view texts/XML/echo/it/Heron_1647_K2HX7FU0.xml @ 31:edf6e8fcf323 default tip

Removing DESpecs directory which deserted to git
author Klaus Thoden <kthoden@mpiwg-berlin.mpg.de>
date Wed, 29 Nov 2017 16:55:37 +0100
parents 22d6a63640c6
children
line wrap: on
line source

<?xml version="1.0" encoding="utf-8"?><echo xmlns="http://www.mpiwg-berlin.mpg.de/ns/echo/1.0/" xmlns:de="http://www.mpiwg-berlin.mpg.de/ns/de/1.0/" xmlns:dcterms="http://purl.org/dc/terms" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:echo="http://www.mpiwg-berlin.mpg.de/ns/echo/1.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.0">
  <metadata>
    <dcterms:identifier>ECHO:K2HX7FU0.xml</dcterms:identifier>
    <dcterms:creator role="author" identifier="GND:119197430">Heron Alexandrinus</dcterms:creator>
    <dcterms:contributor role="translator" identifier="GND:120407604">Gio. Battista Aleotti</dcterms:contributor>
    <dcterms:title xml:lang="it">Gli artificiosi e curiosi moti spiritali</dcterms:title>
    <dcterms:alternative xml:lang="la">Spiritalium liber (ital.)</dcterms:alternative>
    <dcterms:date xsi:type="dcterms:W3CDTF">1647</dcterms:date>
    <dcterms:language xsi:type="dcterms:ISO639-3">ita</dcterms:language>
    <dcterms:rights>CC-BY-SA</dcterms:rights>
    <dcterms:license xlink:href="http://creativecommons.org/licenses/by-sa/3.0/">CC-BY-SA</dcterms:license>
    <dcterms:rightsHolder xlink:href="http://www.mpiwg-berlin.mpg.de">Max Planck Institute for the History of Science, Library</dcterms:rightsHolder>
  </metadata>
  <text type="book" xml:lang="it">
    <div xml:id="echoid-div1" type="body" level="1" n="1">
      <div xml:id="echoid-div1" type="section" level="2" n="1">
<pb file="0001" n="1"/>
<pb file="0002" n="2"/>
<pb file="0003" n="3"/>
<pb file="0004" n="4"/>
<pb file="0005" n="5"/>
</div>
<div xml:id="echoid-div2" type="section" level="2" n="2">
<head xml:id="echoid-head1" xml:space="preserve">GLI <lb/><emph style="bf">ARTIFICIOSI,</emph> <lb/>E CVRIOSI MOTI <lb/>SPIRITALI DI HERONE.</head>
<head xml:id="echoid-head2" xml:space="preserve">Tradotti da M. Gio: Battiſta Aleotti <lb/>D’ARGENTA.</head>
<p>
  <s xml:id="echoid-s1" xml:space="preserve">Aggiontoui dal medeſimo Quattro Theoremi non men <lb/>belli, &amp; curioſi de gli altri.</s>
</p>
<p style="it">
  <s xml:id="echoid-s2" xml:space="preserve">Et il modo con che ſi fà artificioſamente ſalire vn Canale d’ Acquqe <lb/>viua, ò morta, in cima d’ ogn’ alta Torre.</s>
</p>
  <figure>
    <image file="0005-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/xxxxxxxx/figures/0005-01"/>
  </figure>
<head xml:id="echoid-head3" xml:space="preserve">IN BOLOGNA, <num value="1647">M DC XL VII</num>.</head>
<head xml:id="echoid-head4" xml:space="preserve">Per Carlo Zenero. <emph style="it">Con licenza de’ Superiori.</emph></head>
<pb file="0006" n="6"/>
<pb o="2" file="0007" n="7"/>
</div>
<div xml:id="echoid-div3" type="section" level="2" n="3">
<head xml:id="echoid-head5" xml:space="preserve">ALL’ ILLVSTRISSIMO, <lb/>Et Eccellentiſsimo Sig. <lb/>IL SIG. D. SCIPIONE <lb/>GONZAGA <lb/>Duca di Sabioneta, ePrincipe di Bozolo.</head>
<p>
  <s xml:id="echoid-s3" xml:space="preserve">ANhelaua, hà gran tempo, la <lb/>mia diuotiſs. ſeruitù di pre-<lb/>ſentarſi à V. E. con qualche <lb/>offerta proportionata à i me-<lb/>riti di Lei, e non affatto ine-<lb/>guale alle conditioni del mio profondiſ-<lb/>ſimo oſſequio. </s>
  <s xml:id="echoid-s4" xml:space="preserve">Finalmente è capitata <lb/>alle mie ſtampe vn’Opera, che per la <lb/>fama dell’ Autore, e per gl’ingegnoſiri-
<pb file="0008" n="8"/>
trouamenti della ſua arte, è creduta de-<lb/>gna diricourarſi nelle mani d’vn Pren-<lb/>cipe qualificato, qual’ è l’E. V. </s>
  <s xml:id="echoid-s5" xml:space="preserve">Ella è be-<lb/>nemerita delle Virtù non tanto per gli <lb/>habiti del ſuo nobile Intelletto, quanto <lb/>per le memorie della ſua glorioſiſsima <lb/>Caſa, ammirata in tutt’ i tempi per ſplẽ-<lb/>dore delle buone lettere, e per Nume tu-<lb/>telare de’letterati; </s>
  <s xml:id="echoid-s6" xml:space="preserve">che però non era à <lb/>mio credere luogo più proprio da col-<lb/>locarui queſte induſtrioſe fatiche di He-<lb/>rone così dottamente illuſtrate dall’ al-<lb/>trui penna, e migliorate in queſta nuo-<lb/>ua editione, che ſotto al patrocinio di <lb/>V.E.; il cui degniſsimo Nome ſolo man-<lb/>caua à dar gli eſtremi titoli di perfettio-<lb/>ne al Volume, ch’io le preſento. </s>
  <s xml:id="echoid-s7" xml:space="preserve">Sup-<lb/>plico humiliſsimamente V. E. à gradire <lb/>la mia elettione regolata dalle publiche <lb/>notitie, da cui s’apprende, che molt’ o-<lb/>pere delle migliori penne de gli andati <lb/>ſecoli hanno hauuto à ſomma fortuna <lb/>l’appoggiar ilor voli alla ſublimità del-
<pb file="0009" n="9"/>
l’Aquile Gonzaghe, chehanno ſempre <lb/>ſormontato le più alte sfere della Gloria, <lb/>e ſomminiſtrato non à Gioue i Folgori, <lb/>arme delle celeſti vendette, ma à Palla-<lb/>de innocenti ſplendori d’immortalità. <lb/></s>
  <s xml:id="echoid-s8" xml:space="preserve">Con che fine à V. E. profondamente in-<lb/>chinandomi, prego Dio, che le renda <lb/>propitio il fine d’ogniſuo giuſtiſſimo de-<lb/>ſiderio.</s>
</p>
<p>
  <s xml:id="echoid-s9" xml:space="preserve">Di Bologna li 22. Luglio 1647.</s>
</p>
<p>
  <s xml:id="echoid-s10" xml:space="preserve">Di V. E. Illuſtriſsima</s>
</p>
<head xml:id="echoid-head6" xml:space="preserve">Humiliſs. e diuotiſs. ſer. <lb/>Carlo Zenero.</head>
<pb file="0010" n="10"/>
</div>
<div xml:id="echoid-div4" type="section" level="2" n="4">
<head xml:id="echoid-head7" xml:space="preserve">PROEMIO.</head>
<p>
  <s xml:id="echoid-s11" xml:space="preserve">IL Trattato delli Spiritali fù da’Filoſofi, <lb/>e da’ Mecanici Antichi giudicato de-<lb/>gno di grandiſſimo ſtudio, e particolar-<lb/>mente da quelli, che della ragione, e del-<lb/>la forza di queſta facoltà trattorno; </s>
  <s xml:id="echoid-s12" xml:space="preserve">e da <lb/>quegli ancora, che le ſenſibili loro at-<lb/>tioni conſiderarono; </s>
  <s xml:id="echoid-s13" xml:space="preserve">onde principal-<lb/>mente habbiamo giudicato eſſer neceſ-<lb/>ſa rio; </s>
  <s xml:id="echoid-s14" xml:space="preserve">(volendo di queſta facolt à trattare) ordinatamente rac-<lb/>cogliere tutto quello, che da eſſi Antichi fù ſopra di ciò la-<lb/>fciato; </s>
  <s xml:id="echoid-s15" xml:space="preserve">&amp; anco eſponere (con ogni miglior maniera quanto da <lb/>noi è ſtato ritrouato:</s>
  <s xml:id="echoid-s16" xml:space="preserve">acciò, che quelli, che vorranno dar op-<lb/>era alle Matematiche da eſſe ſiano quanto è poſſibile) aiutati: <lb/></s>
  <s xml:id="echoid-s17" xml:space="preserve">Oltre di ciò, conſiderando noi queſto Trattato eſſere conſen-<lb/>taneo a quello, che da gli Horoſcopij Acquatici, deſcriueſſi-<lb/>mo già in quattro Libri. habbiamo fatto deliberatione di eſſo <lb/>ſcriuere. </s>
  <s xml:id="echoid-s18" xml:space="preserve">Imperoche per la congiuntione dell’aria, del fuoco, <lb/>dell’ acqua, e della terra, e di tre Elementi maſſimamente, <lb/>ouer forſe anco di tutti quattro, e dal meſchiarſi inſieme ſono <lb/>prodotte varie diſpoſitioni, alcune delle quali all’vſo, &amp; al <lb/>viuer humano ſono neceſſarijſſime, &amp; alcun’ altre vna certa <lb/>ammiratione piena d’indicibile ſtupore ci apportano. </s>
  <s xml:id="echoid-s19" xml:space="preserve">Ma. <lb/>prima ch’entriamo in ciò, che di dire penſiamo, ci è neceſſa-<lb/>rio diſputar del vacuo.</s>
</p>
<pb o="11" file="0011" n="11"/>
</div>
<div xml:id="echoid-div5" type="section" level="2" n="5">
<head xml:id="echoid-head8" xml:space="preserve">Vidit Franciſcus Ferrarius pro Emi-<lb/>nentiſſimo,&amp; Reuerendiſs. D. Card. <lb/>Ludouiſio Archiepiſcopo.</head>
<head xml:id="echoid-head9" xml:space="preserve">Vidit D. Andræas Cuttica Pœnit. Re-<lb/>ctor pro Eminentiſſimo, &amp; Reueren-<lb/>diſs. Card. Archiepiſcopo.</head>
<head xml:id="echoid-head10" xml:space="preserve">Imprimatur</head>
<head xml:id="echoid-head11" xml:space="preserve">Fr. Ioannes Baptiſta Spadius Magiſter <lb/>pro Reuerendiſs. P. Inquiſit. Bonon.</head>
<pb file="0012" n="12"/>
<pb o="1" file="0013" n="13"/>
</div>
<div xml:id="echoid-div6" type="section" level="2" n="6">
<head xml:id="echoid-head12" xml:space="preserve">DELVACVO NELLIBRO <lb/>DELLI SPIRITALI <lb/>Per l’ intelligenza dell’ Opera.</head>
<p style="it">
  <s xml:id="echoid-s20" xml:space="preserve">MOlti vniuerſalmente diſſero anzi affermarono non eſſer luogo <lb/>vacuo, altri per natura, niſſun coaceruato vacuo penſorna <lb/>eſſere: </s>
  <s xml:id="echoid-s21" xml:space="preserve">ma eſſere mediante certe picciole parti diſſeminate <lb/>nell’aria, nell’acqua, nel fuoco, e ne gli altri corpi, &amp; a queſti <lb/>è neceſſario di aſſentire. </s>
  <s xml:id="echoid-s22" xml:space="preserve">Ma ditutto ciò, che ſotto il ſenſo ca-<lb/>de, e che manifeſto appare nelli ſeguenti ci ſforzaremo di <lb/>moſtrare che coſì è non altrimente. </s>
  <s xml:id="echoid-s23" xml:space="preserve">In eſſempio di che dicia-<lb/>mo, che i Vaſi a molti, che più oltre non conſider ano, paiono <lb/>vuotſ, ma non ſono com’eſſi penſano vuoti nò; </s>
  <s xml:id="echoid-s24" xml:space="preserve">ma ripieni d’aria, e l’aria, come piace <lb/>ai naturaliè compoſto di piccioli, e leggieri corpi, per il più da noi non compreſi, ne <lb/>viſti; </s>
  <s xml:id="echoid-s25" xml:space="preserve">Imperoche ſe nel vaſo, che come habbiam detto, ci parrà vuoto alcuno v’ in-<lb/>fonder à acqua, quanta acqua nel vaſo entrarà, tant’ aria ſueri ſe n’vſcirà; </s>
  <s xml:id="echoid-s26" xml:space="preserve">onde da <lb/>queſto potrà ciaſcuno intendere ciò che di ſopra habbiam detto. </s>
  <s xml:id="echoid-s27" xml:space="preserve">E comprendere an-<lb/>co, che ſe alcuno pigliato il vaſo (che come diciamo ci parera vuoto) lo demergerà ro-<lb/>uerſcio nell’ acquatenendolo ſempre dritto, non è dubbio, che l’acqua in eſſo non en-<lb/>trarà, ancor che ſtia per forza tutto cacciato ſott’ acqua: </s>
  <s xml:id="echoid-s28" xml:space="preserve">onde ci ſi ſchiariſſe, che eſ-<lb/>ſendo l’ aria corpo non permetterà, che vi entri acqua; </s>
  <s xml:id="echoid-s29" xml:space="preserve">perche tutto il luogo, che è nel <lb/>vaſo è d’ aria ripieno: </s>
  <s xml:id="echoid-s30" xml:space="preserve">e queſto ſi vedrà cauatolo retto ſuor dell’ acqua: </s>
  <s xml:id="echoid-s31" xml:space="preserve">Imperoche <lb/>drizzando in piedi la ſuperficie interiore di eſſo, trouar aſſi eſſer aſciutta, e pura co-<lb/>m’era inanti, che nell’ acqua foſſe demerſo; </s>
  <s xml:id="echoid-s32" xml:space="preserve">ma ſe come ſ’è detto ſtando il vaſo ro-<lb/>uerſcio, eretto nell’ acqua alcuno vi forara nel fondo vn buco, l’ acqua per la bocca <lb/>di eſſo entrarà el aria per detto buco ſe n’vſcirà. </s>
  <s xml:id="echoid-s33" xml:space="preserve">Onde dobbianſo giudicare, che <lb/>l’aria è corpo il qual moſſo diuenta ſpirito, eſſendo che ſpirito altro non è, che aria <lb/>moſſo;</s>
  <s xml:id="echoid-s34" xml:space="preserve">e ſe for ato il vaſo ncl ſondo e demerſo nell’ acqua alcuno metterà ſopra del bu-<lb/>co la mano ſenza dubbio ſentirà lo ſpirito, che fuori di eſſo vaſo ſe n’vſcira, e queſto <lb/>altro non è, ſe non aria cacciato dall’ acqua, ne giudicar dobbiamo in queſti che ſona <lb/>vacui vna certa coaceruata natura perſiſtere, ma eſſere ſecondo alcune picciole <lb/>parti diſſeminate nell’aria, nell’acqua e nelli altri corpi ſe per auentura alcuno non <lb/>è però che cred a in tutto priuo d’ ogni vacuo eſſere il diamante ſolo, non potendoſi <lb/>egli nè abruſciare, nè rompere, anzi che poſto ſù le incudini, e con grauiſſimi martel-<lb/>li percoſſo, tutto, &amp; in eſſi incudini, e ne i martelli entra. </s>
  <s xml:id="echoid-s35" xml:space="preserve">Ne queſto ad eſſo attribuire <lb/>ſi deue, perche per ſolida ſua natura di vacuo ſia priuo: </s>
  <s xml:id="echoid-s36" xml:space="preserve">ma per la continuata den-<lb/>ſità, che è in eſſo; </s>
  <s xml:id="echoid-s37" xml:space="preserve">Imperoche eſſendo i piccioli corpi del fuoco più groſſi del vacuo, che
<pb o="2" file="0014" n="14" rhead="DELVACVO."/>
è nella pietra, nel corpo di eſſa non entrano, ma ſi fermano nella ſuperficie eſteriore: <lb/></s>
  <s xml:id="echoid-s38" xml:space="preserve">onde auuiene, che non penetrando adentro in eſſi, ne anco v’ inducono calidità, come <lb/>ne gli altri corpi auuiene: </s>
  <s xml:id="echoid-s39" xml:space="preserve">Mali corpi dell’ aria hanno frà di loro vna certa cohe-<lb/>rentia non in ogni parte però; </s>
  <s xml:id="echoid-s40" xml:space="preserve">ma per certi infr ameſſi interualli, che vacui chiama-<lb/>remo, come nell’ arena, che è ne i liti. </s>
  <s xml:id="echoid-s41" xml:space="preserve">Il che ſi ſà comprendere nell’ animo che a i cor-<lb/>pi Aerei ſiano ſimili le picciole particelle dell’arene, e che l’aria inframeſſa frà le <lb/>particelle dell’arena ſia ſimile a’vacui contenuti frà l’aria;</s>
  <s xml:id="echoid-s42" xml:space="preserve">il qual da violente for-<lb/>za forzato conuien che (entrando ne i luoghi vacui) ſi condenſi: </s>
  <s xml:id="echoid-s43" xml:space="preserve">Sſorzati, e compreſ-<lb/>ſi quei corpi, e di eſſi violentata la natura: </s>
  <s xml:id="echoid-s44" xml:space="preserve">la quale (rimeſſa, eretaſciata la forza, <lb/>che lo sforzaua) di nuouo conuien, chenel ſuo ordine ritorni per la natural contentio-<lb/>ne, che è frà i corpi naturali; </s>
  <s xml:id="echoid-s45" xml:space="preserve">come nei ramenti delle corne, e nelle ſecche ſponghe in-<lb/>trauiene, le quali compreſſe, ſe ſi rilaſciano ritornando nel luogo di prima: </s>
  <s xml:id="echoid-s46" xml:space="preserve">piglian <lb/>di nuouo la iſteſſa mole. </s>
  <s xml:id="echoid-s47" xml:space="preserve">Il ſimile intrauiene ſe da violente forza ſeranno d’inſieme <lb/>diſtratte le picciol particelle nell aria, e che per ciò il luego vacuo ſi ſaccia maggio-<lb/>re fuor di ſua natura, che eſſe di nuouo in ſe ſteſſericorono; </s>
  <s xml:id="echoid-s48" xml:space="preserve">Imperoche per la ſubita <lb/>euacuatione conuiene, che i corpi di nuouo in ſe ſteſſi, &amp; a ſe medeſimi ritornino non <lb/>oſtante qual ſi voglia coſa, che li contraſti. </s>
  <s xml:id="echoid-s49" xml:space="preserve">Il che ſi vede ſe alcuno pigliato vn leg-<lb/>gieriſſimo vaſo, e per la ſtretta bocca di eſſo tiratone il fiato, ò l’aria, che v’è dentro <lb/>con la bocc a indi ſubito rilaſciatolo incontinente dalle labra di colui penderà detto <lb/>vaſo, &amp; il vacuo atraerà la carne, sforzandolo la natura di eſſo; </s>
  <s xml:id="echoid-s50" xml:space="preserve">Finche ſi riempi-<lb/>rà il luogo vuoto; </s>
  <s xml:id="echoid-s51" xml:space="preserve">il che chiariſſimamente ci dimoſtra il luogo, che è nel corpo del <lb/>vaſo eſſere totalmente ſtato vacuo. </s>
  <s xml:id="echoid-s52" xml:space="preserve">Ma queſto ancora da queſt altra ragione è mani-<lb/>feſto. </s>
  <s xml:id="echoid-s53" xml:space="preserve">Quei vaſi, che voui Medici ſi chiamano, che ſi fanno di vetro con piccioliſſi-<lb/>ma bocca, quando altrigli vuole impire d’acqua ſucchiano per la bocca: </s>
  <s xml:id="echoid-s54" xml:space="preserve">l’aria in-<lb/>di ſubito li demergono nell’ acqua: </s>
  <s xml:id="echoid-s55" xml:space="preserve">nella quale rimoſſo dalla bocca, il ditto viene dal <lb/>vacuo tirata all’insù onde vedeſi riempireil luogo vaoto, &amp; eſſa acqua dà la forza <lb/>del vacuo violentata eſſer portata all’insù contro la natura ſua, e ciò che da quanto <lb/>di queſti è chiaro, non è certo alieno da quanto di ſopra babbiam diſcorſo eſſendo <lb/>certiſſimo, che leuatone il corpo non ſolo non ſi rilaſcia lagrauità manifeſta: </s>
  <s xml:id="echoid-s56" xml:space="preserve">mane <lb/>vien tirata la giacente materia, per la rarita del corpo dalla iſteſſa cagione; </s>
  <s xml:id="echoid-s57" xml:space="preserve">ma in <lb/>eſſi poſto ſuoco egli corrompe &amp; aſſottiglia l’aria da loro contenuto, non meno, che da <lb/>eſſi corpi vengono corrotti gli altri corpi, e traſmutati in più ſuttili ſuſtanze, dico, <lb/>aria, acqua, e terra e che ſiano corrotti da eſſo è manifeſto dagli arſciati, carboni, le <lb/>quali la iſteſſa mole ſerbando, che di primainanti la combuſtione hebbero; </s>
  <s xml:id="echoid-s58" xml:space="preserve">ò poco <lb/>minore ſono però digrauezza molto minore e quelle ſoſtanze, che ne i corpi ſi cor-<lb/>rompono paſſano per fumo in ſoſtanza gnea, acrea, eterrena; </s>
  <s xml:id="echoid-s59" xml:space="preserve">imperoche le parti più <lb/>ſottili ſono portate, come più leggieri nel luogo ſuperiore oue è il ſuoco ſopra l’aria, <lb/>e ſotto il cerchio della Luna, e quelle che ſono vn poco più groſse nell’ aria, ele più <lb/>graui inſieme con quelle per alquanto ſi lieuano, ma non potendo in eſsa formarſi <lb/>per la continua ſuagrauità, di nuouo ſcendono nella parte inferiore, e ſi aggiungono <lb/>alla terra, e l’ acqua anch’ella dal fuoco corrotta vien mutata in aria; </s>
  <s xml:id="echoid-s60" xml:space="preserve">in peroche <lb/>gli vapori, che da bolenti vaſi ſi lieuano nient’ altro, ſono che ſottigliationi d’humi-
<pb o="3" file="0015" n="15" rhead="DEL VACVO."/>
do che in aria paſſano: </s>
  <s xml:id="echoid-s61" xml:space="preserve">tal che è manifeſto il fuoco diſſoluere, e traſmutare ogni coſa <lb/>più groſſa di lui, e che dalle eſalationi, che dalla terra ſi fanno, ſonotraſmutati li <lb/>più groſſi corpi in più ſottili ſoſtanze: </s>
  <s xml:id="echoid-s62" xml:space="preserve">Ne in altro modo le rugiade ſi lieuano in alto <lb/>ſe non ſe l’acqua, che è in terra viene dalla eſalatione di eſſa eſtenuata, e queſta eſa-<lb/>latione vien prodotta da certa focoſa ſoſtanza del Sole che è nelle viſcere della ter-<lb/>ra, che quel luogo riſcalda; </s>
  <s xml:id="echoid-s63" xml:space="preserve">e tanto maggiormente se egli è ſulfureo ò bittuminoſo, che <lb/>taleriſcaldato per il più genera esalatione, e l’acque che in terra si trouano, calde si <lb/>fanno per le medeſime cagioni: </s>
  <s xml:id="echoid-s64" xml:space="preserve">la parte più ſottile adunque della ruggiada ſi traſ-<lb/>muta in aria, e la più groſſa parte di lei violentata dalla ſorza della eſalatione, ſi <lb/>lieua alquanto in alto, e per la conuerſione del Sole raffredata di nuouo cade all’in-<lb/>giù sù la terra: </s>
  <s xml:id="echoid-s65" xml:space="preserve">Mai venti naſcono dalla vehemente eſalatione dell aria aſſotti-<lb/>gliati, e ſcacciati dal continuo moto di eſſa; </s>
  <s xml:id="echoid-s66" xml:space="preserve">&amp; il moto dell’ aria non è egualmente <lb/>veloce, ma molto più veloce è nel principio preſſo la eſalatione e ſempre và facendo-<lb/>ſi più tardo, &amp; imbecile, quanto più s’ allontana dal luogo, onde ſi moue; </s>
  <s xml:id="echoid-s67" xml:space="preserve">come anco <lb/>intrauiene nelle coſe graui, che ſono portate all’insù: </s>
  <s xml:id="echoid-s68" xml:space="preserve">Imperoche il ſuo moto, molto più <lb/>è veloce vicin al luogo nel quale è la violenza, che le ſcaecia, e più tardo nella parte <lb/>ſuperiore: </s>
  <s xml:id="echoid-s69" xml:space="preserve">perche dalla forza ſcacciante non vengono con la isteſſa forza accompa-<lb/>gnate che principiò di mouerle, e per queſto ritornano di nuouo al ſuo luogo naturale, <lb/>di donde partirno; </s>
  <s xml:id="echoid-s70" xml:space="preserve">cioè nelle parti inferiori: </s>
  <s xml:id="echoid-s71" xml:space="preserve">che se egualmente veloce fossero sempre <lb/>dalla isteſsa forza ſcacciante accompagnate, non mai per certo ceſſarebbono: </s>
  <s xml:id="echoid-s72" xml:space="preserve">ma <lb/>a poco, a poco ceſſando ella, ceſſar ancora ſi vede la velocità della coſa moſſa: </s>
  <s xml:id="echoid-s73" xml:space="preserve">e l’ac-<lb/>qua anch ella si traſmuta in ſostanza terrena, quando cauato in terra infondiamo <lb/>nel concuuo luogo acqua, la quale, poco dopoi imbeuuta dalla terrena ſoſtanza ſua-<lb/>niſce e con eſſa meſchiandoſi diuiene terra; </s>
  <s xml:id="echoid-s74" xml:space="preserve">ma ſe alcuno ſerà, che dica, che ella ſi <lb/>conſtringe, e che dalla terra beuuta non viene; </s>
  <s xml:id="echoid-s75" xml:space="preserve">ma euaporare, &amp; eſicarſi, ò per ca-<lb/>lidità del Sole, ò per altro: </s>
  <s xml:id="echoid-s76" xml:space="preserve">vedraſſi ver amente colui pigliare errore: </s>
  <s xml:id="echoid-s77" xml:space="preserve">Imperoche <lb/>l’iſteſſa acqua infuſa in vaſo di vetro, ò dirame, ò d’altra materia denſa, &amp; eſpoſta <lb/>al Sole, per granſpatio di tempo non ſi minuirà di eſſa ſe non picciola parte, onde ſi <lb/>vede, che l’acqua ſi traſmuta in ſoſtanza terrena, e che la viſchioſità per così di-<lb/>re, ò lamucilaggine dellaterra, e la traſmutatione dell’acqua in ſoſtanza terrena; <lb/></s>
  <s xml:id="echoid-s78" xml:space="preserve">fi muta ancora la ſottile in più groſſa ſostanza, come vediamo nelle eſtinte lucerne, <lb/>cui manchi l’ oglio, lafiamma eſſer portata alquanto all’insù, e come ſcacciata <lb/>partirſi dal proprio luogo, &amp; auiarſi al ſuo luogo ſupremo, che è ſopra l’aria, ma ſu-<lb/>perata dai molti intermezi di eſſa; </s>
  <s xml:id="echoid-s79" xml:space="preserve">non viene portata nel deſtinato luogo; </s>
  <s xml:id="echoid-s80" xml:space="preserve">ma me-<lb/>ſchiata, e complicata da’corpi aerei ſi conuerte in aria: </s>
  <s xml:id="echoid-s81" xml:space="preserve">&amp; il simile ſi deue intende-<lb/>re ds eſſa aria: </s>
  <s xml:id="echoid-s82" xml:space="preserve">imperoche ſe chiuſo in alcun vaſo non molto grande demergeremo <lb/>nell’ acqua il vaſo, e che dopo lo ſcopriamo, acciò che l’acqua per la bocca di ſopra-<lb/>uia in eſſo entri. L aria certamente ſuor del vaſo ſi partira-ouero che ſuperato dalla <lb/>molta quantita dell’acqua di nuouo ſi meſchiarà, e complie araſſi in modo che diue-<lb/>rà acqua: </s>
  <s xml:id="echoid-s83" xml:space="preserve">Con il medeſimo modo l’aria corrotto nelle cucurbitule, ò ventoſe, &amp; aſ-<lb/>ſottigliato dal fuoco ſe n’eſce per lararità del vaſo, &amp; reſo vacuo il corpo; </s>
  <s xml:id="echoid-s84" xml:space="preserve">trahe a ſe <lb/>la circompoſta materia ſia di che qualità eſſer ſi voglia: </s>
  <s xml:id="echoid-s85" xml:space="preserve">Ma quando la cucurbità,
<pb o="4" file="0016" n="16" rhead="DEL VACVO."/>
reſpir arà ſuccedendo l’aria nell’ euacuato luoco, non piu tirarà la materia: </s>
  <s xml:id="echoid-s86" xml:space="preserve">e ſe vns-<lb/>uer ſalmente alcun àiceſſe niente del tutto eſſer vacuo, a dimoſtrare queſto ſi potreb-<lb/>bono ritrouar molti argomenti, e for Ze con parole perſuaderlo, eſſendo che niſſuna <lb/>ſenſibile dimoſtr atione apport ano; </s>
  <s xml:id="echoid-s87" xml:space="preserve">ma in quelle coſe, che chiare appaiono, e che fotto <lb/>il ſenſo cagiono ſe il vacuo certo dimoſtr ar anno coaceruato, e fatto fuor di ſua Natura, <lb/>&amp; eſſere in picciole parti diſſeminato, &amp; eſſi corpi per compreſſione riempire li <lb/>diſſeminati Vacui, a quelli, che di ciò s’ afſattic ano adurre probabiliragioni, non è <lb/>certo da porgere oreccbia. I mperoche, fabbricata vna sfer alagroſſezza, dell a quale <lb/>ſia di lamina acciò non facilmente ſi poſſarompere: </s>
  <s xml:id="echoid-s88" xml:space="preserve">ma ben fatta, &amp; d’ogni intorno <lb/>ſerr ata eccellentemente indi foratola, e nel buco impoſtaui vna canna dirame, che <lb/>il luoco for ato d’ incontro ſecondo il diametro al buco opoſto non ſerri; </s>
  <s xml:id="echoid-s89" xml:space="preserve">acciò poſſa di-<lb/>ſcorrere l’ acqua, e facendo della canna l’altra parte auanzi fuor’ della sfer a tre di-<lb/>ta in circa; </s>
  <s xml:id="echoid-s90" xml:space="preserve">e che ſia constagno ſerrato l ambito del forame, per il quale s’impone la <lb/>canna, che allhora ſe chiuderemo eſſa canna, e l’eſtrinſeca ſuperficie della sfera; </s>
  <s xml:id="echoid-s91" xml:space="preserve">ac-<lb/>cioche volendo Not con la bocca enfiarlalo ſpirito a modo niſſuno poſſa vſcirſene. <lb/></s>
  <s xml:id="echoid-s92" xml:space="preserve">Vedremo ciò che in eſſa ſi contiene, che non altro è certo, che l’ aria eſistente in eſſa <lb/>nell’ isteſſo modo che auuiene in quelli altri vaſi, che voti ſi chiamano, li quali tutti <lb/>ripieni, e per vna certa continuatione all’ ambito loro applicati in eſſo finalmente nõ <lb/>vi potendo eſſere niuna ſorte di vacuo, non vi ſi potr à imporre acqua, nè altr’ aria; <lb/></s>
  <s xml:id="echoid-s93" xml:space="preserve">non partendoſi quella, prima che dentro vi era anzi auer à che facendo noi violenza <lb/>per imporuene prima ſe romper à il vaſo, che eſſo ne poſſa riceuere punto, per eſſe-<lb/>re pieno, che ne anco i corpi dell’ aria ſi poſſono contr abere in minor grandezze; </s>
  <s xml:id="echoid-s94" xml:space="preserve">per-<lb/>che ſarebbe neceſſario, che frà di loro ſi faceſſero certi interualli, ne’ quali i corpi cõ-<lb/>preſſi foſſero di minor mole, Il che non è poſſibile; </s>
  <s xml:id="echoid-s95" xml:space="preserve">non eſſendo del tutto niſſun vacuo: <lb/></s>
  <s xml:id="echoid-s96" xml:space="preserve">e quando ſecondo tutte le ſuperficie i corpi ſi applicaſſero inſieme, ſimilmente nell’ <lb/>ambito del vaſo violentati non poſſono ad altri corpi dar luoco, non eſſendo vacus <lb/>alcuno, e per queſto a modo niſſuno nella propoſta sfer a non potraſſi mettere niſſuno <lb/>di quei corpi, che ſono fuori di lei, ſe prima non partir aſſi alcuna parte dell’ aria, <lb/>prima in eſſa contenuta. </s>
  <s xml:id="echoid-s97" xml:space="preserve">Se però tutto il luoco conſtipato, e continuato ſerà, come ſi <lb/>penſa. </s>
  <s xml:id="echoid-s98" xml:space="preserve">Maſe verrà alcuno per la bocca della canna a gonfiare la sfer a v’ introdur-<lb/>rà certo molto ſpirito, non partendoſi però l’ aria, cb è in eſſa; </s>
  <s xml:id="echoid-s99" xml:space="preserve">il che con ſempre così <lb/>ſia, manifeſtamente ſi dimoſtra, che nella sfera viene a farſi contr attione di quei <lb/>corpi, che ſono in eſſa implicati ne i vacui. </s>
  <s xml:id="echoid-s100" xml:space="preserve">Ma in queſto la contrattione faſſi per <lb/>eſſere, in ciò la Natur a violentata dalla violente immiſſione de lo ſpirito: </s>
  <s xml:id="echoid-s101" xml:space="preserve">ſe adun-<lb/>que per eſſa bocca ſoffiando, noi vi porremo la mano, e con il dito incontinente tur a-<lb/>remo il buco, l’ aria cõſtipato ſempre ſtar à nella sfer a: </s>
  <s xml:id="echoid-s102" xml:space="preserve">Ma ſe ſchiuderemo eſſa bocca, <lb/>di nuouo errumper à, e fuggir aſſi l’ aria immeſſoui con grandiſſimo ſtrepito, e cridore. <lb/></s>
  <s xml:id="echoid-s103" xml:space="preserve">Imperoche come babbiã propoſto viene diſcacciato da dilatatione dell’ ari a preſiſtẽ-<lb/>te, fatta cõ vn certo impeto: </s>
  <s xml:id="echoid-s104" xml:space="preserve">Di nuouo ſe alcuno vorrà attrabere cõ la bocca per la cã-<lb/>na l’aria, ch’è nella propoſta sfera grãdiſſima copia ne tirar a, nè però ſucceder à nel-<lb/>la sfer a alcun’ altra ſoſtanza, come di ſopra dell’ Ouo Medico ſi diſſe. </s>
  <s xml:id="echoid-s105" xml:space="preserve">Il perche chia-<lb/>ro ſi dimoſtra, che nel vacuo della sfera s’ era fatto grandiſſima coaceruatione; </s>
  <s xml:id="echoid-s106" xml:space="preserve">im-
<pb o="5" file="0017" n="17"/>
perocbe i corpi dell’ aria, cbe nell’ iſteſſo tempo vi ſi laſciano, non ponno diuenire <lb/>maggiori: </s>
  <s xml:id="echoid-s107" xml:space="preserve">tãto cbe delli eſpulſi corpi riempiano il luoco; </s>
  <s xml:id="echoid-s108" xml:space="preserve">percbe ſe ſi accreſceſſero non <lb/>ui ſi aggiũgẽdo altra eſteriore ſoſtãza ſarebbe veriſimile, che queſto accreſcimẽto fa-<lb/>rebbeſi per rarefattione: </s>
  <s xml:id="echoid-s109" xml:space="preserve">ma queſta è implicatione per modo di euacuatione,, e percbe <lb/>niſſun’ vacuo ſi coñcede, non poſſono, nè anco accreſcere i corpi, cbe ne anco cò la mẽte <lb/>ſi può cõprẽdere il poteruiſi accreſcere altro augumẽto. </s>
  <s xml:id="echoid-s110" xml:space="preserve">Da che ſi fa chiaro per mezo <lb/>i corpi dell’ aria eſſere diſſeminati certi vacui, i quali ſopr agionti da certa violenza, <lb/>ſono sforzati fuor di natura a reclinare in vacui, onde l’ aria ch’è chiuſa nel vaſo in <lb/>acqua demerſo ſe ben viene ad eſſere molto premuto: </s>
  <s xml:id="echoid-s111" xml:space="preserve">quello però, che diragione dou-<lb/>rebbe violẽtarlo nõ è ſufficiẽte in queſto luoco, perche naturalmẽte l’ acqua in ſe ſteſſa <lb/>non hà nè grauità, nè vehemente cõpreſſione: </s>
  <s xml:id="echoid-s112" xml:space="preserve">come vediamo intr auenire a quelli, che <lb/>nel profondo del Mare vrinano, li quali ſe ben hãno ſopra le ſpalle infinite, metrete, <lb/>ò Amphore, dall’ acqua nõ ſono sforzati altrimẽte reſpirare, ancor che nelle nare lo-<lb/>ro ſi cõprenda però picciola quãtità d’ aria. </s>
  <s xml:id="echoid-s113" xml:space="preserve">Ma donde auuenga, che quelli, che nuo-<lb/>tano nel Mare, non vengano compreſſi dall’ infinito peſo dell’ acqua che hanno ſopr a <lb/>le ſpalle, e ſopra la vita, e certo degno di conſi der atione. </s>
  <s xml:id="echoid-s114" xml:space="preserve">Dicono alcuni cιò auuenire; <lb/></s>
  <s xml:id="echoid-s115" xml:space="preserve">per eſſere l’acqua egualmente graue ſecondo ſe ſteſſa; </s>
  <s xml:id="echoid-s116" xml:space="preserve">ma queſti non dicono perche ca-<lb/>gione quellι, che nuotano nel profondo non vengano dall’ acqua ſuperiore compreſſi, <lb/>che questo certamente in queſto modo ſi deue dimostrare. </s>
  <s xml:id="echoid-s117" xml:space="preserve">Intendaſi eſſer alcun cor-<lb/>po egualmente graue, &amp; egualmente bumido, che l’ ιξteſſa forma, ò figur a babbia, <lb/>che l’vmido ſuperiore, di cui la ſuperfitie dι ſopra, ſia come del cõpreſſo, &amp; intendia-<lb/>mo queſto da noi gettato nell’ acqua, e ſia che la ſuperficie inferιore di eſſa ſi confac-<lb/>cia all a ſuperiore anzi pur ſia come ella medeſima, &amp; ſimilmente pongaſi all hum-<lb/>ιdo ſuperιore vguale, è chiariſſimo, che queſto corpo nelll’ acqua demerſo non ſo-<lb/>praſtarà a gala ſopra di eſſa, ne meno ſotto la ſuperficie dell’ humido ſuperiore de-<lb/>mergeraſſi, il che dottamente viene dimostrato d’ Archimede nel lιbro di quei cor-<lb/>pi egualmente graui, nel quale proua anco che l’humido nell’ humido immerſo ne ſo-<lb/>pra nuota all’ humido, nè in eſſo ſi demerge. </s>
  <s xml:id="echoid-s118" xml:space="preserve">Vedeſi adunque, che i corpi ſottopoſti <lb/>all’ acqua non poſſono eſſer compreſſi dalla grauità dι eſſa. Eſſendo, che ſi può dire, è <lb/>come può eſſere compreſſo quel corpo cui conceſſo non è deſcendere nel luogo inferiore? <lb/></s>
  <s xml:id="echoid-s119" xml:space="preserve">E per queſtar agione l’ humido doue er ail corpo non potrà comprimere li ſottopoſti <lb/>corpi. </s>
  <s xml:id="echoid-s120" xml:space="preserve">Imperoche quanto all’ eſtremo, che appartιene aller agioni di moto, e di quie-<lb/>te, nonè diflerenza alcuna dal detto corpo all’humido che l iſteſſo luoco occupa; </s>
  <s xml:id="echoid-s121" xml:space="preserve">ma <lb/>ſe alcuno intender à non eſſer vacuo, non dandoſi, e non eſſendo, nè anco per l’acqua, <lb/>nè per l’aria, nè per qualſiuoglιa altro corpo potrebbe paſſare il lume, ò la calidità, ò <lb/>qualſiuoglia altra potenza corporea. </s>
  <s xml:id="echoid-s122" xml:space="preserve">Imperoche, come paſſarebbono iraggidel So-<lb/>le per l’ acqua nel fondo del vaſo? </s>
  <s xml:id="echoid-s123" xml:space="preserve">Sel’ acqua non haueſſe poroſita? </s>
  <s xml:id="echoid-s124" xml:space="preserve">eſſiraggi non hà <lb/>dubbio con la violenza ſpezzarebbero l’ acqua, onde auerrebbe, che i vaſi pieni ſu-<lb/>perfonderebbono. </s>
  <s xml:id="echoid-s125" xml:space="preserve">Il che far non veggiamo, e per queſto ſe l’acqua con la vιlenza <lb/>loro rompeſſero, certamente ſi rõperebbono nella parte ſuperιore alcuni dι loro; </s>
  <s xml:id="echoid-s126" xml:space="preserve">alcu-<lb/>ni altri all’ingiù: </s>
  <s xml:id="echoid-s127" xml:space="preserve">caderebbono, ne ſi vedono percotendo le particelle dell’ acqua rõ-<lb/>perſi nel luoco ſuperiore. </s>
  <s xml:id="echoid-s128" xml:space="preserve">Ma che cadendo nell’ acqua, e paſſando per le piccole par-
<pb o="6" file="0018" n="18" rhead="DEL VACVO."/>
ticelle ſe ne vanno nel fondo del vaſo: </s>
  <s xml:id="echoid-s129" xml:space="preserve">il che chiaro ci fà comprendere, che nell’ ac-<lb/>qua ſono vacui. </s>
  <s xml:id="echoid-s130" xml:space="preserve">Vedeſi oltre di cio il vino verſato nell’ acqua ſecondo l’effuſione an-<lb/>darſene per eſſa: </s>
  <s xml:id="echoid-s131" xml:space="preserve">il che non auerebbe, ſe non foſſero vacui nell acqua; </s>
  <s xml:id="echoid-s132" xml:space="preserve">e li lumi vno <lb/>per l’ altro ſono portatι; </s>
  <s xml:id="echoid-s133" xml:space="preserve">imperoche ſe accenderemo pιù lumi illuſtraranno maggior-<lb/>mente ogni coſa per il medeſmo modo, paſſandoſi, e penetr andoſi l’uno per l’ altro <lb/>ſcambieuolmente. </s>
  <s xml:id="echoid-s134" xml:space="preserve">Maeper il rame, e per il ferro, e per tutti gli altri corpi faſſi tal <lb/>penetratione nel modo apunto, che nella torpedine peſce marino auuiene. </s>
  <s xml:id="echoid-s135" xml:space="preserve">Ma perche <lb/>babbiam dimostrato fuor di natura eſſer vacuo amaſſato, e per il vaſo leggieri oppo-<lb/>ſto alla bocca, o per l’Ouo medico, e parendocι eſſer molte le dimoſtratιoni della na-<lb/>tura del vacuo da noi eſplicate, habbiam penſato hauer detto di ciò a baſtanza, eſſendo <lb/>che per ſenſibili demoſtr ationi l’ habbiam dimoſtrate. </s>
  <s xml:id="echoid-s136" xml:space="preserve">Ci ſi a dunque vniuer-<lb/>ſal mente lecito dι dire, che ognι corpo è compoſto di leggιerι, e piccolι corpi, ne’ quali, <lb/>ò frà lι quali ſono piccoli vacui in particelle diſſeminati; </s>
  <s xml:id="echoid-s137" xml:space="preserve">e che ci abuſiamo quando <lb/>diciamo niente trouarſi di vacuo, ſe violentato non è d’ alcuna violenza; </s>
  <s xml:id="echoid-s138" xml:space="preserve">ma ogni <lb/>coſa eſſer piena, ò d’aria, ò d’acqua, ò d’alcun’ altra ſoſtanza, e quanto dell’ vna di <lb/>queste manca, tanto ve n’è dell altra, che riempe ιl luoco. </s>
  <s xml:id="echoid-s139" xml:space="preserve">Diciamo ancora niun <lb/>vasuo natur almente coaceruato, ò amaſſato non eſſere ſe violentato d’ alcuna vio-<lb/>lenza non è, &amp; di nuouo neſſun vacuo totalmente trouarſi ſe non fuor dinatura. </s>
  <s xml:id="echoid-s140" xml:space="preserve">E <lb/>poiche queſti habbiam eſplιcati, è tẽpo hormai dι dar prιncipio a deſcriuere i T heo-<lb/>remi, che ſi fannno mediante le battaglie de i ſopradetti Elementi, imperoche per <lb/>mezo di queste ſi trouano vary, e marauiglioſi moti, lι quali prima eonſi derati co-<lb/>me Elementi, ragιonaremo delle infleſſe ſiffoni eſſendo elleno vtiliſſime a molte ce-<lb/>ſe Spiritali.</s>
</p>
<pb file="0019" n="19"/>
</div>
<div xml:id="echoid-div7" type="section" level="2" n="7">
<head xml:id="echoid-head13" xml:space="preserve">AGGIVNTA <lb/>DELL’ ALEOTTI <lb/>Intorno al non poter eſſere alcun <lb/>vacuo, nè poter l’ Elemento <lb/>dell’ Aria ſtar compreſſo.</head>
<p>
  <s xml:id="echoid-s141" xml:space="preserve">IN Conformità di quanto hà di ſopra detto Hero-<lb/>ne, vi ſi può giungere, che ſe pigliata vna bachet-<lb/>ta d’ Arcobugio in capo la quale ſia il ſuo raſcato-<lb/>re ben fatto, la cacciaremo in vna canna d’ Arco-<lb/>bugιo giuſtiſſimamente forata per dritta linea <lb/>conſoma eccellenza indi chiuſo dieſſa il fogone, <lb/>ſe la tιraremo quaſi fuori, ilche ci verrà fatto, con <lb/>qualche diſſicoltà contraſtandoci il vacuo, che reſterà nella parte da <lb/>baſſo per non poter ſuccederui l’aria) ſe tiratola dico, quaſi fuori la <lb/>rilaſciaremo, quel vacuo, perche non può eſſere ſe non per natura <lb/>violentata tirerà (per ſubito riempirſi) in dietro con violenza detta <lb/>bachetta; </s>
  <s xml:id="echoid-s142" xml:space="preserve">sì come anco per proua, che non può l’ Elemento dell’ Aria <lb/>ſtare ſe non nella qualità della ſua natura, e come lo creò Dio Onni-<lb/>potente, ſe chiuſo eſſendo il fogone d’eſſa canna vi cacciaremo den-<lb/>tro la ſopradetta bacchetta, che ſentiremo (perche l’ Aria è corpo) <lb/>che lo faremo con fatica, &amp; ch’ eſs’ Aria verrà ad amaſſarſi; </s>
  <s xml:id="echoid-s143" xml:space="preserve">e ſe cac-<lb/>ciatola in giù quanto potremo la rilaſciaremo liberamente l’aria vio-<lb/>lentato, non potendo ſtar conſtipato, e rumperà, e con furore ſcac-<lb/>cierà la bachetta per ritornar ſubito (ceſſata la violenza) in ſua na-<lb/>tura: </s>
  <s xml:id="echoid-s144" xml:space="preserve">onde ci ſi fa chιaro, che cacciandoui vna palla, ſtando chiuſo il <lb/>fogone, l’aria conſtipato per ritornare in ſua natura la ſcaccia in vio-<lb/>lenza. </s>
  <s xml:id="echoid-s145" xml:space="preserve">E ſe quella ci dimoſtrerà non poter eſſer vacuo, queſta ci farà <lb/>chiari non poter queſto Elemento ſtare ſe non nel termιne della ſua <lb/>natura, come lo creò il ſuo Creatore.</s>
</p>
<p>
  <s xml:id="echoid-s146" xml:space="preserve">Si proua inoltre non poter eſſer vacuo alcuno per quei vaſi di ve-<lb/>tro di che ſoglιono ſeruirſi le donne per iſcemarſi, &amp; in parte eua-
<pb file="0020" n="20"/>
cuarſi le mamelle del latte, che dopoch’ han partorito frà il termine <lb/>di due, ò tre giorni gli fuole in tanta abbondanza ſopragiungere, che <lb/>non euacuandole ancora a i banbini nati, cagiona rebbono in ſe ſteſse <lb/>(non iſcemandoſi le mamelle) durezze, e mali grauiſſimi, queſti hanno <lb/>com’è noto vn corpo nel quale è vn buco tanto grãde, che appoggian-<lb/>do il vaſo alla Mancella vi entra comodamente dentro il capιtello di <lb/>eſſa, &amp; in altra parte hanno vn collo tanto longo, che lo pigliano in <lb/>bocca, indi ſucchιatone l’ Aria, ch’è nel vaſo ſuccede ſubito in luogo <lb/>di eſſo il latte, ch’eſcie fuori della mamella: </s>
  <s xml:id="echoid-s147" xml:space="preserve">E per quelle ampolle, che <lb/>eſſe adoprare anco ſogliono per detto effetto. </s>
  <s xml:id="echoid-s148" xml:space="preserve">Queſte pigliano vna <lb/>ampolla di vetro con il collo tanto nella parte ſuperiore largo, che <lb/>ſia capace del capitello della mamella, e riſcaldano con il fuoco di <lb/>eſſa il corpo ben bene, fin che il caldo penetrando per li vacui la ſot-<lb/>tigliezza del vetro ne ſcaccia l’Aria riempiendo il corpo dell’ampolla <lb/>diſottiliſſimo vapore, e quando è ben bene riſcaldato detto corpo ſu-<lb/>bito ſi pongono la bocca del collo dell’ ampolla alla mamella dentro <lb/>imponendoui il capitello, e perche quel ſottil vaporeigneo non può <lb/>ſtariui rinchiuſo ſe n’ eſcie fuori per quei vacuι del vetro per li quali <lb/>entrò, &amp; per leuarſi in alto al ſuo luogo s’inuia: </s>
  <s xml:id="echoid-s149" xml:space="preserve">ſe ben dal circompoſto <lb/>aria è traſmutato in ſoſtanza aerea, e perche per queſti meati, che ſottiliſſi <lb/>mi ſono non vi può entrar l’ aria non potendo eſſer vacuo ſubito <lb/>quel corpo, che non può ſtar voto tira da eſſa mamella il latte, &amp; vo-<lb/>tando la viene a riempir ſe ſteſſo, e ripieno a fatto, non più tira, come <lb/>anco ſe aperto in qualche parte ſi laſcia in eſſo entrar l’ Aria.</s>
</p>
<p>
  <s xml:id="echoid-s150" xml:space="preserve">I fuochi ſimilmente, che sù le bocche delle fornaci (nelle quali ſi <lb/>cuocono le pietre, e la calcina, e i vaſi di terra) ſi accendono ſono ti-<lb/>rati dentro da eſſe fornaci dal vacuo; </s>
  <s xml:id="echoid-s151" xml:space="preserve">Imperoche il vapor del fuoco <lb/>ſcacciatone l’ Aria, che v’è dẽtro ſuaniſce, &amp; euapora in alto, &amp; eſſen-<lb/>do sù la bocca della fornace il fuoco impediſce, che non vi può entrar <lb/>l’ Aria; </s>
  <s xml:id="echoid-s152" xml:space="preserve">ma perche non può eſſer vacuo ſuanendo il vapore, conuien <lb/>cheil fuoco riempia il corpo voto, che verrebbe a reſtar nella forna-<lb/>ce, perche vſcendone il vapore è chiuſo l’adito all’ Aria, nè potendo <lb/>eſſer vacuo conuιen, che vi ſucceda il fuoco: </s>
  <s xml:id="echoid-s153" xml:space="preserve">dalle qual coſe conſta <lb/>con quanta eccellenza habbia prouato Herone, il non concederſi va-<lb/>cuo deltutto ſe non violentato, e fuori di natura.</s>
</p>
<pb o="9" file="0021" n="21"/>
</div>
<div xml:id="echoid-div8" type="section" level="2" n="8">
<head xml:id="echoid-head14" xml:space="preserve">DELLI SPIRITALI <lb/>DI HERONE, <lb/>Tradotti da M. Gio: Battiſta Aleotti <lb/>D' ARGENTA.</head>
<head xml:id="echoid-head15" style="it" xml:space="preserve">DEL CAV AR L'ACQV A PER LA VIA DI <lb/>piegato Tubo, ò Canna. Theorema Primo.</head>
<p>
  <s xml:id="echoid-s154" xml:space="preserve">SIa in vn vaſo A. B. acqua la ſuperficie della quale ſia F. G. <lb/></s>
  <s xml:id="echoid-s155" xml:space="preserve">&amp; in queſto ſia con vna gamba ficcata la piegata canna <lb/>C.D.E. &amp; ſia nell'acqua la gamba C. H. la quale d'acqua <lb/>conuerrà ſi riempia fino ad H. al pari della ſuperficie <lb/>F.G.e la parte H.D.I.ſia piena d' aria. </s>
  <s xml:id="echoid-s156" xml:space="preserve">Dico, che ſe in I. fa-<lb/>remo vn buco, e per eſ <lb/>
<anchor type="figure" xlink:label="fig-0021-01a" xlink:href="fig-0021-01"/>
ſo cõ la bocca tirare-<lb/>mo l'aria detto, che la <lb/>ſeguirà l'humido cioè l'acqua; </s>
