view texts/XML/archimedes/fr/galil_mecha_047_fr_1634.xml @ 12:f9a6b8344c3a

DESpecs 2.0 Autumn 2009
author Klaus Thoden <kthoden@mpiwg-berlin.mpg.de>
date Thu, 02 May 2013 11:14:40 +0200
parents 22d6a63640c6
children
line wrap: on
line source

<?xml version="1.0"?>
<archimedes xmlns:xlink="http://www.w3.org/1999/xlink" >
  <info>
    <author>Galilei, Galileo</author>
    <title>Les méchaniques</title>
    <date>1634</date>
    <place>Paris</place>
    <translator>Mersenne, Marin</translator>
    <lang>fr</lang>
    <cvs_file>galil_mecha_047_fr_1634.xml</cvs_file>
    <cvs_version></cvs_version>
    <locator>047.xml</locator>
  </info>
  <text>
    <front>
      <section>
        <pb xlink:href="047/01/001.jpg"></pb>
        <p type="head">
          <s id="s.000001"><emph type="center"></emph>LES <lb></lb>MECHANIQVES <lb></lb>DE GALILÉE <lb></lb>MATHEMATICIEN <lb></lb>&amp; Ingenieur du Duc de Florence.<emph.end type="center"></emph.end></s>
        </p>
        <p type="head">
          <s id="s.000002"><emph type="center"></emph><emph type="italics"></emph>AVEC PLVSIEVRS ADDITIONS <lb></lb>rares, &amp; nouuelles, vtiles aux Archite­<lb></lb>ctes, Ingenieurs, Fonteniers, Phi­<lb></lb>loſophes, &amp; Artiſans.<emph.end type="italics"></emph.end><emph.end type="center"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000003"><emph type="center"></emph>Traduites de l&#039;Italien par L.P.M.M.<emph.end type="center"></emph.end></s>
        </p>
        <p type="head">
          <s id="s.000004"><emph type="center"></emph>A PARIS, <lb></lb>Chez HENRY GVENON, ruë S. Iacques, <lb></lb>prés les Iacobins, à l&#039;image S. Bernard.<emph.end type="center"></emph.end><lb></lb></s>
        </p>
        <p type="head">
          <s id="s.000005"><emph type="center"></emph>M. DC. XXXIV. <lb></lb><emph type="italics"></emph>AVEC PRIVILEGE ET APPROBATION.<emph.end type="italics"></emph.end><emph.end type="center"></emph.end></s>
        </p>
        <pb xlink:href="047/01/002.jpg"></pb>
        <pb xlink:href="047/01/003.jpg"></pb>
      </section>
      <section>
        <p type="head">
          <s id="s.000006"><emph type="center"></emph>A MONSIEVR <lb></lb>MONSIEVR <lb></lb>DE REFFVGE, <lb></lb>CONSEILLER DV <lb></lb>Roy au Parlement.<emph.end type="center"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000007">MONSIËVR, </s>
        </p>
        <p type="main">
          <s id="s.000008"><emph type="italics"></emph>Puis qu&#039;il y a huict ans que ie vous <lb></lb>preſentay les liures de Mechaniques en <lb></lb>latin, &amp; que ie fais voir le iour à ce <lb></lb>nouueau traitté de Galilée, qui donne <lb></lb>de nouuelles lumieres à cette ſcience, il eſt <lb></lb>raiſonnable que ie vous l&#039;offre auſſi <lb></lb>bien que l&#039;autre, affin que vous ſoyez le <lb></lb>premier à receuoir le contentement que <lb></lb>l&#039;on à couſtume de reſſentir en liſant <lb></lb>tout ce qui vient de la part de cét excel­<lb></lb>lent homme, qui a l&#039;vn des plus ſubtils <emph.end type="italics"></emph.end>


<pb xlink:href="047/01/004.jpg"></pb><emph type="italics"></emph>eſprits de ce ſiecle. </s>
          <s id="s.000009">Si la traduction <lb></lb>ſemble quelque fois obſcure, à raiſon des <lb></lb>fautes du manuſcrit Italien ie ne doute <lb></lb><expan abbr="nullemẽt">nullement</expan> que la clairté &amp; la viuacité de <lb></lb>voſtre eſprit n&#039;en diſſipe ayſement tous <lb></lb>les nüages, Quant aux additions que <lb></lb>i&#039;y ay miſes, elles vous ſeront auſſi agrea­<lb></lb>bles que le reſte, parce qu&#039;elles contien­<lb></lb>nent de nouuelles ſpeculations, qui peu­<lb></lb>uent ſeruir pour penetrer les ſecrets de <lb></lb>la Phyfique &amp; particulierement <lb></lb>tout ce qui concerne les mouuemens <expan abbr="tãt">tant</expan> <lb></lb>naturels que violents. </s>
          <s id="s.000010">Mais i&#039;estime <lb></lb>que l&#039;ordre, &amp; le reglement admirable <lb></lb>que la nature obſerue dans les forces <lb></lb>mouuantes, vous donnera encore plus <lb></lb>de plaiſir, parce que vous y verrez re­<lb></lb>luire vne équité, &amp; vne iustice perpe­<lb></lb>tuelle qui ſe garde, &amp; que l&#039;on remar­<lb></lb>que ſi iuſtement entre la force, la reſi­<lb></lb>ſtence, le <expan abbr="tẽps">temps</expan>, la viſteſſe &amp;, leſpace, que <lb></lb>l&#039;vn <expan abbr="recõpenſe">recompenſe</expan> touſiours l&#039;autre, car ſi le <lb></lb><expan abbr="mouuemẽt">mouuement</expan> est viste, il faut beaucoup de <emph.end type="italics"></emph.end>


<pb xlink:href="047/01/005.jpg"></pb><emph type="italics"></emph>force &amp; s&#039;il eſt <expan abbr="lẽs">lens</expan>, vne petite force ſuffit. </s>
          <s id="s.000011"><lb></lb>En effet il eſt impoſſible de gaigner la for­<lb></lb>ce, &amp; le téps tout <expan abbr="ensẽble">ensemble</expan>, <expan abbr="cõme">comme</expan> il eſt im­<lb></lb>poſſible qu&#039;vn homme iouyſſe des plai­<lb></lb>ſirs folaſtres du monde &amp; de ceux du <lb></lb>Ciel en meſme temps: de ſorte que les <lb></lb>Mechaniques peuuent enſeigner à bien <lb></lb>viure, ſoit en imitant les corps peſans <lb></lb>qui cherchent touſiours leur centre dans <lb></lb>celuy de la terre comme leſprit de l&#039;hom. </s>
          <s id="s.000012"><lb></lb>me doit chercher le ſien dans l&#039;eſſence <lb></lb>diuine qui eſt la ſource de tous les eſprits <lb></lb>ou en ſe tenant dans le perpetuel èquili­<lb></lb>bre moral, &amp; raiſonnable qui conſiſte à <lb></lb>rendre premierement à Dieu, &amp; puis <lb></lb>au prochain tout ce que luy appartient. </s>
          <s id="s.000013"><lb></lb>L&#039;autheur de ce traité a obmis beaucoup <lb></lb>de choſes, par <expan abbr="exẽple">exemple</expan> il n&#039;a point parlé du <lb></lb>coin qui eſt <expan abbr="l&#039;inſtrumẽt">l&#039;inſtrument</expan> le plus fort de tous &lt;lb/&gt;car ſa force en partie depend de l&#039;incli­<lb></lb>nation du plan, comme Guid Vbalde <lb></lb>demonſtre dans le traité, qu&#039;il en a fait, <lb></lb>de ſorte que le coin entre dautant plus <emph.end type="italics"></emph.end>


<pb xlink:href="047/01/006.jpg"></pb><emph type="italics"></emph>ayſement qu&#039;il eſt plus eſtroit, &amp; que <lb></lb>ſes coſtez panchent dauantage ſur l&#039;ho­<lb></lb>rizon, c&#039;eſt à dire qu&#039;ils font de moin­<lb></lb>dres angles. </s>
          <s id="s.000014">Or ce meſme principe eſt <lb></lb>cauſe de ce que les cousteaux coupent ſi <lb></lb>ayſement, &amp; de pluſieurs autres effects <lb></lb>que l&#039;on peut remarquer en mille choſes, <lb></lb>dont on cognoiſtra les raiſons ſi on liſt <lb></lb>auec attention les traitez,<emph.end type="italics"></emph.end> della Vite, <lb></lb>del Cuneo, della Taglia, della <lb></lb>Leua, della Bilancia, &amp; dell&#039; Aſſe <lb></lb>nella Rota, <emph type="italics"></emph>que Guido Vbalde a com­<lb></lb>poſez: d&#039;où ſe tire la nature des Ver­<lb></lb>rins, des Crics, des Preſſes, &amp; de tout <lb></lb>ce qui ſert à augmenter, à conſeruer, ou <lb></lb>à diminuer la force, ou le temps. </s>
          <s id="s.000015"><lb></lb>La force du coin depend auſſi de la per­<lb></lb>cuſſion, qui eſt ſi admirable qu&#039;il n&#039;y a <lb></lb>point de fardeau ſi lourd, que l&#039;on ne <lb></lb>puiſſe faire remüer &amp; cheminer auec <lb></lb>des coups de marteau, pour petits qu&#039;ils <lb></lb>puiſſent eſtre, ce que l&#039;on tient que <lb></lb>Galilée a experimenté en frappant ſi <emph.end type="italics"></emph.end>


<pb xlink:href="047/01/007.jpg"></pb><emph type="italics"></emph>ſouuent contre vn grand coffre auec vn <lb></lb>marteau d&#039;épinette, qu&#039;il la fait chan­<lb></lb>ger de place &amp; la fait auancer d&#039;vn <lb></lb>pied: ce que pluſieurs ne croyront nulle­<lb></lb>ment encore qu&#039;ils ne prennent pas la <lb></lb>peine d&#039;en faire l&#039;experience laquelle eſt <lb></lb>tres digne de conſideration, car elle peut <lb></lb>ſeruir d&#039;vn principe pour entrer plus <lb></lb>auant dans les ſecrets de la nature. </s>
          <s id="s.000016">Ie <lb></lb>laiſſe pluſieurs autres choſes, qui ſem­<lb></lb>blent admirables, &amp; que vous pouuez, <lb></lb>experimenter quand il vous plaira; <lb></lb>ie vous en diray ſeulement vne des plus <lb></lb>rares, laquelle vous verrez en <expan abbr="iettãt">iettant</expan> vne <lb></lb>bale, ou vne boule en haut le plus droit <lb></lb>que vous pourrez, lors que vous estes <lb></lb>dans vostre carroſſe, ou a cheual, &amp; <lb></lb>lors qu&#039;ils courent de telle viſteſſe que <lb></lb>vous voudrez, car la boule vous ſui­<lb></lb>ura, tellement que vous la pourrez rece­<lb></lb>uoir dans la main encore que le carroſſe, <lb></lb>ou le cheual ayent fait cent pas tandis <lb></lb>que la boule aura eſté dans l&#039;air. </s>
          <s id="s.000017">Et ſi <emph.end type="italics"></emph.end>


<pb xlink:href="047/01/008.jpg"></pb><emph type="italics"></emph>vous la laiſſez <expan abbr="tõber">tomber</expan>, elle vous ſuiura <lb></lb>d&#039;autant plus loing que le cheual ira <lb></lb>plus viste. </s>
          <s id="s.000018">Galilèe a encore laiſſé dau­<lb></lb>tres choſes dans ſon traicté comme il eſt <lb></lb>ayſé de voir dans les trois liures de <lb></lb>Mechaniques que ie vous ay preſentez <lb></lb>&amp; qui peuuent ſuppléer à ce que l&#039;on <lb></lb>pourroit icy deſirer; de ſorte qu&#039;il n&#039;eſt <lb></lb>pas neceſſaire que ie m&#039;eſtende plus au <lb></lb>long ſur ce ſubiect, qui dépend entiere­<lb></lb>ment du centre de peſanteur, que l&#039;on <lb></lb>trouue dans toutes ſortes de corps par <lb></lb>les moyens, que Commandin &amp; Luc <lb></lb>Valere ont donné, dont vous auez tou­<lb></lb>tes les propoſitions.<emph.end type="italics"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000019"><emph type="italics"></emph>Ie croy que ſi la Iuſtice pouuoit par­<lb></lb>ler qu&#039;elle <expan abbr="cõfeſſeroit">confeſſeroit</expan> ingenuëment qu&#039;il <lb></lb>n&#039;y a nulle ſcience naturelle: qui luy <lb></lb>ſoit ſi ſemblable que celles des Mecha­<lb></lb>niques, c&#039;eſt pourquoy ie vous l&#039;offre aſſin <lb></lb>de teſmoigner l&#039;estat que ie fais de vos <lb></lb>vertus, qui me contraignent d&#039;auoir <lb></lb>la meſme affection pour vous, que pour <emph.end type="italics"></emph.end>
<pb xlink:href="047/01/009.jpg"></pb><emph type="italics"></emph>celuy qui eſt aymé de Dieu &amp; des <lb></lb>hommes, de prier la diuine Maieſtè de <lb></lb>vous donner vne tres bonne ſanté, <lb></lb>qui ſoit auſſi longue que ie le deſire: &amp; <lb></lb>de me dire auec toute ſorte de reſpect.<emph.end type="italics"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000020">Voſtre tres-humble <lb></lb>ſeruiteur F. M. </s>
          <s id="s.000021">Mer­<lb></lb>ſenne Minime. </s>
        </p>
        <pb xlink:href="047/01/010.jpg"></pb>
      </section>
      <section>
        <p type="head">
          <s id="s.000022"><emph type="center"></emph>PREFACE AV LECTEVR.<emph.end type="center"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000023">IE ſeray content ſi ie ſuis cauſe <lb></lb>que le ſieur Galilée nous don­<lb></lb>ne toutes ſes ſpeculations des <lb></lb>mouuemens, &amp; de tout ce qui ap­<lb></lb>partient aux Mechaniques, car ce <lb></lb>qui viendra de ſa part ſera excel­<lb></lb>lent: c&#039;eſt pourquoy ie prie ceux <lb></lb>qui ont de la correſpondance à <lb></lb>Florénce, de l&#039;exhorter par lettres <lb></lb>à donner au public toutes ſes re­<lb></lb>marques, comme i&#039;eſpere qu&#039;il <lb></lb>fera puis qu&#039;il a maintenant le <lb></lb>temps, &amp; la commodité tres libre <lb></lb>dans ſa maiſon des champs, &amp; <lb></lb>qu&#039;il a encor aſſez de force, quoy <lb></lb>qu&#039;il ſoit plus que ſeptuagenaire <lb></lb>pour acheuer toutes ſes œuures, <lb></lb>comme il aſſeure dans vne lettre <lb></lb>de ſa main que l&#039;on m&#039;a commu­<lb></lb>niquée. </s>
          <s id="s.000024">Or en attendant ces trai­<lb></lb>tez excellent, l&#039;on peut voir les <pb xlink:href="047/01/011.jpg"></pb>3 liures des Mechaniques, que le <lb></lb>feis imprimer l&#039;année 1626; à quoy <lb></lb>i&#039;aioute maintenant la conſidera­<lb></lb>tion des deux cercles qu&#039;Ariſtote <lb></lb>a propoſez dans la 24 queſtion de <lb></lb>ſes Mechaniques, parce que plu­<lb></lb>ſieurs la <expan abbr="trouuẽt">trouuent</expan> admirable dau­<lb></lb>tant qu&#039;ils ne l&#039;entendent pas. </s>
          <s id="s.000025"><lb></lb>Et pour ce ſujet ſoit le grand cer­<lb></lb>cle ACB, &amp; le moindre FGH, il <lb></lb><figure id="id.047.01.011.1.jpg" xlink:href="047/01/011/1.jpg"></figure><lb></lb>eſt certain <lb></lb>que quand <lb></lb>le quart du <lb></lb>grand cercle <lb></lb>BD s&#039;eſt meu <lb></lb>iuſques au <lb></lb>poinct O, de <lb></lb>ſorte que le point D ſe rencontre <lb></lb>au point O, que le point E du <lb></lb>quart du moindre cercle FE ſe <expan abbr="rẽ-cõtre">ren­<lb></lb>contre</expan> au point N, &amp; <expan abbr="cõſequẽment">conſequemment</expan> <lb></lb>que le petit cercle fait autant de <lb></lb>chemin que le grand en meſme 
<pb xlink:href="047/01/012.jpg"></pb>temps, puiſque le plan FN ſur le­<lb></lb>quel il ſe meut eſt égal au plan <lb></lb>DO, ſur lequel roule le grand. </s>
        </p>
        <p type="main">
          <s id="s.000026">D&#039;où quelques vns conclunt <lb></lb>qu&#039;il n&#039;y a point de ſi petit cercle <lb></lb>que l&#039;on ne le puiſſe dire égal au <lb></lb>plus grand qui ſe puiſſe imaginer, <lb></lb>puis qu&#039;il <expan abbr="reſpõd">reſpond</expan> à vn eſpace égal <lb></lb>Car pluſieurs croyent que les par­<lb></lb>ties du petit ne trainent point, <lb></lb>qu&#039;elles ne froiſſent nullement le <lb></lb>plan, &amp; que chaque point, &amp; cha­<lb></lb>que partie de ſa circonference <lb></lb>touche <expan abbr="ſeulemẽt">ſeulement</expan> à chaque point, <lb></lb>&amp; à chaque partie du plan. </s>
          <s id="s.000027">Il faut <lb></lb>dire la meſme choſe du grand <lb></lb>cercle à l&#039;égard du petit, lors que <lb></lb>le grand ſe meut par le mouue­<lb></lb>ment du petit, car le grand dimi­<lb></lb>nuë ſon chemin ſuiuant les traces <lb></lb>du petit, de ſorte que ſi le petit <lb></lb>ne fait qu&#039;vn pied de Roy dans vn <lb></lb>tour, le grand quoy qu&#039;égal au 
<pb xlink:href="047/01/013.jpg"></pb>Ciel des eſtoiles, ne fait auſſi <lb></lb>qu&#039;vn pied de Roy dans vn tour. </s>
          <s id="s.000028"><lb></lb>Ce que quelques vns expliquent <lb></lb>par le moyen de la rarefaction, &amp; <lb></lb>de la condenſation, en <expan abbr="comparãt">comparant</expan> <lb></lb>le mouuement du grand cercle à <lb></lb>celle-cy, &amp; le mouuement du <lb></lb>moindre à celle la, <expan abbr="quãd">quand</expan> le moin­<lb></lb>dre eſt meu par le plus <expan abbr="grãd">grand</expan>, &amp; au <lb></lb>contraire, lors que le moindre <lb></lb>meut le plus grand. </s>
          <s id="s.000029">Or il faut <lb></lb>aduoüer que la negligence des <lb></lb>hommes eſt étrange, qui ſe trom­<lb></lb>pent ſi ſouuent pour ne vouloir <lb></lb>pas faire la moindre experience <lb></lb>du monde &amp; qui ſe trauaillent eǹ <lb></lb>vain à la recherche des raiſons <lb></lb>d&#039;vne choſe qui n&#039;eſt point, com­<lb></lb>me il arriue en celle cy, car le <lb></lb>petit cercle ne meut iamais le <expan abbr="grãd">grand</expan> <lb></lb>que pluſieurs parties du grand <lb></lb>ne touchent vne meſme partie <lb></lb>du plan, dont chaque partie eſt 
<pb xlink:href="047/01/014.jpg"></pb>touchée par cent parties dif­<lb></lb>ferentes du grand cercle quand <lb></lb>il eſt cent fois plus grand que l&#039;au­<lb></lb>tre. </s>
          <s id="s.000030">Et lors que le petit eſt meu <lb></lb>parle grand, vne meſme partie <lb></lb>du petit, touche cent parties du <lb></lb>grand, comme l&#039;experience fera <lb></lb>voir à tous ceux qui la feront en <lb></lb>aſſez grand volume. </s>
        </p>
        <p type="main">
          <s id="s.000031">Les meſmes erreurs arriuent en <lb></lb>pluſieurs autres chofes, ce qui a <lb></lb>donné ſuiect à quelques vns d&#039;eſ­<lb></lb>crire <emph type="italics"></emph>derebus falſò creditis,<emph.end type="italics"></emph.end> dont ie <lb></lb>donneray encore icy vn exem­<lb></lb>ple. </s>
          <s id="s.000032">L&#039;on croyt que ſi on iette vne <lb></lb>pierre en haut le plus droit que <lb></lb>l&#039;on peut: lors que l&#039;on eſt dans <lb></lb>vn nauire qui ſingle à pleins voi­<lb></lb>les, ou dans vn carroſſe qui va en <lb></lb>poſte, que la pierre tombera de­<lb></lb>riere le lieu d&#039;ou l&#039;on la iette, quoy <lb></lb>que l&#039;experience enſeigne qu&#039;elle <lb></lb>retombe dans la main qui la iette 
<pb xlink:href="047/01/015.jpg"></pb>encore que le nauire, ou le carro­<lb></lb>ſſe faſſe cent pas, tandis que la <lb></lb>pierre eſt dans l&#039;air. </s>
        </p>
        <p type="main">
          <s id="s.000033">Mais ie reſerue la raiſon de cecy <lb></lb>pour vn autre lieu, affin que ie ne <lb></lb>ſois pas containct de faire vne <lb></lb>preface, qui égale le liure qui ſuit <lb></lb>c&#039;eſt pourquoy i&#039;aioûte <expan abbr="ſeulemẽt">ſeulement</expan> <lb></lb>qu&#039;auant que l&#039;on entreprenne <lb></lb>les ouurages où les Machines <lb></lb>doiuent entrer, &amp; que l&#039;on ſe ſer­<lb></lb>ue des ingenieurs &amp; artiſans, qu&#039;il <lb></lb>eſt à propos de leur faire expoſer <lb></lb>leurs deſſeins, &amp; leurs modelles en <lb></lb>public, &amp; <expan abbr="particulieremẽt">particulierement</expan> à la veûe <lb></lb>des excellents Geometres qui ſça­<lb></lb>uent les vrayes raiſons de toutes <lb></lb>ſortes de Machines, &amp; qui <expan abbr="peuuẽt">peuuent</expan> <lb></lb>preuoir les inconueniens, &amp; les <lb></lb>obſtacles de l&#039;air, de l&#039;eau, &amp; des <lb></lb>autres circonſtances, à faute de­<lb></lb>quoy il arriue trop ſouuent que <lb></lb>pluſieurs font des deſpenſes ex-
<pb xlink:href="047/01/016.jpg"></pb>ceſſiues dans leurs maiſons où ils <lb></lb>veulent faire de grandes <expan abbr="éleuatiõs">éleuations</expan> <lb></lb>d&#039;eau, en ſe ſeruant de certains in­<lb></lb>genieurs, qui ſe <expan abbr="diſẽt">diſent</expan> tres-experts, <lb></lb>&amp; qui neantmoins ſont contrains <lb></lb>de s&#039;enfuir honteuſement, lors <lb></lb>qu&#039;ils n&#039;ont peu venir à bout de <lb></lb>leurs deſſeins. </s>
        </p>
        <p type="main">
          <s id="s.000034">Or pour éuiter ces deſpences <lb></lb>inutiles, il faudroit afficher par <lb></lb>les ruës, ou aduertir <expan abbr="publiquemẽt">publiquement</expan> <lb></lb>de l&#039;ouurage que l&#039;on veut entre­<lb></lb>prendre, affin que tous les inge­<lb></lb>nieurs apportaſſent leur modelle <lb></lb>en ſecret à iour nommé &amp; qu&#039;il <lb></lb>fuſt examiné par les plus habiles <lb></lb>Mathematiciens, par les inge­<lb></lb>nieurs, &amp; par les charpentiers de <lb></lb>moulins, qui <expan abbr="choiſiroiẽt">choiſiroient</expan> le meil­<lb></lb>leur deſſein. </s>
          <s id="s.000035">Car il faut ioindre la <lb></lb>pratique à la theorie non ſeule­<lb></lb>ment dans l&#039;execution, mais auſſi <lb></lb>dans l&#039;élection, des modelles, affin 
<pb xlink:href="047/01/017.jpg"></pb>qu&#039;il n&#039;y ayt rien à redire ny à re­<lb></lb>faire dans les ouurages de grand <lb></lb>couſt, comme ſont les pompes <lb></lb>du pont neuf, &amp; du nouueau que <lb></lb>l&#039;on a fait au bas du Louure, &amp; <lb></lb>que nul ne ſe ruine à faire accom­<lb></lb>moder les lieux de plaiſir, ou l&#039;on <lb></lb>veut auoir des fonteines des grot­<lb></lb>tes, des arcs en Ciel, &amp;c. </s>
