view texts/archimedesOldCVSRepository/archimedes/xml/valer_centr_043_la_1604.xml @ 31:edf6e8fcf323 default tip

Removing DESpecs directory which deserted to git
author Klaus Thoden <kthoden@mpiwg-berlin.mpg.de>
date Wed, 29 Nov 2017 16:55:37 +0100
parents 22d6a63640c6
children
line wrap: on
line source

<?xml version="1.0"?>
<!DOCTYPE archimedes SYSTEM "../dtd/archimedes.dtd">
<archimedes xmlns:xlink="http://www.w3.org/1999/xlink">      <info>
	<author>Valerio, Luca</author>
	<title>De centro gravitatis solidorum</title>
	<date>1604</date>
	<place>Bologna</place>
	<translator/>
	<lang>la</lang>
	<cvs_file>valer_centr_043_la_1604.xml</cvs_file>
	<cvs_version/>
	<locator>043.xml</locator>
</info>      <text>          <front>          </front>          <body>            <chap>	
<pb/>
<pb/>
<pb/>
<pb/>
<pb/><p type="head">

<s>DE CENTRO <lb/>GRAVITATIS <lb/>SOLIDORVM <lb/>LIBRITRES.</s></p><p type="head">

<s>LVC&AElig; VALERII <lb/><emph type="italics"/>Mathematic&aelig;, &amp; Ciuilis Philo&longs;ophi&aelig; <lb/>in Gymna&longs;io Romano profe&longs;&longs;oris.<emph.end type="italics"/></s></p><figure id="id.043.01.001.1.jpg" xlink:href="043/01/001/1.jpg"/><p type="head">

<s>ROM&AElig;, Typis Bartholom ri Bonfadini. </s>

<s>MDC IIII. <lb/>SVPERIORVM PERMISSV.</s></p><pb/><p type="main">

<s>Imprimatur <!-- KEEP S--></s></p><p type="main">

<s>Si placet R. P. <!-- REMOVE S-->Magi&longs;tro S. Palati<gap/> <lb/>B. <!-- REMOVE S--></s>

</p><p type="main">



<s>Gyp&longs;ius Vice&longs;ger. <!-- KEEP S--></s></p><p type="main">

<s><emph type="italics"/>Imprimatur<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s><emph type="italics"/>Fr. <!-- REMOVE S-->Io. <!-- REMOVE S-->Maria Bra&longs;ichellen. <!-- REMOVE S-->Sacri Pal. <lb/></s>







<s>Apostol. <!-- REMOVE S-->Magi&longs;t.<emph.end type="italics"/><!-- KEEP S--></s>

</p><pb/><figure id="id.043.01.003.1.jpg" xlink:href="043/01/003/1.jpg"/><p type="head">

<s>SANCTISSIMO <lb/>DOMINO NOSTRO <lb/>CLEMENTI VIII <lb/>PONT. OPT. MAX.<!-- REMOVE S--><emph type="italics"/>Lucas Valerius perpetuam felicitatem.<emph.end type="italics"/></s></p><figure id="id.043.01.003.2.jpg" xlink:href="043/01/003/2.jpg"/><p type="main">

<s>Grata Principi munera, <lb/>P. B. ex Philo&longs;ophi&aelig; late&shy;<lb/>bris deprompta, qua&longs;i aurum <lb/>&longs;oli expo&longs;itum illico &longs;plen&shy;<lb/>dent, &amp; public&aelig; vtilitatis <lb/>&longs;pem o&longs;tendunt, magno or&shy;<lb/>nata pr&aelig;&longs;idio in primos liuo&shy;<lb/>ris impetus illius approbatione, cuius officium e&longs;t <lb/>alia &agrave; rep. </s>

<s>auertere, alia imperare. </s>

<s>Hinc por&shy;<lb/>r&ograve; factum e&longs;t, vt omnis fer&egrave; &longs;criptor exi&longs;timatio&shy;<lb/>nis periculum aditurus, aliquem ex principibus <pb/>viris &longs;ibi deligat, cuius autoritate ip&longs;i dicatum <lb/>opus ab inuidorum mor&longs;ibus &longs;eruetur incolume. <lb/></s>

<s>Hanc ergo con&longs;uetudinem amanti mihi &longs;an&egrave; feli&shy;<lb/>citer cecidit, vt tu &longs;ola tua propria benignitate <lb/>permotus in tuos me familiares vltro a&longs;criberes. <lb/></s>

<s>Siue enim ingenij mei debilis partus <expan abbr="magn&amacr;">magnam</expan> pa&shy;<lb/>troni de&longs;iderat autoritatem: tu principum orbis <lb/>terrarum princeps &longs;emper digni&longs;&longs;imam principa&shy;<lb/>tu &longs;apientiam pr&aelig;&longs;titi&longs;ti. </s>

<s>Seu tam elat&aelig; dedica&shy;<lb/>tiones &longs;olent alienas &agrave; &longs;apienti&aelig; &longs;tudio &longs;pes olere: <lb/>lux tanti patrocinij, <expan abbr="tuorum&qacute;">tuorumque</expan> veterum in me be&shy;<lb/>neficiorum, atram &longs;u&longs;picionem amouebit. </s>

<s>Qu&ograve;d <lb/>ver&ograve; ad vitam ip&longs;ius operis attinet, quam nulla <lb/>per te velim temporum permutatione terminari: <lb/>vereor vt id &longs;ua luce multis alijs vitali a&longs;piciat <lb/>illa, qu&aelig; tua &longs;tudia, &amp; res ge&longs;tas omnium lin&shy;<lb/>guis, &amp; litteris celebrabit &aelig;ternitas. </s>

<s>quantum <lb/>enim tuam excel&longs;am &longs;u&longs;picio dignitatem, tantum <lb/>de&longs;picor i&longs;tius doni incredibilem cum illa com&shy;<lb/>parati humilitatem: neque id ni&longs;i diuinitus cre&shy;<lb/>diderim perpetuam in tuis laudibus famam ha&shy;<lb/>biturum. </s>

<s>Quare illud non &longs;olum tibi diuini gre&shy;<lb/>gis anti&longs;titi cupio gratum accidere, cuius auto&shy;<lb/>ritate protectum in tanta nouarum rerum po&longs;t <lb/>tam graues autores contemptione, minimo meo <lb/>cum rubore in medium prodeat: &longs;ed ip&longs;i diuinita&shy;<lb/>ti ex voluntate donum expendenti, penes quam <lb/>e&longs;t &aelig;ternitas, &amp; cui primum dicata omnia e&longs;&longs;e <lb/>oportet: vt hi, quostuis luminibus dignaris, de <pb/>centro grauitatis &longs;olidorum &longs;terilis ingenij mei <lb/>te&longs;tes libelli &agrave; mortis &aelig;mula me obliuione defen&shy;<lb/>dant. </s>

<s>Stomacharis hic, arbitror, qu&ograve;d tantum <lb/>&longs;pectem de nihilo; &longs;ed magis confe&longs;&longs;ionis impu&shy;<lb/>dentia. </s>

<s>At ver&ograve; non impetus animi ad gloriam, <lb/>cuius nullum mihi natura &longs;emen impartiuit (&longs;it <lb/>glori&aelig; loco ignaui&aelig; fugi&longs;&longs;e dedecus) &longs;ed tua er&shy;<lb/>ga me voluntas, meisapta &longs;tudijs liberalitate te&shy;<lb/>&longs;tata hunc ardorem expre&longs;&longs;it. </s>

<s>Tanta enim e&longs;t <lb/>venu&longs;tas tu&aelig; virtutis ex mei meriti penuria, vt <lb/>putem &longs;ine me indice illam diminutum &longs;ui &longs;pecta&shy;<lb/>culum po&longs;teris pr&aelig;bituram. </s>

<s>Nihil ergo minus <lb/>cogitans qu&agrave;m qu&icirc; tua beneficia cumulando per&shy;<lb/>turbatis iudicijs &longs;atisfacerem, &longs;cientia &longs;cilicet, <lb/>&amp; virtute illa, qua maxim&egrave; &longs;uperbit eneruata, &amp; <lb/>are&longs;cens Mundi&aelig;tas; nullum opulenti&aelig; me&aelig;, ar&shy;<lb/>tis alien&aelig; &longs;pecimen pro munere grati&aelig; &agrave; te acce&shy;<lb/>pto partem tibi reddidi: &longs;ed ingenij mei partum, <lb/>qualis is cumque e&longs;t; quod &amp; grati animi qu&aelig;&longs;i&shy;<lb/>tum monumentum crimine me audaci&aelig; liberet, <lb/>&longs;i quodimpendeat, palam dedicaui. </s>

<s>Alij tibi co&shy;<lb/>lumnas hone&longs;ti&longs;&longs;imis titulis ornatas erigant: &longs;ta <lb/>tuas in foris collocent: magnificas &aelig;des extruant, <lb/>quarum in frontibus grandes marmore&aelig; tabul&aelig; <lb/>flammantibus auro &longs;yderibus, &amp; peregrinis lapi&shy;<lb/>dibus intext&aelig; ea de te viuo referant &longs;axum impu&shy;<lb/>dens, qu&aelig; verecunda h&aelig;c pagina pr&aelig;termittit. <lb/></s>

<s>Ego incredibilis tu&aelig; benignitatis non tam gra&shy;<lb/>uia te&longs;timonia, qu&aelig; loco moueri nequeant: &longs;ed <pb/>expeditum hunc nuntium in longi&longs;&longs;ima itinera <lb/>de&longs;tinaui. </s>

<s>Quem quidem eo minus vereor ne <lb/>non tu, quamobrem Telchines forta&longs;&longs;e aliqui in&shy;<lb/>&longs;ectaturi, di&longs;pari &longs;is voluntate protecturus, qu&ograve;d <lb/>in his t&agrave;m reconditis natur&aelig; arcanis geometrica <lb/>demon&longs;tratione patefactis, tanquam in &longs;emine <lb/>multiplicem pr&aelig;&longs;criptionem, ac normam e&longs;&longs;e in&shy;<lb/>telliges ip&longs;e pacis inter tuos greges autor, lupi <lb/>otomani terror, ciuili, &amp; bellic&aelig; architectur&aelig; <lb/>maxim&egrave; nece&longs;&longs;ariam. </s>

<s>Qu&ograve;d que, cum ad theologi&shy;<lb/>cam quandam veritatem chri&longs;tiano generi maxi&shy;<lb/>me &longs;alutarem illu&longs;trandam, per Philo&longs;ophi&lt;17&gt; etiam <lb/>campos &longs;apientium hominum corona decoratus, <lb/>nulla tant&aelig; molis, quantam &longs;u&longs;tines negotiorum <lb/>iactura lati&longs;&longs;im&egrave; vageris; nempe illam cre&longs;cere, <lb/>atque illu&longs;trari indies magis ex optas, cuius con&shy;<lb/>&longs;uetudine tantopere delectaris. </s>

<s>Quod denique <lb/>&longs;cienti&aelig; ciuilis ip&longs;e periti&longs;&longs;imus omnium optim&egrave; <lb/>intelligis, quanti referat ad human&aelig; &longs;ocietatis for <lb/>mam &amp; candorem, regum, atque optimatum a&shy;<lb/>mor in &longs;tudio&longs;os bonarum litterarum. </s>

<s>contr&agrave; au&shy;<lb/>tem ex de&longs;pectione in hos cadente abijs, quorum <lb/>mores pro legibus haberi &longs;olent, no&longs;ti commu&shy;<lb/>nem ingeniorum veternum, mox tyrannidem gi&shy;<lb/>gni, magna cu&longs;tode adempta mode&longs;ti&aelig; imperi&shy;<lb/>tantium crebra ciuium &longs;apientia, qu&aelig; prauis ti&shy;<lb/>morem efficit, melioribus pudorem, Quod &longs;i me&aelig; <lb/>expectationi exitus re&longs;pondebit, vt te hoc munu&shy;<lb/>&longs;culo vel leuiter l&aelig;tari &longs;entiam; alia non iniucun-<pb/>da ftatim proferam, qua PETRVS ALDOBRAN&shy;<lb/>DINVS tuus nepos, domi fori&longs;que clari&longs;&longs;imus <lb/>Cardinalis, cuius inter familiares itidem, <expan abbr="bene-ficijs&qacute;ue">bene&shy;<lb/>ficijsque</expan> deuinctos locum habeo, &longs;u&aelig; erga me hu&shy;<lb/>manitatis te&longs;timonia ab inuidi&aelig; &longs;atellite &amp; mi&shy;<lb/>ni&longs;tra calumnia tueatur: quando duobus talibus <lb/>viris animi mei captum beneficentia &longs;ua pericli&shy;<lb/>tantibus, duplex periculum &longs;ubire &longs;um coactus. <lb/></s>

<s>Sed iam verbo&longs;&aelig; epi&longs;tol&aelig;, &amp; tuo fa&longs;tidio finem im <lb/>po&longs;iturus peto &agrave; te vnum; vt tibi per&longs;uadeas, me <lb/>inter tuos famulos, quos &aelig;re proprio, &amp; victu quo&shy;<lb/>tidiano liberaliter &longs;u&longs;tentas, eorum, qui pro te <lb/>emori po&longs;&longs;unt, amore, con&longs;tantia, fidelitate nemini <lb/>plan&egrave; concedere. </s>

<s>Sic tua omnia pr&aelig;&longs;tanti&longs;&longs;ima <lb/>facinora Princeps magnanime, &amp; pietatis colu&shy;<lb/>men, Deus Opt. <!-- REMOVE S-->Max. <!-- REMOVE S-->tibi fortunet, quem ad ma&shy;<lb/>iores in dies res gerendas in longum &aelig;uum inco&shy;<lb/>lumen, felicemque con&longs;eruet. </s>





<s>Valet. <!-- KEEP S--></s></p><pb/><p type="head">

<s><foreign lang="greek">*l*o*u*k*a *o*u*a*l*e*r*i*o*u <lb/>*e*i*s *t*a *a*u*t*o*u *k*e*n*t*r*a</foreign></s></p><p type="head">

<s><foreign lang="greek">s<gap/>cew=n b<gap/>ze/wn, e)pi/<gap/>mma</foreign>.</s></p><p type="main">

<s><foreign lang="greek">*pai/gnia filo<gap/>fois *loukas_ t<gap/> de ou/m<gap/>loka da/f<gap/>, <lb/>*st<gap/>umo/nos e)gkela/ds <gap/>ei/<gap/>ona p<gap/>lu/<gap/>n. </foreign></s></p><p type="main">

<s><foreign lang="greek">*dw=ron e(/pemya/ pe/<gap/>as d)<gap/>(ze_in ti_s <gap/>u_ <gap/>t) a)/d<gap/><lb/>*b<gap/>qoou/nhs bape/wn ph_ce <gap/>e/meqla fu/<gap/>s. </foreign></s></p><p type="main">

<s><foreign lang="greek">*toi+s pe/zan au)ale/wn <gap/>ndw_n <gap/>i+/aya m<gap/>i/mnas, <lb/>*me/my<gap/> mh\ p/wn tei/rea, mh\ <gap/>u/x<gap/>. </foreign></s></p><p type="main">

<s><foreign lang="greek">*toi_s pnos o)fruo/en plupza/gmonos o)/mma gila/<gap/>as, <lb/>*be/ltion <gap/>gore/hs ke/rdos e(/deiza <gap/>d. </foreign><!-- KEEP S--></s></p><p type="main">

<s><foreign lang="greek">*ei) de/ p tw_n <gap/>o(/<gap/>ws e<gap/>z<gap/>x<gap/>on eu)/<gap/>, <lb/>*p<gap/>i\n qa/naps ma/zyh m): eu)/xom) <gap/>le/tw. </foreign></s></p><p type="main">

<s><foreign lang="greek">*lne/zos ou) kle/yw xa/<gap/>n eu)/fzonos e)<gap/>omo/noi<gap/><lb/>*d<gap/>gm) a)glao\n, <gap/>, <gap/>nomes, kai\ patzi/d<gap/>. </foreign></s></p><p type="main">

<s><foreign lang="greek">*os de/ me laqzai<gap/>os dh/z<gap/>, kako/ep<gap/>os a)kou/o<gap/>, <lb/>*lu<gap/>w_n h(=s fqonezh_s a)/zios purkai<gap/>h_s. </foreign></s></p><pb/><figure id="id.043.01.009.1.jpg" xlink:href="043/01/009/1.jpg"/><p type="head">

<s>LVC AE <lb/>VALER II <lb/>DE CENTRO <lb/>GRAVITATIS <lb/>SOLIDORVM<!-- KEEP S--></s></p><p type="head">

<s><emph type="italics"/>LIBER PRIMVS.<emph.end type="italics"/></s></p><p type="main">

<s>Propo&longs;itum e&longs;t mihi in hi&longs;ce tribus li&shy;<lb/>bris, &ograve; Geometra, cuiu&longs;cumque figur&aelig; <lb/>&longs;olid&aelig; in geometria ratio haberi &longs;olet, <lb/>centrum grauitatis inuenire. </s>

<s>Huius <lb/>autem prouinci&aelig; mihi &longs;u&longs;cipiend&aelig; oc&shy;<lb/>ca&longs;io fuit liber ille iam pridem editus <lb/>Federici Commandini Vrbinatis, in <lb/>quo cum ille corporum planis termi&shy;<lb/>nis definitorum; necnon cylindri, &amp; coni, &amp; fru&longs;ti conici, <lb/>&amp; &longs;ph&aelig;r&aelig;, &amp; &longs;ph&aelig;roidis centrum grauitatis o&longs;tendi&longs;&longs;et; <lb/>aliorum autem, qu&aelig; &longs;uperficie mixta continentur vno co&shy;<lb/>noide parabolico tentato &longs;yllogi&longs;mi iactura operam per&shy;<lb/>didi&longs;&longs;et, ego &longs;pe magis, ad quam vir ille exar&longs;erat incita&shy;<pb/>tus, qu&agrave;m deterritus lap&longs;u, vehementerque dolens geo&shy;<lb/>metri&aelig; partem tamdiu de&longs;iderari cognitione digni&longs;&longs;imam; <lb/>cum ante exercitationis cau&longs;a omnium, qu&aelig; propo&longs;ui &longs;oli&shy;<lb/>dorum, excepto conoide parabolico, centra grauitatis aliis <lb/>viis indaga&longs;&longs;em; po&longs;tea non &longs;olum parabolici, &longs;ed ante me <lb/>tentata nemini, hyperbolici conoidis, &amp; fru&longs;ti vtriu&longs;que, &amp; <lb/>portionis vtriu&longs;que conoidis, &amp; portionis fru&longs;ti, &amp; hemi&shy;<lb/>&longs;ph&aelig;rij, &amp; hemi&longs;ph&aelig;roidis, &amp; cuiu&longs;libet portionis &longs;ph&aelig;&shy;<lb/>r&aelig;, &amp; &longs;ph&aelig;roidis vno, &amp; duobus planis parallelis ab&longs;ci&longs;&longs;&aelig; <lb/><expan abbr="c&etilde;tra">centra</expan> grauitatis adinueni, multa autem ex his duplici, qu&aelig;&shy;<lb/>dam triplici via. </s>

<s>Taceo nunc alia eiu&longs;dem generis, qu&aelig; <lb/>cum vtilia, tum geometri&aelig; &longs;tudio&longs;is non iniucunda, vt arbi&shy;<lb/>tror, futura in po&longs;teriores libros di&longs;tribuimus. </s>

<s>Qu&ograve;d autem <lb/>aliquot propo&longs;itiones, alias Archimedis lemmaticas, alias <lb/>Commandini meis rationibus attuli demon&longs;tratas; non t&agrave;m <lb/>idcirco id fcci, ne me&aelig; lucubrationes <expan abbr="deperir&etilde;t">deperirent</expan>, qu&agrave;m qu&ograve;d <lb/>vel &longs;tylo Euclidis magis con&longs;on&aelig;, vel ad percipiendum eo <lb/>minus laborio&longs;&aelig;, quo ad inueniendum &longs;unt difficiliores, <lb/>vel meo propo&longs;ito aptiores viderentur. </s>

<s>Earum propo&longs;itio&shy;<lb/>num, Archimedis duo &longs;unt in primo libro, decimaquarta, <lb/>&amp; &longs;eptima, &amp; &longs;ecunda pars vige&longs;im&aelig;; in &longs;ecundo autem vna. <lb/></s>

<s>Omne conoides parabolicum &longs;e&longs;quialterum e&longs;&longs;e coni ean&shy;<lb/>dem ba&longs;im, &amp; eandem altitudinem habentis. </s>

<s>Comman&shy;<lb/>dini autem omnes in primo libro nouem; vige&longs;ima tertia, &amp; <lb/>quinta: trige&longs;ima &longs;ecunda, tertia, quarta, &longs;eptima, &amp; nona: <lb/>quadrage&longs;ima prima, &amp; &longs;ecunda. </s>

<s>Sed multa hic noua inue&shy;<lb/>nies ita ad pr&aelig;&longs;ens in&longs;titutum nece&longs;&longs;aria, vt per &longs;e <expan abbr="tam&etilde;">tamen</expan> ip&longs;a <lb/>in geometria locum habere debeant, maxime ver&ograve; tres pri&shy;<lb/>m&aelig; &longs;ecundi libri propo&longs;itiones, quippe quibus magnam, ac <lb/>perdifficilem geometri&aelig; partem demon&longs;tratione recta, &amp; <lb/>generali ad viam regiam redactam e&longs;se intelliges. </s>

<s>Ita Deus <lb/>Opt. <!-- REMOVE S-->Max. <!-- REMOVE S-->cuius auxilio h&aelig;c feci, quibus prode&longs;se alicui <lb/>vehementer cupio, reliquis meis conatibus opem ferat. </s>





<s>Sed <lb/>ad definitiones accedamus. </s></p><pb/><p type="head">

<s>DEFINITIONES.</s></p><p type="head">

<s>I.<!-- KEEP S--></s></p><p type="main">

<s>Figur&aelig; aliqu&aelig; plan&aelig; multilater&aelig; centrum ha&shy;<lb/>bere dicuntur punctum illud, in quo omnes rect&aelig; <lb/>line&aelig; vel angulos oppo&longs;itos iungentes bifariam <lb/>&longs;ecantur, vel ab angulis duct&aelig; ad laterum op&shy;<lb/>po&longs;itorum bipartitas &longs;ectiones in ea&longs;dem ra&shy;<lb/>tiones. </s></p><p type="head">

<s>II.<!-- KEEP S--></s></p><p type="main">

<s>Circa diametrum e&longs;t figura plana, in qua re&shy;<lb/>cta qu&aelig;dam, qu&aelig; diameter figur&aelig; dicitur, omnes <lb/>rectas alicui parallelas, &agrave; figura terminatas bi&shy;<lb/>fariam diuidit. </s></p><p type="head">

<s>III.<!-- KEEP S--></s></p><p type="main">

<s>Octaedrum communiter dictum, e&longs;t figura &longs;oli&shy;<lb/>da octo triangulis binis parallelis, &aelig;qualibus, &amp; <lb/>&longs;imilibus comprehen&longs;a. </s></p><p type="head">

<s>IIII.<!-- KEEP S--></s></p><p type="main">

<s>Polyedri regularis centrum dicitur punctum, <lb/>in quo omnes rect&aelig; line&aelig;, qu&aelig; ad angulos oppo&shy;<lb/>&longs;itos pertinent bifariam diuiduntur. </s></p><pb/><p type="head">

<s>V.<!-- KEEP S--></s></p><p type="main">

<s>Cuiu&longs;libet figur&aelig; grauis centrum grauitatis <lb/>e&longs;t punctum illud, &agrave; quo &longs;u&longs;pen&longs;um graue per&longs;e <lb/>manet partibus quomodocumque circa con&longs;ti&shy;<lb/>tutis. </s></p><p type="head">

<s>VI.<!-- KEEP S--></s></p><p type="main">

<s>Axis pri&longs;matis, &amp; pyramidis &amp; eius fru&longs;ti di&shy;<lb/>citur recta linea, qu&aelig; in pyramide &agrave; vertice ad <lb/>ba&longs;is centrum figur&aelig; vel grauitatis pertinet: in <lb/>reliquis autem, qu&aelig; ba&longs;ium oppo&longs;itarum figur&aelig; <lb/>vel grauitatis centra iungit. </s></p><p type="head">

<s>VII.<!-- KEEP S--></s></p><p type="main">

<s>Si qua figura &longs;olida planis parallelis ita &longs;eca&shy;<lb/>ri po&longs;&longs;it, vt qu&aelig;cumque &longs;ectiones centrum ha&shy;<lb/>beant, &amp; &longs;int inter &longs;e &longs;imiles; aliqua autem recta <lb/>linea, &longs;iue ad centra ba&longs;ium oppo&longs;itarum pr&aelig;di&shy;<lb/>ctis &longs;ectionibus parallelarum, &amp; &longs;imilium, vt in <lb/>cylindro; &longs;iue ad verticem, &amp; centrum ba&longs;is ter&shy;<lb/>minata, vt in cono, hemi&longs;ph&aelig;rio, &amp; conoide, tran&shy;<lb/>&longs;eat per centra omnium pr&aelig;dictarum &longs;ectionum; <lb/>ea talis figur&aelig; axis nominetur: ip&longs;a autem figura, <lb/>&longs;olidum circa axim. </s>

<s>Qu&aelig; &longs;i vel vnam tantum ha&shy;<lb/>beat ba&longs;im, vel duas in&aelig;quales, &amp; parallelas: dua&shy;<lb/>rum autem quarumlibet pr&aelig;dictarum &longs;ectionum <lb/>vertici, vel minori ba&longs;i propinquior &longs;it minor re-<pb/>motiori; &longs;olidum circa axem in alteram partem de <lb/>ficiens nominetur: quo nomine &longs;ignificari etiam <lb/>volumus ea &longs;olida, quorum qu&aelig;libet &longs;ectiones <lb/>ba&longs;i parallel&aelig; quamuis ba&longs;i non &longs;int omnino &longs;imi&shy;<lb/>les, tamen ijs figuris deficiunt, qu&aelig; &longs;unt &longs;imiles <lb/>ha&longs;i, ac totis ijs, &agrave; quibus ip&longs;&aelig; ablat&aelig; intelli&shy;<lb/>guntur, ita vt tota figura &amp; ablata habeant com&shy;<lb/>mune centrum in vna recta linea ad centrum ba&shy;<lb/>&longs;is terminata, qu&aelig; &amp; ip&longs;a talis &longs;olidi axis nomi&shy;<lb/>netur. </s></p><p type="main">

<s>Vt in figura, &longs;olidi ABDC deficientis &longs;olido CED <lb/>ba&longs;is e&longs;t circulus AB, terminus ba&longs;i oppo&longs;itus circum&shy;<lb/>ferentia circuli CMD. axis communis omnibus EF, <lb/>per cuius quodlibet punctum I plano ba&longs;i AB paralle&shy;<lb/>lo &longs;ecante &longs;olidum ABDC, &amp; ablatum CED, &amp; re&shy;<lb/>&longs;iduum, e&longs;t totius <lb/>&longs;ectio circulus G <lb/>H, ablati vero cir&shy;<lb/>culus KL, &amp; re&longs;i&shy;<lb/>dui &longs;ectio reliquum <lb/>circuli GH dem&shy;<lb/>pto circulo KL. <lb/>quarum &longs;ectionum <lb/>omnium centrum <lb/>commune e&longs;t I. <lb/><!-- KEEP S--></s>

<s>Quod &longs;i &longs;uper duos <lb/><figure id="id.043.01.013.1.jpg" xlink:href="043/01/013/1.jpg"/><lb/>circulos GH, KL circa axem communem EI cylin&shy;<lb/>dri de&longs;cribantur, (erunt autem eiu&longs;dem altitudinis) erit <lb/>reliquum cylindri GB, dempto cylindro cuius ba&longs;is <lb/>KL, axis EI, con&longs;titutum &longs;uper ba&longs;im G, <emph type="italics"/>K<emph.end type="italics"/>, &amp; circa <lb/>axim EI, qu&aelig; &longs;uo loco expectatur cogitatio. </s></p><pb/><p type="head">

<s>POSTVLATA.</s></p><p type="head">

<s>I.<!-- KEEP S--></s></p><p type="main">

<s>Omnis figur&aelig; grauis vnum e&longs;&longs;e centrum gra&shy;<lb/>uitatis. </s></p><p type="head">

<s>II.<!-- KEEP S--></s></p><p type="main">

<s>Omnium figurarum &longs;ibi mutuo congruentium <lb/>centra grauitatis mutuo &longs;ibi congruere. </s></p><p type="head">

<s>III.<!-- KEEP S--></s></p><p type="main">

<s>Omnis figur&aelig;, cuius termini omnis cauitas <lb/>e&longs;t interior, intra terminum e&longs;&longs;e centrum graui&shy;<lb/>tatis. </s></p><p type="head">

<s>IIII.<!-- KEEP S--></s></p><p type="main">

<s>Similium triangulorum &longs;imiliter po&longs;ita e&longs;se <lb/>centra grauitatis. </s>

<s>In triangulis autem &longs;imilibus <lb/>&longs;imiliter po&longs;ita puncta e&longs;&longs;e dicuntur, &agrave; quibus re&shy;<lb/>ct&aelig; ad angulos &aelig;quales duct&aelig; cum lateribus ho&shy;<lb/>mologis angulos &aelig;quales faciunt. </s></p><p type="head">

<s>V.<!-- KEEP S--></s></p><p type="main">

<s>&AElig;qualia grauia ab &aelig;qualibus longitudinibus <lb/>&longs;ecundum centrum grauitatis &longs;u&longs;pen&longs;a &aelig;quipon&shy;<lb/>derare. </s></p><p type="head">

<s>VI.<!-- KEEP S--></s></p><p type="main">

<s>A quibus longitudinibus duo grauia &aelig;quipon<lb/>derant, ab ij&longs;dem alia duo qu&aelig;libet illis &aelig;qualia <lb/>&aelig;quiponderare. </s></p><pb/><p type="head">

<s>PROPOSITIO <lb/>PRIMA.</s></p><p type="main">

<s>Si &longs;int quotcumque magnitu&shy;<lb/>dines in&aelig;quales deinceps <lb/>proportionales; exce&longs;&longs;us, qui <lb/>bus differunt deinceps pro&shy;<lb/>portionales erunt, in propor&shy;<lb/>tione totarum magnitudi&shy;<lb/>num. </s></p><p type="main">

<s>Sint quotcumque in&aelig;quales magnitudines deinceps <lb/>proportionales AB, CD, EF, &amp; G, <lb/>differentes exce&longs;&longs;ibus BH, DK, FL, mi&shy;<lb/>nima autem &longs;it G. <!-- KEEP S--></s>

<s>Dico BH, DK, FL, <lb/>deinceps proportionales e&longs;se in proportio&shy;<lb/>ne, qu&aelig; e&longs;t AB, ad CD, &longs;eu CD, ad <lb/>EF. <!-- KEEP S--></s>

<s>Quoniam enim e&longs;t vt AB, ad <lb/>CD, ita CD ad EF; hoc e&longs;t vt AB, ad <lb/>AH, ita CD, ad CK, permutando <lb/>erit, vt AB, ad CD, ita AH, ad CK: <lb/>vt igitur tota AB, ad totam CD, ita <lb/>reliqua BH, ad reliquam DK. </s>

<s>Simili&shy;<lb/>ter o&longs;tenderemus e&longs;se vt CD ad EF, <lb/>ita DK ad FL; vt igitur BH ad DK, <lb/>ita erit DK ad FL, in proportione, qu&aelig; <lb/>e&longs;t AB ad CD, &amp; CD ad EF. <!-- KEEP S--></s>

<s>Quod demon&longs;tran&shy;<lb/>dum erat. </s></p><figure id="id.043.01.015.1.jpg" xlink:href="043/01/015/1.jpg"/><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO II.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>In omni triangulo vnum dumtaxat punctum <lb/>e&longs;t, in quo rect&aelig; ab angulis ad latera incidentes <lb/>&longs;ecant &longs;e&longs;e in ea&longs;dem rationes. </s>

<s>&amp; &longs;egmenta, qu&aelig; <lb/>ad angulos, &longs;unt reliquorum dupla. </s>

<s>&amp; pr&aelig;dict&aelig; <lb/>incidentes &longs;ecant trianguli latera bifariam. </s></p><p type="main">

<s>Sit triangulum ABC, cuius duo qu&aelig;libet latera AB, <lb/>AC, &longs;int bifariam &longs;ecta in punctis D, E, &amp; duct&aelig; rect&aelig; <lb/>line&aelig; BE, CFD, AFG. </s>

<s>Dico CF duplam e&longs;&longs;e ip&longs;ius <lb/>FD, &amp; AF, ip&longs;ius FG, &amp; BF, ip&longs;ius FE. <!-- KEEP S--></s>

<s>Et in nullo alio <lb/>puncto &agrave; puncto F tres rectas ab angulis ad latera inciden&shy;<lb/>tes &longs;ecare &longs;e &longs;e in ea&longs;dem rationes. </s>

<s>Et reliquum latus BC <lb/>&longs;ectum e&longs;&longs;e bifariam in puncto G. <!-- KEEP S--></s>

<s>Quoniam enim e&longs;t vt BA <lb/>ad AD, ita CA ad AE: hoc e&longs;t, vt triangulum ABC ad <lb/>triangulum ADC, ita triangulum idem ABC ad trian&shy;<lb/>gulum AEB; &aelig;qualia <lb/>erunt triangula ADC, <lb/>AEB, &amp; ablato trape&shy;<lb/>zio DE communi re&shy;<lb/>liquum triangulum BD <lb/>F reliquo triangulo C <lb/>EF &aelig;quale erit: &longs;ed <lb/>triangulum ADF e&longs;t <lb/>&aelig;quale triangulo BDF; <lb/>&amp; triangulum AFE <lb/>triangulo EFC, pro&shy;<lb/>pter &aelig;quales ba&longs;es, &amp; <lb/><figure id="id.043.01.016.1.jpg" xlink:href="043/01/016/1.jpg"/><lb/>communes altitudines; totum igitur triangulum AFB <lb/>toti AFC, triangulo &aelig;quale erit: &longs;ed vt triangulum AFB <pb/>ad triangulum FBG, hoc e&longs;t vt AF ad FG, ita e&longs;t <lb/>triangulum AFC ad triangulum FCG; triangulum er&shy;<lb/>go FBG triangulo FCG &aelig;quale erit, &amp; ba&longs;is BG ba&shy;<lb/>&longs;i GC &aelig;qualis. </s>

<s>Quoniam igitur &amp; AE e&longs;t &aelig;qualis <lb/>EC, &longs;imiliter vt ante, o&longs;tenderemus, triangulum BCF, <lb/>triangulo ACF, eademque ratione triangulum ABF, <lb/>triangulo BCF &aelig;quale e&longs;&longs;e: igitur vnumquodque trian&shy;<lb/>gulorum ABF, ACF, BCF, tertia pars e&longs;t trianguli <lb/>ABC: &longs;ed vt triangulum ABC, ad triangulum BCF, <lb/>ita e&longs;t AG, ad GF; tripla igitur e&longs;t AG ip&longs;ius GF, <lb/>ac proinde AF, ip&longs;ius FG dupla. </s>

<s>Eadem ratione <lb/>BE, ip&longs;ius FE, &amp; CF, ip&longs;ius FD, dupla concludetur. </s></p><p type="main">

<s>Sed &longs;int &longs;i fieri pote&longs;t, trianguli ABC duo centra qua&shy;<lb/>lia diximus D, E: &amp; ab ip&longs;is ad &longs;ingulos angulos du&shy;<lb/>cantur bin&aelig; rect&aelig; line&aelig;: <lb/>&amp; eadat D in aliquo trian <lb/>gulo BEC. </s>

<s>Quoniam <lb/>igitur D e&longs;t centrum trian <lb/>guli ABC erit triangu&shy;<lb/>lum BDC tertia pars <lb/>trianguli ABC. <!-- KEEP S--></s>

<s>Eadem <lb/>ratione triangulum BEC <lb/>tertia pars erit trianguli <lb/>ABC; triangulum ergo <lb/>DBC &aelig;quale erit trian&shy;<lb/>gulo BEC pars toti, quod <lb/>fieri non pote&longs;t, atqui <expan abbr="id&etilde;">idem</expan> <lb/><figure id="id.043.01.017.1.jpg" xlink:href="043/01/017/1.jpg"/><lb/>ab&longs;urdum &longs;equitur, &longs;i punctum D cadat in aliquo latere <lb/>triangulorum, quorum vertex E; Manife&longs;tum e&longs;t igitur <lb/>propo&longs;itum. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO III.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>In &longs;imilibus triangulis rect&aelig; line&aelig;, qu&aelig; inter <lb/>centra, &amp; alia in ijs &longs;imiliter po&longs;ita puncta in&shy;<lb/>terijciuntur, proportionales &longs;unt in proportione <lb/>laterum homologorum. </s></p><p type="main">

<s>Sint triangula &longs;imilia, &amp; &longs;imiliter po&longs;ita ABC, DEF, <lb/>quorum &longs;int centra O, P, in ijs autem triangulis &longs;int pun&shy;<lb/>cta &longs;imiliter po&longs;ita K, L, qu&aelig; cadant primum in rectis <lb/>BG, EH, qu&aelig; ab angulis &aelig;qualibus B, E, ba&longs;es bifa&shy;<lb/>riam diuidunt. </s>

<s>Dico e&longs;&longs;e OK ad PL, vt e&longs;t latus AB, <lb/>ad latus DE. iunctis enim AK, KC, DL, LF, quo&shy;<lb/><figure id="id.043.01.018.1.jpg" xlink:href="043/01/018/1.jpg"/><lb/>niam angulus KAC, &aelig;qualis e&longs;t angulo LDF, &amp; angu&shy;<lb/>lus KCA, angulo LFD, ob &longs;imiliter po&longs;ita puncta K, <lb/>L, triangulum AKC, triangulo LDF &longs;imile erit, &amp; vt <lb/>KA ad AC, ita LD ad DF: &longs;ed vt CA ad AG, ita <lb/>e&longs;t FD ad DH, expr&aelig;cedenti; vt igitur KA, ad AG <lb/>ita erit LD, ad DH, circa &aelig;quales angulos: &longs;imilia igi&shy;<lb/>tur &longs;unt triangula AGK, DHL, &amp; angulus AGK, <pb/>&aelig;qualis angulo DHL, &amp; vt KG, ad GA, ita LH, ad <lb/>HD: &longs;ed vt GA, ad AC, ita e&longs;t HD ad DF: &amp; vt <lb/>AC ad AB, ita DF ad DE, ex &aelig;quali igitur erit vt <lb/>KG ad AB, ita LH ad DE: &longs;ed vt AB ad BG, ita <lb/>e&longs;t DE ad EH, propter &longs;imilitudinem triangulorum <lb/>ABG, DEH: &amp; vt BG ad GO ita e&longs;t EH ad HP, <lb/>propter triangulorum centra O, P; ex &aelig;quali igitur erit <lb/>vt KG ad GO, ita LH ad HP: &amp; permutando vt <lb/>OG ad PH, ide&longs;t vt BG ad EH, ide&longs;t vt AB ad ED, <lb/>ita KG ad LH, &amp; reliqua OK ad reliquam PL. </s></p><p type="main">

<s>Sed &longs;int puncta &longs;imiliter po&longs;ita M, N, qu&aelig; cadant ex&shy;<lb/>tra lineas BG, EH, iunct&aelig;que OM, PN. <!-- KEEP S--></s>

<s>Dico iti&shy;<lb/>dem e&longs;se vt AB ad ED, ita OM ad PN. <!-- KEEP S--></s>

<s>Iungantur <lb/>enim rect&aelig; MB, NE, qu&aelig; cum quibus lateribus homo&shy;<lb/>logis angulos &aelig;quales faciunt, ea &longs;int AB, DE, quod <lb/>propter i&longs;o&longs;celia triangula &longs;it dictum in &longs;imiliter po&longs;itis <lb/>triangulis. </s>

<s>igitur etiam angulus BAM, &aelig;qualis erit an&shy;<lb/>gulo EDN; &longs;imilia igitur triangula ABM, DEN: &amp; <lb/>vt MB ad BA, ita erit NE ad ED: &longs;ed vt AB ad <lb/>BG, ita e&longs;t DE ad EH, propter &longs;imilitudinem trian&shy;<lb/>gulorum, &amp; vt BG ad BO, ita e&longs;t EH ad EP, ob <lb/>triangulorum &longs;imilium centra O, P: ex &aelig;quali igitur <lb/>erit vt MB, ad BO, ita NE ad EP. </s>

<s>Rur&longs;us quo&shy;<lb/>niam angulus ABM, &aelig;qualis e&longs;t angulo DEN, quorum <lb/>angulus ABG, &aelig;qualis e&longs;t angulo DEH: erit reliquus <lb/>angulus OBM, &aelig;qualis reliquo angulo PEN: &longs;ed vt MB <lb/>ad BO, ita erat NE ad EP; triangulum igitur OBM <lb/>triangulo PEN, &longs;imile erit, &amp; vt BO ad EP, hoc e&longs;t <lb/>BG ad EH, hoc e&longs;t AB ad DE, ita OM ad PN. <lb/><!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO IV.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Datis duobus triangulis &longs;calenis &longs;imilibus, &amp; <lb/>dato puncto in altero eorum, vnum duntaxat pun&shy;<lb/>ctum in reliquo triangulo pr&aelig;dicto puncto &longs;imi&shy;<lb/>liter po&longs;itum pote&longs;t inueniri. </s></p><p type="main">

<s>Sint data duo triangula &longs;calena &longs;imilia ABC, DEF, <lb/>&amp; in triangulio ABC datum punctum G: &longs;int autem <lb/>h&aelig;c triangula &longs;imiliter po&longs;ita. </s>

<s>Dico in triangulo DEF, <lb/>vnum duntaxat punctum puncto G &longs;imiliter po&longs;itum in&shy;<lb/>ueniri po&longs;se. </s>

<s>Iunctis enim AG, BG, GC, ponatur <lb/>angulus EDH, &aelig;qualis angulo BAG, &amp; angulus DEH, <lb/><figure id="id.043.01.020.1.jpg" xlink:href="043/01/020/1.jpg"/><lb/>&aelig;qualis angulo ABG, &amp; HF iungatur. </s>

<s>Manife&longs;tum <lb/>e&longs;t igitur ex pr&aelig;cedentis Theorematis demon&longs;tratione, <lb/>triangula EDH, HDF, FEH, &longs;imilia e&longs;se triangulis <lb/>BAG, GAC, CBG, prout inter &longs;e re&longs;pondent po&longs;i&shy;<lb/>tione, quorum &longs;ex triangulorum binis quibu&longs;que bin&aelig; ba&shy;<lb/>&longs;es homolog&aelig; re&longs;pondent: AB ED, AC DF, BC <pb/>EF. qu&aelig; &longs;untin latera homologa duorum triangulorum <lb/>ABC, DEF. <!-- KEEP S--></s>

<s>Ex definitione igitur, duo puncta G, H, <lb/>in triangulis ABC, DEF, &longs;imiliter po&longs;ita erunt. </s>

<s>At <lb/>enim &longs;i fieri pote&longs;t &longs;it aliud punctum K, in triangulo <lb/>DEF, &longs;imiliter po&longs;itum puncto G. <!-- KEEP S--></s>

<s>Vel igitur punctum <lb/>K in aliquo triangulorum, quorum e&longs;t communis vertex <lb/>H, vel in aliquo eorundem latere cadet. </s>

<s>cadat in latere <lb/>FH, &amp; iungatur DK: triangulum ergo DFK, &longs;imile <lb/>erit triangulo ACG. </s>

<s>Sed &amp; triangulum EDF, &longs;imile <lb/>e&longs;t triangulo BAC; vtraque igitur horum ad illorum &longs;i&shy;<lb/>bi re&longs;pondens triangulorum duplicatam eorundem late&shy;<lb/>rum homologorum AC, DF, habebunt proportionem: <lb/>vt igitur e&longs;t triangulum EDF, ad triangulum BAC, ita <lb/>erit triangulum DFK, ad triangulum ACG: &amp; per&shy;<lb/>mutando, vt triangulum ACG, ad triangulum ABC, <lb/>ita triangulum DFK, ad triangulum EDF: eadem ra&shy;<lb/>tione, vt triangulum ACG, ad triangulum ABC, ita <lb/>erit triangulum DFH, ad triangulum DEF: vt igitur <lb/>triangulum DFK, ad triangulum EDF; ita erit trian&shy;<lb/>gulum DFH, ad triangulum EDF; triangulum ergo <lb/>DFK, triangulo DFH, &aelig;quale erit, pars toti, quod e&longs;t <lb/>ab&longs;urdum: idem autem ab&longs;urdum &longs;equeretur, &longs;i punctum <lb/><emph type="italics"/>K<emph.end type="italics"/>, poneretur in aliquo pr&aelig;dictorum triangulorum, vt in <lb/>triangulo DFH; Non igitur aliud punctum &agrave; puncto H, <lb/>in triangulo EDF, &longs;imiliter po&longs;itum erit puncto G. <lb/><!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO V.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Cuilibet figur&aelig; plan&aelig; rectangulum &aelig;quale <lb/>pote&longs;t e&longs;&longs;e. </s></p><pb/><p type="main">

<s>Sit qu&aelig;libet figura plana A. <!-- KEEP S--></s>

<s>Dico figur&aelig; A, rectan&shy;<lb/>gulum &aelig;quale po&longs;se exi&longs;tere. </s>

<s>Exponatur enim rectan&shy;<lb/>gulum BC, cuius latus BD, in infinitum producatur <lb/>ver&longs;us E. <!-- KEEP S--></s>

<s>Quoniam igitur e&longs;t vt rectangulum BD, ad <lb/>planam figuram A, ita recta BD, ad aliquam lineam <lb/>rectam &longs;it vt BC, ad A, ita BD, ad DE, &amp; comple&shy;<lb/>atur rectan&shy;<lb/>gulum EC. <lb/></s>

<s>Quoniam igi <lb/>tur e&longs;t vt BD <lb/>ad DE, ita <lb/>rectangulum <lb/>BC, ad figu&shy;<lb/>ram A: &longs;ed <lb/>vt BD, ad <lb/>DE, ita e&longs;t <lb/><figure id="id.043.01.022.1.jpg" xlink:href="043/01/022/1.jpg"/><lb/>rectangulum BC, ad rectangulum CE; vt igitur re&shy;<lb/>ctangulum BC, ad figuram A, ita e&longs;t rectangulum <lb/>BC, ad rectangulum CE; rectangulum ergo CE, fi&shy;<lb/>gur&aelig; A, &aelig;quale erit. </s>

<s>Manife&longs;tum e&longs;t igitur propo&longs;itum. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO VI.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omni figur&aelig; circa diametrum in alte ram par&shy;<lb/>tem deficienti figura qu&aelig;dam ex parallelogram&shy;<lb/>mis &aelig;qualium altitudinum in&longs;cribi pote&longs;t, &amp; al&shy;<lb/>tera circum&longs;cribi, ita vt circum&longs;cripta &longs;uperet in&shy;<lb/>&longs;criptam minori &longs;pacio quantacumque magnitu&shy;<lb/>dine propo&longs;ita. </s>

<s>Semper autem in &longs;imilibus intelli&shy;<lb/>ge, eiu&longs;dem generis. </s></p><p type="main">

<s>Sit figura plana ABC circa diametrum AD, ad par-<pb/>tes A deficiens, cuius ba&longs;is BC. <!-- KEEP S--></s>

<s>Dico fieri po&longs;se quod <lb/>proponitur: ducta enim per verticem figur&aelig; A, ba&longs;i BC, <lb/>parallela, atque ideo figuram ip&longs;am contingente, ab&longs;ol&shy;<lb/>uatur parallelogrammum BL, &longs;ectaque diametro AD, <lb/>bifariam, &amp; &longs;ingulis eius partibus &longs;emper bifariam, du&shy;<lb/>cantur per puncta &longs;ectionum rect&aelig; line&aelig; ba&longs;i BC, &amp; in&shy;<lb/>ter &longs;e parallel&aelig;, atque ita multiplicat&aelig; &longs;int &longs;ectiones, <lb/>vt &longs;ecti parallelogrammi in parallelogramma &aelig;qua&shy;<lb/>lia, &amp; eiu&longs;dem altitudinis qu&aelig;libet pars, vt paralle&shy;<lb/>logrammum BF, &longs;it minus &longs;uperficie propo&longs;ita, cu&shy;<lb/>ius parallelogram&shy;<lb/>mi latus EF, &longs;e&shy;<lb/>cet figur&aelig; termi&shy;<lb/>num BAC, in <lb/>punctis GH, &amp; <lb/>diametrum AD, in <lb/>puncto K. erit igi&shy;<lb/>tur GK, &aelig;qualis <lb/>KH: per omnia <lb/>igitur puncta &longs;e&shy;<lb/>ctionum termini <lb/><figure id="id.043.01.023.1.jpg" xlink:href="043/01/023/1.jpg"/><lb/>BAC, qu&aelig; &agrave; pr&aelig;dictis fiunt lineis parallelis, &longs;i ducan&shy;<lb/>tur diametro AD parallel&aelig;, figura qu&aelig;dam ip&longs;i ABC, <lb/>in&longs;cribetur, &amp; altera circum&longs;cribetur ex parallelogram&shy;<lb/>mis &aelig;qualium altitudinum. </s>

<s>Dico harum figurarum <lb/>in&longs;criptam &longs;uperari &agrave; circum&longs;cripta minori &longs;pacio &longs;uper&shy;<lb/>ficie propo&longs;ita. </s>

<s>Quoniam enim omnia parallelogramma, <lb/>quibus figura circum&longs;cripta &longs;uperat in&longs;criptam &longs;imul &longs;um&shy;<lb/>pta &longs;unt &aelig;qualia BF parallelogrammo: &longs;ed parallelo&shy;<lb/>grammum BF, e&longs;t minus &longs;uperficie propo&longs;ita: exce&longs;&longs;us <lb/>igitur quo figura circum&longs;cripta in&longs;criptam &longs;uperat, minor <lb/>erit &longs;uperficie propo&longs;ita. </s>

<s>Fieri igitur pote&longs;t, quod propo&shy;<lb/>nebatur. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO VII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Pyramides &longs;imilibus, &amp; &aelig;qualibus triangulis <lb/>comprehen&longs;&aelig; inter &longs;e &longs;unt &aelig;quales. </s></p><p type="main">

<s>Sint pyramides ABCD, EFGH, &longs;imilibus, &amp; &aelig;qua&shy;<lb/>libus triangulis comprehen&longs;&aelig;, &amp; &longs;i &longs;int &longs;imiliter po&longs;it&aelig;, qua&shy;<lb/>rum vertices A, E, ba&longs;es autem triangula BCD, FGH. <lb/></s>

<s>Dico pyramidem ABCD, pyramidi EFGH, &aelig;qualem <lb/>e&longs;se. </s>

<s>A punctis enim A, E, manantia latera inferius pro&shy;<lb/>ducantur, &amp; pr&aelig;dictis lateribus maiores, inter &longs;e autem <lb/>&aelig;quales ab&longs;cindantur AK, AL, AM, EN, EO, EP, <lb/><figure id="id.043.01.024.1.jpg" xlink:href="043/01/024/1.jpg"/><lb/>&amp; con&longs;truantur pyramides AKLM, ENOP: pyramides <lb/>igitur h&aelig; &aelig;qualibus, &amp; &longs;imilibus triangulis comprehenden <lb/>tur, vt colligitur ex ip&longs;a con&longs;tructione; triangulis igitur inter <lb/>&longs;e &aelig;quilateris, &amp; &aelig;quiangulis KLM, NOP, inter &longs;e con&shy;<lb/>gruentibus non congruat, &longs;i fieri pote&longs;t, pyramis ENOP, <lb/>pyramidi AKLM, &longs;ed cadat vertex E, pyramidis ENOP, <lb/>extra verticem A, pyramidis AKLM, &amp; ex puncto A, <pb/>ad centrum circuli tran&longs;euntis per tria puncta K, L, M, quod <lb/>&longs;it R, ducatur recta AR, &amp; ER iungatur. </s>

<s>Quoniam igi&shy;<lb/>tur &aelig;quales rect&aelig; &longs;unt AK, AL, AM, qu&aelig; ex puncto <lb/>A, in &longs;ublimi pertinent ad &longs;ubiectum planum: &amp; punctum <lb/>R, e&longs;t centrum circuli tran&longs;euntis per puncta N, O, P; cadet <lb/>recta AR ad &longs;ubiectum planum perpendicularis. </s>

<s>Eadem <lb/>ratione recta ER ducta &agrave; vertice E, pyramidis ENOP, <lb/>ad centrum R, circuli tran&longs;euntis per puncta N, O, P, hoc <lb/>e&longs;t, per puncta K, L, M, illis congruentia, cadet ad idem <lb/>planum, ad quod linea AR, perpendicularis; itaque ab <lb/>eodem puncto R, ad idem planum, &amp; ad ea&longs;dem partes du&aelig; <lb/>perpendiculares erunt excitat&aelig;, quod fieri non pote&longs;t: <lb/>punctum igitur E non cadet extra punctum A: quare la&shy;<lb/>tus EN, congruet lateri AK, quorum EF, e&longs;t &aelig;qualis <lb/>AK; igitur &amp; EF, ip&longs;i AB, congruet. </s>

<s>eadem ratione la&shy;<lb/>tus AG, congruet lateri AC, &amp; latus EH, lateri AD, &amp; <lb/>triangula triangulis, &amp; pyramis EFGH, pyramidi ABC <lb/>D, &amp; ip&longs;i &aelig;qualis erit. </s>

<s>Quod demon&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>COROLLARIVM.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Hinc facile colligitur omnia &longs;olida, qu&aelig; in py <lb/>ramides &aelig;qualibus, &amp; &longs;imilibus triangulis com&shy;<lb/>prehen&longs;as multitudine &aelig;quales diuidi po&longs;&longs;unt, e&longs; <lb/>&longs;e inter &longs;e &aelig;qualia. </s>

<s>Quocirca omnia pri&longs;mata, &amp; <lb/>pyramides, &amp; octahedra, omnia denique corpora <lb/>regularia &aelig;qualibus, &amp; &longs;imilibus planis compre&shy;<lb/>hen&longs;a inter &longs;e &aelig;qualia erunt. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO VIII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis pyramidis triangulam ba&longs;im habentis <lb/>quatuor axes &longs;ecant &longs;e in vno puncto in ea&longs;dem ra&shy;<pb/>tiones, ita vt &longs;egmenta, qu&aelig; ad angulos, eo&shy;<lb/>rum, qu&aelig; ad oppo&longs;ita triangula, &longs;int tripla; ex quo <lb/>puncto tota pyramis diuiditur in quatuor pyrami <lb/>des &aelig;quales. </s>

<s>Et in nullo alio puncto quatuor re&shy;<lb/>ct&aelig; line&aelig; duct&aelig; ab angulis ad triangula oppo&longs;ita <lb/>pyramidis &longs;ecant &longs;e&longs;e in ea&longs;dem rationes. </s>

<s>Vocetur <lb/>autem punctum hoc centrum dict&aelig; pyramidis. </s></p><p type="main">

<s>Sit pyramis ABCD, cuius vertex A, ba&longs;is autem <lb/>triangulum BCD, axes AE, BM, CL, DN, vnde qua&shy;<lb/>tuor triangulorum, qu&aelig; &longs;unt circa pyramidem ABCD, <lb/>centra erunt grauitatis E, L, M, N. <!-- KEEP S--></s>

<s>Dico quatuor li&shy;<lb/>neas AE, BM, CL, DN, &longs;ecare &longs;e &longs;e in vno puncto in <lb/>ea&longs;dem rationes, quas pr&aelig;dixi, &amp; qu&aelig; &longs;equuntur. </s>

<s>Nam ex <lb/>puncto A, ducatur recta ALH, qu&aelig; ob trianguli ABD, <lb/>centrum L, &longs;ecabit latus BD, bifariam in puncto H; iun&shy;<lb/>cta igitur CE, &amp; producta conueniet cum ALH, vt in <lb/>puncto H. eadem ratione iunct&aelig; AM, BE, &amp; product&aelig; <lb/>conuenient in medio lateris CD, conueniant in puncto K, <lb/>necnon AN, DE, in medio ip&longs;ius BC, vt in puncto G. <lb/><!-- KEEP S--></s>

<s>Quoniam igitur ob triangulorum centra, e&longs;t vt CE ad EH, <lb/>ita AL ad LH, dupla enim e&longs;t vtraque vtriu&longs;que, &longs;eca&shy;<lb/>bunt &longs;e&longs;e rect&aelig; AE, CL, inter ea&longs;dem parallelas; quare <lb/>vt AF ad FE, ita erit CF ad FL, circum &aelig;quales angu <lb/>los ad verticem: triangula igitur AFL, CFE; &amp; reci&shy;<lb/>proca, &amp; &aelig;qualia inter &longs;e erunt. </s>

<s>Cum igitur &longs;it vt AL ad <lb/>LH, ita CE ad EH, hoc e&longs;t vt triangulum AFL ad <lb/>triangulum FLH, (&longs;i ducatur FH) ita triangulum CFE, <lb/>ad triangulum FEH, erunt inter &longs;e &aelig;qualia triangula <lb/>FEH, FLH. </s>

<s>Quare vt triangulum AFH, ad triangu&shy;<lb/>lum FLH, hoc e&longs;t vt AH ad HL, ita erit triangulum <lb/>AFH ad triangulum FEH, hoc e&longs;t AF ad FE: &longs;ed re&shy;<lb/>cta AH, e&longs;t tripla ip&longs;ius LH; igitur &amp; AF, erit ip&longs;ius FE, <pb/>tripla: &longs;ed vt AF, ad FE, ita e&longs;t CF, ad FL; tripla igi&shy;<lb/>tur erit CF, ip&longs;ius FL. </s>

<s>Similiter o&longs;tenderemus rectas <lb/>AE, BM, &longs;ecare &longs;e &longs;e in ea&longs;dem rationes, ita vt &longs;egmen&shy;<lb/>ta, qu&aelig; ad angulos, &longs;int tripla eorum, qu&aelig; &longs;unt ad centra <lb/>E, M, quorum AF, e&longs;t tripla ip&longs;ius FE: in puncto igitur <lb/>F, &longs;ecant &longs;e rect&aelig; line&aelig; AE, BM. </s>

<s>Eadem ratione &amp; re <lb/>ct&aelig; AE, DN, &longs;ecent &longs;e in puncto F, nece&longs;se erit: quare <lb/>vt AF ad FE, ita erit DF ad FN. </s>

<s>Quatuor igitur <lb/>axes pyramidis ABCD, &longs;ecant&longs;e &longs;e in puncto F, in ea&longs;&shy;<lb/>dem rationes, ita vt <lb/>&longs;egmenta ad angulos, <lb/>&longs;int <expan abbr="reliquor&utilde;">reliquorum</expan> tripla. <lb/></s>

<s>Rur&longs;us, quia compo&shy;<lb/>nendo, &amp; conuerten&shy;<lb/>do, e&longs;t vt FE ad EA, <lb/>ita FL ad LC: hoc <lb/>e&longs;t, vt pyramis BCD <lb/>F, ad pyramidem A <lb/>BCD, ita pyramis <lb/>ABDF, ad pyrami&shy;<lb/>dem CBDA, (pro&shy;<lb/>pter ba&longs;ium commu&shy;<lb/>nitatem, &amp; vertices in <lb/>eadem recta linea) erit <lb/><figure id="id.043.01.027.1.jpg" xlink:href="043/01/027/1.jpg"/><lb/>pyramis ABDF, &aelig;qualis pyramidi BCDF. <!-- KEEP S--></s>

<s>Eadem ra&shy;<lb/>tione tam pyramis ACDF, qu&agrave;m pyramis ABCF, &aelig;qua <lb/>lis e&longs;t pyramidi BCDF. <!-- KEEP S--></s>

<s>Quatuor igitur pyramides, qua&shy;<lb/>rum communis vertex punctum F, ba&longs;es autem triangula, <lb/>qu&aelig; &longs;unt circa pyramidem ABCD, inter &longs;e &aelig;quales <expan abbr="er&utilde;t">erunt</expan>, <lb/>&amp; vnaqu&aelig;que pyramidis ABCD, pars quarta. </s>

<s>Dico in <lb/>nullo alio puncto &agrave; puncto F, quatuor rectas, qu&aelig; ab an&shy;<lb/>gulis ad triangula oppo&longs;ita pyramidis ABCD, ducantur, <lb/>&longs;ecare &longs;e in ea&longs;dem rationes. </s>

<s>Si enim fieri pote&longs;t &longs;ecent <lb/>&longs;e tales rect&aelig; in ea&longs;dem rationes in alio puncto S. <!-- KEEP S--></s>

<s>Simi&shy;<pb/>liter igitur vt ante o&longs;tenderemus, vnamquamque qua&shy;<lb/>tuor pyramidum, quarum communis vertex S, ba&longs;es au&shy;<lb/>tem triangula, qu&aelig; &longs;unt circa pyramidem ABCD, e&longs;se <lb/>quartam partem pyramidis ABCD. <!-- KEEP S--></s>

<s>Siue igitur pun&shy;<lb/>ctum S, cadat intra vnam priorum quatuor pyrami&shy;<lb/>dum, &longs;iue in earum aliquo latere, &longs;eu triangulo; nece&longs;&shy;<lb/>&longs;ario erit pars &aelig;quali toti; tam enim tota vna pyramis <lb/>quatuor priorum, quarum communis vertex F, qu&agrave;m eius <lb/>pars, vna quatuor pyramidum po&longs;teriorum, quarum com&shy;<lb/>munis vertex S, erit eiu&longs;dem ABCD, pyramidis pars <lb/>quarta. </s>

<s>Ex ab&longs;urdo igitur non in alio puncto &agrave; puncto F <lb/>&longs;ecabunt &longs;e in ea&longs;dem rationes quatuor rect&aelig;, qu&aelig; ab angu <lb/>lis ad oppo&longs;ita triangula pyramidis ABCD, ducantur. <lb/></s>

<s>Manife&longs;tum e&longs;t igitur propo&longs;itum. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO IX.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis pyramis ba&longs;im habens triangulam di&shy;<lb/>uiditur in quatuor pyra mides &aelig;quales, &amp; &longs;imiles <lb/>inter &longs;e, &amp; toti, &amp; vnum octaedrum totius pyrami&shy;<lb/>dis dimidium, ip &longs;i que concentricum. </s></p><p type="main">

<s>Sit pyramis ABCD, cuius ba&longs;is triangulum ABC, <lb/>&longs;ectisque omnibus lateribus bifariam, iungantur rect&aelig; FG, <lb/>GH, HF, FK, KL, LM, M<emph type="italics"/>K<emph.end type="italics"/>, KH, HM, GL, LF. <lb/></s>

<s>Dico quatuor pyramides DKLM, LFBG, KHFA, <lb/>MHGC, &aelig;quales e&longs;se, &amp; &longs;imiles inter &longs;e, &amp; toti pyrami&shy;<lb/>di ABCD: octaedrum autem e&longs;se LFGM<emph type="italics"/>K<emph.end type="italics"/>H, &amp; di&shy;<lb/>midium pyramidis ABCD, ip&longs;ique concentricum. </s>

<s>Du&shy;<lb/>cantur enim rect&aelig; DNH, BQH, LN: &amp; po&longs;ita BE, du <lb/>pla ip&longs;ius BH, iungatur DOC, in triangulo DBH, &amp; <lb/>ponatur DP, ip&longs;ius PE, tripla, &amp; connectantur rect&aelig; LP, <lb/>PH. <!-- KEEP S--></s>

<s>Quoniam igitur E, e&longs;t centrum trianguli ABC, <pb/>erit axis DE, pyramidis ABCD, cuius axis &longs;egmentum <lb/>DP e&longs;t triplum ip&longs;ius PE: igitur P centrum erit pyra&shy;<lb/>midis ABCD. <!-- KEEP S--></s>

<s>Et quoniam tres rect&aelig; FK, KH, HF, <lb/>&longs;unt parallel&aelig; tribus BD, DC, CB, pro vt inter &longs;e re&longs;pon<lb/>dent, vt KH, ip&longs;i LG, quoniam vtraque lateri DC, ob <lb/>latera triangulorum &longs;ecta proportionaliter in punctis K, H, <lb/>L, G: &amp; &longs;ic de reliquis; erit pyramis A<emph type="italics"/>K<emph.end type="italics"/>FH, &longs;imilis toti <lb/>pyramidi ABCD. <!-- KEEP S--></s>

<s>Similiter vnaqu&aelig;que trium aliarum <lb/>pyramidum ab&longs;ci&longs;&longs;arum, videlicet FLBG, GHMC, <lb/>KDLM, &longs;imilis erit pyramidi ABCD, atque ideo in&shy;<lb/>ter &longs;e &longs;imiles. </s>

<s>Rur&longs;us, <lb/>quoniam pyramidum <lb/>&longs;imilium latus AD e&longs;t <lb/>duplum lateris AK, ho <lb/>mologi; pyramis AB&shy;<lb/>CD, octupla erit py&shy;<lb/>ramidis AKFH, ob <lb/>triplicatam laterum ho <lb/>mologorum proportio <lb/>nem. </s>

<s>Similiter <expan abbr="vna-q&utilde;&aelig;que">vna&shy;<lb/>qun&aelig;que</expan> trium reliqua&shy;<lb/>rum pyramidum ab&longs;ci&longs; <lb/>&longs;arum erit octaua pars <lb/>pyramidis ABCD; <lb/><figure id="id.043.01.029.1.jpg" xlink:href="043/01/029/1.jpg"/><lb/>quatuor igitur pyramides ab&longs;ci&longs;&longs;&aelig; &longs;imul &longs;umpt&aelig; dimi&shy;<lb/>dium erit pyramidis ABCD: &amp; reliquum igitur &longs;oli&shy;<lb/>dum demptis quatuor pyramidibus, dimidium pyramidis <lb/>ABCD. <!-- KEEP S--></s>

<s>Dico reliquum &longs;olidum LKMGFH, e&longs;&longs;e <lb/>octaedrum. </s>

<s>Nam octo triangulis ip&longs;um contineri mani&shy;<lb/>fe&longs;tum e&longs;t. </s>

<s>bina autem oppo&longs;ita e&longs;&longs;e parallela, &amp; &aelig;qualia, <lb/>&amp; &longs;imilia, &longs;ic o&longs;tendimus. </s>

<s>Quoniam enim triangulum <lb/>FGH, e&longs;t in plano trianguli ABC, plano trianguli KLM <lb/>parallelo; erit triangulum FGH, parallelum triangu-<pb/>lo KLM: &longs;ed triangulum FGH, e&longs;t &longs;imile triangulo <lb/>ABC, &amp; triangulum KLM, &longs;imile eidem triangulo <lb/>ABC; <expan abbr="triangul&utilde;">triangulum</expan> ergo FGH, &longs;imile erit triangulo KLM: <lb/>&longs;ed &amp; &aelig;quale propter &aelig;qualitatem laterum homologo&shy;<lb/>rum. </s>

<s>Similiter o&longs;tenderemus reliquum &longs;olidum LKM <lb/>GFH continentia triangula bina oppo&longs;ita &aelig;qualia <lb/>inter &longs;e, &amp; &longs;imilia, &amp; parallela; octaedrum e&longs;t igitur <lb/>LKMGFH. <!-- KEEP S--></s>

<s>Dico iam punctum P, quod e&longs;t cen&shy;<lb/>trum pyramidis ABCD, e&longs;se centrum octaedri L<emph type="italics"/>K<emph.end type="italics"/><lb/>MGFH. <!-- KEEP S--></s>

<s>Quoniam enim DP, ponitur tripla ip&longs;ius PE, <lb/>&amp; DO, e&longs;t &aelig;qualis <lb/>OE (&longs;iquidem planum <lb/>trianguli KLM, plano <lb/><expan abbr="tri&atilde;guli">trianguli</expan> ABC, paralle <lb/>lum &longs;ecat proportione <lb/><expan abbr="o&etilde;s">oens</expan> rectas lineas, qu&aelig; <lb/>ex puncto D, in &longs;ubli&shy;<lb/>mi pertinent ad &longs;ubie&shy;<lb/>ctum planum trianguli <lb/>ABC) erit OP, ip&longs;i <lb/>PE, &aelig;qualis. </s>

<s>Et quo&shy;<lb/>niam BH e&longs;t dupla <lb/>ip&longs;ius QH, quarum <lb/>BE e&longs;t dupla ip&longs;ius <lb/><figure id="id.043.01.030.1.jpg" xlink:href="043/01/030/1.jpg"/><lb/>EH, &longs;iquidem E e&longs;t centrum trianguli ABC; erit reli&shy;<lb/>qua EH reliqu&aelig; EQ dupla: &amp; quia e&longs;t vt LD ad DB, <lb/>ita LN ad BH, propter &longs;imilitudinem triangulorum, &amp; <lb/>e&longs;t LD, dimidia ip&longs;ius BD, erit &amp; LN, dimidia ip&longs;ius <lb/>BH: &longs;ed QH e&longs;t dimidia ip&longs;ius BH; &aelig;qualis igitur LN <lb/>ip&longs;i QH. </s>

<s>Iam igitur quia e&longs;t vt BE ad EH, ita <lb/>LO ad ON: &longs;ed BE, e&longs;t dupla ip&longs;ius EH; dupla igi&shy;<lb/>tur LO, erit ip&longs;ius ON: &longs;ed &amp; QH erat dupla ip&longs;ius <lb/>QE; vt igitur LN ad NO, ita erit HQ ad QE: &amp; <pb/>per conuer&longs;ionem rationis, vt NL ad LO, ita QH, ad <lb/>HE: &amp; permutando, vt LN ad QH, ita LO ad EH: <lb/>&longs;ed LN, o&longs;ten&longs;a e&longs;t &aelig;qualis QH; &aelig;qualis igitur LO, <lb/>erit ip&longs;i EH; &longs;ed &amp; OP, e&longs;t &aelig;qualis ip&longs;i PE, vt o&longs;ten&shy;<lb/>dimus: du&aelig; igitur LO, OP, duabus HE, EP &aelig;qua&shy;<lb/>les erunt altera alteri, &amp; angulos &aelig;quales continent LOP, <lb/>PEH, parallelis exi&longs;tentibus LN, BH &longs;ectionibus tri&shy;<lb/>anguli DBH, qu&aelig; fiunt &agrave; duobus planis parallelis; ba&shy;<lb/>&longs;is igitur LP, trianguli LOP, &aelig;qualis e&longs;t ba&longs;i PH, <lb/>trianguli PEH, &amp; angulus OPL, angulo EPH in pla&shy;<lb/>no trianguli DBH, in quo DPE, e&longs;t vna recta linea; <lb/>igitur LPH, erit vna recta linea, qu&aelig; cum &longs;it axis octa&shy;<lb/>edri LKMGFH, &amp; &longs;ectus &longs;it in puncto P, bifariam, <lb/>erit punctum P, centrum octaedri LKMGEH. &longs;ed &amp; <lb/>centrum pyramidis ABCD. <!-- KEEP S--></s>

<s>Manife&longs;tum e&longs;t igitur pro&shy;<lb/>po&longs;itum. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO X.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omne fru&longs;tum pyramidis triangulam ba&longs;im <lb/>habentis, &longs;iue coni, ad pyramidem, vel conum, cu&shy;<lb/>ius ba&longs;is e&longs;t eadem, qu&aelig; maior ba&longs;is fru&longs;ti, &amp; ea&shy;<lb/>dem altitudo, eam habet proportionem, quam duo <lb/>latera homologa, vel du&aelig; diametri ba&longs;ium ip&longs;ius <lb/>fru&longs;ti, vn&agrave; cum tertia minori proportionali ad <lb/>pr&aelig;dicta duo latera, vel diametros; ad maioris ba&shy;<lb/>&longs;is latus, vel diametrum. </s>

<s>Ad pri&longs;ma autem, vel <lb/>cylindrum, cuius eadem e&longs;t ba&longs;is, qu&aelig; maior ba&longs;is <lb/>fru&longs;ti, &amp; eadem altitudo; vt tres pr&aelig;dict&aelig; de&igrave;n&shy;<lb/>ceps proportionales &longs;imul, ad triplam lateris, vel <lb/>diametri maioris ba&longs;is. </s></p><pb/><p type="main">

<s>Sit fru&longs;tum ABCFGH, pyramidis, vel coni ABCD, <lb/>cuius ba&longs;is triangulum, vel circulus ABC, axis autem <lb/>DE: &amp; vt e&longs;t AC ad FH, ita &longs;it FH ad N, &amp; fru&shy;<lb/>&longs;ti axis EK, nec non idem pyramidis, vel coni AB <lb/>CK, vt &longs;it eadem altitudo. </s>

<s>Dico fru&longs;tum ABCF <lb/>GH, ad pyramidem, vel conum, ABCK, e&longs;se vt <lb/>tres lineas AC, FH, NO, &longs;imul ad ip&longs;ius AC, tri&shy;<lb/>plam: ad pri&longs;ma autem, vel cylindrum, cuius ba&longs;is ABC, <lb/>altitudo autem eadem cum fru&longs;to, vttres AC, FH, NO, <lb/>&longs;imul, ad ip&longs;ius AC, triplam. </s>

<s>Nam vt e&longs;t AC ad FH, <lb/>&amp; FH ad NO, ita &longs;it NO ad P: &amp; exce&longs;&longs;us, quo h&aelig; <lb/><figure id="id.043.01.032.1.jpg" xlink:href="043/01/032/1.jpg"/><lb/>quatuor line&aelig; differunt, &longs;int AL, FM, <expan abbr="Oq.">Oque</expan> Ergo <lb/>vt AC ad FH, ita erit AL ad FM, &amp; FM ad <expan abbr="Oq.">Oque</expan> <lb/>Quoniam igitur e&longs;t vt AC ad P, ita pyramis, vel conus <lb/>ABCD, ad &longs;imilem ip&longs;i pyramidem, vel conum DFGH, <lb/>ob triplicatam laterum homologorum proportionem; erit <lb/>diuidendo, vt tres AL, FM, OQ, &longs;imul ad P, ita fru&shy;<lb/>&longs;tum ABCFGH, ad pyramidem, vel conum DFGH: <lb/>&longs;ed conuertendo e&longs;t vt P, ad AC, ita pyramis, vel conus <lb/>DFGH, ad pyramidem, vel conum ABCD: ex &aelig;quali <lb/>igitur, vt tres AL, FM, OQ, &longs;imul ad AC, ita fru&longs;tum <pb/>ABCDFGH, ad pyramidem, vel conum ABCD. <lb/><!-- KEEP S--></s>

<s>Rur&longs;us quoniam axis DE, &amp; latera pyramidis, vel coni <lb/>ABCD, &longs;ecantur plano trianguli, vel circuli FGH, ba&longs;i <lb/>ABC, parallelo; erit componendo, vt AD, ad DF, hoc <lb/>e&longs;t, vt AC ad FH, propter &longs;imilitudinem triangulorum, <lb/>hoc e&longs;t vt AC, ad CL, ita ED, ad DK; &amp; per conuer&shy;<lb/>&longs;ionem rationis, vt AC, ad AL, ita DE, ad EK: &longs;ed vt <lb/>DE ad EK, ita e&longs;t pyramis, vel conus ABCD, ad py&shy;<lb/>ramidem, vel conum ABCK; vt igitur AC, ad AL, <lb/>ita e&longs;t pyramis, vel conus ABCD, ad pyramidem, vel <lb/>conum ABCK; &longs;ed vt tres line&aelig; AL, FM, OQ &longs;imul <lb/>ad AC, ita erat fru&longs;tum ABCFGH, ad pyramidem, <lb/>vel conum ABCD; ex &aelig;quali igitur, erit vt tres line&aelig; <lb/>AL, FM, OQ, &longs;imul ad AL, ita fru&longs;tum ABCFGH, <lb/>ad pyramidem, vel conum ABCK. Rur&longs;us, quoniam <lb/>tres exce&longs;&longs;us AL, FM, OQ, &longs;unt deinceps proportio&shy;<lb/>nales in proportione totidem terminorum AC, FH, NO, <lb/>erunt vt AL, FM, OQ, &longs;imul ad AL, ita AC, FH, <lb/>NO, &longs;imul ad AC: &longs;ed vt AL, FM, OQ, &longs;im ul ad <lb/>AL, ita erat fru&longs;tum ABCFGH, ad pyamidem, vel <lb/>conum ABCK; vt igitur tres line&aelig; AC, FH, NO, &longs;i&shy;<lb/>mul, ad AC, ita erit fru&longs;tum ABCFGH, ad pyrami&shy;<lb/>dem, vel conum ABCK. </s>

<s>Sed vt AC, ad &longs;ui triplam, ita <lb/>e&longs;t pyramis, vel conus ABCK ad pri&longs;ma, vel cylindrum, <lb/>cuius e&longs;t eadem ba&longs;is ABC, &amp; eadem altitudo cum py&shy;<lb/>ramide, vel cono ABCK; ex &aelig;quali igitur, erit vt tres <lb/>line&aelig; AC, FH, NO, &longs;imul ad ip&longs;ius AC, triplam, ita <lb/>fru&longs;tum ABCFGH, ad pri&longs;ma, vel cylindrum, cu&shy;<lb/>ius ba&longs;is ABC, &amp; eadem altitudo pyramidi, vel cono <lb/>ABCK: ide&longs;t eadem, fru&longs;to ABCFGH. </s>

<s>Manife&longs;tum <lb/>e&longs;t igitur propo&longs;itum. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO XI.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omni &longs;olido circa axim in alteram partem defi <lb/>cienti, cuius ba&longs;is &longs;it circulus, vel ellyp&longs;is, figura <lb/>qu&aelig;dam ex cylindris, vel cylindri portionibus <lb/>&aelig;qualium altitudinum in&longs;cribi poteft, &amp; altera <lb/>circum&longs;cribi, ita vt circum&longs;cripta &longs;uperet in&longs;cri&shy;<lb/>ptam minori exce&longs;&longs;u quacumque magnitudine <lb/>propo&longs;ita. </s></p><p type="main">

<s>Sit &longs;olidum ABC, circa axim AD, in alteram par&shy;<lb/>tem deficiens, cuius vertex A, ba&longs;is autem circulus, vel <lb/>ellyp&longs;is, cuius diameter BC. <!-- KEEP S--></s>

<s>Igitur &longs;uper hanc ba&longs;im <lb/>circa axim AD, <lb/>intelligatur de&longs;eri <lb/>ptus cylindrus, vel <lb/>cylindri portio <lb/>BL, qu&aelig; &longs;olidum <lb/>ABC, compre&shy;<lb/>hendet: &longs;ectoque <lb/>cylindro, vel cylin <lb/>dri portione BL, <lb/>planis ba&longs;i paralle <lb/><figure id="id.043.01.034.1.jpg" xlink:href="043/01/034/1.jpg"/><lb/>lis in tot cylindros, vel cylindri portiones &aelig;qualium al&shy;<lb/>ritudinum, vt quilibet eorum &longs;it minor magnitudine <lb/>propo&longs;ita; e&longs;to &longs;olidum ABC, &longs;ectum pr&aelig;dictis planis: <lb/>erunt autem &longs;ectiones circuli, vel ellyp&longs;es fimiles inter <lb/>&longs;e &amp; ba&longs;i BC, &longs;olidi ABC &longs;uper quas &longs;ectiones tam&shy;<lb/>quam ba&longs;es cylindris, vel cylindri portionibus &aelig;qua&shy;<lb/>lium altitudinum intra, atque extra figuram con&longs;titutis, <lb/>quorum bini inter eadem plana parallela inter &longs;e refe-<pb/>runtur, veluti BF, &amp; GDH, quorum axis communis e&longs;t <lb/>D<emph type="italics"/>K<emph.end type="italics"/>, ba&longs;es autem circuli, vel ellyp&longs;es EF, GH, qua&shy;<lb/>rum commune centrum K: &longs;upremus autem, qui ad A, <lb/>ad nullum refertur. </s>

<s>Quoniam igitur ex con&longs;tructione, <lb/>cylindrus, vel cylindri portio BF, e&longs;t minor magnitudi&shy;<lb/>ne propo&longs;ita; exce&longs;sus autem omnes, quibus cylindri, ex <lb/>quibus con&longs;tat figura circum&longs;cripta, excedunt eos, ex qui&shy;<lb/>bus con&longs;tat figura in&longs;cripta, pro vt bini inter &longs;e referun&shy;<lb/>tur, vna cum &longs;upremo, qui ad nullum refertur, &longs;unt &aelig;qua&shy;<lb/>les cylindro, vel cylindri portioni BF, figura circum&shy;<lb/>&longs;cripta &longs;olido ABC, excedet in&longs;criptam minori exce&longs;&shy;<lb/>&longs;u magnitudine propo&longs;ita. </s>

<s>Fieri igitur pote&longs;t quod pro&shy;<lb/>ponebamus. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Dato parallelepipedo erecto circa datam re&shy;<lb/>ctam lineam tamquam axim, erectum parallele&shy;<lb/>pipedum &aelig;quale con&longs;tituere. </s></p><p type="main">

<s>Sit datum parallelepipedum AB, erectum, cuius ba&shy;<lb/>&longs;is AC, altitudo autem latus BC: &amp; data recta linea <lb/>finita ED. <!-- KEEP S--></s>

<s>Oportet circa rectam ED, tamquam axim <lb/>parallelepipedo AB, &aelig;quale parallelepipedum erectum <lb/>con&longs;tituere. </s>

<s>Per punctum igitur E, extendatur pla&shy;<lb/>num erectum ad lineam ED, &amp; vt e&longs;t DE, ad BC, ita <lb/>fiat ba&longs;is AC, ad quadratum F: &amp; ad punctum E, in <lb/>plano erecto ad lineam ED, quart&aelig; parti quadrati F, <lb/>&aelig;quale GE, quadratum de&longs;cribatur, &amp; compleatur <lb/>quadratum GH, quadruplum quadrati EG, &longs;eu qua&shy;<lb/>drato F, &aelig;quale: &amp; ex puncto K, erecta KL, ip&longs;i EF, <lb/>&aelig;quali, &amp; ad &longs;ubiectum planum perpendiculari &longs;uper ba&shy;<lb/>&longs;im GH, con&longs;tituatur parallelepipedum GK. <!-- KEEP S--></s>

<s>Dico <pb/>parallelepipedum GK, e&longs;se &aelig;quale parallelepipedo AB; <lb/>&amp; rectam DE, axim parallelepipedi GK. <!-- KEEP S--></s>

<s>Iungantur <lb/>enim ba&longs;ium oppo&longs;itarum diametri GH, LK. <!-- KEEP S--></s>

<s>Quo&shy;<lb/>niam igitur qua&shy;<lb/>drata &longs;unt EG, <lb/>GH, communem&shy;<lb/>que habent angu&shy;<lb/>lum, qui ad G, <lb/>con&longs;i&longs;tent circa di&shy;<lb/>ametrum GH; in <lb/>recta igitur GH, <lb/>erit punctum E. <lb/><!-- KEEP S--></s>

<s>Et quoniam qua&shy;<lb/>dratum GH, e&longs;t <lb/>quadrati EG, qua&shy;<lb/>druplum; erit dia&shy;<lb/><figure id="id.043.01.036.1.jpg" xlink:href="043/01/036/1.jpg"/><lb/>meter GH, diametri EG, dupla; punctum igitur E, <lb/>erit in medio diametri GH. Rur&longs;us, quoniam ob pa&shy;<lb/>rallelepipedum GK, recta GL, &aelig;qualis e&longs;t, &amp; paral&shy;<lb/>lela ip&longs;i KH, erit LH, parallelogrammum: &amp; quia <lb/>vtraque DE, KH, e&longs;t ad &longs;ubiectum planum perpendi&shy;<lb/>cularis, parallel&aelig; erunt, &amp; in eodem plano parallelogram&shy;<lb/>mi LH; in quo cum LG, &longs;it parallela ip&longs;i KH; erit &amp; <lb/>ED, ip&longs;i LG, parallela: e&longs;t autem, &amp; &aelig;qualis vtrilibet <lb/>ip&longs;arum GL, GH, oppo&longs;itarum; punctum igitur D, e&longs;t <lb/>in recta LK, &amp; tam KD, ip&longs;i EH, qu&agrave;m LD, ip&longs;i <lb/>EG, &aelig;qualis erit, &amp; inter &longs;e &aelig;quales LD, DK. pun&shy;<lb/>ctum igitur D, erit in medio diametri LK; &longs;ed &amp; pun&shy;<lb/>ctum E, erat in medio diametri GH; recta igitur ED, <lb/>axis e&longs;t parallelepipedi GK, cuius parallelepipedi cum <lb/>altitudo DE, &longs;it ad BC, altitudinem parallelepipedi AB, <lb/>vt e&longs;t ba&longs;is AC, ad quadratum F, hoc e&longs;t ad ba&longs;im GH, <lb/>parallelepipedi GK; parallelepipedum GK, parallelepipe <lb/>do AB, &aelig;quale erit, Factum igitur e&longs;t quod oportebat. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO XIII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Cuilibet figur&aelig; &longs;olid&aelig; <expan abbr="parallelepiped&utilde;">parallelepipedum</expan> &aelig;qua&shy;<lb/>le pote&longs;t e&longs;&longs;e. </s></p><p type="main">