  <s xml:id="echoid-s157" xml:space="preserve">imperoche, co <lb/>me di ſopra s'è det to, è chiato, che luoco del <lb/>tutto eſſer vacuo nõ puote. </s>
  <s xml:id="echoid-s158" xml:space="preserve">Et a queſto è da <lb/>giungerui, che ſe il buco I. per il quale hab-<lb/>biamtirato l'aria ſera in linea cõ la ſuperficie <lb/>F.G. che la cãna nõ ſpargerà, ma l'acqua re-<lb/>ſtarà fino a quel termine in modo, che di eſſa <lb/>reſtarà piena la parte C.D.I. ancor, che cõtro <lb/>l'ordine di natura reſti in alto ſoſpeſa a guiſa <lb/>di equilibrata bilãce, ſtãdo eſſa acqua in alto <lb/>eleuata da H.a D.&amp; in giù ſoſpeſa da D.ad I. <lb/></s>
  <s xml:id="echoid-s159" xml:space="preserve">Ma ſe il buco in capo alla cãna in linea retta <lb/>ſerà come in K. eſſa cãna ſpargerà, e correrà <lb/>fuori l'acqua; </s>
  <s xml:id="echoid-s160" xml:space="preserve">perche la parte D.K. eſsẽdo più <lb/>greue della parte D.H. vincerà, e tirarà que-<lb/>ſta, e fuori di eſſo canale ſcorrerà fin tanto, <lb/>che la ſuperficie dell' acqua, che tutta via <lb/>ſcorrendo il canale calerà nel vaſo ſerà giun-<lb/>ta al pari del buco K. e quiui nõ più ſcorren-
<pb o="10" file="0022" n="22" rhead="DELLI SPIRIT ALI"/>
do fermaraſſi per la medeſima ſudetta cagione: </s>
  <s xml:id="echoid-s161" xml:space="preserve">ma ſe faremo il buco in E.ſcorre <lb/>rà eſſa acqua fuori, fin tanto, che ſerà calata l'acqua nel vaſo, ſi che la ſuperficie <lb/>di eſſa ſia in pari alla bocca della canna C. e ſe fuori vorremo tirare tutta l'acqua <lb/>del vaſo caleremo la bocca C. fin nel fondo del vaſo, tanto però da eſſo lontano <lb/>quanto ci parerà, che per lo ſcorrere dell' acqua poſſa baſtare: </s>
  <s xml:id="echoid-s162" xml:space="preserve">la cagione perche <lb/>faccia queſto effetto la forata, e piegata cãna, dicono alcuni, che è perche la quan <lb/>tità dell' acqua che è nella gãba maggiore hà for za di attrahere, &amp; in effetto tira <lb/>la minore; </s>
  <s xml:id="echoid-s163" xml:space="preserve">ma quanto ſia falſa queſta cauſa, &amp; in quanto errore ſia chiun que ciò <lb/>crede, vegaſi da queſto. </s>
  <s xml:id="echoid-s164" xml:space="preserve">Sia fatta vna cãna, che la gamba interiore habbia, e lõga, <lb/>cſottile, e la eſteriore più corta affai: </s>
  <s xml:id="echoid-s165" xml:space="preserve">ma più larga: </s>
  <s xml:id="echoid-s166" xml:space="preserve">acciò maggior quantità d'ac-<lb/>qua capiſca, che la gamba longa, e ſia d'acqua ripiena, indi poſta la maggior in vn <lb/>vaſo d'acqua, ouero in alcun pozzo, che ſerà il medeſimo, che ſe la gã ba eſteriore <lb/>faremo diſcorrere, eſſendo, che ella in ſe ſteſſa hà maggior copia d'acqua, che la <lb/>interiore, haurà queſta anco forza di attrahere l'acqua della maggiore, e cõ eſſo <lb/>ſeco tirarà anco quella, che nel pozzo ſerà, e quãdo diſcorrere cominciarà, la ca-<lb/>uerà tutta, ò ſempre diſcorrerà perche maggiore è la copia dell' acqua eſteriore <lb/>di quella, che è nella gãba interiore; </s>
  <s xml:id="echoid-s167" xml:space="preserve">ma, perche non appare onde ciò deriui, per <lb/>verace; </s>
  <s xml:id="echoid-s168" xml:space="preserve">Dunque non approuiamo la ſudetta cagione: </s>
  <s xml:id="echoid-s169" xml:space="preserve">ma vediamo la cauſa na-<lb/>turale di queſto dicendo, che ogn' humido continuo, &amp; fermo piglia ſuperficie <lb/>sferiſca di cui il centro è lo iſteſſo della terra; </s>
  <s xml:id="echoid-s170" xml:space="preserve">ma non ſtando fermo tanto diſcor-<lb/>re fin che in ſuperficie sferica ſi riduce, come di ſopra s' è detto: </s>
  <s xml:id="echoid-s171" xml:space="preserve">Siano da noi <lb/>pigliati doi vaſi, &amp; in ciaſcuno di eſſi ſia poſto acqua, riempiam' anco di acqua <lb/>la canna, e con le dita turiamo le bocche di eſſa l'vn capo ponen do in vno de, <lb/>i predetti vaſi, ſi che nell' acqua ſi demerga, e ſimilmente poniam l'altra gamba <lb/>nell'altro, e ſerà tntta l'acqua fatta continua; </s>
  <s xml:id="echoid-s172" xml:space="preserve">imperoche l'acqua, che è in ambi-<lb/>due i vaſi viene ad eſſer congiunta con quella, che è nella canna in modo, che <lb/>è tutta continua; </s>
  <s xml:id="echoid-s173" xml:space="preserve">ſe dunque le dette acque, che prima erano ne i vaſi ſeranno in <lb/>vna iſteſſa ſuperficie, fatte continue dalla piegata canna in eſſe demerſa quieta-<lb/>ranno, e ſtaranno ſerme; </s>
  <s xml:id="echoid-s174" xml:space="preserve">ma ſe di eſſe l'vna ſerà più baſſa dell'altra, perche l'ac-<lb/>qua è fatta continua, conuien anco per queſta continuità, che la più alta diſcorra <lb/>nella più baſſa, fin tanto, che ò tutta l'acqua, che è ne i predetti vaſi ſia ad vna, <lb/>iſteſſa ſuperficie ridotta, ouero fin che ſia vuoto l'vno de i detti vaſi; </s>
  <s xml:id="echoid-s175" xml:space="preserve">ma ſe s'v-<lb/>guaglino in vna iſteſſa ſuperficie: </s>
  <s xml:id="echoid-s176" xml:space="preserve">l'acque, che in queſti vaſi ſono, fermeraſſi, e l' <lb/>vna, e l'altra: </s>
  <s xml:id="echoid-s177" xml:space="preserve">ſi che anco l'acqua, che è nella canna ferma reſtarà: </s>
  <s xml:id="echoid-s178" xml:space="preserve">in modo, che <lb/>dato che l'vna gãba, e l'altra di eſſa ſia in cadauna di dette ſuperficie (poſto che <lb/>elle ſiano vguali) vgualmente demerſa, ſtarà ferma l'acqua, che in eſſa ſerà; </s>
  <s xml:id="echoid-s179" xml:space="preserve">ſuſpe-<lb/>ſa eſſa canna dunque ſi che ne quà, ne là declini, di nuouo conuiene, che l'acqua <lb/>ſi fermi, ò habbia larghezza vguale, ouero ſia l'vna gamba dall'altra molto mag-<lb/>giore, che in queſto nõ è la cagione, perche ſtia ferma ò diſcorra l'acqua: </s>
  <s xml:id="echoid-s180" xml:space="preserve">ma de-<lb/>riua dallo ſtare eguali le bocche di eſſa nell'acqua. </s>
  <s xml:id="echoid-s181" xml:space="preserve">Hor diciamo, perche (ſuſpeſo <lb/>eſſa canna) non diſcorre l'acqua per la ſua grauità, più leggieri, hauendo l'aria <lb/>ſubietto? </s>
  <s xml:id="echoid-s182" xml:space="preserve">non è per altro, certo, ſe non perche il luoco del tutto non puote eſ-
<pb o="11" file="0023" n="23" rhead="DIHERONE."/>
ſer vacuo:</s>
  <s xml:id="echoid-s183" xml:space="preserve">perche, ſe l'acqua deue vſcirne è neceſſario, che la parte ſuperiore del-<lb/>la canna prima ſi riempia, nella quale non può per via niſſuna entrar l'aria. </s>
  <s xml:id="echoid-s184" xml:space="preserve">On-<lb/>de ſe nella parte ſuperiore la pertugiaremo incontinente n' vſcirà l'acqua, &amp; in <lb/>luoco di eſſa ſuccederà l'aria: </s>
  <s xml:id="echoid-s185" xml:space="preserve">ma inanti, che ſia fatto detto pertugio l'humido, <lb/>cioè l'acqua, che è nella canna per cuote nel ſubietto. </s>
  <s xml:id="echoid-s186" xml:space="preserve">Aria, la quale, non hauen-<lb/>do luoco, oue diſcorrer poſſa non laſcia vſcirne l'acqua: </s>
  <s xml:id="echoid-s187" xml:space="preserve">ma quando per via del <lb/>pertugio ottiene luoco all'hora da luoco all'acqua, &amp; la laſcia diſcorrendo vſcire <lb/>riempiendo il luoco di eſſa, e per queſta cagione contro natura con la bocca ſi <lb/>attrahe per la canna il vino: </s>
  <s xml:id="echoid-s188" xml:space="preserve">perche tirando l' aria, che è nella canna ſi viene, <lb/>
<anchor type="figure" xlink:label="fig-0023-01a" xlink:href="fig-0023-01"/>
a riempire molto più, e per eſſere ad eſ <lb/>ſa aria congiunto lo veniamo a ſtacca-<lb/>re. </s>
  <s xml:id="echoid-s189" xml:space="preserve">E queſto faſſi fin tanto, che con la <lb/>ſuperficie del vino, come di ſopra ſi diſ <lb/>ſe, ſi fà l' euaeuatione, che all' hora lo <lb/>ſtaccato vino diſcorrendo cade nel <lb/>luoco euacuato del Tubo, non hauen-<lb/>do altro luoco nel quale le ſia lecito di <lb/>ſcorrere, e per queſto viene contro na-<lb/>tura all'insù portato. </s>
  <s xml:id="echoid-s190" xml:space="preserve">Altramẽte quie-<lb/>terà l'acqua nella canna, quãdo in sfe-<lb/>rica ſuperficie ſerà cõſtituita, il centro <lb/>della quale ſia lo iſteſſo, che è il centro <lb/>della terra. </s>
  <s xml:id="echoid-s191" xml:space="preserve">Imperoche ſe v'è ſuperficie <lb/>acquea alcuna, che habbia lo iſteſſo <lb/>centro, che hà la terra ſtà quieta: </s>
  <s xml:id="echoid-s192" xml:space="preserve">ma ſe è poſſibile non quieti conuiene, che mo-<lb/>uendoſi poſi. </s>
  <s xml:id="echoid-s193" xml:space="preserve">Quieti adunque, che il centro della sferica ſua ſuperficie, lo iſteſſo <lb/>eſſendo, che è quello della terra ſeguirà la ſuperficie prima: </s>
  <s xml:id="echoid-s194" xml:space="preserve">Imperoche l'acqua <lb/>per vno, e per molti luochi ſcorrendo quà, e là diuerſi luochi hauerà occupato; <lb/></s>
  <s xml:id="echoid-s195" xml:space="preserve">ſia adũque, che ciaſcuna di effe ſuperficie, che hanno cõ la terra il ſuo cẽtro ſiano <lb/>da alcũ piano ſeccate, e da eſſi ſiano create linee in dette ſuperficie, che ſiano cir-<lb/>coli delle circõferenze, che habbino lo iſteſſo cẽtro, che della terra cioè A.B.C.F. <lb/>B.D.e ſia tirata la B. G. che perche eſſa ſerà vguale a ciaſcuna di eſſe cioè G.F.G. <lb/>A. il che può eſſere forza è adunque, che ſi quieti, e ranto di queſto ſia detto.</s>
</p>
<div xml:id="echoid-div8" type="float" level="3" n="1">
<figure xlink:label="fig-0021-01" xlink:href="fig-0021-01a"><!-- 0021-01 -->
<variables xml:id="echoid-variables1" xml:space="preserve">D A F I K B E B</variables>
</figure>
<figure xlink:label="fig-0023-01" xlink:href="fig-0023-01a"><!-- 0023-01 -->
<variables xml:id="echoid-variables2" xml:space="preserve">A E F C I R G H B D</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div10" type="section" level="2" n="9">
<head xml:id="echoid-head16" style="it" xml:space="preserve">DEL TVBO SPIRIT ALE IN MEZO AVN' ALTRO <lb/>Tubo nella bocca di ſopra ſerrato. Theor. II.</head>
<p>
  <s xml:id="echoid-s196" xml:space="preserve">VI è vn'altra ſorte di canna ò Tubo, che medio Spiritale vien detto del qua-<lb/>le la ragione è la ſteſſa, che la paſſata della piegata canna ſia il vaſo pieno <lb/>d'acqua A.B. in mezo del quale ſia poſto il Tubo C.D.che per il piede di eſſo va-<lb/>ſo paſſando ſotto di eſſo auanzi: </s>
  <s xml:id="echoid-s197" xml:space="preserve">ma nella parte ſuperiore la ſua bocca, non ag-<lb/>giunga alla bocca del vaſo A.B. ma ſia circondato da vn'altro Tubo, il vacuo del
<pb o="12" file="0024" n="24" rhead="DELLI SPIRIT ALI"/>
quale ſia alquanto maggiore del primo Tubo, e da eſſo ſia vgualmente diſtante, <lb/>di queſto ſia ſtroppata la bocca E.F. diligenti ſſimamente, ſi che non v'entri l'a-<lb/>ria: </s>
  <s xml:id="echoid-s198" xml:space="preserve">ma di eſſo la bocca inferiore G.H. ſia tanto dal fondo del vaſo diſtante, che <lb/>l'acqua volendo vſcirne poſſa liberamente diſcorrere queſti, come hò detto così <lb/>
<anchor type="figure" xlink:label="fig-0024-01a" xlink:href="fig-0024-01"/>
accommodati, ſe per la bocca D. tiraremo <lb/>l'aria, che è nel Tubo C.D. tiraremo anco <lb/>conſeguentemente l'acqua, che è nel vaſo <lb/>la quale tutta vſcirà fuori per cagione, <lb/>di quella parte di Tubo, che fuori di ſotto il <lb/>piè del vaſo auanza. </s>
  <s xml:id="echoid-s199" xml:space="preserve">Imperoche l'aria, ch'è <lb/>frà l'acqua, &amp; il Tubo C. in I.K. nel Tubo <lb/>E. F. tirata dalla bocca D. trarà ſeco l' ac-<lb/>qua; </s>
  <s xml:id="echoid-s200" xml:space="preserve">il fluſſo della quale non ſi fermarà <lb/>per l'auanzo, che è fuori del vaſo: </s>
  <s xml:id="echoid-s201" xml:space="preserve">ma non <lb/>vi eſsẽdo il Tubo E.F.G.H. ceſſerà dell'ac <lb/>qua il diſcorſo, ſe ben ſerà di eſſa la ſuperfi-<lb/>cie in C. ſtando lo ecceſſo fe rmo: </s>
  <s xml:id="echoid-s202" xml:space="preserve">ma, per-<lb/>che non può l'aria ſott' intrare a tutto il <lb/>Tubo E.F.G.H. nell'acqua demerſo, perciò <lb/>non ſi fermarà il fluſſo, e l'aria entrata nel <lb/>vaſo A.B. vſcẽdone, in luoco di eſſo ſucce-<lb/>derà l'acqua: </s>
  <s xml:id="echoid-s203" xml:space="preserve">perche la bocca del Tubo, che <lb/>è fuori del vaſo sẽpre è più baſſa della ſu-<lb/>perficie dell'humido, che è in eſſo. </s>
  <s xml:id="echoid-s204" xml:space="preserve">Ne po-<lb/>rondo queſte ſuperficie renderſi vguali: </s>
  <s xml:id="echoid-s205" xml:space="preserve">per la maggior grauità dell' acqua, auer-<lb/>rà, che tutta l' acqua fuori ſe n'eſca del vaſo; </s>
  <s xml:id="echoid-s206" xml:space="preserve">e ſe non vorremo tirar fuori con la <lb/>bocca l' aria contenuto dal Tubo C.D. &amp; I. K. riempieremo tanto con acqua il <lb/>vaſo A. B. fin che per infuſa per il Tubo C. D. pigli il fluſſo di eſſa diſcorſo, e così <lb/>rutta l'acqua, che nel vaſo ſerà, fuori ſe n'vſcirà: </s>
  <s xml:id="echoid-s207" xml:space="preserve">e queno Tubo chiameraſſi Si-<lb/>phone Spiritale.</s>
</p>
<div xml:id="echoid-div10" type="float" level="3" n="1">
<figure xlink:label="fig-0024-01" xlink:href="fig-0024-01a"><!-- 0024-01 -->
<variables xml:id="echoid-variables3" xml:space="preserve">E F G B</variables>
</figure>
</div>
<p>
  <s xml:id="echoid-s208" xml:space="preserve">Da quanto dunque s'è detto è chiaro, che il fluſſo del Tubo (ſtando eſſo ſer-<lb/>mo) faraſſi ineguale, &amp; il medeſmo auerrà ſe forato nel fondo il vaſo l'acqua, <lb/>n'vſcirà imperoche ſerà il ſuo fluffo ineguale; </s>
  <s xml:id="echoid-s209" xml:space="preserve">perche nel principio della effuſio-<lb/>ne effa vien premuta da maggior grauità, la quale ſempre facendoſi meno, quan-<lb/>to più cala nel vaſo l'acqua, diuiene il fluſſo minore, e più debole. </s>
  <s xml:id="echoid-s210" xml:space="preserve">E quanto del <lb/>Tubo è maggiore lo ecceſſo, tanto più diuiene più veloce il fluſſo, e più tardi <lb/>quanto eſſo è minore come anco nella paſlata propoſitione s'è detto. </s>
  <s xml:id="echoid-s211" xml:space="preserve">E manife-<lb/>ſto dunque da quanto habbiam detto il fluſſo dell' acqua per il Tubo ò canna, <lb/>ſempre eſſer ineguale: </s>
  <s xml:id="echoid-s212" xml:space="preserve">onde più oltre procedendo biſogna dimoſtrare il fluſſo <lb/>dell'acqua ſemprc vguale per la piegata canna di ſopra propoſta.</s>
</p>
<pb o="13" file="0025" n="25" rhead="DI HERONE"/>
</div>
<div xml:id="echoid-div12" type="section" level="2" n="10">
<head xml:id="echoid-head17" style="it" xml:space="preserve">DEL FLVSSO SEMPRE VGVALE, <lb/>Per il piegato Tubo. Theor. III.</head>
<p>
  <s xml:id="echoid-s213" xml:space="preserve">SIa vn vaſo <var>A.B.</var> d'acqua ripieno fino alla ſuperficie H.K. nel quale ſopranuoti <lb/>vn catino C.D. la bocca del quale ſia turata beniſſimo con C.D. coperchio <lb/>di eſſo, nel quale, è nel fondo del catino: </s>
  <s xml:id="echoid-s214" xml:space="preserve">ſia fatto vn buco, per il quale paſſi vna <lb/>
<anchor type="figure" xlink:label="fig-0025-01a" xlink:href="fig-0025-01"/>
gamba del piegato Tubo E.F.G.co-<lb/>me nel ſeguẽte eſſempio, e queſti bu <lb/>chi ſiano cõ ſtagno eccellentemen-<lb/>te turati intorno ad eſſo Tubo, ſupo <lb/>ſto, che facciamo il vaſo di rame, ò <lb/>di metallo ſimile: </s>
  <s xml:id="echoid-s215" xml:space="preserve">l'altra gãba di eſſo, <lb/>fia poſta fuori del vaſo, la bocca del <lb/>quale ſia più baſſa della ſuperficie <lb/>dell' acqua del vaſo, come di ſopra. <lb/></s>
  <s xml:id="echoid-s216" xml:space="preserve">Che ſe per la bocca del Tubo, che è <lb/>fuori del vaſo tiraremo con la bocca <lb/>l'aria la ſeguirà ſimilmente l'acqua; <lb/></s>
  <s xml:id="echoid-s217" xml:space="preserve">perche non puote nel Tubo eſſer <lb/>luoco del tutto vacuo, e come princi <lb/>pio piglierà di eſſa il fluſſo, così di-<lb/>ſcorrerà fin tãto, che ſerà fuori vſci-<lb/>ta tutta l'acqua, che è nel vaſo, e que <lb/>ſto fluſſo ſerà vguale; </s>
  <s xml:id="echoid-s218" xml:space="preserve">perche calan-<lb/>do dell'acqua la ſuperficie calerà an-<lb/>co il catino con il Tubo infiſſo in eſſo, e quanto lo ecceſſo di fuori ſerà maggiore <lb/>più veloce ſerà il fluſſo dell'acqua, ancorche per ſe ſteſſo ſempre vguale.</s>
</p>
<div xml:id="echoid-div12" type="float" level="3" n="1">
<figure xlink:label="fig-0025-01" xlink:href="fig-0025-01a"><!-- 0025-01 -->
<variables xml:id="echoid-variables4" xml:space="preserve">F A C D H E G B</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div14" type="section" level="2" n="11">
<head xml:id="echoid-head18" style="it" xml:space="preserve">DELFLVSSO PER LA PIEG AT A CANNA, <lb/>Parte Vguale, e parte ineguale. Theor. IV.</head>
<p>
  <s xml:id="echoid-s219" xml:space="preserve">IL fluſſo alle volte vguale alle volte anco ineguale, ſimilmente ſi farà per la pie-<lb/>gata canna, ſecõdo il noſtro volere, &amp; alle volte anco, ſe così ci piacerà vguale <lb/>per ſe ſteſſo, ò più veloce, ò più tardi del primo fluſſo. </s>
  <s xml:id="echoid-s220" xml:space="preserve">Sia per eſſempio, il vaſo <lb/>d'acqua pieno A. B. &amp; il catino C. D. come di ſopra ſi diſſe coperto: </s>
  <s xml:id="echoid-s221" xml:space="preserve">per mezzo <lb/>del quale sì del fondo, come del coperchio ſia infiſſo vn Tubo più largo della, <lb/>gamba interiore della piegata canna, e queſto nell'infraſcritto eſſempio ſia E. F. <lb/></s>
  <s xml:id="echoid-s222" xml:space="preserve">molto bene intorno al buco nel fondo, e coperchio del catino con ſtagno tura-<lb/>to ſupoſto, come di ſopra ſi diſſe, che il vaſo ſia di rame: </s>
  <s xml:id="echoid-s223" xml:space="preserve">ma da ogni lato del va-<lb/>ſo ſian poſti due regoli, nella parte di dentro in ciaſcuno de qual ſia incauato <lb/>vn canale, &amp; in cima di queſti ſia poſto vn' altro regolo fermando queſto, e, <lb/>quelli nel vaſo, Li duoi regoli con li canali in eſſi incauati ſaranno G. H. I. K.
<pb o="14" file="0026" n="26" rhead="DELLI SPIRITALI"/>
e quello, che è per diametro del vaſo ſerà L. M. delli quali ſerà fatto vn telato <lb/>a guiſa della leotera H. ma pongaſi vn’altro trauerſo nella parte ſuperiore, come <lb/>N. O. &amp; per il trauerſo del vaſo in diametro poſto, e per queſto del pegmatio <lb/>ò telaro paſſi la gamba interiore della canna, &amp; entri nel Tubo infiſſo, e ſaldato <lb/>
<anchor type="figure" xlink:label="fig-0026-01a" xlink:href="fig-0026-01"/>
nel catino, e per queſti <lb/>ſimilmente paſſi vna <lb/>coclea ò vite R. ſia. <lb/></s>
  <s xml:id="echoid-s224" xml:space="preserve">anco nell’ elica della <lb/>quale ſi ficchi nella <lb/>madre, che ſerà nel <lb/>regolo N. O. e nel <lb/>L. M. &amp; eſſa coclea, <lb/>che paſſerà per L. M. <lb/>e per N. O. auanzi <lb/>fuori in R. quanto <lb/>ci piacerà, &amp; in R. ſia <lb/>fatto vn manico a. <lb/>guiſa di quelli delle ve <lb/>ricole conil quale volgaſi <lb/>la coclea, ſi che il <lb/>catino alle volte ſia in <lb/>sù alle volte anco cal-<lb/>li all’ingiù. </s>
  <s xml:id="echoid-s225" xml:space="preserve">Ricordan-<lb/>doci di fare, che la. <lb/>gamba interiore della <lb/>canna, ſtia nell’acqua <lb/>demerſa. </s>
  <s xml:id="echoid-s226" xml:space="preserve">Se adunque <lb/>per il buco eſteriore <lb/>tiraremo con la bocca <lb/>l’aria, e conſeguente-<lb/>mente l’acqua, il fluſſo di eſſa per la canna ſerà vguale fin tanto, che vſcita ne ſe-<lb/>rà tutta l’acqua, che è nel vaſo; </s>
  <s xml:id="echoid-s227" xml:space="preserve">ma quando più veloce vorremo eſſo fluſſo, ma <lb/>per ſe ſteſſo vguale volgeremo la coclea, e premẽdo l’acqua con il catino in virtù <lb/>del telaro N. O. L. M. l’ vſcire dell’acqua faraſſi più veloce di prima, &amp; il fluſſo <lb/>ſerà per ſe ſteſſo vguale, &amp; volendo, che eſſo fluſſo ſia maggiormente gagliardo, <lb/>volgaſi la coclea abaſſando il trauerſo L. M.del telaro, e conſeguentemente il ca-<lb/>tino; </s>
  <s xml:id="echoid-s228" xml:space="preserve">ſe anco lo vorremo più tardi volgendo la coclea al contrario alzaremo eſſo <lb/>catino; </s>
  <s xml:id="echoid-s229" xml:space="preserve">&amp; a queſto modo faraſſi per la piegata canna il fluſſo parte vguale, &amp; <lb/>parte ineguale: </s>
  <s xml:id="echoid-s230" xml:space="preserve">ma perche non rieſce nei groſſi condotti, il tirar l’acqua con la <lb/>noſtra bocca, come ne i piocioli auuiene volendo tirar acque per groſſi canali; <lb/></s>
  <s xml:id="echoid-s231" xml:space="preserve">così faremo, come nel ſeguente Theorema, che quanto di ſopra s’è detto ſi com-<lb/>prende chiaro nella infraſcritta fignra.</s>
</p>
<div xml:id="echoid-div14" type="float" level="3" n="1">
<figure xlink:label="fig-0026-01" xlink:href="fig-0026-01a"><!-- 0026-01 -->
<variables xml:id="echoid-variables5" xml:space="preserve">A R N O G H I L M K C F D E</variables>
</figure>
</div>
<pb o="15" file="0027" n="27" rhead="DI HERONE."/>
</div>
<div xml:id="echoid-div16" type="section" level="2" n="12">
<head xml:id="echoid-head19" style="it" xml:space="preserve">DEL TIRAR L’ACQVA FVOR <lb/>Delle groſſe canne. Theor. V.</head>
<p>
  <s xml:id="echoid-s232" xml:space="preserve">POſta nel vaſo A.B.la piegata cãna con la gamba interiore nell’acqua demer-<lb/>ſa, &amp; in modo fermata, che mouere non ſi poſſa; </s>
  <s xml:id="echoid-s233" xml:space="preserve">Bucando vn regolo, che <lb/>trauerſi il vaſo, come il diametro il cerchio, haueremo vn’altro vaſetto, nõ molto <lb/>
<anchor type="figure" xlink:label="fig-0027-01a" xlink:href="fig-0027-01"/>
grãde, come l’infraſcritto C. <lb/></s>
  <s xml:id="echoid-s234" xml:space="preserve">D.la bocca del quale ſia cõ vn <lb/>coperchio beniſſimo turata, <lb/>&amp; in eſſo facciaſi nel mezo vn <lb/>buco, &amp; in queſto vn Tubo E. <lb/>tanto grãde, che in eſſo entri <lb/>la gamba eſteriore della can-<lb/>na; </s>
  <s xml:id="echoid-s235" xml:space="preserve">ma in eſſo ſia inueſtito di <lb/>cuoio vn’ altto Tubo beniſſi-<lb/>mo legato ad E. e ſia F. G. ſia <lb/>anco bucato il vaſo C. D. nel <lb/>fondo H. indi riempiaſi d’ac-<lb/>qua il vaſo turando il buco <lb/>H. e ſia inueſtito il Tubo di <lb/>cuoio F. G. nella gamba eſte-<lb/>riore legandolo ad eſſa beniſ-<lb/>ſimo, sì che non vi poſſa en-<lb/>trare l’ aria. </s>
  <s xml:id="echoid-s236" xml:space="preserve">Et volendo tirar <lb/>l’acqua del vaſo A.B. </s>
  <s xml:id="echoid-s237" xml:space="preserve">Apriſi il <lb/>buco H. nel fõdo del vaſo C. <lb/>D. che di eſſo vſcẽdo l’ acqua <lb/>in luoco di eſſa ſcenderà l’ a-<lb/>ria, che è nella canna, e tirerà <lb/>di mano in mano l’ acqua del <lb/>vaſo A. B. in modo, che vuo-<lb/>to, che ſerà il valo C.D. l’ aria <lb/>che era nella cãna haurà riempi to eſſo vaſo, e l’acqua la canna, la quale per le ra-<lb/>gioni dette ldi ſopra ſubito comincierà la ſua effuſione; </s>
  <s xml:id="echoid-s238" xml:space="preserve">onde leuato il vaſo C. D. <lb/>laſciaremo diſcorrere la canna, la quale douendo ben operare è neceſſario, che <lb/>ſia retta, e con regoli fermata beniſſimo, come dall’ infraſcritto eſſempio ſi <lb/>può comprendere.</s>
</p>
<div xml:id="echoid-div16" type="float" level="3" n="1">
<figure xlink:label="fig-0027-01" xlink:href="fig-0027-01a"><!-- 0027-01 -->
<variables xml:id="echoid-variables6" xml:space="preserve">A F C G E B H D</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div18" type="section" level="2" n="13">
<head xml:id="echoid-head20" style="it" xml:space="preserve">DELLA VVOT A PALLA DI RAME. Theor. VI.</head>
<p>
  <s xml:id="echoid-s239" xml:space="preserve">VI è oltre a quãto hò fin quì detto la vuota Palla di Rame vtile all’ann’ac-<lb/>quare, della quale conuien ragionare per poter da quanto fin quì ſi ſerà <lb/>detto eſplicare varie conſtruttioni principiando da queſte non meno, che ſi fac-<lb/>cia la Geometria da i punti, dalle linee, e da gli angoli. </s>
  <s xml:id="echoid-s240" xml:space="preserve">E queſta fabrica di
<pb o="16" file="0028" n="28" rhead="DELLI SPIRIT ALI"/>
rame, e di ottone, e sù’l torno da i figuli, che volgarmẽte chiamiam boccalari, lo <lb/>eſsẽpio è A.B. nella parte inferiore della quale ſpeſſi, e minuti pertugi ſi forano; <lb/></s>
  <s xml:id="echoid-s241" xml:space="preserve">
<anchor type="figure" xlink:label="fig-0028-01a" xlink:href="fig-0028-01"/>
ma nella parte ſuperiore faſſi la bocca, e da <lb/>ogni lato i manichi per ſoſtenerla, &amp; in eſſa <lb/>vn picciolo Tubo C. D. e quando di eſſa ſi <lb/>vorrà, chi ſi ſia ſeruire, la demerga nell’ac-<lb/>qua, che ella per i pertugi in eſſa entrarà, e <lb/>l’aria sforzato ſe n’ vſcirà per il Tubo C.D. <lb/></s>
  <s xml:id="echoid-s242" xml:space="preserve">la bocca del quale in C.ſe cõ il police turare <lb/>mo cauãdo la Palla dell’a cqua, eſſa non vſcirà <lb/>fuori altramente: </s>
  <s xml:id="echoid-s243" xml:space="preserve">perche l’aria per lu oco <lb/>niſſuno entrare nõ vi può, eſſendo, che chiu-<lb/>ſo è di eſſo l’ adito C. che col dito è turato; <lb/></s>
  <s xml:id="echoid-s244" xml:space="preserve">ma ſe vorremo ſparger l’acqua, leuiſi il dito <lb/>di sù la bocca C. che incontinente l’acqua <lb/>vſcirà fuori, ſuccedẽdo in ſuo luoco l’aria, e <lb/>fermeraſſi il fluſſo, ſe di nuouo con il dito <lb/>chiuderemo la bocca C.fin tãto, che leuato-<lb/>lo di nuouo apriremo a dito all’aria, nè diffe-<lb/>rẽza alcuna ſerà dal Tubo C.D.alla piegata cãna, anzi, che queſto di quello ſi rẽ-<lb/>derà più cõmodo potendoſi con tanta facilità chiudere di eſſo la bocca cõ il dito.</s>
</p>
<div xml:id="echoid-div18" type="float" level="3" n="1">
<figure xlink:label="fig-0028-01" xlink:href="fig-0028-01a"><!-- 0028-01 -->
<variables xml:id="echoid-variables7" xml:space="preserve">A C D B</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div20" type="section" level="2" n="14">
<head xml:id="echoid-head21" style="it" xml:space="preserve">CHE SI PVO’ RIEMPIRE LA PALLA CONCAVA <lb/>d’ acqua calda, e fredda l’vna ſeparata dall’ altra, e mandarne fuori, quando <lb/>vna, quando l’ altra; &amp; ambedue inſieme. Theor. VII.</head>
<figure><!-- 0028-02 -->
<variables xml:id="echoid-variables8" xml:space="preserve">E A C B</variables>
</figure>
<p>
  <s xml:id="echoid-s245" xml:space="preserve">COn il modo ſopradetto ſi riempie la Pal-<lb/>la d’acqua calda, e fredda, e d’acqua, &amp; <lb/>vino l’vna dall’altro ſeparata, e ſi fà, hor l’vna <lb/>hor l’altra vſcire; </s>
  <s xml:id="echoid-s246" xml:space="preserve">e tutte le due inſieme a voglia <lb/>noſtra in queſto modo. </s>
  <s xml:id="echoid-s247" xml:space="preserve">Fabricata la Palla <lb/>in due parti pongafi il diafragrama; </s>
  <s xml:id="echoid-s248" xml:space="preserve">cioè vna <lb/>ſottil cartiiagine, in vna di eſſe chiuſa, e ſaldata-<lb/>in eſſa meza parte d’ogn’intorno: </s>
  <s xml:id="echoid-s249" xml:space="preserve">poi ſia. <lb/></s>
  <s xml:id="echoid-s250" xml:space="preserve">l’vna metà della Palla ſaldata con l’altra: </s>
  <s xml:id="echoid-s251" xml:space="preserve">la <lb/>Palla ſerà A.B.e la cartilagine C.D.che l’vna <lb/>parte della Palla dall’altra diuida; </s>
  <s xml:id="echoid-s252" xml:space="preserve">&amp; eſſa Pal-<lb/>la a guiſa di vn Criuello ſia nel fondo forata: <lb/></s>
  <s xml:id="echoid-s253" xml:space="preserve">e nella cima fattoui vn collo E. F. forato con <lb/>duo Tubi vno de’ quali vada in vna parte <lb/>della Palla, l’altro nell’ altra, &amp; inſieme aggiun <lb/>gano in G. e quando vorremo d’ acqua calda <lb/>impire la metà della Palla turaremo con vn
<pb o="17" file="0029" n="29" rhead="DIHERONE"/>
dito vno delli buchi, che è nel collo demergendo la palla nell’acqua, che pet-<lb/>che non può l’aria ſerrato in quella parte della Palla di cui è turato il Tubo vſci-<lb/>re, e ſolo entrarà nell’ altra fuor della quale può l’aria vſcire per il Tubo a perto. <lb/></s>
  <s xml:id="echoid-s254" xml:space="preserve">e dar luogo ali’aria, e poi che detta parte ſerà d’acqua calda riempita chiudaſi lo <lb/>ſpiracolo di eſſa nel collo, e lieueſi del vaſo dell’acqua calda: </s>
  <s xml:id="echoid-s255" xml:space="preserve">poi ſchiudaſi l’altro <lb/>e nell’acqua fredda poſta la Palla; </s>
  <s xml:id="echoid-s256" xml:space="preserve">ſimilmente facciaſi riempire, poi turato l’altto <lb/>buco lieuefi dell’ acqua, e ſerà piena la Palla. </s>
  <s xml:id="echoid-s257" xml:space="preserve">Et volendo mandar fuori l’acqua <lb/>calda, ſia diſerrato lo ſpiracolo ò Tubo di quella parte della Palla in ch’eſſa è <lb/>chiuſa, che ella ſe n’vſcirà peri buchi della parte di ſotto (di eſſa Palla) e quando <lb/>più non vorremo, che eſca, turaremo eſſo Tubo di nuouo: </s>
  <s xml:id="echoid-s258" xml:space="preserve">&amp; il ſimile della parte, <lb/>ou’è l’acqua fredda faremo, &amp; volendo mandar fuori l’vna, e l’altra a vn tratto <lb/>apraſi l’vn ſpiracolo, e l’altro, e ſerriſi, quando più non vorremo, che n’eſca. </s>
  <s xml:id="echoid-s259" xml:space="preserve">Et <lb/>è d’ auertire, che ſi poſſono ridurre queſti ſpiracoli in vn ſol Tubo in due patti <lb/>diuiſo, e nella cima di eſſo ſi può fare vn buco ſolo in maniera accommodato, <lb/>che chiudendo, e ſchiudendo eſſi buchi a noſtro piacere: </s>
  <s xml:id="echoid-s260" xml:space="preserve">paia che tutta venghi da <lb/>vn buco iſteſſo per eſſo collo, come l’infraſcritto eſſempio dimoſtra.</s>
</p>
</div>
<div xml:id="echoid-div21" type="section" level="2" n="15">
<head xml:id="echoid-head22" style="it" xml:space="preserve">DELVASO DETTO PROCHITA, CHE NE I SACRI <lb/>Miniſtery ſoleuaſi ant icamente vſare. Theorema VIII.</head>
<figure><!-- 0029-01 -->
<variables xml:id="echoid-variables9" xml:space="preserve">K A H C E D B</variables>
</figure>
<p>
  <s xml:id="echoid-s261" xml:space="preserve">SI fabricano ancora vaſi, che di vino, <lb/>e d’ acqua ripieni alle volte danno <lb/>acqua pura: </s>
  <s xml:id="echoid-s262" xml:space="preserve">mãdano alle volte vino pu-<lb/>ro; </s>
  <s xml:id="echoid-s263" xml:space="preserve">&amp; alle volte acqua, &amp; vino infieme <lb/>meſchiati, la loro fabricatione ſi fà in. <lb/>queſto modo. </s>
  <s xml:id="echoid-s264" xml:space="preserve">Sia il vaſo A.B.a mezo del <lb/>quale ſia poſto il Diafragrama, cioè la <lb/>cartilagine ò Diametro C.D. &amp; intorno <lb/>al corpo del vaſo ſia forato cõ ſpeſſi bu-<lb/>chi eſſo Diametro a guiſa di cribro ò cri <lb/>uello come lo diciam noi. </s>
  <s xml:id="echoid-s265" xml:space="preserve">Et in mezo ad <lb/>eſſo Diametro ſia il buco rotõdo. </s>
  <s xml:id="echoid-s266" xml:space="preserve">E per <lb/>il quale paſſi la forata cãna E.G.H. ben <lb/>comeſſa, e ſaldati in E. e con la bocca G. <lb/>vn poco lontano dal fondo di eſſo vaſo. <lb/>L’altra bocca in H.ſia beniſſimo ſaldata <lb/>al vaſo, &amp; in eſſo fattoui vn picciolo per <lb/>tugio, che entri nella bocca di eſſa canna <lb/>in H. sù la orecchia del manico, il quale <lb/>fi farà come lo dimoſtra la figura, e co-<lb/>me la canna perforato, e sù la riuolta di <lb/>effo in K. ſia fatto vn’ altro pertugio, ò 
<pb o="18" file="0030" n="30" rhead="DELLI SPIRITALI"/>
ſpiracolo, il quale con vn dito turato indi riempiuto eſſo vaſo d’acqua, ella rimar-<lb/>rà ſopra il Diafragtama, ò Diametro non potendo deſcendere nel fondo, non ha <lb/>uendo l’aria, che è in eſſo altro luogo di onde vſcire, e cederli il luogo, ſe non per <lb/>lo ſpiraglio K. &amp; H.il quale aperto ſubito l’ acqua per il criuello ſcenderà a b aſſo <lb/>nel fondo del vaſo: </s>
  <s xml:id="echoid-s267" xml:space="preserve">onde ſe prima por remo vino nel vaſo, indi chiuſo lo ſpiracolo <lb/>K. ſe riempiremo dopoi il vaſo d’acqua eſſa nõ fi meſchierà cõ il vino: </s>
  <s xml:id="echoid-s268" xml:space="preserve">ma versã-<lb/>do il vaſo n vſcirà ſolo l’acqua pura, ſtãdo chiuſo lo ſpiraglio K.indi chiuſo il per-<lb/>rugio H. &amp; aperto il ſpiraglio K. n’ vſcirà ſolo il vino per la bocca del vaſo, nel la <lb/>quale arriuarà la bocca della canna inſieme a pari della bocca del vaſo, &amp; aperto <lb/>l’vno, e l’altro n’vſcirà vino, &amp; acqua. </s>
  <s xml:id="echoid-s269" xml:space="preserve">Onde ci fà chiaro, che di eſſo vaſo a noſtro <lb/>volere verſaremo acqua, &amp; vino, &amp; vin ſolo, &amp; acqua pura, quãdo ci piacerà bur <lb/>lare cõ amici noſtri. </s>
  <s xml:id="echoid-s270" xml:space="preserve">Il qual vaſo ſerà fabricato, come la ſopraſcritta figura ſi vede.</s>
</p>
</div>
<div xml:id="echoid-div22" type="section" level="2" n="16">
<head xml:id="echoid-head23" style="it" xml:space="preserve">DELLA SPHERA, O PALLA CONCAVA, <lb/>che per ſe ſteſſa eſprime l’ acqua in alto. Theor. IX.</head>
<p>
  <s xml:id="echoid-s271" xml:space="preserve">SI fabrica anco la concaua ſphera, ò altro vaſo, fuor della quale l’ acqua in eſſa <lb/>infuſa ſi verſa, e per ſe ſteſſa s’alza con gran forza fin tanto, che tutta è vſci-<lb/>
<anchor type="figure" xlink:label="fig-0030-01a" xlink:href="fig-0030-01"/>
ta fuori cõtro la natura ſua, in queſto mo <lb/>do:</s>
  <s xml:id="echoid-s272" xml:space="preserve">cioè, ſia la ſphera A.B.di qual materia <lb/>più tornerà bene: </s>
  <s xml:id="echoid-s273" xml:space="preserve">pur che il ſuo corpo fia <lb/>in modo fermo, e di tanta buona materia <lb/>fabricato, che reſiſta alla grã forza della <lb/>futura compreſſione dell’ aria. </s>
  <s xml:id="echoid-s274" xml:space="preserve">Il Diame-<lb/>tro, ò larghezza del corpo della quale fa-<lb/>raſſi a volontà di chi la vorrà, e grande, <lb/>e mediocre, e minore. </s>
  <s xml:id="echoid-s275" xml:space="preserve">Queſta collocata <lb/>ſopra vn’hipoſpario, cioè piede C. ſia fora <lb/>ta nella parte di ſopra, &amp; in eſſo buco po <lb/>ſtaui vna cãna forata, tanto però diftãte <lb/>cõ la bocca interiore dal luogo per dia-<lb/>metro ad eſſo buco oppoſto quãto a giu <lb/>ditio tuo ſerà a baſtãza per il fluſſo dell’ <lb/>acqua. </s>
  <s xml:id="echoid-s276" xml:space="preserve">E la cãna alzerai ſopra la Palla al-<lb/>quanto diligentiſſimamẽte ſaldandola in <lb/>torno albuco, ſi che entrare, ne vſcire poſ <lb/>ſa l’aria, dopoiſia partita eſſa cãna in due <lb/>tubi D.G.D.F. nelli quali ſiano incaſtrati <lb/>altri due tubi in trauerſo H.K.L.M.N.X <lb/>forati, e bucati inſieme cõ li due D.G.D. <lb/></s>
  <s xml:id="echoid-s277" xml:space="preserve">F.ſia dopoi intromeſſo ne’ Tubi H.K.L.M.N.X. vn’altro Tubo O.P. ſimilmen-<lb/>te bucato con i buchi di quelli, che ſono in H.K.L.M.N.X. e queſto habbia l’ op-
<pb o="19" file="0031" n="31" rhead="DI HERONE."/>
poſto Tubo retto S.ſimilmente anco forato con il buco de gli altri; </s>
  <s xml:id="echoid-s278" xml:space="preserve">ma finiſca in <lb/>vna bocca picciola in S.come la figura dimoſtra, e ſia in maniera accommodaro, <lb/>che preſo S.ſi volga il Tubo O.P. e chiuda i buchi, che ſtãdo S. volto in sù, ſi cor-<lb/>riſpondono ſi che l'acqua, che fuor di eſſo vaſo da vſcire eſito non habbia: </s>
  <s xml:id="echoid-s279" xml:space="preserve">ſia do-<lb/>po queſto impoſto in eſſa ſphera vn'altro Tubo T.Y.V. per qualche fatto pertu-<lb/>gio, e la bocca interiore V. ſia turata; </s>
  <s xml:id="echoid-s280" xml:space="preserve">mà habbia preſſo il fondo vn buco rotondo <lb/>Q.al quale ſia poſto vna clauicola da Latini detta <emph style="it">Aſſarium</emph>, che preſſo di noi di-<lb/>ceſi cartella, la conſtruttione della ouale più giù eſporrò. </s>
  <s xml:id="echoid-s281" xml:space="preserve">Sia dipoi fatto vn'altro <lb/>Tubo Z.il qual e entri nel Tubo T.Y.V.ſe adunque cauaremo il Tubo Z.ponen-<lb/>do nel T.Y.V. acqua, eſſa nel corpo della ſphera entrarà per il forame V. aperta <lb/>la cartella poſta del Tubo nella parte eſteriore, e cedendo l'aria per li pertugi del <lb/>Tubo O.P.già detti, e poſti cõ li buchi, che ſono ne'tubi H.K.L.M.N.X.e quan-<lb/>do il corpo della ſphera ſerà mezo d' acqua volterai il Tubo S. in modo, che li <lb/>buchi, che ſi riſpõdano ſi mutino di luogo: </s>
  <s xml:id="echoid-s282" xml:space="preserve">poi dimenãdo il Tubo Z.caccierai per <lb/>eſſo l' aria con il Tubo T. Y. V. la quale per la cartella del buco Q. con violenza <lb/>entrera nel corpo della ſphera, finche ſerà ripieno d'acqua, e d'aria, onde faraſſi <lb/>per la furia violente in eſsa vn'amaſsamento di aria egitato: </s>
  <s xml:id="echoid-s283" xml:space="preserve">e di nuouo cauando <lb/>il Tubo Z.ſi che il Tubo T. Y. V. d'aria ſi riempia, &amp; indi ficcando il Tubo Z.&amp; <lb/>immettendo per forza nella Palla predetta aria, e continuando ſpeſso il ciò fare <lb/>verrai a impire di molt atia (come condenſato, e compreſso) il corpo di eſsa <lb/>Paila, &amp; eſsa aria vſcire non potrà non vi eſſendo da niuna parte ſpiraglio aper-<lb/>to poiche per ſe ſteſsa ſerreraſsi la cartella del buco Q. ma ſe tornarai a leuare il <lb/>Tubo S. ſi che ſtia retto ſcontrandoſi i buchi ſe n'vſcil à per forza l'acqua sforza-<lb/>ta dal compreſso aria, il quale alterato per proptia na tura lo ſpingerà per forza; <lb/></s>
  <s xml:id="echoid-s284" xml:space="preserve">e ſe l'aria compreſso ſerà molto: </s>
  <s xml:id="echoid-s285" xml:space="preserve">tutta ſcaccierà l'acqua fin che la ſuper flua aria <lb/>ſe ne vſcirà inſieme con l'acqua.</s>
</p>
<div xml:id="echoid-div22" type="float" level="3" n="1">
<figure xlink:label="fig-0030-01" xlink:href="fig-0030-01a"><!-- 0030-01 -->
<variables xml:id="echoid-variables10" xml:space="preserve">F H K L S F X N V G T Y Q V B D C</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div24" type="section" level="2" n="17">
<head xml:id="echoid-head24" style="it" xml:space="preserve">DELLA CARTELLA. Theorema. X.</head>
<p>
  <s xml:id="echoid-s286" xml:space="preserve">MA la Clauicola, che come ſi è detto di ſopra è da Latini detta <emph style="it">Aſſarium</emph>, <lb/>che volgarmente ſi chiama cartella ſi fa in queſto modo. </s>
  <s xml:id="echoid-s287" xml:space="preserve">Sia fabricato <lb/>vn quadro A.B.C. <lb/>
<anchor type="figure" xlink:label="fig-0031-01a" xlink:href="fig-0031-01"/>
<anchor type="figure" xlink:label="fig-0031-02a" xlink:href="fig-0031-02"/>
<anchor type="figure" xlink:label="fig-0031-03a" xlink:href="fig-0031-03"/>
D. di conueniente <lb/>grandezza, e groſ-<lb/>ſ ezza, intorno il <lb/>quale ſia ſegnato, <lb/>con linee paralelle <lb/>alle linee eſtreme <lb/>di eſſo vn' altro <lb/>quadrc, minor del <lb/>primo alquanto poſcia ſia queſto incauato nella groſſezza conuenientemente,
<pb o="20" file="0032" n="32" rhead="DELLI SPIRIT ALI"/>
&amp; verrà intorno ad eſſo quadro a reſtare, come vn lẽbo: </s>
  <s xml:id="echoid-s288" xml:space="preserve">dopoi ſia fatto in mex <lb/>di eſſo vn buco poi facciaſi da vn lato del quadro diremo C. D. cõ vna canna d-<lb/>uiſa in parte cinque, della quale ne ſian tagliate due nel mezo, come moſtra lo in, <lb/>fraſcritto eſſempio. </s>
  <s xml:id="echoid-s289" xml:space="preserve">Sia dopo queſto fatto vn'altro quadro grande, come il primo <lb/>e ſimilmente ſegnatoui vn'altro qua dro dentro, come ſi fece in eſſo. </s>
  <s xml:id="echoid-s290" xml:space="preserve">Ma ſia in. <lb/>queſto tanto tagliato del margine, quanto è cauo l'altro quadro più del lembo; <lb/></s>
  <s xml:id="echoid-s291" xml:space="preserve">in modo che compoſti inſieme entri l' altezza di queſto nel cauo dell'altro, &amp; il <lb/>margine del primo nel più baſſo di queſto, &amp; inſieme congiunti pongaſi le due <lb/>parti della canella tagliata, oue mancano nel primo quadro; </s>
  <s xml:id="echoid-s292" xml:space="preserve">ma queſte ſiano cõ-<lb/>giunte al ſecondo, e ſra poi nel buco della cãna poſto vn filo di ferro ribattuto da <lb/>ogni capo; </s>
  <s xml:id="echoid-s293" xml:space="preserve">ſi che nõ poſſa vſcirue F.e ſia il primo quadro ſegnato A.B.C.D.Il ſe-<lb/>cõdo F.G.H.E.e la canna C.D.attacata al primo, &amp; E. F.al ſecõdo il quale, come <lb/>percardini s'apra, e ſi ſerri; </s>
  <s xml:id="echoid-s294" xml:space="preserve">õde riceua l'aria, e ſerri di eſſa il buco dell'vſcita a c'hò <lb/>accõmodato la preſente figura facile da eſſer cõpreſa da ogni mediocre ingegno.</s>
</p>
<div xml:id="echoid-div24" type="float" level="3" n="1">
<figure xlink:label="fig-0031-01" xlink:href="fig-0031-01a"><!-- 0031-01 -->
<variables xml:id="echoid-variables11" xml:space="preserve">G F H E D A B D</variables>
</figure>
<figure xlink:label="fig-0031-02" xlink:href="fig-0031-02a"><!-- 0031-02 -->
<variables xml:id="echoid-variables12" xml:space="preserve">G E F B</variables>
</figure>
<figure xlink:label="fig-0031-03" xlink:href="fig-0031-03a"><!-- 0031-03 -->
<variables xml:id="echoid-variables13" xml:space="preserve">D A B C</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div26" type="section" level="2" n="18">
<head xml:id="echoid-head25" style="it" xml:space="preserve">F ARE PERFORZA DIVN FVOCO ACCESO <lb/>Sasrificare Animali quanti ci parerà. Theor. XI.</head>
<p>
  <s xml:id="echoid-s295" xml:space="preserve">FAnnoſi ſacrificare gli Animali, in queſto modo. </s>
  <s xml:id="echoid-s296" xml:space="preserve">Sia la Baſe sù la quale eſſi <lb/>poſano A.B.C.D. d'ogn'intorno eccellentemente chiuſa, ſopra la quale <lb/>
<anchor type="figure" xlink:label="fig-0032-01a" xlink:href="fig-0032-01"/>
<pb o="21" file="0033" n="33" rhead="DI HERONE."/>
poſi vn' altare ſimilmente d' ogni intorno ſerrato inſieme con la Baſe buca-<lb/>to in G. ma per la Baſe paſſino tubi, quanti ſeranno gli Animali, li quali ſiano <lb/>H.L.N.O. poco dal fondo di ſtanti come in L.N. queſti ſian forati, e forate le <lb/>braccia de gli Anima li li quali habbiam' in mano, ò vaſo, ò qual ſi ſia coſa da ſa-<lb/>crificare: </s>
  <s xml:id="echoid-s297" xml:space="preserve">ſia dopo queſto poſto acqua nella Baſe per qualche buco, come in M. <lb/>il quale dopoi ſia ſubito turato: </s>