          <s id="s.000036">Mais la <lb></lb>conſideration des pompes merite <lb></lb>vn diſcours plus particulier, &amp; <lb></lb>cette preface eſt deſia trop lon­<lb></lb>gue, c&#039;eſt pourquoy i&#039;ajoute ſeu­<lb></lb>lement la table des Chapitres du <lb></lb>liure. </s>
        </p>
        <pb xlink:href="047/01/018.jpg"></pb>
      </section>
      <section>
        <p type="head">
          <s id="s.000037"><emph type="center"></emph>TABLE DV LIVRE<emph.end type="center"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000038"><emph type="center"></emph>des Mechaniques.<emph.end type="center"></emph.end></s>
        </p>
        <p type="table">
          <s id="s.000039">TABELLE WAR HIER
<pb xlink:href="047/01/019.jpg"></pb></s>
        </p>
      </section>
      <section>
        <p type="head">
          <s id="s.000040"><emph type="center"></emph><emph type="italics"></emph>Fautes de l&#039;Impreſſion corrigées.<emph.end type="italics"></emph.end><emph.end type="center"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000041">Page 13, l. 13. <emph type="italics"></emph>inegaux.<emph.end type="italics"></emph.end></s>
          <s id="s.000042"> p. 16. l. 2. oſtez <emph type="italics"></emph>de <emph.end type="italics"></emph.end><lb></lb>ligne 7. &amp; 8. DS <emph type="italics"></emph>à<emph.end type="italics"></emph.end> C. <emph type="italics"></emph></s>
          <s id="s.000043">de<emph.end type="italics"></emph.end> page 21. ligne 14. <lb></lb>au lieu de P. liſez D. </s>
          <s id="s.000044"> p. 24. l.1. au lieu de <emph type="italics"></emph>eſt <lb></lb>égal<emph.end type="italics"></emph.end> liſez. <emph type="italics"></emph>ſont chacune egales,<emph.end type="italics"></emph.end></s>
          <s id="s.000045"> l. 4. au lieu de ou <lb></lb>liſez <emph type="italics"></emph>&amp;<emph.end type="italics"></emph.end> A<emph type="italics"></emph>tout au contraire.<emph.end type="italics"></emph.end>  </s>
          <s id="s.000046">p.25. l. 18 pour <emph type="italics"></emph>ſap<lb></lb>prochant<emph.end type="italics"></emph.end> liſez <emph type="italics"></emph>approchent.<emph.end type="italics"></emph.end> </s>
          <s id="s.000047"> p.26. corrigez les <lb></lb>lettres de la 2 ligne &amp; pour A de l&#039;antepenul. <lb></lb>liſez E. </s>
          <s id="s.000048">p. 28. l 1. <emph type="italics"></emph>roüe<emph.end type="italics"></emph.end> </s>
          <s id="s.000049"> p. 30. l. 7. l&#039;Organe. </s>
          <s id="s.000050">l <lb></lb>25. apres B liſez F </s>
          <s id="s.000051">p. 33. ligne 6 <emph type="italics"></emph>l&#039;extremité<emph.end type="italics"></emph.end><lb></lb>A.</s>
          <s id="s.000052">l. 8. poids </s>
          <s id="s.000053">l.13. au lieu de F. liſez C. </s>
          <s id="s.000054">l. 25. <lb></lb>apres fardeau liſ E.</s>
          <s id="s.000055">l. 26 pour C. <emph type="italics"></emph>liſez<emph.end type="italics"></emph.end> G.  </s>
          <s id="s.000056"><lb></lb>p. 34. l. 1 AG. </s>
          <s id="s.000057">l. 3. <emph type="italics"></emph>poids.<emph.end type="italics"></emph.end> </s>
          <s id="s.000058">l. 10. pour E. liſez. C. <lb></lb></s>
          <s id="s.000059">&gt;p. 37. l. 16. apres <emph type="italics"></emph>immobile<emph.end type="italics"></emph.end> liſez A.  </s>
          <s id="s.000060">p. 41 l. 8. <lb></lb>pour des liſ. du </s>
          <s id="s.000061">l.24. pour E liſez <emph type="italics"></emph>&amp;.<emph.end type="italics"></emph.end> </s>
          <s id="s.000062">p. 45.l. 8 <lb></lb>pour B liſ. D.</s>
          <s id="s.000063">p. 51. l. antep. pour <emph type="italics"></emph>parce,<emph.end type="italics"></emph.end> liſ.<emph type="italics"></emph>par.<emph.end type="italics"></emph.end><lb></lb></s>
          <s id="s.000064">p. 52.l. penul. BM. </s>
          <s id="s.000065">p. 53 adioútez la lettre P <lb></lb>au bas de la figure. </s>
          <s id="s.000066">p. 57. l. 10. C A.</s>
          <s id="s.000067">p. 78<lb></lb>l. derniere effacez par.</s>
        </p>
        <p type="main">
          <s id="s.000068">S&#039;il y a quel qu&#039;autre faute, le lecteur iudi­<lb></lb>cieux la ſuppleera.</s>
        </p>
        <pb xlink:href="047/01/020.jpg"></pb>
      </section>
      <section>
        <p type="head">
          <s id="s.000069"><emph type="center"></emph><emph type="italics"></emph>PRIVILEGE DV ROY.<emph.end type="italics"></emph.end><emph.end type="center"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000070">PAr lettres du Roy donnees à Paris <lb></lb>le mois d&#039;Aouſt de l&#039;année 1629. <lb></lb>ſignees Perrochel, &amp; ſeelees du grand <lb></lb>ſceau de cire iaune, il eſt permis au <lb></lb>P. M. </s>
          <s id="s.000071">Merſenne Religieux Minime <lb></lb>de faire imprimer par tel Libraire que <lb></lb>bon luy ſemblera <emph type="italics"></emph>Pluſieurs Traittez de <lb></lb>Philoſophie, de Theologie, &amp; de Mathema­<lb></lb>tique.<emph.end type="italics"></emph.end></s>
          <s id="s.000072"> Et deffences ſont faites à toutes <lb></lb>perſonnes de quelque qualité qu&#039;ils <lb></lb>ſoient de les faire imprimer, vendre &amp; <lb></lb>diftribuer pendant le temps de ſix ans à <lb></lb>compter du iour que leſdits liures ſe­<lb></lb>ront acheuez d&#039;imprimer, comme il <lb></lb>eſt plus amplement porté dans les let­<lb></lb>tres dudit Priuilege. </s>
        </p>
        <p type="main">
          <s id="s.000073">Et ledit P. M. </s>
          <s id="s.000074">Merſenne à conſenty &amp; con­<lb></lb>ſent que Henry Guenon ioüiſſe dudit Pri­<lb></lb>uilege, comme il eſt plus amplement decla­<lb></lb>ré par l&#039;accord fait entr eux. </s>
        </p>
        <p type="main">
          <s id="s.000075"><emph type="center"></emph>Et leſdits liures ont eſté acheués d&#039;imprimer le <lb></lb>30. Iuin 1634.<emph.end type="center"></emph.end></s>
        </p>
      </section>
      <section>
        <pb pagenum="1" xlink:href="047/01/021.jpg"></pb>
        <p type="head">
          <s id="s.000076"><emph type="center"></emph>LES <lb></lb>MECHANIQVES <lb></lb>DE GALILEE FLOREN­<lb></lb>TIN, INGENIEVR ET <lb></lb>Mathematicien du Duc <lb></lb>de Florence.<emph.end type="center"></emph.end></s>
        </p>
      </section>
    </front>
    <body>
      <chap>
        <p type="head">
          <s id="s.000077"><emph type="center"></emph>CHAPITRE PREMIER.<emph.end type="center"></emph.end></s>
        </p>
        <p type="head">
          <s id="s.000078"><emph type="center"></emph><emph type="italics"></emph>Dans lequel on void la Preface qui monſtre <lb></lb>l&#039;vtilité des Machines.<emph.end type="italics"></emph.end><emph.end type="center"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000079">AVANT que d&#039;entrepren­<lb></lb>dre la ſpeculation des in­<lb></lb>ſtrumens de la Mechani­<lb></lb>que, il faut remarquer en <lb></lb>general les commoditez, &amp; les profits <lb></lb>que l&#039;on en peut tirer, afin que les arti­<lb></lb>ſans ne croyent pas qu&#039;ils puiſſent ſeruir <lb></lb>aux operations, dont ils ne ſont pas ca-<pb pagenum="2" xlink:href="047/01/022.jpg"></pb>pables, &amp; que l&#039;on puiſſe leuer de <expan abbr="grãds">grands</expan> <lb></lb>fardeaux auec peu de force: car la na­<lb></lb>ture ne peut eſtre trompée, ni ceder à <lb></lb>ſes droits: &amp; nulle reſiſtence ne peut <lb></lb>eſtre ſurmontée que par vne plus gran­<lb></lb>de force, comme ie feray voir apres: &amp; <lb></lb>conſequemment les Machines ne peu­<lb></lb>uent ſeruir à leuer de plus grands far­<lb></lb>deaux que ceux qu&#039;vne force égale <lb></lb>peut leuer ſans l&#039;ayde d&#039;aucun inſtru­<lb></lb>ment: c&#039;eſt pourquoy il faut expliquer <lb></lb>les vrayes vtilitez des Machines, afin <lb></lb>que l&#039;on ne trauaille pas en vain, &amp; que <lb></lb>l&#039;eſtude que l&#039;on fera, reüſſiſſe heureu­<lb></lb>ſement. </s>
        </p>
        <p type="main">
          <s id="s.000080">Il faut donc icy conſiderer 4. choſes, <lb></lb>à ſçauoir le fardeau que l&#039;on veut tranſ­<lb></lb>porter d&#039;vn lieu à vn autre: la force qui <lb></lb>le doit mouuoir; la diſtance par laquel­<lb></lb>le ſe fait le mouuement; &amp; le temps <lb></lb>dudit mouuement, parce qu&#039;il ſert pour <lb></lb>en determiner la viſteſſe, puis qu&#039;elle <lb></lb>eſt d&#039;autant plus grande que le corps <lb></lb>mobile, ou le fardeau paſſe par vne plus <lb></lb>grande diſtance en meſme temps: de <lb></lb>ſorte que ſi l&#039;on ſuppoſe telle reſiſtence, <lb></lb>telle force, &amp; telle <expan abbr="diſtãce">diſtance</expan> determinée <lb></lb>que l&#039;on voudra, il n&#039;y a nul doute que <pb pagenum="3" xlink:href="047/01/023.jpg"></pb>la force requiſe conduira le fardeau à <lb></lb>la diſtance donnée, quoy que ladite <lb></lb>force ſoit treſ-petite, pourueu que l&#039;on <lb></lb>diuiſe le fardeau en tant de parties que <lb></lb>la force en puiſſe mouuoir vne, car elle <lb></lb>les <expan abbr="trãſportera">tranſportera</expan> toutes les vnes apres les <lb></lb>autres; d&#039;où il ſ&#039;enſuit que la moindre <lb></lb>force du monde peut tranſporter tel <lb></lb>poids que l&#039;on voudra. </s>
        </p>
        <p type="main">
          <s id="s.000081">Mais l&#039;on ne peut dire à la fin du <expan abbr="trãſ-port">tranſ­<lb></lb>port</expan>, que l&#039;on ayt remué vn grand far­<lb></lb>deau auec peu de force, puis qu&#039;elle a <lb></lb>touſiours eſté égale à chaque partie du <lb></lb>fardeau: de maniere que l&#039;on ne gaigne <lb></lb>rien auec les inſtrumens, dautant que ſi <lb></lb>l&#039;on applique vne petite force à vn <expan abbr="grãd">grand</expan> <lb></lb>fardeau, il faut beaucoup de temps, &amp; <lb></lb>que ſi l&#039;on veut le tranſporter en peu de <lb></lb>temps, il faut vne grande force. </s>
          <s id="s.000082">D&#039;où <lb></lb>l&#039;on peut conclurre qu&#039;il eſt impoſſible <lb></lb>qu&#039;vne petite force tranſporte vn <expan abbr="grãd">grand</expan> <lb></lb>poids dans moins de temps qu&#039;vne plus <lb></lb>grande force. </s>
        </p>
        <p type="main">
          <s id="s.000083">Neantmoins les Machines ſont vti­<lb></lb>les pour mouuoir de grands fardeaux <lb></lb>tout d&#039;vn coup ſans les diuiſer, parce <lb></lb>que l&#039;on a ſouuent beaucoup de temps, <lb></lb>&amp; peu de force, c&#039;eſt pourquoy la lon-
<pb pagenum="4" xlink:href="047/01/024.jpg"></pb>gueur du temps recompenſe le peu de <lb></lb>force: Mais celuy-là ſe tromperoit qui <lb></lb>voudroit abreger le temps en n&#039;vſant <lb></lb>que d&#039;vne petite force, &amp; monſtreroit <lb></lb>qu&#039;il n&#039;entend pas la nature des Machi­<lb></lb>nes, ny la raiſon de leurs effets. </s>
        </p>
        <p type="main">
          <s id="s.000084">La ſeconde vtilité des inſtrumens <lb></lb>conſiſte en ce qu&#039;on les applique à des <lb></lb>lieux <expan abbr="dõt">dont</expan> on ne pourroit tirer, ou tranſ­<lb></lb>porter les fardeaux, &amp; beaucoup de <lb></lb>choſes ſans leur ay de, comme l&#039;on <expan abbr="ex-perimẽte">ex­<lb></lb>perimente</expan> aux puits, <expan abbr="dõt">dont</expan> on tire de l&#039;eau <lb></lb>auec vne chorde attachée aux poulies, <lb></lb>ou aux arbres des roües, par le moyen <lb></lb>deſquelles on en tire vne <expan abbr="quãtité">quantité</expan>, dans <lb></lb>vn certain <expan abbr="tẽps">temps</expan>, auec vne force limitée, <lb></lb>ſans qu&#039;il ſoit poſſible <expan abbr="d&#039;ẽ">d&#039;en</expan> tirer vne plus <lb></lb>grande quantité auec vne force égale, <lb></lb>&amp; en meſme temps. </s>
          <s id="s.000085">Auſſi les pompes <lb></lb>qui vuident le font des Nauires, n&#039;ont <lb></lb>elles pas eſté inuentées pour puiſer, &amp; <lb></lb>tirer vne plus grande quantité d&#039;eau <lb></lb>dans le meſme temps, &amp; par la meſme <lb></lb>force dont on vſe en puiſant auec vn <lb></lb>ſeau, mais parce qu&#039;il eſt inutile à cet <lb></lb>effet, dautant qu&#039;il ne peut puiſer l&#039;eau <lb></lb>ſans ſ&#039;enfoncer dedans, car il faudroit <lb></lb>le coucher au fond pour puiſer obli-
<pb pagenum="5" xlink:href="047/01/025.jpg"></pb>quement le peu d&#039;eau qui reſte: ce qui <lb></lb>ne peut arriuer, quand on le deſcend <lb></lb>auec vne chorde, qui le porte <expan abbr="perpen-diculairemẽt">perpen­<lb></lb>diculairement</expan>: mais la pompe tire l&#039;eau <lb></lb>iuſques à la derniere goute. </s>
        </p>
        <p type="main">
          <s id="s.000086">La 3. vtilité des Machines eſt tres­<lb></lb>grande, parce que l&#039;on euite les grands <lb></lb>frais &amp; le couſt en <expan abbr="vsãt">vsant</expan> d&#039;vne force ina­<lb></lb>nimée, ou ſans raiſon, qui fait les meſ­<lb></lb>mes choſes que la force des hommes <lb></lb>animée, &amp; conduite par le iugement, <lb></lb>comme il arriue lors que l&#039;on fait meu­<lb></lb>dre les moulins auec l&#039;eau des eſtangs, <lb></lb>ou des fleuues, ou auec vn cheual, qui <lb></lb>ſupplée la force de 5. ou 6. hommes. </s>
          <s id="s.000087">Et <lb></lb>parce que le cheual a vne grande for­<lb></lb>ce, &amp; qu&#039;il manque de diſcours, l&#039;on <lb></lb>ſupplée le raiſonnement neceſſaire, par <lb></lb>le moyen des roües &amp; des autres Ma­<lb></lb>chines qui ſont ébranlées par la force <lb></lb>du cheual, &amp; qui rempliſſent, &amp; tranſ­<lb></lb>portent le vaiſſeau d&#039;vn lieu à l&#039;autre &amp; <lb></lb>qui le vuident ſuiuant le deſſein de l&#039;In­<lb></lb>genieur. </s>
          <s id="s.000088">Or il faut conclurre de tout <lb></lb>ce diſcours que l&#039;on ne peut <expan abbr="riẽ">rien</expan> gaigner <lb></lb>en force que l&#039;on ne le perde en temps, <lb></lb>&amp; que la plus grande vtilité des Machi­<lb></lb>nes <expan abbr="cõſiſte">conſiſte</expan> à épargner la dépence, com-
<pb pagenum="6" xlink:href="047/01/026.jpg"></pb>me i&#039;ay monſtré, &amp; conſequemment <lb></lb>que ceux qui trauaillent à ſuppléer la <lb></lb>force, &amp; le temps tout enſemble, ne <lb></lb>meritent nullement d&#039;auoir du temps, <lb></lb>puis qu&#039;ils l&#039;employent ſi mal, comme <lb></lb>l&#039;on verra à la ſuitte de ce traité. <lb></lb></s>
        </p>
      </chap>
      <chap>
        <p type="head">
          <s id="s.000089"><emph type="center"></emph>CHAP. II.<emph.end type="center"></emph.end></s>
        </p>
        <p type="head">
          <s id="s.000090"><emph type="center"></emph><emph type="italics"></emph>Des definitions, neceſſaires pour la ſcience <lb></lb>des Mechaniques.<emph.end type="italics"></emph.end><emph.end type="center"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000091">NOus commençons ce traité par les <lb></lb><expan abbr="definitiõs">definitions</expan>, &amp; par les <expan abbr="ſuppoſitiõs">ſuppoſitions</expan> qui <lb></lb>ſont propres à cet art, afin d&#039;en tirer les <lb></lb>cauſes, &amp; les raiſons de tout ce qui ar­<lb></lb>riue aux Machines, dont il faut expli­<lb></lb>quer les effects, car chaque ſcience a ſes <lb></lb>definitions &amp; ſes principes, qui ſont <expan abbr="cõ-me">com­<lb></lb>me</expan> des ſemences treſ-fecondes, deſ­<lb></lb>quelles naiſſent toutes les concluſions, <lb></lb>&amp; le fruict que l&#039;on en pretend retirer, <lb></lb>Or puis que les Machines ſeruent ordi­<lb></lb>nairement pour tranſporter les choſes <lb></lb>peſantes, nous commençons par la de­<lb></lb>finition de la <emph type="italics"></emph>peſanteur,<emph.end type="italics"></emph.end> que l&#039;on peut <lb></lb>auſſi nommer <emph type="italics"></emph>grauité.<emph.end type="italics"></emph.end></s>
        </p>
        <pb pagenum="7" xlink:href="047/01/027.jpg"></pb>
        <p type="head">
          <s id="s.000092"><emph type="center"></emph><emph type="italics"></emph>Premiere definition.<emph.end type="italics"></emph.end><emph.end type="center"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000093">La <emph type="italics"></emph>peſanteur<emph.end type="italics"></emph.end> d&#039;vn corps eſt l&#039;inclina­<lb></lb>tion naturelle qu&#039;il a pour ſe mouuoir, <lb></lb>&amp; ſe porter en bas vers le centre de la <lb></lb>terre. </s>
          <s id="s.000094">Cette peſanteur ſe rencontre <lb></lb>dans les corps peſans à raiſon de la <expan abbr="quã-tité">quan­<lb></lb>tité</expan> des parties materielles, dont ils <expan abbr="sõt">sont</expan> <lb></lb>compoſez; de ſorte qu&#039;ils ſont dautant <lb></lb>plus peſans qu&#039;ils ont vne plus grande <lb></lb>quantité deſdites parties ſouz vn meſ­<lb></lb>me volume. </s>
        </p>
        <p type="head">
          <s id="s.000095"><emph type="center"></emph><emph type="italics"></emph>Deuxieſme definition.<emph.end type="italics"></emph.end><emph.end type="center"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000096">Le <emph type="italics"></emph>moment<emph.end type="italics"></emph.end> eſt l&#039;inclination du meſ­<lb></lb>me corps, lors qu&#039;elle n&#039;eſt pas ſeule­<lb></lb>ment conſiderée dans ledit corps, mais <lb></lb>conioinctement auec la ſituation qu&#039;il <lb></lb>a ſur le bras d&#039;vn leuier, ou d&#039;vne balan­<lb></lb>ce; &amp; cette ſituation fait qu&#039;il contre­<lb></lb>peſe ſouuent à vn plus grands poids, à <lb></lb>raiſon de ſa plus <expan abbr="grãde">grande</expan> diſtance d&#039;auec <lb></lb>le centre de la balance. </s>
          <s id="s.000097">Car cet éloi­<lb></lb>gnement eſtant ioint à la propre peſan­<lb></lb>teur du corps peſant, luy <expan abbr="dõne">donne</expan> vne plus <lb></lb>forte inclination à deſcendre: de ſorte 
<pb pagenum="8" xlink:href="047/01/028.jpg"></pb>que cette inclination eſt compoſée de <lb></lb>la peſanteur abſoluë du corps, &amp; de l&#039;é­<lb></lb>loignement du centre de la balance, ou <lb></lb>de l&#039;appuy du leuier. </s>
          <s id="s.000098">Nous appellerons <lb></lb>donc touſiours cette inclination com­<lb></lb>poſée, <emph type="italics"></emph>moment,<emph.end type="italics"></emph.end> qui répond au <foreign lang="grc">ῥοωὴ</foreign> des <lb></lb>Grecs. </s>
        </p>
        <p type="head">
          <s id="s.000099"><emph type="center"></emph><emph type="italics"></emph>Troiſieſme definition.<emph.end type="italics"></emph.end><emph.end type="center"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000100">Le centre de peſanteur de chaque <lb></lb>corps eſt le point autour duquel toutes <lb></lb>les parties dudit corps ſont également <lb></lb>balancées, ou équiponderantes: de ſor­<lb></lb>te que ſi l&#039;on ſ&#039;imagine que le corps ſoit <lb></lb>ſouſtenu, ou ſuſpendu par ledit point, <lb></lb>les parties qui ſont à main droite, con­<lb></lb>trepeſeront à celles de la gauche, celles <lb></lb>de derriere à celles de deuant, &amp; celles <lb></lb>d&#039;enhaut à celles d&#039;en bas, &amp; ſe tien­<lb></lb>dront tellement en équilibre, que le <lb></lb>corps ne s&#039;inclinera d&#039;vn coſté ni d&#039;au­<lb></lb>tre, quelque ſituation qu&#039;on luy puiſſe <lb></lb>donner, &amp; qu&#039;il demeurera touſiours <lb></lb>en cet eſtat. </s>
          <s id="s.000101">Or le centre de peſanteur <lb></lb>eſt le point du corps qui s&#039;vniroit au <expan abbr="cẽ-tre">cen­<lb></lb>tre</expan> des choſes peſantes, c&#039;eſt à dire au <lb></lb>centre de la terre, s&#039;il y pouuoit deſcen­<lb></lb>dre. 