<s>Sit qu&aelig;libet figura &longs;olida A. <!-- KEEP S--></s>

<s>Dico &longs;olido A, parallele&shy;<lb/>pipedum &aelig;quale po&longs;se exi&longs;tere. </s>

<s>Exponatur enim paral&shy;<lb/>lelepipedum BC, cuius ba&longs;is BG. </s>

<s>Quoniam igitur e&longs;t vt <lb/>&longs;olidum BC, ad &longs;olidum A, ita recta linea, &longs;iue latus BD, <lb/>ad aliam rectam lineam; producto latere BD, &longs;it vt BC, <lb/>ad A, ita recta BD, ad rectam DE, &amp; compleatur pa&shy;<lb/>rallelepipedum CE. </s>

<s>Quoniam itaque e&longs;t vt BD, ad DE, <lb/>ita parallelogrammum &longs;iue ba&longs;is BG, ad parallelogram&shy;<lb/><figure id="id.043.01.037.1.jpg" xlink:href="043/01/037/1.jpg"/><lb/>mum, &longs;iue ba&longs;im EG; hoc e&longs;t parallelepipedum BC, ad <lb/>parallelepipedum CE: &longs;ed vt BD, ad DE, ita e&longs;t paral&shy;<lb/>lelepipedum BC, ad &longs;olidum A; vt igitur parallelepipe&shy;<lb/>dum BC, ad &longs;olidum A, ita erit parallelepipedum BC, <lb/>ad parallelepipedum CE; parallelepipedum igitur CE <lb/>&aelig;quale erit &longs;olido A. <!-- KEEP S--></s>

<s>Quod fieri po&longs;se propo&longs;uimus. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO XIV.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis parallelogtammi centrum grauitatis <lb/>diametrum bifariam diuidit. </s></p><p type="main">

<s>Sit parallelogrammum ABCD, cuius duo latera AB, <lb/>BC, &longs;int primum in &aelig;qualia: &amp; <expan abbr="quoni&atilde;">quoniam</expan> omne parallelogram&shy;<lb/>mum habet &longs;altem duos angulos oppo&longs;itos non minores <lb/>recto, e&longs;to vterque angulorum B, D, non minor recto, &longs;it&shy;<lb/>que ducta diameter AC, &longs;ectaque in puncto G, bifariam. <lb/></s>

<s>Dico G, e&longs;se centrum grauitatis parallelogrammi ABCD. <lb/><!-- KEEP S--></s>

<s>Trianguli enim ABC, &longs;it centrum grauitatis H; iuncta&shy;<lb/>que HG, &amp; producta, ponatur GK, &aelig;qualis GH, &amp; re&shy;<lb/>ct&aelig; &agrave; punctis K, H, ad angulos ducantur. </s>

<s>Quoniam igi&shy;<lb/>tur AG, e&longs;t &aelig;qualis GC, &amp; <lb/>GH, ip&longs;i GK, &amp; angulus <lb/>AGK, &aelig;qualis angulo CGH, <lb/>erit ba&longs;is AK, &aelig;qualis ba&longs;i <lb/>CH, &amp; angulus GAK, &aelig;qua&shy;<lb/>lis angulo GCK: &longs;ed totus <lb/>angulus DAK, &aelig;qualis e&longs;t to <lb/>ti angulo BCA; reliquus igi&shy;<lb/>tur DAK, reliquo BCH, <lb/>&aelig;qualis erit, circa quos angu&shy;<lb/>los latus BC e&longs;t &aelig;quale lateri <lb/>AD, &amp; CH, ip&longs;i AK; angu&shy;<lb/>lus igitur CBH, &aelig;qualis erit <lb/><figure id="id.043.01.038.1.jpg" xlink:href="043/01/038/1.jpg"/><lb/>angulo ADK. </s>

<s>Similiter o&longs;tenderemus angulum CAH, <lb/>angulo ACK, &amp; angulum BAH, angulo DCK, &amp; an&shy;<lb/>gulum ABH, angulo CDK, &aelig;quales e&longs;se: &longs;ed latera <lb/>triangulorum, cum quibus rect&aelig; duct&aelig; &agrave; punctis K, H, ad <lb/>angulos triangulorum &longs;imilium ABC, CDA, &longs;unt ho-<pb/>mologa; puncta igitur K, H, in pr&aelig;dictis triangulis &longs;unt <lb/>&longs;imiliter po&longs;ita. </s>

<s>Rur&longs;us quoniam angulus ABC, non <lb/>e&longs;t minor recto, acuti erunt reliqui ACB, BAC; igitur <lb/>latus AC, maximum erit: ponitur autem AB maius, <lb/>qu&agrave;m BC; triangulum igitur ABC, &longs;calenum erit. <lb/></s>

<s>Eadem ratione &longs;calenum e&longs;t triangulum ACD. <!-- KEEP S--></s>

<s>Quare <lb/>in triangulo ACD, vnum duntaxat punctum K, &longs;imili&shy;<lb/>ter po&longs;itum erit, ac punctum H, in triangulo ABC. <!-- KEEP S--></s>

<s>Cum <lb/>igitur H &longs;it centrum grauitatis trianguli ABC, erit &amp; <lb/>K, centrum grauitatis trianguli ACD. <!-- KEEP S--></s>

<s>Sed longitudo <lb/>GK, &aelig;qualis e&longs;t longitudini GH; punctum igitur G erit <lb/>centrum grauitatis parallelogrammi ABCD, in quo ni&shy;<lb/>mirum &longs;ecta e&longs;t bifariam diameter AC: quare &longs;i ducatur <lb/>altera diameter BD, in medio etiam diametri BD, erit <lb/>idem centrum grauitatis G. <!-- KEEP S--></s></p><p type="main">

<s>Sed &longs;int omnia latera &aelig;qualia <expan abbr="parallelogr&atilde;mi">parallelogrammi</expan> ABCD, <lb/>Sectisque duobus lateribus AD, BC, bifariam in E, F <lb/>iungantur EF, AE, ED, <lb/>AGC, &amp; per punctum G, <lb/>ducatur ip&longs;i AD, vel BC, <lb/>parallela HGK. </s>

<s>Quoniam <lb/>igitur EC, e&longs;t &aelig;qualis <lb/>AF, erit CG &aelig;qualis AG, <lb/>&amp; EG, &aelig;qualis GF, pro&shy;<lb/>pter &longs;imilitudinem triangu <lb/>lorum: nec non EH, ip&longs;i <lb/>AH, &amp; EK, ip&longs;i KD: tres <lb/>igitur diametri AC, AE, <lb/>ED, erunt &longs;ect&aelig; bifariam <lb/><figure id="id.043.01.039.1.jpg" xlink:href="043/01/039/1.jpg"/><lb/>in punctis K, G, H: &amp; quoniam ex &aelig;quali propter triangu&shy;<lb/>la &longs;imilia e&longs;t vt AF, ad FD, ita HG, ad GK, erit HG, <lb/>&aelig;qualis ip&longs;i GK: &longs;ed puncta K, H, &longs;unt centra grauitatis <lb/>parallelogrammorum BF, FC; igitur totius parallelo&shy;<lb/>grammi ABCD, centrum grauitatis erit G, in medio <pb/>diametri AG. <!-- KEEP S--></s>

<s>Quod e&longs;t propo&longs;itum. </s></p><p type="head">

<s><emph type="italics"/>COROLLARIVM.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Hinc manife&longs;tum e&longs;t, omnis parallelogrammi <lb/>centrum grauitatis e&longs;&longs;e in medio rect&aelig;, qu&aelig; op&shy;<lb/>po&longs;itorum bipartitorum laterum &longs;ectiones iungit. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XV.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si quodlibet parallelogrammum in duo paral&shy;<lb/>lelogramma diuidatur, &amp; eorum <expan abbr="c&etilde;tra">centra</expan> grauitatis <lb/>iungantur recta linea; totius diui&longs;i parallelogram&shy;<lb/>mi centrum grauitatis pr&aelig;dictam lineam ita di&shy;<lb/>uidit, vt eius &longs;egmenta &egrave; contrario re&longs;pondeant <lb/>pr&aelig;dictis partibus parallelogrammis. </s></p><p type="main">

<s>Sit parallelogrammum ABCD, &longs;ectum in duo paral&shy;<lb/>lelogramma AE, ED, &amp; <lb/>parallelogrammi AE, &longs;it <lb/>centrum grauitatis H, pa&shy;<lb/>rallelogrammi autem ED, <lb/>centrum grauitatis K: &amp; <lb/>parallelogrammi ABCD, <lb/>&longs;it centrum grauitatis G: <lb/>&amp; iungatur KH. <!-- KEEP S--></s>

<s>Dico re&shy;<lb/>ctam KH, diuidi &agrave; puncto <lb/>G, ita vt &longs;it KG, ad G <lb/>H, vt e&longs;t parallelogrammum <lb/>AE, ad parallelogrammum <lb/><figure id="id.043.01.040.1.jpg" xlink:href="043/01/040/1.jpg"/><lb/>ED, Iungantur enim diametri AC, AE, ED. <!-- KEEP S--></s>

<s>Igitur <pb/>per pr&aelig;cedentem &longs;ect&aelig; erunt h&aelig; diametri bifariam in pun&shy;<lb/>ctis H, G, K. <!-- KEEP S--></s>

<s>Quoniam igitur e&longs;t vt EH, ad HA, ita <lb/>EK ad KD, parallela erit KH, ip&longs;i AD; igitur &amp; EC; <lb/>&longs;ed recta KH, &longs;ecat latus AE, trianguli AEC, bifariam <lb/>in puncto H, ergo &amp; latus AC, bifariam &longs;ecabit; igitur <lb/>in puncto G. punctum igitur G, e&longs;t in linea KH. Rur&longs;us, <lb/>quoniam e&longs;t vt GA, ad AC, ita GH, ad EC, propter &longs;i&shy;<lb/>militudinem triangulorum; &longs;ed dimidia e&longs;t GA, ip&longs;ius <lb/>AC, igitur &amp; GH, erit dimidia ip&longs;ius EC, hoc e&longs;t ip&longs;ius <lb/>FD. </s>

<s>Similiter o&longs;tenderemus dimidiam e&longs;se KH ip&longs;ius <lb/>AD. vt igitur KH, ad AD, ita erit GH, ad FD: &amp; per&shy;<lb/>mutando, vt AD, ad DF, ita KH, ad HG, &amp; diui&shy;<lb/>dendo, vt AF, ad FD, hoc e&longs;t vt parallelogrammum AE, <lb/>ad parallelogrammum ED, ita KG, ad GH. <!-- KEEP S--></s>

<s>Quod de&shy;<lb/>mon&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XVI.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Plana grauia &aelig;quiponderant &agrave; longitudini&shy;<lb/>bus ex contraria parte re&longs;pondentibus. </s></p><p type="main">

<s>Sint plana grauia N, R, quorum centra grauitatis &longs;int <lb/>N, R, &amp; longitudo aliqua AB: &amp; vt e&longs;t N, ad R, ita &longs;it <lb/>BC, ad CA. <!-- KEEP S--></s>

<s>Dico &longs;u&longs;pen&longs;is magnitudinibus &longs;ecundum <lb/>centra grauitatis N, in puncto A, &amp; R, in puncto B, vtri&shy;<lb/>u&longs;que magnitudinis N, R, &longs;imul centrum grauitatis e&longs;se <lb/>C. <!-- KEEP S--></s>

<s>Nam &longs;i N, R, magnitudines &longs;int &aelig;quales, manife&longs;tum <lb/>e&longs;t propo&longs;itum. </s>

<s>Si autem in&aelig;quales, ab&longs;cindatur BD, <lb/>&aelig;qualis AC, vt &longs;it AD, ad DB, vt BC, ad CA. <!-- KEEP S--></s>

<s>Et quo&shy;<lb/>niam &longs;pacio R, rectangulum &aelig;quale pote&longs;t e&longs;se; applice&shy;<lb/>tur ad lineam BD, rectangulum BDKE, &aelig;quale quar&shy;<lb/>t&aelig; parti rectanguli &aelig;qualis ip&longs;i R, hoc e&longs;t quart&aelig; parti <lb/>ip&longs;ius R; &amp; po&longs;ita DG, &aelig;quali, &amp; in directum ip&longs;i DK, <pb/>ducantur rect&aelig; GBH, GAF, qu&aelig; cum KE, produ&shy;<lb/>cta conueniant in punctis F, H: &amp; fiant parallelogramma <lb/>FL, AK. <!-- KEEP S--></s>

<s>Quoniam igitur e&longs;t vt N, ad R, ita BC, ad <lb/>CA, hoc e&longs;t AD, ad DB, hoc e&longs;t rectangulum AK, ad <lb/>rectangulum BK; erit permutando vt rectangulum AK, <lb/>ad N, ita rectangulum BK, ad R; &longs;ed rectangulum BK, <lb/>e&longs;t pars quarta ip&longs;ius R, ergo &amp; rectangulum AK, erit <lb/>pars quarta ip&longs;ius N. <!-- KEEP S--></s>

<s>Rur&longs;us quia e&longs;t vt GD, ad D<emph type="italics"/>K<emph.end type="italics"/>, <lb/>ita GA, ad AF, &amp; GB, ad BH: &longs;ed GD e&longs;t &aelig;qualis <lb/>DK; ergo &amp; GA, ip&longs;i AF, &amp; GB, ip&longs;i BH, &aelig;quales <lb/>erunt &amp; centra grauita&shy;<lb/>tis A, quidem rectangu&shy;<lb/>li MK, B, vero rectan&shy;<lb/>guli KL, &amp; rectangulum <lb/>AK, pars quarta ip&longs;ius <lb/>M<emph type="italics"/>K<emph.end type="italics"/>, quemadmodum <lb/>&amp; B<emph type="italics"/>K<emph.end type="italics"/> ip&longs;ius KL; &longs;ed <lb/>N, rectanguli AK, qua&shy;<lb/>druplum erat, quemad&shy;<lb/>modum &amp; R ip&longs;ius BK; <lb/>igitur rectangulum MK, <lb/>&longs;pacio N, &amp; rectangulum <lb/>KL, &longs;pacio R, &aelig;quale <lb/>erit. </s>

<s>Sed vt BC, ad CA, <lb/>ita e&longs;t N, ad R; vt igi&shy;<lb/>tur BC, ad CA, ita <lb/><figure id="id.043.01.042.1.jpg" xlink:href="043/01/042/1.jpg"/><lb/>rectangulum MK, ad rectangulum KL; &longs;ed A e&longs;t cen&shy;<lb/>trum grauitatis rectanguli MK, &amp; B, rectanguli KL; to&shy;<lb/>tius ergo rectanguli FL, hoc e&longs;t duorum rectangulorum <lb/>MK, KL, &longs;imul centrum grauitatis erit C. <!-- KEEP S--></s>

<s>Sed rectan&shy;<lb/>gulo MK, &aelig;quale e&longs;t &longs;pacium N; &amp; rectangulo KL, &longs;pa&shy;<lb/>cium R. <!-- KEEP S--></s>

<s>Igitur &longs;i pro rectangulo MK, &longs;it &longs;u&longs;pen&longs;um N <lb/>&longs;pacium &longs;ecundum centrum grauitatis in puncto A, &amp; pro <lb/>rectangulo KL, &longs;pacium R, &longs;ecundum centrum graui-<pb/>tatis in puncto B, &longs;pacia N, R, &aelig;quiponderabunt &agrave; lon&shy;<lb/>gitudinibus AC, CB; eritque vtriu&longs;que plani N, R, &longs;i&shy;<lb/>mul centrum grauitatis C. <!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>COROLLARIVM.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Hinc manife&longs;tum e&longs;t &longs;i cuiuslibet figur&aelig; pla&shy;<lb/>n&aelig; vtcumque &longs;ect&aelig; centra grauitatis partium <lb/>iungantur recta linea, talem lineam &agrave; centro gra&shy;<lb/>uitatis totius pr&aelig;dicti plani ita &longs;ecari, vt &longs;egmen&shy;<lb/>ta ex contrario re&longs;pondeant pr&aelig;dictis partibus. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XVII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si totum quoduis planum, &amp; pars aliqua non <lb/>habeant idem centrum grauitatis, &amp; eorum cen&shy;<lb/>tra iungantur recta linea; in ea producta ad par&shy;<lb/>tes centri grauitatis totius, erit reliqu&aelig; partis cen <lb/>trum grauitatis. </s></p><p type="main">

<s>Sit totum quoduis planum <lb/>ABC, cuius centrum graui&shy;<lb/>tatis E, &amp; pars illius AB, cuius <lb/>aliud centrum D, &amp; iuncta <lb/>DE, producatur ad partes E, <lb/>in infinitum v&longs;que in H. <!-- KEEP S--></s>

<s>Dico <lb/>reliqu&aelig; partis BC, centrum <lb/>grauitatis, quod &longs;it G, e&longs;se in <lb/>linea EH. <!-- KEEP S--></s>

<s>Quoniam enim D, <lb/>G, &longs;unt centra grauitatis par&shy;<lb/><figure id="id.043.01.043.1.jpg" xlink:href="043/01/043/1.jpg"/><lb/>tium AB, BC, cadet totius ABC, centrum grauitatis <pb/>E, in recta linea, qu&aelig; iungit centra D, G; tria igitur pun&shy;<lb/>cta D, E, G, &longs;unt in eadem recta linea. </s>

<s>in qua igitur &longs;unt <lb/>puncta D, E, in eadem e&longs;t punctum G; &longs;ed puncta D, E, &longs;unt <lb/>in recta DH; igitur &amp; punctum G, erit in recta DH: &longs;ed <lb/>extra ip&longs;am DE, vt modo o&longs;tendimus, in reliqua igitur <lb/>EH. <!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XVIII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Sit totum quoduis planum &longs;it vni parti concen <lb/>tricum &longs;ecundum centrum grauitatis, &amp; reliqu&aelig; <lb/>erit concentricum. </s>

<s>Et &longs;i partes inter &longs;e &longs;int con&shy;<lb/>centric&aelig;, &amp; toti erunt concentric&aelig;. </s></p><p type="main">

<s>Sit totum quoduis planum AB, quod cum vna parte <lb/>AC habeat commune centrum grauitatis E. <!-- KEEP S--></s>

<s>Dico &amp; re&shy;<lb/>liqu&aelig; partis CD, e&longs;se <lb/>idem centrum grauitatis <lb/>E. <!-- KEEP S--></s>

<s>Si enim illud non <lb/>e&longs;t, erit aliud; e&longs;to F, &amp; <lb/>EF iungatur. </s>

<s>Quoniam <lb/>igitur partium AC, CD, <lb/>centra grauitatis &longs;unt E, <lb/>F; erit totius AB, in re&shy;<lb/>cta EF, centrum graui&shy;<lb/>tatis: &longs;ed &amp; in puncto E, <lb/>vnius ergo magnitudinis <lb/>duo centra grauitatis e&shy;<lb/>runt. </s>

<s>Quod e&longs;t ab&longs;urdum; <lb/><figure id="id.043.01.044.1.jpg" xlink:href="043/01/044/1.jpg"/><lb/>idem igitur E erit centrum grauitatis vtriuslibet partium <lb/>AC, CD. <!-- KEEP S--></s>

<s>Sed vtriuslibet partium AC, CD, &longs;it cen&shy;<lb/>trum grauitatis E. <!-- KEEP S--></s>

<s>Dico idem E totius AB, e&longs;se cen-<pb/>trum grauitatis. </s>

<s>Si enim non e&longs;t, erit aliud, e&longs;to G: &amp; <lb/>iunctatur EG, producatur ad partes G, in infinitum v&longs;&shy;<lb/>que &igrave;n F. <!-- KEEP S--></s>

<s>Quoniam igitur E, e&longs;t centrum grauitatis vnius <lb/>partis AC, &amp; G, totius AB; erit reliqu&aelig; partis CD, in <lb/>linea GF centrum grauitatis: &longs;ed &amp; in puncto E; eiu&longs;&shy;<lb/>dem igitur magnitudinis AB, duo centra grauitatis erunt. <lb/></s>

<s>Quod fieri non pote&longs;t; totius igitur AB, erit centrum gra<lb/>uitatis idem E. <!-- KEEP S--></s>

<s>Manife&longs;tum e&longs;t igitur propo&longs;itum. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XIX.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis trianguli rectilinei idem e&longs;t centrum <lb/>grauitatis, &amp; figur&aelig;. </s></p><p type="main">

<s>Sit triangulum rectilineum ABC, cuius centrum G. <lb/><!-- KEEP S--></s>

<s>Dico G, e&longs;se centrum grauitatis trianguli ABC. <!-- KEEP S--></s>

<s>Si enim <lb/>fieri pote&longs;t, &longs;it aliud punctum N, centrum grauitatis trian <lb/>guli ABC, &amp; per punctum G, ducantur rect&aelig; AF, BD, <lb/>CE, &amp; DHE, ERF, FKD, <emph type="italics"/>K<emph.end type="italics"/>LH, &amp; NG. </s>

<s>Quo&shy;<lb/>niam igitur qu&aelig; ab angulis A, B, C, duct&aelig; &longs;unt rect&aelig; <lb/>line&aelig; per G, &longs;ecant bifariam latera AB, BC, CA; erit <lb/>triangulum EDF, &longs;imile triangulo ABC, ob latera pa&shy;<lb/>rallela vt &longs;unt EF, AC. <!-- KEEP S--></s>

<s>Et quoniam triangulum EDF, <lb/>dimidium e&longs;t cuius vis trium parallelogrammorum AF, <lb/>BD, CE, &aelig;qualia inter &longs;e erunt ea parallelogramma <lb/>omnifariam &longs;umpta, quorum centra grauitatis H, K, R; <lb/>intelligantur autem tria parallelogramma AF, BD, CE, <lb/>di&longs;tincta penitus, ita vt inter &longs;e congruant &longs;ecundum tria <lb/>triangula DEF, inter &longs;e congruentia: trium igitur trian <lb/>gulorum DEF, inter &longs;e congruentium &amp; centra grauita&shy;<lb/>tis inter &longs;e congruent in puncto M. </s>

<s>Quoniam igitur in&shy;<lb/>ter duas parallelas EF, KH, &longs;ecant &longs;e rect&aelig; line&aelig; FH, <lb/>LR, in puncto G; erit vt FG, ad GH, ita RG, ad GL; <pb/>dupla igitur RG, e&longs;t ip&longs;ius GL. <!-- KEEP S--></s>

<s>Et quoniam in triangu&shy;<lb/>lo AGC, recta GD, &longs;ecat AC, bifariam in puncto D; <lb/>ip&longs;i AC, parallelam KH, bifariam &longs;ecabit in puncto L, <lb/>duorum igitur &aelig;qualium parallelogrammorum AF, EG; <lb/>&longs;imul, quorum centra grauitatis &longs;unt K, H, centrum gra&shy;<lb/>uitatis erit L. <!-- KEEP S--></s>

<s>Sed duo parallelogramma AF, EC, &longs;i&shy;<lb/>mul &longs;unt paralle&shy;<lb/>logrammi BD, du <lb/>plum; trium igitur <lb/>parallelogrammo&shy;<lb/>rum AF, EC, <lb/>BD, &longs;imul: hoc <lb/>e&longs;t <expan abbr="tri&atilde;guli">trianguli</expan> ABC, <lb/>vn&agrave; cum duobus <lb/>trium <expan abbr="triangulor&utilde;">triangulorum</expan> <lb/>inter &longs;e congruen&shy;<lb/>tium EDF, cen&shy;<lb/>trum grauitatis e&shy;<lb/>rit G. <!-- KEEP S--></s>

<s>Sed triangu <lb/>li ABC, ponitur <lb/><figure id="id.043.01.046.1.jpg" xlink:href="043/01/046/1.jpg"/><lb/>centrum grauitatis N; producta igitur NG, occurret <lb/>centro M, reliqu&aelig; partis, ide&longs;t duorum triangulorum DEF; <lb/>quare vt triangulum ABC, ad duo triangula DEF, &longs;i&shy;<lb/>mul, ita erit MG, ad GN. <!-- KEEP S--></s>

<s>Sed triangulum ABC, e&longs;t <lb/>duplum duorum triangulorum EDF: igitur &amp; MG, erit <lb/>ip&longs;ius GN, dupla. </s>

<s>Rur&longs;us quoniam vtriuslibet duorum <lb/>triangulorum EDF, centrum grauitatis erat M; erit &longs;i&shy;<lb/>militer po&longs;itum M, in triangulo EDF, ac centrum N, in <lb/>triangulo ABC, propter &longs;imilitudinem triangulorum: <lb/>Sed propter h&aelig;c &longs;imiliter po&longs;ita centra, quia homologo&shy;<lb/>rum laterum e&longs;t vt AB, ad DF, ita NG, ad GM: &amp; <lb/>AB, e&longs;t dupla ip&longs;ius EB, erit &amp; NG, dupla ip&longs;ius GM. <lb/><!-- KEEP S--></s>

<s>Sed GM, erat dupla ip&longs;ius GN: igitur GN, erit &longs;ui ip&longs;ius <lb/>quadrupla. </s>

<s>Quod e&longs;t ab&longs;urdum. </s>

<s>Non igitur centrum <pb/>grauitatis trianguli ABC, erit aliud &agrave; puncto G: pun&shy;<lb/>ctum igitur G, erit centrum grauitatis trianguli ABC. <lb/><!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><p type="main">

<s>Quod autem ex huius theorematis demon&longs;tratione li&shy;<lb/>quet centrum grauitatis trianguli e&longs;se in ea recta linea, <lb/>qu&aelig; ab angulo ad bipartiti lateris &longs;ectionem pertinet, <lb/>Archimedes per in&longs;criptionem figur&aelig; ex parallelogram&shy;<lb/>mis demon&longs;trauit, aliter autem per diui&longs;ionem trianguli <lb/>in triangula nequaquam: qua enim ratione hoc ille tentat, <lb/>ea ex nono theoremate eiu&longs;dem prioris libri de &aelig;quipon&shy;<lb/>derantibus nece&longs;sario pendet. </s>

<s>Cum igitur in illo ante ceden <lb/>ti &longs;it fallacia accipientis latenter &longs;peciem trianguli; &longs;cale&shy;<lb/>num &longs;cilicet pro genere triangulo, neque con&longs;equens erit <lb/>demon&longs;tratum. </s>

<s>Quod autem dico manife&longs;tum e&longs;t: Datis <lb/>enim duobus triangulis &longs;imilibus, &amp; in altero eorum dato <lb/>puncto, quod &longs;it trianguli centrum grauitatis, punctum in <lb/>altero triangulo modo &longs;imiliter po&longs;itum &longs;it pr&aelig;dicto pun&shy;<lb/>cto, nititur demon&longs;trare e&longs;se alterius trianguli centrum <lb/>grauitatis: cum autem nondum con&longs;tet centrum graui&shy;<lb/>tatis trianguli e&longs;se in recta, qu&aelig; ab angulo latus oppo&longs;i&shy;<lb/>tum bifariam &longs;ecat, &longs;ed ex nono theoremate &longs;it demon&longs;tran <lb/>dum medio decimo, non pote&longs;t illud accipi in nono theo&shy;<lb/>remate, quod ad demon&longs;trationem e&longs;set nece&longs;sarium. </s>

<s>per&shy;<lb/>mittitur igitur aduer&longs;ario ponere centrum grauitatis trian&shy;<lb/>guli, vbicumque vult intra illius limites. </s>

<s>atqui cum datis <lb/>duobus triangulis i&longs;o&longs;celiis &longs;imilibus, &amp; in altero eorum <lb/>dato puncto, quod non &longs;it in pr&aelig;dicta recta linea, po&longs;sint <lb/>in altero duo puncta pr&aelig;dicto &longs;imiliter po&longs;ita inueniri, quo&shy;<lb/>rum vnum duntaxat concedet aduer&longs;arius e&longs;se alterius <lb/>trianguli centrum grauitatis, non autem non &longs;imiliter po&shy;<lb/>&longs;itum, ex quo ab&longs;urdum infertur partem anguli &aelig;qualem <lb/>e&longs;se toti: quid quod datis duobus triangulis &aelig;quilateris, &amp; <lb/>in altero eorum dato puncto, quod non &longs;it centrum trian-<pb/>guli, &longs;ed aliqua earum, qu&aelig; ab angulis ad bipartitorum <lb/>laterum &longs;ectiones cadunt, nece&longs;se e&longs;t in altero triangulo <lb/>tria puncta pr&aelig;dicto puncto e&longs;se &longs;imiliter po&longs;ita? </s>

<s>quod &longs;i <lb/>etiam extra i&longs;tas lineas cadat vnius trianguli punctum, ne&shy;<lb/>ce&longs;se e&longs;t illi &longs;ex puncta in altero triangulo e&longs;se &longs;imiliter po&shy;<lb/>&longs;ita: &longs;ed &longs;i quod diximus de i&longs;o&longs;celiis &longs;imilibus, &amp; &aelig;quila&shy;<lb/>teris triangulis demon&longs;trauerimus, rem velut ante oculos <lb/>expo&longs;uerimus. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO.<emph.end type="italics"/></s></p><p type="main">

<s>Datis duobustriangulis i&longs;o&longs;celijs &longs;imilibus, &amp; <lb/>in altero eorum dato puncto extra rectam, qu&aelig; &agrave; <lb/>vertice ad medium ba&longs;is cadit, duo puncta in re&shy;<lb/>liquo triangulo pr&aelig;dicto puncto &longs;imiliter po&longs;ita <lb/>inuenire. </s></p><p type="main">

<s>Sint duo triangula i&longs;o&longs;celia, &amp; &longs;imilia ABC, DEF: <lb/>quorum in altero ABC, &agrave; vertice A, ad ba&longs;im BC, bi&shy;<lb/>partitam in puncto G, cadat recta AG: atque extra hanc <lb/><figure id="id.043.01.048.1.jpg" xlink:href="043/01/048/1.jpg"/><lb/>in triangulo ABC, &longs;it quoduis punctum H: &amp; iuncta AH, <lb/>fiat angulus EDK &aelig;qualis angulo BAH; &amp; vt BA, ad <pb/>AH, ita fiat ED, ad DK: &amp; quoniam angulus BAG, <lb/>&aelig;qualis e&longs;t angulo EDF: quorum angulus EDK, <lb/>&aelig;qualis e&longs;t angulo BAH, erit reliquus angulus <emph type="italics"/>K<emph.end type="italics"/>DF, <lb/>&aelig;qualis reliquo angulo HAC; &longs;ed angulus HAC, e&longs;t <lb/>maior angulo BAH; ergo &amp; angulus KDF, maior erit <lb/>angulo BAH; po&longs;ito igitur angulo FDL, &aelig;quali an&shy;<lb/>gulo BAH, ac proinde minori, qu&agrave;m &longs;it angulus FD<emph type="italics"/>K<emph.end type="italics"/>, <lb/>fiat vt BA, ad AH, ita FD, ad DL. Dico, in triangu&shy;<lb/>lo EDF, duo puncta K, L, &longs;imiliter po&longs;ita e&longs;se ac pun&shy;<lb/>ctum H, in triangulo BAC. <!-- KEEP S--></s>

<s>Iungantur enim rect&aelig; AH, <lb/>BH, CH, EK, KF, FL, LE. </s>

<s>Quoniam igitur an&shy;<lb/>gulus ED<emph type="italics"/>K<emph.end type="italics"/>, e&longs;t &aelig;qualis angulo BAH, qui lateribus <lb/>homologis continentur; erit angulus DE<emph type="italics"/>K<emph.end type="italics"/>, &aelig;qualis an&shy;<lb/>gulo ABH: &longs;ed totus angulus DEF, &aelig;qualis e&longs;t toti an&shy;<lb/>gulo ABC; reliquus igitur angulus KEF, &aelig;qualis erit <lb/>reliquo HBC: &longs;ed ex &aelig;quali e&longs;t vt CB, ad BH, ita <lb/>FE, ad EK; igitur vt antea erit angulus KFE, &aelig;qualis <lb/>angulo HCB, &amp; angulus DFK, &aelig;qualis angulo ACH, <lb/>&amp; angulus FDK, &aelig;qualis angulo CAH; punctum igi&shy;<lb/>tur K, &longs;imiliter po&longs;itum erit in triangulo EDF, ac pun&shy;<lb/>ctum H, in triangulo ABC. <!-- KEEP S--></s>

<s>Rur&longs;us quoniam angulus <lb/>FDL, &aelig;qualis e&longs;t angulo BAH, &amp; latus AB, homo&shy;<lb/>logum lateri DF, (e&longs;t enim vt BA, ad AC, ita FD, ad <lb/>DE) &longs;ed vt BA, ad AH, ita e&longs;t FD, ad DL, per con&shy;<lb/>&longs;tructionem; &longs;imiliter vt ante, o&longs;tenderemus, punctum L, <lb/>in triangulo EDF, &longs;imiliter po&longs;itum e&longs;se puncto H; in&shy;<lb/>uenta igitur &longs;unt duo puncta in triangulo DEF, &longs;imili&shy;<lb/>ter po&longs;ita ac punctum H, in triangulo BAC. <!-- KEEP S--></s>

<s>Quod pro&shy;<lb/>po&longs;itum erat. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO XX.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis trapezij habentis duo latera parallela <lb/>centrum grauitatis e&longs;t in illa recta, qu&aelig; pr&aelig;di&shy;<lb/>ctorum bipartitorum laterum &longs;ectiones iungit. <lb/></s>

<s>atque in eo puncto, in quo tertia pars eius media <lb/>&longs;ic diuiditur, vt &longs;egmentum propinquius mino&shy;<lb/>ri parallelarum ad reliquum eam proportionem <lb/>habeat, quam maior parallelarum ad minorem. <lb/></s>

<s>Talis autem rect&aelig; line&aelig; &longs;ic diui&longs;&aelig;, &longs;egmentum <lb/>minorem parallelarum attingens e&longs;t ad reliquum, <lb/>vt dupla maioris parallelarum vna cum minori, <lb/>ad duplam minoris vna cum maiori. </s></p><p type="main">

<s>Sit trapezium ABCD, cuius du&aelig; AD, BC, &longs;int pa&shy;<lb/>rallel&aelig;: &longs;itque AD, maior. </s>

<s>Secti&longs;que AD, BC, bifa&shy;<lb/>riam in punctis F, E, <lb/>iunctaque EF, &amp; &longs;e&shy;<lb/>cta in tres partes &aelig;&shy;<lb/>quales in punctis K, <lb/>H, fiat vt AD, ad <lb/>BC, ita HG, ad GK. <lb/><!-- KEEP S--></s>

<s>Dico G, e&longs;se centrum <lb/>grauitatis trapezij A <lb/>BCD: &amp; vt e&longs;t du&shy;<lb/>pla ip&longs;ius AD, vna <lb/>cum BC, ad duplam <lb/>ip&longs;ius BC, vna cum <lb/>AD, ita e&longs;se EG, ad <lb/><figure id="id.043.01.050.1.jpg" xlink:href="043/01/050/1.jpg"/><lb/>GF. <!-- KEEP S--></s>

<s>Ducta enim per punctum H, ip&longs;is AD, BC, pa-<pb/>rallela NO, ab&longs;cindantur EL, FM, ip&longs;i GK &aelig;quales, &amp; <lb/>iungantur ANE, EOD. </s>

<s>Quoniam igitur NO ip&longs;i AD, <lb/>parallela &longs;ecat omnes ip&longs;is AD, EC, interceptas in ea&longs;&shy;<lb/>dem rationes, &amp; e&longs;t EH, pars tertia ip&longs;ius EF, erit &amp; EN <lb/>ip&longs;ius EA, &amp; EO, ip&longs;ius ED, pars tertia. </s>

<s>E&longs;t autem NO, <lb/>parallela ba&longs;ibus BE, EC, duorum triangulorum ABE, <lb/>ECD; in ip&longs;a igitur NO, erunt centra grauitatis duo&shy;<lb/>rum triangulorum ABE, ECD: ergo &amp; compo&longs;iti ex <lb/>vtroque in linea NO, erit centrum grauitatis. </s>

<s>Quoniam <lb/>igitur K, centrum grauitatis trianguli AED, e&longs;t in EF, &amp; <lb/>totius trapezij ABCD, centrum grauitatis in eadem linea <lb/>EF; erit &amp; reliqu&aelig; partis, duorum &longs;cilicet triangulorum <lb/>ABE, ECD, &longs;imul in linea EF, centrum grauitatis: &longs;ed &amp; <lb/>in linea NO; in puncto igitur H. <!-- KEEP S--></s>

<s>Rur&longs;us quoniam triangula <lb/>AED, ABE, ECD, &longs;unt inter ea&longs;dem parallelas, erit <lb/>vt AD, ad BC, ita triangulum AED, ad duo triangu&shy;<lb/>la ABE, ECD, &longs;imul: &longs;ed vt AD, ad BC, ita e&longs;t HG, <lb/>ad GK; vt igitur triangulum AED, ad duo triangula <lb/>ABE, ECD, &longs;imul, ita erit HG, ad GK. &longs;ed K, e&longs;t <lb/>centrum grauitatis trianguli AED: &amp; H, duorum trian <lb/>gulorum ABE, ECD, &longs;imul; totius igitur trapezij AB <lb/>CD, centrum grauitatis erit G. <!-- KEEP S--></s>

<s>Rurius quoniam EL, <lb/>e&longs;t &aelig;qualis GK, &aelig;qualium EH, HK; erit reliqua LH, <lb/>&aelig;qualis reliqu&aelig; GH; tota igitur EG; erit bis GH, vna <lb/>cum GK: eadem ratione quoniam FM, e&longs;t &aelig;qualis GK, <lb/>&amp; MK, &aelig;qualis GH, erit FG, bis GK, vna cum GH: <lb/>vt igitur HG, bis vna cum GK, ad GK, bis vna cum <lb/>GH, ita erit EG, ad GF. <!-- KEEP S--></s>

<s>Sed vt HG, bis vna cum <lb/>GK, ad GK bis vna cum GH, ita e&longs;t AD, bis vna cum <lb/>BC, ad BC, bis vna cum AB, propterea quod e&longs;t vt <lb/>AD, ad BC, ita HG, ad GK; vt igitur e&longs;t AD, bis vna <lb/>cum BC, ad BC, bis vna cum AD, ita erit EG, ad GF. <lb/><!-- KEEP S--></s>

<s>Manife&longs;tum e&longs;t igitur propo&longs;itum. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO XXI.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis polygoni &aelig;quilateri, &amp; &aelig;quianguli <lb/>idem e&longs;t centrum grauitatis, &amp; figur&aelig;. </s></p><p type="main">

<s>Sit polygonum &aelig;quilaterum, &amp; &aelig;quiangulum ABC <lb/>DEFG, cuius &longs;it primo laterum numerus impar, centrum <lb/>autem &longs;it L. <!-- KEEP S--></s>

<s>Dico punctum L, e&longs;se centrum grauitatis <lb/>polygoni ABCDEFG; &longs;ectis enim duobus lateribus <lb/>DE, FG, bifariam in punctis K, H, ducantur ab angulis <lb/>oppo&longs;itis rect&aelig; AH, CK. &amp; rect&aelig; BMG, CNF, CM, <lb/>MF, iungantur. </s>

<s>Quoniam igitur ex decima tertia quar <lb/>ti Elem. 

quemadmodum in pentagono, ita in omni pr&aelig;&shy;<lb/>dicto polygono imparium multitudine laterum plane col&shy;<lb/>ligitur centrum po&shy;<lb/>lygoni e&longs;se in qua&shy;<lb/>libet recta, qu&aelig; ab <lb/>angulo ad medium <lb/>lateris oppo&longs;iti du&shy;<lb/>citur, quoniam ab <lb/>omnibus angulis &longs;ic <lb/>duct&aelig; &longs;ecant &longs;e &longs;e <lb/>in eadem proportio&shy;<lb/>ne &aelig;qualitatis, ita <lb/>vt eadem &longs;it propor<lb/>tio &longs;egmentorum, <lb/>qu&aelig; ad angulos, ad <lb/>ea, qu&aelig; ad latera <lb/><figure id="id.043.01.052.1.jpg" xlink:href="043/01/052/1.jpg"/><lb/>illis angulis oppo&longs;ita; rect&aelig; AH, CK, &longs;ecabunt &longs;e &longs;e in <lb/>puncto L. <!-- KEEP S--></s>

<s>Rurfus quoniam ex eadem Euclidis angulus <lb/>BAL, &aelig;qualis e&longs;t angulo GAL, &longs;ed AB, e&longs;t &aelig;qualis <lb/>AG, &amp; AM, communis, erit ba&longs;is BM, &aelig;qualis ba&longs;i <pb/>MG, &amp; angulus ABM, angulo AGM, &longs;ed totus ABC, <lb/>toti AGF, e&longs;t &aelig;qualis; reliquus igitur angulus CBG, <lb/>reliquo BGF, &aelig;qualis erit: &longs;ed circa hos &aelig;quales an&shy;<lb/>gulos recta BM, o&longs;ten&longs;a e&longs;t &aelig;qualis rect&aelig; MG, &amp; CB, <lb/>e&longs;t &aelig;qualis GF; ba&longs;is igitur CM, ba&longs;i GF, &amp; angulus <lb/>CMB, angulo FMG, &aelig;qualis erit; &longs;ed totus BMN, <lb/>&aelig;qualis e&longs;t toti GMN; quia vterque rectus; reliquus <lb/>igitur CMN, reliquo NMF, &aelig;qualis erit, quos circa <lb/>recta CM, e&longs;t &aelig;qualis MF, &amp; MN, communis; ba&longs;is <lb/>igitur CN, ba&longs;i NF, &amp; anguli, qui ad N, &aelig;quales erunt, <lb/>atque ideo recti: &longs;ed &amp; qui ad M, &longs;unt recti, &amp; BM, e&longs;t <lb/>&aelig;qualis GM; parallel&aelig; igitur &longs;unt BG, CF, &amp; trape&shy;<lb/>zij CBGF, centrum grauitatis e&longs;t in linea MN: &longs;ed &amp; <lb/>trianguli ABG, centrum grauitatis e&longs;t in linea AM; to&shy;<lb/>tius igitur figur&aelig; ABCFG, centrum grauitatis e&longs;t in li&shy;<lb/>nea AN; hoc e&longs;t in linea AH. <!-- KEEP S--></s>

<s>Rur&longs;us quoniam omnis <lb/>quadrilateri quatuor anguli &longs;unt &aelig;quales quatuor rectis: <lb/>&amp; tres anguli ABM, BMN, MNC, &longs;unt &aelig;quales tri&shy;<lb/>bus angulis FGM, GMN, MNF, reliquus angulus <lb/>BCF, reliquo CFG, &aelig;qualis erit: &longs;ed totus angulus <lb/>BCD, e&longs;t &aelig;qualis toti angulo GFE; reliquus ergo <lb/>DCF, reliquo CFE, &aelig;qualis erit: &longs;ed linea CN, e&longs;t <lb/>&aelig;qualis NF, &amp; anguli, qui ad N, &longs;unt recti; &longs;imiliter <lb/>ergo vt antea, centrum grauitatis trapezij CDEF, erit <lb/>in linea AH: &longs;ed &amp; totius figur&aelig; ABCFG, e&longs;t in li&shy;<lb/>nea AH; totius igitur polygoni ABCDEFG, in li&shy;<lb/>nea AH, e&longs;t centrum grauitatis, quod idem &longs;imiliter in <lb/>linea CK, e&longs;se oftenderemus; in communi igitur &longs;ectione <lb/>puncto L, e&longs;t centrum grauitatis polygoni ABCDEFG. <lb/></s>

<s>Similiter quotcumque plurium laterum numero impa&shy;<lb/>rium e&longs;set polygonum &aelig;quilaterum, &amp; &aelig;quiangulum, <lb/>&longs;emper deueniendo ab vno triangulo ad quotcumque eius <lb/>trapezia; propo&longs;itum concluderemus. </s></p><pb/><p type="main">

<s>Sed e&longs;to polygonum &aelig;quilaterum, &amp; &aelig;quiangulum, <lb/>ABCDEF, cuius laterum numerus &longs;it par, &amp; centrum <lb/>e&longs;to G. <!-- KEEP S--></s>

<s>Dico idem G, e&longs;se centrum grauitatis polygoni <lb/>ABCDEF. <!-- KEEP S--></s>

<s>Iungantur enim angulorum oppo&longs;itorum <lb/>puncta rectis lineis AD, BE, CF. <!-- KEEP S--></s>

<s>Ex quarto igitur <lb/>Elem. 

&longs;ecabunt &longs;e&longs;e h&aelig; rect&aelig; omnes bifariam in vno pun&shy;<lb/>cto, quod talis figur&aelig; centrum definiuimus: &longs;ed G poni&shy;<lb/>tur centrum; in puncto igitur G. <!-- KEEP S--></s>

<s>Quoniam igitur duo&shy;<lb/>rum triangulorum CBG, GFE, anguli ad verticem <lb/>BGC, FGE, &longs;unt &aelig;quales; &amp; vterlibet angulorum CBG, <lb/>GCB, &aelig;qualis e&longs;t vtrilibet ip&longs;orum EFG, GEF; ex <lb/>quarto Elem. 

&amp; circa &aelig;quales angulos latera proportio&shy;<lb/>nalia horum triangu <lb/>lorum &longs;unt &aelig;qualia; <lb/>&longs;imilia, &amp; &aelig;qualia <lb/>erunt triangula BC <lb/>G, GFE: po&longs;itis <lb/>igitur centris graui&shy;<lb/>tatis K, H, duorum <lb/>triangulorum EFG, <lb/>GBC, iunctifque <lb/>KG, GH, erit v&shy;<lb/>terlibet angulorum <lb/>BGH, HGC, &aelig;&shy;<lb/>qualis vtrilibet an&shy;<lb/><figure id="id.043.01.054.1.jpg" xlink:href="043/01/054/1.jpg"/><lb/>gulorum CGK, KGE, propter &longs;imilitudinem po&longs;itio&shy;<lb/>nis centrorum K, H, in i&longs;o&longs;celijs triangulis CBG, <lb/>GFE: (nam GH, &longs;i produceretur latus BC, bifariam <lb/>&longs;ecaret: &longs;imiliter GK, latus EF) &longs;ed CG, e&longs;t in directum <lb/>po&longs;ita ip&longs;i GF; igitur &amp; GH ip&longs;i GK: &amp; &longs;unt &aelig;quales, <lb/>vtpote lateribus triangulorum BCG, GFE, &aelig;qualibus <lb/>homolog&aelig;; cum igitur eorundem triangulorum centra <lb/>grauitatis &longs;int K, H; centrum grauitatis duorum triangu&shy;<lb/>lorum CBG, GFE, &longs;imul, erit punctum G. <!-- KEEP S--></s>

<s>Eadem <pb/>ratione, tam duorum triangulorum ABG, DGE, qu&agrave;m <lb/>duorum AFG, CDG, &longs;imul, centrum grauitatis erit G; <lb/>totius igitur polygoni ABCDEF; centrum grauitatis <lb/>erit idem G. <!-- KEEP S--></s>

<s>Manife&longs;tum e&longs;t igitur propo&longs;itum. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis figur&aelig; circa diametrum in alteram par <lb/>tem deficientis, in diametro e&longs;t centrum graui&shy;<lb/>tatis. </s></p><p type="main">

<s>Sit figura ABC, circa diametrum BD, in alteram par <lb/>tem deficiens ver&longs;us B. </s>

<s>Dico centrum grauitatis figur&aelig; <lb/>ABC, e&longs;se in linea BD. &longs;it enim punctum E, generali&shy;<lb/>ter extra lineam BD. <!-- KEEP S--></s>

<s>Et per puncta E, C, ducantur ip&longs;i <lb/>BD, parallel&aelig; EF, <lb/>CG, &amp; vt e&longs;t CD, <lb/>ad DF, ita ponatur <lb/>figura ABC, ad ali&shy;<lb/>quod &longs;pacium M: &amp; <lb/>figur&aelig; ABC, in&longs;cri&shy;<lb/>batur figura ex paral&shy;<lb/>lelogrammis &aelig;qua&shy;<lb/>lium altitudinum de&shy;<lb/>ficiens &agrave; figura ABC, <lb/>minori defectu, quam <lb/>&longs;it &longs;pacium M, quan&shy;<lb/>tumcumque illud &longs;it: <lb/>minor igitur propor&shy;<lb/><figure id="id.043.01.055.1.jpg" xlink:href="043/01/055/1.jpg"/><lb/>tio erit figur&aelig; ABC, ad &longs;pacium M, hoc e&longs;t minor pro&shy;<lb/>portio CD, ad DF, qu&agrave;m figur&aelig; ABC, ad &longs;ui reliquum, <lb/>dempta figura in&longs;cripta. </s>

<s>Quoniam autem diameter BD, <pb/>bifariam &longs;ecat omnia latera parallelogrammorum in&longs;cri&shy;<lb/>ptorum ba&longs;i AC, parallela; erit in diametro BD, eorum <lb/>omnium parallelogrammorum centra grauitatis, atque <lb/>ideo totius figur&aelig; in&longs;cript&aelig; centrum grauitatis, quod &longs;it <lb/>H: &amp; HEK, ducatur. </s>

<s>Quoniam igitur EF, parallela <lb/>e&longs;t vtrique DH, CK; erit vt CD, ad DF, ita KH, ad <lb/>HE, &longs;ed minor e&longs;t proportio CD, ad DF, qu&agrave;m figu&shy;<lb/>r&aelig; ABC, ad re&longs;i&shy;<lb/>duum, dempta figu&shy;<lb/>ra in&longs;cripta; ergo &amp; <lb/>KH, ad HE, minor <lb/>erit proportio, qu&agrave;m <lb/>figur&aelig; ABC, ad pr&aelig;&shy;<lb/>dictum re&longs;iduum: ha&shy;<lb/>beat LKH, eandem <lb/><expan abbr="proportion&etilde;">proportionem</expan> ad EH, <lb/>qu&agrave;m figura ABC, <lb/>ad pr&aelig;dictum re&longs;i&shy;<lb/>duum. </s>

<s>Quoniam <lb/>igitur punctum K, <lb/>cadit extra figuram <lb/><figure id="id.043.01.056.1.jpg" xlink:href="043/01/056/1.jpg"/><lb/>ABC; multo magis punctum L; non igitur punctum L, <lb/>erit pr&aelig;dicti re&longs;idui centrum grauitatis. </s>

<s>Sed punctum <lb/>H, e&longs;t in&longs;cript&aelig; figur&aelig; centrum grauitatis: &amp; vt figura <lb/>in&longs;cripta ad pr&aelig;dictum re&longs;iduum, diuidendo, ita e&longs;t LE, <lb/>ad EH; non igitur E, e&longs;t centrum grauitatis figur&aelig; ABC: <lb/>&longs;ed ponitur E, generaliter punctum extra lineam BD; <lb/>Nullum igitur punctum extra lineam BD, e&longs;t centrum <lb/>grauitatis figur&aelig; ABC; in linea igitur BD, erit figu&shy;<lb/>r&aelig; ABC, centrum grauitatis. </s>

<s>Quod demon&longs;trandum <lb/>erat. </s></p><pb/><p type="head">

<s><emph type="italics"/>COROLLARIVM.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Ex huius theorematis demon&longs;tratione con&longs;tat, <lb/>omnis figur&aelig; plan&aelig;, &longs;iue &longs;olid&aelig;, cuius termini <lb/>omnis cauitas &longs;it interior, atque ideo intra ter&shy;<lb/>minum centrum grauitatis; &amp; cuius pars aliqua <lb/>e&longs;se po&longs;sit, qu&aelig; &agrave; tota figura deficiens minori <lb/>defectu quacumque magnitudine propo&longs;ita habe&shy;<lb/>at centrum grauitatis in aliqua certa linea recta <lb/>intra terminum figur&aelig; con&longs;tituta, e&longs;&longs;e in ea recta <lb/>linea totius figur&aelig; centrum grauitatis. </s>

<s>Ac proin&shy;<lb/>de, cum per vndecimam huius, omni &longs;olido circa <lb/>axim in alteram partem deficienti, &amp; ba&longs;im ha&shy;<lb/>benti circulum, vel ellyp&longs;im figura in&longs;cribi po&longs;&longs;it <lb/>ex cylindris, vel cylindri portionibus, &agrave; pr&aelig;dicto <lb/>&longs;olido deficiens minori &longs;pacio quacumque ma&shy;<lb/>gnitudine propo&longs;ita: talis autem figur&aelig; in&longs;cript&aelig;, <lb/>quemadmodum &amp; circum&longs;cript&aelig; centrum gra&shy;<lb/>uitatis &longs;it in axe, vt ex &longs;equentibus patebit, &amp; <lb/>nunc cogitanti facil&egrave; patere pote&longs;t; manife&longs;tum <lb/>e&longs;t omnis &longs;olidi circa axim in alteram partem de&shy;<lb/>ficientis centrum grauitatis e&longs;&longs;e in axe. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO XXIII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Circuli, &amp; Ellyp&longs;is idem e&longs;t centrum grauita&shy;<lb/>tis, &amp; figur&aelig;. </s></p><p type="main">

<s>Sit circulus, vel ellyp&longs;is ABCD, cuius centrum E. <lb/><!-- KEEP S--></s>

<s>Dico centrum grauitatis figur&aelig; ABCD, e&longs;se punctum E. <lb/><!-- KEEP S--></s>

<s>Ducantur enim du&aelig; diametri ad rectos inter &longs;e angulos <lb/>AC, BD; in ellyp&longs;i autem &longs;int diametri coniugat&aelig;. <lb/></s>

<s>Quoniam igitur omnes rect&aelig; line&aelig;, qu&aelig; in &longs;emicirculo, <lb/>vel dimidia ellyp&longs;i diametro ducantur parallel&aelig; bifariam <lb/>&longs;ecantur &agrave; &longs;emidiametro, &amp; quo &agrave; ba&longs;i remotiores, eo &longs;unt <lb/><figure id="id.043.01.058.1.jpg" xlink:href="043/01/058/1.jpg"/><lb/>minores; erit centrum grauitatis &longs;emicirculi, &longs;iue dimidi&aelig; <lb/>ellyp&longs;is ABC, in linea BE; &longs;icut &amp; &longs;emicirculi, &longs;iue di&shy;<lb/>midi&aelig; ellyp&longs;is ADC, centrum grauitatis in linea DE. <lb/>e&longs;t autem BED, vna recta linea: in diametro igitur BD, <lb/>erit centrum grauitatis circuli, &longs;iue ellyp&longs;is ABCD. <lb/><!-- KEEP S--></s>

<s>Eadem ratione o&longs;tenderemus idem centrum grauitatis e&longs;se <lb/>in altera diametro AC: in communi igitur vtriu&longs;que &longs;e&shy;<lb/>ctione puncto E. <!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO XXIV.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si duarum pyramidum triangul as ba&longs;es haben&shy;<lb/>tium &aelig;qualium, &amp; &longs;imilium inter &longs;e, tria latera <lb/>tribus lateribus homologis fuerint in directum <lb/>con&longs;tituta, in vertice communi erit vtriu&longs;que &longs;i&shy;<lb/>mul centrum grauitatis. </s></p><p type="main">

<s>Sint du&aelig; pyramides &longs;imiles, &amp; &aelig;quales, quarum ver&shy;<lb/>tex communis G, ba&longs;es autem triangula ABC, DEF. <lb/><!-- KEEP S--></s>

<s>Et &longs;int latera homologa pyramidum in directum inter &longs;e <lb/>con&longs;tituta: vt AG, GF: &amp; BG, GD, &amp; CG, GE. <lb/><!-- KEEP S--></s>

<s>Dico compo&longs;iti ex duabus pyramidibus ABCG, GDEF, <lb/>ita con&longs;titut is centrum gra<lb/>uitatis e&longs;se in puncto G. <lb/><!-- KEEP S--></s>

<s>E&longs;to enim H, centrum gra <lb/>uitatis pyramidis ABCG, <lb/>&amp; ducta HGK, ponatur <lb/>G<emph type="italics"/>K<emph.end type="italics"/>, &aelig;qualis GH, &amp; iun&shy;<lb/>gantur EK, KD, BH, <lb/>CH. </s>

<s>Quoniam igitur e&longs;t <lb/>vt HG, ad GK, ita CG, <lb/>ad GE, &amp; proportio e&longs;t <lb/>&aelig;qualitatis: &amp; angulus <lb/>HGC, &aelig;qualis angulo EG <lb/><emph type="italics"/>K<emph.end type="italics"/>, erit triangulum CGH, <lb/><figure id="id.043.01.059.1.jpg" xlink:href="043/01/059/1.jpg"/><lb/>&longs;imile, &amp; &aelig;quale triangulo EGK. </s>

<s>Similiter triangulum <lb/>BGH, trian gulo DGK; &amp; triangulum BGC, triangu&shy;<lb/>lo DGE: quare &amp; triangulum BCH, triangulo DEK. <lb/>pyramis igitur BCGH, &longs;imilis, &amp; &aelig;qualis e&longs;t pyramidi <lb/>EDGK. </s>

<s>Congruentibus igitur inter &longs;e duobus triangu&shy;<pb/>lis &aelig;qualibus, &amp; &longs;imilibus BGC, DGE, &amp; pyramis <lb/>BCGH, pyramidi GDEK congruet, &amp; puncto K, pun&shy;<lb/>ctum H: &amp; eadem ratione <lb/>pyramis ABCG, pyra&shy;<lb/>midi DEFG. congruente <lb/>igitur pyramide ABCG, <lb/>pyramidi DEFG, &amp; pun&shy;<lb/>ctum K, congruet puncto <lb/>H. &longs;ed H, e&longs;t centrum gra<lb/>uitatis pyramidis ABCG: <lb/>igitur K, erit centrum gra <lb/>uitatis pyramidis DEFG: <lb/>&longs;ed e&longs;t GK, &aelig;qualis ip&shy;<lb/>&longs;i GH; vtriufque igitur <lb/>pyramidis ABCG, DE&shy;<lb/>FG, &longs;imul centrum grauitatis erit K; Quod demon&longs;tran&shy;<lb/>dum erat. </s></p><figure id="id.043.01.060.1.jpg" xlink:href="043/01/060/1.jpg"/><p type="head">

<s><emph type="italics"/>PROPOSITIO XXV.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis parallelepipedi centrum grauitatis e&longs;t in <lb/>medio axis. </s></p><p type="main">

<s>Sit parallelepipedum ABCDEFGH, cuius axis <lb/>LM, isque &longs;ectus bifariam in puncto K. <!-- KEEP S--></s>

<s>Dico K e&longs;se <lb/>centrum grauitatis parallelepipedi ABCDEFGH. <lb/>iungantur enim diametri AG, BH, CE, DF, qu&aelig; <lb/>omnes nece&longs;sario tran&longs;ibunt per punctum K, &amp; in eo <lb/>puncto bifariam diuidentur. </s>

<s>Iunctis igitur BD, FH: <lb/>quoniam triangulum EFK, &longs;imile e&longs;t, &amp; &aelig;quale trian&shy;<lb/>gulo CDK, propter latera circa &aelig;quales angulos ad <pb/>verticem &aelig;qualia alterum alteri: eademque ratione, &amp; <lb/>triangulum E<emph type="italics"/>K<emph.end type="italics"/>H, triangulo BCK: &amp; triangulum FKH, <lb/>triangulo BDK; erit pyramis KEFH, &longs;imilis, &amp; &aelig;qua&shy;<lb/>lis pyramidi KBCD: habent autem tria latera tribus <lb/>lateribus homologis, ide&longs;t &aelig;&shy;<lb/>qualibus, in directum, prout <lb/>inter &longs;e re&longs;pondent, con&longs;tituta; <lb/>duarum igitur pyramidum KE <lb/>FH, KBCD, &longs;imul centrum <lb/>grauitatis erit K: non aliter <lb/>duarum pyramidum <emph type="italics"/>K<emph.end type="italics"/>GFH, <lb/>KBDA, &longs;imul centrum gra&shy;<lb/>uitatis erit K; totius igitur com <lb/>po&longs;iti ex quatuor pyramidibus; <lb/>ide&longs;t duabus oppo&longs;itis ABC&shy;<lb/>DK, EFGHK, centrum gra<lb/>uitatis erit idem K. <!-- KEEP S--></s>

<s>Eadem <lb/>ratione tam duarum pyrami&shy;<lb/><figure id="id.043.01.061.1.jpg" xlink:href="043/01/061/1.jpg"/><lb/>dum AEHDK, BCGFK, &longs;imul, qu&agrave;m duarum AB&shy;<lb/>FEK, CDHGK, &longs;imul centrum grauitatis erit K. <!-- KEEP S--></s>

<s>To&shy;<lb/>tius igitur parallelepipedi ABCDEFG<emph type="italics"/>K<emph.end type="italics"/>, centrum <lb/>grauitatis erit K. <!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXVI.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si parallelepipedum in duo parallelepipeda <lb/>&longs;ecetur, &longs;egmenta axis &agrave; centris grauitatis totius <lb/>parallelepipedi, &amp; partium terminata ex contra&shy;<lb/>rio parallelepipedi partibus re&longs;pondent. </s></p><pb/><p type="main">

<s>Si parallelepipedum AB, cuius axis CD, &longs;ectum in <lb/>duo parallelepipeda AE, EN, quare &amp; axis CD, in <lb/>axes CL, LD, parallelepipedorum AE, EN. </s>

<s>Et &longs;int <lb/>centra grauitatis; F, parallelepipedi EN, &amp; G, paral&shy;<lb/>lelepipedi AE, &amp; H, parallelepipedi AB, in medio cu&shy;<lb/>iu&longs;que axis ex antecedenti. </s>

<s>Dico e&longs;se FH, ad HG, <lb/>vt parallelepipedum AE, ad EN, parallelepipedum. <lb/></s>

<s>Iungantur enim diametri ba&longs;ium oppo&longs;itarum, qu&aelig; per <lb/>puncta axium D, L, G, tran&longs;ibunt, ADM, KLE, <lb/>NCB; iamque parallelogramma <lb/>erunt AB, AE, EN, DB, DE, <lb/>EC, propter eas, qu&aelig; parallelas <lb/>iungunt, &amp; &aelig;quales: quorum bi&shy;<lb/>na latera oppo&longs;ita &longs;ecta erunt bi&shy;<lb/>fariam in punctis C, L, D, per <lb/>definitionem axis: punctum igitur <lb/>F, in medio rect&aelig; CL, oppo&longs;i&shy;<lb/>torum laterum bipartitorum &longs;ectio&shy;<lb/>nes coniungentis, erit parallelo&shy;<lb/>grammi EN, centrum grauitatis. <lb/></s>

<s>Eadem ratione &amp; parallelogram&shy;<lb/><figure id="id.043.01.062.1.jpg" xlink:href="043/01/062/1.jpg"/><lb/>mi AE, centrum grauitatis erit G, &amp; H, parallelogram <lb/>mi AB. <!-- KEEP S--></s>

<s>Vt igitur parallelogrammum AE, ad paralle&shy;<lb/>logrammum EN, hoc e&longs;t, vt ba&longs;is ME, ad ba&longs;im EB; <lb/>hoc e&longs;t, vt parallelogrammum MO, ad parallelogram&shy;<lb/>mum OB: hoc e&longs;t, vt parallelepipedum AE, ad paral&shy;<lb/>lelepipedum EN: ita erit FH, ad HG. <!-- KEEP S--></s>

<s>Quod de&shy;<lb/>mon&longs;trandum erat. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSIT'IO XXVII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Solida grauia &aelig;quiponderant &agrave; longitudini&shy;<lb/>bus ex contraria parte re&longs;pondentibus. </s></p><p type="main">

<s>Sint &longs;olida grauia A, &amp; B, quorum centra grauitatis <lb/>&longs;int A, B, &longs;ecundum qu&aelig; &longs;u&longs;pen&longs;a intelligantur A, in <lb/>puncto C, &amp; B, in puncto D, cuiuslibet rect&aelig; GH, qu&aelig; <lb/>&longs;it ita diui&longs;a in puncto E, vt &longs;it DE, ad EC, vt e&longs;t A, <lb/>ad B. </s>

<s>Dico &longs;olida A, E, &aelig;quiponderare &agrave; longitudini&shy;<lb/>bus DE, EC; hoc e&longs;t vtriu&longs;que &longs;imul centrum grauita&shy;<lb/>tis e&longs;se E. <!-- KEEP S--></s>

<s>Nam &longs;i A, B, &longs;int &aelig;qualia, manife&longs;tum e&longs;t <lb/>propo&longs;itum: &longs;i au&shy;<lb/>tem in&aelig;qualia, e&longs;to <lb/>maius A: maior igi <lb/>tur erit DE, quam <lb/>EC. ab&longs;cindatur <lb/>DF, &aelig;qualis EC: <lb/>erit igitur DE, &aelig;&shy;<lb/>qualis GF: &amp; CD, <lb/>vtrin que producta, <lb/>ponatur DH, &aelig;&shy;<lb/>qualis DF: &amp; CG, <lb/>ip&longs;i CF. &amp; circa <lb/>axim, &amp; <expan abbr="altitudin&etilde;">altitudinem</expan> <lb/>GH, e&longs;to paralle&shy;<lb/>lepipedum KL, &aelig;&shy;<lb/>quale duobus &longs;o&shy;<lb/><figure id="id.043.01.063.1.jpg" xlink:href="043/01/063/1.jpg"/><lb/>lidis A, B, &longs;imul &amp; parallelepipedum KL, &longs;ecetur plano <lb/>per punctum F, oppo&longs;itis planis parallelo, in duo paral&shy;<lb/>lelepipeda KN, ML. <!-- KEEP S--></s>

<s>Quoniam igitur e&longs;t vt GF, ad <lb/>FH, ita parallelepipedum KN, ad parallelepipedum <pb/>ML, &longs;ed vt GF, ad FH, ita e&longs;t CF, ad FD, hoc e&longs;t DE, ad <lb/>EC, hoc e&longs;t &longs;olidum A, ad &longs;olidum B; erit vt parallelepipe&shy;<lb/>dum KN, ad parallelepipedum ML, ita &longs;olidum A, ad &longs;oli&shy;<lb/>dum B. componendo igitur, &amp; permutando, vt parallelepi&shy;<lb/>pedum KL, ad duo &longs;olida A, B, &longs;imul, ita parallelepi&shy;<lb/>pedum ML, ad &longs;olidum B: &amp; reliquum ad reliquum: &longs;ed <lb/>parallelepipedum KL, &aelig;quale e&longs;t duobus &longs;olidis A, B, &longs;i&shy;<lb/>mul: parallelepipedum igitur KN, &longs;olido A, &amp; paralle&shy;<lb/>lepipedum ML, &longs;olido B, &aelig;quale erit. </s>

<s>Rur&longs;us, quo&shy;<lb/>niam e&longs;t vt GF, ad <lb/>ad FH, ita CF, ad <lb/>FD; hoc e&longs;t DE, <lb/>ad EC: &longs;ed vt GF, <lb/>ad FH, ita e&longs;t <expan abbr="pa-rallelepiped&utilde;">pa&shy;<lb/>rallelepipedum</expan> KN, <lb/>ad <expan abbr="parallelepiped&utilde;">parallelepipedum</expan> <lb/>ML; erit vt DE, <lb/>ad EC, ita paralle <lb/>lepipedum KN, ad <lb/>parallelepipedum <lb/>ML; &longs;ed C e&longs;t pa&shy;<lb/>rallelepipedi KN, <lb/>&amp; D, parallelepipe <lb/>di ML, centrum <lb/>grauitatis; totius igi <lb/><figure id="id.043.01.064.1.jpg" xlink:href="043/01/064/1.jpg"/><lb/>tur parallelepipedi KL, centrum grauitatis erit E. <!-- KEEP S--></s>

<s>Igi&shy;<lb/>tur &longs;olido A, po&longs;ito ad punctum G, &longs;ecundum centrum <lb/>grauitatis A, &amp; &longs;olidum B, ad punctum D, &longs;ecundum <lb/>centrum grauitatis B, quorum A, e&longs;t &aelig;quale parallele&shy;<lb/>pipedo KN, &amp; B, parallelepipedo ML; ab ij&longs;dem lon&shy;<lb/>gitudinibus DE, EC, &aelig;quiponderabunt; eritque com&shy;<lb/>po&longs;iti ex vtroque &longs;olido A, B, centrum grauitatis E. <!-- KEEP S--></s>

<s>Quod <lb/>demon&longs;trandum erat. </s></p><p type="main">

<s>Quod &longs;i quis &agrave; me qu&aelig;rat, cur non hic vtar quinta illa <pb/>generali primi Archimedis de planis &aelig;quiponderantibus, <lb/>&longs;ed illud idem propo&longs;itum vna demon&longs;tratione in planis, <lb/>altera pr&aelig;&longs;enti in &longs;olidis demon&longs;trauerim. </s>

<s>Re&longs;pondeo: <lb/>quia Propo&longs;itio quarta primi Archimedis, ex qua quinta <lb/>nece&longs;&longs;ario pendet, habet, &longs;i quis attendat, aliquas difficul&shy;<lb/>tates phy&longs;icas, qu&aelig; mathematicis rationibus non facile <lb/>di&longs;&longs;oluantur: qu&aelig; cau&longs;a igitur illum adduxit ad &longs;imile quid <lb/><expan abbr="demon&longs;trand&utilde;">demon&longs;trandum</expan> demon&longs;tratione ad illas duas parabolas ap. <lb/></s>

<s>plicata in &longs;ecundo &longs;uo libro planorum &aelig;quiponderantium, <lb/>qua&longs;i qui quart&aelig;, ac quint&aelig; illi generali non &longs;atis acquie&shy;<lb/>&longs;ceret; eadem me compulit ad hoc propo&longs;itum duabus de&shy;<lb/>mon&longs;trationibus generalibus, altera de planis, altera de &longs;o&shy;<lb/>lidis grauibus &longs;ecurius demon&longs;trandum. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXVIII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Quarumlibet trium magnitudinum eiu&longs;dem <lb/>generis centra grauitatis cum centro magnitudi&shy;<lb/>nis ex ijs compo&longs;it&aelig; &longs;unt in eodem plano. </s></p><p type="main">

<s>Sint qu&aelig;libet tres ma&shy;<lb/>gnitudines eiu&longs;dem gene <lb/>ris A, B, C: quarum cen&shy;<lb/>tra grauitatis A, B, C. <!-- KEEP S--></s>

<s>Ex <lb/>ijs autem compo&longs;it&aelig; &longs;it <lb/>centrum grauitatis E. <!-- KEEP S--></s>

<s>Di <lb/>co quatuor puncta A, B, <lb/>C, E, e&longs;&longs;e in eodem pla&shy;<lb/>no. </s>

<s>Iungantur enim re&shy;<lb/>ct&aelig; AB, BC, CA: &amp; vt <lb/>e&longs;t A, ad C, ita &longs;it CD, <lb/>ad DA, &amp; BD, iungatur: <lb/><expan abbr="punct&utilde;">punctum</expan> igitur D, erit cen&shy;<lb/><figure id="id.043.01.065.1.jpg" xlink:href="043/01/065/1.jpg"/><pb/>trum grauitatis duarum magnitudinum A, C, &longs;imul. <lb/></s>

<s>Rur&longs;us quoniam recta BD, coniungit duo centra gra&shy;<lb/>uitatis duarum magnitu&shy;<lb/>dinum B &longs;cilicet, &amp; AC, <lb/>erit compo&longs;it&aelig; ACB, in <lb/>recta BD, centrum graui <lb/>tatis: e&longs;t autem illud E. <lb/><!-- KEEP S--></s>

<s>Quoniam igitur in quo <lb/>plano e&longs;t recta BD, in <lb/>eodem &longs;unt duo puncta <lb/>B, E, in quo autem pla&shy;<lb/>no e&longs;t recta BD, in eo&shy;<lb/>dem e&longs;t recta AC, &amp; <lb/>puncta A, C; in quo igi&shy;<lb/>tur plano &longs;unt puncta A, <lb/>C, in eodem erunt pun&shy;<lb/>cta B, E; quatuor igitur puncta A, B, C, E, erunt in eodem <lb/>plano; Quod demon&longs;tr andum erat. </s></p><figure id="id.043.01.066.1.jpg" xlink:href="043/01/066/1.jpg"/><p type="head">

<s><emph type="italics"/>PROPOSITIO XXIX.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si &agrave; cuiuslibet trianguli centro, &amp; tribus an&shy;<lb/>gulis quatuor rect&aelig; inter &longs;e parallel&aelig; plano trian <lb/>guli in&longs;i&longs;tant: tres autem magnitudines &aelig;quales <lb/>habeant centra grauitatis in ijs tribus, qu&aelig; ad <lb/>angulos; trium magnitudinum &longs;imul centrum <lb/>grauitatis erit in ea, qu&aelig; ad trianguli centrum <lb/>terminatur. </s></p><p type="main">

<s>Sit triangulum ABC, cuius centrum N, &agrave; tribus au&shy;<lb/>tem angulis A, B, C, &amp; centro N, in&longs;i&longs;tant plano trian-<pb/>guli ABC, quatuor rect&aelig; inter &longs;e parallel&aelig; AD, BE, <lb/>CF, NM, tres autem magnitudines &aelig;quales habeant cen <lb/>tra grauitatis G, H, K, in tribus AD, BE, CF. <!-- KEEP S--></s>

<s>Di&shy;<lb/>co trium magnitudinum &longs;imul, quarum centra grauitatis <lb/>G, H, K, e&longs;&longs;e in linea NM. <!-- KEEP S--></s>

<s>Iungantur enim rect&aelig; GH, <lb/>H<emph type="italics"/>K<emph.end type="italics"/>, GK, BNP; &amp; per punctum P, recta PL, ip&longs;i MN, <lb/>parallela, &amp; iungatur LH. <!-- KEEP S--></s>

<s>Quoniam igitur rect&aelig; BP, LH, <lb/>iungunt duas parallelas LP, BH; erunt quatuor rect&aelig; BH, <lb/>LP, BP, LH, in eodem plano. </s>

<s>Et <expan abbr="quoni&atilde;">quoniam</expan> planum quadran <lb/>guli PH, &longs;ecat planum trianguli ABC, &agrave; communi autem <lb/>&longs;ectione BP, &longs;urgunt <lb/>du&aelig; parallel&aelig; PL, MN; <lb/>quarum PL, e&longs;t in pla&shy;<lb/>no quadranguli PH, <lb/>erit etiam MN, in eo&shy;<lb/>dem plano quadranguli <lb/>PH: &amp; &longs;ecabit LH. &longs;e&shy;<lb/>cet in puncto O: q&ugrave;are <lb/>vt LO, ad OH, ita erit <lb/>PN, ad NB, propter <lb/>parallelas: &longs;ed PN, e&longs;t <lb/>dimidia ip&longs;ius NB; er&shy;<lb/>go &amp; LO, e&longs;t dimidia ip <lb/>&longs;ius OH. <!-- KEEP S--></s>

<s>Eadem ratio&shy;<lb/>ne, quoniam AP, &aelig;qua&shy;<lb/><figure id="id.043.01.067.1.jpg" xlink:href="043/01/067/1.jpg"/><lb/>lis e&longs;t PC, erit &amp; GL, &aelig;qualis LK. <!-- KEEP S--></s>

<s>Duarum igitur <lb/>magnitudinum G, K, &longs;imul centrum grauitatis erit L: &longs;ed <lb/>reliqu&aelig; magnitudinis, qu&aelig; ad H, e&longs;t centrum grauitatis <lb/>H; &amp; vt compo&longs;itum ex duabus magnitudinibus G, <lb/>K, ad magnitudinem H, ita ex contraria parte e&longs;t HO, <lb/>ad OL; Trium igitur magnitudinum G, H, K, &longs;imul cen&shy;<lb/>trum grauitatis erit O, &amp; in linea MN. <!-- KEEP S--></s>

<s>Quod demon&shy;<lb/>&longs;trandum erat. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO XXX.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis octaedri idem e&longs;t centrum grauitatis, <lb/>&amp; figur&aelig;. </s></p><p type="main">

<s>E&longs;to octaedrum ABCDEF, cuius centrum G. <!-- KEEP S--></s>

<s>Di&shy;<lb/>co G, e&longs;se centrum grauitatis octaedri ABCDEF. <lb/><!-- KEEP S--></s>

<s>Ductis enim axibus AC, BD, EF, communis eorum <lb/>&longs;ectio erit centrum G, in quo axes bifariam &longs;ecabuntur: <lb/>omnium autem angulorum, qui ad G, bini qui que ad <lb/>verticem &longs;unt &aelig;quales, qui &aelig;qualibus altera alteri rectis <lb/>continentur; &longs;imilia igi&shy;<lb/>tur, &amp; &aelig;qualia erunt trian <lb/>gula, nimirum EBG, <lb/>GDF, &amp; ECG, ip&longs;i <lb/>GFA, &amp; BCG, ip&longs;i <lb/>GDA: igitur &amp; BCE, <lb/>ip&longs;i ADF; pyramis igi&shy;<lb/>tur EBCG, &longs;imilis, &amp; <lb/>&aelig;qualis e&longs;t pyramidi A <lb/>DFG, quarum latera ho <lb/>mologa &longs;unt indirectum <lb/>inter &longs;e con&longs;tituta; dua&shy;<lb/>rum igitur pyramidum <lb/><figure id="id.043.01.068.1.jpg" xlink:href="043/01/068/1.jpg"/><lb/>EBCG, ADFG, &longs;imul centrum grauitatis erit G. <lb/><!-- KEEP S--></s>

<s>Eadem ratione &longs;ex reliquarum pyramidum binis quibu&longs;&shy;<lb/>que oppo&longs;itis &longs;imul &longs;umptis centrum grauitatis erit G. <lb/><!-- KEEP S--></s>

<s>Totius igitur octaedri ABCDEF, centrum grauitatis <lb/>erit G. <!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO XXXI.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis pyramidis triangulam ba&longs;im habentis <lb/>idem e&longs;t centrum grauitatis, &amp; figur&aelig;. </s></p><p type="main">

<s>Sit pyramis ABCD, cuius ba&longs;is triangulum ABC, <lb/>centrum autem E. <!-- KEEP S--></s>

<s>Dico E, e&longs;&longs;e centrum grauitatis pyra&shy;<lb/>midis ABCD. <!-- KEEP S--></s>

<s>Secta enim ABCD, pyramide in quatuor <lb/>pyramides, &longs;imiles, &amp; &aelig;quales inter &longs;e, &amp; toti pyramidi <lb/>ABCD, &amp; vnum octaedrum, &longs;int e&aelig; pyramides DKLM, <lb/>MGCH, LBGF, <lb/>AKFH. </s>

<s>Octaedrum <lb/>autem FGHKLM, <lb/>quod dimidium erit <lb/>pyramidis ABCD, &amp; <lb/>&longs;int axes pyramidum <lb/>DSN, DS, KO, LP, <lb/>MQ: &amp; ARG, iunga <lb/>tur. </s>

<s>Quoniam igitur <lb/>FH, e&longs;t parallela ip&longs;i <lb/>BC, &amp; &longs;ecta e&longs;t BC, <lb/>bifariam in puncto G, <lb/><expan abbr="tr&atilde;&longs;ibit">tran&longs;ibit</expan> recta AG, per <lb/>centra <expan abbr="triangulor&utilde;">triangulorum</expan> O, <lb/>&amp; N, ad qu&aelig; axes KO, <lb/><figure id="id.043.01.069.1.jpg" xlink:href="043/01/069/1.jpg"/><lb/>DN, terminantur; manife&longs;tum hoc e&longs;t ex &longs;uperioribus: <lb/>eritque dupla AO, ip&longs;ius OR, nec non AN, dupla ip&longs;ius <lb/>NG, componendo igitur erit vt AG, ad GN, ita AR, <lb/>ad RO, &amp; permutando, vt AG, ad AR, ita GN, ad <lb/>RO: &longs;ed AG, e&longs;t dupla ip&longs;ius AR, quoniam &amp; AB, ip&shy;<lb/>&longs;ius AF; igitur &amp; GN, erit dupla ip&longs;ius RO: &longs;ed &amp; GN, <lb/>e&longs;t dupla ip&longs;ius NR, nam N, e&longs;t centrum trianguli GFH; <lb/>&aelig;qualis e&longs;t igitur NR, ip&longs;i RO, atque hinc dupla NO, <pb/>ip&longs;ius OR; &longs;ed &amp; AO erat dupla ip&longs;ius OR; &aelig;qualis <lb/>igitur AO erit ip&longs;i ON. <!--neuer Satz-->quare vt AK, ad KD, ita erit <lb/>AO, ad ON: igitur in triangulo ADN, erit KO, ip&longs;i <lb/>DN, parallela. </s>

<s>Eadem ratione &longs;i iungerentur rect&aelig; BH, <lb/>CF o&longs;tenderemus &amp; duos reliquos axes LP, MQ, e&longs;&shy;<lb/>&longs;e axi DN parallelos: quatuor autem pr&aelig;dicti axes in&shy;<lb/>&longs;i&longs;tunt plano trianguli KLM, ita vt DN tran&longs;eat per <lb/>centrum S: reliqui autem KO, LP, MQ, terminentur <lb/>ad angulorum vertices K, L, M, trianguli KLM; igi&shy;<lb/>tur &longs;i tres &aelig;quales magnitudines habeant centra grauita&shy;<lb/>tis in axibus KO, LP, <lb/><expan abbr="Mq;">Mque</expan> compo&longs;iti ex ijs <lb/>tribus magnitudinibus <lb/>in axe DN erit <expan abbr="centr&utilde;">centrum</expan> <lb/>grauitatis. </s>

<s>Rur&longs;us <lb/>quoniam E ponitur <expan abbr="c&etilde;">cem</expan> <lb/><expan abbr="tr&utilde;">trum</expan> pyramidis ABCD, <lb/>erit idem E centrum <lb/>octaedri FGHKLM, <lb/>idque in axe DN: e&longs;t <lb/>autem idem <expan abbr="centr&utilde;">centrum</expan> gra<lb/>uitatis octaedri, &amp; figu <lb/>r&aelig;: centrum igitur E <lb/>octaedri FCHKLM <lb/>erit in axe DN. <!-- KEEP S--></s>

<s>Quod <lb/><figure id="id.043.01.070.1.jpg" xlink:href="043/01/070/1.jpg"/><lb/>&longs;i quatuor reliqu&aelig; pyramides dempto pr&aelig;dicto octaedro <lb/>&longs;imiliter diuidantur, ac pyramis ABCD diui&longs;a fuit, erunt <lb/>rur&longs;us in &longs;ingulis quatuor pr&aelig;dictarum pyramidum &longs;in&shy;<lb/>gula octaedra centrum grauitatis habentia vnumquodque <lb/>in axe &longs;u&aelig; pyramidis: qu&aelig; pyramides cum &longs;int inter &longs;e <lb/>&aelig;quales, earum dimidia octaedr a ip&longs;is in&longs;cripta inter &longs;e <lb/>erunt &aelig;qualia: &longs;unt autem eorum centra grauitatis in axi&shy;<lb/>bus ab&longs;ci&longs;sarum pyramidum, DS, KO, LP, MQ <lb/>axis autem DS: e&longs;t in axe DN; per ea igitur, qu&aelig; de-<pb/>mon&longs;trauimus trium octaedrorum, qu&aelig; &longs;unt in pyrami&shy;<lb/>dibus AFHK, FBGL, GHOM &longs;imul, centrum gra&shy;<lb/>uitatis erit in axe D<emph type="italics"/>K<emph.end type="italics"/>: &longs;ed &amp; octaedri in pyramide DK&shy;<lb/>LM, &amp; octaedri FGHKLM centra grauitatis &longs;unt <lb/>in axe DN; omnium igitur quinque octaedrorum, qu&aelig; <lb/>&longs;unt in tota pyramide ABCD &longs;imul centrum grauitatis <lb/>e&longs;t in axe DN. <!-- KEEP S--></s>