  <s xml:id="echoid-s298" xml:space="preserve">indi accen daſi ſopra lo altare E. F. vn fuoco che <lb/>l'atia in eſſo altare ſerrato ſerà dal vapor di eſſo ſubito forzato a calare nella Baſe <lb/>per il Tubo P. e ſcaccia rne l'acqua, la quale non bauendo altro eſito conuer-<lb/>rà, che ſe n'eſoa per li tubi N. O. H. L. ſpinta dalla forza del vapore per gli vaſi, <lb/>ò per qual ſia coſa ch'abbiano in mano gli Animali, e così ſacrificare, tanto du-<lb/>rarà il ſacrificio, quanto ſta rà sù l' altare acceſo il fuoco, il quale ſpento ceſſa il <lb/>ſacrificio, onde au uerrà, che tante volte ſacrificaranno, qnante volte accende-<lb/>raſſi il fuoco: </s>
  <s xml:id="echoid-s299" xml:space="preserve">ma conuiene, che il Tubo per il quale deue paſſare la calidità ſia <lb/>corpulente nel mezo; </s>
  <s xml:id="echoid-s300" xml:space="preserve">perche è neceſſario, che il vapore ſia grande; </s>
  <s xml:id="echoid-s301" xml:space="preserve">acciò habbia <lb/>maggior forza di cacciar l'humido, perche poſſa maggiormente operare.</s>
</p>
<div xml:id="echoid-div26" type="float" level="3" n="1">
<figure xlink:label="fig-0032-01" xlink:href="fig-0032-01a"><!-- 0032-01 -->
<variables xml:id="echoid-variables14" xml:space="preserve">A K M O L G N B C</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div28" type="section" level="2" n="19">
<head xml:id="echoid-head26" style="it" xml:space="preserve">DEIVASI, CHE SE NON SONO RIPIENI <lb/>non verſano: maripieni iutto l' humido, che v' è dentro ſe <lb/>ne ſugge. Theorema XII.</head>
<p>
  <s xml:id="echoid-s302" xml:space="preserve">SIa il v aſo non coperto A. B. C. D. per il fondo del quale pongaſi il Diabete <lb/>Spirita le E. F. G. H. ouero la in fleſſa, ò piegata canna I. K. L. ſia dopoi pie-<lb/>no il vaſo A.B.C.D. d'acqua, che per le di ſopra allegate ragioni tutta l'acqua ſe <lb/>n'andrà fin, che il vaſo reſtarà vuoto, ſe però la canna, ò Tubo Spiritale ſerà ſol <lb/>tanto dal fondo diſtante, quanto baſterà per il fluſſo dell'acqua.</s>
</p>
<figure><!-- 0033-01 -->
<variables xml:id="echoid-variables15" xml:space="preserve">A B C D I G</variables>
</figure>
<figure><!-- 0033-02 -->
<variables xml:id="echoid-variables16" xml:space="preserve">L K I</variables>
</figure>
<pb o="22" file="0034" n="34" rhead="DELLI SPIRITALI"/>
</div>
<div xml:id="echoid-div29" type="section" level="2" n="20">
<head xml:id="echoid-head27" style="it" xml:space="preserve">DEIVASI CONCORDI. <lb/>Thcorema. XIII.</head>
<p>
  <s xml:id="echoid-s303" xml:space="preserve">IVaſi, che fi chiamano concordi ſi fermano sù vna baſe, delli quali ſe ben vn di <lb/>loro ſerà ripieno di vino, l'altro vuoto; </s>
  <s xml:id="echoid-s304" xml:space="preserve">ben che habbino i loro canali aperti <lb/>tutte due, non vſcirà però il vino, ſe non ſi empirà l'altro vaſo, che ſia (diciamo) <lb/>ſi riempia di acqua, che ſubito ambidue ſpargeranno l'vno acqua, l'altro vino, ne <lb/>ceſſarà il loro fluſſo, fin che del tutto vuoti non ſeranno. </s>
  <s xml:id="echoid-s305" xml:space="preserve">E ſi fabricano in queſto <lb/>modo. </s>
  <s xml:id="echoid-s306" xml:space="preserve">Sia la baſe ſopra la quale ſi collocaranno i vaſi A B.C.D. ma i vaſi ſiano <lb/>E. F. &amp; in ciaſcuno d'eſſi ſian poſte le piegate canne, nel vaſo E ſia la canna G. <lb/>H.K. e nel F. ſia L.M.N. che l'vſcite loro habbiamo in canali curui, che fuori de <lb/>i vaſi ſparghino; </s>
  <s xml:id="echoid-s307" xml:space="preserve">e le canne di queſti ſiano piegate per vn'altra canna nella baſe, <lb/>la quale ſia O. P. Q.R. le bocche loro O.P. ſiano a canto le curuità delle canne. <lb/></s>
<anchor type="figure" xlink:label="fig-0034-01a" xlink:href="fig-0034-01"/>
  <s xml:id="echoid-s308" xml:space="preserve">Indi ſia riempito vno di eſſi vaſi di vino, che per eſempio ſia E. ma non tanto pe-<lb/>rò, che ſia ſopra la curuatura della canna H. che non arriuando ſopra di eſſa il <lb/>vino, eglinon vſcirà altrament<unsure/>e: </s>
  <s xml:id="echoid-s309" xml:space="preserve">perche la canna non può hauer principio di <lb/>fluſſo; </s>
  <s xml:id="echoid-s310" xml:space="preserve">ma ſe nel vaſo F. porremo tant' acqua, che eſſa ſouraſti alla curuità della <lb/>canna M. all'hora l' acqua ſe ne comincierà a ſcorrere per le canne O. P. Q. R. <lb/></s>
  <s xml:id="echoid-s311" xml:space="preserve">nel vaſo E. dan do di fluſſo al vino principio: </s>
  <s xml:id="echoid-s312" xml:space="preserve">&amp; in vn medeſmo tempo ambidue <lb/>i vaſi verſaranno queſto vino, e quell o acqua; </s>
  <s xml:id="echoid-s313" xml:space="preserve">fin tanto, che fuor di eſſi ſerà tutto <lb/>il vino, e tutto l'acqua vſcita.</s>
</p>
<div xml:id="echoid-div29" type="float" level="3" n="1">
<figure xlink:label="fig-0034-01" xlink:href="fig-0034-01a"><!-- 0034-01 -->
<variables xml:id="echoid-variables17" xml:space="preserve">E H G K F M L N A B C Q R D</variables>
</figure>
</div>
<pb o="23" file="0035" n="35" rhead="DIHERONE."/>
</div>
<div xml:id="echoid-div31" type="section" level="2" n="21">
<head xml:id="echoid-head28" style="it" xml:space="preserve">DEIVASINE' QVALI INFONDENDOSI <lb/>Acqua, ſi crea vn ſuono, ouero ſibilo. Theor. XIV.</head>
<p>
  <s xml:id="echoid-s314" xml:space="preserve">CI ſono ancora certi vaſi, ne' qualiſe con arte da noi vi ſerà infuſa acqua. <lb/></s>
  <s xml:id="echoid-s315" xml:space="preserve">crearemo diuerſi ſuoni,ſecondo il no ſtro guſto, li quali ſi formano in que-<lb/>fto modo. </s>
  <s xml:id="echoid-s316" xml:space="preserve">Sia la baſe d'ogn' intorno chiuſa A.B.C.D. e ſopra il coperchio di eſ-<lb/>ſo ſiaui poſto lo infundibulo E. F. c'habbia il tubo tant' alto dal fondo del vaſo <lb/>quanto per il fluſſo dell'acqua ſerà a baſtãza, queſto ſìa sù il coperchio della ba-<lb/>ſe molto ben d'ogn'intorno chiuſo, ſia dopoi fatto la canna G. H. K. in modo <lb/>
<anchor type="figure" xlink:label="fig-0035-01a" xlink:href="fig-0035-01"/>
acconcia nella parte ſopra il vaſo, che ſoffiandoſi in eſſa ella poſsa rendere ſuo-<lb/>no, queſta (forata la baſe) ſia ſaldata nel coperchio: </s>
  <s xml:id="echoid-s317" xml:space="preserve">mà la bocca di eſsa K. ſia pie-<lb/>gata alquanto, che in vn picciol vaſo d' acqua poſta, che ſerà, come in L. per eſ-<lb/>ſempio. </s>
  <s xml:id="echoid-s318" xml:space="preserve">Se per lo infundibulo E. F. porremo nella baſe acqua sforzato, ſerà l'aria, <lb/>che è nella baſe a vſ cirne per la canna G. H. K. e conſeguentemente a creare, <lb/>il ſuono, e ſe di eſsa canna la eſt remità porremo nell' acqua, n' vſcirà vn ſuono <lb/>ſtrepitoſo, come di Ruſign uolo, nè vi eſsendo acqua renderà ſibilo ſemplice. </s>
  <s xml:id="echoid-s319" xml:space="preserve">Lo <lb/>eſsempio è queſto.</s>
</p>
<div xml:id="echoid-div31" type="float" level="3" n="1">
<figure xlink:label="fig-0035-01" xlink:href="fig-0035-01a"><!-- 0035-01 -->
<variables xml:id="echoid-variables18" xml:space="preserve">A E F L K H G B D C</variables>
</figure>
</div>
<pb o="24" file="0036" n="36" rhead="DELLI SPIRIT ALI"/>
</div>
<div xml:id="echoid-div33" type="section" level="2" n="22">
<head xml:id="echoid-head29" style="it" xml:space="preserve">DELLE DIVERSIT A’ DELLEVOCI <lb/>Devarij uccelli. Theor. XV.</head>
<p>
  <s xml:id="echoid-s320" xml:space="preserve">SEben tutte le voci ſi creano conle canne, differenti però di eſse ſi rendono <lb/>i ſuoni per le longhezze, groſsezze, ſuttigliezze, e cortezzeloro. </s>
  <s xml:id="echoid-s321" xml:space="preserve">Ouero <lb/>quãdo parte diloro ſono nell’acque immerſe, che così varie, e diuerſe voci, e can-<lb/>tidi varij vccelli rendono: </s>
  <s xml:id="echoid-s322" xml:space="preserve">queſti, ò ſopra fonti ſi fanno, ò in cauerne, ouero in <lb/>qual luogo più torna commodo, pur che vi ſia fluſso, ouero corſo d’acqua;</s>
  <s xml:id="echoid-s323" xml:space="preserve">diſpo-<lb/>ſti per ordine quanti vccelli torna commodo:</s>
  <s xml:id="echoid-s324" xml:space="preserve">ma quelli diſpoſti, alli quali ſi pone <lb/>dirimpetto vna Nottola, ò Ciuetta, che ſi dica, che quando per ſe ſteſsa volta la <lb/>faccia a gli vccelli eſſi fermano illor canto, &amp; volgendoui il tergo lo ripigliano, <lb/>fi fabricano in queſto modo: </s>
  <s xml:id="echoid-s325" xml:space="preserve">Diſpongaſi vn canaletto d’acqua, cheſempre cor-<lb/>ra, e queſto ſia A.a cui ſi ſottopógail vaſo B.C.D.E.nel quale pógaſi il tubo Spi-<lb/>titale, ouero la infleſa canna F. G. ſia dopoi ſopra il vaſo grande B.C.D.E. poſto <lb/>il vaſo infundibile H. dicui, la coda tanto reſti alta dal fondo, quanto ci parerà <lb/>debba baſtare per il fluſso dell’acqua. </s>
  <s xml:id="echoid-s326" xml:space="preserve">Queſto habbia molte canne, che paſſino <lb/>nel corpo del vaſo grande molto ben turate d’intorno sù’l coperchio di eſso ſi <lb/>
<anchor type="figure" xlink:label="fig-0036-01a" xlink:href="fig-0036-01"/>
come nella ſopraſcritta diſ <lb/>fi, e comc per eſsempio in <lb/>L.M. che mentre il vaſo B. <lb/>C.D.E. ſi riempirà d’ ac-<lb/>qua, l’ aria sforzato ſe n’v-<lb/>ſcirà per le canne L.M.im-<lb/>mitando il canto de gli vc-<lb/>celli. </s>
  <s xml:id="echoid-s327" xml:space="preserve">E ciaſcuna canna fia <lb/>nelli piedi, e corpo de gli <lb/>vccelli in maniera accom-<lb/>modata, che per la bocca di <lb/>eſſi mandi ſtridore, che, <lb/>quando il vaſo B. C. D. E. <lb/>ſerà pieno; </s>
  <s xml:id="echoid-s328" xml:space="preserve">perche ſi votarà <lb/>per il tubo Spiritale, infle-<lb/>xa canna ceſsaranno di <lb/>cantare.</s>
</p>
<div xml:id="echoid-div33" type="float" level="3" n="1">
<figure xlink:label="fig-0036-01" xlink:href="fig-0036-01a"><!-- 0036-01 -->
<variables xml:id="echoid-variables19" xml:space="preserve">R P S H K B E L M F G D C T E V Y Z</variables>
</figure>
</div>
<p>
  <s xml:id="echoid-s329" xml:space="preserve">Ma perche la Ciuetta ſi <lb/>volga in queſto ſubito a gli <lb/>vccelli, come ſi diſse diſopra: </s>
  <s xml:id="echoid-s330" xml:space="preserve">Sia collocato vn’aſta, ò ſtilo retto, &amp; a torno eccel-<lb/>lentemente lauorato ſopra vna baſe MM. il quale sù vn bilico poſi, e ſia eſso ſti-<lb/>lo X. intorno al quale ſia poſto la forata canna O.P. ma non affato bucata, &amp; <lb/>eſso ſtilo habbia vna punta ſottile, sù la quale eſpeditamente ſi volga la canna in <lb/>cima della quale pongaſi vna conuenientemente picciola palla R.S. sù la quale <lb/>poſi vna Ciuetta ben ad eſsa ſaldata: </s>
  <s xml:id="echoid-s331" xml:space="preserve">Habbiaſi poivna catenella, che intorno la
<pb o="25" file="0037" n="37" rhead="DIHERONE."/>
canna predetta s’auolga con i capial contratio vno dell’altro, e ſian T. Y. V. Q <lb/>nel capo T.Y. ſoſpendafi il peſo Z. ſopra la troclea, ò girella Y. &amp; il capo V. Q. po-<lb/>fto sù vn’altra troclea ſuſpenda il vaſo concano, che noi adimandiamo ſecchio; </s>
  <s xml:id="echoid-s332" xml:space="preserve">il <lb/>quale ſtia ſotto il tubo Spiritale, ò infleſa canna, che mentre il vaſo B.C.D.E. fi <lb/>voterà, l’acqua ſcenderà nel ſecchio, il quale calando, per il peſo, la catena volge-<lb/>rà la canna O.P. e farà voltare il petto della Ciuetta verſo gli vccelli, e guarde-<lb/>ralli mentre ceſsano di cantare; </s>
  <s xml:id="echoid-s333" xml:space="preserve">ma votandoſi il vaſo B.C.D.E. nel ſecchio, &amp; <lb/>eſso votandoſi per il tubo Spiritale, che in eſso conuien porre, vuoto, che ſerà ll <lb/>vaſo, ſcenderà il peſo Z. a baſso, &amp; volgendo ſi la canna P.O. volgeraſſi in dietro <lb/>la Cinetta, e tutto a vn tempo torneraſſi il vaſo B.C.D.E. a empite d’aria, e di <lb/>nuouo gli vccelli ripiglieranno il canto loro: </s>
  <s xml:id="echoid-s334" xml:space="preserve">finche votandoſi tornerà di nuouo <lb/>la Ciuetta a volgerſi, &amp; eſſi ceſsaranno di cantare.</s>
</p>
</div>
<div xml:id="echoid-div35" type="section" level="2" n="23">
<head xml:id="echoid-head30" style="it" xml:space="preserve">CONLAISTESSA RAGIONE SIF ANNO</head>
<head xml:id="echoid-head31" style="it" xml:space="preserve">ſonare le Trombe. Theorema XVI.</head>
<p>
  <s xml:id="echoid-s335" xml:space="preserve">SI fanno ſimilmente con le ſudette ragio ni ſonar le trombe; </s>
  <s xml:id="echoid-s336" xml:space="preserve">imperoche, <lb/>quando nel ben turato vaſo ſi porrà lo infundibulo, la coda del quale ſia po-<lb/>co di ſtante poſta dal fondo, con diligenza eſtrema turando lo infundibulo con il <lb/>coperchio, poſta dopoi la bocca della tromba, di cui la lingula, &amp; il dodoneo ſia-<lb/>no con il coperchio del vaſo forato, e ben ſaldato d’intorno: </s>
  <s xml:id="echoid-s337" xml:space="preserve">acciò il fiato dell’a-<lb/>ria nell’vſcire per altro lucco non poſsa, che per il dodoneo, e per la lingula auie-<lb/>ne, che ne lo infondere acqua per il vaſo, che infundibulo chiamiamo l’aria nel <lb/>vaſo grande rinchiuſo per forza cacciato dall’ acqua per la lingula ſoforza la <lb/>tromba a ſonare.</s>
</p>
</div>
<div xml:id="echoid-div36" type="section" level="2" n="24">
<head xml:id="echoid-head32" style="it" xml:space="preserve">NELL’ APRIRE LE PORTE DE’ TEMPII <lb/>In queξto modo ſi ſà, che una, ò più trombe ſonino. <lb/>Theorema XVII.</head>
<p>
  <s xml:id="echoid-s338" xml:space="preserve">POngaſi dopo le porte il vaſo A.B.C.D. in cui ſia acqua, &amp; in eſsa vn vaſo F. <lb/></s>
  <s xml:id="echoid-s339" xml:space="preserve">rouerſcio, cioè con la bocca verſo l’acqua, e con il fondo verſo il Cielo, nel <lb/>quale forato vn buco ſia in eſso accommodata la tromba, che habbia nella boc-<lb/>ca il dodoneo con la lingula, &amp; in pari del cannale della tromba accommodato il <lb/>regolo L.M. conficato nel rouerſcio vaſo ſuffocatorio, &amp; al canale della tromba <lb/>legato vi ſi faccia nella eſtremità vn buco Z. grande quanto all’opra potrà bafta-<lb/>re, dentro il quale pongaſi il regolo N.X. che per L.M.ſuſtenti il ſuffugatorio F. <lb/>tanto dall’acqua diſtante, che baſti; </s>
  <s xml:id="echoid-s340" xml:space="preserve">&amp; N.X. ſi moua in mezo sù’l perno O. e nel-
<pb o="26" file="0038" n="38" rhead="DELLI SPIRIT ALI"/>
Peſtremità X. ſia legata vna fune, ò catena, che per la girella P. ſia portata alle <lb/>parte di dietro delle porte nel mezo, oue ſi congiungono nel ſerrarſi, che per <lb/>forza aprendoſi le porte tirerà la fune, l’eſtremità del regolo X. che girandoſi <lb/>sù’l perno O.ſuffogarà il ſuffocatorio nell’acqua, e renderà la tromba ſuono; </s>
  <s xml:id="echoid-s341" xml:space="preserve">per-<lb/>chel’aria, che in eſso ſerà cacciato dall’humido per il dodoneo, e per la lingula, <lb/>come facilmente fi comptende dall’ infrafcritto eſsempio.</s>
</p>
<figure><!-- 0038-01 -->
<variables xml:id="echoid-variables20" xml:space="preserve">P Z O N M X A B C D</variables>
</figure>
</div>
<div xml:id="echoid-div37" type="section" level="2" n="25">
<head xml:id="echoid-head33" style="it" xml:space="preserve">VASO NEL QVALE INFVSO VINO, <lb/>&amp; acqua l’vn dall’ altro ſeparati ſi può a uoglia altrui ha-<lb/>uer, quando vin puro, vin puro, quando acqua pura. <lb/>Theor. XVIII.</head>
<p>
  <s xml:id="echoid-s342" xml:space="preserve">SIa il vaſo A. B. C. nel quale ſiano li due fondi D.H.F.G. &amp; in ciaſcuno d’eſſi <lb/>pongaſi la forata canna H.K. diligentemente in ciaſcheduno d’ eſſi fondi <lb/>ſaldata, &amp; in eſsa fia fatto il buco L. vn poco diſopra dal fondo F. G. ma ſotto il <lb/>fondo D. H. faccia ſi nel corpo del vaſo lo ſpiracolo M. e così accommodato <lb/>ogn coſa, e turato lo ſpiracolo C. pongaſi vino nel vaſo, che per il buco L. riem-<lb/>pirà il luoco frà i due diafragrami D.H.F.G. perche l’aria, ch’è in eſso ſerà, ſe. <lb/></s>
  <s xml:id="echoid-s343" xml:space="preserve">n’vſcirà per lo ſpiracolo M. il quale turato con il dito, il vino, che ſerà in D.E.F. <lb/>G. ſi fermarà in eſso, nè potrà vſcire: </s>
  <s xml:id="echoid-s344" xml:space="preserve">e quando infondera ſſi acqua, nella parte del <lb/>vaſo A.B.D.H. ſerrando lo ſpiracolo M. n’vſcirà ſolo acqua pura, &amp; eſso ſpira-<lb/>colo aperto, eſsendo, che nella parte ſuperiore v’è ſ’acqua, verſando il vaſo n’v-<lb/>ſcira acqua, &amp; vino miſto, e perche tutta l’acqua ſerà vſcita, all’hora puro n’v-
<pb o="27" file="0039" n="39" rhead="DIHERONE."/>
ſcirà il vino; </s>
  <s xml:id="echoid-s345" xml:space="preserve">Benche con lo aprire, e ſerrare lo ſpiracolo ſi poſsano far diuerſe, <lb/>effuſieni; </s>
  <s xml:id="echoid-s346" xml:space="preserve">ma molto meglio è prima porre acqua nella patte D.E.F.G. e ſerrando <lb/>lo lpiracolo infonder vino nell’altra parte, che a noſtro piacere n’vſcirà verſando <lb/>hor vino miſto, hora puro, tante volte quante noi iſteſſi ce ne compiaceremo.</s>
</p>
<figure><!-- 0039-01 -->
<variables xml:id="echoid-variables21" xml:space="preserve">B A D H O M L G F K</variables>
</figure>
</div>
<div xml:id="echoid-div38" type="section" level="2" n="26">
<head xml:id="echoid-head34" style="it" xml:space="preserve">DELLA COPPA SOPRA VNABASE POSTA,</head>
<head xml:id="echoid-head35" style="it" xml:space="preserve">Se di eſſa ſerà cauato il vino diche ſia piena torner à incontinente, <lb/>per ſe ſteſſa a riempirſi. Theorema XIX.</head>
<p>
  <s xml:id="echoid-s347" xml:space="preserve">SIa il vaſo A.B. di cui la bocca ſia a i termini del collo ſerrata con il diafragra-<lb/>ma C.D. diligentemente ſerrato, e chiuſo per il quale paſſi la canna E.F. che <lb/>non arriui al fondo; </s>
  <s xml:id="echoid-s348" xml:space="preserve">ma da eſso ſia poco diſtante: </s>
  <s xml:id="echoid-s349" xml:space="preserve">l’altra canna G.H. paſſi per il <lb/>fondo, e poco lonta no ſia dal diafragrama C.D. e dopo queſto in K. ſia bucato il <lb/>fondo, &amp; in eſſo poſtoui la canna K. L. e la baſe sù la quale hà da poſare il vaſo <lb/>A. B. ſia la M.N.X.O. &amp; in eſſa ſia lo ecceſſo della canna G. H. e neila parte da <lb/>baſso la coppa P.R. ma per la baſe M.N.X.O. pongaſi la piegata canna S.T. che <lb/>con la baſe, col piede, e con il fondo della coppa ſia forata, e l’altezza della cop-<lb/>pa ſia vguale alla bocca H. della canna G.H. ciò fatto pongaſi il vino per la boc-
<pb o="28" file="0040" n="40" rhead="DELLI SPIRITALI"/>
ca, e per la canna E. F. nel vaſo A. B. che l’aria nel corpo del vaſo A. B. chiuſo, ſe <lb/>n’vſcirà per la canna G.H.eſela canella K.L. ſerà a petta il vino, che per eſſa s’in-<lb/>
<anchor type="figure" xlink:label="fig-0040-01a" xlink:href="fig-0040-01"/>
fonde, nella baſe, ſe <lb/>n’andrà, e nella cop-<lb/>pa. </s>
  <s xml:id="echoid-s350" xml:space="preserve">Ma ſe ſerà ottu-<lb/>rata impiraſſi il vaſo <lb/>A.B. hor poniam vi-<lb/>no anco nella baſe <lb/>M.N.X.O.e nella, <lb/>coppa P.R. ſi che el-<lb/>la ſia piena, e piena <lb/>anco la baſe M.N.X. <lb/>O. fino alla bocca <lb/>della canna G.H. il <lb/>che fatto ſerriſi la <lb/>bocca E. che il vino, <lb/>il quale è nel vaſo A. <lb/>B. non più ſcenderà <lb/>nella baſe perla ca-<lb/>nella K. L. non po-<lb/>tẽdo eſfo hauer d’al-<lb/>tronde l’aria, che <lb/>per la bocca E. di già <lb/>turata; </s>
  <s xml:id="echoid-s351" xml:space="preserve">ma quá do ſe-<lb/>rà cauato il vino fuo <lb/>ri della coppa aptaſi di nuouo la bocca E. che ſcenderà il vino nella baſe, &amp; in, <lb/>eſſa coppa K.R. fin che ſerà di nuouo piena ſubintrando l’aria nel vaſo in luoco <lb/>dell’acqua, e queſto rante volte ſerà, quante fiate caueraſsi della coppa il vino; <lb/></s>
  <s xml:id="echoid-s352" xml:space="preserve">ma ſerà neceſſario, che la baſe M.N.X.O. ſia forata in Y acciò l’aria, che è nel <lb/>vaſo A.B. cedé do al vino il luoco, ſe n’étri per la bocea G.eſe n’eſca per il buco Y.</s>
</p>
<div xml:id="echoid-div38" type="float" level="3" n="1">
<figure xlink:label="fig-0040-01" xlink:href="fig-0040-01a"><!-- 0040-01 -->
<variables xml:id="echoid-variables22" xml:space="preserve">C E D G A B K F O M L R H T S X N</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div40" type="section" level="2" n="27">
<head xml:id="echoid-head36" style="it" xml:space="preserve">CHELA PROPOST A COPPA (BENCHE SI CAVI, <lb/>grancopia di vino, ò d’ acqua) ſtarà ſempre piena. Theor. XX.</head>
<p>
  <s xml:id="echoid-s353" xml:space="preserve">SIa il vaſo A.B. in cui ſia acqua per il futuro vſo a ſufficienza, &amp; il canale, che <lb/>di eſſo eſcie ſia C. D. ſotto il quale pongaſi vn’altro vaſo G.H. &amp; a canto il <lb/>canale pongaſi il regolo E.F. e dalla eſtremità E. ſuſpendaſi il ſouero K. dentro il <lb/>vaſo G.H. e dalla eſtremità F.a vna fune, òcatenella ſuſpendaſi vn peſo di piom-<lb/>bo X. e facciaſi, che’l ſouero nuotante nel vaſo G.H. ſerri la bocca del canale C. <lb/>D.e cauando l’acqua di G. H. cali con eſſa il ſouero, &amp; apra la bocca del canal e <lb/>C.D. e riempiendoſi il vaſo G.H. di nuouo ſi turi la bocca di eſſo canale onde, <lb/>dell’ acqua ſia impedito il fluſſo, cheſe la coppa ſerà in qual ſi voglia luoco poſta, <lb/>illabro eſtremo della quale ſia vguale alla ſuperficie dell’acqua, auerrà, che ſe al-
<pb o="29" file="0041" n="41" rhead="DIHERONE."/>
<anchor type="figure" xlink:label="fig-0041-01a" xlink:href="fig-0041-01"/>
cuno cauerà l’acqua <lb/>della coppa calerà <lb/>anco l’acqua di G. <lb/>H. e có eſla il ſoue-<lb/>ro, aprendo la bocca <lb/>del canale per il qua <lb/>le ſcorrendo l’acqua <lb/>di nuouo torneraſsi <lb/>la coppa a riempire, <lb/>e quãdo ſerà ripieno <lb/>anco il vaſo G. H. <lb/>&amp; il ſouero, che per <lb/>la ſua leggerezza <lb/>conuien, che ſtia sù <lb/>l’acqua a gala verrà (come detto habbiamo) a chiudere la bocca del canale, e que-<lb/>ſto tante volte ſerà quante volte caueraſsi della coppa l’acqua.</s>
</p>
<div xml:id="echoid-div40" type="float" level="3" n="1">
<figure xlink:label="fig-0041-01" xlink:href="fig-0041-01a"><!-- 0041-01 -->
<variables xml:id="echoid-variables23" xml:space="preserve">F E B D C K X M L G N H</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div42" type="section" level="2" n="28">
<head xml:id="echoid-head37" style="it" xml:space="preserve">VASO NEL QV ALEGETT ATO VNA MONET A DICINQVE <lb/>dr agme n’eſcie acqua, et aſperge colui, che la moneta pone nel vaſo. Theor XXI.</head>
<figure><!-- 0041-02 -->
<variables xml:id="echoid-variables24" xml:space="preserve">Q A O N B R F S M H D C X</variables>
</figure>
<p>
  <s xml:id="echoid-s354" xml:space="preserve">Sla lo ſcondeo, cioè il vaſo da <lb/>ſacrificio, ouero teſoro A. B. <lb/>C. D. la bocca del quale Q. ſia co-<lb/>perta, e dentro vi ſia il vaſetto F. <lb/>H. nel quale ſia acqua, &amp; in eſſo <lb/>la pyxide L. fuor della quale fin, <lb/>fuori del vaſo eſca il canale L. M. <lb/>pongaſi poi nel vaſo la regola drit <lb/>ta N. X. nel fondo infiſſa: </s>
  <s xml:id="echoid-s355" xml:space="preserve">ſopra <lb/>la quale sù vn perno pongaſi l’ al-<lb/>tro regolo O. P. il quale habbia in <lb/>O. il platiſmatio, ò come diciam, <lb/>noi la pala larga R. eſia paralello <lb/>al fondo del ſpondeo, &amp; in P. ſia <lb/>vn cilindro con vn coperto, e det-<lb/>to cilindro entri nella pila L. ſi che <lb/>l’acqua non eſca per il canale L. <lb/>M. &amp; il coperchio con il cilindro <lb/>ſia tanto più graue del pla tiſma-<lb/>tio, ò palla, che ſi dica, quanto è la <lb/>grauezza d’vna moneta di cinque
<pb o="30" file="0042" n="42" rhead="DELLI SPIRITALI"/>
dragme, &amp; alquanto meno. </s>
  <s xml:id="echoid-s356" xml:space="preserve">Chequando per A. bocca del vaſo ſerà gettata eſſa <lb/>moneta caderà sù la palla R. &amp; aggrauãdola farà inclinare il regolo O.P.e con-<lb/>ſeguentemente alzeraſsi il coperchio della pila, il quale (caduta la moneta) nel <lb/>fondo caderà nella pila, e farà ſehizzar l’acqua, la quale più non vſcirà, ſe di nuo-<lb/>uo non vi ſorà gettata la moneta per A.</s>
</p>
</div>
<div xml:id="echoid-div43" type="section" level="2" n="29">
<head xml:id="echoid-head38" style="it" xml:space="preserve">POSTO IN VN VASO VARIE SORTE DIVINO <lb/>bianco, roſſo, di più ſapori, &amp; acqua fargli a noſtra voglia per vn ſolo <lb/>canale vſcire. Theorema XXII.</head>
<p>
  <s xml:id="echoid-s357" xml:space="preserve">SIa vn vaſo A.B. ſerrato, e chiuſo nel collo da lo diafragrama C.D. che anco <lb/>per l’altezza del vaſo habbia tanti diafragrami, ò tramezi quanti humori <lb/>vorrai metter in eſſo vaſo, che beniſsimo nel corpo di eſſo ſiano ſaldati, &amp; al dia-<lb/>ragtama C. D. che hora per più facile intelligenza, diremo che ſiano due, cioè <lb/>
<anchor type="figure" xlink:label="fig-0042-01a" xlink:href="fig-0042-01"/>
E.F. facciaſi anco, che il diafragrama <lb/>C. D. habbia tanti buchi quanti po-<lb/>trà capire a guiſa d’vn criuello ſpeſsi, <lb/>e piccioli, che per tutti i luochi frà li <lb/>tramezi vadino, e ſotto il diafragra-<lb/>ma ſiano li ſpiracoli G.H.K. che paſ-<lb/>ſino alle parti oue ſi han da infonde-<lb/>re gli humori, dalle quali eſcano can-<lb/>ne forate, a detti tramezi, però ſalda-<lb/>te, ſi che tutte in vn commune cana-<lb/>le R. entrino: </s>
  <s xml:id="echoid-s358" xml:space="preserve">ma a detti tramezi, pe-<lb/>rò ſaldate, sì che non meſcolino gli <lb/>humori; </s>
  <s xml:id="echoid-s359" xml:space="preserve">che ſe chiuderai li ſpiracoli <lb/>G. H. B. &amp; il canale R. e ponendo <lb/>nella bocca del vaſo, ò acqua, ò vino, <lb/>ò qual ſorte di humore ti piacerà eſ-<lb/>ſo non ſcenderà in alcun luoco; </s>
  <s xml:id="echoid-s360" xml:space="preserve">per-<lb/>che l’aria, che in eſsi è chiuſa non hà <lb/>da niffun lato vſcita: </s>
  <s xml:id="echoid-s361" xml:space="preserve">ma, ſe aprirai <lb/>vno de i detti ſpiracoli, ſubito nel luo-<lb/>co, oue ſerà aperto il reſpiro entrata <lb/>l’acqua, ò vino, che haurai di ſopra <lb/>nella bocca poſto; </s>
  <s xml:id="echoid-s362" xml:space="preserve">ma chiuſo il reſpi-<lb/>ro, &amp; aperto vn’altro ſpiracolo, indi <lb/>poſtoui vn’altra ſorte d’humore in quella parte ſcenderà ſimilmente, oue ſerà il <lb/>reſpiro aperto: </s>
  <s xml:id="echoid-s363" xml:space="preserve">onde ſerrati tutti li ſpiracoli, e li buchi del cribro, ſe ben aprirai la <lb/>bocca del canale R. non vſcirà però fuori niente ſe non li ſchiuderai vn ſpiracolo, <lb/>che entrandoui l’aria fluirà l’humore, che in eſſo luoco ſi contiene, queſto chiu-<lb/>ſo, &amp; apertone vn’altro ſimile gli auerrà, e così di tutti gli altri.</s>
</p>
<div xml:id="echoid-div43" type="float" level="3" n="1">
<figure xlink:label="fig-0042-01" xlink:href="fig-0042-01a"><!-- 0042-01 -->
<variables xml:id="echoid-variables25" xml:space="preserve">C D G E F B R</variables>
</figure>
</div>
<pb o="31" file="0043" n="43" rhead="DI HERONE."/>
</div>
<div xml:id="echoid-div45" type="section" level="2" n="30">
<head xml:id="echoid-head39" style="it" xml:space="preserve">LIDVEVASI, CHE SOPRA VNA MEDESMA BASE <lb/>colocati, vno de’quali pieno di vino, e l’altro unoto, e che quant’acqua nel <lb/>vuoto ſerà poſto tanbo vino fuori dell’altra vſoirà, ſi fabricano a questo <lb/>modo. Theorema XXIII.</head>
<p>
  <s xml:id="echoid-s364" xml:space="preserve">SIano ſopra vna baſe A. B. due vaſi C.D. &amp; E. F. che con li diafragrami G.H. <lb/>K. L. habbino le bocche chiuſe, &amp; in eſſi, e per la baſe ſia poſto il t@bo ò can-<lb/>na bucata M.N.X.O. così piegata come la figura dimoſtra, le boccbe delli quali <lb/>ſiano poco lontano dalli diafragrami, ò tramezi (che noi chiamer@ſſmo fondi) <lb/>G.H.K.O. e nel vaſo E.F. ſia la piegata canna P.S. la curuità della quale ſia alla <lb/>
<anchor type="figure" xlink:label="fig-0043-01a" xlink:href="fig-0043-01"/>
boeca del vaſo, e di eſſa la bocca P. tanto diſtante dal fondo, quanto alfluſso è <lb/>neceſsario; </s>
  <s xml:id="echoid-s365" xml:space="preserve">ma l’al@ra gamba ſporgaſi fuori del vaſo formata in vn canale fia do-<lb/>poi per il diafragrama G.H. paſsato lo infundibulo Y. di cui la bocca ſia ſalda ta <lb/>al diafragrama, e poco dal fondo, ſia diſtante. </s>
  <s xml:id="echoid-s366" xml:space="preserve">Hota riempiaſi il vaſo E. F. per al-<lb/>tun buco, come per eſsempio V. che dopò quaſi affatto pieno ſia turato; </s>
  <s xml:id="echoid-s367" xml:space="preserve">indi po-<lb/>ſto acqua nel vaſo C.D. eſsa ſpingetà l’atìa, che è in eſso, e la sforzerà paſsare:</s>
  <s xml:id="echoid-s368" xml:space="preserve">
<pb o="32" file="0044" n="44" rhead="DELLI SPIRIT ALI"/>
nel vaſo E. F. per la canna M. N.X.O. della qualeil vino, che in eſso vaſo ſerà <lb/>contenuto, ſerà ſpinto fuori, e queſto tante volte ſerà, quante volte in fonderemo <lb/>acq la nel vaſo, eſsendo manifeſto tanto eſser il corpo dell’aria, quanto è quello <lb/>dell’acq la, &amp; altro tanto il vino, e ſe non vi ſerà la piegata canna: </s>
  <s xml:id="echoid-s369" xml:space="preserve">ma ſolo il ca-<lb/>nale S. il medeſmo ſerà ſe però dalla violenza dell’acqua non ſerà vinto il canale.</s>
</p>
<div xml:id="echoid-div45" type="float" level="3" n="1">
<figure xlink:label="fig-0043-01" xlink:href="fig-0043-01a"><!-- 0043-01 -->
<variables xml:id="echoid-variables26" xml:space="preserve">H K L V S M D P A N X B</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div47" type="section" level="2" n="31">
<head xml:id="echoid-head40" style="it" xml:space="preserve">FABRIC ARVNA CANNA, CHE FLVISCA <lb/>tant’acqua, &amp; vino quanto ci parerà. Theor. XXIIII.</head>
<p>
  <s xml:id="echoid-s370" xml:space="preserve">SIa il vaſo vuoto A. B. ò di forma Cylindrica, ò pur d’vn ſolido rettangolo <lb/>paralelle pipedo, a canto del quale ſia poſto nell’iſteſſa baſe vn’altro vaſo <lb/>d’ogn’ intorno chiuſo C. D. che ſerà di forma cilindrica, ò di ſolido rettangolo <lb/>paralelle pipedo, non fà caſo, pur che di eſſo vaſo A.B. la baſe ſia dupla a quella <lb/>del vaſo C. D. volendo noi, che l’acqua ſia dupla al vino. </s>
  <s xml:id="echoid-s371" xml:space="preserve">India canto di eſſo <lb/>parimente sù la iſteſſa baſe, ſia poſto come nella figura vn’altro vaſo E.F. d’ogn’ <lb/>intorno chiuſo, e beniſſimo ſaldato, nel quale impongaſi vino. </s>
  <s xml:id="echoid-s372" xml:space="preserve">Et a queſti duo <lb/>
<anchor type="figure" xlink:label="fig-0044-01a" xlink:href="fig-0044-01"/>
vaſi C. D.E.F. ſia cõmu-<lb/>ne il tubo G. H. K. da <lb/>ogni oapo inclinato, e cõ <lb/>li diafragrami di eſsi in-<lb/>ſieme perforato, e beniſ-<lb/>ſimo ſaldato, ſia dopoi nel <lb/>vaſo E. F. la piegata can-<lb/>na L.M.N. di cui la gam-<lb/>ba interiore tanto dal <lb/>fondo del vaſo ſia diſtan-<lb/>te quanto alla effuſione <lb/>dell’acqua è neceſſario. <lb/></s>
  <s xml:id="echoid-s373" xml:space="preserve">L’alrra gãba ſia nel vaſo <lb/>piegata, come la figura dimoſtra, e paſsi in vn’altro vaſo O.X. fuori del quale di <lb/>ſotto dal fondo di eſſo, e de gli altri paſsi per la baſe ad eſsi cõmune la forata can-<lb/>na P.R. dal vaſo O.X. al vaſo A.B. põgaſi oltre di ciò il tubo S.T. nelli vaſi A.B.C <lb/>D.con eſſo bucati, &amp; habbia il vaſo A.B.di ſotto, e poco diſtãte dal fondo il cana-<lb/>letto Y.e li canaletti P. R. Y. entrino nella canna V.Z. nella quale ſia vna chiaue, <lb/>che la chiuda, e diſſerri a noſtro piacere. </s>
  <s xml:id="echoid-s374" xml:space="preserve">Tutto @iò fatto, e con la chiaue ſerrato il <lb/>canale V.Z. ſe porremo acqua nel vaſo A.B. ſe n’andrà vna parte di eſſa nel vaſo <lb/>C.D. per il tubo S.T.e conſeguentemente ſcaccierà l’aria in eſſo rinchiuſa per la <lb/>canna G.H.K. nel vaſo E. F. e queſto altro tanto vino ſpingerà nel vaſo O.X. per <lb/>il tubo L. M. N. onde a perto con la chiaue il canale V. Z. vſcirà fuori per eſſo, <lb/>e l’acqua infuſa nel vaſo A. B. &amp; il vino, che fuori del vaſo O.X. per il tubo, ò
<pb o="33" file="0045" n="45" rhead="DIHERONE."/>
canna P. R. ſerà portaro onde hauremo quanto ſi è propoſto. </s>
  <s xml:id="echoid-s375" xml:space="preserve">E di nuouo vſcito, <lb/>che ſeranno fuori di eſſi gli humori torneranſi ad empire d’aria i vaſi per li me. <lb/></s>
  <s xml:id="echoid-s376" xml:space="preserve">deſmi canali, ò condotti.</s>
</p>
<div xml:id="echoid-div47" type="float" level="3" n="1">
<figure xlink:label="fig-0044-01" xlink:href="fig-0044-01a"><!-- 0044-01 -->
<variables xml:id="echoid-variables27" xml:space="preserve">X E C N M H G T S O F L D B P R</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div49" type="section" level="2" n="32">
<head xml:id="echoid-head41" style="it" xml:space="preserve">SE SERA’ ACQVA IN VN VASO, ET IN ESSA <lb/>il canale nel quale ſia una chiaue, &amp; in dett’ acqua nuoti vn’ animale: <lb/>fare, che quant’ acqua ſi cauerà del vaſo altretanto vino dalla <lb/>bocca ſpruzzil’animale. Theorema XXV.</head>
<p>
  <s xml:id="echoid-s377" xml:space="preserve">SIa il vaſo dell’acqua A. B. nel fondo del quale ſia il ſerrato canale C. &amp; in <lb/>eſſa acqua nuoti il catino D.nel quale ſia il tubo E.F. trasformato in vn’ani-<lb/>male. </s>
  <s xml:id="echoid-s378" xml:space="preserve">Indi ſia a canto a detto vaſo poſto il vaſo G.H. pieno di vino, nel quale, <lb/>ſia la piegata canna K.L.M. vna gamba della quale ſia nel vaſo G.H. l’altra entri <lb/>nel tubo E.F. che ſe per la bocca M. tiraremo il vino ſe ne verrà nel tubo E. F. ne <lb/>ſi fermarà ſin tauto, che in vna iſteſſa linea non ſerà aguagliata la ſuperficie del <lb/>
<anchor type="figure" xlink:label="fig-0045-01a" xlink:href="fig-0045-01"/>
vino, che è nel vaſo G.H. a quella di eſſo vino nel tubo E.F. ſia dunque, che ſi <lb/>@rouino queſte in vna retta linea N. X. P. e nel tubo ſiaui il canaletto aperto R. <lb/></s>
  <s xml:id="echoid-s379" xml:space="preserve">fin quì fuori di eſſo non ſe n’ andrà il vino: </s>
  <s xml:id="echoid-s380" xml:space="preserve">ma ſe per il canale C. caueremo vna <lb/>tazza d’acqua ſcenderà il catino D. e con eſſo il tubo E. F. ſi che la ſuperficie N. <lb/>X. verrà più baſſa della ſuperficie del vino; </s>
  <s xml:id="echoid-s381" xml:space="preserve">onde facendoſi più baſſa la gamba, <lb/>della piegata canna, che è nel tubo E.F. vſcirà il vino ſuori per il canale R. e ciò <lb/>tanto, e tante volte auerrà quant’ acqua, e quante volte ſe ne cauerà per il canale <lb/>G. conuenendo, che tanto vino ſpruzzi lo animale, quant’acqua ſi cauerà, onde <lb/>haueraſſi quante di ſopra ſi è propoſto.</s>
</p>
<div xml:id="echoid-div49" type="float" level="3" n="1">
<figure xlink:label="fig-0045-01" xlink:href="fig-0045-01a"><!-- 0045-01 -->
<variables xml:id="echoid-variables28" xml:space="preserve">L P R F X G N A D K C</variables>
</figure>
</div>
<pb o="34" file="0046" n="46" rhead="DELLI SPIRIT ALI"/>
</div>
<div xml:id="echoid-div51" type="section" level="2" n="33">
<head xml:id="echoid-head42" style="it" xml:space="preserve">MA SE CI PIACESSEVEDERE VSCIRTANTO <lb/>vine, quanto acqua in vn vaſo ſi porràcosì. Theor. XXVI.</head>
<p>
  <s xml:id="echoid-s382" xml:space="preserve">DI nuouo ſia il vaſo pieno d’acqua A. B. &amp; il vaſo pien di vino G. H. </s>
  <s xml:id="echoid-s383" xml:space="preserve">Ma il <lb/>tubo E. E. ſia fuori del vaſo A. B. &amp; in eſſo A. B. nuoti la ſphera D. dalla <lb/>quale deriui la ſune, che paſſi per le due girelle S.T. &amp; al tubo E.E. ſia allegata, <lb/>sì che reſti ſoſpeſa. </s>
  <s xml:id="echoid-s384" xml:space="preserve">Nel reſto ſtia ogni coſa cõ le ragioni dette di ſopra, che ſe in-<lb/>fonderemo acqua nel vaſo A.B.la ſphera, ò palla ſi verrà ad alzare, e conſeguen-<lb/>emẽte ad abbaſſare il tubo E.E. fuor del quale abbaſsãdoſi per eſſo fluirà il vino.</s>
</p>
<figure><!-- 0046-01 -->
<variables xml:id="echoid-variables29" xml:space="preserve">B T A G N L E O X H S P R</variables>
</figure>
<p>
  <s xml:id="echoid-s385" xml:space="preserve">In questo altro modo ancora ſi può fare l’iſteſſo: </s>
  <s xml:id="echoid-s386" xml:space="preserve">ſia la fune da cui èſoſpeſa la <lb/>ſphera D.che per la troclea S.paſſi, e ſi riferiſca nell’altra troclea T.e per queſta <lb/>paſſando ſia con eſſa legata alla piegata canna, che ci anerrà, che alzandoſi la <lb/>ſphera D. verrà la canna piegata dalla fune ſoſpeſa ad abbaſſarſi, &amp; abbaſſandoſi <lb/>conſeguentemente a ſpargere tanto vino quanto acqua ſi porrà nel vaſo, nel <lb/>quale la palla nuotarà a galla.</s>
</p>
</div>
<div xml:id="echoid-div52" type="section" level="2" n="34">
<head xml:id="echoid-head43" style="it" xml:space="preserve">MODO CON CHE SI ESPRIME L’ACQVA <lb/>negl’ Incendy. Theorema XXVII.</head>
<p>
  <s xml:id="echoid-s387" xml:space="preserve">SIano due Modioli di legno, ò di bronzo come più tornarà commodo voti di <lb/>dentro, e con il torno eccellentiſſimamente lauorati, sì che giuſtiſſimamen-<lb/>te vi entrino li due emboli, ò cilindri a queſto effetto con eccellenza lauorati
<pb o="35" file="0047" n="47" rhead="DI HERONE."/>
vguali in ogni ſua parte, che ſono K.L.E facciaſi, che di queſti la ſuperficie di fuo <lb/>ti vada per li modioli eſſattiſſimamente toccando la loto ſuperficie di dentro. </s>
  <s xml:id="echoid-s388" xml:space="preserve">Li <lb/>modioli ſiano A.B.C.D.e gli emboli, ò cilindri com’hò detto li K.L.dopoi ſiano <lb/>forati li due modioli l’vno ſcontro l’altro, &amp; in eſſi buchi ſia infiſſo il tubo X. O. <lb/></s>
  <s xml:id="echoid-s389" xml:space="preserve">
<anchor type="figure" xlink:label="fig-0047-01a" xlink:href="fig-0047-01"/>
il quale habbia gli <lb/>aſſarij, ouero car-<lb/>telle oppoſte P.R. <lb/>come nel Theor. <lb/>X. ſi diſſe di ſo-<lb/>pra, li quali s’apra <lb/>no nella parte <lb/>eſteriore delli mo-<lb/>dioli, &amp; habbino <lb/>nel fondo li fora-<lb/>mi rotondi S. T. <lb/>con a ſſati ottura-<lb/>ti, che ne li modioli s’aprino que <lb/>ſti di forma ſerã-<lb/>no come due <emph style="it">n n</emph> <lb/>che a guiſa di fi-<lb/>bre, ſiano confic-<lb/>cati bene: </s>
  <s xml:id="echoid-s390" xml:space="preserve">acciò <lb/>gli aſſiculi fuori <lb/>non poſſano vſcire, nè cauarſi a modo niſſuno; </s>
  <s xml:id="echoid-s391" xml:space="preserve">ma gli emboli, ò cilindri, che per <lb/>li modioli entrano habbiano li regoli, ò verghe di ferro, ò di legno Z. le quali <lb/>ſiano con fibbie ad vn’altro tegolo nerboſo A.A.AA.con vn perno attaccati, co-<lb/>me ſi vede dal 7. e queſto ſia in bilico poſto come;</s>
  <s xml:id="echoid-s392" xml:space="preserve">. ma poſſa mouerſi aggiata-<lb/>mente nell’alzarlo, &amp; abbbſſarlo. </s>
  <s xml:id="echoid-s393" xml:space="preserve">Dopoi ſia forato il tubo X.O. nel mezzo in 4. <lb/>&amp; in eſſo impoſtoui vn’altro tubo con eſſo perforato 5 &amp; ad eſſo ſia aſſaldato <lb/>vn’altro tubo dentro del quale ſia poſto l’ altro tubo 6. &amp; accommodato, come <lb/>dimoſtra la figura, che è lo iſteſſo, che è quello, che nel IX. </s>
  <s xml:id="echoid-s394" xml:space="preserve">Theorema della <lb/>sfera concaua, che l’acqua verſa in alto ſi diſſe: </s>
  <s xml:id="echoid-s395" xml:space="preserve">dopoi ſia ſcambieuolmente alza-<lb/>to hor l’vno, hor l’altro capo del regolo AA. AA. che li regoli alzaranno li cilin-<lb/>dri per li modioli li quali in vece di fiato tireranno l’ acqua, e nel deprimeli la <lb/>sforzaranno ad entrare nelli tubi, e con lo aiuto de gli aſſatij queſta non più po-<lb/>tendo in dietro ritornare ma cacciata dalla violente forza de i cilindri, ò emboli <lb/>ſe n’vſcirà per il buco BB. e la eſpreſſione faraſſi, e quà, e là, doue il biſogno ri-<lb/>cercherà, ſe la parteſuperiore ſerà accommodata, come ſi diſſe nel IX. </s>
  <s xml:id="echoid-s396" xml:space="preserve">Theore-<lb/>ma di ſopra deſcritta.</s>
</p>
<div xml:id="echoid-div52" type="float" level="3" n="1">
<figure xlink:label="fig-0047-01" xlink:href="fig-0047-01a"><!-- 0047-01 -->
<variables xml:id="echoid-variables30" xml:space="preserve">G H M F X P F B B</variables>
</figure>
</div>
<pb o="36" file="0048" n="48" rhead="DELLI SPIRITALI"/>
</div>
<div xml:id="echoid-div54" type="section" level="2" n="35">
<head xml:id="echoid-head44" style="it" xml:space="preserve">NE GLI LVOGHI, OVE S’HAVRA ACQVA <lb/>corrente per canale fabricare vn’ Animale, ò di Rame, ò di qual altra <lb/>materia ſi voglia, che continuamente gridi: ma portoui vn catino <lb/>d’ acqua eſſo la bea ſenza strepito, e beuutala torni di nuouo <lb/>a gridare. Theorema XXVIII.</head>
<p>
  <s xml:id="echoid-s397" xml:space="preserve">SIa il vaſo A.B. nel quale cada il fluſſo dell’acqua per il canaletto C. &amp; in eſſo <lb/>ſia la piegata canna D.E.F. ?</s>
  <s xml:id="echoid-s398" xml:space="preserve">uero vn diabete ſpiritale, del quale la gamba <lb/>longa auanzi di ſotto il fondo del vaſo:</s>
  <s xml:id="echoid-s399" xml:space="preserve">ſotto di eſſo ſia poſta la baſe d’ogn’intor-<lb/>no turata eccellentemente G.H. la quale anco eſſa habbia nel corpo, ò diabcte <lb/>
<anchor type="figure" xlink:label="fig-0048-01a" xlink:href="fig-0048-01"/>
ſpiritale, ò infleſ <lb/>ſa ſiffone M.N. <lb/></s>
  <s xml:id="echoid-s400" xml:space="preserve">X. &amp; alla canna <lb/>D.E.F. ſia ſotto-<lb/>poſto lo infun-<lb/>dibulo O. P. di <lb/>cui il fondo co-<lb/>me in punta ri-<lb/>dotto entri nel-<lb/>la baſe G.H. ma <lb/>ſtia però la pun <lb/>ta di eſſo tanto <lb/>diſtante dal fon-<lb/>do quanto per il <lb/>ſtuſſo dell’acqua <lb/>parrà ſia a ſuffi-<lb/>ciẽza, e sù la ba-<lb/>ſe ſia l’animale <lb/>R. nel corpo del <lb/>quale paſſi vna <lb/>canna, ò per vn <lb/>piede, ò per qual <lb/>che altra parte <lb/>di eſſo coperta <lb/>in modo, che <lb/>non ſe ne aueg-<lb/>ga alcuno, e paſ-<lb/>ſi nella baſe <lb/>ocultamente, queſta ſia R.T. che quandoil vaſo A.B. ſerà pieno d’acqua queſta <lb/>per la piegata canna D.E.F. caderà ne lo infundibulo O.P. e riempiraſſi la baſe <lb/>G. H. &amp; votaraſſi il vaſo A.B. e mentre l’acqua cadente da lo infundibulo O.P. <lb/>empira la baſe G.H.e l’aria, che è in eſſo ſe n’vſcirà per la bocca R.ma ripiena la <lb/>baſe per il ſoprafluente humore queſta voteraſsi per la piegata canna M. N. X.
