Mercurial > hg > mpdl-xml-content
view texts/archimedesOldCVSRepository/archimedes/xml/bianc_locam_009_la_1615.xml @ 12:f9a6b8344c3a
DESpecs 2.0 Autumn 2009
author | Klaus Thoden <kthoden@mpiwg-berlin.mpg.de> |
---|---|
date | Thu, 02 May 2013 11:14:40 +0200 |
parents | 22d6a63640c6 |
children |
line wrap: on
line source
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE archimedes SYSTEM "../dtd/archimedes.dtd"> <archimedes xmlns:xlink="http://www.w3.org/1999/xlink"> <info> <author>Biancani, Giuseppe</author> <title>Aristotelis loca mathematica</title> <date>1615</date> <place>Bologna</place> <translator/> <lang>la</lang> <cvs_file>bianc_locam_009_la_1615</cvs_file> <cvs_version/> <locator>009.xml</locator> </info> <text> <front> <pb xlink:href="009/01/001.jpg"/> <section> <p type="head"> <s id="s.000001">ARISTOTELIS <lb/>LOCA MATHEMATICA <lb/> Ex vniuer&longs;is ip&longs;ius Operibus collecta, <lb/> & explicata.</s> </p> <p type="head"> <s id="s.000002"><emph type="italics"/>Aristotelicæ videlicet expo&longs;itionis complementum <lb/> hactenus de&longs;ideratum.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000003">Acce&longs;&longs;ere de Natura Mathematicarum &longs;cientiarum Tractatio; <lb/> <expan abbr="atq;">atque</expan> Clarorum Mathematicorum Chronologia.</s> </p> <p type="head"> <s id="s.000004"><emph type="italics"/>Authore IOSEPHO BLANCANO Bononien&longs;i è Societate Ie&longs;u, <lb/> Mathematicarum in Gymna&longs;io Parmen&longs;i Profe&longs;&longs;ore.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000005">Ad Illu&longs;tri&longs;&longs;imum, ac Nobili&longs;&longs;imum <lb/>PETRVM FRANCISCVM MALASPINAM <lb/> Aedificiorum Marchionem, apud Cæ&longs;. <!-- REMOVE S-->Maie&longs;tatem <lb/> pro Sereni&longs;s. <!-- REMOVE S-->Parmen&longs;ium Duce Legatum.</s> </p> <p type="head"> <s id="s.000006">BONONIÆ M. <!-- REMOVE S-->D C. <!-- KEEP S--><!-- REMOVE S-->X V.<!-- KEEP S--></s> </p> <p type="head"> <s id="s.000007">Apud Bartholomæum Cochium. <!-- KEEP S--></s> <s id="s.000008">Superiorum permi&longs;&longs;u.</s> </p> <p type="head"> <s id="s.000009">Sumptibus Hieronymi Tamburini.</s> </p> <pb xlink:href="009/01/002.jpg"/> <pb pagenum="3" xlink:href="009/01/003.jpg"/> </section> <section> <p type="head"> <s id="s.000010">ILLVSTRISSIMO <lb/>AC NOBILISSIMO <lb/>PETRO FRANCISCO <lb/>MALASPINAE <lb/> ÆDIFICIORVM MARCHIONI.</s> </p> <p type="main"> <s id="s.000011"><emph type="italics"/>En tandem Illustriß. <!-- REMOVE S-->Marchio opus no­<lb/> strum de Locis Mathematicis apud Ari­<lb/> stotelem, vnà cum Tractatione de natura <lb/> &longs;cientiarum Mathematicarum, necnon <lb/> Clarorum <expan abbr="Mathematicorũ">Mathematicorum</expan> Chronologia; <lb/> quod tibi Mecœnati meo munificenti&longs;simo iure meritò <lb/> dicare, ac &longs;ub clarißimi tui nominis patrocinio in lucem <lb/> dare con&longs;titui. </s> <s id="s.000012">primùm quidem, vt mei perpetui erga te <lb/> amoris, & ob&longs;eruantiæ hoc vnum &longs;altem specimen exta­<lb/> ret: tùm vt idoneum, æquumque propo&longs;itæ rei iudicem <lb/> nanci&longs;cerer. </s> <s id="s.000013">cùm enim ad iu&longs;tum <expan abbr="arbitrũ">arbitrum</expan> duo potißimùm <lb/> requirantur, rerum &longs;cilicet cognitio, atque prudentia, quem <lb/> te rei, de qua agitur peritiorem, quemuè prudentiorem <lb/> inuenire potuerim? </s> <s id="s.000014">tu enim cùm Phy&longs;iologiæ, ac Mathe­<lb/> maticarum omnium Encyclopædiam mirum in modum<emph.end type="italics"/> <pb pagenum="4" xlink:href="009/01/004.jpg"/><emph type="italics"/>excolueris, adintima Mathematicarum penetralia ita <lb/> per&longs;ua&longs;i&longs;ti, vt Archimedis, & Apollonij admirandis, ac <lb/> &longs;ubtilißimis Demon&longs;trationibus detinearis. </s> <s id="s.000015">Quanta por­<lb/> rò in rebus agendis prudentia valeas, toti penè Europæ <lb/> innotuit, cùm pro no&longs;tris Sereniß. <!