενον, 
ὅσον 
ἂν 
<lb></lb>
ἀέρα 
κινήσῃ 
εἰς 
βάθος; 
τὸ 
δὲ 
μηδὲν 
κινούμενον 
οὐδ&#039; 
ἂν 
<lb></lb>
κινήσειεν 
οὐδέν. 
συμβαίνει 
δὴ 
ἀμφότερα 
τούτοις 
ἔχειν. 
</s>
<s id="g0133406">
<pb xlink:href="080/01/024.jpg" ed="Bekker" n="858b"></pb>
<lb></lb>
τό 
τε 
γὰρ 
σφόδρα 
μέγα 
καὶ 
τὸ 
σφόδρα 
μικρὸν 
ὥσπερ 
οὐθὲν 
<lb></lb>

κινούμενά 
ἐστι· 
τὸ 
μὲν 
γὰρ 
αὐτὸ 
καθ&#039; 
ἓν 
κινεῖ, 
τὸ 
δ&#039; 
<lb></lb>
οὐθὲν 
κινεῖται. 
</s>
</p>
<p n="54">
<figure id="id.080.01.024.1.jpg" xlink:href="080/01/024/1.jpg"></figure>
<s id="g0133501prop35">
<lb></lb>
Διὰ 
τί 
τὰ 
φερόμενα 
ἐν 
τῷ 
δινουμένῳ 
ὕδατι 
εἰς 
τὸ 
<lb></lb>
μέσον 
τελευτῶντα 
φέρονται; 
</s>
<s id="g0133502">
πότερον 
ὅτι 
μέγεθος 
<lb></lb>
ἔχει 
τὸ 
φερόμενον, 
ὥστε 
ἐν 
δυσὶ 
κύκλοις 
εἶναι, 
τῷ 
μὲν 

<lb></lb>
ἐλάττονι 
τῷ 
δὲ 
μείζονι, 
ἑκάτερον 
αὐτοῦ 
τῶν 
ἄκρων. 
ὥστε 
<lb></lb>
περισπᾷ 

μείζων 
διὰ 
τὸ 
φέρεσθαι 
θᾶττον, 
καὶ 
πλάγιον 
<lb></lb>
ἀπωθεῖ 
αὐτὸ 
εἰς 
τὸν 
ἐλάττω. 
ἐπεὶ 
δὲ 
πλάτος 
ἔχει 
τὸ 
<lb></lb>
φερόμενον, 
καὶ 
οὗτος 
πάλιν 
τὸ 
αὐτὸ 
ποιεῖ, 
καὶ 
ἀπωθεῖ 
εἰς 
<lb></lb>
τὸν 
ἐντός, 
ἕως 
ἂν 
εἰς 
τὸ 
μέσον 
ἔλθῃ. 
</s>
<s id="g0133503">
καὶ 
τότε 
μένει 
διὰ 
<lb></lb>
τὸ 
ὁμοίως 
ἔχειν 
πρὸς 
ἅπαντας 
τοὺς 
κύκλους 
τὸ 
φερόμενον, 
<lb></lb>
διὰ 
τὸ 
μέσον· 
καὶ 
γὰρ 
τὸ 
μέσον 
ἴσον 
ἀπέχει 
ἐν 
ἑκάστῳ 

<lb></lb>
τῶν 
κύκλων. 
</s>
<s id="g0133504">

ὅτι 
ὅσων 
μὲν 
μὴ 
κρατεῖ 

φορὰ 
τοῦ 
δινουμένου 
<lb></lb>
ὕδατος 
διὰ 
τὸ 
μέγεθος, 
ἀλλ&#039; 
ὑπερέχει 
τῇ 
βαρύτητι 
<lb></lb>
τῆς 
τοῦ 
κύκλου 
ταχυτῆτος 
ἀνάγκη 
ὑπολείπεσθαι 
καὶ 
βραδύτερον 
<lb></lb>
φέρεσθαι. 
</s>
<s id="g0133505">
βραδύτερον 
δὲ 

ἐλάττων 
κύκλος 
φέρεται· 
<lb></lb>
τὸ 
αὐτὸ 
γὰρ 
ἐν 
ἴσῳ 
χρόνῳ 

μέγας 
τῷ 
μικρῷ 
στρέφεται 
<lb></lb>

κύκλῳ, 
ὅταν 
ὦσι 
περὶ 
τὸ 
αὐτὸ 
μέσον. 
</s>
<s id="g0133506">
ὥστε 
εἰς 
τὸν 
<lb></lb>
ἐλάττονα 
κύκλον 
ἀναγκαῖον 
ἀπολείπεσθαι, 
ἕως 
ἂν 
ἐπὶ 
τὸ 
<lb></lb>
μέσον 
ἔλθῃ. 
</s>
<s id="g0133507">
ὅσων 
δὲ 
πρότερον 
κρατεῖ 

φορά, 
λήγουσα 
<lb></lb>
ταὐτὸ 
ποιήσει. 
δεῖ 
γὰρ 
τὸν 
μὲν 
εὐθύ, 
τὸν 
δὲ 
ἕτερον 
κρατεῖν 
<lb></lb>
τῇ 
ταχυτῆτι 
τοῦ 
βάρους, 
ὥστε 
εἰς 
τὸν 
ἐντὸς 
ἀεὶ 
κύκλον 
<lb></lb>
ὑπολείπεσθαι 
πᾶν. 

</s>
<s id="g0133508">
ἀνάγκη 
γὰρ 
αὐτὸ 
ἐντὸς 

ἐκτὸς 
κινεῖσθαι 
<lb></lb>
τὸ 
μὴ 
κρατούμενον. 
</s>
<s id="g0133509">
ἐν 
αὐτῷ 
δὴ 
τοίνυν 
ἐν 

ἐστίν, 
<lb></lb>
ἀδύνατον 
φέρεσθαι 
τὸ 
μὴ 
κρατούμενον. 
ἔτι 
δὲ 
ἧττον 
ἐν 
τῷ 
<lb></lb>
ἐκτός· 
θάττων 
γὰρ 

φορὰ 
τοῦ 
ἐκτὸς 
κύκλου. 
</s>
<s id="g0133510">
λείπεται 
δὲ 
<lb></lb>
εἰς 
τὸν 
ἐντὸς 
τὸ 
μὴ 
κρατούμενον 
μεθίστασθαι. 
ἀεὶ 
δὲ 
ἕκαστον 

<lb></lb>
ἐπιδίδωσιν 
εἰς 
τὸ 
μὴ 
κρατεῖσθαι. 
</s>
<s id="g0133511">
ἐπεὶ 
δὲ 
πέρας 
τοῦ 
μὴ 
κινεῖσθαι 
<lb></lb>
ποιεῖ 
τὸ 
εἰς 
μέσον 
ἐλθεῖν, 
μένει 
δὲ 
τὸ 
κέντρον 
μόνον, 
<lb></lb>
ἅπαντα 
ἀνάγκη 
εἰς 
τοῦτο 
δὴ 
ἀθροίζεσθαι. 
</s>
</p>
</chap>
</body>
<back></back>
</text>
</archimedes>