Mercurial > hg > mpdl-xml-content
view texts/archimedesOldCVSRepository/archimedes/raw/vitru_archi_02_it_1567.raw @ 10:d7b79f6537bb
Version vom 2009-02-14
author | Klaus Thoden <kthoden@mpiwg-berlin.mpg.de> |
---|---|
date | Thu, 02 May 2013 11:08:12 +0200 |
parents | 22d6a63640c6 |
children |
line wrap: on
line source
<pb id="p.0001"> <HEAD>VITRUVIO</HEAD> <HEAD>I DIECI LIBRI DELL' AR CHITETTURA</HEAD> <HEAD>TRADOTTI E COMMENTATI DA DANIELE BARBARO</HEAD> <HEAD><I>1567</I></HEAD> <HEAD><I>Con un saggio di Manfredo Tafuri e uno studio di Manuela Morresi</I></HEAD> <HEAD>EDIZIONI IL POLIFILO</HEAD> <pb> <!-- <HEAD>MAX-PLANCK-INSTITUT FUR WISSENSONAFTSGESCHICHTE</HEAD> <HEAD>Bibliothek</HEAD> <HEAD>ISBN-88-7050-494-8</HEAD> <HEAD><*> 1997 - EDIZIONI IL POLIFILO - MILANO TUTTI I DIRITTI RISERVATI</HEAD> <HEAD>PRINTED IN ITALY</HEAD> --> <pb id="p.0003"> <fig> <pb> <HEAD>ALLO ILLVSTRISSIMO,</HEAD> <HEAD>ET REVERENDISSIMO CARDINAL DI FERRAR A D. HIPPOLITO DA ESTE,</HEAD> <fig> <HEAD>DANIEL BARBARO ELETTO D'AQVILEGGIA S.</HEAD> <p><I>TVTTE le belle opere, Illustri<02>imo, & Re- uerendi<02>imo Signore, piu che $ono guar da- te, et contemplate da gli huomini, piu $cuo- preno la belleZzaloro, et l'artificio del mae- stro; & bene $pe$$o dal primo a$petto non $i proua quel gu$to di e$$e, che ben mirate, & con$iderate $i $ente dapoi: Ilche come $iauero, non mi affatiche- rò di prouare, perche, & le pitture, & le $colture, & le fabri- che de i grand' huomini, & altre co$e che $i uedeno ogni giorno, chiar amente lo dimostrano, perche piu che $i guardano, mag- giormente di $e inamorano i riguar danti. ilche è $egno manife- $to, che in quelle $empre $i $cuopra maggior belleZZa. Que$to, o$imigliante effetto fanno le uere, & precio$e pietre di natura, comparate alle fal$e, et uili fatte da gli huomini. imperoche lefal $e al primo guardo fanno di$e mo$tra allegri<02>ima, & $plendidi$- $ima, et qua$i adulatrici allettano la ui$ta con un fal$o $plendo- re; et poi uanno mancando. Male uere naturali, & fine, perche $ono fatte dalla uerità della natura, non per ingannare alcuno, ma per driZzare gli animi a piu alto uiaggio, piu pre$tano di quello, che prometteno. la doue i po$$editori di quelle, $coprendoci</I> <foot><I>a</I> 2</foot> <pb> <I>ogni giorno piu uagheZza, & piu uerità, piu le appreZza- no, &' piu le ammirano. Il $imile adiuiene a i lettori delle co$e de gli huomini eccellenti, i quali beendo con di$iderio i precetti delle arti, et continuando con lo studio, & e$$erci- tio nella intelligenza di quelli, ritrouano nel progre$$o, che fanno, la uirtù dell' autore piu chiara, & piu ammiranda. Come è auuenuto a me nella fatica fatta $opra Uitru- uio gia dedicata a Uo$tra Signoria Illu$tri<02>ima, & Reueren- di<02>ima: imperoche, per quello amore, che ha ognuno di fare le $ue fatture ogni giorno migliori, riuedendo, & rileggendo il detto autore, & $entendoui piu gu$to della eccellenZa $ua, & uedendo ancho, che $otto la protettione della gratia uo- $tra egli era $tato abbracciato dal mondo: $pinto dalla $olleci- tudine de i librari, ho uoluto rimandarlo in luce tenendo tut- tauia raccolto lo $tudio, & l'o$$eruanZa mia nella dignità, & chiareZza della per$ona uostra, con quel de$iderio, che $em- pre ho hauuto di giouare, quanto porta$$ero le forZe mie ad ognuno. & per dare uno illu$tre te$timonio delle magnifiche, & eccellenti fabriche, che ella ha fatto, & fa tuttauia in diuer$e parti del mondo con merauiglia de gli huomini: del- lequali opere io ne haueua uedute alcune prima, che io le de- dica$$e il Vitruuio, alcune ho ueduto dapoi, & $ono quelle, che con tanta $plendideZZa ella ha fatto in Roma, & a Tioli, nel- lequali la natura conuiene confe$$are di e$$ere $tata $uperata dall' arte, & dalla $plendideZza dell' animo $uo. come che in uno in$tante $iano nati i giardini, & cre$ciute le $elue, & gli alberi pieni di $oaui<02>imi frutti, in u na notte ritrouati, anzi delle ualli u$citi i monti, & ne i monti di duri<02>ime rocche fatto iletti a i fiumi, & aperta la pietra per dar luogo alle ac- que, & allagato il$ecco terreno, & irrigato di fonti, et diri- <pb> ui correnti, et di pe$chiere rari$sime; dellequali co$e hanno fatto honor ato giudicio huomini piu intelligenti di me. però non anderò piu oltre, la$ciando in ognuno un de$iderio arden- ti$simo di uederle. et contentandomi della $ua buona gratia, allaquale humilmente mi riccomando. Di Uinetia del M D LXVII.</I> <pb> <HEAD>FRANCESCO DE FRANCESCHI SANESE</HEAD> <HEAD>AILETTORI.</HEAD> <p>VOLENDO io ri$tampare il Vitruuio con il commento del Reuerendi$simo Mon$ignor Daniel Barbaro Eletto d'Aquileggia, $pe$$e fiate$ono $tato in pen$iero di non offendere l'animo $uo $apendo, che$ua Signoria Reue- rendi$sima era occupata in altri $tudi, conue- nienti al grado, che tiene; però io $ono $tato molto tempo a dar principio a quello, che io di$ideraua grande- mente. Hora che fidandomi nella humanità $ua, & imaginandomi, che gli huomini $tudio$i $empre riuedeno le co$e loro, & cercano di ampliarle, & ornarle, ho pre$o ardire di $cuoprirle il mio di$ide- rio: nè mi$ono ingannato della bontà $ua, perche hauendo$i corte- $emente contentato che io lo ri$tampa$si, mi di$$e, che haueua anco apparecchiato il latino, che egli fece gia in$ieme col uolgare: & che gli haueua aggiunto molte co$e, & molte figure che non $ono nel primo: & che mi donarebbe anche il Latino: la doue hauendo io hauuto piu di quello, che hauerei $aputo dimandare, ho uoluto Be- nigni Lettori ad utilità commune, mandar in luce l'uno & l'altro Vitruuio, & u$are ogni diligenza, per rifarli in forma commoda, & & con figure accuratamente & diligentemente intagliate dal mio honorato compare & compagno in que$ta impre$a, M. Giouanni Chrieger Alemano, & accommodate a que$ta nuoua forma, accio- che ognuno po$$a godere il frutto delle dotte fatiche del $opradet- to mio Signore. Ilquale uolto col pen$iero a tutte le belle arti, uà $empre ritrouando modi di giouare al mondo, & $i affatica di inten- dere da ognuno le belle co$e, che $ono nelle arti piu nobili, facendo ingenua profe$sione di e$$ere obligato a chi gli $cuopre qualche bella inuentione. & però hauendo ueduto, che nello Analemma di Vitruuio lo eccellente me$$er Federico Commandino $i ha porta- to egregiamente interpretando lo Analemma di Tolomeo, che è lo i$te$$o con lo Analemma di Vitruuio, & che il punto è po$to in <pb> quello, & che gli altri, che hanno $critto de gli horologi, non hanno dato nel fondamento loro, giudicando quella e$$er uera, $ola, & i$pe- dita uia, che in$egna, dimo$tra, & pratica una delle parti principali dell' Architettura, ha uoluto leuare dal nono libro i di$cor$i gia fatti $opra gli horologi, & in loro uece riponere que$ti di Tolomeo, & del Commandino, aggiugnendoui la facilità, che è propria $ua. però i lettori del rinouato Vitruuio gli haueranno que$to obligo di piu, come anco deono hauerlo per molte figure aggiunte; & $pecial- mente quelle de i Cauedi, che $ono difficili, & quelle de i bagni, & della pale$tra belli$sime, che portano gran lume alle co$e di Vitru. Ha $imilmente aggiunti molti di$cor$i, & molte belle pratiche, ecci- tando gli $tudio$i della uerità a fare qualche bella co$a, & a ponere le $palle $otto a que$ta honorata impre$a, nellaquale molti $i $ono inutilmente affaticati, per e$$ere impre$a di per$one letterate, & pra- tiche, lequali due conditioni di raro $i ritrouano in un $ogetto, & $ono piu che nece$$arie, $e l'huomo uuole hauere, & la co$a, & il no- me di Architetto. & io ho ueduto gli $critti di molti, che fanno pro- fe$sione di Architetti, & non $anno fare di$tintione tra la Theorica, & la pratica: & in$egnando a tirare le linee $emplicemente, $enza le dimo$trationi mathematiche, pen$ano, che quella $ia la Theorica, & a que$to modo non hanno nè Theorica, nè pratica; perche la Theorica $i riferi$ce alla pratica, & la pratica dipende dalla Theori- ca: & in $omma chi non ha le mathematiche, non ha la Theorica. però io de$idererei per utilità di que$ti tali, che $i gloriano d'hauere l'Architettura, che $i re$trigne$$ero in $e $te$si, & che $i e$$amina$$e- ro bene, & face$$ero a $e $te$si le interrogationi $econdo Vitruuio, & dice$$ero. Vitruuio dice, che lo Architetto deue e$$er ornato del- la cognitione di molte arti, & di molte $cienze. ben ho io tali orna- menti? Vitruuio dice, che lo Architetto deue hauere $econdo il bi- $ogno, & con una certa $obrietà, Lettere, Di$egno, Arihmetica, Geometria, ragion naturale, & ciuile, A$trologia, Mu$ica, Pro$pet- tiua, & altre arti. bene. le cono$co io o tutte, o molte, o niuna di quelle? Vitruuio dice, che lo Architetto, è Architetto, perl' Ordi- ne, per la Di$po$itione, per la Simmetria, per lo Decoro, per la Di- <pb> $tributione, per la gratio $a maniera. bene. ho io l'habito di que$te co$e nella mente? & co$i facendo a $e $te$si que$te interrogationi, $e non $i uorranno ingannare, $aperanno fare giudicio di $e mede$imi, & trouando di hauere quelli ornamenti, che dice Vitruuio, ringra- tieranno Iddio, che gli ha donati in$ieme con lo ingegno, & altribe- ni, nè per que$to $i anderanno gloriando di e$$ere Architetti, ma$i sforzeranno ogni giorno con le opere auanzare $e $te$si: & $e non troueranno in$e le co$e, che $i richiedeno all' Architetto, ouero s'af- faticheranno per hauerle, ouero $taranno queti, & non $i attribui- ranno quello, che ueramente non hanno. però benigni lettori, & uoi $tudio$i del nome, & della gloria affaticateui di gettare il fondamen to $odo di quella con l'acqui$to delle uirtu, & delle arti, & u$ando quella mode$tia, che $i conuiene, non ui attribuite le co$e d'altri, non ui arrogate quello, che non hauete, $iate obligati a chi ui in$e- gna, u$ate diligenza per imparare, o$$eruate i buoni & pigliate in bene, quello che per lo mio poco $apere & buon uolere mi pare di ricordarui, e$$endo io $empre apparecchiato a uo$tri commodi $en- za alcuno ri$parmio di $pe$a, & di fatica. <pb> <HEAD>IL PRIMO LIBRO DELL' ARCHITETTVRA</HEAD> <HEAD>DI M. VITRVVIO.</HEAD> <p>AL NOME DI DIO GLORIOSO, io Da- niel Barbaro nobile Vinitiano mi $ono po$to ad e$ponere, & interpretare i dieci Libri del- l'architettura di M. Vitruuio. Mia intentione è $tata con qualche hone$ta fatica di giouare a gli $tudio$i delle artificio$e inuentioni, & di dare occa$ione ad altri di$criuere piu chiara- mente di quelle co$e (come che molte humanamente auuengono) mi$aranno dalle mani fuggite. Ecco benigno Lettore, che io non di$idero premio $enza fatica, nè con ripo$o cerco arricchirmi de be ni altrui: giu$tamente richiedo la tua gratitudine: Huomini nati $iamo, & ciò che procede dalla humanità è atto di noi proprio, & naturale, che uer$o altrui $i e$$ercita: imperoche ad altri uiuemo, & l'un l'altro aiutamo. Solo Iddio nella $ua e$$enza raccolto, bi$o- gno non ha di co$a, che non $ia e$$o: mail tutto è di $ua gratia bi$o- gneuole. Godiamci adunque di quella, & $enza inuidia porgen- doci mano di pari pa$$o tentiamo di peruenire a quella bella uerità, che nelle degne Arti $i troua: accioche con lo $plendore della uirtù, & della gloria, $cacciamo le tenebre dello errore, & della morte. <HEAD>VITA DI M. VITRVVIO.</HEAD> <p><I>MARCO</I> VITRVVIO <I>fu al tempo di Giulio Ce$are, ui$$e anche $otto il buono Augu$to ne gli anni di Roma $ettecento & uenti $ette. Fu di $tatura me diocre, & de beni di fortuna non molto accommodato. Hebbe felice $orte, ri $petto al padre, & alla madre: imperoche con diligentia da quelli nodrito, & bene ammae$trato $i diede alla cognitione di molte Arti, per lequali peruen- ne all' acqui$to dell' Architettura: ui$$e molti anni, operò, & $cri$$e, & uir- tuo$amente $i condu$$e a i termini della uita: nè altramemoria di lui $i truoua, che le proprie compo$itioni: dalle quali $i ha, quanto fin' hora s'è detto. & prima nella dedicatione dell' opera dice.</I> Ma hauendo il concilio de i Dei, qucllo con$ecrato a i troni della immortalità, & transferito nel poter tuo lo imperio del padre: lo i$te$$o mio $tudio nella memoria di lui <foot><I>A</I></foot> <pb n="2"> re$tando fermo, in te ogni fauore tenne raccolto. Adunque con M.Aurelio, P.Mini- dio, & Gn.Cornelio fui $opra l'apparecchio delle Bali$te, & de gli Scorpioni, & alla pro- ui$ione de gli altri tormenti. i quali, $ubito che mi concede$ti, molto bene per la rac- commandatione di tua $orella ne $erua$ti lo ricono$cimento. Et però e$$endo io per quel bene$icio tenuto, & obligato, di modo, che io non haueua a temere ne gli ultimi an ni della uita mia la poucrtà, io ho cominciato a $criuere que$te co$e. <I>Nel proemio del $e$to libro co$i dice.</I> <p>Et però io grandi$sime, & in$inite gratic rendo a i miei progenitori, i quali approuan do la legge de gli A thenie$i, mi hanno nelle Arti ammac$trato, & in quelle $pecialmen- te, che$enza lettere, & $enza quella raccommunanza di tutte le dottrine, che in giro $i uol ge, non puo per alcun modo e$$ere commendata.} <I>Nel proemio del $econdo libro an- chora dice.</I> <p>Ma a me, o Imperatore, la natura non ha dato la grandezza del corpo: & la ctà mi ha deformata la faccia, & la infirmita leuate le forze: la doue e$$endo io da co$i fatti pre$idij abbandonato, io $pero per mezzo della $cientia, & de gli $critti in qualche gra- do $alire. <p><I>Et altroue dimo$tra non e$$ere $tato ambitio$o, nè arrogante, nè auaro, & di $e mode$tamen- te parlando, difende i letterati, riprende i temerarij, ammae$tra gli imperiti, & ammoni$ce con amore, & con fede quelli, che uogliono fabricare: $egni certi<02>imi della bontà dell' animo, & dell' innocenza della uita. Scri$$e diecilibri d'Architettura (come egli afferma nella fine del- l'opera,) & $otto uno a$petto, & in un corpo la ridu$$e, raunando le parti di e$$a a beneficio di tut te le genti, come egli dice nel proemio del quarto libro. Il modo, che u$a Vitruuio nello $criuere è (come $i conuiene) prima ordinato, dapoi con $implicità di uocaboli, & proprietà di parole. del che egline rende la ragione nel proemio del quinto libro: ilquale io di$idero, che letto $ia, prima che ad altro $i uegna. Ma noi hauemo altre difficultà: lequali ouero $pauentano i Letto- ri di Vitruuio, ouero ritardano gli $tudio$i dell' Architettura: & quelle grandi $ono & potenti. Et la prima è il poco $apere di molti, i quali $i uogliono dare a Vitruuio $enza cognitione di let- tere. Altri non cono$cono il bi$ogno di$apere, & $ono come Sofi$ti, e V antatori: i difetti de i quali dallo Auttore $ono in piu luoghi $coperti. L'altra difficultà è po$ta nel mancamento de gli e$$empi, sì delle opere antiche citate da Vitruuio, sì delle figure, che egli ci promette nel fine di cia$cuno de i $uoi dieci Libri. Quelle ci in$egnarebbeno molto, & non ci la$ciarebbeno il ca- rico dipiu pre$to indouinare, che approuare la uerità delle co$e. Ma io non uorrei, che per que$te cagioni alcuno sbigottito $i rimoue$$e da $i bella, & lodata impre$a, nella quale molti di genero$o animo affaticati $i $ono, & tutt' hora s'affaticano, & s'affaticheranno, $perando, che la fati- ca, & la diligentia dell' huomo $in per $uperare ogni humana difficultà. Io per que$ta ragione aiutato dal diletto, & dallo $tudio, che riuiue in molti, po$to mi $ono a que$ta impre$a, alla quale èhomai tempo di entrare. Per di$ponere adunque gli intelletti, accioche meglio $ia loro dimo$trato il $entiero, & il fine, al quale deono peruenire, dirò, che co$a è Arte: onde na$ce: come ore$oe: a che peruenga. Di$tinguerò le Arti; Ritrouerò l'Architettura, & le parti di e$$a: dichiarando l'ufficio, & il fine dello Architetto.</I> <HEAD><I>PROEMIO.</I></HEAD> <p><I>Diuer$e $ono le qualità delle co$e, tra lequali una è, che Habito $i dimanda $econdo che $i dice. Far buon' habito: e$$er ben habituato: & $imiglianti modi, che dinotano o prendere, o po$$edere una qualità, che di là, doue è, di$$icilmente $i po$$a leuare. Sot- to il predetto nome, ogni $cientia, ogni arte, ogni uirtu, & ogni uitio $i comprende. Da que- $ta cognitione lo intelletto trahe due co$e. L'una è, che egli cono$ce la importanza di apprende-</I> <pb n="3"> <I>re piu uno habito, che un' altro. L'altra è, che non co$i agcuolmente s'acqui$tano i belli habiti, nè di leggieri alcuno merita e$$er con i chiari nomi di quelli chiamato. Il che co$i e$$endo, l'huomo auueduto s'affatica, & pratica con le per$one eccellenti, & non $educe $e mede$mo, credendo ue ramente di$apere, quello che egli ueramente non $a. Diuidon$i gli habiti in que$to modo, che al- tri$ono dello intelletto, altri della uolontà no$tra. Gli habiti dello intelletto $ono ditre manie- re. Alcuni non la$ciano lo intelletto piu al uero, che al fal$o piegare, come è la opinione, il $o- $petto, la credulità: Altri uolgeno la mente humana dal uero, & di fermo al fal$o la torcono. co me $e alcuno da fal$i principij di$po$to, al uero per modo alcuno con$entire non pote$$e: & que- $to mal habito $i chiama Ignoranza praua. La terza maniera di habiti è quella, che auuezza lo intelletto al uero, di modo, che egli non $i può alla fal$ità, & all' errore per alcuna uia riuol- gere; Degna ucramente & precio$a qualità, & conditione di habito, come quella, che lieui la in$tabilità dell' oppinione, chiari$ca il $o$petto, & induca la certezza, & la fermezza della ue- rità. Ma perche il uero nelle co$e diuer$amente $i truora: però d'intorno al uero nelle co$e mol- ti$ono gli habiti dello intelletto. Dico adunque nello intelletto humano e$$er un' habito del ue- ro, che di nece$$ità adiuiene, & un' altro habito di quel uero, che non è nece$$ario, detto da Filo$ofi Vero contingente. Il Vero nece$$ario è quello, che per uera, & certa ragione $i con chiude. & oltra di que$to uero nece$$ario è quello, che per proua de alcuna co$a $i piglia. & fi- nalmente uero nece$$ario è quello, che della proua, & della co$a prouata è compo$to. La onde dalla predetta diui$ione tre maniere di habiti d'intorno al uero nece$$ario ci $ono manife$te. La prima è nominata Scienza, che habito è di conclu$ione per uera & nece$$aria proua acqui$tato. La $econda è detta Intelletto, che è habito de i principij, & delleproue, & ritiene il nome della potenza dell' anima, nella quale egli $i truoua: la onde è nominato, Intelletto. imperoche allo acqui$to di quello non ui concorre altro habito precedente: ma cono$ciuti i termini, cioè $apen- do$i la $ignificatione de i nomi: di $ubito lo intelletto $enza altra proua, $olo da diuini raggi il- lu$trato del lume naturale cono$ce, & con$ente e$$er uero quello, che gli è propo$to. Però Dan te chiama il cono$cimento di que$to uero, prima notitia. & quel uero, primo uero. i Filo$ofi, primi concetti, o Dignità, o Ma$$ime $ogliono chiamare. Da que$to habito detto intelletto, han- no hauuto uigore, & forza $pecialmente le Mathematice. perche in quelle $ono que$te notitie manife$ti$$ime, & benche picciole $iano di quantità, $ono però di ualore ine$timabile. Per $ape re adunque conchiudere molte co$e da i proprij principij, (che altro non è, che hauere $cienza) bi$ogna prima acqui$tar$i lo Intelletto: cioè l'habito, che cono$ce i principij. che io in que$to luo go chiamerei, Intendimento, per non confondere i uocaboli delle co$e: perche intelletto è nome di potenza & di uirtu dell' anima, che intende: & intendimento è operatione, ouero habito di quella potenza. La terza maniera è detta Sapienza, che è pronta & i$pedita cognitione delle proue alle conchiu$ioni applicate. Et come lo acume della diuina intelligenza penetra per entro al mezo di ogni co$a, co$i ad uno ri$uegliamento dello intelletto habituato in molte $cienze, & nella cognitione di molti principij $i ritroua il uero: & que$ti $ono gli habiti dello intelletto d'in- torno al uero nece$$ario: cioè d'intorno al uero, che non puo e$$ere, che non $ia, ne i quali non $i è ritrouato quello habito, che noi Arte chiamamo: propriamente dico, perche hora $iragio na con i proprij, & ueri uocaboli delle co$e. Hora uediamo $e tra gli habiti, che $ono d'intorno al uero Contingente $i troua l'Arte. Dico che nelle co$e fatte da gli huomini, perche dipende- no dalla loro uolontà, che non piu a que$to, che a quello è terminata, non $itroua quella nece$- $ità, di che $opra dicemmo. & altre di quelle $ono pertinenti alla unione, & conuer$atione, al- tre conuengono all utilità, & commodo uniuer$ale. La regola di quelle è nominata Pruden- za, che è habito moderatore delle attioni humane, & ciuili. La regola delle $econde è detta Ar te, che è habito regolatore delle opere, che ricercano alcuna materia e$teriore. & $i come dallo habito della prima regola gli huomini $ono chiamati Prudenti, Giudici, Legislatori, e Rettori: Co$i dal $econdo $ono detti Architetti, Soldati, Agricoltori, Fabri, & Artefici. Dalle gia</I> <foot><I>A</I> 2</foot> <pb n="4"> <I>dette co$e ritrouato hauemo, che Arte è habito nella mente, come in uero $oggetto ripo$to, che la di$pone a fare, & operare con regola, & ragione fuori di $e co$e utili alla uita: Come Pru denza è habito, che di$pone lo intelletto a regolare la uolontà in quelle co$e, che alla unione, & bene della republica, & della famiglia, & di $e $te$$o, conuengono. La onde giu$ti, mode$ti, forti, liberali, amici, ueraci, & in $omma buoni, & uirtuo$i diuentiamo: & di piu qua$i $emi- dei per la uirtu heroica $iamo giudicati. Ma la$ciamo a dictro le co$e, che non fanno per no, & ritrouiamo il na$cimento delle Arti, $econdo, che prome$$o hauemo di $opra. Na$ce ogni arte da i$perienza. Il che come $ia, dirò breuemente, dimo$trando che co$a è I$perienza: Da che na- $ce: Come $ia fonte delle Arti. I$perienza non è altro che una cognitione nata da molte ricor- danze di co$e $imiglianti a i $en$i humani $ottopo$te, per lequali ricordanze l'huomo giudica di tutte ad uno i$te$$o modo. Eccoti l'e$$empio. Nel cono$cere una co$a, ui concorre prima il $en $o, dapoi la memoria: oltra di que$to la comparatione delle co$e ricordate. Hauendo l'huo- mo per uia de i $en$i compre$o, che lo A$$enzo, per e$$empio, ha con$erito a que$to, & a quel- lo nella debolezza dello $tomaco, ricordando$i di tale effetto, ne caua una $omma uniuer$a- le, & dice: Adunque doue è debolezza di $tomaco lo a$$enzo è gioueuole, & buono. Il $imile puo fare delle altre piante, & da molte particolari, et di$tinte i$perienze col mezo della memo- ria puo trarre le propo$itioni uniuer$ali, lequali $ono principij dell' arti. La i$perienza adunque è $imile all' orma, che ci dimo$tra le fiere. perche $i come l'orma è principio di ritrouare il Cer- uo, nè però è parte del Ceruo, (percioche il Ceruo non è compo$to di orme,) co$i la i$perienza è principio di ritrouar le arti, & non è parte di alcuna arte; perche le co$e a i $en$i $ottopo$te non $ono principij dell' Arti; ma occa$ione, come chiaramente $i uede, per che il principio dell' Arte è uniuer$ale, & non $ottopo$to a i $en$i humani, benche per uia de' $en$i $tato $ia ritrouato. ma che differenza $ia tra la i$perienza, & l'Arte, $i uede in que$to modo. Certo è, che quan to all' operare non è dall' Arte la i$perienza differente: percioche tanto in que$la, quanto in quel- la uenendo$i all' e$fetto, $i di$cende allo indiuiduo; perche le attioni $ono cerca le co$e particola- ri: Ma quanto alla forza, & alla efficacia dell' operare, gli e$perti fanno effetto maggiore, che quelli, i quali hanno $olamente la ragione uniuer$ale delle co$e: & però $pe$$o adiuiene che lo Ar tefice ine$perto, auuenga Dio, che egli habbia nella mente la ragione de gli Artificij, erra però, & pecca bene $pe$$o, non per non $apere, nè perche la ragione $ia men uera: ma perche non è e$$ercitato, nè cono$ce i difelti della materia, laquale molte fiate non ri$ponde alla intentione dell' Arte. Con tutto que$to l'Arte è piu eccellente, & piu degna della i$perienza, perche è piu uicina al $apere, intendendo le cau$e, & le ragioni delle co$e, là doue la i$perienza opera $enza ragione. Appre$$o lo intelligente Artefice è piu pronto a ri$oluere, & dar conto delle co$e, che il$emplice, et puro e$perto. La onde l'Arte è alla $apienza, che è habito nobili$$imo, piu uici- na. Segno manife$to del $apere è il potere in$egnare, & ammae$trare altrui, percioche la perfettione con$i$te in potere far altri a $e mede$imi $imiglianti. Et però l'Artifice, che è quello che intende la ragione, può in$egnare & fare un' altro $e $te$$o, quanto all' Arte $ua: Ma lo E$perto non co$i. & $e bene lo E$perto mo$tra ad altri come egli fa, non però è atto a darne con to, non hauendo l'Arte: & la $ua dimo$tratione oltra il $en$o non $i e$tende, & è $olamente in modo di uedere congiunto con alcuna oppinione, o credenza di colui, che uede: ilquale in $imi- le atto fa ufficio $eruile imperfetto, & lontano dall' ufficio dell' Arte: & però Vitrunio uuole, che la i$perienza $ia con la cognitione accompagnata. Come adunque na$ce la i$perienza; che co$a è; & in che modo l'Arte da quella procede, chiaramente s'è dimo$trato. Dal che $i com- prende e$$er due maniere di i$perienza. l'una, che all' Arte è prepo$ta, cioè che $i fa prima, che s'acqui$ti l'Arte: come quando $i dice. Io faccio i$perienza, & uoglio prouare, $e mirie$ce al- cuna co$a: & que$to ècome fonte a fiume quanto all' Arte. L'altra maniera è quella, che è ec citata, & de$ta dall' Arte, che $i truoua in noi, & $econdo le ragioni dell' Arte la e$$ercitiamo. Egli $i puo anche dalle predette co$e uedere, che la i$perienza molto piu $erue alle Arti, che</I> <pb n="5"> <I>s'acqui$tano per inuentione, che a quelle, che s'imparano per ammae$tramento. Il na$cimento delle arti da principio è debole, ma col tempo acqui$ta for za et uigore: imperochei primi inuen tori hanno poco lume delle co$e, & non po$$ono ageuolmente raccogliere molte uniuer$ali pro- po$itioni, per lequali l'Arte s'ingagliardi$ca, perche per la breuità della uita non hanno tem- po difarne la ifperienza: ma la$ciando a po$teri le co$e trouate da loro $cemano la fatica di quel li, &aggiugneno loro occa$ione di aumentare le Arti, per la molta uirtù, che ne i pochi prin cipij $i truoua. perche $i come nella mente $i concepe la moltitudine de $udditi $otto un Principe, co$i molti concetti dell' arte al $uo principio $i riferi$ceno. & per que$to di gran laude $ono de- gni gli inuentori delle co$e, iquali banno trouato i principij $enza ri$parmio di fatica, da i quali deriua il compimento, & la perfettione dell' Arti: doue egli $i può dire che la metà del fatto, è il cominciar bene. Et qui$ia detto a ba$tanza d'intorno alla origine, diffinitione, accre$cimen- to, et perfettione dell' Arte. Re$ta che io di$tingua l'Arti $econdo, che di $opra promi$i di fa- re. Certo io non uoglio in que$to luogo fare una $cielta di tutte l'Arti partitamente, perche troppo ritardarei lo intendimento di chi legge, & poco giouerei. La$cierò a dietro quella $i- gnificatione uniuer$ale di que$to uocabolo, che abbraccia l'Arti liberali, delle qualitre $o- no d'intorno al parlare, & quattro cerca la quantità, d'intorno al parlare è la Grammatica, la Rhetorica, la Logica: Cerca la quantità è la Geometria, l'A$trologia, l'Arithmetica, la Mu$ica. La$cierò l'Arti uili, & ba$$e, che degne non $ono della pre$ente con$ideratione, nè del nome dell' Arte. Non ragionerò di quelle Arti, et dottrine, che ci $ono in$pirate da Dio, come è la no$tra chri$tiana Theologia; perche hora non $itende a que$to fine, che ritruouia- mo tutto quello, che $otto nome di Arte $i contiene: imperoche non è al propo$ito no$tro: $i che io la$cierò le diuinationi, che me$colate $ono di diuina in$piratione, & humana inuentio- ne. Sono adunque al pre$ente bi$ogno quelle Arti nece$$arie, che $erueno con dignità, & gran dezza alla commodità, & u$o de' mortali: come è l'Arte di andar per mare detta Nauigatio- ne, l'Arte Militare, l'Arte del fabricare, la Medicina, l'Agricoltura, la Venaggione, la Pittura, & Scoltura, il Lanificio, & altre $imiglianti, lequali in due modi $i po$$ono con- $iderare. prima come di$correno, & con uie ragioneuoli trouando uanno le ragioni, & le regole dell' operare. dapoi come con prontezza di mano s'affaticano di ponere in alcuna materia e$teriore, quello che eraripo$to nella mente. Donde na$ce che alcune Arti hano piu della $cien- za, & altre meno. & a cono$cere l'Arti piu degne, que$ta è la uia. Quelle, nelle quali fa bi$ogno l'Arte del numerare, la Geometria, & l'altre Mathematice, tutte hanno del grande: il rimanen te $enza le dette Arti (come dice Platone) è uile, & abietto, come co$a nata da $emplice ima ginatione, fallace coniettura, & dal uero abbandonat a i$perienza. Et quiui apparirà la di- gnità dell' Architettura, laquale approua è giudica le opere, che dalle altre Arti $i fanno. Ma perche prima non $i deue lodare alcuna co$a, $e prima non $i $a, che co$a ella $ia: giu$to, & ra gioneuole è, che dimo$triamo l'origine, & la forza, & le parti dell' Architettura, & qual $ia l'ufficio, & il fine dello Architetto. & perche il mede$imo $i fa dallo Auttore, come da erudito, & ammae$trato ne i precetti dell' Arte, darò principio alla dichiaratione de i $uoi detti, sbrigandomi prima dalla dedicatione dell' opera. Dedicando adunque ad Ottauio Au- $to dice in que$to modo.</I> <p>MENTRE, che la tua diuina mente, & Deità, ò Ce$are Imperatore, acqui$taua l'Imperio del mondo, & i cittadini $i gloriauano del trionfo & della uittoria tua, e$$endo tutti i nimici dalla tua inuitta uirtu à terra battuti: & mentre, che tutte le nationi domite, & $oggiogate il tuo cenno attendeuano, & il popolo Romano in- fieme col $enato fuori d'ogni timore, da i tuoi altifsimi prouedimenti & con$igli era go- uernato; io non ardiua mandare in luce le co$e dell' Architettura da me $critte, tra tante occupationi, & con grandi pen$ieri e$plicate: dubitando non fuor di tempo tramettendo- <pb n="6"> mi, incorrefsi nell' offe$a dell' animo tuo. Ma poi, che io m'accor$i, che egual cura tene- ui & della $alute d'ognuno con il publico maneggio, & della opportunità de i publici edi- ficij; accioche non $olamente fu$$e col fauor tuo la Città di $tato fatta maggiore, ma an- chora la mae$tà dello imperio grandezza haue$$e, & riputatione delle publiche fabricatio- ni: io hò pen$ato non e$$er piu tempo di tardare; & non ho uoluto pretermettere, che di $ubito à nome tuo non manda$si in luce le già dette co$e. Imperoche per que$ta ragione io era da tuo padre cono$ciuto, & della $ua uirtu molto $tudio$o. Ma hauendo il conci- lio de i cele$ti Dei quello con$ecrato ne i $eggi della immortalità, & trasferito nel poter tuo lo imperio del padre: lo i$te$$o mio $tudio nella memoria di quello re$tando fermo, in te ripo$e il fauore. Adunque con M. Aurelio, Pub. Minidio, & Gn. Cornelio fui $opra l'apparecchio delle Bali$te, & de gli Scorpioni. & alla rifattione de gli altri tormenti; & in$ieme con e$$o loro ne riportai delle commodità, lequali $ubito che tu mi concede$ti, molto bene per la raccommandatione di tua $orella il ricono$cimento $erua$ti; & però e$- $endo io per quel beneficio tenuto & obbligato, di modo che in$ino allo e$tremo della ui- ta non haue$si a temere alcun di$agio: Io diedi principio à $criuere que$te co$e: perche io haueua auuertito, che tu haueui fabricato molte co$e, & tutta uia ne uai edificando; & anche per lo auuenire $ei per hauer cura, & pen$iero delle publiche, & priuate opere $econ- do la grandezza delle co$e fatte, accioche $iano alla memoria de' po$teri commendate. Io ho $critto con diligenza determinati precetti in modo, che da te $te$$o ponendoui pen$ie- ro pote$ti cono$cere quali fu$$ero le co$e già fabricate, & come haue$$ero a riu$cir quelle, che $i doue$$ero fabricare: percioche in que$ti uolumi, io ho aperto tutte le ragioni di que $to ammae$tramento. <p><I>Il $auio & prudente lettore potrà per le parole di Vitr. con$iderare la prudenza, & bontà $ua, come di per$ona, che e$$endo per beneficij riceuuti obligato & tenuto, dimo$tra gratitudine, & nella gratitudine giudicio, offerendo quelle co$e, che po$$ono e$$er grate à chi le riceue. & in ue- ro e$$endo tutto il mondo $otto un principe, l'armi erano ce$$ate, & le porte di Giano rinchiu$e. Il principe raccolto nella gloria delle belle impre$e da lui $atte, godeua del $uo $plendore, & $om- mamente $i dilettaua di $abricare gloriando$i di la$ciar la città (che prima era di pietre cotte) la- $tricata di Marmo. Fu adottiuo figliuolo di Giulio Ce$are: nacque di Accia, & di Ottauio. Al co$tui tempo nacque no$tro Signore. Fu ueramente buono, & grande appoggio de' uirtuo$i, per ilche non tanto per hauere accre$ciuto lo Imperio e$$er deue nominato Augu$to, quanto per haue- re fauorito gli huomini da bene, & aumentato con lode, & premio ogni uirtù, & dottrina. A lui dunque meriteuolmente con$acra Vitruuio le fatiche $ue, & con ingegno di quelle co$e, & con quelle parole lo e$$alta, che ueramente, & $enza adulatione $e gli conueniuano. Et tanto $ia det- to, d'intorno la dedicatione dell' opera. Egli $i legge in alcuni te$ti non Minidio, ma Numidio, & in alcuni Numidico. Io non truouo altra fede, che piu ad uno, che altro modo $i debbia legge- re. Benche in alcune Medaglie $i legga e$$ere $tato $opra la Cecca un L. Mu$idio. ma que$to po- co c'importa. Nè io $ono curio $o di dichiarare che co$a è Bali$ta, & Scorpione, percioche $e ne dirà nel decimo libro al proprio luogo. nè $i deue (per quanto $timo io) confondere l'ordine delle co$e. Venirò adunque a Vitr. ilquale $econdo il precetto' dell' Arte diffini$ce, e determina, che co$a è Architettura, dicendo.</I> Architettura è $eienza, di molte di$cipline, & di diuer$i am- mae$tramenti ornata, dal cui giudicio s'approuano tutte le opere, che dalle altre Arti com piutamente $i fanno. <p><I>Prima, che $i e$ponga, & dimo$tri che co$a è Architettura, dirò la forza di que$to nome, per- cioche molto gioua allo intendimento delle co$e, che $i diranno. Architettura è nome, che dal greco derriua; & è di due uoci compo$to. La prima $ignifica principale, & capo; La $econda fabbro, ò artefice. Et chi uole$$e bene e$primere uolgarmente la forza del detto nome, direbbe capo mae$tra. Et però dice Platone, che lo Arch tetto non $a me$tieri alcuno, ma è $opra$tan-</I> <pb n="7"> <I>te à quelli, che gli fanno. La doue potremo dire l'Architetto non e$$er Fabro, non mae$tro di legname, non mnratore, non $eparatamente certo, & determinato artefice, ma capo, $opra$tante, & regolatore di tutt i gli arteficij: come quello, che non $ia prima, a tanto grado $alito, che egli non $i habbia prima in molte, & diuer$e dottrine, & opere e$$ercitato. Sopra$tando adunque di- mo$tra, di$egna, di$tribui$ce, ordina, & comanda. & in que$ti uffici appare la dignità dell'Ar- chitettura e$$er alla $apienza uicina, & come uirtù heroica nel mezo di tutte le arti dimorare. perche $ola intende le cagiom; $ola abbraccia le belle, & alte co$e: $ola, dico, tra tutte l'Arti partecipa delle piu certe $cienze, come è l'Arithmetica, & la Geometria, & le altre, $enza le- quali (come s'è detto) ogni arte è uile, & $enza riputatione. Vedendo adunque Vitr. l'Archi- tettura e$$er tale, dice prima ella e$$er</I> {<I>Scienza.</I>} <I>& per Scienza intende cognitione, & rau- nanza di molti precetti, & ammae$tramenti, che unitamente riguardano alla cono$cenza d'un fi- ne propo$to. poi perche in que$to la Architettura conuiene conmolte altre $cienze, delle quali par titamente $i puo dire, che cia$cuna $ia cognitione: però Vitr. le attribui$ce alcune differenze, che ri$tringono quello intendimento uniuer$ale, & commune del predetto nome. & que$to è ufficio della uera diffinitione, cioè dichiarire la natura, & la forza della co$a diffinita, inmodo che ella da tutte altre co$e di$tinta, & $eparata $i cono$ca. & però foggiugne Vitr.</I> {<I>Di molte di$cipline, & di diuer$i ammae$tr amenti ornata.</I>} <I>Et di$tingue per le dette parole l'Architettura, da molte par ticolari notitie, che uengono da i $en$i, $tanno nella i$perienza, & $i e$$ercitano per pratica. Nè per que$to anchora è bene diffinita l'Architettura: percioche $e quiui re$ta$$e la diffinitione, ella $arebbe commune, & piu ampia di quello, che $i conuiene. Imperoche l'Arte del dire, la Me- dicina, & molte altre Arti, & $cienze ornate $ono dimolte dottrine, & di diuer$i ammae$tra- menti, come chiaramente per gli $critti di Cicerone, di Galeno, & d'altri autori $i uede. Ri$tri- gnendo adunque Vitr. con maggiori proprietà la $ua diffinitione, dice</I> {<I>Dal cui giudicio s'appro- uano tutte le opere, che dalle altre arti $i fanno.</I>} <I>Ecco l'ultima differenza, che ne i ueri, & giu- $ti termini, & qua$i confini rinchiude l'Architettura. percioche il giudicare le opere compiute dal le Arti, è proprio di lei, & non d'altre. L'oratore s'adorna di molte Arti, & di$cipline, & quelle grandi$$ime, $ono, & belli$$ime. Il $imigliante fa il Medico; ma l'uno, & l'altro hanno diuer$i intendimenti. l'Oratore s'adorna per potere per$uadere, cioè indurre opinione in ogni ma- teria propo$ta. Il Medico per indurre, ò con$eruare la $anità. Malo Architetto $olo per giu- dicare, & approuare le opere perfette dalle altre Arti: perfette, dico, ouer compiute, come di- ce Vitr. però che non $i può giudicare $e non le cofe finite, accio niuna $cu$a $ia dello Artefice. Vero è anche que$to, che lo Architetto $opra$tando mentre che $i fanno le opere, giudica $e el- le $i fanno bene, ò male, & approua que$ta, et bia$ma quella, $econdo il giudicio, & la cognitio- ne, che eglì ha; & for$e que$ta è migliore e$po$itione che la di $opra. Dalla diffinitione dell'Ar- chitettura, $i comprende che co$a è Architetto, & $i cono$ce, Architetto e$ser colui, che per certa, & merauiglio$a ragione, & uia sì con la mente, & con l'animo $a determinare, co- me con lo in$egnare, & con l'opera condurre à fine quelle co$e, che dal mouimento de i pe$idal compartimento de i corpi, & dalla compo$itione delle opere à beneficio de gli huomini $aranno commendate.</I> {<I>Architettura è $cienza ornata di molte di$cipline, & di diuer$i ammae$tramen- ti.</I>} <I>Et per di$ciplina intende quello, che i di$cepoli imparano. Et per ammaeftramenti, quello che i mae$tri in$egnano. il parlare è in$trumento dello in$egnare, & l'udire dello imparare. La dot- trina comincia nel concetto di colui, che in$egna, & $i e$tende $ino alle parole. la di$ciplina co- mincia nell'udito di colui, che impara, & termina nel concetto. Ma bella co$a èil $upponere' per ragione, & dimo$trare per pratica; in quello è la Dottrina, in que$to è la Eruditione, cioè lo $gro$$amento.</I> {<I>Per lo cui giuditio s'approuano.</I>} <I>Il giudicare è co$a eccellenti<02>ima, & non ad altri conce$$a, che à i $aui, & prudenti: percioche il giuditio $i fa $opra le co$e cono$ciute, & per quello</I>, {<I>S'approua</I>,} <I>cioè $i dà la $entenza, & $i dimo$tra, che con ragione $iè ope- rato. Approua adunque l'Architettura, l'opere fatte dalle altre arti. Opera è quello artificio</I>, <pb n="8"> <I>o lauoro, che re$ta ce$$ando l'operatione dello Artefice, o finita, o non finita, che ella $ia: come Operatione è quel mouimento che egli fa mentre lauora. Ma Attione s'intende negotio, o ma- reggio ciuile, & uirtuo$o, ce$$ato che egli $ia, niente re$ta di fuori</I>, {<I>Arti.</I>} <I>Qui s'intende l'arti in quanto $i opera, le ragioni delle quali ad e$$a patrona $i riferi$cono. Et qui $ia fine alla diffinitione dell'Architettura. nella quale uirtualmente compre$e $ono le belle ucrità dell'Ar- chitettura, & de i precetti $uoi; co$a degna di molta con$ideratione. & perche egli s'intenda que$to mirabile $ecreto: Dico, che in cia$cuna $cienza la diffinitione del $oggetto, del qual $i trat- ta, che è quello à cui $i riferi$ce tutto quello che nella $cienza è trattato, contiene uirtualnunte le $olutioni de i dubij, le inuentioni de i $ecreti, & la uerità delle co$e in quella $cienza contenu- te. Virtualmente contenere intendo poter produrre una co$a, come il $eme contiene in uirtu il frutto. La diffinitione adunque del $oggetto quando è fatta con le ragioni dichiarate di $opra, cioè quando dimo$tra la natura della co$a diffinita, la raccommunanzà, che ha con molte altre co$e, & la differenza & propietà che tiene, ha uirtu di far manife$te le o$cure dimande, che $o- no fatte in quella $cienza. & la ragione è, perche la diffinitione del $oggetto è principio della di- mo$tratione. ilquale come precetto dell'Arte e$$er deue uero, utile, & conforme; (come dice Galeno) Vero, perche niente $i comprende, che uero non $ia, come $e egli $i dice$$e, il Fele della chimera e$$er utile à gli infermi. que$to non $i potrebbe comprendere, perche uero non è, che la chimera tra le co$e che $ono $i troui. Vtile, perche è nece$$ario, che egli tenda à qualche fine; & Vtilità non è altro che riferire le co$e al debito fine, & inuero degna non è del nome di Arte quella cognitione, la cui operatione non è utile alla humana uita. La conformità è po$ta nella uirtu predetta di produrre. perche molte co$e hanno in $e la forza della uerità, che non hanno la forza della conformità, & la uirtu con$i$te nell'applicatione, & quelle non hanno ualore d'influi- re il lume loro nelle co$e. Ilche $i cono$ce, che uolendo noi applicare i principij alle co$e, non $i raccoglie alcuna ragione, percioche non $ono conformi, nè concludenti. Quando adunque il $oggetto, & le propriet à na$ceno da i principij, & cau$e, allhora ui è la conformità. Vero è da tutti giudicato (cono$ciuti i termini, come io diceua) che $e dalle co$e eguali $i leueranno l'e- guali, ò dalle pari le pari, il rimanente $arà pari ò eguale. nè $olamente è uero que$to principio, ma di ualore grandi$$imo. percioche egli $i applica dal Filo$ofo naturale a i mouimenti, al tem- po, a gli $patij: dal Geometra alle mi$ure, & grandezze; dallo Arithmetico a i Numeri; dal Mu $ico a i $uoni; dal Medico alle uirtu & qualità delle co$e. Stando adunque cio, che s'è detto, ne $eguita quello, che dirà Vitr. dell'Architettura. & prima del $uo na$cimento, & poi delle $ue conditioni. dice adunque.</I> {<I>E$$a na$ce da fabrica, & da di$cor$o.</I>} <I>Que$ta con$equenzanon $i può cono$cere, $e prima non $i fa manife$to, che co$a è Fabrica, & che co$a è Di$cor$o, però dice Vitr.</I> {<I>Fabrica è continuo, & e$$ercitato pen$iero dell'u$o, che di qualunque matcria, che per dar forma all'opera propo$ta $i richiede, con le mani $i compie. Di$cor$o è quello, che le co$e fabricate prontamente, & con ragioneuole proportione puo dimo$trando manife$tare.</I>} <I>Diuino è ueramente il de$iderio di quelli, che leuando la mente alla con$ideratione delle co$e belle, cerca- no le cagioni di quelle, & riguardando come dal di $opra s'accendeno alle fatiche per lo contra- rio molti $ono, che con grandi$$ime lodi inalzando al cielo i dotti, & letterati huomini, & con merauiglia riguardando le $cienze fanno ogni altra co$a piu pre$to che affaticar$i per acqui$tarle. Sono anche molti, i quali auenga, che $appiano e$$er bi$ogno per l'acqui$to d'una $cienza partici- pare di molte altre, poco però di quelle $i curano, anzi danno à bia$imo $e alcuno $i dà allo $tudio di quelle. Que$ti come gente trauiata & folle, $i denno la$ciare da parte. Bella co$a è il potere giudicare, & approuare le opere de' mortali, come atto di uirtu $uperiore, uer$o l'inferiore: niente di meno pochi $i danno alla fatica, pochi uogliono adoperar$i, & u$cire delle pelli dell'otio: & percio non fanno giudicio, & per con$eguente non peruengono al fine dell'Architettura; Ma $olo $i uanno gloriando di e$$er chiamati Architetti di que$to principe & di quello. & allegano non le ragioni, ma le opere loro, dicendo co$ifeci io, co$i ordinai nel tal pallazzo, & nella tal</I> <pb n="9"> <I>chie$a. & non uogliono con$iderare, che non hanno, Geometria, nè Arithmetica, nè intende no la for za delle proportioni, & la natura delle co$e. Egli bi$ogna adunque hauere e$$ercitio, & fabrica; bi$ogna di$cor$o. Il di$cor$o come padre; la Fabrica è come madre dell'Architettu- ra.</I> {<I>La fabrica è continuato pen$iero dell'u$o.</I>} <I>Ogni artificio$o componimento ha lo e$$er $uo dalla notitia del fine come dice Galeno. Volendo adunque fabricare, fa di me$tieri hauerc co no$cimento del fine. Fine intendo io quello, a cui s'indrizza la operatione: Et in que$to lo intel- letto con$idera, che co$a è principio, & che co$a è mezo. & truoua che il principio $i con$idc- ra in modo di pre$idenza, & nel principiare il fine è prima dello agente, perche il fine è quello, che muoue all'opera: lo agente è prima che la forma, perche lo agente induce la forma; & la forma è prima, che la materia: imperoche la materia non è mo$$a, $e la forma non è prima nel- la mente di colui che opera. Il mezo ueramente è il $oggetto nel quale il fine manda la $ua $imi- glianza al principio, & il principio la rimanda al fine: però non è concordanza maggiore di quella, che è tra'l principio, e'l fine. oltra di que$to egli $i comprende che chiunque impedi$ce il mezo, leua il principio dal fine: & che il mezo per cagione del principio s'affatica, & ri$petto al fine $iripo$a. Volendo adunque fabricare, bi$ogna cono$cere il fine, come quello, ch'al me- zo impone forza, & nece$$ità. Ma per la cognitione del fine è nece$$ario lo $tudio, & il pen$a- mento: Et $i come il $aettatore non indrizzarebbe la $aetta alla brocca, $e egli non tene$$e fer- ma la mira, co$i l'Artefice non toccarebbe il fine, $e con la mente altroue egli $i riuolge$$e. L'u$o adunque è (come s' è detto) drizzare le co$e al debito fine: come abu$o è torcerle da quel- lo. Ma per hauere que$to indrizzamento delle co$e al fine, fa bi$ogno d'hauere un'altro u$o, ilqua le uuol dire A$$uefattione, laquale non è altro, che $pe$$a, & frequentata operatione d'alcuna uirtù, & potenza dell'anima, o del corpo. onde egli $i dice e$$er u$ato alle fatiche, e$$er u$ato, po- $to in u$o, u$anza, & con$uetudine. Bi$ogna adunque e$$er u$o di continuamente pen$are al fi- ne. Et però dice Vitr.</I> Fabrica e$$er continuo, & e$$ercitato, & come uia trita, & battu- ta da pa$$aggieri frequentato pen$iero d'indrizzare le co$e a fine conueniente. <p><I>Et da que$te parole $i dimo$tra la utilità che era conditione dell'Arte. Ma perche con tanta $ollecitudine di pen$iero affaticar$i, a che $enza intermi$$ione pen$are? certo non per altro, che per manife$tare in qualche materia e$teriore la forma, che prima era nel pen$iero, & nella men- te; & però dice Vitr. dando fine alla diffinitione della Fabrica, quella e$$ere operatione manife- $ta in qualche materia fuori di noi, $econdo il pen$iero, che era in noi. Vero è, che Fabrica è nome commune a tutte le parti dell'Architettura, & molto piu abbraccia, di quèllo che commu nemente $i $tima, come $i dirà poi.</I> Di$cor$o è quello che le co$e fabricate prontamente, & con ragione di proportione puo dimo$trando manife$tare. <p><I>Il di$cor$o è proprio dell'huomo, & la uirtu, che di$corre, è quella che con$idera quanto $i puo fare con tutte le ragioni all'opere pertinenti; & però erra il di$cor$o, quando lo intelletto non concorda le proprietà delle co$e atte a fare, con quelle che $ono atte a riceuere. Di$corre adun- que l'huomo, cioè applica il principio al fine per uia del mezo: ilche, come s'è detto, è proprio della humana $pecie. Auenga che gli antichi habbiano à gli altri animali conce$$o una parte di ragione, & chiamati gli habbiano mae$tri dell'huomo, dicendo, che l'Arte del te$$ere è $tata pre$a dalla Ragna, la di$po$itione della ca$a, dalla Formica, il gouerno ciuile dalle Api; ma noi trouamo, che quelli $ono in$tinti di natura, & non di$cor$i dell'Arte: & $e Arte $i deue chia- mare la loro naturale, & non auueduta prudenza, perche non $i potrebbe $imilmente Arte chia- mare la uirtù che nelle piante, & nelle pietre $i truoua? Come l'Arte dello Elleboro purgar il fu- rore, l'Arte della pietra ne i nidi dell'Aquile, detta Aetite, rila$ciare i parti? Perche anche non $i potrebbe dire e$$ere un'Arte diuina che regge, & con$erua il mondo? una Cele$te che re- gola i mouimenti de i cieli? una Mondana, che tramuta gli elementi? Ma la$ciamo la tralatione de i nomi, fatta per la $imiglianza, & pigliamo la uerità, & la proprietà delle co$e. Di$cor$o adunque è come padre, $econdo che detto hauemo di $opra, dell'Architettura: nel quale ui bi$o-</I> <foot><I>B</I></foot> <pb n="10"> <I>gna$olertia. Solertia non è altro, che $ubita, & pront a inuentione del mezo. Et quello è me- zo, che hauendo conuenienza con gli e$tremi, lega quelli ad uno effetto, & però, nella $olertia $i puo dire, che $ia la uirtu del $eme. La onde Vitr. u$a quella parola.</I> {<I>Prontamente.</I>} <I>Che nel latino dice $olertia. Ma non è a ba$tanza lo e$$er pronto a ritrouare il ucro, però che potreb be e$$er quel uero poco atto à concludere, per que$to $oggiugne.</I> {<I>Con ragione di proportione.</I>} <I>Che co$a $ia Proportione, egli $i dirà nel $eguente capo. Vitr. ha parlato in modo, che quelle parole che dicono.</I> {<I>Prontamente, & con ragione di proportione</I>,} <I>$i po$$ono riferire a quella parola</I> {<I>Fabricate.</I>} <I>Et il $entimento $arebbe che il Di$cor$o pote$$e dimo$trare, cioè rendere la ragione delle co$e fabricate con $olertia, & proportione, e$$endo l'afficio dello Architetto approuare le co$e ragioneuoli. Ma $ia quale $i uoglia il $en$o, tutto è conforme al uero. piu $e- creta intellig enza $i tragge anchora dalle co$e dichiarate: & prima che lo Artefice ri$petto al- l'opera tiene doppia con$ideratione: poi tiene doppia affettione a quelle con$iderationi ri$ponden- te. La prima con$ideratione è una $emplice notitia uniuer$ale, per la quale $i dice, che l'huomo $a, quanto $i richiede affine che l'opera rie$ca, & niente piu ui aggiugne. L'altra è una notitia particolare, & pro$$ima all'operare che con$idera il tempo, il modo, il luogo, la materia. Da que$ta particolare cognitione na$ce una affettione, che muoue l'huomo a comandare, & ad ope- rare, come $econdo la prima con$ideratione l'huomo $i compiaceua, & in uniuer$ale abbraccia- ua non l'opera, ma la cognitione, & però non è $ufficiente que$ta $ola con$ideratione: $ola del di- $cor$o, $ola dell'uniuer$ale: ma $i richiede, quella $econda notitia, & quella $econda affettione laquale è ripo$ta nella fabrica. Dichiarita la diffinitione dell'Architettura, & dichiarito il na $cimento di quella, hora uiene Vitr. a formare lo Architetto, co$a molto ragioneuole, & con ueniente, come $i uedrà dal $eguente. dice adunque.</I> Dalle dette co$e ne $egue, che quelli Ar- chitettori i quali $enza lettere tentato hanno di affaticar$i, & e$$ercitar$i con le mani, non han no potuto fare, che s'habbiano per le fatiche loro acqui$tato riputatione, & quelli, che ne i di$cor$i, & nella cognitione delle lettere $olamente fidati $i $ono, l'ombra, non la co$a, pare che habbiano $eguitato. Ma chi l'una, & l'altra di que$te co$e hanno bene appre$o, co- me huomini di tutte armi coperti, & ornati, con credito, & riputatione, hanno illoro inten to facilmente con$eguito. <p><I>Si come alla natural generatione $i richiede l'uno & l'altro $e$$o, & $enza uno di loro niente $i concepe: co$i allo e$$er Architetto che è una artificiale generatione unitamente il di$cor$o, & la Fabrica $i richiede. Et $e alcuno $i per$uade$$e e$$er Architetto con la fabrica $ola, oue- ro col di$cor$o $olo, egli s'ingannerebbe, & $arebbe $timato co$a imperfetta. Et di gratia $e uno haue$$e il $apere $olamente, & u$urpare $i uole$$e il nome di Architetto, non $arebbe egli $otto- po$to alle offe$e de gli e$perti? non potrebbe ogni manoale (dirò co$i) rimprouerargli, & dirgli che fai tu? dall'altra parte $e per hauere un lieue e$$ercitio, & alquanto di pratica, di $i gran no me degno e$$er $i crede$$e, non potrebbe uno intelligente, & letterato chiudergli la bocca, di- mandandogli conto, & ragione delle co$e $atte? & però bi$ogna e$$er ornati, & armati di tut- te arme per acqui$tare la uittoria, & il uanto d'Architetto. Bi$ogna e$$er coperto per dife$a, armato per offe$a, ornato per gloria, maneggiando la i$perienza con l'Artificio. perche adun- que i puri pratichi non hanno acqui$tato credito? perche l'Architettura na$ce da di$cor$o. per- che $olo i letterati? percioche l'Architettura na$ce da Fabrica. Et però dice Vitr.</I> {<I>Dalle det- te co$e.</I>} <I>Cioè dal na$cimento dell'Architettura, che uiene da Fabrica, & da di$cor$o, cioè ope- ra, & ragione ne $egue quello, che egli dice. Ma in que$to luogo potrebbe alcuno dubitare, & dire, $eu ramente l'Arte è nello intelletto, & nella mente, perche cagione ha detto Vitr. che quelli, i quali nel $apere $i $ono fidati, l'ombra non la co$a, pare, che habbiano $eguitato? Ri- $pondo, che le co$e dello intelletto alla piu parte ombre paiono, & il uolgo $tima le co$e, in quan- to, che a i $en$i, & a gli occhi$ottopo$te $ono. & non in quanto non appareno. & que$to auuie- ne per la con$uetudine, perche le genti non $ono auezze a di$correre. & però l'accorto Vitr. non</I> <pb n="11"> <I>afferma, che i lettetati habbiano $eguitato le ombre: ma dice</I> {<I>Pare</I>} <I>dinotando che il g'udi- cio de gli imperiti è fatto $opra le co$e apparenti. Et però mi pare, che molti uaneggiano nel de- cidere qual $ia piu nobile, o la Scultura, o la Pittura; improche uanno alla materia, al tem- po, & a molti altri accidenti, che non $ono dell'. Arte. perche l'Arte è nello intelletto, la doue tanto è pittore, & $cultore il diuino Michiel Angelo, dormendo, & mangiando, quanto ope- rando il pennello, o lo $carpello: però egli $i doueria con$iderare, quale è piu degno habito nello in telletto, la Pittura, o la Scultura. & co$i la$ciati i marmi, gli azurri, i rilieui, & le pro$pettiue, la facilità, ò la difficultà delle dette Arti; & allhora egli $i potrebbe dire qualche co$a, che haue$$e del buono ma hora non è tempo di decidere que$ta qui$tione. Dice adunque Vitr. che l'Arte non deue e$$er ocio$a, ma con e$$a lei e$$er nece$$arie le mani; & que$to approua con altre parole dicendo.</I> Perche $e in ogni altra co$a, come $pecialmente nell'Architettu ra, que$te due parti $i truouano cioè la co$a $ignificata, & quella, che $igni$ica, la co$a $i- gnificata, è l'opera propo$ta, dellaquale $i parla. Quella, che $igni$ica è la proua, & il perche di quella, con mac$treuole ragione di dottrina e$pre$$o, & dichiatito. <p><I>Trale Artine $ono alcune, il fine delle quali non pa$$a oltra la con$ideratione delle co$e a quel le $oggette, come $ono le Mathematiche. Alcune $ono che oltre la con$ideratione uengono alla operatione, ma ce$$ando l'operatione niente re$ta di fatto. Come è l'arte del $uonare, & del $al- tare, & altre $imiglianti. Sonoui alcune che dietro a $e la$ciano alcuna opera, o lauoro, come è l'Arte Fabrile, & l'Arte del fabricare. Appre$$o ue n'ha che a prendere, & acqui$tare $i dà, come la caccia delle fiere, l'uccellare, & la pe$cagione, in fine altre non a con$iderare, non a fi- nire, non a pigliare intente $ono. Ma correggono, & emendano gli errori, & i danni delle co$e fatte, & quelle racconciano; come for$e è la medicina, $econdo Galeno. Con tutte le predette Artianzi $opra tutte è l'Architettura, come giudice, ch'ella è di cia$cuna. La onde è nece$$a- rio, che in e$$a $i con$ideri alcuna co$a fatta, o da e$$er fatta, & la ragione: Et però due co$e $o- no, l'una è la $ignificata, & propo$ta opera, l'altra è la $ignificante cioè dimo$tratiua ragione. Tutti gli effetti adunque, tutte le opere, o lauori delle Arti, tutte le conclu$ioni di tutte le $cien ze $ono le co$e $ignificate; ma le ragioni, le proue, le cau$e di quelle $ono le co$e $ignificanti. Et que$to è, perche il $egno $i riferi$ce alla co$a $ignificata: lo effetto alla cau$a: La conclu$ione alla proua. Ma per dichiaratione dico, che $ignificare è per $egni dimo$trare, & $egnare è imprime re il $egno. La doue in ogni opera da ragione drizzata, & con di$egno finita, è impre$$o il $e- gno dello Artefice, cioè la qualità, & la forma, che era nella mente di quello. percioche lo Artefice opera prima nello intelletto, & concepe nella mente, & $egna poi la materia e$teriore, dello habito interiore</I> {<I>Specialmente nell'Architettura.</I>} <I>Percioche ella $opra ogni arte $igni- fica cioè rappre$enta le co$e alla uirtu, che cono$ce, & concorre principalmente a formare il con cetto $econdo la $ua intentione: & que$to è proprio $ignificare. Ma l'e$$er $ignificato è proprio e$$er rappre$entato al $opra detto modo. De i $egni alcuni $ono co$i adentro, che ueramente $ono come cagioni delle co$e. Altrifanno una $oper$iciale, & debile i$timatione di quelle. Lo Ar- chitetto la$cia que$ti ultimi $egni all'oratore, & al poeta, & in$ieme con la Dialettica, che è modo dello artificio$o di$cor$o abbraccia quelli, perche $ono nece$$arij, intimi, & concludenti.</I> <p>Donde adiuiene, che chi fa profe$sione di Architetto pare, che nell'una, & ne l'altra parte e$$er debbia e$$ercitato. <p><I>Ogni agente nel grado, che egli tiene deue e$$er perfetto, accioche l'opera compita, & per- fetta $ia. Tre $ono gli agenti, Diuino, Naturale, Artificiale: cioè Iddio, la natura, l'huo- mo. Noi parleremo dell'huomo. Se adunque l'Architettura è co$i eccellente, che ella giudica l'opere delle Arti, bi$ogno fa, che lo Architetto $ia in talmodo formato, che egli po$$a far l'ufficio del giudicare: Et però direi, che le infra$critte co$e gli $ono nece$$arie. Prima, che egli $ia di natura docile, & per$picace, cioè, che dimo$tratagli una co$a molto ageuolmente & pre- $to l'apprenda. Et benche di natura diuina è colui, che da $e troua, & impara, non è però di</I> <foot><I>B</I> 2</foot> <pb n="12"> <I>pocalode, chi pre$to s'ammae$tra: come è d' infima conditione, chi nè da $e $te$$o nè per opera de'mae$tri apprende. Que$te buone conditioni $ono da Vitr. nelle dette parole compre$e.</I> <p>Donde adiuiene, che chi fa profe$sione d'Architetto pare che nell'una & l'altra parte e$- $er dcbbia c$$crcitato cioè nella co$a $igni$icata, & nella $igni$icante. <I>Poi $egue.</I> <p>Doue & ingenio$o, & docile bi$ogna che egli $ia, percioche nè lo ingegno $enza lo am mae$tramento, nè lo ammae$tramento $enza lo ingegno puo fare l'huomo eccellente. <p><I>Lo ingegno $erue & alla inuentione, che fa l'huomo da $e $te$$o, & alla dottrina, che egli impara da altri. Rare fiate adiuiene, che uno $ia inuentore, & compito fattore d'un'arte, cioè, che ritroiti, & riduca a perfettione tutto un corpo d'un'arte. però ben dice Vitr. che $enza lo ingegno lo ammae$tramento, & $enza lo ammae$tramento lo ingegno non fa l'huomo eccellente. La $econda conditione dello Architetto, èla educatione, & lo e$$ercitio da primi anni fatto, nelle prime $cienze. prime chiamo l'Arithmetica, la Geometria, & l'altre di$cipline. Que$te hebbe Vitr. per opera de i $uoi progenitori, come egli confe$$a nel proemio del $e$to libro. La terza condi- tione è l'hauere udito, & letto i piu eccellenti, & rari huomini, & $crittori, come fece Vitr. il quale atte$ta nel proemio del $econdo libro, quello, che io dico, dicendo.</I> <p>Io e$ponerò $eguitando gli ingre$si della prima natura, & di quelli, che i principij del con$ortio humano, & le belle, & fondate inuentioni, con gli $critti, & regole dedicaro- no, & però come io $ono da quelli ammae$trato, dimo$trerò. <p><I>Et que$to è quanto appartiene a gli $crittori, & alla lettione de i buoni; ma quanto al- la pre$enza, & all'udita dice nel proemio del $e$to libro hauere hauuto ottimi precettori. La quarta conditione è la toleranza delle fatiche, & il continuo pen$iero, & ragiona- mento delle co$e pertinenti all'arte. Difficilmente $i truoua ingegno eleuato, & man$ue- to. Vitruuio hebbe acuto ingegno, & $offerente: però dice.</I> Et dilettandomi delle co- fe pertinenti al parlare, & alle arti, & delle $critture de'commentarij. Io ho acqui$tato con l'animo quelle po$$e$sioni, dalle quali ne uiene que$ta $omma di tutti i frutti, che io non ho piu alcuna nece$sità, & che io $timo, quella e$$er la proprietà delle ricchezze di di$iderare niente piu. <p><I>La quinta conditione è di non de$iderare altro, che la uerità, nè altro hauere dinanzi a gii occhi, & per meglio con$eguirla, euui la $e$ta conditione, che con$i$te nello hauere una uia ragio neuole di ritrouare il uero, & quella uia poco ci giouerebbe $enza la $ettima conditione, che è po$ta nell'u$o della detta uia, & nell'applicatione di e$$a. Che Vitr. fu$$e $tudio$o del uero; che egli haue$$e la regola di trouarlo; & che finalmente $ape$$e u$are la detta regola, molto bene ap- pare nel $uo procedere ordinatamente, nel $ignificar le co$e, nel dar forma, & perfettione a tut- to il corpo dell'Architettura. Le dette conditioni $i deduceno da i principij detti di $opra, cioè dalla diffinitione dell'Architettura, & dal $uo na$cimento, come $i puo con$iderando uedere. Ma noi a Vitr. il quale narra quante co$e fanno bi$ogno all'Architetto, & quali, & perche cagione, & in che modo.</I> Appre$$o bi$ogna che egli habbia lettere, perito $ia nel di$egno, erudito nella Geometria, non ignorante della pro$pettiua, $appia l'Arithmetica, cono$ca molte hi$torie, udito habbia con diligenza i filo$ofi, di Mu$ica, di Medicina, delle leggi, delle ri$po$te de Iure con$ulti $ta intelligente, & finalmente rozo non $ia nel cono$cere la ragione del cie- lo, & deile $telle. <p><I>Poi che Vitruuio ha detto quante, & quali co$e $ono nece<02>arie per formare un'eccellente Ar- chitetto dice perche ragione co$i bi$ogno $ia & partitamente di cia$cuna ne rende conto dicendo.</I> <p>Ma perche co$i bi$ogno $ia, que$ta è la ragione. E nece$$ario che lo Architetto hab- bia lettere, accioche leggendo gli $critti libri, commentari nominati, la memoria $i fac- cia piu ferma. <p><I>Il giudicare è co$a da prudente; la prudenza compara le co$e $eguite con le in$tanti, & fa $ti- ma delle $eguenti. Le co$e $eguite per memoria $i hanno, però è nece<02>ario a quell' ufficio di giudi-</I> <pb n="13"> <I>care che apartiene allo Architetto hauere memoria ferma delle co$e, & la memoria ferma $i fa per la lettione, perche le co$e $tanno fermamente ne gli $critti: però bi$ogna, che lo Architetto babbia la prima arte, detta cognitione di lettere, cioè del parlare, & dello $criuere drittamente. Egli $i ferma adunque la memoria con la lettione de'commentarij. il nom<*> i$te<02>o lo dimo$tra, per- cioche Commentario è detto, come quello, che alla mente commetta le co$e, & è brcue, & $uc- cinta narratione di co$e; la doue con la breuita $ouuiene alla memoria. Bi$ogna adunque leggere, & le co$e lette, per la mente riuolgere; altrimenti male ne auuerrebbe dalla inuentione delle let- tere (come dice</I> P<I>latone) percioche fidando$i gli huomini ne gli $critti, $i fanno pigri, & negli- genti. Vitr. hebbe cognitione di lettere Greche, & latine; usò i uocaboli Greci, & confe$$a hauere da Greci molte belle co$e ne i $uoi commentarij traportate. In que$to modo io dichiaro ha uere cognitione di lettere: perche piu $otto pare, che Vitr. co$i uoglia: e$ponendo cognitione di lettere e$$er la Grammatica. Altri intendono l'arti $critte: ma io uedo, che l'arti $critle $enza Grammatica, & letteratura non $i hanno. Et for$e dal non intendere le lettere è nata la difficul- tà di intendere Vitr. & la $correttione de i te$ti.</I> Appre$$o habbia di$egno, accioche con di- pinti e$$empi, ogni maniera d'opera, che egli faccia formi, & dipinga. <p><I>Tutte le Matematiche hanno $ottopo$te alcune arti, le quali, nate da quelle, $i danno alla pra tica, & all'operare. Solto l'A$tronomia è la nauigatione. Sotto la Mu$ica è quella pratica di cantare, & di $uonare diuer$i in$trumenti, $otto l'Arithmetica, è l'abaco, & l'algebra. Sotto la Geometria è la perticatione, & l'arte di mi$urarei terreni. Sono anche altre arti nate da piu di una delle predette, come è la pratica della pro$pettiua. Vitr. uuole che non $olamente habbia- mo quelle prime, & communi, che rendeno le ragioni delle co$e; ma anche le pratiche, & gli e$- $ercitij na$ciuti da quelle. & però quanto al di$egno uuole che habbiamo facilità, & pratica, & la mano pronta a tirar dritte linee. & uuole, che habbiamo la ragione di quelle: che altro non è che certa, & ferma determinatione concetta nella mente e$pre$$a con linee, & anguli, approua- ta dal uero. il cui ufficio è di pre$criuere a gli edificij luogo atto, numero certo, modo degno, & or dine grato. Que$ta ragione non ua dietro alla materia, ma è la i$te$$a in ogni materia. perche la ragione del circolo, è la mede$ima nel ferro, nel piombo, in cielo, m terra, & nell'Abi$$o. Fa dunque bi$ogno hauere la peritia de i lineamenti, che Vitr. chiama</I> {<I>Peritiam graphidos</I>} <I>che è peritia de i lineamenti, che $erue a pittori, $cultori, intagliatori, & $imiglianti. La quale in quel modo $erue alle arti predette, che le Mathematiche $erueno alla Filo$ofia. Que$ta peritia contiene la dimen$ione, & la terminatione delle co$e, cioè la grandezza, & i contorni. la gran- dezza s'ha per le $quadre, & per le regole, che in piedi, & once di$tinte $ono. Il contorno $i pi- glia con uno in$trumento del Raggio, & del finitore compo$to, del quale ne tratta Leon Batti$ta: & da quello $i piglia de comparationi di tutte le membra alla grandezzadi tutto il corpo; le diffe- renze, & le conuenienze di tutte le parti tra $e $te$$e, alle quali la pittura aggiugne i colori, & le ombre. Bi$ogna adunque, che lo Architetto habbia di$egno. Ilche $i uede per le co$e dette nel quinto libro al $e$to capo, della conformatione del Theatro. Similmente all'ottauo del detto li- bro, doue $itratta della di$crittione delle $cene. Et al quarto del $e$to, & in molti luoghi, doue $i puo uedere quanto nece$$aria $ia la pratica del di$egno, la qual pratica è pre$a dalla Geometria, come quando bi$ogno è di pigliare una linea a piombo $opra un'altra, formare gli angoli dritti, partirgli, & mi$urargli, & fare le figure di piu lati, trouar il centro di tre punti, parti- re un piano, & $imili altre co$e, che giouano à far le piante, & i rilieui, & mi$urare i corpiregolari, & irregolari, le quali tutte co$e alla data apritura della $e$ta con ragione, & con opera $i po$$ono dimo$trare, & fare. Et però dice Vitruuio che</I>, La Geometria gioua molto allo Architetto, perche ella in$egna l'u$o della linea dritta & circolare, dal che poi ageuolmente ne i piani $i fanno i di$egni de gli edificij, & le dritture delle $quadre, dei liuelli, & de i lineamenti. <p><I>L'Arte del mi$urare è detta Geometria; & benche il $oggetto delle Mathematiche $ia la</I> <pb n="14"> <I>quantità intelligibite, il che $e non fu$$e, bi$ognarebbe per ogni quantità naturale fare una $cien tia di nuouo; non dimeno la Geometria gioua al di$egno, & alla pratica per la $ua uirtu & for za. come $i uede nella uoluta del capitello Ionico, nel compartimento delle Metrope, & Tri- gliphi nell' opera Dorica, & in molte proportionate mi$ure. Oltra di que$to perche egli adiuie- ne, che è nece$$ario liuellare i piani, quadrare, & drizzare i terreni, però bi$ogna hanere la Geometria; come $i uede nel liuellar delle acque nell' ottauo, nella diui$ione delle opere nel primo; nel mi$urar i terreni nel nono; & finalmente in ogni parte: doue egli $i puo dire, che la Geometria è madre del di$egno, & è la ragione di quello, laquale è po$ta in $apere la cagio- ne de gli effetti fatti con la regola, & col compa$$o, che $ono le linee dritte, le piegate, gli archi, i uolti, le corde, & le dritture, per u$are i nomi della prattica. la Geometria adun que dal punto procede, le linee di$te$e, le torte, le pendenti, le trauer$e, l'equid $tanti, gli inguli giu$ti, larghi, & $tretti, le punte, i circoli inticri, imperfetti, & compo$ti. le figure di piu lati, le $operficie, i corpiregolari, & irregolari, le piramidi, le sfere, l'aguglie, li ta- gli, & altre co$e che alle colonne, a gli architraui, alle cube, tribune, lanterne, & a mol- te altre parti appartengono. & a quefto modo la Geometria è nece$$aria allo Architetto. & que$ta hebbe Vittr. come appare in molti luoghi, & $pecialmente nel vi. & viij. libro.</I> Per la Pro$pettiua anche nelle fabriche $i pigliano i lumi da certe & determinate parti del Cielo. <p><I>Pro$pettiua è nome del tutto, & nome della parte. Pro$pettiua in generale è quella che di- mo$tra tre ragioni del uedere, la dritta, la rifle$$a, la rifranta. nella dritta $i comprende la ca- gione de gli effetti che fanno le co$e ui$ibili medianti i lumi po$ti per dritto. la rifle$$a è la ra gione del ri$alimento, & rinuerbero de i raggi, che $i fa come da gli fpecchi piani, caui, ri- torti, riuer$ci, & altre figure. La rifranta è la ragione delle co$e che appareno per mezo di alcuna co$a lucida & trapparente, come $otto l'acqua, per lo uetro: oltra le nubi, & que$ta pro$pettiua $i chiama pro$pettiua de i lumi naturali, $peculatina, & di grande conditione tra le parti della Filo$ofia: perche il $uo $oggetto è la luce giocondi$$ima alle ui$te & a gli animi de mortali. La doue e$$endo noi nelle $tanze rinchiu$i per dife$a del freddo, & del caldo, ne- ce$$ario è, che habbiamo la diletteuoli$$ima pre$enza della luce, & del lume, $ia egli o dritto, o rifle$$o: & però è nece$$ario, che lo Architetto habbia la pro$pettiua. Ma quando que$to nome è nome di parte, egli riguarda alla pratica, & $uol fare co$e merauiglio$e, dimo$tran- do ne i piani politi i rilieui, le di$tanze, il fuggire, & lo $corcio delle co$e corporali: però nel terzo libro al $econdo capo uuole Vitruuio, che le colonne de i portici, che $tanno $u le can tonate $ieno piu gro$$e, che quelle, che nel mezo trapo$te $ono: percioche lo aere circon$tante diminui$ce, & leua della ui$ta, & mangia dirò co$i della gro$$ezza delle colonne angolari. & nel fine del detto libro comanda, che tutte le membra $opra i capitelli, come $ono Architraui, Fregi, Gocciolatoi, Fronti$picij $iano inclinati per la duodecima parte cia$cuno della fronte $ua: & que$to $olo per la ueduta, come $i dirà. Vuole altroue che le colonne canellate appa- rino piu gro$$e, che le $chiette. & in $omma la pittura delle Scene tutta è po$ta in que$ta parte di pro$pettiua, dal che ella ne prende il nome, & $i chiama Scenografia, come $i dirà nel quinto libro. Per que$te co$e $i comprende, & che la pro$pettiua è nece$$aria allo Architetto, & che Vitruuio di quella non è $tato imperito.</I> Col mezo della Arithmetica $i fa la $omma delle $pe$e, $i dimo$tra la ragione delle mi$ure, & con modi, & uie ragioneuoli $i trouano le difficili que$tioni delle proportionate mi$ure. <p><I>Il uulgo $tima quelle pratiche na$ciute dalle Mathematiche che noi $opra dicemmo, e$$er ue- re Arti, & eccellenti$$ime uirtuti; ilche non è: percioche non rendeno le ragioni delle co$e, ben- che dimo$trino effetti diletteuoli, & belli. Vitru. (come ho detto) abbraccia, & la principa- le, & la meno principale, come $i uede nella Arithmetica, & nella predetta ragione della Geometria, & del di$egno. l'Abaco prima è uennto dalla uera Arithmetica, & que$to è ne- ce$$ario per far conto delle $pe$e, imperoche uano $arebbe il di$egno, uana la fatica del princi-</I> <pb n="15"> <I>piare, $e l'opera per alcuno impedimento non pote$$e andar inanzi, & tra gli impedimenti la $pe $a è il maggiore: però nel proemio del decimo libro loda Vitr. la legge de gli Efe$ii, della pena de gli Architetti, che faceuano $pendere a i conduttori molto piu di quello che haueuano affer- mato, & prome$$o. Ma benche ageuolmente $i faccia il conto, non però ageuolmente $i cono- $ce, $opra che egli $i debbia fare: & però Vittr. nel predetto proemio dice che $olamente quel- li farebbono profe$$ione di Architetto, i quali con $ottigliezza di dottrine fu$$ero prudenti. Ma piu adentro penetrando, oltra la pratica del numerare, che con$i$te nella rappre$entatione de i numeri, nel raccogliere, nell'abbattere, nel moltiplicare, nel partire, nello raddoppiare, nello $mezare, nel cauare le radici $i de gli intieri, come de i rotti, & anche in una certa, & ordinata $alita di raccogliere, che $i chiama Progre$$ione. utile è l'Arithmetica a dimo- ftrare le ragioni delle mi$ure, & a $ciorre le dubitationi, che per Geometria $ono in$olubili, co- me nel nono libro ci dimo$tra hauere & Platone, & Pithagora, & Archimede ritrouato molte co$e mirabili. Et in uero uero è quello, che dice Platone, che gli huomini di natura Arithmetici $ono atti ad ogni di$ciplina, come quelli, che in $e habbiano prontezza, & al- tezza di $pirito. Ma perche cagione Vitr. tocca di que$te cognitioni & le $peculatine, & le pratiche? certo non per altro, che per dimo$trare e$$er uero, quanto egli ha detto di $opra, cioè che $i ricerca di$cor$o, et fabrica. et che in ogni arte è la co$a $ignificata, et la $ignificante.</I> <p>La cognitione della i$toria fa, che $i $a la ragione di molti ornamenti che $ogliono fa re gli Architetti nelle opere loro. <I>Vitr. è chiaro per gli e$$empi, che egli dà, dicendo.</I> <p>Come $e alcuno po$to haue$$e in luogo di colonne le $tatue feminili di marmo, quel- le che Cariati $ono chiamate, ue$tite di habito lungo, & matronale. & $opra quelle po$to haue$$e i modiglioni, & i goccialatoi, co$i di tal'opra, a chi ne dimanda$$e, ne ren- derebbe ragione. Caria Città della Morea $i congiun$e con Per$iani contra la Grecia. i Greci con la uittoria glorio$amente dalla guerra liberati di commune con$iglio $i mo$- $ero contra i Cariati, & pre$a la loro fortezza, ucci$i gli huomini, & $pianata la terra, per i$chiaue leuorno le matrone loro, non $opportando, che quelle depone$$ero gli ha- biti, & gli ornamenti di matrone, accioche non in uno $olo trionfo condotte fu$$ero, ma con eterno e$$empio di $eruitu da grande $corno oppre$$e, per tutte le Città loro pa- re$$ero portare la pena, gli Architetti de que tempi ne i publici edificij po$ero le imagini di quelle matrone per $o$tenimento de i pe$i, accioche alla memoria de i po$teri la cono- $ciuta pena de gli errori de' Cariati commendata fu$$e. <p><I>Noi adunque dalle parole di Vitr. prenderemo argomento di ornare gli edificij con la memo ria di que fatti, che grati $aranno a que Principi ouero a quelle republiche, le quali noi uorre- mo honorare, & honorandole a noi grate rendere, & fauoreuoli. come $te$$ero $otto i pe$i quel le matrone Vitr. non dichiara. prende$i argomento da Atheneo dotto, & diletteuole $crittore, che $te$$ero col capo $ottopo$to, & con la $ini$tra mano leuata al $o$tenimento de i pe$i. Ma non ci douemo obligare a credere che $olamente le Cariati $te$$ero in quella maniera. ben loda- remo lo ingegno di Vitr. che dimo$trando la i$toria e$$er nece$$aria allo Architetto, eglihabbia uo luto narrare con forma, et idea i$torica, que$to fatto de Greci et il $eguente de' prigioni Per$iani.</I> <p>Similmente i Lacedemonij $otto Pau$ania figliuolo di Ege$ipolide dopo il fatto d'arme di Platea, hauendo con poca gente $uperato il numero$o e$$ercito de' Per$iani, & con gran gloria trionfato: de i dinari tratti delle $poglie, & della preda, fabricorono in luogo di trofeo della uittoria il portico Per$iano dimo$tratore della lode, & della uirtu de i cit- tadini. & in quel portico po$ero i Simulachri de i prigioni con l'ornamento barbaro del ue$tire, che $o$teneuano il tetto, hauendo con meritato di$pregio la loro $uperbia ca- $tigato: af$ine che i nimici cagione haue$$ero di temere impauriti della fortezza loro, & i cittadini guardando in quello e$$empio di uirtu, dalla gloria $olleuati alla dife$a della li bertà pronti fu$$ero, & preparati: la doue ne gli anni $eguenti molti cominciorno a por- <pb n="16"> re le $tatue Per$iane, che $o$teneuano gli Architraui, & i loro ornamenti: & d'indi tra$$ero argomento di accre$cere nelle opere marauiglio$a uarietà di maniere. Di $imiglianti altre ne $ono, delle quali bi$ogna che lo Architetto ne $ia bene informato. <p><I>Come $i legge della inuentione del capitello Corinthio nel quarto, & d'altri effetti, che $i ue dranno leggendo. egli $i ha nel primo libro di Tucidide Pau$ania Spartano figliuolo di Cleom-</I> <fig> <I>broto capitano de Greci. Plutarco citando Chi$iferno nelle comparationi de Romani, & de i Greci, narra, che di$correndo i Greci per la Per$ia, & facendo di molte prede Pau$ania duce de Lacedemonij riceuè quaranta talenti d'oro da Xer$e, accioche gli tradi$$e la Grecia. la qual co $a poi, che $i ri$eppe, hauendo Age$ilao padre per$eguitato il figliuolo fin' al tempio di Pallade & edicalcha otturò con mattoni le porte del tempio, & iui per fame lo fece con$umare: & la</I> <pb n="17"> <I>madre lo la$ciò in$epolto. Que$to dice Plutarco diuer$amente da Tucidide. Soleuano i Greci nel luogo oue haueuano po$to in fuga, & $uperati i nemici tagliare i rami de gli alberi, & orna- re i tronchi di $poglie ho$tili, per $egno, & raccordanza della uittoria; quel tronco co$i adorno $i chiamaua trofeo, come in Tucidide $i legge in molti luoghi. I Lacedemonij hauendo uinto i Per- $iani, in uece di trofeo, fecero co$a piu illu$tre, & memorabile, percioche de i dinari tratti del- le uendute $poglie, che $i chiamano Manubie, & della preda, che è tutto il corpo del butino, fecero il portico detto Per$iano, del quale Pau$ania ne i Laconici ne fa mentione. Ragiona anche nell'Attica della $tirpe di Pau$ania, & nell'Arcadia dice, che Pau$ania figliuolo di Cleombroto duce de Plate$i, hebbe impedimento di e$$er chiamato benemerito della Grecia per le ribalderie, che egli fece dapoi. Dalle i$torie adunque lo Architetto prende occa$ione, di ador nare le opere $ue, come anche Vitr. in molti luoghi adorna i uolumi $uoi, come nel $e$to capo del primo, nel nono del $econdo, nel primo del $e$to, & ne i proemi de i $uoi libri, & altroue è pie- no di belli$$imi ammae$tr amenti tratti dall'i$torie.</I> <fig> <p>La Filo$ofia fa lo Architetto d'animo grande, $enza arroganza, piaceuole, giu$to, & fedele, non auaro; il che è co$a grandi$sima: la doue $enza fede, & ca$tità niuna co$a <foot><I>C</I></foot> <pb n="18"> ueramente $i può fare. La Filo$ofia oltra di que$to non la$cia entrare la cupidita, ne per- mette che l'animo $ia occupato in riceuer doni, ma fa che con grauità $i difenda la pro- pria dignità, & $e ne riporti buon nome. <p><I>La Filo$ofia dimo$tra allo Architetto il modo di uiuere acco$tumatamente; perche nella Filo$o fia, che è amore & $tudio di $apienza, cioè del bene, & del uero, & la $peculatione delle co$e, & la Regola delle attioni: l'una & l'altra è nece$$aria allo Architetto. Quanto alla regola delle attioni dice Vitr. che la Filo$ofia è nece$$aria allo Architetto, perche la Filo$ofia ua facen- do l'Architetto d'animo grande, sì per abbracciare le grandi impre$e, come per non temere le graui offe$e. Ma perche pare che la grandezza dello ammo apporti il di$prezzo altrui, & una certa $euerità, & arroganza: però $ia lo Architetto di grande animo $enza arroganza, che è uitio oppo$to alla uerità, che oltra il debito attribui$ce a $e. $ia piaceuole sì nell'udire, & $atisfa- re alle dimande de gli imperiti, sì nel $opportare i loro difetti. Ma perche la facilità di natura, & la piaceuolezza puo piegare alla ingiu$titia: però come mae$tro di proportione $ia egli giu- $to, & eguale ad ognuno, & nella egualità $ia fedele nel con$igliare, non $ia auaro nel pigliar doni, nè cupido nel de$iderargli. Con que$te conditioni lo Architetto, con$eruerà il grado, re$terà honorato, & con $ua fatica uiuendo accomodato, dopo $e la$cierà fama immortale. Et però Vitr. hauendo cono$ciuto in $e $te$$o quanto $ia l'ornamento delle predette uirtù, & brutta la macchia de gli oppo$ti errori, dimo$tra in molti luoghi dell'opera $ua $timare piu la uerità che le ricchezze, piu la gloria che l'utile, & bia$ima gli adulatori, arroganti, & auari Ar- chitetti, come da i proemi de i libri $uoi $i puo uedere, i quali ueramente $e fu$$ero uno proemio $olo a tutti i uolumi $i deono leggere inanti, & molto bene con$iderare. La Filo- $ofia adunque ci gioua alla uirtu de i co$tumi, $imilmente ci gioua quanto alla parte po$ta nella cognitione del uero, come dice Vitruuio.</I> <p>Appre$$o la Filo$ofia ci e$plica la $cienza delle co$e naturali, che da Greci è detta phy- $iologia, laquale è nece$$ario che lo Architetto con $tudio maggiore habbia cono$ciuto; come quella che in $e contenga molte & diuer$e dimande naturali; come anche $i uede nel condurre le acque. percioche ne i cor$i, nelle uolte, & nelle sboccature, & u$cite nei piani liuellati, gli $piriti naturali a molti modi $i fanno, a i danni, & difetti delle quali co$e niuno potrà rimediare $e non chi dalla Filo$ofia haurà pre$o i principij dalla natura delle co$e. Oltra di que$to chi leggerà i uolumi di Cte$ibio, o di Archimede, & de gli altri, che hanno la$ciato ne gli $critti precetti di que$ta maniera, non anderà nella loro opnione, $e prima di co$e tali non $arà da Filo$ofi ammae$trato. <p><I>Vna parte della Filo$ofia natur ale è chiamata i$toria naturale, & l'altra $cienza natura- le. l'i$toria è $implice narratione de gli effetti di natura. Lo e$$empio $i puo da gli $critti di Plmio commodatamente pigliare, percioche egli narra $emplicemente tutto quello che $i tro- ua delle co$e fatte dalla natura, cominciando dal mondo, & dalle $ue parti principali, come $ono i cieli, & gli elementi. uiene poi al particolare delle parti della terra, delle pietre, de i metalli, delle piante, de gli Animali, & del huomo, che è fine di tutte le co$e. La $cien za naturale è cognitione delle cau$e; & de i principij di tutte le predette co$e, della quale con ordine, & con dottrina mirabile il buon, Ari$totile ne tratta. tanto l'i$toria, quanto la $cienza naturale, è utile allo Architetto. Vitr. hebbe l'una, & l'altra quanto faceua al bi$ogno, come $i uede nel quarto capo del primo libro, doue $i tratta de i principij delle co$e; & nell'ottauo libro, & nel $econdo prima, & finalmente per tutta l'opera, doue egli parla de gli alberi, delle pietre, delle minere, de gli animali, della uoce, dell'udito, & del uedere, & di mol te opere di natura, le cagioni delle quali $ono a molti propo$iti ricercate, & $pecialmente nella materia delle acque, come $i uederà nell'ottauo libro.</I> Della Mu$ica e$$er deue intelligente lo Architetto, accioche egli cono$ca la regolata ragione, & la Mathematica, & accioche dirittamente caricare & temprare $appia gli in$trumenti da pietre o $aette dette bali$te, catapulte, & $corpioni. <pb n="19"> <p><I>Dimo$tra Vitr. che & quanto alla pratica, & quanto alla ragione la Mu$ica è utile allo Architetto, per quelle parole</I> {<I>Regolata</I>} <I>che nel latino $i dice</I> {<I>Canonica</I>,} <I>& Mathema- tica. La Canonica appartiene alle orecchie, come la pro$pettiua a gli occhi. & è pre$a da Mu $ici pratichi, come fondamento della loro arte u$itata. & è quclla, che mi$ura le altezze, & le lunghezze delle uoci. L'altezza delle uoci da' Greci è detta Melos, cioè canto, & la mi $ura del durare, & del tenere la uoce, è chiamata rithmus, cioè numero, che è mi$ura del tempo. Tiene la canonica un'altra parte, che è detta Metrica, che è Arte del mi$urato com- ponimento, & legato alla quantità delle $illahe; onde a differenza del parlar $ciolto è detta Ar te di far ucr$i. Canonica uuol dire regolata, o regolatrice, come afferma Boetio; percioche egli non $i deue dare tutto il giudicio a i $en$i humani, fallaci, & alterabili per ogni minima offe- $a, benche $iano principij, cioè occa$ioni delle Arti, & ci facciano auuertiti di molte co$e: pe- rò la perfettione, & la forza del cono$cere è po$ta nella ragione, la quale con certe regole re- gi$tra dirò co$i, gli in$trumenti Mu$icali. La Mathematica ueramente la$cia affatto il $en$o, & s'inalza alla $peculatione de i numeri $onori, & de i modi, & delle idee & maniere delle can- zoni, & de i me$colamenti po$$ibili de i tempi delle $illabe, & for$e piu alto $alendo la hu- mana, & mondana conuenienza de i cieli, & l'harmonia delle anime, & de i corpi ua con$i derando. Nel quinto libro ne ragionaremo alquanto, dichiarando quanto $i dirà de i ua$i detti Echei, & delle machine, che egli chiama hydrauliche dicendo poco di $otto.</I> Que ua$i di rame che ne i Theatri $otto i gradi nelle celle con mathematica ragione $i fanno, & il re$to. <I>Ma proua prima quanto egli intende delle tempre & carcature de gli in$trumenti predetti & dice.</I> <p>Imperoche ne i capitelli dalla de$tra, & dalla $ini$tra $ono i buchi de gli homotoni, per liquali con na$pi, o molinelli, $ono tratte le torte fune di neruo, i quali non $i $errano, o legano $e prima non mandano fuori certi, & eguali $uoni alle orecchie de gli artefici. percioche le braccia, lequali nel tirare, & in quelle carcature $i $errano, quando poi $i ri- la$ciano & $i $tendeno, egualmente deono, & parimente mandar fuori la perco$$a. La do- ue $e non $aranno di pari tuoni impediranno il tirare drittamente. <p><I>Certo è nella Mu$ica, che la egualità del $uono mo$tra egualità di $patio, & quella propor- tione che è tra $patio, & $patio, $i truoua anche tra $uono & $uono, & però e$$endo il $uono eguale dall'uno & l'altro braccio, $eguita, che'l neruo, il quale tirato rende il $uono, dentro le braccia $ia eguale. dal che na$ce la bontà dello in$trumento, la giu$tezza della carcatura, & il drittto & certo tiro di quello, come prouano gli arcieri, & i bale$trieri tutto il giorno, & a noi $arà manife$to nel decimo libro, a i diciotto capi.</I> Que ua$i anche di rame che ne i Thea- tri $otto i gradi nelle celle con ragione mathematica, & le differenze de i tuoni, che da Greci, Echea, dette $ono, $i compongono a i dolci, & $oaui ri$uegliamenti Mu$icali, a cella per cella in que giri con quelle con$onanze, che da mu$ici Diate$$eron, Diapente, & Diapa$on nominate $ono: accioche la uoce de i $uoni $cenici nelle di$po$itioni conuenien ti, quando toccherà l'udito, piuchiara, & piu $oaue peruenga all'orecchie de i $pettatori. <p><I>O$curo è Vitr. per la breuità $ua, perche in poche parole uuole e$primere la forza delle co- $e. ma noi nel quinto libro faremo, quanto per noi $i potrà, chiara ogni parola di Vitruuio.</I> <p>Le machine hydrauliche, & altre che $imili a que$ti organi $i fanno, $enza ragione di mu$ica non $i potranno fare giamai. <I>Hydraulica è una machina, che con acqua moue gli $piriti a far $onare un'organo. della quale ingenio$amente ne tratta Vitr. nel decimo libro.</I> <p>Deue anche lo Architetto hauere notitia della di$ciplina del Medico, per cono$cere le inclinationi del Cielo, climata, da Greci nominate. & gli aeri de i luoghi $alubri, o mal $ani, & per l'u$o delle acque: peroche $enza tali ragioni non $i puo fare habitatione che $ia $alubre. <p><I>Le inclinationi, & climi del Cielo $ono fpacij pofti tra due circoli egualmente di$tanti detti paralleli, come $i dirà poi parlando de gli horologij nel nono libro. Vitruuio ueramente hebbe</I> <foot><I>C</I> 2</foot> <pb n="20"> <I>qualche notitia della Medicina, come $i uede nel primo libro, doue egli dimo$tra quali infer- mità da quali uenti $iano generate: & in altri luoghi dello i$te$$o libro, & de gli altri dichia- ra le qualità de i pae$i quanto all'acqne, alle herbe, a gli animali cele$ti, terre$tri, & acquati- ci, co$e tutte alla cognitione del Medico $ottopo$te.</I> Dapoi bi$ogna, che cgli habbia notitia della ragion ciuile, inquanto è nece$$ario a i communi pareti ne gli edificij, al- lo $patio delle grondi, & de i tetti, & delle chiauiche, & de i lumi, & $imilmente delle condotte delle acque, & d'altre co$e $imiglianti bi$ogna che lo Architetto habbia cono$cimento: accioche prima, che $i mettino a fabricare $ieno cauti, & accioche non $i la$cino finite l'opere litigi & controuer$ic a i padri di famiglia, & che nel fare gli $crit- ti, & gli accordi, con prudentia prouedino, & a chi dà, & a chi conduce l'opere. per- che $e il patto $erà ben fatto, & con auertimento, auerrà, che quello da que$to, & que- $to da quello $enza fraude, & inganno $i potrà liberare. <p><I>Qui Vitr. dichiara quello, che egli ha detto di $opra appartenere alla fedeltà & giu$titia dello Architetto. Dico adunque, che quella parte di Filo$ofia, che ci dà la regola del ben uiuere, tratta di diuer$e maniere di beni, tra quali è la uirtu de co$tumi po$ta nella parte ragioneuole, ouero in quella, che ubidi$ce alla ragione. In que$ta parte di Filo$ofia $i tratta de gli affetti bu mani, delle potenze dell'anima, nelle quali $ono gli affetti, de gli habiti di quelle potenze, $ia- no quegli o ecce$$i, o mancamenti, o mediocrità. tratta$$i anche dello arbitrio, della elet- tione, del con$iglio, dello appetito, in cui è la cupidigia, l'ira, & la uoglia. tratta$i delle co$e, che uogliono $imigliar$i alla uirtù, ouero che di quella $ono principij. Per le quali tutte co $e l'huomo è ba$teuole a $e $te$$o. dapoi riguarda il pro$$imo $uo congiunto di $augue, o parte di $ua famiglia, o come parte di uniuer$al gouerno. & nella famiglia ritruoua l'ufficio del patrone, & del $eruo, della moglie, & del marito, del padre, & del figliuolo, acqui$ta, di$pen$a, u$a, gouer- na, & adorna il tutto. Ma nella ciuile, & publica ammini$tratione contenuta da un $olo, o da grandi, o da molti con legittimo reggimento, uede i $aui e$$er in uece di ragione, i $oldati in luogo della iracondia, & gli artefici per la concupi$centia, che $i troua in noi. De i $aui $i fanno i capi, imagi$trati, i facerdoti, i $enatori, i giudici, ne i quali ha fondamento la ragion ci- uile, che è quella, che è fatta da cia$cuna città $econdo il fine del proprio gouerno. La $omma di que$ta ragione è raccolta ne i libri delle pandette; che co$i chiamate $ono, perche raccoglieno tutte le parti della ragion ciuile. La doue $otto il primo titolo $i ragunano i Principi, $otto il $e- condo i Giudici, $otto il terzo le co$e, $otto il quarto le hypothecationi, $otto'l quintoi te$tamenti con le co$e a quelli pertinenti. $otto'l $e$to uarij titoli delle po$$e$$ioni, de i beni cogniti, i danni, le fabriche rouinate, le in$idie di quelle, la legge delle gronde, & dell'acqua piouana parte allo Architetto nece$$aria. & finalmente $otto altri capi, che lungo $arebbe a nominarli. Nel- l'ultimo titolo $ono le $tipulationi, i contratti, i maleuadori, le opere publiche, i mercati, i cen$i & altre co$e, ne i gran uolumi de legi$ti compre$e. delle quali $econdo il bi$ogno ne deue lo Architetto e$$er informato, come di co$e al uiuer pacifico, & $enza litigij pertinenti. Ma pin alto $alire bi$ogna per bene$icio de gli huomini, & però dice Vitruuio.</I> <p>Dall'A $trologia ueramente $i cono$ce il Leuante, il Ponente, il Meriggie, & il Setten- trione, & la ragione del cielo lo Equinottio, il Sol$titio, i cor$i delle Stelle, la notitia del- le quali co$e, chi non po$siedc, non puo $apere la ragione de gli Horologi. <p><I>Vna delle parti principali dell'Architettura è (come $i ucde al terzo capo del primo libro') cerca l'ombre cau$ate dal $ole, & da gli $tili nece<02>arie a fare gli horologij da $ole, & quefta par- te è detta Gnomonica, benche puo importare maggiore intelligenza, & piu ampia, che la de$crit tione de gli horologi come da Euclide $i puo hauere, della cognitione de quali è ripieno con mer aui- glio$a dottrina il nono libro di Vitruuio, nel quale anche $i uede l'altra parte dell'aftrologia, che con$idera le eleuationi, & le di$tanze de i pianeti, & delle $telle, alle quali a$petta la inuentio- ne dello A$trolabio. Quanto ueramente appartiene à quella parte, che da gli a$cendenti nel na-</I> <pb n="21"> <I>$cer no$tro comprende i $ucce$$i delle future co$e; niuno u$o $i troua nell'Architettura, $e for$e noi non uogliamo cercare alcune qualità $ecrete de luoghi, le cognitioni delle quali non $i po$$ono riferire ad altro che à gli ordini, & influ$$i de i pianeti, dal che molti $i mettono a fare le natiuità, & le riuolutioni delli principij della edificatione delle città. ma non è lecito per l'amore, che $i por ta all' Architettura e$$er curio$i di tante cognitioni, che non meno dubie, che inutili, $alua la pace di chi altrimenti crede, e<02>er ueggiamo. però quiui $ia fine alla indottione fatta da Vitr. per di- mo$trare che tanta diuer$ità di cognitioni $ia nece$saria allo Architetto. & però conchiude in que $to modo, dicendo.</I> <p>E$$endo adunque co$i degna di$ciplina ornata, & copio$a di tante, & co$i uarie dottri- ne, io non pen$o, che alcuno di $ubito po$$a ragioneuolmente far profe$sione, & chia- mar$i Architetto, $e con que$ti gradi di $cienze a poco a poco $alendo $in da i teneri anni no drito della cognitione di uarie $orti di lettere non peruenirà al colmo dell'Architettura. <p><I>Quanto uero $ia, che lodar non $i deue co$a alcuna prima, che egli non $i ha dimo$trato quello che è, chiaramente $i uede per le co$e dichiarate fin hora: percioche niuno haurebbe potuto de- gnamente lodare l'Architettura $enza la cognitione della forza, & natura $ua, & delle proprie- tà che le conuengono; & $e $cioccamente egli po$to s'haue<02>e à lodarla; prima non l'haurebbe $a- puto fare, poi non gli $arebbe $tato creduto; & finalmente con$tretto a renderne ragione, fuggito $arebbe, ouero a $e $te<02>o haueria contradetto; & in que$to ca$o di pari con gli ignoranti re$tato $arebbe. Ma prouamo noi $e con ragione potemo lodare l'Architettura: Si ueramente, & prima quanto alla cognitione, poi quanto alle operationi; perche nel cono$cimento, & nel giudicio ella puo e<02>ere con la $apienza, & con la prudenza paragonata, & per le operationi tra le arti come Heroica uirtu & regina chiaramente riluce. Mirabil co$a è il potere a commun beneficio rau- nare gli huomini rozi, & quelli ridurre al culto, & alla di$ciplina $icuri, & tranquilli nelle cit- tà, & nelle fortezze; & poi con maggior uiolenza fatta alla natura, tagliar le rupi, for are i monti, empir le ualli, a$ciugar le paludi, fabricar le naui, drizzare i fiumi, munire i porti, gettar i ponti, & $uperar la natura in quelle co$e, nelle quali noi $iamo dalla natura $uperati: leuando pe$i im- men$i, & $atisfacendo in parte al di$iderio della eternità, dilettando chi non fabrica, & molto piu chi fabrica; ornando i Regni, le prouincie, e'l mondo. Ma perche alcuno piu oltre non $a- pendo puo l'infinito, & lo impo$$ibile propor$i dinanzi, argomentando che non cape in animo humano tanta cognitione, & uarietà di $cienze: però Vitruuio ci dimo$tra in che modo, & in $ino à qual termine, hauer bi$ogna le predette $cienze, & dice.</I> <p>Ma for$e a gli imperiti puo impo$sibil co$a parere, che la natura apprenda, & tenga a memoria tanto numero di dottrine. <p><I>Que$ta è la dubitatione fondata nel potere della natura humana, come impotente a riceuere, & ritenere tanta uarietà di dottrine. Scioglie Vitr. la predetta dubitatione in que$to modo.</I> <p>Ma quando auuertiranno, che tutte le di$cipline tra $e tengono una certa raccommu<*> nanza, & congiuntione, crederanno quello, che io dico, facilmente poter auuenire, per- che quello, che s'impara a gui$a di corpo di tai membri compo$to in $e $te$$o $i raggira, & pe rò chi da primi anni $i e$$ercita in uarie $orti di ammae$tramenti ricono$ce in tutte manie- re di lettere i $egni mede$imi, & uede la raccommunanza delle di$cipline, & per quella fa- cilmente hanno cognitione di tutte le co$e. <p><I>Il dubbio $i puo formare in que$to modo. Quello effetto è impo$$ibile, la cau$a del quale non puo e$$ere, però l'huomo non puo apprendere tante arti, & di$cipline, peroche la cagione di ap- prenderle, e$$er non puo. la uirtù dell'anima in$ufficiente & incapace è la cagione, la quale impe- dita non puo e$$er cagione dello apprendere tante arti. Ri$ponde Vitruuio, & dice argomentan- do; che po$$ibile è quello effetto, il modo del quale è po$$ibile, però puo e$$ere che l'huomo $ia ador nato di molte, & diuer$e di$cipline: percioche il modo è po$$ibile. Il modo ueramente è, che ha- uendo le $cienze una certa raccommunanza tra $e, & qua$i in giro l'una nell'altra mouendo$i, per</I> <pb n="22"> <I>alcune $imiglianze di co$e, non è impo$$ibile, a chi per tempo comincia, & s' affatica ricono$cere la detta communanza, & fare di piu co$e $imiglianti lo i$te$$o giudicio. & però puo e$$er'un ter- mine, & una $obrietà (dirò co$i) di $apere, che hauendo noi tanto po$$iamo commodamente $er uirci. Vedremo di $otto per e$empio quello, che hora s'è detto. Fin tanto Vitr. riprende Pythio Architetto, ilquale haueua opinione, che lo Architetto pote$$e meglio in opinione partitamente, che i proprij profe$$ori cia$cuno nella $ua. dice adunque.</I> <p>Et però Pythio uno de gli antichi Architetti, quello che in Priene fece co$i nobilmente il tempio di Minerua, dice ne i $uoi commentari, che lo Architetto piu deue operare in tutte l'Arti, & dottrine, che quelli, i quali cia$cuna co$a con la loro indu$tria, & e$$erci- tio hanno a $omma chiarezza condotto. Ma que$to con effetto non $i uede chiaro, percio che non deue nè puo l'Architetto e$$er Grammatico come Ari$tarcho, ma bcne non $enza letteratura. Nè come Ari$toxeno Mu$ico, ma non lontano dalla Mu$ica. nè pittore co= me Apelle, pure habbia di$egno. nè qual Mirone $tatuario, o Policleto lauoratore di $tuc chi, ma non ignorante di tale Arte. nè di nuouo Medico come Hippocrate, ma non $enza ragione di Medicina. nè nelle altre dottrine $ingularmente eccellente, ma in que$te non $ia nuouo, & imperito. percioche non puo alcuno in tanta uarietà di co$e con$eguire $in- gular $cieltezza, perche apena cade nel potere no$tro il cono$cere, & perfettamente capi- re le lor ragioni. Nè però non tanto gli Architetti non po$$ono hauere in tutte le co$e gli ultimi effetti, ma anche quelli, che ad una $ola $cientia $i danno, & priuatamente tengono le proprietà delle Arti, non po$$ono fare, che tutti riportino il $ommo principato della lode. Se adunque non tutti in cia$cuna dottrina, ma pochi in molti anni apena ottenuto hanno la nobiltà, come l'Architetto, che e$$er deue in tante arti perito, non farà co$a grande, & merauiglio$a accioche egli non habbia bi$ogno di alcuna delle predette co$e? & di piu $e egli anderà inanzi à tutti gli Artefici, i quali con $omma indu$tria hanno pre$ta to grande $ollicitudine in cia$cuna dottrina. <p><I>Le parole $econdo la interpretatione $ono chiare. proua con argomenti, non e$$er uero il detto di Pythio. Molto piu ragioneuole pare, ch'un'huomo con$egui$ca la perfettione d'una $ola $cien- za, che di molte; & pure di raro $i truoua, che que$to auegna, cioè, che uno $ia in un'arte $ola perfetto: però $e non è quello che pare piu ragioneuole, che $ia meno $arà quello, che manco ci pa- re, cioè, che un'huomo $olo ottenga il $ommo grado in molte, & diuer$e cognitioni. La onde $i conchiude da Vitruuio.</I> {<I>Per il che pare, che in que$to Pythio errato habbia</I>} <I>cioè $e Pythio è $tato eccellente Architetto, $e ha detto molte belle co$e, in que$to però pare, che errato hab- bia, in que$to non gli do fede, e$$endoci il $en$o, & la ragione contraria. Et per piu $tabilire i detti $uoinon $i $corda Vitr. delle co$e $opra po$te da lui, quando, ci di<02>e, che nell'Architettura, come in ogni altra peritia erano due co$e da e<02>er con$iderate, cioè la co$a $ignificante, & la $i- gnificata, però dice il mede$imo con altre parole.</I> <p>Pare adunque, che in que$to Pythio habbia errato, non hauendo auuertito, che ogni arte partitamente è di due co$e compo$ta, cioè dell'opera, & della ragione di quella. & di que$te due una è propria di coloro, che in cia$cuna co$a particolare $i $ono e$$ercitati: & que$to è lo effetto dell'opera. l'altra è commune con tutti i dotti, cioè la ragione. <p><I>Non è alcuno, che ricordando$i delle co$e dette di $opra non intenda quello, che dice Vitru. in que$to luogo, & $e egli non haue$$e anchora appre$o bene che co$a è Fabrica, & di$cor$o, la co$a $ignificante, & la $ignificata, l'opera, & la ragione dell'opera: legga et con$ideri lo infra$crit- to e$$empio dell'autore, che intenderà il tutto, & cono$cerà il giro, & la raccommunanza delle $cienze. dice adunque.</I> Come adiuiene a i Medici, & a i Mu$ici, & $opra il numero$o bat- tere de pol$i, & del mouimento de i piedi. Ma $e egli accaderà medicare una ferita, ò bi- $ognerà trarre di pericolo un'ammalato, non uerrà il Mu$ico, ma $arà opera del Medico propria, così nell'organo non il Medico, ma il Mu$ico canterà, accioche dal $uono le orec- <pb n="23"> chie prendino la dolcezza, & dilettation $ua. <p><I>Molti e$$empi ci adduce Vitr. per li quali $i comprendc, come $i $tia la communanza delle $cien- ze; & prima dimo$tra quella tra due $cienze, & poi tra molte. La Mu$ica, & La Medicina $o- no $cienze, o Arti che uogliamo. l'officio del Medico in quanto Medico, è di indurre, & di con- $eruare la $anità; l'opera del Mu$ico in quanto Mu$ico è dilettare col $uono, & col canto le orec- chie de gli a$coltanti. in que$ti ufficij, & effetti $ono differenti, ma nelle ragioni po$$ono e$$er conformi. la conformità na$ce da una regola commune, che all'uno, & all'altro puo facilmente $eruire, perche con$iderando il Medico la eleuatione, & la depre$$ione de i pol$i, la uelocità, & tardezza, la egualità ouero la di$aguaglianza, conuiene col Mu$ico, ilquale nelle uoci con$i- dera le i$te$$e co$e riguardando a i piedi delle parole che $ono ne i uer$i, o al mouimento de i piedi, che $i fa al $uono di qualche in$trumento. percioche lo e$$er tardo o ueloce, che ri$ponde al tem- po, alto o ba$$o, che ri$ponde al tenore, & a i gradi della noce eguale o di$eguale, che ri$ponde all'uno, & all'altro $ono termini communi, che a molte co$e di natura diuer$e, $i po$$ono appli- care: però non è incommodo alcuno che nella ragione conuenghino molti artefici, i quali $iano nelle opere differenti; & que$to na$ce dal ualore de i principij, i quali e$$endo uniuer$ali, & in- differenti abbracciano piu co$e, & non dipendeno da $oggetto alcuno. Eguale adunque $i puo di- re, de i tempi, de gli $patij, de i mouimenti, de i corpi, de i numeri, delle uirtù, & di molte altre co$e che a diuer$i Artefici con ragione diuer$amente conferme a$pettano. dico diuer$amente con- forme; percioche il principio è uno; come $e io dice<02>i. Lo eguale giunto allo eguale fa il tutto eguale, ma l'applicatione $i fa in materie, & $oggetti diuer$i: perche il Medico applicherà il det- to principio alle qualità, & uirtù dell'herbe, il Mu$ico a i tempi delle $illabe, il filo$ofo naturale a i moti, il Geometra alle grandezze, & altri ad altre co$e; come anche il Medico pigliando dal Geometra, che gli angoli facilmente $i uni$ceno, & la circonferenza non co$i. dice per que$to le ferite circolari e$$er difficili da $aldare, & unire, & i tagli migliori; & in que$to il Medico s'ac- compagnerà col Geometra, nè però il Geometra o$era metter le mani addo$$o d'un ferito, nè il Medico come Medico ardirà oppor$i al Geometra.</I> Simigliantemente tra Mu$ici, & A$tro- logi è commune il di$putare del con$en$o delle $telle, de i concenti & con$onanze Dia- te$$aron, & Diapente nominate, che $ono ne gli a$petti quadrati, o triangolari. <p><I>Io de$idero la$ciarmi intendere, percioche il Philandro benche fidelmente e$ponga le parole dello interprete di Tolomeo; ci la$cia però di $iderio dimaggior intelligenza. Dico adunque, che uolendo gli A$trologi dimo$trare come i corpi cele$ti concordano a mandar qua giu nel centro i diuini loro influ<02>i, hanno pigliato alcune figure di Geometria tra $e proportionate, & ri$ponden- ti. La prima è quella, che ha tre anguli, & tre lati eguali, la $econda che ne ha quattro, la ter- za, che ne ha $gi. hanno poi mi$urato gli ang oli di quelle figure, & ritrouato tra quelli e$$ere pro- portione, & corri$pondenza mirabile; & per quelle hanno giudi cato la conformità, & con$o- nanza, che hanno le $telle nel mandar qua giu le loro diuine uirt uti, & per maggior chiarezza, io dico, che gli angoli $i mi$urano dalla circonferenza compre$a, che tengono le linee, che gli fanno. Dico dapoi, che gli antichi chiamauano A<02>e ogni co$a intiera atta ad e<02>er mi$urata, o partita, & la diuideuano in dodici parti. L'una era detta onza; le due, $e$tante: perche entra- uano $ei fiate nel tutto, che era dodici. Le tre, quadrante, perche entrauano quattro fiate nel- l'A<02>e. Le quattro triente, perche u'intrauano tre fiate. & non denominauano altrimenti le cin- que, che Quincunce, perche non entrauano egualmente a far il tutto come le due, le tre, & le quattro. Ma le $ei erano dette $emi<02>es, qua$i la metà dell'A<02>e. le $ette, $ettunce, per lai$te<02>a ragione delle cinque. le otto, be<02>em, perche alli $ei ne aggiugneno duc. Le noue dodrante, le dieci De$tante, & le undeci deunce, perche in quelle non era moltiplicatione, nè aggiunta, che egual- mente entra<02>e a finire le dodici. Stando le co$e nel $opradetto modo, io dico che lo angolo dritto del quadrato giu$to, & intiero occuperà dodici parti, l'angolo del triangulo, che èmaggiore, & piu largo ne abbraccera $edici, l'angolo della figura di $ei, come piu $tretto, ne tenirà otto. lo an-</I> <pb n="24"> <I>gulo del quadrato per e$$er giu$to, & intiero $arà detto A$$e. quello del triangulo per e$$er mag- giore un terzo, contenerà il dritto intiero, & $arà di piu uno quadrante, che è un terzo, & qui $arà la proportione detta $e$quiterza. L'angulo della figura e$$angulare è minor la metà dell'an- gulo della triangulare, & occupa otto parti della circonferenza, che è di mi$ura be$$ule, cioè d'otto parti; & però tra que$ti anguli è la proportione Doppia nominata. come tra lo angulo del quadrato, & l'angulo dell'e$$angulo è proportione $e$quialtera, cioè che nel continente è una</I> <fig> <I>uolta è meza il contenuto, come otto, cioè il be$- $ale è nel dodici, cioè nell'A$$e una fiata, & uno triente, che è la metà di otto. & que$to $ia detto per quello, che apartiene all'A$trologia. Quello ueramente, che è della Mu$ica, è che il Mu$ico $imilmente con$idera la con$onanza, & quella non ne gli a$petti, ma nelle uoci, & ne i $uoni, & non hanno uoluto u$are i nomi de gli Arithmeti- ci, ma in uece di $e$quiterza hanno detto quarta, in uece di $e$quialtera hanno detto quinta, & per doppia hanno pigliato ottaua, che dette con no- mi Greci $uonano Diate$$aron, Diapente, Diapa- $on; come $i farà manife$to nel quinto libro. Egli bi$ogna adunque $e le uoci deono e$$er con$onan- ti, cioè uenire alle orecchie in modo diletteuole unite & me$colate; bi$ogna dico, che egli ci $ia tra le uoci graui, & acute proportionata di$tan- za. Il mede$imo è bi$ogno, che $ia nel con$en- timento delle $telle (che Vitr. chiama Sympathia) accioche mandino qua giù, unitamente con for- za, & uirtu gl'influ$$i loro. le regole adunque dell'Arithmetica $ono quelle, che fanno la Mu- $ica unita con l'A$trologia. perche la proportio- ne è commune, & uniuer$ale in tutte le co$e atte ad e$$er mi$urate, pe$ate, & numerate.</I> <p>Et con il Geometra della pro$pettiua, & del uedere, & co$i in tutte le altre dottrine molte co$e, ò tutte $ono communi da e$$er di$putate $olamente. Ma gli incominciamen- ti delle opere, che con le mani, & col trat- tamento & e$$ercitio alla $cieltezza, & bellez- za $i conduceno, à quelli $olamente a$petta- no, i quali in una Arte propriamente all'ope- rare $ono ordinati. <p><I>Oltra il commertio (dirò co$i) che tiene l'A- $trologia con la Mu$ica per le $opradette ragioni, $i uede anche la raccommunanza che ella ha con la Geometria per la pro$pettiua, che da Greci opticos logos, cioè ragione del uedere, è nominata. & qui Vitru. dimo$tra la communanza tra piu di due $cienze, & uuole dire, che oltra quello che ha da fare l'A$trologia con la Mu$ica, el- la anche tiene compagnia con la Geometria, perche dal Geometra ella piglia le ragioni della pro$pettiua ri$petto a gli a$petti, & alle di$tanze, d'onde na$ce il ritorno, lo $tato, & il pro- gre$$o de pianeti ne i loro mouimenti. prende il $uo $oggetto la pro$pettiua da due $cienze, dalla</I> <pb n="25"> <I>Geometria la linea: dalla naturale la ueduta: & ne fa una $ola, che io chiamerei Raggio. ma que$te co$e altroue ci $aranno manife$te. Stando adunque quanto $i è detto, & la raccommu- nanza delle $cienze, Vitr. conchiudendo ci pre$criue il modo, & il termine del $apere, & dice.</I> <p>Et però a$$ai parerà hauer fatto colui, che di cia$cuna dottrina hauerà mediocremente cono$ciute le parti, & le ragioni di quelle, & quelle che nece$$arie $ono all'Architettura: accioche egli non $ia la$ciato, & $i perda & manchi, quando di co$e tali, & di tal'Arti bi- $ognerà far giudicio, & proua. <p><I>Perche non deue, ne puo lo Architetto e$$ere perito nella Grammatica come Ari$tarcho, & il re$to, che Vitr. $i ricorda d'hauer detto di $opra, doue di$$e</I> {<I>non deue.</I>} <I>perc oche $e bene lo Architetto pote$$e e$$er perfetto in tante arti, non però per quella perfettione $i douerrebbe propriamente chiamare Architetto, perche u$cirebbe $uori de i termini dell'Architettura; & per que$to molto piu forte $i fa l'argomento di Vitr. contra Pythio, perche prima s'è dimo$trato, che la $ua oppinione per la i$perienza non è uera, poi per ragione non è po$$ibile, & in fine $e be- ne fu<02>e po$$ibile non è conueniente. Simili argomenti u$a Platone, Ari$totele & Galeno, ragio- nando quelli dell'Oratore, & que$to del Medico, $econdo il propo$ito loro: & però quiui dirò co$a, che a me pare degna di con$ideratione, per fare auuertiti quelli, che $i danno ad alcuna $cien za; che chi $ape$$e bene quali fu$$ero i termini di cia$cuna $cienza, & cono$cer pote$$e quando altri ne u$ci$$ero, $enza dubbio egli cono$cerebbe, & ritrouerebbe tante, & co$i belle co$e in cia$cuna, che egli ci darebbe da merauigliare; percioche chi ha bene le proprietà, & le di$tin- tioni delle co$e, puote anche & le raccommunanze, & le $imiglianze cono$cere.</I> <p>Ma quelli, a i quali la natura benigna tanta di $olertia, & uiuezza d'ingegno, & di me- moria hauerà conceduto, che po$sino in$ieme, & la Geometria, & l'A$trologia, & la Mu= $ica, & le altre di$cipline perfettamente cono$cere, certamente pa$$ano i termini, & gli of- $icij dello Architetto, & $i fanno Mathematici, doue facilmente po$$ono di$putare contra quelle di$cipline, perche di piu arme di $cienze armati $ono. <p><I>Egli $i $uole di$putare de i principij d'una $cienza, & $i $uole anche di$putare delle co$e con- tenute $otto que' principij contra chiunque le nega$$e. $e egli $i di$puta de i principij, bi$ogna u$ci- re de i termini di quella $cienza, & u$are una $cienza commune, & uniuer$ale: perche $e le proue na$ceno da i principij, come $i puo contra chi gli niega di$putare $tando ne i termini di quel- la $cienza, non e$$endo co$a inanzi i principij? & però dice Vitr. che chi è armato di piu armi di $cienze puo di$putare contra le $cienze, cioè contra coloro che di quelle ne face$$ero profe$$ione. & per que$to Ari$totele non come Filo$ofo naturale di$puta contra Parmenide, & Meli<02>o, i quali negauano i principij della Filo$ofia naturale: ma come Dialettico, & $opra naturale. Ma $e egli $i di$puta delle co$e contenute $otto i principij di alcuna $cienza, puo bene alcuno non u$cen- do de i termini di quella $cienza di$putare contra chi ragiona<02>e male delle co$e à quella pertinen- ti, perche egli $i $eruirebbe de i principij di quella $cienza; & però quelli che $ono in molte $cien- ze periti, $empre armati $ono, & all'offe$a, & alla dife$a, percioche u$cendo o $tando nella propo$ta qui$tione, $i po<02>ono $aluare con auantagio.</I> <p>Ma rare uolte $i truouano $imili huomini, come fu Ari$tarcho Samio, Philolao, & Ar- chita Tarentini, Apollonio Pergeo, Erato$thene Cireneo, Archimede, & Scopinas Sira- cu$ani, i quali per uia di numeri, & di ragioni naturali molte co$e ritrouate circa gli in- $trumenti, & le regole & gli $tili, a i po$teri degnamente la$ciorno. Quando adunque $ia, che dalla $olertia naturale non a tutte le genti per tutto, ma a pochi huomini conce- duto $ia l'hauere co$i buoni ingegni, & l'ufficio dello Architetto $ia e$$ere in tutti gli am- mae$tramenti e$$ercitato, & la ragione della co$a permetta, che non $econdo la nece$sità le $omme, ma le mediocri cognitioni delle di$cipline egli habbia: io ò Ce$are, & a te, & a quelli, che leggeranno i miei uolumi, dimando, che $e alcuna co$a poco $econdo le re- gole di Grammatica $arà da me e$plicata, egli mi $ia perdonato. perche non come $om- <foot><I>D</I></foot> <pb n="26"> mo Filo$ofo, nè cloquente Oratore, nè Grammatico nelle piu eccellenti ragioni del- l'Arte e$$ercitato, ma come Architetto di que$ta maniera di lettere ammae$trato mi $ono sforzato di $criuere que$te co$e. <p><I>Conchiude Vitr. con mirabile circondottione, & abbracciamento le dette co$e, tenendo lun- gamente $o$pe$o lo intendimento prima, che uenghi al fine, ilche èidea, & forma della grandez- za del parlare, che $i $ostenta con alcune particelle la $ententia, come $ono, benche, non $ola- mente, quantunqae, auegna Dio, & altre $imiglianti, che richiedeno altre ri$pondenze. Ecco quanto è ripieno que$to parlare di $entimenti, & d'Argomenti, & prima dalla natura delle co- fe, quando dice</I> {<I>ma a pochi huomini conceduto $ia.</I>} <I>Da poi dall'Arte, quando dice</I> {<I>& l'ufficio dello Architetto.</I>} <I>Indi dalle co$e i$te<02>e quando dice.</I> {<I>Et la ragione della co$a per- metta.</I>} <I>& finalmente chiude il $entimento.</I> {<I>10 che o Ce$are.</I>} <I>Propone poi di che egli habbia a trattare dicendo.</I> Quanto ueramente ricerca il potere di que$t'Arte, & le ra- gioni, che in quello po$te $ono, prometto (come io $pero) in que$ti libri non $olo à gli edificatori, ma à tutti i $aui $enza dubio con grandi$sima autorità poter pre$tare. <p><I>Pareua la prome<02>a di Vitr. grande, & gonfia, però con prudenza egli ui po$e quelle paro- le</I> {<I>come io $pero</I>} <I>per dimo$trare mode$tia. dice adunque che egli promette pre$tare quanto por ta la facoltà dell'Architettura, non $olamente a gli edificanti; ricordando$i di hauer detto, che l'Architettura na$ce da Fabrica, ma a tutti i periti le ragioni dell'Arte promette, lequali nel di$cor$o, nella co$a $ignificante, & nella proua della Fabrica $ono ripo$te. & però $enza dub- bio con grandi$$ima autorità o<02>erua le prome<02>e, percioche come $auio Architetto fonderà l'Ar- te $ua $opra ueri, efficaci, utili, & conformi precetti. Et tanto detto $ia $opra il primo capo.</I> <HEAD><I>Di quali co$e è composta l'Architettura. Cap. II.</I></HEAD> <p>L'ARCHITETTVRA con$i$te in Ordine, in Di$po$itione, in bel Numero, in Compartimento, in Decoro, & in Di$tributione. <p><I>Chiunque inten derà bene il pre$ente capo, con uerità potrà dire $apere, & in- tendere in che con$i$ta la forza dell'Architettura. percioche le $ei co$e, nelle quali afferma Vitr. che con$i$te l'Architettura, $ono quelle, che appartengono alla forza, & natura di e<02>a; quelle delle quali è l'habito nella mente dello Architetto; & quelle finalmente, $enza le quali niuna opera puo hauer forma, o perfettione. Difficil co$a è dimo$trare la diuer$ità che è tra le predette co$e: & bella co$a è la$ciar$i intendere, & non fuggire. Percioche a molti può pa- rere, che Vitru. nel diffinire le dette $ei co$e, dica il mede$imo in piu modi: Il che non è, com'io mi sforzerò di dimo$trare chiaramente. Dico adunque per intelligentia di quello, che $i deue e$ponere, che alcune co$e inquanto all'e$$er loro non $i riferi$cono ad altre, ma libere, & a$$olute $ono. Altre hanno rilatione, & ri$petto, & $enza non $tarebbeno. l'huomo, la pietra, la pianta, & finalmente ogni $o$tanza non hanno riguardo, & comparatione ad altra co$a, perche da $e $tanno: ma l'e$$er padre, patrone, mae$tro, amico, fratello, non puo $tare da $e, ma di nece$$ità ad altro $i riferi$ce. perche'l padre ha rilatione al figliuolo, il patrone al$eruo, il mae$tro al di$ci- pulo, l'amico all'amico, il fratello, al fratello. $imilmente il doppio, il maggiore, il minore & l'eguale $ono co$e, che $ole non po$$ono nè e$$er inte$e. Oltra la predetta di$tintione egli è degno di auuertimento, che delle co$e, le quali di loro natura $i riferi$cono ad altre, $ono alcu- ni termini: & que$ti $ono il fondamento & principio dal quale s'incomincia la relatione, & il fine nel quale ella termina: come la ragione di e<02>er padre comincia da chi genera, & termina in chi è generato. Lo e$$er mae$tro $i fonda in colui, che in$egna, & ha il $uo termine in colui, che impara. lo e$$er maggiore comincia in quella co$a, che eccede, & fini$ce nella co$a ecce$$a. In</I> <pb n="27"> <I>que$te comparationi di co$e $pe<02>o adiuiene egualità, & parità, cioè che tanto nel fondamento, quanto nel termine $i troua ragione eguale, come dicendo, amico, o fratello: percioche l'ami- co è pari all'amico, il fratello al fratello, nè $i troua ragione maggiore nell'uno che nell'al- tro termine. $pe$$o anche $i uede nelle co$e riferite di$parità, & di$aguaglianza, come dire pa- trone & $eruo, padre & figliuolo, mae$tro & di$cipulo, perche egli importa che $i cominci piu da uno, che dall'altro; & altra ragione è nell'uno termine, & altra nell'altro. Que$te di- $tintioni hanno gran forza a fare, che bene s'intendino le $ei predette co$e. percioche tutte $ono comparationi, & relationi, come $i uederà qui $otto. Hauendo adunque Vitru. formato lo Ar- chitetto, cioè fattolo degno agente di tanti artificij; tratta della forma; percioche e$$endo la ma- teria imperfetta niuna co$a da e$$a $i trarrebbe $enza la perfettione, & la forma; la quale con- $i$te nelle $ei predette co$e. Due fini $i truouano delle opere, uno è il compimento, & finimento del lauoro, come, quando $i dice, l'opera è finita, & compita: l'altro è il fine della intentione; che è, quando fornita l'opera $i dice, io ho l'intento mio; come fornita la ca$a io $ono dife$o da i uenti, & dal $ole, & $icuro de i contrarij. Per uenire adunque al fine dell'opera, egli è nece$- $ario ($e con arte ci uogliamo gouernare) procedere ordinatamente; & que$to in due modi; pri- ma quanto alla quantità, & grandezza delle parti, poi quanto alla $o$tanza con qualità di e$$e parti. nel primo è l'ordine, nel $econdo è la di$po$itione. & perche la qualità $i può con$iderare in $e $te$$a, & comparandola alla forma, che all'a$petto, & à gli occhi $i riferi$ce; però bi$ogna che nell'opera $ia una certa qualità, che contenti, & diletti gli occhi de' riguardanti; & que- $ta è detta da Vitr. Eurithmia, della quale $i dirà poi. Et perche non $i propone l'opera infinita, ma terminata in grandezza sì del tutto, come delle parti; però bi$ogna, che oltra l'ordine ci $ia una corri$pondenza delle mi$ure tra $e, & al tutto comparate. che propo$to che ci $ia la mi$ura d'una $ola parte, $appiamo le mi$ure delle altre; & propo$taci la grandezza del tutto $appiamo la grandezza di cia$cuna parte. & que$ta corri$pondenza è nominata Simmetria, qua$i concor- $o, & corri$pondenza di mi$ure. Noi la chiamamo compartimento, i latini $i $erueno del nome Greco. Ma perche l'opere che $i fanno hauer deono autorità, & riputatione, & e$$er anche all'u$o de' mortali accommodate, & con prudenza di$pen$ate; però uolendo noi ottennere le predette co$e, fa bi$ogno $eruar quello, che $i conuiene, che Decoro $i chiama, & di$pen$are il tutto, il che è po$to nella di$tributione, dellequali co$e $i dirà poi partitamente, ponendo prima $otto un'a$petto la $opra detta $ufficienza delle $ei co$e.</I> <fig> <p><I>Noi di$tintamente ragioneremo di cia$cuna parte, & prima dell'ordine.</I> <p>Ordine è moderata attitudine de i membri dell'opera, partitamente, & ri$petto a tut ta la proportione al compartimento, ilquale $i compone di quantità, <p><I>Perche in molte co$e ritrouamo ordine, di$po$itione, decoro, di$tributione, & le altre par ti $opradette, però diremo che que$ti termini $ono generali & communi: & come generali, & communi hanno le loro diffinitioni nella $cienza generale, & commune, che è la prima detta Metaphy$ica. Ma quando alcuno artefice uuole applicare alcuna di quelle parti alla propria co gnitione, re$trigne quella uniuer$alità al particolare, & proprio dell'arte $ua. come $i uede al</I> <foot><I>D</I> 2</foot> <pb n="28"> <I>pre$ente, nelle dette diffinitioni, & prima nella diffinitione dell'ordine. Certo è che l'ordine in $e, & $econdo la natura $ua nel generale, è quando una co$a di $ua ragione pone un'e$$er dopo l'altro: & però ne $egue, che doue è ordine $ia prima, & poi, & que$ti $ono termini communi, & che abbracciano molto. Ma lo Architetto gli ri$trigne a $e, benche con piu larghezza, che ogni altro Arte$ice: percioche la $cientia & cognitione dello Architetto è piu ampia che quella d'un altro. Dice adunque che l'ordine è quando in una opera di $ua ragione l'e$$er d'una quantità è po$to prima, & l'altro poi: & in que$to modo la diffinitione dell'ordine è fatta propria per l'applicatione de i termini communi & uniuer$ali, ne i quali $i può dire, che po$ta $ia la racco- munanza delle $cienze. Perche adunque $i $tia ne i no$tri primi fondamenti, io dico che l'ordi- ne è tra quelle co$e, che $i riferi$cono ad altre, & che po$te $ono in comparatione, & ri$petto. Dico di piu che la comparatione è di quelle, che $ono nella di$aguaglianza. chiaro è che nell'or dine $ia ri$petto, perche nell'ordine s'mtende, che alcuna co$a preceda, & altra $ucceda. euui anche di$aguaglianza perche $e tutte le co$e fu$$ero eguali, già non $arebbeno tutte, come dice $anto Ago$tino, perche non ui $arebbono quelli che haue$$ero a precedere; & però l'ordine è di$pen$atione delle co$e pari, & di$pari, eguali, & di$eguali. L'ordine dello Architetto è d'in- torno la quantità, & nella quantità $i troua l'ordine, che riguarda al tutto, & l'ordine, che riguar da alle parti, non che l'un ordine in effetto $i ritruoui $enza l'altro: ma in modo, che lo intelletto puo fare la di$tintione, & intendere cia$cuno $eparatamente: & però dice Vitruuio quanto all'ordine, che è tra le parti, che l'ordine è moderata attitudine de i membri dell'ope ra partitamente, & que$ta attitudine, che egli chiama commodità, con$i$te nel regolare, & temprare una parte cerca la $ua grandezza in modo, che $ia mi$ura delle altre, & con quelle conuegna, & ri$ponda; & in que$ta regolatione la parte, che come mi$ura $i piglia, deue precedere alle altre. nell'ordine adunque applicato all'Architettura, $i truoua il prima, & il poi. & que$te $ono differenze oppo$te, & di$eguali, & però $i deono ridurre $otto un termine commune; & que$ta è la regola. ma piu chiaramente per lo e$$empio; & que$to quando io hauerò dichiarito l'ordine delle parti comparate al tutto. Dice inquanto a que$to ordine. Vitr.</I> {<I>Et un ri$petto di tutta la Proportione al compartimento.</I>} <I>Proportione è comparatione di co$e tra $e, che $ono d'una i$te$$a natura. Que$ta $i fa nell'Architettura, pigliando una certa, & determinata quantità, la quale $ia regolatrice di tutte le altre gran dezze, & mi$ure delle parti, & membri dell'opere. Lo e$$empio è que$to. Vitr. nel terzo libro al $econdo Capo uolendo render conto della bella maniera de i tempij, nella quale è lo $patio conueniente, & bello tra una colonna, & l'altra, dice che egli bi$ogna, che lo $patio & il uano o lume $ia della gro$$ezza di due colonne, & un quarto piu. & con que$to dice. $e la facciata del luogo, doue $i ha da fabricare $arà di quattro colonne, bi$ognerà compartirla in undici parti & meza, la$ciando le $pire: & di quelle undici, una deue e$$er il modulo; che co$i egli chiama quella mi$ura, che regola tutte le grandezze dell'opere. Dona alle gro$$ezze delle co lonne un modulo, a i uani due moduli, & un quarto, al uano di mezo tre moduli. & in que$to modo ordina tutta la facciata; come chiaramente $i uede che quattro moduli $i danno a quattro colon- ne, tre allo $patio di mezo, che $ono $ette, quattro et mezo a gli $patij, & uani da i lati, che $ono undici & mezo. Et la ragione i$te$$a è lodata $e la fronte $arà di $ei colonne, perche quella $arà partita in parti diciotto, una di quelle $arà il modulo, la gro$$ezza delle colonne $arà d'un modulo, e$$endo adunque $ei colonne, anderanno $eimoduli nelle loro gro$$ezze, nel uano di mezo tre mo duli, che con i predetti $ei fanno noue. ma ne i uani dall'una & l'altra parte, che $ono in tut- to quattro, andandoui due moduli, & un quarto per uano, u'ander anno altri noue moduli, i qua li raccolti con i noue di prima faranno la $omma di diciotto. & co$i ua nella facciata di otto colonne che in uentiquattro parti, & meza partita, fa il modulo d'una di quelle, col quale $i mi$iura come di $opra. Nelle machine anchora, & nelle altre opere $i uede o$$eruato quanto s'è detto. Ordine adunque è comparatione di di$aguaglianza, che comincia in una pri-</I> <pb n="29"> <I>ma pre$a quantità, come regola di tutte le parti, & a quelle, & al tutto riferita: $acendo una conuenicnza di mi$ure nominata $immetria.</I> Que$ta $i compone di quantità, laquale è conueniente effetto de i moduli dalla pre$a dell'opera, & di tutte le parti de i membri. <p><I>La $immetria, & compartimento $i compone di molte quantità ad uno i$te$$o e$fetto: la qual quantità è diffinita da Vitr. & di noi con l'e$$empio dichiarata. nel qual e$$empio prima $i pi- glia il piano intiero della fronte, & quello in parte $i diuide, & d'una di quelle parti $e ne $a la regoletta, & il modulo, ilquale tempera, & modera i membri, & le parti dell'opera fa- cendo nel tutto un conueniente effetto.</I> La di$po$itione è atta collocatione delle co$e, & nel componimento $cielto effetto con qualità. <I>La di$po$itione compara le parti dell'ope- re non come grandezze, & quantità, ma come parti da e$$er collocate nel proprio luogo. percioche non è a ba$tanza ritrouare una commune mi$ura, che $ia regola della grandezza delle parti, ma bi$ogna anche ritrouare un'ordine di quella co$a, che ha parti, non compa- rando le parti come grandezze, & quantità, ma comparandole come co$e da e$$er po$te al $uo luogo. Due maniere ci fa la di$po$itione, l'una dal ca$o procede, o dalla nece<02>ità, & l'altra dall'artificio, o dal $apere. Vitr. ragiona di pre$ente di que$ta ultima, ma nel $e$to libro ra- giona della prima, & molto bene $i la$cia intendere al $econdo Capo del detto libro, cerca le predette co$e dicendo in quel luogo.</I> Niuna cura maggiore hauer deue lo Architetto, che fare, che gli edificij habbiano per le proportioni della rata parte i componimenti delle lo ro ragioni. quando adunque $arà fornita la ragione delle mi$ure, & con di$cor$o e$pli- cate le proportioni. <I>(Come ricerca l'ordine, & la $immetria,)</I> all'hora è proprio an- che dell'acutezza dello ingegno prouedere alla natura del luogo, all'u$o, alla bellezza, & aggiugnendo, o $cemando far conueneuoli temperamenti, accioche quando $arà leua to, o aggiunto alcuna co$a alla mi$ura, cio paia e$$er $tato drittamente formato. <p><I>Come fa Vitruuio nella di$po$itione delle Ba$iliche, nel quinto libro.</I> <p>In modo che niente piu $i di$ideri nell'a$petto <I>(Ecco la Eurithmia,)</I> perche altra forma pare, che $ia d'appre$$o, & al ba$$o; altra di lontano, & in altezza, nè quella pare in luogo rinchiu$o, che pare in luogo aperto. nelle quali co$e è opera di grande inge gno $apere prendere partito. <p><I>Et in fine del detto capo dice piu chiarmente, toccando la di$po$itione, che dal ca$o, o dalla ne ce$$ità procede.</I> Io non pen$o, che bi$ogni dubitare, che alle nature, & nece$sità de i luoghi, non $i debbiano fare gli accre$cimenti, & le diminutioni, ma in modo, che in $i- mil opera niente $ia di$iderato. & que$to non $olo per dottrina, ma per acutezza d'inge- gno $i puo fare; & però prima egli $i deue ordinare la ragione delle mi$ure, dalla quale $i po$$a pigliare $enza dubitatione, il mutamento delle co$e. Da poi $ia e$plicato lo $patio dal ba$$o dell'opera, che $i deue fare, di largezza, & di lungezza. della qual opera, quan- do una fiata $arà determinata la grandezza, ne $egua l'apparat o della proportione alla bellezza, accioche dubbio non $ia lo a$petto della con$onanza, a chi ui uorrà $opra con- $iderare. <p><I>Dalle parole $opra dette chiaramente $i cono$ce il numero, l'ordine, & la natura delle $ei co- $e predette. io ho uoluto allegare i luoghi di Vitr. per e$$ere lo intento mio di e$ponere Vitr. con Vitr. i$te$$o. dice adunque, $eguitando la $ua diffinitione, che la di$po$itione è atta collocatione del le co$e. Et per co$e intende le $tanze, & le parti di e$$e nella fabrica, ouero le parti dell'opere fat te dall'Architetto, $ieno quali $i uoglia. da que$ta ben di$po$ta collocatione delle parti, na$ce il ue- dere in tutta la compo$itione una bella qualità, che è $ito conueniente di cia$cuna co$a. & però dice, $cielto effetto, cioè sbrigato, netto, di$tinto. Alla di$po$itione s'oppone il $uperfluo come all'ordine s'oppone la confu$ione. Et $i puo dire, che l'ordine è di$po$itione delle mi$ure alla $im- metria, & la di$po$itione è ordine delle parti al luogo, come $i uederà al $e$to capo del primo, & in molti altri luoghi.</I> Leidee della di$po$itione $ono que$te la pianta, lo in piè, il profilo. <pb n="30"> La pianta è un moderato u$o della $e$ta, & della regola, dal quale $i piglia il di$egno delle forme nel piano. Lo in piè, è la imagine dritta della fronte, & figura con modo dipinta, con le ragioni dell'opera, che $i deue fare. il pro$ilo è adombratione della fronte, & dei lati che $i $co$tano, & una ri$pondenza di tutte le linee al centro della $e$ta. <p><I>Nel di$ponere, & collocare le parti lo Architetto forma nel $uo pen$iero, & poi di$egna tre maniere, ouero idee delle opere: Vna è detta da Greci, ichnografia, cioè de$crittione, & di$egno della pianta, per dare ad intendere la collocatione delle parti, & la largbezza, & lungezza dell'opera. alche fare ci uuole un moderato u$o della $e$ta, & della regola. L'altra è detta, ortho graphia, cioè de$crittione, & di$egno del leuato, & dritto, sì per dimo$trare l'altezza delle ope- re, come la maniera. deue e$$er lo in piè conforme alla pianta, altrimenti non $arebbe un'i$te$$a co$a quella, che na$ce, & quella, che cre$ce: ilche è grande errore, & contra la natuna delle co $e, percioche nelle piante, & ne gli animali $i uede quello, che na$ce, & quello, che cre$ce e$- $er lo i$te$$o, & niuna parte aggiugner$i da poi. La terza idea è il profilo, detto $ciografia, dal quale grande utilità $i prende, perche per la de$crittione del profilo $i rende conto delle gro$$ezze de i muri, de gli $porti, delle ritrattioni d'ogni membro, & in que$to l'Architetto come Medico dimo$tra tutte le parti interiori, & e$teriori delle opere, & però in que$to ufficio ha bi$ogno di grandi$$imo pen$amento, & giudicio, & pratica, come à chi, con$idera gli effetti del profilo è manife$to: perche la eleuatione della fronte, & la mae$tà non dimo$tra gli $porti, le ritrationi, le gro$$ezze delle cornici, de i capitelli, de i ba$amenti, delle $cale, & d'altre co$e, però è nece$- $ario il profilo; & con que$te tre maniere di di$po$itione l'Architetto s'a$$icura della riu$cita del- l'opera, & fa piu certa la $ua intentione, & l'altrui di$iderio di far opera lodata, & degna. Et appre$$o puo fare il conto della $pe$a, & di molte co$e all'opere pertinenti. Dalle dette idee, che $ono forme concette nella mente, & e$pre$$e nelle tauole, o carte, ne uiene quello effetto $cielto, & elegante, che egli ha detto. Si deue anche auuertire, che Vitr. e$ponendo le nature delle $ei pre- dette co$e, uiene a confermare quelle, che $ono nece$$arie allo Architetto, percioche $i uede nella di$po$itione, & nelle $ue $pecie, quanto utile $ia il di$egno, & la Geometria. $i uede nell'ordine, quanto commoda $ia l'Arithmetica. & uedera$$i nelle altre parti quanto ci $arà a propo$ito la Pro$pettiua, la Mu$ica, & quelle co$e, che all'i$toria, & alle altre qualità dello Architetto $o- no conuenienti. L'in piè è imagine della fronte. Là doue rappre$enta $opra il piano d'una carta, tela, o tauola quello, che na$ce dalla pianta riferendo il tutto alle ragioni dell'opera, che $i deue $are $ia ella Dorica, Ionica, o qual $i uoglia. Vitruuio ha chiamato fronte ogni co$a, che dritta $i uede. Molti $ono, da i quali $i potrà hauere una pianta, & anche non u$cendo fuori de i termi ni di quella, faranno lo in piè $econdo la ragione dell'opera futura, ma non $apranno in ogni ordi- ne della fabrica dimo$trare in di$egno la gro$$ezza de i pareti, quello, che po$a $ul uiuo, quello, che e$ce, & quello, che entra; & però mancheranno di que$ta terza $pecie, & Idea della di$po$i- tione, per la $ua difficultà. Que$ta utilità del profilo mi muoue ad interpretare $ciografia, & non $cenografia. perche $e bene la $cenografia che è de$crittione delle $cene, & pro$pettiua, è nece$$aria nelle co$e de i Theatri, come $i uederà nel quinto libro; non però pare, che $ia $econdo le idee della di$po$itione, delle quali $i parla. Altri uogliono, che s'intenda il modello. ma que- $to non corre con il propo$ito no$tro, $e bene egli fa piu chiara, & certa la intentione dello Archi- tetto: oltra che non conuiene la diffinitione data da Vitr. al modello. Potrebbe dire alcuno che la detta diffinitione non quadra al profilo; io ri$pondo, che e$$endo tanto nece$$ario il profilo, & molto piu, che la pro$pettiua, bi$ogna con$iderar bene la detta diffinitione. Io per me, quan- do haue$$i ad intendere in que$to luogo la pro$pettiua, uorrei che fu$$ero quattro le idee della di- $po$itione, per ponerui il profilo; tanto egli mi pare nece$$ario. Ma pare anche di nuouo, che conuenendo la diffinitione della di$po$itione a due delle $ue idee, cioè alla pianta, & allo in piè, per- che di cia$cuna $i può dire, che è atta collocatione delle co$e, & nel componimento $cielto effetto con qualità: mi pare dico, dinuouo, che ella non conuenghi alla $ciografia, $e per $ciografia s'in-</I> <pb n="31"> <I>tende pro$pettiua, perche nella pro$pettiua non $i puo uedere atta collocatione delle co$e, nè meno nel componimento $cielto effetto con qualità. La cagione è, che è nece$$ario, che il genere $i di- ca delle $ue $pecie, & che la diffinitione del genere conuegna alle $petie $otto quel genere compre$e. Molto bene adunque al profilo conuiene la diffinitione della di$po$itione, perche $i uede nel profi-</I> <fig> <I>lo $cielto è sbrigato effetto nel componimento, & $i uede una atta collocatione delle co$e. come a chi ben con$idera, è manife$to, perche tutte le linee uengono all'occhio $enza impedimento, & $i cono$cono gli $porti, & le ritrattioni, & le gro$$ezze come $ono, & non come appareno con linee, & anguli proportionati, come $i fa nella pro$pettiua: $e bene pare, che la diffinitio-</I> <pb n="32"> <I>ne della $ciografia addotta da Vitr. accenni la diffinitione della pro$pettiua. Et quando pure egli, & altri intender uogliono, che $i ragioni della pro$pettiua, & io con loro m'accorderò, & dirò di piu, che egli è nece$$ario conceder qualche luogo al profilo nella di$po$itione, per le ragioni, che io ho detto, rimettendomi $empre à miglior giudicio. Ma $arebbe gran co$a, che trattando Vitr. in que$to luogo di co$e uniuer$ali a tutta l'arte egli uole$$e intendere delle particolari, & la- $cia$$e le co$e importanti mancando al $uo ordine.</I> <fig> <p>Que$te na$ceno da pen$amento, & da Inuentione. Pen$amento è cura piena di $tudie & effetto d'indu$tria, & uigilanza d'intorno all'opera propo$ta con dilettatione. <p><I>Vitruuio in que$to luogo dimo$tra da che na$ceno le predette maniere, & idee della di$po$itie- ne: & come huomo, che bene habbia prouato, & $entito in $e $te$$o quello, che egli dice, u$a a cuni termini efficaci per i$primere la $ua intentione. Se adunque la natura ci apporta$$e le prede<*> te forme & idee, $enza dubio poco ci bi$ognerebbe u$are dello artificio. Ma perche la natura non ci mo$tra le dette co$e: nece$$ario è ricorrere all'Arte. & perche con l'arte $i cerca di rappre$entare gli effetti alla natura $imiglianti, però ci uuole pen$amento: & per e$$er difficile, con arte con$eguire lo intento no$tro, però grande $tudio, & indu$tria $i richiede: ma poi che dalla diligenza & indu$tria na$ceno belle & leggiadre co$e, di $ubito s'accompagna il diletto & il piacere, il quale non è altro, che riceuere impre$$ione di qualità che $ia conforme allo appeti- to, & de$iderio, & però il piacere dello intelletto è di apprendere il uero, perche niuna co$a è piu conueniente allo intelletto, che la uerità, onde $i dice: Altro diletto ch'imparar non trouo. Il dilet to del $en$o èriceuere qualità di qualche oggetto, che conuenga, & corri$ponda al $en$o: co- me $i pruoua nelle delicate uiuande, nella $uauità de gli odori, nella dolcezza de $uoni, nella ua-</I> <pb n="33"> <I>ghezza delle pitture, & ne i giocondi oggctti de i no$tri $entimenti. & però dice Vitr. & bene, che pen$amento è cura piena di $tudio: percioche è cerca le co$e difficili, & non dimo$trate dalla natura, & per meglio i$primere il $uo concetto dice.</I> {<I>E$fetto d'indu$tria & uigilanza cerca l'opera propo$ta con dilettatione</I>} <I>Percioche non pen$a bene chi non è indu$trio$o, & uigilante, come era Archimede, il quale comparando gli effetti naturali, & cercandone le cagioni, hebbe cau$a di trouare il uero della propo$ta dimanda, come dice Vitr. nel nono libro al terzo Capo. & hauendolo trouato da mirabile letitia $oprapre$o, u$cito del bagno ignudo correndo gridaua, io l'ho trouato, io l'ho trouato. nel che apparue la pronta, & nobile uiua- cità dell'ingegno $uo, hauendo in poco $patio applicato il mezo al debito fine, re$tandone $om- mamente $atisfatto per la inuentione la quale $econdo Vitr.</I> E dimo$tramento delle o$cure dimande, & ragione della co$a ritrouata di nuouo con pre$ta, & mobile uiuacità. <I>& que$ti $ono i termini della di$po$itione; Dimanda è propo$ta dubbio$a, dubbio è po$to tra mezo l'affirmare, & il negare. quando adunque lo intelletto è tra'l $i, & il nò, egli forma una dubbio$a propo$ta, che $i chiama dimanda, ouero qui$tione. & u$a alcune particelle, che dimo$trano il modo dello interrogare, & di richiederne la ri$po$ta. come è. $ei tu buono o no? che co$a è bontà? d'onde uiene? a chi peruiene? & altre co$e & modi $imiglianti, i quali non piegando piu all'affirmatione, che alla negatione, richieggono certa, & indubitata ri$po$ta, la quale non puo e$$er ben fatta, $e non da quelli, che haueranno la inuentione per lo pen- $amento, & per la indu$tria, & uiuacità dello ingegno, & que$ti $ono i termini della di$po- $itione: cioè la di$po$itione è rinchiu$a nelle tre $opradette maniere, che $ono la pianta, lo in piè, il profilo.</I> Il bel numero detto Eurithmia, è a$petto gratio$o, & commoda forma nelle compo$itioni de i membri. que$ta $i fa quando i membri dell'opera $ono conuenienti, come dell'altezza alla larghezza, della larghezza alla lunghezza, & in fine ogni co$a ri$ponda al $uo compartimento proprio. <p><I>Suo proprio dico, peroche $e ri$ponde$$e a i compartimenti, & alle $immetrie conuenienti ad altre parti, non $arebbe cono$ciuta la gratio$a maniera. & qui $i deue riferire la Eurithmia allo a$petto, come Vitruuio dichiara in molti luoghi, nel terzo libro al $econdo Cap. & all'ul timo, & nel $e$to al $econdo. Et perche ogni proportione è nata da i numeri, però egli $i ha $eruato il nome predetto in ogni co$a, doue $ia proportione. & perche la larghezza, al- tezza, & lunghezza delle opere, deue e$$er grata allo a$petto, & que$to non $i fa $enza proportione, & doue è proportione, è nece$$ario che $i truoui numero; però il nome di Eu- rithmia è $tato pigliato. Deue e$$er adunque ogni artificio$o lauoro a gui$a d'un belli$$imo uer$o, il quale $e ne corra $econdo le ottime con$onanze $uccedendo le parti l'una all'altra, $in che peruenghino all'ordinato fine. Et benche alcuna co$a ottima non $ia, niente di me- no puo e$$ere ottimamente ordinata, come egli è manife$to nelle parti, & membra del corpo humano, & nelle co$e artificiali, doue è la con$onanza, & l'armonia. Imperoche $e bene l'oc chio è piu nobil co$a del piede, pure $e riguardamo l'ufficio di cia$cuno, tanto l'occhio, quan to il piede, $aranno nel corpo ottimamente $ituati: in modo che nè l'occhio $arà miglior del pie- de, nè il piede miglior dell'occhio. Similmente è nella citara: percioche tutte le corde po$- $ono e$$er proportionate in modo, che $e alcuna $arà tirata, accioche $e le dia $uono migliore, non re$terà però la con$onanza. Il $imile $i richiede nelle opere, nelle quali è nece$$ario, che ci $ia que$to ri$petto di formare con perfetta ragione tutte le parti, che $ono di lor natura di$tinte, di modo che tutte concorrino alla bellezza, & dilettino la ui$ta de riguardanti. Co me nel cantare $i richiede il con$erto delle uoci, nel quale oltra che le uoci $ono giu$te: oltre che conuengono nelle con$onanze, bi$ogna anche un certo temperamento, che faccia dolce, & $oaue tutta la armonia, come adiuiene a que mu$ici, che cantano con la $olita compa- gnia, perche $i $ono accommodati l'uno all'altro con di$cretione. Que$ta bella maniera sì nella Mu$ica, come nell'Architettura è detta Eurithmia, madre della gratia, & del dilet-</I> <foot><I>E</I></foot> <pb n="34"> <I>to, $i nelle co$e immobili, come in quelle, che $i moueno.</I> <p>Il compartimento, & ri$pondenza delle mi$ure detto $immetria, è conueneuole con $entimento da i membri dell'opera, & dalle parti $eparate alla forma di tutta la figura, $e condo la rata portione come $i uede nel corpo humano, il quale con il cubito, co'l pie- de, col palmo, col dito, & con le altre parti è commi$urato, co$i adiuiene nelle per- fettioni dell'opere. Et prima ne i $acri tempij dalle gro$$ezze delle colonne, ouero dal Triglifo. poi nel forame della bali$ta quella co$a, che ui entra, detta Peritriton. Simigliantemente nelle naui dallo $pacio, che è tra un $chelmo all'altro, che per e$$er di mi$ura di due cubiti, $i chiama, dipichaichi, & co$i nelle altre opere da i membri lo ro $i troua la ragione delle $immetrie, & de i compartimenti. <p><I>La $immetria è la bellezza dell'ordine, come è la Eurithmia la bellezza della di$po$i- tione. Non è a ba$tanza ordinare le mi$ure una dopo l'altra, ma nece$$ario è, che quelle mi$u- re habbiano conuenienza tra $e, cioè $iano in qualche proportione; & però doue $arà propor tione, iui non puo e$$ere co$a $uperflua. & $i come il mae$tro della natural proportione, è lo in$tin to della natura, co$i il mae$tro dell'Artificiale è l'habito dell'Arte: d'onde ne na$ce, che la pro- portione è propria della forma, & non della materia: & doue non $ono parti, non può e$$ere pro- portione: perche e$$a na$ce dalle parti compo$te, & dalla relatione di e$$e, & in ogni rela- tione è nece<02>ario almeno, che $iano due termini, come s'è detto: ne $i può lodare a ba- $tanza lo effetto della proportione, nella quale è po$ta la gloria dello Architetto, la bellez- za dell'opera, la merauiglia dello artificio. come $i uederà chiaramente quando noi ragio- naremo delle proportioni, & apriremo i $ecreti di que$t'Arte, dimo$trando qual ri$petto è nella proportione, quali termini, qual u$o, & quanti effetti, & di che forza ella faccia parere le co$e: però mi riporto al $uo luogo. Vitruuio fin tanto dà lo e$$empio di quello, che egli ha det- to</I> {<I>Secondo la rata portione,</I>} <I>dicendo.</I> {<I>Come $i uede nel corpo humano.</I>} <I>Hauendo Hercole mi$urato il cor$o, & lo $pacio di Pi$a, & trouatolo di piedi $eicento de i $uoi, & e$$en- do$i poi nelle altre parti della Grecia fatti quegli $pacij da correre di piedi $eicento, ma piu breui. il buon Pithagora comparando quelli cor$i l'uno con l'altro, ritrouò il piede di Hercole e$$ere $tato maggiore de i piedi, con i quali i Greci haueuano mi$urato gli altri $pacij. & $apendo qua- le doueua e$$er la proportione del piede alla giu$ta grandezza dell'huomo, compre$e la $tatura di Hercole e$$ere $tata tanto maggiore della $tatura de gli altri huomini, quanto il cor$o mi$urato da Hercole eccedeua gli altri cor$i della Grecia. Quando adunque le mi$ure $eranno accommoda- te alle maniere, non ha dubbio, che dalla grandezza d'una parte non $i cono$ca la mi$ura del- l'altra, & con$eguentemente la grandezza del tutto.</I> {<I>Et prima ne i $acri tempij.</I>} <I>Que$to ho dichiarito di $opra, che dalla gro$$ezza delle colonne, che ci daua il modulo, $i pigliauano gli $pacij tra le colonne, & le altezze di quelle.</I> {<I>Ouero dal Triglipho.</I>} <I>que$to è un membrello, che ha tre canellature come canali, donde prende il nome, & $i mette $opra l'Architraue nelle opere Doriche, dal quale $i mi$ura l'opera Dorica, $i come al terzo capo del quarto libro ci $a- rà dichiarito.</I> {<I>Poi nel foro della Bali$ta.</I>} <I>Nella Bali$ta, che è in$trumento da trarre, egli $i fa i fori dalle te$te, ne i quali entra il capo della corda. i fori $i cauano dal pe$o della pietra: & da i fori $i caua la mi$ura di quello, che Vitr. chiama $cutula. nel decimo al cap. XVII. & qui Peritriton. come dalla palla $i piglia la mi$ura del pezzo dell'artigliaria,</I> {<I>$imigliantemente nelle naui, da gli $chelmi, cioè dallo $pacio, che è tra il ligamento d'un remo & l'altro, $i piglia quella mi$ura, che regola tutto il corpo della galera,</I>} <I>co$i trouo che $i o$$erua nel fabricar le galere, & per que$to io ho e$po$to Vitruuio in que$to modo. ma $eguitiamo.</I> <p>Decoro è a$petto $enza menda dell'opera prouato per le co$e compo$te con autorità. <p><I>Io e$ponerò decoro per le co$e che $egueno, ma in uero Vitr. lo abbraccia $otto nome di orna- mento, quando egli dice,</I> {<I>a$petto $enza menda,</I>} <I>benche nella $econda parte $i tegna al decoro, quando dice,</I> {<I>prouato per le co$e compo$te con autorità.</I>} <I>& lo e$$empio di Vitru.</I> <pb n="35"> <I>molto bene ce lo dimo$tra.</I> Que$to è con$umato o per $tanza, o per con$uetudine, o per natura: per $tanza, quando a Gioue folgoratore, al Cielo, al Sole, & alla Luna $i fanno gli edifici $coperti, & all'aere. Percioche noi uedemo le forme, & gli effetti pre$enti nello aperto, & lucente mondo. A Minerua, & a Marte, & ad Hercole $i fanno i tem- pij di maniera Dorica: percioche a que$ti Dei per la uirtu loro $i conuiene fare le fabri- che $enza delicatezze, & tenerezze. Ma a Venere a Flora, & alle Ninfe delle fonti $e $a- ranno fatte l'opere Corinthic, pareranno hauere conueniente proprietà; perche a que- $ti Dei per la loro tenerezza l'opere $ottili, & floride, ornate di foglie, & di uolute pa- reranno accre$cere il debito ornamento. Ma a Giunone, a Diana, al Padre Baccho, & a gli altri Dei che $ono di quella $imiglianza facendo$i i lauori Ionichi, egli $i hauerà ri guardo alla uia di mezo: percioche & dalla $euerità della maniera Dorica, & dalla delica- tezza della Ionica $arà la loro proprietà moderata. <p><I>Dalle parole di Vitr. il prudente Architetto puo trarre molti belli documenti cerca il Decoro, & gli adornamenti, che conuengono alle fabriche de i no$tri tempi. Imperoche $e bene noi non hauemo i Dei fal$i, & buggiardi, non manca però l'occa$ione di $eruare il Decoro nelle chie$e con$ecrate a i ueri amici del uero Dio, & anche alla Maie$tà di quello; & come che molti $ono, & differenti nello $plendore di diuer$e uirtuti, come le $telle del cielo differenti $ono in chiarez za; egli $i può bene u$are ogni maniera conueniente, & propria a gli effetti di cia$cuno. L'Au $terità de i $anti, che nella uita $olitaria $i $ono macerati in digiuni, uigilie, & orationi ricer ca $odi, & inculti lauori. La $emplicità, & purità Virginale i piu gentili, & delicati: & $imil- mente la moderata uita ricerca la temperatura dell'una, & dell'altra parte. Ma non $i deue cre- dere, che $olamente habbiano ad e$$ere tre maniere di opere, perche Vitru. ne habbia tre $ole numerate. percioche egli$te$$o nel quarto libro al $ettimo cap. ui aggiugne la To$cana, & dice anche che ui $ono altre maniere, & i moderni ne fanno, & la ragione lo richiede, per fare differen- za da i nostri $anti alli Dei fal$i de gli antichi, & è in potere d'uno circon$petto & prudente Ar- chitetto di componere con ragione di mi$ure molte altre maniere, $eruando il Decoro, & non $er- uendo a $uoi capricci. Ma le tre $opradette maniere $ono le piu nominate.</I> <p>Ma alla con$uetudine in que$to modo $i exprime il decoro. quando alle parti di dentro de gli edificij magnifiche $i daranno l'entrate, & i ne$tibuli conuenienti, & belli, percio- che non $arà di decoro, & ornamento, $e le parte interiori $aranno fatte con eleganza, & le intrate ba$$e, & uergogno$e. Simigliantemente $e ne gli Architraui Dorici $i $colpi= ranno nelle cornici i dentelli, ouero $e ne i capitelli puluinati, o ne gli architraui Ionichi $aranno cauati gli Triglifi. traportando$i da un'altra ragione le proprietà in altro lauoro, $i offenderà il uedere, per e$$er prima la u$anza altrimenti. <p><I>Proprio è nel gocciolatoio Ionico $colpire i dentelli; que$ti $e nella opera Dorica $aranno trapor- tati, come fece colui il quale fabricò il Theatro, che Augu$to fece fare in nome di Marcello $uo ni pote, offenderà gli occhi a$$uefatti ad altra ueduta: $imilmente farà colui, il quale ne gli architra ui Ionichi farà i membretti canelati, che $i chiamano Triglifi. percioche que$ti $ono proprij della maniera Dorica, come Vitr. ci dimo$tra nel quarto libro. Io la$cio al luogo $uo la dichiar atio- ne di molti uocabuli, per non ritardare la intentione di chi de$idera $apere ordinatamente.</I> <p>Il decoro naturale $arà, $e prima per fabricare tutti i Tempij $i farà elettione di luo- ghi $ommamente $ani, & delle fonti delle acque idonee, in quelle parti, doue $i hanno a fare le $acre ca$e $aranno eletti; Et $pecialmente dopo ad E$culapio, alla Salute, & a que- gli dei, per le medicine de i quali molti infermi pare, che $iano ri$anati; perche quando i corpi ammalati $aranno traportati di pe$tilente in luogo $ano, & dalle fonti $alubri $aran= no loro le buone acque recate, molto piu pre$to ricouereranno la $anità, & co$i auenirà che dalla natura del luogo, l'opinione della diuinità con grandezza, & credito $i faccia maggio re. Appre$$o le dette co$e, il decoro naturale $arà, $e per le $tanze, oue $i dorme, & per <foot><I>E</I> 2</foot> <pb n="36"> le librarie $i piglierà i lumi dal leuante; per li bagni, & per li luoghi del uerno dalla parte, doue il $ol tramonta la inuernata: per le cancellarie, o $crittoi, & per quel- li, che richiedeno certa egualità di lumi, dal $ettentrione: perche quella parte del cielo, non $i fa piu chiara, nè piu o$cura per lo cor$o del $ole, ma è certa, & non $i muta in tut- to'l giorno. <p><I>Perche Vitr. nel quinto libro al decimo, & nel $e$to al $ettimo capo ragiona delle dette co$e, & $imilmente nel quinto al duodecimo, & in altri luoghi ragiona del decoro, & della bellezza, io non uoglio preuertire con dichiaratione di parole la intelligenza ri$eruata al luogo $uo. Ba$ti- mi dire che la bellezza, & decoro è relatione di tutta l'opera allo a$petto, & à quello, che $ta be ne, a che è l'opera indrizzata, $eruan do l'u$anza, & la commodità della natura.</I> <p>La di$tributione è commoda, & utile di$pen$atione delle co$e, che bi$ognano, & del luogo, et moderato temperamento della $pe$a fatta con ragione. Que$ta $i o$$eruerà $e prima lo Architetto non cercherà quelle co$e, che non $i po$$ono trouare, o preparare $enza grandi$sima $pe$a. percioche non in ogni luogo $i caua la rena, nè per tutto è copia di cementi, di abeti, di $appine, di marmi. Ma una co$a in un luogo, & altra in altra parte $i truoua, & le condotte di tali co$e $ono difficili, & di molta $pe$a, & però doue non $i puo cauare $abbione di fo$$e, u$i$i quello di fiume, ouero l'arena del mare ben lauata. Fuggiranno$i i bi$ogni de gli abeti, & delle $appine, u$ando$i il cipre$$o, il poppio l'ol- mo, ouero il pino. Etin tal maniera $i e$pedirà le altre co$e. Euui un'altro grado di di- $tributione; quando $i fabrica all'u$o de i padri di famiglia, ouero $econdo la commodità del dinaro, ouero $econdo la dignità della bellezza. percioche egli pare che altrimenti s'hab biano a fare le ca$e nella città, da quelle, nelle quali s'hanno à riponere i frutti delle uille; & non $arà quello i$te$$o il fabricare per li mercanti gabellieri, & per li dilicati & quieti. Ma le habitationi de i grandi, che con i loro graui pen$ieri gouernano la republica $i deono fabricare all'u$o loro, & in $omma le di$tributioni de gli edificij conuiene e$$er fatte $econ- do le per$one. <p><I>Come le maniere del parlare, che $i chiamano idee, $ono qualità dell'oratione conueniente alle co$e, & alle per$one, co$i le maniere de gli edificij $ono qualità dell'arte conueniente alle co$e, & alle per$one. & $i come à formare una idea dell'or atione otto co$e $ono nece$$arie, cioè la $enten- za, che è lo intendimento dell'huomo; lo artificio, col quale come con certo in$trumento $i leua il concetto; le parole che e$primono i concetti; la compo$itione di quelle, con i colori, & figure; il mouimento delle parti, che numero $i chiama; & la chiu$a & il fine della compo$itione: co$i per i$pedire una maniera delle arti, $ei co$e $ono nece$$arie, & que$te già qua$i tutti hauemo e$pcdite. Re$ta $olamente la di$tributione, la quale & nell'arte del dire, & nella cura publica, & priua- ta è $ommamente nece$$aria, & molto $i apprezza. Que$ta pare, che con il decoro conuegna ri- ferendo$i alle co$e, & alle per$one. ma è differente. perche il decoro $i riferi$ce alle co$e, & alle per$one in quella parte che è conueneuole, & d'ornamento, & hone$tà, ma la di$tributione in quella parte che è utile, & commoda, come $i uederà nel $e$to libro all'ottauo cap. nel quale Vitr. pare che habbia uoluto dichiarare la pre$ente parte. Hora egli è da auuertire che $e bene Vitr. ha applicato le predette $ei co$e alla fabrica de i tempij, & delle ca$e, per e$$er co$e principali, pe- rò egli $i deue applicarle a tutte le altre co$e, & opere, che $i fanno come machine, in$trumenti, horologi, & altre co$e $ottopo$te alla Architettura, & tanto $ia detto dell'habito, & della for- ma che deue e$$ere nell'animo, & nel pen$iero dello Architetto, accioche egli meriti, co$i de- gno, & celebrato nome.</I> <pb n="37"> <HEAD><I>Delle parti dell' Architettura. Cap. III.</I></HEAD> <p>LE parti dell' Architettura $ono tre Edificatione, Gnomonica, Machinatione. <I>Tempo è che io $atisfaccia hormai alla prome$$a di e$ponere le parti della Architet- tura: però con quella breuità, che mi $arà conce$$a i$primere intendo tutta la forma intiera, & unita dell' Architettura, & dimo$trare ordinatamente le parti$ue, ac- cioche $i rinchiuda ne i termini $uoi tutto il corpo di quella. Il $apere non è altro che cono$cere gli effetti per le proprie cau$e. ogni effetto è fatto da alcuna co$a, di qualche co$a, ad alcun fine, con alcun modo, & forma. Quello, che fa è detto agente; la co$a di che $i fa, è chiamata Mate- ria: quella à cui s'indrizza, è detta Fine; quella, che compie, & rende perfetta in e$$ere è nomi- nata forma. Le cau$e principali adunque $ono quattro. Noi dello agente artificio$o, quale egli $i $ia, & di che conditione e$$er debbia gia detto hauemo quando & l'ufficio, & le uirtù dello Architetto narrammo. La forma $imilmente in uniuar$ale è $tata e$po$ta. Re$taci a dire della materia, & del fine. Et per piu chiara intelligenza in $omma dicemo, che ad imitatione delle co- $e naturali, con$ideramo nelle artificiali due co$e. L'una è lo e$$ere, l'altra il bene e$$ere. cerca lo e$$ere con$ideramo la mat eria, la forma, & il compo$to dell' una & dell' altra. circa il bene e$- $ere con$ideramo gli adornamenti, & gli acconciamenti delle co$e. Et perche molti $trumenti ci bi$ognano per componere la materia con la forma, però è nece$$ario trattare de gli in$trumenti, & delle machine. & la ragione delle $opradette co$e in tal modo $i e$pone. L'arte quanto puo imita la natura: Et que$to adiuiene per che il principio dell' arte, che è lo intelletto humano, ha gran $i- miglianza col principio, che muoue la natura, che è una intelligenza. dalla $imiglianza delle uirtù, & de i principij na$ce la $imiglianza dell' operare, che per hora chiameremo imitatione. Que$ta imitatione $i uede in tutte le Arti, ma molto maggiormente in quella che è giudice di tutte. imitaremo adunque la natura nel trattamēto dell' Arte. La doue l'Architettura cioè la $cienza di chiara la materia, la forma, & la compo$itione delle opere, & imitando la natura per l'occulta uirtù del $uo principio, procede dalle co$e meno perfette alle piu perfette: & prima pone le co$e in e$$ere, & poile adorna; percioche non $i puo adornare quello, che non è. Ma perche il princi- pio, che regge la natura, è d'infinita $apienza, ottimo, & potenti$$imo, però fa le co$e $ue belle, utili, & durabili: conueneuolmente lo Architetto imitando il fattor della natura deue riguar da- re alta bellezza, utilità, & fermezza delle opere. Trattando adunque della forma bi$ogna, che egli $appia ordinare, di$ponere, mi$urare, di$tribuire, ornare, & $atisfare al diletto de gli occhi con bella, & gratio$a maniera. & per cio fare $ia egli in$tituito con quelle conditioni, che $ono contenute nel primo capo, & con quelle, che nel $econdo $i leggeno. Sotto nome di forma compre$i $ono i lineamenti, & i $iti delle co$e, la doue $i con$idera la ragione con tutte le $ue quali- tà, occulte, & manife$te, buone, & ree; il piano, il compartimento di quello, la eleuatione del la fronte, & de i lati, le apriture, i coperti, con ogni lor conditione, ammae$tramento, & re- gola, come $i dirà poi. Seguita quella con$ideratione, che appartiene alla materia. ma prima, che la materia $ia di$po$ta, & apparecchiata, bi$ogna con$iderare, che lo ingegno dell' huomo è im- perfetto, & di gran lung a inferiore allo intelletto diuino. & la materia (come $i dice) è $orda, & non ri$ponde alla intentione dell' arte; Et però prima, che lo Architetto $i dia à cominciar le opere deue imitare lo agente naturale, il quale non opera $e non $econdo il $uo potere; co$i farà lo Architetto con$iderando l'opera, & la $pe$a. Et perche la natura nelle co$e piu perfette, & piu tempo, & piu diligenza ui mette però lo Architetto ha da pen$ar molto bene; & per fare piu certa la riu$cita delle opere, col di$egno, & col modello $i mouerà, prima udendo anche i meno e$per ti, & la$ciando raffreddare lo affetto, per dar luogo al giuditio, imiterà la natura, che contra il $uo fattore non opera co$a alcuna; però egli non cercherà co$e impo$$ibili, & quanto alla mate-</I> <pb n="38"> <I>ria, & quanto alla forma, che nè egli, nè altri le po$$a finire, con$iderando, che il fattor del mon do uolendo quello formare, fece di niente la materia delle co$e. & la natura come primo $uo par- to, mancando di tanto potere, & pur uolendo a$$imigliar$i al $uo fattore, nella generatione delle co$e piglia quella materia, che ha uno e$$er, ma $enza forma con potenza, & habilità a riceuere ogni forma. Et di quella fa cio, che $i troua di $en$ibile, & corporale. Onde l'arte o$$eruatrice della natura, come nipote (dirò co$i) del primo fattore, uolendo anche ella fare alcuna co$a pren de la materia, che le dà la natura in e$$er di forma $en$ibile, & naturale; come è il legno, il ferro, & la pietra; & forma quella materia di quella idea, & di quel $egno, che nella mente del- lo artefice è ripo$to. Apparecchiato adunque il dinaro, accio niente $ia, che lo impedi$ca, pro- uedera$$i della materia, della quale $i tralta nel $econdo libro. La principal materia, che u$a lo Architetto è la pietra, il legno, & quelle co$e, che componeno, & metteno in$ieme il legno, & la pietra, però nel predetto libro con$idera le pietre, & gli alberi, l'arena, & la calce, & par- titamente la natura, la qualità, l'u$o, & il modo di tutte le co$e, ragionando di quella materia, che la natura, & l'u$o ne apporta. perche di quella a che la nece$$ità ci a$trigne, non accade ra- gionarne: e<02>endo in diuer$i luoghi diuer$a, come bitume, cocciole, & altre co$e, che in luogo di pietre, o d'arena $i u$ano, doue non $i troua nè arena, nè pietre. in alcuni luoghi $i cuopreno le ca$e con te$tugini; alcuni con cannuccie, & palme, altri u$ano il cuoio: del ferro, & de gli altri metalli non $i ragiona, perche le loro nature, & qualità $ono piu conformi, & hanno meno differenze, che le co$e dette di $opra. preparata dunque la materia, & con$iderata la for- ma in uniuer$ale, ci re$ta a dire della compo$itione. Ma prima egli $i deue auuertire, che lo agen te, che regge la natura, è d'infinite idee ripieno, & ordinatamente procedendo muoue le cau$e ad un'ad una, infondendo le uirtù $econdo la libertà del $uo uolere: quelle cau$e co$i mo$$e, portano qua giu quel diuino influ$$o con ordine merauiglio$o. La doue dal primo e$$ere, dalla prima uita, & dal primo intelletto, ogni e$$ere, ogni uita, ogni intelletto dipende. Il che e$$endo in que$to modo: bi$ogna che lo Architetto $ia $aggio, & buono: $aggio in cono$cere per le regole della non fucata a$trologia, itempi atti a dar principio alle opere, trala$ciando gli ardenti$$imi, $oli, & gli acuti$$imi giacci. buono, sì in fatti non e$$endo auaro, nè dato a uitij, sì in parole, pregando il da tore di tutte le forme, che lo $pogli d'ignoranza, & lo $uegli a partorire le belle muentioni con pro- $pero, & felice $ucce$$o dell' arte $ua, a beneficio delle genti. Hora per ritornare a propo$ito, io dico, che non $olamente imitar $i deue la natura, nel modo piu uniuer$ale, & commune, ma $empre al meno, & piu ri$tretto di$cendere. per il che gli Architettti $i deono sforzare, di fare l'opere loro, a qualche effetto di natura $imiglianti. Et non e$$endo qua giu co$a, che in perfet- tione all' huomo s'aguaglie; belli$$imo e$$empio ci darà in ogni artificio il con$iderare la proportio- ne del corpo humano. Certo è, che la natura nella generatione dell' huomo dimo$tra ueramente a quello douer$i riferire tutte le co$e, la doue lo rende perfetto; & perciò di molte parti, come di molti in$trumenti dotato in $eruigio dell' anima, & della uita $i uede. Delle dette parti alcune $ono di nome, & di natura $imiglianti, come il $angue, l'o$$a, inerui; imperoche ogni parte di $angue, è $angue, ogni parte di o$$o è o$$o, & ogni parte di neruo è neruo, & co$i uien chiama- to. Altre $ono di nature, & uocaboli diuer$i, come è la mano, il piede, il capo: imperoche non ogni parte della mano è mano, o uien detta mano; & co$i del piede, & del capo $i dirà. Delle prime parti $imiglianti $i fanno le $econde, & que$te nel corpo hanno ufficij, & fini diuer$i. Volendo adunque lo Architetto far l'opera $ua in modo, che ella $ia una intiera, & unita, bi$o- gna, che egli con$ideri le parti principali, accioche $i dia loro materia che conuenga, & buona $ia per le opere ad imitatione di natura, che dà luogo conueniente, & ben preparato, nel quale per tanto $pacio di tempo s'habbiano à formare compiutamente le membra humane, gettando pri ma per fondamento della uita, del $en$o, & del mouimento, i $egni del cuore, del fegato, & del ceruello. Lo Architetto hauerà la con$ideratione, del luogo, del modo, delle parti, & u$o di e$$e: & però $egue che la materia $ia e$pedita $econdo l'u$o delle parti. Quanto adunque al</I> <pb n="39"> <I>luogo $i uede per certi $egni, & inditij le qualità del terreno, o$$eruan$i alcune regole, & $i dan- no alcuni ammae$tramenti. D'indi alla dichiaratione delle altre co$e $i ragiona delle pietre $econ do la quantità, è figura loro, affine che ci $eruiamo $econdo l'u$o. il $imigliante $i dirà della calce, con quelle o$$eruationi, che $eruiranno al bi$ogno. & pa$$ando piu oltre $i dirà il modo di ponere in$ieme le pietre con la calce. & con belli auuertimenti pre$i dalla natura delle co$e, $i farà con- $ideratione delle fondamenta, & poi delle parti della fabrica, che $ono $opra il fondamento. le quali $ono i panimenti, i pareti, imuri, & i tetti con tutte le maniere di murature abbracciate da Vitr. nel $econdo libro. & co$i l'o$$a, i $o$tegni, l'apriture, i legamenti, i cor$i, i riempimen- ti chiaramente $i daranno ad intendere & que$ta è particolare, & di$tinta ragione della Archi- tettura, ma ancora non i$pedita. imperoche fin hora non $i ha hauuto alcuna con$ideratione del fine, che è quello che pone forza, & nece$$ità a i mezi, & con$titui$ce ogni arte, (come dice Ga- leno) operando adunque lo Architetto affine, che gli huomini $otto l'unione, alla quale per natu- ra $ono inclinati, commodi & $icuri uiuino, & $iano l'un l'altro di giouamento: nece$$erio è con $iderare la diuer$ità de gli huomini, accioche $i proueda al bi$ogno. Vedendo adunque noi un gran numero d'huomini ad un fine in$ieme raunati, potemo con$ider are tutto quel numero in $e $te<02>o, potemo anche di$correre tra quella moltitudine, & trouarui per entro qualche differenza delle per$one. Se noi con$ideramo tutta la raunanza in$ieme nece<02>ario diremo, che $e le faccia una città con tutte quelle parti, che per tutta quella raunanza utili, & $icure $aranno. Et però prima $i hauerà ri$petto all' ampiezza, & giro, nel quale $i hauerà a rinchiudere quella moltitudine, & però $i tratterà della $ua capacità, & grandezza, & poi delle mura, nel- le quali $i farà con$ider atione della dife$a, onde egli $i ordinerà la fabrica delle torri, & di quel- le parti, che. $i chiamano baloardi, caualieri piatcforme, porte, riuellini, & $aracine$- che, poi $i compartirà il piano rinchiu$o dalle mura per commodo d'ognuno, percioche tutto non deue e<02>er fabricato nè tutto uoto. però $i tratterà delle piazze & uie publiche, delle $trade, & androne, & calli, hauendo $empre ri$petto, che non $iano battute da i uenti. come $i dirà poi. Oltra di que$to, perche ne i luoghi delle città $ogliono pa$$are fiumi, ouero altre acque condotte, per lequali $i conduceno le merci, & le uettouaglie, però è nece$$aria la fabrica de i ponti, & de i porti per la commodità d'ognuno. Ma uolgendoci noi alle di$tin- tion delle per$one troueremo altri e$$er piu degni, altri meno, & tra i degni, ouero uno ca- po $olo, ouero molti. & quel capo o per elettione di molti, & permi$$ione di leggi, o per uio- lenza, & for za. nel primo ca$o ci apparirà il Principe, nel $econdo il Tiranno. dal fine di cia$cuno prenderà lo Architetto la di$po$itione delle fabriche, & delle habitationi facendo al Principe il pallazzo, & al Tiranno la rocca. Tra i molti degni ritrouerà, che alcuni$ono dedicati alla religione, altri fuori dell' o$$eruanze della religione. di que$ti altri $aranno at- ti ad u$cir fuori per la republica, altri per regger quella di dentro la citta. di quelli, che $ono atti ad u$cire, altri al mare, altri alla terra $i daranno, & chi prenderà il mare hauerà bi- $ogno di nauali, cioè Arzane di naui, di munitione & porti; & però l'Architetto deue an- che hauere con$ideratione di quelle fabriche, che conuengono al mare. Ma chi prenderà la terra come capitano, & condottore di e$$erciti hauerà bi$ogno di alloggiamenti, $teccati, for- li, d'artigliarie, machine, & in$trumenti diuer$i per dife$a, & offe$a. alle quai tutte co$e l'Ar chitetto deue dare ordine. Ma perche quelli, che $tanno dentro al gouerno, ouero $ono pre$i- denti alle controuer$ie ciuili, & criminali, ouero $ono con$ultori delle co$e di $tato: però è nece$$ario per li giudici il foro, & per li $enatori il $enato & la curia, & co$i le per$one degne, che non $ono dedicate al culto diuino della religione haueranno conuenienti habita- tioni. Ma a gli o$$eruatori della religione $i faranno i mona$teri, i chio$tri, gli ho$pitali, per gli huomini, & per le donne, come ricerca l'u$o, & il decoro d'ogni per$ona, et $pecial- mente $i metterà ogni ind<*>$tria nella fabrica delle chie$e, & de i $acri tempij. Ma perche $ono alcune opere, che nè in tutto publiche, nè in tutto prinate $i deono chiamare: però di</I> <pb n="40"> <I>quelle anche $i deue hauer cura, alcune delle quali $ono per con$erua delle co$e da uiuere, o da mercantare, alcune per difen$ione, & aiuto, come $ono i fondachi, le dogane, i magaze- ni, la Cecca, gli armamenti, i luoghi delle munitioni. alcune all' u$o come bagni, acquedotti, & $imil co$e. Altre al diletto $eruono, & alle fe$te, come $ono i theatri, gli amphiteatri, le loggie, i luoghi diputati al cor$o, & a giuochi diuer$i. altre all' honore, & alla memoria, co me gli archi, i trofei, le $epolture, le mete, gli obeli$chi, & le piramidi. Altre in fine a i rei huomini $i fanno, come il carcere, che è con$eruatore della giu$titia. & tutte le predet te fabriche hanno del publico, & del priuato in un certo modo, come $i puo ben con$ider an- do uedere. Ma le per$one $enza grado $ono gli huomini cittadine$chi, gli artefici, gli agri- coltori. & però con$iderando lo Archit etto la commodità, & la conditione d'ognuno, non la- $cierà a dietro maniera alcuna di priuato edificio sì nella città, come nella uilla. & con que $to $i darà fine a quella parte, che tratta dello e$$er delle co$e: riuolgendo$i poi al ben e$$er trat terà de gli ornamenti, adornando la città, le fortezze, i tempij, i palazzi, le ca$e, le $trade, i ponti, gli archi, le $epolture, & in $omma ogni opera publica, & priuata. Di que$ta $i trat ta nel $ettimo libro. Finalmente perche a fare $i grandi, & belle opere ci bi$ognano molti in- $trumenti, ne i quali oltra la natura delle co$e, l'arte dimo$tra la forza $ua, & la materia & $oggetto d'ogni opera, & la potenza dello agente la fa e$$ere quello, che ella non era; & que$to con diuer$i in$trumenti, per e$$ere lo in$trumento mezano tra lo operante, & la co$a ope rata: però il $aggio Architetto tratta de gli in$trumenti, & delle machine, da leuare, tirare, & mouere i pe$i, & di tutte altre $orti d'artigliarie: & perche il tempo è mi$ura delle opera- tioni de gli huomini, & della natura, & il mouimento de i corpi cele$ti, & $pecialmente del pri mo ua in$ieme col tempo, & ci apporta il Sole, & la Luna, come quelli che di$tingueno i giorni & le notti: però, accioche gli huomini comparti$chino le hore, & i tempi delle loro operatio- ni, lo Architetto $i uolgerà con gli occhi al cielo, & $eruendo$i di que bei lumi, con arti- ficio$i lineamenti de$criuerà gli horologi da Sole qua$i mettendoci il cielo nelle mani: & que$ta è la $omma dell' Architettura, laquale ($e ben $i con$idera) abbraccia ogni commodo, & dilet to dell' humana generatione. & con lo $opradetto di$cor$o potemo andare $icuramente alla di- chiaratione del pre$ente Capo. dice adunqne Vitruuio diuidendo l'Architettura.</I> <p>Le parti dell' Architettura $ono tre, Edificatione, Gnomonica, & Machinatione. La edificatione è diui$a in due parti. una è la collocatione delle mura, & delle opere com- muni, ne i luoghi publici, l'altra è la e$plicatione de i priuati edificij. <p><I>Dapoi che Vitruuio ci ha dimo$trato che co$a e$$er deue nella mente dello Architetto prima, che egli uenghi all' opera, hora egli ci mo$tra in quante co$e egli ha da porre le $ei predette forme: & dice, che l'ordine, la $immetria, la di$po$itione, la di$tributione, il decoro, & la eurithmia $i hanno ad e$$ercitare in tre co$e principalmente, che egli chiama parti dell' Ar- chitettura, & $ono parti materiali: & la prima è la Edificatione, & fabrica; la $econda Gno monica, la terza Machinatione. Fabrica è nome generale, & particolare; in generale fa- brica è arte, & componimento d'alcuna co$a, come latinamente Fabbro è detto ogni ope- rario. Similmente machinatione è quello i$te$$o, che è fabrica in generale; ma quando l'uno, & l'altro nome è pre$o in particolare', fabrica s'intende edificatione, & machinatione s'inten- de arte di fare le machine: della quale $i tratta nel decimo libro. la edificatione ha due parti, l'una è la collocatione delle mura, & delle opere communi ne i publici luoghi. di que$ta $i trat- ta ne i primi cinque uolumi. L'altra è la e$plicatione de i priuati edificij, delli quali $i trat- ta nel $e$to.</I> Le Di$tributioni delle opere publiche $ono tre, delle quali una $i dà alla di fe$a, l'altra alla religione, l'altra al commodo. Alla dife$a appartiene la ragione di fare le mura della città, & delle torri, & delle porte, lequali co$e $ono $tate ritrouate per $cac ciare gl'impeti de i nimici continuamente. <I>Et que$ta $i ha ne i $eguenti capi del pre$ente libro.</I> <p>Della religione è la collocatione de i tempij, & delle $acre ca$e, de gli immortal Dei. <pb n="41"> <I>come $i tratta nel terzo, & nel quarto libro.</I> Della opportunità è la di$po$itione de i luo ghi communi all' u$o publico, come $ono i porti, i fori, i portichi, i bagni, i Theatri, i luoghi da pa$$eggiare, & le altre co$e, le quali con le i$te$$e ragioni, $ono ne i publici luo- ghi di$egnate. <p><I>Di quefte co$e $i tratta nel quinto libro di$tintamente.</I> Quc$te co$e di tal maniera dcono e$ $er di$po$te, che egli $i habbia riguardo alla fermezza, all' utilità, alla uenu$tà. Alla fermez- za $i riguarderà, quando le fabriche $aranno ben fondate $in $ul $odo. & $e $enza auaritia $i farà elettione, & $cielta della materia d'ogni $orte. All' utilità $i prouederà, quando $enza impedimento al commodo, & u$o de i luoghi, & $enza menda $aranno le co$e di$po$te, & bene accompagnate, & partite ad ogni maniera. Alla bellezza $i $atisferà, quando con bella, & gioconda maniera dello a$petto, la compartita de i membri, $arà giu$ta, eguale, & proportianata. <HEAD><I>Delle elettione de i luoghi $ani, & quali co$e nuocono alla $anità. Cap. IIII.</I></HEAD> <p>NEL fabricare le mura della città que$ti $ono i principij. Primamente è la elettio ne di luogo $ani$simo: Quello $ia lo eleuato, non coperto di nebbie, nè cari- co di freddi uapori: Ma che riguardi quelle parti del cielo, che nè troppo cal de $ono, nè troppo fredde, ma temperate. Dapoi $e egli $i $chiferà la uici- nanza delle paludi; perche uenendo alla città col na$cente $ole l'aure mattutine, $e con quelle $e congiugneranno le na$ciute nebbie, & i fiati delle be$tie palu$tri $pargeranno nei corpi de gli habitanti i ueneno$i uapori me$chiati con le nebbie, & faranno il luogo mal $ano. Anchora $e le mura $aranno a canto'l mare, & riguarderanno al meriggie, o al ponente, non $aranno i luoghi $alubri. <p><I>Hauendo Vitr. fondata la trattatione dell' Architettur a $opra i principij dichiarati, comincia hora a fabricarui $opra; & $econdo la $ua diui$ione comincia dalle opere publiche, & delle $ei co- $e, che apartengono alla forma, tocca prima la di$tributione, & il decoro naturale: & delle tre, che deue hauer ogni fabrica ragiona prima della utilità, & dirà poi della fermezza, & uenu$tà delle opere. Quanto alle opere publiche ci uiene inanzi la città, che per dife$a della uita, della religione, & delle publiche commodità, $i $uol fare. Sei co$e $ono (come dice il dotto Leon Bat- ti$ta) da e$$er con$ider ate da chi uuol fabricare una città. La prima è l'ampiezza di tutta la ter ra po$ta d'intorno, & la faccia, doue $i debbe fabricare, detta regione. La $econda è il campo, & la piazza, o $patio determinato della regione da e$$er cinto, & rinchiu$o di mura. La terza, è il compartimento del detto $pacio. La quarta è tutto quello, che $i lieua dal piano, parete, o muro nominato. La quinta è tutto quello, che ci $tà $opra il capo, o ci cuopre in qualunque mo- do. La $e$ta è l'apritura, doue & le per$one, & le co$e entrano, & e$ceno. Vitr. comincia a dire della regione, cioè della elettione de i luoghi $ani, percioche gran forza, & uirtù è po$ta nella natura de i luoghi, & dello aere, come quello, che da noi non $i puote $eparare; & il luogo è come padre della generatione, in quanto egli è affetto dalle qualità cele$ti. & però le co$e na- turalmente $i con$eruano piu doue na$ceno che altroue. Egli $i ragiona adunque della elettione de i luoghi $ani per fabricare la città: & que$ta è la prima con$ideratione, che $i deue hauere. La regione adunque contiene alcune qualità, delle quali altre $ono pale$i, altre a$co$e. & di que $te, & di quelle alcune $ono ree, alcune buone. Le ree $i cono$ceno dalle buone per lo contrario. Delle buone altre ci $erueno al commodo, come il pae$e abondante di acque, di frutti, di pa$coli, che ha buoni uicini, porti, entrate, per commodità del contrattare, & condurre le merci. Al- tre $ono buone all a $anità. sì perche hanno l'acque mobili, lucide, non ui$co$e, non metalliche,</I> <foot><I>F</I></foot> <pb n="42"> <I>$enza qualit à di odore, colore, & $apore, sì anche, perche i uenti non uengorio troppo freddi a troppo caldi, o da luoghi infetti. Similmente $e la temper atur a $arà alquanto humida, & dolce, croè temperata. dopo la quale è piu $ana la fredda: & $e lo aere $arà puro, purgato, peruio alla ui $ta, mobile, & uniforme; & il $ole non cuocerà molto, o non $arà troppo lontano, ma potrà col $uo calore con$irmare le fredde aure mattutine. Le a$co$e qualità, che ree $ono, come ho detto, $i cono$ceno dalle buone. Et le buone $i attendeno da gli animali grandi, gagliardi, $aporiti di carne, & fegato buono, & da gli huomini, quando $ono copio$i dell'uno, & l'altro $e$$o, & quando $ono belli, $ani, & di lung a uita: & che $ono coloriti, gagliardi, & di temperata com- ple$$ione. Et dalle piante, quando $ono belle, ben nodrite, non offe$e da i uenti, & non $ono di quelle $pecie, che na$ceno in luoghi paludo$i, o $trani. Et dalle co$e diuine, come dal Genio, & buona fortuna del luogo: & dalle naturali, quando le co$e $i con$eruano, come $ono le merci, i frutti: & dalle artificio$e, quando gli edificij non $ono corro$i da i uenti, o dalla $al$ugine. Que- $te co$e di$corre Vitr. accioche faccia l'huomo cauto et auuertito: & conferma con e$$empi, quan to dice, & con ragioni naturali, & dimo$tra non e$$ere ine$perto della Filo$ofia. Leggi Leon Eatti$ta a i capi, terzo, quarto, quinto, & $e$to del primo libro, & hauerai la pre$ente materia, copio$a, ornata, & dotta: nel re$tante Vitr. $i la$cia intendere in conformità di molti antichi $crittori, & proua quanto nociui $iano i luoghi $ottopo$ti al calore del $ole, dicendo.</I> <p>Perche nella $tate l'aere, che è uer$o il meriggie na$cendo il $ole $i ri$calda, nel merig- gie arde: & quello, che è uer$o il ponente, na$cendo il $ole intepidi$ce, $alendo al mezo dì ri$calda, cadendo abbrucia: la doue per le mutationi del caldo, & del freddo i corpi che $ono in que luoghi s'infermano. & que$to $i puo cono$cere dalle co$e inanimate, im- peroche nelle cantine coperte niuno prende il lume dal meriggie, nè dal ponente, ma dal $ettentrione: perche quella parte non $i uede in alcun tempo mutata, ma è ferma $empre, & immutabile; & però i Granai, che riguardano al cor$o del $ole pre$to mutano la bontà loro; & le co$e del mangiare, & i frutti, che non $ono alla parte oppo$ta al cor$o del $o- le, non $i con$eruano lungamente, perche $empre il calore cocendo leua la fermezza delle co$e, & con i $uoi caldi uapori $uggendo le uirtù naturali le di$cioglie, & quelle per lo caldo ammollite, rende debili, & inferme. come $i uede nel ferro, il quale benche $ia du- ro di natura, nondimeno dal fuoco ri$caldato nelle fornacì, s'ammolli$ce in modo, che in ogni forma $i puo ageuolmente piegare, & fabricare: & lo i$te$$o e$$endo molle, & rouen te po$to nell' acqua fredda $i rindura, & ritorna nella proprietà di prima. Egli $i può an- chora con$iderare, che co$i $ia, da che nel tempo della $tate tutti i corpi per lo caldo s'inde- boli$ceno, non tanto ne i luoghi pe$tilenti, quanto ne i $ani: & per lo contrario nel uer- no, quantunque le regioni $ieno molto mal $ane, diuentano però $ane, percioche i fred- di le fortificano grandemente. Similmente $i uede, che i corpi da luoghi freddi in parti calde traportati poco durano, & $i di$cioglieno, ma quelli, che $ono di pae$i caldi, $e $ta- ranno nelle fredde regioni del $ettentrione, non $olamente per la mutatione del luogo non $aranno $ottopo$ti a malatie, ma $i confermeranno. Et però nel fare le mura delle città bi$ogna guardar$i da quelle regioni, i quali con i calori loro po$$ono $pargere i cal- di uapori ne i corpi humani. perche di que principij, che chiamano elementi, tutti i corpi $ono compo$ti, cioè di calore, di humore, di terra, & di aere, & dalla me$colanza di que $ti con naturale me$colamento in $omma formate $ono le qualità di tutti gli animali nel mondo. in que corpi adunque, ne i quali di que principij abonda il calore, $i uede, che il caldo gli uccide, & di$cioglie tutte le altre co$e, & que$ti difetti $uol fare il feruore del cie lo, che uiene d'alcune parti, quando egli entrato $iede nelle aperte uene, piu di quello, che puo portare il corpo per le me$colanze della $ua natural temperatura. parimente $e l'humore hauerà occupato le uene de i corpi, & quelle hauerà fatto di$eguali, <pb n="43"> e gonfie, tutti gli altri principij, come gua$ti, & corrotti dal liquore $i liquefaranno. & le uirtù della compo$itione $i di$ciglieranno. Similmente dai raffreddamenti dell hu- more de i uenti, & dell' aure, s'infondeno i difetti ne i corpi. Nè meno la natural compo $itione dello aere, & del terreno cre$cendo, o $cemando fa debili gli altri principij, ijter re$tri con la pienezza del cibo, gli aeri con la grauczza dello aere. Ma $e alcuno uorrà con piu diligenza uedere $en$ibilmente, auuerti$ca, & attenda alle nature de gli uccelli, de i pe$ci, & de i terre$tri animali. & a que$to modo potrà con$iderare le differenze delle tempre de i corpi. imperoche altra me$colanza hanno gli uccelli, altra i pe$ci, & molto anche piu è diuer$a la natura de i terre$tri animali. gli uccelli hanno manco del terreno, & meno dell' humore, $ono di temperato calore, abondano di aere, da che na$ce, che e$- $endo di piu lieui elementi compo$ti, ageuolmente $i leuano contra lo impeto dello ae- re. Ma le nature aquatili de i pe$ci, perche $ono dal calor temperate, & piu d'aere & di terreno, & poco dell' humore ritengono, quanto meno hanno di que principij dell' humo re, tanto piu facilmente nell' humore $i con$eruano. & però tratti a terra ad un i$te$$o tem po, & la uita, & l'acqua mandano fuori: co$i i terre$tri animali, perche tra i principij lo ro $ono dallo aere, & dal calore temperati, & meno ritengono del terreno, & piu del- l'humore, abondando in quelli le parti humide, non po$$ono $tando nell' acqua lunga- mente con$eruare la uita. Se adunque co$i pare, come propo$to hauemo, & $e col $en$o uedemo i corpi de gli animali e$$er di tali principij compo$ti, & dimo$trato hauemo per lo mancamento, & per lo $operchio di tal co$e, il tutto ce$$are, o patire, non dubitamo, che nece$$ario non $ia con ogni diligenza sforzar$i di eleggere le parti del Cielo tempe- perati$sime, quando nel fare le mura $i richiede la $anità; & però io giudico fermamen- te douer$i a que$to propo$ito riuocare la ragione de gli antichi: imperoche i maggiori diligentemente riguardauano i fegati delle pecore $acrificate, che pa$ceuano in que luo ghi, doue $i faceuano le ca$tella, ouero le guarnigioni: & $e le prime erano liuide, & uitio$e ne $acrificauano delle altre, dubitando $e per infirmità, o per li pa$coli fu$$ero uitiate: ma poi hauendo fatto la i$perienza in molte di e$$e, & prouata la intiera, & $o- da natura de i fegati, dalle acque, & da gli pa$coli, s'accampauano in que luoghi: ma $e trouauano difetto in quelli, per certo indicio argomentando, il mede$imo ne i corpi hu mani traportando, che in que luoghi e$$er doue$$e pe$tilente la copia dell' acqua, & del ci bo: & co$i per altre parti $i moueuano, & mutauano pae$e, in ogni luogo cercando la $anità: ma che per li pa$coli, & per li cibi $i apparino e$$er $alubri le proprietà della terra, argomento manife$to ci danno i campi di Candia, i quali $ono d'intorno il $iume Po- thereo, tra Gno$o & Cortina, perche dalla de$tra, & dalla $ini$tra di quel fiume pa$ce- no le pecore, ma quelle, che $i uanno pa$colando cerca Gno$o, hanno la milza grande, & quelle che $ono appre$$o Cortina non l'hanno apparente. perche dimandandone i medi- ci la cagione, ritrouarono in que luoghi un'herba, che pigliata dalle pecore, $cemaua loro la milza. & co$i cogliendone, ne dauano a quelli, che patiuano di milza. & per que$to i Cre ten$i, chiamano quell' herba A$plenon. Da que$to egli $i puo $apere, che dal cibo, & dal le acque i luoghi $ono o pe$tilenti, o $alubri. Oltra di que$to $e nelle paludi $arà fabricata la città, & che le paludi uicine al mare riguarderanno al $ettentrione, ouero tra'l $ettentrio- ne & leuante, pure che $iano piu alte che il lito del mare, con ragione parerà e$$er fabricata. perche tratte le fo$$e, le ac que $e ne correno al lito, & dal mare gonfio per le fortune ri- battute nelle paludi per uarij mouimenti $ono commo$$e, doue per le amare me$colanze nei luoghi palu$tri non na$ceranno animali ueneno$i. & quelli, che da piu alti luoghi nuo tando uer$o i liti $e ne anderanno, per la non con$ueta $al$ugine $e ne moriranno. Lo e$- $empio di que$te co$e, $i puo hauere dalle paludi Galliche, che $ono d'intorno Altino, Ra- uenna, & Aquilegia, & altre terre uicine alle palludi, le quali per que$te ragioni hanno <foot><I>F</I> 2</foot> <pb n="44"> una incredibile $alubrità. Ma quelli luoghi, che hanno le paludi ba$$e, & non hanno u$ci- te correnti nè per fiumi, nè per fo$$e, come $ono le paludi Pontine, $tando ferme $i putre fanno, & mandano fuori in que' luoghi humori graui, & pe$tilenti. Nella Puglia l'antica Salapia, che da Diomede nel ritorno da Troia fu fabricata, ouero (come altri dice) da Elfia Rodiotto, era $ituata in luoghi tali, doue gli habitatori infermando$i ogni anno, andorono finalmente da M. Ho$tilio, & da quello per publico nome chiedendo impetro- rono, che egli troua$$e loro luogo idoneo, & elegge$$e per fabricar la città. Non ritardò M. Ho$tilio, ma $ubito inue$tigate le ragioni dotti$simamente comprò una po$$e$sione ap pre$$o il mare in luogo $ano, & chie$e dal $enato, & populo Romano, che lecito fo$$e tra- portare la terra, & co$i la cin$e di mura, compartì le piazze, & fatte le parti uendette a cia$ cuno habitante la $ua per due libre & meza d'Argento. & fatte que$te co$e, egli aper$e il la go nel mare, & dallago fece il porto con i doni conce$si, la doue hora i Salapini per quat tro miglia lontani dalla loro antica città habitano in luogo $ano. <p><I>Vna gran parte del $ettimo della Republica d'Ari$totele tratta di quello, che $i contiene in que$to Capo, & ne gli altri $eguenti del pre$ente libro. Ma noi non uolemo a pompa empire i fogli, nè di$putare $ottilmente delle co$e dette da Vitruuio: nelle quali egli ha uoluto & Medi co, & Filo$ofo dimo$trar$i. Io de$criuerei l'herba A$plenon, i luogi di Candia, Rhetimo, & Cortina, doue ella na$ce, & dimo$trarei in pittura il $ito, & la regione, nella quale deue e$$er collo cata una Città, ($e però la pittura puo far que$to) ma perche io intendo, che altri $i pigliano que$to carico, uolentieri lo la$ciarò a loro. Cerca l'i$torie uoglio credere a Vitruuio: perche non pare conueniente confermare i detti di Vitr. con autorità di Tlinio, o d'altro, che for$e ha pigliato da Vitr. quello che egli ha $critto. E a$$ai, che Leon Batti$ta con ogni dili- genza raccolto habbia molte, & diuer$e co$e ad un propo$ito, che po$$ono $atisfare i curio$i di $aper piu oltra. leggi al $econdo Capo del quarto libro del $opra detto. Quella parola che dice Vitr. Municipium, gli Spagnuoli dicono Villa con giuriditione, & Ca$trum, Villa cercada.</I> <HEAD><I>Delle fondamenta delle muraglie, et delle torri. Cap. V.</I></HEAD> <p>QVANDO adunque con que$te ragioni e$po$ta $arà la $alubrità de i luoghi, ne i quali $i hanno a fare le cinte delle mura della Città, & che per $ouue- gno, & nutrimento di quella elette $aranno le regioni copio$e di frutti, & per gli acconciamenti delle $trade, de i fiumi, ouero de i porti del ma re $i potrà con le condotte delle co$e commodamente uenire, Allhora in que$to modo $i hanno a fare le fondamenta. <p><I>Hauendo Vitruuio trattato della regione, & delle $ue qualit à, & buone & ree; accioche la $ciando que$te abbracciamo quelle, hora uuole trattare di quella parte, che noi dicemmo di $o pra e$$er certa, & terminata, nè co$i ampia, come è la Regione. comincia adunque a rinchiu- derla con le muraglie, & tratta delle fondamenta di quelle, & delle torri, riguardando al- l'utile, alla fermezza, & alla bellezza dell' opera, & con$ider a il fine, come far $i deue in ogni operatione. Nella diui$ione dell' Architettura detto hauemo la nece$$ità di far le muraglie, hora $i tratta del modo di fondarle, delle parti della forma, della gro$$ezza, delle Torri, & figure loro. Maper applicare i principij alle co$e, che $i hanno da fare: dico che egli bi$ogna haue- re le idee della di$po$itione, & i termini loro, accioche il tutto $ia preui$to, & con$idera- to. Veniremo adunque alla pianta, che ichnografia $i chiama. I termini, & contorni della quale $i fanno con linee, & anguli. Angulo è quella parte del piano $ottopo$to, che $i con- tiene tra due linee, che $i toccano. & però quattro anguli $i fanno da due linee, che $i tagliano</I> <pb n="45"> <I>in$ieme, de i quali $e uno $arà a cia$cuno de i tre eguale, giu$to, & dritto $arà detto. & quel li, che del dritto $aranno minori, $tretti, & acuti $aranno chiamati, & i maggiori larghi, ot- lu$i, & rintuzzati. Delle linee alcune $on dritte, & $ono quelle il mezo delle quali non adona bra gli e$tremi, & che tra due punti nel piu breue $pacio $i contengono: altre $ono piegate, & torte, & $ono quelle, che col mezo loro e$cono de gli e$tremi. Delle piegate alcune $ono parti del circolo. Circolo è figura piana, & $operficiale rinchiu$a da una linea, dal cui centro che & punto immobile nel mozo, tutte le linee tirate alla circonferenza $ono eg uali. La linea piegata da gli Architetti è cbiamata Arco, intendo della $implice. Corda poi $i dice quel- la linea, che pa$$a da un capo dell' Arco all' altro. Saetta $i chiama quella, che dal mezo del la corda con anguli eguali a$cende alla circonferenza dell' arco. Raggio è quella, che dall' immo bil punto peruiene alla circonferenza. Diametro quella, che pa$$a per lo centro, & diuide il circolo in due parti eguali. Intiero arco è il $emicircolo. Diminuito, & $cemo quello, che è minore, cioè che ha la corda $ua minore del diametro. Il compo$to è di due archi diminuti: & però fa nella $ommità uno angulo di due archi. gli e$$empi delle predette co$e $ono qui $otto</I> <fig> <p><I>Hora la natura de i luogi porta $anità è fortezza: hora l'Arte: hara l'una, & l'altra. Nel primo ca$o egli $i deue cono$cere quello, che di natura $uo è buono. come $i ha dal prece- dente Capo. nel $econdo bi$ogna por mano al Di$cor$o, come $i dirà nel $eguente. Nè uoglio hora commendare la con$uetudine delle genti $traniere, che hora nelle ampli<02>ime $olitudini, & di$erti habitando, hora ne gli a$pri<02>imi monti, & tra le o$curi<02>ime $elue riducendo$i, & alcu na fiata in mezo di larghi$$ime paludi, qua$i attuffando$i, & habitando luoghi $terili$$imi $icu- ri $i chiamauano da ogni uiolenza. comè $i legge ne i commentarij de' Germani: & altroue de gli Irlandi, & Scoce$i: non lodo io que$ti auantaggi: percioche non mi pare, che egli $i deb bia eleggere la pouertà, perche niuno ci porti inuidia: nè anche $ognarei un poetico mondo, o terre$tre par adi$o: doue i fiumi di latte correno, mele $udano le quercie, manna e nettare pioue- no i cieli: peroche all' humana nece$$ità $i puo con mediocre & conueneuole habitatione proue- dere, & quelle copie piu pre$to de$iderare, che hauere $i po$$ono. Quanto adunque richiede la uita de gli huomini, elegga$i la Città in tal $ito, che ella $i notri$ca del $uo tenitorio, che non po$$a di leggieri e$$ere a$$alita, che $ia libera alle $ortite, & che habbia le $opradette conditio- ni: dapoi habbia$i cura di fondare la muraglia. Gli inditij di buono, & $odo terreno $ono; che ne i luoghi, ne i quali s'ha da fondare, non ui $iano herbe $olite di na$cere in luoghi humi di, che nel pae$e d'intorno $iano $a$$i acuti & $odi, & alberi $olo na$centi in luoghi a$ciutti: che non ui $iano acque $ortiue $otto: $e il terreno per li pe$i in terra gettati, non ri$uonerà nè l'acqua ripo$ta ne' ua$i per li cadimenti $i muouerà. Le cauationi de i pozzi oltra l'utilità dell' acqua, & della materia, ne daranno $egno della $odezza del terreno. Il fondamento non è parte della fabrica: imperoche la natura $enza l'aiuto dell' Arte, $uol darci il luogo fon dato, facendo$i il piano $odi$$imo con alti, & duri $a$$i: doue non fa bi$ogno d'alcuna bu-</I> <pb n="46"> <I>mana fatica: ma cerca il fondamento, che $i fa da gli huomini, $i deue con$iderare la forma del terreno, la qualità, il compartimento, & le regole. La forma del terreno, è fatta $econdo la quantilà de i luogbi, i quali $ono o alti, o ba$$i, o pendenti: la qualità è perche la terra ba di molte $corze, onde altre $ono coperte di gro$$a, altre di minuta $abbia, & altre di creta. altre di to$o, molte di giara me$colata: & in fine altre $ono $ecche, & areno$e, altre bu- mide, & molli. Il compartiment o richiede, che i piani $iano di$egnati con linec, & con la $quadra, ri$petto al drizzare le co$e, & a formare gli anguli. Fa una croce di funi, $econ- do che dice Leon Batti$ta, & nel mezo $ia fitto un chiodo, col quale ti reggerai, & co$i fa- rai le tue $acome. tirando il filo per ogni uer$o, le Regole ueramente per le fondamenta di ogni fabrica $ono trouare il uiuo, & il $odo, ne i luoghi pendenti cominciar dal ba$$o, ne i molli, ouer areno$i battere le palificate $pe$$e & $ode: & quelle ra$$odare piu pre$to col con- tinuo battere, che col pe$o, o gran perco$$a di quelli $trumenti, che noi chiamamo becchi, latini fi$tucas. Con$igliar$i con i periti del luogo cerca la natura del terreno. Non $i $i- dare di fondar $opra ruine, cauar egualmente, & i$pianare il fondo delle fo$$e, accioche il pe$o prema egualmente. Sia la parte di $otto piu ampia, & pia gro$$a della $uperiore imit an do la natura delle co$e, & $pecialmente gli alberi, che $ono da piedi piu gro$$i, che da cima. $ia la palificata piu gro$$a del muro il doppio: i pali $pe<02>i$$imi, & gro$$i per la lunghezza loro la duodecima parte, ne corti meno dell' ottaua. ne luoghi d'acqua $ortiua per piu $icurtà $i fonda a uolti $opra pali. Ne i grandi edificij $i la$ciano alcuni $piragli nel mezo delle fondamenta per l'opera fino alla cima: accioche i uenti po$$ino u$cire ri$petto a i terremoti, l'ampiezza della Città, & giro quanto alla dignità, $i richiede ampia & grande per la moltitudine, et fre quenza delle genti: quanto alla fortezza, la grande ben guardata, da poche genti non puo e$$er offe$a, la picciola da manco genti è dife$a: piu facilmente può e$$er rubbata, & piu $i- cura al tempo di guerra. Deue la Città e$$er capace di moltitudine, ma non hauere molto di uoto. Egli bi$ogna però $econdo i tempi far le Città forti, perche dalle offe$e, che $econdo le inuuentioni de gli huomini, tutto' lgiorno $i fanno, $i piglia forma alle dife$e. Ma tempo e di ue- nire a Vitruuio.</I> All' hora in que$to modo $i hanno a fare le fondamenta, cioè, che $i ca ui tanto, che $i truoui il $odo, s'egli $i puo ritrouare, & nel $odo quanto ragioneuolmen te parerà per la grandezza dell' opera, con que$ta conditione però, che la parte $otterra tenga $pacio maggiore, & piu gro$$a $ia, che i pareti $opra terra, & quelle fondamenta $iano riempite di $odi$sime pietre me$colate con calce & arena. <p><I>Que$to riempimento di $odi$$ima $truttura (come dice Vitru.) da noi è detto lauorar a ca$- $a. & rincerca l'incami$ciata, come $i uederà.</I> <p>Le Torri deono $portar fuori dell' ordine, & drittura della muraglia nella parte e$terio re, accioche uolendo il nimico dare l'a$$alto, $ia da ogni parte da gli aperti fianchi dalla de$tra, & dalla $ini$tra dalle torri con pietre, & altre co$e da trarre, ferito. <p><I>Dalle offe$e, $i cauano le dife$e, & dal fine $i tragge ogni co$a. & perche alcune offe$e $ono manife$te, alcune a$co$e, altre lontane, altre d'appre$$o: però Vitru. cerca di prouedere quanto $i può (come deue far ognuno che fortifica) a tutte $orte di offe$e. & perche l'ultima, & piu uici- na & gagliarda, è lo a$$alto, & l'impeto che fa il nimico per entrare nella città, però a questa prima prouede Vitr. per far stare lontano il nimico. Le Torri adunque de gli antichi, (in luogo delle quali per altri ri$petti $ono a dì nostri, i baloardi, le piatte forme, i caualieri, le forfici) erano fatte per que$to effetto, che difende<02>ero la cortina, però è nece$$ario, che le e$chino nella par- te esteriore uer$o il nimico. La $omma del fortificare da alcuni è ridotta a que$to, che i defen$ori $ieno $icuri, che $ia il nimico uietato, & anche $cacciato. Il nimico $i uieta con l'acqua, col fo$- $o, & col muro. la fo$$a uieta, & per la di$ce$a, & molto piu per l'a$ce$a, quando ella è profon- da, & precipite, & piu d'una. L'acqua $ortiua m alcuni luoghi non $i può leuare; $e è alta, an- niega, $e è ba$$a fa $drucciolare. impedi$ce i fuochi, & fa difficultà nell' adoperar$i. La muraglia</I> <pb n="47"> <I>deue e$$er gro$ia, & fatta con le ragioni che ci $ono in$egnate da Vltru. che molto bene $erueno a no$tri giorni. il nimico $i $caccia molto meglio dalle Torri, baloardi, argini, & altre co$e $imili rileuate, & che e$ceno in fuori, & $pecialmente quelle che hanno maggior piazza; perche la $i- curtà de i defen$ori è posta nella piazza de i baloardi, oltra, che la muraglia uuole e$$er ben $at- ta, & ordinata in modo che i fuochi, i colpi dell' artigliarie, quanto piu $i puo, $i rendino uani: & $e bene la batteria è gagliarda, & l'artigliaria è uiolenta, però l'indu$tria de gli huomini puo ri- parare con molte inuentioni alla for za terribile di quelle machine trouate da Lucifero. Stando adunque le fortificationi come dice il Signor Conte Gian Giacopo Leonardi, nella Cortina, nel fianco, nel fo$$o, nella strada, nella piazza, oue $i po$$ono adoper are le dife$e, & le machine: Vi- tru. molto bene con$idera il tutto. & perche le porte $ono nece$$arie per l'u$o della città, bi$ogna a$$icurarle, ma non in modo, che pre$e da alcuno di dentro a$$icurino il traditore, & offendino i Cittadini. Deue adunque e$$er $icura la porta dal nimico, & batter di fuori, & e$$ere a$co$a, & che ad e<02>a non mettino capo le $trade, accioche alla di$te$a correndo non po$$ino entrarui i ni- mici. & però dice Vitru.</I> <p>Egli pare anche che prouedere $i debbia grandemente, che il nimico non habbia facile l'entrata ad oppugnare il muro, ma co$i di fo$si precipito$i circondato $ia, & proui$to, che le uie non $iano alle porte drizzate, ma per torto camino uadino alla $ini$tra, perche quando que$to fatto $ia, la de$tra parte di coloro che anderanno alla città, che non è dallo $cudo coperta, $arà uer$o la muraglia. <p><I>Cercail $ito delle porte, (come in molte altre co$e) conuengono le u$anze moderne, con le antiche, nel re$tante pare, che $ia qualche differenza, perche Vitru. loda il Torrione tondo, co- me piu atto a re$i$tere alle machine oppugnatorie, che erano gli Arieti, & le Testuggini. bia$- ma gli anguli, perche $ono piu di$$ipabili, & copreno gli inimici, che non po$$ono e$$er battuti da due lati, come nel tondo. Ma$e auuertimo bene la i$te$$a dottrina $erue a ino$tri tempi, per- cioche $iamo tenuti a fuggire gli anguli $iano piani, di linee dritte, curui, $trelti ò larghi: $iamo obligati tirar le faccie de i fianchi de i no$tri baloardi con fuggir, piu che $i puo gli anguli; per- che $i faccia legatura migliore, che non fa l'angulo, il quale puo e$$er tagliato dall' artigliaria, che farebbe il luogo $enza dife$a. Fa lo angulo il mede$imo danno, che dice Vitru. percioche il nimico re$ta coperto, ci mo$tra il fianco, il che con la regola de gli antichi potemo e<02>equire con le no$tre artigliarie, perche Vitr. uuole che le Torri $iano di$tanti uno tiro di $aetta, che il nimi- co po<02>a e<02>er offe$o dalla de$tra, & dalla $ini$tra: noi applicando que$ta dottrina alla no$tra for- tificatione facemo la distanza di modo, che la no$tra artigliaria offenda da due lati, & che po$- $a ca$tigare chi ardi<02>e fabricar di terreno tra l'uno fianco, & l'altro. le Torri, che egli ci mo- $tra, è ragioneuole, che fu<02>ero $icure, poi che uuole, che i defen$ori po$$ino $tarui $opra alle di- fe$e. Nè i $oldati, nè le machine $ariano $tate con $icurezza, $e non haue<02>ero hauuto le loro $palle gagliarde $econdo l'offe$a delle machine de$critte nel decimo libro. Noi ($e haueremo que$ta con$ideratione) $econdo la mente dello autore uedremo, che egli ci mo$tra, che le $palle de no$tri fianchi e<02>er deono $icure, le piazze di quelle $pacio$e. Hauemo anche di qual modo $i deono fare le $trade, ouero le porte. Noi $eguendo que$ta auuertenza faremo $empre le no$tre $or- tite, che fuggiremo lo ri$chio, che il nimico non po<02>a entrare in$ieme con i no$tri nelle ritirate, co me è molte uolte auuenuto a quelli, che non hanno hauuto que$ta con$ideratione. ma $eguitiamo.</I> <p>Le ca$tella deon$i fare non quadrate, nè di anguli, che e$chino fuori, ma deono piu pre$to girare; accioche da piu parti $ia ueduto il nimico. percioche doue gli anguli uengo- no in fuori, quel luogo difficilmente $i difende, e$$endo lo angulo piu in dife$a del nimi- co, che del Cittadino. Ma la gro$$ezza del muro $i deue fare in modo, che gli huomini armati, incontrando$i l'uno con l'altro po$sino pa$$are $enza impedimento, pure che nel- la gro$$ezza del muro le taglie di oliua$tro bru$tolate, & inca$trate $iano po$te $pe$si$sime, accioche amendue le fronti del muro tra $e come Fibbie, & chiaui, con quelli pezzi ta- <pb n="48"> gliati, in$ieme legati durino eternamente; imperoche a $imil materia, nè pioggic impe tuo$e, nè tarli, nè uecchiezza po$$ono fare nocumento alcuno, ma & in terra $epolta, & po$ta in acqua dura $enza danno in $empiterno; & però non $olamente nel muro, ma nel- le fondamenta, & in que pareti, che haueranno gro$$ezza come di muro, $e con que$ta ragione $aranno ben legati, non $i potranno di leggieri intaccare ne uitiare. Gli $pacij da Torre a Torre non $iano piu lontani, che un tiro di arco. percioche $e la Torre $arà hat- tuta da una parte, $aranno i nimici $cacciati con bale$tre, & altri $aettamenti dalle Tor- ri che $aranno dall'una, & l'altra parte. & anchora per lo contrario il muro uer$o la parte interlore delle Totri deue e$$ere diui$o con i$pacij tanto grandi, quanto $aranno le Tor- ri, & $iano le uie nelle parti di dentro delle Torri con traui congiunte, nè $iano fitte con ferro. Perche $e'l nimico per $orte hauerà occupato alcuna parte del muro, quelli, che $aranno alle dife$e, potranno tagliare le dette uie, & $e $aranno pre$ti non la$ciaranno, cheil nimico pa$si all'altra parte delle Torri o del muro, $e egli non uole$$e andare in pre- cipitio. Bi$ogna adunque fare le torri, ouero di forma ritonda, ouero di molti angu- li, perche le quadrate di leggieri $i gettano a terra dalle machine, perche gli Arieti urtan- do rompeno le cantonate, ma nelle ritonde, $pignendole uer$o il centro come cunci non le po$$ono offendere. <p><I>Que$ta parte s'è aba$tanza dichiarita di $opra, $olo a<02>ai ci $arà lo e<02>empio, della Torre aperta di dentro, benche ad altri modi $i po$$ino acconciar le traui, che $i po<02>a con pre$tezza gettarle a terra.</I> <pb n="49"> <p><I>G. Sono alcuni peducci o gatelli, che $pigneuano fuori del muro per due terzid un piede, quattro piedi lont ani uno dall' altro, $opra i quali poneua tanti capi di traui, che tutti concorre$- $ero al centro della torre: & que$ti con una ferma catena raccomandata all'ultimo palco della torre, con uno molinello, o argano doue è la. A. fermaua tuttii palchi con tauole $enza chio- di, che leuate le tauole, & rauolgendo là catena, tutte le traui rimarriano appe$e alla catena, che con grandi$$ima pre$tezza li potria leuare. & que$ti po$$ono portare ogni gran carico, per- che cia$cuno di loro affronta nel centro, nè po<02>ono calare, $e la torre non con$ente. B. è il centro. Vuole poi che l'ultimo palco $ia forti$$imo non $olo per $o$tentamento di que$ti, ma anche occorrendo fabricarui $opra per alzarla, $tia forte. C. tauolato. E. La muraglia. H. $ca la per a$cender alla muraglia. F. piano della muraglia. D. muro di dentro, che $erraua la torre. K. I. Gro<02>ezze.</I> <fig> <p>Appre$$o di que$to le dife$e delle muraglie, & delle Torri congiunte à gli argini, e terra <foot><I>G</I></foot> <pb n="50"> pieni $ono piu $icure. imperoche nè gli arieti, nè le mine, nè altre machine li po$$ono fare offe$a. Ma non in ogni luogo $i ricerca lo argine, ma $olamente la doue dal di fuori da luo go alto a piè piano, $i puo uenire ad oppugnare la città. Et però in tali luoghi bi$ogna prima cauare le fo$$e di larghezza, & di altezza grandi$sima. Dapoi dcue il fondamento della muraglia e$$er depre$$o, & calcato tra lo aluco della fo$$a, & fatto di quella gro$$ez- za, che egli po$$a $o$tenere il carico dell' opera terrena. & ancora dalla parte della $abrica di dentro uer$o la terra, egli $i deue fare il fondamento per ampio $patio di$tante da quel di fuori di modo, che le compagnie po$sino come in ordinanza, nelle dife$e formar$i $o- pra la larghezza dello argine. Quando adunque $aranno fatte le fondamenta co$i di$tanti l'uno dall' altro, allhora $arà bi$ogno di farne dell' altre per lo trauer$o, che congiunte $ia- no col fondamento di fuori, & col fondamento di dentro di$po$te come pettini a gui$a de i denti di $iega. perche quando in que$ta maniera $arà fabricato, & fondato il muro, $e ne hauerà que$to commodo, che la grandezza del pe$o in picciole parti compartita, non calcando con tutto il carico $uo, non potrà per modo alcuno $cacciare, o $pignere le fonda menta. Ma della muraglia, di che materia fare $i conuenga, non $i deue in que$to luogo al trimenti determinare: perche non $i puo per tutto hauere quella copia di co$e, che $i di$i- dera: ma doue $aranno i $a$si di lati, & anguli eguali, & di piana $uperficie, che quadrati $i chiamano, ouero il $elice, ouero il cemento, ouero il mattone cotto, o crudo, que$te co$e $i deono u$are: perche non $i puo in tutte le parti del mondo, & in tutte le nature de i luoghi, accioche i muri durino eternamente $enza difetto adoperar quello, che copio$a- mente uiene in Babilonia, doue in luogo di calce, & di arena, $i u$a il bitume liquido, & di quello, & di cotto mattone è fatto il muro della città. <p><I>La città è ouero in terra, ouero in acqua. $e in terra, o in piano, o in monte, o parte in piano & parte in monte. Del fabricare nell' acqua Vitr. ne parlerà nel quinto libro, doue ragiona de i porti. Bi$ogna auuertire nel fabricare delle città nell' acque, che il cre$cere delle acque non le fac cia danno; che $i facciano belli pallazzi $opra l'acque, & ponti, che habbiano del grande. & $e non $ono dife$e dal $ito, & dalla difficultà de i uadi, bi$ogna farui le fortezze, & le mura, & a$- $icurare anche il porto, con catene, come $i dirà al $uo luogo. $e la città $arà in terra, & in altez za, & in luoghi di precipitij, come pare, che Vitr. uoglia, nel primo modo di fortificare $enza ar gini, ella $arà piu $icura, perche difficilmente il nimico la potrà a$$altare, per la $alita difficile, & hauerà le $coperte commode, & chi la difenderà, $arà $opra l'auantaggio: & quelle città, che haueranno del piano, & del monte, haueranno de i commodi, che hanno le città del mon- te, & doueranno hauere delle proui$ioni, che hanno le città in piano. Deue in quelle e$$er un luogo forte nella piu alta parte, per $tare i caualieri della città, quan- do ci fu$$ero cittadini di mala uolontà, o che i nimici haue$$ero occupato la terra. per- che que$ti luogi $pe$$o a$pettando il $occor$o $icuramente intertengono il nimico, & $o- no occa $ione della ricuperatione delle città. Se adunque la città $arà in piano, & come dice Vitruuio, $e egli $i potrà andare a piede piano, bi$ognerà fargli gli ar- gini, le fo$$e, le contra$carpe $econdo le regole di $opra, & quelli ri$petti, che ha po$ti Vitruuio nel fondar le torri, & farle alte, & che $portino in fuori, & che $iano aperte di dentro, & che habbiano precipitij, & che tenghino i defen$ori, & che $i po$$ino $eparare le entrate, & impedire la pre$a loro, applicarle al modo no$tro di fare i baloardi, & i caualieri, & le altre dife$e, pigliando quello, che farà per noi. Et però Vitru. nel dare i precetti della fortificatione ha cominciato dalle Torri, come quelle, che principalmente ci difendino, & $ia- no à noi come $cuto, & a nimici come offe$a, & propugnaculo, dal quale, & il nimico $ia tenu- to lontano, & la muraglia $ia guardata, & anche la parte di dentro $ia $icura. Ma in que$ta materia na$ceno de i dubbij. L'uno è che $e le torri $ono tanto larghe, & gro$$e di muraglia, che po$$ino tenere corpo di gente alle dife$e, $e bene quelle traui, che dice Vitr. $aranno pre$to getta-</I> <pb n="51"> <I>te a terra, potranno però i nimici per lo circoito delle torri andare da uno muro, all altro. A que $to $i ri$ponde, che le torri erano alte, & che i nimici non poteuano $alire a quelle altezze, $e bene haueuano occupato il muro. Erano dico alte, & per di$e$a, & per contr a$tare à quelle ma chine grandi fatte de legnami, che conduceuano i nimici nelle e$pugnationi delle città. l'altro dubio è che Vitr. uuole, che le Torri dalla parte di dentro $iano aperte, accioche leuate quelle traui, & que ponti, lo inimico uedendo il grande precipitio non $i metta a uoler pa$$are da una mura- glia all' altra. per que$to $i uede, che meglio $aria $tato per lo inimico battere una torre, che la mu raglia. perche tagliata o rotta la torre, baueuano il re$tante libero, & aperto per entrar den- tro. A que$to $i ri$ponde dallo eccellente M. Ale<02>andro Piccheroni huomo de pochi pari nelle for tificationi, & in altre belle arti, che le torri che erano, o doueuano e$$ere $errate da piedi di mu ro alto almeno per la metà dell' altezza della cortina, haueuano quel muro che le $erraua gro$$o da piedi a ba$tanza per impedimento delle zappe, ma poi uenendo uer$o la cima $i faceua piu $tret to. la torre poi douena nel mezo e$$ere profonda molto, & eguale al meno al fondo de i precipi- tij, & $e per ca$o lo inimico fu<02>e, rompendo la torre, per entrarui dentro, egli era $ottopo$to ad una infinità di offe$e, sì da quelli, che $tauano di $opra nelle torri, come da quelli, che da ogni lato $tauano $opra le mura, come $te$$ero quelli palchi, o contignatione, che dice Vitr. per $icur tà di quelle, che difendeuano le torri, & che facilmente $i pote<02>ero leuare, altri uno, altri al- tro modo hanno trouato, nè $opra que$to c'è da di$putare qual $ia piu uicino alla mente di Vitr. e$ $endo libero ad ognuno di affermare qual modo gli piace. però il $opradetto ha ritrouato unmodo ingenio$o, il quale noi nella $oprapo$ta de$crittione hauemo pigliato.