<pb o="37" file="0049" n="49" rhead="DIHERONE."/>
ementre ch’ella ſi vuoterà l’aria di nuouo entrarà per la bocca R. riempiendo <lb/>quelluogo, che l’acqua andrà cedendogli; </s>
  <s xml:id="echoid-s401" xml:space="preserve">onde accaderà, che ſe porgeremo alla <lb/>bocca dell’ animale R. vna tazza di acqua piena eſſo l’ aſſorbirà; </s>
  <s xml:id="echoid-s402" xml:space="preserve">perche come di <lb/>ſopra ſi diſſe, non ſi concede luoco vacuo nelle coſe di natura, tal che l’ acqua <lb/>verrà dalla violenza dell’ aria tirata nella baſe per la bocca R. fin che del tutto <lb/>ſerà eſinanita la baſe. </s>
  <s xml:id="echoid-s403" xml:space="preserve">Onde ſe di nuouo s’andrà riempiendo d’acqua il vaſo A.B. <lb/></s>
  <s xml:id="echoid-s404" xml:space="preserve">ſeguirà di nuouo anzi continuamente ciò, che di ſopra ſi è detto. </s>
  <s xml:id="echoid-s405" xml:space="preserve">Ma perche <lb/>a tempo (mentre ſi vota la baſe) porghiamo la tazza all’animale, ſacciaſi in mo-<lb/>do, che per la effuſione delle canne M.N.X. l’acqua cadendo ſopra qualche coſa, <lb/>che ſi moua intendiamo quando è tempo di porgergliela.</s>
</p>
<div xml:id="echoid-div54" type="float" level="3" n="1">
<figure xlink:label="fig-0048-01" xlink:href="fig-0048-01a"><!-- 0048-01 -->
<variables xml:id="echoid-variables31" xml:space="preserve">A E D F O P B N M T R C H</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div56" type="section" level="2" n="36">
<head xml:id="echoid-head45" style="it" xml:space="preserve">COME IN ALTRO MODO VOLGENDO VNA CHIAVE <lb/>per opera dell' effuſione di vn’acqua ſi faccia a voglia nostrabere lo <lb/>iſteſſo Animale. Theorema XXIX.</head>
<p>
  <s xml:id="echoid-s406" xml:space="preserve">DI nuouo ſia la baſe d’ogn’intorno chiuſa A.B.C.D. la quale a mezzo hab-<lb/>bia vn ſondo, ò diafragrama, come lo chiamano i Latini, e sù la ſuperficie <lb/>ſuperiore della baſe poſi l’animale, a cui per vna gamba, ò per qual ſi voglia altra <lb/>parte di eſſo più occultamente, che è poſsibile paſsi la canna dalla parte inferio-<lb/>re della baſe alla bocca di eſſo animale E.F.G. &amp; eſſa parte inferiore della baſe <lb/>
<anchor type="figure" xlink:label="fig-0049-01a" xlink:href="fig-0049-01"/>
habbia lo ſpiritale diabete, ò pie-<lb/>gata canna H.K.L. vna gamba <lb/>della quale di ſotto dal fondo di <lb/>eſſa baſe auanzi alquanto; </s>
  <s xml:id="echoid-s407" xml:space="preserve">e nella <lb/>parte ſuperiore di eſſa ſia lo infun <lb/>dibulo M.N. lo acuto fondo del <lb/>quale paſsi nella parte inferiore <lb/>alquanto dal fondo diſtante, e ſo-<lb/>pra la ſuperficie della baſe A. B. <lb/></s>
  <s xml:id="echoid-s408" xml:space="preserve">C. D. pongaſi vn’altra baſe X. O. <lb/>nella quale ſia ficata la chiaue R. <lb/>T. la gamba della quale paſſando <lb/>per P. nella parte ſuperiore della <lb/>baſe habbia vn’ occhio nel quale <lb/>ſia infiſſo il tubo T.V. che nella <lb/>eſtremità, habbia vna tazzetta R.V. ad eſſo attaccata, e con eſſo bucata, &amp; il tu-<lb/>bo ſia tanto lungo, che voltata la chiaue la tazzetta R. V. venga a porſi ſopra <lb/>perpendicolarmente allo infundibulo M.N. ma alquanto ſopra di eſſo: </s>
  <s xml:id="echoid-s409" xml:space="preserve">e ſopra <lb/>le baſe ſia il catino Q. Z. poſto giuſtamente al dritto dell’infundibulo M.N.e ſia <lb/>con la baſe forato, &amp; in eſſo catino cada la infuſione dell’acqua, la quale ſia mag-<lb/>giore della effuſione, che faraſsi per la canna piegata H.K.L.che l’acqua predet-<lb/>ta paſſerà per lo infundibulo M. N. nella parte inferiore della baſe A. B. C. D. <lb/>ſcacciandone l’aria, che in eſſa ſi contiene per la canna E. F. G. e la baſe ſempre
<pb o="38" file="0050" n="50" rhead="DELLI SPIRIT ALI"/>
ſerà d’acqua ripiena; </s>
  <s xml:id="echoid-s410" xml:space="preserve">perche la infuſione ſerà maggiore della effuſione; </s>
  <s xml:id="echoid-s411" xml:space="preserve">E quao-<lb/>do volgeremo la chiaue la tazzetta R. V. verrà a porſi ſopra lo infondibulo M. <lb/></s>
  <s xml:id="echoid-s412" xml:space="preserve">N.e riceuerà l’acqua della infuſione nel catino, la quale per il tubo T. Y. paſſarà <lb/>in altro luoco, nè potrà nella parte inferiore della baſe paſſare per l’ altezza, <lb/>e dello infondibulo M.N. &amp; in tanto per la infleſſa ſiffone H. K. L. votaraſsi la <lb/>parte inferiore della baſe, e per il tubo E. F. G. di nuouo v’intrarà l’aria; </s>
  <s xml:id="echoid-s413" xml:space="preserve">onde <lb/>porgendoſi vn vaſo alla bocca dell’ animale eſſc berà di nuouo.</s>
</p>
<div xml:id="echoid-div56" type="float" level="3" n="1">
<figure xlink:label="fig-0049-01" xlink:href="fig-0049-01a"><!-- 0049-01 -->
<variables xml:id="echoid-variables32" xml:space="preserve">A B M V R P S H K G D</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div58" type="section" level="2" n="37">
<head xml:id="echoid-head46" style="it" xml:space="preserve">COME SENZA FLVSSO D’ACQVA O VOLGER CHIAVE <lb/>ſi faccia bere il ſopradetto Animale. Theorema XXX.</head>
<p>
  <s xml:id="echoid-s414" xml:space="preserve">SIa che habbiamo vna baſe A.B.C.D. e la bocca dell’animale ſia in E. per il <lb/>petto del quale, e per vno dei piedi, ouero per la coda ſia poſto la canna fo-<lb/>rata E. H. G. con l’vn capo infiſſa nella parte interiore della baſe, queſta ſia im-<lb/>mobile ſermata nella baſe, &amp; il tubo, ò canna E.H.G. che come hò detto paſſarà <lb/>
<anchor type="figure" xlink:label="fig-0050-01a" xlink:href="fig-0050-01"/>
per lo animale con vn piccio-<lb/>lo, &amp; a pena apparente buco <lb/>ſia forato in H. che auerrà. <lb/></s>
  <s xml:id="echoid-s415" xml:space="preserve">che ſe altri per via di qualche <lb/>tubo per di ſopra l’ eſtremità <lb/>del quale ſia nel buco oue H. <lb/>riempirà eſſo tubo E.H.G. eſ-<lb/>ſo reſterà pieno; </s>
  <s xml:id="echoid-s416" xml:space="preserve">perche le boc <lb/>che di eſſo E. G. ſono in perfet <lb/>to piano, &amp; H. e giuſtiſsim-<lb/>amente bucato nel mezzo, on-<lb/>deſe rimoſſa di H. la tazza in-<lb/>clinaremo più l’vn capo della piegata canna, che l’altro, che ſia diciamo G. ſerà. <lb/></s>
  <s xml:id="echoid-s417" xml:space="preserve">che diuentando maggiore la parte della canna G. che anche per queſto haurà <lb/>forza diattrahere l’acqua, cheſerà portata nella baſe A.B.C.D.E per queſta ra-<lb/>gione non occorrerà, che la baſe ſia d’ ogni intorno chiuſa.</s>
</p>
<div xml:id="echoid-div58" type="float" level="3" n="1">
<figure xlink:label="fig-0050-01" xlink:href="fig-0050-01a"><!-- 0050-01 -->
<variables xml:id="echoid-variables33" xml:space="preserve">A B</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div60" type="section" level="2" n="38">
<head xml:id="echoid-head47" style="it" xml:space="preserve">ALLE PORTE DE I S ACRI TEMPII DE GLI EGIT II <lb/>ſi fanno volgibil ruote, che dagli entr antinel Tempio ſono voltate, e dopo le <lb/>porte ſono vaſi, che nel volger di eſſe ruote ſpruzzano acqua, &amp; aſper-<lb/>gono gli entranti, &amp; in queſto modo ſi fabricano. Theor. XXXI.</head>
<p>
  <s xml:id="echoid-s418" xml:space="preserve">SIa il vaſo dopo la porta naſcoſto A. B. C. D. </s>
  <s xml:id="echoid-s419" xml:space="preserve">Bucato nel for do con il forame <lb/>E.e ſorto il fondo adattiſi la canna F.G.H.K. che habbia anch’ella vn fora-<lb/>me ſotto l’E. e dentro di eſſa ſia vn’ altra canna M. ſerrata: </s>
  <s xml:id="echoid-s420" xml:space="preserve">ma vuota di dentro
<pb o="39" file="0051" n="51" rhead="DIHERONE."/>
come l’altra, anco eſſer debbe queſta, &amp; anco ella habbia vn buco al dritto del E. <lb/></s>
  <s xml:id="echoid-s421" xml:space="preserve">e frà le due dette canne vn’altra ſe ne accommodi N. O. R. ma in maniera, che <lb/>
<anchor type="figure" xlink:label="fig-0051-01a" xlink:href="fig-0051-01"/>
détro di eſſa vna, e fuo-<lb/>ri vn’altra ſia con eccel-<lb/>le nza ad eſſa aglutinate <lb/>quãto è poſsibile, e que-<lb/>ſſa habbia ella ancora <lb/>ſotto la regione del E. il <lb/>buco S. che ſtando, che <lb/>il vaſo A. B. C. D. fia <lb/>pieno di ac qua ſempre, <lb/>che li buchi E. P. S. ſi ri-<lb/>ſponderanno l’ acqoa <lb/>per la canna L. M. ſe <lb/>n’ vſcirà: </s>
  <s xml:id="echoid-s422" xml:space="preserve">ma ſe tanto <lb/>volgeraſsi la canna N. <lb/></s>
  <s xml:id="echoid-s423" xml:space="preserve">O. R. che il pertugio S. <lb/>nõ più ſtia ſotto il buco <lb/>E.nõ ſpruzzarà l’acqua, <lb/>ma facciaſi la canna N. <lb/>O. R. congionta alla ruota, che nel ſpeſſo volgerla l’acqua ſempre fuori ſpruzza-<lb/>rà, ò molta, ò poca come ad altri piacerà, e come s’intende.</s>
</p>
<div xml:id="echoid-div60" type="float" level="3" n="1">
<figure xlink:label="fig-0051-01" xlink:href="fig-0051-01a"><!-- 0051-01 -->
<variables xml:id="echoid-variables34" xml:space="preserve">A D B E C N O N G A S F K R</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div62" type="section" level="2" n="39">
<head xml:id="echoid-head48" style="it" xml:space="preserve">PER LA BOCCA DI VN VASO SI PVO’ IN ESSO PORRE <lb/>più ſorte di vino, e per vn’ iſteſſo canale cauarne ciaſcun di loro a com-<lb/>piacenza di chieleger à qual ſi voglia, anzi che ſe molti molte ſorte di <lb/>vino vi porranno potrà ciaſcuno hauere il ſuo proprio, e ſpeciat-<lb/>mente tanto quanto di ciaſcuno vi ſerà dentro poſto. <lb/>T heorema XXX II.</head>
<p>
  <s xml:id="echoid-s424" xml:space="preserve">IL vaſo ſerrato ſia A. B. C. D. che intermezzato habbia il collo con il dia-<lb/>ſra grama E F. e ſia anco cõ intermezzi diuiſo il vaſo in tãte parti quanti ſe-<lb/>rãno geneti del vino, che di porui dentro ſerà neceſſario, e per eſſempio, ſiano i dia-<lb/>fragrami, ò intramezzi C.D.G.H. acciò che tre luoghi ſiano l’vno dall’altro ſeparati. <lb/></s>
  <s xml:id="echoid-s425" xml:space="preserve">Ne’ quali ſi poſſa porre il vino: </s>
  <s xml:id="echoid-s426" xml:space="preserve">ma ſia bucato il dia fragrama E. F.al dritro <lb/>di ciaſcuna parte delli vaſi, ò luoghi diſtinti da i diafragrami C. D. G. H. con <lb/>fpeſſi, e minuti buchi è facciaſi di più li tre forami O. P. R. dalli quali ſorgano <lb/>i tubi P.S.O.T.R.V. nel collo con eſſi perforati, e d’intorno a ciaſcun tubo ſiano <lb/>nel diafragrama E.F. buchi minuti a foggia di cribro, ò criuello per li quali en-<lb/>tri l’ acqua, ò vino, ne’ ſuoi propri luoghi: </s>
  <s xml:id="echoid-s427" xml:space="preserve">e quando riempir gli vorremo di qua-<lb/>lunque vino chiuderemo con le dita li ſpiracoli S.T.V. e poi poſto il vino nel col-<lb/>lo del vaſo; </s>
  <s xml:id="echoid-s428" xml:space="preserve">che perche l’aria contenuta da i luoghi detti non haurà egreſſo non <lb/>calerà il vino in niſlun luogo, fin tanto, che non ſchiuderemo i ſopradetti ſpira-
<pb o="40" file="0052" n="52" rhead="DELLI SPIRITALI"/>
coli S. T. V. vno de quali rimeſſo per il buco ſopradetto ſe ne vſcirà l’ aria, che è <lb/>nelluogo fra li diafragrami, oue è il tubo, &amp; v’ intrarà il vino per li buchi, e di <lb/>nuouo chiuſo lo aperto ſpiracolo, &amp; apertone vn’ altro, vn’altra ſorte di vino <lb/>infonderemo in eſlo, &amp; il ſimile s’ intende de gli altri ſiano quante ſorti ſi <lb/>vogliano di vino, che di tante eſſer denno quanti ſono i luoghi nel vaſo, fuori del <lb/>quale ſeparatamente. </s>
  <s xml:id="echoid-s429" xml:space="preserve">Caueremo ciaſcuno di eſſi per vn medeſmo canale in <lb/>queſto modo.</s>
</p>
<p>
  <s xml:id="echoid-s430" xml:space="preserve">Sia nel fondo del vaſo A.B. per ciaſchedun ſpatio, oue ſonoi vini, vn tubo, co-<lb/>me dello ſpatio M. eſca ne il tubo Q. dello ſpatio N. il tubo Z. e dell’ altro ſpatio <lb/>X. ſia il tubo I. </s>
  <s xml:id="echoid-s431" xml:space="preserve">Dopoi ſia l’altro tubo I.K. dentro dal tubo Y. V. impoſto cõ dili-<lb/>gẽza eſtrema, ſi che l’ vno nell’ altro, e l’altro intorno all’vno ſtiano adattati be-<lb/>niſſimo, &amp; il tubo K. dẽtro dal tubo Y. V. ſia impoſto, e tirato nella parte interio-<lb/>re Y. ma habbia i forami al dritto delli buchi dei tubi Q. Z. I. &amp; in modo, che riuol <lb/>tato il tubo K. li buchi di eſſo da ciaſcuno delli ſuperiori, pigli il vino, che in ciaſcũ <lb/>di eſſi ſi troua, e per la bocca eſteriore del tubo I. K. eſca, ma ſiaui congionta la <lb/>verga di ferro 3.4. che paſſi per il tubo K. &amp; al capo della verga ſia di piombo at-<lb/>taccato il peſo 6. dall’ altro capo ſiaui vna fibbia di ferro, dalla quale penda la <lb/>
<anchor type="figure" xlink:label="fig-0052-01a" xlink:href="fig-0052-01"/>
tazzetta vuota la patte concaua del-<lb/>la quale guardi del vaſo alla parte ſu-<lb/>periore; </s>
  <s xml:id="echoid-s432" xml:space="preserve">ma la tazzetta habbia nel ſuo <lb/>concauo tre luoghi diuerſi, vno in, <lb/>fondo vno a mezzo l’ altro di ſopra, <lb/>ſiano dopoi ſatte tãte palle di piom <lb/>bo vna maggior dell’altra quanti ſerã <lb/>no i luo ghi delle varie ſorti di vino, <lb/>che capiſcono nel vaſo, che quì ſi no-<lb/>tano ſolo tre M. N. X. per eſſempio, <lb/>che auerrà ponendo la minor palla, <lb/>nella tazzetta, che per eſſer graue per <lb/>ſua natura tenderà al baſſo volgendo <lb/>il tubo I. K. fin che il tubo di eſſo ſia <lb/>nella regione ſotto la bocca del tubo <lb/>Q. che all’ hora n’ vſcirà il vino, che <lb/>nella parte oue eſſo buco riſponda ſi <lb/>treuarà, ſe non ſerà detta palla leua ta. </s>
  <s xml:id="echoid-s433" xml:space="preserve">Il che, ſe ſerà ſub’ intrato il peſo 6. ritornã-<lb/>do a baſso volgerà il tubo chiudẽdo il pertugio: </s>
  <s xml:id="echoid-s434" xml:space="preserve">onde più non vſcirà il vino ſe pe-<lb/>rò non ſerà tutto vſcito fuori, e ſe di nuouo vna palla più graue della già leuata <lb/>nella tazzetta porremo più a baſſo per il ſuo peſo calãdo apriraſſi vn’ altro buco <lb/>ſche giuſtamente nel farli ſi denno terminare) e d’vn’altro luogo n’vſcirà il vino, <lb/>che ſe quello vſcì per la parte Q. queſto vſcirà Z. per. &amp; di nuouo leuata la palla <lb/>ritornerà al ſuo luogo, e chiudera ſſi il buco: </s>
  <s xml:id="echoid-s435" xml:space="preserve">onde più nõ vſcirà il vino, ſe poi an-<lb/>co di nuouo porremo nella tazza la terza palla più graue dell’ altre, non è dub-
<pb o="41" file="0053" n="53" rhead="DIHERONE."/>
bio, che calando a baſſo aprirà il buco della region X. &amp; il vino di eſſa parte <lb/>vſcirà fnori. </s>
  <s xml:id="echoid-s436" xml:space="preserve">Onde ſi vede, che ſi come la minor palla poſta nella tazza sſorza il <lb/>peſo E. che altro non è che volgere il tubo I.K. così anco far denno l’altre.</s>
</p>
<div xml:id="echoid-div62" type="float" level="3" n="1">
<figure xlink:label="fig-0052-01" xlink:href="fig-0052-01a"><!-- 0052-01 -->
<variables xml:id="echoid-variables35" xml:space="preserve">V S T A F E R C P G O M N X D H B Y E Y</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div64" type="section" level="2" n="40">
<head xml:id="echoid-head49" style="it" xml:space="preserve">FABRICA REVNA LVCERNA, <lb/>Che per ſe ſteſſa ſi conſumi. Theorema XXXIII.</head>
<p>
  <s xml:id="echoid-s437" xml:space="preserve">SIa la Lucerna A. B. C. </s>
  <s xml:id="echoid-s438" xml:space="preserve">Nella bocca della quale ſia la fibbia di ferro D. E. che <lb/>in punto E. ſi moua liberamente, e ſopra detta fibbia, ò intorno ſiaui circon-<lb/>uoluto lo ſtoppino; </s>
  <s xml:id="echoid-s439" xml:space="preserve">ma in modo, che facilmente poſſa ſcorrere: </s>
  <s xml:id="echoid-s440" xml:space="preserve">facciaſi dopoi che <lb/>
<anchor type="figure" xlink:label="fig-0053-01a" xlink:href="fig-0053-01"/>
il ruletto dentato F. <lb/></s>
  <s xml:id="echoid-s441" xml:space="preserve">ſi moua eſpedita-<lb/>mente intorno il ſuo <lb/>aſſiculo, e li denti-<lb/>culi di eſſo conten-<lb/>gano i denti della <lb/>fibbia; </s>
  <s xml:id="echoid-s442" xml:space="preserve">ma in modo <lb/>che volgendoſi eſſo <lb/>lo ſtoppino per i dẽti <lb/>della fibbia ſia <lb/>ſpinto inanti; </s>
  <s xml:id="echoid-s443" xml:space="preserve">ma la <lb/>Lucerna conuien, <lb/>che habbia commo <lb/>damente grande il <lb/>ſuo corpo. </s>
  <s xml:id="echoid-s444" xml:space="preserve">Et infu-<lb/>ſoui oglio in eſſa <lb/>nuoti il catino G. <lb/>nel quale ſia infiſſo <lb/>il regolo H. dentato, <lb/>anco lui, ma in modo, che i denti di eſſo ſiano in quel del ruletto implicati. </s>
  <s xml:id="echoid-s445" xml:space="preserve">Che <lb/>conſumandoſi l’ oglio calerà a baſſo il catino il quale calando con li ſuoi denti <lb/>volgerà il ruletto F. &amp; in queſto modo faraſſi lo ſtoppino inanti per ſe ſteſſo.</s>
</p>
<div xml:id="echoid-div64" type="float" level="3" n="1">
<figure xlink:label="fig-0053-01" xlink:href="fig-0053-01a"><!-- 0053-01 -->
<variables xml:id="echoid-variables36" xml:space="preserve">H D F A C E G B D</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div66" type="section" level="2" n="41">
<head xml:id="echoid-head50" style="it" xml:space="preserve">SE IN VN VASO, CHE HABBIA VN CANALE APERTO <lb/>preſſo il fondo porremo acqua, far a veglia noſtra vſcire per eſſo canale acqua <lb/>nel principio, alle volιe nel mezo, &amp; alle volte quando ſerà ripieno tutto <lb/>il vaſo; ouero che in generale, ſubito ripieno il vaſo l’ acqua <lb/>ſe ne vſeirà. Theorema XXXIV.</head>
<p>
  <s xml:id="echoid-s446" xml:space="preserve">HAbbia il vaſo A. B. il collo intermezzato da vno diafragrama per il quale <lb/>fia poſto vn tubo ad eſſo ſaldato diligentemente in modo, che non vi en-
<pb o="42" file="0054" n="54" rhead="DELLI SPIRITALI"/>
tri aria, &amp; eſſo tubo ſia C.D. che tanto ſia dal fondo diſtante quanto per il fluſſo <lb/>dell’acqua ci parerà, che baſti, &amp; in eſſo vaſo ſia la infleſſa ſiffone E.F.G. la gam-<lb/>ba interiore della quale dal fondo di eſſo vaſo ſia diſtante quanto baſterà per il <lb/>fluſſo dell’ acqua, l’altra gamba fuor di eſſo vaſo auanzi, &amp; in vn canale ſia (co-<lb/>
<anchor type="figure" xlink:label="fig-0054-01a" xlink:href="fig-0054-01"/>
me dalla figura ſi può comprende-<lb/>re) ridotta, che fuori porga; </s>
  <s xml:id="echoid-s447" xml:space="preserve">ma la <lb/>curuità della ſiffone ſia preſſo il <lb/>collo del vaſo, &amp; eſſo vaſo habbia <lb/>lo ſpiracolo H. preſſo il diafragra-<lb/>ma; </s>
  <s xml:id="echoid-s448" xml:space="preserve">ma che nel vaſo riſponda, che <lb/>ſe in principio vorremo, che corra <lb/>il canale chiuderemo lo ſpiracolo <lb/>H. cõ vn dito; </s>
  <s xml:id="echoid-s449" xml:space="preserve">perche, non hauendo <lb/>l’aria rinchiuſo nel vaſo eſito alcu-<lb/>no, proromperà, e sforzerà per la <lb/>piegata canna vſcirne l’humore, &amp; <lb/>non chiudendo lo ſpiracolo l’acqua <lb/>ſcẽderà nel corpo del vaſo ne ſpar-<lb/>gerà il canale fin tãto, che di nuouo <lb/>non ſia chiuſo lo ſpiracolo; </s>
  <s xml:id="echoid-s450" xml:space="preserve">mari-<lb/>pieno il vaſo, e rimeſſo eſſo ſpiraco-<lb/>lo per le ragioni in altro luogo alle-<lb/>gate tutto l’ humore ſene vſcirà.</s>
</p>
<div xml:id="echoid-div66" type="float" level="3" n="1">
<figure xlink:label="fig-0054-01" xlink:href="fig-0054-01a"><!-- 0054-01 -->
<variables xml:id="echoid-variables37" xml:space="preserve">A C H G E D B</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div68" type="section" level="2" n="42">
<head xml:id="echoid-head51" style="it" xml:space="preserve">FABRIC ARE VN VASO NEL QVALE <lb/>infondendo humore lo riceuerà, non infondendoui più acqua, <lb/>più non riceuerà. Theorema XXXV.</head>
<p>
  <s xml:id="echoid-s451" xml:space="preserve">SIa il collo del vaſo A.B. chiuſo con il diafragrama C.D. per quale paſſi il tu-<lb/>bo E.F. l’vn capo del quale ſia dal fondo di eſſo vaſo poco diſtante, dall’altro <lb/>capo ſopra il tramezzo, ò diaſragrama ſia eſſo tubo, quaſi in pari del labro del <lb/>vaſo intorno a queſto ſiaui circompoſto l’altro tubo G.H. tanto del tubo primo, <lb/>e dal diaſragrama diſtante quanto per il fluſſo dell’acqua può baſtare, come nel-<lb/>la ſeconda di queſto ſi diſſe, e la parte di eſſo tubo G.H. ſia con vna ſquama tura-<lb/>to, &amp; il vaſo habbia lo ſpiracolo K. che nel ſuo corpo riſponda, che quando nel <lb/>collo infonderemo acqua auerrà, che ella calerà nel corpo del vaſo per il tubo G. <lb/></s>
  <s xml:id="echoid-s452" xml:space="preserve">H.e per E.F. vſcendone l’aria, che dentro vi ſerà per lo ſpiracolo K.il quale chiu-<lb/>ſo ſe ſi fermaremo d’ infondere acqua, e che ſia vuoto il collo del vaſo, l’ aria <lb/>abrumperà la ſua continuita per ritornare nella natural ſottilità ſua: </s>
  <s xml:id="echoid-s453" xml:space="preserve">per il che
<pb o="43" file="0055" n="55" rhead="DIHERONE."/>
l’acqua che ſerà nel tubo G.H. ritornando in dietro caderà sù’l diafragrama; </s>
  <s xml:id="echoid-s454" xml:space="preserve">ma <lb/>ſia la laĩghezza del tubo G.H. tale, che l’acqua per la ſua grauità ricada in die-<lb/>tro, che ſe di nuouo tornaremo ad infonderui acqua, l’aria, che ſerà nel tubo E. <lb/></s>
  <s xml:id="echoid-s455" xml:space="preserve">F.raccolta, non permetterà, che dentro vi entri; </s>
  <s xml:id="echoid-s456" xml:space="preserve">ma ben infoudendoui acqua eſ-<lb/>ſa ſeme andrà per di ſopra de gli orli del vaſo.</s>
</p>
<figure><!-- 0055-01 -->
<variables xml:id="echoid-variables38" xml:space="preserve">G H X C D A B</variables>
</figure>
</div>
<div xml:id="echoid-div69" type="section" level="2" n="43">
<head xml:id="echoid-head52" style="it" xml:space="preserve">SOPRA VNA BASE PVO’ POSARSIVN SATIRO. <lb/>Che tenga nelle mani vn’ Vtre, ſotto il quale vi ſia vn’ Auello, il quale ſe <lb/>ſer à d’ acqua ripieno eſſa per l’ Vtre caderà nel detto Auello; ne mai <lb/>fluirà a gli orli del vaſo, fin che tutta l’acqua per l’Vtre non ſerà <lb/>euacuata, &amp; il modo di fabricarlo ſerà questo. <lb/>Theorema XXXVI.</head>
<p>
  <s xml:id="echoid-s457" xml:space="preserve">SIa la baſe turata beniſſimo d’ ogni intorno A. B. ò diforma quadrangolare, <lb/>ò cilindrica, ò ottogna, ò come meglio tornerà quanto all’ ornamento bene. <lb/></s>
  <s xml:id="echoid-s458" xml:space="preserve">Queſta ſia a mezzo diuiſa da vn diafragrama, ò tramezzo per il quale paſſi il tu-<lb/>bo E.F. con eſſo forato, dal coperto diſtante alquanto; </s>
  <s xml:id="echoid-s459" xml:space="preserve">ma per eſſo coperto pon-<lb/>gaſi il tubo H. che riſponda nell’ auello ſopra il coperto, &amp; in H. tanto ſia diſtante <lb/>dal fondo quanto parrà ragioneuole per il fluſſo dell’ acqua, pongaſi dopoi vn’, <lb/>altro tubo K. L. che fimilmente paſſi per il coperto del vaſo, e ſtia ſopra il tra-<lb/>mezzo poco da eſſo lontano; </s>
  <s xml:id="echoid-s460" xml:space="preserve">ma ſaldato eccellentemente ad eſſo coperto ſopra <lb/>del quale, come ſi vede s’alzi; </s>
  <s xml:id="echoid-s461" xml:space="preserve">cada nell’ auello l’effuſione dell’acqua, che di eſſo
<pb o="44" file="0056" n="56" rhead="DELLI SPIRITALI"/>
vſcirà: </s>
  <s xml:id="echoid-s462" xml:space="preserve">fatto queſto ſia riempito d’acqua il vaſo A.D. per lo ſpiracolo N. e ſubito <lb/>ripieno il vaſo ſia turato eſſo ſpiracolo, che ciò fatto, ſe porremo acqua nell’ auel-<lb/>lo eſla ſcenderă per il tubo G. H. nel vaſo B. D. e l’ aria ſe ne vſcirà per il tubo E. <lb/></s>
  <s xml:id="echoid-s463" xml:space="preserve">
<anchor type="figure" xlink:label="fig-0056-01a" xlink:href="fig-0056-01"/>
F. &amp; entrando nel vaſo A. <lb/></s>
  <s xml:id="echoid-s464" xml:space="preserve">D. sforzerà l’acqua da eſſo <lb/>contenuta ad entrare nel <lb/>tubo K. L. &amp; a cader nell’ <lb/>auello per il tubo del qua-<lb/>le portata di nuouo nel va <lb/>ſo B.C. sforza ſimilmente <lb/>l’aria contenuta da eſſo, <lb/>e queſta di nuouo cõſlrin-<lb/>ge l’acqua che è nel vaſo <lb/>A. D. per forza a cadere <lb/>nell’ auello, il qual moto <lb/>durerà fin tanto, che l’acqua <lb/>contenuta dal vaſo A <lb/>D. tutra ſe ne ſerà vſcita. <lb/></s>
  <s xml:id="echoid-s465" xml:space="preserve">Biſognerà dunque accom-<lb/>modare il tubo K. L. M. <lb/>che per la bocca dell’ vtre <lb/>paſſi, e che la bocca M. <lb/>tanto picciola ſia, che queſto moto duri vn pezzo.</s>
</p>
<div xml:id="echoid-div69" type="float" level="3" n="1">
<figure xlink:label="fig-0056-01" xlink:href="fig-0056-01a"><!-- 0056-01 -->
<variables xml:id="echoid-variables39" xml:space="preserve">A M N F L C D E K H B</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div71" type="section" level="2" n="44">
<head xml:id="echoid-head53" style="it" xml:space="preserve">FABRICAREVN’ ALTARE SOPRA DEL QVALE <lb/>acceſo vn fuoco s’ aprino ſubito le porte di vn Tempio, e ſpento il fuoco <lb/>ſubito tornino a rincb uderſi. Theor. XXXVII.</head>
<p>
  <s xml:id="echoid-s466" xml:space="preserve">SOpra vna baſe A.B.C.D. ſia fabricato l’altare E. O. per il quale paſſi il tubo <lb/>E.G. la bocca del quale E ſia nel corpo di eſſo altare, e la bocca G. in alcuna <lb/>ſphera concaua, ò vuota come vogliam dire, queſta ſia H. e ſia ſaldata non nel <lb/>diametro per pendicolare di eſſa palla; </s>
  <s xml:id="echoid-s467" xml:space="preserve">ma alquanto da eſſo diſtante, poi pongaſi <lb/>la infleſſa ſiffone K.L.M. in detta ſphera, e s’allunghino i cardini delle porte, <lb/>nella parte inferiore della baſe, queſti eſpeditiſsimamente ſi volgano sù i loro <lb/>centri, che ſono nel fondo della baſe A. B. C. D. &amp; intorno ad eſsi cardini ſiano <lb/>relegate, ò rauolte alcune funi, ò catenelle, per la troclea P. paſsino, e ſuſpendano <lb/>il vaſo concauo N. X. ſiano poi ancora ad eſsi cardini auolte altre catenelle al <lb/>contratio delle ſopradette vn ca po delle quali paſsi per la troclea, e ſuſpenda la <lb/>grauità R. la quale nel deſcendere chiuda eſſe porte, e faccia ſi, che la infleſſa ſif-<lb/>fone habbia la gamba eſteriore nel ſuſpeſo vaſo X. N. e nella ſphera ſia vn fora-<lb/>me Z. per il quale eſſa ſi riempia d’acqua fino a mezzo, e ſubito ſia turato eſſo
<pb o="45" file="0057" n="57" rhead="DIHERONE."/>
buco, che mentre il fuoco acceſo ſopra lo altare arderà sforzarà l’aria, che è in <lb/>eſſo corpo dell’altare ad entrare nella ſphera per il tubo F.G. la quale in eſſa en-<lb/>trando sforzerà l’acqua ad vſcirſene per la ſiffone K. L. M. e cadere nel vuoto <lb/>vaſo ſoſpeſo dalla fune, ò catenella, che paſſa per la troclea P. il qual vaſo ripieno, <lb/>che ſerà d’ acqua; </s>
  <s xml:id="echoid-s468" xml:space="preserve">perche ogni coſa graue tende al baſſo andarà in giù tirando la <lb/>fune dalla forza della quale sforzati i cardini s’apriranno le potte: </s>
  <s xml:id="echoid-s469" xml:space="preserve">Ma di nuouo <lb/>eſt into il fuoco l’aria, attenuato ſe n’ vſcirà per la rarità del corpo della ſphera. <lb/></s>
  <s xml:id="echoid-s470" xml:space="preserve">cla infleſſa ſiffone K. L. M. attraherà fuori del ſuſpeſo vaſo l’ acqua, e di nuouo <lb/>eſſa tornarà nella palla, ò sfera concaua; </s>
  <s xml:id="echoid-s471" xml:space="preserve">perche l’ eſtremità della gamba eſterio-<lb/>re M. ſerà nell’ acqua immerſa, che del ſuſpeſo vaſo ſerà contenuta, &amp; auerrà. <lb/></s>
  <s xml:id="echoid-s472" xml:space="preserve">che vuotandoſi il vaſo, e per queſto fatto più leggieri: </s>
  <s xml:id="echoid-s473" xml:space="preserve">il peſo R. ſcenderà al baſ-<lb/>ſo, e chiu derà le porte, che è il propoſto.</s>
</p>
<p>
  <s xml:id="echoid-s474" xml:space="preserve">Sono alcuni, che in luogo dell’acqua oprano lo hidargiro, perche egli è più <lb/>graue dell’ acqua, e dalla calidità facilmente vien riſoluto.</s>
</p>
<figure><!-- 0057-01 -->
<variables xml:id="echoid-variables40" xml:space="preserve">P E A B L Z G H N K X M R</variables>
</figure>
<pb o="46" file="0058" n="58" rhead="DELLI SPIRITALI"/>
</div>
<div xml:id="echoid-div72" type="section" level="2" n="45">
<head xml:id="echoid-head54" style="it" xml:space="preserve">IN ALTRO MODO ANCORA ACCESO VN FVOCO <lb/>ſopra vn’ Altare ſi fanno aprire le propoſte porte. Theor. XXXVIII.</head>
<p>
  <s xml:id="echoid-s475" xml:space="preserve">SIa la porta, che ſopraſti alla baſe A. B. C. D. ſopra la quale ſia l’altare E. e per <lb/>l’altare il tubo F. G. H. paſsi, e ponga capo nell’ vtre K. il quale ſia beniſsimo <lb/>d’ ogni intorno chiuſo a queſto ſottopongaſi il peſo L. che da vna fune, ò catena <lb/>ſoſpeſo ſia con il mezzo di vna girella appeſo alle funi, ò catene inuoltate come <lb/>dalla figura ſi vede a gli cardini, sì che abbaſſandoſi l’ vtre cali il peſo L. che nel <lb/>calare a baſſo tirerà le funi, ò catene; </s>
  <s xml:id="echoid-s476" xml:space="preserve">le quali rauolgẽdo i cardini chiudano le por <lb/>te; </s>
  <s xml:id="echoid-s477" xml:space="preserve">ma acceſo ſopra l’altare il fuoco s’aprirãno; </s>
  <s xml:id="echoid-s478" xml:space="preserve">perche l’aria, che è nel corpo del-<lb/>l’altare dal calor del fuoco ca cciato, calerà nell’vtre per il tubo F. G. H. e lo tirerà <lb/>a ſe, e con lui il peſo L. onde ſi aprirãno eſſe porte; </s>
  <s xml:id="echoid-s479" xml:space="preserve">ouero, come ſi ſogliono le por-<lb/>te dei Bagni ſi faccia, che per ſe ſteſſe ſi ſerrino, ouero habbiano il peſo contra-<lb/>poſto, che le apra; </s>
  <s xml:id="echoid-s480" xml:space="preserve">perche ſpento il fuoco l’aria, che nell’vtre entro ritornerà al <lb/>ſuo luogo: </s>
  <s xml:id="echoid-s481" xml:space="preserve">onde ſcendendo eſſo vtre, e con lui il peſo ſerrerannoſi dette porte.</s>
</p>
<figure><!-- 0058-01 -->
<variables xml:id="echoid-variables41" xml:space="preserve">E F A G B H K L C</variables>
</figure>
<pb o="47" file="0059" n="59" rhead="DIHERONE."/>
</div>
<div xml:id="echoid-div73" type="section" level="2" n="46">
<head xml:id="echoid-head55" style="it" xml:space="preserve">RIPIENO DIVINO VNVASO, CHE HABBIA <lb/>tre canali, fare, che quel di mezzo eſca vino, e quando in eſſo vaſo <lb/>giunger aſſi acqua, che ſi fermi il fluſſo del vino; maſe n’ eſca <lb/>l’acqua per gli altri due canali, e fermata eſſa acqua, <lb/>ritorni ad vſcirſene il vino, e che queſto tante <lb/>volte ſia quante volte ci piacerà. <lb/>Theorema XXXIX.</head>
<p>
  <s xml:id="echoid-s482" xml:space="preserve">IL Vaſo ſia A. B. che trauerſato habbia il colio con il diafragrama C. D. e nel <lb/>fondo di eſſo vaſo ſiaui il canaletto E. indi facciaſi, che per il diafragrama <lb/>paſsino due canne F. M. e K. H. le quali ncl fondo del vaſo finiſcano in due cana-<lb/>letti, che fuori ſporghino alquanto come in H. M. ſi vede, &amp; verſo il principio <lb/>loro ſopra il diafragrama ſiano poſti due altri tubi N. O. coperti con vna ſquama <lb/>nella parte ſupetiore; </s>
  <s xml:id="echoid-s483" xml:space="preserve">ma dalla ſuperficie del diafragrama facciaſi, che tanto ſtia-<lb/>
<anchor type="figure" xlink:label="fig-0059-01a" xlink:href="fig-0059-01"/>
no diſcoſti quanto parrà baſtare al <lb/>fluſſo dell’ acqua (queſto effetto fa-<lb/>rà anco la infleſſa ſiffone) ſia ſimil-<lb/>mente poi ancora nel mezzo di eſſo <lb/>vaſo poſta la canna forata con il <lb/>diafragrama, &amp; ad eſſo ſaldata be-<lb/>niſsimo queſta ſia P.Q. ſopra la qua <lb/>le pongaſi il tubo R. S. chiuſo nella <lb/>parte diſopra, e come gli altri due <lb/>cioè N. O. alquanto alti dal diafra-<lb/>grama poſcia ſia tuiata la bocca del <lb/>canaletto E. e per alcun forame, co-<lb/>me T. ouero per la bocca della ſiffone <lb/>Q. leuatone il tubo R. S. ſia il cor-<lb/>po di eſſo vaſo ripieno di vino; </s>
  <s xml:id="echoid-s484" xml:space="preserve">indi <lb/>turato il buco T. ouero tornalo al <lb/>ſuo luogo il tubo R. S. indi diſſerra-<lb/>to il canaletto E. ſe ne vſcirà il vino, <lb/>perche l’aria per il tubo R. S. entrã-<lb/>do paſſarà nel vaſo per la canna Q. <lb/></s>
  <s xml:id="echoid-s485" xml:space="preserve">onde eſſo ſe ne vſcirà; </s>
  <s xml:id="echoid-s486" xml:space="preserve">ma ſeil collo, <lb/>ò la parte del vaſo ſopra il diafra-<lb/>grama ſerà da noi ripiena di acqua, nè più potrà entrarui l’aria; </s>
  <s xml:id="echoid-s487" xml:space="preserve">onde il vino non <lb/>potrà (per le ragioni altroue dette (vſcire più fuori, e perche conuiene, che li tubi <lb/>N. O. con le canne F. M. e K.H. ſiano alquanto più baſsi dell’ orlo del vaſo, eſſo <lb/>riempito di acque, conuiene, che ſe ne vada fuori per le ſue canne F. M. K. H. nè <lb/>più vſcir potrà il vino fin tanto, che tutta l’acqua non ſe ne ſia vſcita fuori: </s>
  <s xml:id="echoid-s488" xml:space="preserve">il che <lb/>ſatto ſeguirà, che di nuouo per il tubo R. S. e per la eanna Q. vi entrarà l’aria; </s>
  <s xml:id="echoid-s489" xml:space="preserve">on-
<pb o="48" file="0060" n="60" rhead="DELLI SPIRITALI"/>
de di nuouo il vino ſe ne vſcirà per il canaletto E. </s>
  <s xml:id="echoid-s490" xml:space="preserve">Ma auertiſcaſi, che eſſa canna <lb/>Q. con il tubo R. S. ſiano alquanto più alti dell’ orlo del vaſo, altramente ſegui-<lb/>rebbe che l’ acqua per eſsi entrarebbe nel vaſo A. B. e ſe ne vſcirebbe il vino <lb/>adacquato; </s>
  <s xml:id="echoid-s491" xml:space="preserve">ma fatto come di ſopra ſeguiranno li ſopra notati effetti.</s>
</p>
<div xml:id="echoid-div73" type="float" level="3" n="1">
<figure xlink:label="fig-0059-01" xlink:href="fig-0059-01a"><!-- 0059-01 -->
<variables xml:id="echoid-variables42" xml:space="preserve">O R N A C K S F D T Q H E M</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div75" type="section" level="2" n="47">
<head xml:id="echoid-head56" style="it" xml:space="preserve">SE SOPRA VNA DATA BASE SI FARA’ VNA MACCHIA <lb/>di arbori &amp; in eſſa ſi auuiluppi vn Drago, &amp; all’incontro di eſſo vn Hercole <lb/>in atto ſaggittante, ſealcuno leuerà dalla baſe vn pomo con vna mano <lb/>ſar che Hercole ſaetti il Dragone, &amp; eſſo Dragone mandi i@ <lb/>queſto a vn Sibilo. Theorema XL.</head>
<p>
  <s xml:id="echoid-s492" xml:space="preserve">SIa la propoſta baſe d’ ogni intorno chiuſa A. B. di cui il corpo ſia intramez-<lb/>zato con il diafragrama C. D. al quale ſia congiunto vn cono E. F. e con-<lb/>cauo, e mutilo, ò come diciam noi vuoto e pieno, ò maſchio, e femina, &amp; il minot <lb/>
<anchor type="figure" xlink:label="fig-0060-01a" xlink:href="fig-0060-01"/>
circolo della femina, ò del <lb/>vuoto F. ſia aperto verſo <lb/>il fondo, &amp; aggiunga ad <lb/>eſſo tanto diſcoſto, quan-<lb/>to potrà per il fluſſo dell’ <lb/>acqua baſtare in queſto <lb/>vuoto vi entri eſattamen-<lb/>te il cono ſodo, ò maſchio <lb/>N. al quale ſia legata vna <lb/>fune, ò catenella, che dal <lb/>pomo K. ſopra la baſe po-<lb/>ſto penda, e ſia cõ vn bu-<lb/>co pertugiata la baſe, e lo <lb/>Hercole habbia nelle ma-<lb/>ni l’ arco corneo, che teſa <lb/>habbia la corda quanto <lb/>baſti per mandarne vna <lb/>ſaetta, e la deſtra, e la ſini-<lb/>ſtra mano di eſſo ſia in <lb/>maniera accommodata, <lb/>che sù l’ arco teſo poſſa <lb/>agiatamente ſtarui la ſaet <lb/>ta S. indi doue la deſtra <lb/>piglia la corda, ò neruo dell’ arco ſiaui legata vna fune, ò catenella R. che per il-<lb/>braccio, e per il corpo, &amp; ouero per la pelle del Leone, ò per vna gamba di eſſo, <lb/>che vuoto conuien, ch’egli ſia, e per il coperto della baſe paſsi, &amp; entri in vna <lb/>@@oclea, ò girella ſaldata ſopra il diafragrama, e ſia queſta legata alla fune, ò ca-
<pb o="49" file="0061" n="61" rhead="DIHERONE."/>
tenella, che tiene il mutilo, ò il maſchio H. appreſſo al pomo K. indi pongaſi ſo-<lb/>pra la baſe la macchia di ſpini, ò altri arbori, &amp; in eſſa il Drago nel corpo del <lb/>quale ſia accommodato il tubo, ò canna, che per la bocca di eſſo ſibili, e queſta <lb/>paſſi per il coperto, e per il diafragrama della baſe; </s>
  <s xml:id="echoid-s493" xml:space="preserve">ma ad eſſo diafragrama aſal-<lb/>dato ſia sì che il ſiato conuenga entrare nella canna Z. indi ſia ripiena la par-<lb/>te di ſopra della baſe d' acqua per alcun foro, che vi ſi faccia: </s>
  <s xml:id="echoid-s494" xml:space="preserve">indi lieuiſi il pomo <lb/>K. che non ſolo ſi alaerà il cono: </s>
  <s xml:id="echoid-s495" xml:space="preserve">ma ſi verrà a tirar il neruo dell' arco O.N.X.P. <lb/></s>
  <s xml:id="echoid-s496" xml:space="preserve">&amp; in queſto mentre per il vuoto cono entrando l'acqua sforzerà l'aria a vſcirſe-<lb/>ne per la canna, che termina nella bocca del Dragone; </s>
  <s xml:id="echoid-s497" xml:space="preserve">onde eſſo ſibilarà; </s>
  <s xml:id="echoid-s498" xml:space="preserve">indi la-<lb/>ſciato il pomo ſcoccherà l'arco, e la ſaetta ferirà il Dragone, e ſcendendo il ma-<lb/>ſchio H. nella femina E.F. ceſſerà il ſibilo; </s>
  <s xml:id="echoid-s499" xml:space="preserve">perche ſerà chiuſo il buco F. onde l'ac-<lb/>qua non più potrà entrarui: </s>
  <s xml:id="echoid-s500" xml:space="preserve">facciaſi dopo queſto, che mediante alcuna chiaue ſi <lb/>poſſa per alcun canale vuotar la parte del vaſo C.D.B. laſciandoui per alcun bu-<lb/>co entrar l'aria; </s>
  <s xml:id="echoid-s501" xml:space="preserve">ma ſubito chiudaſi eccellentemente, e l'vno, e l'altro, e di nuouo <lb/>operato come di ſopra il propoſto farà lo effetto deſiderato.</s>
</p>
<div xml:id="echoid-div75" type="float" level="3" n="1">
<figure xlink:label="fig-0060-01" xlink:href="fig-0060-01a"><!-- 0060-01 -->
<variables xml:id="echoid-variables43" xml:space="preserve">O N R S X A P K V Q E C D Z B</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div77" type="section" level="2" n="48">
<head xml:id="echoid-head57" style="it" xml:space="preserve">FAB RICARE VN VASO, CHE SEMPRE CHE SIA <lb/>verſato darà egual miſura dell' humore contenuto da eſſo, che a punto ſi <lb/>chiama vaſo di giucta miſura. Theorema XLI.</head>
<figure><!-- 0061-01 -->
<variables xml:id="echoid-variables44" xml:space="preserve">H E L F</variables>
</figure>
<p>
  <s xml:id="echoid-s502" xml:space="preserve">SIa il vaſo infralcritto il collo del quale ſia in-<lb/>tramezzato con vn diafragrama, e nel fon-<lb/>do di eſſo; </s>