<s>Quod &longs;i rur&longs;us in &longs;ingulis quatuor pr&aelig;&shy;<lb/>dictarum pyramidum modo dicta ratione quina octaedra <lb/>de&longs;cripta intelligantur, &longs;imiliter o&longs;ten&longs;um erit quina octa&shy;<lb/>edra in &longs;ingulis quatuor ab&longs;ci&longs;&longs;arum pyramidum, velut <lb/>quatuor magnitudines, centra grauitatis habere in axibus <lb/>quatuor pr&aelig;dictarum pyramidum: &longs;unt autem h&aelig;c qua&shy;<lb/>tuor compo&longs;ita ex quinis octaedris inter &longs;e &aelig;qualia, pro&shy;<lb/>pter &aelig;qualitatem octaedrorum multitudine &aelig;qualium, <lb/>qu&aelig; &aelig;qualibus &longs;unt pyramidibus ip&longs;orum duplis ord ine <lb/>diui&longs;ionis inter &longs;e re&longs;pondentibus in&longs;cripta; igitur vt ante, <lb/>quater quinorum octaedrorum &longs;imul in axe DN erit <lb/>centrum grauitatis: &longs;ed &amp; octaedri FGHKLM centrum <lb/>grauitatis e&longs;t in axe DN; vnius igitur &amp; viginti octae&shy;<lb/>drorum in pyramide ABCD exi&longs;tentium ex hac &longs;ecun&shy;<lb/>da diui&longs;ione, tanqu&agrave;m vnius magnitudinis in axe DN erit <lb/>centrum grauitatis. </s>

<s>Ab hoc igitur numero vnius &amp; vi&shy;<lb/>ginti octaedrorum in pyramide ABCD exi&longs;tentium, &longs;i&shy;<lb/>mili diui&longs;ione illius reliquarum quatuor pyramidum primo <lb/>ab&longs;ci&longs;&longs;arum procedentes, &amp; eundem &longs;emper gyrum, quem <lb/>fecimus &agrave; quinario repetentes, poterunt e&longs;se in tota AB&shy;<lb/>CD pyramide tot, quemadmodum diximus, de&longs;cripta, <lb/>octaedra, vt eorum numerus &longs;uperet quemcumque propo&shy;<lb/>&longs;itum numerum, &amp; omnium tanqu&agrave;m vnius magnitudinis <lb/>in axe DN, &longs;it centrum grauitatis. </s>

<s>Sic autem facienti, &amp; <lb/>reliquarum pyramidum demptis pr&aelig;cedentibus octaedris, <lb/>dimidia octaedra &longs;emper auferenti, tandem relinquen&shy;<lb/>tur pyramides minores &longs;imul &longs;umpt&aelig; quantacumque <lb/>magnitudine propo&longs;ita. </s>

<s>Totius igitur pyramidis ABCD <pb/>in axe DN, erit centrum grauitatis. </s>

<s>Eadem ratione in <lb/>quolibet reliquorum trium axium, pyramidis ABCD, ip&shy;<lb/>&longs;ius centrum grauitatis e&longs;se o&longs;tenderemus; communis igi&shy;<lb/>tur &longs;ectio quatuor axium pyramidis ABCD, quod e&longs;t <lb/>ip&longs;ius centrum E, erit centrum grauitatis pyramidis AB <lb/>CD. <!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>COROLLARIVM.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Hinc manife&longs;tum e&longs;t centrum grauitatis pyra&shy;<lb/>midis triangulam ba&longs;im habentis e&longs;&longs;e in eopun&shy;<lb/>cto, in quo axis &longs;ic diuiditur, vt pars qu&aelig; ad ver&shy;<lb/>icem &longs;it reliqu&aelig; tripla. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXXII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Ominis pyramidis ba&longs;im plu&longs;quam trilate&shy;<lb/>ram habentis centrum grauitatis axim ita diui&shy;<lb/>dit, vt pars, qu&aelig; e&longs;t ad verticem &longs;it tripla re&shy;<lb/>liqu&aelig;. </s></p><p type="main">

<s>Sit pyramis ABCDE, cui vertex E, ba&longs;is autem <lb/>quadrilatera ABCD, &amp; e&longs;to axis EF, &longs;egmentum EM, <lb/>reliqui MF, triplum. </s>

<s>Dico punctum M, e&longs;&longs;e centrum <lb/>grauitatis pyramidis ABCDE. <!-- KEEP S--></s>

<s>Ducta enim AC, &longs;it <lb/>trianguli ABC, centrum grauitatis H, &longs;icut &amp; K, trian&shy;<lb/>guli ACD: &amp; iungantur KH, HE, EK: Factaque vt <lb/>EM, ad MF, ita EL ad LH, &amp; EN ad N<emph type="italics"/>K<emph.end type="italics"/>, iun&shy;<lb/>gatur LN. </s>

<s>Quoniam igitur EF e&longs;t axis pyramidis <lb/>ABCDE, erit ba&longs;is ABCD centrum grauitatis F. <pb/>Rur&longs;us quia puncta K, H, &longs;unt centra grauitatis triangu&shy;<lb/>lorum ABC, CDA, erunt EH, EK, axes pyramidum <lb/>ABCE, ACDA: quorum EL, e&longs;t tripla ip&longs;ius LH, <lb/>nec non EN, tripla ip&longs;ius EK; pyramidis igitur ABCE, <lb/>centrum grauitatis erit L, &longs;icut &amp; K, pyramidis ACDE. <lb/>Rur&longs;us, quoniam totius quadrilateri ABCD, e&longs;t cen&shy;<lb/>trum grauitatis F, cuius magnitudinis partium triangu&shy;<lb/>lorum ABC, CDA, centra grauitatis &longs;unt K, H; recta <lb/>KH, &agrave; puncto F, &longs;ic <lb/>diuiditur, vt &longs;it HF, ad <lb/>FK, vt triangulum <lb/>ACD, ad triangulum <lb/>ABC, hoc e&longs;t, vt py&shy;<lb/>ramis ACDE, ad py <lb/>ramidem ABCE. &longs;ed <lb/>vt HF, ad FK, ita <lb/>e&longs;t LM, ad MN; vt <lb/>igitur e&longs;t pyramis AC <lb/>DE, ad pyramidem <lb/>ABCE, ita erit LM, <lb/>ad MN. <!-- KEEP S--></s>

<s>Sed N, e&longs;t <lb/>centrum grauitatis py&shy;<lb/><figure id="id.043.01.073.1.jpg" xlink:href="043/01/073/1.jpg"/><lb/>ramidis ACDE, &amp; L pyramidis ABCE; punctum <lb/>igitur M, erit centrum grauitatis pyramidis ABCDE. <lb/><!-- KEEP S--></s>

<s>Quod &longs;i pyramis habeat ba&longs;im quinquelateram; po&longs;ito <lb/>rur&longs;us axe totius pyramidis, &amp; ba&longs;i &longs;ecta in triangulum, <lb/>&amp; quadrilaterum, po&longs;itis vtriu&longs;que proprijs centris graui&shy;<lb/>tatis, eadem demon&longs;tratione propo&longs;itum concludetur. <lb/></s>

<s>Quemadmodum &longs;i ba&longs;is &longs;it &longs;ex laterum, &longs;ecta ea in quinque <lb/>laterum, &amp; triangulum, &amp; reliquis vt antea po&longs;itis: &amp; &longs;ic &longs;em <lb/>per deinceps. </s>

<s>Manife&longs;tum e&longs;t igitur propo&longs;itum. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO XXXIII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis pri&longs;matis triangulam ba&longs;im habentis <lb/>centrum grauitatis e&longs;t in medio axis. </s></p><p type="main">

<s>Sit pri&longs;ma ABCDEF, cuius ba&longs;es oppo&longs;it&aelig; trian&shy;<lb/>gula ABC, DEF, axis autem GH, &longs;ectus &longs;it bifariam <lb/>in puncto K. <!-- KEEP S--></s>

<s>Dico punctum K, e&longs;se pri&longs;inatis ABCD <lb/>EF, centrum grauitatis. </s>

<s>Ducantur enim rect&aelig; FGO, <lb/>CHP, PO. </s>

<s>Quoniam igitur GH, e&longs;t axis pri&longs;matis <lb/>ABCDEF, erit punctum G, centrum grauitatis trian&shy;<lb/>guli DEF: &longs;icut &amp; H, trian&shy;<lb/>guli ABC; vtraque igitur <lb/>dupla e&longs;t AG, ip&longs;ius GO, <lb/>&amp; CH, ip&longs;ius PH, &longs;ect&aelig;&shy;<lb/>que erunt AB, DE, bifa&shy;<lb/>riam in punctis P, O: pa&shy;<lb/>rallela igitur, &amp; &aelig;qualis e&longs;t <lb/>OP, ip&longs;i DA, iamque ip&longs;i <lb/>FC. qu&aelig; igitur illas con&shy;<lb/>iungunt CP, FO, &aelig;qua&shy;<lb/>les &longs;unt, &amp; parallel&aelig;, &amp; pa&shy;<lb/>rallelogrammum FP. <lb/></s>

<s>Nunc &longs;ecta OP, bifariam in <lb/>puncto N, iungantur GN, <lb/>NF, AF, FH, FB, &amp; fa&shy;<lb/>cta FL, tripla ip&longs;ius LH, <lb/><figure id="id.043.01.074.1.jpg" xlink:href="043/01/074/1.jpg"/><lb/>&agrave; puncto L, per punctum K, ducatur recta LKMR. <lb/></s>

<s>Quoniam igitur e&longs;t vt FG, ad GO, ita CH, ad HP, <lb/>&amp; parallelogrammum e&longs;t FCPO; parallelogramma <lb/>etiam erunt CG, GP, angulus igitur FGH, &aelig;qualis <lb/>erit angulo NGO, quos circa &aelig;quales angulos latera <pb/>FG, GH, homologa &longs;unt lateribus GO, ON. nam <lb/>dupla e&longs;t FG, ip&longs;ius GO, &amp; GH, ip&longs;ius ON; angulus <lb/>igitur OGN, &aelig;qualis erit angulo GFH; parallela igi&shy;<lb/>tur GN, ip&longs;i FH, &amp; propter&longs;imilitudinem triangulorum <lb/>dupla erit FH, ip&longs;ius GN. Rur&longs;us, quoniam recta <lb/>OP, &longs;ecat latera oppo&longs;ita parallelogrammi BD, bifa&shy;<lb/>riam in punctis O, P, &longs;ecta, &amp; ip&longs;a bifariam in puncto N, <lb/>erit punctum N, parallelogrammi BD, centrum graui&shy;<lb/>tatis, atque ideo axis FN, pyramidis ABDEF. qua <lb/>ratione erit quoque axis FH, pyramidis ABCF: &longs;ed <lb/>FL, e&longs;t tripla ip&longs;ius LH; pyramidis igitur ABCF, cen&shy;<lb/>trum grauitatis erit L. <!-- KEEP S--></s>

<s>Rur&longs;us quia e&longs;t vt GK, ad KH, <lb/>ita GR, ad LH, propter &longs;imilitudinem triangulorum, <lb/>erit &aelig;qualis GR, ip&longs;i LH: &longs;ed e&longs;t FH, quadrupla ip-, <lb/>&longs;ius LH, quadrupla igitur FH, ip&longs;ius GR: &longs;ed FH <lb/>erat dupla ip&longs;ius GN; quadrupla igitur FH, reliqu&aelig; <lb/>NR, ac proinde GR, RN, &aelig;quales erunt: recta igitur <lb/>FL, tripla erit vtriu&longs;que ip&longs;arum GR, RN, &longs;ed vt FL, <lb/>ad NR, ita e&longs;t FM, ad MN, propter &longs;imilitudinem trian <lb/>gulorum; recta igitur FM, erit ip&longs;ius MN, tripla, &longs;icut <lb/>&amp; LM, ip&longs;ius MR: &longs;ed quia KH, e&longs;t &aelig;qualis GK, <lb/>erit &amp; LK, &aelig;qualis RK; propter &longs;imilitudinem trian&shy;<lb/>gulorum; cum igitur LK, &longs;it tripla ip&longs;ius MR, erit LK, <lb/>ip&longs;ius KM, dupla; vt igitur e&longs;t pyramis ABEDF, ad <lb/>pyramidem ABCF, ita erit LK, ad KM; e&longs;t autem M, <lb/>centrum grauitatis pyramidis ABED, &longs;icut &amp; L, pyrami&shy;<lb/>dis ABCF; totius igitur pri&longs;matis ABCDEF, centrum <lb/>grauitatis erit K. <!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO XXXIV.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis pri&longs;matis ba&longs;im plu&longs;quam trilateram <lb/>habentis centrum grauitatis e&longs;t in medio axis. </s></p><p type="main">

<s>Sit pri&longs;ma ABCDEFGH, ba&longs;im habens quadrila&shy;<lb/>teram ABCD: axis autem <emph type="italics"/>K<emph.end type="italics"/>L, bifariam &longs;ectus in pun&shy;<lb/>cto M. </s>

<s>Dico punctum M, e&longs;se centrum grauitatis pri&longs;&shy;<lb/>matis ABCDEFGH. </s>

<s>Iungantur enim rect&aelig; BD, FH, <lb/>vt parallelogrammum &longs;it BH, &longs;ectumque totum pri&longs;ma <lb/>in duo pri&longs;mata, quorum ba&shy;<lb/>&longs;es &longs;unt triangula, in qu&aelig; &longs;ecta <lb/>&longs;unt quadrilatera AC, EG, <lb/>&longs;int autem axes duorum pri&longs;&shy;<lb/>matum triangulas ba&longs;es ha&shy;<lb/>bentium NO, <expan abbr="Pq.">Pque</expan> Erunt <lb/>igitur centra grauitatis O, tri&shy;<lb/>anguli ABD, &amp; L, quadri&shy;<lb/>lateri AC, &amp; Q, trianguli <lb/>BCD, itemque N, trianguli <lb/>EFH, &amp; K, quadrilateri EG, <lb/>&amp; P, trianguli FGH: iun&shy;<lb/>ct&aelig; igitur OQ, NP, per pun <lb/><figure id="id.043.01.076.1.jpg" xlink:href="043/01/076/1.jpg"/><lb/>cta L, K, tran&longs;ibunt: cumque tres pr&aelig;dicti axes &longs;int <lb/>lateribus pri&longs;matis, atque ideo inter &longs;e quoque paralleli; <lb/>parallelogramma erunt OP, NL, LP. ducta igitur per <lb/>punctum M, ip&longs;i OQ, vel NP, parallela RS, erit vt <lb/>NK, ad KP, ita RM, ad MS: &amp; vt KM, ad ML, ita <lb/>NR, ad RO, &amp; PS, ad SQ: &longs;ed KM, e&longs;t &aelig;qualis ML; <lb/>igitur &amp; KR, ip&longs;i RO, &amp; PS, ip&longs;i SQ, &aelig;qualis erit: &longs;unt <lb/>autem h&aelig; &longs;egmenta axium NO, <expan abbr="Pq;">Pque</expan> punctum igitur <lb/>R, e&longs;t centrum grauitatis pri&longs;matis ABDEFH: &amp; per <pb/>punctum S, pri&longs;matis BCDFGH. </s>

<s>Quoniam igitur <lb/>quadrilateri EG, e&longs;t centrum grauitatis K, cuius duorum <lb/>triangulorum centra grauitatis &longs;unt P, N; erit vt triangu&shy;<lb/>lum FGH, ad triangulum EFH, hoc e&longs;t vt pri&longs;ma BC&shy;<lb/>DFGH, ad pri&longs;ma ABDEFH, ita NK, ad KP, hoc <lb/>e&longs;t RM, ad MS; cum igitur &longs;it R, centrum grauitatis <lb/>pri&longs;matis ABDEFH: &longs;icut &amp; S, pri&longs;matis BCDFGH; <lb/>totius pri&longs;matis ABCDEFGH, centrum grauitatis erit <lb/>M. </s>

<s>Quod &longs;i pri&longs;ma ba&longs;im habeat quinquelateram; ab&shy;<lb/>&longs;ci&longs;so rur&longs;us pri&longs;mate vno triangulam ba&longs;im habente, <lb/>&longs;umpti&longs;que axibus pri&longs;inatum, quorum alterum habebit <lb/>ba&longs;im quadrilateram, eadem demon&longs;tratione propo&longs;itum <lb/>concluderemus, &amp; &longs;ic deinceps in aliis. </s>

<s>Manife&longs;tum e&longs;t <lb/>igitur propo&longs;itum. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXXV.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis fru&longs;ti pyramidis triangulam ba&longs;im <lb/>ha bentis centrum grauitatis e&longs;t in axe, primum <lb/>ita diui&longs;o, vt &longs;egmentum attingens minorem <lb/>ba&longs;im &longs;it ad reliquum, vt duplum vnius laterum <lb/>maioris ba&longs;is vna cum latere homologo mino&shy;<lb/>ris, ad duplum pr&aelig;dicti lateris minoris ba&longs;is, <lb/>vna cum latere homologo maioris. </s>

<s>Deinde <lb/>&agrave; puncto &longs;ectionis ab&longs;ci&longs;sa quarta parte &longs;eg&shy;<lb/>menti, quod maiorem ba&longs;im attingit, &amp; &agrave; pun&shy;<lb/>cto, in quo ad minorem ba&longs;im axis termina&shy;<lb/>tur &longs;umpta item quarta parte totius axis; in <lb/>eo puncto, in quo &longs;egmentum axis duabus po&shy;<lb/>&longs;terioribus &longs;ectionibus finitum &longs;ic diuiditur, vt <pb/>&longs;egmentum eius maiori ba&longs;i propinquius &longs;it ad to&shy;<lb/>tum pr&aelig;dictum interiectum &longs;egmentum, vt tertia <lb/>proportionalis minor ad duo latera homologa ba&shy;<lb/>&longs;ium oppo&longs;itarum, ad compo&longs;itam ex his tribus <lb/>deinceps proportionalibus. </s></p><p type="main">

<s>Sit pyramidis fru&longs;tum, cuius ba&longs;es oppo&longs;it&aelig;, &amp; parallel&aelig;, <lb/>maior triangulum ABC, minor autem triangulum DEF, <lb/>axis autem GH. triangulorum autem ABC, DEF, qu&aelig; <lb/>inter &longs;e &longs;imilia e&longs;se nece&longs;se e&longs;t, &longs;int duo latera homologa <lb/>BC, EF: &amp; vt e&longs;t BC, ad EF, ita &longs;it EF, ad X: vt autem e&longs;t <lb/>duplum lateris BC, vna cum latere EF, ad duplum lateris <lb/>EF, vna cum la <lb/>tere BC, ita &longs;it <lb/>HN, ad NG, <lb/>&amp; NO, pars quar <lb/>ta ip&longs;ius NG, &amp; <lb/>HS, pars quar&shy;<lb/>ta ip&longs;ius GH; ip <lb/>&longs;ius autem SO, <lb/>&longs;it VO, ad OS, <lb/>vt e&longs;t X, ad com&shy;<lb/>po&longs;itam ex tri&shy;<lb/>bus BC, EF, X. <lb/><!-- KEEP S--></s>

<s>Dico punctum V <lb/>(quod cadet ne&shy;<lb/>ce&longs;sario infra <lb/><figure id="id.043.01.078.1.jpg" xlink:href="043/01/078/1.jpg"/><lb/>punctum N, quanquam hoc ad demon&longs;trationem nihil re&shy;<lb/>fert) e&longs;se centrum grauitatis fru&longs;ti ABCDEF. <!-- KEEP S--></s>

<s>Ducta <lb/>enim recta AGL; quoniam GH, e&longs;t axis fru&longs;ti ABCD <lb/>EF, &amp; punctum G, centrum grauitatis trianguli ABC, <lb/>erit punctum L, in medio ba&longs;is BC: &longs;ecto igitur etiam la&shy;<lb/>tere EF, bifariam in puncto K, iungantur LK, <emph type="italics"/>K<emph.end type="italics"/>H: &amp; vt <pb/>vt e&longs;t HN, ad NG, ita fiat KM, ad ML, &amp; GM, iun&shy;<lb/>gatur: &amp; vt e&longs;t GO, ad ON, ita fiat GP, ad PM, &amp; iun <lb/>gantur MN, OP, FG, GD, GE. <!-- KEEP S--></s>

<s>Quoniam igitur re <lb/>cta KL, &longs;ecat trapezij BCFE, latera parallela bifariam <lb/>in punctis K,L, &amp; e&longs;t vt HN, ad NG, hoc e&longs;t vt duplum <lb/>lateris BC, vna cum latere EF, ad duplum lateris EF, vna <lb/>cum latere BC, ita KM, ad ML; erit punctum M, cen&shy;<lb/>trum grauitatis trapezij BCFE, &amp; pyramidis GBCFE, <lb/>axis GM. <!-- KEEP S--></s>

<s>Et quoniam vt GO, ad ON, ita e&longs;t GP, ad <lb/>PM, atque ideo GP, tripla ip&longs;ius PM, erit punctum P, <lb/>centrum grauitatis pyramidis GBCFE, atque ideo in <lb/>linea OP. <!-- KEEP S--></s>

<s>Rur&longs;us quoniam angulus ACB; &aelig;qualis e&longs;t <lb/>angulo DFK: &amp; vt AC, ad CK, ita e&longs;t DF, ad FK: <lb/>e&longs;t autem DF, parallela ip&longs;i AC, &amp; FK, ip&longs;i CL; erit <lb/>reliqua DK, reliqu&aelig; AL, parallela; vnum igitur planum <lb/>e&longs;t, ADKL, in quo iacet triangulum GMN; cum igitur <lb/>&longs;it parallela KH, ip&longs;i GL, vtque HN, ad NG, ita <lb/><emph type="italics"/>K<emph.end type="italics"/>M, ad ML; erit MN, ip&longs;i LG, parallela: &longs;ed OP, e&longs;t <lb/>parallela ip&longs;i MN; &longs;ecant enim latera trianguli GMN, <lb/>in ea&longs;dem rationes; igitur OP, erit LG, parallela. </s>

<s>Simi&shy;<lb/>liter ex puncto O, ad axes duarum pyramidum GABED, <lb/>GACFD, du&aelig; ali&aelig; rect&aelig; line&aelig; ducerentur, quas &amp; cen&shy;<lb/>tra grauitatis pyramidum habere, &amp; parallelas rectis GQ, <lb/>GR, alteram alteri e&longs;se o&longs;tenderemus, &longs;icut o&longs;tendimus <lb/>OP, habentem centrum grauitatis pyramidis GBCFE, <lb/>ip&longs;i GL, parallelam; &longs;ed tres rect&aelig; GL, GQ, GR, &longs;unt <lb/>in eodem plano trianguli nimirum ABC; tres igitur pr&aelig;&shy;<lb/>dict&aelig; parallel&aelig;, qu&aelig; ex puncto O, atque ideo trium pr&aelig;&shy;<lb/>dictarum pyramidum centra grauitatis erunt in eodem pla&shy;<lb/>no, per punctum O, &amp; trianguli ABC, parallelo. </s>

<s>Quo&shy;<lb/>niam igitur fru&longs;ti ABCDE, centrum grauitatis e&longs;t in axe <lb/>GH; (manife&longs;tum hoc autem ex duobus centris grauitatis <lb/>pyramidis, cuius e&longs;t pr&aelig;dictum fru&longs;tum, &amp; ablat&aelig;, qu&aelig; <lb/>centra grauitatis &longs;unt in axe, cuius &longs;egmentum e&longs;t axis <pb/>GH) erit eiu&longs;dem fru&longs;ti ABCDEF, centrum grauitatis <lb/>O. <!-- KEEP S--></s>

<s>Rur&longs;us quoniam vt tres deinceps proportionales BC, <lb/>EF, X, &longs;imul ad BC, ita e&longs;t fru&longs;tum ABCDEF, ad py&shy;<lb/>ramidem; &longs;i de&longs;cribatur ABCH: &longs;ed vt triangulum ABC, <lb/>ad &longs;imile triangulum EDF, hoc e&longs;t vt BC, ad X, ita e&longs;t <lb/>pyramis ABCH, ad pyramidem GDEF; erit ex &aelig;qua&shy;<lb/>li, vt tres line&aelig; <lb/>BC, EF, X, &longs;i&shy;<lb/>mul ad X, ita fru <lb/>&longs;tum ABCDEF, <lb/>ad pyramidem <lb/>GDEF: &amp; con&shy;<lb/>uertendo, vt X, <lb/>ad compo&longs;itam <lb/>ex BC, EF, X, <lb/>hoc e&longs;t vt VO, <lb/>ad OS, ita pyra <lb/>mis GDEF, ad <lb/>fru&longs;tum ABC&shy;<lb/>DEF; &amp; diui&shy;<lb/>dendo, vt pyra&shy;<lb/><figure id="id.043.01.080.1.jpg" xlink:href="043/01/080/1.jpg"/><lb/>mis GDEF, ad reliquas tres pyramides fru&longs;ti, ita OV, <lb/>ad VS; &longs;ed S, e&longs;t centrum grauitatis pyramidis GDEF, <lb/>&amp; O, trium reliquarum; fru&longs;ti igitur ABCDEF, cen&shy;<lb/>trum grauitatis erit V. <!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXXVI.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis fru&longs;ti pyramidis ba&longs;im plu&longs;quam trila&shy;<lb/>teram habentis centrum grauitatis e&longs;t punctum <lb/>illud, in quo axis &longs;ic diuiditur, vt axis fru&longs;ti pyra&shy;<lb/>midis triangulam ba&longs;im habentis diuiditur ab <lb/>ip&longs;ius centro grauitatis. </s></p><pb/><p type="main">

<s>Sit pyramidis quadrilateram ba&longs;im habentis fru&longs;tum <lb/>ABCDEFGH, cuius axis KL, atque in ip&longs;o centrum <lb/>grauitatis O. <!-- KEEP S--></s>

<s>Dico axim KL, &longs;ectum e&longs;se in puncto O, <lb/>vt propo&longs;uimus. </s>

<s>Ductis enim AC, EG, qu&aelig; &longs;imilium <lb/>&longs;ectionum angulos &aelig;quales &longs;ubtendant B, F, qui late&shy;<lb/>ribus homologis continentur, fru&longs;ta erunt pyramidum <lb/>triangulas ba&longs;es habentium AFG, AGH: &longs;it autem fru&shy;<lb/>&longs;ti AFG, axis <lb/>TP, &amp; in eo eiu&longs; <lb/>dem fru&longs;ti cen&shy;<lb/>trum grauitatis <lb/>M, &amp; fru&longs;ti AG <lb/>H, axis VQ, &amp; <lb/>in eo centrum <lb/>grauitatis N, &amp; <lb/>iungantur TV, <lb/>MN, <expan abbr="Pq.">Pque</expan> Quo <lb/>niam igitur e&longs;t <lb/>pyramidis fru&shy;<lb/>&longs;tum, quod pro&shy;<lb/>ponitur; omnia <lb/><figure id="id.043.01.081.1.jpg" xlink:href="043/01/081/1.jpg"/><lb/>cius producta latera concurrent in vno puncto, qui e&longs;t pyra&shy;<lb/>midis vertex: fru&longs;ta igitur, in qu&aelig; diui&longs;um e&longs;t fru&longs;tum pro&shy;<lb/>po&longs;itum earum &longs;unt pyramidum, qu&aelig; verticem habent <lb/>communem cum pyramide, cuius e&longs;t fru&longs;tum propo&longs;itum: <lb/>tres igitur talium fru&longs;torum axes, vt pote &longs;egmenta axium <lb/>trium pr&aelig;dictarum pyramidum in communi illo vertice <lb/>concurrent: quilibet igitur duo trium pr&aelig;dictorum axium <lb/>KL, TP, VQ, erunt in eodem plano: TP, igitur, &amp; <lb/>VQ, &longs;unt in eodem plano. </s>

<s>Eadem autem ratione, qua <lb/>vtebamur de pri&longs;mate K, centrum grauitatis K, ba&longs;is <lb/>EH, e&longs;t in linea TV, &amp; L, ba&longs;is BD, centrum grauita&shy;<lb/>tis e&longs;t in linea <expan abbr="Pq;">Pque</expan> reliqu&aelig; igitur KL, MN, erunt in eo&shy;<lb/>dem plano trapezij PTVQ, &longs;eque mutuo &longs;ecabunt: cum <pb/>igitur M, N, &longs;int centra grauitatis propo&longs;iti pri&longs;matis par <lb/>tium pri&longs;matum AFG, AGH, atque obid O, totius pri&longs;&shy;<lb/>matis AFGH, in linea MN, centrum grauitatis; per pun <lb/>ctum O, recta MN, tran&longs;ibit. </s>

<s>Et quoniam planum tra&shy;<lb/>pezij PV, &longs;ecatur duobus planis parallelis, erunt TV, PQ, <lb/>fectiones parallel&aelig;. </s>

<s>His demon&longs;tratis, fiat rur&longs;us vt AB, <lb/>bis vna cum EF, ad EF, bis vna cum AB, ita TY, ad <lb/>YP: &amp; &longs;umatur T<foreign lang="greek">w</foreign>, pars quarta ip&longs;ius TP, &amp; YZ, pars <lb/>quarta ip&longs;ius PY, &amp; ad axim KL, ducantur ip&longs;is TV, <lb/>PQ, parallel&aelig; <lb/><foreign lang="greek">w</foreign>S, YR, ZX, <lb/>qu&aelig; rectas TP, <lb/>KL, &longs;ecabunt in <lb/><expan abbr="ea&longs;d&etilde;">ea&longs;dem</expan> rationes: <lb/>vt igitur TY, ad <lb/><foreign lang="greek">*u</foreign>P, hoc e&longs;t vt <lb/>AB, bis vna cum <lb/>EF, ad EF bis <lb/>vna cum AB, ita <lb/>erit <emph type="italics"/>K<emph.end type="italics"/>R, ad RL, <lb/>eritque KS, pars <lb/>quarta ip&longs;ius K <lb/>L, qualis &amp; R <lb/><figure id="id.043.01.082.1.jpg" xlink:href="043/01/082/1.jpg"/><lb/>X, ip&longs;ius RL. </s>

<s>Et quoniam M, e&longs;t centrum grauitatis fru&shy;<lb/>&longs;ti AFG; manife&longs;tum e&longs;t ex tribus pr&aelig;dictis axis TP, &longs;e&shy;<lb/>ctionibus <foreign lang="greek">*u, w</foreign>, Z, e&longs;se MZ, ad Z<foreign lang="greek">w</foreign>, hoc e&longs;t OX, ad XS, <lb/>vt e&longs;t 6 ad compo&longs;itam ex tribus deinceps proportionalibus <lb/>AB, EF, 6; Fru&longs;ti igitur ABCDEFGH, centrum gra<lb/>uitatis O, axim KL, ita diuidit, vt propo&longs;uimus. </s>

<s>Quod <lb/>&longs;i fru&longs;tum propo&longs;itum &longs;it pyramidis ba&longs;im habentis quin&shy;<lb/>quelateram, &amp; quotcumque plurium deinceps fuerit la&shy;<lb/>terum, eadem demon&longs;tratione &longs;emper deinceps, vt in pri&longs;&shy;<lb/>mate monuimus, propo&longs;itum concluderemus. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO XXXVII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Dodecaedri, &amp; ico&longs;aedri idem e&longs;t centrum gra<lb/>uitatis, &amp; figur&aelig;. </s></p><p type="main">

<s>Nam huiu&longs;modi figuras habere axes, qui omnes &longs;e &longs;e <lb/>bifariam &longs;ecant; (tale autem &longs;ectionis punctum centrum e&longs;t) <lb/>con&longs;tat ex talium corporum in &longs;ph&aelig;ra in&longs;criptione in de&shy;<lb/>cimotertio Euclidis Elemento: nec non omnem pyrami&shy;<lb/>dem, cuius vertex e&longs;t dodecaedri, vel octaedri centrum <lb/>idem cum centro &longs;ph&aelig;r&aelig;, vt con&longs;tat ex ij&longs;dem Euclidis in&shy;<lb/>&longs;criptionibus; ba&longs;is autem triangulum &aelig;quilaterum, vel <lb/>pentagonum, vna ex ba&longs;ibus corporum pr&aelig;dictorum, ha&shy;<lb/>bere pyramidem oppo&longs;itam &longs;imilem ip&longs;i, &amp; &aelig;qualem, cuius <lb/>latera eius lateribus homologis &longs;unt in directum po&longs;ita, <lb/>ba&longs;is autem triangulum, vel pentagonum, quale diximus; <lb/>Eadem igitur ratione, qua v&longs;i &longs;umus ad demon&longs;trandum <lb/>centrum grauitatis, &amp; parallelepipedi, &amp; octaedri, propo&shy;<lb/>&longs;itum concluderemus. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXXVIII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Data qualibet figura, cuius termini omnis <lb/>cauitas &longs;it interior, &longs;i certum in ea punctum talis <lb/>cius partis centrum grauitatis e&longs;se po&longs;sit, qu&aelig; ab <lb/>ca deficiat minori &longs;pacio quantacumque magnitu <lb/>dine propo&longs;ita; illud erit totius figur&aelig; centrum <lb/>grauitatis. </s></p><pb/><p type="main">

<s>E&longs;to figura AB, cuius termini omnis cauitas &longs;it interior <lb/>&amp; certum in ea punctum E, talis partis AB, figur&aelig; qua&shy;<lb/>lem diximus centrum grauitatis e&longs;se po&longs;sit. </s>

<s>Dico pun&shy;<lb/>ctum E, e&longs;se figur&aelig; AB, centrum grauitatis. </s>

<s>Si enim <lb/>E, non e&longs;t, erit aliud, e&longs;to F: &amp; iuncta EF producatur, <lb/>&amp; &longs;umatur in illa extra figur&aelig; AB, terminum, quodlibet <lb/>punctum G; &amp; vt e&longs;t FE, ad EG, ita &longs;it alia magnitudo <lb/>K, ad figuram AB, &amp; <lb/>ex vi hypothe&longs;is &longs;it pars <lb/>qu&aelig;dam CD, figur&aelig; <lb/>AB, cuius centrum gra<lb/>uitatis E, talis vt abla&shy;<lb/>ta relinquat AC, minus <lb/>magnitudine <emph type="italics"/>K.<emph.end type="italics"/><!-- KEEP S--></s><s> Mi&shy;<lb/>nor igitur proportio erit <lb/>AC, ad AB, qu&agrave;m K, <lb/>ad AB, hoc e&longs;t qu&agrave;m <lb/>FE, ad EG; fiat vt <lb/>AC, ad AB, ita EF, <lb/>ad FGH: &longs;ed F, e&longs;t cen <lb/>trum grauitatis totius <lb/>AB, &amp; E, vnius par&shy;<lb/>tis CD; reliqu&aelig; igitur <lb/><figure id="id.043.01.084.1.jpg" xlink:href="043/01/084/1.jpg"/><lb/>partis AC, centrum grauitatis erit H, vltra punctum G: &longs;ed <lb/>G, cadit extra terminum figur&aelig; AC; multo igitur magis H: <lb/>Quod e&longs;t ab&longs;urdum. </s>

<s>Non igitur aliud punctum &agrave; puncto <lb/>E; punctum igitur E, figur&aelig; AB, erit centrum grauitatis <lb/>Quod demon&longs;trandum erat. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO XXXIX.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis coni centrum grauitatis axim ita diui&shy;<lb/>dit, vt &longs;egmentum ad verticem &longs;it reliqui triplum. </s></p><p type="main">

<s>Sit conus ABC, cuius vertex B, axis autem BD, cu&shy;<lb/>ius BE, &longs;it tripla ip&longs;ius ED. <!-- KEEP S--></s>

<s>Dico punctum E, e&longs;se co&shy;<lb/>ni ABC, centrum grauitatis. </s>

<s>Si enim cono ABC, pyramis <lb/>in&longs;cribatur, cuius ba&longs;is in&longs;cripta circulo AC, &aelig;quilatera &longs;it, <lb/>&amp; &aelig;quiangula, eius centrum grauitatis erit idem quod &amp; <lb/>figur&aelig; centrum, &longs;ed centrum <lb/>talis figur&aelig; circulo in&longs;cript&aelig; <lb/>idem e&longs;t, quod centrum cir&shy;<lb/>culi, vt colligitur ex demon&shy;<lb/>&longs;trationibus quarti Elemen&shy;<lb/>torum; in&longs;cript&aelig; igitur pyra <lb/>midis erit axis BD, &amp; cen&shy;<lb/>trum grauitatis E. talis au&shy;<lb/>tem ea pyramis in&longs;cribi po&shy;<lb/>te&longs;t, vt &agrave; cono deficiat mino&shy;<lb/>ri &longs;pacio quantacumque ma <lb/>gnitudine propo&longs;ita; igitur <lb/>ABC, coni centrum graui&shy;<lb/>tatis erit E. <!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><figure id="id.043.01.085.1.jpg" xlink:href="043/01/085/1.jpg"/><p type="head">

<s><emph type="italics"/>PROPOSITIO XXXX.<emph.end type="italics"/></s></p><p type="main">

<s>Omnis fru&longs;ti conici centrum grauitatis idem <lb/>e&longs;t in axe centro grauitatis fru&longs;ti pyramidis ba&longs;im <lb/>habentis &aelig;quilateram, &amp; &aelig;quiangul am in &longs;cript&aelig; <lb/>cono, ab &longs;ci&longs;&longs;i eodem plano, quo coni fru&longs;tum. </s></p><pb/><p type="main">

<s>Sit coni fru&longs;tum ABCD, cuius axis EF, fru&longs;to autem <lb/>ABCD, intelligatur in&longs;criptum fru&longs;tum pyramidis in&longs;cri&shy;<lb/>pt&aelig; cono AHD, &agrave; quo ab&longs;ci&longs;sum e&longs;t fru&longs;tum ABCD, <lb/>ba&longs;im habentis &aelig;quilateram, &amp; &aelig;quiangulam in&longs;criptam <lb/>circulo AD: quare eius centrum grauitatis, &amp; figur&aelig; erit <lb/>punctum F, vt diximus in pr&aelig;cedenti, axis autem FH, &longs;i&shy;<lb/>cut etiam pyramidis ab&longs;ci&longs;s&aelig; vna cum cono BHC, axis <lb/>EH, quare &amp; reliqui fru&longs;ti pyramidis axis erit EF, igi&shy;<lb/>tur in EF, &longs;it fru&longs;ti in&longs;cripti fru&longs;to ABCD, centrum gra&shy;<lb/>uitatis G. <!-- KEEP S--></s>

<s>Dico punctum G, e&longs;se centrum grauitatis fru&shy;<lb/>&longs;ti ABCD. <!-- KEEP S--></s>

<s>Ponatur enim <lb/>FL, pars quarta ip&longs;ius FH, <lb/>necnon EK, pars quarta ip&shy;<lb/>&longs;ius EH: punctum igitur K, <lb/>e&longs;t centrum grauitatis pyra&shy;<lb/>midis, &amp; coni BHC, &longs;icut <lb/>&amp; punctum L, pyramidis, &amp; <lb/>coni AHD. cum igitur fru <lb/>&longs;ti pyramidis fru&longs;to ABCD, <lb/>in&longs;cripti &longs;it centrum grauita&shy;<lb/>tis G; erit vt GL, ad LK, <lb/>ita pyramis BHC, ad pyra&shy;<lb/>midis fru&longs;tum fru&longs;to ABCD, <lb/>in&longs;criptum: &longs;ed vt pyramis <lb/>BHC, ad pyramidis fru&longs;tum <lb/>fru&longs;to ABCD, in&longs;criptum, <lb/><figure id="id.043.01.086.1.jpg" xlink:href="043/01/086/1.jpg"/><lb/>ita e&longs;t diuidendo, conus BHC, ad fru&longs;tum ABCD, pro&shy;<lb/>pter eandem triplicatam communium conis, &amp; pyramidi&shy;<lb/>bus &longs;imilibus laterum homologorum proportionem; vt igi&shy;<lb/>tur GL, ad LK, ita erit conus BHC: ad fru&longs;tum ABCD: <lb/>&longs;ed coni BHC, centrum grauitatis erat K, &amp; coni AHD, <lb/>centrum grauitatis L; fru&longs;ti igitur ABCD, centrum gra&shy;<lb/>nitatis erit G. <!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO XLI.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis cylindri centrum grauitatis axim bifa&shy;<lb/>riam diuidit. </s></p><p type="main">

<s>Sit cylindrus ABCD, cuius axis EF, &amp; &longs;it &longs;ectus bi&shy;<lb/>fariam in puncto G. <!-- KEEP S--></s>

<s>Dico punctum G, e&longs;se centrum <lb/>grauitatis cylindri ABCD. <!-- KEEP S--></s>

<s>Nam &longs;i cylindro AD, in&shy;<lb/>&longs;criptum intelligatur pri&longs;ma, <lb/>cuius ba&longs;es oppo&longs;it&aelig; &aelig;quilate&shy;<lb/>r&aelig; &longs;int, &amp; &aelig;quiangul&aelig;; erunt, <lb/>qua ratione &longs;upra diximus, ea&shy;<lb/>rum centra figur&aelig;, &amp; grauitatis <lb/>E, F; axis igitur in&longs;cripti pri&longs;&shy;<lb/>matis erit EF: &amp; centrum gra<lb/>uitatis G. pote&longs;t autem tale <lb/>pri&longs;ma &longs;ic in&longs;cribi cylindro <lb/>ABCD, vt ab illo deficiat <lb/>minori &longs;pacio quantacumque <lb/>magnitudine propo&longs;ita; cylin&shy;<lb/>dri igitur ABCD, centrum <lb/>grauitatis erit G. <!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><figure id="id.043.01.087.1.jpg" xlink:href="043/01/087/1.jpg"/><p type="head">

<s><emph type="italics"/>PROPOSITIO XLII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Sph&aelig;r&aelig;, &amp; &longs;ph&aelig;roidis idem e&longs;t centrum gra&shy;<lb/>uitatis, &amp; figur&aelig;. </s></p><p type="main">

<s>Sit &longs;ph&aelig;ra, vel &longs;ph&aelig;roides ABCD, cuius centrum E, <pb/>Dico &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis ABCD, centrum grauitatis <lb/>e&longs;se E. <!-- KEEP S--></s>

<s>Sint enim bini axes &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis inter <lb/>&longs;e ad rectos angulos; &amp; in &longs;ph&aelig;roide &longs;it maior diameter <lb/>BD, minor AC, per binos autem hos axes plana tran&shy;<lb/>&longs;euntia ad eos axes erecta, &longs;ecent &longs;ph&aelig;ram, vel &longs;ph&aelig;roidem. <lb/></s>

<s>Qua ratione axes dimidij erunt axes hemi&longs;ph&aelig;rij, vel he&shy;<lb/>mi&longs;ph&aelig;roidis: hemi&longs;ph&aelig;rium autem, &amp; &longs;ph&aelig;roidis e&longs;t fi&shy;<lb/><figure id="id.043.01.088.1.jpg" xlink:href="043/01/088/1.jpg"/><lb/>gura circa axim in alteram partem deficiens, qualium om&shy;<lb/>nium figurarum centrum grauitatis e&longs;t in axe; igitur hemi&shy;<lb/>&longs;ph&aelig;rij, vel hemi&longs;ph&aelig;roidis ABCD, centrum grauitatis <lb/>e&longs;t in axi BE, &longs;icut &amp; reliqui ADA, in axi ED; totius <lb/>igitur &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis ABCD centrum grauitatis <lb/>e&longs;t in axi BD. <!-- KEEP S--></s>

<s>Eadem ratione &amp; in axi AC; in communi <lb/>igitur &longs;ectione centro E. <!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><p type="head">

<s>PRIMI LIBRI FINIS.<!-- KEEP S--></s></p><figure id="id.043.01.088.2.jpg" xlink:href="043/01/088/2.jpg"/><p type="head">

<pb/><s>LVCAE <lb/>VALERII <lb/>DE CENTRO <lb/>GRAVITATIS <lb/>SOLIDORVM<!-- KEEP S--></s></p><p type="head">

<s><emph type="italics"/>LIBER SECVNDVS.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO I.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si du&aelig; magnitudines vn&agrave; maio<lb/>res, vel minores prima, &amp; ter <lb/>tia minori exce&longs;&longs;u, vel defe&shy;<lb/>ctu <expan abbr="quantacumq;">quantacumque</expan> magnitudi <lb/>ne propo&longs;ita eiu&longs;dem generis <lb/>cum illa, ad quam refertur, <lb/>eandem <expan abbr="proportion&etilde;">proportionem</expan> habue&shy;<lb/>rint, maior vel minor prima ad &longs;ecundam, &amp; vn&agrave; <lb/>maior, vel minor tertia ad quartam; erit vt prima <lb/>ad &longs;ecundam, ita tertia ad quartam. </s></p><pb/><p type="main">

<s>Sint quatuor magnitudines A prima, B &longs;ecunda, C ter <lb/>tia, &amp; D quarta: quantacumque autem magnitudine propo <lb/>&longs;ita, ex infinit&igrave;s qu&aelig; proponi po&longs;&longs;unt eiu&longs;dem generis cum <lb/>A, C, vel vna tantum, &longs;i AC &longs;int eiu&longs;dem generis: vel <lb/>vna, &amp; altera; &longs;i vna vnius, altera &longs;it alterius generis; &longs;emper <lb/>ali&aelig; du&aelig; magnitudines vn&agrave; maiores, qu&agrave;m AC, minori <lb/>exce&longs;su magnitudine propo&longs;ita; eandem habeant proportio <lb/>nem, maior qu&agrave;m A ad B, &amp; maior qu&agrave;m C ad D. <!-- KEEP S--></s>

<s>Dico <lb/>e&longs;se vt A ad B, ita C ad D. <!-- KEEP S--></s>

<s>Po&longs;ita enim E ad D, vt <lb/>A ad B, &amp; F maiori qu&agrave;m C vtcumque, &longs;int ali&aelig; du&aelig; ma&shy;<lb/>gnitudines, G maior qu&agrave;m A minori exce&longs;su magnitudine <lb/>eiu&longs;dem generis cum A, quam quis voluerit, &amp; H maior <lb/>qu&agrave;m C minori exce&longs;su qu&agrave;m <lb/>quo F &longs;uperat C, ide&longs;t, qu&aelig; ma&shy;<lb/>ior &longs;it qu&agrave;m C, &amp; minor qu&agrave;m <lb/>F: &longs;it autem vt G ad B, ita H <lb/>ad D. <!-- KEEP S--></s>

<s>Quoniam igitur F maior <lb/>e&longs;t, &lt;34&gt;H, maior erit proportio <lb/>ip&longs;ius F qu&agrave;m H ad D, hoc e&longs;t <lb/>qu&agrave;m G ad B. </s>

<s>Sed <expan abbr="c&utilde;">cum</expan> G maior <lb/>&longs;it qu&agrave;m A, maior e&longs;t proportio <lb/><figure id="id.043.01.089.1.jpg" xlink:href="043/01/089/1.jpg"/><lb/>G ad B, qu&agrave;m A ad B, multo igitur erit maior proportio F <lb/>ad D, qu&agrave;m A ad B. </s>

<s>Sed F ponitur maior qu&agrave;m C, vtcum <lb/>que; nulla igitur magnitudo maior qu&agrave;m C e&longs;t ad D, vt <lb/>A ad B: &longs;ed E ad D, e&longs;t vt A ad B; non igitur e&longs;t E ma&shy;<lb/>ior qu&agrave;m C; nec maior proportio E ad D, hoc e&longs;t A ad <lb/>B, qu&agrave;m C ad D. <!-- KEEP S--></s>

<s>Eadem autem ratione nec maior erit <lb/>proportio C ad D qu&agrave;m A ad B, hoc e&longs;t non minor A <lb/>ad B, qu&agrave;m C ad D; eadem igitur proportio A ad B, <lb/>qu&aelig; C ad D. <!-- KEEP S--></s></p><p type="main">

<s>Sed ali&aelig; du&aelig; magnitudines vn&agrave; minores qu&agrave;m A, C <lb/>minori defectu quantacumque magnitudine propo&longs;ita, <lb/>eandem habeant proportionem, minor qu&agrave;m A ad B, &amp; <lb/>minor qu&agrave;m C, ad D. <!-- KEEP S--></s>

<s>Dico e&longs;se vt A ad B, ita C ad D. <pb/>Po&longs;ita enim rur&longs;us E ad D, vt A ad B, &amp; F minori qu&agrave;m <lb/>C vtcumque, &longs;it G minor quam A, minori defectu magni <lb/>tudine eiu&longs;dem generis cum A, quam quis voluerit, &amp; H <lb/>minor qu&agrave;m C, &amp; maior qu&agrave;m F: &longs;it autem vt G ad B, ita <lb/>H ad D. <!-- KEEP S--></s>

<s>Quoniam igitur F minor e&longs;t qu&agrave;m H, minor erit <lb/>proportio ip&longs;ius F <expan abbr="qu&atilde;">quam</expan> H ad D, <lb/>hoc e&longs;t &lt;34&gt;G ad B: &longs;ed cum G &longs;it <lb/>minor &lt;34&gt;A, minor e&longs;t propor&shy;<lb/>tio G ad B, qu&agrave;m A ad B; mul <lb/>to ergo minor proportio F ad <lb/>D, qu&agrave;m A ad B: &longs;ed F poni <lb/>tur minor qu&agrave;m C vtcumque; <lb/>nulla igitur magnitudo minor <lb/><figure id="id.043.01.090.1.jpg" xlink:href="043/01/090/1.jpg"/><lb/>qu&agrave;m C e&longs;t ad D, vt A ad B: &longs;ed E e&longs;t ad D, vt A ad B: <lb/>non igitur e&longs;t E minor qu&agrave;m C, nec minor proportio E ad <lb/>D, hoc e&longs;t A ad B, qu&agrave;m C ad D. eadem autem ratione <lb/>non minor erit proportio C ad D, qu&agrave;m A ad B; hoc e&longs;t <lb/>non maior A ad B, qu&agrave;m C ad D; vt igitur A ad B, ita <lb/>e&longs;t C ad D. <!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>ALITE R.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Dico e&longs;se vt A ad B, ita C ad <lb/>D. <!-- KEEP S--></s>

<s>Si enim fieri pote&longs;t, &longs;it minor <lb/>proportio A ad B qu&agrave;m C ad D. <lb/>alia igitur aliqua magnitudo G <lb/>maior qu&agrave;m A, eandem habebit <lb/>proportionem ad B, quam C ad <lb/>D. <!-- KEEP S--></s>

<s>Sit autem F maior quam C <lb/>minori exce&longs;su magnitudine, <expan abbr="qu&atilde;">quam</expan> <lb/>quis voluerit, &amp; E maior qu&agrave;m <lb/>A, &amp; minor qu&agrave;m G: vt autem <lb/><figure id="id.043.01.090.2.jpg" xlink:href="043/01/090/2.jpg"/><lb/>E ad B, ita F ad D. <!-- KEEP S--></s>

<s>Quoniamigitur F maior e&longs;t qu&agrave;m <lb/>C, maior erit proportio F ad D, qu&agrave;m C ad D. <!-- KEEP S--></s>

<s>Sed vt <lb/>F ad D, it&agrave; e&longs;t E ad B: &amp; vt C ad D, ita G ad B; maior <pb/>igitur proportio E ad B, qu&agrave;m G ad B; quamobrem E <lb/>maior erit qu&agrave;m G minor maiori, quod fieri non pote&longs;t. <lb/></s>

<s>Non igitur minor e&longs;t proportio A ad B qu&agrave;m C ad D. <lb/><!-- KEEP S--></s>

<s>Eadem autem ratione non minor erit proportio C ad D, <lb/>qu&agrave;m A ad B, hoc e&longs;t non maior A ad B, qu&agrave;m C ad D; <lb/>eadem igitur proportio A ad B, qu&aelig; C ad D. <!-- KEEP S--></s></p><p type="main">

<s>In &longs;ecunda autem hypothe&longs;is parte, qu&aelig; pertinet ad mi&shy;<lb/>norem <expan abbr="defect&utilde;">defectum</expan>, e&longs;to &longs;i fieri pote&longs;t maior proportio A ad B, <lb/>qu&agrave;m C ad D. erit igitur, &amp; &longs;it aliqua alia magnitudo G <lb/>minor qu&agrave;m A ad B, vt C ad D. <!-- KEEP S--></s>

<s>Sit aut&ecirc; F minor qu&agrave;m <lb/>C minori defectu magnitudine, <lb/>quam quis voluerit, &amp; E minor <lb/>qu&agrave;m A, &amp; maior qu&agrave;m G, vt au&shy;<lb/>tem E ad B ita F ad D. <!-- KEEP S--></s>

<s>Quoniam <lb/>igitur maior e&longs;t proportio C ad D, <lb/>qu&agrave;m F ad D: &longs;ed vt C ad D, ita <lb/>e&longs;t G ad B: &amp; vt F ad D, ita E ad <lb/>B: maior erit proportio G ad B <lb/>qu&agrave;m E ad B; quamobrem erit <lb/>G maior qu&agrave;m E, minor maiori, <lb/>quod fieri non pote&longs;t; non igitur ma <lb/><figure id="id.043.01.091.1.jpg" xlink:href="043/01/091/1.jpg"/><lb/>ior e&longs;t proportio A ad B, qu&agrave;m C ad D. <!-- KEEP S--></s>

<s>Eadem autem ra<lb/>tione non maior erit proportio C ad D, qu&agrave;m A ad B, hoc <lb/>e&longs;t non minor A ad B, qu&agrave;m C ad D. <!-- KEEP S--></s>

<s>Eadem igitur erit <lb/>proportio A ad B, qu&aelig; C ad D. <!-- KEEP S--></s>

<s>Quod <expan abbr="demon&longs;tr&atilde;dum">demon&longs;trandum</expan> erat. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO II.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si maior, vel minor prima ad vn&agrave; maiorem, vel <lb/>minorem &longs;ecunda, minori <expan abbr="vtriu&longs;q;">vtriu&longs;que</expan> exce&longs;&longs;u, vel de&shy;<lb/>fectu <expan abbr="quantacumq;">quantacumque</expan> magnitudine propo&longs;ita fue&shy;<lb/>rit vt tertia ad quartam; erit vt prima ad &longs;ecun&shy;<lb/>dam, ita tertia ad quartam. </s></p><pb/><p type="main">

<s>Sint quatuor magnitudines, A prima, B &longs;ecunda, C ter&shy;<lb/>tia, &amp; D quarta: &amp; ali&aelig; du&aelig; magnitudines E <lb/>F vn&agrave; maiores qu&agrave;m A, B minori exce&longs;su <lb/>quantacumque magnitudine propo&longs;ita eiu&longs;&shy;<lb/>dem generis cum ip&longs;is A, B. </s>

<s>Sit autem E <lb/>maior qu&agrave;m A, ad F maiorem qu&agrave;m B, vt <lb/>C ad D. <!-- KEEP S--></s>

<s>Dico e&longs;se A ad B, vt C ad <lb/>D. <!-- KEEP S--></s>

<s>E&longs;to enim, quod fieri pote&longs;t, alia ma&shy;<lb/>gnitudo G eiu&longs;dem generis cum EF ad <lb/>aliam H, vt C ad D, vel E ad F. <!-- KEEP S--></s>

<s>Quoniam <lb/>igitur e&longs;t permutando vt E ad G, ita F ad H, <lb/>&amp; &longs;unt EF vn&agrave; maiores qu&agrave;m AB minori ex&shy;<lb/>ce&longs;su quantacumque magnitudine propo&longs;i&shy;<lb/>ta; erit per antecedentem, vt A ad G, ita B <lb/>ad H: &amp; permutando A ad B, vt G ad H, <lb/>hoc e&longs;t vt C ad D. <!-- KEEP S--></s>

<s>Idem autem &longs;imiliter o&longs;ten <lb/>deremus po&longs;itis EF minoribus qu&agrave;m AB, &amp; <lb/>proportionalibus vt <expan abbr="dict&utilde;">dictum</expan> e&longs;t. </s>

<s><expan abbr="Manife&longs;t&utilde;">Manife&longs;tum</expan> e&longs;t igitur <expan abbr="propo&longs;it&utilde;">propo&longs;itum</expan>. </s></p><figure id="id.043.01.092.1.jpg" xlink:href="043/01/092/1.jpg"/><p type="head">

<s><emph type="italics"/>ALITER.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Ij&longs;dem po&longs;itis, &longs;i non e&longs;t A ad <lb/>B, vt C ad D; vel igitur ma&shy;<lb/>ior vel minor erit proportio A <lb/>ad B qu&agrave;m C ad D: &longs;it autem <lb/>maior: vt igitur A ad B, ita erit <lb/>eadem A ad <expan abbr="ali&atilde;">aliam</expan> maiorem &lt;34&gt;B. <lb/><!-- KEEP S--></s>

<s>E&longs;to illa E. &longs;intque ali&aelig; du&aelig; ma <lb/>gnitudines, G maior qu&agrave;m A <lb/><figure id="id.043.01.092.2.jpg" xlink:href="043/01/092/2.jpg"/><lb/>minori exce&longs;su magnitudine eiu&longs;dem generis cum A, <lb/>quam quis voluerit, &amp; F maior qu&agrave;m B, &amp; minor qu&agrave;m <lb/>E. &longs;it autem G ad F vt C ad D. <!-- KEEP S--></s>

<s>Quoniam igitur &amp; vt <lb/>C ad D, ita e&longs;t A ad E; erit vt G ad F, ita A ad E; &amp; <lb/>permutando vt G ad A, ita F ad E: &longs;ed G e&longs;t maior <pb/>qu&agrave;m A: ergo &amp; F maior qu&agrave;m <lb/>E, minor maiori, quod e&longs;t ab&shy;<lb/>&longs;urdum. </s>

<s>Non igitur maior e&longs;t <lb/>proportio A ad B qu&agrave;m C ad <lb/>D: eadem autem ratione non <lb/>maior erit proportio B ad A <expan abbr="qu&atilde;">quam</expan> <lb/>D ad C, hoc e&longs;t non minor A <lb/>ad B, qu&agrave;m C ad D; e&longs;t igitur <lb/>A ad B, vt C ad D. <!-- KEEP S--></s></p><figure id="id.043.01.093.1.jpg" xlink:href="043/01/093/1.jpg"/><p type="main">

<s>Rur&longs;us in &longs;ecunda parte hypothe&longs;is, qu&aelig; attinet ad mi&shy;<lb/>norem defectum: &longs;i non e&longs;t A ad B vt C ad D; e&longs;to, &longs;i fie&shy;<lb/>ri pote&longs;t, minor proportio A ad B qu&agrave;m C ad D. igitur A <lb/>ad aliam quam B minorem eandem habebit <expan abbr="proportion&etilde;">proportionem</expan>, <lb/>quam C ad D, e&longs;to illa E: &longs;intque <lb/>ali&aelig; du&aelig; magnitudines, G minor <lb/>qu&agrave;m A minori defectu magnitudi&shy;<lb/>ne eiu&longs;dem generis cum A, quam <lb/>quis voluerit, &amp; F minor qu&agrave;m B, <lb/>&amp; maior qu&agrave;m E: &longs;it autem G ad <lb/>F, vt C ad D, hoc e&longs;t vt A ad E. <lb/><!-- KEEP S--></s>

<s>Quoniam igitur permutando e&longs;t vt <lb/>G ad A, ita F ad E, &amp; G e&longs;t mi&shy;<lb/><figure id="id.043.01.093.2.jpg" xlink:href="043/01/093/2.jpg"/><lb/>nor qu&agrave;m A; erit &amp; F minor qu&agrave;m E, maior mino&shy;<lb/>ri, quod e&longs;t ab&longs;urdum; non igitur minor e&longs;t proportio <lb/>A ad B qu&agrave;m C ad D: eadem autem ratione non minor <lb/>erit proportio B ad A, qu&agrave;m D ad C, hoc e&longs;t non maior <lb/>A ad B, qu&agrave;m C ad D; e&longs;t igitur A ad B vt C ad D. <lb/><!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO III.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si maior, vel minor prima ad vn&agrave; maiorem, vel <lb/>minorem &longs;ecunda, minori exce&longs;&longs;u, vel defectu <pb/>quantacumque magnitudine propo&longs;ita, nomina&shy;<lb/>tam habuerit proportionem; prima ad &longs;ecundam <lb/>eandem nominatam habebit proportionem. </s></p><p type="main">

<s>Sint du&aelig; magnitudines A, B duarum autem aliarum <lb/>EF vn&agrave; maiorum, vel minorum qu&agrave;m AB minori ex&shy;<lb/>ce&longs;su vel defectu quantacumque magnitudine propo&shy;<lb/>&longs;ita, habeat E maior vel minor qu&agrave;m A ad F vn&agrave; <lb/>maiorem, vel minorem qu&agrave;m B certam ali quam nomina&shy;<lb/>tam proportionem, verbi gratia, &longs;e&longs;quialteram. </s>

<s>Dico A <lb/>ad B, eandem nominatam habere proportionem: vt A <lb/>ip&longs;ius B e&longs;se &longs;e&longs;quialteram. </s>

<s>Quoniam <lb/>enim omnis proportio in aliquibus ma&shy;<lb/>gnitudinibus con&longs;i&longs;tit; &longs;it magnitudo C <lb/>ip&longs;ius D &longs;e&longs;quialtera: &longs;ed &amp; E e&longs;t ip&longs;ius <lb/>F &longs;e&longs;quialtera; vtigitur C, tertia ad D <lb/>quartam, ita erit E maior, vel minor qu&agrave;m <lb/>A prima, ad F vn&agrave; maiorem, vel minorem <lb/>&longs;ecunda, minori, vt ponitur, vtriu&longs;que ex&shy;<lb/>ce&longs;su, vel defectu magnitudine propo&longs;ita <lb/>eiu&longs;dem generis cum A, B, qu&aelig;cumque <lb/>illa, &amp; quantacumque &longs;it; erit per pr&aelig;&shy;<lb/>cedentem eadem proportio A ad B, <lb/>qu&aelig; C ad D: &longs;ed proportio quam ha&shy;<lb/>bet C ad D, e&longs;t &longs;e&longs;quialtera; ergo &amp; A <lb/>ip&longs;ius B erit &longs;e&longs;quialtera. </s>

<s>Similiter quo&shy;<lb/>cumque alio nomine notatam proportio&shy;<lb/>nem habeat E ad F, eandem habere A <lb/><figure id="id.043.01.094.1.jpg" xlink:href="043/01/094/1.jpg"/><lb/>ad B, o&longs;tenderemus, vt duplam, &longs;e&longs;quitertiam, alicuius du <lb/>plicatam, vel triplicatam, &amp; &longs;ic de &longs;ingulis. </s>

<s>Manife&longs;tum <lb/>e&longs;t igitur propo&longs;itum. </s></p><p type="main">

<s>H&aelig;c autem propo&longs;itio in paucis exemplaribus, qu&aelig; do&shy;<lb/>no quibu&longs;dam <expan abbr="deder&atilde;">dederam</expan>, non extat; po&longs;terius enim eam exco-<pb/>gitaui, quo &longs;ecunda <expan abbr="anteced&etilde;s">antecedens</expan> h&igrave;c in illis tertia facilius &longs;er&shy;<lb/>uiret ijs, in quibus cert&aelig; proportionis nomen, <expan abbr="terti&utilde;">tertium</expan> &amp; quar <lb/>tum terminum &longs;ubob&longs;cur&egrave; indicat, vt in &longs;equenti XII iilud, <lb/>proportio dupla. </s>

<s>Illo autem Lemmate, quod prima propofi&shy;<lb/>tio in&longs;cribebatur, nunc ita non egeo, vt primam, &amp; <expan abbr="&longs;ecund&atilde;">&longs;ecundam</expan>, <lb/>qu&aelig; &longs;ecunda, &amp; tertia erant, &amp; facilius demon&longs;trem, &amp; ea&shy;<lb/>rum &longs;en&longs;um paucioribus comprehendam. </s>

<s>priora ergo ita <lb/>non improbo vt h&aelig;c ijs anteponam. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO IIII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si &longs;int tres magnitudines &longs;e &longs;e &aelig;qualiter exce&shy;<lb/>dentes, minor erit proportio minim&aelig; ad mediam <lb/>qu&agrave;m medi&aelig; ad maximam. </s></p><p type="main">

<s>Sint tres magnitudines in&aelig;quales A, BC, DE, qua&shy;<lb/>rum BC &aelig;qu&egrave; excedat ip&longs;am A, ac DE ip&longs;am BC <lb/>Dico minorem e&longs;se proportionem A, ad <lb/>BC, qu&agrave;m BC, ad DE. <!-- KEEP S--></s>

<s>Nam vt e&longs;t <lb/>A ad BC, ita &longs;it BC ad LH, &amp; au&shy;<lb/>feratur BF &aelig;qualis A, &amp; DG, &amp; LK <lb/>&aelig;quales BC. <!-- KEEP S--></s>

<s>Quoniam igitur e&longs;t vt A, <lb/>hoc e&longs;t FB ad BC, ita BC hoc e&longs;t KL <lb/>ad LH; erit diuidendo vt BF ad FC, <lb/>ita LK ad KH: &amp; componendo, ac per&shy;<lb/>mutando vt BC ad LH, ita FC ad <lb/>KH. &longs;ed BC e&longs;t minor qu&agrave;m LH; ergo <lb/>&amp; FC hoc e&longs;t EG erit minor qu&agrave;m KH. <lb/><!-- KEEP S--></s>

<s>Sed DE, LH, &longs;uperant BC exce&longs;sibus <lb/>EG, KH; minor igitur erit DE qu&agrave;m <lb/>LH, &amp; minor proportio BC ad LH, <lb/>qu&agrave;m BC ad DE. <!-- KEEP S--></s>

<s>Sed vt BC ad LH, <lb/><figure id="id.043.01.095.1.jpg" xlink:href="043/01/095/1.jpg"/><lb/>ita e&longs;t A ad BC; minor igitur proportio erit A ad BC, <lb/>qu&agrave;m BC ad DE. <!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO V.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si &longs;it minor proportio prim&aelig; ad &longs;ecundam, <lb/>qu&agrave;m &longs;ecund&aelig; ad tertiam, ab ip&longs;is autem &aelig;quales <lb/>auferantur; erit minor proportio reliqu&aelig; prim&aelig; <lb/>ad reliquam &longs;ecund&aelig;, quam reliqu&aelig; &longs;ecund&aelig; ad <lb/>reliquam terti&aelig;. </s></p><p type="main">

<s>Sit minor proportio AB, ad CD, quam CD, ad EF. <lb/><!-- KEEP S--></s>

<s>Sitque AB, minima. </s>

<s>ablat&aelig; autem &aelig;quales fint AG, CH, <lb/>EK. <!-- KEEP S--></s>

<s>Dico reliquarum minorem e&longs;se proportionem BG, <lb/>ad DH, quam BH, ad FH. <!-- KEEP S--></s>

<s>Ponatur enim CL, &aelig;qua&shy;<lb/>lis AB, &amp; EM, &aelig;qualis CD. <!-- KEEP S--></s>

<s>Quoniam igitur maior e&longs;t <lb/>proportio DL ad LH, quam DL, ad LC; <lb/>erit componendo maior proportio DH ad <lb/>HL, quam DC ad CL. hoc e&longs;t, maior <lb/>proportio DH, ad BG, quam DC, <lb/>ad AB: &amp; conuertendo, minor proportio <lb/>BG ad DH, quam AB, ad CD: hoc e&longs;t <lb/>maior proportio AB, ad CD, quam BG, <lb/>ad DH. Rur&longs;us, quoniam maior e&longs;t pro&shy;<lb/>portio CD, ad EF, quam AB, ad CD: <lb/>hoc e&longs;t quam CL, ad EM; erit permutan <lb/>do, maior proportio CD, ad CL, quam <lb/>FE, ad EM: &amp; diuidendo, maior DL, ad <lb/>LC, quam FM, ad ME: &amp; permutando, <lb/><figure id="id.043.01.096.1.jpg" xlink:href="043/01/096/1.jpg"/><lb/>maior DL, ad FM, quam CL, ad EM: hoc e&longs;t quam <lb/>AB, ad CD. <!-- KEEP S--></s>

<s>Sed maior erat proportio AB, ad CD, <lb/>quam BG ad DH; multo igitur maior proportio erit DL, <lb/>ad FM, quam BG, ad DH: hoc e&longs;t quam LH, ad MK: <lb/>&amp; permutando, maior proportio DL, ad LH, quam FM, <lb/>ad MK: &amp; componendo, maior DH, ad HL, quam FK, <pb/>ad KM: &amp; permutando, maior DH ad F<emph type="italics"/>K<emph.end type="italics"/>, quam LH, ad <lb/>M<emph type="italics"/>K<emph.end type="italics"/>: hoc e&longs;t, quam BG, ad DH: hoc e&longs;t minor propor&shy;<lb/>tio BG ad DH, quam DH, ad FK. </s>

<s>Quod demon&shy;<lb/>&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO VI.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si &longs;int tres magnitudines in&aelig;quales, &amp; ali&aelig; il&shy;<lb/>lis multitudine &aelig;quales bin&aelig;que in duplicata pri <lb/>marum proportione. </s>

<s>Sit autem minor proportio <lb/>prim&aelig; ad &longs;ecundam, quam &longs;ecund&aelig; ad tertiam in <lb/>primis; erit minor proportio prim&aelig; ad &longs;ecundam, <lb/>quam &longs;ecund&aelig; ad tertiam in &longs;ecundis. </s></p><p type="main">

<s>Sint tres magnitudines A, B, C, &amp; ali&aelig; illis multitudine <lb/>&aelig;quales D, E, F. quarum ip&longs;ius D ad E proportio &longs;it du&shy;<lb/>plicata eius, qu&aelig; e&longs;t A ad B: &amp; E ad F, duplicata eius, <lb/>qu&aelig; e&longs;t B ad C. &longs;it autem mi&shy;<lb/>nor proportio A ad B, quam <lb/>B ad C. <!-- KEEP S--></s>

<s>Dico minorem e&longs;se <lb/>proportionem D ad E, quam <lb/>E ad F. <!-- KEEP S--></s>

<s>Sit enim vt C ad B, <lb/>ita B ad G: &amp; vt B ad A, ita <lb/>A ad H. <!-- KEEP S--></s>

<s>Igitur G ad C dupli&shy;<lb/>cata erit proportio ip&longs;ius G ad <lb/>B, hoc e&longs;t B ad C: &longs;imiliter <lb/>erit H ad B, duplicata propor&shy;<lb/>tio ip&longs;ius A ad B. </s>

<s>Vt igitur <lb/>e&longs;t H ad B, ita erit D ad E: &amp; <lb/>vt G ad C, ita E ad F. Rur&shy;<lb/>&longs;us, quia minor e&longs;t proportio <lb/><figure id="id.043.01.097.1.jpg" xlink:href="043/01/097/1.jpg"/><lb/>A ad B, quam B ad C, &longs;ed vt A ad B, ita e&longs;t H ad A <pb/>&amp; vt B ad C, ita G ad B; erit ex &aelig;quali minor proportio <lb/>H ad B, quam G ad C, &longs;ed vt H ad B, ita erat D, ad <lb/>E: &amp; vt G ad C, ita E ad F; minor igitur proportio erit <lb/>D ad E, quam E ad F. <!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO VII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si &longs;int octo magnitudines quatern&aelig; propor&shy;<lb/>tionales: terti&aelig; autem vtriu&longs;que ordinis inter &longs;o <lb/>&longs;int vt prim&aelig;; erit vt compo&longs;ita ex primis ad com <lb/>po&longs;itam ex &longs;ecundis, ita compo&longs;ita ex tertiis ad <lb/>compo&longs;itam ex quartis. </s></p><p type="main">

<s>Sint octo magnitudines quatern&aelig; &longs;um&shy;<lb/>pt&aelig; proportionales, vt A ad B, ita C ad <lb/>D. &amp; vt E ad F, ita G ad H. &longs;it autem vt <lb/>A ad E, ita C ad G. <!-- KEEP S--></s>

<s>Dico e&longs;se vt AE, ad <lb/>ABF, ita CG, ad DH. <!-- KEEP S--></s>

<s>Quoniam enim <lb/>componendo e&longs;t vt AE, ad E, ita, CG, <lb/>ad G; &longs;ed vt E ad F, ita e&longs;t G, ad H; erit <lb/>ex &aelig;quali, vt AE, ad F, ita CG, ad H. <lb/><!-- KEEP S--></s>

<s>Eadem ratione erit vt AE, ad B, ita CG, <lb/>ad D: &amp; conuertendo, vt B ad AE, ita <lb/>D ad CG. &longs;ed vt AE, ad F, ita erat <lb/>CG ad H; ex &aelig;quali igitur erit vt B <lb/>ad F, ita D, ad H: &amp; componendo, vt <lb/>BF ad F, ita DH ad H: &amp; conuerten&shy;<lb/>do, vt F ad BF, ita H, ad DH. <!-- KEEP S--></s>

<s>Sed vt <lb/>AE, ad F, ita erat CG ad H; ex &aelig;qua <lb/>li igitur erit vt AE ad BF, ita CG, <lb/>ad DH. <!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><figure id="id.043.01.098.1.jpg" xlink:href="043/01/098/1.jpg"/><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO VIII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si &longs;int tres magnitudines &longs;e &longs;e &aelig;qualiter exce&shy;<lb/>dentes; &amp; ali&aelig; eiu&longs;dem generis illis multitudine <lb/>&aelig;quales, bin&aelig;que &longs;umpt&aelig; in duplicata primarum <lb/>proportione; erit vtriu&longs;que ordinis minor pro&shy;<lb/>portio compo&longs;it&aelig; ex primis ad compo&longs;itam ex &longs;e&shy;<lb/>cundis, quam compo&longs;it&aelig; ex &longs;ecundis ad compo&longs;i&shy;<lb/>tam ex tertijs. </s></p><p type="main">

<s>Sint tres magnitudines A, B, C, quarum C maxima <lb/>&aelig;que &longs;uperet B, atque <lb/>B, ip&longs;am A. &amp; totidem <lb/>eiu&longs;dem generis D, E, <lb/>F, &longs;itque F ad E du&shy;<lb/>plicata proportio ip&longs;ius <lb/>C ad B: &amp; E ad D, <lb/>duplicata ip&longs;ius B ad <lb/>A. <!-- KEEP S--></s>

<s>Dico AD, &longs;imul <lb/>ad BE, &longs;imul mino&shy;<lb/>tem e&longs;&longs;e proportionem <lb/>quam BE, &longs;imul ad <lb/>CF, &longs;imul. </s>

<s>E&longs;to enim <lb/>recta qu&aelig;piam GH, <lb/>ad aliam rectam &longs;ibi in <lb/>directum po&longs;itam HK, <lb/>vt magnitudo A ad ip <lb/>&longs;ius F duplam (hoc <lb/>enim fieri pote&longs;t) &amp; <lb/><figure id="id.043.01.099.1.jpg" xlink:href="043/01/099/1.jpg"/><lb/>&longs;uper ba&longs;im GK; con&longs;tituatur triangulum GLK, atque <lb/>in eo de&longs;cribatur parallelogrammum GHMN: &amp; vt e&longs;t <pb/>C ad B, ita fiat HM, ad <expan abbr="Mq.">Mque</expan> &amp; vt B ad A, ita QM, ad <lb/>MP, &amp; ip&longs;i GK, parallel&aelig; TPR, VQS, ducantur. <lb/></s>

<s>Quoniam igitur e&longs;t vt C, ad duplam ip&longs;ius F, ita GH, ad <lb/>HK; erit vt C ad F, ita e&longs;t par llelogrammum GM, ad <lb/>triangulum MHK: &longs;ed vt C, ad B, ita e&longs;t HM, ad <expan abbr="Mq;">Mque</expan> <lb/>hoc e&longs;t parallelogrammum GM, ad parallelogrammum <lb/>MV: &amp; vt F, ad E, ita triangulum MHK, ad triangu&shy;<lb/>lum MQS, ob duplicatam proportionem eius, qu&aelig; e&longs;t <lb/>HM ad <expan abbr="Mq.">Mque</expan> hoc e&longs;t ip&longs;ius C ad B; vt igitur trapezium <lb/>NK, ad NS trapezium, ita erit, per pr&aelig;cedentem, CF, <lb/>&longs;imul ad BE &longs;imul. </s>

<s>Rur&longs;us quoniam e&longs;t conuertendo, vt <lb/>parallelogrammum MV, ad parallelogrammum GM, ita <lb/>B ad C. &longs;ed vt parallelogrammum GM, ad triangulum <lb/>KHM, ita erat C, ad F: &amp; vt triangulum KHM, ad <lb/>triangulum QSM, ita F ad E; erit ex &aelig;quali, vt paral&shy;<lb/>lelogrammum MV, ad triangulum SQM, ita B, ad E. <lb/><!-- KEEP S--></s>

<s>Similiter ergo vt ante erit vt trapezium NS, ad NR tra&shy;<lb/>pezium, ita EB, &longs;imul ad AD, &longs;imul. </s>

<s>Rur&longs;us, quoniam <lb/>&aelig;que excedit LV, ip&longs;am LT, atque LG, ip&longs;am LV; <lb/>minor erit proportio LT ad LV, quam LV, ad LG: e&longs;t <lb/>autem trianguli LTR ad triangulum LVS, duplicata <lb/>proportio ip&longs;ius LT, ad LV, &amp; trianguli LVS, ad trian&shy;<lb/>gulum LGK, duplicata ip&longs;ius LV, ad LG, propter &longs;i&shy;<lb/>militudinem triangulorum; minor igitur proportio erit <lb/>trianguli LTR, ad triangulum LVS, quam trianguli <lb/>LVS, ad triangulum LGK; dempto igitur triangulo <lb/>LNM, communi, minor erit proportio trapezij NR, ad <lb/>trapezium NS, quam trapezij NS, ad trapezium NK. <lb/></s>

<s>Sed vt trapezium NR, ad trapezium NS, ita e&longs;t conuer&shy;<lb/>tendo AD &longs;imul ad BE, &longs;imul: &amp; vt trapezium NS, ad <lb/>trapezium NK, ita BE, &longs;imul ad CF, &longs;imul; minor igi&shy;<lb/>tur proportio erit AD, &longs;imul ad BE &longs;imul, quam BE &longs;i&shy;<lb/>mul ad CF, &longs;imul. </s>

<s>Quod demon&longs;trandum erat. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO IX.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si recta linea vtcumque &longs;ecta fuerit, cubus qui <lb/>fit &agrave; tota &aelig;qualis e&longs;t duobus &longs;olidis rectangulis, <lb/>qu&aelig; ex partibus, &amp; totius quadrato fiunt. </s></p><p type="main">

<s>Sit recta linea AB &longs;ecta in puncto C vtcumque. </s>

<s>Di&shy;<lb/>co cubum ex AB &aelig;qualem e&longs;se duobus &longs;olidis rectangu&shy;<lb/>lis, qu&aelig; fiunt ex AC CB, &amp; quadrato AB. <!-- KEEP S--></s>

<s>Quoniam <lb/><figure id="id.043.01.101.1.jpg" xlink:href="043/01/101/1.jpg"/><lb/>enim communi altitudine AB, e&longs;t vt rectangulum BAC <lb/>ad quadratum AB, ita &longs;olidum ex AB, &amp; rectangulo <lb/>BAC ad cubum ex AB, eademque ratione vt rectangu&shy;<lb/>lum ABC, ad quadratum AB, ita &longs;olidum e&longs;t AB, &amp; <lb/>rectangulo ABC ad cubum ex AB; erunt vt duo rectan&shy;<lb/>gula BAC, ABC ad quadratum AB, ita duo &longs;olida <lb/>ex AB, &amp; rectangulis BAC, ABC ad cubum ex AB. <lb/><!-- KEEP S--></s>

<s>Sed duo rectangula BAC, ABC &longs;unt &aelig;qualia quadrato <lb/>AC; duo igitur &longs;olida ex AB, &amp; rectangulis BAC, CBA, <lb/>&aelig;qualia &longs;unt cubo ex AB. <!-- KEEP S--></s>

<s>Sed &longs;olidum ex AB &amp; rectan&shy;<lb/>gulo BAC e&longs;t id quod fit ex AC, &amp; AC &amp; quadrato <lb/>AB; duo igitur &longs;olida ex AC, CB, &amp; quadrato AB &longs;i&shy;<lb/>mul &longs;umpta &aelig;qualia &longs;ua cubo ex AB. <!-- KEEP S--></s>

<s>Si igitur recta linea <lb/>vtcumque &longs;ecta fuerit, &amp;c. </s>

<s>Quod demon&longs;trandum erat. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO X.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si recta linea vtcumque &longs;ecta fuerit, cubus qui <lb/>fit &agrave; tota &aelig;qualis e&longs;t cubis partium, &amp; duobus &longs;o&shy;<lb/>lidis rectangulis, qu&aelig; partium triplis, &amp; earun&shy;<lb/>dem quadratis reciproce continentur. </s></p><p type="main">

<s>Sit recta linea AB &longs;ecta vtcumque in puncto C. <!-- KEEP S--></s>

<s>Dico <lb/>cubum ex AB &aelig;qualem e&longs;se duobus cubis ex AC, CB, <lb/>&amp; duobus &longs;olidis rectangulis, quorum alterum fit ex tripla <lb/><figure id="id.043.01.102.1.jpg" xlink:href="043/01/102/1.jpg"/><lb/>ip&longs;ius AC, &amp; quadrato BC; alterum autem ex tripla ip&shy;<lb/>&longs;ius BC, &amp; quadrato AC. <!-- KEEP S--></s>

<s>Quoniam enim quadratum <lb/>ex AB &aelig;quale e&longs;t duobus quadratis ex AC, CB, &amp; ei <lb/>quod bis fit ex AC CB: &amp; parallelepipeda elu&longs;dem al&shy;<lb/>titudinis inter &longs;e &longs;unt vt ba&longs;es; erit rectangulorum folido&shy;<lb/>rum id quod fit ex AC, &amp; quadrato AB &aelig;quale cubo ex <lb/>AC, &amp; ei, quod fit ex AC, &amp; rectangulo ACB bis, &amp; <lb/>ei, quod ex AC, &amp; quadrato BC. <!-- KEEP S--></s>

<s>Eadem ratione erit <lb/>quod fit ex BC, &amp; quadrato AB &aelig;quale cubo ex BC, &amp; <lb/>ei, quod fit ex BC, &amp; rectangulo ACB, bis &amp; ei, quod ex <lb/>BC, &amp; quadrato AC. <!-- KEEP S--></s>

<s>Sed cubus ex AB &aelig;qualis e&longs;t <lb/>duobus &longs;olidis ex AC CB. &amp; quadrato AB; cubus igi&shy;<lb/>tur ex AB &aelig;qualis e&longs;t duobus cubis ex AC CB, &amp; &longs;ex <lb/>&longs;olidis, quorum tres fiunt ex AC, &amp; duobus rectangulis <lb/>ex AC CB, &amp; quadrato BC: tria vero ex BC, &amp; duo&shy;<lb/>bus rectangulis ex AC CB, &amp; quadrato AC. <!-- KEEP S--></s>

<s>Sed quod <lb/>fit ex AC, &amp; rectangulo ACB, e&longs;t quod fit ex BC, &amp; <pb/>quadrato AC: &amp; quod fit ex BC, &amp; rectangulo ACB, <lb/>e&longs;t quod fit ex AC, &amp; quadrato BC; cubus igitur ex <lb/>AB &aelig;qualis e&longs;t duobus cubis ex AC CB, vna cum &longs;ex <lb/>&longs;olidis, quorum tria fiunt ex AC, &amp; BC quadrato, tria <lb/>autem ex BC, &amp; quadrato AC, hoc e&longs;t duobus &longs;olidis, <lb/>quorum alterum fit ex tripla ip&longs;ius AC, &amp; quadrato BC, <lb/>alterum ex tripla ip&longs;ius BC &amp; quadrato AC. <!-- KEEP S--></s>

<s>Quod de&shy;<lb/>mon&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XI.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si recta linea vtcumque &longs;ecta fuerit, cubus qui <lb/>fit &agrave; tota &aelig;qualis e&longs;t cubis partium vna cum &longs;oli&shy;<lb/>do rectangulo, quod totius tripla, &amp; partibus <lb/>continetur. </s></p><p type="main">

<s>Sit recta linea AB &longs;ecta in puncto C vtcumque. </s>

<s>Di&shy;<lb/>co cubum ex AB &aelig;qualem e&longs;se duobus cubis ex AC, <lb/>CB, vna cum &longs;olido rectangulo ex AC CB, &amp; tripla <lb/>ip&longs;ius AB. <!-- KEEP S--></s>