</I> <TABLE> <ROW><COL><19>. <I>Leuante.</I></COL><COL><I>M. Mae$tro.</I></COL></ROW> <ROW><COL><I>P. Ponente.</I></COL><COL><I>S. Sirocco.</I></COL></ROW> <ROW><COL><I>O. O$tro.</I></COL><COL><I>T. Fo$$o.</I></COL></ROW> <ROW><COL><I>T. Tramontana.</I></COL><COL><I>V. Torre.</I></COL></ROW> <ROW><COL><I>G. Greco.</I></COL><COL><I>X. Porte.</I></COL></ROW> <ROW><COL><I>G. Garbino.</I></COL><COL><I>Y. Piazza & foro.</I></COL></ROW> <ROW><COL></COL><COL><I>O. Ba$ilica.</I></COL></ROW> <ROW><COL></COL><COL><I>I. Strade.</I></COL></ROW> <ROW><COL></COL><COL><I>Z. Terrapieni.</I></COL></ROW> </TABLE> <p><I>A. Denti a gui$a di $ega.</I> <p><I>B. Contra forti a gui$a di pettine.</I> <p><I>C. La muraglia uer$o la città.</I> <p><I>D. Lamuraglia e$teriore.</I> <p><I>Bargine, o Terrapieno.</I> <foot><I>G</I> 2</foot> <pb n="52"> <fig> <pb n="53"> <fig> <pb n="54"> <p><I>a. f. correnti per lo lungo de i contra$orti, ouero catena. b. paloni per lo dritto del parete. c. incrocciamenti e$teriori. e. ripre$e & immor$ature. A pareti e$teriori. I Il piano doue fini$ce i paloni.</I> <p>Ordine nelle di$po$itioni delle mura nelle forti$icationi de gli antichi. <p><I>A il luogo del terrapieno. d. nerue per le fibule che $e incrocciano. p. o. lun- ghezza da un contraforte all'altro. o. r. & p q. lunghezza de i contraforti che è piedi uenti due. b & f. incrocciamenti delle nerue. q angoli a modo di $eghe. e b $ catena per il lungo de i contraforti lunga piedi trenta$ei, & gro$$a per larghez zo uno piede, & per altezza tre quarti. G H nerua ocorrente di legno che riceue in $e i capi delle catene. K l parte interiore, cioè pomerio. i u gro$$ezza delle mura. i r ri$alto de gli angoli a modo di $eghe piedi quattro. M N parte e$te riore delle mura.</I> <HEAD><I>Della diui$ione delle opere, che $ono dentro le mura, & della di$po$itione di quelle per i$chifare i fiati no- ciui de i uenti. Cap. VI.</I></HEAD> <p>CIRCONDATA la Città di mura, $eguita il compartimento di dentro del- le piazze, & de gli $pacij, & il drizzamento delle contrade, & de i capi del- le uie alle parti del Cielo. Drizzeranno$i bene, $e prudentemente $aranno e$clu$i i uenti da i capi delle uie: perche i uenti, $e $ono freddi, offendeno, $e caldi, gua$tano, $e humidi, nuoceno. per il che pare, che egli $i debbia $chifare que$to difetto, & auertire, che non auuenga quello, che in molte Città $uole auenire. Come nell'I$ola di Lesbo il ca$tello di Metelino, è fatto magnificamente, & con molti orna- menti, ma po$to $enza con$ideratione. in quella Città $offiando l'O$tro gli huomini $i am- malano, $offiando Cauro to$si$cono, $offiando Tramontana $i ri$anano, ma non po$$ono per la forza del freddo fermar$i nelle piazze, o ne i capi delle $trade. <p><I>Dapoi che Vitruuio ha trattato della regione, & delle $ue qualità; che era la prima con$ideratione, che $i doueua hauere per $ituare la Città, & dapoi che ci ha dimo$trato come egli $i ha da pigliare una parte della regione, & circondarla di dife$e, & munitione di mu- raglia, con ragione egli uuole in$egnare a compartire il piano rinchiu$o da tutto il circoito delle mura. & prima con$idera il compartimento quanto appartiene a $chifare le co$e no- ciue, & que$to fa nel pre$ente Capo. Dapoi quanto appartiene alla di$tributione, & di$pen $atione de i luoghi, & que$to fa nel $ettimo, & ultimo capo del pre$ente libro. Quanto al- la prima parte Vitruuio con e$$empi prima ci fa auuertiti, che per li noio$i fiati de uenti al- cun danno non $i $enta. Dapoi di$correndo $opra la natura, forza, nomi, numero, & $ito de i uenti per formarne poi certa, & terminata figura, ci mo$tra come habbiamo con quel- la a reggerci nelle dritture delle $trade. Lesbo è I$ola nel mar Egeo detto Arcipelago, uolge cento et $e$$anta miglia, & ha la $ua metropoli detta Metilino, dalla quale hoggi tutta l'I$o la è nominata. ben è uero, che hora è priua de gli antichi ornamenti, & è andata in ruina. Giace Metelino uer$o Tramontana, è uolto s. Theodoro a Ponente. il colfo Caloni a Garbino, il colfo Ieremidia tra Sirocco, & Leuante. Metelino adunque è mal $ituato, & compartito: percioche è $ottopo$ta a i uenti, de i quali la maggior parte $ono mal $ani: però nel com- partimento delle piazze, & delle sho<*>cature delle $trade, bi$ogna hauere con$ideratione al-</I> <pb n="55"> <I>le qualità de i uenti. Da que$to precetto, Vitruuio $i piglia una bella occa$ione di filo$o$a- re d'intorno la natura, & qualità de i uenti, & però dicendo prima, che co$a è uento, co mincia a que$to modo.</I> <p>Il uento è onda del mare, che $corre con incerta abbondanza di mouimento: egli na $ce quando il caldo ritroua il $reddo, & lo impeto del feruore e$prime la forza dello $pi rito che $offia: & que$to $i dimo$tra e$$er uero dalle palle dette Eolopile: & con gli ar- ti$icio$i ritrouamenti delle co$e $i tragge dalle $ecrete ragioni del cielo quanto è uero della diuinità. Fanno$i le dette palle cauate di rame con un punto $tretti$simo per lo- quale $i ui mette dentro l'acqua, & $i poneno al fuoco. & prima che $iano calde non mandano fuori alcun $iato, ma poi che cominciano a bollire, fanno al fuoco una gran forza di $pignere, & di $offiare. <p><I>Diffini$ce Vitruuio il uento, & mo$ira da che na$ce, & proua il na$cimento con co$e $en- $ibili. Dice adunque il uento e$$er onda del mare: $i come l'onda non è altro, che una parte d'acqua unita, & raccolta, che uer$o alcuna parte cacciata in$ieme $i muoue: co$i uuole Vitruuio, che il uento $ia parte dello aere in $e ri$tretta, che in alcuna parte pieghi, & però ha detto, che'l uento è onda del aere, che con incerto & sforzeuole mouimento $i commoue. Na$ce il uento (come dice Vitr.) quando il calore s'incontra con l'humore, & per lo feruore $i man- da fuori la forza dello $pirito, che $offia. $e bene Vitruuio ci da lo e$$empio per prouare, che il uento na$ce dal calore, che opera nella humidità: non però e$pone chiaramente lo effetto. Diremo adunque noi quello, che da no$tri precettori hauemo imparato. Il uento, è uapore del la terra, che a$cende all'altezza dello aere, & $cacciato dal freddo, che in quella parte $i truoua, percuote lo aere con uiolenza. il calore delSole, & d'altri corpi celesti ha uirtù di trarre dalla terra alcuni fumi o uapori, & leuarli in alto, perche la proprietà del calore, è tirare a $e: il che $i fa $caldando, & facendo i corpi piu rari. Que$ti uapori $ono alcune parti $ottili dell'humore terre$ire, che non hanno nè calore, nè figura determinata, hanno al cuni calore, & humidità: alcuni calore, & $iccità. de i primi $i genera ogni humida impre$sio- $ione, come le nubi, la pioua, la rugiada, la neue, la grandine, la brina, le fonti, il mare. de i $econdi $i fa ogni infiammato, & acce$o ardore, & tutto quello, che è di calda, & $eccá natura, & però i fuochi, i lampi, i tizzoni, le comete, le ca$e ardenti, le $telle cadenti, le corone lumino$e, i fulmini, le uoragini, & apriture dello aere e$tiuo, i uenti, i turbini, & al tre apparenze d'imperfette mi$ture da quelli hanno origine, come da materie loro proportio- nate. Noi diremo de i uenti. Il Sole adunque ha uirtu di tirar al modo che detto hauemo quel uapore che è caldo, & $ecco, & $i chiama e$altatione, come il primo caldo, & humido, $i dice uapore; Que$ti adunque u$cito dalla terra, per e$$er di natura di fuoco s'inalza, & $i lieua dritto all'in $u, & a$cende fin che egli ritruoua la parte di mezo dello aere, & che è fred da per e$$er di$tante, & dal ri$alimento de i raggi del Sole, che dalla terra $i fa, & dal fer- uore dello elemento del fuoco. ritrouando adunque il freddo, come nimico lo fugge, & hauen- do pure natura di fuoco cerca di a$cendere: ma e$$endo ribattuto dal freddo, è forza, che di- $cenda, & per que$to contra$to è $cacciato da i lati, & in giro $i muoue per la uiolenza fat- tagli dal freddo, che lo ribatte in giu, & per la naturale inclinatione, che lo porta in $u, pre dominando il fuoco in e$$o. & però il uento non è altro che calda, & $ecca e$alatione mo$$a da i lati, d'intorno la terra, per la ribattuta del freddo, che è nella mezana parte dello ae- re. & $e bene alcuna fiata chiamamo uento lo aere mo$$o, come $i uede dal $offiar de i folli, o dal far$i uento la $tate, o dalle palle $opradette, che Elopile $i chiamano, qua$i palle uento$e, non è però, che il uento $ia mouimento dello aere, perche bene puo $tare, che lo aere $i muo- ua con il uento, & il uento però non $ia onda dello aere. Laragione del $offiar delle Eolopile, è perche il fuoco opera nell'acqua col $uo calore, & cerca di conuertirla in aere, & perche le di men$ioni dello aere $ono maggiori delle dimen$ioni dell'acqua, per e$$ere lo aere piu raro, però</I> <pb n="56"> <I>l'acqua conuertit a in acre cerca d'u$cire, & ritrouar luogo capace, & pa$$ando per uno $ireti$- $imo punto, $a quello impeto, che $i uede. & $e con piu forza il calore, pote$$e pre$to conuer- tire l'acqua in fuoco, come $a la poluere dell artigliaria; $i uedercbbe gagliardi$$imo e$$etto, & le palle non durerebbono, ma $pezzate fariano del male, come hanno fatto ad alcuni. Maper- che l'e$alatione, che è uapore caldo, & $ecco, $ia principio de i uenti, egli $i proua per tre $egni. Il primo è, che per li molti uenti, che regnano, le regioni $i fanno calde, & $ecche. il $econdo è, che i gran uenti fanno ce$$ar le pioggie. Il terzo è, che uengono piu uenti, cioè dal Settentrione, meriggie, & da Ponente, che da Leuante, perche in quelle parti $i troua maggior copia di e$ala- tioni. Que$ti $egni pareno contrarij di primo a$petto alla i$perienza. & prima, perche quando $ono gran uenti, pare che regni maggior freddo. dapoi non $i uede, che gli huomini ri$caldati cer- cano di far$i uento, per raffreddar$i? Ri$pondo, che il freddo, che $i $ente al tempo, che $o$$ia- no i uenti, na$ce per la me$colanza che $anno le e$alationi, con i uapori $reddi, & humidi, quando s'incontrano, & anche dalla freddura dello aere, con il quale $ono me$colati i uapori, perche puo anche e$$ere, che la e$alatione $ia mutata per lo freddo, che ella troua nel mezo dello aere, ma ce$$ando il uento il pae$e re$ta a$ciutto, & caldo. Al $econdo io dico, che per lo far$i uento egli $i muoue lo aere, & $i ri$trigne, il quale aere è piu freddo che il corpo humano ri$caldato, & però è di$iderato. il uento adunque è e$alatione leuata da terra alla mezana par- te dello aere, & dal freddo $cacciata. & $i come il fiume da principio pre$$o la fonte è poco, & allontanando$i dalla $ua origine per lo ingre$$o d'altre acque $i fa maggiore, co$i il uento uicino al luogo, doue egli $i lieua è poco, & partendo$i è molto, ritrouando $empre altri uapori, con i quali egli s'accompagna, nè prima la e$alatione $ifa uento, che ella $ia $cacciata dal freddo dello aere. Muoue$i in giro per la $opra detta cagione, & for$e anche $eguendo il mouimento delle stelle, & de i pianeti, che lo muoueno.</I> <p>Et in que$to modo da picciola, & breui$sima ueduta, $i puo $apere, & far giudicio del- le grandi, & immen$e ragioni del Cielo, & della natura de i uenti; perche $e i uenti $aran- no i$clu$i, non $olo a i corpi $ani faranno il luogo $alubre, ma anchora $e per altri difetti ci $aranno delle infirmità, le quali in altri luoghi $ani $i curano con medicine contrarie, qui per la temperata e$clu$ione de i uenti piu facilmente $aranno curate. <p><I>Conchiude Vitru. quanto ha $opra detto. poi comincia a narrare le infermità, che na$ce- no da i uenti, dicendo.</I> <p>I mali, che difficilmente $i curano ne i detti luoghi $ono, la grauezza, i dolori artetici, la puntura, il Ti$ico, l'u$cire il $angue, & le altre infermità, che con lo aggiugnere, & non con lo $cemare $i curano. Que$te difficilmente $i leuano, prima perche uengono da i fred- di, dapoi perche indebolite le forze per l'infermità, lo aere commo$$o da i uenti $i a$$otti- glia, & unitamente leua il $ucco da i corpi offe$i, & gli rende piu uoti, & e$tenuati. Ma per lo contratio l'aere dolce, quieto, & ripo$ato, & non agitato da i uenti, è piu den$o, perche non $offia, nè ha $pe$$e commotioni per la $ua $tabilità, aggiugnendo alle membra de i corpi, notri$ce, & ri$tora coloro, che $ono da $imili infermità oppre$si. <p><I>Ogni infermità na$ce ouero da ecce$$o, ouero da mancamento, cura$i dal contrario riem- piendo oue manca, & leuando doue abonda. Vuole Vitru. che le $opradette infermità, uenghino da difetto, & mancamento, dicendone la ragione, che lo aere a$$ottigliato per l'agitatione de i uenti, a$ciuga l'humore de i corpi, & gli indeboli$ce, & il freddo gli o$fende: per que$to riuol- gendo$i al contrario, uuole che lo aere dolce, & tranquillo gli riempia, & notri$ca, & $ia ot- timo rimedio alle $opradette infirmità. Grauezza è humore, che di$cende dal capo, $erra le na- rici, ingro$$a la uoce, & muoue la $ecca to$$e. Hippocrate chiama tutte le grauezze, & di- $tillationi crizas. I dolori artetici $ono pa$$ioni di quelle parti, che $ono appre<02>o le giunture, & legamenti, & $ono nerui, o<02>a, & uene. Dubita Galeno $opra il $estodecimo aphori$mo <05> Hippocrate nel terzo libro, che co$a ueramente s'intenda, per que$to nome Arthritis, & dice.</I> <pb n="57"> <I>Degni co$a è adunque cercare quali pa$$ioni de nerui, & di ligature detto habbia Hippocrate, che $i fanno nelle $iccità: percioche $e li $ecchi immoderati haueranno con$umata la humidità de ilegamenti, faranno un certo mouimento difficile per la $iccità, & for$e apporteranno dolore, ma non faranno però quella infermità, che è detta Arthritis, $e per $orte alcuno non uuole nomi- nare con que$to nome ogni dolore de nerui. Ma il medc$imo Hipp. nel $econdo libro delle Epidi- mie dice in que$to modo. Quelli, che per fame nell'I$ola Aeno, che è nel golfo Arabico, man- giauano de legumi haueuano debolezza di gambe, & quelli, che u$auano per cibo la ueccia, pa- tiuano dolori nelle ginocchia. questi Hippocrate non chiama arthretici, ma doglio$i delle ginoc- chia. Ma for$e alcuno dirà, che Arthritis $i chiama il dolore non di una giuntura, o d un neruo $olo, ma di molti in$ieme, & in latino è detto morbus articularis. & nell'ultima parte è posta la $olutione della dimanda. La pleuritide è apo$tema dentro le co$te, chiama$i la puntura. Pthi$is $ono le piaghe in$anabili del polmone, dalle quali con lenta febre uiene la estenuatione di tutto il corpo, & finalmente la morte, ce$$ando lo $puto. l'u$cire il $angue, cioe $putare il $angue, è det- to in Greco Aemopthi$is, & $i cau$a da $iccità, & le $opradette infirmità $i curano difficilmente ri$petto alli uenti, & però Hipp. al quinto Aphori$mo del terzo libro dice in que$to modo. i uenti Au$trali a$$ordano, ingro$$ano la ui$ta, fanno pe$are il capo, rendeno gli huomini lenti, & pi- gri, & gli di$cioglieno, & quando anderanno que$ti tempi, nelle malattie $i deono a$pettare $i- mili effetti. da gli aquilonari, & $ettentrionali nengono le to$$i, la raucedine, durezza di uentre, difficultà d'urina, gli horrori, & i dolori delle co$te, & del uentre. La ragione delle predette co$a, è (come dice Gal.) percioche i uenti Au$trali riempieno, & otturano, perche $eco appor- tano grande humidità, la quale riempie gli in$trumenti de i $en$i humani, donde pigri, $onnac- chio$i, & aggrauati re$tano. Ma per li uenti $ettentrionali per i$temperatura de gli instrumenti che $erueno alla re$piratione, & per l'a$prezza delle canne nata dal $ecco, & dal freddo, uengono le predette infirmità: & que$to per hora ci può ba$tare, il re$tãte copio$amēte da medici è traltato.</I> <p>Piacque ad alcuno, che i uenti fu$$ero quattro. Dall Oriente Equinottiale il Solano: dal Meriggie l'O$tro: dal Ponente Equinottiale il Fauonio: dal Settentrionale il Setten- trione. Ma chi con maggiore diligenza hanno inue$tigato, otto ne po$ero. & $pecialmen- te Andronico Cirre$te, ilquale ne fece lo e$$empio, fabricando in Athene una Torre di marmo fatta in otto faccie, & in cia$cuna $colpì la imagine d'un uento, che riguardaua contra il $offio cia$cuno del $uo. & $opra la Torre ui po$e una Meta di marmo, nella cui $ommità ui fi$$e un Tritone di rame, che con la de$tra porgeua una uerghetta, & lo fece in modo, che mo$$o dal uento facilmente $i giraua, & $i fermaua incontra'l uento. tenendo $opra la imagine del uento $colpito la uerghetta dimo$tratrice del uento, & co$i tra'l So- lano, & l'O$tro dal uerno Oriente, Euro è collocato. Tra l'O$tro & Fauonio dal uerno Occidente, Affrico. Tra'l Fauonio, & il Settentrione Cauro, detto Coro da molti. Tra il Settentrione e'l Solano, Aquilone. & co$i pare, che dichiarito $ia & e$pre$$o di che maniera egli prenda il numero, i nomi, & le parti de i uenti, d'onde $pirino determinata- mente. la qual co$a e$$endo$i in que$to modo inue$tigata, accioche egli $i $appia pigliare le regioni, & i na$cimenti loro, co$i bi$ogna ragionare. <p><I>Il numero de i uenti ci darebbe confu$ione, $e egli non $i auuerti$ce, che $econdo diuer$e in- tentioni, & ri$petti $i ua uariando. però $aper douemo, che in quattro modi $i distingueno i uen- ti. primieramente $econdo tutti i punti, che $ono nella circonferenza dell'Orizonte. Orizonte è circolo che parte la metà del mondo, che $i uede da quella, che non $i uede. & $i puo chiama- re terminatore de gli hemi$peri. $econdo que$to modo, $i darebbeno infiniti uenti, perche da tut- ti i punti dell'Orizonte $pirano i uenti: & perche non cadeno $otto regola, non facendo di$tintio- ne alcuna, però $i la$ciano. I Filo$ofi fanno quattro uenti ri$petto alle me$colanze delle quattro prime qualità, che $ono caldo, freddo, humido, & $ecco; gli Astrologi $imilmente, hauendo ri- guardo a quattro parti principali del mondo, che anguli $i chiamano, o regioni, conuengono con</I> <foot><I>H</I></foot> <pb n="58"> <I>i Filo$ofi, & con i $acri $crittori, & fanno gli i$te$$i quattro uenti. Leuante detto Solanus, Ostro dal mezo dì, Fauonio dal Ponente, & Tramontana dal Settentrione: & intendeno Lc- uante & Ponente doue il Solna$ce, o $i pone al tempo dello Equinottio. I mede$imi A$trologi per altri ri$petti ne $anno otto traponendoui quattro altri tra gli primi: & co$i gli collocorno, come dice Vitr. hauer $atto Andronico Cirre$te in una Torre in Athene. & i piu diligen i inqui- $itori di$tingueno i uent i dalle dodici parti del Zodiaco, che $ono i dodici $egni cele$ti, $ot o i qua- li il Sole ha uirtù di leuarela natura de i uenti. Et que$ta con$ideratione è propria de gli A$tro- logi. Il quarto modo è de i Co$mografi, & nauiganti; però alcuni ne hanno fatto uentiquat- tro, alcuni trentadue. I praticati uenti della nauigatione a i giorni no$tri $ono trentadue, per commodità di marinari, i quali cono$ceno $en$ibile mutatione da trentadue punti dell'Orizonte nel nauigare per un dritto. i co$mogra$i ne hanno fatto uentiquattro, non e$$endo for$e co$i au- nertiti del bi$ogno de marinari. come dirà Vitr. ilquale $e bene $apeua, che da ogni parte dell'O- rizonte $offiano i uenti, però ha posto quelli, che regnano per la maggior parte, & ha hauuto ri$petto piu presto alle qualità de i uenti, che a gli uenti, la comple$$ione de i quali $i ua mutan- do & nell'uniuer$ale, & nel particolare. per que$ta cagione $i potrà prendere il modo di rom- pere quelli uenti, che $aranno di maggior nocumento a gli habitanti della città, habbin$i qual nome $i uoglia, & uenghino da che parte po$$ono uenire. per altri ri$petti $i po$$ono accre$ce- re i nomi, & il numero de i uenti, il che non ci deue perturbare. ma uediamo, come Vitru. comparti$ca i uenti. perche de i loro temperar enti ne trattano i medici diffu$amente.</I> <p>Po$to $ia nel mezo della città un piano quadro a huello, ouero $ia i$pianato il luogo, & pareggiato in modo, che'l detto quadro non $i di$ideri. ponga$i poi nel mezo centro di e$$o lo $tile di rame, che indice, & dimo$tratore dell'ombra $i chiama. & $opra il detto quadro, o piano $egni$i l'ombra e$trema fatta dallo $tile qua$i l'hora quinta auanti il me- riggie: & faccia$i il $egno con un punto, dapoi rallargata la $e$ta al punto, che è $egno della lunghezza dell'ombra, & fermata nel centro faccia$i il giro finito. dapoi $ia o$$er- uato dopo'l mezo dì l'ombra cre$cente cagionata dallo $tile: & quando quella hauerà toc- cito il giro gia fatto, & hauerà pareggiato all'ombra fatta dinanzi al mezo dì, l'ombra fatta dapoi, in quel toccamento bi$ogna fare un punto. da que$ti due punti con la $e$ta farai lo incrocciamento, & per tale incrocciamento, & per lo centro di mezo $i deue ti- rare una linea, che tocchi le e$tremità del giro, accioche $i habbia la regione meridiana, & la Settentrionale. Fatto que$to bi$ogna pigliare la $e$tadecima parte di tutto il giro, & poner il centro nella linea meridiana, la doue tocca la circonferenza, & $i deue $egna- re dalla de$tra, & dalla $ini$tra nella detta circonferenza, & dalla parte del mezo dì, & dalla parte di Tramontana: dapoi da que$ti quattro $egni per mezo del centro $i deue- no tirare in croce le linee, che con le loro e$tremità tocchino la circonferenza, & con que$to modo egli $i hauerà il di$egno dell'ottaua parte dell'O$tro, & del Settentrione. Le altre parti ueramente, che $ono tre dalla de$tra, & tre dalla $ini$tra $i deono in tutta la circonferenza tirare eguali a que$te: in modo che le eguali diui$ioni de gli otto uenti $ia- no nella de$crittione, & compartimento di$egnate. Allhora per gli anguli tra due regio- ni de i uenti pare che drizzar $i debbiano le dritture delle piazze, & i capi delle uie, per- che con tali ragioni, & compartimenti dalle habitationi, da i borghi, & dalle contrade $arà e$clu$a la mole$ta, & danno$a $orza de i uenti. Altrimenti quando le piazze $aranno a dritto de i uenti di$egnate, uenendo lo impeto & il $offiare frequente dallo ampio, & libero $pacio del Cielo, rin chiu$o nelle bocche, & nelle entrate delle uie, & delle $tra- de, andrà con piu forzeuole mouimento uagando: perilche le dritture de i borghi, & del- le ui cinanze deono e$$er riuo'te dalle regioni de i uenti, accioche peruenendo quelli a gli anguli delle I$ole, & alle cantonate de i capi delle uie, $iano rotti, & ribattuti $iano di$sipati. <pb n="56"> <p><I>Le co$e dette da Vitr. con lo e$$empio di alcune figure $ono dimo$trate. nel$ una $egnata III. è il modo di ritrouare la meridiana. A, è lo centro doue $i pone lo $tile, B, & C. $ono i punti delle ombre dello stile, C. la ombra della quinta hora inanzi, & b. della quinta dapoi il mezo dì. D. è lo incrocciamento della $esta fermata $opra i punti, B. & c. dell'ombra. E F è la li- nea meridiana. La mede$ima è nella figura IIII. douef K. è la $e$ta decima parte di tutto il circolo, & K i. la ottaua, come $ono la h g. & la g m, & la L i. & la h n. & la no. & la o K. nel mezo delle quali $ono i uenti, come $i uede nella piant a $opra po$ta della città, doue la Croce $egna il leuante, P. Ponente, O O$tro, T. Tramontana, S. Sirocco, M. Mae$tro, l'un G. Garbino, & l'altro Greco. & $i uede come i uenti $i rompeno ne gli anguli delli capi del- le uie. Euui la figura $egnata. 1. con li trenta due uenti de nauiganti $egnati a que$to modo.</I> <p><19>. <I>Leuante, Solanus.</I> <p><I>P. Ponente, Fauonius, uel Zephirus.</I> <p><I>T. Tramontana. Septentrio. Aparectias.</I> <p><I>O. O$tro, Au$ter.</I> <p><I>M. Mae$tro. Caurus.</I> <p><I>L. Libecchio, o Garbino, Caurus, o Corus.</I> <p><I>S. Sirocco, Eurus.</I> <p><I>G. Grego, Aquilo,</I> <p>1. <I>Sirocco Leuante.</I> <p>2. <I>O$tro Sirocco. Euro Au$ter.</I> <p>3. <I>O$tro Garbino, Libanotus, uel Au$tro affricus.</I> <p>4. <I>Ponente Garbino.</I> <p>5. <I>Ponente Mae$tro.</I> <p>6. <I>Mae$tro Tramontana.</I> <p>7. <I>Greco Tramontana.</I> <p>8. <I>Greco Leuante.</I> <p>9. <I>Tra Sirocco, & Sirocco Leuante. & co$i ua $eguendo come dimo$tra la figura.</I> <foot><I>H</I> 2</foot> <pb n="60"> <fig> <pb n="61"> <p>Ma $or$e quelli, che hanno piu nomi di uenti cono$ciuto, prenderanno merauiglia, che io habbia detto, che $olo otto uenti $i ritruouano. Ma $e auuertiranno tutto il cir- cuito della terra e$$ere $tato da Erato$tene Cireneo con Mathematiche ragioni, & uie ri- trouato per lo cor$o del $ole, & per le ombre dello $tile equinottiali, dalla inclinatione del cielo e$$ere di $tadi ducento & cinquanta due mila, che $ono pa$$a 31500000. trentauna fiata mille migliaia & cinque cento $iate mille, & di que$te l'ottaua parte e$$er da un ucnto occupata, che è di pa$si 3937500. non $i doueriano merauigliare, $e in tanto grande i$pa- cio un uento uagando col ce$$are, & col ritorno farà uarie mutationi di $o$$iare. Et però cerca l'O$tro dalla de$tra, & dalla $ini$tra è il uento detto Leuconotus, & il uento nomina to Altanus. d'intorno allo Affrico $o$$ia il Libonoto, & quello, che $i chiama Subue$pe- rus; D'intorno à Fauonio $pira l'Argc$te, & a certi tempi le Ete$ie. Da i lati del Cauro, $ta il Circio, & il Coro. cerca il Settentrione, Thra$ias, & Gallico. Dalla de$tra, & dal- la $ini$tra dello Aquilone $of$ia Borea, & Supernate. D'intorno al Solano è Carbas, & a certi tempi le Ornithie, Ma dallo Euro, che tiene le parti di mezo da i lati $tanno Cecias, & Vulturno. <p><I>In que$to luogo Vitr. ri$ponde a quello, che $e gli potrebbe opponere cerca il numero de i uen- ti. potrebbe dire alcuno, o Vitr. tu hai numerati $olamente otto uenti, ma dei $apere, che ne $ono molti altri cono$ciuti, però non doueui affermare quanto hai detto. Ri$ponde Vitr. che motto be ne può $tar quello, che egli ha detto del numero de i uenti, & che anche $iano cono$ciuti altri uen ti: Et la ragione è que$ta. Perche non è da marauigliar$i, $e uno uento i$te$$o uagando grandi$$i- mo $pacio, col ce$$are, & col ritorno faccia diuer$amente $offiando molte uarietà, dalle quali $i prendino diuer$i nomi di uenti. Ma direbbe alcuno, & che $pacio è co$i grande, per lo quale il uen to ha da uagare? Ri$ponde, quello e$$er l'ottaua parte di tutto il giro della terra, la quale è di mi- glia 3937. Prendendo adunque per lo grande $patio qualche mutatione, ouero per la oppo$itio- ne de i monti, ouero per l'altezza della terra, ouero per qualche altra cagione, non ci douemo marauigliare $e da i lati de gli otto uenti altri ne $ono $tati collocati, come narra Vitr. fin'al nume ro di uentiquattro. Et come appare per la figura $egnata. I. doue.</I> <fig> <p><I>Dice Vitr. che Erato$tene Cireneo che fu gran- di$$imo Mathematico, rilrouò con uie, & modi ragioneuoli tutto il giro, & circuito della terra, e$$ere $tadi ducento cinquanta due mila, che $o- no miglia trentaun mila, & cinquecento, perche otto $tadi fanno un miglio, et $ono pa$$a 31500000. perche mille pa$$i fanno un miglio, & il pa$$o è di cinque piedi. L'ottaua par te di tutto il circuito è di miglia 3937. che $ono pa$$a 3937500. Et que$to è lo $patio grande, che Vitr. dice, nel quale per diuer$e cagioni $i puo far ma tatione de i uenti. Ma in che modo per lo cor$o del $ole, & per l'ombre dello $tile equinottiale Erato$tene ritroua$$e con ragioni mathematiche dalla inclina tione del cielo il circuito della terra, $i dichiara dal Maurolico nella $ua co$- mografia, in que$to modo. Erato$tene. pre$e due luoghi in Egitto Ale$$an- dria, & Siene, i quali due luoghi $ono qua$i $otto un'i$te$$o meridiano, & dallo $patio, che è tra un luogo & l'altro, egli tra$$e tutta la circonferenza della ter- ra. Drizzò adunque lo $tile, che Gnomone $i chiama, in Ale$$andria, & nel me zo dì appunto quando il $ole è nel principio di Cancro con$ideraua due raggi$o lari uno, che cadeua $opra Siene à piombo, perche Stene è $otto il tropico del Can cro; l'altro, che cadeua $opra la punta dello $tile drizzato in Ale$$andria, & gettaua l'ombra uer$o Settentrione, percioche Ale$$andria è di qua dal Tropico detto: & per ragione dello $tile all'om- bra trouò per uia Geometrica, che lo angulo compre$o $otto lo $tile, & $otto'l raggio $olare, era</I> <pb n="62"> <I>la cinquante$ima parte di quattro anguli dritti; & però e$$endo que$to angulo eguale à quello, che nel centro della terra fa il raggio, che di$cende per Siene, in$ieme col gnomone, o $tile d'Ale$ $andria imaginato continuare fin'al centro della terra, imperoche e$$endo i raggi qua$i paralleli, gli anguli erano corri$pondenti & $imili, era nece$$ario, che quello $patio di circonferenza, che era da Siene ad Ale$$andria fu$$e la cinquante$ima parte del tutto: & però mi$urando quella par te con gran diligenza, & ritrouandola e$$ere di cinquemila $tad, $eguita, che tutta la circonferen za $ia di 250000 $tadi, che $ono miglia trentaun mila ducento & cinquanta. & co$i egli $i po- trebbe acconciare & Vitruuio & Plinio. & $e è diuer$ità tra gli autori, pen$o, che que- $to uegna dalla diuer$ità delle mi$ure. La figura della dimo$tratione di Erato$tene è $egnata. <19></I> <fig> <p>Sono ancora piu nomi, & fiati di uenti pre$i da i luoghi di doue $pirano, ouero da i $iumi, o dalle procelle, che fanno, uenendo da i monti. oltra di que$to $ono le aure mattutine, che $pira- no quando il $ole $i lieua da terra: perche il $ole girando percuote l'humore dello aere, & nello alzar$i con impeto $cacciando tragge i fiati dello aere con lo $pirito, che uiene auanti la lu- ce. i quali fiati $e leuato il $ole re$tano, $i raunano con le parti del uento Euro; & percio Eu ro dalle aure, delle quali egli $i genera, da Greci è nominato, & il Dimane $imilmente per le aure mattutine Aurion da i mede$imi, è detto. <p><I>Aura è piu pre$to $pirito, che uento, & è detta dallo aere, perche lieue, & dolce è il moui- mento dello aere, la onde i poeti dicono, che le aure con lieui piume tracorreno lo aere.</I> <p>Sono chi niegano Erato$tene hauere potuto drittamente mi$urare lo $patio del mondo: ma $ia la mi$ura $ua uera, o non uera, non puo la no$tra $crittura, non hauere la uera determinatione delle parti, dalle quali na$ceno i uenti. ilche $e co$i è, poco mancherà, che cia$cun uento non habbia la certa ragione della $ua mi$ura: ma poco piu, o poco me- no impeto. <p><I>Non uuole contendere Vitr. $e Erato$tene s'habbia portato bene, nel mi$urare il mondo, per- cioche que$to gli importa poco, nè egli uuole u$cire de i termini dello Architetto. nè puo uariare la ragione di trouare i uenti la dubietà delle mi$ure della terra: percioche $e bene la mi$ura è in- certa, $ono però certi i uenti, & uengono da certe & determinate parti del cielo: però $e altri hanno $cemato, ouero accre$ciuto il numero de gli $tadi di Erato$tene, que$to fa poco al pre$ente negotio. nè meno deue curare Vitr. $e uno uento $ia piu impetuo$o dell'altro. I no$tri per la eleua- tione del polo caminando per uno meridiano, col quadr ante hanno trouato, che ad uno grado di 360. che diuideno il detto meridiano, ri$pondeno in terra miglia $e$$anta Italiani, dal che $i puo far conto quanto la terra uadi girando. Vitr piu chiaramente e$pone la figura detta di $opra, & dice.</I> <p>Ma perche que$te co$e da noi breuemente e$po$te $ono, mi è par$o nell'ultimo del libro porre due figure dette da Greci $chemata, una, che dimo$tri d'onde uengono certi gli im- peti de i uenti; l'altra con che maniera le loro forze con diuer$e dritture di borghi, & di piazze $i po$$a $chifare i noio$i fiati de i uenti. Sia adunque in piano eguale il, centro doue è la lettera A. la e$tremità dell'ombra fatta dallo $tile inanzi al mezo dì doue è la lettera b. dal centro A. all'ombra b. allargata la $e$ta $i faccia la linea circolare, & ripo$to lo $tile do ue era prima, a$petti$i tanto, che l'ombra $i $minui$ca, & faccia di nuouo cre$cendo l'om- bre dopo il mezo dì eguale all'ombra fatta inanzi, & tocchi la linea circolare doue $i $egne rà con la lettera. c. allhora dal $egno B. al $egno c. con la $e$ta $i de$criuerà in croce, doue è la lettera. d. dapoi per quello incrocciamento, doue è la lettera d. & per lo centro. A. $ia tirata una linea alla e$trema circonferenza, a i capi della quale $aranno le lettere e. F. Que- $ta linea $arà dimo$tratrice della parte meridiana, & della parte Settentrionale. dapoi egli $i deue pigliare la $e$tadecima parte della linea circolare, & porre il centro della $e$ta nella <pb n="63"> linea metidiana, che tocca la circon$erenza doue è la lettera. e. Et $egnare dalla de$tra, & dalla $ini$tra, doue $ono le lettere. g. h. & poi nella parte Settentrionale, $i deue ponere il centro doue è la lettera F. & $egnare dalla de$tra, & dalla $ini$tra, doue $ono le lettere I. K. & dal g. al K. & dal h. allo L. $i deono tirare le linee per lo centro, & co$i quello $pacio, che $arà nel g. & K. $arà lo $patio del uento O$tro, & della parte meridiana: & quello $pa tio, che $arà tra'l I. & K. $arà lo $patio del Settentrione. Le altre parti, che $ono tre dalla de$tra, & tre dalla $ini$tra, e$$er deono egualmente partite. quelle dell'oriente $aranno, doue $ono le lettere l. & m. & quelle del Ponente, doue $ono le lettere n. & o. dapoi dallo m. all'o. & da l. al n. in croce $i tireranno le linee: & in que$to modo partiti $aranno gli $patij, de gli otto uenti, in tutto il giro di$egnato. le quali co$e, quando $aranno in que- $ta manicra de$critte in cia$cuno de gli anguli della figura d'otto faccie, $e cominciaremo dal mezo dì: Tra lo Euro, & l'O$tro, $arà la lettera. g. tra l'O$tro, & l'Affrico la h. trall'Affrico, & Fauonio. n. tra Fauonio, & Cauro. o. tra Cauro, & Settentrione K. tra Settentrione, & Aquilone I. tra A quilone, & Solano. L. tra Solano, & Euro. m. Et di$po$te in tal modo le predette co$e, ponga$i lo $tile, o gnomone tra gli anguli della figura d'ot- to faccie, & in que$ta maniera drizzate $iano le piazze, & le otto diui$ioni de i capi delle uie. <p><I>Le figure III. & IIII. di $opra, dimo$irano, quanto ha detto Vitruuio, benche le lettere $iano trappo$te. il re$tante è facile. Parerà for$e ad alcuno, che il trattare delle fortificationi $ia co$a da e$$er tenuta $ecreta, come che a principi, & a Republiche $olamente debbia e$$er manife$ta: Oltra che io ho udito, che alcuni $i dolgono che pale$ando$i il modo del fortificare, egli $i uie- ne a giouare a molte genti fuori d'Italia, alle quali par loro, che $i debbiano tenere le mani $trette nello in$egnare. A que$ti io non ri$pondo, perche da $e $te$$i uanno a ba$$o, come quelli, che e$$endo huomini, uogliono mancare dell'ufficio della humani- tà, & poi $ono ingrati, perche hauendo imparato molte co$e belle, dalle genti di di- uer$i pae$i, non uogliono u$are que$ta gratitudine di ricompen$arle ne i bi$ogni della $alu- te loro: Oltra che non $anno gli inuidio$i, che gli e$$empi delle fortezze d'Italia po$- $ono ammae$trare ogni buono intelletto $enza altra $crittura. A quelli, che lodano la $e- cretezza direi, che quello, che appartiene alla $alute de gli huomini, non $i deue te- ner $ecreto, & $e pare a molti co$a grande la inuentione delle machine horribili, che a $trage del genere humano, $ono $tate ritrouate, & che il truouarne di nuouo $ia meraui- glio$o, & la fatica, & industria di fare quelli tormenti, non $ia fuggita da molti: quanto piu ci douemo affaticare per la con$eruatione: & $e le offe$e $ono co$i publiche, come potre- mo, o doueremo e$$er pigri a far pale$i, & manife$te le dife$e? Ma in $omma io dirò a tutti i riprenditori delle co$e, que$te poche parole, le quali $iano dette per una fiata; che il giudica- re è operatione di una eccellenti$$ima uirtù, & come che difficil co$a, & pericolo$a $ia ad ognu- no, a coloro ma$$imamente è dura, & pericolo$a, i quali o non intendeno, o uengono con pro ponimento di bia$imare piu pre$to, che di giudicare: & guardando con gli occhi aperti al poco di male, $ono ciechi al molto di bene che nelle opere di altri $i truoua. Questa $orte di gente (benche pare tra la moltitudine e$$er qualche co$a) perche il riprendere ha in $e una mo- $tra d'eccellenza, & d'auantaggio: mentedimeno la uerità col tempo $cuopre il difetto dello ani mo, & le opere loro il mancamento della $cienza, & della buona uolontà. Alla peruer$ità di que$ti è $ottopo$to ognuno, che $uol fare, o dare alcuna co$a in publico, quantunque l'hab- biano data, o fatta con buona intentione. però io $timo che molti prenderanno maggiore occa$ione di bia$imare quello, che io con ottimo pen$amento ho propo$to di publicare: impe roche il trattamento d'un Arte $ola è $ottopo$ta al peruer$o giudicio di quelli, che in quel- l'arte uogliono e$$er tenuti, o $i $timano, ouero $ono periti, & intendenti: ma il trattare di quel la cognitione, che abbraccia molte, & diuer$e $cienze, & Arti, non puo fuggire il bia$i- mo di molti, & diuer$i periti, & artefici inuidio$i. de i quali $e in alcun tempo $e n'è trouate</I> <pb n="64"> <I>abondanza a i dì no$tri certamente ne $ono in$initi, & for$e que$to adiuiene, perche quan- to manca loro la i$perienza, la indu$tria, la dottrina, & lo e$$empio de i buoni, tanto $o- prabonda, l'arroganza, l'auaritia, & li ignoranza loro. Io di que$ti poco mi curerei, quan do io cono$ce$$i, che non gli fu$$e pre$tato orecchia: percioche nè di danno, nè di uergogna $arebbono a chi s'affatica. Ma perche la co$a procede altrimenti, & uolentieri $i a$colta, chi dice male, & i gu$ti de gli huomini per lo piu $ono gua$ti, io e$orto ognuno, che $i piglia qualche bella impre$a per giouar altrui, che non perdonino a fatica, per farė tali opere, che da $e $i difendino: & che prendendo $eco la dife$a dalla uerità con l'aiuto del tempo po$$ino conuincere di maluagità, & perfidia chi $i oppone$$e al uero. Que$to con$iglio io mi $ono sfor zato di prendere nello interpretare, & e$ponere i pre$enti uolumi dell'Architettura. & $e be- ne le mie debili for ze non hanno potuto tanto, che l'opera $ia riu$cita a quella perfettione, che ella po$$i mantener$i da $c: nientedimeno io po$$o affermare con uerità, che nè maggior di- ligenza, nè piu indu$tria, nè miglior uolontà ho potuto porui di quello, che ho po$to. Io ho cer cato d'imparare da ognuno, ad ognuno, che mi ha giouato re$to debitore d'infinite gratie: & come di$pen$atore de i beni riceuuti da altri mi rendo. Io ho giudicato maggior uergogna il non uoler imparare, che danno il non $apere: ho fuggito la pompa di citare a nome gli auttori, de i quali mi $ono $eruito in questa fatico$a impre$a, & ho cercato non l'ampiezza della lingua, o la copia delle parole, ma la elettione, & la chiarezza delle co$e. piu uolte io ho di- $iderato & cercato di communicare le fatiche mie con alcuni, prima che ueni$$ero in lu- ce, & in commune inue$tigare la uerità. accioche quello, che non puo fare un $olo, fatto fu$$e da molti. ma que$to, per alcuna cagione, che io bene non intendo, non mi è uenuto fatto. ne i di$egni delle figure importanti io ho u$ato l'opere di M. Andrea Palladio Vicentino Architetto, ilquale ha con incredibile profitto tra quanti io ho cono$ciuto di ui$ta, & per fama, per giudicio d'huomini eccellenti, acqui$tato gran nome sì ne i $ottili$$imi, & uaghi di$egni delle piante, de gli alzati, & de i profili, come nello e$eguire, & fare molti & $uperbi edifi- cij, sì nella patria $ua, come altroue & publici, & priuati, che contendono con gli antichi, danno lume a moderni, & daranno merauiglia a quelli che uerranno. Et quanto appartiene a Vitr. l'artificio de i Theatri, de i Tempij, delle Ba$iliche, & di quelle co$e, che hanno piu bel- le, & piu $ecrete ragioni di compartimenti, tutte $ono state da quello, con prontezza d'ani mo, & di mano e$plicate, & $eco con$igliate, come quello che di tutta Italia ha $cielto le piu belle maniere de gli antichi, & mi$urate tutte l'opere, che $i trouano. Nel re$tante del la fatica mia il buon uolere puo coprire, o $cu$are qualche difetto, & inuitare amoreuolmen- te alla correttione ciuile chiunque fu$$e di$idero$o di giouare, come $on io: il che attendo con quel di$iderio, che io ho hauuto $empre di far bene. Ma a$$ai habbiamo uagato: però è tem- po di ritornare a Vitruuio, & di credere che lo in$egnare il modo del fortifioare è co$a difficil- lima ri$petto alla nuoua inuentione delle offe$e, dalle quali come $pe$$o detto hauemo, dipende la dife$a: & però è degna co$a trarne i precetti uniuer$ali, in uirtu de i quali l'huomo può $empre ritrouare nuoua forma di dife$a.</I> <HEAD><I>Della elettione de i luoghi all'u$o commune della Cit- tà. Cap. VII.</I></HEAD> <p>DIVISI i capi delle uie, & de$critte le piazze, egli $i deue far manife$ta la elettione de i piani al commodo, & all'u$o commune della Città per li $acri Tempi, per lo Foro, & per gli altri luoghi communi. Se le mura $aranno pre$$o il mare: elegger $i deue il piano, doue $i deue fare il Foro uicino al porto. $e la Città $arà fra terra, nel mezo. Ma per li $acri Tempij di q uelli Dei, <pb n="65"> nella tutela de i quali $pecialmente è po$ta la terra, & a Gioue, & a Giunone, & a Minerua $i danno i piani in luoghi alti$simi, di doue $i po$$a unitamente uedere gran di$sima parte della città. Ma a Mercurio nel Foro, ouero, come anche ad I$ide, & a Serapi, nel $ondaco, o mercato. Ad Apolline & al padre Bacco, pre$$o al Theatro. Ad Hercole uicino al Circo. in que luoghi doue non $aranno Gimna$i, o Anfitheatri. A Marte fuori della Cíttà, & al campo. & <*> Venere al porto. & que$to è $tato ordinato da gli auri$pici Etru$chi, cioè, che a Venere, a Vulcano, & a Marte $iano fatti i tempij fuori delle mura: accioche i piaceri di Venere non prendino piede nella città appre$$o la giouentù, & le madri di famiglia, & che dalla forza di Vulcano tratta fuori della città con religione, & $acri$icij, gli edi$ici parino e$$er dal timore de gli incendij liberati. Ma la'diuinità di Marte e$$endo fuori della terra con$ecrata, non $arà la di$$en$ione, che uiene all'arme tra li cittadini, ma con quella dife$a da i nimici con$eruerà quella da i pericoli delle battaglie. Similmente a Cerere $i faranno i tempij fuori della città, in luoghi, doue non $i uada, $e non per nece$sità, douendo$i con religione, & con $anti co$tumi que$to luogo con$tantemente guardare. Al re$tante de gli altri dei, bi$ogna ritrouar i luoghi da fabricare, che $iano conuenienti guardando $empre alle maniere de i $acrificij. <p><I>Tratta Vitruuio in que$to capo, quanto appartiene alla uniuer$al di$po$itione, di$tributione, & decoro de i luoghi, con$iderando il compartimento de i piani all'u$o commune. Compar- timento in que$to luogo io chiamo una ragioneuole diui$ione del piano accompagnata dal deco- ro, dalla $ufficienza delle parti, & dalla ri$pondenza delle co$e: $i che a grandi $oggetti, grandi edificij $i facciano, & de i grandi edificij grandi $iano i membri; perche la Citta è come una grandi$$ima ca$a, come $i puo dire, che la ca$a $ia una picciola città. Il $auio Ar chitetto deue donare alcuna co$a alla u$anza de i pae$i, non però deue egli errare, nè ab- bandonare la ragione: ma non la$ciare la u$anza, & tener$i alla $cienza; altrimem i la cat tiua u$anza non è altro, che la uecchiezza del uitio: dal quale animo$amente l'huomo $i deue di$co$tare, & dar buono e$<*>empio a i $ucce$$ori. La ragione adunque del Foro è che $ia po$to pre$$o al porto, $e la città è uicina al mare: ouero nel mezo della città, $e ella è fra terra: il Foro è luogo, doue $i uendeno le co$e, & doue $i tiene ragione, è commodo a fore$tie ri, & mercanti, che uengono di parti lontane e$$endo uicino al porto, quando la città è pro$- $ima al mare: ma nel mezo della città è commodo, perche il mezo è propinquo a tutte le par ti, & pre$to prouede a i bi$ogni, & però Vitruuio ha detto. In medio oppido. perche oppi- dum è detto dal dare aiuto, che in latino $i dice dare opem; ouero perche iui $i portano le ricchezze, che, opes, $i chiamano. Il re$to è facile.</I> <p>Ma del modo del fabricare i tempij, & delle mi$ure, & $immetrie di quelle, nel ter zo, & nel quarto libro ne renderò le ragioni: percioche mi è piacciuto determinare prima della copia della materia, che $i deue nelle fabriche preparare: & e$ponere la forza & u$o di quella, & poi trattare delle mi$ure de gli edi$icij, & gli ordini, & le manie- re partitamente di tutte le $immetrie, & in cia$cuno de i $eguenti libri e$plicare. <p><I>Et ragioneuolmente prima tratta della materia, & poi della forma: perche prima poco è da dire della materia, come co$a che la natura ci porta, & molto della forma: & è giu$to sbrigar$ene pre$to. Dapoi perche un'i$te$$a materia $erue a diue$e forme, & maniere. & $i- mile u$anza tiene Ari$totile, per commodità della dotrina, ne i libri de i principij naturali.</I> <HEAD><I>Fine del Primo Libro.</I></HEAD> <foot><I>I</I></foot> <pb n="66"> <HEAD>IL SECONDO LIBRO</HEAD> <HEAD>DELL'AR CHIT ETTVRA DIM. VITRVVIO.</HEAD> <HEAD><I>Proemio.</I></HEAD> <p>DINOCRATE Architetto con$idato$i ne i $uoi pen$ieri, & nella $ua $o<*> lertia, e$lendo Ale$$andro $ignore del mondo, $i parti di Macedonia per andare allo e$$ercito, di$idero$o d'e$$ere dalla mae$ta regia commendato. Co$tui partendo$i dalla patria, da i parenti, & da gli amici, ottenne lettere di fauore drizzate a i principali, & potenti della corte, accioche per me zo loro fu$$e piu facilmente introdotto. E$$endo adunque benigna- mente da quelli raccolto, chie$e loro, che quanto prima lo conduce$$ero ad Ale$$andro. Quegli hauendoli prome$$o, erano alquanto tardi, a$pettando il tempo commodo. Di- nocrate pen$ando e$$ere sbeffato da quelli, a $e $te$$o per aiuto ricor$e. Era egli di gran- de $tatura, di gratio$o a$petto, & di $omma dignità, & bellezza. fidato$i adunque di que$te doti di natura, nell'albergo $uo depo$e le ue$ti, & di oglio tutto'l corpo $i un$e, & $i coprì la $ini$tra $palla di pelle di Leone, coronato di fronde di poppio, & tenendo nella de$tra la claua, $e ne andò uer$o il tribunale del Re, che teneua ragione. Hauen do la nouità del fatto riuolto a dietro già tutto il popolo; Ale$$andro lo uidde, & mera uigliando$i commandò, che gli fu$$e dato luogo, accioche egli $i face$$e innanzi, & di mandollo, chi fu$$e. Egli di$$e. Io $on Dinocrate Architetto di Macedonia, che a te porto pen$ieri, & forme degne della tua chiarezza: percioche io ho formato il monte Atho in figura d'una $tatua uirile, nella cui $ini$tra io ho di$egnato le mura d'una gran- di$sima città, & nella de$tra un ua$o, che habbia a raccogliere l'acqua di tutti i fiumi, che $ono in quel monte; accioche da quel ua$o $i $pande$$ero nel mare. Dilettato$i Ale$$andro della ragione della forma, $ubito dimandò $e d'intorno ui fu$$ero campi, che pote$$ero prouedere di grano al bi$ogno di quella città. Hauendo ritrouato, che non u'era altra uia, che quella d'oltra mare; Di$$e. Io con attentione guardo al componi- mento di co$i bella forma, & di e$$a mi diletto: ma io con$idero, che $e alcuno uorrà an dare in quel luogo ad habitare, non $ia bia$imato per poco giudicio. perche $i come il fanciullo già na$ciuto, non $i puo $enza il latte della nutrice alleuare, nè cre$cere; co fi la città $enza po$$e$sioni, o frutti, che ui $iano portati non puo $o$tentar$i, nè mante- ner$i cre$cendo $enza copia di uettouaglia, nè e$$er frequentata, nè $i puo il populo $en<*> za abondanza di uiuere con$eruare. per il che ($i come io $timo) che $i bel di$egno me rita lode, co$i giudico douere e$$ere bia$imato il luogo. Ma ben uoglio, che tu $tia me co: percioche io intendo di u$ar l'opera tua. Dall hora in poi Dinocrate non $i $co$tò mai dal Re: & in Egitto lo $eguitò. Hauendo iui ueduto Ale$$andro il porto per natura $icuro: lo egregio mercato, i campi d'intorno all'Egitto abondanti di grano, & le mol te commodità del gran fiume del Nilo; commandò, che iui dal $uo nome Ale$$andria $i fabrica$$e. Et per que$to Dinocrate dalla bellezza, & gratia del $uo a$petto, & gran dezza del corpo, a quella nobiltà, & chiarezza peruenne. Ma a me o Imperatore la na tura non ha dato la grandezza della per$ona, & la età mi ha deformata la faccia, la infer- mità leuato le forze; la doue e$$endo io di tali pre$idij abbandonato, $pero per mezo del la $cienza, & de gli $critti a qualche grado di commendatione, & gloria peruenire. Ha- <pb n="67"> uendo adunque io nel primo libro $critto dell'ufficio dello Architetto, & de i termini della Architettura, & appre$$o dellc mura, & delle diui$ioni de i piani, che $ono dentio le mura, & $eguitando l'ordine de i $acri Tempij, & de i publici edificij, & anche de i priuati, con quai mi$ure, & proportioni $i deono fare: io non ho pen$ato di porre que$te co$e prima, che io ragiona$si della copia della materia, della quale $i fanno le fabriche, & con c he ragione, & che forza ella habbia nell'u$o, & con che principij la natura delle co$e $ia compo$ta. Ma prima che io dia principio ad c$plicare le co$e naturali, io ragionerò delle ragioni del fabricare doue hanno hauuto origine, & come per inuenti one cre$ciu- te $ono partitamente dirò, & $eguitando e$ponerò gli ingre$si dell'antica natura, & di quelli, che con gli $critti, & regole dedicorono il principio del con$ortio humano, & le belle, & fondate inuentioni, & però, come da quelli io $on ammae$trato, dimo$trerò. <p><I>Tratta Vitr. nel $econdo libro della materia nece$$aria al fabricare, come $i $cielga, & co- no$ca, & ci dimo$tra il modo di metterla in$ieme. propone artificio$amente il proemio. percio- che hauendo nel primo libro ragionato ne i quattro ultimi capi di molte co$e pertinenti alla elet- tione de i luoghi per fabricar la città; & hauendo trattato delle muraglie, & dife$e, del com- partimento de i piani, sì per i$chifare i uenti danno$i, come per di$tribuire ogni luogo con gra- tia, & decoro: & uolendoci dare un $egnalato precetto, o con$eruarlo nella no$tra memoria, ( benche pare, che lo dica ad altro fine ) ci dimo$tra con notabile e$$empio, che $opra tutte le co$e douemo con$iderarc di fabricar in luogo, che ci dia da uiuere, & $oppli$ca alle nece$$ità de i Cittadini. perche niuno $i mouerebbe per habitare in luogo, doue $i mori$$e di fame. come $i uede per lo contrario, che per l'abondanza delle co$e i luoghi$ono frequentati. Legge$i nel li- bro delle co$e merauiglio$e del mondo a$critto ad Ari$totele, che imercanti Cartagine$i, naui- gando fuori dello $tretto per molte giornate ritrouorono un'I$ola non piu per lo adietro $coperta, che era $olo da fiere habitata, ma piena di alberi di merauiglio$a grandezza, & di grandi$$imi fiumi, fertile, & abondante di cio che puo na$cere, lontana molto dalla terra dell' Africa. Quiui trouando$i aere temperati$$imo, & per i$perienza copia di tutti i frutti della terra, comin- ciauano le gente di abbandonare la propria città, & andare ad habitar quei luoghi. per laqual co$a i Cartagine$i furono con$tretti a fare uno editto, che $otto pena capitale niuno piu naui- ga$$e per quelle parti, che for$e erano quelle, che a giorni no$tri $ono $tate $coperte uer$o Po- nente. Et però uedendo Vitr. la importanza del uiuere, ha uoluto di nuouo $arci auuertiti, nel proemio, come in luogo notabile, & che prima uegni nella con$ideratione de i lettori.</I> { <I>Dino- crate Architetto.</I> } <I>Legge$i, Chirocrate, co$i appre$$o Strabone, come appre$$o Eliano. Ma i te$ti di Vitr. hanno, Dinocrate, del quale ne fa mentione Xenofonte, s'io non m'inganno.</I> { <I>Pen$amenti, & nella $ua $olertia,</I> } <I>Ha detto Vitru. nel $econdo Capo del primo libro. che le idee della di$po$itione, na$ceno da pen$amento, & da inuentione: però qui dimo$tra Dinocra- te hauere hauuto Di$po$itione, come anche di $otto mo$tra lo i$te$$o, quando dice ad Ale$$andro.</I> Io $ono Dinocrate Architetto di Macedonia, ilquale a te porto pen$ieri, & forme degne della tua chiarezza. <I>perche dicendo,</I> { <I>Pen$ieri, & forme</I> } <I>uuol dire Fabrica, & di$cor$o, la co$a $ignificata, & quella che $ignifica; l'opera, & la ragione: dalle quali co$e na$ce la Ar- chitettura.</I> { <I>Io ho formato il Monte Atho in forma di$tatua uirile,</I> } <I>uoleua Dinocrate rap- pre$entare la figura di Ale$$andro ( come $i legge ) & dalla de$tra cauare uno capaci$$imo alueo da riceuer tutte le acque del monte Atho alti$$imo tra la Macedonia, & la Thracia: & nella $ini$tra uoleua fabricare una città capace di dieci mila huomini. Bella, & $ottile inuentione, $e co$i egli haue$$e con$iderato di dar da uiuere alla $ua città, come egli le haueua proui$to del bere delle acque.</I> P<I>erò di nuouo dico, che bi$ogna fare le città in luoghi commodi, & oppor- tuni. & di que$ta lode meritamente deue e$$er commendata la città di Vinetia, alla quale ri$pon- deno tanti fiumi, tante entrate, & tante commodità, che pare che tutto il mondo $ia obligato a notrirla, & adornarla: & $i puo dire, che $i come la notrice del fanciullo prende il cibo al-</I> <foot><I>I</I> 2</foot> <pb n="68"> <I>troue, della $o$tanza del quale ella ne fa poi il latte da nodrirlo, co$i Vinetia riceua da ogni parte il $uo nutrimento per $o$tentare il re$to dello $tato $uo. & in uero pare, che la natura s'habbia ri$eruati alcuni luoghi, che per rari$$imi accidenti po$$ono re$tare dishabitati; & que$to per la conimodit à del $ito. come Roma, Con$tantinopoli, Pariggi, & molti altri luoghi, che $empre $ono stati celebrati, & frequentati per le $opra det te ragioni.</I> <HEAD><I>Della uita de gli antichihuomini, & de i principij del uiuer humano, & delle ca$e, et accre- $cimenti di quelle. Cap. I.</I></HEAD> <p>GLI huomini per antica u$anza come $iere nelle $elue, & nelle $pilonche, & tra li bo$chi na$ceuano, & di agre$te cibo pa$cendo$i menauano la lor uita. in quel tanto da i uenti, & dalle fortune furono gli $pe$si alberi agitati, & com- mo$si, & $tropicciando$i in$ieme i rami, mandorono fuori il fuoco, perche i uicini dalla gran fiamma sbigottiti, $i mi$ero in fuga. ce$$ata la fiamma, & hor que$to hor quello auuicinando$i al fuoco, è ritrouandolo e$$er di molta commodità a i corpi, ag- giugnendoli legna mentre che mancaua, & con$eruandolo, gli conduceuano de gli altri, & accennando$i fra loro dimo$trauano la utilità, che di ciò ne ueniua. in quel concor$o d'huomini e$$endo le uoci diuer$amente dallo $pirito fuori mandate, per la quottidiana conuer$atione fecero, come lor fatto ueniua, i uocaboli delle co$e. Dapoi $ignificando- le piu $pe$$o, & in u$o ponendole, per quello auuenimento cominciorono a parlare, & a quel modo tra loro fabricorono i ragionamenti. E$$endo adunque per la inuentione del fuoco da prima uenuto il conuer$are, & il uiuere in$ieme, & conuenendo molti in uno i$te$$o luogo, hauendo anche dalla natura, che non chinati, come gli altri animali, ma dritti camina$$ero, & la magnificenza del mondo, & delle $telle riguarda$$ero: & trattan- do ( come piaceua loro ) con le dita facilmente ogni co$a, alcuni di quella moltitudine cominciorono a fare i coperti di fronde, altri a cauar le $pilonche di $otto a monti: & altri imitando i nidi delle rondini edificauano di loto, & di uirgulti per fare luoghi da ridur$i al coperto. Allhora molti o$$eruando i coperti fatti da gli altri, & aggiugnendo a loro pen$ieri co$e nuoue, faceuano di giorno in giorno piu bella maniera di ca$e. Et e$$endo gli huomini di natura docile, & che facilmente imitar poteua, gloriando$i ogni giorno piu delle proprie inuentioni, altri ad altri dimo$trauano gli effetti de gli edificij, & co$i per le concorrenze e$$ercitando gli ingegni, alla giornata $i faceuano piu giudicio$i. & & prima alzate le forcelle, & trapo$ti i uirgulti con loto te$$euano i pareti, altri i ce$pu- gli poi, & le zoppe di loto a$ciugando faceuano i pareti commettendogli con legnami, & per i$chifare le pioggie, le g randini, & i caldi le copriuano di canne, & di frondi. Dapoi perche i tetti per le tempe$te del uerno non potcuano reggere alle pioggie, facendo i colmi, & $opraponendoui il loto col fare i tetti pendenti conduceuano le grondi, & i cadimenti dell'acque. <p><I>Fin qui Vitr. ha narrato artificio$amente a poco a poco per ordine il principio del fabricare, il mezo, & il fine, quanto poteua ba$tare alla humana nece$$ità; dico artificio$amente, & per ordine, perche prima ha detto la cagione, che con$trin$e gli huomini a $tare in$ieme, che fu il co- no$cere l'utilità, che dal fuoco procedeua, il ca$o dimo$trò l'utilità. Que$ta con$trin$e gli huo- mini ad unir$i. dalla unione nacque la fauella, nacque la cognitione del poter$i operare con le ma- ni, & l'operare, dal che nacque la concorrenza di auanzar l'un l'altro nella inuentione de gli edificij. Onde a poco a poco uenne lo artificio, nato ( come dicemmo nel primo libro nel proe-</I> <pb n="69"> <I>mio ) dalla i$perienza, fondata nella natura delle co$e. Ma perche alcuno potrebbe negare; che tale $ia $tato lo ingre$$o dell' antica natura; Ri$ponde Vitr. & dice.</I> <p>Ma che que$te co$e da que principij, che detto hauemo, $iano $tate ordinate, in que- $to modo $i puo cono$cere. percioche fin al di d'hoggi dalle nationi e$terne $i fanno gli edificij, come in Francia, in Hi$pagna, in Lu$itania, in Aquitania, di que$te co$e, come di tauole di rouere, ouero con paglic, & $trame. Appre$$o la natione de Colchi nel Ponto per l'abondanza delle $elue $i fanno gli edificij con alberi perpetui i$pianati dalla de$tra, & dalla $ini$tra po$ti in terra la$ciatoui tra quelli tanto $pacio, quanto ricerca la lunghezza de gli alberi, ma di $opra nelle e$treme parti di quelli pongono altri trauer$i, i quali d'intor- no chiudeno lo $pacio dell'habitatione, & allhora dapoi le $oprapo$te traui dalle quat tro parti legando, & $trignendo gli anguli, & in que$ta manicra facendo i pareti d'alberi, a piomho di quelle di $otto, inalzano le Torri, & quelli $pacij, che per la gro$$ezza della materia $ono trala$ciati, otturano con loto, & $cheggie, & anche ritagliando i tetti dalle cantonate tramezano con legni trauer$ati di grado in grado, ra$tremandogli; & in que$to modo, al mezo delle quattro parti leuano le piramidi, lequali, & di frondi, & di loto co- prendo all'u$anza de barbari fanno i colmi te$tuginati. <p><I>Pare a Vitr. grande argomento a prouare l'origine delle fabriche la u$anza delle genti efter- ne. & in uero è ragioneuole, che doue non è peruenuta la bellezza, & la grandezza dell'arte, $i ueda il modo naturale, & $iritegna quello, che è $tato dalla natura, a i primi huomini dimo- strato, perche egli $i puo dire, che ogni arte habbia la $ua pueritia, la $ua adole$centia, il fior della età, & la maturità; come l'Architettura, che ne i primi $ecoli hebbe i $uoi $gro$$amenti, crebbe in A$ia, ottenne in Grecia il $uo uigore, & finalmente in Italia con$egui perfetta, & ma- tura dignità. Da principio adunque è ragioneuole di credere, che ella haue$$e quella origine, che la nece$$ità dimc$trò primier amente all'humana generatione, come $i ha a di no$tri e$$ere nel- l'I$ola Spagnola, & nelle parti del mondo $coperte da i moderni, che le $tanze, & le habita- tioni $ono fatte di alberi, te$$uti di canne, coperti di paglie, ma di modo, che egli $i ha in con$ide- ratione la dignità de gli habitanti, dando$i piu grandi & piu belle, & piu commode habitationi- a quelli, che fra quelle genti ottengono grado maggiore. Que$to $i dice, che i no$tri banno ri- trouato nel $opra detto modo. Ma poi che piu perite genti, & piu ingenio$e banno cominciato a praticare in que luoghi, piu bella, & piu artificio$a maniera di fabricare è stata introdotta. Lauorando i legnami, & facendogli molti ornamenti, che non haueuano prima, & co$i di gior- no in giorno aumenteranno gli artificij, & le inuentioni delle co$e, dome$ticando il pae$e per l'hu- mana conuer$atione. Buono adunque è l'argomento di Vitruuio, $e bene eglinon dice$$e a pun- to il uero di quel fuoco acce$o da gli alberi agitati da i uenti, non $apendo egli la i$toria della crea- tione, & della origine del mondo. Ma chi pon mente alle parole di Vitru. ritruouerà nel pre$en- te di$cor$o un'ordine merauiglio$o: perche prima ha ritruouato quanto puo la nece<02>ità, & la natura, dicendo la cagione, che costrin$e gli huomini ad habitar in$ieme, da poi ba dimostra- to quanto puo la i$perienza, & la con$uetudine, dicendo quello, che molte genti acco$tumano di fare, per accommodar$i, & di$ender$i da i contrarij, con diuer$e maniere di habitationi $econ- do l'u$o de i luoghi, & delle co$e. & finalmeute dirà, quanto ha potuto l'Arte cerca le regola- te inuentioni, & gli ornamenti, & pompa del fabricare. come anche al primo Capo del decimo libro, Vitru. conferma dicendo, che quelle co$e, che gli huomini auuertirono e$$er buone all'u$o, tentarono anche con i$tudio di arte, & di ordinationi per uia di dottrina. Et qui $i uederà co- me la natura humana tutta uia auanzando $e $te$$a, digiorno in giorno dal nece$$ario al commo- do, & dal commodo all'honoreuole peruiene. Bella, & degna co$a è di con$iderare, come l'Ar- te $i fonda $opra la natura, non mutando quello, che è per natura, ma facendolo piu perfetto, & adorno. come nel pre$ente capo Vitruuio chiaramente ci mo$tra per diuer$i e$$empi non $olamen- te la origine del fabricare, ma i modi, & le maniere naturali, che poi$ono $tate pigliate dal-</I> <pb n="70"> <I>l'Arte a perfetcione delle co$e, come $ono i tetti pendenti, i colmi, le uolte, le colonne, & ilo- ro ornamenti & altre co$e, che $ono $tate dalla natural nece<02>ità alla certezza dell'Arte, per humana $olertia traportate. Seguita adunque.</I> <p>Ma i Frigij, i quali habitano le campagne per la inopia de bo$chi hauendo bi$ogno di $egna, eleggeno alcune parti piu eleuate del terreno, & cauandole nel mezo, & uotando- le, & facendo i $entieri allargano gli $pacij, quanto cape la quantità, & grandezza del luogo: ma poi di$opra legando in$ieme molti fu$ti fanno i colmi de i tetti piramidali, & coprendo quelli con canne & paglie inalzano $opra le $tanze grandi$simi grumi di terra: & a que$to modo fæono con la ragione de i tetti l'inuernate caldi$sime, & l'c$tati fre$chi$- $ime. Altri di palu$tre alica ricuopreno i loro tuguri. Et anche appre$$o altre nationi, & in alcuni luoghi $imilmente in que$ta maniera $i fanno le ca$e. Ne meno in Mar$iglia $i puo uedere, che i tetti $ono fatti $enza tegole, ma $olamente ui è $oprapo$ta la terra con le paglie. In Athene anche per e$$empio di antichità nell' Arcopago fin'a no$tri giorni $i uede il tetto di lottole. & nel Campidoglio nella $acra rocca la ca$a di Romulo ci puo fa- re auuertiti de gli antichi co$tumi, per e$$er coperta di paglie, & di fieno. & co$i per tali $egni potemo di$correre $opra la inuentione de gli antichi edificij, che tali fu$$ero come detto hauemo. <p><I>Vitru. ha finito la proposta argomentatione, & con molti e$$empi ci ha confermati nella cre- denza dell'antico, & nece$$ario modo del fabricare, & qua$i ci ha indotto a credere, che la in- uentione del con$ortio humano $iastata, $econdo che egli ha detto. hora ci uuole fare accorti di quanto l'u$o, & la i$perienza, dapoi l'Arte ci ha dimo$trato, & dice.</I> <p>Ma hauendo gli huomini con l'operare ogni giorno fatto le mani piu pronte, & piu de- $tre al fabricare, & per la continua e$$ercitatione de gli ingegni loro e$$endo con $olertia peruenuti all'Arti, ne $eguì, che aggiunta a gli animi loro la indu$tria fece, che chi tra quel- $i fu$$ero piu $tudio$i, & diligenti, faceuano profe$sione di e$$er fabbri. <p><I>Fabbro latinamente è nominato ogni artefice. dice$i in Greco Tecton, d'onde è deriuato il no- me di Architetto, come s'è detto nel primo libro. Et qui $i puo uedere come non $olamente le co$e alla Architettura pertinenti habbiano hauuto principio, ma anche i uocaboli delle co$e. pe- rò non la$ciando Vitru. alcuna co$a, prudentemente rende perfetto l'auditore. Fabbri adunque $i chiamauano i piu $tudio$i, & diligenti operatori, perche alla natura, allo e$$ercitio, alla $o- lertia aggiugneuano la indu$tria, la quale non è altro, che un di$iderio di affaticar$i ridotto al- l'opera con diligenza, & e$$ercitio dello ingegno, & auantaggio dell'Arte per con$eguire la perfettione. conchiude Vitru. & dice.</I> <p>Quando adunque da principio que$te co$e $tate $iano in que$to modo ordinate, & la natura non pure di $entimenti habbia gli huomini, come gli altri animali adornati, ma ancora di con$ideratione, & di con$iglio armato lo intelletto, $ottomettendo al poter lo- ro gli altri animali, quelli di grado in grado alle altre Arti & di$cipline peruenendo, u$ci- ti dal fabricare, dalla uita ferigna, & $ilue$tre, alla man$ueta, & humana $i condu$$ero: d'indi animo$amente ammae$trando$i, & piu oltre guardando con maggiori pen$amenti na$ciuti dalla uarietà delle Arti, non piu ca$e humili, & ba$$e, ma grandi habitationi fon- date, & di pareti fatti di mattoni, & di pietre, & di legnami compo$te, & di tegole co= perte cominciorno a fabricare. Dapoi cre$cendo in uarie o$$eruationi di $tudi con giudi- cio$o di$cor$o da mcerte a certe ragioni di mi$ure condu$$ero inanzi la co$a, & d'indi au= uertendo che la natura largamente produceua le legna, & porgeua loro abondante copia di fabricare cominciorno a nodrirla, & a coltiuarla, & cre$ciuta poi con artificij ornar- la all'u$o diletteuole, & eleganza della uita. & però io $on per dire di quelle, co$e le qua- li commode, & buone $ono ne gli edificij, dimo$trando ( come io potrò ) le qualità, & uirtù di quelle. <pb n="71"> <p><I>Vitr. ci ha condotti a poco a poco a ritrouar la materia, & l'abondanza delle co$e, che uanno nel fabricare, & qua$i ci ha fatto na$cere dinanzi a gli occhi una co$a dall'altra con uno cui- dente $ucce$$o, & accre$cimento dell' Arte. & $i ha eletto non tutte le maniere del fabricare, perche le fabriche fatte dalle genti roze, o fatte per nece$$ità $ono d'infinite $orti, & lo infinito non cape $otto la dottrina de i precetti: ma uuole trattar di quelle, che dalla ciuile u$anza, & per commodo, & per bellezza $ono degne di e$$er con$iderate, et inte$e.</I> <p>Ma $e alcuno uorrà di$putare dell'ordine di que$to libro pen$ando, che egli debbia e$- $ere prepo$to a tutti gli altri: accioche egli non pen$i, che io habbia errato, ne dirò la ra- gione. Scriuendo io il corpo dell' Archittetura, io ho pen$ato di e$ponere nel primo libro di che ammae$tramenti, & di$cipline debbia e$$er ornata, & con certi termini pre$inire le $ue maniere, & dire da che ella fu$$e na$ciuta, & co$i quello, che fu$$e allo Architetto nece$$ario iui io dimo$trai. & però nel primo libro io ho detto dell'officio dell' Arte; nel pre$ente io di$puterò delle co$e naturali della materia, che u$o elle habbiano nel fabricare, perche il pre$ente libro non dichiara onde na$ce l'Architettura, ma d'onde $ono nate & con quali ragioni nodrite, & peruenute di grado in grado a que$ta determinatione, & pe- rò in que$to modo al luogo, & ordine $uo po$ta $arà la compo$itione di que$to uolume. <p><I>Come chi fabrica è tenuto rendere la ragione dell' ordine, che egli tiene, co$i chi compone un' opera, & in$egna un'arte, è obligato a dire perche prima, & perche poi habbia po$to le co- $e in quell' arte contenute, per acquetar glianimi di chi fa fare le fabriche. però Vitr. con grande humanità rende conto dell' ordine del pre$ente libro. Et la ragione $ua in uirtù è que$ta. Non è conueniente trattare di alcuna co$a partitamente contenuta in un' Arte, prima, che egli $i tratti de i principij di quell' Arte. percioche niuno effetto è prima della cau$a $ua. Se io adunque ( puo dir Vitr. ) trattato haue$$i prima della materia, che è trattatione particólare di que$t' arte, & non de i principij di tutta l'arte, io non hauerei u$ato l'ordine, che $i conuiene. Il fine dello Architet to non ci $arebbe $tato manife$to, co$a $ommamente nece$$aria, perche la cognitione del fine prece de ogni operatione. Dapoi l'ufficio dello Architetto $arebbe $tato a$co$o; i precetti dell'arte la- $ciate; La confu$ione ci hauerebbe impedito il uero intendimento. Meritamente adunque le co$e dette nel primo libro doueuano precedere a tutte le altre. Ma perche il $econdo libro contener debbia il trattamento della materia, $imilmente è manife$to. perche la materia, è principio non dell' Architettura, perche l'Architettura non è fatta di legno, nè di pietra, ma delle co$e, che $o no dall' Arti formate, & fabricate. & è principio, & $oggetto, nel quale $i e$prime quello, che è nella mente dello Artefice, cioè l'ordine, la di$po$itione, la di$tributione, la $immetria, la gra tia, & il decoro, & in $omma, il perche, la ragione, il di$cor$o, la co$a $igni$icante, come nel primo libro $i dimo$tra. Edunque al luogo $uo il trattamento della materia. Et $i come nel primo li- bro s'è detto dell' origine dell' Arte, co$i nel $econdo $i tratta dell' origine del fabricare.</I> <p>Hora io tornerò al propo$ito, & dirò delle copie atte ad e$$er po$te in opera in che mo- do $iano compo$te dalla natura, <I>( come $ono i legnami, le pietre & altre co$e )</I> & con che me$colanze, & principij $iano i loro componimenti temperati, accio non o$cu- re, ma chiare $iano a chi legge e$ponerò con ragione. perche niuna $orte di materia, nè corpo è, nè co$a alcuna, che $enza la unione di que principij, po$$a uenire in luce, nè e$- $er allo intendimento $ottopo$ta, nè altramente la natura delle co$e puo hauere le $ode, & uere dichiarationi da i precetti de Filo$ofi naturali, $e prima non $ono dimo$trate le cau$e, che in quelle $i trouano, & con $ottili$sime ragioni inue$tigate in che modo, & perche co- $i $iano. <p><I>Il $apere con$i$te nella cognitione delle cau$e, & de i principij, & perche niuna co$a $i troua al $en$o $ottopo$ta, che compo$ta non $ia per la me$colanza de i $uoi principij, & le co$e s'inten- deno, come $ono, però è nece$$ario trattare de i principij. perche que$ta cognitione ci dar à d'in- tendere qual materia $ia buona per una co$a, & quale per un'altra. perche altra natura il Roue-</I> <pb n="72"> <I>re, altra l'abete, altra il larice. & altro effetto $a il marmo, altro il tofo, altro il $a$$o, altro imattoni. però Vitr. che di$correua, che da diuer$e cau$e uengono diuer$i effetti, filo$ofando nar ra l'opinione de gli antichi cerca i principij materiali, cioè che entrano come parti a far le co$e di natura, & nel $ucce$$o applicher à poi le cau$e a gli effetti, come ci $ar à manife$to.</I> <HEAD><I>De i principij delle co$e $econdo i Filo$ofi.</I></HEAD> <HEAD><I>Cap. II.</I></HEAD> <p>THALES primieramente pensò, che l'acqua fu$$e principio di tutte le co$e: Heraclito Ephe$io ( che per la o$curità de $uoi detti Scotinos era chiamato ) po$e il fuoco. Democrito, & lo Epicuro di Democrito fautore, gli Atomi, che da no$tri in$ecabili ouero indiuidui corpi da alcuni chiamati $ono. Ma la di$ciplina de Pithagorici aggiun$e all'acqua, & al fuoco, l'aere, & la terra. Democri- to adunque, auegna, che le co$e di proprio nome non chiama$$e, ma $olamente propone$- $e i corpi indiuidui, pure per que$ta ragione pare, che egli pone$$e quelli i$te$si principij, per che e$$endo que corpi $eparati, prima che concorrino in$ieme alla generatione delle co$e, nè $i raccoglieno, nè mancano, nè $i diuideno, ma $empiternamente ritengono in $e per- petua, & infinita $odezza. Quando adunque $i ueda, che tutte le co$e na$cano da que$ti principij conuenientemente compo$ti, & e$$endo quelle in infinite $ortì per natura di$tin- te, io ho pen$ato, che nece$$ario $ia di trattare delle uarietà, & differenze dell'u$o loro, & dichiarire, che qualità habbiano ne gli edi$icij, accioche e$$endo cono$ciute, quelli, i qua li pen$ano di fabricare, non errino, ma apparecchino le co$e buone, & $ufficienti all'u$o del fabricare. <p><I>Vitruuio narra in que$ta parte la diuer$ità delle opinioni de gli antichi filo$ofanti cerca i princi- pij delle co$e, & intende ( come ho detto ) i principij materiali, cioè quelli, che entrano nella compo$itione delle co$e, ne i quali finalmente ogni co$a $i ri$olue. Dice che Tbales, fece l'acqua principio di tutte le co$e; Heraclito il fuoco; Democrito, & lo Epicuro gli Atomi; i Pithagori- ci l'acqua, il fuoco, l'aere, & la terra. Vitr. non contende in que$to luogo quale $ia $tata mi- gliore opinione, ma con$ente a quella de' Pithagorici, che abbraccia tutti quattro gli elementi, co me piu chiaramente nel proemio dell'ottauo libro $i uede: & ne dice la ragione copio$amente, & con dignità della materia. Ma perche in quel luogo non $i fa mentione di quello, che Democrito intendeua per Atomi: io dichiarerò la opinione di quello con breuità. Vedendo adunque Demo- crito, che tutti i corpi, che hanno parti diuer$e di nome, & di ragione, erano compo$ti di parti, che in nome, & in ragione erano $imiglianti, uolle, che anche le parti, che conueniuano in nome & in ragione, compo$te fu$$ero di alcuni indiui$ibili, & minuti$$imi corpicelli, che egli Atomi nominaua. Et $e bene egli non $i puo ritrouare $i picciola parte corporea, che non $i po$$a diui- dere in altre parti, & quelle $imilmente in altre, & co$i in infinito, niente dimeno il buon De- mocrito, tanto da Ari$totile commendato, uoleua che infiniti corpicelli $i troua$$ero, che per mo do alcuno non riceue$$ero diui$ione, ma fu$$ero indiui$ibili, & impartibili. Ma come egli inten- de$$e que$to, accioche un tant'huomo non $ia contra ragione bia$imato, io dirò, che la diui$ione de i corpi, come corpi, & delle parti, & delle particelle andaua in infinito, nè $i poteuà que$ta diui$ione po$$ibile intendere altrimenti: ma dall' altro canto con$iderando egli molto bene, che i corpi natarali erano compo$ti di materia, & di forma, & che poteuano e$$er diui$i in co$i minu te parti, che niuna di quelle pote$$e piu pre$tare l'ufficio $uo, nè fare la $ua operatione naturale, come $e egli $i piglia$$e una minima parte di carne, che non pote$$e fare la operatione di carne: però egli uolle, che i corpi naturali fu$$ero compo$ti di que$ti corpicelli indiui$ibili, non in quanto corpi, & quantità intelligibile, & mathematica, ma in quanto corpi naturali compo$ti di mate-</I> <pb n="73"> <I>ria, & dì forma naturale. & uolle, che que$ti fu$$ero in$initi, cioè di numero grandi$$imo, & di figure diuer$e. & però altri ritondi, altri piani, altri dritti, altri adunchi, altri aeuti, altri rin tuzzati, altri di quadrata, altri d'altra forma facendo, & nel uacuo del mondo di$pergendogli, uoleua, che per la unione, & per la $eparatione di quelli $atta diuer$amente, $i produce$$ero le co$e, & manca$$ero, come ci appare. Et que$ta era l'opinione di Democrito, per la quale $i com prende, ch egli uoluto habbia, & creduto, che la natural figura, & apparenza de i corpi $ia la forma loro $o$tantiale, & uera; il che in uero non è, perche la figura è accidente, & non $o$tan- za delle co$e. Pare che Vitr. uoglia, che Democrito habbia hauuto la opinione de i Pithagorici$e bene egli non ha nominato aere, acqua, terra, nè fuoco: & for$e per que$ta cagione egli nell'otta uo libro non ha fatto mentione di que$to. Ma dichiamo anchora noi alcuna co$a. Quattro $ono i <18>rincipij materiali di tutte le co$e ( come uogliono gli antichi, che gli chiamorono primi corpi ) & que$ti $ono terra, acqua, aete, & fuoco. Et $e piu oltra pa$$are $i uole$$e, egli $i potrcbbe dire anche que$ti e$$er compo$ti d'altri principij; ma non $i conuiene piu adentro penetrare in que- $to luogo. perche hora $i tratta di que principij, le qualità de i quali fanno tutte le mutationi, & gli effetti, che nelle co$e $i trouano, & quelle qualità deono e$$er manife$te come ne i $eguenti uer- $i tratti dalle no$tre Meteore $i dimo$tra.</I> <p><I>Poi che da prima il mondo giouanetto Mo$trò $ua bella faccia, che confu$a, Ogni forma teneua in un' a$petto:</I> <p><I>Et la diuina mano aprio la chiu$a A gli elementi, & in gioconda uece Fu $ua uirtute nelle co$e infu$a.</I> <p><I>Delle piaggie mondane ancora fece L'ordine bello, e'l uariato $tile, A beneficio dell' humana $pece.</I> <p><I>Dalla terra l'humor, l'aura gentile Dal foco $ciel$e, & a que corpi diede Loco $ublime, a que$ti ba$$o, e humile.</I> <p><I>Et $e l'un per di$tanza l'altro eccede, Pure han tra lor uirtù conueniente, Ond'il tutto qua giu d'indi procede.</I> <p><I>Etra lor ben $i cangiano $ouente, Et la terra nell' acqua ri$oluta Rara diuenta, liquida, & corrente.</I> <p><I>L'Humor la $ua grauezza anche rifiuta, E s' a$$otigliain aer, & que$ti ancora In $ottili$$imo foco $i tramuta.</I> <p><I>In que$to uariar non $i dimora, Ch'il fuoco $cema la $ua leggierezza, Et per la nuoua forma $i $colora.</I> <p><I>L'aer lubrico, & graue a piu chiarezza Si moue del liquor, che a maggior pondo, Giugne la $iccitade, & la $odezza.</I> <p><I>Co$i natura uariando il mondo, Ripara d'una in l'altra la $emenza', Delle co$e, che'l fan bello, & giocondo.</I> <p><I>Onde'l morir non è, $e non $tar $enza L'e$$er di prima, e'l na$cer cominciare Altr'e$$er, altra forma, altra apparenza.</I> <p><I>Que$to continuato uariare Dello $tato mondano ordine tiene, Soggetto alle uirtù cele$ti, & chiare</I> <p><I>Ch'indi lo eterno cor$o lo mantiene, Lo tempra, & lo di$cerne, & uariande In pro di noi uiuenti lo ritiene. Et la mi$ura d'ogni co$a è'l quando.</I> <p><I>Quattro adunque $ono le prime qualità, inanzi le quali niun'altra $i troua. Caldo, $ecco, hu- mido, & freddo. da que$te per le loro me$colanze uengono tutte le altre, duro, molle, a$pro, pia no, dolce, amaro, lieue, graue, tenace, raro, den$o, & ogni altra $econda qualità. la doue è nece$$ario, che lo Architetto, il quale ha da con$iderare la bontà, & gli effetti della materia, che egli deue adoperare, $appia le forze delle prime qualità, come dice Vitr. quando nel fine del pre$ente Capo dice</I> { <I>Vedendo$i adunque, che dal cor$o di que principij conuenientemente compo $ti</I> } <I>& il re$tante. Quattro anche $ono le po$$ibili, & naturali concorrenze delle prime qualità ne gli elementi; imperoche $tanno in$ieme l'humore e'l calore, l'humore e'l freddo, il freddo e'l $ecco, il $ecco e'l caldo: & cia$cuno de gli elementi ha due di quelle, ma una gli è propria, l'altra appropriata. Il fuoco propriamente è caldo, l'aere humido, l'acqua fredda, la terra $ecca, & appropriatamente il fuoco è $ecco, l'aere caldo, l'acqua humida, la terra fredda. Quelli elemen</I> <foot><I>K</I></foot> <pb n="74"> <I>ti, che conuengono in una qualità, piu facilmente $i tramut ano l uno, ncll'altro, come il fuoco, & l'aere, l'aere & l'acqui, l'acqua & la terra: perche doue $i troua conuenienza, & $imiglian za piu facile è la tramutatione. Il fuoco è caldo per lo $uo propio calore, & $ecco per la $iccità, che egli riceue dalla terra: l'aere per $ua natura è humido, & dal fuoco riceue il calore; l'acqua per $e $te$$a è fredda, & dallo aere preade la humidità: la terra per la $ua propria $iccità è $ec- ca, ma per lo freddo dell' acqua è fredda. Et quando $i dice, che i $egni cele$ti $ono ignei, aerei, acquei, o terre$tri, egli s'intende, che le loro uirtù $ono atte ad influire qua giu gli effetti delle qualità de gli elementi. & però l'Ariete, al quale è attribuito la natura & la comple$$ione del fuoco, moltiplica con i $uoi calori ne i corpi mondani gli ardori, $caccia la frigidit à con$uma le hu midità, $ecca, & a$ciuga i corpi. perche adunque la uirtù di que$to $egno ha maggiore conue- nienza col fuoco, che con al cuno altro de gli elementi, però dicemo, che egli è caldo & $ecco. il $imile $i puo dire de gli altri $egni, $econdo le uirtù, & le forze delle influenze loro. Appre$$o le gia dette co$e è degna di con$ideratione la forza delle predette qualità, peroche il fuoco ri$olue, tira a$e, dilata, $epara, di$trugge, alleggieri$ce, & fa mobili tutte le co$e. il freddo conden$a, re$trigne, uccide; l'humido riempie, gonfia, oppila, ritarda; Il $ecco rende a$pro, ranco, a$ciut- to ogni $oggetto. però è nece$$ario auuertire a i principij delle co$e, che alla compo$itione di quel- le concorreno, per bene intendere gli effetti di cia$cuna. Vitr. adunque comincia à trattare de i mattoni. & dice.</I> <HEAD><I>Dei Mattoni. Cap. III.</I></HEAD> <p>ADVNQVE io dirò prima de i mattoni, di che terra $i habbiano à formare; perche non di areno$a, nè giaro$a, nè $abbionegna lota $i fanno; perche e$- fendo di tal $orte di terra compo$ti primamente $ono pe$anti, dapoi e$$endo dalle pioggie bagnati, cadeno da i muri, & le paglie, che in quelli $i pongo- no, per la loro a$prezza non $i attacano, nè $i compongono in$ieme. Si deono adunque fa re di terra bianchegna, creto$a, o ro$$a, o di $abbione ma$chio, perche que$te $orti di ter- ra per la liggierezza loro hanno $olidità, non caricano nell'opera, & fanno buona pre$a. <p><I>Tratta Vitr. de i mattoni, o quadrelli, che noi dichiamo, & propone que$ta con$ideratione a tutte le altre; percioche l'ultima ri$olutione di tutta la fabrica è ridotta ne i mattoni. prende da gli effetti, & u$o loro argomento della terra, di che $i deono fare, dapoi tratta del tempo di farli. Delle pietre altre $ono natur ali, altre fatte dall' Arte. Si tratta prima delle artificiali nel pre$en- te Capo; & poi delle naturali nel $eguente: le artificiali adunque $ono i mattoni. & quiui $i ha da $apere di che terra, & in che modo $i fanno, che qualitati, & che forma deono hauere, & in che $tagione $i deono formare. Quanto adunque alla terra, $i deue pigliare la terra creto$a, bianche gna, domabile, & anche la creta ro$$a, & il $abbion ma$chio, il quale è $econdo la opinione d'alcuni, un $abbione molto gro$$o, & granito, che per e$$er tale è detto ma$chio, $i come $i dice incen$o ma$chio dalla forma. Io non po$$o affer mare, che co$i $ia, $e per $orte non è un $abbione creto$o. & che faccia pa$ta, o che $i ponga in compagnia di altra $orte di terra. La$cia$i del tutto la terra giaro$a, & $abionegna. Batte$i bene la terra, cioè $i $padazza con certe $patelle di ferro, & $i doma bene cacciatone le ciotole, & le pietruzze, & piu, che è domata, & bat- tuta, è migliore. Nc gli antichi s' è ueduto marmo pe$to, & $abbia ro$$a. La terra Samia, l'Are tina, la Modene$e, la Sagontina di $pagna, & la Pergame$e d'A$ia lodate furono da gli antichi nelle opere di terra: ma bi$ogna, che noi ne pigliamo, di doue $e ne puo hauerè. Si caua l'autun- no, $i macera il uerno, & $i forma la primauera, ma'l uerno $i copreno di $ecca arena & la $ta- te di paglia bagnata. $e la nece$$ità ci $trigne$$e a formargli il uerno, ouero la $tate, bi$ogna fatti che $ono $eccargli all' ombra per molto tempo, il che non $i fa bene in meno di due anni. poi $i deono</I> <pb n="75"> <I>cuocere. Cotti molto per lo gran fuoco diuent ano duri<02>imi. De i mattoni alcuni $i cuoceuano, altri $i la$ciauano crudi, & de i crudi altri uetriati erano, altri nò. La Forma era tale. faceuan$t an ticamente lunghi un piede & mezo, larghi uno. Ve ne erano anche di quattro, & di cinque pal mi per ogni uer$o per gli edifici maggiori, benche $e ne uedino nelle fabriche antiche di Roma, di lunghi $ei dita, gro<02>i uno, larghi tre per $elicare a $pina. ne gli archi, & ne i legamenti $i uede- no quadrelli di due piedi per ogni uer$o. Lodan$i anche, dice Leon Batti$ta di forma triangolare d'un piede per ogni uer$o, gro<02>i un dito & mezo, & $i fanno quattro di e$$i uniti, la$ciandoui un po co di taglio lungo i loro diametri, accioche dapoi che $arãno cotti piu facilmente $i rompino. que$ta forma è commoda al maneggiare, di manco $pe$a, & di piu bel uedere: perche po$ta nelle fronti del muro riuolto lo angulo in dentro dimo$tra larghezza di due piedi, l'opera $i $a piu $oda, et piu uaga, perche pare, che ogni mattone nel muro $ia intiero. & le cantonate dentate fanno una fermezza mirabile come dimo$trano le figure I. & II. $imilmente i mattoni $ottili politi, et fregati $ono di dura ta, & $i deono fregare $ubito tratti dalla fornace. Deono e$$er di pe$o leggieri, & deono re$i$tere alle acque, & non riempir$i d'humore, ma bene far buona pre$a; leggieri per non caricare la fabrica; re$i$tere alle acque, accioche per l'humore non $i $tacchino; far buona pre$a per fortificare il ma ro. Nella creta, di che $i faceuano i mattoni $i poneuano le paglie tagliate, co$i dice Palladio nel $efto al duodecimo Capo. Et $e ne legge la, doue il populo d'I$rael era afflitto da Faraone nel- l'opera di far i mattoni.</I> { <I>Diterra bianchegna</I> } <I>Vitr. dice Albida. Plinio albicante.</I> <p>Deon$i fare la primauera, ouero l'autunno, accioche $i $ecchino egualmente con uno i$te$$o tenore. perche quelli, che $i fanno al tempo del $ole$titio $ono difetto$i, perche e$ $endo cotta dal $ole la lor coperta $operficiale, gli $a parere aridi, & $ecchi, ma di dentro non $ono a$ciutti, & poi le parti aride crepano quando $eccando$i $i ri$trigneno; & co$i fe$si, $i fanno dcbili; & però $ommamente buoni $aranno quelli, che due anni prima $i for meranno, percioche non piu pre$to $i po$$ono $eccare quanto bi$ogna. Et però quando fre$ chi, & non $ecchi $ono po$ti in lauoro indottaui la cro$ta, & $tando quella rigidamente $o da, dando in $e non po$$ono ritenere la i$te$$a altezza, che tiene la cro$ta, ma $i $taccano: & però non potendo la intonicatura della fabrica $eparata $tare da $e, $i rompe per la $ua $ot tigliezza, & dando i pareti in $e per $orte, riceueno mancamento. per que$ta ragione gli Vticen$i nel far i pareti u$ano, & metteno il mattone quando è bene a$ciutto, & $ecco, & fatto cinque anni prima, & che po$cia que$to $ia dal magi$trato pre$idente approuato. <p><I>Dal pre$ente luogo $i douerebbe moderare la ingoraigia di quelli, che non prima pen$ato han- no di fabricare, che in un $ubito uogliono hauere finita l'opera, $enza con$ideratione, o $cielta del la materia. Ma giu$tamente $ono poi ca$tigati, quando per la loro tracuraggine, gli auuiene qual- che $ini$tro.</I> <p>Tre maniere di Mattoni $i fanno, una, che da Greci didoron è detta, quella, che da no$tri $i u$a lunga un piede, larga mezo. L'altre $ono da Greci adoperate ne gli edi$icij lo- ro, delle quali una è detta pendadoron, l'altra tetradoron. Doron chiamano il palmo: & in Greco Doron $i chiama il dare di doni, & quello, che $i dà, $i porta nella palma del- la mano: quello adunque, che per ogni uer$o è di palmi cinque, pentadoron, & quello di quattro, tetradoron $i dimanda; & le opere publiche $i fanno di quelli, che $ono di cin- que palmi, & le priuate di quelli, che $ono di quattro. <p><I>Palladio dice, che i mattoni $i deono gettare di Maggio, in una forma lunga due piedi, larga uno, alta oncie quattro. Plinio, che piglia tutto il pre$ente luogo da Vitr. dice, che'l mattone detto diodoro era longo un piede, & mezo, largo un piede, & co$i il Filandro dice, che ritroua $critto in un te$to di Vitr. ma gli piace piu, che Vitr. habbia hauulo ri$petto alla larghezza, & che egli habbia inte$o del palmo minore, doue due palmi fanno mezo piede. De i maggiori edifi- cij, maggiori deono e$$er i membri, & de i membri maggiori le parti maggiori: & però i Greci fa- ceuano differenza nel porre in opera i mattoni.</I> <foot><I>K</I> 2</foot> <pb n="76"> <p>Oltra di que$to $i fanno mezi mattoni, i quali quando $i metteno in opera, ne i cor$i di una parte $i inetteno gli intieri, dall'altra i mezi: & però quando dall'una, & l'altra parte $ono po$ti à drittura i pareti cambieuolmente con gli ordini, & cor$i $ono legati, & i mezi mattoni $opra quelle commi$$ure collocati, & fermezza, & a$petto non ingrato fanno da l'una, & l'altra parte. <p><I>Vitruuio dimo$tra una bella maniera di mettere i mattoni uno $opra l'altro, & perche la uarie tà porge diletto in qualunque opera, però trouando egli una forma di quadrelli differente in gran- dezza, c'm$egna di accompagnarli in modo, che habbiano del buono. perche que$ti mezi mat- toni accompagnati con quelli intieri, ne i cor$i, & ne gli ordini, che egli dice, Coria, fanno un bel uedere, quando dalle commi$$ure di due quadrelli maggiori, $opra quelle uengono ad incon- trare il mezo de i quadrelli minori, come $i uede nella figura $egnata, ani$odomon. & l'e$$empio de i mattoni triangulari nelle figure $egnate. I. & II. Similmente ci $ono le figure de i mattoni detti didoron, tetradoron, & pentadoron, con le maniere di murare, delle quali parla Vitru. nell' ottauo capo del pre$ente libro. $eguita poi Vitr. di filo$ofare cerca la ragione, che in alcuni luoghi imattoni $ecchi $opra nuotano all'acqua, & dice.</I> <p>Sono nella Spagna di là Calento, & Malsia, & nell'A$ia Pitane, doue i mattoni, quan do $ono $pianati, & $ecchi, po$ti poi nell'acqua $opranuotano. Ma perche po$sino co$i nuotare, que$ta mi pare, che $ia la ragione: perche la terra di che $i fanno, è come po= mice, & però e$$endo liggiera, & ra$$odata dallo aere non riceue, nè a$$orbe il liquo re, & però e$$endo di lieue, & di rara proprietà, nè la$ciando, che entri l'humor nella $ua corporatura, $ia di che pe$o e$$er $i uoglia, è forzata, come la pomice, da e$$a natu ra di e$$er dall'acqua $o$tenuta, & di quc$to modo ne hanno grande utilità, perche nè troppo pe$o hanno nelle opere, nè quando $i formano $ono disfatti dalle pioggie. <p><I>Strabone nel terzo decimo libro della $ua Co$mografia co$i dice. Dicono che appre$$o Pita- ne i quadrelli nell'acqua $opranuotano, il che adiuiene $imilmente in Etruria in una certa I$ola: imperoche e$$endo quella terra piu lieue che l'acqua, accade che e$$a è portata. Po$$idonio rife- ri$ce hauer ueduto, che i quadrelli fatti d'una certa creta, che netta le co$e inargentate, $ta di opra l'acqua. puo e$$er anche la regione del $opranuotare, la ontuo$ità della pietrà, & le $cauerno$ità con la ecce$siua $iccità, che non admmetta l'huinore.</I> <pb n="77"> <fig> <pb n="78"> <HEAD><I>Dell' Arena. Cap. IIII.</I></HEAD> <p>MA nelle opere di cementi bi$ogna hauer cura di truouar la arena, accioche ella $ia buona a me$colar la materia, nè habbia $eco terra me$colata. Le $pe- cie dell'arena, che $i caua $ono que$te. La nera, la bianca, la ro$$a, il car- boncino. Di que$te è ottima quella, che $troppicciata con le dita, cigola: ma quella che $arà me$chiata con terra, non hauerà a$prezza. Similmente $e l'Arena get- tata $opra una ue$te bianca, & poi crollata non la$cierà macchia, nè iui re$terà terra di $otto, quella $arà buona. Ma $e non $aranno luoghi di caua, allhora $arà nece$$ario cer nirla dai fiumi, & dalle giare, & anche dal lito del mare: ma quella nelle murature, & ne i lauori ha que$ti difetti, che difficilmente $i a$ciuga, nè doue ella $i truoua il pa- rete $opporta di e$$er continuamente di molto pe$o aggrauato, $e con qualche trala$cia- mento dell' opera non ripo$a, & oltra di que$to riceue i uolti: & l'arena del mare ha que $to male di piu, che quando i muri $aranno coperti, & intonicati $putando la $al$ugine $i di$cioglieranno. Ma le arene, che $i cauano di fo$$e, po$te in opera, pre$to $i a$ciuga- no, & nelle coperte de i muri durano, $opportando i uolti: ma bi$ogna cauarle di fre$co, perche $tando troppo allo $coperto $i ri$olueno in terreno per lo Sole, per la Luna, & per la brina: doue poi po$te in opera non ritengo i cementi, ma $i $taccano, & cadeno, & i muri fatti con quelle non $o$tengono i pe$i. Ma le arene che di fre$co $i cauano, $e bene hanno tanta bontà nel murare, non $ono però utili nelle incro$tature, & coperte de i muri, perche la calce con la paglia me$colata con la gra$$ezza di quella per la fortezza, che tiene, non puo $eccar$i $enza fi$$ure. Ma quella de i fiumi per la magrezza $ua, come l'A$traco, bene battuta, & impa$tata, riceue nelle coperte $olidità, & fermezza. <p><I>Vitruuio narra le $orti dell'arena, i $egni di cono$cerla, quello, che in ca$o di nece$$ità do- uemo fare, i difetti, & le utilità di quelle $orti. Plinio $i $erue di questo luogo al duodecimo Capo del trente$imo quinto libro. La $o$ianza della terra è in tre modi uariata; La gro$$a è det ta arena. La $ottile, argilla. La mediocre, commune. La arena è $terile, & non è atta ad e$$er formata in modo alcuno. L'argilla è buona, & per notrire le pia<*>te, & per e$$ere adoper ata in molte forme. Di que$ta $orte era quella terra bianca gia detta Ta$conicem, della quale in I$pagna $opra gli alti monti $i faceuano i luoghi alti dalle guardie, & a i dì no$tri ( come riferi- $ce l'Agricola ) è una torre di questa terra appre$$o Coruerco città di Sa$$onia, piu $icura dal fuoco, da i uenti, & dalle pioggie, che $e fu$$e fatta di pietre, perche per la $ua grauità re$i- $te all'impeto de i uenti, per lo fuoco s'indura; & non riceuendo l'humore, non $i riempe d'acque; & però deue e$$er gra$$a, $ottile & $pe$$a. Ma torniamo all'arena. Troua$i arena di caua. que$ta tiene il primo grado di bontà. troua$i anche arena di fiume $otto'l primo $uolo, & di torrente $otto la balza, doue l'acque $oendono. truoua$i anche la marina: que$ta $e deue e$ $ere buona, bi$ogna, che negreggi, & $ia lucida come uetro. i colori dell' arena $ono il nero, il bianco, & il ro$$o. La néra è a$$ai buona, la bianca tra quelle di caua è la peggiore: la ro$$a $i u$aua a Roma: ma hora $i u$a la nera detta pozzolana, che è molto buona. Il Carboncino è ter ra ar$a dal fuoco rinchiu$o ne i monti piu $oda di terra non cotta, piu molle del tofo, & piu commendabile. L'arena con giara me$colata è utile alle fondamenta, & piu commendata la piu minuta, angulo$a, & $enza terra. Tra le marine la piu gro$$a, & la piu uicina alle riue è la migliore. pre$to $i $ecca, & pre$to $i bagna, & $i disfà per lo $al$o, & non $o$tenta il pe$o. L'arena di fiume è buona per intonicare i mari. l'arena di caua a i uolti continuati $erue; ma è gra$$a, tenace, & fa peli ne i pareti. Delle $pecie di caua, è migliore quella, che e$$endo $tropicciata con le dita $tride, che sdrucciolando giu de i panni bianchi, non la$cia nè ter</I> <pb n="79"> <I>ra, nè macchia. La pozzolana dà mirabile $odezza alle opere fatte nell acque. di que$ta ne par- lerà Vitruuio piu $otto.</I> <HEAD><I>Dellacalce, & del modo d'impastarla. Cap. V.</I></HEAD> <p>Hauendo$i chiaro quello che appartiene alla copia della arena, bi$ogna anche u$ar diligenza, che la calce cotta $ia di pietra bianca, ouero di Selice, & quella che $arà di piu den$o, & duro Selice, $arà piu utilmente adoperata nelle muta ture: ma quella che $i farà di $pugno$a, $arà buona nelle intonicature. Quan do la calce $arà e$tinta, allhora $i deue impa$tare la materia in que$to modo, che piglian- do$i arena di caua tre parti di quelle con una di calce $i tempra: $e di $iume, o di mare, due parti di arena, & una di calce, & co$i giu$ta uerrà la ragione della malta, & della t em- pra $ua. & anche $e nell'arene o di fiume, o di mare pi$te $eranno le $pezzature di te$tole, & criuellate, la terza parte farà la pa$ta migliore. Ma perche la calce riceuendo l'acqua, & l'arena faccia piu $oda la muratura, que$ta pare, che $ia la ragione. perche i $a$si, come gli altri corpi, $ono compo$ti di elementi, & quelli, che nella loro mi$tura hanno piu dello aere, $ono teneri, quelli, che abondano d'acqua $ono lenti, per l'humore, quelli, che hanno piu della terra $ono duri, & quelli doue predomina il fuoco, $ono fragili. & però di que$ti corpi, $e i $a $si, prima che $iano cotti, pi$tati minutamente, & con l'arena impa$tati, $aranno po$ti in opera, nè $i faranno $odi, nè potranno tenere unita la fabric ca. Ma quando gettati nella fornace pre$i dal gran feruore del fuoco, haueranno perduto la uirtu della loro $odezza, allhora abbruciate, & con$umate le forze loro, re$tano con buchi, & fori aperti, & uoti. Il liquore adunque, che è nel corpo di quella pietra, & lo aere e$$endo con$umato, o leuato, hauendo in $e a$co$o il re$tante del calore, po$to che è nell'acqua, prima che'l fuoco e$ca fuori, ricouera la forza, & penetrando l'humore nel la rarità de i fori, bolle, & co$i raffreddato manda fuori del corpo della calce quel feruo rc: & però i $a$si tratti della fornace non ri$pondeno al loro primo pe$o: & benche hab- biano la i$te$$a grandezza, pure po$cia che è a$ciutto il liquore, $i trouano mancare della terza parte del pe$o. E$$endo adunque i buchi loro aperti, & rari pigliano la me$colan- za dell'arena, & $i accompagnano, & $eccando$i con le pietre $i raunano, & ferma fan- no la muratura. <p><I>Nel pre$ente luogo $i tratta della calce, la natura, la materia, & la comparatione della ma teria, di che $i fa la calce. Ogni pietra purgata da humori, $ecca, frale, & che non habbia co $a da e$$er con$umata dal fuoco, è buona per far la calce. Gli Architetti antichi lodauano la calce fatta di pietra duri$$ima, $pe$$a, & candida. Vitruuio loda la Selice: benche altri dica, che ogni pietra da calce cauata $ia migliore della raccolta; & di ombro$a, & humida ca- ua piu to$to, che di $ecca; & di bianca, meglio che di bruna. Quella calce, che è fatta di Macigni è di natura gra$$a, $e non ha $ale, & è piu amma<02>ata, & limata getta polue. La calce $i cuoce in hore $e$$anta: & la piu lodata deue re$tare il terzo piu liggiera della $ua pietra. Ma è co$a mirabile del boglimento, che ella fa, quando $i le getta l'acqua di $opra. Egli $i legge in $anto. Ago$tino al quarto Capo del uente$imo primo libro della Città di Dio, que$to bello $entimento. La calce concepe il fuoco dal fuoco. & e$$endo la zolla fredda immer$a nel l'acqua, $erua il fuoco na$co$o, di modo, che egli a niun $en$o è manife$to. ma però $i ha per i$perienza, che $e bene il fuoco non appare, $i $a però, che egli ui è dentro; per il che chia mamo quella calce uiua: come, che il fuoco na$co$o $ia l'anima inui$ibile di quel corpo ui$ibi le: ma quanto è mirabile, che mentre ella $i e$tingue piu $i accenda? & per leuarle, il fuo co occulto $e le infonda l'acqua? & e$$endo prima fredda, poi bolle da quella co$a, di doue tut-</I> <pb n="80"> <I>te le co$e boglienti $i raffreddano. Pare adunque che quella zolla e$piri mentre appare il $ue- co, che $i parte. & finalmente re$ta come morta, in modo che gettat aui di nuouo l'acqua, ella piu non arde, & quella calce, che prima era chiamata uiua, poi che è e$tinta, morta $i chiama: & dí piu $i ha, che la calce non boglie $e ui $arà infu$o l'oglio. Dico io che il calore che acqui$ta la calce nella fornace, rinchiu$o in e$$a $i re$trigne, fuggendo dal freddo dell'ac- qua, come da $uo nimico, & per tale unione $i rinforza, & diuenta $uoco: & però l'acqua aceende la calce, che co$i non accende la cenere, perche nella cenere $i con$uma il calore: pe- rò la calce tratta di fornace purgata dal fuoco, è liggiera, & $onora, è lodata: & ma$si- mamente $e bagnata con grande $trepito euapora: ma con que$ta $i me$chia piu arena, che con quella, che tratta dalla fornace hauerà le $caglie in polue ri$olte. La calce $i fa piu tenera criuellando$i la $abbia, piu $pe$$a con la $abbia angulare, piu tenace con la terza parte di te$to- le pi$te, & bene incorporate, & ben battute.</I> <HEAD><I>Della polue pozzolana. Cap. VI.</I></HEAD> <p>Evui anche una $pecie di polue, che di natura fa co$e merauiglio$e. Na$ce a Baie, & ne i campi di coloro, che $ono appre$$o il monte Ve$uuio. Que- $ta temperata con la calce, & con cementi, non $olo dà fermezza a gli altri edi- ficij, ma le grandi opere, che $i fanno nel Mare per lei $ott'acqua $i fanno piu forti. La ragione di que$to è, perche $otto que monti, & $otterra $ono ardenti$sime, & $pe$$e fonti, lequali non $arebbeno, $e nel fondo loro non haue$$ero zolfo, ouero allume, ouero bitume, che fanno grandi$simi fuochi. Penetrando adunque il fuoco, & il uapo- re della fiamma nel mezo delle uene, & ardendo rende quella terra lieue, & il tofo, che na$ce in que luoghi a$$orbe, & è $enza liquore. E$$endo adunque tre co$e di $imigliante natura dalla uehemenza del fuoco formate in una mi$tura concorrenti, $ubito che han- no riceuuto il liquore, $i raunano, & pre$o l'humore indurite $i raunano, & ra$$odano di modo, che nè'l mare, nè la forza dell'acqua le puo di$ciogliere: Ma che in que luoghi $iano ardori, egli $i dimo$tra per que$to; che ne i monti Cumani, & Baiani, $i cauano i luoghi per li bagni, ne i quali na$cendo il feruente uapore dal fondo con la forza del fuo= co penetra per quella terra, & trapa$$andola in que luoghi ri$orge, & d'indi per li $udato- ri $i cauano grandi utilità. Similmente $i narra anticamente e$$ere cre$ciuti gli ardori, & e$$er abondati $otto il Monte Ve$uuio, & d'indi hauere per li campi $par$a la fiamma d'in- torno: & però quella pietra, che $pugna, ouero pomice Pompeiana $i chiama, cotta per- fettamente, da un'altra $pecie di pietra in que$ta qualità pare, che $ia ridotta. & quella $orte di $pugna, che iui $i caua, non na$ce in ogni luogo, $e non d'intorno il monte Etna, & i colli della Mi$ia, detti da i Greci, Catachiecaumeni, & altroue $e iui $ono que$te pro- prietà di luoghi. $e adunque in quelle parti $i trouano le fonti d'acque feruenti; & da gli antichi $i narra, che nelle concauità de i monti $i trouano caldi uapori, & le fiamme $ono ite per molti luoghi uagando, pare ueramente e$$ere certa co$a, che per la uehemenza del fuoco dal tofo, & dalla terra, come nelle fornaci dalla calce, co$i da que$ti $a$si e$$er trat- to il liquore. & però da co$e di$pari, & di$simili in$ieme raunate, & in una uirtù ri$trette, & il caldo digiuno d'humore dall'acqua $ubito $atiato raccommunando i corpi, bolle per lo calore na$co$o, & fa, che quelli fortemente s'uni$chino, & pre$to riceuino la forza del- la $odezza. Ci re$ta il di$iderio di $apere, perche e$$endo in Etruria molte fonti d'acque boglienti, non ui $ia anche la polue, che na$ce ne i detti luoghi, laquale per la i$te$$a ra- gione faccia $ode l'opere di $ott'acqua. & però prima che cio $ia richie$to, mi pare, per- che co$i $ia, renderne conto. In tutte le parti, & in tutti i luoghi non $i truoua la i$te$$a <pb n="81"> $orte di terra, nè di pietre, ma alcune $ono terregne, alcune fabbionegne, alcune giaro- $e, & altre areno$e, & co$i altroue diuer$e, & del tutto di$simili, & di$pari maniere, co- me $ono le regioni $i truouano le qualità della terra. & que$to $i puo molto bene con$ide- rare, che la doue l'Apennino cigne le parti d'Italia, & di To$cana qua$i in ogni luogo non manca l'arena di caua: ma oltra lo Apennino doue è il Mare Adriatico, niente $i troua, nè in Achaia, nè in A$ia, & in breue oltra il mare appena $e ne $ente il nome: Adunque non in tutti i luoghi, doue bolleno le fonti dell'acque calde, concorrer po$$ono le mede$ime commodità delle co$e, ma tutte ( come è da natura ordinato ) non $econdo le uoglie humane, ma per $orte diui$e, & di$tribuite $ono. In que luoghi adunque, ne i quali non $ono i monti terregni, ma che tengono le qualità della materia di$po$ta pa$- $ando per quelli la forza del fuoco gli abbrucia. & quello, che è molle, & tenero a$ciuga, & la$cia quello, che è a$pro. & però $i come in campagna la terra abbruciata diuenta pol- ue, co$i la cotta in Etruria $i fa Carboncino, & l'una, & l'altra materia è ottima nel fabri care: ma ritengono altra forza ne gli edificij, che $i fanno in terra, altra nelle grandi ope= re, che $i fanno in mare, perche la uirtu della materia iui è piu molle del tofo, & piu $o- da, che la terra. del qual tofo del tutto abbru$ciato dal fondo per la forza del calore in al- cuni luoghi $i fa quella $orte di arena, che $i chiama carboncolo. <p><I>Plinio piglia que$to luogo nel terzodecimo Capo del trente$imo quinto libro, & non s'in- tende, che Vitru. parli qui di quella pozzolana, che hoggidì $i u$a in Roma. il re$to è facile per la interpretatione.</I> <HEAD><I>De i luoghi, doue $i tagliano le pietre.</I></HEAD> <HEAD><I>Cap. VII.</I></HEAD> <p>Fin qui chiaramente io ho ragionato della calce, & dell'arena di che diuer$ità $iano, & che forze s'habbiano: $eguita che $i dica per ordine delle petraic, delle quali gran copia di quadrati $a$si, & di cementi $i cauano per gli edifi- cij. Que$te $i truouano di uarie, & molto di$simiglianti maniere, perche alcune $ono molli, come d'intorno a Roma, le ro$$e, le Paliane, le Fidenate, le Albane; al- cune temperate, come le Teuertine, le Amiternine, le Sorattine, & altre di que$ta maniera; Alcune poi $ono dure, come $ono le $elici. Sonui anche altre $pecie, come in Campagna il Tofo nero, & il ro$$o. Nell'Vmbria, nel Piceno, & nella Marca Triui$ana il bianco, il quale come legno con dentata $ega $i taglia. Ma tutte quelle, che $ono molli hanno que$ta utilità, che quando i $a$si $ono cauati dalla petraia facilmente $i maneggiano nelle opere: & $e $ono al coperto $o$tentano i pe$i. ma allo aere indurite, & gelate per le brine, & per li cadimenti delle acque, $i $pezzano, & $e $ono appre$$o le parti maritime $ono man giate dalla $al$ugine, nè reggeno a i gran caldi. Le Teuertine, & quelle, che $ono della i$te$$a maniera $opportano i carichi delle opere, & le ingiurie de i mali tempi, ma non lo- no $icure dal fuoco: & $ubito, che da quello $ono toccate $i $pezzano, percioche nella lo- ro naturale temperatura hanno poco humore, & non molto del terreno. ma a$$ai dello aere, & del fuoco. E$$endo adunque in quelle poco della terra, & del humore, & pene- trando anche il fuoco per la forza del uapore $cacciatone lo aere da quelle, $eguitandole affatto, & occupando gli $pacij uoti delle uene, boglie, & le rende $imili a i $uoi corpi ardenti. $ono anche altre petraie ne i confini de Tarquine$i dette Anitiane, del colore del- le Albane. le officine delle quali $pecialmente d'intorno il lago di Vol$cena, & nella pre- fettura Stratonie$e $i truouano, que$te hanno uirtù infinite, perche nè i grandi giacci, nè la forza del fuoco le nuoce, ma ferme $ono, & per que$to durabili alla uecchiezza. percio- che nella loro mi$tura hanno poco dello aere, & del fuoco, ma di temperato humore, <foot><I>L</I></foot> <pb n="82"> & molto del terreno, & co$i con i$pe$$e compo$itioni a$$odate, nè dalle tempe$tate, nè dal- le forze del fuoco $enteno nocumento. & que$to $i puo ma$simamente giudicare da i mo- numenti, che $ono d'intorno la terra di Ferento, fatti di que$te pietre. perche hanno le $tatue grandi fatte egregiamente, & le figurine, & i fiori, & gli acanti mirabilmente $col- piti, lequali benche $iano uecchie, pareno però co$i nuoue, che $e fu$$ero hor hora fatte. $imilmente i fabbri del metallo adoperano per li getti le forme fatte di que$te pietre, & ne hanno di quelle per fondere il metallo grandi$simi commodi. le quali $e fu$$ero pre$$o Roma, degna co$a $arebbe, che da que$te officine fu$$ero fatte tutte le co$e, ma forzan- doci la nece$sità per la uicinanza che delle ro$$e, & delle Paliane, & di quelle, che $ono ui- cine a Roma ci $eruiamo, $e alcuno uorrà porle in opera $enza difetto, bi$ognerà in que- $to modo apparecchiarle. Douendo$i fabricare, due anni prima non nel uerno, ma nel- la $tate $i caueranno quelle pietre, & $i la$ciaranno $te$e allo $coperto. & quelle, che dal- le pioggie & mali tempi per lo $pacio di due anni $aranno $tate offe$e, $iano po$te nelle fon damenta: le altre non gua$te, come approuate dalla natura, potranno $opra terra nelle fabriche mantener$i, nè $olamente $i deono que$te co$e o$$eruare nelle pietre quadrate, ma anche nelle opere di cemento. <p><I>Vitruuio tratta in que$to luogo delle pietre fatte dalla natura, & ne dimo$tra la diuer$ità, l'u- $o, & il commodo di e$$e molto facilmente. & tutta que$ta materia $imilmente è stata pigliata, & leuata di pe$o dirò co$i, da Plinio nel trente$imo quinto libro al uige$imo $econdo Capo. Hora anche noi in $omma diremo. Cinque generi di pietre naturali $i trouano, la Gemma, il marmo, la cote, il $elice, il $a$$o. Le Gemme $i cono$ceno dalla $o$tanza, dal uedere, dal toc- care, & dalla lima. $ono piu graui, & piu fredde del uetro, non pati$ceno la lima, hanno lo $plendore piu $aldo, piu chiaro, & empieno, & dilettano la uista piu che $i mirano, nè $i $mar- ri$cono al lume della lucerna, & $ono di $o$tanza uiuace, & piena. Di que$te non ragiona l'Ar- chitetto, perche non uanno nelle $abriche. I marmi prouano la lima, $ono grandi, & ri$plen- deno: le $elici hanno come $quame; le coti come grani; i $a$$i non hanno $plendore. Ragionan- do delle pietre, con$ideramo il tempo di cauarle, la quantità, la qualità, la comparatione, l'u$o. & da gli edificij fatti $i pigliano le lor qualità. però $i ha, che la pietra blanca ubidi$ce piu, che la fo$ca. La trapparente meglio, che l'opaca. piu intrattabile quella, che piu s'a$$omiglia al $a- le. il $a$$o a$per$o come di arena, è a$pro, $e gli u$ciranno come punte nere è indomabile. l'a$per- $o di goccie cantonate, è piu $odo, che lo a$per$o di ritonde. Quanto meno è uenato, tanto piu è intiero. piu dura quello, che è di colore purgato & limpido. migliore è quello, la cui uena è $imile alla pietra. La uena $ottile mo$tra la pietra $piaceuole. la piu torta, & che piu gira, è piu au$tera. La nodo$a è piu acerba. quella pietra piu ageuolmente $i fende, che nel mezo ha una linea ro$$a come putrida. pro$$ima a quella è la bianchegna, quella, che pare un giaccio uer- de è piu difficile. Il numero delle uene dimo$tra la pietra incon$tante, & che crepa. Le uene dritte $ono giudicate piggiori. Quella pietra è piu $oda, le cui $cheggie $ono piu acute, & ter$e. La pietra, che $pezzata rimane piu li$cia di $uperficie, è piu atta allo $calpello. l'a$pra quanto piu biancheggia, tanto meno ubidi$ce al ferro. La fo$ca quanto piu la Luna $cema, tanto meno con$ente al ferro. ogni pietra ignobile, tanto è piu dura, quanto è piu cauerno$a. Quella, che non a$ciuga l'acqua, che $e le $pruzza $opra, è piu cruda. ogni pietra graue è piu $oda, & piu $i li$cia, che la leggiera. & la piu leggiera della piu graue è piu fragile. Quella che perco$$a ri$uo- na, è piu den$a della $orda. La $tropicciata, che $a di $olfo, è piu dura che la $enza odore. Quel la, che piu re$i$te allo $calpello, piu dura alle acque, & mali tempi. Ogni pietra di nuouo ca- uat a, è piu tenera. & io ne ho uedute in Inghilterra che bi$ogna lauorarle alle caue, perche $e $tanno troppo cauate s'indurano di modo, che non $i po$$ono lauorare, $e non $tanno nell'acqua un'inuernata. $offiando l'O$tro piu facilmente $i lauorano le pietre, che $offiando Borea. quella pie- tra, che nell'acqua $i fa piu graue, $i disfa per l'humore. quella, che per lo fuoco $i $gretola, non</I> <pb n="83"> <I>dura al Sole. & tanto $ia detto della comparatione delle pietre, $i come Leon Batti$ta haraccol- to. Delle altre co$e pertinenti alle pietre $i dirà di $otto.</I> <HEAD><I>Delle maniere di murare, qualita, modi, & luoghi di quelle. Cap. VIII.</I></HEAD> <p>LE maniere del murare $ono que$te prima quella, che $i fa in modo di rete, che hora $i u$a da ogn'uno. poi l'antica, la quale $i chiama incerta. Di que- $te due è piu gratio$a la reticulata, la quale poi è facile a fare le fi$$ure, per- che in ogni parte ha i letti, & le commi$$ure slegate: ma la maniera incerta $edendo i cementi l'uno $opra l'altro, in modo di imbrici, non bella, come la reticulata, ma $i bene piu ferma rende la muratura: uero è che l'una, & l'altra maniera deue e$$er impa$tata di minuti$sime co$e, accioche i pareti $pe$$o $atiati della materia fatta di cal- ce, & d'arena piu lungamente $i tenghino in$reme; perche e$$endo di molle, & rara uirtù $uggendo il $ucco dalla materia, di$eccano. ma quando abonderà la copia della calce, & dell'arena, il parete, che hauerà pre$o molto dell'humore, non i$uanirà co$i pre$to, ma $i tenirà in$ieme. ma $ubito, che la forza humida per la rarità de i cementi $arà $ucciata dalla materia, allhora la calce $taccando$i dall'arena $i di$cioglie, & i cementi non $i po$$ono con que$ti attaccare, ma a lungo andare fanno i pareti ruino$i. & que$to $i puo compren dere da alcuni monumenti, che d'intorno a Roma $ono fatti di marmo, ouero di pietre quadrate, & di dentro nel mezo calcati, & empiuti la materia $uanita per la uecchiezza, & a$ciutta la rarità de i cementi, ruinano, & dalla brina di$ciolte le legature delle commi$- $ure $ono di$sipati. Et $e alcuno non uorrà incorrere in que$to difetto, faccia i pareti di due piedi, la$ciando il mezo concauo lungo i pila$trelli di dentro, & $iano o di $a$$o ro$$o quadrato, ouero di terra cotta, ouero di $elici ordinarij, & con le chiaui di ferro, & piom bo $iano le fronti legate. & co$i non a grumo, & $otto$opra, ma ordinatamente fatta l'o- pera potrà $enza difetto eternamente durare. perche $edendo tra $e i letti, & le commi$- $ure di quelli, & incatenate non $pigneranno la muratura, nè la$ciaranno che i pila$trel- li, o $tanti legati in$ieme rouinino. & però non $i deue $prezzare la muratura de' Greci. <p><I>Vitru. c'in$egna il modo, & le maniere di porre in$ieme le pietre, commenda la muratura di matt oni, & con belli e$$empi pruoua quanto dice. Prima che io e$pona Vitru. io dirò delle par- ti della fabrica $opra il fondamento, & quale $ia l'officio di cia$cuna. In ogni fabrica noi haue- mo a con$ider are il ba$$o, la cima, i lati. il ba$$o è il pauimento, o $uolo. La cima $ono i coper- ti, & i colmi; i lati $ono i pareti, o muri. Del pauimento $i dirà nel $ettimo libro: de i coperti nel quarto. Hora $i tratta del muro; ilquale è differente dal fondamento in que$to, che il fonda- mento da i lati della fo<02>a $olamente per e$$er intiero, con$i$te: mail muro, o parete è compo$to di piu parti. perche ha il poggio, il procinto, la corona, l'o$$a, & i $o$tegni, l'apriture, le labra, il compimento, & le $ue o$$eruationi. noi e$poneremo l'u$o di que$te parti a gui$a de i medici, i qua- li nella con$titutione della loro arte trattano dell'u$o delle parti del corpo humano. Poggio è quel- la parte, che è la prima di $otto, che $i leua dal fondamento, che è alquanto piu gro$$a del muro, che $i potrebbe $carpa nominare. Procinto, & corona $ono parti del muro una di $opra, l'altra nel mezo. Procinto è la parte di mezo, & è quella legatura, che cigne il muro d'intorno come cornice, che nelle mura delle città $i potrebbe chiamar cordone, & nelle altre mura, $i dicono fa$cie, & cinte, & regoloni. l'o$$a & i $o$tegni $ono le cantonate, le pila$trate, erte, colonne, & trauature, & tutto quello, che $o$tiene le apriture, o $iano in arco, o dritte; perche l'arco è come traue piegato. Traue come colonna trauer$a: & colonna come traue dritto. Le apriture, o labra $ono come le fine$tre, le cannoniere, i merli, le porte, i buchi, & i nicchi che dalla forma</I> <foot><I>L</I> 2</foot> <pb n="84"> <I>lore $ouo detti latinamente concha. i compimenti trapo$ti $ono tra l'o$$a, & l'apriture, & al- tre parti. Hora $i dirà quanto $i conuenga a cia$cuna parte. il che accioche commodamente $i faccia, $i dirà della quantità, & qualità delle pietre. Sono le pietre ouero di $operficie, anguli, & linee eguali dette, quadrate, ouero uariate; & $ono dette incerte. $ono alcune grandi, che $enza $tromenti, & machine non $i po$$ono maneggiare; altre minute, che con una mano $i leua- no; altre mezane, dette giu$te. Hanno le pietre qualità diuer$a; perche alcune $ono uiuaci forti, $ucco$e, come la $elice, & il marmo, nelle quali è innato il $uono, & la $odezza: altre e$au$te, & leggieri, come è il Tofo, & le pietre areno$e. I marmi $ono pro$$imi all'honor delle gemme per la bellezza, & gratia loro, & $pecialmente que marmi nobili, che per la uarietà di colori, o per la gran bianchezza o finezza, & $plendore, o tra$parenza danno mer auiglia, come il Pario, il Porfido, il Serpentino, l'Alaba$tro, & altri $imiglianti marmi me$chi, o gra- niti. Il $elice ueramente ha molte qualità, duro, tenero, tenace, friabile, graue, leggiero, o che in e$$o non puo il fuoco, o $i conuerte in cenere, & è $quamo$o, $opporta il freddo, & l'ac- que, non ri$plende, però non è marmo: entra però inelle fabriche, come anche alcuni $a$$i. Ma la cote come la Dama$china, il Tocco, che proua i metalli, alcune pietre, che nelle Indie $i u$ano per tagliare, $ono per aguzzare i ferri, $i con$umano a poco a poco con $e $te$$e, ma pre$to con- $umano le altre co$e. & la parte che è riuolta al Sole è migliore di quella di $otto; perche dal So- le $i fanno perfette. I $a$$i $ono diuer$i per la proprietà, come la calamita, per la uirtù, il Calamo- co, per lo colore, l'Amochri$o per la pittura, l'Alabandico per la forma, il Trochite per la no- biltà di re$i$tere al fuoco, come la Magne$ia all'acqua. la proprietà della calamita è nota; tira & $caccia il ferro, dimo$tra le parti del Cielo, & i uenti a i nauiganti, & fa effetti merauiglio$i con incognite cau$e. La $puma della canna detta Calamoco, è forti$$ima, & calidi$$ima, & con- $uma i corpi in quella $epolti. il Trochite è $triato o canellato nel piano, & nel mezo del piano ha un punto, dal quale $i parteno tutti i canali, & il piano è circondato da un lieue timpanuzzo & $i muoue da $e $oprapo$toui l'aceto, l'Amochri$o, cioè arena d'oro, ha colore d'oro, è $qua- glio$a: & $e ne fa poluere da $eccar le $eritture l'Alabandico dimo$tra in $e uarie figure. Ma di que$ti $a$$i pochi $ono all'u$o delle fabriche, benche per alcuni adornamenti po$$ono e$$er prez- zati. Io ho detto della quantità, & qualità delle pietre; hora io dirò del modo di porle in$ieme, & prima di alcune auuertenze. Ogni pietra deue e$$er intiera, non fango$a, ma bagnata bene, & $e e$$er puo, di torrente. le intiere dal $uono $i cono$ceno. le cauate di nuouo $ono piuatte, la pietra altre fiate adoperata non rie$ce, & non $i attacca bene, perche di gia ha beuuto l'humore, altri con minute pietre, & molta calce empieno le fondamenta, altri ui metteno ogni $orte di rot- tame. Egli $i deue imitar la natura, che nel fare i monti tra le piu $ode pietre tramette la piu te- nera materia: co$i $opra grandi, quadrate, & intiere pietre $i getta gran copia di calce $tempera ta. le piu gagliarde parti delle pietre $i pongono, oue è bi$cgno di maggior fermezza. Se la pie- tra è atta a romper $i non in lato $i ponga, ma $te$a giacendo. la faccia della pietra, che è taglia- ta per trauer$o, è piu forte, che quella, che è tagliata per lungo, nel fondar le colonne non è ne- ce$$ario di continuare il fondamento, ma $i fa $otto la colonna, (accioche col pe$o loro non fori- no la terra) fare un muretto, & tirare da colonna a colonna un'arco riuer$cio. La pietra $ecca & $itibonda uuole $abbia di fiume, la hurnida per natura, quella di caua. non $i adoperi arena di mare nelle opere riuolte all'O$tro. a minute pietre $pe$$a, & $oda calce $i ponga; benche la tenace $ia $tata da gli antichi approuata. Gioua di bagnare $pe$$o la muratura. non uogliono quel- le pietre e$$er bagnate, che dentro non $iano humide, & negreggianti e$$endo rotte, o $pezzate. Le gran pietre sdrucciolando per lo liquido meglio $i a$$ettano, & però deono andare $opra tenera & liquida calce. Hora ci re$ta a dire delle maniere del murare. Tre $ono le maniere del murare l'or dinaria, la incerta, la reticulata. Di que$te tratta Vitr. nel pre$ente Capo, & per dichiaratio- ne maggiore, $i e$porranno alcune uoci. Et prima cemento, è pietra roza, non tagliata, uul- gare $enza determinata forma: ogni giorno per Roma ne uanno i giumenti carichi. Et in terra</I> <pb n="85"> <I>di lauoro detta Campania, ritiene il nome. Reticulato, & incerto que$ti $ono due modi di po- ner'a $ilo, ouero in$ieme i cor$i delle pietre. il Reticulato è co$i detto, perche nella muratura di- mo$tra la diui$ione da una pietra all'altra in modo di rete, & que$to non $i puo fare, $e almeno una facciata della pietra non è quadrata, & polita. bi$ogna anche, che $tiano in modo, che gli angu li $i tocchino, come per la $oprapo$ta figura $i uede. La incerta è quella, che $i $a di pietre di di- uer$e figure a ca$o po$te. perche quello, che $i dice lauorare a ca$$a, è quello, che di $otto è det- to Emplecton. ma hora $i ragiona di quello, che appare di fuori. La correttione dello incerto, ac cioche $ia $icuro, & forte, $i fa come per figura s'è mostrato di $opra. imperoche egli è nece$$ario legare ambe le fronti una con l'altra co<*> attrauer$ata muratura, et empire il u<*>no con pietre me$co late con molta calce. Ordinaria muratura è quella, doue le pietre quadrate, le giu$te, o le grandi $i pongono in$ieme ordinatamente a $quadra, a liuello, & a piombo. il che accenna Vitr. dicendo.</I> <p>Et però non $i deue $prezzare la muratura de Greei, $e bene non l'u$ano polita di molle cemento, pure quando $i parteno dalla p<*>etra quadrata, fanno l'ordinaria di $elice ouero di pietra dura. <I>La quale è mezana tra la incerta, & quella, che $i fa di pietra quadrata. Ma bi$ogna auuertire, che il poggio, che for$e $tereobata è detto da Vitr. hauer deue la incro$ta tura di pietra quadrata, grande, & dura: perche que$ta parte di muro ha bi$ogno di piu $odezza, come parte, che ha della natura del fondamento, che $ostenga tutto il carico, & che piu $ia ui- cina all'humidità delle acque, o del terreno. il che $i deue o$$eruare $pecialmente in Vinetia, & $i o$$erua anche nelle ca$e ben fatte. Catone dice. Leuerai da terra la fabrica un piede con $oda pie tra, & calce, l'altre parti con crudo mattone potrai formare. Ma in Venetia que$ta parte è piu leuata, & ha del grande, & ha del $odo, & arriua fin a cinque, & $ei piedi, & $opra ui è il cor done di forma ritonda, ouero in forma di fa$cia, che $porta in fuori. Fra i procinti s'interpongo- no alcune legature di pietremaggiori, le quali $ono come concatenationi dell'o$$a con l'o$$a, & delle cro$te, che $ono dalla<*>rte di den<*>ro, con quelle, che $ono di fuori, & però quiui lunghe, langhe, & $ode pietre $i richiedeno. Si $ogliono fare anche altri procinti per legare le cantonate & tenere l'opere in$ieme, ma piu rari. Quelli primi deono conuenire a piombo, & a $quadra den tro, & di fuori col muro, & que$ti, che $ono maggiori come c ornici, o gocciolatoi $portare; & con gli ordini, & cor$i e$$ere bene legati in modo, che come $oprapo$to pauimento $i ricuo- pra bene la fabrica. Siano le pietre nelle murature una all'altra $opraposte, come s'è detto, a modo d'imbrici, $i che la commi$$ura di due $oprapo$te, $ia nel mezo della pietra di $otto, & que $to $pecialmente ne i procinti, & nelle legature. Gli antichi nelle opere reticulate tirauano il le gamento di cinque mattoni, o almeno di tre, che ouero tutti, ouero in un'ordine, almeno era di pietre non piu gro$$e, che le altre, ma piu lunghe, & piu larghe. Ma nelle opere ordinarie, per ogni cinque piedi è $tato a ba$tanza un mattone di due piedi per legatura; però fabricando con pietre maggiori piu raro legamento bi$ogna, & è qua$i a fufficienza la cornice$ola. Laqual deue e$$er fatta con $omma diligenza, & di ferme, & larghe pietre ordinarie, & giu$te, & ne i pare ti di crudi mattoni, la corona deue e$$er di terra cotta, accio $ia dife$a dalla pioggia, & leggie- ra di pe$o. Deue$i auuertire, che il marmo rifiuta la calce, & $i macchia facilmente, la doue gli antichi quanto meno poteuano adoprauano i marmi con la calce. Dell'o$$a, & de $o$te- gni, & delle apriture $i dirà poi. I compimenti trapo$ti $ono tra l'o$$a, l'apriture, & l'altre parti, ne i quali $ono da con$iderare l'imboccature, i riempimenti, le intonicature tanto di den- tro quanto di fuori, perche $i uede e$$er di$$erenza tra l'o$$a, & i compimenti; perche nell'o$$a $i pongono grandi, $ode, & ordinate pietre, & ne i compimenti, minute, rotte, meno ordinarie, benche con molta calce, & arena. Vero è, che perfetta $arebbe la muratura, che tutta fu$$e di pietre quadrate, ma e$$endo di troppo $pe$a, bi$ogna tra l'una $corza, & l'altra ponere alcune pietre ordinarie attrauer$ate, nel muro, per unire le $corze. le pietre da riempire non uogliono pa$ $are una libra di pe$o, perche le pietre minute fanno miglior pre$a. nelle incro$tature di fuori $i deono porre le pietre migliori, & prouate, come ha detto Vitr. lontane però dai cadimenti delle</I> <pb n="86"> <I>acque, & non deono e$$er pietre di grandezze, & di pe$i di$eguali, ma ri$pondino le de$tre alle $ini$tre, le rimote alle uicine $eguitando gli ordini incominciati. Ma la intonicatura di dentro $ia di pietra piu dolce, o $erui$i la regola, che $i dirà nel $ettimo libro. Il muro fatto di mattoni crudi, detto da gli antichi muro lateritto, fa piu $ana la fabrica, ma è $ottopo$ta a terremoti. de- ue però e$$er gro$$o per $o$tenere i palchi. il loto da fabricare $ia $imile al bitume, che po$to nell'ae qua lentamente $i disfaccia, & s'attacchi alle mani, & a$ciutto bene s'amma$$i: ma dell'opera di loto $i dirà nel $ettimo libro. La nuda pietra deue e$$er quadra, $oda, grande, dura $enza $c<*>lie tra- po$te. Sia po$ta in opera con arpe$i, & chiodi, gli arpe$i fanno stare le pietre al pari, i chiodi le gano il di$opra, con quello di $otto. Se gli arpe$i, & chiodi. $ono d'ottone, non irrugini$ceno, ferman$i con piombo $colato. que di legno per la forma loro $ono fatti a coda di rondine, il ferro con biacca, o ge$$o $i $erua dalla ruggine, bi$ogna però bene guardare, che le acque non toccbi- no gli arpe$i. Ma tornamo alla muratura, & a que muri, che $ono fatti di rottami, ponerai ta- uole, o craticci dalle $ponde per $o$tegno, fin che $i a$ciughino. Et qui $i è trouato il modo di get tar le colonne nelle forme di legno, per $cemare la $pe$a. Et $i riempie la forma d'ogni $orte di rot- tame con molta calce. Altri ui la$ciano nel mezo l'anima di rouere, o di mattoni per $icurtà, altri fanno la pa$ta con minute pietre, & la$ciano a$ciugarla bene, & a$ciutta leuano la forma, danno poi la incro$tatura, & la intonicatura alla colonna & la figneno di marmo, o di me$chio, o granito come uogliono. Egli $i deue $chiuare piu, che $i puo la pietra di forma ritonda. Seguo, che la calce è a$ciutta, quando ella manda fuori una lanugine, & uno certo fiorume ben cono- $ciuto da muratori. Ce$$ando dall'opera coprirai il muro con paglia, o altro, accioche non i$ua- ni$ca prima, che habbia fatto la pre$a: Et quando poi $i ripiglia il lauoro, non ti rincre$ca $atiarlo molto bene di acqua. il muro, che è molto gro$$o, fa armatura a $e $te$$o. Egli bi$ogna la$ciare luogho commodo per le apriture, facendoui un'arco, ilquale $i otturi fino che uenghi il bi$ogno d'aprirle, perche il pe$o non aggraui troppo la parte uota. Se uuoi ggiugnere al muro dopo alcun tempo, bi$ogna, che ui la$ci i denti $porti in fuori. Gli anguli perche participan di due la- ti, & $ono per tener dritto il muro, deono e$$er fermi<02>imi, & con lunghe, & dure pietre, come con braccia tenuti. Et tanto $ia detto d'intorno alla $oprapo$ta diui$ione. la quale $e $arà bene con$iderata, non ha dubbio, che ella non $ia per apportare grangiouamento alle con$iderationi de i $aui, & alle operationi de i mae$tri.</I> <p>Que$te fabriche de Greci in due modi $i murano. L'uno è detto eguale, l'altro di- $eguale. Il primo è quando tutti i cor$i $ono eguali in grandezza. L'altro è quando gli ordini de i cor$i non $aranno drizzati pari. l'una, & l'altra maniera per que$to è ferma, perche prima i cementi $ono di $oda, & ferma natura, nè po$$ono a$ciugare il liquore della materia, ma li con$eruano nel $uo humore per grandi$simo tempo, & i letti loro piani, & bene liuellati non la$ciano $grottare la materia, ma con la continuata gro$$ezza de i pareti co$i legati durano lunghi$simamente. Euui un'altra maniera di fa- brica, che $i chiama riempita, la quale anche $i u$a da no$tri ru$tici. della quale $ono le fronti $olamente polite, ma le altre parti come nate $ono, po$te in$ieme con la mate- ria, con alterne commi$ure $ono legate: ma i no$tri per sbrigar$ene pre$to, facendoui i cor$i dritti, $erueno alle fronti, & empieno nel mezo $pezzati i cementi $eparatamen- te con la materia, & a que$to modo in quella muratura leuano, & drizzano tre cro$te, due delle fronti, & una nel mezo del riempimento. Ma i Greci non fanno a que$to mo= do, ma ponendoli piani, & ordinando le lunghezze de i cor$i in gro$$ezza con alterne commi$$ure, non empieno il mezo, ma con i loro mattoni, che chiamamo frontati, fan- no continuato il parete, & d'una gro$$ezza ra$$odato, & oltra le altre co$e interpongono quelli dall'una parte & l'altra, che hanno le fronti, che chiamano per que$to diatoni, di perpetua gro$$ezza, i quali grandemente legando confermano la $odezza de i pareti: & pe rò $e alcuno uorrà da que$ti commentarij auertire, & ele ggere la $orte di murare, potrà <pb n="87"> molto bene hauere riguardo alla perperuità: percioche quelle Fabriche, lequali $on di molle cemento, & di $ottile a$petto di bellezza, non po$$ono $e non e$$er col tempo rui- no$e: & però quando s'eleggono gli arbitri di communi pareti, non $i $tima, per lo prez zo, che $ono $tati fabricati, ma ritrouando per gli in$trumenti i precij delle locationi, le uano d'ogni anno, che pa$$ato $ia la ottante$ima parte: & co$i del re$tante della $omma comandano che egli $i re$titui$ca una parte per que$ti pareti, che $ententiamo, che piu di ottanta anni non po$sino durare. Ma de i pareti fatti di mattoni, pure che $iano fatti a perpendicolo & dritti $tiano, niente $i leua, ma per quanto prezzo $eranno $tati fabrica- ti, per tanto $empre $aranno $timati. & però in alcune città, & le opere publiche, & le ca$e priuate, & le reali $i uedeno fabricate di mattoni: & prima in Athene il muro, che guarda uer$o il monte Hymeto, & Petelen$e, & i pareti nel tempio di Gioue, & di Her cole, le celle $ono di mattoni. E$$endo d'intorno al tempio le colonne & gli architraui di pietra. In Italia in Arezzo euui un muro beni$simo fatto, & in Tralli la ca$a fatta da i Re Attalici, che è data per $tanza a colui, che nella Città tiene il $acerdotio. Et co$i in Lacedemone di alcuni pareti leuate le pitture, che erano in forme, & i telari di le- gno ne i pareti tagliati, rinchiu$i & inca$$ati, furon portate nel comitio per adornamento della edilità di Varrone, & di Minerua. la ca$a di Cre$o, la quale i Sardi con$egnarono a i cittadini per ripo$o della uecchiezza al collegio de i uecchi, chiamata Geru$io, era di mattoni. $imilmente la reale in Alicarna$o del potenti$simo Re Mau$olo, in tutto, che habbia di procone$io marmo ornate tutte le co$e, niente di meno i pareti $ono fatti di mattoni. & infino a que$ti tempi hanno una mirabile fermezza, co$i con intonicature, & cro$te politi, che come uetri riluceno. nè que$to fu fatto per bi$ogno, che quel Re ha ue$$e, perche era ricchi$simo d'entrate, come quello, che a tutta la Caria dominaua. Ma in que$to modo è da con$iderare la $olertia $ua, & acutezza nel fabricare: percioche e$- endo egli Mila$io, & hauendo ueduto il luogo di Alicarna$$o munito per natura, & haue- re idoneo bazzaro, & il porto commodo, in quel luogo $i fece la $tanza. Que$to luo- go è $imile alla curuatura d'un Theatro, & nella parte da ba$$o, appre$$o il porto è il Foro, & per mezo la curuatura, & la cinta dell'altezza, ui è una piazza grandi$sima, nel mezo della quale è fabricato il Mau$oleo de $i fatta, & nobil opera, che è numerato tra i $ette $pettacoli del mondo. Nel mezo dell'alta rocca è il tempio di Marte, che tiene la $tatua del colo$$o, detta Acrolitho, fatta dalla nobil mano di Tilocare. benche altri di- chino di Timotheo; ma nella $ommità del de$tro corno è il tempio di Venere, & di Mer curio appre$$o la fonte Salmacide, che per fal$a opinione uien detto, che tenga di Vene rea infirmità oppre$si quelli, che beono di quella. Ma a me non rincre$cerà di raccontare da che $ia andata que$ta opinione con fal$o rumore per lo mondo: perche e$$er non puo quello, che $i dice, che gli huomini per quell'acqua diuentino molli, & impudichi, ma la uirtù di quella fonte, è molto chiara, & il $apore egregio. Hauendo adunque Melante, & Areciania d'Argo, & da Troezene in que luoghi cōdotta una colonia commune $caccior no i Barbari di Caras, & di Lelege: Que$ti $cacciati $i raunorno in$ieme a i monti, & face- uano di molte correrie, & rubbando in quel luogo crudelmente gua$tauano gli habitanti. Auenne poi, che uno de gli habitatori per guadagnare per la bontà delle acque fece appre$ $o quella fonte un'ho$teria fornita d'ogni co$a. & e$$ercitandola allettaua quei barbari, i quali hor l'uno, hor l'altr o uenendoui, & poi molti mettendo$i in$ieme concorrendoui, di duro & ferigno co$tume, nella u$anza & $oauità de Greci di loro propria uolonta $i ridu ceuano. Quell'acqua adunque non per dishone$ta infirmità, ma per la dolcezza della hu manità mitigati i feroci petti de i Barbari, acqui$tò quel nome. Re$ta hora perche io $on uenuto alla dichiaratione delle loro murature, che io le de$criua tutte come $ono: Come adunque nella de$tra parte è il tempio di Venere, & la fonte predetta, co$i nel $ini$tro cor <pb n="88"> no, è il palazzo reale, che Mau$olo per $ua $tanza fece fabricare. perche dalla de$tra $i uede la piazza, & tutta la terminatione del porto, & delle mura, & $otto la $ini$tra è il porto $e creto $otto a i monti na$co$o in modo, che niuno puo uedere, o $apere quello, che iui $i faccia, accioche il Re dal $uo palazzo a i galeotti, & $oldati, $enza che altri $e ne accorga po$$a quanto bi$ogna comandare. Dapoi la morte di Mau$olo re$tò Artemi$ia moglie $ua, & $degnando$i i Rodiotti, che una femina $ignoreggia$$e tutte le città della Caria, $i mi$ero all'ordine per occupar quel regno. delche e$lendone aui$ata la Reina, comandò ella, che in quel porto $te$$e l'armata rinchiu$a all'ordine con marinari a$co$i, & $oldati. Ma il re$to de cittadini compare$$e $opra le mura. Ma hauendo i Rodiotti condotta l'armata loro in ordine nel porto maggiore, la Reina comandò, che fu$$ero dalle mura $alutati, & prome$$a loro la città. per ilche quelli abandonate le naui, entrarono dentro: ma la Reina $ubito per la fo$$a fatta tra$$e fuori l'armata dal porto minore nel mare, & entrata nel mag giore sbarcati i galeotti, & i $oldati, tirò nel mare l'armata uota de i Rodiotti, i quali non hauendo doue ricouerar$i e$$endo tolti di mezo, tutti furono nella piazza tagliati a pezzi. Artemi$ia entrata nelle naui de Rodiotti pre$e la uia di Rodi. per il che uedendo i Rodiot ti le lor naui tornare ingirlandate di frondi, pen$ando che fu$$ero i cittadini loro, riceue- rono i nemici. Allhora la Reina pre$a la città, ucci$i i principali, dentro ui po$e il Tro- feo della $ua uittoria. & fece fare due $tatue di bronzo, una rappre$entau<*>a la città di Ro- di. L'altra la $ua imagine, figurando, che que$ta con affocato ferro $igilla$$e la città di Ro di. Dapoi que$to fatto impediti i Rodiotti dalla religione, perche non era lecito rimuo uere i trofei con$ecrati, fecero uno edificio intorno alle $tatue dette, & quelle coprirono inalzando un luogo per guardia alla u$anza Greca, accioche niuno ui pote$$e andare: & comandorono, che que$to $i chiama$$e Auaton, cioè inacce$sibile. Non hauendo adun- que i Re co$i potenti $prezzato l'opera de mattoni, potendo per le fatte prede, & per le co$e, che erano loro portate d'ogni banda, farle non $olamente di cemento, ouero di quadrata pietra, ma anche di marmo: Io non pen$o, che $ia da bia$imare gli edificij mura ti di mattoni, pure, che $iano fatti, & drizzati bene. Ma perche non $ia lecito in Roma al populo Romano fabricare in que$to modo, io ne dirò la ragione. Le leggi publiche non comportano, che le gro$$ezze de i muri ne i luoghi communi $iano maggiori d'un piede & mezo, ma gli altri pareti, accioche gli $patij non $i face$$ero piu $tretti, $i fanno di quel- la i$te$$a gro$$ezza. Ma que mattoni crudi $e non $aranno di due, o di tre cor$i de matto- ni, con la gro$$ezza d'un piede & mezo $olamente; non potranno $o$tenere piu che un pal co. Ma nella mae$tà di quella città in tanta frequentia di cittadini bi$ognaua fare innume rabili habitationi. non potendo adunque il piano riceuere ad habitare dentro di Roma tan ta moltitudine, la occa$ione po$e nece$sità, di unire all'altezza de gli edificij. Et però con pila$trate di pietra, & con murature di pietra cotta, & con pareti fatti di cemento per com modità de i cenaculi, & de i luoghi di doue $i guarda a ba$$o, $ono $tate fatte le altezze, & con i$pe$$e trauature, & palchi conchiauate. Et però il populo Romano $enza impedi= mento ha le $tanze belli$sime, moltiplicati i palchi, & i corritori in grande altezza. Ma poi, che è $tato re$o la ragione, perche in Roma per la nece$sità de i luoghi $tretti non $i fanno i pareti di mattoni crudi, hora $i dirà in che modo $i deono fare, accioche durino al la uecchiezza $enza difetti. Po$to $ia nella $ommità de i pareti $otto la copritura del tetto una muratura di terra cotta, di altezza d'un piede, & mezo, & habbia gli $porti delle co- rone, & i gocciolatoi, & co$i potranno $chifare i danni, o i difetti, che $ogliono hauere que pareti, perche quando nel tetto $aranno le tegole rotte, o gettate a ba$$o da i uenti, la $portatura, & il recinto de mattoni cotti, non la$cierà offendere il crudo, ma lo $porto de i cornicioni, porterà le goccie lontane, & in quel modo $erueranno intiere le murature de mattoni crudi. Ma della muratura di pietre cotte $e $arà buona o nò, non $i puo giu- <pb n="89"> dicare in poco $patio di tempo: perche $e ella à ferma nelle tempe$te, & $trauenti, & nel- la State, allhora è prouata: perche quella, che non $arà di buona creta, o che $arà mal cotta, $ubito che $arà toccata dal giaccio, o dalle brine, iui $i mo$trerà difetto$a. Quella adun que che ne i tetti non puo $opportar la fatica, meno $arà buona nella muratura a $o$te- ner i pe$i: per il che i pareti coperti di uecchie tegole $pecialmente potranno hauere fer mezza. Ma io non uorrei, che mai in tempo alcuno fu$$ero $tati riti ouati i craticci: per che quanto giouano alla pre$tezza, & tengono manco luogo, tanto lono di commu- ne, & maggior calamità, perche $ono come fa$ci preparati a gli incendij: & però pare che $ia migliore la $pe$a delle pietre cotte nella $ontuo$ità, che lo $paragno del tempo de i craticci nel pericolo, & quelli anche, che $ono po$ti nelle incro$tature fanno delle fi$$u re in quelle, per la di$po$itione de i dritti, & trauer$i. perche quando $e gli dà la incro- $tatura, riceuendo l'humore $i gon$iano, & poi $eccando$i, $i ri$trigneno. & co$i a$$oti- gliati, rompeno la fermezza delle cro$te. Ma perche alcuni $ono con$tretti di co$i fare, o per la pre$tezza, o per bi$ogno, o per $eparare un luogo dall'altro, co$i bi$ognerà fare. Fatto ui $ia il $uolo di $otto alto, accioche o dal terrazzo, o dal pauimento non $ia tocca- to, perche e$$endo iui $ommer$o col tempo ammarci$ce, dapoi dando in $e, piega, & rom pe la bellezza delle incro$tature. Io fin qui come ho potuto, ho detto de i pareti, & del lo apparecchio della materia loro di$tintamente, di che bontà $iano, & che difetti hab- biano. Re$ta, che io e$pona chiaramente quanto appartiene alle trauature, & palchi, & con che ragioni $i acconci la materia da farli, & come $iano di buona durata, come ci mo $tra la natura delle co$e. <p><I>Io ho uoluto porre tutta la interpretatione del pre$ente Capo, sì perche è facile & di piana intelligenza, sì perche mi $on forzato nel $oprapo$to di$cor$o mettere in$ieme tutta la materia pro po$ta. dal che ogni $tudio$o puo da $e $te$$o con$iderare tutto quello, che Vitruuio ha uoluto fare in que$ta parte. Et uederà la $ua intentione e$$ere $tata di ragionare della fabrica de i muri, & pareti, come egli dice nel fine del $oprapo$to Capo, hauere diui$o que$to ragionamen- to in piu parti: & nella prima hauer detto le maniere del murare, & hauer re$o le ragioni de i difetti, & della bontà di quelle, qua$i compar andole in$ieme. Nella $econda hauere ragio- nato della muratura de i Greci, di tre maniere di quella, & hauere comparato il modo Greco, col modo Latino di murare. nella terza hauere lodato il fabricar di mattoni, dimo$trato il uero modo, & con bella, & i$torica commendatione hauere commendato le fabriche di Mau- $olo Re di Caria, & propo$toci molti e$$empi di quelle, & finita la $ua ornata digre$$ione, accompagnata dalle leggi del populo Romano, nel qual ca$o, s'è dimo$trato non ignorante delle leggi ciuili, & nell'ultima e$$ere ritornato ad in$egnarci, quanto era nece$$ario a uarie $orti sì di pareti, come di craticci, de i quali ne ragiona anche nel terzo Capo del $ettimo libro: con- chiudendo finalmente quanto ha uoluto fare, & quanto intende di uoler fare nel $eguente Ca- po. I uocaboli del te$to per la interpretatione, & altroue per la e$po$ition nostra $ono chiari. leggi Plinio per tutto il trente$imo, $e$to libro, che trouerai molte co$e al propo$ito no$tro, & le figure delle murature $ono po$te di$opra, & $egnate con i loro nomi. doue non ui accade altro rincontro. Hora $eguita Vitruuio & parla della ragione de i legnami.</I> <HEAD><I>Del tagliare i legnami. Cap. IX.</I></HEAD> <p>LA materia $i deue tagliare il principio dello autunno, che $arà fin a quel tem- po auanti, che Fauonio cominci a $pirare: perche da prima uera gli alberi $o- no pregni, & tutti mandano la uirtù della loro proprietà nelle frondi, & ne i frutti, che fanno ogni anno. Quando adunque per la nece$sità de i tempi $a- <foot><I>M</I></foot> <pb n="90"> ranno uoti, & humidi, $ogliono diuentar rari, & deboli per la rarità, come $ono i corpi feminili, quando hanno concetto, & dalla concettione fino al parto, non $ono $timati $a ni. Ne gli animali da uendere, quando $ono pregni, $i danno per $ani. percioche cre$cen do nel corpo, quello, che prima u'è $tato $eminato, egli tira a $e il nutrimento da tutta la uirtù del cibo; & quanto più il parto $i fa fermo al maturir$i, tanto meno la$cia e$$er $oda quella co$a, di che $i genera, & però $ubito, che il parto è mandato fuori, quello, che per altra maniera di aumento, era detratto; quando è libero per la $eparatione fatta dal na$ci- mento della co$a, riceue in $e nelle uote, & aperte uene, & $uggendo il $ucco $i fa piu fer- mo, & ritorna nella pri$tina fermezza della natura $ua. Per la i$te$$a ragione, al tempo dell'Autunno, per la maturità de i frutti infiacchite le frondi, tirando le radici de gli albe ri a $e il $ucco della<*>terra, $i ricourano, & $ono re$tituiti nella prima lor fermezza: Ma la forza del uerno comprime, & ra$$oda quelle per quel tempo, che detto hauemo. Et però $e con quella ragione, & a quel tempo, che detto ho di $opra $i taglieranno gli alberi, $arà utile, & opportuna co$a. Ma co$i bi$o gna tagliarli, che $i uadi fin'a mezo la midolla, & la$ciato $ia il taglio, fino, che $tillando per e$$o $i $ecchi l'humore. per il che quello inuti- le liquore, che in e$si $i truoua u$cendo per lo $uo tuorlo, non la$cierà in quelli morire la putredine, nè gua$tar$i la qualità della materia: ma quando poi l'albero $arà $eccato, nè $tillerà piu, bi$ognerà gettarlo a terra. Et a que$to modo $i truouerà perfetto all'u$o. Et che que$to $ia uero, egli $i puo cono$cer anche da gli arbu$ti. percioche quando cia$cuno al tempo $uo forati fin al fondo $ono ca$trati mandano fuori dalle midolle il uitio$o, & $o- prabundante humore, & tri$to liquorè, & co$i di$eccando$i riceueno in $e la lunghezza di durare. Ma quelli humori, che non hanno le u$cite da gli alberi, re$tandoui dentro $i pu trefanno, & rendeno quelli uani, & difetto$i. Se adunque quegli, che $tanno in piedi, & uiueno, $eccando$i, non inuecchiano, certamente quando gli i$te$si per farne legname a terra $i mandano, quando $aranno a quel modo gouernati potranno ne gli edificij lun- gamente, & con utilità durare. Que$ti alberi hanno tra $e contrarie, & $eparate uirtù. il Rouere, l'olmo, il Poppio, il Cipre$$o, l'Abete, & gli altri idonei a gli edificij. percio- che non puo il Rouere quello, che puo l'Abete, nè il Cipre$$o, quello, che puo l'Olmo. nè gli altri alberi hanno quella $imiglianza mede$ima di natura fra loro: Ma cia$cuna $pe- cie di quelli con le di$po$itioni, & proprietà de principij comparati con altri, altre $orti di effetti pre$tano nelle opere. Et però l'Abete, hauendo molto dello aere, & del fuoco, ma meno dell'humido, & del terreno, come compo$to di piu lieui forze di natura, non è pondero$o: Et però contento del $uo rigor naturale, non co$i pre$to per lo pe$o $i piega, ma $empre dritto rimane nelle trauature: ma perche ha in $e piu di calore produce, & no- tri$ce il tarlo, & da quello è gua$to, & per que$to anche pre$to $i accende, perche la rari- tà dello aere, che è in quel corpo aperto riceue il fuoco, & co$i ne manda fuori la fiamma grande. Et quella parte di e$$o, che è uicina alla terra, prima che $ia tagliata riceuendo dalla uicinanza l'humore, per le radici $enza nodo, & humida $i rende. ma quella, che è di $opra uer$o la cima, per la uehemenza del calore mandando in aere i rami $uoi tagliata, che $ia alta da terra da uinti piedi, & polita, per la durezza de i no di $uoi è chiamata fu$ter- na. ma la parte inferiore quando tagliata è partita per quattro tagli doue $corra l'humore trattone il tuorlo $i apparecchia per le opere di legname, & $i chiama Sappinea. Per lo contrario la Rouere abondando di terra, & hauendo poco di aere, di humore, & di fuo- co, quando è coperta di terra nelle opere terrene, ritiene un'infinita eternità. perche quan do è toccata dall'humore non hauendo rarità per li fori non puo admetter nel corpo $uo l'humore, ma fuggendo da quello, re$i$te & $i torce, & fa le $i$$ure in quelle opere, nel le quali $i truoua. Ma lo E$colo per e$$ere in tutti i $uoi principij temperato è molto uti- le nelle fabriche, ma po$to in acqua riceuendo per li fori $uoi l'humore, $cacciato l'aere, & <pb n="91"> il fuoco per la operatione dell'humida forza $i $uol gua$tare. Il Cerro, il $ouero, il faggio, perche parimente hanno la me$colanza dell humore, del fuoco, & del terreno, & molto dello aere, pa$$and oui per entro l'humore per le rarità, che hanno, pre$to marci$cono. Il poppio bianco, & il nero, la Salce, & la Tiglia, & il Vitice, $atiate di aere, & di fuoco, & temperate di humore, hauendo poco del terreno, di tempra leggieri compo$te, hanno nel l'u$o loro una mirabile rigidezza. Non e$$endo adunque dure per la me$colanza della ter- ra, $ono bianche per la loro rarità, & ci pre$tano nelle intagliature una mirabile trattabilità. l'Alno, che na$ce uicino alle riue de i fiumi, & non pare, che ci rechi molta utilità, tiene in $e belli$sime ragioni, perche è molto temprato di aere, & di fuoco, nè ha molto del ter reno, & poco dell'humore, & però, perche non ha tropo d'humore nel corpo, po$to fra luoghi palu$tri fra gli fondamenti de gli edificij con $pe$$e palificate riceuendo in $e quel li quore, del quale per $ua natura è bi$ogneuole, dura eternamente, & $o$tenta grandi$si- mi pe$i, & $i con$erua $enza difetto, & co$i quello, che non puo per molto $pacio $opra ter ra durare, po$to in acqua, eternamente $i con$erua. Et que$to $i puo con$iderare a Ra- uenna, doue tutte l'opere publiche, & priuate $otto le fondamenta hanno le pali$icate di que$to legno. l'Olmo, & il Fra$sino hanno grandi$simi humori, & pochi$sima parte del- l'aere, & del fuoco, ma della terra temperatamente, $i piegano po$te in lauoro, & per l'abondanza dell'humore $otto il pe$o non hanno durezza, ma pre$to $i torceno, & $ubi- to, che per uecchiezza $ono aridi diuenuti, o nel campo inuecchiti, quell'humore, che in quelli mentre $tauano abondaua, $e ne manca, & $i fanno piu duri, & nelle commi$$u re, & ne gli inca$tri, per la loro lentezza riceueno ferme incatenature. Similmente il Car peno perche è di minima mi$tura di fuoco, & di terreno, ma tiene grandemente dello aere & dell'acqua, non è fragile, ma $i puo riuolgere per ogni uer$o con grande utilità. Et pe rò i Greci, che di quella materia fanno i gioghi de i buoi, perche Zygia chiamano i gio- ghi, $ogliono chiamare quella materia Zygia. nè meno è marauiglio$a la natura del Ci- pre$$o, & del Pino. perche hauendo que$t'alberi abondanza di humore, & hauendo egua- le mi$tura de gli altri principij per la $atietà dell'humore $i $paccano. ma alla uecchiezza $enza difetto $i con$eruano. perche il liquore, che è dentro a que corpi, è di amaro gu$to, che per l'agrezza non la$cia penetrare il tarlo, ouero altri nociui animaletti. Et però le opere fatte di que$te $orti d'alberi durano $empre, & co$i il Cedro, & il Ginepro hanno le i$te$$e uirtù. & $i come dal Cipre$$o, & dal Pino, uiene la re$ina, che noi Ra$a chiama- mo, co$i dal Cedro uiene l'oglio detto Cedrino. del quale quando $ono onte le altre co$e come anche i libri, non $enteno tarli, nè tarme. Gli alberi di quelli $ono $imili alla foglia- tura del Cipre$$o, & di quella materia la uena, & dritta. Nel tempio di Efe$o ui è il $imu- lacro di Diana, & anche la trauatura di Cedro; nè iui $olamente, ma ne gli altri luoghi $a- cri nobili, $ono le opere di quella materia, per la $ua eternità. Na$ceno que$ti alberi ma$ $imamente in Candia, in Africa, & in alcune parti della Soria. Ma il Larice, che non è co no$ciuto, $e non da gli habitanti d'intorno la riua del pò, & i liti del mare Adriano, non $olamente per la grande amarezza del $ugo dal tarlo, & dalli caroli non è offe$o, ma ancho ra non riceue la $iamma dal fuoco, nè e$$o da $e non puo ardere, $enon come il $a$$o nella fornace, a cuocer la calce, con altri legni $arà abbruciato. nè allhora però riceue fiam- ma, o fa carbone, ma per lungo $patio a pena $i con$uma. perche tra i principij, de i quali, è compo$to, ha pochi$sima tempra di fuoco, & di acre, ma la materia $ua di humore, & di terra i$pe$sita, & ra$$odata, & non ha<*>úendo poro$ità, per la quale il fuoco ui po$$a en- trare $caccia la forza di quello, nè $i la$cia co$i pre$to da quello offendere. Que$ta per lo pe$o $uo, non è $o$tenuta nell acqua, ma quando è condotta, $i pone o nelle barche, o $o- pra le Zatte di abete. Ma l'occa$ione porta, che $i $appia come que$ta materia è $tata ritro uata, Diuo Ce$are hauendo lo e$$ercito cerca le alpi, & hauendo comandato a gli habitato <foot><I>M</I> 2</foot> <pb n="92"> ri di quelle ca$tella & terre, che gli de$$ero uettouaglie, & e$$endo iui un forte ca$tello det to Laregno, quel li che dentro erano confidando$i nella fortezza naturale del luogo, non uolleno ubidire; per il che l'Imperatore $i $pin$e auanti con lo e$$ercito. Era dinanzi la por ta una torre fatta di que$ta materia con traui trauer$i alternamente raddoppiati, come una pira in alto compo$ta, in modo, che con pali, & pietre poteua $cacciare chi har e$$e uolu- to auuicinar$i. uedendo$i poi, che quelli non haueuano altre armi, che pali, & che per lo pe$o di quelli non poteuano tirarli troppo lontani, fu comandato, che ui mette$$ero $ot- to le fa$cine, & che $e le de$$e il fuoco, Et co$i pre$to i $oldati ne fecero una gran raunan- za. Dapoi che la fiamma d'intorno a quella materia hebbe appre$e le fa$cine, leuata$i al cie lo fece credere, che tutta quella mole fu$$e caduta a terra. Ma poi, che quella da $e fu e$tinta, & ce$$ata, $i uide la torre non e$$er $tata tocca dal fuoco, ammirando$i Ce$are co- mandò, che lontani dalli tiri delle $aette circonda$$ero il ca$tello di trincere, per il che i ca $tellani con$tretti dalla paura $i diedero all'Imperatore, il quale poi gli dimandò di che fu$- $ero quelle legna, che per la fiamma non $i con$umauano. Allhora quelli gli dimo$traro- no quegli alberi, de i quali iui è copia grandi$sima, & per que$to quella fortezza, & que- $ta materia fu nominata laregna. Que$ta per lo Pò $i conduce a Rauenna nella colonia di Fano, di Pe$aro, & d'Ancona, & in altri luoghi & terre, che $ono in quella regione. Del la qual materia $e fu$$e commodità di condurne a Roma, $i cauariano grandi$sime utilità ne gli edi<*>icij, & $e non in tutte le co$e, almeno le tauole $otto le grondi d'intorno l'i$ole {<I>cioè ca$e di priuate per$one</I>} (per e$$er tutte le ca$e $eparate l'una dall'altra) $e fu$$ero po$te di quella materia $ariano liberate di pericolo del trapa$are de gli incendij, perche que$ti legni non riceueno, nè fiamma, nè carbone, & da $e non ne po$$ono fare. Sono que$ti albe ri di foglie $imiglianti al Pino, la loro materia è di$te$a, & trattabile per lauori di legnami non meno della Sappinea detta di $opra, tiene liquida ra$a di colore del mele attico, laqua- le è di giouamento a i pti$ici. Io ho detto di tutte le $orti di materia, di che proprietà $ia- no per natura, & ho e$po$to con che ragioni $i generano. $eguita che egli $i auuerti$ca per che cau$a quello Abete, che in Roma $i chiama $opernate, $ia peggiore dello Infernate, il quale utilmente dura per lunghi$simo tempo nelle fabriche. Et di que$te co$e, come pare, che habbiano dalla proprietà de i luoghi bontà, o uitio, accioche manife$te $iano, a chi ui uorrà pen$are, chiaramente e$ponerò. <p><I>Vitruuio ci ha in$egnato quantto appartiene alla materia (che co$i egli $i chiama il legname) il tempo di tagliar gli alberi, la ragione, il modo di tagliarli, la natura, & u$o loro. ha detto dell'Abete, del Larice, & del Cedro co$e degne, di auuertimento, & ha dc$critto alcuni alberi, conchiudendo chiaramente, quanto egli fin hora ha e$po$to, Noi $imilmente poneremo tutta la pre$ente materia $otto un'a$petto, $econdo che letto hauemo ne buoni auttori. Nel legname adun que $i con$idera il tempo, & il modo di tagliarlo, la natura, l'u$o, & la comparatione delle par- ti, & del tutto. Secondo Theofra$to il Rouere, il Pezzo, il Pino $i deono tagliare quando le piante sbroccano. Ma l'Acero, l'Olmo, la Tiglia, & il Fra$$ino dopo la uindemia. Vitru. uuole che $i taglino dal principio dall'Autunno fin auanti, che cominci à $pirare il uento zefiro: Colu- mella da i uenti fin' a i trenta della Luna, che inuecchia; Vegetio dalla quintadecima fin' alla ui- ge$ima $econda. He$iodo quando cadeno le foglie. Catone il Rouere al Solestitio, & quella ma- teria, che ha del maturo, & del uerde, quando le cade il $eme. L'olmo quando cadeno le foglie. Plinio na$cendo il cane nel far della Luna. & è o$$eruatiene A$tronomica, percioche per la for- za della Luna egli $i commoue ogni humore. Tirando adunque la Luna l'humore alle radici il re- $tante della materia $arà piu puro, & piu purgato. Perche Plinio uuole che s'a$petti la notte, che $uccede al giorno, che fa la Luna, quando e$$a Luna $arà $otterra. Tutti questi auttori han- no le loro ragioni; benche la maggior parte conuenga. Non $i deono u$are i legnami $e non pa$- $ati i tre me$i, nè tirargli per la rugiada, anzi dopo il mezo giorno, cominciando la Luna a $ce-</I> <pb n="93"> <I>mare, deon$i tagliare alquanto d'intorno per la$ciare u$cire l'humore: & poi tagliati di tu tto $corzarli: è $pecialmente quelli, che fanno frutto. nè $i deono tagliare $e non $atto il frutto. Ri- poni gli alberi tagliati doue nè il gran Sole, nè i uenti gli diano. alcuni $iano unti di $terco boui- no, accioche $i $ecchino egualmente. La Castagna $i purga nell'acqua del mare, la materia, che $i adopera al torno, $i $ommerge nell'acque, & nel fango per trent a giorni; altri ugneno la ma- teria di morchia per li tarli, & quella, che per l'acqua $i gua$ta, $i $uole impegolare. La mate- ria inuecchiata d'allume bagnata non arde. La natura, & u$o de legnami è que$ta. L'Alno è buono grandemente alle palificate, ne i paludi, & luoghi $tuuiali, ma all'aere non dura. L'E$cu- lo, che è una $pecie di Rouere, è impatiente dell'humore. L'Olmo allo $coperto $i conden$a, ma altroue $i $pacca, & la $ua radice è belli$$ima fra tutti i legni per la uarietà de i colori, & per un certo lu$tro. Dapoi la radice dell'Oliuo è belli$$ima. il Pezzo, & il Pino durano $otterra eternamente. Il Rouere per e$$er $pe$$o, neruo$o, di pochi fori, è ottimo alle opere terrene, per- che non riceue l'humore, & $o$tenta i pe$i mirabilmente. La Quercia non inuecchia. Il Fag- gio, la Iuglande non $i gua$tano per l'acque. Il Souero, il Pina$tro, il Moro, l'Acero, l'Olmo non $ono inutili all'u$o delle colonne. Ma alli ta$$elli, & u$o delle trauature la Noce Euboica, ma $opra'l tutto l'Abete; alquale però di leggieri $i attacca il fuoco, nel re$to è utili$$imo, nè gli ce- de il Cipre<02>o. que$ti non $ente uecchiezza, nè tarli, nè da $e $i rompe, bene è uero che pe$a mol- to, & è buono per far porte. Na$ce & cre$ce dritti$$imo per natura $opra tutti gli altri alberi. Il Pino $i tarla, perche il $uo liquore è piu dolce che quello dell'Abete. Il Larice è buono per li pe$i, & per li trauamenti. dura, & è neruo$o, & non $i tarla, pare che delle fiamme $i $degni; pure uediamo che egli arde. uero è che un tronco gro$$o di quello con la $corza molto re$i$te al fuo co. L'Oliuo, il Fico, la Tiglia, il Salice non $ono buoni per le trauamenta. La Palma $i uolge contra il pe$o. il Ginepro è propo$to alle trauature $coperte, a cui $imile (benche piu $odo) è di natura il Cedro, del quale Vinitiani hanno fatto belli$$ime porte alle $ale delle arme. è legno odo- rati$$imo. Il Cerro, & il Faggio non durano a i lauori di legnami, come $ono letti, men$e, tauole. L'Abete, il Cipre$$o, il Faggio, & anche il Pezzo, benche $iano fragili, però $ono bnoni per ca$$e, letti, & a$$i $ottili. $imili a que$ti è l'Elice. inutili $ono la Iuglande, l'Olmo, & il Fra$$i- no: percioche la Iuglande fatta in tauole facilmente $i rompe, & gli altri alberi cedeno, & pun- teggiano. Ma lo Fra$$ino è ubidienti<02>imo all'opera, & co$i la Noce. benche gli antichi nonne habbiano fatto molta con$ideratione: è però a giorni nostri molto $timata, & adoperata in mol- ti, & $ottili$$imi lauori, & di piu $orti. Il Moro è lodato perche col tempo $i fa piu nero, & du- ra molto. L'Olmo è buono a i cardini delle porte: perche $erua il rigore, ma la radice deue e<02>er posta di $opra. dello Acquifoglio $i fanno le $tange, & co$i di Lauro, & d'Olmo. i gradi $i fan- no di Orno, & di Lauro: & le chiauette di Corno. per cannoni d'acque coperti fanno bene il Pi- no, & il Pezzo. Larice femina di colore $imile al mele, è buona per adornar le ca$e, e$$endo $tato auuertito, che nelle tauole de i pittori è immortale. & però è buona per le $tatue, perche non ha i nerui $te$i per lungo, ma interrotti, uarij, & minuti. V$auano gli antichi il Loto, il Bo$$o, il Cedro, il Cipre$$o, & la radice dell'Oliuo piu $oda, & il Per$ico Egittio per farne le $tatue. ma per fare le tauole da dipignere u$auano gli antichi il bianco, & il nero Poppio. La Salce, il Carpene, il Sorbo, il Sambuco, il Fico. Lodano alcuni la Giuggiola, & per lo torno il Faggio, il Moro, il Terebinto, & $pecialmente il Bo$$o, & l'Ebano. Il Rouero difficilmente <*>accompagna con altri alberi, & rifiuta la colla, come fanno tutti gli alberi lacrimanti, & cre$- <*>, & ogni legno, che $i puo radere. Non $tanno in$ieme gli alberi, che $ono di natura differen- <*>, come l'Edera, il Lauro, la Tiglia per e$$er calidi, con i nati in luoghi bumidi. Similmente non $tanno lungamente in colla l'E$culo, & la Quercia, nè $i deono accompagnare l'Olmo, il Fra$$ino, il Moro, il Cireggio con il Platano, & l'Alno, perche que$ti $ono di natura humida, quelli di $ecca. Gli alberi $i $ogliono comparare, & quanto al tutto, & quanto alle parti: quan- to al tutto gli infecondi $ono piu fermi de i fruttuo$i: i $eluatichi nè con mano, nè con ferro colti</I> <pb n="94"> <I>piu duri. Gli acuti, & tardiui tra i fruttuo$i piu forti. De i dolci piu cre$ceno gli $terili, chei fertili. Piu nodo$i gli sterili del tutto, o quelli, che a uicenda fruttano, che i feraci. Tra i no- do$i i corti $ono piu difficili. Sono piu nodo$i quelli, che nodriti $ono in conualli, & piu corti de i montani. Ma i montani piu fer<*>mi, & piu gro$$i. Sono piu molli i na$ciuti in luoghi humidi, & ombro$i de gli aprichi. I legni di color bianco $ono manco den$i, & piu trattabili. Ogni ma- teria pondero$a della liggiera, è piu $pe$$a, & piu dura, & quella è piu fragile. finalmente quel- li, che piu $i con$eruano in uita, durano anche tagliati piu lungamente de gli altri. Hora quan- to alla comparatione delle parti, che quanto meno ui è di midolla tanto piu ui è di fortezza: Le parti piu uicine alla midolla $ono piu forti, & le piu uicine alla $corza, $ono piu tenaci, & la peggiore è l'Alburno. Le piu uicine alla terra $ono piu pondero$e, le di mezo $ono piu cre$pe, le interiori piu commode, le e$po$te al mezo di piu $ecche, & $ottili, & hanno la midolla piu ui- cina al cortice. In fine molte co$e re$tarebbeno a dire, ma que$te uoglio che $iano a bastanza. Il re$to $i troua raccolto con grandi$$ima diligenza da Leon Batti$ta. nel $econdo libro, & di Pli- nio nel $e$to decimo, & in Theofra$to. Ma quello che è degno in Vitru. di auuertimento, è la doue egli dice dello Abete, Quadrifluuijs di$paratur: non che Vitr. non habbia bene interpretato. & $imilmente Plinio quando dice, Quæ habeant quadripartitos uenarum cur$us, bifidos autem omnino $implices. ma perche Theofra$to dice dizous, monozous, tetrazous. Parole tradotte da Theodoro Gaza, Quadriuiuas, biniuiuas, & uniuiuas: come dice Hermolao Barbaro. lequa- li parole, & nel Greco, & nel Latino non danno bene ad'intendere quello, che è in fatto. dico di Theofra$to, & di Theodoro, $e for$e Theofra$to non uuole dire monorous, & dirous, & tetra- rous; il che non ardirei di porre; perche egli $i uede alcuni Abeti tagliati a trauer$o hauere un cor$o di uene, che uanno per un uer$o, & alcuni hauerne due, che uno caualca l'altro, come $e le dita d'una mano attrauer$a$$ero le dita dell'altra; & alcuni hauerne quattro po$ti in modi di craticula o di rete; come chi pone$$e le dita d'una mano attrauer$ate $opra le dita dell'altra, & $opra quelle anche altre, fin' a quattr'ordini. Egli $i ha o$$eruato, che lo Abete cre$cendo d'an- no in anno, ne i primi anni accre$ce il numero delle uene, & da un $implice ordine di uene, che di- mo$tra il primo anno ne fa un'altro attrauer$ato $opra quelle il $eguente anno, & co$i moltiplica fino al quarto anno: & que$ta credo $ia l'intelligenza de gli allegati auttori.</I> <HEAD><I>Dello abete $opernate, & internate con la de$crittione dell'Apennino. Cap. X.</I></HEAD> <p>NASCENO le prime radici del monte Apennino dal mar Tirreno in fino all'Alpi, & all'e$treme parti di To$cana; ma il giogo di quel monte giran do$i, & con meza uolta appre$$and o$i alle riue del mar Adriano, peruiene con i $uoi giri uer$o il mare, la onde la $ua piegatura di qua, che riguarda alle parti di To$cana, & di Campagna, è molto aprica, & fiorita, perche del conti- nuo prende uigore dal cor$o del Sole. ma la parte di là, & che uolta al mar di $opra $ottogiace al Settentrione, è perpetuamente & fo$ca, & ombro$a. doue gli alberi, che $ono in quella patte e$$endo nodriti di uirtu humida, non $olo cre$cono in i$mi$urata grandezza: ma anche le lor uene pregnanti di grande humidità tumide, & gonfie $i $atiano dell'abondanza del liquore: ma poi quando tagliate, & i$pianate hanno perduto il uigo re naturale cangiando col $eccar$i il rigore delle uene diuentano per la loro rarità uote & i$uanite: & per que$ta ragione non hanno ne gli edificij da durare. Ma quelli che in luoghi e$po$ti al Sole $ono generati, non hauendo al cuna rarità tra le uene loro a$ciut te dal $ecco $i fanno piu ferme, perche il Sole non $olamente dalla terra a$ciugando, ma anche da gli alberi caua l'humore. & però quegli, che $ono in parte e$po$ta al Sole <pb n="95"> a$$odati per la den$ità delle uene, non hauendo rarità alcuna dall'humore, poi che $i met- teno in opera, piani, & politi durano con molte utilità alla uecchiezza. & però quelli, che $ono dalla parte inferiore dell'Apennino, perche $ono portati da luoghi aprichi, $o- no migliori di quelli, che na$ceno nella parte $uperiore, & uengono da luoghi opachi. Io ho e$po$to quanto ho potuto con l'animo con$iderare le copie nece$$arie al fabri- care, di che tempre $iano per la me$colanza de i loro principij, & quali perfettioni, & difetti habbiano, accioche manife$te $iano a chi intende di fabricare. & però quelli, i quali potranno $eguitare le leggi di que$ti precetti, $arano piu auertiti, & potranno far elettione nelle opere dell'u$o di cia$cuna $pecie. E$$endo$i adunque detto delle prepara- tioni della materia. Re$ta che ne gli altri uolumi io dica de gli edificij, & prima de i $a cri Tempij de i Dei immortali, & delle loro mi$ure, & proportioni, come conuiene all'ordine propo$to. <p><I>Ha uoluto Vitruuio nel decimo, & ultimo capo di questo $econdo libro porre la differenza de gli alberi, che na$ceno dalla parte del Sole, che aprica $i chiama, da quelli che ne i luoghi ombro$i riguardano al Settentrione. è facil co$a, & confermata da Palladio nell'unde- cimo libro al quinto decimo Capo, & da Plinio nel $e$todecimo libro, al trente$imonono Capo. Et qui $ia fine del $econdo libro.</I> <HEAD>IL TERZO LIBRO</HEAD> <HEAD>DELL'ARCHITETTVRA DI M. VITRVVIO.</HEAD> <p>IL Delfico Apollo nelle ripo$te date a Pithia affermò Socrate e$$er di tut- ti gli huomini $apienti$simo. Que$ti ($i dice) che con prudenza & dot- ti$simamente dice$$e, che bi$ognaua, che i petti de gli huomini fu$$ero come fine$tre, & aperti, affine, che haue$$ero i $en$i non occulti, ma pa le$i da e$$er con$iderati. Vole$$e Iddio, che la natura $eguitando la o- pinione di Socrate fatto haue$$e i petti apparenti, & chiari: perche $e co $i fu$$e $tato non $olamente le uirtu & i uitij de gli animi $i uederiano: ma anche le $cien- ze delle di$cipline a gli occhi $ottopo$te con certo giudicio s'approueriano, & a gli eru- diti, & intendenti huomini grande, & $tabile riputatione s'accre$cerebbe, & però, perche la natura non a modo d'altri, ma al $uo co$i fare ha uoluto, non puo e$$ere, che gli huomi ni con gli ingegni $otto i petti o$curati habbiano potuto giudicare come $ono le $cienze de gli artificij del tutto a$co$e, & gli artefici anchora che promettino la loro prudenza, $e non $aranno dinaro$i, ouero $e non $aranno $tati cono$ciuti per la uecchiezza delle loro officine, o non haueranno hauuto gratia, & eloquenza da piazza, non po$$ono per la in- du$tria de gli $tudi loro hauere tanto di credito, che creduto lor $ia quello, di che fanno profe$sione. & que$to $i può $pecialmente cono$cere da gli antichi $tatuari, & pittori, che di quelli, coloro che hanno hauuto i $egni di dignità, & la gratia di e$$er commenda ti, con eterna memoria $i mantengono alla po$terità. Come fu Mirone, Policleto, Phi dia, Li$ippo, & gli altri, che hanno con l'arte loro con$eguita la nobiltà. perche come alle gran Città, ouero a i Re, ouero a nobili huomini fatti hanno opere, & fabriche, co- $i hanno ottenuto quello, che io ho detto. Ma quei, che nè di manco $tudio, & ingegno, & $olertia $tati $ono, nè manco belle opere hanno la$ciato a gli ignobili cittadini, & di mi nor fortuna, non hanno la$ciato ricordo di loro alcuno: perche non dalla indu$tria, & <pb n="96"> $olertia dell'arte, ma dalla felicità $ono $tati abbandonati: come fu Hellas Athenie$e, Chione Corinthio, Miagro Phoce$e, Pharace Ephe$io, Bedas Bizantio, & molti altri. Similmente i pittori come Ari$tomene Tha$io, Policle, & Atramitino, Nicomaco, & gli altri, a i quali, nè indu$tria, nè $tudio dell'arte, nè $olertia mancò, ma ouero la poca robba, o la debil fortuna, o l'e$$er $uperati nella ambitione delle concorrenze da gli auer $arij, po$e o$taculo alla dignità loro. Nè però egli è da marauigliar$i, $e per l'ignoranza dell'Arte $i o$curano le uirtu: ma bene l'huomo $i deue grandemente sdegnare, quando $pe$$o la gratia de i conuiti lu$ingheuolmente, co$i da i ueri giudicij alla fal$a approbatio ne conduca. Et però $e (come piacque a Socrate) i $en$i, & le opinioni, & le $cienze cre- $ciute dalle di$cipline, fu$$ero $tate chiare, & manife$te, non ualerebbe la gratia, non l'ambitione: ma $e ci fu$$e, chi con uere, & certe fatiche impiegate nello imparare le dot trine, giunto fu$$e al colmo della $cienza, a que$to $i darebbe uolentieri i lauori nelle ma ni: ma perche quelle non $ono illu$tri, & apparenti, nello a$petto, (come pen$amo che bi$ognaua) & io uedo, che piu pre$to gli indotti, che i dotti auanzano di gratia: non i$ti- mando io, che buono $ia il cotendere con gli ignoranti di ambitione: piu pre$to con que$ti precetti dimo$trerò la uirtu della $cienza no$tra. Nel primo libro adunque, ò Impe ratore, ti ho e$po$to dell'Arte, & che potere ella habbia, & di che di$cipline faccia bi$o- gno, che l'Architetto $ia ornato; & $oggiun$i le cagioni, perche co$i bi$ognaua, che egli ammae$trato fo$$e, & diui$i in $omma le ragioni della Architettura, & diui$e poi, io I'ho diffinite: & oltra que$to di$correndo, ho dimo$trato quello, che era prima, & ne- ce$$ario delle mura, come fare $i debbia la elettione de i luoghi $ani: & ho dimo$trato con de$crittioni di linee, quanti, & quali, & da che parte $pirino i uenti: & ho in$egnato di fare i giu$ti compartimenti delle piazze, & de i borghi dentro le mura, & con que$to io ho po$to fine al primo uolume. Nel $econdo anche io ho fornito di trattare della ma- teria, che utilità $i habbia da quella ne gli edificij, & che uirtu le dia la natura. Hora nel terzo io dirò delle $acre ca$e de gli Dei immortali, & e$ponerò in che modo e$$er deo- no di$egnate. <p><I>Detto ha Vitruuio nel primo libro al terzo Capo, che tre $ono'le parti dell'Architettura, una delle quali era la edificatione: detto ha $imilmente, che la edificatione era in due parti diui$a, una delle quali apparteneua alla fabrica delle opere communi, & publiche, l'altra cra po$ta nel le fabriche priuate. Ha uoluto, che le distributioni delle opere publiche fu$$ero di tre maniere, l'una pertinente alla dife$a, l'altra alla religione, la terza alla opportunità. nel mede$imo libro ha fornito quanto s'a$pettaua alla dife$a. Doueua egli poi trattare delle fabriche pertinenti alla re ligione, ma parendogli molto nece$$ario e$ponere & la materia, & il modo per ponere in$ieme la materia ($econdo che egli ha detto) diede $oggetto al $econdo libro, nel quale chiaramente ha trat tato della materia piu nece$$aria alle fabriche: e$pon<*>do la natura, l'u$o, & le ragioni di quella; pe rò hauendo$i sbrigato da quella, ritorna hora alla di$tributione delle fabriche pertinenti alla Re ligione; & tratta de i $acri tempij nel terzo, & nel quarto, abbracciando tutto il corpo della pre$ente materia. per il che $i puo dire, che qui comincia tutto il bello, che di mano, & d'inge- gno s'a$petta dallo Architetto. Qui l'ordine ha luogo, qui la di$po$itione di$egna, qui la $imme- tria, & il decoro, & la gratia fanno proua, qui $i $ente la utilità della di$tributione. nelle quali co$e il ualore dello Architetto, la forza dell'arte, l'acutezza dello ingegno riluce. Onde egli $i puo dire col gran poeta.</I> <p><I>O Mu$e, o alto ingegno hor m'aiutate.</I> <p><I>O mente, che $criuesti ciò, ch'io uidi,</I> <p><I>Qui $i parrà la tua nobilitate.</I> <p><I>Et ueramente, è degna con$ideratione quella, che $i farà $opra la pre$ente materia, & molto gentilmente è ftato auuertito da Vitru. imperoche $apendo egli la grande importanza della co-</I> <pb n="97"> <I>$a, & che infinita è la $chiera de gli $ciocchi, $i ha mo$$o a de$iderar quello, che di$ideraua So crate, che haue$$e l'huomo, cioè che egli haue<02>e una fine$trella nel petto, accioche dentro $i ue- de$$e la $cienza, l' Arte, il bene, & il male, che dentro ui fu$$e. Perche la Gratia, il fanore, la fortuna luogo darebbeno, quando il perito, & intelligente con lo imperito & ignorante di pari ueni$$ero al giudicio delle genti. $arebbe la Virtù di piu $tima, & l' Arroganza cederebbe alla mo- de$tia. Credo io che Vitr. haue$$e bello, & alto pen$iero, uiuo, & $oaue gu$to delle ragioni del- l' Architettura, onde in $e $te$$o godendone, di$ideraua, che tutto'l mondo cono$ce$$e la bellezza della uirtù. & però concorreua nella opinione di Socrate, la dignità del quale fu giudicata dalla $acerdote$$a Pithia per nome di Apollo e$$ere di $apientia $opra tutti gli huomini. Certamente io ho o$$eruato, che non $enza grande cagione Vitru. ha propo$to i proemi a i $uoi uolumi; perche e$$endo il proemio, (come detto hauemo nel $econdo libro) quello, che prima ciè propo$to, & per que$to riguardando noi con maggiore attentione quello, che prima ci uiene inanzi, bello, & conueneuole auuertimento è di proponere ne i proemij quelle co$e, che noi uogliamo, che $iano grandemente con$iderate, & atte$e. Vuole adunque Vitr. (da poi che la natura non ha fatto a modo no$tro) che almeno ciforzamo $coprire con la eccellenza dell' Arte quello, che ne ipetti no$lri è rinchiu$o. La eccellenza adunque dell' Arte (come $pe$$e uolte hauemo detto, & cigio- ua di replicarlo) è po$ta nella ragione, la quale Vitr. ha po$to nelle $ei predette co$e. Que$ta egli ha chiamato di$cor$o, co$a $ignificante, & forma. Però $e alcuno fia, che uoglia uedere piu a dentro, & ritrouare la uerità delle co$e, io lo prego, che con benigno animo legga il $otto$critto di$cor$o, & ritrouando quello, che egli de$idera, lodi meco la bontà di Dio. & $e del tutto egli non $arà $atisfatto, aggiunga lo $tudio, & il fauore all' opera da me cominciata; l'uno per ritro- uar il uero, l'altro per accettare il buon animo, del quale io mi faccio perpetuo debitore. Tanta è la forza della proportione, tanta è la nece$$ità, tanta è l'utilit à di e$$a nelle co$e, che non puo alcuno nè all'orecchie, nè a gli occhi, nè a gli altri $en$i recare alcuna dilettatione $enza la con- ueneuolezza, & la ri$pondenza della ragione, la doue tutto quello, che diletta, o piace, non per altro diletta & piace, $e non perche tiene proportionata mi$ura, & moderato temper amen- to. Non prima con diletto, & piacere nell' animo per le orecchie di$cendeno le uoci, & i $uoni, che tra $e non conuenghino in proportionata ragione di tempo, & di di$tanza. Le belle inuentio- ni de gli huomini tanto hanno del buono, quanto piu ingenio$amente $ono proportionate. Effi- caci$$ima co$a è nel comporre, & me$colare le $emplici medicine, la proportione, come nel fare la Tiriaca, & il Mitridato. Diuina è la forza de inumeri tra $e con ragione comparati. nè $i puo dire, che nella fabrica di que$ta uniuer$ità, che noi mondo chiamamo, & nel picciol mondo an- chora, $ia co$a piu ampia, piu degna della conueneuolezza del pe$o, del numero, & della mi$ura, con la quale il tempo, lo $pacio, i mouimenti, le uirtù la fauella, lo artificio, la natura, il $a- pere, & ogni co$a in $omma diuina, & humana è compo$ta, cre$ciuta, & perfetta. Ilche come è uero, co$inon $timo io, che util $ia il uolere con piu ampie indottioni prouarlo. Quando adun- que $arà da noi con bello, & $ottile auuedimento proui$to, che tutto quello, che $arà fatto da noi $ia con leragioni delle proportioni compo$to: non $olamente $aremo giudici degni delle opere de gli antichi, ma anchora inuentori, & operatori da noi $te$$i di co$e rare, & eccellenti. & quan- do bene Vitr. non $i troua$$e al mondo, potrebbe colui che ueramente intende$$e il ualore delle proportioni, ritrouare innumerabili precettid' Architettura, nè per temerario $arebbe hauuto, perche in dife$a $ua prenderebbe la ragione. la qual co$a ha dato riputatione a gli artefici, com- modo al mondo, & gloria a i Principi. Volendo adunque noi trattare delle proportioni, diremo primieramente, che co$a è proportione, di$tingueremo le $pecie $ue, & in fine comparando l'u$o di cia$cuna $pecie, accioche $appiamo quale proportione a qual fabrica conuenga. Molto am- piamente $i $tende que$to nome di proportione nella $ua $ignificatione, perche ogni conuenienza, & $imiglianza di co$e uolgarmente è detta proportione, & anche nella uirtù è $o$tanza, nella qualità, & altrigenerali$$imi capi$i dice e$$er proportione. Ma noi parlamo della uera propor-</I> <foot><I>N</I></foot> <pb n="98"> <I>tione, che è compre$a $otto la quantità. non che la proportione $ia quantità, ma perche è propria della quantità. Trouan$i due maniere di quantità, una è detta continua, come linea, $operficie, corpo, tempo, & mouimento. l'altra è detta quantità partita, & di$creta, o $eparata, (come uogliamo dire) come è il numero due, tre, & quattro, & lo proferire delle $illabe nel formar le parole; & le parole i$te$$e una è $eparata dall'altra. Dell'una & dell'altra quantità, è proprio, che $econdo cia$cuna $i dica, le co$e e$$ere eguali, o di$eguali. Benche que$ta proprieta $ia $ta- ta trasferita in molte altre co$e, che non $ono quantità, perche tutte le co$e, delle quali $i puo far tra$e alcuna comparatione, ouero $ono egualitra $e, & pari, ouero di$eguali, & di$pari. Hora io dico, che la proportione è nel num ro di quelle co$e, che $i riferi$ceno ad altre, & lo e$$er $uo è tale, che non $ta da $e, ma ha riguardo ad altro: & perche una co$a in comparatione d'un'al- tra è o piu, o meno, o tanto: però delle proportioni altre $aranno tra co$e pari, & eguali, altre tra di$eguali, o maggiori, o minori, che elle $iano. Ma perche noi ragionamo di quella propor- tione, che $i truoua nella quantità, però dicemo, che proportione altro non è, che una terminata habitudine, ri$petto, o comparatione di due quantità compre$e $otto un'i$te$$o genere. come $a- rebbe due numeri, due corpi, due luoghi, due tempi, due linee, due piani. percioche non $i puo dire propriamente, che la linea $ia minore, o maggiore, o pari alla $operficie, come egli $ta be- ne a dire; che una linea, è pari all'altra, o maggiore, o minore. perche la comparatione $i fa di co$e compre$e $otto un'i$te$$o genere. Di$$i, terminata, non inquanto a noi, nè in $e certa, ma tale che non puo e$$er altra, come $i dirà dapoi. I$pedita adunque la diffinitione della proportione, manif $ta co$a è, che ritrouando$i ella nella quantità, alcuna appartenerà alle mi$ure, alcuna a i numeri, alcuna $arà me$colata di numeri, & di mi$ure. La pertinente alle mi$ure, che $i chia- ma Geometrica $arà nelle quantità continue, le quali tutte cadeno $otto mi$ura. La pertinente a numeri, che è detta Arithmetica, è nelle quantità di$tinte, & $eparate, come quando egli $i fa comparatione da numero, a numero. La me$colata di numeri, & di mi$ure, che Harmoni- ca $i chiama, è quella che compara i tempi, & gli interualli delle uoci, & gliecce$$i, & differen- ze delle proportioni, come $i dir à nel quinto libro. Hora diremo della proportione Geometrica, la quale è quando $i fa comparatione d'una co$a continua all'altra, & della Arithmetica, che $i fa tra numeri. uolendo adunque noiritrouare le $pecie delle proportioni, bi$ogna $apere come $ti. - no le co$e tra $e comparate l'una con l'altra. per tanto ritrouando noi, che le co$e $ono tra $e o eguali, o di$eguali, facendone la comparatione diremo, che la proportione $arà di due maniere, l'una quando $i farà comparatione di due quantità tra loro, cioe che una non eccederà l'altra, ma $arà tanto a punto: & que$ta è detta proportione di agguaglianza. l'altra, quando $i farà com- paratione di due quantità di$eguali, cioè che una eccederà l'altra: & $arà detta proportione di di$aguaglianza. & co$i haueremo due $orti di proportione, delle quali la prima non ha $otto di $e altra $pecie, perche l'agguaglianza non $i puo diuidere, perche non na$ce $e non ad un'i$te$$o mo- do. Ma la $econda puo e$$ere in due modigenerali, l'uno quando $i compara il piu al meno: l'al- tro quando $i compara il meno al piu. il primo $i dirà proportione di di$agguaglianza dal mag- giore. il $econdo, proportione di di$agguaglianza dal minore. & perche tante $ono le $pecie di comparare il piu al meno, quanto quelle di comparare il meno al piu: però dichiareremo le $pecie della proportione dal maggiore, perche poi l'altre ci $aranno manife$te. In tre modi adunque $i fa comparatione dal piu al meno, cioè in tre modi, il piu eccede il meno, dico nella $emplice pro- portione. Il primo è quando il piu contienè il meno piu uolte a punto, & $i chiama proportione moltiplice, come il quattro contiene due, due fiate a punto, & non piu. il noue contiene il tre, tre fiate a punto. l'altro è quando il piu contiene il meno, & di piu alcuna parte di quello, & $i chiama proportione $opra particolare: percioche il piu è $opra il meno di qualche parte. come quattro a tre, che quattro contiene tre nna fiata, & la $ua terza parte, che è, uno. il terzo mo- do è quando il piu contiene il meno una fiata, & piu parti di quello, come cinque a tre; che cinque contiene tre una fiata, & due parti di e$$o; & que$ta $i chiama proportione $opra partiente; per-</I> <pb n="99"> <I>che il termine maggiore contiene il minore una fiata, & $opra parti$ce quello, cou la aggiunta di piu parti. Deue$i però intendere di quelle parti, che non mi$urano il tutto a punto. & que$te $ono le $emplici, & uniuer$ali $pecie della proportione della maggiore di$agguaglianza. Hora diuideremo breuemente cia$cuna delle predette $pecie in altre piu particolari di$tintioni. La mol- tiplice adunque $i diuide in que$to modo. $e la maggior quantità contenerà due fiate, & non piu la minore, ne na$cerà la proportione che $i chiama doppia, $e tre tripla, $i quattro quadrupla, & co$i ua in infinito. quattro a due è doppia, noue a tre tripla, otto a due quadrupla. La pro- portione $opraparticolare $i troua in que$to modo: che $e il piu contiene il meno una fiata, & meza, $arà la proportione $e$quialtera; come $ei a quattro; perche $ei contiene quattro intiera- mente, & di piu la metà, che $on due. $e contenerà il terzo oltra il tutto $arà, la proportione $e$- quiterza, come quattro a tre, otto a $ei: $e un quarto $e$quiquarta, come dieci ad otto: $e un quinto fe$quiquinta, & co$i ua $eguitando in infinito. & $e uorremo hauere le $pecie della $oprapartien- te, diremo in que$to modo: che il piu contiene il meno una fiata, & due parti d'e$$o, ouero tre, o quattro, & co$i in infinito. $e contenerà due parti di piu del meno, dira$$i $oprabipartiente, co- me cinque a tre, che è un tanto & due terzi. $e tre parti, chiamera$$i $opra tripartiente, come è otto a cinque, che è un tanto, & tre quinti. $e qnattro, $opra quadripartiente, come noue a cin- que, che è un tanto, & quattro quinti. & co$i nel re$tante. & que$te $ono le $pecie della mag- gior di$agguaglianza nella $emplice proportione. Le compo$te ueramente $ono due; & $i chia- mano compo$te, perche $ono fatte di due $emplici. La prima è detta moltiplice $opraparticolare, la $econda moltiplice $oprapartiente, perche ritengono la natura di quelle proportioni, delle qua- li $ono compo$te. inquanto adunque la prima è detta moltiplice, ne $egue, che'l maggiore conten- ga il minore piu uolte; & inquanto è detta $opraparticolare, ne $egue, che il maggiore contenga il minore, con alcuna parte di quello. & però la moltiplice $opraparticolare comparando il piu al meno, ritroua che il piu contiene il meno piu uolte, & qualche parte di quello, $e due fiate, & la metà, $arà proportione doppia $e$quialtera, come cinque a due: $e tre fiate, & la metà, $arà tripla $e$quialtera, & co$i in infinito: & $imilmente due, & un terzo come $ette a tre, doppia $e$quiterza, $e tre $iate, & un terzo, $arà tripla $e$quiterza. & co$i ua di$correndo. Parimente la molti- plice $opra partiente proportione in quanto moltiplice, il piu contenerà il meno piu fiate, & in- quanto $opra partiente il piu contenerà alquante parti del meno. $e due fiate, & due parti$arà dop pia $oprabipartiente, come dodici a cinque; $e due fiate & tre parti, $arà doppia $opra tripartien- te, come tredici a cinque, & co$i in infinito. come $e il piu contene$$e il meno tre fiate, & due parti, $arebbe tripla $oprabipartiente, come dice$$ette a cinque; $e tre fiate, & tre parti, $arebbe tri pla $opratripartiente, come diciotto a cinque. & co$i $eguendo nell'altre. & perche per uno ri- $petto egli $i cono$ce l'altro, però dalle $pecie delle proportioni della di$agguaglianza del mag- giore al minore, $i hanno le $pecie della di$agguaglianza del minore al maggiore: nè ui è altra differenza, $e non che $i come nella prima $i cominciaua dal piu, & $i termina- ua nel meno, co$i in que$ta $i comincia dal meno, & $i termina nel piu, & $i muta quella particola $opra, nella particola $otto. però $i dice $otto moltiplice; $otto doppia, $otto $e$quialte- ra, $otto $e$quiterza. Egli $i deue auuertire, che in due modi una quantità è parte dell'altra, il primo è quando la parte d'una quantità pre$a $econdo alquante fiate a punto, entra nel tutto di punto; cioè quando il par titore entra a punto nella co$a partita, & niente gli auanza. Que$ta noi chiamaremo parte moltiplicante. & que$ta è la uera, & propria intelligenza, di questo nome, che parte, $i chiama. In altro modo parte è quella, che pre$a quante fiate uuoi, mai non ti rende l'intiero, & $i chiama parte aggiunta, imperoche aggionta con un'altra parte fa il tut- to. L'e$$empio della parte moltiplicata è, come due a $ei, imperoche due mi$ura $ei, & ui entra tre fiate a punto: come tre a noue, otto a trenta due. l'e$$empio della parte aggiunta è come due al cinque, perche due pre$o due fiate non fa cinque, pre$o tre fiate pa$$a cinque. Que$te parti ag- giunte $ono però compo$te di parti moltiplicanti, perche il due è compo$to di unità, lequali mi$u-</I> <foot><I>N</I> 2</foot> <pb n="100"> <I>rano due, entrandoui due fiate a punto. & tanto $ia detto cerca la diffinitione, & diui$ione della proportione. Hora $i dirà quello, che ne na$ce. Dalle proportioni adunque na$ceno le comparatio- ni, & i ri$petti, che hanno tra $e, cioè quando una proportione è comparata con l'altra. & que$te $imiglianze di proportioni $i chiamano proportionalità: & $i come la proportione è ri$petto, & conuenienza di due quantilà compre$e $otto un'i$te$$o genere, co$i la proportionalità è ri$petto, & comparatione non d'una quantità all'altra, ma d'una proportione all'altra. Come $a- rebbe a dire la proportione, che è fra quattro & due, e$$er $imile alla proportione, che è fra otto, & quattro. imperoche & l'una, & l'altra è doppia. Et però tutte le doppie, tutte le tri- ple, tutte le quadruple, o $iano d'uno i$te$$o genere, come tra linea, & linea, tra corpo, & cor- po, o $iano di diuer$i generi, come tra linea, & corpo, tra corpo, & $patio, tra $patio, et tempo $ono proportionali, & con$eguente $imili: & doue è proportionalità, iui è nece$$ario, che $ia pro portione; perche (come s'è detto) la proportionalità non è altro, che camparatione di propor- tioni. ma non per lo contrario, perche fra quattro & dua, è proportione, ma non proportiona- lità. Nelle proportionalità con$i$teno tutti i $ecreti dell' Arte. Ma perche egli s'intenda bene quanto $coprir uolemo; egli è utile a dire, come $i cono$ceno i denominatori delle proportioni, co- me $i leua, come $i aggiugne, come $ono moltiplicate, & partite, & poi $i dir à delle proportiona lità, & termini loro. Per $apere adunque ritrouare i denominatori delle proportioni, il che gio- ua a cono$cere qual proportione $ia maggiore, qualminore: perche nelle fabriche quelle hanno piu del grande, che $ono di maggiore proportione, perche una stanza di due quadri, ha piu gran- dezza, che una di un quadro & mezo e$$endo, che la doppia è maggior proportione che la $e$qui altera. Egli è dunque da con$iderare, che quando la proportione è di agguaglianza, cioè quan- do $ono tante unità, o mi$ure in un numero, o grandezza, quante $ono in un'altro, non è nece$$a- rio di affaticar$i in ritrouar denominatori, perche di quella $pecie di proportione non $i tro- ua diui$ione, non e$$endo tra le co$e pari maggioranza, nè minoranza. Resta adunque, che i denominatori $iano tra le $pecie della proportione di di$agguaglianza. Breue adunque, & i$pedita regola di ritrouare i numeri, dai quali $ono denominate le proportioni, è partire uno e$tre mo della proportione per l'altro. Imperoche quello, che ne uiene per tale partimento, è $empre il denominatore della proportione. Partire altro non è, che uedere quante fiate un numeroentra nel- l'altro, & quello, che auanza. La doue è ragioneuole, che dal partimento, & da quello, che re$ta $i cono$ca il nome di cia$cuna proportione: ecco lo e$$empio. $e uuoi $apere come $i chiama la proportione tra quattro, & otto, partirai otto per quattro, cioè uedi quante fiate il quattro en- tra nell'otto, & trouerai, che quattro entra due fiate a punto: da due adunque chiamerai la pro portione; che è tra otto, & quattro: & dirai, che la proportione è doppia. Similmente $e uuoi $apere come $i chiama la proportione, che è tra cinque, & $edici, partirai $edici per cinque, & ritrouerai, che'l cinque entra in $edicitre fiate, & però dirai, che è proportione tripla, e$$endo denominata da tre, & perche glire$ta uno, che è la quinta parte di cinque, però dirai, che quel- la proportione è tripla $e$quiquinta, & cono$cerai, quella e$$er compo$ta, cioè moltiplice $opra particolare, & co$i farai nelle altre. Dalla $opradetta cognitione (come ho detto) $i caua que $ta utilità, che $i puo $apere; quale proportione è po$ta tra le maggiori, & quale tra le minori, & quale tra l'eguali, & $imili proportioni. $imili $ono quelle, che hanno $imili, & le i$te$$e denominationi, maggiori $ono quelle, che hanno maggiore denominatione, & minori, mi- nore, perche la denominatione è detta e$$er tanto grande, quanto il numero, che la dinota. Et però la quadrupla è maggiore della tripla, perche quella dal quattro, que$ta è deno- minata dal tre. & co$i la $e$quialtera è maggiore della $e$quiterza, perche la $e$quialtera è deno minata dalla metà, la $e$quiterza da un terzo. & neirotti quanto è maggiore il denominatore del rotto, tanto è minore il rotto, & però un quarto è meno d'un terzo. perche quattro è mag- giore ditre: & però una tripla $e$quialtera è maggiore d'una tripla $e$quiterza: ma una tripla $e$- quiterza è maggiore, che una doppia $e$quialtera, & questo non per la denominatione del rotto,</I> <pb n="101"> <I>ma per la denominatione del numero intiero, che è maggiore. $imilmente nelle proportioni $opra- partienti maggiore è quella, che da numero maggiore è denominata. Et perche meglio s'inten- da, io dico, che la proportione $oprapartiente è quando il piu contiene il meno una fiata, & piu parti di e$$o, & que$to è tanto dal numero di e$$e parti, quanto dalla denominatione, & quante dall'uno, & dall'altro. Dal numero delle parti quando il piu contiene il meno una fiata, & due parti di quello, $i dice $oprabipartiente; $e tre $opratripartiente, & co$inel re$to. Dalla de nominatione delle parti, quando il piu contiene il meno una fiata, & le parti, che $ono terzi del meno, $i dice $oprapartiente le terze, Dall'uno, & dall'altra, cioè dal numero, & dalla deno- minatione delle parti: come $e dice$$e $oprabipartiente le terze. Dico adunque, che $econdo la pri ma denominatione, che e$prime quante parti del numero minore $ono contenute nel maggiore, s'in- tende la proportion maggiore; perche la $econda, che e$prime quali $iano quelle parti del nume- ro minore, è quella i$te$$a, come dire: la $opraottopartiente le undecime è maggiore, che la $opratripartiente le undecime, perche que$ta dal numero minore, che è tre, quella dal maggiore, che è otto, $i denomina, e$$endo la $econda denominatione la i$te<02>a nell'una, & nell'altra. Qui ci bi$ognerebbe la generatione, & la proprietà di cia$cuna propor- tione, & quel bello di$cor$o, che fanno gli Arithmetici prouando, che ogni di$aggua- glianza na$ce dall'agguaglianza, & che la egualità è principio della di$egualità, & che ogni di$egualità $i riduce all'egualità: ma bi$ogna la$ciare co$i alte con$iderationi a quelli, che uogliono trouare il principio di tutte le co$e create, la unità trina di quello, & la produttione non di que$te fabriche particolari, ma della uniuer$ità del mondo, & delle co$e, che ui $ono dentro. parleremo adunque del raccogliere, moltiplicare, $cemare, & partire delle proportioni. Per- che Vitr. in molti luoghi, lieua, pone, parti$ce le proportioni; come $i uedrà nel primo Capo del pre$ente libro, & al $econdo, & all'ultimo. & nel quarto al terzo Capo. & infinite $ono le occo renze di $eruir$i piu d'una che d'un'altra proportione, come nella diui$ione de i corpi delle fabri- che, ne gli Atrij, Tablini, $ale, loggie, ba$iliche, & altre co$e di gran momento nel raddoppiar i corpi, nel trouar le linee proportionali, nel $corzare i piani, nella machinatione, & in $omma in ogni co$a all' Arte $ottopo$ta. Hor al propo$ito. Per raccogliere due proportioni in$ieme bi- $ogna trouare il denominatore della proportione prodotta: dapoiraccogliere i numeri po$ti $otto la i$te$$a proportione prodotta. Il primo $i fa a que$to modo. moltiplica il denominatore d'una proportione, nel denominatore dell'altra, & co$i ne re$ter à il denominatore della raccolta, & prodotta denominatione. Il $econdo $i fa moltiplicando tra $e i numeri antecedenti delle propo$te proportioni, & moltiplicando i numeri con$eguenti anche tra $e, auuertendo che que$ta regola ci $erue nelle proportioni $imiglianti, cioè quando amendue $ono della di$agua- lianza dal maggiore, ouero amendue dal minore. Hora all'e$$empio. ecco la proportione che è tra noue, & tre, è tripla, & laragione, che è tra quattro è due è doppia: uoglio raccogliere una tripla, & una doppia, & uedere che proportione na$ce: moltiplica adunque i denominatori, che $ono due, & tre: & dirai che ne uien $ei. questo adunque $arà denominatore della pro- dotta proportione: & però da una tripla, & da una doppia ne na$ce una $e$tupla. il che ap- pare per li numeri moltiplic ati d'amendue le proportioni: perche moltiplicando noue, per quattro, ne uiene trenta $ei, & tre per due ne uien $ei: la doue trenta $ei ri$petto a $ei ritiene proportione denominata $e$tupla. Voglio anche nelle $opraparticolari darne lo e$$empio, & raccogliere la $e$quialtera, che è tra tre, & due, & la $e$quiterza, che è tra tre & quat tro, moltiplico mezo che è denominatore della $e$quialtera in un terzo, che è denominatore della $e$quiterza, & ne na$ce due, che è denominatore della prodotta proportione: & però da una $e$quialtera, & da una $e$quiterza raccolte in$ieme, ne na$ce una doppia: moltiplica adunque i numeri antecedenti, che $ono tre & quattro, ne uien dodici, & i con$eguenti che $on due e tre, & ne uien $ei. adunque dodici a $ei tiene proportione doppia. Que$to gioua nel la mu$ica grandemenle. Ecco, quando la con$onanza mu$icale detta diapente $ia in proportio-</I> <pb n="102"> <I>ne $e$quialtera, & la diate$$aron in $e$quiterza: $e egli $i ponerà in$ieme l'una, & l'altra, $e ne cauerà la diapa$on, che è in proportion doppia. d'una quinta adunque, & d'una quarta $i fa un'ottaua. Similmente addurremo lo e$$empio nelle $oprapartienti. uolendo adunque aggiu- nere la $oprabipartiente le terze, come cinque a tre; alla $opra tripartiente le quarte, come $et- te a cinque, $i piglia il denominatore della $oprabipertiente le terze, che è uno & due terzi, & $i moltiplica in$ieme col denominatore della $opratripartiente le quarte, che è uno, & tre quarti, & $i raccoglie due, & undici duodecimi, da i quali na$ce la doppia undecipartiente le duodecime. ecco, moltiplica cinque, & $ette che $ono li primi numeri delle predette pro- por<*>ioni, $i produce trentacinque: moltiplica anche i $econdi, che $on tre, & quattro, ne uie ne dodici. trentacinque adunque contiene il dodici due fiate, & ne auanzano undeci duodeci- mi: & co$i $i raccoglieno le proportioni quando amendue $ono $imili. Ma quando $ono di$$imi- li, cioè una della maggiore, & l'altra della minore, allhora quella proportione, che è denomi nata dalla maggior quantità, $i deue partire per l'altra. $ia adunque da comporre una $otto doppia, come uno & dui, con una $e$quialtera, come tre a due. la $otto doppia è denominata dal due, come è la doppia. & la $e$quialtera è denominata dall'un, & mezo, che è meno del- La doppia. parti$ca$i dunque dua per un & mezo, ne re$ta uno, & un terzo: & però dalle $o- predette proportionine uiene una $otto$e$quiterza. ecco una & due $opra, tre & due, mollipli- cai primi numeri, che $ono uno, & tre, fanno tre. il che $i deue notare $otto una linea. da- poi moltiplica due in due, ne ri$ulterà quattro, & tre a quattro, & in proportione $otto $e$- quiterza. Ma quando bi$ogno $ia di componere piu di due proportioni in$ieme, componerai con la terza quello, che ri$ulta dalle due prime, & la compo$ta di tre componerai con la quarta, & co$i anderai $eguitando. & di que$to puo ba$tare uno e$$empio. in que$ti numeri, quattro tre, tre & due, tre & uno. Dalle proportioni adunque di quattro a tre, che è $e$quiterza, & di tre a due, che è $e$quialtera, ne na$ce, come s'è detto, una doppia: laqual partita, per la $eguen- te $equialtera tre a due, fa la $equiterza, la qual moltiplicata in una tripla, che ha tre ad uno $a la quadrupla, che ha quattro ad uno. Dalle co$e già dette ne na$ce, che di due propor- tioni di di$aguaglianza dal maggiore in$ieme compo$te ne na$ce la proportione della di$agua- glianza del maggiore: ma l'una & l'altra è maggiore. con$eguentemente da due proportioni della di$aguaglianza dal minore, $i produce la proportione della di$aguaglianza dal minore, ma l'una & l'altra è minore proportione. Ma da una della maggiore, & l'altra della minore $i fa tale proportione, quale è quella, che è denominata dal numero maggiore. Ma la proportione dell'aguaglianza, con quella della maggiore di$aguaglianza produce la i$te$$a proportione della maggior di$aguaglianza, & $a lo i$te$$o ri$pondente con la proportione della minor di$aguaglian- za. per il che $i uede, che la proportione dell'agguaglianza moltiplicata in $e $te$$a produce la ragione dell'agguaglianza. Et que$to detto $ia del componimento delle proportioni Ma quando uor remo $ottrarre una proportione dall'altra, et cono$cer quale proportione re$ta: bi$ogna partire con que$to auuertimento, che ($i come ne i numeri s'è detto che $i leua il minore dal maggiore) co$i nel le proportioni $i leua la minore dalla maggiore. Primamente adunque $i parte il denominatore della maggiore, per lo denominatore dalla minore, et $i produce il denominatore di quella, che re$ta, dapoi, per li numeri po$ti $otto le date proportioni. ponga$i adunq; $opra una linea tra$uer$a i numeri della maggior proportione (che è quella che $i deue partire) & di $otto i numeri della minore, dapoi $ia moltiplicato il primo antecedente numero di quella proportione, che $i deue partire, per lo con$e- guente del partitore, perche $i farà l'antecedente, & primo di quella proportione, che re$ta, & per la moltiplicatione del $<*>condo numero della proportione da e$$er diui$a per lo antecedente del- la diuidente, ne na$ce il con$eguente della restante. & que$to modo conuiene col partire de i rot- ti uulgari. poniam ca$o, che uogliamo $ottrarre una doppia da una tripla. partirai adunque tre, che è denominatore della tripla, per due, ch'è denominatore della doppia, & ne uenirà uno & me zo, dal quale $i denomina la $e$quialtera. Siano que$ti numeri noue, & tre in proportione tripla;</I> <pb n="103"> <I>& in doppia quattro & due: moltiplica noue per due, ne uiene diciotto & tre in quattro, ne uien dodici. al qual numero diciotto è in proportione $e$quialtera. Co$i anche nella proportione $opra particolare $i procederà, come $arebbe il leuare una $e$quiterza da una $e$quialtera. parti adunque il denominatore della $e$quialtera, ch'è uno & mezo, per lo denominatore della $e$quiter za, ch'è uno, & un terzo, ne $eguira uno, & un'ottauo. Dalla propo$ta $ottrattione adunque ne re$ta una $e$quiottaua. tre a due è in $e$quialtera, quattro a tre in $e$quilerza, moltiplica tre per tre fa noue, due per quattro $a otto, ma noue ad otto è in proportione $e$quiottaua. Finalmen- te nelle $oprapartienti uoglio leuare una $oprabipartiente le terze, da una $opra tripar- tiente le quarte. partendo uno, & tre quarti, per uno & due terzi, ne ri$ulta uno, & un uige$imo. dal che è denominata la proportione $e$quiuige$ima, come ci $arà dato anche da gli auuenimenti de i numeri $ette a quattro, cinque a tre. moltiplica $ette per trè, ne uiene uen- tiuno: & quattro per cinque, ne uiene uenti: al qual numero $i troua e$$er in proportione $e$- quiuige$ima il uenti. Dal partire adunque la proportione della maggior di$aguaglianza, per la ragione, & proportione della minore, ne na$cerà la proportione della maggiore, minor dell'una, & dell'altra. Il $imile $i deue giudicare delle di$$imiglianti proportioni, che $ono della di$agua- glianza dal minore: percioche ne na$cerà proportione della minor di$aguaglianza, parimente mi nore dell'una, & dell'altra: ma $e amendue $aranno o della maggiore, o della minore di$agua glianza, & tra $e $imiglianti, cioè $e la propo$ta proportione $i partirà per $e $te$$a, ne ri- $ulterà la ragione dell'ag guaglianza: & in $omma $e una $arà della maggiore, & l'altra della minore di$aguaglianza, $i produrrà una proportione, che hauerà piu in que$ta par- te dell i proportione, che $i deue partire, che di quella, che parte, & $arà quella, che $i e$prime per lo numero maggiore. Et tanto uoglio, che detto $ia dello accre$cere, $cemare, o partire delle proportioni. Re$ta che noi portamo inanzi quello, che piu importa, & è co- $a mirabile per $apere delle $imiglianze delle proportioni, & ci giouerà nelle co$e ciuili, ne i di $cor$i della mu$ica, & in molte co$e, che tutto il dì ci uengono per le mani. Re$umendo quello, che detto hauemo $econdo il di$cor$o di Alchindo antiquo autore, che a me non gra- uerà di ponere per maggior intelligenza. primamente adunque egli pone quattro diffini- tioni: & $on que$ti, come principij.</I> <p><I>Proportione è $cambieuole habitudine di due quantità $otto un'i$te$$o genere.</I> <p><I>Quando di due quantità compre$e $otto un'i$te$$o genere una parte l'altra, quello che re$ta è la proportione della partita, alla partitrice. & que$to s'è dichiarito.</I> <p><I>La prodottione, ouero la compo$itione d'una proportione con l'altra non è altro, che la de- nominatione e$$er prodotta dalle denominationi. que$to con e$$empij mo$tramo.</I> <p><I>L'e$$er diui$a una proportione per un'altra, ouero e$$er $ottratta, non è altro, che quando la denominatione della proportione da e$$er partita, è diui$a per la denominatione della diuidente. Da poi egli pone alcune propo$itioni, che $ono le in$ra$critte.</I> <p><I>E la denominatione della proportione di qual ti piace di due e$tremi, $arà moltiplicata nel $e condo, $i produrrà il primo. perche $e per la $econda diffinitione partito il primo per lo $econdo, ne na$ce il denominatore: adunque moltiplicata la denominatione nel $econdo, ne na$cerà il primo.</I> <p><I>La $econda propo$itione è que$ta. Quando tra due è interpo$to un mezo, che habbia proportione con amendu: a proportione, che hauerà il primo al terzo, $arà compo$ta dalle proportioni, che ha il primo al mezo, & il mezo al terzo. $iano tre termini, due, quattro, dodici, & quello di mezo hab bia qualche proportione co gli e$tremi: io dico, che la proportione, che è tra'l primo e'l terzo, è com po$ta della proportione, che ha il primo con quel di mezo, & quello di mezo con il terzo. e$$endo adunque tra due, & dodici proportione $e$tupla, dico, che la $e$tupla, è compo$ta dalla proportio- ne, che ha due a quattro, & quattro a dodici. ecco, il denominatore tra due & quattro, è due, dal che è denominata la doppia, il denominatore tra quattro, & dodici è tre, dal che è</I> <pb n="104"> <I>denominata la tripla. $ia dunque due a. quattro b. dodici c. il denominatore tra due & quat tro d. tra quattro & dodici e. & il denominatore tra a & c $ia f. perche adunque da f. nel c. $i fa a. & da e in c $i fa b. per la prima propo$itione lo f. allo e. è come lo a. al b. & però e$$endo il d. il denominatore tra a & b. egli $arà il denominatore tra f. & e. adunque per la i$te$$a prima propo$itione dal d in e $i fa f. perche adunque la denominatione dello a. al c. è prodotta dalla denominatione del b. al c. ne $egue per la ter za diffinitione, che la proportione, che è tra lo a, & il c. come tra due & dodici, che è la $e$tupla, $ia compo$ta dalla proportione, che è tra lo a, & b. cioè tra due, & quattro, che è doppia, & tra b. & c. cioè quattro & dodici, che è tripla. adunque da una doppia, & da una tripla ne na$ce una $e$tupla. Seguita la terza propo$itione di Alchindo.</I> <p><I>Siano quanti mezi $i noglia, dico che la proportione, che è tra gli estremi, è compo$ta di tutte le proportioni, che hanno i mezi tra $e. Sia tra a, & d. due intermedij b, & c. io di- co, che la proportione di a, à d. è composta delle proportioni, che $ono tra a, & b. tra b, & c. tra c & d. imperoche per la precedente la proportione, che è tra a, & c. è compo$ta dalla proportione, che è tra a & b. & tra b & c. ma la proportione che è tra b, & d. è composta dalla proportione che è tra b. & c. & c, & d. per la i$te$$a pro- po$itione. adonque la proportione, che è tra a, & d. è compo$ta di tutte proportioni, che $ono tra i mezi. & co$i $i hauerà a prouare, quando fu$$ero piu mezi. & di $opra ne hauemo con gli e$$empi detto a ba$tanza: ma hora $i replica per $eguitar l'ordine di Al- chindo, & per e$$ercitio della memoria, in co$a di tantaimportanza.</I> <p><I>La quarta è, che $e alcuna proportione, è compo$ta di due proportioni, la $ua conuer$a è compo$ta delle conuer$e. $ia la proportione di a, à b. compo$ta della proportione di c, à d. & di e, à f. io dico che la proportione di b. ad a. $arà compo$ta della proportio- ne did, à c. & di f. ad e. perche $iano continuate le proportioni di c, à d. & die, ad f. tra g. h. K. di modo che g. $ia ad h. come c, à d. & h, à K. come e. ad f. dico, che la proportione tra a, & b. $arà compo$ta della proportione di g. ad h. & di h. à K. & però per la $econda propo$itione, la proportione di a, à b.$arà come la propor- tione di g, à K. adunque all'incontro la proportione di b ad a. $arà come K. à g. mala pro portione di K à g. per la i$te$$a propo$itione è fatta dalla proportione di K. ad h. & di h. à g. ma K ad h. è come f. ad e. & h. à g. & come d. à c. adunque b ad a. $arà compo- $to dalla proportione, che è tra d & e. & tra f. & e. il che è lo intento no$tro. Finite le diffinitioni, & le propo$itioni, che pone Alchindo, $iuiene alle regole, lequali $ono que$te.