<pb pagenum="9" xlink:href="047/01/029.jpg"></pb></s>
        </p>
      </chap>
      <chap>
        <p type="head">
          <s id="s.000102"><emph type="center"></emph>CHAP. III.<emph.end type="center"></emph.end></s>
        </p>
        <p type="head">
          <s id="s.000103"><emph type="center"></emph><emph type="italics"></emph>Des ſuppoſitions de cet art.<emph.end type="italics"></emph.end><emph.end type="center"></emph.end></s>
        </p>
        <p type="head">
          <s id="s.000104"><emph type="center"></emph>I. SVPPOSITION.<emph.end type="center"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000105">TOut corps peſant ſe meut telle­<lb></lb>ment en bas que le centre de ſa <lb></lb>peſanteur ne ſort iamais hors de la ligne <lb></lb>droite, qui eſt décrite, ou imaginée de­<lb></lb>puis ledit centre de peſanteur iuſques <lb></lb>à celuy de la terre. </s>
          <s id="s.000106">Ce qui eſt ſuppoſé <lb></lb>auec raiſon, car puis que le centre de <lb></lb>peſanteur de chaque corps ſe doit aller <lb></lb>vnir au centre commun des choſes pe­<lb></lb>ſantes, il eſt neceſſaire qu&#039;il y aille par <lb></lb>le chemin le plus court, c&#039;eſt à dire par <lb></lb>la ligne droite, s&#039;il n&#039;a point d&#039;empeſ­<lb></lb>chement. </s>
        </p>
        <p type="head">
          <s id="s.000107"><emph type="center"></emph>II. SVPPOSITION.<emph.end type="center"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000108">Chaque corps peſe principalement <lb></lb>ſur le centre de ſa peſanteur, dans le­<lb></lb>quel il ramaſſe, &amp; vnit toute ſon impe­<lb></lb>tuoſité, &amp; ſa peſanteur. </s>
        </p>
        <pb pagenum="10" xlink:href="047/01/030.jpg"></pb>
        <p type="head">
          <s id="s.000109"><emph type="center"></emph>III. SVPPOSITION.<emph.end type="center"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000110">Le centre de la peſanteur de deux <lb></lb>corps également peſans eſt au milieu <lb></lb>de la ligne droite qui conioint les cen­<lb></lb>tres de peſanteur deſdits corps; c&#039;eſt à <lb></lb>dire que deux corps également peſans, <lb></lb>&amp; également éloignez de l&#039;appuy de la <lb></lb>balance ont le point de leur équilibre <lb></lb>au milieu de la commune conjonction <lb></lb>de leurs éloignemens égaux: par exem­<lb></lb>ple, la diſtance CA, eſtant égale à la <lb></lb>diſtance CB, &amp; les deux poids égaux <lb></lb>G &amp; H, eſtant ſuſpendus aux points A <lb></lb>&amp; B, il n&#039;y a nulle raiſon pour laquelle <lb></lb>ils doiuent pluſtoſt s&#039;incliner d&#039;vn coſté <lb></lb>que de l&#039;autre. </s>
        </p>
        <p type="main">
          <s id="s.000111">Mais il faut remarquer que la diſtan­<lb></lb>ce des poids, ou des corps peſans d&#039;auec <lb></lb><figure id="id.047.01.030.1.jpg" xlink:href="047/01/030/1.jpg"></figure><lb></lb>l&#039;appuy <lb></lb>ſe doit <lb></lb>meſurer <lb></lb>par les li­<lb></lb>gnes <expan abbr="perpẽdiculaires">perpendiculaires</expan>, qui tombent des <lb></lb>points de la <expan abbr="ſuſpenſiõ">ſuſpenſion</expan>, ou des centres de <lb></lb>la peſanteur de chaque corps iuſques <lb></lb>au centre de la terre. </s>
          <s id="s.000112">De là vient que 
<pb pagenum="11" xlink:href="047/01/031.jpg"></pb>la diſtance BC, eſtant tranſportée en <lb></lb>CD, le poids D ne contrepeſera plus au <lb></lb>poids A, parce que la ligne tirée du <lb></lb>point de ſuſpenſion, ou du centre de <lb></lb>peſanteur du poids D iuſques au <expan abbr="cẽtre">centre</expan> <lb></lb>de la terre, ſera plus proche de l&#039;appuy <lb></lb>C, que l&#039;autre ligne tirée du point de la <lb></lb><expan abbr="ſuſpẽſion">ſuſpenſion</expan> de B, ou du <expan abbr="cẽtre">centre</expan> de peſanteur <lb></lb>du poids H. </s>
          <s id="s.000113">Il eſt donc neceſſaire que <lb></lb>les poids égaux ſoient tellement ſuſ­<lb></lb>pendus de diſtances égales, que les li­<lb></lb>gnes <expan abbr="perpẽdiculaires">perpendiculaires</expan> tirées par les cen­<lb></lb>tres de leurs peſanteurs au centre de la <lb></lb>terre, ſe trouuent <expan abbr="égallemẽt">égallement</expan> éloignées <lb></lb>de l&#039;appuy C, lors qu&#039;elles paſſeront <lb></lb>vis à vis d&#039;iceluy. </s>
        </p>
        <p type="head">
          <s id="s.000114"><emph type="center"></emph>PREMIERE ADDITION.<emph.end type="center"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000115">La figure qui ſuit explique mieux le <lb></lb>diſcours precedent, car il eſt euident <lb></lb>que le poids E qui pend au leuier AB <lb></lb>éleué en E ne peſe que <expan abbr="cõme">comme</expan> s&#039;il eſtoit <lb></lb>au point K; &amp; quand il eſt en G, il ne <lb></lb>peſe que comme s&#039;il eſtoit au point I. </s>
          <s id="s.000116"><lb></lb>Or <expan abbr="l&#039;õ">l&#039;on</expan> peut s&#039;inſtruire de pluſieurs cho­<lb></lb>ſes par cette figure; dont nous <expan abbr="parlerõs">parlerons</expan> <lb></lb>apres, ie diray ſeulement icy que NO, <pb pagenum="12" xlink:href="047/01/032.jpg"></pb>repreſente auſſi vn leuier parallele à <lb></lb><figure id="id.047.01.032.1.jpg" xlink:href="047/01/032/1.jpg"></figure><lb></lb>BA, ou ſi l&#039;on <lb></lb>veut, vne balan­<lb></lb>ce, dont le <expan abbr="cẽtre">centre</expan> <lb></lb>ou l&#039;appuy eſt en <lb></lb>D, &amp; que ce le­<lb></lb>uier peut ſeruir <lb></lb>pour abbaiſſer <lb></lb>les corps legers, <lb></lb>comme il arriue­<lb></lb>roit ſi l&#039;air eſtoit retenu dans l&#039;eau: par <lb></lb>exemple, ſi LM eſtoient des veſſies <lb></lb>remplies d&#039;air, car de n&#039;ageantes qu&#039;el­<lb></lb>les ſeroient ſur l&#039;eau, la force appliquée <lb></lb>à N hauſſant N vers A feroit abbaiſſer <lb></lb>ledit air; de ſorte que la Mechanique <lb></lb>peut auſſi bien s&#039;appliquer, &amp; ſeruir <lb></lb>pour abbaiſer les corps legers, comme <lb></lb>pour hauſſer les peſans. <lb></lb></s>
        </p>
      </chap>
      <chap>
        <p type="head">
          <s id="s.000117"><emph type="center"></emph>CHAP. IV.<emph.end type="center"></emph.end></s>
        </p>
        <p type="head">
          <s id="s.000118"><emph type="center"></emph><emph type="italics"></emph>Dans lequel l&#039;vn des principes generaux des <lb></lb>Mechaniques eſt expliqué.<emph.end type="italics"></emph.end><emph.end type="center"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000119">APres auoir expliqué les ſuppoſi­<lb></lb>tions, il faut eſtablir vn principe 
<pb pagenum="13" xlink:href="047/01/033.jpg"></pb>general, qui ſert pour demonſtrer ce <lb></lb>qui arriue à toutes ſortes de Machines, <lb></lb>à ſçauoir que les poids inegaux ſuſpen­<lb></lb>dus à des diſtances inégales peſent éga­<lb></lb>lement, &amp; ſont en équilibre, quand leſ­<lb></lb>dites diſtances ont meſme proportion <lb></lb>entr&#039;elles que les poids. </s>
          <s id="s.000120">Ce qu&#039;il faut <lb></lb>demonſtrer par la troiſieſme ſuppoſi­<lb></lb>tion, dans laquelle il eſt dit, que les <lb></lb>poids égaux peſent <expan abbr="égalemẽt">également</expan> lors qu&#039;ils <lb></lb>ſont également éloignez de l&#039;appuy: car <lb></lb>c&#039;eſt vne meſme choſe que d&#039;attacher <lb></lb>des poids égaux à des <expan abbr="diſtāces">diſtances</expan> inégales. </s>
        </p>
        <p type="main">
          <s id="s.000121">Ce qui ſe demonſtre par cette figure, <lb></lb><figure id="id.047.01.033.1.jpg" xlink:href="047/01/033/1.jpg"></figure><lb></lb><expan abbr="dãs">dans</expan> laquel­<lb></lb>le DECF <lb></lb>repreſente <lb></lb>vn cylindre <lb></lb>homogene, <lb></lb>ou de meſ­<lb></lb>me nature <lb></lb>en toutes ſes parties, lequel eſt attaché <lb></lb>par ſes deux bouts C &amp; D aux points <lb></lb>AB, de ſorte que la ligne AB eſt égale <lb></lb>à la hauteur du cylindre CF. </s>
        </p>
        <p type="main">
          <s id="s.000122">Il eſt certain que ſi on l&#039;attache par le <lb></lb>milieu au point G, qu&#039;il ſera en équili­<lb></lb>bre, parce que ſi l&#039;on tiroit vne ligne <pb pagenum="14" xlink:href="047/01/034.jpg"></pb>droite du point G au centre de la terre, <lb></lb>elle paſſeroit par le centre de la peſan­<lb></lb>teur du ſolide EF, &amp; par conſequent <lb></lb>toutes les parties qui ſont à l&#039;entour de <lb></lb>ce centre ſeroient en équilibre, par la 3. <lb></lb>definition, car c&#039;eſt meſme choſe que ſi <lb></lb>l&#039;on attachoit les deux moitiez du cy­<lb></lb>lindre aux deux points A &amp; B. </s>
        </p>
        <p type="main">
          <s id="s.000123">Suppoſons maintenant que le cylin­<lb></lb>dre ſoit couppé en deux parties inéga­<lb></lb>les par les points, ou par la ligne SI, il <lb></lb>eſt certain qu&#039;elles ne ſeront pas équi­<lb></lb>libres, &amp; conſequemment qu&#039;elles ne <lb></lb>demeureront pas en la ſituation prece­<lb></lb>dente, n&#039;ayant point d&#039;autre ſouſtien <lb></lb>qu&#039;aux points A &amp; B. </s>
          <s id="s.000124">Mais ſi l&#039;on atta­<lb></lb>che vne chorde au point H, pour ſou­<lb></lb>ſtenir le poids par le point I, G ſera en­<lb></lb>core le centre de l&#039;équilibre, parce que <lb></lb>l&#039;on n&#039;a pas changé la peſanteur, ny la <lb></lb>ſituation des parties du cylindre. </s>
        </p>
        <p type="main">
          <s id="s.000125">D&#039;où il s&#039;enſuit que n&#039;y ayant point de <lb></lb>changement aux parties du poids, ny <lb></lb>dans leur ſituation à l&#039;égard de la ligne <lb></lb>AB, le meſme point G demeurera le <lb></lb>centre de l&#039;équilibre, comme il l&#039;a eſté <lb></lb>dés le commencement. </s>
          <s id="s.000126">Car puis que <lb></lb>la partie ES retiendra touſiours la meſ-
<pb pagenum="15" xlink:href="047/01/035.jpg"></pb>me diſpoſition que la ligne AH, à la­<lb></lb>quelle elle ſera parallele, ſi l&#039;on y ad­<lb></lb>iouſte le lien NL pour ſouſtenir SD <lb></lb>par ſon centre de peſanteur, &amp; ſi l&#039;on <lb></lb>adiouſte ſemblablement le lien MK <lb></lb>pour ſouſtenir la partie du cylindre CS <lb></lb>diſiointe d&#039;auec SD, il n&#039;y a nul doute <lb></lb>que ces deux parties demeureront en­<lb></lb>core en équilibre au point G. </s>
          <s id="s.000127">Par où <lb></lb>l&#039;on void que ces 2. parties eſtant ainſi <lb></lb>ſuſpenduës, &amp; attachées ont vn mo­<lb></lb>ment égal, lequel eſt l&#039;origine, &amp; la <lb></lb>ſource de l&#039;équilibre du point G, en fai­<lb></lb>ſant que la diſtance GN ſoit d&#039;autant <lb></lb>plus grande que la diſtance GM, que <lb></lb>la partie du cylindre ES eſt plus gran­<lb></lb>de que la partie SD. </s>
          <s id="s.000128">Ce qu&#039;il eſt ayſé <lb></lb>de demonſtrer: dautant que la ligne <lb></lb>MH eſtant la moitié de la ligne HA, <lb></lb>&amp; la ligne NH eſtant la moitié de la li­<lb></lb>gne HB, toute la ligne MN ſera la <lb></lb>moitié de toute la ligne AB, dont GB <lb></lb>eſt encore la moitié, de ſorte que MN <lb></lb>&amp; BG ſont égales entr&#039;elles: deſquel­<lb></lb>les ſi l&#039;on oſte la commune partie GH, <lb></lb>MH ſera égale à GN. </s>
        </p>
        <p type="main">
          <s id="s.000129">Or nous auons deſia fait voir que <lb></lb>MG eſt égale à HN. D&#039;où il s&#039;enſuit 
<pb pagenum="16" xlink:href="047/01/036.jpg"></pb>qu&#039;il y a meſme raiſon de MN à HN, <lb></lb>que de KI à LI, &amp; de la double de EI <lb></lb>à la double de DI, &amp; <expan abbr="finalemẽt">finalement</expan> du ſo­<lb></lb>lide CS au ſolide SD, dont CI, &amp; DI <lb></lb>ſont les hauteurs. </s>
        </p>
        <p type="main">
          <s id="s.000130">Il faut donc conclurre qu&#039;il y a meſ­<lb></lb>me raiſon de MG à GN, que de CI à <lb></lb>DS, &amp; par conſequent que ces deux <lb></lb>corps CI &amp; DS ne peſent pas ſeule­<lb></lb>ment également, quand leurs <expan abbr="diſtãces">diſtances</expan> <lb></lb>d&#039;auec l&#039;appuy, ou le point d&#039;où ils ſont <lb></lb>ſuſpendus, ſont en raiſon reciproque de <lb></lb>leurs peſanteurs, mais auſſi que c&#039;eſt vne <lb></lb>meſme choſe que ſi l&#039;on attachoit des <lb></lb>poids égaux à des diſtances égales: de <lb></lb>ſorte que la peſanteur de CS s&#039;eſtend <lb></lb>&amp; ſe communique en quelque maniere <lb></lb>virtuellement par delà le ſouſtien G, <lb></lb>duquel la peſanteur ID s&#039;éloigne, &amp; ſe <lb></lb>retire, comme l&#039;on peut comprendre <lb></lb>par ce diſcours. </s>
          <s id="s.000131">Ce qui arriuera ſem­<lb></lb>blablement ſi ces corps cylindriques <lb></lb>ſont reduits, &amp; changez aux ſpheres X <lb></lb>&amp; Z, ou en telles figures que l&#039;on vou­<lb></lb>dra, car l&#039;on aura touſiours le meſme <lb></lb>équilibre, la figure n&#039;eſtant qu&#039;vne qua­<lb></lb>lité, laquelle n&#039;a pas la <expan abbr="puiſsãce">puiſsance</expan> de la pe­<lb></lb>ſanteur, qui deriue de la ſeule <expan abbr="quãtité">quantité</expan>. </s>
        </p>
        <pb pagenum="17" xlink:href="047/01/037.jpg"></pb>
        <p type="main">
          <s id="s.000132"><emph type="italics"></emph>Il faut donc conclurre que les poids inégaux <lb></lb>peſent également, &amp; produiſent l&#039;équilibre, <lb></lb>lors qu&#039;ils ſont ſuſpendus de diſtances iné­<lb></lb>gales qui ſont en raiſon reciproque deſdits <lb></lb>poids.<emph.end type="italics"></emph.end><lb></lb></s>
        </p>
      </chap>
      <chap>
        <p type="head">
          <s id="s.000133"><emph type="center"></emph>CHAP. V.<emph.end type="center"></emph.end></s>
        </p>
        <p type="head">
          <s id="s.000134"><emph type="center"></emph><emph type="italics"></emph>Où l&#039;on void quelques aduertiſſemens ſur <lb></lb>le diſcours precedent.<emph.end type="italics"></emph.end><emph.end type="center"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000135">APres auoir <expan abbr="demõſtré">demonſtré</expan> que les mou­<lb></lb>uements des poids inégaux ſont <lb></lb>égaux, quand ils ſont attachez à des <lb></lb>points, dont les diſtances d&#039;auec l&#039;ap­<lb></lb>puy ont meſme proportion que les <lb></lb><figure id="id.047.01.037.1.jpg" xlink:href="047/01/037/1.jpg"></figure><lb></lb>poids, <lb></lb>il faut <lb></lb>enco­<lb></lb>re re­<lb></lb>marquer vne autre proprieté qui con­<lb></lb>firme la verité precedente, car ſi l&#039;on <lb></lb>conſidere la balance BD diuiſée en <lb></lb>parties inégales par le point C, &amp; que les <lb></lb>poids <expan abbr="ſuſpẽdus">ſuſpendus</expan> aux points B &amp; D ſoient <lb></lb>en raiſon reciproque des diſtances BC, <lb></lb>&amp; CD, c&#039;eſt à dire que le poids atta-
<pb pagenum="18" xlink:href="047/01/038.jpg"></pb>ché à B ſoit d&#039;autant plus grand que le <lb></lb>poids attaché à D, que la diſtance CD <lb></lb>eſt plus grande que la diſtance CB, il <lb></lb>eſt certain que l&#039;vn contrepeſera l&#039;au­<lb></lb>tre, &amp; qu&#039;ils ſeront en equilibre: &amp; que <lb></lb>ſi l&#039;on adiouſte quelque choſe à l&#039;vn, par <lb></lb>exemple, au poids D, qu&#039;il deſcendra <lb></lb>en bas en I, &amp; conſequemment qu&#039;il <lb></lb>éleuera les poids B en G. </s>
          <s id="s.000136">Mais ſi l&#039;on <lb></lb>conſidere le mouuement du poids D, <lb></lb>&amp; du poids B, <expan abbr="l&#039;õ">l&#039;on</expan> trouuera que le mou­<lb></lb>uement de D deſcendant en I ſur paſſe <lb></lb>autant le mouuement de B en G, com­<lb></lb>me la diftance DC ſurpaſſe la diſtance <lb></lb>CB, ou CG, car les deux angles GCB, <lb></lb>&amp; DC I ſont égaux, &amp; <expan abbr="conſequemmẽt">conſequemment</expan> <lb></lb>les deux parties de cercle décrites par <lb></lb>D &amp; par B ſont ſemblables, &amp; ont meſ­<lb></lb>me proportion entr&#039;elles que leurs ſe­<lb></lb>midiametres BC, &amp; CD, par leſquels <lb></lb>elles ont eſté décrites. </s>
        </p>
        <p type="main">
          <s id="s.000137">D&#039;où il ſ&#039;enſuit que la viſteſſe du poids <lb></lb>D, qui <expan abbr="deſcẽd">deſcend</expan> en I ſurpaſſe autant cel­<lb></lb>le du poids B qui monte en G, que la <lb></lb>peſanteur de B eſt plus grande que cel­<lb></lb>le de D; &amp; que l&#039;on ne peut éleuer B <lb></lb>que D ne ſe meuue plus viſte: parce <lb></lb>que la viſteſſe de D <expan abbr="recompẽſe">recompenſe</expan> la gran-
<pb pagenum="19" xlink:href="047/01/039.jpg"></pb>de reſiſtence de B, qui monte <expan abbr="lentemẽt">lentement</expan> <lb></lb>en G, tandis que D deſcend bien viſte <lb></lb>en I, de ſorte que G a autant de tardi­<lb></lb>ueté que de peſanteur, comme D a au­<lb></lb>tant de viſteſſe que de legereté. </s>
        </p>
        <p type="main">
          <s id="s.000138">Or il eſt ayſé de conclurre par tout ce <lb></lb>diſcours la grande force qu&#039;apporte la <lb></lb>viſteſſe du mouuement, pour accroiſtre <lb></lb><figure id="id.047.01.039.1.jpg" xlink:href="047/01/039/1.jpg"></figure><lb></lb>la puiſ­<lb></lb>ſance du <lb></lb>mobile, <lb></lb>laquelle <lb></lb>eſt d&#039;autant plus grande que le mouue­<lb></lb>ment eſt plus viſte. </s>
          <s id="s.000139">Mais auant que de <lb></lb>paſſer outre, il faut remarquer que les <lb></lb>diſtances qui ſont entre les bras de la <lb></lb>balance, &amp; l&#039;appuy doiuent eſtre me­<lb></lb>ſurées par la diſtance horizontale: par <lb></lb>exemple, les poids A &amp; B ſont égale­<lb></lb>ment éloignez de l&#039;appuy C: c&#039;eſt pour­<lb></lb>quoy ils ſont en équilibre, qu&#039;ils per­<lb></lb>dent, lors que le poids B eſt éleué en D, <lb></lb>dautant que la ligne tirée <expan abbr="perpendicu-lairemẽt">perpendicu­<lb></lb>lairement</expan> de D ſur l&#039;horizon BCA vers <lb></lb>le centre de la terre, s&#039;approche plus <lb></lb>pres de l&#039;appuy C, que ne fait le point <lb></lb>B: &amp; partant D ne peſe pas tant que B, <lb></lb>à raiſon de ſa ſituation, &amp; par conſe-
<pb pagenum="20" xlink:href="047/01/040.jpg"></pb>quent D n&#039;eſt plus équilibre à raiſon <lb></lb>que la diſtance horizontale de D à C <lb></lb>eſt moindre que celle de B à C. <lb></lb></s>
        </p>
      </chap>
      <chap>
        <p type="head">
          <s id="s.000140"><emph type="center"></emph>CHAP. VI.<emph.end type="center"></emph.end></s>
        </p>
        <p type="head">
          <s id="s.000141"><emph type="center"></emph><emph type="italics"></emph>De la Romaine, de la Balance, &amp; du Leuier,<emph.end type="italics"></emph.end><emph.end type="center"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000142">LE meſme principe qui a eſté expli­<lb></lb>qué dans le 4. &amp; le 5. chap. </s>
          <s id="s.000143">ſert en­<lb></lb>core pour entendre la nature de ces 3. <lb></lb>inſtrumens, dont le premier (que les <lb></lb>Latins appellent <emph type="italics"></emph>Statera,<emph.end type="italics"></emph.end> les Grecs <lb></lb><foreign lang="grc">φάλαγξ</foreign> <emph type="italics"></emph>Phalanx<emph.end type="italics"></emph.end>; &amp; que nous appellons <lb></lb>vulgairement la <emph type="italics"></emph>Romaine,<emph.end type="italics"></emph.end> le <emph type="italics"></emph>Crochet,<emph.end type="italics"></emph.end> le <lb></lb><emph type="italics"></emph>Pezon,<emph.end type="italics"></emph.end> ou le <emph type="italics"></emph>Poids<emph.end type="italics"></emph.end>) eſt vtile pour peſer <lb></lb>toutes ſortes de fardeaux par le moyen <lb></lb>d&#039;vn contrepoids mobile, que l&#039;on <expan abbr="nõ-me">nom­<lb></lb>me</expan> le <emph type="italics"></emph>Pezon,<emph.end type="italics"></emph.end> &amp; que les Grecs appellent <lb></lb><foreign lang="grc">αντισήχωμα, σφαίρωμα, ἀρτήμα</foreign>, &amp; les Latins <lb></lb><emph type="italics"></emph>æquipondium.<emph.end type="italics"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000144">Soit donc la Romaine BD, dont le <lb></lb>ſouſtien ſoit au point C, que les Grecs <lb></lb>appellent <foreign lang="grc">σωάρτιον, &amp; ὑπομόχλιον</foreign>, &amp; les La­<lb></lb>tins <emph type="italics"></emph>agina, ſpartum,<emph.end type="italics"></emph.end> &amp; <emph type="italics"></emph>anſa.<emph.end type="italics"></emph.end></s>
          <s id="s.000145"> Que B ſoit <lb></lb>le fardeau que l&#039;on veut peſer, &amp; D le <lb></lb>contrepoids. </s>
          <s id="s.000146">Ie dis que s&#039;il y a meſme 
<pb pagenum="21" xlink:href="047/01/041.jpg"></pb>raiſon de la diſtance DC à CB, que du <lb></lb>poids B au contrepoids D, qu&#039;ils ſeront <lb></lb>en équilibre, parce que les diſtances des <lb></lb>bras, ou des branches de la Romaine <lb></lb>ſont en raiſon reciproque des poids qui <lb></lb>ſe contrebalancent. </s>
        </p>
        <p type="main">
          <s id="s.000147">Or cet inſtrument n&#039;eſt pas different <lb></lb>du leuier, qui ſert à remuer des fardeaux <lb></lb>treſ-lourds, &amp; treſ-peſans auec peu de <lb></lb>force, comme l&#039;on void dans cette meſ­<lb></lb>me figure, dans laquelle B repreſente <lb></lb>le fardeau, qu&#039;il faut leuer en G; &amp; C <lb></lb>repreſente l&#039;appuy ſur lequel le leuier <lb></lb>BP preſſe, &amp; ſe meut &amp; la main, ou <lb></lb>quelque autre force preſſe le leuier au <lb></lb>point D, &amp; l abaiſſe iuſques à I pour fai­<lb></lb>re monter B en G. </s>
        </p>
        <p type="main">
          <s id="s.000148">Cecy eſtant poſé, la force miſe <lb></lb>en D leuera le poids B toutes &amp; <lb></lb>quantesfois qu&#039;il y aura meſme raiſon <lb></lb>de la <expan abbr="diſtãce">diſtance</expan> DC à la diſtance BC, que <lb></lb>du poids B à la force D, de ſorte que <lb></lb>l&#039;on peut touſiours diminuer la force à <lb></lb>meſure que l&#039;on allonge la partie du le­<lb></lb>uier CD: par exemple, parce qu&#039;il y a <lb></lb>5. fois plus loin de C à D que de C à B, <lb></lb>ſi B peſe 5. liures, la force d&#039;vne liure le <lb></lb>tiendra en équilibre au point D, parce 
<pb pagenum="22" xlink:href="047/01/042.jpg"></pb>que CD eſt quintuple de CB. </s>
        </p>
        <p type="main">
          <s id="s.000149">Mais l&#039;auantage de ces 3. inſtru­<lb></lb>mens ne conſiſte pas à ſurmonter, ou à <lb></lb>tromper la nature, en faiſant qu&#039;vne <lb></lb>petite force ſurmonte vne grande reſi­<lb></lb>ſtence, car on fera le meſme effet en <lb></lb>meſme temps, &amp; auec meſme force <expan abbr="sãs">sans</expan> <lb></lb>la <expan abbr="diſtãce">diſtance</expan> CD, laquelle eſt cauſe que la <lb></lb>force D a cinq fois plus de chemin à fai­<lb></lb>re de D en I, que le poids n&#039;en fait de <lb></lb>B en G, &amp; conſequemment elle em­<lb></lb><figure id="id.047.01.042.1.jpg" xlink:href="047/01/042/1.jpg"></figure><lb></lb>ploye <lb></lb>5. fois <lb></lb>pl<emph type="sup"></emph>9<emph.end type="sup"></emph.end> de <lb></lb>temps <lb></lb>que ſi elle eſtoit en L, pour ſe tranſpor­<lb></lb>ter en M. </s>