<s>Quoniam enim quod fit ex AC, &amp; rectan&shy;<lb/>gulo ACB, e&longs;t id quod fit ex BC, &amp; quadrato AC: &amp; <lb/>quod fit ex BC, &amp; rectangulo ACB, e&longs;t id, quod fit ex <lb/><figure id="id.043.01.103.1.jpg" xlink:href="043/01/103/1.jpg"/><lb/>AC &amp; quadrato BC. &longs;ed duo &longs;olida ex AC CB, &amp; re&shy;<lb/>ctangulo ACB &longs;unt id, quod fit ex compo&longs;ita vtriu&longs;que <lb/>altitudine AB, et rectangulo ACB; duo igitur pr&aelig;di&shy;<lb/>cta &longs;olida, qu&aelig; ex AC CB, &amp; earum quadratis recipro&shy;<lb/>ce fiunt &aelig;qualia &longs;unt &longs;olido ex AB BC CA, &amp; triplum <lb/>triplo, videlicet duo &longs;olida, qu&aelig; fiunt reciproce ex triplis <pb/>ip&longs;arum AC, CB, &amp; quadratis ex AC CB, &aelig;qualia &longs;i&shy;<lb/>mul ei, quod ter fit ex AB, BC, CA, hoc e&longs;t ei, quod <lb/>partibus AC CB, &amp; totius AB tripla continetur: additis <lb/>igitur communibus duobus cubis ex AC, CB, erit id, quod <lb/>&longs;it ex AC CB, &amp; tripla ip&longs;ius AB, &amp; duo cubi ex AC <lb/>CB, &aelig;qualia duobus &longs;olidis, qu&aelig; fiunt reciproce ex triplis <lb/>ip&longs;arum AC, CB, &amp; earundem AC, CB, quadratis, &amp; <lb/>duobus cubis ex AC, CB, hoc e&longs;t cubo ex AC. <!-- KEEP S--></s>

<s>Si igi&shy;<lb/>tur recta linea vtcumque &longs;ecta fuerit, &amp;c. </s>

<s>Quod demon&shy;<lb/>&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Hemi&longs;ph&aelig;rium duplum e&longs;t coni, cylindri au&shy;<lb/>tem &longs;ub&longs;e&longs;quialterum eandem ip&longs;i ba&longs;im, &amp; ean&shy;<lb/>dem altitudinem habentium. </s></p><p type="main">

<s>E&longs;to hemi&longs;ph&aelig;rium; cuius axis BD, ba&longs;is circulus, cu&shy;<lb/>ius diameter AC, &longs;uper quem cylindrus AE, &amp; conus <lb/><figure id="id.043.01.104.1.jpg" xlink:href="043/01/104/1.jpg"/><lb/>ABC, quorum communis axis &longs;it BD, ac propterea <lb/>etiam eadem altitudo. </s>

<s>Dico hemi&longs;ph&aelig;rium ABC, co&shy;<lb/>ni ABC e&longs;se duplum: cylindri autem AE <expan abbr="&longs;ub&longs;e&longs;quialter&utilde;">&longs;ub&longs;e&longs;quialterum</expan>. <lb/></s>

<s>&longs;uper ba&longs;im enim circulum RE, vertice D de&longs;cribatur <pb/>conus EDR. </s>

<s>Sectoque axe BD primo bifariam, deinde <lb/>&longs;ingulis eius partibus rur&longs;us bifariam, tran&longs;eant per pun&shy;<lb/>cta &longs;ectionum plana ba&longs;i hemi&longs;ph&aelig;rij AC &aelig;quidi&longs;tantia, <lb/>qu&aelig; &longs;ecent hemi&longs;ph&aelig;rium, conum, &amp; cylindrum. </s>

<s>Se&shy;<lb/>ctus igitur erit AE cylindrus in cylindros &aelig;qualium alti&shy;<lb/>tudinum: &longs;uper &longs;ectiones autem coni, atque hemi&longs;ph&aelig;rij <lb/>nempe circulos, quorum centra in axe BD exi&longs;tunt cy&shy;<lb/>lindri con&longs;tituti intelligantur binis quibu&longs;que proximis <lb/>&aelig;quidi&longs;tantibus planis interiecti, quorum axes omnes <lb/>&aelig;quales in BD. <!-- KEEP S--></s>

<s>Erit igitur cono EDR in&longs;cripta, &amp; ABC <lb/><figure id="id.043.01.105.1.jpg" xlink:href="043/01/105/1.jpg"/><lb/>hemi&longs;ph&aelig;rio circum&longs;cripta figura qu&aelig;dam ex cylindris <lb/>&aelig;qualium altitudinum. </s>

<s>Sint autem h&aelig; figur&aelig; ea ratione <lb/>h&aelig;c circum&longs;cripta illa in&longs;cripta, vt circum&longs;cripta excedat <lb/>hemi&longs;ph&aelig;rium, minori exce&longs;su, in&longs;cripta vero deficiat &agrave; <lb/>cono minori defectu quam &longs;it magnitudo propo&longs;ita, quan&shy;<lb/>tacumque illa &longs;it. </s>

<s>His con&longs;titutis, manife&longs;tum e&longs;t, reliquo <lb/>cylindri AE dempto hemi&longs;ph&aelig;rio in&longs;criptam e&longs;se figu&shy;<lb/>ram ex re&longs;iduis cylindrorum, in quos cylindrus AE &longs;e&shy;<lb/>ctus fuerit, demptis cylindris hemi&longs;ph&aelig;rio circum&longs;criptis, <lb/>deficientem &agrave; reliquo cylindri AE dempto hemi&longs;ph&aelig;rio <lb/>minori defectu magnitudine propo&longs;ita, eodem &longs;cilicet, <lb/>quo figura hemi&longs;ph&aelig;rio circum&longs;cripta excedit hemi&longs;ph&aelig;&shy;<lb/>rium, excepto re&longs;iduo cylindri infimi AS, dempta he&shy;<lb/>mi&longs;ph&aelig;rij portione, quam comprehendit. </s>

<s>Sit autem om-<pb/>nium pr&aelig;dictorum cylindri AE cylindrorum &longs;upremus <lb/>FE, cuius axis BH, &amp; communis &longs;ectio plani per pun&shy;<lb/>ctum H tran&longs;euntis ba&longs;i hemi&longs;ph&aelig;rij cum plano per axim <lb/>BD, &longs;it recta FGKHMNL. </s>

<s>Quoniam igitur rectan&shy;<lb/>gulum DHB bis vna cum duobus quadratis DH, BH, <lb/>&aelig;quale e&longs;t BD quadrato: &amp; rectangulum DHB bis <lb/>vna cum quadrato BH, e&longs;t rectangulum ex BD DH tan&shy;<lb/>quam vna, &amp; BH; rectangulum ex BD, DH tanquam <lb/>vna &amp; BH, vna cum quadrato DH &aelig;quale erit quadra&shy;<lb/>to BD, hoc e&longs;t quadrato FH: quorum quadratum KH <lb/>&aelig;quale e&longs;t rectangulo ex BD, DH, tanquam vna, &amp; BH; <lb/>reliquum igitur quadrati FH dempto quadrato KH &aelig;&shy;<lb/>quale erit reliquo quadrato DH, hoc e&longs;t quadrato GH: <lb/>&amp; quadruplum quadruplo reliquum quadrati FL dempto <lb/>quadrato MK toti GN quadrato, hoc e&longs;t reliquum circu <lb/>li, FL dempto circulo MK, &aelig;quale circulo GN. <!-- KEEP S--></s>

<s>Qua&shy;<lb/>re &amp; GP, cylindrus reliquo cylindri FE dempto QK, <lb/>cylindro &aelig;qualis erit, propter &aelig;qualitatem altitudinum. <lb/></s>

<s>Similiter o&longs;tenderemus &longs;ingula reliqua cylindrorum eiu&longs;&shy;<lb/>dem altitudinis, in quos totus cylindrus AE &longs;ectus fuit, <lb/>demptis cylindris hemi&longs;ph&aelig;rio circum&longs;criptis &aelig;qualia e&longs;&shy;<lb/>&longs;e &longs;ingulis cylindris cono EDR in&longs;criptis, qu&aelig; inter ea&shy;<lb/>dem plana interijciuntur. </s>

<s>Tota igitur figura ex pr&aelig;dictis <lb/>cylindrorum re&longs;iduis reliquo cylindri AE, dempto he&shy;<lb/>mi&longs;ph&aelig;rio in&longs;cripta &aelig;qualis erit figur&aelig; cono EDR in&shy;<lb/>&longs;cript&aelig;: deficit autem vtraque harum figurarum h&aelig;c &agrave; co&shy;<lb/>no ADR, illa &agrave; re&longs;iduo cylindri AE dempto hemi&longs;ph&aelig;&shy;<lb/>rio minori exce&longs;su magnitudine vtcumque propo&longs;ita; re&shy;<lb/>liquum igitur cylindri AE dempto hemi&longs;ph&aelig;rio &aelig;quale <lb/>e&longs;t cono EDR, &longs;ed conus EDR; hoc e&longs;t conus ABC cylin <lb/>dri AE e&longs;t pars tertia; reliquum igitur cylindri AE dem&shy;<lb/>pto hemi&longs;ph&aelig;rio, cylindri AE e&longs;t pars tertia, hoc e&longs;t cylin&shy;<lb/>drus AE triplus dicti re&longs;idui: <expan abbr="quamobr&etilde;">quamobrem</expan> AE cylindrus &longs;e&longs;&shy;<lb/>quialter hemi&longs;ph&aelig;rij ABC: &amp; <expan abbr="c&otilde;uertendo">conuertendo</expan>, hemi&longs;ph&aelig;rium <pb/>cylindri AE &longs;ub&longs;e&longs;quialterum: coni igitur ABC duplum. <lb/></s>

<s>Manife&longs;tum e&longs;t igitur propo&longs;itum. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XIII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis minor &longs;ph&aelig;r&aelig; portio, ad cylindrum, <lb/>cuius ba&longs;is &aelig;qualis e&longs;t circulo maximo, altitudo <lb/>autem eadem portioni, eam habet proportionem, <lb/>quam exce&longs;&longs;us, quo tripla &longs;emidiametri &longs;ph&aelig;r&aelig; <lb/>excedit tres deinceps proportionales, quarum ma <lb/>xima e&longs;t &longs;ph&aelig;r&aelig; &longs;emidiameter, media vero qu&aelig; <lb/>inter centra &longs;ph&aelig;r&aelig; &amp; ba&longs;is portionis interijci&shy;<lb/>tur; ad &longs;emidiametri &longs;ph&aelig;r&aelig; triplam. </s></p><p type="main">

<s>Sit &longs;ph&aelig;r&aelig;, cuius centrum D, &longs;emidiameter BD, mi&shy;<lb/>nor portio ABC, cuius axis BG &longs;egmentum &longs;emidiame&shy;<lb/>tri BD, ba&longs;is autem circulus, cuius diameter AC. <!-- KEEP S--></s>

<s>Sitque <lb/>EF, cylindrus, cu&shy;<lb/>ius axis, &longs;iue alti&shy;<lb/>tudo eadem BG: <lb/>ba&longs;is autem &aelig;qua&shy;<lb/>lis circulo maxi&shy;<lb/>mo, cuius &longs;emidia&shy;<lb/>meter BD. <!-- KEEP S--></s>

<s>Dico <lb/>portionem ABC, <lb/>ad cylindrum EF <lb/>eam habere pro&shy;<lb/><figure id="id.043.01.107.1.jpg" xlink:href="043/01/107/1.jpg"/><lb/>portionem, quam exce&longs;&longs;us, quo tripla ip&longs;ius BD, &longs;upe&shy;<lb/>rat tres BD, DG; &amp; minorem extremam ad ip&longs;as, qu&aelig; <lb/>&longs;it M; ad ip&longs;ius BD triplam. </s>

<s>vertice enim D, ba&longs;i cylin&shy;<lb/>dri EF, cuius diameter FH de&longs;cribatur conus FDH, cu&shy;<lb/>ius intelligatur fru&longs;tum FHKL ab&longs;ci&longs;sum plano, quod ab-<pb/>&longs;cidit portionem ABC, plano circuli FH parallelum. <lb/></s>

<s>Quoniam igitur fru&longs;tum FH<emph type="italics"/>K<emph.end type="italics"/>L &aelig;quale e&longs;t cylindri EF <lb/>re&longs;iduo, dempta ABC portione, quod ex pr&aelig;cedenti theo <lb/>remate per&longs;picuum e&longs;se debet: erit portio ABC &aelig;qualis <lb/>ei, quod relinquitur cylindri EF, &longs;i fru&longs;tum auferatur <lb/>FHKL: &longs;ed hoc reliquum e&longs;t ad cylindrum EF, vt exce&longs;&shy;<lb/>&longs;us, quo tripla line&aelig; FH, &longs;uperat tres deinceps proportio&shy;<lb/>nales FH, KL, &amp; minorem extrema, ad triplam line&aelig; FH: <lb/><gap/>vt FH, ad KL, ita e&longs;t BD ad DG, &amp; DG, ad M; vt igi&shy;<lb/>tur exce&longs;&longs;us, quo tripla ip&longs;ius BD, &longs;uperat tres BD, DG, <lb/>&amp; M, &longs;imul, ad line&aelig; BD triplam, ita erit portio ABC ad <lb/>cylindrum EF. <!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XIV.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis portio &longs;ph&aelig;r&aelig; ab&longs;ci&longs;sa duobus planis <lb/>parallelis alteroper centrum acto ad cylindrum, <lb/>cuius ba&longs;is e&longs;t eadem ba&longs;i portionis, &longs;iue circu&shy;<lb/>lo maximo, &amp; eadem altitudo, eam habet pro&shy;<lb/>portionem, quam exce&longs;&longs;us, quo maior extrema ad <lb/>&longs;ph&aelig;r&aelig; &longs;emidiametrum, &amp; axim portionis exce&shy;<lb/>dit tertiam partem axis portionis; ad maiorem ex&shy;<lb/>tremam antedictam. </s></p><p type="main">

<s>Sit portio AB <lb/>CD, &longs;ph&aelig;r&aelig;, cu <lb/>ius centrum F, <lb/>ab&longs;ci&longs;&longs;a duobus <lb/>planis parallelis <lb/>altero per <expan abbr="centr&utilde;">centrum</expan> <lb/>F tran&longs;eunte; <lb/>axis autem por&shy;<lb/>tionis fit FG: &amp; <lb/><figure id="id.043.01.108.1.jpg" xlink:href="043/01/108/1.jpg"/><pb/>maior ba&longs;is, circulus maximus, cuius diameter AD, minor <lb/>autem, cuius diameter BC: &amp; cylindrus AE, cuius ba&longs;is <lb/>circulus AD, axis FG; &amp; vt FG ad FA, ita &longs;it FA, ad <lb/>MN, &agrave; qua ab&longs;cindatur NO, pars tertia ip&longs;ius FG. <!-- KEEP S--></s>

<s>Dico <lb/>ABCD <expan abbr="portion&etilde;">portionem</expan> ad cylindrum AE e&longs;&longs;e vt OM ad MN. <lb/><!-- KEEP S--></s>

<s>Po&longs;ita enim G <lb/>H, &aelig;quali ip&longs;i <lb/>FG, de&longs;criba&shy;<lb/>tur circa axim <lb/>FG, cylindrus <lb/>L<emph type="italics"/>K<emph.end type="italics"/>, &amp; conus <lb/>HFK. </s>

<s>Quoniam <lb/>igitur duo cylin <lb/>dri AE, LK, <lb/>&longs;unt eiu&longs;dem al&shy;<lb/><figure id="id.043.01.109.1.jpg" xlink:href="043/01/109/1.jpg"/><lb/>titudinis, erunt inter &longs;e vt ba&longs;es, AD, KH. hoc e&longs;t cy&shy;<lb/>lindrus AE ad cylindrum LK, duplicatam habebit pro&shy;<lb/>portionem diametri AD, ad diametrum KH, hoc e&longs;t eius, <lb/>qu&aelig; e&longs;t &longs;emidiametri AF ad &longs;emidiametrum GH. hoc e&longs;t <lb/>eam, qu&aelig; e&longs;t MN ad GH, &longs;iue FG. <!-- KEEP S--></s>

<s>Sed vt FG ad tertiam <lb/>&longs;ui partem NO, ita e&longs;t cylindrus KL, ad conum KFH; <lb/>ex &aelig;quali igitur, erit vt MN ad NO, ita cylindrus AE <lb/>ad conum <emph type="italics"/>K<emph.end type="italics"/>FH, hoc e&longs;t ad reliquum cylindri AE dem <lb/>pta ABCD portione: &amp; per conuer&longs;ionem rationis, vt <lb/>NM, ad MO, ita cylindrus AE ad portionem ABCD: <lb/>&amp; conuertendo, vt MO ad MN, ita portio ABCD ad <lb/>cylindrum AE. <!-- KEEP S--></s>

<s>Quod e&longs;t propo&longs;itum. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XV.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis portio &longs;ph&aelig;r&aelig; ab&longs;ci&longs;&longs;a duobus planis <lb/>parallelis neutro per centrum, nec centrum inter&shy;<lb/>cipientibus ad cylindrum, cuius ba&longs;is &aelig;qualis e&longs;t <pb/>circulo maximo, altitudo autem eadem portioni, <lb/>eam <expan abbr="proportion&etilde;">proportionem</expan> habet, quam exce&longs;&longs;us, quo maior <lb/>extrema ad triplas &longs;emidiametri &longs;ph&aelig;r&aelig;, &amp; eius <lb/>qu&aelig; inter <expan abbr="centr&utilde;">centrum</expan> &longs;ph&aelig;r&aelig;, &amp; minoris ba&longs;is portio&shy;<lb/>nis interijcitur, &longs;uperat tres deinceps <lb/>proportionales, quarum maxima e&longs;t <lb/>qu&aelig; inter centra &longs;ph&aelig;r&aelig;, &amp; minoris <lb/>ba&longs;is, media autem, qu&aelig; inter cen&shy;<lb/>tr&aelig; &longs;ph&aelig;r&aelig;, &amp; maioris ba&longs;is portio&shy;<lb/>nis interijcitur; ad maiorem extre&shy;<lb/>mam antedictam. </s></p><p type="main">

<s>Sit portio ABCD &longs;ph&aelig;r&aelig;, cuius centrum <lb/>E, ab&longs;ci&longs;sa duobus planis parallelis, neutro <lb/>per E tran&longs;eunte, nec E <expan abbr="intercipi&etilde;tibus">intercipientibus</expan>, cuius <lb/>maior ba&longs;is &longs;it circulus, cui diameter AD. <lb/>minor autem cuius diameter BC, axis GH. <lb/>circa quem cylindrus OS, con&longs;i&longs;tat, cuius <lb/>ba&longs;is &longs;it circulus circa SR &aelig;qualis circulo <lb/>maximo: &longs;ph&aelig;r&aelig; autem &longs;emidiater &longs;it EHG. <lb/>&amp; vt GE ad EH, ita &longs;it HE ad V: &amp; po&shy;<lb/><figure id="id.043.01.110.1.jpg" xlink:href="043/01/110/1.jpg"/><lb/>&longs;ita T tripla ip&longs;ius EF, &amp; X itidem tripla ip&longs;ius EG, vt X <pb/>ad T, ita fiat T ad ZY, cuius Z<foreign lang="greek">w</foreign>, tribus GE, EH, V <lb/>&longs;imul &longs;it &aelig;qualis. </s>

<s>Dico ABCD portio&shy;<lb/>nem ad cylindrum SO e&longs;se vt <foreign lang="greek">w*u</foreign> ad <foreign lang="greek">*u</foreign>Z. <lb/><!-- KEEP S--></s>

<s>Ab&longs;ci&longs;sa enim GK ip&longs;i EG &aelig;quali, cylin&shy;<lb/>drus PN circa axim GH, &amp; conus KEN <lb/>con&longs;tituantur vt in pr&aelig;cedenti. </s>

<s>planum igi&shy;<lb/>tur ab&longs;cindens portionem facit fru&longs;tum coni <lb/>KEN, quod &longs;it KLMN, cuius minor ba&shy;<lb/>&longs;is circulus, cui diameter LM; maior autem <lb/>cui diameter KN. </s>

<s>Et vt e&longs;t GE ad EF, hoc <lb/>e&longs;t GK ad SH, ita &longs;it EF, vel SH, ad I. <lb/>vt igitur in pr&aelig;cedenti, o&longs;tenderemus cylin&shy;<lb/>drum SO ad cylindrum PN e&longs;se vt I ad <lb/>GK &longs;iue ad EG. <!-- KEEP S--></s>

<s>Quoniam igitur &longs;unt ter <lb/>n&aelig; deinceps proportionales GE, EF, I, &amp; <lb/>X, T, ZY, e&longs;tque vt FE ad EG ita T ad X; <lb/>erit vt I ad EG, hoc e&longs;t vt cylindrus SO ad <lb/>PN <expan abbr="cylindr&utilde;">cylindrum</expan> ita ZY ad X. <!-- KEEP S--></s>

<s>Et quoniam e&longs;t vt <lb/>GE ad EH, ita EH ad V: hoc e&longs;t, vt GK ad <lb/>LH. ita LH ad V: &amp; ponitur X tripla ip&longs;ius <lb/><figure id="id.043.01.111.1.jpg" xlink:href="043/01/111/1.jpg"/><lb/>EG, hoc e&longs;t ip&longs;ius GK, vt autem e&longs;t triplaip&longs;ius GK ad <lb/>tres deinceps proportionales GK, LH, V, ita e&longs;t cylin&shy;<lb/>drus PN ad fru&longs;tum LKNM; erit vt X ad tres GE, EH, <lb/>V &longs;imul hoc e&longs;t ad lineam <foreign lang="greek">w</foreign>Z, ita cylindrus PN ad fru-<pb/>&longs;lum KLMN. </s>

<s>Sed vt ZY ad X, ita erat cylindrus SO <lb/>ad PN cylindrum; ex &aelig;quali igitur erit vt ZY ad Z<foreign lang="greek">w</foreign>, <lb/>ita cylindrus SO ad fru&longs;tum KLMN: hoc e&longs;t, ad reli&shy;<lb/>quum cylindri SO dempta ABCD portione, &amp; per con&shy;<lb/>uer&longs;ionem rationis, vt ZY, ad Y<foreign lang="greek">w</foreign>, ita cylindrus SO ad <lb/><expan abbr="portion&etilde;">portionem</expan> ABCD: &amp; conuertendo vt <foreign lang="greek">w</foreign>Y ad YZ, ita por&shy;<lb/>tio ABCD ad SO cylindrum. </s>

<s>Quod <expan abbr="demon&longs;trand&utilde;">demon&longs;trandum</expan> erat. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XVI.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis maior &longs;ph&aelig;r&aelig; portio ad cylindrum, cu&shy;<lb/>ius ba&longs;is &aelig;qualis e&longs;t circulo maximo, altitudo au&shy;<lb/>tem eadem portioni eam habet proportionem, <lb/>quam ad axim portionis habet exce&longs;&longs;us, quo &longs;eg&shy;<lb/>mentum axis portionis inter &longs;ph&aelig;r&aelig; centrum, &amp; <lb/>ba&longs;im portionis interiectum &longs;uperat tertiam par&shy;<lb/>tem minoris extrem&aelig; maiori po&longs;ita pr&aelig;dicto axis <lb/>&longs;egmento in proportione &longs;emidiametri &longs;ph&aelig;r&aelig; <lb/>ad pr&aelig;dictum <lb/><expan abbr="&longs;egment&utilde;">&longs;egmentum</expan>, vna <lb/>cum &longs;ub&longs;e&longs;qui <lb/>altera reliqui <lb/>axis &longs;egmenti. </s></p><figure id="id.043.01.112.1.jpg" xlink:href="043/01/112/1.jpg"/><p type="main">

<s>Sit &longs;ph&aelig;r&aelig;, cu <lb/>ius <expan abbr="centr&utilde;">centrum</expan> G, dia <lb/>meter DGE ma <lb/>ior portio ABC, <lb/>axis autem por&shy;<lb/>tionis BGF, com <lb/>munis cylindro <lb/>KH, cuius ba&longs;is &aelig;qualis &longs;it circulo maximo; ba&longs;is autem <pb/>portionis circulus, cuius diameter AC, &amp; vt EG ad GF, <lb/>ita &longs;it GF ad S, &amp; S ad FM, cuius &longs;it pars tertia FN, &amp; <lb/>ponatur ip&longs;ius BG, &longs;ub&longs;e&longs;quialtera GL. <!-- KEEP S--></s>

<s>Dico portio&shy;<lb/>nem ABC ad cylindrum KH e&longs;se vt LN ad BF. <!-- KEEP S--></s>

<s>Nam <lb/>vt FG ad GE, &longs;iue ad BG, ita &longs;it EG ad PQ, &agrave; qua <lb/>ab&longs;cindatur QR, pars tertia ip&longs;ius FG. <!-- KEEP S--></s>

<s>Et plano per G <lb/>tran&longs;eunte ba&longs;ibus cylindri KH, &amp; ABC portionis pa&shy;<lb/>rallelo &longs;ecentur vna cylindrus KH in duos cylindros DH, <lb/>EK: &amp; portio ABC, in portionem ECAD, &amp; DBE <lb/>hemi&longs;ph&aelig;rium. </s>

<s>Quoniam igitur e&longs;t conuertendo, vt PQ <lb/>ad EG, ita EG <lb/>ad GF, &amp; e&longs;t ip&shy;<lb/>&longs;ius GF pars ter <lb/>tia QR, erit por&shy;<lb/>tio DACE ad <lb/>cylindrum EK, <lb/>vt PR ad <expan abbr="Pq.">Pque</expan> <lb/>Rur&longs;us, quia e&longs;t <lb/>vt EG ad GF: <lb/>hoc e&longs;t vt PQ ad <lb/>EG, ita GF ad <lb/>S, &amp; vt EG ad <lb/>GF, ita e&longs;t S ad <lb/>FM; erit ex &aelig;qua <lb/><figure id="id.043.01.113.1.jpg" xlink:href="043/01/113/1.jpg"/><lb/>li, vt PQ ad GF, ita GF ad FM. </s>

<s>Sed vt GF ad RQ, <lb/>ita e&longs;t MF ad FN, tertiam ip&longs;ius MF partem, ex &aelig;quali <lb/>igitur erit vt PQ ad QR, ita GF ad FN, &amp; per conuer&shy;<lb/>&longs;ionem rationis, &amp; conuertendo, vt PR ad PQ, ita NG ad <lb/>GF. <!-- KEEP S--></s>

<s>Sed vt PR ad PQ, ita erat portio ECAD ad cy&shy;<lb/>lindrum EK; vtigitur NG ad GF, ita erit portio EC <lb/>AD ad cylindrum EK. <!-- KEEP S--></s>

<s>Sed vt GF ad FB, ita e&longs;t cy&shy;<lb/>lindrus EK ad cylindrum KH: ex &aelig;quali igitur vt NG <lb/>ad BF, ita portio ECAD, ad cylindrum KH. <!-- KEEP S--></s>

<s>Similiter <lb/>o&longs;tenderemus e&longs;se, vt GL ad BF, ita DBE hemi&longs;ph&aelig;-<pb/>rium ad cylindrum KH, cum vt LG ad GB, ita &longs;it he&shy;<lb/>mi&longs;ph&aelig;rium DBE ad cylindrum DH. vt igitur prima <lb/>cum quinta ad &longs;ecundam, ita tertia cum &longs;exta ad quartam; <lb/>videlicet, vt tota LN ad BF, ita portio ABC ad cylin&shy;<lb/>drum KH. <!-- KEEP S--></s>

<s>Quod erat demon&longs;trandum. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XVII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis portio &longs;ph&aelig;r&aelig; ab&longs;ci&longs;&longs;a duobus planis <lb/>parallelis centrum intercipientibus ad cylin&shy;<lb/>drum, eiu&longs;dem altitudinis, cuius ba&longs;is &aelig;qualis e&longs;t <lb/>circulo maximo, eam habet proportionem, quam <lb/>ad axim portionis habet exce&longs;&longs;us, quo axis portio&shy;<lb/>nis &longs;uperat tertiam partem compo&longs;it&aelig; ex duabus <lb/>minoribus extremis, maioribus po&longs;itis duobus <lb/>axis &longs;egmentis, qu&aelig; fiunt &agrave; centro &longs;ph&aelig;r&aelig; in ra&shy;<lb/>tionibus, &longs;emidiametri &longs;ph&aelig;r&aelig; ad pr&aelig;dicta &longs;eg&shy;<lb/>menta. </s></p><p type="main">

<s>Sit portio AB <lb/>CD, &longs;ph&aelig;r&aelig;, cu&shy;<lb/>ius centrum G, <lb/>ab&longs;ci&longs;sa duobus <lb/>planis parallelis <lb/>centrum G inter&shy;<lb/>cipientibus, quod <lb/>erit in axe portio&shy;<lb/>nis, qui &longs;it HK. <lb/></s>

<s>Sectiones autem <lb/><figure id="id.043.01.114.1.jpg" xlink:href="043/01/114/1.jpg"/><lb/>fact&aelig; &agrave; pr&aelig;dictis planis &longs;int circuli, quorum diametri AD, <lb/>BC, qui circuli erunt ba&longs;es oppo&longs;it&aelig; portionis. </s>

<s>Sectaque <lb/>per punctum G, portione ABCD plano ad axim erecto, <pb/>atque ideo &amp; portionis ba&longs;ibus parallelo; &longs;uper &longs;ectionem, <lb/>qu&aelig; erit circulus maximus, cuius diameter LM, duo cylin&shy;<lb/>dri de&longs;cripti intelligantur, ad oppo&longs;ita portionis ba&longs;ium pla <lb/>na terminati ex illis autem totus cylindrus compo&longs;itus EF, <lb/>cuius ba&longs;is &aelig;qua&shy;<lb/>lis circulo maxi&shy;<lb/>mo LM. <!-- KEEP S--></s>

<s>Deinde <lb/>in &longs;egmento GH <lb/>&longs;umpta OH, ter&shy;<lb/>tia parte minoris <lb/>extrem&aelig; maiori <lb/>GH in proportio <lb/>ne, qu&aelig; e&longs;t LG ad <lb/>GH; &amp; in &longs;egmen <lb/>to GK, &longs;umatur <lb/><figure id="id.043.01.115.1.jpg" xlink:href="043/01/115/1.jpg"/><lb/>NK, tertia pars minoris extrem&aelig; maiori GK, in propor&shy;<lb/>tione, qu&aelig; e&longs;t LG ad GK. <!-- KEEP S--></s>

<s>Dico portionem ABCD <lb/>ad cylindrum EF, e&longs;se vt NO ad KH. <!-- KEEP S--></s>

<s>Sumptis enim <lb/>ij&longs;dem, qu&aelig; in pr&aelig;cedentis &longs;ump&longs;imus, demon&longs;trationem <lb/>&longs;imiliter o&longs;tenderemus tam portionem LBCM ad cy&shy;<lb/>lindrum EF, e&longs;se vt OG ad <emph type="italics"/>K<emph.end type="italics"/>H, quam portionem LA <lb/>DM ad eundem EF cylindrum, vt NG ad eundem axim <lb/>KH, vt igitur prima cum quinta ad &longs;ecundam, ita tertia <lb/>cum &longs;exta ad quartam: videlicet, vt NO ad KH, ita por <lb/>tio ABCD ad EF cylindrum. </s>

<s>Quod demon&longs;trandum <lb/>crat. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XVIII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omne conoides parabolicum dimidium e&longs;t <lb/>cylindri, coni autem &longs;e&longs;quialterum eandem ip&longs;i <lb/>ba&longs;im, &amp; eandem altitudinem habentium. </s></p><pb/><p type="main">

<s>Sit conoides parabolicum ABC, &amp; cylindrus AE, &amp; <lb/>conus ABC, quorum omnium &longs;it eadem ba&longs;is circulus, <lb/>cuins diameter AC, axis autem BD, ac proinde vna om&shy;<lb/>nium altitudo. </s>

<s>Dico conoidis ABC e&longs;se cylindri AE <lb/>dimidium, coni autem ABC &longs;e&longs;quialterum. </s>

<s>Secto enim <lb/>axe BD in tot partes &aelig;quales, quarum infima ad ba&longs;im &longs;it <lb/>MD, vt figura ex cylindris &aelig;qualium altitudinum conoi&shy;<lb/>di ABC circum&longs;cripta, in&longs;criptam &longs;uperet minori &longs;pacio <lb/>quantacumque magnitudine propo&longs;ita, &amp; &longs;it hoc factum. <lb/></s>

<s>Et quoniam quibus planis parallelis tran&longs;euntibus per pr&aelig;&shy;<lb/><figure id="id.043.01.116.1.jpg" xlink:href="043/01/116/1.jpg"/><lb/>dictas &longs;ectiones axis BD &longs;ecatur conoides ABC, ij&longs;dem <lb/>&longs;ecatur triangulum per axim ABC, eruntque &longs;ectiones <lb/>parallel&aelig;: &longs;it triangulo ABC circum&longs;cripta figura ex pa&shy;<lb/>rallelogrammis &aelig;qualium altitudinum, qu&aelig; triangulum &amp; <lb/>ip&longs;a excedat minori &longs;pacio quantacumque magnitudine <lb/>propo&longs;ita. </s>

<s>Cylindrorum autem qui &longs;unt circa conoides, &amp; <lb/>parallelogrammorum multitudine &aelig;qualium, qu&aelig; &longs;unt cir&shy;<lb/>ca triangulum ABC, duo proximi ba&longs;i AC cylindri &longs;int <lb/>AF, HL, &amp; totidem parallelogramma illis re&longs;pondentia <lb/>inter eadem plana parallela &longs;int AF, GK. <!-- KEEP S--></s>

<s>Quoniam igi-<pb/>tur in parabola ABC rectis ad diametrum ordinatim ap&shy;<lb/>plicatis e&longs;t vt BM ad BD longitudine, ita MH ad AD <lb/>potentia: hoc e&longs;t, ita circulus, cuius diameter HMN, ad <lb/>circulum, cuius diameter ADC, hoc e&longs;t ita cylindrus HL, <lb/>ad cylindrum AF propter &aelig;qualitatem altitudinum: &longs;ed <lb/>vt BM ad BD, ita e&longs;t GM ad AD, propter &longs;imilitudinem <lb/>triangulorum, hoc e&longs;t ita <expan abbr="parallelogr&atilde;mum">parallelogrammum</expan> GK ad AF, pa&shy;<lb/>rallelogrammum; ergo vt parallelogrammum GK ad paral <lb/><expan abbr="lelogr&atilde;mum">lelogrammum</expan> AF, ita e&longs;t cylindrus HL ad cylindrum AF. <lb/><!-- KEEP S--></s>

<s>Similiter o&longs;tenderemus reliqua parallelogramma, qu&aelig; &longs;unt <lb/><figure id="id.043.01.117.1.jpg" xlink:href="043/01/117/1.jpg"/><lb/>circa <expan abbr="tri&atilde;gulum">triangulum</expan> ABC e&longs;se cum reliquis cylindris, qui &longs;unt <lb/>circa conoides ABC bina &longs;umpta prout inter &longs;e re&longs;pon&shy;<lb/>dent in eadem proportione; &longs;emper igitur componendo, &amp; <lb/>ex &aelig;quali erit vt tota figura triangulo ABC circum&longs;cripta <lb/>ad parallelogrammum AF, ita figura conoidi circum&longs;cri&shy;<lb/>pta ad AF cylindrum: &longs;ed vt parallelogrammum AF, ad <lb/>parallelogrammum AE, ita e&longs;t cylindrus AF ad cylindrum <lb/>AE, propter &aelig;qualitatem omnifariam &longs;umptarum altitu&shy;<lb/>dinum; ex &aelig;quali igitur erit vt figura triangulo ABC cir&shy;<lb/>cum&longs;cripta ad parallelogrammum AE, ita figura conoidi <pb/>ABC circum&longs;cripta ad AE cylindrum: vtraque autem <lb/>circum&longs;criptarum figurarum excedit &longs;ibi in&longs;criptam mino&shy;<lb/>ri &longs;pacio quantacumque magnitudine propo&longs;ita, vt igitur <lb/>triangulum ABC, ad parallelogrammum AE, ita erit co&shy;<lb/>noides ABC, ad cylindrum AE. <!-- KEEP S--></s>

<s>Sed triangulum ABC <lb/>e&longs;t parallelogrammi AE dimidium; igitur conoides ABC <lb/>e&longs;t cylindro AE dimidium: &longs;ed cylindrus AE e&longs;t coni <lb/>ABC, triplum: igitur conoides ABC, erit coni ABC <lb/>&longs;e&longs;quialterum. </s>

<s>Quod demon&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XIX.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis pri&longs;matis triangulam ba&longs;im habentis <lb/>centrum grauitatis rectam lineam, qu&aelig; cuiu&longs;libet <lb/>trium laterum bipartiti &longs;ectionem, &amp; oppo&longs;iti pa&shy;<lb/>rallelogrammi centrum iungit, ita diuidit, vt <lb/>pars, qu&aelig; attingit latus &longs;it dupla reliqu&aelig;. </s></p><p type="main">

<s>Sit pri&longs;ma, quale diximus AB <lb/>CDEF, &longs;ectoque vno ip&longs;ius la&shy;<lb/>tere BF in puncto G, bifariam <lb/>parallelogrammi oppo&longs;iti &longs;it cen <lb/>trum H, &amp; iuncta GH, cuius <lb/>pars GK &longs;it dupla reliqu&aelig; <emph type="italics"/>K<emph.end type="italics"/>H. <lb/><!-- KEEP S--></s>

<s>Dico pri&longs;matis ABCDEF, cen <lb/>trum grauitatis e&longs;&longs;e K. <!-- KEEP S--></s>

<s>Per pun <lb/>ctum enim H ducatur NO ip&shy;<lb/>&longs;i AE, vel CD parallela, qu&aelig; <lb/>ip&longs;as AC, ED, &longs;ecabit <expan abbr="bifari&atilde;">bifariam</expan>: <lb/>iunctisque BN, FO, ducatur per <lb/>punctum <emph type="italics"/>K<emph.end type="italics"/>, ip&longs;i FB, vel NO <lb/><figure id="id.043.01.118.1.jpg" xlink:href="043/01/118/1.jpg"/><lb/>parallela LM. <!-- KEEP S--></s>

<s>Quoniam igitur e&longs;t vt HK ad KG, ita <lb/>NL ad LB, &amp; OM ad MF, erit NL, ip&longs;ius LB, &amp; OM <pb/>ip&longs;ius MF dimidia: &longs;ed &amp; rect&aelig; BN, FO, triangulorum <lb/>ba&longs;es AC, ED, bifariam &longs;e&shy;<lb/>cant; erunt igitur puncta L, M, <lb/>centra grauitatis triangulorum <lb/>ABC, DEF, oppo&longs;itorum. <lb/></s>

<s>Pri&longs;matis igitur ABCDEF <lb/>axis erit LM: quare in eius bi&shy;<lb/>partiti &longs;ectione pri&longs;matis ABC <lb/>DEF centrum grauitatis: &longs;ectus <lb/>autem e&longs;t axis LM bifariam in <lb/>puncto K; nam ob parallelogram <lb/>ma e&longs;t vt NH ad HO, ita LK <lb/>ad KM; pri&longs;matis igitur ABC <lb/>DEF, centrum grauitatis erit <emph type="italics"/>K.<emph.end type="italics"/><lb/>Quod demon&longs;trandum erat. </s></p><figure id="id.043.01.119.1.jpg" xlink:href="043/01/119/1.jpg"/><p type="head">

<s><emph type="italics"/>PROPOSITIO XX.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis pri&longs;matis ba&longs;im habentis trapezium, cu&shy;<lb/>ius duo latera inter &longs;e &longs;int parallela centrum gra&shy;<lb/>uitatis rectam lineam, qu&aelig; &aelig;que inter &longs;e di&longs;tan&shy;<lb/>tium parallelogrammorum centra iungit, ita di&shy;<lb/>uidit, vt pars, qu&aelig; dictorum parallelogrammorum <lb/>minus attingit &longs;it ad reliquam, vt duorum ba&longs;is la <lb/>terum parallelorum dupla maioris vna cum mino<lb/>ri ad duplam minoris vna cum maiori. </s></p><p type="main">

<s>Sit pri&longs;ma ABCDEFGH, cuius ba&longs;is trapezium <lb/>ABCD, habens duo latera AD, BC, inter &longs;e paralle&shy;<lb/>la, &longs;itque eorum AD maius: parallela igitur erunt inter &longs;e <lb/>duo parallelogramma BG, AH. <!-- KEEP S--></s>

<s>Sit parallelogrammi AH <lb/>centrum K, &amp; BG parallelogrammi centrum L, iuncta-<pb/>que LK, fiat vt dupla ip&longs;ius AD vna cum BC ad du&shy;<lb/>plam ip&longs;ius BC vna cum AD, ita LR ad RK. </s>

<s>Dico <lb/>pri&longs;matis AG centrum grauitatis e&longs;se R. <!-- KEEP S--></s>

<s>Ducantur enim <lb/>per puncta L, K lateribus pri&longs;matis, atque ideo inter &longs;e <lb/>parallel&aelig; MN, OP, qu&aelig; <lb/>ob centra K, L, &longs;ecabunt <lb/>oppo&longs;ita parallelogrammo&shy;<lb/>rum latera bifariam, eas <lb/>&longs;ectiones connectant MO, <lb/>NP, ip&longs;ique MN, vel <lb/>OP, parallela ducatur Q <lb/>RS. <!-- KEEP S--></s>

<s>Quoniam igitur e&longs;t <lb/>vt LR ad R<emph type="italics"/>K<emph.end type="italics"/>, hoc e&longs;t vt <lb/>dupla ip&longs;ius AD vna cum <lb/>BC ad duplam ip&longs;ius BC <lb/>vna cum AD, ita OQ ad <lb/>QM, &amp; recta MO bifa&shy;<lb/><figure id="id.043.01.120.1.jpg" xlink:href="043/01/120/1.jpg"/><lb/>riam &longs;ecat AC trapezij latera parallela, punctum Q, AC <lb/>trapezij centrum grauitatis; &longs;imiliter &amp; punctum S erit EG, <lb/>trapezij centrum grauitatis: pri&longs;matis igitur AG axis erit <lb/>QS, &amp; centrum grauitatis R, quod e&longs;t in medio axis. <lb/></s>

<s>Omnis igitur pri&longs;matis ba&longs;im habentis trapezium, &amp;c. <lb/></s>

<s>Quod demon&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXI.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si &agrave; quolibet pr&aelig;dicto pri&longs;mate duo pri&longs;mata <lb/>be&longs;es habentia triangulas &longs;int ita ab&longs;ci&longs;&longs;a, vt pa&shy;<lb/>rallelepipedum relinquant ba&longs;im habens minus <lb/>parallelogrammorum inter &longs;e parallelorum pr&aelig;&shy;<lb/>dicti pri&longs;matis, maioris autem partes &aelig;qualia pa&shy;<lb/>rallelogramma ip&longs;um parallelepipedum relin&shy;<pb/>quat, centrum grauitatis vtriu&longs;que ab&longs;ci&longs;si pri&longs;&shy;<lb/>matis tamquam vnius magnitudinis rectam line&shy;<lb/>lam, qu&aelig; pr&aelig;dicti pri&longs;matis parallelorum paral <lb/>lelogrammorum centra iungit, ita diuidit, vt <lb/>pars, qu&aelig; minus parallelogrammum attingit &longs;it <lb/>dupla reliqu&aelig;. </s></p><p type="main">

<s>Sit pri&longs;ma ABCDEFGH, cuius ba&longs;es oppo&longs;it&aelig; tra&shy;<lb/>pezia ADHE, BCGF. </s>

<s>Sint autem AD, EH, paral&shy;<lb/>lel&aelig;, quarum maior EH. <!-- KEEP S--></s>

<s>Oppo&longs;ita igitur parallelogram&shy;<lb/>ma AC, EG, inter &longs;e erunt parallela, quorum maius EG. <lb/><!-- KEEP S--></s>

<s>At per rectas AB, CD, &longs;ectum &longs;it pri&longs;ma. </s>

<s>ABCDEF <lb/>GH, ita vt ab&longs;ci&longs;&longs;a pri&longs;mata ABSFER, CDVHGT, <lb/>relinquant parallelepipedum AT, ip&longs;um autem AT, re&shy;<lb/>linquat duo parallelogramma &aelig;qualia ES, TH. <!-- KEEP S--></s>

<s>Po&longs;ito <lb/>autem centro K <lb/>parallelogrammi <lb/>AC, &amp; L, paral <lb/>lelogrammi EG, <lb/>iunctaque KL, <lb/>ponatur KM, du <lb/>pla ip&longs;ius ML. <lb/><!-- KEEP S--></s>

<s>Dico <expan abbr="duor&utilde;">duorum</expan> pri&longs;&shy;<lb/>matum BER, <lb/>CVH, &longs;imul cen <lb/>trum grauitatis <lb/><figure id="id.043.01.121.1.jpg" xlink:href="043/01/121/1.jpg"/><lb/>e&longs;se M. </s>

<s>Sectis enim AB, CD, bifariam in punctis P, Q, <lb/>&longs;umpti&longs;que parallelogrammorum ES, VG, centris N, O, <lb/>iungantur PN, QO, &amp; po&longs;ita PX dupla ip&longs;ius XN, &amp; QZ <lb/>dupla ip&longs;ius ZO, iungantur rect&aelig; PKQ, XZ, NO. <lb/><!-- KEEP S--></s>

<s>Quoniam igitur in quadrilatero PQON, recta XZ, pa&shy;<lb/>rallela e&longs;t vtrilibet ip&longs;arum PQ, NO, &longs;ecat ijs parallelis <lb/>interceptas in ea&longs;dem rationes; recta igitur XT per pun-<pb/>ctum M tran&longs;ibit. </s>

<s>Sed quia PK e&longs;t &aelig;qualis KQ, &amp; NL <lb/>ip&longs;i LO, etiam XM &aelig;qualis erit ip&longs;i MZ ob parallelas; <lb/>cum igitur pri&longs;matum BER, CVH centra grauitatis &longs;int <lb/>X, Z; erit vtriu&longs;que pri&longs;matis pr&aelig;dicti &longs;imul centrum gra&shy;<lb/>uitatis M. </s>

<s>Quod e&longs;t propo&longs;itum. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si &longs;int du&aelig; pyramides &aelig;quales, &amp; &aelig;que alt&aelig;, <lb/>ba&longs;es habentes in eodem plano, quarum vertices <lb/>recta linea connectens cum ea, qu&aelig; ba&longs;ium centra <lb/>grauitatis iungit &longs;it in eodem plano; earum cen&shy;<lb/>trum grauitatis tamquam vnius magnitudinis re&shy;<lb/>ctam lineam, qu&aelig; inter vertices, &amp; centra ba&longs;ium <lb/>interiectas bifariam &longs;ecat, itadiuidit, vt pars &longs;u&shy;<lb/>perior &longs;it inferioris tripla. </s></p><figure id="id.043.01.122.1.jpg" xlink:href="043/01/122/1.jpg"/><p type="main">

<s>Sint du&aelig; <lb/>pyramides &aelig;&shy;<lb/>quales, &amp; &aelig;&shy;<lb/>que alt&aelig;, qua&shy;<lb/>rum ba&longs;es in <lb/>eodem plano <lb/>AC, DB, ver <lb/>tices autem <lb/>G, H, &amp; ba&shy;<lb/>&longs;ium <expan abbr="c&etilde;tra">centra</expan> E, <lb/>F, iunct&aelig;que <lb/>EF, GH, quas <lb/>bifariam &longs;ecet recta KL, huius autem pars quarta &longs;it LM. <lb/><!-- KEEP S--></s>

<s>Dico vtriu&longs;que pyramidis GAC, HDB, &longs;imul centrum <lb/>grauitatis e&longs;&longs;e M. </s>

<s>Iunctis enim GE, HF, &longs;umantur ea&shy;<pb/>rum quart&aelig; partes EN, FO, &amp; iungatur NO. <!-- KEEP S--></s>

<s>Quoniam <lb/>igitur propter &aelig;qualitatem altitudinum, &amp; quia EF, GH, <lb/>&longs;unt in eodem plano, &longs;unt EF, GH, inter &longs;e parallel&aelig;, &amp; <lb/>vt GN ad NE, ita e&longs;t HO ad OF; erit NO ip&longs;i E Fivel <lb/>GH, paralle&shy;<lb/>la, quas KL <lb/>bifariam &longs;ecat: <lb/>igitur &amp; ip&longs;am <lb/>NO &longs;ecabit bi <lb/>fariam, iungit <lb/>autem recta <lb/>NO centra <lb/>grauitatis <expan abbr="py-ramid&utilde;">py&shy;<lb/>ramidum</expan> &aelig;qua&shy;<lb/>lium GAC, <lb/>HDB, vtriu&longs;&shy;<lb/><figure id="id.043.01.123.1.jpg" xlink:href="043/01/123/1.jpg"/><lb/>que ergo pyramidis &longs;imul centrum grauitatis erit in com&shy;<lb/>muni &longs;ectione duarum linearum KL, NO, &longs;ed recta NO, <lb/>&longs;ecans &longs;imiliter ip&longs;as GE, KL, HF, ip&longs;am KL, &longs;ecabit <lb/>in puncto M; punctum igitur M, erit pr&aelig;dictarum pyrami&shy;<lb/>dum centrum grauitatis. </s>

<s>Quod demon&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXIII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis fru&longs;ti pyramidis ba&longs;im habentis paral&shy;<lb/>lelogrammum centrum grauitatis maiori ba&longs;i e&longs;t <lb/>propinquius, quam punctum illud, in quo axis &longs;ic <lb/>diuiditur, vt pars minorem ba&longs;im attingens &longs;it ad <lb/>reliquam vt dupla cuiu&longs;uis laterum maioris ba&longs;is <lb/>vna cum latere minoris &longs;ibi re&longs;pondente, ad <expan abbr="dupl&atilde;">duplam</expan> <lb/>dicti lateris minoris ba&longs;is vna cum maioris &longs;ibi <lb/>re&longs;pondente. </s></p><pb/><p type="main">

<s>Sit pyramidis, cuius ba&longs;is parallelogrammum EFGH, <lb/>fru&longs;tum ABCDEFGH, <expan abbr="eiu&longs;q;">eiu&longs;que</expan> axis KL, quo &longs;ecto in pun <lb/>cto <foreign lang="greek">a</foreign> ita vt K <foreign lang="greek">a</foreign> ad <foreign lang="greek">a</foreign> L, &longs;it vt laterum homologorum AD <lb/>EH, dupla ip&longs;ius EH vna cum AD ad duplam ip&longs;ius <lb/>AD vna cum EH, &amp; fru&longs;ti ABCDEFGH &longs;it centrum <lb/>grauitatis <foreign lang="greek"><gap/></foreign> nempe in axe KL. <!-- KEEP S--></s>

<s>Dico punctum <foreign lang="greek"><gap/></foreign>, cadere <lb/>infra punctum <foreign lang="greek">a. </foreign></s>

<s>A punctis enim A,B,C,D, ducantur <lb/><figure id="id.043.01.124.1.jpg" xlink:href="043/01/124/1.jpg"/><lb/>ad maiorem ba&longs;im axi KL, parallel&aelig; AN, BO, CR, DS, <lb/>&amp; parallelepipedum ABCDNORS compleatur, &amp; <lb/>productis ba&longs;is NO lateribus, de&longs;cript&aelig; &longs;int quatuor py&shy;<lb/>ramides AEMNZ, BOPFY, CGXRQ, DHVST, <lb/>quarum ba&longs;es erunt parallelogramma circa diametrum <lb/>&aelig;qualia, atque &longs;imilia: &amp; quatuor pri&longs;mata triangulas ba&shy;<lb/>&longs;es habentia, quorum binorum ex aduer&longs;o inter &longs;e re&longs;pon-<pb/>dentium parallelogramma in plano EG exi&longs;tentia erunt <lb/>inter &longs;e &aelig;qualia, atque &longs;imilia, &longs;cilicet MS ip&longs;i OQ, &amp; <lb/>ZO, ip&longs;is RV: &longs;itque axis KL pars tertia L <foreign lang="greek">b</foreign>, quarta <lb/>autem L <foreign lang="greek">d. </foreign><!-- KEEP S--></s>

<s>Quoniam &igrave;gitur ex &longs;upra demon&longs;tratis pri&longs;&shy;<lb/>matis ABCDTMPQ e&longs;t centrum grauitatis <foreign lang="greek">a</foreign>; duo&shy;<lb/>rum autem pri&longs;matum oppo&longs;itorum ABYONZ, CDS <lb/>RXV, centrum grauitatis <foreign lang="greek">b</foreign>, erit reliqui ex fru&longs;to AB <lb/><figure id="id.043.01.125.1.jpg" xlink:href="043/01/125/1.jpg"/><lb/>CDEFGH demptis quatuor pr&aelig;dictis pyramidibus in <lb/><foreign lang="greek">a b</foreign> centrum grauitatis, quod &longs;it <foreign lang="greek">g. </foreign><!-- KEEP S--></s>

<s>Nam ex primo li&shy;<lb/>bro con&longs;tat punctum <foreign lang="greek">a</foreign> cadere &longs;upra punctum <foreign lang="greek">b</foreign>, &longs;i com&shy;<lb/>pleatur trapezium ACGE, cuius diameter erit KL. <!-- KEEP S--></s>

<s>Sed <lb/>earum quatuor pyramidum e&longs;t centrum grauitatis <foreign lang="greek">d. </foreign><!-- KEEP S--></s>

<s>Si <lb/>enim ba&longs;ium, quibus bin&aelig; oppo&longs;it&aelig; pyramides in&longs;i&longs;tunt <lb/>centra grauitatis, &amp; bini oppo&longs;iti vertices &longs;ingulis rectis li-<pb/>neis connectantur, erunt bin&aelig; connectentes parallel&aelig;, &amp; <lb/>ab axe <emph type="italics"/>K<emph.end type="italics"/> L bifariam &longs;ecabuntur, vt figur&aelig; de&longs;criptio ina&shy;<lb/>nife&longs;tat. </s>

<s>Totius igitur fru&longs;ti ABCDEFGH, centrum <lb/>grauitatis <foreign lang="greek"><gap/></foreign> in linea <foreign lang="greek">g d</foreign> cadet: &longs;ed punctum <foreign lang="greek">g</foreign> cadit infra <lb/>punctum <foreign lang="greek">a</foreign>, multo ergo inferius, &amp; ba&longs;i EG propinquius <lb/>punctum <foreign lang="greek"><gap/></foreign> quam punctum <foreign lang="greek">a. </foreign></s>

<s>Quod demon&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXIV.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis fru&longs;ti conici centrum grauitatis pro&shy;<lb/>pinquius e&longs;t maiori ba&longs;i quam punctum illud, in <lb/>quo axis &longs;ic diuiditur, vt pars minorem ba&longs;im <lb/>attingens &longs;it ad reliquam, vt dupla diametri ma&shy;<lb/>ior is ba&longs;is vna cum minoris diametro ad duplam <lb/>diametri minoris ba&longs;is vna cum diametro ma&shy;<lb/>ioris. </s></p><p type="main">

<s>Hoc eadem ratione deducetur ex antecedenti, qua cen&shy;<lb/>trum grauitatis fru&longs;ti conici in extremo primo libro demon <lb/>&longs;trauimus, quandoquidem &longs;imiliter vt ibi fecimus, omnis <lb/>pyramidis centro grauitatis idem probaremus accedere <lb/>quod pr&aelig;dict&aelig; pyramidis in antecedente. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXV.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si &longs;int quotcumque magnitudines, &amp; ali&aelig; illis <lb/>multitudine &aelig;quales, bin&aelig;que &longs;umpt&aelig; in eadem <lb/>proportione, qu&aelig; commune habeant centrum gra<lb/>uitatis, centra autem grauitatis omnium &longs;int in <lb/>eadem recta linea; prim&aelig; &amp; &longs;ecund&aelig; tanquam <pb/>du&aelig; magnitudines commune habebunt centrum <lb/>grauitatis. </s></p><p type="main">

<s>Sit recta linea AB, &amp; quotcumque magnitudines <lb/>FGH, &amp; totidem KLM, bin&aelig; in eadem proportione: <lb/>nimirum vt F ad G ita K ad L: &amp; vt G ad H ita L ad <lb/>M. in recta autem AB, &longs;int communia centra grauitatis, <lb/>C duarum FK, &amp; D duarum GL: &amp; E duarum HM. </s>

<s>Om&shy;<lb/>nium autem primarum tamquam vnius magnitudinis &longs;it <lb/>centrum grauitatis O. <!-- KEEP S--></s>

<s>Dico &amp; omnium &longs;ecundarum &longs;i&shy;<lb/>mul centrum grauitatis e&longs;se O. <!-- KEEP S--></s>

<s>Duarum enim FG &longs;i&shy;<lb/><figure id="id.043.01.127.1.jpg" xlink:href="043/01/127/1.jpg"/><lb/>mul &longs;it centrum grauitatis N. <!-- KEEP S--></s>

<s>Vtigitur e&longs;t F ad G, hoc <lb/>e&longs;t, vt K ad L, ita erit DN, ad NC. punctum igitur N <lb/>e&longs;t centrum grauitatis duarum magnitudinum KL &longs;imul. <lb/></s>

<s>Rur&longs;us, quia componendo, &amp; ex &aelig;quali, e&longs;t vt FG &longs;imul <lb/>ad H, ita KL &longs;imul ad M: e&longs;t autem tam duarum FG, <lb/>quam duarum KL &longs;imul centrum grauitatis N, &longs;imiliter <lb/>vt ante o&longs;tenderemus duarum magnitudinum FGH, <lb/>KLM centrum grauitatis e&longs;se O. <!-- KEEP S--></s>

<s>Quod e&longs;t propo&longs;itum. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXVI.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si &longs;int quotcumque magnitudines, &amp; ali&aelig; ip&shy;<lb/>&longs;is multitudine &aelig;quales primarum, ex quibus cen <lb/>tra grauitatis in eadem recta linea di&longs;po&longs;ita &longs;int <lb/>alternatim ad centra grauitatis &longs;ecundarum, qua-<pb/>rum magnitudinum bin&aelig; eodem ordine, qui &longs;u&shy;<lb/>mitur ab eodem pr&aelig;dict&aelig; line&aelig; termino vnain <lb/>primis, &amp; alterain &longs;ecundis inter &longs;e &longs;int &aelig;quales; <lb/>omnium primarum &longs;imul, ex quibus prim&aelig; cen&shy;<lb/>trum grauitatis propinquius e&longs;t pr&aelig;dicto line&aelig; <lb/>termino qu&agrave;m prim&aelig; &longs;ecundarum, propinquius <lb/>erit pr&aelig;dicto line&aelig; termino qu&agrave;m omnium &longs;ecun<lb/>darum &longs;imul centrum grauitatis. </s></p><p type="main">

<s>Sint quotcumque magnitudines ABC prim&aelig;, &amp; toti&shy;<lb/>dem &longs;ecund&aelig; DEF, quarum centra grauitatis in recta <lb/>linea TV, primarum quidem G ip&longs;ius A proximum om&shy;<lb/><figure id="id.043.01.128.1.jpg" xlink:href="043/01/128/1.jpg"/><lb/>nium termino T, &agrave; quo &longs;umitur ordo. </s>

<s>Deinde H ip&longs;ius B, <lb/>&amp; <emph type="italics"/>K<emph.end type="italics"/>, ip&longs;ius C, di&longs;po&longs;ita &longs;int alternatim ad centra &longs;ecun&shy;<lb/>darum; videlicet vt centrum grauitatis L, ip&longs;ius D cadat <lb/>inter centra G, H, &amp; M ip&longs;ius E inter centra H, K: &amp; N <lb/>inter puncta <emph type="italics"/>K<emph.end type="italics"/>, V: &longs;int autem &aelig;quales bin&aelig; AD, BE, <lb/>CF: &amp; omnium ABC &longs;imul centrum grauitatis P, &amp; om&shy;<lb/>nium DEF &longs;imul centrum grauitatis O. <!-- KEEP S--></s>

<s>Dico punctum <lb/>P propinquius e&longs;&longs;e termino T, qu&agrave;m punctum O. <lb/><!-- KEEP S--></s>

<s>Duarum enim A, B &longs;it centrum grauitatis R: &amp; S, dua&shy;<lb/>rum DB, &amp; Q, duarum DE. <!-- KEEP S--></s>

<s>Quoniam igitur Q e&longs;t <lb/>centrum grauitatis duarum magnitudinum DE &longs;imal; erit <lb/>vt D ad E, hoc e&longs;t ad B, ita MQ, ad QL: hoc e&longs;t HS, <lb/>ad SL. &amp; componendo, vt ML, ad LQ, ita HL, ad <lb/>LS; &amp; permutando, vt ML ad LH, ita LQ ad LS: <lb/>&longs;ed ML e&longs;t maior qu&agrave;m LH; ergo &amp; LQ erit maior <lb/>qu&agrave;m LS. </s>

<s>Eadem ratione quoniam S e&longs;t centrum gra&shy;<pb/>uitatis duarum DB: &amp; R duarum AB: &amp; AD &longs;unt &aelig;&shy;<lb/>quales; erit RH maior qu&agrave;m SH: &longs;ed quia LQ erat ma&shy;<lb/>ior qu&agrave;m LS, e&longs;t &amp; SH maior qu&agrave;m QH; multo igitur <lb/>maior RH erit qu&agrave;m QH: atque ideo punctum R pro&shy;<lb/>pinquius termino T, qu&agrave;m punctum <expan abbr="q.">que</expan> Rur&longs;us quo&shy;<lb/>niam tota magnitudo AB e&longs;t &aelig;qualis toti DE, &amp; C &aelig;&shy;<lb/>qualis F; erunt du&aelig; prim&aelig; AB, &amp; C, &amp; totidem &longs;ecun&shy;<lb/>d&aelig; DE, &amp; F, quarum vnius po&longs;teriorum DE cen&shy;<lb/>trum grauitatis Q cadit inter R, K centra grauitatis <lb/>duarum priorum AB, &amp; C, &amp; reliqu&aelig; priorum C cen&shy;<lb/>trum grauitatis K cadit inter Q, N, duarum po&longs;terio&shy;<lb/>rum DE, &amp; F centra grauitatis; erunt vt antea quatuor <lb/>magnitudines bin&aelig; proxim&aelig; &aelig;quales, &longs;cilicet AB, ip&longs;i <lb/><figure id="id.043.01.129.1.jpg" xlink:href="043/01/129/1.jpg"/><lb/>DE: &amp; C ip&longs;i F, centra grauitatis habentes di&longs;pofita <lb/>alternatim in eadem recta TV. </s>

<s>Cum igitur prim&aelig; prio&shy;<lb/>rum AB, centrum grauitatis R &longs;it termino T propin&shy;<lb/>quius qu&agrave;m Q centrum grauitatis prim&aelig; po&longs;teriorum, <lb/>qu&aelig; e&longs;t tota DE; &longs;imiliter vt ante totius magnitudinis <lb/>ABC centrum grauitatis P erit termino T propinquius <lb/>qu&agrave;m totius DEF centrum grauitatis O. <!-- KEEP S--></s>

<s>Non aliter <lb/>o&longs;tenderemus, quotcumque plures magnitudines, quales <lb/>&amp; quemadmodum diximus ad rectam TV, di&longs;po&longs;it&aelig; <lb/>proponerentur, &longs;emper centrum grauitatis omnium prio&shy;<lb/>rum &longs;imul termino T propinquius cadere, qu&agrave;m omnium <lb/>po&longs;teriorum &longs;imul centrum grauitatis. </s>

<s>Manife&longs;tum e&longs;t <lb/>igitur propo&longs;itum. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO XXVII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si &longs;int quotcumque magnitudines, &amp; ali&aelig; illis <lb/>multitudine &aelig;quales, qu&aelig; bin&aelig; commune habe&shy;<lb/>ant in eadem recta centrum grauitatis; &longs;umpto au <lb/>tem ordine ab vno eius line&aelig; termino, maior &longs;it <lb/>proportio prim&aelig; ad &longs;ecundam in primis, qu&agrave;m <lb/>prim&aelig; ad &longs;ecundam in &longs;ecundis: &amp; &longs;ecund&aelig; ad <lb/>tertiam in primis maior qu&agrave;m &longs;ecund&aelig; ad ter&shy;<lb/>tiam in &longs;ecundis, &amp; &longs;ic deinceps v&longs;que ad vltimas; <lb/>erit omnium primarum &longs;imul centrum grauitatis <lb/>propinquius pr&aelig;dicto line&aelig; termino, &agrave; quo &longs;umi&shy;<lb/>tur ordo, qu&agrave;m omnium &longs;ecundarum. </s></p><p type="main">

<s>Sint quotcumque magnitudines GHI, &amp; totidem <lb/>LMN. </s>

<s>Sitque maior proportio G ad H, qu&agrave;m L ad M: &amp; <lb/>H ad I, maior qu&agrave;m M ad N: in recta autem AB &longs;int <lb/>communia centra grauitatis, C duarum magnitudinum <lb/>GL, &amp; D duarum HM, &amp; E duarum IN. omnium <lb/><figure id="id.043.01.130.1.jpg" xlink:href="043/01/130/1.jpg"/><lb/>autem primarum GHI &longs;imul &longs;it centrum grauitatis K: at <lb/>&longs;ecundarum omnium LMN centrum grauitatis R. <!-- KEEP S--></s>

<s>Di&shy;<lb/>co centrum K cadere termino A propinquius qu&agrave;m cen <lb/>trum R. <!-- KEEP S--></s>

<s>Fiat enim vt G ad H, ita DP ad PC: &amp; vt L <lb/>ad M, ita DQ ad QC. </s>

<s>Maior igitur proportio erit DP <pb/>ad PC, qu&agrave;m DQ ad QC: &amp; componendo, maior DC <lb/>ad CP, qu&agrave;m DC ad CQ: minor igitur CP erit qu&agrave;m <lb/>CQ: quare DP maior qu&agrave;m <expan abbr="Dq.">Dque</expan> &amp; communi addita <lb/>ED, erit EP maior qu&agrave;m <expan abbr="Eq.">Eque</expan> Et quoniam <emph type="italics"/>K<emph.end type="italics"/> e&longs;t cen&shy;<lb/>trum grauitatis omnium GHI &longs;imul, &amp; ip&longs;ius GH e&longs;t cen <lb/>trum grauitatis P, &amp; reliqu&aelig; magnitudinis I, centrum <lb/>grauitatis E; erit vt GH ad I, ita EK ad KP. eadem <lb/>ratione vt vtraque LM ad N, ita erit ER ad <expan abbr="Rq.">Rque</expan> Rur&shy;<lb/><figure id="id.043.01.131.1.jpg" xlink:href="043/01/131/1.jpg"/><lb/>&longs;us, quia maior e&longs;t proportio G ad H, qu&agrave;m L ad M, erit <lb/>componendo, maior proportio GH ad H, qu&agrave;m LM ad <lb/>M: &longs;ed maior e&longs;t proportio H ad K, qu&agrave;m M ad N; ex <lb/>&aelig;quali igitur, maior erit proportio GH ad I, qu&agrave;m LM <lb/>ad N, hoc e&longs;t EK ad KP, qu&agrave;m ER ad <expan abbr="Rq.">Rque</expan> Multo <lb/>ergo maior proportio EK ad KP, qu&agrave;m ER ad RP: &amp; <lb/>componendo maior proportio EP ad PK qu&agrave;m EP ad <lb/>PR; minor igitur PK erit qu&agrave;m PR, at que ideo centrum <lb/>K propinquius termino A qu&agrave;m centrum R. <!-- KEEP S--></s>

<s>Quod de&shy;<lb/>mon&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXVIII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si &longs;int quotcumque magnitudines, &amp; ali&aelig; ip&longs;is <lb/>multitudine &aelig;quales, quarum omnium centra <lb/>grauitatis &longs;int in eadem recta linea, &amp; centra pri&shy;<lb/>marum ad centra &longs;ecundarum di&longs;po&longs;ita &longs;int alter&shy;<lb/>natim: &longs;it autem maior proportio prim&aelig; ad &longs;ecun-<pb/>dam in primis qu&agrave;m prim&aelig; ad &longs;ecundam in &longs;ecun<lb/>dis: &amp; &longs;ecund&aelig; ad tertiam in primis, maior qu&agrave;m <lb/>&longs;ecund&aelig; ad tertiam in &longs;e cundis, &amp; &longs;ic deinceps v&longs;&shy;<lb/>que ad vltimas; erit omnium primarum &longs;imul cen <lb/>trum grauitatis propinquius pr&aelig;dict&aelig; line&aelig; ter&shy;<lb/>mino &agrave; quo &longs;umitur ordo omnium &longs;ecundarum <lb/>centrum grauitatis. </s></p><p type="main">

<s>Sit quotcumque magnitudines GHI, &amp; totidem LMN <lb/>primarum autem &longs;int centra grauitatis CDE cum &longs;ecun<lb/>darum centris OPQ in eadem recta AB di&longs;po&longs;ita alter&shy;<lb/>natim, vt O cadat inter puncta CD, &amp; P inter puncta <lb/>DE, &amp; E inter puncta <expan abbr="Pq.">Pque</expan> &longs;itque maior proportio G <lb/>ad H, qu&agrave;m L ad M, &amp; H ad I maior qu&agrave;m M ad N. <lb/>omnium autem primarum GHI &longs;imul &longs;it centrum gra&shy;<lb/>uitatis T; at omnium &longs;ecundarum LMN, &longs;imul, cen&shy;<lb/><figure id="id.043.01.132.1.jpg" xlink:href="043/01/132/1.jpg"/><lb/>trum grauitatis V. <!-- KEEP S--></s>

<s>Dico punctum T e&longs;&longs;e termino A <lb/>propinquius qu&agrave;m punctum V. <!-- KEEP S--></s>

<s>E&longs;to enim F &aelig;qualis <lb/>L, &amp; K &aelig;qualis M, &amp; X &aelig;qualis N, &longs;it autem cen&shy;<lb/>trum grauitatis ip&longs;ius F in puncto C, &amp; ip&longs;ius K in pun&shy;<lb/>cto D, &amp; ip&longs;ius X in puncto E. <!-- KEEP S--></s>

<s>In recta igitur AB om&shy;<lb/>nium FKX, &longs;imul centrum grauitatis erit termino A, pro&shy;<lb/>pinquius qu&agrave;m omnium LMN &longs;imul centrum grauitatis. <lb/></s>

<s>Sed &amp; omnium GHI, &longs;imul centrum grauitatis in eadem <lb/>recta AB propinquius e&longs;t termino A qu&agrave;m omnium <lb/>FKX, &longs;imul centrum grauitatis; multo igitur termino A <lb/>propinquius erit omnium GHI &longs;imul qu&agrave;m omnium <pb/>LMN, &longs;imul centrum grauitatis. </s>

<s>Quod demon&longs;tran&shy;<lb/>dum erat. </s></p><p type="head">

<s><emph type="italics"/>ALITER.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Po&longs;ito enim R centro grauitatis duarum <expan abbr="magnitudin&utilde;">magnitudinum</expan> G, <lb/>H, &amp; S <expan abbr="duar&utilde;">duarum</expan> L,M, vel punctum V cadit in puncto E, vel in <lb/>linea EB, vel in linea AE, &longs;i in puncto E vel in linea EB, <lb/>cum igitur T &longs;it <expan abbr="centr&utilde;">centrum</expan> grauitatis trium <expan abbr="magnitudin&utilde;">magnitudinum</expan> G,H,I <lb/>&longs;imul, &amp; E ip&longs;ius I, erit punctum T propinquius termino <lb/>A qu&agrave;m punctum V. <!-- KEEP S--></s>

<s>Sed punctum V in linea AE cadat. <lb/></s>

<s>Veligitur S centrum grauitatis duarum magnitudinum L, <lb/>M, &longs;imul cadit in puncto D, &longs;iue in linea DB, vel in li&shy;<lb/>nea AD. &longs;i in puncto D, vel in linea DB; centrum gra&shy;<lb/>uitatis R duarum magnitudinum GH erit termino A <lb/>propinquius qu&agrave;m ip&longs;um S, &amp; recta ER maior qu&agrave;m ES, <lb/><figure id="id.043.01.133.1.jpg" xlink:href="043/01/133/1.jpg"/><lb/>Sed cadat punctum S in linea AD. <!-- KEEP S--></s>

<s>Quoniam igitur ma&shy;<lb/>ior e&longs;t proportio G ad H, qu&agrave;m L ad M: &amp; vt G ad H, <lb/>ita e&longs;t DR ad RG, &amp; vt L ad M, ita PS ad SO, ma&shy;<lb/>ior erit proportio DR ad RC, qu&agrave;m PS ad SO; mul&shy;<lb/>to ergo maior DR ad RC, qu&agrave;m DS ad SO, &amp; multo <lb/>maior qu&agrave;m DS ad SC, &amp; componendo maior propor&shy;<lb/>tio DC ad CR, qu&agrave;m DC ad CS; erit igitur CR mi&shy;<lb/>nor qu&agrave;m CS, atque adeo RD maior DS, addita igitur <lb/>ED communi, erit ER maior qu&agrave;m ES. </s>

<s>Rur&longs;us quia <lb/>componendo, &amp; ex &aelig;quali maior e&longs;t proportio totius GH <lb/>ad I qu&agrave;m totius LM ad N, hoc e&longs;t maior longitudinis <lb/>ET ad TR, qu&agrave;m QV ad VS, &amp; multo maior qu&agrave;m <pb/>EV ad VS, erit componendo, maior proportio ER ad <lb/>RT qu&agrave;m ES ad SV: &amp; per conuer&longs;ionem rationis mi&shy;<lb/>nor proportio FR ad ET; qu&agrave;m ES ad EV, &amp; permu&shy;<lb/>tando minor proportio ER ad ES qu&agrave;m ET ad EV: &longs;ed <lb/>ER maior erat qu&agrave;m ES, ergo ET maior erit qu&agrave;m EV: <lb/>&amp; punctum T propinquius termino A, qu&agrave;m punctum V. <lb/><!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXIX.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Dat&aelig; figur&aelig; circa diametrum, vel axim in alte <lb/>ram partem deficienti, &longs;uper ba&longs;im rectam lineam <lb/>vel circulum, vel ellip&longs;im; cuius figur&aelig; ba&longs;is, &amp; <lb/>&longs;ectiones omnes parallel&aelig; &longs;egmenta &aelig;qualia dia&shy;<lb/>metri vel axis intercipientes ita &longs;e habeant, vt <lb/>quarumlibet trium proximarum minor proportio <lb/>&longs;it minim&aelig; ad mediam, qu&agrave;m medi&aelig; ad maxi&shy;<lb/>mam; figura qu&aelig;dam ex cylindris, vel cylindri <lb/>portionibus, vel parallelogrammis &aelig;qualium al&shy;<lb/>titudinum circum&longs;cribi pote&longs;t, cuius <expan abbr="c&etilde;trum">centrum</expan> gra&shy;<lb/>uitatis &longs;it propinquius ba&longs;i qu&agrave;m cuiu&longs;libet dat&aelig; <lb/>figur&aelig;, qualem diximus qu&aelig; pr&aelig;dict&aelig; figur&aelig; cir <lb/>cadiametrum, vel axim circum&longs;cripta &longs;it. </s></p><p type="main">

<s>Sit figura circa diametrum, vel axim in alteram <expan abbr="part&etilde;">partem</expan> de&shy;<lb/>ficiens qualem diximus, cuius bafis circulus, vel ellip&longs;is vel <lb/>recta linea AC, axis autem vel diameter BD. <!-- KEEP S--></s>

<s>Et data figu&shy;<lb/>ra ip&longs;i ABC figur&aelig; circum&longs;cripta compo&longs;ita ex cylindris, <lb/>vel cylindri portionibus, vel parallelogrammis &aelig;qualium <lb/>altitudinum EF, GH, AK. <!-- KEEP S--></s>

<s>Dico figur&aelig; ABC alteram <lb/>figuram, qualem diximus po&longs;&longs;e circum&longs;cribi, cuius centrum <pb/>grauitatis, nempe in linea BD, &longs;it propinquius ba&longs;i AC, <lb/>&longs;iue termino D, qu&agrave;m pr&aelig;dict&aelig; dat&aelig; figur&aelig; circum&longs;cript&aelig; <lb/>centrum grauitatis, Omnium enim cylindrorum, vel cy&shy;<lb/>lindri portionum, vel parallelogrammorum, ex quibus con&shy;<lb/>&longs;tat pr&aelig;dicta data figura circum&longs;cripta &longs;int axes, vel qu&aelig; <lb/>oppo&longs;ita latera coniungunt rect&aelig; BL, LM, MD, qui&shy;<lb/>bus &longs;ectis bifariam in punctis N, O, P, ac planis per ea <lb/>&longs;iue rectis tran&longs;euntibus ba&longs;i AC parallelis, &longs;ecantibus&shy;<lb/>que dictos cylindros, vel cylindri portiones, vel pa&shy;<lb/>rallelogramma, compleatur &amp; figur&aelig; ABC circum&longs;cri&shy;<lb/>batur altera figura <lb/>vt prior, qu&aelig; ob &longs;e&shy;<lb/>ctiones factas com&shy;<lb/>ponetur ex duplis <lb/>multitudine cylin&shy;<lb/>dris, vel cylindri por&shy;<lb/>tionibus, vel paralle&shy;<lb/>logrammis &ecedil;qualium <lb/>altitudinum, eorum <lb/>ex quibus con&longs;tat da&shy; <lb/>ta figura circum&longs;cri&shy;<lb/>pta &longs;in<gap/>autem hi cy&shy;<lb/>lindri, aut reliqua, <lb/>qu&aelig; diximus QR, <lb/><figure id="id.043.01.135.1.jpg" xlink:href="043/01/135/1.jpg"/><lb/>ES, TV, GX, ZI, AY. </s>

<s>Quoniam igitur cylindro&shy;<lb/>rum, vel cylindri portionum, vel parallelogrammorum qu&aelig; <lb/>&longs;unt circa figuram ABC, minor e&longs;t proportio QR ad ES, <lb/>qu&agrave;m ES, ad TV, propter &longs;ectiones circulos, vel &longs;imiles <lb/>ellip&longs;es, vel rectas lineas, &amp; <expan abbr="&aelig;qualitat&etilde;">&aelig;qualitatem</expan> <expan abbr="altitudin&utilde;">altitudinum</expan>, &amp; figur&aelig; <lb/>propo&longs;it&aelig; <expan abbr="natur&atilde;">naturam</expan>. </s>

<s>Sed <expan abbr="ead&etilde;">eadem</expan> ratione minor e&longs;t proportio ES <lb/>ad TV, qu&agrave;m TV, ad GX; multo ergo minor proportio erit <lb/>QR ad ES, quam TV ad GX: &amp; componendo, minor <lb/>proportio QR, ES, &longs;imul ad ES, qu&agrave;m TV, GX, &longs;imul <lb/>ad GX. &longs;ed vt GX ad GH, ita e&longs;t ES ad EF; ex &aelig;qua-<pb/>li igitur minor erit proportio QR, ES &longs;imul ad EF, <lb/>qu&agrave;m TV, GX &longs;imul ad GH. &amp; permutando, minor <lb/>proportio QR, ES &longs;imul ad TV, GX &longs;imul qu&agrave;m EF <lb/>ad GH. &amp; conuertendo, maior proportio GX, TV &longs;i&shy;<lb/>mul ad ES, QR &longs;imul, qu&agrave;m GH ad EF. <!-- KEEP S--></s>

<s>Similiter <lb/>o&longs;tenderemus duo ZI, AY, &longs;imul ad TV, GX, &longs;imul, <lb/>maiorem habere proportionem, qu&agrave;m AK ad rectarum <lb/>GH. <!-- KEEP S--></s>

<s>Rur&longs;us quoniam puncta N, O, in medio BL, LM, <lb/>&longs;unt, ip&longs;orum EF, GH, centra grauitatis: duorum autem <lb/>QR, ES &longs;imul centrum grauitatis e&longs;t in linea NL, pro&shy;<lb/>pterea qu&ograve;d ES maius e&longs;t qu&agrave;m QR, &amp; &aelig;quales BN, <lb/>NL, quas centra grauitatis ip&longs;orum QR, ES bifariam <lb/>diuidunt, cadet ip&longs;orum QR, ES, &longs;imul centrum grauita&shy;<lb/>tis propius termino D, qu&agrave;m ip&longs;ius EF centrum grauitatis, <lb/>&amp; duobus centris N, O, interijcietur. </s>

<s>Eademque ratio&shy;<lb/>ne duorum TV, GX, &longs;imul centrum grauitatis termino <lb/>D erit propinquius qu&agrave;m ip&longs;ius GH centrum grauitatis, <lb/>&amp; duobus centris O, P, duorum GH, AK interijcietur. <lb/></s>

<s>Et duorum ZI, AY &longs;imul centrum grauitatis propin&shy;<lb/>quius erit D termino, qu&agrave;m P ip&longs;ius AK. <!-- KEEP S--></s>

<s>Quoniam <lb/>igitur omnia primarum magnitudinum, ex quibus con&longs;tat <lb/>figura &longs;ecundo circum&longs;cripta centra grauitatis in eadem re <lb/>cta linea BD, di&longs;po&longs;ita &longs;unt alternatim ad centra grauita&shy;<lb/>tis &longs;ecundarum primis multitudine &aelig;qualium, ex quibus <lb/>data figura con&longs;tat ip&longs;i ABC figur&aelig; circum&longs;cripta, &longs;unt <lb/>termino D propinquiora, qu&agrave;m centra grauitatis &longs;ecunda&shy;<lb/>rum, &longs;i bina, prout inter &longs;e re&longs;pondent comparentur: maior <lb/>autem proportio o&longs;ten&longs;a e&longs;t prim&aelig; ad &longs;ecundam in primis, <lb/>qu&agrave;m prim&aelig; ad &longs;ecundam in &longs;ecundis: &amp; &longs;ecund&aelig; ad ter&shy;<lb/>tiam in primis, qu&agrave;m &longs;ecund&aelig; ad tertiam in &longs;ecundis, <lb/>&longs;umpto ordine &agrave; termino D, erit centrum grauitatis om&shy;<lb/>nium primarum &longs;imul, ide&longs;t figur&aelig; ip&longs;i ABC figur&aelig; <lb/>&longs;ecundo circum&longs;cript&aelig; termino D propinquius, qu&agrave;m <lb/>dat&aelig; figur&aelig; eidem ABC figur&aelig; primo circum&longs;cript&aelig; cen&shy;<pb/>trum grauitatis. </s>

<s>Quod demon&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXX.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis pr&aelig;dict&aelig; figur&aelig; centrum grauitatis <lb/>e&longs;t propinquius ba&longs;i, qu&agrave;m cuiu&longs;libet figur&aelig; ex <lb/>cylindris, vel cylindri portionibus, vel parallelo&shy;<lb/>grammis &aelig;qualium altitudinum ip&longs;i circum&longs;cri&shy;<lb/>pt&aelig;. </s></p><p type="main">

<s>Sit pr&aelig;dicta figura ABC, cuius axis vel diameter BD, <lb/>&amp; data intelligatur figura ex quotcumque cylindris, vel cy&shy;<lb/>lindri portionibus, vel parallelogrammis &aelig;qualium altitu&shy;<lb/>dinum figur&aelig; ABC circum&longs;cripta, cuius &longs;it centrum gra&shy;<lb/>uitatis E, nempe in axe vel <lb/>diametro BD. <!-- KEEP S--></s>

<s>Dico cen&shy;<lb/>trum grauitatis figur&aelig; ABC <lb/>propinquius e&longs;&longs;e puncto D, <lb/>qu&agrave;m punctum E. <!-- KEEP S--></s>

<s>Si enim <lb/>fieri pote&longs;t, centrum grauita&shy;<lb/>tis figur&aelig; ABC, quod &longs;it <lb/>F, non cadat infra punctum <lb/>E, &longs;ed vel &longs;upra, vel con&shy;<lb/>gruat puncto E: figur&aelig; ita&shy;<lb/>que ABC circum&longs;cribatur <lb/>figura qu&aelig;dam ex cylindris, <lb/>vel cylindri portionibus, vel <lb/>parallelogrammis &lt;17&gt;qualium <lb/>altitudinum, cuius centrum <lb/><figure id="id.043.01.137.1.jpg" xlink:href="043/01/137/1.jpg"/><lb/>grauitatis, quod &longs;it G, &longs;it propinquius D puncto, qu&agrave;m <lb/>punctum E, ac propterea propinquius, qu&agrave;m punctum F, <lb/>centrum grauitatis figur&aelig; primo circum&longs;cript&aelig;. </s>