</I> <p><I>Quando di $ei quantità la proportione, che è tra la prima, & la $econda, è compo$ta della proportione, che ha la terza alla quarta, & la quinta alla $e$ta, $i fanno tre- cento, & $e$$anta $pecie di compo$ilioni, di trenta$ei, delle quali $olamente ci potemo $eruire. il re$tante è inutile. & que$to è manife$to. $e noi ponemo, che la proportio- ne, che è tra a, & b. $ia compo$ta delle proportioni, che $ono tra e, & d. tra e, & f. perche e$$endo $ei i termini, $i puo intendere la proportione di due, qual $i uoglia e$$er composta di due proportioni, che $iano tra i quattro termini re$tanti. Il che $arà dichiarito poter$i fare per uia della moltiplicatione. Da que$ti $ei termini uengono trenta $pacij di$tinti. dieci da a. ot- to da b. $ei da c. quattro da d. due da e. & niuno da f. perche tutti $ono $tati prima compre$i. le quali co$e $ono manife$te dalla $ottopo$ta tauola. doue $ono cinque compartimenti, nel primo de i quali è la comparatione di a. agli altri termini, & de gli altri termini ad a. nel $econdo è la comparatione di b, agli altri, & de gli altri à b. nel terzo è la comparatione del e. nel quar to di b. nel quinto die. agli altri, & de gli altri a quelli. perche adunque erano $ei termini ri- mo$$idue, che faceuano lo $pacio compo$to, i re$tanti $eranno quattro. de i quali ne $aranno uin- tiquattro ordini, che fanno $olamente dodici $pacij. & perche questo s'intenda bene $iano ri- mo$$i que$ti termini a b. che fanno la proportione dia, à b. & la conuer$a di b. ad a. re$taran-</I> <pb n="105"> <I>no quattro termini. c.d.e.f. de i quali $aranno uentiquattro ordini. Il numero posto fuori della tauola dimo$tra due ordini, che fanno un $olo interuallo, come il numero quinario, che è po$to</I> <fig> <I>dentro la tauola, dinota che quel-</I> <fig> <I>l'ordine, a cui è prepo$to il deci- mo $ettimo, non compone $pacio diuer$o da quello, che compone il quinto, perche $i compone la i$te$$a proportione che è tra d. & e. & trac. & f. dinotata per lo decimo $ettimo modo. & di quel- la, che è tra c. & f. & trad. & e. laqual pretende il quinto. Adunque per li numeri e$trin$e- chi $i dinota, che que$ti ordini, quanto alla compo$itione delle proportioni $ono geminati, cioè il terzodecimo. il quartodecimo, il quintodecimo, & co$i $eguitan do fin al uente$imo quarto, il qua le anche ui s'include. la propor- tione adunque, che tra a. & b. & la $ua conuer$a tra b. & a. $i puo intendere, che $ia compo$ta di dodici proportioni, tra quat- tro termini c. d. e. f. & co$i cia- $cuna delle predette. E$$endo adunque trenta quelle che $ipo$$ono componere, tutte le combina- tioni $aranno trenta fiate dodici, che $ommano trecento & $e$$anta. Ma di tutte que$te, posto, che laproportione, che è tra a. & b. $ia compo$ta delle proportioni, che$ono: tra c. & d. & e. & f. $i dimo$tra, che $ole trenta $ei $ono utili. Ma le altre non tenere: & ci potrà ba$tare di e$ponerne quindici nella tauola, e$$endone quindici di quelle conuer-</I> <fig> <I>$e, & noi per la quarta propo$itione hauemo dimo$trato, che ogni proportione conuer$a, $i fa dalle conuer$e di quelle proportioni, del- lequali è compo$ta la principale. come $e la proportione, che è tra a. & b. è compo$ta dalle proportioni che $ono tra c. & d. & tra e. & f. anche la conuer$a, cioè la proportione, che è tra b, & a. è compo$ta dalle proportioni, che $ono tra. c. & d. et tra f. et e. et però e$po$te che $aranno quindici di quelle, le altre quindici $aranno manife$te. E$poneremo adunque le quindici po$te nella tauola. dellequali di nece$- $ità noue $aranno compo$te di due proportioni tra'l re$tante di quattro termini. ma le altre $ei non hanno que$ta nece$$ità. et quella, che $i compone è manife$ta per la tauola, come anche è manife$ta quella, che non $i compone.</I> <p><I>Ogni proportione adunque, laquale entra in compo$itione, a due modi $i compone $olamente: cioè dalla proportione del terzo al quar- to, et del quinto al $e$to, et $imilmente dalla proportione del terzo al $e$to, et del quinto al quarto. per il che e$$endone noue compo$te $i fa- ranno diciotto compo$itioni, et altre tante delle loro conuer$e. Tren- ta $ei adunque $aranno i modi utili. Ma quelle, che non $i compongo-</I> <foot><I>O</I></foot> <pb n="106"> <fig> <I>no $ono $ei, et le loro conuer$e $ei, però dodici $ono inutili. Adunque tutti i modi $i utili, come inutili $ono quaranta otto. Soppo$to adunque il primo modo, cioè che la proportione che è tra a el b. $ia composta delle proportioni che $ono tra c, et d. et tra e, et f. io dimo- strerò il $econdo, che è compo$to della i$te$$a, che è trac. et. f. et tra, e. et d. percheio ponerò tra c, et f. la proportione did, et e. doue la proportione tra c, et f. $arà compo$ta delle proportioni, che $ono tra c, & d. & tra d, & c. & trae. & f. perilche ne $eguita, che le pro- portioni che $ono tra e, & f. & tra e, & d. $aranno composte delle proportioni che $ono trac, & d. tra d, & e. & tra e. & f. & trae. & d. Male proportioni che $ono tra c, & d. trad. & e. et tra e. et d. compongono quella, che è tra e. et d. per la terza propo$itio- ne. po$ti d, et c. tra c. et d. adunque e. à d. et c. ad f. $ono $i come c. à d. et a. ad f. ma la proportione, che è tra a. et b. è compo$ta delle proportioni che $ono tra e. et d. et tra e, et f. adunque la proportione tra a, et b. $arà composta delle proportioni, che $ono tra c. & f. et tra e. et d. che $ono le po$te nella conclu$ione.</I> <p><I>Il terzo modo è, che anche la proportione tra a, et c. $arà compo$ta della proportione di b, à d. et di c. ad f. ilche è manife$to, perche po$to b. tra a. et c. la proportione che è tra a. et c. $arà compo$ta da quella, che è tra a. et b. tra b. et c. ma la proportione, che è tra a, et b. $i compo- ne di c. et d. et di e. et f. $econdo il $uppo$to da noi. adunque a, à c. è fa ta di b. et c. et et di c. et d. et die, et f. ma b, à c. et c. à d. compongono la b. à d. trapo$to il c. tra b. et e. Adunque la proportione, che è tra a, et c. è compo$ta di b. et d. et di e. et f.</I> <p><I>Il quarto modo procede dal terzo, $i come il $econdo dal primo. po$ti tra b, & f. commune- mente d. & e. & co$i tutti i modi pari, con i loro di$pari $i collegano, per i$chifare il repetere la i$te$$a uia.</I> <p><I>Il quinto modo è che la proportione di a, ad e. è compo$ta di b, ad f. & di c. à d. perche po- $to b. tra a, & e. $i fa l'argomento del terzo. perche lo a. ad e. è compo$to dello a. al b. & del b. allo e. ma lo a. al b. è compo$to dell' e. al f. & del c. al d. perche co$i hauemo po$to. adunque a, ad e. $i compone di b. à c. & die. ad f. & dic. à d. ma b. ad e. & e. ad f. compongono b. ad f. tra- po$to e. tra b, & f. adunque la proportione tra a. & e. è compo$ta delle proportioni, che $ono tra b. & f. & tra c, & d.</I> <p><I>Il $e$to modo $i caua dal quinto, per lo argomento del $econdo, trapo$to f. & c. tra b. & d.</I> <p><I>Il $ettimo compone la proportione di b, à d. delle proportioni di à. a c. & di f. ad e. perche e$$endo compo$to a. b. di c. à d. & die. ad f. ne $egue per la quarta proportione, che la proportio- ne tra b, & a. $arà compo$ta di d. & c. & di f. & e. po$to adunque a. tra b. & d. la proportio- ne, che è tra b, & d. $arà fatta di b. & a. & di a, & d. ma b, & a. è compo$to di d. & c. et di f. & e. adunque la proportione di b. à d. $arà compo$ta di tre proportioni. cioè di a, à d. di d, à c. & di f. ad e. Ma la a, à d. & la d. à c. compongono quella, che è tra a. & c. trappo$to d. tra a, & c. adunque la proportione di b. à d. $arà composta delle proportioni di a, à c. & di f. ad e. ilche era il propo$ito.</I> <p><I>L'ottauo modo. $i come pre$upo$to il primo $i caua il $econdo, co$i per lo i$te$$o argomento $i caua l'ottauo i $uppo$ti, & prouati ne i precedenti, posto in mezo di a. & e. e. & f.</I> <p><I>Il nono. $imilmente la proportione di b, ad e. $arà compo$ta delle proportioni di a. ad e. & di d. à c. perche b ad a, è compo$to di d. à c. & di f. ad e. trapposto a. tra b. & f. $arà la pro- portione tra b, & f. compo$ta di b. ad a. & di a. ad f. & però b, ad f. $arà compo$ta di a. ad f. & di f. ad e. & di d. à c. ma a. ad f. & f. ad e. compongono a. ad e. adunque b. & f. è com- po$ta di a. & e. & di d. & c.</I> <pb n="107"> <p><I>Il decimo. con l'argomento del $econdo procede dalle co$e prouate nel precedente, trappo$to, e, & d. tra a. & c.</I> <p><I>L'undecimo. egli $i compone c. à d. di a. & b. & di f. & c. perche per la terza. a. & c. è fatta di b. & d. & di e. & f. $i componerà la c. ad a. di d. à b. & di f. ad e. po$to adunque a tra c. & d. $arà la c. al d. compo$ta dalla a. al d. dalla d. al b. & dalla f. al c. ma la a. al d. & la d. al b. compongono la a. al b. adimque la c. à d. è compo$ta dal a, à b, & da f. ad e.</I> <p><I>Il duodecimo modo $i caua dall'argomento di $opra trapo$to b. & f. tra a. & e.</I> <p><I>Il terzo decimo è $imilmente, che la proportione tra c. & f. è compo$ta dalle proportioni tra a. & b. tra d. & c. posto d. & c. tra e. & f. $arà composta la c. & la. f. dalla. c. al d. & dalla d, al e. & dall' e. al f. ma. c. d. & e f. compongono a. b. adunque la c f. è compo$ta da a b. & da d e.</I> <p><I>Il quartodecimo $i caua dal precedente, come il $econdo dal primo trapo$to b. & d. tra a. & e.</I> <p><I>Il quintodecimo è, che anche d e, è composta da b a, & da c. f. perche po$to c. & f. tra d. & e. la d. e. $arà composta da d. c. ad c. f. & da f. a. ma la d. al c. & la f. all'e. compongono la b. a. perche le conuer$e compongono la a. b. per la $oppo$itione adunque d. e. è compo$ta di b. ad a. & di c. ad f.</I> <p><I>Il $e$todecimo con l'argomento del $econdo è dedutto dal precedente. trapo$to a. & c. tra b. & f.</I> <p><I>Il decimo $ettimo modo è, che e. f. $i compone di a. b. & di d. c. percioche per la conuer$a del quinto modo c. a. $i fa di f. b. & di d. c. il re$to $i ordina, come s'è fatto nella prima deduttione dell'undecimo modo.</I> <p><I>Il decimo ottauo con l'argomento del $econdo $i caua dal precedente b. et d. trapo$ti tra e. et c.</I> <p><I>Voglio, che fin qui $ia detto a ba$tanza per dare alquanto di luce alle co$e di Alchindo: & qui $otto cauarne una belli$$ima propo$itione, che ne contiene dice$ette utili$$ime da e$$er da ogni $orte di per$one studio$e e$$ercitate, & $ono que$te, lequali $i $erueno a ritrouare qualunque nu- mero di quelli $ei, ci fu$$e ignoto.</I> <p><I>Se la proportione che è tra'l primo e'l $econdo, è compo$ta delle proportioni, che $ono tra'l terzo, e'l quarto, & tra'l quinto, e'l$e$to: la i$te$$a $arà compo$ta dalle proportioni, che $ono, tra'l terzo, e'l $e$to, & tra'l quinto, e'l quarto. Ecco ne i numeri lo e$$empio. 1. 2. 3. 4. 6. 9. dalla $otto $e$quiterza, che è tra tre, & quattro, & dalla $otto $e$quialtera, che è tra $ei, & noue, ne na$ce la $ottodoppia che è tra uno, & due. io dico che la i$te$$a $ottodoppia na- $cerà dalle proportioni, che $ono tra il terzo, & il $e$to, cioè tra tre & noue, che $ono in propor- tione $otto tripla. & dalla proportione, che è tra'l quinto e'l quarto, che $ono $ei, & quattro, do- ue è la proportion $e$quialtera, perche da una $ottotripla, & da una $e$quialtera, ne na$ce una $ottodoppia, come è tra uno, & due.</I> <p><I>Similmente $e la proportione del primo al terzo, $arà compo$ta delle proportioni del $econdo al quarto, et del quinto al $e$to. come la proportione dell'uno al tre, che è $ottotr pla, è compo- $ta delle proportioni del due al quattro, che è $ottodoppia, et del $ei al noue, che è $otto$e$quial- tera, ne na$ce una $otto tripla.</I> <p><I>Parimente, $e la proportione del primo al quinto, cioè dall'uno al $ei che è $otto $e$cupla, $arà fatta delle proportioni del $econdo al $e$to, che è dal due, al noue, che è proportione $ottoqua- drupla $e$quialtera, et dal terzo, al quarto, che $on tre, et quattro, doue cade proportione $ot- to$e$quiterza, la i$te$$a uenirà, dal $econdo al quarto, che è tra due, et quattro, doue è propor- tione $ottodoppia, et dal terzo al $e$to, come da tre a noue, doue cade proportione $ottotripla; perche ne na$cerà una $otto$e$cupla.</I> <p><I>Co$i anche, $e la proportione, che è del $econdo al quarto, che è $atto doppia, come è da uno a quattro, na$cerà dalla proportion del primo al terzo, che è $otto tripla, come da uno a tre, &</I> <foot><I>O</I> 2</foot> <pb n="108"> <I>dalla proportione del $e$to al quinto, come è da noue a $ei, doue cade proportion $e$quialtera, per che da una $ottotripla, & da una $e$quialtera ne na$ce una $ottodoppia, la i$te$$a proportione na $cerà dal primo al quinto, che è da uno à $ei, doue cade proportione $otto$e$cupla, & dal $e$to al terzo come da noue a tre, doue cade la tripla; perche da una $otto$e$cupla, & da una tripla ne na$ce una $ottodoppia, come è da due a quattro.</I> <p><I>Similmente $e la proportione, che ha il $econdo al $e$to, come tra due, & noue, doue cade proportione $ottoquadrupla $e$quialtera, na$ce dalla proportione del primo al qumto, come da uno a $ei, doue è proportione $otto$e$cupla, & dal quarto al terzo, come è da quattro a tre, do- ue è proportione $e$quiterza, la i$te$$a proportione $ottoquadrupla $e$quialtera na$cerà dalla pro- portione del primo al terzo, cioè da uno a tre, doue è proportione $ottotripla, & dal quarto al quinto, come da quattro a $ei, doue è proportione $otto$e$quialtera, perche da una $ottotripla, & da una $otto$e$quialtera ne uiene una $ottoquadrupla $e$quialtera.</I> <p><I>Similmente $e la proportion del terzo al quarto come è da tre a quattro, doue cade proportione $otto$e$quiterza na$cerà dalla proportione del primo al $econdo, come da uno a due, doue cade proportione $ottodoppia, & dal $e$to al quinto come da noue a $ei, doue cade proportione $e$qui- altera, la i$te$$a proportione na$cerà dalla proportione, che è tra'l primo, e'l quinto, che è uno & $ei, doue cade proportione $otto$e$cupla, & dal $e$to al $econdo, come è da noue a due, doue ca de proportione quadrupla $e$quialtera, perche da una $otto$e$cupla, & da una quadrupla $e$- quialtera, ne na$ce una $otto$e$quiterza.</I> <p><I>Oltra di que$to $e la proportione, che è tra'l terzo, & il$e$to, che è $ottotripla, come da tre a noue, na$ce dalla proportione del primo al $econdo, come da uno a due, che è $ottodoppia, & dal quarto al quinto, che è $otto$e$quialtera, come tra quattro & $ei, la i$te$$a na$cerà dal pri- mo al quinto, come da uno a $ei, doue cade la $otto$e$cupla, & dal quarto al $econdo, come da quattro & due, doue cade la $ottodoppia, perche da una $ottodoppia, & da una $otto$e$quiter- zane uiene la $ottotripla.</I> <p><I>Di nuouo $e la proportione del quarto al quinto, cioè del quattro al $ei, doue è la $otto$e$qui- altera, è compo$ta del $econdo al primo, cio del due all'uno, doue cade la doppia, & del terzo al $esto, come del tre al noue, doue cade la $ottotripla, la i$te$$a $otto$e$quialtera na$cerà dalla proportione del $econdo al $e$to, & del terzo al primo.</I> <p><I>Finalmente $e la proportione, che è del quinto al $e$to, come è tra $ei, & noue, doue cade la $otto$e$quialtera, na$cerà dalle proportioni, del primo al $econdo, come da uno a due, doue ca- de la $ottodoppia, & dal quarto al terzo, doue cade la $e$quiterza, la i$te$$a na$cerà da quella, che è dal primo al terzo, che è $ottotripla, come da uno a tre, & da quella, che è dal quarto al $econdo, che è la doppia, come da quattro a due, & tanto $ia detto delle proportioni, & delle lo rogenerationi, & ri$petti: le quali co$e diligentemente e$$aminate, e$$ercitate, po$te a memoria applicate alle $cienze, & alle pratiche, faranno pareregli huomini miracolo$i. Ma tempo è, che a$coltiamo Vitruuio.</I> <HEAD><I>Delle compo$itioni, & compartimenti de i tempij.</I></HEAD> <HEAD><I>Et della mi$ura del corpo humano.</I></HEAD> <HEAD><I>Cap. I.</I></HEAD> <p>LA compo$itione delle $acre ca$e è fatta di compartimento, la cui ragione deue e$$er con $omma diligenza da gli Architetti cono$ciuta. il compartimento $i piglia dalla proportione, che Grecamente è detta analogia. La proportio- ne è conuenienza di moduli, & di mi$ure in ogni opera sì della rata parte de <pb n="109"> i membri, come del tutto, dalla quale procede la ragione de i compartimenti. <p><I>La $omma di tutto quello, che dice Vitr. cerca le fabriche pertinenti alla religione è, che pri- ma egli dimo$tra la nece$$ità di cono$cer la forza delle proportioni, & delle commen$urationi, che $i chiamano $immetrie da greci. dapoi dichiara donde è $tata pre$a la ragione delle mi$ure, & tratta della compo$itione de i Tempij, & con$idera prima tutto quello, che $i rappre$enta di fuori, & da lunge allo a$petto da diuer$e figure, & forme di tempij, & in que$ta parte tocca cinque maniere di Tempij, con le ragioni di cia$cuna, & dichiara il modo di fondare, l'ornamen to delle colonne, de i capitelli, de gli architraui, de i coperti, & fronti$picij, & altre co$e perti- nenti a quello, che $i uede di fuori, come $ono gradi, poggi, piedistali, $porti, ra$tremamenti, gonfiature, aggiunte, canalature, & $imili co$e, $econdo i generi delle fabriche. Viene poi al- le parti di dentro, & di$tintamente ragiona delle mi$ure, lunghezze, larghezze, & altezze de i Tempij, delle celle, de gli antitempij, de gli altari, delle porte, & di tutti gli ornamenti che conuengono alle predette parti: la onde niente la$cia al de$iderio nostro, conchiudendo tutta la pre$ente materia, nel terzo, & nel quarto libro. Dice adunque, che per edificare i Tempij bi- $ogna cono$cere la ragione del compartimento, & que$to douer e$$ere con $omma diligenza da gli Architetti cono$ciuto. Di questo la ragione è in pronto: perche, $e bene ogni fabrica deue e$$er conragione compartita, & mi$urata, nientedimeno con$iderando noi quanto la diuinità eccede la humanità, meritamente douemo, quanto $i puo di bello, & diraro, $empre mai operare, per ho nore, & o$$eruanza delle co$e diume. & perche di diuina qualità participa in terra l'humana mente, però douemo con ogni $tudio e$$ercitarla, accioche honoriamo i Dei; che Dei $i chiamano i ueri amici di Dio. ottima co$a è la ragione nella mente dell'huomo, & que$ta eccellenti$$ima- mente $i dimo$tra nelle proportioni. & però $e Vitr. ha detto, che la ragione della $immetria, che è corri$pondenza di mi$ure, deue e$$er con grandi$$ima diligentia cono$ciuta da gli Architet- ti, egli ha detto co$a ragioneuole, hone$ta, & debita alla diuinità. Et $e co$a mortale puo a ba- $tanza honorare la immortalità, direi anch'io, che le piu pretio$e, & care co$e doueriano e$$er $oggetto & materia alle ben proportionate fabriche de i luoghi $acri, accioche, & con la forma, & con la materia $i honora$$e quanto piu $i puo, la diuinità. Nece$$aria co$a è dunque la $im- metria alla compo$itione de i Tempij. la $immetria è diffinita da Vitr. in que$to luogo $econdo l'ap plicatione all' Architettura; ma noi di $opra l'hauemo diffinita $econdo la raccommunanza, & uniuer$alità di quel nome. Dice adunque Vitr. che la proportione, la quale è detta analogia da Greci, è una con$onanza, & ri$pondenza delle mi$ure delle parti tra $e $te$$e, & col tutto in ogni opera, che $i fa, & que$ta con$onanza, egli chiama commodulatione, percio- che modulo è detta quella mi$ura, che $i piglia prima, con la quale $i mi$urano le par- ti, & il tutto; & però proportione nelle fabriche altro non è, che comparatione de' moduli, & di mi$ure in quello, in che conuengono, et le parti in$ieme delle fabriche, o il tutto unitamente con le parti. Questo già è $tato da noi copio$amente dimo$trato nel primo libro. pe- rò $eguitando Vitruuio $i dichiara da quale e$$empio di natura è stata pigliata la ragione delle mi$ure.</I> <p>Perche non puo fabrica alcuna $enza mi$ura, & proportione hauer ragione di compo nimento, $e prima non hauerà ri$petto, & con$ideratione, $opra la uera, & certa ra- gione de i membri dell'huomo ben proportionato, perche la natura in tal modo ha com po$to il corpo dell'huomo, che l'o$$o del capo dal mento alla $ommità della fronte, & le ba$$e radici de i capelli, fu$$e la decima parte, & tanto anche fu$$e la palma della mano dalla giuntura del nodo, alla cima del dito di mezo, il capo dal mento alla $ommità della te$ta la ottaua parte, & tanto dal ba$$o del collo. Dalla $ommità del petto alle radici de i capelli la $e$ta parte, alla $ommità della te$ta la quarta. dal fine del mento al fine delle natici è la terza parte dell'altezza di tutta la faccia, & tanto è lungo il na$o tutto in fino al mezo del $opraciglio: & tanto anche da quello fino alle radici de i capelli, doue $i fa <pb n="110"> la fronte. Ma il piede, è la $e$ta parte dell'altezza del corpo, il cubito la quarta, il petto anche la quarta. & in que$to modo anche gli altri membri hanno le loro conuenienti, & proportionate mi$ure: le quali da gli antichi pittori, & Statuarij $ono $tate u$ate, & pe rò hanno riportato grandi & infinite lodi. <p><I>La natura mae$tra ci in$egna come hauemo a reggercinel compartimento delle fabriche: impe roche non da altro ella uuole, che impariamo le ragioni delle $immetrie, che nelle fabri- che de i tempij u$ar douemo, che dal $acro tempio fatto ad imagine, & $imiglianza di Dio, che è l'huomo, nella cui compo$itione tutte le altre merauiglie di natura $ono compre$e. et pe- rò con $aggio auuedimento tol$ero gli antichi ogni ragione del mi$urare dalle parti del corpo hu mano, doue molto a propo$ito Vitruuio dice, che opera niuna può hauere ragione di componi mento, $e prima non hauerà riguardo alla $immetria delle membra humane. Io proponerò al- cune di$tintioni, accioche meglio s'intenda quello, che dice Vitr. Di tre maniere s'intende mi- $ura. Primieramente quando una co$a è piu per$etta, chele altre $otto un'i$te$$o genere, quel la $i dice mi$ura di perfettione. in que$to modo l'huomo fra tutti gli animali e$$endo il piu perfet- to, $i puo dire, che egli $ia mi$ura di tutti gli animali. chiama$i poi mi$ura d'agguaglianza, quando la mi$ura contiene la co$a mi$urata a punto, come un'orna di uino, $i chiama mi$u- ra, perche tiene a punto tanto uino, quanto cape. In $omma poi chiamamo mi$ura quella quan- tità, che pre$a piu fiate mi$ura il tutto, come dicemo la canna mi$urare il panno. Di que$ta noi parlamo, que$ta è quella, che è $tata pre$a dalla mi$ura della perfettione, che è l'huomo, tra gli ani mali, da gli antichi. Onde mi$urare non è altro, che far manife$ta una quantità prima non cono$ciu ta, con una quãtità certa, et cono$ciuta: et però cōragione dalle parti dell'huomo $ono $tate piglia- te le mi$ure delle co$e, et le ragioni di quelle mi$ure: et è ragionenole, che dalla te$ta $i pigli la mi $ura del tutto, e$$endo po$to nella te$ta il ualore di tutti i $entimenti humani, come co$a piu nobi le, et principale, et piu mani$e$ta. Vitruuio uuole, che l'huomo $ia di dieci teste, $e per te$ta egli s'intende dal mento al na$cimento de i capelli: et uuole anche, che $ia di otto te$te, $e per te$ta egli s'intende lo $pacio, che è dal mento al $ommità del capo. Gli antichi oltra la propor tione attendeuano alla gratia per $atisfare allo a$pelto, et però faceuano i corpi alquanto gran di, le te$te picciole, la co$cia lunga: nel che era po$to la $ueltezza: parlo hora de i corpi perfet ti: perche altra mi$ura conuiene ad un corpo puerile, altra ad un corpo a$ciutto, o gra$$o, o te- nue, che $i uoglia fignere. Amauano gli antichi $tando nelle mi$ure conuenienti, la lunghezza, et la $ottigliezza di alcune parti: parendo loro di dare non $o che piu di leggiadro allc opere. et però $e bene dalla ra$cetta, che è la piegatura della mano, alla $ommità del dito di mezo uole- uano, che tanto fu$$e dal mento alla $ommità della fronte, nientedimeno per la detta cagione faceuano la mano, et le dita alquanto piu lunghe. il Filandro auuerti$ce, et bene, che non puo $tare quello, che dice Vitruuio, che il petto $ia la quarta parte; et uuole, che quando Vitruuio d ce, che il cubito $ia la quarta parte, egliintenda non dalla giuntura del comito alla ra$cetta, ma dalla giuntura del comito alla $ommità del dito di mezo. Vuole Pomponio Gau rico, che la giu$ta altezza $ia di noue teste. altri alquanto piu. Il Cardano nel libro della $ottilità dice. Que$ta e$$er la forma del corpo humano perfetto. la faccia è la decima ditutta la lunghezza dal na$cimento de i capelli all e$tremo del pollice del piede. la faccia $i diuide in tre parti eguagli, l'una $i fa dalla radice de i capelli alla $ommità del na$o: l'altra è la lun- ghezza del na$o: la terza è dal fine del na$o al mento. la lunghezza della bocca è eguale alla lunghezza dell'occhio, et la lunghezza dell'occhio è quanto lo $pacio da un'occhio all'altro: di modo, che in tre parti $i diuida lo $pacio, che è dall'uno angulo dell'occhio allo angulo dell'al tro, cioè due occhi, et lo $pacio, che ui è di mezo: et tutto que$to è doppio alla lunghezza del na$o. di modo che la lunghenza dell'occhio, et l'apritura della bocca $ia doppia alla nona par te della lunghezza della faccia, et per que$to adimene, che la lunghezza del na$o $ia $e$quial- tera all'apritura della bocca, et alla lunghezza dell'occhio. laqual lunghezza del na$o e$$en</I> <pb n="111"> <I>do tripla allo $pacio, che è dal na$o alla bocca, ne $egue che que$to $pacio $arà la mi$ura del- l'apritura della bocca, et della lunghezza dell'occhio. il circuito della bocca è doppio alla lūghez za del na$o, et triplo all'apritura. Adimque tutta la lunghezza della faccia è $e$quialtera al circuito della bocca, et allo $pacio, che è dallo angulo e$teriore d'un occhio, allo angulo e$ter icrc dell'altro: percioche que$to $pacio è quanto il circuito della bocca. il circuito del na $o da ba$$o, è pare alla $ua lunghezza. il circuito della orecchia, è eguale al circuito della bocca. il foro della narice è la quarta parte della lunghezza dell'occhio. et in tal gui$a è di- $po$ta la mi$ura del corpo humano, come qui $otto $i uede. La faceia parti diciotto: tra due anguli e$teriori de gli occhi parti dodici: la lunghezza del na$o parti $ei: il circuito da ba$- $o del na$o parti $ei: la lunghezza dell'orecchia parti $ei: dalle radici de' capelli al na$o parti $ei: dal mento al $ottona$o parti$ei: la lunghezza della bocca parti quattro: la rotondità del la bocca parti dodici: dalla cima della te$ta al fine di dietro parti uentiquattro: dalla $ommi- tà del petto alle $omme radici de i capelli parti trenta: dalla forcella $opra il petto alla cima della te$ta parti trenta $ei: il circuito dell'orecchia parti dodici: la lunghezza dell'occhio parti quattro: la di$tanza tra l'uno occhio, et l'altro parti quattro: dal $ottona$o alla bocca parti due, dalla bocca al mento parti quattro: il foro del na$o parte una: l'ambito della fronte di $opra parti diciotto, dalla giontura della mano alla $ommità del dito di mezo la palma parti diciotto: dal mento alla $ommità della te$ta parti uentiquatro: il piede partiuenti: il cubito parti trenta: il petto parti trenta: Tutlo il corpo parti cento et ottanta. Sono anche i ma$chi delle tempie pro- portionali alla lunghezza della faccia, et le orecchie al na$o, come hauemo o$$ernato: $imilmen te dal nodo della mano alla $ommità del dito mezano è la decima di tutto il corpo: dal mento al- la $ommità della te$ta, o dalla $ommità della te$ta al collo è il doppio di quello $pacio, che è dall'an gulo, d'un occhio all'angulo d'un'altro, intēdo de gli e$teriori. Dalla forcella $uperiore del petto alle radici de i capelli, & al fine della fronte, quanto è il cubito, ouer la larghezza del petto, cioè la $esta parte della lunghezza ditutto il corpo: la lunghezza del piede è la nona parte della i$te$- $a lunghezza: dalla forcella di $opra del petto alla cima della te$ta, è la quinta parte di tutta la lun ghezza. & il doppio della faccia; Et co$i appre$$o Vitr. non puo $tare la ragione; che la diffe renza della ottaua, & della decima parte aggiunta alla $e$ta adempia la quarta del tutto: ma allar: gate le mani $i rende a punto l'altezza ditutto il corpo: & allargate le mani, & ipiedi, il bilico $i farà nel mezo, di modo, che dalla prima figura il quadrato; & dalla $econda $i farà il circolo: amendue figure nel $uo genere perfetti$$ime, una di dritte, & l'altra di linea circolare compo$ta. & que$to è, che dice Vitr.</I> <p>Simig liantemente le membra de i facri Tempij deono hauere in cia$cuna parte alla $om ma uniuer$ale di tutta la grandezza conuenienti$sime ri$pondenze di mi$ure, Appre$$o di que$to naturalmente il mezo centro del corpo è il bilico. imperoche $e l'huomo $te$o, & $upino allargherà le mani, & i piedi, & $arà po$ta una punta della $e$ta nel bilico di quel lo, girando a torno le dita delle mani, & de i piedi, $aranno toccate dalla linea, che $i gi- ra. Et $i come la ritonda figura $i forma nel corpo humano, co$i anche $i truoua la qua- drata: imperoche $e dalle ba$$e piante alla $ommità del capo $arà mi$urato il corpo del- l'huomo, & quella mi$ura $arà trasferita alle mani allargate, egli $i trouerà la i$te$$a lar- ghezza, come l'altezza, a gui$a de i piani riquadrati. Se adunque la natura ha compo$to in que$to modo il corpo dell'huomo, che le membra ri$pondino con proportione alla per fetta loro figuratione; pare, che gli anti chi con cau$a habbiano con$tituito, che in tutte le perfettioni delle opere ui habbia diligente mi$ura, & proportione di ciafcun membro a tutta la figura. Et però in$egnando gli ordini in tutte le opere, que$to ne i facri luoghi, doue le lodi, & i bia$mi delle opere $tanno eternamente, $opra tutto o$$eruarono. <p><I>Non $olamente gli antichi tol$ero le proportioni dal corpo humano, ma anche le mi$ure i$te$- $e, & i nomi loro: & però hauendo Vitr. conclu$o, che le $immetrie & compartimenti delle ope</I> <pb n="112"> <I>re $ono $tati da i corpi humani, nelle compo$itioni de i Tempij trans$erite: dice anche le mi$ure i$te$$e e$$ere $tate pigliate.</I> <p>Similmente gli antichi raccol$ero da i membri del corpo le ragioni delle mi$ure, che in tutte l'opere pareno e$$er nece$$arie, come il dito, il palmo, il piede, il cubito; & quelle di$tribuirono nel numero perfetto, che da i Greci Telion è detto. <p><I>Co$a perfetta è quella, a cui nulla manca, & niente $e le puo aggiugnere, & che di tutte $ue parti è compo$ta, nè altro le $opr'auanza: per que$ta ragione il mondo è perfetto a$$olutamente. & molte altre co$e nel loro genere $ono perfette. Ma uedianio noi con che ragione $i chiamino i numeri perfetti, & quali $ieno.</I> <p>Perfetto numero da gli antichi fu po$to il dieci, perche dalle mani $i caua il numero de nario delle dita; dalle dita il palmo; & dal palmo il piede, & $i come nell'una, & l'altra mano dalle dita naturalmente è proceduto il dieci, co$i piacque a Platone, che quel nume ro fu$$e perfetto, perche dalle unità, che monades Grecamente $i chiamano, è fornito il dieci, che è la prima croce:il quale poi, che è fatto undici, ouero dodici, non puo e$$er per fetto, fin che non peruiene all'altro incrocciamento; perche le unità $ono particelle di quel numero. <p><I>Detto hauemo di $opra, che parte uer amente è quella, che pre$a quante fiate $i puo, compone il tutto $enza piu. dal che na$ce la intelligenza di quello, che $i dirà. Dico adunque, che alcu- ni numeri ri$petto alle parti loro, delle quali $ono compo$ti, $i po$$ono chiamare poueri, & dimi- nuti, altri $uperflui, & ricchi, altri ueramente $officienti, & perfetti. La onde poueri $ono quel li, le parti de i quali in$ieme raccolte non fanno la $omma del tutto. per e$$empio $ia otto. le par ti del quale $ono, uno, due, & quattro, che raccolte in$ieme non fanno otto. Ricchi $ono quel li, le parti de i quali $ommate fanno $omma maggiore, come dodici le cui parti $ono, uno, due, tre, quattro, & $ei, lequali partiraccolte in uno pa$$ano la $omma del tutto, & fanno $edici. Perfetti$ono quelli, le parti intiere de quali con la $omma loro rendeno preci$amente il tutto, co- me $ei, & uentiotto. ecco uno, due, & tre, che $ono parti del $ei raccolte in$ieme rendeno a pun to $ei. co$i uno, due, quattro, $ette, & quattordici $ono parti di uentotto, & $ommate in$ieme fanno uent'otto a punto. La generatione de i numeri perfetti s'intenderà, po$te prima alcune dif finitioni. Sono adunque alcuni numeri, ohe $i chiamano parimenti pari, & $on quelli, che e$$endo pare la $omma loro, $i diuideno $empre in numero pare fin'all'unità, come $arebbe $e$$anta quat- tro, che è numero pare, & $i diuide in trentadue, $edici, otto, quattro, due, fin' all'unità, in numeri pari. Sono anche altri numeri, che $i chiamano primi, & incompo$ti, i quali $ono quel- li, che $olo dalla unità $ono mi$urati, & non hanno altro numero, che gli parti$ca intieramen- te, come tre, cinque, $ette, undici, & altri $imili. La generatione adunque de i numeri perfet- ti $i fa ponendo a fila per ordine i parimenti pari, & $ommandogli in$ieme: & quando s'incontra in una $omma, che multiplicata per quello, che è ultimo di quella $omma, $i fa il numero perfetto: pur che il numero della $omma $ia primo, & incompo$to, altrimenti non riu$cirebbe il numero perfetto. Ecco uno, & due fanno tre. E$$endo adunque tre numero primo, & incompo$to egli $i moltiplica per due, che era l'ultimo nella $omma, & nel raccoglimento, la doue due fiate tre fan no $ei, adunque nella decina $ei è numero perfetto. Seguita la generatione dell'altro perfetto: Ecco, uno, due, & quattro, fanno $ette, che è numero primo, & incompo$to, moltiplica $ette per quattro, $e ne raccoglie uentotto, che è il $econdo perfetto nel centinaio. Seguita uno, due, quattro, otto, che fanno quindici, ma quindici non è numero primo, & incompo$to, perche è mi$u rato oltra la unità, anche da altri numeri, come da tre, & cinque, però $i pa$$a piu inanzi all'altro parimente pare, che è $edici, que$ti aggiunto al quindici fa trent'uno, il quale e$$endo numero primo, & incompo$to, $e $arà moltiplicato per $edici, che era l'ultimo della $omma, farà quat trocento & nonanta $ei, che $ara il numero per$etto nel millenario. con la i$te$$a ragione $i fan no gli altri perfetti, i quali $ono rari, perche rare $ono le co$e perfette. Hanno i numeri perfetti</I> <pb n="113"> <I>que$ta proprieta, che le loro terminationi, $ono denominate dal $ei, & dall'otto: ma a uicenda. come, $ei, uent'otto, quattrocento nouanta $ei, ottomila cento, & uent'otto. & que$ta regola è certa. Ma perche cagione il numero ternario, & il numero denario $iano $tati chiamati per- fetti, io dirò. & prima il tre è $tato detto perfetto, perche abbraccia prima il numero pare & di$pare, che $ono le due principali differenze de i numeri. Il dieci è stato giudicato perfetto, per che fini$ce, & termina come forma tutti gli altrinumeri: & però Vitruuio ha detto che come $i pa$$a il dieci, bi$ogna ritornare alla unità, nè $i troua il perfetto, fin' all'altro incrocciamen- to, che egli chiama, decu$im, che $i fa in forma della lettera X. Ma il $enario è ueramente per- fetto per le dette ragioni. gli altri $ono chiamati perfetti $econdo alcune relationi, & ri$petti.</I> <p>Ma i mathematici di$putando contra la $opra detta opinione, di$$ero che il $ei era per- fetto, per que$ta cagione, percioche quel numero ha $econdo le loro ragioni, le parti con uenienti al numero di $ei. <I>Cioè $econdo le ragioni de gli i$te$$i Mathematici, i quali uoglio- no, che quel numero $ia perfetio, che na$ce a punto dalla $omma'delle $ue parti. La onde Vitr. di- ce; percioche per le loro ragioni quel numero ha le parti conuenienti al numero di $ei, perche rac colte in$ieme fanno $ei a punto.</I> <p>Et per que$to chiamarono l'una parte del $ei $e$tante, le', due triente, le tre' $emi$$e, le quattro be$$e, detto dimerone, le cinque quintario, che pendamerone $i chiama, & il $ei perfetto. <p><I>Soleuano gli antichi chiamare a<02>e ogni co$a intiera (come s'è detto nel primo libro) & parti- re quella nelle $ue parti, & come quegli, che felicemente interpretauano le co$e de Greci, ragio nauano molto propriamente. Volleno adunque gli antichi mo<02>i dalla ragione, che $ei fu$$e nume ro perfetto, & lo chiamarono a<02>e. Que$ti hauendo le $ue parti, ci dimo$traua per lo nome loro, quali fu<02>ero: & però uno $i chiamaua Se$tante, perche è la $e$ta parte di $ei: le due triente, per che due era la terza parte: le tre $emi<02>e, qua$i uoglia dire, mezo a$$e: il quarto be<02>e, perche lieua due parti dal tutto; & in Greco $i dice dimerone: il cinque quintario, che pentimerone $i chiama: & il $ei perfetto. Ma poi che $opra il numero perfetto $i pone la unità, gia $i comincia araddoppiare l'altro a$$e, per uenire al dodici; che A<02>e doppio $i puo dire; poi che in greco di- pla$iona $i chiama. le $ette parti $i dicono Ephecton qua$i $opra aggiunta del $ei. le otto $i chia- mano tertiario, perche oltra $ei ne dà due, che è la terza parte di $ei: & però in Greco $ono det- te Epitritos, cioè, che $oppraggiugne la terza parte al $ei. noue è detto $e$quialtero, & homio- lio, perche noue contiene $ei una uolta & meza. ma fatto dieci, egli $i chiama bes alterum, cioe l'altro bes, perche il primo (come dicemmo) era quattro, & chiamaua$i dimerone, qua$i di due parti; & però que$ti $i chiama Epidimerone come egli aggiugna al $ei due parti. Similmente Epi pentamerone $i chiama l'undici, che è il $opragionto quintario, & in que$to modo $i chiamano le parti de i numeri $econdo diuer$i ri$petti. & que$to ha uoluto Vitr. doue pare, che egli habbia uoluto, che $ei $ia numero perfetto, per la i$te$$a ragione, che dieci è perfetto: cioè perche giun- ti a dieci, tornamo da capo all' unità, fin che $i torni all' altra decina: che $i fa con due croci. co$i anche gionti al $ei da i Mathematici $i ritorna a gli i$te$$i nomi, fin all' altro a$$e che è dodici. Ma bene ha accennato Vitr. la ragione che hauemo detto, per la quale $ei $i chiama perfetto. quan- do di$$e</I> {<I>per le ragioni loro, quel numero ha le parti conuenienti al numero di $ei</I>} <I>perche po$te in $ieme le parti numer anti, & moltiplicanti il $ei, lo rendeno a punto. & quando Vitr. di$$e,</I> {<I>Et per que$to chiamarono l'una parte del $ei $e$tante.</I>} <I>Non uuole rendere la ragione perche $ei $ia perfetto, ma uuole dimo$trare, che e$$endo perfetto; per la antedetta ragione i Mathematici han no uoluto dare nome alle parti del $ei, & dimo$trare, che $ei era un tutto, oltra'l quale $e bi$ogna ua a$cendere numerando, era nece$$ario tornar da capo all'unità, come $i faceua nel dieci. Al- trimenti era uana la oppo$itione de i Mathematici contra quelli, che uoleuano, che diecifu$$e nu- mero perfetto, $e i mede$imi Mathematici haue$$ero uoluto il $ei e$$er perfetto per la i$te$$a ragio ne, per la quale s'era detto, che il dieci fu$$e perfetto. Que$to $timo io, che $ia degno di con-</I> <foot><I>P</I></foot> <pb n="114"> <I>$ideratione.</I> Et quando al conto fatto per l'aggionta d'un'altro a$$e, $i cre$ca al $ei, chia- mano Ephecton: & quando $ono fatti otto, perches'è aggiunta la terza parte; $i dice Epi triton. & aggiuntaui la metà, poi che s'è peruenuto al noue, chiama$i $e$quialterum, che da Greci è detto, hemiolios. aggiunteui poi due parti, & fatto lo incrocciamento, $i dice be$alterum, il quale chiamano Epidimiron. & nel numero di undici, perche $e gli è ag- giunto cinque, che $i chiama quintario, Epipentamiron $i dice. Ma dodici, perche è fat to di due $implici numeri dipla$iona è nominato. <p><I>Et que$to è $tato a$$ai dichiarito. Vuole poi Vitruuio, che dal numero $enario $ia $tata piglia ta la ragione della mi$ura del corpo humano, in quanto all'altezza $ua.</I> <p>Similmente perche il piede è la $e$ta parte dell'altezza dell'huomo, però co$i da quel nu mero di piedi, dal quale è mi$urato, & perfetto il corpo terminandolo in altezza con que $ti $ei lo fecero perfetto. & auuertirono, che il cubito era di $ei palmi, & di uentiquat- tro dita. <p><I>Si come dalle dita è uenuta la ragione del numerare, co$i anche è uenuta la ragione del mi$ura re, & co$i la ragione del numero $enario entra nelle mi$ure. Et qui Vitr. ragiona $econdo la opi- nione de Greci, i quali uoleuano, che $ei fu$$e numero perfetto. La onde anche alle monete tra$- ferirono il numero predetto. Et però dice Vitr.</I> <p>Et da quello pare, che le città de Greci habbiano fatto, che $i come il cubito è di $ei pal mi, co$i $i u$a$$e lo i$te$$o numero nella dramma. perche quelle città fecero, che nella dram ma fu$$e la ualuta di $ei ramini $egnati (come a$$e) che quelli chiamano Oboli, & con- $tituirono in uece di uentiquattro dita nella dramma i quadranti de gli oboli, detti da alcu ni dichalchi, & da alcuni trichalchi. <p><I>Voleuano i Greci che la loro dramma uale$$e $ei oboli, & que$to ri$pondeua al cubito, che contiene $ei palmi; uoleuano, che cia$cun' obolo haue$$e a ŭalere quattro monete, che $i chia- mauano dichalchi, la doue uentiquattro dichalchi faceuano una dramma, come uentiquattro dita fanno un cubito. obolo era una moneta di rame di poca ualuta, $egnata però, & coniata, & era come un tutto, che a$$e $i chiama, & la quarta parte detta quadrante $i nominaua di- chalco, ouerotrichalco $econdo diuer$i ri$petti. Come adunque il numero de gli oboli nella dram ma ri$pondeua al numero de i palmi, che uanno a fare il cubito, che $ono $ei, co$i il numero de i dichalchi, o trichalchi nell'obolo ri$pondeuano al numero delle dita, che erano nel cubito uenti- quattro. la onde appare, che anche nelle monete i Greci habbiano pigliato la ragione de i nume- ri: & in questo ca$o crediamo a Vitr.</I> <p>Ma i no$tri prima fecero l'antico numero e$$er il dieci, & po$ero nel denario dieci a$si di rame, & però fin al dì d'hoggi la compo$itione della moneta ritiene il nome del dena- rio, & la quarta parte di e$$o perche ualeua due a$si, & mezo, la chiamarono $e$tertio, ma poi hauendo auuertito, che l'uno, & l'altro numero era perfetto, cioe il $ei, & il dieci, raccol$ero in$ieme amendue que numeri, & fecero il $ed'ici perfetto. & di que$to tro- uarono il piede autore. perche leuando dal cubito palmi due, re$ta il piede di quattro palmi, ma il palmo ha quattro dita, & co$i il piede uiene hauere $edici dita', & tanti a$si il denario di rame. <p><I>I palmi $ono due, maggiore, & minore, il minore è di quattro dita: il maggiore di dodici, quello $i chiama palœ$te, que$to $pithame: dito, o digit o è lo $pacio di quattro grani d'orzo po$ti in ordine $econdo la larghezza. Dice adunque Vitr. che Romani pigliarono da prima il dieci co- me numero perfetto, & però chiamarono la moneta dinario, (& que$to pare ragioneuole) co- me fin hora $i u$a. & nel denario po$ero dieci a$$i di rame. & $e bene dapoi congiun$ero il dieci, et il $ei, uedendo, che anche il $ei era perfetto, ritennero però il nome del denaio mettendo in un de- naio $edici a$$i, che ri$pondino, a $edici dita, che uanno nel piede. $tando adunque le predette co- $e Vitru. conchiude, & dice.</I> <pb n="115"> <p>Se adunque è ragioneuole, & conueniente co$a, che il numero $ia $tato ritrouato dalle dita dell'huomo, & che da i membri $eparati $i faccia la corri$pondenza delle mi$ure $econ do la rata parte a tutta la forma del corpo; re$ta, che noi admettiamo quelli, i quali anche fabricando le ca$e de gli immortali Dei, co$i ordinarono le parti delle opere loro, che le di$tributioni, & compartimenti di quelli $eparati, & uniti col tutto conuenienti fu$$ero alle proportioni, & $immetric. <p><I>Pone in que$to luogo Vitru. la uniuer$ale conclu$ione di tutto quello, che egli ha detto: però a me pare, che il primo capo di que$to libro quiui habbia a finire, doue $i conchiude chiaramen- te quello, che Vitr. ci ha detto, che non puo fabrica alcuna hauer ragione di componimento, $en- za mi$ura & proportione; $e prima non hauerà ri$petto, & con$ideratione $opra la uera, & cer- ta ragione de i membri dell'huomo ben formato, & proportionato, come raro e<02>empio di pro- portione., & giu$to compartimento. Ma $eguitiamo pure l'antica diui$ione de i capi attendendo alle co$e, ehe ci uengono propo$te da Vitr. ilquale come erudito nelle di$cipline de' Greci u$a una uia, & un modo ragione uole nel trattar le co$e. & però dice.</I> <p>I principij de i Tempij $ono quelli, de i quali è formato lo a$petto delle lor figure. & prima è quello, che è detto faccia in pila$tri, dapoi quello che è detto Pro$tilo, & l'Amfi- pro$tilo, lo Alato, il Fal$o alato di due ordini, lo Alato di due ordini, & lo $coperto. <p><I>Volendoci Vitr. in$egnare la compo$itione de i Tempij, con gran ragione comincia da quelle dif- ferenze, che prima ci uengono dinanzi a gli occhi. perche l ordine della cognitione porta, che cominciamo dalle co$e uniuer$ali, & confu$e, & indi$tinte, & poi che $i uegna al particolare, e$plicato, & di$tinto. oltra che nell' Architettura egli $i deue auuertire, che l'occhio habbia la parte $ua, & con la uarietà de gli a$petti $econdo le figure, & forme diuer$e de i Tempij $i dia di- letto, ueneratione, & autorità alle opere. & $i come la oratione ha forme, & idee diuer$e per $a- tisfare alle orecchie, co$i habbia l' Architettura gli'a$petti, & forme $ue per $atisfar a gli occhi, & $i come quello, che è nella mente, & nella uoglia no$tra ripo$to, con l'artificio di leuarlo fuo- ri di noi, & portarlo altroue, le parole, le figure, la compo$itione delle parole, i numeri, le mē- bra, & le chiu$e fanno le Idee, & le forme del dire, co$i le proportioni, i compartimenti le dif- ferenze de gli a$petti, i numeri, & la collocatione delle parti fanno le idee delle fabriche, che $o- no qualità conuenienti a quelle co$e, per le quali $i fanno. Altra ragione di $entenze, di artificij, di parole, di figure, di parti, di numeri, di compo$itione, & di termini $i u$a uolendo e$$er chia- ro, puro, & elegante nel dire. altra uolendo e$$er grande, uehemente, a$pro, & $euero: & altro richiede la piaceuolezza, altro la bellezza, & ornamento del parlare. $imilmente nelle Idee del- le fabriche altre proportioni, altre di$po$itioni, altri ordini, & compartimenti ci uuole, quando nella fabrica $i richiede grandezza, & ueneratione, che quando $i uuole bellezza, o dilicatez- za, o $implicità. & perche la natura delle co$e, che uanno a formare un'idea dell' oratione fa, che quelle po$$ono e$$er degnamente in$ieme con quelle, che uanno a formarne un'altra. la onde nella purità $i puo hauer del grande, nella grandezza, del bello, nella bellezza del $emplice, & nella $emplicità dello $plendido; anzi que$to è $omma lode dell'oratore, et $i fa me$colando, le condi- tioni d'una forma, con le conditioni d'unaltra. come è manife$to a i ueri Architetti dell'oratione. però dico io, che me$colando con ragione nelle fabriche le proportioni d'una maniera, o compo- nendole, o leuandole, nè puo ri$ultare una bella forma di mezo. le co$e da prima $ono $emplici, è $chiette, poi $i fanno con diuer$e aggiunte ogni fiata maggiori, et piu ornate come $i uede chia- ramente in tutte le opere, et inuentioni de mortali. Non deue però il $auio, & prudente Ar- chitetto pigliare tutto quello, che uien fatto da ognuno, ma $olamente quelle co$e, che comin- ciano hauere non $o che di occulta uirt ù, onde dilettino i $en$i no$tri. come lo eccellente oratore non piglia tutto quello, che'l$ciocco uulgo, o la ba$$a plebe apprende, ma tutto quello, che puo cadere $otto la capacità di chi a$colta con qualche piu eleuato $ entimento, che da $e la ple- be non trouaria, ma trouato da altri appiglia, & $ene diletta. co$i Vitruuio, non pren-</I> <foot><I>P</I> 2</foot> <pb n="116"> <fig> <pb n="117"> <I>de tutte quelle forme, & figure di fabriche, & di Tempij, che $ono fatte da que$ti, & da quelli, che nel fabricare $ono in luogo di uulgo, & di plebe: perche questo $arebbe in- finito, ne caderebbe $otto artificio. Ma ci propone quelle co$e, che $atisfanno a chi non $a piu oltre, poi che $on fatte, ma non po$$ono e$$ere ritrouate da ognuno, & dice, che i principij, cioè l'origine della no$tra con$ideratione è la figura, cioè quello, che prima $i rappre$enta allo a$petto. Que$ta figura, & que$to a$petto, o nelle fronti, o nelle $palle, o ne i lati & fianchi de i Tempij: o partitamente in piu fabriche, ouero in una i$te$$a: & però Vitr. ci mette</I> <fig> <I>inanzi $etle figure, & a$petti di Tempij: & dice, che il primo $i chiama, In antis. cioèfaccia in pila- $tri, perche Ante $i chiamano le pila$trate, che $ono nelle cantonate della facciata, che in Greco $ono dette Para$tade. Il primo a$petto adunque, è della facciata dinanzi, & della fronte del Tempio: nella quale $ono ne gli anguli le pila$trate, & contraforti quadrati, & nel mezo le colonne, che $portano in fuori, $opra le quali è il fronti$picio fatto con quelle ragioni, che $i dirà poi. Il primo a$petto adunque dice Vitruuio, che è in que$to modo.</I> <p>Il Tempio di faccie in pila$tri, $arà quando egli hauerà nella fronte i pila$tri, de i pare- ti, che rinchiudeno il Tempio, & tra i pila$tri nel mezo due colonne, & $opra quelle <pb n="118"> <fig> <pb n="119"> il fronti$picio fatto con quella conuenienza di mi$ure, che $i dirà in que$to libro. Lo e$- $empio di que$to a$petto $i uede alle tre Fortune, & delle tre quello, che è uicino alla por- ta collina. <I>A no$tri giorninon $i ha reliquia di que$to Tempio, però con le ragioni imparate da Vitruuio figurando la pianta., & lo in piè, & alcuna fiata il profilo, & i fianchi, la$cia- remo le ombre, & lo empir i fogli di figure, & di co$e minute, & facili, non affettando la quan tità, & la $ottilità delle figure adombrate in i$corzo, & pro$pettiua, perche lano$tra intentio- ne è di mo$trare le co$e, & non in$egnare a dipingere. La pianta del Tenpio, detto faccia in pi-</I> <fig> <I>la$tri, è $egnata A. doue $ono le pila$trate quadre in forma di colonne è $egnato B. & le colonne nel mezzo C. lo in piè è $egnato D.</I> <p>La faccia in colonne detta pro$tilos, ha tutte le co$e, che tiene la faccia in pila$tri, má ha due colonne $opra le cantonate dirimpetto a i pila$tri, & $opra ha gli architraui, come la faccia in pila$tri, & dalla de$tra, & dalla $ini$tra nel uoltare delle cantonate tiene una colonna per banda. lo e$$empio è all'l$ola Tiburtina al Tempio di Gioue, & di Fauno. <pb n="120"> <p><I>Il $econdo a$petto accre$ce al primo due colonne $opra le cantonate all'i<*>contro delle pila- $trate, & due nel uoltare, cioè una per banda. Stimo io, che la luce di que$ti Tempij ue- ni$$e $olamente dalle porte; perche io non trouo fatta mentione altroue di fine$tre. l'I$ola Tibc- rina fu con$acrata ad E$culapio, fatta prima a ca$o, poi fortificata da Romani, & adornata di molti belli, & grandi edificij. Appre$$o il Tempio di E$culapio hebbe Gioue il $uo edifica- to da L. Furio Purpurione con$ule; & dedicato da C. Seruilio, come dicono alcuni: & nella pun ta dell'I$ola hebbe anche Fauno il $uo Tempio, del quale hoggi a pena $i uedeno pochi ue$tigi, & meno $e ne uederà per l'auuenire, perche il Teuere gli ua rodendo d'intorno, & leuando il terreno. T.Liuio uuole, che di alcune condennagioni fu$$e edificato il detto Tempio da Gn.Do mitio, & da C. Stribonio edili. La pianta di que$to tempio è $egnata F. & $erue anche al ter zo a$petto, detto Amphipro$tilos: perche leuandone le colonne dall'altra te$ta, & continuan- do il parete, re$ta que$to a$petto $econdo, detto Pro$tilos. lo in piè è $egnato E. & $erue an- che al terzo a$petto, intendendo$i la i$te$$a fronte dall'altra te$ta.</I> <p>Lo a$petto detto Amphipro$tilos, tiene quanto è nell'a$petto detto Pro$tilos, ma di piu $erua lo i$te$$o modo, di colonne, & di fronti$picio nella parte di dietro. <p>Lo a$petto detto Peripteros cioè alato intorno, è quello, che tiene d'amendue le fron ti $ei colonne: ma ne i lati undici con le angulari, $i che que$te colonne $iano po$te in mo do che lo $pacio, che è tra colonna, & colonna, $ia d'intorno da i pareti a gli ultimi ordi ni delle colonne, & $i po$$a pa$$eggiare d'intorno la cella. come è' nel portico di Metelz lo, di Gioue Statore, & alla Mariana dell'Honore, & della uirtu, fatto da Mutio $en- za la parte di dietro. <p><I>Silegge, che fuori della porta $alaria era un Tempio con$acrato all'honore, perche in quel luo go $i trouò appre$$o l'altare una lama con que$te parole. DOMIN AE HONORIS. M. Marcello dedicò un Tempio all'Honore, & alla Virtù, che fu poi re$taurato da Ve$pa$iano pro pinquo alla porta Capena (come $i truoua nelle medaglie.) Fece Marcello que$to per uno ricor- do a quelli, che u$ciuano all'impre$e, che per la uirtu s'entra all'Honore. Mario $imilmente edificò un Tempio all'Honore, & dal Tempio della uirtu s'entraua. Gn. Domitio pretore drizò $ul Qui- rinale un Tempio alla Fortuna primigenia, & iui anche era un Tempio dell'Honore. Fu edifica- to delle $poglie Cimbriche, & Theutoniche, in quella parte del monte E<*>quilino, che Merulana in luogo di Mariana, è detta. La pianta, & lo in piè di que$to Tempio è $oprapo$to nel primo libro.</I> <p>Il fal$o a$petto di due ordini detto P$eudodipteros, co$i è po$to, che nella fronte; & di dietro $ono otto colonne, & ne i lati quindici con le angulari: ma $ono i pareti della cella dalle te$te dirimpetto a quattro colonne, & co$i lo $patio, che $arà da i pareti d'in- torno a gli eftremi ordini delle colonne $arà di due intercolunnij, & d'una gro$$ezza da piedi della colonna. Lo e$$empio di que$ta forma non è in Roma: ben $i troua in Ma- gne$ia il Tempio di Diana fatto da Hermogene Alabandeo; Et il Tempio d'Appolline fatto da Mne$te. <p><I>Il quinto a$petto è detto P$eudodipteros, che $ignifica, fal$o alato doppio. P$eudo uuol dire fal$o, Dipteros due ale: perche pteros $ignifica ala, & pteromata $ono dette le mura dall'una, & l'altra parte dello Antitempio detto Pronao, & uolgarmente $i dice un'ala di muro: & an che detti $ono pteromata i colonnati d'intorno al Tempio, perche a modo di ala $tanno d'intor- no: onde peripteron, è detto quello a$petto di figur a di Tempio, che ha d'intorno la cella, o na ue del Tempio uno ordine $olo di colonne, Dipteros due, P$eudodipteros quello, che' ha leuato l'ordine interiore delle colonne d'intorno, & la$cia piu libero lo $pacio da pa$$eggiare d'intor- no il corpo del Tempio. la pianta è$egnata O. nel primo libro, & quiui $otto.</I> <p>L'a$petto di due ordini, che Dipteros è detto, ha dinanzi, & di dietro otto colonne & d'intorno la cella ha due ordini di colonne; come il Tempio Dorico di Quirino, & lo Ionico di Diana Efe$ia fatto da Cte$ifonte. <pb n="121"> <p><I>Del Dipteros, & del P$eudodipteros ne fa mentione Vitr. nel proemio del $ettimo libro. & nel $eguente Capo ragiona della inuentione di Hermogene.</I> <p><I>Pianta dello a$petto detto Peripteros, cioè, alato d'intorno.</I> <fig> <p>Il $otto aere, & $coperto a$petto, detto hipethros, è di dieci colonne per te$ta, & nel re$to è $imile al dipteros, & nella parte di dentro tiene doppio ordine di colonne in altezza rimote da i pareti al circuito, come il portico de i peri$tili, ma la parte di mezo è $coperto $enza tetto, & ha l'intrate delle porte dinanzi, & di dietro. l'e$$empio non è in Roma, ma in Athene è di otto colonne, nel tempio di Gioue Olimpio. <p><I>Que$to doueua e$$ere un bel- li$$imo, & grandi$$imo Tem- pio: haueua i portichi doppi d'in torno, & di dentro haueua due ordini di colonne uno $opra l al- tro. que$te erano minori del- le di fuori. Il coperto ueniua dalle interiori alle e$teriori, che $taua in piouere. Tutto lo $patio circondato dalle colonne di den- tro era $coperto; L'altare era nel mezo. E$$er doueua, per ogni intercolunnio, un nichio cō la $ua figura; $i di dentro, co- me di fuori; et $i doueua a$cen- dere per gradi. Ma noi hauemo da dolerci, & del mancamento de gli e$$empi, & della pouer- tà della lingua: $e pure non uo gliamo cõ l'u$o ammollire la du rezza delle parole fore$tiere, & che la lingua no$tra $ia corte$e a riceuerle, come ha fatto la Ro mana L. e figure no$tre dimo$tra- no la no$tra intentione.</I> <foot><I>Q</I></foot> <pb n="122"> <fig> <pb n="123"> <fig> <HEAD><I>Di cinque $pecie di Tempij. Cap. II.</I></HEAD> <p>Inque $ono le maniere de i Tempij, delle quali $ono i nomi. Picno$tilos, cioè di $pe$$e colonne; Si$tilos, piu larghe; Dia$tilos anchora piu di$tanti; Areo $tilos, oltra quello, che $i conuiene lontane; Eu$tilos, che ha ragioneuoli, & conuenienti interualli. Picno$tilos adunque è quando tra l'una, & l'altra colonna, ui $i puo porre la gro$$ezza d'una colonna, & meza, come nel Tempio di Diuo <foot><I>Q</I> 2</foot> <pb n="124"> Giulio, & nel Foro di Ce$are il Tempio di Venere, & $e altri Tempij $ono di que$ta ma- niera compo$ti. La maniera detta Si$tilos, è quella, doue tra le colonne $i puo ponere due gro$$ezze di colonne, & i Zocchi delle $pire a quello $pacio $ono tanto grandi, quanto $a- rà tra due zocchi, come è nel Tempio della Fortuna eque$tre al Theatro di pietra, & ne gli altri, che $ono con le i$te$$e ragioni fabricati. <p><I>La humana cognitione, $ia di che uirtù dell'anima e$$er $i uoglia o del $en$o, o dello intelletto, comincia prima dalle co$e confu$e, & indi$tinte, ma poi appro$$imando$i l'oggetto, $i fa piu par- ticolare, & piu certa. nè uoglio hora filo$ofare $opra que$to; $olamente ne darò un'e$$empio del- la cognitione de i $en$i. Vedendo noi di lontano alcuna co$a, ci formiamo prima una cognitione confu$a dello e$$ere, ma uedendo poi, che quella col mouimento $i porta in alcuna parte, giudica- mo, che $ia animale; & piu auuicinando$i cono$cemo e$$er un'huomo; poi piu appre$$o cono$ce- mo, che è un'amico; & finalmente uedemo ogni parte di quello. co$i dallo e$$ere, che è co$a uni- uer$ali$$ima, uenimo al mouimento, & dal mouimento ci re$trignemo all'animale, & peruenen-</I> <fig> <I>do a piu distinto cono$cimento, trouamo l'huomo, ricono$cemo l'amico, & distinguemo ogni parte del corpo $uo. $imilmente adiuiene nella cognitione dello intelletto. però Vitru. ci ha pro- po$to una indi$tinta, & confu$a cognitione de i Tempij, pre$a dalla figura, & dallo a$petto loro. Perche tra le co$e $en$ibili, la figura è oggetto commune, perche è $ottopo$ta alla cognitione di piu $en$i. Di$cende poi alla di$tanza delle parti; & diuenirà finalmente alla particolare, & di- $tinta mi$ura d'ogni particella. Sette adunque $ono i regolati a$petti delle figure de i Tempij. co- me uniuer$ali principij della cognitione di que$ta materia, & gia $ono $tati e$po$ti quali $iano. Appro$$imando$i poi allo edificio, uedemo le apriture, & $pecialmente gli $pacij tra le colonne, i quali e$$endo in alcuni Tempij piu ri$tretti, & in alcuni piu larghi, portano all'occhio diuer$e apparenze, & fann o diuer$i effetti, o di dolcezza, & bellezza, o di grandez za, & $euerità, $i come fanno gli $pacij delle uoci nelle orecchie: però che quello, che è con$onanza alle orecchie, è</I> <pb n="125"> <fig> <pb n="126"> <HEAD><I>Lo in piedi dello a$petto Hypethros, cioè$coperto.</I></HEAD> <fig> <pb n="127"> <fig> <pb n="128"> <I>bellezza a gli occhi. però Vitr. di$tingue le $pecie de i Tempij $econdo gli interualli, che $ono tra colonna, & colonna; non inquanto al numero, ma inquanto alla grandezza loro; & dice, che la prima $pecie, è detta Picno$tilos, cioè di $pe$$e, & ri$trette colonne, quando una colonna è molto appre$$o l'altra. La $econda Si$tilos, quando i uani $ono piu larghi, perche allhora le co- lonne $ono piu di$tanti. La terza è detta, Dia$tilos, che anchora con piu larghi $pacij $i di$egna. La quarta Areo$tilos, che è quando oltra quello, che bi$ogna, di$tanti $i fanno gli inter colunnij, cioè gli $pacij, che $ono tra colonna & colonna. La quinta Eustilos, che ragioneuolmente, & con diletto comparte i uani. & $e licito fu$$e darei a que$te $pecie gli infra $critti nomi, Stretta, Larga, Rila$ciata, Spacio$a, & Giu$ta colonnatura. Diffini$ce poi Vitru. cia$cuna $pecie, & uuole, che laristretta $pecie detta Picno$tilos, $ia quella doue gli $pacij tra le colonne $i po$$ono fare della gro$$ezza d'una colonna & meza. La $pecie, & maniera larga detta Si$tilos, è quando $i puo ponere tra due colonne la gro$$ezza, o diametro di due colonne; ma uuole Vitru. che i zoc- chi detti Plinthides, che $ono i zocchi, & le parti inferiori delle ba$e, $iano tanto di$tanti, quan- to lo $pacio, & uano, che è po$to tra due zocchi. Del Theatro di pietra intende il Filandro il Theatro di Pompeio, i cui ue$tigij $ono in campo di Fiore. nè ual$e al buon Pompeio, che egli ui pone$$e ogni $tudio per farlo eterno, facendolo di pietra, perche troppo grande è la forza del tempo, & la ingiuria che egli fa alle co$e. ma quali non gli $ono $oggette? il tempo i$te$$o con il tempo $i con$uma, & quello che con il tempo prende uita, & uigore, col tempo s'indeboli$ce, & ha fine. perche lo e$$er del tempo è $empre na$cerc, & $empre morire, & mentre $i uiue, al- tro non $i fa, che riceuere le ingiurie del tempo. alle quali quanto $i puo l'arte cerca di reme- diare; ma infine il tempo auanza l'arte. Lo e<02>empio della $pecie detta Picno$tilos è notato nella pianta; & il Si$tilos è nella pianta detta Dipteros, po$ta di $opra.</I> <p>Le due antedette maniere hanno l'u$o loro difetto$o, perche le matrone a$cendendo per gradi alle $upplicationi loro non po$$ono andare al pari tra gli intercolunij; ma bi$o- gna che pa$sino a fila. L'altro difetto è che le porte, & gli ornamenti loro per la $trettez- za delle colonne non $i uedeno. & finalmente per la $trettezza de gli $pacij, il caminar d'in- torno al Tempio è impedito. <p><I>Egli $i potrebbe dire, $e l'u$o, l'a$petto, & il pa$$eggiare è impedito dalle due predette ma- niere, a che fine Vitr. ce le ha propo$te? Dico io, che $i come non $i deue la$ciare a dietro al- cuna forma del dire per e$$er men bella, perche è tempo, che la o$curità ci uiene a propo$ito, & la confu$ione, che $ono forme oppo$te alla chiarezza, & eleganza del dire. co$i non doueua Vitru. la$ciare forma alcuna, che $ia men commoda, & meno gioconda all' a$petto. perche hora è che nell'animo de riguardanti per gli occhi $i ha da poner diletto, & piacere, hora meraui- glia, & horrore, $econdo il bi$ogno; & que$tonon $i puo fare commodamente da chi non $a lo ef- fetto, che fanno diuer$e maniere di fabriche. & $e egli $i dice$$e, che $i deue porre anche le ma- niere difetto$e, per darci ad intendere, come $i deueno $chifare, for$e, che non $arebbe fuori di propo$ito. ma chi uole$$e fare le colonne tanto gro$$e, che quando tra colonna, & colonna ui anda$$e bene due gro$$ezze, ci $arebbe $pacio conueniente di poter andare di pari, que$ti non ha- ueria con$ideratione, che l'altezza grande pa$$arebbe i termini, & che piu di due matrone doueua no andar a pari. & che i zocchi nella maniera Si$tilos occupariano lo $pacio tra le colonne, & fa- riano nè piu nè meno impedimento al caminare. & $imilmente le porte, che deono ri$pondere a proportione, $ariano impedite, come prima.</I> <p>La compo$itione del Dia$tilos, è quando noi potremo traporre nello intercolun- nio la gro$$ezza di tre colonne, come nel Tempio di Apollo, & di Diana. ma que- $t a di$po$itione tiene que$ta difficultà, che gli Architraui per la grandezza de gli $pa- cij, $i $pezzano. <p><I>O quanto deue e$$ere auuertito lo Architetto non $olamente ri$petto alla forma, & ragione, che nello animo, & mente $ua con modi artificio$i riuolge, ma quanto alla materia, i cu difetti i</I> <pb n="129"> <I>$ono infiniti, i rimedij pochi, & difficili, & alcuna fiata niuno, o di niun ualore, però è bene, (come s' è detto) che Vitr. ci propona le maniere difetto$e, accioche per lo contrario ci potia- mo guardare da gli errori. uero è che al $opradetto difetto, $i $uol prouedere facendo $opra gli Architraui molti archi, & la$ciandoli ben fermare, & a$ciugare, la$ciandoui anche di $otto il uano, perche quegli archi leuano il pe$o a gli architraui. Leon Batti$ta nel quinto libro al $et- timo capo a$$ai commodamente ha interpretato i nomi delle $opradette $pecie, $e benc non $i puo con$eguire la felicità de i Greci nella compo$itione de i nomi. & le ha chiamate, conferta, $ub- conferta, $ubdi$pan$a, di$pan$a, & elegante. Deue$i bene auuertire, che Vitr. non ha uoluto dar legge ferma de gli $pacij delle $opradette maniere, ma ha u$ato parole indeterminate, dicen- do, egli $i puo porre, $i potrebbe collocare, & $imiglianti modi. que$to auuertimento ci uenirà a propo$ito n<*>lle opere Doriche, nel quarto libro.</I> <p>Nelle maniere Areo$tili non ci è dato l'u$o de gli Architrau i di pietra, nè di marmo, ma $opra le colonne $i deono ponere le traui di legno continue, & le maniere di que Tem pij, $ono ba$$e, larghe, humili, & ornano i loro fronti$picij di figure di terra cotta, o di ra- me dorato all'u$anza di To$cana. Come $i uede al Circo Ma$simo il Tempio di Cerere, & di Hercole, & del Pompeiano campidoglio. <p><I>Nelle maniere Areo$tili u$ano liberi $patij tra colonna, & colonna, & però Vitru. ha u$ato il numero del piu, & non ha detto, la maniera Areo$tilos, ma le maniere; perche e$$endo in li- bertà no$tra di fare i uani maggiori, non ci è pre$critta legge, nè regola. In que$te maniere non $i u$ano Architraui di pietra, o di marmo, perche $i $pezzarebbeno. il qual pericolo $e era nel- la $pecie Dia$tilos, doue il uano era di tre colonne, molto maggiormente $arà nella $pecie Areo$ti- los, doue $ono $pacij piu liberi. La doue, per obuiare a que$to difetto, $i faceuano gli Architra- ui di legno, & $i adornauano di auorio, & s'inue$tiuano per coprire il legno. però Vitru. nel quarto libro al $ettimo capo dice il mede$imo, ma con altre parole; & iui è la pianta & lo in piè di que$ta maniera To$cana Areo$tilos. Ma quelle parole, che Vitru. dice.</I> Ma le maniere di que Tempij $ono ba$$e, larghe, humili, & nel latino barice, barricephalæ, hanno difficultà: <I>benche quel barricephalœ $i puo intendere l'auorio, che copriua le te$te di que legni. perche gli Elefanti $ono detti barri. ma quel barice ha difficile interpretatione, $e for$e non è tolto dal Greco, perche uaris, che $i $criue per uita in Greco, $ignifica le chie$e grandi, come dicono i dot- tori Grechi $opra i $almi, & Athana$io $opra quelle parole del $almo</I> 44. <I>a domibus eburneis, che in Greco dicono Apò bareon elephantinon. dice, che le ca$e ornate, & i Tempij $ontuo$i $ono detti Vareis, perche il $almo dice eburneis, come che que Tempij, & quelle ca$e $iano fatte congrande artificio, & magnificentia. Didimo, dice che uaris $ignifica la torre, & che le chie$e $ono torrite della potentia et gratia di Chri$to, & che ha po$to eburneis in luogo di $plendide & precio$e. $imil co$a dice Theodoreto $opra le i$te$$e parole, & Ba$ilio dice, che i grandi edifi- cij $ono da quel nome chiamati. Eu$ebio intende lo i$te$$o. L'arte di formar di creta prima uen- ne in Ethruria, che in altro luogo d'Italia. In que$ta furono eccellenti$$imi Dimofilo,, & Gor- ga$o, & gli i$te$$i erano anche pittori, & con l'una, & l'altra loro arte adornarono il Tempio di Cerere, nel Circo Ma$$imo, & conla Greca in$crittione in uer$i iui po$ti dimo$trarono, che le opere dalla de$tra erano di Demofilo, & dalla $i ni$tra di Gorga$o. Auanti que$to Tempio tutte le co$e erano To$cane, & i fronti$picij erano di que$te opere. Il luogo di Vitru. nel quarto, dou e egli accenna, quello, che egli dice in que$to luogo.</I> {<I>Siano le traui inca$trate in modo con chia- ui, & ritegni, che la commi$$ura habbia lo $pacio largo due dita, imperoche toccando$i le traui, & non riceuendo $piraculo di uento, $e ri$caldano in$ieme, & pre$to $i gua$tano. ma $opra le traui, & $opra i pareti trapa$$ino le me$ole per la quarta parte dell'altezza della colonna $por- tando in fuori, & nelle fronti loro dinanzi fitti $iano gli adornamenti</I>,} <I>Ecco che Vitr. chiama anl epagmenta quelli ornamenti, che $ono appo$ti, & fitti alle trauature per inue$tirle, & co- prirle. & Vitr. dice qui $otto. che quanto gli $patij tra le colonne $ono maggiori, tanto piu gro$-</I> <foot><I>R</I></foot> <pb n="130"> <I>$a e$$er deono le colonne, & con$eguentemente minori, & piu ba$$e. & però i Tempij Areo$tili $ono humili, depre$$i, & ba$$i.</I> <p>Hora egli $i deue rendere la ragione della bella, & elegante maniera Eu$tilos nomina- ta, laquale, & all'u$o & alla bellezza, & alla fermezza tiene e$pedite le $ue ragioni, per- cioche $i deono fare gli intercolunnii della gro$$ezza di due colonne, & un quarto, ma lo $pacio di mezo tanto a fronte, quanto di dietro, $i deue fare di tre gro$$ezze, perche a que $to modo haucrà & lo a$petto della figura gratio$o, & l'u$o della entrata $enza impedimen to; & il pa$$eggiar d'intorno la cella ampiezza. <p><I>Il ri$tretto intercolunnio impediua il caminare, l'entrare, & l'a$petto: però le due maniere di prima erano uitio$e. Il piu largo, & libero portaua pericolo de gli Architraui. Adunque il giu$to, & $cielto tra'l piu, & il meno, che $ono e$tremi uitio$i, nel mezo come uirtuo$o $i deue ridurre. Se adunque uno & mezo, & due è poco, & tre è di piu, re$ta, che due & un quarto $ia conueniente. Ma perche non è co$i due & mezo, come due & un quarto? Ri$pondo, che que- $to farà la giu$ta mi$ura del compartimento, quando $i uorrà fare lo $pacio dello intercolunnio di mezo, maggiore, che gli intercolunnij e$tremi. oltra che $e noi cauamo da una proportione $otto$e$quialtera una $otto$e$quiquinta, ne na$cerà una $otto$e$quiottaua. ecco. uno & mezo $ono $ei quarti, due $ono otto quarti, due & mezo dieci quarti, tre dodici quarti. $ei ad otto $ono in proportione $otto$e$quialtera, dieci a dodici in proportione $otto$e$quiquinta. dirai adunque, $ei uia dodici, fanno $ettantadue: otto uia dieci ottanta. tra $ettanta due, & ottanta cade proportio- ne $otto$e$quiottaua. il noue adunque è piu proportionato al $ei, & al dodici, che al dieci, adun- que noue quarti $aranno i uani della bella maniera. Hor uediamone la proua.</I> <p>Se la facciata doue $i deue fare il Tempio $arà per farlo di quattro colonne, parti$ca$i in parti undici, & meza, la$ciando fuori da i lati i margini, & gli $porti de i ba$amenti. Se deue e$$er di $ei colonne, $i partirà in diciotto: $e di otto, in uentiquattro, & meza. Di que$te parti, $ia il Tempio di quattro, o di $ei, o di otto colonne in fronte, ne piglie- rai una, & quella farà il modulo. La gro$$ezza delle colonne $arà d'un modulo, & ogni intercolunnio, eccetto quello di mezo, $ia di due moduli, & d'un quarto. L'intercolun- nio di mezo, sì dinanzi, come di dietro, $ia di tre moduli: l'altezza delle colonne $ia di otto moduli, & mezo. & a que$to modo per quella diui$ione gli $pacij, che $ono tra le colonne & le altezze delle colonne haueranno la giu$ta ragione. Noi di que$to non hauemo e$$empio in Roma, ma nell'A$ia in Theo è il Tempio del padre Baccho di ot- to colonne in fronte. <p><I>Vitruuio ci rende conto della bella maniera detta Eu$tilos, la quale è quando i uani tra le co- lonne $ono di due te$te, & un quarto, & il uano di mezo è di tre. Con que$ta ragione egli rego- la quelle $ei forme d'a$petto dette di $opra, la$ciando la faccia in pila$tri, perche ella è rinchiu$a, & non ha portico dinanzi. Que$to $i comprende beni$$imo dalle parole di Vitru. perche egli di- mo$tra cia$cuna di quelle figure dal numero delle colonne, & però in uece di dire pro$tilos, & am phiprostilos, cioè facciata in colonne, o ambe le te$te in colonne, egli dice tetra$tilos, cioè quat tro colonne. & in uece di dire peripteros, egli dice e$a$tilos, cioè di $ei colonne. & in uece di di- re p$eudodipteros, o dipteros, egli dice, e$a$tilo cioè di $ei colonne in fronte. Hauendo adunque di- me$trato in confu$o le maniere de gli a$petti, hora egli uuole regolarle. Et prima $econdo la bel- la maniera dello $patio giu$to, & $cielto, & poi $econdo le altre, che hanno piu $tretti, o piu li- beri interualli. Regola adunque il pre$tilos, & l'amphipro$tilos con una $ola regola, perche l'uno a$petto, & l'altro è di quattro colonne. Piglia lo $patio della fronte del Tempio, & ne fa un- dici parti & meza, una delle quali deue e$$er il modulo, cioè quella mi$ura, che è regolatrice di tutte le parti dell' opera. Ecco qui l'ordine, del quale detto hauemo nel primo libro, al terzo Ca- po. La gro$$ezza adunque della colonna $arà d'un modulo, & e$$endo quattro celonne u'ande- ranno quattro moduli: la$ciando però gli orli, & gli $porti delle ba$e, che $ono $opra le canto-</I> <pb n="131"> <I>nate, che Vitr. dice prœter crepidines, & proiecturas: cioè oltra le margini, & gli $porti. & perche i uani $ono un meno delle colonne, ui $aranno tre uani, quello di mezo uuole tre moduli, che con i primi quattro delle gro$$ezze, delle colonne fanno $ette. I due uani haueranno quattro moduli, & mezo; dando a cia$cuno due moduli, & un quarto. & co$i $aranno regolati i uani della facciata in colonne, & dello Amphipro$tilos. Similmente $i regola il peripteros, cioè ala- to a torno, perche hausndo$i a porre $ei colonne per te$ta, $i ha da partire la facciata in parti di ciotto: una delle quali $arà il modulo: cinque $aranno date a i uani: $ei alle gro$$ezze delle colon ne: il uano di mezo tre: i quattro due per banda: noue, a due moduli, & un quarto per interco- lunnio, che po$ti in$ieme fanno diciotto. Similmente $i regola il finto alato doppio, & il doppio alato, perche e$$endo l'uno, & l'altro nelle te$te di otto colonne, egli $i partirà la fronte in parti uentiquattro & meza, l'una delle quali $arà il modulo. Otto moduli adunque andaranno alle gro$$ezze delle colonne, tre nel uano di mezo, che $ono undici. & perche re$tano tre uani per banda, che $ono $ei, andandoui due te$te, & un quarto per uano, ui andranno tredici moduli, & mezo, che aggiunti a gli undici, fanno uentiquattro & mezo. Et que$to è quello, che Vitr. ci in $egna, & ci regola anche l'altezza delle colonne, & uuole, che in ogni maniera di a$petto rego- lato $econdo la $cielta diui$ione de i uani, l'altezza delle colonne $ia di otto moduli & mezo et qui- ui accenna la maniera Ionica, della quale egli dice ragionar nel pre$ente libro.</I> <p>Et quelle ri$pondenze di mi$ure ordinò Hermogene; il quale anche fu il primo nel trouar la ragione del Tempio d'otto colonne, ouero finto a$petto doppio. perche dalla $imme- tria del Dipteros, egli leuò gli ordini interiori di trenta colonne, & con quella ragione, & della $pe$a, & della fatica fece guadagno. Que$ti nel mezo d'intorno la cella fece un lar- ghi$simo $pacio da pa$$eggiare, & non leuò alcuna co$a dello a$petto, ma $enza di$iderio di co$e $uperflue con$eruò l'autorità con la di$tributione di tutta l'opera. Percioche la ra gione delle ale, & delle colonne d'intorno al Tempio è $tata ritrouata, accioche lo a$pet to per l'a$prezza de gli intercolunnij haue$$e riputatione, & anche $e per le pioggie la for- za dell'acqua tene$$e occupata, & rinchiu$a la moltitudine delle genti, pote$$ero hauer nel Tempio, & d'intorno la cella con largo $patio libera dimora. Et tutto que$to $i truo ua e$pedito nelle di$po$itioni del P$eudodipteros. Il che pare, che Hermogene fatto hab bia con acuta, & gran $olertia gli effetti delle opere, & che habbia la$ciato i fonti, d'onde i po$teri pote$$ero trarre le ragioni delle di$cipline, & gli ammae$tramenti dell'Arte. <p><I>Leuando$i dal Dipteros le colonne di dentro, ponendoui quelle delle te$te, $i leuano trenta co- lonne, come per la pianta $i puo uedere. Hermogene per i$paragno di $pe$a, & di fatica leuò l'or dine di dentro, la$ciò i portichi piu $pacio$i, non tol$e alcuna co$a dallo a$petto, perche nelle fron ti re$tarono le otto colonne, & dalli fianchi $e ne uedeuano quindici. Et però que$to a$petto $i chia ma fal$o dipteros, perche fa la mo$tra del dipteros, ma non è. Da que$to luogo $i comprende, che Vitru. ha regolati gli a$petti, $e bene egli non gli ha nominati, perche chiaramente egliper octa- stilo ha inte$o il Dipteros, & il P$eudodipteros. dicendo di Hermogene que$te parole.</I> Il quale anche fu il primo a ritrouar la ragione del Tempio di otto colonne, ouero P$eudo- dipteros. <p><I>Dimo$tra anche chiaramente la $ua intentione nel proemio del quarto, nel quale egli di- ce, quanto è $tato e$$equito nel terzo, dicendo d'hauer detto delle di$tributioni, che $ono in cia$cuna maniera, cioè ne i principij della cognitione de i Tempij, quanto a gli a$petti, & delle cinque maniere, che trattano de gli $patij, che $ono tra le colonne. Ma qui potrebbe na$ce- re un dubbio, come $ia, che Vitr. non habbia fatto mentione del Tempio ritondo, & come egli non habbia regolata la maniera de i Tempij $coperti, che hanno dalle te$te dieci colonne? Al pri mo dico, che Vitr. ragiona de i Tempij ritondi nel quarto, & for$e gli mette nel numero de gli a$petti, che $ono di liberi intercolunnij, come anche i To$cani, & ha la$ciato di trattarne, $egui tando in que$to luogo quelli a$petti, che per alcuna aggiunta uanno cre$cendo. Al $econdo $i di-</I> <foot><I>R</I> 2</foot> <pb n="132"> <I>ce, che è co$a facile dalle $oprapo$te regole compartire anche il Tempio $coperto detto hipethros, $econdo la bella maniera: però $e'l Tempio $arà in fronte di dieci colonne; egli $i partirà la fronte in parti trent auna, una delle quali $arà il modulo, la gro$$ezza delle colonne $arà d'un modulo. & però a dieci colonne $i daranno dieci moduli. allo $pacio di mezo tre, che $ono tredici, a i uani da i lati, che $ono quattro per banda, che fanno otto uani, $e ne daranno diciotto, che gionti alli tre dici, $ommano trentuno. La pianta, & lo in piè di que$ta forma è $egnata col nome $uo.</I> <p>Ne i Tempij Areo$tili, doue $ono gli $pacij liberi tra le colonne, deon$i fare le colonne in que$to modo, che la gro$$ezza di quelle $ia l'ottaua parte dell'altezza. Et nella forma Dia$tilos, $i deue mi$urare l'altezza in que$to modo, che $ia diui$a in parti otto, & meza & di una parte $ia fatta la gro$$ezza delle colonne. Nella maniera Si$tilos egli $i ha a diui dere l'altezza in noue parti, & meza, & di quelle darne una alla gro$$ezza. Nella manie- ra picno$tilos, l'altezza è diui$o in dieci parti, & d'una $i fa la gro$$ezza della colonna. Nella maniera Eu$tilos, $i $erua la ragione della Dia$tilos, cioè, che l'altezza della colon na $i diuide in otto parti & meza, & una $i dona alla gro$$ezza. Et a que$to modo $i da per la rata parte la ragione de gli $pacij tra le colonne: perche, $i come cre$ceno gli $patij tra le colonne, co$i $i deono con proportioni accre$cere le gro$$ezze de i loro fu$ti, per- che $e nella maniera areo$tilos la gro$$ezza della colonna $arà la nona, ouero la decima parte, ella ci parerà tenue, & $ottile, perche per la larghezza de i uani l'aere con$uma, & $minui$ce la gro$$ezza dello a$petto de i tronchi delle colonne. per lo contrario $e nella forma picno$tilos $arà la gro$$ezza l'ottaua parte dell'altezza, per l'angu$tia, & $trettezza de gli $patij, farà un'a$petto gonfio, & $enza garbo, & però bi$ogna $eguire la conuen ien za delle mi$ure $econdo la maniera dell'opera, & co$i per que$to $i deono fare le colonne, che $tanno $u le cantonate, piu gro$$e una cinquante$ima parte del loro diametro, perche $ono dallo aere circon$tante tagliate, & piu $ottili paiono a i riguardanti: & però quello che in ganna gli occhi deue con la ragione e$$ere e$$equito. <p><I>Hauendo Vitru. regolati gli a$petti con la piu $cielta, & bella maniera de gli intercolunnij, detta Eu$tilos, hora egli ci in$egna, come $i hanno a regolare gli a$petti delle allre maniere, che $ono le altre quattro, la $tretta, detta picno$tilos; la larga, detta $i$tilos; la rila$ciata, detta dia $tilos; & la $pacio$a, & libera, detta areo$tilos. La $omma della $ua intentione è que$ta, che noi douemo con$iderare gli $patij, che $ono tra colonna, & colonna in cia$cuna delle dette forme, & doue trouaremo tra le colonne e$$ere $pacio maggiore, douemo a proportione fare piugro$$a la colonna: & la ragione è que$ta, perche $e fu$$ero le colonne $ottili doue $ono i uani maggiori, molto $i leuarebbe dello a$petto, imperoche lo aere è quello, che toglie della gro$$ezza delle co- lonne, & fa parere quelle piu $ottili, come la i$perianza ci dimo$tra. Doue adunque è piu di ua- no, & di $pacio, iui entra piu l'aere, il quale e$$endo d'intorno taglia del uiuo; Et però con buo- na ragione la distanza de gli intercolunnij regola la gro$$ezza delle colonne. La onde Vitr. uo- lendoci confermare con altra i$perienza, & ragione quello, che ci ha propo$to, uuole, che le co lonne, che stanno $u gli anguli delle fabriche, che hanno portichi d'intorno, $iano piu gro$$e al- quanto delle altre, che $ono tra quelle, perche d'intorno le colonne angulari $i rauna maggior quantità di aere, & di luce, che le uiene a mangiare della lor gro$$ezza, doue pareno piu $ottili delle altre, & però in rimedio di quello, che leua la luce, & lo aere, $e le da la cinquante$ima parte del diametro di piu delle altre. il che $erue a quella digni$$ima parte, che nel primo libro è detta Eurithmia. Vitr. adunque ha detto del numero delle colonne de gli a$petti, detto ha delle di $tanze loro nelle cinque maniere: & poi ha detto delle grandezze di quelle: & co$i è di$ce$o a po- co a poco dall'uniuer$ale al particolare, & ha distinto le co$e confu$e $econdo l'ordine della huma na cognitione. & anchora diuiene a piu particolar notitia, & tratta delle contrattioni, & ra- stremamenti, che $i fanno nel $ommo della colonna, & $imilmente della gonfiatura, che $i fa nel mezo. & dice.</I> <pb n="133"> <p>Le diminutioni, che $i fanno nella parte di $opra delle colonne $otto i collarini detti hy potrachelij, $i deueno fare in que$to modo, che $e la colonna $arà di quindici piedi almeno, $ia diui$a la gro$$ezza del fu$to da ba$$o in $ei parti, & di cinque di quelle $i faccia la gro$- $ezza di $opra, & di quella colonna, che $arà alta da quindici a uenti piedi, il fu$to da ba$$o $ia diui$o in $ei parti & meza, & di quelle $iano date cinque & meza alla gro$$ezza di $opra. $imilmente di quelle, che $aranno da uenti fin'a trenta piedi, la pianta $i partirà in $ette par ti, & in $ei di quelle $i farà la diminutione di $opra. ma quella, che $arà da trenta fin qua- ranta piedi, dal ba$$o piede hauerà $ette & mezo, & dal di $opra $ei, & mezo la ragione del $uo ra$tremamento: Et co$i quella, che $arà alta da quaranta $in cinquanta piedi, e$- $endo dal ba$$o diui$a in otto parti, $arà $ette di $opra nel Collarino: Et quelle, che $aran- no piu alte, con la i$te$$a ragione per la rata parte $i faranno piu $ottili. Ma quelle per la di$tanza dell'altezza ingannano la ui$ta, che a$cende: Et però $i aggiugne il temperamen- to alle gro$$ezze, poi che la ui$ta no$tra $eguita mirabilmente la gratia, & la bellezza. al cui piacere, $e noi non con$entimo lu$ingando con la proportione, & con la aggiunta de i moduli, accioche quello, di che ella è ingannata, & defraudata, con bello temperamen- to $i accre$ca, dalle opere $arà rimandato adietro l'a$petto di quelle, $enza gratia, & $en- za proportione di bellezza. <p><I>Faceuano gli antichi la $ommità della colonna piu $ottile, che la parte di $otto; faceuano $imil mente nel mezo una gonfiezza, & tumidezza molto dolce, & tenera, che gentilmente $i uolge ua, che le daua molto del buono. La ragione, perche co$i faceuano, era, perche le co$e na$cen ti dalla terra, come $ono gli alberi, piu che $i leuano, piu s'a$$ottigliano, & gli huomini piu ag gra<*>ati da i pe$i, piu s'ingro$$ano nel mezo. però imitando gli alberi $i ra$tremano le colonne di $opra, & imitando lo effetto del carico, $i gonfiano nel mezo. $i come adunque cre$cendo in lar ghezza iuani, Vitr. ha uoluto, che a proportione cre$ca la gro$$ezza delle colonne, co$i uuole hora per la i$te$$a ragione, che quanto è piu alia la colonna, tanto meno $ia ra$tremata di $opra, perche cre$cendo in altezza, fa lo e$$etto da $e $te$$a & di cio ne dà lo e$$empio, la regola, & la ragione, il che è facile. Ma come $i faccia, & doue comincia que$ta diminutione, & con che garbo $i tiri la gonfiatura nel mezo, Vitr. non ci dimo$tra, benche egli prometta in fine del libro darci il di$egno, & dice.</I> <p>Ma della aggiunta, che $i fa nel mezo della colonna, che enta$i $i chiama, nel fine del libro $arà formata la $ua ragione, come dolce, & conueniente $i faccia. <p><I>Credo io, che que$to $tia in di$cretione, & de$trezza, piu pre$to, che in arte o regola: ben- che il Serl<*>o, & altri ne trouino alcuni modi, a i q uali mi riporto. Di$idero bene, che $i auuer ti$ca, che l'huomo non prenda ammiratione, $e mi$urando le antichità di Roma, non ritroua $pe$ $o le mi$ure delle colonne a punto, perche $e egli $i pote$$e uedere tutto il corpo della fabrica, l'huo mo non $i marauiglierebbe della grandezza, o picciolezza de i membri, ma ritrouando un piede, oucro un braccio $eparato, non puo dire, que$to piede è grande, o picciolo; dico ri$petto del cor- po. $e adunque cio uale nel corpo humano, perche non deue ualere nel corpo d'una fabrica, o d'al tra co$a artificio$a? perche uolemo far giudicio d'una colonna, non $apendo come ella era po$ta in opera, che $pacio era tra una colonna, & l'altra, in che maniera era collocata, per quale acci dente era co$i compartita: che effetto, in che luogo faceua, & altri $imili ri$petti? che danno, che dire a que$ti di$egnatori, che tutto di uanno mi$urando le parti & le particelle, $enza con$ide ratione del tutto, & $e ne fanno regole, & precetti inuiolabili: & dicono, che non $i troua in Ro ma co$a fatta $econdo le regole di Vitr. al quale doueriano credere, poi che egli $te$$o, ci leua la $oper$titione, l'obligo, & la $eruitù con le ragioni manife$te: Sono bene i termini delle co$e, $econ- do il piu, & il meno, ma tra que termini, oue $ia, chi uoglia procedere con ragione, non ha per duto il modo di fermar$i piu in uno, che in altro luogo, quando la occa$ione gli dà di farlo.</I> <pb n="134"> <HEAD><I>Delle fondationi, & delle colonne, & loro ornamenti, & di gli Architr aui tanto ne i luoghi $odi, quanto ne i mo$si, & aggrumati. Cap. III.</I></HEAD> <p>LE fondationi delle opere $opradette di quanto $ottera $i ha da fare, $i deo- no cauare, $e trouar $i po$$ono, dal $odo, & poi nel $odo, quanto ci pare- rà per la grandezza dell'opera, $iano fatte, & quella fabrica, o $truttura per tutto il $uolo quanto piu $i faccia $odi$sima: & $opra terra $i facciano i muret- ti $otto le colonne per la metà piu gro$si di quello, che $aranno le colonne: accioche le parti di $otto $iano piu ferme delle parti di $opra (& que$ti $i po$$ono chiamare Stereo- bata, qua$i ferme piante, perche $o$tentano il pe$o di tutto lo edificio) oltra di que$to gli $porti delle $pire, o delle ba$e non deono u$cire dal $odo: & allo i$te$$o modo deue e$$ere $eruata la gro$$ezza del muro, ma bene gli $pacij deono e$$er fatti a uolte, ouero $ianolbene ra$$odati, & battuti, accioche $iano bene rattenuti, & fermi. <p><I>Hauendo Vitruuio trattato di quelle co$e, che da lontano in confu$o, & di quelle, che piu di $tintamente, & d'appre$$o uedemo, accioche non paia, che $iano $olamente nello aere, & che non habbiano piede, egli uuole trattare delle fondamenta di quelle, & con bell'ordine dal fondamento peruiene fino alla cima, facendo na$cere, & cre$cere la fabrica. Primier amente adunque egli ci mostra quello, che deue $tare $otto le fabriche, & uucle, che imitiamo la na- tura, che ne gli alberi fa le parti inferiori piu gro$$e, che le $uperiori: percioche meglio $i $o- $tentano i pe$i, & i carichi grandi. Il piano adunque, doue $i deue fabricare, è ouero duro, $o- do, & naturale, ouero tenero, molle, & di terreno portato & mo$$o. diuer$amente $i deue fondare nell'uno, & nell'altro: perche doue trouerai la terra $oda, iui cauerai per fondare. & farai la fo$$a tanto larga, quanto porta la ragione dell'opera, che dei fare. $e il ter- reno $arà molle, o $arà tale nella $operficie, ouero profonderà molto: $e è nella $operficie, ca- ua in$ino, che troui il $odo, $e profonderà, bi$ognerà farle una palificata ben battuta, & ra$$odata. Il fondamento è detto $ubstructione, che altro non <*>, che la fa<*>brica, che $i fa $ot- terra, fin che $i ueda. Hora que$ta fondatione deue e$$er di $ott<*> larga, & piu che a$cen- de, piu $i ua re$tringendo. Deue$i cauare il terreno della fo$$a egualmente, & il fondo deue e$- $er piano, & eguale per tutto, accioche il pe$o della fabrica lo prema egualmente, nè i pareti fac- ciano danno, o $egno alcuno. Le larghezze delle fo$$e per le fondamenta $i deono fare dal giudi- cio dell' Architetto, $econdo le gro$$ezze delle mura, le grandezze delle fabriche, & le quali- tà de i terreni: perche puo uenire occa$ione o nel fare un gran palazzo, o un Tempio, ouero un ponte, che $i facciano le fondamenta intiere continuate per tutto il piano, di $otto con per- petua muratura. Quando al pari del piano hauerai leuato la $ottomuratura, & il fondamento dei leuare alcuni muretti, che $i chiamano Stereobati, & altroue $tilobati, qua$i $odi, & fermi piedi delle colonne: benche altroue Stereobata uoglian dire il ba$amento di tutta la fabri- ca, che in alcuni edificij, è fatto a $carpa. ma che quiui intenda il piede$talo, $i uede per quel- le parole.</I> {<I>& $otto terra $i facciano i muretti $otto le colonne.</I>} <I>cioè quando la fabrica co mincia a $coprir$i, & ueder$i. I muretti $otto le colonne altro non $ono, che i piede$tali, che $i doueriano dire piede$tili, cioè piedi delle colonne, che $arebbe parola compo$ta del Gre co, & del uolgare. ma parliamo $econdo l'u$o. que$ti adunque doueriano e$$er piu gro$$<*> per la metà del fu$to delle colonne da ba$$o. ecco la ragione. La $pira, & ba$a della colonna non i$por ta piu in fuori per lo piu, che la metà della gro$$ezza della colonna, cioè per un quarto da un lato, & per un quar to dall'altro; & que$to nella Dorica: perche lo $porto della ba$a Ionica $i</I> <pb n="135"> <I>fa d'una quarta, & ottaua della gro$$ezza della colonna, come anche della Corinthia. Vuole adunque Vitruuio che il piede$talo, che è $otto la colonna, $ia per la met à piu gro$$o della colon- na, che ui ua $opra: & di piu uuole, che gli $porti delle ba$e, che $ouo tanto, quanto la lar- ghezza del zecco, non e$chino del uiuo, cioè del quadrato del piede$talo. Egli $i deue auuertire, che per que$to nome Stilobata, $e bene s'intende quel muretto, che è $otto le colonne, come pie- de, & po$amento, però $ono anche i Stilobati congiunti uno con l'altro mediante quella aggiun- ta, della quale parlerà Vitruuio qui $otto: & però tutto quel ligamento, è detto anche Stereo- bata, $econdo la e$po$itione del nome, che detto hauemo: & tutta que$ta fabrica è imme</I> <fig> <I>diate $opra terra, & $i puo anche poggio no minare: ma del poggio ne dirò qui $otto. Deue $i auertire, che i buoni antichi, $e bene face- uano il ba$amento piu largo della fabrica di $opra, non però lo faceuano a $carpa: ma in modo di gradetti, come ci mo$tra la figura qui appre$$o. Dice poi Vitruuio.</I> {<I>Et allo i$te$$o modo deue e$$er $eruata la gro$$ezza del mu- ro</I>} <I>cioè che la parte inferiore $ia piu gro$$a di quella di $opra. Ma gli $pacij, che $ono tra un piede$talo, & l'altro, cioè nelle fon- damenta, $i deono legare in que$to modo, che ouero $i facciano a uolti, come è lo in piè d'un Tempio di$egnato nel primo libro, al cap. $e- condo: ouer $iano ra$$odati con palificate ben battute & ferme: & a que$to modo i le- gamenti della fabrica $aranno fermi<02>imi. Que $ti uolti $ono <*>ati ritrouati per $cemar la $pe- $a, & per a<02>icurar, che le colonne per lo pe$o loro non fondino, & i uolti $ono riuer$ei: ma che impedi$ce, che non $iano anche dritti, come è nell' e$$empio allegato? Ma come $i battino le palificate, con gli in$trumenti detti Fi$tuce da latini, & Becchi da noi, non è alcuno, che non lo $appia: & que$ta è la regola di fondare ne i luogbi, che hanno buono, & $odo terreno, co- me $ono quelli di Candia tenaci$$imi, & fermi$$imi, ne i quali è gran fatica fare le cauationi. Ma $e i luoghi $aranno di terreno mo$$o, ouero paludo$o, o tenero come a Venetia, Vitruuio ce in$egna quello $i deue fare, & dice.</I> <p>Ma s'egli non $i truoua il $odo, & che il $uolo $ia mo$$o, ouero palu$tre, allhora quel luogho $i deue cauare, & uotare, & con pali d'Alno, o di Oliuo, o di Rouere ar$icciati con$iccare, & con le machine fatte a que$to propo$ito $iano battute le palificate $pe$si$si- me, & gli $pacij, che $ono tra i pali-$iano empiti di carboni, & le fondamenta $iano empite di $odi$sime murature: ma poi che le fondamenta $aranno ben battute, deon$i porre a li- uello i piede$tali, $opra de i quali di$ponerai le colonne (come s'è detto di $opra): ouero nella maniera di $trette colonne, come ella ricerca, ouero nelle altre, come cia$cuna ri chiede, $ia o rila$ciata, o $pacio$a, o gratio$a maniera, come di $opra $ono $tate ordina- te, & de$critte, perche nelle areo$tile è grande libertà di fare gli $pacij, come piace a cia- $e uno. bene egli $i deue auuertire, che ne gli alati atorno, detti Peripteri, collocate $iano le colonne in modo, che quanti uani faranno nella fronte, tante due fiate $iano ne i lati, p erche co$i $arà doppia la lunghezza dell'opera alla larghezza; però che quelli, i quali hãno uoluto rad doppiar le colonne, & non i uani, pare che habbiano errato, perche pare, che uno intercolunnio oltra quello che bi$ogna, $i $tenda per la lunghezza. <p><I>Vitr. ha detto nel Capo antecedente, che lo alato a torno detto Peripteros, haueua$ei colon-</I> <pb n="136"> <I>ne in fronte; adunque haueua cinque uani; perche $empre i uani $ono un meno delle colonne: & da i lati haueua undici colonne computando le angulari; adunque bauer à dieci uani: & quelli, che hanno raddoppiato il numero delle colonne da i fianchi, hanno errato, perche non hanno computa to nel numero delle colonne da i lati quelle, che $tanno $opra gli anguli, le quali $erueno alla fron- te, & a i lati; $i che bi$ogna raddoppiare i uani, & non le colonne. & que$ta regola è anche nel le altre maniere, che hanno colonne a torno, che for$e $otto que$to nome di periptere $ono $tate tutte compre$e, perche tutte hanno le ale a torno. Fin qui adunque hauemo le $ondamenta, hauemo i piede$tali, & la fabrica alzata da terra: hora $i ragioner à de i gradi, per li quali $i a$cendeua al Tempio. que$ti erano nelle fronti, come $i uede in molte piante di $opra, erano anche d'intorno, come nella pianta del peripteros di $ei colonne s' è po$to: & con una i$te$$a ragione $i regola il nume ro, l'altezza, & la larghezza de i gradi, & però dice Vitr.</I> <p>I gradi nella fronte $i deono formare in que$to modo, che $empre $iano di$pari, perche $alendo$i al primo grado col piè de$tro, lo i$te$$o piede entrando$i di $opra nel Tempio $a rà po$to: ma le gro$$ezze di quelli co$i giudico io che debbiano e$$er terminate, che non $iano piu gro$$e di dieci dita, nè piu $ottili di noue. perche a que$to modo non $arà diffi- cile il $alire. Le ritrattioni de i gradi, non $iano meno d'un piede, & mezo, nè piu di due: & $e d'intorno al Tempio $i deono fare i gradi, $i faranno all'i$te$$o modo. <p><I>Il piede nel $alire prima $i alza, poi s'allarg a: quella mi$ura, che $i fa alzando, è detta gro$$ez za del grado: quella, che il piede calca, & s'allarga per $alire allo altro grado, è detta da Vitr. ri trattione del grado. io chiamerei quella, altezza, & que$ta, larghezza del grado. Qui non di- ce Vitr. che i gradi debbiano e$$ere piu tre, che cinque, piu cinque che $ette. ben è uero, che egli è $tato auuertito nelle fabriche antiche, che nō s' è pa$$ato il numero di noue. et $e pure $i pa$$aua, egli $i faceua un piano, & una ritrattione larga, che noi chiamamo requie, $opra la quale $i ripo$a- uano gli huomini, dapoi la $alita. Deono e$$ere i gradi non piu alti di dieci parti d'un piede, nè meno di noue, ma $e fu$$ero noue parti a punto, o meno di dieci $ariano piu commodi. Pone adun que Vitr. itermini del piu, & del meno: ma a di no$tri $i fanno minori, il che non laudarei, per- che poi non hanno grandezza, $e bene fu$$ero piu commodi alla $alita. Il piede è partito in dodici oncie, come hauemo eletto. de$tante $ono dieci oncie, dodrante noue, & le oncie anche $ono det te dita. Ma $e egli $i uorrà fare il poggio da tre lati, Vitr. dice quello douemo o$$eruare.</I> <p>Ma s'egli $i uorrà fare il poggio da tre lati, bi$ognerà guardare, che i quadretti, le ba$e i tronchi, le cornici, & le gole conuenghino col piede$talo, ch'è $otto le $pire delle co- lonne. <I>Cioè $e'l piede$talo hauerà quadretti, li$telle, tronchi, gole, cornici, & ba$e, ouero altri membrelli, i mede$imi $iano anche nel poggio, come dimo$tra lo in piè del tempio $eguente, che ha il poggio. Ma perche il piede$tale, $oprail quale era la colonna, u$ciua del dritto, del poggio, & per que$to il poggio era ritratto in entro per lo $pacio, che era tra un piede$talo, & l'altro, & faceua una certa concauità, che Vitr. chiama alueolato: però era nece$$ario, che Vitr. ci de$$e la regola di agguagliare, & pareggiare i piede$tali, accioche $i $ape$$e quanto ha- ueuano adu$cir fuori del dritto del poggio, & però dice.</I> <p>Et a que$to modo bi$ogna, che il piede$talo $ia pareggiato, che egli habbia per mezo l'aggiunta per gli $camilli impari; perche $e egli fu$$e drizzato a linea, egli $i uederebbe con l'occhio il letto, & cauo. ma come a far que$to $i facciano gli $camilli conuenienti, come dell'altre co$e, co$i di que$ta $arà de$critto nel fine del libro, la forma, & la di- mo$tratione. <p><I>Deono i piede$tali u$cir del poggio, & que$ta ri$alita Vitr. chiama aggiunta, & la parte del poggio, che $i ritira a dietro, è detta alueolato. Il nome di $camilli in uero non $i troua, ( che io $ap- pia) nè latino, nè dedutto dal Greco. & quando bene uole$$e dire camillum, quando $i dice$$e ca millus nel genere del ma$chio, io direi, che la intentione di Vitr. fu$$e, come io ho detto, perche camillus, nel quarto libro, è una ca$$a, o forma, o telaro, che egli chiama loculamentum. Le</I> <pb n="137"> <I>ca$elle, o celle delle api $i chiamano camilli, & tutto quello, che $epara una co$a dall'altra, come</I> <fig> <I>in ca$$a, è con questo nome chiamato. Quando adunque $ia, che i piedi$tali $eparano una parte</I> <foot><I>S</I></foot> <pb n="138"> <I>del poggio dall' altra, perche non $i po$$ono dire camilli cia$cuno di que $pacij, $eparato da i piede.</I> <fig> <pb n="139"> <I>$tali? che uengono in fuori, & non uanno continuando, ma rompeno la drittura del poggio: &</I> <fig> <foot><I>S</I> 2</foot> <pb n="140"> <I>con licenza egli $i u$i que$to nome del genere del ma$chio, che è neutro.</I> I<I>l $en$o è dunque, co- me ho detto, ilche proucrò anche di $otto. Et $e $camillus uiene da $camnum, per diminutione, & che $i traduca $cabelli, perche i piedi$tali $ono come $cabelli trauer$i, non s'impedirebbe il no $tro $entimento. il quale però è confirmato per alcune parole, che Vitr. dirà qui $otto. Ma la pian ta, & lo in piè del Tempio fatto col poggio $ono fatte di $opra. a carte</I> 137. 138. <I>&</I> 139. <p><I>Conuengono tutte le fabriche nelle fondamenta, o naturali, o artificiali, che $iano. delle ar- tificiali $e ne è ragionato a ba$tanza. $opra le fondamente, o gradi, o poggi, che $i facciano, $ene è dato la regola di $opra. hora $i dirà de i piedi$tali, i quali $ono di due modi. prima tutto il ba$a- mento d'una fabrica $i puo chiamare piede$tale; che in Greco $tereobata, & anche $tilobata $i chiamano le parti prime $opra terra, piu gro$$e che i pareti; perche con perpetua, & conti<*>nuata $odezza legano la fabrica d'intorno. l'e$$empio è nelle piante d'alcuni Tempij $opra po$ti, come nella pianta del dipteros, doue $i uede, che corre quel legamento intorno, $opra il quale è po$to il colonnato. & nella parte dinanzi $ono i gradi $errati tra quel legamento, che è fatto per leuare la fabrica da terra, & per darle $odezza, & mae$tà, & per ornamento. & $pe$$o gli antichi ui poneuano delle $tatue nelle fronti, la doue da una parte, & l'altra erano del ba$amento, che u$ciua dell' ordine delle colonne dinanziper legare i gradi, & que$to poteua e$$er per la quarta parte della colonna in altezza. i piede$tali da $e, & $eparati dal ba$ameno, non $i danno per quanto $i legge, nè alle opere To$cane, nè alle Doriche. però que lli, che danno mi$ure de piede$ta li, pare, che s'habbiano formato di loro capo le mi$ure di quelli, in que generi, doue non $i tro- uano. Ma nello Ionico, Corinthio, & composto, $e ne truouano. come nel pre$ente libro, & nel quinto doue $i ragiona del poggio della $cena, $i uede chiaramente. & molti e$<*>empi, ne $ono in Roma, ne gli archi, Tempij, & Theatri. Que$ti hanno diuer$e mi$ure, & tutte però $i ca- uano dall'altezza della colonna con la $ua ba$a, & capitello, perche altri$ono la terza parte, come quelli dell'arco fatto al ca$tel uecchio di Verona, d'opera Corinthia $ommamente lodata. Altri$ono per la quarta parte, come $ono quelli del Coli$eo: altri $ono d'una quarta & meza, come nell'arco fatto da Traiano in memoria della uittoria di Dacia, $ul porto d' Ancona: & è ope- ra Corinthia bella & $chietta. Altri della quinta, come $i è o<02>eruato. & que$ta diuer$ità na- $ce, perche con diuer$e intentioni l' Architetto $opplire intende alla grandezza, o bellezza delle fabriche, Vitruuio ragionando nel quinto, del poggio della $cena, fa il piede$talo d'uno terzo, proportionando, & il poggio, & le colonne al diametro dell'Orche$tra; & è belli$$ima forma. i piedi$tali ad unque, per le fatte o$$eruationi, $i partirano in otto parti nella loro altezza. di que- $te una ua per gli ornamenti, o membrelli di $opra, che $ono come un capitello del piede$talo: due $i danno alla ba$a, il re$to al dado, o tronco di mezo. La ba$a $i parte in tre parti, due $i danno al zocco, l'altra all'altre parti. $i che gli ornamenti di $otto, o membrelli che $iano, $ono doppij in altezza a gli ornamenti, o membrelli di $opra, che Vitru. chiama, quadre, corone, li$is. Sole- uano gli antichi $otto la ba$a del piede$talo porre uno, o due zocchi, non meno alti di tutta la ba- $a del piede$talo. & que$to per dar fermezza, & grandezza alle opere. $oleuano anche $otto l'or- lo della ba$a della colonna porre un'altro zocco, ilche $pecialmente u$auano di fare ne gli archi. & tutta la ba$a, col detto zocco era d'un pezzo, perche la fu$$e piu atta, a $o$tener i pe$i, come $i uede nell'arco d' Ancona, ne gli archi di Settimio, & di Tito, & di Con$tantino in Roma, & in altri luoghi d'Italia. Ma prima, che io de$criua co$a alcuna, mi pare conueniente e$ponere l'o- rigine, & ragione de i uocaboli, & nomi po$ti alle parti, & membri delle fabriche; accioche $empre non $i habbia a tornar da capo. Fu la colonna (come s'è detto) ritrouata per $o$tenere i pe$i. & prima cra di legno, & ritonda. crebbe poi il di$iderio della grandezza, & perpetui- tà con la concorrenza de gli huomini, d'onde la terra fu $ollecitata, & dalle ui$cere di quella fu- rono cauate le pietre, & i marmi. la onde hebbero luogo le colonne di marmo, ma in modo, che tene$$ero qualche $imiglianza con le colonne di legno, lequali, accioche per li pe$i non $i fende$- $ero, haueuano dalle te$te alcuni cerchi di ferro, & alcune anella, che re$trigneuano i capi di</I> <pb n="141"> <I>que tronchi. doue gli Architetti ad imitatione di quelle, indu$$ero le fa$cie di $opra, & di $otto i fu$ti delle colonne, & accrebbero poi quelle parti, di modo, che la parte di $opra chiamarono capitello, & quella di $otto nominarono ba$a. Nella ba$a o<02>eruarono, che la larghezza $ua fu$$e maggiore dell'altezza, dapoi, che $porta<02>e alquanto piu del fusto della colonna, ad imita- tione del piede humano: & co$i anche l'infima parte della ba$a fu$$e alquanto piu larga di quel- la di $opra; $i come era il piede$talo piu largo della ba$a: & il fondamento piu largo del piede- $talo, ad imitatione della natura, come hauemo detto. Ba$a è nome Greco, in latino $i chiama $pira. perche $pira $ignifica giro, o uoluta: & le ba$e erano ritonde, imitando i cerchi, & le anel- la. ma i Greci chiamano ba$e con miglior comparatione, perche ba$is, uuol dire piede: & la ba- $a è piede della colonna. & però anche i nomi delle parti delle ba$e, da Greci $ono $tati po$ti con que$to ri$petto del piede humano, & d'altre parti, & anche del $uo calzare, perche fanno le ba$e di membri co$i chiamat, come $ono Plinthus, Torus, Scocia, Trochilus, Quadra, Su- percilium, A$tragali. Plinthus è nome Greco, $ignifica mattone, laterculum, ouero cata$trum: & da uulgari è detto orlo: perche zocco è quello, che è $otto la ba$a; che io chiamerei piu pre- $to $ottoba$a, che zocco: & Plinthus chiamerei zocco, o quadrello. Torus è uno membrello ritondo, che ua$opra l'orlo, è detto in Greco $tiuas: & $i chiama Torus, perche è come una gonfiezza carno$a, ouero come uno piumazzetto. noi perche è ritondo lo chiamamo ba$tone: & France$i, bozel, per la i$te$$a ragione. Scocia è Greco, & $ignifica ombro$o, & o$curo; per- che è un membro cauo, che fa ombra; però i no$tri lo chiamano cauetto. altri $corza, perche è come la $corza di mezo ba$tone: France$i chiamano il cauetto contrabozel. Trochilus da Gre- ci, orbiculus, da latini è detto, perche a$$imiglia una rotella, che $opra il taglio habbia un cana- le, come hanno i raggi delle taglie, $opra liquali uanno le funi. Quadra, & li$tella, & filette in France$e, che è la gro$$ezza d'alcuni membrelli, & è un pianuzzo & regola quadra di $opra il cauetto, come è il $opraciglio a gli A$tragali. A$tragalus è co$i detto dalla forma di quell'o$- $o, che è nella giontura del collo del piede; latinamente è detto Talus; che uolgarmente $i chia- ma talone, ma gli Architetti pure dalla forma il chiamano tondino, et nelle ba$e $e ne fanno due. I di$egni di que$ti membrelli, $aranno qui $otto, con le loro lettere, & nomi partitamente di<02>e- gnati. Noi po$cia poneremo tutti gli ordini di$tintamente prima, che $i uenga al te$to di Vitru. accioche, con la imitatione del Filandro facciamo chiara tutta la pre$ente materia. laquale ha bi$ogno di que$ta ordinatione. & $atisfaremo anche a quelli, che non $i curano di tanta Filo$ofia, & che ci fanno oppo$itione di troppo alti concetti, & di$cor$i, con i quali io non uoglio $cu$ar- mi, perche dubiterei di non gli credere, et non di dare ad intendere a me $te$$o che fu$$e uero, che o fu$$e piu Theorico, che pratico.</I> <fig> <p><I>A. Plinthus, Laterculus, uel lata$trum. Orlo.</I> <p><I>B. Thorus, $tiuas. rondbozel. ba$tone.</I> <p><I>C. Scotia, cauetto, $corza. cont<*>abozel. orbiculus. Trochilus.</I> <pb n="142"> <p><I>D. A$trag alus. Talus. tondino.</I> <p><I>E. Quadra. li$tello. Filette.</I> <p><I>F. è quella parte doue termina il fu$to della colonna, detta cimbia, ouero annulo, o le$tello dell'Apofige, della quale $i dir à dapoi.</I> <p><I>La ba$a To$cana ha di que$te parti, l'orlo, & il ba$tone. la mi$ura dt<*> que$ta è, che e$$er deue alta quanto è la metà del diametro della colonna. Que$ta altezza $i diuide in due parti, l'una $i da all' orlo, ilquale in que$ta ba$a è fatto a $e$ta. l'altra $i dà al ba$tone, con quella parte, che $i chiama apofige, & apothe$i; che $ono certe piegature dalle teste de i fu$ti dellc colonne, che dan- no gratia mirabile, quando $ono ben fatte. & pare, che fuggino, & $iano ritratte. però hanno in Greco que$te nominanze, apothe$i, & apofige. quella di $opra è detta collarino, & quella di $otto, cimbia, & $ono in modo, che $e amendue fu$$ero congiunte in$ieme farebbeno la forma del cauetto. Lo $porto dell' orlo è per la terza parte dell' altezza della ba$a. il ba$tone ha tanto di $porto, quanto l'orlo. et $i fa con la $e$ta; benche qui pare quadro, però $i cono$ce dal $uo fon- damento. il $emidiametro del ba$tone, è termine della cimbia, perche ella non pa$$a piu oltre il $egno a. laqual cimbia, è l'ottaua parte alta dell' altezza di tutta la ba$a. que$ta nelli generi Do- rico, Ionico, et Corinthio è parte della colonna, ma nel To$cano è parte della ba$a, et $i fa a $e$ta in que$to modo. Cada una linea dal dritto della colonna apiombo $opra l'orlo, et quella parte, che $porta oltra il dritto della colonna $iapartita in tre parti eguali</I> 1. 2. 3. <I>et uiene portata in fuori dallo e$tremo della cimbia. dal punto a. al punto b. et allargata la $esta dal punto a. al punto e. $opra'l quale cade il dritto della colonna, $i ferma l'un piede in b. et con l'altro $i fa il punto d. ilquale deue e$$ere centro di quel giro, che regge la piega della cimbia. $imilmente con quella $e$ta co$i allargata $i piglia la di$tanza da, e, à c. $opra il fu$to della colonna. et po$ta la $e$ta in c. $i taglia il punto d. ilquale è centro dell' Apofige, o cimbia che $i dica. la figura è qui$otto. A. B. C. nella pianta $ono $egni delle parti della ba$a. A. ri$ponde alla cimbia detta Apofige. B. al ba$tone detto Torus. C. all' orlo, detto Plinthus, che nella ba$a To$ca- na, è fatto a $esta, come s'è detto. La colonna deue e$$er alta$ette teste con la ba$a, & il capi- tello. ma rastremata la quarta parte della' gro$$ezza da piedi, cioè uno ottauo per parte. Nel capitello To$cano ci$ono queste parti, Abaco Echino, Hipotrachelio, & Apofige. Tutti i ca- pitelli conuengono in que$to membro, che $i chiama Abaco. ilquale è una tauola quadra, detta operculum da Leone, & Dado da no$tri. perche è di forma quadrangulare, & nel To$cano $i puo chiamar zocco, & Plinthus. Conuengono tutti i capitelli, che tutti $i po$ano, & s'incon- trano con le lin<*>e cia$cuno della colonna $ua, nel fusto di $opra, doue è fatta la contrattione, & diminutione della colonna. Le mi$ure del capitello To$cano $onoque$te. Prima egli è alto quan- to la ba$a, cioè per la metà della gro$$ezza della colonna da piedi. Que$ta altezza $i diuide in tre parti, l'una $i dà all' Abaco, o zocco, o dado, che uogliamo chiamare. quella di mezo al- l'Echino, cioè ouolo, del quale $i dirà hora, che co$a uuol dire. La terza $i re$trigne all' hypotra- chelio, o collarino, & apofige. Echino $ignifica il riccio di ca$tagna, il riccio animale d'acqua, & diterra. chiama$i que$ta parte Echino, perche in e$$a $i $colpiuano iricci di ca$tagna. doue- mo imaginarci molti ricci di castagna l'uno appre$$o dell' altro aperti, & che mo$trino le ca$ta- gne quando $ono mature. que$ti fanno un bel uedere, & adornano mirabilmente. Que$ta par- te Vitru. chiama Encarpi, parlando del capitello Ionico: perche erano ornati di frutti, & di foglie, come $i uede in molti capitelli antichi. i moderni chiamano que$ta parte Ouolo, non $apen do l'origine, & parendo loro, che $iano oua $colpite. Encarpi $i po$$ono chiamare, fe$toni. Hipotrachelio, è una $ottogola, alla $imiglianza del collo dell' huomo. Faccia$i adunque il da- do, o Plinto, per uno $e$to della gro$$ezza della colonna, che uiene a e$$er un terzo della metà del diametro. L'ouolo occupa la parte di mezo. Questi accioche $ia tirato a $e$ta, bi$ogna tirar una linea dal dritto della colonna di$opra, fin all' Abaco, & diuidere in due parti eguali quello $porto dell' Abaco che auanza, & di quelle riportarne una in dentro, & far punto. a.</I> <pb n="143"> <fig> <pb n="144"> <I>& po$ta la $e$ta $opra l'e$tremo li$tello, che ua$otto l'ouolo (che è alto la $e$ta parte di quella, che ua all' hipotrachelio) allargata al punto, a. $i $a un poco di giro. & dall' c$tremità dello aba- co $i $a il mede$imo, & nello incrocciamento $i pone la $esta, & $i tira l'Ouolo leggiadramente, la$ciando all' Abaco alquanto di prominenza per garbo. lo Hipotrachelio, o $ottogola, $i fa al modo che $i fa l'Apofige: & è alto il doppio del li$tello $otto l'ouolo. la $ua cimbia è alta la me- tà, cioè tanto, quanto il listello $otto l'ouolo. il tondo $porta oltra lo $porto del detto listello, per- che la$ciando cadere una linea a piombo dalla estremità del listello, doue è il punto. g. $opra quella $arà il centro di fare il giro & tondo predetto, ma la piegatura $otto la cimbia, $i fa al $opradetto modo. facendo il centro, come $i è detto la doue è h. & l.</I> <p><I>E. Abacus, Plinthuo, dado.</I> <p><I>F. Echinus, ouero Ouolo.</I> <p><I>G. Annulus, Listello.</I> <p><I>H. I. K. L. Hypotrachelium con Apofigi. cioè parte contratta alla $ottogola, con la cimbia.</I> <p><I>Sopra'l capitello $i pone l'architraue, con quelle ragioni, che porta la ragione dell' opera, $e- condo, che dirà Vitr. nel quarto. al qual luogo io mi riporto. Ma uenire è nece$$ario al genere Dorico, $e noi uogliamo $eguitare l'ordine propo$to. però diremo in$ieme con Vitr. che il Dorico non ha ba$a propria, ma alcuna fiata $e le dà la ba$a Attica, la quale $i forma di queste parti, Plinthus, torus inferior, quadrœ, torus, $uperior, $cotia. Que$te parti gia $ono dichiarite qua- li $iano. ha dunque la detta ba$a, l'orlo, due ba$toni, uno cauetto tra quelli, con i$uoi quadret- ti, li$telli, o gradetti, che $i dichino l'uno di $opra il cauetto, & l'altro di $otto. La mi$ura di que$ta ba$a è, che ella è alta la metà della gro$$ezza della colonna, la lungezza è per una gro$- $ezza & meza. Si diuide poi la gro$$ezza della colonna in tre parti, l'una $i dà all' altezza del- l'orlo, il re$tante $i partirà in quattro parti, una delle quali $i darà al ba$tone di $opra, le altre tre $i partiranno in due parti eguali, l'una $i darà al ba$tone di $otto, l'altra al cauet- to con li $uoi gradetti. que$ta parte del cauetto $i diuide in $ei parti, una delle quali $i dà al gradetto di $opra, l'altra al gradetto di $otto. Le quattro re$tano al cauetto. lo $porto del basto ne di $otto, ua di pari con l'orlo, & $i fa il $uo giro a $e$ta, come s'è detto. lo $porto del gradetto di $otto ua di pari col $emidiametro del ba$tone di $otto. lo $porto del gradetto di $opra, ua di pa- ri della cimbia. La cimbia di pari del $emidiametro del ba$tone di $opra. Il quale $emidiametro, è oltra il dritto della colonna, la terza parte dello $porto dell' orlo oltra il dritto della colonna. Lo $mu$$o, o giro dell' Apophige, $i fa a que$to modo. La$cia cadere dal dritto della colonna una linea $opra la cimbia, & partirai quello $patio, che è rinchiu$o tra la detta linea, & lo $porto della cimbia, in due parti, & una di quelle allungherai oltra lo $porto della cimbia, & piglia con la $e$ta tutta quella mi$ura, che è contenuta $otto le tre parti dallo dritto della colonna, & farai lo incrocciamento, come s'è detto. Il cauetto $i tira congiudicio, benche $i puo fare tirando una linea dallo e$tremo del gradetto di$opra allo e$tremo del gradetto di $otto, & facendo il centro $opra quella linea, & tirando il giro dall' uno, & l'altro e$tremo de i gradetti, & rie$ce bene.</I> <p><I>A. Abacus, orlo.</I> <p><I>B. Torus inferior, bastone di $otto.</I> <p>2. <I>Quadre, li$telle, o gradetti.</I> <p><I>C. Scotia.</I> <p><I>D. Torus $uperior. ba$tone di $opra.</I> <p><I>E F. apophigis. cimbia. $mu$$o.</I> <p><I>La colonna Dorica è alta $ette te$te, & $i contragge $econdo la ragione dell' altezza $ua, come $i dirà poi. Il capitello Dorico. ha queste parti, Plinthus, Cymatium, Echinus cum annulis, pars, quœ hypotrachelio contrahitur columnæ, cioè zocco, o dado, cima$a, ouer ouolo, annel- la, collarino, delle quali s'è detto la origine, & deriuatione. Ma le mi$ure $ono queste.</I> <pb n="145"> <p><I>La gro$$ezza del capitello è per la metà della gro$$ezza della colonna. La larghèzza è per tutta la gro$$ezza della colonna, & di piu uno $e$to; $econdo Vitruuio. Ma nell' antico $i truoua, & rie$ce meglio un quinto per parte. Diuiderai la gro$$ezza del capitello in tre parti, delle quali una $i dà al zocco con la $ua Cima$a, l'altra all' ouolo con le anella, l'altra $i contragge al collarino della colonna. Di modo che la larghezza, o gro$$ezza del capitello è due quinti piu della gro$$ez za della colonna. l'altezza del zocco, o dado, $i diuide in cinque parti, tre delle quali $i danno al zocco, & due alla $ua Cima$a. & quelle due $i diuideno in tre parti; due delle quali $i danno al la Cima$a, & una al quadretto. Finito il zocco, & la cima$a, $eguita l'ouolo, & le anella $ue. l'altezza dell' ouolo $i diuide in tre parti, due delle quali, $i danno all' ouolo, una alle anella Que$ti $ono tre, & $ono alti tanto l'uno quanto l'altro. Sporta il primo oltra il dritto della colon na di $opra la metà dell' altezza $ua: & il $econdo $porta oltra il primo, anch'egli la metà della $ua gro$$ezza; & il terzo, che è di $opra, fa il $imile oltra il $econdo. ma non $arebbe male, che cia$cuno $porta$$e tanto, quanto è l'altezza $ua. l'ouolo $i fa a $e$ta, pigliando$i con la $e$ta la di$tanza, che è dallo e$tremo dell' ultimo anello, fin $otto l'abaco, & facendo$i lo incrocciamen- to da quello e$tremo, & anche $otto l'abaco, & ponendo$i la $e$ta nello taglio dello incrocciamen to. Seguita la parte, che $i contragge alla $ottogola, che da alcuni $i chiama fregio. que$ta con la $ua bella piega peruiene fin' alla cimbia. & a$tragalo, o tondino, che $i dica, & $i uiene ad incontrare col dritto della colonna di $opra. Il tondino è alte, quanto $ono tutte tre le anella, & la metà di uno, porge in fuori quanto l'ouolo. La cimbia è alta per la metà del tondino. porge a piombo del $emidiametro del tondino: il re$to $i fa al modo $opra detto. Gli antichi $oleuano pone re $opra il capitello una aggiunta non molto alta, che po$aua $u'l zocco, al dritto della colonna di $opra; & que$to faceuano, perche lo architraue $i po$a$$e $u'l uiuo del capitello, & della co- lonna, & non rompe$$e gli $porti. L'architraue detto trabs, conle parti di quello, che gli $ta $opra, ha que$te parti, che $i dicono in latino, Epi$tilium, Tenia, Guttœ, trigliphi, metopœ, re gula, capitula, canales, femora, cimacium, corona, Timpanum, acroteria, $ima. Le $ignifi cationi delle quali co$e $ono que$te. Epi$tilium è tutto quello, che ua $opra le colonne; & capitel li, per nome generale: ma propriamente è la traue mae$tra, che architraue uolgarmente $i chia ma; Epi$tilium uuol dire impo$ta di colonne. que$ti nel genere Dorico ha una fa$cia, ouero ben- da, che $i chiama tenia, $otto la quale con una regoletta $ono intagliate le goccie, che fanno lo effetto delle goccie dell' acqua, che cade, & $ono $ei di numero, per ogni testa di traue, che è rappre$entata per li trigliphi. la origine de i quali è que$ta. Nelle fabriche di legno $oleuano $por tare le te$te delle traui, le quali $i chiamauano, ope, & lo $pacio, che era tra una te$ta, & l'al- tra, metopa, $i diceua. perche poi non pareuano bene quelle te$te co$i nude, & $coperte, gli an tichi le copriuano con certe tauolette, & quelle con cera di diuer$i colori dipigneuano. Ma quel li, che non di legno, ma di pietra magnificamente lauorauano, imitando quelle te$te, fecero quel li membri, che Triglifi chiamarono, qua$i Tri$olci, perche $ono tagliati in tre canali, due intie- ri, & uno mezo per lato. da que$ti canali pare, che cadino le goccie gia de<*>te. Cli$patij, che $o no tra i canali, $i chiamano femora, noi per altri ri$petti potemo nominarli piani. i Triglifi han- no i loro capitelli $opra i quali è la cornice, che $i chiama corona, perche cigne lo ediftcio come corona. Moderni la chiamano gocciolatoio, perche da quella gocciolano le acque cele$ti, & $ono gettate lontane dallo edificio. Que$ta cornice ha due cima$e, o gole, una di$otto, & l'altra di $opra; & $ono adornamenti $uoi. Sopra la cornice è il Fa$tigio, che noi chiamamo Fronti$pi- cio, che ha un piano nel mezo, che $i chiama Timpano, perche è cinto da i mede$imi membri del la corona, & da una gola $chiacciata, che $i chiama $ima, a $imiglianza del na$o delle capre. Oltra di que$to il Fronti$picio ha da i lati, & nel mezo di $opra gli acroterij, che $ono alcuni pi- la$trelli, $opra i quali, $i poneuano le $tatue: & quelli da i lati moriuano nel tetto, & quello di mezo era libero. Hora ueniamo alle mi$ure. La grandezza dello architraue in altezza con la benda, & goccie$ue, è per la metà della gro$$ezza della colonna. que$ta metà hora chiameremo</I> <foot><I>T</I></foot> <pb n="146"> <I>modulo. La benda, fa$cia, o Tenia, che $i dica, è per la $ettima parte del modulo. le goccie con la regoletta la $e$ta. que$ta regoletta ua $opra le goccie, & di tre parti, ne occupa una, di quella $e$ta parte. La larghezza dello Architraue, cioè il piano di $otto, che $i po$a $opra'l capi tello, e$$er deue tanto, quanto il collarino della colonna di $opra; perche co$i uenirà a po$ar$i $u'l uiuo. L'altezza de i Triglifi è per un modulo & mezo, larghi nella fronte un modulo. que$ta fronte ha due canali nel mezo intieri, & due mezi dalle parti, & $ono tagliati in modo, che lo angulo della $quadra u'entri nel mezo, & le braccia della $quadra facciano le $ponde. & accio- che $iano giu$ti, $i diuide la larghezza del Triglifo in $ei parti, & $ene la$cia meza parte per ban da per li mezi canali, dopo i quali, $ene la$cia una per parte, per li pianuzzi, che Vitr. chia- ma femora. dopo i piani, $ono i canaletti uno per banda, & $ono intieri, occupando cia$cuno una parte delle $ei, & nel mezo i due canali u'è il $uo piano, che occupa la $e$ta parte. Bi$ogna auuertire, che'l mezo del Triglifo $ia $opra'l mezo del quadro della colonna. Le metope $ono qua dre perfette, cioè tanto alte, quanto larghe: & quelle metope, che $ono $opra gli anguli, $ono meze, ma non a punto, ma meno delle metà, perche co$irie$ce il compartimento; come $i uederà nel quarto libro. Soprai</I> T<I>riglifi $ono i capitelli loro, alti la $e$ta parte d'un modulo: & $oprai capitelli è la corona o gocciolatio, alta o gro$$a con le $ue cima$e mezo modulo. que$ta altezza $i diuide in quattro parti, l'una $i dà alla cima$a di $opra, la una alla cima$a di $otto, due allo $pacio, ch'è tra una cima$a, & l'altra. la cima$a ha il $uo li$tello, alto un terzo, & gli altri due $i danno alla piegatura della $ua gola. La corona $porta per la metà, & uno $e$to d'un modulo, & ha alcuni tagli come dentelli di $otto, accioche cadendo le goccie, non po$$ano uenire longo il muro, ouero le colonne, & gua$tarle; & per que$ta parte for$e è detta gocciolatio, & quella par te è detta da Vitr. mento dalla corona, et que luoghi, $cotia, ouero cauetti. le gole del gocciolatoio $ono una al contrario dell' altra, come $i uede nella figura. Cli antichi ornauano gli $patij delle me tope cō te$te di bue ben date, con le patine de' $acrificij, et altre co$e, doue io laudo la inuētione del San$ouino, che nelle metope de i portichi $otto la libreri a publica ha collocato le in$egne della Re publica col farui la parte dinanzi del Leone alato. Similmente, $otto il piano della cornice alla parte, che guarda in giu, & $porta in fuori, $i $colpiuano alcune goccie $opra i Trigli- fi, & alcune ro$e $opra le metope, le goccie ri$pondeuano alle goccie, che $ono $otto i Triglifi, & erano ritonde, & $e ne poneuano $ei per parte. & diciotto per largo, & la figura lo dimo- $tra. Del fronti$picio diremo nel genere Ionico.</I> <TABLE> <ROW><COL><I>A. Plinthus.</I></COL><COL><I>orlo.</I></COL><COL><24>. <I>Supercilium.</I></COL><COL><I>li$tello.</I></COL><COL></COL></ROW> <ROW><COL><I>B. Torus.</I></COL><COL><I>ba$tone.</I></COL><COL><I>D. Torus $uperior.</I></COL><COL><I>ba$tone di $opra</I></COL><COL><I>Le parti della ba$a attica.</I></COL></ROW> <ROW><COL><I>C. Scotia.</I></COL><COL><I>cauetto.</I></COL><COL><I>E. F. apophige.</I></COL><COL><I>cimbia.</I></COL><COL></COL></ROW> </TABLE> <p>Le parti del capitello Dorico. <p>Le parti dello Architraue Dorico, & della cornice, & del fronti$picio. <TABLE> <ROW><COL><I>G. Gola. G. H. dado.</I></COL><COL><I>C. regoletta.</I></COL><COL><I>K. Gola.</I></COL></ROW> <ROW><COL><I>I. Ouolo.</I></COL><COL><I>D. fa$cia.</I></COL><COL><I>L. gocciolatoio.</I></COL></ROW> <ROW><COL><I>K. anelli.</I></COL><COL><I>E. piano.</I></COL><COL><I>M. gola del gocciolatoio.</I></COL></ROW> <ROW><COL><I>L. fregio.</I></COL><COL><I>F. canale.</I></COL><COL><I>N. Timpano.</I></COL></ROW> <ROW><COL><I>M. Tondino. N. Cimbia.</I></COL><COL><I>C. meropa.</I></COL><COL><I>O. p. q. parti del fronti$picio che</I></COL></ROW> <ROW><COL></COL><COL><I>H. $emimeropa.</I></COL><COL><I>ri$pondeno al gocciolatoio.</I></COL></ROW> <ROW><COL><I>A. Architraue.</I></COL><COL></COL><COL><I>R. gola. o Sima.</I></COL></ROW> <ROW><COL><I>B. goccie.</I></COL><COL><I>F.E. triglifo.</I></COL><COL><I>S. pila$trello ouero acroterio do</I></COL></ROW> <ROW><COL></COL><COL><I>I.Capitello del triglifo.</I></COL><COL><I>ue uanno le $tatue.</I></COL></ROW> </TABLE> <pb n="147"> <fig> <foot>T 2</foot> <pb n="148"> <fig> <pb n="149"> <p><I>La ba$a Ionica $i forma a que$to modo. $ia la larghezza $ua per ogni uer$o tanto, quanto è la gro$$ezza della colonna, & di piu tanto quanto è un quarto, & un'ottauo della detta gro$$ez- za, cioè $e diuiderai il diametro della colonna in $edici parti, $ia tanto allungato, che ne hab- bia uentidue: et que$ta $ia la larghezza della ba$a. l'altezza è per la metà della gro$$ezza della co lonna. L'orlo è la terza parte dell' altezza. il re$tante $i diuide in $ette parti, tre delle quali $i danno al ba$tone di $opra, due $i danno al cauetto con il $uo tondino, & $opraciglio, & due al cauetto di $otto con il $uo $opraeiglio. i tondini $i fanno per l'ottaua parte del cauetto. Ma ben parerà, che'l cauetto di $otto $ia maggiore, percioche egli $porterà fin allo e$tremo dell'orlo. Lo $porto di $o- pra, oltra la gro$$ezza della colonna $i fa a que$to modo. piglia tre parti della diui$ione del dia- metro, che $ono la ottaua, & $e$ta decima parte, & quelle diuiderai per mezo, & tanto $arà lo $porto, cioè d'una parte et meza, dalla de$tra, & dalla $ini$tra; et tanto è lo $porto della $pira, doue $i fa la cimbia con le ragioni dette di $opra. l'altezza della cimbia è per un terzo dell' al- tezza del ba$tone, il centro del quale è $opra la linea, che di$cende dallo $porto della cimbia. i tondini deono e$$er toccati da una linea, che $i parte dallo e$tremo $opraciglio, allo e$tremo del li$tello, che è $opra l'orlo, et $otto il cauetto inferiore. i cauetti $i fanno al modo $opra detto. et que$ta è la de$crittione della ba$a Ionica. l'altezza della colonna in diuer$e maniere di fabriche, è diuer$a. I $uoi ra$trenamenti$ono regolati da Vitr. $econdo le altezze $ue, però $i di ra del capitello.</I> <p><I>Tira una linea che $ia tanto lunga quanto è gro$$a la colonna da piedi. Que$ta diuiderai in parti dieciotto, et ne aggiungnerai una di e$$e, $i che $arà in tutto parti diecinoue. hora tutta que$ta $arà la lunghezza, et larghezza del capitello. Ma l'altezza con le uolute $arà per la metà, cioè parti noue, et mezo: dico con le uolute, perche la gro$$ezza del capitello, è un ter zo della gro$$ezza delle colonne, et le uolute $ono ornamenti, et non parti del capitello, & uan no piu in giu del capitello. Manderai dunqne a ba$$o de gli e$tremi di que$ta linea i catheti. cioè linee a piombo, tanto lunghe, quanto $ono le noue parti et meza, cioè la metà della lun- ghezza. que$te linee ci $eruiranno poi. re$tino però $egnate le noue parti et meza, ma $cancel lati i primi $egni delle diui $ioni della linea della lunghezza, et larghezza del capitello: perche $i deue diuiderla in uenti parti, et <*>retirar$i in entro dalle e$tremità della linea detta, una parte, et un quarto delle uenti, et mandar giu de gli altri catheti di pani alli primi. con le i$te$$e diui$io ni, in que$te linee ritirate $arà il centro dell' occhio, $i fermeranno le uolute, et $i regolerà tut to il re$tante del capitello. Leone chiama l'occhio della uoluta ciclo. la uoluta è uno inuoglio ad imitatione delli cincinni de i capelli muliebri, i uolgari la chiamano cartoccio. Delle noue parti di que$te linee $e ne danno all' orlo, o abaco una, & meza, l'una è per la gola dello abaco, che è fatto in forma della lettera S. ma tirata con gratia, & la meza $i da al $uo li$tello. le uo lute $i formano a que$to modo. restando $otto l'abaco parti otto, $i fa un punto la doue termina- no le quattro & meza, & $opra quello po$to un piede della $esta, $i fa un giro, il cui diametro tiene una di quelle parti, & tre ne re$tano di $otto, & quattro di $opra. que$to cerchio o giro è l'occhio delle uolute, nel quale hanno ad e$$ere dodici centri, che formano le uolute a $e$ta, nè po$$ono e$$er meno, perche fariano la uoluta sgarbata, & con pochi giri, & non $alua la lettera di Vitruuio. Io non dirò de gli inuentori di questo modo per non metter molti huomini da bene al le mani. io confe$$o d'hauerla imparata, & ne tengo obligo alli mae$tri. I$eppo Saluiati pitto- re eccellente, me ne dedicò uno trattatello, & lo fece $tampare. $e quelli, i quali me l'hanno dimo$trata prima, l'habbiano pigliata dal Saluiati, io non lo sò. per formare adunque la uoluta bi$ogna mandare a ba$$o una linea per banda egualmente di$tante alla linea, $opra laquale è il centro dell'occhio, di$tante da quella, quel quarto, che nol dicemmo, che era d'una parte, & un quarto, perche que$ta linea poi che haueremo tirato il diametro dell' occhio caderà a punto $o pra il ditto diametro, & ci darà la regola di formare un quadro nell'occhio, $opra le cui diagona- li $aranno i dodici centri predetti: per che quanto $arà dal taglio, che fa que$ta linea $opra il</I> <pb n="150"> <I>diametro dell' occhio, al centro dell' occhio, tanto $i riporterà, & di $otto, et di $opra la linea del det to centro, dal centro i$te$$o, & tanto anche dall' altra parte dell' occhio $opra il diametro, & que $ti quattro punti $aranno i mezi de i lati d'uno quadrato dentro l'occhio, da gli anguli del quale $i tireranno le diagonali, & $opra quelle dal centro, a gli angoli $i far anno tre parti eguali per o- gni uer$o, lequali $aranno i dodici centri predetti, doue po$ta la $e$ta $opra l'angulo interiore di $opra nel quadrato, & allargata la $e$ta fin $otto l'abaco, $i tirerà un giro fin al diame- tro nella parte e$teriore. indi $i uenirà all' altro angulo di $opra, che è di fuori nel quadrato: & po$ta iui la $e$ta, & di$te$a al termine del primo giro, $i continuerà il giro fin al catheto di $ot- to, & iui $i farà punto. il $imile $i farà ponendo la $e$ta $opra l'angulo e$teriore di $otto: & con tinuando il $econdo giro, $i farà il terzo fin al diametro, dalquale poi $i uenirà fin $otto l'abaco con un giro, il centro del quale $arà il quarto angulo di dentro, & a que$to modo $i finirà il pri- mo giro della uoluta col $cemare per ogni quarta la metà dell' occhio, come uuole Vitr. $imilmente uolendo poi fare il $econdo giro della uoluta, $i ponerà per ordine la $e$ta $opra gli altri punti delle diagonali, cominciando da quello, che è uicino al primo, doue s'incominciò il primo giro: & $e guitando $i farà di quadrante in quadrante tutto il $econdo giro, il quale $i come il primo per ogni quadrante $cemaua la metà dell' occhio: co$i que$to $cemerà un terzo, & l'ultimo $ceme- rà un $e$to del diametro dell' occhio: & co$i in tre giri la uoluta hauerà $cemato quattro dia- metri dell' occhio, & riu$cirà bella, & è nece$$ario, che co$i $ia, perche $e la uoluta deue dolce- mente andar $opra la cima$a, che è uero membro del capitello, bi$ogna, che le $ue pieghe habbia- no que$ta proportione, che detto hauemo: & que$to non $i puo fare con quattro punti, o centri $o li, come uuole colui, che ha fatto i piede$tali a botte, per uno e$empio, che gli è stato detto di ri- trouar$i in luogo non celebre, & in opera non eccellente. Tirata la uoluta al modo $opra detto, con la i$te$$a ragione di dodici c entri, che $iano gli i$te$$i: $i tirerà la fa$cia, o larghezza di e$$a uo- luta $tringendo la $e$ta per la metà dell' occhio dal primo giro: & a que$to modo è fornita la uoluta, laquale è piu pre$to ornamento, che membro del capitello. Ha la uoluta il $uo canale, che è una cauatura di dentro delle fa$cie della uoluta. que$to canale occupa uno diametro, & mezo dell' occhio, & è tanto profondo, quanto la duodecima parte dell' altezza della uoluta, cioè una duodecima parte delle otto, che re$tauano $otto l'orlo, o abaco. Tagliato adunque il canale resta la cima$a, che uolgari chiamano ouolo, Greci cimatio, che pa- re un'onda picciola, & latini Echinus, per le foglie, & frutti di castagne, che $i $colpiuano $o- pra. que$ta è alta due parti, & un quarto delle otto gia dette, & lo $uo $porto oltra il dritto dell' abaco, & della grandezza del diametro dell' occhio, & per que$ta ragione noi facemmo ca- dere le linee a piombo da gli e$tremi dell' abaco. La uolta della cima$a $i fa a $e$ta. Tirato lo $porto $uo $otto il canale quanto è il diametro dell' occhio fuori dello $porto dell' abaco, $i piglia con la $e$ta la $ua altezza. la quale (come ho detto) è due parti, & un quarto delle otto, del cathe to $otto l'abaco, & la $ua linea di $otto termina nel catheto, doue comincia l'A$tragalo, o ton- dino. & po$to un piede nella detta catheto, $i tira una parte di circonferenza, poi $i ferma la $e- sta nell' e$tremo della cima$a di $opra, & $i fa una incrocciatura $opra la tirata circonferenza, & nel taglio di quelle $i ferma la $e$ta, & $i tira la uolta della cima$a, $opra la quale s'inuolge la uoluta dolcemente. La cima$a s'intaglia con quelle ouola, o ricci a que$to modo, che tra una uoluta, & l'altra ne $iano tre intieri, de quali uno ne $ia nel mezo, & uno dalla de$tra, & l'al- tro dalla $ini$tra, & e$chino alcune foglie dalla uoluta, che gli abbraccino, che uolgari chiama no baccelli, $otto la Cima$a è lo A$tragalo, il quale occupatre quarti d'una delle otto. il centro di e$$o è nel catbeto. co$i finito il tondino, $i fa il li$tello dell' apophige, o collarino, che $i dica, il quale non i$porta oltra il catheto, & è alto per la metà dell' altezza del tondino, & $iriduce con la $ua piega al rastremamento della colonna di $opra, col modo $opra detto. Et perche imagina- mo, che la uoluta $ia un piumazzetto riuolto $opra un bastone, & legato nel mezo, però Vitr. ci da la gro$$ezza di quel ba$tone, che egli chiama a$$e, & dice, che egli, è gro$$o tanto quanto il</I> <pb n="151"> <I>diametro dell' occhio, & che le cinte, che egli chiama baltei, che $ono nel mezo da i lati tra le uolute, non $portino piu della cima$a, di modo, che po$to il piede della $e$ta nel mezo del quadro del capitello, & allargato allo $porto della cima$a, raggirando$i tocchi l'e$tremità delle cinte, co me $i uede nella pianta tirando$i un giro $opra'l centro $uo fin alla circonferenza dell'ouolo. Cli architraui $i fanno $econdo l'altezza delle colonne, accioche per lo accre$cimento, che $i da a quelliper l'altezza, ne $egua piu certa all'occhio la mi$ura loro. Quanto adunque debbiano cre- $cere lo ponerà Vur. qui $otto. Ma poniam ca$o, che la colonna $ia alta quindici piedi, dico, che lo architraue $arà alto per la metà del diametro della colonna da piedi. la larghezza di $ot- to, che $i po$a $opra il capitello, $arà tanto quanto la gro$$ezza della colonna di $opra, accioche $tia $ul uiuo: & que$ta è regola generale. ma la $ommità dello architraue, cioè il piano di$opra $ia tanto quanto è la gro$$ezza da piedi della colonna. La cima$a dello architraue $i fa per la $et tima parte dell' altezza dell' architraue, & deue $portare tanto, quanto è alta, & lo $porto $i mi$ura da quella linea, che uiene dal ra$tremamento della colonna. il re$tante $otto la cima$a, $i diuide in dodici parti, & tre $e ne danno alla fa$cia di $otto, quattro alla di mezo, & cinque al- la di $opra. Oltra l'architraue ui ua il fregio, che Vitr. chiama zophoro, perche in quello s'in- tagliauano alcune figurine d'animali. que$ti è un quarto meno mi$urando l'altezza dello archi- traue con la $ua cima$a: & que$ta altezza $i $erua, quando nel fregio non $ono intagli, perche quando ui $ono, egli $i fa un quarto piu alto dell' Architraue, accioche meglio $i goda lo intaglio. L'altezza del fregio $i diuide in $ette parti, & d'una di quelle $i fa la cima$a, che ui ua $opra, & $opra la cima$a ua il dentello, detto latinamente denticulus, dalla $imiglianza, che ha con il den te. l'origine del dentello è pre$a dalle opere di legno, $i come il triglifo nell' ordine Dorico era pre $o dalle teste delle traui, che $portauano nella fronte, co$i il dentello è pre$o da gli a$$eri, (come $i dirà nel quarto libro.) Bi$ogna adunque $apere, che il fregio è il luogo, che tiene le te$te del- la trauatura. Il dentello, è alto quanto la fa$cia di mezo dello architraue. lo $porto del dentel- lo è tanto, quanto l'altezza$ua. la larghezza detta, metochi, da Grect, & inter$ectio, da lati ni, è per la metà dell' altezza del dentello. il cauo, cioè lo $pacio da un dentello all' altro, che anche meto pa $i chiama, & cauo colombario (come dice Vitr. nel quarto) è per due terzi del- la larghezza del dentello. La cima$a del dentello è per la festa parte dell' altezza $ua. La corni ce con la cima$a, è alta quanto la fa$cia di mezo. lo $porto della cornice col $uo dentello o taglio nel mento, dene e$$er tanto, quanto è alto lo $patio dal fregio alla $ommità della gola, o cima$a della cornice: & que$to $porto $i piglia della linea, che uiene dalla e$tremità della cima$a del fre gio. que$to dentello della cornice $i fa, accioche l'acque, che uengono giu, non gua$tino le fabri- che. In fino a que$to luogo della cornice, o gocciolatoio, le fabriche uanno egualmente distanti dal piano. Hora $i leua il fronti$picio, che Vitr. chiama fastigio. il quale ha le $ue cornici corri- $pondenti alli membrelli della cornice, & di piu ha le $ue gole, che $i chiamano, $ime, & da Greci, Epitichide, dalla aggiunta impo$ta $opra le cornici del fronti$picio. que$te $ono piu alte un'otta ua parte dell' altezza delle cornici. $otto delle quali è il timpano alto la nona parte della lunghez za della cornice, mi$urando dalla e$tremità delle gole della cornice. il piano del timpano deue ri po$are $ul uiuo, cioè chi la$cia$$e andar giu una linea a piombo, ella batterebbe prima $u l'archi- traue, poi $ul collarino delle colonne, & $ul uiuo. i pila$trelli detti acroterij, deono e$$er alti tan to, che $i po$$ino uedere le figure, che ui uanno $opra. gli angulari deono morir nel tetto & co- minciare al dritto delle colonne, & entrar tanto in entro, quanto porta la ragione della ueduta perche in alcune fabriche uanno piu adentro perche $ono ba$$e. & deono e$$er tanto alti quanto la $ommità del timpano, ma quello dimezo e$$er deue un'ottaua di piu de gli angulari.</I> <pb n="152"> <p>Per la Ba$a. <p><I>A. Pliathus. Orlo.</I> <p><I>B. Scotiœ. Cauetti.</I> <p>1. 1. <I>A$tragali, tondini.</I> <p><I>C. Torus. Ba$tone.</I> <p><I>f. Apophygis. Cimbie.</I> <p><I>a b c o. Termini da fare la cimbia.</I> <p>Per lo Capitello. <p><I>o. La pianta del Capitello.</I> <p><I>e. Contractio columœ. Il ra$tremamento della colonna, & la cimbia di $opra.</I> <p><I>A h. Abacus, il dado.</I> <p><I>n. La larghezza della uoluta.</I> <p><I>m. Canalis. Il canale.</I> <p><I>l. Cymatium. La cima$a.</I> <p><I>p. Oculus uolutœ. L'occhio della uoluta con i $uoi centri.</I> <p><I>g d e. La cimbia di $opra.</I> <p>Per l'Architraue, fregio, & cornice. <p><I>A. Trabs Epi$tylium. Architraue.</I> <p>1. <I>prima fa$cia.</I> <p>2. <I>Seconda fa$cia.</I> <p>3. <I>Terzafa$cia.</I> <p><I>B. Cymatium Epi$tylij. La cima$a, o gola dell' Architraue.</I> <p><I>C. Zophorus. Il fregio.</I> <p><I>D. Cymatium Zophori. La cima$a, o gola del Fregio.</I> <p><I>E. Denticulus. Il dentello.</I> <p><I>O. inter$ectio, cioè lo $patio, & il taglio, che è tra l'un dentello, & l'altro.</I> <p><I>F. Cymatium denticuli.</I> <p><I>G. Corona. Il gocciolatoio, con la $ua gola.</I> <p><I>L. Fa$tigium. Il fronti$picio.</I> <p><I>K. Tympanum. Il Timpano.</I> <p><I>I. Acroteria. I quadricelli, & piedistali, doue hanno a po$are le figure.</I> <p><I>H. Simœ. Le gole.</I> <pb n="153"> <fig> <foot><I>V</I></foot> <pb n="154"> <fig> <pb n="155"> <p><I>Il capitello Corinthio, è alto quanto il diametro della colonna, & $econdo Vitruuio in que- $ta altezza s'mclude l'Abaco; ma inmolte opere l'abaco è di piu, & ha molto del buono. La larghezza dell' Abaco, cioè il quadro deue e$$er tanto, che le linee, che pa$$ano da un' angulo al l'altro, dette diagonali, $iano doppie all' altezza del capitello. le frontinel mezo deono piegar in entro per la nona parte della loro larghezza. Il ba$$o del capitello deue ri$pondere al uiuo della colonna di $opra. L'altezza dello abaco $i fa della $ettima parte dell' altezza del capitello, il re $tante $i diuide in tre parti, una delle quali $i da alla foglia da ba$$o, l'altra alla foglia di mezo, l'ultima a icauliculi, o fu$ti, che mandano fuori le foglie, & riceueno l'abaco, & quelle uo lute, che na$ceno dalle foglie de i cauliculi, uengono a gli e$tremi anguli dello abaco: ma le mi nori uolute piegano in entro, & $ono $otto a i $iori, che $ono nel mezo dell' abaco, datutte quat- tro le parti, i quali fiori $ono tanto gro$$i quanto l'abaco, ma alquanto piu lunghi, come $i o$- $erua nell' antico, per la quarta parte del diametro della colonna. Bi$ogna adunque formar bene la campana, che co$i chiamano i no$tri quella forma del capitello, che è ue$tita delle foglie, &</I> <fig> <I>quelle foglie $ono foglie di Acantho, che Semplici $ti chiamano, branca ur$ina. Sono anche altre fo glie, come d'oliua, & altre figure, & intagli de capitelli, che hanno molto del buono, $e $ono ben lauorati: ma la$ciamo que$to a gli o$$eruatori dell' antichità, & riportiamoci per hora a Vi- truuio, che nel quarto libro tratta della origine del capitello Corinthio, al primo capo. Ma il modo di piegar le fronti la nona parte, è la uia di ritrouar il centro di tre punti. Sia tutta la fron te del capitello. a. b. diui$a in noue parti, & dal mezo di detta linea $ia leuata una linea drit- ta alta per una di quelle parti, la qual $ia c d. et $ia c. il punto di $opra, $iano poi que$ti tre pun ti a. b. c. ridotti $otto una circonferenza per uia de gli incrocciamenti, il che $i fa tirando le linee da a, à c. & da c. à b. & tagliando quelle per mezo ad anguli dritti con linee, che $i uen- ghino ad incontrare, come fanno le linee, e. f. & g. f. $opra il punto h. L'Architraue, freg- gio, & gocciolatoio $i puo fare comel' Ionico, oue ro in luogo del fregio gonfio dello Ionico, farlo piano, et ne gli fronti$picij $eruare il modo iste$$o.</I> <p>Finite que$te co$e, $i poneranno le ba$e a i luoghi $uoi, & que$te in tal modo $aranno fatte a mi$ura, che la gro$$ezza con l'orlo $ia per la metà della gro$$ezza della colonna. lo $porto, Ecfora, detto da Greci, $ia la quarta parte, & co$i la ba$a $arà larga, & lunga per una gro$$ezza, & meza della colonna. L'altezza della ba$a, s'ella $arà fatta al modo Attico, $i partirà in que$to modo, che la parte di $opra $ia per la terza parte della gro$$ezza della colonna, il re$to $ia dell' orlo: leuato uia l'orlo, il re$tante $ia diui$o in quattro parti: il ba- $tone di $opra. ne habbia una, le tre re$tanti $iano diui$e in due parti eguali. Vna $ia del ba$tone di $otto, l'altra $i dia con i $uoi quadretti al cauetto, che da Greci Trochilo è no minato. Ma s'egli $i deue fare le ba$e Ioniche, co$i $i deono compartire, che la larghez- za della ba$a $ia per ogni uer$o della gro$$ezza della colonna, aggiuntaui la quarta, & ot- taua parte: Ma l'altezza è come le fatte al modo Attico, & co$i l'orlo $uo: ma il re$tante oltra l'orlo, che $arà la terza parte della gro$$ezza della colonna, $ia diui$o in $ette parti, & <foot><I>V</I> 2</foot> <pb n="156"> di tre di quelle $ia il ba$tone di $opra, le altre $iano egualmente diui$e, & d'una $i faccia il quadretto di $opra con i $uoi tondini, & col $uo pianuzzo, detto $opraciglio. l'altra $ia la- <fig> $ciata per lo cauetto di $otto: ma il cauetto di $otto parerà maggiore, perche hauerà lo $por <pb n="157"> to $uo $in' all'e$tremità dell'orlo. I tondini $i deono fare per l'ottaua parte del cauetto. lo $porto della ba$a, per la ottaua, & $e$tadecima parte della gro$$ezza della colonna. Fatte compitamente, & po$te le ba$e a i luoghi $uoi, egli $i deue ponere a perpendicolo del centro loro le colonne di mezo, nell'antitempio, & nel po$tico. Male angulari, & quel le, che dirimpctto alle angulari nelli lati del Tempio dalla de$tra, & dalla $ini$tra deono e$- $er po$te, $i fermeranno in modo, che le parti loro, che riguardano al di dentro uer$o i pare ti della cella, $iano a perpendicolo, ma le e$teriori $tiano, come s'è detto della loro con- trattura. perche a que$to modo le $igure della compo$ition del tempio $aranno giu$tamen te, & $econdo la ragione del ra$tremamento fornite. <p><I>Quello che dice Vitru. è che po$te le ba$e a i luoghi $uoi, $i deono porre le colonne con giudi- cio. Delle colonne altre $tanno $u gli anguli, altre $tanno tra quelli. que$te, $i chiamano me- diane, quelle angulari. Vuole Vitru. che le mediane $iano drizzate a piombo nel mezo del cen- tro loro: ma le angulari $iano nella parte di dentro piane, & $enza rastremamento: & questo $i fa perche incontrino bene con gli anguli del parete. & dicono que$ti o$$eruatori, che rie$cono be- ne alla ui$ta. Similmente ra$tremate non uuole Vitr. che $iano quelle, che $ono pro$$ime al parete dirimpetto alle angulari, dico da i lati del parete, perche tanto que$te, quanto quelle, non hanno contrattione di dentro uia, ma il loro lato interiore ua dritto a piombo.</I> <p>Po$ti & drizzati i fu$ti delle colonne, $eguita la ragione de i capitelli. que$ti $e $aranno a piumazzo, con tali $immetrie $i formeranno, che quanto farà gro$$a la colonna da piedi, aggiuntaui la decima ottaua parte del fu$to da ba$$o, tanto $ia lungo, & largo l'Abaco: ma la gro$$ezza con le uolute per la metà. douemo poi ritirar$i in entro dall'e$tremità dell'A- baco parti due, & meza di uenti, per le fronti delle uolute, & lungo lo Abaco da tutte quattro le parti delle uolute, appre$$o la quadra della e$tremità del dado mandar in giu le linee, che catheti $i chiamano, & quella gro$$ezza gia pre$a diuidere in noue parti è meza. Vna parte & meza $ia data alla gro$$ezza dell'Abaco, & delle altre otto $i facciano le uolu- te. Allhora dalla linea, che farà mandata giu $econdo la e$trema parte dell'Abaco, $e ne ritiri a dentro un'altra di larghezza d'una parte & meza. Dapoi $iano diui$e que$te linee di modo, che $i la$cino quattro parti, & meza $otto l'Abaco. Oltra di que$to da quel luogo, ilquale diuide quattro & meza, & tre & meza, $ia $egnato il centro dell'occhio, & da quel centro $ia tirato un giro tanto grande in diametro, quanto è una parte delle otto: & quella $arà la grandezza dell'occhio. Et nella i$te$$a linea, catheto detta, $ia tirato il $uo diametro corre$pondente. Poi dal di$opra $otto l'Abaco s'incominci, & per ogni giro di quarta $ia minuito lo $pacio di mez'occhio, fin che peruenga allo i$te$$a quarta, che è $otto l'Abaco. <p><I>Fin qui Vitr. ha ragionato della uoluta, come di co$a appo$ta per ornamento del capitello, co- me è ueramente, hora ragionerà del capitello. & que$to $i deue auuertire. dice adunque.</I> <p>La gro$$ezza del capitello $i deue fare in que$to modo: che di noue parti & meza tre pendino dinanzi $otto il tondino, del fu$to di $opra, & leuatane la cima$a il re$tante $i dia allo abaco & al canale. lo $porto della cima$a $ia oltra il quadro dell'abaco per la gran- dezza dell'occhio. <p><I>Sotto il tondino, ouero a$tragalo, tre parti $ono, che re$tauano delle noue & meza. queste tre dice Vitru. che non $i metteno a conto della gro$$ezza del capitello, perche $ono occupato dalla uoluta, che pende inanzi$otto il tondino, ilquale è alla $ommità della colonna. & $i uede per que$te parole, che il tondino termina$otto l'occhio, perche tre parti re$tauano $otto l'occhio. dice poi, che leuato l'abaco, alquale hauemo detto, che $i da una parte & meza, il re$tante è compartito tra'l canale, & la cima$a. I termini del canale $ono dimo$trati dal primo giro della uoluta, perche $ono doue comincia il $econdo giro.</I> <p>Le cinte de i piumazzi habbiano que$to $porto dallo abaco, che po$to un piede della <pb n="158"> $e$ta nel tetrante del capitello, & allargato l'altro alla e$tremità della cima$a raggirando$i tocchi le e$treme parti delle cinte. Gli a$si delle uolute non deono e$$er piu gro$si della grandezza dell'occhio. Et le uolute $iano tagliate in modo, che le altezze habbiano la duo- decima parte della loro larghezza. <p><I>Nel primo capo del quarto libro dice Vitr. comparando le colonne Ioniche alle Corinthie, che il capitello Ionico è un terzo alto della gro$$ezza della colonna, & il Corinthio è alto quanto tutta la gro$$ezza intiera, il che proua, che la uoluta è co$a appo$ta per ornamento, & non è parte del capitello; & di $opra ha detto,</I> {<I>mala gro$$ezza con le uolute per la metà</I>} <I>doue egli include anche le uolute: & non ha detto ma la gro$$ezza per la metà perche la gro$$ez- za è un terzo, & non la metà.</I> <p>Que$ti $aranno i compartimenti de i capitelli di quelle colonne, che per lo meno $a- ranno di piedi quindici. & quelle, che $aranno di piu, teneranno allo i$te$$o modo la conuenienza delle mi$ure loro. l'abaco $arà lungo, & largo quanto è gro$$a la colonna da piedi, aggiuntaui la nona parte, accioche quanto meno la colonna piu alta $arà ra$trema- ta, non meno di quelle il capitello habbia lo $porto della $ua Simmetria, & nell'altezza l'ag giunta della rata parte. Ma delle de$crittioni delle uolute come drittamente a $e$ta s'in- uogliano, come s'habbiano a di$egnare, nel fine del libro la forma, & la ragione ci $a- rà dimo$trata. <p><I>Se le colonne fu$$ero piu alte di quindici piedi, $aranno date le iste$$e mi$ure alli loro capitelli; uero è, che il dado, o abaco $arà largo, & lungo di piu della gro$$ezza della colonna, per la no- na parte, perche e$$endo la colonna piu alta meno $i ra$trema di $opra; perche lo aere per la di- $tanza fa lo effetto della ra$trematione.</I> <p>Forniti i capitelli, & po$ti ne i $ommi fu$ti delle colonne non a dritto liuello, ma ad egual modulo, (accioche l'aggiunta fatta ne i piede$tali ri$ponda ne i membri di $opra con il compartimento de gli architraui) egli $i deue hauere la ragione de gli architraui in que$to modo. <p><I>Voleua Vitru. (come hauemo ueduto di $opra) che i piedi$talli u$ci$cero oltra il poggio, ma però, che di tutti i membrelli del piede$tale; ri$ponde$$ero i membrelli del poggio, che era ritira- to piu adentro. ilche con$iderando, egli ci fa auuertiti, che poniamo i capitelli di modo, che ri- $pondino con le ri$alite loro a quelle aggiunte da ba$$o, accioche nello architraue corri$pondino i membri con la loro ragioneuole mi$ura alle parti di $otto. lo e$$empio è nello in piè del Tem- pio P$eudodipteros.</I> <p>Che $e le colonne $aranno almeno da dodici fin quindici piedi, l'altezza dello archi= traue $ia per metà della gro$$ezza della colonna da piedi. $e pa$$erà da quindici a uenti, $ia partita l'altezza della colonna in parti tredici, & l'altezza dello architraue, $arà per una di quelle. $e da uenti, a uenticinque, parti$ca$i l'altezza in parti dodici, & meza, & di una parte di quelle $ia fatto lo architraue nell'altezza $ua. Se $arà da uenticinque a trenta: di do dici parti della colonna, una $ia per l'altezza dello architraue, & oltra di que$to $econdo la rata parte allo i$te$$o modo dall'altezza delle colonne deono e$$er e$pedite le altezze de gli architraui, perche quanto piu a$cende l'acutezza della ui$ta, non facilmente taglia, o rompe la den$ità dello aere, & però debilitata, & con$umata per lo $pacio dell'altezza, riporta a $en$i no$tri dubiamente la grandezza delle mi$ure: perilche $empre nei membri delli compartimenti $i deue aggiugnere il $upplemento della ragione, accioche quando l'opere $aranno in luoghi alti, ouero haueranno i membri alti è grandi, tutte l'altre parti habbiano la ragione delle grandezze. La larghezza dello architraue da ba$$o, in quella parte, che egli $i po$a $ul capitello, $arà tanto, quanto la gro$$ezza di $opra della colonna, che $ottogiace al capitello: Ma la parte di $opra dello architraue $ia quanto $arà la gro$$ez- za da piede della colonna. la gola, detta cima$a dello architraue, $ia per la $ettima parte <pb n="159"> della $ua altezza: & tanto habbia di $porto. L'altra parte oltra la cima$a diuidere $i deue in parti dodici, & di tre di quelle fare la prima fa$cia, la $econda di quattro, & la terza di $opra di cinque. Il fregio $opra l'architraue la quarta parte meno dello architraue, ma $e hauerai a $colpirgli figurette & $egni, farai lo fregio un quarto piu dello architraue, ac- cioche le $colture habbiano del grande. La gola, o cima$a del fregio $ia per la $ettima dell'altezza $ua. Lo $porto quanto è la $ua gro$$ezza $opra il fregio $i deue fare il dentello tanto alto quanto è la fa$cia di mezo dello architraue. Lo $porto, quanto l'altezza. Lo ta- glio che è da' Greci, metochi, nominato $i deue fare in que$to modo, che il dentello hab bia nella fronte la metà dell'altezza $ua, il cauo del taglio di quella fronte di tre parti, ne habbia due della larghezza. La gola di que$to habbia la $e$ta parte della $ua altezza. Il gocciolatoio detto corona con la $ua gola, o cima$a, oltra la gola dritta detta $ima, quanto è la fa$cia di mezo dello architraue. lo $porto del gocciolatoio 'con il dentello $i deue fare, quanto è l'altezza del fregio alla gola di $opra del gocciolatoio. & in $omma tutti gli $porti hanno piu del gratio$o, & del bello, quando i membri hanno tanto di $por to, quanto di altezza. Il timpano, che è nel fronti$picio deue e$$er alto in modo, che $ia mi$urata tutta la fronte del gocciolatoio dalla e$tremità della cima$a, & diui$a quella lun- ghezza in noue parti, & di quelle una nel mezo nella $ommità $ia po$ta, purche ri$ponda a perpendicolo de gli architraui, & de i collarini delle colonne. Le corone, che uanno $opra il timpano, $i deono collocare egualmente a quelle di $otto, oltra le $ime, o gole dritte. Di $opra le corone del timpano uanno le gole dritte, chiamate Epitithide, piu alte un'ottauo dell'altezza de i gocciolatoi. Le $ommità, dette acroteri, quelle che uanno $opra gli anguli deono e$$er tanto alte, quanto il timpano nel mezo. & quelle di mezo un'ottaua piu alte delle angulari. Tutti i membri, che uanno $opra i capitelli del- le colonne, cioe architraui, fregi, gocciolatoi, timpani, fronti$picij, pila$trelli, tutti di- co deono piegare in fuori per la duodecima parte cia$cuno della $ua fronte: accioche $tan do noi a dirimpetto delle fronti, $e $i $tenderanno all'occhio due linee, & una toccherà la parte di$otto, & l'altra la parte di $opra d'alcuno di que membri, quella, che tocche- rà la parte $uperiore $arà piu lunga; & co$i quanto piu lungo il uedere della linea procede, nella parte di $opra, farà lo a$petto piu lontano, & che pieghi in dentro uer$o il muro, ma $e piegheranno, come è $critto di $opra, allhora ci pareranno alla ui$ta dritte à perpendicolo. <p><I>Bella ragione di pro$pettiua è que$ta, che adduce Vitr. nel pre$ente luogo. per la cui intelli- genza bi$ogna prima porre la $ua intentione come una conclu$ione, dapoi prouarla con le ragio- ni della pro$pettiua. Dice adunque, che ogni membro, che $opra i capitelli $i pone, deue nella $ua fronte e$$er partito in dodici parti, & cia$cuno piegare uer$o la fronte $ua una parte delle dodici. & la ragione è fondata nella pro$pettiua, che uuole, che iraggi del uedere e$chino da gli occhi per dritta linea, & che tra quelli ci $ia una certa di$tanza, & che la figura da quelli com- pre$a, con quelli $ia come una piramide, & un conio, la cui punta $ia nell'occhio, & la ba$a contegna i contorni, ouero i termini della co$a ueduta. Hora $tando que$to ne $egue, che gli anguli, $otto i quali $i uede alcuna co$a, $aranno hora minori, hora maggiori, perche una i$te$$a co$a auuicinan<*>o$i all'occhio farà l'angulo maggiore, & allontanando$i lo farà mi- nore; il $imile $egue dell'altezza de gli anguli, del $ito destro, & $ini$tro, & della egua- lità, la doue quelle co$e, che $i uedeno $otto anguli maggiori appareno minori, & quel- le minori, che $otto minori $i uederanno, & $otto gli alti alte, $otto ba$$i ba<02>e, & $otto de- $tri destre, $otto $ini$tri $ini$tre, $otto eguali eguale, & $otto piu anguli uedute, $i uedeno meglio: però con$iderando Vitr. che $e i membri fu$$ero dritti a piombo, la parte di$opra $arebbe piu lontana dalla ui$ta, che quella di $otto, & parrebbe, che l'opera de$$e in drieto. il che $i ue- de tirando dall'occhio due linee, perche la linea, che ua alla parte di $opra, è piu lunga, che quella,</I> <pb n="160"> <I>che ua alla parte di $otto. & però l'opera ci parrebbe piu $ie$a, & piu riuolta al di $opra, per ue- der$i $otto raggio piu lontano. però uuole egli, che piegamo in fuori la parte di $opra, la duodeci ma parte dell'altezza de i membri, che uanno $opra i capitelli. perche la linea del uedere $i farà piu uicina all'occhio, l'angulo ci $arà maggiore, & l'opera ci parerà piu dritta. il che $i uede per la figura qui $otto. $ia l'architraue nella fronte c. b. $ia l'occhio a. & $iano tirate dall'occhio due linee, l'una alla parte di $otto $egnata c. l'altra alla parte di $opra $egnata b. egli$i uede, che la linea a b. è piu lunga, che la linea a c. ma $e la parte di $opra piegherà per la duodecima parte della $ua altezza, la linea, che andarà dall'occhio alla parte aggiunta $i farà minore, & conue- nirà piu con la linea di $otto, & l'opera parerà poi dritta, & meno $te$a, & riuolta, come $i ue- de dalla linea. a d. & que$to $i deue $pecialmente auuertire, doue le opere $ono alte, & imem- bri grandi. & u$are il giudicio, & la di$cretione.</I> <fig> <p>Le canalature delle colonne deono e$$er uentiquattro, & $i cauano in que$to modo, che po$ta la $quadra nel cauo della canalatu ra, & girata tocchi in modo con le $ue brac cia dalla de$tra, & dalla $ini$tra gli anguli delle $trie, che la punta, ouero angulo del la $quadra $i moua facilmente, & $enza im- pedimento col $uo giro toccando. Le gro$ $ezze delle $trie, o pianuzzi, $i deono fare, quanto $i trouerà la giunta nel mezo della colonna dalla de$crittione $ua. Nelle gole dritte, che $ono $opra i gocciolatoi de i Tempij $i deue $colpire le te$te di leoni, co $i po$te, che contra cia$cuna colonna $iano forate al canale, che dalle tegole riceue l'ac- qua piouana, ma le parti di mezo $iano $ode, accioche la forza dell'acqua, che per le tego le di$cende nel canale, non uenga tra gli inter colunnij, & non ba- gni quelli, che pa$$ano di $ot- to. ma quelle, che $ono $opra le colonne apparino uomitando mandar fuori gli e$iti delle acque. <fig> <p><I>La canalatura della colonna è fat ta ad imitatione delle falde delle ue- $ti feminili. In que$ta $i deue inten- dere la $ignificatione d'alcuni uoca- boli, & poi il modo di formarli giu- $tamente. il primo è quello, che Vitr. chiama Strix: il $econdo quel- lo, che è detto $tria: il terzo, Anco- nes. Strix adunque è il cauo, & il canale i$te$$o. $tria è lo $pacio, che è tra un cauo, & l'altro, detto pia- nuzzo. Ancones $ono le braccia della $quadra, la quale è fatta da due regule, che da Vitr. $ono dette ancones, perche fanno come un gomito, che in greco anchon $i chiama. Siano adunqu</I> <pb n="161"> <I>i canali uentiquattro cauati in $emicircolo, prouati con l'angulo della $quadra, che toccbi il $on do del cauo nel mezo, & con le braccia, che tocchino gli anguli de i pianuzzi. la gro$$ezza de iquali $i $aperebbe a punto, quando noi $ape$$imo bene come ua la gonfiatura della colonna, per- che $econdo la $ua de$crittione $i formano i pianuzzi$ec<*>do l'opinione di Vitr. & la figura $econ- do, che la intendemo è $tata po$ta.</I> <p>Io ho de$critto, quanto io ho potuto diligentemente in<*> que$to libro le di$po$itioni de i Tempij Ionici. nel $eguente io e$ponerò quali $iano le proportioni de i Tem- pij Dorichi, & Corinthij. <p><I>Conclude Vitruuio, & dice quanto ha trattato fin hora, & dice hauere detto con ogni<*>po$$i- bile diligenza le ragioni de i Tempij, Ionici, & promette di uoler trattare nel $eguente libro delle mi$ure de i Tempij Dorichi, & Corinthij. Però douemo auuertire alle co$e dette come a co$e pertinenti alla ragione Ionica.</I> <HEAD>IL QVARTO LIBRO</HEAD> <HEAD>DELL'AR CHITETTVRA DI M. VITRVVIO.</HEAD> <HEAD><I>Proemio.</I></HEAD> <p>HAVENDO io ó Imperatore auuertito, che molti hanno la$ciato pre cetti della Architettura, & uolumi di commentarij non ordinati, ma cominciati come particelle $membrate: degna, & utili$sima co$a ho pen$ato prima di ridurre tutto il corpo di que$ta di$ciplina a perfetto or dine, & poi e$plicare in cia$cuno uolume le pre$critte, & certe qualità delle maniere partitamente. Et però ó Ce$are io ti ho dichiarito nel pri mo uolume l'ufficio dello Architetto, & dimo$trato di che arti bi$ogna, che egli $ia am- mae$trato. Nel $econdo io ho di$putato della copia della materia, della quale $i fanno gli edificij. Nel terzo delle di$po$itioni de i $acri Tempij, & della uarietà delle loro ma- niere, quali, & quante forme s'habbiano, & delle di$tributioni, che $ono in cia$cuna ma niera, & de i tre generi, quelle, che haue$$ero $ottili$sime qualità de moduli nelle pro- portioni ho dimo$trato le u$anze Ioniche. Hora in que$to uolume io tratterò de gli in- $tituti Dorichi, & Corinthij. & di tutti farò manife$te le differenze, & le proprietà. <p>P<I>E</I>RCHE <I>Vitr. non faccia nel proemio del quarto, come ne i proemi de gli altri li bri, di$correndo $opra alcuna bella co$a, la ragione (come io stimo) puo e$$er que $ta. La materia del pre$ente libro, è continuata con la materia del precedente; pe rò non bi$ognaua fare altro proemio con digre$$ione, & hi$toria, come ha fatto ne gli altri. Ma perche ha fatto egli que$to poco di proemio? prima per di$tinguer un libro dall'al- tro, dapoi per continuare la materia, dimo$trando quello, che fin hora egli ci ha in$egnato, & quello, che egli ci è per in$egnare: & $e alcuno dice$$e, non doueua egli $otto un uolume $olamen- te comprendere tutta la trattatione delle fabriche dedicate alla religione? Io direi, che per fug- gire il tedio, che ci reca la lunghezza, egli ha uoluto dar modo al terzo libro, & ri$eruar$i</I> <foot><I>X</I></foot> <pb n="162"> <I>nel quarto a dichiarir ci il re$tante. Et per quella breuità, che egli lauda nel proemio del $eguen- te libro; che ci fa piu pronti alle co$e, che presto fini$cono: deue$i auuertire, quello, che egli dice.</I> {<I>Nel terzo delle di$po$itioni de i $acri Tempi.</I>} <I>Perche intende quanto a gli a$petti delle $i onti, & de i lati al primo Capo. Et quello, che egli dice.</I> {<I>Et delle proprietà delle loro manie re,</I>} <I>intende quanto allo $patio tra le colonne, del che ne $ono cinque $pecie, come $i uede al $econ do Capo. nel quale è compre$o, quello, che dice Vitru.</I> {<I>quali, & quante forme s'habbiano,</I>} <I>& il re$to. Et quello, che egli dice,</I> {<I>& de i tre generi quelle, che haue$$ero $ottili$$ime quali tà</I>} <I>intende del genere Ionico, del quale ha ragionato nel terzo Capo. Et in uero dice bene $otti- li$$ime qualità, & co$i ritrouo io, & è nece$$ario ri<*>olgere nella mente le co$e dette, $opra le pro portioni<*>, & i compartimenti di quelle, & e$$ercitar$i con quelle ne i precetti di Vitru. & bene $pe$$o ragionarui $opra. ricordando$i oltra di que$to della Eurithmia, & della gratia, ch'è il tem peramento delle pr<*>portioni applicate alla materia, come la equità alle co$e di giu$titia. Tratta adunque in que$to libro della origine, & inuentione delle colonne, de i loro ornamenti, della ra- gion Dorica, & Corinthia, del compartimento, & di$tributione del di dentro, & del di fuori de i Tempij. & ci da alcuni precetti per $iluare i Tempij $econdo le regioni, & parti del cielo, ra- giona delle porte, & del fabricar antico di To$cana, & delle forme ritonde de i Tempij, & de gli altari, & con que$to pon fine alla fabrica con$ecrata alla religione.</I> <HEAD><I>Di tre maniere di colonne, & delle origini, & inuentio- ne di quelle. Cap. I.</I></HEAD> <p>LE colonne Corinthie hanno tutte le mi$ure come le Ioniche, eccetto i capitel li, ma le altezze de i capitelli fanno quelle per la rata parte piu alte, & $ottili, perche l'altezza del capitello Ionico è la terza parte della gro$$ezza della co- lonna, ma del Corinthio, è di tutta la gro$$ezza intiera. perche adunque $o- no aggiunte a i capitelli Corinthij due parti della gro$$ezza della colonna, però fanno la mo$tra di quelle piu $ottile. Tutti gli altri membri, che $opra le colonne $i po$ano, nelle Corinthie $ono po$ti o dalle mi$ure, & compartimenti Dorichi, ouero dalle u$anze Ioni- che, perche la maniera Corinthia non ha propria in$titutione di gocciolatoi, o d'altri or namenti. ma ouero nelli gocciolatoi i mutoli dalle ragioni delli Triglifi $ono di$po$te, ouero ne gli architraui, le goccie all'u$anza Dorica $ono ordinate. Ouero $econdo le leg- gi Ioniche, i fregi ornati di $colture con i dentelli, & con le corone $i comparti$cono, & co$i di due maniere trapo$toui il capitello, è $tata nelle opere la terza maniera prodot- ta. perche le nominanze de i tre generi. cioè Dorica, Ionica, & Corinthia fatte $ono dal- le formationi delle colonne, delle quali, la prima, & antica nata è la Dorica. <p><I>Nel pre$ente luogo Vitr. tratta delle origini, & innentioni delle maniere delle colonne, & del la colonna Corinthia, & del $uo capitello. Le regole delle Corinthie $ono breuemente raccolte. La prima è, che le colonne Corinthie non $ono punto dalle Ioniche differenti di mi$ure, $aluo, che nel capitello, perche (come hauemo ueduto nel precedente libro) il capitello Ionico è alto per un terzo della gro$$ezza della colonna, & (come qui $i dice) il capitello Corinthio, è alto tan- to, quanto tutta la gro$$ezza della colonna. dalche na$ce, che la colonna Corinthia per la ag- giunta di due parti è piu $uelta, & pare piu $ottile. Ma doue ha detto Vitr. che il capitello Ioni- <*>o è alto un terzo della gro$$ezza della colonna? Ri$pondo, che egli lo ha detto di fopra, nel ter zo libro, quando egli di$$e.</I> Ma la gro$$ezza del capitello, $i deue fare in que$to modo, che di noue parti, & meza tre pendino inanzi $otto il tondino. <I>Perche $e tre parti $otto il tondino $ono la$ciate alle uolute, ne re$tano $ei, & meza, & la gro$$ezza della colonna era par- ti diciotto, & quella meza parte è di$tribuita alla cimbia, & però la gro$$ezza del capitello Io-</I> <pb n="163"> <I>nico uiene ad e$$er qua$i la terza parte della gro$$ezza della colonna. La $econda regola è, che le Corinthie non hanno membri proprij di $opra, ma $i pigliano, o dalle $immetrie Doriche, o dalle u$anze Ioniche. dice Vitr.</I> {<I>o dalle ragioni de gli Triglifi</I>} <I>cioè dalla ragion Dorica, non che $iano Triglifi nel Corinthio, ma perche il compartimento Dorico, è regolato $econdo gli Tri glifi. Sinulmente per goccie intende, non quelle, che $ono $otto gli Triglifi, ma quelle, che $ono di$poste $otto'l gocciolatoio, nel piano di $otto, come hauemo detto i moderni le chiamano fu$aio li, non $apendo l'origine di quelle. Adunque nella maniera Corinthia, l'Architraue, il Freggio, la Cornice, $i puo pigliare dalla mi$ura, & compartimento Dorico. Egli $i puo anche pigliare dalle u$anze Ioniche tutto quello, che s'impone a capitelli delle colonne, & in que$to ca$o non è differenza tra'l Ionico, & il Corinthio, & $i puo dire che il genere Corinthio non habbia altro del $uo, che il capitello, & que$to $i deue auuertire. Seguita Vitr. a dire l'origine del genere Dorico, & dice.</I> <p>Perche nell'Achaia, & nel Polopone$$o Doro figliuolo di Helleno, & della ninfa Optice hebbe il principato, que$ti in Argo antica città fece a ca$o il Tempio di Giunone di quel- la maniera. Dapoi delle i$te$$e maniere non e$$endo anchor nata la ragione delle $imme- trie fece i Tempij nelle altre città dell'Achaia. Ma poi che gli Athenie$i per le ri$po$te del Delfico Apollo di commune con$iglio di tutta la Grecia in uno i$te$$o tempo condu$$e- ro in A$ia tredici colonie, & a cia$cuna colonia diedero il $uo capo, & condottiere, dan- do la $omma dello imperio ad Ione figliuolo di Xutho, & di Creu$a, il quale per le ri$po$te $ue Apollo in Delfo uolle chiamare $uo figliuolo; co$tui condu$$ein A$ia quelle colonie; & iui fabricò grandi$sime città hauendo occupati i confini della Caria, Ephe$o, Mileto, Miunta, che gia fu dalle acque $orbita, i $acrificij, & i $uffragij della quale gli lonij, a Mi le$ij attribuirono, & Priene, Samo, Teon, Colofona, Chio, Erithras, Phocea, Elazo mene, Lebedo, Melite. Que$ta Melite, per l'arroganza de cittadini da que$te città per commune con$iglio mo$$agli guerra, fu ruinata. in luogo della quale dapoi, per benefi- cio del Re Attalo, & d'Ar$imone la città de Smirnei è $tata riceuuta nel numero delle cit- tà Ioniche. Que$te città hauendo $cacciati i Carij, & i Lelegi, nominarono dal loro capo Ione quella regione Ionia & ponendo iui i Tempij de i Dei immortali cominciorno a fa- bricare alcuni Tempietti, & prima (come uiddero in Achaia) fecero il Tempio d'Apol lo, detto Pannionio, & quello chiamarono Dorico, perche lo uiddero da prima co$i fat to<*>nelle città de i Dorici. Ma uolendo ponere in quel Tempio le colonne, non hauendo le $immetrie di quelle, & cercando con che ragioni le pote$$ero fare, $i che, & a $opporta- re i pe$i fu$$ero ba$tanti, & tenne$$ero approuata bellezza nello a$petto, mi$urarono la pianta del piede uirile, & hauendo trouato, che il piede era la $e$ta parte dell'altezza del- l'huomo, co$i la traportarono nella colonna. Et di quella gro$$ezza, che fecero la ba$a del fu$to della colonna, $ei fiate tanto leuarono in altezza quella col capitello. Et a que$to modo la colonna Dorica cominciò dare ne gli edificij proportione, & fermezza, & bellezza del corpo uirile. Appre$$o dapoi cercando di fabricare un Tempio a Diana, da gli i$te$si ue$tigij trasferirono nuoua forma di maniera alla $ueltezza feminile. Et prima fe- cero la gro$$ezza della colonna per la ottaua parte dell'altezza, & accioche tene$$ero lo a$petto piu alto $ottopo$ero alla ba$a in luogo di calzare la $pira, & al capitello impo$ero le uolute pendenti dalla de$tra, & dalla $ini$tra, come cre$pi cincinni della capillatura, & ornarono le fronti di cima$e, & con fe$toni, (che encarpi $i dicono) cioè frutti raccolti in$ieme, & foglie colligate in uece di capelli di$po$te, & per tutto'l tronco della colonna la$ciarono andar a ba$$o le canalature, come falde delle ue$timenta all'u$anza delle matro- ne; & co$i con due differenze imitarono la inuentione delle colonne, una $chietta, & nu da $enza ornamento, che era di $embiante uirile, l'altra di muliebre $ottigliezza, & orna- mento, & mi$ura. Ma quelli che uennero dapoi con eleganza, & $ottigliezza di giudi- <foot><I>X</I> 2</foot> <pb n="164"> cio andarono piu inanzi, & dilettando$i di moduli piu $ottili, fecero l'altezza della colon na Dorica di $ette diametri della gro$$ezza, & la Ionica di otto, & meza. Et quello, che gli Ioni fecero da prima, Ionico è $tato detto. Ma il terzo genere, che Corinthio $i chiama, è pre$o dalla imitatione della $ueltezza uirginale, imperoche le uergini per late- nerezza della età, e$$endo di piu $uelte membra formate, riceueno piu leggiadri, & gratio$i effetti. Ma la inuentione del capitello Corinthio $i narra che in que$to modo $ia $tata ritro uata. Vna uergine cittadina di Corinto gia da marito, e$$endo inferma uenne a morte. la notrice di quella hauendo raccolto tutti que ua$i, de i quali la uergine uiuendo $i dilet- taua, & po$ti quelli in un ce$tello, dapoi, che fu $epelita, gli fece portare al monumento, & porli da capo, & accioche piu lungamente re$ta$$ero allo $coperto aere, ui po$e $opra una tegola. Il ce$tello per ca$o era $tato po$to $opra una radice di Acanto. in quel mezo la radice nel mezo dal pe$o oppre$$a, mandò fuori da primauera i ritorti cauli, & le foglie cre$cendo i cauli lungo i lati del ce$tello, & da gli anguli della tegola per la nece$sità $pin ti in fuori, furono con$tretti nelle ultime parti delle uolute piegar$i. Allhora Callima- co, il quale per la eleganza, & $ottigliezza dell'arte, fu da gli Athenie$i cachizotecnos no minato, pa$$ando appre$$o quel monumento, auuertendo uide quel ce$tello, & d'intor- no la tenerezza na$cente delle foglie, & dilettato$i della maniera, & della nouità della for- ma fece a quella $imiglianza appre$$o i Corinthij le colonne, & po$e le conueneuoli ragio ni di quelle, & dapoi nelle perfettioni delle opere, fece la di$tributione della maniera Corinthia. <p><I>Richiederebbe un curio$o, che io cita$$i in que$to luogo l'auttorità di Plinio, di Pau$ania, & di Strabone, & d'altri autori per e$ponere le hi$torie, & le de$crittioni de i luoghi po$ti da Vitr. ma io credo a Vitr. & maggior cura mi $trigne, & d'importanza maggiore, che narrare le hi$to rie, de$criuer luoghi, & dipigner herbe. Grande occa$ione, & bella, ci ha dato la natura, per fare, che l'arte perfetta fu$$e, quando ella ci propo$e la forma del corpo humano. percioche con il numero, con i termini, & contorni, con lo $ito, & collocatione delle parti, in un $oggetto no bili$$imo ci diede e$$empio merauiglio$o di $ingular bellezza; fece, che i corpi quantunque di$$imi gl anti fu$$ero, nientedimeno belli, & ben formati, & uaghi ci pare$$ero. La onde molte bellezze nate $ono, percioche con lo certo, & determinato numero delle parti, la natura congiun$e la cor ri$pondente grandezza con i termini $uoi, & niente la$ciò, che in luogo proprio, & accommo- dato non fu$$e: perche $i trouano de i corpi gentili, & $uelti, che ci porgeno diletto, & $e ne tro- uano de gli altri, che $ono piu $odi, è maggiori, & però non ci di$piaceno, & finalmente tra que- $ti, & quelli altri $ono belli, & gratio$i, come che in ogni co$a $i truoua il grande, il picciolo, & il mediocre, cia$cuno con le $ue ragioni. il che con$iderando l'huomo, & leggendo nel li- bro della natura per imitarla nelle $ue compo$itioni, uolle, che tre maniere fu$$ero prin- cipali del fabricare, con$iderando molto bene l'officio, & il fine di cia$cuna fabri- ca: & però quella che piu pote$$e durare alla fatica, & piu fermezza, & piu di $odo haue$$e, Dorica uolle chiamare: perche fu prima da i Dorie$i di que$to modo pigliata: ma quella, che piu $ottile, & piu $uelta fu$$e, Corinthia: la mezana, qua$i tra amendue collocata, Ionica, da Ione, come dice Vitr. Ma perche cia$cuna haue$$e donde parere diletteuole, & bella, cominciò con gran diligenza a con$iderare, che numero, che termini, & come $i haue$$ero a di$porre le par- ti. Vedendo$i adunque (come ben di$corre Lione) che il diametro del corpo humano dall' uno, & l'altro lato, è per la $esta parte, & dal bilico alle reni per la decima dell' altezza del corpo, fu pre$a l'occa$ione delle mi$ure: perche ritrouando, che $e delle colonne altre fu$$ero piu alte $ei parti, altre dieci del piede loro, per lo innato $entimento, col quale potemo giudicare, che tan ta gro$$ezza, ouero tanta $ottigliezza non ha del buono, cominciò a fare l'ufficio $uo, & di$cor- rere, che co$a fu$$e di mezo tra que$ti ecce$$i, che pote$$e piacere, & di $ubito $i diede alla in- uentione delle proportioni, & co$i po$ti in$ieme quegli ecce$$i, cioè $ei, & dieci, diui$ero la $om-</I> <pb n="165"> <I>ma in due parti, donde ritrouarono, che'l numero di otto era quello, che dal $ei, & dal dieci con eguali $pacij era di$tante. Piacque la inuentione, & ne riu$cì la proua: & però diedero alla lunghezza della colonna otto Diametri del piede, & quella (come io ho detto) da gli Ioni, Io- nica naminarono. Dapoi giugnendo il minor termine, che era$ei, con que$to numero di nuouo ritrouato, cioè con otto fecero una $omma di quattordici, che partita egualmente rendeua $ette, $econdo il qual numero da Dorie$i $u fatta la colonna Dorica di $ette te$te. ma aggiugnendo il ter- mine maggiore, che era dieci con quello di mezo, che era otto raccol$ero diciotto, che partito in due faceua noue, perilche alla forma piu $uelta, & piu $ottile diedero noue diametri, & Corin- thia la chiamarono, perche da Corinto (che hora Caranto $i chiama) uenne la inuentione per auuertimento di Callimacho Architetto: Dal nnmero adunque cominciarono a dare la bel- lezza. Poi uennero al contorno, facendo le diminutioni, le gonfiezze, i collarini, & le cim- bie con gratia, & ornamento, di$ponendo le parti di cia$cuna al luogo $uo. ben è uero, che il $ito, & la di$po$itione delle parti piu pre$to $i la$cia cono$cere, & $entire, quando $ta male, che s'in- tenda come far $i deggia. percioche quella è gran parte del giudicio dell'huomo in$ito da natura. Ben è uero, che ci $ono alcune auuertenze, nel mettere in opera le co$e ben compartite, come fa- re, che le co$e uadino a piombo, che i membri ri$pondino $u'l uiuo, che il tutto na$ca da terra, che le colonne $iano pari di numero, a $imiglianza de i piedi de gli animali, che le apriture $iano di$pari, che le parti inferiori $iano piu gro$$e, che le $uperiori: che le Doriche non $iano troppo lauorate, ornate $iano le Ioniche, ornati$$ime le Corinthie. perilche non $i puo $e non bia$mare, chi nelle opere Doriche, ha po$to tanta $ottilità, & uarietà di lauori, che piu non potrebbe ha- uer fatto nelle Corinthie, grande $pe$a, inutile, non goduta, & $enza decoro fu fatta, $e bene al- cuno dice$$e e$$ere opera compo$ta. A me la ragione da ardire, & la i$perienza, & la cognitio- ne d'alcune co$e de gli antichi, lequali quando erano po$te lontane dall'occhio erano $olamente $gro$$ate, ma le piu uicine erano piu finite: $e però l'ambitione, & l'auantaggio, & commodità de lauoranti non gli moueua. egli $i legge, che per lo pericolo, che era nel drizzar le colonne, che non $i rompe$$ero, $i $oleua prima drizzarle, & poi lauorarle. in $omma ri$pondino (come ho gia detto) le co$e de$tre alle $ini$tre, le alte alle ba$$e, le dinanzi alle di dietro; in modo, che ogni co$a po$ta $ia al luogo $uo, & ri$pondendo $i in$ieme, & bellezza, & fermezza apportino a gli edificij. Voglio far hora auuertiti alcuni, i quali $i marauigliano, che Vitru. i$te$$o non pur al- tri, che hanno fabricato tra gli antichi Architetti, s'habbia alcuna fiata $co$tato dalle dette mi $ure. Io ho detto di $opra con l'auttorità di Vitru. che la ragione delle co$e è in $e uera, & du- rabile, onde con la proportione $ene uiue, & $ta $enza oppo$itione, ma non $empre diletta quel $entimento dell'animo no$tro, ilquale for$e piu a dentro per a$co$a forza di natura penetrando non con$ente a gli occhi, che la pura è $emplice proportione alcuna fiata diletti. ma dalla materia delle co$e, dalla grandezza, dalla di$tanza (come ho detto) richiede alcuna maniera, & for- ma, che acconci quello gratio$amente, che troppo $implicemente ci porge la mi$ura, & propor- tione, come nelle $tatue antiche $i uede, altre di noue, altre di dieci, altre tra noue & dieci te$te formate. Et nella Mu$ica finalmente ci $ono alcuni $uoni, i quali uengono alle orecchie con dol- cezza, che però non $ono tra le con$onanze collocati. però dico, che ognuno deue ce$$are dalla merauiglia, quando ritroua in molte opere la mi$ura alquanto uariata da i<*> precetti, perche egli è a ba$tanza tra'l maggiore, & minore ecce<02>o contener$i, uariando i mezi con giudicio, & $otti- gliezza d'auuertimento. & però da gli $pacij, & uani tra le colonne Vitru. ha regolato l'altez- za di quelle, nè mai è u$cito de i termini. Plinio nel trente$imo $esto libro al trente$imo terzo capo ragiona delle colonne, & mi$ure loro, & del Tempio di Diana Efe$ia, & delle $ue propor- tioni. Oltra le predette maniere di colonne, ci $ono le Attiche quadrangulari, & di lati egua- li. Quello che dice Vitru. di Callimaccho Architetto, che per la eleganza dell'arte era detto Cachizoternos, perche $empre egli $pezzaua le co$e fatte, nè mai $i contentaua, & $empre po- liua, altri leggono Lixitecnon, perche $ottilmente poliua le co$e <*>dell'arte $ua. & for$e qua- dra meglio a Vitr.</I> <pb n="166"> <p>La $immetria, o<*>ero compartimento di quel capitello, in que$to modo $i deue fare: che quanto farà la gro$$ezza della colonna da piedi, tanto $ia l'altezza del capitello, con il dado o Abaco. Ma la larghezza dell'Abaco co$i habbia la $ua ragione: che quanto $a- rà l'altezza, due tanti $ia la diagonale, percioche gli $pacij haueranno per ogni uer$o le fronti giu$te. $iano le fronti della larghezza piegate in entro da gli e$tremi anguli dello Abaco, per la nona parte della larghezza della $ua fronte: habbia al ba$$o del capitello tanta gro$$ezza, quanto à la colonna di $opra, oltra l'Apothe$i, & lo A$tragalo, cioè cim- bia, & tondino. La gro$$ezza dello Abaco per la $ettima dell'altezza del capitello. & le uata la gro$$ezza dell'Abaco, $ia il re$tante diui$o in tre parti, delle quali una $i dia alla fo- gliatura di $otto, l'altra habbia la fogliatura di mezo, & i cauliculi habbiano la i$te$$a altez za, & da quelli na$chino le foglie, lequali gettate in fuori abbracciano lo Abaco. ma quel- le uolute, & minuti inuogli, che na$ciuti dalle foglie de i cauliculi uengono in fuori fin a gli e$tremi anguli, $iano $colpiti tra'l $uo mezo $ottopo$ti a i fiori, che $ono nello Abaco. i quali fiori da tutte quattro le parti $iano formati tanto grandi, quanto è la gro$$ez- za dello Abaco. co$i in que$te $immetrie, & compartimenti $aranno formati i capitel- li Corinthij. <p><I>Io ho e$po$to di $opra a<02>ai chiaramente que$ta compo$itione, & dimo$tratola in di$egno. Ve- ro è, che egli $i ha auuertito appre$$o gli antichi, che l'altezza del capitello $enza lo Abaco era di uno diametro di colonna, il che gli daua maggior $ottigliezza.</I> <p>Sono anche le maniere de i capitelli, che alle mede$ime colonne s'impongono, con di- uer$i uocabuli nominate. de i quali nè le proprietà delle mi$ure, nè la maniera delle colonne potemo nominare. ma ben uedemo che i uocaboli di quelli $ono $tati transferi- ti, & tramutati da i capitelli Corinthij, Ionichi, & Dorichi, le $immetrie de i quali $ono $ta te traportate in $ottigliezza di noue $colture. <p><I>La maggior parte de i belli antichi edificij $ono di maniera compo$ta, & que$ta maniera è ua- ria $econdo la diuer$ità delle proportioni, che $i compongono in$ieme; però non hanno que$te ma- niere proprio nome, benche a dì no$tri, $e le dia'l nome d'Italiana. Veggon$i capitelli con tanta diuer$ità di lauori, che non ci è numero, altri con fogliazze grandi, altri con minute, & $ono belli$$imi, altri hanno legature d'animali, come s' è detto, altri hanno & uolute tolte da gli Io- nichi, & foglie tolte da i Corinthij: & tutti $ono garbati, & gratio$i: & indeterminatamente $i deono chiamare, capitelli, omaniere compo$te.</I> <HEAD><I>De gli ornamenti delle colonne. Cap. II<*>.</I></HEAD> <p>Perche di $opra $ono $tate de$critte le origini, & le inuentioni delle colonne $e- condo le maniere loro, egli non mi pare lontano dal propo$ito no$tro con le i$te$$e ragioni trattare de gli ornamenti di quelle, come nati $ono, & da quai principij, & da che origini ritrouati. In tutti gli edificij $i pone di $opra la trauatura, & l'opera di legname con diuer$i uocaboli nominata: & $i come nelle nominan- ze, co$i nello effetto ritiene diuer$e, & uarie utilità. imperoche $opra le colonne pila$tri, & erte, o $tanti, che $i dica, $i pongono le traui. ne i palchi & ta$$elli, i piccioli morelli, & le a$si. $otto i tetti $e gli $pacij $aranno maggiori, ui ua il colmello nel $ommo del col- mo. onde poi dette $ono le colonne, & anche $i pongono i trauicelli attrauer$ati, & le chia ui. Ma $e gli $pacij $aranno commodi, il colmello, & i cantieri uenghino in fuori fin al- lo e$tremo del grondale. & $opra i canthieri $tiano i tempiali, o pianelle, dapoi di $o= pra $otto le tegole gli a$$eri, che $portino in modo, che dalle loro proietture, & $porti, $iano coperti i pareti. <pb n="167"> <p><I>Mirabile dottrina, & pratica d'Architettura c'in$egna Vitruuio nel pre$ente Cap. percio- che egli ci rende conto di tutti gli adornamenti, & membri che $i metteno $opra le colonne, o pi la$tri, o muri, o stanti, che egli chiama, a<*>ntæ. dimo$trando chiaramente la origine, & inuen- tione di quelli. dal che nel pre$ente luogo $i caua la ragione dimolti uocaboli. Certo è (come $pe$$o ho detto) che dalla nece$$ità alla magnificenza del fabricare gli artifici $ono peruenuti. la natura c'impo$e la nece$$ità: ma lo animo grande acce$o dalla concorrenza cercò di auanzare $e $te$$o. $i che i primi fabricarono come lor fatto ueniua, & quanto il bi$ogno richiedeua. $uc ce$$ero le conte$e di $uperar$i l'un l'altro, ma però $i fondauano le inuentioni, & gli accre$ci- menti $opra la imitatione di quelle co$e, che per loro natura doueuano e$$er tali. però non fecero alcuna co$a ne gli adornamenti, di che non ne pote$$ero pienamente rendere la ragione dalla imi tatione delle co$e $atte per nece$$ità. Eleuato adunque lo edificio nella già dimo$trata forma dal fondameuto fin alla cima de i pareti, colonne, muri, pilastri, o $tanti, bi$ognaua coprirlo, ac- cioche perfettamente $i uede$$e il fine dell'opera: era nece$$ario nel coperto prouedere, che i pa- reti$te$$ero uniti, & legati in$ieme, & che'l coperto acconciamente $i ripo$a$$e, non $pignendo i pareti: la onde per hauere quanto s'è detto, egli è da $apere, che bi$ogna fare tutto questo la- uoro di legname: che da Vitruuio è detto materiatio. & cono$cere di$tintamente i nomi, gli ef- fetti, & l'ufficio di cia$cuna co$a. Tre co$e adunque douemo auuertire nell'opera di legname, l'una è quella, che $i impone prima $opra le colonne, i muri, & pilastri: que$ta $i chiama tra- uatura. la $econda è detta contignatione: que$ta $i diuide in due parti, l'una è la legatura del tet- to, l'altra è il tetto, & coperto. Della trauatura $i caua questo utile, che i pareti $i tengono in- $ieme, dalla legatura, che il tetto $i uni$ce, dal tetto, che l'edificio $i copre, & $i defende. & da tutte queste co$e hanno hauuto origine diuer$i adornamenti nelle fabriche, come $i dirà qui $otto. Sapremo adunque come alcuna fiata tra un parete, & l'altro $i troua grande interuallo, & alcuna fiata commodo, & non molto di$tante. però nelle legature de i tetti ui uà piu, & me- no artificio. però $e'l tetto $i $panderà molto, & $arà troppo largo, nella $ommità del colmo ui uà per lungo uno traue mae$tro, che $i chiama columen in latino. noi dicemo colmello. dal quale na$ceno come figliuoli tutti i legamenti del tetto: $i come dalla $pina mae$tra del pe$ce na$ceno tutte le altre: & for$e di qua è cauato quello, che $i $uol dire, il tale è di tale columel- lo. Ci $ono i trauer$i: ci $ono anche le chiaui detti capreoli, dalla $imiglianza de pampini, che legano le uiti; perche co$i quelli abbracciano i canteri: ma i trauicelli attrauer$ati latinamen- te $i dicono tran$tra, & uolgarmente catene, & $ono quelli, $opra i quali $i ripo$ano le chiaui. Ma $e'l tetto $arà comodo, & non porterà pericolo di slegar$i, & $chiauar$i li potrà ba$tare $ola- m&etilde;te il colmello cõ i $uoi canterij, i quali $ono alcuni legni lunghi del tetto, i quali uengono dal col mo, & di$cendono da i lati in$ino $otto le grondi. $opra que$ti canteri, (i quali fanno parere il tetto, come una galera riuer$cia, & $i u$a di dire tra noi la galera è in cantieri, quando è fat- to il $uo corbame) ui uanno i tempiali, che $ono trauetti, i quali uanno a trauer$o i cantieri, in contra le fronti del tetto. $opra i tempiali, ui uanno gli a$$eri, che $ono legni larghi quattro oncie, che uanno $opra i tempiali, come i canteri di $otto. & quiui è po$ta la ragione del coper- to. perche $opra gli a$$eri s'impongono le tegole, i capi delle quali s'incontrano ripo$ando $o- pra'l mezo de gli a$$eri. Et que$to è quanto la nece$$ità ci ha dimostrato, sì perche il tetto $te$$e in piouere, accioche le neui non lo carica$$ero, sì perche $caccia$$i le acque, & le tempe$te lon- tane da i pareti, & fu$$e ben legato. & que$to è quanto Vitruuio ha detto fin hora. come la figu- ra ci dimo$tra.</I> <pb n="168"> <fig> <pb n="169"> <p>Et co$i egli $i uederà, che ogni co$a con$eruerà, & il luogo, & la maniera & l'ordine proprio. Dalle dette co$e, & dall'opera di legname gli arte$ici con le loro $colture nelle opere di p<*>etra, & di marmo, nel fabricare de i Tempij hanno imitato le di$po$itioni, & hanno giudicato, che egli $ia da $eguitare quelle inuentioni: percioche gli antichi fabri edificando in un certo luogo, hauendo co$i po$te le traui dalle parti di dentro de i pare- ti, che correuano fin alle e$treme, & u$ciuano, & $portauano in fuori, compo$ero anche quello, che fra traue, & traue $i poneua. & ornarono con opere di legname gratio$a- mente quello, che andaua $opra le cornici, & le $ommità, & poi tagliauano gli $porti de i traui a pari de pareti a perpendicolo. la qual forma parendo loro, che for$e $enza garbo, & $enza gratia, conficcarono $opra le te$te de i trauicelli tagliate nella fronte alcune tauo lette nel modo, che hora $ono i Triglifi: & quelle dipin$ero con cera biaua, accioche le tagliature de gli trauicelli non offende$$ero la ui$ta. & co$i nelle opere Doriche le diui- $ioni de i trauicelli coperti con la di$po$itione de gli Triglifi cominciarono hauere lo $pa cio po$to tra gli trauicelli, & il letto delle trauature. <p><I>Hora tenendo$i a mente gli effetti di cia$cuna delle predette co$e, potremo beni$$imo $apere la origine de gli ornamenti, che nelle opere di pietra $ono stati introdutti da i grandi Architetti, & con che ragione s'habbiano a fare. Ha detto Vitruuio, che $opra le colonne, & i pilastri, & pareti s'impone la trauatura, & $opra la trauatura il tetto, o colmo. ha e$po$to le parti, & le ragioni de i coperti, & del colmo. Hora ci e$pone come da quelle parti, & dalle opere di le- gno $ono $tati transferiti gli ornamenti nelle opere di pietra, o di marmo: come nelle opere Doriche i Triglifi, & i Modioni, & nelle Ioniche i dentelli: & dice, che i Triglifi $ono stati fatti ad imitatione delle te$te delle traui, lequali prima $portauano fuori de i pareti, & poi erano tagliate a drittura de i pareti, & perche non faceuano bella ui$ta, erano inue$tite di tauolette dipinte con cera, di quel modo, che hoggi dì pareno i Triglifi con que canali, & con que pianuz- zi, che $i uedeno, che pare, che que canali $iano fatti per riceuere le acque cadenti dalla cor nice. Gli Architetti adunque nelle opere di pietra hanno traportato quelle inuentioni, & han- no fatto gli Triglifi, & le Metope, cioè gli $pacij tra uno triglifo, & l'altro, che rappre$enta- uano le diui$ioni d'un Triglifo all'altro, come da un traue all'altro. Similmente i mutuli, o mo- dioni $ono $tati pre$i nelle opere Doriche di pietra dalle opere di legname. que$ti rappre$entano gli $porti de i canterij $otto le cornici, come gli Triglifi rappre$entano gli $porti delle traui $opra l'Architraue. Que$ti modioni $ono piegati, accioche aiutino il cader deue acque. $ono piu lar ghi, & di meno gro$$ezza de gli Triglifi. & il luogo loro è $otto le cornici, & la figura qui $otto lo dimo$tra: & pero dice Vitruuio.</I> <p>Dapoi $ono $tati altri, che in altre opere a perpendicolo de gli Triglifi hanno fatto $portare i canterij, & hanno fatto piegare gli $porti loro. & come dalla di$po$itione delle traui uennero gli Triglifi, co$i da gli $porti de i canterij $otto i gocciolatoi è $tata ritro- uata la ragione de i mutuli, o modioni: & co$i nelle opere di pietra, & di marmo, $i for mano i modioni $colpiti, che piegano. il che non è altro che la imitatione de i canterij: perciohe di nece$sita, per li cadimenti delle acque $i fanno piegare in fuori. & però la ra- gione sì de gli Triglifi, come de i modioni, nelle opere Doriche è $tata da quella imita= tione ritrouata. Percioche non come alcuni errando hanno detto, che gli Triglifi $o- no le imagini delle fine$tre, co$i puo e$$ere. perche gli Triglifi $i pongono ne gli anguli, & contra i quadri delle colonne, ne i quali luoghi niuna ragion uuole, che $i facciano le fi= ne$tre, percioche le giunture delle cantonate $i $legano ne gli edificij, $e $i la$cieranno in quelle i lumi delle fine$tre. <p><I>Le cantonate de gli edificij deueno e$$er forti$$ime, perche $ono come l'o$$a delle fabriche, la doue non poco errore è di colui, & non picciol danno dello edificio, $e il cantone $i apre con qual- che foro. non è aduuque buona la opinione di quelli, che uogliono, che gli Triglifi & le metope</I> <foot><I><G>*u</G></I></foot> <pb n="170"> <fig> <I>rappre$entino le fine$tre, perche oltra, che la ragione nol con$ente, $eguitarebbe, che nelle ope- re Ioniche i dentelli pote$$ero $imilmente rappre$entare i fori delle finestre, il che non puo e$$ere, come dice Vitr. & c'in$egna ad un tratto l'origińe de i dentelli nelle opere Ioniche, & dice.</I> <p>Et di piu anche $e doue hora $i fanno gli Triglifi, iui $arà giudicato, che $iano $tati gli $patij de i lumi, per la i$te$$a ragione ci può parere, che nelle opere Ionichei dentelli hab biano occupato il luogo delle fine$tre, percioche amendue gli $patij, & quelli, che $ono tra i dentelli, & quelli, che $ono tra gli Triglifi $ono detti metope, perche Greci chiama- no ope i letti delle traui, & de gli a$$eri, come i no$tri chiamano caui colombari, & co$i lo $patio delle traui po$te tra due ope, appre$$o de Greci metopa è nominato. in modo, <pb n="171"> che $i come per auanti nelle opere Doriche è $tata ritrouata, la ragione de gli Triglifi, & de i modioni, co$i nelle Ioniche la ordinatione de i dentelli, nelle opere tiene la $orza $ua. Et $i come i modioni rappre$entano la imagine de gli $porti de i cantieri, co$i nelle Ioni- che i dentelli da gli $porti de gli a$$eri hanno pre$a la imitatione. Et però nelle opere de Greci non è, chi $otto il modione metta i dentelli, perche non po$$ono $tare gli a$$eri $otto i cantieri. Quello adunque, che $oprai cantieri, & i tempiali ueramente deue e$$er collocato, $e nella rappre$entatione $arà po$to di $otto, ci darà forme, & ragioni dell'ope ra piene di menda. <p><I>Adunque nelle opere Ioniche i dentelli rendeno la $imiglianza de gli $porti de gli a$$eri: & per- che gli a$$eri $ono $opra i canterij: però i dentelli $ono $oprai modioni. que$to è $tato o$$eruato da Greci. Similmente egli è un'altro auuertimento fondato $opra la regola, che dalle uere u$anze della natura delle co$e, egli $i deue prendere gli adornamenti dell'arte. Et que$to auuertimento è po$to qui $otto da Vitr. il qual dice.</I> <p>Et anche gli antichi non laudarono mai, nè ordinarono, che ne gli Fronti$picij $i haue$- $e a fare i modio ni, ouero i dentelli, ma $olamente le cornici $chiette. perche nè i cante- rij, nè gli a$$eri uanno di$tribuiti uer$o le fronti de gli Fronti$picij, nè po$$ono $portare, ma piegano uer$o i grondali. Et però quello, che in uerità non $i può fare, gli antichi giudicarono non poter hauere determinata ragione, quando che egli fu$$e nelle imagini rappre$entato. percioche nelle perfettioni delle opere traportarono ogni co$a con<*> certa proprietà delle uere u$anze di natura, & non approuarono co$a, che la e$plicatione del fatto nelle di$putationi non pote$$e hauere la $ua ragione tolta dal uero. Et però ci la$cia rono ordinate le conuenienze delle mi$ure da quelle origini, & le proportioni di tutte le maniere, i principij delle quali hauendo io $eguitato, io ho detto di<*>$opra delle ordinatio ni Ioniche, & Corinthie. Hora io e$ponerò breuemente la ragion Dorica, & tutta la forma $ua. <p><I>Ogni co$a detta di $opra è facile, & i$pedita, ma poco da molti Architetti $i è<*> con$iderato quello, che Vitr. dice; cioè, che noi non douemo far co$a, che non habbia del ueri$imile, ne'rap pre$entare imagine alcuna, che non habbia principio dal uero, & che cadendo in di$putatione, non $i habbia a ricorrere in $icuro luogo per $o$tentarla. Vitr. adunque bia$ima per opinione de gli antichi i dentelli, o modioni fatti per gli fronti$picij: perche rappre$entando quelli i cantieri o gli a$$eri, & non uenendo i cantieri uer$o le fronti, & non $portando gli a$$eri, non è po$$ibile fare in que luoghi i dentelli, o i modioni, doue non $i ha ri$pondenza con alcuna co$a. Ma la u$an za ha uinto la ragione fin al tempo di Vitr. perche nelle opere antiche tutio'l giorno $i uedeno, & dentelli, & modioni nelle te$te de i Fronti$picij, & pare, che tale ornamento $tia bene, tutto che non ci $ia ragione.</I> <HEAD><I>Della ragione Dorica. Cap. III.</I></HEAD> <p>ALCVNI de gli antichi Architetti hanno negato e$$er commoda, co$a fabrica- rei Tempij alla Dorica; allegando che in quella maniera $iano i comparti- menti di$conueneuoli, & mendo$i. Et però Tarte$io, Pitheo, & Hermoge ne $imilmente lo negarono. perche hauendo Hermogene apparecchiata la materia per fare l'opera di maniera Dorica mutò quella, & della i$te$$a fece un Tempio<*>al la Ionica al padre Bacco. Et que$to fece non perche l'a$petto Dorico manca$$e di grat a, nè perche la maniera, o la dignità della forma non ci fu$$e, ma perche il compartimento è impedito, & incommodo nell'opera de gli Triglifi, & nella di$tributione delle trauatu re: percioche egli è nece$$ario porre gli Triglifi contra i tetranti delle colonne, & che le <foot><I><G>*u</G></I> 2</foot> <pb n="172"> metope tra gli Trigli$i $iano tanto lunghe, quanto alte. & perlo contrario $ono po$ti gli Triglifi nelle extreme parti nelle colonne, & non contra il mezo de i tetranti. dalche adi- uienc, che le metope, che $i fanno appre$$o gli Triglifi angulari non rie$cono quadrate, ma alquanto piu lunghe de gli Triglifi per metà dell'altezza. Ma quelli, che pur uoglio- no fare le metope eguali, ri$trigneno gli ultimi uani delle colonne per la metà dell'altezza d'uno Triglifo. Ma facendo $i quc$to o nelle lunghezze delle metope, o nello ri$trigne. re i uani, è diffetto$o, & non $ta bene. per ilche pare, che gli antichi habbiano noluto $chiuare nel fabricar i Tempij, la ragione del compartimento Dorico. <p><I>Volendoci Vitr. dichiarire il compartimento Dorico, egli ci propone una difficultà de gli anti chi Architetti, accioche $tiamo noi piu auuertiti. Bia$imauano alcuni la mi$ura, & comparti- mento Dorico nel fabricare i Tempij, non perche la forma non haue$$e del buono, o difpiace$$e la maniera, ma perche non tornaua bene il compartimento de gli Triglifi, & delle metope. Noi ba uemo ueduto di $opra, che gli Triglifi ri$pondeuano alle te$te delle traui, perche erano le loro inue- $titure nelle opere di legno, & che le metope ri$pondeuano a gli $patij, che erano da una te$ta d'una traue all'altra, detti intertignia dalla parte di fuori, & Lacunaria dalla parte di dentro: & le traui, & gli $patij in$ieme, noi chiamamo la trauatura. Se adunque gli Triglifi rappre$en- tano le testte delle traui; & le metope, gli $pacij: ne $egue, che e$$endo impedito il compartimen- to de gli Triglifi, & delle Metope, $ia anche impedita la ragione, & compartimento della traua tura, & del loro ornamento. Ma come $ia impedita la di$tributione de gli Triglifi, egli $i uede, perche egli è nece$$ario, che lo Triglifo $ia giu$to per mezo la quadra della colonna, & che la metopa $ia tanto alta, quanto lunga: ma gli antichi non auuertendo a quello, che era rappre$en- tato per gli Triglifi, & per le metope poneuano $opra l'esttreme parti delle colonne, & non $u'l uiuo gli Triglifi. dal che ne na$ceua, che le metope, che erano appre$$o quegli Triglifi, non ueni- uano quadre giustte, ma alquanto piu lunghe. & que$to ueniua, perche uoleuano $eruare la di$tan za tra colonna, & colonna. Ma quelli, che di cio non curauano, & uoleuano pure, che le me- tope ueni$$ero giu$te, re$trigneuano gli $patij tra le colonne, & obligauano quegli in modo, che non poteuano cadere $otto le ragioni de gli intercolunnij, & uani regolati. Re$trigneuano adun- que gli e$tremi uani per la metà dell'altezza d'uno Triglifo; per giu$tar la metopa; & que$to era difetto$o. Et per que$to fuggiuano il modo di fabricare alla Dorica, non bia$imando l'a$petto, nè la maniera, ma il compartimento, & la $immetria, come fecero, Tarte$io, Pitheo, & Her- mogene. A que$to di$ordine prouede Vitr. gentilmente dimo$trandoci le ragioni, & le proportio ni di que$ti compartimenti, è dice.</I> <p>Ma noi, come richiede l'ordine e$ponemo in quel modo, che da no$tri precettori ha- uemo pre$o, accioche $e alcuno ponendo mente a que$te ragioni uorrà in que$to modo cominciare, egli habbia e$plicate le proportioni, con le quali egli po$$a bene, & $enza di- fetto fabricare alla Dorica, è condurre a perfettione i $acri Tempij. <p><I>Vitr. ci promette di dou<02>r dare il modo, & le mi$ure di fabricare alla Dorica $enza difetto, & $i come nella maniera Ionica egli ci ba dato i precetti $econdo le forme de i Tempij, & regola ti quelli $econdo iuani tra le colonne: co$inella Dorica egli regola $econdo le i$te$$e forme, gli $pa tij tra le colonne. Ben è uero, che la ragione di que$ti $patij, & di que$ta maniera tutta dipende dal compartimento de gli Triglifi. Et però nel di $opra, & in altri luoghi quando Vitr. dice. Li ragione de gli Triglifi: egli intende la manier a Dorica. Comincia adunque a regolare la maniera Dia$tilos, che ba il uano di tre colonne, $econdo lo a$petto di facciata in colonne detta pro$tilos: & $econdo ambe le te$te in colonne, detta amphipto$tilos: & $otto un nome $olo comprende que- $ti due a$petti, chiamandoli Tetra$tilos, cioè di quattro colonne. Regola anche lo alato d'intor- no detto peripteros, chiamandolo exa$tilos, cioè di $ei colonne. & ci la$cia poi regolare a modo no$tro le altre maniere, con le ragioni di quelle.</I> <p>La fronte del Tempio Dorico, nel luogo doue s'hanno a porre le colonne, douendo <pb n="173"> e$$ere di quattro colonne, $ia diui$a in parti uenti$ette. ma $e $arà di $ei colonne, $ia partita in parti quarantadue. Di que$te parti un<*>a $arà il modulo, che Grecamente Embatis è det to, & è quello, per la cui con$titutione di$correndo, & ragionando $i fanno i comparti- menti d'ogni opera. La gro$$ezza delle colonne farà di due moduli, l'altezza con il capi- tello di quattordici. <p><I>In que$to luogo $i deue por mente, che $e bene Vitr. ha detto, che nella maniera Dia$tilos i ua ni $ono di tre gro$$ezze di colonne; non però nella di$tributione pre$ente cadeno ne i uani tre gro$- $ezze di colonne a punto, ma due, & tre quarti: però douemo auuertire, ($i come di $opra auuer tito hauemo) che quando Vitr. nel terzo libro ragiona de gli $patij tra colonna & colonna, in tutte le forme, o di $pe$$e, o di larghe, o di libere di$tanze, egli u$a que$ti termini. puo e$$er. $i puo porre. potemo tramettere. & non dice $i deue porre, douemo tramettere, o deue e$$ere lo $patio di tante colonne: perche non ci comanda, come egli fa nell'a$petto $cielto, & elegante, dicendo</I> {<I>perche fare $i deono gli $patij de gli intercolunnij di due colonne, & un quarto.</I>} <I>par- lando adunque indeterminatamente Vitr. non è nece$$ario, che apunto uenghino tre diametri tra colonna, & colonna in que$ta di$tr ibutione. Dapoi que$to egli $i deue auuertire, che $opra gli anguli uengono meze metope, ma non di fatto meze apunto, $e bene Vitr. dice $emimetopia; per che egli anche dice, $emimetopia, per la metà d'un modulo in larghezza, che è $emitriglifo apun to, come egli dirà di $otto. Et però $i dice meza metopa, al modo, che $i dice $emituono, o $emi- uocale, non che $ia mezo tuono a punto, o meza uocale, ma perche è una co$a tra gli e$tremi. Da que$ta intelligenza ne na$ee, che la fronte di quattro colonne ha da e$$er diui$a in uenti$ette parti, & la fronte di $ei colonne in quaranta due, & che con la ragione di que$te $i puo regolare le fronti di otto, & di dieci colonne. Noi poneremo qui $otto la di$tributione, con gli Triglifi nu di, & gli $patij tra le colonne, perche poi con uno, o due e$$empi dello inpiè, $i darà notitia di que$ta di$tributione. A me piacerebbe, che la colonna fu$$e alta quattordici moduli, $enza il capitello per appro$$imar$i piu a quello, che ha detto Vitr. nel terzo libro, che nell'a$petto dia$ti los le altezze delle colonne $ono di otto te$te, & meza. ma $eguitiamo il mae$tro.</I> <p>La gro$$ezza del capitello d'un modulo. La larghezza di due moduli, & della $e$ta par- te di uno <p><I>Rie$ce meglio, della quinta parte, come ho detto. il re$tante è facile per la dichiaratione fat- ta da noi nel terzo libro.</I> <p>Diuida$i la gro$$ezza del Capitello in tre parti, d'una delle quali $i faccia l'Abaco con la Cima$a. dell'altra l'Ouolo con le anella. della terza il fregio fin al collarino. Sia poi contratta, & ra$tremata la colonna, $i come nel terzo libro è $tato nelle Ioniche dimo$tra to. l'altezza dello Architraue $ia d'un modulo, ponendoui la $ua li$ta, & le goccie: & la li$ta $ia per la $ettima parte del modulo. La lunghezza delle goccie $otto la li$ta per mezo gli Triglifi, alta con la regoletta penda inanzi per la $e$ta parte d'uno modulo, & co$i la larghezza del piano inferiore dello architraue ri$ponda al collarino della colonna di $o- pra. Sopra lo architraue $i deono porre gli Triglifi con le metope $ue, larghi nella fron- te un modulo, co$i diui$i, che nelle colonne angulari, & nelle di mezo $iano contra il me zo delli quadri, & tra gli altri uani due: ma in quelli di mezo dinanzi, & di dietro il Tem pio tre: & a que$to modo allargati gli $pacij di mezo $enza impedimento $arà commoda l'entrata a i $imulacri de gli Dei. Parti$ca$i poi la larghezza dello Triglifo in parti $ei, del- le quali ne $iano cinque nel mezo, ma due meze $iano di$egnate dalla de$tra, & dalla $ini- $tra, & con una regola nelmezo $ia formato il piano, che femur latinamente &, miros, è det- to da Greci. lungo quella regola con la punta della $quadra $iano riuolti i mezi canaletti. po $ti gli Triglifi a que$to modo, $iano le metope, che uanno tra gli Triglifi tãto alte, quanto lunghe. Et appre$$o di $opra le cãtonate $iano le meze metope impre$$e per la metà d'un mo dulo. perche facédo$i a que$to modo auuerrà, che tutti i difetti, & errori sì delle metope, co <pb n="174"> me de gli intercolunnij, & delle trauature, e$$endo fatti giu$ti i cópartimenti, $aranno emen dati. I capitelli de gli Trigli$i $i hanno a fare per la $e$ta parte d'un modulo. Sopra ica- pitelli de gli Triglifi $i deue ponere la corona, o gocciolatoio, che $porti in fuori per la metà, & un $e$to d'un modulo, hauendo di $otto una cima$a Dorica, & un'altra di $opra: Et $arà il gocciolatoio có le $ue gole, o cima$e di gro$$ezza della metà d'un modulo. Deon- $i poi $otto il gocciolatoio partire le dritture delle uie, & i compartimenti delle goccie in modo, che le dritture $iano a perpendicolo de gli Triglifi, & per mezo le metope, & i com partimenti delle goccie in maniera, che $ei goccie in lunghezza, & tre in larghezza $i uedi no. ma il re$tante de gli $patij $ia la$ciato $chietto, ouero ui $iano $colpiti i fulmini; impe- roche le metope $ono piu large de gli Triglifi. Al mento del gocciolatoio, $ia tagliata una linea, che $i chiama $cotia, cioè cauetto. Tutto il re$tante delle parti, come Timpa- ni, Gole dette $ime, & gocciolatoi $i faranno, come hauemo $critto nelle Ioniche. Et que$ta ragione $i truoua nelle opere dia$tile nominate. <p>Ma $e l'opera $arà da far$i della maniera Si$tilos. & che habbia uno Triglifo $olo nelua no, douendo e$$ere di quattro colonne, egli $i partirà la fronte in parti dicenoue & meza, $e di $ei, in parti uentinoue, & meza, delle quali una $i piglia per modulo, alla cui mi$ura (come è $critto di $opra) $ono compartite tutte le opere. co$i $opra in cia$cuna parte del- lo architraue $i deono porre due metope, & uno Triglifo, ma nelle cantonate non piu di mezo Triglifo. Appre$$o le dette co$e s'aggiugne que$ta, che lo $patio di mezo $otto'l fronti$picio $arà da e$$er formato con due Triglifi, & tre metope, accioche lo intercolun nio $ia piu ampio, & piu $patio$o, & commodo a quelli, che uorranno entrare nel Tempio, & lo a$petto uer$o le imagini de gli Dei ritegna piu dignità, & grandezza. Sopra i capitel li de gli Triglifi $i ha da ponere il gocciolatoio, che habbia (come s'è detto di $opra) due gole alla Dorica, una di $opra, l'altra di $otto, & co$i anche il gocciolatoio $ia per la me- tà d'un modulo. Et ($i come s'è detto nelle opere dia$tile) $i diuideranno le dritture del- le uie, & $i faranno le di$tributioni delle goccie, & le altre co$e dritto a perpendicolo de gli Triglifi, & per mezo le metope nella parte di $otto il gocciolatoio. <I>Cioè nel piano del lo Architraue, che guarda al ba$$o, il quale non $ia piu largo di quella parte, che $i contragge al collarino della colonna, che tanto è quanto la colonna di $opra.</I> <p>Egli bi$ogna canalare le colonne con uenti canalature. quelle $e $aranno piane deono hauere uenti anguli, ma $e $aranno cauate, $i deono fare in que$to modo: che quanto $a- rà lo $pacio d'uno canale, tanto $i habbia a formare uno quadrato di lati eguali, & nel me- zo del quadrato $i ha da porre il piede della $e$ta, & raggirare intorno la circonferenza, che tocchi gli anguli della cauatura, & quanto di cauo $arà tra la circonferenza, & la qua drata de$crittione, tanto $ia cauato, a quella forma: & a que$to modo la colonna Dorica hauerà la perfettione della canalatura conueniente alla maniera $ua. Ma della aggiunta, che $i fa nel mezo della colonna, co$i in que$ti $ia traportata, come nel terzo libro è $tato nelle Ioniche di$egnato. Ma poi che la forma e$teriore de i compartimenti, & Corinthi, e Dorichi, & Ionici è $tata de$critta, egli è nece$$ario, che $i dichiari da noi la di$tribu- tione delle parti interioti delle celle, & di quelle che $ono inanzi a i Tempij. <p><I>Vitruuio è facile da $e, & hauendo dal fondamento fin alla cima alzato la $ua fabrica, & mi$urato il tutto $econdo le tre maniere, $enza la$ciar parte, nè membro, nè ornamento, che $i conuenga alle parti e$teriori, egli uuole entrar in chie$a, come $i dice, & ricono$cere i compar timenti di dentro, fermando $i alquanto nella entrata detta pronao, cioè antitempio, & dopo que$ta prome$$a, egli $i da alla e$ecutione. fin tanto qui $otto $aranno le figure delle co$e dette.