          <s id="s.000150">Or la force D eſtant en L le­<lb></lb>uera la cinquieſme partie du poids B de <lb></lb>B en G, en meſme temps que D leue B, <lb></lb>de ſorte qu&#039;elle leuera tout le poids B <lb></lb>en G en repetant 5. fois le chemin LM; <lb></lb>ce qui eſt la meſme choſe que de faire <lb></lb>vne fois le chemin DI: &amp; conſequem­<lb></lb>ment le tranſport de B en G ne requiert <lb></lb>pas moins de force, ou moins de <expan abbr="tẽps">temps</expan>, <lb></lb>ou vn chemin plus court, ſoit que l&#039;on <lb></lb>mette la force en D, ou en L. </s>
        </p>
        <p type="main">
          <s id="s.000151">D&#039;où il faut conclurre que le leuier 
<pb pagenum="23" xlink:href="047/01/043.jpg"></pb>ſert ſeulement pour mouuoir les far­<lb></lb>deaux tout d&#039;vn coup, &amp; à vne ſeule <lb></lb>fois, qu&#039;il faudroit autrement mouuoir <lb></lb>par parties, &amp; à pluſieurs fois. </s>
        </p>
        <p type="head">
          <s id="s.000152"><emph type="center"></emph>II. ADDITION.<emph.end type="center"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000153">L&#039;on pourroit icy traiter des deux <lb></lb>autres ſortes de leuiers, <expan abbr="dõt">dont</expan> parle Guid­<lb></lb>Vbalde dans ſes Mechaniques, mais il <lb></lb>ſuffit de comprendre la raiſon de celuy <lb></lb>que propoſe cét Autheur, car nous par­<lb></lb>lerons des autres ailleurs. </s>
          <s id="s.000154">I&#039;adjouſte <lb></lb>ſeulement cette figure, par laquelle <lb></lb>l&#039;on comprendra mieux ſon intention. <lb></lb><figure id="id.047.01.043.1.jpg" xlink:href="047/01/043/1.jpg"></figure><lb></lb>Soit <expan abbr="dõc">donc</expan> le <lb></lb>leuier AF, <lb></lb>par lequel <lb></lb>la force ap­<lb></lb>pliquée en F <lb></lb>leue le far­<lb></lb>deau A iuſ­<lb></lb>ques à G, <lb></lb>encore que <lb></lb>elle ſoit 4. <lb></lb>fois moindre qu&#039;A, mais l&#039;arc de ſon <lb></lb>chemin FI eſt quatre fois plus grand <lb></lb>que l&#039;arc AG, car FM, ML, LK, 
<pb pagenum="24" xlink:href="047/01/044.jpg"></pb>&amp; K I&#039;eſt égal à AG, comme l&#039;on void <lb></lb>par la conſtruction, de ſorte que F ne <lb></lb>gaigne rien en force qu&#039;il ne le perde en <lb></lb>chemin, ou ne gaigne rien en chemin <lb></lb>qu&#039;il ne le perde en force. </s>
          <s id="s.000155">Or la plus <lb></lb>grande difficulté des Mechaniques <expan abbr="cõ-ſiſte">con­<lb></lb>ſiſte</expan>, ce me ſemble, à ſçauoir pourquoy <lb></lb>la plus grande diſtance de la force, ou <lb></lb>du poids F d&#039;auec l&#039;appuy B augmente <lb></lb>ladite force, &amp; pourquoy le poids A ou <lb></lb>C eſtant tranſporté en F a quatre fois <lb></lb>plus de force que deuant. </s>
          <s id="s.000156">Ariſtote croit <lb></lb>que la raiſon en doit eſtre priſe de ce <lb></lb>que le centre B empeſche plus les poids <lb></lb>prochains que les éloignez, dautant <lb></lb>qu&#039;il les contraint dauantage, &amp; leur <lb></lb>communique <expan abbr="tãt">tant</expan> qu&#039;il peut ſon immo­<lb></lb>bilité, de ſorte que le poids eſtant en C <lb></lb>ne peut ſe mouuoir que de C en H, au <lb></lb>lieu qu&#039;eſtant en F il fait 4. fois autant <lb></lb>de chemin en meſme temps, &amp; eſtant <lb></lb>en D il en fait deux fois autant par le <lb></lb>quart de cercle commençant en D. </s>
          <s id="s.000157">Ce <lb></lb>que l&#039;on peut <expan abbr="ayſémẽt">ayſément</expan> appliquer à l&#039;ap­<lb></lb>proche, ou à la diſtance des creatures <lb></lb>d&#039;auec la perfection Diuine, laquelle <lb></lb>rend les creatures raiſonnables dautant <lb></lb>plus fixes &amp; immobiles dans ſa grace, &amp; 
<pb pagenum="25" xlink:href="047/01/045.jpg"></pb>dans la ferme reſolution du bien, qu&#039;el­<lb></lb>les s&#039;en approchent plus prés. </s>
        </p>
        <p type="main">
          <s id="s.000158">Mais pour retourner à la raiſon pre­<lb></lb>cedente, ie dy que le poids qui eſt en F <lb></lb>veut tomber en droite ligne par FNP <lb></lb>vers le centre de la terre, &amp; qu&#039;eſtant <lb></lb>contraint par l&#039;appuy, ou le centre B de <lb></lb>tomber par le cercle FI, qu&#039;il a plus de <lb></lb>liberté, &amp; qu&#039;il s&#039;approche 4. fois da­<lb></lb>uantage de la perpendiculaire FP, que <lb></lb>lors qu&#039;il deſcend par l&#039;arc CH, com­<lb></lb>me ie demonſtre par l&#039;angle de contin­<lb></lb>gence PFN, qui eſt ſouzquadruple de <lb></lb>l&#039;angle de contingence HCO, &amp; <expan abbr="con-ſequẽment">con­<lb></lb>ſequemment</expan> la ligne de contrainte HO <lb></lb>eſt quadruple de la ligne PN: par où <lb></lb>l&#039;on void clairement que B, &amp; F s&#039;ap­<lb></lb>prochant également du centre de la <lb></lb>terre en meſme <expan abbr="tẽps">temps</expan> par les arcs CH, <lb></lb>&amp; FP, puiſque les lignes FN &amp; BH <lb></lb>ſont égales, que F eſt moins contraint <lb></lb>que C. </s>
        </p>
        <p type="main">
          <s id="s.000159">L&#039;on peut dire la meſme choſe de la <lb></lb>force de la main miſe en F, dont <expan abbr="l&#039;intẽ-tion">l&#039;inten­<lb></lb>tion</expan> eſt de ſe mouuoir par la ligne droi­<lb></lb>te FP. </s>
          <s id="s.000160">Ie laiſſe maintenant pluſieurs <lb></lb>autres conſiderations qui ſe peuuent <lb></lb>expliquer par cette figure: par exem-
<pb pagenum="26" xlink:href="047/01/046.jpg"></pb>ple, que le poids F, ou B <expan abbr="eſtãt">eſtant</expan> en ſa plei­<lb></lb>ne liberté, deſcend de F en P ou de B <lb></lb>en I en deux fois autant de temps qu&#039;il <lb></lb>deſcend de F en N, comme i&#039;ay mon­<lb></lb>ſtré ailleurs. <lb></lb></s>
        </p>
      </chap>
      <chap>
        <p type="head">
          <s id="s.000161"><emph type="center"></emph>CHAP. VII.<emph.end type="center"></emph.end></s>
        </p>
        <p type="head">
          <s id="s.000162"><emph type="center"></emph><emph type="italics"></emph>Du Tour, de la Rouë, de la Gruë, du Guin­<lb></lb>dax, &amp; des autres inſtrumens <lb></lb>ſemblables.<emph.end type="italics"></emph.end><emph.end type="center"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000163">LEs Latins appellent le Tour <emph type="italics"></emph>axis in <lb></lb>peritrochio,<emph.end type="italics"></emph.end> parce qu&#039;il n&#039;eſt autre <lb></lb>choſe qu&#039;vn axe, ou vn eſſieu, <expan abbr="dõt">dont</expan> les ex­<lb></lb>tremitez ſont appuyées ſur deux pieces <lb></lb>de bois, ſur leſquelles il ſe tourne. </s>
          <s id="s.000164">Or la <lb></lb>nature de cet inſtrument depend im­<lb></lb>mediatement du leuier, car il n&#039;eſt au­<lb></lb>tre choſe qu&#039;vn leuier perpetuel, &amp; <expan abbr="cõ-tinué">con­<lb></lb>tinué</expan>. </s>
          <s id="s.000165">Car ſoit le leuier BAC, dont le <lb></lb>ſouſtien eſt en A; &amp; que le poids G ſoit <lb></lb>attaché au point B, &amp; que la force ſoit <lb></lb>au point C, ſi l&#039;on tranſporte le leuier <lb></lb>en AD, le poids G ſe hauſſera vers D. </s>
          <s id="s.000166"><lb></lb>Mais ſi l&#039;on veut le faire monter plus <lb></lb>haut, il faut arreſter le poids en D, afin 
<pb pagenum="27" xlink:href="047/01/047.jpg"></pb>de le releuer encore vne autrefois de B <lb></lb>à D en remettant le leuier dans la meſ­<lb></lb>me ſituation qu&#039;il auoit deuant, &amp; de <lb></lb>leuer peu à peu le poids G, iuſques à ce <lb></lb>qu&#039;il ſoit arriué au point B, ou à tel au­<lb></lb>tre point que l&#039;on voudra. </s>
        </p>
        <p type="main">
          <s id="s.000167">Mais la repetition trop frequente de <lb></lb><figure id="id.047.01.047.1.jpg" xlink:href="047/01/047/1.jpg"></figure><lb></lb>cette action <expan abbr="eſtãt">eſtant</expan> <lb></lb>trop incommode, <lb></lb>ou trop ennuyeu­<lb></lb>ſe, l&#039;on a inuenté <lb></lb>le Tour, &amp; la <lb></lb>Rouë, qui ioi­<lb></lb>gnent enſemble <lb></lb>vne infinité de le­<lb></lb>uiers, afin de continuer <expan abbr="l&#039;operatiõ">l&#039;operation</expan> ſans <lb></lb>aucune interruption. </s>
          <s id="s.000168">C&#039;eſt pour ce ſu­<lb></lb>iet que la rouë ſe meut à l&#039;entour du <lb></lb>centre A, dont le rayon eſt AC, &amp; le <lb></lb>ſemidiametre de ſon eſſieu eſt AB; le­<lb></lb>quel doit eſtre d&#039;vne matiere bien ſo­<lb></lb>lide, &amp; bien forte, parce qu&#039;il ſupporte <lb></lb>toute la peſanteur du fardeau. </s>
        </p>
        <p type="main">
          <s id="s.000169">L&#039;eſſieu A trauerſe la rouë par le mi­<lb></lb>lieu, &amp; doit eſtre ſouſtenu de deux <lb></lb>pieds tres-forts, &amp; eſtre enuironné de <lb></lb>la chorde DBG, à laquelle on attache <lb></lb>le fardeau G. </s>
          <s id="s.000170">Il faut auſſi mettre vne 
<pb pagenum="28" xlink:href="047/01/048.jpg"></pb>autre chorde àlentour de la <expan abbr="grãde">grande</expan> rouë, <lb></lb>afin d&#039;y attacher l&#039;autre fardeau I. </s>
          <s id="s.000171">Or <lb></lb>cecy eſtant poſé, il eſt euident que ſi <lb></lb>CA eſt à BA comme le fardeau G au <lb></lb>fardeau I, que le poids I ſouſtiendra &amp; <lb></lb><expan abbr="contrebalãcera">contrebalancera</expan> G, &amp; que ſi l&#039;on adiou­<lb></lb>ſte quelque force, ou poids à I, qu&#039;il <lb></lb>l&#039;emportera. </s>
        </p>
        <p type="main">
          <s id="s.000172">Et parce que les chordes qui <expan abbr="ſouſtiẽ-nent">ſouſtien­<lb></lb>nent</expan> le poids touchent touſiours la <expan abbr="cir-conferẽce">cir­<lb></lb>conference</expan> de la rouë auec laquelle l&#039;eſ­<lb></lb>ſieu tourne, &amp; conſequemment qu&#039;el­<lb></lb>les ſont touſiours en meſme ſituation à <lb></lb>l&#039;égard des diſtances BA, &amp; CA, le <lb></lb>mouuement ſe continuë perpetuelle­<lb></lb>ment, &amp; le poids I deſcendant fait <expan abbr="mõ-ter">mon­<lb></lb>ter</expan> le poids G. </s>
          <s id="s.000173">Mais il faut remarquer <lb></lb>qu&#039;il eſt neceſſaire de mettre la chorde <lb></lb>à l&#039;entour de la rouë, afin que le poids <lb></lb>demeure ſuſpendu du point de la cir­<lb></lb>conference que la chorde touche: Car <lb></lb>ſi la chorde eſtoit pendante du point F, <lb></lb>elle couperoit la rouë par FN, &amp; par <lb></lb><expan abbr="conſequẽt">conſequent</expan> elle ne pourroit ſe mouuoir, <lb></lb>parce que le moment, ou la force du <lb></lb>poids N ſeroit diminuée, puis qu&#039;elle <lb></lb>n&#039;eſt pas plus grande que ſi la chorde <lb></lb>eſtoit attachée au point N, dautant que 
<pb pagenum="29" xlink:href="047/01/049.jpg"></pb>ſa diſtance d&#039;auec le centre A eſt deter­<lb></lb>minée par la ligne AN, (comme l&#039;on <lb></lb>demonſtre par la perpendiculaire FN) <lb></lb>&amp; non par le ſemidiametre FA. </s>
          <s id="s.000174">Il faut <lb></lb>donc que la force inanimée, qui n&#039;a <lb></lb>point d&#039;autre vertu que d&#039;aller en bas, <lb></lb>ſoit pendue à vne chorde qui touche la <lb></lb>rouë &amp; qui ne la coupe pas. </s>
        </p>
        <p type="main">
          <s id="s.000175">Mais ſi la force eſt animée, elle peut <lb></lb>faire tourner la rouë pour leuer le poids <lb></lb>en quelque endroit de la rouë qu&#039;elle ſe <lb></lb>rencontre: par exemple en F, mais elle <lb></lb>tirera par la ligne trauerſante FL qui <lb></lb>fera vn angle droit auec la ligne AF, &amp; <lb></lb>non par la perpendiculaire FN. L&#039;on <lb></lb>peut neantmoins faire ſeruir la force <lb></lb>inanimée à tous les points de la circon­<lb></lb>ference par le moyen de la poulie L, car <lb></lb>le poids, ou la force K tirera par la ligne <lb></lb>droite LK, &amp; leuera le poids G en B, <lb></lb>&amp; <expan abbr="conſequemmẽt">conſequemment</expan> elle agit par la ligne <lb></lb>FL, &amp; par ce moyen elle ſe conſerue <lb></lb>touſiours en meſme diſtance d&#039;auec le <lb></lb>centre de la rouë, &amp; de l&#039;eſſieu A: de <lb></lb>ſorte que le leuier BC ſe rend perpe­<lb></lb>tuel par l&#039;entremiſe de la rouë. </s>
        </p>
        <p type="main">
          <s id="s.000176">Il faut donc conclurre de tout ce diſ­<lb></lb>cours que dans cét inſtrument la force 
<pb pagenum="30" xlink:href="047/01/050.jpg"></pb>C ou F doit touſiours auoir meſme <expan abbr="pro-portiõ">pro­<lb></lb>portion</expan> auec le poids, que le ſemidiame <lb></lb>tre de l&#039;axe BA a auec le ſemidiametre <lb></lb>de la rouë AC. </s>
        </p>
        <p type="main">
          <s id="s.000177">Quant à la Gruë elle eſt de meſme <lb></lb>nature que le Tour, mais le Cabeſtan, <lb></lb>le Guindax, ou l&#039;orgene eſt vn peu dif­<lb></lb>rent, car ſon axe ſe meut perpendicu­<lb></lb>laire à l&#039;orizon, &amp; ſa rouë ſe meut hori­<lb></lb>zontalement, au lieu que l&#039;axe du Tour <lb></lb><figure id="id.047.01.050.1.jpg" xlink:href="047/01/050/1.jpg"></figure><lb></lb>ſe meut horizontale­<lb></lb>ment, &amp; ſa rouë <expan abbr="per-pendiculairemẽt">per­<lb></lb>pendiculairement</expan>. </s>
          <s id="s.000178">Ce <lb></lb>qui eſt tres-ayſé à <expan abbr="cõ-prendre">com­<lb></lb>prendre</expan> par le moyen <lb></lb>de cette figure, dont <lb></lb>il faut s&#039;imaginer que <lb></lb>l&#039;axe DE ſoit <expan abbr="perpẽ-diculaire">perpen­<lb></lb>diculaire</expan> à l&#039;horizon, &amp; que la rouë F <lb></lb>CG ſoit parallele au meſme horizon. </s>
          <s id="s.000179"><lb></lb>Or la chorde DH tirera, ou trainera le <lb></lb>fardeau H iuſques à l&#039;axe B, ou iuſques <lb></lb>où l&#039;on voudra, par la force d&#039;vn hom­<lb></lb>me, ou d&#039;vn cheual qui conduira le le­<lb></lb>uier B à l&#039;entour de la circonference F <lb></lb>GC, &amp; fera autant de tours comme il <lb></lb>eſt neceſſaire pour attirer le fardeau par <lb></lb>le moyen de la chorde DH, qui ſ&#039;en-
<pb pagenum="31" xlink:href="047/01/051.jpg"></pb>tortille à l&#039;entour de l&#039;eſſieu DEA: <lb></lb>d&#039;où il eſt ayſé de conclurre la fabrique <lb></lb>du Guindax, ou du Cabeſtan. </s>
        </p>
        <p type="main">
          <s id="s.000180">Cecy eſtant poſé, il eſt euident que <lb></lb>le point, ou le centre du ſouſtien eſt en <lb></lb>B, &amp; que l&#039;éloignement de la force F ſe <lb></lb>prend du point B, &amp; celuy du poids de <lb></lb>B à D, de ſorte que FBD forme vn le­<lb></lb>uier, en vertu duquel la force F acquiert <lb></lb>vne force ègale à la reſiſtance du poids, <lb></lb>lors que la diſtance FB a meſme pro­<lb></lb>portion à BD, que le fardeau H à la <lb></lb>force F. </s>
        </p>
        <p type="main">
          <s id="s.000181">Mais la nature n&#039;eſt point trompée ny <lb></lb>ſurmontée, &amp; l&#039;on ne gaigne rien, par­<lb></lb>ce que ſi le fardeau a dix fois plus de re­<lb></lb>ſiſtence que la force F, la diſtance FB <lb></lb>doit neceſſairement eſtre decuple de <lb></lb>BD, &amp; la circonference FCG decuple <lb></lb>de la <expan abbr="circõference">circonference</expan> EAD; de ſorte que <lb></lb>le poids ne fera que la dixieſme partie <lb></lb>du chemin de la circonference GCF; <lb></lb>par <expan abbr="cõſequent">conſequent</expan> ſi l&#039;on diuiſoit le fardeau <lb></lb>en 10. parties, chacune répondroit à la <lb></lb>dixieſme partie du mouuement &amp; de la <lb></lb>force F, c&#039;eſt pourquoy ſi l&#039;on portoit <lb></lb>en dix voyages chaque dixieſme partie <lb></lb>autour de l&#039;axe, l&#039;on ne chemineroit 
<pb pagenum="32" xlink:href="047/01/052.jpg"></pb>pas <expan abbr="dauãtage">dauantage</expan> que ſi l&#039;on faiſoit vne fois <lb></lb>le tour GCF, &amp; l&#039;on <expan abbr="cõduiroit">conduiroit</expan> le meſ­<lb></lb>me fardeau en meſme temps à la meſ­<lb></lb>me diſtance. </s>
        </p>
        <p type="main">
          <s id="s.000182">Il faut donc conclurre que la com­<lb></lb>modité de cette Machine conſiſte ſeu­<lb></lb>lement à attirer le fardeau tout à la fois <lb></lb>ſans le diuiſer; &amp; qu&#039;elle ne ſert pas <lb></lb>pour l&#039;attirer plus ayſément, ou plus <lb></lb>viſte, ou plus loin que la meſme force <lb></lb>le <expan abbr="cõduiroit">conduiroit</expan> en le diuiſant en 10.parties. <lb></lb></s>
        </p>
      </chap>
      <chap>
        <p type="head">
          <s id="s.000183"><emph type="center"></emph>CHAP. VIII.<emph.end type="center"></emph.end></s>
        </p>
        <p type="head">
          <s id="s.000184"><emph type="center"></emph><emph type="italics"></emph>De la force, &amp; de l&#039;vſage des Poulies.<emph.end type="italics"></emph.end><emph.end type="center"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000185">APres auoir conſideré les <expan abbr="inſtrumẽs">inſtrumens</expan> <lb></lb>qui ſe reduiſent aux contrepoids, <lb></lb>&amp; à l&#039;équilibre, comme à leur principe, <lb></lb><figure id="id.047.01.052.1.jpg" xlink:href="047/01/052/1.jpg"></figure><lb></lb>&amp; à leur <lb></lb><expan abbr="fondemẽt">fondement</expan> <lb></lb>il faut par­<lb></lb>ler d&#039;vne <lb></lb>autre ſor­<lb></lb>te de le­<lb></lb>uier pour entendre la nature des pou­<lb></lb>lies, &amp; de beaucoup d&#039;autres effets Me-
<pb pagenum="33" xlink:href="047/01/053.jpg"></pb>chaniques. </s>
          <s id="s.000186">Or le leuier, dont nous <lb></lb>auons parlé, ſuppoſe que le poids ſoit <lb></lb>à l&#039;vne de ſes extremitez, &amp; la force à <lb></lb>l&#039;autre; de ſorte que ſon ſouſtien doit <lb></lb>eſtre entre ſes deux extremitez. </s>
          <s id="s.000187">Mais <lb></lb>ſi l&#039;on met le ſouſtien à l&#039;extremité du <lb></lb>leuier, &amp; la force à l&#039;autre extremité C, <lb></lb>&amp; que le point D ſoit attaché à quelque <lb></lb>point du milieu: par exemple, au point <lb></lb>B, il eſt certain que ſi le poids eſt égale­<lb></lb>ment éloigné des deux extremes, com­<lb></lb>me quand il eſt au point F, que la force <lb></lb>qui le ſouſtient en F ſera également di­<lb></lb>uiſée: &amp; par conſequent la moitié du <lb></lb>poids eſt ſouſtenuë par C, &amp; l&#039;autre <lb></lb>moitié par A. </s>
        </p>
        <p type="main">
          <s id="s.000188">S&#039;il arriue que le fardeau ſoit attaché <lb></lb>ailleurs, par exemple en B, la force C <lb></lb>ſouſtiendra le fardeau en B, quand il <lb></lb>aura meſme proportion auec la dite for­<lb></lb>ce, que la diſtance AC à la <expan abbr="diſtãce">diſtance</expan> BA. </s>
          <s id="s.000189"><lb></lb>Mais pour comprendre cecy, il faut <lb></lb>s&#039;imaginer que la ligne BA ſoit prolon­<lb></lb>gee en G, &amp; que les diſtances BA, AG <lb></lb>ſoient égales, &amp; que le fardeau ſoit at­<lb></lb>taché au point C, &amp; qu&#039;il ſoit égal au <lb></lb>poids D, il eſt certain qu&#039;à cauſe de l&#039;é­<lb></lb>galité des poids E, D, &amp; des diſtances 
<pb pagenum="34" xlink:href="047/01/054.jpg"></pb>AC, &amp; BA, le mouuement du poids <lb></lb>D ſuffira pour le ſouſtenir, donc la for­<lb></lb>ce du moment égal à celuy du point E, <lb></lb>lequel le pourra ſouſtenir, ſuffira enco­<lb></lb>re pour ſouſtenir le poids D. </s>
          <s id="s.000190">Mais ſi l&#039;on <lb></lb>veut ſouſtenir E au point C, la force <lb></lb>doit eſtre à E, comme GA à CA, donc <lb></lb>la meſme force pourra ſouſtenir le <lb></lb>point D égal à E. </s>
          <s id="s.000191">Or la proportion qui <lb></lb>eſt de GA à EA, eſt auſſi de BA à CA, <lb></lb>GA eſtant égal à BA: Et parce que les <lb></lb>poids ED ſont égaux, chacun d&#039;eux <lb></lb>aura la meſme <expan abbr="proportiõ">proportion</expan> à la force miſe <lb></lb>en C. D&#039;où l&#039;on conclud que la force C <lb></lb>eſt égale au <expan abbr="momẽt">moment</expan> D, lors qu&#039;il a meſ­<lb></lb>me proportion que la diſtance AB à <lb></lb>CA. </s>
        </p>
        <p type="main">
          <s id="s.000192">Or il eſt tres-ayſé de conclurre de <lb></lb>tout ce diſcours que l&#039;on perd autant <lb></lb>de viſteſſe comme l&#039;on acquiert de for­<lb></lb>ce tant auec le leuier ordinaire qu&#039;auec <lb></lb>celuy-cy: car quand la force C hauſſe <lb></lb>le leuier AC, pour le <expan abbr="trãſporter">tranſporter</expan> en AI, <lb></lb>le poids ſe meut par l&#039;interualle BH, <lb></lb>lequel eſt dautant moindre que l&#039;eſpa­<lb></lb>ce IC, qu&#039;a fait la force, qu&#039;AB eſt <lb></lb>moindre qu&#039;AC. </s>
        </p>
        <p type="main">
          <s id="s.000193">Ces principes ayant eſté declarez, il 
<pb pagenum="35" xlink:href="047/01/055.jpg"></pb>faut expliquer la raiſon des poulies, <expan abbr="dõt">dont</expan> <lb></lb>nous declarerons la conſtruction &amp; l&#039;v­<lb></lb>ſage. </s>
          <s id="s.000194">Et pour ce ſuiet ſuppoſons que <lb></lb>l&#039;on ayt la poulie ABC faite de metal, <lb></lb>ou d&#039;vn bois fort dur, &amp; qu&#039;elle puiſſe <lb></lb>tourner ſur ſon eſſieu, qui paſſe par le <lb></lb>centre D: &amp; puis il faut mettre à l&#039;en­<lb></lb><figure id="id.047.01.055.1.jpg" xlink:href="047/01/055/1.jpg"></figure><lb></lb>tour la chorde FCBAE, <lb></lb>à laquelle le poids E ſoit at­<lb></lb>taché. </s>
          <s id="s.000195">Quant à la force, el­<lb></lb>le eſt à l&#039;autre bout de la <lb></lb>chorde au point F, où elle <lb></lb>ſouſtient le fardeau E. </s>
          <s id="s.000196">Car <lb></lb>ſi <expan abbr="l&#039;õ">l&#039;on</expan> ſ&#039;imagine deux lignes <lb></lb>égales tirées du centre D, <lb></lb>à ſçauoir DC, &amp; DA, l&#039;on <lb></lb>aura l&#039;équilibre de deux <lb></lb><expan abbr="momẽts">moments</expan>, ou de deux poids <lb></lb>égaux, également éloignez <lb></lb>de l&#039;appuy D, qui eſt le <lb></lb>point du ſouſtien, lequel eſt <lb></lb>également éloigné de tous <lb></lb>les coſtez de la <expan abbr="circõference">circonference</expan> du cercle, <lb></lb>ou de la poulie ABC. </s>
          <s id="s.000197">Or ces deux li­<lb></lb>gnes, qui ſont les bras du leuier, ou de <lb></lb>la balance, determinent les diſtances <lb></lb>des deux ſuſpenſions d&#039;auec le centre <lb></lb>D: C&#039;eſt pourquoy le poids qui eſt ſuſ-
<pb pagenum="36" xlink:href="047/01/056.jpg"></pb>pendu du point A ne peut eſtre ſouſte­<lb></lb>nu au point C que par vne égale force, <lb></lb>ou par vn poids égal, ſuiuant la nature <lb></lb>des poids égaux qui pendent de diſtan­<lb></lb>ces égales. </s>
          <s id="s.000198">Car encore que la force F <lb></lb>tourne à l&#039;entour de la poulie ABC, <lb></lb>cela ne change nullement l&#039;habitude, <lb></lb>&amp; le rapport que le poids, &amp; la force <lb></lb>ont à la diſtance AD, &amp; DC: dautant <lb></lb>que la poulie garde vn perpetuel équi­<lb></lb>libre en ſe tournant. </s>
          <s id="s.000199">D&#039;où il faut con­<lb></lb>clurre qu&#039;Ariſtote ſe trompe lors qu&#039;il <lb></lb>dit que l&#039;on leue plus ayſément les far­<lb></lb>deaux auec les plus grandes poulies, car <lb></lb>encore que la diſtance, ou le demidia­<lb></lb>metre de la poulie DC ſ&#039;augmente, ce­<lb></lb>la ne ſert de rien à raiſon que la diſtan­<lb></lb>ce DA ſ&#039;augmente également. </s>
          <s id="s.000200">De ſor­<lb></lb>te que l&#039;on ne reçoit nulle commodité <lb></lb>de cét inſtrument en ce qui concerne <lb></lb>la <expan abbr="diminutiõ">diminution</expan> de la peine. </s>