  <s xml:id="echoid-s503" xml:space="preserve">pongaſi vna concaua ſphera, che in ſe <lb/>ſteſſa tanta quantità d'humore capiſea, quanta <lb/>vorremo trarne per ogni volta; </s>
  <s xml:id="echoid-s504" xml:space="preserve">indi paſſi per il <lb/>diafragrama nella ſphera vna ſuttiliſſima canna <lb/>bucata inſieme con il diafragrama, e con la <lb/>ſphera, e nella parte inferiore della ſphera <lb/>ſiaui fatto vn picciolo pertugio F. dal quale <lb/>partendo il tubo F. G. vada a congiungerſi in G. <lb/></s>
  <s xml:id="echoid-s505" xml:space="preserve">che è l' orecchia di eſſo vaſo la quale ſerà, come <lb/>detto tubo bucata, &amp; a canto il pertugio F. ne ſia <lb/>fatto vn' altro L. il quale tenda nel corpo del va-<lb/>ſo, &amp; il manico habbia lo ſpiracolo H. il quale <lb/>turato per vn buco (che poi dopo, che ſerà pieno <lb/>il vaſo chiuderaſſi) ſia eſſo vaſo ripieno, ò di ac-<lb/>qua, ò di vino come ci piacerà, ouero; </s>
  <s xml:id="echoid-s506" xml:space="preserve">il che ſerà <lb/>lo iſteſſo riempiraſſi il vaſo per il tubo D.E. pur <lb/>che nel vaſo vi ſia vn pertugio per il quale l'aria <lb/>ſe ne eſca, e ſimilmente empiraſſi la ſphera di hu-<lb/>more, ſe adunque (che è il propoſto) verſaremo il vaſo aprendo lo ſpiracolo H. <lb/>l'humore contenuto dalla ſphera, per il tubo D.E. ſe ne vſcirà fuori, e ſe di nuo-
<pb o="50" file="0062" n="62" rhead="DELLI SPIRIT ALI"/>
uo chiuſo lo ſpiracolo dricciaremo il vaſo in piedi la ſphera, &amp; il tubo D.E. tor-<lb/>neranno ad empirſi: </s>
  <s xml:id="echoid-s507" xml:space="preserve">perche l'aria che è in eſſa ſphera per la bocca D. vſcendo da-<lb/>rà luogo all'humore, che in eſſa di nuouo entrarà, e di nuouo verſato il vaſo la <lb/>medeſma quantità d' humore ne traremo. </s>
  <s xml:id="echoid-s508" xml:space="preserve">Se però non vi foſſe la differenza del <lb/>tubo D.E. il quale non ſempre potrà impirſi, ma nel vuotarſi il vaſo anco eſlo ri-<lb/>marrà non ſempre pieno, è vero che queſta differenza ſerà, come che inſenſibile.</s>
</p>
</div>
<div xml:id="echoid-div78" type="section" level="2" n="49">
<head xml:id="echoid-head58" style="it" xml:space="preserve">CON IL FIATO ESPRIMERE IN QVESTO <lb/>modo l' acqua ſuori de i vaſi. Theorema XLII.</head>
<p>
  <s xml:id="echoid-s509" xml:space="preserve">TRamezzato il collo di vn vaſo con vn diafragrama ſia poſto in eſſo vn tu-<lb/>bo alquanto diſtante dal fondo: </s>
  <s xml:id="echoid-s510" xml:space="preserve">ma chiuſo, e ſerrato ad eſlo diafragrama, <lb/>ò alla bocca dal vaſo, che è il medeſimo: </s>
  <s xml:id="echoid-s511" xml:space="preserve">ma eſſo tubo alla bocca di detto vaſo <lb/>
<anchor type="figure" xlink:label="fig-0062-01a" xlink:href="fig-0062-01"/>
habbia il foro piccioliſſimo; </s>
  <s xml:id="echoid-s512" xml:space="preserve">ma maggiore verſo il fondo del vaſo alquanto, indi <lb/>per alcun buco ripieno il vaſo d'humore, e chiuſo il pertugio del tubo alla bocca
<pb o="51" file="0063" n="63" rhead="DIHERONE."/>
del vaſo, e per vn'altro enfiato con vn mantice. </s>
  <s xml:id="echoid-s513" xml:space="preserve">Il corpo del detto vaſo, e poſcia <lb/>ſu bito chiuſo con vna chiaue, &amp; aperta la bocca del tubo per eſſa bocca l'acqua <lb/>ſalterà fuori sforzata dal compreſſo aria, che per forza haurem cacciato nel va-<lb/>ſo per il buco già ſerrato con la chiaue, fin tanto che eſſa aria ſerà rirornato in <lb/>ſua natura ſottile com' è forza, che ſia naturalmente. </s>
  <s xml:id="echoid-s514" xml:space="preserve">Il vaſo è A.B. </s>
  <s xml:id="echoid-s515" xml:space="preserve">Il tubo C.D. <lb/>la chiaue E. &amp; il diafragrama G.N.</s>
</p>
<div xml:id="echoid-div78" type="float" level="3" n="1">
<figure xlink:label="fig-0062-01" xlink:href="fig-0062-01a"><!-- 0062-01 -->
<variables xml:id="echoid-variables45" xml:space="preserve">A G N E D B</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div80" type="section" level="2" n="50">
<head xml:id="echoid-head59" style="it" xml:space="preserve">FORMAR VARIE VOCI DIVARII VCCELLI <lb/>in piu dictanze. Theorema XLIII.</head>
<p>
  <s xml:id="echoid-s516" xml:space="preserve">FAcciaſi vn vaſo d'ogni intorno chiuſo A. B. ſopra del quale pógaſi lo infon-<lb/>dibulo C.la ceda del quale D.tanto dal fondo di eſſo vaſo ſia diſtante, quan-<lb/>to al giuditio noſtro parra conueniente per il fluſſo dell' acqua ſopra lo infondi-<lb/>
<anchor type="figure" xlink:label="fig-0063-01a" xlink:href="fig-0063-01"/>
bulo pongaſi il vaſo E. fr à due poli ſtretto; </s>
  <s xml:id="echoid-s517" xml:space="preserve">ma che però per eſſi leggiermente ſi <lb/>volga come la figura dimoſtra, &amp; eſſo vaſo nel fondo habbia vna grauità sù la <lb/>quale cada l' acqua acciò neceſlariamente vuoto, che ſerà d' acqua ſtia ſempre <lb/>dritto. </s>
  <s xml:id="echoid-s518" xml:space="preserve">Che ſtando la grauità del fondo di eſſo vaſo, quádo eſſo ſerà pieno ſi verſe-<lb/>rà, eſsédo sù i poli detti nell'infődibulo, e di queſto paſſarà nel vaſo A.B. caccian-<lb/>done l' aria per alcuna canna accommodata come di ſopra ſi diſſe nel Theore-<lb/>ma XIIII. vuotiſi poi il vaſo per alcuna in fleſſa ſiffone ouero per alcun tubo ſpi-<lb/>ritale, che mentre ſi vuoterà queſto, in queſto iſteſſo tempo ripieno il vaſo E. ſi <lb/>verſerà di nuouo nell' infondibulo, e farà lo iſteſſo effetto: </s>
  <s xml:id="echoid-s519" xml:space="preserve">onde biſognerà tron-
<pb o="52" file="0064" n="64" rhead="DELLI SPIRITALI"/>
care la influſſione a mezo del vaſo; </s>
  <s xml:id="echoid-s520" xml:space="preserve">acciò ripieno l'altro poſſa ſubito verſarſi, e <lb/>fare il propoſto effetto.</s>
</p>
<div xml:id="echoid-div80" type="float" level="3" n="1">
<figure xlink:label="fig-0063-01" xlink:href="fig-0063-01a"><!-- 0063-01 -->
<variables xml:id="echoid-variables46" xml:space="preserve">A E C D B</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div82" type="section" level="2" n="51">
<head xml:id="echoid-head60" style="it" xml:space="preserve">IN ALTRO MODO ANCORA IN DI-<lb/>ſtanze diuerſe ſi fanno diuerſi canti di vary vccelli <lb/>in quecto modo. Theor. XLIIII.</head>
<p>
  <s xml:id="echoid-s521" xml:space="preserve">FAcciaſi vn vaſo di ogni intorno chiuſo; </s>
  <s xml:id="echoid-s522" xml:space="preserve">e con diuerſi diafragrami intramez-<lb/>zato, &amp; in ciaſcuna parte ſianui poſti, ò infleſſe ſiſſone, ò dia beti ſpiritali, <lb/>che di vn luogo nell'altro portino l' acqua come altroue ſi è detto, &amp; in ciaſcu-<lb/>no dia fragrama paſſi vna, ò <lb/>più canne fotate, &amp; ad eſsi aſ-<lb/>ſaldate, &amp; in modo adattate, <lb/>
<anchor type="figure" xlink:label="fig-0064-01a" xlink:href="fig-0064-01"/>
che con il fiato facciano il ſi-<lb/>bilo, che diuerſo ſerà, ſe di di-<lb/>uerſe groſſezze, e longhezze <lb/>ſetáno le canne. </s>
  <s xml:id="echoid-s523" xml:space="preserve">Indi poſto lo <lb/>infódibulo ſopra il vaſo la co <lb/>da del quale del primo dia fra <lb/>grama; </s>
  <s xml:id="echoid-s524" xml:space="preserve">ſia táto diſtáte quan-<lb/>to per il fluſſo dell' acqua ba-<lb/>ſterà, che cadédone nello in-<lb/>fondibulo l' acqua per il ca-<lb/>nale A. entrarà nel primo va-<lb/>ſo ſopra il primo diafragrama <lb/>cacciandone l' aria per la can-<lb/>na, ò canne delle prime can-<lb/>ne, le quali faráno varij can-<lb/>ti di vccelli. </s>
  <s xml:id="echoid-s525" xml:space="preserve">Queſto ripieno <lb/>per la infleſſa ſiffone eſſo va-<lb/>ſo ſi vuotarà nel ſecondo, fa-<lb/>cendo il medeſimo così nel <lb/>terzo, &amp; il ſimile ne gli altri <lb/>fin che nell' vltima parte il <lb/>diabete, ò infleſſa ſiffone la <lb/>manderà fuori, e ciaſcuna <lb/>canna in qual ſi voglia parte <lb/>del vaſo poſta renderà l'ac-<lb/>commodato ſuono.</s>
</p>
<div xml:id="echoid-div82" type="float" level="3" n="1">
<figure xlink:label="fig-0064-01" xlink:href="fig-0064-01a"><!-- 0064-01 -->
<variables xml:id="echoid-variables47" xml:space="preserve">A</variables>
</figure>
</div>
<pb o="53" file="0065" n="65" rhead="DIHERONE."/>
</div>
<div xml:id="echoid-div84" type="section" level="2" n="52">
<head xml:id="echoid-head61" style="it" xml:space="preserve">FAR CHE LEVVOTE, E LEGIERI PALLE <lb/>ſaltellino in queſto modo. Theorema XLV.</head>
  <figure>
    <image file="0065-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/xxxxxxxx/figures/0065-01"/>
  </figure>
<p>
  <s xml:id="echoid-s526" xml:space="preserve">RIſcaldato vn catino pieno di acqua, la boc-<lb/>ca della quale ſia coperta, e che ſopra il <lb/>coperto auanzi vn tubo, ò canna in bocca del <lb/>quale ſia poſto vn' altro catino minore a guiſa di <lb/>vna mezza ſphera, &amp; eſſa canna inſieme con il <lb/>coperto, e con la mezza ſphera ſia forata, ſe in eſ-<lb/>ſo catino in capo la canna ſerà da noi poſto vna <lb/>leggiera, ò vuota palla auerrà, che il vapore, che <lb/>per il caldo inferiore conuerrà alzarſi per il tu-<lb/>bo, ò canna eleuarà la palla, sì che parerà ſaltella-<lb/>re a chi porrà mente a ciò.</s>
</p>
</div>
<div xml:id="echoid-div85" type="section" level="2" n="53">
<head xml:id="echoid-head62" style="it" xml:space="preserve">ELETRASPARENTI SPHERE, CHE <lb/>in ſe habbino, &amp; aria, &amp; acqua, enel mezzo vna palla, come <lb/>la terra in mezzo del Mondo; In queſto modo ſi ſanno. <lb/>Theorema XLVI.</head>
  <figure>
    <image file="0065-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/xxxxxxxx/figures/0065-02"/>
  </figure>
<p>
  <s xml:id="echoid-s527" xml:space="preserve">SIano fabricati due emiſperij di vetro, vno de <lb/>i quali con vna ſottiliſsima lamina di metallo ſia <lb/>coperto, e queſta nel mezzo habbia vn rotondo buco, <lb/>ſia dopoi fatto vna ſpheretta minore: </s>
  <s xml:id="echoid-s528" xml:space="preserve">ma leggieri, &amp; <lb/>impoſto acqua nell'altro emiſperio, &amp; in queſta poſta <lb/>la fatta sferula ſian congionti li due emiſperij di ve-<lb/>tro inſieme, che l' humido che riceuerà la picciola <lb/>ſphera la terrà nel vuoto luogo, dal congiungere in-<lb/>ſieme adunque queſti due emiſperij ſe haurà il pro-<lb/>poſto.</s>
</p>
<pb o="54" file="0066" n="66" rhead="DELLI SPIRITALI"/>
</div>
<div xml:id="echoid-div86" type="section" level="2" n="54">
<head xml:id="echoid-head63" style="it" xml:space="preserve">CHE AGOCCIA A GOCCIA STILLI L’HV-<lb/>mido ſpinto da penetranti raggi del Sole. Theor. XLVII.</head>
<p>
  <s xml:id="echoid-s529" xml:space="preserve">LA baſe d’ogn’ intorno chiuſa A. B. C. D. nella quale con la coda pongaſi lo <lb/>infondibulo H ma la eſtremità di eſſa coda ſtia alquanto dal fondo diſtan-<lb/>te facciaſi poi la ſphera, ò vaſo E.F. per la quale paſsi il tubo dal fondo della baſe, <lb/>
<anchor type="figure" xlink:label="fig-0066-01a" xlink:href="fig-0066-01"/>
e dalla parte ſuperiore della <lb/>ſphera alquanto diſtãte con <lb/>le ſue eſtremità. </s>
  <s xml:id="echoid-s530" xml:space="preserve">Dopoi ſia <lb/>poſta la infleſſa ſiffone nella <lb/>ſphera, &amp; ad eſſa aſſaldata <lb/>beniſsimo con vna gamba, e <lb/>con l’altra cada nell’infondi-<lb/>bulo, ſia dopoi impoſta ac-<lb/>qua nella ſphera, che quando <lb/>il calore del Sole entrarà nel-<lb/>la detta ſphera, che è in eſſo <lb/>riſcaldato ſcaccierà l’humi-<lb/>do il quale ſera portatoper la <lb/>piegata canna G. e per lo in-<lb/>fondibulo H. nella baſe A.B. <lb/>C. D. </s>
  <s xml:id="echoid-s531" xml:space="preserve">Ma quando dall’om-<lb/>bra ſerà coperta la baſe (partendo l’aria) il tubo, che è nella ſphera aſumerà l’hu-<lb/>mido, e riempirà il vuoto luogo, e queſto rante volte ſera quante volte il Sole <lb/>in eſſa entrarà.</s>
</p>
<div xml:id="echoid-div86" type="float" level="3" n="1">
<figure xlink:label="fig-0066-01" xlink:href="fig-0066-01a"><!-- 0066-01 -->
<variables xml:id="echoid-variables48" xml:space="preserve">G E F A H C B D</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div88" type="section" level="2" n="55">
<head xml:id="echoid-head64" style="it" xml:space="preserve">DEMERGENDO NELL’ACQVA ILVASO <lb/>ſenza piede detto T hirſo far vſcirne vn ſuono, ò di canna, <lb/>ò di alcun vccello. Theor. XLVIII.</head>
<figure><!-- 0066-02 -->
<variables xml:id="echoid-variables49" xml:space="preserve">A F E B C D</variables>
</figure>
<p>
  <s xml:id="echoid-s532" xml:space="preserve">IL Thirſo propoſto ſia A. B. C. D. che nella <lb/>punta del fondo habbia vn buco; </s>
  <s xml:id="echoid-s533" xml:space="preserve">ma eſſa <lb/>punta alquanto concaua in modo di Pigna, &amp; il <lb/>collo di eſſa alquanto di ſotto della bocca ſia in-<lb/>tramezzata con il diafragrama A. E. nel quale <lb/>pongaſi la cannuccia F. colocata ſotto la bocca <lb/>del tubo, &amp; inſieme cõ eſſo diafragrama bucata, <lb/>che quãdo demergeremo eſſo Thirſo nell’acqua <lb/>nel cacciarlo a baſſo, l’aria, che è in eſſo (caccia-<lb/>to) crearà nell’ vſcire per la cannuccia il ſuono <lb/>propoſto, ſe detta cannuccia ſerà ſola, ma ſe ſo-<lb/>pra il dia fragrama A. E. ſerà quantità d’ acqua <lb/>ſerà detto ſuono ſtrepitoſo, che è il propoſto <lb/>modo.</s>
</p>
<pb o="55" file="0067" n="67" rhead="DI HERONE."/>
</div>
<div xml:id="echoid-div89" type="section" level="2" n="56">
<head xml:id="echoid-head65" style="it" xml:space="preserve">FAR CHE VNA STATVA, LA QVALE POSI <lb/>ſopra vna baſe, e che habbia alla bocca vna Tromba ſuoni, dan-<lb/>doli noi fiato con qual ſi voglia ſopradetta maniera. <lb/>Theorema XLIX.</head>
<p>
  <s xml:id="echoid-s534" xml:space="preserve">LA baſe d’ogn’intorno chiuſa ſia A.B.C.D. ſopra la quale poſi la Statua, ò di <lb/>altro animale a volontà noſtra. </s>
  <s xml:id="echoid-s535" xml:space="preserve">Et entro la baſe ſia lo emiſperio concauo, <lb/>&amp; ottorato E.F.G. che nel fondo habbia alquanti buchi piccioli: </s>
  <s xml:id="echoid-s536" xml:space="preserve">da queſto paſsi <lb/>nella Statua, il tubo H.F. il quale metta capo nella bocca della Tromba: </s>
  <s xml:id="echoid-s537" xml:space="preserve">la quale <lb/>
<anchor type="figure" xlink:label="fig-0067-01a" xlink:href="fig-0067-01"/>
però con la ſua lingula, e con il dodoneo ſia accommodata, e nella baſe ſia infu-<lb/>ſa l’acqua per alcun buco E. il quale dopo la infuſione ſia con ogni diligenza ot-<lb/>turato con alcuno aſſario, ò cartella come di ſopra ſi diſſe? </s>
  <s xml:id="echoid-s538" xml:space="preserve">Indi cacciando aria <lb/>nella baſe, conuerrà che l’acqua aſcendendo nello emiſperio per li fatti buchi, ne <lb/>ſcacci l’aria per la canna F.H. la quale darà fiato ſenza fallo alla Tromba. </s>
  <s xml:id="echoid-s539" xml:space="preserve">E ceſ-<lb/>ſando di cacciar l’aria nella baſe, l’acqua ſalita nello emisferio per li medeſimi <lb/>buchi calerà nella baſe ritornando in eſſo l’aria vſcito per la bocca della mede-<lb/>ſima Tromba.</s>
</p>
<div xml:id="echoid-div89" type="float" level="3" n="1">
<figure xlink:label="fig-0067-01" xlink:href="fig-0067-01a"><!-- 0067-01 -->
<variables xml:id="echoid-variables50" xml:space="preserve">H K A E F D G C B</variables>
</figure>
</div>
<pb o="56" file="0068" n="68" rhead="DELLI SPIRITALI"/>
</div>
<div xml:id="echoid-div91" type="section" level="2" n="57">
<head xml:id="echoid-head66" style="it" xml:space="preserve">RISCALD ATOVNVASO PIENO DI ACQVA <lb/>far girare vna ſpher a vuota sù due Poli. Theorema L.</head>
<figure><!-- 0068-01 -->
<variables xml:id="echoid-variables51" xml:space="preserve">H F G M E K L C D A B</variables>
</figure>
<p>
  <s xml:id="echoid-s540" xml:space="preserve">IL tiſcaldato vaſo di acqua ripieno <lb/>ſia A. B. la cui bocca ſia con dili-<lb/>genza turata con vn coperto C. D. <lb/></s>
  <s xml:id="echoid-s541" xml:space="preserve">ſia dopoi con eſſo forato il piegato <lb/>tubo E.F.G. del quale la eſtremità G. <lb/>ſia con diligenza impoſta nella con-<lb/>caua ſphera H.K. &amp; alla punta di <lb/>queſto diametro della ſphera ſia con-<lb/>trapoſto vn polo L. M. piegato anco <lb/>lui come il tubo E.F.G. conficato nel <lb/>coperto del vaſo C.D.e la ſphera hab <lb/>bia dui piegati tubi, l’vno, l’altro per <lb/>diametro oppoſti, e con eſſo fora ti, <lb/>che con buchi ſi corriſpondino, e le <lb/>loro piegature ſiano ad angoli retti, <lb/>che auenirà, che riſcaldato il vaſo ſa-<lb/>lirà il vapore nella ſphera per il tubo <lb/>E.F.G.e caderà fuori ꝑ li piegati tubi <lb/>&amp; aggireraſsi la ſphera con il modo, <lb/>che alle volte ſi vengono ragirare, <lb/>intorno artificioſi balli di animali.</s>
</p>
</div>
<div xml:id="echoid-div92" type="section" level="2" n="58">
<head xml:id="echoid-head67" style="it" xml:space="preserve">FAR CESSARE VN FLVSSO DI AC QVA <lb/>che fuor di vna tazza eſca a mezzo il corſo ſe bene non ſi chiude-<lb/>rà il canalecon vn coperto. Theorema LI.</head>
<p>
  <s xml:id="echoid-s542" xml:space="preserve">SIa la tazza, ò vaſo A.B. che ſoura la baſe C.poſi, per li quali paſſi il tubo D. <lb/></s>
  <s xml:id="echoid-s543" xml:space="preserve">E.F.che nel piede della baſe, ò in qual luogo più piacerà finiſca in vn canale, <lb/>che fuori ſporga. </s>
  <s xml:id="echoid-s544" xml:space="preserve">E nell’orecchia G.ò manico di eſſo vaſo ſia poſta la regola H. <lb/>K.L. che come da menſula ſia di detta orecchia, ò manico ſuſtentata, che queſta <lb/>ſopra di eſſa cartella per vna fibbia ſi volga, e nell’ eſtremità di eſſa ſopra la boc-<lb/>ca del vaſo, oue è la K. vn’altra regola cada, che con vn’ altra fibbia inſieme ſi <lb/>giunghino in K. e queſta dal capo M. habbia il cilindro il quale ſia fatto grauc, <lb/>e ſia dal capo di ſotro vuoto: </s>
  <s xml:id="echoid-s545" xml:space="preserve">per che poſſa circompig liare il tubo D. E. F. che, <lb/>quando il vaſo ſerà pieno di acqua ſe aggrauaremo la regola L. K. in L. alzeraſſi
<pb o="57" file="0069" n="69" rhead="DI HERONE."/>
il cilindro diſſerrando la bocca del canale D. E. F. onde per il canale l’acqua d@ <lb/>vaſo ſe ne vſcirà per F. poi laſciando la regola in L.ſcenderà il cilindro per la gra-<lb/>uità ſua circompigliando il tubo D.E.F.</s>
  <s xml:id="echoid-s546" xml:space="preserve">Onde l’aria ron @aucrdo vſcita obſiatà <lb/>all’bumore, che ſerà d’intotno al tubo D.E.F. che più @on entriper la ſua bocca, <lb/>e ſe di nuouo deprimendo la regola in L. alzaremo il cilindro, l’acqua dinuouo <lb/>ſe ne anderà, che è propoſto.</s>
</p>
<figure><!-- 0069-01 -->
<variables xml:id="echoid-variables52" xml:space="preserve">K H N M A X D G F E O</variables>
</figure>
</div>
<div xml:id="echoid-div93" type="section" level="2" n="59">
<head xml:id="echoid-head68" style="it" xml:space="preserve">FABRICARE ILVASO FLVSSILE IL QVALE <lb/>con vna mezza sfer a di vetro coperta aſcenda l’humido, e di-<lb/>ſcenda, e ſpargaſuori. Theorema LII.</head>
<p>
  <s xml:id="echoid-s547" xml:space="preserve">SIa il vaſo fluſſile A. B. C. intramezza to con il diafragrama D. E. dal quale <lb/>procedano li due tubi F.G.H.K.vno de i qua li F.G. habbia da baſſo lo eſito <lb/>G. fuori del vaſo, e lo H. K. nel mezzo del corpo di eſſo vaſo, il quale habbia di <lb/>vetro il coperto M.N. </s>
  <s xml:id="echoid-s548" xml:space="preserve">Dopoi facciaſi paſſare per eſſo coperto, e per il diafragra-<lb/>ma il ſpiracolo, ò canuccia X. per la quale ſi poſſa riempire il vaſo d’acqua: </s>
  <s xml:id="echoid-s549" xml:space="preserve">il <lb/>quale ripieno tiempiraſſi ſimilmente il tubo H.K. e l’acqua ſopra il diafragrama <lb/>entrarà nel coperto di vetro, e ſe ne vſcirà per il tubo F.G. fuori di eſſo vaſo con <lb/>il modo a punto della infleſſa ſiffone per la gamba minore della quale ſeruirà il <lb/>tubo H.K.e per la maggiore F.G. e per la piegatura il cop@r to M.N.che quanto
<pb o="58" file="0070" n="70" rhead="DELLI SPIRITALI"/>
ſi diſſe nella prima di queſio tirarà fuori l’acqua, che è nel corpo del vaſo facen-<lb/>dola aſcendere nel coperto di vetro;</s>
  <s xml:id="echoid-s550" xml:space="preserve">ma prima tirata fuori l’aria, come elemento <lb/>più legieri in luogo della quale ſuccederà, come ſi è detto l’acqua, la quale per la <lb/>ſua grauità fuori ſi tirarà per ſe ſteſſa, ſe ben contro la natura della piegata can-<lb/>na paſſarà in così largo campo nel luogo ſuperiore.</s>
</p>
<figure><!-- 0070-01 -->
<variables xml:id="echoid-variables53" xml:space="preserve">M N X D F H E A B G</variables>
</figure>
</div>
<div xml:id="echoid-div94" type="section" level="2" n="60">
<head xml:id="echoid-head69" style="it" xml:space="preserve">IN VN’ ALTRA MANIERA FAR ASCENDER <lb/>l’acqua, che ſempre paia stare in moto. Theorema LIII.</head>
<p>
  <s xml:id="echoid-s551" xml:space="preserve">LA baſe d’ ogni intorno chiuſa ſia A.B.a mezzo della quale ſiaui il diafragra-<lb/>ma C.D.intramezzato. </s>
  <s xml:id="echoid-s552" xml:space="preserve">E ſopra di eſſa baſe ſia il coperto di vetro in forma <lb/>di cilindro d’ ogni intorno chiuſo E. F. facciaſi dopoi, che in detto coperto E.F. <lb/></s>
  <s xml:id="echoid-s553" xml:space="preserve">vi ſia il tubo G. H. dalla eſtrema ſommità del cilindro poco diſtante; </s>
  <s xml:id="echoid-s554" xml:space="preserve">ma forato <lb/>inſieme con il diafragrama, oltre di queſto ſiaui l’altro tubo L. forato anco lui <lb/>con il coperto della baſe, il quale non giunga sù il diafragrama altramente;</s>
  <s xml:id="echoid-s555" xml:space="preserve">ma vi <lb/>ſia poco lontano. </s>
  <s xml:id="echoid-s556" xml:space="preserve">Facciaſi poi ancora da vn lato del cilindro di vetro il pertugio <lb/>M. per il quale ſi poſſa riempire d’acqua il vaſo A.C.D. frà il diafragrama, &amp; il <lb/>coperto della baſe, la quale nel fondo habbia il canale N. facciaſi poſcia, che il <lb/>@ubo X. O. ſia con il diafragrama inſieme forato, e giunga poco diſtante dal fon-
<pb o="59" file="0071" n="71" rhead="DIHERONE."/>
do della baſe, e per queſto riempiaſi la parte inferiore di eſſa baſe frà il ſuo fondo, <lb/>&amp; il dia fragrama, chiudendo il canaletto N. che l’aria, che è frà C. B. ſe ne anderà <lb/>per li tubi fuori per il pertugio M. </s>
  <s xml:id="echoid-s557" xml:space="preserve">Hora riempito, che ſerà il vaſo inferiore C. <lb/></s>
  <s xml:id="echoid-s558" xml:space="preserve">B. D. riempiaſi dopoi il vaſo A. C. D. per il pertugio M. che l’aria da eſſo conte-<lb/>
<anchor type="figure" xlink:label="fig-0071-01a" xlink:href="fig-0071-01"/>
nuta l medeſ@mo buco ſere <lb/>vſcirà: </s>
  <s xml:id="echoid-s559" xml:space="preserve">che ſe dopoi ſchiuderaſsi il ca-<lb/>nale N. nell’vſcirſene l’acqua per eſſo <lb/>tirarà l’aria, che è nel cilindro di ve-<lb/>tro per il tubo G. H. e mentre il cilin-<lb/>dro ſi vuoterà d’aria l’ acqua del vaſo <lb/>A. C. D. per le ragioni aſſegnate nella <lb/>quinta di queſto ſerà nel cilindro tirata, <lb/>&amp; aſcenderaui per il tubo L. en-<lb/>trandoui l’aria per il pertugio M. e ciò <lb/>ſerà fin tanto, che il cilindro, ò coperto <lb/>di vetro ſerà ripieno. </s>
  <s xml:id="echoid-s560" xml:space="preserve">Onde è da auer-<lb/>tire, che neceſſariamente biſognerà <lb/>fare la ca pacità dei vaſi A. C. D. C. B. <lb/></s>
  <s xml:id="echoid-s561" xml:space="preserve">D. frà di loro eguale, acciò dell’vno <lb/>nell’altro ſcambieuolmente ſi transfe-<lb/>riſca, e l’aria, e l’acqua, e quando il va-<lb/>ſo C. B. D. ſerà vuoto, e ſerà ferma la <lb/>continuità dell’ aria di nuouo l’acqua <lb/>del vaſo E. F. ſe ne ritornerà nel vaſo <lb/>A. C. D. ritornando ancora nel cilin-<lb/>dro di vetro l’aria per il canale N. e per il tubo G. H. e l’aria, che ſerà nel vaſo A. <lb/>C. D. per il pertugio M. ſe ne fuggirà.</s>
</p>
<div xml:id="echoid-div94" type="float" level="3" n="1">
<figure xlink:label="fig-0071-01" xlink:href="fig-0071-01a"><!-- 0071-01 -->
<variables xml:id="echoid-variables54" xml:space="preserve">A C M E G H F L N D B O</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div96" type="section" level="2" n="61">
<head xml:id="echoid-head70" style="it" xml:space="preserve">ALCVNI ANIMALI PERVN BVCO ENFIATI <lb/>eſprimono l’acqua per vn’altro luogo, come per eſſempio vn Satiro per <lb/>vn’vtre verſarà l’acqua in vnacoppa, che nelle manitenga <lb/>vn’ altro Satiro. Theorema LIIII.</head>
<p>
  <s xml:id="echoid-s562" xml:space="preserve">SIa la d’ogn’ intorno chiuſa la baſe A. B. C. D. ſopra la quale ſieda vn’anima-<lb/>le con vna coppa in mano per il quale da vn buco fatto in eſſo deriui il tu-<lb/>bo E. F. inſieme con la baſe forato quefto habbia lo aſſario, ò cartella alla bocca <lb/>del tubo, che è dentro la baſe G. H. che chiuda il buco del tubo F. in maniera ac-<lb/>commodato, che con fibbie s’alzi, e s’abaſsi, ſi chiuda, &amp; apra eſattiſsimamen-<lb/>te: </s>
  <s xml:id="echoid-s563" xml:space="preserve">dopoi per eſſa baſe pongaſi vn’altro tubo K. L. per il corpo dell’altro anima-<lb/>le, co n il buco K. verſo, ò ſopra la coppa, oue hà da verſar l’acqua, e con l’altro
<pb o="60" file="0072" n="72" rhead="DELLI SPIRITALI"/>
capo L. ſia verſo il fondo della baſe tanto però da eſſa lontano quanto parrà có-<lb/>
<anchor type="figure" xlink:label="fig-0072-01a" xlink:href="fig-0072-01"/>
ueniente uſſo dell’acqua, &amp; eſſa <lb/>bocca K. habbia anco lei vn’ aſſario le-<lb/>gieri, con che reſti a noſtro piacere <lb/>chiuſo leggiermente. </s>
  <s xml:id="echoid-s564" xml:space="preserve">Dopoi riempita di <lb/>acqua la baſe per alcuno pertugio M. <lb/></s>
  <s xml:id="echoid-s565" xml:space="preserve">che dopo fatto chiudaſi beniſsimo, e tu-<lb/>rato inſpireſi gran quantità d’aria, ò di <lb/>fiato per il tubo E. F. che eſſo fiato sfor-<lb/>zarà il ſopra detto aſſario, &amp; eſsa aria <lb/>intrarà nella baſe, e terrà per forza <lb/>ſerrato eſſo aſſario al tubo: </s>
  <s xml:id="echoid-s566" xml:space="preserve">poi aperto il <lb/>buco K. l’aria compreſso nella baſe <lb/>caccierà l’acqua con gran forza per eſſo <lb/>buco K fin tanto che ſerà tutta vſcita, <lb/>e l’aria tornata in ſua natura.</s>
</p>
<div xml:id="echoid-div96" type="float" level="3" n="1">
<figure xlink:label="fig-0072-01" xlink:href="fig-0072-01a"><!-- 0072-01 -->
<variables xml:id="echoid-variables55" xml:space="preserve">E K A B G H F C D</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div98" type="section" level="2" n="62">
<head xml:id="echoid-head71" style="it" xml:space="preserve">FABRICARE VN VASO CHE COMINCIATO <lb/>a infonderui acqua eſſa correr à fuori: ma intralaſciato per vn poco non <lb/>più vſcirà fin tanto, che il vaſo non ſer à pieno fin a mezo, e di <lb/>nuouo fatta vn poco d’ intermtſſione non più ſe ne vſcirà <lb/>l’acqua fintanto, che non ſerà pieno fin di ſopra. <lb/>Theorema LV.</head>
<p>
  <s xml:id="echoid-s567" xml:space="preserve">SIa il vaſo A. B. che nel corpo naſcoſte habbia tre piegate canne C. D. E. l’vna <lb/>gamba delle quali, verſo il fondo del vaſo habbia vn capo, e l’altro fuori di <lb/>eſſo vaſo in vna baſe K. L. M. N. e nel fondo di eſſa, &amp; alle loro eſtremità pongaſi <lb/>li tre vaſi F. G. H. il fondo de i quali tanto ſia dalle bocche di eſſe canne diſtante <lb/>quanto è aſſai il fluſſo dell’ acqua, &amp; in eſſa baſe ſotto detti vaſi ſiaui il canale <lb/>X. e la curuità della canna E. ſia al fondo del vaſo poco diſtante; </s>
  <s xml:id="echoid-s568" xml:space="preserve">e la piega tura <lb/>della canna C. giunga a mezzo dalla altezza di eſso, e quella della ſiffone, ò can-<lb/>na D. tocchi quaſi il diafragrama al collo del vaſo; </s>
  <s xml:id="echoid-s569" xml:space="preserve">dopoi cominciſi a infondere; <lb/></s>
  <s xml:id="echoid-s570" xml:space="preserve">acqua nel vaſo A. B. che perche la curuità della canna E. è vicino al fondo di eſ-<lb/>ſo, ſubito coperra ſpargerà fuori per il canale l’ acqua, che dentro il vaſo ſerà
<pb o="61" file="0073" n="73" rhead="DI HERONE."/>
<anchor type="figure" xlink:label="fig-0073-01a" xlink:href="fig-0073-01"/>
portandola nel vaſo H. e di queſto nel <lb/>car ale X. &amp; il vaſo H. rimarrà di ac-<lb/>qua pieno, e piena d’aria lo auanzo <lb/>della canna E. e quando di rucue tor-<lb/>naromo ad infondere acqua nel vaſo <lb/>A. B. non più ſe ne andrà per la canna; <lb/></s>
  <s xml:id="echoid-s571" xml:space="preserve">perche l’aria è rinchiuſo in eſſa frà <lb/>qu@ſl’acqua, e quella, che ſerà nel va-<lb/>ſo. </s>
  <s xml:id="echoid-s572" xml:space="preserve">Alzeraſſi dunque l’acqua fino alla <lb/>ſon ma curuità della canna C. fin <lb/>a mezzo del vaſo; </s>
  <s xml:id="echoid-s573" xml:space="preserve">poi comincierà di <lb/>nuouo a ſpargere per eſſa canna C. <lb/>fatta vn poco d’intermiſſione così: <lb/></s>
  <s xml:id="echoid-s574" xml:space="preserve">eron altraméte della canna D. </s>
  <s xml:id="echoid-s575" xml:space="preserve">Quan-<lb/>do il vaſo ſerà pieno auenirà: </s>
  <s xml:id="echoid-s576" xml:space="preserve">ma è da <lb/>auertire, che con deſtrezza biſognerà <lb/>infondere l’acqua nel vaſo, acciò l’a-<lb/>ria, che ſerà relle canne compreſſo, <lb/>ò ſerrato da violente forza, nonſia <lb/>ſcacciato.</s>
</p>
<div xml:id="echoid-div98" type="float" level="3" n="1">
<figure xlink:label="fig-0073-01" xlink:href="fig-0073-01a"><!-- 0073-01 -->
<variables xml:id="echoid-variables56" xml:space="preserve">A C D B E K M L F G H I</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div100" type="section" level="2" n="63">
<head xml:id="echoid-head72" style="it" xml:space="preserve">FABRICARE VNA CVCVRBITVLA, O’ VENTOSA, <lb/>che ſenza fuoco tiri. Theorema LVI.</head>
<p>
  <s xml:id="echoid-s577" xml:space="preserve">FAcciaſi la cucurbitula, ò ventoſa A. B. C. del modo ſolito, la quale habbia nel <lb/>mezzo il dia fragrama D. E. e nel fondo il ſmeriſma, ò ſchizzo (come diciam <lb/>noi) la canna eſteriore, del quale ſia la F. G. e la interiore H. K. con li buchi L. M. <lb/></s>
  <s xml:id="echoid-s578" xml:space="preserve">che ſi riſpondino a drittura l’vno dell’altro; </s>
  <s xml:id="echoid-s579" xml:space="preserve">ma di eſso ſchizzo ſiano in quella <lb/>parte, che auãza fuori della ventoſa, e li buchi interiori di e@se canne ſiano aper-<lb/>ti; </s>
  <s xml:id="echoid-s580" xml:space="preserve">ma li buchi eſteriori della canna H. K. ſiano chiuſi, e queſta habbia il manico. <lb/></s>
  <s xml:id="echoid-s581" xml:space="preserve">Oltre di ciò facciaſi ſotto il diafragrama vn’ altro ſmeriſma, ò ſchizzo ſimile al <lb/>ſopraſcritto, che vicino al fondo habbia anche egli li buchi, che come nell’altro <lb/>ſi riſpondino dentro della ventoſa, e ſiano inſieme con il dia fragrama D. E. bu-<lb/>cati. </s>
  <s xml:id="echoid-s582" xml:space="preserve">Queſti accommodati volghinſi le canne interiori con i manichi loro, sì che <lb/>li pertugi al dritto ſieno l’vno dell’altro, ma quelli, che ſono ſotto il diafragrama <lb/>D. E. nel volgerla reſtino chinſi, sì che quando il vaſo C. D. ſerà d’aria ripieno
<pb o="62" file="0074" n="74" rhead="DELLI SPIRITALI"/>
aprendo la bocca con li buchi L. M. ſi poſsa sfuggere qualche parte di atia; </s>
  <s xml:id="echoid-s583" xml:space="preserve">poi <lb/>di nuouo volgendo il manico non mouendo però dalla bocca lo ſchizzo poſ-<lb/>ſiam bauere l’ aria ſottigliato, che è nel vaſo C. D. e queſto più volte reiterato <lb/>
<anchor type="figure" xlink:label="fig-0074-01a" xlink:href="fig-0074-01"/>
cauaremo di eſso vaſo grá <lb/>quantità dell’ aria, che in <lb/>eſso ſerà. </s>
  <s xml:id="echoid-s584" xml:space="preserve">Accoſtata dopo <lb/>queſto la ventoſa alla car-<lb/>ne come ſi ſuol commu-<lb/>nemeute fare, a priremo li <lb/>pertugi riſpondentiſi del-<lb/>lo ſchizzo N. X. volgendo <lb/>il manico X. che è neceſſa-<lb/>rio, che è nel vaſo C. D. <lb/></s>
  <s xml:id="echoid-s585" xml:space="preserve">paſſi qualche parte dell’a-<lb/>ria, che è nel vaſo A. B. D. <lb/>E. e che in luogo di aria è <lb/>neceſsario ſia atratta la <lb/>carne, che la materia ac-<lb/>quoſa, che è d’intorno ad <lb/>eſsa carne ſia atratta per <lb/>le inciſure, ò rarità della <lb/>carne, che poroſità ſogliono eſser chiamate.</s>
</p>
<div xml:id="echoid-div100" type="float" level="3" n="1">
<figure xlink:label="fig-0074-01" xlink:href="fig-0074-01a"><!-- 0074-01 -->
<variables xml:id="echoid-variables57" xml:space="preserve">A B D N E X G L F H M C K</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div102" type="section" level="2" n="64">
<head xml:id="echoid-head73" style="it" xml:space="preserve">ET GLI SMERISMI, O PIVLCHI, CHE DA I VOLGARI <lb/>ſon detti ſchizzi per queſta cauſa fanno il ſopradetto effetto. Theor. LVII.</head>
<p>
  <s xml:id="echoid-s586" xml:space="preserve">SI forma vna canna A. B. dentro della quale vn’altra vi ſi pone, e queſta dal <lb/>capo, che và dentro all’ altra canna s’ingroſsa tanto con vna lamina, che <lb/>
<anchor type="figure" xlink:label="fig-0074-02a" xlink:href="fig-0074-02"/>
agiatiſſimamente per entro vi vadi sì; </s>
  <s xml:id="echoid-s587" xml:space="preserve">ma non ne fuga per queſto l’aria; </s>
  <s xml:id="echoid-s588" xml:space="preserve">dall’al-
<pb o="63" file="0075" n="75" rhead="DIHERONE."/>
tro capo vi ſi fà vn manico, come D. per poter volgerla, e la bocca della canna A. <lb/></s>
  <s xml:id="echoid-s589" xml:space="preserve">B. vi ſi fà vn’altra cannuccia forata G. H. che quando vogliamo attrahere coſa <lb/>alcuna poſto la bocca H. entro vn vaſo ripieno di qual ſi voglia coſa, ſtando la <lb/>canna C. D. tutta infiſsa nella A. B. indi tirato la parte fuori della canna A. B. è <lb/>neccſsarlo che ò aria, ò humido, a ſe tiri per riempire la parte della canna, che ſi <lb/>è vuotata, non vi eſsendo altra bocca, che quella della cannuccia H. &amp; volendo <lb/>per cótrario immettere qual ſi voglia coſa, ò a cqua, ò altra ſorte di coſa humida, <lb/>tiriſi nella canna A. B. indi poſta la bocca H. nel neceſsario luogo; </s>
  <s xml:id="echoid-s590" xml:space="preserve">Indi cacciando <lb/>la C. D. nella A. B. eſprimeremo l’humido in quella quantità, che parerà a noi.</s>
</p>
<div xml:id="echoid-div102" type="float" level="3" n="1">
<figure xlink:label="fig-0074-02" xlink:href="fig-0074-02a"><!-- 0074-02 -->
<variables xml:id="echoid-variables58" xml:space="preserve">E F D L C G A</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div104" type="section" level="2" n="65">
<head xml:id="echoid-head74" style="it" xml:space="preserve">FABRICARE VN VASO, CHE RIEMPIENDOSI <lb/>il vino ſe ne vada per vn canale, che in eſſo vaſo ſia presto al fondo: Ma <lb/>mettendouiſi vn bicchiere di acqua ſi fermi l’eſito di detto vino, e ſe ve <lb/>ne ſerà giunto vn’ altro bicchiere, queſto con la infuſ aui, primaſe <lb/>ne anderà per due altri canali, e che dopo, che tutta l’acqua <lb/>ſerà effuſa, di nuouo ritorni il vino a vſcirſene per il ca-<lb/>nale di mezzo, sì che niente ve ne reſti. <lb/>Theorema LVIII.</head>
<p>
  <s xml:id="echoid-s591" xml:space="preserve">POngaſi, che ſia il vaſo A. B. che preſso il fondo habbia il canale C. &amp; intra-<lb/>mezzato il colio con vn diafragrama D. E. per il quale paſſi la canna F. G. <lb/></s>
  <s xml:id="echoid-s592" xml:space="preserve">con vn tubo intorno tanto da eſso diafragrama diſtante, quanto potrà baſtare <lb/>
<anchor type="figure" xlink:label="fig-0075-01a" xlink:href="fig-0075-01"/>
al fluſso dell’ acqua ſufficiente-<lb/>mente: </s>
  <s xml:id="echoid-s593" xml:space="preserve">dopoi pongaſi per eſso <lb/>diafragrama, l’altra canna H. K. <lb/></s>
  <s xml:id="echoid-s594" xml:space="preserve">che ſopra di eſsa manco auanzi <lb/>dell’ altra, e ſopra vi è vn tubo, <lb/>an co lui dal diafragrama, alquáto <lb/>diſtante per il fluſso dell’ acqua, <lb/>&amp; eſsa canna diuidaſi nel corpo <lb/>del vaſo in due canali L. M. &amp; eſ-<lb/>ſo vaſo habbia ſotto il dia fragra-<lb/>ma lo ſpiracolo N. </s>
  <s xml:id="echoid-s595" xml:space="preserve">Chiudaſi do-<lb/>po queſto li due canali L. M. &amp; <lb/>infuſo vino nel collo del vaſo, eſ-<lb/>ſo paſserà nel ventre del vaſo per <lb/>la canna F. G. fuggendoſene l’a-<lb/>ria per lo ſpiraglio, &amp; apraſi li ca-<lb/>nali L M. che da eſſi non hà dub-<lb/>bio, che ne vſcirà l’ humido, che è <lb/>nella canna H. K. e dal C. ſene, <lb/>vſcirà quello, che è nel ventre del vaſo; </s>
  <s xml:id="echoid-s596" xml:space="preserve">ma ſe nel diſcorſo del C. in mozzo la ef-<lb/>fuſione di eſso ſerà verſato vn bicchiere diacqua, nel collo del vaſo viera
<pb o="64" file="0076" n="76" rhead="DELLI SPIRITALI"/>
chiuſo l’a lito, che per la canna F.G. hauea l’aria nel vaſo: </s>
  <s xml:id="echoid-s597" xml:space="preserve">onde il vino per C. <lb/></s>
  <s xml:id="echoid-s598" xml:space="preserve">conuerrà ſecmacſi, in di verſato in eſso vaſo vn’ altra miſura d’ acqua eſsa ſopra <lb/>auinzan ſo al tubo H. conaerrà ſe ne vada fuori per li dne canali M. N. ma fini-<lb/>to il fluſso di eſſi can ili in tanto verra il taóo G. a ripigliat aria; </s>
  <s xml:id="echoid-s599" xml:space="preserve">onde il canale <lb/>C. ſerà forzato a ſparger di nuouo il vino; </s>
  <s xml:id="echoid-s600" xml:space="preserve">E queſto tante volte auerrà, quante <lb/>volte vi giungeremo le ſopradette miſure di acqua, che è il propoſto.</s>
</p>
<div xml:id="echoid-div104" type="float" level="3" n="1">
<figure xlink:label="fig-0075-01" xlink:href="fig-0075-01a"><!-- 0075-01 -->
<variables xml:id="echoid-variables59" xml:space="preserve">H G D E N A B K L C M</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div106" type="section" level="2" n="66">
<head xml:id="echoid-head75" style="it" xml:space="preserve">CHE VN VASO PIENO DI VINO, CHE HABBIA VN CA-<lb/>nale per eſſo alcuna volta ſparger à vino, &amp; infondendoui acqua, ſparger à ac-<lb/>qua pura; poſcia dinuouo verſer à vino, e ſe ad altri piacer à verſer à <lb/>acqua, e vino miſchiato. Theorema LIX.</head>
<figure><!-- 0076-01 -->
<variables xml:id="echoid-variables60" xml:space="preserve">E C A H G F</variables>
</figure>
<p>
  <s xml:id="echoid-s601" xml:space="preserve">SE per eſse npio; </s>