</I> <pb n="175"> <fig> <pb n="176"> <HEAD><I>Della di$tributione di dentro delle Celle, & dello antitempio. Cap. IIII.</I></HEAD> <p>LA lunghezza del Tempio $i comparte in modo, che la larghezza $ia la metà della lunghezza: & la cella $ia la quarta parte piu lunga di quello, cl e è la lar ghezza col parete, nel quale $aranno po$te le porte. Le altre tre parti del pro nao, o Antitempio corrino uer$o le ante de i pareti, lequali deono e$$ere del la gro$$ezza delle colonne. Ma $e il Tempio $arà di larghezza maggiore di uenti piedi, $i deono porre due colonne tra due ante, l'officio delle quali è $eparare lo $pacio delle ali & del pronao. <p><I>Io $timo che il pre$ente luogo fia difficile: & $e non ci fu$$e qualche o$$eruatione de gli anti- chi Tempij, for$e bi$ognarebbe indouinare. però hauendo io o$$eruato alcune co$e, io uengo, in opinione de interpretare il pre$ente luogo al modo infra$critto, riportandomi a migliore inuen- tione. E$$endo tra le $emplici proportioni la moltiplice maggiore di quelle, $i come ho dimo$trato nel terzo libro, co$a conueniente $i giudica u$are nella di$tributione de i Tempij le $pecie delle moltiplici proportioni: imperoche i Tempij $ono fatti per lo culto diuino, al quale $i richiede ogni magnificenza, & grandezza. Si che uolendo Vitruuio tr attare delle parti interiori de i Tempij, comincia a proportionare le lunghezze, & larghezze loro. nel che è ripo$ta quella gratio$a ma niera, che nel primo libro è ftata nominata Eurithmia. Dell'altezza non è nece$$ario parlare na$cendo ella dalle mi$ure dell'opera: Imperoche gli Architraui, le cornici, & i Fronti$picij per le co$e dette di $opra ci $ono manife$ti. Vuole adunque Vitr. che la lunghezza $ia doppia alla lar ghezza: & ragiona qui, de i Tempij Ionici, Dorici, & Corinthij: benche pare, che nelle piante po$te nel terzo libro le lunghezze $iano meno del doppio alle larghezze, & in fatto è co$i, per- che lo intercolunnio di mezo nelle fronti è piu largo, ma ci è poca differenza dalla doppia. Ho- ra quello che importa è, che la cella di quel Tempio di$cgnato nel primo libro pare troppo lunga. & for$e la intentione di Vitruuio $i manife$ta in que$to luogo. pero io uorrei, che quiui $i con$i- dera$$e $e la co$a puo $tare (come io dimo$trerò) & $e Vitruuio ce lo accenna, & $e anche lo antico l'o$$erua. Soleuano gli antichi di$tinguere lo Antitempio detto pronao, con alcune ale di muro, che $econdo Strabone $i chiamano pteromata. Que$te ale uemuano uer$o le fronti da una parte, & dall'altra della cella: ma in al cuni Tempij non perueniuano alle fronti compitamen te, ma terminauano in alcuni pila$tri, o ante che $i dica, gro$$e quanto le colonne: & $e tra l'una ala di mura, & l'altra era grande $pacio, $i poneuano a quel filo de i pila$tri tra mezo due colon ne per fermezza: & co$i era $eparato il pronao dal portico. Co$i $i ritrouano le piante de i tre Tempij appre$$o il Theatro di Marcello. Co$i accenna Vitruuio nel pre$ente luogo, & co$ipare, che la ragione ce lo dimo$tri. Pigliamo adunque la fronte del Tempio, & $ia di quattro parti, otto di quelle faremo la lunghezza, accioche $ia in proportione doppia. di quelle otto cinque $i danno alla lunghezza della cella includendo la gro$$ezza del parete doue $ono le porte, tre uen- ghino dall'Antitempio alle ante, o pila$tri de i pareti, le quali ante deono e$$er della gro$$ezza delle colonne. Questte ante $ono i termini delle ale del muro, che uengono inanzi dall'una parte, & dall'altra, & perche puo e$$ere, che tra quelle ale ci $ia, & poco, & molto $pacio, $econdo le maniere de i Tempij di $pe$$i, o di larghi intercolunnij, però $econdo il bi$ogno e nece$$ario tra porui delle colonne. Io dico in $omma, che la maniera di faccia in pila$tri, & di faccia m colonne, & la fal$a, & la doppia, & la intorno alata, & la $coperta, tanto Dorica, quanto Ioni- ca, & Corinthia $iano tutte o di $trette, o di larghe, o di rila$ciate, o di acconcie di$tanze d'in tercolunnij. tutte $i regolano dal pre$ente luogo nel compartimento delle celle: & $i come tutto il Tempio non uiene a punto doppio in lunghezza, perche la nece$$ità del compartimento delle</I> <pb n="177"> <fig> <foot><I>Z</I></foot> <pb n="178"> <fig> <I>colonne, & de i uani, non ce lo la$cia uenire, co$i anche la cella $e bene nella facciata in colo- ro è detta, prostilos, & ambe le teste in colonne detta amphipro$tilos, in ogni genere, & ma-</I> <pb n="179"> <fig> <foot><I>Z</I> 2</foot> <pb n="180"> <I>niera puo uenire la detta proportione $econdo i precetti di Vitr. non però a punto uiene la predet- ta proportione ne gli altri a$petti, & maniere, per che bi$ogna, che i pareti delle fronti della cel- la $contrino con le colonne di fuori, & $iano ad una i$te$$a fila: però le celle di que Tempij $a- ranno alquanto maggiori di quello, che dice Vitruuio, il quale in que$to luogo ci comparte le cel le, che $ono parte de i Tempij, & ci comparte il pronao, cioè l'Antitempio, & il Po$tico, cioè il po$ttempio, in ogni genere, & in ogni maniera. Adunque altro è cella, altro è Tempio, al- tro è portico, altro è pronao. Il tempio è il tutto: la cella è la parte rinchiu$a di parete, come il portico è il colonnato, che ua a torno, che Vitr. chiama ale ne i Tempij, & portico drieto le $cene. Pronao è quella parte, che è dinanzi la cella, che da i lati ha due ale di pareti conti- nuati alli pareti della cella, nel fine delle quali $ono i pila$tri della gro$$ezza delle colonne. La lunghezza del Tempio è doppia alla larghezza. que$to è uero a punto nelle fronti di quattro co- lonne: ma doue ui uanno le ale a torno, non ri$ponde a punto. & Vitr. nel terzo libro parlando del fal$o alato, dice, che egli ha nella fronte, & nel po$tico otto colonne, ma dai lati, quin- dici con le angulari. & poco dapoi dice, che nelle maniere, che hanno l'ale d'intorno le colonne, $i deono porre in modo, che quanti uani $aranno nelle fronti, tanti due fiate $iano i uani da i la- ti; & co$i la lunghezza dell'opera $arà doppia alla largheza. dalle quali parole molto bene potemo comprendere, che uero $ia quanto s'è detto. Sia adunque la cella per la quarta parte piu lunga di quello, che è la larghezza, cioè partirai la larghezza del Tempio in quattro par ti, & fa la lunghezza della cella d'una parte piu, che $aranno cinque. qui ci auanzano tre parti, le quali ne i Tetrasttili d'ogni a$petto in ogni genere, & in ognimaniera $i danno al pro- nao $olo, quando non ui è posttico, ouero $i danno al pronao, & al po$tico, quando ui $ono.</I> <p>Et anche i tre intercolunnij, che $aranno tra i pila$tri, & le colonne $iano trachiu$i con parapetti di marmo, ouero di opera di legname, in modo, però che habbiano le apritu- re, per lequali $i po$$a entrare nel pronao. <I>Anche in que$ta parte Vitruuio $i la$cia intendere, però ueniremo alle de$crittioni delle co$e già dette.</I> <p><I>Non $olamente po$$ono e$$er tre gli intercolunnij tra que pila$tri, ma anche cinque, come ne gli a$petti di dieci colonne. Que$ti intercolunnij tra i pila$tri, in tutti gli altri a$petti $ono tre, percioche non $i mette a conto il portico $emplice, o doppio che $ia. Tra que$ti adunque $i pone- uano alcuni parapetti che Vitr. chiama plutei, o di marmo, o di legno, non piu alti di quello, che $arebbe il poggio, s'egli ci anda$$e. La cella haueua le $ue porte ordinarie, & il $uo parete alto, che la chiudeua d'intorno: ma lo Antitempio haueua le $ue entrate per gli intercolunnij tra i pilasttri delle ale.</I> <p>Ma $e la larghezza della fronte $arà maggiore di piedi quaranta, bi$ogna porre altre colonne dalla parte di dentro all'incontro di quelle, che $aranno trapo$te tra i pila$tri, & $iano di quella altezza, che $ono le e$teriori nella fronte. Ma le gro$$ezze di quelle $iano a$$ottigliate con que$te ragioni, che $e quelle delle fronti $aranno d'otto parti, que$te $ia- no di noue: ma $e quelle di noue, o di dieci, que$te $iano per la rata parte. <p><I>Grande autorità porgeua lo Antitempio, perche pareua, che con maggiore ueneratione s'en- tra$$e nel Tempio, entrando prima in uno andito, & non uenendo co$i presto al luogo dell'ado- ratione. Se adunque era lo Antitempio molto largo nella fronte, come nelle opere di otto, & di dieci colonne, bi$ognaua traporui delle altre colonne all'incontro di quelle, che erano tra i pila- sttri, & quelle ri$pondeuano alle colonne delle fronti, & erano di quella i$te$$a altezza, & $i pone- uano per $o$tenimento: ma quando lo $pacio non era molto grande, pareua molto buono la$ciare lo Antitempio libero $enza colonne: & doue andauano colonne a torno, egli $i poteua andarea torno $enza entrare nello Antitempio. La gro$$ezza delle colonne interiori era minore, che la gro$$ezza delle colonne po$te nella fronte. & Vitr. ne rende la ragione, & dice.</I> <p>Perche $e nello aere rinchiu$o alcune $aranno a$$otti gliate, non $i potranno di$cerne- re, ma $e pareranno piu $ottih, bi$ogna, che $e le colonne di fuori haueranno uentiquat- <pb n="181"> tro canalature, le di dentro ne habbiano uentiotto, ouero trenta due, co$i quello, che $i leua dal corpo del $u$to con la aggiunta del numoro delle canalature, $i accre$ca con ra- gione, quanto meno $i uederà, & co$i con di$pari ragione $arà agguagliata la gro$$ezza del- le colonne. & que$to adiuiene perche toccando l'occhio piu punti, & piu $pe$si, uiene a uagare con maggior circoito della ui$ta. perche $e $aranno due colonne di gro$$ezza egua le mi$urate con un filo a torno, & di quelle una non $ia canalata, & l'altra sì: & quel filo tocchi i caui d'intorno delle canalature, & gli anguli de i piani, benche le colonne $iano egualmente gro$$e non $aranno però le linee circondate eguali, percioche il circuito de i piani, & de i caui farà maggiore la lunghezza di quel filo. la doue, $e que$to parerà, come hauemo detto, non $arà fuori di propo$ito ne i luoghi angu$ti, & nello $pacio rinchiu$o ordinare nelle opere piu $ottili compartimenti delle colonne; hauendo noi in rimedio la tempra delle canalature. <p><I>Hauendo Vitr. dichiarito quanto alte deono e<02>er le colonne dello Antitempio, egli ci mosttra la ragione delle loro gro$$ezze, & uuole, che quelle $iano piu $ottili, che le e$teriori. & la ra- gione è in pronto: perche $i come di $opra nel terzo libro egli uuole, che le colonne angulari $iano piu gro$$e, che quelle di mezo, perche l'aere leua della ui$ta di quelle, co$i comanda in que$to luogo, che le colonne interiori $iano piu $ottili delle e$teriori, percioche que$te a quelle $i pareg- gieranno con ragioni, in quello, che l'aere leua dalle e$teriori. nè $olamente l'a$$ottigliare le co- lonne di dentro un'ottauo, ouero un nono $econdo la rata parte fa que$to effetto di pareggiarle, & farle parere pari alle colonne di fuori, ma anche il numero delle canalature puo far parere una colonna pari ad un'altra, $e bene la fu$$e di minore gro$$ezza, percioche quanto piu $ono le canalature, tanto piu gro$$a pare la colonna. perche l'occhio no$tro ha piu da $paciare allhora, quando $ono piu termini, & maggiori nella co$a ueduta, che quando ne $ono meno, & minori: & hauendo piu da $paciare la ui$ta, ci appare la co$a maggiore. però la colonna, che ha piu canala- ture, ha piu termini, per li quali puo uagare la ui$ta no$tra. ilche $i uede rauolgendo un filo in- torno a due colonne di gro$$ezza eguale, ma una $ia canalata, & l'altra nò. perche $i con$ume- rà piu filo circondando i piani, & i caui della colonna canalata, che circondando quella, che non hauerà canali. & co$i col numero delle canalature $i puo rimediare all'apparenza delle colonne, quando ci pareranno piu $ottili.</I> <p>Egli bi$ogna fare la gro$$ezza de i pareti della cella per la rata parte della grandezza, pu re, che i pila$tri di quelli $iano eguali alle gro$$ezze delle colonne. & $e $aranno fatti di $truttura, $iano impa$tati bene di minuti$simi cementi. ma $e $i hanno a fare di $a$$o qua- drato, o di marmo, faccian$i con pari, & molto piccioli quadretti, percioche le pietre di mezo, che contengono i cor$i, & rincalci di mezo hanno piu ferma la perfettione dell'o= pera. & co$i d'intorno i cor$i, & i letti i rilieui faranno nel uedere piu diletteuole apparen- za di componimento, come di pittura. <p><I>I pila$tri, ouero ante, $aranno $empre delle gro$$ezze delle colonne, ma i pareti alquanto mi- nori, & $econdo che porta la ragione dell'opera, & il ri$petto del carico. Il muro puo e$$er di mi- nuti$$imi cementi, & que$to Vitru. chiama $truttura, $e bene noi altre fiate hauemo detto mura- tura: ouero di $a<02>o quadrato d'anguli pari, benche non di lati eguali, grande, & picciolo, ro- zo, & polito; ma $i loda per la dilett atione, che i quadri $iano piccioli, perche la moltitudine delle bugne, & delle prominenze & rilieui, dà piu diletto, & mo$tra di pittura; dico pittura, componimento piu bello.</I> <pb n="182"> <HEAD><I>Di fare i Tempij $econdo le regioni. Cap. V.</I></HEAD> <p>I Tempij de gli Dei immortali $i deono fare in modo, che guardino uer$o quel le parti del cielo, che $i conuiene, che ($e ragione alcuna non impedirà, o li- bero $arà il potere) il $imulacro, che $arà po$to dentro la cella guardi uer$o ponente, accioche, quelli, che entraranno allo altare per $acri$icare, & con- $acrare le uittime, $i uolgano uer$o l'Oriente, & uer$o il $imulacro po$to nel Tempio, & co$i uotando$i riguardino il Tempio, & l'Oriente: & i $imulachri come na$centi parino riguardare i $upplicanti, & quelli, che fanno $acrificio: percioche pare, che egli $ia ne- ce$$ario, che tutti gll altari de i Dei $iano uolti all'Oriente. Ma $e la natura del luogo ci $arà d'impedimento, allhora $i deono uoltare le fabriche de i Tempij in modo, che da quel li $i po$$a uedere la maggior parte della città. & anche $e lungo i Fiumi $i faranno i Tem- pij, come nello Egitto $opra il Nilo, pare che le fabriche debbiano guardare uer$o le riue de i fiumi. $imigliantemente $e $i faranno longo le uie publiche, deon$i porre in modo, che i pa$$aggieri po$sino riguardare, & fare le loro $alutationi, & riuerenze dinanzi il con$pet- to della fabrica. <p><I>Tratta del Decoro, che $i o$$erua per i$tanza, del quale $e ne è ragionato nel primo libro. ha- uendo trattato dell'ordine, del compartimento, della di$po$itione, della uenu$tà, & della di$tribu- tione, che $i richiede. Guardino adunque le fronti de i Tempij uer$o ponente, perche gli altari, & i $imulacri come na$centi Soli pareranno illuminare le menti de gli $upplicanti. Hora $e quel- li, che ador auano i muti $imulacri, & i Dei $olo di nome, che haueuano lingua, & non par laua- no, occhi, & non uedeuano, orecchie, & non udiuano, & che erano opere fatte di mano de gli huomini, portati da un fal$o errore, erano tanto ri$petto$i nelle loro cerimonie, & tanto diuoti; che douemo far noi liberati da i maligni $piriti, che adoramo Dio uero, & honoramo i $anti ami- ci $uoi Deiformi, non doue mo noi per l'abondanza del core, fare ogni dimo$ti atione e$teriore, ac- cioche ognuno $i $uegli, o s'infiammi piu al uero, & mental culto diuino?</I> <HEAD><I>Delle ragioni delle porte. & delle impo$i e de i Tem- py. Cap. V l.</I></HEAD> <p>Qve$te $ono le ragioni delle porte, & delle loro impo$te, & ornamenti, che $i fanno dinanzi, a quelle. Prima è nece$$ario $apere di che maniera $i hanno a fare. Le maniere $ono tre. Dorica, Ionica, Attica. I compartimenti di que$te, nella maniera Dorica $i truouano con que$te ragioni, che la Corni= ce $omma, che è $opra l'impo$ta $uperiore, $ia ad egual liuello con la $ommità de i capi- telli delle colonne, che $ono nello Antitempio. Il lume del portarle deue e$$ere in mo- do, che diui$a l'altezza del Tempio, che è tral pauimento, & i lacunari in tre parti, & me- za, due di quelle $i diano all'altezza del lume delle porte. Que$ta altezza $ia partita in dodici parti, & di quelle $e ne diano cinque & meza per la larghezza del lume da ba$$o. ma di $opra $ia ri$tretto in modo, che $e il lume da ba$$o è di piedi $edici, $ia ri$tretto un ter- zo della impo$ta, o erta che $i chiame: $e di $edici a uenticinque, $ia la parte del lume ri- $tretta per un quarto della impo$ta. $e da uenticinque a trenta, per la ottaua parte: ma nel re$to quanto è l'altezza maggiore, tanto piu dritte, & a perpendicolo pare, che $i dcbbia- no porre le impo$te. lequali $i faranno gro$$e nella fronte per la duodecima parte del lu- <pb n="183"> me, & $iano ra$tremate di $opra per la decima quarta parte della loro gro$$ezza. l'altezza del $opraciglio $ia quanto la gro$$ezza di $opra delle erte. La cima$a $i deue fare per la $e $ta parte dell'erta; & lo $porto $uo quanto è la $ua gro$$ezza. Deue$i $colpire la cima$a Le$ bia, col $uo tondino. Sopra la Cima$a, che $arà nel $opraciglio, $i deue porre il $opra- frontale della gro$$ezza del $opraciglio, & in quello $colpirui la cima$a Dorica, & il Ton- dino Lesbio di ba$$o rilieuo. & dopo que$to $i faccia la cornice piana con la $ua cima$a, & lo $porto $uo $ia quanto l'altczza del $opraciglio, che s'impone $opra l'erte. Ma dalla de$tra, & dalla $ini$tra $i deono fare gli $porti, $i che le margini uenghino in fuori, & nel- la cima le cima$e $iano congiunte. <p><I>Prima, che $i uegni ad altro, egli mi pare nece$$ario dichiarare alcuni uocaboli o$curi, che $o no po$ti da Vitr. & $ono que$ti. Antepagmentum, Thyromata, Atticurges, Hypothiron, La- cunare, Supercilium, Cymatium Lesbium, Cymatium Doricum, A$tragalus Lesbius, Sima, Sculptura, Crepidines, In ungue. Antepagmentum adunque da noi è detto l'erta, & lo $tan te delle porte, cioè quelle pietre, che $tanno dritte da una banda, & dall'altra delle porte. ma io non dubito, che non $i dica antepagmentum quello, che $ta per trauer$o, perche Vitr. dice, che la cornice, che $ta $opra l'antcpagmento di $opra. & io ho interpretato impostta. & $i potrebbe dire, che antepagmento $ia tutta la ca$$a, o il telaro (per modo di dire) della porta, & tutta la compo$itione delle erte, con il $opralimitare. Thyromata $ignifica le porte, ouero li portali. Atticurges è parola u$ata da Vitr. & pare, che intenda il Corinthio, per quanto $i uede nel fine del pre$ente Capo. & fa differenza tra lo Attico, & il Dorico, perche dice, che le porte $ono di tre maniere, Dorica, Ionica, & Attica. Et di $opra nel terzo libro egli ha fatto mentione della ba$a Attica. La quale dapoi Vitr. è sttata pre$a per la Dorica; con che ragione io non lo $o. Ben dice Plinio, che $ono quattro maniere di colonne, & numera tra quelle l'Attica, che è quadrangulare, & ha quattro lati eguali, di modo, che que$ta maniera pare $eparata dalle altre. Ma puo e$$ere, che la Corinthia, che non ha niente di proprio $enon il capitello, $i $erua di que$ta maniera, come $i $erue anche della Dorica, & della Ionica. Quello, che è lacunar, io l'ho e$po$to di $opra. Lacus è lo $patio tra l'uno traue, & l'altro, Lacunare è la trauatura, cioè gli $patij, con le traui in$ieme. Supercilium, $opralimitare è detto da Dante, il quale dice. $opra'l limitar dell'alta porta. & è quella pietra trauer$a, che è $opra l'erte della porta, che for$e è quella, che è fatta per le in$crittioni. Cymatium. Io ho detto nel terzo libro, che Cymatium è nome Greco, & uuole dire onda piccola: hoggi dì $i chiama Cima$a, altri la dicono gola. & quella, che è Dorica, è chiara nelle opere Doriche. Ma quello, che $ra la cima$a Lesbia, non $o no anchora bene ri$oluto. il Filandro uuole, che $ia una gola lauorata, (benche ne parla per conietture) & che non $ia differente dalla Dorica, $enon per li lauori: ma a me pare, che non il lauoro, ma la forma è quella, che deue fare differente la gola o cima$a Lesbia dalla Dorica. & for$e è quella, che è tra la gola dritta, & la gola riuer$cia. A$tragalus Lesbius, è come uno me zo tondino, ouero ouoletto, $i come pone il Filandro, lauorato di baf$o rilieuo, che Vitr. dice $i- ma $calptura, perche uolgarmente $i dice $imo il na$o delle capre. Crepidines $ono le margini, & gli adornamenti, che uanno intorno le porte, cioè i membrelli, che atrauer$o, & per dritto cor reno d'intorno le erte. que$ti deono $u gli anguli, & nel uoltare congiugner$i in$ieme. In ungue dice Vitr. che altrimenti $i dice ad unguem, con diligenza, e$attamente, & che $contrino bene. H ypothyron è lo $patio, & il uano chiamato lumen. Hora e$poneremo quanto dice Vitr. & con lo di$egno $i dimo$tra minutamente ogni parte. Dice Vitr. che prima è nece$$ario $apere, di che maniera $ia la porta. Et dice, che $ono tre maniere di porte. Dorica: Ionica: Attica. Truo- ua poi le mi$ure della Dorica, & dice prima quanto richiede al lume, a i $uoi termini, & all'ulti- mo $patio della cornice, & di $opra; & que$to fa con molta chiarezza. Dapoi comparte lo $pa- tio, che è $opra'l lume, & la cornice di $opra & dice; che il $opraciglio o $opralimitare, è della gr o$$ezza delle erte di $opra, & $i piglia poi la $e$ta parte della gro$$ezza dell'erta, & $i fa una</I> <pb n="184"> <I>cima$a, il cui $porto è tanto, quanto la $ua gro$$ezza: & $i deue $colpirui la cima$a Lesbia, col $uo a$tragalo, o tondino. & quiui $i deue auuertire, che que$ta cima$a ua a torno le erte, perche della cima$a del $opraciglio Vitr. ne parla $ubito, & dicendo, che $opra quella cima$a, che è nel $opraciglio ua lo hiperthiro, egli dimo$tra, che quiui s'intende d'un'altra cima$a. $imilmente di- cendo, che $opra quella cima$a, che è nel $opraciglio, egli dimo$tra, che nella gro$$ezza o altez- za del $opraciglio egli s'include la cima$a, & non è po$ta $opra il $opraciglio. Similmente $opra la cima$a, che è nel $opraciglio ua lo hiperthiro, o $opraporta, o fregio, che $i dica. & que$to è della gro$$ezza del $opraciglio, & in e$$o anche s'include la cima$a Dorica, & il tondino, o a$tragalo Lesbio di ba$$o rilieuo. perche questti membri non deono hauere molto $porto. Sopra l'hiperthiro, o fregio ua la corona piana con la $ua gola, ch'incontre con la gola dell'abaco dei capitelli. Ma quello, che dice Vitr. che $i deono fare dalla de$tra, & dalla $iai$tra gli $portiin modo, che le margini uenghino in fuori, & $u'l taglio di e$$e, che Vitr. dice in ungue, $i congiu- gneno in$ieme, egli $i deue intendere, che le cima$e, che $ono nel hiperthiro $portino in fuori, & $i uni$cano in$ieme le cima$e, che uoltano non a torno, (come dice il Filandro) ma dalla de$tra, & dalla $ini$tra uer$o il parete da i lati, accioche quella parte dello $porto dello hiporthiro nonre stti dalle bande $enza ornamento. La corona benche $ia alta, però stta come dice Vitr. & $e ne troua e$empio. Lo e$empio è la de$crittione della porta Dorica è qui $otto con il $uo profilo accio che s'intenda meglio.</I> <HEAD>Incontro della porta Dorica.</HEAD> <p><I>A. B. L'altezza del pauimento a i lacunari.</I> <p><I>C. D. L'altezza del lume.</I> <p><I>C. E. La larghezza di $otto del lume.</I> <p><I>D. F. La larghezza del lume di $opra.</I> <p><I>C. G. La gro$$ezza dell'Erta da piedi.</I> <p><I>D. H. La gro$$ezza dell'erta di $opra.</I> <p><I>I. Il $opraciglio.</I> <p><I>K. La cima$a & tondino, che ua a torno le erte, dette antepagmenta.</I> <p><I>N. Lo hiperthiro, o fregio.</I> <p><I>O. La cima$a del tondino, o hiperthiro.</I> <p><I>P. La cornice piana con la $ua gola, alta al pari della gola dell'abaco del capitello.</I> <p><I>M. Antepagmentum. cioè l'erta.</I> <p><I>Q. R. Altezza dell'erta.</I> <p><I>S. Timpano.</I> <p><I>T. Impagines.</I> <p><I>V. Scapi cardinales.</I> <p><I>X. Impagines.</I> <p><I>Y. Cymatia, gole.</I> <p><I>Z. Cymatia, gole.</I> <p><I>Il profilo è po$to nelle $eguenti carte con i profili delle altre porte.</I> <pb n="185"> <fig> <foot><I>AA</I></foot> <pb n="186"> <p>Ma $e le porte $i faranno alla Ionica, $ia il lume alto come nella maniera Dorica; ma non co$i la larghezza; ma $ia diui$a l'altezza in parti due, & meza, & di quelle una, & meza $i darà al lume da ba$$o. la larghezza della contrattione come nelle Doriche. La gro$$ezza delle erte per l'altezza del lume nella $ronte la quarta decima parte, la cima$a di que$ta per la $e$ta parte della gro$$ezza. il re$tante oltra la cima$a $ia diui$o in dodici parti: di tre dellequali $i fa la prima cor$a, conlo $uo Altragalo, o fu$aiuolo. La $econda di quattro; la terza di cinque. & que$te cor$e con i loro a$tragali uadino intorno. ll $opra frontale o hiperthiro deue e$$er compo$to al modo Dorico. Le men$ole,o cartelle dette prothiri- des, $colpite dalla de$tra, & dalla $ini$tra pendino lontane a liuello del da ba$$o del $opra- ciglio oltra la foglia. Que$ti habbiano nella fronte una delle tre parti dell'erte, & $iano dal ba$$o la quarta parte piu $ottili che di $opra. <p><I>Ragiona Vitru. in que$to luogo del compartimento della porta Ionica, & $i la$cia intendere. Cor$a è la faccia delle erte o antepagmenti. La prima è la piu uicina al lume. Ancones $ono certe me$ole dalle bande delle porte a $imiglianza della lettera. S. che con i loro capi ne i ritorti delle uolute s'intricano, & $ono dette Prothirides in Greco, qua$i antiportali. altri le chiamano cartelle. pendeno dal di $otto della cornice lungo le erte a perpendicolo dal ba$$o del $opraciglio, oltra la foglia, come $i uede nella figura. ne $i deue credere, che la porta Ionica habbia la Cor- nice come la Dorica a pari de i capitelli, perche Vitru.non lo dice. ben dice il Filandro, che'l lu- me douerebbe e$$ere una parte delle due, & meza dell'altezza, & non una & meza, come dice Vitru.per i$chiuare un difetto, che'l lume da ba$$o $ia piu largo del uano di mezo tra le colon- le, ilche fa brutto uedere, & è difetto$o. ma io trouo, che Vitr. la intende a que$to modo: & $e egli $i face$$e il lume d'una $ola parte, $i uederebbe la porta molto $tretta di lume, & anche $pro portionata. & Vitr. dirà di $otto poco dapoi, $e le porte $ono ualuate $e le aggiugne la larghez- za. & intende delle Ioniche, & quando dice nel terzo libro, che la $pe$$ezza delle colonne o$cu- ra l'a$petto delle porte, egliragiona di quella maniera, che è di $pe$$e colonne, nella quale ui è que $to dif<*>tto. & qui poco $i a$conde delle porte, cioè di quell'opera di legname, che $i chiude: & s'a- pre, & in quelluogo anche egli u$a que$ta parola, Valuœ, & non ragiona delle erte, & ante, & de iloro ornamenti.</I> <p>Le porte $ono da e$$er po$te in$ieme a que$to modo, che i fu$ti de i cardini $iano lunghi la duodecima parte dell'altezza del lume, i Timpani & quadri delle porte, che $ono tra i fu$ti di dodici parti ne ritenghino tre. Le di$tributioni de gli orli, che impagines $ono detti, co$i $i hanno a fare, che partite le altezze in cinque parti due $i diano a quelli di $o- pra, & tre a quelli di $otto. ma $opra'l mezo $iano po$ti mezi orli, & de gli altri alcuni riguar dino il di $opra, altri il di $otto. La larghezza dell'orlo $ia per la terza parte del quadro. la cima$a per la $e$ta parte dell'orlo. le larghezze de i fu$ti, per la metà de gli orli. & co$i la cornice che ripiglia l'orlo, detta replum, $arà per la metà, & per la $e$ta parte dell'orlo. I fu- $ti, che $ono dinanzi la $econda impo$ta $iano per la me à dell'orlo. <p><I>Detto ha Vitru. della porta Dorica, & della Ionica quello, che apparteneua alle parti da i lati di $opra, & di $otto, nella fattura de pietre, & di marmi: hora tratta dell'opera, che ua di le- gname, o di metallo: che anche di metallo ne faceuano gli antichi. Noi dichiareremo alcuni uocabuli, per fare la intelligenza piu piana. Ianua non è altro, che il primo adito, & la pri- ma entrata del Tempio, detta da Iano, a cui era con$acrato ogni com nciamento. Ho$tia in gene- rale $i chiamano le porte aprendo$i, come $i uoglia, o uer$o la parte e$teriore, o uer$o la parte di dentro, o rauolgendo$i, & ripiegando$i, Greci chiamano Thyras. La onde il uano $i chia- ma hypothyron. i lati delle porte $i dicono Antœ, o para$tadœ, & dalle Ante gli adornamen- ti delle porte $ono detti antepagmenta, noi chiamamo le ante, erte, $tanti, pila$tri, & piane. Fanno differenza alcuni tra que$ti nomi Ianua, & porta, perche uogliono, che porta $ia pro- priamente quella della città, & delle fortezze, ma Ianua d'altri edificij. confondeno poi i nomi,</I> <pb n="187"> <I>& banno per lo i$te$$o Ianua, & ho$tium. Po$ticum, è detto da Greci p$eudodethiron, qua$i fal- $aporta, & è la porta di dietro, come Anticum, quella dinanzi. Fores $ono le porte di legna- me, o di metallo, quelle che apreno, & $erra<*>o; gli ornamenti delle quali $i fanno in que$to modo. i fu$ti che entrano ne i cancani detti da Vitru. Scapi Cardinales, prendeno le loro mi$ure dal- l'altezza del lume, perche prima $i diuide l'altezza del lume in dodici parti, poi facemo i detti fu$ti lunghi per la duodecima parte: come $e il lume fu$$e alto dodici piedi, egli$i darebbe un pic- de alli fu$ti, cioe mezo a quello di $opra, & mezo a quello di $ctto. Que$ti fu$ti con i capi, o te$te loro entrano come ma$coli nelle femine, ne i cardmi loro, cioè cancani, uno de quali è nel limi- tar di $opra, l'altro, nel limitar di $otto, doue nella figura $ono le lettere Q. & R. V$aua<*>$i anticamente que$ti modi per tenere le porte $o$pe$e, accioche i fu$ti $i riuolge$$ero in quelli can- cani con gran de facilità all' aprire, & $errare: poco carico a gli edificij, & piu sbrigata ma- niera era l'antica di quella, che hoggi dì u$amo. Tutto il legno piano della porta, che era trai fu$ti, $i compartiua in quadri, che latinamente Timpani $ono detti. questi erano circondati da certe li$te, regole, & gole, come cornici, delle quali Vitru. ci rende conto, dicendo, che i qua- dri deono hauere tre parti di dodici dell' altezza del uano. come il quadro. S. & le regole deo- no e$$ere compartite in que$to modo, che diui$a l'altezza del lume in cinque parti, due $e ne dia- no a gli orli, & impagini di $opra, come è da T. ad V. tre alle impagini di $otto come da T. ad X. ma $oprail mezo, cioè tra i quadri, o Timpani, nella diui$ione d'un quadro, & l'altro $iano po$te meze regole, & nelle altre parti re$tanti $iano affi<02>e alcune regole o li$te di $opra, alcune di $otto. la larghezza dell' impagine $ia per la terza parte del quadro, come è da <G>*u</G>. a Z, la gola o cima$a per la $e$ta parte dell' impagine. & la cornice, ouero l'orname nto della li$ta, $ia di $ei parti & meza della li$ta, ċioè della metà & d'un $e$to. Qui è molto da con$iderare quello, che dice Vitru. perche molti s'hanno affaticato, & poi hanno detto a modo loro. io non affermo d'hauer trouato la uerita, nè però niego d'e$$er lontano dalla ragione. però dico, che chi uuole formare una porta al modo di Vitru, (per quanto io $timo) bi$ogna con$iderare, che alcu- ne porte erano piu adorne, alcune meno, però le meno adorne, & piu $chiette $i dauano alla maniera Dorica. Le piu adorne alle altre maniere. Per gli adornamenti delle porte $ono la$ciati alcuni $pacij piani, & quelli circondati $ono d'alcuni rilieui attaccati, o affi$$i a detti piani, & intagliati di gole, li$telli, & cornicette, & altri adornamenti. Oltra di que$to i comparti- menti diuer$i di detti piani, & di dette liste, & il fare le porte intiere, o di piu pezzi apporta minor, o maggior grandezza, & ornamento: però con$iderando, quanto $i conuiene alla manie- ra Dorica, io direi, che la prima compo$itione delle porte po$ta da Vitru. conuiene alla manie- ra Dorica, & le altre compo$itioni alle altre maniere. ilche con ragione potemo giudicare, per- che la prima compo$itione è piu $oda, l'altre $ono piu ornate. Dapoi perche $i uede, che'l primo compartimento conuiene mirabllmente alla Dorica, & gli altri alle altre maniere. Ecco detto ha Vitruuio di $opra, che la porta Dorica è larga al ba$$o per cinque parti & meza delle dodi- ci dell' altezza del lume, tutto questo uano, o lume nel chiuder la porta deue e$$ere occupato dal legno, o dal metallo, che ua nella porta d'uno pezzo: perche la larghezza della porta lo $opporta. Que$to legno, che empie il uano è adornato $emplicemente, & ha due quadri uno di $opra, & l'altro di $otto, che $i chiamano (come ho detto) timpani. que$ti $ono circondati da li$te, & regole, & orli, & nella di$tributione de gli orli, che impagini egli chiama, egli u$a il compartimento $opra detto, & po$to nella figura della porta Dorica: ma la doue egli dice.</I> {<I>i fu$ti, che $ono dinanzi alla $econda impo$ta,</I>} <I>egli $i deue intendere a que$to modo, che il $econdo pagmento, o impo$ta $ia un telaro dalla parte di dentro della porta, che uadi a torno, a torno, & i$contri con gli $pacij, che $ono tra i timpani. Replum è come un fregio, o piano tra una cima$a, & l'altra, come dimo$tra la figura.</I> <p>Ma $e le porte $aranno in $e ripiegate, & ualuate, come dicono, le loro altezze $aranno <*>ome le $opra dette, ma nella larghezza $i aggiugnerà di piu tanto, <*> nto è la larghezza <foot><I>AA</I> 2</foot> <pb n="188"> della porta di due fori: ma $e $aranno di quattro fori, $e le aggiugnerà anche l'altem. <p><I>Que$te $ono le porte Ioniche, cioè quelle porte, che $i apreno in piu pezzi, peroche $e in due parti s'apreno amphifores $e chiamano, $e in quattro quadrifores. & perche la porta Ionica, è pin larga, che la Dorica, $e bene è tanto alta, quanto la Dorica, però dice Vitruuio, che nella lar- ghezza $i aggiugnerà di piu tanto quanto è la largezza di due pezzi: & perche le porte Atti- che erano di quattro pezzi, & con$eguentemente piu larghe, $e le aggiugnerà anche l'altezza, le impagini, & le altre co$e $eruando la proportione $i faranno allo i$te$$o modo, cioè come le Doriche.</I> Le porte fatte al modo Attico $i faranno con quelle ragioni, che $i fan no le Doriche. Oltra di que$to le cor$e, o fa$cie $otto le golette, uanno a torno le erte, le quali $i deono compartire in que$to modo, che nelle erte, & antepagmenti oltra la ci- ma$a di $ette parti ne habbian due. <I>Ecco qui la mi$ura delle porte, cioè di quelle parti, che $tanno ferme, & $ono nel parete, & è la terza maniera di porte. $eguitano gli ornamenti & dice.</I> <p>Et gli ornamenti di quelle porte non $i fanno a gelo$ie, nè di due pezzi, ma ualuate & hanno le apriture nelle parti e$teriori. <p><I>Io ho l'autorità di due te$ti, che dicono non cero$tata, ma clatrata. clatra è lauoro fatte a gelo$ia, & $i trouano porte fatte a que$to modo, che $i può per quelle uedere nella parte inte- riore, $ono come ferrate: ma non mi piace que$ta lettione, perche $e Vitr. dice$$e che le porte Attiche non $i fanno a gelo$ie, parerebbe, che le altre porte $i face$$ero a gelo$ie, ma non $i uede per li $uoi compartimenti, che $i face$$ero a gelo$ie. & $e il te$to dice, non cerostrata, $imilmente egli non ha detto, che le altre porte $i fanno lauorate di Tar$ia, che co$i intenderei quella parola cero$trata, intar$iati di corno di uarij colori, come hyalostrato il Mu$aico di ue- tri, litho$troton, il Mu$aico di pietruzze, Xilo$troton, la tar$ia di legni. ma for$e $arebbe man co male intendere, che le altre porte già dette haue$$ero i loro ornamenti lauorati di Tar$ia, che dimo$tra$$ero i Timpani, le regole, e le cima$e, & gli al tri ornamenti, ma io la$cio libero ognuno in que$to pa$$o.</I> <p>Io ho e$po$to, quanto ho potuto, come, & con quali ragioni $i hanno a fare i Tempij, nelle maniere Doriche, Ioniche, & Corinthie: & come da legitime u$anze $ono $tate ca- uate. Hora dirò delle di$po$itioni To$cane, come $i deueno ordinare. <p><I>Raccoglie quanto s'è detto fin hora. & qui $otto noi poneremo le figure delle due altre manie- re di porte, & i profili de gli ornamenti di tutte tre le maniere, con i loro rincontri di lettere: accioche s'intenda meglio, quello che hauemo cono$ciuto della intentione di Vitr.</I> <TABLE> <ROW><COL><I>b. corona, o cornice.</I></COL><COL><I>D. corona.</I></COL></ROW> <ROW><COL><I>f. ancones, cartelle.</I></COL><COL><I>G. hiperthiro.</I></COL></ROW> <ROW><COL><I>d. hyperthiro, $opralimitare.</I></COL><COL><I>H. cima$a.</I></COL></ROW> <ROW><COL><I>c. foglio.</I></COL><COL><I>I. prima cor$a.</I></COL></ROW> <ROW><COL><I>e. Cima$e, gole delle erte.</I></COL><COL><I>K. $econda cor$a.</I></COL></ROW> <ROW><COL><I>I.E. $capo, fu$to.</I></COL><COL><I>L. Terza cor$a.</I></COL></ROW> <ROW><COL><I>g. cimatiun, cima$a.</I></COL><COL><I>M. timpana.</I></COL></ROW> <ROW><COL><I>h. replum.</I></COL><COL><I>N. impagines.</I></COL></ROW> <ROW><COL></COL><COL><I>O. $capi, cioè fu$ti.</I></COL></ROW> <ROW><COL></COL><COL><I>C. Hyperthiro a $opra limitare.</I></COL></ROW> <ROW><COL></COL><COL><I>A. E L'altezza dal pauimento alla tra ua-</I></COL></ROW> <ROW><COL></COL><COL><I>tura</I></COL></ROW> </TABLE> <pb n="189"> <fig> <pb n="190"> <fig> <pb n="191"> <fig> <pb n="192"> <TABLE> <ROW><COL><I>A. corona.</I></COL><COL><I>Ci $ono meze colonne quadre drieto le quali.</I></COL></ROW> <ROW><COL><I>O. Cymatium, Lesbium.</I></COL><COL><I>ua attacata la porta.</I></COL></ROW> <ROW><COL><I>P. Cymatium Doricum.</I></COL><COL></COL></ROW> <ROW><COL><I>Q. Hyperthiro, ouero fregio.</I></COL><COL><I>X X. $capo, o fu$to.</I></COL></ROW> <ROW><COL><I>R. Cima$a delle pila$trate, ouero ante,</I></COL><COL><I>T cima$å.</I></COL></ROW> <ROW><COL><I>ouero intauolato.</I></COL><COL><I>Z. replum o fregio tra le due cima$e.</I></COL></ROW> <ROW><COL><I>S. A$tragali, o fu$aiuoli.</I></COL><COL><I>I Timpano.</I></COL></ROW> <ROW><COL><I>T. prima fa$cia.</I></COL><COL><I>K K. Impages.</I></COL></ROW> <ROW><COL><I>S. Seconda fa$cia.</I></COL><COL></COL></ROW> <ROW><COL><I>V. Torza fa$cia.</I></COL><COL></COL></ROW> </TABLE> <HEAD><I>Delle r agioni To$cane de i $acri Tempi.</I></HEAD> <HEAD><I>Cap. VII.</I></HEAD> <p>IL luogo, nel quale $i deue fabricare il Tempio, quando hauerà $ei parti di lunghezza, leuandone una, $i dia il re$tante alla larghezza: Ma la lunghezza $ia partita in due parti, & la parte di dentro $ia di$egnata per gli $patij delle cel- le: ma la uicina alla fronte $ia la$ciata per porui ordinatamente le colonne. Si milmente diuiderai la larghezza in parti dieci. di que$te ne darai tre allo $patio delle celle minori, che $ono dalla de$tra, & dalla $ini$tra, ouero le la$cicrai doue deono e$$er le ali. le altre quattro $i diano al mezo del tempio. Lo $patio dinanzi le celle nello antitempio co$i $ia di$egnato per le colonne, che quelle delle cantonate $iano a dirimpetto de i pila$tri nelle ultime parti de i pareti. Ma le due di mezo, che $ono incontra a i pareti, che $ono tra i pila$tri, & il mezo del Tempio, $iano co$i di$tribuite, che tra i pila$tri, & le prime co lonne per mezo all' i$te$$a fila ne $iano di$po$te delle altre, & $iano da piedi per la $ettima parte dell' altezza loro; ma l'altezza per la terza parte della larghezza del Tempio. & $ia la colonna ri$tretta di $opra, per un quarto della gro$$ezza da piedi. Le $pire $iano alte per la metà della gro$$ezza, & habbiano l'orlo fatto a $e$ta alto per la metà della loro gro$$ez- za. Ilba$tone con l'apophigie, o cimbia gro$$o quanto l'orlo. l'altezza del capitello per la metà della gro$$ezza, la larghezza dello Abaco quanto è la gro$$ezza da piedi della colon na. parti$ca$i poi la gro$$ezza del capitello in tre parti. Vna $i dia all' orlo, che è in luo- go dello Abaco, l'altra all' ouolo, la terza al collarino, con il $uo tondino, & cimbia. $o pra le colonne $i deono imponere le traui congiunte, & concatenate al pari, che ri$eruino quelli moduli nelle loro altezze, che $aranno richie$te dalla grandezza dell' opera. Et que $te traui, che $i hanno a legar in$ieme $iano di tanta gro$$ezza, quanto è il collarino della colonna di $opra. & $iano collegate in modo con chiaui, & trauer$i inca$trati, che quel- la inca$tratura tegni di $pacio due dita larghe le traui. Imperoche toccando$i, & non ri- ceuendo $piracolo di uento, $i ri$caldano in$ieme, & pre$to $i gua$tano: Ma $opra le traui & $opra i pareti $ia il trapa$$o de i mutuli, che $portino in fuori per uno quarto della gro$ $ezza della colonna, & nelle fronti loro dinanzi $iano affi$si gli ornamenti, che antepag- menti $i dicono. & $opra quelli il Timpano del fronti$picio che $ia di $truttura, o di le- gno: Ma $opra quello fronti$picio $i deue ponere il colmello, o i canterij, o co$tali, & i tempiali in modo, che il grondale ri$ponda alla terzera del tetto perfetto. <p><I>Vitrunio e$pedito dalle fabriche, & maniere de' Greci, hora $i uolge alle opere To$cane. & qui douemo ridurci a memoria le co$e gia dette. Prima, che l'opera Dorica, è piu atta a $o$tenere i pe$i appre$$o la To$cana. Sopra la Dorica, nel $econdo ordine $ta la Ionica, & nel terzo la Corinthia, come piu ornata, & dilicata, ad imitatione de gli alberi fatti dalla natura nel piedi</I> <pb n="193"> <I>rozi, & gro$$i, nello a$cender piu $ottili, nella $ommit à piu adorni. però $i uede in molti edificu, che $ono alti, & eleuati, che l'ordine da ba$$o è Dorico, il di mezo Ionico, & il di $opra Corin thio. Oltra di que$to non ci douemo marauigliar, $e Vitr. tr attando di tutte le ragioni delle ma niere del fabricare, ha trattato anche delle To$cane: percioche l', Architettura come ho$pite heb be li $uoi primi alberghi in Etruria, cioè in To$cana, come anche $i legge de gli antichi Re di quel la e$$er stati molti monumenti, & molte fabriche genero$e. Hora Var. dice, che la lunghezza del Tempio deue e$$ere partita in $ei parti, & cinque di quelle $i deono dare alla larghezza in mo do, che la detta proportione della larghezza all a lungezza del tempio $arà, $e$quiquinta. Oltra di que$to uuole, che tutta la lunghezza $ia partita per met à, & una $i debbia dare per inchiude re le celle, & l'altra la$ciare allo antitempio. Fatto que$to uuole, che $i parti$ca la larghezza del Tempio in dieci parti, delle quali $e ne habbia a la$ciare tre dalla de$tra, & tre dalla $ini$tra per compartimento delle picciole celle, le quali o $e $aranno nella te$ta, o pure da i lati, come Vitr. acoenna, o rinchiu$e con parapetti, o aperte, $econdo l'u$o de'$acri$icij, la$ciaranno quattro par- ti libere al mezo del tempio. La onde tale proportione dal mezo a cia$euna delle bande $arà pro- portione $e$quiterza, & in que$to modo $i ha la di$tributione della parte di dentro. hora quanto appartiene al colonnato dinanzi, $aperai, che per mezo gli anguli de ipareti del Tempio, $opra i quali $tanno le ante, o pila$tri, a dirimpetto $i deono ponere le colonne, le quali $ono termini del la lunghezza del Tempio. & perche da una cantonata all' altra è molta di$tanza, per e$$ere lo a$petto areo$tilo, cioè di liberi intercolunnij; però uuole Vitr. che tra le colonne angulari, ne $iano altre due in modo, che la fronte $arà di quattro colonne, & di tre $patij. Et perche trail pila$tro, & la colonna angulare ui è molto $patio, & co$i tra il parete, & le colonne di mezo; però comanda Vitr. che $i faccia un'altro ordine di colonne nel mezo, & che quelle $iano di$po- $te allo incontro delle prime $otto il portico dello antitempio. La lunghezza, o altezza di que$te colonne interiori $arà maggiore dell' altezza di quelle della fronte quanto puo ricercare l'altezza dello architraue dauanti: Et pare, che per que$to Vitr. uoglia, che queste colonne $iano alte $et te te$te, & che l'altezza $i pigli-dalla larghezza del Tempio, la quale $ia diui$a in tre parli, & d'u- na $i faccia? l altezza delle colonne, & que$ta altezza partita in $ette parti ne darà una alla gro$ $ezza delle colonne da piedi: & que$ta gro$$ezza poi diui$a in quattro parti, dimoftrerà quanto e$$er debbiara$tremata la colonna di $opra. A me pare, che manchi alcuna co$a nel te$to di Vitr. anzi dico, che non $e gli di$idera piu che una lettera. inmodo, che la doue dice. Qui in- ter antas, & mediam œdem fuerint, dice$$e. quæ inter antas. & co$i $i puntarebbe la lettione. Spatium, quod erit ante cellas in pronao, ita columnis de$ignetur, ut angulares contra antas pa rie tum catremo rum è regione collocentur. Et qui un punto. & poi legga$i. Quœ inter antas, &</I> <fig> <I>mediã œdem fuerint ita di$tribuantur. Vitr. dimo$tra come $i hanno a di$ponere le colon ne angulari, & le di mezo nella fronte, & le di $otto, o di dentro del pronao. ilche co$i e$$endo, cileua il dubbio del Filandro, & del Serlio cerca l'altezza delle colonne. Si mile intendimento anche di $opra s'è uedu- to. però non è da marauigliar$i, che le co- lonne To$cane $iano di $ette te$te, per la det ta occa$ione. Ma le mi$ure delle $pire, & de i capitelli, & del re$tante, $ono state di chiarite da noi nel terzo libro. Re$taci a dichiarire quello, che intende Vitr. quan- do egli dice.</I> { <I>Ma $opra le traui, & $opra i pareti $ia lo trapa$$o de i mutuli, che $por</I> <foot><I>BB</I></foot> <pb n="194"> <fig> <pb n="195"> <fig> <I>ti in fuori per la quarta parte dell' altezza della colonna</I> } <I>cioè bi$ogna, che le te$te delle traui trapa$$ino oltra il parete per un quarto dell' altezza della colonna. ilche fa un largo piouere & è $imile a quello, che egli dir à del cauedio To$cano, nel $e$to libro: & è conforme a quello,</I> <foot><I>BB</I> 2</foot> <pb n="196"> <I>che egli ha dcttonel terzo libro, che que$te maniere areo$tili, & To$cone $ono bumili, ba$$e, & larghe. le te$te di que$it trauicelli deono e$$er coperte con i $uoi adornamenti a$$i$$i, che Vitr. chiama, antepagmenti: o pure egli intende gli adornamenti de gli fronti$pici de i Tempij: & que sto è migliore intendimento: & però dice.</I> Et nellc fronti di que Tempij dinanzi $iano af- fi$si gli antepagmenti, & $opra quelli il Timpano del Fronti$picio, che $ia di $truttura, o di legno, cioè o di muro, o di legname, & $opra quello fronti$picio, il colmo, o col- mello, i cantieri, & i tempiali in modo che'l grondale ri$ponda alla terzera del coper- to finito. <p><I>Per terzera, che tertiarium è detta, intende Vitr. tutta quella legatura, o incatenatura, che partendo$i dal colmo $i allarga in forma triangolare, & è contenuta dalle chiaui, & trauer- $i, & rende la forma compita, & intiera del coperto. Et qui $opra 193. ne è la figura. & anche $ono molte inchiauature di traui. & poi la pianta, & lo in più della maniera To$cana.</I> <fig> <p>Egli $ifa anche de i Tempij ritondi, de i quali altri $ono d'una ala $ola $enza Cella, co lonnati, altri $ono detti peripteri. Quelli, che $i fanno $enza Cella, hanno il Tribuna= le, & l'a$ce$a per la terza parte del $uo diametro. $opra i piedi$tali uanno le colonne tan to alte, quanto è il diametro da gli e$tremi pareti de i piedi$tali, ma $iano gro$$e la de cima parte dell' altezza loro con i capitelli, & le $pire. lo architratie alto per la metà del la gro $$czza della colonna. il fregio, & l'altre parti, che ui oanno $opra, $iano come ha- uemo nel terzo libro delle mi$ure, & compartimenti. <pb n="197"> <p><I>Ragiona Vitr. in que$to luogo de i Tempij ritondi, & ne fu di due maniere, & dice che altri $o no d'un'ala $ola, & gli chiama monopteros. altri $ono alati a torno, & gli chiama peripte- ros: & ci la$cia conietturare come fu$$e la prunamouera d'un'ala $ola, & $enza cella. & pare, che contradistingua il monopteros, dal peripteros. Io dirò per quella pratica, che ho di Vitr. che con la breuità non la$cia dormire, chi la legge, dirò dico come io la intendo. Faccio adunque un giro quanto uoglio, che $ia il Tempio, ritrouo il $uo diametro a b. & quello par- ti$co in tre parti, a</I> 1. 2. 3. <I>& allargo la $e$ta quanto e una di quelle parti, & po$to il piede nel centro, faccio un giro dentro del primo, i cui termini $ono c. c. & tutto lo $patio che è da c. ad a. lo la$cio a i gradi, & alla $alita $ul piano del Tempio, che Vitruuio chiama Tribunale, $e non m'in- ganno. parti$co poi la cir conferenza del minor giro in dodici parti per porui dodici colonne per li dodici $egni del Zodiaco, perche io credo, che quel Tempio $enza parete $ignificaua alcune co-</I> <fig> <I>$e del cielo, gli effetti delle quali $ono nello $coperto. drizzo i piediftali a torno, per cia$euna co- lonna, & parti$co tutto lo $patio, che è tra'l diametro del minor giro in dieci parti, & d'una di quel le faccio la gro$$ezza della colonna da piedi, & la colonna alta dieci te$te, mettendoui i capitelli, & le $pire, lo architraue è alt o per la metà della gro$$ezza della colonna. il resto uà alla mi$ura dett a nel terzo libro. a que$to modo mi pare, che $ia bella proportione, & $i $alua tutto quello, che ha detto Vitr. & la pianta, di que$to Tempio è qui $opra. & lo in piè $i potrà accommodare con la $eguente maniera, della quale dice Vitr.</I> <pb n="198"> <fig> <pb n="199"> <p>Ma $e il Tempio hauerà le ale a torno, $iano fatti due gradi, & i piedi$tali da ba$$o, dapoi $ia po$to il parete della cella retirato dal piede$tale ccrca la quinta parte della lar- ghezza, & nel mezo delle porte $ia la$ciato il luogo alli aditi. & la cella habbia tanto dia= metro oltra i pareti, & il circuito, quanto è l'altezza della colonna $opra il piede$tale. le colonne d'intorno la cella $i di$porranno con le i$te$$e proportioni, & compartimenti. nel mezo poi egli $i hauerà la ragione del coperto in que$to modo, che quanto $arà il diametro di tutta l'opera, la metà $ia l'altezza del Tholo, oltra il fiore, ma il $iore habbia tanta grandezza quanta hauerà il capitello in cima della colonna, oltra la piramide. Il re- $to $i farà con le i$te$$e proportioni, & compartimenti come di $opra s'è $critto. <p><I>L'altra maniera de i Tempij è detta peripteros, ha le ale di colonne a torno: ha i pareti, & circuito della cella: ha la tribuna, & quello, che ua $opra la Tribuna. & le $ue ragioni $ono prima che a torno a torno ci $ono due gradi, & $opra ci $ono i piedi$tali particolari, $opra i qua- li $ono le colonne. & la ragione co$i richiede, prima perche ci $ono due gradi $oli, che non fanno tanta altezza, quanta faceuano i gradi, & il tribunale della maniera precedente, dapoi per- che d'intorno ui ua il colonnato coperto, & alle colonne col piede$tale $i dà grandezza. Fatta adunque la di$po$itione di due gradi, & l'ordine de i piedi$tali tanto larghi l'uno dall' altro, che gli $pacij delle colonne $iano conuenienti, $i piglia la quinta parte del diametro, & retirando$i in entro $econdo quella mi$ura $i di$egna il circuito della cella. laquale da una parte $i la$cia aper- ta per dare luogo all' entrata. La cella ueramente deue e$$er tanto per diametro, quanto è l'al- tezza ditutta la colonna, $opra'l piede$tale, la$ciandoui fuori del circuito della cella, la gro$$ez- za del parete, che la circonda. Le colonne delle ale $iano formate alla mi$ura $opradetta, cioè gro$$e la decima parte della loro altezza. Bi$ogna auuertire al tetto, perche poi che hauere- mo posto $opra le colonne l'architraue, il Fregio, & la Cornice, douemo fare, che la lanterna detta Tholo da Vitr. che è $opra la cuba, o Tribuna, $ia alta per la metà del diametro di tutta l'o- pera. imperoche pigliando il diametro di tutto il giro del primo grado, & partendolo in due par ti eguali, per una di quelle alzeremo la Tribuna $opra l'architraue, freglo, & Cornice, & con quella ragione uoltandola ui la$ciaremo il luogo da fare il fiore. Que$to fiore ($timo io) che fu$$e a modo di ro $a riuer$cia, & che abbraccia$$e la $ommità nel mezo della Tribuna di dentro uia, alquale $i apprendeuano le co$e che per uoto $i portauano ne i Tempij, & fu$$e alto quanto il capitello, & termina$$e in piramide come $i uede in alcune medaglie di Nerone, che $opra'l Tem pio ritondo u'è una Piramide. & chi uuole $apere i termini di quella piramide formi un triangolo di lati eguali (come dimo$tra la figura di $opra. la cui ba$a $ia la larghezza della Tribuna di dentro la gro$$ezza del muro, & cominci la Lanterna dal di $opra della Tribuna per la gro$$ez- za di e$$a.</I> <p>Egli $i fa anche di altre maniere di Tempij ordinati da gli i$te$si compartimenti, ma in altro modo di$po$te. Come è il Tempio di Ca$tore nel Circo Flaminio, & tra i due bo$- chi $acri il Tempio del gran Gioue. & piu argutamente nel bo$co di Diana aggiuntoui dalla de$tra, & dalla $ini$tra alle $palle dello antitempio le colonne. In que$ta maniera pri- ma fu fatto il Tempio, come è quello di Ca$tore, nel Circo: di Minerua in Athene nella rocca: & di Pallade nell' Attica Sunio. Di quelle non ci $ono altre proportioni, ma le i$te$$e. Le lunghezze della cella $ono doppie alla larghezza. & come le altre parti eguali, che $ogliono e$$ere nelle fronti $ono a i lati traportate. Sono alcuni, che togliendo le di$po$itioni delle colonne dalle maniere Tofcane, trasferi$cono quelle ne gli ordini del- le opere Corinthie, & Ioniche, perche doue uengono in fuori le ante dello antitempio, iui all' incontro della cella de i pareti ponendoui due colonne fanno communi le ragioni delle opere To$cane, & delle Greche. Altri anche rimouendo i pareti del Tempio, & applicando a gli intercolunnij dell' ala, fanno con lo $pacio del parete Ieuato uia ampia Ia larghezza della cella, & $eruando le altre co$e con le mede$ime proportioni, & compar- <pb n="200"> <fig> timenti, pare che habbiano creato un'altra manicra di figura, & di nome d'un fal$o a la- to. Ma quelle maniere $econdo l'u$o de i $acrificij $i uanno mutando, perche non a tut- ti i Dei con le i$te$$e ragioni $i fanno i Tempij, perche altri con altra uarietà di culto hanno gli effetti $uoi. <p><I>E$pedite le forme de i Tempij ritondi, accioche niente ci re$ti. Vitr. ci propone anche altre ma- niere di Tempij compo$te, & me$colate delle maniere Creche, & To$cane; per leuare la $oper- $titione d'alcuni, che uanno $empre ad uno i$te$$o modo. Altri aggiugneuano alle $palle dello Antitempio tre colonne per parte. altri anche ne i lati del Tempio $eguiuano con lo i$te$$o or dine di colonne. Altri apriuano la cella, & la riduceuano a maggior larghezza facendo i par eti appre$$o le colonne, & $econdo il propo$ito, & la commodità de i $acri$icij, che (come ho de t- to) erano diuer$i, accommodauano le di$po$itioni de i Tempij. ilche dà da intendere anche a noi, che all' u$o del no$tro culto di religione accommodiamo le di$po$itioni delle Chie$e, doue & $i $a il</I> <pb n="201"> <I>aero $acrificio, & $i predica, & $i cclebrano i $acri officij, cantando le diuine laudi & $i $eruano le $acro$ante reliquie de i $oldati del no$tro Signore.</I> <p>Io ho e$po$to tutte le ragioni delle $acre ca$e de i Dei come mi $ono $tate la$ciate. Ho di$tinto con i $uoi compartimenti gli ordini, & le mi$ure, & mi $ono forzato di de$criuere quanto ho potuto, quelle che $ono di $igure di$pari, & con che differenze tra $e $ono $epa rati. Hora dirò de gli altari de i Dei immortali, accioche attamente $iano ordinati alla dilpo$itione de i $acri$icij. <HEAD><I>Dell' or dinare gli Altari de i Dei. Cap. VIII.</I></HEAD> <p>Gli altari riguardino all' Oriente, & $iano $empre po$ti piu ba$si de i $imulachri che $aranno nel Tempio, accioche i $upplicanti, & $a cerdoti guardando in $u ammirando$i della diuinità, con di$eguali altezze al decoro di cia$cuno de i $uoi Dei $i componghino. Le altezze de gli altari co$i deono e$$ere e$plicate, che a <*>ioue, & a tutti i Dei cele$ti alti$simi $iano fabricati; Alla Dea Ve$ta, al Mare, & alla Terra $i facciano ba$si: & co$i le forme de gli altari nel mezo de i Tempij conue- nienti $i di$porrano. Poi che in que$to libro hauemo trattato delle fabriche de i $acri luoghi, nel $eguente $i dirà da noi chiaramente delle di$tributioni de i luoghi communi. <p><I>La $omma di que$to ultimo capo è come s'habbiano a drizzare gli altari, per $eruare il deco- ro conueniente alla forza, & al potere di cia$cuna Deità. Dio uole$$e che i no$tri haue$$ero tanto ri$petto al uero $acrificio, & tanta riuerenza alli $anti, quanta haueuano gli ingannati gentili al- la fal$a loro $oper$titione. Conuengono tutti in que$to, che deono riguardare all' Oriente, come s'è detto di $opra. Vuole Alberto che gli antichi face$$ero l'altare, alto $ei piedi, largo dodici, $opra'l quale fu$$e posto il $imulacro. Vitru. non ci pre$criue altezza, nè meno credo io, che'l $i- mulacro ste$$e $opra lo altare. perche Vitr. non haurebbe detto, che gli altari $empre $i ano po- $ti piu ba$$i de i $imulacri. & di $opra nel quinto capo di que$to libro, ha detto. Il $i nulacro, che $arà nella cella riguardi incontra $era. & non ha detto il $i nulacro, che $arà $opra l'altare. $imilmente ha propo$to di dire de gli altari de i Dei immortali, accioche attamente $iano ordi- nati alla di$po$itione de i $acrificij. Era adunque il $i nulacro in altro luogo, & piu eminente, che l'altare. I $anti decreti de' no$tri Pontifici, non uogliono, che gli altari nelle chie$e $i facciano d'altro, che di pietra, & $opra quelli ui uogliono una pietra con$ecrata. Noi $opra gli altari $tendemo belli$$ime touaglie, & dinanzi ui ponemo ornati$$i nipanni, nè ci mancano i candellieri, & le lampade dinanzi al $acrati$$imo corpo del no$tro Signore, a cui per ogni chie$a deue e$$ere con$acrato un'altare, & quello riposto in uno tabernacolo d'eccellente lauoro. V$amo anche di porre $opra gli altari le reliquie de i $anti, in ornati depo$iti, con grande ueneratione. oltra di que$to $ogliono i no$tri hauere un luogo $eparato doue $eruano le ue$te $acerdotali, i $a<*>ri libri, & le altre co$e nece$$arie a i $acrificij, & al diuino culto, & doue $i apparano i $acerdoti. Que$ti luoghi io gli farei doue gli antichi faceuano il po$tico. Hanno anche il Choro doue canta- no le diuine lodi con $edi conuenienti, & pareti $eparati dal re$to della chie$a. Hanno le torr i doue appendeno le campane non u$ate da altri, che da Chri$tiani, per chiamare il populo alla chie$a alle hore debite. Que$te torri deono e$$ere proportionate alla grandezza della chie$a. Vanno eguali, quadre, o di molti anguli, fin al luogo doue $i legano le campane. iui $i fanno d'in- torno i cornicioni, & gli apreno con colonnati, accioche il $uono po$$a u$cire, & e$$ere $entito da lungi. A quelle $i $ale o con $cale dritte, o con lumache, ouero con altre $alite piu commode $e- condo la inuentione & $ottilità dello Architetto. $opra i Cornicioni, & le apriture ui ua la Pira- mide, ouero la cuba. La Piramide è di altezza in proportione $e$quialtera alla $ua ba$a, oue- ro è di lati eguali. La cuba, cuppola, & lanterna $i fa con le ragioni dell' opera. In que$te torri</I> <foot><I>CC</I></foot> <pb n="202"> <I>anche $ono gli horologi da contrape$i, non cono$ciuti da gli antichi. que$ti dimo$trano di $uor con uno raggio uoltato dalle ruote di dentro, l'hore naturali, i $egni & gradi, ne i quali $ine ua il Solc, i giorni, & gli a$petti della Luna, la quantità de i giorni, & delle notti, & altre co$e $econdo il giudicio, & la uoglia dell Architetto. Drieto la chie$a ouero appre$$o in qualche la- to u'è il cemitero, che $ignifica dormitorio, perche in quello $i $epeli$ceno i morti, che al tempo della re$urrettione s'hanno a $uegliare, & per le $acre lettere, chiama il morire dormire. in que luoghi adunque $i ripo$ano l'o$$a, & le ccnere de fideli, pero è luogo $acro, doue & naturale, & ordinata pietà drmo$tra la madre no$tra, che è la $anta chie$a nel $epelirei morti. Ma Dio uo- glia, che a' nostri tempi non $i facciano $imili officij piu prestto a pompa de i uiui, che a con$ola- tione de i morti. Non è co$a lodata, che le $epulture stiano nelle chie$e, pure egli $i u$a a gran- dezza nelle capelle a que$to con pregio appropriate. & in luogo piu eminente de i $acri altari $i pongono i $epulchri, & s'appongono le memorie, i titoli, gli Epigrammi, i Trofei, & le in$egne de gli antipa$$ati, doue le uere effigie di $ini$$imi marmi $i uedeno, & i glorio$i ge$ti in littere di metallo $i leggono: Co$e da e$$er po$te piu pre$to nel foro, & nella piazza, che nella chie$a, per- che non ni è quel decoro, che è per stanza de$critto nel primo libro, $e ben ui è quello della con- $uetudine: ma non lodata con$uetudine è quella. Ricordiamoci adunque di $eruare il Decoro in ogni co$a, & $pecialmente nell' honor di Dio, & de i$anti amici $uoi, & de i $erui $acro$anti de- $tinati al culto di quelli, & rinchiu$ine i mona$terij, a i quali è conueniente co$a che $i proueda di commode habit ationi, di $pacie$i chic$tri, & di bei giardini, & $pecialmente i luoghi delle $a- cre uergini $iano $icuri, alt, & rimoti dalli $trepiti, & dalla ueduta delle genti. & per que$to fare lo Architelto con$idererà il fine d'ogni fabrica, & co$i prouederà al bi$ogno. Et qui $ia fine al quarto libro, & alla materia pertinente alla Religione.</I> <HEAD><I>Il Fine del quarto libro.</I></HEAD> <pb n="203"> <HEAD>IL QVINTO LIBRO</HEAD> <HEAD>DELL'AR CHITETTVRA DI M. VITRVVIO.</HEAD> <p>ESPEDITA <I>la parte, che cra ded cata alla religione, $eguita quella, che $i da al commodo, & opportunit à de cittadini. in que$ta $i dimo$tra la di$po$itio ne del Foro, delle Ba$iliche, dello Erario, della Curia, delle prigioni, del Thea tro, & delle co$e pertinenti al Theatro, come $ono le $cene, i portichi, la gra duatione, de i bagni, delle pale$tre, & de i luoghi da e$$ercitar$i, & finalmen te de i porti. Le quali tutte co$e appartengono all' u$o della piu parte, nè $i po$- $ono chiamare uer amente priuate, nè anche publiche: ma communi, perche le publiche io inten derei e$$er le mura, & le dife$e, che egualmente a tutti $i riferi$ceno: le communi, quelle, che all' u$o, & piacere di molti $i de$$ero. Et le priuate, quelle che ad una $orte $ola di per$one $i fa- brica$$ero. Prepone Vitr. a que$to traltamento uno proemio degno di con$ideratione. percio- che $i ri$ponde in quello a molte dimande, che $i $ogliono fare da molti, che ogni giorno uanno ra- gionando di Vitr. (per u$are una parola mode$ta, & non dire cicalando) nè hanno letto, nè con$iderato bene quello, che $i tr oua in que$to autore. Noi uedemo chiar amente che Vitr. non $olamente ha con$iderato, & e$$aminato bene le co$e, delle quali egli doueua dare molti ammae- $traimenti, ma anchora $i ha proposto nell' animo di e$plicare, & porgere la dottrina $ua con bel- la maniera, & uia ragioneuole, & con modo al trattamento d'un' arte conueniente. chi non ha ueduto l'ordine merauiglio$o de i $uoi prec etti? chi non ammira la $cielta delle belle co$e? quale di ui$ione, o parte ci manca, che al luogo $uo non $ia ottimamente collocata? chi leuerà, o aggiu- gnerà, che bene $tia alcun $uo documento? Et $e egli non ha parlato come Democrito, Ari$toxeno, Hippocrate, o come altro perfetto nella loro profe<02>ione: Egli certamente ha parlato da Architet- to, & ha u$ato quelle uoci, che erano amme$$e, & accettate a i tempi $uoi, & quella forma di dire, che $i richiede da chi uuole in$egnare: Et perche que$ta non è mia imaginatione, ho caro, che $i legga il proemio del pre$ente libro, di che ne feci auuertito il lettore, nel mio primo di$cor$o. La doue leg gendo noi Vitr. in que$ta parte, trouaremo, quanto ho detto, e$$ere ueramente stato fat to da Vitr. con deliberato, & ragioneuol con$iglio: il quale dimo$tra quanto differente $ia lo $cri uere le hi$torie, ouero i poemi, dal trattamento d'un' arte: & proua la difficultà dello in$egna- re, & non ci la$cia anche di$iderare il modo di $criuere i precetti dell' arte; & però dice.</I> <HEAD><I>Proemio.</I></HEAD> <p>QVELLI, i quali con grandi uolumi hanno e $po$to i pen$ieri del loro ingegno, & i precetti delle co$e, hanno certamente aggiunto grandi$sima, & mirabile riputatione a i loro $critti. Il che uole$$e Iddio o Imperatore, che anche ne i no$tri $tudij que$to $i comporta$le; accioche con tale ampiezza di dire anche nei no$tri precetti l'autorità prende$$e augumento. ma que$to non è, come altri pen$a, i$pedito, percioche egli non $i $criue dell' Architettura, come $i $criueno le hi$torie, oue- roi Poemi. <p><I>Il $en$o di que$te parole è, che il potere a $uo agio $criuere, & ampiamente e$plicare quello, che $i uolge nello animo, $enza e$$ere obligato a breuità di dire, $uole dare autorità, & credito a gli $crittori, percioche a grado $uo cia$cuno ampiamente $criuendo puo ampliare, adornare, & ac- conciare gli $critti $uoi in modo, che po$$ino piacere, & dilettare, & $pecialmente, quando le co-</I> <foot><I>CC</I> 2</foot> <pb n="204"> <I>$e $ono tali, che tengono i lettori $empre di$idero$i di $apere piu oltra. ma $imile ampiezza, & libertà non è co$i facile in ogni trattamento. perche $e co$i fu$$e, io non dubitarei di non potere a miei $critti dare con auantaggio autorità, & riputatione: però non potendo far que$to, io re$to con gran di$iderio di farlo. & perche non lo po$$a fare, dice.</I> {<I>Percioche eglinon $i $criue come le hi$torie, ouero i poemi delt' Architettura.</I>} <I>I poemi $ono pen$amenti del no$tro ingegno, & le historie e$$empio delle attioni, però con detti poemi, & hi$torie egli ri$ponde a quello, che egli ha detto di $opra, pen$ieri dello ingegno, & precetti delle co$e. Dapoi $eguitando dimo$tra la differenza, che è tra lo $criuere l'hi$torie, & i poemi, & il trattare dell' Architettura.</I> <p>Le hi$to<*> da $e tengonoi lettori, perche hanno uarie e$pettationi di co$e nuoue. & le mi$ure, & i piedi de i uer$i de i poemi, & la $cielta di$po$itione delle parole, & delle $en- tenze tra le per$one, & la di$tinta pronuntiatione de i uer$i con lu$inghe conduceno i $en- timenti di chi legge, $enza offe$a in fino all' ultimo de gli $critti. ma que$to non $i puo fa re nello $criuere dell' Architettura. <p><I>La historia diletta, perche apporta $empre co$e nuoue, delle quali ne è l'animo no$tro $empre de$idero$o. dilettando la uarietà, nece$$ario è, che il lettore $i $tia $empre bramo$o: però per $ati$ fare al $uo di$iderio legge continuamente, & con di$piacere $i ferma, nè $i $a dipartire, braman do di uedere il fine delle attioni. & molto piu dilettano i poemi, sì perche hanno la nouità delle co$e, sì perche allettano le orecchie con la dolcezza, & $oauità de i numeri, & delle parole, doue l'huomo tratto da doppio piacere $i la$cia condurre, anzitirare fin' all' ultimo de gli $critti. Et qui $i deue auuertire come Vitr. ragionando de i poemi in breui, & efficaci parole ha e$plicato quello, che è proprio del poema, & delle parole legate con dolcezza, & delle $entenze dette con decoro, & della pronunciatione fatta con gratia. Ma nel tratt amento d'un'arte, perche le pa- role na$ceno da nece$$ità, & le co$e $ono o$cure, non $i puo ade$care l'animo di chi legge, e$$en- do dalla str anezza delle parole, & dalla difficultà delle co$e confu$o; ilche maggiormente nel- l'Architettura $i cono$ce, il cui trattamento di $ua natura è piu difficile de gli altri. & però ben dice Vitr. che que$to non $i puo fare nello $criuere della Architettura: cioè con uarie e$pettatio ni di co$e nuoue, & co dolcezza di parole tirare gli animi fin'al fine. Et ne rende la cau$a dicendo.</I> <p>Perche i uocaboli nati dalla propria nece$sità dell'arte coninu$itato parlare o$curano la intelligenza. non e$$endo adunque quelli da $e manife$ti, & non e$$endo anche e$po$ti, & chiari i nomi di quelli nella pratica, & nella con$uetudine, & uagando molto le $crittu ne de i precetti, $e non $i ri$tringeno, & con poche, & aperte $entenze non $i dichiarano <*>onendo ui impedimento la moltitudine, & la frequenza del parlare, rendeno dubbio$e le menti de i lettori: <p><I>Ogni arte u$a i proprij uocaboli, i quali na$ceno dalla nece$$ità delle co$e. però bi$ogna prima $$apere partitamente come $i chiamano le co$e, & come dicono i filo$o$i. Il quid nominis. Que- <*>proprietà de'uocaboli rende o$curo il $entimento di chi legge. Euui anche un' altra difficul- <*>, che na$ce nel modo del dire; perche non è lecito nello in$egnare un' Arte, ampliar$i, & u$a- <*> circuiti di parlare, perche non $i finirebbe mai, & tirando$ila co$a in lungo non $i $eruirebbe all'a memoria, alla quale $i conuiene con la breuità, & con l'ordine porgere aiuto. Bi$ogna adun que in$egnando e$$er breue. la doue ottimamente dice V tr. in que$to luogo</I> {<I>che le $critture de iprecetti</I>} <I>Cioè il dare precetti, & ammae$tr amenti $criuendo</I> {<I>$e non $i ri$tringeno</I>} <I>cioè $e non $i danno con breuità, & con poche, & aperte $entenze,</I> {<I>non $i dichiarano.</I>} <I>Ecco la chia rezza</I> {<I>ponendui impedimento la frequenza</I>} <I>cioè la inculcatione, doue s'o$cur a lo intelletto,</I> {<I>& la moltitudine</I>} <I>cioè la lunghezza & ampiezza doue $i offende la memoria, rendeno dubbio $e le cogitationi di chi legge. & per cogitatione pare, che Vitr. intenda le uirtu piu interiori del- l'anima, che $ono la memoria, & lo intelletto. E$$endo adunque ueri$$imo quanto s'è detto, con olude dicendo.</I> <p>Et però pronunciando io gli occulti nomi, & compartimenti delle membra delle ope- <pb n="205"> re, breuemente mi e$pediro, accioche $iano mandati a memoria, perche co$i piu ageuol- mente le menti le potranno riceuere. <I>Cioè intendere, & capire perche il no$tro intendere non è altro, che uno certo riceuimento. Per le dette ragioni adunque Vitr. uuole e$$er breue, quanto però puo portare il trattamento di co$a difficile. Oltra, che ne adduce un'altra ragio- ne dicendo.</I> <p>Similmente hauendo io auuertito la città e$$ere occupata in publiche, & priuate facen de, ho giudicato, che $i debbia $criuere con breuità, accioche nella $trettezza dell' ocio, quelli, che leggeranno po$sino breuemente capire. <p><I>Vuol dire Vitr. Quello, che ne gli $critti miei non puo fare il numero, & la bellezza de i uer- $i, la commodit à di allargar$i, & la nouit à de i $ucce$$i delle co$e, farà la breuità, & la chia- rezza dello in$egnare, che anche inuita a leggere gli occupati, & trauagliati in diuer$e facende. Hor che utilità ci porti la breuità nello in$egnare $i dimo$tr a da una con$uetudine di Pithagora fi- lo$ofo eccellenti$$imo, il quale di$idero$o, che i precetti $uoi re$ta$$ero nelle menti di chi gli a$col- ta$$e non $olamente era breue in dare un precetto: ma anche tutta la $omma de i $uoi precettirin- chiudeua in un certo, & determinato numero, il quale mi$terio$amente (diceua egli) a co$a $tabi- le, & immobile a<02>imigliando$i poteua nella mente con $omma $tabilità, & fermezza ripo$ ar$i. Et però dice Vitr.</I> <p>Co$i anche piacque a Pithagora, & a $uoi $eguaci ne i uolumi loro $criuere i precetti, che dauano, con ragioni cubiche, & fecero il cubo di ducento, & $edici uer$i, & quelli giudicarono non douer e$$ere piu di tre in uno trattamento. ll cubo è corpo riquadrato di $ei lati, d'egual larghezza di piano, que$ti po$cia che è tratto, $e non è tocco, tiene in quel la parte, che egli $i po$a, una immobile $tabilità come $ono i dadi, che $i tranno da i gio- catori nel tauolieri. <p><I>I precetti de i Pith agorici erano breui, & raccolti in uer$etti, come que$ti. Non percuoter il fuoco col coltello. Laua il piè manco prima, & calcia il de$tro. Senza mangiarla trapian- ta la malua. Nella tua ca$a non la$ciar le Rondini. Nè core, nè ceruello mangierai. Non ori- nar, nè parlar contr a'l $ole. Lo $pecchio alla lucerna non guardare. Fuggi la uia regale, $egui il $entiero. Sputa nel unghie tue, ne i tuoi capelli. Et $imilmente formauano molti altri precetti detti con $omma breuità, a i quali dauano altro intendimento di quello, che $onauano le parole: & uolendo trattare d'una co$a $ola, $tando fermi in una materia, raccoglieuano quelli uer$etti in una certa, & determinata $omma pre$a dal numero cubo. Si come cubo $i chiama, & è quel corpo, che è di $ei lati, & di $ei quadrati, & faccie eguali come un dado, co$i cubo $i chiama quel numero, che di $ei numeri piani contento per ogni uer$o tiene eguali dimen$ioni. Na$ceno i cubi dopo la unità di$ponendo i numeri di$pari, che natur almente di$po$ti $ono, ponendo prima i due di$pari, da poi i tre $eguenti, da poi i quattro, che uengono, & co$i di mano in mano. Ec- co lo e$$empio. La$cia l'unità, & piglia i due primi di$pari che $ono</I> 3. <I>&</I> 5. <I>que$ti raccolti fanno</I> 8. <I>che è il primo cubo. piglia i tre $eguenti di$pari</I> 7. 9. 11. <I>& $ommagli, que$ti fanno</I> 27. <I>che è il $econdo cubo. & co$i ua $eguit ando ne i quattro $eguenti di$pari</I> 13. 15. 17. 19. <I>che po- $ti in$ieme fanno</I> 64. <I>che è il terzo cubo. Quando adunque $ia, che mo$$o il punto $i faccia la li- nea; & mo$$a la linea $i generi la $operficie; & mo$$a la $operficie $i faccia il corpo, non è lontano dalla $imiglianza, $e pigliando la unità, & continuandola produrremo un numero linea- re. il qual numero continuato per lo $uo uer$o faccia il numero $operficiale, il quale mo$$o anch'e- gli faccia il $odo, come $e uno $i aggiugne$$e all' unità, il numero nato, che è due, dimostreria per una certa $imiglianza, la lunghezza, che è propria della linea: & mo$$o il due, come linea, $i aggiugne alla lunghezza, anche la larghezza, & $i fa quattro, che è numero $uperficiale, che ri$ponde al quadrato. quessti moltiplicato per due, che è uno de $uoi lati, come $e egli $i moue$$e, ne genera il $odo, a $imiglianza delle figure cubo nominato. Et però non uale a dire $e $ono $ei faccie, bi$ogna, che ci $iano $ei unità. Dice adunque Vitruuio, che i Pithagorici con ragioni</I> <pb n="206"> <I>cubiche de i uer$i dauano i precetti loro, & che poncuano non piu di tre cubi in uno trattam<*> però formauano uno cubo grande di ducento & $edici uer$i in que$to modo. moltiplicauane il tre in $e & faceuano il $uo quadrato, che è noue. que$to noue moltiplicat o per tre, che è lato del qua- drato, farà <*>enti$ette, che è il $odo, & cubo di quel quadrato: $imilmente l'altro cubo $i fa <*> numero lineare, di quattro unità continuate. le quali moltiplicate in $e, come egli $i moue$$e la li- nea, farà una $oper$icie quadrata di $edici. & moltiplicata quella $oper$icie per lo $uo lato, the era quattro, nè farà la $omma di $e$$anta quattro: ri$pondente ad un $odo cubico, che giunte al primo cubo, che era uenti$ette farà la $omma di nouantauno. Co$i il terzo cubo nato dal mo<*> ro lineare di cinque unità, & $oper$iciali di uenticinque, è cento & uenticinque, che agg<*> al nouanta uno, rende la $omma di duc ento & $edici. A que$to numero adunque aggiogneu<*> iprecetti Pithagorici, i quali hauendo $imile quantità di uer$i, cioè: e$$endo con la ragione del <*> bo raccolti, pen$auano, che doue$$ero hauere quella fermezza nelle menti, che $uole bauere il da do, quando è gettato $opra il tauolieri. Ma è mer auiglia, perche cagione i Pithagorici non pl- glia$$ero il primo cubo, che è otto, & poi il $econdo, che è uenti$ette, & poi il terzo, che è $e$- $ant aquattro: & non raccoglie$$ero alla $omma di nouantanoue que$ti tre cubi piu pre$to, che co- minciar dal noue: Ma for$e diuideuano i tr attamenti loro in cubi, & $e il $entimento de i loro pre- cetti d'una materia non era compre$o dal primo cubo, aggiugneuano al $econdo, & $e questo non era ba$teuole, aggiugneuano al terzo, il quale era capace d'ogni $omma. & perche il pri- mo cubo, che è otto, era poco per comprendere uno propo$ito, però $timo io, che andauano al $econdo cubo, che è uenti$ette, cau$ato dal tre, che è numero priuilegiato da pithagorici. & co- $i partitamente aggiugneuano i cubi $e'l bi$ogno lo richiedeua, & non $i melteuano in nece<02>ità di $errare tutti i lero trattamenti, in ducento è $edici uer$i. ma alcuni erano compre$i nel uenti- $ette, altri nel $e$$antaquattro, & altri nel ducento, & $edici: nè uoleuano pa$$are piu oltra, $li- mando, che troppo lungo $aria $tato uno trattato di quattrocento, & trentadue uer$i, che $ouo del cubo nato dal $ei, & aggiu<*>to alla $omma predetta. A que$to modo io e$ponerei la mente di Pithagora fin che $i troua$$e di meglio.</I> <p>Et i Greci compo$itori di Comedie interponendo dal choro le canzoni diui$ero lo $pa tio delle fauole in modo, che facendo le parti con ragioni cubiche, con gli intermedij al- leggieriuano il recitare de gli Attori. <p><I>Io non ho trouato anchora come i Greci face$$ero le parti, che io Atti chiamerei, con ragio- ni cubiche, non $i ritrouando le fauole, che $iano hoggi dì compartite a quel modo. Ma egli bi$ognaua, o che gli Atti fu$$ero otto, ouero otto $cene. per Atto, ouero il numero de <*> uer$i d'una $cena, o d'un' Atto fu$$e cubico. Ma pare che Vitr. intenda gli intermedij delle fauole fat te di numero cubo per ripo$o de i recitanti. $e for$e non uogliamo dire, che gli intermedij fu$$ero per ripo$o de gli attori, come il dado, o il cubo tratto ripo$a: & non $i baue$$e a comparare al nu mero cubo, ma allo effetto del corpo cubo, che gettato $i ferma, $e altri non lo moue. & a me pare buona e$po$itione que$ta, non mi ricor dando d'hauere letto alcuno precetto de poeti, che co mandi il numero cubo o de gli atti, o delle $cene, o del numero de i uer$i.</I> <p>E$$endo adunque tali co$e con natural mi$ura da i no$tri maggiori o$$eruate, & ueden- do io di douere $criuere co$e inu$itate, & o$cure a molti, io ho giudicato con breui uolu- mi i$pedirmi, accioche piu facilmente peruenghino a i $en$i de i lettori; perche a que$to modo s'intenderanno ageuolmente, & io le ho ordinate in modo, che le non $aranno da e$$ere $eparatamente raccolte da chi le cercheranno: ma $aranno tutto un corpo, & in cia- $cun uolume con i proprij generi $aranno e$plicate. Adunque o Ce$are nel terzo, & nel quarto libro io ho e$po$to le ragioni de i Tempij, in que$to io e$pedirò le di$po$itioni de i luoghi publici: & primaio dirò come s'habbia a ponere il Foro, perche nel Foro $i go- uerna & regge da i magi$trati, quanto ragioneuolmente appartiene al publico, & al priuato. <pb n="207"> <HEAD><I>Del Foro. Cap. I.</I></HEAD> <p>Igreci fanno il Foro in luogo quadrato, con ampij$simi, & doppi portichi, & con $pe$$e colonne, & con architraui di pietra, o di marmo gli adornano, & di $opra ne i palchi o ta$$elli fanno i luoghi da pa$$eggiare. Ma nelle cit- tà d'Italia non $i deue fare il Foro con la i$te$$a ragione, peroche da i mag- giori ci è $tata la$ciata la u$anza di dare nel Foro i doni a i gladiatori: & però d'intorno a gli $pettacoli bi$ogna di$tribuire piu $patio$i, & larghi intcrualli tra le colonne. & d'in- torno ne i portichi deueno e$$ere le botteghe de gli orefici, & ne'tauolati di $opra $i faran no i poggiuoli. le quali co$e, & all'u$o, & alle publiche entrate $aranno drittamente di$po$te. <p><I>Egli è nece$$ario, bello, & commodo nella città, che oltra le $trade, & le uie ci $iano delle piazze, & de i campi; (come $i dice a Vinetia) percioche oltra l'ornamento, che $i uede ritrouan do$i a capo d'una $trada un luogo bello, & ampio, dal quale $i ueda lo a$petto d'una bella fabrica di Tempio, egli $i ha que$to commodo, che iui $iraunano le genti a pa$$eggiare, $i uendeno le co- $e nece$$arie, et <*>tili a bi$ogni della plebe, & $i dà luogo a molti $pettacoli. Et $i come torna bene, che ci $iano molte piazze $par$e per la città: co$i molto piu è nece$$ario, & ha del grande, & dell'honoreuole, che cene $ia una principali<02>ima, & che ueramente publica $i po$$a chiamare, & doue $iano i luoghi doue $i trattano le cau$e ciuili, & i tribunali de' giudici, & le corti, i $ena ti, doue $i con$ultano le co$e di $tato, oltr a gli $pettacoli, che $i fanno o per diletto, o per diuo- tione. Tratta adunque Vitr. della di$po$itione del Foro principale. Ma per i$pedirmi di quelle piazze, che $ono $par$e per la città, dico, che gli antichi le chiamarono Triuij: & benche Tri- uio, & Quadriuio $iano luoghi, doue fanno capo tre o quattro uie: nondimeno chiamarono Tri- uij anche quelli luoghi aperti, & $patio$i, doue $i raunauano molte per$one d'una contrata: do- ue $i puo dire, che Triuio $ia una picciola piazza. la quale chi ornare uole$$e, prendendo la for- ma dalla principale, $i farebbeno due co$e, prima i portichi d'intorno, $emplici al meno, $e non duplicati: dapoi s'entrerebbe in quelle, per archi po$ti a capo delle uie; perche il portico di $ua na tura ha del grande: Et uedere poi in te$ta d'una bella $trada uno arco Trionfale $arebbe co$a & diletteuole, & honoreuole. come per uiuo e$$empio ci poteua dimo$trare la città di Roma. per- che la fronte d'un'arco a capo una $trada, fa parere quella piu bella, & lo entrare nella piazza per un'arco, fa parere la piazza maggiore. Tre uolte fanno un'arco per l'ordinario, & per quello di mezo pa$$aua il Trionfante, & il $oldato, & per gli altri pa$$auano quelli, che incon- trauano, ouero accompagnauano con allegrezza il Trionfo. Le mi$ure de gli archi dipendeno dal $apere dello Architetto. ouero $i potranno cauare da gli archi antichi, & dal $e$to ca- po dell'ottauo libro di Alberto. & molti e$$empi $i po$$ono hauere da gli archi, che $ono in Ro- ma, dirimpetto alla chie$a di $anta Maria alle radici del campidoglio. E l'arco di Settimio Seuero tra i belli, che $iano $tati fatti, doue $ono $tate $colpite le uittorie alate con i Trofei, & i $imulacri delle battaglie terre$tri, & nauali, con i glorio$i titoli delle impre$e. Et $e bene pare, che prima ci fu$$ero de gli archi, come egli $i uede fra la uia lata, & la minerua un'arco $chietto detto Camillo, non dimeno quello, & altri archi $i $tima, che non fu$$ero per Trionfi, ma per ponerui qualche $tatua. ma io leggo ne i $acri libri, che Saul dopo una uittoria, $i drizzò un'arco, per lo quale egli pa<02>ò. Dinanzi allo arco di Settimio era una colonna, dallaquale come da capo cominciano tutte le uie d'Ita- lia, chiamaua$i l'aureo miliario. Euui l'arco di Con$tantino con i $uoi ornamenti men guasti, & è nella punta del palatino, che riguarda il Coli$eo. & dinanzi a que$to $i uede un' antica meta di mattoni, chiamata da gli antichi meta $udante, perche mandaua fuori grandi$$ima copia d'acque</I> <pb n="208"> <I>per e$tinguere la $ete di quelli, che entrauano <*>ello an$itheatro di Tito, che era uicino. L'arco De- mitiano è $u la $trada Fla<*>ninia nel capo della ualle Martia, <*>$o il campidoglio. que$to <*> hoggi, è detto di Tripoli. Fu drizzato a Domitiano, & iui è la $ua uatural forma conforme a queila, che $i uede nelle medaglie. Ma quell' arco, che boggi $i chiama l'arco di S. Vito, che è ri- tornaudo $u la uia Tiburtina, $i dice che fit l'arco di Galieno Imper atore. ilquale $i crede che gli fu$$e drizzato piu pre$to per qualche illu$tre bene$icio, che per Trion$o. Ma di tutti gli ar<*> per eterna memoria della uendetta, che fece Iddio per mezo di Tilo contra i Giudei, è lo arco di Tito, piu ornato di titoli, & di $poglie, che $ia. nel cui fronti$picio $i legge. Sen. pop. Rom. di- uo Tito diui Ve$pa$iani F. Ve$pa$iano Augu$to. Dall'una parte è $colpito il carro del Trionfan- te. ouero l'arca del patto con le dodici fa$ci con$ulari auanti. Dall' altra faccia $i $corge la pompa del Trionfo con le $poglie. Eraui il candelabro con $ette rami. Eranui le due Tauole di marmo nelle quali era $critto la legge di Moi$e. Eranui i ua$i del Tempio, la men$a d'oro, & al- tre $poglie. Ma hora io la$cierò que$ta digre$$ione de gli archi, che non è $tata fuori di propo$i- to, perche da que$ta narratione $i da lume a quelli, che uole$$ero hoggi dì drizzare gli archi a i Trincipi, Re, & Imperatori. Hora ritornando al Foro dico, che il Foro principale, $econdo Vitru. fatto da Greci era di forma quadrata. D'intorno eranui i porticali ampli$$imi, & doppij, le colonne $pe$$e, & gli architraui di pietre, o di marmo, & $opra i colonnati faceuano luogbi da caminare. Ma i Romani, & gli Italiani, perche nel Foro $i dauano i doni a i gladiatori, non ri- guardauano il Foro, ma lo faceuano piu lungo, che largo. in modo che partita la lunghezza in tre parti, due ne dauano alla larghezza, doue cadeua proportione $e$quialtera. Erano gli $pa- cij tra le colonne piu larghi, & d'intorno i portichi, erano di$po$ti i luoghi de banchieri, & di quelli, che cambiauano l'argento, $e non uolemo dire le botteghe de gli orefici, & di $opra i$por- tauano i poggiuoli, accioche da quelli commodamente $i pote$$ero uedere gli $pettacoli. & co$i riguardando al fine, & all' u$o di$poneuano il Foro. accioche $e le genti fu$$ero molte la piazza non fu$$e stretta, $e poche non pare$$e uota Dice adunque Vitru.</I> {<I>i Greci fanno il Foro in luogo quadrato con larghi$$imi, & doppi porticali</I>} <I>doppij, cioe di dentro, & di fuori il Foro. che ri- guardino, & al Foro, & alla parte di dietro, ouer doppi di dentro $olamente con due ordini di colonne. & è meglio, perche Vitr. u$a anche nel terzo libro, questa parola, Duplices, in questa $ignificatione.</I> {<I>Et di $pe$$e colonne.</I>} <I>Io $timo, che Vitr. intenda in que$to luogo il Picno$tilos, come intendeua nel ter zo libro lo $pacio di $pe$$e colonne d'uno diametro & mezo. & che que$to $ia il uero, lo dimo$trano le parole di $otto, quando dice, che nelle città d'Italia non $i fa il Foro al modo Greco. perche ad altro u$o il Foro era in Italia, ad altro quello de Greci. però dando$i in Italia nel Foro i doni a i gliadiatori, & douendo il populo $tare a uedere, era nece$$ario dare d'intorno a gli $pettacoli grandi intercolunnij. Ecco, che egli oppone que$te parole a quelle, che ha detto di $opra.</I> {<I>con $pe$$e colonne.</I>} <I>Dice anche,</I> {<I>meniana, che noi e$ponemo poggiuoli. Si legge, che Menio uendè la $ua ca$a a Catone, che era $opra la piazza, & $i ri$eruò una $ola co- lonna, $opra laquale ui fece un tauolato, o $olaro per poterui $tar $opra a uedere i giochi, & le fe$te, & uolle, che i po$teri pote$$ero godere que$to priuilegio. & di qui è nato, che i poggiuoli, o pergolate coperte, che $portano in fuori $i chiamauano, meniana; da quella colonna di Menio. Que$te meniane erano commode all'u$o, perche iui $i $taua a uedcre i giuochi, & iui $i $eruaua- no le co$e, che $i uendeuano, & comprauano, come $ono i punti in Anuer$a, le uolte in real- to in Vinetia.</I> <p>Le grandezze del Foro $i deono fare $econdo la moltitudine de gli huomini, accioche non $ia lo $pacio poco al commodo, & u$o, ouero per lo poco numero delle per$one il Foro non paia dishabitato. la larghezza $ia determinata in modo, che partita la lunghez- za in tre parti, due di quelle $e le diano; & co$i la forma $ua $arà piu lunga che larga. <p><I>Piace a Leon Batti$ta, che la lunghezza $ia di due quadri, & ui aggiugne anche una bella cō- $ider atione, che è que$ta. cioè che gli edificij, che $aranno a torno la piazza, $iano in modo pro-</I> <pb n="209"> <I>portionate, che non facciano parere la piazza $tretta, e$$endo molto alti, o non la facciano pa- rere troppo ampia, e$$endo molto ba$$i, & depre$si. però egli uuole, che gli edificij $iano alti la terza parte della larghezza del Foro. Egli $i deue con$iderare quello, che ba detto Vitru. & la difpo$itione $arà utile a gli $pettacoli, perohe cagione la forma piu lunga, che larga $ia piu com- moda, che la quadrata perfetta, attento che la forma ritouda $ia piu capace, & piu commoda, d'ogn'altra $igura, & poi la quadrata. $e noi guardemo alla capacità, non ba dubbio, che la qua- drata non $ia piu capace. $e al commodo de gladiatori, certo hanno piu commodit à nella piu lun- ga, come che per le gio$tre, & per lo cor$o de caualli $ia piu commoda la lunghezza. $e con$ide- ramo la ragione della pro$pettiua, è piu al propo$ito la quadrata, perche tutte le parti d'intorno banno piu uicinanza al centro, et gli fpettatori uedeno piu egualmente il tutto. però io la$cio que- sta con$ideratione a chi legge. E però nece$$ario fare il Foro $econdo la molt itudine delle genti, accioche non $i conuenga fare quello, che fece Augu$to. il quale fece fare un Foro appre$$o due, che ui erano per la moltitudine de gli huomini, & de i litiganti, & lo fece picciolo, per non dar noia a i patroni delle ca$e uicine. Que$to Foro era la doue $ono hora gli horti dietro a Morforio, & alla chie$a di $anta Martina. & fu fatto con molta fretta. $i ordinò, che quiui $i tratta$$ero i giudicij publici, $i a$$orti$$ero i giudici, & anche $i rauna$$e il $enato per con$ultare delle guer- re, & de i Trionfi. & che quiui i uincitori capitani pone$$ero le $poglie de i loro trionfi. hebbe que$to Foro due belli<02>imi portichi, & fu adornato di co$e rari$$ime. ma che non ruina il Tempo? che non di$trugge la guerra? che non muta la gente? Que$to, & altri Fori, come che molti $ia- no $tati belli$$imi, o $ono caduti da $e, o gettati a terra da nimici, o tr amutati in altre fabriche.</I> <p><I>Faceuano i portichi molto ricchi, & grandi, & con piu ordini di colonne, l'u$o de i quali era per fuggire le pioggie, & pa$$eggiare, & fuggire ogni noia della grauezza dello aere, & del So= le. chiamauan$i dalla loro grandezza miliarij, o $tadiarij. & dalla lor maniera Dorici, Corin- thij, Ionici, To$cani, o Sotterranei, & altri erano con$ecrati a i Dei. erano in $omma ornamenti delle piazze merauiglio$i.</I> <p><I>B Curia.</I> <p><I>C Piazza dinanzi alle carcere.</I> <p><I>D Piazza inanzi alla Cecca.</I> <p><I>G Ba$ilica.</I> <p><I>A Le ale del Pallazzo, nel mezo è il Foro, & d'intorne le botteghe.</I> <foot><I>DD Faceuano</I></foot> <pb n="210"> <fig> <pb n="211"> <fig> <foot><I>DD</I> 2</foot> <pb n="212"> <fig> <pb n="213"> <fig> <pb n="214"> <p>Le colonne di $opra fiano per la quarta parte meno delle colonne di $otto. perche le co$e inferiori ri$petto al pe$o, che portano, deono e$$ere piu ferme, che le di $opra. & anche perche bi$ogna imitare la natura delle na$centi co$e, come è ne gli Alberi ritondi, come è lo Abete, il Cipre$$o, il Pino, delli quali non ne è alcuno, che non $ia piu gro$$o dalle radici, ma poi cre$cendo con naturale re$trignimento di $opra a poco a poco per- uiene alla $ommità: $e adunque la natura delle na$centi co$e co$i richiede, drittamente $i ordina, che le parti di $opra $iano, in larghezza, & gro$$ezza piu ri$trette delle inferiori. <p><I>Bello auuertimento è que$to di Vitr. nel pre$ente luogo. uuole egli che $e uorremo $oprale co- lonne del portico porre altre colonne, & leuare la fabrica con piu ordini di ta$$elli, o $olari, che $i auuerti$ca di fare le colonne di $opra piu $ottili la quarta parte delle colonne di $otto. & piglia lo e$$empio da gli alberi, che da piedi $ono piu gro<02>i, & uanno egualmente a$$ottigliando$i fin alla cima. Ben douemo auuertire, che'l primo ordine era Dorico, il $econdo Ionico, & il ter- zo Corinthio, & che non $eguita, che $e le colonne di $otto $ono la quarta parte piu gro$$e delle colonne di $opra, che anche $iano in altezza maggiori la quarta parte, perche $e la colonna Do- rica di $otto, è di piedi quattro di diametro e$$endo Dorica, $arà alta piedi uentiotto. la di $opra, che $arà Ionica, $e bene $arà un quarto meno gro$$a della Dorica, cioè tre piedi, non $arà però un quarto minore, d'altezza della colonna di $otto, perche $arà di otto Diametri & mezo, che $ono piedi uentiquattro, & mezo. & $e bene anche fu$$ero tutti gli ordini d'uno i$te<02>o genere; bi$ogne- ria, che la colonna di $otto non fu$$e piu gro$$a dal piedi, di quello, che è la colonna di $otto nel- la cima, doue $i fa la contr attura, accioche la colonna di $opra $i po$a$$e $ul uiuo. ben uiene anche l'altezza della colonna minore, ma non la quarta parte. però bi$ogna auuertire a quello che dice Vitr. Io ponerò qui$otto la pianta del Foro latino, la$ciando al giudicio, & piacere d'altri il con- $ider are, & di<02>egnare il Foro de' Greci.</I> <p>Le Ba$iliche $iano congiunte al Foro nelle parti piu calde, che $ia po$sibile, acciochei negociatori il uerno $enza mole$tia di cattiui tempi a quelle po$sino transferir$i. & le lar- ghezze di quelle non $iano minori, che per la terza parte, nè maggiori, che per la metà della lunghezza, $e la natura delluogo non impedirà, ouero non isforzerà a mutar mi$ura di compartimento. Ma $e'l luogo $arà piu ampio in lunghezza po$te $iano ne gli e$tremi le Chalcidiche, come nella Giulia A quiliana. <p><I>Douemo auuertire, che Vitr. col Foro abbraccia le Ba$iliche, l'Erario, il Carcere, & la Cu- ria. perche Vitr. hauendo trattato delle Ba$iliche, dello Erario, del Carcere, & della Curia, dice al terzo capo $eguente.</I> {<I>Quando $arà fornito il Foro, bi$ogna eleggere il luogo molto $ano per gli $pettacoli.</I>} <I>Ecco cheil Foro abbracciaua le dette co$e. però mi pare, che in una $ola pian- ta, $i doueria rappre$entare il Foro con la Ba$ilica, lo Erario, la Curia, & la prigione. Ba$ilica, $e uolemo interpretare il nome, $uona ca$a regale. & in quella $i $oleua tener ragione a coperto, & trattar$i anche digrandi, & importanti negotij. $criue Plutarco che Paulo Emilio $pe$e da nouantamila $cudi, per quanto $i fa conto, in una Ba$ilica, laquale era nel mezo del Foro. cre- deno alcuni, che quella Ba$ilicafu$$e tra la chie$a di $anto Adriano, & il bel Tempio di Fau$ti- na. Vuole Vitr. che le Ba$iliche $iano po$te in luoghi caldi$$imi, & intende per luoghi caldi$$i- mi, quelli, che $ono uolti dallo Aquilone, & dal Settentrione, come egli e$pone nel decimo capo del pre$ente libro. & Vuole che la Ba$ilica habbia non $o che da fare col Tempio, ma non però in modo che $e le dia quella grandezza, perche molto piu degna co$a è il Tempio della Ba$ilica. In quant o adunque la Ba$ilica tiene una certa conuenienza col Tempio, ella $i u$urpa molte ra- gioni del Tempio. & però Vitr. dirà qui appre$$o, che le ragioni de gli Architraui, fregi, & goc ciolatoi $i piglieranno dalla $immetria delle colonne, come ha dic hiarito nel terzo libro. La Ba$ilica adunque imita piu pre$to, che pareggi il Tempio. Vuole l' Alberto, che per la molti- tudine de i litiganti, per li notai, & $crittorila Ba$ilica $ia molto piu libera, molto piu aperta, & lumino$a, accioche gli auocati, & i clienti cercando$i l'un l'altro, $i po$$ino in un giro d'oc-</I> <pb n="215"> <I>chio uedere. Gli antichi aggiun$ero alle Ba$iliche uno, & due Tribunali, uno, & due portichi. Sia adunque la larghezza con la lunghezza in proportione $otto$e$quialtera, ouero $ottodoppia & que$to quando non ci $arà impedimento dalla natura, & $ito del luogo. perche in quel ca$o, e$$endo il luogo piu lungo, uuole Vitr. che ne gli e$tremi $i facciano le Chalcidiche: l' Alberto legge Cau$idica, et uuole che Cau$idica $ia una aggiunta alla lunghezza della Ba$ilica in forma della let tera. T. per trauer$o delle te$te doue $tauano gli auuocati, & cau$idici a di$putare le cau$e. Troua$i che chalcidicū è una $orte di edi$icio detto dalla città Chalcidia, che lo u$aua, & che era grande et $patio$o; & for$e Vitr. intende que$to, che $i aggiunga alla Ba$ilica, quando il luogo $arà piu lungo, di quello, che porta la proportione della larghezza alla lunghezza. Altri int endeno la Cecca, del- la quale Vitr. non ragiona altroue, che è luogo doue $i batte la moneta, & for$e mi piacerebbe que$ta e$po$itione, quando la Cecca non face$$e $trepito, che impedi$ce quelli, che difendeno, & trattano le cau$e nella Ba$ilica. il Filandro adduce delle autorità, che confermano, che chalcidica erano edificij grandi. però io mi acco$to alla opinion $ua. & quello e$$empio, che dice Vitr. co- me nella Giulia Aquiliana, io credo, che Vitr. intenda d'una Ba$ilica fatta nel Friuli, doue inuer- naua Ce$are; perche alcuni te$ti hanno. Villa Aquiliana. & di Aquilio $i troua una memoria in marmo nel Friuli, che io ho ueduta, & $i trouano i ue$tigi d'alcune Therme.</I> <p>Le colonne della Ba$ilica $iano tanto alte, quanto $ono larghii portichi; ma il portico $ia terminato per un terzo di quello, che deue e$$ere lo $pacio di mezo. <p><I>Se la larghezza del portico $arà di dieci piedi, $iano le colonne dieci piedi, dico per e$$empio, & per la larghezza del portico s'intende lo $patio, che è dalle colonne al parete. Et poi uuole, che il portico $ia tanto largo, che egli $ia d'un ter zo della larghezza di mezo, cioè quanto $arà il corpo della Ba$ilica ri$tretto da i pareti prenda$i un terzo, & di quello $i faccia la larghezza del portico.</I> <p>Le colonne di $opra $iano minori di quelle di $otto, $econdo, che detto hauemo di $o- pra. Il parapetto, che è tra le colonne $uperiori, & inferiori $imilmente pare, che $ia di douer e$$er per la quarta parte meno delle colonne di $opra, accioche quelli, che camina- no $opra'l palco della ba$ilica, non $iano ueduti da i negociatori. Gli architraui, i fregi, i gocciolatoi $iano pre$i dalla $immetria delle colonne, come hauemo detto nel terzo libro. <pb n="216"> <HEAD><I>Lato della Be$ilica, & ua congiunta la lettera A. di que$ta figura con la lettera B. della Antecedente.</I></HEAD> <fig> <p>Ne meno di dignità, & bellezza po$$ono hauere i compartimenti delle ba$iliche di quel la maniera come io ho po$to, & hauuto cura che $i faccia nella colonia Giulia di Fano: le proportione, & mi$ure della quale $ono in que$to modo. La te$tuggine di mezo tra le co- <pb n="217"> lonne è lunga piedi cento & uenti, larga $e$$anta, il portico $uo d'intorno la te$tuggine tra i pareti, & le colonne, è largo piedi uenti. <p><I>Le colonne erano dalla parte di dentro, & $o$teneuano la te$tuggine, ma il portico era di fuori a torno, & era$errato di parete, come $i uederà poi.</I> <p>Le colonne di altezza continuate con i capitelli piedi cinquanta alte, & gro$$e cinque Hauendo di dietro le pila$trate alte piedi uenti, larghe due, & mezo, gro$$e uno, & mezo, le quali riceueno le traui, che $o$tentano i canterij, & i coperti de i portichi, i quali $ono $ottopo$ti piu ba$si alla te$tuggine. Gli altri $patij tra le traui de i pila$tri, & delle colon ne per gli interualli delle colonne $ono la$ciati a i lumi: quattro colonne $ono nella lar- ghezza della te$tuggine ponendoui con quelle le angulari dalla de$tra, & dalla $ini$tra. ma nella lunghezza pro$sima al Foro, pur con le angulari ne $ono otto, ma dall'altra parte con le angulari, $ei, perche le due di mezo in quella parte non $ono po$te accioche non im pedi$cano l'a$petto dello antitempio, del Tempio d'Augu$to, il quale è po$to in mezo del parete della Ba$ilica, & guarda per mezo'l Foro, & il Tempio di Gioue. <p><I>Quando Vitr. dice; & gli altri $patij tra le traui de i pila$tri, & delle colonne, per gli interco lunnij, $ono la$ciati a i lumi. intende gli $patij, che $ono tra'l coperto del portico, & il tetto del- la te$tuggine. & le colonne alte cinquanta piedi erano Corinthie.</I> <p>Euui anche il Tribunale in quel Tempio meno di figura $emicircolare. & lo $patio di quello nella fronte di piedi quaranta$ei, & la curuatura di dentro di piedi quindici, accio- che quelli, che $te$$ero dinanzi a i magi$trati non impedi$$ero i negocianti nella Ba$ilica. $opra le colonne $ono d'intorno gli architraui fatti di tre pezzi di due piedi l'uno incatena ti, & quelli delle terze colonne, che $ono nella parte d'intorno a i pila$tri, che $i $ten- deno dallo antitempio, & toccano dalla de$tra, & dalla $ini$tra il $emicircolo. <p><I>Per le terze colonne egli intende quelle, tra le quali erano leuate li due di mezo, per dare ue- duta allo antitempio di Augu$to. perche $ono le terze cominciando a contare dalle angulari.</I> <p>Sopra le traui d'intorno contra i capitelli $ono alcuni pila$trelli come piedi$tali, di$po $ti per $o$tenere i pe$i, alti piedi tre, & larghi quattro per ogni uer$o, $opra $ono le traui ben compo$te inchiauate di due pezzi, di due piedi l'uno. <p><I>I Pila$trelli $ono in luogo di Fregio. Le traui Euerganee. & ben compo$te erano in luogo di cornici. noi $olemo anche dire, quel traue lauora bene, quando egli è po$to in opera, & fa il $uo officio.</I> <p>Sopra le traui $tanno i trauer$i con le chiaui, che contra i Fregi delle colonne, & le an te, & i pareti dello antitempio $o$tentano uno continuato colmo della Ba$ilica. & un'altro dal mezo $opra lo antitempio, & co$i doppia di$po$itione di te$tuggine una di fuori del tetto, & l'altra della te$tuggine interiore, porge una ueduta bella, & gratio$a. Simil- mente i leuati ornamenti de gli architraui, & la di$tributione de i parapetti, & delle co- lonne di $opra, toglie una fatico$a mole$tia, & $cema per una gran parte la $omma della $pe$a. Ma le colonne co$i alte fin alla trauatura della te$tuggine, pare che accre$chino et la magnificenza della $pe$a, et la dignità dell'opera. <p><I>Erano leuate quelle parti, cioè Fregi, architraui, cornici, & gli adornamenti: & in luogo loro erano le traui euerganee, i pila$trelli, & le traui di <*>egname, perche co$i era nece$$ario e$$en do molto $patio tra colonna, & colonna. Era a mio giuditio una ben di$po$ta Ba$ilica, & doueua hauere del grande. hora non ci $ono di quella ue$tigij apparenti.</I> <foot><I>EE</I></foot> <pb n="218"> <p><I>La pianta è $egnata A.</I> <p><I>La pianta del tempio d'Augu$to B.</I> <p><I>Lo Antitempio C.</I> <p><I>Il Tribunale D.</I> <p><I>Il parete della Ba$ilica, che rinchiudeua i portichi E. F. G. H.</I> <p><I>Il parete del Tempio I. K. L. M. & uanno con le ale dello antitempio a ritrouare il parete della Ba$ilica.</I> <p><I>I pila$tri dietro le colonne. N.</I> <p>Lo in piè della Ba$ilica, & del Tempio dimo$tra poi partitamente il tutto. <p><I>Le colonne</I> 1. <p><I>I pila$tri de uenti piedi</I> 2. <p><I>La prima trauatura del portico</I> 3. <p><I>I $econdi pila$tri di piedi diciotto.</I> 4. <p><I>Le traui, che $o$tentano i canterij del corpo del portico, che è inferiore al coperto della Ba$i- lica.</I> 5. <p><I>Le colonne erano Corinthie. Le traui di tre morelli di due piedi l'uno, in uece d'Architraue.</I> 6. <p><I>I pila$trelli di tre piedi, che $eruiuano per fregio.</I> 7. <p><I>Gli altri traui po$ti in$ieme, & inchiauati, che legauano la fabrica a torno, & $eruiuano per cornici, compo$ti di morelli di due piedi l'uno.</I> 8. <p><I>Il tetto $i uede col $uo legamento $opra il pronao del Tempio.</I> <p><I>Il parete del portico a torno la Ba$ilica.</I> 9. <p><I>Il parapetto alla prima trauatura del portico.</I> 10. <p><I>I lumi $egnati. o.</I> <pb n="219"> <fig> <foot><I>EE</I> 2</foot> <pb n="220"> <fig> <HEAD><I>Dello Erario, Carcere, & della Curia come $i deono ordinare. Cap. II.</I></HEAD> <p>L'Erario, il Carcere, & la Curia deono e$$er congiunti al Foro, ma in modo, che la grandezza del compartimento di quelle ri$ponda al Foro, & $pecialmente la Curia $i deue fare $econdo la dignità de gli habitanti, ouero della città. $e ella $arà quadrata, quanto hauerà di larghezza, aggiugnendoui la metà $i fa- rà l'altezza. ma $e la forma $arà piu lunga, che larga, egli $i porrà in$ieme la lunghezza & la larghezza, & di tutta la $omma $i piglierà la metà, & $i darà all'altezza $otto la trauatu- ra. Oltra di que$to $i deono circondare intorno i pareti nel mezo di cornicioni, o di legna- me, o di $tucco. ilche quando non fu$$e fatto, ne uenirebbe, che la uoce de di$putanti trop po alzata, non $arebbe udita da quelli, che odeno le cau$e. ma quando d'intorno i pareti ci $aranno i cornicioni, la uoce ritardata da quelli prima, che $ia nello aere di$sipata, per- uenirà alle orecchie de gli auditori. <pb n="221"> <fig> <p><I>Erario è luogo doue $i ripone il Te$oro, & il dinaro publico. i Romani nello Erario con$erua- uano tutti gli atti publici, & deereti del Senato. i libri elefantini, ne i quali erano de$critte le trentacinque tribu di Iuda. Dice Suetonio, che Ce$are abbruciò tutti i libri delle obliganze, che egli ritrouò nello Erario, per leuare ogni occa$ione di odio. Come e$$er debbia lo Erario, & il carcere non dice Vitru. perche $ono parte del Foro, che hanno $eco le loro nece$$ità, che $i rimet teno al giudicio dello. Architetto, & però de i Granai publici, dello Erario, delle armerie, del naua- le, del Fondaco, & della Cecca, non dice altro. Deono que$te co$e e$$er collocate in luoghi $icu- ri<02>imi, & pronti$$imi, circondate d'alte mura, & guardate dalle forze, & dall'in$idie de i $edi- tio$i cittadini. Noi hauemo in Venetia i Granari, & la Cecca congiunte alla piazza. le arme- rie nel palazzo i$te$$o, l'Arzana $icuraguardata, & fornita, $e altra ue n'è o $ia $tata al mondo. La Cecca $opra la piazza, opera del San$ouino. iui $i batte, & cimenta l'oro, & l'argento: & $i con$eruano i depo$iti, & $i riduceno alcuni magi$trati deputati alla Cecca, sì per l'a cura delle mo- nete, come per li depo$iti, & per l'uno, & l'altro conto c'è una marauiglio$a $omma di $cudi. Le prigioni $imilmente $ono $otto il pallazzo, alquale è congiunta la piu ricca che bene inte$a chie$a nella te$ta della $pacio$a piazza. Anticamente erano tre $orti di prigioni, l'una di quelli, che erano $uiati, & immode$ti, che $i teneuano, accioche fu$$ero ammoe$trati. hora que$ta $i dà</I> <pb n="222"> <I>a i pazzi. L'altra era de'debitori, & que$ta anche $i u$a fra noi. La terza è doue $tanno i per- fidi, & rei huomini, o gia condennati, o per e$$ere condcnnati. Que$te $orti $ono $officienti, per- che i delit ti, & falli de gli huomini, na$ceno ouero da immode$tia, ouero da contuanacia, ou<*>e da peruer$ità. alla immode$tia $i dà la prima. alla contumacia la $econda. alla peruer$ità la ter- za. Non uoglio qui addurre le prigioni doue erano po$ti i martiri, o quelle, che ordinaro<*> crudeli<02>imi Tiranni, come Ezzellino da Romano, & altri, che uoleuano tormentare i miferi cit- tadini, ma $olo dirò che le altezze, le gro$$ezze delle mura, le fortezze, & ba$$ezze delle perte $i richiedeno alle prigioni, accioche per niuna uia $i po$$a fuggire. Altri adunque fanno le per- te doppie, & di ferro, le uolte alti<02>ime, le mura di dure, & gro$$e pietre. & quello, che piu im- porta le danno uigilanti<02>imi, & fideli<02>imi cu$todi, oltra che tenghino le prigioni, (dirò co$i) nel core della città. Vuole Alberto, che le prime prigioni $iano piu $pacio$e, le $econde piu ri$tr<*> te, & le ultime de malfattori ri$tretti$$ime, $econdo i gradi de i delitti. Hauemo noi nella città no$tra, in molti lnoghi le prigioni, che $i chiamano ca$$oni, doue $i pongono quelli, che $ono pre$i la notte per armi, o per qualche occa$ione meno hone$ta. Hanno anche diuer$i magi$trati le loro prigioni. Anco Martio edificò nel mezo del foro il carcere, alquale Tullio aggiun$e una caua profonda detta poi Tulliana, che era come le Latomie di Siracu$a, & $i $cendeua da mano manca per lo $pacio di uenti piedi. era cinta da ogni lato di alti$sime, & forti mura, o$cura, horribile, & puzzolente. Era anche in Roma doue è il Theatro di Marcello, il carcere della plebe fatto da App. Claud. X. Vir. nel quale $tando egli per la uita ucci$e $e $te$$o. Sono i Ve$tigij di quello carcere appre$$o la chie$a di S. Nicolao in carcere. il Foro era de' litiganti, la Curia de Senato- ri, il Comitio doue $i creauano i magi$trati, onde i giorni a que$to deputati $i chiamauano i giorni Comitiali. Era prima $coperto il Comitio, fu poi coperto l'anno che Annibale pa<02>ò in Italia. & poi rifatto da C. Ce$are. Era iui il fico ruminale appre$$o le radici del Palatino. & il Comitio era una gran parte del Foro. Noi nella città no$tra chiamamo il gran con$iglio, quel luogo doue la numero$a nobiltà $i rauna per creare i magi$trati. Ma uegnamo alla Curia, che noi chiamamo il Senato, ouero il Pregadi, perche anticamente $i mandauano a pregare a ca$a i nobili, che ue- ni$$ero a con$ultare delle co$e dello $tato. Soleuano gli antichir aunar$i per deliberare ne i Tem- pij, & però il Tempio di Giunone Moneta, & Senatulo, & Curia fu detto. Chiamauano anche Curia doue i $acerdoti trattauano, & procurauano le co$e della religione, come fu la Curia uec- chia; ma altro era la Curia doue $i raunaua il Senato, come era la Ho$tilia edificata da Tullo Ho$tilio $opra la Curia uecchia fatta da Romulo. Et la curia di Pomp. era dinanzi al $uo Theatro doue C. Ce$are fu ucci$o da i congiurati. Ma uegnamo a Vitru. ilquale ha piu cuore alla $imme- tria della curia che del re$to. Vuole, che $e la Curia $arà riquadrata, che l'altezza $ia uno qua- dro & mezo alla larghezza. que$ta proportione $e$quialtera è molto commendata da Vitr. Ma piu comparando la larghezza alla lunghezza, che comparando l'altezza alla lunghezza. & $e laforma $arà piu lunga, che larga uuole, che raccogliamo la $omma della larghezza, & della lunghezza in$ieme, & della metà facciamo l'altezza. Ma non dice quanto e$$er debbia la lar- ghezza, & la lunghezza, perche ha detto, che $i habbia riguardo alla dignità della città, & de gli habitanti; che per hora co$i uoglio interpretare quella parola, Municipij; della quale io ho parlato nel primo libro a ba$tanza. però $e molti doueranno entrare nella Curia per e$$ere la cittàgrande, et populo$a, $i farà la curia grande, & capace. & perche nel con$ultare na$ceno delle controuer$ie, & è nece$$ario che gli huomini $i leuino a dire le loro oppinioni, & a di$putare le materie, però Vitr. ci dà un bello auuertimento, accioche la uoce $ia udita. & uuole che al mezo dell'altezza $iano fatti d'intorno i Cornicioni che $portino in fuori, accioche la uoce non $i perda nell'altezza della curia. Ma quello, che $ia opera inte$tina, ouero albaria, diremo nel $ettimo. & qui $ia fine al Foro con tutti que corpi di fabriche, che gli $ono pro<02>imi, & congiunti. leggi l'Alberto nell'ottauo libro al nono capo, che trouerai que$ta materia piu di$te$a.</I> <pb n="223"> <HEAD><I>DelThearro. Cap. III.</I></HEAD> <p>Fornito il Foro bi$ogna eleggere il luogo molto $ano per lo Theatro, doue ne i giorni $olenni a i Dei $i facciano i Giuochi. la ragione de i luoghi $ani $i è dimo$trata nel primo libro, quando trattammo di fare le mura d'intorno la città. percioche quelli, i quali per uedere i giuochi, con le moglie, & $igliuo- li $i tengono $tando i corpi per lo piacere, & diletto, $enza mouer$i, hanno le uene aper- te, nellequali entrano i uenti, che uenendo da luoghi palu$tri, o d'altre parti infettate, con gli $piriti loro danno gran nocumento. & però $e con diligenza $i trouerà luogo per lo Theatro ageuolmente $i $chiuerà ogni difetto. Bi$ogna oltra di que$to prouedere, che'l Theatro non habbia l'impeto dal meriggie, percioche empiendo il Sole la ritondezza del Theatro, l'aere rinchiu$o nella curuatura non potendo u$cire, raggirando $i $calda, & af- focato cuoce & $cema l'humore de i corpi, & però grandemente $i deono fuggire le parti nociue, & eleggere le $ane, & buone. <p><I>Si come il Trattamento del Foro abbracciaua la Ba$ilica, l'Erario, il carcere, & la Curia, co$i il trattamento del Theatro abbraccia molte co$e, dellequali Vitruuio ragiona in que$to, & altri capi, & è co$a degna di auuertimento, perche ui $ono molte belle, & difficili pratiche, & $ottili con$iderationi, come di$tintamente $i uedrà al $uo luogo. Seguitando adunque le $olite di- ui$ioni diremo, che de gli $pettacoli alcuni $ono per diletto della pace, & dell' ocio, altri $ono driz- zati allo $tudio della guerra, & del negocio; & $i come ne i primi $i ri$ueglia il uigore dello in- gegno, & della mente, co$i ne i $econdi $i eccita la gagliardezza delle forze, & dell'animo: ma d'amendue una e$$er deue la intentione, cioè indrizzare il tutto all'ornamento, & alla $alute della patria, però $ommamente $i deue auuertire, che ne i giuochi, & ne gli $pettacoli, non $iano introdotte co$e dishone$te, & la$ciue. Hora diremo dell'un', & l'altra maniera di $pettacoli. Nella prima adunque, doue è il diletto della pace, introdutti$ono i Poeti, i Mu$ici, gli I$trioni; nella $econda, che riguarda a gli $tudi della guerra $i fanno diuer$i certami, & contentioni $pet- tanti alla forza, & de$trezza de i corpi. A i primi $i dà il Theatro, che altro non uuol dire, che $pettacolo, o luogo da guardare. a i $econdi, $e $ono $pettacoli d'agilità & de$trezza, come cor- rere o $altare, $i dà il Circo. $e $ono di forze, come di a$$altare, & combattere con le fiere, & con gli huomini, $i da lo Anfitheatro. Conuengono prima tutti gli $pettacoli in que$te co$e prima, che $ono cornuti, o curui, dapoi hanno lo $pacio di mezo, & finalmente d'intorno tengono i gradi, & i luoghi eminenti doue $tanno le per$one a $edere, & a uedere. $ono differentinel di$egno, per- cioche il Theatro, è come una Luna che inuecchia. Il Circo è piegato con le corna in lungo, & $i $tende molto, perche $ia commodo alle carrette, & caualli, che correno. $i $oleua anche met- terui l'acqua, & farui dentro le pugne nauali. Vero è che il circo di $ua natura non ha portichi, & dicono, che il circo fu fatto ad imitatione delle co$e cele$ti, però haueua dodici entrate per li dodici $egni; $ette mete, & termini per li $ette pianeti. & erano le mete di$tribuite nel mezo della lunghezza del piano da Leuante a Ponente, di$tanti una dall'altra, doue le carrette da due, & da quattro ruote correndo andauano per mezo gli $pacij del Circo, come di$corre il Sole, & la Lu na, $otto il Zodiaco. & non u$auano piu di uentiquattro dardi, per le uentiquattro hore, che è una riuolutione del Cielo. Erano quelli, che correuano diui$i in quattro liuree, una era di color uerde, che rappre$entaua la prima uera. l'altra di ro$ato, che $ignificaua la $tate. la terza, di bianco po$ta per lo autunno. l'ultima fo$ca, che dinotaua il uerno. Il luogo doue s'incominciaua il cor$o era detto carcere: noi chiamamo le mo$$e. Alcuni non fanno differenza tra circo, & hip- podromo, & catodromo. L'Amfiteatro era di due Theatri congiunti in$ieme con le fronti loro. & que$te forme erano pre$e dall'u$o delle co$e, che $i faceuano in que luogbi. Per trattare adun-</I> <pb n="224"> <I>que del Theatro partitamente, & chiaramente Io dirò che dal fine $i potrà ogni $ua di$tributie- ne con$iderare. & però la$ciando da parte le co$e communi ad ogni $abrica, che è il luogo $ano, il fondamento, & la piazza, & altre co$e, in che conuengono tutti gli edificij per guardare. Doue- mo con$iderare le per$one, che ui uanno, & i giuochi, che $i fanno. Riguardando adimque le per- $one, trouamo prima una gran moltitudine di nobili, & di plebei che ad un tempo ui uanno, in$ie- me $tanno, & for$e ad un tempo $i partono. però $i ricercano molte entrate, molte $alite, & mol te u$cite. oltra di que$to perche il tempo, che $i sta a uedere, è lungo, è nece$$ario, che ci $ia la commodità del $edere, & che in un luogo $eggano inobili, in altro i plebei. i nobili haueranno i loro $eggi da ba$$o, accioche il fetore, che $ale con lo aere cau$ato dalla moltitudine, non gli of- fenda. La plebe $ederà in alto, & tutti $aranno in modo collocati, che potranno uedere, & udi- re commodamente. le per$one, che recitano deono hauere i luoghi doue $i ue$tino, & s'apparec chiano per recitare, & i luoghi doue hanno da $tare per recitare; però ne i Theatri $arà nece$$a- rio fare $imili partimenti. Riguardando poi a i giuochi uenimo in con$ideratione di tutta la for- ma, imperoche ne i Theatri $i recitano poemi, & $i fanno Mu$iche, però è nece$$ario di dare tal forma al Theatro, che ognuno po$$a udire chiaramente i $uoni, & le fauole. alche fare è utile $a pere il mouimento della uoce, come $ale, come è ritardata, come è la$ciata libera, che po$$a per- uenire alle orecchie de gli a$coltanti egualmente: & di qui è nata la con$ideratione dell'armonia, della quale $i dirà al $uo luogo. Da que$ta con$ideratione condotto Vitr. con $omma diligenza ha e$$eguito la di$tributione del Theatro cominciando dalle fondamenta, & peruenendo fin'alla ci- ma. Elegga$i adunque prima il luogo $ano, & faccia$i il Theatro nella città, & il Circo di fuori. eletto il luogo $ano uolto dal feruor del Sole, & da i uenti nociui per la ragione detta da Vitr. bi- $ogna fare buone fondamenta. & però dice Vitr.</I> <p>Piu ageuole $arà fondare ne i monti; ma $e in piano, o in luogo palu$tre per nece$sità $i faranno le fondamenta, bi$ognerà, che quello, che $i fa $otterra, & i ra$$odamenti, & i battuti $i facciano co$i, come di $opra nel terzo libro, s'è detto delle fondationi de i Tēpij. <p><I>Ben ha detto in luogo palu$tre per nece$$ità, perche non ci ha con$igliati di$opra, che in luoghi mal $ani dobbiamo fabricare i Theatri, ma la nece$$ità non ha legge. & perche non puo e$$ere in luogo palu$tre, & $ano? di quella maniera, che egli ha detto e$$er $ane le paludi d'Altino, & d'Aquileia, come $ono hoggi quelle di Viuetia, doue con mirabil arte $i fonda nelle paludi ogni grande edificio?</I> <p>Sopra le fondamenta $i deono fare da terra i gradi di pietre, o di marmi. <p>{<I>Da terra</I>} <I>cioè $ubito $opra le fondamenta.</I> {<I>i Gradi.</I>} <I>Ecco che la prima con$ideratione dopo la $anità del luogo, è di accommodar le per$one. Far $i deono adunque le graduationi $ubito $opra terra, di pietre, o di marmi, & que$ta pompa di fabricare era molto lontana dalla roza an- tichità, come dice Ouidio.</I> <p><I>Tu prima i giuochi o Romolo face$ti Quando per aiutar i tuo donzelli, De i Sabini le Vergini prende$ti. Allhor non eran drizzati i penelli, Per $o$tener le uele, nè toglie$ti Per far Theatro da que$ti, & da quelli Monti li marmi, nè fu$ti $i uano, Che dipigne$ti i pulpiti col grano.</I> <p><I>Sedean $opra i ce$pugli le brigate, Semplicemente era la $cena ordita.</I> <p><I>Ne i folti bo$chi con le frondi ornate, L'hir$ute chiome della gente unita</I> <p><I>Dall'ardore del $ol eran guardate.</I> <p><I>Soleuano raunar$i ne i dì $olenni per le uille i contadini, & fare diuer$i $acrificij, & giu ochi ru$ticali; Et que$ta u$anza piacque tanto a gli Athenie$i, che furono i primi, che la introduce$- $ero nella città. Et chiamarono Theatro quel luogo, doue $i faceuano que giuochi. I Romani da poi dilettando$i di $imili u$anze, uolleno anche e$$i i Theatri nella città, ma non gli fecero da pri- ma $operbi, & alti, & di pietre, ma di legno, & con qualche occa$ione, $pe$ero poi molto, &</I> <pb n="225"> <I>tutta uia gli faceuano di legname, & a tempo, come $i legge che M. Scauro Edile per un $olo me $efece un Theatro di legno capace di ottantamila per$one; che haueua la $cena alt a in tre ordini, con trecento & $e$$anta colonne di marmo, & quelle del primo ordine inferiore erano alte trent'otto piedi. La parte di $otto della $cena era di marmo, la di mezo di uetro, la di $opra dorata, & tra le colonne per adornamento ci erano da tre mila figure di metallo. Que$to Theatro fu il piu grande, che gia mai $ia $tato fabricato. per il che non potendo Curione, che per le e$$equie del padre ne uolle far uno, aggiugnere a quella grandezza, ricor$e per aikto alla indu$tria, do- ue fece due Theatri amendue $opra perni in modo bilicati, & $o$pe$i, che $i poteuano facilmente girare. Sotto quelli Theatri erano le ca$e, & i coperti doue $tauano quelli, che con argane, & ruotoli uolgeuano quelle gran machine de i Theatri. Fu co$a marauiglio$a (come dice Plinio) & quel populo, che era uincitor del mondo, applaudeua in un tanto $uo pericolo: perche una tra ue di quella machina, che $i fu$$e rotta, tutta la fabrica poteua ruinare, & rinouellare la $trage di Canne. Que$ti Theatri uoltauano le curuature una in contra l'altra, perche le uoci de reci- tanti non $i confonde$$ero in$ieme; poi $i congiugneuano in$ieme con le corna, & raggirati con le genti $opra faceuano uno amfitheatro, dapoi il mezo giorno per li giuochi de i gladiatori. Con$iderando io, che Plinio uuole, che cia$cuno di quelli Theatri $i moue$$e $opra un perno, & che di due Theatri $i faceua uno amfitheatro, & uedendo non meno audacia, che ingegno in tanta fattura: communicando le difficultà, che io haueua con me$$er France$co Marcolini inge- nio$o inue$tigatore di belle machine, hebbi di lui con mirabile $olertia la inuentione di due punti, ne i quali $i poteuano porre i perni, & fare, che i Theatri nel uoltare non $i tocca$$ero l'uno, & l'altro. que$ti punti per dirla breuemente erano gli e$tremi del diametro dell'orche$tra. Vero è, che in piu luoghi $i doueuano ponere de i ruotoli di bronzo di buona gro$$ezzà, accioche i Thea- tri fu$$ero da quelli portati, & $o$tentati, Il Cardano nel libro della $ottilità pone un'altro modo di girare quelli Theatri, al quale io rimetto i lettori. Venne poi uoglia a Pompeio di farne uno, che haue$$e a dur are piu lungamente, & però lo fece di pietra, & lo ornò magnificamente, et fu mol- to celebre. Oltra il quale ne fu uno in Leone di Marcello figliuolo di Ottauia $orella di Augu$to, capace di ottantamila per$one. Et un'altro che Cornelio Balbo fece pure arichie$ta di Augu$to, che era di$idero$o di uedere la città molto adornata di fabriche, & edificij, come dice Vitr. nella epi$tola: ma tornamo a Vitr.</I> <p>Sopra le fondamenta $i deono leuar da terra i gradi di pietra, o di marmi. Le cinte $e- condo l'altezza del Theatro per la rata parte, nè piu alte di quello, che $arà la larghezza della cinta per doue $i ua a torno. Perche $e $aranno piu alte $cacciaranno la uoce alla parte di $opra, nè la$ciaranno, che le parole $iano pre$e intieramente, & ter- minate conil loro $ignificato da quelli, che $ederanno ne i $eggi, che $ono $opra le cin- te. Et in $omma co$i è nece$$ario, che ci gouernamo, che tirando una linea dal piu ba$$o, al piu alto grado, tutte le e$tremità de i gradi, & tutti gli anguli $iano toccati da quella, & co$i la uoce non $arà impedita. <p><I>Deue$i auuertire in que$to luogo molto bene quello, che dice Vitr. che parla della graduatione, doue $tanno a $e dere gli $pettatori. & $e bene io ho detto gradi, intendo però quello, che intende & uuole Vitr. per quel nome che egli u$a, di gradatione, cioè tutta l'opera, & fabrica della $a- lita; & dico, che le precintioni, che io ho detto cinte, altro non $ono, che diui$ioni d'intorno i gradi, per lo piano delle quali $i caminaua a torno. & uuole Vitr. che $iano tanto alte, quanto è la larghezza del piano per doue $i camina. que$ti piani $ono detti da Vitr. itinera. & rende la ragione, perche que$te precintioni deono e$$ere co$i alte.</I> <p><I>Se la cinta $arà piu alta, che il $uo piano largo, certo è che la uoce batterà in quella, perche non potrà terminare per dritta linea alla parte di $opra, e$$endo ribattuta, & rotta dall'altezza della cinta. & però Vitr. ci da un rimedio, il quale è, che $i tiri una linea, cioè o corda, o $aco- ma, o filo di ferro, che dal ba$$o cominci, & fin alla cima tocchitutti gli anguli de i gradi. per-</I> <foot><I>FF</I></foot> <pb n="226"> <I>che $i come la corda non $arà impedita da uno grado piu alto dell'altro, co$i anche non $arà impedita la uoce ma $alirà egualmente dal ba$$o fin alla cima, & $arà inte$a col $uo- no, anche la $ignificatione delle parole. Vitruuio non ci dà regola qui dell'altezza de i Theatri $econdo la rata parte: però douemo auuertire, che i Theatri $ono $tati fatti ranto al ti da alcuni, quanto era il piano di mezo, perche uiddero, che la uoce $i perdeua ne i Theatri piu ba$$i, & piu duramente $i udiua ne i piu alti. Ma que$to $i potrà e$pedire, dal luogo, dal di$e- gno, & dalle regole, che $i daranno. Ecci un'altra regola, che riguarda alle per$one, che ui uanno, però dice.</I> <p>Bi$ogna di$ponere molti, & $patio$i aditi, & fargli in modo, che quelli di $opra non s'incō trino con quelli di $otto, ma da ogni parte drizzati, & continui $enza pieghe, o riuolgimen ti, accioche le per$one licentiate da gli $pettacoli, non $iano calcate, & oppre$$e, ma po$- $ino u$cire da ogni parte $enza impedimento. <p><I>Quella ragione, che è dell'u$cire, è anche dello entrare. a$cendeua il populo per gradi coperti, & riu$ciua $opra i piani delle cinte gia dette. erano di qua, & di la le $cale, altre commode, & aperte, altre piu dritte, & coperte, per quelle a$cendeuano i piu ripo$ati, è maturi, per que- $te i piu curio$i, & pre$ti in modo, che era proui$to alla età, & allo appetito d'ognuno.</I> <p>Egli $i deue diligentemente auuertire, che il luogo non $ia $ordo, ma che la uoce po$- $a liberamente chiara, & i$pedita uagare, & que$to $i potra fare, $e egli $i eleggerà luogo, doue non $ia impedita la ri$onanza. La uoce è $pirito, che corre, & perco$$a dello aere $en$ibile all'udito. Que$ta $i muoue con infiniti giramenti, non altrimenti, che $e nel- l'acqua ripo$ata gettando$i una pietra na$ce$$ero innumerabili cerchi dell'onda, cre$cen- do a poco a poco dal centro, & allargando$i, quanto piu pote$$ero, $e non fu$$ero interrot ti, dalla $trettezza del luo go, o da qualche offe$a, che non permette$$e que giri dell'onde terminare fin doue $i pote$$ero $tendere. <p><I>La uoce è $uono cau$ato dalla perco$$a dello aere, che diuer$amente da natur ali $trumenti del- l'huomo è lo $pirito fuori mandato. Il mouimento dello aere, perco$$o dallo $pirito, è circolare, come quello dell'acqua, doue $ia gettata una pietra, ma $i troua differente in que$to, che i giri fatti nell'acqua, po$$ono e$$er nomin ati piu pre$to circoli nel piano dell'acqua: & quelli dello ae- re, perche per ogni uer$o $i girano po$$ono e$$er chiamati sfere: conuengono però con quelli dell'ac qua, perche $e & que$ti, & quelli non $ono impediti, il $econdo na$ce dal primo, il terzo dal $e- condo, il quarto dal terzo fin che tanto s'allargano, & a$$ottigliano, che peruengono al fine, & co$i uanno dal primo fino all'ultimo $empre cre$cendo, perche la parte perco$$a moue la pro$$i ma, & $i allarga, & que$to intende Vitr. quando dice.</I> <p>A dunque quando $ono rattenute da alcuno o$taculo le prime, che ridondano turbano le de$ignationi delle $eguenti. con la ifte$$a ragione & giramento $i moue la uoce; ma nell'acquai giri $i moueno in larghezza con piano eguale, & la uoce nello aere, & per lar- ghezza, & per altezza $i $pande, & a$cende a poco a poco. Come adunque nell'acqua con le de$ignationi delle onde, co$i nella uoce, quando non ui è o$tacolo, nè la prima di $turba la $econda, nè le $eguenti, ma tutte con la loro ri$onanza peruengono alle orec- chie, $i di quelli, che $ono a ba$$o, come di quelli, che $ono in alto: però gli antichi Ar- chitetti $eguitando i ue$tigi della natura, nel cercare la ragione della uoce, fecero i gradi de i Theatri in modo, che ordinatamente a$cende$$ero, & cercarono per la regulare Ma- thematica, & Mu$ica ragione, che ogni uoce, che u$ciua dalla $cena, perueni$$e chiara, & $oaue alle orecchie de gli $pettatori. <p><I>Se adunque la uoce per lo aere $i moue circolarmente, chi dubita, che la forma ritonda, & circolare non conuegna al Theatro? perche quando il Theatro fu$$e di forme angulari, non per- uenirebbe la uoce egualmente alle orecchie, & alcuni udirebbono bene come piu uicini, alcuni male come piu lontani. Ecco adunque come lo Architetto deue e$$ere & Mu$ico, & naturale.</I> <pb n="227"> <I>ma molto piu per quello, che $egue, come $i uedrà qui $otto. Dice adunque Vitruuio che gli antichi Architetti hanno u$ato la regolata ragione de i Mathematici, intendendo per canonica, & regolata la ragione de i numeri, della quale i Mu$ici e$perti $i $ogliono $eruire: & comprende la $peculatione, & la prat ca, dicendo la regulare Mathematica, & Mu$ica ragio- ne. Et perche il luogo $ia piu ri$uonante, oltra la circolar figura de i Theatri, oltra il giu$to $a- limento de i gradi toccati tutti da un'i$te$$a linea ne gli anguli loro, fecero $opra gli ultimi, & $o premi gradi di $opra un portico a torno il Theatro con ampie aperture dauanti, ma chiu$o di die- tro, accioche $ottentrando la uoce in quelle ampiezze, ri$uona$$e $otto que uolti, come ri$uona nelle cauerne, & ne gli in$trumenti, che hanno gran corpo. Di que$ti portichi ne dirà Vitr. al luogo $uo, fin tanto auuertiremo a quello, che egli dice.</I> <p>Perche $i come gli organi nelle lame d'ottone, o di corno $i fanno perfetti con la die$i alla chiarezza de i $uoni delle corde: co$i le ragioni de i Theatri $ono $tate con ragione Armonica ordinate da gli antichi allo accre$cimento della uoce. <I>Cioè, $i come alla ragione delle corde, & del loro $uono s'accordano gli in$trumenti di canne, & gli organi, co$i con Ar- monica ragione allo augumento della uoce da gli antichi $ono $tate ordinate le ragioni de i Theatri come che uoglia dire, che la die$i, che è la minima uoce, & principio di accordar gli instrumen ti, habbia dato la regola di accordare gli in$trumenti da canne. Entra adunque Vitr. con que- $to propo$ito a ragionare dell'Armonia. Et dice, che co$a è, & ne fa le figure, & de$crittioni interpretando la mente di Ari$toxeno, del quale non douemo noi però troppo a$$icurarci: impero- che egli attribuiua il tutto alle orecchie; niente concedeua alla ragione; diuideua il tuono in due parti eguali, co$a non approuata da i buoni Armonici, & finalmente è licentio$o, & dubbio$o au- tore. dice adunque Vitr.</I> <HEAD><I>Dell' Armonia. Cap. IIII.</I></HEAD> <p>L'Armonia è mu$ica littetatura, o$cura, & difficile, & $pecialmente a quelli, che non hanno cono$cenza di lettere Greche. la quale $e noi uolemo e$plica- re, egli è anche nece$$ario di u$are le parole Greche, perche alcuna co$a di quelle non ha i nomi latini. Et però quanto io potrò, aperti$simamente in- terpreterò da gli $critti di Ari$toxeno, & $otto$criuerò la $ua de$crittione, & di$egnerò i termini de i tuoni, accioche chi con piu diligenza ui attenderà, po$$a piu facilmente intendere. <p><I>Alla Mu$ica appartiene, & con$iderare, & operare d'intorno a que numeri, che ad altri $i riferi$ceno, aggiuntoui il $uono. per il che diuideremo la Mu$ica principalmente in due parti, delle quali una $arà tutta po$ta nel giuditio della ragione, & di quella poco ne dice Ari$toxeno, come di quella, che con$ider a la natura, la differenza, & la proprietà d'ogni proportione, & d'ogni con$onanza, & pone di$tintioni tra quelle co$e, le quali per la loro $ottigliezza non po$$o no e$$ere giudicate dal $en$o. L'altra con$umando$i nelle operationi, & praticando in diuer$e maniere $i con la uoce, come con gli instrumenti, & componimenti diletterà il $en$o de mortali affaticato, & porgerà gentile ammae$tramento della uita (come $i uede nella poe$ia) la quale è una parte di que$ta Mu$ica delle principali. Mu$ica adunque è ragione, & e$$ercitio della na- tura Armonica. Armonica natura, è quella, che $i puo con $uoni adattare in$ieme. La ragio- ne non opera, cioènon di$corre $enza l'occa$ione del $en$o, perche non fa giudicio di co$e non pri- ma cono$ciute. Egli è adunque nece$$ario di congiugnere una parte, & l'altra in modo, che il $en$o prima $i adoperi, & poi $egua la ragione. Onde ben dice Boetio, che bella co$a è di cono- $cere con modo, & uia, che co$a è, & che co$a apporta quello, che è commune a tutti i uiuenti. Di que$te co$e il uulgo non ha dubitatione, i dotti $i torceno, i cono$centi$i dilettano. Et però la</I> <foot><I>FF</I> 2</foot> <pb n="228"> <I>Mu$ica, che diletta la mente, & le orecchie, è congiunta con la moralità, & con la $peculatio ne. Accioche adunque il $uono accompagnato dolcemente peruenga alle orecchie, & che que giri, che $a la uoce nello aere, non $iano impediti, l'uno dall'altro con $proportionati mouimenti, ma $oauemente s'accompagnino, & s'aiutino in$ieme, & accioche la mente $i riuolga alla cagio- ne della dolcezza della $oauità de i $uoni, bi$ogna prima con$iderare il principio, da cui la uoce prende attitudine di potere e$$ere regolata, & di cadere $otto l'Armonia, & con quale moui- mento ella $i moua, & come peruenga alla perfetta compo$itione. alche fare era nece$$ario di di re prima, che co$a fu$$e uoce, & come nello aere $i moueua. però Vitr. ce lo ha dimo$trato di $o- pra, & il re$tante è qui $otto.</I> <p>La uoce quando con mutationi $i piega, alcuna fiata $i fa graue, alcuna $iata $i rende acuta, & a due modi $i moue, de i quali uno ha gli effetti continuati, l'altro di$tinti. La continuata non $i ferma ne in termini, nè in alcun luogo, ma $uol fare le $ue terminatio. ni non apparenti, & gli interualli di mezo manife$ti, come quando parlando dicemo. Sol. Fior. Mar. Ben. perche co$i nè doue comincia, nè doue termina $i cono$ce, ma ne di acuta s'è fatta graue, nè di graue acuta appare alle orecchie. per lo contrario adiuiene quando la uoce $i moue con di$tanza, perche quando la uoce nel mutar$i $i piega uiene a fermar$i nella terminatione d'alcun $uono, da poi $i muta in un'altro, & facendo que$to $pe$$e uolte di qua, & di la, appare incon$tante a i $en$i, come adiuiene nelle canzoni, nelle quali piegando le uoci facemo uatiare il canto: & però quando la uoce con interual- li è riuolta, egli appare in manife$te terminationi di $uoni, doue comincia, & doue fini$ce. <p><I>Que$ta diui$ione è fatta (come dice Ari$toxeno) per $eparar la uoce, che è atta ad entrare nell' Armonia, da quella, che non è atta. La uoce adunque $i moue in due modi: prima che pare all'orecchia (come è) continuata, nè che mai $i fermi in alcun modo di terminatione. que$ta dal lo effetto $uo $i chiama ragioneuole, perche con quello mouimento di uoce $iamo $oliti di parlare, & ragionare non alterando la uoce. Dapoi $i moue la uoce in modo, che pare di$tinta, & che $i parta da uno grado d'altezza, & peruenga ad un'altro, & che $i muti in diuer$e terminationi di $uoni; onde da que$to effetto $i chiama di$tinta; ma dall'u$o melodica, cioè u$ata da chi canta, o recita uer$i. perche quando noi cantamo, o recitamo uer$i, alzamo, & abba$$amo di$tinta- mente la uoce fermandola, & ripigliandola $i, che il $en$o la cono$ce di$tinta. Benche Boetio uo glia, che nello recitar uer$i $i u$i una uoce mezana, & mista tra la continua, & la di$tinta. La uoce continua, & d'uno i$te$$o tenore non è $ottoposta alla con$ideratione della Mu$ica, perche doue non è graue, & acuto non è con$onanza; ma $i bene la di$tinta. nè questa anchora $arà at ta alle con$onanze, prima, che peruenga ad un certo luogo, $i come adiuiene a molti corpi, i qua- li non $ono atti a cadere $otto la ragione del pe$o, $e non hanno una certa quantità, & grandezza, nè po$$ono uenire $otto la pro$pettiua, $e non hanno quel tanto, che è fine del non poter e$$er uedu li, & principio dello e$$er ueduti: perche la natura non comporta, che le minime differenze $ia- no a i $en$i de gli huomini $ottopo$te. Il $uono adunque di$tinto, & ridotto ad una certa, & $en- $ibile quantità, è principio dell'Armonia, come la unità è principio del numero; il punto della li nea; lo in$tante del tempo. La natura ha circon$critto la uoce di cia$cuno in modo, che il pri- mo luogo di quella, è il piu ba$$o, & il piu graue, che po$$a e$$er in alcuno. ma perche facendo $empre un $uono, & in quello fermando$i la uoce, non ne riu$cirebbe alcuna Armonia: però deono le uoci mutar$i, & $alire, & piegar$i in diuer$e terminationi, accioche la piu ba$$a con la piu al- ta con proportione ri$ponda. La uia adunque della $alita, anzi la $alita $i chiama $patio, & di- $tintione, & interuallo. ma la comparatione ri$petto a i termini, è diuer$a, però $tando lo $pa- tio, quando la uoce dal ba$$o a$cende allo alto, dicemu, che ella $i fa piu intenta, piu acuta, o piu alta: ma quando dallo alto $i parte, & uiene al ba$$o, dicemo, che la $i rimette, & s'abba$- a, & che diu enta graue. Et $i come la natura ha dato il principio della uoce alla parte piu ba$-</I> <pb n="229"> <I>$a, di cui la Mu$ica $ene $erue, co$i $alendo qua$i per gradi $i troua il maggior grado, al quale po$$a la uoce natur almente, & commodamente $alire: non in modo, che quello, che la natura ha dato per piu alto $i prenda dall'arte, ma in modo, che $otto quello $i truoui quel $uono della uoce, che $ia il piu alto, & ri$ponder po$$a al primo in per$etti$$ima con$onanza, di maniera, che $e piu oltre $i pa$$a$$e con la uoce $alendo, o $i face$$e $trepito, ouero ad altra con$onanza non $i perueni$$e. Ma perche non $i peruiene dal primo all'ultimo, cioè, dal piu ba$$o al piu alto $uono $enza mezi: però $alendo la uoce dal primo, & piu ba$$o luogo al $ommo, & piu alto, che regolar $i po$$a, è nece$$ario, che ella tocchi diuer$i gradi, & quelli $iano con proportionati $patij di$tinti. l'ordi- nanza della $alita delle uoci dalla piu ba$$a alla piu alta è detta da Greci $i$tema, & da nostri Sca la: & perche praticandola, la riducono $opra la mano, però la chiamano Mano, i Greci uoglio- no dire, ordinata compo$itione, i no$tri commoda & ben compo$ta $alita. Quella $alita $i dà ad intendere con linee, & interualli, che chiamamo riga, è $patio. La $cala adunque è una com- po$itione di righe, & di $patij dritte & egualmente prodotti, nella quale $i uedeno $critte le note d'ogni canto. L'u$o delle rige, & de gli $patij è, accioche $i cono$ca di$tintamente la di$tanza della $alita & della di$ce$a delle note, le quali non $ono altro, che $egni di mandar fuori la uoce, & del tempo, che ella $i deue tenere. Hauemo adunque fin hora, come deue e$$er quella uoce, che è atta alla melodia: Et Vitr. la$ciando a drieto molte co$e, che dice Ari$toxeno fra mezo, uiene alla diui$ione delle melodie. & dice.</I> <p>Le maniere de i canti $ono tre, l'una e detta da Greci armonia, l'a ltra chroma. la terza diatonon. Il canto armonico è concetto dall'arte, & per quella cagione il $uo cantare ri tiene grauità, & autorità non poca. Ma il chroma ornato di $ottile $olertia, & frequenza de moduli porge piu $oaue dilettatione. Ma il Diatono per e$$er naturale è piu facile per la di$tanza de gli interualli. <p><I>Se io haue$$i a trattare della Mu$ica, io la ordinarei altramente; Ma io intendo di $eguitare il modo propo$to da Vitr. Maniera, o Genere è un certo compartimento de gli $patij nelle $cale, & nelle ordinanze, che rappre$enta diuer$e Idee d'Armonia: & di que$ti diremo partitamente qui $otto, facendo chiaro, quello che pare a molti o$curo, & di$$icile. Tre$ono adunqae i gene ri della melodia. Chromatico, Diatonico, Armonico. Que$ti prendeno i nomi loro dalla uici- nanza, ouero dalla lontananza de gli $patij, nelle $cale, & ordinanze. Armonico è quello, che nella $ua ordinanza, abonda di pro$$imi, & piccioli$$imi interualli, & breui$$ime $alite della uoce, & è co$i chiamato, qua$i adattato, & con$ertato. Diatonico è co$i detto, perche abonda di $patij distanti per tuoni, qua$i andante per tuoni. & in quello la uoce mol- to $i stende. Chromatico è quello, che piu abonda di $emituoni nel $uo compartimento. Chroma $ignifica colore: & perche que$to genere come colore $i muta dalla prima in- tentione, però è co$i nominato. D<*> que$ti tre generi piu uicino alla natura è il Diato- nico, perche egli $uccede qua$i da $e ad ognuno, che canta $enza ammae$tramento. Piu artificio$o è il chromatico, come quello, che $i e$$ercita $olamente da gli ammae- $trati: Et però la maggior parte de i Mu$ici s'affatticaua in que$to genere: per- che $empre uoleuano raddolcire, & ammollire gli animi. Lo Armonico è piu effi— cace, & è $olo de gli eccellenti nella Mu$ica, & è pre$tanti$$imo tra ogni com ponimento. & molti per la debolezza loro non lo ammetteno, perche egli non $i puo co$i facilmente mettere in u$o. Seuero, & fermo, & con$tante è il Diatonico, & dimo$tra co$tumi, & habiti uirili. Molle, & lamenteuole è il Chromati— co. Quando adunque $ia, che noi uogliamo fare un'ordinanza, ouero una $cala, che tanto è, quanto accordare uno $trumento, nece$$ario è, che $appiamo $econdo quale de i tre generi lo uogliamo compartire; perche a materie dolci, & lagrimeuoli, ci uuole il Chromatico: & alle grandi, & heroiche il Diatonico, come altre ad altri generi, o ad altre me$colanze di quelli; perche ognuno de i predetti generi a piu modi$peciali $i puo partire; &</I> <pb n="230"> <I>quelli particolari compartimenti di cia$cun genere gli danno un certo a$petto, & forma diuer$a, qua$i a gui$a di pittori colorandogli, accioche $i facciano udire $econdo le Idee, che $i uuole, & non $i faccia a ca$o la imit atione delle co$e, che $ono grandi, con$tanti, molli, mutabili, tempera- te, e mediocri, come comporta la loro natura; nel che con$i$te ogni bello effetto dell' Armonia. però $i come è co$a degna di con$ideratione, co$i a giorni no$tri è poco con$iderata; & molti pen- $ano col genere Diatonico di $atisfare ad ogni qualità di co$e, & $tanno o$tinati, nè uogliono udi- re alcuna ragione, o perche pare loro di perdere quanto hanno imparato, o che impo$$ibil $ia o$- $eruar que$te regole, o perche ueramente $ono ignoranti, & $prezzatori di quello, che non $an- no. Io uorrei, che qui fu$$e luogo di e$ponere le idee, & i colori conuenienti ad ogni qualità di co- $e, $econdo i loro generi, perche con uiua i$perienza delle orecchie confermata da inuincibili ra- gioni, gli farei confe$$ar lo error loro; ma troppo tempo, & maggior occa$ione $i richiede. ben affermo $e pen$ano colgenere Diatonico $olo rappre$entare tutti gli affetti humani, che s'ingan nano grandemente. perche come dice Vitru.</I> <p>In que$te tre maniere di$simiglianti $ono le di$po$itioni de i Tetracordi, perche i tera- cordi del genere Armonico hanno due tuoni, & due die$i. Die$i è la quarta parte del tuo- no, & co$i in uno $emituono $ono due die$i. Nel chromatico $ono po$ti in ordine due mezi tuoni, ma il terzo $pacio è di tre $emituoni. Il Diatonico ua per due continuati tuo ni, & con lo terzo $pacio d'un $emituono compie la grandezza del $uo Tetracordo. & a que$to modo i Tetracordi, ne i tre generi agguagliati $ono, & pareggiati di due tuoni, & d'un $emituono. <fig> <p><I>In tutti i Tetracordi d'ogni genere $ono quattro termini, o $uoni, o gradi, che uoglian dire. tut- ti $altano ad una $omma in tre $alti, ma diuer$amente. perche l'Armonico $ale dalla metà d'un $emituono, che die$i $i chiama, & que$to è il primo pa$$o, o interuallo. il $econdo pa$$o è di $a- lita ad un'altra metà di $emituono, & d'indi allo $pacio d'un ditono. Il chromatico ha lo primo $patio d'un $emituono, & $imilmente il $econdo, ma $ale poi al Trihemituono. Finalmente il dia- tonico, ha lo primo $pacio d'un tuono, lo $econdo d'un tuono, il terzo di mezo tuono. $i che in ogni genere il Tetracordo è compo$to di due tuoni, & un $emituono. & que$to è che dice Vitru. che i Tetracordi $ono ne i tre generi agguagliati, & pareggiati di due tuoni, & d'un $e- mituono. & perche s'intenda meglio quanto dice Vitru. dirò che co$a è Tetracordo, che co$a è $pacio, & interuallo, & dichiarirò gli altri termini po$ti da lui, quanto io pen$erò, che $ia per $atisfare al pre$ente bi$ogno, con quella breuità, & chiarezza, che $i puo in $imile materia diffi- cile, a$co$a, & alla lingua no$tra $traniera. Delle $cale, & ordinanze perfetta è quella, che con igradi della piu ba$$a, & della piu alta uoce contiene quella con$onanza, che le abbraccia tut-</I> <pb n="231"> <I>te, & que$to non $i puo $are $e la ordinanza della $cala non tiene quindicigradi di uoce, & quat- tordici $pacij. Grado io intendo il luogo della uoce o alta, o ba$$a, che $ia: ma perche da prima l'huomo nel mondo non ha fatto perfette le co$e delle arti, ma le $cienze, & le dottrine a poco a poco con l'aggiunta de i $ucce$$ori $ono cre$ciute; però non fu ritrouato da principio tutta la $cala, & ordinanza delle uoci, ma bene dapoi $i $ono formati tutti i gradi. la onde nel formare gli instrumenti mu$icali $i u$auano le corde & i nerui de gli animali, i quali rendeuano i $uoni pro portionati, & anche $i e$$ercitaua $enza alcuna Mu$ica la ragione $opra una $ola corda, parten dola numero$amente in modo, che toccando quella uota, & poi $opra uno $pacio determinato, ren- deua quella con$onanza, che $i cercaua. Questaforma $i chiamaua monocordo, di modo, che u'era una corda $ola. Ma gli antichi uolendo e$$ercitare la Mu$ica, faceuano gli in$trumenti di piu corde, dal numero delle quali dauano il nome a gli in$trumenti. Però chiamauano tetracor- do lo instrumento di quattro corde, pentacordo quello di cinque, & co$i nelresto fino allo instru mento pentecacordo, cioè di quindici corde corri$pondenti a quindici gradi della uoce, che faceua no quattordici $pacij, & interualli. $pacio, & interuallo non è altro (come ho detto) che quan tità della uoce tra due $uoni. & qui è ripre$o Ari$toxeno, che pone la grauità, & l'acutezza del la uoce in qualità, & non in quantità. Dalle dette co$e $i ha che alcune ordinanze $aranno mag- giori, alcune minori. Maggiori $ono quelle, che hanno piu gradi, & minori quelle, che ne hanno meno. La doue grandi$$ima $arà quella appre$$o gli antichi, che hauerà quindici gradi. Dico appre$$o gli antichi, perche dapoi ne $ono stati aggiunti de gli altri, perche niente ci uieta, che con ragione non andiamo piu oltre, & $pecialmente nel fare gli instrumenti mu$icali, che po$$ono $a- lire piu alto della uoce humana, laquale temperatamente tra quelli quindici $i contiene. & $e piu oltra pa$$a$$e potrebbe e$$ere strepito$a, & inetta all'ordinanza: ilche non adiuiene in molti $tru- menti. Noi hauemo dichiarito, che co$a è $pacio, & che co$a è Tetracordo. ci re$tano alcuni al tri nomi, per fare la intelligenza di Vitr. piu piana, & $ono que$ti. Die$i, Tuono, $emituono, tri- hemituono, Ditono. che $ono i nomi de gli interualli. Il tuono adunque è il principio della con$o- nanza, cioè il primo termine, & fondamento della con$onanza, nato da proportione $e$quiotta- ua. Con$onanza è uno me$colamento di $uoni graui, & acuti proportionati, che con diletto per- uiene alle orecchie. io ho detto nel terzo libro, che co$a è proportione $e$quiottaua cioè quando il piu contiene il meno una fiata, & la $ua ottaua parte; come noue contiene otto. chi uuole adun- que proportionare i $uoni, è nece$$ario proportionare gli $pacij, & chi uuole proportionare gli $pa- cij, bi$ogna che u$i i numeri, & le loro ragioni, & quella proportione, che è tra $pacio è $pacio, $arà anche da $uono a $uono: però doue lo $pacio $arà compartito in $e$quiottaua, ouero in altra proportione di numeri, iui il $uono hauerà la i$te$$a comparatione. Volendo adunque fare che una corda ri$ponda un tuono, partirai la $ua lunghezza in noue parti, & ponerai lo $cabello $otto le otto la$ciandoue una fuori, & co$i hauendo toccato prima la corda uota, intiera, & $enza $ca bello, poi toccando quello $pacio dallo $cabello in poi, che è lungo otto parti, trouerai che ella ti renderà un tuono. $ia la corda tirata $opra un piano, a b, & $ia diui$o $otto di quella il pia- no $econdo la lunghezza della corda in noue parti, dico che la parte. c. b. che la$cia fuori una delle noue parti, & ne abbraccia otto, $onerà un tuono, con tutta la corda. Ma prima del tuo- no ponemo l'uni$ono, che è lo i$te$$o, & perpetuo tenore della uoce $enza a$ce$a, & di$ce$a, come hanno tutte le note, che $ono $opra la i$te$$a riga, o tra lo i$te$$o $pacio. la doue l'uni$ono non è $pacio, ma fondamento de gli $pacij: come ut ut. re re. $opra una i$te$$a riga, ouero tra uno i$te$$o $pacio. Ma il tuono è notato con la di$tanza, che è da una riga al $eguente $pacio, o per lo con- trario, come dall'ut, al re, a$cendendo, ouero dal re, all'ut, de$cendendo: & qui anche è ripre$o Ari$toxeno, ilquale non u$a numeri nel notare le uoci per raccorre le proportioni, ma piglia la loro differenza nel mezo, di modo, che egli pone la $peculatione non nelle uoci, ma in quello, in che elle $ono differenti, co$a non bene con$iderata, credendo$i egli $apere la differenza di quelle uoci, dellequali egli nè mi$ura, nè grandezza ritruoua, dando il tutto al giudicio delle orecchie.</I> <pb n="232"> <I>Diuide egli il tuono in due parti eguali, & que$te chiama $emituoni, & non uede, che niuna pro- portione $opr apartiente, come è quella, in che con$i$te il tuono, $i puo diuidere in due parti eguali. poi che adunque il tuono non $i puo egualmente diuidere, egli $i partirà in due parti di$eguali, una dellequali $i chiama $emituono minore, & die$i: l'altra $emituono maggiore, & Apotome. Il $emituono minore, è quella parte del tuono, per laquale, la proportione $e$quiterza, è mag gio- re di due tuoni, cioè di due $e$quiottaue. Ecco lo e$$empio. Partirai lo $pacio della lungbezza della corda, in quattro parti, & al fine della prima $ottoponi lo $cabello, la corda intiera, con le tre parti $uonera una $e$quiterza, perche co$i è diui$o lo $pacio, dalla cui proportione (come ho detto) deriua la proportione del $uono. $e adunque ponerai $opra la detta corda duè continua ti tuoni, partendola come s'è detto di $opra, dico che lo $pacio, che $arà dallo $cabello, doue è $egnato il $econdo tuono, allo $cabello, doue è $egnata la $e$quiterza, ti $uonerà il $emituono, che è $pacio come dalmi, al fa, & co$i hauerai quattro termini. ut. re. mi. fa. è tre $pacij. l'uno da ut. are. che è un tuono, l'altro da re, a mi, che è il $econdo tuono, & il terzo, che è da mi. a fa. che è un $emituono minore, o die$i, & que$to è il Tetracordo del genere diatonico, che chiude la con$onanza nata da proportione $e$quiterza, che i no$tri chiamano quarta, che $ale da ut. a fa. per due tuoni, & un $emituono minore. Ma il $emituono maggiore è lo re$tante del tuono, cioè quello, che è piu della $e$quiterza al terzo tuono. però ponerai $opra la corda tre continuati tuo- ni, la$ciando la $e$quiterza al $uo luogo, & hauerai dalla $e$quiterza al re$to del tuono il $emi- tuono maggiore. Que$to nome adunque di $emituono non importa mezo tuono a punto, $i come $emiuocale, non $i piglia per meza uocale a punto; ma perche è meno, & non arriua allo e$$er uocale, & far uoce da $e, come fanno le uocali. Et que$to detto hauemo nel quarto libro, par- lando delle $emimetope, & de gli hemitriglifi. Dico poi, che il tuono & $emituono, benche non fanno Armonia, & con$onanza, nientedimeno egli $i deue con$ider are l'uno, & l'altro, sì perche di$tingueno gli $pacij delle con$onanze, & mi$urano i mezi Mu$icali, sì perche le $ode con$onanze per l'uno, & l'altro $i legano in$ieme, & finalmente all'uno, & all'altro $i attribui$ce la forza di commouere gli affetti. I numeri d'un tuono $ono otto, & noue. di due ottantauno. $ettanta due, $e$$antaquattro. & $i fanno moltiplicando otto in $e, noue in $e, & otto in noue. I numeri di tre tuoni $ono,</I> 729. 648. 576. 512. <I>moltiplicando</I> 81. 72. 64. <I>per noue. &</I> 64. <I>per ot- to. & a que$to modo uanno i tuoni continuando con i numeri, ne i quali la proportione del mag- giore al minore è $empre $e$quiottaua. tuono adunque è come da ut, are, da riga a $pacio, Ditono come da ut. a mi. $alendo, & da mi ad ut. di$cendendo da riga al $econdo $pacio; pure che non ui $ia $emituono di mezo. que$io diletta alle orecchie, ma non è con$onanza; & $i chiama terza maggiore. Triemitonio come dare. a fa $alendo, & chiama$i anche $e$quituono, & è $pacio, che abbraccia un tuono, & un $emituono minore, non è con$onanza, perche le con$onanze, non $ono in proportione $oprapartiente. & il $e$quituono, (come $i dirà poi) è in tale proportione. Chia- ma$i da no$tri terza minore. & è lo $pacio da una riga all'altra, pur che tra mezo ui $ia un $emi- tuono. Il $emituono maggiore (come ho detto,) è lo auanzo di tre $e$quiottaue leuatane la $e$- quiterza, & perciò è detto Apotome da Greci. & è alieno dalgenere diatonico, perche non $i admette nel componere, non hauendo luogo tra le corde. perche non puo ri$pondere ad alcuna corda per fare alcuna con$onanza. Conuengono tutti i detti $pacij in que$to, che tutti $erueno alla Mu$ica. il tuono, & il $emituono $erueno per fondamenti alle legature de i Tetracordi. il Trie- mitonio, & il ditono, perche uanno ne i compartimenti de igeneri, & perche dilettano l'udiio. Dilettano molti $uoni, che non $ono con$onanze, come è la ter za maggiore, & la terza minore, & la $e$ta minore fatta dal $emituono con la diapente. cioè con l'aggiunta d'un $emituono alla $e$- quialtera, & $i fa quando $i pa$$a da cia$cuna linea allo terzo $pacio, che contiene due $emituoni minori, & tre tuoni, come da mi, a fa cantati per la $e$ta. euui anche il tuono col diapente, che pa$$a da cia$cuna linea, allo terzo $pacio, ma ui è $olo un $emituono, & quattro tuoni, come da ut, a la, cantati per la $e$ta. & $i chiama $e$ta maggiore. euui anche la $ettima minore, che ab-</I> <pb n="233"> <I><*>raccia due $emituoni minori, & quattro tuoni, come da ut a mi, da uno $pacio al quarto $pa- cio, ouero da una linea, alla quarta linea, ci $ono anche molti altri $pacij, piu pre$to collocati nel lo e$$ercitio, che nelle regole. come è la nona, la decima, la undecima, & la duodecima: ma di que$ti ne la$ciamo la cura ad altri. Delle con$onanze diremo poi.</I> <fig> <p><I>Hauendo noi gettato i buoni fondamenti, e$poneremo Vitr. Dice egli, che diuer$e $ono le di$po- tioni de i Tetracordi, & i compartimenti loro ne i tre generi, & la ragione è que$ta, perche $ono applicati à diuer$e intentioni, & idee $econdo, le co$e, che $ono o ba$$e, o grandi, o mediocri. Dichiara poila di$po$itione di cia$cuno, & dice, che la di$po$itione del Tetracordo, nel genere Armonico, che egli arm onia dimanda, contiene due die$i, & due tuoni, & s'intende a questo modo, che la $alita dalla parte graue et ba$$a all'acuta, & alta $i fa $alendo dalla metà d'un $e- mituono, che fa lo primo $pacio, all'altra metà, che fa lo $econdo, & da que$to $i $ale allo $pacio d'un Dituono; & co$i que$to Tetracordo rinchiudeua la con$onanza diate$$a ron, che noi chiamia mo quarta. La ordinatione adunque del Tetracordo Armonico, fondata la prima uoce dalla par te graue <*>a dalla proportione $e$quiquadrage$ima quinta, alla $e$quiuige$imaterza, & indi alla $e$quiquarta, & ritorna per gli i$te$$i gradi, abbracciando il primo Tetracordo, & que$to pro- cedere è $alendo dalla die$i, alla die$i, & d'indi al ditono ne gli $pacij $uoi. & quiui die$i è la me- tà del $emituono minore, che procede dal partire la differenza de gli e$tremi della $ua habitudine in modo, che la maggiore $ia alla parte piu alta, & <*>a minore alla piu graue. La die$i in Greco è detta anche Tetartemoria, & però Vitr. dice che la Die$i è la quarta parte del tuono, & che</I> <fig> <I>nel $emituono $ono due die$i. Ecco l'habitudine de gli estremi del $emituono minore, è tredici, perche il $emituono minore con$i$te nella proportione, che hanno questi numeri</I> 256. 243. <I>la differenza de i quali è tredeci. que$ta $i parte in due parti, una maggiore che è di $ette, l'altra minore, che è di $ei, la maggiore $i pone alla parte piu acuta, la minore alla piu graue. Vedi adunque quanto breui $ono gli $pa cij dell'armonica melodia, che a pena $i po$$ono regolare dalla ragione, non che e$- $er compre$i dal $en$o; & però egli non $i troua altro colore, o compartimento di que$to genere, che'il predetto; per le ragioni de i minimi interualli. Ma $i puo di- mandare, perche uogliamo, che die$i s'intenda per la metà del $emituono minore, & non per la metà del maggiore? io dico, che la con$onanza, che rende il Tetracordo, è la diate$$aron, cioe la quarta, che è compre$a da due tuoni, & da un $emituono minore. Il Tetracordo chromatico</I> <foot><I>GG</I></foot> <pb n="234"> <I>è compo$to di $pacij, che contengono il $em tuono minore, il maggiore, & un $e$quituono, o Tri- hemituono. que$to perche ha le distanze, & gli interualli maggiori, & piu accommodati del genere armonico, però $opporta di hauere due colori. Nel primo, che $i da al chromatico pe- rò ne ha due. Nel primo, che $i da al chromatico piu molle, s'a$cende dalla $e$quiuige$ima $et- tima, per la $e$quiquarta decima alla $e$quiquinta, & $i di$cende al contrario, & tutta uia gli e$lremi del Tetracordo rendeno la quarta, ne puo rendere altra con$onanza pa$$ando per que- $ti interualli, come $i puo uedere dalle regole, che noi bauemo dato nel terzo libro, trattando delle proportioni. Que$to tetracordo co$i compo$to, $i chiama mobile, imperoche è mutabile, lamenteuole, & affettuo$o. Nel $ccondo colore del detto genere chromatico, il partimento piu acuto è quello, che dalla $e$quiuente$ima una, pa$$a per la $e$quiundecima, alla $e$qui$esta, & con que$to colore, che $i chiama, $intono, $i rinchiude mede$<*>namente la con$onanza predet- ta; & $i chiama $intono, ri$petto al molle, percioche è meno mutabile del molle, & meno la- menteucle, & affettuo$o. & qui $i deue con$ider are, come è nece$$ario $econdo le intentioni con- $ertare le ordinanze, & le $cale, accioche egli $i riporti quel uanto della Mu$ica, che diede tan- to nome a gli antichi. $eguita il Tetracordo del genere diatonico; que$to perche ha gli $pacij mag giori, $i puo in piu modi colorare: cinque adunque $ono i $uoi colori. il Molle, il piu tirato, l'egua- le, il $intono, & il diatonico. Nel primo, che e piu molle, & rime$$o $i $ale dalla parte piu ba$ $a da una $e$qui$ettima, per una $e$qumona, ad una $e$quiuente$ima. & $i chiama, molle, è rime$- $o, perche tra i colori di que$to genere, rende un'habito, & tiene una Idea piu temperata de gli altri. Nel $econdo colore, che è piu tirato, ma non però anchora ben gagliardo, s'incomincia dalla $e$quiuige$ima $ettima, $i pa$$a per la $e$qui$ettima, nè puo far'altro, che $ia con$onante, che una $e$quiottaua, & $i chiama molle intento, perche tiene una uia di mezo tra'l molle preceden- te, & il $eguente, che è il terzo. Ilquale è quando la uoce hauendo gia il $uo primo luogo col piu ba$$o $uono determinato $ale al $econdo con proportione $e$quiundecima, & partendo s'inal- za una $e$quidecima, & ferma il $uono in una $e$quinona, nè puo fare altrimenti, s'egli deue ha- uere con$onanza. & chi non uede quanto $ia regolato il pa$$o, & la $alita di que$ta $cala, $alen- do per tre continuate proportioni? però regolato, o per dir meglio eguale diatonico $i chiamà. Il quarto colore di$egna, & colori$ce que$to genere cominciando da una $e$quidecima quinta, & nella di$tanza di mezo forma una $e$quiottaua, terminando in una $e$quinona. Que$ti è $icuro, & forte, & dinota habito ma$chio, & molto inten$o, & però $i chiama $intonon. Il quinto final- mente, perche abonda dituoni, $i chiama diatono, & è di due tuoni, cio di due $e$quiottaue, & d'una die$i: & que$to anche, è piu robu$to & gagliardo di tutti gli altri. & con que$te diui$ioni $i conchiude il colore d'ogni genere uariato $econdo la intentione de i compo$itori. alche con gran- de attentione bi$ogna auuertire, & in ogni colore la ordinanza del Tetracordo $erra la diate$$a- ron, cioè la quarta, con due tuoni, & una Die$i. & que$to è quello, che dice Vitru. che in tutti i tre generi i Tetracordi $ono pareggiati di d<*> tuoni, & un $emituono; & le figure di quanto s'è detto, con i loro numeri, $ono de$critte.</I> <p>Ma quando i Tetracordi $ono con i termini di cia$cun genere $eparatamente con$ide- rati, hanno di$simig lianti di$egnationi delle di$tanze. <p><I>Cioè la $omma de i Tetracordi è pareggiata: perche in ogni genere è compre$a la con$onanza diate$$aron nel Tetracordo, ma differentemente $i $ale in cia$cuna alla diate$$aron, come $i è det- to di $opra. conclude adunque dicendo.</I> <p>La natura adunque ha diui$o nella uoce le di$tanze de i tuoni, & de i $emituoni, & dei Tetracordi, & ha finito le terminationi di quelli con mi$ure, con la quantità de gli $pa- cij; & con modi certi di$tanti ha or dinato le qualità, le quali u$ando anche gli artefici de gli in$trumenti $econdo le co$e con$tituite dalla natura, apparecchiano le loro per$ettio- ni a' conuenienti con$erti di armonia. <p><I>L'arte o$$eruando la natura ha ritrouato le con$onanze: & gli artefici $econde quella fanno i</I> <pb n="235"> <fig> <I>loro in$trumenti. La natura ha dato il potere difare un tuono, & un $emituono, ma l'arte ha ritrouato in che proportione $ia l'uno, & l'altro. La natura $econdo gli affetti $pontanamente moue gli huomini, & le uoci, ma l'arte ha compre$o con uie ragioneuoli, & le quantità & le qua lità de i $uoni, & ha me$colato i generi, ritrouato le idee, appli cate le forme alla natura delle co $e: & que$to è quello, che Vitr. ha uoluto dire. $eguita poi & dichiara i $uoni, & i uocaboli loro, & altre co$e pertinenti al propo$ito no$tro.</I> <p>I $uoni, che Phtongi da Greci $i chiamano, $ono diciotto, de i quali otto $tanno $em- pre fermi i tutti i tre generi: ma gli altri dieci quando communemente $i cantano $ono in$tabili, & uaganti. $tanti, & fermi $ono quelli, che po$ti tra i mobili contengono la con giuntione del Tetracordo, & per le differenze de i generi $tanno ne iloro termini perma- nenti. & $i chiamano in que$to modo A$$onto, primo de i primi, primo de i mezi, me- zano, ultimo de i congiunti. pre$$o al mezano, ultimo de i di$giunti, ultimo de gli eccel- lenti. Mobili $ono quelli, che nel tetracordo tra gli $tabili $ono ne i generi di$po$ti, & ne i luoghi fanno mutatione, & $i chiamano in que$to modo, vicino al primo de' primi, indi- ce de i primi, uicino al primo de i mezi, indice de i mezi, terzo de i congiunti, pre$$o al- l'ultimo de i congiunti, terzo de i di$giunti, pre$$o all'ultimo de i di$giunti, terzo delle eccellenti, pre$$o all'ultimo delle eccellenti. <p><I>A me pare che Vitr. poteua meglio ordinare questo $uo di$cor$o, perche adduce molte co$e, prima che hanno bi$ogno dello intendimento di altro, che egli pone dapoi: però noi procedere- mo ordinatamente. Certo è che ogni ordinanza o $cala, o Si$tema, che $i dica, in mu$ica, è com- po$ta di $uoni. $uono è cadimento, o qualità indiui$ibile della uoce, la cui quantità o grandezza è certa, & determinata, & principio della melodia, & in quello come nel proprio elemento ogni</I> <foot><I>GG</I> 2</foot> <pb n="236"> <I>concento $iri$olue. De i $uoni altri $ono e$tremi, altr di mezo nelle ordinanze. De gli e$tremi altrl $ono graui$$imi, $otto i quali non $i ua piu ba$$o; altri acuti$$imi, $opra i quali piu alto non $i $ale nelle per$ette ordinanze. Di quelli di mezo $i puo dire, che $iano graui, & acuti; graui ri$petto i piu alti, acuti ri$petto i piu ba<02>i. $ono adunque chiamati alti, & ba<02>i in comparatione, come tra gli elementi l'acqua ri$peito alla terra, è lieue, ri$petto all'aere è graue, & co$i l'aere com- parato all'acqua è lig gieri, comparato al fuoco è graue. ma la terra è graui<02>ima, & il $uoco è leggieri<*>imo, perche a quella niente $ottogiace, a que$to niente $opra$tà. & for$e da que$ta $imi- glianz a è $tata tratta la con$ideratione delle prime quattro uoci, o tuoni che fanno il Teira- cordo. I $uoni acuti na$ceno da ueloci & $pe<02>i, igraui da, tardi et rari mouimenti: come per i$pe rienza $i proua, che una corda piu tirat a è piu ueloce, & una piu rime$$a è piu tarda: $imilmen- te una corda tirata $i moue con piu $pe$$i mouime nti, che una rila$ciata. Et $e bene il mouimento pare un $olo, non è però da credere, che egli $ia uno, ma molti, che per la grande pre$tezza del mo<*> mento pareno uno: come che una continua ritondità di fuoco, ci appare, quando una uerga acce$a da un capo è girata con gran celerità. Hora dico, che i $uoni $ono quindici, noi chiamamo uoci, come è quando dicemo quattro uoci piu in $u, $ei uoci piu in giu, prender la uoce, dar la uoce, & $imiglianti modi. Greci chiamano Phtongi, latini $uoni, dico adunque, che $ono quindici nella perfetta ordinanza, benche piu ne $iano, come $i uede nella mano, che pa$$a le uenti uoci, & anche Vitr. ne pone diciotto; ma in che gui$a, io dirò poi. Cominciarono a quattro uoci o $uoni, & fe cero (dirò co$i) un Tetracordo, la prima uoce, che è la piu ba$$a chiamarono $econdo che porta- ua la natura della co$a, Hipate, cioè prima, la $econda parbipate, cioè uicina alla prima, la terza, paranete, cioè penultima, & la quarta, nete cioè ultima. ecco con quanta facilità $en- za u$are i nomi delle lingue $trane, la ragione, anzi la natura c'in$egna a trouare i uocaboli del- le co$e. ma per che pure $iamo obligati a gli antichi per la fatica, che banno fatto per noi nel tro- uare & aumentare le arti, & le $cienze, però dichiarando i loro o$curi uocaboli potremo ue- dere la inuention loro, & quella de i $ucce$$ori fin al tempo no$tro. Le quattro uoci adunque del Tetracordo po$$ono e$$ere chiamate uolgarmente in que$to modo, prima, pre$$o prima, penu<*>i- ma, & ultima. Ma perche poi gli antichi non $i $ono fermati in un tetracordo, ma hanno ag- giunto piu $uoni, portando co$i la natura delle co$e: però per la diuer$a comparatione di quelli, hanno formato diuer$i nomi di $uoni, finche dapoi l'hauer trouato, & po$to in$ieme due, tre, & quattro tetracordi, hanno fatto una $cala, & una ordinanza perfetta. chiamarono adunque nella perfetta ordinanza il primo $uono, & la prima uoce piu ba$$a, proslamuanomenos, cioè a$$onto, accettato ouero aggiunto appre$$o gli altri, perche non ha raccomunanza con alcuno de i Tetracordi, ma è accettato di fuori accioche egli corri$ponda con la mezzana uoce dell'ordi- nanza. Que$ta uoce è po$ta da i no$tri, in a. re. ma perche anche quelli ne hanno a$$onto un'al- tra dalla parte piu ba$$a, l'hanno chiamata Gamma ut. $ignificandola con una lettera Greca, accioche $i dinota$$e, che ancho da loro fo$$e $tata aggionta quella uoce, & quel $uono alla Ma- no, non u$ando quella lettera nelle altre uoci della loro ordinanza. & $e Greci la haue$$ero a chiamare per lo $uo nome potriano chiamarla epiproslamuanomenos: ouero hypoprolamuanome nos, qua$i $otto l'a$$enta. Il $econdo $uono è detto hipaton. però douemo $apere, che $e noi con $ideramo & ordinamo i Tetracordi $eparatamente, cia$cuno per $e & non nella perfetta ordi- <*>anza, & compita $cala: $empre la prima corda, & piu graue è chiamata bipate (come ho detto) cioè principali, o prima: ma come $i mettono piu tetracordi in$ieme, la prima cor- da ritiene il nome de hipate, ma $e le aggiugne un altro nome, cioè hipaton, a differenza delle prime de i $eguenti tetracordi, & $i chiama hipate hipaton, cioè prima delle prime, & co$i la $eguente $i chiama parhipate hipaton, cioè pre$$o prima delle prime, a differen- za delle $econde de gli altri tetracordi. La terza è detta hiperparhipate, cioè $opra la uicina all'bipate, percioche il $uono di que$ta, è piu alto della parhipate. chiama$i anche lichanos, cioè indice: perche $i come il dito indice, ha di$tanza maggiore dal dito gro$$o, & alcuna fiata mino-</I> <pb n="237"> <I>re, che da gli altri, per que$ta $imiglianza la quarta corda, che è laterza de i tetracordi, po- nendo la proslam anomenos per prima, hauendo hora maggiore $pacio, hora minore, $econd o la diuer$ità delle armonie (come $i uederà poi) $i chiama lichanos. Que$ta ne i Tetracordi $e- parati $i chiamarebbe penultima, ma in que$ta ordinanza di piu tetracordi, è co$i chiamata dal luogo, che ella tiene. La quinta $i chiama hipate me$on, cioè prima delle mezane. $i chi ma prima, perche è la prima del $econdo Tetracordo. chiama$i delle mezane, perche il $econdo Te- tracordo $i chiama mezano, perche è tra due Tetracordi; l'un è detto delle principali, & pri- me, ilquale $ta alla parte piu ba$$a, & è quello alquale fin hora hauemo po$to le corde. L'altro è delle congiunte (come diremo) che $ta alla parte piu alta. Ma perche non $i chiama questa corda, nete, cioè ultima per e$$er l'ultima del primo Tetracordo, & hipate cioè prima per e$$er prima del $econdo Tetracordo? dico che $e que$to Tetracordo $i con$idera$$e da $e, & non nella perfetta ordinanza, co$i bi$ognerebbe chiamar l'ultima corda: ma con$iderando$i unitament<*> con le altre, la non uiene ad e$$er la ultima, anzi la prima ri$petto al Tetracordo delle mezane: era adunque nece$$ario per la aggiunta di altri Tetracordi, mutando$inouo ri$petto, & noua con $ideratione, mutare anche il nome alle prime: che in uero pare, che la natura habbia formato que$ti nomi, nè altri nomi $i darebbono alle dette corde da gli piu ine$perti della Mu$ica, che dal $ito loro, & dall'ordine, che hanno: & que$to dico, per che altri non $i merauiglino & reputino difficile la impo$itione de i nomi antichi. perche adunque i detti Tetracordi $ono uniti, in una or- dinanza, & le compar ationi de i $uoni & delle corde $ono diuer$e, però $i danno, (come ho det- to) altri nomi a quelli Tetr acordi uniti, che $i darebbero $e fu$$ero po$ti da $e $te$$i. E$$endo adunque nella perfetta ordinanza due ottocordi, l'uno alla parte piu ba$$a, & l'altro alla parte piu alta; & e$$endo l'uno, & l'altro di due Tetracordi compo$to: poi che il nome hipate è di$tri- buito a i compartimenti piu ba$$i, $i come il nome di nete è dato a i termini piu alti; però ad amen- due i primi tetr acordi dalla parte piu ba$$a, $i danno i nomi pre$i dall'hipate; doue il primo Te- tracordo piu graue è detto, il Tetracordo delle hipate, cioè delle principali. Et il $econ- do è chiamato il Tetracordo delle mezane, & la $ua prima corda, è detta hipate me- $on, cioè prima delle mezane. Et con que$ti auuertimenti $i rende facile il restante. Però la $e$ta corda è detta Parhipate me$on, cioè uicina alla prima delle mezane, che è la $econda del $e condo Tetracordo. La $ettima è detta hiperparhipate, qua$i $opra alla pro$$ima delle prime. La ottaua è detta Me$e, cioè mezana, perche ueramente è nel mezo de i Tetracordi. Ma $e egli non $i anda$$e piu oltre, & che $i rinchiude$$e, le uoci in uno ottocordo, ella $i chiamerebbe nete, cioè ultima. ma perche è fine del piu ba$$o, & principio del piu alto ottocordo, & è la piu ba$$a di quello legando l'uno, & l'altro in$ieme; però è detta mezana, come termine commune a due ottocordi, & come legamento, & come quella, che tiene eguali proportioni con gli e$tremi. La nona è detta parame$on, dal $ito $uo, perche è uicina alla mezana, che è la $econda del Ter- zo tetracordo. La decima è detta Trite diezeugmenon, cioè terza delle di$giunte, perche nello in$trumento antico di $ette corde, ella era la terza in ordine all'ultima, & era chiamata para- me$e, cioè uicina alla mezana nel terzo Tetracordo, o nel $econdo ottocordo. Ma perche que- $ta corda ri$petto all'ottocordo della parte piu alla è congiunta, & ri$petto all'ottocordo della piu ba$$a è di$giunta, cioè ha collegatione con quella, & con que$ta, però $i chiama delle di$giun te, come $i dirà poi. L'undecima è detta paranete diezeugmenon, cioè uicina all'ultima delle di$- giunte, & è l'ultima del terzo tetracordo detto delle di$giunte, & prima del quarto Tetracordo detto delle alti$$ime, o $oprane, & eccellenti, perche appartiene alla parte piu alta. La duodeci- ma è detta nete diezeugmenon, cioè ultima delle di$giuntte, perche è la quarta del terzo tetracor- do. la terza decima è detta Trite hiperbolcon, cioè terza delle eccellenti, perche è la terza in or dine dall'ultima posta nella parte piu acuta, & è detta terza, per lo $ito. & è detta delle eccel- lenti, perche è del quarto Tetracordo, che $i chiama delle eccellenti, & alti$$ime uoci, che è l'ultimo nella perfetta ordinanza. La quarta decima, è detta paranete hiperboleon, cioè penul</I> <pb n="238"> <I>tima delle eccellenti, perche iui è collocata. La quinta decima è detta nete hiperboleon, cioè ul tima delle eccellenti, oltra la quale non $i a$cende nella $alita delle uoci, nella perfetta ordinan- za. Ma i moderni (come ho detto) chiamano $cala que$ta ordinanza, & uanno ordinando le uoci per gradi con alcune $yllabe, & alcune lettere, & dicono</I> <G>*g</G>. <I>ut. A. re B. mi. & co$i uan- no $eguitando. diuideno in quattro parti la loro $cala dando la prima al ba$$o, la $econda al teno- re, la terza al contra alto, l'ultima al $oprano. & co$i non pareno differenti da gli antichi. co- me $e chiama$$ero il Ba$$o, Tetracordo delle prime; il tenore, Tetracordo della mezane; il contraalto Tetracordo delle di$giunte; il $oprano, Tetracordo delle eccellenti. Ben è ue- ro, che co$i chiaramente non e$primeno quc$ta intentione, perche diuideno la $cala in tre ordinanze, & gli danno piu gradi, & chiamano chiaui i principij di quelle, a $imiglianza del- le chiaui materiali, come quelle che apreno certe, & determinate melodie, & co$i manife$tano tutta la ordinanza della $cala, come le chiaui nelle toppe riuoltate aprendo gli $crigni fanno ma- nife$to quello, che è nafco$o di dentro. La onde anche nominarono le note col nome di chiaui, con que$te lettere a. b. c. d. e. f. g. dicono, che delle chiaui altre $ono graui, altre mezane, altre acute: le graui $ono quelle, che $i cantano con uoce graue, & rime$$a, & $i chiamano per que- $to le chiaui del ba$$o. Et il canto cantato per quelle, $i chiama il ba$$o. $ono otto, & $i $egna- no con lettere maggiori. A. B. C. D. E. F. G. & il G. del gamma ut. Le mezane $ono co$i dette, perche hanno la uoce tra la ba$$a, & la acuta, che $i danno al tenore, & al contra alto, & $o- no $ette notate con lettere minori a. b. c. d. e. f. g. Le acute $ono quelle, per le quali $i canta con acuta, & alta uoce, & $ono cinque, de$critte con lettere minori, ma doppie aa. bb. cc. dd. ee. & que$to s'è detto affine, che $i $appia, che $econdo diuer$a intentione $i uanno formando i nomi, & le or dinanze: però gli antichi andorono fin a</I> 15. <I>uoci, perche quindi a punto chiudeno la con $onanza detta diapa$on. i moderni $ono andati a uenti due ri$petto a gli in$trumenti, che po$$ono $alire piu, che la uoce humana. Vitr. ne pone diciotto ri$petto alla compo$itione de i Tetracor- di, de i quali dirà da poi: & ha diui$o i $uoni in $uoni stabili, & in $uoni mobili, & ha dichiari- to, quali $iano, & come $i chiamano questi, & quelli. In ogni genere $i può fare l'ordinanza di que$ti $uoni. Stabili $ono quelli, che tra i quindici in ogni ordinanza di Mu$ica, $ia di qualun- que genere o colore $i uoglia, fermi $tanno nel $uo tenore, & grado, come termini delle con$o- nanze: perche le con$onanze $ono le i$te$$e in ogni genere: però doueua Vitr trattare prima de i $uoni, de gli $patij, de i generi, delle con$onanze, che toccare que$te co$e. Mobili & mutabili $ono quelli, che $econdo diuer$i generi, & diuer$i colori $i mutano ne gli $patij loro, facendogli maggiori, o minori, $econdo il genere, o il colore. Ecco tanto nel Tetracordo del genere chro- matico, quanto de gli altri, gli e$tremi $ono stabili, perche $i ri$pondeno in con$onanza diate$$a- ron; ma le uoci, & i $uoni di mezo $i mutano $econdo i generi, perche l'Armonico ua da die$i a die$i, il chromatico da $emituono a $emiluono, il diatonico da tuono a tuono.</I> <pb n="239"> <HEAD><I>ARMONICVM. CHROMATICVM. DIATONICVM.</I></HEAD> <TABLE> <ROW><COL><I>Stabile.</I></COL><COL><I>Tuono.</I></COL><COL><I>Tuono.</I></COL><COL><I>Tuouo.</I></COL><COL><I>Pro$lamuanomenos.</I></COL><COL><I>A.re</I></COL></ROW> <ROW><COL><I>Stabile.</I></COL><COL><I>Die$i.</I></COL><COL><I>Semituono.</I></COL><COL><I>Semit.</I></COL><COL><I>Hypate hypaton.</I></COL><COL><I>B.mi.</I></COL></ROW> <ROW><COL><I>Mobile.</I></COL><COL><I>Die$i.</I></COL><COL><I>Semituono.</I></COL><COL><I>Tuono.</I></COL><COL><I>Parhypate hyparon.</I></COL><COL><I><*>.fa ut.</I></COL></ROW> <ROW><COL><I>Mobile.</I></COL><COL><I>Ditono.</I></COL><COL><I>Trihemi Tuono</I></COL><COL><I>Tuono.</I></COL><COL><I>Lychanos, uel ditonohypatō.</I></COL><COL><I>D.$ol. re.</I></COL></ROW> <ROW><COL><I>Stabile.</I></COL><COL><I>Die$i.</I></COL><COL><I>Semituono.</I></COL><COL><I>Semit.</I></COL><COL><I>Hypate me$on.</I></COL><COL><I>E. la. mi.</I></COL></ROW> <ROW><COL><I>Mobile.</I></COL><COL><I>Die$i.</I></COL><COL><I>Semituono.</I></COL><COL><I>Tuono.</I></COL><COL><I>Perhypate me$on.</I></COL><COL><I>F. fa.ut.</I></COL></ROW> <ROW><COL><I>Mobile.</I></COL><COL><I>Ditono.</I></COL><COL><I>Trihemit.</I></COL><COL><I>Tuono.</I></COL><COL><I>Lychanos uel diatonos me$on.</I></COL><COL><I>G.$ol. re.ut</I></COL></ROW> <ROW><COL><I>Stabile.</I></COL><COL><I>Die$i.</I></COL><COL><I>Semit.</I></COL><COL><I>Semitu.</I></COL><COL><I>Me$e.</I></COL><COL><I>a. la. mi.re.</I></COL></ROW> <ROW><COL><I>Mobile.</I></COL><COL><I>Die$i.</I></COL><COL><I>Semit.</I></COL><COL><I>Tuono.</I></COL><COL><I>Trite Sinimenon.</I></COL><COL><I>b. fa. b. mi.</I></COL></ROW> <ROW><COL><I>Mobile.</I></COL><COL><I>Ditono.</I></COL><COL><I>Trihemit.</I></COL><COL><I>Tuono.</I></COL><COL><I>Paranete $ynimenon.</I></COL><COL><I>c. $ol fa.</I></COL></ROW> <ROW><COL><I>Stabile.</I></COL><COL><I>Tuono.</I></COL><COL><I>Tuono.</I></COL><COL><I>Tuono.</I></COL><COL><I>Nete $inimenon.</I></COL><COL><I>d. la.$ol.</I></COL></ROW> <ROW><COL><I>Stabile.</I></COL><COL><I>Die$i.</I></COL><COL><I>Semit.</I></COL><COL><I>Semitu.</I></COL><COL><I>Parame$e.</I></COL><COL><I>b. fa b. mi.</I></COL></ROW> <ROW><COL><I>Mobile.</I></COL><COL><I>Die$i.</I></COL><COL><I>Semit.</I></COL><COL><I>Tuono.</I></COL><COL><I>Trite diezeugmenon.</I></COL><COL><I>c. $ol fa ut.</I></COL></ROW> <ROW><COL><I>Mobile.</I></COL><COL><I>Ditono.</I></COL><COL><I>Trihemit.</I></COL><COL><I>Tuono.</I></COL><COL><I>Paranete diezeugmenon.</I></COL><COL><I>d. la $ol re.</I></COL></ROW> <ROW><COL><I>Stabile.</I></COL><COL><I>Die$i.</I></COL><COL><I>Semit.</I></COL><COL><I>Semit.</I></COL><COL><I>Nete diezeugmenon.</I></COL><COL><I>e. la mi.</I></COL></ROW> <ROW><COL><I>Mobile.</I></COL><COL><I>Die$i.</I></COL><COL><I>Semitu.</I></COL><COL><I>Tuono.</I></COL><COL><I>Trite hyperboleon.</I></COL><COL><I>F.fa ut.</I></COL></ROW> <ROW><COL><I>Mobile.</I></COL><COL><I>Ditono.</I></COL><COL><I>Trihem.</I></COL><COL><I>Tuono.</I></COL><COL><I>Paranete hyperboleon.</I></COL><COL><I>g.$ol re ut</I></COL></ROW> <ROW><COL><I>Stabile.</I></COL><COL></COL><COL></COL><COL></COL><COL><I>Nete hyperboleon.</I></COL><COL><I>A la mi re.</I></COL></ROW> </TABLE> <p>Ma i $uoni mobili $ogliono riceuere altre uirtù, perche hanno gli $patij, & le di$tanze cre$centi. La pro$sima alla prima adunque, detta parhypate, che nello armonico è di- $tante dalla prima una die$i, nel chromatico è di$tante per un $emituono, & nel diatonico dalla prima per tre $emituoni, & con le dieci uoci, per li traportamenti loro ne i generi fanno una uarietà di canto di tre maniere. <p><I>Lo e$$empio è chiaro, & la figura di $opra lo fa piu chiaro. Seguita adunque.</I> <p>Cinque $ono i tetracordi, il primo graui$simo detto Hypaton da Greci. il $econdo mezano, che $i chiama me$on. Il terzo congiunto, chiamato $ynemmenon. Il quarto di$giunto nominato diezeugmenon, il quinto, che è a cuti$simo $i dice hyperboleon <pb n="240"> <p><I>Il Tetracordo delle prime detto</I> <p><I>Hypaton, che è alla parte piu graue è</I> <p><I>Hypate hypaton.</I> <p><I>Parhypate hypaton.</I> <p><I>Lichanos hypaton.</I> <p><I>Hypate me$on.</I> <p><I>Il Tetracordo delle mazan detto Me$on è que$to.</I> <p><I>Hypate me$on.</I> <p><I>Parhypate me$on.</I> <p><I>Lychanos me$on.</I> <p><I>Me$e.</I> <p><I>Il Tetracordo delle congiunte, detto $ynem- nunon è que$to.</I> <p><I>Trite $ynezeugmenon.</I> <p><I>Paranete $ynezeugmenon.</I> <p><I>Nete $ynezeugmenon.</I> <p><I>Il Tetracordo delle di$giunte detto diezeugme- non è que$to.</I> <p><I>Parame$e.</I> <p><I>Trite diezeugmenon.</I> <p><I>Paranete diezeugmenon.</I> <p><I>Nete diezeugmenon.</I> <p><I>Il Tetracordo delle eccellenti, & $opra acute det to hyperboleon, è que$to.</I> <p><I>Nete diezeugmenon.</I> <p><I>Trite hyperboleon.</I> <p><I>Paranete hyperboleon.</I> <p><I>Nete hyperboleon.</I> <p><I>Congiuntione è quando $i truoua un $uono commune a due Tetracordi, continuati, & $rmili $e condo la figura. Di$giuntione, è quando tra due. continuati Tetracordi, & $imili in figura, è trapo$to un tuono. non niego però, che egli non $i po$$a truouare alcune ordinanze communi, che alcuna fiata $econdo la congiuntione, alcuna fiata $econdo la di$giuntione non $i facciano. Tutte le congiuntioni nella immutabile ordinanza $ono due, la graue, & l'acuta. La graue, è del Tetracordo delle prime, & delle mezanc; l'acuta è del Tetracordo delle di$giunte, & delle eccel lenti. Nella graue l'hypate prima delle mezane, è il tenore, o $uono commune della congiuntio ne come quì.</I> <p><I>Hypate hypaton.</I> <p><I>Parhypate hypaton.</I> <p><I>Lychanos hypaton.</I> <p><I>tetracordo.</I> <p><I>Hypate me$on. Congiuntione.</I> <p><I>Parhypate me$on.</I> <p><I>Lychanos me$on.</I> <p><I>Me$e.</I> <p><I>tetracordo.</I> <p><I>Ma la di$giuntione è una fatta da un tuono</I> <p><I>Compre$o dalla mezana, & dalla uicina al- la mezana.</I> <p><I>Hypate me$on.</I> <p><I>Parhypate me$on.</I> <p><I>Lychanos me$on.</I> <p><I>Me$e.</I> <p><I>Parame$e.</I> <p><I>di$giuntione.</I> <p><I>Trite diezeugmenon.</I> <p><I>Paranete die zeug.</I> <p><I>Nete diezeugm.</I> <p><I>Ma nella acuta è la nete delle di$giunte, la quale in quel ca$o muta il nome. & per que$to $o- no oltra i quindici, quelli tre $uoni, che fanno diciotto, che $ono trite, paranete, & nete $ine- zeugmenon.</I> <p>Le con$onanze, che l'huomo può naturalmente cantare, & che in Greco $i chiamano $imfonie $ono $ei. Diate$$aron, diapente, diapa$on, diapa$on con diate$$aron, diapa- $on con diapente, di$diapa$on. <p><I>Con$onanza, è temperato me$colamento di $uoni acuti, & graui, che dolcemente uiene alle orecchie, nata da proportione o moltiplice, o $opraparticolare. La con$onanza a due modi s'in- tende, ouero in ri$petto di que $uoni, che dilettano $olamente, & non peruengono alla perfettione delle con$onanze, come i gia detti, che $i chiamano Emmeli in Greco, cioè atti alla melodia, i contrari de i quali $ono detti Ecmeli, cioè fuori di melodia, che non $i portano dolcemente alle orecchie; Ouero ri$petto alla con$onanza maggiore, che contiene tutte le altre. Le uere con$o- nanze, o $ono $implici, ouero compo$te. le $implici $ono tre, la diate$$aron po$ta in proportione $e$quiterza: la diapente po$ta in proportione $e$quialtera, la diapa$on po$ta in proportione dop pia. non è però nece$$ario, che da tutte le $emplici proportioni uenghino le $emplici con$onanze, imperoche dalle $oprapartienti no <*> uengono con$onanze. Le compo$te $ano diapa$on con diapen- te, diapa$on con diate$$ar on, di$diapa$on. Hora e$poneremo cia$cuna d'e$$e. la diate$$aron da noi</I> <pb n="241"> <I>$i chiama quarta, abbraccia (come detto hauemo) due tuoni, & un $emituon minore, $alta da qual riga $i uuole al $econdo $patio, ouero da qualunque $patio alla $econda riga abbracciando quattro gradi di uoce, & è po$ta in proportione $e$quiterza, come ho detto. La diapente è det- ta quinta: & $ale da cia$cuna riga alla terza, & da cia$cuno $patio al ter zo per cinque gradi di uoce: & è po$ta in proportione $e$quialtera. Et però $i come la quarta $i pone $opra la corda par tendola in quattro $patij, & la$ciandone uno fuori, co$i la quinta $i pone partendo la corda in tre $patij, & la$ciandone uno fuori: Et finalmente ogni co$a, che puo far $uono, neruo, o canna, o $ia qual $i uoglia materia, quando $ia, che uogliamo farla rendere qualche con$onanza. bi$o- gna proportionare la grandezza, o gli $patij $uoi con quella ri$pondenza, che ricerca quella con- $onanza, che uolemo. Et con quelle regole gli artefici de gli organi reggendo$i, non andereb beno a ca$o, come uanno la piu parte di loro a fure gli in$trumenti: ma $apendo ritrouare le linee propor tionali ritrouarebbeno al primo tratto le grandezze delle lor canne, o non anderebbeno ad orec- chie come uanno, o con le mi$ure, & $acome ritrouate da altri. Hor al propo$ito; $i come la quar ta non arriua a tre tuoni, & è piu d'un ditono, per lo $patio d'un $emituono minore, & piu d'un $e$quituono, per lo $patio d'un tuono intiero, & occupa $ei die$i, & due comme: co$i la quinta è di tre tuoni, & d'un $emituon minore, & $e egli $e le leua un tuono, re$ta la quarta; & leuatole la quarta, re$ta un tuono. Et $tando que$te co$e $i puo di$correre, & trouare, che la diapente o quinta, è meno di otto $emituoni minori, & che $i fa d'un ditono, & d'un $e$quituono: & che la differenza, che è tra la diapente, & la diate$$aron non è altro, che un tuono. Le predette due con$onanze po$te $ono nelle maggiori $opraparticolari, che $iano, che $ono la $e$quialtera, & la $e$quiterza. Oltra di que$to nè due diate$$aron, nè due diapente po$$ono far con$onanza, perche non $ono in proportione moltiplice o $opraparticolare, nelle quali hauemo detto e$$er po$te le con$onanze. ma $ono in proportione $oprapartiente, dalla quale non puo uenire alcuna con$onan za: & la ragione è que$ta. Le con$onanze $i truouano in quelle comparationi d'altezza, & di ba$$ezza di uoci, che hanno manife$ta la loro commune mi$ura, come nelle moltiplici la doppia, quella parte è mi$ura, che tra due termini è po$ta per differenza, $i come tra due, & quattro il due mi$ura l'uno, & l'altro, tra'l noue, & l'otto; l'unità è mi$ura, come nelle $opraparticolari $i truoua nella $e$quialtera tra quattro, & $ei, il due è commune, & manife$ta mi$ura dell'uno, & dell'altro: come del $ei, & dell'otto, che $ono in proportione $e$quiterza. & que$to non adi- uiene nelle $oprapartienti, come tra cinque e tre, il due, che è la loro differenza, non mi$ura nè l'uno nè l'altro: perche $e egli $i piglia una fiata due, non arriua al tre, $e due fiate lo pa$$a, ma non arriua al cinque, $e tre fiate pa$$a il cinque. Il $imigliante $i uede nel re$tante delle $opra partienti. La diapa$on da moderni è detta ottaua, & è po$ta in proportione doppia, $i che tut- ta la corda alla metà $uona la ottaua. $ale da una riga, al quarto $patio, o da uno $patio alla quar ta riga. è detta diapa$on, cioè per tutte, imperoche ella abbraceia tutti gli $patij $oprapo$ti delle con$onanze: & è termine delle $emplici. Se noi continuaremo cinque tuoni $opra la corda, non aggiugneremo alla meià; $e ne poneremo $ei, pa$$aremo la metà: però la diapa$on, è piu di cin- que, & meno di $ei tuoni. na$ce dalla $e$quialtera, & dalla $e$quiterza, come hauemo detto nel terzo libro. La ottaua adunque è di cinque tuoni, & due $emituoni minori: cade da $ei tuonì per un Comma, che è quello di piu, che un $emituono maggiore eccede il minore; & leuando dal- la detta la diate$$aron resta la diapente: come leuandone la diapente re$ta la diate$$aron: & le- uandone un tuono, & la diapente ne re$ta un $e$quituono. Douemo $apere, che niuna $emplice con$onanza $i puo partire in due parti eguali, con certo, & determinato numero, ilche è chiaro nella diapente, & nella diate$$aron, perche $ono in proportione $opraparticolare, la quale non $i puo egualmente partire. Simile giuditio $i farà della diapa$on, perche e$$endo i due minimi nu- meri di quella con$onanza uno, & due, & non e$$endo il due numero quadrato; $eguita, che la diapa$on, che con$i$te nella proportione di due ad uno, non $i po$$a egualmente diuidere, nè me- no in piu di due, perche egli è $tato prouato nell' Arithmetica, che tra due quadrati numeri pro-</I> <foot><I>HH</I></foot> <pb n="242"> <I>portionalmenteui cade un mezo, & altroue è $tato detto, che ignote, & irrationali $ono quellera gioni, che non $i po$$ono con certo, et determinato numero di$egnare. Quando adunque noto $ia nel l'Aritbmetica, che dal moltiplicare d'un numero non quadrato in uno, che è quadrato, il prodotto non $ia quadrato, & doue que$to nō è, non $i po$$a truouare un mezo proportionato, tra que due nu meri: $eguita, che niuna proportione $i truoui di mezo tra le moltiplici: hauendo chiaro nella Arithmetica, che la mediet à non è altro che uno legamento de gli e$tremi per la comparatione, che ha l'uno, & l'altro al mezo. La diate$$aron, & diapente, è con$onanza compo$ta, & è una, & non due con$onanze; & $i chiama undecima. Altri uogliono, che non $ia con$onanza, $e ben uiene $oaui$$imamente alle orecchie. Et $tando que$to, che ogni con$onanza $ia in propor- tione moltiplice, o $opraparticolare, & non trouando$i que$ta in alcuna $pecie di quelle, ella non $arà con$onanza ecco $ia a per</I> 1 <I>& b per</I> 2 <I>minimi numeri della diapa$on. Sia c per</I> 4. <I>& d. per tre minimi numeri della diate$$aron. moltiplico c. in e. cioè quattro in due ne uiene</I> 8. <I>& $ia que$to e. moltiplico b in d cioè tre in uno, il prodotto è</I> 3. <I>$ia que$to f. certo è, che e ad f contiene una doppia, & una $e$quiterza: perche $e una proportione aggiu gnerà tanto $opra un'altra, quanto la terza $opra la quarta, ne na$cerà, che la compo$ta della prima, & della quarta $arà eguale alle compo$te delle altre. Sia adunque, che quanto la pro- portione tra</I> 1 <I>&</I> 2 <I>aggiugne $opra la proportione tra</I> 3 <I>&</I> 4 <I>tanto aggiunga la propor- tione, che è tra</I> 2 <I>&</I> 4 <I>alla proportione, cho è tra</I> 8 <I>&</I> 6 <I>dico, che la proportione com- po$ta delle proportioni di</I> 1 <I>à</I> 2 <I>& di</I> 6 <I>ad otto, $arà eguale alla proportione delle altre com po$te, cioè del</I> 3 <I>&</I> 4 <I>& del</I> 2 <I>&</I> 4 <I>come $i proua nell' Arithmetica. Hora dico per que$to, che lo e. che è</I> 8 <I>non è moltiplice allo f. che è</I> 3 <I>nè meno $opraparticolare, come $i uede. non è adunque il diapa$on con diate$$aron con$onanza. Seguita la diate$$aron con dia- pente chiamata duodecima, & è una $ola con$onanza po$ta in proportione tripla, perche na$ce da una doppia, & da una $e$quialtera. Sopra la predetta con$onanza è la diapa$on diapente, con un tuono, che per non e$$ere tra quelle proportioni, che fanno le con$onanze non $i puo chiamare con$onanza, ma però il $en$o $e ne diletta, perche peruiene alle orecchie con $oauità. Finalmen te la di$diapa$on è la quint adecima, po$ta in proportione quadrupla fatta di due doppie: nella quale da gli antichi, è po$to il termine della perfetta ordinanza, & l'ultimo grado della uoce. Ma poi che hauemo truouato tutte le con$onanze, uediamo come $i po$$ono ordinatamente ponere $opra la data corda. Sia partita la corda a b in quattro $patij eguali, $egna lo $patio quarto, <*> & da quello partendoti uer$o b tanto, che truoui lo terzo $patio della corda, & $ia iui d. d'indi partendoti pur uer$o b. troua la metà della corda, & $egna e. d'indi poi alli due terzi $egna f. & in $omma alli tre quarti $egna g. dico, che hauerai partita la corda $econdo le det- te con$onanze perche a b & c b $uonerà la diate$$aron a b & d b la diapente a b & e b la diapa$on a b & f b la diapa$on diapente a b & g b la di$diapa$on. Et $e uuoi dimo$trare con numeri que$to compartimento, diuiderai la corda in uentiquattro $patij ponendo que$ti numeri al luogo $uo</I> 6 8 12 16 18 <I>& trouerai que$te con$onanze come ti mo$tra la $i gura, la$ciando le lettere in luogo delle quali $ono i numeri</I> 6 <I>in luogo di c.</I> 8 <I>in luogo di d.</I> 12 <I>in luogo di c.</I> 16 <I>in luogo di f.</I> 18 <I>in luogo di g. & gli e$tremi in luogo di a & di b.</I> <fig> <pb n="243"> <fig> <p>Et però dal numero hanno pre$o i nomi di quelle: percioche quando la uoce $i ferma in una terminatione di $uoni, piegandoli da quella $i muta, & peruiene alla quarta $ua ter- minatione. La con$onanza è chiamata diate$$aron. & terminando nella quinta Diapen- te, nella ottaua diapa$on, nelle otto & meza diapa$on, & diate$$aron. nelle noue & meza diapa$on, & diapente, nella quinta decima, di$diapa$on, perche egli non $i puo fa- re con$onanze quando tra due $pacij, o nella terza, o nella $e$ta, o nella $ettima, il $uo- no delle corde, ouero il canto della uoce $arà formato. Ma come di $opra hauemo $crit- to, la diate$$aron, & la diapente hanno i loro termini conuenienti, dalla natura della uo- ce conforme nell'ordine alla di$diapa$on, & i concenti na$ceno dalla congiuntione de i $uoni phthongi da Greci nominati- <p><I>L'ordine della di$diapa$on, che è la quintadecima, & è la perfetta con$onanza, come quella, che abbraccia ne gli $uoi $pacij, & contiene $otto di $e tutte le altre, fa che i termini della diate$- $aron, & della diapente $iano po$ti, la doue $ono: & finalmente tutti i gradi $i riferi$ceno a quel la intentione di peruenire alla quint adecima. Et qui $ia fine del trattamento Mu$icale, quanto puo ba$tare allo intendimento di Vitru. nè in altro uolemo riprendere Ari$toxeno, che for$e ha hauuto altre intentioni, che non $ono co$i compre$e, & per que$to pareno ad alcuni imperfette.</I> <HEAD><I>Deiua$i del Theatro. Cap. V.</I></HEAD> <p>ET co$i da $i<*>iglianti inue$tigationi con Mathematici di$cor$i $i fanno i ua$i di rame $econdo la grandezza del Theatro, & quelli $i fanno in modo, che quando $ono toccati po$$ono fra $e rendere la diate$$aron, & la diapeute in ordine alla di$diapa$on. Dapoi tra le $edi del Theatro con ragione di Mu$i- ca $i deono collocare nelle celle a que$to fine apparecchiate, ma di modo, che non toc- chino alcun parete, & habbiano d'intorno il luogo uuoto. & dalla $ommità del capo loro habbiano $pacio, & $iano riuolti in giu, & habbiano da quella parte, che riguarda i Thea- tri, i cunei $ottopo$ti. $iano di ferro quelli cunei, nè meno alti di mezo piede. & all'in- contro di quelle celle la$ciate $iano le apriture a i letti de i gradi inferiori lunghe due pie- di, alte mezo. <p><I>Poi che $ap emo in che proportione con$i$ta ogni con$onanza, uolendo noi preparare que ua$i di rame, che u$auano gli antichi di di$porre ne i Theatri, accioche la uoce piu chiaramente, &</I> <foot><I>HH</I> 2</foot> <pb n="244"> <I>con $oauit à fu$$e udita. Vitr. prima dice come $i hanno a ri$pondere in con$onanza l'uno, all'altro, poi come $i hanno a porre, & che effetto facciano. Quanto adunque allo accordargli, dice che bi$ogna fargli in modo, che quando $ono tocchi o dalla uoce, o da altra co$a, rendino fra $e le dette con$onanze, diate$$aron, & diapente, con que$ta conditione, che l'una, & l'altra $iano or- dinate alla di$diapa$on; ma egli non dice il modo di proportionare que ua$i, $i che rendino que$te con$onanze: però bi$ogna quiui porui del buono, & $apere le proportioni de i corpi, cioe come uno corpo $ia ri$petto ad un' altro, o in doppia, o in $e$quialtera, ouero in $e$quiter za proportio- ne. perche come ho detto piu uolte, quella proportionc, che è tra $pacio, e $pacio, & tra corpo, e corpo, è anche tra $uono, & $uono, quando $ia che quelli $pacij, o que corpi po<02>ino render $uo- no. Que$ta pratica dipende dal $apere truouare tra due linee due altre di mezo proportionali, ilche come $i faccia, $i dimo$tra da noi diffu$amente nel nono libro. Proportionati, che $aranno que corpi de i ua$i; bi$ogna preparare il luogo doue hanno a $tare. que$ti luoghi $ono da Vitru. celle nominati, & que ua$i deono e$$er dirame, perche è materia, che ha piu dello aere, & ri- $uona bene, & perche il $uono ci uenghi piu chiaro bi$ogna, che non tocchino da alcuna parte o muro, o altro, che impedi$ca il $uono, & che $iano uacui, & che dalla $ommità del capo loro habbiano $pacio, perche meglio u'entri la uoce, & $iano riuolti in giu con le bocche loro, perche la uoce $ottentri, dico riuolti $i, che $tiano come di$te$i. & perche quelli deono e$$ere $o$tentati in qualche modo, non potendo $tare in aere come la arca di Maumeth: però da quella parte, che rig uarda i Theatri habbiano i cunei $ottopo$ti, $i che non $iano $o$pe$i come le campane, ma $ia- no $opra cunei di ferro non meno alti dimezo piede, per dare $pacio $otto i ua$i, accioche non toc chino da alcuna parte. & all'incontro di quelle celle dentro lequali deono $tare que ua$i, $iano la- $ciate le apriture a i letti de i gradi inferiori, lunghe due piedi, alte mezo. co$i credo io per dar luogo alle bocche di que ua$i riuolte uer$o il Theatro. & che que cunei $iano uicini alla bocca, per che non tocchino il corpo del ua$o.</I> <p>Ma in che luogo eg li $i habbia a di$egnar le celle, co$i è nece$$ario di dichiarire. Se il Theatro non $arà molto ampio, & grande, $ia di$egnata l'altezza di mezo per trauer$o, & in quella $iano a uolti fatte tredici celle, di$tanti per li do dici $pacij eguali, in modo, che que $uoni, che $ono $tati de$critti di $opra, $onando all'ultima delle eccellenti detta ne- te hyperboleon, $iano po$ti prima nelle celle, che $ono nelle e$treme corna dall'una, & l'altra parte. <p><I>Cioe parti$ca$i la parte di mezo dell'altezza a torno il Theatro in dodici $pacij eguali con tre- dici celle, & quelle celle, che $aranno $opra le corna della cinta una per te$ta, che Vitru. chiama prime, haueranno i ua$i proportionati al piu alto $uono, & piu acuta uoce, che $ia, detta nete hy- perboleon, & tra loro $aranno uni$oni, & di grandezza minore a tutti gli altri. la cella di me- zo contenirà quel ua$o, che tenir à il luogo, & il $uono della mezana i $econdi ua$i pre$$o a quel- li, che $ono $u gli e$tremi, $uoner anno, la diate$$aron alla ultima delle di$giunte, & $aranno tra $e uni$oni. & però dice Vitru.</I> <p>I $econdi da gli e$tremi $uonino la diate$$aron all'ultima delle di$giunte. I terzi ua$i di qua, & di la $uonino la diate$$aron alla uicina alla mezana. <p><I>Ecco che Vitr. ua di Tetracordo in Tetracordo pigliando $olamente gli estremi termini, cioè quelli, che fanno la con$onanza, & la$ciando i $uoni di mezo $uonano all'ultima delle congiunte. que$ta è per un tuono di$tante alla di $opra, detta par ame$e, o uicina alla mezana, per rinchiu- dere l'ottocordo con l'ultima delle eccellenti, & è da $apere, che i ua$i, che $i danno a i $uoni piu ba<02>i, $iano maggiori di corpo, & che uadino con proportione $cemando.</I> <p>I quarti $uonino la diate$$aron alla ultima delle congiunte. I quinti $uonino la dia- te$$aron alla mezzana. I $e$ti $uonino la quarta alla prima delle mezane, & nel mezo è un ua$o $olo, che $uona la diate$$aron alla prima delle prime. Et co$i con que$to di$cor$o par tendo$i la uoce dalla $cena, come da uno centro raggirando$i a torno, & toccando le con- <pb n="245"> cauità di cia$cuno di quelli ua$i, ri$ueglierà una chiarezza di $uono aumentata, & farà ri$- $uonare una conueniente con$onanza. <p><I>Quelli ua$i adunque non $olo faceuano la uoce piu chiara, ma rendeuano anche con$onanza, & melodia. ma bi$ogna bene con$iderare come er ano tocche accioche $uona$$ero. io non $o come la uoce de recitanti pote$$e fare quello effetto: & $e pure ella lo face$$e, come que ua$i ri$ponde$- $ero, $e for$e frnche la uoce fu$$e in con$onanza con que ua$i, come $uole una corda di uno liuto me uer$i quando un'altra corda d'un' altro liuto è tocca, & è della mede$ma con$onanza. Ne i Thea- tri minori $i poneua un'ordine di que$tiua$i, nel mezo dell'altezza del Theatro di$po$ti d'intorno la cinta de i gradi nelle lor celle, & accordati $econdo quel genere, che fu$$e piacciuto a chi gli ordinaua. ma io credo, che fu$$ero $econdo il genere Armonico, perche Vitru. lo dice.</I> <p>Ma $e la grandezza del Theatro $arà piu ampia, allhora $i partirà l'altezza in quattro parti, perche $i facciano tre $pacij, per le celle trauer$e. di que$te parti una $i darà al gene- re Armonico, l'altra al chromatico, la terza al diatonico; & dal ba$$o la prima regione $i darà all'ordinanza dell'Armonia, $i come hauemo detto di $opra nel Theatro minore. Ma nella prima parte dell'ordine di mezo $i hanno a porre nelle e$treme corna quelli ua$i, che ri$pondino alle eccellenti del genere chromatico: ne i $econdi da que$ti la diate$$aron alla chromatica delle di$giunte, ne i terzi la diapente alla chromatica delle congiunte: ne i quarti la diate$$aron alla chromatica delle mezane; ne i quinti la diate$$aron alla chro- matica delle prime: ne i $efti alla uicina alla mezana. perche que$ti $uoni hanno corri- $pondenza di con$onanza, & della diapente con la chromatica delle eccellenti, & della diate$$aron con la chromatica delle congiunte. ma nel mezo non $i deue ponere alcun ua$o, perche nel genere chromatico niun'altra qualità di $uoni puo hauere con$onanza di $infonia. <p><I>Egli $i deue auuertire, che quando Vitr. dice, che nella prima parte dell'ordine di mezo $i han no a porre nelle e$treme corna quelli ua$i, che ri$pondino alle eccellenti del genere chromatico, non piglia la nete hyperboleon, ma una di quelle hyperbolee, cioè la Trite hyperboleon: & co$i di $otto nel genere diatonico egli piglia la nete hyperboleon per prima $u la estreme corna. Al- trimenti $e egli piglia$$e in tutti tre i generi per prime la nete hyperboleon, non ci $arebbe differen za tra un genere, & l'altro, perche tutti i termini de i Tetracordi $arebbeno gli i$te<02>i, perche quelli $uoni $ono $tabili, come termini delle con$onanze. da que$ti principij $i hanno gli altri $uoni, come dimo$tra la figura.</I> <p>Ma nella diui$ione di $opra, & regione delle celle, $i hanno a porre i ua$i nelle prime corna $uonanti alla diatonica delle eccellenti, ne i $econdi la diate$$aron alla diatonica del le di$giunte; ne i terzi la diapente alla diatonica delle congiunte, ne i quarti la diate$$aron alla diatonica delle mezane, ne i quinti la diate$$aron alla diatonica delle prime, ne i $e$ti la diate$$aron, alla proslamuanomenon. nel mezo alla mezana, perche quella ri$ponde la diapa$on alla proslamuanomenon, & la diapente alla diatonica delle prime. <p><I>Quello che Vitru. ha detto fin qui, ci $arà manife$to per la figura qui $otto. dice egli.</I> <p>Ma chi uorrà ridurre facilmente a perfettione que$te di$egnationi, auuerti$ca alla fi- gura di$egnata nel fine del libro, con ragione di Mu$ica, laquale Ari$toxeno con gran ui- gore, & indu$tria partendo i canti per generi la$ciò formata, & da quella di$egnatione ($e alcuno ui porrà mente) potrà ordinare con que$ti di$cor$i, & ridurre a perfettione i Theatri, & alla natura delle uoci, & al diletto de gli a$coltanti. <p><I>Perche noi non hauemo nè e$$empio, nè altra memoria altroue, è nece$$ario che crediamo a Vitru. però di que$to non ne diremo piu oltre, perche (come dice Leon Bati$ta) que$ta co$a è faci- le da dire, ma quanto facilmente ella $i po$$a e$$eguire con l'opra, lo $anno gli e$perti. $i uede, che i Romani non u$auano que$ti ua$i.</I> <p>Potrebbe for$e dire alcuno, che per molti anni $tati $ono molti Theatri a Roma, nè <pb n="246"> <fig> <pb n="247"> però in alcuno di quelli, $i ha hauuto alcuna con$ideratione di que$te co$e. Ma, chi dubi- ta, erra in que$to, imperoche tutti i publici Theatri, che $ono fatti di legno, hanno mol- ti tauolati, i quali nece$$ario è, che rendino $uono. Et que$to $i puo auuertire da i Ci- tharedi, i quali quando uogliono cantare col tuono di $opra, $i riuoltano alle porte della $cena, & co$i dallo aiuto di quelle riceueno la con$onanza della uoce. Ma quando di $oda materia, cioè di pietra, di cementi, o di marmo $i fanno, che $ono co$e che non po$$ono ri$uonare, allhora $i deono e$plicare con que$ta ragione da quello, che detto hauemo. Ma s'egli $i cerca$$e in qual Theatro di Roma que ua$i $i trouino, certamente non lo po- temo dimo$trare. sì bene nelle parti d'ltalia, & in molte città de Greci, Oltra, che haue- mo per capo, & autore L. Mummio, ilquale ruinato il Theatro de' Corinthi, portò a Ro- ma i ua$i di rame di quel Theatro, & delle $poglie dedicogli al Tempio della Luna: & an- che molti $uegliati Architetti, che in picciole città hanno fatto farei Theatri, per la ca- re$tia eletti i dogli di creta co$i ri$uonanti, & con que$ta ragione compo$ti hanno fatto effetti di grandi$sima utilità. <HEAD><I>Della conformatione del Theatro.</I></HEAD> <HEAD><I>Cap. VI.</I></HEAD> <p>MA la conformatione del Theatro $i deue fare in que$to modo. che prima $i ueda quanto grande e$$er deue la circonferenza della pianta, & po$to nel me zo il centro $ia tirato un circolo, nel quale $i fanno quattro triangoli eguali, & di $patij, & di lati, che tocchino la e$trema linea della circonferenza. & $o no que$ti a $imiglianza di quelli, che gli A$trologi nella de$crittione de i dodici $egni ce- le$ti da una conuenienza mu$icale, che hanno le $telle tra $e $ogliono di$correndo cauare, Di que$ti rrianguli, quello il cui lato $arà pro$simo alla $cena da quella parte, che egli ta- glia la curuatura del cerchio, iui $ia fatta la fronte della $cena, & da quel luogo per lo cen- tro $ia tirata una linea egualmente di$tante, la quale $epari il pulpito del pro$cenio, & ol $patio dell'orche$tra. & con que$ta ragione il pulpito $arà piu largo, che quello de Greci. perche tutti gli artefici pre$tano l'opera loro nella $cena. Ma nella orche$tra $ono di$e- gnati i luoghi alle $edi de i $enatori. <p><I>La $cena è la fronte del Theatro, alla quale $ia tirato una linea egualmente di$tante, che pa$$i per lo centro, la qual $epari il pulpito (cioè, il luogo piu alto, che è auanti la $cena, $opra la quale $i recitauano le fauole) dalla parte dell'orche$tra. Orche$tra era luogo nel mezo del Thea tro nel piano, doue $tauano i $eggi de i $enatori, appre$$o Romani. Altrimenti la Orche$tra era del choro, & de i mu$ici: La $cena de gli attori. Quando adunque in uno circolo hauerai forma to quattro triangoli di lati eguali, che tocchino con le punte loro la circonferenza, prenderai uno di quelli lati per la fronte della $cena, & poi a quello tirerai una linea egualmente di$tante, che pa$$i per lo centro, che $ia come un diametro, equidi$tante alla fronte della $cena, che $epari il pulpito del pro$cenio dall'orche$tra. I Theatri de i Greci $ono differenti da i Theatri de i Latini, perche i Greci nel mezo del piano induceuano i $altatori, & i chori, & haueuano minor pulpito, & quel piano delli $altatori, $i chiamaua orche$tra. Ma Romani, perche nel pulpito rappre$en tauano ogni co$a, però era nece$$ario, che'l pulpito loro fu$$e maggiore, accioche con quello ue- ni$$ero piu auanti, & meglio s'accommoda$$ero irecitanti, & imu$ici.</I> <p>L'altezza del pulpito non $ia piu di cinque piedi, accicche quelli, che $ederanno nell'or- che$tra po$sino uedere i ge$ti di tutti i recitanti. Siano partiti i cunei de gli $pettacoli nel Theatro in modo, che gli anguli de i trianguli, che uanno a torno la circonferenza del cer chio de$critto drizzino le a$ce$e, & le $cale tra i cunei fino alla prima cinta. <pb n="248"> <p><I>Data l altezza del pulpito di piedi cinque, Vitr. c'in$egna doue, & in che modo doucmo driz- zar le $cale, & le a$ce$e. Haueuano i Theatri d'intorno i $uoi gradi, & ogni tanti gradi era una cinta, cioè un piano, $opra'l quale $i caminaua. Tre erano le cinte, che Vitr. chiama precin- ctioni, la prima alla parte piu ba$$a, la $econda nel mezo, & l'altra di $opra, & quella $cala, che conduceua fino alla prima cinta non $eguitaua fino alla $econda, ma tra mezo nella $econda cinta era un'altra $cala, che ci conduceua alla terza; & co$ile $cale non erano dritte, & d'una $alita. Imaginiamoci adunque, che gli anguli di quelli dodici trianguli, che hauemo formati, indrizzino le apriture alle $alite, & formino qua$i un cuneo. Voglio adunque, che que cunei, che ci conduceno alla prima cinta, in quella $iano terminati, & quelli, che uanno dalla prima al la $econda cinta, rincontrino con gli anguli tramezati: & co$i quelli, che uanno alla terza cin- ta, non ri$pondino a quelli, che ci hanno condotti alla $econda, ma a gli altri di mezo, alternan- do itagli, & le apriture; $iano $ette le apriture, & al centro drizzate egualmente di$tanti l'una dall'altra, una delle quali nel mezo del $emicircolo, $ia piu ampia, & piu aperta, due ne $iano una dalla de$tra, l'altra dalla $ini$tra del diametro, o due per parte tra quella di mezo, & que$te e$treme all'incontro una dell'altra. & co$i le a$ce$e $aranno compartite giu$tamente. $i puo anche fare altre a$ce$e, & u$cite $econdo la capacità del Theatro, ilche $i rimette alla nece$$ità del luo go. ma nelle predette $cale mae$tre, faceuano capo altre $alite coperte (come ho detto di $opra) per la commodità delle per$one. Que$ti cunei adunque erano co$i compartiti, & andauano alle prime cinte.</I> <p>Ma di $opra con alternati $entieri $iano drizzati i cunei di mezo: Et quelli cunei, che $ono da ba$$o, & drizzano le $alite $aranno $ette; ma gli altri cinque di$egneranno la com po$itione della $cena; tra quali, quello, che $arà nel mezo all'incontro deue hauere le por te mae$tre. i due, che $aranno alla de$tra, & alla $ini$tra di$egneranno le compo$itioni delle fore$tarie, che ho$pitali chiamano. gli ultimi due riguarderanno le uie nel uoltar del- le cantonate. <p><I>Le porte regie nel mezo della $cena, gli ho$pitali dalle bande, & doue $i uoltaua per u$cir fuo- ri, ri$pondeua al re$tante de i dodici cunei, cioè a cinque. Dalla $cena alle corna del Theatro era- no portichi, non continui in modo, che tocca$$ero le corna, (benche que$to $i comprenda in al cu- ne piante) ma erano que$ti portichi come ale della $cena. ma che importa $e Vitru. intende$$e per quel nome di uer$ura, quello, che ueramente $i deue intendere, quando finito un lato, $i uolta al- l'altro $opra una cantonata? come anche nel terzo libro $i uede, che egli ha u$ato quel nome in que$ta $ignificatione? & anche nel fine del $eguente capo piu chiaramente lo dimo$tra. Dice poi.</I> <p>I gradi de gli $pettacoli doue s'hanno a porre i $eggi non $iano meno alti d'un palmo, & d'un piede, nè piu d'un piede, & $ei dita, ma le larghezze loro non piu di due piedi, & mezo, nè meno di due piedi. <p><I>I gradi de gli $pettacoli, cioè l'opera di pietra, doue $i $taua $ed<*>do a uedere d'intorno il Theatro non $iano meno alti di cinque palmi, cioè uenti dita, nè piu d'un piede & $ei dita. Erano anche nel l'Orche$tra preparati i luoghi da $edere per li grand'huomini, & Senatori, compo$ti in luoghi piu alti. iui $i portauano le $edi honorate, a tempo; & però $i legge, che per le parole di Na$ica mo$ $a la prudenza de $enatori, uietò che i $ub$ellij, che $i portauano a tempo nel Theatro & s'erano anche cominciati a porre in u$o dalla città, portati fu$$ero, & po$ti ne i luoghi loro. Ecco che pa- re che i $ub$ellij, o $eggi doue $tauano i nobili, erano portati, & po$ti, & $i leuauano, & il luogo loro era $opra alcuni gradi leuati dal piano dell'Orchestra. Per cinquecento, & cinquanta ot- to anni il $enato me$colato col popolo era pre$ente a gli $pettacoli; ma questa u$anza Attilio Se- rano, & L. Scribonio edili, $eguitando la $entenza del maggior' Affricano leuarono, $eparan- do i luoghi del Senato da i luoghi del popolo: per ilche l'animo del uulgo $i riuol$e da Scipio- ne, & il $uo fauore fu grandemente conqua$$ato. $eguita la pianta, il Perfilo, & lo impiè del Theatro.