          <s id="s.000201">Mais ſa com­<lb></lb>modité <expan abbr="cõſiſte">conſiſte</expan> à tirer de l&#039;eau des puits, <lb></lb>parce que l&#039;on tire de haut en bas, &amp; <expan abbr="cõ-ſequemment">con­<lb></lb>ſequemment</expan> le poids des bras, &amp; du <lb></lb>corps ſeruent à cela, au lieu qu&#039;en <expan abbr="tirãt">tirant</expan> <lb></lb>à force de bras de bas en haut ſans l&#039;ay­<lb></lb>de des poulies, le poids des bras, &amp; du <lb></lb>corps nuiſent, c&#039;eſt pourquoy la poulie 
<pb pagenum="37" xlink:href="047/01/057.jpg"></pb>apporte de la commodité à l&#039;applica­<lb></lb>tion de la force. </s>
        </p>
        <p type="main">
          <s id="s.000202">Mais ſi l&#039;on vſe d&#039;vne autre ſorte de <lb></lb>poulie, dont on void icy la figure, l&#039;on <lb></lb>pourra leuer vn fardeau auec moins de <lb></lb><figure id="id.047.01.057.1.jpg" xlink:href="047/01/057/1.jpg"></figure><lb></lb>force, car ſi la poulie BDC, <lb></lb>qui ſe doit mouuoir au tour <lb></lb>du centre E, eſt miſe dans <lb></lb>ſa quaiſſe, ou dans ſon ar­<lb></lb>meure D, que G ſoit le far­<lb></lb>deau, &amp; que la chorde AB <lb></lb>CF paſſant à l&#039;entour de la­<lb></lb>dite poulie ſoit arreſté par <lb></lb>le bout à quelque cheuille, <lb></lb>au point ferme, &amp; immobi­<lb></lb>le; &amp; <expan abbr="finalemẽt">finalement</expan> ſi l&#039;on applique la force <lb></lb>au point C, ou F, qui ſe meuue en haut <lb></lb>vers H, &amp; conſequemment qui faſſe <lb></lb>monter la quaiſſe D, &amp; quant &amp; quant <lb></lb>le fardeau G, ie dy que la force miſe en <lb></lb>C, ou en F, n&#039;eſt que la moitié du far­<lb></lb>deau qu&#039;elle ſouſtient, &amp; par <expan abbr="conſequẽt">conſequent</expan> <lb></lb>que le <expan abbr="momẽt">moment</expan> en C eſt ſouz double du <lb></lb>moment en G; parce que G eſt ſouſte­<lb></lb>nu, &amp; porté par les deux parties de la <lb></lb>chorde AB, &amp; CD, de ſorte qu&#039;il eſt <lb></lb>diuiſé en deux parties égales, parce que <lb></lb>le diametre BC eſt ſemblable au fleau 
<pb pagenum="38" xlink:href="047/01/058.jpg"></pb>d&#039;vne balance, &amp; le fardeau eſt ſuſpen­<lb></lb>du du point E: &amp; puis le ſouſtien eſt <lb></lb>au point B, &amp; la force eſt au point C, <lb></lb>c&#039;eſt pourquoy il y a meſme raiſon de <lb></lb>la force au fardeau, que de BE à BC, <lb></lb>donc elle eſt la moitié du fardeau. </s>
        </p>
        <p type="main">
          <s id="s.000203">Car encore que la poulie ſe tourne, <lb></lb>tandis que la force ſe meut vers H, <lb></lb>neantmoins la ſuſdite proportion ne <lb></lb>change point, comme l&#039;on void aux <lb></lb>points B, E, C, &amp; le leuier BC eſt rendu <lb></lb>perpetuel. </s>
          <s id="s.000204">Mais en recompenſe le che­<lb></lb>min que fait la force eſt double du che­<lb></lb>min que fait le fardeau, car quand il eſt <lb></lb>arriué au point F, c&#039;eſt à dire <expan abbr="quãd">quand</expan> il eſt <lb></lb>monté auſſi haut qu&#039;A, la force à mon­<lb></lb>té deux fois autant, c&#039;eſt à dire de C en <lb></lb>H. </s>
          <s id="s.000205">Mais il arriue icy vne incommodi­<lb></lb>té à la force, à raiſon de ſa peſanteur <lb></lb>qui la fait incliner en bas, c&#039;eſt pour­<lb></lb>quoy <expan abbr="l&#039;õ">l&#039;on</expan> y a remedié par l&#039;<expan abbr="additiõ">addition</expan> d&#039;vne <lb></lb>autre poulie que <expan abbr="l&#039;õ">l&#039;on</expan> met en haut, <expan abbr="cõme">comme</expan> <lb></lb>l&#039;on peut comprendre par cette figure, <lb></lb>quoy que renuerſée, dans laquelle il <lb></lb>faut conſiderer la chorde IBAEF, <lb></lb>qui paſſe à l&#039;entour des poulies BA, &amp; <lb></lb>FE, &amp; eſt attachée à l&#039;armure du point <lb></lb>D de la quaiſſe CD, qui eſt attachée 
<pb pagenum="39" xlink:href="047/01/059.jpg"></pb>en haut à la poûtre, ou à la pierre H, de <lb></lb><figure id="id.047.01.059.1.jpg" xlink:href="047/01/059/1.jpg"></figure><lb></lb>ſorte que la force tirant la <lb></lb>chorde du point B au point <lb></lb>I, ou du point I au point F, <lb></lb>fait monter le poids at­<lb></lb>taché au mouffle, ou à la <lb></lb>quaiſſe FE. </s>
          <s id="s.000206">Or cette force <lb></lb>ne doit pas eſtre moindre <lb></lb>qu&#039;au point A, dautant <lb></lb>que les momens du poids, <lb></lb>&amp; de la force ſont égale­<lb></lb>ment diſtans du centre G, <lb></lb>car BG eſt égal à GA, c&#039;eſt <lb></lb>pourquoy la poulie BA <lb></lb>n&#039;augmente pas la force. </s>
          <s id="s.000207"><lb></lb>Où il faut remarquer que <lb></lb>les Italiens appellent cét inſtrument <emph type="italics"></emph>la <lb></lb>Taglia,<emph.end type="italics"></emph.end> &amp; les Grecs, &amp; les Latins <emph type="italics"></emph>Tro­<lb></lb>chlea<emph.end type="italics"></emph.end>: mais nous le nommons en Fran­<lb></lb>ce <emph type="italics"></emph>Mouffles<emph.end type="italics"></emph.end>; ce qui comprend l&#039;armeu­<lb></lb>re, ou la quaiſſe, qui ſert de boëte aux <lb></lb>poulies, &amp; les poulies, &amp; tout ce qui <lb></lb>ſert pour la perfection de cette machi­<lb></lb>ne: on l&#039;appelle auſſi <emph type="italics"></emph>écharpes armée de <lb></lb>poulies.<emph.end type="italics"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000208">Or apres auoir monſtré par les deux <lb></lb>figures precedentes que l&#039;on peut dou­<lb></lb>bler la force par le moyen des poulies, 
<pb pagenum="40" xlink:href="047/01/060.jpg"></pb>il faut maintenant faire voir que l&#039;on <lb></lb>peut l&#039;augmenter tant que l&#039;on voudra, <lb></lb>comme ie demonſtre aux <expan abbr="nõbre">nombre</expan> pairs, <lb></lb>&amp; impair des poulies: c&#039;eſt pourquoy <lb></lb>ie mets le Lemme qui ſuit, afin de de­<lb></lb>monſtrer la maniere de multiplier la <lb></lb>force en raiſon quadruple. </s>
        </p>
        <p type="head">
          <s id="s.000209"><emph type="center"></emph><emph type="italics"></emph>LEMME.<emph.end type="italics"></emph.end><emph.end type="center"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000210">Soient donc les deux lignes AB, &amp; <lb></lb><figure id="id.047.01.060.1.jpg" xlink:href="047/01/060/1.jpg"></figure><lb></lb>CD, qui repre­<lb></lb>ſentent deux le­<lb></lb>uiers, qui ont <lb></lb>leurs appuis A &amp; <lb></lb>C à leurs extre­<lb></lb>mitez, &amp; que le <lb></lb>fardeau G ſoit <lb></lb>ſuſpendu au milieu E, &amp; F &amp; qu&#039;il ſoit <lb></lb>ſouſtenu par les deux forces B &amp; D ap­<lb></lb>pliquées aux autres extremitez des le­<lb></lb>uiers, leſquelles ie ſuppoſe auoir vn <lb></lb>moment égal, ie dy que le moment de <lb></lb>chacune eſt égal au moment de la qua­<lb></lb>trieſme partie du poids G, car les deux <lb></lb>forces B &amp; D ſouſtiennent également, <lb></lb>&amp; <expan abbr="conſequemmẽt">conſequemment</expan> la force D n&#039;eſt con­<lb></lb>trariée que par la moitié du poids G qui 
<pb pagenum="41" xlink:href="047/01/061.jpg"></pb>eſt attaché à F. </s>
          <s id="s.000211">Mais quand la force D <lb></lb>ſouſtient la moitié du fardeau par le <lb></lb>moyen du leuier CD, elle a meſme <lb></lb>proportion à G que CD à CF, c&#039;eſt à <lb></lb>dire ſouz double, donc le <expan abbr="momẽt">moment</expan> D eſt <lb></lb>double du moment de la moitié du <lb></lb>poids G qu&#039;il ſouſtient, donc il eſt le <lb></lb>quart du moment des poids entier. </s>
        </p>
        <p type="main">
          <s id="s.000212">L&#039;on demonſtre la meſme choſe du <lb></lb>moment B, de ſorte qu&#039;il eſt raiſonna­<lb></lb>ble que le poids eſtant également ſou­<lb></lb>ſtenu par les 4 poulies qui ſe voyent <lb></lb>dans cette autre figure, chacune porte <lb></lb>la quatrieſme partie du fardeau: ce que <lb></lb>ie monſtre en cette maniere. </s>
        </p>
        <p type="main">
          <s id="s.000213">Que le poids X ſoit attaché au point <lb></lb>K par le moyen du mouffle KX, ie dy <lb></lb>que la force égale à la quatrieſme par­<lb></lb>tie du fardeau X, le ſouſtiendra, car ſi <lb></lb>l&#039;on s&#039;imagine que les deux diametres <lb></lb>BA &amp; DE ſoient deux leuiers ſembla­<lb></lb>bles à ceux que nous auons expliquez <lb></lb>dans la figure precedente, &amp; que le far­<lb></lb>deau ſoit ſuſpendu aux points CEF, <expan abbr="l&#039;õ">l&#039;on</expan> <lb></lb>trouuera que les appuis, ou les ſupports <lb></lb>deſdits leuiers répondent aux points D <lb></lb>&amp; A, conſequemment que la force ap­<lb></lb>pliquée en B ou en E ſouſtiendra le 
<pb pagenum="42" xlink:href="047/01/062.jpg"></pb>poids X, dont il ſera ſousquadruple. </s>
          <figure id="id.047.01.062.1.jpg" xlink:href="047/01/062/1.jpg"></figure>
        </p>
        <p type="main">
          <s id="s.000214">&gt;Et ſi <expan abbr="l&#039;õ">l&#039;on</expan> adiouſte vne pou­<lb></lb>lie en haut, &amp; que la chor­<lb></lb>de paſſe par OMB, la <lb></lb>force L, ſouſtiendra le <lb></lb>meſme poids. </s>
          <s id="s.000215">Mais il <lb></lb>faut accommoder les 4. <lb></lb>chordes, <expan abbr="cõme">comme</expan> elles ſont <lb></lb>dans ces mouffles, en ſor­<lb></lb>te qu&#039;elles ne ſe meſlent <lb></lb>point les vnes auec les au­<lb></lb>tres. </s>
          <s id="s.000216">Or il faut icy remar­<lb></lb>quer ce que nous auons <lb></lb>deſia dit pluſieurs fois, à <lb></lb>ſçauoir que <expan abbr="l&#039;õ">l&#039;on</expan> ne gaigne <lb></lb>rien auec ces inſtrumens, <lb></lb>car ſi l&#039;on épargne la for­<lb></lb>ce, l&#039;on augmente le <expan abbr="tẽps">temps</expan>: <lb></lb>de là vient qu&#039;il faut tirer <lb></lb>quatre pieds de chorde <lb></lb>depuis O iuſques à L pour faire monter <lb></lb>le poids X d&#039;vn pied de X en C: &amp; l&#039;on <lb></lb>trouuerra perpetuellement que l&#039;on <lb></lb>perd autant de temps, ou que l&#039;on eſt <lb></lb>contraint d&#039;allonger autant le chemin, <lb></lb>que l&#039;on gaigne de force. </s>
        </p>
        <p type="main">
          <s id="s.000217">Si l&#039;on veut que la force s&#039;augmente <lb></lb>au ſextuple, il faut adiouſter vne autre 
<pb pagenum="43" xlink:href="047/01/063.jpg"></pb>poulie en bas, comme ie monſtre par la <lb></lb><figure id="id.047.01.063.1.jpg" xlink:href="047/01/063/1.jpg"></figure><lb></lb>figure precedente, <expan abbr="dãs">dans</expan> <lb></lb>laquelle on void les <lb></lb>trois leuiers AB, CD, <lb></lb>&amp; FE. </s>
          <s id="s.000218">Que le poids K <lb></lb>ſoit attaché a G, H, &amp; <lb></lb>I, &amp; que les trois for­<lb></lb>ces B, D, F, ſoient éga­<lb></lb>les, &amp; qu&#039;elles ſouſtien­<lb></lb>nent <expan abbr="égalemẽt">également</expan> le poids K, afin que cha­<lb></lb>cune en ſouſtienne le tiers, &amp; parce que <lb></lb>la force B ſouſtenant le poids <expan abbr="pẽdu">pendu</expan> à G <lb></lb>eſt la moitié du poids, &amp; que nous <expan abbr="auõs">auons</expan> <lb></lb>ſuppoſé qu&#039;il ſouſtient le tiers dudit <lb></lb>poids, il s&#039;enſuit que la force B eſt éga­<lb></lb>le à la moitié du tiers de K, c&#039;eſt à dire <lb></lb>à la ſixieſme partie de K. </s>
          <s id="s.000219">Car il ſaut tou­<lb></lb>ſiours s&#039;imaginer que les appuys A, C, E <lb></lb>ſouſtiennent autant du poids que les <lb></lb>forces B, D, F. </s>
          <s id="s.000220">Par où il eſt ayſè de <lb></lb>comprendre que le mouffle inferieur <lb></lb>ayant trois poulies, &amp; le ſuperieur deux, <lb></lb>ou 3. autres, que l&#039;on peut multiplier la <lb></lb>force ſelon le nombre ſenaire: ce que <lb></lb>l&#039;on peut ayſément s&#039;imaginer en con­<lb></lb>ſiderant vn mouffle compoſé de ſix <lb></lb>poulies. </s>
        </p>
        <p type="main">
          <s id="s.000221">Or pour expliquer la maniere de 
<pb pagenum="44" xlink:href="047/01/064.jpg"></pb>multiplier la force ſelon vn <expan abbr="nõbre">nombre</expan> im­<lb></lb>pair: il faut encore conſiderer le leuier <lb></lb>de la page 40. AB, dont l&#039;appuy eſt en <lb></lb>A, &amp; le poids G eſt attaché à E, &amp; ſou­<lb></lb>ſtenu par deux forces égales, dont l&#039;vne <lb></lb>eſt en D, &amp; l&#039;autre en B, &amp; <expan abbr="l&#039;õ">l&#039;on</expan> trouuer­<lb></lb>ra que chaque force a vn moment égal <lb></lb>au tiers du poids, G, parce que la force <lb></lb>miſe en E ſouſtient vn poids qui luy eſt <lb></lb>égal, dautant qu&#039;elle eſt dans la ligne <lb></lb>de la ſuſpenſion dudit poids. </s>
          <s id="s.000222">Mais la <lb></lb>force <expan abbr="eſtãt">eſtant</expan> en B ſouſtient deux fois au­<lb></lb>tant que ſon poids, parce que ſa diſtan­<lb></lb>ce d&#039;auec l&#039;appuy A eſt double de EA. </s>
          <s id="s.000223"><lb></lb>Et parce que l&#039;on ſuppoſe que les 2. for­<lb></lb>ces B, &amp; E ſont egales, il s&#039;enſuit que la <lb></lb>partie de G ſouſtenuë par B eſt double <lb></lb>de la partie que ſouſtient E: donc ſi l&#039;on <lb></lb>fait deux parties du poids G, &amp; que l&#039;v­<lb></lb>ne ſoit double de l&#039;autre, la plus grande <lb></lb>ſera de 2/3, &amp; la moindre de 1/3 de G, donc <lb></lb>le moment de la force E ſera égal au <lb></lb>tiers de G: &amp; parce que nous auons <lb></lb>ſuppoſé B égal à E, la force B eſt égale <lb></lb>à la force E, &amp; conſequemment chacu­<lb></lb>ne eſt égale au tiers du poids G. </s>
        </p>
        <p type="main">
          <s id="s.000224">Cecy ayant eſté demonſtré, il faut <lb></lb>l&#039;appliquer aux mouffles qui ſuiuent, 
<pb pagenum="45" xlink:href="047/01/065.jpg"></pb>dont la poulie ABC ſe tourne au tour <lb></lb><figure id="id.047.01.065.1.jpg" xlink:href="047/01/065/1.jpg"></figure><lb></lb>du centre G, auquel le far­<lb></lb>deau H eſt attaché. </s>
          <s id="s.000225">L&#039;au­<lb></lb>tre poulie ſuperieure eſt <lb></lb>FE; outre leſquelles il <lb></lb>faut encore conſiderer la <lb></lb>chorde IBCAEFD, qui <lb></lb>eſt attachée au point B, &amp; <lb></lb>puis la force qui eſt en I, <lb></lb>laquelle ne ſupportera <lb></lb>que le tiers du fardeau H. </s>
          <s id="s.000226"><lb></lb>Par où il eſt <expan abbr="euidẽt">euident</expan> qu&#039; AB <lb></lb>eſt vn leuier, &amp; que la for­<lb></lb>ce I s&#039;applique à ſes extre­<lb></lb>mitez B, &amp; A. </s>
          <s id="s.000227">G eſt le <lb></lb>point du ſouſtien, auquel <lb></lb>H eſt ſuſpendu. </s>
          <s id="s.000228">Vne autre force eſt en­<lb></lb>core appliquèe en D, de ſorte que le <lb></lb>poids eſt arreſté par 3. chordes qui con­<lb></lb>tribuent également à ſouſtenir le poids <lb></lb>H: car la force D eſt appliquée au mi­<lb></lb>lieu du leuier, &amp; B à ſon extremité, c&#039;eſt <lb></lb>pourquoy chaque force ne ſupporte <lb></lb>que le tiers du poids H. D&#039;où il s&#039;enſuit <lb></lb>que la force I ayant ſon moment égal <lb></lb>audit tiers, peut ſouſtenir, &amp; leuer le <lb></lb>poids entier. </s>
          <s id="s.000229">Mais I fera trois fois au­<lb></lb>tant de chemin que le poids H, parce 
<pb pagenum="46" xlink:href="047/01/066.jpg"></pb>qu&#039;il ſuit la longueur de trois chordes <lb></lb>IB, AE, &amp; FD, dont l&#039;vne meſure le <lb></lb>chemin du fardeau. <lb></lb></s>
        </p>
      </chap>
      <chap>
        <p type="head">
          <s id="s.000230"><emph type="center"></emph>CHAP. IX.<emph.end type="center"></emph.end></s>
        </p>
        <p type="head">
          <s id="s.000231"><emph type="center"></emph><emph type="italics"></emph>De la Viz.<emph.end type="italics"></emph.end><emph.end type="center"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000232">ENtre tous les inſtrumens Mecha­<lb></lb>niques que l&#039;on a inuentez pour la <lb></lb>vie humaine, la viz que les Grecs, &amp; <lb></lb>les Latins appellent <emph type="italics"></emph>Cochlea,<emph.end type="italics"></emph.end> tient le pre­<lb></lb>mier <expan abbr="rãg">rang</expan> tant pour ſa ſubtilité que pour <lb></lb>ſon vtilité, dautant qu&#039;elle ſert pour <lb></lb>arreſter, pour faire mouuoir, &amp; pour <lb></lb>preſſer auec vne treſ-grande force, &amp; <lb></lb>qu&#039;elle tient fort peu de place, quoy <lb></lb>qu&#039;elle aye des effets treſ-ſignales que <lb></lb>les autres inſtrumens ne peuuent auoir <lb></lb>s&#039;ils ne ſont reduits en de treſ-grandes <lb></lb>Machines. </s>
          <s id="s.000233">C&#039;eſt pourquoy il faut ex­<lb></lb>pliquer la nature, &amp; l&#039;origine de la viz, <lb></lb>&amp; pour ce ſuiet ie <expan abbr="demõſtre">demonſtre</expan> icy vn theo­<lb></lb>reſme, qui ſemblera, peuſt-eſtre, fort <lb></lb>éloigné de ce diſcours, quoy qu&#039;il en <lb></lb>ſoit la baſe, &amp; le fondement. </s>
        </p>
        <p type="main">
          <s id="s.000234">Ie dy donc que tous les corps peſans <pb pagenum="47" xlink:href="047/01/067.jpg"></pb>ont vne inclination vers le centre de la <lb></lb>terre, non ſeulement quand ils y peu­<lb></lb>uent deſcendre perpendiculairement, <lb></lb>mais auſſi quand ils y peuuent arriuer <lb></lb>par vne ligne oblique, ou par vn plan <lb></lb>incliné: ce que l&#039;on peut confirmer par <lb></lb>l&#039;eau qui ne tombe ſeulement pas à <lb></lb>plomb de quelque lieu éminent, mais <lb></lb>elle coule auſſi ſur la terre par vne li­<lb></lb>gne qui a fort peu d&#039;inclination, com­<lb></lb>me l&#039;on remarque aux cours des fleu­<lb></lb>ues, dont les eaux deſcendent libre­<lb></lb>ment, pourueu que leur lit ayt tant ſoit <lb></lb>peu de pante. </s>
        </p>
        <p type="main">
          <s id="s.000235">Or ce qui arriue aux corps fluides, ſe <lb></lb>remarque, ſemblablement aux corps <lb></lb>qui ſont durs, pourueu que les figures, <lb></lb>&amp; les autres empeſchemens acciden­<lb></lb>tels, &amp; exterieurs ne les diuertiſſent <lb></lb>point: Car ſi l&#039;on prend vne bale par­<lb></lb>faitement ronde, &amp; polie, ſoit de mar­<lb></lb>bre, de verre, ou d&#039;autre matiere, qui <lb></lb>reçoiue vn excellent poly, &amp; que l&#039;on <lb></lb>la mette ſur vn <expan abbr="plã">plan</expan> incline, qui ſoit auſ­<lb></lb>ſi parfaitement vni, &amp; poly que la gla­<lb></lb>ce d&#039;vn miroir, elle deſcendra ſur ledit <lb></lb>plan, ſe mouuera <expan abbr="perpetuellemẽt">perpetuellement</expan> tan­<lb></lb>dis qu&#039;elle trouuera la moindre inclina-
<pb pagenum="48" xlink:href="047/01/068.jpg"></pb>tion que l&#039;on ſe puiſſe imaginer: de ſor­<lb></lb>te qu&#039;elle ne ſarreſtera point iuſques à <lb></lb>ce qu&#039;elle rencontre vne ſurface qui <lb></lb>ſoit à niueau, ou équidiſtante de l&#039;ho­<lb></lb>rizon, comme eſt celle d&#039;vn lac, ou d&#039;vn <lb></lb>eſtang glacé, ſur laquelle la bale ſe <lb></lb>tiendroit ferme, &amp; immobile, mais auec <lb></lb>telle condition que la moindre force <lb></lb>l&#039;ébranleroit, &amp; que le plan ſinclinant <lb></lb>de la largeur d&#039;vn cheueu, elle <expan abbr="commẽ-ceroit">commen­<lb></lb>ceroit</expan> incontinent à ſe mouuoir &amp; à <lb></lb>deſcendre vers la partie inclinée, &amp; <lb></lb>qu&#039;au contraire elle ne pourroit eſtre <lb></lb>meuë ſans <expan abbr="violẽce">violence</expan> vers la partie du plan <lb></lb>qui monte. </s>
          <s id="s.000236">Or il eſt neceſſaire que la <lb></lb>boule ſarreſte ſur vne ſurface parfaite­<lb></lb>ment équilibre, &amp; qu&#039;elle demeure <expan abbr="cõ-me">com­<lb></lb>me</expan> indifferente entre le mouuement &amp; <lb></lb>le repos: de ſorte que la moindre force <lb></lb>du <expan abbr="mõde">monde</expan> ſuffiſe pour la mouuoir, com­<lb></lb>me la moindre force que l&#039;on peut ſi­<lb></lb>maginer dans l&#039;air, ſuſfit pour la rete­<lb></lb>nir. </s>
        </p>
        <p type="main">
          <s id="s.000237">D&#039;où l&#039;on peut tirer cette concluſion, <lb></lb>que tout corps peſant, tous les empeſ­<lb></lb>chemens exterieurs eſtant oſtez, peut <lb></lb>eſtre meu ſur vn plan horizontal par la <lb></lb>moindre force que ce ſoit, &amp; qu&#039;il faut 
<pb pagenum="49" xlink:href="047/01/069.jpg"></pb>d&#039;autant plus de force pour le mouuoir <lb></lb>ſur vn plan incliné, qu&#039;il a plus d&#039;incli­<lb></lb>nation au mouuement contraire. </s>
        </p>
        <p type="main">
          <s id="s.000238">Ce qui ſera plus intelligible par <lb></lb><figure id="id.047.01.069.1.jpg" xlink:href="047/01/069/1.jpg"></figure><lb></lb>cette figure, dans <lb></lb>laquelle AB ſoit le <lb></lb>plan parallele à l&#039;o­<lb></lb>rizon, ſur lequel la <lb></lb>boule eſt indif­<lb></lb>ferente au mouue­<lb></lb>ment, &amp; au repos, de ſorte que le vent <lb></lb>ou la moindre force la peut faire mou­<lb></lb>uoir; mais il faut vne plus grande force <lb></lb>pour la faire mouuoir du point A au <lb></lb>point C ſur le plan incliné AC, &amp; en­<lb></lb>core vne plus grande pour la mouuoir <lb></lb>ſur les plans AD, &amp; AE: &amp; finalement <lb></lb>l&#039;on ne peut la leuer ſur le plan perpen­<lb></lb>diculaire AF, que par vne force égale à <lb></lb>tout le poids G. </s>
        </p>
        <p type="main">
          <s id="s.000239">Or l&#039;on ſçaura <expan abbr="cõbien">combien</expan> il faut moins de <lb></lb>force pour leuer le fardeau ſur les plans <lb></lb>AE, AD, &amp;c, ſi <expan abbr="l&#039;õ">l&#039;on</expan> tire les lignes perpen­<lb></lb>diculaires à l&#039;orizon CH, DI &amp; KE, cat <lb></lb>il y aura meſme proportion des forces <lb></lb>neceſſaires pour éleuer le fardeau ſur <lb></lb>chaſque plan audit fardeau, que des <lb></lb>lignes perpendiculaires aux lignes de 
<pb pagenum="50" xlink:href="047/01/070.jpg"></pb>leurs plans. </s>
          <s id="s.000240">Ce que Pappus <expan abbr="Alexãdrin">Alexandrin</expan> <lb></lb>s&#039;eſt efforcé de monſtrer dans le 8. liure <lb></lb>de ſes Collections Mathematiques, <lb></lb>mais il s&#039;eſt trompé, à mon aduis, en ce <lb></lb>qu&#039;il a ſupposé vne force donnée pour <lb></lb>mouuoir le poids ſur le plan <expan abbr="horizõtal">horizontal</expan>, <lb></lb>ce qui eſt faux, parce qu&#039;il ne faut nulle <lb></lb>force ſenſible, ſi l&#039;on oſte les empeſche­<lb></lb>mens exterieurs. </s>
          <s id="s.000241">C&#039;eſt pourquoy il eſt <lb></lb>plus à propos de chercher la force qui <lb></lb>meut le fardeau ſur le plan vertical ou <lb></lb>perpendiculaire AF, laquelle eſt tou­<lb></lb>ſiours égale à la peſanteur du fardeau, <lb></lb>que de chercher la force qui le meut <lb></lb>ſur le plan horizontal. </s>
        </p>
        <p type="main">
          <s id="s.000242">Soit donc le cercle AIC, dont le dia­<lb></lb><figure id="id.047.01.070.1.jpg" xlink:href="047/01/070/1.jpg"></figure><lb></lb>mettre <lb></lb>eſt ABC, <lb></lb>&amp; le cen­<lb></lb>tre B; &amp; <lb></lb>qu&#039;il y ait <lb></lb>deux for­<lb></lb>ces éga­<lb></lb>les aux <lb></lb>points A <lb></lb>&amp; C, qui <lb></lb><expan abbr="repreſẽtẽt">repreſentent</expan> <lb></lb>vne <expan abbr="balãce">balance</expan> mobile autour du centre B, 
<pb pagenum="51" xlink:href="047/01/071.jpg"></pb>il eſt certain que le poids C ſera ſouſte­<lb></lb>nu par la force A. </s>