  <s xml:id="echoid-s602" xml:space="preserve">ſerà alcun va-<lb/>ſo A.B.di cui il collo ſia intra-<lb/>mezzato con il diafragrama C.D. <lb/></s>
  <s xml:id="echoid-s603" xml:space="preserve">per il quale paſſi il tubo E. F. che <lb/>nelle parti del fondo habbia l’ vſci-<lb/>ta, &amp; in G. vn picciolo pertugio <lb/>dentro il corpo del vaſo poco dal <lb/>fondo diſtante, e che di ſotto dal <lb/>collo habbia vno ſpiraglio H. e ſe <lb/>chiuderemo il canale F. &amp; infon-<lb/>deremo vino nel vaſo egli entrarà <lb/>nel ventre di eſso dandoli luogo <lb/>l’ aria per lo ſpiracolo H. il quale <lb/>chiuſo non vſcirà, ſe non quello, <lb/>che ſerà nel tubo E.F. onde, che ſe <lb/>nel collo del vaſo porremo acqua <lb/>pura, eſsa ſe ne vſcirà: </s>
  <s xml:id="echoid-s604" xml:space="preserve">ma aprendo <lb/>lo ſpiracolo N. vſcirà meſchiata <lb/>l’acqua con il vino: </s>
  <s xml:id="echoid-s605" xml:space="preserve">ma finita l’ac-<lb/>qua vſcirà ſolo il vino puro.</s>
</p>
</div>
<div xml:id="echoid-div107" type="section" level="2" n="67">
<head xml:id="echoid-head76" style="it" xml:space="preserve">ACCESO SOPRA VN’ ALT ARE VN FVOCO FAR SACRIFI-<lb/>car due ſtatue, e ſibilare vn Dragone. Theorema LX.</head>
<p>
  <s xml:id="echoid-s606" xml:space="preserve">SIa la baſe concaua, ò vuota di dentro A.B. ſopra la quale poſi lo a’tare C. che <lb/>nel mezzo habbla vna canna D.E. che ſcenda nella baſe, e detta canna in 3. <lb/></s>
  <s xml:id="echoid-s607" xml:space="preserve">ſi diuida entro la detta baſe, vna delle quali E.F. vada alla bocca del Dragone, e <lb/>la E.G. al vaſo K.L. ricettacolo del vino del facrificio: </s>
  <s xml:id="echoid-s608" xml:space="preserve">il fondo del quale ſia più <lb/>alto dell’animale M. ſaldato eccellentemente ad eſsa canna E.G. &amp; in capo l’al-<lb/>tra canna E.N. ve ne ſia vn’altro ſimile O. &amp; in queſti vaſi ricettacoli di vini ſia-
<pb o="65" file="0077" n="77" rhead="DIHERONE."/>
no impoſte le infleſſe ſiffone R.S.T.Y. i principij delle quali ſiano impoſte nel vi-<lb/>no, e le loro eſtremità giungano nelle mani delle ſacrificanti immagini, &amp; è da <lb/>auertire, che prima, che ſi accenda il fuoco, biſogna immettere nelle canne vn <lb/>poco di acqua: </s>
  <s xml:id="echoid-s609" xml:space="preserve">ouero bagnate non così facilmente dal calor del fuoco s’ abbru-<lb/>ſsino, ò ſi sbuſino, che lo ſpirito del fuoco miſchiato con l’ acqua aſcenderà per <lb/>
<anchor type="figure" xlink:label="fig-0077-01a" xlink:href="fig-0077-01"/>
le canne ai vaſi K. L. &amp; O. P.e per le infleſse ſiffoni R.S.T.Y. sſorzaranno ad <lb/>vſcire il vino, e parerà, che per mano delle ſtatue ſia verſato fuor di quei vaſi, <lb/>che nelle mani viſeranno poſti, &amp; in queſto modo parerà, che ſacrificano, e per <lb/>l’altra canna E. F. alla bocca del Drago vſcendo lo ſpirito lo fà ſibilare, che é il <lb/>propoſto.</s>
</p>
<div xml:id="echoid-div107" type="float" level="3" n="1">
<figure xlink:label="fig-0077-01" xlink:href="fig-0077-01a"><!-- 0077-01 -->
<variables xml:id="echoid-variables61" xml:space="preserve">K O R L S Y C M D A G E N B I</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div109" type="section" level="2" n="68">
<head xml:id="echoid-head77" style="it" xml:space="preserve">FABRICARE VNA LVCERNA, CHE ST ANDO ACCESA. <lb/>e perciò conſumatoſi l’oglio ſe giunto vi ſer à acqua, eſſa tornarà a riem-<lb/>pirſi di oglio. Theorema LXI.</head>
<p>
  <s xml:id="echoid-s610" xml:space="preserve">SOtto la lucerna ſia fatto il vaſo A. B. diligentemente in ogni ſua parte tura-<lb/>to, dal quale deriuino le due canne C.D.E.F. forate inſieme con il vaſo, e la <lb/>bocca della canna C. tanto ſtia ſopra il fondo del vaſo quanto potrà baſtare per <lb/>il fluſso dell’acqua, e facciaſi, che eſsa canna C.D. fin alla ſuperficie della lucer-
<pb o="66" file="0078" n="78" rhead="DELLI SPIRITALI"/>
na giunga, e ſopra di eſſa ſuperficie in bocca D. pongaſi vna tazzetta per potere <lb/>in eſſa infondere acqua, e la canna E.F. ſia forata inſieme con il ſondo della lu-<lb/>cetna, che ſe in eſſa lucerna per l’vmbilico v’ infonderemo oglio calerà prima <lb/>
<anchor type="figure" xlink:label="fig-0078-01a" xlink:href="fig-0078-01"/>
nel vaſo A.B. ſotto di eſſa lucerna, che pieno, che <lb/>ſerà ſi riempirà dopo queſto, e le due canne C. <lb/></s>
  <s xml:id="echoid-s611" xml:space="preserve">D.E.F. e la lucerna iſteſſa, la quale acceſa con-<lb/>ſumerà l’oglio: </s>
  <s xml:id="echoid-s612" xml:space="preserve">ma ſe nella tazzetta infõderemo <lb/>acqua ella ſenza fallo calerà nel vaſo A. B. e per-<lb/>che eſſa è dell’oglio più graue ſubito ſe ne ande-<lb/>rà al fondo, e l’oglio aſcendendo per la canna E. <lb/>F. la tiempirà di oglio di nuouo: </s>
  <s xml:id="echoid-s613" xml:space="preserve">Il che ſi potrà <lb/>reiterare quante volte ci piacerà, e ſe per qual-<lb/>che accidente biſognerà cauar l’ oglio fuori del <lb/>vaſo A.B. con l’inſtrumento deſcritto nel 57. di <lb/>queſto ſi farà. </s>
  <s xml:id="echoid-s614" xml:space="preserve">Anzi, che così ſi cauerà è quello <lb/>della lucerna, e quell’ anco, che nelle canne ſe-<lb/>rà: </s>
  <s xml:id="echoid-s615" xml:space="preserve">ma molto meglio giudico, che ſerà il porre il <lb/>tubo E.F. ſotto l’orecchia della lucerna, e la can-<lb/>na C.D. poco dopo di eſſa, che però babbia co-<lb/>me ſi è detto la tazzetta, ò altra forma di vaſet-<lb/>to ad vſo di tazza nella quale s’infonda l’acqua; <lb/></s>
  <s xml:id="echoid-s616" xml:space="preserve">acciò in vn tempo iſteſſo e l’acqua ſcenda al baſſo, e l’oglio crelca nel corpo del-<lb/>la propoſta lucerna.</s>
</p>
<div xml:id="echoid-div109" type="float" level="3" n="1">
<figure xlink:label="fig-0078-01" xlink:href="fig-0078-01a"><!-- 0078-01 -->
<variables xml:id="echoid-variables62" xml:space="preserve">D E A F B C</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div111" type="section" level="2" n="69">
<head xml:id="echoid-head78" style="it" xml:space="preserve">DATO VN VASO CHIVSO D’OGN’ INTORNO, DA CVI <lb/>deriui vn oanale aperto; ſotto il quale posto vna coppa d’acqua, ſe altri da eſſe <lb/>la ſottrarà, far che l’acqua ſe n’eſca fuori di eſſo vaſo; ma alzata eſſa <lb/>coppa far, che l’ acqua non più ſcorra. Theor. LXII.</head>
<p>
  <s xml:id="echoid-s617" xml:space="preserve">SIa il propoſto vaſo A. B. di cui il collo ſia intramezzato dal diafragrama C. <lb/></s>
  <s xml:id="echoid-s618" xml:space="preserve">D. e per eſſo paſſi la canna E.F. con eſſo diafragrama perforata, &amp; intorno <lb/>ad eſſa pongaſi il tubo K.L. nella cui ſommità; </s>
  <s xml:id="echoid-s619" xml:space="preserve">cioè nella ſquama, che lo cuopre, <lb/>pongaſi ad eſſa aſſaldata la infleſſa ſiffone M.N. di cui la bocca M. ſia con eſſa <lb/>ſquama bucata, &amp; alla bocca della gamba eſteriore della ſiftone ſiaui vn vaſet-<lb/>to O.X. il quale ſe di acqua lo riempiremo, riempiaſſi anco la gamba della canna, <lb/>che è nel vaſo: </s>
  <s xml:id="echoid-s620" xml:space="preserve">ſia dopo queſto infuſa acqua nel collo del vaſo A. B. tanta cioè, <lb/>che otturi la reſpiratione, che fatto queſto, ſe bene il ventre del vaſo ſerà ripie-<lb/>no, non vſcirà perciò fuori del canale, l’acqua per non hauer reſpiro auenga, che <lb/>detto canale ſtia aperto; </s>
  <s xml:id="echoid-s621" xml:space="preserve">ma ſe abbaſſaremo il vaſetto, ò coppa verrà neceſſaria-<lb/>mente anco a vuotarſi quella parte della gamba eſteriore della inſleſſa ſiffone,
<pb o="67" file="0079" n="79" rhead="DIHERONE."/>
&amp; in eſſo luogo ſerà turato l’aria vicino, e queſta inſieme con lei tirarà l’ acqua <lb/>infuſa nel collo del vaſo A.B. sì che ella ſopra auanzarà alla bocca F. onde perciò <lb/>
<anchor type="figure" xlink:label="fig-0079-01a" xlink:href="fig-0079-01"/>
hauendo l’ aria ingreſſo <lb/>nel vaſo, il canale P. <lb/></s>
  <s xml:id="echoid-s622" xml:space="preserve">ſpargerà l’acqua fin <lb/>tanto, che di nuouo al-<lb/>zato il vaſetto ſotto la <lb/>gamba eſteriore ſi fac-<lb/>cia, che la reſratione ſi <lb/>chiuda cõ l’ acqua, che è <lb/>nel collo del vaſo;</s>
  <s xml:id="echoid-s623" xml:space="preserve">la qua <lb/>le, nel luogo di prima ri <lb/>tornata, cauſerà per la <lb/>ſopradetta ragione, che <lb/>non eſprimerà fuori <lb/>l’acqua il canale P. </s>
  <s xml:id="echoid-s624" xml:space="preserve">On-<lb/>de leuando, e deprimen-<lb/>do il vaſetto ſotto la ſo-<lb/>pradetta gamba eſterio-<lb/>re, e la infleſſa ſiffone ſi <lb/>verrà a ſchiudere, &amp; ad <lb/>aprire l’ eſito all’ acqua <lb/>per il canale P. auerten-<lb/>do però di non leuare <lb/>affatto la coppa per nõ <lb/>vuotare affatto la gam-<lb/>ba della ſiffone; </s>
  <s xml:id="echoid-s625" xml:space="preserve">onde <lb/>perciò il ſpettacolo di queſta coſa paia ben ordinato.</s>
</p>
<div xml:id="echoid-div111" type="float" level="3" n="1">
<figure xlink:label="fig-0079-01" xlink:href="fig-0079-01a"><!-- 0079-01 -->
<variables xml:id="echoid-variables63" xml:space="preserve">M K F L C D A E B O N X P</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div113" type="section" level="2" n="70">
<head xml:id="echoid-head79" style="it" xml:space="preserve">EQVEI VASI, CHE NOI CHIAMIAMO OLLE <lb/>ſi fanno gridare nel verſare l’acqua, ò vino. Theorema LXIII.</head>
<p>
  <s xml:id="echoid-s626" xml:space="preserve">FAcciaſi, che il vaſo habbia il collo intramezzato dal diafragrama A. B. e la <lb/>bocca anco eſſa chiuſa con il diafragrama C. D. e per ciaſcun di eſſi diafra-<lb/>grami pongaſi il tubo E.F. con eſſi forato; </s>
  <s xml:id="echoid-s627" xml:space="preserve">&amp; il manico dell’Olla, ò la gena, che <lb/>io per nome generale chiamo vaſo ſia G. H. pongaſi poi nel diafragrama A. B. <lb/></s>
  <s xml:id="echoid-s628" xml:space="preserve">L’altro tubo tanto con la bocca ſuperiore diſtante dal diafragrama C.D. quan-<lb/>to al biſogno del fluſſo dell’ acqua può conuenientemente baſtare, e nel diafra-<lb/>grama C. D. pongaſi la canuccia M. in modo accommodata, che poſſa mandar <lb/>fuori la voce: </s>
  <s xml:id="echoid-s629" xml:space="preserve">riempiaſi poi il vaſo per il tubo E. F. che ſe n’vſcirà l’aria per il tubo <lb/>K.L. e per la canuccia M. e quando piegaraſſi per il manico il vaſo per farne
<pb o="68" file="0080" n="80" rhead="DELLI SPIRITALI"/>
vſcir fuori l’acqua per il tubo E.F. entrarà anco nel collo da i diafragrami chiuſo <lb/>per il tubo K.L. ſcacciandone l’aria per la canuccia M. la quale conuerrà, che <lb/>ſtrepitoſamente gridi: </s>
  <s xml:id="echoid-s630" xml:space="preserve">ma auertiſcaſi di far vn buco oltre li ſopradetti nel dia-<lb/>fragrama A.B. acciò ritornando a drizzar l’Olla in piedi nel ventre del vaſo poſ-<lb/>ſa di nouo ritornare.</s>
</p>
<figure><!-- 0080-01 -->
<variables xml:id="echoid-variables64" xml:space="preserve">G D B A H F L</variables>
</figure>
</div>
<div xml:id="echoid-div114" type="section" level="2" n="71">
<head xml:id="echoid-head80" style="it" xml:space="preserve">FAR CHE ST ANDO VN VASO PIEN DI VINO SOPRA <lb/>vnabaſe, con vn canale aperto nel fondo nell’ abbaſſar vn peſo il canale <lb/>verſi il vino a miſur a: cioè a voglia noſtra vn boccale alle volte, &amp; al-<lb/>tre volte mezzo boccale, e finalmente quanto ti piacerà. <lb/>Theorema LXIV.</head>
<p>
  <s xml:id="echoid-s631" xml:space="preserve">SOpra vna baſe K.L.M.N. poſiil vaſo A.B. da riempirſi di vino, e nel ſondo di <lb/>eſſo ſiaui il canale D. &amp; il collo ſia intramezzato con il diafragrama E.F.G. <lb/></s>
  <s xml:id="echoid-s632" xml:space="preserve">al quale proceda nel ventre del vaſo, il tubo G. H. tanto però dal fondo diſtan-<lb/>ie, quanto potrà conuenientemente baſtare per il fluſſo del vino: </s>
  <s xml:id="echoid-s633" xml:space="preserve">pongaſi dopo <lb/>vn’altro tubo X. che paſſi per la baſe, e per il corpo del vaſo, e giũga poco diſtã-<lb/>te dal diafragrama E.F. dopoi pongaſi nella baſe tant’ acqua per alcun buco, che <lb/>venga da eſſa chiuſa la bocca del tubo X. dopo queſto facciaſi la regola P. R. <lb/>mezza della quale ſia dentro la baſe l’altra metà auanzi fuori; </s>
  <s xml:id="echoid-s634" xml:space="preserve">e queſta poſi in <lb/>bilico, e mouaſi sù’l punto S. fatto queſto pongaſi in ca po di eſſa ragola in P. <lb/>con fune, ò catena ſuſpeſo il vaſo Z. nel cui fondo ſia il buco T. ma prima, che ſi <lb/>ponga l’acqua nella baſe empiaſi per il tubo G. H. il vaſo, il che ſi potrà fare
<pb o="69" file="0081" n="81" rhead="DIHERONE."/>
vſcendoſene l’aria per il tubo O. X. &amp; in tanto, che ſi chiuderà la bocca O. del <lb/>tubo O. X. e che ſi diſſerrerà il canale D. non è dubbio, che il vino non vſcirà <lb/>fuori per le ragioniin altro luogo adotte; </s>
  <s xml:id="echoid-s635" xml:space="preserve">Ma ſe abbaſſaremo la eſtremità della <lb/>regola in R.ſi leuarà vna parte del vaſo, che dall’altro capo, della regola è appe-<lb/>
<anchor type="figure" xlink:label="fig-0081-01a" xlink:href="fig-0081-01"/>
ſo in P.e perche per il bu-<lb/>co T. l’acqua è entrata, <lb/>nel vaſo alzandoſi eſſo ſi <lb/>vien a leuar l’acqua alla <lb/>baſe, e perciò ſi darà vn <lb/>poco di reſpiratione alla <lb/>bocca O. onde fuor del <lb/>canale l’acqua ſe ne vſci-<lb/>rà. </s>
  <s xml:id="echoid-s636" xml:space="preserve">Fin tanto che vſcendo <lb/>l’acqua del vaſo per il bu-<lb/>co T. verrà di nuouo ad <lb/>otturarſi la bocca del tu-<lb/>bo O. così è non altra-<lb/>mente ſe tornarerno ad <lb/>abbaſlar la regola R. più <lb/>che non haurà fatto di <lb/>prima, e per il canale D. <lb/>fluirà maggior quantità <lb/>di vino. </s>
  <s xml:id="echoid-s637" xml:space="preserve">Ma ſe tutto il va-<lb/>ſo alzaremo) molto mag-<lb/>gior quantità di vino <lb/>eſprimerà la bocca D.</s>
  <s xml:id="echoid-s638" xml:space="preserve">Ma <lb/>acciò, chenon habbiam <lb/>N queſta fatica di deprime-<lb/>re con mano la regola R. pongaſi il peſo Q. taccato nella parte eſteriore della <lb/>regola R.che ſtando eſſo peſo in R leuarà fuori dell’acqua tutto il vaſo, e quan-<lb/>to più ſi auicinarà alla baſe, tanto minore quantità di vino vſcirà peril canale D. <lb/>Onde con la eſperienza ritrouate le quantità, che ci piacerà di deprimere la re-<lb/>gola R. per hauer diuerſe quãtità di vino, le ſegnaremo sù la regola indi sù quel-<lb/>la che ci piacerà portato il peſo haueremo a noſtro piacere la deſiderata quan-<lb/>tità di vino, chiudendo, e ſchiudendo ſempre il canale D.</s>
</p>
<div xml:id="echoid-div114" type="float" level="3" n="1">
<figure xlink:label="fig-0081-01" xlink:href="fig-0081-01a"><!-- 0081-01 -->
<variables xml:id="echoid-variables65" xml:space="preserve">G X A B H D K L P R M</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div116" type="section" level="2" n="72">
<head xml:id="echoid-head81" style="it" xml:space="preserve">FABRICARE VN VASO FLVSSILE, CHE IN PRINCIPIO <lb/>ſparga humori misti e ſe v’ infonderemo acqua, che l’acqua da per sè ſene <lb/>eſca, e di nuouo poi meſchiata. Theorema LXV.</head>
<p>
  <s xml:id="echoid-s639" xml:space="preserve">SIa il vaſp fluſſile A. B. di cui il collo ſia intramezzato con il diaſragrama C. <lb/></s>
  <s xml:id="echoid-s640" xml:space="preserve">D. per il quale pongaſi il tubo E.F.che fuori di eſſo vaſo ſporga per mandar
<pb o="70" file="0082" n="82" rhead="DELLI SPIRITALI"/>
ſuorl l’humore, e queſto nella patte interiore del vaſo habbia vn picciolo pertu-<lb/>gio G. &amp; il vaſo habbia ſotto il diaſragrama lo ſpiracolo N. indi turata la bocca F. <lb/></s>
  <s xml:id="echoid-s641" xml:space="preserve">pongaſi nel vaſo il vino meſchiato, che eſſo gli entrarà nel corpo pet il pertugio <lb/>G.e quando lo vorremo cauare apraſi lo ſpiracolo N.acciò l’aria v’entri, &amp; vſci-<lb/>
<anchor type="figure" xlink:label="fig-0082-01a" xlink:href="fig-0082-01"/>
rà. </s>
  <s xml:id="echoid-s642" xml:space="preserve">Ma chiuſo lo ſpiracolo N. ſe infonderemo acqua nel vaſo non vſcirà altra-<lb/>mente il meſchiato vino: </s>
  <s xml:id="echoid-s643" xml:space="preserve">ma l’acqua pura ſe bene poi aperto il ſpiracolo N. vſci-<lb/>rà per F.e l’vno, e l’altro inſieme; </s>
  <s xml:id="echoid-s644" xml:space="preserve">onde ſerà queſto maggiormente miſto; </s>
  <s xml:id="echoid-s645" xml:space="preserve">perche <lb/>ſerà compoſto e di miſto, e d’acqua.</s>
</p>
<div xml:id="echoid-div116" type="float" level="3" n="1">
<figure xlink:label="fig-0082-01" xlink:href="fig-0082-01a"><!-- 0082-01 -->
<variables xml:id="echoid-variables66" xml:space="preserve">N C E B F G</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div118" type="section" level="2" n="73">
<head xml:id="echoid-head82" style="it" xml:space="preserve">SE SOPRAVNABASE SI DARA’ VN VASO, CHE <lb/>habbia non lungi dal fondo vn canale, far che (infuſaui dentro acqua) <lb/>alle volte n’eſca acqua pura, alle volte acqua, &amp; vino meſchiati, <lb/>alle volte anco vino puro. Theorema LXVI.</head>
<p>
  <s xml:id="echoid-s646" xml:space="preserve">IL vaſo, che ſopra il fondo habbia il canale C.D.ſia A.B.del quale ſerrifi il col-<lb/>lo con il diafragrama E.F.per il quale paſſi il tubo G.H. che poco auanzi ſo-<lb/>pra il diafragrama nella parte ſuperiore, e con la bocca inferiore H. tanto ſtia <lb/>ſopra il fondo, quanto per il fluſſo dell’acqua parrà ragioneuole, dopoi ſia l’altto <lb/>tubo K.L. infiſſo nel ventre del vaſo, e ſporga in fuori del corpo di eſſo alla bocca <lb/>del quale ſottopongaſi il picciol vaſo K. M. pieno di vino, e nel diafragrama <lb/>ſia il picciolo pertugio della canuccia N.che queſto fatto ſe per il collo infõderemo <lb/>acqua nel vaſo, eſſa ſcẽderà nel ventre di eſſo fuggendoſene l’aria per la boc-
<pb o="71" file="0083" n="83" rhead="DIHERONE."/>
ca N. fin che tanto ſerà alzata, che per il canale C. comincierà ad vſcire, e quan-<lb/>do quaſi vſcita ſerà ſubito chiudaſi la bocca del tubo N. che conſumata la detta <lb/>acqua, il canale C. a guiſa di ſpirital diabete con eſſa tirerà il vino, che è nel vaſo <lb/>K. M. onde v ſcirà meſchiato, e poſcia puro, e vuoto, che ſerà il vaſo K.M.d’acqua <lb/>la quale tutta vſcita il vaſo ſi tornarà d’aria a riempire. onde giungendo vino <lb/>nel vaſo K. M. &amp; acqua nel collo del vaſo A. B. ſopra il diafragrama, aperto il ſpi-<lb/>racolo N.E dopo fatto, come di ſopra di nuouo tornarà ad operare, che è il pro-<lb/>poſto noſtro.</s>
</p>
<figure><!-- 0083-01 -->
<variables xml:id="echoid-variables67" xml:space="preserve">E G E N A B L D H M K</variables>
</figure>
</div>
<div xml:id="echoid-div119" type="section" level="2" n="74">
<head xml:id="echoid-head83" style="it" xml:space="preserve">DAVN VASO PIENO DIVINO CAVARNE <lb/>per il canale alla miſura, che ci piacerà quanto, e quante volte <lb/>ci parerà. Theorema LXVII.</head>
<p>
  <s xml:id="echoid-s647" xml:space="preserve">IL vaſo pieno di vino ſia A. B. &amp; il canale C.D. il quale in C.habbia la parte <lb/>piegata verſo la bocca del vaſo. in modo, che poſtoui ſopra vn ſtoppaglio <lb/>vengaſi ad otturare;</s>
  <s xml:id="echoid-s648" xml:space="preserve">sì che non verſi. </s>
  <s xml:id="echoid-s649" xml:space="preserve">Habbia dopo queſto il vaſo il ſuo manico, <lb/>ò come quì diſegnato ſi vede,ò in altro modo, che non importa; </s>
  <s xml:id="echoid-s650" xml:space="preserve">pur che la fibbia <lb/>H. ſia al luogo, che ſi vede: </s>
  <s xml:id="echoid-s651" xml:space="preserve">ſopra la qual ſi moua in bilico la regola K.L. dopoi <lb/>pongaſi ſotto la baſe del vaſo l’altra regola M.N.che sù’l perno X.ſi moua. </s>
  <s xml:id="echoid-s652" xml:space="preserve">Indi <lb/>due altre regole K.O.&amp; L.P. affiſſe alla regola K.L.che in detti punti ſi mouano <lb/>intorno a due aſſili, ò perni. </s>
  <s xml:id="echoid-s653" xml:space="preserve">Pongaſi dopo in P. il timpanulo, ò ſtoppaglio E. F. <lb/></s>
  <s xml:id="echoid-s654" xml:space="preserve">in quale ſolleuato eſca fuori il vino per il canale C. D. e depreſſo lo chiuda, sì che <lb/>non più ſparga. </s>
  <s xml:id="echoid-s655" xml:space="preserve">E sù la regola M.N. in N.pongaſi vn’altro vaſo, nel quale cada-
<pb o="72" file="0084" n="84" rhead="DELLI SPIRITALI"/>
no le miſure del vino, che occorrerà di cauare fuori del vaſo A. B. &amp; eſſo vaſo <lb/>ſi a R. ſottopoſto al canale D. dopoi nell’eſtremo della regola M. appendaſi con <lb/>vn’ anello, ò con altro modo il peſo S. pur che ageuolmente poſſa mandarſi quà, <lb/>
<anchor type="figure" xlink:label="fig-0084-01a" xlink:href="fig-0084-01"/>
e là dal O. al M. in mo-<lb/>do, che ponẽdoſi il peſo <lb/>S.in M.s’apra il canale, <lb/>e ne fluiſca il vine nel <lb/>vaſo R. &amp; il peſo S. reſti <lb/>ſuperato. </s>
  <s xml:id="echoid-s656" xml:space="preserve">Onde ſi chiu-<lb/>da il canale C. e per fat <lb/>ne vſcire il vino a miſu-<lb/>ra põgaſi per eſſempio <lb/>nel vaſo R.vn boccal di <lb/>vino, e tãto preſſo di O. <lb/></s>
  <s xml:id="echoid-s657" xml:space="preserve">il peſo, che ſia ſuperato <lb/>dalla grauità di eſſo vi-<lb/>no; </s>
  <s xml:id="echoid-s658" xml:space="preserve">dopoi facciaſi di ſot <lb/>to dal fõdo del vaſo R. <lb/>Vn canale con vna <lb/>chiaue Z. per il quale <lb/>del vaſo R. ſi poſſa ca-<lb/>uare il vino, che queſto <lb/>ſatto potremo porne in <lb/>eſſo vaſo due boccali, <lb/>tre, quattro, e più è me-<lb/>no a voglia noſtra, <lb/>e quanto ci piacerà. </s>
  <s xml:id="echoid-s659" xml:space="preserve">E facciaſi sù la regola frà M. &amp; O. le note di eſſo, cioè mez-<lb/>zo boccale, vn boccale, due boccali, tre boccali: </s>
  <s xml:id="echoid-s660" xml:space="preserve">sù le quali note pongaſi l’agiuſta-<lb/>to peſo, e le miſure deſiderate hauremo a noſtra volontà, che è il propoſto.</s>
</p>
<div xml:id="echoid-div119" type="float" level="3" n="1">
<figure xlink:label="fig-0084-01" xlink:href="fig-0084-01a"><!-- 0084-01 -->
<variables xml:id="echoid-variables68" xml:space="preserve">K G A B P E P D C R N M Z</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div121" type="section" level="2" n="75">
<head xml:id="echoid-head84" style="it" xml:space="preserve">D’VN VASO CHE VICIN AL FONDO HABBIA <lb/>vn canale ſottoui vn vaſetto minore, fuori del quale cauatone quanto vine <lb/>ci piacerà, altretanto far che in eſſo vi ſi giunga per il canale <lb/>del vaſo grande. Theorema LXVIII.</head>
<p>
  <s xml:id="echoid-s661" xml:space="preserve">SIa il vaſo del vino A.B.il canale del quale ſia C.D.diſpõgaſi dopo queſto li re <lb/>goliG.H.K.L.M. ſia in Mil timpanulo, ò ſtoppaglio E.F.indi ſottopongaſi, <lb/>come di ſopra al canale C.D.il vaſo P. &amp; al regolo K.O. in O. pongaſi il catino R <lb/>che cada nel vaſo S. T. forinſi dopoiil tubo V. Y. indi forinſi anco li due vaſi S. <lb/></s>
  <s xml:id="echoid-s662" xml:space="preserve">T. P. in detti buchi aſſaldando il tubo V. Y. che fatti vuoti eſſendo gli vaſi detti <lb/>P.S.T. il catino R. ſerà nel ſondo del vaſo S. T. &amp; aprirà (ſolleuando lo ſtoppa-
<pb o="73" file="0085" n="85" rhead="DIHERONE."/>
ſtoppaglio E.F.) </s>
  <s xml:id="echoid-s663" xml:space="preserve">il buco del canale C.D. del quale cadando il vino nel vaſo P.per <lb/>il tubo V.Y. entrarà nel vaſo S.T.e leuandoſi il catino per il ſentirſi ſolleuar dal-<lb/>l’humore verrà a deprimere lo ſtoppaglio, c chiuderaſſi la bocca C. e ſin tanto <lb/>ſtarà chiuſa, che leu andoſi del vaſo P. </s>
  <s xml:id="echoid-s664" xml:space="preserve">Il vino tornarà il catino nel ſondo del ſuo <lb/>vaſo S. T.</s>
</p>
<figure><!-- 0085-01 -->
<variables xml:id="echoid-variables69" xml:space="preserve">L H K G A M B E F D C S P V</variables>
</figure>
</div>
<div xml:id="echoid-div122" type="section" level="2" n="76">
<head xml:id="echoid-head85" style="it" xml:space="preserve">FABRICARE ILTESORO CON LA RVOT A VERSA-<lb/>tile di bronzo, che ſogliono le genti voltare nell’entr are ne i ſacri Phani, e ſar <lb/>che nel volger la porta di eſſa ruot a ſi volga vn’ vccello, e ne canti vn’ <lb/>altro, e chiuſa la porta, ò ſermata a perta non più ſi volga, nè <lb/>canti l’ vccello. Theorema LXIX.</head>
<p>
  <s xml:id="echoid-s665" xml:space="preserve">SIa il teſoro A.B.C.D. di cui nel mezzo pongaſi lo aſſe E. F. ma in modo ac-<lb/>commodato, che ſi volga facilmente nel quale ſia la ruota H. K. che è quel-<lb/>la che s’hà da volgere di poi ſiano nel medeſimo aſſe la ruota M.&amp; il rullo L.e la <lb/>ruota M.ſia dentata: </s>
  <s xml:id="echoid-s666" xml:space="preserve">ma intorno al rullo ſia inuolta vna fune alla eſtremità del-<lb/>la quale ſia appeſo vn rouerſcio catino vuote nel quale ſia infifla la forata can-
<pb o="74" file="0086" n="86" rhead="DELLI SPIRITALI"/>
<anchor type="figure" xlink:label="fig-0086-01a" xlink:href="fig-0086-01"/>
na O. X. la ſommità della <lb/>quale ſia accommodata <lb/>in modo, che con il fi-<lb/>ſchio renda voce di vc-<lb/>cello, indi ſia ſottopoſto <lb/>ad eſſo catino il vaſo di <lb/>acqua pieno P.R. e da la <lb/>ſommità del teſoro alla <lb/>baſe ſtia in bilico l’aſſe <lb/>S.T.che faciliſſimamen-<lb/>te ſi volga, e nella punta <lb/>S.ſia ui l’vccello, &amp; in T. <lb/></s>
  <s xml:id="echoid-s667" xml:space="preserve">il tradito timpano, li rag <lb/>gi del quale s’implichi-<lb/>no nelli denti della ruo-<lb/>ta M. che ſi vede, che <lb/>voltata la ruota H.K. la <lb/>fune s’auolgerà intorno <lb/>al rullo, e ſoſterrà il cati-<lb/>no: </s>
  <s xml:id="echoid-s668" xml:space="preserve">ma laſciata detta <lb/>ruota il catino per la ſua <lb/>grauità ſcenderà nell’acqua per la canna cacciandone l’aria, onde renderà ſuono, <lb/>e per il volgere delle ruote volgeraſſi l’vccello, che è il propoſto noſtro.</s>
</p>
<div xml:id="echoid-div122" type="float" level="3" n="1">
<figure xlink:label="fig-0086-01" xlink:href="fig-0086-01a"><!-- 0086-01 -->
<variables xml:id="echoid-variables70" xml:space="preserve">S M H L N K B R T</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div124" type="section" level="2" n="77">
<head xml:id="echoid-head86" style="it" xml:space="preserve">ALCVNE SIFFONI POSTE IN ALCVNI VASI <lb/>eſprimono l’acqua, fin che, ò i vaſi ſono vuoti, ouero fin che la ſuperficie del-<lb/>l’acqua giunge al pari della bocca delle ſiffoni:ma(ſe ſer à neceſſario) far <lb/>che nel corſo non più verſino. Theorema LXX.</head>
<p>
  <s xml:id="echoid-s669" xml:space="preserve">Sla che nel vaſo A.B. vi ſia la infleſſa ſiffone, di cui la bocca interiore ſia pie-<lb/>gata all insù, come C.F.G. ſia anco nel vaſo infiſſoil regolo retto H.K. al <lb/>quale congiungaſi l’altro L. M. in punto K. ma mobile ſopra di eſſo, &amp; alla M. <lb/></s>
  <s xml:id="echoid-s670" xml:space="preserve">congiungaſi con vn perno l’altro regolo M. N. che in N. habbia attaccato il vaſo <lb/>G. qual poſſa circompigliare la ritorta della bocca della ſiffone F.G. poi appen-<lb/>daſi il peſo al regolo L.M. in L. acciò ſtando il vaſo, come tubo aperto ſopra la <lb/>bocca G. circompilando la refleſſione ſia alquanto ſopra la bocca; </s>
  <s xml:id="echoid-s671" xml:space="preserve">onde fluiſca <lb/>la ſiffone, e quando più non vorremo detto fluſſo, leuiſi il peſo appeſo in L. che <lb/>il vaſo, che è ad N. abbaſsãdoſi verrà a chiudere la bocca G. onde nõ più opererà
<pb o="75" file="0087" n="87" rhead="DIHERONE"/>
il ſpirital diabete, &amp; volendo che l’acqua di nuouo torni ſcorrere appendaſi di <lb/>nuouo in L.il peſo.</s>
</p>
<figure><!-- 0087-01 -->
<variables xml:id="echoid-variables71" xml:space="preserve">K M L H A B D N E F</variables>
</figure>
</div>
<div xml:id="echoid-div125" type="section" level="2" n="78">
<head xml:id="echoid-head87" style="it" xml:space="preserve">ACCESO VN FVOCO SOPRAVN ALT ARE, FAR <lb/>che girino intorno alcuni animali aguiſa diballi, ma ſiano gli altaritra-<lb/>ſparenti, ò con vetri, ò ſuttiliſſimo oſſo puro. Theor. LXXI.</head>
<p>
  <s xml:id="echoid-s672" xml:space="preserve">FAcciaſi lo altare A.B. traſparente, ò tutto, ò in parte per il coperto del quale <lb/>paſſi vn tubo ſin alla baſe dell’altare, che in mezzo di eſſa in bilico poſſi co-<lb/>me le ruote de i vaſari, queſto facciaſi vuoto, &amp; appreſſo il fondo pongaſi il tim-<lb/>pano, ò ruota, come a punto quelle che hò detto de i vaſari; </s>
  <s xml:id="echoid-s673" xml:space="preserve">e ſopra di eſſa per <lb/>ncrocciati diametri pongaſi altri tubi al tubo congionti piegati ſcambieuol-<lb/>mente alla circonferenza della ruota ſopra la quale ponghinſi gli animali, che <lb/>hanno da gira re in coro, indi acceſo il fuoco l’aria riſcaldata per la canna pro-
<pb o="76" file="0088" n="88" rhead="DELLI SPIRITALI"/>
cederà nel tubo, e del tubo per li piegati tubi cacciato girarà è la ruota, che ſerà <lb/>nell’aluco dell’altare, e gli animali a guiſa di vn ballo.</s>
</p>
  <figure>
    <image file="0088-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/xxxxxxxx/figures/0088-01"/>
  </figure>
</div>
<div xml:id="echoid-div126" type="section" level="2" n="79">
<head xml:id="echoid-head88" style="it" xml:space="preserve">FABRICARE VNA LVCERNA ARTIFICIOSA CON <lb/>oglio dentro, il quale mancandoui viſe ne potrà aggiungere quanto pia-<lb/>cerà ſenza vaſo da oglio. Theorema LXXII.</head>
<p>
  <s xml:id="echoid-s674" xml:space="preserve">SOpra vna baſe concaua A.B.C.D. che sù vn triãgolo ſtia a guiſa di piramide, <lb/>poſi la lucerna, e ſopra di eſſa baſe ſiauiil diaſragrama E. F. ſopra il quale <lb/>poſi l’altro vaſo A.B.E.F. e la eleuatione con varij ornamenti di eſſa lucerna ſia <lb/>G.H.ma concaua, anco eſſa, e ſopra di eſſa gamba, ò colonella poſi la lucerna, <lb/>cioè quel vaſo nel quale ſi mette lo ſtoppino, che poi ſi accende; </s>
  <s xml:id="echoid-s675" xml:space="preserve">ſotto il quale ſia <lb/>vn'altro vaſo di commoda capacità, e per la colonella vuota, come h ò detto paſ-<lb/>ſi il tubo M.N. dal diafragrama E.F. (anzi entri di ſotto da eſſo diafragrama <lb/>mella baſe; </s>
  <s xml:id="echoid-s676" xml:space="preserve">ma ſia ad eſſo aſſaldato beniſſimo,) e giunga fin al fondo del vaſo
<pb o="77" file="0089" n="89" rhead="DIHERONE."/>
dell'oglio Q.R. &amp; ad eſſo eccellentemente ſaldato: </s>
  <s xml:id="echoid-s677" xml:space="preserve">aggiunga ſotto il fondo della <lb/>lucerna da eſſo lontano alquanto. </s>
  <s xml:id="echoid-s678" xml:space="preserve">Paſſi dopoi vn’altro tubo per il fondo della lu-<lb/>cerna, &amp; entri nel vaſo ſotto di eſſa dal fondo diſtante quanto parrà ragioneuole <lb/>
<anchor type="figure" xlink:label="fig-0089-01a" xlink:href="fig-0089-01"/>
peril fluſſo dell'oglio. </s>
  <s xml:id="echoid-s679" xml:space="preserve">Indi riempito eſ-<lb/>ſo vaſo di oglio, e con lui la lucerna riẽ-<lb/>piaſi il vaſo A.B.E.F. d’acqua per il buco <lb/>X. per il fondo del quale paſſi vn tubo, <lb/>&amp; in eſſo ſiaui infiſla vna chiaue S. la <lb/>quale quando ſerà conſumato l’oglio <lb/>della lucerna ſi volga facendo ſcendere <lb/>l’acqua nel vaſo A.B.C.D. che l’aria <lb/>non trouando altro eſito entrarà per il <lb/>tubo M.N. &amp; arriuãdo per eſſo nel va-<lb/>ſo Q.R. sſorzarà l’ oglio ad aſcendere <lb/>nella lucerna, la quale ripiena chiudaſi <lb/>con la chiaue S. che l’acqua più non <lb/>ſcenda; </s>
  <s xml:id="echoid-s680" xml:space="preserve">e queſto tante volte facciaſi <lb/>quante volte farà di biſogno, e lo in-<lb/>tento noſtro ottenuto haueremo.</s>
</p>
<div xml:id="echoid-div126" type="float" level="3" n="1">
<figure xlink:label="fig-0089-01" xlink:href="fig-0089-01a"><!-- 0089-01 -->
<variables xml:id="echoid-variables72" xml:space="preserve">Q R N G H A B E M F C D</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div128" type="section" level="2" n="80">
<head xml:id="echoid-head89" xml:space="preserve">LO ALEOTTI.</head>
<p>
  <s xml:id="echoid-s681" xml:space="preserve">SI puote anco far ſenza il ſeruirſi di <lb/>acqua, quando ci faceſſimo lecito <lb/>ſoſſiar nella baſe, che indubitatamente <lb/>ſarebbe l’iſteſſo.</s>
</p>
</div>
<div xml:id="echoid-div129" type="section" level="2" n="81">
<head xml:id="echoid-head90" style="it" xml:space="preserve">FABRICARE IL VASO DA FVOCO DETTO MILIARIO, <lb/>e far per la bocca di vn' animale ſoffiare ne i carboni, dal cui ſoffio arda il <lb/>fuoco, e far anco, che l’acqua calda non eſca fuori ſe prima non ſerà nel <lb/>miliario poſta acqua fredda, la quale perche non cosi preſto ſi me-<lb/>ſchia con la calda perciò non eſprimerà acqua, ſe prima <lb/>l’acqua fredda non giungerà al fondo. </head>
<head xml:id="echoid-head91" style="it" xml:space="preserve">E fare che <lb/>freddiſſima ſia eſpreſſa. Theor. LXXIII.</head>
<p>
  <s xml:id="echoid-s682" xml:space="preserve">DI queſta forma di vaſo, che miliario vien detto facciaſi la figura in quel <lb/>modo, che a chi vorrà farlo più piacerà, e per il luogo, che riceuer deue <lb/>l’acqua ſia con due diafragrami retti ſeparato in modo, che ſia da ogni lato chiu-<lb/>ſo,
<pb o="78" file="0090" n="90" rhead="DELLI SPIRITALI"/>
o, e preſſo il fondo di eſſo ſiaui il tubo con eſſo forato, che vno di quelli ſia, che <lb/>ſotto giace alle bragie; </s>
  <s xml:id="echoid-s683" xml:space="preserve">del quale vna parte ſia chiuſa, acciò l’acqua del miliario <lb/>in eſſo non entri, e gli altri due tubi peruenghino al luogo, oue è l’acqua; </s>
  <s xml:id="echoid-s684" xml:space="preserve">acciò le <lb/>acceſe bragie, ò carboni per vn tubo nel picciol luogo cagionino li vapori, che <lb/>per vn tubo forato con il coperto del miliario, che per il corpo paſſando alla boc-<lb/>ca dell’animale arriui: </s>
  <s xml:id="echoid-s685" xml:space="preserve">la quale all’ingiù guardando ſoffi ſempre eſſo animale por <lb/>cauſa del vapore cagionato dal ſuoco, e ſe vorremo, cheil detto vapore ſia ga-<lb/>gliardo, porremo vn poco d’acqua nel picciol luogo da i due tramezi ſerrato; <lb/></s>
  <s xml:id="echoid-s686" xml:space="preserve">acciò maggiormente ſoffiando l’animale, tanto più ſi riſcaldi il miliario, che il <lb/>vapore a punto ſi eleuerà nella maniera, che dalla bollente acqua vediamo il <lb/>vapore eleuarſi in alto, e l'animale ſia in modo il police accommodato in vn tu-<lb/>bo, che leuandolo ſi poſſa per eſſo tubo infonderui vn poco di acqua, e che ſimil-<lb/>mente quando non ci piacerà, che l’animale più ſoffi poſſiam per ſuſo il ſuo poli-<lb/>ce volgerlo in altra parte ſia ancora sù’l coperto del miliario poſto in picciol <lb/>vaſo dal qual proceda vna canna fin preſſo il baſe del miliario; </s>
  <s xml:id="echoid-s687" xml:space="preserve">acciò per eſſo ſi <lb/>poſſa mandar l’acqua fredda al fondo. </s>
  <s xml:id="echoid-s688" xml:space="preserve">Ma acciò, che il miliario poſſa impirſi con <lb/>l’acqua nel picciol vaſo infuſa; </s>
  <s xml:id="echoid-s689" xml:space="preserve">Et acciò bolendo l'acqua calda fuori non ſi ſpar-<lb/>ga: </s>
  <s xml:id="echoid-s690" xml:space="preserve">pongaſi vn’altro tubo bucato affiſſo al coperto del miliario, per il quale l’ac-<lb/>qua aſcendendo cada di nuouo nella concauità del picciol vaſo ſopra di eſſo co-<lb/>perto poſto, come dalla ſottopoſta figura vedraſſi, &amp; il modo di farla ſerà <lb/>queſto.</s>
</p>
<p>
  <s xml:id="echoid-s691" xml:space="preserve">FAcciaſi il cilindro concauo la parte inferiore del quale ſia A.B. e la ſuperio-<lb/>re C.D. faccia ſi anco vn’altro cilindro del primo minore; </s>
  <s xml:id="echoid-s692" xml:space="preserve">ma nell’iſteſſo aſ-<lb/>ſe dentro al maggiore diſpoſto, del quale la parte inferiote ſia E.F. la ſuperiore <lb/>G.H.&amp; ad eſſe parti ſuperiori, &amp; inferiori ſiano chiuſe con due diafragrami. </s>
  <s xml:id="echoid-s693" xml:space="preserve">In <lb/>modo, che non vi entri aria per neſſun modo. </s>
  <s xml:id="echoid-s694" xml:space="preserve">Ma nel cilindro E.F.G.H. ſiano <lb/>i tubi K.O.L.X.M.N. li quali tutti ſiano forati dentro eccetto il tubo L.X. di <lb/>cui ſolo vna parte deue eſſer forata cioè ad X. e che le bocche di queſti K. biſo-<lb/>gna che ponghino capo ne lo ſpatio contenuto ſiai due cilindri: </s>
  <s xml:id="echoid-s695" xml:space="preserve">Il qual luogo ſia <lb/>intramezzato con due tramezzi; </s>
  <s xml:id="echoid-s696" xml:space="preserve">&amp; in vna delle parti di eſſo, che ſia ridiciamo E. <lb/>G.F.H. vi penetri la bocca X. del tubo L.X. che hò detto, che ſi faccia mezzo fo-<lb/>rato; </s>
  <s xml:id="echoid-s697" xml:space="preserve">&amp; in queſto medeſmo ſpatio ſiaui il tubo Z. Y. che arriui fino al pari della <lb/>ſuperſicie del coperto de i cilindricon eſſo bucato, &amp; in eſſo infigaſſi vn’altro <lb/>tubo, la ſuperior bocca del quale ſia formata in vn’animale, &amp; eſſo animale dal <lb/>detto tubo ſia bucato, e facciaſi, che la bocca ſia verſo il vaſo da i carboni riuol-<lb/>ta;</s>
  <s xml:id="echoid-s698" xml:space="preserve">e lo animale ſia in modo diſpoſto, che ſi volga per il tubo Y.Z. acciò, quando <lb/>non più vorremo, che eſſo non più nel fuoco ſoffij ci venga fatto volgendolo in <lb/>altra parte; </s>
  <s xml:id="echoid-s699" xml:space="preserve">e quando vorremo nella chiuſa parte E.G.F.H. immettere acqua, ſe-<lb/>rà gran commodità il porla per il tubo Y.Z. cauandone l’animale, poi tornando-<lb/>lo al ſuo luogo, e quando l’acqua fredda nel ſopradetto ſpatio ſerà molto mag-<lb/>giore ſerà anco la quantità di eſſo vapore, che ſi leuerà: </s>
  <s xml:id="echoid-s700" xml:space="preserve">e per la bocca dell’ani-<lb/>male vſcirà. </s>
  <s xml:id="echoid-s701" xml:space="preserve">Ponghiſi dopo queſto ſopra il coperto C.D. catino R. S. forato con
<pb o="79" file="0091" n="91" rhead="DIHERONE."/>
eſſo coperto, e dal quale fondo deriui vna canna, che nel ſpatio frà i due cilindri <lb/>entri, e poco dal fondo del cilindro ſtia diſtante, ò tanto almeno; </s>
  <s xml:id="echoid-s702" xml:space="preserve">quanto al fluſſo <lb/>dell’acqua è baſtante, e quando vorremo, che fuori ſe ne eſca vna quantità di ac-<lb/>qua biſogna altre tanta immetterne nel vaſo R. S. che queſta ſcendendo per la <lb/>canna entrarà nel luogo dell’acqua calda; </s>