</I> <pb> <pb> <pb n="249"> <fig> <pb> <pb n="250"> <fig> <foot><I>KK</I></foot> <pb n="251"> <fig> <pb n="252"> <HEAD><I>Del tetto delportico del Theatro.</I></HEAD> <HEAD><I>Cap. VII.</I></HEAD> <p>IL tetto di quel portico del Theatro, che $ta $opra l'ultimo ordine de i gradi $u periori $i fa ad egual liuello dell'altezza della $cena: & la ragione è, perche la uoce cre$cendo egualmente peruenirà, & al $ommo ordine de i gradi, & al tetto; perche $el portico non $arà eguale all'altezza della $cena, quanto meno egli $arà alto, la uoce $arà portata inanzi a quella altezza, alla quale prima peruenirà. <p><I>Io ho detto, che que$to portico era $opra i gradi, & come un corridore aperto uer$o il piano del Theatro, ma $errato di dietro faceua ri$uonare la uote mirabilmente. Leon Batti$ta lo chia ma circonuallatione, & dice, che era fatto per re$trignere, & unire la uoce, & che $opra, co- me per cielo del Theatro, & per la uoce, & per l'ombra $i tiraua una uela ornata di $telle. Que $to portico era fatto molto mae$treuolmente, perche haueua $otto altri colonnati, & altri porti- chi per $o$tenimento di quelli di $opra, ma aperti nella parte e$teriore; & que$to $i faceua ne i Theatri di molta grandezza: & $i faceuano doppi, perche al tempo delle pioggie, le genti $i po- te$$ero meglio riparare. I colonnati loro erano di opra $oda, & ferma, & i loro lineamenti era no cauati dalla ragione de gli archi, de i quali il $opradetto ne ragiona copio$amente.</I> <p>La Orche$tra tra i gradi inferiori quanto grande hauerà il $uo diametro, prendi$i la $e- $ta parte di quello, & nelle corna, & d'intorno a gli aditi a liuello di quella mi$ura $iano tagliati i $eggi inferiori; & la doue $arà fatto il taglio, iui $iano po$ti i $opracigli delle uie, perche a que$to modo le loro conformationi haueranno ba$teuole altezza. <p><I>Il primo ordine de i gradi non era $ubito alzato da terra, percioche $arebbe $tato troppo ba$$o, e$$endo i gradi ba$$i, & e$$endo i $edili nell'orche$tra piu alti: però uuole Vitr. che $i pigli la $e$ta parte del diametro dell'orche$tra, & che quella $ia l'altezza di quel muretto, che circonda l'or che$tra, & $econdo quell'altezza dinanzi $i deono tagliare i primi gradi da ba$$o nelle corna, & d'intorno gli aditi, & doue $aranno quelli tagli $iano po$ti i $opracigli delle uie. & per $opracigli intende $opra limitari, $econdo, che egli ha inte$o nel quarto libro trattando de i compartimenti delle porte. Erano alcune apriture, che andauano alle $alite, & alle $cale drizzate $econdo iou nei, che pone Vitr. di $opra.</I> <p>La lunghezza della $cena $ia doppia al diametro dell'orche$tra. L'altezza del poggio dal liuello del pulpito con la $ua cornice, & gola $ia per la duodecima parte del diametro dell'orche$tra. $opra il poggio $iano le colonne, con i capitelli, & ba$amenti la quarta parte dello i$te$$o diametro. Gli architraui, & adornamenti di quelle colonne per la quin ta parte. il parapetto di $opra con la onda, & con la cornice $ia pur la metà del parapetto, o poggio di $otto, & $opra quel parapetto $iano le colonne alte per un quarto meno, che le colonne di $otto. Gli architraui, & gli ornamenri di quelle colonne, per la quinta. Ma $e egli $arà anche il terzo componimento $opra la $cena, $ia il parapetto di $opra, per la metà del parapetto di mezo, & le colonne di $opra $iano meno alte la quarta parte del- le colonne di mezo. gli architraui, & le cornici di quelle colonne habbiano $imilmente la quinta parte dell'altezza. <p><I>Dice Leon Batti$ta, che le fondamenta di quelli pareti, che a$cendeno a gli ultimi gradi, & piu lontani dal centro, cioè dall'ultima, & piu larga cinta $i deono gettare tanto lontani dal cen tro, quanto è il $emidiametro del piano di mezo con un terzo di piu, ma i primi gradi, cioè quelli che $ono di dentro, & piu ba$$i, cioè doue $i comincia la graduatione, non deono $ubito comin- ciare dal piano, ma ne i gran Theatri $i deue leuare un muro dal piano, o parete alto per la nona parte del $emidiametro del piano di mezo; ma ne i Theatri minori, non $i leuerà quel parete piu</I> <foot><I>KK</I> 2</foot> <pb n="253"> <fig> <pb n="254"> <fig> <pb n="255"> <I>di $ette piedi; $opra quelli muri $i deono cominciare i gradi di quella mi$ura, che Vitr. ci ha dimo $trato. Que$ta intentione pare, che Vitr. accenni di $opra nel terzo capo, & qui anche ragio- nando di quel taglio, che $i fa per li $eggi nella circonferenza interiore, & per li $opracigli delle uie. Et per $eggi egli intende i primi gradi. Ragiona poi della lunghezza della $cena, che deue e$$er doppia al diametro dell'orchestra. La doue $e il diametro $arà di piedi $e$$anta, la lunghez za della $cena $arà di piedi cento, & uenti. perche $e$$anta piedi della $cena anderanno per mezo il diametro, dell'orchestra, & trenta per parte per mezo le corna del Theatro. Egli ci da poi l'altezza del poggio. Poggio è come un parapetto nella fronte della $cena. la cui parte di $otto, che uiene uer$o l'orche$tra è il pulpito. $opra il pulpito adunque, & dal liuello di quello a faccia de gli $pettatori, alzar $i deue il primo parapetto per la duodecima parte dell'orche$tra. cinque piedi è alto il pulpito, cinque il parapetto. Et qui è da con$iderare, che il diametro della orche- $tra, ci da la mi$ura, & il fondamento del tutto. per la duodecima parte adunque, del diametro dell'orche$tra, è alto il poggio abbracciando la cornice, & la li$i, che onda, cima$a, o gola$i puo chiamare: ma doue $ia tratto que$to uocabolo di li$i, io non ho truouato fin hora. Lix in Greco è una pietra larga, & obliqua; & $e Vitr. dice$$e Lixis potrebbe intendere quella pietra del poggio piana, $opra la quale l'huomo $i appoggia. Le colonne con i capitelli, & ba$e $iano al te per la quarta parte del diametro dell'orche$tra, & co$i $arebbeno di quindici piedi e$$endo il diametro della orche$tra $e$$ana. Sopra quelle colonne, & $opra i loro ornamenti ui andaua il $econdo ordine; & quell'ordine di $opra era detto Epi$cenos, qua$i $opra $cena, ouero aggiunta della $cena: & ne i gran Theatri $i andaua anche al terzo ordine, & tanto a$cendeua, che ag- guagliaua il tetto del portico di $opra: anzi egli $i continuaua a torno con quelle i$te$$e mi$ure: & però Vitr. non ragiona di quelle mi$ure, perche $ono le i$te$$e della terza epi$cenos. Dal profilo del Theatro po$to in forma grande, $i comprenderanno molte co$e da noi dichiarite $econdo la in- tentione di Vitr. benche nelle altezze delle colonne hauemo, alquanto uariato, per la ragione, che dice qui $otto.</I> <p>Nè in ogni Theatro a tutte le ragioni, & effetti po$$ono corri$pondere le mi$ure, & i compartimenti. Ma e nece$$ario che lo architetto auuerti$ca con che proportioni bi$o- gna $eguire i compartimenti, & con che ragione egli debbia alla natura, o alla grandez- za del luogo reggere l'opera & $eruirle. Imperoche ci $ono delle co$e & nel picciolo, & nel gran Theatro, che di nece$sità deono tenere, la i$te$$a grandezza. perche co$i l'u$o ri- chiede: come $ono i gradi, le cinte, i parapetti, le uie, le $alite, i pulpiti, i tribunali, & $e altre co$e tra mezo correno, delle quali la nece$sità ci sforza partir$i dalla $imme- tria, accioche l'u$o non $ia impedito. Similmente $e egli ci mancherà la copia come del marmo, del legname, & delle altre co$e, che $i apparecchiano per la fabrica, non $arà fuo ri di propo$ito di leuare, o di aggiugnere alquanto, pure che que$to troppo $cioccamen- te non $i faccia, ma con giudicio, & $entimento; & que$to auuerrà $e lo Architetto $arà pratico, & oltra di que$to $e egli non $arà $enza pre$tezza, & $olertia d'ingegno. <p><I>Et però chi uede le membra delle opere antiche, & truoua co$a, che paia fuori de gli ammae- $tramenti di Vitr. (come s'è detto altroue) non deue di primo tratto bia$imare o Vitr. o le opere, perche non puo $apere quello, che portaua la nece$$ità, & quanto in tutto'l corpo quel membro teneua la $ua ragione. Vitr. $e ne auuidde di que$ta $orte d'huomini, & in ogni luogo dapoi, che egli ci ha dato le $immetrie, & le proportioni delle co$e, egli ci fa auuertiti come douemo u$are quella moderatione, che richiede il pre$ente bi$ogno. Noi hauemo interpretato cinte, quella pa rola, che egli ha u$ato dal Greco, diazonata, & altroue ha detto prœcinctiones. Et co$i bi$ogna auuertire, che bene $pe$$o Vitr. u$a piu uocaboli d'una i$te$$a co$a, come di $opra ha detto onda, quello, che altroue ha chiamato cymatiū. Tribunale egli chiama tutte quelle parti, alle quali s'a$cē de per gradi; & nel quarto libro noi ne hauemo detto a ba$tanza. Le co$e adunque nominate da Vitr. deono in ogni Theatro hauere i compartimenti mede$imi, perche $ono parti nece$$arie, & accommodate all'u$o.</I> <pb n="256"> <p>Ma le $cene habbiano le loro ragioni e$plicate in modo, che le porte di mezo habbia- no gli ornamenti d'una $ala regale, & dalla de$tra, & dalla $ini$tra $iano gli ho$pitali; ma longo quelli $pacij, che $i fanno per ornamento. i quali da i Greci $ono detti periachi, per- che in que luoghi $i girauano le machine, che hanno i triangoli, che $i riuolgeno. In cia- $cuno tre $ono le $pecie de gli ornati, & apparati. que$te machine $i hanno a uoltare, & a mutare l'a$petto de gli ornamenti loro nelle fronti; ouero quando $i deono mutare le fa- uole, ouero quando uenir deono i Dei con tuoni repentini. Lungo quelli luoghi $ono le cantonate, & uolte, che $i porgeno auanti, lequali fanno l'entrate & gli aditi nella $cena, l'una dal foro, l'altra da qualche altra parte, donde $i uegna. <p><I>La porta di mezo, che ri$ponde al cuneo di mezo de i cinque, che $i danno alla $cena, era det- ta Regia da gli ornamenti $uoi. Eranui altre porte una dalla de$tra, & l'altra dalla $ini$tra di modo, che la fronte della $cena haueua tre gran nicchi, come $i uede nella pianta, in quelli erano drizzate le machine triangulari, che $i uoltauano $opra perni, & in cia$cuna facciata era di- pinto l'ornamento $econdo la fauola, che $i deueua rappre$entare. perche in una facciata era la pro$pettiua d'una $cena Comica, nell'altra la Tragica, nell'altra la Satirica, & $econdo la occa- $ione uoltauano quelle fronti. Da que$te machine parlauano i Dei dal di $opra, s'udiuano i tuoni nella lor uenuta, fatti con utri di corami gonfi, o di pelli tirate, come ne i Tamburri, che u$amo, & con $a<02>i dentro, che faceuano un ribombo grandi$$imo. & per que$to modo $eruauano il decoro, non la$ciando che i Dei $i uede$$ero in $cena. Co$i appre$$o di Sofocle nello Aiace flagellifero Pal lade parla con Vli$$e, & non $i uede. & egli dice, che la uoce di quella Dea non ueduta, a$$imi- glia al $uono d'una tromba da guerra, che commoue tutto l'huomo, quando ella $i $ente $uonare all'arme. Que$te machine adunque $i riuolgeuano $econdo il bi$ogno & dauano luogo all'entra te, rappre$entando le uie l'una, che ueni$$e dalla piazza, & l'altra, d'altronde. & la figura ci dimo$tra il tutto.</I> <HEAD><I>Ditre$orti di Scene. Cap. VIII.</I></HEAD> <p>Tre $ono le $orti delle Scene, una è detta Scena Tragica, l'altra Comica, la ter- za Satirica. Gli ornamenti di que$te $ono tra $e diuer$i, & con di$eguale com partimento $i fanno. imperoche le $cene Tragiche $i formano con colonne, Fronti$picij, figure, & altri ornamenti regali. le Comiche hanno forma di priuati edi$icij, di pergolati, o corritori, & pro$pettiue di fine$tre di$po$te ad imitatione de i communi e dificij, ma le Scene Satiriche $ono ornate di alberi, & di $pilonche, & di monti, & d'altre co$e ru$ticali, & agre$ti in forma di giardini. <p><I>I Tragici recitauano i ca$i de i Tiranni, & de i Re. a que$ti conueniuano ornamenti regali, pa- lagi, loggie, colonnati: però la facciata del triangolo, che era per la Tragedia haueua que$ti edi- ficij, che haueuano del grande, ornati & dipinti. I Comici rappre$entanano co$e quottidiane, & attioni di gente ba$$a, però la $cena loro dimo$traua forme di priuati edificij. iSatirici portauano co$e $ilue$tri, & bo$carecci conuenienti a pa$tori aninfe & $imili co$e; però la $cena era di uer- dure, d'acque, di pae$i di lontani colorita. & era mirabile inuentione quella delle dette machine triangolari, & uer$atili, perche drieto una fauola Tragica era pronto l'apparato d'una comedia; & drieto la comedia $i poteua $enza porui tempo di mezo fare la rappre$entatione d'alcuna Egloga, o d'altro, $olamente col dare una uolta a quelle machine, che greci dallo effetto chia- mano periachi, perche $i riuolgeno. & qui è nece$$aria la intelligenza, & la pratica della pro- $pettiua, perche tutte quelle co$e ricercano il punto della ui$ta no$tra regolatore di quanto $i uede in quelle facciate. dalche ne na$ceno gli $porti, i ra$tremamenti, i battimenti de i lumi, & delle ombre, l'entrate, l'u$cite delle parti de i membri, il uicino, il lontano, & lo incrocciamento</I> <pb n="257"> <I>de i raggi, & la ragione de gli angol, $otto liquali $i uede tutto quello, che $i uede. $econdo la conueneuole uarietà de gli a$petti. nelche è opra di bel giudicio di $aper ponere il punto co$iac- commodatamente, che tutto quello, che $i uede dipinto rappre$enti un $ito, & un'e$$er naturale delle co$e, & niente $ia di sforzato, di precipito$o, di difforme, di $garbato, come $i uede nelle $cene di molti le co$e oltra modo picciole, gli edificij, che traboccano, i fuggimenti tanto al ba$- $o punto $enza dolcezza tirati, che nè dappre$$o, nè da lontano po$$ono e$$ere con diletto ueduti. Que$ta nece$$ità mi ha mo$$o a uoler giouare, quanto per me $i puo, anche in que$ta parte a gli $tu dio$i. & però io ho $critto di pro$pettiua con uie, & modi ragioneuoli drizzati alla pratica che è detta $cenografia. & ho gettato i fondamenti di que$ta cognitione, & le regole di que$ta pra- tica, con diffinire, diuidere, & dimo$trare, quanto alla detta ragione è nece$$ario, accioche $enza dubitatione l'huomo po$$a porre la ueduta in proprio, & accommodato luogo, accioche non $i ca$ chi in quelli errori, che di $opra ho detto. iui $i ueder à la di$po$itione de i piani regolati, & in re- golati, in $quadra, & fuori di $quadra, & iperfetti di qualunque corpo $i $ia. il modo di leuare i corpi $econdo le altezze loro, & la ragione delle parti delle colonne, & delle tre $orti di $cene, con quanto appartiene all'ombreggiare, a i lumi, ad alcuni modi facili per uia d'in$trumenti, & d'al- cune altre maniere di que$ta pratica diletteuole, & nece$$aria. ma tornamo a Vitru. che tratta de i Theatri de i Greci. & dice.</I> <p>Ma ne i Theatri de i Greci non $i deono fare tutte le co$e con le i$te$$e ragioni, perche nella circonferenza del piano inferiore, $i come nel Theatro latino gli anguli di quattro Triangoli toccauano il giro, & circuito d'intorno, co$i nel Greco gli anguli di tre qua- drati deono toccare la detta circonferenza, & il lato di quel quadrato, che è pro$simo alla Scena, & che taglia la curuatura della circonferenza in quella parte di$egna il termine del pro$cenio, & d'indi allo e$tremo giro della curuatura $e le tira una linea egualmente di- $tante, nellaquale $i di$egna la fronte della $cena. & per lo centro dell'orche$tra a can- to il pro$cenio, $i de$criue una linea equidi$tante, & da quella parte doue ella taglia le li- nee della circonferenza dalla de$tra, & dalla $ini$tra nelle corna del $emicircolo, $i hanno a ponere i centri: & po$ta la $e$ta nella de$tra dallo $pacio $ini$tro $i tira un giro alla de$tra parte del pro$cenio, & co$i po$to il centro nel $ini$tro corno dallo $pacio de$tro $i gira al- la $ini$tra parte del pro$cenio, & co$i per tre centri con que$ta de$crittione i Greci hanno l'orche$tra maggiore, & la $cena piu a dentro, & il pulpito, che chiamano logion, men lar go; perche appre$$o de Greci la $cena era data a i recitatori di Tragedie, & di Comedie. ma gli altri artefici faceuano i loro ufficij per l'orche$tra. & di qui na$ce, che $eparatamen- te da Greci nominati $ono i $cenici, & i Thimelici. <p><I>Era appre$$o de Greci l'orchestra maggiore, & per que$to nella di$egnatione de i loro Theatri faceuano tre quadrati in un circolo, $i come i Latini faceuano quattro trianguli, e tutto che tan- to gli anguli de i triangoli, quanto gli anguli de i quadrati parti$$ero in dodici parti eguali la cir- conferenza, era però maggiore $pacio nel mezo la doue erano tre quadrati, che la doue erano quattro triangoli, perche i lati de i quadrati $ono piu uicini alla circonferenza. & $i come nel Theatro de i Latini, un lato d'un triangolo faceua la fronte della $cena, co$i faceua un lato del qua drato nel Theatro de Greci, & terminaua il pro$cenio: ma la fronte della $cena era $opra una li- nea tirata fuori della circonferenza del circolo, che toccaua pure la circonferenza, & era egual mente di$tante a quel lato del quadrato, che terminaua il pro$cenio, di modo che la $cena de i Greci era piu rimota, che la $cena de i Latini. Oltra di que$to egli $i tiraua anche una linea, che pa$$aua per lo centro, & era come diametro egualmente di$tante al detto lato, & alla fronte del la $cena. $opra gli e$tremi di que$ta linea la doue tocca la circonferenza, $i faceua centro, & po$to prima l'un piede della $e$ta in uno, l'altro $i allargaua al centro, & uolgendo$i intorno ci daua i termini della maggior circonferenza: perche iui era il termine della circonferenza, & ultima precintione del Theatro, la doue toccaua la linea del pro$cenio. come è nel punto B. & C. Dellalinea. C. B. & i centri$ono. D. E.</I> <pb> <pb> <pb n="258"> <fig> <foot><I>II</I></foot> <pb> <pb n="259"> <p><I>La machina triangulare. O. doue <*> anche la porta regia.</I> <p><I>La fronte della $cena F. G. L'Orche$tra P.</I> <p><I>Il re$tante è facile, & gli ho$pitali, & altre $tanze come nel Theatro de Lati<*>i. ucro è, che nella pianta del Latino, nella $cena hauemo fatto tre porte, & in cia$cuna uno triangolo uer$ati- le, per accompagnare di pro$pettiua la facciata di mezo, & hauemo congiunto a diuer$o modo la $cena del Theatro latino; come che que$to $i po$$a fare in piu modi. ilche ci ha piaciu- to come conuenienti$$ima forma, e$$endo $tati auuertiti dalle ruine d'uno antico Theatro, che $i troua in Vicenza tra gli horti, & le ca$e d'alcuni cittadini, doue $i $corgeno tre gran nicchi del la $cena, la doue noihauemo po$to le tre porte, & il nicchio di mezo è bello, & grande.</I> <p>L'altezza di quel luogo non deue e$$er meno di dieci, nè piu di dodici piedi. I gradi del le $cale tra i cunei, & le $edi all'incontro de gli anguli de i quadrati $iano dtizzati alla pri- ma cinta, & da quella cinta tra mezo di quelli, $iano drizzate anche l'altre gradationi & alla $omma quanti $aranno altrettanto $iano ampliate. <p><I>L'altezza di quelluogo, cioè del logeo, & pulpito, non deue e$$er meno di dieci, & piu di dodi- ci piedi. Vitr. alza il pulpito de i Greci $ette piedi piu del pulpito de i latini, perche e$$endo il pul- pito de Latini piu uicino all' orche$tra, non bi$ognaua che egli fu$$e piu alto, ma i Greci che haue- uano la loro orche$tra piu rimota dalla $cena poteuano alzar alquanto piu il pulpito loro, $enza impedimento della ui$ta, come $i uede che la di$tanza fa parere ba$$e le co$e alte, perche $i uede $e uno ua appre$$o una ca$a, non uede il colmo, ma piu che egli s'allontana piu lo di$cuopre, come la ragione della pro$pettiua ci fa manifesto. Alzato adunque il pulpito, Vitru. drizza le $cale uer$o i cunei, & uuole il mede$imo, cioè che le $cale, che uanno alla prima cinta non incontrino con quelle che uanno alla $econda, & uuole di piu che le $cale, & le $alite $iano raddoppiate quan to piu cinte $aranno, come $i uede nella figura.</I> <p>Poi che que$te co$e con $omma cura, & $olertia $aranno e$plicate, bi$ogna allhora piu diligentemente auuertire, che egli elegga un luogo doue la uoce dolcemente applicata $ia, & che $cacciata, ritornando a dietro, non riporti all' orecchie una incerta $igni$icatione de lle co$e. <p><I>A Vitr. molto preme l'accommodar il luogo alla uoce; però oltra le gia dette co$e, egli tutta uia ci da precetti di que$to, & ammae$tr amenti belli$$imi; & in uero non $enza grande ragione, perche il fine di tutta questa materia di $pettacoli, è che $i ueda, & che $i oda commodamente. Di$tingue adunque i luoghi quanto alla natura del $uono, & dice.</I> <p>Sono alcuni luoghi, i quali naturalmente impedi$ceno il mouimento della uoce, come $ono i di$$onanti, i circon$onanti, i ri$onanti, & i con$onanti, detti da Greci, catihcon- tes, perijchontes, antijchontes, $inichontes. Di$$onanti $ono quelli, ne i quali, poiche $i leua la prima uoce offe$a da i corpi $odi di $opra, è $cacciata al ba$$o, & opprime la $alita della $econda uoce. <p><I>Come $e egli dice$$e, che il primo giro della uoce intoppando$i in co$a dura, & $oda fu$$e in giu rincalzato, & rompe$$e il $econdo giro, doue ne na$ce$$e la di$$onanza, che per uirtu della parola Greca $ignifica $uono al ba$$o cacciato, rotto, & franto, perche catichontes, è qua$i deor$um $o- num mittentes. & io ho interpretato di$$onanti a quel modo, che nel Latino $i dice de$picere, qua$i deor$um<*> a$picere.</I> <p>Circon$onanti luoghi $ono quelli, ne i quali la uoce ri$tretta girando intorno ri$ol- uendo$i nel mezo, $uonando $enza gli e$tremi $uoi cadimenti, $i e$tingue la$ciando incer- ta la $ignificatione delle parole. <p><I>Que$ti luoghi fanno rimbombo, perche in quelli ritorna lo i$te$$o bombo o $uono, come d'intor- no, & dentro le campane $i perde il $uono, poi che re$ta la perco$$a.</I> <p>Ri$onanti $ono quei luoghi, doue e$$endo la uoce in $odo luogo perco$$a, ritornando a dietro le imagini, che la e$primeno, fanno doppi all'udito i cadimenti. <foot><I>M M Ri$$uona</I></foot> <pb n="260"> <p><I>Ri$uona la uoce percuotendo, & ritoruando a dietro qua$i di rinuerbero, & come iraggi del Sole rifle$$i, co$i la uoce riperco$$a ri$uo<*>a, cioè di nuouo $uona, & raddoppia la $ua $imiglianza, & fa Echo. La cui e$pre<02>ione per piacer no$tro facemmo, come qui $otto. & ne i librino$tri dell'a- nima in uer$i latini ne adducemmo la ragione, parlando del mouimento della uoce, & del $en- $o dell' udita.</I> <p><I>Echo figlia de i bo$chi, & delle ualli, Ignudo $pirto, & uoce errante e$ciolta,</I> <p><I>Ererno e$$empio d'amoro$i falli Che tanto altrui ridice, quanto a$colta,</I> <p><I>S'amor ti torne ne $uoi allegri balli Et che ti rendi la tua forrna tolta,</I> <p><I>Fuor d'este ualli abandonate e $ole, Sciogli i miei dubbi in $emplici parole.</I> <p><I>Echo che co$a è'l fin d'amore? Amore. Chi fa $ua $trada men $icura? Cura.</I> <p><I>Viue ella $empre, o pur $en more? More. Debbio fuggir la $orte dura? Dura.</I> <p><I>Chi darà fin al gran dolore? L'hore. Com'ho da uincer chi è pergiura? Giura.</I> <p><I>Dunque l'inganno ad amor piace? Piace. Che fin è e$$o guerra o pace? Pace.</I> <p>Con$onanti $ono que luoghi ne i quali dal piano la uoce aiutata con augumento cre- $cendo entra nelle orecchie con chiara determinatione delle parole. <p><I>I luoghi con$onanti $ono affatto contrarij a i di$$onanti, perche in quelle la uoce uiene dal cen- tro alla circonferenza aiutata, & unita, & cre$ce egualmente. in que$ti la uoce dalla circonfe- renza al centro è ribattuta, & rotta. Questa differenza de i luoghi è molto bella, & ben di- chiarita da Vitr. però dice.</I> <p>Et co$i $e nella elettione de i luoghi $i auuertirà con diligenza, $enza dubbio lo effetto della uoce ne i Theatri $arà con prudenza all'utilità moderato, & temperato. Ma la de- $crittione, & i di$egni tra $e con que$te differenze $aranno notati, che quelli di$egni, che $i fanno de i quadrati $iano de Greci, & quelli de i trianguli equilateri habbiano l'u$o de' latini. & co$i chi uorrà u$are que$te pre$crittioni, condurrà beni$simo i Theatri. Plinio di- ce, che l'arena $par$a nell' Orche$tra diuora la uoce. <HEAD><I>'De i portichi drieto la Scena, & delle ambulatio- ni. Cap. IX.</I></HEAD> <p>Deon$i fare i portichi drieto la $cena a que$to fine, accioche quando le pioggie repentine $turberanno i giuochi, il popolo habbia doue egli $i ricoueri dal Theatro, & accioche que luoghi, ne i quali $i danno gli in$trumenti per lo choro, & lo apparato del choro habbia campo $paciolo. come $ono i porti- chi Pompeiani, & in A thene i portichi Eumenici, & il Tempio del padre Bacco, & l'Odeo a quelli, che e$ceno dalla parte $ini$tra del Theatro, ilquale Pericle di$po$e in A thene con colonne di pietra, & con gli alberi, & con le antenne delle naui delle $poglie de' Per$iani ri coper$e. & lo i$te$$o anche bru$ciato alla guerra Mithridatica il Re Ariobarzane rifece. & come a Smirne lo Stratageo. <p><I>Choragia $ignifica due co$e, & quelli, che danno lo in$trumento, & l'apparato per li giuo- chi, & il luogo di doue $i caua lo in$trumento. Odeum era qua$i uno picciolo Theatro, doue s'u- diuano le proue, & le concorrenze de i Mu$ici. Io $timo, che iui s'a$$etta$$ero i Mu$ici, come nel Choragio $i a$$ettauano gli hi$trioni, che di quel luogo poi entrauano nella $cena. Stratageo chiamerei lo armamento. Fin qui Vitr. ha di$$egnato il Theatro, & dimo$trato $econdo l'u$o de Greci, & de Latini, che differenza $ia nelle loro de $ignationi. Hora parla di quelli portichi, che erano dietro la $cena, & de i luoghi da pa$$eggiare, perche co$i era ordinato da i buoni Ar- chitetti, che a Tempij, & alle ca$e de i grandi, & alle fabriche publiche $i de$$ero i portichi: & que $to, come dice Vitru. & per nece<02>ità, & per diletto, & per ornamento $i faceua.</I> <p>Et a Tralli il portico, come d'una $cena; $opra lo $tadio dall'una parte, & l'altra. Et <pb n="261"> come nelle altre città, che hanno hauuto gli Architetti piu diligenti. D'intorno a i The <*> tri $ono i portichi, & gli $patij da pa$$eggiare: che co$i pare, che $i habbiano a ponere. prima che $iano doppi. <I>Cioè non in altezza, & di due ordini di colonne, ma doppi di $otto. & come portichi de i Tempij: & le $eguenti parole lo dinio$trano.</I> <p>Et habbiano le colonne e$teriori Doriche, & gli Architraui con gli ornamenti $eco<*>- do la ragione della mi$ura Dorica fabricate. Dapoi, che le larghezze loro $iano in mo- do, che quanto alte $aranno le colonne di fuori, tanto $iano gli $patij da pa$$eggiare dal- la parte di dentro tra le e$treine colonne, & tra le mezane a i pareti, che rinchiudeno il portico d'intorno. ma le colonne di mezo $iano per la quinta parte piu alte delle e$teriori. <p><I>La ragione è, perche deono occupare quello $patio, che occupa lo architraue $opra le colonne e$teriori; & perche $opra quello di mezo non $i pone architraue, però deono e$$er piu alte.</I> <p>Et fatte $iano alla lonica, ouero alla Corinthia. Le mi$ure delle colonne, & i com partimenti non $aranno fatte con le i$te$$e ragioni, come ho $critto de i Tempij. perche conuengono hauere altra grauitá ne i Tempij de i Dei, & altra $ottilità ne i portichi, oue- ro nelle altre opere, & però $e le colonne $aranno di maniera Dorica, $iano partite le loro altezze con i capitelli in parti quindici, & di quelle una $ia il modulo, alla cui ragione $i e$pe dirà tutta l'opera: & da piedi la gro$$ezza della colonna, $i faccia di due moduli: lo $patio tra le colonne di cinque & meza: l'altezza delle colonne eccetto il capitello di quattordici moduli: l'altezza del capitello d'uno modulo: la larghezza di due, & d'un $e$to: le altre mi$ure del re$tante dell'opera, $i faranno, come s'è detto de i Tempij nel quarto libro. Ma s'egli $i faranno le colonne Ioniche, il fu$to della colonna oltra la ba$a, & il capitello $ia diui$o in otto parti & meza, & di que$te una $ia data alla gro$$ezza della colonna: la ba- $a con l'orlo $ia fatta per la metà della gro$$ezza. Il capitcllo $i farà con la ragion detta nel terzo libro. Se la colonna $arà di maniera Corinthia, il fu$to, & la ba$a $ia come la Io nica, ma il capitello $econdo che è $critto nel quarto libro. La aggiunta del piede$talo, che $i fa per gli $cabelli di$pari, $ia pre$a dal di$egno $opra $critto nel terzo libro. Gli Ar- chitraui, goeciolatoi, & tutto il re$to de membri, $econdo la ragione delle colonne $i piglieranno da gli $critti, de i uolumi $uperiori. Ma gli $patij di mezo, che $aranno alla $coperta tra i portichi, $i deono ornare di uerdure, perche il pa$$eggiare alla $coperta ritie- ne gran $alubrità: & prima da gli occhi, perche lo aere a$$otigliato dalle uerdure, entran do per cagione del mouimento del corpo, a$$ottiglia la $pecie del uedere, & co$i leuan- do il gro$$o humore da gli occhi la$cia la ui$ta $ottile, & la $pecie acuta. Oltra di que$to $caldando$i il corpo per lo mouimento del caminare, a$ciugando lo aere gli humori dalle membra, $cema la pienezza loro, & di$sipando gli a$$ottiglia, perche ne $ono molto piu di quello, che il corpo puo $o$tenere. Et che que$to co$i $ia, egli $i puo auuertire, che e$- $endo le fonti dell'acque al coperto, ouero e$$endo $otterra la copia palu$tre, non $i leua da quelli alcuno humore nebulo$o, ma $i bene ne i luoghi aperti, & liberi, quando il na- $cente $ole col $uo caldo uapore ri$calda il mondo, eccita da i luoghi humidi, & abondanti d'acqua gli humori, & quelli in$ieme raunati $ollieua. Se adunque co$i pare, che ne i luo ghi aperti i piu graui humori $iano per lo aere $ucchiati da i corpi, come dalla terra per le nebbie $i uede, io non pen$o, che dubbio $ia, che non $i debbia porre nelle città gli $patij da caminare $coperti $otto il puro cielo. Ma perche que$te uie non $iano fango$e, ma $empre a$ciutte, in que$to modo $i deue fare. Siano cauate, & profondi$simamente uuo tate, & dalla de$tra, & dalla $ini$tra $i facciano le chiauiche murate, & ne i pareti di quel- le, che riguardano al luogo doue $i pa$$eggia $iano fatte le canne piegate con la cima loro nelle chiauiche, & dapoi che quelle co$e $aranno fatte compiutamente, bi$ogna empire quelli luoghi di carboni, & le uie di $opra $iano coperte di $abbione, & i$pianate, co$i per la naturale rarità de i carboni, & per le canne ri$pondenti alle chiauiche $i riceuerà l'acqua <foot><I>M M</I> 2</foot> <pb n="262"> doue $enza humore, & a$eiutte $aranno le uie da pa$$eggiare. Appre$$o in que$te opere $o no le monitioni fatte da i maggiori nelle città delle co$e nece$$arie. perche ne gli a$$edi ogni co$a $i puo hauere piu facilmente, che le legna. perche prima il $ale piu facilmente $i puo portare, i grani nel publico, & nel priuato piu e$peditamente $i a$$unano: & $e per ca $o uengono al manco, con l'herbe, & con la carne, & con i legumi $i riparano: le acque col cauare de i pozzi, & con le gran pioggic dalle tegole $i raccoglicno. ma la monitione & proui$ione delle legna tanto nece$$aria a cuocere il cibo, è difficile, & noio$a: perche tardo $i conduce, & piu $i con$uma in que$ti tempi del bi$ogno delle legna, & de gli a$$e dij. S'apreno que$ti cortili, o $patij $coperti, & $i diuideno le mi$ure partitamente a cia- $cuna te$ta, & co$i que$ti luoghi $coperti fatti per pa$$eggiare danno due belle, & buone co $e: una nella pace, che è la $anità, l'altra nella guerra, che è la $alute. Per quelle ragioni adun que gli $patij da pa$$eggiare non $olo dopo la $cena del Theatro, ma anche po$ti appre$$o i Tempij di tutti i Dei potranno e$$er nelle città di grandi$simo giouamento. Et per- che molto chiaramentemi pare hauer detto di tali co$e, hora pa$$erò a dimo$trare la ragio ne de i bagni. <p><I>Io non $aprei che aggiugnere a Vitr. $enon a pompa, però $eguitando la di$po$itione de i bagni, di quelli ne ragioneremo.</I> <HEAD><I>Della di$po$itione, & delle parti de i bagni. Cap. X.</I></HEAD> <p>Primamente egli $i deue eleggere un luogo, che $ia caldi$simo, cioè riuolto dal $ettentrione, & dallo A quilone, & quelli luoghi, che $i faranno per ri$caldare ouero intepidire, habbiano i lumi da quella parte, doue tramonta il $ole la in- uernata. Ma $e la natura del luogo ci $arà d'impedimento, egli $i piglierà il lu me dal meriggie; pche il t&etilde;po di lauar$i $pecialmente è $tato po$to dal meriggie al ue$pero. <p><I>Vitr. ci accommoda gentilmente ne i bagni, & dice quello, che è n<17>ce$$ario all'u$o, hauendo $olamente ri$petto al bi$ogno. Imperoche prima le Therme non er ano in quel pregio, che uenne- no poi, anzi ui era $olamente il bagno de$tinato alla $anità del corpo. indi poi cre$cendo la lu$$u- ria con le ricchezze $otto il nome di Therme edificauano co$e magnifiche & grandi, con portichi, bo$chetti, natatoi, pi$cine, & altre co$e, $econdo le uoglie & appetiti de gli<*> Imperatori, & de gran per$onaggi. lo e$ponerò prima quello, che dice Vitr. & poi ui di$correrò $opra $econdo il bi- $ogno. Vuole adunque, che i bagni $iano in luoghi caldi$$imi, & dichiara quali $iano, & dice e$$er quelli, che non riguardano a Tramontana: & perche erano luoghi ne i bagni, ne i quali prima s'intepidiuano i corpi, & poi $i ri$caldauano, per non entrare dal freddo $ubito al caldo, però uuole, che $i prenda il lume per questi luoghi da quella parte, doue il $ole tramon ta la inuernata, che è da Garbino. & quando il luogo non pati$ca que$ta commodità, uuole, che $i pigli dal mezo giorno. Le ragioni di que$ti precetti $ono facili.</I> <p>Anchora $i deue auuertire, che i luoghi, doue gli huomini & le donne $i hanno a ri$cal dare, $iano congiunti, & po$ti a quelle i$te$$e parti. perche co$i auenirà, che ad amendue que luoghi dal forno ne i ua$i $eruirà l'u$o commune. Sopra il fornello douemo porre tre ua$i di rame, uno che $i chiama il caldario, l'altro il tepidario, il terzo rinfre$catoio. & $i deono collocare in que$to ordine, che quanta acqua u$cirà dal caldario, tanta in quel- lo ui uegna dal tepidario, & co$i allo i$te$$o modo, dal rin$re$catoio nel tepidiario di$cen da. & dal uapore della fornace commune a tutti $caldati $iano i uolti de i letti, $opra i quall $ono que ua$i. <p><I>Siano congiunti i luoghi doue gli huomini, & le donne $i hanno a $caldare, perche uno i$te$$o</I> <pb n="263"> <I>forno ri$calder à amendue gli $caldatoi, & anche i tepidarij: & $iano anche uolti alle i$te$$e parti del cielo. Il rinfre$catoio, cioè il ua$o dell'acqua fredda, $arà nel luogo di $opra. que$ti infonderà l'acqua nel ua$o tepidario, & que$to nel caldario. Et il caldo uapore della fornace darà $otto al fondo di que ua$i, ma al caldario ne darà poco, al tepidario meno, a quel di $opra niente: & c'in- $egna il modo di $o$pendere quelli ua$i, & dice.</I> <p>Il $o$pendere de i caldai $i fa prima in modo, che il $uolo $ia $alicato di tegole d'un pie- de, & mezo; ma $ia quel $alicato pendente uer$o la bocca del fornello, come $e $i getta$$e dentro una palla, ella non pote$$e $tarui dentro, & fermar$i, ma di nuouo ritorna$$e alla bocca della fornace, percioche a que$to modo la fiamma da $e piu facilmente andrà ua- gando $otto il luogo doue $tanno que ua$i $o$pe$i. Ma di $opra $i deono fare i pila$trelli con mattoni di otto once, co$i di$po$ti, che $opra quelli $i po$sino fermare le tegole di due piedi; ma i pila$trelli $iano alti due piedi, impa$tati di argilla, o creta, & peli ben bat tuti, & $opra quelli $i pongano tegole di due piedi, le quali $o$tentino il pauimento. le concamerationi, o uolti $aranno piu utili, $e $i faranno di $truttura. ma $e $aranno ta$$el- li, o di legname bi$ogna porui $otto l'opera di terra cotta, & farle con que$ta maniera. Faccian$i le tegole, o lame, o gli archi di ferro, & que$ti con i$pe$si$simi oncini di ferro $iano $o$pe$i al ta$$ello, & quelle re gole, o archi $iano in tal modo di$po$ti, che $i po$$a $opra due di quelli po$are le tegole $enza i loro margini, & co$i tutte le uolte po$ando$i, & ferma ndo$i $opra il ferro $iano condotte, & perfette. Et i con$trignimenti, & lega- menti di quelle uolte dalla parte di $opra $iano coperti leggiermente di argilla battuta in- $ieme con peli. ma la parte di $otto, che riguarda al pauimento $ia rimboccata con te$to- le rotte, & con calce, dapoi con belle coperte polita, intonicata, & biancheggiata. Et que$te uolte $e $aranno doppie ne i luoghi, & alli detti $caldatoi, $aranno di piu utilità, perche l'humore non potrà far danno al palco, o ta$$ello, ma potrà fra due uolte libera- mente uagare. <p><I>Vitr. c'in$egna come douemo fare i uolti, & il cielo de i bagni, & quanto alla materia, & quanto alle parti: ma prima egli ci dimo$tra come bi$ogna fare il pauimento del bagno per alzar- lo da terra, & dall'humore dicendo, che bi$ogna la$tricare con tegole d'un piede, & mezo il pia no, il quale penda uer$o la bocca del forno; $opra il la$tricato uuole, che $i drizzino alcuni pila- $trelli alti due piedi fatti di quadrelli di due terzi di piede, & impa$tati con creta ben battuta con piedi, il che $i fa perche stia $alda al fuoco, $opra i pilastrelli egli s'impone le tegole di due piedi che $o$tentano il pauimento, $otto il quale $i poneua il fuoco, che per certe trombe, o canali nel- le gro$$ezze de i pareti uaporaua, come s' è auuertito in alcuni luoghi ritrouati nuouamente, do- ue gli antichi faceuano calde le $tanze loro. ilche per le figure ho dimo$trato nel $eguente libro al decimo Capo. Quanto ueramente appartiene alle concamerationi, o cielo de i bagni, Vitr. ci dà le regole, & dice, che in due mod $i po$$ono fare, l'uno di muratura, l'altro di opera di legna me. Bi$ogna adunque con$iderare, & di$correre $opra le parti di $otto, di mezo, & di $opra, & il modo di farle. Le dette parti $ono tutto un corpo, ilquale ha bi$ogno d'e$$ere $o$tentato, perche $enza legamento, & $o$tentamonto ruinarebbe: & però il legamento $i farà in que$to mo do. Egli $i farà gli archi di ferro con li$te, & lame di ferro attrauer$ate, & incrocciate, & que$ti archi, & lame con $pe$$i oncini a gui$a di anchore $iano attaccate al tauolato, ma tanto larghe una dall' altra, che $opra quelle $i po$$ino po$are le te$te di due tegole: & questa $arà la parte di mezo. ma di $opra egli $i fara come uno terrazzo di creta con peli impa$tata, & molto bene battuta, & domata: & il cielo di $otto, che $opra$ta al pauimento $arà $maltato, & rim- boccato con te$tole pe$te, & calce, dapoi intonicato, & coperto gentilmente & biancheggiato. Et $e que$te uolte $aranno doppie, cioè una $opra l'altra con debito $patio, daranno maggiore uti lità, & difenderanno i ta$$elli da i uapori. Hora hauendo trattato del piano, & del uolto de i bagni, & di quello, che ui ua $opra, & come, & di che materia $i hanno a fare, $eguita Vitr. & ci dà le mi$ure dicendo.</I> <pb n="264"> <p>Le grandezze de i bagni $i hanno a fare $econdo la moltitudine de gli huomini. ma $ia- no però in que$to modo compartite, che quanto ha da e$$er la lunghezza leuandone un ter zo fatta $ia la larghezza, oltra il luogo doue $i $ta ad a$pettare d'intornó al labro, & la fo$ $a. Bi$ogna fare il labro $otto il lume, accioche quelli, che ui $tanno d'intorno non togli no il lume con l'ombre loro. Gli $patij de i labri detti $chole deueno e$$ere co$i $patio$i, che quando i primi haueranno occupato i luoghi, gli altri, che $tanno a torno guardan- do po$sino $tare dritti in piedi. La larghezza dello aluco tra'l parete, & il parapetto non $ia meno di $ei piedi, accioche il grado inferiore, & il puluino da quella larghezza ne leui due piedi. Il Laconico, & le altre parti per li $udatoi $iano congiunte al tepidario, & quanto $aranno larghi tanto $iano alti alla curuatura inferiore dello hemi$però. Et $ia la- $ciato il lume di mezo nello hemi$pero. Et da quello penda il coperchio di rame con ca- tene $o$pe$o, il quale alzando$i, & abba$$ando$i dia la tempra del $udore, & però pa- re, che egli $i debbia fare a $e$ta, accioche la forza del uapore, & della fiamma per le uol te della curuatura egualmente dal mezo partendo$i po$$a uagare. <p><I>La dichiar atione di alcuni uocaboli ci darà ad intendere quanto dice Vitr. Deon$i fare i bagni $econdo la moltitudine delle per$one. Egli $i legge che Agrippa ne fece cento & $ettanta a bene- ficio del populo. crebbero poi qua$i in infinito, & col numero $i $atisfaceua a quello, che la gran dezza non poteua pre$tare. La mi$ura era, che la lunghezza fu$$e tre parti, & la larghezza due. Ecco la proportione $e$quialtera. ma in que$ta larghezza non $i comprendeua il labro, & il luogo, doue a$pettauano quelli, che doueuano e$$ere lauati. L'altro era una fo$$a, o ua$o capa ci<02>imo, dentro il quale era l'acqua da lauare, d'intorno il quale erano alcuni parapetti, doue le per$one s'appoggiauano a$pettando, che i primi u$ci$$ero del labro, que$ti $ono detti$chole, ouero, (il che mi piace piu) erano alcune banche d'intorno i labri, doue $i a$pettaua, & la larghezza del labro, che egli chiama aluco tra il parete & il parapetto, era di piedi $ei, due de i quali era- no occupati dal grado inferiore, & dal puluino, il quale $timo io, che fu$$e una parte, doue s'ap- poggiauano $tando nel bagno. il labro era $otto il lume. Il Laconico era quello, che anche $uda- toio $i chiama, detto co$i da i Lacedemonij, perche in luoghi $imili $i $oleuano e$$ercitare. Clipeo io ho interpretato coperchio, & è co$i detto dalla forma d'uno $cudo, che era rotonda. que$to era di rame, & $i alzaua, & abba$$aua per temperare il caldo del bagno. Leggi Palladio al Capo quadr age$imo del primo libro.</I> <fig> <pb n="265"> <fig> <HEAD><I>Della edificatione delle pale$tre, & de Xisti. Cap. XI.</I></HEAD> <p>Hora a me pare (tutto che que$to non s'u$i in Italia, di dichiarire il modo di fare le pale$tre, & di dimo$trare come $iano fabricate appre$$o de i Greci. Fanno$i adunque in tre portichi le exedre $pacio$e, che hanno i luoghi da $e- dere, nellequali i Filo$ofi, i Rhetori, & gli altri, che $i dilettano de gli $tudij, po$$ono $edendo di$putare. Nelle pale$tre i colonnati, & porticali d'intorno $i hanno a fare quadrati, ouero alquanto lunghi in modo, che habbiano gli $pacij da caminare intor- no due $ta di, de i quali di$po$ti $iano tre porticali $emplici: ma il quarto, che $arà uer$o il meriggie bi$ogna, che $ia doppio, accioche e$$endo il tempo uento$o, non po$si l'acqua per li $trauenti entrarui $otto. Nel portico, che $arà doppio $iano po$te que$te membra. il luogo da ammae$trare i Garzoni, detto ephebeo $ia nel mezo. (& que$to è una e$edra ampli$sima con le $ue $edi lunga uno terzo piu, che larga) $otto il de$tro, il luogo da am- mae$trar le Garzone, & appre$$o u'è il luogo doue s'impoluerauano gli Athleti, detto co- ni$terio, dalqual luogo nel uoltare del portico $ta il bagno freddo chiamato. lutron. ma dalla $ini$tra del luogo de i Garzoni, è il luogo da ugner$i, detto Eleothe$io, appre$$o il- quale è il luogo da rinfre$car$i, dalquale $i ua al luogo della fornace detto propigneo, nel uoltar del portico. ma appre$lo poi nella parte di dentro dirimpetto al frigidario, $ono i $udatoi di lũghezza il doppio alla larghezza, che nel uoltare habbiano da una parte il Laco nico, compo$te come è $o pra$critto. a dirimpetto del Laconico il bagno caldo. nella pa- le$tra $iano i peri$tili compartiti, come s'è detto di $opra. Ma dalla parte di fuori deono e$$ere di$po$ti tre portichi, uno la doue $i e$ce dal peri$tilio, due dalla de$tra, & dalla $ini- $tra chiamati $tadiati. di que$ti portichi quello, che riguarda al Settentrione $i fa doppio, & di ampli$sima larghezza, l'altro è $emplice, & fatto in modo, che nelle parti, che $ono d'intorno i pareti, & in quelle, che $ono uer$o le colonne habbia i margini come $entieri non meno di dieci piedi, & il mezo cauato di modo, che due gradi $iano della di$ce$a d'<*>n <pb n="266"> piede è mezo da i margini al piano, ilqual piano non $ia meno largo di piedi dodici; & co$i quelli, che ue$titi camineranno ne i margini, non $aranno impediti da quelli, che unti $i e$$ercitano. Que$to portico da Greci è chiamato Xi$to, perche gli Athleti, al tempo del uerno $otto il coperto ne gli $tadij $i e$$ercitauano. i Xi$ti $i deono fare $i che tra due por- tichi, ui $iano $elue, & le piantationi, & in que$ti $i facciano tra gli alberi, le $trade, & iui d'A$tracco $iano collocate le $tanze. Appre$$o il Xi$to, & il portico doppio $i hanno a di$egnare i luoghi $coperti da caminare detti Peridromide da Greci. ne i quali il uerno quando è $ereno il tempo u$cendo gli Athleti, $i po$sino e$$ercitare. Dapoi lo Xi$to $arà formato lo $tadio cioè il luogo da e$$ercitar$i in modo, che la moltitudine delle genti po$- $a commodamente guardare gli Athleti, che combatteno. Io ho de$critto diligentemen- te quelle co$e che erano nece$$arie dentro le mura ad e$$ere acconciamente di$po$te. <p><I>Quanto dice Vitr. è chiaro a ba$tanza con la no$tra interpretatione. la doue egli $i deue au- uertire quanto $tudio pone$$ero gli antichi nello e$$ercitio, & come acconciamente prouede$$ero a i bi$ogni. & a i piaceri de gli huomini. Le figure anche delle $opradette co$e faranno manife- Re le parole di Vitru.</I> <p><I>A. Ephebeo.</I> <p><I>B. Coriceo.</I> <p><I>C. Coni$terio.</I> <p><I>D. Lauatione fredda.</I> <p><I>E. Eleothe$io.</I> <p><I>F. Luogo freddo.</I> <p><I>G. Propigneo.</I> <p><I>H. Sudatione concamerata.</I> <p><I>I. Laconico.</I> <p><I>K. Calda lauatione.</I> <p><I>L. Portico di fuori.</I> <p><I>M. portico doppio, che guarda al Settentrione.</I> <p><I>N. Portico doue $i e$$ercitauano gli Athleti detto Xi$tos.</I> <p><I>O. Platanones, & le $elue tra due portici.</I> <p><I>P. Doue erano le ambulationi $coperte, & gli athleti $i e$$ercitauano al tempo della $tate. & appre$$o lacine $ono dette Xi$ta.</I> <p><I>Q. Lo $tadio doue $i $taua a uedere gli Athleti.</I> <p><I><19>. Leuante.</I> <p><I>O. O$tro.</I> <p><I>P. Ponente.</I> <p><I><19>. Tramontana.</I> <p>I I I I. <I>Stacione & ripo$i.</I> <p><I>Il re$tante $ono e$$edre, & $cole.</I> <pb n="267"> <fig> <foot><I>NN</I></foot> <pb n="268"> <HEAD><I>De i Porti, & del Fabricare nelle Acque: Cap. XII.</I></HEAD> <p>Egli non $i deuc la$<*>iar di dire, delle commodità de i porti. ma bi$ogna dichia. rire con che ragioni $iano in quelli $ecure le naui dalle forrune. Que$tiadun- que $e $ono naturalmente po$ti, & che habbiano le promontore, o capi$o- pra l'acqua, $i che per la natura del luogo s'ingol$ino, hanno grandi$sime utilità, perche d'intorno s'hanno a fare i portichi, & i nauali, ouero da i portichi l'entrate a i fondachi, o dogane, & dall'una, & l'altra parte $i deono fare le torri, dalle quali con machine $i po$sino tirare dall'una all'altra banda le catene. Ma $e egli non $i hauerà luo- go idoneo per natura d'a$sicurare le naui dalle fortune, $i farà in que$to modo, che $e egli non ci $arà fiume, che impedi$ca, ma da una parte $arà la $tatione, cioè il luogo doue $i- curamente $tanno le naui, (che noi dicemo buon $orgitore) allhora dall'altra con gli ar- gini, & con le fabriche $i uenirà in fuori, & $i farà progre$$o, & a que$to modo $i deono formare le chiu$e de i porti. <p><I>Il fine del porto è d'a$$icurar le naui da i uenti, & dalle fortune di mare, & però deue e$$ere $icuro, & capace. La $icurtà ouero è naturale, ouero aiutata dall'arte. la naturale dipende dal $ito del luogo, quando il luogo è ingolfato, & inarcato, & fa le corna come la Luna, & quando i capi alti come promontori uengono in fuori, & i lati difendeno il golfo da i uenti. ne $i puo dire quanto gioua un tal $ito. perche prima è $icuro, dapoi è commodo; perche nella curuatura $i fan- no i luoghi da $aluare le mercantie, ci $ono i Fondachi, le dogane, i bazzari, & altri luoghi op- portuni. Io ho ueduto molti luoghi nella Scotia che per natura $ono porti $icuri$$imi, & fra gli altri ue n' è uno, che $i chiama nella lingua Scoce$e $icher $and, cioè arena di $alute, & porto tranquillo. Que$to non ha Vinetia, ma la poca $icurtà del porto, è la molta $icurtà della città: uengono però le naui nella Laguna, & iui $i $aluano. Quando adunque egli $i hauerà $ito dalla natura poca f<*>tica ci uuole. il porto è $icuro & per la bocca, & per le rocche, & per li fian- chi: nece$$ario è adunque di fare con arte, quello che la natura non ci concede. però Vitru. ricor- rendo all'arte dice.</I> <p>Ma le fabriche, che $i hanno a fare nell'acqua co$i pare, che $i habbiano a fare: che egli $i porti la polue da quelle parti, che $ono dalle Cumi fin al promontoro di Minerua, & me $colarla nel mortaio in modo che due ad una ri$pondino. poi la doue $i hauerà deliberato di fabricare bi$ogna poner nell'acqua le ca$$e di roucre, & rinchiu$e con catene mandarle giu nell'acqua, et tenerle fermamente a fondo. Dapoi quella parte, che $arà tra le ca$$e al ba$$o $ott'acqua, $i deue i$pianare, & purgare, & iui gettarui di quella materia impa$tata, & me$colata nel mortaio, con la mi$ura data di $opra, & con cementi, fin che $i empia lo $pacio, che $i deue murare, quello dico, che è tra le ca$$e; & que$to dono di natura hanno que luoghi, che hauemo detto di $opra. <p><I>Qui l'u$o della pozzolana è mirabile come ci ha detto Vitr. nel $econdo libro al $e$to capo. Do- ue adunque $ia, che potiamo hauere copia di pozzolana, poneremo due parti di quella, & una di calce, & faremo nella fo<02>a, che Vitr. chiama mortario una buona pa$ta, & ben uoltata, & battuta, poi faremo delle cataratte, & ca$$oni di legname di rouere, dette arche da Vitru. & $i faranno a que$to modo. Piglia le traui di rouere molto bene i$pianate, & per la loro lunghezza da una te$ta all'altra farai de i $olchi, o canaletti, larghi fecondo la larghezza del taglio delle tauole, che ui hanno d'andar dentro. queste tauole deono e$$ere di eguale grandezza, & gro$$ez za, & con le te$te loro inca$trate ne i canaletti gia fatti. & a que$to modo $tando le traui dritte, & con giu$ti $pacij lontane una dall'altra, perche $i drizzano piu di due traui per lato, & inca-</I> <pb n="269"> <I>tenate le tauole $ermamente, & otturate le commi$$i<*> e a forza $i manderanno i fondo, & ìui $i teniranno ferme, & immobili. oltra di que$to lo $pacio rinchiu$o tra li ca$$oni, $i uuotera con ruo- t<*>, & altre machine da leuar l'acque, delle quali Vitr. ne ragiona nel decimo libro, & $i $arà il luogo piano egualmente, & netto. & $tando $opra trauicelli, o palate, o zatte commodamente, or- dinate que$te co$e me$colate, & impa$tate nella fo$$a, doue hauerai preparata la $opra detta ma- teria de cementi, & delle pietre, & di tutto quel corpo cauato dalla fo$$a empirai tutto quello $pa- cio purgato, che è tra i ca$$oni, & in que$to modo farà una pre$a mirabile, & riu$cià l'opera fatta nell'acqua, & que$to farai quando niuna forza di acqua t'impedirà. ma quandolo impeto del mare ti $turba$$e, odi quello che dice Vitr.</I> <p>Ma $e per lo cor$o, & per la forza dello aperto mare, non $i potranno tenere a fondo i ca$$oni giu mandati, allhora $ubito $opra l'orlo, & gengiua del mate doue termina il ter- reno, egli $i deue fare un letto fermi$simo, ilquale $ia piano meno della metà, ma ilre$tan te che è pro$simo al lito $ia pendte, et chino, dapoi uer$o l'acqua, & da i lati intorno al det to letto $i facciano i margini, & le $ponde a liuello di quel piano, & quello, che è la$ciato pendente oltra la metà $ia empito di arena tanto, che egli $ia pare al margine & al piano del letto. & $opra quel piano $ia fabricato uno pila$tro grande, & fatto, che egli $ia, accioche $i po$$a $eccarlo, & far pre$a bi$ogna la$ciarlo per due me$i, dapoi $ia tagliato di $otto quel margine, che $o$tenta l'arena, & co$i l'arena $ommer$a dall'acqua farà cadere quel pila$tro nel mare, & con que$ta ragione richiedendo il bi$ogno $i potrà andare inanzi fa- bricando nell'acque. <p><I>Per fare un braccio $ul mare comincia a poco a poco da terra, & farai un $cagno parte a li- uello, parte che habbia caduta: & $ia la parte, che pende uer$o il lito. allo $cagno farai i $uoi mar gini ouero $ponde nella te$ta uer$o il mare, & da i lati a liuello di quello, & la parte, che pende empirai d'arena pareggiandola alla parte piana. $opra lo $cagno farai uno gro$$o pila$tro della detta materia, & lo la$ciarai far pre$a et $eccare almeno per due me$i. Taglierai po$cia il mar- gine di $otto, & $ubito uederai u$eire l'arena per la rottura, & mancare di $otto al pila$tro, il- quale non potendo $tare, di nece$$ità caderà nell'acqua, & empira la prima parte pro$$ima al li- to. & co$i uolendo andar piu in fuori, andarai di mano in mano, & que$to $i farà, non man- cando la pozzolana, o $imil co$a, che fa pre$a nel mare. Ma quando ti manca$$e que$ta ma- teria dice Vitru.</I> <p>Ma in quei luoghi doue non na$ce la polue, con que$ta ragione dei fabricare. poner $i deono la doue ha deliberato di fondare i ca$$oni do ppij intauolati, & concatenati, & tra l'uno, & l'altro $ia calcata la creta in$ieme con i $acconi fatti d'alica palu$tre, & poi che co$i $arà molto bene calcato, & $odi$simamente ripieno quel luogo di mezo tra il doppio tauolato, allhora il luogo di mezo tra quel $erraglio deue e$$er uuotato con ruote, con timpani, & con altri $trumenti da cauar'acqua, & iui poi tra quella chiu$a $iano cauate le fondamenta. & $e iui $arà il terreno buono $iano cauate piu gro$$e del muro, che ui an- derà $opra fino al uiuo, & empite di cementi, calce, & arena. Ma $e'l luogo $arà molle, $ia battuta la pali$icata di pali d'alno, di oliuo $ilue$tre, ouero di rouere bru$tolati, & em- pito di carboni, $econdo, che detto hauemo, nel fondare de i Theatri, & delle mura. Indi poi $ia tirata la cortina del muro di $a$$o quadrato con lunghi$sima legatura, accioche $pe cialmente le pietre di mezo $iano beni$simo contenute. & allhora quel luogo, che $arà tra'l muro, $ia riempito di roinazzo, ouero di muratura, perche a que$to modo egli $tarà $i for- te, che $i potrà fabricarui $opra una torre. <p><I>A me pare, che Vitr. $i la$cia intendere, & Leone nel decimo parla diffu$amente del modo di fare le cataratte, gli argini, le palificate, i $o$tegni, le ro$te, le botte per tenere, chiudere, con- durre, & di$tornar le acque, perche $i po$$a fabricare, o $i rimedi al danno, o $i prouedi al commo- do. pero ci rimettemo alla diligenza$ua.</I> <foot><I>NN</I> 2</foot> <pb n="270"> <p>Finite que$te co$e $i hauerà ri$petto, che i luoghi doue hanno a $tare le naui riguardino al Settentrione, perche il meriggie per lo caldo genera uermi, & bi$ce, & tarli, & altri ani- mali, che fanno gran danno, & notrendoli gli con$erua, & quelli edificij non deono e$$er fatti di legnami ri$petto a gli incendij. Ma della grandezza de i nauali non deue e$$ereal- cuna determinatione, ma fatti $iano alla mi$ura, & capacità delle naui, accioche $e le naui di maggior portata $aranno tirate in terra, habbiano il luogo loro con $pacio accommoda to. lo ho $critto in que$to luogo quelle co$e che mi $ono potute uenire a mente, che $i po$$ono fare nelle città all'u$o de i publichi luoghi, come deono $tare, & come $i deono condurre a perfettione. Ma le utilità de i priuati edificij, & i loro compartimenti nel $e- guente di$correndo e$poneremo. <p><I>Poi che a no$tri giorni non hauemo co$a perfetta delle antiche, nè alcuno $tudia con nuoui edi- ficij imitare quelle fabriche merauiglio$e, & che pochi $ono tali, che per arte, & per pratica po$$ono animo$amente, & con giudicio abbracciare sì alte impre$e, che facciano Theatri, am$i- theatri, circi, pale$tre, portichi, Ba$iliche, & Tempij degni della grandezza dello mperio, non $aperei, che mi dire, $e non uoltarmi a quelle fabriche, che $econdo la qualità de i tempi no$tri $ono riputate maggiori; & la prima grandezza, che mi uiene dinanzi, è la fortezza della città, che con gro$$e, & alte mura $opra larghi<02>imi, & profondi<02>imi fondamenti, ci rappre$enta una Idea magnifica, & eccellente delle fabriche moderne. quiui oltra la $uperba muraglia otiimamen te fiancheggiata, oltra i Baloardi, piate forme, caualieri, $aracine$che; a me pare, che la gran- dezza delle porte tenga honorato luogo. ma ricercando le altre co$e grandi, mi $i fa incontro il na- uale de' Vinitiani, & la fabrica delle galere, & naui, che hoggi dì $i u$ano: non d rò, che'l det- to luogo habbia grandezza per la copia di marmi, & per la magnificenza et $uperbia della ma- teria, che u$auano gli antichine gli edificij loro, perche que$ta eccellenza hanno in altre fabriche publiche: ma ben dirò del loro nauale, che tutto quello, che appartiene all'u$o di tutte le co$e, & alla copia di tutto quello, che bi$ogna al fatto della marinarezza, egli auanza di gran lunga, tut- to quello, che a nostri giorni altroue $i puo uedere. i legni ueramente, & le galere, & i ua$elli & corpi di barze, & Galeoni $ono ridotti a quella perfettione d<*> capacità, di $icurezza, & di com- modo, che $i puo di$iderare. Nè uoglio che prendiamo meraniglia del detto luogo, come co$a che $atisfaccia, & pari merauiglio$a ad ogni huomo di giudicio, perche que$ta na$ce da un'altra co$a piu ammiranda, & degna di e$$er de$iderata non hauuta, & di grande $tudio accioche $ia con$eruata hauendo$i. la lunga & inuiolat a libertà di quella città ha partorito que$ta grandez- za, l'u$o delle co$e maritime, le belle, & molte occa$ioni $ono $tate tali, che non è potenza $i grande, che in poco tempo far po$$a quello, che hanno fatto Vinitiani. Que$ta copia, & que$ta pratica è cre$ciuta a poco a poco, naturalmente (dirò co$i) & col genio di quella città. la doue non $i puo con uiolenza generare co$a, nella quale il tempo ci habbia prerogatiua. però non temo io, che $i faccia pregiudicio alla mia patria narrandola, perche chi uorrà drittamente giudicare truouerà, che piu pre$to metterei in di$peratione ogni altro dominio, che uole$$e imitare que$to gran de apparato, che dargli animo di cominciare. Io concedo i larghi pae$i di bo$chi, la moltitudine delle genti, & la grandezza dell imperio, & la uoglia & molte altre commodità a gli altri Prin cipi, ma come potrò dar loro un l<*>ngo $tudio, un'e$$ercitio di moli'anni, una proui$ione naia dalla prerogatiua del tempo, come hanno que$ti Signori? Certamente non è oper a tanto di grand'im- perij, quanto di continuati, & liberi reggimenti lo artificio inuiato, & ordinato; & $e bene non s'introduce i gladiatori nelle arene, & nelle $cene gli histrion, & ne gli hippodromi le carette, s'introduce però nello Ar$enale de' Vinitiani uno apparato di acquistare le prouincie, & i regni, & di leuare anche le uoglie a chi uole$$e in alcun modo turbare la libertà di quello $tato. & $i co- me la fortezza di quella città ha hauuto per Architetto, la prouidenza diuina, & il beneficio del la natura, doue nè muraglie, nè fo$$e, nè fianchi ui hanno luogo: co$i quello, che hanno fatto gli buomini, è nato dallo i$te$$o prouedimento diuino, & dal grande amore, che hanno hauuto. &</I> <pb n="271"> <I>banno i cittadini uer$o la patria, che per ornarla, & ampliarla non hanno $paragnato ad alcuna fatica. Perilche $i uede l'ordine meraulglio$o delle co$e, che ad un mouer d'occhio $i troua, & $i caua tutti gli armeggi d'una galera, tutti gli insttrumenti. tutto lo apparato non $olamente $i uede al $uo luogo con ordine mirabile, ma $i puo pre$ti<02>imamente porre in opera, & oltra l'or- dinario, che per custtodia del mare è $empre fuori, l'apparecchio di cento, & piu galere contanta facilità, & felicità dirò co$i, $i moue dal $uo luogo, che non $i puo credere. Le taglie, le argane, le ruote, i na$pi $ono co$i ingenio$amente fatti, po$ti, & orditi, che non è pe$o $i grande, che non $i moua con gran prestezza. Altre fiate non pareuano le co$e, $e bene erano infinite, per che non erano co$i bene ordinate et pronte; ma hora dal giudicio del Magnifico me$$er Nicolo Zeno il tut- to è $tato ridotto in uno ordine $i bello, & commodo, che non meno ci dà da mer auigliare il nume- ro, & la grandezza delle co$e, che l'ordine antedetto; co$a nata da uno amoreuole $tudio, & in- du$trio$o giudicio di quel gentilbuomo, col quale io era $olito di andare molto $pe$$o nell' Ar$enale a far proue di leuar pe$i $mi$urati con poca fatica. Altra occa$ione anchora digrandezza d'ope- ra, di $pe$a, & d'ingegno ci porge la diuina prouidenza, & la natura delle co$e, la quale farebbe sbigottire ogni gran cuore, che non porta$$e amore alla patria $ua. & que$to è, che il tempo, che apporta $eco ogni commodo, & ogni incommodo accordato con due elementi ci uorrebbe mouer guerra, & farci notabili ingiurie, dico il mare, & la terra, de i quali l'uno pare, che uoglia cede- re, & l'altra occupare il luogo di questte lagume. Que$ta occa$ione, che ci dà da pen$are, & pa- re che ci dia trauaglio, è però da e$$er riceuuta, & pre$a allegramente, & con grande animo, & amore, perche donandociil Signor Dio un giocondi<02>imo frutto della pace, ci uuole fare ricono $cere il beneficio riceuuto dalla prouidenza $ua del $ito, che egli ha dato a i primi fondatori di que $ta città. & però con lo e$$ercitare de gli ingegni, & de gli animi de i Senatori, in una grandi$- $ima impre$a uuole, che'l mondo ueda la grandezza dello $tato loro, la prudenza de gli huomini, & l'amore di giouare alla patria. doue $arà opera di $peculatori della natura, & de i pratichi, inue$tigare le cau$e della atterratione di questte lagune, come $ogliono fare i medici, che prima con$iderano le cau$e delle infermità, & poi danno irimedij opportuni: troueranno, che la terra u$ai fiumi in que$ta u$urpatione, che ella uuol fare, & da quelli $i fa portare nelle acque $al$e: troueranno, che le acque $al$e di loro natura rodeno, è con$umano le immonditie: troueranno, che piu acqua, $al$a, che entra in que$ta laguna è meglio, perche u$cendo con maggiore empito porta uia poco terreno: troueranno, che $i deue leuare gli impedimenti alla natura, accioche el- la operi da $e, & faccia quello, che non $i puo fare con ingegno, forza, & $pe$a alcuna. però mo- ueranno quelli terreni, che gia $ono alquanto induriti, & daranno facilità alle acque di portarli uia, drizzeranno i canali, & i cor$i delle acque, impediranno la me$colanza delle dolci con le $a- late, faranno de gli argini, & non la$cieranno molto $pacio. oltra quelli arare, & mouere i terre- ni. & finalmente condurranno quanto piu da lontano $i puo i fiumi grandi, & piccioli, & que$te co$e $ono molto bene con$iderate dai Senatori, che di gia $i hanno a mettere all'impre$a. & pre- parare machine, & in$trumenti utili, & ingenio$i a tanta opera pre$a, & deputare per$one in- telligenti, & diligenti, & che $iano amoreuoli, & $appiano ben $pendere il dinaro, delquale ne hanno fatto grande proui$ione per que$to effetto. doue tra le parti dell' Architettura, la piu ne- ce$$aria al pre$ente bi$ogno è la di$tributione, con le parti$ue, dellaquale s' è detto nel primo lib.</I> <HEAD><I>Il Fine del quinto libro.</I></HEAD> <pb n="172"> <HEAD>IL SESTO LIBRO</HEAD> <HEAD>DELL'ARCHITETTVRA DI M. VITRVVIO.</HEAD> <HEAD><I>Proemio.</I></HEAD> <p>AR ISTIPPO Filo$ofo Socratico gettato dal naufragio al lito de Ro- diani, hauendo auuertito nell'arena alcune figure di Geometria, in que $to modo $i dice hauer e$clamato. Speriamo bene o compagni, poi, che qui ueggio l'orme de gli huomini. Detto que$to incontanente s'auuiò alla terra di Rodi, & dritto nel Gimna$io $i condu$$e; doue di- $putando della Filo$ofia fu largamente donato, che non $olo ornò $e $te$$o, ma anche a quelli, che con e$$o lui erano $tati, donò ampiamente il ue$tire, & le al tre co$e al uiuere nece$$arie: ma uolendo i $uoi compagni ritornar nella patria, & addi- mandandogli, che co$a egli uole$$e, che in nome $uo dice$$ero a ca$a: Egli co$i comandò allhora, che dice$$ero; e$$er bi$ogno a i figliuoli apparecchiare po$$e$sioni, & uiatichi di tal $orte, che pote$$ero in$ieme con loro nuotando u$cire del naufragio: perche quelli $o no i ueri pre$idij della uita, a i quali ne la iniqua forza della fortuna, nè la mutatione del- lo $tato, nè la ruina della guerra puo alcun danno recare. Nè meno Theophra$to ac- crebbe la predetta $entenza, il quale e$$ortando gli huomini piu pre$to ad e$$er uirtuo$i, che fidar$i nelle ricchezze, co$i dice, $olo il uirtuo$o e$$er quello tra tutti gli huomini, il quale nè fore$tieri ne i luoghi altrui, nè pouero d'amici, quando perde i familiari, ouero i propinqui, $i puo chiamare: ma in ogni città è cittadino, & $olo puo $enza timore $prez zare gli $trani auuenimenti della fortuna. ma chi pen$a e$$er munito non da gli aiuti della dottrina, ma della buona $orte andando per uie $drucciolo$e pericola in uita non $tabile, ma inferma. Lo Epicuro $imigliantemente afferma la fortuna dar poche co$e a i $aui huo mini, ma quelle, che $ono grandi$sime, & nece$$arie con i pen$ieri dell'animo, & della mente e$$er gouernate. Que$te co$e co$i e$$ere molti Filo$ofi hanno detto, & ancho i poeti, i quali hanno $critto le antiche Comedie pronunciarono le mede$ime $entenze nel- la Scena, come Eucrate, Chionide, Ari$tofane, & con que$te $pecialmente Alexi: il qua le dice per ciò deuer$i laudare gli Athenie$i: perche le leggi di tutti i Greci sforzano, che i padri $ieno da i figliuoli $o$tentati, ma quelle de gli Athenie$i non tutti, ma quelli, che haue$$ero nelle arti i loro figliuoli ammae$trati. Percioche tutti i doni della fortuna quan do $i danno da quella, facilmente $i toglieno: ma le di$cipline congiunte con gli animi no $tri non mancano per alcun tempo, ma durano $tabilmente con noi fino all'ultimo della uita. Et però io grandi$sime gratie renderò a mei progenitori, i quali approuando la leg ge de gli A thenie$i, mi hanno ammae$trato nelle arti, & in quella $pecialmente, che $en- za lettere, & $enza quella raccomunanza di tutte le dottrine, che in giro $i uolge, non puo per alcun modo e$$er commendata. hauendo adunque, & per la cura de i miei pro- genitori, & per la dottrina de i miei precettori accre$ciute in me quelle copie di di$cipli- ne, & dilettandomi di co$e pertinenti alla uarietà delle cognitioni, & artificij, & delle $critture de commentari, io ho acqui$tato con l'animo quelle po$$e$sioni, delle quali ne uien que$ta $omma di tutti i frutti, che io non ho piu nece$sità alcuna, & che io $timo quella e$$er la proprietà delle ricchezze di de$iderare niente piu. Ma for$e alcuni pen$an- do que$te co$e e$$er leggieri, & di poco momento, hanno $olamente quelli per $aui, i qua <pb n="173"> li abondano di ricchezze; & però molti attendendo a que$to, aggiunta l'audacia con le ricchezze aucho hanno con$eguito d'e$$er cono$ciuti. Io ucramente o Ce$are non per di nari con deliberato con$iglio ho $tudiato, ma piu pre$to ho lodato la pouertà col buon nome, che la copia con la mala fama: & però egli $i ha poca notitia del fatto mio: ma pur pen$o, che mandando in luce que$ti uolumi, io $arò ancho a i po$teri cono$ciuto. nè $i de- ue alcuno merauigliare, perche io $ia ignoto a molti; perche gli Architetti pregano, & ambi$cono per hauer a far molte opere: ma a me da i miei precettori è $tato in$egnato, che l'huomo pregato non pregante deue pigliare i carichi: perche lo ingenuo colore $i moue dalla uergogna addimandando una co$a $o$petto$a, perche $ono ricercati non quei, che riceuono, ma quei che danno il beneficio. percioche qual co$a pen$aremo, che pen$i, o $o$petti colui, che $ia richie$to di commettere alla gratia di colul, che dimanda il douer fare le $pe$e del patrimonio, $e non che egli giudica deuer$i ciò fare per cagione della pre da, & del guadagno? & però i maggiori primamente dauano le opere a coloro, che erano di buon $angue. Dapoi cercauano $e erano hone$tamente alleuati, $timando di douer commetterle allo ingenuo pudore, non all'audacia della proteruità: & e$si artefici non am mae$trauano $e non i $uoi figliuoli, & i parenti, & gli faceuano huomini da bene, alla fe- de de i quali in $i gran co$a $enza dubbio $i commette$$ero i dinari: Ma quando io uedo gli indotti, & imperiti, che della grandezza di $i fatta di$ciplina $i uanno uantando, & quelli, che non $olo di Architettura, ma in tutto di fabrica alcuna non hanno cognitio- ne, non po$$o $enon lodare que padri di famiglia, che confirmati con la fiducia delle let- tere, che hanno da $e fabricando, co$i $timano, che $e egli $i deue commettere a gli imperi ti, $e piu pre$to e$$er piu degni a fare la loro uolontà, che a quella d'altri con$umare il di- naro; & però niuno $i forza far alcuna altra arte in ca$a, come l'arte del calzolaio, o del $arto, ouero alcuna dell'altre, che $ono piu facili, $enon l' Architettura, perche quei, che ne fanno profe$sione, non perche habbiano l'arte uera, ma fal$amente $on detti Archi- tetti. Per le quali co$e io ho pen$ato, che $ia da $criuere tutto il corpo dell' Architettura, & le $ue ragioni diligenti$simamente, pen$ando che que$to dono non $arà in grato a tutte le genti. & però perche nel Quinto io ho $critto della opportunità delle opere commu- ni, in que$to e$plicherò le ragioni, & le mi$ure proportionate di particolari edificij. <p><I>Tratta Vitr. nel $e$to libro de gli edificij priuati, poi che ha fornito quella parte, che apparteneua alle opere publiche, & communi. Propone al pre$ente libro un bel- li$$imo proemio, il quale tanto piacque a Galeno, che una gran parte ne pre$e in quel libro doue egli e$$orta i giouani alle lettere. Fornito il Proemio ci da alcuni precetti generali di auuertimenti, & con$iderationi parlando nel primo capitolo di diuer$e qua- lità de pae$i, & uarij a$petti del cielo, $econdo i quali $i deono di$porre gli edificij. Et nel $econo do facendo auuertito l' Architetto, & ricordandogli dell'officio $uo: Tratta nel re$tante del libro de gli edificij priuati, cominciando da quelle parti delle ca$e, che prima ci uengono in contra, e pe- netrando poi a poco a poco nelle piu rimote, et $ecrete, qua$i ci mena per mano, & ci conduce a ueder di luogo in luogo le $tanze cittadine$che, non la$ciando parte, che alla utilità, al commo- do, & alla bellezza conuegna. Nè $i contenta di que$to, che gentilmente ci conduce a piacere in uilla, & ci fabrica belli$$imi alloggiamenti con un riguardo mirabile al decoro, & all'u$o, & alla nece$$ità de gli huomini, concludendo in alcune regole di fondare gli edifici, degne da e$$er con$iderate. Il Proemio è facile, & contiene una e$$ortatione alla uirtù mirabile con e$$empi ef ficaci, & autorità, & comparationi diuine delle uirtù alla fortuna, delle doti dell'animo a i be- ni e$teriori; in fine ammae$tra lo Architetto, & lo fa auuertito di quelle co$e, che al pre$ente li- bro $ono conuenienti.</I> <p>Io uedo i ue$tigi de gli huomini. <pb n="274"> <p><I>Non intendeua Ari$tippo l'orme del corpo humano, ma i ue$tigi della mente, perche le Mathe matiche figure erano $tate prima nella mente di que ualent' huomini con ragioni uere con$iderate, & poi po$te in opera, & di$egnate nell' arena; & $i come la $crittura è $egno del parlare, & il parlare della mente, co$i le di$egnationi Mathematiche, & le figure Geometriche erano come $egni de concetti di coloro. Di$$e adunque Ari$tippo io uedo i ue$tigi de gli huominl, cioè non d' animali bruti, perche non hanno di$cor$o, nè delle parti del corpo humano, ma della mente, per la quale, & dalla quale l'huomo è huomo. Po$to lo e$$empio di Ari$tippo approua la inten- tione con te$timoni, & autorità di Filo$ofi, & di Poeti, adducendo una legge de gli Athenie$i, $econdo la quale egli di$e, & de i $uoi genitori mode$tamente parlando, dimo$tra quanta cura hauer deono i padri, accioche i loro figliuoli $iano piu pre$to buoni, che ricchi; uirtuo$i, che fa- mo$i; degni, che $timati.</I> <p>Concio$ia co$a adunque che io sì per la cura de i genitori, sì per le dottrine de i mei pre cettori habbia accumulato gran copia di di$cipline con le co$e pertinenti allo $tudio delle lettere, & al de$iderio dell'arti. <p><I>Io ho interpretato qui piu al propo$ito, che di $opra que$te parole, ma il $en$o è lo i$te$$o a chi ben con$idera. Non $olo adunque deue lo Architetto dar$i con ardente di$iderio alla cognitione delle lettere, ma diletrar$i di $apere come uanno le co$e artificio$e, inue$tigarle, & farle affine, che la $ua cognitione non re$ti morta, & inutile: & bene egli $i ricorda di quello, che egli ha det to nel primo libro della fabrica, & del di$cor$o, & delle conditioni dello Architetto, però a me pare di auuertire, che Vitr. douendo parlare delle fabriche de i priuati, qua$i che egli di nouo comincia$$e, ha uoluto ridurci a memoria le co$e dette nel primo libro, & però tocca nel proe- mio del pre$ente libro parte di quelle co$e, che ha toccate nel primo cap. Et nel primo, $econdo, & ultimo capo di que$to accenna a quello, che egli ha detto nel $econdo, nel quarto, & nel quin to di $opra; & que$to egli ha fatto, accio non ci pare$$e, che alle priuate ragioni delle fabriche, non $te$$e bene porre quella cura, & hauere quegli auuertimenti, & quella cognitione, che $i de ue hauere alle fabriche communi: però io prego ogniuno, che non creda co$i facilmente a molti che $i fanno Architetti, che non $anno leggere, nè di$egnare, i quali non $olamente non hanno cognitione dell' Architettura, ma ancho $ono ine$perti della fabrica (come dice Vitr.) Ma la di$gratia uuole, che gli imperiti per la loro audacia $iano piu cono$ciuti, che quelli che for$e riu- $cirebbeno piu nelle opere, che nelle parole; & pur bi$ognarebbe che fu$$e al contrario. Euui aggiunta un' altra difficultà, che cia$cuno altro artefice puo a $ua uoglia dimo$trar l'arte $ua, ma lo Architetto non puo da $e co$a alcuna: percioche bi$ogna, che egli troui per$one, che uoglino $pendere, & far opere, doue ci uanno molti denari. Ma tornamo a Vitr. & uediamo un $uo lun go, & bello di$cor$o $opra diuer$e qualita de pae$i.</I> <HEAD><I>Di diuer$e qualità de pae$i, & uarij a$petti del cielo; $e- condo i quali $i deono di$porre gli edificij.</I></HEAD> <HEAD><I>Cap. I.</I></HEAD> <p>Qve$te co$e co$i drittamente di$po$te $aranno, $e prima egli $i auuertirà da che parte, o da che inclinatione del Cielo $ieno ordinate; perche altramente in Egitto, altramente nella Spagna, non co$i nel Ponto, o a Roma, & co$i in altre proprietà de pae$i par, che $i debbiano con$tituire le maniere de gli edi ficij; perche da una parte la terra è oppre$$a dal cor$o del Sole, & da altra è lontani$sima da quello; ma poi ci $ono di quelle parti, che nel mezo $ono temperate. Et però come la con$titutione del mondo allo $patio della terra per la inclinatione del Zo- <pb n="275"> diaco, & per lo cor$o del Sole è naturalmente con qualità di$eguali collocata, co$i pare, che $econdo le ragioni de i pae$i, & le uarietà del Cielo e$$er debbiano gli edificij re driz- zati. Sotto il Settentrione $i faranno le fabriche a uolte, molto rinchiu$e, non aperte, ma riuolte alle parti calide. Ma $otto il grande impeto del Sole alle parti del Meriggie (perche quelle parti $ono dal calore oppre$$e) pare, che $i debbiano collocare le fabriche aperte, & riuolte al Settentrione, & A quilone. Co$i quello che da $e per natura offen- de, con l'arte $i deue emendare: & co$i nelle altre regioni allo i$te$$o modo, $econdo che'l Cielo alla in clinatione del Mondo è collocato, $i deono temperare. Et que$te co$e $ono da e$$er auuertite & con$iderate per quello, che fa la natura, & $pecialmente dalle membra, & da i corpi delle genti: perche in que luoghi, che'l Sole moderatamente ri$calda, egli con$erua i corpi temperati, ma quelli, che per la uicinanza correndo abbrucia $uccian- doli leua loro la tempra dell'humore. Per lo contrario nelle parti fredde, perche $ono molto dal Meriggie lontane, non $i caua l'humore dal caldo, ma $pargendo il rugiado$o aere dal Cielo ne i corpi l'humore, fa quelli piu grandi, & i $uoni della uoce piu graui. Et per quello $otto il Settentrione $i nutri$cono genti di grande $tatura, di bianco colore, di dritta, & ro$$a capillatura, d'occhi ce$ij, di molto $angue, perche dalla pienezza del- l'humore, & refrigerij del Cielo $ono in$ieme formati. Ma quei, che uicini $tanno all'a$- $e del Meriggie, $ottopo$ti al cor$o del Sole, $ono piccioli di $tatura, di color fo$co, di capello cre$po, d'occhineri, di debil gamba, di poco $angue, per la gran forza del Sole, & ancho per lo poco $angue $ono piu timidi a re$i$ter all'armi, ma $opportano gli ardori delle febri $enza timore, perche i loro membri $ono con il feruore nodriti; & però i cor- pi, che na$ceno $otto il Settentrione piu pauro$i, & deboli $ono per le febri, ma per l'ab- bondanza del $angue re$i$teno al ferro $enza paura. Similmente i $uoni della uoce $ono di$eguali, & di uarie qualità nella diuer$ità delle genti, perche il termine dell' Oriente, & dell' Occidente intorno al liuello della terra, la doue $i diuide la parte di $opra della parte di $otto del mondo, pare, che habbia il $uo giro per modo naturale librato, & pondera- to, il qual termine ancho da i Mathematici è chiamato. Orizonte, cioè terminatore. Et però, perche que$to habbiamo, tenendo nella mente no$tra il centro tiramo una linea dal labro, che è nella parte Settentrionale a quello, che è $opra l'a$$e Meridiano, & da quello ancho tirandone un'altra trauer$a in$ino alla $ommità, che è dopo le Stelle Setten- trionali auuertiremo da quello, che nel mondo $arà una figura triangolare, come quegli Organi, che da Greci nominati $ono Sambuche. Et però lo $patio, che è uicino al Polo inferiore dalla linea dello a$$e ne i termini meridiani, quelle nationi che $ono $otto quel luogo, per la poca eleuatione de i Poli fanno il $uono della uoce $ottile, & acuti$simo, come fa nell' Organo quella corda, che è uicina allo angulo. Dapoi quella le altre a me- zo la Grecia, nelle nationi fanno le a$ce$e de i $uoni piu rime$$e, & ancho dal mezo in ordi ne cre$cendo in$ino a gli ultimi Settentrioni $otto l'altezza del Cielo gli $piriti delle natio ni con piu graui $uoni dalla natura delle co$e e$pre$si $ono. Co$i pare, che tutta la con- cettione del mondo per la inclinatione ri$petto alla temperatura del Sole con grandi$si- ma con$onanza fatta $ia. Et però le nationi, che $ono tra il Cardine dello a$$e meridiano & nel mezo del Settentrione, come è de$critto nella figura Mu$ica hanno nel parlare il $uono della uoce della mezana. Et quelle genti, che uanno uer$o il Settentrione, perche hanno piu alte di$tanze ri$petto al Mondo, hauendo gli $piriti della uoce ripieni d humo- re, sforzati $ono dalla natura delle co$e con piu graue $uono alla prima, & all'aggiunta uoce, detta Hypate, & Pro$lamuanomenos, come per la i$te$$a ragione nel mezo (ca- dendo le genti uer$o il Meriggie) fanno l'acuti$sima $ottigliezza del $uono della uoce a quelle, che $on pre$$o l'ultime corde, che Paranete $i chiamano. Ma che uero $ia, che per gli humidi luoghi di natura le co$e piu graui, & per gli caldi piu acute diuentino, in <foot><I>O O</I></foot> <pb n="276"> q <*>e$to modo e$perimentando $i puo auuertire. Siano due calici in una fornace egualmen te cotti, & di egual pe$o, & ad un $uono quando $on tocchi $iano pre$i, & uno di quelti $ia po<*>to nell'acqua, & poi tratto fuori, $ia tocco l'uno & l'altro, quando que$to $arà fat- to, egli $i trouerà gran differenza tra que $uoni, & non potranno e$$er di pe$oeguale: co$i auuiene a i corpi de gli huomini, i quali concetti d'una maniera di figuratione, & in una congiuntione del mondo, altri per lo ardore del pae$e col toccamento dell'aere, manda- no fuori lo $pirito acuto, altri per l'abondanza dell'humore $pargono graui$sime qualità di $uoni, & co$i per la $ottigliezza dello aere le nationi meridiane per lo acuto feruore $i mouono piu pre$to, & piu e$peditamente con l'animo a prender con$iglio. Ma le genti Settentrionali infu$e della gro$$ezza dello acre, perche lo aere le o$ta, raffreddate dall hu- more hanno le menti $tupide. Et che que$to co$i $ia, da i $erpenti $i comprende, i quali per lo caldo hauendo a$ciugato il refrigerio dell'humore con gran uehemenza $i mouo- no, ma nel tempo de i ghiacci il uerno raffreddati per la mutatione del Cielo per lo $tu- pore $i fanno immobili. Co$i non è merauiglia $e il caldo aere fa le menti de gli huomi- ni piu acute, & il freddo per lo contrario piu tarde. E$$endo adunque le nationi $otto il meriggie d'animo acuti$simo, & d'infinita prontezza a prendere partito, $ubito, ch'en- trano ne i fatti d'arme, iui mancano, perche hanno $ucchiate le forze de gli animi dal So- le: ma quelli, che na$cono in parti fredde, $ono piu pronti alle armi, & con grande im- peto $enza timore entrano nelle battaglie, ma con tardezza d'animo, & $enza con$idera- tione facendo impeto $enza $olertia con i loro con$igli $i rompeno. E$$endo adunque tali co$e dalla natura nel mondo co$i $tatuite, che tutte le nationi con immoderate me$colan- ze fu$$ero di$tinte, piacque alla natura, che tra gli $patij di tutto il mondo, & nel mezo dell'uniuer$o il populo Romano fu$$e po$$editore di tutti i termini: perche nella Italia $o- no le genti temperati$sime ad amendue le parti, & con i membri del corpo, & col ualore dell'animo alla fortezza di$po$te. Perche come la Stella di Gioue di mezo tra la feruen- ti$sima di Marte, & la freddi$sima di Saturno correndo, è temperata, co$i per la i$te$$a ra gione la Italia po$ta tra la parte Settentrionale, & del mezodì dall'una, & l'altra parte temperata riporta inuitte lodi, & però con i con$igli rompe le forze de Barbari, & con la forte mano i pen$ieri de i Meridiani. Et co$i la prouidentia Diuina ha po$to la Città del populo Romano in ottima è temperata regione, accioche ella fu$$e patrona del mondo. Se adunque co$i $i uede, che per le inclinationi del Cielo le di$simili regioni con uarie ma niere $iano comparate, & che la natura delle genti con animi di$pari, & con figure de i corpi, & con qualità differenti na$ce$$ero: non dubitiamo anche non douer$i di$tribuire le ragioni del fabricare fecondo le proprietà delle genti, & delle nationi. Hauendo di cio pronta, & chiara dimo$tratione dalla natura. Io ho e$po$to (come io ho potuto con gran ragione auuertire) le propietà de i luoghi dalla uatura di$po$ti, & in che modo bi$o- gna al cor$o del Sole, & alle inclinationi del Cielo con$tituire le qualità de gli edificij al- e figure delle genti. Et però ade$$o breuemente dichiarirò in uniuer$ale, & in particola re le proportioni, & mi$ure delle maniere di cia$cuno edificio. <p><I>Le qualità de i pae$i deono e$$er con$iderate da chi fabrica, imperoche in un luogo $i fabrica ad un modo, in altro ad altro modo, ri$petto a gli ardenti Soli, a i freddi uenti, alle neuo$e $tagio- ni, & all'inondationi del mare, o de'fiumi: la doue altri nelle cauerne della terra, altri fopra i monti, altri ne i bo$chi, altri ancho $opra gli alti$$imi alberi hanno fatto le loro ha- bitationi; però Vitruuio ha riguardo in generale a quello, che in ogni luogo deue con$idera re l' Architetto, & proua la $ua intentione a molti modi, & con belli e$$empi: cioè, che le qua lità del Cielo, & gli a$petti in diuer$e regioni fanno diuer$i effetti, & che a quelli $i deue por men- te, accioche $i po$$a goder le $tanze, & le habitationi $enza di$etto. Prende argomento dalla $tatura, & dai membri dell'huomo, & dalla di$po$itione de gli animi, che $eguitano la tempera</I> <pb n="277"> <I>tura del corpo. Il tutto è facile. $olamente quella parte ha bi$ogno di e$po$itione, che appartie<*> ne alla differenza delle uoci, quando dice, che il $uono della uoce tra le genti del mondo ha diuer $a qualità, & dalla uarietà de i climi, che egli chiama inclinationi, uariar$i la uoce de gli huomi ni. Dice adunque in $omma, che quelli, a i quali $i leua meno il Polo $opra l' Orizonte, hanno la uoce piu $ottile, & piu acuta, & quanto piu uno na$ce in pae$e uicino al Polo, cio<*> che'l punto che gli $opra$ta nel Cielo, è uicino al Polo, tanto ha uoce piu ba$$a. Que$ta intentione è pre$a da una $imiglianza di quello in$trumento, che $i chiama Sambuca; noi for$e Arpa nominiamo; che è $trumento mu$icale in forma di triangolo, come ancho quello, che di canne formato $i uede in mano di Pane Dio de Pa$tori; ma l' Arpa è di corde. imaginamo$i per lo circolo Meridiano A B C D il centro del Mondo, E, l' Orizonte, che è quel circolo, che diuide gli hemi$peri cioè quello, che $i uede, da quello che non $i uede A E C. imaginamo il Polo nel punto F dal quale cada una</I> <fig> <I>linea nell' Orizonte a piombo nel punto, H, & $imilmente un' altra che peruenga al centro, E, non è dubbio, che qui non $i ueda rappre$entato un triangolo F H E. imaginamo ancho il Po lo eleuato $opra il piano nel punto, G, & fac ciamo cadere dal detto punto una linea $opra l' Orizonte nel punto, I, & un'altra dal detto punto G, al centro, E, & qui haueremo un'altro triangolo G E I, dico, che quelli, a i quali $i leua il Polo nel punto, F, hanno uo- ce piu $ottile, che quelli, a i quali $i leua il Polo nel punto, G. rapportamo adunque la linea, F H, dentro al triangolo maggiore, & iui$ia chia mata, M N, certo è che la linea G I, $arà mag giore di quella, & $e ella fu$$e una corda di $tru mento $onarebbe piu ba$$o, & piu graue, che la corda MN, come quella, che è piu uicina all'angulo, & piu picciola, & fa $uono piu acuto, e$$endo di piu ueloce mouimento, & piu tirata. $imilmente dice Vitr.</I> <p>Adunque quello $patio, che è pro$simo al cardine inferiore nelle parti meridiane, quel le nationi, che $ono $otto quel clima per la breuità dell'altezza al mondo fanno un $uono di uoce acuti$simo, & $ottili$simo, $i come fa nello $trumento la corda, che è uicina all'angulo. <p><I>Et co$i ua $eguitando, & la no$tra figura dimo$tra chiaramente la $ua intentione, & quella linea obliqua, che egli dice, che $i debbia tirare, benche pare, che egli la tiri dall' e$tremo Ori- zonte, come dal punto C che egli chiama labro, pure deue e$$er tirata dal centro. parte di que$to di$cor$o $i legge in Tolomeo nel $econdo della $ua compo$itione.</I> <HEAD><I>'Delle mi$ure, & proportioni de i priuati edifi- cy. Cap. I.I.</I></HEAD> <p>Niuna cura maggiore hauer deue lo Architetto, che fare, che gli edificij hab- biano per la proportione della rata parte i compartimenti delle loro ragioni. Quando $arà e$pedita la ragione delle Simmetrie, & con di$cor$o e$plicate le proportioni, allhora ancho è propio di acuto animo prouedere alla natura del luogo, all'u$o, alla bellezza, & aggiugnendo, o $cemando fare conueneuoli tempe- ramenti, acciò quando farà tolto, ouero accre$ciuto alla mi$ura, que$to paia e$$er drit- <foot><I>O O</I> 2</foot> <pb n="278"> <fig> tamente formato in modo, che niente piu ci $i de$ideri per lo a$petto: perchealtra for- ma pare, che $ia d'appre$$o, & al ba$$o, altra da lontano, & in alto, nè quella $te$$a pare in luogo rinchiu$o, che pare in luogo aperto: nelle quali co$e è opera di gran giu- dicio $apere prender partito, perche non pare, che il uedere habbia i ueri effettl ma bene $pe$$o la mente dal $uo giudicio è ingannata. Come ancho appare nelle Scene di pinte, gli $porti delle colonne, & de i mutuli, & le figure de i $egni, che uengono in fuo- ri di rilieuo, e$$endo $enza dubio la tauola piana, & eguale. Similmente i remi delle na- ui, e$$endo $ott'acqua dritti, pareno a gli occhi rotti, & $pezzati, & fin che le parti loro toccano il piano dell'acqua, appareno dritti come $ono. Quando poi $ott'acqua man- dati $ono per la rarità traparente della natura rimandano le imagini fuori dell'acqua alla $uperficie, & iui quelle imagini agitate, & commo$$e pareno fare à gli occhi lo a$petto del remi $pezzato, & que$to o perche quei $imulachri $ono $pinti, o perche da gli occhi uen- gono i raggi del uedere (come piace a Phi$ici) o per l'una, & per l'altra ragione qual $i uo- <pb n="279"> <fig> glia: co$i pare, che lo a$petto habbia fallace il giudicio de gli occhi. E$$endo adunque che le co$e uere pareno fal$e, & prouando $i da gli occhi alcune co$e altramente di quello, che $ono, io non pen$o, che bi$ogni dubitare, che alle nature, o necefsità de i luoghi, non $i debbia fare gli accrefcimenti, ouero le diminutioni, ma in modo, che in $imil opere niente $i de$ideri. Et que$to non $olo per dottrina, ma per acutezza d'ingegno $i puo fare: & pe rò prima $i deue ordinare la ragione delle mi$ure, dallaquale $i po$$a $enza dubitatione pi- gliare il mutamento delle co$e. Dapoi $ra e$ plicato lo $pacio da ba$$o dell'opra, che $i de- ue fare per larghezza, & per lunghezza, dellaqual opera quando una fiata $arà la grandez- za con$tituita lo apparato della proportione alla bellezza ne $egua, accioche dubbio non fia l'a$petto della Eurithmia, a chi uorrà $opra con$iderare: della quale con che ragioni $i faccia ne dirò; ma prima ragionerò come $i debbiano fare i Cortili $coperti, delle ca$e, Cauedij nominati. <p><I>Io ho detto, che molto ragioneuolmente Vitr. ha uoluto replicare nel$e$to libro quellè co$e,</I> <pb n="280"> <fig> <pb n="281"> <fig> <pb n="282"> <I>che nel primo ha uoluto per introduatione dell' Archittetura proporre; porche l' Architetto ha- uer dcue le i$te$$e idee nell'ordinare gli edificij priuati, che egli ha nelle co$e publiche, & molto bene auuertire alla Di$po$itione al Decoro, alla Bellezza, alla Di$tributione, al Compartimento, & altre co$e toccate nel primo libro, $econdo che nel detto luogo molto bene hauemo e$po$to, & di piu ancho $i deprime l'arroganza di molti, che mi$urano molte membra, & molte parti nelle ruine di Roma, & non trouando quelle ri$pondere alle mi$ure di Vitr. $ubito le bia$imano dicendo, che Vitr. non la intendeua: la doue imitando nelle fabriche le co$e, che hanno mi$urato fuori dei luoghi loro, come ferma regola $empre allo i$te$$o modo $i gouernano, & non hanno con$idera- tione a quello, che Vitr. ha detto di $opra, & molto piu chiaramente dice nel pre$ente luogo, cioe, che non $empre $i deue $eruare le i$te$$e regole, & $immetrie, perche la natura del luogo richiede $pe$$o altra ragione di mi$ure, & la nece$$ità ci a$trigne a dare, o leuare di quelle, che propo$te ha- ueuamo. Però in quel ca$o dice Vitr. che $i uede molto la $ottigliezza, & giudicio dello Ar- chitetto, ilquale togliendo, o dando di piu alle mi$ure, lo fa in modo, che l'occhio ha la parte $ua, & regge la nece$$ità con bella & $ottile ragione. Et $enoi trouamo la cornice del Theatro di Marcello alquanto diuer$a dalle regole di Vitr. & il re$tante e$$er beni$$imo inte$o, non douemo bia$mare quel grande Architetto, che fece il detto Theatro. Imperoche chi haue$$e ueduto tut- ta l'opera in$ieme for$e haurebbe fatto miglior giudicio. & però ben dice Vitr. che $e bene la mag gior cura, che ba l' Architetto, $ia d'intorno le mi$ure, & proportioni, però grande acqui$to fa di ualore, quando egli è forzato partir$i dalle propo$te $immetrie, & niente lieua alla bellezza dello a$petto; nè puo e$$ere incolpato, perche con la ragione habbia medicato il male della nece$$ità. Et qui $i uede quanto $ia nece$$aria la pro$pettiua allo Architetto, & dimo$tra la forza $ua, quando $ia, che la ui$ta no$tra merauiglio$amente ingannata $ia dalle pitture fatte ne i piani, che per ra- gione di Pro$pettiua regolata da un <*> punto fa parere le co$e di rilieuo, & non $i puo certificar- $i, che non $iano di rilieuo $e l'huomo non le tocca, o non $e le auuicina. Et gli inganni della uistta $ono, o per la diuer$ità de i mezi, per liquali $i uedono le co$e, che e$$endo intiere paiono $pezza- te, e$$endo picciole paiono grandi, e$$endo lontane paiono uicine. La molta luce impedi$ce, la po- ca non è ba$teuole alle co$e minute. Le di$tanze mutano le figure, però le co$e quadrate da lon- tano pareno tonde, & Vitr. di tal co$a in molti l uoghi ci ha $atti auuèrtiti. Gli $corzi de i corpi non la$ciano uedere tutte le parti loro, il ueloce mouimento fa parere una fiamma continua, quan do uelocemente $i moue una uerga affocata. La infermità dell'occhio partori$ce anche diuer$i errori; però a molte co$e delle $opra dette il ualente Architetto puo rimediare. Dapoi che adun- que l' Architetto hauerà molto ben con$iderato la ragion delle mi$ure, & a quel tutto, cha fa la co$a bella, $ia di che genere e$$er $i uoglia, o $odo per $o$tener i pe$i, o $uelto per dilettare, come il Corinthio, o tramezo per l'uno, & l'altro come lo Ionico, & egli hauerà auuertito al numero, del quale la natura $i compiace nelle colonne, & nelle apriture, & che le co$e alte na$ceno dal- le ba$$e, & che quelle proportioni, che danno diletto alle orecchie nelle uoci, le i$te$$e applicate a i corpi dilettano a gli occhi.dapoi dico, che tutte que$te co$e $aranno preui$te, bi$ognerà, che egli $ottili$$imamente proueda a quello, che $arà nece$$ario a quella parte, che Eurithmia è chiamata nel primo libro.</I> <HEAD><I>Dei Cauedi delle ca$e. Cap. III.</I></HEAD> <p>Icauedi, di$tinti $ono in cinque maniere, le figure, de i quali co$i $ono nomina- te. To$cana, Corinthia, Tetra$tila', Di$pluuiata, Te$tugginata. I To$cani $on quelli, ne i quali le traui, che pa$$ano per la larghezza dell' Atrio hanno al- cuni trauicelli pendenti, & i canali, o collature dell'acque, che corrono di mezo da gli anguli de i pareti, a gli anguli delle traui, & anche da gli a$$eri nel mezo del <pb n="283"> Cauedio detto compluuio $ono i cadimenti dell'acque. Ne i Corinthij con le i$te$$e ra- gioni $i pongono le traui, & i compluuij, ma ci è que$to di piu, che le traui $i parteno da i pareti, & $i $oprapongono alle colonne d'intorno. I Tetra$tili $on quelli, che hauendo $otto le traui le colonne angulari le pre$tano utilità, & fermezza, perche nè e$$e $ono con- $trette hauer gran pe$o, nè $ono caricate dalle traui trapendenti. I Di$pluuiati $on quelli, ne i quali le pendenti traui, che $o$tengono l'arca, $cacciano l'acque cadenti. Que$ti $ono di grandi$sima utilità alle $tanze del uerno, perche i loro compluuij dritti, non togliono il lume a i Triclini. Ma hanno que$to incommodo ne gli acconciamenti, che d'intorno i pareti le canne contengono i cadimenti dell'acque, lequali canne non co$i pre$to riceuono l'acque cadenti ne i canali, & co$i redondanti ri$tagnano, & s'ingorgano, & gua$tano in quelle manicre di fabriche le fine$tre. Ma i Te$tugginati $i fanno la doue non $ono gran forze, & di $opra ne i palchi $i fanno $pacio$i per le habitationi. <p><I>Hauendoci Vitr. e$po$to quello, che douemo con$iderare prima, che mettiamo le mani a fabri- care le ca$e priuate, sì per ri$petto delle parti del Cielo, & gli a$petti del mondo, $econdo i quali douemo di$ponere gli Edificij, sì per ri$petto delle mi$ure, & proportioni, alle quali douemo auuer tire tanto nella libera, quanto nella nece$$itata di$po$itione de gli edificij; comincia a darci i pre- cetti, & i compartimenti delle ca$e priuate, hauendo con$ideratione delle piu belle parti di e$$e, ac commodandole alle qualità delle per$one, con$iderando le parti communi, & le propie, & non la$ciando co$a che degna $ia del $uo auuertimento. Cominciando adunque a trattar delle ca$e, egli principia da quelle parti, che prima uengono all' a$petto no$tro, come ha fatto nel trattamen to de i Tempi nel terzo libro. Quello adunque, che prima ne uiene allo a$petto, è il piouere de i colmi, o tetti, cioè quella parte di doue pioue; & quella doue pioue Impluuio, & Compluuio no- minata; & è ragioneuole dichiarire que$ta forma, sì perche ella è la prima, che ci uiene inanzi, sì perche hauendoci Vitr. dato i precetti della contignatione, & del legamento del tetto di dentro, & di $otto (come s'ha ueduto nel quarto libro:) Egli ci uuole mo$trare di quanti a$petti $iano, $econdo diuer$e maniere i pioueri, & i colmi di fuori, & di $opra. Cauedia chiama egli que$ti luo- ghi, perche ueramente $ono come caui delle ca$e. Aulas i Greci $ogliono nominare que$ti luoghi circondati da muri & $coperti nel mezo, noi Cortili, o Corti chiamamo, entrate, & cortili, quel li, che $ono $coperti, entrate quelli, che $ono coperti. Il cortile adunque è una parte delle prin- cipali, nella quale (come dice l'Alberto) come in un Foro commune concorrono tutti gli altri membri minori, & come nella città il Foro, & le parti congiunte al Foro: $ono quelle, che prima $i riguardano, co$i nella ca$a, che è come una picciola città, $i dà prima d'occhio al cortile, al quale $i dà luogo ampio, & aperto, & pronto ad ogni co$a. I nomi de i Cauedi $i pigliano, o dal- l'u$anza di diuer$e città, o dalla forma loro. $ono detti ancho Atria, ma per un'altro ri$petto, per- che Cauedium è detto ri$petto a quella parte che è $coperta, & che pioue nel mezo, Atrium ri- $petto a quella parte che è coperta. Cinque $ono le maniere de i Cauedi; altre $i pigliano dalla for- ma, altre dall'u$anza d'alcune città. Prima è la To$cana, che è la piu $emplice delle altre, dal- laquale for$e $ono gli Atrij nominati, perche er ano in To$cana i popoli Atrien$i, per ilche non piace, che Atrium $ia detto dal color Atro, che procede dal fumo, come che in quelli $i face$$e la cucina. I Cauedi To$cani erano quelli, ne i quali le traui, che pa$$ano per la larghezza dello Atrio haueuano altritrauicelli pendenti tra quelli, & però interpen$iua $i chiamano, & il loro pendere era in piouere, & haueuano i canali, che Colliquie detti$ono, i quali tracorreuano, & erano trapo$ti in modo di piouere, & ueniuano da gli anguli de i pareti a gli anguli délle traui. Erano quattro traui principali $opra quali $i po$auano alcuni altri trauicelli, che $tauano in pio- uere, detti da Vitr. Interpen$iui, perche trapendono, que$ti ueniuano da gli angoli de i pareti a gli angoli delle traui minori. Erano con una delle loro te$te fermate $opra que trauicelli, & con l'altra come appoggiate ne gli angoli de i pareti. eranui poi i lor morelli detti A$$eri (de quali hauemo detto nel quarto libro.) $opra e$$i erano gl'Imbrici, & le Tauelle; & mandauano giu</I> <foot><I>P P</I></foot> <pb n="284"> <fig> <pb n="285"> <fig> <foot><I>P P</I> 2</foot> <pb n="286"> <fig> <pb n="287"> <fig> <pb n="288"> <p><I>l'acqua allargo nel cortile. Ma che Vitr. intenda per que$to nome de Interpen$iui, i trauicelli ap- poggiati di $opra, & non po$ti di $otto per $o$tenimento delle traui, che trapa$$ano per la larghez- za dello Atrio (come uogliono alcuni) egli $i uede per le parole, che egli dice di $otto parlando de i Cauedi Tetra$tili: dicendo, che le traui non $ono caricate da gli Interpen$iui. Segno adun- que è che gl' Interpen$iui caricano, & $tanno di $opra: & $e $o$tene$$ero, non $i chiamerebbeno Interpen$iui. Que$ti Cauedi non haueuano portico a torno, & il loro piouere era $emplici<02>imo, & ueniua molto inanzi gettando l'acque molto lontane da i pareti. La $econda maniera è det- ta Corinthia, & non è differente quanto al uenir in fuori delle traui, & del piouere dalla To$ca- na: Ma è ben differente, perche le traui, che uengono da i pareti dalla larghezza dell' Atrio $o- no $opra colonne, che uanno d'intorno al Cauedio. Come dimo$tra la pianta, & la figura, O, laqual ancho ci $erue al primo Cauedio, per la $imiglianza che ha il Cauedio Corinthio con lo To$cano; intendendo però che nel To$cano non ci $iano colonne. La terza maniera è detta Tetra$tilos, cioè di quattro colonne, & è molto forte, nè ha molto carico, perche non ci $ono gli Interpen$iui. Que$to Cortile non doueua e$$er molto grande, imperoche hauendo $olo quattro co- lonne, & quelle $opra le cantonate, $e fu$$e $tato molto lungo, o largo, gli $pacij trale colonne $a- rebbeno $tati fuori di modo, & la opera non $arebbe $tata ferma (come dice Vitru.) La quarta maniera è detta Di$pluuiata, cioè quella, che $ta in due pioueri fatta di traui po$ti come una $e$ta aperta in piedi, che Deliquiœ $i chiamano. Que$ti hanno due cadimenti dell' acque, però che una parte pioue uer$o i cortili, l'altra dall' altra parte difuori: & qui ci na$ce un difetto, perche l'ac- qua, che cade per li canali, non puo co$i pre$to entrare nelle canne, che Fi$tule $i chiamano, & $u le bocche s'ingorgano, & $oprabondando $i $parge, & uien giu per li pareti, & col tempo gua- $ta i $ottogrondali, & le fine$tre, & i legnami, che poi difficilmente s'acconciano; banno però que- $to commodo, che non impedi$ceno i lumi alle $tanze doue $i mangia; & la ragione è perche il loro tetto non uiene troppo in fuori col piouere, ma pende dolcemente, & il lume non è impedito. però ancho $e io uole$$e dire che gli Atrij fu$$ero detti dal color Atro, io direi, che il piouere, che $porta molto in fuori, fa quegli ombro$i, & o$curi. ma for$e Atrium puo uenir dal Greco, & $i- gnificare un luogo, che non ha uia che uolga. La quinta maniera $i chiama Te$tudinata fatta in quattro pioueri. pen$o io, che que$ti fu$$ero coperti, & che di $opra haue$$ero le $ale, & le $tan- ze $pacio$e, & i palchi $o$tentati da belli$$imi colonnati, che dinanzi alle porte face$$ero mo$tra di belle loggie, che per ue$tibuli $erui$$ero, o che nell' entrate haue$$ero colonne compartite a mo- do, che de$$ero grandezza & bellezza. puo ancho e$$er, che que$ti cauedi fu$$ero di ca$e ordina- rie, & di per$one di mediocre conditione, nellequali non erano Atrij, ne colonnati; $e for$e non uogliamo dire, che Atrij $i chiama$$ero quelle entrate; ilche niuno uieta, che co$i egli non s'in- tenda.</I> <HEAD><I>Degli Atrij, alle Tablini. Cap. IIII.</I></HEAD> <p>LE lunghezze ueramente, & le larghezze de gli Atrij, a tre modi $i formano. Pri ma partendo la lunghezza loro in cinque parti, & dandone tre alla larghezza. Poi partendo in tre, & dandone due: finalmente ponendo la larghezza in un quadro perfetto, & tirando la diagonale, la lunghezza, della quale darà la lunghezza dello Atrio. <p><I>Io non diuiderei con nuouo capo questa parte de gli Atrij dal capitoloprecedente, perche l'A- trio ua col Cauedio, & ancho il modo del parlare, che u$a Vitru. lo dimo$tra, dicendo, Atriorum uero longitudines. L'Atrio è quella parte prima a chi entra dentro in ca$a, & è luogo coperto, ha la porta principale nel mezo, a dirimpetto della quale in fronte $ono le porte, che uanno ne i Peri$tili pa$$ando prima per alcuni altri luoghi, che Tablini $i chiamano: ha dalla de$tra, & dal- la $ini$tra le ale, che Pteromata in Greco $i chiamano. Che lo Atrio $ia la prima parte lo dimo-</I> <pb n="289"> <I>$tra Vitr. nel ottauo Capo del pre$ente libro dicendo, che nella città gli Atrij e$$er deono appre$- $o la porta. che lo Atrio fu$$e coperto Vitr. $imilmente l'ha dimo$trato di $opra parlando del Ca- uedio, doue dice le traui, che $ono nella larghezza dello Atrio, & il re$to. Le mi$ure, & $imme- tria de gli Atrij $i fanno in tre modi, cioè gli Atrij $ono in tre proportioni, il primo è quando la lunghezza dello Atrio è partita in cinque parti, & tre $e ne danno alla larghezza. Il $econdo è quando la lunghezza è diui$a in tre parti, & due $i danno alla larghezza. La terza è quando $i dà alla lunghezza la diagonale del quadrato della larghezza. La prima è in proportione $opra- bipartiente le terze, cioè d'un quadro & due terzi. La $econda è in proportione $e$quialtera, cioè d'un quadro & mezo. La terza è diagonale. Prima che io uegna alla dichiaratione, & al compartimento di que$te parti, uoglio porre il $econdo capo del Trente$imoquinto libro di Plinio, perche à me pare, che egli faccia al propo$ito, si per l'u$o de gli Atrij, & de i Tablini, sì per l'an- tichità memorabile, che in e$$o argutamente $i racconta. Per la pittura delle imagini molto grandemente $imiglianti di tempo in tempo $i con$eruauano le figure, ilche del tuito è mancato. Hora $i pongono gli $cudi di rame coperti d'argento, & con non inte$a differenza delle figure, $i cambiano le te$te delle $tatue, diuulgati ancho i moti de i uer$i: co$i piu pre$to uogliono, che la materia $ia riguardata, che e<02>i e$$er cono$ciuti; & tra que$te co$e con le uecchie tauole accon- ciano gli armari, doue $aluano le tauole, detti Pinacothece, & fanno honore alla effigie altrui, nō i$timando l'honore $e non nel precio, che lo herede le rompi, & il laccio del ladro le leui, & co$i non uiuendo l'effigie d'alcuno, la$ciano non le loro imagini, ma quelle della pecunia. Gli i$te$$i adornano le pale$tre de gli Athleti con imagini, & i luoghi loro doue $i hanno ad ugnere, & per li cubiculi portano le faccie dello Epicuro, & li portano $eco a torno. Nel loro Natale fan $a- crificio al uige$imo della Luna, & $eruano le fe$te ogni me$e, che Icade $ono dette. Et $pecialmen te quelli, che ancho in uita non uogliono e$$er cono$ciuti. Et co$i è uer amente, che la pigritia ha rouinato l'arti. Et perche non ci $ono le imagini de gli animi, ancho quelle de i corpi $ono $prez- zate. Altramente appre$$o i maggiori erano quelle ne gli Atrij, perche guardati fu$$ero non i $egni de gli artefici fore$tieri, non i metalli, non i marmi, ma i uolti e$pre$$i nella cera per cia- $cun armario eran di$po$ti, accioche iui fu$$ero le imagini, che nelle e$$equie accompagna$$ero i funerali delle ca$ate, & $empre che uno era morto, $i trouaua pre$ente per ordine tutta la mol- titudine, che era $tata di quella famiglia, & gli ordini, & gradi con li$te di rame erano trapo$te alle imagini dipinte. Erano ancho tra le porte, & $ogli delle porte le imagini de i grandi$$imi am- mi, & attaccate le $poglie de i nemici, lequali nè da chi compraua la ca$a era lecito, che rotte fu$$ero, & mutati i patroni re$tauano gli ornamenti delle ca$e, & que$to era un grande $timolo, che le ca$e, & i tetti ogni giorno rinfacciauano, che un dapoco patrone entra$$e nel trionfo d'al- tri. Ecco che da que$to luogo $i puo hauer il $entimento di Vitr. & come nello Atrio era il Ta- blino, le imagini, & le <*>tatue. Similmente Ouidio nella ottaua Elegia del primo de gli Amori di- ce. Nec te dicipiant ueteris quinque Atria cerœ; Volendo dimo$trare una grande, & antica no- biltà, a cui non ba$ta$$ero cinque Atrij per porre le imagini di cera de i maggiori. L'u$o adunque di que$ti Atrij, & delle parti loro come Ale & Tablini, è di gia manife$to per le parole di que$ti buoni autori. Per procedere adunque ordinatamente nel di$egno de gli Atrij, & nel comparti- mento delle ca$e, accioche egli s'intenda que$ta materia riputata (come inuero è) da tutti diffi- cillima: Io dico, che bi$ogna prima uenire alla pianta, & con linee di$egnare l'Atrio in lunghez za, & larghezza $econdo una di quelle proportioni, che ha po$to Vitr. o di un quadro & mezo, o diagonale, o d'un quadro & due terzi; & qui noi l'hauemo fatto d'un quadro & mezo inclu$o nelle lettere A B C D. Venimo poi al di$egno delle Ale, che $ono dalla de$tra, & dalla $ini- $tra $olamente, & $ono portichi, & colonnati: & perche dipendono dalla proportione della lun- ghezza dell' Atrio, accioche con e$$o $iano proportionate, è nece$$ario $apere di quanti piedi $ia la lunghezza dello Atrio. Qui adunque fatto hauemo l'Atrio lungo 80 piedi, la doue caderà $otto la regola, che dice Vitr. che $e lo Atrio $arà lungo da 80 in 100 piedi, tutta la $ua lunghezza $i</I> <pb n="290"> <I>partirà in 5 parti, & una di e$$e $i darà alle Ale a que$to modo, che la quinta parte di 80 $i di<*>- de in due parti eguali, & una $i dà alla de$tra Ala, l'altra alla $ini$tra, non ponendo però a que $to conto la gro$$ezza delle colonne, percioche le Ale uenirebbero molto $trette. La larghezza adunque delle Ale $arà 8 piedi, perche 16 è un quinto di 80. Que$to Atrio adunque $arà 80 pie di lungo & piedi 53 & mezo largo, & hauerà l'Ale di 8 piedi $enza la gro$$ezza delle colon- ne. L'altezza ueramente de gli Atrij è la i$te$$a in tutti, cioè $i $a ad uno i$te$$o modo, che le- uando un quarto della lunghezza il re$to $i da all'altezza, cioè dal piano alla traue, che è la ca tena del tetto, che $o$tenta l'arca, o la ca$$a di tutto il colmo. leuando adunque 20 di 80 dare- mo 60 piedi all' altezza, di que$ti 60 piedi faremo l'altezza delle colonne gli Architraui, Freg- gi e Cornici 53 piedi & oncie 16 $aranno alte le Colonne con le Ba$e, & capitelli loro, il resto $i darà alli membri di $opra, nè ci douemo merauigliare, $e le colonne uengono co$i alte, percio- che la magnificenza di quelle ca$e co$iricercaua, & è propio loro l'altezza, & lunghezza, per che & Vitr. dice di $otto</I> {<I>alta Atria</I>,} <I>& Virg. dice longa Atria. nè uoglio ricapitulare quello, che dice Plin. della grandezza, anzi lu$$uria delle ca$e de Romani nel trente$imo$e$to, & nelde- cimo$ettimo, & molto copio$amente ne parla il Budeo nel terzo, & quarto de A$$e: ben dirò per far fede di quello, che io ho detto dell' altezza delle colonne, cioè che le ueniuano a pigliar $u le cornici all' altezza del tetto, che Plin. dice. Verum e$to, indul$erint publicis uoluntatibus, etiam ne tacuerint maximas earum, atque adeo duo de quadragenum pedum lucullei marmoris in Atrio Scauri collocari, nec clam illud, occulte<13>; factum e$t, $ati$dari $ibi damni infecti egit redemptor cloacarum, cum in palatium extraherentur. Da que$te parole dice il Budeo potemo intendere, che disfatto il Theatro che per un me$e $olo era $tato fabricato, fo$$ero state traportate le colonne grandi$$ime nell' Atrio della ca$a di Scauro, la qual' era nel palazzo: le altezze delle colonne adunque erano grandi, & però dice Vitr. che le traui liminari di quelle Ale $ono alte di modo, che le altezze $ieno eguali alle larghezze, cioè alle larghezze de gli Atrij, & però e$- $endo largo l'Atrio piedi 53 & oncie 16. Similmente dall' Architraue in terra $aranno piedi 53 & oncie 16. Vitr. chiama que$te traui Liminari, prima per dimo$trare, che non erano uolti $o- pra quelle colonne dell' Atrio, dapoi perche hanno certa $imiglianza con i Liminari. di$egnato l'Atrio in altezza, lunghezza, & larghezza con la proportione delle Ale, egli uiene al Tabli- no. Ma prima io ponerò il te$to di quanto fin hora s'è detto, la$ciando il compartimento del- l'Architraue, Fregio, & Cornice, alle regole, poste nel Terzo Libro.</I> <p>L'altezza de gli Atrij $i deue alzare $otto le traui tanto quanto tiene la lunghezza leuan- done uia la quarta parte. Del re$tante $i deue hauer ri$petto a i Lacunari, & all' Arca, che è $opra le traui. Alle Ale che $ono dalla de$tra, & dalla $ini$tra la larghezza $i dia in que- $to modo, che $e la lunghezza dell' Atrio $arà da 30 a 40 piedi, ella $ia della terza parte, $e da 40 a 50 partita $ia in tre parti, & meza, delle quali una $i dia alle Ale, $e da 50 a 60 la quarta parte della lunghezza $i conceda alle Ale, da piedi 60 ad 80 parti$ca$i la lunghezza in quattro parti & meza, & di que$te una parte $ia la larghezza delle Ale, da 80 fin 100 pie- di partita la lunghezza in cinque parti darà la iu$ta larghezza delle Ale. Le traui Limina- ri di quelle tanto altamente porre $i deono, che le altezze $iano equali alle larghezze. <p><I>Qui $i uede un cre$cere, & un $cemare di proportioni mirabile, & chi uorrà bene con$iderare $econdo le regole date da noi nel Terzo Libro, potrà cono$cere il mirabile artificio di que$te pro- portioni, & l'effetto diletteuole, che fanno. quanto meno $on lunghi gli Atrij, tanto maggior proportione è della larghezza dell' Ale: perche $e le proportioni delle ale de gli Atrij minori fu$$e ro minori, molto $trette $arebbono l'ale, & non hauriano del buono. Io l'ho riuoltata in tutti i modi, nè mi pare di ma$ticare il pane ad altri, & que$to per dar cagione, che $i fermino meglio i denti rompendo ancho e$$i le cro$te. Veramente con buona intentione l'ho fatto, perche $e l'huo- moda $e non ua di$correndo, & riuolgendo le co$e belle non fa frutto alcuno. Hora uegniamo al Tablino, la cui mi$ura dipende dalla larghezza dello Atrio, $i come la m fura delle ale dipende</I> <pb n="291"> <I>dalla lunghezza: & que$to meritamente, & con ragione, perche, $i come le ale uanno per la lunghezza dell' Atrio, co$i il Tablino ua per la larghezza, & è in fronte dirimpetto alla porta. Doue è la lettera g. Dice adunque Vitr.</I> <p>Il Tablino, $e la larghezza dello Atrio $arà di piedi 20. leuandone la terza parte allo $patio $uo $i dia il re$tante; $e da 30 a 40 $i dia la metà della larghezza dello Atrio al Tabli no. Ma quando da 40 a 60, parti$ca$i la larghezza dello Attio in 5. parti, & di que$te $e ne diano due al Tablino, percioche gli Atrij minori non po$$ono hauere le i$te$$e ragioni di Simmetrie con i maggiori, percioche $e u$aremo le Simmetrie de i maggiori Atrij ne i mi nori, nè i Tablini nelle ale potranno hauer utile alcuno. <I>Perche $aranno troppo $trette, & non $eruiranno al bi$ogno.</I> <p>Et $e ancho prenderemo le proportioni de i minori ne i maggiori, quelli membri $aran no in que$te fabriche gua$ti, & $mi$urati. <p><I>L'e$$empio è que$to. Se la proportione delle ale de gli Atrij lunghi 80 piedi (che è un quinto della lunghezza) $arà pigliata nel mi$urar le ale de gli Atrij di 30 piedi, le ale $aranno troppo $trette, perche un quinto di 30 è $ei piedi, i quali partiti in due parti, faranno la larghezza delle ale di 3 piedi. Similmente $e la proportione delle ale de gli Atrij di 30 piedi $arà pre$a per for- mar le ale de gli Atrij di 80 piedi, che è un terzo della lunghezza, le ale ueniranno larghi$$ime, & $proportionate. Similmente ne i Tablini $i deue $eruare la proportione conueniente alla lar- ghezza de gli Atrij. Vero è, che $i come nell' Atrio piu lungo $i pigliaua minore proportione per formar le ale, co$i nell' Atrio piu largo $i piglia minor proportione per formar il Tablino $uo. Ecco nell' Atrio largo 20 piedi $i pigliano due terzi per la larghezza del Tablino, nell' Atrio lar- go da 30 fin 40 $i piglia la metà, nell' Atrio largo da 40 fin 60 $i piglia due quinti, & chinon ue de, che $ono piu due terzi, che la metà, & piu la metà, che due quinti.</I> <p>Et però io ho pen$ato di douer $criuere partitamente le ragioni e$qui$ite delle grandez ze per $eruire all' utilità, & all' a$petto. <p><I>All' utilità ci $erue le ale larghe, perche quando fu$$ero $trette, non $i potrebbe pa$$eggiare. Similmente il Tablino doue $i pongono le $tatue, & gli armari, e$$endo troppo $tretto non hau- rebbe u$o alcuno. All' a$petto $imilmente, perche una co$a gua$ta, & $mi$urata fa perdere la ui$ta, & una ri$tretta troppo l'occupa, & ri$trigne. Se il Tablino pre$o dall' Atrio largo 20 piedi hau erà la proportione dell' Atrio di $e$$anta niuno u$o hauerà il Tablino, perche $arà largo due quinti, cioè 8 piedi, & $e il Tablino pre$o dall' Atrio di 60 piedi largo hauerà la proportio- ne dell' Atrio di 20 piedi, che $on un terzo, egli $arà troppo largo, perche $arà di 4 piedi, & co$i ancho $i offenderà l'a$petto tornando d'un' Atrio in un Tablino poco minore dello Atrio. Vitr. non ci dà lunghezza del Tablino, perche io pen$o, che quella $i deue fare, o $econdo la quanti- tà delle $tatue, o $econdo la qualità delle per$one, o pure come ricerca la proportione de gli Atrij, ilche è meglio.</I> <p>L'altezza del Tablino alla traue e$$er deue con l'aggiunta dell' ottaua parte della lar- ghezza. I Lacunari $iano inalzati con l'aggiunta della terza parte della larghezza al- l'altezza. <p><I>Il Tablino adunq; della no$tra pianta $arà largo due quinti della larghezza dello Atrio, che $o no piedi 22 poco piu, perche l'Atrio è largo piedi 53 & oncie 6. $arà alto oltra i 22 piedi ancho un' ottauo di 22 fin all' Architraue: alla qual altezza $i darà anche un terzo della larghezza del Tablino fin a i Lacunari; & co$i $arà e$pedito l'Atrio, l'ale, & il Tablino quanto alle proportio- ni, & commen$ur ationi loro. & perche gli antichi haueuano piu Atrij, Cauedi, Peri$tili, Log- gie, & altri $imiglianti membri, però ui erano le bocche, & gli anditi d'andar d'uno nell' al- tro, & però dice Vitr.</I> <p>Le bocche a gli Atrij minori $ono per la larghezza del Tablino leuandone un terzo, ma ai maggiori per la metà. <foot><I>QQ</I></foot> <pb n="292"> <p><I>Que$te bocche, che Vitr. Fauce, dimanda, erano anditi, & luoghi da pa$$are da un luogo all' altro, nè (come $timo) mancaua loro i proprij adornamenti. & perche ne i Tablini $i pone- uano le $tatue, però Vitr. ordina quanto alte $i deono collocare con i loro ornamenti, e dice.</I> <p>Le imagini $imilmente e$$er deono po$te in quella altezza, che $arà la larghezza del- le Ale. <p><I>Et qui nel no$tro Inpiede del Tablino le $tatue $ono alte piedi otto, perche tanto è la larghez- za delle ale. Il re$to è facile in Vitr. & compre$o $otto le regole date nel Terzo, & nel Quar- to Libro.</I> <p>Le larghezze delle porte deono e$$er proportionate all' altezza $econdo che ricerca le maniere loro. Le Doriche, come le Doriche, le Ioniche, come le Ioniche, $ian fatte, come nel quarto libro, parlando delle porte e$po$te $ono le ragioni delle Simmetrie, Il lume dello impluuio largo per la larghezza dallo Atrio non meno d'un quarto, nè piu d'un terzo $ia la$ciato. Ma la lunghezza come dell' Atrio $ia fatta per la rata parte. I Pe- ri$tilij per trauer$o la terza parte piu lunghi che di dentro. le colonne tanto alte, quanto $aranno larghi i portichi. Gli intercolunni e $patij tra le colonne non $iano di$tanti, me- no di tre, nè piu di quattro gro$$ezze di colonne. Ma $e nel Peri$tilio all' u$anza Dorica $i faranno le colonne, co$i $i hanno a fare i moduli, come nel quarto libro io ho $critto del- l'ordine Dorico, accioche a que moduli, & alle ragioni de i Triglifi $iano di$po$ti. <p><I>Que$ti compartimenti, Moduli, & Simmetrie di traui, di porte, di colonne, & di maniere $ono $tati nel terzo, & nel quarto libro a$$ai chiar amente dimo$trati, & con parole, & con di- $egni, però $i la$cia la lunghezza del dire, per fuggir il tedio, & per dare, che di$correre a gli $tudio$i. Io ho po$to la Pianta, & lo Impiè della ca$a priuata, & $i cono$cerà dal incontro del- le lettere.</I> <HEAD><I>Dei Triclini, Stanze, E$$edre, & delle Libre- rie, & delle loro mi$ure. Cap. V.</I></HEAD> <p>Qvanto $arà la larghezza de i Triclini due uolte tanto e$$er deue la lunghezza. Le altezze di tutti i conclaui, che $aranno piu lunghi, che larghi, deono e$- $er compartite in que$to modo, che po$ta in$ieme la lunghezza, & la larghez za, $i pigli di quella $omma la metà, & tanto $i dia per l'altezza; ma $e le $tanze, & le E$$edre $aranno quadrate, aggiunta la metà alla larghezza, $i farà l'altezza. Le $tanze dette Pinacotheche, deono e$$er fatte come le E$$edre con ampie grandezze. Le $tanze Corinthie, & di quattro colonne, & quelle che Egittie $ono chiamate habbiano la ragione delle mi$ure loro al $opradetto modo de i Triclini. Ma $iano per la interpo$itione delle colonne piu $patio$e. <p><I>Hauendo trattato Vitr. fin qui delle parti communi de gli edifici, tratta hora delle propie, co- me $ono i cenaculi, le camere, i camerini, le $ale, & le $tanze appartate. Que$te hanno di- uer$i nomi pre$i $econdo la $ignificatione de i nomi Greci: & prima è il nome del Triclinio, che era luogo doue $i cenaua, detto da tre letti, $opra i quali $te$i col comito ripo$ando$i mangiauano, non però ui dormiuano, & for$e eran $imili a Ma$tabe Turche$chi. da que$ti letti le $tanze erano chiamate Triclini, che in una $tanza per l'ordinario erano apparecchiati, & $i puo formare Di<*> clinio, Tetraclinio, & Decaclinio, doue $ono due, quattro, & dieci letti, & piu, o meno $econ- do la di$po$itione di quelli. Il Filandro parla molto bene diffu$amente $opra que$to luogo. Sta- uano da un lato $olo della men$a, che era appre$$o il letto $opra tre piedi, & anche $opra uno, & mutauano la tauola mutando l'imbandigioni, di modo, che leuata la prima uiuanda, era portata di pe$o la $econda $opra un' altra men$a. Le donne per antico in$tituto $edeuano a tauola,</I> <pb n="293"> <I>gli huomini, come ho detto, $tauano $te$i appoggiati$ul comito. Quando uoleuano mangiare i $erui correuano, & gli leuauano le $carpe. Per l'ordinario non piu di due $tauano $opra un let- to, ma $econ do il numero de conuiuanti erano i letti. La forma de quali pre$a dallo antico è po- $ta dal Filandro, & ne $ono le carte $tampate. Conclaue $i chiama ogni $tanza $errata $otto una chiaue, come $ono le camere, i triclini, & ogni habitatione. Oeci $ono le $tanze, doue $i $ace- uano i conuiti, & le fe$te, & doue le donne lauorauano, & noi le potemo nominare Sale, o Sa- lotti. E$$edra io chiamerei la Sala, o il luogo della audienza, & doue $u'l mezo giorno $i dor- miua la $tate, & era luogo $opra i giardini grande, & $patio$o detto co$i dalle $edi, che iui erano. Pinacothecha era luogo, doue eran le tauole dipinte, ouero le $critture, & que$ti luoghi cioè le E$$edre, le Pinacotheche, & i Triclini erano fatti magnificamente, ornati di pitture, di colonne, di $tucchi, & d'altre magnificenze. Hora Vitruuio ci da la mi$ura, & la di- $po$itione di tutte, parte con regole generali, parte con regole particolari, & prima dice de i Triclini, i quali dice douer e$$er di due quadri, cioè la lunghezza, il doppio della larghezza, & in generale dice, che ogni conclaue deue e$$er alto la metà di quel tutto, che fa la lungheza, & la larghezza po$ta in$ieme, di modo che $e la larghezza $arà di $ei, la lunghezza di 12. po$ti in$ieme 6. & 12. faran 18. la cui metà è 9. l'altezza adunque $arà di noue: ma $e le E$$edre, o Sale $aranno di forma quadrata, le altezze $i deono fare d'un quadro, & mezo. Le Pinacotheche, $i deono fare di ampli$$ime proportioni come di doppie, & di triple. Le Sale al modo Corinthio nominate Tetra$tile, & ancho quelle, che $ono fatte al modo d'Egitto, $eruano le proportioni de i Triclini, ma perche in e$$e ui $ono trapo$te delle colonne, però hanno $patij maggiori. Ma che differenza $ia trale Corinthie, & le Egittie, Vitr. lo dichiara molto bene, & dice.</I> <p>Tra le Corinthie, & le Egittie $i troua que$ta differenza: le Corinthie hanno le colon- ne $emplici, ouero po$te $opra il poggio, ouero a ba$$o, & hanno gli Architraui, e le co- rone di $tucco, o d'opera di legno, & ancho $opra le colonne il cielo, o uolta è curuo, a $e$ta $chiacciato; Ma nelle Egittie $ono gli Architraui po$ti $opra le colonne, & da gli Ar chitraui a i pareti, che uanno a torno, è po$to il palco, & $opra e$$o il tauolato, & paui- mento allo $coperto, $i che $i uada a torno; dapoi $opra l'Architraue a piombo delle co- lonne di $otto $i pongono le colonne minori per la quarta parte, $opra gli Architraui, & ornamenti delle quali uanno i $offittati adorni, & tra le colonne di $opra $i pongono le $i- ne$tre, & co$i pare quella $imiglianza delle Ba$iliche, & non de i Triclini Corinthij. <p><I>Le Sale Corinthie haueuano le colonne appre$$o il parete, & erano le colonne $emplici, cioè d'un ordine, & $opra e$$e non u'erano altre colonne, ma gli Architraui, & Cornici, come nella Curia di $tucchi, & d'opere di biancheggiamento, ouero di legno. Ma le Sale Egittie haueuano il parete a torno, & le colonne di dentro uia lontane dal muro, come le Ba$iliche, & $opra le colonne eran gli Architraui, & Corone, & gli $patij tra le colonne, & il parete era coperto di pauimento, il qual pauimento era $coperto di modo, che $i poteua andare intorno la Sala allo $coperto, & $opra l'Architraue erano delle altre colonne per un quarto minore di quelle, di $otto, che tra que$te erano le fine$tre, che dauano lume alla parte di dentro, la quale parte haueua il $of fitto alto, perche era $opra gli Architraui, & le cornici delle $econde colonne, & in uero doue- ua e$$er co$a grandi$$ima, e degna da uedere, & poteua $eruire mirabilmente alla ui$ta delle fe$te, & de i conuiti, che $i faceuano in quelle Sale. Somigliauano que$te Sale Egittie alle Ba$iliche piu pre$to, che à i Triclinij. da que$te poi s'entraua in altre Sale, & in altre $tanze, o fu$$ero Triclini, & conclaui, o altro, che fu$$e nece$$ario alla commodità della ca$a. Vitr. $eguita a darci altre maniere di $tanze, & di alloggiamenti fatti alla Greca, che ancho quelli doueuano hauer del gran de; & il prudente Architetto potrà pigliare quanto gli parerà $econdo l'u$o de no$tri tempi.</I> <foot><I>QQ</I> 2</foot> <pb n="294"> <HEAD><I>Delle Sale al modo de' Greci. Cap. VI.</I></HEAD> <p>Fanno$i ancho le Sale non al modo d'Italia, dette Cizicene da Greci. Que- $te guardano uer$o Tramontana, & $pecialmente a i prati, & uerdure, & han no le porte nel mezo, & $ono co$i lunghe, & larghe, che due Triclini con quello, che ui ua d'intorno, riguardando$i all' incontro ui po$$ono capire, & hanno dalla de$tra, & dalla $ini$tra i lumi delle fine$tre, che $i aprono, & $errano, accio che egli $i po$$a per gli $patij delle fine$tre dal tetto uedere i prati da lungi. Le loro altez- ze $iano aggiuntaui la metà delle larghezza. In que$te maniere di edifici $i deono fare tut te le ragioni delle mi$ure, che $enza impedimento del luogo $i potranno, & i lumi $e non $aranno o$curati dalle altezze de i pareti $acilmente $aranno e$plicati, & sbrigati. Ma $e dalla $trettezza, ouero da altra nece$sità impediti $aranno, allhora bi$ognerà con inge- gno, & prontezza torre, o aggiugnere delle mi$ure in modo, che le bellezze dell' opera dalle uere mi$ure non $iano di$simiglianti. <p><I>E que$ta differenza tra le Sale Corinthie, & Egittie, che le Corinthie haueuano le colonne $em plici, cioe d'un ordine, po$te, ouero $opra il poggio a modo d'alcuni Tempy, $econdo che egli ha detto nel terzo, ouero $enza il poggio erano da terra leuate, & $i ripo$auano in terra, & $opra le colonne gli Architraui, & le cornici, o di legno, o $tucco al modo, che egli ha detto al $econdo capo del quinto parlando della Curia: $opra u'erano i $offittatinon di tutto tondo, ma $chiaccia- ti, erano però fatti a $e$ta, & que uolti erano portioni de circoli, noi chiamamo rimenati. Ma gli Egittij u$auan ancho e$$i $opra le colonne gli Architraui, ma $opra quelle, che erano di$co$te dal parete uer$o la parte di dentro poneuano la trauatura, che pa$$aua da gli Architraui a i muri d'intorno: $opra la trauatura il ta$$ello piano, & tauellato col pauimento $coperto, il qual pa uimento era dallo $patio delle colonne al muro d'intorno intorno, & $i poteua caminarui $opra al lo $coperto. Ma $opra l'Architraue a piombo delle colonne di $otto, $i poneua un'altro ordinè di colonne $econdo la regola detta piu uolte, cioè, che le colonne di $opra eran la quarta parte delle colonne di $otto minori, & questte colonne haueuano ancho e$$e i loro Architraui, cornici, e i Lacunari $econdo i Corinthij, & tra le colonne di $opra erano le fine$tre di modo, che una Sa la Egittia haueua piu pre$to della Ba$ilica, che del Triclinio. Et qui due co$e douemo auuertire, l<*>una come erano le Ba$iliche, & come haueuano le fine$tre. L'altra che que$to nome di Tricli- nio è u$ato da Vitr. parlando delle Sale, & non fa differenza tra quelle $tanze, che egli chiama<*> Oeci, & quelle che $ono Triclini nominate: però io direi, che Oeci $ono Triclini grandi, & Tri- clini oeci piccioli: quelli a publichi, que$ti a priuati edifici, & ordinarij dedicati. Hauendoci adunq; Vitr. e$plicato que$ta differenza, egli pone una u$anza di que$te $ale fatte alla Greca, & benche pa re, che le Corinthie $iano Greche, et che le Egittie ancho $iano $tate u$ate da Greci, & l'una, & l'al tra maniera fia $tata pre$a da Italiani. nientedimeno io $timo, che que$te $ale, che egli nel pre$en- te capo dice e$$er alla Greca, non fu$$ero $tate pre$e da Italiani, ma che $olo in Grecia s'u$a$$ero. Que$te dice egli, che $i chiamauano Cizicene, co$i dette da una terra de' Milesij nella Proponti- de. Erano po$te al Settentrione, riguardauano i campi, & le uerdure, haueuano le porte nel mezo, capiuano due Triclinij con quello, che gli $ta intorno oppo$ti l'uno all' altro, da i letti de i quali $i poteuano uedere le uerdure per le fine$tre. Le mi$ure di que$te $ale $ono bene da Vitr. dichiarite, nè ci accade figura, perche dalle figure $oprapo$te, & dalle regole tante fiate dichia <*>ite uno $tudio$o, & diligente ne puo cauare la forma.</I> <pb n="295"> <HEAD><I>Ache parte del cielo ogni maniera di edificio deue guardare accio $ia utile, & $ana. Cap. VII.</I></HEAD> <p>Hor noi dichiararemo con che proprictà le maniere de gli edi$ici all'u$o, & al- le parti del cielo commodamente po$sino riguardare. I Triclini del uerno, & i luoghi de i bagni riguardino quella parte, doue il Sole trammonta il uer- no, perche bi$ogna u$are il lume della $era, & anche per que$to, perche il So le cadendo ha lo $plendore oppo$to, & rimettendo il calore nel tempo ue$pertino intepe di $ce piu la regione d'intorno. I Cubiculi, & le Librerie deono e$$er po$te all' Oriente, perche l'u$o uuole il lume mattutino, & ancho i libri non $i gua$tano nelle librerie, perche in quelle, che $ono uer$o il Meriggie, ouero a Ponente le carte $ono gua$te da i Tarli, & dall' humore, perche i uenti humidi $oprauegnenti li fanno generare, & gli notri$cono; & $pargendo gli $piriti humidi per la muffa corrompeno i uolumi. I Triclinij di primaue ra, & d'Autunno $i drizzano all' Oriente, perche l'impeto del Sole oppo$to andando di lungo uer$o l'Occidente fa quelle $tanze di lumi circondate piu temperate in quel tempo, che $i $ogliono adoperare. Ma quelli della $tate deono riguardare al Settentrione, perche quella parte, non come le altre, che nel $ol$titio $i fanno per lo calore ardenti, per e$- $er riuolta dal cor$o del Sole, $empre è fre$ca, & nell' u$o porge $anità, & piacere. Et co- $i que luoghi, doue $i hanno a $aluare $critture, & tauole, o pitture, detti Pinacothechi, oue $i fanno le coltre, o piumacci cuciti con diuer$i colori, & imbottiti, o doue $i dipi- gne, bi$ogna che riguardino al Settentrione, accioche i colori di quelli per la fermezza, & egualità de lumi $iano nelle opere impermutabili. <p><I>Haueuano gli antichi molta auuertenza al Decoro, del quale parlato hauemo nel primo li- bro. Similmente alla di$tributione, che $erue all' u$o, perche Vitr. parla in que$to luogo di quel- lo, che ci accommoda, & parlerà di quello che $ta bene, & che conuiene a diuer$i gradi di per- $one; Et inuero, (come io bo detto nel principio di que$to libro) Vitr. ha uoluto, che noi con$i- deriamo egualmente le co$e dette nel primo nelle opere publiche, & nelle priuate: perche quelle crano indifferenti, communi, & applicabili come i numeri, & le figure a diuer$e materie. Quanto adūque appartiene alla di$tributione, $i uede nel pre$ente capo, che egli tratta a che parti del cielo, quali$tanze douemo fabricare: sì perche ne habbiamo commodo, & utilità: sì per- che $iano $ane. Gli antichi mangiauano $econdo le $tagioni in diuer$e $tanze, nella $tate in luo- ghi uolti al Settentrione, & che haueuano acque, & uerdure: Il uerno haueuano il fuoco, la facciata piu calda, imparando da gli uccelli, che $econdo le $tagioni uanno mutando il luogo. & perche non $olamente douemo hauer cura della commodità delle per$one, ma anche della con$erua tione delle robbe, però molto bene douemo con$iderare di far le $tanze per $aluar le robbe, ilche in que$to capo di Vitr. è molto bene con$iderato, & ci la$cia da pen$are piu oltra $econdo l'occa$io- ne, imperoche egli non abbraccia ogni co$a, ma ci da tanto lume, che ci ba$ta, oltra che ne dirà ancho dapoi. ci $ono anche le ca$e de gli artefici, & de mercanti, che uendeno co$e, che hanno b $ogno d'e$$er con$eruate in propij luoghi, $econdo le qualità delle merci. Similmente le muni- tioni, i uiueri, le armi, & luoghi dall' oglio, dalle lane, delle $pecierie, & de i frutti hanno le loro proprietà da e$$er con$iderate, perche poi niente $ia, che gua$ti le robbe: ma que$te co$e non cadono in con$ideratione nelle ca$e de i grandi. Seguita ancho un'altra di$tributione, che parti- cipa del Decoro, & dice.</I> <pb n="296"> <HEAD><I>De i propi luoghi de gli edifici, & priuati, & communi, & delle maniere conuenienti ad ogni qualità di per$one.</HEAD> <HEAD>Cap. VIII.</I></HEAD> <p>Es$endo le $tanze alle parti del cielo a que$to modo di$po$te, allhora bi$ogna auuertire, con che ragione a i padri di famiglia i propij luoghi, & in che mo do i communi con gli $trani $i deono fabricare: perche in que$ti che propi $o no, non è lecito, nè puo ognuno in es$i entrare $e non è inuitato come $o- no i Cubiculi, i Triclini, i Bagni, & le altre $tanze, che hanno l'i$te$$e ragioni dell' u$o lo- ro. Communi $ono quelli, ne i quali ancho chi non è chiamato del popolo, ui puo en- trare. Que$ti $ono l'entrate, i Cortili, i Peri$tili, & quelle parti, che po$$ono hauere l'u$o i$te$$o. A quelli adunque, i quali $ono di $orte commune, non $ono nece$$arie l'entrate ma- gni$iche, nè i Tablini, ne gli Atrij, perche que$ti pre$tano a gli altri quegli officij cercando, che da gli altri $ono cercati. Ma quelli, che $eruono alla utilità, & frutti della uilla, nelle en- trate delle loro ca$e, deono hauere gli $tabuli, & tauerne, & nelle ca$e l'arche, e i granai, le $aluarobbe, & le di$pen$e, che po$$ono piu pre$to e$$er per $eruare i frutti, che a bellezza & ornamento. Co$i a publicani, a banchieri, ouero cambiatori $i fanno le ca$e piu commo- de, & piu belle, & piu $icure dalle in$idie. A gli huomini di palazzo, & a gli auuocati piu ele- ganti, & piu $patio$e, per poter riceuere, & admettere la moltitudine delle genti. A nobili, che ne i magi$trati, & ne gli honori deono a cittadini non mancare d'officio, $i deue fare le entrate regali, e gli Atrij alti, & i portichi, o loggie amplis$ime, & gli $patij da caminare piu larghi perfetti all' ornamento, e decoro. Oltra di cio le Librerie, le Cancellarie, le Ba$iliche non dis$imig lianti da quello, che ricerca la magnificenza delle opere publiche: perche nelle lor ca$e $pe$$o $i fanno, & i con$igli publici, & i priuati, & i giudici arbitri, & comprome$si. Se adunque con que$te ragioni ad ogni $orte di per$one co$i $aranno gli edificij di$po$ti, come del Decoro è $tato $critto nel primo uolume, non $arà co$a degna di ripren$ione, perche haueranno ad ogni co$a commode, & $enza menda le loro e$plica tioni. Et di quelle co$e non $olo ci $aranno, nella citta le ragioni, ma ancho nella uilla. Eccetto, che nella Città gli Atrij $ono uicini alle porte, ma nella uilla, che qua$i imitano le cittadine$che, $ubito appre$$o le porte $ono i Peri$tili, dapoi gli Atrij, che hanno i por tichi d'intorno con pauimenti, che riguardano uer$o le pale$tre, & i luoghi da pa$teg- giare. lo ho de$critto diligentemente (come ho propo$to) in $omma le ragioni di fare le fabriche cittadine$che nella Città. <p><I>E$pedita la parte, che apparteneua alla Di$tributione, Vitruuio nel pre$ente capo ci dimo$tra quanto conuiene al Decoro, che altro non è, che un ri$petto alla dignità, & allo $tato delle per $one. Fatta adunque la di$tintione delle per$one bi$ogna a cia$una $econdo il grado $uo fabricare, & però altro comp artimento hauera la ca$a d'un Signore, altro quella del nobile, altro quella del populo. Le parti delle ca$e $imilmente, $iano ò communi, ò propie, deono riguardare alla qualità delle per$one. V$auano anticamente quelli, che con maggiore $plendidezza uoleuano fabri care la$ciar dinanzi alle porte un luogo uacuo, che non era parte della ca$a, ma bene conduceua alla ca$a, doue $tauano i Clienti, & quelli, che ueniuano per $alutar i grandi, fin che erano ad- mes$i, & $i poteua dire, che nè erano in ca$a, nè fuori di ca$a. Que$to luogo era detto Ve$tibulo, & era di gran dignità & adornato di loggie, & di $patij. La $ua hone$tà era la uia, l'u$o, il poter commodamente a$pettare, il piacere, perche iui i giouani a$pettando i principali s'e$$ercitauano alla palla, alle lotti, a $altare, & in altri e$$ercitij giouanili. Eranui le porte, prima le communi, & que$ta di ragione era una $ola $plendida, e ricca, & adorna mir abilmente, & poi altre parti-</I> <pb n="297"> <I>colari, come quella, che $eruiua al condurre le robbe in ca$a, & quella del patrone $ecreta, per la quale egli $enza e$$er ueduto poteua u$cire. Et però dice Horatio. Atria $eruantem po$tico falle clientem. eraui l'entrata, l'Atrio, il Tablino, il Peri$tilio per ordine. Le $cale $econdo la dignità & forma loro belli$$ime, commodi$$ime, e lucide, metteuano capo in ampie, & $pacio$e $ale, che $copriuano il mare, i giardini, & le uerdure, & $otto e$$e a piè piano erano molte log gie, & luoghi da audienze di modo, che niente $i poteua de$iderare. La$cio $tare la magnificen- za, che u$auano in ogni altra $tanza, ne i dormitori, ne i cenacoli $econdo le $tagioni, nelle came re, ne i bagni, che $arebbe co$a lunga a narrare. Haueuano riguardo ad accommodar i fore$tie ri. I grandi adunque haueuano $econdo le lor qualità gli edificij, i mediocri, i mercanti, gli ar- tefici erano accommodati. Le bottghe e$$er doueuano $opra $trade correnti in belle ui$te, le mer- ci in mo$tra, & inuitauano gli huomini a comprare. Ecco adunque quanto chiaramente Vitr. $i la$cia intendere per quello, che egliha detto nel primo libro al $econdo capo, quando egli dice, parlando del Decoro, beatis, & delicatis. qui dice foren$ibus autem, & di$ertis. & la doue egli dice potentes, qui dice nobilibus, qui honores, magi$tratusque gerendo. &c. Gli Atrij in Villa non erano alla prima entrata, ma dopo i peri$tili, & haueuano i portichi d'intorno con bei pauimenti, & co$i $i uede, che ancho d'intorno gli Atrij erano i portichi. Et qui $ia fine del- le ca$e priuate fatte nella Città.</I> <HEAD><I>Delle ragioni de iru$ticali edifici, & di$tintioni di molte par- ti di quelle. Cap. IX.</I></HEAD> <p>Hora dirò de ru$ticali edifici, come po$$ono e$$er commodi all' u$o, & con che ragioni $i deono fare. prima $i deue guardare alla $alubrità dello aere, co me s'è detto nel primo libro di porre le Città. Le grandezze loro $econdo la mi$ura delle po$$e$sioni, & le copie de i frutti $ieno comparate; I cortili, & le grandezze loro al numero delle pecore, & co$i quanti parà di buoi $arà nece$$ario che ui $tiano bi$ognerà determinare. Nel cortile la cucina in luogo caldi$simo $ia po- $ta, & habbia congiunte le $talle de i buoi, le pre$epi de i quali riguardino uer$o il fuoco, & l'Oriente, perche i buoi guardando il fuoco, & il lume non $i fanno ombro$i, & timidi, & co$i gli agricoltori periti delle regioni, non pen$ano che bi$ogni, che i buoi riguardi- no altra parte del cielo, $e non il na$cimento del Sole. Le larghezze de i bouili non deo- no e$$er meno di piedi dieci, nè piu di quindici. La lunghezza in modo, che cia$cuno par di buoi non occupi piu di $ette piedi. I Lauatoi $iano congiunti alla cucina, perche a que$to modo non $arà lontana la ammini$tratione della ru$tica lauatione. Il Torchio dell' oglio $ia pro$simo alla cucina, perche co$i a frutti oleari $arà commodo, Et habbia congiunta la cantina, i lumi della quale $i torranno dal Settentrione, percioche hauendo gli da altra parte, doue il Sole po$$a $caldare, il uino, che ui $arà dentro, confu$o, & me$ colato dal calore $i farà debile, & men gagliardo, I luoghi dall' oglio $i deono porre in modo, che habbiano il lume dal mezodì, & dalle parti calde, percioche l'oglio non $i de ue aggiacciare: ma per la tepidità del calore a$$ottigliar$i. Le grandezze di que luoghi deono e$$er fatte $econdo la ragione de i frutti: & il numero de i ua$i, i quali e$$endo di mi$ura di uenti anfore, deono per mezo occupare quattro piedi. Ma il torchio $e non è $tretto con le uiti, ma con le $tanghe, & col prelo, e le traui, che premeno, non $ia men lungo di quaranta piedi, & co$i $arà a quelli, che lo uoltano lo $patio e$pedito, la larghez za $ua non $ia meno di piedi $edici, perche co$i compiutamente $i potrà da quelli, che fan- no l'oglio uoltare. Ma $e egli $arà luogo per due preli, o calcatoi $i diano uentiquattro piedi per la lunghezza. Gli ouili, & le $talle per le capre $i deono fare co$i grandi, che <pb n="298"> cia$cuna pecora non meno di quattro piedie mezo, non piu di $ei po$$a occupare di lun- ghezza. I Granai alzati al Settentrione, & all' Aquilone: perche a que$to modo i grani non potranno co$i pre$to ri$caldar$i, ma dal uento raffreddati lungamente $i con$eruaran- no, perche l'altre parti generano le pauigliole, & altre be$tiuolette, che $ono di nocu- mento a i grani. Le $talle de caualli $i porranno in luoghi caldi$simi, pur che non guardi- no al foco, perche quando i giumenti $ono appre$$o al foco, $i fanno horridi. Et ancho non $ono inutili le tezze di buoi, o pre$epi, che $i dichino, che $i mettono oltra la cucina alla $coperta uer$o Leuante, perche quando la inuernata al Cielo $ereno $ono in quelle con dotti, la mattina i buoi pa$cendo$i diuentano piu gra$si. I Granari, i Fenili, i luogh<*> da riporre i farri, i pi$trini; $i deono fare oltra la ca$a di uilla, accioche le ca$e $iano piu $icu- re dal foco. Ma $e nelle fabriche di uilla $i uorrà fare alcuna co$a piu delicata, dalle mi$u- re delle ca$e della Città $opra$critte $i fabricherà in modo, che $enza impedimento della utilità ru$ticale $ia edi$icata. Bi$ogna hauer cura, che tutti gli edifici $iano lumino$i. A quelli di uilla, perche non hanno pareti de i uicini, che gli impedi$ca, facilmente $i proue de. Ma nelle Città, o le altezze de i pareti publichi, o le $trettezze del luogo con i loro impedimenti fanno le $tanze o$cure. Et però di que$to co$i $i deue far e$perienza. Da quella parte, che $i prende il lume, $ia tirata una linea, o $ilo dall' altezza del parete, che par' o$tare a quel luogo, dentro il quale bi$ogna poner il lume, & $e da e$$a linea, quando $i guarderà in alto $i potrà uedere lo ampio $patio del puto cielo, in quel luogo $arà il lu- me $enza impedimento, ma $e egli impediranno, o traui, o $ogliari, o palchi, apri$i dalla parte di $opra, & co$i ui $i metta il lume. Et in $omma noi douemo gouernarci in que$to modo, che da qualunque parte $i puo uedere il lume del cielo, per quelle $i deono la$cia- re i luoghi alle $ine$tre. Et co$i gli edifici $aranno lucidi. Ma l'u$o de i lumi grandi$si- mo ne i Triclimi, & ne gli altri conclaui, come ne gli anditi, nelle di$ce$e, nelle $cale, perche in que$ti luoghi $pe$$o s'incontrano le per$one, che portano pe$i addo$$o. Io ho e$plicato quanto ho potuto le di$tributioni delle opere fatte al no$tro modo, accioche o$cure non $iano a chi fabrica. <p><I>Non ha uoluto Vitr. la$ciar a dietro la con$ideratione della uilla, & delle fabriche fatte fuo- ri della Città, imperoche non meno era nece$$ario que$to trattamento, che quello delle altre fa- briche. Da Columella, Varrone, Catone, & Palladio $i puo trarre copio$amente quello, che appartiene alla uilla, & perche quelli autori a$$ai di$tinti, et copio$i $ono: io non uoglio a pompa citare i luoghi loro: a$$ai mi $arà dimo$trare in Vitr. i precetti del quale $ono $tati da alcuni di quelli beni$$imo o$$eruati. Le fabriche di Villa e$$er deono in luoghi $ani, $ono piu libere, che quelle della Città, & molte commodità $i deue hauere in quelle, & molte dalla natura cercar- ne. Hanno piu, & meno stanze, $econdo il grado de gli huomini tanto per gli familiari, quan- to per li fore$tieri. Il mediocre, & ba$$o $i deue sforzare d'hauer in uilla buona $tanza, accio la moglie $tia piu uolentieri a gouernar le robbe, & attenda piu all' utile, che al piacere. Al con- trario i ricchi, et grandi huomini habbiano dinanzi le $tanze loro gli $patij da correre, & tornea- re le belle uerdure, $iano dife$e da uapori, da uenti, da monti, che impedi$ceno non habbian le $talle, nè i letami ui cini, & $ia il tutto fabricato con dignità. Le $tanze del lauoratore, o del Ga$taldo $iano partite per le co$e, per gli huomini, per gli animali, per gli $trumenti. L'Ara $ia al Sole, aperta, larga, battuta alquanto colma nel mezo, & uicina al coperto. Il ga$taldo dorma appre$$o la porta mae$tra, i lauoratori ne i luoghi, che $iano pronti a gli ufficij loro. La cucina $i i ampia, chiara, $icura dal fuoco: le $aluarobbe commode: gli animali da lauoro, co- me $ono buoi, & caualli, $iano in luoghi accommodati con le ragioni, che dice Vitr. Similmente gli animali, che fruttano come $ono armenti di Porci, Pecore, Pollami, Vccelli, Pe$ci, Colombi, Le- pri, & altri $imili animali, tutti deono $econdo le qualità, e nature loro e$$er accomodati, & l'o$$er uanze di que$teco$e molto bene $i fanno auuertendo à quello, che $i fa in diuer$i pae$i; & ponēdoui</I> <pb n="299"> <I>eura, & mdu$tria. Il grano, & ogni $eme marci$ce per l'humido, impallidi$ce perlo caldo, amma$ $ato $i ri$tringe, & $obboglie, e per toccar la calce $i guasta, & pero $ia $opra tauolato, ò in <*>aua $o pra la nuda terra, uer$o Borea, e Tramontana. Le poma $i con$eruano in luogo $reddo, in ca$- $e di legno rinchiu$e. La Cantina $ott erra, rinchiu$a, lontana dal mezo dì, & da i uenti Meri dionali, & dallo $trepito, habbia il lume da leuante, ouero da Borea: ogni humore, uapore, & fetore e$$er le deue lontano: $ia pendente, & la$tr<*>cata in modo, che $el uino $i $pande, po$$a e$- $er raccolto. I ua$i del Vino $iano capaci$$imi, & fermi. Gli in$trumenti, che bi$ognano a gli Agricoltori $iano in luoghi accommodati: il carro, i gioghi, l'aratro, le corbe dal fieno $iano $ot- to il coperto al mezodi uer$o la cucina. Al Torchio dia$i $tanza capace, & conueniente, oue $i ripongono i ua$i, le funi, i ce$ti. Sopra le traui del coperto $i pongono i cratici, le pertiche, lo $trame, il canapo. I buoi mangino al ba$$o, a Caualli prendano lo $trame di $opra, perche alzan- do la te$ta l'a$ciugano, perche hanno la te$ta humida, però dinanzi la mangiatora non $ia il pare- te humido. La Luna gli gua$ta gli occhi. La Mula impazza in luogo caldo, ba$$o, & o$uro. Le mi$ure delle $talle da buoi, & da pecore$ono po$te da Vitr. Il Torchio antico for$e haueua altra maniera di quello, che u$amo noi a que$ti tempi. Po$ti i precetti di tutte quelle co$e, che alla uilla $ono piu nece$$arie parla Vitr. de i lumi, & delle fine$tre. Le quali in uilla $ono men impe dite, ma nella Città po$$ono hauere motti contrari, a i quali $i troua rimedio ogni uolta, che $i con $idera l'effetto del lume, & il cadimento, & doue uegna, perche è chiaro, che doue non puo ca dere il lume, egli non $i puo hauere. Le gro$$ezze de i parcti $pe$$o l'impedi$cono, però alcuni hanno tagliato il muro doue hanno a $tare le fine$tre, cominciando dalla $uperficie di fuori, & üenendo per la gro$$ezza del muro alla $uperficie di dentro con un taglio pendente: & for$e Vitr- non è lontano da que$ta opinione. La doue adunque per dritta linea $i puo tirare un filo allo $co- perto, $enza dubbio $i puo hauere il lume: & quando que$to da i lati de i pareti non $i po$$a fa- re, bi$ogna aprir di $opra. Auuertiamo adunque in que$ta materia a i precetti di Vitr. eleg- gendo prima il luogo $ano, perche la doue $i uuol far conto con l'inferno, non $olamente l'en trata, ma la uita è dubbio$a, anzila morte è piu certa, che'l guadagno: dapoi con buon con$iglio douemo far le fabriche tanto grandi, quanto ricerca la po$$e$$iione, l'entrata, & la copia de i frutti. Quanto alla po$$e$$ione e$$er deue il modo, & la mi$ura, che è ottima in tutte le co$e, & $i deue $eruar quel precetto che dice, il campo douer e$$er piu debile, che l'Agricoltore: perche $e bi$ogna $o$tenerlo, & curarlo, quando l'Agricoltore non puo tanto, è nece$$ario, che' l cam- po pati$ca, & però men rende $pe$$o una gran po$$e$$ione poco, che una picciola molto coltiuata. Si che douemo tanto tenere, quanto potemo mantenere, accioche compramo i campi per goderli noi, & non per torgli ad altri, o per aggrauarci troppo, perche niente gioua il uoler po$$edere, & non poter lauorare. Quanto alle fabriche $imilmente douemo $chiuare di non incorrere nel uitio di Lucullo, & di Sceuola, de quali uno edificò in uilla molto piu riccamente di quello, che richedeuano le po$$e$$ioni. L'altro mancò de gran longa. All' uno di troppo $pe$a, all' alltro di non poco danno fu cagione. Que$to errore comincia a moltiplicare a i dì no$tri per la $uperbia de gli huomini. Le fabriche che non $ono ba$tanti, fanno, che i frutti $igua$tino per la $tret- tezza del luogo. Deue$i adunque fabricare in modo, che nè la fabrica de$ideri il fondo, non il fondo ricerchi la fabrica. Il $e$to capo di Columella, è al propo$ito di que$to capo: il torchio, l'ara c'in$egna Catone & Palladio.</I> <foot><I>RR</I></foot> <pb n="300"> <HEAD><I>Delle di$po$itioni de gli edificij, & delle parti loro $econ- do i Greci, & de i nomi differenti, & molto da i co- $tumi d'Italia lontani. Cap. X.</I></HEAD> <p>Perche i Greci non u$ano gli Atrij nelle entrate, però a no$tro modo non $on $oliti di fabricare, ma entrando dalla porta fanno gli anditi non molto larghi, & dall' una parte le $talle de i caualli, & dall' altra le $tanze de i portinari, & $abito $on finite l'entrate interiori: & que$to luogo tra due porte è detto, Thirorio, cioè Portorio, o Portale: dapoi è lo ingre$$o nel Peri$tilio, ilquale ha il por- tico da tre parti, & in quella parte, che riguarda al Meriggie, hanno due pila$trate, o an- te tra $e per molto $pacio di$co$te, $opra lequali s'impongono le traui; & quanta di$tanza è tra le dette ante, tanto di quella toltane uia la terza parte, $i dà allo $pacio interiore. Que$to luogo da alcuni pro$tàs, da altri para$tas è nominato. In que luoghi di dentro $i fanno le $tanze grandi, nelle quali le madri di famiglia con i lanifici $iedono. In quelli anditi dalla de$tra, & dalla $ini$tra ui $ono i cubiculi, de i quali uno è detto Thalamo, l'al- tro Antithalamo: ma d'intorno a i portichi $ono i triclini ordinari, & i cubiculi anchora, & le $tanze per la famiglia, & que$ta parte è detta Gineconiti, cioè Stanza delle donne. A que$te $i congiugnono le ca$e piu ampie, che hanno i Peri$ti<*> i, ò colonnati piu ampi, ne i quali $on quattro portichi di pari altezza, ouero quello, che riguarda al meriggie, è fatto di piu alte colonne, & quel colonnato d'intorno, che ha le colonne, & il portico piu alto $i chiama Rhodiaco. Quelle ca$e hanno i ue$tibuli magnifichi, & le porte pro- pie con grandezza, & i portichi de i peri$tili ornati$simamente $offittati, intonicati, & la- uorati di $tucchi; & ne i portichi, che riguardano al $ettentrione hanno i Triclini, i Cizi- ceni, le cancellarie, ma uer$o il Leuante hanno le Librerie, uer$o Ponente le E$$edre, & uer- $o il mezo dì le Sale co$i grandi, che facilmente po$ti in quelli, & acconci, quattro Triclini, il luogo è $pacio$o ancho per uedere far le fe$te, & per lo $eruitio, & ammini$tratione. In que$te Sale $i $anno i conuiti de gli huomini. Perche $econdo i co$tumi de Greci le matro- ne non $edeuano a men$a. Que$ti Peri$tili, ò Colonnati $i chiamauano Andronitide. Perche in quelli $tauano gli huomini $enza e$$er di$turbati dalle donne. Oltra di que$to dalla de- $tra, & dalla $ini$tra erano alcune ca$ette, che haueuano porte propie, Triclini, & cubi- biculi commodi, accioche i fore$tieri non ne i Peri$tili, ma in quelle fore$terie allog- gia$$ero. Perche e$$endo $tati i Greci piu dilicati, & de i beni di Fortuna piu accommo- dati, a fore$tieri, che ueniuano apparechiauano i Triclini, i Cubiculi, & le $aluarobbe & di$pen$e, & il primo giorno gli inuitauano a cena; Il $econdo gli mandauano pollame, uuoua, herbe, poma, & altre co$e di uilla, & però i Pittori imitando con le Pitture le co- $e mandate a gli ho$piti chiamauano quelle Xenia. Co$i non pareua, che i padri di fami- glia nell' albergo fu$$ero fore$tieri, hauendo in tali alloggiamenti una libertà $ecreta. Tra que$ti Peri$tili, & alberghi erano gli anditi detti, me$aule, perche erano di mezo tra due aule, ma i no$tri chiamano quelle Androne. Ma que$to è mirabile, perche que$to nè a Greci, nè a no$tri puo conuenire: perche i Greci chiamano Androne le $tanze, doue man- giano gli huomini: perche iui non $tanno le donne. Et co$i anchora $ono altre co$e $i- miglianti, come il Xi$to, il Prothiro, i Telamoni, & altre parti di que$ta maniera. Xi- fto $econdo Greci, è un portico di ampia larghezza, doue il uerno s'effercitauano gli A- thleti. Ma i no$tri chiamano Xi$ti i luoghi $coperti da caminare, che i Greci chiamano Peridromide. Appre$$o Greci Prothiri $ono i ue$tibuli inanzi le porte, ma noi chiamamo Prothiri quelli, che i Greci chiamano Diathiri. Anchora $e alcune figure uirili $o$ten- <pb n="301"> tano i mutuli, o le corone, i no$tri chiamano Telamoni, ma perche co$i le chiamino, egli non $i troua $critto nelle hi$torie: i Greci le chiamano Atlanti, perche nella hi$toria Atlante è formato a $o$tenere il mondo: perche co$tui primo fa, che con prontezza d'a- nimo hebbe cura di la$ciare a gli huomini il cor$o del Sole, & della Luna, i na$cimenti, & gli occa$i di tutte le $telle, & le ragioni del girar del mondo, & per que$to da Pittori, & $tatuari è formato per quello beneficio $o$tenere il mondo, & le $ue figliuole A tlanti- de, che noi chiamiamo Virgilie, & i Greci Pleiade con le $telle nel Cielo lono con$ecra- te. Nè io ho propo$te tali co$e, perche $i muti la u$anza de i uocaboli, & del parlare; ma perche non $iano a$co$e, a chi ne uuole $aper la ragione. Io ho e$po$to con che ragione $i fanno le fabriche d'Italia, & di Grecia; & ho $critto delle mi$ure, & delle proportioni di cia$cuna maniera. Adunque perche della Bellezza, & del Dccoro, è $tato $critto di $opra, hora $i dirà della fermezza, in che modo po$$a durare $enza difetto alla uecchiaia. <p><I>Pareua a Vitr, che l'huomo faclimente $i potc$$e ingannare leggendo, o udendo i nomi Greci, & i nomi Latini delle parti delle fabriche: perche tra quelli ui è non poca differenza: però per ri- mediare a que$to di$ordine, egli ha uoluto in que$to luogo ragionare delle parti de gli edifici de i Greci, & e$ponere i loro uocaboli molto differenti dalle u$anze Italiane. Et però dice, che i Greci non u$ano gli Atrij. Credo io perche non haueuano quella occa$ione, che haueuano R omani del- la grandezza: Benche ancho quelli non erano $enza, perche faceuano le $tanze delle donne belle, & $eparate da quelle de gli huomini. Non u$ando adunque gli Atrij, che appre$$o Rom. erano ap pre$$o le porte: Subito che egli s'entraua in ca$a era una entrata coperta non molto larga, che da una parte haueua i luoghi de i caualli, & dall'altra le $tanze de portinari, & in fronte u'era un altra porta, & quel luogo che era tra una porta, & l'altra $i chiamaua Thirorio, co$i detto qua$i $pacio trale porte, & que$to era in luogo di Atrio, o di Ve$tibulo: per la porta di dentro entrauano in un bel Peri$tilio, o colonnato, ilquale haueua le colonne da tre lati, cioè dal lato del- la porta, & dalla de$tra, & dalla $ini$tra, ma nella fronte a dirimpetto della porta, che guar- daua al meriggie era una apritura ampli$$ima, $opra gli anguli della quale erano drizzate due gran pila$trate, che $o$tentauano un traue maestro: $otto que$ta apritura, era uno $pacio co- perto lungo un terzo meno dell'apritura, ma nel parcte oppo$to, & da i lati erano le porte delle $a- le grandi, doue $tauano le matrone a lauorare, & dalla de$tra, & dalla $ini$tra di que$te apri- ture eran po$ti i cubiculi, cioè camere, & anticamere, o camini, che $i chiamino al modo no- $tro, ma d'intorno i portichi era quello, che dice Vit. chiaramente, i cubiculi, i tinelli, le $tan- ze de famigliari. Et que$ta parte è quella, che appartiene alle donne. il re$to è de i comparti- menti delle $tanze de gli huomini: il che è ancho manife$to in Vit. Seguita poi a dichiarire le dif- ferenze d'alcuni uocaboli u$ati da Greci, & pre$i in altra $ignificatione da Latini, & dona la $ua parte all'u$o, appre$$o il quale è la forza, & la norma del parlare: nè conuiene ad huomo $aldo contender de nomi la, doue s'intende la co$a. Noi ne no$tri commentari Latini piu ampia mente ragionamo di que$ti nomi, conuenienti a Latini: perche hora ci puo ba$tare hauerli nel tra- $cor$o della interpretatione accennati. Re$ta qui, che io dica alcuna co$a del modo, che u$auano gli antiehi per i$caldar$i. Io ho hauuto in que$ta materia due co$e, prima l'Architetto, che fece il Palazzo d'Vrbino la$cia $critto, che la ragione, perche non hauemo gli e$$empi de i camini de gli antichi, è perche i camini $tauano nella $uprema parte della ca$a, la qual era la prima a ro- uinare, però non $i ha ue$tigio de camini, $e non in pochi luoghi a pena cono$ciuti: poi, ne dà la forma doue $i trouano. Ne è uno appre$$o Perugia $opra il pianello in uno antico edificio, che haueua certi mezi circoli, $opra i quali $i $edeua, & nel mezo una bocca tonda d'onde u$ciua il fumo, era in uolto circondato da muri, largo $ei piedi, lungo otto come la figura, A. l'ultimo è a Baie appre$$o la pi$cina di Nerone, che era in quadro di larghezza di piedi 19. per ogni faccia, nel cui mezo erano quattro colonne con lo Architraue, $opra il quale erano le uolte d'altezza di piedi. Io. ornate di belle figure di $tucco, nel mezo era come una cuppoletta piramidale con un</I> <foot><I>RR</I> 2</foot> <pb n="302"> <fig> <I>buco in cima, di doue u$ciua il fu mo. Similmente non molto lon- tano da Ciuita uecchia ne è uno qua$i della i$te$$a grandezza, che da gli anguli u$ciuano quatro unodioni, $opra i quali $i po$a- uano quattro Architraui, $o- pra i quali era la Piramide del camino, d'onde u$ciua il fumo, & nel parete per ogni faccia eran due picciole fine$tre, con un hemiciclo in mezo doue poteua $tare qualche figura: erano que- gli hemicicli alti dal pauimento piedi quattro.</I> <p><I>L'altra co$a è, chi mi pare ancho, che $ia $tato ritrouato un'altro modo, con il quale gli antichiri$caldauano le loro $tan ze, & è que$to. Faceuano nel- la gro$$ezza del muro alcune canne, o trombe, per le quali il calore del foco, che era $otto quelle $tanze $aliua, & u$ciua fuori per certi $piragli, o bocche fatte nelle $ommità di quelle can ne, & quelle bocche $i poteua- no otturare, accioche $i pote$$e piu, & meno $caldare le $tanze, & darle piu, & meno del uapo- re. con que$ta ragione uogliono alcuni, che $i po$$a dalle parti inferiori delle ca$e raccogliere il uento, & farlo $alire da luoghi $otterranei per le canne alle habi tationi della $tate: & nelle no- $tre parti $i trouano alcune fa- briche appre$$omonti, da i qua- li per luoghi rinchiu$i uenendo gli $piriti de i uenti, & aprendo- $ipiu, & meno alcune portelle, egli $i fa le $tanze fre$ce di modo, che la $tate ci $i fa un fre$co mira bile. Ma io non con$iglierei un mio amico, che e$$endo caldo egli entra$$e in lüoghi $imili. Mi pare hauer letto, che gli antichi $pende$$ero a$$ai in cer- te conche di metallo lauorate, nelle quali $i faceuano portare</I> <pb n="303"> <I>il foco uolendò$i $caldare: & io non dubito, che non ui accende$$ere delle co$e odorate, & che non u$a$$ero de carboni, che non nuoce$$ero. A no$tri giorni è manife$to quello $i u$a, & come nella gro$$ezza de i muri $i fanno i camini, i quali u$cendo con le lor canne fuori del tet- to portano il fumo nello $patio dall'aere. doue egli $i deue auuertire, che'l fumo po$$a $eu- za impedimento de i contrari uenti u$cir fuori liberamsnte, & non tornare a dietro al- l'ingiu, perche le $tanze $i empirebbeno di fumo, delche niuna co$a è piu nociua a gli oc- chi: doue è andato in prouerbio. Il fumo, & la mala donna caccia l'huo no di ca$a. Io mi e$ten derei in di$criuere particolarmente molte co$e, le mi$ure, & i modi delle quali non $ono po$ti da Vitr. ma $apendo che presto uenirà in luce un libro delle ca$e priuate, compo$io, & d $egnato dal Palladio, & hauendo ueduto, che in quello non $i puo de$iderare alcuna co$a, non ho uolu- to pigliare la fatica d'altri per mia. Vero è, che $tampato il $uo libro, & douendo io ri$tampare di nuouo il Vitruuio, mi sforzerò raccogliere breuemente i precetti di quello, accioche piu util- mente po$ti nel mio Libro, l'huomo non habbia fatica di cercarli altroue, & $appia da cui io gli hauerò pigliati. Lui $i ueder à una pratica mirabile del fabricare, gli $paragni, & gli auantag- gi, & $i comincierà dal principio de i fondamenti in$ino al tetto, quanti, & quali deono e$$ere i pezzi delle pietre, che uanno in opera, sì nelle Ba$e, come ne i Capitelli, & altri membri, che ui uanno $opra: ci $aranno le mi$ure delle fine$tre, i di$egni de i camini, i modi di adornar le ca$e di dentro, i legamenti de i legnami, i compartimenti delle $cale d'ogni maniera, il cauamento de i pozzi, & delle chiauiche, & d'altri luoghi per le immonditie, le commodità, che uogliono hauer le ca$e, le qualità di tutte le parti, come $ono Cantine, Magazini, Di$p<02>n$e, Cucine, & fi nalmente tutto quello, che alla fabrica de priuati edifici puo appartenere, con le piante, gli inpiè, profili di tutte le ca$e, & palazzi, che egli ha ordinati a diuer$i nobili, con l'aggiunta di alcu- ni belli edifici antichi ottimamente di$egnati. Per il che io stimo, che a poco a poco l'Architet- tura aggrandita, & abbellita $i la$cierà uedere nell'antica forma, & bellezza $ua, doue inna- morati gli-huomini della uenu$tà $ua, pen$eranno molto bene prima, che comincino a fabricare, & quello, che par loro bello, non cono$cendo piu oltre, col tempo gli uenirà in odio, & cono- $cendo gli errori pa$$ati, bia$imeranno il non uoler hauer creduto a chi gli diceua il uero. Et $e io po$$o pregare, prego, & riprego $pecialmente quelli della patria mia, che $i ricordino, che non mancando loro le ricchezze, & il poter fare co$e honorate, uoglino ancho prouedere, che non $i de$ideri in e$$i l'ingegno, & il $apere. il che faranno, quando $i per$uaderanno di non $apere quello, che ueramente non $anno, nè po$$ono $apere $enza pratica, & fatica, & $cienza. Et $e gli pare che l'u$anza delle loro fabriche gli debbia e$$er mae$tra, s'ingannano grandemente, per- che in fatti, è troppo uitio$a, & mala li$anza: & $e pure uogliono conceder all'u$o alcuna co- $a, il che anch'io concedo, di gratia $iano contenti di la$ciar moderare quell'u$o, da chi $e ne in- tende, perche molto bene con pratica, & ragione $i può acconciare una co$a, e temperarla in modo, che leuatole il male, ella $i riduca ad una forma ragioneuole, e tolerabile, con auantag- gio dell'u$o, della commodità & della bellezza: & $e una co$a bislonga è capace di dugento per- $one $garbatamente, uoglino la$ciar, che $otto miglior figura $i faccia lo i$te$$o effetto: & $e uo- gliono un determinato numero di fine$tre in una $tanza, $iano contenti di la$ciarle porre al $uo luo go, con gli ordini dell'arte, perche importa molto alla bellezza, & non uiene impedito l'u$o di quelle. Et $e io potro porle lontane da gli angoli, non $arà egli meglio, che porle $opra gli angoli, & indebolire la ca$a? Deue il padre di famig lia, cono$cendo quello gli fa bi$ogno, dire io uoglio tante $tanze, e tante habitationi, que$te per me, & per la moglie, quelle per li figliuoli, que$te altre per li $erui, quell'altre per la commodità: & poi la$ciar allo Architetto, che egli lè compar- ti$ca, & ponga al luogo $uo, $econdo l'ordine, di$po$itione, & mi$ura, che $i conuiene: $ar anno le i$te$$e, $econdo il uoler del padrone, ma di$po$te ordinatamente $econdo i precetti dell'arte, & quando egli $i uederà, che rie$cino, uenirà una certa concorrenza tra gli huomini di far bene, con bia$mo delle loro male, & inuecchiate u$anze, & cono$ceranno, che non $i na$ce Architet-</I> <pb n="304"> <I>to, ma, che bi$ogna imparare, & cono$cere, & regger$i con ragione, dalla quale chiunque fi- dando$i dello ingegno $uo, $i parte, non cono$ce mai il bello delle co$e, anzi $tima il brutto bello, <*> cattiuo buono, & il mal fatto ordinato, & regolato. Voglio ancho e$ortare gli Architetti, & Proti, che non uoglino applaudere, & a$$entire a padroni; Anzi, che gli dichino il uero, & gli con$iglio bene, & amoreuolmente, & che pen$ino bene prima, che gli facciano $pcndere i dinari, come altroue s'è detto, perche co$i facendo, ueramente meriteranno laude, & nome conueniente alla loro pro$e$$ione.</I> <HEAD><I>Della fermezza & delle fondamenta delle fabri- che. Cap. XI.</I></HEAD> <p>LE fabriche, che $ono a piè piano, $e $aranno fatte al modo e$po$to da noi ne gli antedetti libri, quando ragionato hauemo delle mura della città, & del Theatro, $enza dubbio dureranno eternamente: ma $e uorremo $otterra, & in uolti fabricare, douemo fare le fondamenta di quelle fabriche piu gro$$e di quello, che è $opra terra, & i pareti di quelli edificij, che ui $tan $opra, i pila$tri, & le colonne $iano collocate al mezo a piombo di quelle di $otto, perche ripo$ino $ul uiuo, & ri$pondino al $odo; perche $ei carichi de i pareti, & delle colonne $aranno po$ti in pen- dente, non potranno hauer continua fermezza. <p><I>Egli $i troua tra le ruine de gli antichi edificij molti luoghi $otterranei fatti a uolti con mara- uiglio$o lauoro, & di ine$timabile grandezza, pero $i puo de$iderare di $apere il modo di fonda re que luoghi, & di uoltarli, & di farli in modo, che $o$tentino i carichi grandi delle fabriche grandi, che gli $tanno $opra. Pero Vitr. accioche anche in que$ta parte noi non de$ideriamo al- cuna co$a, tratta delle fondationi delle fabriche. & perche ha trattato nel primo, & nel ter- zo, & nel quinto libro del fondare in que luoghi, doue le fabriche uanno a piè piano, egli $i pa$- $a leggiermente in que$to luogo la ragione di que fon<*>amenti, riportãdo$i a gli allegati luoghi. Hora piu copio$amente egli c'in$egna il modo di fondare per le fabriche $otterra, & ci dà molti precetti. l'uno è che le fondamenta di que$ti edifici e$$er deono piu gro$$e di quel, che $ono le fabri che di $opra; l'altro che non douemo $opraporre nè pila$tro, nè colonna, che non cada a piombo $opra muri, pila$tri, o colonne di $otto, sì perche egli è errore a non fare, che le co$e di $opra na$ chino dal di$otto, sì perche porta pericolo di pre$ta ruina, quando un muro di $opra attrauer$a una $tanza, & non habbia il piede di $otto, che na$ca dal piano. Di que$ti errori & danni molti ne $ono nella città no$tra, nella quale a me pare che gli huomini per hora deono piu pre$to e$$er au- uertiti, che non incorrino ne gli errori, che ammae$trati, che facciano belli, & ragioneuoli edi fici: benche e$$er non puo, che non fabrichino $enza errore, quando non fabricheranno cō ragio ne. ma $eguitiamo gli altri precetti di Vitr. il qual dice, che $e uorremo a<02>icurarci, la doue $ono $ogli, limitari, & che da i lati habbiano erte, pila$tri, & $imil co$e, bi$ognerà, che ui $ottome tiamo alcuni rila$ci, $opra iquali da i capi $i po$ano i limitari, et lo $pacio di $otto i limitari è uoto, & non tocca da alcuna parte, cioè il limitare non po$a $opra alcuna co$a, perche $i $pezzerebbe, & percio dice che abbracciano tutto lo $pacio.</I> <p>Oltra di que$to $e tra i $ogliari lungo i pila$tri, e le ante $aranno $ottopo$ti i rila$ci, che po$tes detti $ono, non haueranno difetto: perche i limitari, & le traui e$$endo dalle fabri- che caricate nel mezo $paccate rompeno $otto le piane le $trutture, o congiunture. Ma quando ci $aranno $ottopo$ti, & come cunei $oggetti i rila$ci, non la$cieranno le traui $o- pra$edendo a quelli, offenderla. Deue$i anche procurare, che gli archi leuino i pe$i con le diui$ioni de i cunei, di legamenti, che ri$pondino al centro, perche quando gli archi $a- <pb n="305"> ranno $errati da i cunei oltra le traui, & i capi de i $opralimitari, prima la materia $olleua- ta dal carico non $i aprirà. Dapoi $e per la uecchiezza faranno alcun danno facilmente $enza puntelli $i potrà mutare. <I>Que$to $i uede in alcuni edifici in Roma, che ne i pareti $ono gli archi con i cunei ri$pondenti al centro, & $opra i limitari delle porte, & $opra i $ogli delle fi- ne$tre, i quali alleggeri$ceno il pe$o grandemente de i pareti, quando $one ben fatti, & danno commodità di acconciare, & rimediare a i danni $enza appuntellare, & $enza far armature.</I> Similmente quelli edifici, che $i fanno a pila$trate, & con le diui$ioni de i cunei ri$pon- dendo le congiunture al centro, $i rinchiudo in arco. <p><I>Qui pare che Vitr. tocchi l'opera ru$tica, doue $opra le porte i cunei di gro$$e pietre in arco $i $errano, & le bugne, che co$i chiamo le diui$ioni de i cunei, ri$pondeno al centro, & accenna, che que$ti lauori $i fanno a pila$trate, cioè a colonne quadre, & hanno di $opra gli archi, & le fornici, & non gli architraui, & ci dà un precetto degno da e$$er o$$eruato: imperoche dice, che le ultime pila$trate $i deono fare di $patio piu larghe, che le mezane, & ne rende la ragio- ne. Dice adunque.</I> <p>In que$te fabriche fatte a pila$tri, le ultime pila$trate $i deono fare di $patio piu largo, accioche habbian forza di re$i$tere quando i pareti oppre$si da i carichi per le congiuntu- re, che $i $tringono al centro, $i allargheranno le impo$te, o quelle pietre, che $tanno di $opra oltra il cuneo di mezo. Et però $e le pila$trate angulari $aranno di grandezza mag- giore, contenendo i cunei faranno l'opere piu ferme. Dapoi che in tal co$e $i hauerà auuertito di porui diligenza, allhora niente dimeno $i deue o$$eruare, che tutto il re$to della muratura ri$ponda a piombo, nè pieghi in alcuna parte. Ma grandi$sima deue e$- $er la cura delle fabriche, che $i fanno al ba$$o, & nelle fondamenta, percioche in quelle l'a$$unanza della terra $uol partorire infiniti difetti, perche la terra non puo e$$er $empre dello i$te$$o pe$o, che $uol e$$er nella $tate, ma nel uerno riceuendo dalle pioggie la co- pia dell'acqua, cre$ce, & col pe$o, & con la grandezza di$rompe, & $caccia $pe$$o le $epi della muratura: però accioche $i dia rimedio a que$to mancamento, egli $i ha da fare in que$to modo, che prima per la grandezza dell a$$unanza della terra, $i faccia la gro$$ezza della muratura, dapoi nelle fronti $iano po$ti i contraforti o $peroni, tanto di$tanti uno dell'altro, quanto e$$er deue l'altezza del fondamento; ma $ian della i$te$$a gro$$ezza del fondamento; ma dal ba$$o tanto habbiano di piede, quanto e$$er deue gro$$o il fondamen to, ma poi a poco a poco inalzando$i $i ra$tremino tanto, che di $opra $iano co$i gro$$e, quanto è gro$$o il muro dell'opera che $i fa. Oltra di que$to dalla parte di dentro uer$o il terreno come denti congiunti al muro a gui$a di $ega $ian fatti, di modo, che ogni dente tanto $ia di$tante dal muro, quanto e$$er deue l'altezza del fondamento, & le murature di que$ti denti $iano della gro$$ezza del muro. Similmente $u le cantonate, quando $i haue- ranno tirato dallo angulo di dentro, quanto occupa lo $patio dell'altezza del fondamento, $ia $egnato da una parte, & l'altra, & da que$ti $egni $ia fatta una muratura Diagonale, & del mezo di quella un'altra $ia congiunta con l'angulo del muro, co$i i denti, & le mu- rature Diagonale, che non la$cieranno che il muro calchi di tutta forza, ma partitanno ritenendo l'impeto dell'a$$unanza del terreno. <I>Il pre$ente luogo dichiara, quello che nel primo libro s'è detto al quinto capo, & è facilmente e$pre$$o da Vitr. però non ci accade altra fi- gura. Ma s'intende anche de gli $peroni, che $i metteno di fuori alle muraglie.</I> <p>In che maniera le opere deono e$$er fatte $enza difetto, & come deono e$$er auuertiti quelli, che cominciano, io ho e$po$to. Ma del modo di mutare le tegole, gli a$$eri, i tigni, non $i deue hauer quel pen$iero, che $i ha delle $opradette co$e; perche ageuol- mente $i mutano, & però nè anche $ono $timate co$e $ode. Io ho e$po$to con che ragio- ni, & in che modo que$te co$e potranno e$$er ferme, & ordinate. Ma non è in potere del lo Architetto di u$are, che materia li piace, perche non na$ce in tutti i luoghi la copia <pb n="306"> d'ogni materia (come e$po$to hauemo nel pro$simo libro.) Oltra che egli è in potere del patrone di edificare, o di quadrelli, o di cementi, o di quadrato $a$$o. L'approuare adunque di tutte le opere, è in tre parti con$iderato, imperoche egli $i proua un'opera, o per la $ottigliezza dello arte$ice, o per la magnificenza, o per la di$po$itione. Quan- do $i uedrà l'opera perfetta magnificamente con ogni potere, egli $i lauderà la $pe$a. Ma quando $i uederà fatta $ottilmente $i trouerà la manifattura del fabro: ma quando $a- rà bella, & hauerà autorità per le proportioni, & Simmetrie, il tutto tornerà a gloria del lo Architetto: & que$te co$e torneran bene quando l'Architetto & da gli arte$ici, & da gli idioti $opporterà e$$er con$igliato. Percioche tutti gli huomini non $olo gli Architet ti po$$ono prouare quel, che è buono: ma ci è que$ta differenza tra gli idioti, & gli Archi tetti, che lo idiota, $e egli non uede la cofa fatta, non puo $apere quello, che deue riu$ci- re, ma lo Architetto, poi che in$ieme hauerà nell'animo ordinato prima, che egli dia prin cipio, ha per certo quello, che e$$er deue, & di bellezza, & di u$o, & di decoro. Io ho $critto diligentemente quanto ho potuto chiari$simamente quclle co$e che io ho pen$ato e$$er utili a gli edi$icij, & come $i deono fare. Ma nel $eguente uolume io e$po- nerò delle politure di quelli, accioche $iano eleganti, & $enza uitio durino lungamente. <p><I>Qui altro non dico, $e non, che con diligente cura $i pen$i a quello che Vitr. ha detto in fine del pre$ente libro.</I> <HEAD><I>Il fine del Se$to Libro.</I></HEAD> <pb n="307"> <HEAD>IL SET TIMO LIBRO</HEAD> <HEAD>DELL'A R CHITETTVRA DI M. VITRVVIO.</HEAD> <HEAD><I>Proemio.</I></HEAD> <p>ET prudentemente, & utilmente deliberarono ino$tri maggiori di la$ciar a i po$teri per relatione de Commentari i pen$ieri de gli animi loro, ac- cioche non peri$$ero: ma in ogni eta cre$cendo, & in luce mandati con i uolumi a poco a poco con la uecchiezza perueni$$ero alla $omma $otti- gliezza delle dotrine. Et però non di poche, ma d'infinite gratie a quel- li tenuti $iamo, che non hanno con inuidia uoluto tacere, ma hanno pro- curato con $critti mandar a memoria ogni maniera di $entimento: perche $e co$i fatto non haue$$ero; noi non haueremmo potuto $apere, che co$e $tate fu$$ero fatte nella città di Troia; nè quale opinione Thalete, Democrito, Anaxagora, Xenofonte, & gli altri Filo$ofi naturali haue$$ero hauuto della natura delle co$e; & qual deliberatione della uita haue$$ero a gli huomini la$ciato Socrate, Platone, Ari$totile, Zenone, Epicuro, & gli altri Filo$ofanti: ouero qual co$a, & con che ragione Cre$o, Ale$$andro, Dario, & gli altri Re fatto haue$$ero, $ei maggiori no$tri, con gli amae$tramenti alla memoria di tutti, per la po$terità non l'haue$$ero $criuendo inalzate. Et però $i come a que$ti $i deue hauer gratie, co$i per lo contrario deono e$$er bia$imati coloro, i quali furando gli altrui $crit- ti, per $uoi gli uanno publicando, & non $i sforzano con i propi loro pen$amenti di $criue- re, ma con inuidio$i co$tumi l'altrui opere uiolando $i uantano, & però non $olamente $ono degni di ripren$ione, ma (perche hanno menato la lor uita con empi co$tumi) e$$er deono ca$tigati. Et però que$te co$e e$$ere $tate uendicate curiō$amente da gli antichi $i dice: gli e$iti de i quali ne i giudicij come fu$$ero, non pen$o che $ia fuori di propo$ito e$- plicare, come a noi $ono $tati la$ciati. I Re Attalici indotti dalla dolcezza di $apere le ragioni delle co$e, hauendo a commun diletto fatto una bella, & egregia libraria nella Città di Pergamo, Prolomeo d'ardente zelo di de$iderio incitato a quel tempo con non minore indu$tria $i forzò di farne una in Ale$$andria mede$imamente: & hauendo ciò fatto con $omma dilgenza, non pensó che que$to fu$$e a$$ai, $e egli non haue$$e cercato di accre$cerla con nuoue $emenze, & però con$acrò i giuochi alle Mu$e, & ad Apollo, & come de gli Athleti, co$i a i uincitori de i communi $crittori ordinò premij, & ampi modi di e$$er honorati. Poi che que$te co$e furono ordinate, & e$$endo il tempo da fare i giuo- chi, $i doueua eleggere i giudici litterati, che quelli doue$$ero approuare. <p>Il Re hauendone gia fatto, & eletto $ei, & non potendo co$i pre$to ritrouare il $etimo: $i con$igliò con quelli, che erano $opra$tanti alla libraria, & dimando loro $e haue$$ero cono$ciuto alcuno, che fu$$e atto a que$to giudicio. <p>Ri$po$ero, che era un certo detto Ari$tofane, ilquale con grande $tudio, & con $omma diligenza ogni giorno per ordine compiutamente tutti que libri leggeua. E$$endo adun- que nel ridotto de i giuochi partite le $edi $ecretamente di coloro, che haueuano a giu- dicare, chiamato Ari$tofane con gli altri, in quel luogo, che gli fu con$egnato $i po$e. Introdutto fu prima l'ordine de poeti al contra$to, e recitando$i gli $critti loro tutto il populo con cenni addimandaua quello, che que giudici approua$$ero. E$$endo adunque dimandate da ogn'uno le oppinioni, $ei concor$ero in una $entenza i$te$$a, & quello, che <foot><I>SS</I></foot> <pb n="308"> haueuano auuertito e$$er $ommamente alla moltitudine piaciuto, a quello dauano il pri- mo premio, & a quello, che era dapoi, il $econdo. <p>Ari$tofane e$$endogli richie$to il $uo parcre, uolle, che prima fu$$e pronunciato quello, che men diletto haue$$e dato al popolo. Ma sdegnando$i il Re, in$ieme con gli altri, egli $i leuò in piedi, & pregando impetrò, che gli fu$$e la$ciato dire. Et co$i fatto $ilentio di- mo$trò quel $olo tra quelli e$$er poeta, & gli altri recitare le co$e aliene, & che bi$ognaua che i giudici approua$$ero gli $critti, & non i furti. <p>Merauigliando$i il populo, & dubitando il Re, egli con$idato$i nella memoria tra$$e di certi armari infiniti uolumi, & comparandogli con le co$e recitate, isforzò quelli a confe$- $are d'hauerle rubbate, & però il Re uolle, che contra que$ti $i procede$$e come di ladro- nezzo, & condannati con uergogna gli diede licenza, & adornò con grandi$simi doni Ari$tofane dandogli il carico $opra la $ua libreria. Ne gli anni $eguenti Zoilo uenne di Macedonia in Ale$$andria, dico quello, che hebbe il cognome di Flagellatore di Home- ro, e recitò i $uoi uolumi al Re fatti contra la Iliade, & l'Odi$$ea. Perche uedendo Pto- lemeo il padre de i Poeti, & la guida della dolcezza del dire e$$er in a$$enza accu$ato, & e$- $er da colui uituperato quello, che da tutte le genti era pregiato, sdegnato$i non gli die- de alcuna rifpo$ta. Zoilo poi dimorando lungamente nel regno oppre$$o dal bi$o gno mandò $ottomano dimandando al Re, che gli fu$$e dato qualche co$a. Dice$i che il Re ri$po$e. Homero il quale è mancato mille anni auanti pa$cere molti migliaia di per$o- ne, & però e$$er conueniente, che colui, che faceua profefsione d'e$$er di miglior inge gno, pote$$e non $olamente $e $te$$o, ma anchora piu gente nutrire. & in $omma $i narra la morte di Zoilo, come di Parricidio condennato. Altri dicono quello da Philadelfo e$$er $tato in croce con$iccato, altri lapidato, altri a Smirna uiuo po$to in una pira: Del le quai co$e qualunque auuenuta gli $ia, degna certamente a i meriti fuoi è $tata la pena, perche altro non merita colui, che in giudicio chiama quelli, de quali la ri$po$ta non $i puo nella lor pre$enza dimo$trare, che opinione habbiano hauuto $criuendo. Maio ò Ce$are, nè mutati gli altrui indici trapo$to il nome mio ti mo$tro que$to corpo, nè bia- $imando gli altrui pen$ieri, per quello uoglio approuare, & lodare me $te$$o, nè de$ide- ro, che $imile opinione $ia hauuta di me, perche niuna co$a ho detto, che da altri io non habbia cercato, & inte$o, & $e co$a è, che dir $i po$$a e$$er mia, la fatica, & lo $tudio cer- tamente $i puo dire. Maio rendo infinite gratie a tutti gli $erittori, che con l'acutezze de gli ingegni loro con l'età conferite, hanno in diuer$e maniere abondanti$sima copia di co$e preparato, dalle quali, come da fonti; cauando noi l'acqua, & traducendola al propo$ito no$tro, piu feconde, & piu $pedite forze hauendo nello $criuere, & in tali au- tori con$idati$i, prendemo ardimento di far co$e nuoue. Et però hauendo io da loro tal principio, pigliando quelle ragioni, che io ho ueduto e$$er al ca$o mio apparecchiate, ho co minciato andar inante, perche prima Agatharco, mentre E$chilo in Athene in$egnaua la Tragedia, fece la Scena dipinta, & di quella ne la$ciò il Commentario. Da que$to <*>mmonito Democrito, & Anaxagora $cri$$ero della i$te$$a co$a, in che maniera bi$ogna con ragione naturale dal centro po$to in luogo certo corri$ponder all'occhio, & alla drit tura de i raggi con le linee, accioche d'una co$a incerta le certe imagini delle fabriche nel le pitture delle Scene rende$$ero l'a$petto loro, & quelle, che nelle fronti dritte, & ne i piani fu$$ero figurate, $corza$$ero fuggendo, & pare$$ero hauer rilieuo. Dapoi Sileno fece un uolume delle mi$ure Doriche. del Tempio Dorico di Giunone, che è in Samo $cri$$e Theodoro. Dello Ionico a Diana con$ecrato in Efe$o, Cte$ifonte, & Metagene. Di quello di Minerua in Priene, che è di lauoro lonico, ne parlò Phileo. Di quello, che è Dorico in Athene pur di Minerua nella Rocca, lctimo, & Carpione. Theodoro Pho- cefe della Cuba, che è in Delfo. Phileno delle mi$ure de i Sacri Tempij, & dello Arma- <pb n="309"> mento, che era al porto Pireo. Hermogene del Tempio Ionico di Diana, che è in Ma gne$ia P$eudodipteros, & di quello, che è a Teo di Bacco Monopteros. Argelio del- le mi$ure Corinthie, & delle Ioniche ad E$culapio in Tralli, il quale $i dice e$$er di $ua mano. Del Mau$oleo Satiro, & Pitheo, a i quali ueramente la felicità fece un grandi$- $imo dono, perche le arti loro $timate $ono hauer $empre grandi$sime lodi, & fiorite con tinuamente, & hanno anchora dato mirabil opcre $econdo le co$e pen$ate da loro, perche in cia$cuno lato del Mau$oleo a concorrenza cia$cuno arte$ice $i tol$e di ornare, & pro- uare la parte $ua, Leochare, Bria$$e, Scopa, & Praxitele, & altri ui mettono Timotheo, la eccellenza grande dell'arte de i quali con$trin$e il nome di quella opera peruenire alla $a ma de i $ette miracoli del mondo. Molti ancho men nominati hanno $critto le regole delle proportionate mi$ure come Nexare, Theocide, Demofilo, Pollis, Leonida, Sila- nio, Melampo, Sarnaco, Eufranore. Similmente delle machine, come Cliade, Archi- ta, Archimede, Cte$ibio, Nimfodoro, Philo Bizantino, Diphilo, Charida, Polijdo, Phitone, Age$i$trato. De i commentari de i quali quello, che io ho auuertito e$$er uti- le a que$te co$e raccolte ho ridutto in un corpo, & que$to $pecialmente, perche io ho ue- duto molti uolumi $opra que$ta co$a da Greci, & pochi da no$tri e$$er dati in luce; perche Fu$sitio primo di tal co$e deliberò di dar in luce un mirabile uolume. Et appre$$o Te- rentio Varrone $cri$$e delle nuoue di$cipline, & un libro di Architettura. Publio Set- timio ne fece due. Et piu non è $tato chi habbia dato opera a $imile maniera di $critture, e$$endo $tati i cittadini grandi Architetti, i quali hanno potuto $criuere non meno elegan temente de i $opradetti, perche in Athene Anti$thene, & Calle$chro, & Antimachide, & Dorino Architetti po$ero le fondamenta del Tempio, che faceua far Pi$i$trato di Gioue Olimpio: ma dapoi la morte di quello, per lo impedimento delle co$e publiche, lo la$cia rono imperfetto, & però da dugento anni dapoi Antiocho Re hauendo prome$$o la $pe- $a per quell'opera Co$$utio Cittadin Romano con gran prontezza, & $omma cognitione nobilmente fece la Cella, & la collocatione delle colonne intorno il Dipteros, & la di- $tributione de gli Architraui, & de gli altri ornamenti con proportionata mi$ura. <p>Que$ta opera non $olamente tra le uulgari, ma tra le poche è dalla magnificenza nomi- nata, perche in quattro parti $ono le di$po$itioni de i luoghi $acri ornate di marmo delle quali que$te con chiari$sima fama nominate $ono; le eccellenze delle quali, & i prudenti apparati de i loro pen$ieri hanno ne i $eggi de i Dei gran merauiglia, & $i fanno guardare. Prima il Tempio di Diana in Efe$o alla lonica fu fatto da Cte$ifonte Gno$io, & da Meta gene $uo figliuolo, & poi Demetrio $eruo di Diana, & Dafni Mile$io a Mileto fecero il Tempio d'Apollo con le mi$ure Ioniche, Ictimo alla Dorica a Cerere Eleu$ina, & a Pro $erpina fabricarono una cella di $mi$urata grandezza, $enza le colonne di fuori allo $patio dell'u$o de i $acrificij, & quella dominando in Athene Demetrio Falereo, dapoi fu fatta da Philone d'a$petto Pro$tilos, & co$i accre$ciuto il ue$tibulo la$ciò lo $patio a quelli, che con$acrauano, & diede grande autorità all'opera. In A$ti $i dice ancho, che Co$$u- tio $i pigliò la impre$a di far Gioue Olimpio con ampli$simi moduli, & di mi$ure, & proportioni Corinthie, come s'è detto di $opra, del qual niuno commentario è $tato ri- trouato. Nè $olamente da Co$$utio tal $orte di $critti $ono da de$iderare, ma ancho da Caio Mutio, il quale confidato$i nella $ua grande $cienza, con legitime ordinationi del- l'arte condu$$e a fine il Tempio dell'honore, & della uirtù della cella Mariana, & le pro- portioni delle mi$ure, & de gli Architraui. <p>Quel T<*>empio $e egli fu$$e $tato fatto di marmo, accioche egli haue$$e hauuto come dal- l'arte la $ottigliezza, co$i dalla magnificenza, & dalle $pe$e l'autorità, certamente tra le prime, & grandi opere $arebbe nominato. Ritrouando$i adunque, & de gli antichi no $tri non meno de i Greci e$$ere $tati grandi Architetti, & molti ancho di no$tra <*>emoria <foot><I>SS</I> 2</foot> <pb n="310"> & non hauendo quelli, $e non poco $critto de i precetti dell'Architettura: io non ho pen- $ato di uoler con $ilentio pa$$armi, ma per ordine in cia$cun libro trattar di cia$cuna co$a, & però hauendo io nel $e$to con diligenza $critto le ragioni de i priuati edificij: in que$to che è $ettimo in ordincuoglio trattar de gli ornamenti, & e$primere con che ragione hab- biano, & bellezza & $tabilità. <p>N<I>el $ettimo Vitr. ci dà i precetti delle politure, & de gli adornamenti delle fabriche, & non $enza ragione ha po$to in que$to luogo la detta materia $eguitando egli l'or- dine di natura, che prima pone le co$e in e$$ere, & poi le adorna. Hanno adun- que le parti de gli edifici i loro adornamenti, & prima i piani, dapoi i pareti, & fi- nalmente i tetti. A i piani è nece$$ario il pauimento, & $uolo: a i muri l'intonicature, & i bian- chimenti, & le pitture: a i tetti & $olari i $offittati, & ancho le pitture. & perche le co$e e$$er deono non men belle, che durabili, però Vitr. abbraccia in que$to libro, & la fermezza, & lo adornamento, & adorna anche il pre$ente libro d'un belli$$imo proemio, il qual commenda la uirtù de pa$$ati, accu$a l'arroganza de gli imperiti, & rende gratitudine a i precettori. Il proe- mio è facile, & pieno d'hi$torie, & narrationi, & e$$empi, i quali io non uoglio confirmare con altri detti, che con quelli di Vitr. il re$to ancho dellibro è facile per la maggior parte, però ci le uerà la fatica di lunga commentatione. Tratta ne i primi quattro capi de gli adornamenti de i pauimenti, & dal quinto fin al $ettimo parla della ragione del dipignere, & del incro$tare de marmi, dal $ettimo fin al fine del libro parla de i colorinaturali, & artificiali. Noi ci fermaremo doue $arà bi$ogno.</I> <HEAD><I>Deiterrazzi. Cap. I.</I></HEAD> <p>Et prima comincierò a dire de gli $gro$$amenti de i terrazzi, che $ono i princi- pij delle politure, & de gli ornamenti delle fabriche, accioche con maggior cura & prouedimento $i guardi alla fermezza. Se adunque egli $i deue sgro$- $are, e terrazzare a piè piano cerchi$i il $uolo $e gli è tutto $odo, & poi $ia i- $pianato bene, & pareggiato, & $e gli dia il terrazzo con la prima cro$ta. Ma $e tutto il luogo, o parte $arà di terreno commo$$o, egli bi$ogna con gran cura, e diligenza ra$$o- darlo, $i che $ia ben battuto, & palificato. Ma s'egli $i uuole terrazzare $opra i palchi, o $olari, bi$ogna bene auuertire $e ci è qualche parete, che non uenghi in $u, che $ia fatto $otto il pauimento, ma piu pre$to rila$ciato habbia $opra $e il tauolato pendente, perche u$cendo il parete $odo, $eccando$i le trauature, ouer dando in $e per lo torcer$i, che fan- no, $tando per $odezza della fabrica, fa di nece$sità dalla de$tra, & dalla $ini$tra lungo di $e le fi$$ure ne i pauimenti. Ancho bi$ogna dar opera, che non $iano me$colate le tauole di E$culo con quelle di Quercia, perche quelle di Quercia $ubito, che hanno riceuuto l'humore torcendo$i fanno le fi$$ure ne i pauimenti. Ma s'egli non $i potrà hauere de gli E$culi, & la nece$sità per bi$ogno ci co$trignerà u$are la Quercia, co$i pare, che bi- $ogni operare, che quanto $i puo $i $eghino $ottili; perche quanto meno haueranno di forza tanto piu facilmente conficcate con chiodi $i teneranno in$ieme? Dapoi per cia$cun traue nelle e$treme parti dell'a$$e $iano confitti due chiodi, accioche torcendo$i dall'una parte non po$sino gli anguli $olleuare: perche-del Cerro del Faggio, & del Farno niuno puo alla uecchiezza durare. Fatti i tauolati $e egli ci $arà del Felice, $e non della paglia $ia $otto di$te$a, accioche il legname $ia dife$o da i danni della calce, allhora poi ui $ia me$$o il $a$$o pe$to non minore di quello, che puo empir la mano, & indottoui quello $ia sgro$- $ato, & i mpo$toui il terrazzo, ilquale $e $arà fatto di nuouo in tre parti di e$$o ne $ia una <pb n="311"> di calce, ma $e di uecchio $arà rifatto, ri$ponda la me$colanza di cinque a due, dapoi $i- dato il terrazzo, & pe$tato con i ba$toni di legno da molti huomini, & beni$simo ra$$os dato, & tutta que$ta pa$ta non $ia meno alta, & gro$$a di onze noue, ma poi di $opra ui $i metta l'anima di te$tole, cioè la cro$ta, o coperta piu re$i$tente, <I>detta Nucleus</I>, hauendo la me$colanza a tre parti di quella d'una di calce, $i che il pauimento non $ia di minor gro$- $ezza di $ei dita. Sopra que$t'anima a $quadra, & a liuello $ia $te$o il pauimento o di ta- glietti di pietruccie, o di quadri grandi. Quando quelli $aranno po$ti in$ieme, & la $o- perficie eminente u$cirà fuori, bi$ogna fregarli in modo, che e$$endo il pauimento di pie- truccie non ci $iano alcuni rilieui, o gradi $econdo quelle forme, che haueranno i pezzi, o tonde come $cudi, o triangolari, o quadrate, o di $ei anguli, come i faui delle api, ma $ian po$ti in$ieme d rittamente, & il tutto $ia piano, & agguagliato. Ma$e'l pauimento $a- rà di quadri grandi bi$ogna, che habbian gli anguli eguali, & che niente e$ca fuori della $pianatura, perche quando gli anguli non $aranno tutti egualmente piani, quella frega- tura non $arà compitamente perfetta. Et co$i $e'l pauimento $arà fatto a $piche di te$to- le, o di Teuertino deue$i fare con diligenza, $i che non habbia canali, o rilieui, ma $ian di- $te$i, & a rego la $pianati. Ma poi $opra la fregatura quando $aranno fatte li$cie, o polite, ui $ia criuellato il marmo, & di $opra ui $ian indotte le cinte di calce, & di arena. Ma ne i pauimenti fatti alla $coperta bi$ogna u$ar diligenza, che $iano utili & buoni, per- che le trauature per l'humore cre$cendo, ouero per lo $ecco $cemando, o u$cendo di luo- go, col far panza mouendo $i fanno i terrazzi difetto$i. Oltra di que$to i freddi, i ghiac- ci, & l'acque non gli la$ciano $tar intieri: & però $e la nece$sità uorrà, che $i facciano, ac- cio non $iano difetto$i bi$ogna operare in que$to modo. Quando egli $arà fatto il tauo- lato, bi$ogna $opra farne un'altro attrauer$o, ilquale con chiodi conficcato faccia una ar- matura doppia alla trauamenta, dapoi $ia data la terza parte di te$tole pi$te al terrazzo nuo uo, & due parti di calce a cinque di e$$o ri$pondino nel mortaio. Fatto il riempimento po$to ui $ia il terrazzo, & quello ben pi$to non $ia men gro$$o d'un piede, ma poi indot- taui l'anima, (come s'è detto di $opra) $ia fatto il $uolo, o pauimento di quadro grande, ha- uendo in dieci piedi due dita di colmo. que$to pauimento $e $arà ben impa$tato, & i$pia- nato, $arà da tutti i difetti $icuro. ma perche tra le commi$$ure la materia non pati$ca da i ghiacci, bi$ogna ogni anno auanti il uerno $atiarlo di feccia d'oglio, perche a que$to mo do non la$cierà riceuere la brina del gelo, che cade. <I>Qui Vitr. parla delli Terrazzi che $i fanno allo $coperto $opra le ca$e.</I> Ma $e egli ci parerà di uoler far que$to con piu diligenza, $iano po$te le tegole di due piedi tra $e comme$$e, $opra il terrazzo $ottopo$toui la ma- teria, hauendo in ogni lato delle loro commi$$ure i canaletti larghi un dito, lequali poi che $aranno congiunte, $iano empite di calce, con oglio battuta, & $iano fregate in$ie- me le congiunture, & ben comme$$e, co$i la calce, che $i attacherá ne i canali, indurando$i, non la$cierà, ne acqua, ne altro trapa$$are tra quelle commi$$ure: dapoi che co$i $arà get- tato que$to terrazzo, egli iui $i deue $opra indure l'anima, & con ba$toni rãmazzarla bene: ma di $opra $i deue pauimētare o di quadri, o a $piche di te$tole $ecōdo, che è $opra$critto, dandoli il colmo. Que$te co$e quando $aranno fatte in que$to modo, non $i gua$teranno. <p><I>Il primo luogo tra le politure tengono gli $gro$$amenti, o Terrazzi, che $i chiamino. Que$te $ono o a piè piano, o in $olaro, & que$te, o coperte, o $coperte. $e $ono a piè piano, ouero il ter reno è mo$$o, ouero è $odo. Di tutte que$te maniere Vitru. ci da i precetti. ilterren $odo deue e$$er i$pianato, & liuellato, & poi indurui $opra il terrazzo con la prima co perta. & qui do- uemo $apere che gli antichi u$auano molta diligenza nel fare i pauimenti, perche poneuano mol- te mani di co$e per fare il $uolo, cioè molte coperte una $opra l'altra, comiciando dalla piu ba$$a cro$ta con materia piu gro$$a, & uenendo alla $uperficie di $opra $empre con materia piu minuta, auuertendo ancho molto bene al tempo di fare i pauimenti, come io dirò dapoi. Per fonda-</I> <pb n="312"> <I>mento adunque porre $i deue (come dice Vitru.) di $otto il $a$$o non piu grande del pugno, oue- ro il quadrello; & que$to fondamento Vitru. chiama Statumen; & que$to in$ieme con la mate- ria piu gro$$a. Ma$e il terreno $arà commo$$o, è nece$$ario batterlo, & ra$$odarlo molto bene, & con pali unirlo, accioche non s'allarghi, & faccia rompere, & crepare il pauimento, nel che bi$ogna u$are grandis$ima diligenza, indi poi $pianarlo, & far come di $opra inducendoid il primo $gro$$amento. Ma $e ne i palchi $opra le trauature uorremo gettare i pauimenti, bi$e- gna $opra le traui porre un'ordine di tauole attrauer$ate, & auuertire che la trauatura, & il parete, che $o$tenta quel tauolato, $ia d'una $orte di legname, o di pietra egualmente gagliarda, & forte, accioche una parte $o$tenendo il pe$o, & l' altra cedendo, non faccia di$egualttà dal che ne na$ca, che'l pauimento crepi, come $i uede $pe$$o, che da i capi delle trauat <*>re uicine al parete, perche in que luoghi il capo del traue è forte per e$$er uicino al centro, doue eglis'appog- gia, & nel mezo è debile, perilche la materia del mezo dando luogo $i rila$cia da i capi, & fa le crepature ne i pauimenti. Nelle trauature, & tauolati bi$ogna auuertire di non me$colare le- gname di piu $orte, perche in diuer$i legni, è diuer$a natura, nè uno è co$i $aldo, come l'altro, dal che ne na$ceno i difetti de i Pauimenti.</I> <p><I>Per la i$te$$a ragione $opra la trauatura, o tauolato bi$ogna porui della paglia, o del Felice, perche la calce, che entra nel terrazzo non gua$ti il legname, & co$i gettar bi$ogna il primo fon- damento di pielra non meno di quanto cape la mano, & $gro$$are col Terrazzo. V$auano due $or- ti di Terrazzo, il nuouo, che $i fa di pietra allhora pesta, o di te$tole aggiugnendoui una parte di calcina, a due di quelle, & il uecchio rinouato fatto di pauimenti gia ruinati, nella cui me$colan- za ui ua a cinque di Terrazzo due di calcina. Gettato il terrazzo, è nece$$ario batterlo bene, però a que$to officio gli antichi eleggeuano un numero di huomini fin a dieci, perche $i poteuano accommodare in una $tanza, che uno non impediua l'altro, & $i faceuano tante decurie, cioè tan- ti dieci huomini, quanti era nece$$ario, di modo, che uno commandaua, & $opra$taua a dieci.</I> <fig> <I>Que$to modo di battere, ra$$odare, & $pianare il terrazzo noi chiamamo, Or$are. L'altez- za, o gro$$ezza di quella materia co$i pe$ta, & battuta e$$er deue non meno di once noue, che Vitr. dice Dodrante, & que$to è il primo $gro$- $amento, & la prima cro$ta, o letto del paui- mento. Sopra il quale di piu $ottile, & minuta materia $i deue iudurre un altra mano, che co- me anima, & $odezza e$$er s'intende, & è di te$tola ben pi$tata, che di due parti, nè habbia una di calce. Sopra que$ta cro$ta s'induce il pauimento, o di pietra cotta, o d'altra pietra, & que$ta, o $arà minuta come mu$aico, o di qua dri grandi, $econdo la grandezza, o bellezza, che $i de$idera: ben $i de$idera opera, che le pie- tre di che forma $iano, o quadretti, o ritondi come $cudi, che Vitr. dice Scutulis, o Triangu- lari, o di $ei anguli, che Vitr. chiama Faui, per- che i Faui, & le ca$elle delle api $ono in $ei an- guli, o di che figura $i $ieno, $ian tutte eguali in un piano unite, & $i $contrino a punto, che una non $ia piu alta dell'altra, che i lati, & gli anguli $ieno uniti, ilche $i fa con il fregarli mol to bene, & li$ciarli con diligenza. V$auano</I> <pb n="313"> <fig> <I>gli antichi alcune cro$te fatte di arena, & di calce, & minute te$tole, nellequali ui andaua la quarta parte di Teuertino pi$to: u$auano an- che alcuni quadrelli gro$$i un dito, larghi due, lunghi altrettanto, che $tauano in taglio, a$$i- migliando le $piche. que$te polite figure, & lu- $ire erano $i, che non $i uedeuano le commi$$u- re, nè una minima pietra, che u$ci$$e de i termi- ni: però erano mirabilmente piane, & di$te$e, & $pecialmente uaghe. co$i e$pongono gli altri: ma io dico che uanno altramente. que$ie erano nel pauimento po$te, accioche l'acqua, & l'hu- midità non pa$$a$$e alla trauatura, erano piane, & $opra que$te era una mirabil cro$ta di mar- mo pe$to <*> arena, & di calce, che Vitr. chiama Lorica a$$ai ben gro$$a, laquale copriua quel la- uoro fatto a $piche, come $i uede nelle ruine antiche, & quel lauoro a $piche non è come pone il Filandro, ma come è per la pro$$ima figura dimo$trato, $econdo l'e$$empio tolto dallo antico, & erano della grandezza di que$to quadro che contiene la figura, & gro$$e un'oncia: & que$te co$e $i u$auano al coperto. Ma$otto l'aere ui bi$ognaua altra manifattura, e$$endoui maggior pe- ricolo per li ghiacci, per la humidità, & per l'ardore: però bi$ogna fare due mani di tauolati uno attrauer$o dell'altro, che $iano ben inchiodati in$ieme, dipoi col terrazzo nuouo bi$ogna me- $colar due parti di te$tola pi$ta, & due parti di calce a cinque ri$pondino nella me$colanza, che $i fa col detto terrazzo. Fatto il letto di $otto indur ui bi$ogna la $econda cro$ta alta un piede, $o- pra laquale ui ua l'anima, $opra l'anima il pauimento come è $tato detto, che nel mezo $ia gonfio, & colmo $i, che in dieci piedi habbia due dita di colmo: ilqual pauimento $ia fatto, di quadri gro$- $i due dita, con que$ta manifattura noi potemo a$$icurarci dal danno delle pioggie, & de ighiacci. Ma per le politure, & $pianamenti egli $i piglia un pezzo di piombo, o di $elice, di molto pe$o $pianato, & quello con funi tirato $u, & giu, di qua, & di la $opra il pauimento $pargendoui $em pre della arena a$pera, & dell'acqua i$piana il tutto: & $e gli anguli, & le linee del $elicato non $ono conformi, que$to non $i puo far commodamente: & $e'l pauimento, è con oglio di lino frega- to rende un lu$tro, come $e fu$$e di uetro. Similmente $arà buono $pargerui della Amurca, o gettarui piu uolte $opra dell'acqua, nellaquale $ia $tata e$tinta la calce: & $e uuoi acconciare un terrazzo rotto prendi una parte di tegole pi$te, & due di bolo armeno, & incorpora con ra$a pre$$o al fuoco, & $caldato che harai il terrazzo, gettaui $opra que$ta materia, & poi con un ferro caldo $tendila gentilmente. Et co$i farai ancho $e col marmo poluerizato me$colerai cal- cina bianca cruda in acqua bogliente, & la$ciata $eccare. Fatto que$to tre, o quattro fiate impa- $terai con latte, & con quel colore, che ti piacerà di dare. & $e uole$$i far parere l'opera di mu- $aico, poni la detta materia nelle forme, dandoli quel color che ti piace, ma poi dalli l'oglio cal- do, ouero impa$ta con colla di cacio il marmo tamigiato, pur che la colla $ia $temprata con chia- ra d'uuoua ben battuta, poi ui metti la calce, & impa$ta.</I> <HEAD><I>Dimacerar la calce per biancheggiare, & coprirei pareti. Cap. II.</I></HEAD> <p>Qvando dal pen$iero di far i pauimenti ci $aremo partiti, allhora bi$ogna dichia rire il modo di biancheggiare, & polire le opere; & que$to è per $ucceder be- ne, quando molto tempo inanzi il bi$ogno i pezzi di buoni$sima calce, & le $cheggie $aranno nell'acqua mollificate, & macerate, accioche $e alcuna $cheg <pb n="314"> gia $arà poco cotta nella fornace per la lunga maceratione co$tretta dal liquorea sbogli- re, $ia con una egualità dige$ta. Perche quando $i piglia la calce non macerata, ma nuous, & $re$ca, dapoi che è data a i pareti hauendo ciotole o pietruccie crude a$co$e manda fuori alcune pu$tule, & que$te ciotole quando nell'opera poi $ono rotte egualmente, & mace- rate di$cioglieno, & disfanno le politezze delle coperte. Ma poi che $i hauerà ben pro- ui$to alla maceratione della calce, & ciò con diligenza $arà nell'opera preparato, pigli$i una A$cia, {<I>Che noi cazzuola, altri zapetta chiamano</I>,} & $i come $i $piana, & poli$ce il legname, con la $piana, co$i la calce macerata nella fo$$a $ia a$ciata, & riuoltata con la ca- zuola, $e le pietruccie $i $entiranno dare in quello $trumento, $egno $arà che la calce non è ben temperata, ma quando il ferro $i trarrà fuori $ecco, & netto, $i mo$trerà quella ua- nida, & $itibonda, ma quando $arà gra$$a, & ben macerata attaccata come colla a quel fer- ro, darà ottimo inditio di e$$ere ottimamente temperata. Fatte, & preparate que$te co$e trouati gli $trumenti, et l'armatura, $iano e $pedite le di$po$itioni de i uolti nelle $tanze, quando $ia, che non uogliamo fare i $offitti. <p><I>Nel $econdo capo Vitr. c'in$egna a preparare la calce, accioche commodamente la potiamo u$are alle coperte, & biancheggiamenti de i pareti, & co$i e$pediti i pauimenti, & loro bellezze uiene ad ornar i muri. Io nel $econdo libro ho detto a ba$tanza della calce, & quello, che i<*>i <*> detto, rende piu facile il pre$ente luogo, che da $e ancho è piano, però e$poneremo il $eguente, che adorna i uolti, & i pareti.</I> <HEAD><I>Della di$po$itione de i uolti. del modo di coprire, & d'in- cro$tar i muri. Cap. III.