          <s id="s.000243">Mais ſi l&#039;on s&#039;imagine <lb></lb>que le bras de la balance BC tombe en <lb></lb>BF, de ſorte qu&#039;il demeure touſiours <lb></lb>continué auec le bras AB, &amp; qu&#039;ils <expan abbr="ayẽt">ayent</expan> <lb></lb>tous deux leur point fixe, ou leur appuy <lb></lb>en B, le moment F, ne ſera pas égal au <lb></lb>moment A, parce que la diſtance <lb></lb>du poinct, ou du poids F d&#039;auec la ligne <lb></lb>de direction BI n&#039;eſt pas egale à la di­<lb></lb>ſtance de la force, ou du poids A d&#039;auec <lb></lb>la meſme ligne de direction, comme <lb></lb>l&#039;on demonſtre par la perpendiculaire <lb></lb>KF, qui determine la <expan abbr="diſtãce">diſtance</expan> du poinct <lb></lb>F auec B, ou I, de ſorte que le <expan abbr="momẽt">moment</expan>, <lb></lb>ou le poids, de C porté en F eſt dimi­<lb></lb>nué de la diſtance de KC, &amp; qu&#039;il n&#039;a <lb></lb>plus que le <expan abbr="momẽt">moment</expan> BK: c&#039;eſt pourquoy <lb></lb>il faut conclure que le moment d&#039;A <lb></lb>ſurpaſſe celuy de F de KC. </s>
          <s id="s.000244">Il faut dire <lb></lb>la meſme choſe du poids C tranſporté <lb></lb>au point L, ou en tel autre point du cer­<lb></lb>cle que l&#039;on voudra, car la force en A <lb></lb>ſera d&#039;autant plus grande que la force <lb></lb>L, que BA, eſt plus grand que BM. </s>
        </p>
        <p type="main">
          <s id="s.000245">Parce où l&#039;on void que le poids C <lb></lb>diminuë ſon moment, &amp; ſon inclina­<lb></lb>tion d&#039;aller en bas ſelon les differentes 
<pb pagenum="52" xlink:href="047/01/072.jpg"></pb><expan abbr="inclinatiõs">inclinations</expan> des <expan abbr="plãs">plans</expan> FB, LB &amp;c. </s>
          <s id="s.000246">de ſorte <lb></lb>que l&#039;on peut s&#039;imaginer la deſcente de <lb></lb>C par tous les points du quart de cercle <lb></lb>CI, lequel contient vn plan qui s&#039;incli­<lb></lb>ne perpetuellement de plus en plus, <lb></lb>&amp; que la peſanteur du poids en C eſt <lb></lb>totale &amp; entiere, &amp; conſequemment <lb></lb>qu&#039;il ſe porte de toute ſon inclination à <lb></lb>deſcendre, parce qu&#039;il n&#039;eſt nullement <lb></lb>empeſché par la <expan abbr="circonferẽce">circonference</expan>, lors qu&#039;il <lb></lb>ſe rencontré ſur la tangente DCE. </s>
        </p>
        <p type="main">
          <s id="s.000247">Mais quand il eſt en F, il eſt en partie <lb></lb>ſouſtenu par le plan circulaire, &amp; ſa <lb></lb>pente, ou l&#039;inclination qu&#039;il a vers le <lb></lb>centre de la terre eſt autant diminuée <lb></lb>que BC ſurpaſſe BK: de maniere qu&#039;il <lb></lb>ſe tient éleué ſur ce plan de meſme que <lb></lb>s&#039;il eſtoit appuyé ſur la tangente GFH, <lb></lb><expan abbr="d&#039;autãt">d&#039;autant</expan> que le point d&#039;inclination F de <lb></lb>la circonference CI ne differe point de <lb></lb>l&#039;inclination de la tangente GFH, que <lb></lb>par l&#039;angle inſenſible du contact. </s>
        </p>
        <p type="main">
          <s id="s.000248">Il faut dire la meſme choſe du point <lb></lb>L, lequel eſt incliné comme s&#039;il eſtoit <lb></lb>ſur le plan de la tangeule NLO, car il <lb></lb>diminuë ſa pente, &amp; ſon <expan abbr="inclinatiõ">inclination</expan> qu&#039;il <lb></lb>a en C en meſme proportion que Bk eſt <lb></lb>à BC, puis qu&#039;il eſt conſtant par la ſimi-
<pb pagenum="53" xlink:href="047/01/073.jpg"></pb>litude des triangles KBF &amp; KFH, qu&#039;il <lb></lb>y a meſme raiſon de FK à FH que de <lb></lb>KB à BF. D&#039;où nous conclüons que la <lb></lb>proportion du moment total &amp; abſolu <lb></lb>du mobile dans la perpendiculaire de <lb></lb>l&#039;orizon auec le moment qu&#039;il a ſur le <lb></lb>plan incliné HF eſt la meſme que la <lb></lb>proportion de FH à FK. </s>
        </p>
        <p type="main">
          <s id="s.000249">Ce qui ſe void plus diſtinctement <lb></lb><figure id="fig31"></figure><lb></lb>dans le triangle A <lb></lb>BC car le moment <lb></lb>du mobile ſur le <lb></lb>plan AC eſt <expan abbr="d&#039;au-tãt">d&#039;au­<lb></lb>tant</expan> moindre que le <lb></lb>moment qu&#039;il a <expan abbr="dãs">dans</expan> <lb></lb>la perpendiculaire CB, que CB eſt <lb></lb>moindre que CA. </s>
          <s id="s.000250">Et parce qu&#039;il ſuffit <lb></lb>pour mouuoir le fardeau, que la force <lb></lb>ſurpaſſe <expan abbr="inſenſiblemẽt">inſenſiblement</expan> celle qui le ſou­<lb></lb>ſtient en quel que lieu que ce ſoit, nous <lb></lb><expan abbr="faisõs">faisons</expan> icy cette propoſition vniuerſelle. </s>
        </p>
        <p type="main">
          <s id="s.000251"><emph type="italics"></emph>Que ſur le plan eleué la force a la meſ­<lb></lb>me proportion au poids que la perpen­<lb></lb>diculaire tirée de l&#039;extremité du plan ſur <lb></lb>l&#039;orizon à la longueur dudit plan, c&#039;eſt à dire <lb></lb>que la tangente à la ſecante,<emph.end type="italics"></emph.end> car FK eſt la <lb></lb>tangente du cercle deſcrit ſur le dia­<lb></lb>mettre KH, &amp; FH eſt la ſecante. </s>
        </p>
        <pb pagenum="54" xlink:href="047/01/074.jpg"></pb>
        <p type="main">
          <s id="s.000252">Cecy eſtant poſé, ie reuiens à mon <lb></lb><figure id="id.047.01.074.1.jpg" xlink:href="047/01/074/1.jpg"></figure><lb></lb>premier deſſein, qui con­<lb></lb>ſiſte à trouuer, &amp; à expli­<lb></lb>quer la nature de la viz; c&#039;eſt <lb></lb>pour ce ſubiet qu&#039;il faut <lb></lb>conſiderer le triangle AB <lb></lb>C, dans lequel AB repreſente la ligne <lb></lb>horizontale, BC la perpendiculaire à <lb></lb>l&#039;orizon, &amp; AC le plan eleué, &amp; encliné <lb></lb>ſur l&#039;orizon, ſur lequel le mobile E eſt <lb></lb>tiré &amp; emporté par vne force d&#039;autant <lb></lb>moindre que le poids E, que la ligne <lb></lb>BC eſt moindre que CA. </s>
          <s id="s.000253">Or quand on <lb></lb>veut eſleuer E plus haut ſur le plan fer­<lb></lb>me AC, c&#039;eſt meſme choſe que ſi le tri­<lb></lb>angle BCA eſtoit pouſſé iuſques au <lb></lb><figure id="id.047.01.074.2.jpg" xlink:href="047/01/074/2.jpg"></figure><lb></lb>point H, parce que s&#039;il ſe <lb></lb>trouuoit dans la meſme <lb></lb>aſſiette que le <expan abbr="triãgle">triangle</expan> HFG, <lb></lb>le mobile auroit monté la <lb></lb>hauteur AI, &amp; ſeroit en E. </s>
        </p>
        <p type="main">
          <s id="s.000254">D&#039;où il s&#039;enſuit que la na­<lb></lb>ture de la viz n&#039;eſt autre <lb></lb>choſe que le triangle ACB, <lb></lb>le quel eſtant pouſſé en <expan abbr="auãt">auant</expan> <lb></lb>ſouſtient la peſanteur &amp; <lb></lb>l&#039;éleue: &amp; que c&#039;eſt par ſon <lb></lb>moyen qu&#039;elle a eſté inuen-
<pb pagenum="55" xlink:href="047/01/075.jpg"></pb>tée. </s>
          <s id="s.000255">Mais l&#039;on s&#039;eſt auisé d&#039;enuironner <lb></lb>le cylindre BD du meſme triangle, <lb></lb>affin de le reduire dans vne machine <lb></lb>beaucoup moindre, &amp; plus commode. </s>
        </p>
        <p type="main">
          <s id="s.000256">Et pour ce ſubiet l&#039;on adonné la meſ­<lb></lb>me hauteur du triangle au cylindre, <lb></lb>BE, &amp; l&#039;inclination de l&#039;hypotenuſe <lb></lb>CA à l&#039;helice AE, &amp; à toutes les autres <lb></lb>qui <expan abbr="ſuiuẽt">ſuiuent</expan> de bas en haut, &amp; qui <expan abbr="fõt">font</expan> l&#039;he­<lb></lb>lice continuë AEFGHID, laquelle on <lb></lb>appelle <expan abbr="ordinairemẽt">ordinairement</expan> le traict de la viz. </s>
        </p>
        <p type="main">
          <s id="s.000257">C&#039;eſt donc en cette maniere que l&#039;in­<lb></lb>ſtrument appellé par les Grecs &amp; par <lb></lb>les Latins <emph type="italics"></emph>cochlea<emph.end type="italics"></emph.end> &amp; que nous <expan abbr="appelliõs">appellions</expan> <emph type="italics"></emph>la <lb></lb>viz,<emph.end type="italics"></emph.end> à eſté <expan abbr="inuẽtée">inuentée</expan>, affin qu&#039;en la <expan abbr="tornãt">tornant</expan> <lb></lb>on eſléue les fardeaux <expan abbr="cõme">comme</expan> l&#039;on feroit <lb></lb>ſur le triangle precedent, car l&#039;on trou­<lb></lb>uera touſiours dans la viz, comme ſur <lb></lb>tel autre plan que ce ſoit, que la force <lb></lb>eſt au poids poſé ſur vn plan incliné <lb></lb>comme la hauteur dudit plan à ſa lon­<lb></lb>gueur: &amp; conſequemment que la force <lb></lb>de la viz ABCD ſera multipliée ſelon <lb></lb>que toute l&#039;helice ſera plus grande que <lb></lb>toute la hauteur du cylindre. </s>
          <s id="s.000258">Par où il <lb></lb>eſt ayſé d&#039;entendre, &amp; de conclure que <lb></lb>la viz eſt d&#039;autant plus forte que ſes <lb></lb>helices ſont plus couchées, &amp; plus in-
<pb pagenum="56" xlink:href="047/01/076.jpg"></pb>clinées ſur l&#039;orizon, par ce que la lon­<lb></lb>gueur des triangles ſuiuant leſquels el­<lb></lb>les ſont formées eſt en plus grande pro­<lb></lb>portion à leur hauteur. </s>
          <s id="s.000259">Neantmoins il <lb></lb>n&#039;eſt pas neceſſaire de meſurer la lon­<lb></lb>gueur de toute l&#039;helice, ny la hauteur <lb></lb>totale du cylindre pour congnoiſtre la <lb></lb>force d&#039;vne viz propoſée, car il ſuffit de <lb></lb>ſçauoir combien de fois l&#039;vn des tours <lb></lb>de l&#039;helice <expan abbr="contiẽt">contient</expan> ſa hauteur, par exem­<lb></lb>ple, combien de fois AF eſt contenu en <lb></lb>AE, &amp; en EF parce qu&#039;il y à meſme <lb></lb>proportion de toute la hauteur CB à <lb></lb>toute l&#039;helice, que de FA à A EF, que <lb></lb>les Italiens appellent <emph type="italics"></emph>verme de la vite.<emph.end type="italics"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000260">Or apres auoir expliqué la nature de <lb></lb>la viz, l&#039;on peut <expan abbr="ayſemẽt">ayſement</expan> ſçauoir toutes <lb></lb>ſes proprietez, par exemple que l&#039;on fait <lb></lb>monter le poids par le moyen de ſa ma­<lb></lb>trice auec les helices concaues dans <lb></lb>leſquelles entre le noyau de la viz auec <lb></lb>ſes helices <expan abbr="cõuexes">conuexes</expan> <expan abbr="cõme">comme</expan> il eſt ayſé de <lb></lb>remarquer aux viz des preſſoirs, &amp; de <lb></lb>toutes ſortes de preſſes à écroux, dont <lb></lb>le noyau eſtant tourné fait monter la­<lb></lb>dite matrice, &amp; quant &amp; quant le poids <lb></lb>qui y eſt attaché. </s>
        </p>
        <pb pagenum="57" xlink:href="047/01/077.jpg"></pb>
        <p type="main">
          <s id="s.000261">Mais il faut touſiours ſe ſouuenir que <lb></lb><expan abbr="l&#039;õ">l&#039;on</expan> perd <expan abbr="autãt">autant</expan> de viſteſſe, &amp; de <expan abbr="tẽps">temps</expan>, que <lb></lb>l&#039;on gaigne de force, car AB eſt le plan <lb></lb><expan abbr="horizõtal">horizontal</expan>, &amp; AC le plan incliné, <expan abbr="dõt">dont</expan> la <lb></lb>hauteur eſt meſurée, &amp; determinée par <lb></lb>la perpendiculaire CB; Or ſi l&#039;on poſe <lb></lb>vn mobile ſur le plan AC, &amp; que la <lb></lb>chorde EDF le tienne attaché, la force <lb></lb>qui eſt en F ayant meſme raiſon auec le <lb></lb>poids E que BC aà CB, ſouſtiendra le <lb></lb>poids en E, &amp; en luy aioutant la moin­<lb></lb>dre force du monde, il tombera en B, &amp; <lb></lb>emportera le poids E en le faiſant mon­<lb></lb>ter vers D. </s>
          <s id="s.000262">Mais F ne fera pas moins <lb></lb>de chemin en deſcendant perpendicu­<lb></lb>lairement, que le poids E en montant <lb></lb>obliquement, c&#039;eſt pourquoy il eſt ne­<lb></lb>ceſſaire que F deſcende plus bas qu&#039;il <lb></lb>ne fait monter le poids E, dont l&#039;exau­<lb></lb>cement ſe meſure par la ligne per­<lb></lb>pendiculaire BC: de maniere que la <lb></lb>ligne de la deſcente de F ſera égalé à <lb></lb>CA, quand il aura fait monter le poids <lb></lb>de B à C. </s>
          <s id="s.000263">Car le poids ne reſiſte point <lb></lb>au mouuement parallele à l&#039;orizon, <lb></lb>parce que ce mouuement ne l&#039;éloigne <lb></lb>point du centre de la terre. </s>
          <s id="s.000264">C&#039;eſt pour­<lb></lb>quoy il importe grandement de con-
<pb pagenum="58" xlink:href="047/01/078.jpg"></pb>ſiderer les lignes par leſquelles ſe font <lb></lb><figure id="id.047.01.078.1.jpg" xlink:href="047/01/078/1.jpg"></figure><lb></lb>les mouuemens, &amp; <lb></lb>particulierement <lb></lb>lors qu&#039;ils ſe font <lb></lb>par des forces ina­<lb></lb>nimées, dont les <lb></lb>momens, &amp; les reſi­<lb></lb>ſtances ſont en leur ſouuerain degré <lb></lb>dans la ligne <expan abbr="perpẽdiculaire">perpendiculaire</expan> à l&#039;orizon; <lb></lb>mais elles ſe <expan abbr="diminüẽt">diminüent</expan> à proportion que <lb></lb>la ligne ſe <expan abbr="pãche">panche</expan> ſur le plan horizontal. </s>
        </p>
        <p type="head">
          <s id="s.000265"><emph type="center"></emph>III. ADDITION.<emph.end type="center"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000266">Il y a pluſieurs choſes à remarquer <lb></lb>ſur ce ſubjet qui Peuuent ſeruir pour <lb></lb>eſtablir quelque partie de la Phyſique, <lb></lb>dont i&#039;en mets icy quelques vnes, affin <lb></lb>d&#039;exciter les bons eſprits qui ayment la <lb></lb>verité, à paſſer oûtre. </s>
          <s id="s.000267">Premierement <lb></lb><figure id="id.047.01.078.2.jpg" xlink:href="047/01/078/2.jpg"></figure><lb></lb>c&#039;eſt vne choſe tres­<lb></lb>remarquable que la <lb></lb>boule FDCE ſe <lb></lb>puiſſe mouuoir auec <lb></lb>la moindre force <lb></lb>imaginable ſur le <lb></lb>plan horizontal AB, <lb></lb>dont la raiſon eſt qu&#039;elle ne touche le 
<pb pagenum="59" xlink:href="047/01/079.jpg"></pb>plan qu&#039;au point C, &amp; que ſes deux <lb></lb>moitiez CFE, &amp; CFD ſont en vn par­<lb></lb>fait équilibre, comme lon void au <lb></lb>leuier ED, dont le bras EG eſt égal au <lb></lb>bras GD, de ſorte que ſi l&#039;on applique <lb></lb>la moindre force du <expan abbr="mõde">monde</expan> à D la boule <lb></lb>roullera vers A. </s>
          <s id="s.000268">En ſecond lieu l&#039;on <lb></lb>peut <expan abbr="cõparer">comparer</expan> le mouuement des deux <lb></lb>boules CDF, &amp; CHG, qui eſt huict fois <lb></lb>moindre &amp; mois peſante que l&#039;autre, <lb></lb>car ſon diametre CG eſt ſouz double <lb></lb>de CF, &amp; ie ſuppoſe qu&#039;elles ſoient de <lb></lb>meſme matiere: l&#039;on peut donc recher­<lb></lb>cher laquelle des deux ſe meut plus ay­<lb></lb>ſement ſur le plan AB; car il y en a qui <lb></lb>croyent que la petite ſera 8. fois plus <lb></lb>ayſée à mouuoir ſur ce plan, quoy que <lb></lb><expan abbr="parfaictemẽt">parfaictement</expan> dur &amp; poli, à raiſon qu&#039;el­<lb></lb>le peſe 8. fois moins, &amp; que toutes les <lb></lb>parties de chaque corps peſent ſur le <lb></lb>centre de leurs peſanteurs, &amp; conſe­<lb></lb>quemment que toute la peſanteur de <lb></lb>ces deux globes s&#039;vnit au point C, &amp; <lb></lb>reſiſte tant qu&#039;elle peut au <expan abbr="mouuemẽt">mouuement</expan>. </s>
          <s id="s.000269"><lb></lb>Mais puiſque toutes ſortes de globes <lb></lb>tant grands que petits ont la raiſon du <lb></lb>leuier ou de la balance comme i&#039;ay ex­<lb></lb>pliqué cy-deuant, la moindre force ap-
<pb pagenum="60" xlink:href="047/01/080.jpg"></pb>pliquèe aux points D, E, ou HI eſt ca­<lb></lb>pable de les oſter de leur equilibre. </s>
        </p>
        <p type="main">
          <s id="s.000270">En troiſieſme lieu ſi l&#039;on ſuppoſe que <lb></lb>le plan horizontal ſoit rude, ſcabreux, &amp; <lb></lb>mal poli, il <expan abbr="sẽble">semble</expan> que le moindre globe <lb></lb>roulera plus ayſement parce qu&#039;il fait <lb></lb>vn plus grand angle de contingence, &amp; <lb></lb>s&#039;éloigne d&#039;auantage de la ligne droite <lb></lb>AB. </s>
        </p>
        <p type="head">
          <s id="s.000271"><emph type="center"></emph>IV ADDITION.<emph.end type="center"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000272">Sur ce que Galilee dit que Pappus ſ&#039;eſt <lb></lb>trompé, lors qu&#039;il a voulu determiner la <lb></lb>force neceſſaire pour mouuoir vn poids <lb></lb>donné ſur vn plan propoſé, ou ſur vn <lb></lb>plan incliné, dont l&#039;angle d&#039;inclination <lb></lb>eſt <expan abbr="cõnu">connu</expan> l&#039;on peut remarquer pluſieurs <lb></lb>choſes, mais particulierement qu&#039;il la <lb></lb>ſuppoſe beaucoup trop <expan abbr="grãde">grande</expan>, car il dit <lb></lb>qu&#039;il faut la force de 40. hommes pour <lb></lb>mouuoir le poids de 200. talents, dans <lb></lb>la 9. propoſition de ſon 8. liure, au lieu <lb></lb>que la moindre force eſt capable de le <lb></lb>mouuoir ſur ledit plan: c&#039;eſt pourquoy <lb></lb>il a conclud qu&#039;il failloit 260. hommes <lb></lb>pour le mouuoir ſur vn plan incliné de <lb></lb>120 degrez. </s>
          <s id="s.000273">Mais l&#039;on comprendra cecy <lb></lb>plus ayſement par cette figure, dans la-
<pb pagenum="61" xlink:href="047/01/081.jpg"></pb>quelle RM repreſente le plan horizon­<lb></lb><figure id="id.047.01.081.1.jpg" xlink:href="047/01/081/1.jpg"></figure><lb></lb>tal, ſur lequel ie <lb></lb>ſuppoſe que le plan <lb></lb>PM eſt eleué de 30. <lb></lb>degrez, &amp; conſe­<lb></lb>quemment qu&#039;il <lb></lb>fait 60. degrez auec <lb></lb>le plan perpendi­<lb></lb>culaire BC. </s>
          <s id="s.000274">Or il eſt certain que la <lb></lb>force qui retient le poids, ou le globe <lb></lb>BSA ſur le plan incliné eſt audit poids, <lb></lb>comme la perpendiculaire PR eſt à <lb></lb>l&#039;hypotenuſe PM: &amp; parce que cette <lb></lb>hypothenuſe eſt double de la <expan abbr="perpẽdi-culaire">perpendi­<lb></lb>culaire</expan>, vne force vn peu plus <expan abbr="grãde">grande</expan> que <lb></lb>ſouz double le leuera, de ſorte que ſi le <lb></lb>globe peſe 2. liures le poids P, ou O <expan abbr="peſãt">peſant</expan> <lb></lb>vne liure, &amp; vn grain le pourra tirer. </s>
        </p>
        <p type="main">
          <s id="s.000275">Il faut encore remarquer que la force <lb></lb>qui doit empeſcher que le poids ne <lb></lb>coule &amp; ne peſe point ſur le plan PM <lb></lb>doit eſtre au poids, comme la baſe RM <lb></lb>à l&#039;hypotenuſe PM. </s>
          <s id="s.000276">Or quand on veut <lb></lb>tirer le poids ſur le plan incliné, il faut <lb></lb>mettre vne poulie au haut du plan, <lb></lb>comme l&#039;on void en D. </s>
        </p>
        <p type="main">
          <s id="s.000277">Où l&#039;on doit conſiderer la force qui­<lb></lb>ſouſtient le poids dans la ligne perpen-
<pb pagenum="62" xlink:href="047/01/082.jpg"></pb>diculaire PR, pour trouuer celle qui le <lb></lb>ſouſtient ſur le plan incliné, &amp; parce <lb></lb>que le globe BSA peſe 2 liures dans <lb></lb>ladite ligne, il n&#039;en peſera qu&#039;vne ſur ce <lb></lb>plan incliné de 30 degrez. </s>
          <s id="s.000278">Neantmoins <lb></lb>quelquesvns croyent que l&#039;on peut <lb></lb>trouuer la force qui tire le poids ſur le <lb></lb>plan incliné par la connoiſſance de la <lb></lb>force qui le meut ſur le plan <expan abbr="horizõtal">horizontal</expan>; <lb></lb>ſur quoy l&#039;on peut veoir Cabee au 20. <lb></lb>Chapitre du 4. liure de l&#039;aymant. </s>
        </p>
        <p type="head">
          <s id="s.000279"><emph type="center"></emph>V. ADDITION.<emph.end type="center"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000280">Cette ſpeculation des plans differens <lb></lb>eſt grandement vtile pour trouuer la <lb></lb>force requiſe pour mouuoir toutes ſor­<lb></lb>tes de fardeaux ſur les montagnes, &amp; <lb></lb>dans les valees, &amp; pour pluſieurs autres <lb></lb>choſes: par exemple, ſi l&#039;on vouloit <lb></lb>tirer vn fardeau ſur le plan FB, il fau­<lb></lb>droit vne force, qui euſt meſme pro­<lb></lb>portion au poids, que la perpendiculai­<lb></lb>re BE à l&#039;hypotenuſe BF. </s>
          <s id="s.000281">Mais ſi l&#039;on <lb></lb>vouloit l&#039;empeſcher de couler ou de <lb></lb>peſer ſur le plan BF, il faudroit vne <lb></lb>force qui euſt meſme proportion au <lb></lb>poids que FE à FB, ſuiuant ce qui a 
<pb pagenum="63" xlink:href="047/01/083.jpg"></pb>eſté dit dans l&#039;addition precedente, &amp; <lb></lb>conſequemment il faudroit que cette <lb></lb>force fuſt ſouztriple du poids, puiſque <lb></lb>EF eſt ſouztriple de BF. </s>
        </p>
        <p type="main">
          <s id="s.000282">Quant à la proportion des mouue­<lb></lb><figure id="id.047.01.083.1.jpg" xlink:href="047/01/083/1.jpg"></figure><lb></lb>mens qui ſe <lb></lb>font ſur les <lb></lb>plans, nous en <lb></lb><expan abbr="parlerõs">parlerons</expan> apres: <lb></lb>Ie remarque­<lb></lb>ray ſeulement <lb></lb>icy que la for­<lb></lb>ce eſt tou­<lb></lb>ſiours à la pe­<lb></lb>ſanteur qu&#039;il faut ſouſtenir ſur les plans <lb></lb>propoſez, <expan abbr="cõme">comme</expan> le coſté qui touche la <lb></lb>force eſt au coſté ſur lequel le poids eſt <lb></lb>appuyé, ſoit que le coſté de la force ſoit <lb></lb>per pendiculaire, ou incliné ſur l&#039;hori­<lb></lb>zon: par exemple, la force eſtant poſée <lb></lb>ſur le coſté DF eſt au poids D mis <lb></lb>ſur HD, comme FD eſt à DH. </s>
        </p>
        <p type="main">
          <s id="s.000283">Et ſi l&#039;on ſuppoſe que BE ſoit vne <lb></lb>muraille impenetrable, quiſoit polie, &amp; <lb></lb>qui ne cede nullement aux coups, la <lb></lb>bale qui la frapera au point D ſelon <lb></lb>l&#039;inclination de l&#039;angle CDI, qui eſt de <lb></lb>30. degrez, ſe reflechira en H par la li-
<pb pagenum="64" xlink:href="047/01/084.jpg"></pb>gne DH, dautant que l&#039;angle de refle­<lb></lb>xion LDK eſt egal à celuy de l&#039;inci­<lb></lb>dence. </s>
          <s id="s.000284">Mais il eſt difficile de ſçauoir où <lb></lb>ſe reflechira la bale. </s>
          <s id="s.000285">L&#039;on peut encore <lb></lb>conſiderer de combien vn poids deſ­<lb></lb>cend plus viſte ſur vn plan incliné que <lb></lb>ſur l&#039;autre: par exemple, de combien <lb></lb>il <expan abbr="deſcẽd">deſcend</expan> plus viſte ſur BF, que ſur CF, <lb></lb>ou DF, &amp; s&#039;il y a meſme raiſon de la vi­<lb></lb>ſteſſe qui s&#039;exerce ſur BF, à celle de <lb></lb>DF, que de la ligne BF à DF: mais il <lb></lb>faut reſeruer toutes ces conſiderations <lb></lb>pour la fin de ce traité. </s>
          <s id="s.000286">Concluons ce­<lb></lb>pendant qu&#039;il faut d&#039;autant moins de <lb></lb>force pour leuer le poids donné, que le <lb></lb>chemin de la force eſt plus long que <lb></lb>celuy du poids, affin que l&#039;vn <expan abbr="recõpenſe">recompenſe</expan> <lb></lb>l&#039;autre, &amp; que la nature ne perde rien <lb></lb>d&#039;vn coſté qu&#039;elle ne le gaigne de l&#039;au­<lb></lb>tre. </s>
          <s id="s.000287"><expan abbr="Finalemẽt">Finalement</expan> ſivn coup de <expan abbr="canõ">canon</expan> eſt tiré <lb></lb>du point H contre la muraille BE, il <lb></lb>aura ſa force entiere dans la perpendi­<lb></lb>culaire HE; &amp; le boulet appuyera en­<lb></lb>tierement contre E. </s>
          <s id="s.000288">Mais s&#039;il frappe <lb></lb>obliquement en D par la ligne HD, <lb></lb>il ſera d&#039;autant moins fort que DH eſt <lb></lb>plus long que HE. 