  <s xml:id="echoid-s703" xml:space="preserve">&amp; eſſa ſalirà in sù per il collo ſopra il <lb/>coperto; </s>
  <s xml:id="echoid-s704" xml:space="preserve">perche, entrando l’acqua fredda nella calda, non così preſto ſi meſchia-<lb/>rà: </s>
  <s xml:id="echoid-s705" xml:space="preserve">Onde quante volte ci piacerà, tant’acqua calda haueremo, quant’acqua fred-<lb/>da vi porremo; </s>
  <s xml:id="echoid-s706" xml:space="preserve">ma, accioche ſi accorgiamo, quando ſalirà ponghiſi vno hiatulo, <lb/>che in vn picciolo collo finiſca ſopra il coperto anzi bucato eſſo coperto ſia ad <lb/>eſſo aſſaldato beniſſimo, &amp; eſſo collo guardi ſopra il vaſo K.S.acciò aſcendendo <lb/>l’acqua calda cada nel vaſo R.S. &amp; in modo tale fabricaſi il miliario.</s>
</p>
<figure><!-- 0091-01 -->
<variables xml:id="echoid-variables73" xml:space="preserve">R S D C O K G H Y M N L F Z A B X E</variables>
</figure>
<p>
  <s xml:id="echoid-s707" xml:space="preserve">Ma ſe così già luogo non cì parerà di occupare fia lo ſpatio delle concauità <lb/>d’vn cilindro, e la curuità dell’altro più vicini ſiano poſti gl’intramezzi, &amp; in. <lb/></s>
  <s xml:id="echoid-s708" xml:space="preserve">queſto picciol ſpatio pongaſi lo animale acciò dal picciol luogo detto aſcenda <lb/>per eſſo animale K. vapore per il tubo del quale ſimilmente in eſſo pongaſi l’ac-<lb/>qua per farne leuar maggior vapore.</s>
</p>
<pb o="80" file="0092" n="92" rhead="DELLI SPIRIT ALI"/>
</div>
<div xml:id="echoid-div130" type="section" level="2" n="82">
<head xml:id="echoid-head92" style="it" xml:space="preserve">S'adoperano anco li miliary con altro Magistero fabricati per far ſonartrom <lb/>be far cantare vccelli arlifitioſamente. Theorema LXXIV.</head>
<figure><!-- 0092-01 -->
<variables xml:id="echoid-variables74" xml:space="preserve">C K L T D X N P M O A F E V</variables>
</figure>
<pb o="81" file="0093" n="93" rhead="DIHERONE."/>
<p>
  <s xml:id="echoid-s709" xml:space="preserve">FAbricato lo iſteſſo miliario, con li ſopradetti tubi nel modo deſcritto nel <lb/>precedente accommodati;</s>
  <s xml:id="echoid-s710" xml:space="preserve">e forati, come ſi è detto facciaſi, che ſopra la baſe <lb/>poſi in piedi il tubo V. T. che chiamaremo femina, nel corpo del quale vn’altro <lb/>ve ne ſia che maſchio dicaſi, e ſia K.L. eſattiſſimamente accommodato in mo-<lb/>do, che frà di loro non vi entri aria, e queſto ſia da vn lato all'altro forato con. <lb/></s>
  <s xml:id="echoid-s711" xml:space="preserve">tre buchi M.N.X. e ſimilmente la femina V.T. con altritre, li quali alli buchi <lb/>nel maſchio M.N.X. riſpondino; </s>
  <s xml:id="echoid-s712" xml:space="preserve">&amp; al X. pongaſi il tubo piegato, come moſtra la <lb/>figura, che paſſi per il coperto del miliario, a cui ſia beniſſimo aſſaldato acciò <lb/>per altronde l’aria non eſca, che per il tubo alla cima del quale ſia accommoda-<lb/>to ſoffiante animale, come nella precedente ſi diſſe: </s>
  <s xml:id="echoid-s713" xml:space="preserve">Indi ſian accommodati a gli <lb/>altribuchi riſpondentiſi M.N li due altri tubi piegati nell’interiore del miliario, <lb/>come N.P.M.O. queſti anco loro paſſino per il coperto di eſſo miliario (ma ad <lb/>eſſo, come dell’altro ſi diſſe) beniſſimo aſſaldati; </s>
  <s xml:id="echoid-s714" xml:space="preserve">&amp; in capo a detti tubi, cioè nelle <lb/>parti, che auanzeranno ſopra il coperto ſia in vno accommodato vn’vccello, le <lb/>interiori del quale ſian vuote, acciò eſſo ſi poſſa d’acqua riempire, e piegato il <lb/>tubo nel corpo di eſſo vccello ſia accommodato sì che ciuffoli, ò mandi fuori vo-<lb/>ce creata dal ſoffio del vento, per il che fare è neceſſario, che la piegatura del tu-<lb/>bo fin all’acqua giunga, che come altroue ſi è detto darà voce d’vccello:</s>
  <s xml:id="echoid-s715" xml:space="preserve">nell’al-<lb/>tro tubo cioè nella parte, che come habbiam detto deue auanzar fuori del co-<lb/>perto, ſia accommodata la figura di vn Titone (Dio Marino) che in bocca tenga <lb/>vna tromba, &amp; eſſo tubo ſia accommodato con la lingula, e con il dodoneo, co-<lb/>me s’vſa, che procedendo il vapore per eſſa lingula, farà ſonante la tromba; </s>
  <s xml:id="echoid-s716" xml:space="preserve">il che <lb/>dalla eſperienza conſideraremo, che riſpondendoſi i buchi M.O. al ſuo tubo, &amp; <lb/>N.P. all’altro, &amp; il tubo dell’animale all'X. il che conoſceremo con diuerſi ſegni <lb/>nel manico K.L. fatti per poter a voglia noſtra; </s>
  <s xml:id="echoid-s717" xml:space="preserve">far hora ſoffiar lo animale, hora <lb/>cãtar l’vccello, &amp; hora ſonar la trõba. </s>
  <s xml:id="echoid-s718" xml:space="preserve">Ma quello, che al vaſo K.S. &amp; al far aſcen-<lb/>dere l’acqua calda s’appartiene, facciaſi, come nell’antecedente habbiam derto.</s>
</p>
</div>
<div xml:id="echoid-div131" type="section" level="2" n="83">
<head xml:id="echoid-head93" style="it" xml:space="preserve">COMPONERE LO INSTRVMENTO <lb/>Hidraulico. Theorema LXXV.</head>
<p>
  <s xml:id="echoid-s719" xml:space="preserve">SIa alcun vaſo di bronzo come A. B. C. D. nel quale poſtoui acqua porgauiſi <lb/>dentro rouerſcio vn concauo hemisferio, cioè vn catino F. cheſopra l’acqua <lb/>così rouerſcio poſi; </s>
  <s xml:id="echoid-s720" xml:space="preserve">cioè con la ſua bocca verſo il fondo del vaſo, e nel colmo di <lb/>eſſo vi ponghino due tubi con eſſo forati, che ſiano nel vaſo; </s>
  <s xml:id="echoid-s721" xml:space="preserve">de i quali vno ſarà <lb/>G. K. L. M. e queſto ſi faccia, che pieghi fuori di eſſo vaſo, &amp; entri nel cilindro <lb/>vuoto N. O. P. X. con la bocca, e ſia del cilindro la parte concaua incauata giu-<lb/>ſtiſſimamente; </s>
  <s xml:id="echoid-s722" xml:space="preserve">in modo, che la bocca inferiore ſia alla ſuperiore vguale, e da vna <lb/>all’altra, per linea retta incauato, &amp; in queſto vacuo vi ſi ponga vn maſchio R. <lb/></s>
  <s xml:id="echoid-s723" xml:space="preserve">S.in modo lauorato giuſtiſſimamẽte, che frà ll concauo del cilindro, e la rotton-<lb/>dità di eſlo maſchio non vi poſſa entrar l’aria; </s>
  <s xml:id="echoid-s724" xml:space="preserve">ma nel fondo dell’embolo Q.ma-
<pb o="82" file="0094" n="94" rhead="DELLI SPIRITALI"/>
ſchio põghiſi il regolo T. Y. nerboſo, e ſodo: </s>
  <s xml:id="echoid-s725" xml:space="preserve">al quale giungaſi l’altro regolo Y Φ <lb/>che intorno al perno Y. fi moua in fondo d’embolo, e ſia infiſla sù’l perno Q. <lb/></s>
  <s xml:id="echoid-s726" xml:space="preserve">sù’l quale per il manico Φ. S.ſi alzi, e s’abaſſi: </s>
  <s xml:id="echoid-s727" xml:space="preserve">ma in cima del cilindro vuoto pon-<lb/>gauiſi vn’altro modiolo, ò cilĩdro ſodo, che copra di eſſo la parte ſuperiore, &amp; <lb/>
<anchor type="figure" xlink:label="fig-0094-01a" xlink:href="fig-0094-01"/>
habbbia ilvuoto cilindro da vn lato ſopra eſſo modiolo vn buco, per il quale en-<lb/>tri l’aria, e dentro via della parte vuota del cilindro concauo ad eſſo buco vi ſi <lb/>faccia vn’aſſario, ò cartella con vna lamina di rame, ò di ottone, che ſerri; </s>
  <s xml:id="echoid-s728" xml:space="preserve">ma.
<pb o="83" file="0095" n="95" rhead="DIHERONE."/>
accommodato in modo, che nel tirare l’embolo;</s>
  <s xml:id="echoid-s729" xml:space="preserve">ò maſchio di ſotto s’apra, &amp; en-<lb/>tri l’aria nel cilindro; </s>
  <s xml:id="echoid-s730" xml:space="preserve">emandandolo in sù ſi ſerri; </s>
  <s xml:id="echoid-s731" xml:space="preserve">come nella decima di queſto ſi <lb/>diſſe. </s>
  <s xml:id="echoid-s732" xml:space="preserve">Oltra di ciò nella ſuperior parte del concauo hemisferio E.F.G.H. fatto vn <lb/>buco vi ſi ponga vn’altro tubo F. V. che ſia, e con eſſo forato, e con vn’altro tubo <lb/>in trauerſo V. Z. nel quale ſi ponghino li capi delle trombe forate con eſſo alle <lb/>cui bocche aperte s’imponghino ſerratori con buchi, che li corriſpondano, e che <lb/>tirati chiudano le bocche delle tibie: </s>
  <s xml:id="echoid-s733" xml:space="preserve">Hora ſe alzando, &amp; abbaſſando il regolo Y. <lb/>n. aſcendera lo embolo R. S. e la entrata aria per la cartella nel cilindro vuoto <lb/>caccierà, chiudendoil buco, che è nel cilindro vuoto con la ſopradetta cartella, <lb/>onde l’aria per il tubo M. L. ſcenderà nel catino rouerſcio, e per eſſo entrando <lb/>nel tubo tranſuerſo V.Z per il tubo F.V. e del tubo trãſuerſo nelle tibie, ò trom-<lb/>beſil che ſarà, quando alle bocche di eſſe corriſponderanno i buchi delli ſerrato-<lb/>ri, e quando vno, e quando vn’altro, e quando tutti renderanno il deſiderato ſuo-<lb/>no: </s>
  <s xml:id="echoid-s734" xml:space="preserve">ma come s’habbiano a far ſonare, hor l’vno, hor l’altro, hor tutti inſieme, <lb/>e come ſi habbian a far racere dirò, &amp; intendaſi di tutti quello, che d’vn ſolo di-<lb/>rò. </s>
  <s xml:id="echoid-s735" xml:space="preserve">Facciaſi vn’aſſario, ouer cartella ſotto la bocca d’vna tibia 1. 2. la bocca del <lb/>quale ſia 2. e la bocca della tibia forata 6.il coperto 3.5. il buco S. fuori del buco <lb/>della tibia; </s>
  <s xml:id="echoid-s736" xml:space="preserve">dopo queſto ſi faccia il cubitolo di tre regoletti 5.7.9.8. vno de quali <lb/>7.9.10. ſia con il coperto congionto 9. &amp; in 5.7. ſi moua sù vn perno, che ſe, <lb/>con mano ſpingeremo l’cſtremità del cubitolo 8. nella parte interiore ſotto la <lb/>bocca della tibia, il coperto, &amp; verrà a corriſpondere con il buco dell’aſſario alla <lb/>bocca della tibia: </s>
  <s xml:id="echoid-s737" xml:space="preserve">ma volendo, che per ſe ſteſſo leuandone noi la mano, eſſo aſſa-<lb/>rio ritorni al ſuo luogo, e chiuda di nuouo la bocca di eſſa carrella ſottoponghiſi <lb/>a gli aſſarij vn regolo paralello al tubo tranſuerſo V. Z. &amp; è egualmente diſtan-<lb/>te, nel quale ſi ficcaranno al dritto de gli aſſarij ſpatule piegate di corno nerbo-<lb/>ſiſſime, de le quali vna ſia poſta all’aſſario 1. 2. &amp; all’eſtremo di eſſa leghiſi il ner <lb/>bo in 7. che ſpingendoſi dentro il coperto eſſo tirì la ſpatula con il piegarſi a gui-<lb/>ſa di corda d’arco, e laſciandoli la ſpatula di nuouo tiri al ſuo luogo il coperto; <lb/></s>
  <s xml:id="echoid-s738" xml:space="preserve">Onde muti luogo, &amp; in queſto modo accommodato ſotto ogni tibia il ſuo aſſa-<lb/>rio, ò cartella, quando ci piacerà far ſonare alcuna delle trombe cõ vn dito ſpin-<lb/>geremo il cubitolo 8. e quando non più vorremo, che elle ſuonino leuaremo le <lb/>dita, &amp; all’hora ritornando li cubitoli al luogo di prima, ceſſarà il ſuono. </s>
  <s xml:id="echoid-s739" xml:space="preserve">Ma, <lb/>l’acqua, che nel vaſo A.B.C.D. diſſi, che ſi poneſſe ad altro ſeruirà ſe nõ per fa-<lb/>re, che l’aria, che nel concauo catino ſoprabonda, ſentendoſi giunger fiato dal <lb/>modiolo sbattuto, ſollieui l’acqua, onde ella ſuppeditando cagioni che le trombe <lb/>diano il ſuono: </s>
  <s xml:id="echoid-s740" xml:space="preserve">ma il cilindro ſodo R.S. cacciato all’insù come ſi è detto eſprime, <lb/>e caccia l’aria nel concauo hemisferio, &amp; all’ingiù tirato apre l’aſſario, e per il <lb/>buco a riempire ſi torna il vuoto cilindro, acciò di nuouo l’aria cacciato dal ci-<lb/>lindro ſodo vada alle bocche delle trombe nel tubo Z.V. onde ci manifeſta, che è <lb/>bene il far mouere il regolo T. Y. intorno al perno Y. e sù l’altr’ è il regolo Φ. <lb/>V. Y. ritrouando modo di fermarlo poi che hauerà all’insù cacciato l’aria <lb/>perche da eſſo forzato in dietro non torni.</s>
</p>
<div xml:id="echoid-div131" type="float" level="3" n="1">
<figure xlink:label="fig-0094-01" xlink:href="fig-0094-01a"><!-- 0094-01 -->
<variables xml:id="echoid-variables75" xml:space="preserve">Z A D P N B F L CO X R S Y Φ I Q</variables>
</figure>
</div>
<pb o="84" file="0096" n="96" rhead="DELLI SPIRIT ALI"/>
</div>
<div xml:id="echoid-div133" type="section" level="2" n="84">
<head xml:id="echoid-head94" style="it" xml:space="preserve">FABRICARE VN’ ORG ANO DEL QVALE LE TROMBE <lb/>ſuonino, quando ſoffia il vento. Theorema LXXVI.</head>
<figure><!-- 0096-01 -->
<variables xml:id="echoid-variables76" xml:space="preserve">S 4 2 Y N 6 P H I G R T K B D C O N F E L</variables>
</figure>
<p>
  <s xml:id="echoid-s741" xml:space="preserve">SIano le trombe, ò canne dell’ organo A. ſotto le quali paſſi vn tubo B. C. nel <lb/>quale ſiane inſiſſo vn’ altro in perpendicolo D. il quale da vn’ altro deriui, <lb/>come lo E.F. queſto entri nel corpo vuoto di dentro del cilindro K.L. nella parte <lb/>di dentro del quale ſia poſto lo aſſario T. che s’ apra, e ſi ſerri liberamente, e chiu-<lb/>ſo ch’egli è, facciaſi la ſerratura con tãta diligenza, che fuori nõ ſe n’eſca il fiato.
<pb o="85" file="0097" n="97" rhead="DIHERONE."/>
Et intorn o a detto cilindro ſian accommodati due cerchi che s’agirino faciliſſi-<lb/>mamente, come ſono li G. K. li quali habbiano due fibbie, che fuor di eſſo ſpor-<lb/>gano nelle quali ſia inſiſſo vn’ aſta R. φ. ſopra la quale ſia accõmodata la ruota-<lb/>volatile, come quelle de’ molinia vẽto le palle della quale ſiano 4. 5. 2. 6. 7. &amp; <lb/>all’ aſſe di queſta ſia fatto il manico inzanchato Y. X. 3. come quello delle mole <lb/>d’aguzzar coltelli, &amp; arme. </s>
  <s xml:id="echoid-s742" xml:space="preserve">Sia dopo queſto fatto vn cilindro con il torno; </s>
  <s xml:id="echoid-s743" xml:space="preserve">il qua-<lb/>le giuſtiſſimamente entri nel tubo, ò cilindro vuoto K.L. e queſto ſia in maniera <lb/>per eccellenza accommodato, che non poſſa frà la ſuperficie del vuoto, e quella <lb/>del ſodo vſcirne l’aria, &amp; habbia nel mezzo della parte di ſopta, in eſſo va <lb/>regolo infiſſo H. N. nel quale ſia vn buco che entri nell’ inzancato <lb/>manico andrà alzando il cilindro ſodo per il cilindro vuoto. <lb/></s>
  <s xml:id="echoid-s744" xml:space="preserve">e l’ aria entrando per lo aſſario T. nel deprimer, che farà la <lb/>cuota il cilindro ſodo queſto chiudendoſi conuerrà <lb/>per le ragioni altroue adotte in queſto, che <lb/>l’ aria cacciandoſi per li tubi E. F. D. B. <lb/>C. faccia ſonar le trombe, che <lb/>è quanto ſi propoſe di ſopra.</s>
</p>
<head xml:id="echoid-head95" type="footer" xml:space="preserve">IL FINE <lb/>delli Spiritali di Herone.</head>
<pb file="0098" n="98"/>
<pb file="0099" n="99"/>
</div>
<div xml:id="echoid-div134" type="section" level="2" n="85">
<head xml:id="echoid-head96" xml:space="preserve">QVATTRO <lb/>THEOREMI <lb/>AGGIVNTI <lb/>AGLIARTIFITIOSISPIRTI <lb/>DE GLI ELEMENTI <lb/>DI HERONE <lb/>DA M. GIO. BATTISTA <lb/>ALEOTTI, <lb/><emph style="it">ET IL MODO CON CHE SIFA SALIRE VN <lb/>Canal d’ acqua vina in cima d’ ogn’ alta T orre artifitioſa-<lb/>mente, con grandiſſima ſacilità.</emph></head>
<pb o="88" file="0100" n="100" rhead="DELLI SPIRIT ALI"/>
</div>
<div xml:id="echoid-div135" type="section" level="2" n="86">
<head xml:id="echoid-head97" xml:space="preserve">FAR CHE CONVNDRAGONE, <lb/>che ſtia alla guardia de i pomi d’ oro <lb/>combatta vn’ Hercole, con vna maz-<lb/>za, e mentre ch’egli l’alza ſibili il Dra-<lb/>gone, e nel punto, che Hercole lo per-<lb/>cuoterà in capo: far che eſſo le ſpruzzi <lb/>l’ acqua nella faccia. Theor. I.</head>
<p>
  <s xml:id="echoid-s745" xml:space="preserve">S Ia la baſe A.B.C.D. vna parte della quale C. D. E.F.G.H. <lb/>K. ſia eccellentiſſima mente chiuſa: </s>
  <s xml:id="echoid-s746" xml:space="preserve">sì che non poſſa di eſſa <lb/>vſcirne l’aria. </s>
  <s xml:id="echoid-s747" xml:space="preserve">Sopra di queſta ſotto il canale S. ſia poſto lo <lb/>infũdibulo T. la coda del quale riſtretta verſo il fine: </s>
  <s xml:id="echoid-s748" xml:space="preserve">come <lb/>dimoſtra la parte di eſſo notata V. tanto ſtia di ſopra dal <lb/>ſondo della baſe G. H. K. quanto per il fluſſo dell’ acqua <lb/>parrà, che baſti: </s>
  <s xml:id="echoid-s749" xml:space="preserve">in queſto fondo ſiano affaldate le due in-<lb/>fleſſe ſiffoni X. &amp; Y. ma la Y. ſia ſottile molto più della X. <lb/>indi ſia poſto oue è la P. lo Hercole, done è la N. il pomo d’oro, e ſotto di eſſo <lb/>oue è la L. ſiaui poſto il Dragone. </s>
  <s xml:id="echoid-s750" xml:space="preserve">Fatto queſto põgaſi nel lato della baſe E. F. G. <lb/>H. la canna M. che in O. ſi volga, &amp; arriui alla bocca del Dragone in maniera ac-<lb/>commodata, che mandi ſibilo, mentre l’aria (dall’acqua del canale S. che per lo <lb/>infondibulo entra nella baſe) (cacciata conuerrà (non hauendo altro eſito) vſci-<lb/>re per eſſa canna; </s>
  <s xml:id="echoid-s751" xml:space="preserve">e ſia anco accommodata in maniera (che mentre per la ſiffone <lb/>Y. ſi vuotera la baſe non potendo eſſa d’ altronde, che per la bocca di detta can-<lb/>na riceuer aria, che in queſto anco mandi ſibilo maggiore, come non è difficile <lb/>a niuno il ciò fare per mio auiſo. </s>
  <s xml:id="echoid-s752" xml:space="preserve">Sia dopo queſto dal perno OO. ſoſtenuto il re-<lb/>golo DD. CC. ſotto l’ vn capo, del quale CC. ſia accommodato il conno vuoto <lb/>RR. </s>
  <s xml:id="echoid-s753" xml:space="preserve">Nella parte di dentro con circoli perfetti, e linee rettiſſime giuſtiſſimamen-<lb/>re con il torno lauorato. </s>
  <s xml:id="echoid-s754" xml:space="preserve">E dentro di eſſo ſiaui accommodato il conno ſodo BB. <lb/>che in eſſo giuſtiſsimamente ſtia; </s>
  <s xml:id="echoid-s755" xml:space="preserve">queſto nella parte ſuperiore habbia vn’ anello <lb/>a cui legata vna fune ſia in CC. attacca ta ſtando il regolo DD. CC. in perfetto <lb/>diano. </s>
  <s xml:id="echoid-s756" xml:space="preserve">E ſotto DD. vi ſia appeſo il vaſo Z. che (vuoto) ſia aſſai più leggieri del <lb/>conno BB. e queſto &amp; il regolo, &amp; il conno ſiano in maniera diſpoſti, che il vaſo <lb/>Z. ſtia ſotto la gamba eſteriore della infleſſa ſiffone X. &amp; al ſuo manico ſia lega-<lb/>ta
<pb o="89" file="0101" n="101" rhead="AGGIVNTI."/>
va vna fune che per la gamba deſtra d’Hercole paſſi, e per il corpo aggiunga nel-<lb/>la ſnodatura delle braccia di eſſo, le quali da vna chiaue in figura d’vna T. ſiano <lb/>in bilico ſoſtenute lo eſſempio è la T<unsure/>1.3. è la ſpalla deſtra 2.la ſpalla ſiniſtra, &amp; 4. <lb/>la ſcitala ſtando dunque 2. 3. in bilico ſia la fune allegata in 4. capo della ſcitala. <lb/></s>
  <s xml:id="echoid-s757" xml:space="preserve">E ſia dopo qneſto poſto nelle mani d’ Hercole la mazza Q. indi ſia ſottopo-<lb/>ſto alla gamba delia infleſſa ſiffone X. il vaſo AA. e queſta canna nel coperto di <lb/>
<anchor type="figure" xlink:label="fig-0101-01a" xlink:href="fig-0101-01"/>
detto vaſo ſia beniſſimo ſaldata, &amp; eſſo coperto al vaſo: </s>
  <s xml:id="echoid-s758" xml:space="preserve">fuori del quale eſca la. <lb/></s>
  <s xml:id="echoid-s759" xml:space="preserve">canuccia TT.R.la quale ponga capo nel vuoto conno RR. che con lei fia buca-<lb/>to, &amp; habbia in queſta bocca vn’aſſario,ò cartella, che nella parte di dentto di eſ-<lb/>ſo ſi apra. </s>
  <s xml:id="echoid-s760" xml:space="preserve">Scontto di queſto buco ve ne ſia fatto vn’altro, &amp; in eſſo ſia aſſaldata <lb/>la canna vuota QQ. la quale anco lei arriui alla bocca del Dragone: </s>
  <s xml:id="echoid-s761" xml:space="preserve">queſto eſe-<lb/>quito corra l’acqua per il canale S.nell’infundibulo T. ch’ella ſcenderà nella baſe <lb/>fuor della quale conuien, che ſe ne fuga l’aria perlla canna M. O. la quale farà <lb/>ciuffollare il Dragone, e ripiena d’acqua la baſelella ſi vuoterà, e l’aria ritornan-<lb/>do in dietro per la canna M.O. darà maggior ſibilo, e ſtridore. </s>
  <s xml:id="echoid-s762" xml:space="preserve">Si vuoterà dico
<pb o="90" file="0102" n="102" rhead="THEOREMI"/>
per la infleſſa ſiffone X. e l’acqua caderà nel vaſo Z. </s>
  <s xml:id="echoid-s763" xml:space="preserve">Il quale per la ſua grauità <lb/>conuenédo andare in giù farà alzar la mazza ad Hercole, &amp; alzeraſſi il cõno BB <lb/>&amp; in queſto mezzo per la infleſſa ſiffone X. ſcendendo l’acqua nel vaſo AA. ella <lb/>ſe n’entrerà nel conno vuoto RR. e ſerà, che vuota la baſe A. B. E. F. G. H. I. K. <lb/></s>
  <s xml:id="echoid-s764" xml:space="preserve">verſeraſſi anco il vaſo Z. per eſſere l’ angolo del ſuo fondo in modo acuto, che <lb/>non potrà fermarſi in piedi: </s>
  <s xml:id="echoid-s765" xml:space="preserve">onde allegierito ſerà tirato dal conno ſodo BB. e ſu-<lb/>bito ſcendendo la mazza Q. percoterà sù’l capo il Dragone, il quale nell’atto di <lb/>queſta percoſſa le ſpruzzerà acqua nel viſo: </s>
  <s xml:id="echoid-s766" xml:space="preserve">perche ſtando lo infondibulo T.qua-<lb/>ſi in pari alla bocca del Dragone, e la ſiffone X.dando acqua al vaſo AA. dal qua-<lb/>le procedendo la canna TT.R.nel conno RR.queſto riempiraſſi dandoli luogo <lb/>il ſodo B.nel ſcendere del vaſo Z. e riempiraſſi la canna QQ. fia preſſo la bocca <lb/>del Dragone, e nello ſcendere con violenza il conno BB. l’acqua, che ſerà nel <lb/>vuoto RR. non porendo ritornare sù per eſſerli chiuſa la ſtrada dallo aſſario <lb/>detto di ſopra conuerran fuggirſene per la canna QQ.alla bocca del Dragone, il <lb/>quale la ſpruzzerà (nell’iſteſſo tépo, che lo percoterà la mazza) nel viſo ad Her-<lb/>cole per la violenza del peſo BB. </s>
  <s xml:id="echoid-s767" xml:space="preserve">Ma perche l’acqua fuori della bocca del conno <lb/>vuoto RR. non ſe ne fuga: </s>
  <s xml:id="echoid-s768" xml:space="preserve">ma ſia sforzata ad entrare nella canna QQ. </s>
  <s xml:id="echoid-s769" xml:space="preserve">Sia fatto <lb/>vn conno di cuoio dentro dalla ſuperficie del vuoto RR. alla bocca di eſſo be-<lb/>niſſimo inchiodato la punta del quale ſia inchiodata anco nella punta del ſodo <lb/>BB. perche queſto alzandoſi, quello di cuoio lo ſeguirà, &amp; verrà a dare il luogo <lb/>ſopradetto all’acqua, che è quanto ſi è in queſta propoſta promeſſo.</s>
</p>
<div xml:id="echoid-div135" type="float" level="3" n="1">
<figure xlink:label="fig-0101-01" xlink:href="fig-0101-01a"><!-- 0101-01 -->
<variables xml:id="echoid-variables77" xml:space="preserve">1 N 2 3 4 A D E B L P T Q D G DD X V OO H Y Q R T T A A</variables>
</figure>
</div>
</div>
<div xml:id="echoid-div137" type="section" level="2" n="87">
<head xml:id="echoid-head98" style="it" xml:space="preserve">FARE, CHE SEI FIVMI, O PIV’, O MENO VERSINO <lb/>dalli loro Vtri acqua in vn gran vaſo, &amp; in eſſa acqua ſianaſcoſto Tritone. <lb/>che con velocità eſc a fuori dell’ onde, e ſuoni vna tromba ò Cochiglia, <lb/>e mentre, che egli ſuona ceſſino i fiumi di verſar acqua e tornan-<lb/>doſi a tufſar nell’ acqua, far che di nuouo tornino a verſar <lb/>l’acqua delli Vtrinel vaſo come, ch’ egli eomandi loro, <lb/>che ceſſino di correre, &amp; eſſi ſi fermino, mentre ſta <lb/>ſopra l’acqua, e partito non ptù curino la <lb/>commiſſione fattagli. Theor. II.</head>
<p>
  <s xml:id="echoid-s770" xml:space="preserve">SIa la baſe ogn’ intorno beniſſimo chiuſa A.B.C.D.E. ſopra della quale ſia <lb/>il vaſo largo, e capace F.G. il quale può eſſere maggiore, e minore aſſai <lb/>della baſe ſecondo l’occorrenze, &amp; intorno ad eſſo vaſo ſiano collocate <lb/>le ſtatue de i fiumi I.K.L. M. di bronzo, ò di rame, queſti poſino sù l’orlo <lb/>del vaſo nel quale ſia il canale Q.Q. ſopra del quale poſino li ſuoi piedi beniſſimo <lb/>ſaldati ad eſſo canale nel quale per ciaſcun piè delli fiumi ſia almeno vn buco, <lb/>per il quale l’acqua poſſa nelle ftatue entrare, &amp; eſſe ſiano in modo accommo-<lb/>date, che da gli vtri (che in ſpalla hauranno, ò ſotto i piedi come ci piacerà) verſi-<lb/>no acqua nel vaſo F. G. quando dal canale O. cadendo nel vaſo P. ſcenderà per il <lb/>canale R. in QQ. nel quale facciaſi il ſodo S. per il quale paſſi il canale, e detto ſo-
<pb o="91" file="0103" n="103" rhead="AGGIVNTI."/>
do S.facciaſi forato per l’altto verſo, ſi che per eſſo, che ſerà in mezo il canale, <lb/>paſſi la verga T. V. ma queſta ſia più groſſa aſſai, che non è largo il vuoto del ca-<lb/>nale fermata ſopra vn bilico, nel zocco 16.in terra, &amp; in eſſo ſodo al dritto del <lb/>
<anchor type="figure" xlink:label="fig-0103-01a" xlink:href="fig-0103-01"/>
canale, faccia ſi.che la verga T.V. habbia vn buco grande apunto come il vuoto-<lb/>del canale R. Q. ſi che volgendoſi la verga apta, e ſerri il canale. </s>
  <s xml:id="echoid-s771" xml:space="preserve">Facciaſi dopoi <lb/>vn taglio nel labro del vaſo F. G. nel quale taglio ponghiſi vn tubo vuoto, che <lb/>nella canna X metta capo, la quale calarà nella baſe, come è notato beniſſimo <lb/>aſſaldata in eſſa, e queſta habbia il ſuo buco ſeguente, come quello del tubo, il <lb/>quale dallato verſo il vaſo habbia vn buco: </s>
  <s xml:id="echoid-s772" xml:space="preserve">dopoi con ogni diligenza eſtrema, <lb/>inanti, che nella feſſura del vaſo ſi ſaldi, ſia in eſſo infiſſo il regolo Y. che di tal <lb/>maniera giuſtamente con l’arte del torno ſia tornito, che non ſi poffa accommo-
<pb o="92" file="0104" n="104" rhead="THEOREMI"/>
data meglio; </s>
  <s xml:id="echoid-s773" xml:space="preserve">acciò il fiato non ne poſſa vſcire, come nel Theor. IX. di Herone ſi <lb/>diſſe; </s>
  <s xml:id="echoid-s774" xml:space="preserve">trattando della sfera concaua, e nella XXVII. </s>
  <s xml:id="echoid-s775" xml:space="preserve">Trattando delle canne vſato <lb/>ne gl’incendij, e facciaſi il regolo dal tubo al Y. forato per mezo, &amp; infiſſo Y. ſtia <lb/>il Tritone per il corpo del quale fia vna canna vuota aſſaldata al buco del rego-<lb/>lo, &amp; in eſſa arriui alla bocca di eſſo Tritone, &amp; entri nella conchiglia, nella qua-<lb/>le ſia accommodata la lingula, come nelle Piue ſogliono accommodare i Villani. <lb/></s>
  <s xml:id="echoid-s776" xml:space="preserve">dopoi in Y. apendaſi con vna fune, il vaſo 7. dentro il quale ſia vn tubo ſpiritale, <lb/>poſcia ſopra le due troclee 2.4.ponghiſi la fune, inuol gendola alla verga V.T.bi-<lb/>licata in 16. &amp; al capo della fune della troclea 2. appendaſi il peſo 6. l’altro capo <lb/>di eſſa cioè quello ſopra la troclea 4. leghiſi il manico del vaſo 7. il quale ſia però <lb/>tanto leggieri, che facilmente ſia tirato dal peſo 6. poi dentro del vaſo F. G. ac-<lb/>commodiſi il tubo ſpiritale 9. che nella coppa 10. infonda l’acqua, della quale de-<lb/>riui il canale 10. 11. &amp; in eſſo vaſo ponghiſi ancora la infleſſa ſiſſone, ò tubo ſpi-<lb/>ritale 14. l’vna gamba, della quale entri nella baſe A. B. C. D. E. l’altra ſtia tanto <lb/>ſopra il ſondo di eſſo vaſo quanto per il ſcorrere dell’acqua giudicaremo con-<lb/>ueniente, &amp; il ſimile del tubo 9. &amp; in eſſa baſe pongaſi la ſiffone infleſſa 15. e ſe-<lb/>condo il biſogno vn’ altra, ouero il tubo ſpiritale 17. che queſto fatto vedraſſi, <lb/>che ſcorrendo l’acqua per il canale R. S. Q. Q. perche il vaſo P.è alto ſalirà l’ac-<lb/>qua alli vtri, che in sù le ſpalle terranno i fiumi, &amp; eſſi nel vaſo F. G. verſaranno, <lb/>&amp; in tanto riempiendoſi per le ragioni adotte da Herone nel primo, e ſecondo <lb/>Theorema. L’acqua per la ſiffone infleſſa 14. ſcenderà nella baſe A. B. C. D. E. <lb/>&amp; verraſſi l’aria, che è in eſſa come ad amaflare ſopragiungendoui vn’altro cor-<lb/>po, e perche maggior copia d’ acqua verſano i fiumi del vaſo alzeraſſi ella, &amp; il <lb/>tubo ſpiritale 9. verſarà anch’ egli nella coppa 10. e l’acqua ſcorrendoſene per il <lb/>canale 10 11. caderà nel vaſo 5. il quale ripieno conuerrà per la ſua grauezza, <lb/>ſcendere a baſſo, &amp; in vn’iſteſſo ternpo volgeraſſi la verga T.V. chiudendo il ca-<lb/>nale nel ſodo s. onde non più verſaranno i ſiumi, &amp; abbaſſandoſi il ca po del re-<lb/>golo II. perche poſa in bilico sù’l tubo forato vſcirà il Tritone fuori dell’acqua, <lb/>&amp; il buco della canna X. ſcontraraſſi nel buco del tubo, e l’aria compreſſo nella <lb/>baſe ſentendo l’eſito aperto erumperà con furore, e farà ſonate la Cochiglia, <lb/>ch’haurà in bocca il Tritone, e quando dall’ acqua ſerà ripiena la baſe vuoteralla<lb/>la infleſſa ſiffone 15. &amp; il tubo ſpiritale 17. e la baſe d’ aria di nuouo torneraſſi <lb/>a riempire per il buco della Cochiglia del Tritone, in tãto euacuando il tubo ſpi-<lb/>itale 13. il vaſo 5. il peſo 6. tirerà il vuotato vaſo in sù, &amp; apriraſſi di nuouo il <lb/>canale dell’acqua a i fiumi, &amp; il Tritone per la ſua grauezza, tuffaraſſi di nuouo <lb/>nell’acqua, e ſempre queſti ordini ſeruar vedrannoſi, mentre il canale O. fluirà, <lb/>che è quanto ſi propoſe.</s>
</p>
<div xml:id="echoid-div137" type="float" level="3" n="1">
<figure xlink:label="fig-0103-01" xlink:href="fig-0103-01a"><!-- 0103-01 -->
<variables xml:id="echoid-variables78" xml:space="preserve">O P I K L M R T Q Q S Y F G T V X S T D E</variables>
</figure>
</div>
<pb o="93" file="0105" n="105" rhead="AGGIVNTI."/>
</div>
<div xml:id="echoid-div139" type="section" level="2" n="88">
<head xml:id="echoid-head99" style="it" xml:space="preserve">FARCHE CON L’ ACQVA D’VN CANALE SOLO SI <lb/>veggabollire vna Fucina, nella quale vn Fabro tenga a bellire vn ferro, poi <lb/>volgaſi e lo ponga sui incudine, e ſubito tre altri Fabri battano sù’l det-<lb/>to ferro in terzo, &amp; ogni colpo faccia ſchizzar fuori acqua, come <lb/>dal bolente battuto ſerro ſcintillano le fauille. Theor. III.</head>
<figure><!-- 0105-01 -->
<variables xml:id="echoid-variables79" xml:space="preserve">C C 3 I S Q 4 R H I L D E F I K A G N P B H K O H X K B A L I O A T V S</variables>
</figure>
<p>
  <s xml:id="echoid-s777" xml:space="preserve">FAbricato l’incudine A. ſopra il zocco B.come i Fabri vſano ſopra vn pia-<lb/>no ſiano diſpoſti i Fabri C.D.E.F. delli qua li ſia accommodato al Fabro <lb/>C.in mano vn ferro, e tutti queſti ſiano di rame, ò di bronzo, pur che <lb/>ſiano vuoti di dentro baſta. </s>
  <s xml:id="echoid-s778" xml:space="preserve">Sia anco accommodata la Fucina, della qua-<lb/>le il piano G. ſia l’iſteſſo in altezza, che l’altezza dell’incudine, &amp; in detto piano <lb/>fia il vaſo N. </s>
  <s xml:id="echoid-s779" xml:space="preserve">Diſponghiſi poi ſottoil piano, oue con i piedi ſopra poſano i Fabri
<pb o="94" file="0106" n="106" rhead="THEOREMI"/>
il canale H.I. per il quale ſcorra ac qua: </s>
  <s xml:id="echoid-s780" xml:space="preserve">Ma ſotto i piedi del Fabro, che tiene il fer <lb/>ro, c’hà da eſſer battuto faccia ſi vn zocco K. per il quale paſſi il canale H.I. e nel <lb/>lato di eſſo zocco, che è dopo i calcagni del Fabro C. facciaſi vn’altro buco pic-<lb/>ciolo, nel quale ponghiſi la canna L.O.M. con vn capo, cioè con L. in eſſo aſſal-<lb/>data, e con l’altro ſotto il fondo del vaſo N. che come hò detto ſtia sù’l piano <lb/>della Fucina bucato però eſſo vaſo con la canna in M. facciaſi anco, che dal ca-<lb/>nale H. I. paſſi vna canetta picciola nel cono vuoto P. nel quale ſia il cono ſodo <lb/>ſoſtenuto da ſuſte, come vſanoſi in quelle roppe, ò chiauature, che ſi ſerrano da <lb/>ſe ſteſſe, noi le chiamiamo chiauature alla Frateſca, e queſta canetta bucata de-<lb/>riui, come hò detto dal canale H I. e bucato il cono vuoto ſia in eſſo aſſaldata, <lb/>come nella figura H. I. P. ſiano dopo queſto accommodati martelli in mano ai <lb/>Fabri, facendo, che le braccia di eſſi ſi ſnodino, &amp; anco la vita nella cintura, co-<lb/>prendo quel luogo con vn panno, acciò non ſi vegga, oue ſi ſnodano, e come <lb/>dell’Hercole diſſi nel primo di queſte mie quattro Theoremi, fian tutti tre quei <lb/>Fabri, che hanno da battere il ferro accommodati in modo, che poſtaui vna fu-<lb/>ne per vna gamba, queſta tirando battano sù l’incudine, e ſotto queſte funi per-<lb/>pendicolarmente ſiano accommodati in frà due legni piantati paralelli in terra <lb/>tanti rulli, ò di ferro, ò di bronzo, quanti Fabri ſeranno, come ſi dimoſtra nelle, <lb/>figure chiaramente T.V.X.e nel rullo poſto da per ſe notato Z. e dentro a queſti <lb/>ſian infiſſi li ferri, come Z.notati 3.4. che fuori de i rulli auanzino, quanto ci pa-<lb/>rerà, che le baſti. </s>
  <s xml:id="echoid-s781" xml:space="preserve">Dopo con il torno ſla lauorato il fuſo AA.BB.il centro del qua-<lb/>le facciaſi vuoto, e la ſuperficie eſteriore di queſto partaſi in tre parti, e con li-<lb/>nee ſian ſegnate, dopoi al dritto de i ferri ficcati nei rulli T. V. X. ſiano in eſſo <lb/>fuſo altri tanti ferri, che habbiano la forma H. come in CC. habbiamo diſſegna-<lb/>to, li quali tanto fuori del fuſo auanzino, che nel volgerſi il fuſo cogliano sù l’vn <lb/>capo de’ ferri infiſsi ne’rulli Z.e notati 3.4. ma ſe coglieranno il ferro 3.al capo 4. <lb/></s>
  <s xml:id="echoid-s782" xml:space="preserve">Siano allegate le funi, che per le gambe de i Fabri paſſando facino loro alzare le <lb/>braccia, e battere sù l’incudine. </s>
  <s xml:id="echoid-s783" xml:space="preserve">Dopoi accommodata nel fuſo la ruota 5.6.7.8. <lb/>nella quale ſiano ſcompartiti gli ſpacij, come dimoſtra la figura, &amp; vi ſiano poſti <lb/>li tramezzi, come la ſegnente figura dimoſtra <var>✠</var> così torti, acciò ritener poſsino <lb/>l’acqua. </s>
  <s xml:id="echoid-s784" xml:space="preserve">Facciaſi dopo queſto, che la Croce, che hà da tenere la ruota affiſſa al fu-<lb/>ſo ſia vuota, e li buchi di queſta entrino nel centro del fuſo, che come hò detto, ſi <lb/>farà forato; </s>
  <s xml:id="echoid-s785" xml:space="preserve">Reſtaci, che diciamo, che biſogna, dopo queſto accommodar ſotto <lb/>i piedi del Fabro C.la canna 13.e 14. la quale ſi accommodi in modo, che ſopra <lb/>vn ſtile ſi volga, come hò detto nel paſſato Theorema nella V. T. che è la mede-<lb/>ſima, che è queſta, conforme a quella, che hà ſcritto Herone nel Theor. XV. e <lb/>queſta canna faccia ſi ſoda dal capo di ſopra, il quale ficcaremo nel zocco K. fa-<lb/>cendo prima in eſſa vn buco, che chiuda, &amp; apra il canale H.I. &amp; in cima di que-<lb/>ſta ſia ſaldato il Fabro E. </s>
  <s xml:id="echoid-s786" xml:space="preserve">Dopoi nel baſſo ſopra le due troclee 17.18 pongaſi la <lb/>ſune, che ſia auolca alla detta canna, e dall’vn capo di eſſa, cioè da quello, che <lb/>penderà dalla troclea 18.appendaſi il vaſo 20.nel quale ſia la inſleſſa ſiſſone, del-<lb/>la quale vna gamba paſsi ſotto il fondo, l’altra ſopra ſtia ad eſſo ſondo, tanto
<pb o="95" file="0107" n="107" rhead="AGGIVNTI."/>
quanto per il fluſſo dell’acqua, ci parerà, che baſti, e dalla fune della troclea 27. <lb/>facciaſi pender e il peſo 19.Ilquale ſia ſol tanro graue, che habbia forza di volge-<lb/>re la canna. </s>
  <s xml:id="echoid-s787" xml:space="preserve">E titare con ieco il vaſo 20. ſia dopo queſto accommodato ſotto il <lb/>
<anchor type="figure" xlink:label="fig-0107-01a" xlink:href="fig-0107-01"/>
centro del fuſo, il catino 21. il quale habbia <lb/>il canale 22.23. la bocca del quale ſtia ſopra <lb/>il vaſo 20. che vederemo correndo il canale <lb/>H.I.che l’acqua di eſſo farà volgere la ruo-<lb/>ta 5.6.7.8. perche dalla bocca I. l’acqua ca-<lb/>dendo ne i concaui della ruota 9. 10.11.12. <lb/>conuien, che ella ſi volga per eſſer fatta, <lb/>dall’acqua graue, e nel volgerſi li ferri C.C. <lb/>andran percotendo nelli fetti 3. li quali sù <lb/>i centri de i rulli volgendoſi abbaſſaranno il <lb/>capo 4. onde le ſune, che ſon per le gambe <lb/>de i Fabri, verrannoſi a tirare, e facendo al-<lb/>zare loro le braccia. </s>
  <s xml:id="echoid-s788" xml:space="preserve">Li martelli loro batte-<lb/>ranno in terzo sù l’incudine, e perche la, <lb/>crociera della ruota ſerà vuota: </s>
  <s xml:id="echoid-s789" xml:space="preserve">(Benche bi-<lb/>ſogna, che ſiano queſti buchi piccioli, acciò poca acqua paſſi per eſſi) caler à l’ac-<lb/>qua nel centro del fuſo, e di queſto fluirà nel vaſo 21. e di eſſo nel vaſo 20. per il <lb/>canale 22.23. queſto quando ſerà pieno per la grauità ſua calerà a baſſo trahen-<lb/>do con ſeco il peſo 19. volgendo la canna 13. 14. sù’l perno conficcato in 15. <lb/>e conſeguentemente volgendo il Fabro E. parerà, che eſſo porti il ferro a bollite <lb/>nella Fucina, che accommodar a punto lo biſogna, sì, che nel volgerſi eſſo pon-<lb/>ga il ferro nel bollore dell’acqua, la quale bollirà veramente; </s>
  <s xml:id="echoid-s790" xml:space="preserve">perche nel volgerſi <lb/>la canna 13. 14 G chiuderà il canale H.I.onde perche la ruota più nõ ſi volgerà, <lb/>conuerrà, che li Fabri ſi fermino: </s>
  <s xml:id="echoid-s791" xml:space="preserve">ma perche il buco della canna verrà volgerſi <lb/>nel canale L. l’acqua ſalirà al catino N. per il canale L.O.M. e bollirà ricordan-<lb/>doci di far in modo, che l’ acqua bollente non paſſi vn certo termine facendoui <lb/>buchi per li quali ella ſe ne vada. </s>
  <s xml:id="echoid-s792" xml:space="preserve">In tanto voteraſſi il vaſo 20. per il ſuo, ò diabe-<lb/>te, ò ſiffone, che tutto è vno, &amp; il peſo 19. tornarà di nuouo ad alzare il vaſo 20. <lb/>&amp; volgendo la canna 13.e 14. il Fabro E. tornerà a porre il ferro sù l’incudine <lb/>aprendoſi il canale C.di nuouo. </s>
  <s xml:id="echoid-s793" xml:space="preserve">Il quale tornãdo a far volgere la ruota di nuouo <lb/>lauoraranno i Fabri, li quali battendo sù’l cono P.cioè sù’l ſodo, perche il vuoto <lb/>ſtarà, come quaſi pieno d’acqua per il canaletto Q. R. ogni percoſſa di martello <lb/>farà ſchizzar fuori l’acqua. </s>
  <s xml:id="echoid-s794" xml:space="preserve">Eſſendo, che la ſuperficie del ſodo non toccherà la ſu-<lb/>perficie del vuoto per ſoſtenerſi ella sù le fuſte, come habbiam detto, che è il <lb/>propoſto noſtro.</s>
</p>
<div xml:id="echoid-div139" type="float" level="3" n="1">
<figure xlink:label="fig-0107-01" xlink:href="fig-0107-01a"><!-- 0107-01 -->
<variables xml:id="echoid-variables80" xml:space="preserve">✠</variables>
</figure>
</div>
<pb o="96" file="0108" n="108" rhead="THEOREMI"/>
</div>
<div xml:id="echoid-div141" type="section" level="2" n="89">