</I></HEAD> <p>Qvando adunque $arà bi$ogno fabricar'a uolti, co$i fare $i deue. Siano di$po- $ti gli A$$eri, o trauicelli dritti di$tanti non piu di due piedi l'uno dall'altro, & que$ti $iano di Cipre$$o, perche quelli di Abete pre$to $ono da i tarli, & dal- la uecchiez za con$umati: quelli A$$eri quando $aranno a torno di$po$ti in for ma ritonda $iano congiunti alle traui, o coperti, & conficcati con chiodi di ferro di$po- $te per ordine le catene, le quali $iano fatte di quella materia, alla quale nè tarli, nè uec- chiezza, nè humore po$$a far danno, come il Bo$$o, il Ginepro, l'Oliuo, il Roucre, il Cipre$$o, & altri $imiglianti, eccetto, che di Quercia. Perche la Quercia torcendo$i nel- le opere, doue è po$ta, $i fende. Di$po$ti che $aranno ordinatamente quei trauicelli, a quelli $i deue legare le canne Greche pe$te, come richiede la forma del uolto, con alcune re$te fatte di Sparto Hi$panico. Similmente $opra la curuatura ui $ia indotta la materia di calce, & d'arena me$colata, accioche $e qualche gocciola caderà dal tauolato, o da i tetti, facilmente $i po$$a $o$tenere. Ma $e non ui $arà copia di canne Greche, bi$ognerà pigliare delle cannuccie $ottili de paludi, & legarle in$ieme, & di quelle far le mata$$e, & le re$ti quanto lunghe $i conuiene, ma di continuata gro$$ezza, pure che tra due nodi non $ia di$tanza de i legamenti piu di due piedi, & que$te mata$$e (come s'è $critto di $opra) $iano a gli A$$eri, e trauicelli legate, & in e$$e conficcate $iano le Spatelle di legno; & l'altre co$e tutte $iano e$pedite (come s'è detto di $opra.) Di$po$te poi le curuature, & conte$te, $ia il loro cielo $maltato & coperto politamente, & con l'arena $gro$$ato, da- poi con creta, o marmo polito. Poi che i uolti $aranno politi, $i deono porre le cornici, lequali $i deono fare quanto piu $i puo $ottili, & leggieri, perche e$$endo grandi per lo pe$o $i $taccano, nè $i po$$ono $o$tenere. In que$te per modo alcuno non $i deue me$co- lare il ge$$o, ma con criuellato marmo deono e$$er ad un modo egualmente tirate, accio- che facendo pre$a, la$cino l'opera ad un tempo $eccar$i. Egli $i deue ancho nel far i uol- <pb n="315"> ti $chiuare la di$po$itione de gli antichi, perche i piani delle loro cornici, per lo gran pe$o minacciando erano pericolo$i. Delle cornici altre $ono $chiette, altre ornate. Nei conclaui doue $ono a$$ai lucerne; ouero il fuoco $tanno meglio le $chiette, accioche piu facilmente $i po$sino nettare, ma ne i luoghi della $tate, & nelle e$$edre, doue non è fu- mo, nè caligine puo far danno, $tan bene le ornate, perche $empre le co$e bianche, per la $operbia, & grandezza del candore, non $olamente da i propi luoghi doue $ono, ma da gli altri edi$ici uicini pigliano il fumo. Fatte, & e$pedite le cornici bi$ogna imboccare molto bene i pareti, & lgro$$arli, & $eccando$i quella $gro$$atura $ian indotte le dritture dello arenato, di modo, che le lunghezze $iano a linea, le altezze a piombo, gli anguli a $quadra, perche la maniera delle coperte a que$to modo $arà preparata per le pitture. Cominciando$i a $eccare la detta cro$ta, di nuouo $e le dia un'altra di $opra, & co$i quanto piu fondata $arà la drittura dello arenato, tanto piu ferma $arà la $odezza della intonicatu- ra. Quando poi il parete dopo la prima $gro$$atura con tre cro$te almeno di arena $arà formato, allhora $i faranno le $pianature con grano di marmo, pur che la materia $ia tem- perata in modo, che quando $arà impa$tata non $i attacchi al badile, ma il ferro netto dal mortaio tratto ne $ia. Indottoui il grano, & $eccando$i, $ia data un'altra intonicatura leggiermente, la quale ben battuta, & fregata $ottilmente $i dia. Quando adunque i pa- reti con tre coperte di arena, & di marmo a$$odati $aranno, nè fi$$ure, nè altro difetto po tranno riceuere. Ma le $odezze fondate, & fermate con le battiture di ba$toni, & con la ferma bianchezza del marmo li$ciate, po$toui $opra i colori con le politure, manderanno fuori eccellenti bellezze. Quando i colori con diligenza $ono indotti $opra le coperte non bene a$ciutte, per que$to non $putano, ma $tanno fermi, perche la calce nelle fornaci a$ciugato l'humore, & per le $ue rarità diuenuta uota, a$tretta dalla $iccità, tira l'humo- re a $e delle co$e, che per $orte la toccano, & in$ieme a$$odando$i per le me$colanze fatte di co$e d'altra uirtù, concorrendoui i $emi, & i principij in cia$cuno membro, che ella $ia formata $eccando$i, tale diuiene, che pare, che habbia le propie qualità della $ua maniera, & però le coperte, che $on ben fatte, nè per la uecchiezza diuentano a$pre, nè lauate rila- $ciano i colori, $e for$e non $aranno con diligenza date nel $ecco. Quando adunque in que$to modo, come è $opradetto, i pareti $aranno coperti potranno hauere, & fermezza, & $plendore, & forza di durare eternamente; ma quando $arà data una coperta di arena, & una di minuto marmo $olamente, potendo poco quella $ottigliezza $i rompe, nè puo per la debolezza della gro$$ezza $ua con$eruare nelle politure il propio $plendore: Perche come lo $pecchio d'argento tirato di $ottil lametta ritiene incerta, & debil lu$trezza, & quello, che è di piu $oda temperatura formato, riceuendo in $e con fermo potere la poli- tezza, rende lu$tre nello a$petto, & certe le imagini a i riguardanti: co$i le coperte fatte di materia $ottile, non $olamente fanno le $i$$ure, ma $i gua$tano pre$tamente, ma quelle che $on fondate con piu cro$te di arena, & con $odezza di marmo, fatte piu $ode, & con frequente politezze battute, & li$ciate, non $olamente lu$tre $i fanno, ma anchora riman- dano fuori le imagini a i riguardanti, I copritori de i Greci u$ando que$te ragioni non tanto fanno le loro opere ferme, ma ancho nel mortaio con calce, & arena me$colata con molti huomini pe$tano la materia con pezzi di legno, & co$i ben battuta a concorrenza la mettono in opera. Dal che è nato, che molti u$ano in luogo di tauole da dipignere quelle cro$te, che $i leuano da i pareti, & quelli coperti con le diui$ioni delle tauole, & de gli $pecchi hanno d'intorno a $e gli $porti e$pre$si dalle co$e. Ma $e ne i graticci $i haue- ranno a fare le coperte, nelle quali è nece$$ario, che $i facciano le fi$$ure, ne i dritti, & tra uer$i trauicelli, (perche quando s'impa$tano di loto riceuono l'humore, & quando $i $ec cano a$$ottigliati fanno le fi$$ure nelle cro$te) accioche que$to difetto non auuegna, co- $i ragioneuolmente $i deue prouedere. Quando tutto il parete $arà impa$tato di loto, <foot><I>TT</I></foot> <pb n="316"> allhora in quell'opera $iano le canne continue con chiodi mu$carij confitte, dapoi di nuo- uo indottoui il loto, $e le prime canne $aranno fitte per trauer$o, le $econde $iano fitte per dritto, & co$i (come s'è di $opra determinato) data ui $ia la cro$ta di arena, & di marmo & d'ogni maniera di coperta, & co$i doppiamente e$$endo fitta la continuità delle canne ne i pareti con ordini trauer$i, nè peli, nè fi$$ure è per fare in modo alcuno. <p><I>Tratta della di$po$itione de i uolti, & que$to è nece$$ario: imperoche male $i potranno coprire, & intonicare i uolti, $e non $aranno $ermi, & ben fatti; & attia riceuere gli abbellimenti, & le intonicature, & però prima egli c'in$egna, come douemo far i uolti, perche $cstentino glior- namenti; come $i deue, & di $opra, & di $otto di quelli $maltarli, & darli di bianco; & come $otto quelli $i hanno à fare le cornici, & $otto le cornici, come $i hanno ad intonicare, & bian- cheggiare i pareti: & finalmente ci mo$tra come $i habbiano a fare, & a coprire i pareti di cra- ticij. Noi in uniuer$ale parleremo de i uolti, accioche tutta la pre$ente materia ci $ia dinan- zi a gli occhi, & addurremo parte di quello, che dice l'Alberto nel terzo al</I> 14. <I>Capo. Va- rie $ono le maniere de i uolti, & delle camere: noi douemo cercare, che differenza $ia tra quel- le, & quali $iano le linee de i contorni loro. Le $orti loro $ono la Fornice, la camera, l'hemi$pe- ro, & quelle uolte, che $ono parti di queste. L'hemi$pero, o meza palla non uiene per $ua natu- ra $e non dalle piante circolari. La camera $i deue alle piante quadrate. Le fornici conuengono a quegli edifici, che $on quadrangolari, ma quel uolto, che è fatto a $imiglianza d'un monte ca- uato, è detto fornice, che è un uolto lungo, & piegato in arco. Im iginiamoci un parete larghi$- $imo, che dalla cima $i uolti, & $i pieghi, attrauer$o d'un portico. Camera è come un'arco, che da Mezo dì a Tramontana $i pieghi, & che ne habbia $imilmente attrauer$ato un'altro da Leuante a Ponente, & è a $imiglianza delle corna piegate. Hemi$pero è il concor$o di molti ar chi eguali in un centro del colmo di mezo. Ci $ono ancho molte altre manicre di uolti, & di archi, che fanno mostra di figure di molti anguli, delle quali è una iste$$a ragione del uoltarli, & tutte le predette maniere $i fanno con la ragione, che $i fa il parete, imperoche i $ostegni, & l'o$$a, che uengono $ino alla $ommità, deono leuar$i dall'o$$a del parete, ma $econdo il modo loro deono nel parete e$$er'impo$ti, cioè in quella forma, che uolemo dar al uolto, & que$te o$$a deo- no e$$er drizzate di$tanti una dall'altra, per un certo $patio. Vitr. dice A$$eri drizzati non lontani uno dall'altro piu di due piedi, & $ono trauicelli alti, & stretti, & dice que$ti A$$eri, quando $ar anno di$tribuiti $econdo la forma del giro, cioè $econdo quella maniera di uolto, che uolemo fare; deono con catene e$$er legati, queste catene $ono legature di legni po$te nelle $om- mità di detti trauicelli, accioche $i tenghino in$ieme. Siano questti inchiodati al tetto, & tauola- to di $opra. Et quegli $patij tra l'o$$a uuole l'Alberto, che $iano riempiti: ma ui è differenza tra gli empimenti, che $i fanno ne i pareti, o muri, da quelli, che $i fanno tra que$te o$$a, impero- che nel muro uanno dritti a piombo, qui piegati, & torti, $econdo la forma de i uolti. uuole an- che, che l'o$$a $ian di pietra cotta di due piedi, & i riempimenti di leggieri$$ima pietra, per non caricare il muro. Dice poi, che per fare gli archi, & i uolti, è nece$$ario l'armatura, che è fatta di legname $econdo la forma, che $i uuole. $opra questa $i pongono le craticole di canne, per $ostenere quella materia di che $i fa il uolto, fin che s'induri$ca, uuole che la meza palla non habbia bi$ogno d'armatura, nè quelle forme, che uanno imitando quelle che $on di molti anguli; ma bene fa bi$ogno d'una legatura, o te$$itura, che leghi stretti$$imamente le parti debili, con le ferme, & gagliarde, & iui commenda la forma dell' Hemi$pero. dice poi, che la te$tuggine, la camera, la fornice hanno bi$ogno d'armature, raccomandando i primi ordini, & i capi de gli archi a fermi$$ime imposte: & dà alcuni precetti d'intorno a questta materia, & di leuar l'ar- mature, & di riempir i uani, & di fortificar gli archi, i quali precetti $ono chiari a praticanti. noi u$iamo gli archi, & i uolti, le crocciere, le cube, i rimenati, le uolte a lunette $econdo le na ture de gli edifici, come è noto. Formata la camera, cioè quella curuatura di uolto, come ci piace, $i copre il cielo di $otto, & $i dà di $opra quello, che dice Vitr. dapoi $i fanno le corni ci a</I> <pb n="317"> <I>rorno di stucco, & non ui entra ge$$o di $orte alcuna, $otto le cornici, le quali deono e$$er leggie- ri, & di $ottil materia, & non hauer molto $porto, perche non $i rompino caricate dal pe$o. Si deue hauer cura d'intonicar i pareti, & in questa parte è molto diffu$o il detto Alberto: ma noi staremo con Vitr. & diremo la $ua intentione da capo, la qual è di apparecchiare i uolti, & le camere, & dice, che egli $i deue drizzare alcuni trauicelli distanti due piedi uno dall'altro, & $iano di Cipre$$o per e$$er legno, che non $i tarla, nè $i gua$ta, questi trauicelli deono e$$er com- partiti a torno la stanza con catene di legno fin al tauolato, o tetto con $pe$$i chiodi di ferro con- fitti: uuole che que$te catene $ieno, o di Bo$$o, o di Oliua, o di Cipre$$o, o di Rouere, ma non di Quercia, perche $i fende, nè d'altro legname, che pati$ca. Fornite le legature, & di$posti i trauicelli, & confitti fin $otto il tauolato, bi$ogna con ftore di $parto Hi$pano, che è una $orte di giunco, o con canne Greche, pistate; & $ono (pen$o io) di quelle, che noi chiamiamo canne uere. $i adoperano $imili uolti in Romagna, & $i dà loro quella forma, che $i uuole, perche que$ta è materia, che $i piega, & che $i maneggia come $i uuole, & co$i formato il cielo, $i hanno due $u perficie una di $opra conue$$a, che guarda al tetto, l'altra di $otto concaua, che guarda il paui- mento. quella di $opra è coperta con calce, & arena, & $maltata, accioche difenda la parte di $opra delle goccie, che cade$$ero dal colmo, o dalle trauature. Et co$i$arà e$pedita la parte di $opra; & quando non ci fu$$ino canne Greche, u$eremo le cannuccie delle paludi, delle quali $i faranno come craticule in$ieme legate, & annodate con cordicelle, o giunchi ritorti, pur chei nodi non $ieno distanti l'uno dall'altro piu di due piedi. queste mata$$e, o craticule $iano fitte a gli a$$eri, con pironi di legno, che Spathelle, o Cortelli $i chiamano. Quanto ueramente alla parte di $otto $i richiede, cioè $otto il cielo, è darui la $maltatura di calce, & d'arena, & co$i di mano in mano coprire, & d'arena, & di marmo pi$to. Finalmente polito, & biancheggiato il uolto, $i deono far le cornici d'intorno $ottili$$ime, & quanto $i puo leggieri, & picciole, impe roche, $e fu$$ero grandi porterebbe pericolo, che per lo pe$o non $i $tacca$$ero, & però bi$ogna auuertire di non farle di ge$$o, ma di marmo criuellato, & dato egualmente di un tenore, & d'una gro$$ezza, & accioche ancho egualmente $i$ecchi, perche quando una parte preueni$$e l'altra, non egualmente $i $eccherebbeno. La leggierezza loro difende anche gli habitanti dal pericolo, perche le cornici grandi, & larghe $i po$$ono per qualche accidente staccare, & ca- der ado$$o, a chi sta nelle camere. Delle cornici altre $i faceuano $chiette, altre lauorate: le $chiette $tan bene in luoghi doue è fumo, lumi, & polue, accioche meglio $i po$$ino far nette, Le lauorate a fogliami, o a figure stan bene nelle sttanze della state, perche iui non ui è fumo, nè lume, & è co$a incredibile quanto il fumo delle alte stanze nuoca, benche lontane, tanta è la $operbia della bianchezza. Fatte le cornici, & adornato il cielo, è nece$$ario ancho adornare & biancheggiar il muro della stanza, & apparecchiarlo alle pitture, però al parete $i darà pri ma una gro$$a $maltatura, $opra la quale poi, che comincierà a $eccare bi$ogna darle una $mal- tatura di calce, & di arena fatta $econdo quel compartimento, che $i uorrà per dipignere, & $ian l'altezze del parete a piombo, le lunghezze a linea, gli anguli a $quadra, come ueramente $i troua muri di mille anni et piu fatti tanto eguali, che una riga tocca per tutto: tãto $odi, che per tauole $i po$$ono u$are quelle intonicature, & $corze: tanto fini, che polite con un panno ri$plendono come $pecchi; & que$to na$ceua, per che dauano piu cro$te a i pareti, & u$auano infinita diligenza, dando la $eguente $corza prima, che la precedente fu$$e a fatto $ecca: era la materia ben macerata, et pre parata molto tempo prima, che $i mette$$e in opera; di qui na$ceua, che i colori delle pitture non $o lo ri$plendeuano, & erano uaghi, ma ancho durauano eternamente, & s'incorporauano con quel la intonicatura, il che non auuenirebbe quando $i de$$e una $ola mano di arenato, et una di granito. Ma perche $pe$$o, o per nece$$ità, o pernon caricare tanto le fabriche, $i $ogliono fare i pareti di Craticci, i quali per molti ri$petti po$$ono e$$er difetto$i, però Vitr. ci dà i precetti ancho di farli meglio, che $i puo, accioche durino, & non facciano fi$$ure. Il tutto è facile, però pa$$aremo ad altro.</I> <foot><I>TT</I> 2</foot> <pb n="318"> <HEAD><I>Delle politure, ne i luoghi humidi. Cap. IIII.</I></HEAD> <p>IO ho detto, con che ragioni $i fanno le coperte ne i luoghi a$ciutti, hora io e$ponerò in che modo, accioche durino, far $i conuegna le politezze, ne i luoghi humidi: & prima ne i conclaui, che $aranno a piè piano cerca tre pie- di alto dal pauimento in luogo di arenato $i dia la te$tola, & $gro$$ato, accio che le parti di quelle co perte non $ian gua$te dall'humore. Ma $e egli $i trouerà alcuno parete, che per tutto $ia offe$o dall'humore, bi$ogna allontanar$i alquanto da quello, & farne un'altro tanto di$tante, quanto parerà conuenire alla co$a, & tra due pareti $ia tira- to un canale piu ba$$o del piano del conclaue, & que$to canale sbocchi in qualche luogo: & poi che egli $arà fatto alquanto alto la$ciati ui $iano gli $piracoli, per che $e l'humore non u$cirà per la bocca, ma u$cirà, o di $otto, o di $opra, $i $pargerà nella muratura nuo ua. Fatte que$te co$e $i dia lo primo $gro$$amento al parete di te$tola, & poi drizzato, & $pianato, & polito $ia. Ma $e'l luogo non patirà, che $i faccia l'altra muratura, faccian$i pure i canali, & le bocche loro e$chino in luogo aperto, dapoi da una parte $opra il margi ne del canale impongan$i tegole di due piedi, & dall'altra $i drizzino i pila$trelli di quadrel letti di ott'oncie, ne i quali po$$an $edere gli anguli di due tegole, & co$i quelli pila$tri $iano tanto di$tanti dal parete, che non pa$sino un palmo, dapoi dal ba$$o del parete in fino alla cima $ian fitte dritte le tegole oncinate, alle parti di dentro delle quali con diligenza $ia data la pece, accioche $caccino da $e il liquore, & co$i di $otto, & $opra il uolto habbiano i loro $piracoli. Allhora poi $ian biancheggiate con calce liquida in acqua, accio non rifiuti- no la $maltatura, & cro$ta di te$tola, perche per l'aridità pre$a nelle fornaci, non po$$ono riceuere la $maltatura, nè mantenerla, $e la calce $otto po$ta, non incolla, & non attacca l'una, & l'altra co$a. Indottoui quel primo $gro$$amento, $e le dia in luogo d'arenato la te$tola, & tutte le altre co$e, come s'è $critto di $opra nelle ragioni delle intonicature: ma gli ornamenti della politura deono hauere propie, & particolari ragioni del Decoro, ac- cioche habbiano dignità conuenienti sì $econdo la natura de i luoghi, come per le diffe- renze delle maniere. Nelle $tanze del uerno non è utile que$ta compo$itione, nè la pittu- ra di grande $pe$a, nè il $ottile ornamento de i uolti, di cornici, perche quelle co$e & dal fu mo, & dalla fuligine di molti lumi $i gua$tano: ma in que$ti $opra i poggi deono le tauole con inchio$tro e$$er impennate, & polite trapo$toui i cunei di $ilice, o di terra ro$$a. Quando $aranno e$plicate le camere pure, & polite ancho non $arà di$piaceuole l'u$o del- le $tanze del uerno de i Greci; $e alcuno ui uorrà por mente; & que$to u$o non è $ontuo- $o, ma utile, perche egli $i caua tra'l piano liuello del triclinio qua$i due piedi, & battuto bene il $uolo, $i ui dà, o'l terrazzo, o il pauimento di te$tole co$i colmato, che habbia le bocche nel canale. Dapoi po$toui $opra i carboni, & calcati $odamente, ui $i da una ma- teria me$colata di $abbione, di calce, & di fauilla gro$$a mezo piede po$ta a regola, & a li- uello, & polito il piano con la cote, $i fa la forma del pauimento nero, & co$i nè i conui- ui loro, quello, che da i ua$i, & da gli $puti loro $i manda a terra, $ubito caduto $i $ecca, & i $erui, che gli mini$trano, $e bene $aranno $calzi, non piglieranno freddo da tai pa- uimenti. <p><I>Qui $i uede la mirabile indu$tria, che u$auano gli anticht, accioche le loro fabriche dura$$ero, & $i mant ene$$ero belle, & ornate, imperoche anche la doue la natura del luogo poteua impedi- ne, o non patiua gli abbellimenti, con arte $i sforzauano di rimediare: & per che non è co$a niu- na, che gua$ti piu gli edifici, & le politure, che la humidità; non ha dubbio, che quando a quella $arà ingeni o$amente proui$to, che la bellezza non con$egua l'effetto $uo: però hauendo Vitr. for- uito di darci i precetti di ab bellire, & biancheggiare le opere fatte in luoghi a$ciutti, nel pre$en-</I> <pb n="319"> <I>te capo c'in$egna a rimediare a i difetti de i luoghi humidi. Il difetto dell'humido uiene, o dal ba$$o per lo terreno, o dall'alto per li muri, che $iano appoggiati a monti, o a terreni piu alti. Se uiene dal ba$$o, bi$ognerà per le $tanze a piè piano dal luogo, doue uorremo fare il pauimento ca- uar $otto tre piedi, & riempire tutto il cauo di te$tole, & poi $pianarlo bene. que$ta materia te- nerà il luogo $empre a$ciutto. Ma $e per $orte alcun muro $arà continuamente tocco dall'humo- re, allhora faremo un'altro muro $ottile di$co$to da quello quanto ci parerà conueniente, & tra que muri $i farà un canale piu ba$$o alquanto del piano dalla $tanza, ilquale sboccherà in luogo aperto, la$ciandoui i $uoi $piragli di $opra, perche quando il canale fu$$e molto alto, & che non $e gli face$$e que$to rimedio, non ha dubbio, che'l tutto ammarcirebbe, & $i di$cioglierebbe: bi- $ogna adunque dargli le $ue bocche di $otto, & i $uoi $piragli di $opra. Drizzato adunque il mu- ro al predetto modo, allhora potremo $maltarlo, intonicarlo, & polirlo. Il mede$imo rimedio c'in$egna Plinio, & Palladio. Ma $e per $orte il luogo non puo patire, che $i faccia il muretto, ci ba$terà farui i canali, che sbocchino in luogo aperto, & nelle margini di que canali da una par- te $opraporui tegole alte due piedi, dall'altra farui alcuni muretti, o pila$trelli di mattoni di due terzi di piede, $opra i quali $i po$$an $opraporre gli anguli di due tegole, & que$te tegole non $ian di$tanti dal parete principale piu d'un palmo, & co$i $arà fornita la fabrica del canale, & la $ua copritura: & perche la humidità del muro principale po$$a entrare nel detto canale, bi$ogna lun go il muro dal piede alla $ommità conficcare delle tegole oncinate di modo, che come hamo una entri nell'altra, & $iano que$te di dentrouia con $omma diligenza impegolate, perche non rice- uino l'humidità, & co$i que$te tegole $oppliranno al mancamento del muretto, & faranno lo i$te$ $o effetto, perche tra quelle, & il muro principale ci è $patio conueniente, & la humidità del muro ua tra quelle tegole, & il muro, pure che di $otto $ian le sboccature, & di $opra gli $pira- gli. Fornita que$ta intauellatura (dirò co$i) accioche riceua le imprimiture di te$tole, bi$ogna $maltarla di calce liquida, imperoche quella calce rimedia alla $iccità delle tegole, lequali non riceuerebbeno le intonnicature, $enza quella prima $maltatura. Quello poi, che $i debbia dipi- gnere in $imili, & altri luoghi Vitr. con gran facilità, & con belli auuertimenti ci dimo$tra, però mi riporto alla interpretatione, nel che $i con$idera quello, che appartiene al Decoro: parla poi di una u$anza Greca di fare i pauimenti, co$a bella, utile, & di poca $pe$a, & nel te$to è mani- fe$ta.</I> <HEAD><I>Della ragione del dipignere ne gli edifi- cy. Cap. V.</I></HEAD> <p>Agli altri conclaui, cioè di primauera, d'autunno, della $tate, & gli atrij, & pe- ri$tili da gli antichi $tate $ono determinate alcune maniere di pitture, per cer- ti ri$petti; perche la pittura $i fa imagine di quello, che è, & puo e$$er, come dell'huomo, dello edificio, della naue, & delle altre co$e, dalle forme dellequa li, & da i contorni de i corpi con figurata $imiglianza $i pigliano gli e$$empi. Da que$to gli antichi, che ordinarono i principi delle politezze prima imitarono la diuer$ità delle cro$te di marmo, & le loro collocationi, & dipoi delle cornici, & de i uarij compartimenti di colore ceruleo, & di Minio. Dopo intrarono a fare le figure de gli edificij, & dellc co- lonne, & imitare gli $porti, & i rilieui, de i fronti$picij, & ne i luoghi aperti, come nelle e$- $edre per l'ampiezza de i pareti di$egnarono le fronti delle Scene all'u$anza Tragica ouero Comica, ouero Satirica: ma ne i luoghi da pa$$eggiare per e$$ere gli $pacij lunghi $i die- dero ad ornarli di uarietà di giardini e$primendo le imagini di certe proprietà di pae$i: perche dipingono i porti, le Promontore, i Liti, i fiumi, le fonti, gli tratti delle acque, i tempij, i bo$chi $acri, i monti, le pecore, i pa$tori, & in alcuni luoghi anche $i fanno pitture piu degne, & che hanno piu fattura, che dimo$trano anche co$e maggiori, come <pb n="320"> $ono i Simulacri de i Dei, le ordinate dichiarationi delle $auole, le guerre Troiane, gli errori d'Vli$$e per li luoghi, & altre co$e, che $ono con $imiglianti ragioni a quelli fatte dalla natura. Ma quegli e$$empi, che erano tolti da gli antichi da co$e uere, hora $ono con maluaggie u$anze corrotti, & gua$ti. Perche nelle coperte de i muri $i dipingono piu pre$to i mo$tri, che le certe imagini pre$e da determinate co$e. Perche in uece di co- lonne ui $i pongono canne, & in luogo de fa$tigi fanno gli arpagincti canalati con le fo- glie cre$pe: Similmente i candellieri de i Tempietti, che $o$tengono le figure, & $opra le cime di quelli fan na$cere dalle radici i ritorti teneri conle uolute, che hanno $enza ra- gioni le $igurine, che $opra ui $iedono. Similmente i $ioretti da i loro $teli, che hanno me- ze $igure, che e$cono da quelli, altre $imiglianti a i capi humani, altre a i capi delle be- $tie. Ma tali co$e, nè $ono, nè po$$on e$$er, nè $aranno giamai. Co$i adunque i cattiui co$tumi hanno con$tretto, che per inertia i mali giudici chiudino gli occhi alle uirtù del- l'arti: perche come puo e$$er che una canna $o$tenti un coperto, ouero un candellieri, un Tempietto, & gli ornamenti d'un fronti$picio, ouero un fa$cetto di herba co$i $ottile, & molle $o$tegna una figuretta, che ui $tia $opra $edendo? ouero che dalle radici, & fu$ti piccioli, da una parte $iano generati i fiori, & meze figure? Ma benche gli huomini ue- dino tai co$e e$$er fal$e, pure $i dilettano, nè fanno conto $e elle po$$ono e$$er, ò nò: ma le menti offu$cate da i giudicij infermi non po$$ono approuare, quello, che & con digni- tà, & con riputatione del Decoro puo e$$er prouato: perche quelle pitture non deono e$$er approuate, che non $aranno $imili alla uerità, nè anche $e bene $aranno fatte belle dall'arte, però nó $i deue far buon giudicio co$i pre$to di quelle, $e non haueranno certe ra gioni di argomento $enza offe$a dichiarite. Perche ancho a Tralli haucndo Apaturio A- labandeo con $cielta, & buona mano finto una $cena in un picciolo Theatro, che appre$$o quelli, $i chiama Eccle$ia$tirio, & hauendo in quella fatto in luogo di colonne le figure, & i Centauri, che $o$tentauano gli Architraui, & i rotondi coperti, & le uolte prominenti de i fronti$pici, & le cornici ornate con capi Leonini: lequai co$e tutte hanno la ragione de i $tillicidi, che uengono da i coperti. Oltra di que$to nientedimeno $opra quella $cena era l'Epi$cenio, nelquale era l'ornato uario di tutto il tetto, i tholi, i pronai, di mezi fron= ti$pici. Quando adunque l'a$petto di quella $cena compiaceua al uedere di tutti per l'a- $prezza, & che di gia erano apparecchiati per approuar quell'opera. Allhora $alto fuori Licinio Matematico, & di$le gli Alabandei e$$ere a$$ai $uegliati in tutte le co$e ciuili, ma per non molto gran peccato di non $eruar il Decoro, e$$er giudicati poco $aui, perche tutte le $tatue, che $ono nel lor Gimna$io, pareno trattar le cau$e: & quelle, che $ono nel Foro tener i di$chi, o correre, o giocar alla palla. Et co$i lo $tato delle figure $enza De- coro tra le proprietà de i luoghi hauerli accre$ciuto difetto della riputatione della città. Ma uediamo anche, che a no$tri tempi la $cena di Apaturio non ci faccia Alabandei, oue- ro Abderiti: perche chi di uoi puo hauere le ca$e $opra le tegole de i tetti, ouero le colon- ne, ouero i fronti$pici: perche que$te co$e $i pongono $opra i ta$$elli, & non $opra le tego- le de i tetti. Se adunque le co$e, che non po$$ono hauere la uerità del fatto, $aranno da noi approuate nelle pitture, uerremo anchora noi a con$entire, a quelle città, che per tali difetti $ono $tate giudicate di poco $apere. Adunque Apaturio non hebbe ardimento di ri$pondere alcuna co$a contra, ma leuò la $cena, & mutatala alla ragione del uero, poi che fu acconcia, l'approuò. O haue$$ero uoluto i dei immortali, che Licinio fu$$e torna to uiuo, & corregge$$e que$ta pazzia, & gli erranti ordini di que$te coperte. Ma egli non $arà fuor di propo$ito e$plicare, perche la ragion fal$a uinca la uerità: perche quello, che affaticando$i gli antichi, & ponendoui indu$tria tentauano di approuare con le arti, a no- ftri giorni $i con$egue con i colori, & con la uaghezza loro; & quella autorità, che la $ot- tilita dello arte$ice daua alle opere, hora la $pe$a del patrone fa, che non $ia de$iderata: per- <pb n="321"> che chi è colui de gli antichi, che non habbia u$ato parcamente come una medicina il Mi- nio? Ma a i dì no$tri per tutto il piu delle uolte $ono di Minio tutti i pareti coperti, & $e gli aggiugne anche, & $e gli dà di Borace, d'O$tro, d'Armenio, & que$te co$e quando $i danno a i pareti, $e ben non $aranno po$te artificio$amente, & nientedimeno danno a gli occhi non $o che di $plendore, & perche $ono precio$e co$e, & uagliono a$$ai, però $ono eccettuate dalle leggi, che dal patrone, & non da colui, che piglia l'opere $ono rappre$en tate. Io ho e$po$to a$$ai quelle co$e, nellequali ho potuto far auuertito chi copre i pareti, accioche non cada in errore. Hora dirò, come preparare $i deono, come mi potrà uenir in mente, & perche da prima s'è detto della calce, hora ci re$ta a parlare del marmo. <p><I>Quello, che bi$ogni dipigner in diuer$e $tanze, accioche $ia $eruato il Decoro, Vitr. ce lo ha di- mo$trato in parte nel precedente cap. & in parte hora ce lo in$egna. Et dalla diffinitione della pittura, ua argomentando quello, che $ta bene: & poi riprende liberamente le u$anze de i pittori de i tempi $uoi, come che habbiano deuiato molto dalla certa, & giu$ta ragione de gli antichi. Doue grandemente s'oppone a quella maniera di pitture, che noi chiamamo Grotte$che, come co- $a che non po$$a $tare in modo alcuno. perche $e la pittura è una imitatione delle co$e, che $ono, o che po$$ono e$$ere, come potremo dire, che $tia bene quello, che nelle Grotte$che $i uede? come $o- no animali, che portano Tempij, colonne di cannuccie, a rtigli di mo$tri, difformità di nature, mi$ti di uarie $pecie: Certo $i come la fanta$ia nel $ogno ci rappre$enta confu$amente le imagini delle co$e, & $pe$$o pone in$ieme nature diuer$e: co$i potemo dire, che facciano le Grotte$che, lequali $enza dubbio potemo nominare $ogni della pittura. Simil co$a uedemo noi nell'arti del parlare, imperoche il Dialetico $i forza di $atisfare alla ragione, l'Oratore al $en$o, & alla ragione, il Poe- ta alquanto piu al $en$o, & al diletto, che alla ragione, il Sofi$ta fa co$e mo$truo$e, & tali, quali ci rappre$enta la fanta$ia, quando i no$tri $entimenti $ono chiu$i dal $onno. Quanto mò, che $ia da lodare un $ofi$ta, io lo la$cio giudicare, a chi $a fare differenza tra il fal$o, e'l uero, tra il ue- ro, e'l ueri$imile. Et perche Vitr. è facile, & Plinio nel lib. XXXV. ci dà molto lume in que- $ta materia, io non farò altro a pompa, ma per quanto io dalle co$e uedute, & lette po$$o compren- dere trouo, che la pittura $i come ogn' altra co$a, che $i fa da gli huomini, prima deue hauere inten tioni, & rappre$entar qualche effetto, alquale effetto $ia indrizzata tutta la compo$itione, & $i come le fauole denno e$$ere utili alla uita de gli huomini, & la Mu$ica hauer deue la $ua inten- tione, co$i ancho la pittura. Dapoi $i uuol ben $apere contornar le co$e, & hauere le Simmetrie di tutte le parti, & le ri$pondenze di quelle tra$e. Et con il tutto indi le mouenze, & gli atti tali, che parino di co$e uiue, & non dipinte, & dimo$trino gli affetti, & i co$tumi, ilche è di po- chi: in $omma poi (che è co$a di pochi$$imi, & a no$tri dì non è a pena con$iderata, & è la per- fettione dell'arte) fare i contorni di modo dolci, & sfumati, che ancho s'intenda, quel che non $i uede, anzi che l'occhio pen$i di uedere, quello ch'egli non uede, che è un fuggir dolci$$imo una te- nerezza nell'Orizonte della ui$ta no$tra, che è, & non è & che $olo $i fa con infinita pratica, & che diletta a chi non $a piu oltra, & fa $tupire, chi bene la intende. La$cio $tare i colori conue- nienti, la me$colanza di quelli, & la uaghezza, la morbidezza delle carni nelle imagini muliebri, che $cuoprono i mu$culi, ma in modo, che $i intendino i panni, che fanno fede del nudo, le piegbe dolci, la $ueltezza, i lontani, gli $corzi, l'altezza della ui$ta, & altre co$e, che $ono nel dipignere $ommamente accommodate: & uano $aria, & fuori dell'in$tituto no$tro a uoler parlare piu diffu- $amente: & chi ha con$iderato molte pitture di diuer$i ualenti huomini, & che ha $entito ragiona re, & con diletto, & attentione ha a$coltato gli altri, puo molto ben $apere di quanta importan- za $ia, & quanto abbraccia quello, che io ho accennato. il re$to di Vitr. è manife$to $ino alla fine del libro, che io non ho uoluto aggiugnerui altro, parendomi, che Vitru. habbi a$$ai chiaramente parlato. Ci re$ta hora a dire di molti ornamenti, che $i fanno nella Città, come Piramidi, Obeli- $ci, Sepulcri, Titoli, Colonne, & altre co$e $imili: ma hoggimai le co$e antiche di Roma $ono $ta- te mi$urate piu uolte, & poste in luce da molti ualenti huomini, di modo che $arà di minor fatica</I> <pb n="322"> <I>ueder a un tratto le pitture, & mi$urarle, che leggere molte carte, che io potes$ifare: E$orto be- ne ogn'uno, che $ia $tudio$o dell'antichità, & imitator de i buoni, & che $i sforzi render ragione di quello, che egli fa, e$$ercitando$i nelle arti liberali & $pecialmente nelle quattro di$cipline, che $o- no quattro porte principali di tutti gli edifici, $trumenti, muentioni, che $ono $tati, $ono, & che $a- ranno; & chi anche uuole hauere qualche ammac$tramento delle $opradette co$e, legga nel <*> libro di Leonbati$ta, & o$$erui i precetti $uoi?</I> <HEAD><I>In che modo s'apparecchi il marmo per gli copri- menti. Cap. VI.</I></HEAD> <p>Non di una $te$$a maniera in ogni pae$e $i genera il marmo, ma in alcuni luoghi na$cono le glebe come di $ale, che hanno le miche lucide, & ri$plendenti, le quali pi$te, & ammollite danno grande utilità nelle coperte, & nelle cornici: ma in quei luoghi, ne i quai non $i trouano tai co$e; pi$tan$i con i pi$telli di ferro, & $i criuellano i cementi di marmo, o uero le $caglie, che cadeno dalle pietre taglia te da i marmorari, & que$te, cernite $i parteno in tre maniere, & quella parte, che $arà piu grande, (come $i è detto di $opra) con la calce $i dia con l'arenato, dapoi la $eguente, & la terza, che $arà piu $ottile. date que$te co$e, & con diligenza pareggiate, & li$ciate, hab- bia$i ragione a dare i colori in gui$a, che mandino fuori lucenti raggi, & $plendori, de i qua li que$ta $arà la prima differenza, & apparato. <HEAD><I>De i colori, &<*> prima dell'Ochrea. Cap. VII.</I></HEAD> <p>DE i colori alcuni $ono, che da lor $te$si na$cono in certi luoghi, & indi $i caua no, altri da altre co$e in$ieme po$te, & me$colate, o temperate $i compongo no, accioche dieno nelle opere utilità allo i$te$$o modo. Ma e$poneremo quelli, che da $e na$centi $i cauano, come è l'Ochrea. Que$ta in molti luo- ghi, come anche in Italia, $i troua, Ma l'Attica è ottima, & que$ta non $i ha al tempo no$tro, perche in A thene le minere, doue $i caua l'argento, quando haueuano le fami- glie; allhora $i cauaua $otterra per trouare lo argento: quando iui $i trouaua la uena la $e- guitauano come fu$$e $tata d'Argento. Et però gli antichi alle politezze dell'opere u$aro no una gran copia di Sile, & anche in molti luoghi $i caua copio$amente la terra ro$$a, ma perfertamente in pochi, come nel Ponto la Sinope, & in Egitto, & nell'i$ole Baleari in Hi$pagna, nè meno in Lemno, l'entrate della qual i$ola il Senato, & popolo Romano conce$$e a gli Athenie$i da e$$er godute. Il Paretonio prende il nome da quei luoghi, do ue egli $i caua, & con la i$te$$a ragione il Melino, perche la forza di quel metallo, $i dice e$$er in Melo l'I$ola Ciclada. La terra uerde na$ce in molti luoghi, ma la perfetta nel- l'I$ola di Smirna. Que$ta i Greci Theodotia $ogliono chiamare, perche Theodoto $i chiamaua colui, nel fondo del quale prima fu ritrouata quella $orte di creta. L'oropig- mento da Greci Ar$enico nominato, $i caua nel Ponto, & co$i in piu luoghi la Sandaraca, ma l'ottima in Ponto appre$$o il fiume Hipani, ha la $ua uena; ma in altre parti, come tra i confini di Magne$ia, & di Efe$o $ono luoghi, d'onde ella $i caua apparecchiata, $i che non è bi$ogno macinarla, ma è co$i $ottile, come fu$$e con la mano trita, & criuellata. <p><I>L'Ochrea $i chiama terra gialla, & ancho Ochrea uolgarmente; que$ta $i abbru$cia, perche faccia il fondo all'Ochrea non abbru$ciata, però che $i fa piu $cura, & ruggia, ne uiene dalle par- ti di Leuante, & io ne ho trouato ancho nelle mie po$$e$$ioni ne i monti di Triuigiana buoni$$ima,</I> <pb n="323"> <I>& in gran copia. Sil attico, era un minerale di colore come alcuni uogliono dell'Ochrea, & non fanno anche differenza tra Ochrea & Sile, ma io $timo, che Ochrea $i a nome generale, & Sile $peciale, però puo e$$er, che'l Sile fu$$e di una $pecie di Ochrea; ma di colore alquanto diuer$o, ò che pende$$e all'azurro, o al purpureo, & uiolino. Rubrica, & Sinope $ono terre ro$$e, noi chiamiamo la rubrica imbuoro, & in altri luoghi buoro, & que$te terre ro$$e erano in que luo- ghi doue dice Vitr. buone, & perfette. Il paretonio, & melino eran colori, quello bianco, & que$to giallo, la cagione perche co$i $ono chiamati è po$ta da Vit. La creta uerde, noi chiamia- mo terra uerde. La $andaraca è di colore di aranzo, noi chiamiamo minio fatto di biacca abbru $ciata, ma la $andaraca era na$cente, & anche fatta ad arte come dirà Vitr. qui $otto.</I> <HEAD><I>Deller agioni del minio. Cap. VIII.</I></HEAD> <p>Hora io entrerò ad e$plicare le ragioni del Minio. Que$to prima $i dice e$$ere $tato ritrouato ne i campi Cilbiani de gli Efe$ij: il cui effetto, & la cui ragio- ne ne dà cau$a di gran merauiglia. Caua$i una Zoppa, detta Antrax, prima che per lo maneggiar ella diuenti Minio: la uena è di colore come ferro alquanto piu ro$$o, hauendo intorno a $e una poluere ro$$a. Quando $i caua, per le perco$$e dei ferri manda fuori le lagrime d'argento uiuo, le quali $ubito da quelli, che cauano $ono raccolte. Que$te zoppe a$$unate per la pienezza dell'humore, che hanno dentro $i pon- gono nelle fornaci delle officine, accioche $i $ecchino, & quel fumo, che dal uapore del fuoco $i leua da quelle zoppe, quando ricade nel $uolo del forno, è trouato e$$er argento uiuo. Leuate uia le zoppe, quelle gocciole, che re$tano per la picciolezza loro non $i po$$ono raccorre, ma in un ua$o di acqua $i fan correre, & iui $i raunano, & $i confonde- no in$ieme; & que$te e$$endo di mi$ura di quattro $e$tari, quando $i pe$ano, $i trouano e$ $er cento libre: ma quando è in$ieme tutto quello argento in un ua$o, $e $opra ui $i po= nerà un pe$o di cento, egli $tarà di $opra, nè potrà col $uo pe$o premere quel liquore, nè $cacciarlo, nè di$siparlo. leuato il centenàio; $e iui $i ponerà uno $crupulo d'oro, non $o pranuoterà, ma $e ne anderà al fondo da $e $te$$o. co$i non per la grandezza del pe$o, ma per la qualità $ua cia$cuna co$a e$$er co$i graue non $i deue negare. Et que$to è utile a mol te co$e, perche nè lo argento, nè il rame $enza quello $i puo dorare, che bene $tia, & quando l'oro è conte$to in qualche ue$te, che con$umata per la uecchiezza, non $i po$$a piu portare con hone$tà, ponga$i quel panno d'oro in ua$i di terra, & $ia nel foco abbru- $ciato. La cenere $i getta nell'acqua, alla quale $i aggiugne l'argento uiuo, il quale a $e tira tutte le miche dell'oro, & le sforza ad unir$i $eco: uotata poi l'acqua, que$to s'in- fonde, & riuer$cia in un panno, & in quello è con le mani $truccato, l'argento e$ce per le rarità del panno con il liquore, & l'oro per la $trettezza, & compre$sione raunato di dentro puro $i ritroua. <HEAD><I>Della temperatura del Minio. Cap. IX.</I></HEAD> <p>IO ritornerò hora alla temperatura del Minio, perche quelle zoppe e$$endo aride $i pi$tano con pi$telli di ferro, & $i macinano, & con $pe$$e lauature, & cotture $i le fanno uenir i colori. Quando adunque $aranno mandate fuori le goccie dello argento uiuo, allhora $i fa il Minio di natura tenera, & di for za debile, & per hauer la$ciato l'argento uiuo, la$cia anche le uirtù naturali, che egli in $e teneua. Et però quando è dato nelle politure de i conclaui re$ta nel $uo colore $enza di- <foot><I>VV</I></foot> <pb n="324"> fetti: ma in luoghi aperti come in peri$tili, & e$$edre, & in altri $imiglianti luoghi douell Sole, & la Luna po$$ono mandare i raggi, & i lumi loro, quando da que$ti il luogo è toc- cato, $i gua$ta, & perduta la uirtù del colore, $i denigra. Et però & molti altri, & Fabe- rio $criba hauendo uoluto hauere nel monte Auentino una bella, & ornata ca$a, ne i peri- $tili fece a tutti i pareti dar di Minio, i quali dopo trenta giorni diucntorno di brutto, & diuer$o colore, & però di $ubito condu$$e chi gli de$$e di altri colori. Ma $e alcuno farà piu $ottile, & uorrà, che la politezza del Minio ritegna il $uo colore, quando il parete $a- rà polito, & $ecco, allhora dia col pencllo di cera punica liquefatta al fuoco temperata con alquanto oglio, dapoi po$ti i carboni in un ua$e di ferro farà $udare quella cera $caldan dola col parete, & farà $i che la $i $tenda egualmente, dapoi con una candela, & con un lenzuolo netto la freghi, al modo che $i nettano le nude $tatue di marmo, & que$ta opera- tione Grecamente $i chiama Cau$is: co$i la coperta della cera punica non permette, che lo $plendore della Luna, nè i raggi del Sole toccaudo leuino uia il colore da quelle politu- re. Da quelle officine, che $on alle caue de i metalli de gli Efe$ij, per que$ta cagione $o- no $tate traportate a Roma, perche que$ta $orte di uena è $tata dapoi ritrouata ne i pae$i di Spagna, da i metalli delle quali $i portano le zoppe, che per li Daciari a Roma $i curano. Et que$te officine $ono tra il Tempio di Flora, & di Quirino. Vitia$i il Minio me$colan- doui la calce, & $e alcuno uorrà fare e$perienza, $e egli $arà uitiato, co$i bi$ogna prouare: Pigli$i una lama di ferro, o paletta che $i dichi, $opra e$$a $i pona il Minio, & po$ta al fo co, fin che la lama $ia affocata, quando di bianco $i muta in nero, leui$i la lama dal fuoco, & $e raffredato il Minio, ritornerà nel $uo primo colore, $enza dubbio $i prouerà e$$er $enza difetto, ma $e egli re$terà nero dimo$trerà e$$ere uitiato. Io ho detto quelle co$e, che mi $ono uenute in mente del Minio. La Chri$ocolla $i porta da Macedonia, & $i caua da que luoghi, che $ono pro$simi a i metalli di Rame. Il Minio, & l'Endico, con e$$o i uocaboli $i dimo$tra in che luoghi $i generino. <p><I>Il Minio come dice Plin. è una $orte di arena di colore del zafferano: la cera Punica dicono e$- $er cera bianca. il modo di farla bianca è in Plin. al</I> 21. <I>libro, nel cap.</I> 14. <I>Chri$ocolla è colla da oro, la dicono Eora$o. Il Minio è detto da un Fiume della Spagna co$i nominato. Indicum da noi è detto Endego, è di color Biauo $curo, $i tingono i panni con quello, & $i u$a anche nel- le pitture.</I> <HEAD><I>Dei colori artificio$i. Cap. X.</I></HEAD> <p>Hora io entrerò a quelle co$e, che mutate con le tempre delle me$colanze d'al- tre maniere riceueno le proprietà de i colori. Et prima io dirò dello inchio $tro, l'u$o del quale nelle opere ha grande nece$sità, accio manife$te $iano le tempre, in che modo con certe ragioni di artefici $iano preparate. Il luogo edi$icato, come il Laconico, & di marmo $i poli$ce, & $i li$cia $ottilmente, dinanzi a que$to $i fa una picciola fornace, che ha le apriture di dentro uer$o il Laconico, & la boc ca $ua di fuori $i chiude, & abba$$a con gran diligenza, accioche la fiamma di$sipata non $ia di fuori, nella fornace $i pone della re$ina, o ra$a, & que$ta bruciandola la forza del fuoco con$trigne mandar fuori per le apriture tra il Laconico il fumo, il quale d'intorno i pareti, & la curuatura della camera $i attacca: dapoi raccolto parte $i compone battuto co la gomma all'u$o dello inchio$tro librario parte i copritori me$colandoui della colla u$ano ne i pareti. Ma $e non $aranno que$te copie apparecchiate, co$i alla nece$sità $i de- ue prouedere, ac cioche per lo a$pettare, & indugiare l'opera non $ia trattenuta. Sian abbruciate le taglie, o $cheggie della Tiglia, & fatti di e$$e i carboni $iano e$tinti, & poi <pb n="325"> nel mortaio con la colla pi$tati, & co$i $i farà una tinta per coprire, che hauerà del buono. Similmente auuerrà $e la feccia del uino $eccata, & cotta $arà nella fornace, & poi pi$tata con la colla farà a$$ai grato il colore dell'inchio$tro, & quanto piu $i farà di miglior uino non $olo farà imitare il colore dell'inchio$tro, ma anche dello Endego. <HEAD><I>Delle tempre del color ceruleo. Cap. XI.</I></HEAD> <p>LE tempre dello Azurro prima $ono $tate ritrouate in Ale$$andria. Dapoi Ve- $torio a pozzuolo ordinò che $i face$$e. La ragione di quel colore, di che co- $a $ia $tata ritrouata, dà da merauigliare a$$ai: perche egli $i pi$ta l'arena col fiore del Nitro, co$i $ottilmente, che diuenta come farina, & me$colata col rame di Cipro limato $i bagna, accioche $i tenga in$ieme, dapoi riuoltandola con le mani $i fanno palle, & $i mettono in$ieme di modo, che $i $ecchino. Que$te $ecche $i compon gono in un ua$o di terra, che poi $i mette in fornace, co$i il rame, & quell'arena quando dalla forza del fuoco bogliendo in$ieme, $i haueranno $eccato dando a uicenda, & rice= uendo i $udori, dalle loro propietà $i parteno, & compo$ti delle loro co$e per la gran for za del calore diuentano di color azurro. Ma l'arena abbruciata, che nel coprire i pareti, ha non poca utilità, $i tempra in que$to modo. Cuoce$i una zoppa di pietra azurra buo- na $i, che $ia dal fuoco, come il ferro affocata, quella con aceto $i e$tingue, & diuenta di color purpureo. <HEAD><I>Come $i facciala ceru$a, il uerderame, & la San- daraca. Cap. XII.</I></HEAD> <p>Della Ceru$a, & del Verderame, & che da no$tri Eruca $i chiama, non è fuori di propo$ito a dire in che modo $i faccia. I Rhodiotti mettendo ne i dogli le limature di piombo, $pargono quelle di aceto, & $opra quelle limature ui mettono le ma$$e di piombo, & otturano con i coperchi $i fattamente que dogli, che non po$$ono re$pirare, dopo un certo tempo aprendogli ritrouano la Ceru$a, o Biacca, che $i dichi dalle ma$$e di piombo. Et con la i$te$$a ragione ponendoui le la- melle di rame, fanno il Verderame, nominato Eruca. Ma la Ceru$a cuocendo$i nella for nace, cangiato il $uo colore allo incendio del fuoco diuenta Sandaraca. <I>(Che noi minio ch amiamo.)</I> Et gli huomini hanno imparato que$to dallo incendio fatto a ca$o, & quel- la è di minor utilità, che quella, che nata da metalli $i caua. <HEAD><I>In che modo $i faccia l'O$tro eccellenti<02>imo di tuttii colori artificiali. Cap. XIII.</I></HEAD> <p>IO incomincierò hor'à dire dell'O$tro, il quale ritiene & cari$sima, & eccel- lenti$sima $uauità dell'a$petto oltra i predetti colori. Que$to $i coglie dalle marine conchiglie, del quale $i tigne la purpura, & di quello non $on minori le merauiglie a chi con$idera, che delle altre nature delle co$e. Percioche non ha il colore d'una maniera in tutti que luoghi, che na$ce, ma dal cor$o del Sole natu- ralmente $i tempra. Et però quello, che $i raccoglie nel Ponto, & nella Gallia, per che quelle parti $o no uicine al Settentrione, è nero. A chi ua inanzi $otto al Settentrione è li <foot><I>VV</I> 2</foot> <pb n="326"> uido, quello, che $i ha dall'Oriente, & occidente equinottiale è di colore uiolino; quel- lo, che $i caua nelle parti di mezo dì è ro$$o, & però que$to ro$$o, ancho $i genera nell'i$o la di Rhodi, & in altre parti, che $ono uicine al cor$o del Sole. Quelle conchiglie quan- do $ono raccolte, con ferri $i fendono d'intorno, dalle quali perco$$e ne uiene la $anie purpurea, come una lagrima, che goccia. Cauata ne i mortai pi$tando$i $i apparecchia, & quello, che dalle te$te marine $i caua per que$to è $tato O$tro nominato, & que$to per la $al$ugine pre$to $i fa $itibondo, $e egli d'intorno non ha il mele $par$o. <I>Hercole Ti- rio $otto Minos ritrouò la tintura della porpora, che $i chiama conchilium, e$$endo$i il $uo ca- ne imbrattato di quella $aeie le ma$celle, & la portò al Re di Phenicia il quale fu il primo che porta$$e la porpora.</I> <HEAD><I>De i colori purpurei. Cap. XIIII.</I></HEAD> <p>Fanno$i ancho i colori purpurci tinta la creta con la radice di Rubbia, & Hi$- gino. Et $imilmente da i fiori $i fanno altri colori, & però quando i tintori uogliono imitare il Sil Attico, gettando la uiola $ecca in un ua$o la fanno bollire con l'acqua, dapoi quando è temperata la gettano in una pezza, & con le mani $truccandola riceueno l'acqua di uiole colorita in un mortaio, & di quella infon- dendoli la creta ro$$a, & pi$tand ola fanno il colore del Sile Attico, con quella i$te$$a ra- gione temprando il uacinio, & con quella me$colando fanno la purpura bella. Et anche chi non puo per la care$tia u$are la chri$ocolla tingono l'herba, che $i chiama luteo di azur ro, & u$ano un colore uerdi$simo, & que$ta $i chiama infectiua, cioè tintura. Appre$$o per la inopia del Endego tignendo la creta Selinu$ia, ouer l'Annularia, & il uetro detto Hia lo imitano il colore dell'Endego. Io ho $critto in que$to libro quanto mi è potuto uenir in mente con quali co$e, & con che ragione alla di$po$itione della fermezza, & bellezza bi$o gna far le pitture, & che forze habbiano in $e tutti i colori. In $ette uolumi adunque, termi nate $ono tutte le perfettioni delle fabriche, & dimo$trato, che opportunità, & commo- do hauer debbiano. Nel $eguente io tratterò dell'acqua, in che modo $i troui, doue non è, & con che ragione $i conduca, & con che co$e $i prouerà $e ella è $ana, & idonea all'u$o. <p><I>La Rubia, è detta Ruggia, & $i u$a uolgarmente da i tintori de panni. Hi$gino, & Vaci- nio, & Hiacintho, è una i$te$$a co$a. La creta Selinu$ia di color di latle, & l'Annularia è bian- ca. nel re$to io non ho prouato que $te co$e, nè uoglio empir il libro di ricette.</I> <HEAD><I>Il Fine del Settimo Libro.</I></HEAD> <pb n="327"> <HEAD>LIBRO OTTAVO</HEAD> <HEAD>DELL'ARCHITETTVRA DI M. VITRVVIO.</HEAD> <HEAD><I>Proemio.</I></HEAD> <p>THALETE Mile$io, uno di $ette Sapienti di$$e, l'acqua e$$er principio di tutte le co$e. Heraclito il fuoco; i Sacerdoti de i Magi l'acqua, & il fuoco. Euripide auditore di Anaxagora, ilquale Filo$ofo gli Athenie$i Scenico nominarono, lo aere, & la terra, & quella dalle pioggie cele$ti ingrauidata hauere generato nel mondo i parti delle genti, & di tutti gli animali, & quelle co$e, che da quella fo$$ero prodotte, quando co- $trette dalla forza del tempo $i di$cioglie$$ero, in quella di nuouo ritornare, & quelle, che di aere na$ce$$ero, anche nelle parti del cielo cangiar$i nel riceuere alcuno difetto, ma mu- tata la loro di$$olutione ricadere nella i$te$$a proprietà, nellaquale erano per innanzi: Ma Pithagora, Empedocle, Epicarmo, & gli altri Fi$ici, & Filo$ofi que$ti e$$er quattro prin- cipij ci propo$ero, aere, fuoco, acqua, & terra, & le qualità di que$ti tra $e con naturale forma congiunte per le differenze delle co$e operare; & noi auuertimo non $olamente le co$e, che na$ceno da que$ti principij, hauere il na$cimento loro, ma tutte le co$e non no- trir$i, nè cre$cere, nè con$eruar$i $enza la forza loro; percioche i corpi $enza $pirito ridon- danti non po$$ono hauere la uita, $e lo aere, che ui entra, non hauerà fatto del continuo cre$cendo gli accre$cimenti, & le diminutioni. <I>Cioèil re$pirare, che $i fa col tirare il fiato a $e, & mandarlo fuori.</I> Ma $e egli non $arà nel corpo anchora una giu$ta mi$ura di ca- lore non ui $arà lo $pirito uitale, nè il poter$i fermamente drizzare in piedi; & le forze del cibo non potranno hauere la tempra della dige$tione: & però non notricando$i i corpi di terre$tre cibo, mancherebbeno, & co$i dalla me$colanza del principio terreno faranno abbandonati: & gli animali $e $aranno $enza la pote$tà dell humore exhau$ti, & a$ciutti dal liquore de i $uoi principij $i $eccheranno. <I>Dice Ari$totile, che noi ci notrimo di quelle co- $e, delle quali $iamo compo$ti, & però i quattro elementi $ono nece$$ari alla uita dell'huomo, per che di quelli il corpo è compo$to.</I> <p>Et però la diuina Prouidenza non fece difficili, & care quelle co$e, che propiamente erano nece$$arie alle genti, come $ono le pretio$e pietre, l'oro, & l'argento, & le altre co- $e, le quali nè il corpo, nè la natura de$idera: ma quelle co$e, $enza le quali la uita de i mor tali non puo e$$er $icura largamente alle mani pronte ci diede in ogni parte del mondo; & però di que$ti principij $e per ca$o alcuna co$a ui manca di $pirito, lo aere a$signato per re$tituirlo, ciò pre$ta copio$amente. Ma lo impeto del Sole apparecchiato, ad aiutarci col calore, & il fuoco ritrouato la uita piu $icura ci rende, & co$i il frutto della terra pre- $tandoci la copia del uiuere per gli $oprabondanti de$iderij alleua, & nutri$ce gli animali pa$cendoli continuamente, & l'acqua non $olameute per lo beuere, ma per l'u$o dandoci infinite nece$sita per e$$erci data per grande utilità ci rende: & da cio quelli, che all'u$an- za de gli Egittij trattano le co$e $acre dimo$trano tutte le co$e con$i$tere dalla forza del liquore, & però quando ricoprono i ua$i dell'acqua, i quali al $acro Tempio con ca$ta re- ligione $i portano, allhora inginocchiati con le mani al cielo ringratiano per tali ritroua- menti; la bontà diuina. <pb n="328"> <p><I>Replica Vitr. lc co$e dette nel $econdo libro, al primo cap. circa i principij materiali delle co$e, ma con diuer$a intentione; perche nel $econdo egli hauea animo di dimo- $trare gli effetti, che uengono dalla me$colanza de i principij nelle co$e, come nella calce, ne i mattoni, nell' arena, nelle pietre, & ne gli alberi: ma quiui ha intentione trattare della natura, & dell'u$o dell'acque: & in uero ha ben ragione di adornare que$ta $ua fati ca con il trattamento dell'acque: perche $i come l'oro, & le gemme, & le pietre $ono pretio$e per la rarità loro, tutto che la natura humana habbia poco bi$ogno di quelle, co$i l'acqua è pre= cio$a per la nece$$ità, & per l'u$o della uita: doue non immeritamente, & i $aui, & i poeti, & i $acerdoti hanno celebrato l'u$o dell'acqua. & perche la città di Roma ha di gran lunga $upera- to con l'opere, & con le condotte dell'acque tutto quello, che è $tato altroue, però Vitru. oltra l'u$o uniuer$ale dell'acque, per $atisfare anche in que$ta parte a i Romani, ha particolarmente un libro a que$ta materia con$ecrato, doue parla, & della natura dell'acqua, & dell'u$o. Della natura ne parla, nel $econdo, terzo, & quarto cap. dell'u$o, nel primo, & ne gli altri. quan to alla natura ci narra le proprietà dell'acque, le forze, & qualità $eguendo una diletteuole hi- $toria naturale. Quanto all'u$o, tralta della inuentione dell'acque, della elettione, del condurle, & del con$eruarle. Alla inuentione dona il primo capo. Alla elettione il quinto, perche non è a$$ai trouare le acque, ma è nece$$ario lo eleggere le buone, & $alutifere. al condurle, & con$er- uarle dà il $e$to, & il $ettimo capo, in$egnandoci a liuellarle, & dimo$trandoci gli $trumenti atti, et i modi di condurle, & co$i con grande utilità dà perfettione all'ottauo lib. ilquale io e$porrò ne: luoghi la$ciando le digre$$ioni, & la pompa ad altro tempo.</I> <HEAD><I>Della inuentione dell'acqua. Cap. I.</I></HEAD> <p>Es$endo adunque, & da i Fi$ici, & da i Filo$ofi, & da i Sacerdoti giudicato, tutte le co$e $tare in$ieme per la forza dell'acqua, io ho pen$ito (poi, che ne i primi $ette uolumi e$po$te $ono le ragioni de gli edificij) in que$to douer$i delle in uentioni dell'acque trattare, & che forze habbino nelle propietà de luoghi, & con che ragioni $i conduchino, & come anchora quella $i proui. <I>Conclude per dimo$trare la $ua intentione, & in tre parole abbracciaun bel di$cor$o $opra l'acque dicendo.</I> Perciò che ella è molto nece$$aria, & alla uita, & a i piaceri, & all'u$o quotidiano. <p><I>Alla uita egli l'ha dimo$trato di $opra: perche $enza l'humore èimpe$$ibile mantener$i in ui- ta: al piacere; qui la$cio di$correre a chi ha ueduto bell <02>imi $iti, acque, ru$celli, & fonti, di quan- to contento, & diletto $ia la ui$ta di quelli: all'u$o, gli e$$erciti, gli a$$ediati, gli artefici, le cam pagne, il mare, & la terra finalmente dimo$tra l'u$o dell'acque, però uerremo all'u$o $eguitando la intentione, & l'ordine di Vit.</I> Ma quella $arà piu facile $e le fonti aperte, & correnti $eranno. <p><I>Tratta della inuentione dell'acque, & rinchiude il $uo di$cor$o in questa $omma, che l'acque, o uero $i trouano aperte, & dalla natura dimostrate, come $ono i Fonti, i Fiumi, & altre uene aperte, & manifeste, & però dice Vitru.</I> Ma quella &c. <I>o uero $i trouano a$co$e, & $ot- terra, & queste, o dalla forma, & faccia del luogo $i trouano, & gli inditij $ono prima e$posti da Vitru. dicendo.</I> <p>Ma $e non correranno deuc$i $otterra cercare i capi, & raccoglierla. le quai co$e in que$to modo deono e$$ere e$perimentate; che $te$o in terra alcuno con i denti appoggia- ti prima, che il Sol na$ca doue l'acqua $i deue trouare, & po$toin terra il mento, & fermato $opra un zocco piccolo $i riguardi il pae$e d'intorno: perche in que$to modo fermato il mento la ui$ta non anderà piu alto eleuata del bi$ogno, ma con certo fine i pae$i a liuella- ta altezza equale all'orizonte di$egnerà. Allhora doue $i $corgeranno gli humori in $pe$- $ir$i, & incre$par$i in$ieme, & in aere $olleuar$i iui bi$ogna cauare, perche que$to $egno non $i puo fare in luogo $ecco. <pb n="329"> <p><I>Et pone il modo dicendos che $e alcuno la mattina a buona hora $i $tenderà in terra, & guar- derà per lo piano dell'orizonte, & uedrà alcunifumi leuar$i dal terreno, & incre$par$i come fa il fumo, che e$ce dalle legna uerdi, quando hanno il fuoco di $otto, prenderà inditio di acque, perche doue e$alano que$ti uapori è $egno, che abbonda l'humore, ilquale è tirato dal Sole, & que$to in- ditio prendono anche quelli, che cauano le minere, perciò che, & dalla quantità del uapore, & dal colore prendono argomento della qualità della minera; & uuole Palladio, che que$ta proua $i faccia nel me$e d'Ago$to. leggi tutta que$ta materia al $ettimo, & ottauo capo della $ua agricol- tura. Posto questo naturale inditio uiene Vitr. ad e$ponere quelli argomenti, che $i cauano dalla qualità della terra, & dice.</I> Anche auuertir deue chi cerca l'acque, di che natura $ia il luo- go. <I>Et ne rende la ragione dicendo.</I> Perche certi, & determinati $ono i luoghi doue na- $cono l'acque. <I>Et ci e$pone la natura de i luoghi, il che è facile nell'autore, & non ha bi$ogno di no$tra dichiaratione.</I> <p>Nella creta è $ottile, & poca, & non alta copia, & quella non di ottimo $apore, & co$i è $ottile nel $abbione di$ciolto. ma $e ella $i trouerà in luoghi piu ba$si $arà fango$a, & in- $uaue. Nella terra negra $i trouano $udori, & $tille non gro$$e, lequali raccolte per le pioggie del uerno ne gli $pe$si, & $odi luoghi danno giu. que$ti $ono di ottimo $apore. Dalla ghiara ueramente mediocri, & non certe uene $i trouano, & que$te $ono di mirabil $oauità, & co$i ancora dal $abbione ma$chio, dall'arena, & dal carbonchio piu certe, & piu $tabili $ono le copie dell'acque, & que$te $ono di buon $apore. Dal $a$$o ro$$o, & abbon- danti, & buone uengono, $e tra le uene non $correranno, & non $coleranno, ma $otto le radici de i monti, & ne i $elici piu copio$i, & piu abbondanti, & que$te piu fredde, & piu $ane: ma ne i fonti campe$tri $al$e $ono, graui, tepide & in$oaui, $e non romperanno ue- nendo da i monti $otterra nel mezo de i campi: & quelle hanno la $oauità dell'acque mon tane, che $ono coperte d'intorno da gli alberi. Ma i $egnia che maniere di terre $otto $tan- no le acque, oltra i $opra$critti, que$ti $aranno: $e egli $i trouerà che ci na$ca il $ottil Giun- co, la Salice erratica, l'Alno, il Vitice, l'Arundine, l'Hedere, & altre co$e $imiglianti, che non po$$ono uenire in luce, nè nutrir$i da $e $enza l'humore. Sogliono le $te$$e co$e e$$er nate nelle Lacune, le qua li $tando anche oltra il re$to del campo riceuono l'acque delle pioggie, & per lo uerno ne i campi, & lungamente per la capacità con$eruano l'humore: al- le quai co$e non $i deue dare fede, ma in quei pae$i, & in quelle terre, doue non $ono lagu- ne, & che na$cono per natura, & non per $emente, iui $i deue l'acqua cercare. <I>Ma quello, che appartiene alla industria dell'huomo per trouar l'acque è toccato da Vitr. dicendo.</I> <p>Ma in quei luoghi, ne i quali $imili inuentioni non $aranno $ignificate, in que$to modo $i deono e$perimentare. Caui$i per ogni uer$o il luogo alto piedi tre, largo non meno di piedi cinque, & in e$$o po$to $ia uer$o il tramontar del Sole uno bacile di Rame, o di Piom bo, o uero una conca. di que$ti quello, che $arà pronto uoglio, che $i unga dentro di oglio, & riuer$o $i metta, & la bocca della caua $ia di canne, o di frondi coperta, & di $opra ui $i metta della terra, dipoi il giorno $eguente $ia $coperta, & $e nel ua$o $aranno goccie, & $u- dori que$to luogo hauerà dell'acqua. Appre$$o $e uno ua$o fatto di creta non cotta in quella caua con quella ragione $arà coperto, & $e quel luogo hauerà dell'acqua e$$endo poi $coperto, il ua$o $arà humido, & anche $i di$cioglierà dall'humore. & $e in quella caua $i mettera una ciocca di lana, & nel dì $eguente $arà $truccata l'acqua di quella, dimo$tre- rà quel luogo hauer copia di acqua. Ne meno auuerrà $e ui $arà acconcia una lucerna, & piena d'oglio, & acce$a, & in quel luogo coperta, & nel di $eguente non $arà a$ciugata, ma hauerà li auanzi dell'oglio, & del papero, & e$$a $i trouerà humida, darà $egno d'abbonda- za d'acqua. per che ogni tepore a $e tira gli humori: Anche, $e in quel luogo $arà fatto fuo- co, & molto ri$caldata la terra, & adu$ta, & da $e $u$citerà un uapore nebulo$o, que$to luogo hauerà dell'acqua. Poi che tai co$e in que$to modo tentate $aranno, & ritrouati i <pb n="330"> $egni $opra$critti, allhora in quel luogo $i deue cauare il pozzo: & $e egli $i trouerà il capo dell'acqua, anche piu pozzi d'intorno $i deono cauare, & tutti per una caua in un luogo $te$$o $i deono condurre. <I>Argomenti del $ito, & forma del luogo.</I> <p>Et que$te co$e ne i monti, nelle regioni Settentrionali $pecialmente $i deono cercare, perciò che in quelli, & piu dolci, & piu $ane, & piu copio$e $ono le acque: imperoche $o- no riuolte dal cor$o del Sole; & però in tai luoghi gli alberi $ono $pe$si, & le $elue, & i monti hanno l'ombre loro o$tanti, che i raggi del Sole a terra diritti, non uenghino, nè po$sino a$ciugare gli humori. Gli $patij an che de i monti riceuono le pioggie, & per la $pe$$ezza delle $elue iui le neui dall'ombre de gli alberi, & de i monti lungamente $i con$er- uano, dapoi liquefatte colano per le uene della terra, & co$i peruengono alle intime ra- dici de i monti, da i quali erompeno gli $correnti cor$i de i fonti. Al contrario ne i luo- ghi campe$tri, & piani, hauer non $i po$$ono le copie dell'acque, & $e pure $ono, al meno mal $ane $i trouano, per lo uehemente impeto del Sole, perche niuna ombra gli o$ta, bo- gliendo a$ciuga l'humore de i campi, & $e iui $ono acque apparenti, di quelle la $ottili$- $ima parte dalla $ottile $alubrità l'aere rimouendo, & leuando porta nello impeto del cielo, & quelle, che dure $ono, & graui$sime, & in$uaui, quelle (dico) la$ciate $ono ne i fonti campe$tri. <p><I>Non $empre la natura con larghi fiumi, con $pe$$e fonti, o con aperti inditij ci dimo$tra l'ab- bondanza dell'acque, ma $pe$$o tra le ui$cere della terra, come $angue nelle uene, raccoglie l'ac- que, & per luoghi a$co$i, le conduce: però uolendo noi con indu$tria ritrouare quello, che la na- tura ci tiene a$co$ o, à quello prouede Vitr. nel pre$ente luogo, & ci in$egna di ritrouare gli indi- tij, quando la natura non ce li mo$tra$$e, & a cauare i pozzi, ne i quali è d'auuertire, che non $i troua l'acqua, $e prima non $i ua tanto $otto, che ci $tia il letto del fiume $opra, & oltra di que$to ci uuole indu$tria per fuggir il pericolo, che il terreno non cada, o che la e$alatione non ci offenda, perche bene $pe$$o dal terreno cauato e$cono alcuni ueneno$i, & pe$tiferi uapori, come ben $anno quelli, che cauano le minere, a i quali in que$to ca$o $i deue dimandar con$iglio, & Vitru. con que- $to ci conchiude il trattamento dell'inuentione dell'acque, & Plinio, & Palladio, & molti altri $e ne hanno $eruito à punto di questo libro.</I> <HEAD><I>Dell'acque delle pioggie. Cap. II.</I></HEAD> <HEAD><I>Qui tratta della natura dell'acque, & prima delle piouane, & poi dell'altre.</I></HEAD> <p>Adunque l'acqua dalle pioggie raccolta è migliore, & piu $ana: imperoche pri- ma da uapori piu $ottili, & leggieri da tutte le fonti $i $ceglie, dapoi per la com motione dello aere colando$i, & disfacendo$i per le tempe$tati uer$o la terra di$cende. Oltra che non co$i $pe$$o ne i piani pioue, come ne i monti, & al- le $ommità, perche gli humori la mattina dal na$cimento del Sole commo$si, u$citi dalla terra, in qualunque parte del cielo, che piegano, $o$pingono lo aere, dapoi quando agita- ti $ono, accioche non $i dia luogo, che uoto $ia, tirano dopo $e l'onde dello aere, lequali con pre$tezza, & forza gli uanno dictro. In quel mezo lo aere precipito$o $cacciando l'humore, che gli $ta dinanzi in ogni luogo, fa che i $offi, gli impeti, & l'onde anche de i uenti cre$chino grandemente; per il che poi gli humori da i uenti $o$pinti, & in$ieme ri- $tretti per tutto portati $ono, & dalle fonti de i fiumi, dalle paludi, & dal mare, quando $ono dal caldo del Sole toccati, $i cauano, & a que$to modo le nubi da terra $i leuano, que- $te rinforzate con lo aere, che $i muoue, & ondeggia, quando peruengono a i luoghi alti, & <pb n="331"> rileuati, come $ono i monti, percioche in quelli impedimenti $ieramente s'incontrano, per e$$ere dalle procelle cacciati, liquefacendo$i $i dileguano, come graui, & pieni, che $ono, & a que$to modo $opra la terra $i diffondeno. Ma che i uapori, le nebbie, & gli humori e$cano dalla terra: que$ta ragione ci appare, perche la terra dentro di $e raccoglie, & calori feruenti, & $piriti uehementi, & anche freddi, & grande moltitudine di acque: dapoi quando per la notte $i raffredda per le norturne tenebre na$ceno i $iati de i uenti, & da i luoghi humidi na$ceno le nebbie, & $i leuano in alto, onde poi na$cendo il $ole col $uo calore tocca la terra, indi lo aere fortemente dal Sole ri$caldato con l'acque a$$otti- gliate leua gli humori dalla terra. Appre$$o la ragione anche prenderemo l'e$$empio da i bagni, percioche niuna uolta, oue $ono i caldai, puo hauere i fonti di $opra, ma il cielo, che è iui fabricato, per la bocca dal uapore del fuoco ri$caldato, leua l'acque da i pauimen ti, & quella $eco porta nelle curuature delle uolte, & iui $o$pe$a, & in pendente tiene: per che il caldo uapore di $ua natura $empre in alto $i caccia; & da prima perche è $ottile, & lieue non $i rila$cia, ma poi, che piu d'humore $e li aggiunge, & piu den$o diuiene, come da maggior pe$o grauato, non $i puo piu $o$tenere, ma gocciola $opra le te$te di chi $i la- ua; co$i dalla $te$$a cagionel aere del cielo dal Sole ri$caldato, da tutti i luoghi a $e tira gli humori, & quelli alle nubi raccoglie. Imperoche co$i la terra toccata dal feruore, man- da fuori i uapori, come il corpo humano per lo caldo rila$cia il $udore: & di cio fede ci fanno i uenti, de i quali quelli, che $ono da freddi$sime parti generati, come è Borea, & Tramontana $pirano nello aere $piriti attenuati per lo $ecco, ma l'O$tro, & gli altri, che dal cor$o del Sole prendeno le forze loro, humidi$simi $ono, & $empre $eco portano le pioue, perche ri$caldati $i parteno da regioni feruenti, & per tutto qua$i leuando furano gli humori, & co$i poi li di$pergeno alle parti $ettentrionali. Ma che le predette co$e a tal modo $i facciano, prende$i argomento, & fede da i capi de fiumi, i quali nelle partico lari de$crittioni de i luoghi dipinti, & da molti $critti nel giro della terra la piu parte, & í piu grandi $i trouano u$cire dalle parti del $etttentrione. Prima nella India il Gange, & lo Indo na$ceno dal monte Cauca$o; nella Siria il Tigre, & lo Eufrate; nell'A$ia, & nel Ponto, il Bori$tene, l'Hipani, la Tana, il Colchi, & il Pha$i; nella Gallia il Rodano; nella Borgogna il Reno; di qua dall'Alpi di Timauo, il Pò; nella Italia il <G>*g</G>euere; nella Mauru$ia, che da i no$tri è Mauritania nominata, dal monte Atlante il fiume Diri, il qua le nato dalla parte $ettentrionale $corre di lungo per l'occidente al lago Eptabolo, & mu- tando il nome Nigir $i dimanda: dapoi dal lago Eptabolo $otto di$erti monti pa$$ando per i luoghi meridionali $orge, & entra nella palude Coloe, la quale circonda Meroe d'intor- no, che è il regno de gli Ethiopi meridiani; & da quelle paludi raggirando$i per li fiumi A$ta$oba, & A$tabora, & molti altri per li monti peruiene alla cataratta, & da quella precipitando $i giugne tra la Elephantida, & Siene, & in Egitto tra i campi di Thebe, & iui Nilo $i chiama. Ma che dalla Mauritania uenga il capo del Nilo da quello $omamen- te $i cono$ce, che dall'altra parte del monte Atlante ci $ono altri capi, che $imigliantemen te $correndo uanno all'Oceano occidentale, & iui na$ceno gl'Ichneumoni, & i Cocodril li, & altre $imili nature di be$tie, & di pe$ci oltra gli Hippopotami. Quando adunque $ia, che tutti i grandi$simi fiumi nelle de$crittioni del mondo ci pareno hauere origine dalle parti $ettentrionali, & i campi Africani, i quali dalle parti meridiane $ottopo$ti $ono al cor$o del Sole habbino in fatto na$co$i gli humori, rari fiumi, & non molte fonti: re$ta, che molto migliori $i trouino i capi delle fonti, che alla Tramontana, & a Borea riguarda no; $e però in luogo pieno di $olfo non $i incontrano, & che ci $ia dell'allume, o del bitu- me: imperoche $i mutano allhora, & fuori mandano o acque calde, o fredde di cattiuo odore, & di tri$to $apore, perche dell'acqua calda non è alcuna proprietà, ma quando la fredda incorre in luogo ardente, bolle, et ri$caldata molto fuori per le uene e$ce $opra la <foot><I>XX</I></foot> <pb n="332"> terra, & però lungamente $tar non puo, ma in poco tempo diuenta fredda, imperoche $e di natura $ua calda fu$$e, il $uo calore non $i raffredderebbe; ma con tutto non $e le rende però, nè il colore, nè il $apore, nè l'odore di prima, perche egli è gia per la $ua rarità in- tento, & me$colato. <p><I>Vitr. in que$to luogo è chiaro, & dice molte belle co$e, & $pecialmente parlando del fiume detto Nigir, che hoggi$i chiama il fiume di Senega, che per A$rica ua uer$o ponente nell'Ocea- no, il quale fa gli $te$$i effetti, che fa il Nilo, cre$ce, & produce gli animali, che $opra il Nilo $i uedono. Narra la generatione delle pioggie, & con e$$empi lo dimostra, & parla della gene ratione delle fonti, et de i fiumi. noi per diletto porremo qui $otto i uer$i tratti delle no$tre meteore.</I> <p><I>Chiunque niega che'l ualor cele$te Formar non po$$a la mondana cera, Certo $ua mente d'ignoranza ue$te.</I> <p><I>Et $e'l mio dir $alda ragion'auera Spero mo$trar, ch'il lume, & l'influenza, E'l mouimento han qui lor forza uera.</I> <p><I>Quando che'l Sol da noi fa $ua partenza. Ouer ritorna ad albergar col $egno, In cui comincia a mostrar $ua potenza:</I> <p><I>Chi non cono$ce al uariar del $egno Delle co$e uolubili, & non uede Come faccia il terren'hor uoto, hor pregno?</I> <p><I>Quand'a mostrar $ua bella faccia riede Non è $i ar$iccio, & arido ce$puglio Che non rinuerdi, & non ne faccia fede.</I> <p><I>Ma quando poi piu bolle il caldo Giuglio, Ogni $ement'al maturar s'appresta Per far maggior ognino$tro pecuglio.</I> <p><I>D'indi trahendo la dorata cre$ta, La$ciand'i no$tri per contrari alberghi, Gia la morte dell'anno è manife$ta.</I> <p><I>Nè$olpar, ch'alla uita in alto s'erghi, O per morir $i pieghi ogni germoglio S'auien che'l Sol'o quiui, o altrou' alberghi;</I> <p><I>Ma quand' anchor $opr'il cele$te $oglio Alcun pianeta i dritti raggi uibra, Chabbia uirtù contraria a fredddo $coglio:</I> <p><I>Non equalmente i primi corpi libra, Ma i due piu lieui raddoppiando moue Con di$eguale, & $temperata libra.</I> <p><I>Ma Saturno, & Mercur o fan lor proue Contrarie a quelle, & $tando $opra noi Fan che laterra, & l'acqua $i rinoue.</I> <p><I>Perche fredd'è lor forza, & fredde poi Sono le qualitati indi cadute Per gli humidi, & gelati influ$$i $uoi.</I> <p><I>Non che nel ciel, ch'è padre di $alute, Ardor', ogelo $ia, come qui ba$$o, Ma perche tal è $ua forza, & uirtute.</I> <p><I>Nè dietro però dei uolger'il pa$$o, Se dico gli elementi e$$er maggiori, Perche nè in que$to uerità trapa$$o.</I> <p><I>Che $e del fuoco accre$ceno gli ardori In una parte, poi nell'altra $ono Proportionatament'ancho minori.</I> <p><I>Et que$t'è di natura un largo dono, Che quant'iui ripiglia, qui ripone, E in cio concorda quell'eterno $uono.</I> <p><I>Ma noi $eguend'il uer della ragione Gia cominciata, altronde piglieremo Da far piu forte no$tra oppenione.</I> <p><I>Vede$i adunque dal ualor $upremo Del Ciel tirar$i in giro il fuoco, & l'onda E'l corpo, ch'ètra que$to, & quell'e$tremo.</I> <p><I>Il calor grand' allhor molto piu abbonda, Quando la Luna nella parte oppo$ta Al Sol dimo$tra la $ua faccia tonda.</I> <p><I>L'antichi$$imo $pirto, che s'acco$ta Alla ruota maggior, ferma laterra, Che non riuolge nè lato, nè co$ta,</I> <p><I>Et quel pianeta, ch'è $opra la guerra, (Odi cagion di nuoua merauiglia,) Tra i primi corpi l'agguaglianza $erra.</I> <p><I>Appre$$o anchor la nobile famiglia, I metalli, le pietre, & l'altre co$e Come propie ricchezze in guarda piglia.</I> <p><I>Nè $i puon dire le uirtuti a$co$e Ne gli animai, nell'acque, & nelle piante, Ch'a merauiglia $on merauiglio$e.</I> <p><I>La$ciamo dunque a dietro il mondo errante, Et $eguitiam'a dir, cio che da humore Si fa qua giu con apparenze tante.</I> <p><I>Surge da terra l humido uapore Tratto dal Sol'alla men calda $tanza, Ea poco a poco prende piu uigore.</I> <p><I>E in que$to $patio fa gran raur anza <pb> Tanto, che $i conden$a, & $i ri$trigne In folta nebbia, & di nera $embianza,</I> <p><I>Il freddo è la cagion, che la co$trigne Come $ponga, che d'acqua piena $ia Spreme l'humor, che la terra dipigne.</I> <p><I>Tal'hor minute $on le goccie in uia, Tal'hor piu gro$$e, come che'l $oggetto Piu copio$o, o meno $i di$uia.</I> <p><I>Et$pe$$o l'aer puro in $e ri$tretto, Da potenza $upern'in pioggia uolto, Acqua giu manda piena di diletto.</I> <p><I>Que$ta nel grembo della terr'accolto, Pregna la rende, ond'ella poi s'infiora, E in uerdeggiante gonna ha il $en'in uolto.</I> <p><I>Po$cia Vertunno, con Pomona, & Flora E'l padre Bacco, & mill'antichi numi, Lodan'il Sol, che $i bell'anno honora.</I> <p><I>Ma quando l' aer riuers'i $uoi fiumi, Come da i monti delle nubi aperte, Con $pa<*>ento$i, e horribili co$tumi.</I> <p><I>Et $on le uoci $trepito$e in$erte Del mormorar', e in ogni parte rugge Con fiamme $par$e, mobili, & incerte:</I> <p><I>Cio na$ce dal $offiar, ch'intorno mugge, Et con gran forza indura il fo$co nembo, Ch'impatiente del legame fugge.</I> <p><I>Però $i uede hor angulo$o, hor gembo L'a$petto della nube intorno cinta Da $i feroc', e impetuo$o lembo.</I> <p><I>Ma perche $ia la mia ragion di$tinta, Dirò de $egni della pioggia, & quali Et quanti $on con mae$treuol tinta.</I> <p><I>Chi ued'il fumo con $ue turbid'ali Salir'al Cielo, & apparir in forma Di nebbia, o di uapori, o fumi tali',</I> <p><I>Puo giudicar $enz'hauer altra norma Che l'aer pregno a piouer s'apparecchi, Che raro in altra co$a $i trasforma.</I> <p><I>Quand'anche dietro a gli humidi, & rubecchi Vapor'il Sol ro$$eggia in oriente, Segn'è di pioggia, & di $uoi molli $pecchi.</I> <p><I>Il gracidar della fango$a gente, Et d'alcun'uccelletti il canto mo$tra La piu gro$$a rugiada e$$er pre$ente.</I> <p><I>L'auida pecorell'anche il dimo$tra Col $uo mor$o bramo$o, & l'arrogante Mo$ca, che $empre uuol uincer la gio$tra,</I> <p><I>Lo $cintillar delle lucerne innante, Inditio d'acqua copio$a porge, Et l'humido del muro circo$tante.</I> <p><I>Quando con men liquor'il fonte $orge, Et con cor$o men fort'il fium'è mo$$o, Vn buon giuditio del piouer s'accorge.</I> <p><I>Mill'altri $egni$on, che dir non po$$o, In breue$patio, & da quei $aui inte$i, Ch'affatican del mar l'humido do$$o.</I> <p><I>Molti ne $on da agricoltori appre$i, Et molti ancor dalle genti, che $anno L'u$anza, & i costumi de pae$i,</I> <p><I>Ch'è inanzi il ca$o il $ucce$$o diranno.</I> <HEAD><I>CAPITOLO.</I></HEAD> <p><I>L'anima $emplicetta, che di$cende Dalla cele$t'alla terrena $tanza, A$$ai meno, che prim'il uero apprende,</I> <p><I>Perche di$tolta dalla prim'u$anza, Rinchiu$a come Danae nel fondo, Viue della mi$errima ignoranza.</I> <p><I>Il benigno $uo padre, che nel mondo Volle mandarla del $uo amore acce$o Si cangia in Oro lucid', & fecondo.</I> <p><I>L'oro e'l $aper', & il bel uero inte$o, Che da benigno influ$$o nella mente Faricco l'huomo $oura Mida, o Cre$o.</I> <p><I>Cos'il perduto bene tra la gente Del$ecolo $i trou', & $iracqui$ta, Ma non $enza fatica, o $tudio ardente.</I> <p><I>Ben'è la cono$cenza alquanto mi$ta Da fanta$ime, & forme, che dal $en$o Na$cono in noi dall'udit', & la ui$ta.</I> <p><I>Trouas'infine dallo $tudio immen$o Co$i puro & purgato l'intelletto, Che rend'a Gioue l'honorato cen$o.</I> <p><I>Que$to $i uede chiar da quel, che ho detto, Ch'oltr' il bel uer delle notitie prime Da gli accidenti na$ce il uer concetto.</I> <p><I>Que$tin'han fatto con $cienze opime Tornar delle materie, nelle quali La forza del calor uero s'imprime.</I> <p><I>I lampi, le comete, i fuochi tali Per le co$e ui$ibili$on fatti Agl'intelletti de gli huomini eguali.</I> <p><I>Et gli humidi uapor' anche $on tratti Per l'accidente alla notitia no$tra, Come $i fanno, & come $on disfatti.</I> <foot><I>XX</I> 2</foot> <pb n="334"> <p><I>Hor $egue quello, che mia mu$a mo$tra, Della rugiada dir', & della brina Et del re$to con$orm'a $imil mo$tra.</I> <p><I>Dolce calor dalla luce diuina Dolcemente un uapor lieua dal piano, Nella parte dell'aer piu nicina.</I> <p><I>La notte col $uo freddo uelo, & piano Re$tringe quel uapor', & quell'inuoglie In gocciole conner$o a man'a mano.</I> <p><I>Quest' all'herbette, a i fior', & alle foglie Tremolando s'acco$ta, & nel mattino, I bei raggi del Sol, qual $pecchio accoglie.</I> <p><I>Simil uapor'fa il gelo mattutino; Ma perch'il gelo è piu potente, & forte, Però $i strigne & diuenta piu fino.</I> <p><I>Spe$$o $i $ono le per$one accorte Ch'al ba$$o la rugiada $i conden$a Per non e$$er calor, ch'alto la porte.</I> <p><I>Perche $edend'a diletteuol men$a Ne bei prati la $era, hanno $entito, Che tal uapor di $otto $i di$pen$a.</I> <p><I>Il luogo, & la $tagion fanno l'inuito A que$t'impre$$ion, che $pe$s' amaro Et $pe<02>'ha dolc'il gu$to, & $aporito.</I> <p><I><10>'hebbe gia un cibo precio$o & caro, Simil alla rugiada, far per fede, Quanto puo il aielo con inditio chiaro.</I> <p><I>Ne'la di$erta piaggia oue non uede Na$cer herbette il Sol', o $orger fonte, Fa fatt'un popol d'ogni cibo herede.</I> <p><I>Col gu$to lor', & con le uoglie pronte Vn'e$ca $ol'haueua ogni $apore, Odi co$e incredibili, ma conte.</I> <p><I>Er'un pae$e, ou'il diuin fauore Conduceua la gent'a Dio diletta, Sott'il ue$$illo d'un gran conduttore.</I> <p><I>In quello in uece d'acqua pura, & neta, Candido latte, & dolce mel correa, Ogni co$a in $uo grado era perfetta:</I> <p><I>Ma giugner prima, ou'andar $i douea Senza fatica, & camin a$pro, & pieno D'ogni di$agio, & mal non $i potea.</I> <p><I>Il popol $i $entiua uenir meno, Et della uita & delle $ue $peranze, Et al mal dire non haueua freno.</I> <p><I>Il capitano alle cele$ti $tanze Cli occhi, & le palme humilmente uolgendo, Pregò, $econdo le $ue antiche u$anze.</I> <p><I>Padre (dicea) del ciel $e ben comprendo Hauer condotta la tua gente in loco, Oue la morte $enza te n'attendo.</I> <p><I>Tu, che parti$ti gli elementi, e al fuoco Seggio $ublime, & piu capace de$ti E'l troppo al mezo riduce$ti, e'l poco:</I> <p><I>Pur'io confido ne i miei uoti hone$ti, Che $on fondati nelle tue prome$$e, Che grat'il no$tro male non haure$ti.</I> <p><I>Meco $on que$te genti, & io con e$$e, E$$e alla mia, & io $to alla tua uoce, Voce, che $ta nelle tue uoglie $te$$e.</I> <p><I>Ecco l'a$pro $entier quanto lenoce, Quant'è l'error fallace delle $trade, Quat'è la fame indomita, & atroce.</I> <p><I>Tu $ei la uia, tu $ei la ueritade, Tu $ei la uita, però dolce padre Mo$traci il uer camino per pietade.</I> <p><I>Porg'il cibo bramato alle tue $quadre, Et fa, che $i comprenda, che ne $ei Pre$ente, con que$t'opere leggiadre.</I> <p><I>Vdì la uoce il padre de gli Dei Del Capitan fedele, & $uo gran duolo, Mo$trò quant'ama i buoni, & odia i rei.</I> <p><I>Però chiamand'il $uo beato $tuolo Quello, ch'il $uo uoler'in terra $piega, Einnant'ogn'hor li $tà con dolce uolo.</I> <p><I>Di$$egli, poi ch'al giu$to non $i niega Giu$ta dimanda, hor gite oue $i $erua L'ambro$ia no$tra, e'l nettare $i lega</I> <p><I>Ne i ua$i eterni, in eterna con$erua: Di que$ta $opra la di$erta piaggia, Oue il popolo mio la fame $nerua,</I> <p><I>Tanta dal Ciel per ogni uer$o caggia, Ch'ogn'un'il $eno $i riempi, & goda Nè ui $ia tribu, ch'in copia non n'haggia.</I> <p><I>Ecco una $chiera di quei $pirti $noda Le cele$ti uiuande giu dal cielo, Piouen quell'e$ca, per ch'ognun la roda.</I> <p><I>L'afflitta turba, che dal chiaro uelo Del bel $eren'intorno, uede & mira Scender'il dolce, & tra$parente gelo,</I> <p><I>De$io$a la coglie, & pon giu l'ira, Che la fame nodri$ce, & $ene $atia Con merauiglia, & quanto puo re$pira.</I> <p><I>L'alto $tupor di co$i rara gratia Conduce a dir'ogn'un, che cos'è que$ta? Qual boccanon fia $tanca pria, che $atia?</I> <pb n="335"> <p><I>La uoglia ogni $apor'in quella de$ta, Però $ene contenta ogni palato, Ogni gu$to s'aqueta, & $ene re$ta.</I> <p><I>Benedetto $ia'l Ciel, che ciò n'ha dato, Et $e ben quella uolta fu corte$e, Qualche parte però n'ha anchor la$ciato.</I> <p><I>Ma ben benign'è l'aria in quel pae$e, Che cio ne manda per $anar gl'infermi Di uari mali lor', & uarie offe$e:</I> <p><I>Ma qui conuien che'l mio cantar $i fermi.</I> <HEAD><I>CAPITOLO.</I></HEAD> <p><I>Com'il calor delle $operne $pere Leua il uapor dalla terrena $corza, Detto s'è prima con $entenze uere.</I> <p><I>La bianca neue il uerno $i rinforza Come $uol far la $tate la tempe$ta, In cui uirtu maggior $i mo$tra, & forza.</I> <p><I>Humido, & caldo fumo al Ciel $i de$ta Et nella meza region s'inalza Ri$trett'in nube chiara, & manife$ta.</I> <p><I>Quella il uapor debilemente inalza, Che per e$$er $ottile, & gia di$per$o Come candida lana $i di$calza.</I> <p><I>Onde s'imbianca tutto l'uniuer$o, L'aere pregno d'ogni intorno fiocca, Le bianche falde dell'humor con$per$o.</I> <p><I>Ma con piu furia, & piu durezza tocca La grandine gelata i tetti, e i colmi, Et con horror, & $trepito trabocca.</I> <p><I>Onde $i $pezzan con le uiti gli olmi, Le biade a terra uanno con durezza, Del gelido cri$tal, ch'a dirlo duolmi.</I> <p><I>Muor'ogni pianta alla temperie auuezza, E'l contadin di $ue $peranze cade, Nè piu $e $te$$o o $ua famiglia apprezza.</I> <p><I>Que$to $trano accidente allhor accade, Quand'ha piu forz'il Sol, però ch'ei lieua L'humor in altre piu fredde contrade.</I> <p><I>Che non $on quelle, oue $i fa laneua, La brina, & la rugiada forza piglia Per que$to, & quel contrario, che l'aggreua.</I> <p><I>Nè di ciò prender dei piu merauiglia, Perche l'e$tate, piu che'l uerno gela, La regione ou'il uapor s'appiglia.</I> <p><I>Ardon gli e$tremi, e'l mezo $i congela, Nè potendo fuggir'i $uoi nemici, Ri$trett'in $e mede$imo $i cela.</I> <HEAD><I>Dell'acque calde, et che forze hanno da diuer$i metalli don- de e$ceno, & della natura di uary fonti, laghi, & fiumare. Cap. III.</I></HEAD> <p>Sono alcune fonti ancora calde, dalle quali n'e$ce acqua di ottimo $apore, laqua le nel bere è co$i $oaue, che non $i di$idera quella delle fonti Camene, nè la $urgente Martia. Ma que$te da e$$a natura a que$ta gui$a $i fanno. Quan- do per lo allume, o per lo bitume, o $olfo nel fondo $i accende il fuoco me- diante l'ardore, la terra, che è d'intorno a quello bianca, & rouente diuiene, ma $opra alla $uperficie della terra manda fuori il feruido uapore, & co$i $e alcune fonti in quei luoghi, che $ono di $opra, na$ceno di acque dolci offe$e, & rincontrate da quel uapore, boglio- no tra le uene, & in que$to modo e$ceno fuori, $enza che il loro uapore $i gua$ti. Sono ancho di non buono $apore, & odore alcune fonti fredde, lequali da luoghi inferiori dren to la terra na$cendo, pa$$ano per luoghi ardenti, & da que$ti partendo$i, & tracorrendo per lungo $patio della terra raffreddati uengono di $opra con l'odore, $apore, & colore gua $to, & corrotto, come $i uede nella uia Tiburtina il fiume Albula, & nel piano Ardeatino le fonti fredde, che $olforate $i chiamano, dello $te$$o odore: & co$i $i uede in altri luoghi $imiglianti: ma que$te tutto che fredde $iano, pareno però bollire, percioche auuiene, che incontrando$i di $otto profondamente in luoghi alti, offe$i dall'humore, & dal fuoco, che tra $e conuengono, con grande, & uehemente $trepito in $e forti, & gagliardi $piriti <pb n="336"> uanno riceuendo, & co$i gon$i per la forza del uento, & sforzati bogliendo $pe$$o fuori e$ceno delle fonti loro; Ma di quelle fonti, che aperte non $ono; ma ouero da $a$si, ouero da qualche altra uiolenza ritenute $ono, per i$trette uene $ono dalla forza dello $pirito mandate fuori a i grandi, & rileuati grumi di terra, & però grandemente $i inganna, chiun- que pen$a di hauere i capi delle fonti, quando apreno loro le grandi fo$$e in quella altezza, che $ono i grumi: imperò $i come un ua$o di rame non ripieno $ino all'orlo $uo, ma che habbia la mi$ura dell'acqua $econdo la $ua capacità, di due delle tre parti quando il $uo co perchio dal gran feruore del fuoco toccato uiene sforza l'acqua a ri$caldar$i bene, & quel- la per la $ua naturale rarità riceuendo in $e la gagliarda enfiagione del caldo, non $olo ri- empie il ua$o, ma con gli $piriti $uoi alzando il coperchio, & u$cendo trabocca: ma leuato il coperchio, & e$$alati i $uoi bogl<14>menti nello aperto aere, torna di nuouo al luogo $uo: al $imigliante modo quei capi delle fonti, quando $ono per le $trettezze compre$si, & ri- $tretti, con grande impeto uengono di $opra gli $piriti dell'acqua, ma tanto$to, che riaper ti, & rillargati $ono uotati per la rarità, che nel liquore preuale, ri$eggono, & tornano nella proprietà del $uo giu$to pe$o. Ma ogni acqua calda per que$to è atta alle medicine, per- ciò che ricotta nelle co$e precedenti, riceue altra uirtute all'u$o humano; percioche le fon ti $ulfuree ri$torano le fatiche de nerui, ri$caldando, & $ucchiando con il loro calore i tri= $ti humori da i corpi. Ma le fonti, che hanno dell'allume, quando riceueno alcuni corpi dalla parali$i di$ciolti, ouero da qualche sforzeuole infermità mantenendo il refrigerio per le aperte uene, ri$torano con forza contraria del caldo, & co$i continuando per que- $to i corpi $ono rime$si nell'antica cura delle loro membra: Finalmente oue $ono le ac- que, che tengono del bitume, gli huomini po$$ono purgare i difetti, che hanno dentroi corpi loro beuendone, & a que$to modo medicar$i. Euui anche una $orte di acqua fred- da nitro$a come a Penna, a Ve$tina, a Cotilio, & in altri luoghi $imili, che beuendone al- cuno $i purga, & per lo uentre pa$$ando minui$ce, & $cema la gonfiezza delle $trume. Ma doue $i caua l'oro, & l'argento, il ferro, il rame, il piombo, & altre $imiglianti co$e alle det te, iui $i trouano molte fonti, ma $ono $ommamente difetto$e, percioche hanno i uitij contrari a quell'acque calde, che uengono dal $olfo, dallo allume, o dal bitume, & fanno que$to, che beuute quando entrano nel corpo, & uanno per le uene toccano i nerui, & le giunture, & quelli infiando gl'indurano i nerui. A dunque per la enfiagione gonfiati per lungo $i ritirano, & co$i fanno gli huomini doglio$i o per male di nerui, o per le podagre, perche hanno le $ottigliezze delle uene loro me$colate di co$e duri$sime, $pe$$e, & fred- di$sime. Vn'altra $orte di acqua $i troua, laquale non hauendo a ba$tanza le $ue uene chia- re, con la $puma $ua nuota come fiore nella $ommità $imile al colore d'un uetro purpu- reo. Que$te co$e mirabilmente auuertite $ono, & con$iderate in Athene, perche iui da $i- mili luoghi, & fonti, & in A$ti, & al porto Pireo $ono condotte le $urgenti canne, & di quelle niuno ne beue per quella cau$a, ma bene $e ne $erueno per lauare, & per altre bi$o- gna, & beueno de i pozzi, & co$i $chiuano i difetti di quelle fonti. <p><I>Hermolao nelle ca$tigationi di Pli. aliij. del xxxi. legge non, & in A$ti ad portum Pireæum, ma Ma$ti u$que ad portum Pireæum, & dice, che Ma$ti $ono dette altramente, mammæ, & pa- pillæ, & ubera, qua$i mammelle, per lequali uengano l'acque, benche anche $alua la prima let- tione, & per A$ti intende Athene.</I> <p>Ma a<G>*g</G>roezzeno ciò non $i puo fuggire, perche iui altra $orte di acque non $i troua, $e non quella, che hanno i Cibdeli, & però in quella città o tutti, o la maggior parte $ono de i piedi cagioneuoli. Ma in Tar$o città di Cilicia troua$i un fiume nominato Cidnos, nel- quale i podagro$i tenendo le gambe a molle $ono $olieuati dal dolore. Oltra le dette co- $e molte altre generationi di acque $i trouano, che hanno le $ue proprietà, come in Sicilia, il $iume Himera, ilquale u$cito dalla fonte in due rami $i parte, & quel ramo, che $i $tende <pb n="337"> correndo uer$o il monte Ethna, perciò ch'egli pa$$a per terreno di $ucco dolce, egli è d^{1} grandi$sima dolcezza, l'altro ramo, che corre per quel piano, doue $i caua il $ale, è di $a- por $al$o. Similmente a Paretonio, & la doue è il uiaggio ad Hamone, & al Ca$sio all'Egit to $ono laghi palu$tri di maniera $al$i, che di $opra hanno il $ale congelato. Sono appref- $o in molti altri luoghi, & fonti, & fiumi, & laghi, iquali pa$$ando oltra le caue del $ale, ne- ce$$ariamente diuentano $alati, altri penetrando per le uene gra$$e della terra come unti d'oglio e$ceno fuori come è a Soli ca$tello della Cilicia il $iume Lipari nominato, nel- quale chiunque $i laua, o nuota $i ungne dall'acqua, & co$i nella Ethiopia $i troua un lago, che ugne gli huomini, che in e$$o nuotano; & in India ce n'è uno, che quando il cielo è $e- reno manda una gran quantità di oglio. Anchora a Cartagine è una fonte, $opra la quale nuota l'oglio di odore come una $corza di cedro, del qual'oglio è u$anza di ugnere le pe- core: al Zante, & intorno a Durazzo, & Apollonia $ono fonti, che in$ieme con l'acqua uo- mitano gran moltitudine di pece; a Babilonia è un grandi$simo lago, che $i chiama la pa- lude A$phaltite, ha di $opra il liquido bitume, che nuota, delqual bitume, & di pietra cot- ta fabricatone il muro Semiramis cin$e la gran Babilonia; co$i in Ioppe nella Siria, & nel- l'Arabia de Numidi $i trouano laghi di $mi$urata grandezza, i quali mandano fuori gran ma$$e di bitume, che $ono poi tolte dalli habitatori di quei luoghi. Ma ciò non è mara- uiglio$o, percioche in quei $ono molte piotraie di duro bitume. Quando adunque l'ac- qua rompe fuori per la terra bitumino$a $eco ne porta, & quando, che ella è u$cita fuori della terra, $i $ceglie, & co$i da $e $caccia il bitume: & co$i anche nella Cappadocia nella uia, che è tra Mazzaca, & Tuana, $i troua un gran lago, nelquale $e una paite di canne, o d'altra co$a è po$ta dentro, & il $eguente giorno cauata, quella parte, che $arà $tata cauata $i trouerà di pietra, re$tando l'altra parte, che non hauerà toccato l'acqua nella $ua pro- pria natura. Allo $to$$o modo a Hieropoli della Frigia bolle una moltitudine d'acqua calda, d<*>llaquale $e ne manda per le fo$$e d'intorno a gli horti, & alle uigne. Que$ta a ca- po d'anno diuenta una cro$ta di pietra, & co$i ogni tanti anni gli habitatori di quei pae$i facendo i margini di terra dalla de$tra, & dalla $ini$tra, ui la $ciano andare quelle acque, & con quelle cro$te fanno le $iepi de i campi loto; & que$to pare, che naturalmente fatto $ia, percioche in quei luoghi, & in quella terra, doue na$ce quel $ucco, ci $ta $otto una quali- tà $imile alla natura del coagolo. Dipoi quando la forza me$colata e$ce di $opra per le fonti $ue, è sforzata ri$trigner$i, & appigliar$i dal Sole, & dalla calidità dell'aere, come $i uede ne i piani delle $aline. Sono appre$$o fonti molto amare na$centi da amaro $ucco della terra, come nel Ponto è il fiume Hipanis, ilquale dal $uo capo per quaranta miglia $corre con acqua di dolci$simo $apore, dapoi quando giugne al luogo, che dalla foce $ua è lontano cento, & $e$$anta miglia, con quello $i me$cola un fonticello ben piccolo: Que- $to fonticello, quando entra nel detto fiume, allhora fa, che tanta quantità di acque diuen ta amara, percioche per quella $orte di terra, & per quelle uene, dallequali $i caua la Sanda raca u$cendo quell'acqua amara diuiene, & tutte que$te co$e da di$simiglianti $apori pre$i dalla proprietà del terreno per doue pa$$ano, chiaramente $i fanno, come appare ne i frut- ti. imperoche $e le radici de gli alberi, o delle uiti, o dell'altre $emenze manda$$ero i frutti prendendo il $ucco non dalle proprietà del terreno, $enza dubbio il $apor di tutti in ogni luogo, & in ogni parte $arebbe d'una i$te$$a natura; ma uedemo pure, che l'l$ola di Lesbo fa il uino Protropo; Meonia il uino detto Catacecaumenite, & Lidia il Melito, & Sicilia il Mamertino; Campagna il Falerno; Terracina, & Fondi i Cecubi; & in molti altri luo-- ghi di innumerabil moltitudine, & uarietà generar$i le $orti, & le forze de i uini: lequali non altrimenti po$$ano e$$er prodotte, $e non quando l'humore terreno con le $ue pro- prietà de i $apori infu$o nelle radici, nutre, & pa$ce la materia, per laquale u$cendo alla ci- ma diffonde il $apore del frutto propio del luogo, & della $orte $ua: che $e la terra non fu$- <pb n="338"> $e di$simile, & diftinta di uarietà d'humori, non $arebbeno in Siria, & in Arabia nelle can- ne, & ne i giunchi, & nelle herbegli odori $olamente: nè ancho gli alberi, che ci danno l'incen$o, nè quelle terre ci dariano i grani del pcpe, nè le glebe della mirra, nè a Cirene nelle bacchette na$cerebbe illa$$ere: ma in tutte le regioni della terra, & in tutti i luoghi tutte le co$e d'una $te$$a natura $i produrrebbeno: ma $econdo que$te diuer$ità in uarij luoghi, & pae$i la inclinatione del mondo, & lo impeto del Sole o piu pre$$o, o piu lonta- no facendo il cor$o $uo, genera tali humori di que$ta natura, & quelle qualità non $ola- mente in quelle co$e $i uedeno, ma nelle pecore, & negli armenti, & tai co$e non ci fareb- beno di$simiglianza, $e le proprietà di cia$cun terrenno in pae$i diuer$i alla uirtu del Sole non fu$$ero temperate. Perche nella Beotia è il fiume Cephi$o, & il fiume detto Melas; & tra i Lucani il Crate, a Troia il Xanto, & ne i campi de i Clazomeni, & di Erithrei, & di Laodice$i $ono fonti, & fiumi, alliquali quando le pecore a i $uoi tempi dell'anno s'appa- recchiano a concepere il parto, ogni giorno a bere a quei luoghi $on cacciate, & da quello è, che auegna, che $ieno bianche, nientedimeno parturi$ceno in alcuni luoghi gli animali grigi, in alcuni neri, in alcuni del colore del coruo. & co$i quando la proprietà del liquore entra nel corpo, dentro ui $emina la qualità me$colata $econdo la natura $ua, perche adun que ne i campi Troiani na$ceno pre$$o al fiume gli armenti ruffi, & le pecore grigie, però $i dice che gli Ilie$i hanno chiamato quel fiume Xanto. Trouan$i ancho alcune acque mortifere, lequali pa$$ando per un $ucco malefico della terra, riceueno in $e la forza del ueleno: $i come $i dice d'una fonte di Terracina, laquale Nettuno $i nominaua, dellaquale chiunque per inauertenza ne beueua, era della uita priuato: per laqual co$a dice$i, che gli antichi la otturorno: & appre$$o de i Greci in Thracia è un lago, che non $olamente fa morire chi di quello ne beue, ma anche cia$cuno, che iui $i bagna. Similmente in Te$$alia è una fonte, che $corre, della quale non ne gu$ta alcuno animale, nè altra $orte di be$tia $e le auicina. appre$$o quella fonte è un'arbore di color purpureo; & co$inella Macedonia la doue è $epulto Euripide dalla de$tra, & dalla $ini$tra del monumento due riui concor- reno in uno, iui dall'una parte $edendo i pa$$aggieri per la bontà dell'acque $ogliono man giare; ma al riuo, che è dall'altra parte del monumento, niuno s'appro$sima, perche egli $i dice, ch'egli ha l'acqua $ua mortifera, & pe$tilente. Appre$$o $i troua anche in Arcadia Nonacri nominato pae$e, che ne i monti ha freddi$sime acque da i $a$si $tillanti, & quel- l'acqua co$i fredda è detta Stygos, & que$ta nè in argento, nè in rame, nè in ferro puo e$$er tenuta, perche ogni ua$o di tali materie comp o$to per quell'acqua $i di$sipa, & di$cioglie; ma per con$eruare, & tenere quell'acqua non è co$a, che $ia buona, $e non un'ugna di mu- lo. que$t'acqua $i dice e$$ere $tata mandata da Antipatro nella prouincia, doue Ale$$andro $i trouaua, per Iolla $uo figliuolo, & da lui con quell'acqne $i$criue e$$er $tato ammazza- to il Re. A que$to modo nelle Alpi, doue è il Regno di Cotto, è un'acqua, che chi la gu$ta di fatto cade. Ma nel campo Fali$co alla uia Campana nel piano di Corneto è un bo$co, nel quale na$ce una fonte, doue appareno gli o$si di bi$cie, & di lacerte, & di al- tri $erpenti giacere. Ancora $ono alcune uene acide di fonti, come a Lince$te, & in Italia a Virena, in Campagna a Theano, & in molti altri luoghi, che hanno tal uirtù che beuute- rompeno le pietre nelle ue$iche, che na$ceno ne i corpi humani; & cio far$i naturalmen- te appare per que$ta cau$a, che il $ucco acre, & acido $ta $otto que$ta terra, per la quale u$cendo le uene s'intingono di quella acrezza, & co$i quando $ono entrate nel corpo di$- $ipano quelle co$e, che trouano e$$er $tate generate, & accre$ciute dalla $u$sidentia del- l'acqua. Ma perche cau$a dalle co$e acide di$ciolte, & partite $ieno tali pietre, noi pote- mo auuertir da que$to, che $e alcuno porrà un'ouo nell'aceto, & ue lo la$cierà lungamen te, la $corza $ua diuenterà molle, & $i di$cioglierà. Similmente $e il piombo, che è len- ti$simo, & di gran pe$o, $arà po$to $opra un ua$o, che dentro habbia dello aceto, & che <pb n="339"> il ua$o $ia ben coperto, & otturato, o illotato auuerrà, che il piombo $i disfarà, & $i farà la biacca. Con le i$te$$e ragioni $e del rame, che pure è di piu $oda natura, che il piombo, $i farà la mede$ima proua, egli certamente $i disfarà, & il uerde rame, o la $ua ruggine ne ca- ueremo. Co$i la Perla, & i $a$si di $elice, che per ferro, o per fuoco $olo non $i po$$ono disfare, quando dal fuoco $aranno ri$caldati, & $par$oui $opra dell'aceto, $i di$cioglieran- no, & romperanno pre$tamente. Quando adunque uediamo tai co$e e$$er fatte dinanzi a gli occhi no$tri, potemo di$correre, per la fortezza del $ucco con le co$e acide poter$i curare quelli, che $entono del mal di pictra. Sonoui oltra di que$to anche delle fonti me- $colate come col uino, $i come n'è una nella Paphlagonia, della quale chiunque ne beue, ebro $enza uino diuenta. Ma appre$$o gli Equicoli in Italia & nelle Alpi, nella natione de Medulli, $i troua una $orte di acqua, di cui, chi ne beue, diuiene gozzuto: & in Arca- dia è una città non ignobile di Clitore, ne i cui campi è una Spilonca, dallaquale e$ce un' acqua, che rende i beuitori ab$temij. a quella fonte è uno Epigramma $colpito in pietra di que$to $entimento in uer$i Greci, che quell'acqua non è buona per lauar$i dentro, & <*> anche nemica alle uite, concio $ia, che appre$$o quella fonte Melampo con $acrifici pur- gato haue$$e la rabbia delle figlie di Preto, & ritornato haue$$e le menti di quelle uergini nella pri$tina $anità: lo Epigramma è qui $otto $critto. <p>Se te Pa$tor' al fonte di Clitoro Et la tua greggia ardente $ete $prona, <p>Su'l mezo giorno porgine ri$toro Col ber'a quella, & alla tua per$ona: <p>Anco la ferm'al diletteuol Choro Delle Naiade, & a quella piacer dona. <p>Ma per lauarti non entrar nell'acque S'il ber del uino giamai non ti $piacque <p><I>Fuggi la fonte mia ch'odia le uite, Per ciò ch'in quell'ogni bruttezza $cio<*></I> <p><I>Melampo delle figlie inacerbite Di Preto quando d' Argo $i riuol$<*></I> <p><I>Ver$o d' Arcadia le dure $alite, Ogni $ordida co$a qui rauol$e,</I> <p><I>Et l'attuffò con l'altre cos'immonde Nel mezo delle mie gia limpid'onde.</I> <p>Troua$i nell'I$ola Chios una fonte di natura, che fa pazzi, chi ne beue per inauuerte nza, & iui è $colpito un'epigramma di que$to tenore, che l'acqua di quella fonte è dolce, ma chi ne beucrà è per hauere i $entimenti di pietra, & i uer$i $ono que$ti. <p>Fre$che $on le mie acque, & dolci a bere, Ma $e per ca$o quelle beuerai Di pietra ti conuien la mente hauere. <p>A Su$e, nel qual pae$e è il regno de i Per$i, troua$i uno fonticello, di cui chi ne bee, perde i denti, & in quello è $critto uno Epigramma, che $ignifica que$ta $entenza: buona e$$er l'acqua per bagnar$i, ma $e alcuno di e$$a ne beuerà caderangli li denti dalle radici. di que$to Epigramma i uer$i $on greci. <p>O pa$$eggier uedi que$t'acque horrende, Licito è hauerne $olo per lauarti: <p>Ma s'il freddo liquor nel uentre $cende Se ben le $omme labra uuoi toccarti <p>Pre$to uedrai re$tar orfane, & priue Di denti, che n'andran, le tue gingiue <foot>YY</foot> <pb n="340"> <HEAD><I>Della proprietà d'alcuni luoghi, & $onti.</I></HEAD> <HEAD><I>Cap. IIII.</I></HEAD> <p>Sono ancho in alcuni luoghi proprietà di $onti, che fanno, che chi na$ce in que luoghi $iano di uoci mirabili a cantare; come in Thar$o, & a Magne$ia, & in altre $imili regioni, & è anche Zama città di Affrica, il cui circuito il Re Iubacin$e di doppio muro, & iui $i fabricò la ca$a regale: da quella miglia uenti è il ca$tello I$mue, di cui le parti del territorio $ono chiu$e da incredibili proprie- tà di natura: peroche e$$endo l'Affrica madre, & nutrice di fiere be$tie, & $pecialmente di $erpenti, ne i campi di quel ca$tello niuna ne na$ce, & $e alcuna uolta per ca$o iui è porta- ta, di $ubito $e ne muore: nè $olamente que$to ini $i uede, ma anche $e da quei luoghi, altro- ue la terra $arà portata, farà il $imile. Que$ta $orte di terreno dice$i e$$ere alle I$ole Ba- leari: ma quella terra ha un'altra uirtù piu marauiglio$a, la quale co$i e$$ere ho inte$o. C. Giulio $igliuolo di Ma$sini$$a militò col padre Ce$. que$ti meco alloggiò, per ilche mi era nece$$ario neilo $tare, & uiuere in$ieme ragionar'alcuna co$a, in que$to mezo e$$endo tra noi caduto ragionamento della forza dell'acqua, & delle $ue uirtuti, egli mi di$$e e$$er in quella terra fonti di natura tale, che quelli, che iui na$ceuano, haueuano ottime uoci per cantare, & per que$ta ragione $empre mai comprauano i $erui oltramarini belli, & le garzo ne da marito, & quelle in$ieme poneuano, accioche quelli, che da loro na$ce$$ero non $olo haue$$ero bona uoce, ma fu$$ero di bellezza non inuenu$ta. Quando adunque per natu- ra tanta uarietà a diuer$i luoghi di$tribuita $ia, che il corpo humano è in qualche parte terreno, & in e$$o molte $orti d'humore $i trouino, come del $angue, del latte, del $udore, dell'orina, delle lagrime, $e in $i poca particella di terreno $i troua tante diuer$ità di $apo- ri, non è da marauigliar$i $e in tanta grandezza di terra $i trouano innumerabili uarietà di $ughi, per le uene delli quali la forza dell'acqua penetrando me$colata uegna all'u$cire del- le fonti, & co$i da quello $i faccia diuer$i, & di$eguali fonti nelle propie $orti per la diffe- renza de i luoghi, & per la di$aguaglianza de i pae$i, & per le di$simiglianti proprietà di terreni. Delle co$e $opradette $ono alcune, che io da me ho uedute, & con$iderate: ma le altre ne i libri Greci ho ritrouate $critte, de i quali $critti gli autori $ono Theophra$to, Timeo, Po$sidonio, Hege$ia, Herodoto, Ari$tide, Methodoro: i quali con grande uigilan za, & infinito $tudio dichiarato hanno le proprietà de i luoghi, le uirtù dell'acque, le quali- tà de i pae$i e$$er a que$to modo partite dalla inclinatione del cielo. Di que$ti autori $e- <*>uendo io i cominciamenti, o trattamenti, ho $critto in que$to libro quello, che ho pen- $<*>to e$$ere a $ufficienza con la proprietà dell'acque, accio che piu facilmente da tai pre$crit t<*>gli huomini eleggino le fonti, con le quali po$sino all'u$o humano condurre le $urgenti acque alle città, & alli tenitori. Perche tra tutte le co$e pare, che niuna habbia tante nece$- $itati all'u$o, quanto ha l'acqua: imperoche $e la natura di tutti gli animali $arà priuata del grano, delle piante, della carne, della pe$caggione, oucro u$ando cia$cuna dell'altre co$e, per e$$a potrà difendere la uita $ua; ma $enza l'acque, nè il corpo de gli animali, nè alcuna uirtù di cibo puo na$cere, nè $o$tentar$i, nè c$$ere apparecchiata; per ilche egli $i deue con gran diligenza, & indu$tria cercare, & eleggere le fonti alla $alubrità dell'humana uita. <p><I>Dapoi, che $i $ono l'acque ritrouate, era nece$$ario prouarle, & eleggerle, ma perche la elettione pre$uppone piu co$e propo$te, accioche di tutte la meglio $i caui, però Vitru. dopo la in- uentione, ci ha propo$to innanzi diuer$e qualità, & nature di acque, accioche poi di quelle $i eleg- ga il meglio, la onde hora uiene alle e$perienze, & proue dell'acque.</I> <pb n="341"> <HEAD><I>Degli e$perimenti dell'acqua. Cap. V.</I></HEAD> <p>LE e$perienze, & proue delle fonti in que$to modo $i procacciano. Se $aranno correnti, & aperte, prima, che $i dia principio a códurle, dcono e$$er guardati, & molto bene con$iderati i circon$tanti a quelle fonti, di che corporatura $ieno, & $e eglino $i troueranno e$$er gagliardi di corpo, & chiari di colore, nè haue- ranno le gambe cagioneuoli, nè gli occhi lippi, certamente le fonti $aranno approuate molto. Similmente $e di nuouo $arà una fonte cauata, & po$to dell'acqua $ua in un ua$o di rame corinthio, o d'altra $orte, che $ia di buon rame, & quell'acqua $par$a non macchie- rà, $enza dubbio ella $arà ottima: & co$i $e in un bronzino $arà po$ta a bollire, & poi la- $ciata ripo$are, & dar giu, & nel fondo non la$cierà l'arena, o fondacchio, certamente quell'acqua $arà prouata. Allo i$te$$o modo $e i legumi in un ua$o con quell'acqua $i porranno al fuoco, & pre$to $i cuoceranno, $i prenderà argomento, che quell'acqua $arà buona, & $ana: & co$i niente manco di argomento $i prenderà, $e l'acqua della fonte $arà limpida, & molto lucida: & $e douunque ella andrà, nó $i uedrà il mu$co, nè ui na$cerà il giunco, nè ad alcuno modo quel luogo $arà macchiato, o $porcato, ma $e $arà chiaro, pu- ro, & bello alla ui$ta, dimo$trerà con que$ti $egni, che l'acqua $arà $ottile, & di $om- ma bontà. <p><I>Ritrouata, & eletta l'acqua è nece$$ario condurla: ma perche nel condurla è nece$$ario, che l'acqua di$cenda, & uenga $econdo il $uo cor$o naturale al determinato luogo, però accioche que- $to $i e$pedi$ca bene Vitr. ci dà la forma di molti $trumenti da liuellare le acque, & fra molti ne elegge uno, come piu $icuro, & di que$to la forma intera $i uedrà chiara nella figura. Liuel- lare adunque altro non è, che prendere l'altezza del luogo, doue l'acqua $i troua, & compararla con l'altezza del luogo, doue ella $i ha da condurre.</I> <HEAD><I>Delcondurre, &' liuellare l'acque & de gli $trumenti buo- nia tali effetti. Cap. VI.</I></HEAD> <p>Hora del condurre le acque alle habitationi, & alla città, come fare acconcia- mente $i deono, dimo$trerò chiaramente. Di que$to la prima ragione è il li- uello. Que$ti $i $uol fare con tali $trumenti, con lo traguardo, con i liuelli da acqua, & con quello $trumento, che $i chiama Cherobate, & con que$to piu diligentemente, & $icuramente $i liuella, perche il traguardo, & il liuello acquario fal- la. Il Chorobate è una riga lunga piedi uenti, La quale ha le braccia piegate da i capi egualmente fatte, & appolte alle te$te della riga a $quadra, & tra la regola, & le dette braccia da i cardini attaccati $ono alcuni trauer$i, che hanno i fili dritti a piombo, & da cia$cuna parte i piombi pendenti dalla riga, i quali quando la riga $arà fitta, & drizzata, & con quella toccheranno egualmente le linee della de$crittione, dimo$treranno e$$ere po- $te giu$tamente a liuello. Ma $e il uento l'impedirà, & per lo mouimento non potran- no e$$e linee dimo$trare il uero, allhora $arà bi$ogno, che habbino di $o pra un canale lun- go piedi cinque, largo uno dito, alto un dito, & mezo, & in e$$o $ia l'acqua infu$a: & $e l'acqua del canale egualmente toccherà di $opra la libra, allhora $aprai e$$ere bene liuella- ta; & co$i quando con quello Chorobate $arà liuellato, $i $aprà quanto hauerà di altezza. Ma chi leggerà i libri di Archimede for$e dirà, che non $i puo drittamente liuellare l'ac- qua, percioche a lui piace, che l'acqua non $ia piana, ma di figura sferica, & iui hauere il <foot><I><G>gg</G></I> 2</foot> <pb n="342"> centro $uo, doue il mondo ha il $uo: ma que$to è uero $ia l'acqua piana, o $pherica, ne- ce$$ariamente i capi del canale della riga egualmente $o$terranno l'acqua, che $e'l canale $arà piegato in una parte, non ha dubio, che la parte piu alta non $ia, per hauer l'acqua della riga del canale alla bocca. Percioche egli è nece$lario che doue l'acqua $ia infu$a, habbia nel mezo la gon$iezza, & la curuatura, ma i capi dalla de$tra, & dalla $ini$tra $aran- no egualmente librati. La $igura del Chorobate $arà de$critta nel fine del libro, & $e egli $arà la cima, o l'altezza grande piu facile $arà il decor$o dell'acqua, ma $e gli $patij $a- ranno lacuno$i, bi$ogna prouedcrli co i muretti di$otto. <p><I>Se uuoi condur l'acqua auuertirai, che il luogo, alquale tu la uuoi condurre, $ia $empre piu ba$$o, che il luogo dal quale tu la conduci. Metteti adunque a piè del fonte, & guarda per li raguardi del tuo quadrante al luogo de$tinato, in modo però, che il piombo cada giu dritto alla linea dell'Orizonte. $e la ui$ta ti condurrà $opra il luogo de$tinato $appi, che l'acqua $i potrà con- durre, altrimenti non $i puo: ma $e da rupi, o monti fu$$e impedita la tua ui$ta farai molti $egni, & dall'uno all'altro mirando $empre al $opra detto modo, tanto anderai inanzi, che da uno de i detti luoghi potrai uedere il luogo, del quale prima non haueui ueduta, come la pre$ente figura qui dimo$tra: nel re$to il liuellare dell'acque è a nostri Tempi ben cono$ciuto, & lo e$$empio del Cho- robate è qui dipinto, & in $omma oltra il capo, & l'origine $ua tu non puoi sforzare le acque, cioè da $e non anderanno mai $opra la fonte loro, & quando uuoi condurle per canali auertirai di fare i canali proportionatamente profondi, perche l'acqua non $i inalzerà nè per la poca, nè per la molta profondità. la figura è qui $otto, & de gli $trumenti, & di quello modo di liuel- lar l'acqua.</I> <p><I>B il Capo della Fonte</I> <p><I>B c la prima mira</I> <p><I>C d la $econda mira drieto al monte</I> <p><I>D e la terza doue non $i puo condur re</I> <p><I>D f la quarta doue $i puo condurre</I> <p><I>H g f la condutta dell'acqua.</I> <fig> <HEAD>CHOROBATE DA LIVELLAR LE ACQVE ET IPIANI.</HEAD> <TABLE> <ROW><COL><I>1 Regola di piedi 20.</I></COL><COL><I>2 gli Anconi o Braccia.</I></COL><COL><I>3 Trauer$arij.</I></COL></ROW> </TABLE> <pb n="343"> <HEAD><I>A quanti modi $i conduchino le acque. Cap. VII.</I></HEAD> <fig> <p>Atre modi $i conduce l'acqua, prima con riui per canali fatti, dipoi con trombe di piombo, ouero con canne di terra, o cre- ta. Se noi u$eremo i canali, nece$$ario è fa re la muratura $odi$sima, & il letto del riuo habbia il $uo liuello alto niente manco di mezo piede in cento, & que$te murature $iano fatte a uolte, accioche il Sole non tocchi l'acqua, la quale poi che $arà condotta alla città, faccia$i un ca$tello, o con$erua dell'acque, al quale congiunte $iano per trarne l'acque tre bocche, & nel ca$tello $iano tre canne equalmente partite con- giunte a quelle pile, o gorne, accioche quando l'ac- que traboccheranno da gli e$tremi ricettaculi ridondi- no in quello di mezo, & co$i nel mezo $i poneranno le canne in tutte le pile con le loro bocche, dall'altra $i manderanno alli bagni, accioche diano la entrata $ua al popolo ogni tanti anni, & finalmente dalla terra nel le ca$e de priuati co$i, che non manchi nel publico, percioche non potranno riuoltarle altroue, quando da i loro capi haueranno i proprij condutti, & que$te $on le cau$e, per le quali io ho fatto que$ta diui$ione, cioè perche quelli, che priuatamente tireranno le acque nelle $ue ca$e difendano i condotti dell'acque per mezo de i publicani col pagarli le rendite. Ma $e tra la città, & il capo della fonte $aranno di mezo le montagne a que$to modo $i deue liuellare: Cauin$i $otto terra i luo ghi doue hanno a pa$$are le acque, & $iano liuellate alla cima, $econdo che di $opra s'è $critto: & $e iui $arà to- fo, o $a$$o, tagli$i nel $uo propio canale, ma $e il $uolo $arà di terra, ouero areno$o, faccian$i le bande con i $uoi uolti ne i luoghi cauati: & co$i $ia l'acqua condot- ta, & i pozzi $iano talmente fatti, che $tiano tra due Atti. Ma $e con le canne di piombo l'acqua $arà con- dotta, prima farai al capo di e$$a un ca$tello, o con$er- ua d'acqua, dapoi $econdo la quantità dell'acqua farai le lame delle canne, & que$te $iano po$te dal primo ca- $tello a quello, che è pre$$o la città, nè $iano le canne fu$e piu lunghe di x. piedi. que$te lamette $e $aranno di cento dita per larghezza prima, che $iano ritondate $ia cia$cuna di pe$o di libre mille dugento: & $e $aranno di ottanta dita, di nouecento $e$$anta: $e di cinquanta, $ia no di $eicento libre; $e di quaranta, $iano di quattro- cento ottanta; $e di trenta, $iano di trecento $e$$anta: $e di uenti, $iano di dugento quaranta; $e di quindici, $iano di cento $e$$anta; $e di dieci $iano di cento uenti: $e di otto, $iano di nouanta$ei; $e di cinque $iano di $e$$anta, perche <pb n="344"> dal numero delle dita, che uanno nella larghezza delle pia$tre, prima, che $iano piegate in tondo le canne prendono il nome delle loro grandezze, imperoche quella pia$tra, che $a- rà di cinquanta dita, quando $i farà la canna di c$$a, chiamera$si quinquagenaria, & allo ftef$o modo le altre. Et quella condotta di acque, che e$$er deue per canne di piombo ha que$ta commodità, che $e il capo $arà liuellato al piano della città, & che i monti di mezo non $aranno piu alti, che po$sino impedire il cor$o, co$i $arà nece$$ario apparec- chiare di $otto quelli $patij altre liucllationi, $i come è $tato dimo$trato di $opra ne i riui, & ne i canali; ma $e non $arà lungo il circuito, u$eremo le uolte, & circondottioni: & $e le ualli $aranno continuate deue$i drizzare i cor$i in luogo chino, & quando l'acqua $arà giunta al ba$$o non $e le apparecchia di $otto luogo troppo profondo, accioche il liuello quanto $i puo uadi di lungo; & que$to è il uentre, che i Greci chiamano chilia; ma quan do uenirà alla contraria $ce$a per lo $patio lungo del uentre dolcemente $i rileua, allhora $ia cacciata all'altezza della $ce$a: ma $e nelle ualli non $arà fatto il uentre, nè lo apparec= chio di $otto $arà a liuello, ma $e $arà torto, & picgato u$cirà fuori con impeto, & di$cior rà le commi$$ure delle canne: deon$i far'anche nel uentre $piramenti, per li quali la forza dello $pirito $ia rila$ciata. Quelli adunque, i quali condurranno le acque per le canne di piombo al detto modo con tai ragioni gentili$simamente potranno dare le $cadute alle ac- que, & farle uoltare doue uorranno, & $imilmente farne le con$erue, & cacciarle in alto quanto uorranno, & co$i con la $te$$a uia quando dal capo delle fonti alle $te$$e mura del- la città haueranno ben tolto il liuello dell'altezza tra dugento atti non $arà inutile farui un'altra mano di ca$tella, accioche $e in qualche luogo le canne face$$ero danno non $i hab bia a rompere o maccare tutta l'opera, & piu facilmente $i cono$ca doue è fatto il danno. Deue$i però auuertire, che quelle ca$tella non $i faccino nè nelle cadute, nè anche nel pia- no del uentre, nè la doue $i hanno a cacciare le acque in $u, nè in tutto nelle ualli, ma in una continuata aguaglianza. Ma $e con $pe$a minore uorremo condurre l'acque a que$to modo faremo. Faccian$i le trombe di te$tole niente meno gro$$e di due dita, ma in mo- do, che da una parte $ieno $mu$$ate, accioche, una a$$aggiatamente entri nell'altra. Da- poila doue $ono le commi$$ure, & imboccature di quelle trombe deue$i otturare con cal- ce uiua battuta con l'oglio, & nel piegare del liuello del uentre nel nodo $i deue porre una pietra di $a$$o ro$$o, & que$ta forata, accioche l'ultima tromba, oue cade l'acqua $ia at- taccata con quella pietra, il $imile $i farà alla prima tromba uicina al liuellato uentre, & nello $te$$o modo nell'oppo$ta a$ce$a l'ultima tromba del giu$tato uentre $ia $maltata nel concauo del $a$$o ro$$o, & la prima per doue $i deue cacciare l'acqua, con $imile ragione $ia appigliata, & co$i il liuellato piano delle trombe, & della caduta, & del $alimento non $arà inalzato, percioche $uole alcuna fiata nella condotta dell'acque na$cere un gagliardo $pirito, & tale, che anche rompa i $a$si, $e da capo prima dolcemente, & con mi$ura non ui $i darà l'acqua, & ne i nodi, & nelle pieghe non $arà contenuta con buone legature, & con pe$i, & $aorne: il re$to poi $i deue fare come detto hauemo delle canne di piombo. Ancora quando da prima l'acqua $i dà, dal capo deuc$i in quelle trombe porre della cene- re, accioche le commi$$ure $e alcune $ono male $tuccate, $iano con quella cenere ottuna- te, & imboccate. Hanno le condotte dell'acqua, che con trombe $i fanno que$to com- modo, prima nell'opera $e ci $arà alcuno danno, cia$cuno lo puo rifare, & l'acqua è mol to piu $ana, che pa$$a per le canne di terra, che per le canne di piombo, perche dal piom- bo, come da quello da cui na$ce la biacca pare, che prenda difetto, & $i dice, che la biac- ca è nociua a i corpi humani, & co$i $e dal piombo na$ce alcuna co$a danno$a, non è dub- bio, che ancho egli non $arà $ano. Lo e$$empio prender potemo da i ma$tri del piombo, che $empre $ono pallidi di colore, percioche quando nel fondere $i fa il piombo, il ua- pore, che è in quello, entrando nelle membra, & ogni giorno abruciando $ucchia dalle <pb n="345"> membra loro la uirtù del $angue; però non pare, che douemo condurre l'acqua con canne di piombo, $e noi la uogliamo $ana, & buona. Vede$i ancho per lo u$o quotidiano, che l'acqua condotta per trombe è di piu dolce $apore, percioche auuegna che $i habbia un grande apparecchio di ua$i d'argento niente di meno ogn'uno u$a ua$i di terra cotta per porui l'acqua per la bontà del $apore. Ma $e i fonti non $ono, da i quali $i po$$a condurre l'acqua, nece$$ario è cauare i pozzi, & nel cauarli non $i debbe $prezzare la ragione, ma molto bene con acutezza, & $olertia d'ingegno deon$i con$iderare le ragioni naturali del- le co$e, imperoche la terra contiene in $e molte, & diuer$e qualità, percioche ella è come tutte altre co$e di quattro principij compo$ta, & prima è terrena, dapoi ha le fonti del- l'humore dell'acqua, nè è $enza calore, d'onde il $olfo, il bitume, & l'allume na$ce, & in fine ha gli $piriti grandi$simi dello aere, i quali uenendo pe$anti per le uene della cauerno- $a terra al cauamento de i pozzi, iui trouano gli huomini, che cauano, con naturale uapore nelle narici loro otturano gli $piriti animali, & co$i chi pre$tamente da quei luoghi non $i toglie, iui muore. Ma con che ragione $i po$$a que$to danno fuggire, co$i $i dee fare. Mandi$i allo ingiu una lucerna acce$a, quella $e $tarà acce$a, $enza pericolo $i puo andare al ba$$o; ma $e per la forza del uapore ella $arà e$tinta, allhora lungo il pozzo dalla de$tra, & dalla $ini$tra caueranno$i gli $piraculi, da i quali come dalle narici gli $piriti u$cendo $i dilegueranno, & quando in que$to modo haueremo operato, & $aremo peruenuti all'ac- qua, allhora con la muratura deue e$$ere il pozzo in tal modo circondato, che le uene non re$tino otturate. Ma $e i luoghi $aranno duri, o che nel fondo di fatto non $aranno le uene, allhora da i tetti, o da i luoghi di $opra douemo raccogliere l'acqua copio$amen- te nelle opere di te$tole; & per fare que$te te$tole douemo prouedere prima di arena pu- ri$sima, & a$pri$sima, il cemento $ia netto di $elice non piu graue d'una libra, & $ia nel mortaio la calce forti$sima me$colata in modo, che a cinque parti d'arena due di calce ri- $pondino; al mortaio $ia aggiunto poi il cemento di quello nella fo$$a a liuello dell'altez- za, che $i uuole hauere, con mazze di legno ferrate $iano i pareti calcati, & battuti i pare- ti, il terreno di mezo $ia uotato al ba$$o liuello de i pareti, & pareggiato il $uolo dallo $te$ $o mortaio $ia battuto, & calcato il pauimento alla gro$$<*>zza, che $i uuole, & quei luoghi $e $aranno doppi, o tripli, accioche colando l'acque $i po$sino mutare, molto piu $ano ci $arà l'u$o di e$$e, percioche il fango quando ha doue dar giu, l'acqua $i fa piu chiara, & $en za cattiui odori con$eruarà il $apore, & $e cio non fia deue$i aggiugnere il $ale, & a$$otti- gliar$i. Io ho po$to in que$to libro quanto ho potuto raccorre delle uirtù, & uarietà del- l'acqua dimo$trando le $ue utilità, & con che ragione la $i po$$a condurre, & prouare. Nel $eguente io $criuerò de i regolati $tili da ombre, & delle ragioni de gli horologi. <p><I>Il Filandro in que$to libro dichiara molte belle co$e degne da e$$er lette per la dott<*>ina, & co- gnitione che in e$$e $i troua, però e$orto gli $tudio$i a uederle, & a leuarmi la fatica di $eruirmi delle co$e d'altri. Ben dirò alcune co$e per dichiaratione dell'ultimo capo, la cui $omma è que- sta. Tratta in e$$o Vitr. di condur l'acque: & dice e$$er tre modi di condurle, per riui, o cana- li aperti, per canne di piombo, & per trombe di terra cotta: & dichiara come $i habbia a fare in cia$cun modo, & prima de i canali, & c'in$egna a dare la $caduta dell'acqua, & farli le $ue con$erue, & di$tribuirle all'u$o della città, & come $i deono leuare gli impedimenti de i monti, cauar le $pilonche, i tofi, i $a$$i, & far i canali. Nel condur l'acque per le canne di piombo, egli c'in$egna far le ba$che, o ca$telli, che egli dica: ci dà la mi$ura delle canne, & quanto alla lun- ghezza, & quanto alla gro$$ezza: & ci mo$tra come $i habbia a condur l'acqua per monti, per ualli, & per pianure, & come $i habbia a prouedere, che facilmente $i acconci, doue le canne far an danno. Di$corre poi come, $i habbia a reggere nel condur l'acque per trombe di te$tole, & dim<*>$tra come quelle $i hanno a porre & $tagnar in$ieme, & compara que$to modo di condur l'acqua al modo delle canne di piombo, dimo$trando ch'è migliore & piu $ano, & di manco $pe-</I> <pb n="346"> <I>$a. Egli poi c'in$egna a cauare i pozzi, a tentar i uapori cattiui, che e$alano, a proueder, chel terreno non ci ca$chi addo$$o, a raccore l'acqua di$per$a, a non la$ciar perdere la raccolta, a for tificare i lati del pozzo, a far le banche, & a proueder, che l'acqua $ia buona. & que$ta è la $omma della intentione di Vitr. & la mterpretatione è chiara: & Palladio, & Plinio pigliano tutte que$te co$e da Vitr. Actus chiama Vitr. lo $patio di cento & uenti piedi. que$to raddoppià- to per lungo faceua un iugero. Saburra è da noi detta la Saorna, che $i da alle naui. Fauilla è la reliquia de gli e$tinti carboni. E$tuaria $ignificagli $piragli: il nome delle lame, è pre$o dal numero delle dita, perche $e prima, che $i pieghino in tondo $ono larghe cento dita $i chiamano centenarie. $e cinquanta quinquagenarie, & co$i nel resto. Ma de gli acquedutti copio$amen- te ne parla Frontino: Et da i libri di Herone $i puo cauare molti belli modi & dilettei oli di $eruir $i delle acque: il qual libro for$e un giorno u$cirà emendato, et $igurato come $i deue.</I> <HEAD><I>Il Fine dell'Ottauo Libro.</I></HEAD> <pb n="347"> <HEAD>LIBRO NONO</HEAD> <HEAD>DELL'AR CHITETTVRA DI M. VITR VVIO.</HEAD> <HEAD><I>Proemio.</I></HEAD> <p>Imaggiori de i Greci con$tituirono co$i grandi honori a quelli nobili A thleti, che uinto haue$$ero i giuochi Olimpij, Pithij, I$tmici, & Ne- mei, che non $olamente $tando quelli tra la moltitudine de gli huomi- ni ragunata, con la palma, & con la corona riportano lode, ma anche ritornati nelle patrie loro con uittoria trionfando nelle carrette $ono dentro delle mura, & delle loro patrie portati, & in uita loro per publi- ca deliberatione uiueno d'entrata. Que$to adunque auuertendo io, prendo merauiglia, perche cagione non $ono attribuiti gli i$te$si, & ancho piu grandi honori a gli $crittori, i quali del continuo a tutte le genti pre$tano infinite utilità: imperoche piu degna co$a, & piu ragioneuole era, che que$to fu$$e ordinato, perche gli Athleti con lo e$$ercitio fan- no i corpi loro piu robu$ti: ma gli $crittori non $olamente fanno perfetti i loro proprij $entimenti, ma anchora di tutti apparecchiandogli ne i libri precetti, d'onde habbiano ad imparare, & rendere i loro animi piu acuti, & ri$uegliati: perche di gratia mi $i dica, di che giouamento è $tato a gli huomini Milone Crotoniate, perche egli $ia $tato in$upera- bile, & gli altri, che in quella maniera $ono $tati uincitori? $e non che e$si mentre ui$$ero hanno tra $uoi cittadini hauuto la nobilta. Ma i precetti di Pithagora, di Democrito, di Platone, & di Ari$totile, & di tutti gli altri $aui tutto il giorno di perpetua indu$tria orna ti, non $olo a i loro cittadini, ma a tutte le genti fre$chi, & fioriti frutti mandano in luce, de i quali coloro, che da i teneri anni con abondanza di dottrine $i $ono $atiati, hanno ot- timi $entimenti della $apienza, & danno alle città co$tumi della humanità, ragioni eguali, & leggi. Lequali co$e quando $ono lontane, niuna città puo $tare, & con$eruar$i intiera. E$$endo adunque dalla prudenza de gli $crittori co$i gran doni in priuato, & in publico a gli huomini apparecchiati, io pen$o, che non pure $i debbiano dare a quelli corone, & palme, ma anche per decreto deliberare di dargli trionfi, & di con$ecrargli tra le $edi de gli Dei. Io narrerò alcuni e$$empi di molti loro pen$ieri, che $ono $tati di gran gioua- mento a gli huomini per pa$$are commodamente la uita loro, i quali chi uorrà ricono$ce- re conuerrà confe$$are que$ti e$$er degni di grandi honori, & prima io ponerò una ragio- ne di Platone tra molti utili$simi di$cor$i, in che maniera ella $ia $tata da lui e$plicata. <p><I>Ispedite le ragioni che appartengono alle fabriche sì publiche, come priuate, hora $i uiene alla $econda parte principale della Architettura detta Gnomonica: per la- quale $i uedeno gli effetti, che fanno i lucenti corpi del cielo con i raggi loro nel mondo. & perche la ragione della parte pre$ente ci leua da terra mentre contem- pla la diuinità del cielo con la grandezza, bellezza, & $uo ueloci$$imo mouimento, però Vitru. pone un proemio a $imile trattamento conuenienti$$imo: parendogli, che quelli huomini, i quali hanno trouato le $ottili$$ime ragioni delle alte co$e digni$$imi $ieno de gli honori cele$ti, perche non tanto alle dignità loro, quanto al beneficio commune hanno riguardato, & non in un tem- po, in una età, in un $ecolo $olo, ma del continuo $ono, & $aranno $empre di perpetuo giouamen-</I> <foot><I>ZZ</I></foot> <pb n="348"> <I>to, & quanto è piu nobile, & piu pre$tante l'animo del corpo, tanto è piu degna la uirtu d'ogui altro bene. Felici adunque chiamar $i po$$ono quelli $aui, che con belle, & $ottili inuentioni s'han no procacciato quella lode, & quella gloria, il frutto dellaquale, è pa$$ato in eterno beneficio del mondo, & tanto piu, quanto ci hanno mo$trato le co$e nobili, & precio$eiche $i come è piu grato all'huomo, & piu giocondo uedere una minima parte delle loro amate co$e, che trattare le mem- bra di tutti gli altri corpi, co$i è piu degno $apere una minima ragione delle alte, & rimote co$e, che entrare nella cognitione di molte, che ci $ono famigliari. & però ben dice un poeta.</I> <p><I>Veramente felici, & fortunate Furon quell'alme, a quai prima fu dato Cono$cer co$e sì belle, e pregiate:</I> <p><I>Ben lor $ucce$$e quel pen$ier beato, Che fu di a$cender a i stellati chiostri, Et pareggiar con la uirtute il $ato.</I> <p><I>Questo è credibil, che gli horrendi mo stri I'ince$$er de gli errori, & ch'ogni gioco, La$cia$$er, che ammolli$ce i petti nostri.</I> <p><I>Non $caldò i cuori lor l'ardente foco Di Venere crudel, nè uino, o co$a Che impedi$$e il lor cor$o, o molto o poco.</I> <p><I>Non la turba del foro litigio$a, Non la dura militia, non la uana Ambitione di gloria pompo$a.</I> <p><I>L'ingordigia dell'oro empia e inhumana Non piegò punto gli animi di quelli, Ch'eran riuolti alla parte $oprana.</I> <p><I>Chiuorrà adunque comparare $imili huomini a gli Athleti? chi a gladiatori od'altri, che per uittorie, o beneficij pre$enti s'hanno obligati alcuni pochi? Meritamente adunque douemo con Vitr. giudicare, che gli inuentori delle utili, & belle co$e meritino piu presto gli honori celesti, che quelli, i quali a tempo de Greci fiorirono di gloria per le forze del corpo dimostrate in que giuochi, che ad honore di diuer$i Dei, & heroi co$i pompo$amente, & con tanto concor$o di popoli $i celebrauano, come erano i giuochi Olimpij in honore di Gioue, i Pithij in bonore di A- polline, i Nemei in honore di Archimoro, gli Isthmici in honore di Palemone. Ma la$ciamo quello, che in Vitr. è manifesto, & uegnamo ad alcune belle inuentioni di alcuni antichi $aui, & prima di Platone nel primo capo, poi di Pithagora nel $econdo, & in fine di Archimede, di Era- tosthene, & di Archita nel ter zo: auuertendo che questo nome di Gnomonica $i estende molto piu di quello, che Vitr. pote$$e intendere nel pre$ente luogo.</I> <HEAD><I>Il modo ritrouato da Platone per mi$urare un campo di terra. Cap. I.</I></HEAD> <p>SE il luogo ouero il campo di lati eguali $arà quadrato, & bi$ogno fia di nuo- uo con lati eguali raddoppiarlo, perche que$to per numeri, o per moltipli- catione non $i ritroua, però $i puo fare con emendate de$crittioni di linee. Et que$ta è la dimo$tratione. Certo è che uno quadro di dieci piedi per ogni lato, è piedi cento per quadro. Se adunque è bi$ogno di raddoppiarlo, & fare uno $patio di ducento piedi, & che $ia di lati eguali; egli $i deue cercare quanto $i deue fare un lato di quello quadrato, accioche da quello alli raddoppiamenti dello $pacio ri$pondino du- cento piedi. Que$to per uia di numeri niuno puo ritrouare: perche $e egli $i fa uno lato di quattordici pi edi moltiplicando uerrà alla $omma di cento nouanta $ei, $e di quindici farà ducento, & uenticinque: & però, perche que$to per uia di numeri non $i fa manife- $to, egli $i deue nel quadrato, che è di dieci piedi per ogni lato tirare una linea da uno an gulo all'altro in modo, che il quadrato $ia partito in due triangoli eguali, & cia$cuno de i detti triangoli $ia di piedi cinquanta di piano. Adunque $econdo la lunghezza della de- $critta linea egli $i deue fare uno piano quadrato di lati eguali: & co$i quanto grandi $aran no i due trianguli nel quadrato minore di piedi cinquanta, con la linea diagonale di$e- gnati, tanto con quello i$te$$o numero di piedi, nel quadrato maggiore $aranno de$critti <pb n="349"> quatrro ttiangoli. Con quella ragione (come appare per la $ottopo$ta figura) per uia di linee da Platone $u fatto il raddoppiamento del campo quadrato. <p><I>Qui non ci è altro che dichiarire per hora, e$$endo Vitr. da $e manifesto, & chiaro: impero- che il quadrato $i raddoppia tirando la diagonale, & di quella $acendo un lato del quadraio, che deue e$$er doppio al primo. Ecco il quadrato a b c d. da e$$ere raddoppiato, è di dieci piedi per lato. La diagonale è, a b. che lo parte m due trianguli a d b. & a c b. di piedi cinquania l'uno di piano. Della diagonale a b. $i fa un lato a b dfe. che è doppio al qua- drato a b c d. Puo ben e$$ere che la diagonale $i troui per uia di numeri, ma ci potranno an- che entrare de i rotti, ilche non è al propo$ito nostro. Egli $i ritruoua la diagonale a questo mo- do. Moltiplica due lati del quadrato in $e cia$cuno $eparatamente, & raccogli in$ieme tutta la $omma di quella moltiplicatione, & cauane di quella la radice quadrata, tanto $arà la diago- nale. Ecco $ia il quadrato a b c d. di piedi cinque per lato, moltiplica a b. in $e, cioè cin- que uia cinque fa uenticinque, & co$i farai del lato b c. che farà $imilmente uenticinque, che posti in$ieme col primo uenticinque produce cinquanta. la cui radice quadrata è</I> 7 1/14 <I>& di tanti piedi $arà la diagonale. $imilmente farai nelle altre figure quadre di anguli dritti, co me nella figura e f g h.</I> <HEAD><I>Della $quadra inuentione di Pitagor a per formare l'an- gulo giusto. Cap. II.</I></HEAD> <p>Pitagora $imilmente' dimo$trò la $quadra ritrouata $enza opera di artefice alcu- no, & fece chiaro con quanto grande fatica i fabri facendola, a pena la po$$o- no al giu$to ridurre. Que$ta co$a con ragioni, & uie emendata, da $uoi pre- cetti $i manife$ta: perche $e egli $i prenderà tre regole, una di piedi tre, l'altra di quattro, la terza di cinque, & que$te regole compo$te $iano, che con i capi $i tocchino in$ieme facendo una figura triangulare, condurranno la $quadra giu$ta; & alle lunghezze di cia$cuna regola, $i farà uno quadrato di lati eguali, dico, che del lato di tre piedi $i fa- rà un quadrato di noue piedi, & di quello, che $arà di quattro piedi $i farà uno quadrato di $edici piedi, & di quello, che $arà di cinque, $e ne farà uno di uenticinque, & co$i quan- to di $pacio $arà occupato da due quadri, l'uno di tre, l'altro di quattro piedi per lato, tan to numero di piedi quadri uenirà dal quadrato tirato $econdo il lato di cinque piedi. Ha- uendo Pitagora ritrouato que$to, nè dubitando di non e$$ere $tato in quella inuentione dalle Mu$e ammae$trato, riferendole grandi$sime gratie, $i dice, che a quelle $acrificio fece delle uittime: & quella ragione come in molte co$e, & in molte mi$ure è utile, co$i negli edificij per fare le $cale, acciochei gradi $ieno di proportionata mi$ura, è molto e$pe dita: perche $e l'altezza del palco da i capi della trauatura al liuello, & piano da ba$$o $arà in tre parti diui$a, la a$ce$a delle $cale $arà in cinque parti di quelle con giu$ta lunghezza de i fu$ti: perche quanto grandi $aranno le tre parti dalla $omma trauatura al liuello di $ot to, quattro di quelle $i hanno a tirare in fuori, & $co$tar$i dal dritto: perche a que$to mo- do $aranno moderate le collocationi de i gradi, & delle $cale: & co$i anche di tal co$a $a- rà di$egnata la forma. <p><I>Pone Vitr. la inuentione della $quadra, & l'utile, che $i caua da quella. Pitagora huomo diuino in molte co$e fu lo inuentore della ragione della $quadra, nel che egli trapa<02>ò digran lun- ga la inuentione di molti artefici eccellenti, & però merita grandi$$ima commendatione. La $qua dra $i fa di tre righe po$te in triangolo, $i che la lunghezza di una $ia di tre, dell'altra di quat- tro, della terza di cinque parti. da que$ta inuentione $i comprende, che facendo$i tre quadri per fetti, $econdo la lungbezza di cia$cuna rigail quadr o fatto dalla riga di cinque parti, $arà tan-</I> <foot><I>ZZ</I> 2</foot> <pb n="350"> <I>to grande, & capirà tanto, quanto i due quadri $atti dalle due altre righe, come $i uede per la fi- gura $otto$critta. L'u$o della $quadra in tutte $orti di fabriche, & di edificij è molto utile, & nece$$ario, & troppo $arebbe lunga co$a il ragionarne partitamente: ma in $omma que$to è, che lo angulo giu$to è mi$ura di tutte le co$e, la doue i Quadranti, i Raggi, i Triangoli, & ogni al- tro $trumento, col quale $i mi$ura l'altezze, le lunghezze, & larghezze, tutti hanno la lor uir tù nello angulo giu$to, che nella $quadra, che norma $i chiama è collocato: però Vitr. fuggendo la noia, ci porta $olamente un mir abile u$o di quella, che è po$to nel proportionare le $cale, & le $alite di modo, che $iano commode, & atte per montarui. Noi, perche delle $cale non haue- mo fatto mentione fin hora, ne ragionaremo al pre$ente. Il porre le $cale ricerca giudicio, & i$perienza piu che mediocre, perche è molto difficile di trouarle luogo, che non impedi$ca, o rub bi il compartimento delle $tanze, però chi non uuole e$$ere impedito dalle $cale, non impedi$ca egli le $cale, & proueda di darle un certo, & determinato $patio, accioche $iano libere, & di$- obbligate. perche a$$ai commode $aranno, la doue daranno meno incommodo. Qui $i ragiona delle $cale, & $alite de gli edificij, & non delle $cale, che $erueno all'u$o della guerra. Delle $ca le adunque $i hanno a con$iderare le maniere, il luogo, l'apriture, la figura, il numero de gradi, & la requie. Egli $i a$cende al di$opra o per gradi, o per $alite, & montate pendenti. Le montate $i u$ano ne i gran palagi, & ca$e regali, & $ono molto commode, perche la $alita $i fa a poco a poco, $enza grande mouimento, $pecialmente quando $i ha que$ta uia di farle piu piane, che $i puo, & a que$to modo $i fanno anche le $alite de i monti per opera de gli huomini. Ma quelle $cale, che hanno gradi deono e$$er $imilmente commode, & lumino$e. commode $aranno quan- do $i $eruerà la proportione della qual diremo, & $e daranno meno incommodo (come ho det- to) proportionate deono e$$er, & quanto a tutta la $cala, & quanto a i gradi; alche fare ci gio ua la ragione, & la figura po$ta da Vitr. Lumino$e $aranno, per la ragione detta altroue di pi- gliar i lumi, & per lo giudicio dello Architetto. Il numero de i gradi, & de i ripo$i (perche egli $i deue auuertire di non fare molti gradi $enza requie di mezo) è $econdo gli antichi, che non $i facciano piu di $ette, o noue gradi $enza un piano: sì per dar ripo$o a chi nel $alire $i $tancaua, sì perche cadendo alcuno, non cade$$e da luogo molto alto, ma haue$$e doue fermar$i. L'altez- za de igradi, & i piani, $i deono fare in modo, che quanto meno $i puo il piede $i affatichi alzan do$i: Non bi$ogna pa$$are le mi$ure di Vitr. date nel terzo libro, cioè farli maggiori, ma bene ci tornerà a propo$ito ne i priuati edificij accommodarli piu che $i puo. Le $cale a lumaca $pe$$o danno gran commodità a gli edi$icij perche non occupano molto luogo, ma $ono piu difficili, $e $i fanno per nece$$ità. Nella Lamagna per l'ordinario le $cale $ono ne gli anguli de gli edificij, il che è difetto$o: perche nè fine$tra, nè nicchio, nè $cala, nè apritura alcuna deue e$$er po$ta ne gli anguli delle ca$e, i quali anguli douendo e$$ere $odi$$imi, quando $ono aperti, s'indeboli$ceuo. In $omma il numero delle $cale non è lodato, perche è di molto impedimento a tutta la fabrica, & la moltitudine de i gradi aggraua lo edificio. Hanno le $cale tre apriture, una all'intraia dal piedi, l'altra doue $ono i lumi, la terza è la riu$cita di $opra. Tutte deono e$$ere ampie, & magnifiche, (intendo delle $cale principali $pecialmente) & qua$i deono inuitare le genti alla $alita. Però la prima entrata, & la bocca della $cala deue e$$ere in luogo, che $ubito $i ueda dentro della entrata. Il lume deue e$$er alto, perohe dia lume egualmente a tutti i gradi. Qui ci $erue la ragione dell'ombra, & $i troua che quella proportione, che hauerà l'ombra con tutta l'altezza della $cala, la mede$ma hauerà l'altezza d'un grado col piano d'un'altro. Lariu$cita deue riporci in luogo, che la $ala $i ueda tutta egualmente, & i lumi delle fine$tre ci uenghino nel mezo, & di numero di$pari, & $i cono$ch i lo incontro delle porte delle $tanze da una parte, & dall'altra della $ala: & tanto $ia detto delle regole delle $cale. Ma mirabilmente s'impara uedendo$i le co$e fatte da gli antichi, & i belli auuertiment i, che hanno hauuto: come $arebbe nel belli$$imo edificio della ritonda, doue le $cale, che uanno di dentro uia $e bene $ono a lumaca, però non uanno circolarmente, ma in triangolo, il che prouede a quelli, che gir ando pati$ceno</I> <pb n="351"> <fig> <pb n="352"> <I>per la debolezza del capo, la uertigine. Similmente i gradi, che uanno $u la tribuna didetto Tempio hanno i loro piani piegati in entro, perche $e uno di$cendendo cade$$e, hauendo il calca- gno piu ba$$o, che la punta del piede, fu$$e forzato a dare in dietro, & non cadere inanzi. Bel- lc $ono anche le $cale di alcuni moderni. come $i uede nel mirabile palazzo d'Vrbino, & anche in Roma le $cale del palazzo. & altroue, che ci portano molto lume, & ci fanno molto auuer- titi. Hora quanto appartiene a Vitr. dico, che egli uuole, che dalla $quadra $i prenda la mi$u- ra della $cala. Imperoche dal $olaro al piano, per linea perpendicolare uuole, che lo $patio $ia diui$o in tre parti, & di doue cade il piombo $i tiri una linea in fuori, che $ia diui$a m quattro parti eguali cia$cuna a cia$cuna delle tre. Se adunque dall'altro capo del piano, $arà tirata una Linea alta $ommit à della perpendicolare, che $ia di cinque parti, allhora compartendo$i i gradi$o pra quella, $arà la $cala commoda, & proportionata, come ci mo$tra la figura. Delle $cale a lumaca doueria $imilmente Vitr. hauerne ragionato, $e qui fu$$e $tato il luogo $uo. Maquello, che egli ha detto delle $cale è $tato per occa$ione, & per dimo$trare, l'u$o della $quadra; & $e be ne altroue non ne ha detto, non però ci ha la$ciato $enza occa$ione di potere da noi trouare il mo do di farle. Conuengono le $cale dritte con le torte nella mi$ura, & commodità de igradi: con- uengono nelle apriture, & in altre co$e, ma que$ta è la differenza, che il fu$to delle $cale dritte, che è detto, Scapo, da Vitr. è una linea dritta, che dalla $ommità al piano di$cende, come hipo- tenu$a, o diagonale: ma il fu$to delle $cale a lumaca è dritto a piombo, & d'intorno a quello, co- me ad un perno $ono i gradi, benche anche $ifacciano le lumache $enza fu$to. Que$te $cale erano fatte da gli antichi per$alire a luoghi alti<02>imi, come $ono colonne, piramidi, & altri grandi$$i- mi ed ficij. Lapianta delle lumache è come una uoluta, la eleuatione $i fa da certi punti della uoluta. però Alberto Durero ce la in$egna nel primo libro della $ua Geometria. Noi hauemo me$- $o la figura, & la pro$pettiua, in$ieme con le $opradette dimo$trationi.</I> <HEAD><I>Come $i po$$a cono$cer una portione d'argento me$- colata con l'oro finita l'opera. Cap. III.</I></HEAD> <p>Es$endo $tate molte, & merauiglio$e inuentioni quelle di Archimede, di tutte con infinita $olertia, quella, che io e$ponciò, pare, che troppo $ia $tata e$pre$$a. Imperoche Ierone nobilitato della regia pote$tà nella città di Sira- cu$a, e$$endogli le co$e pro$peramente $ucce$$e, & hauendo deliberato di por re al Tempio una corona d'oro uotiua, & di con$ecrarla a i Dei immortali, per grandi$- $imo pretio la diede a fare, dando a colui, che $i pre$e il carico di farla, a pe$o la quantità dell'oro. Que$ti al tempo debito approuò al Re l'opera $ottilmente fatta con le mani, & parue che al giu$to pe$o dell'oro re$titui$$e la corona. Ma poi, che fu inditiato, che leuatone una quantità di oro, altrettanto di argento in quella po$to haue$$e, Ierone $de- gnato di e$$ere $tato sbeffato, nè potendo hauere la ragione, con che egli $copri$$e il fur- to, pregò Archimede, che prender uole$$e la cura di ricono$cere il fatto, pen$andoui molto ben $opra. Hauendo$i Archimede allhora pre$o il pen$iero di que$to, per ca$o en trò in un bagno. Et iui nel $oglio di$ce$o gli uenne ueduto, che quanto del corpo $uo ci entraua dentro, tanto di acqua fuori del $oglio ne u$ciua. per il che hauendo ritrouato la ragione di potere dimo$trare la propo$ta, non dimorò punto, ma uicito con grande al legrezza del $oglio, & andando ignudo uer$o ca$a, dim o$traua ad alta uoce d'hauere ritro uato quello, che egli cercaua, perche correndo tutta uia gridaua in Greco. Eurica, Eu- rica, cioè io ho trouato, io ho trouato. Dapoi che egli hebbe l'ingre$$o di quella inuentio ne, fece due ma$$e di pe$o eguale cia$cuna alla corona, delle quali una era d'oro, l'altra di argento, & hauendo que$to fatto, empì fin all'orlo d'acqua un ampio ua$o, & prima ui <pb n="353"> po$e dentro la ma$$a dello argento, della quale, quanto entrò di grandezza tanto ne u$cl di humore, co$i trattone la ma$$a rifu$e tanta acqua, che riempi$ce il ua$o, hauendola col $e$tario mi$urata, $i che all'i$te$$o modo di prima s'agguaglia$$e collabro. Et da quello egli ritronò quanto ad un terminato pe$o d'argento certa, & determinata mi$ura d'acqua ri$ponde$$e. Et hauendo que$to prouato depo$e la ma$$a dell'oro nel ua$o $imilmente pieno, & trattala fuori, con la i$te$$a ragione aggiuntaui la mi$ura, trouò, che non ci era u$cita tanta acqua, ma tanto meno, quanto in grandezza del corpo con lo i$te$$o pe$o era la ma$$a dell'oro minore della ma$$a di argento in fine riempito il ua$o, & po$ta nella i$te$$a acqua la corona, trouò, che piu di acqua era u$cita fuori per la corona, che per la ma$$a dell'oro dello i$te$$o pe$o. & co$i facendo la ragione da quello, che era piu dalla corona, che dalla ma$$a u$cito cópre$e, che iui era me$colato l'oro con l'argento, & fece manife$to il furto di colui, che s'haueua pre$o il carico di far la corona. <p><I>Il fuoco tra tutti gli elementi è leggieri<02>imo, perche (come s'è detto nel $econdo libro) a tutti gli altri $opra stà. Graui$$ima è la terra, perche a tutti gli altri $ottogiace. L'aere, & l'ac- qua non $ono a$$olutamente graui, nè lieui, ma in ri$petto. Perche l'aere all'acqua $opra$cende. alfuoco di$cende; l'acqua $ale $opra la terra, & cala nello aere. Similmente le co$e compo$te de gli elementi hanno quel mouimento, che loro dà quello elemento, che preuale nella compo$i- tione. La doue le co$e, che nell a mistura loro hanno piu dell'aere, o del fuoco, a$cendeno, co- me $ono i fumi, i uapori, le $cintille, il fuoco materiale qua giu, & altre exhalationi, & $piriti. Male co$e, che hanno in $e piu di acqua, o di terra, $imuoueno a quella parte doue l'acqua, o laterra le inclina. Oltra di que$to ogni elemento nel $uo luogo naturale ripo$a, come l'acqua nel luogo dell'acqua, la terra nel luogo della terra, & $imilmente gli altri. Que$ta compara- tione non riguarda alla quantità del pe$o, ma alle $pecie della grauità. Perche altro è a dire, che una gran traue pe$a piu, che una lametta di piombo, altro, che il piombo $ia piu graue del legno. Perche $e bene la traue è maggiore in quantità di pe$o, è però in quanto alla $pecie di graui- tà piu leggieri, percioche uedemo il piombo nell'a cqua di$cendere, & il legno $opranotare. Ac- cioche adunque egli $i po$$a $apere le $pecie della grauità, è nece$$ario pigliare grandezze eguali di corpi perfetti, & $e egli $i trouerà, che $iano dipe$o eguale, egli $i potrà dire, che $iano m $pecie egualmente graui. Ma$e una qual $i uoglia di quelle grandezze eguali $arà di pe$o maggio re, $enza dubbio $i potrà affermare, che il corpo di e$$a $arà di $pecie piu graue. Ecco lo e$$em- pio. Prendi tanto dimarmo quanto di legno o di acqua: Io dico, che quanto alla grandezza, ue derai, che il marmo pe$a piu che il legno, o l'acqua, & il legno leggieri$$imo, perche stà $opra l'acqua, il marmo graui<02>imo, perche di$cende nell'acqua. Però $i puo concludere, che l'acqua $ia piu lieue del marmo, ma del legno in $pecie piu graue. La onde di due corpi diuer$i, & d'uno iste$$o pe$o, quello $arà maggiore di grandezza, che di $pecie $arà piu lieue di pe$o. Et però di due ma$$e una d'oro, l'altra d'argento, che $iano di pe$o eguale, la ma$$a di argento $arà di mag- gior grandezza. Da questa ragione aiutato Archimede $coprì il furto dell'orefice. Percioche po$e cia$cuna ma$$a $eparatamente in un ua$o pieno d'acqua, & mi$urò quanto d'acqua era u$ci- ta del ua$o per l'una, & per l'altra ma$$a, & uedendo, che per la ma$$a d'argento era u$cita piu acqua, che per la ma$$a d'oro, imperoche era di grandezza maggiore, pre$e la corona lauo- rata, della quale egli a richie$ta di Ierone faceua la proua. La quale era pari di pe$o a cia$cu- na delle due ma$$e, & la po$e nel ua$o, del quale u$cì piu acqua per la corona, che per la ma$$a d'oro, & meno, che per la ma$$a d'argento. & regolato per la regola delle proportionali, co- gnobbe non $olamente la corona e$$ere stata fal$ificata, ma anche di quanto era ingannato Iero- ne. La occa$ione, che egli hebbe di $i bella inuentione fu l'acqua, che u$ci del ua$o, che Vitr. chiama, Solium, quando egli entrò nel ua$o per lauar$i. & però mo$$o da quel piacere, che $uol partorire la inuentione, (come dice Vitr. nel primo libro al terzo capo) nudo correndo gridaua in Greco. Eurica, Eurica, cioè ho trouato, ho trouato.</I> <pb n="354"> <p>Hora transfcriamo la mente a i pen$ieri di Archita Tarentino, & di Eratho$tene Cire- neo, perche que$ti huomini hanno ritrouato molte co$e dalle mathematice grate a gli huo mini. Et benche habbian piacciuto nelle altre inuentioni, niente di manco nel conten- dere di una $ono $tati $o$petti. Percioche cia$cuno con diuer$a ragione $i è forzato di e$pli care quello che Apollo nelle ri$po$te in Delo haueua comandato: cioè, che raddoppiato fu$$e il numero de i piedi quadri, che haucua il $uo altare, donde ne $arebbe auuenuto, che chiunque $i haue$$e in quella i$ola ritrouato, fu$$e allhora dalla religione liberato. Et però Archita con le de$crittioni de i cilindri, Erato$thene con la ragione in$trumentale del me$olabio e$plicorno la i$te$$a co$a. <p><I>Dice Vitru. che lc inuentioni di Archita, & di Erato$thene $ono $tate grate a gli huomini, ma trattando amendue una que$tione i$te$$a, & forzando$i cia$cuno per diuer$e uie ri$oluerl a, hanno dato $o$petto: non perche una qui$tione non $i po$$a $ciogliere a diuer$i modi: ma perche le genti che non $anno, uedendo, che Archita u$aua una uia, & Erato$thene un'altra, $o$pettauano per la loro concorrenza, pen$ando che guerreggia$$ero a proua. come $e uno piglia<02>e l'altezza d'una torre col quadrante, l'altro con lo $pecchio, il terzo con due dardi, & l'altro in $omma con l'A- $trolabio, o con il raggio mathematico, non $apendo il uulgo, che di tutti que$ti, & altri in$tru- menti fu$$e una ragione i$te$$a, pre$a dalla proprietà, & forza de gli anguli, $o$picherebbe, che quella concorrenza de i mi$uratori non intrica$$e il uero, con la diuer$ità de gli in$trumenti. Il medefimo auuenne dalla concorrenza di Archita, & d Erato$thene. La proposta era come $i doue$$e raddoppiare un cubo. Cubo è corpo (come ho detto nel proemio del quinto libro) di $ei faccie, & di $ei lati eguali, come un dado; & $i mi$ura, moltiplicando uno de' $uoi lati in $e $te$$o, & di nuouo moltiplicando il prodotto per lo iste$$o lato. come per e$$empio $i uede. Dato ci $ia il cubo di cui cia$cuno de i lati $ia otto: moltiplica otto in $e, ne uiene $e$$anta quattro, molti- plica poi $e$$antaquattro per otto, ne uiene cinquecento & dodici, & tanti piedi cubi $aranno nel detto cubo. Hauendo$i adunque formato il cubo di cinquecento & dodici piedi, bi$ogna $e- condo la dimanda raddoppiarlo. Alche fare cio $erue il $apere come tra due linee dritte, & di- $eguali, che ci $aranno propo$te, ne po$$iamo trouare due altre di mezo, che habbiano continua- ta proportione tra $e, & con le prime.</I> P<I>er uolere adunque trouare queste linee proportionate, undici modi ci $ono $tati propo$ti da gli antichi. Altri hanno u$ato le dimostrationi mathemati- che $olamente, altri anche hanno alle dimostratio ni aggiunti gli in$trumenti. Que$ti in$trumenti conueniuano nel nome, perche me$olabio era nome commune, che $ignifica instrumento da pi- gliare il mezo, imperoche con quello instrumento $i trouano le linee proportionali di mezo alle proposte. Archimede adunque usò lo me$olabio, & Platone $imilmente. Archita fece alcune dimo$trationi per uia di $emicilindri, che fu giudicato e<02>er impo$$ibile a farne in$trumento, ben- che io ne ho ueduto, $econdo la dimo$tratione di Archita molto ben fatti, & commodi all'u$o. Io e$ponerò & le dimo$trationi, & gli in$trumenti, & mo$trerò come nel raddoppiamento del cu bo, ci $erue la inuentione delle due proportionali proponendo prima la occa$ione di $i bella diman da: nellaquale $i comprenderà l'utile grande, che $ono per prendere gli Architetti dalla inuentio- ne, & dal $apere le dimo$trationi, & dall'u$o di $i belli $trumenti. Egli $i legge una Epi$tola di Erato$thene al Re Ptolomeo $critta in que$to modo.</I> <HEAD>AL RE PTOLOMEO ERATOSTHENE SALVTE.</HEAD> <p><I>Egli $i dice, che uno de gli antichi compo$itori di Tragedie introduce Minos a fabricare il $e- pulcro a Glauco: & hauendo$i detto, che quello era di cento piedi per ogni lato, ri$po$e, que$ta è picciola arca per un $epulcro regale. $ia dunque doppia, & non $i muti il cubo. ueramente chi uorrà raddoppiare ogni lato in larghezza del $epulcro, non parerà e$$er fuori di errore; perche $e $i raddoppieranno i lati, ogni piano riu$cirà quattro piu, & il $odo otto piu. Fu adunque diman-</I> <pb n="355"> <I>dato a i Geometri, in che modo stando quel $odo nella i$te$$a figura, $i pote$$e raddoppiarlo. & que$ta dimanda fu detta. il raddoppiamento del cubo. imperoche propo$togli un cubo, cercaua in che modo pote$$ero farne un doppio a quello. Stando adunque molti lungamente in dabbio, pri- mo fu Hippocrate Chio, ilquale pensò, che $e egli $i trouaua, come propo$te due linee dritte, delle quali la maggiore fu$$e doppia alla minore, $i piglia$$e due altre di mezo proportionate in conti- nua proportione, che ageuolmente $i raddoppiarebbe il cubo. per ilche la difficultà di doppiare il cubo, & il dubbio propo$to addu$$e i mathematici, & gli auuol$e in una maggiore. Non mol- to dapoi, $i dice, che e$$endo a gli habitatori di Delo, che erano appe$tati, dall'oracolo impo$to, che raddoppia$$ero un certo altare, $i uenne nella i$te$$a dubit atione & e$$endo ripre$i i geometri da Platone nell' Academia, che $i pen$a$$ero di ritrouare quello, che era propo$to, quelli molto piu uolentieri $i diedero alla fatica, & ritrouorno, che propo$te due linee bi$ognaua ritrouarne due altre di mezo. $i dice, che Archita Tarentino ritrouò la propo$ta per uia di $emicilindri, Eu doxo per linee piegate; Auucnne inuero, che que$ti tutti con dimo$trata ragione de$criue$$ero la $cientia del ritrouare come tra due date linee dritte $ene pote$$ero dare due in continua proportio ne. ma non ritrouarono però come que$to $i pote$$e ageuolmente operare con mani, & u$are con in$trumenti: eccetto Menechmo, ilquale breuemente, & con o$curità ritrouò non sò che. Ma noi ci hauemo imaginato una facile inuentione, per uia d'in$trumenti, con laquale non $olamente $i potranno ritrouare due linee di mezo a due propo$te & dritte in continua proportione, ma quante ci $ara in piacere di ritrouare. con que$ta inuentione, adunque potremo ridurre in cubo ogni corpo $odo propo$to, che $ia $otto linee parallele contenute, & $imilmente transferite da corpo in corpo, & farne un $imile, & accre$cerlo quanto ci piacerà, o$$eruando $empre la i$te$- $a $imiglianza: per ilche & i Tempij, & gli altari. potremo anche & a mi$ura ridurre le mi$ure delle co$e liquide, & aride, come le metrete, i moggi, & al cubo transferirle con i lati de i qua- li $i mi$urano i ua$i capaci delle co$e liquide, & delle $ecche, accioche $i $appia quanto tengono. In $omma la cognitione di que$ta dimanda, è utile, & commoda a quelli, che uogliono raddop- piare o far maggiore tutti quelli $trumenti, che $ono per trarre dardi, pietre, o pali di ferro: per- cioche egli è nece$$ario che ogni co$a cre$ca in larghezza, & grandezza con proportioni, o $ia- no fori, ò nerui, che ci entrano, o quello che occorre. $e pur uolemo, che il tutto cre$ca con pro- portione. Ilche non $i puo fare $enza la inuentione del mezo. la dimo$tratione adunque & l'appa- rato del detto in$trumento ti hò qui $otto de$critto, & prima la dimo$tratione.</I> <p><I>Siano propo$te due linee dritte, & di$eguali, a b. & c d. cerchiamo tra que$te due ha- uerne due di mezo, che $iano in continua proportione, cioè che $i come $i ha la prima alla $econ- da, co$i egli $i habbia la $econda alla terza, & la terza alla quarta. faccian$i cadere le due li- nee dritte a b. & c d. ad anguli giusti $opra la linea b d. & delle propo$te $ia maggiore la linea a b. & minore la c d. & dallo a al c uenga una linea, che tirata piu oltre ca- da $opra la linea b d. nel punto e. uenghi anche dal punto. a. $opra la linea b d. una li- nea & $ia quella a f. & dal punto f. $ia tirata una linea parallela alla linea a b, & $ia quella, f g. che tagli la linea a c. nel punto g. $ia poi dal punto g tirata una linea al punto h. parallela alla linea a f. & $ia quella g h. che tagli la linea b d nel punto h. $opra ilqual punto $i drizzi una linea parallela alla linea a b, & $ia qnella h i. che tagli la linea a c. nel punto i. dal qual punto di$cenda una linea egualmente di$tante alla linea a f. & termini nel punto d. Fatto que$to per maggiore e$pre$$ione chiameremo le linee a b. f g. h i. c d. le prime parallele, & le linee a f. g h. d i. le $econde parallele. $imilmente, ci $ono due gran triangoli l'uno è lo a b c. che ha lo angulo b. giu$to. l'altro è lo a f e. quel- lo $i chiamerà primo triangulo, que$to $econdo triangolo. nel primo adunque ci $ono quelli trian- goli fatti dalle prime parallele, & $ono, g f e. i h e. c d e. que$ti, perche $ono di anguli eguali, come $i ha per la uige$ima nona del primo di Euclide, ha mo i lati proportionali come $i haper la quarta del $e$to. $imilmente perche i $econdi triangoli fatti dalle $econde parallele $o-</I> <foot><I>AAA</I></foot> <pb n="356"> <I>no di lati eguali, $cnza dubbio haueranno i lati proportionali. Adunque, $i come nelle prime parallele hanno proportione tra $e a e. ad a g. co$i hanno b e. ad e f. & $i come a c. ad e g. $i hanno nelle $econde parallele, co$i f e. ad e h. & di nuouo come nelle prime f e. ad e h. co$i g e. ad c i. ma nelle $econde parallele come g e. ad e i. eo$i b c. ad e d. $ono adunque continue proportionali b c. e f. h e. e d. per la i$te$$a ragione$i di- mo$tra, che $ono continue proportionali, anche a b. f g. h i. d c. perche $i come $i ha b e. b f. co$i $i ha a b. ad f g. & come f e. ad e h. co$i f g. ad h i. & come h e ad e d. co$i h i. à c d. Date adunque due dritte linee a b. & c d. ritrouato baue- mo due di me zo continue proportionali, che $ono, f g. & h i. ilche era nostra intentione di fare. Que$ta è la opinione di Erato$thene cerca la dino$tratione: & $e bene egli uuole, che la li- nea a b. & la c d. $iano ad angoli dritti $opra la linea b d. non è però, che non $egua la i$te$$a conclu$ione in qualunque modo l'una, & l'altra linea cada $opra la linea b d. pure che amendue facciano angoli $imiglianti, & $iano per $imili cadimenti egualmente di$tanti: perche tutto è fondato $opra que$ta ragione, che, di quelli triangoli, che hanno gli angoli eguali, i lati$o no proportionali. In $omma $e noi uorremo trouare piu di due linee proportionali tra le due da- te a b. & c d. bi$ognerà $econdo il $opradetto modo formare piu linee parallele, sì delle prime come delle $econde. Ma lo in$trumento col quale $i po$$a formare co$i bella proua $econ- do Erato$thene è que$to. Piglia una piana di legno, o di rame piu lunga, che larga di figura qua- drangulare, & d'angoli dritti. & $ia per e$$empio la tauola a b d c. aeconcid poi tre lamet- te $opra di quella di q ualche materia $oda $ottile, & polita, che $iano quadrangolari, & di an- guli dritti, di modo, che una di quelle $ia ferma nel mezo della piana, $i che non $i po$$a mouere nè alla de$tra, nè alla $ini$tra, & $ia quella. e f g h. habbia poi que$ta lamett a ne gli angoli $uoi, ne i punti e. & f. fitte due regole con i $uoi pironi in modo, che cia$cuna $i po$$a uolge- re in ogni uer$o, & $ia una regola e m. & l'altra f n. ma l'altra lametta $ia K d e. che $ia con le te$te $ue in un canale nella piana $i che po$$a $correre uer$o la lametta e f g h. & anche a rimouer da quella, $i che habbia i lati $uoi paralleli al lato f h. della lametta ferma; tenga que$ta lametta K d c. $opra il punto</I> K. <I>una regola, che $i po$$a uolgere & alzare, & abba$$are, come le altre & $ia quella K o. & po$$a e$$er parallela con le altre re- gole. & i loro communi tagli, che fanno con la a g. f h. & l. $iano nella i$te$$a dritta li- nea, m n o l. $imilmente la a m. $ia eguale alla d K. perche la a m. in$en$ibilmente auanza la d K. E$$endo que$te co$i ordinate tra due linee a b. & c d. $i danno due di me- zo in continua proportione, che $ono e n, & f o. per le $opradette ragioni. Ma $e per $orte le due propo$te linee, come $arebbe la s. & la t. allequali bi$ogno $ia ritrouarne due di mezo in continua proportione, non $aranno eguali a quelle linee, che $ono nello instrumento, a b & r d. faccia$i col mouere $econdo il bi$ogno la lametta h d c. tirandola uer$o la lametta fer- ma, o allargandela, & ponendola $empre egualmente distante: faccia$i dico, che $i come $i ha la s, alla t. co$i $i habbia la a b alla r d. cioè $e $aranno la s, & la t tra $e in proportio- ne doppia, o tripla, o $e$quialtera, co$i $iano tra $ela a b & la r d. perche alla a b. & r d. che $ono nello instrumento ritrouate, ritrouate $i $ono due di mezo proportionate, $eguita, che alla s & alla t. proposte trouate $aranno due di mezo in continua proportione. Quanto piu adunque artificio$o $arà lo in$trumento, & ben fatto, tanto piu facilmente ci$eruirà a ritro- uare le due proportionali; però le teste delle lamette, che $i moueno entreranno ne i loro canali a$$ ettate, & $i moueranno dolcemente. Et $e alcuno uorrà trouare piu di due linee proportio- nali, egli potrà con la aggiunta di piu regole, & lamette farlo commodamente. & questa è $ta- ta la inuentione di Eratosthene. Bi$ogna però auuertire, che le regole $iano lunghe, perche quan do bi$ogna allargare le lamette po$$ino aggiugnere a i tagli delle linee, che $i uorranno proportio- nare, & to cchino il lato $uperiore dello instrumento, come e m, f x, K u. anzi per dir me- glio $iano tanto g randi quanto $arebbe la diagonale della lametta e f g h, ouero poco piu.</I> <pb n="357"> <I>Re$ta di dire con piu chiarezza, & facilità, come $i debbia u$are que$to instrumento, cioè come con e$$o $i po$$a tra due linee dritte ritrouarne due altre o piu proportionate, $econdo la mente di Erato$thene, & prima tra due due, & poi tra due piu proportionali. Siano due linee dritte, a b. c d. cadino amendue $opra una dritta in modo, che $iano parallele. & tanto $i aggiugna alla linea c d, che ella $ia pari alla linea a b, il cui capo $ia e, & dallo a $ia tirata una linea fin allo e. $iche $i faccia una $uperficie quadrangulare. a b c. parti$ca$i poi la linea b c. in tre parti, una dellequali $ia la doue è la f. & alquanto piu inanzi dal punto f $ia $egna- to il punto. g. di modo, che dal b al g. $ia alquanto piu d'un terzo della linea b c. $imil- mente nella linea a c. $ia $egnato un punto tanto distante dallo a, quanto è il g. dal b. & $ia quello h. & $i leghi poi il g. con lo a. & conlo h. & lo a. con il d. & la g h, tagli la a d nel punto. i. $imilmente $i tagli tanto della linea a b. quanto è dal g. allo i. & $ia quello $pacio b K, & dallo i al K. $i tiri una linea fin'al toccamento della linea g a. & $ia iui $egnato l. & perche per la trente$ima terza del primo d'Euclide la linea a b. è parallela alla linea g i h. & per lo pre$upposto nostro le linee g i. & b h $ono eguali, ne $egue, che la linea b g, $ia parallela alla linea i l. Oltra di questo delle linee g c. & h e. $i leuino due parti eguali alla parte i l. & $iano quelle g m. & h n. & $iano con- giunte i m. & m n. per la allegata propo$itione g l, & m i $aranno parallele. & $imil mente g h. & m n. Tagli anche la linea m n, la a d nel punto o. & $ia pre$o tanto della linea b K, quanto è m o. & $ia quella parte b p. & dal punto o. uer$o il punto p. $ia tirata una linea, finche ella tocchi la linea. i m. nel punto. q. $e adunque la linea m e $arà eguale alla o q. egli $tarà bene. ma $e la m c. $arà minore, adunque la b g $a- rà $tata pre$a maggiore del giusto. però bi$ognerà pigliare la b g alquanto minore; & $arà da ripigliare la i$te$$a de$crittione, & tanto e$perimentare, che la parte o q $ia eguale alla m c. $ia adunque la m c. eguale alla o q. adunque $aranno parallele c o. & m q. per lo pre$uppo$to & per la trente$ima del primo de gli elementi. finalmente le a b. g i. mo. c d. $aranno le prime parallele. ma l' a g. m i. c o. le $econde. Dico che alle linee a b. c d le di mezo proportionali $aranno g i. & m o. $iano adunque la a d & b c. tira- te in lungo, & cadino in$ieme nel punto r. & perche per la $imiglianza de i triangoli $i como è la a r. alla r i. nelle prime parallele co$i è b r ad r g. oltra di questo alle $econde pa- rallele, $i come è la a r. alla r i. co$i la g r. alla r m. & nelle prime parallele $i come è la g r. alla r m. co$i la i r alla r o, & nelle $econde parallele come la i r alla r o. co$i la m r. alla r c. $ono adunque continue proportionali b r. r g. m r. r o. Ma $ot- to la i$te$$a proportione anche è per la quarta del $e$to de gli elementi, che $i come è la a b alla g i co$i la g i alla m o. & la m o alla c d. Tra due dunque dritte linee da to a b. & c d. $i $ono trouate due continue proportionali di mezo, come bi$ognaua di $are. & con $imili ragioni potremo ritrouarne quante uorremo. & però per trouarne qui due di mezo pro- portionali la b f. $arà un terzo della b c, per che la b g, è alquanto piu del terzo della b c. & non mai minore, nè eguale alla b f. & per trouarne tre di mezo proportionali, la b f $arà un quarto della b c. & la b g alquanto maggiore della b f. & per trouarne quattro la b f $arà un quinto della b c, & la b g $arà alquanto maggiore della b f. cioè un quinto di e$$a b c, & co$i $empre la b c. $arà partita in una parte piu di quello, che $ono le linee mezane, che trouar uorremo, & $empre la b f $arà una di quelle parti, & la b g. al- quanto maggiore che la b f. & però $i piglia la parte b f. che $ia a punto tante fiate della b c, accioche piu pre$to $i po$$a conietturare la grandezza della b c.</I> <p><I>Quanto appartiene ad Archita dico, che la inuentione è difficile, & la dimostratione molto $ottile, di modo che molti hanno negato poter$i ritrouare in$trumento conforme a quella dimo$tra tione. N oi con quella facilità, che potremo dimo$treremo la propo$ta, i fondamenti dellaquale $ono $par$i in molte propo$itioni, & Theoremi di Euclide, lequali propo$itioni è nece$$ario ha-</I> <foot><I>AAA</I> 2</foot> <pb n="358"> <I>uerle per certe, perche troppo $arebbe il $ciogliere ogni anello di $i gran catena. Date ci$iano due linee dritte, & $ia la a d maggiore, & la c. minore. Tra lequali bi$ogna ritrouarne due di mezo proportionali. Prendiamo adunque la maggiore, d'intorno laquale $i faccia un circo- lo a b d f, nel qual circolo per la prima del terzo d'Euclide, $i accommoderà una linea egua- le alla linea c. che $ia a b. laquale $i $tenda tanto oltre il circolo, che peruenga al punto p. il qual punto $ia lo estremo d'una linea, che de$cendendo tocchi il circolo nel punto d. & pcr- uenga al punto o. & $ia quella linea p d o. & a questa ne $ia tratta una egualmente di$tan te, che tagli la linea a d nel punto c. intendi$i poi uno $emicilindro po$to dritto $opra il $e- micircolo a b d. intendiamo poi $opra il parallelogrammo del $emicilindro $opra a d. che $ia de$critto uno $emicircolo, ilquale come uno parallelogrammo del $emicilindro detto $ia ad an goli dritti $opra il piano del circolo a b d f. que$to $emicircolo girato dal punto, d al pun- to b. $tando fermo nel punto. a. che è termine del diametro a d, nel $uo girare taglierà quel la $operficie cilindrica, & de$criuerà una certa linea. Oltra di que$to $e $tando ferma la linea a d il triangolo a p d. mo$$o farà un moto contrario al $emicircolo, $enza dubbio egli de$cri uer à una $operficie conica della linea dritta a p. laquale nel girar$i $i congiugne in qualche pun to di quella linea, che poco auanti fu de$critta mediante il mouimento del $emicircolo nella $oper- ficie del $emicilindro. $imilmente ancheil b. circon$criuerà un $emicircolo nella $operficie del cono. & finalmente il $emicir colo a d e habbia il $uo $ito dapoi, che egli $arà mo$$o la doue cadendo concorreno le linee. & il triangolo, che $i moue al contrario habbia il $ito d l a. $ia il punto del detto concadimeuto</I> k. <I>$ia anche per b de$critto un $emicircolo b m f. & la doue $i taglia col $emicircolo b d f a, $ia b f. indi dal punto</I> k. <I>a quel piano, che è del $emicircolo b d a, cada una perpendicolare: certoè, che caderà nella circonferenza del cir- colo, perche il cilindro fu drizzato nel piano dello i$te$$o circolo. Cada adunque, & $ia</I> k <I>i. & quella linea, che uiene dallo i. nello a. $ia congiunta con b f, nel punto. h. Ma perche l'uno & l'altro $emicircolo d</I> k <I>a, & il b m f. è drizzato $opra il piano del circolo a b d f. però il loro taglio commune m h. $tà ad angoli giu$ti $opra il piano del circolo a b d f. adunque quello, che è $otto b h f. cioè $otto a h i. è eguale a quello, che uiene da h m, adunque per la conuer$ione del corolario della ottaua del $e$to de gli ele- menti, l'angulo a m i. è dritto. & il triangolo a m i. è $imile all'uno, & all'altro de i triangoli m a h. & a K d. & perche lo angulo d K a. è giusto per la trige$ima prima del terzo de gli elementi, perche per lo pre$uppo$to egli è dentro nel $emicirculo</I>; <I>& ($i come è stato fatto manifesto) lo angulo a m i. è giusto. adunque per la uige$imanona del primo de glielementi d K. & m i. $ono parallele. & per la i$te$$a propo$itione</I> k <I>i, m h. $ono pa- rallele, percioche per lo pre$upposto, & per quelle co$e, che $ono $tate dim<*>$trate K i. & m b. $ono perpendiculari, & ad angoli giusti al piano del circolo a b d f. adunque egli è pro- portionale, che $i come è d a. ad a K. co$i $ia K a. ad a i. & i a ad a m. perche i triangoli da</I> K. K <I>a i. i m a. $ono $imili per la quarta del $esto de gli elementi. con$e- guentemente adunque le quattro linee d a. a K. a i. & a m. $ono in continua proportio ne, & perche la a m. è eguale alla a h. la a m. $arà eguale alla <*>. per la commune $en- tentia, che dice, che le co$e, che $ono eguali ad una co$a, $ono eguali tra $e. Date adunque due dritte linee a d. & c. $ono state ritrouate due di mezo propoi tionali, che $ono a</I> K. <I>& a i. il che bi$ognaua fare. Ma pare a me, che piu pre$to ci $erua lo in<*>rumento, che la dimo$tra tione, però imaginamo un circolo fatto nel piano come a b d f. & che$opra ad anguli drit ti ui cada uno $emicilindro, il quale $i po$i $opra il diametro a c d. <*>el detto circolo, & che nel punto a. $ia dritto uno $cmicircolo, che fermato nel detto punto a. $i giri, & $i entri & e$ca nel $emicilindro $econdo il taglio, che egli farebbe, & che di $opr a ui $ia un triangolo, oue- ro una quarta di circolo, dalla quale cadano le linee $econdo il bi$ogn<*>, & co$i $i farà lo instru- mento, come ho ueduto da quelli ualent'buomini da Roma. & perch e quelli $econdo le loro bel-</I> <pb n="359"> <I>le inuentioni daranno in luce, & questa, & altre belle co$e, io la$cierò il carieo a loro di publi- carle, hauendone molte gratie. Hora uenirò alla dimo$tratione, & allo in$trumento di Platone. Lega adunque le due dritte, tra le quali uuoi trouare le due di mezo proportionali ad angolo drit- to nel punto b. $ia la maggiore b g. & la minore e b. Allunga poi l'una, & l'altra fuor dello angolo b. la maggiore uer$o il d. & la minore uer$o il c. Et fa due anguli dritti trouan do il punto c. & il punto d. nelle loro linee conuenienti, & $ia uno angulo g c d. & l'al- tro c d e. dico, che tra le due dritte e b. & b g. hauerai proportionate due altre linee, che $ono b d. & b c. perche hauemo pre$uppo$to, che lo angolo e d c. è dritto, & la e a. e$$er parallela alla c g. però ne $egue per la uente$ima nona del primo, che lo angolo g c d. $ia giusto, & eguale allo angolo c d e. il quale $imilmente pre$upponemo e$$er giusto. ma la d b. per lo nostro componimento cade perpendicolare $opra la c b e. $imilmente la c b. è perpendicolare alla d b g. adunque per lo corolario della ottaua del $esto, la b d. è quella linea proportionata, che cade nella e b. & la b c. & $imilmente la linea b c. è la mezana proportionale tra la b d. & la b g. po$ta adunque la ragione, & la proportione commune della linea b d. & della linea b c. ne $eguita, che la g b. hauerà quello ri$pet- to di comparatione alla linea b d. che hauerà la c b. alla e b. perche l'una, & l'altra ra- gione, come è $tato manifesto, è come b d. à b c. per la undecima del quinto. adunque $i me g b. à b d. co$i b d. à b c. co$i la c d. alla b e. Date adunque due linee, b g. & c b. $ono state ritrouate due di mezo proportionali b d. & b c. Et questa è la ragio- ne di Platone. Ma lo in$trumento è questo. Sia una $quadra K m l. & in uno braccio di quella $ia accommodata una riga, che $ia n o. & che faccia con detto braccio gli angoli drit- ti, & $i po$$a mouere hora uer$o il punto m. hora uer$o il punto e. fatto questo $implici$$imo instrumento, & uolendo trouare le due proportionali di mezo alle due date, farai, che le due da te $iano per e$$empio la e b. & la b g. come hauemo po$to nella dimo$tratione, congiunte nel punto b. ad angulo giusto & $iano prolungate come di $opra. Allhora $i piglia lo inctru- mento, & co$i egli s'accommoda alle linee c b. & b g. che il lato K m. della $quadra ca da $opra il g. & lo angulo m. $i uni$ca alla linea b c. lo angulo o. $ia $opra la linea b d. & la regola mobile uenga per lo punto e. di modo, che il punto m. $ia $oprapo$to al punto c. & il punto o. cada $opra d. & co$i ordinato che hauerai, & acconcio lo instrumento, hauerai trouato tra le linee e b. & b g. due proportionate di mezo, cioè la b d. & la b c. del che la dimo$tratione è la iste$$a con quella di $opra. Nicomede u$aua un'altra dimostra tione, & formau a un'altro instrumento $econdo quella dimo$tratione, & con grande $ottigliez- za d'inuentione $uperando Erato$thene è stato di gran giouamento alli $tudio$i della Geometria. Per fare lo instrumento, piglia due righe, & ponle una $opra l'altra ad angoli giusti di modo, che d'amendue $ia uno i$te$$o piano nè una $ia piu alta dell'altra, ma rappre$entino la lettera T. & $ia una di e$$e a b. dritta & l'altra c d. trauer$a. faccia$i nella a b. un canale nel mezo, nel quale u'entri a coda di rondine, & $otto $quadra uno cuneo, che $i po$$a $pignere in $u, & in giu per quel canale $enza u$cir fuori: $ia poi nel mezo dellariga c d. trauer$a per lnngo di e$$a una linea, & nella te$ta di e$$a, doue è la lettera d. $ia posto un pirone, & $ia quello g h. ad an- goli dritti, il quale e$ca alquanto fuori del piano della riga c d. $ia nel detto pirone un foro nel quale entri una regoletta, che $ia e f. la quale $ia congiunta nel cuneo, che era posto $otto $quadra nel canale della regola a b. & $ia il capo della detta regoletta K. Se adunque moue- rai il cuneo per lo canale ouero uer$o il punto a. ouero uer$o il punto b. in$ieme con la con- giunta regoletta, $empre il punto e. $imouerà per dritta linea, & la regoletta e f. penetran do per lo foro del pirone g h. entrerà, & u$cirà, & la dritta linea di mezo della regoletta e f. $i mouerà col $uo predetto mouimento per lo perno del $uo pirone. Egli $i o$$erua finalmente, che lo ecce$$o e</I> k. <I>della regoletta e f. $ia $empre lo i$te$$o, & della i$te$$a lunghezza. per il che $e noi poneremo nel punto</I> k. <I>alcuna co$a, che po$$a $egnare un piano $ottoposto mouen-</I> <pb n="360"> <fig> <pb n="361"> <fig> <pb n="362"> <fig> <I>do$i la regoletta, egli $i $egnerà nel piano una linea piegata, come la l m n. la quale Nicome de chiama prima Conchoide. & lo $patio, che è tra e. &</I> k. <I>egli chiama grandezza della re gola. & il punto d. polo. In que$ta linea piegata dimostra Nicomede ritrouar$i tre proprietà principali. L'una è che quanto piu la linea piegata l m n. $i tira a lungo, tanto meno è di$tan te dalla dritta a b. come $i uede, che il punto c. è piu lontano dalla linea a b. che il pun- to n. & il punto n. piu lontano, che il punto m. & finalmente il punto m. piu lontano, che il punto l. il che $i uede chiar amente facendo$i cadere da i detti punti c n m l. le per- pcndicolari $opra la linea a b. La $econda proprietà è que$ta. che $e tra la regola a b. & la linea piegata $i tirerà una linea, quella finalmente taglierà la piegata. Sia adunque la regola a b. il polo c. & nello interuallo d e. de$critta la piegata detta conchoide, & tra quella, & la regola a b. $ia tirata una linea dritta, che $ia f g h. dico, che la linea f g h. tira- tataglierà la piegata gia de$critta. Sia la detta linea f g h. parallela alla a b. o non $ia. po$to adunque prima, che ella $ia parallela, & faccia$i, che $i come $i ha la d g. alla g c. co$i $i habbia la d e. ad un'altra come K. & po$to il centro c. & lo $patio K. tagli la cir- conferenza de$critta nel punto f. la linea f g. & $ia congiunto c f. che tagli la a b. in l. egli è adunque $i come la d g. $i ha alla g c. co$i la l f. alla f c. ma $i come è la d g. alla g c. co$i $i haueua la d e. alla K. cioè alla c f. adunque d e. $i trouerà eguale alla l f. il che non puo $tare, perche a que$to modo la parte $arebbe eguale al $uo tutto. Il che $i fa manife$to tirando$i la c f. fin che la tagli la piegata de$critta per e. nel punto o. per- che la l f o. dritta è eguale alla d e. per la diffinitione della conchoide. adunque re$ta, che la dritta f g h. tagli la piegata, $e ella $i tirerà uer$o le i$te$$e parti. Ma non $ia parallela quella linea, che $i tirerà tra laregola a b. & la piegata, & $ia quella m g n. & $ia tira- taper g. la parallela f g. alla regola a b. adunque la f g. concorrerà con la linea piega ta, & però molto piu ui concorrerà la m n. Raccogliendo $i adunque con lo in$trumento, que- $te proprietati, egli $i ha da dimo$trare l'utilità $ua al propo$ito no$tro: $e prima $i addurra la ter- zaproprietà, che è que$ta. La dritta linea a b. & la prima piegata, o conchoide a quella de $critta non concorreranno mai, $e bene fu$$ero tirate in infinito. Que$to facilmente $i fa manife- $to, $e egli $i auuertirà diligentemente alla forma dello in$irumento col quale $i fa la linea piegata. Percioche nella i$te$$a forma la linea di mezo della regola e f. nel de$criuere la piegata $em- pre taglia la dritta a b. nel punto e. per la qual co$a il punto</I> k. <I>non peruenirà mai alla li-</I> <pb n="363"> <I>nea a b. tutto che del continuo egli $i faccia uicino alla a b. por la prima proprietà $opra- detta. Adunque la prima piegata, o conchoide, & la dritta linea, alla quale ella è de$critta, non concorreranno mai, in tutto che $iano tirate infinito, & del continuo $i $acciano piu uicine, il che bi$ognaua dimo$trare. Que$to a$$onto di Nicomede è utile alla $eguente dimo$tratione. Se egli $arà fatto uno angolo ad una dritta linea, che da una parte $ia infinita, & $i uorrà tirare da un punto dato di fuori una linea dritta, la quale tagli due dritte cerca lo i$te$$o angolo, della qual dritta linea una particella compre$a tra due, che comprendeno l'angolo dato, $ia eguale alla data linea, egli $i farà in que$to modo. Sia la data linea a b. che dalla parte di b. uadi m finito, & $opra quella $ia fatto il dato angolo b a g. & il punto fuori di a b. $ia c. & la data dritta $ia d. & da c. alla a b. $ia tirata la perpendicolare, che $ia c</I> K. <I>alla quale $ia aggiunto e f. eguale alla d. & mediante lo in$trumento de$critto di $opra dal polo c. & lo $patio e f. alla regola a b. $ia de$critta la linea piegata, o conchoide prima. Adunque per la $econda proprietà, la linea a g. della prima conchoide tirata piu oltre concaderà con la conchoide f g. concaderà adunque in g. & la linea tirata c g. taglierà la a b. in h. di- co, che la g h. $arà eguale alla d. il che $i fa chiaro da quello, perche per la diffinitione della conchoide prima la linea g h è eguale alla linea e f. ma per quello, che hauemo pre$uppo$to la e f. è eguale alla d. adunque per la commune $entenza, che dice le co$e e$$er eguali tra $e, che ad una i$te$$a $ono eguali. La dritta g h. è eg uale alla d. adunque $i ha il propo$ito $o- pra detto. Secondo Nicomede $i troueranno le due proportionali di mezo tra due dritte a que- $to modo. Siano date due dritte a b. b c. appo$te ad angolo dritto, tra le quali bi$ogni tro- uarne due di mezo in continua proportione. Sia compito il parallelogrammo a h c d. Sia cia$cuna di quelle linee tagliata in due parti c d. in e. d a. in f. & $ia congiunta h e. è pa$$i oltre fin che la cada in a d. prolongata, nel punto g. ma alla linea a d. cada f h. ad angoli dritti, & $ia prolongata a h. che $ia eguale alla c e. & $ia congiunta g h. alla quale $ia parallela a i. $i che lo angolo</I> k <I>a i. $ia eguale allo angolo f g h. per lo prece- dente a$$onto. Sia tirata una linea dritta g i</I> k. <I>che tagli a i. in i. & d a. nella parte a. prolongata $opra k. di modo, che i</I> k. <I>$ia eguale ad a h. & congiunta k b. $ia tira- ta fin che cada $opra la d c. prolongata in l. dico, che $i come $i ha a b. ad a</I> k. <I>co$i a</I> k. <I>ad l c. & l c. à c b. perche c d. è tagliata in due parti in e. & a que$ta $i ap- pone</I> k <I>a. adunque per la $e$ta del $econdo de gli elementi quello, che è $otto d</I> k <I>a. con quello, che $i fa della a f. è eguale a quello, che $i fa della f</I> k. <I>Apponga$i il commune, che è tra f h. adunque quello, che è $otto d K a. con quello che $i fa di a f. & di f h. cioè con quello, che $i fa di a g. è eguale a quello, che $i fa di K f. & di f h. cioè a quello che è di</I> k <I>h. Et perche $i come $i ha l c. à c d. co$i $ia l b. à b K. & come l b. à b</I> k. <I>co$i $i ha d a. ad a</I> k. <I>adunq; $i come $i ha l c. à c d. co$i $i ha d a. ad a</I> k. <I>Ma della c d. è la metà la c e. & la a g. è doppia alla d a. perche per la quarta del $e- $to, $i come $i ha a b. à d e. co$i $i ha g a. ad a d. per quello che $i è $uppo$to la b a. è doppia à d e. adunque la g a. è doppia alla a d. $arà adunque, che $i come l c. $i ha alla c e. co$i g a. alla a</I> k. <I>per la eguale, & permutata proportione, per la uente$ima terza del quinto de gli elementi. Ma come g a. ad a</I> k. <I>co$i & h i. ad i</I> k. <I>per la $e conda del $e$to de gli elementi. Perche per la $uppo$itione g h. & a i. $ono parallele. Et componendo per la decima ottaua del quinto, $egue, che $i come $i ha. La l e. alla c e. co$i la h</I> k. <I>alla</I> k <I>i. ma egli è $tata po$ta eguale la i</I> k. <I>alla c e. perche la i</I> k. <I>è egua- le alla a h. & la a h. alla c e. adunque la e l. è eguale alla h K. con$eguentemente è eguale quello, che na$ce da l e. con quello che $i fa di h K. & quello che $i fa di l e. è eguale a quello, che $i fa $otto d l c. con quello, che $i fa di c e. per la $e$ta del $econdo de gli elementi. Ma a quello, che $i fa di h K. egli è $tato dimostrato e$$er eguale, quello, che $i fa $otto d</I> k <I>a. con quello, che $i fa di a h. delle quali quello, che è di c e. è eguale a</I> <foot><I>BBB</I></foot> <pb n="364"> <I>quello, che uiene da a h. perche egli è $tato po$to, che la a h. $ia eguale alla c e. ma per la $ententia commune, $e dalle co$e eguali, $i leueranno le eguali, il rimanente $arà eguale. Adunque quello, che $i fa $otto d l c. è eguale a quello, che $i fa $otto d K a. ma per la quartadecima del $e$to de gli elementi. I lati de i parallelogrammi, che $ono eguali, & ba<*> anche gli anguli eguali, $ono reciprocamente proportionali. adunque $i come $i hala l d. alla d</I> k. <I>co$i $i ha la</I> k <I>a. alla c l. ma come d l. à d K. anche la a b. alla a K. & la l c. alla c b. & adunque $i come a b. ad a</I> k. <I>co$i a K. ad l c. & e$$a l c. alla c b. Date adunque due dritte linee a b. & b c. $ono $tate ritrouate due dimezo in continua proportione, che $ono a</I> k. <I>& l c. come era l'intento di fare. Altri modi $ono de gli antichi di ritrouare le due proportionali, come di Philopono, di Dione Bizantio, di Diocle, di Pappo nelle mecaniche, di Poro, di Menechmo, i quali modi, ne i commentari di Archime de $i trouano, & il Vernero dottamente gli e$pone, i quali noi la$ciamo per fuggir il tedio. Venl remo adunque al modo di raddoppiare, & di moltiplicare i corpi, accioche l'u$o di co$i belle di- mo$trationi, & di tanti $trumenti ci $ia manife$to.</I> <p><I>Io uoglio adunque ad un proposto $odo $otto una data proportione farne un'altro $imile. $ia dunq; il proposto $odo a. Io uoglio farne uno, che habbia quella proportione con e$$o, che ha la li nea b. alla linea c. prenda$i una linea eguale ad uno lato del propo$to $odo, & $ia quella d. & come $i ha la b. alla c. con la i$te$$a ragione $i riferi$ca la d. alla e. $ia doppia, o tripla come $i uoglia. & $econdo alcuna delle $oprapo$te dimo$trationi, trouin$i due di mezo in continua proportione, & $iano quelle f. & g. dapoi da alcuna dritta linea eguale alla f. per la uente$ima $ettima dell'undecimo de gli elementi $i faccia un $odo, & quello $ia h. $imile, & $imilmente po$to, al propo$to $odo a. & perche per la trente$ima terza dello i$te$$o libro, ouero per lo corollario della i$te$$a propo$itione, Se $aranno quattro dritte linee proportionali, $i come $i ha la prima alla quarta, co$i egli $i ha il $odo, che uiene dalla prima, al $odo, che <*>$i fa della $econda $imile, & $imilmente de$critto. La ragione adunque del $odo a. al $imigliante $odo h. è come d. ad e. ma per la $uppo$itione la d. alla e. ha la ragione, che ha la b. alla c. dato adunque il $odo a. $otto la data ragione della b. alla c. è $tato formato con $i- migliante $odo h. come era l'intento. Ma perche alcuna fiata egli bi$ogna mutare, & ridurre un $odo in un'altro, & proportionare piu corpi, però $e uorremo fare un cubo eguale ad un dato parallelipedo $i farà in que$to modo. Sia dato un $odo parallelipedo a b c d. la cui larghez za $ia a b. l'altezza b c. la lunghezza c d. gia bi$ogna al $odo a b c d. ponere un cu bo eguale. Troui$i adunque per l'ultima del $econdo de gli elementi il lato quadrato del piano a b c. cioè una linea dritta, il cui quadrato $ia eguale al piano a b c. la qual linea dritta $ia e. dapoi col mezo d'alcuna delle precedenti dimo$trationi tra la e. & la c d. trouin$i due proportionali, che $iano f. & g. dico che'l cubo della dritta linea f. $arà eguale al dato pa- rallelipedo a b c d. imperoche per lo corolario della decima nona del $e$to de gli elementi, il quadrato fatto dalla f. al quadrato fatto dalla e. è come il quadrato fatto dalla c d. al qua drato fatto dalla f. & perche per la trente$ima quarta dello undecimo de gli elementi, i $odi parallelipedi, delle quali le ba$e $ono reciproche di altezze $ono eguali, il cubo adunque fatto dalla f. è eguale al dato $odo parallelipedo a b c d. Da que$to ne na$ce, che nelle colonne, che hanno lati, delle quali gli oppo$ti piani $ono paralleli, & altri piani parallelogrammi per la $opradetta ragione facilmente $i po$$ono conuertire in cubi. perche uno parallelipedo, che ha per ba$a uno quadrato eguale ad una ba$a laterata, & è di eguale altezza alla colonna, è eguale al la i$te$$a colonna. Egli $i dimo$tra anche, come $i po$$a fare eguale ad un dato cubo $otto una da ta altezza, un $odo parallelipedo. Sia la data altezza la dritta linea a. & il dato cubo b. gia bi$ogna $otto l'altezza a. alzare un parallelipedo, che $ia eguale al dato cubo b. $ia la c. eguale ad un lato del cubo b. & per la undecima del $e$to de gli elementi $ia la meza propor tionale e. Dico adunque, che il parallelipedo la cui ba$e $ia eguale al quadrato fatto dalla e.</I> <pb n="365"> <I>& l'altezza eguale alla a. $arà eguale al dato cubo b. & perche per la con$truttione, le tre linee $ono in continua proportione, cioè la e. la c. & la d. adunque per lo corolario del- la decima nona del $e$to, il quadrato, che uiene dalla c. al quadrato, che uiene dalla e. è co me la c. alla d. cioè come la a. alla c. perche per la $uppo$itione, $i come $i ha la a. al- la c. co$i $i ha la c. alla d. ma il quadrato, che uiene dalla c. è la ba$a del cubo b. & il quadrato, che uiene dalla e. è la ba$a del parallelipedo, che $i deue fare: adunque per la tren te$ima quarta dell'undecimo de gli elementi, il parallelipedo $odo, che ha la ba$a eguale al qua drato e. & l'altezza eguale alla data a. è eguale al dato cubo b. il che bi$ognaua dimo$tra re. Qui bi$ognerebbe anchora andar uagando, & dimo$trare, come diuer$e figure, & corpi $i mutano in altre forme, & come non $olo $i raddoppiano, ma $i uanno triplicando, & multipli- cando, $e i principij dati fin qui non ci $eriu$$ero, però torneremo a Vitr. il qual dice.</I> <p>Concio$ia co$a adunq;, che con $i gran piaceri delle dottrine tali co$e $iano $tate auuer tite, & naturalmente $iano forzati di mouer$i per le inuentioni di cia$cuna co$a, con$ide- randone gli effetti, mentre che io con attentione riguardo a molte co$e, io prendo non poca ammiratione de i uolumi compo$ti da Democrito d'intorno alla natura delle co$e, & di quel $uo commentario intitolato chirotonito. nel quale anche egli u$aua lo anello, $i gillando con cera fatta di Minio quelle co$e, che egli haueua $perimentate. <p><I>Io qui leggerei cirocinnauos, perche ciros $ignificaua la cera, & cinnauos le imagini, che ten gono gli $tatuarij dinanzi a gli occhi, co$i Democrito nella cera imprimendo le $ue i$perienze, per ricordar$ene, $e le teneua dinanzi a gli occhi. Et quelle note erano come commentarij, perche commetteuano alla mente le i$perienze. Plinio legge Cirocineta. Filandro interpreta, commen tario di co$e $cielte: a me pare miglior lettione quella, che io dico, perche Vitruuio mede$mo qua $i lo dichiara dicendo.</I> {<I>Nel quale egli u$aua lo anello $igillando con cera tinta di minio, quelle co $e, le quali egli haueua $perimentate.</I>} <I>Certo è che Democrito $egnaua in cera ro$$a le co$e pro- uate, per tener$ele a memoria, co$i $olemo noi nelle margini de libri $egnare con qualche colore le co$e $cielte, per hauerle pronte. Segue Vitr.</I> <p>Le inuentioni adunque di quegli huomini non $olamente $ono $tate apparecchiate a corregere i co$tumi, ma ancho alla perpetua utilità di cia$cuno. Ma il grido, & la gran- dezza de gli Athleti in breue tempo con corpi loro inuecchia in modo, che nè quando grandemente fiori$ceno, nè dapoi nella po$terità po$$ono que$ti, come fanno le co$e pen $ate da gli huomini $aui con belli ammae$tramenti giouare alla uita humana. Ma non $i dando i debiti honori nè a i co$tumi, nè a i precetti de i ualenti $crittori, & guardando le menti piu alto, che l'aere con i gradi delle memorie al cielo $olleuate a forza fanno, che eternamente non $olo le $ententie, ma le imagini loro a po$teri $iano cono$ciute. Et pe- rò chi ha la mente adorna de i piaceri delle lettere, non puo non hauere nel petto $uo con- $ecrato, come di Dei, il $imulacro di Ennio p oeta: Et quelli che a$siduamente prende- no piacere de i uer$i di Accio, non tanto la uirtù delle parole, ma anche la figura $ua pare, che $eco habbiano pre$ente; & co$i molti, che dopo la memoria no$tra na$ceranno, pare ranno di$putare con Lucretio della natura delle co$e, come $e egli fu$$e pre$ente: Et $i- milmente dell'arte del dire con Cicerone. & molti de i po$teri ragioneranno con Varro- ne della lingua latina. Et molti amatori della cognitione diliberando con i $aui de i Gre- ci molte co$e, pareranno e$$er con quelli in $ecreti ragionamenti. Et in $omma le $enten ze de i buoni $crittori e$$endo in fiore $tando i corpi lontani, quando $ono addotte ne i con$igli, & nelle di$putationi hanno maggiore autorità, che quelle de i pre$enti. Per il che io o Ce$are confidatomi in que$ti autori, & pre$i i loro $entimenti, & con$igli ho $critto que$ti uolumi, & ne i primi $ette ho trattato de gli edificij, nell'ottauo delle acque & in que$to delle ragioni de i Gnomoni, come $tate $ono da i raggi del Sole nel mondo per le ombre de i Gnomoni ritrouate, & con che ragioni $i allungano, & accorciano dirò chiaramente. <foot><I>BBB</I> 2</foot> <pb n="366"> <p><I>Conclude Vitr. la $ua lunga digre$$ione, & pare, che fin qui $ia $tato il proemio del pre$en- te libro, il quale per la diuer$ità delle co$e for$e è $tato in molte parti diui$o; il tutto è non meno facile, che degno da e$$er posto in opera, come co$a piena di utili$$imi precetti a chi $i diletta di $apere, & di con$eruare nella memoria le co$e imparate.</I> <HEAD><I>Della ragione de i Gnomoni ritrouati per l'ombra da i raggi del Sole. Et del mondo. Et de i pianeti. Cap. IIII.</I></HEAD> <p>Qvelle co$e adunque con diuina mente $ono $tate acqui$tate, & $eco hanno a chi le con$idera grande ammiratione, che l'ombra nello equinottio fatta dal Gnomone è di altra grandezza in Athene, di altra in Ale$$andria, di altra in Roma: nè quella i$te$$a è in Piacenza, che è in altri luoghi della terra. Et pe- rò <*>ono molto differenti le de$crittioni de gli horologi per la mutatione de i pae$i, perche dalle grandezze dell'ombre equinottiali $i di$egnano le forme de gli analemmi, de i qua- li $i fanno le de$crittioni delle hore, $econdo la ragione de i luoghi, & delle ombre de i Gnomoni. <p><I>Mirabile dottrina è quella, che ci da Vitr. nel pre$ente lihro delle co$e della A$tronomia: & piu mirabile è la breuità $ua: però il pre$ente trattato $i deue pa$$are con diligenza, & auuerti- mento non mediocre: imperoche in quello $i tocca breui$$imamente quello, che in molti uolumi da molti è $tato raccolto. Et perche non ci $ia confu$ione, diremo ordinatamente ogni co$a po- nendo le parole di Vitr. le quali non parole, ma $entenze, & conclu$ioni $i po$$ono meritamente nominare. Tratta adunque nel pre$ente libro della ragione de gli horologi da Sole, & delle om- bre: & perche ombra non è $enon doue è il corpo lumino$o, i cui raggi $ono impediti dal corpo opaco, però tratta de i corpi cele$ti, che fanno lume, & per que$ta occa$ione abbraccia il moui- mento del cielo, la figura, & la mi$ura del tutto. Introduce il $uo trattamento in questo modo: che uedendo noi, quando il giorno, & la notte $on eguali, il qual tempo $i chiama equinottio, che uiene due fiate l'anno di Marzo, & di Settembre, non intendendo di quelli, che $tanno $otto l'equinottiale, perche l'hanno $empre: nè di quelli, che $tanno $otto i poli, perche non l'hanno mai, inquanto, che $iano dodici hore il dì, & dodici la notte: uedendo dico, che al tempo de gli equinottij $ul mezo dì, in diuer$i luoghi l'ombra è diuer$amente proportionata a gli edificij, albe ri, $tili, & a tutte le co$e leuate da terra, & dritte, imperoche da que tempi in alcuni luoghi l'ombra è pari alle co$e, che la fanno, in altri è maggiore, in altri è minore, grande occa$ione hauemo da merauigliarci, & però per naturale in$tinto ci diamo a cercar d'onde uegna la diuer$i- tà dell'ombre; & uedendo che que$ta mutatione non puo uenire $e non dalla diuer$ità dell'altezza del Sole, che a quelli tempi ad alcuni è piu alto, ad alcuni è piu ba$$o, cominciamo ad inuestiga- re il cor$o del Sole, & co$i quello, che non potemo fare nel cielo, de$criuemo in terra con linee, & con figure, $eruando intiera la ragione del tutto. Et chi è tanto $ottile, & ingenio$o, che tro ui $imili de$crittioni $i puo uer amente dire, che egli $ia d'intelletto diuino, & che le $ue inuentio- ni $iano piu pre$to diuine, che humane, & que$to ha detto Vitr. fin qui. Dichiara poi come $i chiama quella de$crittione di linee, che $i fa per dimo$trare il cor$o del Sole, & dice, che $i chia ma Analemma, & diffini$ce, che co$a è Analemma, dicendo.</I> Analemma è ragione cerca- ta dal cor$o del Sole, & dall'ombra cre$cente, trouata dalla o$$eruatione del $ole$titio del uerno, dalla quale per ragioni d'Architettura, & per de$crittioni del compa$$o è $tato ritro uato lo effetto nel mondo. <pb n="367"> <p><I>Com nciauano gli antichi l'anno dal $ole$titio del uerno, che uiene di Decembre; quefto chia- mauano bruma. auuertirono a quel tempo che $ul mezo dì l'ombra del Gnomone era piu lunga, che ne gli altri tempi nel mezo dì; però concludeuano, che a quel tempo il Sole fu$$e piu ba$$o. De$criuendo adunque nel piano de i circoli & drizzando i Gnomoni, cioè $tili da ombre $opra il piano tirauano linee da i de$critti circoli alla punta dello $tile, & continuando quelle linee rap- pre$entauano l'ombre fin $ul piano proportionando l'ombre con lo $tile, il quale perche $taua ad an goli dritti $opra il piano. però $i chiama Gnomone, & co$i di giorno in giorno $ul mezo dì pren- deuano la altezza del Sole, che dal tempo della bruma al tempo della $tate ogni giorno piu s'in- nalzaua, & co$i concludendo l'altezza del Sole meridiana, ne faceuano nel piano la de$crittio- ne, & il di$egno mo$trando in terra gli effetti del Cielo; que$ta de$crittione era detta Analem- ma, che è come uno ripigliamento del cor$o del Sole, per formarne gli horologi, $econdo la diuer $ità de i pae$i. Prendeuano le altezze del Sole, & le ombre meridiane, perche il circolo meri- diano è piu certo, & piu o$$eruabile, che gli altri. Ma perche nella diffinitione dello Analem- ma Vitr. ha detto,</I> {<I>è $tato ritrouato lo effetto nel mondo.</I>} <I>però per que$ta occa$ione egli di- chiara, che co$a è Mondo.</I> <p>Mondo è un grandi$simo concetto della natura di tutte le co$e, & il Cielo figura- to di $telle. <p><I>Due co$e abbraccia il mondo, la prima è il Cielo, la $econda è tutto quello, che dal Cielo è compre$o, la doue i moderni nella diui$ione della sfera hanno detto la regione elementare, & la cele$te. Era nece$$ario porui il cielo, perche nel cielo $ono posti i corpi lumino$i, i raggi de i qua li fanno gli effetti nel Mondo: il Mondo adunque è un grandi$$imo, & $ommo concetto di tutte le co$e, perche è perfetto, & quella co$a è perfetta a cui niente manca, & niente $e le puo aggiu- gnere. Al Mondo adunque perche è fatto di tulta la materia, perche abbraccia ogni co$a, per- che ha principio, mezo, & fine, perche contiene, & non è contenuto, $i conuiene il nome di per- fetto: il che Vitr. gli attribui$ce, dicendo, conceptio $umma, perche $e è $omma oltra di quello non $i troua co$a, & in quello il tutto è compre$o. Il Mondo adunque è ungrandi$$imo abbrac- ciamento di tutte le nature, sì di quelle, che $ono atte a patire, & ariceuere qualche impre$$ione come $ono gli elementi, & i mi$ti perfetti, & imperfetti, sì di quelle, che hanno uirtù di fare, & d'influire, come $ono i corpi cele$ti. Et que$te nature $ono una dentro l'altra, accioche que$ta ce ra mondana po$$a e$$er formata dalle forme cele$ti, che Vitr. dice. Cielo di $telle figurato, del quale egli ragionando dice.</I> Que$to cielo continuamente $i uolge d'intorno la terra, & il mare, per gli ultimi cardini del $uo perno, che a$$e è nominato. <p><I>La$cia Vitr. la prima parte della diffinitione del mondo, perche non fa per hora al propo$ito: Et tratta della $econda, che è il Cielo. Et in poche parole dice molte co$e, che $i dichiareranno di$tintamente. Che il cielo $i muoua egli è manife$to al $en$o, per la mutatione del luogo, che fan- no i corpi cele$ti, che mai non $i fermano. E anche noti$$imo, che il mouimento $ia circolare d'in torno il mare, & la terra, & che $i uolga $opra un perno imaginato ne i cardini $uoi. Perche $e il cielo abbraccia ogni co$a, ogni luogo, ogni $patio, $e altrimenti $i moue$$e, che in giro, o non fu$$e di forma circolare, certamente la$ciarebbe fuori di $e o $patio, o uoto; il che non è ra- gioneuole. Oltra di que$to molti altri accidenti $ono, per li quali noi uenimo in cognitione, che il cielo $i giri a tondo, & che $ia di figura $imile al $uo mouimento, de i qualine $ono pieni uolu- mi, & $e ne $anno e$perienze con gli in$trumenti. Et perche noi uedemo un continuo mouimento per un uer$o, però c'imaginamo due $tabili$$imi punti oppo$ti per diametro, da i quali imaginamo, che pa$$i per lo centro una linea, & quelli punti $ono detti cardini, perche qua$i come $opra i $uoi cardini il cielo $opra quelli $i uolge. Que$ti cardini $i chiamano poli da'Greci. ma la linea imaginata, che dall'uno all'altro cardine pa$$a per lo centro del Mondo, è detta a$$e o perno. I cui e$tremi $ono i cardini, o poli del Mondo. Ma cio che di punti, di linee, & di circoli nel cielo $i dice, tutto è detto per maggior dichiaratione, & non perche ueramente $i trouino nel cielo come</I> <pb n="368"> <I>uogliono alcuni, che ne i poli $ia la uirtu di muouere, il che rif<*>ta Ari$tot. nel libro del mouimen to de gli animali, argoment ando, che que$to non puo e$$ere e$$endo i poli $enza grandezza aleu- na, anzi punti indiui$ibili: & for$e dal detto di Ari$tot. potemo correggere quello, che dice Vit. il quale però come Architetto $i deue $cu$are, quando dice.</I> <p>Perche in tali luoghi la uirtù della natura co$i ha come Architetto fabricato, & ha fitto i cardini, come centri uno in que$to mondo di $opra del mare, & della terra, & l'altro di la al contrario $otterra nelle parti meridiane, & iui d'intorno a que cardini come d'intor- no a centri ha fatto le rotelle come a torno perfette, lequali $ono da i Greci nominati po- li: per lequali eternamente con ueloci$simo cor$o il cielo $i gira: & co$i la terra col mare in luogo di centro è $tata collocata nel mezo. <p><I>Due $ono i Poli, & cardini, i quali per diametro nel mondo opposti $ono, ma che uno $ia di $o- pra, & l'altro di $otto non è, $e non per ri$petto a gli habitanti della terra, però bi$ogna inten- dere, che Vitr. doueua dire a que$to modo; & ca$o che egli non lo dica, come $i puo uedere dicen- do egli, che la natura co$i gli ha po$ti, che uno $ia di $opra & l'altro di $otto, è nece$$ario, che noi intendiamo drittamente. perche quelli, che $tanno $otto l'equinottiale, non hanno un polo piu ele- uato dell'altro; $imilmente quelli, che $tanno di la dal mezo hanno il loro polo eleuato $opra l'O- rizonte, che a noi habitanti di qua dal mezo è depre$$o. & il nostro a loro è meridiano come il loro a noi; però que$to $ito, di che parla Vitr. $i deue intendere in ri$petto, & non a$$olutamente, però ($i come dice Vitr.) la terra col mare nel mezo in luogo di centro è $tata naturalmente collocata: certo è, che in alcune parti un polo $arà eleuato, & l'altro depre$$o: & in alcuni l'uno, & l'altro $arà egualmente nel piano dell'Orizonte: la doue e$$endo conclu$o da tutti gli a$trono- mi, che $tando l'huomo in qual $ito $i uoglia $opra la terra, $empre il piano del $uo Orizonte diui- de il cielo in due parti eguali, et tutti qua$i gli in$trumenti, che $i u$ano, u$an$i in modo, come $e l'hnomo fu$$e nel centro della terra; è nece$$ario di concludere, & che la terra $ia a gui$a di centro nel mezo del mondo, & che egualmente partito $ia quello, che $i uede da quello, che non $i uede con la $operficie dell'Orizonte. Hauendo adunque noi due punti come termini fi$$i, $opra i quali il cielo $i gira, $eguita Vitr. a de$criuere il cielo con altri $egni. & dice</I> <p>E$$endo que$te co$e dalla natura di$po$te in modo, che dalla parte $ettentrionale hab- bia il centro piu eleuato da terra con l'altezza $ua, & nella parte del mezo dì $ottopo$to a i luoghi inferiori $ia dalla terra o$curato, indi a trauer$o per mezo il mondo ui è formata una zona a gui$a di circolo cinta con do dici $egni piegata alla parte del mezo dì, laqual forma di$egni con certa di$po$itione di $telle agguagliandone dodici parti, ci dà e$pre$$a iui la figuratione, che ui dipin$e la natura. <p><I>Volendo Vitr. e$primere molte co$e diuenta alquanto o$curo per la durezza del dire. Veden- do noi il certo, & continuato uolgimento del cielo da Leuante a Ponente, trouato hauemo i due poli, & l'a$$e in certi, & determinati luoghi. Con$iderando poi il mouimento, che fa il Sole in uno anno, & che hora na$ce in una parte dell'Orizonte, & da un uento, hora in un'altra, & che $ul mezo dì hora s'auuicina piu al punto che ci $opra$tà, hora è piu ba$$o, & che uaria i gior ni, & le notti egualmente, $apemo, che per que$te co$e auuertite bene, & o<02>eruate, gli antichi hanno trouato la obliqua uia del Sole, per laquale andando egli con moto contrario al primo di giorno in giorno faccia tutta quella $e n$ibile mutatione. $imilmente auuertendo il cor$o de gli al- tri pianeti $eguitare la uia del Sole, ma non co$i egualmente $targli appre$$o, diedero nome a quella uia, per laquale il Sole, & gli altri pianeti pa$$auano, & la chiamarono cinta, o zona, perche $i come una cinta cignendo non $olo s'aggira con una $emplice linea, ma tiene larghezza, co$i la uia de i pianeti è $tata imaginata & circolare, & larga, & è stata cono$ciuta piegar da una parte all'uno de i Poli, & dall'altra, all'altro, & abbracciare tutto il cielo; cioè, e$$ere uno de i circoli maggiori. & in quella anche $ono $tate cono$ciute alcune compagnie di stelle, alle- quali è $tato imposto nome di $egni; & perche $ono dodici. Vitr. le chiama dodici parti pareggia</I> <pb n="369"> <I>te, perche $ono di trenta gradi per $egno, di trecento & $e$$anta, ne i quali per piu commodità hanno partito i circoli. La uia de i pianeti è $tata da' Greci detta Zodiaco, & da i Latmi $igni- fero, perche in e$$a $ono i $egni. La uia del Sole è stata nominata Eclittica, perche $opra e$$a $tando il Sole, & la Luna in certe di$tanze, $i fanno gli Ecli<02>i, cioè i mancamenti, & le o$cura- tioni loro. Il Zodiaco ha larghezza, perche il cor$o de pianeti la richiede. & nella $ua circon- ferenza è diui$o anche egli in</I> 360 <I>parti. la uia del Sole detta Eclittica, è nel mezo della lar- ghezza del Zodiaco. & le linee, che $ono gli e$tremi della larghezza del Zodiaco $ono distanti $ei gradi cia$cuna dalla Eclittica, in modo, che $ei gradi di quà, & $ei di là fanno dodici gradi del Zodiaco in larghezza, oltra la quale non caminano i pianeti: Benche Venere, & Marte per la grandezza de i loro Epicicli (come dicono alcuni contemplatiui) e$chino poi fuori; ma questo auuiene di raro. Ilche for$e ha dato luogo alla fauola di Venere, & di Marte. Chiama$i il Zo- diaco circolo obliquo, perche non a$cende, nè di$cende regolarmente $econdo le $ue parti, & per- che con tutte le parti $ue non è egualmente distante da i poli del Mondo; oltra che non taglia con giusti angoli gli altri circoli cele$ti. Ma quello, che dice Vitr.</I> {<I>E$$endo queste co$e co$i dal- la natura di$po$te.</I>} <I>Que$to non è per natura: ma per ri$petto de gli Orizonti, che $i mutano $e- condo i $iti, benche per natura $ia il Cielo, in que due punti, che Vitru. chiama centri, fermato. Le conditioni della zona, che dice Vitr. $ono prima che è larga, dapoi è piegata uer$o i poli, oltra di que$to è formata di deci $egni, & benche la natura habbia fatto quelle $telle, però gli o$$erua- tori le hanno co$i compartite, & gli A$tronomi ne danno le lor cau$e. I $egni $ono dodici, cia$cu- no de' quali è dato al $uo me$e. però i me$i $ono dodici. tengono i $egni trenta gradi per uno $e- condo una con$ideratione, però l'anno è denominato da trecento et $e$$anta giorni, & di quel piu, che il Sole ananza ogni giorno col$uo mouimento contrario al mouimento del primo cielo. on- de Vitru. dice.</I> <p>Et però quelli $egni lucenti col mondo, & con il re$tante ornamento delle $telle giran- do$i d'intorno la terra, & il mare fanno il cor$o loro $econdo la ritondezza del cielo. Ma tutte le co$e che $i uedeno, & che non $i uedeno $ono formate con la nece$sità de i tempi, & delle $tagioni, delliquali tempi $ei $egni $opra la terra col Cielo uanno uagando, & gli altri $otto la terra dall'ombra di quella $ono o$curati. ma $ei di que$ti $empre $opra la ter- ra $i muoueno; perche quanto una parte dell'ultimo $egno forzata dalla depre$sione col $uo girare andando $otto $i occulta, tanto dalla contraria parte dalla nece$sità del girar$i $opra leuata col mouimento circolare u$cendo da luoghi non manife$ti, & o$curi $e ne uiene in luce; perche una forza, & una i$te$$a nece$sità fa l'Oriente, & l'Occidente. <p><I>Cioè perche una forza, & una i$te$$a nece$$ità fa, che l'una parte a$cenda, & che l'altra di$cen da. Imouimenti de i Cieli $ono due per molti accidenti cono$ciuti, l'uno è da Leuante, a Po- nente, come $i uede ogni giorno leuare, è tramontare il Sole, & l'altre $telle. Que$to mouimento è detto primo, & diurno, $opra del quale non è co$a $en$ibile, & in termine di hore uentiquattro $i gira perfettamente facendo lo $pacio d'un giorno naturalé. $i che il Sole fa lo anno; la Luna il me$e; il primo mouimento i giorni. Di que$to primo mouimento, delquale niuno altro è piu ue loce, ha parlato Vitr. fin qui: & ha detto, che per quel mouimento $ei $egni del Zodiaco $empre $tanno $opra l'Orizonte, & $ei $empre di $otto. Que$to è uero, perche in ogni Orizonte tanto di giorno, quanto di notte na$ce uno $emicircolo del Zodiaco, nelquale $ono $ei $egni: & ne muore, o cade l'altro, nelquale $ono $ei altri $egni: & e$$endo il Zodiaco uno de i circoli maggiori della Sfera, $empre in ogni Orizonte una metà è $opra, & l'altra $otto, & quanto cade di una, tanto $i leua dell'altra.</I> <p>Ma quelli $egni e$$endo in numero dodici, & tenendo cia$cuno la duodecima parte del mondo, & andando egli continuamente dal Leuante al Ponente; Allhora per quelli fe- gni con mouimento contrario, la Luna, la $tella di Mercurio, & di Venere, il Sole, & co$i la $tella di Marte, di Gioue, & di Saturno come per $alita de gradi, montando cia$cuno <pb n="371"> <I>cuno $patio di tempo s'allont anauano dalla iste$$a stella, & di nuouo dopo alcun tempo riterna- uano alla iste$$a; ilche dalla Luna, il cui cor$o è piu ueloce, $i puo piu pre$to cono$cere o$$eruando la congiuntione, ouero lo $patio, nel quale e$$a a qualche stella cono $ciuta ritorna: e$$aminando tante fiate, quante uer$o Leuante s'allontana, finche $i ueda di $uo proprio mouimento ritornata alla iste$$a stella. in questa maniera adunque è stato ritrouato il $econdo mouimento contrario al primo. La quinta conclu$ione era, che con diuer$a grandezza di giri cia$cuno de i pianeti $a- ceua il cor$o $uo. Hauendo Vitr. numerato di $opra i $ette pianeti, Saturno, Gioue, Marte, il So- le, Venere, Mercurio, & la Luna: i caratteri de i quali $ono questi per ordine.</I> <01>. <04>. <05>. <06>. <07>. <09>. <08>. <I>$i dichiara la detta conclu$ione, con lunga indottione da Vitruuio in questo modo.</I> <p>La Luna in giorni uentiotto, & qua$i un'hora girando$ia torno il Cielo, & ritornando a quel $egno, d'onde prima $i mo$$e, compie il me$e Lunare: ma il Sole pa$$a per lo $pacio d'un $egno, che è la duodecima parte del Cielo in un me$e, la doue in dodici me$i, andan do per lo $pacio di dodici $egni, quando ritorna al $egno, donde prima $i partì, compie lo $pacio d'un'anno; & quel giro, che fa la Luna tredicí fiate in dodici me$i, il Sole mi$ura ne i mede$imi $egni una fiata. <p><I>Poi che Vitr. ci ha dimostrato, che $i truoua diuer$ità ne i mouimenti de i cieli quanto a i ter- mini del mouimento, hora egli ci dimostra e$$ere diuer$ità nella tardezza, & nella uelocità, & determina gli $pacij del tempo, ne i quali cia$cuno fa il $uo mouimento. Noi per maggior chia- rezza proponeremo alcune co$e dell'ordine, del numero, della po$itione, del $ito, & del mouimen to delle sfere cele$ti. Otto $ono i cieli, o per dir meglio tutta la machina cele$te contiene otto gi- ri di cieli $eparati, contigui, & concentrici, oltra i quali non è mouimento alcuno, $e non imagi- nato per $aluar le apparenze. $ette cieli $i danno a i $ette pianeti gia numerati: il piu pro$$imo alla terra è la Luna, il piu lontano, Saturno. l'ottauo cielo è delle $telle fi$$e, detto firmamento, ilquale è grandi$$imo, & capace di tutti i predetti cieli. Que$to numero è $tato compre$o dalla uelocità delle $telle inferiori, & dalla tardezza delle $uperiori. perche le $telle de i cieli di $opra (intendo delle erranti) uanno piu tarde, che quelle di $otto, cioè uogliono piu tempo a raggirar$i, perche fanno maggior uiaggio, conformando$i al primo mouimento. Euui un'altro argomento, che $i piglia dalla occultatione de i corpi piu alti, percioche e$$endo noi nel piu ba$$o luogo, non è dubbio, che quello, che ci è piu uicino a gli occhi non cuopra, o non occulti quello, che $ta di $o- pra, quando $i trapone tra la no$tra ui$ta, & il corpo $uperiore: Aggiugnendoui quella differen za, che è tra il luogo, a cui peruiene la no$tra ui$ta, da quello, doue è ueramente la $tella, o il pia- neta. laqual differenza $i $uol chiamare, diuer$ità dell'a$petto, laquale non è altro, che un'arco d'un circolo grande, che ci pa$$a $opra la te$ta, compre$o da due linee, dellequali una imaginiamo, che $i parta dal centro del mondo: l'altra dall'occhio no$tro, che è nella $uperficie della terra, & pa$$i per lo centro della $tella ueduta, & termini nello arco predetto. Quella linea, che $i parte dal centro della terra, & pa$$ando per lo centro della $tella termina nell'arco imaginato del Zo- diaco, è detta linea del uero luogo, perche è dimo$tratrice, & indice del uero luogo della $tella Ma quella linea, che ua dall'occhio per lo centro della $tella al Zodiaco è detta, linea dell'apparen za, come quella, che dimo$tra il luogo apparente. perilche lo angulo compre$o $otto quelle dritte linee $arà la quantità della diuer$ità, laquale $arà tanto maggiore, quanto la $tella $arà piu ba$- $a, & piu uicina all'Orizonte. imperoche $tandoci la $tella $opra il capo, non $i uede alcuna diuer $ità, perche amendue le linee, & quella del uero luogo, & quella dell'apparenza diuentano una $ola. però $imil diuer$ità nella Luna, è grandi<02>ima: picciola nel Sole: in Marte apena $i uede; & ne i pianeti di $opra non $i comprende, perche $ono lontani<02>imi: & la figura delle dette co$e, è qui appre$$o. La Luna adunque & c.</I> <p><I>a. il centro del mondo.</I> <p><I>b. l'occhio nella $uperficie della terra.</I> <foot><I>CCC</I> <I>c. la</I></foot> <pb n="373"> <I>$pacio, che il Sole dimora $otto uno de i dodici $egni, & co$i uno me$i $arà la duodecima parte dell'anno. Egli $i chiama me$e lo $pacio, che è da una congiuntione all'altra, che è di giorni uen- tinoue è mezo, poco piu. Finalmente me$e $i chiama quel tempo, che pone la Luna in girar tutto il Zodiaco andando di $egno in $egno, ilche dice Vitru. che $i fa in giorni uentiotto, & qua$i un'ho ra. & questo $i puo chiamare anno Lunare, benche Vitr. lo chiami me$e Lunare. io ponerò qui $otto una tauola distinta di tutti i mouimenti de i cieli $econdo la o$$eruatione de i moderni, i quali per $eruare alcune apparenze hanno aggiunto all'ottauo altri cieli.</I> <HEAD><I>TAVOLA DEL MOVIMENTO DE I CIELI.</I></HEAD> <TABLE> <ROW><COL></COL><COL><I>S</I></COL><COL><I>G</I></COL><COL><I>M</I></COL><COL><I>Seconde</I></COL><COL><I>Tertie</I></COL><COL><I>Quarte</I></COL><COL><I>Quinte</I></COL><COL><I>Se$te</I></COL><COL><I>Settim<*></I></COL></ROW> <ROW><COL><I>Il decimo fa in un'hora, In un giorno.