<pb pagenum="65" xlink:href="047/01/085.jpg"></pb></s>
        </p>
      </chap>
      <chap>
        <p type="head">
          <s id="s.000289"><emph type="center"></emph>CHAP. X.<emph.end type="center"></emph.end></s>
        </p>
        <p type="head">
          <s id="s.000290"><emph type="center"></emph><emph type="italics"></emph>De la Viz d&#039;Archimede pour <lb></lb>eſleuer les eaux.<emph.end type="italics"></emph.end><emph.end type="center"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000291">IL faut icy adioûter la conſideration <lb></lb>de cette viz, parce que ſon effet eſt <lb></lb><figure id="id.047.01.085.1.jpg" xlink:href="047/01/085/1.jpg"></figure><lb></lb>d&#039;autant plus <lb></lb>admirable <lb></lb>que la cauſe <lb></lb>ſemble plus <lb></lb>éloignée de <lb></lb>la raiſon, car <lb></lb>elle fait mon­<lb></lb>ter l&#039;eau par­<lb></lb>ce qu&#039;elle la <lb></lb>fait deſcen­<lb></lb>dre. </s>
          <s id="s.000292">Son vſa­<lb></lb>ge paroiſt <expan abbr="dãs">dans</expan> <lb></lb>la figure qui <lb></lb>ſuit, dans la­<lb></lb>quelle ZY <lb></lb>XVTSR &amp; <lb></lb>Q ſignifient <lb></lb>vn canal qui <lb></lb>entoure le <lb></lb>cylindre NP. </s>
          <s id="s.000293"><lb></lb>Or le bout du canal N doit eſtre dans <pb pagenum="66" xlink:href="047/01/086.jpg"></pb>l&#039;eau, &amp; le canal doit eſtre incliné; &amp; <lb></lb>puis il faut tourner le cylindre autour <lb></lb>des points QP, &amp; NO, iuſques à ce que <lb></lb>l&#039;eau ſorte par Q, apres auoir monté <lb></lb>tout au long du canal, ou de l&#039;helice <lb></lb>NO YX &amp;c. </s>
          <s id="s.000294">bans la quelle l&#039;eau mon­<lb></lb>te par ce qu&#039;elle deſcend, comme ie fais <lb></lb>voir en cette maniere. </s>
        </p>
        <p type="main">
          <s id="s.000295">Soit le <expan abbr="triãgle">triangle</expan> A KB, d&#039;où la viz NP <lb></lb>prend ſon origine, lors que l&#039;helice à <lb></lb>meſme inclination que KA, dont la <lb></lb>ſaillie, ou l&#039;eleuation eſt determinée par <lb></lb>l&#039;angle BAK; &amp; ſi cet angle eſt du <lb></lb>tiers, ou du quart d&#039;vn angle droit, l&#039;e­<lb></lb>leuation de l&#039;helice NZ, ou ZY ſera <lb></lb><expan abbr="ſemblablemẽt">ſemblablement</expan> le tiers, ou le quart d&#039;vn <lb></lb>angle droit. </s>
          <s id="s.000296">Cecy eſtant poſé, il eſt <lb></lb><expan abbr="euidãt">euidant</expan> que la ſaillie du canal AK ſera <lb></lb>abbaiſſée quand le point K viendra au <lb></lb>point B, &amp; qu&#039;elle n&#039;aura plus de pente <lb></lb>ou d&#039;inclination, &amp; conſequemment ſi <lb></lb>on l&#039;abaiſſe vn peu plus bas que B, l&#039;eau <lb></lb>coulera, &amp; s&#039;engorgera naturellement <lb></lb>dans le canal AK, ou XV, &amp; tombera <lb></lb>du point A au point K, qui ſe trouuera <lb></lb>plus bas que B ſouz l&#039;orizon. </s>
          <s id="s.000297">Or il faut <lb></lb>entourer le cylindre CA du triangle <lb></lb>AKB, affin de conſtruire la viz AC 
<pb pagenum="67" xlink:href="047/01/087.jpg"></pb><expan abbr="perpẽdiculaire">perpendiculaire</expan> ſur l&#039;horizon EA: &amp; puis <lb></lb>il la faut mettre dans l&#039;eau, &amp; la tour­<lb></lb>ner, affin que l&#039;eau monte par le canal <lb></lb>AE, qui n&#039;eſt pas plus incliné que KA, <lb></lb>c&#039;eſt à dire que le tiers d&#039;vn angle droi­<lb></lb>te donc ſi l&#039;on abbaiſſe le cylindre PN <lb></lb>du tiers d&#039;vn angle droit, les helices <lb></lb>EF, FG &amp;c. </s>
          <s id="s.000298">ſeront inclinées, comme <lb></lb>l&#039;on void au cylindre panchant PN, &amp; <lb></lb>à ſes helices ZYXV &amp;c. </s>
          <s id="s.000299">par conſe­<lb></lb>quent l&#039;eau deſcendra de N à Z, &amp; tou­<lb></lb>tes les autres helices receuront vne <lb></lb>meſme diſpoſition pour faire couler <lb></lb>l&#039;eau iuſques au bout de la viz, de ſorte <lb></lb>que l&#039;eau deſcendra touſiours en mon­<lb></lb>tant de N à P. D&#039;ou il faut conclure que <lb></lb>la viz doit auoir vne inclination vn peu <lb></lb>plus grande que le triangle ſur lequel <lb></lb>on la baſtie. </s>
        </p>
        <p type="head">
          <s id="s.000300"><emph type="center"></emph>VI ADDITION.<emph.end type="center"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000301">Il y a pluſieurs choſes à remarquer <lb></lb>pour la pente, &amp; la deſcente, &amp; pour <lb></lb>l&#039;exaltation des eaux, &amp; pour tout ce <lb></lb>qui appartient aux Siphons, &amp; aux <lb></lb>Pompes qui attirent l&#039;eau, ou les autres <lb></lb>liqueurs par aſpiration, mais l&#039;vne des 
<pb pagenum="68" xlink:href="047/01/088.jpg"></pb>principales conſiſte à ſçauoir que l&#039;eau <lb></lb>ne ſe meut point naturellement ſi elle <lb></lb>n&#039;a de la pente, <expan abbr="cõme">comme</expan> l&#039;on experimente <lb></lb>aux ruiſſeaux, aux riuieres, aux eſtangs <lb></lb>&amp;c. </s>
          <s id="s.000302">ce qui fait reconnoiſtre que le <lb></lb><expan abbr="mouuemẽt">mouuement</expan> de la mer ſuppoſe de la vio­<lb></lb>lence, car ſi le reflus luy eſt naturel, le <lb></lb>flus doit eſtre violent. </s>
          <s id="s.000303">Quant au Siphon <lb></lb>il peut ſeruir pour faire paſſer des fon­<lb></lb>taines depuis le pied d&#039;vne montagne <lb></lb>ou d&#039;vn rocher iuſques à l&#039;autre coſté, <lb></lb>pour changer le vin, ou les autres li­<lb></lb>queurs d&#039;vn tonneau en vn autre, pour <lb></lb>vuider les marais, &amp; pour pluſieurs <lb></lb>autres commoditez dont nous parle­<lb></lb>rons ailleurs. </s>
        </p>
        <p type="main">
          <s id="s.000304">Quant à l&#039;vſage de l&#039;eau dans les me­<lb></lb>chaniques, il eſt tres grand, comme l&#039;on <lb></lb>experimente aux moulins à eau, &amp; aux <lb></lb>differentes manieres dont on ſe ſert <lb></lb>pour ſçauoir la <expan abbr="differẽce">difference</expan> des peſanteurs <lb></lb>de toutes ſortes de corps plus peſans, ou <lb></lb>plus legers que l&#039;eau, ſoit qu&#039;on les com­<lb></lb>pare enſemble, ou auec la meſme eau: <lb></lb>mais tout cecy merite vn traicté entier <lb></lb>de l&#039;Hydraulique, comme les vtilitez <lb></lb>de l&#039;air &amp; du vent requierent vn diſ­<lb></lb>cours entier de la Pneumatique. </s>
          <s id="s.000305">Mais 
<pb pagenum="69" xlink:href="047/01/089.jpg"></pb>par ce que Galilée n&#039;en a rien dit <expan abbr="dãs">dans</expan> ce <lb></lb>liure, ie <expan abbr="viẽs">viens</expan> à la derniere <expan abbr="cõſideration">conſideration</expan> <lb></lb>qu&#039;il a faite ſur la force de la percuſſion. </s>
        </p>
      </chap>
      <chap>
        <p type="head">
          <s id="s.000306"><emph type="center"></emph>CHAP. XI.<emph.end type="center"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000307">Il eſt neceſſaire pour pluſieurs raiſons <lb></lb>de rechercher la cauſe de la force de la <lb></lb>percuſſion, parce qu&#039;elle contient plus <lb></lb>de merueilles que tous les autres inſtru­<lb></lb>mens Mechaniques, car on experimen­<lb></lb>te qu&#039;en <expan abbr="frappãt">frappant</expan> ſur vn clou, ſur vn pieu, <lb></lb>ou pilotis, &amp;c. </s>
          <s id="s.000308">ils <expan abbr="entrẽt">entrent</expan> dans des corps <lb></lb>fort durs, &amp; qu&#039;ils n&#039;entrent nullement <lb></lb>ſi l&#039;on ne frappe deſſus, encore que l&#039;on <lb></lb>charge &amp; que l&#039;on preſſe les marteaux <lb></lb>auec des fardeaux mille fois plus <expan abbr="peſãs">peſans</expan> <lb></lb>qu&#039;eux, car à peine feroit-on entrer vn <lb></lb>coin auſſi auant en le chargeant d&#039;vne <lb></lb>maiſon entiere, comme on le fait entrer <lb></lb>à coup de marteau. </s>
          <s id="s.000309">Ce qui eſt d&#039;autant <lb></lb>plus digne d&#039;eſtre conſideré que nul <lb></lb>n&#039;en a donné la raiſon iuſques à preſent: <lb></lb>ce qui fait voir la difficulté de cette <lb></lb>ſpeculation: car les penſées d&#039;Ariſtote <lb></lb>&amp; des autres qui ont voulu prendre <lb></lb>la raiſon de cet effet de la longueur de <lb></lb>la maniuelle ou du manche des mar­<lb></lb>teaux ſont trop foibles, &amp; mal fondées, 
<pb pagenum="70" xlink:href="047/01/090.jpg"></pb>attendu que les poids qui tombent, &amp; <lb></lb>qui font de ſi grands effets, nont point <lb></lb>de manches. </s>
          <s id="s.000310">Il faut dire la meſme <lb></lb>choſe des poids que l&#039;on pouſſe ou que <lb></lb>l&#039;on iette de trauers. </s>
          <s id="s.000311">C&#039;eſt pourquoy <lb></lb>il faut auoir recours à vn autre principe <lb></lb>pour trouuer la verité de cét effet, le­<lb></lb>quel ie taſcheray à expliquer &amp; à le <lb></lb>rendre ſenſible. </s>
          <s id="s.000312">Ie di <expan abbr="dõc">donc</expan> que cet effect <lb></lb>vient de la meſme ſource que les autres <lb></lb>effets Mechaniques, à ſçauoir que la <lb></lb>force, la reſiſtance, &amp; l&#039;eſpace par leſ­<lb></lb>quels ſe <expan abbr="fõt">font</expan> les <expan abbr="mouuemẽs">mouuemens</expan> ont vne telle <lb></lb>correſpondance &amp; proportion entr&#039;eux <lb></lb>que la force <expan abbr="reſpõd">reſpond</expan> ſeulement à vne re­<lb></lb>ſiſtance qui luy eſt égale. </s>
          <s id="s.000313">&amp; qu&#039;elle la <lb></lb>meut ſeulement par vn eſpace égal, ou <lb></lb>d&#039;vne égale viſteſſe, dont elle ſe meut <lb></lb>elle meſme. </s>
          <s id="s.000314">Semblablement quand la <lb></lb>force eſt moindre de moitié que la re­<lb></lb>ſiſtence, elle la peut mouuoir, ſi elle <lb></lb>meſme ſe meut d&#039;vne double impetuo­<lb></lb>ſité, &amp; ſi elle fait deux fois autant de <lb></lb>chemin. </s>
          <s id="s.000315">Ce qui ſe remarque en toutes <lb></lb>ſortes d&#039;inſtrumens, par le moyen deſ­<lb></lb>quels l&#039;on peut mouuoir &amp; ſurmonter <lb></lb>toute ſorte de reſiſtence pour grande <lb></lb>quelle puiſſe eſtre auec vne force ſi pe-
<pb pagenum="71" xlink:href="047/01/091.jpg"></pb>tite que l&#039;on voudra, pourueu que l&#039;eſ­<lb></lb>pace que fait la force ayt meſme pro­<lb></lb>portion auec l&#039;eſpace de la reſiſtance, <lb></lb>que la grande reſiſtance à la petite for­<lb></lb>ce; ce qui ſuit entierement la conſtitu­<lb></lb>tion &amp; les regles de la nature. </s>
        </p>
        <p type="main">
          <s id="s.000316">Ce n&#039;eſt <expan abbr="dõc">donc</expan> pas merueille ſi en argu­<lb></lb>mentant au contraire, la force qui meut <lb></lb>vne petite reſiſtance par vn grand in­<lb></lb>terualle, en pouſſe vne cent fois plus <lb></lb>grande par vn interualle cent fois <lb></lb>moindre, puis qu&#039;il ne peut arriuer au­<lb></lb>trement. </s>
          <s id="s.000317">Cecy eſtant poſè, il faut con­<lb></lb>ſiderer qu&#039;elle doit eſtre la reſiſtence <lb></lb>pour eſtre meüe par le marteau, qui la <lb></lb>doit frapper &amp; pouſſer; &amp; pour ce ſub­<lb></lb>ject il faut remarquer combien la force <lb></lb>qui a eſté imprimée au marteau le por­<lb></lb>ter a loing, ſi l&#039;on ſuppoſe qu&#039;il ne frap­<lb></lb>pe point, <expan abbr="cõme">comme</expan> il arriueroit ſi le marteau <lb></lb>ſortoit de la main auec la meſme impe­<lb></lb>tuoſité <expan abbr="dõt">dont</expan> il doit frapper vne enclume, <lb></lb>vn coin, ou quelqu&#039;autre choſe, &amp; qu&#039;il <lb></lb>ne <expan abbr="rencõtraſt">rencontraſt</expan> nul <expan abbr="empeſchemẽt">empeſchement</expan> en ſon <lb></lb>chemin. </s>
          <s id="s.000318">Et puis il faut <expan abbr="cõſiderer">conſiderer</expan> quelle <lb></lb>reſiſtance fait le corps qui eſt frappé, &amp; <lb></lb><expan abbr="cõbien">combien</expan> il eſt pouſſé par vne telle <expan abbr="percuſ-ſiõ">percuſ­<lb></lb>ſiom</expan>, &amp; <expan abbr="ayãt">ayant</expan> remarqué de <expan abbr="cõbiẽ">combien</expan> il ſe meut 
<pb pagenum="72" xlink:href="047/01/092.jpg"></pb>à chaque coup, &amp; que le coin entre <lb></lb>d&#039;autant moins auant que le marteau <lb></lb>pouſſé de la meſme impetuoſité iroit <lb></lb>moins loing <expan abbr="l&#039;õ">l&#039;on</expan> trouuera que ledit coin <lb></lb>entrera d&#039;autant moins auant dans vne <lb></lb>bûche, ou dans vn autre corps à cha­<lb></lb>que coup, que la reſiſtance ſera plus <lb></lb>grande que la force du marteau: de ſor­<lb></lb>te qu&#039;il ne faut plus admirer les effects <lb></lb>de la percuſſion, puis qu&#039;ils ne <expan abbr="ſortẽt">ſortent</expan> pas <lb></lb>hors des bornes de la nature. </s>
        </p>
        <p type="main">
          <s id="s.000319">A quoy i&#039;aioûte vn exemple pour vne <lb></lb>plus grande intelligence, en ſuppoſant <lb></lb>que le marteau qui a 4. degrez de reſi­<lb></lb>ſtance ſoit pouſſé d&#039;vne telle force que <lb></lb>ne treuuant nulle <expan abbr="reſiſtãce">reſiſtance</expan> qui l&#039;arreſte, <lb></lb>il aille iuſques à dix pas, &amp; qu&#039;à ce <lb></lb>terme on luy oppoſe vne poutre qui <lb></lb>ayt 4000. degrez de <expan abbr="reſiſtãce">reſiſtance</expan> &amp; qui ſoit <lb></lb>mille fois plus grande que la force du <lb></lb>marteau, de ſorte qu&#039;elle ſurpaſſe ſans <lb></lb>proportion ladite force, ſi elle eſt frap­<lb></lb>pée, elle ira ſeulement en auant la <lb></lb>millieſme partie de dix pas, par leſquels <lb></lb>l&#039;on auroit pouſſé le marteau. </s>
        </p>
        <p type="main">
          <s id="s.000320">D&#039;où l&#039;on peut conclurre que la force <lb></lb>de la percuſſion ſuit les loix des autres <lb></lb>inſtrumens mechaniques, &amp; qu&#039;il eſt 
<pb pagenum="73" xlink:href="047/01/093.jpg"></pb>auſſi ayſé de la determiner que les au­<lb></lb>tres forces. </s>
        </p>
        <p type="head">
          <s id="s.000321"><emph type="center"></emph>ADDITION VII.<emph.end type="center"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000322">Galilée promettoit pluſieurs probleſ­<lb></lb>mes à la fin de ſes mechaniques, mais <lb></lb>puiſque nous ne les <expan abbr="auõs">auons</expan> point veus, il <lb></lb>faut ſeulement icy aioûter quelques <lb></lb>conſiderations <expan abbr="touchãt">touchant</expan> les <expan abbr="mouuemẽs">mouuemens</expan>; <lb></lb>en attendant que nous en donnions <lb></lb>pluſieurs <expan abbr="obſeruatiõs">obſeruations</expan> tres-exactes. </s>
          <s id="s.000323">Soit <lb></lb>donc le plan BG incliné de 30. degrez <lb></lb>ſur le plan horizontal BF: il eſt premie­<lb></lb>rement certain que le poids peſe d&#039;au­<lb></lb>tant moins ſur BG que dans la ligne <lb></lb>perpendiculaire GX, que BG eſt plus <lb></lb>grand que GX, c&#039;eſt à dire deux fois <lb></lb><figure id="id.047.01.093.1.jpg" xlink:href="047/01/093/1.jpg"></figure><lb></lb>moins, <expan abbr="dautãt">dautant</expan> que GX, <lb></lb>eſt ſouz double de BG, <lb></lb>par la conſtruction. </s>
        </p>
        <p type="main">
          <s id="s.000324">Secondement il eſt cer­<lb></lb>tain que la boule miſe au <lb></lb>point G &amp; roulante ſur <lb></lb>GB deſcend plus lente­<lb></lb>ment que par la ligne G <lb></lb>X. </s>
          <s id="s.000325">Mais il eſt difficile de <lb></lb>ſçauoir combien elle deſcend plus viſte 
<pb pagenum="74" xlink:href="047/01/094.jpg"></pb>par GX. </s>
          <s id="s.000326">Galilée croit dans vn autre <lb></lb>diſcours qu&#039;en meſme <expan abbr="tẽps">temps</expan> que la boule <lb></lb>deſcend de G en H elle deſcendroit <lb></lb>de G en E, &amp; qu&#039;au meſme temps qu&#039;el­<lb></lb>le deſcend de G en B, elle deſcen­<lb></lb>droît de Gen D. </s>
          <s id="s.000327">Car le point de la li­<lb></lb>gne perpendiculaire, auquel ſe rencon<lb></lb>treroit le poids tombant, ſe determine <lb></lb>par les perpendiculaires deſcrites ſur le <lb></lb>plan incliné, comme l&#039;on void icy aux <lb></lb>perpendiculaires HE &amp; BD tirées des <lb></lb>deux points H, B, auſquels on ſuppoſe <lb></lb>que la boule eſt arriuée en roûlant: ce <lb></lb>qu&#039;il faut auſſi, ce ſemble, conclurre des <lb></lb>autres corps qui gliſſent ſeulement. </s>
          <s id="s.000328"><lb></lb>En troiſieſme lieu, l&#039;on peut conſiderer <lb></lb>ſi les poids qui ſe meuuent ſur le plan <lb></lb>incliné gardent la meſme proportion <lb></lb>en leur viſteſſe que ceux qui ſe <expan abbr="meuuẽt">meuuent</expan> <lb></lb>perpendiculairement vers le centre de <lb></lb>la terre, c&#039;eſt à dire s&#039;ils <expan abbr="haſtẽt">haſtent</expan> leur cour­<lb></lb>ſe en raiſon doublée des <expan abbr="tẽps">temps</expan> par exem­<lb></lb>ples ſi G ayant <expan abbr="deſcẽdu">deſcendu</expan> iuſque, au quart <lb></lb>de ſon plan dans le premier temps, <lb></lb>deſcend les trois autres quarts dans le <lb></lb>ſecond temps. </s>
          <s id="s.000329">En quatrieſme lieu, la <lb></lb>ſpeculation de Galilée eſt excellente, ſi <lb></lb>elle eſt veritable, à ſçauoir qu&#039;vne bou-
<pb pagenum="75" xlink:href="047/01/095.jpg"></pb>le deſcend en meſme temps ſur tous les <lb></lb>plans qui ſont dans le meſme demi cer­<lb></lb>cle, ce que l&#039;on comprendra par cette <lb></lb>figure dans laquelle AB eſt le diametre, <lb></lb>qui repreſente la cheute perpendicu­<lb></lb><figure id="id.047.01.095.1.jpg" xlink:href="047/01/095/1.jpg"></figure><lb></lb>laire. </s>
          <s id="s.000330">EB, DB, <lb></lb>&amp; CB, ou FB, <lb></lb>GB, &amp; HB <expan abbr="mõ-ſtrẽt">mon­<lb></lb>ſtrent</expan> les cheutes <lb></lb>obliques, qui ſe <lb></lb>font toutes en <lb></lb>meſme temps <lb></lb>depuis le haut <lb></lb>iuſques au bas <lb></lb>de chaque plan, de ſorte que la boule <lb></lb>va auſſi toſt de G à B que d&#039;E à B. </s>
          <s id="s.000331">Par <lb></lb>ou l&#039;on void que le mouuement de la <lb></lb>boule eſt d&#039;autant plus lent que le plan <lb></lb>obligue s&#039;approche <expan abbr="dauãtage">dauantage</expan> de l&#039;hori­<lb></lb>zontal IK, ſur lequel il n&#039;a plus de mou­<lb></lb>uement par ce qu&#039;il ne peur plus s&#039;ap­<lb></lb>procher du centre de la terre. </s>
          <s id="s.000332">Cette <lb></lb>figure contient encore d&#039;autres lignes, à <lb></lb>ſçauoir AF, FG, GH, AG, &amp; AH, ſur <lb></lb>ſur leſquelles on peut encore conſide­<lb></lb>rer les mouuemens d&#039;vne boule, affin <lb></lb>de les comparer auec ceux qui ſe font <lb></lb>ſur les plans FG, GH, &amp;c. </s>