<s>Rur&longs;us <lb/>multiplicatis cylindris, vel cylindri portionibus, vel paral-<pb/>lelogrammis circum&longs;cribatur figur&aelig; ABC, altera tertia fi&shy;<lb/>gura, quemadmodum diximus in pr&aelig;cedenti, cuius cen&shy;<lb/>trum grauitatis H, in linea GD cadat &amp; &longs;it minor pro&shy;<lb/>portio re&longs;idui huius terti&aelig; figur&aelig; circum&longs;cript&aelig; ip&longs;i ABC, <lb/>ad figuram ABC, qu&agrave;m FG ad GD. </s>

<s>Multo ergo mi&shy;<lb/>nor proportio erit dicti re&longs;idui ad figuram ABC quam F <lb/>H ad HD, fiat igitur vt pr&aelig;dictum re&longs;iduum ad figuram <lb/>ABC, ita ex contraria parte FH ad HDK; pr&aelig;dicti igi&shy;<lb/>tur re&longs;idui centrum grauitatis erit K, extra ip&longs;ius terminos, <lb/>quod fieri non pote&longs;t: Non igitur F centrum grauitatis fi&shy;<lb/>gur&aelig; ABC cadit in puncto E, nec &longs;upra; ergo infra pun <lb/>ctum E: &amp; ponitur E centrum grauitatis cuiuslibet figur&aelig; <lb/>ex cylindris, vel cylindri portionibus, vel parallelogrammis <lb/>&aelig;qualium altitudinum quo modo diximus ip&longs;i ABC cir&shy;<lb/>cum&longs;cript&aelig;. </s>

<s>Manife&longs;tum e&longs;t igitur propo&longs;itum. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXXI.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omni pr&aelig;dict&aelig; figur&aelig; figura qu&aelig;dam ex cylin <lb/>dris, vel cylindri portionibus, vel parallelogram&shy;<lb/>mis &aelig;qualium altitudi <lb/>num circum&longs;cribi po&shy;<lb/>te&longs;t, cuius centri graui <lb/>tatis di&longs;tantia &agrave; pr&aelig;di&shy;<lb/>ct&aelig; figur&aelig; centro gra&shy;<lb/>uitatis &longs;it minor quan&shy;<lb/>tacunque longitudine <lb/>propo&longs;ita. </s></p><figure id="id.043.01.138.1.jpg" xlink:href="043/01/138/1.jpg"/><p type="main">

<s>Sit figura ABC in <expan abbr="alter&atilde;">alteram</expan> <lb/>partem <expan abbr="defici&etilde;s">deficiens</expan> &longs;upradicta, <lb/>cuius centrum grauitatis F, propo&longs;ita autem <expan abbr="quantac&utilde;que">quantacumque</expan> <lb/><expan abbr="l&otilde;gitudine">longitudine</expan> minor &longs;it FG ip&longs;ius BF. <!-- KEEP S--></s>

<s>Dico figur&aelig; ABC figu-<pb/>ram ex cylindris vel cylindri portionibus, vel <expan abbr="parallelogr&atilde;-mis">parallelogram&shy;<lb/>mis</expan> &aelig;qualium <expan abbr="altitudin&utilde;">altitudinum</expan> circum&longs;cribi po&longs;&longs;e, cuius centrum <lb/>grauitatis &longs;it propinquius puncto F, qu&agrave;m punctum G: figu&shy;<lb/>r&aelig; enim ABC figura, qualem diximus circum&longs;cribatur, cu&shy;<lb/>ius re&longs;iduum dempta figura ABC, ad figuram ABC mi&shy;<lb/>norem habeat proportionem, qu&agrave;m FG, ad GB, &longs;it autem <lb/>figur&aelig; circum&longs;cript&aelig; centrum grauitatis K, nempe in axe, <lb/>vel diametro BD. <!-- KEEP S--></s>

<s>Dico <lb/>lineam FK minorem e&longs;&longs;e <lb/>qu&agrave;m FG, atque adeo lon <lb/>gitudine propo&longs;ita. </s>

<s>Quo&shy;<lb/>niam enim F e&longs;t centrum <lb/>grauitatis figur&aelig; ABC, <lb/>erit centrum grauitatis <emph type="italics"/>K<emph.end type="italics"/>, <lb/>figur&aelig; circum&longs;cript&aelig; ip&longs;i <lb/>ABC propinquius termi&shy;<lb/>no B, qu&agrave;m punctum F, <lb/>&longs;ed centrum grauitatis fi&shy;<lb/>gur&aelig; ABC qu&ograve;d e&longs;t F, &amp; <lb/>figur&aelig; circum&longs;cript&aelig;, quod <lb/>e&longs;t K &amp; eius re&longs;idui dem&shy;<lb/><figure id="id.043.01.139.1.jpg" xlink:href="043/01/139/1.jpg"/><lb/>pta figura ABC &longs;unt in communi axe, vel diametro BD; <lb/>erit igitur dicti re&longs;idui in linea BK, centrum grauitatis, <lb/>quod &longs;it H. <!-- KEEP S--></s>

<s>Minor autem proportio e&longs;t pr&aelig;dicti re&longs;idui <lb/>ad figuram ABC, hoc e&longs;t ip&longs;ius FK ad KH, qu&agrave;m FG <lb/>ad GB, &amp; multo minor, qu&agrave;m FG ad GH; &amp; compo&shy;<lb/>nendo minor proportio FH ad HK, qu&agrave;m FH ad HG; <lb/>ergo KH maior erit, qu&agrave;m GH; reliqua igitur F <emph type="italics"/>K<emph.end type="italics"/> mi&shy;<lb/>nor, qu&agrave;m FG atque adeo longitudine propo&longs;ita. </s>

<s>Fieri <lb/>ergo pote&longs;t, quod proponebatur. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO XXXII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si duarum pr&aelig;dictarum figurarum circa com&shy;<lb/>munem axim, vel diametrum, vel alterius diame&shy;<lb/>trum alterius axim, ba&longs;es, &amp; quotcumque &longs;ectio&shy;<lb/>nes quales diximus, bin&aelig; in eodem plano fue&shy;<lb/>rint proportionales; idem punctum in diametro, <lb/>vel axe erit vtriu&longs;que centrum grauitatis. </s></p><p type="main">

<s>Sint du&aelig; pr&aelig;dict&aelig; figur&aelig; ABC, DBE, circa eandem <lb/>diametrum, vel axim BF. figur&aelig; autem ABC &longs;it cen&shy;<lb/>trum grauitatis G, nempe in linea BF. <!-- KEEP S--></s>

<s>Dico G e&longs;&longs;e <lb/>centrum grauitatis <lb/>figur&aelig; DBE. &longs;i <lb/>enim non e&longs;t, &longs;it a&shy;<lb/>liud punctum H, <lb/>quod cadat primo <lb/>&longs;upra punctum G. <lb/><!-- KEEP S--></s>

<s>Figur&aelig; igitur AB <lb/>C, figura circum&shy;<lb/>&longs;cribatur qualem <lb/>diximus ex cylin&shy;<lb/>dris, vel cylindri <lb/>portionibus, vel pa&shy;<lb/>rallelogrammis &aelig;&shy;<lb/>qualium <expan abbr="altitudin&utilde;">altitudinum</expan> <lb/>cuius centri graui&shy;<lb/>tatis <emph type="italics"/>K<emph.end type="italics"/> di&longs;tantia &agrave; <lb/><figure id="id.043.01.140.1.jpg" xlink:href="043/01/140/1.jpg"/><lb/>centro G, figur&aelig; ABC &longs;it minor qu&agrave;m recta GH: &amp; figu&shy;<lb/>r&aelig; DBE, figura circum&longs;cribatur ex cylindris, vel cylindri <lb/>portionibus vel parallelogrammis &aelig;qualium altitudinum, <lb/>multitudine &aelig;qualium ijs, ex quibus con&longs;tat ip&longs;i ABC, <pb/>figura circum&longs;cripta, qu&aelig; cum pr&aelig;dictis circa figuram AB <lb/>C erunt bina &longs;umpto ordine &agrave; puncto B, in eadem propor&shy;<lb/>tione inter eadem plana parallela, vel rectas parallelas <expan abbr="c&otilde;&longs;i-&longs;tentia">con&longs;i&shy;<lb/>&longs;tentia</expan>, propter &longs;ectiones, ide&longs;t ba&longs;es, &amp; &aelig;quales altitudines: <lb/>binorum autem quorumque homologorum idem erit in li&shy;<lb/>nea BF, centrum grauitatis: punctum igitur K, centrum <lb/>grauitatis figur&aelig; ip&longs;i ABC circum&longs;cript&aelig;, idem erit fi&shy;<lb/>gur&aelig; ip&longs;i DBE, circum&longs;cript&aelig; centrum grauitatis: cadi<gap/><lb/><expan abbr="aut&etilde;">autem</expan> infra centrum <lb/>grauitatis H figu&shy;<lb/>r&aelig; DBE, quod e&longs;t <lb/>ab&longs;urdum.</s>

<s>Non <lb/>igitur centrum gra&shy;<lb/>uitatis figur&aelig; DB <lb/>E, cadit &longs;upra pun <lb/>ctum G. <!-- KEEP S--></s>

<s>Sed ca&shy;<lb/>dat infra, vt in pun&shy;<lb/>cto L. <!-- KEEP S--></s>

<s>Rur&longs;us igi <lb/>tur figur&aelig; DBE fi&shy;<lb/>gura, qualem dixi&shy;<lb/>mus circum&longs;cripta, <lb/>cuius centrum gra&shy;<lb/>uitatis M, &longs;it pro&shy;<lb/>pinquius centro L, <lb/><figure id="id.043.01.141.1.jpg" xlink:href="043/01/141/1.jpg"/><lb/>qu&agrave;m punctum G, figur&aelig; ABC altera qualem diximus <lb/>figura circum&longs;cribatur, cuius centrum grauitatis &longs;it idem <lb/>punctum M, quod fieri po&longs;&longs;e con&longs;tat ex &longs;uperioribus. </s>

<s>Sed <lb/>G ponitur centrum grauitatis figur&aelig; ABC; ergo centrum <lb/>grauitatis figur&aelig; ip&longs;i ABC, circum&longs;cript&aelig; erit propinquius <lb/>ba&longs;i &amp; puncto F, qu&agrave;m figur&aelig; ABC centrum grauitatis, <lb/>quod fieri non pote&longs;t. </s>

<s>Non igitur figur&aelig; DBE centrum gra<lb/>uitatis cadit infra punctum G. <!-- KEEP S--></s>

<s>Sed neque &longs;upra; punctum <lb/>igitur G erit commune duarum figurarum ABC, DBE, <lb/>centrum grauitatis. </s>

<s>Quod demon&longs;trandum erat. </s></p><pb/><p type="head">

<s><emph type="italics"/>COROLLARIVM.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Manife&longs;tum e&longs;t autem omnia proximis qua&shy;<lb/>tuor propo&longs;itionibus <expan abbr="o&longs;t&emacr;&longs;a">o&longs;ten&longs;a</expan> de figura circa axim, <lb/>vel diametrum in alteram partem deficienti, ea&shy;<lb/>dem ij&longs;dem rationibus o&longs;ten &longs;a remanere de com&shy;<lb/>po&longs;ito ex duabus figuris circa communem axim <lb/>vel diametrum in alteram partem deficientibus, <lb/>tam per &longs;e con&longs;iderato, qu&agrave;m ad alteram figuram <lb/>circa eundem axim, vel diametrum cum pr&aelig;di&shy;<lb/>cto compo&longs;ito, in alteram partem deficiens, ac &longs;i <lb/>e&longs;&longs;ent du&aelig; tantummodo dict&aelig; figur&aelig;, quales in <lb/>pr&aelig;cedenti proxima inter &longs;e comparauimus; ma&shy;<lb/>nente &longs;emper illa conditione, qu&agrave;m de &longs;ectioni&shy;<lb/>bus in vige&longs;ima huius diximus. </s>

<s>Tantum aduer&shy;<lb/>tendum e&longs;t, vt pro &longs;ectionibus, dicamus compo&longs;ita <lb/>ex binis &longs;ectionibus (qu&aelig; &longs;cilicet fiunt ab codem <lb/>plano, vel eadem recta linea) cum de pr&aelig;dicto com <lb/>po&longs;ito &longs;it &longs;ermo: &amp; in demon&longs;tratione, procylin&shy;<lb/>dris, vel cylindri portionibus, vel parallelogram&shy;<lb/>mis, compo&longs;ita ex binis cylindris, vel cylindri por <lb/>tionibus, vel parallelogrammis(qu&aelig; &longs;cilicet &longs;unt <lb/>inter eadem plana parallela, vel lineas parallelas, <lb/>&amp; circa eundem axim, vel diametrum totius vel <lb/>diametri, vel axis partem) &longs;icut &amp; pro figura com&shy;<lb/>po&longs;itum ex duabus dictis figuris: pro re&longs;iduo, com <lb/>po&longs;itum ex re&longs;iduis. </s>

<s>Nam cum vtriu&longs;que re&longs;idui <pb/>figurarum duobus pr&aelig;dictis figuris vnum quid <lb/>componentibus, &amp; circa eundem axim, vel diame<lb/>trum exi&longs;tentibus, qua ratione diximus, circum&shy;<lb/>&longs;criptarum, centra grauitatis &longs;int in diametro, vel <lb/>axe; etiam compo&longs;iti ex ijs duobus re&longs;iduis (vt in <lb/>priori libro generaliter demon&longs;trauimus, cen&shy;<lb/>trum grauitatis erit in eadem diametro, vel axe: <lb/>vnde vim habent proxim&aelig; quatuor anteceden&shy;<lb/>tes demon&longs;trationes, exemplum erit in demon&shy;<lb/>&longs;tratione trige&longs;im&aelig; quart&aelig; huius. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXXIII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Hemi&longs;ph&aelig;rij centrum grauitatis e&longs;t punctum <lb/>illud in quo axis &longs;ic diuiditur, vt pars, qu&aelig; ad ver&shy;<lb/>ticem &longs;it ad reliquam vt quin que ad tria. </s></p><p type="main">

<s>E&longs;to hemifph&aelig;rium ABC cuius vertex B, axis BD: <lb/>&longs;it autem BD &longs;ectus in G puncto, ita vt pars BG ad GD <lb/>&longs;it vt quinque ad tria. </s>

<s>Dico G e&longs;se centrum grauitatis <lb/>hemi&longs;ph&aelig;rij ABC. <!-- KEEP S--></s>

<s>Ab&longs;cindatur enim BK ip&longs;ius BD <lb/>pars quarta: &amp; &longs;uper ba&longs;im eandem hemi&longs;ph&aelig;rij eundem&shy;<lb/>que axim BD cylindrus AF con&longs;i&longs;tat, &amp; conus intelli&shy;<lb/>gatur EDF, cuius vertex D, ba&longs;is autem circulus circu&shy;<lb/>lo AC oppo&longs;itus, cuius diameter EBF. <!-- KEEP S--></s>

<s>Sectoque axe <lb/>BD bifariam in puncto H, &amp; &longs;ingulis eius partibus rur&shy;<lb/>&longs;us bifariam, quoad BD &longs;ecta &longs;it in partes &aelig;quales cu&shy;<lb/>iu&longs;cumque libuerit numeri paris, tran&longs;eant per puncta &longs;e&shy;<lb/>ctionum plana qu&aelig;dam ba&longs;i AC parallela, &amp; &longs;ecantia, <lb/>hemi&longs;ph&aelig;rium, conum, &amp; cylindrum, quorum omnes &longs;e&shy;<lb/>ctiones erunt circuli, terni in codem plano ad aliam atque <pb/>aliam trium harum figurarum pertinentes. </s>

<s>Quod &longs;i pr&aelig;&shy;<lb/>terea fact&aelig; &longs;ectiones hemi&longs;ph&aelig;rij ABC &agrave; cylindri AF <lb/>&longs;ectionibus, circuli &agrave; circulis concentricis auferri intelli&shy;<lb/>gantur; reliqu&aelig; totidem erunt &longs;ectiones reliqu&aelig; figur&aelig; &longs;o&shy;<lb/>lid&aelig;, dempto ABC hemi&longs;ph&aelig;rio ex toto AF cylin&shy;<lb/>dro, circuli deficientes circulis concentricis, hoc e&longs;t pr&aelig;di&shy;<lb/>ctis ABC hemi&longs;ph&aelig;rij &longs;ectionibus prout inter &longs;e re&longs;pon&shy;<lb/>dent. </s>

<s>Nunc &longs;uper &longs;ectiones hemi&longs;ph&aelig;rij ABC, &amp; co&shy;<lb/>ni EDF cylindris con&longs;titutis circa axes, qu&aelig; &longs;unt &longs;eg&shy;<lb/>menta &aelig;qualia axis BD, intelligantur du&aelig; figur&aelig; ex cy&shy;<lb/>lindris &aelig;qualium altitudinum, altera in&longs;cripta hemi&longs;ph&aelig;&shy;<lb/><figure id="id.043.01.144.1.jpg" xlink:href="043/01/144/1.jpg"/><lb/>rio ABC, altera cono EDF circum&longs;cripta. </s>

<s>Si igitur <lb/>&agrave; toto AF cylindro auferatur figura, qu&aelig; in&longs;cripta e&longs;t <lb/>hemi&longs;ph&aelig;rio ABC, relinquetur figura qu&aelig;dam ex cylin&shy;<lb/>dris circa pr&aelig;dictos axes, vt &longs;unt BK, KH, HL, LD, <lb/>deficientibus ijs cylindris, ex quibus con&longs;tat figura in&longs;cri&shy;<lb/>pta hemi&longs;ph&aelig;rio ABC, &amp; vno integro &longs;upiemo XF <lb/>cylindro, circum&longs;cripta re&longs;iduo AF cylindri dempto A <lb/>BC hemi&longs;ph&aelig;rio, circum&longs;criptione interna: talis autem <lb/>figur&aelig; circum&longs;cript&aelig; centrum grauitatis, per ea, qu&aelig; in <lb/>primo libro, erit in axe BD, quemadmodum &amp; aliarum <lb/>duarum figurarum ex cylindris, quarum altera in&longs;cripta <lb/>e&longs;t hemi&longs;ph&aelig;rio ABC, altera cono EDF circum&longs;cripta. <!--neuer Satz--><pb/>Quoniam igitur quo exce&longs;su hemi&longs;ph&aelig;rium ABC &longs;u&shy;<lb/>perat ex cylindris figuram &longs;ibi in&longs;criptam, eodem figura <lb/>circum&longs;cripta reliquo cylindri AF, dempto ABC he&shy;<lb/>mi&longs;ph&aelig;rio, &longs;uperat ip&longs;um re&longs;iduum; figura autem in&longs;cripta <lb/>hemi&longs;ph&aelig;rio ABC pote&longs;t e&longs;&longs;e eiu&longs;modi, qu&aelig; ab hemi&shy;<lb/>&longs;ph&aelig;rio deficiat minori defectu quantacumque magnitu&shy;<lb/>dine propo&longs;ita; poterit figura, qu&aelig; pr&aelig;dicto re&longs;iduo cir&shy;<lb/>cum&longs;cripta e&longs;t e&longs;&longs;e talis, qu&aelig; ip&longs;um re&longs;iduum &longs;uperet mi&shy;<lb/>no i exce&longs;su quantacumque magnitudine propo&longs;ita. <lb/></s>

<s>Ru &longs;us, quia quemadmodum cylindrus AN infimus de&shy;<lb/>ficiens cylindro SR, &aelig;qualis e&longs;t cylindro TP, ex &longs;upe&shy;<lb/><figure id="id.043.01.145.1.jpg" xlink:href="043/01/145/1.jpg"/><lb/>rioribus, ita vnu&longs;qui&longs;que aliorum cylindrorum deficien&shy;<lb/>tium cylindris, qui &longs;unt in hemi&longs;ph&aelig;rio, ex quibus cylin&shy;<lb/>dris deficientibus con&longs;tat dicto re&longs;iduo figura circum&longs;cri&shy;<lb/>pta, &aelig;qualis e&longs;t cylindrorum circa conum EDF, ei, qui <lb/>cum ip&longs;o e&longs;t inter eadem plena parallela, &amp; circa eundem <lb/>axem; erunt omnes cylindri circa conum EDF, in ea&shy;<lb/>dem proportione cum pr&aelig;dictis cylindris deficientibus, <lb/>circa pr&aelig;dictum re&longs;iduum, &longs;i bini &longs;umantur inter eadem <lb/>plana parallela, &amp; circa eundem axem. </s>

<s>Quemadmodum <lb/>igitur omnium cylindrorum, qui circa conum EDF mi&shy;<lb/>nor e&longs;t proportio primi ad verticem D, ad &longs;ecundum, <lb/>qu&agrave;m &longs;ecundi ad tertium, &amp; &longs;ecundi ad tertium, qu&agrave;m ter-<pb/>tij ad quartum, &amp; &longs;ic &longs;emper deinceps v&longs;que ad vltimum <lb/>XF (duplicat&aelig; enim &longs;unt talium cylindrorum rationes <lb/>earum, quas inter &longs;e habent diametri &aelig;qualibus exce&longs;sibus <lb/>differentes circulorum, qui &longs;unt &longs;ectiones coni, &amp; ba&longs;es cy&shy;<lb/>lindrorum, ex quibus con&longs;tat figura cono EDF circum&shy;<lb/>&longs;cripta, &longs;umpta progre&longs;&longs;ione proportionum eodem ordine <lb/>gradatim &agrave; minima diametro v&longs;que ad maximam EF) ita <lb/>erit cylindrorum deficientium, ex quibus con&longs;tat figura <lb/>circum&longs;cripta reliquo cylindri AF, dempto ABC hemi&shy;<lb/>&longs;ph&aelig;rio, minimi, cuius axis DL ad &longs;ecundum minor pro&shy;<lb/>portio, qu&agrave;m &longs;ecundi ad tertium, &amp; &longs;ic deinceps, v&longs;que ad <lb/><expan abbr="maxim&utilde;">maximum</expan> XF, communiter ad conum EDF, &amp; pr&aelig;dictum <lb/>re&longs;iduum pertinentem, &longs;icut &amp; eorum ba&longs;es circuli deficien <lb/>tes, qu&aelig; &longs;unt dicti re&longs;idui &longs;ectiones. </s>

<s>Cum igitur tam maxi&shy;<lb/>mi cylindri XF communis, qu&agrave;m binorum quorumque reli <lb/>quorum cylindrorum circa conum EDF, &amp; pr&aelig;dictum re&longs;i <lb/>duum inter eadem plana parallela con&longs;i&longs;tentium, quorum <lb/>axis communis in BD, commune centrum grauitatis in axe <lb/>BD exi&longs;tat, erit ex antecedenti punctum K, quod pono <lb/>centrum grauitatis coni EDF, idem re&longs;idui ex cylindro <lb/>AF, dempto ABC, hemi&longs;ph&aelig;rio centrum grauitatis. <lb/></s>

<s>Quoniam igitur quarum partium e&longs;t octo axis BD talium <lb/>e&longs;t BG quinque, &amp; BK duarum (ponimus enim nunc K <lb/>coni EDF centrum grauitatis) qualium e&longs;t BD octo, ta&shy;<lb/>lium erit GK trium: &longs;ed KH e&longs;t &aelig;qualis BK; qualium <lb/>igitur partium e&longs;t GK trium, talium erit KH duarum, ta&shy;<lb/>li&longs;que vna GH; dupla igitur KH ip&longs;ius GH: &longs;ed ABC <lb/>hemi&longs;ph&aelig;rium duplum e&longs;t pr&aelig;dicti re&longs;idui, cum &longs;it cylin&shy;<lb/>dri AF, &longs;ub&longs;e&longs;quialterum; vt igitur e&longs;t <expan abbr="hemi&longs;ph&aelig;ri&utilde;">hemi&longs;ph&aelig;rium</expan> ABC, <lb/>ad pr&aelig;dictum re&longs;iduum, ita ex contraria parte erit <expan abbr="l&otilde;gitudo">longitudo</expan> <lb/>KH, adlongitudinem GH: &longs;ed H e&longs;t centrum grauitatis <lb/>totius cylindri AF &amp; K, pr&aelig;dicti re&longs;idui dempto ABC <lb/>hemi&longs;ph&aelig;rio; ergo ABC hemi&longs;ph&aelig;rij centrum grauitatis <lb/>erit G. <!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO XXXIV.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis minoris portionis &longs;ph&aelig;r&aelig; centrum gra<lb/>uitatis e&longs;t in axe primum bifariam &longs;ecto: deinde <lb/>&longs;ecundum centrum grauitatis fru&longs;ti circa eun&shy;<lb/>dem axim, ab&longs;ci&longs;&longs;i &agrave; cono verticem habente cen&shy;<lb/>trum &longs;ph&aelig;r&aelig;; in eo puncto, in quo dimidius axis <lb/>portionis ba&longs;im attingens &longs;ic diuiditur, vt pars <lb/>duabus pr&aelig;dictis &longs;ectionibus intercepta &longs;it ad <lb/>eam, qu&aelig; inter &longs;ecundam, &amp; tertiam &longs;ectionem <lb/>interijcitur, vt exce&longs;&longs;us, quo tripla &longs;emidiametri <lb/>&longs;ph&aelig;r&aelig;, cuius e&longs;t pr&aelig;dicta portio, &longs;uperattres de&shy;<lb/>inceps proportionales, quarum maxima e&longs;t &longs;ph&aelig;&shy;<lb/>r&aelig; &longs;emidiameter, media autem, qu&aelig; inter centra <lb/>&longs;ph&aelig;r&aelig;, &amp; ba&longs;is portionis interijcitur; ad &longs;emi&shy;<lb/>diametri &longs;ph&aelig;r&aelig; triplam. </s></p><p type="main">

<s>Sit minor portio ABC, &longs;ph&aelig;r&aelig;, cuius centrum D, <lb/>&longs;emidiameter BD, in qua axis portionis &longs;it BG, ba&longs;is <lb/>autem circulus, cuius diameter AC: &amp; circa axim BD <lb/>de&longs;criptus e&longs;to conus HDF, cuius ba&longs;is circulus FH <lb/>tangens portionem in B puncto &longs;it &aelig;qualis circulo ma&shy;<lb/>ximo, &amp; fru&longs;tum coni HDF ab&longs;ci&longs;&longs;um vna cum portio&shy;<lb/>ne ABC &longs;it KHFL, &amp; vt BD ad DG, ita fiat DG <lb/>ad P: &longs;ectoque axe BG bifariam in puncto N, fiat vt <lb/>exce&longs;&longs;us, quo tripla ip&longs;ius BD &longs;uperat tres BD, DG, <lb/>P, tanquam vnam, ita NM, ad MNO. </s>

<s>Dico portio&shy;<lb/>nis ABC centrum grauitatis e&longs;se O. <!-- KEEP S--></s>

<s>Nam circa axim <lb/>BG, &longs;uper ba&longs;im FH &longs;tet cylindrus EF, cuius cen-<pb/>trum grauitatis erit N, reliqui autem eius dempta <lb/>ABC portione centrum grauitatis M commune fru&longs;to <lb/>KLFH, vt colligitur ex demon&longs;tratione antecedentis. <lb/></s>

<s>Quoniam igitur e&longs;t vt exce&longs;sus, quo tripla ip&longs;ius BD &longs;u&shy;<lb/>perat tres BD, DG, P tanquam vnam, ad ip&longs;ius BD <lb/><figure id="id.043.01.148.1.jpg" xlink:href="043/01/148/1.jpg"/><lb/>triplam, hoc e&longs;t vt NM ad MO, ita portio ABC ad <lb/>EF cylindrum, &amp; diuidendo vt MN ad NO, ita por&shy;<lb/>tio ABC ad reliquum cylindri EF; &amp; N e&longs;t cylindri <lb/>EF, &amp; M pr&aelig;dicti re&longs;idui centrum grauitatis; erit reli&shy;<lb/>qu&aelig; portionis ABC centrum grauitatis O. <!-- KEEP S--></s>

<s>Quod de&shy;<lb/>mon&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXXV.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis portionis &longs;ph&aelig;r&aelig; ab&longs;ci&longs;&longs;&aelig; duobus pla&shy;<lb/>nis parallelis, altero per centrum acto, centrum <lb/>grauitatis e&longs;t in axe primum bifariam &longs;ecto: dein&shy;<lb/>de &longs;umpta ad minorem ba&longs;im quarta parte axis <lb/>portionis; in eo puncto, in quo dimidius axis mi&shy;<lb/>norem ba&longs;im attingens &longs;ic diuiditur, vt pars dua&shy;<lb/>bus pr&aelig;dictis &longs;ectionibus intercepta &longs;it ad eam, <pb/>qu&aelig; inter&longs;ecundam, &amp; vltimam &longs;ectionem inter&shy;<lb/>ijcitur, vt exce&longs;&longs;us, quo maior extrema ad &longs;ph&aelig;r&aelig; <lb/>&longs;emidiametrum, &amp; axim portionis &longs;uperat ter&shy;<lb/>tiam partem axis portionis; ad maiorem extre&shy;<lb/>mam antedictam. </s></p><p type="main">

<s>Sit portio ABCD &longs;ph&aelig;r&aelig;, cuius centrum F: axis au&shy;<lb/>tem portionis &longs;it EF ab&longs;ci&longs;s&aelig; duobus planis parallelis, <lb/>quorum alterum tran&longs;iens per punctum F faciat &longs;ectio&shy;<lb/>num circulum maximum, cuius diameter AD, reliquam <lb/>autem &longs;ectionem minorem circulum, qu&aelig; minor ba&longs;is di&shy;<lb/>citur, cuius di&shy;<lb/>ameter BC: <lb/>&amp; vt e&longs;t EF <lb/>ad AD, ita <lb/>fiat AD ad <lb/>OP, cuius P <lb/>R, &longs;it &aelig;qua&shy;<lb/>lis terti&aelig; parti <lb/>axis EF. <!-- KEEP S--></s>

<s>Et <lb/>&longs;ecta EF bi&shy;<lb/><figure id="id.043.01.149.1.jpg" xlink:href="043/01/149/1.jpg"/><lb/>fariam in puncto M, &amp; po&longs;ita EN ip&longs;ius EF quarta <lb/>parte, fiat vt RO ad OP, ita MN ad NL. </s>

<s>Dico L e&longs;&longs;e <lb/>centrum grauitatis portionis ABCD. <!-- KEEP S--></s>

<s>Nam circa axim <lb/>EF &longs;uper circulum maximum AD de&longs;cribatur cylindrus <lb/>AG, cuius centrum grauitatis erit M: reliqui autem ex <lb/>cylindro AG dempta ABCD portione centrum graui&shy;<lb/>tatis N. <!-- KEEP S--></s>

<s>Quoniam igitur e&longs;t vt RO ad OP, hoc e&longs;t vt <lb/>MN ad NL, ita portio ABCD ad reliquum cylindri <lb/>AG, &amp; diuidendo vt NM ad ML, ita portio ABCD ad <lb/>reliquum cylindri AG: &amp; cylindri AG e&longs;t N, pr&aelig;dicti au&shy;<lb/>tem re&longs;idui centrum grauitatis M; erit reliqu&aelig; portionis <lb/>ABCD centrum grauitatis L. <!-- KEEP S--></s>

<s>Quod <expan abbr="demon&longs;trand&utilde;">demon&longs;trandum</expan> erat. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO XXXVI.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis portionis &longs;ph&aelig;r&aelig; ab&longs;ci&longs;&longs;&aelig; duobus pla&shy;<lb/>nis parallelis neutro per centrum acto, nec cen&shy;<lb/>trum intercipientibus, centrum grauitatis e&longs;t in <lb/>axe primum bifariam &longs;ecto: deinde &longs;ecundum <lb/>centrum grauitatis fru&longs;ti circa eundem axim, <lb/>ab&longs;ci&longs;&longs;i &agrave; cono verticem habente centrum &longs;ph&aelig;&shy;<lb/>r&aelig;; in eo puncto in quo dimidius axis maiorem <lb/>ba&longs;im attingens &longs;ic diuiditur, vt pars duabus pr&aelig;&shy;<lb/>dictis &longs;ectionibus finita &longs;it ad eam, qu&aelig; inter &longs;e&shy;<lb/>cundam, &amp; vltimam &longs;ectionem interijcitur, vt <lb/>exce&longs;&longs;us, quo maior extrema ad triplas &amp; &longs;emidia <lb/>metri &longs;ph&aelig;r&aelig;, &amp; eius qu&aelig; inter centra &longs;ph&aelig;r&aelig;, <lb/>&amp; minorem ba&longs;im portionis interijcitur, &longs;uperat <lb/>tres deinceps proportionales, quarum maxima <lb/>e&longs;t, qu&aelig; inter centra &longs;ph&aelig;r&aelig;, &amp; minoris ba&longs;is, <lb/>media autem, qu&aelig; inter centra &longs;ph&aelig;r&aelig;, &amp; maio&shy;<lb/>ris ba&longs;is portionis interijcitur; ad maiorem extre&shy;<lb/>mam antedictam. </s></p><p type="main">

<s>Sit portio ABCD, &longs;ph&aelig;r&aelig;, cuius centrum E, ab&shy;<lb/>&longs;ci&longs;sa duobus planis parallelis, neutro per E tran&longs;eun&shy;<lb/>te, nec E intercipientibus: axis autem portionis &longs;it GH, <lb/>maior ba&longs;is circulus, cuius diameter AD, minor cuius <lb/>diameter BC: producta autem GH v&longs;que in E intel&shy;<lb/>ligatur coni KEN rectanguli, cuius axis EG, fru&longs;tum <pb/>KLMN ab&longs;ci&longs;&longs;um ij&longs;dem planis, quibus por&shy;<lb/>tio, &amp; &longs;ph&aelig;r&aelig; &longs;emidiameter &longs;it EHGS: &amp; po&shy;<lb/>&longs;ita T tripla ip&longs;ius ES, &amp; V ip&longs;ius EG tri&shy;<lb/>pla, e&longs;to vt V ad T ita T ad XZ: &amp; vt GE <lb/>ad EH ita EH ad <foreign lang="greek">w</foreign>, &amp; &longs;it ZY, ip&longs;ius XZ, <lb/>&aelig;qualis tribus GE, EH, <foreign lang="greek">w</foreign>, vt &longs;it exce&longs;&longs;us <lb/>XY: &amp; &longs;ecto axe GH bifariam in puncto I, in <lb/>linea GI, &longs;umatur O, centrum grauitatis fru&shy;<lb/>&longs;ti KLMN: Et vt <foreign lang="greek">*u</foreign>X ad XZ, ita fiat IO <lb/>ad OIP. </s>

<s>Dico portionis ABCD centrum <lb/>grauitatis e&longs;&longs;e P. <!-- KEEP S--></s>

<s>Nam circa axim GH pla&shy;<lb/>nis ba&longs;ium portionis interceptus &longs;tet cylin&shy;<lb/>drus QR, cuius ba&longs;is &longs;it &aelig;qualis circulo ma&shy;<lb/>ximo. </s>

<s>Quoniam igitur e&longs;t vt YX ad XZ, <lb/>hoc e&longs;t vt IO ad OP, ita portio ABCD <lb/>ad cylindrum QR, &amp; diuidendo vt OI ad <lb/>IP, ita portio ABCD ad reliquum cylindri <lb/>QR: &amp; I e&longs;t cylindri QR, &amp; O pr&aelig;dicti <lb/>re&longs;idui centrum grauitatis; erit reliqu&aelig; por&shy;<lb/><figure id="id.043.01.151.1.jpg" xlink:href="043/01/151/1.jpg"/><lb/>tionis ABCD centrum grauitatis P. <!-- KEEP S--></s>

<s>Quod demon&shy;<lb/>&longs;trandum erat. </s></p><pb/><p type="head">

<s><emph type="italics"/>LEMMA.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s><emph type="italics"/>Sit data recta PO, &amp; in ea punctum D, &amp; punctum quod&shy;<lb/>dam R in ip&longs;a DO, ita vt VD ip&longs;ius PD, ad DT ip&longs;ius DO, <lb/>&longs;it vt PD, ad DO: &longs;it autem maior proportio PS ad SO, qu&agrave;m <lb/>VR, ad RT. </s>

<s>Dico OS, minorem e&longs;&longs;e qu&agrave;m OR.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Fiat enim vt PS, ad SO, ita VZ ad ZT; ma&shy;<lb/>&igrave;or igitur erit proportio VZ, ad ZT, qu&agrave;m VR, ad <lb/>RT: &amp; componendo maior proportio VT, ad TZ, <lb/><figure id="id.043.01.152.1.jpg" xlink:href="043/01/152/1.jpg"/><lb/>qu&agrave;m VT, ad TR; minor igitur TZ, qu&agrave;m TR, ide&longs;t <lb/>maior DZ, qu&agrave;m DR. </s>

<s>Rur&longs;us quia componendo e&longs;t <lb/>vt PO ad OS, ita VT ad TZ: &longs;ed vt DO ad OP, ita <lb/>e&longs;t DT ad TV; erit ex &aelig;quali, vt DO ad OS, ita DT, <lb/>ad TZ; &amp; per conuer&longs;ionem rationis, vt OD ad DS, <lb/>ita TD ad DZ: &amp; permutando, vt DO ad DT, ita DS <lb/>ad DZ: &longs;ed DO, e&longs;t maior qu&agrave;m DT, ergo &amp; DS, erit <lb/>maior qu&agrave;m DZ: &longs;ed DZ maior erat qu&agrave;m DR; multo <lb/>ergo DS maior qu&agrave;m DR, vnde minor erit OS qu&agrave;m <lb/>OR. <!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXXVII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si dat&aelig; maiori &longs;ph&aelig;r&aelig; portioni cylindrus cir&shy;<lb/>cum&longs;cribatur circa eundem axim portionis, cen&shy;<lb/>trum grauitatis reliqu&aelig; figur&aelig; ex cylindro cir&shy;<lb/>cum&longs;cripto ablata portione, propinquius erit ver&shy;<lb/>tici portionis, qu&agrave;m <expan abbr="c&etilde;trum">centrum</expan> grauitatis portionis. </s></p><pb/><p type="main">

<s>Sit &longs;ph&aelig;r&aelig; cuius centrum D maior portio ABC, cu&shy;<lb/>ius axis BE, ba&longs;is circulus cuius diameter AC, &amp; por&shy;<lb/>tioni ABC, cylindro XH circa axim BE circum&longs;cripto <lb/>vt &longs;upra fecimus: quoniam tam portionis ABC, qu&agrave;m <lb/>cylindri XH, centrum grauitatis e&longs;t in axe BE; erit reli&shy;<lb/>qui ex cylindro XH, in axe BE centrum grauitatis, &longs;int <lb/>in axe BE centra grauitatis Q portionis ABC &amp; S pr&aelig;&shy;<lb/>dicti re&longs;idui. </s>

<s>Dico e&longs;&longs;e punctum S vertici B propinquius <lb/><figure id="id.043.01.153.1.jpg" xlink:href="043/01/153/1.jpg"/><lb/>qu&agrave;m punctum <expan abbr="q.">que</expan> Per centrum enim D tran&longs;iens planum <lb/>ad axim BE erectum &longs;ecet cylindrum XH, &amp; portionem <lb/>ABC in duos cylindros <emph type="italics"/>K<emph.end type="italics"/>H, XL, &amp; hemi&longs;ph&aelig;rium <lb/>KBL, &amp; portionem AKLC, &longs;ectio autem circulus ma&shy;<lb/>ximus e&longs;to ille cuius diameter KL: &amp; duo coni rectan&shy;<lb/>guli circa axes BD, DE, vertice D communi de&longs;cri&shy;<lb/>bantur GDH, MDN, quorum alterius ba&longs;is GH com&shy;<lb/>munis erit cylindro XH: alterius autem MDN, minor <lb/>qu&agrave;m eiu&longs;dem cylindri XH, ba&longs;is GH. <!-- KEEP S--></s>

<s>Denique &longs;ecta <pb/>BE bifariam in puncto R, &longs;ecentur BD, in puncto T, &amp; <lb/>DE, in puncto V, bifariam &amp; &longs;umatur BO, ip&longs;ius BD, <lb/>pars quarta, necnon EP pars quarta ip&longs;ius DE, primum <lb/>itaque quoniam ER e&longs;t maior, qu&agrave;m ED, erit punctum <lb/>R, in &longs;egmento BD. <!-- KEEP S--></s>

<s>Quoniam igitur ex &longs;upra o&longs;ten&longs;is O <lb/>e&longs;t centrum grauitatis commune cono DGH, &amp; reliquo <lb/>cylindri KH dempto ABC hemi&longs;ph&aelig;rio: &amp; eadem ra&shy;<lb/>tione punctum P, cum &longs;it centrum grauitatis coni MDN, <lb/>erit idem centrum grauitatis reliqui ex cylindro XL dem&shy;<lb/>pta AKLC portione: e&longs;t autem reliquum cylindri KH <lb/>dempto KBL hemi&longs;ph&aelig;rio, &aelig;quale cono DGH, qua <lb/>ratione &amp; reliquum cylindri XL, dempta AKLC por&shy;<lb/>tione &aelig;quale e&longs;t cono MDN; cum igitur S &longs;it centrum <lb/>grauitatis totius reliqui ex toto cylindro XH, dempta <lb/>ABC portione, erit idem S, centrum grauitatis compo&shy;<lb/>&longs;iti ex conis GDH, MDL: &longs;unt autem horum conorum <lb/>centra grauitatis O, P; vt igitur conus GDH, ad co&shy;<lb/>num MDN, ita erit PS, ad SO: &longs;ed coni GDH ad <lb/>&longs;imilem ip&longs;i conum MDN triplicata e&longs;t proportio axis <lb/>BD, ad axim BE, hoc e&longs;t cylindri KH ad cylindrum <lb/>XL; maior igitur proportio erit PS ad SO, qu&agrave;m cy&shy;<lb/>lindri KH ad cylindrum XL, &longs;ed vt cylindrus KH, ad <lb/>cylindrum XL, ita e&longs;t VR ad RT, ob centra grauiratis <lb/>V, R, T, maior igitur proportio erit PS ad SO, qu&agrave;m <lb/>VR ad RT: &longs;ed eiu&longs;dem PO e&longs;t vt PD ad DO, ita <lb/>VD ad DT, ob &longs;ectiones axium proportionales; pun&shy;<lb/>ctum igitur S propinquius e&longs;t puncto O, qu&agrave;m punctum <lb/>R, per Lemma. </s>

<s>Quare &amp; Stermino B propinquius qu&agrave;m <lb/>punctum R: &longs;ed R e&longs;t centrum grauitatis totius cylindri <lb/>XH: &amp; S reliqui ex cylindro XH dempta ABC por&shy;<lb/>tione; igitur Q reliqu&aelig; portionis ABC, centrum graui&shy;<lb/>tatis erit in linea ER, atque ideo &agrave; puncto B remotius <lb/>qu&agrave;m punctnm S. <!-- KEEP S--></s>

<s>Quod e&longs;t propo&longs;itum. </s></p><pb/><p type="head">

<s><emph type="italics"/>COROLLARIV M.<emph.end type="italics"/></s></p><p type="main">

<s>Manife&longs;tum e&longs;t autem ex demon&longs;tratione thelo&shy;<lb/>rematis, omnis re&longs;idui ex cylindro dat&aelig; maiori <lb/>&longs;ph&aelig;r&aelig; portioni circum&longs;cripto circa eundem <lb/>axim portionis, cuius ba&longs;is &longs;it &aelig;qualis circulo ma <lb/>ximo, centrum grauitatis e&longs;&longs;e in axe ab&longs;ci&longs;&longs;a pri&shy;<lb/>mum quarta parte ad verticem portionis termina&shy;<lb/>ta &longs;egmenti axis portionis, quod centro &longs;ph&aelig;r&aelig;, <lb/>&amp; vertice portionis, &amp; quarta parte eius quod <lb/>centro &longs;ph&aelig;r&aelig;, &amp; ba&longs;i portionis terminatur; ad <lb/>ba&longs;im terminata in eo puncto, in quo &longs;egmentum <lb/>axis portionis duabus pr&aelig;dictis &longs;ectionibus fini&shy;<lb/>tum &longs;ic diuiditur, vt &longs;egmentum propinquius ba&longs;i <lb/>&longs;it ad reliquum, vt cubus &longs;egmenti axis portionis <lb/>centro &longs;ph&aelig;r&aelig;, &amp; vertice portionis terminati ad <lb/>cubum reliqui quod ba&longs;im portionis tangit, &longs;i&shy;<lb/>quidem cubi triplicatam inter &longs;e habent laterum <lb/>proportionem, &longs;imul illud manife&longs;tum e&longs;t, hoc <lb/>idem eadem ratione po&longs;&longs;e demon&longs;trari de centro <lb/>grauitatis reliqui ex cylindro dempta &longs;ph&aelig;r&aelig; por&shy;<lb/>tione ab&longs;ci&longs;&longs;a duobus planis paral&igrave;elis centrum <lb/>&longs;ph&aelig;r&aelig; intercipientibus, ita vt axis portionis &agrave; <lb/>centro &longs;ph&aelig;r&aelig; in partes in&aelig;quales diuidatur, cu&shy;<lb/>ius cylindri circum&longs;cripti &longs;it idem axis, qui &amp; por <lb/>tionis, ba&longs;is autem &aelig;qualis circulo maximo. </s>

<s>Si&shy;<lb/>militer enim de&longs;criptis duobus conis rectangulis<pb/>verticem habentibus communem centrum &longs;ph&aelig;&shy;<lb/>r&aelig;, ba&longs;es autem minores ba&longs;ibus oppo&longs;itis cylin&shy;<lb/>dri circum&longs;cripti: &aelig;qualibus circulo maximo, &longs;u&shy;<lb/>mentes pro vertice minorem ba&longs;im, pro ba&longs;i, ma&shy;<lb/>iorem ba&longs;im portionis immotis reliquis propo&longs;i&shy;<lb/>tum demon&longs;traremus. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXXVIII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis maioris portionis &longs;ph&aelig;r&aelig; centrum gra<lb/>uitatis e&longs;t in axe primum bifariam &longs;ecto: Deinde <lb/>&longs;umpta ad verticem quarta parte &longs;egmenti axis, <lb/>quod centro &longs;ph&aelig;r&aelig;, &amp; portionis vertice finitur: <lb/>itemque ad ba&longs;im quarta parte reliqui &longs;egmenti <lb/>inter centrum &longs;ph&aelig;r&aelig;, &amp; ba&longs;im portionis interie&shy;<lb/>cti. </s>

<s>Deinde &longs;egmento axis, inter eas quartas par&shy;<lb/>tes interiecto, ita diui&longs;o, vt pats propinquior ba&longs;i <lb/>&longs;it ad reliquam vt cubus &longs;egmenti axis, quod <lb/><expan abbr="c&etilde;tro">centro</expan> &longs;ph&aelig;r&aelig;, &amp; vertice portionis, ad cubum eius <lb/>quod centris &longs;ph&aelig;r&aelig;, &amp; ba&longs;is portionis termina&shy;<lb/>tur; in eo puncto, in quo &longs;egmentum axis centro <lb/>&longs;ph&aelig;r&aelig;, &amp; &longs;ectione penultima finitum &longs;ic diuidi&shy;<lb/>tur, vt pars prima &amp; penultima &longs;ectione termina&shy;<lb/>ta &longs;it ad totam vltima &amp; penultima &longs;ectione termi <lb/>natam, vt exce&longs;&longs;us, quo &longs;egmentum axis portionis <lb/>inter centrum, &amp; ba&longs;im portionis interiectum &longs;u&shy;<lb/>perat tertiam partem minoris extrem&aelig; maiori po <lb/>&longs;ita dicto axis &longs;egmento in proportione &longs;emidia-<pb/>metri &longs;ph&aelig;r&aelig; ad pr&aelig;dictum &longs;egmentum, vn&agrave; cum <lb/>&longs;ub&longs;e&longs;quialtera reliqui &longs;egmenti, ad axim por&shy;<lb/>tionis. </s></p><p type="main">

<s>Sit maior portio ABC &longs;ph&aelig;r&aelig;, cuius centrum D, dia&shy;<lb/>meter KH, axis autem portionis &longs;it BE, ba&longs;is circulus, <lb/>cuius diameter AC, &amp; &longs;it axis BE primum bifariam &longs;e&shy;<lb/>ctus in puncto G: &longs;umptaque ip&longs;ius BD, quarta parte <lb/>BP, itemque ip&longs;ius DE quarta parte EN, &longs;ecetur inter&shy;<lb/>iecta PN, ita in puncto F, vt NF, ad FP, &longs;it vt cubus ex <lb/>BD ad cubum ex DE; punctum igitur F, ex pr&aelig;cedenti <lb/><figure id="id.043.01.157.1.jpg" xlink:href="043/01/157/1.jpg"/><lb/>corollario erit centrum grauitatis reliqui ex cylindro LM <lb/>portioni ABC, vt in antecedenti circum&longs;cripto. </s>

<s>Quo&shy;<lb/>niam igitur &amp; pr&aelig;dicti re&longs;idui, ex antecedenti, &amp; cylindri <lb/>LM, centra grauitatis &longs;unt in axe BE, erit &amp; portionis <lb/>ABC in axe BE centrum grauitatis, quod &longs;it S: manife&shy;<lb/>&longs;tum e&longs;t igitur punctum S, cadere &longs;upra centrum D, in li&shy;<lb/>nea BD, minori ablata &longs;ph&aelig;r&aelig; portione, cuius ba&longs;is cir-<pb/>culus AC: centrum autem F propinquius e&longs;&longs;e puncto B, <lb/>qu&agrave;m centrum S, con&longs;tat ex pr&aelig;cedenti: quare centrum <lb/>G, totius cylindri LM inter puncta F, S cadet. </s>

<s>Dico <lb/>GF ad FS e&longs;&longs;e vt exce&longs;&longs;us, quo recta DE &longs;uperat tertiam <lb/>partem minoris extrem&aelig; maiori po&longs;ita ip&longs;a DE in propor<lb/>tione continua ip&longs;ius DH ad DE vn&agrave; cum &longs;ub&longs;e&longs;quial&shy;<lb/>tera ip&longs;ius BD, ad axim BE, ita GF ad FS. <!-- KEEP S--></s>

<s>Quoniam <lb/>enim portio ABC ad cylindrum LM e&longs;t vt pr&aelig;dictus ex&shy;<lb/>ce&longs;&longs;us vn&agrave; cum &longs;ub&longs;e&longs;quialtera ip&longs;ius BD ad axim BE: <lb/>&amp; vt portio ABC ad LM cylindrum, ita e&longs;t GF ad FS, <lb/>ob centra grauitatis F, G; erit vt pr&aelig;dictus exce&longs;&longs;us vna <lb/>cum &longs;ub&longs;e&longs;quialtera ip&longs;ius BD ad axim BE, ita GF ad <lb/>FS. <!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXXIX.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis portionis &longs;ph&aelig;r&aelig; ab&longs;ci&longs;&longs;&aelig; duobus pla&shy;<lb/>nis parallelis centrum intercipientibus, &amp; &agrave; cen&shy;<lb/>tro &aelig;qualiter di&longs;tantibus, centrum grauitatis e&longs;t <lb/>in medio axis, vel idem, quod centrum &longs;ph&aelig;r&aelig;. </s></p><p type="main">

<s>Sit portio ABCD, &longs;ph&aelig;r&aelig;, cuius centrum G, ab&longs;ci&longs;sa <lb/>duobus planis parallelis <lb/>centrum G intercipien&shy;<lb/>tibus, &amp; &aelig;qu&egrave; ab eo di&shy;<lb/>&longs;tantibus: &longs;ectiones <expan abbr="er&utilde;t">erunt</expan> <lb/>circuli minores, quorum <lb/>diametri &longs;int AD, BC <lb/>centra autem F,E, qui&shy;<lb/>bus axis portionis termi <lb/>nabitur, eritque ad pla&shy;<lb/>na vtriu&longs;que circuli per <lb/><figure id="id.043.01.158.1.jpg" xlink:href="043/01/158/1.jpg"/><lb/>pendicularis tran&longs;iens per centrum G: &amp; quia illa plana <pb/>&agrave; centro G, &aelig;qu&egrave; di&longs;tant, erit EG, &aelig;qualis GF. <!-- KEEP S--></s>

<s>Dico <lb/>portionis ABCD centrum grauitatis e&longs;&longs;e G. <!-- KEEP S--></s>

<s>De&longs;cripta <lb/>enim figura, vt &longs;upra fecimus, intelligantur duo coni re&shy;<lb/>ctanguli GNO, GPQ, vertice G, communi, axibus <lb/>autem eorum EG, GF: &amp; cylindrus LM, portioni cir&shy;<lb/>cum&longs;criptus circa eun&shy;<lb/>dem axim EF, cuius ba <lb/>&longs;is &aelig;qualis e&longs;t circulo <lb/>maximo: &amp; &longs;umatur EH <lb/>ip&longs;ius EG, pars quar&shy;<lb/>ta, itemque FK, pars <lb/>quarta ip&longs;ius FG. <!-- KEEP S--></s>

<s>Quo&shy;<lb/>niam igitur conorum G <lb/>NO, PGO, axes FG, <lb/>GH, &longs;unt &aelig;quales, re&shy;<lb/>liqu&aelig; KG, GH, &aelig;qua <lb/><figure id="id.043.01.159.1.jpg" xlink:href="043/01/159/1.jpg"/><lb/>les erunt; centra autem grauitatis conorum &longs;unt K, H; pun&shy;<lb/>ctum igitur G e&longs;t centrum grauitatis compo&longs;iti ex duobus <lb/>conis &aelig;qualibus GNO, GPQ, hoc e&longs;t reliqui ex cylin&shy;<lb/>dro LM, dempta ABCD, portione, ex ante demon&longs;tra&shy;<lb/>tis: &longs;ed idem G e&longs;t centrum grauitatis totius cylindri LM; <lb/>reliqu&aelig; igitur ABCD, portionis centrum grauitatis erit <lb/>G. <!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XL.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis portionis &longs;ph&aelig;r&aelig; ab&longs;ci&longs;&longs;&aelig; duobus pla&shy;<lb/>nis parallelis centrum intercipientibus, &amp; &agrave; cen&shy;<lb/>tro non &aelig;qualiter di&longs;tantibus centrum grauitatis <lb/>e&longs;t in axe primum bifariam &longs;ecto: Deinde &longs;umpta <lb/>ad minorem ba&longs;im portionis quarta parte &longs;egmen <lb/>ti axis, quod minorem ba&longs;im attingit: &amp; ad maio-<pb/>rem ba&longs;im quarta parte reliqui &longs;egmenti axis eo&shy;<lb/>rum, qu&aelig; &agrave; centro &longs;ph&aelig;r&aelig; fiunt: Deinde recta <lb/>inter has quartas partes interiecta ita diui&longs;a, vt <lb/>pars maiori ba&longs;i propinquior &longs;it ad reliquam vt <lb/>cubus &longs;egmenti axis inter &longs;ph&aelig;r&aelig; centrum, &amp; mi&shy;<lb/>norem ba&longs;im, ad cubum eius, quod inter &longs;ph&aelig;r&aelig; <lb/>centrum, &amp; maiorem ba&longs;im portionis interijci&shy;<lb/>tur; in eo puncto, in quo &longs;egmentum axis centro <lb/>&longs;ph&aelig;r&aelig;, &amp; penultima &longs;ectione terminatum &longs;ic di&shy;<lb/>uiditur, vt pars qu&aelig; penultima, &amp; prima &longs;ectione <lb/>terminatur &longs;it ad totam vltima, &amp; penultima &longs;e&shy;<lb/>ctione terminatam, vt ad axim portionis e&longs;t exce&longs; <lb/>&longs;us, quo idem axis portionis &longs;uperat <expan abbr="terti&atilde;">tertiam</expan> partem <lb/>compo&longs;it&aelig; ex duabus minoribus extremis, maio&shy;<lb/>ribus po&longs;itis duobus axis &longs;egmentis, qu&aelig; fiunt &agrave; <lb/>centro &longs;ph&aelig;r&aelig; in rationibus &longs;emidiametri &longs;ph&aelig;&shy;<lb/>r&aelig; ad pr&aelig;dicta &longs;egmenta. </s></p><figure id="id.043.01.160.1.jpg" xlink:href="043/01/160/1.jpg"/><p type="main">

<s>Sit portio ABCD &longs;ph&aelig;r&aelig;, cuius centrum G, abci&longs;&longs;a <lb/>duobus planis parallelis centrum G intercipien<gap/>ibus, &amp; <pb/>ab eo non &aelig;qualiter di&longs;tantibus: &amp; axis portionis &longs;it EF, <lb/>qui per centrum G tran&longs;ibit, vtpote parallelorum circu&shy;<lb/>lorum centra iungens: cumque eorum vtrumque &longs;it &agrave; cen&shy;<lb/>tro non &aelig;qualiter di&longs;tantium perpendicularis, erunt eius <lb/>&longs;egmenta EG, GF, in&aelig;qualia. </s>

<s>E&longs;to EG, maius: &longs;ectoque <lb/>axe EF bifariam in puncto P, &longs;umptisque ip&longs;arum EG, <lb/>GF, quartis partibus EH, FK, &longs;ecetur interiecta <emph type="italics"/>K<emph.end type="italics"/>H, <lb/>in puncto Q, ita vt KQ, ad QH, &longs;it vt cubus ex EG, <lb/>ad cubum ex GF, &amp; portionis ABCD, &longs;it centrum gra<lb/>uitatis R: quod quidem cum punctis P, Q, e&longs;&longs;e in axe <lb/><figure id="id.043.01.161.1.jpg" xlink:href="043/01/161/1.jpg"/><lb/>EF: &amp; cylindro LM, &longs;uper ba&longs;im &aelig;qualem circulo ma&shy;<lb/>ximo circa axim EF, portioni circum&longs;cripto, reliqui eius <lb/>dempta ABCD, portione centrum grauitatis e&longs;se Q, &amp; <lb/>propinquius E puncto, qu&agrave;m centrum grauitatis R por&shy;<lb/>tionis ABCD, manife&longs;tum e&longs;t ex &longs;upra demon&longs;tratis de <lb/>maioris portionis &longs;ph&aelig;r&aelig; centro grauitatis: portionis autem <lb/>ABCD centrum grauitatis R e&longs;se in &longs;egmento EG &longs;e&shy;<lb/>quitur ex antecedente. </s>

<s>Dico PQ ad QR e&longs;se vt ad axim <lb/>EF exce&longs;sus, quo axis EF &longs;uperat tertiam partem com&shy;<lb/>po&longs;it&aelig; <gap/> duabus minoribus extremis altera re&longs;pondente <lb/>maiori extrema EG in proportione continua ip&longs;ius NG <pb/>ad GE, altera maiori extrem&aelig; FG in proportione con&shy;<lb/>tinua ip&longs;ius NG ad GF. <!-- KEEP S--></s>

<s>Quoniam enim ob centra gra<lb/>uitatis QPR e&longs;t vt QP ad PR, ita portio ABCD ad <lb/>reliquum cylindri LM, erit componendo, &amp; per conuer&shy;<lb/>&longs;ionem rationis, &amp; conuertendo, vt PQ ad QR, ita por&shy;<lb/>tio ABCD ad LM cylindrum: &longs;ed portio ABCD ad <lb/>LM cylindrum e&longs;t vt pr&aelig;dictus exce&longs;&longs;us ad axim EF; <lb/>vtigitur pr&aelig;dictus exce&longs;&longs;us ad axim EF, ita e&longs;t PQ ad <lb/>QR. </s>

<s>Quod demon&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XLI.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis conoidis parabolici centrum grauita&shy;<lb/>tis e&longs;t punctum illud, in quo axis &longs;ic diuiditur vt <lb/>pars, qu&aelig; e&longs;t ad verticem &longs;it dupla reliqu&aelig;. </s></p><p type="main">

<s>Sit conoides parabolicum ABC, cuius vertex B, axis <lb/>autem BD &longs;ectus in puncto E ita vt EB &longs;it ip&longs;ius ED <lb/>dupla. </s>

<s>Dico E e&longs;se centrum grauitatis conoidis ABC. <lb/><!-- KEEP S--></s>

<s>Nam in &longs;ectione per <lb/>axim parabola ABC, <lb/>cuius diameter erit B <lb/>D, de&longs;cribatur rian&shy;<lb/>gulum ABC; &longs;um&shy;<lb/>ptisque ip&longs;ius BD &aelig;&shy;<lb/>qualibus DH, HO, <lb/>per puncta H, O, &longs;e&shy;<lb/>centur vn&agrave; parabola <lb/>&amp; triangulum ABC <lb/>duabus rectis FGH <lb/><figure id="id.043.01.162.1.jpg" xlink:href="043/01/162/1.jpg"/><lb/>KL, MNOPQ: &amp; per eas rectas &longs;ecetur conoi&shy;<lb/>des ABC planis ba&longs;i parallelis, fact&aelig; autem &longs;e&shy;<lb/>ctiones erunt circuli circa FL, MQ, &amp; in parabola <pb/>ABC tres ad diametrum ordinatim applicat&aelig; AD, <lb/>FH, MO. </s>

<s>Quoniam igitur tres rect&aelig; OB, BH, BD <lb/>&longs;e&longs;e qualiter excedunt, quarum minima BO, maxi&shy;<lb/>ma e&longs;t BD, minor erit proportio BO ad BH, qu&agrave;m <lb/>BH ad BD; hoc e&longs;t NP ad GK, qu&agrave;m GKad AC. <lb/>&longs;ed vt OB ad BH hoc e&longs;t NO ad GH, vel NP ad <lb/>GK ita e&longs;t quadra&shy;<lb/>tum MO ad quadra&shy;<lb/>tum FH, hoc e&longs;t eo&shy;<lb/>no dis &longs;ectionum cir&shy;<lb/>culus MQ ad circu&shy;<lb/>lum FL: eademque <lb/>ratione vt GK ad <lb/>AC ita circulus FL <lb/>ad circulum AC; mi<lb/>nor igitur proportio <lb/>erit circuli MQ ad <lb/>circulum FL qu&agrave;m <lb/><figure id="id.043.01.163.1.jpg" xlink:href="043/01/163/1.jpg"/><lb/>circuli FL ad circulum AC. <!-- KEEP S--></s>

<s>Similiter autem o&longs;tende&shy;<lb/>remus ternas quaslibet alias ita factas &longs;ectiones trianguli, <lb/>&amp; parabol&aelig; ABC inter &longs;e &amp; ba&longs;i parallelas proportio&shy;<lb/>nales e&longs;se, &amp; minorem proportionem vtrobique minim&aelig; <lb/>ad mediam, qu&agrave;m medi&aelig; ad maximam. </s>

<s>Sed E e&longs;t cen&shy;<lb/>trum grauitatis trianguli ABC, igitur per vige&longs;imamter&shy;<lb/>tiam huius centrum grauitatis conoidis ABC erit idem E. <lb/><!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat, </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XLII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis fru&longs;ti conoidis parabolici centrum gra<lb/>uitatis axim ita diuidit, vt pars, qu&aelig; minorem <lb/>ba&longs;im attingit &longs;it ad reliquam; vt duplum maioris <pb/>ba&longs;is vn&agrave; cum minori, ad duplum minoris, vn&agrave; <lb/>cum maiori. </s></p><p type="main">

<s>Sit conoidis parabolici ABC, cuius axis BD fru&longs;tum <lb/>AEFC, eius maior ba&longs;is circulus, cuius diameter AC, mi&shy;<lb/>nor, cuius diameter EF: in eadem parabola per axem, axis <lb/><expan abbr="aut&etilde;">autem</expan> DG, in quo fru&longs;ti AEFC &longs;it centrum grauitatis H. <lb/><!-- KEEP S--></s>

<s>Dico e&longs;&longs;e vt duplum circuli AC, vn&agrave; cum circulo EF, ad <lb/>duplum circuli EF vna cum circulo AC, ita GH, ad HD. <lb/><expan abbr="Iung&atilde;tur">Iungantur</expan> enim re&shy;<lb/>ct&aelig; AKB, BLC. <lb/></s>

<s>Quoniam igitur <lb/>qua ratione o&longs;ten <lb/>dimus conoides, <lb/>&amp; triangulum A <lb/>BC, commune <lb/>habere in linea <lb/>BD centrum gra<lb/>uitatis, <expan abbr="ead&etilde;">eadem</expan> pror&shy;<lb/>&longs;us remanet de&shy;<lb/>mon&longs;tratum, fru&longs;ti <lb/><figure id="id.043.01.164.1.jpg" xlink:href="043/01/164/1.jpg"/><lb/>AEFC <expan abbr="centr&utilde;">centrum</expan> grauitatis H, idem e&longs;se quod trapezij AK <lb/>FC; erit duarum parallelarum AG, KL vt dupla ip&longs;ius <lb/>AC, vn&agrave; cum KL, ad duplam ip&longs;ius KL, vn&agrave; cum AC <lb/>ita GH ad HD: &longs;ecat enim DG ip&longs;as AC, KL bifa&shy;<lb/>riam. </s>

<s>Sed vt AC ad <emph type="italics"/>K<emph.end type="italics"/>L ita e&longs;t circulus AC ad circu&shy;<lb/>lum EF, ex demon&longs;tratione antecedentis, hoc e&longs;t vt dupla <lb/>ip&longs;ius AC vn&agrave; cum KL ad duplam ip&longs;ius KL vn&agrave; cum <lb/>AC, ita duplum circuli AC vna cum circulo KL ad du&shy;<lb/>plum circuli KL vn&agrave; cum circulo AC; vt igitur e&longs;t du&shy;<lb/>plum circuli AC, vn&agrave; cum circulo EF, ad duplum circu&shy;<lb/>li EF, vn&agrave; cum circulo AC; ita erit GH ad HD. <lb/></s>

<s>Quod demon&longs;trandum erat. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO XLIII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis conoidis hyperbolici centrum grauita&shy;<lb/>tis e&longs;t punctum illud, in quo duodecima pars axis <lb/>ordine quarta ab ea, qu&aelig; ba&longs;im attingit, &longs;ic diui&shy;<lb/>ditur, vt pars ba&longs;i propinquior &longs;it ad reliquam, vt <lb/>&longs;e&longs;quialtera tran&longs;uer&longs;i lateris hyperboles, qu&aelig; <lb/>conoides de&longs;cribit ad axim conoidis. </s></p><p type="main">

<s>Sit conoides hyperbolicum ABC, cuius vertex B, axis <lb/>autem BD, qui etiam erit diameter hyperboles, qu&aelig; co&shy;<lb/>noides de&longs;crip&longs;it, ad quam rect&aelig; ordinatim applicantur: <lb/>eiu&longs;dem autem hyperboles tran&longs;uer&longs;um latus &longs;it EB, cu&shy;<lb/>ius &longs;it &longs;e&longs;quialtera BEI, &amp; &longs;umpta DQ quarta parte <lb/>axis BD, &amp; DG, eiu&longs;dem tertia, qua ratione erit FG <lb/>duodecima pars axis BD, &amp; ordine quarta ab ea cuius <lb/>terminus D, fiat vt IB, ad BD, ita QH, ad HG. <lb/><!-- KEEP S--></s>

<s>Dico conoidis ABC, centrum grauitatis e&longs;&longs;e H. <!-- KEEP S--></s>

<s>Sumpto <lb/>enim in linea AD quolibet puncto M, vt e&longs;t EB ad <lb/>BD longitudine, ita fiat MD, ad DK ip&longs;ius AD po&shy;<lb/>tentia: &amp; ab&longs;cindatur DN, &aelig;qualis DM, &amp; DL &aelig;qua&shy;<lb/>lis DK; &longs;iue autem &longs;it DK minor, qu&agrave;m DM, &longs;iue ma&shy;<lb/>ior, &longs;iue eadem illi; omnibus ca&longs;ibus communis erit demon <lb/>&longs;tratio. </s>

<s>At per puncta M, N, vertice B, circa diametrum <lb/>BD, de&longs;cribatur parabola MBN, &amp; triangulum KBL. <lb/><!-- KEEP S--></s>

<s>Manente igitur BD, &amp; circumductis figuris MBN, <lb/>KBL, de&longs;cribantur conoides parabolicum MBN, &amp; <lb/>conus KBL, quorum communis axis erit BD, ba&longs;es <lb/>autem circuli, quorum diametri KL, MN, in eodem <lb/>plano cum ba&longs;e conoidis ABC. <!-- KEEP S--></s>

<s>Rur&longs;us &longs;ecto axe BD <lb/>bifariam, &amp; &longs;ingulis eius partibus &longs;emper bifariam in qua-<pb/>cumque multiplicatione; &longs;int du&aelig; partes &aelig;quales proxim&aelig; <lb/>ba&longs;i DF, FQ: &amp; per puncta FQ duo plana ba&longs;ium pla&shy;<lb/>no parallela tres pr&aelig;dictas figuras &longs;olidas &longs;ecare intelli&shy;<lb/>gantur: &longs;ecabunt autem &amp; tres figuras per axim, eruntque <lb/>&longs;ectiones rect&aelig; line&aelig; ad diametrum figurarum ordinatim <lb/>applicat&aelig; propter <lb/>plana &longs;ecantia pa <lb/>rallela: trium au&shy;<lb/>tem &longs;olidorum &longs;e <lb/>ctiones &amp; ba&longs;es <lb/>omnes circuli, ter <lb/>ni in &longs;ingulis pla&shy;<lb/>nis: ac primi qui&shy;<lb/>dem ordinis &longs;int <lb/>ij, quorum diame&shy;<lb/>tri &longs;unt ba&longs;es <expan abbr="tri&utilde;">trium</expan> <lb/><expan abbr="figurar&utilde;">figurarum</expan> per axim, <lb/>trianguli &longs;cilicet, <lb/>parabol&aelig;, &amp; hy&shy;<lb/>perboles, qu&aelig; pr&aelig; <lb/>dictas figuras &longs;oli <lb/>das de&longs;cribunt, re <lb/>ct&aelig; line&aelig; AC, <lb/>MN, KL. <!-- KEEP S--></s>

<s>Se&shy;<lb/>cundi ver&ograve; reten&shy;<lb/>to eodem ordine <lb/><expan abbr="figurar&utilde;">figurarum</expan> tres <foreign lang="greek">az, <lb/>be, gd. </foreign></s>

<s>Tertij <lb/>denique ordinis <lb/>SZ, TY, VX. <lb/><figure id="id.043.01.166.1.jpg" xlink:href="043/01/166/1.jpg"/><lb/>Quoniam igitur e&longs;t vt EB, ad BD, it&agrave; quadratum MD, <lb/>ad quadratum DK, ide&longs;t conus MBN, &longs;i de&longs;cribatur eo&shy;<lb/>dem vertice B, ad conum KBL. <!-- KEEP S--></s>

<s>Et vt IB, ad BE, it&agrave; e&longs;t <lb/>conoides MBN, ad conum MBN, in proportione &longs;cili-<pb/>cet &longs;e&longs;quialtera; ex &aelig;quali erit vt IB, ad BD, it&igrave; conoi&shy;<lb/>des MBN ad conum KBL: Sed vt IB, ad BD, it&agrave; <lb/>ponitur QH ad HG; vt igitur conoides MBN, ad co&shy;<lb/>num KBL, it&agrave; e&longs;t QH ad HG. <!-- KEEP S--></s>

<s>Sed Q e&longs;t centrum <lb/>grauitatis coni KBL, &amp; G conoidis MBN; compo&longs;i&shy;<lb/>ti igitur ex conoi&shy;<lb/>de MBN, &amp; co&shy;<lb/>no KBL <expan abbr="centr&utilde;">centrum</expan> <lb/>grauitatis erit H. <lb/><!-- KEEP S--></s>

<s>Rur&longs;us quoniam <lb/>tres rect&aelig; line&aelig; B <lb/>D, BF, BQ, &aelig;&shy;<lb/>qualibus exce&longs;&longs;i&shy;<lb/>bus inter &longs;e diffe&shy;<lb/>runt, minor erit <lb/>proportio BQ, ad <lb/>BF, qu&agrave;m BF, <lb/>ad BD, hoc e&longs;t <lb/>rectanguli EBQ, <lb/>ad rectangulum <lb/>EBF, qu&agrave;m re&shy;<lb/>ctanguli EBF, ad <lb/>rectangulum EB <lb/>D. <!-- KEEP S--></s>

<s>Sed quadrati <lb/>BQ, ad quadra&shy;<lb/>tum BF, dupli&shy;<lb/>cata e&longs;t proportio <lb/>lateris BQ ad la&shy;<lb/>tus BF: hoc e&longs;t <lb/>rectanguli EBQ <lb/><figure id="id.043.01.167.1.jpg" xlink:href="043/01/167/1.jpg"/><lb/>ad rectangulum EBF: &amp; quadrati BF, ad quadratum <lb/>BD duplicata eius, qu&aelig; e&longs;t rectanguli EBF, ad rectan&shy;<lb/>gulum EBD; compo&longs;itis igitur primis cum &longs;ecundis, mi&shy;<lb/>nor erit proportio rectanguli BQE, ad rectangulum BFE, <pb/>qu&agrave;m rectanguli BFE, ad rectangulum BDE. <!-- KEEP S--></s>

<s>Sed vt <lb/>rectangulum BQE ad rectangulum BFE, ita e&longs;t quadra&shy;<lb/>tum SQ ad quadratum <foreign lang="greek">a</foreign>F: &amp; vt rectangulum BFE <lb/>ad rectangulum BDE, ita quadratum <foreign lang="greek">a</foreign>F, ad quadra&shy;<lb/>tum AD; minor igitur proportio erit quadrati SQ, ad <lb/>quadratum <foreign lang="greek">a</foreign>F, qu&agrave;m quadrati <foreign lang="greek">a</foreign>F ad quadratum AD. <lb/><!-- KEEP S--></s>

<s>Sed vt quadratum SQ ad quadratum <foreign lang="greek">a</foreign>F, ita e&longs;t qua&shy;<lb/>dratum SZ ad quadratum <foreign lang="greek">a</foreign>&lt;37&gt;: &amp; vt quadratum <foreign lang="greek">a</foreign>F ad <lb/>quadratum AD ita quadratum <foreign lang="greek">az</foreign> ad quadratum <lb/>AC; minor igitur proportio erit quadrati SZ ad quadra&shy;<lb/>tum <foreign lang="greek">az</foreign>, qu&agrave;m quadrati <foreign lang="greek">az</foreign>, ad quadratum AC, hoc e&longs;t <lb/>circuli SZ ad circulum <foreign lang="greek">a</foreign>&lt;37&gt;, qu&agrave;m circuli <foreign lang="greek">a</foreign>&lt;37&gt;, ad cir&shy;<lb/>culum AC; qui circuli &longs;unt &longs;ectiones conoidis ABC <lb/>po&longs;iti vt in propo&longs;itionibus lemmaticis dicebamus. </s>

<s>Rur&longs;us <lb/>quoniam &longs;unt quatuor prim&aelig; proportionales; vt rectangu&shy;<lb/>lum DBE ad rectangulum FBE, ita MD quadratum <lb/>ad quadratum <foreign lang="greek">b</foreign>F: &amp; totidem &longs;ecund&aelig;, vt quadratum <lb/>BD, ad quadratum BF, ita quadratum DK, ad quadra&shy;<lb/>tum F<foreign lang="greek">g</foreign>, ob &longs;imilium triangulorum latera proportionalia: <lb/>&longs;ed vt EB, ad BD, hoc e&longs;t rectangulum DBE prima in <lb/>primis ad quadratum BD primam in &longs;ecundis, ita e&longs;t <lb/>quadratum MD tertia in primis ad quadratum DK ter&shy;<lb/>tiam in &longs;ecundis; vt igitur compo&longs;ita ex primis ad com&shy;<lb/>po&longs;itam ex &longs;ecundis, it&agrave; erit compo&longs;ita ex tertijs ad com&shy;<lb/>po&longs;itam ex quartis; videlicet vt rectangulum DBE <lb/>vn&agrave; cum quadrato BD, hoc e&longs;t rectangulum BDE <lb/>ad rectangulum BFE, hoc e&longs;t vt quadratum AD, ad <lb/>quadratum <foreign lang="greek">a</foreign>F, it&agrave; compo&longs;itum ex quadratis MD, DK, <lb/>ad compo&longs;itum ex quadratis <foreign lang="greek">b</foreign>F, F<foreign lang="greek">g</foreign>: &amp; quadrupla vtro&shy;<lb/>rumque, vt quadratum AC, ad quadratum <foreign lang="greek">a</foreign>&lt;37&gt;, it&agrave; com&shy;<lb/>po&longs;itum ex quadratis MN, KL, ad compo&longs;itum ex qua&shy;<lb/>dratis <foreign lang="greek">be, gd</foreign>; hoc e&longs;t eorum circulorum, qui &longs;unt &longs;ectio&shy;<lb/>nes &longs;olidorum, vt circulus AC, ad circulum <foreign lang="greek">a</foreign>&lt;37&gt;, it&agrave; com&shy;<lb/>po&longs;itum ex circulis MN, KL, ad compo&longs;itum ex circu&shy;<pb/>lis <foreign lang="greek">be, gd. </foreign></s>

<s>Eadem ratione erit vt circulus AC, ad cir&shy;<lb/>culum SZ, it&agrave; compo&longs;itum ex circulis MN, KL, ad <lb/>compo&longs;itum ex circulis TY, VX: &amp; conuertendo, &amp; ex <lb/>&aelig;quali, vt circulus SZ, ad circulum <foreign lang="greek">a</foreign>&lt;37&gt;, it&agrave; compo&longs;itum <lb/>ex circulis TY, VX, ad compo&longs;itum ex circulis <foreign lang="greek">be, gd</foreign>: <lb/>&amp; vt circulus <foreign lang="greek">a</foreign>&lt;37&gt;, <lb/>ad circulum AC, <lb/>it&agrave; <expan abbr="c&otilde;po&longs;itum">compo&longs;itum</expan> ex <lb/>circulis <foreign lang="greek">be, gd</foreign>, <lb/>ad <expan abbr="c&otilde;po&longs;itum">compo&longs;itum</expan> ex <lb/>circulis MN, <emph type="italics"/>K<emph.end type="italics"/><lb/>L. <!-- KEEP S--></s>

<s>Sunt igitur tria <lb/>compo&longs;ita ex bi&shy;<lb/>nis &longs;ectionibus cir <lb/>culis, &amp; totidem <lb/>alij circuli, quos <lb/>diximus in <expan abbr="ead&etilde;">eadem</expan> <lb/>proportione, &longs;i bi&shy;<lb/>na <expan abbr="&longs;um&atilde;tur">&longs;umantur</expan> in &longs;in <lb/>gulis planis &longs;ecan <lb/>tibus: eorum au&shy;<lb/>tem minor erat <lb/>proportio circuli <lb/>SZ ad circulum <lb/><foreign lang="greek">a</foreign>&lt;37&gt;, qu&agrave;m circuli <lb/><foreign lang="greek">a</foreign>&lt;37&gt;, ad circulum <lb/>AC; minor igitur <lb/>proportio erit <expan abbr="c&otilde;-po&longs;iti">con&shy;<lb/>po&longs;iti</expan> ex circulis <lb/>T<foreign lang="greek">*u</foreign>, VX, ad <expan abbr="c&otilde;-po&longs;itum">con&shy;<lb/>po&longs;itum</expan> ex circu&shy;<lb/><figure id="id.043.01.169.1.jpg" xlink:href="043/01/169/1.jpg"/><lb/>lis <foreign lang="greek">be, gd</foreign>, qu&agrave;m compo&longs;iti ex circulis <foreign lang="greek">be, gd</foreign>, ad com <lb/>po&longs;itum ex circulis MN, KL. <!-- KEEP S--></s>

<s>Hac eadem ratione ad verti&shy;<lb/>cem deinceps progredienti manife&longs;tum erit, omnium com-<pb/>po&longs;itorum ex binis &longs;ectionibus nempe circulis, quorum al&shy;<lb/>ter ad conum KBL pertinet, alter ad conoides MBN, in <lb/>eodem plano &longs;ecante pr&aelig;dictorum inter &longs;e parallelorum <lb/>exi&longs;tentibus, minorem e&longs;&longs;e proportionem incipienti ab eo, <lb/>quod e&longs;t proximum vertici, primi ad &longs;ecundum, qu&agrave;m &longs;e&shy;<lb/>cundi ad tertium, &amp; &longs;ecundi ad tertium, qu&agrave;m tertij ad <lb/>quartum, &amp; &longs;ic &longs;emper deinceps v&longs;que ad maximum &amp; vl&shy;<lb/>timum compo&longs;itum ex circulis MN, KL: &amp; eandem di&shy;<lb/>ctas &longs;ectiones compo&longs;itas ex coni, &amp; conoidis parabolici <lb/>&longs;ectionibus inter &longs;e habere proportionem, qu&agrave;m habent in&shy;<lb/>ter &longs;e circuli &longs;ectiones conoidis ABC, pro vt illis in <lb/>ij&longs;dem planis &longs;ecantibus, &amp; &aelig;qualia axis BD &longs;egmenta <lb/>intercipientibus re&longs;pondent: Igitur per trige&longs;imam &longs;ecun&shy;<lb/>dam huius, &amp; &longs;equens eam Corollarium, conoides ABC, <lb/>&amp; compo&longs;itum ex conoide MBN, &amp; cono BKL, com&shy;<lb/>mune habebunt in axe BD centrum grauitatis. </s>

<s>Sed H <lb/>erat huius compo&longs;iti centrum grauitatis; Igitur conoidis <lb/>ABC centrum grauitatis erit idem H. <!-- KEEP S--></s>

<s>Quod demon&shy;<lb/>&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>COROLLARIV M.<emph.end type="italics"/></s></p><p type="main">

<s>Eadem demon&longs;tratione con&longs;tat &longs;i pr&aelig;dicta tria <lb/>&longs;olida ita vt diximus di&longs;po&longs;ita &longs;ecentur plano ba&shy;<lb/>&longs;ibus parallelo; &longs;ru&longs;tum conoidis hyperbolici, &amp; <lb/>compo&longs;itum ex fru&longs;tis coni, &amp; conoidis paraboli&shy;<lb/>ci, commune habere in communi axe centrum <lb/>grauitatis. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO XLIV.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si conus &amp; conoides parabolicum circa eun&shy;<lb/>dem axim &longs;ecentur plano ba&longs;i parallelo; fru&longs;ti co&shy;<lb/>nici ab&longs;ci&longs;&longs;i maiori ba&longs;i propinquius erit qu&agrave;m <lb/>parabolici centrum grauitatis. </s></p><p type="main">

<s>Sint conus ABC, &amp; conoides parabolicum EBF, <lb/>quorum communis <lb/>axis BD, cuius per <lb/>quoduis punctum M, <lb/>planum &longs;ecans ea cor <lb/>pora plano ba&longs;ium, <lb/>quarum diametri A <lb/>C, EF, parallelo ab&shy;<lb/>&longs;cindat fru&longs;ta AKL <lb/>C, cuius centrum gra<lb/>uitatis N, &amp; EGH <lb/>F, cuius centrum gra <lb/><figure id="id.043.01.171.1.jpg" xlink:href="043/01/171/1.jpg"/><lb/>uitatis O, quorum vtrumque erit in communi axe DM. <lb/><!-- KEEP S--></s>

<s>Dico punctum N, propinquius e&longs;se ip&longs;i D qu&agrave;m punctum <lb/>O. <!-- KEEP S--></s>

<s>Quoniam enim e&longs;t parabolicifru&longs;ti EGHF centrum <lb/>grauitatis O; erit vt duplum maioris ba&longs;is, ide&longs;t circuli <lb/>EF vna cum minori circulo GH, ad duplum circuli GH <lb/>vna cum circulo EF, hoc e&longs;t vt duplum quadrati ED vna <lb/>cum quadrato ED ita MO ad OD. </s>

<s>Sed vt quadratum <lb/>ED ad quadratum GM in parabola qu&aelig; conoides de&shy;<lb/>&longs;cribit, cuius diameter BD, ita e&longs;t DB ad BM, hoc e&longs;t <lb/>AC ad KL; vt igitur e&longs;t dupla ip&longs;ius AC vna cum KL <lb/>ad duplam ip&longs;ius KL vna cum AC ita erit MO ad OD: <lb/>&longs;ed N e&longs;t fru&longs;ti conoici AKLC, centrum grauitatis; pun&shy;<lb/>ctum igitur N, erit maiori ba&longs;i AC propinquius qu&agrave;m <pb/>punctum O; e&longs;t autem O, fru&longs;ti EGHF centrum graui&shy;<lb/>tatis. </s>

<s>Si igitur conus, &amp; conoides parabolicum circa eun&shy;<lb/>dem axim, &amp;c. </s>