</I></COL><COL></COL><COL>15</COL><COL></COL><COL></COL><COL></COL><COL></COL><COL></COL><COL></COL><COL></COL></ROW> <ROW><COL></COL><COL>12</COL><COL></COL><COL></COL><COL></COL><COL></COL><COL></COL><COL></COL><COL></COL><COL></COL></ROW> <ROW><COL><I>Il nono fa in un'hora, In un'anno, In</I> 49000 <I>anni.</I></COL><COL></COL><COL></COL><COL></COL><COL></COL><COL></COL><COL></COL><COL></COL><COL></COL><COL></COL></ROW> <ROW><COL></COL><COL></COL><COL></COL><COL></COL><COL></COL><COL>4</COL><COL>20</COL><COL>41</COL><COL>17</COL><COL>12</COL></ROW> <ROW><COL></COL><COL></COL><COL></COL><COL></COL><COL>26</COL><COL>25</COL><COL>51</COL><COL>9</COL><COL>38</COL><COL>19</COL></ROW> <ROW><COL></COL><COL></COL><COL></COL><COL></COL><COL></COL><COL>4</COL><COL>56</COL><COL>34</COL><COL></COL><COL></COL></ROW> <ROW><COL><I>Il firmamento in un dì, In un'anno, In</I> 7000 <I>anni.</I></COL><COL></COL><COL>3</COL><COL>5</COL><COL></COL><COL>30</COL><COL>24</COL><COL>49</COL><COL></COL><COL></COL></ROW> <ROW><COL></COL><COL>12</COL><COL></COL><COL></COL><COL></COL><COL></COL><COL>58</COL><COL>5</COL><COL></COL><COL></COL></ROW> <ROW><COL></COL><COL></COL><COL></COL><COL></COL><COL></COL><COL></COL><COL>12</COL><COL>30</COL><COL></COL><COL></COL></ROW> <ROW><COL><I>Saturno in un dì, In un'anno, In trent'anni, In me$i</I> 29. <I>&</I> 363 <I>giorni.</I></COL><COL></COL><COL>12</COL><COL>13</COL><COL>34</COL><COL>35</COL><COL>17</COL><COL>40</COL><COL>21</COL><COL></COL></ROW> <ROW><COL></COL><COL>12</COL><COL>7</COL><COL>1</COL><COL>25</COL><COL>42</COL><COL>30</COL><COL>27</COL><COL>45</COL><COL></COL></ROW> <ROW><COL></COL><COL>12</COL><COL></COL><COL>1</COL><COL>22</COL><COL>27</COL><COL>17</COL><COL>34</COL><COL>57</COL><COL></COL></ROW> <ROW><COL></COL><COL></COL><COL></COL><COL>4</COL><COL>59</COL><COL>25</COL><COL>44</COL><COL>1</COL><COL>48</COL><COL></COL></ROW> <ROW><COL><I>Cioue in un dì, In un'anno, In anni</I> 12. <I>In anni</I> 11. <I>&</I> 314. <I>giorni.</I></COL><COL>1</COL><COL></COL><COL>20</COL><COL>28</COL><COL>15</COL><COL>27</COL><COL>7</COL><COL>23</COL><COL>50</COL></ROW> <ROW><COL></COL><COL>12</COL><COL>4</COL><COL>20</COL><COL>45</COL><COL>59</COL><COL>59</COL><COL>59</COL><COL>59</COL><COL>10</COL></ROW> <ROW><COL></COL><COL>12</COL><COL></COL><COL>1</COL><COL>24</COL><COL>46</COL><COL>21</COL><COL>22</COL><COL>1</COL><COL>30</COL></ROW> <ROW><COL></COL><COL></COL><COL></COL><COL>31</COL><COL>26</COL><COL>22</COL><COL>50</COL><COL>57</COL><COL>22</COL><COL>10</COL></ROW> <ROW><COL><I>Marte in un dì, In due anni, In un'anno, &</I> 322. <I>dì.</I></COL><COL>12</COL><COL>22</COL><COL>34</COL><COL>10</COL><COL>38</COL><COL>40</COL><COL>5</COL><COL></COL><COL></COL></ROW> <ROW><COL></COL><COL>12</COL><COL>2</COL><COL>40</COL><COL>44</COL><COL>22</COL><COL>40</COL><COL>50</COL><COL></COL><COL></COL></ROW> <ROW><COL></COL><COL></COL><COL></COL><COL>2</COL><COL>27</COL><COL>57</COL><COL>15</COL><COL></COL><COL></COL><COL></COL></ROW> <ROW><COL><I>Il Sole, Venere, & Mercurio in un'hora. In un dì, In un'anno, In un'anno, & hore $ei.</I></COL><COL></COL><COL></COL><COL>59</COL><COL>8</COL><COL>50</COL><COL>49</COL><COL>3</COL><COL>18</COL><COL>4</COL></ROW> <ROW><COL></COL><COL></COL><COL></COL><COL>43</COL><COL></COL><COL>19</COL><COL>37</COL><COL>19</COL><COL>13</COL><COL>56</COL></ROW> <ROW><COL></COL><COL></COL><COL></COL><COL></COL><COL>39</COL><COL>22</COL><COL>1</COL><COL>59</COL><COL>45</COL><COL>40</COL></ROW> <ROW><COL></COL><COL>11</COL><COL>29</COL><COL></COL><COL>26</COL><COL>26</COL><COL>56</COL><COL>19</COL><COL>34</COL><COL>4</COL></ROW> <ROW><COL><I>La Luna in un'hora, In un dì, In giorni</I> 27. <I>& hore</I> 8.</COL><COL></COL><COL></COL><COL>32</COL><COL>56</COL><COL>27</COL><COL>37</COL><COL>7</COL><COL>57</COL><COL>41</COL></ROW> <ROW><COL></COL><COL></COL><COL></COL><COL>10</COL><COL>35</COL><COL>1</COL><COL>13</COL><COL>11</COL><COL>4</COL><COL>35</COL></ROW> <ROW><COL></COL><COL>12</COL><COL>13</COL><COL>9</COL><COL>17</COL><COL>14</COL><COL>15</COL><COL>2</COL><COL>45</COL><COL>13</COL></ROW> </TABLE> <p>Ma la $tella di Mercurio & la $tella di Venere girando$i d'intorno i raggi del Sole, & coronando con i uiaggi loro il Sole, a gui$a di centro fanno i ritorni, & le dimore, & an- che con le $tationi loro per quella giratione dimorano ne gli $pacij de i $egni. & che que- $to $ia uero, $i fa chiaro dalla $tella di Venere, percioche $eguitando ella il Sole, & appa- rendoci dopo il tramontar di quello, & rilucendo chiari$simamente, $i chiama per que$to Ve$perugine: ma in altri tempi andandogli inanzi, & leuando$i inanzi il giorno, $i chia- ma Lucifer. & per quello alcune fiate piu giorni dimorano in un $egno, alcune fiate piu pre$to entrano in un'altro, & però perche non compieno egualmente il numero de i gior- <foot><I>CCC</I> 2</foot> <pb n="374"> ni in cia$cuno de i $egni, quanto prima hanno ritardato, tanto con piu ueloce cor$o pa$- $ando agguagliano il camino, & lo pareggiano perfettamente. & co$i na$ce, che auegna che dimorino in alcuni $egni, niente di meno poi che $i tolgono dalla nece$sità della tar- danza, pre$tamente con$egui$ceno il giu$to circoito. Ma la $tella di Mercurio co$i pa$- $a il cor$o $uo nel cielo, che correndo per gli $pacij de i $egni in giorni trecento$e$$anta ritorna a quel $egno d'onde prima $i mo$$e. & il $uo uiaggio co$i $i agguaglia, che cerca trenta giorni in ogni $egno ha la ragione del numero $uo. Ma Venere quando è libera dall'i npedimento de i raggi del Sole, in trenta giorni trapa$$a lo $pacio d'un $egno. quan- to meno in giorni quaranta in cia$cun $egno pati$ce; poi che hauerà fatto la $ua $tatione re$titui$ce quella $omma di numero dimorando in un $egno. & però hauendo Venere mi- $urato lo intiero circuito del cielo in quattrocento & ottantacinque giorni, torna di nuo- uo allo i$te$$o $egno, di doue cominciò il $uo uiaggio. <p><I>In que$ta parte Vitr. è difficile, non concorda con gli altri, & for$e è $corretto il testo. Pli- nio che $uole pigliare le facciate intiere da Vitr. in que$ta parte è tutto diuer$o. Vitr. pone i pia- neti nece$$itati tardare, gli $cioglie dalla nece$$ità, & qua$i slegandoli uuole, che pareggino con la uelocità del cor$o quel uiaggio, che haurebbeno fatto, $e $empre fu$$e stato loro conce$$a la libertà di caminare. nè ci dichiara (come $i conuiene) con approuate dimostrationi, donde na- $ce questa nece<02>ità, & donde uegna la loro libertà: però nece$$ario ci pare di darne alquanto di lume con quelle co$e, che dopo Vitr. con belli fondamenti $ono $tate da gli $tudio$i delle co$e ritro- uate. & però la nece<02>ità ci conduce a fare quello, che uoleuamo fuggire. Dichiareremo adunque alcuni termini, che fanno al propo$ito nostro. & $ono que$ti. Epiciclo, Deferente, Eccentrico, Con- centrico, Giogo, opposto al Giogo, lunghezza media dello Eccentrico, lunghezza media dello Epiciclo, Stato, Ritorno, Progre$$o, Argomento, Agguagliamento. Epiciclo adunque è quello, che da Tolomeo $i chiama circolo della diuer$ità, che è una picciola $pera imaginata come aggiun ta alla $pera maggiore, che co$i uuole dire la parola Greca; d'intorno la cui circonferenza uoglio no gli Astronomi, che $i uolga il corpo del pianeta, il cui centro è nella circconferenza della $pe- ra che porta il pianeta, ouero lo Epiciclo uer$o Oriente, detto Deferente, il qual deferente, non ha lo iste$$o centro, col centro del mondo, & però egli $i chiama Eccentrico, cioè fuori del centro. $i come $i chiama concentrico quel circolo, che ha lo iste$$o centro con quello del mondo. però uo- lendo noi nel piano formare lo Epiciclo, & il Deferente: imaginiamo il centro. c. dal quale na- $ce una linea, l'altro capo dellaquale $ia a, & $ia lo a. centro dello Epiciclo. Faccia que- $to capo. a. un giro perfetto, $tando fermo l'altro nel punto. c. dico che formerà nel piano una $uperficie, laquale $i fa per la circonferenza del Deferente. co$i forma il Sole la Eclittica, che è come Deferente del Sole, dallaquale $ono di$tanti i Deferenti de gli altri pianeti, & piega- no da i lati. & la iste$$a linea prolungata fin alla concaua $operficie del primo cielo, di$egna in quella una circonferenza dello iste$$o nome. il centro dello Epiciclo è $empre nella circonferenza del Deferente posto adunque un piede del compa$$o nel punto a. & allargato l'altro fin che tocchi ilcentro del pianeta. d. girando $i a torno $i farà lo Epiciclo. Stando adunque le gia dette co$e, non è alcuno, che non ueda, che la circonferenza del Deferente, & la circonferenza dello Epiciclo non $iano d $egualmente distanti dal centro del mondo. f. Dapoi gli Astronomi hanno trouato diuer$i uocaboli alle parti dello Epiciclo, $econdo le distanze loro dal centro del mondo. uolendo con quelle dimo$trarci, come $i $alua la diuer$ità delle apparenze, la doue quel punto, che è nella circonferenza del Deferente, o dello Epiciclo piu rimoto dal centro del mon- do, chiamano auge, che uuol dire $ommità; & però Cicerone lo chiama Iugum. & quel punto, che per diametro s'oppone al giogo, nominarono, l'oppo$to del giogo. Et perche al Sole non danno Epi ciclo, ma Deferente, però quel punto, che nel Deferente $arà oppo$to al giogo, $imilmente $i chia- merà, l'oppo$ito del giogo. Giogo, cima, auge, ab$ides $ono parole d'una i$te$$a co$a. Lunghezza media dello Eccentrico è la metà del Diametro. Lunghezza media dello Epiciclo è lo $pacio,</I> <pb n="375"> <I>che è da un centro all'altro. $i chiamano lunghezze medie ri$petto, che quel punto, che è rimo- ti<02>imo dal centro del mondo, che $i chiama giogo, è detto anche lunghezza piu lontana, & quel lo, che è uicini<02>imo al detto centro, che chiamano opposto al giogo, è detto lunghezza piu ui- cina dello Eccentrico, ouero dello Epiciclo. Que$ti due punti $ono termini d'una linea dritta, che pa$$a per amendue i centri, laquale $i chiama linea del giogo: percioche è dimostratrice del giogo. la onde $i come nello Eccentrico la maggior lontananza è tanto piu del $emidiametro del lo Eccentrico, quanto è lo $pacio, che è tra uno centro & l'altro: co$i la minore è tanto meno del $emidiametro, quanto quella è di piu: & il $emidiametro è la lunghezza media. Similmente nello Epiciclo la lunghezza maggiore $arà tanto piu d'uno $pacio, che è tra uno centro, & l'altro, quan to è il $emidiametro dello Epiciclo: & tanto dallo i$te$$o $pacio $arà $uperata la minore. la onde lo $pacio che $arà tra l'uno centro, & l'altro $arà la di$tanza di mezo, che media lunghezza $i chiama. percioche è molto ragioneuole, che la lunghezza media $ia tanto meno della maggiore, quanto e$$a è di piu della minore. Chi bene con$idera quello, che fin hora s'è detto, comprenderà, che tanto nello Eccentrico, quanto nello Epiciclo qualunque punto, quanto $i trouerà nella cir- conferenza piu rimoto & di$costo dalla lunghezza maggiore, tanto $arà piu uicino al centro del mondo: & quelli punti, che $aranno egualmente di$tanti dal punto del giogo, $aranno anche egual mente di$tanti dal centro del mondo. Da queste co$e $i ha tutta la diuer$ità del mouimento, che ci appare, cioè con que$te de$crittioni $i $alua la diuer$ità di tutte le apparenze, & però molto cautamente $i deono intendere questi uocaboli, perche $ono $tati ritrouati per dare ad intendere le co$e del cielo a quel modo, che $i puo: perche non $i troua, nè Epiciclo, ne Giogo, nè Deferen- te, nè altra co$a $imigliante nel mondo. Vediamo adunque come $i troua la diuer$ità de i mo- uimenti. Ma prima poniamo la figura delle co$e dette.</I> <fig> <p><I>a b. è il deferente.</I> <p><I>c. il centro del deferente.</I> <p><I>d e. lo epiciclo.</I> <p><I>a. il centro dello epiciclo.</I> <p><I>f. il centro del mondo.</I> <p><I>a. il giogo del deferente.</I> <p><I>b. l'oppo$to al giogo.</I> <p><I>d. il giogo dell'epiciclo.</I> <p><I>Poniamo ca$o, che'l pianeta $i moua portato immediate dal $uo Epiciclo, benche egli $i moua egualmente $opra il $uo cen- tro, on dimeno pare, che egli muti il $uo tenore $opra qualun- que altro punto, che $ia nel cerchio, & $imilmente $opra il cen tro del mondo. Que$ta mutatione $i $alua per ragione di pro$pettiua, imperoche posto, che mol- te co$e $i mouino con eguale uelocità, pure quelle che $ono piu lontane da noi pareno men ueloci, che le piu uiciue. Et però hauendo compre$o gli A$tronomi, che il Sole in diuer$i luoghi del Zo- diaco, diuer$amente $i muoue, & uolendo $aluare tanta diuer$ità, & non uolendo attribuire ad un corpo $i nobile tanta di$agguaglianza, $i hanno imaginato diuer$i cerchi, i centri de i quali non fu$$ero gli i$te$$i, col centro del Mondo. Egli adunque adiuiene, che piu lenta ci appare una $tella, e$$endo nel giogo, che lontana dal giogo, perche nel giogo è piu rimota. Ecci un'altro modo di diuer$ità nel mouimento, perche $e il pianeta dallo epiciclo, & lo epiciclo dal concentri co portato fu$$e, non però $arebbe meno la diuer$ità, imperoche il pianeta portato dall'uno, & l' altro uer$o leuante, $enza dubbio andrebbe piu ueloce, che $e fu$$e portato dal concentrico $o- lo, & per lo epiciclo $e ne ste$$e, o $e ne torna$$e a dietro, percioche nel toccamento di quelle li- nee, che $i parteno dal centro, & uanno all'epiciclo, pare che la $tella, quanto al mouimento del lo epiciclo, $i $tia, ma in una metà della circonferenza pare, che uada inanzi, & nell'altra,</I> <pb n="376"> <I>che torni in dietro. Ecco lo e$$empio. Imaginiamo, che uno cauallo corra intorno un cercbio. grandi$$imo, & l'huomo fuori, & lontano dal cerchio ftia a guardare, certo è che quel cauallo gli parer à hora tardo, hora ueloce, hora fermo, hora andar inanzi, hora tornar a dietro ben- che egualmente egli $i muoua. Et que$to adiuiene per la natura del circolo, che è fatto di contra- rij. Come dice Ari$totile nelle Mechaniche. Co$i il pianeta nell'arco di $opra il contatto di que- $te<*>inee, parerà fermo a noi, che $tiamo al ba$$o, ma nel re$to della circonferenza nel luogo op- po$to al giogo ci parerà ueloci$$imo, & $imilmente nel giogo al piu lento. Ma nello arco di $o- pra dello epiciclo dapoi il contatto delle linee, i luminari $ono portati da leuante a ponente, ma nell'arco inferiore $ono portati col deferente: Ma gli altri pianeti $ono portati con mouimento con trario, dalche adiuiene, che il mouimento del pianeta è composto di due mouimenti, l'uno è del lo epiciclo, l'altro del diferente, come $e uno fu$$e da una galera portato inanzi, & egli in quel mezo anda$$e a torno i fori, la doue $e l'uno, & l'altro mouimento $arà uer$o leuante allhora e$- $endo il pianeta da due mouimenti portato, piu uelocemente $i mouerà, come $e uno da una gale- ra portato inanzi, egli $imilmente anda$$e da poppa a prora. Ma $e'l pianeta anderà con moui- menti contrarij, $e quelli $aranno eguali, cioè che tanto per uno anda$$e inanzi, quanto per l'al- tro anda$$e in dietro, parerà, che egli $tia: come $e uno camina$$e tanto uer$o la poppa, quanto dalla galera fu$$e inanzi portato. Ma $e $aranno di$eguali uincerà il piu ueloce: però $e il moui- mento del deferente $arà piu gagliardo, che il mouimento dello epiciclo, il pianeta anderà uer$o Leuante: ma $e $arà il contrario, il pianeta anderà uer$o ponente, & a questo modo $arà retro- grado: come $e uno torna$$e in dietro meno di quello, che è portato inanzi dalla galera, parerà pure, che egli uadi inanzi, ma $e piu $i contraporrà, parerà, che ritorni, & però lo $tare, & il regre$$o, auuiene alli cinque pianetinello arco inferiore dello epiciclo, percioche in que luoghi $o- no dallo epiciclo portati contra il mouimento del deferente. Et auuiene, che in alcuni luoghi il mouimento dello epiciclo $ia pari, & in alcuni piu ueloce del mouimento del deferente. Ma al Sole, & alla Luna, lo $tato auuenirebbe nello arco di $opra dello epiciclo, perche in quel luo- go lo epiciclo ua contra il deferente, ma perche non lo uince, nè gli è pare, però al Sole, & alla Luna non $ida $tato nèregre$$o, come accenna Vitr. Daremo adunque al Sole ouero il deferente eccentrico $olamente, ouero lo epiciclo col concentrico: imperoche $e il Sole nella circonferenza di $opra dello epiciclo è portato da leuante a ponente, & che il mouimento dello epiciclo $ia tan- to $imile al mouimento dello eccentrico, quanto del concentrico, come è dallo $patio de i centri, al $emidiametro dello epiciclo, in qual $i uoglia modi di due, ne ha da $eguire la i$te$$a apparenza del mouimento. Ma perche il modo dello eccentrico $i contenta di un $olo mouimento, però èsta- to preferito, & eletto piu presto, che il modo dello epiciclo. Ma come $ia $tata cono$ciuta la di stanza de i centri, & il luogo del giogo dirò breuemente. Quattro punti principali $ono con$ide rati nel zodiaco, due $ono stati attribuiti a gli equinottij, due a i $olstitij, che $ono di mezo tra gli equinottij. dalla con$ideratione de gli $patij, & de i mouimenti come de i tempi, è stata cono- $ciuta la distanza de i centri, & il luogo del giogo. Ecco imaginiamoci due linee una, che $i par ga dal centro del deferente del Sole, che peruenga al centro del Sole, l'altra egualmente distante, dal centro del mondo fin al zodiaco, che è la linea del mezano mouimento, certo è che mentre queste linee $aranno intorno girate, $erueranno uno iste$$o tenore, perche la linea del uero moui mento è quella, che trapa$$a dal centro del mondo, per lo centro del Sole, & peruiene fin al zo- diaco. & quell'arco, che è tra la linea del uero, & la linea del mezano mouimento, è detto l'agguaglianza del Sole. & nel giogo, & nello opposto al giogo è nullo perche le due linee concor</I> <p><I>a b g. il concentrico d. il $uo centro.</I> <p><I>e z h. lo eccentrico t. il $uo centro.</I> <p>k <I>z. lo epiciclo b. il $uo centro.</I> <p><I>d t. b z. eguali.</I> <p><I>t z. d b. eguali.</I> <pb n="377"> <p><I>d z. parallelo grammo.</I> <p><I>Il mouimento del</I> <p><I>Concentrico. b d a.</I> <p><I>Epiciclo. k h z.</I> <p><I>Eccentrico. z t e.</I> <p><I>angoli eguali.</I> <p><I>Il $ole $i uede all'uno, & all'altro modo nel punto z. per la linea d z.</I> <fig> <p><I>reno in una. Ma nelle lunghezze mezane proportionalmen- <*>e è grandi$$imo, & ne i punti dal giogo egualmente distanti $ono gli agguagliamenti eguali, & tanto maggiori, quanto $ono piu uicini alla lunghezza piu lunga. Il mezano moui- mento adunque dal principio dello Ariete, $econdo l'ordine de i $egni, $e ne ua fin alla linea del mezano mouimento, $i come il uero mouimento è fin alla linea del uero mouimen- to: d'indi cominciando $i conduce: la doue lo argomento del Sole, o quello arco del zo- diaco, che è intercetto dalla linea del giogo dello eccentrico $econdo l'ordine de i $egni, & la li- nea del mezano mouimento; & è co$i chiamato, perche da quello $i argomenta l'angulo dello ag guagliamento, il che quando è nel $emicircolo inferiore, la linea del mezano mouimento, ua inanzi la linea del uero: ma quando pa$$a il $emicircolo, allhora precede la linea del mezano mo uimento. & però di $opra $i $ottragge, & qui $i aggiugne al mezano mouimento, accioche $i po$$a cauare il uero mouimento. ma per hora la$cierò, che il lettore ricorra al Maurolico, che pur troppo mi pare hauere l'altrui opra operato, bi$ogna bene auuertire di porre in qualche prin cipio la radice del mezano mouimento, $opra la quale egli $i po$$a in quello in$tante, che uole-</I> <p><I>a b g. lo eccentrico d. il $uo centro.</I> <p><I>e. il centro del mondo.</I> <p><I>a d g. la linea del giogo.</I> <p><I>b. il centro del $ole.</I> <p><I>e z. la linea del mezano mouimento parallela alla li- nea b d.</I> <p><I>e h. la linea del uero mouimento.</I> <p><I>b e z. angolo è l'equatione.</I> <fig> <p><I>mo calculare il mezano mouimento del $ole. Da que$ta radice $i ua o$$eruando il uero mouimento, $econdo la $cien za de i triangoli piani. Imperoche da tre linee, che lega no tre centri cioè quello del mondo, quello del deferente, & quello del $ole tre angoli $i uedeno nel triangolo da e$$er</I> <p><I>a b g. il concentrico d. il $uo centro.</I> <p><I>t z. lo eccentrico h. il $uo centro.</I> <p><I>e z. lo epiciclo g. il $uo centro.</I> <p><I>d h. & g z. eguali.</I> <p><I>d z. parallelogrammo.</I> <p><I>Il mouimento.</I> <p><I>del concentrico a d g.</I> <p><I>del epiciclo. e g z.</I> <p><I>dello eccentrico t h z. ouero t d g.</I> <p><I>del giogo dello eccentrico a d z.</I> <p><I>Gli angoli t h z. & e g z. $ono eguali.</I> <p><I>L'angolo a d g. eguale a gli angoli.</I> <p><I>a d t.</I> <p><I>t d g.</I> <fig> <p><I>formato, l'uno è l'angolo dello agguagliamento, gli altri due $ono quelli, che formano le due li-</I> <pb n="378"> <I>nee, l'una del uero, l'altra del mezano mouimento con la line a del giogo: & e$$endocl manife$ta quella proportione, che hanno tra $e due lati di que$to triangolo, l'uno de quali è il $emidiametro dello eccentrico, & l'altro quello $patio, che e$ce dal centro, egli adiuiene, che propo$toci uno qual $i uoglia de i triangoli $ar anno manife$ti anche gli altri. Per il che concludemo, che o datoci il mezano mouimento, o il uero, o l'agguagliamento cia$cuno da $e, quanto prima uno di quelli ci $arà manife$to, egli $i potrà cono$cere anche i due. Tutte que$te co$e $ono co$i de$critte per $al uar le apparenze, la irregolarità del mouimento del Sole d'mtorno al centro del mondo, & per istabilire un certo, & determinato conto dello iste$$o mouimento, come per la figura $i dimostra $egnata O. Poi che hauemo detto del Sole; $eguita, che $i con$ideri il mouimento della Luna, & $ua diuer$ità, & uero luogo. Dico adunque, che il uero luogo della Luna $i fa manife$to per lo ecli$$e di quella. Imperoche chi bene auuerti$ce al principio, & al fine dello ecli$$e, egli $iha lo in$tante del mezo, nel quale la Luna è giu$tamente per diametro oppo$ta al Sole. La doue e$$en doci noto per le co$e gia dimo$trate il luogo del Sole, non ha dubbio, che non $iamo per $apere il luogo della Luna: & que$ta è la piu $icura uia, che $ia. Ma la diuer$ità del $uo mouimento è $ta- ta o$$eruata, poi che s'hebbe ueduto, che nello i$te$$o luogo del zodiaco la Luna non era $empre ueloce ad un modo, & che in diuer$i modi era riferita al Sole: & però diedero la prima diuer$i- tà allo epiciclo, & l'altra allo eccentrico. Quattro punti $ono nello epiciclo, in uno la Luna è ue loci$$ima; percioche il deferente concorre con lo epiciclo ad una i$te$$a parte: ma nello oppo$to è tardi$$ima, percioche lo epiciclo molto repugna al deferente. Ma ne i due punti di mezo la Lu- na $i moue temperatamente. Que$ti quattro punti co$i parti$ceno lo epiciclo, che nella prima par te il mouimento è ueloci$$imo, nell'altramediocremente $i rallenta, nella terza è tardi$$imo, nel- la quarta mediocremente $i appre$ta. Da que$ta diuer$ità $i ha compre$o da quali parti dello epi ciclo la Luna $i muoua, & in quanto $patio di tempo $i raggira d'intorno lo epiciclo. & per haue- re piu preci$amente que$to tempo, gli $peculatori ele$$ero due eccli$$i della Luna, ne i quali la Lu- na $imilmente, & con egualità $i moue$$e, $eruando nell'uno, & nell'altro ecli$$e la mede$ima diuer$ità del mouimento, di modo, che fu$$ero certi, che la Luna fu$$e nello i$te$$o luogo dello epi ciclo. Da que$ta o$$eruanza $ono $tati certificati, che nello $patio di due ecli$$i la Luna haueua fornito il numero delle $ue intiere riuolutioni: percioche era ritornata a quello i$te$$o luogo del- lo epiciclo, & final<*>ente haueua perfetto il numero de i me$i Lunari, e$$endo tornata al luogo oppo$to del Sole. Allhora adunque haueremo cono$ciuto il numero delle riuolutioni dello epici- clo, quando ci $arà manife$to lo $patio di una riuolutione: auenga che non co$i preci$amente. nè per que$to anche ci puo e$$ere a$co$o il numero de i me$i Lunari, ogni fiata, che potre- mo hauere il numero della uolta, & della piena della Luna. & per lo $patio del tem- po tra un'ecli$$e, & l'altro partito nel numero de i me$i Lunari haueremo la quanti- tà del me$e Lunare. & perche nel detto me$e la Luna compie una riuolutione della lunghezza & ui aggiugne tanto di$patio, quanto in quello i$te$$o me$e il Sole $i moue: però tutto quel circo lo intiero con il detto mouimento del Sole partito nel numero de i giorni del me$e lunare con' i $uoi minuti, ci darà ad intendere quanto $ia il diurno mouimento della Luna. Ouero per $apere lo iste$$o mouimento diurno della Luna $i puo al numero delle riuolutioni fatte nel detto $patio di due ecli$$i aggiugnere il mouimento del Sole fatto nel detto $patio, & raccogliere tutto il mouimento della Luna fatto in quello $patio, & partirlo nel numero de i giorni di quello $patio. Et di piu lo intiero circolo partito nel numero de i giorni Lunari, & de i minuti $imilmente il numero de i gra- di delle riuolutioni del predetto $patio partito nel numero de i giorni dello i$te$$o $patio, ci fa ma- ni$e$to quanto per ogni giorno la Luna $i diparta dal Sole, che tanto uuol dire, quanto il moui mento d'un giorno della Luna, è di piu del mouimento del Sole. Nè altrimenti il numero delle riuolutioni della Luna nello epiciclo conuertito in gradi, & partito nel numero de i gradi dello in teruallo, ci farà cono$cer, quanto $i muoue nello epiciclo ogni dì la Luna. In que$to mo- do $i comprende il mouimento della lunghezza e$$er'ogni giorno di gradi 15. minuti 10. $e-</I> <pb n="379"> <I>onde 15. Et il mouimento dello epiciclo e$$ere gradi 3. minuti 3. $econde 54. Lungo $areb- be a ricapitular tutto quello, che nella $peculatione della Luna $i puo dire. Però riportando$i a gli $crittori, pa$$aremo a gli altri pianeti, & prima a i due $ottopo$ti al Sole, cioè a Mercurio, & a Ve nere. Dico adunque, che gli A$tronomi hanno auuertito questi due pianeti partir$i dal Sole, & allontanar$i fino a certi termini dall'una parte, & dall'altra, & nel mezo del loro andare, & del loro ritorno congiugner$i con il Sole, ma quando erano da i lati del Sole, nelle loro $tationi ritrouar$i di$co$ti$$imi dal Sole, & però conclu$ero, che $imil progre$$o, & regre$$o, $i doueua $aluare con lo epiciclo dimodo, che lo centro dello epiciclo col Sole a torno $i moue$$e, & che l'uno, & l'altro pianeta dal Sole $i allontana$$e tanto, quanto daua loro la lunghezza dello epi- ciclo: ma perche raccogliendo in$ieme, due contrarie, & grandi$$ime di$tanze de i detti pianeti dal Sole, trouarono come non in ogni luogo $i $eruaua la i$te$$a quantità, & che quella $omma non poteua cre$cere, $e non per lo acco$tar$i dello epiciclo, nè $cemare, $e non per appartamento del lo epiciclo, per lo quale lo epiciclo hora $i acco$ta$$e, hora $i allontana$$e dal centro del Mondo. Però conce$$ero a i due pianeti inferiori, & lo eccentrico, & lo epiciclo. con que$ta conditione, che lo eccentrico $empre porta$$e lo epiciclo a torno col Sole, & quello<*> i$te$$o fu$$e mezano moui mento del Sole; & del pianeta, & lo epiciclo porta$$e il pianeta di qua, & di la rimouendo dal Sole, & molto bene quadra$$e, per $aluare i regre$$i, & i mouimenti delle larghezze. Hora per $apere, in che modo $i habbia la quantità del mouimento io dico, che bi$ogna o$$eruare il luogo del pianeta nel punto del zodiaco, & a$pettare tanto, che di nuouo il pianeta ritorni allo i$te$$o luogo, con que$ta conditione, che egli $ia in di$tanza eguale dal luogo di mezo del Sole nell'uno, & l'altro luogo. Percioche allhora il pianeta hauerà fornito le intiere riuolutioni dell'uno, & l'altro mouimento prima nello eccentrico, perche il punto dello epiciclo $arà ritornato allo i$te$$o punto, poi nello epiciclo, perche tornato il pianeta alla di$tanza i$te$$a del Sole, hauerà anche ri- trouato lo i$te$$o punto dello epiciclo. Per que$te o$$eruationi $i hauerà il tempo tra$cor$o, & il numero delle riuolutioni: imperochene i tre pianeti di $opra, quante $aranno $tate le riuolutioni dello epiciclo, & le riuolutioni dello eccentrico, ponendo in$ieme il numero di que$te, & di quel- le, tanto nello $te$$o tempo $aranno $tate le riuolutioni del Sole. ma ne i due mferiori il numero delle riuolutioni dello eccentrico, è lo i$te$$o, col numero delle riuolutioni del Sole. nello i$te$$o tempo $imilmente il numero delle riuolutioni $arà dello epiciclo, cono$ciuto, $ubito che $arà da noi appre$$o il uero cono$ciuto il tempo d'una riuolutione. La onde il numero delle riuolutioni moltiplicato per trecento, & $e$$anta produrrà gradi, & il numero de i gradi partito per lo numero de i giorni dello $patio delle fatte o$$eruationi, ci darà quantità del mouimen- to diurno. Ma che ordine ne i progre$$i, & ne i ritorni, & quale nece$$ità loro $ia, di- rò breuemente, auuertendo prima, che la diuer$ità, o contrarietà di que$ta apparenza con uno di due modi $i puo $aluare: o che $i dia al pianeta $olo il deferente eccentrico, ouero lo epiciclo col deferente concentrico: cioè che a quel modo, che in cia$cuno de i tre pianeti $uperio- ri, raccolti in$ieme i mouimenti dello epiciclo del concentrico, & del pianeta nello epiciclo, $ie- no eguali al mezano mouimento del Sole, ma il centro dello ecceatrico $i muoua in$ieme col Sole $econdo l'ordine de i $egni, & il pianeta $i muoua con quella uelocità con la quale $i muoue lo epi- ciclo nel concentrico, in modo, che quella linea, che uiene dal centro, che è parallela a quella li nea, che è tirata dal centro dello eccentrico al centro del pianeta, termini il mezano mouimento del pianeta, & que$to $i o$$erua ne i tre $uperiori. Ma ne i due inferiori ponga$i il mouimen- to dello epiciclo nel concentrico eguale al mezano mouimento del Sole: ma il mouimento del pia- neta nello epiciclo, & il mouimento del centro dello eccentrico $ia eguale alla $omma raccolta dal mezo mouimento del Sole, & da quel mouimento, che fa il pianeta nello epiciclo: & il pianeta $imilmente $i muoua con la i$te$$a uelocità, con la quale $i muoue lo epiciclo nel concentrico, con la i$te$$a conditione $opradetta, cioè in modo, che quella linea, che uiene dal centro, che è paral lela alla linea tirata dal centro dello eccentrico al centro del pianeta, termini il mez ano moui-</I> <foot><I>DDD</I></foot> <pb n="380"> <I>mento del pianeta. Et anche aggiuntaui que$ta conditione in quanto a tutti, che i diametri dello eccentrico, & del conceutrico, $iano proportionati al $emidiametro dello epiciclo. & alla u$cita del centro, & co$i all'uno, & all'altro modo nelle $telle erranti $i potria difendere la ragione del progre$$o, & del regre$$o quanto alla diuer$ità, & uarietà. Ma come per lunga i$perienza gli o$$eruatori delle $telle hanno compre$o questa prima diuer$irà uariar$i da una $econda diuer$ità, però fu nece$$ario dare la prima diuer$ità allo epiciclo, & difendere la $econda col Deferente. Ma quella $ola co$a era a$$ai ba$teuole a fare, che i Deferenti di tutti i pianeti non face$$ero uno i$te$$o centro, cioè la $ingularità del mouimento, perche i concentrici communic ano il mouimen- to il $uperiore allo inferiore. Ma questa communicatione non è $tata auuertita ne i proprij mo- uimenti de i pianeti, però non è $tato po$$ibile di dare loro i concentrici.</I> <fig> <p><I>h K. lo epiciclo b. il $uo centro.</I> <p><I>h. il $uo giogo. n. l'oppo$to.</I> <p><I>K. il punto della prima dimora.</I> <p><I>c. il centro del Mondo.</I> <p><I>o. il punto della $econda dimora.</I> <p><I>h l K. l'arco della prima dimora.</I> <p><I>h K o. l'arco della $econda dimora.</I> <p><I>K n o. l'arco del regre$$o.</I> <p><I>o h K. l'arco della direttione.</I> <p><I>Ma accioche egli s'intenda a quali pianeti $i dia il progre$$o, dirò, che douemo imaginare due linee dritte tirate dal centro, l'una, che termini nelle parti orientali dello epiciclo, l'altra nelle occidentali. A que$to modo quan to al mouimento del pianeta nello epiciclo $olamente, la $tella, che anderà per l'arco di $opra i due punti del toccamento delle dette linee, $i dirà andar inanzi, & far progre$$o. Perche ella in quel luogo $arà portata uer$o l'orien te? ma nello arco inferiore $i dirà retrograda, o far regre$$o, perche ritorne rà mouendo$i alla contraria parte: ma $tando ne i predetti punti, $i dirà, che dimori, & stia: perche nel punto orientale di dritta $i farà retrograda, & nello occidentale di retrograda $i farà dritta. Benche que$te co$e per lo contrario $ono con$idera te nel Sole, & nella Luna. La qual ragione $arebbe a ba$tanza cerca il regre$$o, & progre$$o, $e il pianeta non $i troua$$e con altro mouimento, che col mouimento dello epiciclo. Ma perche mentre il pianeta $i riuolge nello epiciclo, anche lo epiciclo dallo eccentrico è portato, però che appre$$o i detti punti del toccamento il pianeta, benche quanto al riuolgimento dello epiciclo $ia in dimora, niente di meno è portato dallo eccentrico uer$o oriente, & co$i anchora è diretto: & però è nece$$ario, che i punti delle dimore $iano alquanto inferiori a quelli punti, che le predette linee fanno nel toccamento, le quali noi dicemmo partir$i dal centro: & co$i quelle linee non toc cando, ma tagliando, & partendo lo epiciclo ne i loro tagli fanno i punti della dimora. Et però egli è nece$$ario, che quelli punti $iano in quella parte della circonferenza dello epiciclo, done il mouimento retrogrado al pianeta nello epiciclo co$i contra$ta col mouimento del Deferente, che quanto il pianeta è portato all'occidente dallo epiciclo tanto lo epiciclo $ia ritornato dal Deferen te uer$o l'Oriente. Et a que$to modo il pianeta portato da eguali ma contrarij mouimenti, pare, che egli $accia dimora: Et però il pianeta nel punto dello stato orientale, che è detto prima dimo ra, comincia a ritornare; imperoche in quel luogo il mouimento del pianeta nello epiciclo comin- cia auanzare il mouimento dello epiciclo nel Deferente. ma nel punto della dimora occidentale, che $i chiama $econda dimora il pianeta ritorna allo andar auanti, & al progre$$o, percioche il mouimento del pianeta, nello epiciclo $i rallenta. Et queste co$e dalla figura $ono manifeste.</I> <pb n="381"> <p>Ma la $tella di Marte uagando $eicento, & ottanta tre giorni per gli $patij de i $egni per uiene la doue cominciando da prima haucua fatto il $uo cor$o. Et in que $egni, che piu uclocemente tra$corre, poi che hauerà fatto la $ua dimora, riempie la ragione del nume- ro de i giorni. Ma la $tella di Gioue a$cendendo con piu moderati gradi contra il cor$o del Mondo, mi$ura ogni $egno qua$i in trecento, & $e$$anta cinque giorni, & $ta per an- ni undici, & giorni trecento, & $e$$anta tre, & ritorna in quel $egno, nel quale dodici an ni prima $i trouaua. Saturno ueramente per me$i uentinoue, & alquanti giorni di piu pa$ $ando per un $egno in uentinoue anni, & qua$i cento & $e$$anta giorni uiene re$tituito in quel $egno, di doue trent'anni prima $i mo$$e: & d'indi na$ce, che quanto egli è men lon- tano dall'ultimo cielo, tanto piu $patio di circoito $acendo, appare piu lento de gli altri. <p><I>Quanto dice Vitr. è manifesto, dalle $ue i$te$$e parole: ma come s'intenda da noi quello, che egli ha detto, per le $oprapo$te $peculationi $i cono$ce.</I> <p>Ma quelli pianeti, iquali $opra il cor$o del Sole fanno i giri loro $pecialmente quando $aranno in quel triangolo, nel quale $arà il Sole, allhora non uanno inanzi, ma douendo ritornare dimorano $in tanto, che il Sole partendo da quello pa$$erà in altro $egno. <p><I>Pare che Vitr. tratti in que$to luogo de gli a$petti, & delle occultationi delle $telle, ragionan do de i progre$$i, & delle dimore, & ne rende le cau$e a modo $uo; & rifiuta le altrui opinioni. Ma noi $econdo la propo$ta intentione diremo delle apparenze, & de gli a$petti, orti, & occa$i, acco$tandoci al dotto Maurolico. Con$ideramo adunque il Sole in quattro luoghi principali ter- minati dall'Orizonte, & dal meridiano, il primo in Oriente, il $econdo nel mezo del cielo di $o- pra, il terzo in Occidente, l'ultimo nel mezo del cielo di $otto. stando adunque il Sole in uno di questi quattro punti, $e egli starà in Oriente, & anche la $tella $arà in Oriente, chiameremo quel- lo $tato mattutino; $e al mezo dì, Meridiano; $e all'occidente, Ve$pertino; $e alla meza notte, in- tempe$to, per u$are il nome de i Latini. A que$to modo cia$cuno $ito de i quattro della $tella in quattro modi $i riferirà al Sole. La doue $edici $aranno le habitudini delle stelle al Sole. Di quel- le habitudini la meridiana è, ma non $i uede: imperoche la pre$entia del Sole debilita lo a$petto, & però uera non apparente $i chiama. ma il ri$petto della meza notte è, & $i uede $empre ec- cetto quando $otterra la $tella è nel mezo del cielo. E dico, & $i uede, perche di notte ogni $tel- la $i puo uedere nell'Orizonte, ouero $opra la terra. & però & uera, & apparente la chiamere- mo. Finalmente l'habitudine mattutina, o Ve$pertina della $tella $opra la terra, o nell'Orizon- te è, ma non $i uede, perche il raggio del Sole, che sta nell'Orizonte, ce la toglie. potrà ben e$$ere, che la $i ueda, $e il Sole $arà tanto $otto l'Orizonte, che la $ua luce indebolita, o non tanto ga- gliarda, ceda, ouero allhora cominci, o ce$$i di cedere al raggio delle $telle. in quel ca$o l'habitu- dine delle $telle è chiamata apparente o prima, o poi del na$cimento mattutino. l'orto adunque mattutino della $tella, che prima appare, è delto apparenza, ui$ta, o irradiatione prima mattuti na. & l'ultimo, pur mattutino, è chiamato apparenza, ui$ta, o irradiatione ultima mattuti- na. $imilmente l'occa$o ue$pertino, che prima ci appare, $arà detto apparenza, ui$ta, o irra- diatione prima ue$pertina, & l'ultimo, ultima apparenza, ui$ta, o irradiatione ue$perti na. Chiaman$i orti, & occa$i delle $telle ri$petto, che $i cominciano a uedere, o non ue- dere, apparere, & occultar$i u$cendo ouero entrando ne i raggi del Sole. Hora dirò a qua- li $telle occorreno $imili effetti di apparenze: imperoche altrimenti auuengono a quelle, che $ono piu tarde, altrimenti a quelle, che $ono piu ueloci del Sole. Le $telle fi$$e adunque, & i tre $uperiori, perche $ono $opra del Sole, poco prima dell'occa$o uero ue$pertino mancano dopo il Sole, & $i po$$ono uedere. ma dapoi auicinando$i il Sole, a quelle uer$o l'Oriente, perche il Sole è piu ueloce, fanno nell'Orizonte occidentale l'ultima apparenza ue$pertina. ouero $i a$condeno, fin che dopo l'orto uero mattutino, partendo$i il Sole uer$o l'Oriente facciano nell'Orizonte a Le- uante la prima apparenza mattutina. Ma la Luna, per qualche $pacio auanti il na$cimento mat- tutino, $i puo uedere prima, che leui il Sole, ma auuicinando$i al Sole uer$o Leuante e$$endo ella</I> <foot><I>DDD</I> 2</foot> <pb n="382"> <I>piu ueloce fa l'ultima apparenza mattutina a Leuante, & $i leua dallo a$petto no$tro, finche d<*>- po il uero occa$o ue$pertino, la$ciando il Sole, faccia a Ponente la prima apparenza ue$pertina. Ma Venere, & Mercurio, che $ono hora piu tardi, hora piu ueloci del Sole, fanno il mede$imo, che fanno i tre di $opra, & anche quello, che fa la Luna. imperoche fanno, & la prima, & l'ul- tima apparenza, tanto ue$pertina, quanto mattutina; ma i tre $uperiori fanno l'ultima apparen- za ue$pertina, & poi $ubito la prima mattutina uer$o la $ommità dello epiciclo. Ma Venere, & Mercurio fanno le i$te$$e e$$endo retrogradi, & nella parte oppo$ta al giogo: perche que$ti due fanno l'ultima apparenza mattutina, & poco dapoi la prima ue$pertina appre$$o il giogo dello epiciclo. ilche fa anche la Luna, ma nel giogo del $uo Deferente.</I> Et que$to piace ad alcu- ni che co$i $ia. <p><I>Cioè i progre$$i, et le dimore, le apparēze, et le occultationi hanno que$ta cagione $ecōdo alcuni.</I> <p>Perche dicono che il Sole, quando è per una certa di$tanza piu lontano, fa che con non chiari $entieri errando le $telle con o$cure dimore $iano impedite. <p><I>Vogliono che la lontananza del Sole impedi$ca, & ritegna le $telle, & auuicinando$i il Sole $ia no liberate, & $ciolte. que$ta ragione da $e ua giu, & Vitr. la impugna, dicendo.</I> <p>Ma a noi non pare, che co$i $ia, perche lo $plendore del Sole $i la$cia molto ben uedere, & è manife$to $enza alcuna o$curatione per tutto il mondo. in modo, che egli ci appare anche quando quelle $telle fanno i ritorni, & le dimore loro. $e adunque per tanti $pacij la no$tra ui$ta puo que$to auuertire, perche cagione giudicamo noi, che a quelli diuini $plen dori delle $telle $i po$$a opponere alcuna o$curità. <p><I>Questa è buona ragione cerca l'apparenza delle $telle, ma non $atisfa alle dimore, & ritorni come s'è detto.</I> <p>Anzi piu pre$to quella ragione farà chiaro a noi, che $i come il feruore a $e tira tutte le co$e, come uedemo i frutti per lo calore leuar$i da terra, & cre$cere; & i uapori delle acque, delle fonti, per l'arco cele$te e$$er attratti, co$i per la i$te$$a ragione lo impeto, & la forza del Sole mandando fuori i raggi, & $tendendoli in forma triangolare, a $e tira le $telle, che gli uanno drieto, & qua$i raffrenando quelle, che gli correno inante, & ritenendole non le la$cia pa$$ar piu oltra, ma le forza di ritornare a $e, & fermar$i nel $egno d'un'al- tro triangolo. <p><I>Que$ta ragione di Vitru. è piu pre$to da Architetto, che da Filo$ofo. imperoche, chi direbbe, che'l Sole raffrena$$e, o rila$cia$$e i mouimenti del Cielo, come con un freno? che nece$$ità $cio- glierebbe i pianeti da quella forza<*> perche, ($e que$to fu$$e) non potremmo noi uedere tutti i pianeti, & tutte le stelle raccolte in una ma$$a? Non è ragioneuole che i corpi cele$ti $iano $ot- topo$ti a que$ti accidenti, anzi è meno conueniente, che questo auuenga, che la predetta ragio- ne di quelli, che danno alcuni $ecreti, & o$curi $entieri alle $telle. Ma la$ciamo andare que$te co- $e, & torniamo a Vitr. ilquale dalla ri$po$ta, & $olutione della dimanda fatta di $opra, toglie oc- ca$ione, di leuare una dubitatione, laquale egli pone, & è que$ta.</I> <p>For$e alcuno puo di$iderare di $apere, perche cagione il Sole dal quinto $egno lontano da $e piu pre$to che dal $econdo, ouero dal terzo, che gli $ono piu uicini ritenga i piane- ti in que$ti feruori. io come pare, che que$to auegna, e$ponerò. I raggi del Sole $i $ten- deno con linee, come è la forma d'un triangolo, che habbia i lati eguali. & ciò non è piu nè meno, che al quinto $egno lontano da $e. $e adunque $par$i anda$$ero in giro uagando per tutto il mondo, nè $i $tende$$ero dritti, a gui$a di triangoli, le co$e che piu uicine gli fu$$ero, abbruciarebbeno, & que$to pare, che Euripide poeta Greco habbia molto bene con$iderato dicendo, che quelle co$e, che $ono piu rimote dal Sole ardeno molto piu ga- gliardamente. & però $criue nella Fauola intitolata Fetonte, in que$to modo. <p>Arde le co$e, che $on piu rimote. <p>Et le uicine piu temprate la$cia. <pb n="383"> <p>Se adunque, & lo effetto, & la ragione, & la te$timonianza dello antico poeta dimo$tra que$to e$$er uero, io non pen$o, che bi$ogni fare altro giudicio di quello, che di $opra detto hauemo di que$ta co$a. <p><I>Se il Sole ritiene piu fernore quando manda i raggi triangolari, ragione è (dice Vitr.) che a $e tiri piu gagliardamente le $telle, & quelle raffreni dal cor$o loro. Ma perche ragione que$to auen ga, cioè che piu presto il Sole faccta que$to effetto nello $pacio di cinque $egni, ch'è lo $pacio d'uno lato del triangolo (e$cludendo però il quinto $egno) che dal $econdo, ouer dal terzo, che $ono piu uicini, egli dimanda, & ri$ponde a $e $te$$o. Et la proua è pre$a dello effetto, dalla ragione, & dal testimonio di Euripide antico poeta. Ma perche tutta que$ta materia compre$a dalla ragione di Vitr. ci pare, che bi$ogno habbia di maggior chiarezza, però diremo quanto $i ha da Plinio nel $econdo libro, doue egli parla di que$ta mutatione, della quale Vitr. in que$to luogo ne cerca la ra gione, & dice in que$to modo. Del che $eparatamente $i deue renderne conto. Le $telle perco$- $e nella parte, che detto hauemo, & dal raggio del Sole triangolare, $ono ritenute, che non po$$ono tener dritto il cor$o loro, & dalla forza del catore $ono $olleuate, ma questo non co$i pre$to $i puo comprendere dalla ui$ta nostra, & però pare, che $tiano, donde poi è $tato pre$o il nome di Sta tione. Dapoi la forza dello i$te$$o raggio ua inanzi, & il uapore le forza tornare adietro, come riperco$$e da quello. E$pone uno de moderni questo luogo, & dice. Dichiamo auanti, che altro $i dica, la intentione di Plinio, In $omma pigliando lo e$$empio dal monte Etna, iui $i pone il uapo re del fuoco concetto nel fondo della terra, manda fuori le pietre affocate, co$i il Sole $caccia le $telle, che $e gli trouano appre$$o i luoghi ba$$i, & uicini alla terra: ma in que$ta parte, que$to man ca allo e$$empio predetto, percioche alle pietre non $oprauiene da luogo alto altro uapore, che le faccia ritornare al fondo, perche di natura loro di$cendeno: ma il Sole di nuouo $oprauiene col $uo uapore, & rincalza le $telle uer$o la terra. Que$ta ragione dice Plinio, e$$er $ua priuata, & non di altri, $econdo che dice il predetto autore. Ma poi pare, che egli $i mar auigli di Plinio, perche la predetta opinione molto prima da Vitruuio nel pre$ente luogo è $tata dichiarita. Tanta diuer- $itàuiene alle $telle, percioche i raggi del Sole in altro tēpo $ottentrano, et $cacciano quelle in alto, & in altro tempo $ormontano, & quelle deprimeno a terra. Que$ta opinione dice il predetto, $i puo con molte, & euidenti co$e rifiutare. Tra le quali que$ta ne è una, in che modo puo $tare, che il Sole, che è piu ba$$o alle $pere delle $telle, $oprauenga alle $telle, & le $cacci, & le forzi a tornare; che $e fu$$ero tutte le $telle in una $uperficie d'una $pera, il Sole però $tando pre$$o terra nel na$ce- re, o nel cadere, potrebbe tirare la $tella, che fu$$e in alto, ouero nella $ua $tatione. Oltra di que- $to, come $i puo imaginare, che i corpi cele$ti, che per natura hanno i mouimenti loro, $iano all'im perio $olo del Sole $cacciati, & quello imperio non $ia moder ato, ma uiolento? co$a che eternamen te non potrebbe durare. Appre$$o $i aggiugne, che non $i conuiene transferire a $cacciamenti fortuiti, quelle co$e, che indubitatamente $ono riferite a que' giri, come a $e$ta ordinati. Et però molto bene conuengono Plinio, & Vitruuio in que$to pa$$o, & ua giu anche la dubitatione, & la $olutione di Vitr. $econdo i modi da noi e$po$ti di $opra.</I> <p>Ma la $tella di Gioue, correndo tra la $tella di Saturno, & di Marte, fa maggior uiag- gio, che Marte, & minor, che Saturno. Et $imilmente le altre $telle, quanto piu $ono lon- tane dall'ultimo cielo, & piu uicine alla terra $i uolgeno, tanto piu pre$to pare che $ini- $chino i cor$i loro. perche cia$cuna di quelle facendo minor giro, piu $pe$$o $ottentrando pa$$a quella, che è di $opra; a $imiglianza di quello che auuenirebbe $e in una ruota di boc calaio, po$te fu$$ero $ette formiche, & fu$$ero fatti tanti canali nel piano della ruota, prima d'intorno al centro, dapoi a poco a poco cre$ce$$ero & maggiori fu$$ero appre$$o la e$tre- mità, che ne i detti canali fu$$ero con$trette le formiche a raggirar$i, caminando tutta uia la ruota nella parte contraria, egli è nece$$ario che quelle formiche per tanto di meno ua- dino contra la uolta della ruota; & quella, che $arà piu uicina al centro nel $uo canale $a- rà piu pre$ta a dar la uolta $ua: & quella, che farà l'ultima, & maggior circonferenza del- <pb n="384"> la ruota, benche $ia egualmente ueloce, nientedimeno per la grandezza del giro, che ella ha da fare, ponerà molto piu tempo in fornire il cor$o $uo. Simigliantemente le $telle, che uanno contra il cor$o del Mondo, di loro proprio mouimento fanno i proprij giri, ma uolgendo$i il cielo con $oprauanzi $ono riportate in dietro per la quottidiana circu- latione del tempo. <p><I>Quello che dice Vitr. in que$to luogo è facile, & bello, & è $tato u$urpato da i po$teriori per da re ad intendere il contrario mouimento delle $pere de i pianeti.</I> <p>Ma che $iano delle $telle altre temperate, altre feruenti, altre fredde; que$ta pare, che $ia la ragione, che ogni fuoco ha la $iamma $ua che a$cende il Sole adunque abbrucian- do con i raggi $uoi la parte etherea, che ha di $opra, la fa rouente. <I>Rouente, cioè come ferro, che bogliente e$ce dal fuoco.</I> <p>In que luoghi ha la $tella di Marte il $uo cor$o: & però quella $tella $i fa feruente dal cor$o del Sole. Ma la $tella di Saturno, perche è pro$sima alla e$tremità del mondo, & tocca le congelate parti del cielo, è grandemente fredda: & da que$to procede, che do- uendo Gioue tra$correre tra que$ta, & quella, dal freddo, & dal calore di quelli, come nel mezo, tiene effetti conuenienti, & $ommamente temperati. <p><I>Tutta uia Vitr. ua ragionando da Architetto, però non è, che ci affatichiamo in contradirgli, hauendo per certo, che nè freddo, nè caldo, nè qualità $imile, nè pa<02>ione, $ia in que' cele$ti, & lumi- no$i corpi, i quali $ono $timati di fuoco, perche ri$plendeno; ma in uero $ono inalter abili, & impati- bili, nè, perche ri$plendono, $i deue $timare, che $iano di fuoco. Imperoche molti animali, & molte $corze d'alberi, & molte squame di pe$ci riluceno a merauiglia, nè però hanno in $e fuoco alcuno. Et $e quella $tella è detta feruente, & que$ta fredda, non è $e non, perche hãno uirtù di produrre qua giu $imili effetti. La doue lo influ$$o non è altro, che occulta qualità de i corpi cele$ti, che non puo e$$er impedita da alcuno corpo trapo$to.</I> <p>Io ho e$po$to, come ho da mici precettori hauuto, della zona ornata de i dodici $egni, & delle $ette $telle, & della loro contraria fatica, con che ragione, & con che numeri pa$ $ano di $egno in $egno, & fini$ceno il cor$o loro. Hora io dirò, come cre$ca, & $cemi la Luna, in quel modo, che da i maggiori ci è $tato la$ciato. Bero$o, che dalla citta, ouero dalla natione de i Caldei uenne in A$ia, & fece pale$e la di$ciplina de Caldei, co$i ha con- fermato. che la Luna è da una metà come una palla lucente & acce$a, & dall'altra è di co- lore cele$te, & quando ella facendo il $uo giro, $ottentra al cerchio del Sole allhora è da i raggi & dallo impeto del calore attratta, & fatta rouente: perche il $uo lume ha pro- prietà col lume del Sole: & come richiamata, & riuolta riguarda le parti di $opra al- lhora la parte della Luna ci appare o$cura, imperoche per la a$simiglianza dello aere, non è rouente: & quando $ta a perpendicolo de i raggi del Sole diceua Bero$o, che tutta la parte lumino$a era ritenuta uer$o la parte di $opra, & allhora $i chiamaua prima Luna. ma poi che pa$$ando piu oltre ella andaua alle parti Orientali del cielo abandonata dalla for- za del Sole. La e$trema parte della $ua chiarezza con molto $ottil filo mandaua a terra il $uo $plendore: & co$i per quella cagione era detta $econda Luna. & continuando ogni giorno a rimettere, & rila$ciare il $uo giramento, era detta Terza, & Quarta Luna. Ma nel $ettimo giorno $tando il Sole a Leuante, & tenendo la Luna le parti di mezo tra Le- uante, & Ponente, perche con la metà per lo $pacio del Cielo è di$tante dal Sole, $imilmen te hauerà la metà della $ua chiarezza riuolta alla terra. Ma quando tra'l Sole, & la Luna $arà la di$tanza di tutto lo $pa cio del cielo, & che il Sole tramontando riguarderà il cer- chio della na$cente Luna, perche $arà molto di$tante da iraggi del Sole, rila$ciata nel quarto decimo giorno, manderà lo $pl<*>ndore da tutta la ruota della faccia $ua. & ne i $e- guenti giorni continuamente $cemando alla perfettione, & compimento del me$e Luna re, con i $uoi giri, & con e$$er riuocata dal Sole, $ottentrerà col cor$o $uo la ruota, & i <pb n="385"> raggi $uoi faranno le ragioni del me$e. Ma io e$ponerò in che modo Ari$tarco Samio Mathematico ci ha la$ciato gli ammae$tramenti della uarietà della i$te$$a Luna con gran- de prontezza d'ingegno. Non ci è a$co$o la Luna non hauere da $e lume alcuno, ma e$$e- re come uno $pecchio, & riceuere il $uo $plendore dallo impeto del Sole. imperoche tra le $ette $telle la Luna fa il cor$o $uo breui$simo, piu uicino alla terra. Adunque ogni me- $e ella $i o$cura $otto la ruota, & i raggi del Sole il primo giorno prima che ella gli pa$si & quando è col Sole, $i chiama nuoua Luna. Ma il di $eguente dal quale è nominata $e- conda, trapa$$ando il Sole porge una $ottile apparenza della $ua rotondità: quando poi per tre giorni s'allontana dal Sole cre$ce, & piu è illuminata. Ma partendo ogni giorno, giunta al $ettimo dì e$$endo lontana dal cadente Sole d'intorno a mezo il Cielo luce per la metà, & è illuminata quella parte, che riguarda al Sole. ma nel decimo quarto giorno e$- $endo per diametro nello $pacio del mondo dal Sole di$co$ta, $i fa piena, & na$ce, quan- do tramonta il Sole, imperoche di$tante per tutto lo $pacio del mondo è contrapo$ta, & dallo impeto del Sole riceue il lume di tutto il $uo cerchio. Ma na$cendo il Sole alli 17 giorni, la Luna è abba$$ata all'occidente, & nel uente$imo primo, quando è leuato il So- le, la Luna tiene qua$i le parti di mezo il Cielo, & ha lucida quella parte, che riguarda il Sole, & nelle altre è o$cura, & co$i caminando ogni giorno qua$i al uente$imo ottauo $ot tentra a raggi del Sole, & compie le ragioni de i me$i. Hora io dirò come il Sole en- trando ne i $egni in cia$cun me$e fa cre$cere, & $cemare gli $patij de i giorni, & del- le hore. <p><I>A me pare che la opinione di Bero$o concorra in una con quella di Ari$tarco. Ben è uero, che c'è differenza, perche Pero$o uuole, che la metà della Luna $ia lucida, & che quella $ia $empre ri- uolta al Sole, & que$to puo $tare, $e egli intende, che la metà $ia lucida, o uedendola, o non ueden- dola noi. Et Ari$tarco uuole, che tutto il lume, che ha la Luna uenghi dal Sole, la qual opinione è migliore, & è stata adme$$a. Dico adunque in $omma, che la Luna congiunta col Sole non $i ue- de, perche ha la faccia illuminat a riuolta al Sole, & la o$cura a noi. ma di$co$tando$i ogni giorno dal Sole, il Sole percuote una parte della Luna con i raggi $uoi, & perche noi $iamo di mezo, comin ciamo a uedere la parte illuminata, & ne' primi giorni poco ne uedemo, però quello a$petto $i chia ma Lunato, & in Greco Monoidis. Ma nel $ettimo quando ella è per una quarta del cielo lonta- na dal Sole, quella faccia $i uede meza, & però in Greco è detta Dicotomos, cioè bipartita: allonta nando$i poi piu dal Sole, & riuoltando a noi piu della metà della faccia illuminata, è detta Amphi cirtos, cioè curua d'amendue le parti. finalmente nella oppo$itione dimo$trando tutta intiera la $ua ritondezza illuminata, è detta Pan$elinos, cioè tutta Luna, o piena Luna, et noi dicemo la Luna ha fatto il tondo. ritornando poi al Sole, di giorno, in giorno $i ua na$condendo, finche di nuouo $ia $ot- topo$ta al Sole, doue $i dice, che la Luna fà, ouero $i chiama la congiuntione: & que$to ci puo ba$ta- re per lo intendimento della pre$ente materia. La quale fornita Vitr. ci propone di dire come i giorni s'accortano, & s'allungano, & le hore, mentre il Sole ua di $egno in $egno, & dicendo, che gli $pacij delle hore $i fanno maggiori, & minori, ci dinota, che gli antichi partiuano cia$cun gior- no in dodici parti eguali, però ne $eguitaua, che le hore del giorno della $tate, erano maggiori, che le hore diurne del uerno, & quella proportione, che $i $eruaua nel partire i giorni, la mede$ima $i $eruaua in partire le notti, & quelle hore conueniuano con le hore ordinarie, & con tutte altre $or ti di hore, $olamente al tempo de gli Equinottij. $cemauano le hore dal tempo che il Sole entraua in Cancro, fin che entraua in Capricorno: ma cre$ceuano dal Capricorno al Cancro. Con que- $to auuertimento s'intenderà piu facilmente, quanto dice Vitr.</I> <pb n="386"> <HEAD><I>Delcor$o del Sole per li dodici $egni. Cap. V.</I></HEAD> <p>IL Sole adunque quando entra nel $egno del Montone, & tra$corre la ottaua parte di quello, fa lo equinottio di primauera. ma andando piu oltra alla co da del Toro, & alle Stelle Vergilie, dalle quali auanza la prima metà del To ro, corre in maggiore, & piu ampio $patio del Cielo, della metà uer$o la par te Settentrionale. Partendo$i poi dal Toro quando entra ne i Gemelli, na$cendo le Ver- gilie, cre$ce anchora piu $opra la terra, & fa maggiori gli $patij de i giorni. indi da i Gemel li, quando entra nel Cancro, il quale occupa lunghi$simo $patio del Cielo, giunto all'ot- taua parte fa il tempo del Sol$titio, & caminando peruiene al capo, & al petto del Leo- ne. Perche quelle parti$ono attribuite al Cancro. Ma dal petto del Leone, & da i termi ni del Cancro l'u$cita del Sole correndo alle altre parti del Leone, $cema la grandezza de i giorni, & de i giri, & ritorna in cor$o eguale a quello, che egli faceua, quando cra ne i Gemelli. indi poi pa$$ando dal Leone alla Vergine, & andando piu oltre al $eno della ue- $te di quella in quello re$trigne i giri $uoi, & gli pareggia con quelli, che egli faceua e$- $endo nel Toro. V$cito di Vergine per lo $eno della ue$te di quella che occupa le prime parti della Bilancia, nella ottaua parte della Bilancia fa lo equinottio dello Autunno. Et quel cor$o è pari al cor$o gia fatto nel Montone. Ma entrando poi il Sole nello Scor- pione cadendo le Vergilie, andando piu inanzi uer$o le parti meridiane $cema la lunghez- za de i giorni. Venendo po$cia dallo Scorpione al Sagittario, quando egli entra nelle par ti anteriori di quello pa$$a piu $tretto cor$o del giorno. Ma cominciando dalle co$cie di dentro del Sagittario, le quali parti $ono attribuite al Capricorno, giunto alla ottaua par te fa un breui$simo $patio del Cielo, & d'indi dalla breuità de i giorni quel tempo è detto Bruma, & i giorni brumali. Ma pa$$ando dal Capricorno all'Acquario cre$ce, & aggua glia con la lunghezza del dì lo $patio del Sagittario. Dallo Acquario, quando è entrato ne Pe$ci $pirando il uento Fauonio acqui$ta cor$o eguale allo Scorpione. & co$i il Sole an dando per que $egni a certi, & determinati tempi fa cre$cere, & $cemate gli $patij de i gior ni, & delle hore. Ma io dirò delle altre con$tellationi, che $ono ornate di $telle dalla $ini $tra, & dalla de$tra della zona de i $egni, della parte meridiana, & $ettentrionale del Mondo. <p><I>Quiui ci rende Vitr. la ragione del cre$cere, & del calare de i giorni, ma breuemente, & piu presto ci e$pone lo effetto, che fa il Sole nel Mondo entrando di $egno in $egno cercando la quan tità de i giorni: benche la ragione $ia que$ta, che il Sole $opra terra di $egno in $egno faccia mag- giori, & minori archi del Cielo. Però noi $aldaremo anche que$ta partita, dicendone la cagio- ne intieramente. percioche quando a noi cre$ceno i giorni, ad altri uanno $cemando, però doue- mo abbraciare tutta la cau$a di tale effetto, & non quella, che a noi habitanti di qua dallo equi nottiale $erue $olamente. In due modi adunque s'intende giorno. prima lo $patio, che fa il Sole col Mondo girando una fiata nel termine di hore uentiquattro; & que$ta è l'ordinaria $ignificatio ne di que$to nome pre$o uulgarmente. Imperoche gli e$perti A$tronomi, al giro di hore uenti- quattro, danno quello di piu, che il Sole ha fatto in quel tempo col $uo mouimento contrario a quello del Mondo. nè è merauiglia $e in questo $patio è compre$a anche la notte; perche ri$petto a tutto il Mondo $empre luce il Sole, & fa giorno in qualche luogo. L'altra $ignificatione è, che per giorno s'intende quello $patio, che in al cun luogo il Sole $ta $opra l'orizonte. nel primo mo do comincia il giorno al mezo dì, & termina al mezo dì $eguente. Percioche a qualunque habi tanti della terra stando fermo, doue egli $i troua ogni giorno dell'anno il Sole peruiene al mezo dì $opra uno iste$$o circolo, che pa$$a da un polo all'altro, per lo punto, che glista $opra il capo,</I> <pb n="387"> <I>il qual punto è detto Zenith. & il circolo è chiamato Meridiano. Imperoche quando il Sole $i troua in alcun punto di quello, quando è $opra terra, $empre è mezo dì: & benche diuer$i habbia no diuer$i Meridiani, a cia$cuno però il $uo è uniforme. Ma i punti del leuare, & del trammon tar del Sole, $i uanno $empre uariando. Perche $i uede, che il Sole hora na$ce al uero leuante; hora di qua, hora di la. Et co$i tramonta in diuer$i punti dell'orizonte. Per $apere adunque la diuer$ità de i giorni, egli bi$ogna auuertire, che il Sole non $ale ogni giorno egualmente $opra terra, dal che uiene, che un giorno non è eguale allo altro. Ben è uero, che ne gli ist<*>$$i graai di appartamento dallo equinottiale, ne i quali il Sole ogni dì a$cende, in quelli $i pone alla parte op- posta, & per breue, o lungo, che $ia il giorno $tando l'huomo in un luogo, il Sole gli uiene ogni dì (come ho detto) ad uno iste$$o meridiano, $enza che egli pieghi mai in parte alcuna. Nè per questo affermo, che ad uno iste$$o tempo $ia il mezo dì a tutti gli habitatori della terra, ma aico bene, che quanto uno è piu leuantino, tanto piu presto gli na$ce il Sole, & tanto piu presto gli uiene al $uo meridiano. La doue egli $i puo hauere per que$ta ragione, che quando ad al um è mezo dì, ad altri è il principio, ad altri il fine del giorno, & ad altri la notte, & e$$endo la terra, come alcuni uogliono di leghe $eimila di circuito, il corpo del Sole per ogni hora del dì naturale fa per la ritondezza dell'acqua, & della terra leghe ducento & $e$$antadue. La onde per que$to conto guardando noi, che hora è di giorno in un pae$e $aperemo, che hora $ia in ogni altra parte; $apendo la distanza delle leghe, che è da un luogo all'altro da leuante a ponente. Hora ponia- mo il Sole nel principio del Montone, che è punto equinottiale: benche Vitr. lo mette nella otta- ua parte, (il che come s'intenda dirò poi) & che cominci a montare: & imaginiamo, che il principio, & il fine del giorno $ia, quando $u'l Labro, o $u l'orlo dell'orizonte da leuante, & da Ponente $i troui il centro del corpo $olare: Io dico il giorno e$$er pari alla notte: perche il Sole di$egna una metà del $uo giro $opra l'orizonte, & l'altra metà di $otto, & dimora tanto di $opra quanto di $otto. Facciamo poi, che il Sole $i muoua di $uo mouimento uer$o i $egni, che $ono di qua dalla linea equinottiale ri$petto a noi, che $ono il Montone, il Toro, i Gemelli, il Cancro, il Leone, & la Vergine, detti da Vitr. Settentrionali; Io dico che i giorni $i faranno a poco a poco maggiori, fin che il Sole peruenga al $egno del Cancro, di doue egli comincia ad abba$$ar$i, & ritorna in dietro: però è detto Tropico: cioè circolo di ritorno: che è quello, che noi imaginiamo, che farebbe il Sole, $e egli quando entra nel Cancro girando per un giorno intiero, la$cia$$e un $e gno manife$to nel Cielo: $i come chiamano equinottiale, quel circolo, che $egnandolo il Sole in un dì entrando nel Montone, o nella Bilancia, egli mo$tra$$e i $uoi ue$tigi. il Sole adunque comin cia a di$cendere dal Tropico, & non fa l'arco diurno co$i grande. Et perche pare, che a quel tempo il Sole faccia poco mouimento, il che ci appare, per la poca mutatione delle ombre, però quel tempo è delto Sol$titio. Quiui adunque il giorno è lunghi$$imo a quelli, che $tanno di qua dallo equinottiale, & la notte è breui$$ima; & tanto è piu lungo il dì & piu breue la notte, quanto è piu torto, & obliquo l'orizonte, perche il Sole fa maggior $alita a quelli, che hanno l'orizonte piu obliquo, & dimora piu $opra la terra, & però lo $patio della luce è maggiore. La onde facilmente $i corregge il te$to di Vitr. la doue egli dice. {Ad Cancrum, qui breui$$i- mum tenet cœli $patium.} percioche uuol dire, longi$$imum, ri$petto al Sole, che nel principio del Cancro fa maggior uiaggio $opra l'Orizonte ri$petto a noi, & l'arco diurno è piu grande, che $ia in tutto l'anno. Di$cendendo poi dal Sol$titio ne i $eguenti $egni, i giorni uanno $ceman- do. perche gli archi diurni $ono piu ba<02>i, & minori, fin che egli peruiene alla Bilancia, nel cui principio di nuouo il giorno $i fa eguale alla notte: Et $i fa il $econdo equinottio, detto equinottio dell'Autunno, $i come il primo $i diceua equinottio della prima uera. Et di$cendendo tutta uia ne i $eguenti $egni i giorni $i $cortano, per le $opradette cagioni, fin che entri nel Capricorno, do- ue $i fa l'altro Sol$titio, che da i buoni antichi è detto Bruma, dalla breuità de i giorni. Stando adunque il Sole nel $egno brumale, le notti $ono piu lunghe, che $iano in tutto l'anno a quelli, che $tanno di qua dallo equinottiale, & i giorni con$eguentemente $ono piu breui. Ma a quelli,</I> <foot><I>EEE</I></foot> <pb n="388"> <I>che $ono di la dallo equinottiale auuiene al contrario, percioche gli archi diurni $i fanno mag- giori, & il Sole girando per quelli, $ta piu $opra l'Orizonte, & i notturni $i fanno mino- ri. Ritornando poi dal Capricorno, (perche iui anche è l'altro circolo del ritorno,) per- che il Sole comincia a prendere maggior $alita, i giorni $i fanno maggiori, $in che un'altra fiata $i pareggino con la notte rientrando nel Montone. Et que$to è quanto ha uolu- to dire Vitruuio accennando nel tra$cor$o molte belle co$e. Tra le quali una è l'ordine de i $egni, & il modo delle figure loro; & que$to dico accioche gli artefici, che fanno le $pere, imparino a poner bene i $egni cele$ti, perche il Sole entra nel Montone per la te$ta $ua. dietro il Montone è la coda del Toro, & co$i ua $eguitando, come dice Vitruuio. L'altra co$a è che dal Montone per ordine fin alla Bilancia i $egni, che iui $ono $i chiamano Settentrio- nali. & quelli, che $ono dalla Bilancia al Montone $i chiamano Meridionali. perche quelli $ono di qua dallo equinottiale uer$o il Settentrione, doue $iamo noi: quelli di la uer$o le parti Meridia- ne; dico ri$petto a noi. Imperoche i $egni Meridiani a noi, che $tiamo di qua dalla linea, $ono $egni del Sole di la, & i $egni, che a noi $ono Settentrionali, a quelli $ono Meridiani. Dice an- che di piu, che l'uno, & l'altro equinottio, & l'uno, & l'altro Sol$titio $i fanno nelle parti ot- taue de i loro $egni, il che come s'intenda il moderno autore $opracitato, nel predetto luogo di Plinio dice. Gli antichi per cono$cere il circolo obliquo riguardarono, quando in due tempi di- uer$i i giorni fu$$ero eguali alla notte. Et con$iderando anche due grandi$$ime di$aguaglianze de i giorni, l'una nel uerno, l'altra nella $tate, quando il Sole $i ritroua, ne i punti delritorno. Et cio fecero con giudicio, & bene, pen$ando, che tra que$ti termini il Sole anda$$e $eruando uno i$te$$o tenore di uiaggio, non interrompendolo piu in un luogo, che in un'altro, & co$i parue lo- ro, che bene fu$$ero, che quelli $patij fu$$ero congiunti $otto la circonferenza d'un continuate cerchio. Et co$i haueuano quattro principij di quattro quarte del circolo obliquo, che in que- sto modo fu prima detto. da que$to prendendo altri argomenti partirono quel cerchio in dodici par ti eguali, immutabili m ogni $ecolo: ma poi per fare la loro inuentione memorabile a $e $te$$i, & a i po$teri di$egnarono quel circolo, con alcune copie di $telle, che iui e$$er compre$ero non in mo- do, che ogni imagine, co$i da loro figurata occupa$$e a punto la duodecima parte, ma in quanto fu$$ero uicine al detto cerchio. Et co$i chiamarono Montone, Toro, & gli altri $egni. Et da que$to l'obliquo cerchio ha pre$o il nome di zodiaco, ouero di $ignifero. Et che le imagini non oc cupa$$ero la terza parte del zodiaco a punto, ce lo da ad intendere Vitr. dicendo, che il capo, & il petto del Leone è attribuito al Cancro: & che il $eno della ue$te della Vergine ba le prime parti della Bilancia, & altre $imili co$e. Hora e$ponendo Vitruuio dicemo, che le prime parti del Montone, che fin alle corna $i e$tendeno a gradi $ei, & minuti trenta, cioè $ei parti, & meza delle dodici, nelle quali è partito egualmente il zodiaco, & le ultime fin alla coda di e$- $o Montone hanno gradi uenti$ette, ci $ono uenti, & mezo, che tanto $i e$tende que$ta imagine per lungo di que$to numero la ottaua parte è 2. & mezo con le quali il Montone auanza la egualità de i giorni. Il $imile s'intende de gli altri $egni. & benche que$to co$i a pun to non $ia, niente dimeno ci puo ba$tare la uicinanza. Columella nel nono benche approui la opinione de Hipparco dicendo, che gli equinottij, & Sol$titij $i fanno nelle prime parti de i $e- gni, però egli $egue Eudo xo, & Mirone antichi a$tronomi, che diceuano, che gli equinottij, & i Sol$titij $i faceuano nelle ottaue parti de i $egni: come dice Vitru. po$ero questo gli antichi, $eguitando la con$uetudine: imperoche que giorni erano dedicati a certi $acrificij, & nominati per $acre ceremonie, & quella opinione era $tata accettata da gli huomini uolgari. Eanche da o$$eruare in Vitr. & la ri$pondenza de i giorni, quando il Sole è in un $egno, con quelli quando egli è in un'altro. Et pero dice, che il Leone ri$ponde a Gemelli, la Virgine al Toro; la Bilancia al Montone: & co$i gli altri, perche egli è una i$te$$a ragione dello andare, & del ritorno: & conclude, che co$i come i giorni uanno cre$cendo, & $cemando, co$i cre$ceno, & $cemano gli $patij delle hore e$$endo quella proportione della parte alla parte, che è del tutto al tutto. Ma</I> <pb n="389"> <I>accioche $i dia chiara, & uniuer$al dimo$tratione, diremo, che in ogni Orizonte tanto di giorno, quanto di notte, $ia que$to, & quella langhi, o breui quanto $i uoglia. La metà del Zodiaco $a le $opra, & l'altra $cende, come detto hauemo. di giorno, quando monta quella, che comincian do dal luogo oue $i truoua il Sole, $econdo l'ordine de i $egni $i $a innanzi, & l'altra tramon- ta: cioè quella, che, comincia dal luogo oppo$to, doue $i truoua il Sole: & per lo contrario di notte quella a$cende, & que$ta di$cende. Et que$to è ragioneuole, perche e$$endo (come detto hauemo) l'Orizonte, & il Zodiaco due cerchi de i maggiori, nece$$ario è, che l'uno, & l'altro $i taglino in due parti eguali; Adunque tanto di giorno, quanto di notte $ei $egni na$ceno, & $ei ca deno. Però nello obliquo Orizonte, a quelli, che $ono di qua dalla linea nel giorno dello equinot tio di Primauera monta la metà del Zodiaco, che declina uer$o il Polo manife$to, che contiene i $egni dal Montone alla Pilancia; & per lo contrario nel dì dello equinottio dell'Autunno mon- tando l'altra metà, quella di$cende. Ma quella metà del Zodiaco, che comincia col punto del Sol$titio della $tate in grandi$$imo $patio monta, & in breui<02>imo di$cende. & nel punto della Bru ma, quella metà, che in breui<02>imo $patio a$cende in lunghi<02>imo di$cende, perche na$ce tanto nella notte della $tate, quanto nel dì del uerno breui<02>imo: & di$cende tanto nel dì dell'e$tate, quanto nella notte del uerno lunghi<02>ima. La onde gli habitanti $otto i circoli polari, la metà del Zodiaco, che comincia col punto del Sol$titio co$i come nello $patio di hore uentiquattro $i le- ua, co$i in uno in$tante $i pone: & per lo contrario l'altra, come in uno in$tante $i leua, co$i in hore uentiqnattro $i pone. La doue quanto una metà del Zodiaco prende il principio $uo piu uici no al piu alto Sol$titio, tanto $ale in maggiore $patio di tempo, & in minore $i pone: Et co$i due metà, che cominciano con un punto da un Sol$titio egualmente rimote, con eguali $patij di tempo montano, & $i corcano, perche na$ceno, & cadeno con giorni, & notti eguali. Et $e due me- tà del Zodiaco cominciano da due punti oppo$ti, in quel tempo, che una $ale, l'altra $i po- ne, perche lo i$te$$o dì, che una leua, l'altra cade: & nella i$te$$a notte, che una monta, l'altra trammonta: per il che, quelle metà, che na$ceno con punti da uno equinottio egualmente distanti, in quanto tempo, che una $i leua l'altra cade. Et que$to è quello, che dice Vitr. che a i giorni de i Gemelli, $ono pari i giorni del Leone. Qui $otto ci$arà una tauola, che ci dimo$tra di grado in grado la lunghezza de i giorni cominciando $otto l'equinottiale, fin $otto il Polo.</I> <p><I>Et co$i quanto $ono i giorni lunghi al tempo del Sol$titio, tanto $ono le notti al tempo della bruma: di modo che in tutto l'anno, tanto è lo $pacio del giorno, quanto è lo $pacio della notte. Volendo adunque noi $apere quanto $ia il dì maggiore in cia$cun pae$e, $i ricorrerà alla predetta tauola, doue nel primo ordine $i ritrouerà l'altezza del Polo: nel $econdo all'incontro la grandez za del giorno $econdo le hore: & nel terzo i minuti; & nel quarto le $econde. Ma che il mondo $ia habitato, fin la doue $ono $ei me$i di giorno, & $ei di notte: que$to è gia manife$to per la pra- tica de gli huomini, & per gli $critti di molti. La natura ha proui$to a quelli. La Luna con lo $uo $plendore $pe$$o gli ui$ita: i crepu $culi gli $ono lunghi tanto la $era, quanto la mattina: il So- le dimorandogli molto $opra la terra gli la$cia la $ua impre<02>ione: il pae$e è coperto da i uenti con la grandezza de i monti: il $ito è incuruato, che riceue meglio il calore: iui è il mare, che pure per la $al$uggine $ua dà inditio di qualche adu$tione: iui $i trouano le pelli fini$$ime, gli huomini grandi $ono gagliardi, & robu$ti; & $i come il mare gli $ommini$tra gran quantità di pe$ce, co$i la terra non $i $degna di produrre herbe, & metalli in gran quantità, di modo che gli antichi i quali non haueuano ueduto piu inanzi $ono stati dap oi $enza lor frutto dalla e$perienza conuin- ti. Ma torniamo al propo$ito. & dichiamo breuemente quello, che è $tato o$$eruato del moui- mento del Sole, nelle quarte del Zodiaco. Il Sole adunque ua per la prima quarta del Zodiaco in giorni nouantaquattro, hore dodici: & del $uo Eccentrico gradi nouanta tre, minuti noue. Va per la $econda, che è la quarta e$tiua in giorni nouanta due, & hore dodici: & del $uo Eccentrico gradi nouanta uno, minuti undici. ua per la terza in giorni ottantaotto, & del $uo Eccentrico</I> <foot><I>EEE</I> 2</foot> <pb> <TABLE> <ROW><COL><I>L'altezza del Polo.</I></COL><COL><I>Hore</I></COL><COL><I>Minuti</I></COL><COL><I>Seconde</I></COL></ROW> <ROW><COL>1</COL><COL>12</COL><COL>3</COL><COL>28</COL></ROW> <ROW><COL>2</COL><COL>12</COL><COL>6</COL><COL>56</COL></ROW> <ROW><COL>3</COL><COL>12</COL><COL>10</COL><COL>24</COL></ROW> <ROW><COL>4</COL><COL>12</COL><COL>14</COL><COL>0</COL></ROW> <ROW><COL>5</COL><COL>12</COL><COL>17</COL><COL>28</COL></ROW> <ROW><COL>6</COL><COL>12</COL><COL>20</COL><COL>56</COL></ROW> <ROW><COL>7</COL><COL>12</COL><COL>24</COL><COL>48</COL></ROW> <ROW><COL>8</COL><COL>12</COL><COL>28</COL><COL>0</COL></ROW> <ROW><COL>9</COL><COL>12</COL><COL>31</COL><COL>36</COL></ROW> <ROW><COL>10</COL><COL>12</COL><COL>35</COL><COL>12</COL></ROW> <ROW><COL>11</COL><COL>12</COL><COL>38</COL><COL>48</COL></ROW> <ROW><COL>12</COL><COL>12</COL><COL>42</COL><COL>24</COL></ROW> <ROW><COL>13</COL><COL>12</COL><COL>46</COL><COL>8</COL></ROW> <ROW><COL>14</COL><COL>12</COL><COL>49</COL><COL>44</COL></ROW> <ROW><COL>15</COL><COL>12</COL><COL>53</COL><COL>28</COL></ROW> <ROW><COL>16</COL><COL>12</COL><COL>57</COL><COL>20</COL></ROW> <ROW><COL>17</COL><COL>13</COL><COL>1</COL><COL>4</COL></ROW> <ROW><COL>18</COL><COL>13</COL><COL>4</COL><COL>36</COL></ROW> <ROW><COL>19</COL><COL>13</COL><COL>8</COL><COL>56</COL></ROW> <ROW><COL>20</COL><COL>13</COL><COL>12</COL><COL>48</COL></ROW> <ROW><COL>21</COL><COL>13</COL><COL>16</COL><COL>48</COL></ROW> <ROW><COL>22</COL><COL>13</COL><COL>21</COL><COL>4</COL></ROW> <ROW><COL>23</COL><COL>13</COL><COL>25</COL><COL>4</COL></ROW> <ROW><COL>24</COL><COL>13</COL><COL>29</COL><COL>20</COL></ROW> <ROW><COL>25</COL><COL>13</COL><COL>33</COL><COL>35</COL></ROW> <ROW><COL>26</COL><COL>13</COL><COL>38</COL><COL>0</COL></ROW> <ROW><COL>27</COL><COL>13</COL><COL>42</COL><COL>24</COL></ROW> <ROW><COL>28</COL><COL>13</COL><COL>46</COL><COL>16</COL></ROW> <ROW><COL>29</COL><COL>13</COL><COL>51</COL><COL>36</COL></ROW> <ROW><COL>30</COL><COL>13</COL><COL>56</COL><COL>16</COL></ROW> <ROW><COL>31</COL><COL>14</COL><COL>1</COL><COL>12</COL></ROW> <ROW><COL>32</COL><COL>14</COL><COL>6</COL><COL>8</COL></ROW> <ROW><COL>33</COL><COL>14</COL><COL>11</COL><COL>12</COL></ROW> <ROW><COL>34</COL><COL>14</COL><COL>16</COL><COL>24</COL></ROW> <ROW><COL>35</COL><COL>14</COL><COL>21</COL><COL>52</COL></ROW> <ROW><COL>36</COL><COL>14</COL><COL>27</COL><COL>20</COL></ROW> <ROW><COL>37</COL><COL>14</COL><COL>33</COL><COL>4</COL></ROW> <ROW><COL>38</COL><COL>14</COL><COL>37</COL><COL>36</COL></ROW> <ROW><COL>39</COL><COL>14</COL><COL>44</COL><COL>56</COL></ROW> <ROW><COL>40</COL><COL>14</COL><COL>51</COL><COL>12</COL></ROW> <ROW><COL>41</COL><COL>14</COL><COL>57</COL><COL>44</COL></ROW> <ROW><COL>42</COL><COL>15</COL><COL>4</COL><COL>24</COL></ROW> <ROW><COL>43</COL><COL>15</COL><COL>11</COL><COL>20</COL></ROW> <ROW><COL>44</COL><COL>15</COL><COL>18</COL><COL>40</COL></ROW> <ROW><COL>45</COL><COL>15</COL><COL>26</COL><COL>8</COL></ROW> <ROW><COL>46</COL><COL>15</COL><COL>34</COL><COL>8</COL></ROW> <ROW><COL>47</COL><COL>15</COL><COL>42</COL><COL>24</COL></ROW> <ROW><COL>48</COL><COL>15</COL><COL>51</COL><COL>4</COL></ROW> <ROW><COL>49</COL><COL>16</COL><COL>0</COL><COL>8</COL></ROW> <ROW><COL>50</COL><COL>16</COL><COL>9</COL><COL>44</COL></ROW> <ROW><COL>51</COL><COL>16</COL><COL>19</COL><COL>52</COL></ROW> <ROW><COL>52</COL><COL>16</COL><COL>30</COL><COL>32</COL></ROW> <ROW><COL>53</COL><COL>16</COL><COL>41</COL><COL>52</COL></ROW> <ROW><COL>54</COL><COL>16</COL><COL>54</COL><COL>8</COL></ROW> <ROW><COL>55</COL><COL>17</COL><COL>7</COL><COL>4</COL></ROW> <ROW><COL>56</COL><COL>17</COL><COL>21</COL><COL>4</COL></ROW> <ROW><COL>57</COL><COL>17</COL><COL>36</COL><COL>16</COL></ROW> <ROW><COL>58</COL><COL>17</COL><COL>52</COL><COL>48</COL></ROW> <ROW><COL>59</COL><COL>18</COL><COL>10</COL><COL>48</COL></ROW> <ROW><COL>60</COL><COL>18</COL><COL>30</COL><COL>56</COL></ROW> <ROW><COL>61</COL><COL>18</COL><COL>53</COL><COL>20</COL></ROW> <ROW><COL>62</COL><COL>19</COL><COL>18</COL><COL>24</COL></ROW> <ROW><COL>63</COL><COL>19</COL><COL>48</COL><COL>40</COL></ROW> <ROW><COL>64</COL><COL>20</COL><COL>24</COL><COL>24</COL></ROW> <ROW><COL>65</COL><COL>21</COL><COL>10</COL><COL>32</COL></ROW> <ROW><COL>66</COL><COL>21</COL><COL>20</COL><COL>40</COL></ROW> </TABLE> <HEAD><I>Continuatione de i giorni, o della luce.</I></HEAD> <HEAD><I>Hore Minuti Seconde.</I></HEAD> <TABLE> <ROW><COL>67</COL><COL>24</COL><COL>1</COL><COL>40</COL></ROW> <ROW><COL>68</COL><COL>42</COL><COL>1</COL><COL>16</COL></ROW> <ROW><COL>69</COL><COL>54</COL><COL>16</COL><COL>25</COL></ROW> <ROW><COL>70</COL><COL>64</COL><COL>13</COL><COL>46</COL></ROW> <ROW><COL>71</COL><COL>74</COL><COL>0</COL><COL>0</COL></ROW> <ROW><COL>72</COL><COL>82</COL><COL>6</COL><COL>39</COL></ROW> <ROW><COL>73</COL><COL>89</COL><COL>4</COL><COL>58</COL></ROW> <ROW><COL>74</COL><COL>96</COL><COL>17</COL><COL>0</COL></ROW> <ROW><COL>75</COL><COL>104</COL><COL>1</COL><COL>4</COL></ROW> <ROW><COL>76</COL><COL>110</COL><COL>7</COL><COL>27</COL></ROW> <ROW><COL>77</COL><COL>116</COL><COL>14</COL><COL>22</COL></ROW> <ROW><COL>78</COL><COL>122</COL><COL>17</COL><COL>6</COL></ROW> <ROW><COL>79</COL><COL>127</COL><COL>9</COL><COL>55</COL></ROW> <ROW><COL>80</COL><COL>134</COL><COL>4</COL><COL>58</COL></ROW> <ROW><COL>81</COL><COL>139</COL><COL>31</COL><COL>36</COL></ROW> <ROW><COL>82</COL><COL>145</COL><COL>6</COL><COL>43</COL></ROW> <ROW><COL>83</COL><COL>151</COL><COL>2</COL><COL>6</COL></ROW> <ROW><COL>84</COL><COL>156</COL><COL>3</COL><COL>3</COL></ROW> <ROW><COL>85</COL><COL>161</COL><COL>5</COL><COL>23</COL></ROW> <ROW><COL>86</COL><COL>116</COL><COL>11</COL><COL>23</COL></ROW> <ROW><COL>87</COL><COL>171</COL><COL>21</COL><COL>47</COL></ROW> <ROW><COL>88</COL><COL>176</COL><COL>5</COL><COL>29</COL></ROW> <ROW><COL>89</COL><COL>181</COL><COL>21</COL><COL>58</COL></ROW> <ROW><COL>90</COL><COL>187</COL><COL>6</COL><COL>39</COL></ROW> </TABLE> <pb n="391"> <I>gradi ottanta $ei, minuti quarantauno. uà per la quarta del uerno in giorni nouanta, hore due, minuti cinquanta cinque, $econde due, & del $uo Eccentrico gradi ottanta otto, minuti nouanta- noue. fa la metà $ettentrionale del Zodiaco in giorni centoottanta $ette, l'altra in giorni cento $et- tanta otto, hore cinquanta cinque, minuti cinquantacinque, $econde dodici. La doue andando per la metà Settentrionale pone giorni otto, hore dieclotto, minuti quattro, $econde quaranta otto di piu, che andando per la metà meridiana.</I> <p>Hora io dirò delle altre con$tellationi, che $ono dalla de$tra, & dalla $ini$tra della zona dei $egni di$po$te, & $igurate di $telle dal Settentrione, & dal Meriggie. <p><I>Propone Vitr. quello, che egli fare intende, dapoi che egli ci ha e$plicato il cor$o del Sole, il cre$cere, il $cemare de gli $pacij diurni, & delle hore: & dice uolerci dimo$trare il $ito delle stel- le po$te di qua, & di la dal Zodiaco, percioche e$$endo alcune imagini nella larghezza del Zodia- co, alcune fuori, & hauendo detto di quelle, che $ono nella larghezza del Zodiaco, quali, quan- te, & come $tiano: uuole trattare di quelle, che $ono di quà, & di là del Zodiaco: & prima tratta di quelle, che $ono dalla parte Settentrionale, chiamando $ydera le con$tellationi, cioè le imagini intiere compo$te di piu $telle: & $tella una $ola $tella.</I> <HEAD><I>Delle constellationi, che $ono dalla parte Settentrio- nale. Cap. VI.</I></HEAD> <p>IL Settentrione, ilquale i Greci chiamano Arcton, ouero Helicen, ha dietro di $e po$to il Guardiano: da quello non molto lontana è la Vergine, $opra il cui homero de$tro è po$ta una lucidi$sima $tella, che i Latini chiamano Pro- uindemiam: i Greci Protrygetum; & la $ua apparenza è piu pre$to $plendida, che colorita: euui un'altra $t<*>lla a dirimpetto tra le ginocchia del Guardiano dell'Or$a, che è dettà Arcturo, & iui è dedicato all'incontro del capo del Settentrione attrauer$ato ai piedi de i Gemelli il Carrettieri, & $ta $opra la $ommità del corno del Toro. parimen- te nella $ommità del Corno $ini$tro del Toro alli piedi del Carrettieri tiene una $tella da una parte, che $i chiama la mano del Carrettieri, doue $ono i Capretti, & la Capra. <p><I>Vitr. non $olamente pone le imagini cele$ti, che $ono raunanze di molte $telle dette da lui con- $tellationi, ma ancho qualche stella $egnalata da $e: nè meno le pone tutte, ma $olamente quelle, che per gli orti, & occa$i loro $ono uedute, & cono$ciute. però $i uede che Vitr. ha hauuto inten tione di e$ponere quello, che appare $opra il nostro hemi$pero, & però ha ragionato prima de i poli del mondo in quel modo, come per legge perpetua il $ettentrione $te$$e di$opra, & l'antarctico di $otto. In que$to trattamento ci $ono molte $correttioni del testo. Va a torno una carta fatta con il con$iglio, & con l'opera di tre ualent'huomini, Giouanni Stabio, Alberto Durero, & il Volpaia Fiorentino, nella quale $ono tutte le imagini celesti, fatte con estrema diligenza, $econdo il $ito lo ro, col numero delle stelle, che le adornano, & la quantità, & grandezza loro, & anche ci $ono le $telle $eparate dalle imagini, & molte ui $ono aggiunte per relatione di nauiganti, che appartengo no all'altro polo. ma noi in uece di quella tauola, ne poneremo un'altra non di pittura, ma di nume- ri, dimo$trando per quella, quali imagini $iano $ettentrionali, & quali dalla parte del mezo dì, & che latitudine s'habbiano, cioè quanto $iano dalla eclittica di$coste uer$o i poli del mondo, & che longitudme, cioè quanto $iano lontane dal principio del Montone, per la lunghezza del Zo- diaco, & $i dimo$trerà le loro quantità, & qualità; perche altre $ono piu lucenti, altre meno, & altre maggiori, & altre minori, altre uanno al mezo del Cielo con un $egno, altre con un'altro. Questa tauola è $tata calculata del 1520. con $omma diligentia dallo Eccellente Me$$er Federi- co Delfino mio precettore. Io, & per l'obligo, & per l'affettione, che gli ho portato, & per la ra gione, & per l'autorità $ua ho uoluto riportarmi alla $ua calculatione, & dare in luce, quella ho-</I> <pb n="392"> <I>norata fatica. però nel fine del libro è po$ta la detta tauola, alla quale rimetto i lettori. Gli an- tichi po$ero quar antaotto imagini, & cognobbero mille, & uintidue $telle. Vero è che alcuni han no uoluto fare d'una imagine piu parti, & però hanno pa$$ato il numero predetto. Tolomeo ne mette quarantaotto. Queste $ono chiamate tanto dalle co$e animate, quanto dalle co$e inanima te; & tanto dalle ragioneuoli, quanto da quelle, che mancano di ragione; & tanto dalle fiere, quan to dalle domestiche, sì di terra, come di mare, & questo dico con grande merauiglia, come i Cre- ci ($e i Greci $ono $tati, et non altri piu antichi) habbiano hauuto tanta autorità, che con tanto con $en$o di ognuno habbiano empito il cielo delle lor fauole, che confirmate dapoi per niun modo $o- no $tate m<*>ate. Ma in fine l'aduiatione de i cortegiani, & la uoglia de i primi ordinatori, come Poeti, & A$tronomi, per fare eterna memoria d'alcune co$e no<*> abili, o per adulare a i loro $igno- ri, hanno ritrouato luoghi nel cielo da collocarui le co$e amate da quelli, la doue non poterono e- glino mai $alire. Come Virgilio po$e tra gli artigli dello Scorpione la $tella di Ce$are. Ma è co- $a mirabile, che i Creci, od'altri habbiano hauuto tanto priuilegio di empire il cielo de i nomi delle loro $celer atezze, & che le fauole loro $iano $tate accettate ne i canoni, & nelle regole di de$cri uere il cielo. Fanno mentione di que' nomi anche le $acre lettere, come Iob parlando della poten tia di Dio dice. Il quale fa l'Arcturo, & l'Orione, & le Hiade, & le parti interiori dell'O$tro. Et in un'altro luogo Dio dice di $e $te$$o a Iob. Potrai tu riunire le ri$plendide stelle Pleiade? ouero di$$ipare il giro d'Arcturo? Produci tu Lucifero nel tempo $uo, o fai tu na$cere $opra l'Orizonte la $tella detta Ve$pero? Ma i Greci od'altri, che $iano $tati primi inuentori, temendo che la leggie- rezza delle loro ribalderie, non $i dilegua$$e, le uollero inchiodare nel cielo. però cantano alcuni.</I> <p><I>Gioue infiammato d'amoro$o ardore Delle figlie de gli huomini s'acce$e Hauendo a noia l'immortal conte$e Dell'orgoglio$a moglie, e $uo furore.</I> <p><I>Vide Cali$to, che era $ul fiore Di $ua bellezza, onde tra noi di$ce$e, Et dopo i dolci baci, e le conte$e Dolci di lei, ne re$to uincitore.</I> <p><I>Giunon gelo$a piena di disdegno Piglia la bella giouane, e $tratiata Che l'hebbe, in Or$a horribil la conuer$e.</I> <p><I>L'infelice ne diè co'l ruggir $egno Per le $elue d'Arcadia, ma leuata Per la pietà di Gioue al Cielo s'er$e.</I> <p><I>Le imagini, che $ono uer$o il Settentrione $ono prima po$te da Vitruuio, & dice, che quel Setten trione, che da Greci è detto Arctos, ouero Helice, che altro non è, che l'Or$a maggiore, che altri dalla figura hanno chiamato il Carro: ha dietro di $e il custode, o Guardiano, o Bootes, che $e gli di ca, $otto il quale non molto lontano è il $egno della Vergine, che per A$trea, o per la Giu$titia $i pone, $opra la cui de$tra $palla $i uede una lucidi$$ima $tella, che $i chiama Antiuindemia, per- che quando na$ce, cioè quando e$ce da i raggi del Sole, promette la maturità della uindemia. della cui materia $egni manife$ti $ono gli acini dell'uua mutati di colore. Que$ta $tella è $imile al ferro af focato, però Vitruuio dice, che è piu pre$to candens, cioè rouente, che colorata. perche gli $crittori gli danno uno mir abile $plendore. I Greci la chiamano Protrygetum, che in latino prouindemia, $i dice. Oltra di que$to tra le ginocchia del Guardiano è la stella nominata Arcturo, dalla quale alcuni hanno chiamato Arcturo tutta la imagine del Guardiano. Ecco che Vitru. non $olo tocca le imagini, constellationi, asteri$mi, $egni, & figure, che tutto è uno, ma anche le stelle $ole & $eparate, (come detto hauemo.) $eguita poi l'Auriga, carrettieri, Ericthonio, & Or$ilocho det- to, il $ito delquale è dinanzi al capo dell'or$a maggiore, & le sta attrauer$ato in modo, che $e</I> <pb n="393"> <I>l'Or$a $corre$$e, gli urterebbe nel capo. sta egli $opra il destro corno del Toro, per mezo i piedi de i Gemelli, $opra la cui $palla $ini$tra è una $tella, che $i chiama la Capra. que$ta pare che ri- guardi due picciole stelle, che $ono nella $ini$tra del carrettieri, & $i chiamano i Capretti. però to leggerei Vitr. in questo modo.</I> { <I>Itemque in $ummo cornu læuo ad Aurigæ pedes una tenet parte stellam, quæ appellatur Aurigæ manus, in qua hædi. capra uero læuo humero.</I> } <I>& poi comincia.</I> { <I>Tauri quidem, & Arietis in$uper.</I>} <I>Adunque $opra la cima del $inistro corno del Toro l'Auriga $tende una mano, nellaquale $ono due $telle nominate i Capretti, & tiene $opra il $inistro humero una stella detta la Capra. & poi $eguita.</I> <p>Sopra le parti del Toro, & del Montone con le $ue de$tre parti Per$eo $i ritroua, $ot- tentrando alla ba$e delle $telle nominate Vergilie. & con le piu $ini$tre il capo del Monto ne appoggiando la de$tra mano al $imulacro di Ca$siopea, & tiene $opra l'Auriga per la cima il capo gorgoneo ponendolo $otto a i piedi di Andromeda. & $opra Andromeda, & $opra il $uo uentre $ono i caualli. <p><I>Et qui ancho è il te$to $corretto, perche le parole di Vitr. non hanno relatione nè construt- tione, & la uerità è, che $opra di Andromeda ci $ono due caualli, uno alato, che $i pone per lo cauallo Pega$eo: & l'altro è la parte dinanzi d'uno cauallo, cioè il capo, & il petto, & il uentre dello alato è $opra il capo d'Andromeda. Tiene anche il detto cauallo una stella $opua la $pina a$$ai notabile, & però Vitr. potrebbe dire.</I> <p>Ci $ono anche i Pe$ci $opra Andromeda, & il uentre di quel cauallo, che è $opra la $pi- na dell'altro cauallo, ma nel uentre del primo è una lucidi$sima $tella, che termina il detto uentre, & la te$ta di Andromeda. Ma la mano de$tra di Andromeda è po$ta $opra il $imu- lacro di Ca$siopea, & la $ini$tra $opra il pe$ce Aquilonare. $imilmente l'Aquario $opra il capo del cauallo, & le unghie del cauallo toccano le ginochia d'Aquario. <I>Però nella fi- guratione di quelli ualent'huomini il Cauallo deue hauere ipiedi riuolti all'altra parte.</I> <p>Sopra Ca$siopea per mezo il Capricorno in alto è po$ta l'Aquila, & il Del$ino, dopo i quali è la Saetta, & alquanto dietro alla $aetta è l'uccello. la cui de$tra penna tocca la ma- no di Cepheo, & il $cettro: ma la $ini$tra di Cepheo $ta $opra la imagine di Ca$siopea fer- mata. $otto la coda dell'uccello $ono coperti i piedi del cauallo. <I>Qui s'intende del mezo cauallo.</I> D'indi $ono le imagini del Sagittario, dello Scorpione, & della Bilancia. <p><I>Se Vitru. haue$$e con nomi $eparati distinto i due caualli, chiamando l'uno Equus, l'altro E- quiculus, ouero protome hippus, come dicono i Greci, non ci haurebbe la$ciato difficultà: oltra che dicendo di $opra, che l'Aquila è molto lontana dal $imul acro di Ca$$iopea, & che le unghie del cauallo toccano le ginocchia dello Aquario, & poi dicendo, che $otto la coda dell'uccello $ono coperti i piedi del cauallo, egli ci da ad intender, che non $i ragiona d'un $olo cauallo: ma il tutto s'acconcia per la lettione, & la de$crittione de i buoni autori.</I> <p>Di $opra poi il $erpente tocca con la cima del ro$tro la corona, nel mezo del quale è l'Ophiuco, o Serpentario, che tiene il Serpente in mano, calcando col piè $ini$tro la fron te dello Scorpione. ma alla metà del capo dell Ophiuco, non molto lontano è il capo del lo Ingenocchiato. detto Ae$$o. <I>Che Hercole, The$eo, Tamiri, Orpheo, Prometheo, Ixione, Cetheo, Lycata $i chiama.</I> <p>Ma le cime delle lor te$te, $ono piu facili ad e$$er cono$ciute, imperoche $ono formate di $telle a$$ai lucenti. Ma il piede dello Ingenocchiato $i ferma a quella tempia del capo di quel Serpente, che è tra l'Or$e, che Settentrioni $i chiamano. <p><I>Ma quello, che dice Vitr.</I> { <I>Parue per eos flestitur Delphinus</I>, } <I>non accorda col detto de gli altri, perche il Delfino è lontano dallo ingenocchiato; $e for$e non $i legge.</I> {<I>Vbi parue per os fl tur Delphinus contra uolucris rostrum est. propo$ita lyra.</I> } <p>Ma doue per la bocca breuemente $i piega il Delphino contra il'ro$tro dell'uccello è propo$ta la Lyra. tra gli homeri dello ingenocchiato, & del Guardiano è adorna la co- <pb n="394"> rona. ma nel cerchio Settentrionale po$te $ono le due Or$e. <p><I>Dapoi che Vitr. ci ha ragionato di quelle stelle, & di quelle imagini, che $ono tra il Tropico, & il circolo Settentrionale, egli entra a quelle, che $ono dentro del circolo Settentrionale, & questo fa $eparatamente perche quelle parti $ono piu nece$$arie da e$$er cono$ciute, perche a com modi humani piu opportune $i ueggono. De$criue adunque partitamente il circolo Settentriona- le, la figura, & la collocatione dell'Or$a, & del Dracone, che la cigne, & dice.</I> <p>Nel circolo Settentrionale $ono po$te le due Or$e, che $i uoltano le $palle, & hanno i petti riuolti in altra parte. la minore Cino$ura, la maggiore Helice è detta dai Greci; Guardano amendue allo in giu, & la coda dell'una, è uolta uer$o il capo dell'altra; per- cioche i capi dell'una, & dell'altra dalla cima loro u$cendo per le code $oprauanzando$i tra quelli, è $te$o il Serpente, o Dracone, che $i dichi. Dal fine del quale è la $tella lumino- $a, quella, che $i chiama il polo, che è d'intorno al capo dell'Or$a maggiore. perche quel- la, che è uicina al Dracone $i uolge d'intorno al $uo capo. <p><I>Qui $i uede lo errore di molti, che hanno dipinto l'Or$e, & il Dracone, perche la figura del Dracone, non è di quella maniera contorta, come $i dipigne. & quelli, che l'hanno o$$eruato con diligenza, non hanno trouato, che le stelle apparino nel cielo, nel modo, che $ono dipinte, nè l'or $a maggiore appre$$o la testa del Dracone, nè la minore appre$$o la coda. ma per lo contrario la maggiore è appre$$o la coda, & la minore è appre$$o le $pire, come Arato ci dimostra, dicendo.</I> <p><I>Qui fan di Gioue le notrici chiaro Helice & Cino$ura, quella Greci Guida per l'alto mar, que$ta Fenici. Helice è tutta chiara, & ha$ue $telle Di maggior lume, & digrandezza adorna. Et quando il Sol nell'ocean' s'a$conde Quella di $ette fiamme adorna $plende, Ma a marinari è piu fedel quell'altra, Percioche tutta in breue giro accolta Al fido polo $i riuolge, & mai (Purche ueduta $ia) non $i ritroua Alle naui de' Sidoni fallace.</I> <p><I>Tra que$te a gui$a di $pezzato lume Il fiero Drago $i tramette, e uolge Et quinci, & quindi l'un & l'altra auanza Helice con la coda, & poi torcendo. A Cino$ura piega, & doue punta Con la $ua coda iui la testa pone Helice, & oltra Cino$ura $tende Le Sue ritorte pieghe, e alzato a drieto Guarda l'Or$a maggior col capo ardito. Ardeno gli occhi, & l'affocate tempie Di fiamme acce$e $ono, e'l mento $olo Arde d'un fiero lume.</I> <p><I>La tramontana, della quale $i $erueno i no$tri marinari, è quella $tella, che è l'ultima nella co- da dell'Or$a minore. imaginiamo una lin ea dritta dalle ultime due $telle dell'Or$a maggiore, cioè dalle ruote di dietro del carro, che uedi fin alla pro<02>ima $tella che $e le fa incontra, iui è la $tella uicina al polo del mondo, che $i chiama $tella del mare. la Tramontana adunque è la prima del- le $telle, che fanno l'Or$a minore. Que$te $ono $ette stelle a$$ai chiare, tre di e$$e fanno un corno, che $i piglia per lo temone dal carro, quattro poi fanno il quadrato $econdo il $ito di quattro ruote, $i muoueno d'intorno il polo con egual di$tanza in termine di hore uentiquattro da Leuan- ite a Ponente. & la Tramontana per e$$er piu uicina al polo fa minor giro. & per quella, e$$endo l polo inui$ibile $i cono$ce l'altezza del polo $opra l'Orizonte, & il luogo del polo $i cono$ce per un'altra $tella delle stelle, che è la piu lucida delle due guardie nommate: & quella stella è det- ta horologiale, perche girando come ruota di horologio, dà a cono$cere in ogni tempo dell'an- no, che hora $ia della notte. come dimostrano gli horologi fatti per la notte. le tre stelle, che $o- no con le mani$egnate nella $eguente figura uengono nello horologio notturno a dritto d'una re- gula, che $i applica al centro dello horologio.</I> <pb n="395"> <fig> <p>Et il $erpente d'intorno la te$ta della Cino$ura di$te$o è po$to, & ua di lungo per dritto $ino a i $uoi piedi, & quiui intorto, & ripiegato alzando$i $i riuolta dal capo dell'Or$a mi- nore alla maggiore contra il ro$tro di quella, & la tempia della $ua te$ta. <p><I>Cioè il Serpente $i $tende d'intorno alla testa dell'Or$a minore, & iui alquanto $i piega, dapoi $i raddrizzafiu a i piedi dell'Or$a predetta, & iui di nuouo $i ritorce, & riuolge il capo uer$o la te$ta dell'Or$a minore: $i come dalle bocche, & foci de i fiumi alle fonti loro Tolomeo c'in- $egna, le uolte, & i giri de i fiumi, co$i Vitr. ci de$criue, quelle parti del Dracone, che $ono dritte, & quelle che danno uolta, però io leggerei Vitru. a questo modo.</I> {<I>Vnà uero (cioe in$ieme) circum Cyno$uræ caput, iniesta e$t flexu (cioe la il $erpente piegato) porrestaque proxime eius pedes (cioe dell'Or$a minore) hæc autem (cioe alli piedi dell'Or$a minore) intorta replicataq; e st (cioe il $erpente) $e attollens reflestitur.</I> } <I>& il re$tante.</I> <p>Anche $opra la coda dell'Or$a minore $ono i piedi di Cepheo, & iui alla $ommità del Montone, $ono le $telle che fanno il triangulo di lati eguali. <p><I>Co$i intendo.</I> { <I>ibique ad $ummum cacumen in$uper Arietis $ignum $unt stellæ, quæ faciunt triangulum paribus lateribus.</I> } <I>Lequali parole $ono poste da Vitr. molto intricatamente, per de$criuere con breuità come $tiano quelle stelle. il Triangolo dalla $imiglianza della lettera gre- ca <G>*d</G> è detto delta.</I> <p>Ma molte $ono le $telle confu$e del Settentrione minore, & del $imulacro di Ca$siopea. <p><I>Confu$e egli intende, che non fanno alcuna figuratione, come d'intorno al Montone cinque: d'intorno al Toro undici: d'intorno a Gemelli $ette. ouero confu$e non co$i lucenti, ouero dell'ul- tima grandezza. ma a me piace pin la prima intelligenza. Conclude poi Vitru. quello, che ha detto, & propone quello, che deue dire.</I> <p>Io ho e$po$to fin qui quelle $telle, che $ono nel cielo di$po$te alla de$tra dell'Oriente tra la zona de i $egni, & le con$tellationi de i Settentrioni; hora io e$plicherò quelle che $o no alla $ini$tra dell'Oriente, & delle parti del mezo dì dalla natura di$tribuite. <foot><I>FFF</I></foot> <pb n="396"> <HEAD><I>Delle. stelle che $ono dal Zodiaco al mezo dì.</I></HEAD> <HEAD><I>Cap. VII.</I></HEAD> <p>Primieramente $otto il Capricorno è il Pe$ce Au$trale, che da lungi riguarda Cepheo con la coda, & da quello al Sagittario il luogo è uoto. il Thuribolo è $otto l'artiglio di Scorpione. ma le prime parti del Centauro $ono uicine alla Bilancia, & allo Scorpione. Tengono in mano quel $imulacro, che i peri ti chiamano la be$tia delle $telle. Lungo la Vergine, il Leone, & il Cancro, $ta il Serpente, ilquale porgendo una $quadra di $telle intorto $otto cigne lo $pacio del Cancro, alzando il ro$tro uer$o il Leone, & nel mezo del corpo $o$tiene la Tazza $ottoponendo la coda alla mano della Vergine, nellaqua le è il Coruo. Ma quelle $telle, che $ono $opra le $palle egual mente riluceno. ma alla parte di dentro al uentre del Serpente $otto la coda è $ottopo$to il Centauro. Appre$$o la Tazza, & il Leone è la naue d'Argo, la cui prora è o$curata, ma l'al bero, & quelle parti, che $ono intorno il temone appareno eminenti. & e$$a nauicella, & la poppa, è congiunta per la $ommità della coda del cane. <I>Et qui s'intende del Cane maggiore.</I> <p>Ma il Cane minore $eguita i Gemelli, & all'incontro è il capo del Serpente, & il mag- gior Cane $eguita il minore. <p><I>Douemo auuertire, che quando Vitr. dice, che il minor Cane $eguita i Gemelli, intende, che il minor cane è a dirimpetto $opra i Gemelli, perche l'ordine di Vitr. è di porre le imagini di quà, et di là dal Zodiaco, accompagnandole con i $egni del Zodiaco, accioche $i $appia il $ito loro nel cie- lo. & però douemo auuertire a que$to in tutto il trattamento di$opra, & di $otto, ilche bene cō- $iderato ci leuerà la fatica d'intendere molte co$e.</I> <p>Ma Orione è attrauer$ato, $ottopo$to, è fiaccato $otto l'unghia del Toro, & tiene con la $ini$tra la claua, alzando l'altra mano $opra i Gemelli. Ma appre$$o la $ua pianta è il Cane, poco lontano che per$eguita il Lepore. Ma al Montone, & a i Pe$ci, è $ottopo$ta la Ba- lena, dalla cui te$ta ordinatamente è di$po$to un $ottile $pargimento di $telle, ad amendue i pe$ci, che Grecamente Hermidone è detto. <p><I>Plinio chiama commi$$ura de i pe$ci quella, che i Greci chiamano Hermidone, altri l'hanno chiamata cinta, o legame. altri lino, o filo. percioche pare, che annodi la parte Settentriona- le, con la parte meridiana. Hermidone uuol dire, piacere, o diletto di Mercurio, ma con difficul- tà $i tragge dal commento di Arato questa co$a.</I> <p>Et per grande $pacio uer$o la parte di dentro $chiacciato il nodo de i Pe$ci tocca la $om ma cre$ta della Balena. <p><I>Cioè il detto nodo entra molto dentro nella parte au$trale, & come i giri de i $erpenti per- uiene fino alla $ommit à della cresta della Balena. puo anche $tare, che nel latino non ci uoglia e$- $ere quella parola, Serpentium, ouero, che in luogo di Serpentium, dica pi$cium.</I> <p>Ma il fiume Eridano con una apparenza di $telle piglia il capo della $ua fonte dal $ini- $tro piede d'Orione. Ma quella acqua, che $i dice e$$ere $parta dallo Aquario $corre tra la te$ta del Pe$ce Au$trale, & la coda della Balena. Io ho e$po$to quelli $imulacri di $tel- le, che dalla natura, & dalla mente diuina di$egnate come piacque a Democrito inue$tiga- tore della natura, $ono $tate figurate, & formate nel mondo. Ma non tutti però da me $o- no $tati po$ti, ma $olamente quelli, de i quali potemo auuertire gli orti, & gli occa$i, & quelli con gli occhi uedere. imperoche, $i come i Settentrioni girando$i d'intorno al car- dine dello a$$e non tramontano, nè uanno $otto l'Orizonte, co$i d'intorno al cardine meridiano, che per la inclinatione del mondo è $otto la terra, girando$i, & na$conden- <pb n="397"> do$i, le $telle non hanno le $alite $opra terra: & però le loro figurationi per lo impedimen to della terra non ci $ono manife$te. Di que$to ci dà inditio la $tella di Canopo, che a que$te parti non è cono$ciuta, come $i ha per relatione di mercanti, che alle e$treme par- ti dello Egitto, & a quelle, che $ono ui cine a gli ultimi termini della terra $tati $ono. <p><I>Si e$cu$a Vitr. perche non ha posto tutte le constellationi, & figure, douendo parlarne come $i deue, $enza hauere alcunri$petto al $uo Orizonte, & alla inclinatione del cielo, che è nelle re gioni di qua dallo Equinottiale: & dice hauer uoluto trattare di quelle imagini, & d quelle stelle, che ci $ono note per gli orti, & occa$i loro, dicendo che ne $ono alcune, che mai non $i le= uano, & alcune che mai non tramontano. & prende l'argomento dalla stella detta Canopo. la- quale è una stella posta nel $eguente remo della naue, co$i nominata dall'I$ola Canopo, doue pri- ma fu cono$ciuta. Quelli che $i parteno dalla Arabia Petrea uer$o l'Azania per dritto naui- gando al meriggie uanno contra la stella Canopo, che in que luoghi è nominata ca allo. & $i chiama in quella lingua $uhel. cioè incendio, & que$to per la moltitudine, & grandezza del $uo $plendore, & de i $uoi raggi. Questa ri$plende (come dice Plinio) alla I$ola Traprobana. Era questa stella al tempo di Tolomeo in gradi dieci$ette, min. dieci di Gemini. ha di latitudine Meri- diana gradi $ettantacinque, & di declinatione gradi cinquantauno, min. trentaquattro. Questa stella non $i uede in Italia. a Rhodi è uicini$$ima all'Orizonte un quarto di $egno, pare alzata in Ale$$andria, & co$i piu s'inalza a gli habitanti uer$o le parti meridiane. Ma chi uole$$e $a- pere quali $iano quelle stelle, che $i po<02>ino uedere $ott o la inclination del cielo, doue $ono, fac- cia una tauola dello A$trolabio, alla $ua eleuatione di polo, & nel centro di e$$a ponga uno pie- de della $esta & l'altro allarght fino all'Orizonte, & faccia uno circolo, quel circolo $arà il mi- nore, che $i po$$a uedere $opra l'Orizonte, & quello che è fuori forza è che $ia $otto l'O- rizonte. Quattro $telle po$te in croce $ono $egni dell'altro polo. delle quali ne fa mentio- ne Dante nel primo capo del purgatorio. doue chiama il $ito $ettentrionale uedouo, perche è priuo di mirarle. Que$te quattro $telle $ono in una macchia come è la uia galatea, non $ono po$te nelle imagini predette, nè meno nel zodiaco; i nauiganti le chiamano crociere, & quella del pie- de è maggiore & piu ri$plendente delle altre. per quella $i cono$ce quale è la te$ta, & quali $o- no le braccia della croce, & quando il piede è $u l'orlo dell'orizonte, & che il capo è drit- to, il piede $ta appartato dal polo gradi trenta, da que$ta $i prende l'altezza dell'altro polo, & $i piglia in modo che $e l'altezza, che di e$$a $i piglia $arà di quella trenta, colui che la piglia $arà nello equiuottiale: $e piu di trenta, quel di piu $ta appartato dalla equinottiale, alla parte di Ostro: $e meno, quel tanto $ta appartato dalla linea alla parte di Tramontana, come è $tato da i nauigan- ti di que mari o$$eruato, conclude poi Vitr.</I> <p>Del giramento del mondo intorno la terra, & della di$po$itione de i dodici $egni, & della parte Settentrionale, & meridiana, delle $telle, come egli $ia perfetto, ne ho dato ammae$tramento. imperoche dal girare del mondo, & dal contrario mouimento del So le ne i $egni, & dalle ombre fatte da Gnomoni, al tempo de gli equinottij, $i trouano le ragioni de gli analemmi. Ma le altre co$e, cioè, che effetti habbiano i dodici $egni, & le cinque $telle, & il Sole, & la Luna, quanto appartiene alla ragione della A$trologia, $i deono concedere a i di$cor$i de i Caldei. imperoche è proprio loro il di$cor$o de i na$ci- menti, perche po$$ono & le antipa$$ate, & le future co$e dalle ragioni delle $telle far ma- nife$te. & le loro inuentioni, che hanno la$ciate in i$critto, dimo$trano con che $olertia, & con che acutezza d'ingegno, habbiano ragionato, & quanto grandi $iano $tati quelli, che dalla natione Caldea $ono uenuti. il primo fu Bero$o, che nell'I$ola, & nella città di Coo $ede$$e, & iui apri$$e le $cole, in$egnando la loro di$ciplina. Dapoi fu lo $tudente Antipatro, & Archinapolo, ilquale non dal punto del na$cimento, ma dalla concettione la$ciò manife$te le ragioni delle natiuità. Ma delle co$e naturali Thalete Mile$io, Anaxa- gora Clazomenio, Pithagora Samio, Xenofane Colophonio, Democrito Abderita, con <foot><I>FFF</I> 2</foot> <pb n="398"> che ragioni la natura $i reggeua, & in che modo & che effetti habbiano, la$ciarono mol- to bene con$iderato. Le inuentioni de i quali hauendo $eguitato Eudoio, Eude- mo, Calli$to, Melo, Philippo, Hipparcho, Arato, & gli altri, trouarono per A$trologia, gli orti, & gli occa$i delle $telle, & le $ignificationi delle tempe$te, & le di$cipline de gli in$t rumenti detti parapegmi, & a i po$teri le la$ciarono. Le $cienze de i quali deono e$$ere ammirate da gli huomini, perche $ono $tati di tanta cura, & diligenza, che pareno mol- to prima con diuina mente annunciare le $igni$icationi delle tempe$te che hanno a uenire. per le quali co$e a i pen$ieri & $tudi di quelle $i deono attribuire tali ìnuentioni. <p><I>Conclude Vitr. quanto egli ha detto fin qui. nè ui è da affaticar$i altrimenti, perche nel $eguen te capo, $i dichiarerà minutamente ogni co$a al propo$ito. Parapegmi erano in$trumenti artifi- cio$i, con i quali $i trouaua il $ito delle $telle, per fare le natiuità de gli huomini. come tauole d'A- $trolabio, horo$copi, & altre $imili co$e.</I> <HEAD><I>Delle ragioni de gli Horologi, & delle ombre de Gno- moni al tempo equinottiale a Roma, & in alcu ni altri luoghi. Cap. VIII.</I></HEAD> <p>MA noi da quelli $tudi co$i douemo $eparare la ragione de gli Horologi, & e$plicare la breuità, & lunghezza de i giorni di me$e in me$e. <p><I>Vitruuio comincia dopo una lunga digre$$ione, benche nece$$aria, a trattare del- lo Analemma, che è fondamento della Gnomonica, & non c'in$egna in que$to trat tamento di fare alcuno horologio, ma bene ci $euopre la uia, come $i po$$ono formare. Tolo- meo fa un trattato dello Analemma: & Federico Commandino molto dottamente lo e$pone, & per que$ta, & per altra cagione $e gli deue hauere molte gratie; poi che per utilità commune egli $i affatica. Io in questo propo$ito ricono$cendo le honoreuolifatiche $ue, la$ciandogli però le di mo$tr ationi mathematiche, mi sforzerò quanto per me $i potrà facilmente dichiarire lo Analem- ma, & l'u$o di quello. Ripigliamo adunque da capo la uniuer$ale intentione di Vitr. accioche piu facilmente s'intenda quanto $i conuiene di que$ta utile, commoda, & hone$ta operatione. In- tende adunque Vitr. trattare della $econda parte principale dell'Architettura, che da i Greci Gnomonica è chiamata. La ragione di que$to nome è tratta dal Gnomone: & Gnomone uuol di- re $quadra, o co$a drizzata a $quadra. Soleuano gli antichi cono$cere le parti del giorno, & le hore dalle lunghezze delle ombre gettate nel piano da gli $tili in quello drizzati, & quella cogni- tione Gnomonica dal Gnomone denominarono. Perche il Gnomone dimo$tratore delle ombre drizzato a $quadra, cioè ad anguli giu$ti $opra alcun piano daua inditio per uia di ombre delle ho- re, perche d'intorno al Gnomone erano di$egnate diuer$e ombre in diuer$i tempi dall'anno, & in diuer$e hore del giorno. Que$ta di$egnatione era chiamata da gli antichi, Analemma, qua$i ri- pigliamento, perche prima, che $i uenga a fare alcuuo horologio, bi$ogna pigliare in di$egno gli effetti, che fa il Sole, & il Gnomone con l'ombra, ne i piani opposti. i quali piani $ono i luo- ghi doue $i hanno a fare gli horologi. Que$ta cognitione adunque del cor$o del Sole, & de gli effetti nel mondo fatti per li $uoiraggi, per mezo delle ombre gettate dal Gnomone ne i piani de gli horologi, $i chiama Gnomonica: & la de$crittione, o di$egno di quelle linee fatte dalla e$tremità de gli $tili, $i chiama Analemma, & lo $tile drizzato a $quadra $opra i piani, $i chiama Gnomone, ouero Schiotir, che uuol dire indagator dell'ombra. come dice Vit. nel primo lib. al Cap. 6. Et $i co me nelle maniere di fabricare i Tēpij $i piglia prima il modulo col quale $i mi$ura il tutlo, co$i nel formare de gli horologi bi$ogna fare lo Analemma, il quale è come modulo de gli horologi. Hora per piu facile intelligenza dirò co$a, che bene con$iderata, & appre$a darà un lume mirabile al</I> <pb n="399"> <I>pre$ente di$cor$o, & giouerà in molie altre co$e degne; & $pecialmente nella pro$pettiua, $i co- me nel no$tro trattato della $cenographia hauemo chiaramente e$plicato. Appre$$o le figure, che $erueno a i matematici, ne ha una, che da quelli è detta Cono. & perche $appiamo, che figu- ra $ia, & come $i faccia, imaginamo un punto, $otto del quale $ia un circolo, & da quel punto cada una linea alla circonferenza del circolo, & $tando fermo il punto, la linea $i muoua d'intor no alla circonferenza, fin che ritorni al punt o di doue $i mo$$e: dicono, che il Cono $i forma a quel modo: & quella figura altri hanno chiamata piramide, benche impropriamente. Sia adun que il punto a. & il circolo b c d. & dal punto a. fermo, $i parta la linea a b. & $i giri per la circonferenza del circolo b c d. fin che ritorni al punto b. dico, che ella $ormerà la figura predetta, che Cono è chiamata. Cada poi dal punto a. al punto e. che è il centro del circolo, una linea dritta; que$ta $i chiama a$$e, o perno del Cono. & il punto a. cima, & il circolo b c d. ba$a del Cono. da que$to anche $i forma una $uperficie detta Conica: & que$ta non è altro, che una figura fatta di due $operficie oppo$te per la cima del Cono, l'una, & l'altra</I> <fig> <I>delle quali cre$ce in infinito per la de$crittione fatta da una dritta li- nea tirata uer$o l'una, & l'altra parte. come $i uede nella figura, doue la prima $operficie a b c d. la oppo$ta per la cima e. e f g. le due linee tirate uer$o l'una, & l'altra parte $ono c e. f b. che imaginiamo andare in infinito, & tutta que$ta figuratione è detta Co- nica $operficie. Que$te co$e $iano bene mandate a memoria & po$te nella imaginatione, perche ci $erui ranno mirabilmente al formare lo Analemma. La $operficie conica adunque puo riceuere diuer$i tagli o $ettioni (come $i dica) perche puo e$$er tagliata in due parti, per dritto lungo l'a$$e, dalla cima al ba$$o, & puo anche e$$er tagliata altra mente, $e è tagliata dalla cima al ba$$o lungo l'a$$e, l'apritura di quel taglio $arà uno trian- golo di dritte linee. Ma $e è tagliato altrimenti, ouero è tagliato a trauer$o con uno taglio egual mente di$tante alla ba$a. ouero in altro modo $e è tagliato con un taglio trauer$o egualmente di- $tante alla ba$a, l'apritura di quel taglio dimo$trer à un circolo, $e uer amente il taglio non $i farà per la cima lungo l'a$$e, nè meno atrauer$o, allhora l'apritura di quel taglio dimo$trerà una linea piegata e torta, la quale da Mathematici è detta $estione, o taglio conico. Questa $i fa diuer$a- mente, & ha diuer$i nomi, come particolarmente ne diremo qui $otto. Et ci $eruiremo della fa- cilità di Alberto Durero, benche ci $iano, de gli altri modi. Dico adunque, che appre$$o le pre dette $estioni, o tagli, ue n'è uno, che taglia il cono egualmente distante all'a$$e del cono. ne è anche uno, che taglia il cono con un taglio egualmente distante al lato del cono. & finalmente un'altro, che taglia il cono a trauer$o, che non toglie co$a alcuna della ba$a del cono, ma bene le è piu uicino in una parte, che nell'altra, le apriture di questi tre tagli dimostrano alcune linee piegate, che non $ono circoli, nè portioni di circoli, & $i chiamano diuer$amente, perche quel taglio, che è egualmente distante all'a$$e fa nell'apritura $ua la linea detta hiperbole, quello, che t aglia il cono con un taglio egualmente distante ad un lato del cono, fa nell'apritura $ua una li-</I> <pb n="400"> <I>nea piegata, che è detta parabole. & in fine il terzo taglio trauer$o fa la linea detta ellip$e. Sia adunque il cono a b c d e. Il taglio del quale $ia f g h. egualmente distante al lato del cono, dico che'l fondamento, & la pianta del detto cono $arà il circolo b c d e. nel centro a. & la apritura del taglio $arà la linea g f h. detta parabole. il che come $i faccia, il Dure ro c'in$egna, & dice. Sia diui$o il taglio f g h. in dodici parti eguali, dal punto f. al punto h. & $iano apposti i numeri ne i punti delle diui$ioni</I> 1. 2. 3. 4. <I>fin</I> 11. <I>& pa$$ino per li punti delle diui$ioni linee dritte egualmente di$tanti alla ba$e del cono, & da gli iste$$i punti cadi no linee dritte ad anguli dritti$opra la ba$a del cono, & $arà formato il cono con le $ue diui$ioni, le quali tutte $i riporteranno nel fondamento, o pianta, che dire uogliamo in questo modo. Fac- cia$i un circolo il diametro, del quale $ia la linea b c d e. del cono. & $ia il circolo b c d e. il centro del quale $ia a. $ia il circolo b c d e. posto $otto il cono, $i che l'a$$e gli cada nel centro a. fin al punto e. di $otto. & $imilmente cadino $opra quel circolo tutte le linee egualmente di$tanti all'a$$e i punti delle diui$ioni fatte nel taglio del cono, & $iano $egnate nel fon damento le dette linee con le lettere, & con i numeri corri$pondenti alle lettere, & a i numeri $e- gnati nel cono g h f.</I> 1 2 3 4. <I>fin</I> 11. <I>Fatto que$to per incontro, bi$ogna tagliare le det te linee con proportione, accioche egli $i po$$a formare la linea parabole. il che farai a que$to mo do. Piglia dal cono la lunghezza della linea del taglio $egnato</I> 11. <I>dico della linea egualmente di $tante alla ba$a del cono, & po$to un piede del compa$$o nel centro a. del fondamento, farai tan to di circolo, che tagli la linea $egnata</I> 11. <I>nel fondamento. Il $imile farai riportando dal cono nel fondamento tutte le altre linee $egnate con gli altri numeri, fin al punto</I> 1. <I>& a que$to mo- do hauerai formato la pianta della parabole. L'apritura della quale $i caua dalla pianta in que- $to modo. Piglia dalla pianta la lunghezza della linea g h. & riportala in un piano; & ca- da ad anguli giu$ti $opra quella una linea tanto lunga, quanto è il taglio f g. nel cono. & la ci ma $ua $ia f. Parti$ca$i poi la detta linea in tante parti in quante è diui$a la linea del taglio f g. nel cono, & $iano $egnate quelle diui$ioni con i numeri corri$pondenti, & per quelli pa$$ino linee egualmente distanti alla linea g h. come uedi. $opra que$te linee egualmente di$tanti $i hanno a riportare i tagli proportionati dal fondamento. Et però $opra la linea $egnata</I> 11. <I>$i riporta dal fondamento la lunghezza $egnata nella linea</I> 11. <I>dalla circonferenza corri$pondente, & il $imile $i $a delle altre linee. & finito, che hauerai di $egnare quelle linee proportionate della pa- rabola, legherai con una linea tutti quelli punti, & a que$to modo $arà formata la parabole, come dimo$tra la figura. con quella intelligentia da i tagli, & da i fondamenti delle altre linee po trai $olo guardando nella figura cono$cere quanto $i deue fare, per tirare proportionatamente, & la hiperbole, & la elli$$e.</I> <p><I>Hora perche $i $appia a che fine $iano $tate propo$te que$te figure, io dico, che il Sole girando di giorno in giorno manda i raggi $uoi nel Gnomone, la cima del quale imaginaremo, che $ia la ci ma del cono, & il circolo, che fa il Sole $ia la ba$a del cono, & i raggi che $i parteno dal corpo del Sole $ia quella linea, che girando$i a torno de$criua il cono. $e uorremo ben con$iderare que- sto effetto, che fa il Sole con i ragginel Gnomone, uederemo, che egli fa una $uperficie conica, perche è una $uperficie fatta di due $uperficie opposte per la cima del cono, l'una è dal circolo, che fa il Sole fin alla punta del Gnomone, l'altra è dalla punta del Gnomone in giu nella parte op- po$ta, la quale anderebbe in infinito, $e non gli $i oppone$$e un piano. Et perche qne$to piano $e gli oppone diuer$amente, & taglia quei raggi della $uperficie conica inferiore, però bi$ogna con$i derare la proprietà di que tagli; perche fanno diuer$e linee. Piano intendo il piano $opra il qual $i fa l'horologio, il qual piano, hora è egualmente di$tante dall'Orizonte: come $e uoglia- mo fare un horologio in terra piana, hora è drizzato $opra l'Orizonte, ouero ad anguli dritti, co me $ono i muri de gli edificij. Ouero è piegato come i tetti delle ca$e. & perche questi piani $e- guitano la diuer$ità de gli Orizonti, però tagliano diuer$amente la $uper$icie conica. Dal che ne na$ce, che l'ombra della cima del Gnomone in detti piani, hora de$criue una linea dritta, hora</I> <pb n="401"> <fig> <pb n="402"> <I>un circolo, hora la parabole, hora la hiperbole, hora la ellip$e. il che come $ia dirò breuemen- te. Il Sole ouero $i truoua nello equinottiale, ouero faori dello equinottionale. Se egli $i truoua nello equinottiale, egli caminando d'intorno a quel circolo, & gettando i raggi $uoi nel Gnomo- ne, farà in ogni piano di horologio, che la cima del Gnomone con l'ombra de$criuerà una linea dritta in quel giorno, che egli è nello equinottiale: & però in tutti gli horologi de piani eguali, lo equinottiale è $egnato con una linea dritta. & la ragione è, perche la cima del Gnomone è nel pia no dello equinottiale, & però l'ombre mandate dal Gnomone, non $i partiranno da quello nel tem po dello equinottio. Et però $aranno terminate dal taglio commune di quel piano dell'horologio, & dello equinottiale, come praticando $i cono$cerà chiaramente. Girando adunque il Sole nello equinottiale, & mandando i raggi $uoi alla cima del Gnomone, l'ombra, che uiene dalla detta cima de$criuerà in ogni piano eguale una linea dritta, la quale $arà egualmente di$tante al taglio commune dello equinottiale, & di quel piano doue $i $tende l'ombra, che è il piano dell'horolo- gio. Ma perche il Sole per lo mouimento del primo cielo fa ogni giorno un circolo egualmente di $tante dallo equinottiale, & per lo obliquo $uo mouimento s'allentana dallo equinottiale: però non e$$endo eglinell'equinoltiale puo auuenire, che il piano, $opra il quale è mandata l'ombra dal- la cima del Gnomone $i tagli con quel circolo, per lo quale il Sole $i gira. & puo anche e$$ere, che non $i tagli. Imaginiamo, che il Sole ogni giorno $alendo, & girando la$ci nel cielo i ue$ti- gij del $uo camino come di fuoco, & de$criua un circolo. que$to circolo ouero $arà tutto $opra terra, ouero parte $otto, & parte di $opra. Se $arà parte di $otto, & parte di $opra, il che non è altro, che tagliare il piano dell'horologio, allhora la e$tremità dell'ombra del Gnomone de$cri- uerà nel piano la hiperbole. ma $e quel circolo $arà tutto di $opra, ouero toccherà il piano, oue- ro non lo toccherà. Se lo toccherà l'ombra del Gnomone, de$criuerà nel piano la linea dettapa rabole. Se non lo toccherà ouero al piano dello horologio $arà egualmente di$tante, ouero nò. Se $arà egualmente di$tante, l'ombra de$criuerà nel piano un circolo. $e non $arà egualmente di- $tante, ma piu uicino in una parte, che nell'altra, l'ombra della cima del Gnomone de$criuerà nel piano la linea ellip$e. nè ci deue sbigottire la nouità di que$ti uocaboli, quando $ia in poter no $tro intendere molto bene le co$e con e$$empi materiali, però e$$orto, che con i circoli della $pera $i proui quanto ho detto, ponendogli $opra qualche piano con quelle portioni, che $tanno $opra di- uer$i Orizonti, & drizzando il Gnomone, che nella cima habbia una orecchia mobile, per la qua le po$$i pa$$are un filo di ferro $ottile, il quale po$$i peruenire alle circonferenze de i circoli della $pera, & girar$i $tando il ferro nella cima del Gnomone dentro l'orecchia. come uedi nella $otto- po$ta figura. doue a. è la cima del Gnomone, con la $ua orecchia b c d. il circolo $opra la</I> <fig> <I>terra, per il quale c'imaginiamo, che il Sole ca mini è f. il filo di ferro, che pa$$a per l'orec- chia del Gnomone, che imaginiamo, che $ia il raggio del Sole. & $ia il Sole nel punto e. cer to è, che l'ombra del Gnomone peruenirà al punto f. $ia adunque fatto iui un punto. & moua$i il Sole, & peruenga al punto h. & $i milmente $ia po$to al punto e. del fil di ferro in h. certo è che la punta f. toccherà un'al tro punto nel piano, & $ia quello</I> 1. <I>$eguitan do poi nel punto</I> K. <I>del circolo, & ponendo iui il Sole, & la punta del ferro e. $i toccherà il piano dall'altra punta in l. & accortando$i l'ombra piu, che il Sole s'innalza, & $eguitan do lo i$te$$o ordine ponendo il Sole in diuer$e par ti di quel circolo come in m o q. $i di$egne-</I> <pb n="403"> <I>ranno diuer$i punti nel piano i quali legati in$ieme faranno le antedette linee, $econdo il $ito di que circoli, & la diuer$ità de i tagli del piano. Gettati que$ti fondamenti, & bene con$iderati potremo $icuramente andare alla de$crittione dello Analemma, & perche nella de$crittione de gli Analemmi ci $ono alcuni circoli, che $ono communi, alcuni proprij: dirò quali $iano, & co- me s'intendino, & che o$ficij habbino. Però per ragionarne con quella facilità, che $i puo mag giore: dico, che ognuno da $e s'imagini di $tare in piedi nel mezo d'una campagna larghi$$ima ha uendo gli occhi uolti drittamente al mezo dì, & $tia con le mani in croce: certo è che la $ini$tra dimo$trerà il Leuante, la de$tra il Ponente, et dietro alle $palle hauerà la Tramontana: imaginia- mo, che quel piano doue egli $ta dritto nel mezo, $i e$tenda d'intorno tanto, che peruenghi alla circon$erenza del cielo, certo è, che egli diuiderà il mondo in due parti eguali, & l'una parte $a rà di $opra quel piano, & l'altra $otto. Que$to piano adunque $i chiama Orizonte, cioè termi- natore, perche termina gli hemi$peri, & diuide quello, che è $opra da quello, che è $otto. Ima- ginian o poi un'altro piano circolare, che la $ua circonferenza cominci dalla $ini$tra al punto di Leuante, & ci uenga al punto, che ci $ta $opra la te$ta, peruenga alla de$tra al punto di Ponente, & pa$$ando di $otto per lo punto, che $ta oppo$to al punto, che ci $ta $opra la te$ta, fin che giu- gna al punto di Leuante, doue cominciò: que$to piano $i chiama uerticale, la cui proprietà è di $e parare la parte Settentrionale dalla parte del mezo dì, come l'Orizonte partiua la parte di $otto da quella di $opra. Imaginiamo finalmente, che dalla parte doue $ono uolti gli occhi, dal punto dell'Orizonte $i leui la circonferenza d'un'altro piano, & pa$$i per lo punto, che ci $ta$opra il ca po, & cada a Tramontana al piano dell'Orizonte dietro le no$tre $palle, & giri$otto la terra fin che ritorni al luogo doue $i mo$$e, que$to circolo $i chiama Meridiano, la cui proprietà è di $epa- rare la parte di Leuante, da quella di Ponente. Que$ti tre piani circolari Orizonte, Verticale, & Meridiano $i tagliano in$ieme con anguli giusti; l'Orizonte col Meridiano $i taglia ne i punti e$tremi dell'Orizonte dinanzi, & di dietro a noi: l'Orizonte col uerticale $i taglia ne i punti di Le uante, & di Ponente dalla de$tra, & dalla $ini$tra: il Verticale col Meridiano $i taglia ne i puu- ti oppo$ti, de i quali uno ci $ta $opra la te$ta, l'altro nella parte di $otto all'hemi$pero. Que$te imaginationi $ono facili, & qua$i $en$ibili, & $i fanno per ponere certi termini, da i quali par- tendo$i, ouero a i quali uicinando$i il Sole $appiamo dargli il $uo $ito per uedere, che effetti egli faccia con i raggi$uoi dando ne i Gnomoni, & mutando l'ombre di tempo in tempo, & d'hora in hora. Hanno i marinari le i$te$$e, o $imili imaginationi nelle diui$ioni de i uenti, & nel drizza- re de i lor uiaggi. Hauendo noi adunque inte$o gli officij, & le propriet à di que$ti tre piani circo lari, & $apendo$i a che fine $ono imaginati, cono$ceremo, che tuttitre $ono nece$$arij, & com- muni nelle de$crittioni di tutti gli Analemmi per la fermezza, & $tabilità de i termini, che hanno. Oltra di que$to è da $apere, che $i come que$ti tre piani $i tagliano ad anguli dritti, co$i i loro diametri imaginati $i tagliano ad anguli dritti, nel centro del mondo. Et qui due co$e $ono da e$$er con$iderate con merauiglia. L'una è che non $i puo ritrouare piu di tre linee, o diametri, che cadino a $quadra in un punto l'una $opra l'altra: & per que$ta ragione, $i pigliano i tre predetti piani con i loro diametri nelle de$crittioni de gli Ana- lemmi, come co$e determinate: l'altra co$a è, che la diuina prouidentia con diuina proportione ha po$to il Sole in $ito, & di$tanzatanto conueniente, che gli in$trumenti, de i quali l'huomo $i $erue per mi$urare le co$e del cielo, $enza notabile diuer$ità ci pre$tano quell'u$o come l'huomo fn$ $e nel centro del mondo: co$i imaginiamo, che la punta del Gnomone $ia nel centro del mondo. Ma torniamo al propo$ito. Di que$ti diametri adunque il taglio, che fa l'Orizonte col Meridiano, $i chiama $estione o taglio Meridiano. & quello, che fa il Meridiano col Verticale, $i chiama Gno- mone per la detta ragione: ma quel taglio, che fa l'Orizonte col Verticale, $i chiama $estione equi nottiale, perche iui $i tagliano l'Orizonte, il Verticale, & l'Equinottiale, che $ono tutti tre de i circoli maggiori della $pera. Que$te con$iderationi adunque, con quelle de i tagli del cono ci da- ranno le regole di fare gli horologi in qualunque piano, con qual $i uoglia $orte di hore, uolti in</I> <foot><I>GGG</I></foot> <pb n="404"> <I>che parte ci piaccia, perche de i piani, $opra i quali $i de$criueno gli horologi, altri $ono egual- mente di$tanti all'Orizonte, altri dritti a $quadra $opra l'Orizonte, altri piegati, & pen- denti. Similmente alcuni $ono uolti alli quattro uenti principali, altri declinano dalle facciate, alcuni anchora $ono ueramente piani, & eguali, alcuni torti, concaui, conue$$i, o in altro modo formati. Parimente ad alcuni piace di $egnare le hore de gli antichi, che crano in ogni giorno dodici. ad altri dilettano le hore dette A$tronomiche, che cominciano dal mezo dì. Sono altre genti, che uogliono l'hore dal tramontar, altri dal leuar del Sole. & è in poter di ognuno, che $appia le ragioni, cominciare doue gli piace, o da terza, o da ue$pro il $uo giorno. lo la$cio ad altri la cura di fare gli in$trumenti da pigliare le faccìate, le declinationi, & le inclina- tioni de i piani, perche que$to hoggi mai è manife$to ad ognuno mediocremente ammae$trato per la commodità del bo$$olo. Veniamo adunque a Vitruuio, & ricordandoci delle co$e dette, for- miamo lo Analemma. Dice adunque Vitruuio; che egli uuole $eparare dallaragione di quegli $tudi, che abbracciano le natiuità de gli huomini, & che predicono le $orti humane, la ragione de gli horologi, & e$plicare le breuità, & le lunghezze de i giorni di me$e in me$e. Per intelligen- za delle quali co$e, $i deue imaginare, che quando il Sole è nel principio del Montone, o della Bi- lancia, egli $i lieua al uero punto di Leuante, & $i corca al uero punto di Ponente, & in quel mezo, che egli ua da Leuante a Ponente, egli s'inalza a poco a poco fin al mezo dì. & dal me- zo dì uer$o Ponente egualmente $i abba$$a, & $e egli la$cia$$e in quel dì nel cielo un'orma ui$ibi- le del $uo cor$o come l'arco cele$te, egli $i uederebbe $opra l'Orizonte un mezo circolo, il quale $i chiama equinottiale, & l'altro mezo circolo $ta $otto l'Orizonte. hora perche neltempo del me zo dì, $econdo la diuer$ità de gli Orizonti il Sole ad altri è piu alto, ad altri è piu ba$$o, però l'ombra de i Gnomoni $arà diuer$amente proportionata a i Gnomoni $econdo l'altezza, o ba$$ezza del Sole nel mezo dì al tempo dello equinottio; perche quanto il Sole è piu alto, tanto minore è l'ombra del Gnomone drizzato $opra il piano dell'Orizonte, & quanto è piu ba$$o tanto $i fa piu lunga l'ombra nel detto piano. Ma quando è giu$to tra'l punto dell'Orizonte nel taglio Meridia- no, & il punto, che ci sta $opra la te$ta, le lunghezze dell'ombre $ono pari al Gnomone. però chi pote$$e mi$urare l'ombra in quel tempo, che'l Sole è alto gradi quar antacinque, che è la metà della quarta tra'l punto, che ci $oprasta, & l'Orizonte, egli trouarebbe, che le co$e, che fanno l'ombra $arebbeno pari all'ombra. di que$ti auuertimenti hoggi mai ne $ono piene le carte, però torniamo a Vitruuio il qual dice.</I> <p>Ma noi da quelli $tudi co$i deuemo $eparare la ragione de gli horologi, & e$plicare le breuità, & le lunghezze de i giorni di me$e in me$e, imperoche il Sole al tempo dello equi nottio raggirando$i nel Montone, o nella Bilancia di noue parti del Gnomone otto ne fa di ombra, in quella inclinatione, che è a Roma. Et in Athene tre parti $ono dell'om- bra di quattro del Gnomone, ma a Rhodi a $ette cinque ri$pondeno: a Taranto noue ad undici, <I>i</I>n Ale$$andria tre a einque, & co$i in tutti gli altri luoghi altre ombre equinottia- li ad altro modo per natura $i truouano $eparate. <p><I>Diuer$e $ono le lunghezze delle ombre al tempo dell'equinottio nel mezo dì $econdo la diuer$a inclinatione del cielo. per inclinatione Vitru. intende il ri$petto, che ha il polo $opra l'Orizonte ouero la eleuatione dello equmottiale o latitudine, che $i dica, & di$tanza dal punto, che ci $ta $opra la te$ta, perche quanto piu l'huomo $i parte dalla linea equinottiale, tanto piu $e gli leua il polo, & abba$$a la linea. come $i uede nella $otto$critta figura doue $e poneremo la linea <19> $otto il punto q. che è il punto che $ta $opra la te$ta, i poli c. & f. $aranno nel labro dell'Ori zonte. $egnato g h. ma $e poneremo il punto <19> $otto il numero</I> 10. <I>uederemo, che il polo c. $arà $opra l'Orizonte leuato al numero</I> 10. <I>che uuole dire dieci gradi, che tanti $ono apunto, quanti il punto, che $opra$ta, è di$co$to dall'equinottiale. diuer$e adunque $ono le inclmationi del cielo, $econdo la diuer$ità de gli Orizonti. A Roma adunque, $e il Gnomone $arà di noue parti, o palmi, o d'altra mi$ura, l'ombra, che egli farà nel mezo dì al tempo dello equinottio $arà lunga</I> <pb n="405"> <fig> <I>otto parti, o palmi, $e uuoi che $iano palmi. Ma in Athene, perche Athene sta in altra inclinatione, $e'l Gnomone $arà di quattro parti, l'ombra $arà di tre. con la i$te$$a ragione in Ale$$andria, & a Rodi, & in al- tri luoghi uanno uariando le ombre Meridiane al tem- po de gli equinottij. dal che anche $i puo $apere a chi $i leua il Sole piu alto $ul mezo dì, perche proportio- nando$i le ombre al Gnomone, dalla proportione del- l'ombra al Gnomone $i fa l'altezza. Ecco l'ombra del Gnomoue in Athene è minore un terzo del Gnomone, & in Roma un'ottauo, & perche quanto il Sole è piu alto, tanto l'ombra dritta è minore, però $i conclude, che il Sole $ia piu alto in Athene $ul mezo dì al tempo dello eqninottio, che a Roma; & tanto piu alto quan- to è l'ombra minore d'una $ub$e$quiterza dell'ombra d'una $ub$b$quiottaua.</I> <p>Et però in ogni luogo, che noi uorremo fare gli horologi, douemo pigliare l'ombra equi— nottiale. <p><I>Comincia Vitr. ad in$egnarci, come $i habbia a fare lo Analemma; & perche un $olo Ana- lemma non ci puo $eruire per tutto, $e non quanto apartiene a quelli circoli, che $ono communi a tutti gli Analemmi (come io ho detto di $opra) perche $ono differenti le ombre equinottiali; pe- rò ne piglia uno, che c'in$egna di $are quello, che $erue a Roma. dando prima una regola genera le, che in qualunque luogo uolemo fare gli horologi, bi$ogna auuertire all'ombra equinottiale, & intende di quell'ombra, che $i fa $ul mezo dì dal Gnomone al tempo dell'equinottio, perche dalla detta ombra $i piglia anche la ragione dell'ombra Meridiana fatta, quando il Sole entra in al tri $egni, come ci $arà manife$to qui $otto.</I> <p>Et $e $aranno, come è a Roma, noue le parti del Gnomone, & otto le parti dell'om- bra, egli $i farà nel piano una linea dritta, $opra la quale ne cadera un'altra a $quadra, che $i chiama Gnomone, & dalla linea del piano da piedi del Gnomone $i mi$urano noue $patij fin alla cima, & doue termina la nona parte in $u quel punto $i faccia il centro con la lette- ra. a. & aperta la $e$ta da quel centro alla linea del piano a piedi del Gnomone doue $arà la lettera. b. $i faccia un circolo, che $i chiama il Meridiano. Dapoi delle noue parti, che $ono dal piano alla cima del Gnomone, la doue è il centro $e ne pigliano otto, le qua li $i $egnano dal piede del Gnomone $opra la linea del piano, doue è la lettera. o. que$to termine $arà dell'ombra Meridiana equinottiale del Gnomone, & da quel $egno doue è la lettera. c. per lo centro. a. $ia tirata una linea doue $erà il raggio equinottia— le del Sole. <p><I>Lo Analemma per Roma $i fa in que$to modo. prima egli $i tira una linea in un piano, la qua- le non è Orizonte, ma è quel piano $opra lo quale è drizzato il Gnomone, & è il piano dell'horo- logio egualmente di$tante all'Orizonte: $opra quella linea del piano $i drizza il Gnomone di quel- la grandezza, che l'huomo uuole, poi $i fa centro la cima del Gnomone, & allargata la $e$ta quanto è lungo il Gnomone, $i fa un circolo, che rappre$enta il Meridiano, $opra il quale s'imagina, che $ia il Sole nel mezo dì al tempo dello equinottio. Hauemo dunque fin hora il piano, doue batte l'ombra, il Gnomone, che fa l'ombra, & il Meridiano, nel quale $i ha da ritro- uare il Sole. Bi$ogna poi pigliare la lunghezza dell'ombra, il che $i fa in que$to modo (parlando della inclinatione di Roma) $apendo$i, che di noue parti, nelle quali è diui$o il Gnomone, otto $i danno all'ombra, $i partirà il Gnomone in noue parti, & dal piede $uo lungo la linea del piano</I> <foot><I>GGG</I> 2</foot> <pb n="406"> <I>$e ne poneranno otto, & tanto $arà la lunghezza dell'ombra meridiana al tempo dello equinot- tio nella inclinatione di Roma. dapoi dal termine dell'ombra nel piano $i tirerà una linea alla ci- ma del Gnomone, la quale peruenghi al Meridiano, & la doue quella linea toccherà la cincon$e renza del Meridiano, c'imaginaremo, che $ia il Sole al tempo dello equinottio nel mezo di quella linea, per que$ta cagione $i chiama raggio equinottiale, perche rappre$enta il raggio equinottia le Meridiano, & termina la lunghezza dell'ombra.</I> <fig> <p>Allhora allargando la $e$ta dal centro alla linea del piano $ia $egnato con egual di$tan- tia dalla $ini$tra doue è la lettera. e. & dalla de$tra doue è ia lettera i. nell'ultimo giro del circolo, & per lo centro $ia tirata una linea in modo, che $i facciano due eguali $emi- circoli; que$ta linea da i Mathematici è detta Orizonte. <p><I>Poteua dire in due parole quello, che ha detto in molte, cioè uolendo formare l'Orizonte tira uno diametro, che pa$$i per la cima del Gnomone, & $ia egualmente di$tante alla linea del piano. auuertirai nella figura, che la lettera e. & i. per inauuertenza della $tampa deueno e$$er mu tate. imperoche la e. deue e$$ere doue è la i. & la i. doue è la e.</I> <p>Dapoi egli $i deue pigliare la quintadecima parte di tutta la circonferenza, & la doue il raggio equinottiale taglia il Meridiano, doue $ara la lettera f. iui $i ha da ponere la $e$ta, & $egnare dalla de$tra, & dalla $ini$tra, doue $ono le lettere g. & h. & poi da que$ti punti, & per lo centro $i hanno a tirare le linee fino alla linea del piano, doue $ono le let- tere r. & t. & a que$to modo $arà il raggio del Sole uno della $tate; & l'altro del uerno. <pb n="407"> <p><I>Vitruuio uuole porre nel $uo analemma il raggio del Sol$titio, & della bruma, che $ono gli e$tremi del cor$o del Sole, & troua que$ti per la maggior declinatione del Sole, laquale egli fa di parti uentiquattro, che è la quintadecima di tutto il meridiano, che s'intende e$$er diui$o in parti trecento & $e$$anta. la cui quintadecima è uentiquattro; ma i po$teriori hanno trouato il maggior appartamento del Sole, che chiamano declinatione, e$$ere di gradi uentitre & mezo. quello, che Tolomeo trouò di parti uentitre, minuti cinquanta uno, & $econde uenti. po$to adun que il piede della $esta la doue il raggio equinottiale taglia il meridiano doue è la lettera f. con la larghezza della quintadecima parte $i fanno i punti de i tropici di quà, & di là della lettera f. nel meridiauo, & $i $egna da una parte g. & dall'altra h. & poi $i tirano da i detti punti le lince, che pa$$ano per lo centro, che è la cima del gnomone, lequali deono peruenire alla linea del piano da una parte, & alla circonferenza del meridiano dall'altra. di que$te linee una rappre $enta il raggio meridiano, quando il Sole entra nel Cancro, & l'altra il raggio meridiano, quando il Sole entra nel Capricorno. & però una è detta raggio della $tate, & l'altra raggio del uerno. del raggio della $tate l'ombra $arà b r. & del raggio del uerno l'ombra $arà b t. tra questi termini è rinchiu$a la declinatione del Sole. Hora ueniremo a ritrouare i raggi, & le ombre fatte $ul mezo dì, quando il Sole entra ne gli altri $egni: ma prima pone nello Analemma l'a$- $e del mondo.</I> <p>Incontra la lettera e. $arà la lettera i. doue la linea, che pa$$a perllo centro tocca la circonferenza. & contra g & h. $aranno le lettere k. & l. & contra c. & f. & a. $arà la lettera n. allhora poi $i deono tirare i diametri da g. ad l. & da h. a k. & quel diametro che $arà di $otto $arà della parte e$tiua, & quello, che $arà di $opra $arà della parte del uerno. <p><I>I termini dell'Orizonte $ono e & i. i termini de i tropici g & h. che deono e$$er con- giunti con linee alla parte opposta ne i punti K & l. & quelle linee Vitru. chiama diametri, perche hanno ad e$$ere diametri de i loro circoli, come $i uederà. però dice.</I> <p>Que$ti diametri $i deono partire egualmente nel mezo doue $aranno le lettere m. & o. & iui $i deono notare i centri, & per quelli, & per lo centro $i deue tirare una linea alla e$trema circonferenza, doue $aranno le lettere p & q. que$ta linea caderà dritta- mente $opra il raggio equinottiale, & per ragioni Matematiche que$ta linea $arà chiama- to A$$e. & da gli i$te$si centri allargata la $e$ta alle e$tremità de i diametri, $i de$criuino due $emicircoli, de i quali uno $arà per la parte della $tate, l'altro per la parte del uerno. <p><I>Ecco che a poco a poco Vitruuio ci rappre$enta la $phera con tutti i circoli nece$$arij allo Analemma. E adunque l'a$$e, & il perno del mondo q m a o p. il tropico del Cancro $o- pra il diametro r o K. il tropico del Capricorno $opra il diametro g m l. il raggio dello equinottiale c f a n. l'Orizonte e a i. il meridiano f q n p.</I> <p>Dapoi in quelle punti, doue le linee egualmente di$tanti tagliano quella linea, che è chiamata Orizonte, nella piu de$tra parte $arà la lettera s. nella piu $ini$tra la lettera u. <p><I>Cioe doue i diametri de i tropici tagliano l'Orizonte $ia $egnato s. da una parte, & u dal l'altra, & quiui $i deue auuertire, che quelli tagli dimostrano quãta circonferēza di quelli circoli sta $opra l'Orizonte, & quanta $ta di $otto, dalche $i comprende la lunghezza del giorno mag- giore, & del minore, che $ia in quella inclinatione, per laquale $i farà l'horologio.</I> <p>Et dalla de$tra parte di uno $emicircolo, doue è la lettera g. bi$ogna tirare una linea egualmente di$tante allo a$$e, fin al $ini$tro $emicircolo, doue è la lettera. h. & que$ta linea $i chiama lacotomus. <p><I>Cioè linea, che parti$ce o taglia la larghezza, ouero la profondità, imperoche ella ua da uno tropico all'altro, et abbraccia tutto lo $pacio della declinatione, ouero apartamento del Sole dallo equinottiale, nel quale $patio hanno a stare i raggi del Sole di me$e in me$e.</I> <p>Et allhora $i deue ponere il centro del compa$$o, doue quella linea egualmente di$tan- <pb n="408"> te allo a$$e è tagliata dal raggio equinottiale, doue è la lettera x. & $i deue allargare $in doue il raggio e$tiuo taglia la circonferenza, doue è la lettera h. & dal centro equinot- tiale allo $pacio e$tiuo $i faccia la circonferenza del circolo men$ale, ilquale è detto Mo- nacho. & a que$to modo $arà formato lo Analemma. <p><I>La linea della larghezza detta lacotomus, è diametro di quel circolo, dalquale $i trouano i raggi meridiani di me$e in me$e, ilquale è detto monachus. & io pen$o che uoglia dire Minachos, come quello, che conteng a i raggi meridiani di me$e in me$e. altri lo hanno chiamato mini<*>us, che Vitr. dice men$truo, & io ho detto men$ale. que$to circolo adunque $i fa mettendo il piedi del compa$$o doue la linea della larghezza detta lacotomus taglia il raggio meridiano equinot- tiale, & allargandolo ad uno de i punti della maggior declinatione, ouero appartamento del So- le dallo equinottiale. Que$to circolo $i diuide in dodici parti egu<*>li, $e uogliamo $olamente i raggi meridiani di $egno in $egno, perche uolendo i raggi meridiani del mezo de i $egni, o di dieci in dieci gradi, o piu o meno, bi$ognerà partire il detto circolo in piu parti $econdo il propo$ito no$tro. Diui$o adunque il detto circolo in dodici parti, $i deue tirare per cia$cuna diui$ione corri- $pondente a i diametri de gli altri $egni, alla circonferenza del meridiano, egualmente di$tanti al- li diametri de i tropici, & doue quelli diametri toccheranno il meridiano, iui $aranno i punti, da i quali per la cima del Gnomone $i tireranno le linee, & i raggi fin alla linea del piano, & in que- sto modo $arà formato lo Analemma.</I> <p>Dapoi che haueremo de$critto lo Analemma con la $ua dichiaratione, o per le linee del uerno, o per le linee e$tiue, o per le equinottiali, o per le di me$e in me$e: Allhora $i deo- no di$egnare le ragioni delle hore da gli Analemmi. & in quel ca$o ci $aranno molte ua- rietà, & maniere di horologi, & con que$te artificio$e ragioni $aranno de$critte. <p><I>Non $olamente da i raggi equinottiali egli $i puo cominciare a fare gli analemmi, ma da qua- lunque altro raggio di $egno. perche $e egli $i piglia il raggio e$tiuo, o quello del uerno, nella $ua altezza meridiana, egli $i $a, che il raggio equinottiale è lontano da quelli gradi uenti tre, & mezo, & $apendo$i la declinatione d'ogni raggio dallo equinottiale, $i puo facilmente da un raggio ponere gli altri.</I> <p>Ma di tutte le $igure, & de$crittioni di tutte quelle uarietà, è un $olo cffetto, cioè che il giorno equinottiale, il brumale, & il Sol$titio $ia partito in dodici parti. <p><I>Vitruuio chiaramente dimo$tra in questo luogo, che gli antichi u$auano di partire il giorno o lungo, o breue che egli fu$$e, in dodici parti: però faceuano gli horologi con questa intentione, di dimo$trare le dodici parti del giorno. ilche anche $i caua dalle $acre lettere, doue $i dice, in- terrogando: non $ono dodici le hore del giorno? queste hore $i chiamauano chicrichè, & mira- uano al dominio de i pianeti in quelle hore: & altri le hanno dette hore planetarie, altri hore in eguali. ma la$ciamo i nomi, & uegnamo alle co$e. Di tutte adunque le figure, & de$crittioni di tutte quelle uarietà è un $olo effetto. ma di quali uarietà intende Vitru. $e una $ola $orte di hore $i pone? Ri$pondo, che $e bene u$auano una $orte di hore la uarietà na$ceua da i piani, ne i quali $i formauano gli horologi, & dalle figure, che piaceuano ad alcuni inuentori; come dirà Vitr. nel $eguente capo. ma come dallo Analemma $i caui que$to $olo effetto, che egli dice, cioè, che il gior- no equinottiale, quello del uerno, che egli dice brumale, & quello della $tate, che egli chiama Sol$titio, $ia partito in dodici parti dirò distintamente, poi che hauerò udito la e$cu$atione di Vit.</I> <p>Lequali co$e non impaurito dalla pigritia ho la$<*>iato a dietro, ma perche $criuendo io molte co$e non offende$$e. Ma $olamente e$ponerò, da chi $ono $tate ritrouate molte $or- ti, & molte de$crittioni di horologi: nè hora io po$$o ritrouarne altre da me, nè mi pare conueniente, che io debbia u$urpare quelle de gli altri, & attribuirle a me: & però io dirò que$te co$e, che ci $ono $tate la$ciate, & da chi $ono $tate ritrouate. <p><I>Ecco la modestia grande di Vitr. & la candidezza dell'animo $uo, dallaquale $ono molti mol to lontani a i dì nostri: ne i quali uedemo tanti quadranti, raggi, anella, regole, cilindri, horo$co-</I> <pb n="409"> <I>pi, planisferi, torqueti, hemicicli, balle, horologi, & in$trumenti, che gia tante centinaia d'anni $ouo $tate ritrouate, & pure con nuoui argomenti, & titoli, & aggiunte di poca importanza $i danno in luce, come proprie, & non piu imaginate da altri: & tant'oltre è andata la inuidia, ouero la $uperbia di alcuni, che $e bene hanno inte$o mirabilmente le ragioni delle co$e, però $tudio$amente hanno uoluto con o$curi modi, & uie intricate dimo$tr are ouero adombrare per dir meglio, la cognitione Gnomonica. & hanno leuato il diletto, che $i ha nello imparare, & nella facilità, anzi hanno con le loro difficultà $cacciato i lettori delle opere loro: & quello, che han- no de$iderato $ommamente, che cra di acqui$tar credito di $apere con la o$curità dello in$egnar, non hanno con$eguito: non è per que$to, che non douemo hauere molte gratie a quelli, che hanno dato molti auuertimenti, & che hanno u$ato modi facili, accioche gli huomini, che non hanno tempo di $tudiare, & che non $ono $peculatiui po$$ino e$$ercitare, & u$are nelle occorrenze loro que$te inuentioni. Ripigliando adunque il mio di$cor$o, & stando fermo nelle uie di Tolomeo, & del predetto Commandino, quanto piu facilmente potrò, farò manife$to tutto quello, che apar- tiene alla de$crittione, & all'u$o dello Analemma. la$ciando (come ho detto) le dimostrationi mathematice ad altri. Non ha dubbio, che il Sole in tempi, & hore diuer$e, $i ritroua in $iti & altezze diuer$e. non uedemo noi la estate, che per due, o tre hore egli $ta tra Leuante & Tra montana, la mattina, & per tanto $pacio $ta tra Ponente, & Tramontana le ultime hore del gior no? non uedemo ancho il Sole in alcune hore e$$ere tra Leuante, & mezo dì, & alcune tra'l me- zo dì & il Ponente: hora piu alto, hora piu ba$$o? però $e uogliamo far cono$cere il $uo uero $ito, (ilche è nece$$ario per $apere gli effetti, che egli fa mandando iraggi $uoi per la cima del Gnomo- ne fin a i piani oppo$ti,) bi$ogna im<*>ginar$i molte linee, diuer$i circoli, $i fermi come mobili, & diuer$i anguli, accioche per quelli, come per craticole de pittori, $i dia ad intendere la po$itio- ne, & il $ito del raggio $olare: & perche a uoglia no$tra potemo fare gli horologi in diuer$i piani po$ti diuer$amente, come in terra, in muro, & dritti, & piegati, cioè ne i piani Orizontali, uer ticali, meridiani detti di $opra: però è nece$$ario $apere quali circoli, quali linee, & quali angu- li ci $erueno ad un piano, & quali ad un'altro. la doue po$ti quelli tre piani imaginati, che $ono termini fermi, bi$ogna che ne imaginamo tre altri, che $i muouino cia$cuno $opr a il $uo diametro, di modo che $ia un'Orizonte fermo, & un Orizonte mobile, & un uerticale $imilmente, & un meridiano fermi, & un'uerticale, & un meridiano mobile, & che l'Orizonte mobile $i uolga $opra il diametro del Orizonte fermo come $opra un perno, & co$i il uerticale, & il meridiano mobili $i girino d'intorno i diametri de i loro fermi. gia $apemo quali $iano i diametri di que piani, perche il diametro dell'Orizonte ua da Leuante a Ponente, il diametro del uerticale ua dal punto, che ci $ta $opra, a quello, che ci $ta $otto, & il diametro del meridiano è la linea meridiana i$te$$a. $e adunque l'Orizonte $i ha da girare bi$ogna, che una met à di e$$o $i alzi $opra terra, & l'altra $i abba$$i. $e il uerticale $i ha da mouere, bi$ogna che una metà di e$$o uadi inanzi, & l'altra in die- tro. $e'l meridiano $i ha da mouere, bi$ogna che una metà $i pieghi uer$o l'Orizonte, & l'altra me tà a$cenda. Fatto que$to fondamento, poniamo il Sole in $irocco alto da terra gradi quaranta, facciamo, che l'Orizonte mobile la$ci il fermo, & $i alzi tanto, che egli tocchi il centro del corpo del Sole. facciamo anche che il uerticale mobile $i faccia tanto inanzi la$ciando il fermo, che an- cho egli tocchi il Sole; & finalmente facciamo, che il meridiano mobile $i abba$$i fin tanto, che ancho egli tocchi il Sole con la $ua circonferenza al modo de gli altri: certo è, che tutti que piani mobili $i taglieranno in quel punto, doue e$$i tagliano il Sole, cioè in quel punto, dalquale il Sole manda il $uo raggio. hora uediamo, che effetti facciano que circoli, che $imuoueno, & a che fine $i $ono imaginati: & prima $i dica in che conuengono tutti: dico che conuengono in que$to, che partendo cia$cuno dal $uo fermo piano corri$pondente in$ieme col Sole fanno due anguli l'uno di linee dritte, l'altro de i piani di que circoli, cioè cia$cuno mobile col $uo fermo fa un'an- gulo. & perche gli anguli $i mi$urano dalla circonferenza, però altra circonferenza $arà com- pre$a $otto gli anguli fatti dalle linee dritte, altra da gli anguli fatti da i piani di que circoli,</I> <pb n="410"> <I>cioè de i mobili, & de i fermi: & l'uno, & l'altro di quelli anguli ènece$$ario per dimostrare il uero $ito del Sole, cioè l'altezza del Sole, & la parte di doue egli manda il $uo raggio. Hor<*> pigliamo $eparatamente cia$cuno et $tiamo nel $opraposto e$$empio. $ia dunque il Sole a $irocco, & facciamo, che il uerticale mobile $i faccia inanzi, & ritroui il Sole: dico che per que$to moui- mēto $i fanno due anguli, uno di linee dritte, l'altro del piano del uerticale fermo, et del piano del uerticale mobile. l'angulo di linee dritte è fatto dal raggio del Sole, & dal diametro del uertica- le, cioè dal Gnomone. & la circonferenza, che comprende que$to angulo, è quell'arco del uerti- cale mobile tra il punto, che ci $ta $opra la te$ta, & il Sole. & e$$endo una quarta di circolo dal- l'Orizonte al punto che ci $ta $opra la te$ta, $eguita, che il re$tante dell'arco predetto dal punto, che ci $ta $opra, al punto doue $ta il Sole, $ia l'altezza del Sole $opra l'orizonte: però $e quello ar- co'$arà di gradi cinquanta, il Sole $arà alto gradi quaranta, che è il compimento della quarta, che è dal punto, che ci $opra$tà, fin all'orizonte: & però la cognitione di que$to angulo ci con- duce a $apere l'altezza del Sole, dalla quale $i caua la lunghezza dell'ombre, come s'è detto. Ma l'angulo fatto da i piani di quelli circoli, cioè del uerticale mobile, & del fermo, è compre$o dalla circonferenza dell'orizonte, che è dal punto del uero Leuante al punto, che fa il uertica- le mobile doue egli taglia l'orizonte, & que sto arco $i chiama latitudine del Sole, ouero arco orizontale. la cognitione di que$to angulo ci $erue a cono$cere in qual parte pieghi l'ombra del Gnomone, perche l'ombra ua $empre alla parte opposta del raggio del Sole, per ilche $e il Sole è a $irocco, l'ombra ua a Mae$tro, $e è a Garbino, l'ombra ua a Greco. Ecco adunque gli effetti, che fa il uerticale mobile, & a che fine egli $ia imaginato. questi due anguli $ono nece$$arij al fare de gli horologi ne i piani orizontali, perche a que$ti piani ci $erue la lunghezza dell'ombra, & la latitudine. Hora uegnamo al meridiano mobile, & facciamo che ancho egli ritroui il So- le a $irocco, partendo$i dal meridiano fermo. Que$to anche fara due anguli, de i quali, quello di linee dritte è fatto dal raggio del Sole, & dal diametro del meridiano, la cui circonferenza è compre$a dal punto del meridiano fermo al punto, doue $i troua il Sole. ilche determina l'altez- za del Sole $opra il piano uerticale. Ma l'angulo fatto da i piani di que circoli è compre- $o dalla declinatione del meridiano mobile dal meridiano fermo nel circolo uerticale, & l'una & l'altra di que$te circonferenze è nece$$aria per determinare il $ito del raggio, come nel piano uerticale, alquale & il meridiano fermo, & il mobile $ono dritti, perche dal restante della cir- conferenza compre$a o che comprende l'angulo tutto di linee dritte, $i $a l'altezza del Sole $o- pra il piano dell'horologio uerticale. & dalla circonferenza, che comprende l'angulo fatto da quelli piani meridiani, cioè del mobile & del fermo, nel uerticale $i $a in qual parte pieghi l'om- brafatta dal Gnomone nel piano uerticale. Finalmente uenendo all'orizonte mobile, & faccia- mo, che egli $i leui a $irocco fin doue è il Sole; io dico che ancho egli farà due anguli. quello di linee dritte $arà fatto dal raggio del Sole, & dal diametro dello equinottiale, che è lo i$te$$o col diametro dell'orizonte, & ci darà l'altezza del Sole & è compre$o dalla circonferenza, doue $i troua il Sole, fin al punto del diametro dell'orizonte. & quello fatto da que due piani, cioè del- l'orizonte mobile, & del fermo, è compre$o nella circonferenza del meridiano tra'l punto doue è il Sole, & il punto doue il meridiano taglia l'orizonte ci darà la parte doue piega l'ombra, nel horologio fatto nel piano del meridiano. & tanto $ia detto d'intorno a gli effetti, & alla nece$- $ità di que tre piani $i fermi come mobili, & de i loro anguli sì di linee dritte, come di quelli pia ni, & dell'u$o loro a diuer$i piani di horologi. Hora uenirò alla de$crittione dello Analemma, & dimo$trerò il modo di fare lo Analemma, & l'u$o di quello, $econdo il mio primo propo$ito, e$ortando quanto piu po$$o cia$cuno alla con$ideratione, & alla pratica delle $opradette co$e, perche l'huomo po$$a $icuramente por$i alla operatione $apendo i principij delle co$e. Sia fatto un circolo, ilquale ci $erua per meridiano, & $ia a b c d. nel centro e partito in quattro parti eguali per due diametri, a d. & b c. & $ia a d per lo diametro dello equinottiale, & b c per l'a$$e del mondo, $i che b. $ia per lo polo di $opra, & c per lo polo di $otto. $ia</I> <pb n="411"> <I>diui$a la quarta a b in parti nouanta, & $iano dal punto a numerate parti uentitre & me- za, & doue terminano $ia posto f. $iano anche numerate dal punto a parti</I> 20, <I>& minu- ti</I> 12, <I>& iui $ia fatto il punto o. & finalmente dal punto a $iano numerate parti undici, & meza & $ia nel termine po$to</I> k. <I>$iano poi riportate quelle di$tanze f. o.</I> k. <I>$otto il pun-</I> <fig> <I>to a, $i che a f. $ia a h. & a o $ia a q. et a</I> k. <I>$ia a m. il mede- $imo $i faccia nella parte oppo$ta dal punto d tan- to di $opra quanto di $ot- to, $i che g ri$ponda ad f. p ad o. l. à K. n ad m. r. à q. & i ad h. $iano poi tirate le linee f g. o p. K l. m n. q r. h s. que$te linee ci $er ueno per diametri di que circoli o giri, che fa il So- le quando egli $i troua ne i principij de i $egni del Zo- diaco, di modo, che il dia- metro f g. è il diametro di quel circolo, che fa il So le quando egli entrà nel Cancro, & h i. è il dia- metro del circolo del Ca- pricorno. $i come o p. di Gemini, & di Leone.</I> k <I>l del Toro, & della Vergi- ne. m n. di Pe$ci & di Scorpione, q r di Aqua rio, & Sagittario, & que- $te di$tanze $ono pre$e dal la declinatione del Sole, che per la tauola di detta declinatione ci $ono manife$te. ouero per la li- nea lacotomus, & per lo circolo Monachus detti da Vitr. & per le i$te$$e uie, cioe della tauola della declinatione del Sole, o della diui$ione del circolo detto monachus, $i po$$ono fare tutti i dia- metri di grado in grado, o di cinque in cinque, o di dieci in dieci, come piu ci piacerà, di tutti i cir- coli & giri del Sole quando egli è nelle parti de i $egni. uero è, che per non fare confu$ione di mol te linee ci $eruiremo di quattro diametri, cioè dell'equinottiale, del tropico uer$o il polo di $opra, & del diametro del Toro pure uer$o il polo, & del diametro del Saggittario di $otto; perche la ragione di uno $arà la i$te$$a con la ragione dell'altro, come dirò di $otto. $iano adunque $opra i predetti diametri tirati i $emicircoli, $i che i centri loro $iano la doue detti diametri tagliano l'a$- $e del mondo, la doue e s. $arà il centro del $emicircolo fatto $opra f g. & t. $arà il cen- tro del $emicircolo fatto $opra il diametro q r. & que$ti $ono i circoli, & i diametri communi ad ogni Analemma. ma perche $ono diuer$e inclinationi del cielo, però uolendo fare lo Analem- ma per una inclinatione del cielo. bi$ogna porui de gli altri circoli, come è il uerticale, & l'orizon- te. ilche come $i habbia a fare dirò qui $otto. Egli bi$ogna adunque $apere la altezza del polo a quel luogo, per loquale $i ha da fare l'horologio, come $e noi uogliamo fare un'horologio per $er-</I> <foot><I>HHH</I></foot> <pb n="412"> <I>uirci alla inclinatione di Vinetia, bi$ogna $apere quanto $e le leua il polo, & numerare la detta altezza dal punto b. che è il polo di $opra uer$o il punto d. & far punto nel meridiano, do<*>e è la lettera x. che tanti gradi a punto $i leua il polo alla detta inclinatione, che $ouo gradi qua ranta cinque. tira poi dal punto x per lo centro e, alla parte oppo$ta doue è la lettera y. il diametro dell'orizonte, ilquale $arà x & y. Sia poi tirato il diametro del uerticale, che tagli il diametro dell'orizonte ad anguli dritti, & $ia quello z e &. finito que$to bi$ogna tirare $o- pra i diametri de i detti circoli o $emicircoli linee dritte ad anguli giu$ti, la doue i detti diametri tagliano l'orizonte, perche iui $ono i tagli communi dell'orizonte, & di quelle portioni di circoli, & dimo$trano quanta parte di quelli circoli $tia $opra l'orizonte & quanta di $otto. $ia adunque $egnato</I> 2. <I>la doue il diametro f g. taglia l'orizonte. &</I> 4 <I>la doue il diametro K l taglia</I> <fig> <I>l'orizonte, &</I> 6 <I>finalmente la doue il diametro q r taglia l'orizonte, et da i detti punti</I> 2. 4. 6. <I>$iano ti- rate le linee ad anguli giu$ti $opra i loro diametri, fin che peruenghino al le circonferenze cia$cuna del $uo cir colo corri$pondente. però</I> 1. 2. <I>ca- derà $opra il diametro f s g. &</I> 4. 3 <I>caderà $opra il diametro K t l. & finalmente</I> 5. 6. <I>caderà $opra il diametro q u r. que$ti adunque $ono i communi tagli di quelli circo- li, & dell'orizonte. Et $e imaginere- mo il $emicircolo g i f intiero cir- colo, egli ci rappre$enterà tutto il circolo del tropico del cancro. & la linea</I> 1. 2. <I>diuenteràparte dell'o- rizonte, & l'altra parte anderà a trouar la circonferenza del detto circolo, $i che tutta quella portione di quel circolo, che $arà $opra la det ta linea s'intenderà e$$er $opra l'ori- zonte come dall'i. ad f. & dall' f all'altro capo della linea</I> 1. 2. <I>la doue ella è tagliata dal detto cir- colo del Cancro, & quella parte, che farà di $otto s'intenderà e$$er $otto l'orizonte, come è dalla i al g. di modo che i. $arà il ter- mine della parte di $opra, & della parte di $otto l'orizonte, di quel $emicircolo. & $e la linea</I> 1. 2. <I>$arà prolungata alla circonferenza intiera del detto circolo, la parte da g al taglio della det- ta linea con la circonferenza dimo$trerà il re$tante di quello, che è $otto l'orizonte, come poco da poì ci $arà manife$to. $in<*>le con$ideratione $i fa $opra il diametro K t l. & $opra il diametro q u r. perche le portioni di quelli $emicircoli ci $ono manife$te dal taglio di quelle linee dritte, che cadeno $opra i detti diametri. Pigliamo adunque in altro luogo il circolo fatto $opra il dia- metro f s g. & $ia i f</I> 7 <I>g. & $ia i dalla de$tra, f di $opra.</I> 7. <I>dalla $ini$tra, & g. di $otto. & ri$pondi la i. al Leuante, &</I> 7. <I>a Ponente. hora è nece$$ario $apere che hore tu uuoi $egnare nello horologio, o le antiche, o le a$tronomiche, od altre, perche diuer$amente par- tirai il detto circolo, $econdo la diuer$ità della $orte delle hore, che uuoi fare. Io darò l'e$$empio ordinatamente di tutte le $orti di hore, & prima delle antiche, lequali erano dodici in ogni gior-</I> <pb n="413"> <I>no. Diuiderai adunque la portione del circolo del tropico compre$a da i f</I> 7 <I>$opra l'orizonte in dodici parti<*> eguali, & $imilmente la portione i g</I> 7 <I>in dodici parti eguali & nel punto.</I> 1. <I>$egna</I> 12. <I>& tanto di $opra i quanto di $otto nella prima diui$ione $egna</I> 11. <I>nella $econda</I> 10, <I>nella terza</I> 9. <I>nella quarta.</I> 8. <I>nella quinta.</I> 7. <I>nella $esta, la doue $ono le lettere. f. & g.</I> 6. <I>nella $ettima</I> 5. <I>nella ottaua</I> 4. <I>nella nona</I> 3. <I>nella decima</I> 2. <I>nella undecima.</I> 1. <I>& a que$to modo hauerai partito le portioni del circolo del tropico. nè ti deue mouere, che la portione</I> 1 <I>g</I> 7 <I>che è $otto l'orizonte, ci $erua per la diui$ione del minor giorno, perche $e la con$idererai come portione del tropico del Capricorno, uederai la diui$ione e$$er giu$ta, perche la portione della notte della e$tate è $imile alla portione del giorno del uerno, con $imile ragione po- trai trarre dallo Analemma i cicorli intieri de i $egni, & diuiderli come hai fatto il circolo del Tropico, & uederai in ogni $egno quanto $ia lungo il giorno, $e uorrai $egnare altra $orte di hore, che le antiche, come $i uederà di $otto. Diui$o adunque il circolo del tropico al modo $opradet- to, bi$ogna da cia$cuna di<*>i$ione fatta nella circonferenza far cadere linee ad anguli dritti $opra il diametro f g. per dimostrare anche i tagli delle portioni delle hore nel piano. però da</I> 11. <I>&</I> 1. <I>caderà una linea al diametro f g. ne i punti</I> 11. <I>&</I> 1. <I>& da</I> 10 <I>&</I> 2. <I>ne cade- rà un'altra ne i punti</I> 10 <I>&</I> 2. <I>corri$pondenti. & co$i di mano in mano fin che $arà partito</I> <fig> <foot><I>HHH</I> 2</foot> <pb n="414"> <I>il diametro f g. nelle $ue portioni. & que$to non hauemo uoluto fare nello Analemma per <*> confondere con la moltitudine delle linee. Hora bi$ogna cauare dallo Analemma le altezze <*> Sole in ogni hora per $apere le lunghezze delle ombre. Piglia dallo Analemma il meridiano <*> b c d. & il diametro del tropico f g. partito $econdo le diui$ioni della figura precedente $e- gnata O. & l'orizonte x e y. nel modo, che egli $ta nello Analemma. & fa pa$$are p<*> diui$ioni del diametro del tropico del Cancro linee egualmente distanti all'orizonte x e y. che da una parte tocchino la circonferenza del meridiano, & dall'altra il diametro del tropico f g. $egna poi nel meridiano a b c d. i numeri riportati dal diametro del tropico</I>, 11. 10. 9. 8. 7. 6. 5. 4. 3. 2. 1. <I>tanto di $opra quanto di $otto l'orizonte. e$pedita questa di<*> determinerai la lunghezza del Gnomone, & quella ponerai di $otto dal centro e. doue s'<*> de e$$er la punta del Gnomone, al punto z. doue s'intende, che $ia il piede del Gnomone, nel dia- metro z &. che è il diametro del uerticale. di modo che la lunghezza dello stile $ia e z & per lo punto z farai pa$$are la línea del piano $opra la quale $ta il Gnomone, & $i a quella T. Z. V. per tirare adunque la lunghezza delle ombre bi$ogna tirare le linee dalle hore $eg<*> nel meridiano, che pa$$ino per la, cima del Gnomone, doue è la lettera e. & peruenghino all<*> linea del piano T. Z. V. & le lunghezze delle ombre $i mi$urano dal punto z. che è il pie- di del Gnomone $opra la linea del piano. come uedi qui appre$$o $egnato. & il diametro del uer- ticale $egna nella linea del piano l'ombra della $esta hora, che è l'hora del mezo dì. poi, che egli $i ba ritrouato le lunghezze delle ombre del tropico del cancro. con la iste$$a ragione $i piglieran- no le lunghezze delle ombre fatte quando il Sole è nel tropico del Capricorno. perche egli $i tra- $porta la lunghezza del Gnomone dalla lettera e $opra il uerticale, & anche $i tra$porta la li- ne a del piano $opra laquale $i fanno cadere le linee delle hore $egnate $opra il meridiano nella par- te di $otto l'orizonte. $ia adunqua e R la lunghezza del Gnomone e z po$ta nel diametro del uerticale z &. & $ia tirata la linea del piano S R Q. & dalli punti delle hore $egnate nel meridiano $otto l'orizonte x e r. $iano tirate linee, che pa<02>ino per lo centro e. & peruen- ghino nella linea del piano S R Q. & $iano $egnati i numeri corri$pondenti alle hore $egnate nel meridiano, & a questo modo $i haueranno le lunghezze delle ombre fatte nelle hore del uer- no. & questi $ono gli anguli fatti di linee dritte dal uerticale, che $i muoue, come hauemo detto: perche il raggio del Sole dà nel diametro del uerticale, che è il Gnomone, & fa che il Gnomone getta l'ombre $opra il piano dell'horologio. Cire$ta hora a determinare l'arco orizontale, cioè la latitudine dell'ombra, ilche $i fa a questo modo. Prima per fuggire la confu$ione delle linee. farai il circolo a b c d. come di $opra, nelquale ui ponerai il diametro del uerticale, z e & l'orizonte x e y. il diametro del tropico f g. con le $ue diui$ioni pre$e dalla figura $egna ta. O. & poi farai cadere dalle diui$ioni del detto diametro del tropico f g. linee egualmente di$tanti al diametro del uerticale z e &. fin $opra l'orizonte x e y. doue noterai i nume- <*> corri$pondenti a i numeri delle hore $egnate nel diametro del tropico; & que$te linee peruenghi- <*> alla circonferenza del Meridiano fornito que$to anderai alla figura $egnata O. doue $ono le diui$ioni di tutto i<*> tropico, & comincia dalle undici $egnate nella circonferenza, & po$to un pie di del compa$$e nelle undici $egnate nella circonferenza del tropico allargato fin alle undici $egna <*>o $opra il diametro di detto tropico riporterai que$ta lunghezza nella figura $eguente $opra la li- <*> delle undici hore ponendo un piede del compa$$o $opra il punto $egnato</I> 11. <I>&</I> 1. <I>nell'Ori- zonte x e y. & l'altro $opra la detta linea delle undici, & nel termine farai punto</I> 11. <I>Si- milmente piglia dalla figura O. la lunghezza della linea delle</I> 10. <I>& riportala in que$ta figu- <*>a $opra la linea $egnata</I> 10. <I>& doue termina, $egna</I> 10. <I>& parimente riporterai tutte le li- nee delle hore fatte nella figura O. in que$ta, $egnando come hai fatto delle</I> 11. <I>&</I> 1. <I>& delle</I> 10. <I>&</I> 2. <I>& que$to farai tanto di $opra quanto di $otto l'Orizonte, perche ci $eruirà a gli archi Orizontali delle hore del uerno. Hora bi$ogna ritrouare gli archi Orizontali, il che fa- nai a que$to modo. Poni la riga nel centro e. & nel punto</I> 11. <I>&</I> 1. <I>$opra la linea delle</I> <pb n="415"> <I>undici, & una, & doue ella taglia il Meridiano fa punto</I> 11. <I>&</I> 1. <I>que$to $arà l'arco Orizon tale compre$o dalla circonferenza z.</I> 11. <I>Similmente piglia l'arco Orizontale delle dieci. & delle due ponendo la riga $opra il centro e. & $opra i punti</I> 10. <I>&</I> 2. <I>della linea</I> 10. <I>&</I> 2. <I>& doue la riga taglia il Meridiano $egna</I> 10. <I>&</I> 2. <I>perche l'arco compre$o tra z. &</I> 10. <I>&</I> 2. <I>è l'arco Orizontale delle</I> 10. <I>& delle</I> 2. <I>con $imile ordine piglierai gli archi Ori zontali delle altre hore, & gli noterai $opra il Meridiano come hai fatto delle</I> 11. <I>&</I> 1. <I>& del le</I> 10. <I>&</I> 2. <I>que$ti archi $ono compre$i tra l'Orizonte fermo, & il Verticale mobile, come ho detto, & $ono le circonferenze, che comprendeno gli anguli fatti da due piani, cioè dal Ver- ticale mobile, & dal fermo, come ci è manife$to per le co$e dette di $opra. E$pedite tutte que$te co$e, egli $i uenirà alla fabrica dell'horologio in que$to modo. Farai un circolo della grandezza del Meridiano gia po$to nello Analemma, & $ia quello a b c d. in que$to circolo il diametro b c. ci $erue per la linea Meridiana. & il diametro a d. ci $erue per la linea del piano. ma bi$ogna tirare que$ta linea del piano occulta. Sia il centro e. doue la linea del piano taglia la Meridiana, & doue s'imagina, che $ia il Gnomone. piglia poi la di$tanza, che è dal punto z. alle undici nel Meridiano nella figura antecedente $egnata I. & riportala dal punto d. uer$o il punto c. nel punto H. & tira poi dal centro a. al punto H. una linea occulta. Similmente riporterai la detta di$tanza dal punto a. uer$o il punto c. nel punto M. Que$te di$tanze d H. & a M. $ono gli archi Orizontali della undecima, et della prima hora; $i che d H. è della undecima, & a M. della prima. Piglia poi la lunghezza dell'ombra della undecima hora dalla figura doue $egna$ti le lunghezze delle hore dal punto z. $opra la li- nea del piano uer$o il punto T. al punto</I> 11. <I>& riportala nell'horologio dal centro e. $opra le linee e H. & e M. & $egna</I> 11. <I>&</I> 1. <I>Piglia poi lo arco Orizontale delle</I> 10. <I>& del le</I> 2. <I>dalla figura precedente dal punto</I> 2. <I>al punto</I> 10. <I>& riportala nell'horologio $otto il punto d. dall'una parte, & $otto il punto a. dall'altra ne i punti N O. a i quali dal centro e. tirerai le linee e N. & e O. Quiui gli $patij, che $ono da N d. & da o. ad a. $ono gli archi Orizontali di quelle hore cioè delle</I> 10. <I>& delle</I> 2. <I>Piglia poi la lunghezza dell'ombra delle</I> 10. <I>& delle</I> 2. <I>dalla $opra po$ta figura O. & riportala dal centro e. $opra le dette li- nee e N. & e o. & ne i punti doue termina la lunghezza dell'ombre $egna $opra la e N.</I> 10. <I>& $oprala e o.</I> 2. <I>con $imile ragione procederai nel ponere le altre hore, & di altri ar- chi Orizontali, & le altre lunghezze delle hore, & uederai riu$cire la linea della hiperbole $e le gherai tutti que punti con una linea. Il $imile $i fa a ponere gli archi Orizontali delle hore del- l'altro tropico, cioè del Capricorno. perche anche quelli $i pigliano dalla antecedente figura I. con le di$tanze dal punto</I> 2. <I>alle hore $egnate dalla de$tra del taglio commune dell'Orizonte, & del piano come uedi. & a que$to modo nella parte contraria ti riu$cirà la linea hiperbole oppo$ta a quella, che face$ti nelle hore del Cancro. & $egnata che l hauerai con i $uoi punti, o numeri tirerai le linee da una hiperbole all'altra, & a que$to modo hauerai $egnato l'horologio con le hore de gli antichi. come nella figura V. uederai. & $e uorrai porui le hiperbole fatte da gli altri $egni, & hore, lo farai con la i$te$$a ragione. & $empre l'equinottiale ti porgerà una linea dritta, la quale $arà tanto di$tante dal Gnomone, quanto $arà longa l'ombra equinottiale $u'l mezo dì $opra la linea del piano. ma in que$ta eleuatione di polo alla inclinatione di Vinetia la linea equinottiale $arà tanto di$tante dal Gnomone, quanto è alto il Gnomone. Io ho uoluto ponere tanti circoli $eparatamente per dimo$trare $enza confu$ione come $i fa lo Analemma fini- to, dal quale $i caua la ragione, & lapratica di fare l'horologio. Però $e uuoi fare lo Analem ma intiero, di$egnerai $elamente in qualche materia $oda o pietra, o legno, o rame quelli circo- li, che $i richiedeno in ogni Analemma, come è il Meridiano, i diametri di tutti i paralleli, cioè de i tropici, & de gli altri $egni, col diametro dello equinottiale, & poi uolendo fare l'horologio a quella inclinatione di cielo, che ti piace, farai l'Orizonte, & il Verticale, & le diui$ioni $i del le altezze del Sole, come de gli archi Orizontali di modo, che $i po$$ino leuar uia, poi che ti ha-</I> <pb n="416"> <fig> <pb n="417"> <I>uerai $eruito, & u$erai ogni diligenza di<*> riportare le linee dallo Analemma all'horologio che fai. ma piu imparerai praticando, & con$iderando le co$e dette, che altri po$$ino con parole de$criue re. Con $imiglianti ragioni de$criuerai gli horologi con le altre maniere di hore. come uedi nelle $otto$critte figure. & que$to $ia detto a ba$tanza de gli horologi fatti <*>el piano egualmente di$tan te all Orizonte. La figura V. è per l'horologio dalle hore de gli antichi T. E. F. per le ho- re dal mezo dì. G. l'horologio con le hore dal mezo dì. H. L. K. per lo horologio con le ho- re dall'occa$o. M. l'horologio dall'occa$o.</I> <fig> <p><I>Hora $i dimo$trerà come dallo Analemma $i caua il modo di fare gli horologi ne i piani Verti- cali. Gia detto hauemo, che il piano Verticale è quello, che $epara la parte Meridiana, dalla ettentrionale, & però gli horologi fatti in quel piano, che rappre$enta il Verticale, riguarde- anno al mezo dì, & al Settentrione. Si come adunque nel de$criuere gli horologi ne i piani</I> <pb n="418"> <I>egualmente di$tanti ci $iamo $ernito di due circonferenze, per $apere, & la lunghezza delle om- bre, & la larghezza Oriz on<*>le; co$i nella de$crittione de gli horologi fatti nel piano Verticale ci $eruiremo di due altre circonferenze, l'una delle quali ci dimo$trerà l'altezza del Sole in ogni hora $opra il detto piano, dalla quale $i cono$cerà la lunghezza delle ombre fatte dal Gnomone; & però è detta circonferenza horaria. L'altra ci $eruirà per la larghezza dell'ombra, cioè per la di$tanza del Verticale. da que$te circonferenze adunque $i tragge il modo di tirare le linee ne i piani de gli horologi, che altro non è, che de$criuere l'horologio. le circonferenze adunque det- te horarie, $i cauano dal Meridiano mobile a questo modo. & prima nello equinottiale. Sia adun que a b g d. $opra'l centro e. $i che a b. $ia il taglio commune del Meridiano, & dell'Orizon te, & g d. $ia il diametro del Verticale & zeh. il diameiro dello equinottiale, & $ia t z. una delle quarte dello equinottiale, che è $opra l'Orizonte. Sia poi partita la detta quarta t z. in $ei parti eguali, che $ono le diui$ioni delle hore equinottiali, perche una $ola quarta ci puo ba$tare. cadino poi $opra il diametro dello equinottiale da cia$cuna diui$ione della quarta t z. le linee, che diuideranno il $emidiametro ze. & $iano tutte quelle linee notate K l. hora per $apere le circonferenze, o gli archi delle hore, per cono$cere quanto $ia alto il Sole ogni hora $o- pra il piano Verticale, accioche egli $i po$$a cono$cere la lunghezza delle ombre, bi$ogna de i punti $egnati L. tirare linee egualmente di$tanti al diametro del uerticale g e d. fin'alla circon ferenza del Meridiano compre$a dalle lettere g</I> 2. <I>& doue termineranno quelle linee, $i deue po nere i numeri delle hore, che per e$$empio qui notate $ono $econdo le hore<*> de gli antichi</I> 11. 10. 9. 8. 7. 6. <I>alle quali ri$pondeno</I> 1. 2. 3. 4. 5. <I>&</I> 12. <I>poi è po$to al punto g. del Verticale. hora l'arco, che è dal punto g. alla u<*>decima, & alla prima hora dimo$tra l'altez za del Sole $opra il piano g e d. del Verticale, alla undecima, & alla prima hora. Similmen- te l'arco da g. alla decima, & alla $econda hora dimo$tra l'altezza del Sole, a quella hora $o- pra il Verticale. & $imil modo intenderai del re$tante. & hauerai gli archi ouero le circonferen ze horarie, che ti dimo$treranno l'altezza del Sole d'hora in hora $opra il piano del Verticale, quando il Sole è nello equinottiale. & $e uorrai $egnare altre $orti d'hore ti potrai $eruire ponen- do in luogo delle hore de gli antichi, quelle, che ti piaceranno. Perche ti$eruirà la i$te$$a diui$io- ne, e$$endo, che tutte le $orti d'hore s'incontrano $u l'equinottiale. Si che $e ti piaceranno l ho- re dal mezo dì nota $opra g.</I> 6. <I>$opra</I> 11. <I>&</I> 1. 5. <I>&</I> 7. <I>$opra</I> 10. <I>&</I> 2. 4. <I>&</I> 8. <I>$opra</I> 9. <I>&</I> 3. 3. <I>&</I> 9. <I>$opra</I> 4 <I>et</I> 8. 2. <I>&</I> 10. <I>$opra</I> 5. <I>&</I> 7. 1. <I>&</I> 11. <I>& $opra</I> 2. 12. <I>che è il mezo dì. Se uorrai le Italiane, $opra g. nota</I> 24. <I>& ua $eguendo</I> 23. 22. 21. 20. 19. <I>&</I> 10. <I>$opra z. & ritornando $egnerai</I> 17. 16. 15. 14. 13. 12. <I>& $e uorrai le hore dal na$cer del Sole. Segnerai $opra g.</I> 12. <I>& $eguitando</I> 1. 2. 3. 4. 5. 6. <I>ritornerai a dietro</I> 7. 8. 9. 10. 11. 12. <I>fatto que$to, tirerai la linea del piano Verti- cale, che $ia n m. che tagli la linea a b. in o. tanto lontana dal punto o. quanto porta la lunghezza del Gnomone, & dalle hore $egnate nel Meridiano tirerai le linee delle hore, che pa$- $ino per lo centro, & che è la ponta del Gnomone, & peruengono fin al piano n m. con quella ragione, che face$ti ne gli horologi fatti nel piano dell'Orizonte, quelle linee ti mo$treranno le lun ghezze delle ombre.</I> <p><I>Hora per ritrouare gli archi Verticali cioè le circonferenze, che dimo$trano le larghezze del le ombre $opra il piano Verticale, bi$ogna tirare da i punti L. linee egualmente di$tanti al dia- metro a e b. che ca$chino ad anguli dritti $opra il diametro del Verticale g e d. ne i punti p h. & peruenghino alla circonferenza del Meridiano. Et poi ponere un piede del compa$$o ne i pun- ti L. & l'altro nelli punti K. & riportare quelle lunghezze ad una ad una $opra le linee tra- uer$e $egnate p. ponendo l'un piede nelli punti p. & l'altro $opra le dette linee: & doue termi nano $egnare q. hora $i deue ponere la riga $opra il centro e. & $opra i punti q. ad uno ad uno, & doue le linee, che pa$$ano per li punti q. tagliano la circonferenza a g. iui far punto r. le circonferenze adunque & gli archi tra'l Verticale doue è g. & i punti r. $ono le circonfe-</I> <pb n="419"> <I>renze Verticali, dalle quali $i mi$urano le larghezze delle'ombre. & cia$cuna ri$ponde alla $ua <*>ora propria. Et que$ti partimenti ci $eruiranno dapoi. Ma per $apere le dette circonfe- renze, cioè l'horaria, & la uerticale, che ci $erueno quando il Sole è ne i tropici, o in qualche altro $egno: farai in un'altro luogo il circolo a g b d. nel centro e. doue i diametri mede$imi ci $erueno come nella precedente figura. Siano poi tirati i diametri de i tropici t u. x y. $opra i quali $iano tirati i $emicircoli come nello Analemma. & fatte le diui$ioni $econdo le $orti delle hore, come di $opra s' è detto, sì nelle circonferenze, come ne i diametri: Sia $imilmente, come poco auanti tirata la linea del piano uerticale m o n. & cominciamo dal $emicircolo del tro- pico del Capricorno x y. doue le linee delle hore antiche $ono $egnate con i numeri loro</I> 1. 2. 3. 4. 5. 6. <I>& di ritorno</I> 7. 8. 9. 10. 11. 12. <I>& il taglio dell'Orizonte, & del detto tropico è $egnato t</I> K. <I>$ia po$to adunque l'un piede del compa$$o $opra il punto</I> k. <I>& allarga- to l'altro al punto t. & la larghezza $ia riportata dal punto K. $opra il Meridiano al punto t. $ia poi fatto centro K. & $patio</I> k. 11. <I>&</I> 1. <I>riportato quello $opra il Meridiano, $tando fermo il compa$$o nel punto K. & $ia $egnato</I> 11. <I>&</I> 1. <I>perche que$to è l'arco horario della undecima, & della prima hora. & tanto è il Sole alto $opra il Verticale g d. quanto è l'arco g</I> 11. <I>& $imilmente po$to l'un piede nel punto</I> k. <I>& l'altro nella hora</I> 10. <I>&</I> 2. <I>& ripor tata quella larghezza nel Meridiano, come s'è fatto, $i $egnerà</I> 10. <I>&</I> 2. <I>& tanto $arà la circonferenza horaria, $opra il detto piano, quanto è da g. a</I> 10. <I>&</I> 2. <I>con que$to modo pi- glierai le circonferenze horarie delle altre hore, & le riporterai nel Meridiano. & dalle dette hore <*>egnate nel Meridiano farai pa$$are le linee per lo centro e. & quelle ti daranno le larghezze, delle ombre di quelle hore $opra il piano del uerticale m o n. Hora i$pedite le circonferenze ho rarie $eguitano le uerticali, le quali $i pigliano in que$to modo. Pa$$ino per li punti $egnati con la lettera i. linee egualmente di$tanti al diametro a e b. che cadino ad anguli giu$ti $opra il dia metro g e d. ne i punti p. & peruenghino alla circonferenza del Meridiano. & $iano ripor tate le lunghezze</I> 1. 11. <I>&</I> 1. 1. 10. <I>&</I> 2. 1. 9. <I>&</I> 3. 1. 8. <I>&</I> 4. 1. 7. <I>&</I> 5. <I>$opra le dette linee dalli punti $egnati p. corri$pondenti, & $egnati con la lettera $. da i quali & dal centro e. $i tireranno le linee alla circonferenza, doue $i $egnerà con la lettera t. & quelli archi, che$aranno compre$i tra la lettera g. & la lettera t. $aranno le circonferenze uerticali, che dimo$treranno le larghezze dell'ombre ogni hora $opra il piano uerticale. con $imi le modo, & uia riporterai dal $emicircolo r u. del tropico del Cancro le circonferenze horarie, & uerticali pigliando le lunghezze, & le larghezze delle ombre, & poi di$cenderai al di$egna- re dell'horologio nel piano del uerticale con le hore antiche. il che farai in que$to modo. farai il circolo a b c d. che rappre$enti il piano uerticale a b. & il centro $ia e. & i dametri a c b d. di modo, che a. $ia all'occidente, b. & c. all'oriente. Sia poi pre$a dalla figura I. la di$tanza o i. & riportata in quella figura dal punto e. uer$o il b. $opra la linea e b. el punto f. per lo quale $ia tirata una linea egualmente di$tante al diametro a e c. & $ia quella linea g f h. la quale ci $erue per lo diametro dello equinottiale. Piglia poi dalla detta figura I. gli archi ouero le ba$$ezze delle ombre, & riportale dal centro e. alla detta linea g f h. ouero le circonferenze uerticali di qua & di la dal punto d. & quelle linee, che ueni ranno dal punto o. alla circonferenza pre$a di qua, & di la dal punto d. taglieranno l'equi nottiale ne i punti conuenienti alle hore $ue: auuertendo, che bi$ogna tirare le dette linee occulte & $olo $ignare i punti manife$ti nello equinottiale. Hora per $egnare le hore ne gli altri circoli equidi$tanti, piglierai prima le circonferenze uerticali dalla figura precedente II. del tropico del Capricorno al punto g. & le riporteraì da que$ta nella circonferenza di qua & di la dal punto d. & tirerai le linee occulte dal punto e. alla circonferenza detta ne i punti di qua, & di la, dal punto d. & $opra quelle dal punto e. riporterai le lunghezze delle ombre in cia$cun'hora cor ri$pondente. & farai i $uoi punti. dalli quali, per li punt i $egnati nello equinottiale tirerai le linee delle hore nel $uo horologio fin'alla circonferenza, eccetto quelle, che $aranno terminate dalla li</I> <foot><I>III</I></foot> <pb n="420"> <I>uea del Cancro. la quale $i fa con la lunghezza delle ombre tratta dalla figura</I> 11. <I>$econdo che $i è detto. & a que$to modo $opra la linea del mezo dì $egnerai</I> 6. <I>dalla $ini$tra</I> 5. 4. 3. 2. <I>&</I> 1. <I>& dalla de$tra</I> 7. 8. 9. 10. 11. 12. <I>& que$to horologio $arà nel piano del uerti- cale, che guarda al mezo dì. Et perche la $tate il Sole pa$$a i termini di Leuante et Ponente, & <*> uer$o tramontana. però bi$ognerà nel piano del uerticale, che guarda tramontana $egnare quelle hore, che ui uanno, che $aranno la prima, & la $econda, la mattina, & la undecima, & la decima la $era. il che farai con lo aiuto del Meridiano. Percioche $e tirerai a lungo la linea della hiperbo le, che lega in$ieme i termini delle hore del Capricorno, & $imilmente tirerai in lungo le linee della undecima, & della prima della decima, & della $econda, hora tu hauerai de$critto le hor<*>, che uanno alla parte Settentrionale nell'horologio fatto nel piano del uerticale. & con lo i$te$$o ordi- ne farai gli altri horologi uerticali con le hore a tuo piacere, come praticando auuertirai meglio di quello, che $i puo in$egnar con parole, tirando le linee delle hore, che $ono uer$o il Settentrione, nell'horologio Settentrionale. & le Meridiane nel Meridiano. le figure delle quali $ono qui $otto po$te. Seruendoci in tutti la figura I. perche in tutte le $orti di hore ci $erue la i$te$$a diui$ione dello equinottiale.</I> <p><I>Cli horologi fatti nel piano del Meridiano $i pigliano dallo Analemma come gli altri; & per- che l'officio del Meridiano è di $eparare la parte di Leuante, dalla parte di Ponente, però anche di que$ti horelogi l'uno riguarderà a Leuante, & l'altro a Ponente. Et per fargli ci $eruiranno due circonferenze, delle quali l'una (come hauemo detto) cimo$trerà l'altezza del Sole $opra il piano del Meridiano, dal che $i caueranno le lunghezze delle ombre. L'altra ci mo$trerà le lar ghezze delle ombre, $econdo le di$tanze del Sole, dal detto piano. & questa circonferenza $i chiamerà Meridiana, & quella $econdo gli antichi $epartita in no$tra lingua, & ectemoria in Greco, qua$i di $ei parti, $econdo $ei $iti, che ha l'Orizonte mobile ri$petto alle hore de gli antichi. Sia adunque fatta la diui$ione de i tropici, come nello Analemma sì de i $emicircoli, come de i dia metri: & le portioni delle hore ne i $emicircoli $iano con i numeri delle hore de gli antichi nota- te. Sia il $emicircolo del Capricorno di $otto $egnato x y. & il $emicircolo del Cancro di $opra, $egnato z. &. et la doue $opra i diametri de i $emicircoli terminano le linee delle hore $ia po$to n. Per $apere adunque le circonferenze Meridiane per la larghezza delle ombre, bi$ogna tirare linee dal centro e. che pa$$ino per li punti n. & peruenghino alla circonferenza del Meridiano a b c d. come per e$$empio tirerai una linea occulta dal centro e. che pa$$i per lo primo punto n. della linea delle hore prima, & undecima, & che peruenghi alla circonferenza al punto o. l'arco adunque, & la circonferenza a o. è l'arco, & la circonferenza Meridiana della pri- ma, & della undecima hora. Similmente $e dal centro e. per lo punto del $econdo n. che è dell'hora decima, & $econda, pa$$erà una linea fin alla' circonferenza al punto i. la circonfe- renza a i. ci $eruirà per la di$tanza, & per la latitudine dell'ombra della decima, & della $econda hora. A que$to modo $i caueranno le circonferenze d'hora in hora, & a u. $arà la circonferenza Meridiana delle hore terza, & nona. a l. delle hore quarta, & ottaua. a r. delle hore quinta & $ettima. Ma la $e$ta hora, che è l'hora Meridiana, non cade $opra quel pia- no, perche è il piano i$te$$o. Ma gli archi, & le circonferenze $epartite, per la altezza del So le, & lunghezza delle ombre $i pigliano in que$to modo. Sia centro il primo n. & $patio n.</I> 11. 1. <I>& $tando fermo il piede del compa$$o nel centro n. $ia uoltato l'altro piede $opra il Meridiano, & fatto punto</I> 11. 1. <I>la circonferenza, che $arà tra</I> 11. 1. <I>& lo punto o. $arà la circonferenza $epartita delle hore prima, & undecima. po$to poi il centro nel $econdo n. & i$patio n.</I> 10. 2. <I>$tando fermo il piede nel punto n. & uoltato l'altro, $ia $egnato $opra'l Meridiano</I> 10. 2. <I>& la circonferenza compre$a tra</I> 10. 2. <I>& il punto e. $arà l'arco del- l'altezza del Sole $opra detto piano. con $imile uia $i piglieranno le circonferenze $epartite delle altre hore, sì nel tropico del Capricorno di $otto, come nel tropico del Cancro di$opra, come uedi nella figura $egnata A. & per accommodare nell'horologio le dette circonferenze, & per fug-</I> <pb n="421"> <fig> <foot><I>III</I> 2</foot> <pb n="422"> <I>gire la confu$ione, egli $i farà la figura $egnata B. Sia adunque fatio il circolo o p q n. che rappre$enti il Meridiano, & $ia partito in quattro quarte per due diametri o n. & p q. $ia pre$o nel diametro p q. la lunghezza del Gnomone, che uuoi dal punto e. al punto t. sì di $otto come di $opra. & pa$<02>ino per li punti t. linee egualmente di$tanti al diametro o n. che $iano r t $. que$te $erueno per li piani, $opra li quali $i $tendeno le ombre. per ponere adunque le lunghezze delle ombre d'hora in hora $opra i detti piani, piglierai dalla figura A. le circonfe- renze $epartite delle hore, & le riporterai nella figura B. quelle del tropico del Cancro nella quarta n p. dal punto n. & quelle del tropico del Capricorno nella quarta n q. dal punto n. & noterai i numeri delle hore ri$pondenti, da i quali tirerai le linee per lo centro e. fin al pia no oppo$to r t $. doue quelle del Cancro $aranno $egnate $opra la linea r $ t. di $otto, & quelle del Capricorno nella linea r $ t. di $opra il diametro o e n. Volendo poi fare l'horolo gio, che guarda a Leuante, farai il circolo $egnato C. che $ia a b c d. nel centro e. & i dia metri $iano a c. commune tag lio di e$$o Meridiano, & dell'Orizonte, & b d. commune ta glio di e$$o Meridiano, & del uerticale, $i che il punto a. $ia uolto al mezo dì, & il punto c. at Settentrione. dapoi $ia tirato un'altro diametro tra la quarta a d. che $ia f g. commune taglio dello equinottiale, & del Meridiano. il qual diametro $ia tanto alto $opra il punto a. quanto l'equinottiale po$to nello Analemma $opra l'Orizonte. In que$ta figura $egnata C. tu dei riportare gli archi ouero le circonferenze Meridiane, & prima quelle del tropico del Capri- corno a o. a i. a l. a u. a r. dal punto a. della figura C. nella circonferenza a f. & notare o i l u n. & poi quelle del tropico del Cancro c o. c i. c l. c u. c r. dal punto c. uer$o il punto d. & notare i numeri delle hore corri$pondenti, & tutto que$to farai con lettere, & linee, che $i po$$ino l<*>uare. I$pedite que$te diui$ioni nella figura C. tirerai le li- nee dalli punti o. i. l. u. r. che pa$$ino per lo centro e. nella parte oppo$ta, sì quelle del Can cro, come quelle del Capricorno. & piglierai le lunghezze delle ombre dalla figura B. & le ri- porterai n ella figura C. dal centro e. nelle linee corri$pondenti alle hore, che uuoi traportare: a que$to modo farai l'horologio tirando da i punti del tropico del Cancro a i punti del tropico del Capricorno le linee delle hore, che taglieranno il diametro f g. ne i luoghi $uoi come uedi nella figura C. Con la i$te$$a ragione $i fanno gli horologi nel piano Meridiano uolto a Ponente, ma traportando il tutto nella quarta a b. & $egnando le hore dopo il mezo dì, che $ono</I> 11. 10. 9. 8. 7. <I>come nella figura D. $i puo uedere.</I> <p><I>A. Analemma per gli horologij che riguardano a Leuante, ouero a Ponente, donde $i caua la latitudine.</I> <p><I>B. come $i cauano le altezze del Sole per cauare le lunghezze dell'ombre.</I> <p><I>C. horologio da leuante con le hore de gli antichi.</I> <p><I>D. horologio occidentale con le hore de gli antichi.</I> <p><I>E. horologio dall'Oriente con le hore dal mezo dì.</I> <p><I>F. horologio occidentale, con le hore dal mezo dì.</I> <p><I>G. horologio occidentale con le hore dopo'l mezo dì.</I> <p><I>H. horologio Orientale dalle hore dell'occa$o inanzi mezo dì.</I> <pb n="423"> <fig> <pb n="424"> <p><I>Cia $i $ono i$pcditi gli horologi faiti nelli piani dell'Orizonte, del uerticale, & del Meridiano con l'aiuto delle circonferenze, & de gli anguli dimo$tratori delle lunghezze, & delle larghez- ze delle ombre: hora $i dimo$trerà il modo di fare gli horologi nel piano dello equinottiale, il che $arà facile, & diletteuole. Sia il Meridiano a b c d. con i diametri a c. b d. che $ita- glino ad anguli dritti, & $ia ac. per lo diametro dello equinottiale, $opra il quale $iano i diametri: de gli altri circoli egualmente di$tanti, come è nello Analemma. f K. il diametro del Cancro, & del Capricorno. h m. de Gemelli, & del Sagittario. g i. del Toro, & della Vergine. Sia $opra la linea e b. pre$a la lunghezza del Gnomone e z. & per lo punto z. pa$$i la linea l o. $o- pra la quale per lo centro e. dalli punti f h g. cadino le linee g e t. h e $. f e r. $i che z r. $arà la lunghezza dell'ombra, quando il Sole $arà nel tropico del Cancro, ouero del Capri corno. z $. ne i Gemelli, & nel Sagittario. z t. nel Toro, & nella Vergine. Piglia poi dalla figura A. lo $patio z t. & fa il ctrcolo a b c d. $opra il centro e. dentro del quale ne farai un'altro pre$a la di$tanza z $. dalla figura A. & quello $arà f g h i. dentro del quale ne far ai un'altro pre$a la di$tanza z r. dalla fignra A. & $ia quello k l m n. que- $ti tre circoli rappre$entano nel piano equinottiale i circoli de i $egni pre$i nella figura A. per le lunghezze delle ombre fatte nella linea del piano l z o. Siapoi diui$o il minor circolo in due parti di$eguali, $i che la maggiore $ia</I> k <I>l m. per la portione del Cancro, che $ta $opra l'Ori- zonte. & la minore K n m. per la portione del Cancro, che $ta $opra l'Orizonte, & la minore</I> k <I>n m. per la portione del Capricorno, & tirata la linea</I> k <I>m. $i che gli e$tremi $uoi tocchino la e$trema circonferenza del circolo maggiore ne i punti a c. que$ta li- nea a f</I> k <I>m h c. $arà il taglio commune di quel piano, & dell'Orizonte. Per $egnare adun- que l'horologio, $e uuoi le hore antiche, partirai cia$cuna portione in dodici parti cominciando dal taglio di quel piano con l'Orizonte nel minor circolo da m. & nel maggiore dal c. & le- gherai i punti dēl circolo maggiore con quelli del minore. Ma $e uorrai le hore dal mezo dì co- mincia la tua diui$ione dal Meridiano nel b. del circolo maggiore, & nello l. del minore. Et $e uuoi le hore dall'occa$o comincia a partire dal punto. c. del circolo maggiore, & dal punto m. del minore $i di $otto come di $opra. come $i è fatto ne gli horologi fatti nel piano egualmente di$tante all'orizonte. il riuer$o di que$to horologio ti dimo$trerà le hore pre$e dal na- $cer del Sole. & $e uole$$i le hore del circolo egualmente di$tante allo Equinottiale ne i quindici gradi di Ariete o di Vergine, bi$ognerebbe ponere nella figura. A. il diametro di quel circolo, doue è la lettera. q. & dal punto. q. far pa$$are una linea per lo centro. e. fin alla linea del piano l z o. & pigliare la lunghezza dell'ombra, & farne un circolo d'intorno a gli altri, & partirlo allo i$te$$o modo, & prolung are le linee delle hore alla $ua circonferenza. & in que- $ti $opra detti horologi, ne $aranno due, uno che riguarderà al polo di $opra, il quale è po$to nel- la portione a b c. & l'altro, che riguarda al polo di $otto che è posto nella portione a d c. & nell'uno & nell'altro $i pone il Gnomone ad anguli dritti nel centro e.</I> <p><I>Fin hora hauemo e$po$to come dallo Analemma $i cauano gli horologi, che $i fanno ne i pia- ni egualmente di$tanti a i circoli fermi, cioè orizonte, uerticale, & meridiano: $eguita, che $i di- mo$tri, come ne gli i$te<02>i piani de i circoli gia detti, che $i muoueno, $i fanno gli horologi, che pie- gati, ouero inclinati $i chiamano; perche ri$petto ad alcun piano de i circoli fermi non gli $ono ad anguli dritti. Ecco lo e$$empio. L'horologio fatto $opra il piano uerticale mobile, ri$petto al- l'orizonte fermo gli è ad anguli giu$ti, ma ri$petto al meridiano fermo & al uerticale fermo, non gli è ad anguli giu$ti: $imilmente l'horologio fatto $opra il piano dell'Orizonte mobile ri$petto al meridiano fermo gli è ad anguli giu$ti, ma ri$petto all'Orizonte fermo non gli cade $opra ad an- guli giu$ti. Finalmente l'horologio fatto $opra il piano del meridiano mobile, non cade ad anguli dritti, nè $opra l'orizonte fermo, nè $opra il meridiano fermo. Conuengono tutti gli horologi piegati in que$to, che $ono doppi, cioè $i po$$ono fare ne i piani oppo$ti, cioè di $otto & di $opra, di quà, & di là, & come dal dritto, & dal rouer$cio. prima gli horologi piegati all'orizonte, &</I> <pb n="425"> <fig> <pb n="426"> <I>dritti al meridiano, hanno una faccia che riguarda al di $opra, & l' altra al di $otto, gli horolo- gi fatti nel piano del uerticale mobile hanno una facciata che declina d al meridiano da una par- te, & l'altra, che declina dall'altra. & finalmente gli horologi fatti nel piano del meridiano <*>- bile hanno ancho il dritto, & riuer$cio. Conuengono ancho tutti in que$to, che cia$cuno $i caua dallo Analemma. Gli orizontali piegati $i $erueno delle circonferenze, che dimo$trano le lun- ghezze, & le larghezze delle ombre, $i come $i $erueno gli horologi fatti nel piano egualmente di$tante all'orizonte. il mede$mo fanno gli horologi piegati all'orizonte, & al meridiano. & il mede$imo fanno gli horologi uerticali piegati. Egli $arà adunque nece$$ario con gli in$trumenti pigliare le piegature, ouero le inclinationi, & declinationi de i piani, $opra i quali $i haueran- no a formare gli horologi, de i quali in$tr umenti ne $ono molti, che hanno $eritto: ma io per non e$$er piu lungo, & per dare occa$ione a gli $tudio$i di affaticar$i, & per la$ciare ad altri le dimo- $tr ationi matematiche, rimando i lettori allo Analemma di Tolomeo dottamente e$plicato dal$o- pradetto Commandino.</I> <HEAD><I>Della ragione de gli borologi, & dell'u$o, & della in- uentione loro, & quali $ieno stati gli in- uentori. Cap. IX.</I></HEAD> <p>Egli $i dice, che Bero$o Caldeo ritrouò l'horologio, che $i caua da un quadra- to, & $erue ad una inclinatione di cielo. La $cafa, ouero lo hemi$pero Ari- $tarco Samio. il mede$imo ritrouò il Di$co nel piano. la Ragna fu inuentio- ne di Eudoxo A$tronomo, altri dicono d'Apollonio: il Plintho, ouero il La- cunare, che è ancho nel circo Flamminio, di Scopa Siracu$ano: Parmenione fece gli ho- rologi $econdo le relationi delle i$torie: Ad ogni Clima Thcodo$io, & Andrea feccro gli horologi. Patrocle ritrouò il Pelecino; Dioni$oporo il Cono: Apollonio la Faretra: & al- tre maniere trouarono i $opra$critti, & altri, come è il Gonarche, l'Engonato, & l'Antibo reo. & co$i dalle maniere predette molti la$ciarono come $i haue$$ero a formare gli horo- logi da uiaggio, & che $tanno appe$i. da i libri de i quali, $e alcuno uorrà, (pure, che $i $appia la de$crittione de gli Analemmi) potrà ritrouarne le de$crittioni. <p><I>Gli horologi ritrouati da gli antichi, & po$ti quiui da Vitruuio, $i po$$ono imaginare da quelli, che intendeno bene i circoli della $pera, & che $anno la ragione de gli Analemmi, perche poi puo cia$cuno accommodargli qualunque forma gli piace. Bero$o ( come io $timo ) trouò l'horologio cauato in un quadrato con i circoli paralleli, & le hore ad una eleuatione. $i come Ari$tarco lo fece in una meza $pera; che noi per fare gli horologi u$iamo come in$trumento, uolendo fare gli horologi in piani diuer$i. il di$co era un ua$o cauato, ritondo, ma non di fatto ritondo come è lo hemi$pero. la Aragna, il tronco, & gli altri horologi che $i chiamano con que$ti nomi, che rap pre$entano forme naturali, ouero artificiali, de i quali altri a i di no$tri ne hanno fatto $otto for me di foglie d'alberi, di croci, di $telle, di naui, & noi di animali quadrupedi, & di uccelli, $i fan- no con le ragioni della eleuatione del Sole, delle proportioni dell'ombre, & de gli archi orizonta- li. di que$ti gli Analemmi $ono al uolgo a$co$i, $i come $ono a$co$e le uirtù delle ruote, & i con- trape$ine gli instrumenti: ma $olo $i uede di fuori lo effetto loro merauiglio$o. però l' Aragna po- teua e$$ere uno horologio, che haue<02>e le linee delle hore attrauer$ate da i circoli, che dimo$tra$- $ero le altezze del Sole, $econdo la lunghezza dell'ombre, & la altezza del Gnomone. come $o- no gli horologi fatti nel piano dello Equinottiale po$ti di $opra $egnati B. C. D. E. Il Plintho era un zocco, ouero un tronco nel quale $i poteua fare in diuer$e faccie gli horologi dritti, & piegati. alla Far<*> a $imigliauano gli horologi orientali, & occidentali fatti nel piano del meri-</I> <pb n="427"> <I>diano, come hauemo detto di $opra. Parmenione $econdo le eleuationi del polo in diuer$i pae$i bauute per relatione di per$one, ouero di $crittori accommodaua gli horologi, la doue ancho Theo do$io, & Andrea fecero gli horologi uniuer$ali, che $eruiuano ad ogni inclinatione, o clima, che $i dica. perche ogni horologio fermo, che $ia fatto nel piano dello Equinottiale, o nel piano dell'a$$e del monde alzato, ouero abba$$ato $opra la quarta del circolo alla eleuatione del polo, ouero dello equinottiale, & che $ia diui$o in parti uentiquattro, ci $eruirà in ogni pae$e. Fanno$i anche horologi per ogni clima, che $i uoltano al cor$o del Sole, come è quello di Ciouanni Sta- bio, & quello di Pietro Appiano. lo Analemma di quelli è lo i$te$$o con lo Analemma di Vitr. con alcune aggiunte del Mun$thero & di Orontio. ma è co$a trouata da gli antichi. come è il pla- nisferio del Roias, & le co$e del Sconero. Pelecino è detto dalla forma di $ecure, che io crederei, che fu$$ero gli horologi, che hanno le hiperbole, cioè i parall cli de i $egni, come $ono gli horologi fatti nel piano orizontale, & nel piano uerticale po$ti di $opra. Il Cono è formato da una rego- la, che $i parte dal centro, & $i $tende nello hemi$pero di $otto, fin all'e$treme declinationi de i tropici. & le estremità di quello non terminano in alcuna oppo$ta $uperficie. Puo anche e$$er il Trigono Zodiaco de$critto dal Mun$tero. Ma quello, che dice Vitr. Gonarche, Engonaton, & Antiboreo, pen$o io, che fu$$ero horologi, che haue$$ero ri$petto à qualche imagine cele$te, oue- ro alle parti del cielo, ouero alla notte, che tutti però $i pigliauano da i proprij Analemmi. L'horologio, che Compa$$o è detto, è di quelli, che $ogliono portare $eco i uiandanti. le anella, i Cilindri, i quadr anti, i circoli piani, $ono di quelli, che $tanno appe$i, de i quali ne $ono pieni i libri de gli horologiografi. & co$i fa fine Vitru. alla materia de gli horologi da Sole detta Gno- monica. Noi di piu de gli antichi hauemo gli horologi da ruote, o da $pennole & quelli d'a- rena, che $ono mirabili, quelli per lo ingegno dello artefice, que$ti per la commodità, & facilità loro. Ci$ono anche horologi da fuoco fatti in lucerne, de i quali ne parla Herone, che mo$trano le hore al con$umare dell'oglio. ci $ono ancho horologi da acqua, de i quali ragiona Vit. dicendo.</I> <p>Oltra di que$to da gli i$te$si $crittori $i $ono cercate le ragioni de gli horologi da ac- qua: & primamente da Cte$ibio Ale$$andrino, ilquale trouò gli $piriti naturali, & le co$e da uento. Ma è co$a degna, che gli $tudio$i cono$chino come $iano $tate que$te co$e inue- $tigate, & cercate. Cte$ibio nacque in Ale$$andria, & fu figliuolo d'un barbieri: e$$endo co$tui eccellente oltra gli altri d'indu$tria, & d'ingegno, dice$i, che $i dilettaua grandemen te di co$e artificio$e: imperoche uolendo, che nella bottega di $uo padre uno $pecchio pende$$e in modo, che quando egli fu$$e tratto fuori, & ritorna$$e in $u, fu$$e una cordi- cella $ottile a$co$a, che tira$$e il pe$o a ba$$o, co$i fece l'ordigno. Egli conficcò $otto uno traue un canale di legno, & iui po$e le taglie, o girelle che $i dichino, & per lo canale con du$$e la cordicella picciola in uno angulo. iui fece le canne, per lequali dalla cordicella man dò giu una palla di piombo, dalche nacque, che il pe$o andando allo in giu, per le $tret- tezze delle canne premeua con la uelocità del calare la den$ità dello aere. & $cacciando per la bocca delle canne la frequentia dello aere ra$$odata per quella compre$sione nello aperto aere, & col toccamento, o perco$$a e$primeua chiaramente il $uono. <p><I>Era uno ruotolo, nel quale erano inuolte due cordicelle per uno uer$o, i capi dellequali pen- deuano da una parte, & all'uno de capi era appe$o uno $pecchio, all'altro non u'era attacato al- cuna co$a, ma egli $i la$ciaua per tirare, & uoltare il ruotolo. tirando adunque, & $uogliendo$i il ruotolo, ancho lo $pecchio tirando pe$aua, & $uolgeua l'altro capo, co$i ueniua giu, ma la- $ciando il capo, il ruotolo $i riuolgeua, & inuoltaua le cordicelle, & co$i il pe$o andaua allo in $u. Ma come que$to $i pote$$e fare, io dico, che nel mezo del ruotolo era un'altra cordicella auol- ta al contrario delle due, allaquale era attac ato un pe$o, il quale pe$ando piu dello $pecchio, quan do $i rila$ciaua il capo della cordicella, il pe$o, che era prima $alito calaua al ba$$o, perche la $ua cordicella $i $uolgeua, & lo $pecch o $aliua, perche la $ua cordicella, s'inuolgeua. la cordicella adunque, che teneua il pe$o, era condotta na$co$amente per un canale di legno ad un angulo</I> <foot><I>KKK</I></foot> <pb n="428"> <I>della bottega, che il pe$o era in una tromba a$$ettato di modo, che calando giu premeua lo acre nella tromba, & lo aere oppre$$o u$ciua con impeto, & faceua $onare la tromba.</I> <p>Hauendo adunque Cte$ibio auuertito, che dallo tirare, & dallo $cacciare dello aere, na$ccuano gli $piriti, & le uoci, u$ando que$ti auuertimenti come principij, fu il primo, che ordina$$e le machine Hidrauliche, & le e$pre$sioni delle acque da $e mouenti$i, & le machine tratte dalla ragione del dritto, & del circolar mouimento, & molte altre manie- re di gentilezze, tra le quali egli e$plicò gli apparecchi de gli horologi da acqua. <p><I>Faceua Cte$ibio molte belle co$e mo$$o da que principij, che gli mo$trò for$e il ca$o, perche ue- dendo, che lo aere $cacciato, & depre$$o con $uono, & rumore u$ciua dalle trombe in luogo aper to, egli con l'acque rinchiu$e, & che non poteuano re$pir are, faceua le machine, & le co$e, che da $e $i moueuano, che automata $i chian. ano, & gli horologi d'acqua, & rappre$entaua le uoci de gli uccelli, inalzaua l'acque, $premeua diuer$i liquori da una bocca $ola di ua$o, & in propor- tione mandaua fuori i liquori, faceua anche de gli Organi.