<head xml:id="echoid-head100" style="it" xml:space="preserve">FABRICAREVNA STANZA NELLA QVALE <lb/>atempo, che ci piacer à ſempre vi ſpiri vento, che la rifreſchi, o poco, <lb/>e melto a veglia noſtra. Theorema IV.</head>
<figure><!-- 0108-01 -->
<variables xml:id="echoid-variables81" xml:space="preserve">B A 1 2 3 4 5 6 K L M N G S R Y V Z X P V</variables>
</figure>
<p>
  <s xml:id="echoid-s795" xml:space="preserve">CAuiſi ſotto il piano della ſtanza A.B.C.D.E. quanto ci parrà, che baſti <lb/>ſecondo la quantità del vento, che vorremo vna ſtanza tanto larga <lb/>quanto eſſa ſtanza in altezza almeno di piedi dieci, e ſia con calcina <lb/>meſchiatoui dentro pietra ſottilmente peſta altretanta quantità è più <lb/>è meno ſecondo la qualità della calcina beniſſimo intonecata, &amp; intramezzata: <lb/></s>
  <s xml:id="echoid-s796" xml:space="preserve">ſia diuiſa in due ſtanze con vna volta, ò tramezzo, come X. Y. ciaſcuna delle, <lb/>quali ſeranno piedi 5. &amp; intonacate, vadaſi ogni giorno per ſpatio di otto giorni <lb/>bagnando lo intonaco aſciando, e pollendo beniſſimo con opera di Moratore lo <lb/>intonaco, in modo, che dette ſtanze tenghino è l’aria è l’acqua, che da niun lato <lb/>poſſano vlcire, accommodando in eſſe li due gran ſiffoni S.T. e s. che cõ la gam-<lb/>ba longa entrino nella ſtanza di ſotto ſtando ſopra il laſtricato della ſtanza ſupe-<lb/>riore con la gamba corta, quanto baſterà per il fluſſo dell’acqua, &amp; il ſimile il ſif-
<pb o="97" file="0109" n="109" rhead="AGGIVNTI."/>
sone T. di cui la gamba V.di ſotto il più baſſo ſuolo auanzi, e metta capo in vn, <lb/>canale, che via la porti, e nella ſtanza ſuperiore, ò di pietra viua, ò di rame ſia fat <lb/>to lo infondibulo P.di cui la coda, R.tanto ſtia ſopra il piano X Y.quanto baſta-<lb/>re ci parrà per il fluſſo dell’acqua, e dentro di eſſo facciaſi correre il canale Q. <lb/></s>
  <s xml:id="echoid-s797" xml:space="preserve">nel quale ſia vna chiaue, che lo apra, eſerri a noſtro piacere per poter mandarui <lb/>quant’acqua ci parrà è poca è aſſai, indi accommodate le bocche dei venti per la <lb/>ſtanza in noſtro, quanto ci piacerà. </s>
  <s xml:id="echoid-s798" xml:space="preserve">Facciaſi i canali 1.F.2.G.3.N.4.I.5.K.6. L.7. <lb/>M. 8. I. la bocca inferiore delli quali per il ſuolo della ſtanza entrino nella ſtan-<lb/>za prima, e con l’altra nelle bocche de i venti, che correndo il canale Q. nell’in-<lb/>fondibulo P. quanto s’alzarà l’acqua, ſopra il piano X.Y. tanta aria per le boc-<lb/>che de i venti fuori ſe ve vſcirà rendendo la ſtanza freſca, perche quelle bocche <lb/>ſoffiaranno, come bocche di venti, e perche ſempre ſpirino potraſsi ſar altri ca-<lb/>nali alle bocche 1. 2. 3. 4. 5. 6. 7. 8. che per mezo il muro ſcendino nella ſtanza <lb/>inferiore con le bocche aperte, che quando l’acqua ſopra il piano X. Y. ſarà tan-<lb/>to alzata, che vada tutto la ſiffone S. ſotto per eſſa vuotaraſſi la prima ſtanza, &amp; <lb/>entrando nella ſtanza inferiore, quanto ſopra il ſuolo di eſſa l’acqua, s’ alzerà <lb/>tanto aria fuori ſe n’vſcirà per le bocche 1.2.3.4.5.6.7.8. &amp; eſſa ſtanza per <lb/>2. ripiena l’acqua per la ſiſtone T. vſcendo ſe n’andrà per V. Et auer-<lb/>tiſcaſi di far la ſiffone S. tanto grande, che poſſa vincere nel vol-<lb/>tar la ſtanza la coda R. del vaſo P. &amp; hauraſsi di continue <lb/>nella propoſta ſtanza freſschiſsimo vento d’ogn’hora <lb/>è lento è gagliardo, come ci piacerà. </s>
  <s xml:id="echoid-s799" xml:space="preserve">Aprendo ſi <lb/>più è meno il canale Q. con la chiaue <lb/>volgendola con vna ſtanga quanto <lb/>ci piacerà, che è il propoſto.</s>
</p>
<pb o="98" file="0110" n="110"/>
</div>
<div xml:id="echoid-div142" type="section" level="2" n="90">
<head xml:id="echoid-head101" xml:space="preserve">MODO DI FAR SALIRE <lb/>VN CANALE D’ACQVA <lb/>viua, ò morta in cima d’ogni <lb/>alta Torre.</head>
<head xml:id="echoid-head102" style="it" xml:space="preserve">GIÀ VSATO IN MOLTI LVOGHI, <lb/>pur che l’acque dalla loro ſuperficie habbiano al-<lb/>quanto di caduta.</head>
<p>
  <s xml:id="echoid-s800" xml:space="preserve">PErche il far fontane naturali ne i Paeſi baſſi in piano non <lb/>è conceſſo dalla natura del ſito, però eſſendo di meſtieri <lb/>farle con l’arte, sì ne’ voſtri Paeſi come anco in ogni altro <lb/>luogo ſimile, perciò; </s>
  <s xml:id="echoid-s801" xml:space="preserve">perche non habbian da reſtare i cu-<lb/>rioſi di ſcapricciarſi per diſagio di Huſſo d’acque in met-<lb/>tere in prattica ciò, che da Herone eccel entiſſimo Ma-<lb/>tematico, e ne’quattro modi da me dimoſtrati, ẽ ſtato <lb/>ſcritto, hò voluto aggregare a queſto (per mio giudicio) <lb/>belliſsimo libro il preſente modo di alzare vn Canale d’acqua viua in ogni gran-<lb/>de altezza, acciò quello, che in piano non concede la natura s’ habbia dall’arte <lb/>con modo faciliſsimo, e con ſpeſa legieriſsima a chi haurà vicino, ò fiumi, ò ca-<lb/>nali, ò qual ſi voglia acqua corrente, il modo di farlo ſi comprende quaſi ſenza <lb/>ſcrittura dal diſſegno: </s>
  <s xml:id="echoid-s802" xml:space="preserve">ma pure non parmi ſconueneuole ſcriuerne il modo di fa-<lb/>bricare queſto belliſsimo edificio, riſernandomi molti altri modi d’alzar acque, <lb/>quando Dio piacerà darmi tant’otio, che io poſſa finire le belle regole generali <lb/>d’Architettura già gran tempo fa da me cominciate. </s>
  <s xml:id="echoid-s803" xml:space="preserve">Facciaſi dunque vna ruota, <lb/>il diametro della quale ſia almeno cinque piedi, ò ſei. </s>
  <s xml:id="echoid-s804" xml:space="preserve">Più leggiera, che è poſsibile <lb/>di boniſsimo legno di rouere, acciò duri nell’acqua, e la ſua groſlezza facciaſi al-<lb/>meno vn piede, e mezo, e dall’abſide, ò eſtrema linea del ſuo maggior diametro <lb/>verſo il centro facciauiſi in groſſezza vn fondo di vn piede, dopoi partaſi sù la <lb/>linea della circonferenza della ruota quindeci ſpatij al manco, e li tramezi ſiano <lb/>torti, come vna meza, e come chiaro lo dimoſtra la figura A.B. li ſcomparti-<lb/>menti della quale ſono C.D.E.F. parte, e ſia poi con boniſsime crociere di buoni <lb/>legni di rouere(legno, che dura aſſai nell’acqua) fattoui i ſuoi diametri ben com-
<pb o="99" file="0111" n="111" rhead="AGGIVNTI."/>
meſsi nel centro, e nella ruota: </s>
  <s xml:id="echoid-s805" xml:space="preserve">ouero faccia ſi la ruota con le ſcitale, come la G <lb/>H. </s>
  <s xml:id="echoid-s806" xml:space="preserve">Alcune delle ſcitale ſiano I. K. L. M. che in vltimo ſono tutt’vno ne altra dif-<lb/>fer nza vi è ſe non che alla ruota A. B. l’acqua ſi fà correre di ſopra di eſſa sù <lb/>l’abſi de ſuperiore, e la G. H. ſi fà volgere correndo l’acqua per di ſotto; </s>
  <s xml:id="echoid-s807" xml:space="preserve">ma ſi può <lb/>
<anchor type="figure" xlink:label="fig-0111-01a" xlink:href="fig-0111-01"/>
far correre anco, come l’altra; </s>
  <s xml:id="echoid-s808" xml:space="preserve">ma quella ſi fà volgere correndo l’acqua di là dal <lb/>centro, e que ſta con il corſo dell’acqua altretanto di quà dal centro, la differen-<lb/>za, che pur vi è, è queſta che la ruota cõ le ſcitale ſi può volgere cõ minor cadu-<lb/>ta d’ acqua; </s>
  <s xml:id="echoid-s809" xml:space="preserve">perche ſe eſſe ſcitale ſi faranno larghe aſſai volgeraſsi la ruota con <lb/>pochiſsima caduta, e con poca quantità d’ acqua, come veggiamo tutto il dì ne <lb/>i noſtri Molini del Pò in eſſempio. </s>
  <s xml:id="echoid-s810" xml:space="preserve">Queſta fatta, che ſerà facciaſi, che il centro <lb/>ſia d’vn ferro tante volte, e tanto piegato, come ſi vede, e quanto ci parerà ſe-<lb/>condo la quantità dell’acqua, che ci piacerà far inalzare, ò ſecondo la forza del <lb/>corſo dell’acqua, che volgerà la ruota, lo eſſempio di queſto ſi vede in N. O. ma
<pb o="100" file="0112" n="112" rhead="THEOREMI"/>
meglio in P.Q.</s>
  <s xml:id="echoid-s811" xml:space="preserve">Queſto poſto nel centro ſeruirà per perni da volgeruiſi ſuſo la <lb/>ruota sù due legni, è @ſsi, ò muri, come tornarà bene, purche ſotto eſsi perni vi ſi <lb/>pongano li ſuoi (come diciamo noi) tampagni di brõzo, il qual molto meno vien <lb/>roſo dal ferro, e molto manco rode il ferro, che non fà ferro con ferro, che co-<lb/>me in vn ſubito ſi rode, &amp; in mezo le piegature come in R. S. T. V. X. vi ſi pon-<lb/>gano anelli di bronzo, acciò non mangino il ferro dentro dal capo delli quali ſi <lb/>ficchino ferri con buchi, che ſi rincontrino, oue vada per ogni anello più d’vn <lb/>cuneo di ferro per vnirli inſieme come moſtra lo eſſempio A. A. e queſti ferri ſi <lb/>farà, che ſiano almeno tãto longhi quanto il mezzo diametro della ruota, e ſor-<lb/>to queſti a perpendiculo ſi ponghino li modioli di bronzo con gli aſſarij nel fon-<lb/>do, come nella Machina Chteſibica dicono Vitruuio, Vegetio, &amp; il Valturia, <lb/>che ſono le cartelle nelle trombe vſate a cauar l’acque delle Naui, e d’ogni luogo <lb/>baſſo, e da vn lato di queſſi ſiaui forato vn’altro buco, e poſtoui altre cartelle <lb/>a li modioli affiſſe; </s>
  <s xml:id="echoid-s812" xml:space="preserve">ma che ſi ſnodino, acconcie in modo che a tirar fiato per le <lb/>bocche 2. 3. 4 5. ſi chiudano i buchi, e s’aprano quelle di fondo, e nel ſoffiarui dẽ-<lb/>tro s’aprano queſte, e ſi chiudano quelle, i luoghi di queſte ſono 6. 7. 8. 9. &amp; ad eſ-<lb/>ſi modioli ſia aſſaldato per cadauno vna canna tanto larga di boccha, che in eſſe <lb/>poſſan giocare detti aſſarij, ò cartelle; </s>
  <s xml:id="echoid-s813" xml:space="preserve">ma ſiano più ſtrette alquanto dall’altro ca-<lb/>po, e queſti ſi vadano ad vnire inſieme in vna ſol canna, come ſi vede nella figu-<lb/>ra al numero 10. la quale facendo vn’angolo come in 11. ſi alzarà perpendico-<lb/>larmente, quanto ci piacerà come in 12. dopoi alli ferri, che aſticiuole ſi chiamano; <lb/></s>
  <s xml:id="echoid-s814" xml:space="preserve">fiano attaccati cilindri ſodi di cuoio, li quali ſi ſnodino nella giuntura di eſſe <lb/>haſticiuole eſſendo, che conuiene per mezzo di eſsi porui vn ferro non molto <lb/>groſſo per tener le rotele di cuoio inſieme aggiunte, queſti ſian poſti ne i mo-<lb/>dioli, che tanto eſattamente per eſsi s’alzino, &amp; abbaſsino, che tirar poſſano l’a-<lb/>ria per li afſarij, e ſcacciarlo. </s>
  <s xml:id="echoid-s815" xml:space="preserve">Che facendo ſopra la ruota cader l’acqua del canale <lb/>13. ouer 14. ſi volgerà la ruota, e li cilindri andando sù, e giù tiraranno nel venio <lb/>in ſuſo l’acqua, e nel calar a baſſo la ſcacciaranno per le canne 6. 7. 8. 9. nella <lb/>canna 10. e 11. e tanto ſerà violentata dalla forza della volgente ruota, che ſerà <lb/>ſpinta per forza, quanto in sù ci piacerà di mandarla: </s>
  <s xml:id="echoid-s816" xml:space="preserve">Ricordandoci come ella <lb/>arriua al deſtinato luogo di far iui vn vaſo recipiente dal quale deriui vn’altra <lb/>canna, che in giù la porti, che per la gran caduta ſua farà tutto ciò, che ci piace-<lb/>rà, e ſe in eſſo vaſo vi andrà acqua di vantaggio potra ſsi con vn’altra canna ter-<lb/>minata far che ſe ne vada da ſe ſteſſa, circondandoci, che tutti li modioli voglio <lb/>no ſtare nell’acqua, e forſe che non ſerà ſe non bene il far il luogo della ruota ſe-<lb/>parato da quello de i modioli; </s>
  <s xml:id="echoid-s817" xml:space="preserve">Imperoche ogn’acqua, benche lutoſa, e torbida <lb/>e boniſsima da far volgere la ruota. </s>
  <s xml:id="echoid-s818" xml:space="preserve">Ma per ſchizzarla con li cilindri ne’modioli <lb/>conuien, che ſia purgata, acciò ſi chiudano li eſiti delle canne con il loto, ſe <lb/>l’acqua dentro vi ſi fermaſſe; </s>
  <s xml:id="echoid-s819" xml:space="preserve">A che vi ſi ſuol prouedere con ſoradori, e perche <lb/>ſopra i cilindri l’acqua non s’alzi: </s>
  <s xml:id="echoid-s820" xml:space="preserve">Ma ſtia ſempre ad vn ſegno, conuerrà farle <lb/>anco li ſuoi efiti, acciò non poſſa paſſare il luogo determinato. </s>
  <s xml:id="echoid-s821" xml:space="preserve">Del reſlo ſi può <lb/>dall’iſteſſo diſſegno capire l’artifitio faciliſ simamente parendomi, che altro per
<pb o="101" file="0113" n="113" rhead="AGGIVNTI."/>
hora intotno acciò dire non mi occorra; </s>
  <s xml:id="echoid-s822" xml:space="preserve">ſe non moſtrare, come queſto ifteſſo ef-<lb/>fetto, che habbiamo detto farſi dall’acqua corrente ſi puol far con vn’huomo fa-<lb/>cilmente, e cõ vn cauallo, ne m’affaticarò in deſcriuere intorno acciò altro parẽ-<lb/>domi, che i diſsegni di queſti due modi baſtino per ſe ſteſsi a farſi intendere, che <lb/>della cagione della celerità de’ moti circulari diremo, ll’hora, che a Dio piace-<lb/>rà, che poſsiam dimoſtrare, come ſi tirano, e ſpingano i peſi.</s>
</p>
<div xml:id="echoid-div142" type="float" level="3" n="1">
<figure xlink:label="fig-0111-01" xlink:href="fig-0111-01a"><!-- 0111-01 -->
<variables xml:id="echoid-variables82" xml:space="preserve">12 B A B N R S T V O I K L G H M 14 <lb/>2 3 4 5 P A A</variables>
</figure>
</div>
<figure><!-- 0113-01 -->
<variables xml:id="echoid-variables83" xml:space="preserve">G H I E P K L C A B</variables>
</figure>
<p>
  <s xml:id="echoid-s823" xml:space="preserve">SOggiungerò ſolo che queſto modo d’alzare, &amp; abbaſſare li cilindri di cuo-<lb/>io nelli modioli di bronzo con la forza d’ vn’ huomo ſolo anzi d’ vn fan-<lb/>ciullo debole riuſcita tante volte è (per le ragioni de’ moti circolari di-<lb/>moſtrati da Ariſtorile nelle Mecanice) velociſsimo, eſſendo, che la for@a
<pb o="102" file="0114" n="114" rhead="THEOREMI"/>
mouente in A. per eſſer lontano dal centro, che è l’aſſe del ſtilo B. lo cagiona, &amp; <lb/>eſſendo la ſeconda for za in C. meno diſtante dal cẽtro B. viene facilmente moſſa <lb/>dalla forza A. ma la terza forza che è D. conuiene, che ſia di ſemidiametro mag-<lb/>giore della C. e minore della A. che la Croce di legno poſta nel fuſo E. con la <lb/>grauità appeſe ad eſſa F. G. H. I. </s>
  <s xml:id="echoid-s824" xml:space="preserve">Quando han preſo il moto la fanno diuenire <lb/>violente, e la forza mouente molto minore. </s>
  <s xml:id="echoid-s825" xml:space="preserve">Poſto dunque il timpano, ò ruotella <lb/>dentata K. nel fuſo E. e facendo che i denti vadino frà le brazzuole della rochella <lb/>Linfiſſa nel ferro piegato, che è il centro, oue ſono attaccate le haſticiuole, che <lb/>ſono allegate alli aſſi de’cilindri di cuoio, li quali per li modioli accommodati <lb/>co' ſuoi aſſarij com’hò detto di ſopra, cagionaranno il fluſſo dell’acqua in qual ſi <lb/>voglia altezza velociſſimo.</s>
</p>
  <figure>
    <image file="0114-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/xxxxxxxx/figures/0114-01"/>
  </figure>
<p>
  <s xml:id="echoid-s826" xml:space="preserve">LOiſteſſo moto con l’iſteſſa velocità s’haurà, ſe nel fuſo (in cui ſia infiſſa <lb/>la ruota dentata, che vada coni denti frà le brazzuole della rochella L. <lb/></s>
  <s xml:id="echoid-s827" xml:space="preserve">che volge il centro da cui pendono le baſticiuole de’ cilindri, che vanno <lb/>sù, e giù per i modioli) ſerà infiſſa la ſtanga longa, tanto, che attaccan-<lb/>doui vn cauallo eſſo poſſa comodamente girare intorno al ſuſo fermato in terrs
<pb o="103" file="0115" n="115" rhead="AGGIVNTI."/>
sù vn legno come in O. e di ſopra giri per vn’altro buco perpendico lare ad O. <lb/></s>
  <s xml:id="echoid-s828" xml:space="preserve">notato P. facendo, che ſotto eſſo legno s’aggiri il fuſo eſa ttamente, ac ciò nel vol-<lb/>gerſi non s’alzino i denti della ruota di sù il rochello, auertendo che biſogna por-<lb/>re nel legno da baſſo ſotto il perno del fuſo vn zocchetto di bronzo, nel <lb/>qual ſia il buco, doue s’hà da girare il centro di eſſo fuſo, il <lb/>quale buco proueggaſi, che ftia ſempre pieno d’ oglio <lb/>acciò il ferro, &amp; il bronzo ſcaldandoſi non ſi <lb/>venghino a intenerire, perche ſi rode-<lb/>rebbono preſtiſſimo, e tanto <lb/>ſia per hora detto in-<lb/>torno ad alzar <lb/>l’ac-<lb/>qua per via diſchizzo con ac-<lb/>qua corrente, con vn’ <lb/>huomo ſolo, e con <lb/>vn cauallo.</s>
</p>
<head xml:id="echoid-head103" type="footer" xml:space="preserve">IL FINE <lb/>delli Theoremi aggiunti.</head>
<pb file="0116" n="116"/>
<pb o="117" file="0117" n="117"/>
</div>
<div xml:id="echoid-div144" type="index" level="2" n="1">
<head xml:id="echoid-head104" xml:space="preserve">TAVOLA <lb/>DE I THE OREMI.</head>
<xhtml:table>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">DEl cauar l’acqua per via di piegato tubo. a carte</xhtml:td>
    <xhtml:td xml:space="preserve">9</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Del tubo Spiritale in mezo ad vn’altro tubo nella <lb/>bocca di ſopra.</xhtml:td>
    <xhtml:td xml:space="preserve">11</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Del fluſſo ſempre vguale, per il piegato tubo.</xhtml:td>
    <xhtml:td xml:space="preserve">13</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Del fluſſo per la piegata canna, parte vguale, <lb/>e parte ineguale.</xhtml:td>
    <xhtml:td xml:space="preserve">13</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Del tirar l’acqua fuor delle groſſe canne.</xhtml:td>
    <xhtml:td xml:space="preserve">15</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Della vuota palla di rame.</xhtml:td>
    <xhtml:td xml:space="preserve">15</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Che ſi può ricmpire la palla concaua d’acqua calda, e fredda l’vna ſe-<lb/>parata dall’altra, e mandarne fuori, quando vna, quando l’altra: &amp; <lb/>ambedue inſieme.</xhtml:td>
    <xhtml:td xml:space="preserve">16</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Del vaſo detto Prochita, che ne i ſacri miniſterij ſolleuaſi antic amente <lb/>vſare.</xhtml:td>
    <xhtml:td xml:space="preserve">17</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Della sfera, ò palla concaua, che per ſe ſteſſa eſprime l’acqua in alto.</xhtml:td>
    <xhtml:td xml:space="preserve">18</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Della cartella.</xhtml:td>
    <xhtml:td xml:space="preserve">19</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Fare per forza difuoco ſacrific are animali quanti ci parerà.</xhtml:td>
    <xhtml:td xml:space="preserve">20</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">De i vaſi, che ſe non ſono ripieni non verſano: ma ripieni tutto l’humi-<lb/>do, che v’è dentro ſe ne fugge.</xhtml:td>
    <xhtml:td xml:space="preserve">21</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">De i vaſi concordi.</xhtml:td>
    <xhtml:td xml:space="preserve">22</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">De i vaſi ne i quali infondendoſi acqua ſi crea vn ſuono, ouero ſibilo. <lb/><emph style="it">23</emph></xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Delle diuerſità delle voci di varij vccelli.</xhtml:td>
    <xhtml:td xml:space="preserve">24</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Con la iſteſſa ragione ſi fanno ſonare le Trombe.</xhtml:td>
    <xhtml:td xml:space="preserve">25</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Nell’aprire le porte de i Tempij in questo modo ſi fà, che vna, ò più <lb/>Trombe ſuonino.</xhtml:td>
    <xhtml:td xml:space="preserve">25</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Vaſo, nel quale infuſo vino, &amp; acqua l’vn dall’ altro ſeparati ſi può <lb/>a voglia noſtra hauer, quando vin puro, quando acqua pura.</xhtml:td>
    <xhtml:td xml:space="preserve">26</xhtml:td>
  </xhtml:tr>
  <pb o="118" file="0118" n="118"/>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Della coppa ſopra vna baſe poſta, ſe di eſſa ſerà cauata il vino di che <lb/>ſia piena tornerà in continente per ſe ſteſſa a riempirſi.</xhtml:td>
    <xhtml:td xml:space="preserve">27</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Che la propoſta coppa (benche ſi caui gran copia di vino, ò d’ acqua) <lb/>ſtarà piena.</xhtml:td>
    <xhtml:td xml:space="preserve">28</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Vaſo nel quale gettato vna moneta di cinque dragme n’eſce acqua, <lb/>&amp; aſperge colui, che la moneta pone nel vaſo.</xhtml:td>
    <xhtml:td xml:space="preserve">29</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Poſto in vn vaſo varie ſorte di vino bianco roſſo, di più ſapori, &amp; <lb/>acqua fargli a nostra voglia per vn ſolo canale vſcire.</xhtml:td>
    <xhtml:td xml:space="preserve">30</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Li due vaſi, che ſopra vna medeſima baſe collocati, vno de i quali pie-<lb/>no divino, e l’altro vuoto, che quant’acqua nel vuoto ſerà poſto <lb/>tanto vino fuori dell’altra vſcirà, ſi fabricano a queſto modo.</xhtml:td>
    <xhtml:td xml:space="preserve">31</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Fabricare vna canna, che fluiſca tant’acqua, &amp; vino quanto ci pa-<lb/>rerà.</xhtml:td>
    <xhtml:td xml:space="preserve">32</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Se ſerà acqua in vn vaſo, &amp; in eſſa il canale nel quale ſia vna chiaue, <lb/>&amp; in dett’acqua nuoti vn’animale: fare che quant’acqua ſi caue-<lb/>rà delvaſo altretanto vino dalla bocca ſpruzzi l’animale.</xhtml:td>
    <xhtml:td xml:space="preserve">33</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Ma ſe ci piaceſſe vedere vſcir tanto vino, quanto acqua in vn vaſo ſi <lb/>porrà così.</xhtml:td>
    <xhtml:td xml:space="preserve">34</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Modo con che ſi eſprime l’acqua ne gl’incendij.</xhtml:td>
    <xhtml:td xml:space="preserve">34</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Ne i luoghi, oue s’ haurà acqua corrente per canale fabricare vn’ani-<lb/>male, ò di rame, ò di qual altra materia ſi voglia, che continua-<lb/>mente gridi: ma portoui vn catino a’acqua eſſo la beua ſenza ſtre-<lb/>pito, e beutola torni di nuouo a gridare.</xhtml:td>
    <xhtml:td xml:space="preserve">36</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Come in altro modo volgendo vna chiaue per opera dell’ effuſione d’v-<lb/>n’acqua ſi faccia a voglia noſtra bere lo iſteſſo animale.</xhtml:td>
    <xhtml:td xml:space="preserve">37</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Come ſenza fluſſo d’acqua, ò volger chiaue ſi faccia bere il ſopradetto <lb/>animale.</xhtml:td>
    <xhtml:td xml:space="preserve">38</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Alle porte de i ſacri Tempij de gli Egitij ſi fanno volgibil ruote, che da <lb/>gli entranti nel Tempio ſono voltate, e dopo le porte ſono vaſi, che <lb/>nel volger di eſſe ruote ſpruzzano acqua, &amp; aſpergono gli entran-<lb/>ti, &amp; in questo modo ſi fabricano.</xhtml:td>
    <xhtml:td xml:space="preserve">38</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Per la bocca d’vn vaſo ſi può in eſſo porre più ſorte di vino, e per vn’i-
  <pb o="119" file="0119" n="119"/>
  ſteſſo canale cauarne ciaſcun di loro a compiacenza dichi elegge-<lb/>rà qual ſi voglia anzi che ſe molti molte ſorte di vino vi porranno, <lb/>potrà ciaſcuno hauere il ſuo proprio, e ſpecialmente tanto quanto di <lb/>ciaſcuno vi ſerà dentro poſto.</xhtml:td>
    <xhtml:td xml:space="preserve">39</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Fabricare vna lucerna, che per ſe ſteſſa ſi conſumi.</xhtml:td>
    <xhtml:td xml:space="preserve">41</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Se in vn vaſo che habbia vn canale aperto preſſo il fondo porremo ac-<lb/>qua, far a voglia noſtra vſcire per eſſo canale acqua nel principio, <lb/>alle volte nel mezo, &amp; alle volte quando ſerà ripieno tutto il vaſo; <lb/>ouero che in generale, ſubito ripieno il vaſo l’ acqua ſe n’vſcirà. <lb/>a carte</xhtml:td>
    <xhtml:td xml:space="preserve">41</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Fabric are vn vaſo nel quale infondendo humore lo riceuerà, non in-<lb/>fondendoui più acqua più non riceuerà.</xhtml:td>
    <xhtml:td xml:space="preserve">42</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Sopra vna baſe può poſarſivn Satiro, che tenga nelle mani vn’Vtre, <lb/>ſotto il quale vi ſia vn’ auello il quale ſe ſerà d’ acquaripieno eſſa <lb/>per l’Vtre caderà nel detto auello; ne mai ſopra fluirà a gli orli del <lb/>vaſo, fin che tutta l’acqua per l’Vtre non ſerà euacuata, &amp; il modo <lb/>di fabricarlo ſerà queſto.</xhtml:td>
    <xhtml:td xml:space="preserve">43</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Fabricare vn’altare ſopra del quale acceſo vn fuoco s’aprino ſubito le <lb/>porte d’vn Tempio, e ſpento il fuoco ſubito tornino a rinchiuderſi. <lb/>a carte</xhtml:td>
    <xhtml:td xml:space="preserve">44</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Ancora acceſo vn fuoco ſopra vn’ altare ſi fanno aprire le propaſte <lb/>porte.</xhtml:td>
    <xhtml:td xml:space="preserve">46</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Ripieno di vino vn vaſo, che habbia tre canali fare che per quel di <lb/>mezzo eſca vino, e quando in eſſo vaſo giunger aſſi acqua, che ſi fer-<lb/>mi il fluſſo del vino: ma ſe n’eſca l’acqua per gli altri due canali, <lb/>e fermata eſſa acqua, ritorni ad vſcirſene il vino, e queſto quante <lb/>volte ci piacerà.</xhtml:td>
    <xhtml:td xml:space="preserve">47</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Se ſopra vna data baſe ſi farà vna maccbia di arbori, &amp; in eſſa s’aui-<lb/>luppi vn Drago, &amp; all’incontro di eſſo vn’ Hercole in atto ſaggit-<lb/>tãte, ſe alcuno leuerà dalla baſe vn pomo cõ vna mano far che Her-<lb/>cole ſaetti il Dragone, &amp; eſſo Dragone mandi in queſto vn ſibilo <lb/>a carte</xhtml:td>
    <xhtml:td xml:space="preserve">48</xhtml:td>
  </xhtml:tr>
  <pb o="120" file="0120" n="120"/>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Fabricare vn vaſo, che ſempre che ſia verſato darà egual miſura del-<lb/>l’ humore contenuto da eſſo, che a punto ſi chiama vaſo di giuſta <lb/>miſura.</xhtml:td>
    <xhtml:td xml:space="preserve">49</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Con il fiato eſprimere in queſto modo l’ acqua fuori de i vaſi.</xhtml:td>
    <xhtml:td xml:space="preserve">50</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Formar varie voci di varij vccelli in più diſtanze.</xhtml:td>
    <xhtml:td xml:space="preserve">51</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">In altra modo ancora in diſtanze dinerſe ſi fanno diuerſi canti di va-<lb/>rij vccelli.</xhtml:td>
    <xhtml:td xml:space="preserve">52</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Far, che le vuote, e leggieri palle ſaltellino in queſto modo.</xhtml:td>
    <xhtml:td xml:space="preserve">53</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">E le traſparenti sfere, che in ſe habbino, &amp; aria, &amp; acqua, e nel mezo <lb/>vna palla, come la terra in mezo del Mondo, in queſto modo ſi fan-<lb/>no a carte.</xhtml:td>
    <xhtml:td xml:space="preserve">53</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Che a goccia a goccia ſtilli l’ humido ſpinto da i penetranti raggi del <lb/>Sole.</xhtml:td>
    <xhtml:td xml:space="preserve">54</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Demergendo nell’acqua il vaſo ſenza piede detto Thirſo far vſcirne <lb/>vn ſuono, ò di canna, ò d’alcun vccello.</xhtml:td>
    <xhtml:td xml:space="preserve">54</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Far che vna ſtatua, la quale poſi ſopra vna baſe, e che habbia alla boc-<lb/>ca vna Tromba ſuoni, dandoli noi fiato con qual ſi voglia ſopradet-<lb/>ta maniera.</xhtml:td>
    <xhtml:td xml:space="preserve">55</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Riſcaldato vn vaſo pieno d’acqua, far girare vna sfera vuota sù due <lb/>poli.</xhtml:td>
    <xhtml:td xml:space="preserve">56</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Far ceſſare vn fluſſo d’ acqua, che fuor d’ vna tazza eſca a mezzo <lb/>il corſo ſe bene non ſi chiuderà il canale con vn coperto.</xhtml:td>
    <xhtml:td xml:space="preserve">56</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Fabricare il vaſo fluſſile il quale con vna meza sfera di vetro coperta <lb/>aſcenàa l’humido, e diſcenda, eſparga fuori.</xhtml:td>
    <xhtml:td xml:space="preserve">57</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">In vn’altra maniera far aſcender l’acqua, che ſempre paia ſtare in <lb/>moto.</xhtml:td>
    <xhtml:td xml:space="preserve">58</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Alcuni animali per vn buco enfiati eſprimono l’ acqua per vn’ altro <lb/>luogo, come per eſempio vn Satiro per vn’ Vtre verſarà l’acqua in <lb/>vna coppa, che nelle mani tenga vn’altro Satiro.</xhtml:td>
    <xhtml:td xml:space="preserve">59</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Fabricare vn vaſo, che cominciato a infonderui acqua eſſa correrà <lb/>fuori: ma intralaſciato per vn poco non più vſcirà fin tanto, che il <lb/>vaſo non ſerà pieno fin a mezzo, e di nuouo fatta vn poco d’inter-
  <pb file="0121" n="121"/>
  miſſione non più ſe ne vſcirà l’acqua fin tanto, che non ſerà pieno <lb/>fin di ſopra.</xhtml:td>
    <xhtml:td xml:space="preserve">60</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Fabricare vna cucurbitula, ò ventoſa, che ſenza fuoco tiri.</xhtml:td>
    <xhtml:td xml:space="preserve">61</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Gli Smeriſmi, ò piulchi, che dai volgari ſon detti ſchizzi per queſta <lb/>cauſa fanno il ſopradetto effetto.</xhtml:td>
    <xhtml:td xml:space="preserve">62</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Fabricare vn vaſo, che riempiendoſi il vino ſe ne vada per vn cana-<lb/>le, che in eſſo vaſo ſia preſſo al fondo: Ma mettendouiſi vn bicchiere <lb/>d’acqua ſi fermi l’eſito di detto vino, e ſe ve ne ſerà giunto vn’ altro <lb/>bicchiere, queſto con la infuſaui, prima ſe n’andrà per due altri ca-<lb/>nali, e che dopo, che tutta l’acqua ſerà effuſa, di nuouo ritorni il vi-<lb/>no a vſcirſene per il canale di mezo, sì che niente ve ne reſti.</xhtml:td>
    <xhtml:td xml:space="preserve">63</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Che vn vaſo pieno di vino, che habbia vn canale per eſſo alcuna vol-<lb/>ta ſpargerà vino, &amp; infondendoui acqua ſpargerà acqua pura; po-<lb/>ſcia di nuouo verſerà vino, e ſe ad altri piacerà verſarà acqua, <lb/>e vino miſchiato.</xhtml:td>
    <xhtml:td xml:space="preserve">64</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Acceſo ſopra vn’altare vn fuoco far ſacrificar due ſtatue, e ſibilare vn <lb/>Dragone.</xhtml:td>
    <xhtml:td xml:space="preserve">64</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Fabricare vn alucerna, che ſtando acceſa, e perciò conſumatoſi l’oglio <lb/>ſe giunto vi ſerà acqua, eſſa tornarà a riempirſi d’oglio.</xhtml:td>
    <xhtml:td xml:space="preserve">65</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td class="it" xml:space="preserve">Dato vn vaſo chiuſo d’ogn’intorno, da cui deriui vn canale aperto; ſot-<lb/>to il quale posto vna coppa d’acqua, ſe altri da eſſo la ſottrarà, far <lb/>che l’acquaſe n’eſca fuori di eſſo vaſo; ma alzata eſſa coppa far che <lb/>l’acqua non più ſcorra.</xhtml:td>
    <xhtml:td xml:space="preserve">66</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td xml:space="preserve">Equei vaſi, che noi chiamiamo Olle ſi fanno gridare nel verſare l’ac-<lb/>qua, ò vino.</xhtml:td>
    <xhtml:td xml:space="preserve">67</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td xml:space="preserve">Far che ſtando vn vaſo pien di vino ſopra vna baſe, con vn canale <lb/>aperto nel fondo nell’ abbaſſar vn peſo il canale verſi il vino a mi-<lb/>ſura: cioè a voglia noſtra vn boccale, e finalmente quanto ti piace-<lb/>rà a carte.</xhtml:td>
    <xhtml:td xml:space="preserve">68</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td xml:space="preserve">Fabricare vn vaſo fluſſile, che in principio ſparga humori misti, e ſe <lb/>v’infonderemo acqua, che l’acqua da per sè ſe n’eſca, e di nuouo <lb/>poi miſchiata.</xhtml:td>
    <xhtml:td xml:space="preserve">69</xhtml:td>
  </xhtml:tr>
  <pb file="0122" n="122"/>
  <xhtml:tr>
    <xhtml:td xml:space="preserve">Se ſopra vna baſe ſi darà vn vaſo, che habbia non lungi dal fondo vn <lb/>canale far che(infuſaui dentro acqua) alle volte n’eſca acqua pura, <lb/>alle volte anco vino puro.</xhtml:td>
    <xhtml:td xml:space="preserve">70</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td xml:space="preserve">Da vn vaſo pieno di vino cauarne per il canale alla miſura che ci <lb/>piacerà quanto, e quante volte ci parerà.</xhtml:td>
    <xhtml:td xml:space="preserve">71</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td xml:space="preserve">D’vn vaſo, che vicino al fodo habbia vn canale ſottoui vn vaſetto mi-<lb/>nore, fuori del quale cauatone quanto vino ci piacerà, altretanto <lb/>far che in eſſo vi ſi giunga per il canale del vaſo grande.</xhtml:td>
    <xhtml:td xml:space="preserve">72</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td xml:space="preserve">Fabricare il teſoro con la ruota verſatile di bronzo, che ſogliono le gẽti <lb/>voltare nell’entrare ne i ſacri Phani, e far che nel volger la porta di <lb/>eſſa ruota, ſi volga vn’vccello, e ne canti vn’altro, e chiuſa la porta, <lb/>ò fermata aperta non più ſivolga, nè canti l’vccello.</xhtml:td>
    <xhtml:td xml:space="preserve">73</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td xml:space="preserve">Alcune ſiſſoni poſte in alcuni vaſi eſprimono l’acqua, fin che ò i vaſi ſo-<lb/>no vuoti ouero ſin che la ſuperſicie dell’acqua giunge al pari della <lb/>bocca delle ſeffoni:?? ma (ſe ſerà neceſſario) far che nel corſo non più <lb/>vrſino.</xhtml:td>
    <xhtml:td xml:space="preserve">74</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td xml:space="preserve">Acceſo vn fuoco ſopra vn’altare, far che girino intorno alcuni animali <lb/>a guiſa di balli: ma ſiano gli altari traſparenti, ò con vetri, ò ſutti-<lb/>liſſimo oſſo puro.</xhtml:td>
    <xhtml:td xml:space="preserve">75</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td xml:space="preserve">Fabricare vna lucerna artifitioſa con oglio dentro, il quale mancan-<lb/>doui vi ſe ne potrà aggiungere quanto ci piacerà ſenza vaſo da <lb/>oglio.</xhtml:td>
    <xhtml:td xml:space="preserve">76</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td xml:space="preserve">Fabricare il vaſo da fuoco detto Miliario, e far per la bocca d’vn’ani-<lb/>male ſoffiare ne i carboni, dal cui ſoffio arda il fuoco, e far anco, che <lb/>l’acqua calda non eſca fuori ſe prima non ſarà nel Miliario poſta <lb/>acqua fredda, la quale perche non così preſto ſi meſchia con la cal-<lb/>da perciò non eſprimerà acqua ſe prima l’acqua fredda non giun-<lb/>gerà al fondo. E fare, che freddiſſima ſia eſpreſſa.</xhtml:td>
    <xhtml:td xml:space="preserve">77</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td xml:space="preserve">S’adoperano anco li Miliarij con altro magiſtero fabricati per far ſo-<lb/>nar Trombe, e cantare vccelli artificioſamente.</xhtml:td>
    <xhtml:td xml:space="preserve">80</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td xml:space="preserve">Componere lo Inſtrumento Hidraulico.</xhtml:td>
    <xhtml:td xml:space="preserve">81</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td xml:space="preserve">Fabric are vn’ Organo del quale le Trombe ſuonino, quando ſoffia il
    <pb file="0123" n="123"/>
    vento.</xhtml:td>
    <xhtml:td xml:space="preserve">84</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td xml:space="preserve">Far che con vn Dragone, che ſtia alla guardia de i pomi d’oro combat. <lb/>ta vn’ Hercole, con vna mazza, e mentre ch’egli l’alza ſibili il Dra-<lb/>gone, e nel punto che Hercole, percuoterà in capo far che eſſo le <lb/>ſpruzzi l’acqua nella faccia.</xhtml:td>
    <xhtml:td xml:space="preserve">88</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td xml:space="preserve">Fare che ſei fiumi, ò più, ò meno verſino dalli loro Vtri acqua in vn <lb/>gran vaſo, &amp; in eſſa acqua ſia naſcoſto Tritone, che con velocità <lb/>eſca fuori dell’onde, e ſuoni vna Tromba, ò Cochiglia, e mentre che <lb/>egli ſuona ceſſino i fiumi di verſar acqua, e tornandoſi a tuffar nel-<lb/>l’acqua far che di nuouo tornino a verſar l’acqua dalli V tri nel va <lb/>ſo, come che egli comandi loro, che ceſſino di correre, &amp; eſſi ſi ſermi-<lb/>no, mentre ſtà ſopra l’acqua, e partito non più curino la commiſſio-<lb/>ne fattagli.</xhtml:td>
    <xhtml:td xml:space="preserve">90</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td xml:space="preserve">Far che cõ l’acqua d’vn canale ſolo ſi vegga bollire vna fucina, nella <lb/>quale vn Fabro tenga a bollire vn ferro, poi volgaſi, e lo ponga sù <lb/>l’incudine, e ſubito tre altri Fabri battano sù’l detto ferro in terzo, <lb/>&amp; ogni colpo faccia ſchizzar fuori acqua, come dal bollente battu-<lb/>to ferro ſcintillano le fauille.</xhtml:td>
    <xhtml:td xml:space="preserve">93</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td xml:space="preserve">Fabricare vna ſtanza nella quale al tempo, che ci piacerà ſempre vi <lb/>ſpiri vento, che la rifreſchi, e molto a voglia noſtra.</xhtml:td>
    <xhtml:td xml:space="preserve">96</xhtml:td>
  </xhtml:tr>
  <xhtml:tr>
    <xhtml:td xml:space="preserve">Modo di far ſalire per forza d’ acqua vn canale d’ acqua in cima <lb/>d’ogn’alta Torre.</xhtml:td>
    <xhtml:td xml:space="preserve">98</xhtml:td>
  </xhtml:tr>
</xhtml:table>
<head xml:id="echoid-head105" type="footer" xml:space="preserve">IL FINE.</head>
<pb file="0124" n="124"/>
<pb file="0125" n="125"/>
<pb file="0126" n="126"/>
<pb file="0126a" n="127"/>
<pb file="zzzz" n="128"/>
    </div>
  </div></text>
</echo>