<s>Quod demon&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XLV.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis fru&longs;ti conoidis hyperbolici centrum <lb/>grauitatis e&longs;t in axe primum &longs;ecto &longs;ecundum cen&shy;<lb/>trum grauitatis cuiu&longs;uis fru&longs;ti conici circa axem <lb/>conoidis communi vertice, ab&longs;ci&longs;&longs;i vn&agrave; cum fru&shy;<lb/>&longs;to conoidis: deinde ita vt pars minorem ba&longs;im <lb/>attingens &longs;it ad reliquam, vt dupla axis conoidis <lb/>vna cum reliqua dempto axe fru&longs;ti, ad duplam <lb/>eiu&longs;dem reliqu&aelig; vna cum axe conoidis: dein&shy;<lb/>de po&longs;itis quatuor rectis lineis binis propor&shy;<lb/>tionalibus, potentia primis, &longs;ecundis longitu&shy;<lb/>dine, in proportione, qu&aelig; e&longs;t inter axem conoi&shy;<lb/>dis, &amp; reliquam dempto axe fru&longs;ti; ita vt ma&shy;<lb/>ior primarum &longs;it media proportionalis inter axem <lb/>conoidis, &amp; tran&longs;uer&longs;um latus hyperboles, qu&aelig; fi&shy;<lb/>guram de&longs;cribit, minoris autem potentia &longs;e&longs;qui&shy;<lb/>altera minor &longs;ecundarum; in eo puncto, in quo <lb/>&longs;egmentum axis fru&longs;ti dictis duabus &longs;ectionibus <lb/>terminatum &longs;ic diuiditur, vt pars minori ba&longs;i pro&shy;<lb/>pinquior &longs;it ad reliquam vt cubus, qui fit ab axe <lb/>fru&longs;ti vn&agrave; cum &longs;olido rectangulo, quod axe co&shy;<lb/>noidis, &amp; reliqua dempto axe fru&longs;ti, &amp; tripla <lb/>axis conoidis continetur, ad &longs;olidum rectangu&shy;<lb/>lum ex eadem reliqua parte conoidis, &amp; eo, quo <pb/>plus pote&longs;t quadrato maior qu&agrave;m minor dicta&shy;<lb/>rum &longs;ecundarum. </s></p><p type="main">

<s>Sit conoidis hyperbolici ABC, cuius axis BD; &amp; <lb/>tran&longs;uer&longs;um latus hyperboles, qu&aelig; figuram de&longs;cribit EB, <lb/>fru&longs;tum ALMC ab&longs;ci&longs;&longs;um vn&agrave; cum axe FD: cuius <lb/><figure id="id.043.01.173.1.jpg" xlink:href="043/01/173/1.jpg"/><lb/>ba&longs;es oppo&longs;it&aelig;, maior circulus circa AC, minor circa LM: <lb/>&longs;ecto autem axe FD primum &longs;ecundum G centrum gra&shy;<lb/>uitatis fru&longs;ti ab&longs;ci&longs;&longs;i vn&agrave; cum fru&longs;to ALMC &agrave; quouis co <lb/>no, cuius axis BD, &amp; vertex B, deinde in puncto H ita <lb/>vt FH ad HD &longs;it vt dupla ip&longs;ius BD vn&agrave; cum BF ad <lb/>duplam ip&longs;ius BF vn&agrave; cum BD, quo facto cadet G <lb/>punctum infra punctum H, ponantur vt DB ad BF, <pb/>ita N ad O potentia, &amp; Q ad P longitudine: &longs;it au&shy;<lb/>tem N media proportionalis inter EB, BD, at P ip&longs;ius <lb/>O potentia &longs;e&longs;quialtera: quo autem Q plus pote&longs;t qu&agrave;m <lb/>P &longs;it quadratum ex R: &amp; vt cubus ex FD vna cum &longs;oli&shy;<lb/>do rectangulo ex BF, FD, &amp; tripla ip&longs;ius BD, ad &longs;oli&shy;<lb/>dum rectangulum ex BF, &amp; quadrato R, ita &longs;it HK ad <lb/>KG. <!-- KEEP S--></s>

<s>Dico fru&longs;ti ALMC centrum grauitatis e&longs;&longs;e K. <lb/><!-- KEEP S--></s>

<s>Producta enim qu&agrave; opus e&longs;t diametro AC ip&longs;i BD &aelig;qua&shy;<lb/>les ab&longs;cindantur DS, DV: necnon ip&longs;i N &aelig;quales <lb/>DT, DX, vt &longs;it TD ad DS potentia, vt EB, ad <lb/>BD longitudine, &amp; de&longs;cribantur conoides paraboli&shy;<lb/>cum TBX, &amp; conus SBV, quorum vertex commu&shy;<lb/>nis B, axis BD: &longs;ectis autem his tribus &longs;olidis plano <lb/>per axim, &longs;int &longs;ectiones hyperbole ABC, &amp; parabo&shy;<lb/>la TBX, &amp; triangulum SBV, qu&aelig; figuras de&longs;cribunt; <lb/>quas planum ba&longs;is fru&longs;ti propo&longs;iti circa LM &longs;ecans vn&agrave; <lb/>cum tribus &longs;olidis faciat cum parabola TBX rectam I<foreign lang="greek">g</foreign>, <lb/>&amp; cum triangulo SBV rectam <foreign lang="greek">*u</foreign>Z: conoidis autem TBX, <lb/>&amp; coni SBV &longs;ectiones circulos circa I<foreign lang="greek">g</foreign>, YZ ba&longs;ibus, <lb/>circa SV, TX parallelos; vt &longs;int conoidis TBX fru&shy;<lb/>&longs;tum TI<foreign lang="greek">g</foreign>X, &amp; coni SBV fru&longs;tum SYZV. </s>

<s>Rur&shy;<lb/>&longs;us producta I. M, ponatur &lt;37&gt;F, &aelig;qualis Q, &amp; ab&shy;<lb/>&longs;cindatur F<foreign lang="greek">d</foreign>, potentia &longs;e&longs;quialtera ip&longs;ius IF, iunctis&shy;<lb/>que IB, B<foreign lang="greek">d</foreign>, B&lt;37&gt;, de&longs;cribantur tres coni &lt;37&gt;B<foreign lang="greek">q</foreign>, <lb/><foreign lang="greek">d</foreign>B<foreign lang="greek">e</foreign>, IB<foreign lang="greek">g</foreign>, quorum omnium ba&longs;es nempe circuli <lb/>erunt in dicto plano &longs;ecante tria &longs;olida per punctum F. <lb/><!-- KEEP S--></s>

<s>Quoniam igitur circuli inter &longs;e &longs;unt vt qu&aelig; fiunt &agrave; diame&shy;<lb/>tris, vel &agrave; &longs;emidiametris quadrata, coni autem eiu&longs;dem al&shy;<lb/>titudinis inter &longs;e vt ba&longs;es; erit vt <foreign lang="greek">d</foreign>F ad FI potentia, ita <lb/>conus <foreign lang="greek">d</foreign>B<foreign lang="greek">e</foreign> ad conum IB<foreign lang="greek">g</foreign>; &longs;e&longs;quialter igitur conus <lb/><foreign lang="greek">d</foreign>B<foreign lang="greek">e</foreign> coni IB<foreign lang="greek">g</foreign>: &longs;ed &amp; conoides parabolicum IB<foreign lang="greek">g</foreign> &longs;e&longs;qui&shy;<lb/>alterum e&longs;t coni IB<foreign lang="greek">g</foreign>; &aelig;qualis igitur e&longs;t conus <foreign lang="greek">d</foreign>B<foreign lang="greek">e</foreign> co&shy;<lb/>noidi IB<foreign lang="greek">g. </foreign></s>

<s>Et quoniam in parabola TBX ordinatim <lb/>ad diametrum applicatarum DT e&longs;t ad FI hoc e&longs;t N <pb/>ad O potentia, vt DB ad BF longitudine: &longs;ed TD e&longs;t <lb/>&aelig;qualis N; ergo &amp; IF &aelig;qualis erit O: cum igitur &amp; <lb/>P ip&longs;ius O, &amp; <foreign lang="greek">d</foreign>F ip&longs;ius FI &longs;it potentia &longs;e&longs;quialtera, erit <lb/>F<foreign lang="greek">d</foreign> &aelig;qualis ip&longs;i <foreign lang="greek">*r</foreign>: &longs;ed F&lt;37&gt; e&longs;t &aelig;qualis ip&longs;i <expan abbr="q;">que</expan> vt igitur e&longs;t <lb/>Q ad P, hoc e&longs;t DB ad BF, ita erit &lt;37&gt;F ad F<foreign lang="greek">d</foreign>; dupli&shy;<lb/>cata igitur proportio erit quadrati ex F&lt;37&gt; ad quadratum ex <lb/>E<foreign lang="greek">d</foreign> eius, qu&aelig; e&longs;t DB ad BF: &longs;ed vt quadratum ex F&lt;37&gt; ad <lb/><figure id="id.043.01.175.1.jpg" xlink:href="043/01/175/1.jpg"/><lb/>quadratum ex F<foreign lang="greek">d</foreign>, ita e&longs;t circulus circa &lt;37&gt;<foreign lang="greek">q</foreign> ad circulum <lb/>circa <foreign lang="greek">de</foreign>, hoc e&longs;t conus &lt;37&gt;B<foreign lang="greek">q</foreign> ad conum <foreign lang="greek">d</foreign>B<foreign lang="greek">e</foreign>; coni igitur <lb/>&lt;37&gt;B<foreign lang="greek">q</foreign> ad conum <foreign lang="greek">d</foreign>B<foreign lang="greek">e</foreign>, duplicata e&longs;t proportio eius, qu&aelig; e&longs;t <lb/>DB ad BF: &longs;ed &amp; conoidis TBX ad conoides IB<foreign lang="greek">g</foreign> du&shy;<lb/>plicata e&longs;t proportio eius, qu&aelig; e&longs;t DB ad BF, vt mon&shy;<lb/>&longs;trant alij; eadem igitur proportio e&longs;t coni &lt;37&gt;B<foreign lang="greek">q</foreign> ad co&shy;<lb/>num <foreign lang="greek">d</foreign>B<foreign lang="greek">e</foreign> qu&aelig; conoidis TBX ad conoides IB<foreign lang="greek">g</foreign>: &longs;ed <pb/>conus <foreign lang="greek">d</foreign>B<foreign lang="greek">e</foreign> &aelig;qualis e&longs;t conoidi IB<foreign lang="greek">g</foreign>, vtpote in&longs;cripti co&shy;<lb/>ni IB<foreign lang="greek">g</foreign> &longs;e&longs;quialtero, cuius itidem &longs;e&longs;quialter erat conus <lb/><foreign lang="greek">d</foreign>B<foreign lang="greek">e</foreign>; reliquum igitur coni &lt;37&gt;B<foreign lang="greek">q</foreign> dempto cono <foreign lang="greek">d</foreign>B<foreign lang="greek">e</foreign> &aelig;qua&shy;<lb/>le erit conoidis TBX fru&longs;to TI<foreign lang="greek">g</foreign>X. <!-- KEEP S--></s>

<s>Rur&longs;us quia e&longs;t vt <lb/>cubus ex BD ad cubum ex BI ita conus SBV ad &longs;ui &longs;i&shy;<lb/>milem conum YBZ, in triplicata &longs;cilicet proportione la&shy;<lb/>terum, &longs;iue axium DB, BF: &longs;ed quia YF e&longs;t &aelig;qualis BF, <lb/>propter &longs;imilitudinem triangulorum, e&longs;t vt cubus ex BF ad <lb/>&longs;olidum ex BF &amp; quadrato ex F<foreign lang="greek">d</foreign>, ita quadratum ex FY <lb/>ad quadratum ex F<foreign lang="greek">d</foreign>, hoc e&longs;t circulus circa YZ ad <expan abbr="circul&utilde;">circulum</expan> <lb/>circa <foreign lang="greek">de</foreign>, hoc e&longs;t conus YBZ ad conum <foreign lang="greek">d</foreign>B<foreign lang="greek">e</foreign> ex &aelig;quali <lb/>igitur erit vt cubus ex BD ad &longs;olidum ex BF, &amp; quadra&shy;<lb/>to F<foreign lang="greek">d</foreign>, ita conus SBV ad conum <foreign lang="greek">d</foreign>B<foreign lang="greek">e</foreign>: &longs;ed vt &longs;olidum <lb/>ex BF, &amp; quadrato F<foreign lang="greek">d</foreign>, ad &longs;olidum ex BF &amp; quadrato <lb/>F&lt;37&gt;, ita e&longs;t &longs;imiliter vt ante conus <foreign lang="greek">d</foreign>B<foreign lang="greek">e</foreign> ad conum &lt;37&gt;B<foreign lang="greek">q</foreign>; ex <lb/>&aelig;quali igitur erit vt cubus ex BD ad &longs;olidum ex BF, &amp; <lb/>quadrato F&lt;37&gt;, ita conus SBV, ad conum &lt;37&gt;B<foreign lang="greek">q</foreign>: &longs;ed con&shy;<lb/>uertendo, &amp; per conuer&longs;ionem rationis, e&longs;t vt &longs;olidum ex <lb/>BF, &amp; quadrato F&lt;37&gt;, ad &longs;olidum ex BF, &amp; quadrato, <lb/>quo plus pote&longs;t F&lt;37&gt; qu&agrave;m F<foreign lang="greek">d</foreign>, ita conus &lt;37&gt;B<foreign lang="greek">q</foreign> ad &longs;ui reli&shy;<lb/>quum dempto cono &lt;35&gt;B<foreign lang="greek">e</foreign>; ex &aelig;quali igitur, vt cubus ex <lb/>BD ad &longs;olidum ex BF &amp; quadrato, quo plus pote&longs;t F&lt;37&gt;, <lb/>qu&agrave;m F<foreign lang="greek">d</foreign>, hoc e&longs;t, quo plus pote&longs;t Q qu&agrave;m P quadrato <lb/>ex R, ita erit conus SBV, ad reliquum coni &lt;37&gt;B<foreign lang="greek">q</foreign> dem&shy;<lb/>pto cono <foreign lang="greek">d</foreign>B<foreign lang="greek">e</foreign>, hoc e&longs;t ad fru&longs;tum TI<foreign lang="greek">g</foreign>X. <!--neuer Satz-->Rur&longs;us, quo&shy;<lb/>niam duo cubi ex BF, FD, &amp; &longs;olidum ex BF, FD, &amp; <lb/>tripla ip&longs;ius BD, &longs;unt &aelig;qualia cubo ex BD; erit id quo <lb/>plus pote&longs;t cubice recta BD qu&agrave;m BF, cubus ex <lb/>FD, &amp; &longs;olidum ex BF, FD, &amp; tripla ip&longs;ius BD: cum <lb/>igitur &longs;it vt cubus ex BD ad cubum ex BF, ita conus <lb/>SBV ad conum YBZ; erit per conuer&longs;ionem rationis, &amp; <lb/>conuertendo, vt cubus ex FD vna cum &longs;olido ex BF, <lb/>FD, &amp; tripla ip&longs;ius BD ad cubum ex BD, ita fru&longs;tum <lb/>SYZV, ad conum SBV: &longs;ed cubus ex BD, ad &longs;oli-<pb/>dum ex BF &amp; quadrato R, ita erat conus SBV ad fru&shy;<lb/>&longs;tum TI<foreign lang="greek">g</foreign>X: ex &aelig;quali igitur, erit vt cubus ex FD vna <lb/>cum &longs;olido ex BF, FD, &amp; tripla ip&longs;ius BD, ad &longs;olidum <lb/>ex BF, &amp; quadrato R, hoc e&longs;t vt H<emph type="italics"/>K<emph.end type="italics"/> ad KG, ita ex <lb/>contraria parte fru&longs;tum SYZV, ad fru&longs;tum TI<foreign lang="greek">g</foreign>X: nam <lb/>fru&longs;ti SYZV e&longs;t centrum grauitatis G: fru&longs;ti autem TI <lb/><figure id="id.043.01.177.1.jpg" xlink:href="043/01/177/1.jpg"/><lb/><foreign lang="greek">g</foreign>X centrum grauitatis H; totius igitur compo&longs;iti ex his <lb/>duobus fru&longs;tis centrum grauitatis erit K: commune autem <lb/>e&longs;t centrum grauitatis compo&longs;iti ex duobus fru&longs;tis SYZV <lb/>&amp; TI<foreign lang="greek">g</foreign>X, fru&longs;to ALMC per antepenultim&aelig; huius co&shy;<lb/>rollarium; fru&longs;ti igitur ALMC, centrum grauitatis erit K. <lb/><!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><pb/><p type="head">

<s><emph type="italics"/>COROLLARIVM.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Ex omnibus demon&longs;trationibus eorum, qu&aelig; in <lb/>hoc &longs;ecundo libro propo&longs;uimus, manife&longs;tum e&longs;t <lb/>omnium &longs;upra dictorum corporum centra grauita <lb/>tis inuenire: qu&aelig; cum que enim in modum theore&shy;<lb/>matis propo&longs;uimus, eadem tanquam problema&shy;<lb/>ta proponi, &amp; ij&longs;dem demon&longs;trationibus ab&longs;olui <lb/>po&longs;&longs;unt. </s></p><p type="main">

<s>Idem dico de ijs, qu&aelig; in primo, &amp; tertio &longs;equenti libro <lb/>demon&longs;trauimus. </s>

<s>Porro autem multa lemmata in&longs;tituto <lb/>pr&aelig;cipuo nece&longs;&longs;aria, &amp; alia addita inuentio &longs;atis iucun&shy;<lb/>da centri grauitatis conoidis, &amp; portionis conoidis parabo&shy;<lb/>lici, &amp; hyperbolici, &amp; fru&longs;ti vtriu&longs;que ne &longs;ecundus hic liber <lb/>nimis longus, &amp; confu&longs;us exi&longs;teret, tertium requirebant. <lb/></s>

<s>Quem quidem meorum &longs;tudiorum autumnalium fructum <lb/>Anni &agrave; partu Virginis MDCIII. cum SS. </s>

<s>Clementis <lb/>Pont. <!-- REMOVE S-->Max. <!-- KEEP S--></s>



<s>auctoritate, &amp; Petri eius Nepotis Cardinalis <lb/>ampli&longs;&longs;imi Aldobrandini iu&longs;&longs;u bene de me merentium Ma&shy;<lb/>thematicam &longs;cientiam, &amp; Philo&longs;ophiam ciuilem in almo <lb/>Vrbis Gymna&longs;io profiterer, in eorum gratiam compo&longs;ui, <lb/>qui me centra grauitatis portionum &longs;ph&aelig;roidis imperfe&shy;<lb/>cti operis crimine condemnandum omittere nolebant; cu&shy;<lb/>ius prouinci&aelig; iuuante Deo, &amp; mira Mathematic&aelig; &longs;tudio&shy;<lb/>&longs;is &longs;atisfaciendi voluntate, multas difficultates ita &longs;upe&shy;<lb/>raui, vt vno men&longs;e Octobri plus pr&aelig;&longs;titerim, quam &agrave; me <lb/>requi&longs;i&longs;&longs;ent. </s>

<s>&longs;iquidem qu&aelig; de &longs;ph&aelig;r&aelig; portionibus in hoc <lb/>libro proprijs eius figur&aelig; rationibus, eadem in &longs;equen&shy;<lb/>ti aliis communibus cuilibet portioni &longs;ph&aelig;r&aelig;, &amp; &longs;ph&aelig;roi&shy;<lb/>dis tum lati, tum oblongi ab&longs;ci&longs;&longs;&aelig; vno, vel duobus planis <lb/>&aelig;que inter &longs;e di&longs;tantibus, &amp; vtcumque in figuram in cideu-<pb/>tibus demon&longs;traui, &amp; temporis breuitatem magna animi in&shy;<lb/>tentione compen&longs;aui, qu&ograve;d facere non potui&longs;sem ni&longs;i illi, <lb/>quos &longs;upra nominaui meos patronos tranquillum otium <lb/>mihi &longs;ua benignitate peperi&longs;&longs;ent; ego autem quo&longs;dam ad&shy;<lb/>uer&longs;os flatus vehementes in meam vtilitatem verte&shy;<lb/>re didici&longs;sem, cuius rei monumentum flamm&aelig; <lb/>vento agitat&aelig; &longs;imulacrum cum illo Ver&shy;<lb/>gilij HOC ACRIOR in fronte <lb/>operis po&longs;ui, vt meus quali&longs;&shy;<lb/>cumque hic labor vel ab <lb/>inuitis in me collati <lb/>bencficij memo&shy;<lb/>riam pr&aelig;&longs;e&shy;<lb/>ferret. </s></p><p type="head">

<s>SECVNDI LIBRI FINIS.<lb/><figure id="id.043.01.179.1.jpg" xlink:href="043/01/179/1.jpg"/><!-- KEEP S--></s></p><pb/><figure id="id.043.01.180.1.jpg" xlink:href="043/01/180/1.jpg"/><p type="head">

<s>L V C AE <lb/>VALER II <lb/>DE CENTRO <lb/>GRAVITATIS <lb/>SOLIDORVM <lb/><emph type="italics"/>LIBER TERTIVS.<emph.end type="italics"/></s></p><figure id="id.043.01.180.2.jpg" xlink:href="043/01/180/2.jpg"/><p type="head">

<s><emph type="italics"/>PROPOSITIO I.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si recta linea &longs;ecta fuerit bifa&shy;<lb/>riam, &amp; non bifariam; rectan <lb/>gulum partibus in &aelig;qualibus <lb/>contentum &aelig;quale e&longs;t rectan <lb/>gulo, quod bis fit ex dimidi&aelig; <lb/>&longs;ect&aelig; &longs;egmentis, vna cum <lb/>quadrato non intermedij eo&shy;<lb/>rundem &longs;egmentorum. </s></p><pb/><p type="main">

<s>Sit recta linea AB &longs;ecta in puncto C bi&longs;ariam, &amp; non <lb/>bifariam in puncto D. <!-- KEEP S--></s>

<s>Dico rectangulum ADB &aelig;qua&shy;<lb/>le e&longs;&longs;e rectangulo BDC bis vn&agrave; cum quadrato BD. <lb/><!-- KEEP S--></s>

<s>Quoniam enim rectangulum ADB, &aelig;quale e&longs;t duobus <lb/>rectangulis, &amp; ex BD, DC, &amp; ex AC, BD, hoc e&longs;t ex <lb/>CB, BD: &longs;ed rectangulum ex CB, BD, e&longs;t rectangu&shy;<lb/>lum ex BD, DC, vn&agrave; cum quadrato BD; rectangulum <lb/>igitur ex AD, DB, &aelig;quale e&longs;t duobus rectangulis ex <lb/>BD, DC, vn&agrave; cum quadiato BD. <!-- KEEP S--></s>

<s>Si igitur recta linea <lb/>&longs;ecta fuerit bifariam, &amp; non bifariam, &amp;c. </s>

<s>Quod demon&shy;<lb/>&longs;trandum erat. </s></p><figure id="id.043.01.181.1.jpg" xlink:href="043/01/181/1.jpg"/><p type="head">

<s><emph type="italics"/>PROPOSITIO II.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si circulum, vel ellip&longs;im du&aelig; rect&aelig; line&aelig; tan&shy;<lb/>gentes in terminis coniugatarum diametrorum, <lb/>conueniant: &amp; punctum in quo conueniunt, &amp; <lb/>centrum figur&aelig; iungantur recta linea; qu&aelig;cun&shy;<lb/>que hanc vn&agrave; cum pr&aelig;dict&aelig; figur&aelig; termino al&shy;<lb/>terutri diametrorum parallela &longs;ecuerit recta li&shy;<lb/>nea, ita ip&longs;a &longs;ecabitur in duobus punctis, vt re&shy;<lb/>ctangulum bis contentum &longs;egmentis, quorum al&shy;<lb/>terum inter diametrum, &amp; terminum figur&aelig;, al&shy;<lb/>terum inter figur&aelig; terminum &amp; contingentem <lb/>interijcitur, vn&agrave; cum huius quadrato, &longs;it &aelig;quale <lb/>quadrato reliqui &longs;egmenti inter diametrum, &amp; <pb/>cum qu&aelig; tangentium concur&longs;um, &amp; centrum fi&shy;<lb/>gur&aelig; iungit interiecta. </s></p><p type="main">

<s>Sit circulus, vel ellip&longs;is ABCD, cuius diametri con&shy;<lb/>iugat&aelig; AC, BED, &amp; figuram tangentes BF, GF, con <lb/>ueniant in puncto F; (parallel&aelig; enim erunt vtraque alteri <lb/>coniugatorum diametrorum:) &amp; recta FE iungatur, &amp; ex <lb/>quolibet puncto G, in recta BE ducatur ip&longs;i AC paral&shy;<lb/>lela GLKH. </s>

<s>Dico rectangulum GKH bis vn&agrave; cum <lb/>quadrato KH &aelig;quale e&longs;&longs;e quadrato GL. <!-- KEEP S--></s>

<s>Quoniam <lb/>enim rectangulum BGD &aelig;quale e&longs;t rectangulo BGE <lb/><figure id="id.043.01.182.1.jpg" xlink:href="043/01/182/1.jpg"/><lb/>bis vn&agrave; cum quadrato BG: &amp; rectangulum BED, e&longs;t <lb/>quadratum BE, erit vt rectangulum BED, ad re&shy;<lb/>ctangulum BGD, ita quadratum BE, ad rectangu&shy;<lb/>lum BGE bis, vn&agrave; cum quadrato BG: &longs;ed vt rectangu&shy;<lb/>lum BED, ad rectangulum BGD, ita e&longs;t quadratum EC, <lb/>hoc e&longs;t quadratum GH ad quadratum GK, ex primo <lb/>conicorum, vt igitur e&longs;t quadratum BE ad rectangulum <lb/>BGE bis, vn&agrave; cum quadrato BG, ita erit quadratum <lb/>GH ad quadratum GK. <!-- KEEP S--></s>

<s>Rur&longs;us quia e&longs;t vt BE ad EG, <lb/>ita BF ad GL, propter &longs;imilitudinem triangulorum; erit <lb/>vt quadratum BE ad quadratum EG, ita quadratum <pb/>BF hoc e&longs;t quadratum GH ad quadratum GL: &amp; per <lb/>conuer&longs;ionem rationis, vt quadratum BE ad rectangu&shy;<lb/>lum BGE bis, vn&agrave; cum quadrato BG, ita quadratum <lb/>GH ad rectangulum GLH bis, vn&agrave; cum quadrato LH: <lb/>&longs;ed vt quadratum BE ad rectangulum EGB bis, vn&agrave; <lb/>cum quadrato BG, ita erat quadratum GH ad quadra&shy;<lb/>tum GK; vt igitur quadratum GH ad quadratum GK, <lb/>ita erit idem quadratum GH ad rectangulum GLH bis, <lb/>vn&agrave; cum quadrato LH: quadratum igitur GK &aelig;quale <lb/>erit rectangulo GLH bis, vn&agrave; cum quadrato LH; demptis <lb/>igitur ab eodem quadrato GH &aelig;qualibus quadrato GK, <lb/>&amp; rectangulo GLH bis, vn&agrave; cum quadrato LH, erit <lb/>rectangulum GKH, bis vn&agrave; cum quadrato KH &aelig;quale <lb/>quadrato GL. <!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><figure id="id.043.01.183.1.jpg" xlink:href="043/01/183/1.jpg"/><p type="head">

<s><emph type="italics"/>PROPOSITIO III.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Per data duo puncta in duabus rectis lineis da&shy;<lb/>tum angulum continentibus, in earum plano pa&shy;<lb/>rabola tran&longs;ibit, cuius vertex &longs;it a&longs;&longs;ignatum pr&aelig;&shy;<lb/>dictorum punctorum, in quo altera linea parabo-<pb/>lam contingat, altera in altero &longs;ecet diametro &aelig;&shy;<lb/>quidi&longs;tans. </s></p><p type="main">

<s>Sint data duo puncta. </s>

<s>A, C, in duabus rectis lincis da&shy;<lb/>tum angulum ABC continentibus, &longs;it autem a&longs;&longs;ignatum <lb/>punctum C. <!-- KEEP S--></s>

<s>Dico per puncta A, C, parabolam tran&longs;i&shy;<lb/>re, ita vt ip&longs;am linea AC contingat in C puncto, altera <lb/>autem AB &longs;ecet in puncto A, diametro parabol&aelig; &aelig;qui&shy;<lb/>di&longs;tans. </s>

<s>Completo enim parallelogrammo BD, ad re&shy;<lb/>ctam CD applicetur rectangulum &aelig;quale quadrato AD, <lb/>faciens latitudinem E. <!-- KEEP S--></s>

<s>Quoniam igitur in plano BD <lb/>parabola inueniri pote&longs;t, cu&shy;<lb/>ius &longs;it vertex C, diameter <lb/>CD, ita vt qu&aelig;dam ex &longs;e&shy;<lb/>ctione ad diametrum CD <lb/>applicata in dato angulo A <lb/>BC, ide&longs;t ADC, qualis <lb/>e&longs;t recta AD, po&longs;&longs;it rectan&shy;<lb/>gulum ex CD, &amp; E, ex <lb/>primo conicorum elemen. <lb/></s>

<s>to; &longs;it ea &longs;ectio parabola <lb/><figure id="id.043.01.184.1.jpg" xlink:href="043/01/184/1.jpg"/><lb/>AC; a&longs;&longs;ignatum e&longs;t autem punctum C; per puncta igi&shy;<lb/>tur A, C parabola AC tran&longs;ibit, cuius vertex e&longs;t a&longs;&longs;i&shy;<lb/>gnatum punctum C. <!-- KEEP S--></s>

<s>Et quoniam qu&aelig; ex vertice recta <lb/>CB e&longs;t applicat&aelig; DA parallela, &longs;ectionem AC in pun&shy;<lb/>cto C continget: e&longs;t autem AB diametro CD &aelig;quidi&shy;<lb/>di&longs;tans, ac proinde parabolam &longs;ecabit in puncto A. <!-- KEEP S--></s>

<s>Ma&shy;<lb/>nife&longs;tum e&longs;t igitur propo&longs;itum, </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO IV.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si recta linea parabolam contingat, omnes re&shy;<lb/>ct&aelig;line&aelig; ex &longs;ectione ad contingentem applicat&aelig; <pb/>diametro &longs;ectionis parallel&aelig; inter &longs;e &longs;unt longi&shy;<lb/>tudine, vt inter applicatas &amp; contactum, vel ver&shy;<lb/>ticem interiect&aelig; inter &longs;e potentia. </s>

<s>Productis au&shy;<lb/>tem dictis applicatis, erunt inter &longs;ectionem &amp; ba&shy;<lb/>&longs;im interiect&aelig; inter &longs;e longitudine, vt in circulo, <lb/>vel ellip&longs;e ad diametrum ordinatim applicat&aelig;, &longs;e&shy;<lb/>cantesque illam in ea&longs;dem rationes, in quas ali&aelig; <lb/>pr&aelig;dict&aelig; applicat&aelig; &longs;ecant ba&longs;im parabol&aelig;, inter <lb/>&longs;e potentia. </s></p><p type="main">

<s>Sit &longs;ectio parabola ABC, cuius vertex B, diameter <lb/>BD: &amp; recta quadam BE &longs;ectionem contingente in pun&shy;<lb/>cto B, &longs;int quotcumque rect&aelig; line&aelig; ex &longs;ectione ordinatim <lb/>ad BE contingentem applicat&aelig; diametro BD &longs;ectionis <lb/>parallel&aelig; FG, KH, quibus productis &longs;int ad ba&longs;im &longs;e&shy;<lb/><figure id="id.043.01.185.1.jpg" xlink:href="043/01/185/1.jpg"/><lb/>ctionis applicat&aelig; GN, KO. </s>

<s>Et expo&longs;ito primum circu&shy;<lb/>lo, PQRS, cuius diametri ad rectos inter &longs;e angulos &longs;int <lb/>QS, PR; &longs;ecta autem QT in punctis V, X, in ea&longs;&shy;<lb/>dem rationes, in quas &longs;ecta e&longs;t AD in punctis N, O, <lb/>&longs;umpto ordine &agrave; punctis D, T, vt &longs;it DO ad ON, <pb/>vt e&longs;t TV ad VX: &amp; vt ON ad NA, ita VX ad <expan abbr="Xq;">Xque</expan> <lb/>applicentur ad &longs;emidiametrum QT rect&aelig; ZV, XY dia&shy;<lb/>metro PR &aelig;quidi&longs;tantes. </s>

<s>Dico e&longs;&longs;e HK ad FG lon&shy;<lb/>gitudine, vt FB ad BH potentia: &amp; KO ad GN longi&shy;<lb/>tudine, vt ZY ad YX potentia. </s>

<s>Iungantur enim KL, <lb/>GM, ba&longs;i AC parallel&aelig;. </s>

<s>Quoniam igitur e&longs;t vt MB <lb/>ad BI. longitudine, ita GM ad KL potentia: &longs;ed MB <lb/>e&longs;t &aelig;qualis ip&longs;i FG, &amp; BL ip&longs;i KH, &amp; BF ip&longs;i GM, &amp; <lb/>BH ip&longs;i KL in parallelogrammis BG, BK; vt igitur <lb/>FG ad KH longitudine, ita erit BH ad BF potentia: <lb/>&longs;imiliter quotcumque plures e&longs;&longs;ent applicat&aelig; idem o&longs;ten&shy;<lb/>deremus. </s>

<s>Rur&longs;us, quoniam e&longs;t vt EA, hoc e&longs;t FN ad FG, <lb/>ita quadratum EB ad BF quadratum, hoc e&longs;t quadra&shy;<lb/>tum AD ad quadratum DN, hoc e&longs;t ita quadratum QT, <lb/>hoc e&longs;t quadratum TY, hoc e&longs;t duo quadrata TX, XY, <lb/>ad quadratum TX; erit per conuer&longs;ionem rationis, vt FN, <lb/>hoc e&longs;t BD ad GN, ita duo quadrata TX, X<foreign lang="greek">*u</foreign> &longs;imul, <lb/>hoc e&longs;t quadratum TY, hoc e&longs;t quadratum TP, ad qua&shy;<lb/>dratum XY. <!-- KEEP S--></s>

<s>Similiter o&longs;tenderemus e&longs;&longs;e vt BD ad <lb/>OK, ita quadratum PT ad quadratum VZ. </s>

<s>Conuer&shy;<lb/>tendo igitur erit vt OK ad BD, ita quadratum XY ad <lb/>PT quadratum: &amp; ex &aelig;quali vt OK ad GN, ita qua&shy;<lb/>dratum VZ ad quadratum XY. <!-- KEEP S--></s>

<s>Suntigitur tres rect&aelig; <lb/>line&aelig; BD, OK, GN, inter &longs;e longitudine, vt in circu&shy;<lb/>lo PQSR totidem PT, ZV, XY inter &longs;e potentia, <lb/>prout inter &longs;e re&longs;pondent. </s>

<s>Idem autem &longs;imiliter o&longs;ten&shy;<lb/>deremus de quotcumque aliis in circulo, &amp; &longs;ectione para&shy;<lb/>bola vt pr&aelig;dict&aelig; applicatis multitudine &aelig;qualibus. </s>

<s>In <lb/>ellip&longs;e autem, ductis diametris quibu&longs;uis coniugatis, &amp; <lb/>totidem quot in circulo ad vnam &longs;emidiametrum rectis li&shy;<lb/>neis ordinatim applicatis &longs;ecundum puncta &longs;ectionum eiu&longs;&shy;<lb/>dem diametri in ea&longs;dem pr&aelig;dictas rationes, eodemque or&shy;<lb/>dine; quoniam ex XXI primi conicorum &longs;tatim apparet re&shy;<lb/>ctarum linearum ita vt diximus in circulo, &amp; ellip&longs;e appli-<pb/>catarum quadrata e&longs;&longs;e inter &longs;e in eadem proportione; erunt<lb/>pr&aelig;dict&aelig; inter &longs;ectionem parabolam, &amp; ba&longs;im interiect&aelig; <lb/>inter &longs;e longitudine, vt in ellip&longs;e ad diametrum &longs;imiliter <lb/>vt diximus applicat&aelig; inter &longs;e potentia. </s>

<s>Manife&longs;tum e&longs;t <lb/>igitur propo&longs;itum. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO V.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis figur&aelig; circa axim in alteram partem <lb/>deficientis, cuius &longs;uperficies, excepta ba&longs;e &longs;it to&shy;<lb/>ta interius concaua ba&longs;im habentis circulum, vel <lb/>ellip&longs;im; qu&aelig;libet tres &longs;ectiones ba&longs;i parallel&aelig; <lb/>&aelig;qualia axis &longs;egmenta intercipientes, ita &longs;e ha&shy;<lb/>bent, vt minor &longs;it proportio minim&aelig; ad mediam, <lb/>quam medi&aelig; ad maximam. </s></p><p type="main">

<s>Sit figura ABC circa axem BD in alteram partem de&shy;<lb/>ficiens, qualem diximus: &amp; po&longs;itis in axe BD tribus qui&shy;<lb/>buslibet punctis <lb/>F, E, L, &aelig;qualia <lb/>axis &longs;egmenta in&shy;<lb/>tercipientibus, in <lb/>telligatur <expan abbr="&longs;olid&utilde;">&longs;olidum</expan> <lb/>ABC &longs;ectum per <lb/>ea puncta planis <lb/><expan abbr="buibu&longs;d&atilde;">buibu&longs;dam</expan> ba&longs;i cir <lb/>culo, vel ellip&longs;i, <lb/>circa AC pa&shy;<lb/>rallelis: quare &longs;e&shy;<lb/>ctiones erunt cir&shy;<lb/><figure id="id.043.01.187.1.jpg" xlink:href="043/01/187/1.jpg"/><lb/>culi, vel ellip&longs;es &longs;imiles ba&longs;i, per definitionem, quarum dia&shy;<lb/>metri eiu&longs;dem rationis in eodem plano per axim &longs;int IK. <pb/>GH, MN. <!-- KEEP S--></s>

<s>Dico &longs;olidi ABC &longs;ectionum, minorem e&longs;&longs;e <lb/>proportionem, ip&longs;ius IK ad GH, qu&agrave;m GH ad MN. <lb/><!-- KEEP S--></s>

<s>Iunctis enim MRS, KSN; quoniam tres rect&aelig; IK, <lb/>RS, MN, &longs;e&longs;e &aelig;qualiter excedunt in trapezio KM; mi&shy;<lb/>nor erit proportio IK ad RS, qu&agrave;m RS ad MN: &longs;ed cir <lb/>culi, &amp; &longs;imiles ellip&longs;es duplicatam habent inter &longs;e propor&shy;<lb/>tionem diametrorum eiu&longs;dem rationis; trium igitur pr&aelig;&shy;<lb/>dictarum &longs;olidi ABC &longs;ectionum minor erit proportio IK <lb/>ad RS qu&agrave;m RS ad MN: &longs;ed maior e&longs;t proportio circu&shy;<lb/>li, vel ellip&longs;is GH ad circulum, vel ellip&longs;im MN, qu&agrave;m <lb/>circuli, vel ellip&longs;is RS, ad circulum, vel ellip&longs;im MN; <lb/>multo ergo minor proportio erit circuli, vel ellip&longs;is IK ad <lb/>circulum, vel ellip&longs;im RS, qu&agrave;m circuli, vel ellip&longs;is GH ad <lb/>circulum, vel ellip&longs;im MN: &longs;ed minor e&longs;t proportio cir&shy;<lb/>culi vel ellip&longs;is I<emph type="italics"/>K<emph.end type="italics"/> ad circulum, vel ellip&longs;im GH, qu&agrave;m <lb/>eiu&longs;dem circuli, vel ellip&longs;is IK ad circulum, vel ellip&longs;im <lb/>RS; multo ergo minor proportio erit circuli, vel ellip&longs;is <lb/>IK ad circulum, vel ellip&longs;im GH qu&agrave;m circuli, vel ellip&shy;<lb/>&longs;is GH ad circulum, vel ellip&longs;im MN. <!-- KEEP S--></s>

<s>Quod demon&shy;<lb/>&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO VI.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si &longs;ph&aelig;roides &longs;ecetur plano vtcumque pr&aelig;ter <lb/>qu&agrave;m ad axem, circa quem &longs;ph&aelig;roides de&longs;cribi&shy;<lb/>tur erecto nam tunc circulus fit. </s>

<s>&longs;ectio ellip&longs;is erit: <lb/>&longs;imilis autem ip&longs;i alia qu&aelig;cumque &longs;ectio &longs;ph&aelig;&shy;<lb/>roidis eidem parallela: earumque omnes diame&shy;<lb/>tri qu&aelig; eiu&longs;dem &longs;unt rationis erunt in eodem pla&shy;<lb/>no per axem. </s></p><p type="main">

<s>Extant h&aelig;c demon&longs;trata ab Archimede in &longs;uo de &longs;ph&aelig;&shy;<lb/>roidibus, &amp; conoidibus. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO VII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si conoides parabolicum, vel hyperbolicum <lb/>&longs;ecetur plano vtcumque ad axim inclinato, &longs;ectio <lb/>ellip&longs;is erit: &longs;imilis autem ip&longs;i alia qu&aelig;cumque <lb/>&longs;ectio conoidis eidem parallela: eruntque earum <lb/>omnes diametri, qu&aelig; eiu&longs;dem &longs;unt rationis in eo&shy;<lb/>dem plano per axem. </s></p><p type="main">

<s>Manife&longs;ta &longs;unt h&aelig;c ex ijs, qu&aelig; Federicus Commandinus <lb/>demon&longs;trauit de &longs;ectionibus horum &longs;olidorum, in &longs;uis com&shy;<lb/>mentariis in eundem Archimedis librum de &longs;ph&aelig;roidibus, <lb/>&amp; conoidibus: quemadmodum &amp; &longs;ph&aelig;roidis, &amp; conoi&shy;<lb/>dis vtriu&longs;que &longs;ectionem factam &agrave; plano ad axim erecto e&longs;&shy;<lb/>&longs;e circulum. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO VIII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Super datam ellip&longs;im, circa datam rectam line&shy;<lb/>am ab eius centro eleuatam tanquam axem, coni, <lb/>&amp; cylindri portionem inuenire. </s>

<s>Datoque &longs;ph&aelig;&shy;<lb/>roidi, &amp; conoidi, vel conoidis, &longs;ph&aelig;roidi&longs;ve por&shy;<lb/>tioni circa datum axem &longs;ph&aelig;roidis, vel cuiuslibet <lb/>dictarum portionum, cylindrus vel cylindri por&shy;<lb/>tio circum&longs;cripta e&longs;&longs;e pote&longs;t: vel comprehendere <lb/>inter eadem plana parallela, ita vt eius ba&longs;is &longs;it &longs;i&shy;<lb/>milis ba&longs;i, vel ba&longs;ibus comprehen&longs;&aelig; portionis, vel <lb/>fru&longs;ti, &longs;i de conoidibus &longs;it &longs;ermo: &amp; diametri, qu&aelig; <lb/>eiu&longs;dem &longs;unt rationis &longs;ect&aelig; &agrave; centro bifariam &longs;int <lb/>in eadem recta linea. </s></p><pb/><p type="main">

<s>Manife&longs;ta item &longs;unt h&aelig;c omnia, ex ijs, qu&aelig; in eodem li&shy;<lb/>bro de &longs;ph&aelig;roidibus, &amp; conoidibus demon&longs;trat Archi&shy;<lb/>medes. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO IX.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis fru&longs;ti pyramidis triangulam ba&longs;im ha&shy;<lb/>bentis ad pri&longs;tina, cuius ba&longs;is e&longs;t maior ba&longs;is fru&shy;<lb/>&longs;ti, &amp; eadem altitudo, cam habet proportionem, <lb/>qu&agrave;m rectangulum contentum duobus lateribus <lb/>homologis ba&longs;ium oppo&longs;itarum, vn&agrave; cum tertia <lb/>parte quadrati differenti&aelig; dictorum laterum, ad <lb/>maioris lateris quadratum. </s>

<s>Ad pyramidem autem, <lb/>cuius ba&longs;is e&longs;t maior ba&longs;is fru&longs;ti, &amp; eadem altitu&shy;<lb/>do, vt pr&aelig;dictum rectangulum, vna cum pr&aelig;dicti <lb/>quadrati tertia parte, ad tertiam partem quadrati <lb/>maioris lateris. </s></p><p type="main">

<s>Sit pyramidis triangulam ba&longs;im habentis fru&longs;tum AB <lb/>CD EF: laterum autem homo&shy;<lb/>logorum AB, DE, triangulorum <lb/>&longs;imilium oppo&longs;itorum ABC, D <lb/>EF, &longs;it differentia DG: &amp; eiu&longs;&shy;<lb/>dem altitudinis fru&longs;to &longs;it pri&longs;ma <lb/>DEFCHK: &amp; pyramis intelli&shy;<lb/>gatur ADEF. <!-- KEEP S--></s>

<s>Dico fru&longs;tum <lb/>BDF ad pri&longs;ma HKF, e&longs;&longs;e vt <lb/>rectangulum DEG vna cum ter&shy;<lb/>tia parte quadrati DG. </s>

<s>Ad qua&shy;<lb/>dratum DE: ad pyramidem au&shy;<lb/>tem ADEF, vt <expan abbr="pr&aelig;dict&utilde;">pr&aelig;dictum</expan> rectan&shy;<lb/><figure id="id.043.01.190.1.jpg" xlink:href="043/01/190/1.jpg"/><lb/>gulum DEG, vn&agrave; cum tertia parte quadrati DG, ad ter&shy;<pb/>tiam partem quadrati DE. <!-- KEEP S--></s>

<s>Ab&longs;ci&longs;sis enim &aelig;qualibus EL <lb/>ip&longs;i BC, &amp; FM ip&longs;i AC, &amp; EG, ip&longs;i AB, con&longs;tituantur <lb/>pri&longs;mata ABCLEG, AGMFCL, ANHDGM, &amp; <lb/>pyramis ADGM, &amp; iungatur ML. <!-- KEEP S--></s>

<s>Quoniam igitur ob pa&shy;<lb/>rallelas EF, GM, &amp; DF, GL, &longs;imilia inter &longs;e &longs;unt trian&shy;<lb/>gula DEF, DGM, EGL, duplicatam inter &longs;e habebunt <lb/>laterum ho mologorum DE, DG, GE, proportionem, <lb/>hoc e&longs;t eandem, qu&aelig; totidem e&longs;t quadratorum ex ip&longs;is DE, <lb/>DG, GE, prout inter &longs;e re&longs;pondent: vt igitur DG qua&shy;<lb/>dratum ad quadratum DE, ita e&longs;t triangulum DGM <lb/>ad triangulum DEF: eademque ratione vt quadratum <lb/>GE ad DE quadratum, ita trian <lb/>gulum EGL ad triangulum D <lb/>EF: &amp; vt prima cum quinta ad <lb/>&longs;ecundam, ita tertia cum &longs;exta ad <lb/>quartam: videlicet, vt duo qua&shy;<lb/>drata DG, GE, ad quadratum <lb/>DE, ita duo triangula DGM, <lb/>EGL, ad triangulum DEF. &amp; <lb/>conuertendo, &amp; per conuer&longs;ionem <lb/>rationis, vt quadratum DE ad <lb/>rectangulum DGE bis, ita trian&shy;<lb/>gulum DEF, ad parallelogram&shy;<lb/><figure id="id.043.01.191.1.jpg" xlink:href="043/01/191/1.jpg"/><lb/>mum GF: &amp; conuertendo, vt rectangulum DGE bis, ad <lb/>quadratum DE, ita GF parallelogrammum ad triangu&shy;<lb/>lum DEF: &amp; antecedentium dimidia, vt rectangulum <lb/>DGE ad quadratum DE, ita triangulum GML ad <lb/>triangulum DEF; hoc e&longs;t pri&longs;ma, cuius ba&longs;is triangulum <lb/>GLM, altitudo eadem pri&longs;mati H<emph type="italics"/>K<emph.end type="italics"/>F ad pri&longs;ma HKF. <!-- KEEP S--></s></p><p type="main">

<s>Rur&longs;us, quoniam e&longs;t vt quadratum EG ad quadratum <lb/>ED, ita triangulum EGL ad triangulum DEF; erit &longs;i&shy;<lb/>militer vt quadratum EG ad quadratum ED, ita pri&longs;ma <lb/>BGL ad pri&longs;ma HKF: &longs;ed vt rectangulum DGE ad <lb/>quadratum DE, ita pri&longs;ma erat, cuius ba&longs;is triangulum G <pb/>LM altitudo autem eadem pri&longs;mati HKF, hoc e&longs;t pri&longs;ma <lb/>ACGLFM illi &aelig;quale per vltimam XI. elem. </s>

<s>ad pri&longs;ma <lb/>HKF: vt igitur prima cum quinta, rectangulum DGE <lb/>vna cum quadrato EG, hoc e&longs;t rectangulum DEG, ad <lb/>&longs;ecundam quadratum DE, ita erit tertia cum &longs;exta, duo <lb/>pri&longs;mata BGL, ACGLFM, ad quartam pri&longs;ma HKF. <lb/><!-- KEEP S--></s>

<s>Pr&aelig;terea quoniam vt quadratum DG ad quadratum <lb/>DE, ita erat triangulum DGM ad triangulum DEF: &longs;ed <lb/>vt triangulum DGM ad triangulum DEF, ita e&longs;t pri&longs;ma, <lb/>HGM, ad pri&longs;ma HKF: &amp; terti&aelig; antecedentium par&shy;<lb/>tes, videlicet, vt tertia pars quadrati DG, ad quadra&shy;<lb/>tum DE, ita pyramis ADGM ad pri&longs;ma HKF: &longs;ed <lb/>vt rectangulum DEG ad DE quadratum, ita erant duo <lb/>pri&longs;mata BGL, ACGLFM, ad pri&longs;ma HKF; vt igi&shy;<lb/>tur prima cum quinta, rectangulum DEG vna cum ter&shy;<lb/>tia parte DG quadrati, ad quadratum GD &longs;ecundam, <lb/>ita erit tertia cum &longs;exta, duo pri&longs;mata BGL, ACGLFM <lb/>vna cum pyramide ADGM, hoc e&longs;t integrum fru&longs;tum <lb/>ABCDEF ad pri&longs;ma HKF quartam. </s>

<s>Ex hoc patet &longs;e&shy;<lb/>cunda pars propo&longs;iti. </s>

<s>Quoniam enim e&longs;t vt rectangulum <lb/>DEG, vna cum tertia parte quadrati DG, ad quadra&shy;<lb/>tum DE, ita fru&longs;tum ABGDEF ad pri&longs;ma HKF: vt <lb/>autem quadratum DE, ad tertiam &longs;ui partem, ita e&longs;t pri&longs;&shy;<lb/>ma HKF ad pyramidem, cuius ba&longs;is triangulum DEF, <lb/>altitudo eadem pri&longs;mati HKF; erit ex &aelig;quali vt re&shy;<lb/>ctangulum DEG vna cum tertia parte quadrati DG <lb/>ad tertiam partem quadrati DE, ita fru&longs;tum ABCDEF, <lb/>ad pyramidem &longs;i compleatur ADEF. <!-- KEEP S--></s>

<s>Manife&longs;tum e&longs;t <lb/>igitur propo&longs;itum. </s></p><pb/><p type="head">

<s><emph type="italics"/>COROLLARIVM.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Hinc manife&longs;tum e&longs;t eadem demon&longs;tratione, <lb/>qua vtimur ad propo&longs;itionem XXXVI. primili&shy;<lb/>bri; fru&longs;tum cuiuslibet pyramidis ba&longs;im habentis <lb/>pluribus qu&agrave;m tribus lateribus contentam, ad pri&longs; <lb/>ma, &longs;eu pyramidem, cuius ba&longs;is e&longs;t eadem qu&aelig; ma&shy;<lb/>ior ba&longs;is fru&longs;ti, &amp; eadem altitudo: &amp; reliquum ip&shy;<lb/>&longs;ius pri&longs;matis dempto fru&longs;to, ad ip&longs;um pri&longs;ma, eas <lb/>habere rationes, qu&aelig; &agrave; ba&longs;ium fru&longs;ti oppo&longs;itarum <lb/>homologis lateribus eorumque differentia deri&shy;<lb/>uantur eo modo, quo in pr&aelig;cedenti theoremate <lb/>dicebamus. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO X.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omne fru&longs;tum coni, vel portionis conic&aelig;, ad cy <lb/>lindrum, vel cylindri portionem, cuius ba&longs;is e&longs;t ea <lb/>dem, qu&aelig; maior ba&longs;is fru&longs;ti, &amp; eadem altitudo, <lb/>eam habet proportionem, qu&agrave;m rectangulum con <lb/>tentum ba&longs;ium diametris eiu&longs;dem rationis, vn&agrave; <lb/>eum tertia parte quadrati differenti&aelig; earumdem <lb/>diametrorum, ad maioris ba&longs;is quadratum. </s>

<s>Ad <lb/>conum autem, vel coni portionem, cuius ba&longs;is e&longs;t <lb/>eadem, qu&aelig; maior ba&longs;is fru&longs;ti, &amp; eadem altitudo; <lb/>vt pr&aelig;dictum rectangulum, vn&agrave; cum pr&aelig;dicti qua <lb/>drati tertia parte, ad tertiam partem quadrati ex <lb/>diametro maioris ba&longs;is. </s>

<s>Pr&aelig;dicti autem cylindri, <pb/>vel portionis cylindric&aelig; re&longs;iduum dempto fru&longs;to, <lb/>ad totum cylindrum, vel cylindri portionem; vt <lb/>rectangulum contentum diametro minoris ba&longs;is <lb/>fru&longs;ti, &amp; differentia diametri maioris, vn&agrave; cum <lb/>duabus tertiis quadrati differenti&aelig;, ad quadra&shy;<lb/>tum diametri maioris ba&longs;is. </s></p><p type="main">

<s>Sit coni, vel eius portionis fru&longs;tum ABCD, cuius ba&longs;es <lb/>oppo&longs;it&aelig;, circuli vel &longs;imiles ellip&longs;es, quarum diametri mi&shy;<lb/>noris ba&longs;is AB cuius centrum E: maioris autem CD, <lb/>&amp; &longs;uper ba&longs;im circulum, vel ellip&longs;im CD &longs;tet cylindrus, <lb/>vel portio cylindrica CG comprehendens fru&longs;tum AB <lb/>CD, eiu&longs;demque altitudinis cum ip&longs;o, &amp; conus, vel co&shy;<lb/>ni portio ECD. quo autem AC diameter &longs;uperat dia&shy;<lb/>metrum AB, qu&aelig; differentia di&shy;<lb/>citur, &longs;it DF. <!-- KEEP S--></s>

<s>Dico fru&longs;tum AD <lb/>ad cylindrum, vel portionem cy&shy;<lb/>lindricam CG, e&longs;&longs;e vt rectangu&shy;<lb/>lum DCF vn&agrave; cum tertia parte <lb/>quadrati DF, ad quadratum CD. <lb/><!-- KEEP S--></s>

<s>Ad conum autem vel coni portio&shy;<lb/>nem ECD, vt rectangulum DCF, <lb/>vna cum tertia parte quadrati DF, <lb/>ad tertiam partem quadrati CD. <lb/><!-- KEEP S--></s>

<s>Cylindri autem, vel cylindri por&shy;<lb/>tionis CG re&longs;iduum dempto fru&shy;<lb/><figure id="id.043.01.194.1.jpg" xlink:href="043/01/194/1.jpg"/><lb/>&longs;to AD, ad cylindrum, vel portionem cylindricam CG, <lb/>vt rectangulum CFD vna cum duabus tertiis quadrati <lb/>FD, ad quadratum CD. <!-- KEEP S--></s>

<s>Cono enim, vel portioni coni&shy;<lb/>c&aelig;, cuius fru&longs;tum AD, &amp; cylindro, vel portioni cylindri&shy;<lb/>c&aelig;, cuius ba&longs;is e&longs;t circulus, vel ellip&longs;is CD, altitudo au&shy;<lb/>tem eadem completo cono, vel portioni conic&aelig; iam dict&aelig;, <lb/>illi pyramis, huic pri&longs;ma in&longs;cripta intelligantur, quorum <pb/>communis ba&longs;is &longs;it poly gorum in&longs;criptum circulo quidem <lb/>&aelig;quilaterum, &amp; &aelig;quiangulum; in ellip&longs;e autem, quod pro <lb/>Archimede de&longs;cribit Commandinus, ita vt &amp; &agrave; cylindro, <lb/>vel cylindri portione pri&longs;ina, &amp; &agrave; cono, vel coni portione <lb/>pyramis deficiat minori &longs;pacio quantacumque magnitudi&shy;<lb/>ne propo&longs;ita: quo modo autem in portione cylindrica, vel <lb/>conica hoc fieri po&longs;&longs;it, eadem qu&aelig; de cono atque cylindro <lb/>Euclides in duodecimo docuit manife&longs;tant. </s>

<s>Ab&longs;ci&longs;&longs;ione <lb/>igitur facta fru&longs;ti AD, &amp; cylindri, vel portionis cylindric&aelig; <lb/>CG, ab&longs;ci&longs;&longs;a &longs;imul erunt fru&longs;tum pyramidis in&longs;criptum <lb/>fru&longs;to AD, &amp; pri&longs;ma in&longs;criptum cylindro, vel portioni cy&shy;<lb/>lindric&aelig; CG, eiu&longs;dem altitudinis inter &longs;e, &amp; duobus pr&aelig;&shy;<lb/>dictis &longs;olidis AD, CG, deficien <lb/>tia vnum &agrave; fru&longs;to, alterum &agrave; cy&shy;<lb/>lindro, vel portione cylindrica <lb/>multo minori &longs;pacio magnitudine <lb/>propo&longs;ita: &longs;ectiones autem pri&longs;ma <lb/>tis, &amp; pyramidis erunt polygona <lb/>circulis, vel ellip&longs;ibus ip&longs;i CD op <lb/>po&longs;itis &amp; &longs;imilibus in&longs;cripta in&shy;<lb/>ter &longs;e &longs;imilia, vt multi o&longs;tendunt. <lb/></s>

<s>erunt etiam &longs;imilium polygono&shy;<lb/>rum circulis, vel ellip&longs;ibus &longs;imili&shy;<lb/>bus, qu&aelig; &longs;unt ba&longs;es oppo&longs;it&aelig; fru&shy;<lb/><figure id="id.043.01.195.1.jpg" xlink:href="043/01/195/1.jpg"/><lb/>&longs;ti AD, in&longs;criptorum diametri e&aelig;dem AB, CD. <!-- KEEP S--></s>

<s>Quo&shy;<lb/>niam igitur &longs;imilium polygonorum circulis, &amp; &longs;imilibus <lb/>ellip&longs;ibus in&longs;criptorum latera homologa inter &longs;e &longs;unt vt <lb/>diametri dictorum circulorum, vel ellip&longs;ium, eadem erit <lb/>proportio inter duas diametros AB, CD, hoc e&longs;t FC, <lb/>CD, qu&aelig; inter duo qu&aelig;libet latera homologa polyga&shy;<lb/>norum circulis, vel ellip&longs;ibus &longs;imilibus AB, CD in&shy;<lb/>&longs;criptorum. </s>

<s>Sed pyramidis fru&longs;tum fru&longs;to CB in&longs;cri&shy;<lb/>ptum ad pri&longs;ma, cuius ba&longs;is e&longs;t maior ba&longs;is fru&longs;ti pyrami&shy;<lb/>dis, &amp; eadem altitudo, &longs;olido CG in&longs;criptum, e&longs;t vt re-<pb/>ctangulum contentum lateribus homologis ba&longs;ium oppo&shy;<lb/>&longs;itarum, vna cum tertia parte quadrati differenti&aelig;, ad ma&shy;<lb/>ioris lateris quadratum; idem igitur fru&longs;tum pyramidis <lb/>ad idem pri&longs;ma, erit vt rectangulum DCF, vna cum <lb/>tertia parte quadrati DF ad quadratum CD: deficit <lb/>autem vtrumque &amp; pyramidis fru&longs;tum fru&longs;to CB in&longs;cri&shy;<lb/>ptum ab ip&longs;o CB fru&longs;to, &amp; pri&longs;ma ip&longs;i CG in&longs;criptum <lb/>ab &igrave;p&longs;o CG, minori &longs;pacio quantacumque propo&longs;ita ma&shy;<lb/>gnitudine; per tertiam igitur huius, erit vt rectangulum <lb/>DCF vna cum tertia parte quadrati DF, ad CD qua&shy;<lb/>dratum, ita fru&longs;tum CB ad cylindrum, vel portionem <lb/>cylindricam CG. </s>

<s>Cum igitur conus, vel coni portio E <lb/>CD &longs;it pars tertia cylindri, vel portionis cylindric&aelig; CG, <lb/>erit ex &aelig;quali, vt idem rectangulum DCF, vna cum ter&shy;<lb/>tia parte quadrati DF, ad tertiam partem quadrati CD, <lb/>ita fru&longs;tum BC, ad conum vel coni portionem ECD. <!--neuer Satz-->Pr&aelig;&shy;<lb/>terea, quia quadratum CD &aelig;quale e&longs;t duobus quadratis <lb/>ex CF, FD, vna cum rectangulo bis ex CF, FD: quorum <lb/>rectangulo CFD, vna cum quadrato CF &aelig;quale e&longs;t rectan&shy;<lb/>gulum DCF; erit quadratum CD &aelig;quale rectangulo <lb/>DCF vna cum quadrato DF; demptis igitur rectangu&shy;<lb/>lo DCF, &amp; tertia parte quadrati DF; quod remanet <lb/>CD quadrati erit rectangulum CFD vna cum duabus <lb/>tertiis quadrati DF. quoniam igitur e&longs;t conuertendo vt <lb/>quadratum CD ad rectangulum DCF, vna cum tertia <lb/>parte quadrati DF, ita cylindris, vel portio cylindrica <lb/>CG ad fru&longs;tum CB, erit per conuer&longs;ionem rationis, &amp; <lb/>conuertendo; vt rectangulum CFD vna cum duabus ter&shy;<lb/>tiis DF quadrati, ad quadratum CD, ita reliquum cy&shy;<lb/>lindri, vel portionis cylindric&aelig; CG dempto fru&longs;to CB, <lb/>ad cylindrum, vel portionem cylindricam. </s>

<s>Manife&longs;tum <lb/>e&longs;t igitur propo&longs;itum. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO XI.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si &longs;ph&aelig;ra, vel &longs;ph&aelig;roides &longs;ecetur duobus pla&shy;<lb/>nis parallelis vtcumque, neutro per <expan abbr="c&etilde;trum">centrum</expan> ducto: <lb/>qu&aelig;dam autem ex centro recta linea tran&longs;eat per <lb/>centrum alterutrius &longs;ectionum; per centrum re&shy;<lb/>liqu&aelig; tran&longs;ibit. </s></p><p type="main">

<s>Sit &longs;ph&aelig;ra, vel &longs;ph&aelig;roides &longs;ectum duobus planis pa&shy;<lb/>callelis vtcumque neutro per centrum ducto, quod &longs;it E: <lb/>per &longs;ectionum autem, qu&aelig; &longs;unt circuli, vel &longs;imiles el&shy;<lb/>lip&longs;es, alterutrius centrum F tran&longs;iens recta EFB oc&shy;<lb/>currat reliqu&aelig; &longs;ectionis plano in puncto G. <!-- KEEP S--></s>

<s>Dico reli&shy;<lb/>qu&aelig; &longs;ectionis centrum e&longs;&longs;e G. <!-- KEEP S--></s>

<s>Planum enim per OB &longs;e&shy;<lb/><figure id="id.043.01.197.1.jpg" xlink:href="043/01/197/1.jpg"/><lb/>cans &longs;ph&aelig;ram, vel &longs;ph&aelig;roides, faciensque &longs;ectionem circu&shy;<lb/>lum, vel ellip&longs;im ABCD, &longs;ecabit, &amp; &longs;ecet pr&aelig;dictas &longs;e&shy;<lb/>ctiones, circulos inquam, vel &longs;imiles ellip&longs;es parallelas, qua&shy;<lb/>rum alterius centrum ponitur F. <!-- KEEP S--></s>

<s>Faciatque &longs;ectiones re&shy;<lb/>ctas parallelas AFC, KGH: &longs;imiliter aliud quodlibet <pb/>planum per BE &longs;ecans &longs;ph&aelig;ram, vel &longs;ph&aelig;roides faciat &longs;e&shy;<lb/>ctionem circulum, vel ellip&longs;im, &amp; in ea parallelas LFM, <lb/>NGO, communes &longs;ectiones iam fact&aelig; &longs;ectionis &longs;ph&aelig;r&aelig; <lb/>vel &longs;ph&aelig;roidis cum circulis, vel ellip&longs;ibus inter &longs;e paral&shy;<lb/>lelis quarum diametri &longs;unt AC, KH. <!-- KEEP S--></s>

<s>Quoniam igitur <lb/>E e&longs;t centrum &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis; omnes in eo per <lb/>punctum E, tran&longs;euntes rect&aelig; line&aelig; bifariam &longs;ecabuntur: <lb/>&longs;ed idem E e&longs;t in &longs;ectione &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis, circu&shy;<lb/>lo, vel ellip&longs;e ABCD; omnes igitur in ip&longs;a rectas lineas <lb/>bifariam &longs;ecabit punctum E, &amp; centrum erit circuli, <lb/>vel ellip&longs;is ABCD: qu&aelig;dam igitur ex centro recta EB <lb/>&longs;ecans parallelarum neutrius per centrum duct&aelig; alteram <lb/>AC bifariam in circuli, vel ellip&longs;is ALCM centro F, <lb/>&amp; reliquam in puncto G bifariam &longs;ecabit. </s>

<s>Similiter <lb/>o&longs;tenderemus rectam NO &longs;ectam e&longs;se bifariam in pun&shy;<lb/>cto G: atque adeo circuli, vel ellip&longs;is KNHO centrum <lb/>e&longs;&longs;e G. <!-- KEEP S--></s>

<s>Recta igitur E, tran&longs;iens per centrum &longs;ectionis <lb/>ALCM, tran&longs;ibit per centrum reliqu&aelig; KNHO ip&longs;i <lb/>ALCM parallel&aelig;. </s>

<s>Quod demon&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>COROLLARIVM.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Hinc manife&longs;tum e&longs;t, &longs;i &longs;ph&aelig;ra, vel &longs;ph&aelig;roides <lb/>&longs;ecetur plano non per centrum: &amp; recta linea &longs;ph&aelig;&shy;<lb/>r&aelig;, vel &longs;ph&aelig;roidis, &amp; fact&aelig; &longs;ectionis centra iun&shy;<lb/>gens ad &longs;uperficiem vtrinque producatur; talis <lb/>axis &longs;egmenta e&longs;&longs;e <gap/> portionum, earumque <lb/>vertices extrema dicti axis, vt in figura theorema&shy;<lb/>tis &longs;unt puncta B, D. <!-- KEEP S--></s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO XII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si hemi&longs;ph&aelig;rium, vel hemi&longs;ph&aelig;roides vtcum&shy;<lb/>que ab &longs;ci&longs;&longs;um: &amp; cylindrus, vel cylindri portio <lb/>illi circum&longs;cripta: &amp; conus, vel coni portio, cu&shy;<lb/>ius ba&longs;is e&longs;t eadem &longs;olido circum&longs;cripto, hemi&shy;<lb/>&longs;ph&aelig;rium, vel hemi&longs;ph&aelig;roides ad verticem <expan abbr="con-ting&etilde;s">con&shy;<lb/>tingens</expan>, &amp; communis axis; &longs;ecentur vnoplano, ba&longs;i <lb/>hemi&longs;ph&aelig;rij, vel hemi&longs;ph&aelig;roidis parallelo: &longs;uper <lb/>&longs;ectiones autem pr&aelig;dicti coni, vel portionis coni&shy;<lb/>c&aelig;, &amp; hemi&longs;ph&aelig;rij, vel hemi&longs;ph&aelig;roidis, circa hu&shy;<lb/>ius ab&longs;ci&longs;s&aelig; portionis axem duo cylindri, vel por&shy;<lb/>tiones cylindric&aelig; con&longs;titerint; reliquum cylindri <lb/>vel portionis cylindric&aelig; pr&aelig;dicto plano ab&longs;ci&longs;s&aelig;, <lb/><expan abbr="d&etilde;pto">dempto</expan> eo cylindro <expan abbr="duor&utilde;">duorum</expan> pr&aelig;dictorum, vel portio&shy;<lb/>ne cylindrica, cuius ba&longs;is e&longs;t &longs;ectio hemi&longs;ph&aelig;rij, <lb/>vel hemi&longs;ph&aelig;roidis, &aelig;quale erit reliquo cylindro, <lb/>vel portioni cylindric&aelig;, cuius ba&longs;is e&longs;t &longs;ectio pr&aelig;&shy;<lb/>dicti coni, vel portionis conic&aelig;. </s></p><p type="main">

<s>E&longs;to hemi&longs;ph&aelig;rium, vel hemi&longs;ph&aelig;roides ABC, cuius <lb/>axis BD, ba&longs;is circulus, vel ellip&longs;is, cuius diameter AC. <lb/><!-- KEEP S--></s>

<s>Et &longs;olido ABC circum&longs;criptus cylindrus, vel portio cy&shy;<lb/>lindrica, cuius ba&longs;es oppo&longs;it&aelig; erunt circuli, vel &longs;imiles elli&shy;<lb/>p&longs;es, quarum diametri eiu&longs;dem rationis ADC, EF, la&shy;<lb/>tera oppo&longs;ita parallelogrammi per axem AFGC: &amp; &longs;u&shy;<lb/>per ba&longs;im, cuius diameter EF, circa axim BD, de&longs;criptus <lb/>e&longs;to conus, vel coni portio EDF. <!-- KEEP S--></s>

<s>Iam tria &longs;olida ABC, <lb/>EDF, AC, &longs;ecentur plano &longs;olidi ABC ba&longs;i parallelo, <lb/>quod &longs;ecabit, &amp; &longs;ecet vn&agrave; figuras planas per axim BD <pb/>tribus &longs;olidis communem, po&longs;itas in eodem plano, qu&aelig; &longs;unt <lb/>AF parallelogrammum, triangulum EDF, &amp; &longs;emicir&shy;<lb/>culus, vel &longs;emi ellip&longs;is ABC: &amp; &longs;int &longs;ectiones rect&aelig; GO, <lb/>HN, KM: h&aelig; igitnr erunt diametri eiu&longs;dem rationis trium <lb/>&longs;ectionum, &longs;cilicet circulorum, vel ellip&longs;ium &longs;irnilium, qui&shy;<lb/>bus erit commune centrum L, in quo nimirum axis BD <lb/>tres dictas lineas GO, HN, KM, bifariam &longs;ecat. </s>

<s>Vt <lb/>igitur de &longs;olido AF diximus, &longs;int circa axem BL, &amp; &longs;uper <lb/>ba&longs;es circulos, vel ellip&longs;es circa HN, KM cylindri, vel <lb/>portiones cylindric&aelig; HP, KQ, qui vn&agrave; cum portione <lb/>cylindrica, vel cylindro GF ip&longs;a &longs;ectione facto, erunt inter <lb/>eadem plana paral&shy;<lb/>lela per EF, GO. <lb/><!-- KEEP S--></s>

<s>Dico trium cylin&shy;<lb/>drorum, vel cylin&shy;<lb/>dri portionum GF, <lb/>HP, KQ, <expan abbr="reliqu&utilde;">reliquum</expan> <lb/>ip&longs;ius GF dempto <lb/>HP, ip&longs;i KQ e&longs;se <lb/><figure id="id.043.01.200.1.jpg" xlink:href="043/01/200/1.jpg"/><lb/>&aelig;quale. </s>

<s>Quoniam <lb/>enim cylindri, &amp; cy&shy;<lb/>lindri portiones eiu&longs;dem altitudinis inter &longs;e &longs;unt vt ba&shy;<lb/>&longs;es, circuli autem, &amp; &longs;imiles ellip&longs;es; inter &longs;e, vt qu&aelig; &agrave; <lb/>diametris eiu&longs;dem rationis fiunt quadrata; ex Archime&shy;<lb/>de, hoc e&longs;t vt earum quart&aelig; partes, qu&aelig; &agrave; &longs;emidiame&shy;<lb/>tris quadrata de&longs;cribuntur; erit vt quadratum LO ad <lb/>quadratum LN, ita cylindrus, vel portio cylindrica <lb/>GF ad cylindrum, vel portionem cylindricam PH: &amp; <lb/>diuidendo, vt rectangulum LNO bis vn&agrave; cum quadra&shy;<lb/>to NO, ad quadratum LN, ita reliquum cylindri, vel <lb/>portionis cylindric&aelig; GF, dempto ip&longs;o PH, ad ip&longs;um <lb/>PH: &longs;ed vt quadratum LN ad quadratum LM, ita e&longs;t <lb/>vt &longs;upra, cylindrus, vel portio cylindrica HP ad cylin&shy;<lb/>drum, vel portionem cylindricam KQ, ex &aelig;quali igitur, <pb/>erit vt rectangulum LNO bis, vn&agrave; cum quadrato NO, <lb/>ad quadratum LM, ita reliquum cylindri, vel portionis <lb/>cylindric&aelig; GF <expan abbr="d&etilde;-pto">den&shy;<lb/>pto</expan> HP, ad cylin&shy;<lb/>drum, vel <expan abbr="portion&etilde;">portionem</expan> <lb/>cylindricam KQ: <lb/>&longs;ed rectangulum L <lb/>NO bis vn&agrave; <expan abbr="c&utilde;">cum</expan> qua <lb/>drato NO &aelig;quale <lb/>e&longs;t quadrato LM; <lb/>reliquum igitur cy&shy;<lb/><figure id="id.043.01.201.1.jpg" xlink:href="043/01/201/1.jpg"/><lb/>lindri, vel portionis <lb/>cylindric&aelig; GF, <expan abbr="d&etilde;-pto">den&shy;<lb/>pto</expan> HP, &aelig;quale erit cylindro, vel portioni cylindric&aelig; <expan abbr="Kq.">Kque</expan> <lb/>Quod erat demon&longs;trandum. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XIII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Cylindri, vel portionis cylindric&aelig; hemi&longs;ph&aelig;&shy;<lb/>rio, vel hemi&longs;ph&aelig;roidi circum&longs;cript&aelig; reliquum <lb/>dempto hemi&longs;ph&aelig;rio, vel hemi&longs;ph&aelig;roide, &aelig;qua&shy;<lb/>le e&longs;t cono, vel portioni conic&aelig; eandem ba&longs;im he&shy;<lb/>mi&longs;ph&aelig;rio, vel hemi&longs;ph&aelig;roidi, &amp; eandem altitu&shy;<lb/>dinem habenti. </s></p><p type="main">

<s>E&longs;to hemi&longs;ph&aelig;rio, vel hemi&longs;ph&aelig;roidi ABC, cu&shy;<lb/>ius axis BD, ba&longs;is circulus, vel ellip&longs;is circa diametrum <lb/>ADC, circum&longs;criptus cylindrus, vel cylindrica portio <lb/>AE, circa communem &longs;cilicet axim BD. conus autem, <lb/>vel coni portio circa axim BD, ba&longs;im habens commu&shy;<lb/>nem &longs;olido ABC, intelligatur. </s>

<s>Dico reliquum &longs;olidi <lb/>AE, dempto hemi&longs;ph&aelig;rio, vel hemi&longs;ph&aelig;roide ABC &aelig;-<pb/>quale e&longs;se cono, vel portioni conic&aelig;. </s>

<s>Nam circa axim <lb/>BD, &amp; &longs;uper ba&longs;im circulum, vel ellip&longs;im, cuius diame&shy;<lb/>ter RE, &longs;imilem &amp; oppo&longs;itam ei, qu&aelig; circa AC, de&longs;cri&shy;<lb/>batur conus, vel coni portio RDE. <!-- KEEP S--></s>

<s>Deinde axe BD bi&shy;<lb/>fariam &longs;ecto, &amp; &longs;ingulis eius partibus rur&longs;us bifariam, vt <lb/>partes axis BD omnes &longs;int &aelig;quales, per puncta &longs;ectio&shy;<lb/>num, quotquot erunt, totidem plana parallela &longs;ecent vn&agrave; <lb/>cum &longs;olido AE duas ip&longs;ius partes, &longs;olida ABC, RDE. <lb/><!-- KEEP S--></s>

<s>Omnes igitur fact&aelig; &longs;ectiones, vel erunt circuli, vel &longs;imiles <lb/>ellip&longs;es ei, qu&aelig; e&longs;t circa AC, atque adeo inter &longs;e &longs;imiles: <lb/>talium autem &longs;ectiones communes cum AE parallelo, <lb/><figure id="id.043.01.202.1.jpg" xlink:href="043/01/202/1.jpg"/><lb/>grammo per axim, erunt rect&aelig; line&aelig;, tern&aelig; in &longs;ingu&shy;<lb/>lis planis &longs;ecantibus, &amp; in eadem recta linea; vt in proxi&shy;<lb/>ma ip&longs;i RE, &longs;unt FL, GN, KM, qu&aelig; quidem erunt <lb/>trium circulorum, vel &longs;imilium ellip&longs;ium diametri eiu&longs;dem <lb/>rationis ba&longs;ium trium &longs;olidorum, cylindri &longs;cilicet, vel por&shy;<lb/>tionis cylindric&aelig; FL, fru&longs;ti GL, &amp; portionis KBM, he <lb/>mi&longs;ph&aelig;rij, vel hemi&longs;ph&aelig;roidis ABC. <!-- KEEP S--></s>

<s>Itaque circa axem <lb/>BH cylindri, vel portionis cylindric&aelig; FE, &amp; &longs;uper ba&shy;<lb/>&longs;es circulos, vel ellip&longs;es circa GN, KM, de&longs;cribantur <lb/>cylindri, vel cylindri portiones GP, KQ, qui pat&shy;<lb/>tes erunt totius cylindri, vel portionis cylindric&aelig; FE. <lb/><!-- KEEP S--></s>

<s>Idem fiat circa reliquas axis partes BD tamquam axes, <pb/>&longs;uper reliquas &longs;ectiones ternas in &longs;ingulis pr&aelig;dictis planis <lb/>&longs;ecantibus. </s>

<s>Hac ratione habebimus iam duas figuras <lb/>compo&longs;itas ex cylindris, vel cylindri portionibus altitudi&shy;<lb/>ne, &amp; multitudine &aelig;qualibus, alteram cono, vel portioni <lb/>conic&aelig; RDE in&longs;criptam, alteram hemilph&aelig;rio, vel he&shy;<lb/>mi&longs;ph&aelig;roidi ABC circum&longs;criptam: quod ita factum e&longs;&shy;<lb/>&longs;e intelligatur, quemadmodum in primo libro fieri po&longs;se <lb/>demon&longs;trauimus, vt figura cono RDE in&longs;cripta ab eo <lb/>deficiat, hemi&longs;ph&aelig;rio autem, vel hemi&longs;ph&aelig;roidi ABC <lb/>circum&longs;cripta ip&longs;um excedat minori &longs;pacio magnitudine <lb/>propo&longs;ita quantacumque illa &longs;it. </s>

<s>Reliquo itaque cylin&shy;<lb/><figure id="id.043.01.203.1.jpg" xlink:href="043/01/203/1.jpg"/><lb/>dri, vel portionis cylindric&aelig; AE dempto hemi&longs;ph&aelig;rio, vel <lb/>hemi&longs;ph&aelig;roide ABC figura qu&aelig;dam in&longs;cripta relinque&shy;<lb/>tur ex cylindris, vel portionis cylindric&aelig; re&longs;iduis &aelig;qualium <lb/>altitudinum, demptis ijs, ex quibus con&longs;tat figura hemi&shy;<lb/>&longs;ph&aelig;rio, vel hemi&longs;ph&aelig;roidi ABC circum&longs;cripta, excepto <lb/>infimo cylindro, vel portione cylindrica AS. <!-- KEEP S--></s>

<s>Et quo&shy;<lb/>niam (excepto exce&longs;su, quo &longs;olidum AS excedit &longs;ui par&shy;<lb/>tem portionem quandam hemi&longs;ph&aelig;rij, vel hemi&longs;ph&aelig;roidis <lb/>ABC) quo &longs;pacio figura hemi&longs;ph&aelig;rio, vel hemi&longs;ph&aelig;roidi <lb/>ABC circum&longs;cripta &longs;uperat ip&longs;um hemi&longs;ph&aelig;rium, vel he <lb/>hemi&longs;ph&aelig;roides, eodem figura pr&aelig;dicto re&longs;iduo in&longs;cripta de&shy;<lb/><gap/>duo; deficiet ab eodem minori differentia qu&agrave;m <pb/>&longs;it magnitudo propo&longs;ita,. <!--neuer Satz-->His ita ex po&longs;itis, quoniam ex <lb/>pr&aelig;cedenti, reliquum cylindri, vel portionis cylindric&aelig; <lb/>FE dempto cylindro, vel portione cylindrica KQ, &aelig;&shy;<lb/>quale e&longs;t cylindro, vel portioni cylindric&aelig; GP: eadem&shy;<lb/>que ratione &longs;ingula cylindrorum, vel cylindri portionum <lb/>re&longs;idua, qu&aelig; &longs;unt in reliqua figura cylindri, vel portionis <lb/>cylindric&aelig; AE, dempto hemi&longs;ph&aelig;rio, vel hemi&longs;ph&aelig;roi&shy;<lb/>de ABC, &aelig;qualia erunt &longs;ingulis cylindris, vel cylindri <lb/>portionibus, qu&aelig; &longs;unt in cono, vel portione conica RDE, <lb/>&longs;i bina &longs;umantur inter eadem plana parallela, vel circa <lb/>eundem axem; tota igitur figura in&longs;cripta pr&aelig;dicto re&longs;iduo, <lb/>toti figur&aelig; in&longs;cript&aelig; cono, vel portioni conic&aelig; RDE &aelig;&shy;<lb/>qualis erit: deficit autem vtraque figura in&longs;cripta &agrave; &longs;ibi <lb/>circum&longs;cripta minori &longs;pacio quantacumque magnitudine <lb/>propo&longs;ita; per tertiam igitur huius, reliquum cylindri, vel <lb/>portionis cylindric&aelig; AE, dempto hemi&longs;ph&aelig;rin, vel he&shy;<lb/>mi&longs;ph&aelig;roide ABC, &aelig;quale e&longs;t cono, vel portioni coni&shy;<lb/>c&aelig; RDE, hoc e&longs;t ip&longs;i ABC. <!-- KEEP S--></s>

<s>Quod erat demon&longs;trandum. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XIV.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si hemi&longs;ph&aelig;rium, vel hemi&longs;ph&aelig;roides, &amp; cylin <lb/>drus, vel portio cylindrica ip&longs;i circum&longs;cripta, &amp; <lb/>conus, vel coni portio, cuius e&longs;t <expan abbr="id&etilde;">idem</expan> axis portioni, <lb/>ba&longs;is autem qu&lt;17&gt; opponitur communi ba&longs;i duorum <lb/>pr&aelig;dictorum &longs;olidorum, vn&agrave; &longs;ecentur duobus <lb/>planis ba&longs;i parallelis; portiones reliqu&aelig; figur&aelig; <lb/>ex cylindro, vel cylindri portione hemi&longs;ph&aelig;rio, <lb/>vel hemi&longs;ph&aelig;roidi circum&longs;cripta dempto hemi&shy;<lb/>&longs;ph&aelig;rio, vel hemi&longs;ph&aelig;roide, qu&aelig; &agrave; duobus pr&aelig;&shy;<lb/>dictis planis &longs;ecantibus fiunt, &aelig;quales &longs;unt &longs;in&shy;<pb/>gul&aelig; &longs;ingulis pr&aelig;dicti coni, vel conic&aelig; portionis <lb/>partibus &longs;iue fru&longs;tis inter eadem plana parallela <lb/>re&longs;pondentibus. </s></p><p type="main">