        </p>
        <pb pagenum="76" xlink:href="047/01/096.jpg"></pb>
        <p type="main">
          <s id="s.000333">En cinquieſme lieu, il faudroit conſi­<lb></lb>derer quelle eſt la viteſſe des mouue­<lb></lb>mens qui ſe font ſur les plans BE, CE: <lb></lb><figure id="id.047.01.096.1.jpg" xlink:href="047/01/096/1.jpg"></figure><lb></lb>&amp; D<lb></lb>E, qui <lb></lb>ſont <lb></lb>dans <lb></lb>le <lb></lb>quart <lb></lb>du <lb></lb>cer­<lb></lb>cle B<lb></lb>CE, &amp; quelle proportion elle a auec la <lb></lb>viteſſe du mouuement d&#039;A en E, dont la <lb></lb>partie AH ſe faiſant dans vn <expan abbr="tẽps">temps</expan> don­<lb></lb>né, tout le reſte depuis H iuſques à E ſe <lb></lb>fait dans vn autre temps egal. </s>
          <s id="s.000334">Où il faut <lb></lb>encore remarquer que ſi l&#039;on pend le &lt;lb/&gt;poids E à la chorde AE, &amp; qu&#039;on tire le <lb></lb>poids iuſques à B, que B <expan abbr="deſcẽdra">deſcendra</expan> quaſi <lb></lb>en meſme temps de B à E par le quart <lb></lb>du cercle BCE qu&#039;il deſcendra de C, <lb></lb>ou de D au meſme E. </s>
          <s id="s.000335">Or les lignes Bk, <lb></lb>KL, &amp; LM font veoir combien les <lb></lb>poids <expan abbr="deſcendẽt">deſcendent</expan> ſur les plans CE &amp; DE, <lb></lb>&amp; conſequemment de combien il ſont <lb></lb>retardez, &amp; empeſchez par chaque plan <lb></lb>incliné: par <expan abbr="exẽple">exemple</expan>, le poids B roulant 
<pb pagenum="77" xlink:href="047/01/097.jpg"></pb>de B à C ſur le plan BC deſcend autant <lb></lb>que quand il roulle de C en E, car la li­<lb></lb>gne BK eſt égale à KM; &amp; le poids <lb></lb>roullant de C à D deſcend plus de deux <lb></lb>fois dauantage que celuy qui va de D à <lb></lb>E car LK eſt plus que double de LM. <lb></lb>D&#039;où il eſt ayſé de <expan abbr="cõclure">conclure</expan> que le poids <lb></lb>B qui deſcend par le quart de cercle <lb></lb>BCE iroit <expan abbr="d&#039;autãt">d&#039;autant</expan> plus lentement qu&#039;il <lb></lb>approche dauantage du point E, s&#039;il n&#039;a­<lb></lb>querroit nulle impetuoſité. </s>
        </p>
        <p type="main">
          <s id="s.000336">En ſixieſme lieu, la chorde AB con­<lb></lb>duira le poids B iuſques au diamettre <lb></lb>AE dans vn temps donné, ſi elle eſt en <lb></lb>raiſon doublee dudit temps, lors qu&#039;elle <lb></lb>doit ſe mouuoir dans vn plus grand <lb></lb>temps; ou en raiſon ſouzdoublée, ſi el­<lb></lb>le ſe doit mouuoir dans vn moindre <lb></lb>temps: par exemple, ſi la chorde AB <lb></lb>porte B dans 4. moments iuſques à E, <lb></lb>la chorde ſouzquadruple AI portera&#039;I <lb></lb>iuſques à H dans vn moment. </s>
        </p>
        <p type="main">
          <s id="s.000337">En ſeptieſme lieu, le poids qui <expan abbr="deſcẽd">deſcend</expan> <lb></lb>de B en M, ou d&#039;A en E va non <expan abbr="ſeulemẽt">ſeulement</expan> <lb></lb>plus lentement en commençant ſon <lb></lb>mouuement, mai, auſſi il paſſe par tous <lb></lb>les degrez poſſibles de tardiueté, de ſor­<lb></lb>te que s&#039;il n&#039;augmentoit point la viſteſſe 
<pb pagenum="78" xlink:href="047/01/098.jpg"></pb>qu&#039;il a vers le milieu de la premiere ſep­<lb></lb>tieſme minute, il ſeroit deux ans &amp; <lb></lb>20 iours à deſcendre l&#039;eſpace d&#039;vn <lb></lb>pied de Roy, comme ie demonſtreray <lb></lb>dans vn traité particulier. </s>
        </p>
        <p type="head">
          <s id="s.000338"><emph type="center"></emph>ADDITION VIII.<emph.end type="center"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000339">Il eſt certain que les poids qui deſ­<lb></lb>cendent vers le centre augmentent <lb></lb>touſiours leur impetuoſité, &amp; que ſi on <lb></lb>laiſſe cheoir vne boule ſur le plan CA, <lb></lb>elle aura autant d&#039;impetuoſité lors <lb></lb>qu&#039;elle ſera arriuée au point A, comme <lb></lb>quand elle ſera tombée en B du point <lb></lb>C parce qu&#039;elle ſera auſſi proche du <lb></lb>centre en A qu&#039;en B: &amp; cette impetuo­<lb></lb>ſité ſera aſſez grande pour faire remon­<lb></lb><figure id="id.047.01.098.1.jpg" xlink:href="047/01/098/1.jpg"></figure><lb></lb>ter le meſme <lb></lb>poids iuſques à <lb></lb>C ſoit par la li­<lb></lb>gne oblique <lb></lb>AC, ou par la <lb></lb>perpendiculai­<lb></lb>re BC, pour­<lb></lb>ueu qu&#039;il n&#039;y ayt nul empeſchement ex­<lb></lb>terieur. </s>
          <s id="s.000340">Mais tandis que le poids tom­<lb></lb>be de C en T, il tombe de C en B, &amp; par 
<pb pagenum="79" xlink:href="047/01/099.jpg"></pb>conſequemment il acquier beaucoup <lb></lb>plus d&#039;impetuoſité en meſme temps <lb></lb>par le plan horizontal que par l&#039;in­<lb></lb>cliné. </s>
          <s id="s.000341">Semblablement tandis que le <lb></lb>poids tombe par le plan AD de D en I, <lb></lb>il tombe de D en B, car la ligne IB eſt <lb></lb>perpendiculaire ſur la ligne AD; &amp; ſi le <lb></lb>poids tombe iuſques en A, il ſera tombé <lb></lb>par la perpendiculaire DB prolongée <lb></lb>iuſques au poinct, auquel elle ſera cou­<lb></lb>pée par la ligne tirée du point A paral­<lb></lb>lele à IB, laquelle ſera perpendiculaire <lb></lb>au plan IA. </s>
          <s id="s.000342">Or il y a grande apparence <lb></lb>que le temps auquel le poids tombe <lb></lb>de C en B eſt au temps auquel il tombe <lb></lb>de C en A, comme la ligne CB eſt à la <lb></lb>ligne CA. </s>
          <s id="s.000343">Ce que l&#039;on peut exami­<lb></lb>ner en cette maniere. </s>
          <s id="s.000344">Suppoſons donc <lb></lb>que le temps de la cheute d&#039;A en B ſur <lb></lb>le plan AB ſoit égal au temps de la <lb></lb>cheute qui ſe fait d&#039;A en D: &amp; <lb></lb><figure id="id.047.01.099.1.jpg" xlink:href="047/01/099/1.jpg"></figure><lb></lb>pour ce ſubiect qu&#039;au tri­<lb></lb>angle rectangle ABD le <lb></lb>coſté D ſoit de 4. parties, &amp; <lb></lb>le coſté BA de deux, ſi A <lb></lb>D eſt 1000. AB ſera 500, <lb></lb>&amp; partant l&#039;angle BDA <lb></lb>ſera de 30 degrez, car DA <expan abbr="eſtãt">eſtant</expan>, le rayon 
<pb pagenum="80" xlink:href="047/01/100.jpg"></pb>AB ſera le Sinus de 30 degrez, &amp; l&#039;an­<lb></lb>gle BDA ſera de 60. degrez, &amp; conſe­<lb></lb>quemment le coſté BD ſera 866, c&#039;eſt <lb></lb>à dire le Sinus de 60. Au triangle ABC <lb></lb>rectangle, en C l&#039;angle BCA eſt connu <lb></lb>de 60 degrez, donc l&#039;angle ABC eſt de <lb></lb>30. degrez, dont le ſinus AC eſt 250, à <lb></lb>ſçauoir la moitié du rayon BA, &amp; BC <lb></lb>ſinus de BAC 60. eſt 433. de telles parties <lb></lb>dont AD eſt 1000: donc ſi AC eſt 250. <lb></lb>AB ſera 500. &amp; AD 1000, de ſorte qu&#039;A <lb></lb>B eſt moyenne proportionnelle en­<lb></lb>tre DA, &amp; CA; donc AD eſt quadru­<lb></lb>ple de CA, &amp; conſequemment AB eſt <lb></lb>double de CA. </s>
          <s id="s.000345">De plus ſi l&#039;on ſup­<lb></lb>poſe qu&#039;AC ſoit de 3. pieds, le poids <lb></lb>tombe de cet eſpace dans vne ſeconde, <lb></lb>&amp; AD eſtant quadruple d&#039;AC, le poids <lb></lb>tombera par AD en deux ſecondes, &amp; <lb></lb>parce que nous <expan abbr="auõs">auons</expan> ſuppoſé qu&#039;il chet <lb></lb>par la ligne AB en meſme temps que <lb></lb>par la perpendiculaire AD, il fera auſſi <lb></lb>l&#039;eſpace AB en 2. ſecondes. </s>
          <s id="s.000346">De ſorte <lb></lb>qu&#039;il y aura meſme raiſon du temps de <lb></lb>la cheute AC à celuy de la cheute de 3 <lb></lb>pieds AB que de la ligne BA à la ligne <lb></lb>CA, qui a ſix pieds. </s>
        </p>
        <p type="main">
          <s id="s.000347">Il faut encore remarquer que comme 
<pb pagenum="81" xlink:href="047/01/101.jpg"></pb>AC eſt ſouz quadruple de DA, que <lb></lb>CE eſt auſſi ſouzquadruple de BD, &amp; <lb></lb>AE de BA, &amp; que de meſme que CD <lb></lb>eſt triple de CA, que BE eſt triple d&#039;E <lb></lb>A, &amp; que comme la racine de CA eſt à <lb></lb>la racine de DA, que le temps de la <lb></lb>cheute CA eſt à celuy de la cheute <lb></lb>DA. </s>
          <s id="s.000348">Et parce que le poids qui tombe <lb></lb>d&#039;A en B eſt deux fois autant de temps <lb></lb>que celuy qui tombe d&#039;A en C, l&#039;on <lb></lb>peut dire qu&#039;il va auſſi viſte par AB que <lb></lb>par AC, puis qu&#039;il fait vn chemin dou­<lb></lb>ble dans vn temps double. </s>
        </p>
        <p type="main">
          <s id="s.000349">D&#039;où ie conclus que le plan peut telle­<lb></lb>ment eſtre incliné ſur l&#039;horizon BC, <lb></lb>que la boule miſe deſſus ſera plus <lb></lb>d&#039;vn an à rouler iuſques à B, &amp; qu&#039;vn <lb></lb>temps infini ne ſuffiroit pas pour ſon <lb></lb>roulement ſur le plan horizontal de C <lb></lb>en B, parce que ſa tardiueté deuient in­<lb></lb>finie quand le plan incliné eſt reduit au <lb></lb>plan horizontal, ſur lequel la boule ne <lb></lb>ſe peut mouuoir que circulairement, <lb></lb>ſuppoſé que la terre ſoit parfaitement <lb></lb>ronde, ce qui n&#039;arriue point ſi le mou­<lb></lb>uement droit ne precede, &amp; n&#039;en eſt <lb></lb>cauſe: mais le poids n&#039;aquierra point de <lb></lb>plus grande viſteſſe ſur le plan horizon-
<pb pagenum="82" xlink:href="047/01/102.jpg"></pb>tal, ſur lequel il ira touſiours <expan abbr="vniforme-mẽt">vniforme­<lb></lb>ment</expan> s&#039;il ne trouue nulle <expan abbr="empeſchemẽt">empeſchement</expan>, <lb></lb>d&#039;autant qu&#039;il eſt touſiours également <lb></lb>éloigné de ſon centre. </s>
        </p>
        <p type="head">
          <s id="s.000350"><emph type="center"></emph>ADDITION. IX.<emph.end type="center"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000351">Galilée n&#039;a point traité des <expan abbr="inſtrumẽs">inſtrumens</expan> <lb></lb>qui ſe ſeruent de roües dentelees, com­<lb></lb><figure id="id.047.01.102.1.jpg" xlink:href="047/01/102/1.jpg"></figure><lb></lb>me <expan abbr="ſõt">ſont</expan> celles cy B &amp; A, qui tournent par <lb></lb>le moyen de la maniuelle E, à laquelle <lb></lb>la moindre roüe A, que l&#039;on appelle or­<lb></lb>dinairement le Pignon, eſt attachée, <lb></lb>affin d&#039;accommoder ſes dents à celles <lb></lb>de la grande roüe B, qui tourne ſur ſon <lb></lb>eſſieu C, à l&#039;entour duquel l&#039;on met la <lb></lb>chorde qui tient le poids D. </s>
          <s id="s.000352">Or on 
<pb pagenum="83" xlink:href="047/01/103.jpg"></pb>multiplie ces roües tant que l&#039;on veut <lb></lb>iuſques à l&#039;infini: mais plus il y en a <expan abbr="dãs">dans</expan> <lb></lb>vn inſtrument &amp; plus on eſt long temps <lb></lb><figure id="id.047.01.103.1.jpg" xlink:href="047/01/103/1.jpg"></figure><lb></lb>à leuer <lb></lb>le poids <lb></lb>attaché <lb></lb>à celle <lb></lb>qui <lb></lb>tourne <lb></lb>le plus <lb></lb>lente­<lb></lb>ment, <lb></lb><expan abbr="cõme">comme</expan> <lb></lb><expan abbr="l&#039;õ">l&#039;on</expan> <expan abbr="experimẽte">expe<lb></lb>rimente</expan> <lb></lb>aux hor<lb></lb>loges à <lb></lb>roües, <lb></lb>&amp; à reſ­<lb></lb>ſors. </s>
          <s id="s.000353">Ie <lb></lb>mets <lb></lb>ſeule­<lb></lb>ment <lb></lb>icy la fi­<lb></lb>gure de <lb></lb>l&#039;inſtru­<lb></lb>ment <lb></lb>que l&#039;on appelle Cry, qui ſert pour 
<pb pagenum="84" xlink:href="047/01/104.jpg"></pb>releuer les caroſſes, &amp; les charrettes qui <lb></lb>ſont verſées. </s>
          <s id="s.000354">La moindre figure IGH <lb></lb>fait voir ſa forme exterieure, &amp; les <expan abbr="crãs">crans</expan>, <lb></lb>ou les dents H, qui ont la fourchette G <lb></lb>en haut pour leuer les fardeaux. </s>
          <s id="s.000355">CB <lb></lb>fait veoir la maniuelle &amp; le Pignon B <lb></lb>qui fait tourner la grande roüe AB, la­<lb></lb>quelle fait hauſſer le cry FE par le <lb></lb>moyen du pignon à trois dents D qui, <lb></lb>ſ&#039;aiuſte dans les dents de FE. </s>
          <s id="s.000356">Si l&#039;on <lb></lb>multiplie les roües de cry on le rendra ſi <lb></lb>fort qu&#039;il pourra leuer vne <expan abbr="maiſõ">maiſon</expan> toute <lb></lb>entiere, mais ſon effet ſera plus tardif en <lb></lb><figure id="id.047.01.104.1.jpg" xlink:href="047/01/104/1.jpg"></figure><lb></lb>recompenſe. </s>
          <s id="s.000357">Mais l&#039;on ne peut enten<pb pagenum="85" xlink:href="047/01/105.jpg"></pb>dre la nature &amp; les proprietez de ces <lb></lb>inſtrumens, ſi l&#039;on ne comprend les pro­<lb></lb>prietez du cercle, dont ie parle dans <lb></lb>vn autre lieu. </s>
          <s id="s.000358">Il y a encore d&#039;au­<lb></lb>tres roües qui ont vne grande force, <lb></lb>comme ſont celles de la viz ſans fin, <lb></lb>dont ie donne ſeulement icy la figure, <lb></lb>dans laquelle EFG eſt la plus grande <lb></lb>roüe. </s>
          <s id="s.000359">AD eſt l&#039;arbre entouré des fi­<lb></lb>lets E qui entrent dans les dents de la <lb></lb>dite roüe: mais ſi l&#039;on adioute la roüe <lb></lb>CB, elle redoublera la force, &amp; la mani­<lb></lb>velle L fera tourner l&#039;arbre K, dont les <lb></lb>filets B entrent dans les dents de la ſe­<lb></lb>conde roüe BC. </s>
          <s id="s.000360">Le poids I eſt attaché <lb></lb>à la chorde H, &amp; ſe tient en chaque <lb></lb>degré de hauteur où l&#039;on veut, ſans <lb></lb>qu&#039;il ſoit beſoin d&#039;arreſter l&#039;inſtrument <lb></lb>par aucune force: mais les filets des ar­<lb></lb>bres s&#039;vſent bien toſt. </s>
        </p>
        <p type="main">
          <s id="s.000361">Finalement ie veux adiouter vn <lb></lb>mouſſle à ſix poulies qui n&#039;a pas eſté <lb></lb>mis en ſon lieu, dans le chapitre des <lb></lb>poulies, affin que ceux qui s&#039;en vou­<lb></lb>dront ſeruir, voyent comme il faut <lb></lb>conſtruire cet inſtrument, que Pappus <lb></lb>appelle Polyſpaſte dans la 24 propoſi­<lb></lb>tion du 8. liure de ſes Recueils Mathe-
<pb pagenum="86" xlink:href="047/01/106.jpg"></pb><figure id="id.047.01.106.1.jpg" xlink:href="047/01/106/1.jpg"></figure><lb></lb>matiques, où il nomme <lb></lb>l&#039;armeure HF, ou AG <lb></lb><emph type="italics"></emph>manganum.<emph.end type="italics"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000362">L&#039;on voit donc en ce <lb></lb>mouffle ſix roües, à ſça­<lb></lb>uoir 3 en bas F, D, B, &amp; <lb></lb>3 en haut G, E, C, mais <lb></lb>la derniere d&#039;enhaut <lb></lb>G ne multiplie point la <lb></lb>force, dautant qu&#039;elle <lb></lb>ne ſert que comme la <lb></lb>ſimple poulie d&#039;vn <lb></lb>puys. </s>
          <s id="s.000363">Or cet inſtru­<lb></lb>ment eſt plaiſant en ce <lb></lb>que ſi 4 ou 5 hommes <lb></lb>employent toute leur <lb></lb>force à tirer la chorde <lb></lb>IK, celuy qui tire le <lb></lb>bout de la chorde L <lb></lb>d&#039;vne ſeule main les <lb></lb>fait venir à luy malgré <lb></lb>qu&#039;ils en a yent. </s>
          <s id="s.000364">Et l&#039;on <lb></lb>peut y mettre tant de <lb></lb>poulies que l&#039;on mene­<lb></lb>ra les Egliſes, les tours, <lb></lb>&amp; les autres edifices <lb></lb>où l&#039;on voudra, pour­<lb></lb>ueu <expan abbr="qu&#039;õ">qu&#039;on</expan> les puiſſe cein-
<pb pagenum="87" xlink:href="047/01/107.jpg"></pb>dre de chordes aſſez fortes pour ce ſuiet, <lb></lb>&amp; que les murailles ne ſe ſeparent point <lb></lb>les vnes des autres. </s>
          <s id="s.000365">Ceux qui veulent <lb></lb>ſerieuſement eſtudier aux Mechani­<lb></lb>ques doiuent lire tout le 8 liure de <lb></lb>Pappus, <expan abbr="dãs">dans</expan> lequel il explique pluſieurs <lb></lb>ſortes d&#039;inſtrumens; &amp; les liure de Gui­<lb></lb>don Vbalde, qui a le mieux de tous trai­<lb></lb>té de la nature de ces inſtrumens. </s>
        </p>
        <p type="head">
          <s id="s.000366"><emph type="center"></emph>ADDITION. X.<emph.end type="center"></emph.end></s>
        </p>
        <p type="main">
          <s id="s.000367">Ie mets encore icy vne figure du plan <lb></lb>incliné, affin que l&#039;on conſidere l&#039;utilité <lb></lb>du triangle rectangle dans les mecha­<lb></lb>niques. </s>
          <s id="s.000368">Soit donc le triangle BAC, <expan abbr="dõt">dont</expan> <lb></lb>la ſouſtendante ou l&#039;hypotenuſe BC <lb></lb><figure id="id.047.01.107.1.jpg" xlink:href="047/01/107/1.jpg"></figure><lb></lb>eſt double du co­<lb></lb>ſté BA, &amp; la baſe <lb></lb>AC eſt parallele <lb></lb>à l&#039;horizon il: eſt <lb></lb>conſtant que le <lb></lb>poids F doit eſtre 2. fois auſſi peſant que <lb></lb>le poids D pour eſtre équilibre, <expan abbr="dautãt">dautant</expan> <lb></lb>qu&#039;ils doiuent garder entr&#039;eux la meſme <lb></lb>raiſon que le coſté CB au coſté AB. </s>
          <s id="s.000369"><lb></lb>Mais lors que l&#039;on veut ſçauoir la force <lb></lb>dont le poids F preſſe le plan BF, il faut <lb></lb>prendre la baſe du triangle AC &amp; la 
<pb pagenum="88" xlink:href="047/01/108.jpg"></pb>comparer auec l&#039;hypotenuſe BC, d&#039;au­<lb></lb>tant que la peſanteur entiere du <lb></lb>poids F eſt à celle par. </s>
          <s id="s.000370">laquelle il <lb></lb>preſſe le plan BC, comme CB eſt à <lb></lb>CA, de ſorte que ſi BC eſt 5, &amp; CA 4. <lb></lb>la raiſon de la <expan abbr="peſãteur">peſanteur</expan> totale eſt ſeſqui­<lb></lb>quarte de la peſanteur relatiue, &amp; <expan abbr="con-ſequãment">con­<lb></lb>ſequamment</expan> la force F ne pourroit rom­<lb></lb>pre vne reſiſtance de 5. Par où lon voit <lb></lb>que la conſideration du rayon AC, de la <lb></lb>tangente BA, &amp; de la <expan abbr="ſecãte">ſecante</expan> BC eſt en­<lb></lb>tierement neceſſaire pour les mechani­<lb></lb>ques, dont i&#039;ay parlé fort amplement <lb></lb>dans le dix &amp; l&#039;onzieſme theorême du <lb></lb>ſecond liure de l&#039;harmonie vniuerſelle. </s>
        </p>
        <p type="main">
          <s id="s.000371">Or puiſque l&#039;on demonſtre que la vi­<lb></lb>ſteſſe des poids qui deſcendent ſur les <lb></lb>plans inclinez s&#039;augmentent en raiſon <lb></lb>doublée des temps, il eſt ayſé de deter­<lb></lb>miner vn lieu ſur vn plan incliné tel que <lb></lb>l&#039;on voudra, auquel le poids ira auſſi <lb></lb>viſte qu&#039;en vn autre lieu donné de ſa <lb></lb>deſcente perpendiculaire, comme l&#039;on <lb></lb>peut conclure de ce qui a eſté dit dans la <lb></lb>8 Addition. <lb></lb></s>
        </p>
        <p>
          <s id="s.000372">FIN.</s>
        </p>
      </chap>
    </body>
  </text>
</archimedes>