</I> <p>Primieramente Cte$ibio fece uno cauo d'oro, o d'una gemma forata, perche quelle co $e nè $i con$umano per la perco$$a dell'acqua, ne riceuono bruttezze, che le otturino. Et per quel cauo influendo l'acqua egualmente $ollieua un $ecchiello riuer$cio, Phello, o Timpano nominato, nelqual è po$ta una regola, & un Timpano, che $i uolta con denti eguali. que$ti dentelli $pignendo l'uno l'altro fanno fare certi piccioli mouimenti, & ri- uolgimenti. $imilmente ci $ono ancho altre regole, & altri Timpani dentati allo i$te$$o modo, che da un mouimento forzati uoltando$i fanno effetti, & diuer$ità di mouimenti, ne i quali $i muouono le figurine, $i uoltano le mete, $i tirano pietruccie, ouero oua, $uo- nano le trombe, & $i fanno altre co$e per bellezza oltra il propo$ito. In que$te machine ancho ouero in una colonna, ouero in un pila$tro $i de$criuono le hore, lequali una figu- rina u$cendo dal ba$$o di una uerga dimo$tra per tutto il giorno, & l'aggiunta, o la leua- ta de i cunei ogni dì, & ogni me$e forza a far le breuità, & le lunghezze delle hore. Ma il rin chiuder dell'acque, accioche $i temprino que$ti $trumenti $i fa in que$to modo. Si fanno due mete, una $oda, & una concaua fatte al torno di modo, che una po$$a entrar nell'al- tra, & con la i$te$$a regola lo allargar$i, & lo $trigner$i di quelle mete faccia il cor$o del- l'acqua, che uiene in que ua$i o gagliardo, o debile. Co$i con que$te ragioni, & machi- nationi $i compongono gli horologi all'u$o del uerno. Ma $e per l'aggiunta, per lo leua- re de i cunei, non $aranno approuate le breuità, o gli accre$cimenti de i giorni, perche $pe$$o i cunei $ono difetto$i, egli bi$ogncrà sbrigar$i in que$to modo. Egli $i de$criuerà attrauer$o d'una colonnella le hore pre$e dallo Analemma, & fondamento loro, & $i con ficcheranno nella colōnella le linee de i me$i, facendo$i quella colōnella in modo, che ella $i po$$a girare, accioche uolgendo$i la colonna continuamente alla figurina, & alla uerga, dellaqual uerga la figurina u$cendo dimo$tra l'hore, faccia le breuità, & gli accre$cimenti delle hore $econdo cia$cun me$e. Fanno$i ancho gli horologi del uerno, che detti $ono Anaporici, d'un'altra $orte: & $i fanno con que$te ragioni. Si di$pongono le hore di uer- ghe di rame dal centro nella fronte di$po$te dalla de$crittione dello Analemma, in quella de$cri<*>tione $ono circondati i circoli, che terminano gli $pacij de i me$i. Drieto que$te uirgule, $ia po$to un Timpano, nelquale $ia de$critto, & dipinto il cielo, & il circolo dei $egni, & la de$crittione di quel circolo $ia figurata da i dodici $egni cele$ti, dal cui centro è formato lo $patio di cia$cun $egno, uno magggiore, l'altro minore, Ma dalla parte di dietro a mezo il Timpano è incluio, & $errato un perno, che $i gira, & in quell'a$$e è una catena molle di rame in uolta, dallaqual pende da una parte un $ecchiello, Phellos, o Tim pano, che $i dica, ilquale è alzato dall'acqua, dall'altra di egual pe$o del $ecchiello è una $accoma di $aorna. Co$i quanto il $ecchielo $arà $olleuato dall'acqua, tanto abba$$an- do$i il contrape$o uolgerà il perno, & il perno uolterà il Timpano, il cui giro fa alcuna <pb n="429"> uolta maggior parte del circolo de i $egni, alcuna uolta minore: nelle riuolutioni $ue $ian a $uoi tempi di$egnate le proprietà delle hore, perche in ogni $egno $ono i caui perfetti del numero de i giorni di cia$cun me$e, la cui bolla, che ne gli horologi pare che tenga la ima gine del Sole, dimo$tra gli $pacii delle hore. quella bolla traportata di foro in foro fail cor$o $uo del me$e compiuto. Adunque $i come il Sole andando per lo $pacio de i $egni allarga, & ri$trigne i giorni, & l'hore: co$i la bolla ne gli horologi per li punti contra il gi- ro del centro del Timpano ogni giorno quando è traportata in alcuni tempi in piu lar- ghi, in alcuni in piu $tretti $pacij con i termini de i me$i fa le imagini delle hore, & de i giorni. Ma per la admini$tratione dell'acqua, in che modo ella $i tempri alla ragione, co$i bi$ogna fare. Drieto alla fronte dell horologio $ia po$to di dentro un ca$tello, o con$erua d'acqua, nelquale per una canna uadi l'acqua: que$ti nel fondo habbia un cauo, & a quello $ia affitto un Timpano di rame, che habbia un foro, per loquale u'entri l'ac- qua, che uiene dal ca$tello, & in quello $ia un timpano minore fatto con i cardini al tor- no con ma$chio, & femina tra $e con$tretti di modo, che il timpano minere come un ma nico girando$i nel maggiore uada a$$ettato, & dolcemente. Ma il labro del timpano maggiore $ia $egnato con trecento$e$$antacinque punti egualmente di$tanti uno dall'al- tro: ma il minor cerchiello nell'ultima $ua circonferenza habbia fitto una lenguella, la cui cima $i drizzi uer$o la parte de i punti, & in quel cerchiello $ia temprato un foro da quella parte doue l'acqua influi$ce nel timpano, & con$erua l'admini$tratione. quando adunque nel labro del timpano maggiore $aranno le forme de i $egni cele$ti, $ia quello im mobile, & nella $ommità habbia formato il $egno del Cancro. al perpendicolo delquale, da ba$$o $ia il Capricorno, dalla de$tra di chi guarda la Bilancia, dalla $ini$tra il $egno del Montone, & co$i gli altri $egni tra gli $pacij loro $iano di$egnati al modo, che $i uedono in cielo. Adunque quando il Sole farà nel cerchiello del Capricorno, la lenguella nella parte del maggior timpano toccando ogni dì cia$cuno punto del Capricorno hauendo il gran pe$o dell'acqua corrente a piombo uelocemente per lo foro del cerchiello lo $caccie rà al ua$o, allhora quello riceuendo quell'acqua (perche pre$to $i empie) abbreuia, & con- tragge gli $patij minori de i giorni & delle hore. Ma quando col quottidiano girare la lenguella nel timpano maggiore entra nello Acquario, il foro uiene a perpendicolo, & per lo cor$o gagliardo dell'acqua è forzata piu tardamente mandarla fuori: co$i con quanto men ueloce cor$o il ua$o riceue l'acqua egli dilata gli $pacij delle hore. ma $alendo per li punti d'Aquario, & di Pe$ci come per gradi, il foro del cerchiello toccando l'ottaua par te del Montone pre$ta l'hore equinottiali all'acqua temprata, che $ale. Ma dal Montone per gli $pacij del Toro, & de Gemelli $alendo a gli altri punti del Cancro andando per lo foro o timpano della ottaua parte, & da quello tornando in altezza, $i debilita di forze, & co$i piu tardamente u$cendo l'acqua allunga gli $pacij con la dimora, & fale hore $ol$ti- tiali nel $egno del Cancro. <p><I>Vuole Vitr. che gli Equinottij, & i Sol$titij $i facciano in otto gradi de i lor $egni, & comincia l' anno quando il Sol entra in Capricorno.</I> <p>Ma quando egli inclina dal Cancro, & ua per Leone, & Vergine, ritornando a i punti della ottaua parte della Bilancia, & di grado in grado abbreuiando gli $pacij, egli accor- cia le hore, & co$i peruenendo a i punti della Bilancia, di nuouo rende l hore equinottia- li. Ma per gli $pacij dello Scorpione, & del Sagittario piu procliuemente deprimendo$i il foro ritornando col girar$i alla ottaua parte del Capricorno con la celerità dell'acqua, che $ale è re$tituito alle breuità delle hore brumali. Quanto piu commodamente ho po- tuto, io ho con diligenza $critto, che ragioni $iano nelle de$crittioni de gli horologi, & de gli apparati loro, accioche ageuolmente $i po$sino u$are. Re$ta che io di$corra $o- pra le machine, & principij loro, & però io comincierò a $criuere di que$te co$e nel $e- <foot>KKK 2</foot> <pb n="430"> guente uolume, accioche $ia perfetto, & finito il corpo emendato dell'Archittetura. <p><I>Molte belle inuentioni $ono $tate quelle di Cte$ibio, et uole$$e Iddio, che il tempo non ce le haue$$e rubbate. Noi e$poneremo la mente di Vitru. con quella facilità, & breuità, che $i puo in co$e tanto difficili. Lo Analemma de$critto di $opra $ar à il modulo del nostro horologio. piglia adun que la linea lacotomus h g. & quella $ia il diametro d'una colonella fatta giu$tamente al tor- no. il circolo de i me$i r. c. g. $arà la circonferenza della colonnella. questo diuiderai in 12 parti eguali nell'ultima $ua circonferenza $opra la te$ta della colonella: & da cia$cun punto del- la diui$ione la$cierai cader a piombo lungo la colonnella le lince fin'all'altra te$ta. que$te diuideran no lo $tipite della colonella in dodici parti eguali deputate a gli $patij de i dodici $egni. una di quel le linee, che caderà dalla te$ta della line a lacotomus $eruirà al principio del Cancro, l'altra, che caderà dall'altra parte $eruirà al principio del Capricorno. tirata poi una linea $opra la te$ta del- la colonnella in croce, alla linea lacotomus, una di quelle linee, che caderà dall'una delle te$te ci $eruirà al principio del Montone, l'altra al principio della Bilancia. ma le altre linee, che cade- ranno da gli altri punti, ci $eruiranno a i principij de gli altrime$i, come fanno le linee tirate nei cilindri. Di$egnerai anche uolendo di grado in grado le linee per ogni $egno al modo $opra po$to, piglia poi dallo Analemma lo $patio che è dallo a. all' n. $opra l'equinottiale, & quello diuide rai in dodici parti eguali.</I> I<I>l $imile farai dello $patio dallo a all'x. & quelle parti $iano trapor- tate nella colonnella $opra le linee del Montone, & della Bilancia. $imilmente piglia dallo Ana- lemma lo $patio, che è da y al K. & dallò $ al g. che è quello i$te$$o, & partirailo in 12 parti eguali, & quelle traporterai dallo Analemma alle linee del Cancro, & del Capricorno nel la colonnella: ma quelle del Cancro comincierai a $egnar dal ba$$o, & anderai all'in$u: & quel- le del Capricorno $egnerai al contrario dal di$opra al ba$$o. Il $imile farai tirando nello Analem ma iraggi de gli altri $egni, & quella parte de i diametri, che $arà $opra l'Orizonte e a i. par tir ai in dodici parti, & quelle traporterai nella colonnella alle $ue propie linee. $imilmente il re- $tante de i diametri $otto l'Orizonte partir ai in dodici parti, & quelli traporterai, come le altre nella colonnella, & tutti quelli punti delle diui$ioni fatte legherai con linee. que$te linee $aranno le linee delle hore cre$centi per ordine, & $cemanti $econdo il cor$o del Sole. però le aggiugnerai i loro numeri di $otto, & i caratteri, o le figure de i $egni cele$ti, al $uo luogo, come $ifa ne i ci- lindri. Drizzerai que$ta colonnella $opra un piano, & con un perno nel mezo centro dal ba$$o la poner ai in un foro dimodo, che la $i po$$a girare, ma prima circonderai il piede della colonna con un cerchiello dentato a torno di 360 denti, accioche $tando la colonna dritta una ruota posta in piano dentata $imilmente ogni giorno faccia, che la colonnella $i muoua un grado: ma la ruota piana $arà mo$$a da un'altra ruota pur in piano da un dentello, che nell'uno de capi del $uo perno $i pone: & que$ta ruota è girata da un'altra con pari denti, ma po$ta in coltello, & è dentata in fronte, tal che ognuna di loro girerà una uolta il giorno, $econdo che $i mouerà il $uo perno, il qual perno hauendo inuolta una fune dall'uno de i $uoi capi hauerà un $ecchiello riuer$cio, & dal- l'altra un contrape$o dipe$o eguale. Ma il $ecchiello $arà in un ua$o, nel quale u'entrerà l'acqua che caderà giu da un'altro ua$o, & co$i montando l'acqua, $i $olleuerà il $eccbiello, & il contra pe$o farà girar il perno, il perno girerà il Timpano, o la ruota in coltello, & quella in coltello mouerà laruota po$ta in piano, la quale con lo dentello, che hauerà in capo del $uo perno, darà il mouimento a quella, che ogni giorno mouerà la colonnella un grado; & co$i in capo l'anno la co lonnella hauerà fatto un giro. Ma per dimo$trar le bore, egli bi$ogna temperar l'acqua in que- $to modo. Fa tornire due Mete, o coni di rame con diligenza, una delle quali $i farà uota, & $arà come femina, la quale nella $ua punta hauerà un foro $ottile fatto in un cauetto d'oro, o d'una Gemma: l'altra Meta $arà $oda, & come ma$chio entrerà nella femina, & hauerà attac- cata una regola dritta nel mezo dalla parte piu gro$$a, la quale hauerà nel mezo per lungo una apritura, nella qual apritura hanno ad entrar alcuni cunei maggiori, o minori <*>econdo il bi$ogno della carcatura, o tempra dell'acqua. Et la femina $ia accommodata in un ordimento, o telaro</I> <pb n="431"> <I>di legname, come nella figura $i uede; & la regola, o manico del ma$colo $ia retto, & goucrina- to da due regi$tri, & cunei come il di$egno dimo$tra. Siano po$te que$te Mete in modo, che dal di $opra da un ua$o, che Vitr. chiama ca$tello, ui cada l'acqua dentro: io dico, che $el ma$chi, col ponerui de i cunei $arà alzato fuori della femina, quanto piu d'acqua entrerà nella femina o entr ando l'acqua con maggior impeto, tanto piu ne u$cirà di $otto dal Cauetto in un ua$o per que- $to apparccchiato. Si che uolendo noi, che e$ca piu acqua bi$ognerà $egnar il cunco, o porui uno maggiore, o aggiugnerui de gli altri di modo, che la i$te$$a regola attaccata al ma$chio lo le ui piu, o meno $econdo il bi$ogno. l'acqua adunque di$cendendo in un ua$o alzerà uno $ecchiello r. uer$o, $u il quale po$erà una regola o uerg a mobile, dalla quale u$cira una figurina, che uolta ta uer$o le hore di$egnate nella colonnella alzando$i, & abba$$ando$i $econdo la tempra dell'ac- qua, dimo$trer à ogni giorno le hore, mentre la colonnella dar à uolta un grado ogni dì. Et quan- do igiorni comincieranno a declinare, non $i piglierà piu l'acqua dal ca$tello, ma $i apriranno le Mete che $aranno in fondo del ua$o, per le quali con i loro cunei accommodati al di$ere$cere de i giorni u$cirà l'acqua del ua$o, & attaccando il $ecchiello al capo del contrape$o, & il contrape- $o a quello, che era attaccato il $ecchiello, per lo calar dell'acqua nel ua$o il $ecchiello $i abba$- $erà, & la figurina ancor lei $iuenirà abba$$ando, & mo$trerà l'hore, & <*>gradi da i $egni di gior no, in giorno, come è detto di $opra. L'altra forma di horologio è belli$$ima, & molto artifi- cio$a, & utile alla dimo$tratione delle co$e cele$ti, & $ifa in que$to modo, & è diui$o que$to trat tamento da Vitr. in due parti, l'una è la compo$itione dello horologio, l'altra è la tempra del- l'acqua: $imilmente la compo$itione dello horologio è diui$a in due parti, l'una è la de$crittione delle hore, l'altra è la de$crittione del Cielo, & del Zodiaco: la de$crittione delle hore è pre$a dallo Analemma, ma Vitr. non in$egna a che modo: $imilmente ancho eglinon c'in$egna il modo di de$criuere il cielo, & il Zodiaco, però partitamente io e$ponerò $econdo, che io la intendo. Lo Analemma adunque $i piglia dalla sfera po$ta in piano con ragione di pro$pettiua, $econdo, che $i de$criue una tauola dello A$trolabio. Il modo è que$to. Sia fatto un circolo a b c d. in quattro parti da due diametri diui$o. Que$to circolo rappre$enta il tropico del Capricorno, dentro del quale $i ha a formare, & lo equinottiale, & il tropico del Cancro, i quali circoli $o- no minori per ragione di pro$pettiua, perche noi $e imaginamo di tener l'occhio no$tro nel polo op po$to al no$tro, & guardar uer$o il no$tro polo: certo è che il circolo del Capricorno ci uerrà pri- ma incontro, dapoi uerrà l'equinottiale, & in fin il tropico del Cancro, & ancho il tropico del Caipricorno ci parer à maggiore, perche $i uederà$otto maggior angulo, & per e$$er piu uicino all'occhio, & il tropico del Cancro ci parerà minore, & per e$$er piu lontano $i uederà $otto an- gulo piu $tretto, & co$i l'equinottiale $arà maggiore del tropico del Cancro, & minore del tropi co del Capricorno per le i$te$$e ragioni, & que$to $i deue auuertire, perche è co$a bella, & $ecre- ta. Il re$to $i fanel modo, che $i de$criueno le tauole de gli A$trolabi, ouero le reti; al che fare io mi riporto a chi ne ha $critto con diligenza. Dapoi per $egnar le hore $i diuideno tutti gli ar- chi de i circoli fatti di $opra l'orizonte cia$cuno in dodici parti eguali, & co$i gli archi di $otto in dodici parti, & per la regola di trouar il centro de i tre punti $i legano in$ieme i punti de i tropici con i punti equinottiali, i primi con i primi, i $econdi con i $econdi, & co$iper ordine. & a que- $to modo $aranno $egnate le hore: le quali Vitr. uuole che $iano fatte di uerghe di rame, perche $otto di e$$e ui ha da andare un Timpano, che ha il Zodiaco, & il Cielo di$egnato, però accioche $i ueda di $otto, è nece$$ario far que$te uirgule, i cui quadretti io ho adombrati, perche s'inten- da, che $ono tagliati, & forati. Dapoi que$to egli $i fa un Timpano, & $e gli dipigne $opra le Stelle & il Zodiaco. questi $imilmente è pre$o dalla rete dello A$trolabio. Nè $olamente $egnerai i principij de i $egni, ma ancho i gradi, & in ogni grado farai un foro nella circonferenza della Eclittica, nel qual foro digiorno in giorno tra$porterai la bolla, che Vitr. intende per lo Sole, che mo$ira le hore ne gli horologi: il Timpano co$i di$egnato $arà po$to drieto le linee delle hore, & ogni dì $i uolta compiutamente una uolta, ma la bolla $tando ferma per un dì nel grado, &</I> <pb n="432"> <I>nel foro di quel Segno doue $i troua il Sole mo$trerà l'arco diurno, & le hore, $econdo il cre$ce- re, & il calar da i giorni, & delle hore: il Timpano $i uolge (come s'è detto) di $opra, hauen- do nel mezo fitto un fu$o, d'intorno il quale è una catena molle come dice Vitr. cioè di anelli ritor ti, & corti come la lettera S. dimodo, che la $i uolga facilmente, et da uno capo ha uno $ecchiello & dall'altro un contrape$o di pe$o eguale al $ecchiello, il qual $ecchiello e$$endo dall'acqua$olle- uato fa che la catena $i $uolge, & il fu$o $i muoue, & il fu$o mo$$o uolta il Timpano. Ma come egli $i habbia a temprar l'acqua, accioche ogni giorno $i ueda que$ta differenza delle hore Vitr. ce lo in$egna.</I> <p><I>La tempra dell'acqua $i fa in que$to modo. Egli $i fa drieto la fronte dell'horologio una con- $erua dell'acqua, laquale Vitru. qui & altroue chiama ca$tellum. a questo ca$tello $i fa un foro di $otto, accio l'acqua po$$a u$cire. a quel foro è congiunto un Timpano, & ancho egli ha un fo- ro, per lo quale entra l'acqua in e$$o dal ca$tello, que$ti $arà di quella grandezza $econdo che ricerca la grandezza dello horologio, la materia delquale è di rame ri$petto all'acqua, che egli tiene del continuo. que$ti è immobile, & ha $egnato nella $ua circonferenza di tanti punti, quanti $ono giorni all'anno: & ancho egli $i puo fare un Zodiaco, i gradi de i $egni delquale ri$pondino a i giorni de i me$i, $econdo che egli $i puo trarre dalle tauole del mouimento del Sole. di$egnato $ia nella $ommità il Cancro, dalla de$tra di colui, che guarda, la Libra, dalla $ini$tra il Montone, di $otto il Capricorno, & tra questi $iano al luogo $uo de$critti gli altri $egni, & i gradi loro a iqua li difotto $iano i giorni, i numeri, & i me$i ri$pondenti a i loro propi $egni. Tira poi una linea a perpendicolo dal Cancro al Capricorno, laquale è come diametro del Timpano. partirai poi la circonferenza del detto Timpano in parti noue eguali, & $econdo la larghezza di una $i fa il $e- midiametro d'un'altro Timpano picciolo, della cir conferenza delquale $i fanno otto parti, & $e- condo la distanza d'una di quelle $i allarga la $e$ta, & $i pone un piede di e$$a nel mezo del Tim- pano grande, & $i fa un circolo di quella grandezza, & il $imile $i fa nel Timpano picciolo. que- $to circolo $i parte in parti $ette eguali, una dellequali $i parte in quattordici, una dellequali $i riporta dal centro del Timpano picciolo $opra il diametro, & iui $i fa punto uer$o la parte inferio re, & $i tira da quel centro una circonferenza tanto quanto è una delle $ette parti, & questo $i fa ancho nel Timpano grande, & è que$to circolo come uno eccentrico, & tra que$to circolo ec- centrico & l'altro concentrico dalla parte di $opra, $i fa un foro nel Timpano grande ritondo, dal quale e$ce l'acqua, che ua poi nel Timpano picciolo, nelquale Timpano picciolo $ono di$egnati i mede$imi circoli cioè lo eccentrico, & concentrico, & quelli partiti con certe linee, accioche per quelle pa$$i l'acqua dal Timpano maggiore piu & meno $econdo il bi$ogno. le altezze o uacui de i Timpani $i far anno $econdo la capacità dell'acqua, che richiede l'horologio. nel coltello, & ta glio, o fronte, che $i dica, del Timpano minore $i fa un foro, che Vitr. chiama Orbiculo, alquale è attaccata una lenguella. da que$to foro e$ce l'acqua in un ua$o $ottopo$to. Questi timpani $ono po$ti in$ieme con i cardini loro fatti a torno di modo, che uno entri nell'altro, come ma$chio, & femina, & il Timpano picciolo $ia col piano $uo forato co$i congiunto, & a$$ettato col piano del Timpano maggiore, che niuna co$a di mezo ui po$$a entrare: & a questa $imiglianza Vitru. dice che $ono i galletti: o i bocchini a$$aggiati alle co$e. Egli accaderà adunque, che uolendo noi tem- prar l'acqua, la lenguella, che è congiunta al foro del Timpano minore, drizzata da $e con l'arti- ficio dell'acqua di giorno in giorno al $egno, & al giorno corrente de$critto nel Timpano maggio re, hauendo in quella parte il foro del Timpano minore hora dritto, hora piegato, hora a perpen- dicolo, $econdo, che ricercherà il $ito di quel giorno, manderà fuori piu, & meno acqua in un ua$o di $otto, nelquale $arà il $ecchiello attaccato alla catena, come di $opra s'è detto, & riuol- gerà ogni giorno il perno, & il perno il Timpano dello horologio, & quello $econdo il bi$ogno: & benche pare che Vitr. uoglia, che la bolla, che tiene la imagine del Sole, $ia à mano tra$por- tata di foro in foro contra il giro del Timpano, nientedimento l'ingenio$o M. France$co Marcoli- no ha tronato il modo di fare, che la lenguella, che nella parte dinanzi dimc$tra l'hore (che noi</I> <pb n="433"> <I>chiamiamo raggio) ritorni a drieto ogni dì un grado; & perche Vitru. uuole, che nel Timpano, che dimo$tra l'a$cendere, & di$cendere de i $egni $opra la terra, $iano $eg<*>ati i giorni de i me$i, li- quali per e$$ere trecento$e$$ant acinquc, ha fatto nella circonferenza del detto Timpano, o Ruo- ta, che chiamiamo noi trecento$e$$antacinque denti partiti egualmente, come dice Vitru. & co- me uuole e$$o Autore, gli ha po$to nel mezo il $uo cardine, che $erue per ma$chio, & femina; & di poi ha formato un'altro Timpano, o pur ruota (come dicemo noi) della grandezza della $o- pradetta, & nel coltello, o circonferenza $ua, che uolemo dire, ha fatto denti trecento$e$$ant a$ei, de$tinti di egual portione; & que$ta ruot a ha anchor lei il $uo cardine ma$chio, & femina, il- quale non è co$i detto da Vitr. $enza gran con$ideratione: & nel foro di que$to perno entr a il per- no principale confitto, & $tretto di modo che girando ditto perno per uirtù della tempra dell'ac- qua $i giri que$ta ruota con e$$o lui come $e fu$$ero una co$a mede$ima; & dipoi nel perno di que- $ta ruota, $i pone la ruota, nella qual $on $egnati i giorni di cia$cun me$e, & i $egni cele$ti; le- quali ruote, girando il perno, girano in$ieme in un rocchello mo$$o da dette ruote, & gir ando continuamente di compagnia, quella che ha un dente di piu re$ta ogni dì un grado in drieto, il</I> <fig> <pb n="434"> <p><I>I Timpani po$ti all incontro $erueno alla facciata dello borologio $eguente; Quello di $otto è immobile & l'altro gira mo$$o dall'artificio de l'acqua.</I> <fig> <pb n="435"> <fig> <foot><I>LLL</I></foot> <pb n="436"> <I>perno dellaquale uuole auanzare fuori della faccia dello horologio e$$endo grande per il manco mezo piede, & nella $ua $ommit à fi a accommadata la lenguella della lung hezza quanto farà di bi$ogno, nella qual $aranno $egnati i gradi de i $egni da un tropico all'altro, laquale $eruirà a mo- $t<*>are l'hore, & il cor$o de i $egni & i gradi il uerno, come dice Vitru. Et mettendo$i la lenguella al perno dell'altra ruota, ilquale $arà piu corto quattro dita, mo$trerà il cre$cere de i giorni. & i cor$i de i $egni, & i gradi, & l'hore di tutta la $tate: perche $i come l'altra ruota per lo dente di piu, mo$tra il calar de i giorni, que$ta per lo dente di manco con la lenguella mo$trerà il cre- $cere de i giorni, & il calar delle notti: Auuertendo che nella lenguella ua accommodato un Sole, o bolla come dice Vitr. mobile da poter$i traportare ogni giorno in detta lenguella nel grado del $egno del giorno corrente, come fa la lenguella della tempra dell'acqua da $e. Io uedo quanta difficultà $i troua in uoler de$criuere que$te co$e, ma poi che con$idero, come quando la co$a $a- rà inte$a, $i prenderà gu$to mirabile, uoglio creder, che ogni fatica ci parer à dolse, & $oaue, ri- mettendomi $empre al miglior giudicio.</I> <fig> <pb n="437"> <fig> <p><I>Que$te due figure $ono po$te per mo$trare le parti occulte de i Timpani, che $erueno per la tempera dell'acqua; & uanno congiunte in$ieme, come nella pa$$ata figura $i uede.</I> <HEAD><I>Il Fine del libro Nono.</I></HEAD> <foot><I>LLL</I> 2</foot> <pb n="438"> <HEAD>LIBRO DECIMO</HEAD> <HEAD>DELL' ARCHITETTVRA DI M. VITRVVIO.</HEAD> <fig> <HEAD><I>PROEMIO.</I></HEAD> <p>DICESI che in Efe$o nobile, & ampia città di Greci è $tata da i loro maggiori con dura conditione, ma con ragione non iniqua un'antica leg ge ordinata: percioche l'Architetto quando piglia a fare un'opera publi ca, promette prima quanta $pe$a ui ha d'andare. fatta la $tima al magi- $trato $i obligano i $uoi beni, fin che l'opera $ia finita, la quale fornita, quando la $pe$a ri$ponde a punto a quanto s'è detto, con decreti, & ho- nori l'Architetto uiene ornato; & $imilmente $e non piu del quarto $i $pende, quello ag- giugner $i deue alla $tima, & $i ri$tora del publico, & egli à niuna pena è tenuto: ma qnan do piu della quarta parte $i $pende, egli $i piglia il dinaro de i $uoi beni al fornimento del- l'opera. Dio uole$$e, che i dei immortali fatto haue$$ero, che non $olamente alle publi- che, ma alle priuate fabriche quella legge fu$$e $tata al popolo Romano ordinata, perche non $enza ca$tigo gliignoranti ci a$$a$sinerebbeno, ma $olamente quegli, che con $otti- gliezza delle dottrine prudenti $ono, $enza dubbio farebbeno profe$sione d'Architettura, nè i padri di famiglia indotti $arebbeno a gettar infinite $pe$e, perche poi da i loro beni $cacciati fo$$ero, & gli Architetti con$tretti dal timor della pena piu diligentemente il con to della $pe$a face$$ero, accioche i padri di famiglia, a quello, che proui$to haue$$ero, o poco piu aggiugnendo, drizza$$ero la forma delle fabriche loro: percioche colui, che puo prouedere di quattrocento, $e accre$cierà cento piu, hauendo $peranza di condur l'ope- ra a compimento, con diletto, & piacere, è trattenuto: ma chi aggrauato dalla metà della $pe$a, o di piu, perduta la $peranza, & gettata la $pe$a rotto il tutto con animo di- $perato, è con$tretto a la$ciar ogni co$a. Nè pur que$to difetto è ne gli edifici, ma ancho ne i doni, che dal magi$trato $i danno al foro de i gladiatori, & alle $cene de i giuochi, a i quali nè dimora, nè indugio $i concede, ma la nece$sità con prefi$$o tempo di fornirgli con$trigne, come $ono le $edi de gli $pettacoli, & il porui delle tende, & tutte quelle co- $e, che all'u$anze della $cena, al ueder del popolo con fattura, & apparato $i fanno. In que$te co$e ueramente bi$ogna hauer del buono, & pen$arui ben $opra, perche niuna di que$te co$e $i puo fare $enza indu$tria, & manifattura, & $enza uaria, & ri$uegliata uiuaci tà di $tudi. Perche adunque tai co$e ordinate $ono a que$to modo non pare, che $ia fuori di propo$ito, prima che $i dia principio alle opere, che cautamente, & con diligenza $i e$pedi$chino le ragioni loro. Quando adunque nè la legge, nè la con$uetudine ci puo for zare a que$to, & ogni anno i Pretori, & gli Edili per li giuochi apparecchiar deono le ma chine, ho giudicato non alieno, poi che ne i libri pa$$ati s'è detto de gli edifici, in que- $to, che ha la $omma terminatione del corpo dell' Architettura, e$poner con precetti, quali $iano i principij ordinati delle machine a que$to conuenienti. <pb n="439"> <p>H<I>ora condotti $iamo all'ultimo lauoro, come dice Dante, & cire$ta laterza partc principale dell' Architettura po$ta nella cognitione, & nella di$po$itione delle ma chine, & de gli$trumenti; bella utile, & merauiglio$a pratica; imperoche chi è quello, che non guardi con $tupore un huomo $opra le forze $ue aiutato da un piccio lo $trumento leuare con grandi$$ima ageuolezza un pe$o $mi$urato? con debil fune artificio$amen- te riuolta $olleuare un $a$$o appari d'un monte pondero$o? chi non legge con merauiglia le co$e fat te da Archimede? chi non pauenta all'horribile inuentione dell'Artiglierie, le quali & col $uo- no, & con l'empito, & con gli effetti imitando i tuoni, i baleni, & i fulmini, con infernal tor- mento $ono la$trage del genere humano? Ma la$ciamo i terrori da parte: quanta utilità di gra- tia, quanto piacere ci pre$ta la inuentione delle ruote, il modo di alzar l'acque, gli $trumenti da fiato, le co$e che da $e $i muoueno? & quello che fa la natura, perche niente $ia di uoto? Non è dunque che noi merauiglia prendiamo, $e que$ta è una parte delle principali dell'Architettura. Di que$ta adun que tratta Vitr. nel decimo, & ultimo libro $econdo la prome$$a fattaci per inan- zi. Di que$ta ancho ne ragioneremo noi quanto al pre$ente negotio $timeremo bi$ognare: Auuer tendo prima ($econdo che ne gli altri libri fatto hauemo) a gli utili precetti dati da Vitr. nel proe mio di que$to libro: nel quale, Dio uole$$e, che $i come $i truoua un mirabile prouedimento, co$i eglifo$$e o$$eruato $empre, & $i o$$erua$$e tuttauia: perche e$$endo $tata una legge in Efe$o, che gli Architetti laude, & honore merita$$ero, quando la $pe$a delle fabriche non fu$$e maggiore, di quello, che predetto haue$$ero, & di danno, et bia$imo fu$$ero debitori, quando oltra la quar ta parte eccede$$e il primo computo: $apendo gli huomini, che fabricar uole$$ero di che morte ha ue$$ero a morire, o non $i la$cierebbero imbarcare, e$$endo la $pe$a maggiore delle forze loro, o a tempo prouederebbono al bi$ogno, & nō $i farebbe quello, che a i dì no$tri molti fanno, che per una certa uanità (credo io) con priuate forze cominciano ca$e regali, & $e ne re$tano $ul bello, ha uendo però fornilo, & adornato con quella $pe$a, che $i puo maggiore le parti fatte con i $tucchi, oro, pitture, è guarnimenti tali, che $e il tutto a que principÿ ri$ponde$$e, non ba$terebbe un re- gno a dargli compimento, di modo, che quello, che è fatto, $i getta, & quello, che $i deue fare, s'abandona. Ma la$ciamo quelli parere, o e$$er quello, che parer, o e$$er uogliono, confidando- ci noi ne i precetti, & ne i pareri de i buoni, crediamo (come altre fiate s'è detto) che i meglio $pe$i dinari $ono que primi, che $i danno a un buon' Architetto, perche da quella prima $pe$a ogni co$a prende un buono inuiamento, & douendo$i $pendere di molte migliaia di $cudi, e$$er non $i deue parco, a chi ben con$iglia, per a$$icurar$i quanto piu $i puo, & per l'utile, & per l'hono- re. Quella legge adunque, che dice Vitr. e$$er $tata in Efe$o con dura conditione, ma con giu$ta ragione ordinata, $taria bene a i no$tri giorni, & in quelle co$e ancho, doue è piu $ubita occa$io- ne di $pendere, piu pericolo di deliberare, & men commodità di uederne il conto, come è ne gli apparati delle fe$te, & de i giuochi publici, nelle $cene, & ne i concieri, che $i fanno atempo, ne iquali i Romani del publico $pendeuano gran quantità di dinari, doue è nece$$ario hauere fede- li, & ingenio$i mini$tri, $uegliati inuentori, & e$$ercitati Architetti delle co$e: che trouino la fa cilità, & non uadino per la lunga. Hora per fuggire que$ta ignoranza, o uanità, è nece$$ario $apere come ua tutta la materia pre$ente, doue dopo il proemio $i ragiona delle machine, & de gli in$trumenti; $i di quelli, che hanno riguardo a gli $tudi della pace, de i quali alcuni $ono per commodo, alcuni per diletto, come di quelli, che hanno ri$petto alle co$e della guerra: la doue nel primo Cupo Vitr. diffini$ce che co$a è machina: quale differenza è tra machina, & instru- mento: di$tingue le $orti delle machine: & tratta dell'origine di quelle. Et dal $econdo fin al no- no parla delle machine da leuar, & tirar i pe$i, & ci e$plica laragione di diuer$i modi apparte- nenti a pe$i: dal nono fin al terzodecimo ci da gli ammae$tramenti di far molte ruote, & artificÿ da alzar, & uotar l'acque, da macinare, & da far'altre $imiglianti co$e utili; dalle quali par- tendo$i dal terzodecimo fin al quintodecimo ci dimo$tra la ragione difar le machine hidraulice, che $ono organi con ragioni mu$icali compo$ti, che piaceuolmente per uia d'acqua, & di$pirito</I> <pb n="440"> <I>mandano fuori dolci concenti: & ci dichiara poi il modo di mi$urare il uiaggio fatto o in carret- ta, o in naue. & po$to fine a que$ti ragionamenti pa$$a a quelle machine, che ci $erueno a i bi$o- gni della guerra, & a i $oprastanti pericoli, trattando dal quintodecimo fin all'ultimo di' quelle machine, chetirano $aette, dardi, & pietre, & di quelle, che $cuoteno, & rompeno le mura- glie $econdo l'u$anza de $uoi tempi, & co$i conchiude, & dà fine all'opera hauendo pienamente atte$o a quello, che egli ci ha prome$$o: di modo che non $arebbe condennato dalla legge nelle $pe $e, anzilodato, & honorato ne re$terebbe. Noi $econdo l'u$anza no$tra ridurremo tutta la pre $ente materia $otto un'a$petto, & di$tinguendo partitamente il tutto aiutaremo con l'ordine la in telligenza, & la memoria di chi legge. Facendo adunque la natura alcune co$e contra la utili tà de glihuomini, & operando $empre ad uno iste$$o modo, è nece$$ario che a questa contrarietà $i troui un modo, che pieghi la natura al bi$ogno, & all'u$o humano. Questo modo è riposto nell'aiuto dell' Arte, con la quale $i uince la natura in quelle co$e, nelle quali e$$a natura uince noi. Ecco quanto ci contra$ta la natura ne i pe$i, & nelle grandezze delle co$e, & $e non fu$$e l'ingegno dall'arte guidato, chi potrebbe alzare, tirare, & condurre le moli grandi$$ime degli $mi$urati marmi, drizzar le colonne, le mete, & gli obeli$ci? chi uarar le naui, chi tirarle in terra? chi pa$$ar le portate di gro$$e barche con i tragetti? certamente non ba$terebbeno le for- ze bumane. però bello è il $apere la cagione, da che operar $i po$$a, & fabricare tanta uarietà di machine, & de $trumenti. Que$ta con$ideratione è posta & alternata $otto due $cienze, per cioche tiene ri$petto con la $cienza naturale, riceuendo da quella il $uo $oggetto, perche l'arte non opera$e non in qualche co$a materiale, come è il legno, il ferro, lapietra, & altre co$e: & è po$ta $otto la mathematica, perche le belle, & $ottili ragioni, & dimostrationi da quella rice- ue. & $i come il $oggetto è mutabile, & uariabile come co$a di natura, co$i la ragione è ferma, & immutabile, come co$a d'intelletto, nè $i cangia al uariar della materia, imperoche la ragio- ne del circolo (come altroue s'è detto) è quella i$te$$a in qualunque materia ella $i troui, il difet to uiene dal $oggetto, come dalla forma il perfetto. Però con$iderar douemo con gran diligenza donde uegna il mancamento, & la perfettione. Le qualità della materia $ono diuer$e, nate dalla me$colanza de i principÿ, perche da quelli uiene il raro, il den$o, il graue, il lieue, il gro$$o, il $ottile, l'a$pro, il molle, illiquido, il duro, il tenace, & altre qualità principali, & meno prin cipali, che aiutano, o impedi$ceno la materia a riceuere la intentione dell'arte, come per euiden te proua tutto dì $i cono$ce: & $i uede ancho una figura e$$er piu atta al mouimento, che l'altra: la grandezza ancho & il pe$o portano $eco molti commodi, & incommodi, perche tutte le co$e $o no ne i propi termini rinchiu$e, & da e$$a natura con eterna legge co$trette. Dalla $cienzanatu- rale adunque $i hauerà il $oggetto, & le qualità $ue. Ma ragionando della forma io dico, che i merauiglio$i effetti uengono da merauiglio$e cagioni. Non è egli mir abile leuare un grandi<02>imo pe$o con aggiugnerli ancho altro pe$o? che una ruota per mezo d'un'altra, che al contrario di quella $i muoue, dia il$uo mouimento ad una terza ruota? che in certe di$tanze, & grandezze una co$a rie$ca, che oltra que termini non puo riu$cire? $ono in uero tai co$e merauiglio$e, però non è fuori di ragione, $e egli $i troua qualche proprieta di natura mirabile, che di cio $ia cagio- ne, però $aper potremo, che tutto na$ce dalla leua, & la leua dalla $tadera, & la $tadera dalla bilancia, & la bilancia fi<02>almente dalla proprietà del circolo: imperoche il circo- lo ha in $e co$e, che la natura altroue non $uole porre in$ieme, & que$te $ono molte contrarietà, dalle quali uengono que grandi effetti, che $iuedeno. Ecco$e il circolo $i muoue, non i$ta fermo il centro? mobile, & fermo non $ono contrari? della i$te$$a circonferenza non a$cende egli una parte, & l'altra di$cende? $u & giu non $ono contrari? la linea circolare, non è ella & curua & conue$$a $enza latitudine? que$ti non $ono contrari, e$$endo tra quelli il dritto di mezo? & le parti di quella linea, che uien dal centro non $ono in una i$te$$a linea & ueloci, & tarde? quan to $ono, o uicine, o lontane dal centro, che è immobile. hora ueloce & tardo non $ono contra- ri? $i ueramente. Quando adunque $ia, che il circolo habbia in $e tante contrarietà, & tali,</I> <pb n="441"> <I>quali la natura delle co$e altroue non pati$ce, non è egli mir abil que$to? ma que$to non è dal uul- go cono$ciuto, però molto piu egli $tupi$ce uedendo alcuni effetti, & non $apendo da che procedi- no, e$$endo que mouimenti artificio$amente na$co$i. Ma perche noi non andiamo col uulgo, in- tender douemo, che tutti que$ti effetti finalmente $i riduceno alla ragione del circolo. Abbrac- ciando adunque noi il diletteuole, & il merauiglio$o, che uiene dalla natura, & dall'arte, dice- mo che $opra tutte le machine o $trumenti hauemo a con$iderare la origine, la diui$ione, le rego le. L'origine è dalla nece$$ità, che muoue gli huomini per accommodar$i a i lor bi$ogni, la natu- ra gli in$egna o proponendogli gli e$$empi de gli animali, da i quali pare, che molti artifici po$$o- no hauer principio, o la continua giratione del mondo, che Vitr. dice e$$er come una machinatio- ne; & però ancho $i chiama la machina del mondo: il ca$o ancho ne apporta, & l'ingegno del- l'huomo, che dal ca$o prende argomento, come $i puo di$correre: & que$to ci puo ba$tare all'ori gine. Ma quanto alla diui$ione dico, che delle machine altre da $e $i muoueno; que$te automata da Greci dette $ono; altre da $e non $i muouono, di quelle altre dette $ono $tatà da Greci, cioè fer me, altre hypagonta, cioè $otto condotte, perche hanno $otto di $e alcune co$e, che le danno il mouimento. Dell'una, & dell'altra maniera ne tratta Herone, & c'in$egna prima a fare un tem pio ritondo, nel quale $ia un Bacco, che con una mano tenga una tazza, & con l'altra il Tir$o, appre$$o ui $ia una Panthera, & un'altare, & d'intorno le Bacche con Timpani, & con Cem- bali, & $opra la te$tudine del Tempio una uittoria alata, & coronata, doue ad un tempo $i ac- cenda il fuoco $opra l'altare, Bacco uer$i dalla tazzail latte, dal Tir$o il uino $opra la Panthera, le Bacche d'intorno danzando facciano rumori con que cembali, & la Vittoria $uoni una tromba, & $i giri battendo l'ali. In un' altra di$po$itione in$egna a far caminar le figurine, & andar, & tor nare, & girar$i, & fermar$i $econdo il bi$ogno, Ma di quelle machine, che da $e non $i muoue- no, cioè che non hanno dentro di $e il principio del loro mouimento, altre $i muoueno da co$e ina- nimate, altre da co$e animate. le prime dal uento, o dall'acqua mo$$e $ono, come battiferri, $e- ghe, molini, mantici, & altri edifici, che dell'acqua $i $erueno: le $econde dallo aere hanno il pincipio loro. que$t'aere, o è rinchiu$o, o libero: $e rinchiu$o, dimo$tra molti mir abili effetti ne i ua$i $pirabili, de i quali ne tratta il mede$imo Herone: $e l'aere è libero, i molini da uento, ilcu ne machine hidraulice, gli $piedi, & altre co$e di piacere $i fanno con l'aiuto di quello. Ma $e le machine $ono mo$$e da animali, que$ti $ono o $enza ragione come buoi, caualli; che tirano carri, uolgono ruote: o $ono con ragione come gli huomini, i quali muoueno molte machine, & molti $tromenti, $i per le occorrenze della pace, come per li bi$ogni della guerra, come ne tratta Vitr. & altroue quelli, che $critto hanno dell'arte militare. la onde per tirare, condurre, & alzare i pe$i, le taglie, le manouelle, le $tadere, le bilancie, le ruote, gli argani, & per a$cendere in luoghi alti $ono le $cale di molte maniere armate, & di$armate, & per battere, roinare, et tirar da lunge erano anticamente le bale$tre maggiori, & minori, gli arieti, le te$tuggini, le torri, che $opra ruote andauano, & a i no$tri tempi le artiglierie: & in $omma molte altre machine tro uate $i $ono, molte andate in di$u$o, & molte $i troueranno per l'auuenire: le ragioni delle quali compre$e $aranno $otto le regole, & o$$eruationi, che qui $otto $i poneranno. Et que$ta è l'uni- uer$ale diui$ione delle machine; benche Vitr. habbia hauuto riguardo alle piu importanti, come nel $eguente primo capo uederemo.</I> <pb n="442"> <HEAD><I>Che co$a è machina, in che è differente dall'i$tru- mento, & dclla origine, & nece<02>ità di quella. Cap. I.</I></HEAD> <p>LA machina è una perpetua & continuata congiuntione di materia, che ha grandi$sima forza a i mouimenti de i pe$i. <p><I>Diffini$ce in que$to Capo Vitr. & dichiara che co$a è machina, come ella $i muo- ue, quante & quali maniere di machine $i trouano: che differenza è tra machina, & i$trumento: che origine, & donde gli huomini hanno tolto le machine, & gli $trumenti. Quanto adunque appartiene alla diffinitione egli dice, che Machina è una continente, o continua ta congiuntione di materia, cioè di legno, che ha grandi$$ime forze a i mouimenti de i pe$i. Et la ragione dimo$tratrice del modo di fare le machine, è detta $cienza, o arte mecanica, non però è $otto quello intendimento, che'l uulgo abbraccia, chiamando mecanica ogni arte uile, che $ia, perche que$ta è detta dalla machinatione, & di$cor$o che $i fa prima nella mente, & che poire- gola le opere artificio$e per leuar i pe$i, $alir a i luoghi alti, $cuoter le mura, & far quelle co$e all'humana commodità, che la natura operando ad uno i$te$$o modo, come fa, non ci puo pre$ta- re. Que$ta cognitione adunq; ci da la regola di legare in$ieme, o congiugnere molti legni per leua- re i grandi$$imi pe$i; & $e bene in que$te machine ui ua del ferro, non è però po$to come principal materia delle machine. Bi$ogna adunque, che la machina $ia di legno, o di qualche materia, che $ite gna in$ieme in qualche modo, altrimenti non $i farebbe effetto, perche le co$e $eparate non po$$o- no tender ad alcun fine unitamente. La $ollecitudine adunque, & il pen$iero, che $i ha di piegar la natura a no$tra utilità, ci fa machinare: però uolendo noi tirar le pietre $opra fabriche et alzar l'acque, che tutte $ono co$e, che di natura loro re$i$teno all'u$o no$tro, è forza, che con la fanta- $ia, che è principio delle arti, dal fine inue$tigamo la compo$itione dello in$trumento, la doue la fanta$ia prendendo alcun lume dallo intelletto habituato nelle mathematice, ua ritrouando una co$a dopo l'altra, & legando in$ieme per communicar i mouimenti, fa quello, che pare am- mirabile al uulgo, & però dice Vitr. dopo la diffinitione materiale della machina.</I> Quella $i muoue per arte con molti circuiti de giri. <I>Cioè la forma, & il principio delle machine è il moto circolare. Io ciuedo in questo luogo da dire, come in tutte le machine ci $ia il moto circo- lare, perche Vitru. dice qui $otto, che la machina da $alir in alto non di arte, ma di ardimento $i gloria: & $imilmente $i uede in quella $orte di machine, che egli chiama $piritali, che non ci $ono giri, nè mouimenti circolari $e non in alcune $pecie, come $i uede in IIerone; oltra che la diffinitio- ne della machina non par conuenire a tutte que$te $pecie: imperoche non pare, che ogni machina $ia per muouer i pe$i, nè meno $i faccia di legno, come appare nella diui$ione delle machine posta di $opra: & $e uolemo dire, che Vitr. ha diffinito quelle machine, lequali $ono di mouimenti cir- colari composte, come uorremo noi intender, che egli habbia diui$o le machine, & fattoci tre maniere, una trattori<*>; come egli chiama, una $pirabile, una da $alire: Io uorrei pure $aluar que sto modo. Però $e noi intendemo che la machina è una continuata congiuntione di materia, & per materia non $olo s'intende legno, ma qualunque altra co$a, di che $i fa la machina, que$to po- trà for$e pa$$are. ma come può conuenire, che tutte le machine habbiano grandi$$ime forze a i mouimenti de i pe$i, $e machine ancho chiamati $ono que ua$i $pirabili? che pe$o è in quelle? che mouimento? Io dico che per pe$o non $olo s'intende quella grauità, che hanno le co$e pondero- $e, & grandi, ma ancho quel momento, & quella inclinatione naturale di andar cia$cuna al $uo proprio luogo: & quando artificio$amente $i costrigne una co$a graue a $alire, & che la natura piu pre$to, che dar il uacuo con$ente, che gli elementi oltra la loro inclinatione, o a$cendino, o di-</I> <pb n="443"> <I>$cendino, certamente que$ta è una gran uirtù, & $orza: & questo con$trignere gli elementi è con $omma $olertia dall'arte $tato ritrouato: la doue ancho nelle machine $pirabili $i uede questo, & $imilmente nelle machine fatte per a$cendere, imperoche egli è contra la inclinatione naturale, che un corpo terrestre, o di acqua $alga in alto, & che uno con funi, & ruote $i leui alle cime de gli alti$simi palazzi: & $e bene que$to artificio $i puo gloriare piu di ardire, che di arte, non è egli però un mirabile artificio? poi che $i uede la diuer$ità delle $cale da montar $opra le muraglie con tanti artificÿ fabricate, che & difendeno i $alitori, & offendeno chi contrasta, & portano incredibili pe$i, mouendo$i con ruote, & hauendo quello, che dice Vitr. Alle artigliarie $imilmen- te conuiene la diffinitione della machina, come chiaramente $i uede, $i perche è una congiuntione di materia, $i pcrche ne i pe$i fa effetti stupendi $econdo l'ordine dell'uniuer$o: & in $omma non è $trumento, nè machina, che in qualche modo non partecipi de i mouimenti dritti, o circolari; il- che aneho qui $otto $arà da Vitr. con bella indottione confirmato, però con diligenza auuertir douemo alle co$e dette da Vitr. & non ci $marrire al primo tratto, $e egli non $i fa incontra ogni co$a. Diuidon$i $econdo Vitr. le machine a que$to modo.</I> <p>Vna $orte di machine è per a$cendere; que$ta è detta in Greco acrouaticon, qua$i an- damento all'in$u: l'altra $piritale, che da i mede$imi, è detta pneumaticon: la terza è da tì- rare, detta uanau$on. <I>A que$ti tre membri $i riduceno tutte le altre machine, & tutti gli altri $trumenti. uediamo noi che co$a è cia$cuna di que$te $econdo Vitr.</I> <p>Quella $orte, che è per a$cendere, è quando le machine $aranno po$te in modo, che drizzati in piede i trauicelli, & in$ieme ordinatamente colligati i trauer$i, $i a$cenda $enza pericolo a guardare l'apparato. <I>Quiui pone quelle $cale, che s'appoggiano alle muraglie, dellequali ne i libri della militia $i tratta, & tutto il dì da gli ingenio$i $oldati $i trouano a uari mo di fabricate, perche ancho in queste non è meno l'audacia, che l'arte; et di e$$e ne tratta V alturio. & $ono per guardare che co$a fanno gli a$$ediati.</I> <p>Ma la maniera $piritale è quando lo $prito $cacciato con l'e$pre$sioni, & le perco$$e, & le uoci $ono coni$trumenti epre$$e. <I>Molto piu abbraccia que$t' arte, che le machine hidrau- lice, come $i uede in Herone, doue oltra gli organi, oltra le uoci, & i canti de gli uccelletti, oltra i fi$chi de i $erpenti, & i $uoni delle trombe, cheegli a fare con instrumenti ci dimostra, ci$ono an- cho altri artificÿ, doue nè uoce, nè $uono $i $ente, come è il uotar diuer$i liquori per una iste$$a canna, & quelli hora in una proportione, hora in un'altra: il far $alir l'acqua, lo $pruzzare di odoriferi liquori le genti, & altre co$e, che $enza $uono $i fanno, che però tutte conuengono in que$to, che in e$$e è lo $pirito, cioè l'aere $cacciato con l'e$pre$$ioni.</I> <p>Finalmente la maniera da tirare, è quella, quando con le machine $i tirano i pe$i, oue- ro alzati $i ripongono. <I>Et questo è facile. dapoi Vitr. compara in$ieme que$te machine & dice.</I> <p>La ragione di a$cendere $i gloria non di arte, ma di audacia, & quella con catene, tra- uer$i, & legature annodate, & con appoggi è contenuta: ma quella che entra con la po- te$tà dello $pirito con le $ottilità dell'arte con$egue belli, & $cielti effetti: Ma quella, che al tirar de i pe$i ci $erue, ha in $e commodi maggiori, & occa$ioni piene di magnificenza all'u$o de gli huomini, & nell'operare con prudenza ritiene grandi$sime uirtù. <p><I>Adunque di que$te tre maniere una $i uanta di audacia, l'altra di $ottigliezza, la terza di uti- lità. Della prima non ne parla Vitr. la$ciandola (come egli dice nel fine di questo libro) a i $ol- dati e$perti, che fanno le $cale $econdo il bi$ogno. Di quella di mezo ne parla; & ne parla, quan- do c'in$egna la machina di Cte$ibio, & la machina hidraulica. & della terza ne parla nel re$to. Que$ta terza adunque che trattoria è da Vitr. nominata, nell'operare puo hauer bi$ogno di mol- to apparecchio, & per cio fa effetti maggiori, & per questo dice, che $i dimanda machina. puo ancho e$$er che $i contenti d'un'opera $ola, & bi$ogno non habbia di tanta fattura, nè faccia $i grandi effetti; & que$ta dice Vitr. che opera con instrumenti, però ci fa differenza dicendo.</I> <p>Di que$te trattorie altre $i muoueno con machine, altre con in$trumenti, & pare, che <foot><I>MMM</I></foot> <pb n="444"> tra machina & $trumento ci $ia que$ta differenza, che bi$ogna che le machine con piu opere, ouero con forza maggiore con$eguano gli effetti loro, come le bali$te, & i preli de i torcolari: ma gli $trumenti col prudente toccamento d'un'opera fanno quello, che s'hanno propo$to di $are, come $ono gli inuolgimenti de gli $corpioni, & de i circo- li di$eguali. <p><I>Tutta la machina $i chiama balista, o torculare. all'una & all'altra è nece$$ario, che ci $ia altra fattura, come il torchio è quella traue, che preme l'una, detta prelo, & Vitru. ci ha in$e- gnato di fare il torculare nel $e$to libro al nono capo: $imigliante co$a e$$er douea nello $carica- re della bali$ta, come $ono le $tanghe, & i molinelli: però que$te $ono dette machine, perche hanno bi$ogno di piu opere, come strumenti $i chiamano gli $corpioni, & le catapulte, che con un'opera fanno gli effetti loro. Ani$ocicli $ono circoli della uite, o coclea che $i dica. & perche ne gli $cor- pioni erano alcuni fili ritorti, prima raccolti & poi rila$ciati che $pingeuano le $aette, quando $i $caricauano, però Vitr. dice Ani$ocicli. i capelli delle donne $o$pe$i fanno certe anella, che $i po$- $ono chiamare Ani$ocicli. ma io chiamerei con que$to nome le uide.</I> <p>A dunque et gli $trumenti, & la ragione delle machine $ono nece$$ari all'u$o, $enza iqua- li niuna co$a puo e$$er e$pedita. <I>Dell'u$o delle machine, & de gli $trumenti è co$a manife$ta, però ueniremo all'origine. dice adunque Vitr.</I> <p>Ogni machinatione è prima nata dalla natura delle co$e, & ordinata dalla mae$tra uer- $atione del mondo. Con$ideriamo prima la continuata natura del Sole, della Luna, & del- le altre cinque $telle: lequali $e $enza machinatione $i gira$$ero, noi non haueremo hauuto in terra la luce, nè la maturità de i frutti: & però hauendo i maggiori no$tri bene po$to mente a que$to, dalla natura delle co$e pre$o hanno gli e$$empi, & quelli imitando indot- ti dalle diuine co$e hanno perfettamente e$plicato molti commodi alla uita. Et però ac- cioche fu$$ero piu $pediti, altre co$e con machine, & co i loro uolgimenti, altre con i$tru menti $i apparecchiarono. Et co$i quelle co$e, che auuertirono e$$er utili all'u$o de mor- tali, con i$tudi, arti, & in$tituti a poco a poco cercarono per uia di dottrine aumentare. Attendiamo di gratia alla prima inuentione di nece$sità che è il ue$tire, con l'ammini$tra tione de uari $trumenti, i congiu gnimenti delle tele con la trama, & l'ordimento non $ola- mente coprendo i corpi no$tri ci difendeno, ma ancho ciaccre$ceno l'hone$tà dell'orna- mento. Copia del cibo non hauerēmo hauuta, $e $tati ritrouati non fu$$ero i gioghi, & gli aratri per li buoi, & per tutti i giumenti: nè la nettezza dell'oglio, nè'l frutto delle uiti al piacer no$tro hauerēmo potuto hauere, $e non fu$$e $tato l'apparecchio de i molinelli, de i preli, & delle $tanghe del torchio. Et le condotte di quelle non $ariano, $e non fu$$ero $tate ritrouate le machinationi de i carri, & delle carrette per terra, & delle naui per ac- qua. Similmente l'e$$amine delle $tadere, & bilancie con i pe$i ritrouato caua la uita con giu$ti co$tumi dalla iniquità de gli huomini. Et co$i $ono inumerabili tempre di machi- ne, dellequali non ci pare nece$$ario il di$putarne, perche ci uanno ogni dì per le mani, co- me $ono le ruote, i mantici de fabri, le carrette, i cocchi, i torni, & tutte l'altre co$e, che per u$anza hanno all'utilità communi occa$ioni: però cominciaremo ad e$plicar quelle co$e, che di raro ci uengono per le mani, accioche $iano manife$te. <p><I>A me pare, che chiaramente interpretato io habbia, ciò che da Vitru. è $tato detto d'intorno all'origine, & u$o delle machine, pero $i uenirà alla e$po$itione del $econdo cap.</I> <pb n="445"> <HEAD><I>Delle machinationi trattorie de i $acrï tempÿ, & delle opere publiche. Cap. II.</I></HEAD> <p>Primamente ordineremo quelle co$e, che ne i $acri Tempij, & alla perfettione delle opere publiche $i apparecchiano: lequali a que$to modo $i fanno. D riz zan$i tre trauicelli $econdo la grandezza de i pe$i. que$ti dalle te$te di $opra congiunti da un pirone, & da ba$$o allargati $i drizzano po$te le funi dalle te- $te, & con quelle atorno di$po$te $i tengono dritti. lega$i nella $ommicà una taglia det- ta da alcuni recamo. nella taglia $ono due rotelle, che ne i loro pernuzzi $i uolgono: per la rotella di $opra $i fa pa$$ar il menale, que$ta fune dapoi $i manda a ba$$o, & $i fa andar a torno la rotella della taglia inferiore, & $i riporta alla rotella di $otto della taglia $uperio- re, & co$i di$cende alla inferiore, & nel $uo buco $i lega il capo della fune, l'altro capo dellaquale è riportato tra i piedi della machina: & ne i pianuzzi quadrati delle traui di die- tro, la doue $on allargati, $i ficcano l'orecchie, o manichi detti chelonia, ne i quali $i met- teno i capi de i molinelli, accioche con facilità que perni $i uoltino. Ma que molinelli hanno pre$$o i capi loro i buchi temprati in modo, che in e$si po$$ono accommodar$i le $tanghe: ma alla taglia di $otto $i legano gli uncini di ferro, i denti de i quali s'accom- modano ne i $a$si forati. quando adunque la fune ha il capo legato al molinello, & che le $tanghe menando quello lo uoltano, que$to effetro ne na$ce, che la fune uolgendo$i a torno il molinello $i $tende, & co$i inalza i pe$i all'altezza, che $i uuole, & a que luoghi, do- ue $i hanno a collocare. <p><I>Qui Vitru. ci dimo$tra come $i fanno gli $trumenti da leuar i pe$i, & porli doue fa bi$o- gno nelle fabriche de i Tempÿ, & delle opere publiche. & prima ci parla della taglia, che egli troclea, o ricamo dimanda: il piu $emplice modo è drizzare una caualletta, o gauerna che $i dica, di traui, o antennelle, per u$are i nomi del no$tro Ar$enale, accio meglio $i pigli la pratica di tai co$e. Que$ta gauerna $i fa pigliando$i tre traui della gro$$ezza, che puo ba- $tare a $o$tener i pe$i. que$ti $i drizzano, & di$opra $i legano in$ieme con pironi, che fibu- le da Vitru. detti $ono, & i piedi di $otto s'allargano: Piglian$i poi due taglie, che cu$elle altroue $i chiamano, la forma delle quali per la figura $i manife$ta, che $ono alcune girelle, che orbiculi da Vitru. raggi da noi dette $ono, che nel taglio dritto la loro circonferenza hanno un canale, nelquale s'inue$te il menale, da Vitru. ductario fune chiamato. Le girelle, o raggi hanno nel mezo un buco, doue ui entra un pernuzzo, che a$$iculo da Vitru. mar$ione $i chiama da noi: que$ti trapa$$a per lo raggio, che è po$to fra un legno tagliato, & cauato, & $opra quello $i uolge. Attaca$i adunque una taglia alla parte di $opra, & l'altra $i $erua per porla di $otto, & l'ordimento è tale. Egli$i piglia la fune, & un capo di e$$a $i tramette nel canale del raggio di $opra, dapoi $i cala al piu ba$$o raggio della taglia di $otto, & trapa$$a- to per lo $uo canale, $i riporta al raggio di $otto della taglia $uperiore, & fattolo pa$$are, $i ca- la nel raggio di $opra della taglia inferiore, & iui $i lega l altro capo della fune, che in abando- no $i la$cia; o perche con le mani a forza tirato $ia, o $i raccommanda ad un molinello, ilqua- le tra i piedi della gauerna, nelle orecchie, che Vitru. Chelonia, noi ca$tignole, o gattelli chiamamo $i uolge, con alcune $tanghe, o manouelle, o pironi, che $i dichino, che uectes da Vitru. dette $ono, che entrano nelle te$te del molinello. i pe$i $i attaccano ad alcuni uncini, che noi ganzi chiamamo, & Vitru. forcipi li dimanda. Que$ti $ono alla taglia di $otto attacca- ti, congiunti, come dimo$tra la figura A. & il re$to è chiaro per la figura B. doue è la taglia di $opra, & per la figura C. doue è la caualletta, che ancho ponte da alcuni è detta, & alla figura. D. doue è il molinello, & le $orti de molinelli, argani, o na$pi, che $uccule, & erga-</I> <foot><I>MMM</I> 2</foot> <pb n="446"> <fig> <I>ta da latini, o greci $i chiamano, $ono alle fi- gure E. F. $i come le $orti de i ganzi, uncini o forcipi $ono alle figure. I. K. L. Po$to a- dunque la pratica delle taglie uenirò alla ra- gione di e$$e, accioche ci $ia noto la co$a $ignifi- cata, & quella che $ignifica: La fabrica è il di$cor$o, l'e$fetto, & la cagione delle co$e. Non è dubbio che $e ad una $emplice fune $i attacca un pe$o, poniam ca$o di mille libre, che tutta la fatica & $orza non $ia unit amente da quella fune $o$tenuta, che poi $e la delta fune $arà rad- doppiata & a quella una taglia d'un raggio ap- po$ta doue penda quel pe$o, che la fune non $ia per hauer il doppio meno di fatica, & il doppio meno di forza non ba$ti ad alzar quel pe$o: hor che $arà poi, $e ci $aranno due taglie, o piu? o $e $i moltiplicheranno i raggi? non $i partirà quel pe$o in piu parti? non $i maneg- giarà piu ageuolmente? non ci uorrà molto menor forze a tirarlo? certo $i, & di modo, che $e'l primo raddoppiamento leua la metà del pe- $o, il $econdo alquale re$ta una metà, leuerà uia la metà di quella metà che $arà la quarta parte ditutto'l pe$o, & dalla quarta parte della forza di prima $arà il detto pe$o leuato: la doue $e non fu$$e la grauità delle funi, l'a$prezza de i rag- gi, & la tardezza del moto per li molti ra- uolgimenti della fune, che $ono i difetti non del- la forma, ma della materia, un fanciullo pre- ftamente alzarebbe un $mi$urato pe$o: ma dar il $apone alle funi, l'ugnere i raggi, il far be- ne le taglie con i raggi dritti, l'acconciar i me- nali, che non s'intrichino, o rodino in$ieme, e$- $endo i pernuzzi a mi$ura, & proportionati, fanno ageuoli que$te fatiche, & tanto piu $e gli aggiugnemo i molinelli, che leuano la lor par te del pe$o, & della fatica, come il moltiplicar delle taglie, & de i raggi, & que$ti ancho piu ageuolmente $i muoueno, quanto le loro $tan- ghe $ono maggiori, perche la lunghezza $i al- lontana dal centro, che è immobile, & impe- di$ce il mouimento: & tanto $ia detto della ra- gione delle taglie.</I> <pb n="447"> <HEAD><I>De diuer$i uocaboli delle machine, & come $i drizzano. Cap. III.</I></HEAD> <p>Ove$ta ragione di machinatione, che $i riuolge con tre raggi, $i chiama tri$pa- $tos: ma quando nella taglia di $otto due raggi, & nella di$opra tre $i ruota- no, penta$pa$ton. Ma $e per pe$i maggiori $i apparecchieranno le machine, allhora $arà nece$$ario u$are le traui, & piu lunghe, & piu gro$$e, & con la mede$ma antedetta ragione da i capi di $opra legarle, & congiungerle con le loro fibbie, & pironi, & di $otto con molinello accommodarle. <p><I>Perche (come ho detto) la moltitudine delle taglie, & de i raggi in piu parti diuide il pe$o: però la doue $i ha a leuar pe$o maggiore, è nece$$ario l'opera di piu taglie, & de piu raggi, & dal numero de i raggi $ar anno le machine nominate. Però $e per tre raggi $arà ordita la fune, quella machina $arà detta tri$pa$ton, qua$i da tre raggi tirato: $e la taglia di $otto hauerà due rag gi, & la di $opra tre, da i cinque raggi penta$paston $arà detta, nè i latini nè i uolgari hanno la felicità de Greci nel compor questi nomi. Fanno$i le taglie con piu raggi, altre ne hanno un ordine, altre due, & altre piu, come $i uede nelle figure. Ma bella co$a è l'ordimento delle fu- ni, come bene è da i praticanti cono$ciuto, & le figure lo dimostrano. Hora uediamo come $i drizzano in piedi que$te gauerne, ò ponti, ò cauallette, che $i dichino.</I> <p>E$plicate le predette co$e $iano dinanzi alle machine ammollate quelle funi, che antarie dette $ono, & $opra le $pale della machina di$po$ti $iano per lūgo i ritegni, & $e non $arà do ue legarli, & raccommandarli, $iano conficcati i pali dritti, & fermati col batterli bene a tor no, & iui $iano le funi legate. Dapoi $ia una taglia al capo di $opra della machina con una corda legata, & da quello $ian riportate le corde al palo, & d'intorno a quella taglia; che è al palo alligata, $i meni la fune cerca il $uo raggio, & poi riportata $ia alla taglia, che al capo della machina, & d'intorno il raggio dalla $ommità trapa$$ata la fune di$cenda & ritorni al molinello, che è nella machina da ba$$o, & iui $ia legato: co$i forzatoil mo- linello dalle $tange $i uolgerà, & da $e $enza pericolo drizzerà la machina: co$i di$po$te le funi d'intorno, & i ritegni attaccati a i pali con piu ampio mo do $arà la machina colloca- ta: ma le taglie, & i menali al $opradetto modo $aranno ordite. <HEAD><I>Modi di annodare le funi.</I></HEAD> <fig> <p><I>Vitr. c'in$egna a drizzar le machine, & chi haueduto come s'inalbora le naui, puo inten-</I> <pb n="448"> <I>der quello, che egli dice. io e$ponerò la mente $ua piu facilmente, che $i puo. Per drizzare adun que la machina $i ferma il piede di e$$a ad un palo, ouero ad altra co$a $tabile, accioche la machi na ui punti dentro. Alla testa $i legan non meno di due funi, accioche una uada dalla de$tra, l'al tra dalla $ini$tra & que$te credo io che da Vitr. antarie, & da Creci protoni, & da i marinari $artie dette $ono: $tende$i poi per la lunghezza della machina un'altra fune, la quale s'inuefte in una taglia di $opra, & un'altra di $otto: dapoi questo è alquanto di$co$to l'argana, o il molinel- lo, al quale $i riporta la fune predetta, che da noi codetta $i chiama, $i come la taglia da piedi, è nominata pa$tecca. tirando$i adunque $opra il molinello, & uolgendo$i quella fune, $i drizzerà la machina apuntando$i al palo, & drizzata, che $arà, $i reggerà poi al piacer no$tro con le fu- ni, che $aranno dalla de$tra, & dalla $ini$tra, perche ammollando l'una, è tirando l'altra, $i pie gherà doue $arà bi$ogno. Ma perche le dette funi bi$ogno hanno di e$$ere raccommandate ad al cuna co$a, però douemo cauare una fo$$a quadrata molto a fondo: iui $i $tende uno traue, al qua- le $i annoda la fune, che e$ce dal $uolo, $opra que$to tronco attrauer$ati $ono de gli altri pezzi $opra i quali $i calca la terra, & co$i teniranno bene: uero è che pare, che Vitr. uoglia, che a que pali, che e$ceno della terra, $i attacchi una taglia, credo que$to per ammollare piu commoda mente le funi. Ma l'ordimento de i menali, & delle taglie $i $arà al modo $opradetto.</I> <HEAD><I>Diuna machina $imile alla $opr apo$ta a cui $i com metteno co$e maggiori mutato $olo il moli- nello in un Timpano. Cap. IIII.</I></HEAD> <p>MA $e porre in opera uorremo co$e di maggior pe$o, o grandezza, non douemo fidarci de molinelli: ma $i come il mol nello nelle orecchie è contenuto, co- $i in que$to ca$o bi$ogna, che nelle orecchie u'entri un perno, nel mezo del quale ci $ia un Timpano, che alcuni ruota, i Greci Ampheure$in, altri Peri- trochio detto hanno, & in que$te machine le taglie uanno ad un'altro modo: perche & di $otto, & di $opra hanno due ordini de raggi, & in tal modo il menale $i fa trapa$$are nel foro della taglia di $otto, che i due capi $ieno eguali quando la fune $arà $te$a, & iui lungo la taglia inferiore attorchiata una cordicella, et legate amēdue le parti della fune $ieno con tenute in modo, che non po$sino u$cire nè dalla de$tra, nè dalla $ini$tra: fatto que$to i capi d<*>lla fune $i riportano alla taglia di $opra nella parte e$teriore, & $ono mandati giu dal d'intorno de'raggi inferiori di quella & ritornano di nuouo a ba$$o, & s'inue$teno nel la taglia di$otto a raggi dalla parte interiore, & $i riportano dalla de$tra, & dalla $ini$tra al Timpano che è nel perno, & iui $i annodano: dipoi d'intorno al Timpano un'altra fune $i riporta all'argana. que$ta uoltata a torno riuolgendo il Timpano, & il perno, fa che le fum iegate al perno $i $tendino parimente, & co$i dolcemente $enza pericolo leuano i pe- $i. Ma $e la machina hauerà un Timpano maggiore, o nel mezo, o in una e$tremità cal- candoui in e$$o gli huomini, $enza la manifattura dell'argana potrà hauer. effetti piu e$pediti. <p><I>Tutta la difficultà d'intender bene l'artificio della $opra$critta machina, è po$ta nell'ordimento delle funi. Vitr. dice prima l'effetto $uo, che è di leuar pe$i di maggior importanza, che la ma- china po$ta al $econdo Cap. Poi dimo$tra il modo di fabricarla: chiama egli collo$$icotera quelle co$e che & di pe$o, & di grandezza eccedono l'ordinario: $i come colo$$i dette $ono le grandi$$i- me$tatue, & che $ono di molto maggior mi$ura della con$ueta. Drizza$i la caualletta di gro$$i, & alti traui al modo $opradetto: poi $i fanno due taglie di quattro raggi per una, due di$otto & due di $opra al pari, una di quelle, alla qual $i attacca l'uncino hauer deue un buco da ba$$o</I>, <pb n="449"> <I>che pa$$i al contrario de i pernuzzi de i $uoi raggi, l'altra legar $i deue al capo di $opra della ma- china. L'ordimento è que$to. $i fa pa$$are il menale per lo foro della taglia di $otto, di modo che i capi di e$$o $iano eguali da una parte, & dall'altra. que$ti e$$er deono riportati alla taglia di $o- pra, & inue$titi dalla parte di fuori ne i raggi di $otto: ma perche $tian fermi, & tenghino drit- te le taglie, prima che s'inue$tino, è nece$$ario legarli con una cordicella attorchiata, & anno- data, che gli tenga dritti lungo la taglia. Pa$$ati adunque i due capi per liraggi di $otto della ta glia $uperiore dal di fuori, $i mandano a ba$$o, & $i fan pa$$are dalla parte di dentro della taglia per li raggi di $otto, & di nuouo $i riportano alla taglia di $opra, & $i fan pa$$are dal di fuori per li raggi di $opra, & mandati giu $i fan pa$$are dal di dentro per li raggi di $opra della taglia infe- riore, dalla de$tra, & dalla $ini$tra, & d'indi al perno del Timpano $trettamente $i legano: per- che e$$endo a torno del Timpano inuolta un'altra fune, & riportata all'organa, ne $egue, che ri uolta a torno riuolgendo$i il Timpano, & il perno, le funi legate a torno il perno parimente $i $ten dino, & co$i dolcemente leuano i grandi$$imi pe$i. Et $e il Timpano fu$$e maggiore $i potrebhe le uar la manifattura dell'argana, perche gli huomini col calcarui dentro lo farebbeno girare ageuol mente, perche nelle grandi$$ime ruote calcando gli huomini $i mouono grandi$$imi pe$icon una fune riuolta, perche è quella proportione del diametro della ruota al diametro del perno, che è del pe- $o alzato, al pe$o, & alla forza de gli buomini, che $ono dentro la ruota, & però le $tange del- l'argane e$$er deono lunghe, accioche $econdo la proportione della lunghezza cia$cuno de i capi lo ro $cemi il pe$o, la doue $e raddoppiate $aranno, riduranno il pe$o alla metà, & quattro alla quarta parte: di modo, che $e con una $tanga d'un braccio quattr' buomini moueranno cento li- bre di pe$o, egli auerrà, che con quattro $tanghe di $ei braccia, i mede$mi ne leueranno due mila & quattrocento, $ottratta però la giunta del pe$o delle $tanghe, il che importa poco. La figura della machina, è al $uo luogo.</I> <HEAD><I>D'un'altra $orte di machina da tirare. Cap. V.</I></HEAD> <p>Evui un'altra $orte di machina a$$ai artificio$a, & accommodata alla pre$tezza ma il por$i a farla, è opera di periti; imperoche egli è un traue, che $i drizza in piedi, & da quattro parti con ritegni tenuto, $otto i ritegni $i conficcano due manichi, a i quali con funi $i lega una taglia, $otto la quale è po$to un re golo due piedi lungo, largo $ei dita, gro$$o quattro. le taglie hanno per larghezza tre or- dini di raggi, & co$i tre menali nella $ommità della machina $i legano, & dipoi $e riporta- no alla taglia da ba$$o, & $i fan pa$$are dalla parte di dentro per li $uoi raggi di $opra, d'in- di $i riportano alla taglia di $opra, & s'inue$teno per la parte di fuori nelia di dentro ne i raggi di $otto, quando $aranno per la parte di dentro $ce$i, & per li $econdi raggi $i trapor tano nella parte di fuori, & $i riportano di $opra a i $econdi raggi trapa$$ati tornano al ba$$o, & dal ba$$o $i riportano al capo, & inue$titi ne i primi raggi di $opra, ritornano a i piedi della machina. Ma nella radice di quella $i pone la terza<*>aglia da Greci Epagon da no$tri Artemon nominata. lega$i que$ta alla radice della machina, & ha tre raggi, per li quali trapo$te le funi $i danno a gli huomini, che le tirino, & có$i tirandole tre ordini d'huomini $enz'argana pre$tamente alzano il pe$o. Que$ta $orte di machina $i chiama poli$pa$ton, imperoche per molti circuiti de raggi ci da & pre$tezza, & facilità grande, & il drizzare d'un traue $olo porta $eco que$ta utilità, che prima quanto $i uuole, & in che parte $i uuole, & dalla de$tra, & dalla $ini$tra puo deponere il pe$o. Le ragioni del- le $opra$critte machine non $olo alle dette co$e, ma a caricare, & $carirar le naui fono ap parecchiate; $tando altre di quelle dritte, altre piane po$te ne parettoli, che $i uoltano, & ancho $enza drizzar le traui nel piano con la i$te$$a ragione temprate le funi, & le taglie $i tirano le naui in terra. <pb n="450"> <p><I>Bella, & $ottile ragione & inuentione di machina ci propone Vitr. & c'in$egna il modo di $ar la, l'ordimento delle funi, l'accommodarla per tir ar i pe$i, il uocabolo, & l'u$o d'e$$a. Dapoi ci fa auuertiti, come a molti modi, & per molti effetti ci potemo $eruire delle ragioni delle machi ne $opradette. Pre$uppone egli che drizziamo la machina, come s'è detto, & dice, che l'u$o è per far pre$to, & che è artificio$a, & opera di per$one pratiche. Drizza$i un traue, da capo del quale $i legano quattro funi, che egli chiama retinacoli, noi $artie, queste $i la$ciano andar in terra, & $i raccommandano a pali, come di $opra. l'ufficio di que$te funi è tenir dritta la ma- china, che non pieghi piu in una parte, che in un'altra. $otto que$te funi, o $artie, o ritegni, che $ieno, la doue di $opra legate $ono, $i conficcano nelli lati del traue due manichi, tra quali è po $ta una taglia, & a quelli ben legata, ma $otto la taglia, come per letto, è una piana di lunghez za di due piedi, larga $ei dita, gro$$a quattro. l'effetto di que$ta, è tener dritta la taglia, & lon tana dal traue, accioche $i po$$a far commodamente l'ordimento delle funi. Tre taglie ui uanno, due delle quali hanno nella larghezza loro tre ordini di raggi, come ti mo$tra la figura. l'ordi- mento delle funi è que$to. piglian$i tre menali, & $i legano bene alla $ommità della machina al traue, i capi di quelli $i la$ciano andar giu, & per la parte di dentro della taglia di $otto $i fanno pa$$are tutti tre ordinatamente ne i raggi di $opra, cioè del primo ordine, pa$$ati che $ono tutti tre $e riportano alla taglia di $opra, & $i fan pa$$are dalla parte di fuori nella parte di dentro per li raggi di $otto, & co$i di$cendeno per la parte di dentro, & s'inue$teno nel $econdo ordine de i raggi, & pa$$ano alla parte difuori, que$ti di nouo $i riportano alla taglia di $opra al $econdo or- dine de i raggi & trapa$$ati che $ono calano giu, & dal terzo ordine de raggi, $i riportano al ca- po della machina, & inue$titi, che $ono nell'ordine de i raggi di $opra tutti tre i detti menali, ca lano al piè della machina, doue è legata la terza taglia, che da Greci è detta Epagon da latini Artemon, da noi Pa$tecca: que$ta hatre $oli raggi al pari, ne i quali uanno i tre menali, o co- dette che $i dicano, que$ti $i danno a per$one, che li tirano a tre per capo, doue con facilità $i le- uano i pe$i, & la figura lo dimo$tra in una mano de i raggi nudi, perche meglio s'intenda, & da i praticanti $arà bene inte$a: Et que$ta $orte di machina dalla moltitudine de i raggi è detta poli$pa $ton. L'effetto è tale, che ammollando destramente quelli ritegni, & $artie, $i puo far piegare in che parte $i uuole, & deporre i pe$i, doue torna bene. Ma l'u$o di tutte le predette machine, quando per li loro uer$i accommodate $aranno, $i estende in piu fattioni: imperoche & per carica re, & per $caricare le naui $on buone. l'arbore della naue ci $erue & le funi $ue, & quando il pe$o è alzato al pari della costa del nauilio, $i fa andar il nauilio alla parte, & in banda, & co$i il pe$o $i $carica, o in terra, o in altro nauilio minore. le mede$ime machine ste$e in terra, & or- dinate uarano le naui, & le t<14>rano in acqua. il tutto è posto in bene accommodarle, & a$$icu- rarle ne i manichi, & in quelli strumenti che Vitr. chiama Carche$i, che $ono, per quanto sti- mo io, certi strumenti, doue entrano le stanghe, che uoltano i perni delle ruote, ode i Timpani, o de na$pi. altri dicono, che hanno la figura della lettera <G>*d</G>, ma for$e $ono $imili a quelli, che noi chiamamo parettoli, $opra i quali $i uolta una bocca di fuoco per tirar in ogni uer$o, come $i ue- de nelle naui, & nelle galere, & nella figura.</I> <HEAD><I>D'una ingenio$a ragione di Cte$ifonte, per con- durre i pe$i. Cap. VI.</I></HEAD> <p>Non è alieno dall'in$tituto no$tro e$ponere una ingenio$a inuentione di Cte$i- fonte: percioche uolendo co$tui condurre dalle botteghe de i tagliapietra in Efe$o al Tempio di Diana i fu$ti delle colonne, non fidando$i ne i carri per la grandezza de i pe$i, & per le uie de i campi molli temendo, che le ruote non <pb n="451"> fonda$$ero troppo, in que$to modo tentò di fare. Egli po$e in$ieme quattro pezzi di le- gno molto benc comme$si gro$si quattro dita, due trauer$i trapo$ti tra due lunghi quan- to erano i fu$ti delle colonne, & nelle te$te de i fu$ti impiombò molto bene i pironi di fer- ro, che Cnodaces detti $ono a gui$a di pernuzzi, & in que legni po$e gli anelli, ne i quali haue$$ero ad entrar i detti pironi, & con ba$toni di elce legò le te$te. I pironi adunque rinchiu$i ne i cerchielli liberamente $i poteano tanto riuoltare, che mentre i buoi $ottopo- $ti tirauano i fu$ti delle colonne uolgendo$i ne i pironi, & ne i cerchielli $enza fine $i gua- uano. Hauendo poi a que$to modo condotto tutti i fu$ti, & e$$endo nece$$ario tirar an- cho gli architraui, il figliuolo di Cte$ifonte Metagene nominato, traportò quella ragio- ne della condotta de i fu$ti alla condotta de gli architraui: imperoche egli fece ruote gran di da dodici piedi, & con la i$te$$a ragione con pironi è cerchielli $errò nel mezo di quelle ruote i capi de gli architraui, & co$i e$$endo tirati que legni da buoi rinchiu$i ne i cerchiel li, i pironi uolgeuano le ruote, & gli architraui $errati come perni nelle ruote, con la i$t<*>$ $a ragione, che condotti furono i fu$ti delle colonne, peruennero alluogo doue $i fabr- caua. l'e$$empio di tal co$a è come quando nelle pale$tre $i $pianano con i cilindri i luoghi doue $i camina: nè però que$to haurebbe potuto fare $e il luogo non fu$$e $tato uicino, perche da i tagliapietra al Tempio non ui ha piu d'otto miglia, nè ui è alcuna di$ce$a, ma il tutto è piano campe$tre. <p><I>La interpretatione, & la pratica fa manifesto quello, che dice Vitr. & cilindro era una pietra di forma di colonna per i$pianare, & or$are, come dicemo noi i terrazzi. Ma quanto bi$ogni prima pen$arci $opra, auanti che $i dia principio a tali impre$e di condurre le co$e grandi Vitr. ci dimo$tra in un bello e$$empio dicendo.</I> <p>Ma a no$tri giorni e$$endo nel Tempio, doue era il colo$$o d'Apollo per uecchiezza rot ta la ba$a, & temendo$i, che la $tatua non ruina$$e, & $i rompe$$e, condu$$ero chi dalle i$te$$e petraie taglia$$ero la ba$a. Paconio $i pre$e il carico. Era que$ta ba$a lunga dodici piedi, larga otto, alta $ei, que$ta Paconio gonfio di uanagloria non come Metagene ten tò di condurre, ma con la i$te$$a ragione ad un'altro modo ordinò di fare una machina: imperoche egli fece le ruote alte 15 piedi, nelle quali rinchiu$ei capi della pietra, dapoi a torno la pietra da ruota a ruota ui acconciò fu$i gro$si due dita in modo, che tra fu$o è fi- $o non era la di$tanza d'un piede: oltra di que$to d'intorno a i fu$i circondò una fune, & po$toui $otto i buoi tiraua la fune, & co$i $ciogliendo$i la fune uoltaua le ruote; ma non poteua per dritto tirarle, perche la machina u$ciua hora in una parte, hora in un'altra, dal che egli era forzato di nuouo tirarla indietro, & co$i Paconio tirando, è ritirando con- $umò il dinaio, $i che egli non hebbe poi da pagare. <p><I>Et que$to luogo è ancho facile, perche Paconio fece un rocchello, come dicemo noi, nel quale $errò la pietra, & la corda, che era d'intorno al detto rocchello $i uolgeua hora in un luogo ho- rain un'altro, & però non poteua tirar dritto, ma quanto tiraua inanzi, tanto la machina $i t<*>r ceua, & per drizzarla, tanto era nece$$ario tirarla in dietro, & co$i la fatica era uana, come quella di Si$ifo, per la colpa della uanità $ua, leggi Leone al $e$to del$e$to.</I> <HEAD><I>Come trouato s'habbia la petraia, della quale fu fatto il Tempio di Diana Efe$ia. Cap. VII.</I></HEAD> <p>IO u$cirò alquanto di propo$ito, & dirò come trouate furono que$te petraie. Pi$$odoro $u pa$tore, & praticaua in que$ti luoghi, Pen$ando gli Efe$i di far un Tempio a Diana, & deliberando di $eruir$i del marmo di Paro, Precone$- $o, Heraclea, & di Tha$o, auuenne, che in quel tempo Pi$$odoro cacciate a <foot><I>NNN</I></foot> <pb n="452"> i pa$coli le pecore in que luoghi, & iui concorrendo due montoni per urtar$i l'un l'altro $enza incontro $i trapa$$arono, & con empito l'uno perco$$e il $a$$o con le corna, dal qua- le $eagliò una pietra di bianchi$simo colore. Dal che $i dice, che Pi$$odoro la$cia$$e le pe core ne i monti, & porta$$e correndo quella cro$ta in Efe$o allhora quando di cio $pecial mente con$ultauano. co$i deliberaron di honorarlo grandemente, & gli mutarono il no- me, che in uece di Pi$$odoro fu$$e Euangelo <I>(cioe buon nuncio)</I> nominato, & fin'al di d'hoggi ogni canti me$i il magi$trato di Efe$o $i conduce in quel luogo, & gli fa $acrificio: & ca$o che cio fu$$e da quello preterme$$o, è tenuto alla pena. <p><I>La uanagloria ingannò Paconio, l arte aiutò Cte$ifonte, & Metagene, il ca$o fece fauore a Pi$$odoro. Et Vitr. ci ha recreati con que$ta digre$$ione uedendoci hauere $tanca, & intricata la $anta$ia con ruote, corde, timpani, argani, et girelle. Hora egli pa$$a dopo la fabrica al di- $cor$o, & fa $opra le dette co$e una belli$$ima con$ideratione dicendo.</I> <HEAD><I>Del mouimento dritto, & circolare che $i richiede a le- uar ipe$i. Cap. VIII.</I></HEAD> <p>Delle ragioni, con le quali $i tirano i pe$i breuemente io ho e$po$to quelle co$e, che io ho giudicate nece$$arie. <p><I>Vitr. nel primo Cap. di que$to libro ha detto, che machina era una continua colli gatione di legname, che hauea uirtù grande a muouere i pe$i. Que$to fin hora egli ci ha dimo$trato. Ha detto ancho, che la machina $i muoue con artificio di molti giri: questa parte hora egli ci e$pone, alche douemo por mente, per e$$er il fondamento di tutti gli artificij, oltra che ci farà intender molte belle co$e delle Mecaniche di Ari$totile. Dice adunque.</I> <p>Delle ragioni da tirar i pe$i, quelle co$e io ho breuemente e$po$to, che io ho giudica- te nece$$arie, i mouimenti, & le uirtù delle quali due co$e diuer$e, & tra $e di$simili come conuengono, co$i $ono principij a due operationi, uno di que principij, è il mouimento dritto, Euthia da Greci nominato: l'altro è il mouimento circolare chiamato Cyclotis, ma inuero nè il dritto $enza il ci<*>colare, nè il circolare $enza il dritto puo fare, che i pe$i $i leuino. <p><I>La propo$itione di Vitr. è que$ta, che il mouimento dritto, & il circolare, benche $iano due co $e diuer$e, & che $imiglianza tra $e non habbiano, pure concorreno a fare i merauiglio$i effet- ti, che tutto dì uedemo nell'alzar i pe$i, nè uno può $tar $enza l'altro: ma come cio adiuegna Vitr. da$e $te$$o l'e$pone, dicendo.</I> <p>Ma come quello, che io ho detto, s'intenda, e$ponerò. Entrano i pernuzzi ne i raggi come centri, & nelle taglie $i pongono, per que$ti raggi la fune $i uolge con dritti tiri, & po$ta nel molinello per lo riuolgimento delle $tanghe fa, che i pe$i $i leuino in alto, & i cardini del molinello come centri del dritto ne i gattelli collocati & ne i $uoi buchi po- $te le $tanghe uo ltando$i in giro le te$te a ragione di torno alzano i pe$i. <p><I>Per indottione proua Vitr. che il dritto, & il circolare entrano a i mouimenti delle co$e, & prima ne gli $trumenti delle taglie, $tanghe, et molinelli, perche i giri, i raggi gli auolgimenti ri- $pondeno al circolare, le funi, le stanghe i perni ri$pondeno al dritto nelle $opraposte machine, dapoi ne gli altri $trumenti, come qui $otto dimo$tra dicendo.</I> <p>Similmente come la $tanga, o leua di ferro quando è appo$ta al pe$o, quello, che non puo da molte mani e$$er leuato, $ottopo$to a gui$a di centro, per dritto quello, $o- pra che $i ferma la manouella, che hypomochlion da Greci è detta, qua$i $otto $tanga, & po$ta $otto il pe$o, la manouella, o lenguella della $tanga, & calcato il capo di quella dalle forze d'un huomo $olo, quel pe$o $i leua. <pb n="453"> <p><I>Molte questioni pertinenti alle Mecaniche di Arist. in poche parole po$te, & ri$olute $ono da Vitr. in questo luogo. Però con$ider ar bi$ogna le regole generali, & i principij di tutte. In ogni artificio$o mouimento $ono quattro co$e il pe$o, la forza, che lo muoue, lo strumento, con che $i muoue, detto Vectis Latinamente, Mochlion in Grcco, Leua in Volgare, & quello $opra che $i ferma la Leua Hypomochlion in Greco, Pre$$io in Latino, & Sottoleua direi in Volgare. tutte queste co$e dalla stadera alla bilancia, & dalla bilancia alla ragione del circolo $i uanno ri ducendo. O$$erua$i adunque, che le parti piu lontane dal centro fanno maggiore, piu presto, & piu euidente effetto, che le uicine, perche $ono piu lontane dallo immobile, & meno parteci- pano della natura del centro, doue $ono meno impedite e$$endo lontane dal centro, & quelli pe$i, che $ono da i capi piu lontani dal centro, per le loro naturali inclinalioni, tendendo al ba$$o $ono meno impediti, & piu presto drizzano al perpendicolo, che li piu uicini, & però in ogni stru- mento con$iderar $i deue, o il centro, o quello, che come centro $i piglia. Nella bilancia adun- que, & nella stadera il centro è quel punto del pirone, che trapa$$a l'orecchia, che an$a, & la lenguella, che E$$ame è nominata. Questo luogo del centro, è come la $ottoleua, perche $opra quello $i ferma la leua, & nella bilancia le braccia, o raggi, che Scapi da i Laiini $i dicono, rappre$entano la leua, che $ono come linee, che $i parteno dal centro. Quando adunque questi raggi $ono eguali di grandezza, & di pe$o le teste loro, e$$endo la bilancia $o$pe$a, non piegano una piu dell'altra, ma $ono egualmente distanti dal piano: ma quando $e le dà pe$o da uno de capi forza è, che trabocchi la bilancia: & piu presto traboccherà, & con minor pe$o quando il rag gio $arà maggiore, & il pe$o piu lontano dal centro per la $opradetta ragione: però dice$i nelle Mecaniche, che le bilancie, che hanno i fusti maggiori $ono piu certe, cioè piu presto. & con minor pe$o bilanciano, & piu certo dimo$trano il pe$o, percioche per ogni lieue aggiunta $i muo- ueno, & in egual, o minore $patio di tempo, fanno maggiore $patio di luogo. Ma bi$ogna inten dere, che tutte le co$e $ian pari, & che la materia $ia uniforme, & eguale per tutto di pe$o, & di lunghezza. Prende$i la lunghezza de i raggi dal punto di mezo, che per centro, o $ottoleua $i pone. $tender ai due raggi eguali mouendo$i i capi di quelli uno all'ingiu, & l'altro all'in$u co- mincieranno a di$egnare un circolo ad uno i$te$$o tempo, & cia$cuno parimente finir à la $ua metà del circolo quando $aranno peruenuti l'uno al luogo dell'altro, ma $e i raggi della bilancia non $a- ranno di pari lunghezza, mouendo$i al $opradetto modo, $egneranno circoli di$eguali, $i che il rag gio maggiore farebbe circonferenza maggiore, quando gli la$cia$$e un $egno, & però mouendo$i l'uno, & l'altro capo ad un i$te$$o tempo, piu ueloce mouimento farebbe il capo maggiore. Que- $to s'intende della bilancia, o $ia ella $o$pe$a dal di$opra, come $i u$a per la piu parte, o $ia $o$te- nuto con un piè di $otto come la figura lo dimo$tra. Euui un'altra maniera di bilancia, che piu pre$to meza bilancia $i puo chiamare, & è detta $tadera. Que$ta ba i raggi $uoi di$eguali, & do ue è il minore, iui $i attacano i pe$i. In que$ta è il centro, o la $ottoleua, come nella bilancia, doue è la lenguella. l'altro raggio è maggiore, & $i $egna con d uer$i punti, $opra i quali ua giocando un pe$o mobile detto il marco, ma da latini equipondio, & da Greci sferoma, affine, che hora piu uicino, hora piu lontano al punto di mezo, leui i maggiori, & i minori pe$i. que$ti ri$ponde alla forza, che muoue, che come forte mano calca il raggio maggiore nella $tadera, il $i mile fa il $econdo pe$o del braccio minore, & $e egli $i muta$$e l'orecchie & la lenguella alla $ta- dera, $i puo dire, che ella fu$$e piu bilancie, & per molte bilancie $i puo u$are uariando$i i luo- ghi delle orecchie, & delle lenguelle per lo leuare di diuer$i pe$i. Quanto adunque è piu uicina la orecchia, & la lenguella alla lance, che è quella catena, doue $i attacca il pe$o, tanto piu $i leua il pe$o, che è in e$$a lance, percioche la linea, che è dall'orecchia al marco è maggio- re. Ecco adunque come la stadera, & la bilancia $iriduceno alla ragione del circolo. $imil- mente la leua $i riduce alla iste$$a ragione, perche la leua è come il raggio della b lancia, la $ot- toleua come il centro, il pe$o ri$ponde alla co$a mo$$a, & la mano di chi calca, a colui, che muo- ue, & quanto è maggiore la stanga dal punto, oue ella $i ferma, tanto piu facilmente $i muoue il</I> <foot><I>NNN</I> 2</foot> <pb n="454"> <I>pe$o per le dette ragioni; di qui na$ce, che apunt ando un legno a mezo nelle ginocchia, & tenen- do$i i capi di quello con le mani, quanto piu lontane $i teniranno le mani dal ginocchio, che è co- me centro, tanto piu facilmente $i romperà il legno. $imil effetto ne na$cerebbe, $e egli $i calca$$e un capo del legno col piede, & di$tante da quello $i tene$$ero le mani. Et ancho entrando un po- co di cugno in un gro$$o, & duro zocco, & percotendo$i con un maglio quel cugno, facilmente $i $pczzail legno, perche il cugno è come la leua, anzi come due, una di $otto l'altra di $opra, & quelle parti del zocco, che $ono tocche da quelle $ono come centri, & $ottoleue: & la forza di chi percote è il mouente, & quella parte del legno, che tocca dalla punta del cugno, ri$ponde al pe $o da e$$er leuato. Similmente quelle forbici, che hanno imanichi maggiori tagliano, o rompe- no piu presto le co$e dure, che le minori, & finalmente tutte le que$tioni mecaniche d'intorno a pe$i $i riduceno a que$te ragioni, come a chi con$idera puo e$$er manife$to: però hauendo noia ba- stanza di$cor$o $opra il pre$ente capo, $eguiteremo Vitruuio, il quale hauendo prouato nella leua il mouimento dritto, & detto l'effetto di e$$a, $eguita a dirne la ragione.</I> <p>Et que$to na$ce perche la parte dinanzi piu corta della leua entra $otto il pe$o da quella parte della $ottoleua, che è come centro, & il capo della leua, che è piu lontano dal centro mentre che è calcato facendo il mouimento circolare co$trigne col calcare con poca for- za porre in bilico un grandi$simo pe$o. <p><I>Il mouimento dritto prouato di $opra ha bi$ogno del mouimento circolare. questo proua Vi- tru. nella leua, ilche $i uede chiaro, percioche tanto il capo del raggio minore, quanto del mag- giore di$egna i circoli, come nella bilancia s' è dimostrato.</I> <p>Simigliantemente $e la lenguella della leua di ferro $arà po$ta $otto il pe$o, & cheil ca- po col calcare non a ba$$o, ma per lo contrario in alto $arà leuato, la lenguella apuntan- do$i nel piano della terra hauerà quello in luogo di pe$o, & l'angulo del pe$o in luogo di $ottoleua, & co$i non tanto facilmente, quanto per la $ottoleua alzerà, nientedimeno all'op po$to del pe$o nel carico $arà commo$$o. <p><I>Quello, che dice Vitr. benche con modo difficile detto $ia, però $i puo intendere a que$to modo, che non $olamente la leua $i adopera calcando uno de capi $tandoui $otto e$$a leua, & alzando il pe$o, come egli ha detto di $opra: ma alcuna fiata per $pigner un pe$o, $i punta la lenguella del- la leua $otto e$$o nella terra, laqual lenguella è ferrata, & propiamente è la leua della $tanga, & l'altro capo $i alza con le mani, di modo che quel punto del pe$o, che ha da e$$er $pìnto, è come centro, & $ottoleua, & la terra è come il pe$o, & il carico, & $e bene a que$to modo $i $pigne un pe$o, non però co$i facilmente è mo$$o, come quando l'uno de capi s'inalza: & la figura di quanto s' è detto è al fine del pre$ente capo. Dalle $opradette co$e Vitr. conclude.</I> <p>Adunque $e la lenguella della leua è po$ta $opra la $ottoleua, $ottentrerà al pe$o con la parte maggiore della $tanga, & il capo di quella $arà calcato piu uicino al centro non potrà alzar'il pe$o, $e non ($i come è $tato $opra$critto) il bilico, & l'e$$ame della leua $arà piu lungo dalla parte della te$ta, & non $arà fatto appre$$o il pe$o. <p><I>Nella leua, come ho detto è il capo, & è quella parte che $i calca con le mani, & la leng uella, che è quella parte, che $ott' entra al pe$o ferrata da capo, tutta la leua è in due raggi partita, da quel punto, che tocca la $ottoleua. $e adunque da quel punto alla lenguella $arà il raggio piu lun- go, che dallo i$te$$o punto al capo, non $i potrà leuar il pe$o, & la ragione è in pronto, perche il raggio maggiore rappre$enta la linea maggiore, che $i parte dal centro, & però fa piu mouimen- io: & que$to $i proua da Vitr. in questo modo, quando egli dice.</I> <p>Er que$to $i puo con$iderare dalle $tadere, perche quando la orecchia è uicinal al capo, doue pende la lance, nelqual luogo ella è come centro, & che il marco, o romano, detto equipondio, nell'altra parte del fu$to uagando per li $egni, quanto è piu lontano con- dotto, $e ben fu$$e pre$$o all'e$tremo del fufto, ancho con men pari pe$o agguaglia il pe- $o, che è dall'altra parte, $e bene è grandi$simo, & que$to adiuiene per lo bilanciar del fu- <pb n="455"> $to, & perche la leua è lontana dal centro. Et con la picciolezza del marco piu debile leuando in un momento maggior forza di pe$o $enza uehemenza dolcemente con$trigne dal ba$$o al di$opra leuar$i. <p><I>Que$to ancho s'intende, per le co$e dette di$opra da nol, quando dimostrato hauemo, che co- $a è stadera, che parti habbia, & che effetti faccia. Ari$t. nella uige$ima quint a questione diman da. Perche cagione la $tadera con un picciol marco pe$a grandi<02>imi pe$i, concio$ia che tutta la $tadera altro non $ia, che meza bilancia, perche da una parte $ola pende la lance, allaquale $i appende il pe$o, dall' altra $enza lance, è la $tadera. Scioglie$i la dimanda, che la stadera ci rap- pre$ent a & la bilancia, & la leua, imperoche è $imile alla bilancia, quando cia$cuna orecchia, & lenguella puo mutar luogo $econdo la quantità de i pe$i, che uolemo leuare, & mutando il luogo, & facendo diner$i centri, da una parte è la lance, ouer uncino doue s'appende il pe$o, dal- l'altra è il marco, in luogo dell'altra lance, ilquale tira il pe$o, che è nella lance, & a que$to mo- do la $tadera è come la bilancia, & però fa gli effetti i$te<02>i per leiste$$e ragioni, & accioche una stadera e$$er po$$a diuer$e bilancie, $e le pone diuer$e orecchie, & lenguelle, cioè $i mutano i centri, doue la $i tiene: uero è che quando pe$amo una co$a, ella è come una $ola bilancia, per- che ha un centro $olo, & due raggi, ma noi mutando il pe$o mutiamo il centro, perche il marco non calca egualmente e$$endo piu uicino, o piu lontano al centro, imperoche quando pe$amo al- cuna co$a, quanto piu il centro, doue è l'orecchia, è uicino al pe$o, tanto piu $i leua, perche la li- nea, cioè il fusto, che è dal centro al marco $i fa maggiore. Ecco adunque le ragioni della bilan- cia ritrouate nella stadera, che da Arist. è Phalange nominata. S'a<02>imiglia anche alla leua, & è come una leua riuer$cia, perche ha dal di $opra la $ottoleua, o pre<02>ione che $i dica, che è la do- ue è il centro, ha la forza, che muoue, che è il marco, che calca il fusto, & calcando è nece$$a- rio, che il pe$o, che è dall'altra parte faccia mutatione, & puo e$$er, che mutando$i i centri $i fac- ciano piu leue, come $i faceuano piu bilancie. Vero è che per l'ordinario alle stadere non $i fan- no piu, che due trutine, cioè non $i muta il centro $e non in due luoghi, & quando $i u a quella trutina, o quelle orecchie, che $ono uicine alla lance dicemo pe$ar alla gro$$a, perche i $egni, & le crocinel fusto $egnati $ono piu larghi, ma quando u$amo il centro piu rimoto dicemo pe$are alla $ottile, & i $egni $ono piu uicini. chiama$i stadera, perche in luogo dell'altra lance sta il marco. Et tanto detto $ia della stadera.</I> <p>Ancho $i come il nocchiero d'una gran naue da carico tenendo l'an$a del temone, oiax detta da greci, in un momento con una mano per la ragione del centro calcando artificio $amente uolge la naue carica di pe$i grandi$simi, di merci, & d'altre co$e nece$$arie. <p><I>Ari$totile nella quinta que$tione dimanda, perche cagione e$$endo il gouerno picciolo & po$to nella e$tremità della naue, ha però tanta forza, che tenendo un'huomo l'an$a di quello nelle mani, & uolgendola de$tr amente, faccia tanto mouimento nelle naui di grandi<02>imo carico. Ri$ponde dicendo, che cio aduiene, perche il timone, & gouerno è come la leua, il mare come il pe$o, il Noc chiero come la forza mouente, la $ottoleua $ono que cardini ne i quali è posto il temone, & il car dine è come centro di quel giro, che dall'e$tremità del temone dall'una, & l'altra parte è di$egna- to. il temone adunque taglia il mare per dritto, & $cacciandolo da un lato muoue la naue per tor to, & per questo e$$endo l'acqua come il pe$o, il temone che per lo contrario $i punta piega la naue, perche il centro, & l'appoggio era riuolto al contrario, alquale e$$endo la naue congiun- ta, di nece<02>ità la naue lo $eguita, di modo che $e'l mare è $cacciato dalla de$tra, il cardine ua alla $ini$tra, & la naue $eguita il cardine. Mail temone $i pone da poppa nella e$tremità della naue, & non altroue, percioche ogni picciolo mouimento, che $i fa da un'e$tremo, quanto maggior è lo $pacio all'altro e$tremo, fa tanto maggior mouimento in quello, percioche le ba$e, che rinchiu- dono quelle linee, che da uno angulo uengono, quanto piu lunghe $ono le linee tanto $ono maggio- ri. Sia lo angulo A. le linee, che uengono da quell'angulo $iano A C. & A D. laba$a. C D. non ha dubbio, che $e le linee $aranno allungate come dallo A. all' F. & dallo A.</I> <pb n="456"> <I>all' H. la ba$a F H. non habbia ad e$$er maggiore, che la ba$a. C D. quando adunque $i far à un breue mouimento dalla poppa, per la lunghezza della naue da poppa à prora, la c- $iremita della prora hauerà $egnato gran parte di circonferenza, & maggiore diquella, che bau- rebbe $egnato la lunghezza della poppa dell'albero, & però $ta bene, che il teinone, che è prin- cipio nel mouimento, & come angulo $ia $u l'estremo.</I> <p>Et ancho le uele alzate a mezo l'albero non danno tanta celerità alla naue, quanto $e $o no alzate le antenne alla $ommità: & la ragione è que$ta, perche $tando nella $ommità n<*> fono uicine al piede dell'albero, che in quel luogo è in uece di centro, ma nella $ommità piu lontane, & da quello piu rimote plgliano le uele il uento. Adunque $i come la leua $ottopo$ta al pe$o, $e per la metà è calcata, è piu dura nell'opera: ma quando il $uo capo e$tremo è calcato, & menato alza facilmente il pe$o, co$i e$$endo le uele a mezo albero hanno minor uirtù, ma quelle, che alla cima po$te $ono allontanando$i dal centro, benche il uento non $ia piu gagliardo, ma lo i$te$$o calcando, o $pignendo la cima sforza la na- ue andar piu innanzi. <p><I>Con lo i$te$$o uento, & con la mede$ima uela anderà la naue piu forte e$$endo ghindata l'an- tenna alla $ommità dell'albero, che al mezo, la ragione è come nella $esta que$tione $i uede, per- che l'albero è come la leua; il piede, la doue $i ferma, è come il centro, & $ottoleua; il pe$o è la naue; il mouimento è il uento: $e adunque il mouente calca, ò $pigne le parti lontane dal centro piu facilmente muoue, che uicino al centro.</I> <p>Ancho i remi con le $trope legati alli $chermi $pinti, & ritirati con le mani, allontanan- do$i dal centro le pale di e$si nell'onde del mare con grande forza $pingono la naue innan- zi, che è di $opra mentre che la prora taglia la rarità del liquore. <p><I>Il remo è come leua, lo $chermo come $ottoleua, il mare come pe$o, $econdo che $i uede nella quarta dimanda: le braccia della leua $ono l'uno dallo $chermo all'acqua, l'altro dallo $chermo alle mani del galeotto: l'effetto è lo iste$$o della leua, & della bilancia, cerca le braccia maggio- ri, & minori, come è gia manife$to.</I> <p>I grandi pe$i parimente quando portati $ono da quattro o $ei, che portano le lettiche, $ono po$ti in bilico per li centri di mezo delle $tanghe, accioche con una certa propor- tione partito il carico cia$cuno de i ba$taggi porti col collo egual parte del pe$o indiui$o, perche le parti di mezo delle $tanghe, nellequali s'inue$teno le cigne, a i collari de porta- tori $ono fitte, & terminate con chiodi, accioche non $corrino di quà, & di là: perche quando oltra i con$ini del centro $i muoueno, premeno il collo di colui, che gli è piu ui- cino, $i come nella $tadera il marco, quando con l'e$$ame ha i termini del pe$are. <p><I>Dimanda Ari$t. nella uige$imanona que$tione, donde na$ce, che $e due portano uno i$te$$o ca- rico $opra una $tanga, non egualmente $ono oppre$$i, $e il pe$o non è nel mezo, ma piu s'affatica colui, che è piu uicino al pe$o ? ri$ponde che la $tanga è in uece di due leue, la cui $ottoleua riuer- $cia è il pe$o, l'e$tremità della leua $ono le parti della $tanga, che $i uoltano uer$o i portatori, de i quali uno è in luogo del pe$o, che nella leua $i deue muouere, & l'altro è in uece della forza, che muoue, & però il braccio piu lungo della leua è quello che è calcato, & l'altro è come quello, che è $otto il pe$o, & $e bene l'uno, & l'altro è oppre$$o, nientedimeno è piu oppre$$o quello, che è piu uicino al pe$o, perche quello, che è piu lontano alza piu la parte $ua, come che gli $ia piu facile l'alzarla e$$endo piu lunga, & dal centro piu rimota; ma $e il pe$o ste$$e nel mezo, la fatica con egual portione diui$a $arebbe, & tanto leuarebbe l'uno, quanto l'altro e$$endo egual- mente dal centro lontani.</I> <p>Per la i$te$$a ragione i giumenti, che $ono $otto il giogo, con egual fatica tirano i pe$i, quando legati $ono in modo, che i loro colli $iano egualmente di$tanti dal mezo, la doue $i lega il giogo: ma quando di quelli $ono le forze di$eguali, & uno e$$endo piu gagliardo preme l'altro, allhora facendo$i trapa$$are la corregia, $i fa una parte del giogo piu lunga, <pb n="457"> laqualc aiuta il giumento piu debile: co$i nelle $tanghe, come ne i gioghi, quando le cigne non $ono nel mezo, ma fanno quella parte, dallaquale pa$$a la cigna piu corta, & l'altra piu lunga: Con la i$te$$a ragione, $e per quel centro doue è la cigna trappa$$ata, l'uno & l'altro capo del giogo $arà uoltato a torno, la parte piu luuga $arà maggiore, & la piu cor- ta minore il $uo giro. <p><I>Que$to è facile per le co$e dette di $opra, però uolendo Vitru. dare una uniuer$ale conclu$ione prouata da i primi principij, dice $eguitando la $ua indottione.</I> <p>Et $i come le ruote minori hanno i mouimcnti loro piu duri, & piudifficili, co$i le $tan ghe, & i gioghi in quelle parti doue hanno minor di$tanza dal centro alle te$te loro pre- meno con difficultà i colli, & quelle, che hanno dallo i$te$$o centro $patij piu lontani, al- legeri$ceno di pe$o i portatori, & in $omma & que$te co$e gia dette al predetto modo ri- ceueno i loro mouimenti col dritto, & col circolare, & ancho i carri, le carrette, i timpa- ni, le ruote, le uide, gli $corpioni, le balifte, i calcatoi de i torchi & le altre machine con le i$te$$e ragioni per lo dritto centro, & per lo circolare riuoltate fanno gli effetti $econ- do la no$tra intentione. <p><I>A me pare che Vitru. de i principij posti da lui, 'egli habbia proposto la ragione di tutte le ma- chine trouate, & che $i po$$ono trouare cerca l'alzare, il tirare, & lo $pignere de i pe$i, che $otto un'i$te$$o nome di machina trattoria è contenuto: La$cia questa bella con$ideratione a gli ingenio$i, che il dritto, & il circolare mouimento, è principio di tutte le co$e dette, & che chi $aperà in e$$e cono$cere il pe$o, la leua, la $ottoleua, & la uirtù mouente, comparando que$te co- $e in$ieme, potrà render conto, & $atisfare a tutte le dimande fatte nella pre$ente materia. A noi re$ta dire alcuna co$a d'intorno le ruote de carri, & cerca le uide, che hanno grandi$sime for- ze, & qua$i incredibili, & dirò quello che dice il Cardano nel libro decimo $ettimo della $ottili- tà delle co$e. Dice egli adunque con $imiglianti ragioni $i fanno le uide. Sia la uida a b. cioè quella che egli Coclea dimanda, & il ma$chio cioè la uida c d, laquale $i gira a'torno co- me $i $uole: $ia il manico giunto al ma$chio e f. ilqual $i uolge col perno g h. facilmente per la detta ragione delle $tanghe, giunto $ia dal ba$$o del ma$chio a piombo un pe$o di cento li- bre, & $ia m. uoltando $i adunque il perno g h. egli $i tirerà</I> k <I>l in $u, & il pe$o m. ande- rà all'in$u, & per lo contrario uoltato il perno. g h. & con la ragione i$te$$a $i $pignerà K l. & piegherà il ferro opposto di una gro$$ezza incredibile, Cire$ta a dimostrare, che il pe$o. m. $i p$$a muouere, & con che ragione, perche e<02>endo centomila libre di pe$o, & $o$tenendo cia- $cuna $pira, o anello della uida il $uo pe$o, $e $aranno dieci uolte, o $pire in cia$cuna $aranno dieci- mila libre, tanto rittengono di pe$o in cia$cuna $pira, quanta è la proportione della ritondità alla fune, a cui è $o$pe$o m. quanto adunque piu $pire $aranno, & piu $trette, & maggiori, tanto piu lieue $i farà il pe$o m. & il mouimento piu facile, benche piu tardo. Adunque nello $pacio di due braccia $i puo fare una uida, con le $pire tanto larghe, & co$i ba$$e, che il pe$o. m. puo da un fanciullo di dieci anni e$$er alzato, ma come ho detto, quanto piu facilmete tanto piu lentamen te $i mouerà. Quando adunque $arà tirato appre$$o la lunghezza l k. bi$ognerà $o$pender il pe$o a quelle co$e, che $o$tentano la machina a i punti. n. & o. & co$i cauata con il contra- rio mouimento.</I> k <I>l. appenderemo il pe$o, & di nuouo tiraremo, & l'alzaremo tanto quanto è lo $pacio</I> k <I>l. finche $pe$$o legando il pe$o, o $ia naue la trarremo del mare, o del fiume: & $i- mile, o tale pen$ar douemo, che fu$$e lo strumento, con che Archimede tirò in merauiglia di $e la leggierezza de Greci, perche a que$to modo un fanciullo potrà tirare una naue carica, che uinti gioghi di buoi non la potrian muouere. ella è di acciaio duri$$imo, perche non $i torca, leg- geri$$imo accio non $ia impedita, $oda, & unta di oglio, perche l'oglio fa $correre, & non la$cia irruginire: & quanto lo $trumento è minore, tanto piu ci dà da merauigliare. Ma pa<02>iamo a i carri. quelli, che hanno ruote maggiori in terra molle con facilità, & pre$to $i muoueno, perche il fango, che s'acco$ta, tocca minima parte delle ruote, & meno impedi$ce, & $empre la ruota</I> <pb n="458"> <I>maggiore fa piu $pacio la, doue ella $ia $officiente al pe$o, & quanto le ruote $aranne di numere minore, il uiaggio $i fa piu pre$to. perche le molte $e $ono picciole, con minor circuito fanno mi- nor $pacio. Se grandi, alla forza aggiungono ancho il pe$o, nè però abbracciano piu $pacio, & perciò $ono piu tarde al mouimento. Però gl Imperatori Romani $i faceuano portare ne i carri di due ruote, perche la doue il pe$o non è molto graue, o con piu caualli $i tira, o il uiaggio $i fa piu pre$to, & per que$to le artiglierie $i tirano $opra due ruote. Di nuouo la ragione della facilità a que$to è del tutto contraria, perche nel $odo piu ruote, & picciole fanno alla facilità, perche il pe$o $i comparte per leruote, dalche $i fa l'aggiunta, & non la moltiplicatione di quelle pro- portioni. Ecco l'e$$empio. moltiplicate tra $e $ei doppie, rendeno la ragione di $e$$antaquattro ad uno, ma le i$te$$e giunte in$ieme fanno duodecupla, perche è gran differenza tra il moltiplicar, & il $ommare delle proportioni. Se una ruota adunq ue porta il pe$o di $e$$antaquattro libre, tan- to uale in $ei ruote dodici. $imilmente non $olo dal numero, ma ancho dalla picciolezza $i prende aiuto, perche quanto piu tarde, tanto piu facilmente $i muoueno. Si dà ancho la terza ragione della facilità, quando il perno non è tanto oppre$$o, piu facilmente e$$endo libero $i riuolge, & co$i ua $eguitando. ma noi poneremo qui $otto la figura di tutte le $oprapo$te co$e, & del pre$en- te, & de i pa$$ati capitoli.</I> <p><I>F la Taglia di $opra, & il luogo doue ella $i lega.</I> <p><I>L la Taglia di $otto detta Artemone, et Pa$tecca, & in Creco Epagon.</I> <p><19> <I>il Pe$o.</I> <p><I>A la Leua, che s'appunta in terra, & lenguella è detto il $uo capo.</I> <p><I>3 il Pe$o.</I> <p><I>1 la $ottoleua detta Hypomochlium, & Pre$$io in latino.</I> <p><I>2 la leua, o manouella detta Vectis in latino, Mochlion in Greco.</I> <p><I>V il Marco, in latino detto Equipondium, in Greco Sferoma.</I> <p><I>Q S Lances.</I> <p><I>X Lances.</I> <p><I>R An$a, Examen, Lenguella.</I> <p><I>8 Cuneus, Cugno.</I> <p><I>7 9 Stanga. 10 Pe$o.</I> <p><I>H G Manico o $tanga.</I> <p><I>M Pe$o.</I> <p><I>O N Coclea la Vida.</I> <p><I>D i Pali.</I> <p><I>L doue $i attacca la Pa$tecca detta Artemo.</I> <p><I>C Chelonia le orecchie.</I> <p><I>F la Regola.</I> <p><I>B Antarij funes le Sartie.</I> <p><I>E il luogo de i Menali.</I> <p><I>X la Bilancia appoggiata.</I> <pb n="459"> <fig> <foot><I>OOO</I></foot> <pb n="460"> <HEAD><I>Delle $orti de gli strumenti da cauar l'acque, & prima del Timpano. Cap. IX.</I></HEAD> <p>Horade gli $trumenti dirò, iquali $tati $ono ritrouati per cauar l'acqua, e$po- nendo la uarietà loro, & prima io ragioncrò del timpano. Que$ti non mol- to alto leua l'acqua, ma molto e$peditamente ne caua una gran quantità. gli $i fa un perno a torno, o a $e$ta, con le te$te ferrate, que$ti nel mezo ha un tim- pano di tauole fermate & po$te in$ieme, & $i pone $opra alcuni legni dritti, che dalle te$te hanno certi cerchielli di lame di ferro, doue $i po$a il perno, ma nel cauo di quel timpa- no po$te $ono dentro per trauer$o otto tauole, che con uno de capi loro toccano il per- no, & con l'altro l'e$trema circonferenza del timpano. que$te tauole comparteno la parte di dentro del timpano con $pacij eguali. D'intorno alla fronte, cioè per taglio, o colello del timpano, $i con$iccano certe tauole la$ciandoui l'aperture di mezo piede, accioche l'ac- qua po$si entrar nel timpano: $imilmente lungo il perno $i la$ciano i buchi, che colomba- ri detti $ono, cauati come'canali nello $pacio di cia$cuno di que compartimenti, & que- $to timpano quando è bene impegolato, & $toppato, come $i fan le naui, è uoltato da gli huomini, che lo calcano, & riceuendo l'acqua per le apriture, che $ono nella fronte del timpano manda quella per li buchi, o colombari del perno, & co$i $ottopo$toui un labro, dalqual e$ce un canale, o gorna che dir uogliamo, $i dà una gran copia d'acqua, & $i $um- mini$tra, & per adacquar gli horti, & per le $aline. Ma quando $arà bi$ogno alzar l'acqua piu alto, la i$te$$a ragione $i permuterà in que$to modo. Faremo una ruota d'intorno al perno della grandezza, che all'altezza, doue farà bi$ogno po$$a conuenire. D'intorno al- l'e$tremo lato della ruota $i con$iccheranno i $ecchielli, modioli nominati; que$ti e$$er deono quadrati, & con cera, & pece ra$$odati: & co$i uoltando$i la ruota da quelli, che la calcheranno, i $ecchielli, che $aranno pieni portati alla $ommità di nuouo ritornando a ba$$o uoteranno da $e nella con$erua per que$to apparecchiata, che ca$tello $i chiama, uo teranno dico quell'acqua, che haueranno $eco in alto portata. Ma $e a piu alti luoghi $i douerà dar l'acqua, nel perno della $te$$a ruota $i porrà una catena di ferro raddoppiata, & riuolta, & $i calerà al ba$$o liuello dell'acqua. a que$ta catena $aranno appo$ti i $ecchiel- li pendenti di rame di tenuta d'un congio: & co$i il uoltar della ruota inuolgendo la cate- na nel perno, alzerà alla $ommità, que' $ecchielli, i quali alzati $opra il perno $aranno con- $tretti a riuer$ciar$i, & uotare nella con$erua, quell'acqua, che haueranno portata. <p><I>Et la interpretatione, & le figure, & l'hauer inte$o le co$e piu difficili, & il uederne ordina- riamente gli e$$empi mi leuan la fatica di commentare que$to, & altri capi di Vitr. ben dirò che in que$ta ultima ruota la catena con i $ecchielli puo e$$er po$ta $ul taglio della ruota, perche an- cho piu alto leuerà l'acqua, come io ho ueduto a Bruggie terra della Fiandra. ma quella è uolta- ta da un cauallo, con altre ruote.</I> <HEAD><I>Delle Ruote, & Timpani per macinar la fari- na. Cap. X.</I></HEAD> <p>Fanno$i ancho ne i $iumi le ruote con le i$te$$e ragioni, che di $opra $critto ha- uemo. D'intorno alle fronti loro s'affigeno le pinne: lequali quando toc- che $ono dall'impeto dell'acqua fanno a forza andando inanzi, che la ruota $i uolga, & co$i con i $ecchielli riceuendo l'acqua, & riportandola di $opra $en- <pb n="461"> za opera di huomini, che la calchino, dallo $pigner del $iume danno quello, che è nece$$a- rio all'u$o. Con la i$te$$a ragione ancho le machine dette Hidraule $i uolgeno, nellequali $ono tutte quelle co$e, che nell'altre machine $i trouano, eccetto che dall'una delle te$te del perno hanno un timpano dentato, & rinchiu$o, che a piombo è drizzato in colcllo con la ruota parimente $i uolge. lungo quel timpano ce n'è un'altro maggiore, anch'egli dentato, & po$to in piano, dalquale è contenuto il perno, che da capo ha il ferro, che con tiene la mola detto $ub$cude, & co$i i denti di quel timpano, che è rinchiu$o nel perno $pi- gnendo i denti del timpano, che è po$to in piano fanno andar a torno la mola. nellaqual machina $tando appe$o il tramoggio, che infundibulo è detto, $ummini$tra il formento alle mole, & con l'i$te$$a giratione frange il grano, & $i fa la farina. <p><I>L'u$o $imilmente, & la figura, con la chiarezza della interpretatione ci dimo$tra quanto è $opradetto. hora ueniremo a piu ingenio$e inuentioni.</I> <HEAD><I>Della uida, che alza gran copia d'acqua, ma non $i alto. Cap. XI.</I></HEAD> <p>Evui ancho la ragione della Vida, che caua molt'acqua, ma non l'alza tanto, quanto la ruota, & la forma di quella in que$to modo $i ordina. Piglia$i un traue, che $ia tante dita gro$$o, quanti piedi ha da e$$er lungo, & $i fa tondo a $e$ta; i $uoi capi per lo circuito loro $i parteno in quarti, o uero in ottaui, $e $i uuole, tirando le linee da un capo all'altro, & que$te linee co$i po$te $ono, che drizzato il traue in piedi a piombo ri$pondino le linee de i capi drittamente l'una con l'altra, & da- poi da que$te, che fatte $ono $u le te$te, da una te$ta all'altra per la lunghezza del traue $ia- no tirate le linee conuenienti in modo, che quanto grande $arà l'ottaua parte nel circuito delle te$te del traue, tanto $iano di$tanti le linee tirate per la lunghezza del traue, & co$i & nella circonferenza delle te$te, & nella lunghezza $aranno gli $pacij eguali. dapoi nelle linee de$critte per lungo $egnar $i deono quegli $pacij, & terminarli con incrocciamenti & $egni manife$ti. Fatto que$to con diligenza, $i piglia una piana di $elice, o di uitice {<I>che Agnoca$to è detto</I>} que$ta piana, è come una $corza fle$sibile, unta poi di liquida pece $i conficca nel primo punto d'una di quelle linee tirate per lungo, dapoi $i riporta al $econ- do punto della $eguente linea, & co$i di mano in mano $i ua riuolgendo per ordine toccan do tutti i punti, & finalmente partendo$i dal primo punto, & uenendo all'ottauo di quella linea, nellaquale la $ua prima parte era con$iccata, peruiene a quel modo: quanto obliqua mente ella procede per lo $pacio, & per gli otto punti, tanto nella lunghezza uiene uer$o l'ottauo punto, & con quella i$te$$a ragione per ogni $pacio della lunghezza, & per cia$cun $egno della ritondità per torto conficcate le regole per le otto diui$ioni fatte nella gro$$ez za del traue, fanno i canali obliqui, & una giu$ta, & naturale imitatione della uida. Dapoi per lo i$te$$o ue$tigio altre piane $i conficcano una $opra l'altra unte di liquida pece, & s'inalzano fin'a tanto, che la gro$$ezza di quel colmo $ia per l'ottaua parte della lunghez- za: $opra quelle d'intorno $i conficcano alcune tauole, che copreno quello inuoglio, & $e le dà la pece copio$amente, & con cerchi di ferro $i legano, accioche per la forza dell'ac qua non $i $ciolgano. Ma i capi del traue circondati $ono, & contenuti da lame, & chiodi di ferro, & in quelli $ono ficcati i pironi, o gli $tili di ferro, & dalla de$tra, & dalla $ini$tra della uida $ono drizzati i pali, che da i capi dall'una, & l'altra parte hanno fitti i loro trauer- $i, ne i quali $ono i buchi circondati, & inue$titi di ferro, ne i quali entrano gli $tili, & coli la uida calcando gli huomini $i uolge. Ma il drizzarla, & il farla piegare quanto $i deue, $i fa nel modo, che $ta il triangolo Pitagorico che ha lo angulo dritto, cioe $econdo la ragio <foot><I>OOO</I> 2</foot> <pb n="462"> ne della $quadra ella ri$ponda in modo, che la lunghezza della uida $ia partita in cinque parti, & per tre di quelle s'inalzi il capo della uida, & co$i ne $eguirà, che dal punto a piom bo di quel capo alle nari da ba$$o della uida lo $pacio $arà di quattro parti. Ma con che ra- gione cio e$$er fatto bi$ogni nel fine del libro ci $arà con la $ua $igura dimo$trato. <p><I>Io ho ueduto que$to $trumento fare una mirabili<02>ima proua nelle no$tre paludi per $eccar l'ac que, che in e$$e colano, & di piu io ho ueduto, che e$$endo le paludi pre$$o il $iume di Erenta la ruota, che uolgeua la uida era posta $opra il fiume di modo, che l'acqua uolgendo la ruota, faceua, che altre ruote, & rocchelli, che dal perno di quella alquanto di$costi erano, $i moue$$ero, & de$- $ero uolta alla uida, che dalla palude cauando l'acqua la faceua cader in un ua$o $ottoposto da cui n'u$ciua un canale di legno, per loquale l'acqua cauata, $e ne andaua nel fiume. Altri uoglio- no, che $i po$$a con la iste$$a acqua dar mouimento ad una ruota, che uolga la uida continuamen- te dopo il primo mouimento, co$i $arebbe un moto qua$i perpetuo. Ma io $timo che ci uogliano altre con$iderationi, però $eruiamoci per adacquare i campi come faceuano gli Egittij, $econdo che riferi$ce Diodoro nel primo libro. & dice, che fu inuentione di Archimede. La fabrica di que$ta machina posta da Vitr. è non men bella, che facile, non men facile, che utile, & s'intende per la nostra interpretatione, & per la figura de$critta da noi.</I> <p>Io ho $critto quanto piu chiaramente ho potuto, accioche tai co$e manife$te $iano di che materia $i facciano gli $trumenti da cauar l'acqua, & con che ragioni $i facciano, & con quai co$e riceuendo il mouimento con i lor giri pre$tino infiniti commodi. <HEAD><I>Della machina fatta da Cte$ibio, che alza l'acqua molto in alto. Cap. XII.</I></HEAD> <p>Seguita, che faccia la dimo$tratione della machina di Cte$ibio, laquale alza molto l'acqua. Quella $i fa di rame, a piè dellaquale $ono due moggetti al- quanto di$tanti, liquali hanno le lor canne, o trombe (& $ono in modo di forchelle) ad uno i$te$$o modo attaccate, & concorrenti amendue in un ca- tino tra quelle po$to nel mezo. in que$to catino por $i deono le animelle di legno, o di quoio po$te alle bocche di $opra delle canne $ottilmente congiunte, accioche turando i fori delle dette bocche, non la$cino u$cire quello, che con il $offiare $arà nel catino man dato. $opra'l catino c'è una penola come un tramoggio riuer$o, che con una fibbia col catino trapa$$atoui un cugno, è $aldata, accioche la forza del gon$iamento dell'acqua, non la co$tringa alzar$i: di $opra c'è una fi$tola (che tromba $i chiama) $aldata, & dritta. i mog- getti ueramente da ba$$o tra le narici trapo$ti hanno i perni, o animelle $opra i buchi di quelle, che $ono ne i fondi loro, & co$i dal di$opra ne i moggetti entrando i ma$chi fatti al torno, & unti d'oglio, rinchiu$i & bene a$$aggiati con $tanghe $i uolgeno: que$ti di quà, & di là con frequenti mouimenti premendo, mentre che i perni otturano l'aere, & l'acqua, che iui $i troua fanno forza a i buchi, & $cacciano l'acqua per le narici delle canne nel ca- tino $offiando per le pre$sioni, che $i fanno, dal catino la penola riceuendo l'acqua lo $pi- rito, manda fuori per la tromba $operiore l'acqua, & co$i da ba$$o po$ta la con$erua, & il luogo capace per riceuer l'acqua, ella $i $ummini$tra alle $aline. Nè que$ta $ola ragione di Cre$ibio $i dice e$$er $tata prontamente ritrouata, & fabricata, ma ancho di piu, & al- tre di uarie maniere, che $i mo$trano forzate dall'humore con le pre$sioni dallo $pirito mandar in luce gli effetti pre$tati dalla natura, come $ono delle merle, che col mouimen- to mandano fuori i $uoni, & le co$e che $i auicinano, che finalmente muoueno le figurine che beueno, & altre co$e, che con diletto lu$ingano gli occhi, & le orecchie: dellequali io ho $celto quelle, che io ho giudicato grandemente utili, & nece$$arie, & quelle, che non <pb n="463"> <fig> <pb n="464"> $ono utili, & commode al bi$ogno della uita, ma al piacere delle delicie, $i potranno tro- uare da quelli, che di e$$e de$idero$i $aranno, dai commentari di Cte$ibio. <fig> <p><I>Cte$ibio molto commendato in diuer$i luoghi trouò una machina mirabile da alzar l'acqua, & questa è tra le machine $piritali collocata. Vitruuio prima ne fa la dimostratione della pra- tica, dipoi commenda Cte$ibio di diuer$e inuentioni. Quanto adunque a$petta alla fabrica, io di- co, che $i apparecchia un catino, o uero una conca di rame, laquale ha un coperchio di rame det- to Penula da Vitr. che è come un tramoggio riuer$o, dalla cui $ommità e$ce una tromba, & il tut- to è bene $tagnato, & $aldato in$ieme, accioche la uiolenza dell'acqua non l'apra, o rompa. nel fondo del catino $ono due bocche da Vitr. Narici nominate coperte di quoio, o di legno in modo, che quel quoio, o legno $i puo alzare, & abba$$are, $i come $i uede ne i folli, o mantici; Que$ti le- gni Vitr. a$$i, noi animelle chiamamo, & $i leuano uer$o il coperchio, ma quando $ono calcati dal- l'acqua, che è dentro il catino, otturano le bocche, allequali $ono $aldate due canne dette da Vitr. fi$tule, che partitamente $tendendo$i una dalla de$tra, l'altra dalla $ini$tra, $ono in$erte, & $tagna te pre$$o i fondi d'alcuni $ecchi, che Vitr. Modioli $uol nominare, ne i fondi de i quali $ono le ani- melle come nel catino. Entra poi dal di$opra de i detti $ecchielli un ma$colo per cia$cuno tornito, & unto bene, & a$$aggiato a punto, come $i uede nel gonfietto della palla da uento. que$ti ma- $coli da i manichi loro di $opra hanno, o $tanghe, o leue, o altra co$a che gli alzano, & abba$$ano come dimostra la figura, & Vitr. lo la$cia alla uoglia di chi fa que$ta machina. Quando adunque $i leua un ma$colo $tando l'altro a ba$$o, l'acqua per una bocca del $ecchio la doue è l'animella nel fondo $ott'entra $eguitando l'aere, accio non $i, dia uoto, & qua$i a$$orbita empie il $ecchiel- lo, mentre l'aere e$ce per la canna. quando poi $i abba$$a il detto ma$colo, egli calca l'acqua, & quella non potendo u$cire per la bocca di $otto e$$endo quella dall'animella otturata, quanto piu $i calca, tanto a$cende per la canna, & entra nel catino. in que$to mezo dall'altro $ecchiello alzan do$i il ma$colo, l'acqua entra per la $ua bocca, & lo riempie, & dinuouo abba$$ando$i calca l'ac-</I> <pb n="465"> <I>qua, & la fa $alire per la $ua canna nel catino, & iui trouando l'altr' acqua, & non potendo quel- la tornar a ba$$o, e$$endo le bocche dal quoio otturate, $ale, & boglie mirabilmente, & e$ce per la tromba di $opra, & $i fa andare doue l'h uom uuole: & questa è la fabrica della machina ri- trouata da Cte$ibio, alla cui $imiglianza fatte $ono le trombe, che $eccano, & uotano le naui, quando fanno acqua: bella, & utile inuentione, $i come diletteuoli $on quelle, che dice Vitru. e$- $er state per diletto da Cte$ibio ritrouate, doue $i fanno $altare, & cantar gli uccelletti, & con l'appro<02>imar$i d'alcune co$e, $i fanno, che gli animali beuino, & le $igure $i muouino come ne di- mo$tra IIerone. Eenche quella parola Engibbata, ouero è $corretta, o uuole dir altro.</I> <HEAD><I>Delle machine Hidraulice con le quali $i fanno gli Organi. Cap. XIII.</I></HEAD> <p>IO non la$cierò a dietro di toccare quanto piu breuemente potrò, & con $crit tura con$eguire a punto, cio che a$petta alla ragione delle machine Hidrauli ce. Egli $i fa una ba$a di legno ben collegata, & congiunta in$ieme, in quel la $i pone un'arca di rame, $opra la ba$a dalla de$tra, & dalla fini$tra $i drizza- no alcune regole po$te in$ieme a modo di $cala, in que$te $i includeno alcuni moggetti di rame con i loro cerchielli mobili fatti $ottilmente al torno, que$ti nel mezo hanno le lor braccia di ferro conficcate, & lor fu$aioli con i manichi, congiunte & riuolte in pelli di la na. Dipoi nel piano di $opra ci $ono i fori circa tre dita grandi uicino a quali, ne i lor fu- $aioli po$ti $ono i Delfini di rame, che dalla bocca loro pendenti hanno dalle catene i cem bali, che calano di $otto i fori de i moggetti nell'arca doue è ripo$ta l'acqua, iui è come un tramoggio riuer$o, $otto il quale $ono certi ta$$elli alti cerca tre dita, i quali liuellano lo $patio da ba$$o po$to, tra i labri inferiori del forno, & il fondo dell'arca. <p><I>Que$ta fabrica dimachina è difficile, & o$cura, il che Vitr. afferma nel fine del pre$ente Ca- po, benche egli dica hauerla chiaramente e$po$ta, & nel principio del mede$imo capo ci promet- ta di uoler ciò fare, & toccar la co$a, quanto piu uicino $i puo: ma con $omma breuità, & io $timo che egli cio fatto habbia, & e$$eguito, auenga che altri dica, che que$ta forma di Vitr. $ia piu presto per un modello, che per una e$qui$ita dimo$tratione, affermando che Nerone tanto $i di- lettaua di que$te machine Hidraulice, che conteneuano l'acqua, & per piu canne mandando fuori l'aere con l'acqua in$ieme faccuano un tremante $uono, che tra i pericoli della uita, & del- lo imperio, tra gli abbuttinamenti de i $oldati, & de i capitani, nel $opra$tante, & manife$to pericolo, non la$ciaua il pen$iero, & la cura di quelle: & che poi e$$endo diuulgati i libri di Vi truuio, Nerone non l'haue$$e co$i care, poi che con uulgata ragione fu$$ero fabricate. Et a me pare, che $e bene minutamente Vitr. non ci e$pone tutte le co$e, che entrano nella detta ma- china, come egli ancho non ha fatto nelle altre, pre$upponendole a$$ai manife$te, pure ci dia tan to lume, che con la indu$tria, & con la diligenza $i puo fare quello, che egli c'in$egna: perche ancho $e uogliamo de$criuere la fattura de gli Organi no$tri, che u$iamo, cono$ceremo chiaramen te, che non potremo co$i minutamente dimo$trare l'artificio loro, che non ci re$ti difficultà ap- pre$$o quelli, che di que$ti $imili $trumenti non fanno profe$$ione, & non ne hanno pratica: tan- to piu ci deue parere $trano l'antichità, sì per la proprietà de uocaboli, sì per la nouità delle co$e, che $ono di$u$ate; benche l'organo di Vitr. conuegna in molte co$e con l'organo, che u$iamo, per- che nell'uno, & nell'altro, è una i$te$$a intentione di $onare mediante l'aere, di dar le uie allo $pi- rito per certi canali, che entri nelle canne, che quelle $i otturino, & aprino al piacer no$tro, che s'accordino in proportione di mu$ica, che $iano diuer$e, & facciano diuer$i $uoni, & $imili co$e, che di nece$$ità $ono in que$ti organi, & in quelli, benche altrimenti $i facciano. Percioche io non trouo, che gli antichi u$a$$ero i mantici, benche $i $erui$$ero di co$e, che faceuano lo i$te$$o</I> <pb n="466"> <I>effetto riceuendo l'aere, & lo $pirito, & $cacciandolo $econdo il bi$ogno, come nella machina di Cte$ibio dimo$trato hauemo. Herone $imilmente de$criue una machina Hidr aulica, la quale in- $ieme con altre co$e, è qua$i in mano d'ogni $tudio$o, & noi per diletto po$to hauemo nella lingua no$tra i libri di quello autore. Per e$ponere adunque quanto s'intende dalle parole di Vitr. & quello, che con la indu$tria, & lume dello ingenio$o Marcolino hauemo: Io dico, che per fare la machina Hidraulica bi$ogna prima fare un ba$amento di legname, affine che $opra e$$o tutto l'apparecchio dell'Organo $i fermi, & $pecialmente un' arca, o ua$o di rame, nel quale $i ha da por l'acqua, dapoi $opra la ba$a dalla de$tra, & dalla $ini$tra dalle te$te $i drizzano alcune rego le contenute in$ieme da altre attrauer$ate a modo di $cala, & $ono come un telaro della machina. in que$te regole $i $errano alcuni moggetti di Rame, come quelli della machina Cte$ibica $oprapo $ta. que$ti hanno i lor fondelli, o cerchielli mobili fatti a torno con diligenza, & $ono come ma- $coli, che entrano ne i moggetti, anzi come que legni, che entrano ne i gonfietti delle palle da uento, & $ono inue$titi di lana, o di feltro, & di pezze come i gonfietti. que$ti moggetti $on drit tì, & uengono ariferire nell'arca di rame, hanno di $opra i manichi, & le catene, che calano in e$$i a modo delle trombe di naue. que$te catene e$ceno dalla bocca di alcuni Delfini co$i formati per adornamento, & $ono co$i chiamati dal mouimento loro, che $i ra$$omiglia allo effetto, che fanno i Delfini nel $uo apparire fuori & rituffar$i nell'acqua; & è uero, & co$i come noi chia- miamo gallo quello $trumento, che $i uolge in una canna, & apre la uia all'acqua, che e$ce di qualche ua$o, co$i quel delfino cra uno strumento, dalla bocca del quale pendeuano le catene, le quali catene erano attaccate ad una $tanga, la qual era bilicata, & $taua in uccello, come dice- mo noi, nel mezo $opra una regola dritta. Nell'arca di rame era come un tramoggio riuer$o alzato dal fondo dell'arca tre dita con certi ta$$elli, & que$to $i faceua per tenir il tramoggio alzato dal fondo dell'arca, accioche l'acqua ui pote$$e entrare di $otto uia. que$to tramogio non baueua fondo, & l'acqua, che er a nell'arca, era po$ta per premer l'aere, che entraua per alcu ne canne nel tramogio, $i come nelle piue pa$torali $i preme il quoio, che ritiene il fiato, & co$i que$t' acqua oppre$$a dallo aere lo $cacciaua con forza all'in$u per una tromba, che era in capo del tramoggio, la qual tromba portaua lo fiato, & lo $pirito in una ca$$etta, della quale Vitru. parla in que$to modo.</I> <p>Sopra la te$ta gli è una ca$$etta ben $errata, & congiunta che $o$tenta il capo della ma- china detta il Canone mu$icale, nella cui lunghezza $i fanno quattro canali $e lo $trumen to e$$er deue di quattro corde, $ei $e di $ei, otto, $e di otto. in cia$cun canale po$ti $ono i $uoi bocchini rinchiu$i con manichi di ferro. que$ti manichi quando $i torceno, o dan uolta, apreno le nari dall'arca ne i canali, & da i canali il canone per trauer$o ha di$po$ti i $uoi fori, o buchi, che ri$pondeno, & s'incontrano nelle nari, che $ono nella tauola di $opra, la qual tauola in Greco Pinax, da noi $ommiero è detta. Tra la tauola, & il regi- $tro trapo$te $ono alcune regole forate allo i$te$$o modo, & unte di oglio, accioche facil- mente $i $pignino, & di nuouo $iano tirate dentro. l'effetto di que$ti è otturare i buchi, & perche $ono da i lati, però da Greci pleuritide $ono detti. di que$te lo andare, & il ritor no ottura altri di que fori, & altri apre. Similmente que$te regole hanno attaccati, & fit ti i loro cerchielli di ferro congiunti con le pinne ( che ta$ti chiamamo, ) le quali quando toccati $ono muoueno le regole. Sopra la tauola contenuti $ono i buchi, per li quali da i canali e$ce il fiato, & lo $pirito. Alle regole incollati $ono gli anelli, ne i quali rinchiu$e $ono le lenguelle di tutti gli organi. <p><I>Bello Artificio è que$to, & degno di con$ider atione. $opra la canna del tramoggio nella te- $ta è congiunta una ca$$etta di legno, que$ta riceue il fiato, che uiene dalla tromba, o canna del tra- moggio, & lo ri$erua per mandarlo in alcuni canali fatti $opra una regola larga al numero de i re gistri. Que$ti canali, che $ono per la lunghezza del canone, hanno per trauer$o alcuni fori, $opra il componimento di que$ta regola con i canali & fori $uoi ui è una tauola, che copre ogni co-</I> <pb n="467"> <I>$a & $erra (dirò <*>o$i) per tutto, & copre il canone; que$ta è detta il $o<*>ero, & ba tanti fori nella $operficie $ua di $opra, quanti $ono i fori fatti ne i canali, & $i $contrano beni$$imo; que $ti fori $ono fatti $econdo il numero delle canne, che $uonano, le quali canne $tanno dritte ne i buchi del $ommiero; hauēdo noi adunque i canali $orati, & la tauola forata cō ri$pondēti fori: Interpone mo alcune regole tra la tauola, & i canali, le quali pa$$ano da un lato all'altro, & $ono $imilmente forate con fori ri$pondenti alli fori del canale, & del $ommiero; ma $ono fatte in modo, che calcãdo i loro man chi, che uenghino in fuori $i po$$ino riuolgere, & col $uo uolgimēto facciano rincontrare i loro buchi cō i buchi de i canali, & del $ommiero, accioche il fiato po$$a u$cir alle cãne dell'orga no. i manichi uer amēte $ono come catenazzi in forma di tre membri. Hãno que$ti manichi attacca ti alcune anella, nelle quali $i $errano le lenguelle di tutti i detti strumēti, cioè di tutti i ta$ti; queste lenguelle erano come pendole, o di duro corno, o di lamette, & erano per ordine lungo lo strumen- to di$poste, & collocate obliquamente, fatte in forma di foglia di porro, i Greci le chiamano Spa telle, Vitr. dalla forma loro le chiama lenguelle. A i capi loro erano attaccate alcune funi pic- ciole, o catenelle, le quali $i legauano a i manichi delle regole, le quali e$$endo toccate & depre$ sè tirauano per le funi i capi delle lenguelle, & contra la piega loro le uolgeuano, che poi la$ciati i manichi ritornauano al $uo luogo, & uolgendo le regole faceuano, che i lor buchi uon $i incon- trauano piu con i buchi del canale, & del $ommiero, $i come toccando$i, que manichi le regole $i uolgeuano, & riportauano i buchi all'incontro uno dell'altro, & quelle regole al modo, che $i u$a $i chiamano ta$ti.</I> <p>Ma a i moggetti $ono le canne continuamente congiunte con i capi di legno, che per- uengono alle nari, che $on nella ca$$etta, nelle quali $ono le animelle tornite, & iui po$te affine, che riceuendo la ca$$etta il fiato, otturando i fori non lo la$cino piu tornare: co$i quando $i alzano le $tanghe, i manichi tirano a ba$$o i fondi de i moggetti, & i delfini, che $ono ne i fu$aioli calando nella boccai cembali riempieno gli $patij de i moggetti, & i ma nichi alzando i fondi dentro i moggetti per la gran forza, & per lo $pe$$o battere, otturan do i fori, che $ono $opra i cembali, fanno andar per forza lo aere, che iui è per lo calcare co$tretto, nelle canne, per le quali egli ua ne i capi di legno, & per le $ue ceruici nell'ar- ca, ma per lo forte mouimento delle $tanghe il fiato $pe$$o compre$$o entra per le apertu- re de i bocchini, & empie i canali di uento. Di qui na$ce, che quando i ta$ti toccati con le mani $cacciano, & ritirano continuamente le regole otturando i fori di una, & apren- do a uicenda i fori dell'altra, fanno u$cire i $uoni $econdo le regole mu$icali con molte ua- rietà di moduli, & d'harmonie. Io mi ho forzato quanto ho potuto, che una co$a o$cu- ra chiaramente $ia $critta. Ma que$ta non è ragion facile, nè e$pedita da e$$er capita $e non da quelli, che in tali co$e $ono e$$ercitati. Ma $e alcuno per gli $critti hauerà poco inte- $o, quando cono$ceranno la co$a come ella $ta ueramente, ritroueranno il tutto e$$er $ta- to $ottilmente, & curio$amente ordinato. <p><I>I moggetti hanno le lor canne congiunte dalle bande, le quali canne $i riferi$ceno nel tramog gio, perche in e$$o portano il fiato: hanno que$ti moggetti le lor animelle prima nel fondo po$te di dentro uia, per le quali $i tira lo aere, come per buchi de i mantici, dapoi dal piede doue $ono at- taccate le canne nella bocca loro hanno ancho le altre animelle, che s'apreno, accioche quando l'aere è tirato ne imoggetti, & poi calcato con i fondelli le animelle del fondo $i chiudino, & quelle delle canne $i aprino, & lo aere entri nelle fi$tule, che uanno al tramoggio, le quali deo- no e$$er con i capi loro $tagnate nel tramoggio, come $i è detto della machma di Cte$ibio. Al- zando adunque le $tanghe, che hanno le catene, che $o$tentano i cembali entranti ne i moggetti, $i a$$orbe l'aere per le animelle di $otto<*>, & calcando poi l'aere è $pinto per le canne nel tramog- gio, & a$cende per la canna del tramoggio alla ca$$etta, & ui entra dentro. apron$i i bocchi- ni, che Epi$temi $ono detti da Vitr. dalla ca$$etta a i canali, ne i quali entra lo aere, ma non pri- ma egli ua a far $uonare le canne, che non $i tocchi con le dita i ta$ti, cioè i manichi delle regole,</I> <foot><I>PPP</I></foot> <pb n="468"> <I>perche bi$ogna col toccar di que manichi uolger le regole, che entrano tra il canone, & il $om- miero, accioche tutti i buchi s'incontrino, & $ia libera pa$$ata dello aere alle canne. Io dirò che Vitr. non ha la$ciato co$a pertinente a que$ta de$crittione $aluo che la de$crittione delle lenguelle' ma era co$a nota come erano, & come $i faceuano, però egli la pre$uppone, & dicendo lenguel la parla di una co$a allhora cono$ciuta. l'acqua $caccia lo aere, & fa quello effetto, che fa il piombo $opra i mantici de gli organi no$tri.</I> <HEAD><I>Con che ragione $i mi$ur a il uiaggio fatto, o in carretta, o in naue. Cap. XIIII.</I></HEAD> <p>Traportiamo hora il pen$ier no$tro di $criuere ad una non inutile ragione, ma con grande ptontezza dataci da no$tri maggiori, con che uia quelli, che $ic- deno in carretta, o nauigando $aper po$sino quanti miglia di camino habbia- no fatto. Et que$to $i fa co$i. Sieno le ruote della carretta larghe lungo il diametro quattro piedi, & due dita. Et que$to $i fa accioche hauendo la ruota in $e un certo, & determinato luogo, & da quello cominci andando inanzia girar$i, & peruenen- do a quel $egno certo & determinato, doue ella cominciò girar$i, habbia finito ancho un certo, & determinato $patio di piedi dodici, & mezo. Poi che que$te co$e co$i apparec- chiate $aranno allhora nel moggetto della ruota alla parte di dentro $ia fermamente rin- chiu$o un Timpano, il quale fuori della fronte della $ua ritondezza porgi un eminente dentello. Dapoi dal di$opra del ca$$ero della carretta confitta $ia una ca$$a, che habbia un timpano, che $i muoua po$to in coltello, & $ia nel $uo pernuzzo rinchiu$o. Nella fronte del detto Timpano $iano i denti egualmente compartiti di numero di quattrocento, & conuenghino que$ti incontrando$i nel dentello del Timpano inferiore. Dapoi al Timpa no di $opra da un lato confitto $ia un'altro dentello, che uenghi fuori oltra gli altri denti. Egli $i fa ancho il terzo Timpano dentato con la i$te$$a ragione, & è po$to piano in un'al- tra ca$$a, che habbia i denti, che ri$pondino a quel dentello, il quale è confitto nel lato del $econdo Timpano, dapoi nel Timpano, che è po$to in piano faccian$i buchi per poco piu, o poco meno delle miglia di quello, che per lo uiaggio d'un giorno $i puo pa$$are, perche non ci darà impedimento. In cia$cuno di que$ti buchi po$ti $iano alcuni $a$$olini ritondi, & nella ca$$a di quel Timpano faccia$i un foro, che habbia un canale, per lo qua- le que $a$$olini cader po$sino nel ca$$ero della carretta, que $a$$olini dico, che $aranno po- $ti in quel Tlmpano, quando uenuti $aranno dritto $opra quel luogo, caderà cia$cuno in un ua$o di rame, $ottopo$to, & co$i, quando $ia che la ruota andando inanzi muoua in$ieme il Timpano di $otto, & il $uo dentello in ogni giro con$tringa pa$$are i dentelli del Timpano di $opra, ella farà, che e$$endo uoltato il Timpano di $otto quattrocento fiate, quel di $opra $arà uoltato una $ola; & il dentello, che gli è dallato confitto, farà an dare inanzi un dentello del Timpano, che $ta nel piano. Quando adunque per quattro- cento giri del Timpano inferiori, $i uolterà una fiata quel di $opra, lo andare inanzi $arà di cinquemila piedi, & di mille pa$si, & da quello quante palle cadute $aranno $onando, tan ti miglia ci daranno ad intendere, che haueremo fatti. Ma il numero delle palle dal ba$$o raccolto ci dimo$trerà la $omma de i miglia fatti dal uiaggio d'un giorno. <p><I>A$$ai facile è la $opra$critta dimo$tratione, pure che con ragione Arithmetica inte$a $ia, pe- rò per maggiore dichiaratione $i dirà, che que$to artificio di mi$urare il uiaggio andando in car- retta con$i$te nella grandezza delle ruote, la qual grandezza e$$er deue certa di mi$ura cono$ciu- ta. Quando adunque $ia, che dal diametro $i cono$ca la circonferenza del circolo, egli è nece$- $ario far le ruote d'un diametro certo, & mi$urato, però Vitr. fa i diametri delle ruote di quat-</I> <pb n="469"> <I>tro piedi, & due dita, di dodeci che uanno a far un piede, però $ono la $e$ta d'un piede, accioche la circonferenza della ruota $ia manife$ta, & intende per que$to, che la circonferenza uolga do- dici piedi & mezo, entrando il diametro tre fiate nella circonferenza del circolo. e$$endo adun- que la ruota di dodici piedi & mezo di circonferenza, & po$to un $egno in e$$a doue ella tocca la terra, & facendola girare $opra la terra, fin che il mede$imo $egno ritornial luogo di prima, ha- uerà $cor$o lo $patio di dodici piedi & mezo. Se adunque ogni compito giro di ruota, mi da dodi- ci piedi, & mezo di terreno, uolgendo$i la ruota quattrocento fiate, mi darà cinque mila piedi; & $e uanno viuticinque piedi per pa$$o, mi darà mille pa$$i, & mille pa$$i mi danno un miglio. Ma accioche $i cono$ca quante fiate la ruota $i uolga, non $olamente con gli occhi, ma con l'orec chie, Vitruuio ce lo in$egna facilmente, come $i uede nel te$to, & la figura piu chiaramente lo dimo$tra.</I> <p>Similmente nel nauigare mutando alcune co$e $i fanno que$ti artificij, perche $i fa pa$- $are per li lati delle bande della naue un perno, il qual con le $ue te$te e$ce per le parti e$te- riori della naue, nelle quali s'impongono le ruote di quattro piedi, & un $e$to di diametro. que$te ruote nelle fronti loro hanno le lor pinne, che toccano l'acqua, nella metà del per no: Dentro della naue al mezo c'è un Timpano, con undentello, che e$ce dalla $ua cir- conferenza, iui appre$$o euui una ca$$a col$uo Timpano dentato di quattrocento dentelli egualmente di$tanti, & conuenienti al dentello di quel Timpano, che è po$to nel perno; ha di piu un dentello nel $uo lato, che $porta in fuori oltra la ritondità $ua, & c'è un'altro Timpano piano, confitto in un'altra ca$$a dentato allo i$te$$o modo: co$i il dentello con- fitto al lato di quel Timpano, che $ta in coltello urtando in que dentelli di quel timpano, che $ta in piano, per ogni uolta che egli da a torno, facendo andar uno di que dentelli uol ge il Timpano, che è po$to in piano, nel quale $ono i fori, doue $i ripongono i $a$$olin ritondi: & nella ca$$a del detto Timpano $i caua un foro, che ha un canale, per lo quale il $a$$olino liberato dall'o$taculo, cadendo in un ua$o di rame, ne farà $egno col $uono, & co$i la naue $pinta, o da remi, o da uento toccando le pinne delle ruote l'acqua contraria forzate da grandi $pinte a drieto uolteranno le ruote, le quali uolgendo$i danno di uolta al perno, il perno uolgerà il Timpano, del quale e$$endo il dentello raggirato, per ogni giro, che egli dia a torno urtando in un dentello del Timpano $econdo lo farà fare mode rati giri, & co$i poi che le ruote uoltate $aranno dalle pinne quattrocento fiate, faranno dar'una uolta $ola al Timpano po$to in plano per lo incontro del dentello po$to nel lato di quel Timpano, che è in coltello. Il giro adunque del Timpano piano quante fiate ue nirà per mezo il foro manderà fuori i $a$$o lini per lo canale, & co$i & col $uono, & col nu mero dimo$trerà gli $patij delle miglia della nauigatione. <p><I>Que$to artificio è $imile a quello della carretta, ma io uedo, che puo e$$er impedito il gir ar del- le ruote, o per l'acqua, o per altri accidenti, però io la$cio che la pruoua $ia quella, che lo con- fermi. La figura ci dimo$trerà quanto è $critto, & dell'organo, & della mi$ura del uiaggio, per che que$te $ono co$e, che la $crittura non puo a pieno dimo$trare, però bi$ogna che la pittura le ponga dinanzi a gli occhi, & molto piu puo un buon ingegno capire di quello, che dimo$tra la pit tura, & $e al buon ingegno fu$$e aggiunta la pratica di fare altre $imili machinationi, non ha dub bio, che la $crittura $ola gli ba$terebbe, ma inuero bi$ogna na$cerci, & hauere inclinatione na- turale, & diletto di operare. Et qui fa fine Vitr. di trattare di quelle co$e, che appartengono all'utile, & al diletto de gli huomini al tempo, che $ono $enza $o$petto, & in pace. alle quali co $e io potrei a pompa molte co$e aggiugnere di quelle, che mette Herone, ma egli mi pare, che $i- mili artificij deono e$$er tenuti in reputatione, perche da molti, che non intendeno $ono tenuti ui- li, & hauuti in poco pregio. Ma non $anno di quanto grande utilità puo e$$er il $aperne render conto, & quante co$e, che non $ono po$te da gli autori, $i po$$ono ritrouare a beneficio del mor- do per gli $critti di quelli, e$$endo (come io ho detto nel primo libro) gran uirtù, & gran forza</I> <foot><I>PPP</I> 2</foot> <pb n="470"> <I>po$ta ne i principij, come ancho chiaramente $i ha potuto comprendere dal di$cor$o fatto di $opra nel pre$ente libro circa le machine, come in tutte la ragione del mouimento dritto è cirolare, & come la merauiglio $a natura del circolo $eruando in $e molte contrarietà, ci dà cau$a di fare quel le marauiglio$e opere, che fanno con$entire la natura repugnante delle co$e alle uoglie de gli buo mini: per il che io non potrei a ba$tanza fare a<*>uertiti gli Architetti, & quelli, che uogliono fare molte belle, & utili machinationi a commodo delle genti, che debbiano continuamente pen- $are, & ripen$are & machinare (dirò co$i) $opra i principij po$ti da Vitr. & da noi, & molto prima da Ari$totile nelle $ue mecaniche, le quali pare che $iano $tate leuate di pe$o, & traporta te da Vitr. in un $olo capitolo, benche con $omma breuità, $econdo il co$tume di que$to autore, come ancho s' è ueduto nel nono libro, nel di$cor$o de i mouimenti de i Cieli', & del trattamento de gli horologi, & poco di $opra nella de$crittione della machina Hidraulica. nel che $i uede il $uo mirabile giudicio (come io ho detto piu uolte) nella $cielta delle co$e, perche le minute, le or dinarie, le u$itate & facili $ono $tate la$ciate; le belle, le importanti, le difficili, & le $cielte $o- no $tate elette, & propo$te, & e$poste alla intelligenza delle genti. Ma tempo è che $eguitamo l'in$tituto no$tro, & e$$eguiamo l'ultima parte, che ci re$ta a fornire tutto il corpo della Archi- tettura, che è quella parte, delle machine, che ci $erue all'u$o della guerra.</I> <fig> <p><I>A. Aqua in arca ærea depre$$a. B. Delfini ærei. C. Modioli ærei. i Moggetti di Rame. D. Le Regole in forma di $cala. E. Taxilli, ta$$elli di tre dita alti. F. Cathenæ Cymbala te- nentes. G. Infundibulum inuer$um. Tramoggio detto Phigeus. H. Fi$tulæ, le Canne pe<*></I> <pb n="471"> <fig> <pb n="472"> <I>le quali, lo aere delli Moggetti entra nel Tramoggio. I. Veltes, Stanghe. K. Manubria, Manichi, che ogni uolta che $i preme li Ta$ti $i uoltano, & apreno le Nari, che mandano il uen- to alle canne de l'Organo, che $uonano. L. Pinnæ $ub quibus $ub lingulæ omnium organorum. i. i ta$ti e lenguelle. O. Le Regole tra'l Sommiero detto Pinax, & i regi$tri. P. Pinna depre$- $a, un ta$to calcato. Q. Tabula, il Sommiero. R. La Figura de i ta$ti $eparata perche me- glio s'intenda. S. Lingulæ, lenguelle. T. Ceruicula, il collo, o la canna. V. L'acqua cacciata in $u tra L'arca il Tramoggio dal uento delli Moggetti. X. Pars arcæ, parti dell' arca. Quelli punti nella forma de i Tasti $eparate, $ono fori del Sommier, che danno il uento alle canne.</I> <HEAD><I>Delle ragioni delle Catapulte, & de gli $corpio- ni. Cap. XV.</I></HEAD> <p>Horaio e$ponerò con che mi$ure apparecchiar $i po$sino quelle co$e, che $tate $ono ritrouate a i pre$idi della guerra, & alla nece$sità della con$eruatione, & $alute de mortali, che $ono le ragioni de gli $corpioni, Catapulte, & Ba- li$te, & prima dirò delle Catapulte, & de gli Scorpioni. Dalla propo$ta lunghezza della $aetta, che in que$ti $trumenti $i tira, tutta la loro proportione $i ragio- na: & prima la grandezza de i fori, che $ono ne i loro capitelli, è per la nona parte di e$$a, & que$ti fori $ono quelli, per li quali $i $tendeno i nerui torti, i quali deono legare le brac- cia delle Catapulte. Ma i capitelli di que fori e$$er deono della $otto$critta altezza, & lar- ghezza, le tauole che $ono di $opra, & di $otto dal capitello, che Paralelle dette $ono tanto $ono gro$$e, quanto è uno di que fori, larghe per uno & noue parti, ma ne gli e$tre- mi per un foro & mezo. Ma le erte dalla de$tra, & dalla $ini$tra, quelle, che Para$tate $i chiamano, oltra i cardini alte $ono quattro fori, gro$$e cinque, i cardini per mezo foro, & un quarto, dal foro all'erta di mezo $imilmente $ia lo $pacio di mezo foro, & un quarto, la larghezza dell'erta di mezo per un foro e—la gro$$ezza d'un foro, & lo $pacio doue $i po- ne la $aetta nel mezo dell'erta per la quarta parte d'un foro. Ma le cantonate, che $ono a torno de i lati, & nelle fronti, conficcate e$$er deono con lame di ferro, o pironi di rame, o chiodi, la lunghezza del canale, che in Greco è detta Strix, e$$er deue di fori diecenoue, la lunghezza de i regoli, che alcuni buccule appellano, che $i con$iccano dalla de$tra, & dalla $ini$tra del canale e$$er deue di fori diciotto, & l'altezza d'un foro, & co$i la gro$$ezza, & $i affiggeno due regole, nellequali entra un molinello, ilquale è lungo tre fori, largo mezo, & la gro$$ezza della bocchetta, che $i affige, $i chiama Camillum, o $econdo alcuni Locullamento con i cardini $otto$quadra, & d'un foro, l'altezza $ua di mezo foro, la lun- gheza del molinello è di noue fori, la gro$$ezza della Scutula di noue fori. Et la lunghez- za di quella parte che è detta, Epitoxis, è di mezo foro & d'un ottauo della metà, la gro$- $ezza d'un'ottauo. Similmente l'orecchia, o il manochio, è lungo tre fori, largo & gro$- $o mezo foro, & un quarto, la lunghezzi del fondo del canale è di $edici fori, la gro$$ez- za di noue parti, & la larghezza della metà, & d'un quarto, la colonnella, & la ba$a nel pia- no di otto fori, la larghezza del zocco doue $i pone la colonnella, è di mezo foro, & d'un ottauo della metà, la gro$$ezza è della duodecima, & della ottaua parte d'un foro, la lun- ghezza della colonnella al cardine è di dodici fori, & noue parti, la larghezza di mezo fo- ro, & d'un quarto della metà, la gro$$ezza è d'un terzo, & d'un quarto d'un foro. Di quel- la $ono tre capreoli, o chiauette, la lunghezza de' quali è per noue fori, la larghezza per mezo, & noue parti, la gro$$ezza per un'ottauo, la lunghezza del cardine di noue parti d'un foro, la lunghezza del capo della colonna d'un foro & mezo &.—————— ————la gro$$ezza d'un foro, la colonna minore di dietro, che da Greci è detta <pb n="473"> Antiba$i è di fori otto, la larghezza di.——la gro$$ezza di.—la $ottopo$ta de forl dodici, & $ia della i$te$la gro$lezza, & larghezza. $opra la minor colonna c' è una orrec- chia, o letto che $i dica, o $cagnello, di fori——l'altezza di fori——la larghezza di fo- ri, i——de i na$pi $ono di fori, la gro$$ezza d'un foro. — -la larghezza di——& la gro$$ezza di——ma alli trauer$i con i cardini, $i da la lunghezza di fori dieci, la larghez za di quindeci <15> <14> & la gro$$ezza di dieci—la lunghezza del braccio di fori——la gro$$ezza delle radice————————————Que$te co$e con tali proportioni, o aggiugnendo, o $cemando $i fanno, perche $e i capitelli, che Anatoni $i dicono, $aranno piu alti della larghezza, allhora $i deue leuare delle braccia, accioche quanto piu rime$$o $arà il tuono per l'altezza del capitello, la cortezza del braccio faccia il colpo maggiore, $e'l capitello $arà men alto, che Catato<*>o $i dice, perche è piu forte, deono le braccia e$$er piu lunghe, accioche piu facilmente $i reggano. imperoche $i co- me la leua, quando è lunga quattro piedi, quello che $i alza da cinque huomini, fatta poi di otto piedi, da due $olamente $i leua: co$i le braccia quanto piu lunghe $ono tanto piu molli, & quanto piu corte, tanto piu duramente $i maneggiano. <p><I>Qui bi$ogno è bene che Iddio ci aiuti, percioche nè la $crittura di Vitr. nè di$egno d'alcuno, nè forma antica $i troua di queste machine; io dico al inodo da Vitr. de$eritto; & lo ing egnar$i è pericolo$o, imperoche molto bene di$correndo $i potrebbe fare alcuno di quelli $trumenti, per ti- rar $a<02>i, o $aette, ma che fu$$ero a punto come Vitru. ci de$criue, $arebbe co$a grande, oltra che le ragioni de i mede$imi $trumenti col tempo dopo Vitr. $i $ono mutati, perche la proua, & l'u$o nelle co$e della guerra, come in molte altre fa mutar le forme de gli $trumenti, & a nostri giorni quelle machine $ono del tutto po$te in di$u$o, però io credo che io $arò degno di e$cu$atione, $e io non entrerò in fanta$ia di e$poner quelle co$e, che per la difficultà loro, anzi per la impo<02>ibilità $ono tali, che hanno fatto leuare da que$ta impre$a huomini di piu alto ingegno, & di maggiore e$perienza che non hoio. Dirò bene che dal fine cioè dallo effetto, che $i uuol fare, $i puo troua- re ogni $trumento, come nella pre$ente occa$ione. Bali$ta, Catapulte, & Scorpione $ono $iru- menti datirar pietre grandi, & $aette: certo è che dalla intentione, & dal fine potemo prepa- rare $imili strumenti, con$iderando, che per far colpo gagliardo & lontano, & per tirar gran pe$o, ci bi$ogna grandi for ze, & tali for ze, che $ian dall'arte ordinate, percioche nel muouere i gran pe$i la natura è contraria a gli huomini, come detto bauemo. all' arte dunque appartiene or- dinare tali $trumenti, che tirati a forza, & rila$ciati con uiolenza mandino i pe$i lontani, & ciò non $i puo fare $enza chiaui, carcature, o leue, lequali habbiano doue appuntar$i, & fatte $ieno con proportione ri$pondente al pe$o, che $i deue trarre, & però dalla natura del pe$o $i dà la pro- portione della grandezza a tutte le parti dello in$trumento: adunque il modulo, che nelle fabri- che $i piglia $arà con$iderato ancho nella parte delle machine, & pero la $immetria, & l'ordine $i richiede ancho in que$ta parte, & $imilmente la di$po$itione, il decoro, & la bellezza dello a$petto, & l'altre co$e po$te da Vitr. nel Primo libro. Dalla lunghezza adunque della $aetta, o dal pe$o della pietra con ragione $i deue pigliar la mi$ura di que$te machine, come ancho dal pe$o della palla $i forma il pezzo, $i dà la carcatura, & $i tempra l'artigliaria de no$tri tempi, perche è nece$$ario, che ci $ia proportione tra quello, che muoue, & la co$a, che è mo$$a, la doue chiara- mente $i proua, che nè una pagliuzza, nè uno $mi$urato pe$o puo e$$er da un'huomo $enz'altro in- $trumento tirato, perche in quello c' è il meno, in que$to il piu $enza proportione tra il mouente, et la co$a, che è mo$$a: & perche la $aeita, & la pietra deue e$$er accommodata ad alcuna parte, però $e gli fa il $uo letto, & il $uo canale: & perche la fune, il neruo, ò altro, che $pigne la $aet- ta deue e$$er con ragione $te$o & tirato, & annodato a qualche co$a, & quella $imilmente ad altra parte, che la co$tringa, & quella ferma e$$er deue, & unita con altre parti ad un' effetto, ac- ciò $e le conuegna la diffinitione della machina, però ci na$ce la nece<02> tà di tutte le parti de tali $trumenti come $ono i trauer$i, le erte, le chiauette, le tauole, i perni, i cardini, i canali, i regoli, o</I> <pb n="474"> <I>na$pi, le leue, le orecchie, le braccia, i capitelli, le colonnelle, i fori, le bocchette, & altre co$e che Vitru. dice, le mi$ure dellequali in e$$o per il tempo, & per la negligentia di molti $ono an- date, benche la ragione, & il perche di e$$e cire$ti pigliando$i il tutto dalla ragione della Leua, & della Bilancia. I nomi uer amente, & i uocaboli di que$ti $trumenti, o machine $ono tolte da qualche $imiglianza delle co$e, o da qualche effetto, o uero fanta$ia, come appre$$o di noi Schiop- po, & Bombarda, dal $uono, Arcobu$o dalla forma, Pa$$auola<*>te, Ba$ili$co, & Falconetto da gli effetti: co$i Bali$ta dal tirare, Scorpione, perche con $ottil punta di $aetta daua la morte, & for$e quella era auelenata, & Catapulta $imilmente dalla celerità del colpo, & Arcubalista, & altre co$e $rmili, & dalla forma, & da gli effetti er ano nominate. & a imitatione di uno di tali $trumenti gia molti anni ne fu formato uno tutto di ferro (in picciola forma con le corde di ne<*>- uo) che in molte parti $i conforma con la narratione di Vitru. il quale è in una delle $ale dello ar- mamento dello Eccellenti$$imo Con$ilio di X. La$cierò adunque che il tempo ciporti qualche lu- me, perche ancho da gli autori Greci non $i puo cauare co$a, che buona $ia, $e bene $ono gli i$te<02>i che cita Vitru.</I> <HEAD><I>Delle ragioni delle Bali$te. Cap. XVI.</I></HEAD> <p>IO ho detto delle ragioni delle Catapulte, & di che membri, & con che pro- portioni $i faccciano. Ma la ragione delle Bali$te $ono uarie, & differenti, però tutte $ono ad uno effetto drizzate, perche altre con $tanghe, altre con molinelli, alcune con molte taglie, & con molti raggi, alcune con argane, & altre con ruote & Timpani $ono tirate. Ma con tutto que$to niuna Bali$ta $i fa $e non $econdo la propo$ta grandezza del $a$$o, che da tale $trumento $i manda: però della ragio ne di quelle non è ageuole a tutti, & e$pedita co$a trattarne, $e non a qulli, che hanno l'arte di numerare, & moltiplicare, perche $i fanno ne i capi alcun fori, per gli $patij de i quali tirate $ono & caricate, con capello di donna $pecialmente, o con neruo le funi, le quali $i pigliano dalla proportione della grandezza del pe$o di quel $a$$o, che ha da e$$er tirato dalla Bali$ta. Si come dalla lunghezza della $aetta detto hauemo pigliar$i la mi$ura delle Catapulte. Ma accioche ancho quelli, che non hanno le ragioni della Geometria, & della Arithmetica polsino e$peditamente operare, pcrche nel pericolo della guerra non $iano occupati nel pen$arui $opra, io farò manife$to riducendo la co$a alla ragione de i no $tri pe$i quelle co$e, che io ho hauute per certe, & quelle, che in parte io ho appre$e da mei precettori, & con quali co$e i pe$i de i Greci habbian ri$petto a i moduli $ommaria- mente io $on per e$ponere. <p><I>Si puo creder molto a Vitr. in que$ta materia, percioche egli era prepo$to all' artigliarie, & all' apparato delle Bali$te, Scorpioni, & delle Catapulte, $econdo che egli afferma nella dedica- tione del libro. Potemo ancho uedere quanto nece$$ario $ia all' Architetto la cognitione del- l' Arithmetica, & della Geometria, come egli ha detto nel primo libro, perche le proportioni de numeri, & le $olutioni delle co$e, che con numeri non $i po$$ono fare, ma $i bene per uia di linee, come prouato hauemo nel nono libro, uengono dall' arte del numerare, & dall' arte del mi$urare: & qui ci $erue quella dimanda di trouare le linee di mezo proportionali a dua date, $econdo che dice Archimede, & Vitr. delle ragioni loro.</I> <pb n="475"> <HEAD><I>Della proportione delle pietre, che $i deono trarre al foro della balista. Cap. XVII.</I></HEAD> <p>Qvella Bali$ta, che deue mandar fuori una pietra di due libre hauerà il foro del $uo capitello di cinque dita, $e di quattro libre, dita $ei, $edi otto, dita $ette, & noue parti, $e di dieci, dita otto, & noue parti, $e di uenti, dita dieci, & no ue parti, $e di quaranta, dita dodici & mezo & K. $e di $e$$anta dita tredici, & l'ottaua parte d'un dito, $e di ottanta dita quindeci, & noue parti d'un dito. Se di cen to & uenti, piedi uno & mezo, & d'un dito & mezo <15> <14> $e di cento & ottanta, piedi due & dita cinque, $e di ducento libre piedi due, & dita $ei, $e di ducento & dieci, piedi due, & dita $ette <15> <14> $e di ducento & cinquanta, piedi due dita undeci & mezo. Determi nata la grandezza del foro faccia$i una Scutula detta da Greci Peritritos, che per lunghez- za $ia due fori, & della duodecima, & ottaua parte d'un foro, la larghezza due fori, & della $e$ta parte d'un foro. Parti$ca$i la metà della di$egnata linea, & poiche $arà partito $iano ritirate, & ra$tremate le ultime parti di quella forma di modo, che quella linea hab bia la $ua torta di$egnatione per la $e$ta parte della lunghezza, ma di larghezza la doue è la $ua piega habbia la quarta parte. Ma la doue è la curuatura, la doue gli anguli con i capi loro $portano in fuori, & i fori $i deono uoltare, & il ra$tremamento deue tornar in die- tro per la $e$ta parte della larghezza. Il foro $i fa di forma alquanto lunghetta tanto, quan to è gro$$o l'Epizige. poi che co$i $arà formato parti$ca$i a torno di modo, che ell'habbia la e$trema curuatura dolcemente uoltata <15> <14> la gro$$ezza $ia d'un foro. Facian$i i mog getti di fori 11 & mezo, la larghezza 59 <15> <14> la gro$$ezza oltra quello, che entra nel foro $ia di fori 51, all'ultimo della larghezza $ia di fori 15. la. lunghezza delle erte $ia di fori V S 5. la curuatura per la metà d'un foro, la gro$$ezza. u. d'un foro & LX. parte egli $i da di piu alla larghezza quanto s'è fatto appre$$o il foro nella de$crittione in larghezza, & gro$$ezza la. V. parte di un foro. L'altezza la quarta parte, la lunghezza della regola che è nella men$a è di fori otto, la larghezza, & la gro$$ezza, per la metà del foro. la gro$$ez- za del Cardine 112 <15> <14>. gro$$ezza del foro 199 <15> <14> la curuatura della regola 15 K la larghezza, & gro$$ezza della regola e$teriore tanto, la lunghezza, che ci darà la uer$ura della formatione, & la larghezza dell'erta, & la $ua curuatura K. Ma le regole di $e pra $a- ranno eguali alle regole di $otto. K. le men$e del trauer$o di fori uuK la lunghezza del Fu- $todel Climaciclo di fori tredici <15> <14> la gro$$ezza di tre K lo $patio di mezo largo una quarta d'un foro. <15> la gro$$ezza un'ottaua <15> <14> K. la parte di $opra del Climaciclo che è uicina congiunta alla men$a per tutta la $ua lunghezza $i parte in cinque parti, delle qua- li due $i danno a quel membro, che i Greci chiamano Chilon <15> la larghezza 5. la gro$$ezza 9 <15>. la lunghezza di tre fori & mezo K. le parti prominenti del chilo di mezo foro, quel la del Plenthigomato di 3. d'un foro, & d'un Sicilico. Et quello, che è a i perni, che $i chiama la Fronte trauer$a è di tre fori, la larghezza delle regole di dentro 5. d'un foro, la gro$$ezza 3 K. il riempimento dell'orecchia che è per coprire la Securina s'intende K. la larghezzza, del fu$to del Climaciclo 25. la gro$$ezza di fori dodici K. la gro$$ezza del qua drato, che è pre$$o al Climaciclo F S d'un foro, ne gli e$tremi K. ma il diametro dell'a$$e ritondo $arà eguale al chilo, alle chiauette. 5. manco una $e$tadecima K. la lunghezza del l'anteridio di fori F 1119, la larghezza 5 <15>: d'un foro, la gro$$ezza di $opra 2 K. la ba$a, $i chiama e$cara per lunghezza è di fori <15> la contraba$a di fori quattro <15> <14> la larghezza, & gro$$ezza dell'una, & dell'altra <15> <14> d'un foro, $i caccia a mezo una colonna di altez- <foot><I>QQQ</I></foot> <pb n="476"> za K. la cui larghezza, & gro$$ezza è d'un foro, & mezo, ma l'altezza non ha proportio- ne di foro, ma $arà ba$tante quello, che $arà nece$$ario all'u$o <15> <14> d'un braccio, la lun- ghezza di fori VI <15> <14> la gro$$ezza nella radice ne gli e$tremi F. Io ho e$po$to quelle $im- metrie trattando delle Bali$te, & delle Catapulte, che io ho giudicato $ommamente c$pe dite, ma come $i carchino, & tirino con funi torte di neruo, & di capelli, quanto potrò con i $critti abbracciare non la$cierò. <p><I>Et qui che potemo noi dire in tanta $correttione di te$to? in tanta confu$ione di mi$ure, & in tanta o$curità di uocaboli? Mirabile era certo que$ta machina tirando fin ducento è cinquanta li bre di pe$o, & ci uoleua una grandi$$ima manifattura, di parti & membri di e$$a.</I> <HEAD><I>Delle tempre, et car cature delle Baliste, et delle Ca- tapulte. Cap. VXIII.</I></HEAD> <p>Piglian$i traui lunghi$simi $opra i quali $i conficcano i gattelli, dentro de quali uanno i na$pi, ma per mezo gli $patij di quelle traui $i ta gliano dentro le for- me, nelle quali s'inue$tono i capitelli delle Catapulte, & con cugni $ono fer mati, & tenuti accioche nel caricarle, & tirarle non $i muouino. Piglian$i poi i moggetti di rame, & quelli $i metteno dentro ne i capitelli, dentro i quali uanno i cugnetti di ferro detti da Greci Epi$chidi: oltra di que$to ui $i pongono le an$e delle cor- de, & $i fanno pa$$are dall'altra parte, & d'indi $i riportano a i na$pi, inuolgendo$i nelle $tanghe, accioche per quelle $te$e, & tirate le corde quando con le mani $aranno toc- che, habbian eguale ri$pondenza di $uono nell'una, & l'altra parte, & quando hauere- mo fatto que$to, allhora con cugni a i fori, $i $errano di modo, che non po$$ono piu am- mollar$i, & co$i fatti pa$$are dall'altra parte con la i$te$$a ragione con le $tanghe $i $tende- no per lina$pi, fin che $uonino egualmente, & co$i con i ferramenti de i cugni $i tempra- no le Catapulte al $uono con udito, & orecchia mu$icale. <p><I>Que$to accennò Vitr. nel primo libro uolendo, che lo Architetto haue$$e qualche ragione di Mu$ica: perche $e è quella proportione da $uono, a $uono, che è da $patio a $patio, non prima $errar $i deono i fori po$ti ne i capi, per li quali $i tirano le funi torte, che rendino $uoni eguali, & allhora renderanno $uoni eguali, che ci $arà parità di $patij, & eguale tiramento dalla de- $tra, & dalla $inistra delle funi: & quando que$to dall'orecchia $arà udito, allhora $arà molto bene temperata la carcatura, & il colpo $arà dritto & giu$to, come la ragione ci dimo$tra.</I> <HEAD><I>Delle co$e da oppugnare, et da difendere, et pri- ma della inuentione dello Ariete et della $ua machina. Cap. XIX.</I></HEAD> <p>IO ho detto quello, che io ho potuto di que$te co$e. Re$tami dire delle ma- chine da battere, & da oppugnare in che modo con machinationi i uittorio$i capitani, & le città e$$er po$sino dife$e. Prima quanto appartiene alla oppu- gnatione, co$i $i dice e$$er'$tato ritrouato l'Ariete. I Carthagine$i per oppu- gnar Gade s'accamparono, & hauendo prima pre$o il ca$tello $i sforzarono di gettarlo a terra, ma poi che non haueuano ferramenti per roinarlo pre$ero una traue, & que$ta con <pb n="477"> le mani $o$tenendo, & urtando con uno de capi continuamente andauano $calcinando la $ommità del muro, & $mantellando i primi cor$i delle pietre a poco a poco leuarono tut- ta la dife$a. Dapoi accadè, che un certo fabro di Tiria detto Pefa$meno lndutto da que $ta ragione, & inuentione, drizzata un'antenna da quella ne $o$pe$e un'altra per trauer$o in bilancia, & co$i tirando indietro, & $pignendo inanzi congran colpi roinò il muro de i Gaditani. Ma Cetra Calcedonio fece prima un ba$amento di legno po$to $opra ruote, & poi $opra ui fabricò con traui dritti, & con chiaui, & trauer$i uno $teccato, & in que$ti $o$pe$e, & appiccò l'Ariete, & di corami di buoi fece la coperta, accioche piu $icuri fo$$e- ro quelli, che nella machina po$ti fu$$ero a batter la muraglia, & que$ta $orte di machina per e$$er alquanto tarda ne i forzi $uoi, fu dal detto Te$tudine Arietaria nominata. Po$ti adunque da prima que$ti gradi, a tal $orte di machina, auuenne dapoi che quando Philip- po figliuolo d'Aminta $i po$e all'a$$edio, & a batter Bizantio, che Polindo The$$alo ui ag- giun$e molte $orti, & molte facilità, dalqual poi impararono Diade, & Cherea, che anda- rono al $oldo con Ale$$andro. Perche Diade ne i $uoi $critti dimo$tra hauer trouato le torri, che andauano, lequali ancho disfatte $olea portar nello e$$ercito. Oltra di que- $to egli trouò la Triuella, la machina a$cendente, per laquale a piè piano $i poteua pa$$a- re alla muraglia. Et ancho trouò il Coruo, che roinaua le mura, detto Grue da alcuni. Similmente u$aua lo Ariete con le ruote di $otto, le ragioni delquale egli ci la$ciò $critte, & dice, che la piu picciola torre non deue e$$er men alta di cubiti $e$$anta, larga 17, ra$tre- mata di $opra la quinta parte del $uo di$otto, & che le erte da ba$$o di dieci parti d'un pie- de, & di $opra di mezo piede $i douean fare, & che bi$ogna fare quella torre di dieci ta- uolati, & che per ogni lato hauer deue le $ue fine$tre. Ma la torre piu grande doueua e$- $er alta 120 cubiti, larga 22 & mezo <15> <23> & rà$tremata di $opra $imilmente la quinta parte <15>: i $uoi dritti o erte dal fondo d'un piede, dal di $opra di mezo piede, & que$ta altezza egli faceua di uenti tauolati, & cia$cuno tauolato haueua il circuito di tre cubiti, & la copriua di corami crudi, accioche fu$$ero da ogni colpo $icure. L'apparecchio del- la Te$tuggine Arietaria $i faceua con la i$te$$a ragione. Perche haueua lo $pacio di trenta cubiti, l'altezza oltra la $ommità di 16. ma l'altezza della $ommità del $uo piano di $ette cu biti. V$ciua in alto, & $opra il mezo fa$tigio del tetto una torricella non meno larga di 12 cubiti, & di $opra s'alzaua in altezza di quattro tauolati, nellaquale dal tauolato di $o- pra $i poneuano gli Scorpioni, & le Catapulte, & dalla parte di $otto $i raccoglieua una grande quantità di acqua per e$tinguer il fuoco, ca$o che egli ui fu$$e gettato. Poneua$i ancho in e$$a la machina Arietaria, detta da Greci Chriodochi, nella quale $i poneua un ba$tone, o morello fatto al torno $opra ilquale era po$to l'Ariete, che a forza di funi ti- rato inanzi, & indietro faceua co$e merauiglio$e, & que$to ancho come la torre era di co rami crudi coperto. Quanto alla triuella egli ci la$ciò $critto que$te ragioni. Egli face- ua quella machina, come una te$tuggine, che nel mezo nelle $ue erte haueua un canale, co- me $i $uol far nelle Bali$te, & nelle Catapulte. Que$to canale era lungo cinquãta cubiti, alto uno, & in e$$o $i poneua per trauer$o un na$po, & dal capo dalla de$tra, & dalla $ini$tra due taglie, per lequali $i moueua quel traue col capo ferrato, che uiera dentro, $otto lo i$te$$o canale quelli, che erano rinchiu$i $icuri, faceuano piu pre$ti, & piu gagliardi i mo- uimenti di quella. Sopra quel traue, che iui era $i gettauano gli archi, & i uolti per copri- re il canale, accioche $o$tene$$ero il corame crudo, colquale era quella machina in uol- ta. Del Coruo egli non pensò che fu$$e da $criuere alcuna co$a, hauendo auuertito, che quella machina non era di alcun ualore. Ma della machina che s'acco$taua grecamente Epiuatra nominata, & delle machinationi da mare, che po$$ono entrar nelle naui, egli $o- lamente ha prome$$o di $criuere. io ho bene auuertito, che egli non ci ha le $ue ragioni e$plicate. Io ho $critto quelle co$e, che appartengono allo apparecchi<*> delle machine <foot><I>QQQ</I> 2</foot> <pb n="478"> $critte da Diade. Horaio dirò quelle co$e, che io ho hauuto da miei precettori, & chea me pareno di utilità. <p><I>Le co$e trattate nel pre$ente cap. della inuentione dello Ariete, & della fabrica $ua, & delle Torri, & Te$tuggini, & della triuella, & delle altre machine $ono a$$ai bene inte$e, però non mi par' che $ia nece$$ario tentar di e$plicarle meglio, & di queste $e ne fa mentione appre$$o gli Hi- $torici, & de gli effetti loro $e ne parla copio$amente, & i nomi di queste machine, come gli altri $ono pre$i dalle forme, & da gli effetti loro, come facilmente $i puo intender, $enza no- $tra fatica.</I> <HEAD><I>Dell'apparecchio della te$tuggine per le fo$- $e. Cap. XX.</I></HEAD> <p>LA Te$tuggine, che $i apparecchia alla cong<*>$tione delle fo$$e, & che ancho $i puo acco$tare alle mura, in que$to modo $i deue fare. Faccia$i una ba$a det- ta E$chara da Greci, & $ia que$ta quadrata per ogni lato piedi uenticinque, i $uoi trauer$i quattro, & que$ti contenuti $iano da altri due trauer$i gro$si f. 5. larghi. 5. & $ian que$ti trauer$i di$tanti tra $e da un piede & mezo, & per ogni $pacio di quelli $iano $otto po$ti alcuni arbo$celli Amaxopodes detti da Greci, ne i quali $i uolta- no i perni delle ruote cerchiati di lame di ferro, & quegli arbor$celli $iano co$i tempera- ti, che habbian i cardini, & i fori loro per doue le $tanghe pa$$ando po$$ano quelli a torno uoltare, accioche inanzi, & indietro dalla de$tra, & dalla $ini$tra, & per torto in angu- lo, doue ricercherà il bi$ogno per gli arbor$celli inanzi muouer $i po$sino. $opra la ba$a po$ti $iano due trauicelli, che $portino in una, & nell'altra parte $ei piedi, d'intorno a quegli $porti conficcati ne $ian due altri, che $portino inanzi le fronti piedi $ette gro$- $i, & larghi come $ono quelli, che nella ba$a de$critti $ono. $opra que$ta collegatu- ra drizzar $i deono le portelle congiunte, oltra i cardini di piedi noue, gro$$e per ogni uer$o un piede, & un palmo, lontane una dall'altra un piede & mezo. Siano que— $te dal di$opra rinchiu$e tra le traui cardinate, $opra le traui po$ti $iano i capreoli, o chiaui, che co i cardini l'uno entri dentro l'altro & $iano leuati piedi noue, $opra i capreoli $i pone un traue quadrato, che lega, & congiugne i traui, & que$ti da i lo- ro laterali d'intorno conficcati $ian contenuti, & coperti bene con tauole $pecialmente di palme, ilche $e non $i puo, pigli$i altra $orte di legno, oltra il pino, & l'alno, che po$$a e$$er buono per que$to effetto, percioche il pino, & l'alno $ono fragili & facilmente rice- ueno il fuoco. D'intorno i tauolati po$ti $iano i craticci di $ottili$sime uerghe molto den $amente conte$te, & $pecialmente uerdi, & fre$che, cucitoui i crudi corami doppij, & riempiti di alica, o di paglie in aceto macerate $ia d'intorno tutta la machina inue$tita, & co$i da que$te co$e $aranno ribattuti i colpi delle Bali$te, & $cacciati gl'impeti de gli incendij. <HEAD><I>Delle altre te$tuggini. Cap. XXI.</I></HEAD> <p>Evui un'altra $orte di Teftuggine, che ha tutte le altre co$e al modo, che han- no le te$tuggini $opra$critte, eccetto che i capreoli: ma hanno d'intorno il parapetto, & i merli fatti di tauole, & dal di$opra, i $ottogrondali che $tan- no in pioucre, che $i contengono $opra le tauole, & i corami fermamente con$iccati, & di $opra ci è po$ta dell'argilla con capello battuta tanto gro$$a, che il fuoco <pb n="479"> per modo alcuno non po$$a far danno alla detta machina. Egli $i puo ancho, quando bi- $ogno $ia, far que$te machine di otto ruote comportando co$i la natura del luogo. Ma quelle te$tuggini, che $i fanno per cauar $otto, che da Greci $ono Origes nominate, han- no tutte le altre co$e (come è $opra$critto) & le fronti di quelle $i fanno come gli angoli de i triangoli, accioche quando il $acttume dalle mura mandato in quelle percuoterà, non riceuino i colpi con le fronti piane, ma $correndo da i lati $enza pericolo, quelli che dentro $ono, & che cauano $iano dife$i. Non mi par alieno dal propo$ito no$tro e$poner, le ra- gioni di quella Te$tuggine, che fece Agctore Bizantino. Era la ba$a piedi 60 per lunghez za, 18 per larghezza, drizzate erano 4 erte $opra la $ua colligatione di due traui compo- $te, cia$cuna d'altezza di piedi 36, gro$$e un piede, & un palmo, larghe un piede, & me- zo. Haueua la ba$a otto ruote, & con quelle era condotta. L'altezza delle ruote era di pie- di u 15 <25> la gro$$ezza di piedi tre, & co$i fatte di tre doppie di materia & $otto$qua dra alternamente po$te in$ieme, & con lame di ferro legati. Que$te ne gli arbor$cel- li, o amaxotopodes che $i dichino, $i uolgeno, & poi $opra il piano de i tran$tri che erano $opra la ba$a erano drizzate le porte di piedi 18 <25> di larghezza 5 <25> & di gro$$ezza p. 2. di$tanti tra $e 15 <25> $opra quelle i traui $errate a torno conteneuano tutta quella le gatura, & compactione. <14> <15> larghe piedi 1 <25> gro$$e 5 <25> $opra quella erano alzati i capreoli piedi 12, $opra i capreoli era un traue po$to, che congiugneua gl'inca$tri delle chiaui. Et di piu haueua di $opra i laterali fitti per trauer$o, $opra i quali era il tauolato a torno, che copriua le co$e di $otto, & nel mezo del tauolato erano alcuni trauicelli doue eran po$ti gli Scorpioni, & le Catapulte. Drizzauan$i, ancho due erte po$te in$ieme, & di $opra inca$trate di piedi 36: <15>: gro$$e un piede & mezo <15> <14> larghe due, congiunte con i capi ad un traue trauer$o con i cardini, o inca$tri, che $i dica, & un'altro trauer$o tuttauia tra due fu$ti anch' egli con $uoi inca$tri, & legato con lame di ferro, $opra il quale alternamente era po$to il legname tra i fu$ti, & il trauer$o rinchiu$o tra le orecchie, & i manichi fermamente, in quella materia erano due pernuzzi fatti al torno, a i quali e$$endo le funi legate $o$teneuano l'Ariete, & $opra il capo di quelli, che conteneuano l'Ariete era un parapetto ornato a $imiglianza d'una Torricella di modo, che $tando due Soldati $en- za pericolo pote$$ero riguardar da lunge, & riportar quello, che tenta$$ero i nemici. l'Ariete di quello haueua di lunghezza piedi ciy <14> <15> di larghezza al ba$$o un piede, & un palmo <14> <15> di gro$$ezza un piede <14> <15> ra$tremato dal capo in larghezza 1 <14> <15> in gro$$ezza 5 <25> Que$to Ariete haueua il ro$tro, & la punta di duro ferro, al modo, che $ogliono hauere le naui lunghe, & dal ro$tro quattro lame di ferro cerca 15 piedi era- no fitte lungo il legno. Et dal capo al piede del traue eran tirate quattro funi gro$$e otto dita, al modo che l'albero della naue da poppa a prora è ritenuto, & a quel traue erano con trauer$i attorchiate le funi raccommandate, che tra $e erano di$tanti un piede, & un palmo; & di $opra tutto l'Ariete era coperto di corami crudi, & da quelle funi, delle qua- li pendeuano i loro capi eran fatte quattro catene di ferro inuolte ancho e$$e in corami cru di. Similmente il $uo $porto haueua un'arca fatta di tauole, & confitta con gro$$e corde $tirate, per l'a$prezza delle quali non $correndo i piedi facilmente $i perueniua all'altezza del la muraglia, & quella machina nello andar a $ei modi $i moueua, inanzi, per lato dalla de $tra, & dalla $ini$tra, s'alzaua, & s'abba$$aua. Drizzaua$i in altezza per roinare il muro da cento piedi, & per lato dalla de$tra, & dalla $ini$tra correndo abbracciaua non meno di cento piedi, & cento huomini la gouernaua, & pe$aua quattro mila talenti, cioè libre quattrocento & ottanta mila. <pb n="480"> <HEAD><I>La peror atione di tutta l'opera. Cap. XXII.</I></HEAD> <p>IO ho e$plicato quanto mi pareua conueniente de gli Scorpioni, & delle Cata pulte, & delle Balli$te, & parimente delle Te$tuggini, & delle Torri, & da chi $ono $tate ritrouate, & in che modo far $i doue$lero. Ma niuna nece$sità mi ha con$tretto a $criuere delle $cale, & de i Carche$i, & di quelle co$e, le ra- gioni delle quali debili $ono, & di poca fattura: perche i $oldati fanno da $e que$te co$e: nè le i$te$$e in ogni luogo, nè con le mede$ime ragioni ci $erueno, perche è differente una dife$a dall'altra, & ancho la gagliardezza delle nationi: perche con altra ragione $i deono apparecchiare le machinationi contra gli audaci, & temerari, con altra contra i diligenti, & $pauentati, però $e alcuno uorrà attendere alle pre$critte co$e, $ciegliendo dalla uarietà di quelle, & riducendole in una preparatione conferendole in$ieme, non hauerà bi$ogno d'aiuti, ma potrà sbrigar$i in ogni occorrenza con quelle ragioni, & in que luoghi, che $arà bono $enza hauerne dubitatione alcuna. Ma delle machine da dife$a' non $e ne de- ue parlare, perche i nemici non apparechiano l'offe$e $econdo i no$tri $critti, ma $pe$$o le loro machinationi alla $proui$ta $enza machina con pre$ti con$igli $ono $otto$opra get- tati: il che e$$er auuenuto a i Rhodiani $i dice. Diogeneto fu Architetto Rhodiano, al quale ogni anno del publico $i daua una certa proui$ione per l'arte $ua. al co$tui tempo e$- $endo di Arado uenuto a Rhodi un certo Architetto detto Callia, fece un'alta torre, & ci dette una mo$tra di muraglia, & $opra quella fece una machina in un Carche$io, che $i uolgeua, con la quale egli pre$e una machina detta Helepoli dal prender delle città, che $i auuicinaua alla muraglia, & la traportò dentro le mura. Mo$si i Rhodiani da tale e$$em pio merauiglio$i leuarono la proui$ione annale a Diogeneto, & la diedero a Callia. fra que$to mezo Demetrio Rè, che per la o$tinatione dell'animo era detto de$truttore delle città, apparecchiando la guerra contra Rhodi menò $eco Epimacho Athenie$e nobile Ar- chitetto. co$tui fece fare una torre di grandi$sima $pe$a con indu$tria & fatica alta piedi cento & uenticinque, larga $e$$anta & poi quella confermò con $ilicij, & corami crudi di modo, che reggeua ad un colpo di pietra di trecento & $e$$anta libre tratta da una Bali- $ta, & quella machina era di pe$o, di libre trecento & $e$$anta mila. Ma e$$endo pregato Callia da Rhodiani, che egli contra quella torre apparecchia$$e una machina, & quella ti- ra$$e dentro le mura, come prome$$o haueua, egli negò di poter cio fare, perche non $i puo fare ogni co$a con l'i$te$$e ragioni. percioche $ono alcune co$e, che rie$ceno tanto in modelli piccioli, quanto in forme grandi, altre non po$$ono hauer modelli, ma da $e $i fanno, altre ancho a i modelli s'a$simigliano, ma quando $i fanno maggiori non rie$ceno, come da quello, che io dirò, $i puo bene auuertire. Egli $i fora con una triuella, & $i fa un foro di mezo dito, d'un dito, & d'un dito & mezo, il che $e con la i$te$$a ragione far uorremo d'un palmo, non $i puo, ma di mezo piede del tutto non $i deue pen$are: co$i a que$ta $imiglianza $i puo far alcuna co$a in una forma non molto grande, pre$a da un pic- ciolo modello, il che all'i$te$$o modo in molto maggior grandezza non $i puo con$egui- re. Que$te co$e e$$endo $tate auuertite da Rhodiani, quelli che con la ingiuria hauean ancho fatto oltraggio a Diogeneto, poi che uidero il nemico $degnato & o$tinato, & che la machina era per e$pugnar la città, temendo il pericolo della $eruitu, & uedendo, che non $i attendeua altro $e non che la città fu$$e roinata, $i humiliarono pregando Diogene to che in quel ca$o aiuta$$e la patria. Co$tui da prima negò di uolerlo fare, ma poi che le Vergini ingenue, & nobili, & i giouanetti con i Sacerdoti uennero a pregare, allhora egli promi$e con que$te conditioni, che $e egli prende$$e quella machina, fu$$e $ua. Con- <pb n="481"> certate que$te co$e egli fece rompere il muro da quella parte doue la machina doueua auui cinar$i, & comandò in publico & in priuato, che quanto cia$cuno haue$$e di acqua, di $terco, & di fango, per quella apertura fu$$e per li canali mandata dinanzi il muro. poi che adunque per lo $patio d'una notte gran copia d'acqua, di luto, & di $terco fu in quel luogo largamente inuiata, il giorno $eguente acco$tando$i la Torte, prima che al muro auuicina$$e nell'humida, & fango$a uoragine di fermai$i fu con$tretta, doue che nè andar inanzi, nè tornar a dietro piu puote giamai. Perche uedendo Demetrio e$$er $tato dalla $apienza di Diogeneto ingannato, $e ne tornò a dietro con l'armata $ua. Allhora i Rho- diani liberati dalla guerra per la $olertia di Diogeneto publicamente lo ringratiarono, & l'honorarono di tutti gli honori, & ornamenti. Diogeneto poi condu$$e quella machina dentro la terra, & la po$e in publico con tale in$crittione. DIOGENETO DEL- LE SPOGLIE AL POPVLO HA FATTO QVESTO DONO. Et co$i nelle dife$e non tanto le machine, ma $pecialmente i con$igli preparar $i deono. Co$i a Chio hauendo i nemici $opra le naui po$te le machine delle Sanbuche di notte tem po quei da Chio gettarono nel mare dinanzi la muraglia terra, arena & pietre, & uolen- do il dì $eguente i nemici acco$tar$i con l'armata diedero nelli $cagni, ch'eran $ott'acqua nè puotero auuicinar$i al muro, nè tornar in dietro, ma iui con martelletti forate le naui furono abbruciate. Co$i Appolonia e$$endo a$$ediata, & pen$ando i nemici d'entrar per le caue nella terra $enza $o$petto, e$$endo que$to $tato auuertito dalle $pie, & fattone auuertiti gli Appolinati, turbati dalla tri$ta nouella per la paura hauendo bi$ogno di confi glio non poteuano $aper del certo da che parte i nemici haue$$ero a sboccare: allhora Tri fone Ale$$andrino, che iui era Architetto fece fare dentro le mura molte caue, & cauan- do la terra u$ciua fuori della muraglia meno d'un tiro d'arco, & in tutti que uacui attacca ua $o$pe$i molti ua$i di rame, di que$ti in una di quelle fo$$e, che era dirimpetto alla caua fatta da nemici per le perco$$e de ferramenti i ua$i appiccati cominciarono a $onare, dal che fu poi compre$o, che da quella parte i nemici cauando penetrar uoleuano dentro le mura, co$i cono$ciuti i termini, fece apparecchiar ua$i d'acqua bogliente, & di pece $o- pra'l capo de nemici, & di $terco humano, & di arena cotta rouente, & la notte poi fece dal di$opra moltí fori, & da quelli di $ubito mandando in giu ammazzò tutti i nemici, che erano in quella caua. Simile auuertimento fu quando $i combatteua Mar$iglia; & piu di trenta caue $i faceuano, delche $o$pettando quei di Mar$iglia tutta la fo$$a ch'era inanzi la muraglia cauarono con piu alta cauatione di modo, che tutte le caue de nemici sboccaro no nella detta fo$$a, ma la doue non $i poteua far la fo$$a, dentro le mura fecero un bara- tro profondi$simo, & fecero come una pi$cina dincontra a quella parte, doue $i faceuano le caue, & quella di acque de pozzi, & del porto empirono, & co$i sboccando la caua di $ubito aperte le Nari una gran forza d'acqua mandata, leuò di $otto i $o$tegni, & i ripari, per il che tutti quelli, che ui erano dentro dalla ruina della caua furono oppre$si. Simil- mente quando contra gli i$te$si $i faceua un'argine dirimpetto al muro, & di alberi taglia- ti iui po$ti s'inalzaua l'opera da i gua$tatori, mandando dalle Bali$te $tanghe di ferro infuo cate fecero abbruciare tutta la munitione, & quando la te$tuggine Arietaria s'acco$tò al- la muraglia per batterla, calarono un laccio, col quale $trignendo l'Ariete, & uoltando un'argana col timpano $o$pe$o tenendo il capo di quello non la$ciarono che l'Ariete toc- ca$$e il muro; & finalmente con martelli boglienti a colpi di Bali$ta tutta quella machina ruinarono. Et co$i que$te città con la uittoria, non con machine, ma contra la ragione delle machine per $olertia de gli Architetti furono liberate. Io ho ridotto a $ine in que- $to uolume quelle ragioni, che io ho potuto e$pedire delle machine $i al tempo di guerra come al tempo di pace, & che io ho $timato e$$er'utili$sime. Ma ne i primi noue io ho preparato quanto apparteneua a cia$cuna maniera, & ad ogni parte, accioche tutto il cor- <pb n="482"> po haue$$e e$plicati tutti i membri dell'Architettura, & dichiariti nel numero di die- ci uolumi. <p><I>Le co$e dette in que$t'ultimo Cap. del decimo, & ultimo libro dell' Architettura di Vitr. ben- che $ieno facili, deono però e$$er iligentemente con$iderate da cia$cuno ingegniero, perche $i ue- de $pe$$o e$$er uero quel prouerbio, che dice, che l'ingegno $upera le forze, come quel uillano con $igliò, che $opra il Ponte di Verona fo$$ero portati molti carri di terreno, accioche calcando col pe$o, l'acqua dell' Adice, che mirabilmente cre$ceua, nol porta$$e uia, hauendo $iprima con$ulta- to la co$a con molti ingegnieri, che con la loro arte non $apeuano prouederle. & co$i $ia fine a lau de di Dio della fatica no$tra, la qual uolentieri ho impieg at a per beneficio di molti dando occa$io ne ad altri di far meglio, con l'opera mia di noue anni apunto.</I> <HEAD><I>IL FINE.</I></HEAD> <pb n="483"> <pb n="484"> <pb n="485"> <pb n="486"> <pb n="487"> <pb n="488"> <pb n="489"> <pb n="490"> <pb n="491"> <pb n="492"> <pb n="493"> <pb n="494"> <pb n="495"> <pb n="496"> <pb n="497"> <HEAD>TAVOLA DIQVELLO</HEAD> <HEAD>CHE SI CONTIENE IN TVTTA LOPERA PER ORDINE DEICAPI.</HEAD> <fig> <HEAD>Capi del primo libro.</HEAD> <I>Vita di M. Vitruuio. fac.</I> 1 <I>Proemio. fac.</I> 2 <I>La dedicatione dell'opera.</I> 5 <I>Di quali co$e è compo$ta l'archi- tettura.</I> 26 <I>Delle parti della Architettura.</I> 37 <I>Dell'elettione de' luoghi$ani, & quali co$e nuo- ceno alla $anità.</I> 41 <I>Delle fondamenta delle muraglie & delle torri.</I> 44 <I>Della elettione de i luoghi all'u$o commune del- la Città.</I> 64 <HEAD>Capi del $econdo Libro.</HEAD> <I>I L proemio.</I> 66 <I>Della uita de gli antichi huomini, & de i prin- cipij del uiuere humano, & delle ca$e, & accre$cimenti di quelle.</I> 68 <I>De i principij delle co$e $econdo i filo$o$i.</I> 72 <I>De i mattoni.</I> 74 <I>Dell' Arena.</I> 78 <I>Della polue pozzolana.</I> 80 <I>De i luoghi, doue $i tagliano le pietre.</I> 81 <I>Delle maniere di murare, qualità, modi, & luo- ghi di quelle.</I> 83 <I>Del tagliare i legnami.</I> 89 <HEAD>Capi del terzo Libro.</HEAD> <I>IL proemio.</I> 95 <I>Delle compo$itioni, & compartimenti de i Tem pij, & della mi$ura del corpo humano.</I> 108 <I>Di cinque $pecie di Tempij.</I> 123 <I>Delle fondationi, & delle colonne & loro or- namenti, & de gli architraui tanto ne i luo- ghi $odi quanto ne i mo$$i.</I> 134 <HEAD>Capi del quarto Libro.</HEAD> <I>IL proemio.</I> 161 <I>Di tre maniere di colonne & delle origini & in uentione di quelle.</I> 162 <I>De gli ornamenti delle colonne.</I> 166 <I>Della ragione Dorica.</I> 171 <I>Della di$tributione di dentro delle celle, & del- lo antitempio.</I> 176 <I>Di fare i tempij $econdo le regioni.</I> 182 <I>Delle ragioni delle porte, & delle impo$te de i Tempij.</I> 182 <I>Delle ragioni To$cane de i $acri Tempij.</I> 192 <I>Dell' ordinare gli altari da i Dei.</I> 201 <HEAD>Capi del quinto Libro.</HEAD> <I>IL proemio.</I> 203 <I>Del Foro.</I> 207 <I>Dello Erario, del carcere, & della curia, come $i deono ordinare.</I> 220 <I>Del Theatro.</I> 223 <pb n="498"> <I>Dell' Armonia.</I> 227 <I>De i ua$i del Theatro.</I> 243 <I>Della conformatione del Theatro.</I> 247 <I>Del tetto del portico del Theatro.</I> 352 <I>Ditre $orti di $cene.</I> 256 <I>De i portichi dietro la $cena, & delle ambula- lationi.</I> 260 <I>Della di$po$itione & delle parti de i bagni.</I> 260 <I>Della edificatione delle pale$tre & de i Xi$ti.</I> 265 <I>De i porti & delle fabriche nelle acque.</I> 268 <HEAD>Capi del $e$to Libro.</HEAD> <I>IL proemio.</I> 272 <I>Di diuer$e qualità de pae$i, & uarij a$petti del cielo, $econdo i quali $i deono di$porre gli edi ficij.</I> 274 <I>Delle mi$ure & proportioni de i priuati edificij,</I> 277 <I>De i cauedi, & delle ca$e.</I> 252 <I>Te gli atrij, ale, Tablini.</I> 288 <I>De i Triclini, $tanze, e$$edre, & delle librerie & delle loro mi$ure.</I> 292 <I>Delle $ale almodo de Greci.</I> 294 <I>A che parte del cielo ogni maniera di edificio deue guardare accio $ia utile & $ana.</I> 295 <I>De i proprij luoghi de gli edificij & priuati & communi, & delle maniere conuenienti a ogni qualità di per$one.</I> 296 <I>Delle ragioni de iru$ticali edificij, & di$tintioni di molte parti di quelli.</I> 297 <I>Delle di$po$itioni de gli edificij, & delle partilo ro $econdo i Greci, & de i nomi differenti, & molto dai co$tumi d'Italia lontani.</I> 300 <I>Della fermezza, & delle fondamenta delle fa- briche.</I> 304 <HEAD>Capi del $ettimo Libro.</HEAD> <I>IL Proemio.</I> 307 <I>De i terrazz.</I> 310 <I>Dimacerar la calce per biancheggiare & co- prire & d'incro$tare i muri.</I> 314 <I>Delle politure ne i luoghi humidi.</I> 318 <I>Della ragione del dipignere ne gli edificij.</I> 319 <I>In che modo $i apparecchi il marmo per gli co- primenti.</I> 322 <I>De i colori, & prima dell'ocrea.</I> 322 <I>Delle ragioni del minio.</I> 323 <I>De i colori artificio$i.</I> 324 <I>Delle tempre del color ceruleo.</I> 325 <I>Come $i faccia la ceru$a, il uerderame, & la$an daraca.</I> 325 <I>In che modo $i faccia l'o$tro eccellenti$$imo di tutti i colori artificiali.</I> 325 <I>Ditutti i colori purpurei.</I> 329 <HEAD>Capi dell'ottauo Libro.</HEAD> <I>IL proemio.</I> 327 <I>Della inuentione dell'acqua.</I> 328 <I>Dell'acque.</I> 330 <I>Dell'acque calde, & che forze hanno da diuer$i metalli, & della natura di uarij fonti, laghi, & fiumare.</I> 335 <I>Della proprietà d'alcuni luoghi & fonti.</I> 340 <I>De gli e$perimenti dell'acqua.</I> 341 <I>Del condurre, & liuellar' l'acque, & de gli $tru menti buoni a tali effetti.</I> 341 <I>A quanti modi $i conduchino le acque.</I> 343 <HEAD>Capi del nono Libro.</HEAD> <I>IL Proemio.</I> 347 <I>Il modo ritrouato da Platone per mi$urare un campo di terra.</I> 348 <I>Della $quadra inuentione di Pitagora, per for mare l'angulo giu$to.</I> 349 <I>Come $i po$$a cono$cer una portione di argento me$colata con l'oro finita l'opera.</I> 352 <I>Della ragione de i Gnomoni ritrouati per l'om- bra de i raggi del Sole. Et del mondo. & de i pianeti.</I> 366 <I>Del cor$o del Sole per li dodici $egni.</I> 386 <I>Delle con$tellationi che $ono dalla parte Setten- trionale.</I> 391 <I>Delle $telle che $ono dal zodiaco al mezo dì.</I> 396 <I>Delle ragioni de gli horologi, & delle ombre de i Gnomoni al tempo equinottiale a Roma, & in alcuni altri luoghi.</I> 398 <I>Della ragione de gli horologi, & dell'u$o & del la inuentione loro, & quali $ieno $tati gli in- uentori.</I> 426 <pb n="499"> <HEAD>Capi del decimo Libro.</HEAD> <I>IL Proemio.</I> 438 <I>Che co$a è machina, in che è differente dallo in- $trumento, & della origine & nece$$ità di quella.</I> 442 <I>Delle machinationi trattorie de i $acri Tempij, & delle opere publiche.</I> 445 <I>De diuer$i uocaboli delle machine & come $i drizzano.</I> 447 <I>Di una machina da leuar grandi$$imi pe$i.</I> 448 <I>Di una altra $orte di machina da tirare.</I> 449 <I>Di una ingenio$a ragione di Cte$ifonte per con- durre i pe$i.</I> 450 <I>Come trouato s'habbia la petraia, della quale fu $atto il Tempio di Diana Efe$ia.</I> 451 <I>Del mouimento dritto, & circolare che $i ri- chiede a leuar i pe$i.</I> 452 <I>Delle $orti de gli $trumenti da cauar l'acque, & prima del Timpano.</I> 460 <I>Delle ruote, & Timpani per macinar la farina.</I> 460 <I>Della uida che alza gran copia d'acqua.</I> 461 <I>Della machina fatta da Cte$ibio che alza l'ac- qua molto alto.</I> 462 <I>Delle machine hidraulice con lequali $i fanno gli organi.</I> 465 <I>Con che ragione $i mi$ura il uiaggio fatto o in carretta, o in naue.</I> 468 <I>Delle ragioni delle Catapulte, & de gli Scorpi- pioni.</I> 472 <I>Delle ragioni delle bali$te.</I> 474 <I>Della proportione delle pietre che $i deono trar- re al foro della bali$ta.</I> 475 <I>Dell' apparechio della te$tugine per le fo$$e.</I> 478 <I>Delle tempre & carcature delle bali$te, & del le catapulte.</I> 476 <I>Delle co$e da oppugnare, & da difendere, & della inuentione dello Ariete.</I> 476 <I>La tauola delle lunghezze, larghezze, parti & grandezze delle $telle.</I> 483 <I>La tauola della declinatione del Sole.</I> 496 <HEAD><I>IL FINE.</I></HEAD> <foot><I>TTT</I></foot> <pb n="500"> <HEAD>TAVOLA DE I DIECI LIBRI DELLA</HEAD> <HEAD>ARCHITETTVRA DIM. VITRVVIO.</HEAD> <HEAD><I>A.</I></HEAD> <I>Abete.</I> 90 <I>Abete $opernate, & inferna- te.</I> 94 <I>Acqua, & $ua inuentione, pro- ua, liuello, & condotta da</I> 327 <I>per tutto l'ottauo libro.</I> <I>Acque piouane.</I> 330 <I>Acque calde, & metalliche.</I> 335 <I>Agente.</I> 9 <I>Agente diuino, naturale, & artificiale.</I> 11 <I>Ale$fandro il magno, & $uo auuertimento.</I> 66 <I>Alberi, nature, & proprietàloro.</I> 89. 90. 91 <I>Alato Tempio.</I> 115 <I>Altari, & loro ordinatione.</I> 201 <I>Amphipro$tylos.</I> 113 <I>Angoli, & loro dichiaratione.</I> 23 <I>Andrea Palladio Architetto.</I> 64 <I>Ante.</I> 115 <I>Analemma, & di$cor$i $opra da</I> 366 <I>fin</I> 403. <I>Anguli, & circonferenze fatte da i circoli, & diametri, che entrano nello Analem- ma.</I> 420 <I>Apennino, & $ua de$crittione.</I> 94 <I>Apparenze, & orti & occa$i delle $telle.</I> 381 <I>Arte, diffinitione, na$cimento, cre$cimento, diui$ione, & di$cor$o $opra l'arti.</I> 3.4.5 <I>Arte, & i$perienza $ono differenti.</I> 4 <I>Architettura, & $ua dignità.</I> 5 <I>Architettura, & $ua diffinitione, deriuatione, & laude.</I> 6 <I>Architetto.</I> 6 <I>Arti attribuite a gli animali.</I> 9 <I>Arte diuina, humana, & mondana.</I> 9 <I>Artefice tiene doppia con$ideratione, & dop- pia affettione ri$petto all'opera.</I> 10 <I>Architetto richiede fabrica, & di$cor$o alla $ua perfettione</I> 10 <I>Arti di$tinte.</I> 11 <I>Architetto, & $ue conditioni.</I> 12 <I>Arithmetica.</I> 14 <I>Architettura, & $ua laude.</I> 21 <I>Architett ura di che è compo$ta.</I> 26 <I>Architettura, & $ue parti.</I> 37 <I>Arte imita la natura, & perche cau$a.</I> 37 <I>Archuettura, & $ua diui$ione.</I> 37. <I>fin</I> 40 <I>Arthritis.</I> 57 <I>Arena.</I> 78 <I>Architraui, & u$o loro nelle maniere areo$ti- le.</I> 129 <I>Areo$tylos.</I> 123 <I>Architraui, fregi, & cornici in diuer$i gene- ri.</I> 146. <I>& piu oltra.</I> <I>Archi.</I> 207 <I>Armonia, & di$cor$o $opra</I> 227 <I>& piu oltre.</I> <I>Armonico genere.</I> 229 <I>Ari$to$$eno ripre$o.</I> 231 <I>Ari$tippo filo$ofo, & $ua laude.</I> 272 <I>Ari$tofane, & $uo giudicio.</I> 307 <I>Argento, & oro me$colato come $i proua.</I> 352. <I>Archimede, & $ua inuentione.</I> 352 <I>Archita, & $ua inuentione.</I> 355 <I>A$trologia nece$$aria all' Architetto.</I> 20 <I>A$petti cele$ti, & di$cor$o $opra.</I> 23 <I>A$$e, & $ua diui$ione.</I> 23 <I>A$plenon herba.</I> 43 <I>A$petti cele$ti.</I> 383 <I>Atrij.</I> 283. <I>fin</I> 291 <I>Augu$to.</I> 6 <I>Auertimenti.</I> 8. 21. 66. 97. 128. 132. 160 179. 256. 257. <I>& nel proemio del $e$to libro.</I> <I>Aule.</I> 283 <HEAD><I>B.</I></HEAD> <I>Bali$te.</I> 474 <I>Ba$e, & $ue forme.</I> 142. 143. 144 <I>Ba$ilica.</I> 208 <I>Ba$iliche, & $uoi compartimenti.</I> 214 <I>Ba$ilica fatta da Vitruuio a Fano.</I> 216 <I>Biancheggiamenti, & intonicature, & modo di farle.</I> 313.314 <I>Bori$thene fiume.</I> 331 <pb n="501"> <HEAD><I>C.</I></HEAD> <I>Cariacide.</I> 15 <I>Calce.</I> 79 <I>Camillo.</I> 136 <I>Capitelli di diuer$i generi.</I> 141.153.156. <I>Canalatura.</I> 160 <I>Capitello Corinthio.</I> 162 <I>Carcere.</I> 221.222 <I>Cauedi & $ue maniere.</I> 282.283 <I>Catapulte.</I> 472 <I>Ceru$a.</I> 325 <I>Ceruleo colore.</I> 325 <I>Chri$ocolla.</I> 324 <I>Città, & forma $ua $econdo Vitr.</I> 52 <I>Circoli cele$ti, & loro inteligenza.</I> 367 <I>Circoli nece$$arij performare lo Analemma.</I> 403. <I>& piu oltra.</I> <I>Colliquie.</I> 283 <I>Corinthie $ale.</I> 293 <I>Color ceruleo.</I> 325 <I>Colchi fiume.</I> 331 <I>Cor$o del Sole per li</I> 12 <I>$egni.</I> 386 <I>Comparatione dell'arte, & della i$perienza.</I> 45. <I>Conditioni dello. Architetto.</I> 12.13 <I>Commentarij che co$a $ono.</I> 13 <I>Conuenienza tra molte $cienze.</I> 22 <I>Compartimento.</I> 29.34 <I>Concorrenze di auanzar$inel fabricare.</I> 69 <I>Compo$itione di uarie maniere di Tempi.</I> 125. <I>fin</I> 129 <I>Colonne, & $uoi ra$tremamenti, & gonfiez- za.</I> 133 <I>Colonne $opra le cantonate piu gro$$e.</I> 132 <I>Colonne, & loro maniere, origini, & inuentio ni.</I> 162 <I>Colonne, & loro ornamenti.</I> 166 <I>Con$onanze.</I> 231.240 <I>Conformatione del Theatro.</I> 247 <I>Colori naturali & artificiali</I> 324 <I>Colori fatti per arte.</I> 324 <I>Con$tellationi dalla parte $ettentrionale</I> 391. <I>et meridiana</I> 396 <I>Cono & conica $uperficie.</I> 399 <I>Credulità.</I> 3 <I>Cre$cimento delle arti.</I> 4.5 <I>Chromatico genere.</I> 229 <I>Creta $elinu$ia, & annularia.</I> 326 <I>Cre$cerc, & calare de i giorni & $ua ragione.</I> 386.387 <I>Cte$ibio, & $ue inuentioni.</I> 427 <I>Curia.</I> 227 <I>Cubo, & $ua duplicatione.</I> 360 <I>De$crittione dello Apeunino.</I> 97.98 <I>Democrito, & $ua opinione cerca gli atomi.</I> 73 <I>Denario perfetto.</I> 102 <I>Dedicatione dell'opera.</I> 5 <I>Decoro.</I> 34.182 <I>Diffinitione dell'arte.</I> 3 <I>Di$cor$o, che cofa è.</I> 8 <I>Di$cor$o $opra l'arte.</I> 4 <I>Diui$ione de gli habiti.</I> 4 <I>Di$tintione delle arti.</I> 5 <I>Diffinitione dell' Architettura.</I> 7 <I>Diffinitione del $oggetto, & che importi.</I> 8 <I>Di$cor$o è proprio dell'huomo.</I> 9 <I>Di$cor$o quando erra.</I> 9 <I>Diui$ione delle arti.</I> 11 <I>Di$egno.</I> 13 <I>Diui$ione della pro$pettiua.</I> 14 <I>Diui$ione della filo$ofia.</I> 18 <I>Diui$ione della Mu$ica.</I> 18 <I>Di$cor$o $opra gli a$petti cele$ti.</I> 23 <I>Di$putatione de i principij delle $cienze a chi conuenga.</I> 25 <I>Diui$ione di tutta la forma dell' Architettura.</I> 27. <I>Di$cor$o $opra l'ordine.</I> 28 <I>Di$po$itione.</I> 29. <I>idee, $orti</I> 29 <I>Diletto che co$a è.</I> 32 <I>Di$cor$o $opra la eurithmia.</I> 33 <I>Di$tributione, & $uoi gradi.</I> 36 <I>Di$cor$o lungo $opra la diui$ione dell' Architet tura.</I> 37.38.39.40 <I>Di$tributione delle opere publiche.</I> 40 <I>Di$cor$o $opra le co$e da e$$er con$iderate da chi uuole fabricare una città.</I> 41.42 <I>Diui$ione dentro la città.</I> 54 <I>Di$cor$o $opra i uenti.</I> 54.55.56 <I>Di$cor$o $opra le colonne, & altezze loro.</I> 140 <foot><I>TTT</I> 2</foot> <pb n="502"> <I>Digre$$ione contra i mal dicenti.</I> 63 <I>Dinocrate Architetto, & $ua inuentione.</I> 66 <I>Di$cor$o $opra i principij del uiuer humano, & del $abricare.</I> 69 <I>Di$cor$o $opra i principij delle co$e.</I> 73 <I>Di$cor$o $opra i mationi.</I> 74 <I>Di$cor$o $opra l'arena, & la calce.</I> 78. 79.80 <I>Di$cor$o $opra le pietre.</I> 81.82 <I>Di$cor$o $opra il murare.</I> 83. <I>fin</I> 86 <I>Di$cor$o $opra le proprietà de gli alberi.</I> 89. 90 <I>Di$cor$o $opra le proportioni.</I> 97. <I>fin</I> 108 <I>Di$cor$o $opra le mi$ure</I> 108. <I>& mi$ura del cor po humano.</I> 109.110 <I>Dia$tylos.</I> 123 <I>Di$cor$o $opra'l fondare.</I> 134 <I>Diui$ione di quello $i contiene nel decimo libro</I> 439. <I>& di$cor$o $opra la machinatione.</I> <I>Diui$ione delle machine.</I> 443 <I>Di$cor$o $opra le fabriche con tutti gli ordini, & generi, $i de ba$amenti, ba$e, come di colonne, capitelli, architraui, fregi, corni- ci, & fronti$pici da</I> 143. <I>fin</I> 157. <I>Di$cor$o $opra i generi delle colonne.</I> 164.165 <I>Di$cor$o $opra'l tetto.</I> 167 <I>Di$tributione delle parti di dentro del Tempio.</I> 176. <I>fin</I> 182 <I>Di$cor$o $opra il foro.</I> 207 <I>Di$cor$o $opra'l Theatro.</I> 223. <I>fin</I> 226 <I>Di$cor$o di Mu$ica.</I> 227. <I>fin</I> 243 <I>Diatonico genere.</I> 229 <I>Ditono.</I> 232 <I>Die$i.</I> 232.233 <I>Di$cor$o $opra'l fabricare in acqua, & de i por ti.</I> 268.269 <I>Di$cor$o $opra l' Ar$enale de'Venetiani.</I> 270. 271. <I>Di$cor$o $opra l'acque.</I> 271 <I>Di$cor$o $opra le qualità de i pae$i.</I> 274 <I>Di$cor$o $opra le fabriche di uilla.</I> 298.299 <I>Di$cor$o $opra le uolte delle camere, & incro$ta ture de i muri.</I> 317.318 <I>Di$cor$o $opra la pittura.</I> 321 <I>Di$cor$o $opra la natura delle acque, inuentio- ne, proua, liuello, condotta per tutto l'otta- uo libro.</I> <I>Di$cor$o $opra le $cale.</I> 350 <I>Di$cor$o $opra le due medie proportionali.</I> 355. <I>& piu oltre.</I> <I>Di$cor$o $opra'l cielo, & $uoi mouimenti.</I> 367 <I>fin</I> 385 <I>Di$cor$o $opra i $egni cele$ti.</I> 388 <I>Di$cor$o $opra i tagli delle $operficie coniche.</I> 399 <I>Di$cor$i $opra gli Analemmi.</I> 403 <I>Dorico genere & $ua ragione.</I> 171. <I>fin</I> 175 <I>Due $orti di i$perienza.</I> 4 <I>Dubio, & $olutione.</I> 10 <I>Dubio, & $olutione.</I> 21 <I>Duplicatione del cubo.</I> 360 <I>Di$cor$i $opra la Gnomonica.</I> 366 <HEAD><I>E.</I></HEAD> <I>Edifitatione che co$a è.</I> 33 <I>Edificij ru$ticali.</I> 297 <I>Edificij priuati alla Creca</I> 300 <I>Egittie $ale.</I> 293 <I>Elettione de i luoghi $ani.</I> 41 <I>Elettione de i luoghi all'u$o della città.</I> 64 <I>Eli$$e linea.</I> 399 <I>Endego.</I> 326 <I>Epigrammi $opra fonti.</I> 339 <I>Erato$tene</I> 61. <I>& $ua inuentione.</I> 354 <I>Erario.</I> 220 <I>E$ortatione all'Architettura.</I> 303 <I>E$$edre.</I> 292 <I>E$ortatione alla uirtu nel proemio del $e$to.</I> <I>Eurithmia che co$a è.</I> 33 <I>Eusttylos</I> 123 <I>Eufrate fiume.</I> 331 <HEAD><I>F.</I></HEAD> <I>Fabrica che co$a è.</I> 8 <I>Fabro nome generale.</I> 40.70 <I>Fabricare, principij, & cre$cimenti delle fabriche.</I> 68 <I>Fabriche di uilla.</I> 297 <I>Fabriche priuate.</I> 277. <I>fin</I> 294 <I>Fabriche alla Greca.</I> 300 <I>Fermezza, & fondameuto delle fabriche.</I> 304 <I>Fine & $ua notitia, & diffinitione, & di$cor$o.</I> 9 <I>Filo$ofia nece$$aria allo Architetto, & diui$io ne.</I> 18 <pb n="503"> <I>Fini delle opere di due maniere.</I> 27 <I>Fondationi.</I> 134 <I>Forma prima che la materia</I> 9 <I>Fortificatione.</I> 44. <I>fin</I> 46 <I>Fo$$a della città.</I> 47 <I>Foro & $uo compartimento.</I> 207. <I>fin</I> 209 <I>Fonti di diuer$e nature.</I> 339 <HEAD><I>G.</I></HEAD> <I>Cange fiume.</I> 331 <I>Geometria.</I> 13 <I>Generi mu$icali.</I> 229 <I>Generi di mu$ica.</I> 239.240 <I>Giudicio de i poeti d' Ari$tofane.</I> 307 <I>Gioue, & $uo mouimento.</I> 383 <I>Gnomonica che co$a è.</I> 37.398 <I>Gnomone, & $ua ragione.</I> 366 <I>Gradi, & lor mi$ure.</I> 136 <I>Gradi del Theatro.</I> 225 <I>Graduatione del Theatro.</I> 252 <I>Grotte$che ripre$e da Vitr.</I> 320 <HEAD><I>H.</I></HEAD> <I>Habito che co$a è, & come s'acqui$ti, & come $i diuida.</I> 2.3 <I>Habiti dello intelleto, & della uolon- tà.</I> 3 <I>Hercole, & lo $tadio, & la $tatura $ua.</I> 34 <I>Hi$gino.</I> 326 <I>Horologi, & loro ragioni.</I> 398. <I>fin</I> 434 <I>Hyperbole, & $uo taglio.</I> 400 <I>Horologi da acqua.</I> 427. <I>fin</I> 434 <HEAD><I>I.</I></HEAD> <I>Ichnografia.</I> 30 <I>Idee della di$po$itione.</I> 29. <I>fin</I> 32 <I>Ignoranza di mala di$po$itione.</I> 3 <I>Impiè.</I> 30 <I>Impluuio.</I> 283 <I>Intelletto.</I> 3 <I>Intendimento.</I> 3 <I>Infirmità cau$ate da uenti.</I> 56 <I>Inuentione, che co$a è.</I> 32 <I>Inuentione de Cte$ifonte per condurre pe$i.</I> 450 <I>Interpen$iua.</I> 283 <I>In$trumento & Machina differente.</I> 442 <I>In$trumenti da liuellar acque.</I> 342.343 <I>In$trumenti di ritrouare le linee proportionali.</I> 356 <I>I$perienza, che co$a è, onde na$ce, & a che $erue, & di quante maniere $ia, & come $ia differente dall'arte.</I> 4 <I>I$toria nece$$aria all' Architetto.</I> <I>I$cu$atione di Vitr.</I> 25 <I>I$toria delle origini delle colonne.</I> 163 <I>I$toria delle cariacide, & per$iani.</I> 15 <HEAD><I>L.</I></HEAD> <I>Legge po$ta in Ephe$o a gli Architetti.</I> 438 <I>Legnami & di$cor$o $opra.</I> 89 <I>Librerie.</I> 292 <I>Liuelle d'acqua.</I> 342 <I>Linee proportionali, & loro inuentioni.</I> 355 <I>Linee piegate dette concoide, & loro proprie- tà.</I> 362 <I>Linea del uero luogo, & dell'apparenza.</I> 271 <I>Luoghi priuati, & communi ne gli edificij.</I> 296 <HEAD><I>M.</I></HEAD> <I>Marmi del Tempio di Diana come$ono $tati ritrouati.</I> 451 <I>Machina</I> 442. <I>& diui$ione delle ma chine</I> 443. <I>& di$cor$i.</I> <I>Machinatione</I> 37. <I>& di$cor$o $opra.</I> 441. 442 <I>Ma$$ime.</I> 3 <I>Materia.</I> 9 <I>Maniere di Tempij.</I> 115 <I>Mathematice principali, & $otto principali & $oggetto loro.</I> 13 <I>Mattoni, & di$cor$i $opra.</I> 74.75 <I>Marmo, & $uo apparecchio per incro$tare i muri.</I> 322 <I>Marte & $uo cor$o.</I> 385 <I>Mezo & $ue proprietà, & officio.</I> 9.10 <I>Medicina nece$$aria allo Architetto.</I> 19 <I>Meridiana linea, & $ua inuentione.</I> 58 <I>Me$olabio.</I> 354 <I>Mi$ura della terra $econdo Eratho$tene.</I> 61 <pb n="504"> <I>Mi$ura del corpo bumauo.</I> 109 <I>Mi$ure del Theatro.</I> 222. <I>& piu oltre</I> <I>Mi$ure de gli edifici priuati.</I> 277 <I>Minio, & $ua muentione, u$o, & tempra.</I> 323 <I>Monocordo.</I> 231 <I>Modi di condurre acque.</I> 343 <I>Modo di mi$urar terreno trouato da Platone.</I> 348 <I>Modo di cono$cer l'oro me$colato con l'argen- to.</I> 352 <I>Mondo che co$aè.</I> 367 <I>Mouimento dritto, & circolare.</I> 452 <I>Muraglia della città, & forma.</I> 47. <I>fin</I> 53 <I>Murare modi. & qualità di murare.</I> 83. <I>fin</I> 88 <I>Mu$ica nece$$aria all' Architetto.</I> 18 <HEAD><I>N.</I></HEAD> <I>Na$cimento delle Arti.</I> 4.5 <I>Natura diuina di chi troua da $e.</I> 11 <I>Nicolo zeno.</I> 271 <I>Nilo.</I> 331 <I>Numero, & numero perfetto.</I> 112 <I>Numero cubo, & di$cor$o $opra.</I> 205 <HEAD><I>O.</I></HEAD> <I>Ocrea.</I> 322 <I>Opinione.</I> 3 <I>Opera, & operatione $ono differenti.</I> 7.8 <I>Oppidum.</I> 65 <I>Opinione de i filo$o$i cerca i principij delle co- $e.</I> 327 <I>Ordine che co$a è. & di$cor$o $opra.</I> 26 <I>fin</I> 28 <I>Orthographia.</I> 30 <I>Ordine del $econdo libro di Vitruuio.</I> 71 <I>Ordinatione de i tetracordi.</I> 233 <I>Orche$tra.</I> 247.252 <I>Orti & occa$i, & apparenze delle $telle.</I> 381 <I>Or$a maggiore & minore.</I> 394 <I>O$tro.</I> 325 <HEAD><I>P.</I></HEAD> <I>Paconio ripre$o di temerità.</I> 451 <I>Pau$ania.</I> 16 <I>Parti del cielo doue deono guardare gli cdificij.</I> 295 <I>Pauimenti, & modi di farli.</I> 310.311 <I>Paretonio.</I> 322 <I>Parabole & $uo taglio.</I> 400 <I>Petraie & di$cor$o $opra le pietre.</I> <I>Pen$amento che co$a è.</I> 32 <I>Petraia de i marmi del Tempio di Diana.</I> 451 <I>Per$iani prigioni & i$toria loro.</I> 15 <I>Peripteros.</I> 115 <I>Pha$i fiume.</I> 331 <I>Pittura & $coltura.</I> 11 <I>Pithio Architetto, ripre$o da Vitr.</I> 22 <I>Pianta che co$a è.</I> 30 <I>Picao$tylos.</I> 123 <I>Piedistali.</I> 136 <I>Pithagora, & $uoi precetti in numero cubo.</I> 205.206 <I>Pittura ne gli edificij. & pittori.</I> 319.320 <I>Pianeti, & loro caratteri, & mouimenti.</I> 371 <I>Pleuritide.</I> 57 <I>Pò fiume.</I> 331 <I>Poli, & cardini del mondo.</I> 367 <I>Politure ne i luoghi humidi.</I> 318 <I>Porti, & fabriche in acqua.</I> 268 <I>Po$$ibilità di po$$edere molte $cienze.</I> 22 <I>Porte della città.</I> 47 <I>Pozzolana.</I> 80 <I>Poggio.</I> 136 <I>Porte, & $ue ragioni.</I> 182. <I>fin</I> 191 <I>Portico del Theatro.</I> 252 <I>Poggio del Theatro.</I> 255 <I>Proemio in Vitr.</I> 2 <I>Precetto dell'arte, & $ue conditioni.</I> 8 <I>Prime notitie.</I> 3 <I>Principio.</I> 9 <I>Pro$pettiua.</I> 14 <I>Principij delle $cienze.</I> 25 <I>Proportione.</I> 28 <I>Profilo quanto importi all'Architetto.</I> 30 <I>Principij del uiuer humano, & del fabricare.</I> 68 <pb n="505"> <I>Principij delle co$e $econdo ifilo$ofi.</I> 72 <I>Proportione & di$cor$o $opra.</I> 97 <I>fin</I> 108 <I>Pro$tylos.</I> 115 <I>Proportione delle con$onanze.</I> 241 <I>Priuati edificij & lor mi$ure.</I> 277 <I>Proprij, & communi luoghi ne gli edificij.</I> 296 <I>Proemio del nono libro da e$$er letto.</I> <I>Prudenza.</I> 3 <I>P$eudodipteros.</I> 120 <I>Ptolomeo, $ua libraria, & giudicio.</I> 307 <I>Purpura, & u$o $uo.</I> <HEAD><I>Q.</I></HEAD> <I>Qvalità & temperamento della regione.</I> 41 <I>Que$tioni delle mecaniche.</I> 453. <I>fin</I> 456 <HEAD><I>R.</I></HEAD> <I>Ragione che co$a è.</I> 13 <I>Ragione ciuile nece$$aria all' Architet to.</I> 19 <I>Raccommunanza delle $cienze.</I> 22 <I>Reno fiume.</I> 331 <I>Regione, & qualità $ue.</I> 41 <I>Relatione.</I> 26 <I>Roma, & laude $ua ri$petto al clima.</I> 276 <I>Rodano fiume.</I> 331 <HEAD><I>S.</I></HEAD> <I>Sapienza.</I> 3 <I>Sale Corinthie, & Egittie.</I> 293 <I>Sale all'u$anza Greca.</I> 294 <I>Scienza.</I> 3 <I>Scoltura, & pittura.</I> 11 <I>Scienze, & raccommunanza loro.</I> 22 <I>Sciographia.</I> 31 <I>Scamillo.</I> 136 <I>Scale del Theatro.</I> 228 <I>Scala nel canto.</I> 229 <I>Scrittori d' Architettura, & di pro$pettiua.</I> 308.309 <I>Scale.</I> 350 <I>Scorpioni.</I> 472 <I>Seguo del $apere.</I> 4 <I>Seguo.</I> 11 <I>Senario numero perfetto, & perche.</I> 112 <I>Semituono maggiore, & minore.</I> 232 <I>Se$ta maggiore, & minore.</I> 232 <I>Segni cele$ti, nomi, & figure loro.</I> 386 <I>Sectioni, & tagli delle $operficie coniche.</I> 399.400 <I>Significare, & e$$er $ignificato.</I> 11 <I>Simmetria.</I> 29 <I>Si$tilos.</I> 123 <I>Sinape.</I> 322 <I>Sil Attico.</I> 326 <I>So$petto, o $o$pittione.</I> 3 <I>Soggetto delle $cienze quãto importa che $ia be ne diffinito.</I> 8 <I>Solertia che co$a è.</I> 10 <I>Soggetto delle mathematiche.</I> 13 <I>Socrate giudicato $apienti$$imo dall'oraculo.</I> 95 <I>Sole, & $uo cor$o per i $egni.</I> <I>Squadra inuentione di Pithagora.</I> 340 <I>Stereobati.</I> 134 <I>Stilobati.</I> 134 <I>Strix $trie.</I> 160 <I>Stanze.</I> 292 <I>Stratagemi.</I> 480.481 <I>Suoni che dilettano, & non $ono con$onanze.</I> 232 <HEAD><I>T.</I></HEAD> <I>Tablino.</I> 288. <I>fin</I> 291 <I>Tanai fiume.</I> 331 <I>Tauola de i mouimenti de i cieli.</I> 373 <I>Tauola delle longhezze de i giorni.</I> 390 <I>Tempi, & $uoi principij, & maniere.</I> 114 <I>fin</I> 130 <I>Tempio $coperto detto hypethros.</I> 115 <I>Tetto, & $ua ragione.</I> 167 <I>Tempij To$cani, & loro ragione.</I> 192 <I>Tertiarium o terzera.</I> 193 <I>Tempij ritondi.</I> 197 <I>Tetracordi.</I> 230 <I>Terza maggiore, & minorè.</I> 232 <I>Terrazzi.</I> 310 <I>Theatro.</I> 223. <I>fin</I> 257 <I>Theatri di Scauro, & di Curione.</I> 225 <pb n="506"> <I>Theatro de i Greci.</I> 257 <I>Theophra$to.</I> 272 <I>Te$tuggine per le fo$$e.</I> 478 <I>Tigri fiume.</I> 331 <I>Timauo fiume.</I> 331 <I>Torri, & forme loro.</I> 46. <I>fin</I> 49 <I>Tramontana.</I> 394 <I>Triglifo, & $uaragione.</I> 169 <I>Traui, & $uoi ligamenti.</I> 194 <I>Triemitonio.</I> 232 <I>Triclinij.</I> 292 <I>Tuono.</I> 231 <HEAD><I>V.</I></HEAD> <I>Va$i$onori del Theatro.</I> 243 <I>Vero nece$$ario contingente.</I> 3 <I>Venti & di$cor$o $opra.</I> 52. <I>fin</I> 65 <I>Ve$tigi de gli hnomi ni quali $ono.</I> 274 <I>Verde rame.</I> 325 <I>Ver$i delle meteore.</I> 333 <I>Vita di Vitruuio.</I> 1 <I>Vitruuio & $ua lode.</I> 12 <I>Virtu che di$corre.</I> 9 <I>Virtu delle pietre.</I> 9 <I>Volte, & incro$tature de muri, & modi di uolta re.</I> 314.315 <I>V$o di due maniere.</I> 9 <I>Vtilità.</I> 9 <HEAD><I>Z.</I></HEAD> <I>ZOILO, & $ua pena.</I> 308 <HEAD><I>A carte 271. linee 30. oue dice, porta uia poco terreno, uuol dire, porta uia pin terrene.</I></HEAD> <HEAD><I>IL FINE.</I></HEAD>