<s>E&longs;to hemi&longs;ph&aelig;rium, vel hemi&longs;ph&aelig;roides ABC, cu&shy;<lb/>ius axis BD, ba&longs;is circulus, vel ellip&longs;is, cuius diame&shy;<lb/>ter ADC. &longs;olido autem ABC circum&longs;criptus cylindrus, <lb/>vel portio cylindrica AXEC: &amp; conus, vel coni portio <lb/>&longs;it XDE, cuius vertex D, ba&longs;is circulus, vel ellip&longs;is cir&shy;<lb/>ca XBE ba&longs;i &longs;olidi AE, vel ABC, pr&aelig;dict&aelig; oppo&longs;ita, <lb/>&longs;ecto autem &longs;olido AE, atque vn&agrave; cum ip&longs;o eius partibus, <lb/>&longs;olidis ABC, XD <lb/>E, duobus planis ba <lb/>&longs;i &longs;olidi AE, vel <lb/>ABC, atque ideo <lb/>inter &longs;e quoque pa&shy;<lb/>rallelis, intelligan&shy;<lb/>tur trium &longs;olidorum <lb/>portiones tern&aelig; in&shy;<lb/><figure id="id.043.01.205.1.jpg" xlink:href="043/01/205/1.jpg"/><lb/>ter eadem plana pa&shy;<lb/>rallela: videlicet in&shy;<lb/>ter duo per XE, <lb/>FN, hemi&longs;ph&aelig;rij, vel hemi&longs;ph&aelig;roidis minor portio HBL: <lb/>&amp; reliquum cylindri, vel portionis cylindric&aelig; FE dem&shy;<lb/>pta portione HBL: &amp; coni, vel conic&aelig; portionis fru&longs;tum <lb/>XGME. &longs;imiliter inter duo plana per FN, OV &longs;olidi <lb/>ABC portio PHLT, eaque ablata reliquum &longs;olidi ON, <lb/>&amp; fru&longs;tum GQSM. <!-- KEEP S--></s>

<s>Denique &longs;olidi ABC portio AP <lb/>TC, eaque ablata, reliquum &longs;olidi AV, &amp; conus, vel <lb/>coni portio QDS. </s>

<s>Dico reliquum &longs;olidi FE, dempto <lb/>HBL e&longs;&longs;e &aelig;quale fru&longs;to XGME: &amp; reliquum &longs;olidi ON <lb/>dempto PHLT, &aelig;quale fru&longs;to GQSM: &amp; reliquum <lb/>&longs;olidi AV dempto &longs;olido APTC &aelig;quale &longs;olido QDS. <pb/>Quoniam enim vt &longs;upra o&longs;tendimus, reliquum &longs;olidi AE, <lb/>dempto &longs;olido ABC &aelig;quale e&longs;se &longs;olido XDE, &longs;imili&shy;<lb/>ter o&longs;ten&longs;um remanet, tam reliquum &longs;olidi AN, dempto <lb/>&longs;olido AHLC, &aelig;quale e&longs;se &longs;olido GDM, quam reli&shy;<lb/>quum &longs;olidi AV dempto &longs;olido APTC &aelig;quale &longs;olido <lb/>QDS; erit demptis &aelig;qualibus, tam reliquum &longs;olidi FE, <lb/>dempto &longs;olido HBL, &aelig;quale &longs;olido XGME; quam <lb/>reliquum &longs;olidi ON, dempto &longs;olido PHLT &aelig;quale &longs;o&shy;<lb/>lido GQSM. <!-- KEEP S--></s>

<s>At reliquum &longs;olidi AV dempto &longs;oli&shy;<lb/>do APTC &longs;olido QDS &aelig;quale erit. </s>

<s>Manife&longs;tum e&longs;t <lb/>igitur propo&longs;itum. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XV.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Hemi&longs;ph&aelig;rium, vel hemi&longs;ph&aelig;roides &longs;ub&longs;e&longs;qui <lb/>alterum e&longs;t cylindri; vel portionis cylindric&aelig; ip&longs;i <lb/>circum&longs;cript&aelig;. </s></p><p type="main">

<s>E&longs;to hemi&longs;ph&aelig;rium, vel hemi&longs;ph&aelig;roides ABC, <lb/>ip&longs;ique circum&longs;criptus cylindrus, vel portio cylindri&shy;<lb/>ca AE, circa eundem &longs;cilicet axem BD, &amp; &longs;uper can&shy;<lb/>dem ba&longs;im circulum, <lb/>vel ellip&longs;im, circa AC: <lb/>nam hac ratione ba&longs;is <lb/>oppo&longs;ita &longs;olidum ABC <lb/>tanget ad verticem B. <lb/></s>

<s>Dico <expan abbr="hemi&longs;ph&aelig;ri&utilde;">hemi&longs;ph&aelig;rium</expan>, vel <lb/>hemi&longs;ph&aelig;roides ABC <lb/>e&longs;se cylindri, vel portio <lb/>nis cylindric&aelig; AE &longs;ub <lb/><figure id="id.043.01.206.1.jpg" xlink:href="043/01/206/1.jpg"/><lb/>&longs;e&longs;quialterum. </s>

<s>Nam <lb/>circa axem BD, &longs;uper pr&aelig;dictam ba&longs;em circa AC, e&longs;to <lb/>de&longs;criptus conus, vel coni portio ABC. <!-- KEEP S--></s>

<s>Quoniam igitur <pb/>cylindri, vel portionis cylindric&aelig; AE reliquum dempto <lb/>hemi&longs;ph&aelig;rio, vel hemi&longs;ph&aelig;roide ABC &aelig;quale e&longs;t cono, <lb/>vel portioni conic&aelig; ABC: &amp; cylindrus, vel portio cylin&shy;<lb/>drica AE tripla e&longs;t co&shy;<lb/>ni, vel portionis conic&aelig; <lb/>ABC; triplus itidem <lb/>erit cylindrus, vel cylin <lb/>drica portio AE dicti <lb/>re&longs;idui dempto hemi&shy;<lb/>&longs;ph&aelig;rio, vel hemi&longs;ph&aelig;&shy;<lb/>roide ABC; ac propte&shy;<lb/>rea hemi&longs;ph&aelig;rij, vel he&shy;<lb/><figure id="id.043.01.207.1.jpg" xlink:href="043/01/207/1.jpg"/><lb/>mi&longs;ph&aelig;roidis ABC <lb/>&longs;e&longs;quialter, hoc e&longs;t hemi&longs;ph&aelig;rium, vel hemi&longs;ph&aelig;roides <lb/>ABC cylindri, vel portionis cylindric&aelig; AE &longs;ub&longs;e&longs;quial&shy;<lb/>terum. </s>

<s>Quod erat demon&longs;trandum. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XVI.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis minor portio &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis ad <lb/>cylindrum, vel cylindri portionem, cuius ba&longs;is <lb/>&aelig;qualis e&longs;t circulo maximo, vel &aelig;qualis, &amp; &longs;imi&shy;<lb/>lis ellip&longs;i per centrum ba&longs;i portionis parallel&aelig;, <lb/>&amp; eadem altitudo portioni; eam habet proportio&shy;<lb/>nem, quam rectangulum contentum &longs;ph&aelig;r&aelig;, vel <lb/>&longs;ph&aelig;roidis dimidij axis axi portionis congruen&shy;<lb/>tis ijs, qu&aelig; &agrave; centro ba&longs;is portionis fiunt <expan abbr="&longs;egm&emacr;tis">&longs;egmentis</expan>, <lb/>vn&agrave; cum duobus tertiis quadrati axis portionis; ad <lb/>&longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis dimidij axis quadratum. </s></p><p type="main">

<s>Sit minor portio ABC, &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis, cuius <lb/>centrum D, axis autem axi portionis congruens BEDR: <pb/>&amp; cylindrus, vel portio cylindrica FG ab&longs;ci&longs;sa vn&agrave; cum <lb/>portione ABC ex cylindro, vel portione cylindrica NO <lb/>circum&longs;cripta hemi&longs;ph&aelig;rio, vel hemi&longs;ph&aelig;roidi NBO, <lb/>cuius ba&longs;is circa diametrum NO, &longs;it ba&longs;i portionis ABC <lb/>parallela: qua ratione ba&longs;is pr&aelig;dicti &longs;olidi FG, erit vel cir <lb/>culus, vel ellip&longs;is &aelig;qualis circulo maximo, vel &longs;imilis, &amp; <lb/>&aelig;qualis ellip&longs;i circa NO, portionis ABC ba&longs;i paralle&shy;<lb/>l&aelig;. </s>

<s>Dico portionem ABC ad cylindrum, vel portio&shy;<lb/>nem cylindricam FG, e&longs;se vt rectangulum BED, vn&agrave; <lb/>cum duabus tertiis qua&shy;<lb/>drati EB ad quadratum <lb/>BD. <!-- KEEP S--></s>

<s>E&longs;to enim conus, <lb/>vel coni portio HDG, <lb/>cuius fru&longs;tum HKLG <lb/>pr&aelig;dicto plano ab&longs;ci&longs;&longs;um: <lb/>&amp; omnino &longs;int <expan abbr="circulor&utilde;">circulorum</expan>, <lb/>vel ellip&longs;ium &longs;imilium dia <lb/>metri eiu&longs;dem rationis <expan abbr="c&utilde;">cum</expan> <lb/>NO, vt ad XII huius, in <lb/><expan abbr="ead&etilde;">eadem</expan> recta linea tres FM, <lb/>AC, KL, &longs;ect&aelig; omnes bi <lb/>fariam in <expan abbr="c&otilde;muni">communi</expan> <expan abbr="c&etilde;tro">centro</expan> E, <lb/><figure id="id.043.01.208.1.jpg" xlink:href="043/01/208/1.jpg"/><lb/>&amp; HBG, in eodem plano per axem. </s>

<s>Quoniam igitur ex &longs;u&shy;<lb/>perioribus, reliquum &longs;olidi FG, dempto ABC, &aelig;quale e&longs;t <lb/>fru&longs;to HKLG; erit eiu&longs;dem &longs;olidi FG reliquum ABC <lb/>&aelig;quale reliquo &longs;olidi FG, dempto HKLG: &longs;ed hoc reli&shy;<lb/>quum dempto HKLG, &longs;upra o&longs;tendimus e&longs;se ad &longs;olidum <lb/>FG, vt rectangulum ex KL, &amp; differentia HG, vn&agrave; <lb/>cum duabus tertiis quadrati differenti&aelig;, ad quadratum <lb/>GH: &amp; vt HG ad KL, ita e&longs;t BD ad DE, propter &longs;imi&shy;<lb/>litudinem triangulorum; vt igitur e&longs;t rectangulum BED, <lb/>vn&agrave; cum duabus tertiis quadrati BE, ad quadratum BD, <lb/>ita erit portio ABC, ad cylindrum, vel portionem cylin&shy;<lb/>dricam FG. <!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO XVII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis portio &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis ab&longs;ci&longs;&longs;a <lb/>duobus planis parallelis, alteroper centrum du&shy;<lb/>cto, ad cy lindrum, vel cylindri portionem, cuius <lb/>ba&longs;is e&longs;t eadem, qu&aelig; maior ba&longs;is portionis, &amp; <expan abbr="ead&etilde;">eadem</expan> <lb/>altitudo; eam habet proportionem, quam rectan&shy;<lb/>gulum contentum ijs, qu&aelig; &agrave; centro minoris ba&longs;is <lb/>fiunt axis &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis &longs;egmentis, vn&agrave; <lb/>cum duabus tertiis quadrati axis portionis; ad <lb/>&longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis dimidij axis quadratum. </s></p><p type="main">

<s>Sit portio NACO &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;rodij, cuius cen&shy;<lb/>trum D, axis autem axi portionis congruens BEDR, <lb/>ab&longs;ci&longs;sa duobus planis parallelis altero per centrum D, &longs;e&shy;<lb/>ctionem faciente circulum <lb/>maximum, vel ellip&longs;im, <lb/>cuius diameter NO, &amp; &longs;u&shy;<lb/>per dictam &longs;ectionem, cir&shy;<lb/>ca axem ED, &longs;tet cylin&shy;<lb/>drus, vel portio cylindrica <lb/>NM, ab&longs;ci&longs;sa ij&longs;dem pla&shy;<lb/>nis, quibus portio NAC <lb/>O, &agrave; cylindro, vel portio&shy;<lb/>ne cylindrica NG, &longs;it cir&shy;<lb/>cum&longs;cripta hemi&longs;ph&aelig;rio, <lb/>vel hemi&longs;ph&aelig;roidi NBO: <lb/>qua ratione erit cylindri, <lb/><figure id="id.043.01.209.1.jpg" xlink:href="043/01/209/1.jpg"/><lb/>vel portionis cylindric&aelig; NM ba&longs;is eadem, qu&aelig; maior <lb/>ba&longs;is portionis NACO, circulus &longs;cilicet, vel ellip&longs;is cir&shy;<lb/>ca NO, &amp; eadem altitudo portioni. </s>

<s>Dico portionem <pb/>NACO, ad cylindrum, vel portionem cylindricam NM, <lb/>e&longs;se vt rectangulum BER, vn&agrave; cum duabus tertiis ED <lb/>quadrati, ad quadratum BD. <!-- KEEP S--></s>

<s>Ij&longs;dem enim qu&aelig; in pr&aelig;ce&shy;<lb/>denti con&longs;tructis, &amp; notatis, &longs;it pr&aelig;terea cylindrus, vel por&shy;<lb/>tio cylindrica PL, circa axim ED circum&longs;cripta cono, <lb/>vel portioni conic&aelig; KDL, Quoniam igitur reliquum <lb/>cylindri, vel portionis cylindric&aelig; NM, dempta portione <lb/>NACO &aelig;quale e&longs;t cono, vel portioni conic&aelig; <emph type="italics"/>K<emph.end type="italics"/>DL, <lb/>erit reliqua portio NACO &aelig;qualis reliquo eiu&longs;dem NM, <lb/>dempto cono, vel portione conica KDL. </s>

<s>Et quoniam cir <lb/>culi, &amp; &longs;imiles ellip&longs;es inter &longs;e &longs;unt vt quadrata diametro&shy;<lb/>rum, vel <expan abbr="&longs;emidiametror&utilde;">&longs;emidiametrorum</expan> eiu&longs;dem rationis: cylindri autem, <lb/>&amp; portiones cylindric&aelig; <expan abbr="eiu&longs;d&etilde;">eiu&longs;dem</expan> altitudinis inter &longs;e vt ba&longs;es; <lb/>erit vt quadratum EM, hoc e&longs;t quadratum BG, ad qua&shy;<lb/>dratum EL, hoc e&longs;t vt quadratum BD ad quadratum <lb/>DE, propter &longs;imilitudinem triangulorum, ita &longs;olidum NM <lb/>ad &longs;olidum PL: &amp; per conuer&longs;ionem rationis, vt quadra&shy;<lb/>tum BD ad rectangulum BED bis, vn&agrave; cum quadrato <lb/>BE, ita &longs;olidum MN, ad &longs;ui reliquum dempto &longs;olido <lb/>PL: &amp; conuertendo, vt rectangulum BED bis, vn&agrave; cum <lb/>quadrato BE, hoc e&longs;t rectangulum BER, ad quadratum <lb/>BD, ita reliquum &longs;olidi NM dempto &longs;olido PL ad &longs;o&shy;<lb/>lidum NM. Rur&longs;us, quoniam e&longs;t vt quadratum EL ad <lb/>quadratum EM, &longs;iue BG, hoc e&longs;t vt quadratum ED ad <lb/>quadratum BD, ita &longs;olidum PL ad &longs;olidum NM, ob <lb/>&longs;imilem rationem &longs;upradict&aelig;: &amp; du&aelig; terti&aelig; partes &longs;olidi <lb/>PL e&longs;t &longs;olidum KDL; erit ex &aelig;quali, vt du&aelig; terti&aelig; qua&shy;<lb/>drati ED ad quadratum BD, ita reliquum &longs;olidi PL <lb/>dempto &longs;olido KDL, ad &longs;olidum NM: &longs;ed vt rectangu&shy;<lb/>lum BER ad quadratum BD, ita erat &longs;olidi NM reli&shy;<lb/>quum dempto &longs;olido PL, ad &longs;olidum NM; vt igitur pri&shy;<lb/>ma cum quinta ad &longs;ecundam, ita erit tertia cum &longs;exta ad <lb/>quartam; videlicet, vt rectangulum BED, vn&agrave; cum dua&shy;<lb/>bus tertiis ED quadrati ad quadratum BD, ita reliquum <pb/>cylindri, vel portionis cylindric&aelig; NM, dempto cono, vel <lb/>portione conica KDL, hoc e&longs;t portio NACO ip&longs;i &aelig;qua&shy;<lb/>lis, ad cylindrum, vel portionem cylindricam NM. <lb/><!-- KEEP S--></s>

<s>Quod erat demon&longs;trandum. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XVIII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis portio &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis ab&longs;ci&longs;&longs;a <lb/>duobus planis parallelis, neutro per centrum du&shy;<lb/>cto, nec centrum intercipientibus, ad cylindrum, <lb/>vel cylindri portionem, cuius ba&longs;is &aelig;qualis e&longs;t <lb/>circulo maximo, vel ellip&longs;i per centrum ba&longs;ibus <lb/>portionis parallel&aelig; &longs;imilis, &amp; &aelig;qualis, eam ha&shy;<lb/>bet proportionem, quam duo rectangula; &amp; quod <lb/>&longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis axis axi portionis <expan abbr="congru&etilde;">congruem</expan> <lb/>tis ijs, qu&aelig; &agrave; centro minoris ba&longs;is portionis fiunt <lb/><expan abbr="&longs;egm&etilde;tis">&longs;egmentis</expan>, &amp; quod ea, qu&aelig; maioris ba&longs;is portionis, <lb/>&amp; &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis centra iungit, &amp; axe por <lb/>tionis continetur, vn&agrave; cum duabus tertijs quadra&shy;<lb/>ti axis portionis; ad &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis dimi&shy;<lb/>dij axis quadratum. </s></p><p type="main">

<s>Sit portio AQTC &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis, cuius cen&shy;<lb/>trum D, axis autem axi portionis congruens BSEDR, <lb/>ab&longs;ci&longs;&longs;um duobus planis parallelis, neutro per centrum <lb/>D acto, nec ip&longs;um intercipientibus: &amp; circa portionis <lb/>axim SE &longs;tet cylindrus, vel portio cylindrica FX ab&shy;<lb/>&longs;ci&longs;sa vn&agrave; cum portione AQTC ex toto cylindro, vel <lb/>portione cylindrica NG, hemi&longs;ph&aelig;rio, vel hemi&longs;ph&aelig;roi&shy;<lb/>di NBO circum&longs;cripta, cuius ba&longs;is circulus maximus <pb/>vel ellip&longs;is circa NO ba&longs;ibus AQTC portionis parallel&aelig; <lb/>qua ratione cylindrus, vel portionis cylindric&aelig; FX eiu&longs;&shy;<lb/>dem altitudinis portioni AQTC, ba&longs;is erit circulus <lb/>&aelig;qualis circulo maximo, vel ellip&longs;is &longs;imilis, &amp; &aelig;qualis ei, <lb/>cuius diameter NDO, ba&longs;ibus AQTC portionis paral&shy;<lb/>lel&aelig;. </s>

<s>Dico portionem AQTC ad cylindrum, vel por&shy;<lb/>tionem cylindricam FX, e&longs;&longs;e vt duo rectangula BSR, <lb/>DES, vn&agrave; cum duabus tertiis quadrati ES, ad quadra&shy;<lb/>tum BD. <!-- KEEP S--></s>

<s>Ij&longs;dem enim con&longs;tructis, &amp; notatis, qu&aelig; in an&shy;<lb/>tecedenti, excepto cylindro, vel portione cylindrica, qu&aelig; <lb/>circa axim ED &longs;teterat: <lb/>planum pr&aelig;terea minoris <lb/>ba&longs;is QT portionis AQ <lb/>TC extendatur: &amp; &longs;e&shy;<lb/>cans tria &longs;olida, &amp; figuras <lb/>planas per axim po&longs;itas in <lb/>eodem plano, faciat ternas <lb/>&longs;ectiones, circulos, vel elli&shy;<lb/>p&longs;es &longs;imiles ei, qu&aelig; e&longs;t cir&shy;<lb/>ca NO: &amp; earum diame&shy;<lb/>tros IX, PV, QT, in <lb/>eadem recta linea commu&shy;<lb/>ni &longs;ectione exten&longs;i plani, &amp; <lb/><figure id="id.043.01.212.1.jpg" xlink:href="043/01/212/1.jpg"/><lb/>eius, quod per axem: qu&aelig; quidem diametri &longs;ect&aelig; erunt om&shy;<lb/>nes bifariam in centro S communi trium pr&aelig;dictarum pla&shy;<lb/>narum <expan abbr="&longs;ection&utilde;">&longs;ectionum</expan>. </s>

<s>Denique coni, vel portionis conic&aelig; HDG <lb/>fru&longs;to PKIV ab&longs;ci&longs;&longs;o vn&agrave; cum portione AQTC, &longs;it <lb/>circa axim SE circum&longs;criptus cylindrus vel portio cylin&shy;<lb/>drica ZV. </s>

<s>Quoniam igitur per XIIII huius, reliquum <lb/>&longs;olidi FX, dempta portione AQTC, &aelig;quale e&longs;t fru&longs;to <lb/>PKLV; erit reliqua portio AQTC, reliquo eiu&longs;dem <lb/>&longs;olidi FX, dempto fru&longs;to PKLV &aelig;qualis. </s>

<s>Et quoniam <lb/>e&longs;t vt PV ad KL, ita SD, DE, propter &longs;imilitudinem <lb/>triangulorum: &amp; vt rectangulum ex KL, &amp; differentia <pb/>ip&longs;ius PV, vn&agrave; cum duabus tertiis quadrati eiu&longs;dem dif&shy;<lb/>ferenti&aelig;, ad quadratum PV, ita e&longs;t reliquum &longs;olidi ZV <lb/>dempto fru&longs;to PKLV ad &longs;olidum ZV; erit vt rectangu&shy;<lb/>lum DES, vn&agrave; cum duabus tertiis quadrati ES, ad DS <lb/>quadratum, ita &longs;olidi ZV reliquum dempto fru&longs;to PK <lb/>LV ad &longs;olidum ZV: &longs;ed vt quadratum DS ad quadra&shy;<lb/>tum DB, hoc e&longs;t vt quadratum SV ad quadratum BG, <lb/>ide&longs;t ad quadratum SX, ita e&longs;t &longs;olidum ZV, ad &longs;olidum <lb/>FX; ex &aelig;quali igitur, vt rectangulum DES, vn&agrave; cum <lb/>duabus tertiis ES quadrati, ad quadratum BD, ita e&longs;t <lb/>reliquum &longs;olidi ZV, dem <lb/>pto &longs;olido PKLV ad &longs;o <lb/>lidum FX: &longs;ed vt rectan&shy;<lb/>gulum BSR ad quadra&shy;<lb/>tum BD, ita e&longs;t, eadem <lb/>ratione, qua in pr&aelig;cedenti <lb/>theoremate vtebamur, re&shy;<lb/>liquum &longs;olidi FX dem&shy;<lb/>pto &longs;olido ZV, ad &longs;oli&shy;<lb/>dum FX; vt igitur prima <lb/>cum quinta ad &longs;ecundam, <lb/>ita tertia cum &longs;exta ad <lb/>quartam; videlicet, vt duo <lb/><figure id="id.043.01.213.1.jpg" xlink:href="043/01/213/1.jpg"/><lb/>rectangula BSR, DES, vn&agrave; cum duabus tertiis quadra&shy;<lb/>ti ES ad quadratum BD, ita erit totum reliquum cylin&shy;<lb/>dri, vel portionis cylindric&aelig; FX dempto fru&longs;to PKLV: <lb/>hoc e&longs;t &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis portio AQTC ad cylin&shy;<lb/>drum, vel portionem cylindricam FX. </s>

<s>Quod demon&shy;<lb/>&longs;trandum erat. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO XIX.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis maior portio &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis, <lb/>ad cylindrum, vel portionem cylindricam, cuius <lb/>ba&longs;is &aelig;qualis e&longs;t circulo maximo, vel &aelig;qualis, &amp; <lb/>&longs;imilis ellip&longs;i per centrum ba&longs;i portionis paralle&shy;<lb/>l&aelig;, altitudo autem eadem portioni, eam habet <lb/>proportionem, quam &longs;olidum rectangulum con&shy;<lb/>tentum axe portionis, &amp; reliquo axis &longs;ph&aelig;r&aelig;, vel <lb/>&longs;ph&aelig;roidis &longs;egmento, &amp; eo, quod ba&longs;is portionis, <lb/>&amp; &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis centraiungit, vn&agrave; cum <lb/>binis tertiis partibus duorum cuborum: &amp; eius <lb/>qui &agrave; &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis axis dimidio; &amp; <lb/>cius qui ab eo, quod &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis, &amp; <lb/>ba&longs;is portionis centra iungit &longs;it &longs;egmento; ad &longs;o&shy;<lb/>lidum rectangulum, quod axe portionis, &amp; duo&shy;<lb/>bus &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis axis fit dimidijs. </s></p><p type="main">

<s>Sit maior portio AB <lb/>C, &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roi&shy;<lb/>dis ABCF, cuius cen&shy;<lb/>trum D: ba&longs;is <expan abbr="aut&etilde;">autem</expan> por&shy;<lb/>tionis, circulus, vel elli&shy;<lb/>p&longs;is, cuius diameter A <lb/>C: Et &longs;ecta portione <lb/>ABC per centrum D <lb/>plano ba&longs;i AC paral&shy;<lb/>lelo, qua ratione &longs;ectio <lb/>erit circulus maximus, <lb/>vel ellip&longs;is &longs;imilis ba&longs;i <lb/><figure id="id.043.01.214.1.jpg" xlink:href="043/01/214/1.jpg"/><pb/>portionis: e&longs;to ea cuius diameter KL, iungensque recta <lb/>DE &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis, &amp; ba&longs;is portionis centra DE, <lb/>atque producta incidat in &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis &longs;uperfi&shy;<lb/>ciem ad partes E in puncto F, &amp; ad partes oppo&longs;itas in <lb/>puncto B: &longs;ph&aelig;r&aelig; igitur, vel &longs;ph&aelig;roidis axis axi portionis <lb/>BE congruens crit BDEF, nam vertex portionis erit B: <lb/>&amp; hemi&longs;ph&aelig;rio, vel hemi&longs;ph&aelig;roidi KBL &longs;it circum&longs;cri&shy;<lb/>ptas cylindrus, vel cylindrica portio KH, cuius &longs;cilicet <lb/>axis BD, &amp; circa axim DE, alter cylindrus, vel portio <lb/>cylindrica GL portioni KACL circum&longs;cripta: quorum <lb/>circum&longs;criptorum &longs;olido&shy;<lb/>rum vtriulque communis <lb/>ba&longs;is erit circulus, vel <lb/>ellip&longs;is circa KL. <!-- KEEP S--></s>

<s>Ita&shy;<lb/>que ex his compo&longs;itus to&shy;<lb/>tus cylindrus, vel cylin&shy;<lb/>dri portio GH erit por&shy;<lb/>tioni ABC circum&longs;cri&shy;<lb/>pta, habens axim BE, at&shy;<lb/>que ideo eandem altitu&shy;<lb/>dinem ABC portioni, <lb/>ba&longs;im autem, cuius dia&shy;<lb/>meter &longs;it GM &longs;imilem <lb/><figure id="id.043.01.215.1.jpg" xlink:href="043/01/215/1.jpg"/><lb/>&amp; &aelig;qualem ei, qu&aelig; e&longs;t circa KL. <!-- KEEP S--></s>

<s>Dico portionem ABC <lb/>ad cylindrum, vel portionem cylindricam GH, e&longs;se vt &longs;o&shy;<lb/>lidum rectangulum contentum ip&longs;is BE, EF, ED, vn&agrave; <lb/>cum binis tertiis duorum cuborum, duabus &longs;cilicet cubi <lb/>BD, &amp; totidem cubi ED, ad &longs;olidum rectangulum con&shy;<lb/>tentum ip&longs;is EB, BD, DF. <!-- KEEP S--></s>

<s>Quoniam enim parall ele&shy;<lb/>pipeda eiu&longs;dem altitudinis inter &longs;e &longs;unt vt ba&longs;es, erit vt re&shy;<lb/>ctangulum BEF vn&agrave; cum duabus tertiis ED quadrati ad <lb/>rectangulum BDF, ide&longs;t ad quadratum BD, &longs;iue DF, <lb/>ita &longs;olidum ex BE, EF, ED, communi altitudine DE, <lb/>vn&agrave; cum duabus tertiis cubi ED, ad &longs;olidum ex DE, <pb/>BD, DF: &longs;ed vt rectangulum BEF, vn&agrave; cum duabus <lb/>DE quadrati, ad quadratum DF, ita o&longs;tendimus e&longs;&longs;e <lb/>portionem AKLC ad &longs;olidum GL; vt igitur e&longs;t &longs;olidum <lb/>ex BE, EF, ED, vn&agrave; cum duabus tertiis cubi ED, com <lb/>muni altitudine DE, ad &longs;olidum ex ED, BD, DF, ita <lb/>erit portio AKLC ad &longs;olidum GL: &longs;ed vt &longs;olidum ex <lb/>ED, DB, DF, hoc e&longs;t id, cuius altitudo ED, ba&longs;is BD <lb/>quadratum, ad &longs;olidum ex EB, BD, DF, hoc e&longs;t ad id, <lb/>cuius altitudo BE, ba&longs;is quadratum BD, ita e&longs;t altitudo, <lb/>vel latus ED, ad altitudinem vel latum BE: hoc e&longs;t &longs;oli&shy;<lb/>dum GL ad &longs;olidum GH; quippe quorum dict&aelig; line&aelig; <lb/>ED, BE &longs;unt axes; ex &aelig;quali igitur, vt &longs;olidum ex BE, <lb/>EF, ED, vn&agrave; cum duabus tertiis cubi DE, ad &longs;olidum <lb/>ex EB, BD, DE, cuius altitudo EB, ba&longs;is quadratum <lb/>BD, ita erit portio AKLC ad &longs;olidum GH. Rur&longs;us, <lb/>quoniam &longs;olidum HK e&longs;t hemi&longs;ph&aelig;rij, vel hemi&longs;ph&aelig;roi&shy;<lb/>dis KBL &longs;e&longs;quialterum; erit vt du&aelig; terti&aelig; partes cubi BD <lb/>ad cubum BD, ita hemi&longs;ph&aelig;rium, vel hemi&longs;ph&aelig;roides <lb/>KBL ad &longs;olidum KH: &longs;ed vt cubus BD ad &longs;olidum ex <lb/>BD, DF, &amp; altitudine BE, hoc e&longs;t vt altitudo BD ad <lb/>altitudinem BE, ita e&longs;t &longs;olidum KH ad &longs;olidum GH, quo&shy;<lb/>rum dict&aelig; altitudines BD, BE &longs;unt axes, ex &aelig;quali igitur <lb/>erit vt du&aelig; terti&aelig; partes cubi BD ad &longs;olidum ex EB, BD, <lb/>DF, ita hemi&longs;ph&aelig;rium, vel hemi&longs;ph&aelig;roides KBL, ad &longs;oli&shy;<lb/>dum GH: &longs;ed vt <expan abbr="&longs;olid&utilde;">&longs;olidum</expan> ex BE, EF, ED, vna cum duabus <lb/>tertiis cubi ED ad &longs;olidum ex EB, BD, DF, erat por&shy;<lb/>tio AKLC ad cylindrum GH; vt igitur prima cum quin <lb/>ta ad &longs;ecundam, ita tertia cum &longs;exta ad quartam, videlicet, <lb/>vt du&aelig; terti&aelig; cubi BD, vna cum duabus tertiis cubi BE, <lb/>&amp; &longs;olido ex BE, EF, ED ad &longs;olidum ex EB, BD, DF, <lb/>ita erit &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis maior portio ABC ad &longs;oli&shy;<lb/>dum, cylindrum &longs;cilicet, vel portionem cylindricam GH. <lb/><!-- KEEP S--></s>

<s>Quod erat demon&longs;trandum. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO XX.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis portio &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis ab&longs;ci&longs;sa <lb/>duobus planis parallelis centrum intercipienti&shy;<lb/>bus, ad cylindrum, vel cylindri portionem, cuius <lb/>ba&longs;is &aelig;qualis e&longs;t circulo maximo, vel &longs;imilis, &amp; <lb/>&aelig;qualis ellip&longs;i per centrum ba&longs;ibus portionis pa&shy;<lb/>rallel&aelig;, &amp; eadem altitudo portioni, eam habet <lb/>proportionem, quam duo &longs;olida rectangula ex ter&shy;<lb/>norum &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis axis &longs;egmentorum <lb/>eundem terminum habentium alterutrius ba&shy;<lb/>&longs;ium portionis centrum, binis &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;&shy;<lb/>roidis axem complentibus, &amp; &longs;ingulis axis por&shy;<lb/>tionis itidem &agrave; centro &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis fa&shy;<lb/>ctis, vn&agrave; cum binis tertijs partibus duorum cubo&shy;<lb/>rum ex &longs;egmentis axis portionis &agrave; centro &longs;ph&aelig;r&aelig;, <lb/>vel &longs;ph&aelig;roidis factis; ad &longs;olidum rectangulum, <lb/>quod duobus &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis axis dimi&shy;<lb/>diis, &amp; axe portionis continetur. </s></p><p type="main">

<s>Sit portio ABCD &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis, cuius cen&shy;<lb/>trum E, axis portionis KEH: ip&longs;i autem portioni cir&shy;<lb/>cum&longs;criptus cylindrus, vel cylindrica portio NO, vt in <lb/>antecedenti, cuius communis &longs;ectio cum &longs;ph&aelig;ra, vel &longs;ph&aelig;&shy;<lb/>roide AFDG, &longs;it circulus maximus, vel ellip&longs;is circa dia&shy;<lb/>metrum LEM; quamobrem ba&longs;is &longs;olidi NO, eiu&longs;dem <lb/>altitudinis portioni ABCD circulus erit &aelig;qualis circu&shy;<lb/>lo maximo, vel ellip&longs;is &aelig;qualis, &amp; &longs;imilis ellip&longs;i circa LM <lb/>ba&longs;ibus portionis parallel&aelig;. </s>

<s>Dico portionem ABCD <pb/>ad cylindrum, vel cylindri portionem NO, e&longs;se vt duo <lb/>&longs;olida ad rectangula, alterum ex FH, HG, EH: alterum <lb/>ex GK, KF, EK, vn&agrave; cum binis tertiis duorum cubo&shy;<lb/>rum ex EK, EH, ad &longs;olidum rectangulum ex GE, <lb/>EF KH, axe enim KH producto vt incidat in &longs;uper&shy;<lb/>ficiem in punctis F, G, &longs;it &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis, ex <lb/>demon&longs;tratis, axis FK, EHG. </s>

<s>Intelliganturque vt in <lb/>antecedenti duo cylindri, vel cylindri portiones NM, <lb/>LO, totius pr&aelig;dicti &longs;olidi NO: itemque du&aelig; portiones <lb/>&longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis ALMD, LBCM, quorum qua&shy;<lb/>tuor &longs;olidorum commu <lb/>nis ba&longs;is e&longs;t circulus, vel <lb/>ellip&longs;is circa LEM. <lb/></s>

<s>Quoniam igitur vt in <lb/>antecedenti o&longs;tendere&shy;<lb/>mus portionem ALM <lb/>D ad &longs;olidum NM e&longs; <lb/>&longs;e vt &longs;olidum ex FH, <lb/>HG, EH, vn&agrave; cum <lb/>duabus tertiis cubi EH <lb/>ad &longs;olidum ex FE, EG, <lb/>EH, communi altitu&shy;<lb/>dine EH: &longs;ed vt &longs;oli&shy;<lb/>dum ex FE, EG, EH, <lb/><figure id="id.043.01.218.1.jpg" xlink:href="043/01/218/1.jpg"/><lb/>altitudine EH, ad &longs;olidum ex FE, EG, KH altitudi&shy;<lb/>ne KH, ita e&longs;t altitudo EH ad altitudinem KH, hoc <lb/>e&longs;t &longs;olidum NM ad &longs;olidum NO, quippe quorum &longs;unt <lb/>axes EH, KH; ex &aelig;quali igitur erit vt &longs;olidum ex FH, <lb/>HG, EH, vn&agrave; cum duabus tertiis cubi EH, ad &longs;oli&shy;<lb/>dum ex FE, EG, KH, ita portio ALMD, ad &longs;oli&shy;<lb/>dum NO. <!-- KEEP S--></s>

<s>Eadem ratione o&longs;tenderemus e&longs;&longs;e, vt &longs;olidum <lb/>ex GK, KF, EK, vn&agrave; cum duabus tertiis cubi EK, ad <lb/>&longs;olidum ex FE, EG, KH, ita portionem LBCM, ad <lb/>&longs;olidum NO; vt igitur prima cum quinta ad &longs;ecundam, <pb/>ita tertia cum &longs;exta ad quartam; videlicet, vt duo &longs;oli&shy;<lb/>da, &amp; quod &longs;it ex FH, <lb/>HG, EH, &amp; quod <lb/>ex GK, KF, EK, vn&agrave; <lb/>cum duabus tertiis &amp; <lb/>cubi ex EH, &amp; cu&shy;<lb/>bi ex EK, ad &longs;olidum <lb/>ex FE, EG, KH, ita <lb/>erit tota &longs;ph&aelig;r&aelig;, vel <lb/>&longs;ph&aelig;roidis portio AB <lb/>CD, ad cylindrum, vel <lb/>portionem cylindricam <lb/>NO. <!-- KEEP S--></s>

<s>Quod demon&shy;<lb/>&longs;trandum erat. </s></p><figure id="id.043.01.219.1.jpg" xlink:href="043/01/219/1.jpg"/><p type="head">

<s><emph type="italics"/>PROPOSITIO XXI.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis trianguli comprehen&longs;i &longs;ectione para&shy;<lb/>bola, ex duabus rectis lineis, quarum altera &longs;e&shy;<lb/>ctionem tangat, altera in eam incidat diametro <lb/>&longs;ectionis ex contactu &aelig;quidi&longs;tans, centrum graui&shy;<lb/>tatis e&longs;t punctum illud, in quo recta linea ex con&shy;<lb/>tactu diuidens incidentem ita vt pars, qu&aelig; &longs;ectio&shy;<lb/>nem attingit &longs;it &longs;e&longs;quialtera reliqu&aelig;, &longs;ic diui&shy;<lb/>ditur, vt pars qu&aelig; e&longs;t ad contactum &longs;it tripla <lb/>reliqu&aelig;. </s></p><p type="main">

<s>Sit triangulum ABC comprehen&longs;um &longs;ectione parabo&shy;<lb/>la ADB, &amp; duabus rectis lineis, quarum altera AC tan&shy;<lb/>gat &longs;ectionem in puncto A, reliqua autem BC, in eam <lb/>incidens in puncto B, &longs;ectionis diametro ex puncto A, <lb/>&aelig;quidi&longs;tans intelligatur: &amp; per centrum grauitatis trian-<pb/>guli ABC quod &longs;it F, &longs;it ducta recta AFE. </s>

<s>Dico AF <lb/>e&longs;&longs;e ip&longs;ius FE triplam: at BE ip&longs;ius EC &longs;e&longs;quialteram. <lb/></s>

<s>Completo enim triangulo rectilineo ABC, &longs;ectis que re&shy;<lb/>ctis lineis bifariam AB in puncto H, &amp; AC in puncto K <lb/>ducatur HDK, qu&aelig; parallela erit ba&longs;i BC: parabol&aelig; igi&shy;<lb/>tur &longs;egmenti BDA dia meter erit DH; in qua parabol&aelig; <lb/>ADB, cuius vertex D &longs;it centrum grauitatis M: trian&shy;<lb/>guli autem rectilinei ABC centrum grauitatis N, &amp; iun <lb/>gatur MN: producta igitur MN occurret trianguli ABC <lb/>mixti centro grauitatis F. &longs;int igitur centra M, N, F, in <lb/>eadem recta linea: <lb/>&amp; ducta recta AN <lb/>G &longs;ecet ba&longs;im BC <lb/>bifariam in G pun <lb/>cto, nece&longs;&longs;e e&longs;t e&shy;<lb/>nim: &amp; ex puncto <lb/>F ad rectam AG, <lb/>ducatur recta FO <lb/>ip&longs;is BC, KH pa <lb/>rallela, &amp; BD, DA <lb/>iungantur. </s>

<s><expan abbr="Quoni&atilde;">Quoniam</expan> <lb/>igitur AG &longs;ecat <lb/>BC, KH paral&shy;<lb/>lelas in rectolineo <lb/>triangulo ABC, <lb/><figure id="id.043.01.220.1.jpg" xlink:href="043/01/220/1.jpg"/><lb/>in ea&longs;dem rationes; &longs;ecta erit HK bifariam &agrave; linea AG: <lb/>cumque HD diameter parabol&aelig; ADC, cuius vertex D, <lb/>&longs;it parallela diametro parabol&aelig;, cuius vertex A, atque <lb/>ideo etiam BC incidenti parallela, erit DH pars ip&longs;ius <lb/>KH: quoniam igitur in triangulo mixto ABC recta KD <lb/>applicata parallela e&longs;t ip&longs;i BC, qu&aelig; itidem e&longs;t parallela <lb/>diametro parabol&aelig;, cuius vertex A; erit vt AC ad AK <lb/>potentia, ita BC ad DK longitudine, quod &longs;upra demon&shy;<lb/>&longs;trauimus: &longs;ed AC quadrupla e&longs;t potentia ip&longs;ius AK; <pb/>quadrupla igitur BC ip&longs;ius DK: cum igitur BC &longs;it <lb/>dupla ip&longs;ius KH, erit DK dimidia eiu&longs;dem KH, &amp; &longs;ecta <lb/>bifariam KH in puncto D: &longs;ed recta AG &longs;ecabat eandem <lb/>KH bi fariam; per punctum igitur D tran&longs;ibit AG. <!-- KEEP S--></s>

<s>Quo&shy;<lb/>niam igitur parabola ADC, cuius vertex D, &longs;e&longs;quiter&shy;<lb/>tia e&longs;t per Archimedem trianguli ADB, cuius duplum <lb/>e&longs;t triangulum ABG, &longs;icut &amp; huius triangulum ABC; <lb/>triangulum ABC quadruplum erit trianguli ADB: qua&shy;<lb/>lium igitur partium &aelig;qualium e&longs;t triangulum ABC duo&shy;<lb/>decim, talium erit triangulum ADB trium, &amp; parabola <lb/>ADB, cuius ver&shy;<lb/>tex D quatuor: du <lb/>plum igitur erit tri&shy;<lb/>angulum ABC <lb/>mixtum parabol&aelig; <lb/>ADB, cuius ver&shy;<lb/>tex D, &amp; cen&shy;<lb/>trum grauitatis M: <lb/>&longs;ed trianguli ABC <lb/>rectilinei e&longs;t cen&shy;<lb/>trum grauitatis N, <lb/>&amp; F <expan abbr="tri&atilde;guli">trianguli</expan> ABC <lb/>mixti; dupla igitur <lb/>erit MN ip&longs;ius N <lb/>F, &amp; MD ip&longs;ius <lb/><figure id="id.043.01.221.1.jpg" xlink:href="043/01/221/1.jpg"/><lb/>OF, &amp; DN ip&longs;ius NO, propter &longs;imilitudinem triangulo&shy;<lb/>rum: &longs;ed &amp; tota AN dupla e&longs;t totius NG, ob centrum <lb/>grauitatis N rectilinei trianguli ABC; reliqua igitur AD <lb/>dupla e&longs;t reliqu&aelig; GO. cum igitur AG &longs;it dupla ip&longs;ius <lb/>AD, quadrupla erit AG ip&longs;iu&longs;que GO. quare &amp; quadru <lb/>pla AE ip&longs;ius FE ob parallelas: tripla igitur AF ip&longs;ius FE. <lb/><!-- KEEP S--></s>

<s>Rur&longs;us quoniam ex Archimede &longs;e&longs;quialtera e&longs;t DM ip&longs;ius <lb/>MH, erit tota DH ad DM vt quinque ad tria, hoc e&longs;t <lb/>vt decem ad &longs;ex: &longs;ed MD erat dupla ip&longs;ius OF; tota igi-<pb/>tur DH ad OF erit vt decem ad tria: &longs;ed GC dupla <lb/>e&longs;t ip&longs;ius DH; igitur GC ad FO vt viginti ad tria: &longs;ed <lb/>quia tripla exi&longs;tente AO ip&longs;ius OG, e&longs;t tota AG ip&longs;ius <lb/>AO &longs;e&longs;quitertia, erit quoque GE, ip&longs;ius OF &longs;e&longs;quiter&shy;<lb/>tia, propter &longs;imilitudinem triangulorum AGE, AOF, <lb/>hoc e&longs;t qualium partium &aelig;qualium OF trium, talium GE <lb/>quatuor; qualium e&longs;t GC hoc e&longs;t BG viginti, talium <lb/>erit EG quatuor, &amp; EC &longs;exdecim: dempta igitur EG <lb/>ex GC, &amp; addita ip&longs;i BG, qualium e&longs;t EC &longs;exdecim: <lb/>talium erit BE vigintiquatuor: &longs;ed vt vigintiquatuor ad <lb/>&longs;exdecim, ita &longs;unt tria ad duo, qu&aelig; proportio e&longs;t &longs;e&longs;qui&shy;<lb/>altera, &longs;e&longs;quialtera igitur erit BE ip&longs;ius EC, o&longs;ten&longs;a e&longs;t <lb/>autem AF ip&longs;i FE tripla. </s>

<s>Manife&longs;tum e&longs;t igitur pro&shy;<lb/>po&longs;itum. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si duo triangula mixta pr&aelig;dicti generis verti&shy;<lb/>cem communem habeant, qui e&longs;t contactus, &amp; <lb/>ba&longs;es &aelig;quales in eadem recta linea, vel continuas, <lb/>vel &longs;egmento interiecto, tota extra &longs;iguram ver&longs;a <lb/>cauitate; centrum grauitatis compo&longs;iti ex vtro&shy;<lb/>que e&longs;t pun ctum illud, in quo recta linea &agrave; vertice <lb/>ad bipartit&aelig; rect&aelig; pr&aelig;dictis &longs;ectionibus interce&shy;<lb/>pt&aelig;, in qua &longs;unt ba&longs;es dictorum triangulorum &longs;e&shy;<lb/>ctionis punctum pertinens &longs;ic diuiditur; vt pars, <lb/>qu&aelig; e&longs;t ad verticem &longs;it tripla reliqu&aelig;. </s></p><p type="main">

<s>Sint duo pr&aelig;dicti generis triangula ABC, ADE ha&shy;<lb/>bentia verticem A communem, qui e&longs;t contactus recta. <lb/></s>

<s>rum cum parabolis, tangente AB parabolam AC, &amp; <pb/>AD parabolam AE: ba&longs;es autem &aelig;quales BC, DE pa&shy;<lb/>rallelas parabolarum diametres per A, &amp; in vna recta li&shy;<lb/>nea CE &longs;egmento BD interiecto: vtriu&longs;que autem &longs;e&shy;<lb/>ctionis AC, AE concauitas &longs;pectet extra figuram ACE: <lb/>&longs;ecta autem CE bifariam in F, iunctaque AF, ponatur <lb/>AG tripla ip&longs;ius GF. <!-- KEEP S--></s>

<s>Dico compo&longs;iti ex triangulis A <lb/>BC, ADE centrum grauitatis e&longs;&longs;e G. <!-- KEEP S--></s>

<s>Po&longs;ita enimvtra&shy;<lb/>que &longs;e&longs;quialtera, CH ip&longs;ius HB, &amp; EK ip&longs;ius KD, <lb/>iunctisque AH, AK, ducatur per punctum G ip&longs;i CE <lb/>parallela &longs;ecans AH, AK in punctis L, M. </s>

<s>Quoniam <lb/>igitur LM ip&longs;i CE parallela &longs;ecat eas qu&aelig; ex puncto A <lb/>ad rectam CD du&shy;<lb/>cuntur rectas lineas <lb/>in ea&longs;dem rationes, &amp; <lb/>e&longs;t AG tripla ip&longs;ius <lb/>GF; tripla erit vtra&shy;<lb/>que AL ip&longs;ius LH, <lb/>&amp; AM ip&longs;ius MK: <lb/>&longs;e&longs;quialtera autem e&longs;t <lb/>CH ip&longs;ius HB, &amp; <lb/>EK ip&longs;ius KD; erit <lb/>igitur L centrum gra<lb/>uitatis trianguli AB <lb/>C, &amp; M trianguli A <lb/>DE per pr&aelig;ceden&shy;<lb/><figure id="id.043.01.223.1.jpg" xlink:href="043/01/223/1.jpg"/><lb/>tem. </s>

<s>Rur&longs;us quoniam ab&longs;oluantur triangula rectiline&aelig; <lb/>ACB, AEK, &amp; &aelig;qualia erunt propter &aelig;quales ba&longs;es, <lb/>po&longs;ita inter ea&longs;dem parallelas, &amp; vtrumque &longs;e&longs;quialterum <lb/>eius trianguli mixti, quod comprehendit, ex demon&longs;tra&shy;<lb/>tione antecedentis; &aelig;qualia igitur erunt triangula mixta <lb/>ABC, ADE, &longs;iquidem &longs;unt &aelig;qualium &longs;ub&longs;e&longs;quialtera. <lb/></s>

<s>Et quoniam componendo, &amp; permutando e&longs;t vt CB ad <lb/>DE ita BH ad DK, &aelig;qualis erit BH ip&longs;i DK: &longs;ed &longs;i ab <lb/>&aelig;qualibus po&longs;itis CF, FE ip&longs;as CB, DE &aelig;quales au-<pb/>feras, reliqu&aelig; BF, FD &aelig;quales erunt; tota igitur FH to&shy;<lb/>ti FK &aelig;qualis e&longs;t: in triangulo autem AHK recta AF <lb/>&longs;ecat LM, HK parallelas in ea&longs;dem rationes; erit igitur <lb/>LG &aelig;qualis ip&longs;i GM; cum igitur &aelig;qualium triangulo&shy;<lb/>rum ABC, ADE centra grauitatis &longs;int L, M; erit com <lb/>po&longs;iti ex vtroque centrum grauitatis G. <!-- KEEP S--></s>

<s>Idem o&longs;tendere&shy;<lb/>mus, quod proponitur, &amp; &longs;i ba&longs;es pr&aelig;dictorum triangulo&shy;<lb/>rum &longs;int continu&aelig;. </s>

<s>Manife&longs;tum e&longs;t igitur propo&longs;itum. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXIII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si du&aelig; parabol&aelig; in eodem plano circa &aelig;qua&shy;<lb/>les diamet ros in directum inter &longs;e con&longs;titutas, ita <lb/>vt vertices &longs;int extrema ex diametris compo&longs;it&aelig;, <lb/>communem habuerint aliquam ordinatim ad dia <lb/>metrum applicatarum, &amp; vertices cum puncto con <lb/>uenienti&aelig; iungantur rectis lineis: centrum gra&shy;<lb/>uitatis v triu&longs;que portionis ijs rectis lineis ab &longs;ci&longs; <lb/>&longs;&aelig;, rectam lineam, qu&aelig; terminum communem <lb/>diamctrorum, &amp; concur&longs;um parabolarum iungit <lb/>bifariam diuidit. </s></p><p type="main">

<s>Circa &aelig;quales <lb/>diametros AD, <lb/>DC indirectum <lb/>inter &longs;e con&longs;titutas, <lb/>verticibus A, C, <lb/>du&aelig; parabol&aelig; in <lb/>eodem plano <expan abbr="com-mun&etilde;">com&shy;<lb/>munem</expan> habeant ali&shy;<lb/>quam BD ordi&shy;<lb/><figure id="id.043.01.224.1.jpg" xlink:href="043/01/224/1.jpg"/><pb/>natim ad vtramque diametrorum applicatarum, iunctis&shy;<lb/>que AB, BC, &longs;it &longs;ecta BD bifariam in puncto G. <lb/><!-- KEEP S--></s>

<s>Dico G e&longs;se centrum grauita tis duarum portionum AEB, <lb/>BFE &longs;imul. </s>

<s>Si enim hoc non e&longs;t, &longs;it aliud punctum L. &amp; <lb/>compleantur parallelogramma ANBD, DBRC, hoc <lb/>e&longs;t totum AR parallelogrammum: &amp; &longs;ecta BG bifariam <lb/>in puncto H, ponatur DK ip&longs;ius BD pars tertia, vt pun&shy;<lb/>ctum K &longs;it trianguli ABC centrum grauitatis. </s>

<s>Po&longs;ita au&shy;<lb/>tem &longs;e&longs;quialtera BP ip&longs;ius PN, &amp; BQ ip&longs;ius QR, iun&shy;<lb/>ctisque AP, CQ, duoatur per punctum H ip&longs;i AC, vel <lb/>NR parallela, cum ip&longs;is AP, CQ conueniens in punctis <lb/>ST: &amp; iuncta LG, <lb/>&longs;i punctum L non <lb/>&longs;it in linea BD, <lb/>e&longs;to LM quintu&shy;<lb/>pla ip&longs;ius MG. <lb/></s>

<s>Quoniam igitur ob <lb/>parallelas AC, P <lb/>Q, ST in trape&shy;<lb/>zio APQC, e&longs;t <lb/>vt DH ad HB, ita <lb/>AS ad SP, &amp; CT <lb/><figure id="id.043.01.225.1.jpg" xlink:href="043/01/225/1.jpg"/><lb/>ad TQ, erit AS ip&longs;ius SP, &amp; CT ip&longs;ius TQ tripla: <lb/>&longs;ed e&longs;t BP &longs;e&longs;quialtera ip&longs;ius PN, &amp; BQ ip&longs;ius QR; <lb/>mixti igitur trianguli ANB centrum grauitatis erit S, &amp; <lb/>trianguli mixti CRB centrum grauitatis T. cum igitur <lb/>BP, BQ proportionales &aelig;qualibus NB, BR inter &longs;e <lb/>&longs;int &aelig;quales, &amp; &longs;ecta AC bifariam in puncto D; etiam <lb/>ijs parallela ST &longs;ecta erit bifariam in puncto H: iungit <lb/>autem ST centra grauitatis mixtorum triangulorum AN <lb/>B, BRC; compo&longs;iti igitur ex vtroque centrum grauita&shy;<lb/>tis erit H. <!-- KEEP S--></s>

<s>Rur&longs;us quoniam ex quadratura parabol&aelig;, &longs;e&shy;<lb/>miparabola ABD &longs;e&longs;quitertia e&longs;t trianguli BDA, erit <lb/>triangulum BDA &longs;e&longs;quialterum mixti trianguli ANB: <pb/>eadem ratione triangulum BDC, trianguli CRB mi xti <lb/>erit &longs;e&longs;quialterum: totum igitur triangulum ABC &longs;e&longs;qui&shy;<lb/>alterum e&longs;t compo&longs;iti ex triangulis mixtis ANB, CRB. <lb/></s>

<s>Et quoniam quarta pars e&longs;t GH ip&longs;ius BD, &amp; DK ter&shy;<lb/>tia, DG ver&ograve; dimidia; qualium duodecim partium &aelig;qua&shy;<lb/>lium e&longs;t BD, talium erit DK quatuor, &amp; GH trium, &amp; <lb/>DG &longs;ex, &amp; reliqua KG duarum; &longs;e&longs;quialtera igitur e&longs;t <lb/>GH ip&longs;ius GK: quare vt triangulum ABC ad compo&shy;<lb/>&longs;itum ex pr&aelig;dictis triangulis mixtis, ita ex contraria parte <lb/>e&longs;t HG ad G<emph type="italics"/>K<emph.end type="italics"/>: cum igitur dicti compo&longs;iti &longs;it centrum <lb/>grauitatis H, trianguli autem ABC centrum grauitatis <lb/>K; erit dicti compo&longs;iti, &amp; trianguli ABC &longs;imul centrum <lb/>grauitatis G. Rur&longs;us, quoniam triangulum ABC &longs;e&longs;&shy;<lb/>quialterum e&longs;t compo&longs;iti ex triangulis mixtis &longs;upra dictis, <lb/>&amp; compo&longs;itum ex duabus &longs;emiparabolis ABD, CBD <lb/>&longs;e&longs;quitertium trianguli ABC; crit compo&longs;itum ex trian&shy;<lb/>gulis mixtis vn&agrave; cum triangulo ABC, quintuplum com&shy;<lb/>po&longs;iti ex portionibus AEB, BFC; hoc e&longs;t vt ex contra&shy;<lb/>ria parte LM ad MG: cum igitur G &longs;it centrum graui&shy;<lb/>tatis compo&longs;iti ex triangulis mixtis, &amp; triangulo ABC, &amp; <lb/>compo&longs;iti ex portionibus AEB, BFC centrum grauita&shy;<lb/>tis L; erit vtriu&longs;que dicti compo&longs;iti, hoc e&longs;t totius AR <lb/>parallelogrammi centrum grauitatis L: &longs;ed &amp; punctum G <lb/>ex primo libro e&longs;t centrum grauitatis parallelogrammi <lb/>AR; eiu&longs;dem igitur parallelogrammi AR erunt duo cen&shy;<lb/>tra grauitatis G, L. <!-- KEEP S--></s>

<s>Quod fieri non pote&longs;t: duarum igitur <lb/>portionum AEB, BFC &longs;imul centrum grauitatis erit G. <lb/><!-- KEEP S--></s>

<s>Quod e&longs;t propo&longs;itum. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXIIII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis figur&aelig; circa axim in alteram partem de <lb/>ficientis, cuius ba&longs;is e&longs;t circulus, vel ellip&longs;is, &longs;iue-<pb/>ba&longs;es &longs;unt circuli, vel ellip&longs;es, reliqua autem &longs;u&shy;<lb/>perficies tota interius concaua, centrum grauitatis <lb/>e&longs;t in dimidio axis &longs;egmento, quod ba&longs;im, vel ma&shy;<lb/>iorem ba&longs;im attingit. </s></p><p type="main">

<s>Sit figura circa axim in alteram partem deficiens ABC, <lb/>cuius axis BD, ba&longs;is, vel maior ba&longs;is circulus, vel ellip&longs;is <lb/>circa diametrum AC, reliqua autem &longs;uperficies tota inte&shy;<lb/>rius concaua: &longs;ecto autem axe BD bifariam in puncto G, <lb/>&longs;it &longs;olidi ABC centrum grauitatis F nempe in axe BD. <lb/><!-- KEEP S--></s>

<s>Dico punctum F e&longs;&longs;e in &longs;egmento ED. <!-- KEEP S--></s>

<s>Secto enim &longs;oli&shy;<lb/>do ABC, &amp; figu <lb/>ra per axem pla <lb/>no per <expan abbr="punct&utilde;">punctum</expan> E <lb/>ba&longs;i, vel ba&longs;ibus <lb/>parallelo, fiat &longs;e&shy;<lb/>ctio circulus, vel <lb/>ellip&longs;is &longs;imilis <lb/>ba&longs;i, per diffini&shy;<lb/>tionem, &amp; &longs;ectio&shy;<lb/>nis diameter K <lb/>N: deinde figu&shy;<lb/>ra qu&aelig;dam ex <lb/><figure id="id.043.01.227.1.jpg" xlink:href="043/01/227/1.jpg"/><lb/>duobus cylindris, vel cylindri portionibus KL, AM cir&shy;<lb/>ca axes BE, ED, eiu&longs;dem altitudinis circum&longs;cribatur <lb/>&longs;olido ABC: &longs;ecanturque bifariam BE in puncto G, &amp; <lb/>ED in puncto H. totius autem figur&aelig; circum&longs;cript&aelig; &longs;it <lb/>centrum grauitatis O, nempe in axe BD. <!-- KEEP S--></s>

<s>Quoniam igi&shy;<lb/>tur propter bipartitorum axium &longs;ectiones G, H, e&longs;t &longs;olidi <lb/>KL centrum grauitatis G: &longs;olidi autem AM centrum <lb/>grauitatis H, erit in linea GH totius &longs;olidi AL centrum <lb/>grauitatis O, &amp; vt &longs;olidum AM ad &longs;olidum KL, ita GO <lb/>ad OH: &longs;ed maior e&longs;t proportio &longs;olidi AM ad &longs;olidum KL <pb/>qu&agrave;m GE, ad EH; maior igitur proportio e&longs;t GO ad <lb/>OH, qu&agrave;m GE ad EH: &amp; componendo, maior pro&shy;<lb/>portio GH ad HO, qu&agrave;m eiu&longs;dem GH ad HE; mi&shy;<lb/>nor igitur OH erit qu&agrave;m EH, &amp; punctum O propin&shy;<lb/>quius puncto D qu&agrave;m punctum E; verum quoniam ex <lb/>ijs, qu&aelig; in pr&aelig;cedenti libro demon&longs;trauimus, propo&longs;it&aelig; <lb/>figur&aelig; &longs;olid&aelig; ABC centrum grauitatis e&longs;t puncto D <lb/>propinquius, qu&agrave;m cuiuslibet figur&aelig; ex cylindris, vel cy <lb/>lindri portionibus &aelig;qualium altitudinum ip&longs;i circum&longs;cri&shy;<lb/>pt&aelig;, erit punctum F propinquius puncto D qu&agrave;m pun&shy;<lb/>ctum O; multo igitur puncto D erit propinquius pun&shy;<lb/>ctum F qu&agrave;m punctum E; ergo infra punctum E, &amp; in <lb/>linea ED cadet &longs;olidi ABC centrum grauitatis F. <lb/><!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXV.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis fru&longs;ti coni, vel portionis conic&aelig; cen&shy;<lb/>trum grauitatis e&longs;t punctum illud, in quo eius <lb/>axis &longs;ic diuiditur, vt pars qu&aelig; minorem ba&longs;im at&shy;<lb/>tingit a&longs;&longs;umens quartam partem axis ablati coni, <lb/>vel portionis conic&aelig;, &longs;it ad eam, qu&aelig; inter po&longs;tre&shy;<lb/>mam &longs;ectionem, &amp; quart&aelig; partis ab&longs;ci&longs;&longs;&lt;17&gt; ad ba&longs;im <lb/>axis totius coni terminum interijcitur, vt cubus, <lb/>qui fit ab axe totius, ad cubum qui fit ab axe abla&shy;<lb/>ti coni. </s></p><p type="main">

<s>Sit coni, vel portionis conic&aelig; ABC fru&longs;tum BDEC, <lb/>cuius axis FG: conus autem, vel coni portio ablata AD <lb/>E: &longs;int centra grauitatis H &longs;olidi ABC, &amp; K &longs;olidi <lb/>ADE, &amp; L fru&longs;ti DC: qu&aelig; centra pr&aelig;terquam quod <pb/>&longs;unt omnia in axe AG, centrum L cadet infra <lb/>centrum H, ex ijs, qu&aelig; in primo libro demon&longs;traui&shy;<lb/>mus. </s>

<s>Dico e&longs;&longs;e KL ad LH vt cubum ex AG ad cu&shy;<lb/>bum ex AF. <!-- KEEP S--></s>

<s>Quoniam enim <lb/>ob centra grauitatis <emph type="italics"/>K<emph.end type="italics"/>, H, L, <lb/>e&longs;t vt fru&longs;tum DC ad &longs;olidum <lb/>ADE, ita ex contraria parte <lb/>KH ad HL; erit componen&shy;<lb/>do, vt &longs;olidum ABC ad &longs;oli&shy;<lb/>dum ADE, ita KL ad LH: <lb/>&longs;ed vt <expan abbr="&longs;olid&utilde;">&longs;olidum</expan> ABC ad &longs;olidum <lb/>ADE, ita e&longs;t cubus ex AG <lb/>ad cubum ex AF: triplieata <lb/>enim e&longs;t vtraque proportio eiu&longs;&shy;<lb/>dem, qu&aelig; e&longs;t ip&longs;ius AG ad ip&shy;<lb/>&longs;am AF, propter &longs;imilitudi&shy;<lb/>nem &longs;olidorum; vt igitur e&longs;t cu <lb/>bus ex AG ad cubum ex AF, <lb/>ita erit KL ad LH. <!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><figure id="id.043.01.229.1.jpg" xlink:href="043/01/229/1.jpg"/><p type="head">

<s><emph type="italics"/>PROPOSITIO XXVI.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Re&longs;idui &longs;olidi ex cylindro, vel portione cylin&shy;<lb/>drica hemi&longs;ph&aelig;rio, vel hemi&longs;ph&aelig;roidi circum&shy;<lb/>&longs;cripta, dempto hemi&longs;ph&aelig;rio, vel hemi&longs;ph&aelig;roide, <lb/>centrum grauitatis e&longs;t punctum illud, in quo axis <lb/>&longs;ic diuiditur, vt pars ba&longs;im attingens hemi&longs;ph&aelig;&shy;<lb/>rij, vel hemi&longs;ph&aelig;roidis &longs;it tripla reliqu&aelig;. </s></p><p type="main">

<s>E&longs;to hemi&longs;ph&aelig;rio, vel hem&longs;ph&aelig;roidi ABC, cuius axis <lb/>BD, circum&longs;criptus cylindrus, vel portio cylindrica AF: <lb/>&amp; ponatur D<emph type="italics"/>K<emph.end type="italics"/> ip&longs;ius <emph type="italics"/>K<emph.end type="italics"/>B tripla. </s>

<s>Dico reliqui ex &longs;oli-<pb/>do AF dempto ABC, centrum grauitatis e&longs;&longs;e <emph type="italics"/>K.<emph.end type="italics"/><!-- KEEP S--></s><s> Nam <lb/>&longs;uper ba&longs;im circulum, vel ellip&longs;im, cuius diameter EF &longs;i&shy;<lb/>milem, &amp; oppo&longs;itam &longs;olidi ABC, vel AF ba&longs;i, cuius dia&shy;<lb/>meter AC, &longs;tet cylindrus, vel portio cylindrica EDF: vt <lb/>&longs;itaxis BD communis quatuor &longs;olidis ABC, EDF, <lb/>AF, &amp; reliqu&aelig; figur&aelig; dempto &longs;olido ABC compre&shy;<lb/>hen&longs;&aelig; &longs;uperficie cylindrica, &amp; circulo, vel ellip&longs;e circa EF, <lb/>&amp; dimidia &longs;uper&longs;icie &longs;ph&aelig;rica interiori, cuius figur&aelig; &longs;oli&shy;<lb/>d&aelig; ponimus centrum grauitatis <emph type="italics"/>K.<emph.end type="italics"/><!-- KEEP S--></s><s> Secto igitur axe <lb/>BD bifariam, &amp; &longs;ingulis eius partibus rur&longs;us bifariam, <lb/>ducti&longs;que per puncta &longs;ectionum planis quibu&longs;dam planis <lb/><figure id="id.043.01.230.1.jpg" xlink:href="043/01/230/1.jpg"/><lb/>pr&aelig;dictarum ba&longs;ium oppo&longs;itarum parallelis, &longs;ecta &longs;int qua&shy;<lb/>tuor pr&aelig;dicta &longs;olida, quorum, excepto propo&longs;ito re&longs;iduo, <lb/>&longs;ectiones omnes erunt circuli, vel ellip&longs;es inter &longs;e &longs;imi&shy;<lb/>les, &amp; in &longs;olido AF etiam &aelig;quales, quarum omnium <lb/>diametri eiu&longs;dem rationis erunt in eodem plano, in quo <lb/>&longs;it parallelogrammum per axim AEFC: &longs;olidi autem dicti <lb/>re&longs;idui &longs;ectiones, re&longs;idua &longs;ectionum &longs;olidi ABC. <!-- KEEP S--></s>

<s>At circa <lb/><expan abbr="c&otilde;munes">communes</expan> axes inter &longs;e &aelig;quales &longs;egmenta axis BD, &amp; inter <lb/><expan abbr="ead&etilde;">eadem</expan> plana parallela, &longs;uper ba&longs;es &longs;ectiones duorum &longs;olido&shy;<lb/>rum ABC, EDF, cylindri, vel portiones cylindric&aelig; con&shy;<lb/>&longs;i&longs;tant altitudine, &amp; multitudine &aelig;quales; ita vt duarum fi&shy;<lb/>gurarum ex ijs compofitarum altera fit cirdum&longs;cripta &longs;oli&shy;<pb/>do EDF, altera &longs;olido ABC in&longs;cripta. </s>

<s>hac igitur abla&shy;<lb/>ta ex &longs;olido AF, figura relinquetur ex re&longs;iduis cylindro&shy;<lb/>rum, vel cylindri portionum altitudine, &amp; multitudine <lb/>&aelig;qualibus ijs cylindris, vel cylindri portionibus, ex quibus <lb/>con&longs;tat alterutra figurarum &longs;olidis ABC, DEF circum&shy;<lb/>&longs;criptarum: eruntque ex &longs;uperius demon&longs;tratis dicta re&longs;i&shy;<lb/>dua, &amp; cylindri vel cylindri portiones, qu&aelig; circa &longs;olidum <lb/>EDF, inter &longs;e &aelig;qualia proutinter &longs;e re&longs;pondent inter ea&shy;<lb/>dem plana parallela, vt e&longs;t exempli gratia reliquum &longs;oli&shy;<lb/>di AN dempto &longs;olido SR, &aelig;quale &longs;olido TP: &amp; &longs;ic de&shy;<lb/>inceps: &longs;ummus autem XF cylindrus, vel portio cylindrica <lb/><figure id="id.043.01.231.1.jpg" xlink:href="043/01/231/1.jpg"/><lb/>e&longs;t communis: Atqui bina h&aelig;c iam dicta &longs;olida centrum <lb/>grauitatis habent commune communis bipartiti axis &longs;ectio <lb/>nem in eadem recta linea BD, in qua e&longs;t etiam &longs;olidi XF <lb/>communis centrum grauitatis. </s>

<s>duarum igitur dictarum figu <lb/>rarum &longs;olido EDF, &amp; pr&aelig;dicto re&longs;iduo circum&longs;criptarum <lb/>idem aliquod punctum in axe BD erit commune centrum <lb/>grauitatis: &longs;ieri autem pote&longs;ts quod in &longs;ecundo libro demon <lb/>&longs;trauimus, vt du&aelig; dict&aelig; figur&aelig; &longs;uperent vnaqu&aelig; que &longs;ibi in&shy;<lb/>&longs;criptam minori &longs;pacio quantacumque magnitudine pro&shy;<lb/>po&longs;ita. </s>

<s>ex demon&longs;tratis igitur in primo libro; duo &longs;olida cir&shy;<lb/>ca axem BD in alteram partem deficientia commune ha&shy;<lb/>bebunt in axe BD centrum grauitatis: &longs;ed &longs;olidi, ide&longs;t co-<pb/>ni, vel portionis conic&aelig; EDF e&longs;t centrum grauitatis K: <lb/>reliqui igitur ex cylindro, vel portione cylindrica AF dem <lb/>pto hemi&longs;ph&aelig;rio, vel hemi&longs;ph&aelig;roide ABC centrum graui <lb/>tatis erit idem K. <!-- KEEP S--></s>

<s>Quod erat demon&longs;trandum. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXVII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si hemi&longs;ph&aelig;rium, vel hemi&longs;ph&aelig;roides vna cum <lb/>cylindro, vel cylindri portione ip&longs;i circum&longs;cripta <lb/>&longs;ecetur plano ba&longs;i parallelo; reliqui ex cylindro, <lb/>vel portione cylindrica ab&longs;ci&longs;&longs;a ad partes verti&shy;<lb/>cis, dempta illa qu&aelig; ab&longs;ci&longs;&longs;a e&longs;t &longs;imul minori, <lb/>&amp; &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis portione, centrum gra&shy;<lb/>uitatis e&longs;t punctum illud, in quo eius axis &longs;ic diui&shy;<lb/>ditur, vt qu&aelig; inter hanc po&longs;tremam &longs;ectionem, &amp; <lb/>centrum ba&longs;is vn&agrave; ab&longs;ci&longs;&longs;&aelig; portionis interijci&shy;<lb/>tur, a&longs;&longs;umens quartam partem &longs;egmenti, quod di&shy;<lb/>ct&aelig; ba&longs;is, &amp; &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis centra iungit, <lb/>&longs;it ad &longs;ui &longs;egmentum, quod inter po&longs;tremam &longs;e&shy;<lb/>ctionem, &amp; quart&aelig; partis axis hemi&longs;ph&aelig;rij, vel <lb/>hemi&longs;ph&aelig;roidis ad verticem ab&longs;ci&longs;&longs;&aelig; terminum <lb/>interijcitur, vt cubus axis hemi&longs;ph&aelig;rij, vel hemi&shy;<lb/>&longs;ph&aelig;roidis, ad cubum eius, qu&aelig; ba&longs;is portionis &amp; <lb/>hemi&longs;ph&aelig;rij, vel hemi&longs;ph&aelig;roidis centra iungit. <lb/></s>

<s>Reliqui autem ex cylindro, vel portione cylindri&shy;<lb/>ca vn&agrave; ab&longs;ci&longs;&longs;a <expan abbr="c&utilde;">cum</expan> reliqua hemi&longs;ph&aelig;rij, vel hemi&shy;<lb/>&longs;ph&aelig;roidis portione, qu&aelig; e&longs;t ad ba&longs;im, dempta hac <lb/>portione centrum, grauitatis e&longs;t punctum illud, <lb/>quod quartam partem ab&longs;cindit axis portionis ad <pb/>cius minorem ba&longs;im terminatam. </s></p><p type="main">

<s>E&longs;to hemi&longs;ph&aelig;rio, vel hemi&longs;ph&aelig;roidi ABC, cuius axis <lb/>BD, ba&longs;is circulus vel ellip&longs;is, cuius diameter AC cir&shy;<lb/>cum&longs;criptus cylindrus, vel cylindri portio AF, cuius in&shy;<lb/>telligatur reliquum dempto ABC. qu&aelig; &longs;olida &longs;ecans pla <lb/>num per AC, BD, faciat &longs;ectiones &longs;emicirculum, vel &longs;e&shy;<lb/>miellip&longs;im ABC, &amp; parallelogrammum per axem AE <lb/>FC; &amp; per quodlibet punctum L axis BD, planum ba&longs;ibus <lb/>AC, EF &longs;olidi AF <expan abbr="parallel&utilde;">parallelum</expan>, &longs;ecans pr&aelig;dicta &longs;olida ABC, <lb/>AF, faciat &longs;ectiones circulos, vel ellip&longs;es &longs;imiles, &amp; in &longs;olido <lb/>AF etiam &aelig;quales ijs, qu&aelig; circa AC, EF: earum autem dia&shy;<lb/>metros, &longs;ectiones cum <expan abbr="parallelogr&atilde;mo">parallelogrammo</expan> AEFC, ip&longs;am GO: <lb/>&amp; cum &longs;emicirculo, vel &longs;emiellip&longs;e ABC, ip&longs;am HN. </s>

<s>Ita&shy;<lb/>que habebimus figuram quandam &longs;olidam GHBNO re&longs;i&shy;<lb/>duum cylindri, vel portionis cylindric&aelig; GF dempta mino&shy;<lb/>ri &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis portione HBN, cuius axis erit BL. <lb/></s>

<s>Sumpta igitur BQ quarta parte axis BD, &amp; LP quarta par <lb/>te ip&longs;ius DL fiat vt cu <lb/>bus ex BD ad cubum ex <lb/>DL, ita PR ad <expan abbr="Rq.">Rque</expan> <lb/>Dico re&longs;idui GHBNO <lb/>centrum grauitatis e&longs;&longs;e <lb/>R. <!-- KEEP S--></s>

<s>Reliqui autem ex <lb/>cylindro, vel portione <lb/>cylindrica AO dempta <lb/>portione AHNC, cen&shy;<lb/>trum grauitatis e&longs;&longs;e P. <lb/><figure id="id.043.01.233.1.jpg" xlink:href="043/01/233/1.jpg"/><lb/>Nam &longs;uper ba&longs;im circulum, vel ellip&longs;im EF, &longs;tet conus, vel <lb/>portio conica EDF: &longs;itque pr&aelig;dicto plano per L ab&longs;ci&longs;&shy;<lb/>&longs;us conus, vel coni portio KDM, cuius axis DL, qu&aelig; pro&shy;<lb/>pter planum &longs;ecans ba&longs;i EF parallelum, &longs;imilis erit toti <lb/>cono, vel portioni conic&aelig; EDF. <!-- KEEP S--></s>

<s>Quoniam igitur BQ <lb/>e&longs;t axis BD pars quarta, &amp; LP pars quarta ip&longs;ius DL; <pb/>erunt centra grauitatis &longs;olidorum, Q ip&longs;ius EDF, &amp; Pip&shy;<lb/>&longs;ius DKM. </s>

<s>Et quoniam &longs;olidum DEF ad &longs;olidum D <lb/>KM e&longs;t vt cubus ex BD ad cubum ex DL, hoc e&longs;t vt <lb/>&longs;olidum EDF ad &longs;olidum KLM, &amp; vt PR ad <expan abbr="Rq;">Rque</expan> <lb/>erit diuidendo, vt fru&longs;tum EKMF ad ablatum KDM, <lb/>ita ex contraria parte PQ ad QR: cum igitur &longs;int <lb/>centra grauitatis P &longs;olidi DKM, &amp; Q &longs;olidi DET; <lb/>erit reliqui fru&longs;ti EKMF centrum grauitatis R: &longs;ed <lb/>qua ratione in pr&aelig;cedenti con&longs;tat, reliqui ex &longs;olido AF, <lb/>dempto &longs;olido ABC centrum grauitatis e&longs;&longs;e Q, eadem <lb/>concluditur idem e&longs;&longs;e centrum grauitatis reliqui ex &longs;olido <lb/>GF, dempta portione HBN, quod &amp; fru&longs;ti EKMF, <lb/>nempe punctum R: Et quoniam P e&longs;t centrum grauita&shy;<lb/>tis coni, vel portionis conic&aelig; KDM, crit idem P centrum <lb/>grauitatis ieliqui ex cylindro, vel portione cylindrica <lb/>AO dempta portione AHNC. </s>

<s>Manife&longs;tnm e&longs;t igitur <lb/>propo&longs;ituro. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXVIII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Ij&longs;dem po&longs;itis &longs;olidis, vt in antecedenti, &longs;ectis&shy;<lb/>que per duo qu&aelig;libet puncta axis duplici plano <lb/>ba&longs;i parallelo, reliqui ex cylindro, vel portione <lb/>cylindrica dictis duobus planis intercepta dem&shy;<lb/>pta &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig; roidis portione ip&longs;i inter ea&shy;<lb/>dem plana re&longs;pondente, centrum grauitatis e&longs;t <lb/>punctum illud, in quo eius axis &longs;ic diuiditur, vt <lb/>qu&aelig; inter hanc po&longs;tremam &longs;ectionem, &amp; centrum <lb/>maioris ba&longs;is vn&agrave; ab&longs;ci&longs;s&aelig; portionis interijcitur, <lb/>a&longs;&longs;umens quartam partem &longs;egmenti, quod pr&aelig;di&shy;<lb/>ct&aelig; ba&longs;is, &amp; &longs;ph&aelig;r&aelig; vel &longs;ph&aelig;roidis centra iungit, <pb/>&longs;it ad &longs;ui &longs;egmentum, quod inter po&longs;tremam &longs;ectio <lb/>nem, &amp; quart&aelig; partis eius, qu&aelig; &longs;ph&aelig;r&aelig;, vel hemi&shy;<lb/>&longs;ph&aelig;rij, &amp; minoris ba&longs;is portionis centra iungit <lb/>ad minorem ba&longs;im ab&longs;ci&longs;s&aelig; terminum interijci&shy;<lb/>tur, vt cubus eius, qu&aelig; minoris ba&longs;is, &amp; &longs;ph&aelig;r&aelig;, <lb/>vel &longs;ph&aelig;roidis, ad <expan abbr="cub&utilde;">cubum</expan> eius, qu&lt;17&gt; &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig; <lb/>roidis, &amp; maioris ba&longs;is portionis centra iungit. </s></p><p type="main">

<s>Ij&longs;dem po&longs;itis &longs;olidis, vtque in antecedenti ponebantur <lb/>ABC, AF; per duo qu&aelig;libet puncta RQ axis BD &longs;e&shy;<lb/>centur po&longs;ita &longs;olida duobus planis ba&longs;i, qu&aelig; circa AC, cir <lb/>culo &longs;cilicet, vel ellip&longs;i parallelis: quibus planis intercepta <lb/>hemi&longs;ph&aelig;rij, vel hemi&longs;ph&aelig;roidis portio &longs;it MOPN, vn&agrave; <lb/>cum cylindro, vel portione cylindrica GL parte ip&longs;ius AF, <lb/><expan abbr="quor&utilde;">quorum</expan> &longs;olidorum <expan abbr="c&otilde;mu">commu</expan> <lb/>nis axis vn&agrave; ab&longs;ci&longs;&longs;us <lb/>ab axe BD &longs;olidi AB <lb/>C, &longs;it RQ: &amp; &longs;umptis <lb/>quartis partibus RI ip&shy;<lb/>&longs;ius DR, &amp; QZ ip&longs;ius <lb/>DQ, fiat vt cubus ex <lb/>DQ ad cubum ex D <lb/>R, ita IY ad YZ. <lb/></s>

<s>Dico reliqui ex cylin&shy;<lb/><figure id="id.043.01.235.1.jpg" xlink:href="043/01/235/1.jpg"/><lb/>dro, vel portione cylindrica GL dempta portione MOP <lb/>N, centrum grauitatis e&longs;&longs;e Y. <!-- KEEP S--></s>

<s>Facta enim con&longs;tructione <lb/>coni, vel portionis conic&aelig; EDF, vt in &longs;uperioribus, erunt <lb/>&longs;imilium conorum, vel coni portionum SDT, VDX, ea&shy;<lb/>dem ordine axes DQ, DR: propter igitur factas diui&longs;io&shy;<lb/>nes, erunt <expan abbr="c&etilde;tra">centra</expan> grauitatis Z &longs;olidi SDT &amp; I &longs;olidi VDX, <lb/>&amp; demon&longs;tratio &longs;imilis antecedenti. </s>

<s>dicti igitur re&longs;idui <lb/>GMOPMH centrum grauitatis Y. <!-- KEEP S--></s>

<s>Quod e&longs;t propo&shy;<lb/>&longs;itum. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO XXIX.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si &longs;ph&aelig;ra, vel &longs;ph&aelig;roides vn&agrave; cum cylindro, <lb/>vel portione cylindrica ip&longs;i circum&longs;cripta &longs;ecetur <lb/>plano, haud per centrum, ba&longs;ibus &longs;olidi circum&shy;<lb/>&longs;cripti parallelo; reliqui ex cylindro, vel portio&shy;<lb/>ne cylindrica ad maioris portionis &longs;ph&aelig;r&aelig;, vel <lb/>&longs;ph&aelig;roidis partes ab&longs;ci&longs;&longs;a, dempta &longs;ph&aelig;r&aelig;, vel <lb/>&longs;ph&aelig;roidis maiori portione, centrum grauita&shy;<lb/>tis e&longs;t punctum illud, in quo dicti reliqui &longs;olidi <lb/>axis &longs;egmentum inter duas quartas partes extre&shy;<lb/>mas &longs;egmentorum eiu&longs;dem axis, qu&aelig; &agrave; centro <lb/>&longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis fiunt interiectum, &longs;ic diui&shy;<lb/>ditur, vt pars propinquior ba&longs;i &longs;it ad reliquam, vt <lb/>pr&aelig;dictorum, qu&aelig; &agrave; centro fiunt axis &longs;egmento&shy;<lb/>rum maioris cubus ad cubum minoris. </s></p><figure id="id.043.01.236.1.jpg" xlink:href="043/01/236/1.jpg"/><p type="main">

<s>Sit &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;&shy;<lb/>roidi ABCD cuius cen&shy;<lb/>trum E, circum&longs;criptus <lb/>cylindrus, vel portio cy&shy;<lb/>lindrica FGHK, cum <lb/>quibus planum per axim <lb/>communem BED, fa&shy;<lb/>ciat &longs;ectiones, parallelo&shy;<lb/>grammum per axim FG <lb/>HK, &amp; circulum, vel el&shy;<lb/>lip&longs;im ABCD: quas fi&shy;<lb/>guras vn&agrave; cum dictis &longs;o&shy;<lb/>lidis &longs;ecans planum ba&longs;ibus &longs;olidi circum&longs;cripti paralle-<pb/>lum per quoduis punctum S dimidij axis ED, faciens&shy;<lb/>que &longs;ectiones circulos, vel ellip&longs;es &longs;imiles &longs;cilicet ba&shy;<lb/>&longs;ibus oppo&longs;itis &longs;olidi FH, &amp; &longs;ectionum diametros LM, <lb/>TV, ab&longs;cindat &longs;olidi ABCD maiorem portionem <lb/>LBM, &amp; &longs;olidi FH cylindrum, vel portionem cy&shy;<lb/>lindricam TH, cuius axis BES: duorum autem &longs;egmen&shy;<lb/>corum BE, ES &longs;umptis duabus quartis partibus extre&shy;<lb/>mis BQ PS, fiat vt cubus ex BE ad cubum ex ES, ita <lb/>PR ad RQ. <!--neuer Satz-->Dico reliqu&aelig; figur&aelig; ex cylindro, vel por&shy;<lb/>tione cylindrica TH, portioni LBM circum&longs;cripta, dem&shy;<lb/>pta portione LBM, centrum grauitatis e&longs;&longs;e R. <!-- KEEP S--></s>

<s>Se&shy;<lb/>ctis enim parallelogrammo TH, &amp; &longs;olidis LBM, TH, <lb/>plano per centrum E, ba&longs;ibus &longs;olidi TH parallelo, &longs;it &longs;e&shy;<lb/>ctio, (vna enim communis erit vtrique &longs;olido) circulus, <lb/>vel ellip&longs;is, cuius diameter AEC in parallelogrammo T <lb/>H diametris TV, GH <lb/>oppo&longs;itarum ba&longs;ium pa&shy;<lb/>rallela. </s>

<s>Tum &longs;uper ba&shy;<lb/>&longs;es oppo&longs;itas circulos, vel <lb/>ellip&longs;es circa GH, FK <lb/>&longs;tent coni, vel portiones <lb/>conic&aelig; GEH, FEK: <lb/>&amp; planum per TV ba&longs;i <lb/>circa FK parallelum ab&shy;<lb/>&longs;cindat &agrave; &longs;olido FEK <lb/>conum, vel coni portio&shy;<lb/>nem NEO &longs;imilem vti&shy;<lb/>que ip&longs;i FEK, hoc e&longs;t <lb/><figure id="id.043.01.237.1.jpg" xlink:href="043/01/237/1.jpg"/><lb/>ip&longs;i GEH, propter &longs;imiles ba&longs;es, &amp; &longs;imilia triangula per <lb/>axim in eodem parallelogrammo FH. <!-- KEEP S--></s>

<s>Solidi itaque <lb/>NEO, ex ijs, qu&aelig; in primo libro demon&longs;trauimus, cen&shy;<lb/>trum grauitatis erit P; quemadmodum &amp; Q &longs;olidi <lb/>NEO. </s>

<s>Quoniam igitur t&agrave;m &longs;olidi GEH ad &longs;oli&shy;<lb/>dum NEO propter &longs;imilitudinem, qu&agrave;m cubi ex BE <pb/>ad cubum ex ES, triplicata e&longs;t proportio axis, vel la&shy;<lb/><gap/>eris BE, ad axem, vel latus ES; erit vt cubus ex BE <lb/>ad cubum ex ES, ita &longs;olidum GEH ad &longs;olidum NEO, <lb/>hoc e&longs;t in eadem proportione, qu&aelig; e&longs;t ex contraria parte ip&shy;<lb/>&longs;ius PR ad RQ. <!--neuer Satz-->Cum igitur P &longs;it centrum grauitatis <lb/>&longs;olidi NEO, &amp; Q &longs;olidi GEH; erit compo&longs;iti ex vtro&shy;<lb/>que centrum grauitatis R. Rur&longs;us, quoniam reliquum &longs;o&shy;<lb/>lidi AH dempto hemi&longs;ph&aelig;rio, vel hemi&longs;ph&aelig;roide ABC, <lb/>&aelig;quale e&longs;t &longs;olido GEH: &amp; reliquum &longs;olidi TC dempto <lb/>&longs;olido ALMC &aelig;quale &longs;olido NEO; erit vt &longs;olidum <lb/>GEH ad &longs;olidum NEO, ide&longs;t ex contraria parte, vt PR <lb/>ad RQ, ita reliquum &longs;olidi AH dempto ABC, ad re&shy;<lb/>liquum &longs;olidi TC, dempto ALMC: &longs;ed reliqui ex &longs;oli&shy;<lb/>do AH dempto ABC e&longs;t centrum grauitatis Q: &amp; reli&shy;<lb/>qui ex &longs;olido TC dempto ALMC, centrum grauitatis <lb/>P, ex &longs;uperius demon&longs;tratis; totius igitur reliqui ex cy&shy;<lb/>lindro, vel portione cylindrica TH dempta &longs;ph&aelig;r&aelig;, vel <lb/>&longs;ph&aelig;roidis maiori portione LBM centrum grauitatis e&longs;t <lb/>R. <!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXX.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si &longs;ph&aelig;ra, vel &longs;ph&aelig;roides vn&agrave; cum cylindro, <lb/>vel portione cylindrica ip&longs;i circum&longs;cripta, &longs;ece&shy;<lb/>tur duobus planis ba&longs;i &longs;olidi circum&longs;cripti pa&shy;<lb/>rallelis, centrum intercipientibus, &amp; ab eo non <lb/>&aelig;qualiter di&longs;tantibus; reliqui ex cylindro, vel <lb/>portione cylindrica dictis planis intercepta, dem&shy;<lb/>pta portione &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis ip&longs;i re&longs;pon&shy;<lb/>dente, centrum grauitatis e&longs;t punctum illud, in <lb/>quo pr&aelig;dicti reliqui &longs;olidi axis &longs;egmentum in&shy;<pb/>ter quartas partes extremas eiu&longs;dem axis &longs;eg&shy;<lb/>mentorum, qu&aelig; &agrave; centro &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roi&shy;<lb/>dis fiunt interiectum &longs;ic diuiditur, vt pars ma&shy;<lb/>iori ba&longs;i propinquior &longs;it ad reliquam, vt pr&aelig;di&shy;<lb/>ctorum axis &longs;egmentorum cubus maioris ad cu&shy;<lb/>bum minoris. </s></p><p type="main">

<s>Ij&longs;dem po&longs;itis, &amp; con&longs;tructis, qu&aelig; in antecedenti, rur&shy;<lb/>&longs;us per quodlibet axis BE punctum X, ductum planum <lb/>ba&longs;ibus &longs;olidi FH parallelum, &longs;ecansque vn&agrave; cylindrum, <lb/>vel portionem cylindricam FH, &amp; &longs;ph&aelig;ram, vel &longs;ph&aelig;roi&shy;<lb/>des ABCD: e&longs;to duobus planis per TV, ZY, inter &longs;e pa&shy;<lb/>rallelis, &amp; centrum E intercipientibus abci&longs;&longs;a &longs;ph&aelig;r&aelig;, vel <lb/>&longs;ph&aelig;roidis portio L <foreign lang="greek">d e</foreign> M vn&agrave; cum cylindro, vel portione <lb/>cylindrica TY: &amp; &longs;umatur ip&longs;ius EX pars quarta XQ, <lb/>qualis e&longs;t &amp; PS ip&longs;ius E <lb/>S: &amp; vt e&longs;t cubus ex EX <lb/>ad cubum ex ES, ita fiat <lb/>PR ad <expan abbr="Rq.">Rque</expan> Dico reli&shy;<lb/>qui ex cylindro, vel por&shy;<lb/>tione cylindrica TY dem <lb/>pta &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roi&shy;<lb/>dis portione L <foreign lang="greek">d c</foreign> M, cen&shy;<lb/>trum grauitatis e&longs;&longs;e R. <!-- KEEP S--></s>

<s>E&longs;to <lb/>enim conus, vel coni por&shy;<lb/>tio <foreign lang="greek">q</foreign> E <foreign lang="greek">l</foreign> ab&longs;ci&longs;&longs;a pr&aelig;di&shy;<lb/>cto plano per ZY, &amp; com <lb/>munibus axibus ES, EX, <lb/>&longs;imili igitur demon&longs;tratio&shy;<lb/>ne antecedentis manife&longs;tum e&longs;t quod proponebatur. </s></p><figure id="id.043.01.239.1.jpg" xlink:href="043/01/239/1.jpg"/><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO XXXI.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Hemi&longs;ph&aelig;rij, vel hemi&longs;ph&aelig;roidis centrum <lb/>grauitatis e&longs;t punctum illud, in quo axis &longs;it diui&shy;<lb/>ditur, vt pars ad verticem &longs;it ad reliquam vt quin <lb/>que ad tria. </s></p><p type="main">

<s>E&longs;to hemi&longs;ph&aelig;rium, vel hemi&longs;ph&aelig;roides ABC, cuius <lb/>axis BD, ba&longs;is circulus, vel ellip&longs;is, cuius diameter AD <lb/>C: &longs;itque &longs;olidi ABC centrum grauitatis G, nempe <lb/>in axe BD. <!-- KEEP S--></s>

<s>Dico BG ad GD e&longs;&longs;e vt quinque ad tria. <lb/></s>

<s>Nam circa axim BD &longs;uper ba&longs;im circulum, vel ellip&longs;im cir <lb/>ca AC, &longs;tet circum&longs;cri <lb/>ptus &longs;olido ABC cy&shy;<lb/>lindrus, vel portio cy&shy;<lb/>lindrica AE, &amp; &longs;ecta <lb/>BD bifariam in F, rur <lb/>&longs;us FB bifariam &longs;ece&shy;<lb/>tur in puncto H. <!-- KEEP S--></s>

<s>Quo&shy;<lb/>niam igitur &longs;olidum A <lb/>BC e&longs;t &longs;olidi AE, &longs;ub&shy;<lb/>&longs;e&longs;quialterum, erit di&shy;<lb/><figure id="id.043.01.240.1.jpg" xlink:href="043/01/240/1.jpg"/><lb/>uidendo &longs;olidum ABC reliqui ex &longs;olido AE duplum <lb/>cum igitur &longs;int centra grauitatis, G &longs;olidi ABC, &amp; H <lb/>pr&aelig;dicti reliqui, &amp; F totius AE; quo fit vt ex con&shy;<lb/>traria parte &longs;it vt &longs;olidum ABC ad pr&aelig;dictum re&longs;iduum, <lb/>ita HF ad FG, erit HF dupla ip&longs;ius FG; quadrupla <lb/>igitur BF ip&longs;ius FG: &longs;ed talium quatuor partium e&longs;t BF, <lb/>qualium BD e&longs;t octo, cum &longs;it BF dimidia ip&longs;ius BD; <lb/>qualium igitur octo e&longs;t BD, talium erit BG quinque, &amp; <lb/>GD trium. </s>

<s>Quod demon&longs;trandum erat. </s></p><pb/><p type="head">

<s><emph type="italics"/>ALITER.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Dico hemi&longs;ph&aelig;rij, vel hemi&longs;ph&aelig;roidis ABC cen&shy;<lb/>trum grauitatis e&longs;&longs;e G. <!-- KEEP S--></s>

<s>In plano enim &longs;emicirculi, vel &longs;e&shy;<lb/>miellip&longs;is per axem BD de&longs;cript&aelig; intelligantur du&aelig; pa&shy;<lb/>rabol&aelig;, quarum diametri AD, DC, &amp; communiter <lb/>ad vtranque ordinatim applicata &longs;it BD: &amp; connectun&shy;<lb/>tur rect&aelig; AB, BC: &longs;umptis autem in BD tribus qui&shy;<lb/>buslibet punctis, &aelig;qualia axis &longs;egmenta XF, FY interci&shy;<lb/>pientibus, &longs;ecent per ea puncta tres figuras hemi&longs;ph&aelig;rium, <lb/>vel hemi&longs;ph&aelig;roides ABC, &amp; &longs;emicirculum, vel &longs;emielli&shy;<lb/><figure id="id.043.01.241.1.jpg" xlink:href="043/01/241/1.jpg"/><lb/>p&longs;im per axem, &amp; figuram planam ARBSC, qu&aelig; lineis pa <lb/>rabolicis ARB, BSC, &amp; recta AC continetur, pla&shy;<lb/>na qu&aelig;dam ba&longs;i hemi&longs;ph&aelig;rij, vel hemi&longs;ph&aelig;roidis paralle&shy;<lb/>la. </s>

<s>Erunt igitur &longs;ectiones hemi&longs;ph&aelig;rij, vel hemi&longs;ph&aelig;roidis <lb/>circuli, vel ellip&longs;es &longs;imiles ba&longs;i, <expan abbr="quar&utilde;">quarum</expan> diametri &longs;int KXH, <lb/>LFM, N<foreign lang="greek">*u</foreign>O: figur&aelig; autem ARBSC &longs;ectiones rect&aelig; <lb/>line&aelig; PXQ, RFS, TYV. </s>

<s>Quoniamigitur per IV hu&shy;<lb/>ius e&longs;t vt KH ad LM potentia, ita KQ ad FS hoc <lb/>e&longs;t in earum duplis PQ ad RS longitudine; erit vt PQ <lb/>ad RS, ita circulus, vel ellip&longs;is KH ad circulum vel &longs;i&shy;<lb/>milem ellip&longs;im LM. <!-- KEEP S--></s>

<s>Eadem ratione erit vt RS ad <lb/>TV, ita circulus, vel ellip&longs;is LM ad circulum, vel <pb/>ellip&longs;im NO. <!--neuer Satz-->minor autem proportio e&longs;t PQ ad RS, <lb/>qu&agrave;m RS ad TV circuli igitur, vel ellip&longs;is KH ad <expan abbr="circul&utilde;">circulum</expan>, <lb/>vel ellip&longs;im LM, minor erit proportio &lt;34&gt; circuli, vel ellip&longs;is <lb/>LM ad circulum, vel ellip&longs;im NO: &amp; du&aelig; figur&aelig; hemi&shy;<lb/>&longs;ph&aelig;rium, vel hemi&longs;ph&aelig;roides ABC, &amp; plana ARBSC, <lb/>&longs;unt circa axim, vel diametrum BD in alteram parte m <lb/>deficientes, quales definiuimus; vtriu&longs;que igitur dict&aelig; fi&shy;<lb/>gur&aelig; vnum erit commune centrum grauitatis. </s>

<s>Rur&longs;us <lb/>po&longs;ito puncto F in medio axis BD, &amp; FG ip&longs;ius GE <lb/>tripla, quoniam ponitur BG ad GD vt quinque ad tria; <lb/>qualium partium &aelig;qualium ip&longs;i EG e&longs;t FG trium, ta&shy;<lb/>lium erit BG quindecim, &amp; GD nouem, &amp; talis EG <lb/>vna: dempta igitur GE ab ip&longs;a DG, &amp; addita ip&longs;i BG, <lb/>qualium partium e&longs;t BE &longs;exdecim, talium erit ED octo; <lb/>dupla igitur BE ip&longs;ius ED, &amp; trianguli ABC centrum <lb/>grauitatis E. <!-- KEEP S--></s>

<s>Rur&longs;us quoniam ex quadratura parabol&aelig;, <lb/>duarum portionum ARB, BSC triangulum ABC e&longs;t <lb/>triplum; hoe e&longs;t vt FG ad GE, ita ex contraria parte <lb/>triangulum ABC ad duas portiones ARB, BSC: Sed <lb/>trianguli ABC e&longs;t centrum grauitatis E, &amp; duarum por <lb/>tionum ARB, BSC &longs;imul per XXIII huius, centrum <lb/>grauitatis F, totius igitur figur&aelig; ARBSC centrum gra<lb/>uitatis erit G, commune autem hoc centrum grauitatis <lb/>e&longs;t hemi&longs;ph&aelig;rio, vel hemi&longs;ph&aelig;roidi ABC. <!-- KEEP S--></s>

<s>Manife&longs;tum <lb/>e&longs;t igitur propo&longs;itum. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXXII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis minoris portionis &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roi&shy;<lb/>dis centrum grauitatis e&longs;t in axe primum bifa&shy;<lb/>riam &longs;ecto: deinde &longs;ecundum centrum grauitatis <lb/>reliqui &longs;olidi dempta portione ex cylindro, vel <pb/>portione cylindrica ab&longs;ci&longs;&longs;o, vel ab&longs;ci&longs;&longs;a vn&agrave; cum <lb/>portione, ex cylindro, vel portione cylindrica, <lb/>&longs;ph&aelig;r&lt;17&gt;, vel &longs;ph&aelig;roidis circa axim axi portionis <expan abbr="c&otilde;">com</expan> <lb/>gruentem <expan abbr="circ&utilde;&longs;cripta">circun&longs;cripta</expan>; in eo puncto, in quo dimi&shy;<lb/>dius axis portionis ba&longs;im <expan abbr="atting&etilde;s">attingens</expan> &longs;ic diuiditur, vt <lb/>pars prima, &amp; &longs;ecunda &longs;ectione terminata, &longs;it ad <lb/>totam &longs;ecunda, &amp; po&longs;trema &longs;ectione terminatam, <lb/>vt rectangulum contentum axe portionis, &amp; reli&shy;<lb/>quo &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis dimidij axis &longs;egmen&shy;<lb/>to, vn&agrave; cum duabus tertijs quadrati axis portio&shy;<lb/>nis, ad &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis dimidij axis axi <lb/>portionis congruentis quadratum. </s></p><p type="main">

<s>Sit &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis minor portio ABC, cuius <lb/>axis BD: &amp; in eo centrum grauitatis F: &longs;ecto autem axe <lb/>BD primum bifariam <lb/>in puncto G, &amp; rur <lb/>&longs;us BG in puncto <lb/>H centro grauitatis <lb/>reliqui dempta por&shy;<lb/>tione ex cylindro, vel <lb/>portione cylindrica <lb/>KL circa axim BD, <lb/>ab&longs;ci&longs;&longs;o, vel ab&longs;ci&longs;&shy;<lb/>&longs;a codem plano cum <lb/><figure id="id.043.01.243.1.jpg" xlink:href="043/01/243/1.jpg"/><lb/>portione ABC, &amp; cylindro, vel portione cylindri&shy;<lb/>ca, qu&aelig; circum&longs;criberetur &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidi, cu&shy;<lb/>ius e&longs;t portio ABC, circa axim, cuius dimidium BDE. <lb/><!-- KEEP S--></s>

<s>Dico GH ad HF, (nam cadet centrum F infra biparti&shy;<lb/>ti axis BD &longs;ectionem G, ex XXIII huius) e&longs;&longs;e vt rectan&shy;<lb/>gulum BDE vn&agrave; cum duabus tertijs BD quadrati ad <lb/>quadratum BE. </s>

<s>Quoniam enim totius &longs;olidi KL cen-<pb/>trum grauitatis e&longs;t G, &amp; F portionis ABC, &amp; H reliqui <lb/>ex KL dempta ABC portione; erit vt portio ABC ad <lb/>pr&aelig;dictum re&longs;iduum, ita ex contraria parte HG ad GF: <lb/>&amp; componendo, vt &longs;olidum KL ad pr&aelig;dictum re&longs;iduum, <lb/>ita HF ad FG: &amp; per conuer&longs;ionem rationis, vt &longs;olidum <lb/>KL ad portionem ABC, ita FH ad HG: &amp; conuerten <lb/>do, vt portio ABC ad &longs;olidum KL, ita GH ad HE: <lb/>&longs;ed vt portio ABC ad &longs;olidum KL, ita e&longs;t rectangulum <lb/>BDE vn&agrave; cum duabus tertiis quadrati BD ad quadra&shy;<lb/>tum EB; vt igitur rectangulum BDE, vn&agrave; cum duabus <lb/>tertiis quadrati BD, ad quadratum EB, ita erit GH ad <lb/>HF. </s>

<s>Quod demonftrandum erat. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXXIII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis portionis &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis ab&longs;ci&longs; <lb/>&longs;&aelig; duobus planis parallelis, altero per centrum <lb/>acto, centrum grauitatis e&longs;t in axe primum bifa&shy;<lb/>riam &longs;ecto: deinde &longs;umpta eius quarta parte ad <lb/>minorem ba&longs;im; in eo puncto, in quo dimidius <lb/>axis maiorem ba&longs;im attingens &longs;ic diuiditur, vt <lb/>pars axis prima, &amp; &longs;ecunda &longs;ectione terminata, <lb/>&longs;it ad eam, qu&aelig; prima, &amp; po&longs;trema &longs;ectione ter&shy;<lb/>minatur, vt rectangulum contentum &longs;ph&aelig;r&aelig;, vel <lb/>&longs;ph&aelig;roidis axis axi portionis congruentis ijs &longs;eg&shy;<lb/>mentis, qu&aelig; fiunt &agrave; centro minoris ba&longs;is portio&shy;<lb/>nis, vn&agrave; cum duabus tertiis quadrati axis portio&shy;<lb/>nis; ad&longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis dimidij axis qua&shy;<lb/>dratum. </s></p><p type="main">

<s>Sit &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis cuius centrum E portio <pb/>ABCD ab&longs;ci&longs;sa duobus planis parallelis altero ducto <lb/>per E, &amp; &longs;ectionem faciente circulum maximum, vel <lb/>ellip&longs;im per centrum, cuius diameter AED: axis autem <lb/>portionis &longs;it EF, cui congruens &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis axis <lb/>GFER: &longs;it autem FE bifariam &longs;ectus in puncto H: &amp; <lb/>FH bifariam in puncto K, &longs;itque in EH, &longs;ic enim erit, <lb/>portionis ABCD centrum grauitatis L. <!-- KEEP S--></s>

<s>Dico e&longs;&longs;e HK <lb/>ad KL, vt rectangulum GFR, vn&agrave; cum duabus tertiis <lb/>quadrati EF ad quadratum EG. <!-- KEEP S--></s>

<s>Sit enim cylindrus, vel <lb/>portio cylindrica AM circa axim FE ab&longs;ci&longs;&longs;a ij&longs;dem pla&shy;<lb/>nis cum portione AB <lb/>CD, ex cylindro, vel <lb/>portione cylindrica cir <lb/>ca axim GR &longs;ph&aelig;&shy;<lb/>r&aelig;, vel &longs;ph&aelig;roidi AG <lb/>DR circum&longs;cripta. <lb/></s>

<s>Quoniam igitur &longs;olidi <lb/>AM e&longs;t centrum gra&shy;<lb/>uitatis H: reliqui au&shy;<lb/>tem dempta ABCD <lb/>portione centrum gra&shy;<lb/>uitatis K: &amp; portionis <lb/>ABCD ponitur cen&shy;<lb/>trum grauitatis L; erit <lb/><figure id="id.043.01.245.1.jpg" xlink:href="043/01/245/1.jpg"/><lb/>vt portio ABCD ad reliquum &longs;olidi AM, ita ex con&shy;<lb/>traria parte KH ad HL. componendo igitur vt in antece&shy;<lb/>denti, &amp; per conuer&longs;ionem rationis, &amp; conuertendo, erit <lb/>vt portio ABCD ad &longs;olidum AM; hoc e&longs;t vt rectangu&shy;<lb/>lum GFR, vn&agrave; cum duabus tertiis quadrati EF ad qua&shy;<lb/>dratum EG, ita HK ad KL. <!-- KEEP S--></s>

<s>Quod demon&longs;trandum <lb/>erat. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO XXXIIII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis portionis &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis ab&shy;<lb/>&longs;ci&longs;&longs;&aelig; duobusplanis parallelis, neutro per cen&shy;<lb/>trum acto, nec centrum intercipientibus, centrum <lb/>grauitatis e&longs;t in axe, primum bifariam &longs;ecto: de&shy;<lb/>inde &longs;ecundum centrum grauitatis reliqui dem&shy;<lb/>pta portione ex cylindro, vel portione cylindrica, <lb/>ab&longs;ci&longs;&longs;o, vel ab&longs;ci&longs;&longs;a vn&agrave; cum portione &agrave; cylin&shy;<lb/>dro, vel portione cylindrica &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roi&shy;<lb/>di circa eius axem axi portionis congruentem cir&shy;<lb/>cum&longs;cripta; in eo puncto, in quo dimidius axis <lb/>portionis maiorem ba&longs;im attingens &longs;ic diuiditur, <lb/>vt pars prima &amp; &longs;ecunda &longs;ectione terminata &longs;it ad <lb/>eam, qu&aelig; prima, &amp; po&longs;trema &longs;ectione terminatur, <lb/>vt duo rectangula, alterum contentum duobus <lb/>&longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis axis axi portionis <expan abbr="c&otilde;gruen">congruen</expan> <lb/>tis ijs &longs;egmentis, qu&aelig; fiunt &agrave; centro minoris ba&longs;is <lb/>portionis: alterum axe portionis, &amp; &longs;egmento, <lb/>quod &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis, &amp; maioris ba&longs;is por&shy;<lb/>tionis centra iungit, vn&agrave; cum duabus tertiis qua&shy;<lb/>drati axis portionis, ad &longs;ph&aelig;r&aelig; vel &longs;ph&aelig;roidis di&shy;<lb/>midij axis quadratum. </s></p><p type="main">

<s>Sit &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis, cuius centrum E portio <lb/>ABCD, ab&longs;ci&longs;&longs;a duobus planis parallelis, neutro per E <lb/>tran&longs;eunte, nec E intercipientibus: portionis autem axis <lb/>&longs;it FS: maior ba&longs;is circulus, vel ellip&longs;is, cuius diame&shy;<pb/>ter AD: &amp; circa axim EF, &longs;tet cylindrus, vel portio cylin&shy;<lb/>drica MN ab&longs;ci&longs;&longs;a ij&longs;dem planis cum portione ABCD <lb/>ex cylindro, vel portione cylindrica, &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidi <lb/>BCR circa eius axim CFSR circum&longs;cripta, cuius &longs;it cen <lb/>trum grauitatis H, ac propterea &longs;ecta FS bifariam in pun <lb/>cto H. reliqui autem <lb/>dempta portione AB <lb/>CD ex &longs;olido MN &longs;it <lb/>centrum grauitatis K, <lb/>quod cadet in FH, &amp; <lb/>portionis ABCD cen <lb/>trum grauitatis in ip&longs;a <lb/>HS cadet, quod &longs;it L. <lb/><!-- KEEP S--></s>

<s>Dico e&longs;&longs;e HK ad KL, <lb/>vt duo rectangula GF <lb/>R, FSE, vn&agrave; cum <lb/>duabus tertiis quadra&shy;<lb/>ti FS, ad quadratum <lb/>EG. <!-- KEEP S--></s>

<s>Quoniam enim <lb/><figure id="id.043.01.247.1.jpg" xlink:href="043/01/247/1.jpg"/><lb/>&longs;imiliter vt ante o&longs;tenderemus e&longs;&longs;e HK ad KL, vt e&longs;t <lb/>portio ABCD ad &longs;olidum MN: &longs;ed portio ABCD <lb/>ad &longs;olidum MN, e&longs;t vt duo rectaugula GFR, ESF, vn&agrave; <lb/>cum duabus tertiis quadrati FS, ad quadratum EG; vt <lb/>igitur duo pr&aelig;dicta rectangula, vn&agrave; cum duabus tertiis <lb/>quadrati FS ad quadratum EG, ita erit HK ad KL. <lb/><!-- KEEP S--></s>

<s>Quod erat demon&longs;trandum. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXXV.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis maioris portionis &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roi&shy;<lb/>dis centrum grauitatis e&longs;t in axe, primum bifa&shy;<lb/>riam &longs;ecto: deinde &longs;ecundum centrum grauitatis <lb/>reliqui dempta portione ex cylindro, vel portione <pb/>cylindrica, ab&longs;ci&longs;&longs;o, vel ab&longs;ci&longs;&longs;a vn&agrave; cum portio&shy;<lb/>ne, &agrave; cylindro, vel portione cylindrica, &longs;ph&aelig;r&aelig;, vel <lb/>&longs;ph&aelig;roidi circa eius axim axi portionis <expan abbr="c&otilde;gruen-tem">congruen&shy;<lb/>tem</expan> circum&longs;cripta; in eo puncto, in quo axis portio <lb/>nis &longs;ic diuiditur, vt pars prima, &amp; &longs;ecunda &longs;ectione <lb/>terminata &longs;it ad eam, qu&aelig; prima &amp; po&longs;trema &longs;e&shy;<lb/>ctione terminatur, vt &longs;olidum rectangulum ex axe <lb/>portionis, &amp; reliquo &longs;egmento axis &longs;ph&aelig;r&aelig;, vel <lb/>&longs;ph&aelig;roidis axi portionis congruentis, &amp; eo, quod <lb/>&longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis, &amp; ba&longs;is portionis centra <lb/>iungit, vn&agrave; cum binis tertijs duorum cuborum; &amp; <lb/>eius, qui &agrave; &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis axis fit dimi&shy;<lb/>dio: &amp; eius, qui ab ea, qu&aelig; &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis, <lb/>&amp; ba&longs;is portionis centra iungit; ad &longs;olidum rectan <lb/>gulum, quod duobus &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis pr&aelig;&shy;<lb/>dicti axis dimidijs, &amp; axe portionis continetur. </s></p><figure id="id.043.01.248.1.jpg" xlink:href="043/01/248/1.jpg"/><p type="main">

<s>Sit &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig; <lb/>roidis, cuius centrum <lb/>E maior portio ABC, <lb/>cuius axis BD, ba&longs;is <lb/>circulus, vel ellip&longs;is, cu <lb/>ius diameter AC: &amp; <lb/>circa axem BD &longs;tet <lb/>cylindrus, vel portio <lb/>cylindrica KL, ab&longs;ci&longs; <lb/>&longs;a eodem plano cum <lb/>portione ABC, ex cy&shy;<lb/>lindro, vel portione cy <lb/>lindrica, &longs;ph&aelig;r&aelig;, vel <lb/>&longs;ph&aelig;roidi ABCR circa eius axim BDR circum&longs;cripta, <pb/>&amp; &longs;ecta BD bifariam in puncto H: deinde &longs;ecundum G <lb/>in ip&longs;a BH, centrum grauitatis reliqui dempta portione ex <lb/>&longs;olido KL, &longs;it portionis ABC in ip&longs;a DH centrum gra<lb/>uitatis F, per vim XXXVII &longs;ecundi. </s>

<s>Dico e&longs;&longs;e HG ad GF, <lb/>vt &longs;olidum rectangulum ex BD, DR, DE vn&agrave; cum binis <lb/>tertiis duorum <expan abbr="cubor&utilde;">cuborum</expan> <lb/>ex BE, ED, ad &longs;oli&shy;<lb/>dum rectangulum ex <lb/>BD, BE, ER. <!-- KEEP S--></s>

<s>Simi <lb/>liter enim vt &longs;upra de&shy;<lb/>mon&longs;trato e&longs;&longs;e vt HG <lb/>ad GF, ita portionem <lb/>ABC ad <expan abbr="&longs;olid&utilde;">&longs;olidum</expan> KL; <lb/>quoniamportio ABC <lb/>ad &longs;olidum KL e&longs;t vt <lb/>&longs;olidum ex BD, DR, <lb/>DE, vn&agrave; cum binis ter <lb/>tiis duorum <expan abbr="cubor&utilde;">cuborum</expan> ex <lb/>BE, &amp; ED, ad &longs;oli&shy;<lb/><figure id="id.043.01.249.1.jpg" xlink:href="043/01/249/1.jpg"/><lb/>dum ex BD, BE, ER; erit vt modo dicta antecedens <lb/>magnitudo ad dictam con&longs;equentem, ita HG, ad GF. <lb/><!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXXVI.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis portionis &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis ab&shy;<lb/>&longs;ci&longs;&longs;&aelig; duobus planis parallelis centrum interci&shy;<lb/>pientibus, &amp; ab eo non &aelig;qualiter di&longs;tantibus, cen <lb/>trum grauitatis e&longs;t in axe, primum bifariam &longs;ecto: <lb/>deinde &longs;ecundum <expan abbr="c&etilde;trum">centrum</expan> grauitatis reliqui dem&shy;<lb/>pta portione ex cylindro, vel portione cylindrica, <lb/>ab&longs;ci&longs;&longs;o, vel ab&longs;ci&longs;&longs;a vn&agrave; cum portione, &agrave; cylin-<pb/>dro, vel portione cylindrica, &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roi&shy;<lb/>di circa eius axim axi portionis congruentem cir&shy;<lb/>cum&longs;cripta; in eopuncto, in quo maius &longs;egmen&shy;<lb/>tum axis portionis corum, qu&aelig; &agrave; centro fiunt &longs;ic <lb/>diuiditur, vt pars prima &amp; &longs;ecunda &longs;ectione termi <lb/>nata &longs;it ad eam, qu&aelig; prima, &amp; po&longs;trema &longs;ectione <lb/>terminatur, vt duo &longs;olida rectangula; &amp; quod fit <lb/>ex duobus &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis axis axi portio&shy;<lb/>nis congruentis ijs &longs;egmentis, qu&aelig; fiunt &agrave; centro <lb/>maioris ba&longs;is portionis, &amp; ea, qu&aelig; maioris ba&longs;is <lb/>&amp; &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis centra iungit: &amp; quod <lb/>ex &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis eiu&longs;dem axis &longs;egmentis <lb/>&agrave; centro minoris ba&longs;is factis, &amp; ea, qu&aelig; minoris ba <lb/>&longs;is, &amp; &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis centra iungit, vn&agrave; <lb/>cum binis tertiis partibus duorum cuborum exijs <lb/>&longs;egmentis axis portionis, qu&aelig; &agrave; centro &longs;ph&aelig;r&aelig;, <lb/>vel &longs;ph&aelig;roidis fiunt; ad &longs;olidum <expan abbr="rect&atilde;gulum">rectangulum</expan> quod <lb/>duobus &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig;roidis pr&aelig;dicti axis dimi <lb/>dijs, &amp; axe portio&shy;<lb/>nis continetur. </s></p><figure id="id.043.01.250.1.jpg" xlink:href="043/01/250/1.jpg"/><p type="main">

<s>Sit &longs;ph&aelig;r&aelig;, vel &longs;ph&aelig; <lb/>roidis, cuius centrum <lb/>E, portio ABCD, ab <lb/>&longs;ci&longs;&longs;a duobus planis pa <lb/>rallelis centrum E in&shy;<lb/>tercipientibus, &amp; ab eo <lb/>non &aelig;qualiter di&longs;tan&shy;<lb/>tibus: axis autem por&shy;<lb/>tionis &longs;it GH: maior <pb/>ba&longs;is circulus, vel cllip&longs;is, cuius diameter AD. minor <expan abbr="aut&etilde;">autem</expan>, <lb/>cuius diameter ABC: &amp; circa axim GH, &longs;tet cylindrus, <lb/>vel portio cylindrica NO, ab&longs;ci&longs;&longs;a ij&longs;dem planis cum por&shy;<lb/>tione ABCD, ex cylindro, vel portione cylindrica &longs;ph&aelig;&shy;<lb/>r&aelig;, vel &longs;ph&aelig;roidi BCR circa axim FGHR circum&longs;cri&shy;<lb/>pta, cuius &longs;it centrum grauitatis K, &longs;ectio &longs;cilicet bipartiti <lb/>axis GH: reliqui autem ex &longs;olido NO dempta portione, <lb/>&longs;it centrum grauitatis L, nempe in axis GH &longs;egmento <lb/>GK, quod minorem <lb/>portionis ba&longs;im attln&shy;<lb/>git: portionis autem <lb/>ABCD &longs;it centrum <lb/>grauitatis M: quod qui <lb/>dem in reliquo &longs;eg&shy;<lb/>mento KH cadet. <lb/></s>

<s>Dico e&longs;&longs;e KL ad LM, <lb/>vt duo &longs;olida rectan&shy;<lb/>gula ex FH, HR, EH, <lb/>&amp; ex RG, GF, GK, <lb/>vn&agrave; cum binis tertiis <lb/>duorum cuborum ex <lb/>EG, EH; ad &longs;olidum <lb/><figure id="id.043.01.251.1.jpg" xlink:href="043/01/251/1.jpg"/><lb/>rectangulum ex GH, EF, ER. <!-- KEEP S--></s>

<s>Similiter enim vt &longs;upra <lb/>demon&longs;trato e&longs;&longs;e vt KL ad LM, ita portionem ABCD <lb/>ad &longs;olidum NO; quoniam portio ABCD ad &longs;olidum <lb/>NO, e&longs;t vt duo &longs;olida rectangula ex GH, HR, EH, &amp; <lb/>ex RG, GF, EG, vn&agrave; cum binis tertiis duorum cubo&shy;<lb/>rum ex EH, EG ad &longs;olidum ex GH, EF, ER, erit <lb/>vt totum iam dictum antecedens ad dictum con&longs;equens, <lb/>ita KL ad LM. <!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO XXXVII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis portionis conoidis parabolici centrum <lb/>grauitatis e&longs;t punctum illud, in quo axis &longs;ic diui&shy;<lb/>ditur, vt pars qu&aelig; ad verticem &longs;it eius, qu&aelig; ad ba&shy;<lb/>&longs;im dupla. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXXVIII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis fru&longs;ti portionis conoidis parabolici cen <lb/>trum grauitatis e&longs;t punctum illud, in quo axis &longs;ic <lb/>diuiditur, vt pars minorem ba&longs;im attingens &longs;it ad <lb/>reliquam, vt duplum maioris ba&longs;is vn&agrave; cum mino<lb/>ri, ad duplum minoris, vn&agrave; cum maiori. </s></p><p type="main">

<s>Harum proportionum vtriu&longs;que non alia demon&longs;tratio <lb/>e&longs;t ab ea, quam in &longs;ecundo &longs;crip&longs;imus de centro grauitatis <lb/>conoidis parabolici, &amp; eius fru&longs;ti: propterea quod omnis por <lb/>tionis conoidis parabolici, &longs;icut &amp; hyperbolici &longs;ectio ba&longs;i <lb/>parallela ellip&longs;is e&longs;t &longs;imilis ba&longs;i. </s>

<s>Ex corollario xv. </s>

<s>de conoi&shy;<lb/>dibus, &amp; &longs;ph&aelig;roidibus Archimedis. <!-- KEEP S--></s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO XXXIX.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis conoidis hyperbolici, vel portionis hy&shy;<lb/>perbolici conoidis centrum grauitatis, e&longs;t pun&shy;<lb/>ctum illud, in quo duodecima pars axis ordine <lb/>quarta ab ea, qu&aelig; ba&longs;im attingit, &longs;ic diuiditur, vt <lb/>pars propinquior ba&longs;i &longs;it ad reliquam vt &longs;e&longs;quial&shy;<pb/>tera tran&longs;uer&longs;i lateris, hyperboles per axem, ad <lb/>axem conoidis. </s></p><figure id="id.043.01.253.1.jpg" xlink:href="043/01/253/1.jpg"/><p type="main">

<s>Sit conoides hyperbolicum, vel portio conoidis hyper&shy;<lb/>bolici ABC, cuius axis BD, qui in portione non erit ad ba&shy;<lb/>&longs;im perpendicularij: ba&longs;is autem dicti conoidis, vel portio&shy;<lb/>nis &longs;it circulus, vel ellip&longs;is, cuius diameter ADC: &amp; hyper&shy;<lb/>boles ABC, qu&aelig; vel conoides de&longs;cribit, vel e&longs;t &longs;ectio tan&shy;<lb/>tummodo per axem, cuius tran&longs;uer&longs;um latus &longs;it BE, &amp; <pb/>huius &longs;e&longs;quialtera BEF: &amp; &longs;umpta axis BD quarta par&shy;<lb/>te DF, &amp; tertia DG: qua ratione erit FG duodecima <lb/>pars axis BD quarta ab ea, cuius terminus D; fiat vt <lb/>IB ad BD, ita FH ad HG. <!-- KEEP S--></s>

<s>Dico conoidis, vel portio&shy;<lb/>nis ABC centrum grauitatis e&longs;&longs;e H. <!-- KEEP S--></s>

<s>Nam vt e&longs;t EB <lb/>ad BD ita fiat DK ad KA: &amp; ponatur KDY &longs;e&longs;qui&shy;<lb/>altera ip&longs;ius DK, &amp; ex AK ab&longs;cindatur KM &longs;ub&longs;e&longs;&shy;<lb/>quialtera ip&longs;ius AK: &amp; ip&longs;is DK DM, DA, &aelig;quales <lb/>eodem ordine ab&longs;cindantur DL, DN, DC: &amp; de&longs;cri&shy;<lb/>bantur triangula, KBL, MBN: &amp; per puncta ABC <lb/>vertice communi B, tran&longs;eant du&aelig; &longs;ectiones parabol&aelig; <lb/>AOB, &amp; BPC, ita vt contingat recta BK parabolam <lb/>AOB, recta autem BL parabolam BPC; &longs;it autem <lb/>AKLC, parabolarum diametris parallela,. Deinde <lb/>&longs;ecto axe BD bifariam, &amp; &longs;ingulis eius partibus rur&longs;us bi&shy;<lb/>fariam in quotlibet partes &aelig;quales, &longs;int ex illis du&aelig; <lb/>partes DQ, QF: &amp; per puncta QF planis quibu&longs;dam <lb/>ba&longs;i parallelis &longs;ecentur vn&agrave; &longs;olidum &amp; hyperbole ABC: <lb/>&longs;intque hyperboles &longs;ectiones, qu&aelig; continent &longs;ectiones trian <lb/>gulorum ABC mixti, &amp; rectilinei KBL, rect&aelig; RTX <lb/>ZVS: <foreign lang="greek">agezdb. </foreign></s>

<s>&longs;olidi autem ABC &longs;ectiones erunt cir&shy;<lb/>culi, vel ellip&longs;es &longs;imiles ba&longs;i circa diametros RS, <foreign lang="greek">ab</foreign>. <lb/></s>

<s>Quoniam igitur e&longs;t vt <foreign lang="greek">*u</foreign>K ad KD, ita AK ad KM; <lb/>vtrobique enim e&longs;t proportio &longs;e&longs;quialtera: erit permutan&shy;<lb/>do vt YK ad A<emph type="italics"/>K<emph.end type="italics"/>, hoc e&longs;t vt IB ad BD, vel FH, ad <lb/>HG, ita D<emph type="italics"/>K<emph.end type="italics"/> ad <emph type="italics"/>K<emph.end type="italics"/>M, hoc e&longs;t triangulum BDK ad <lb/>triangulum BKM, hoc e&longs;t ad &aelig;quale huic ex demon&shy;<lb/>&longs;tratis triangulum A<emph type="italics"/>K<emph.end type="italics"/>B mixtum: hoc e&longs;t in duplis ita, <lb/>triangulum BKL ad duo mixta rriangula AKB, BLC <lb/>&longs;imul. </s>

<s>&longs;ed duorum triangulorum AKB, BLC &longs;imul e&longs;t <lb/>centrum grauitatis F, vt in hoc tertio libro demon&longs;tra&shy;<lb/>uimus: trianguli autem BKL, vt in primo, centrum gra&shy;<lb/>uitatis G; totius igitur trianguli ABC centrum graui&shy;<lb/>tatis erit H. <!-- KEEP S--></s>

<s>Rur&longs;us quoniam e&longs;t vt BD ad BQ hoc <pb/>e&longs;t vt rectangulum EBD ad rectangulum EBQ, ita <lb/>DK ad QX: &amp; vt quadratum BK ad quadratum BX, <lb/>hoc e&longs;t vt quadratum BD ad quadratum BQ, ita e&longs;t <lb/>A<emph type="italics"/>K<emph.end type="italics"/> ad TX; erunt octo magnitudines quatern&aelig; propor&shy;<lb/><figure id="id.043.01.255.1.jpg" xlink:href="043/01/255/1.jpg"/><lb/>tionales; &longs;ed &amp; earum prim&aelig;, &amp; terti&aelig; &longs;unt proportiona&shy;<lb/>les; nam e&longs;t vt EB ad BD, hoc e&longs;t vt rectangulum EBD <lb/>prima in primis ad quadratum BD primam in &longs;ecundis, <lb/>ita D<emph type="italics"/>K<emph.end type="italics"/> tertia in primis ad AK tertiam in &longs;ecundis; vt <pb/>igitur compo&longs;ita ex primis vtriu&longs;que ordinis ad compo&shy;<lb/>&longs;itam ex &longs;ecundis, ita erit compo&longs;ita ex tertiis ad com&shy;<lb/>po&longs;itam ex quartis; videlicet vt rectangulum BDE, quod <lb/>&aelig;quale e&longs;t rectangulo EBD vna cum quadrato BD, ad <lb/>rectangulum BQE, quod &aelig;quale e&longs;t rectangulo EBQ <lb/>vn&agrave; cum quadrato BQ, ita erit tota AD ad totam TQ. <lb/><!--neuer Satz-->Sed vt rectangulum BDE ad rectangulum BQE ita e&longs;t <lb/>AD quadratum, ad quadratum RQ, hoc e&longs;t ita circu&shy;<lb/>lus, vel ellip&longs;is circa AC, ad circulum, vel &longs;imilem illi <lb/>ellip&longs;em circa RS; vt igitur AD ad TQ, hoc e&longs;t in ea&shy;<lb/>rum duplis vt AC ad TV, ita erit circulus, vel ellip&longs;is <lb/>circa AC ad circulum, vel ellip&longs;em circa RS. <!-- KEEP S--></s>

<s>Similiter <lb/>o&longs;tenderemus e&longs;&longs;e vt AC ad <foreign lang="greek">gd</foreign>, ita circulnm, vel elli&shy;<lb/>p&longs;im circa AC, ad circulum, vel ellip&longs;em, circa <foreign lang="greek">ab</foreign>: con&shy;<lb/>uertendo igitur, &amp; ex &aelig;quali erunt bin&aelig; in eadem propor&shy;<lb/>tione, vt <foreign lang="greek">gd</foreign> ad TV, ita circulus, vel ellip&longs;is circa <foreign lang="greek">ab</foreign><lb/>ad circulum, vel ellip&longs;im circa RS: &amp; vt TV ad AC, ita <lb/>circulus, vel ellip&longs;is circa RS ad circulum, vel ellip&longs;im <lb/>circa AC. Rur&longs;us, quoniam tres rect&aelig; line&aelig; incipienti <lb/>&agrave; minima <foreign lang="greek">ge</foreign>, TX, A<emph type="italics"/>K<emph.end type="italics"/> &longs;unt bin&aelig; &longs;umpt&aelig; proportio&shy;<lb/>nales quadratis ex B<foreign lang="greek">e</foreign>, BX, B<emph type="italics"/>K<emph.end type="italics"/>, hoc e&longs;t quadratis ex <lb/>F<foreign lang="greek">e</foreign>, QX, DK; duplicata erit proportio <foreign lang="greek">ge</foreign> ad TX ip&shy;<lb/>&longs;ius F<foreign lang="greek">e</foreign> ad QX, &amp; TX ad AK duplicata ip&longs;ius QX ad <lb/>D<emph type="italics"/>K<emph.end type="italics"/>: &longs;ed rect&aelig; F<foreign lang="greek">e</foreign>, QX, DK, &longs;e&longs;e &aelig;qualiter excedunt, <lb/>vtpote proportionales ip&longs;is BF, BQ, BD, propter &longs;i&shy;<lb/>militudinem triangulorum; minor igitur proportio erit <lb/><foreign lang="greek">g</foreign>F ad TQ, qu&agrave;m TQ ad AD: quare his proportiona&shy;<lb/>lium minor erit proportio circuli, vel ellip&longs;is circa <foreign lang="greek">ab</foreign> ad <lb/>circulum, vel cllip&longs;im circa RS, qu&agrave;m circuli, vel elli&shy;<lb/>p&longs;is circa RS, ad circulum, vel ellip&longs;im, circa AC. <lb/><!-- KEEP S--></s>

<s>Similiter qu&aelig;cumque &longs;ectiones per pr&aelig;dicta axis, vel dia&shy;<lb/>metri BD puncta &longs;ectionum fierent vt dictum e&longs;t ad ver&shy;<lb/>ticem retrocedenti o&longs;tenderentur qu&aelig;libet tern&aelig; inter &longs;e <lb/>proxim&aelig;, bin&aelig;que &longs;umpt&aelig; vtriu&longs;que ordinis proportio-<pb/>nales e&longs;&longs;e, &amp; minor proportio vtrobique minim&aelig; ad me&shy;<lb/>diam qu&agrave;m medi&aelig; ad maximam; per XXXII igitur &longs;e&shy;<lb/>cundi, triangulum mixtum, &amp; &longs;olidum ABC, in huius <lb/>axe illius autem diametro BD commune habebunt cen&shy;<lb/><figure id="id.043.01.257.1.jpg" xlink:href="043/01/257/1.jpg"/><lb/>trum grauitatis. </s>

<s>&longs;ed demon&longs;trauimus H centrum grauita&shy;<lb/>tis trianguli ABC; conoidis igitur vel portionis ABC <lb/>centrum grauitatis erit idem H. <!-- KEEP S--></s>

<s>Quod demon&longs;trandum <lb/>erat. </s></p><pb/><p type="main">

<s>Et hic huius tertij Libri finis e&longs;&longs;et; ni&longs;i &longs;ecundo iam im&shy;<lb/>pre&longs;&longs;o, alia qu&aelig;dam via magis naturalis me ad conoidis hy <lb/>perbolici centrum grauitatis reduxi&longs;&longs;et. </s>

<s>Ea igitur in &longs;ecun<lb/>dum librum ali&agrave;s in&longs;erenda, nunc in &longs;equenti appendice <lb/>&longs;eptem propo&longs;itionibus expo&longs;ita, per &longs;ectionem pr&aelig;dicti <lb/>conoidis in conoides parabolicum eodem vertice, &amp; circa <lb/>eundem axim, &amp; reliquam figuram &longs;olidam, ab&longs;que com&shy;<lb/>po&longs;ito ex duabus figuris circum&longs;criptis, qu&aelig; ex cylindris <lb/>componuntur, propo&longs;itum concludat. </s></p><p type="head">

<s>APPENDIX.</s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO I.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si &longs;int octo magnitudines quatern&aelig; <lb/>tot&aelig;, &amp; ablat&aelig; proportionales, fue&shy;<lb/>rint autem, &amp; primarum vtriu&longs;que <lb/>ordinis ablat&aelig; ad reliquas propor&shy;<lb/>tionales; erunt vtriu&longs;que ordinis re <lb/>liqu&aelig; proportionales. </s></p><figure id="id.043.01.258.1.jpg" xlink:href="043/01/258/1.jpg"/><p type="main">

<s>Sint octo magnitudines quatern&aelig; <lb/>proportionales, ac primi quidem ordi&shy;<lb/>nis tot&aelig;, vt AB ad CD, ita EF ad <lb/>GH: &longs;ecundi autem ordinis ablat&aelig;, vt <lb/>B ad D, ita F ad H: &longs;it autem vt B <lb/>ad A ita F ad E. <!-- KEEP S--></s>

<s>Dico &amp; reliquas <lb/>e&longs;&longs;e proportionales, videlicet vt A ad <lb/>C, ita E ad G. <!-- KEEP S--></s>

<s>Quoniam enim com <lb/>ponendo, &amp; conuertendo e&longs;t vt A ad <lb/>AB, ita E ad EF: &longs;ed vt AB ad <pb/>CD, ita e&longs;t EF ad GH; erit ex &aelig;quali vt A ad CD, <lb/>ad E ad GH: &amp; conuertendo vt <lb/>CD ad A, ita GH ad E: &amp; per&shy;<lb/>mutando CD ad GH, ita A ad E. <lb/><!-- KEEP S--></s>

<s>Rur&longs;us quoniam e&longs;t vt A ad B ita <lb/>E ad F: &amp; vt B ad D, ita F ad H; <lb/>erit ex &aelig;quali, vt A ad D ita E ad <lb/>H: &longs;ed vt CD ad A, ita erat GH <lb/>ad E; ex &aelig;quali igitur erit vt CD ad <lb/>D ita GH ad H: &amp; permutando vt <lb/>CD ad GH, ita D ad H, &amp; reli&shy;<lb/>qua C ad reliquam G: &longs;ed vt CD <lb/>ad GH ita erat A ad E; vt igitur <lb/>A ad C ita erit E ad G. <!-- KEEP S--></s>

<s>Quod demon&longs;trandum erat. </s></p><figure id="id.043.01.259.1.jpg" xlink:href="043/01/259/1.jpg"/><p type="head">

<s><emph type="italics"/>PROPOSITIO II.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si circa dat&aelig; hyperboles communem diame&shy;<lb/>trum parabola de&longs;cripta illius ba&longs;im ita diuidat, <lb/>vt quadratum dimidi&aelig; ba&longs;is parabole ad reli&shy;<lb/>quum quadrati dimidi&aelig; ba&longs;is hyperboles eam <lb/>habeat proportionem, quam tran&longs;uer&longs;um latus <lb/>ad diametrum hyperboles; omnes in hyperbole <lb/>ad diametrum ordinatim applicatas ita &longs;ecabit, <lb/>vt exce&longs;&longs;us, quibus quadrata in hyperbole appli&shy;<lb/>cat&agrave;rum &longs;uperant quadrata in parabola ex &longs;ectio&shy;<lb/>ne applicatarum, inter &longs;e &longs;int vt quadrata diame&shy;<lb/>tri partium inter applicatas, &amp; verticem inter&shy;<lb/>iectarum. </s></p><p type="main">

<s>E&longs;to hyperbole ABC, cuius diameter BD, tran&longs;uer-<pb/>uer&longs;um latus EB. &amp; po&longs;itis in ip&longs;a, BD duobus pun&shy;<lb/>ctis quibuslibet GH, ordinatim applicentur MG, NH: <lb/>&amp; circa diametrum BD &longs;it de&longs;cripta parabola KBL tali&shy;<lb/>ter vt ip&longs;ius dimidi&aelig; ba&longs;is DK quadratum ad reliquum <lb/>quadrati AD, &longs;it vt EB ad BD, &amp; rectas MH, NG <lb/>in infinitum productas &longs;ecet parabola KBL in punctis <lb/>OP. <!-- KEEP S--></s>

<s>Dico puncta OP intra hyperbolem cadere: &amp; reli&shy;<lb/>quum quadrati MG dempto quadrato GO ad reliquum <lb/>quadrati NH dempto quadrato PH, e&longs;&longs;e vt quadratum <lb/>BG ad quadratum <lb/>BH. </s>

<s>Quoniam enim <lb/>ponitur vt EB ad B <lb/>D, hoc e&longs;t vt rectan&shy;<lb/>gulum EBD ad qua&shy;<lb/>dratum BD, ita qua&shy;<lb/>dratum DK ad reli&shy;<lb/>quum quadrati AD, <lb/>erit componendo, &amp; <lb/>conueniendo, vt <expan abbr="rect&atilde;">rectam</expan> <lb/>gulum BDE ad re&shy;<lb/>ctangulum EBD, ita <lb/>quadratum AD ad <lb/>quadratum DK: &longs;ed <lb/>vt rectangulum BGE <lb/>ad <expan abbr="rect&atilde;gulum">rectangulum</expan> BDE, <lb/><figure id="id.043.01.260.1.jpg" xlink:href="043/01/260/1.jpg"/><lb/>ita e&longs;t quadratum MG ad quadratum AD; ex &aelig;quali <lb/>igitur, vt rectangulum BGE ad rectangulum EBD, ita <lb/>e&longs;t quadratum MG ad quadratum DK: &longs;ed vt rectan&shy;<lb/>gulum EBD ad rectangulum EBG, ita e&longs;t quadratum <lb/>DK ad GO quadratum; ex &aelig;quali igitur vt rectangu&shy;<lb/>lu m BGE ad rectangulum EBG, ita erit quadratum <lb/>MG ad quadratum GO: &longs;ed rectangulum BGE maius <lb/>e&longs;t totum parte rectangulo EBG; quadratum igitur MG <lb/>quadrato GO maius erit, &amp; recta MG maior qu&agrave;m <pb/>GO: &longs;ecat igitur parabola KBL rectam MG in puncto <lb/>O. <!-- KEEP S--></s>

<s>Similiter o&longs;tenderemus eandem parabolam &longs;ecare <lb/>quamcumque aliam in hyperbole ABC ordinatim ad dia <lb/>metrum applicatarum. </s>

<s>Quoniam igitur &longs;unt octo magni <lb/>tudines quatern&aelig; tot&aelig;, &amp; ablat&aelig; proportionales; ac pri&shy;<lb/>mi quidem ordinis, vt rectangulum BDE ad rectangu&shy;<lb/>lum BGE, ita quadratum AD ad quadratum MG: &longs;e&shy;<lb/>cundi autem ordinis, vt rectangulum EBD ad rectangu&shy;<lb/>lum EBG ita quadra <lb/>tum DK ad quadra&shy;<lb/>tum OGD: &longs;ed vt <lb/>EB ad BD, hoc e&longs;t <lb/>vt ablata prim&aelig; in pri <lb/>mis rectangulum EB <lb/>D ad reliquum BD <lb/>quadratum, ita poni&shy;<lb/>tur ablata prim&aelig; in &longs;e <lb/>cundis, quadratum D <lb/>K ad reliquum exce&longs; <lb/>&longs;um, quo quadratum <lb/>AD &longs;uperat quadra&shy;<lb/>tum DK; vt igitur e&longs;t <lb/>reliqua prim&aelig; ad reli&shy;<lb/>quam &longs;ecund&aelig; in pri&shy;<lb/><figure id="id.043.01.261.1.jpg" xlink:href="043/01/261/1.jpg"/><lb/>mis, ita erit in &longs;ecundis; videlicet vt quadratum BD ad <lb/>quadratum BG, ita reliquum quadrati AD dempto qua&shy;<lb/>drato DK, ad reliquum qua rati MG dempto quadra&shy;<lb/>to GO. <!-- KEEP S--></s>

<s>Similiter o&longs;tenderemus reliquum quadrati AD <lb/>dempto quadrato DK ad reliquum quadrati NH dem&shy;<lb/>pto quadrato PH, e&longs;&longs;e vt quadratum BD ad quadra&shy;<lb/>tum BH; conuertendo igitur, &amp; ex &aelig;quali erit vt qua&shy;<lb/>dratum BG ad quadratum BH, ita reliquum quadra <lb/>ti MG dempto quadrato GO, ad reliquum quadrati<pb/>NH dempto quadrato PH. <!-- KEEP S--></s>

<s>Quod demon&longs;trandum <lb/>erat. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO III.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omne conoides hyperbolicum diuiditur in <lb/>conoides parabolicum circa eundem axim, &amp; re&shy;<lb/>liquam figuram quandam, ad quam conoides pa&shy;<lb/>rabolicum eam habet proportionem, quam&longs;e&longs;qui <lb/>altera tran&longs;uer&longs;i lateris hyperboles, qu&aelig; conoides <lb/>de&longs;cribit, ad axem conoidis. </s></p><figure id="id.043.01.262.1.jpg" xlink:href="043/01/262/1.jpg"/><p type="main">

<s>Sit conoides hyperbolicum ABC, cuius axis BD: hy&shy;<lb/>perboles autem, qu&aelig; conoides de&longs;cribit tran&longs;uer&longs;um latus <lb/>EB, cuius &longs;it &longs;e&longs;quialtera BEF: &amp; ab&longs;ci&longs;&longs;a DG, ita vt <lb/>quadratum ex ip&longs;a ad reliquum quadrati AD &longs;it vt EB <lb/>ad BD, vertice B circa diametrum BD de&longs;cripta &longs;it <pb/>parabola GBH, eaque circumducta conoides GBH, <lb/>Dico conoides GBH comprehendi &agrave; conoide ABC &amp; <lb/>e&longs;&longs;e ad illius reliquum, vt FB ad BD. <!-- KEEP S--></s>

<s>Ab&longs;ci&longs;&longs;a enim <lb/>DK ita potentia &longs;it ad DG, vt DB ad BE longitudine, <lb/>circa axim BD de&longs;cribatur conus KBL: &amp; &longs;ecta BD in <lb/>multas partes &aelig;quales, ducto&longs;que per ea puncta planis <lb/>quibu&longs;dam ba&longs;i parallelis, &longs;ecentur tria dicta &longs;olida, conus <lb/>&longs;cilicet &amp; vtrumque conoides: &amp; &longs;uper &longs;ectiones circulos <lb/>de&longs;cribantur cylindri &aelig;qualium altitudinum terni cuca <lb/><figure id="id.043.01.263.1.jpg" xlink:href="043/01/263/1.jpg"/><lb/>communes axes partes &aelig;quales, in quas axis BD diui&longs;us <lb/>fuit, &amp; inter eadem plana parallela: &amp; omnino triplex figura <lb/>ex cylindris, quos diximus &longs;it tribus dictis &longs;olidis circum&longs;cri <lb/>pta: &longs;intque circa duos axes infimos DM, MN terni cylin&shy;<lb/>dri AO, GP, KQ: &amp; proxime ordine ip&longs;is re&longs;pondentes <lb/>cylindri TX, SV, RZ, quorum ba&longs;es circa diametros <lb/>TI, S<foreign lang="greek">b</foreign>, R<foreign lang="greek">a</foreign>, communes &longs;ectiones plani per punctum M, <lb/>cum tribus &longs;olidorum &longs;ectionibus per axem, triangulo &longs;cili&shy;<lb/>cet, parabola, &amp; hyperbole in eodem plano, atque ideo tres <pb/>diametri TI, S<foreign lang="greek">b</foreign>, R<foreign lang="greek">a</foreign>, erunt in vna recta linea. </s>

<s>Quoniam <lb/>igitur e&longs;t vt EB ad BD, ita quadratum DG ad <expan abbr="reliqu&utilde;">reliquum</expan> <lb/>quadrati AD, &longs;ecabit parabola GBH omnes in hyperbo&shy;<lb/>le ABC ad diametrum ordinatim applicatas, quare conoi <lb/>des ABC comprehendet conoides GBH: atque ita para&shy;<lb/>bola &longs;ecabit, vt exce&longs;&longs;us quibus quadrata in hyperbole ap&shy;<lb/>plicatarum &longs;uperant partes quadrata in parabola applicata <lb/>rum, inter &longs;e &longs;int vt quadrata partium diametri BD inter <lb/>applicatas &amp; verticem interiectarum, prout vt inter &longs;e <expan abbr="re&longs;p&otilde;">re&longs;pom</expan> <lb/>dent: vt igitur e&longs;t quadratum BD ad quadratum BM, hoc <lb/>e&longs;t vt quadratum DK ad quadratum RM, ita erit <expan abbr="reliqu&utilde;">reliquum</expan> <lb/>AD quadrati dempto quadrato DG ad reliquum quadrati <lb/>TM dempto quadrato SM, &amp; permutando. </s>

<s>Sed quia qua&shy;<lb/>dratum DG ad reliquum quadrati AD, &amp; ad quadratum <lb/>DK eandem habet proportionem ex vi con&longs;tructionis, reli <lb/>quum quadrati AD, dempto quadrato DG &aelig;quale e&longs;t <lb/>quadrato DK; reliquum igitur quadrati TM dempto qua <lb/>drato SM &aelig;quale erit quadrato RM: &longs;i igitur vtri&longs;que ad&shy;<lb/>dantur &longs;ingula communia, vnis quadratum DG, alteris <lb/>quadratum SM, erit &amp; quadratum AD &aelig;quale duobus <lb/>quadratis GD, DK, &amp; quadratum TM duobus quadra <lb/>tis SM, MR &aelig;quale. </s>

<s>&longs;ed cum cylindri eiuidem altitudi&shy;<lb/>nis inter &longs;e &longs;int vt ba&longs;es, &longs;unt vt quadrata, qu&aelig; ab eorundem <lb/>ba&longs;ium &longs;emidiametris fiunt; cylindiusigitur AO &aelig;qualis <lb/>e&longs;t duobus cylindris GP, KQ: &amp; cylindrus TX duobus <lb/>cylindris S<foreign lang="greek">*u</foreign>, RZ &aelig;qualis. </s>

<s>Eadem ratio e&longs;t de reliquis <lb/>deinceps. </s>

<s>Tota igitur figura conoidi ABC circum&longs;cripta, <lb/>vtrique &longs;imul, conoidi GBH, &amp; cono KBL circum&longs;cri&shy;<lb/>pt&aelig; &aelig;qualis erit. </s>

<s>po&longs;&longs;unt autem e&aelig; figur&aelig; ita e&longs;&longs;e dictis &longs;oli&shy;<lb/>dis circum&longs;cript&aelig; per ea qu&aelig; alibi o&longs;tendimus, vt &longs;uperent <lb/>in&longs;criptas minori &longs;pacio quantacumque magnitudine pro&shy;<lb/>po&longs;ita; per tertiam igitur &longs;ecundi, conoides ABC vtrique <lb/>&longs;imul, conoidi GBH, &amp; cono KBL &aelig;quale erit. </s>

<s>dempto <lb/>igitur <expan abbr="c&otilde;muni">communi</expan> conoide GBH, reliquum <expan abbr="&longs;olid&utilde;">&longs;olidum</expan> AGBHC <pb/>&aelig;quale erit cono KBL. <!-- KEEP S--></s>

<s>Rur&longs;us quia e&longs;t vt EB ad BD, ita <lb/>quadratum GD ad quadratum DK, hoc e&longs;t circulus cir&shy;<lb/>ca GH ad circulum circa KL, hoc e&longs;t conus GBH &longs;i <lb/>de&longs;cribatur ad conum KBL: &longs;ed vt FB ad BE ita e&longs;t co&shy;<lb/>noides GBH ad conum GBH; ex &aelig;quali igitur erit vt <lb/>FB ad BD, ita conoides GBH ad conum KBL, hoc <lb/>e&longs;t ad &longs;olidum AGBHC. </s>

<s>Manife&longs;tum e&longs;t igitur <expan abbr="propo&longs;it&utilde;">propo&longs;itum</expan>. </s></p><p type="head">

<s><emph type="italics"/>COROLLARIVM.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Ex huius Theorematis demon&longs;tratione manife <lb/>&longs;tum e&longs;t, ij&longs;dem po&longs;itis cylindros deficientes, ex <lb/>quibus con&longs;tat exce&longs;&longs;us, quo figura conoidi hyper <lb/>bolico circum&longs;cripta &longs;uperat circum&longs;criptam co&shy;<lb/>noidi parabolico, ita &longs;e habere, vt quorumlibet <lb/>trium inter &longs;e proximorum minor proportio &longs;it <lb/>minimi ad medium, quam medij ad maximum: <lb/>&aelig;quales enim &longs;unt &longs;inguli &longs;ingulis cylindris, ex <lb/>quibus con&longs;tat figura cono BKL circum&longs;cripta, <lb/>qui &longs;unt inter eadem plana parallela. </s>

<s>Quod &longs;i <lb/>ita e&longs;t, &longs;imul illud manife&longs;tum erit, &amp; ex hoc, &amp; <lb/>ex ijs, qu&aelig; in &longs;ecundo libro demon&longs;trauimus; pr&aelig;&shy;<lb/>dictum exce&longs;&longs;um ex tot cylindris deficientibus <lb/>eiu&longs;dem altitudinis, quos diximus componi po&longs;&longs;e, <lb/>vt ip&longs;ius centrum grauitatis in axe BD di&longs;tet &agrave; <lb/>centro grauitatis coni KBL, hoc e&longs;t &agrave; puncto in <lb/>quo axis BD &longs;ic diuiditur, vt pars, qu&aelig; ad ver&shy;<lb/>ticem &longs;it reliqu&aelig; tripla, ea di&longs;tantia, qu&aelig; minor <lb/>&longs;it quantacum que longitudine propo&longs;ita. </s></p><pb/><p type="head">

<s><emph type="italics"/>PROPOSITIO IIII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Si conoidi parabolico figura circum&longs;cribatur, <lb/>&amp; altera in&longs;cribatur ex cylindris &aelig;qualium alti&shy;<lb/>tudinum, binis circa communes axes &longs;egmenta <lb/>axis conoidis, &amp; inter eadem plana parallela, mi&shy;<lb/>nimo circum&longs;criptorum ad nullum relato; omnia <lb/>re&longs;idua cylindrorum figur&aelig; circum&longs;cript&aelig; dem&shy;<lb/>ptis figur&aelig; in&longs;cript&aelig; cylindris, &amp; inter &longs;e, &amp; mi&shy;<lb/>nimo cylindro &aelig;qualia erunt. </s></p><p type="main">

<s>Sit conoidi parabolico ABC, cuius axis BD circum&shy;<lb/>&longs;cripta figura ex quotcumque cylindris &aelig;qualium altitu&shy;<lb/>dinum, quorum tres deinceps &longs;int EL minimus &longs;upremus, <lb/>&amp; GQ, IR, quorum ba&longs;es eodem ordine circuli, quorum <lb/>&longs;emidiametri ad parabol&aelig;, qu&aelig; figuram de&longs;cribit diame&shy;<lb/>trum BD ordi&shy;<lb/>natim applicat&aelig; <lb/>&longs;int EF, GH, IK: <lb/>&amp; in duplos cre&shy;<lb/>&longs;centibus cylin&shy;<lb/>dris circa <expan abbr="prior&utilde;">priorum</expan> <lb/>axium duplos a&shy;<lb/>xes BH, IK, HD, <lb/>&amp; <gap/>c deinceps <lb/>quotcumque plu&shy;<lb/>res e&longs;sent; &longs;it co&shy;<lb/>noidi ABC in&shy;<lb/><figure id="id.043.01.266.1.jpg" xlink:href="043/01/266/1.jpg"/><lb/>&longs;cripta figura ex cylindris &aelig;qualium altitudinum inter &longs;e, &amp; <lb/>circum&longs;criptis. </s>

<s>Bini itaque circa communes axes inter ea&shy;<lb/>dem plana parallela interijcientur, minimo EL ad nullum <pb/>relato: huic autem proximus, &amp; &aelig;qualis cylindrorum in&shy;<lb/>&longs;criptorum &longs;it NM ba&longs;im ip&longs;i communem habens circu&shy;<lb/>lum circa EFM: &amp; con&longs;equenti circum&longs;criptorum GQ <lb/>&longs;it. </s>

<s>in&longs;criptorum &aelig;qualis PO ba&longs;im habens ip&longs;i commu&shy;<lb/>nem circulum circa GHO: &longs;int autem circulorum qui <lb/>&longs;unt ba&longs;es cylindrorum diametri in parabola per axim: <lb/>qu&aelig; quoniam &longs;unt communes &longs;ectiones cum parabola per <lb/>axim planorum ba&longs;i conoidis, &amp; inter &longs;e parallelorum, <lb/>erunt etiam ip&longs;&aelig; inter &longs;e, &amp; parabol&aelig; ba&longs;i AC parallel&aelig;, <lb/>earumque dimidi&aelig; vt EF, GH ad diametrum BD or&shy;<lb/>dinatim applicat&aelig;. </s>

<s>Quoniam igitur in parabola ABC <lb/>e&longs;t vt HB ad BF ita quadratum GH ad quadratum <lb/>EF, duplum erit <lb/>quadratum GH <lb/>quadrati EF: qua <lb/>re &amp; circulus cir&shy;<lb/>ca GO circuli <lb/>circa EM at que <lb/>adeo cylindrus <lb/>GQ cylindri E <lb/>L duplus, pro&shy;<lb/>pter &lt;17&gt;qualitatem <lb/>altitudinum: &longs;ed <lb/>&amp; cylindrus NL <lb/><figure id="id.043.01.267.1.jpg" xlink:href="043/01/267/1.jpg"/><lb/>duplus e&longs;t cylindri EL per con&longs;tructionem; cylindrus igi&shy;<lb/>tur GQ &aelig;qualis e&longs;t cylindro NL: &amp; ablato communi <lb/>NM cylindro, reliquus GQ deficiens cylindro NM <lb/>cylindro EL &aelig;qualis. </s>

<s>Rur&longs;us quia e&longs;t vt KB ad BH, <lb/>ita quadratum IK ad quadratum GH, hoc e&longs;t ita IR <lb/>cylindrus ad cylindrum GQ: &longs;ed vt HB ad BF ita <lb/>erat cylindrus GQ ad cylindrum EL; tres igitur cy&shy;<lb/>lindri IR, GQ, EL, tribus lineis BK, BH, BF, eodem <lb/>ordine proportionales erunt: &longs;ed tres e&aelig;dem line&aelig; &longs;e&longs;e <lb/>&aelig;qualiter excedunt; tres igitur dicti cylindri &longs;e&longs;e &aelig;qua-<pb/>liter excedent, hoc e&longs;t reliquum cylindri IR dempto cylin&shy;<lb/>dro PO &aelig;quale erit reliquo cylindri GQ dempto cylin&shy;<lb/>dro NM, &amp; reliquum cylindri GQ dempto cylindro <lb/>NM &aelig;quale cylindro EL. </s>

<s>Similiter ad reliquos cylindros <lb/>quotcumque plures e&longs;&longs;ent de&longs;cendentes o&longs;tenderemus, om <lb/>nes exce&longs;&longs;us, quibus cylindri circum&longs;cripti in&longs;criptos <lb/>&longs;uperant &longs;ibi quique re&longs;pondentes inter &longs;e &amp; cylindro <lb/>EL &aelig;quales e&longs;&longs;e. </s>

<s>Manife&longs;tum e&longs;t igitur propo&longs;itum. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO V.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Dato conoide hyperbolico, &amp; ip&longs;ius conoi&shy;<lb/>de parabolico circa eundem axim, quod ad <lb/>reliquum hyperbolici conoidis eam proportio&shy;<lb/>nem habeat, quam &longs;e&longs;quialtera tran&longs;uer&longs;i late&shy;<lb/>ris hyperboles, qu&aelig; conoides de&longs;cribit, ad axim <lb/>conoidis; fieri pote&longs;t vt conoidi parabolico fi&shy;<lb/>gur&aelig; qu&aelig;dam in&longs;cribatur, &amp; altera circum&longs;cri&shy;<lb/>bantur vt &longs;upra factum e&longs;t, &amp; hyperbolico alio cir&shy;<lb/>cum&longs;cribatur omnes ex cylindris &aelig;qualium al&shy;<lb/>titudinum multitudine &aelig;qualibus exi&longs;tentibus <lb/>ijs, ex quibus con&longs;tant figur&aelig; conoidibus cir&shy;<lb/>cum&longs;cript&aelig;, ita vt exce&longs;&longs;us, quo figura conoidi <lb/>parabolico circum&longs;cripta in&longs;criptam &longs;uperat, <lb/>quem breuitatis cau&longs;a voco exce&longs;&longs;um primum, <lb/>ad exce&longs;&longs;um, quo figura conoidi hyperbolico cir&shy;<lb/>cum&longs;cripta &longs;uperat circum&longs;criptam parabolico, <lb/>quem voco exce&longs;&longs;um &longs;ecundum, minorem habeat <lb/>proportionem quacumque propo&longs;ita. </s></p><pb/><p type="main">

<s>Sit conoides hyperbolicum ABC, &amp; pars eius para&shy;<lb/>bolicum EBF circa eundem axim BD: &amp; conoides <lb/>EBF ad reliquum conoidis ABC eam habeat proportio&shy;<lb/>nem, quam &longs;e&longs;quialtera tran&longs;uer&longs;i lateris hyperboles per <lb/>axim ABC ad axim BD. <!-- KEEP S--></s>

<s>Dico fieri po&longs;&longs;e quod proponitur. <lb/></s>

<s>Habeat enim DL ad LB quamcumque proportionem: &amp; <lb/>conoides ABC reliquo &longs;olido AEBFC dempto conoi <lb/>de EBF. &longs;it conus circa axim BD &aelig;qualis GBH: &amp; <lb/>de&longs;cribatur conus GLH: &amp; &longs;ecta BD bifariam in pun&shy;<lb/>cto K, &amp; rur&longs;us BK, KD in multitudine, &amp; longitudi&shy;<lb/>ne &aelig;quales in&longs;cribatur conoidi EBF, &amp; altera cirum&longs;cri&shy;<lb/><figure id="id.043.01.269.1.jpg" xlink:href="043/01/269/1.jpg"/><lb/>batur, vt in antecedenti factum e&longs;t, figura ex cylindris &aelig; <lb/>qualium altitudinum, ita vt exce&longs;&longs;us, quo circum&longs;cripta <lb/>&longs;uperat in&longs;criptam fit minor cono GLH; &amp; cylindris cre&shy;<lb/>&longs;centibus in latitudinem ab&longs;oluatur figura conoidi ABC <lb/>circum&longs;cripta ex cylindris altitudine, &amp; multitudine &aelig;qua <lb/>libus ijs, qui &longs;unt circa conoides EBF. <!-- KEEP S--></s>

<s>Quoniam igitur <lb/>primus exce&longs;&longs;us e&longs;t minor cono GLH, multo minor crit <lb/>pars eius communis &longs;olido AEBFG, qu&agrave;m conus GLH: <lb/>&longs;ed &longs;olidum AEBFC &aelig;quale e&longs;t cono GBH; reliquum <lb/>igitur &longs;olidi AEBFC dicto communi ablato, maius erit <lb/>coni GBH reliquo BGLH; minor igitur proportio e&longs;t <pb/>primi exce&longs;&longs;us minoris cono GLH, ad dictum reliquum <lb/>&longs;olidi AEBFC, qu&agrave;m coni GLH ad reliquum coni <lb/>GBH: &longs;ed &longs;ecundus exce&longs;&longs;us maior e&longs;t pr&aelig;dicto reliquo <lb/>&longs;olidi AEBFC, ctenim illud comprehendit; multo igitur <lb/>minor proportio erit primi exce&longs;&longs;us ad &longs;ecundum, qu&agrave;m <lb/>coni GLH ad reliquum BGLH, hoc e&longs;t minor propor&shy;<lb/>tio qu&agrave;m DL ad LB: ponitur autem proportio DL ad <lb/>LB quali&longs;cumque. </s>

<s>Fieri igitur pote&longs;t, quod proponitur. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO VI.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis re&longs;idui conoidis hyperbolici dempto <lb/>conoide parabolico, vt &longs;upra diximus, centrum <lb/>grauitatis e&longs;t punctum illud, in quo axis &longs;ic diui&shy;<lb/>ditur, vt pars propinquior vertici &longs;it tripla re&shy;<lb/>liqu&aelig;. </s></p><figure id="id.043.01.270.1.jpg" xlink:href="043/01/270/1.jpg"/><p type="main">

<s>Sit conoides hyperbolicum ABC, cuius axis BD, &amp; <lb/>ablatum conoides parabolicum EBF circa eundem axim <lb/>BD, ita &longs;it ad reliquum &longs;olidum AEBFC, vt &longs;e&longs;quialte <lb/>ra tran&longs;uer&longs;i lateris hyperboles, qu&aelig; conoides de&longs;cribit ad <lb/>axem BD: &amp; ponatur BG ip&longs;ius GD tripla. </s>

<s>Dico re&shy;<pb/>liqui &longs;olidi AEBFC centrum grauitatis e&longs;se G. <!-- KEEP S--></s>

<s>Secta <lb/>enim BD bifariam in puncto H, &amp; po&longs;ita GK ip&longs;ius GH <lb/>minori quantacumque longitudine propo&longs;ita, &longs;umptoque <lb/>in GK quolibet puncto L, intelligantur id enim (fieri po&longs;&shy; <lb/>&longs;e manife&longs;tum e&longs;t ex &longs;upra demon&longs;tratis) tres figur&aelig; vna in&shy;<lb/>&longs;cripta conoidi EBF, &amp; du&aelig; circum&longs;cript&aelig; altera alteri <lb/>conoidum, vt &longs;upra factum e&longs;t, compo&longs;it&aelig; ex cylindris <lb/>&aelig;qualium altitudinum ita multiplicatis, vt vtrumque illud <lb/>accidat; &amp; vt &longs;ecundi exce&longs;&longs;us centrum grauitatis quod &longs;it <lb/>M (omnium autem trium dictorum exce&longs;&longs;uum in axe <lb/>BD erunt centra grauitatis) &longs;it puncto G propinquius <lb/><figure id="id.043.01.271.1.jpg" xlink:href="043/01/271/1.jpg"/><lb/>qu&agrave;m punctum L: &amp; vt primus exce&longs;&longs;us ad &longs;ecundum mi&shy;<lb/>norem habeat proportionem ea, qu&aelig; e&longs;t LK, ad KH. <!-- KEEP S--></s>

<s>Dein <lb/>de vt HK ad KL, ita &longs;it HN ad NM, &amp; vt primus <lb/>exce&longs;&longs;us ad &longs;ecundum, ita MO ad OH. <!-- KEEP S--></s>

<s>Quoniam igitur <lb/>cylindri omnes deficientes, &amp; &longs;ummus integer, ex quibus <lb/>primus exce&longs;&longs;us con&longs;tat, inter &longs;e &longs;unt &aelig;quales, habentque <lb/>in axe BD centra grauitatis &aelig;qualibus interuallis &agrave; bipar&shy;<lb/>titi axis BD &longs;ectione H &amp; inter &longs;e di&longs;tantia; totius pri&shy;<lb/>mi exce&longs;&longs;us centrum grauitatis erit H: &longs;ecundi autem ex&shy;<lb/>ce&longs;&longs;us centrum grauitatis ponitur M; cum igitur &longs;it vt pri&shy;<lb/>mus exce&longs;&longs;us ad &longs;ecundum, ita ex contraria parte MO <pb/>ad OH, erit tertij exce&longs;&longs;us ex duobus prioribus compo&longs;i&shy;<lb/>ti centrum grauitatis O. <!-- KEEP S--></s>

<s>Quoniam igitur minor propor&shy;<lb/>tio e&longs;t primi exce&longs;&longs;us ad &longs;edundum, hoc e&longs;t MO ad OH, <lb/>qu&agrave;m LK ad KH; erit conuertendo maior proportio HO <lb/>ad OM, qu&agrave;m HK ad KL: &longs;ed vt HK ad KL, ita <lb/>ponitur HN ad NM; maior igitur proportio e&longs;t HO ad <lb/>OM, qu&agrave;m HN ad NM; eiu&longs;dem igitur line&aelig; HM <lb/>minor erit MO, qu&agrave;m MN, &amp; punctum O propinquius <lb/>puncto G quam punctum N. <!-- KEEP S--></s>

<s>Rur&longs;us quia vt HK ad <lb/>KL, ita e&longs;t HN ad NM; erit componen do &amp; per con&shy;<lb/>uer&longs;ionem rationis, vt LH ad HK ita MH ad HN: &amp; <lb/>permutando, vt HM ad HL, ita HN ad HK: &longs;ed HM <lb/>e&longs;t maior qu&agrave;m HL; ergo &amp; HN erit maior quam H<emph type="italics"/>K<emph.end type="italics"/>, <lb/>&amp; punctum N propinquius puncto G qu&agrave;m punctum K: <lb/>&longs;ed punctum O propinquius erat puncto G qu&agrave;m punctum <lb/>N; multo igitur erit punctum O propinquius puncto G <lb/>qu&agrave;m punctum K. ponitur autem di&longs;tantia GK minor <lb/>quantacumque longitudine propo&longs;ita: &amp; e&longs;t O centrum <lb/>grauitatis tertij exce&longs;&longs;us reliquo &longs;olido AEBFC circum&shy;<lb/>&longs;cripti; ex ijs igitur, qu&aelig; in primo libro demon&longs;trauimus, <lb/>&longs;olidi AEBFC centrum grauitatis erit G. <!-- KEEP S--></s>

<s>Quod demon&shy;<lb/>&longs;trandum erat. </s></p><p type="head">

<s><emph type="italics"/>PROPOSITIO VII.<emph.end type="italics"/><!-- KEEP S--></s></p><p type="main">

<s>Omnis conoidis hyperbolici centrum grauita&shy;<lb/>tis e&longs;t punctum illud, in quo duodecima pars axis <lb/>quarta ab ea, qu&aelig; ba&longs;im attingit &longs;ic diuiditur, vt <lb/>pars propinquior ba&longs;i &longs;it ad reliquam, vt &longs;e&longs;quial&shy;<lb/>tera tran&longs;uer&longs;i lateris hyperboles, qu&aelig; conoides <lb/>de&longs;cribit; ad axem conoidis. </s></p><p type="main">

<s>Sit conoides hyperbolicum ABC, cuius axis BD: <pb/>tran&longs;uer&longs;um latus hyperboles, qu&aelig; conoides de&longs;cribit &longs;it <lb/>BE, huius autem &longs;e&longs;quialtera BEF: &amp; &longs;umpta axis BD <lb/>tertia parte DG, &amp; quarta DH, qua ratione erit GH <lb/>axis BD pars duodecima, ordine quarta ab ea, cuius termi <lb/>nus D; e&longs;to vt FB ad BD, ita HK ad KG. <!-- KEEP S--></s>

<s>Dico conoi&shy;<lb/>dis ABC centrum grauitatis e&longs;&longs;e K. <!-- KEEP S--></s>

<s>Diuidatur enim co&shy;<lb/><figure id="id.043.01.273.1.jpg" xlink:href="043/01/273/1.jpg"/><lb/>noides ABC in parabolicum conoides LBM, &amp; reliquum <lb/>&longs;olidum ALBMC, ita vt conoides LBM ad &longs;elidum <lb/>ALBMC &longs;it vt FB ad BD, hoc e&longs;t vt HK GK. <!-- KEEP S--></s>

<s>Quo&shy;<lb/>niam igitur G e&longs;t centrum grauitatis conoidis LBM, &amp; H <lb/>&longs;olidi ALBMC; tot us conoidis ABC centrum graui <lb/>tatis crit K. <!-- KEEP S--></s>

<s>Quod demon&longs;trandum crat. </s></p><p type="head">

<s>TERTII LIBRI FINIS.<!-- KEEP S--></s></p>			

<pb/>
<pb/>
<pb/>
<pb/>
<pb/>
</chap>		</body>		<back/>	</text></archimedes>