-- REMOVE S-->Ducibus, non &longs;olùm ad <lb/> omnes ferè Italiæ, atque Germaniæ Principes, verùm etiam <lb/> ad Cæ&longs;aream Maie&longs;tatem rebus fœliciter ge&longs;tis Legatus <lb/> decimùm extiteris; ac demùm à Sereniß. <!-- REMOVE S-->Duce Ranutio <lb/> inter primarios de Rep. <!-- KEEP S--></s> <s id="s.000016">Con&longs;iliorum Authores ad&longs;citus <lb/> fueris. </s> <s id="s.000017">Cæterùm in Clarorum Mathematicorum Chro­<lb/> nologia perlegenda, &longs;æpißimè tibi nobilißimi æquè, ac do­<lb/> ctißimi Viri, tui omnino per&longs;imiles occurrent, quod tibi <lb/> nonni&longs;i gratißimum accidere po&longs;&longs;e arbitror. </s> <s id="s.000018">Complectere <lb/> igitur ea benignitate, atque clementia, qua &longs;oles no&longs;tra stu­<lb/> dia promouere, mea hæc quantulacumque munu&longs;cula. <lb/> </s> <s id="s.000019">quæ &longs;i tibi accepta e&longs;&longs;e intellexero, iam tandem ma­<lb/> ximorum munerum loco habenda e&longs;&longs;e cen&longs;e­<lb/> bo. </s> <s id="s.000020">incolumem tibi, ac fœlicem D. Opt. <lb/> <!-- REMOVE S-->Max. <!-- REMOVE S-->longæuitatem tueatur. <lb/> </s> <s id="s.000021">Vale.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000022"><emph type="italics"/>Parmæ Idibus Maij M. DC. XIIII.<emph.end type="italics"/><lb/> <!-- KEEP S--></s> </p> </section> <pb pagenum="5" xlink:href="009/01/005.jpg"/> <section> <p type="head"> <s id="s.000023">Liber de &longs;e ip&longs;o.</s> </p> <p type="head"> <s id="s.000024"><emph type="italics"/>Nec di&longs;cet Lector me &longs;olo interprete totum, <lb/> Nec &longs;ine me totum di&longs;cet Aristotelem.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000025">Ego Iordanus Ca&longs;&longs;ini Præpo&longs;itus Prouincialis Prouinciæ Venetæ Societatis <lb/> Ie&longs;u, ex auctoritate Adm. <!-- REMOVE S-->Reuer. <!-- REMOVE S-->P. no&longs;tro Præpo&longs;iti Generalis P. <!-- REMOVE S-->Claudij <lb/> Aquæuiuæ, facultatem concedo, vt hoc opus P. <!-- REMOVE S-->Io&longs;ephi Blancani eiu&longs;dem <lb/> Societatis, quod in&longs;cribitur, Ari&longs;t. Loca Mathematica ex vniuer&longs;is ip&longs;ius <lb/> operibus collecta, & explicata, à deputatis Patribus recognitum, & ap­<lb/> probatum typis mandari po&longs;&longs;it. </s> <s id="s.000026">Parmæ die 15. Ianuarij 1615.</s> </p> <p type="main"> <s id="s.000027"><emph type="italics"/>Iordanus Ca&longs;&longs;ini P.<emph.end type="italics"/><!-- REMOVE S--><lb/> Don Marcellus Balda&longs;&longs;inus pro Illu&longs;tri&longs;s. </s> <s id="s.000028">& Reuerendi&longs;s. <!-- REMOVE S-->Archiepi&longs;c. <!-- REMOVE S-->Bonon.</s> </p> <p type="main"> <s id="s.000029">Imprimatur</s> <s id="s.000030">Fr. <!-- REMOVE S-->Hieronymus Onuphrius pro Reuerendi&longs;s. <!-- REMOVE S-->P. <!-- REMOVE S-->Inqui&longs;itore Bonon.</s> </p> </section> <pb pagenum="6" xlink:href="009/01/006.jpg"/> <section> <p type="head"> <s id="s.000031">LECTORI.</s> </p> <p type="main"> <s id="s.000032">Qvod pri&longs;cis olim temporibus (humani&longs;&longs;ime Lector) &longs;um­<lb/> mi duo Philo&longs;ophi, Philippus Mendeus, ac Theon Smyr­<lb/> næus in Platonis Dialogis egregiè perfecerunt, vt videli­<lb/> cet quæ pa&longs;&longs;im &longs;ummus hic Philo&longs;ophus de Mathemati­<lb/> cis &longs;cripta reliquit, eadem ip&longs;a ab illis &longs;electa, & in vnum <lb/> qua&longs;i corpus redacta lucubrationibus illu&longs;trarent: idem ego quoque in <lb/> Ari&longs;totelis operibus efficere &longs;um conatus, vt quæ de Mathematicis re­<lb/> bus in vniuer&longs;is eiu&longs;dem monumentis &longs;par&longs;a leguntur, eadem in vnum <lb/> à me collecta, & explicata ijs Philo&longs;ophiæ &longs;tudio&longs;is maxime &longs;eruirent, <lb/> qui pri&longs;ca illa con&longs;uetudine relicta, Mathematicarum omnium ignari <lb/> non &longs;ine graui &longs;tudiorum &longs;uorum detrimento Philo&longs;ophiæ curriculum <lb/> aggrediuntur. </s> <s id="s.000033">Vt autem huius operis nece&longs;&longs;itas, <expan abbr="variæ&qacute;">variæque</expan>; vtilitates pla­<lb/> nius cogno&longs;cantur operæpretium erit initio illius cau&longs;as exponere; quæ <lb/> me poti&longs;&longs;imum ad illud con&longs;cribendum compulerunt, quarum</s> </p> <p type="main"> <s id="s.000034">Prima &longs;it, quod hæc Ari&longs;t. loca Mathematica, quæ quidem ferè 408. <lb/> numerantur, pe&longs;&longs;imè latinis literis con&longs;ignata &longs;unt v&longs;que adeò, vt Ari­<lb/> &longs;totelem ip&longs;um, vel inuitum (quod po&longs;tea multis in locis planum fiet) in <lb/> ab&longs;urdi&longs;&longs;ima errata &longs;æpi&longs;&longs;imè compellant.</s> </p> <p type="main"> <s id="s.000035">Secunda, quòd plurima huiu&longs;modi loca à nemine, quod &longs;ciam, adhuc <lb/> declarata in tenebris magno no&longs;trorum malo delite&longs;cunt: cuiu&longs;modi <lb/> &longs;unt ad &longs;exaginta problemata, libellus de lineis in &longs;ecabilibus, libellus <lb/> de mundo, &longs;i tamen Ari&longs;totelis e&longs;t, & Mechanicæ quæ&longs;tiones, quamuis <lb/> enim Picolomineus in eas paraphra&longs;im ediderit, loca tamen earum dif­<lb/> ficiliora non &longs;atis illu&longs;trauit. </s> <s id="s.000036">Vt autem dixi 408. in vniuer&longs;um loca mi­<lb/> nimùm numerantur, quibus illud Platonis in&longs;criptum e&longs;t <foreign lang="greek">agaiome/trhtos <lb/> udei/s eisi/to</foreign>; & in quibus Mathematicæ di&longs;ciplinæ rudes, & imperiti, quem <lb/> &longs;equuntur ducem Ari&longs;t. eum &longs;æpe de&longs;erere non &longs;ine turpi dedecoris no­<lb/> ta coguntur; quo fit vt exempla illa Mathematica lucem rebus aliquan­<lb/> do allatura, tenebras cimmerijs, vt aiunt vmbris cra&longs;&longs;iores ij&longs;dem <lb/> obducant.</s> </p> <p type="main"> <s id="s.000037">Tertia, quia Græci eorumdem locorum commentatores breuiter, & <lb/> ob&longs;curè admodum ea, quæ ad Mathematicum &longs;pectant, attingunt, hoc <lb/> enim ab ip&longs;is <expan abbr="certũ">certum</expan> ponitur, Lectorem e&longs;&longs;e, vt moris tunc erat, omnium <lb/> Philo &longs;ophorum, Mathematicis imbutum; at verò no&longs;tra ætate magna <lb/> cum Philo&longs;ophiæ iactura, quamplurimi earumdem di&longs;ciplinarum de&longs;ti­<lb/> tuti præ&longs;idijs, ne Græcorum quidem Interpretum explanationes, ne­<lb/> dum Ari&longs;t. ob&longs;curè dicta intelligunt.</s> </p> <pb pagenum="7" xlink:href="009/01/007.jpg"/> <p type="main"> <s id="s.000038">Quarta. </s> <s id="s.000039">Adde, quod etiam &longs;i quis leuiter &longs;it erudito illo Mathemati­<lb/> corum puluere con&longs;per&longs;us, adeò tamen peruer&longs;a e&longs;t eorumdem Græco­<lb/> rum in Latinum tran&longs;latio, <expan abbr="tanta&qacute;">tantaque</expan>; figurarum, quæ nece&longs;&longs;ariæ erant <lb/> confu&longs;io, & deprauatio, vt nec abeo, qui &longs;it Mathematicarum &longs;cientia <lb/> excultus, &longs;ine magno labore percipi po&longs;&longs;int. </s> <s id="s.000040">Quin etiam figuræ illæ, quæ <lb/> omnino nece&longs;&longs;ariæ &longs;unt ob Scriptorum, & Typographorum in&longs;citiam, <lb/> aut inertiam pluribus in locis de&longs;iderantur. </s> <s id="s.000041">Latini verò multo minus, <lb/> quàm Græci Mathematicæ periti, qua ratione eadem loca pertractaue­<lb/> rint, facilius e&longs;t conijcere, quàm vt dici oporteat.</s> </p> <p type="main"> <s id="s.000042">Quinta. </s> <s id="s.000043">Ex his omnibus in aliud incommodum, vel maximum Phi­<lb/> lo&longs;ophi quidam incidebant; aut enim horum locorum expo&longs;itionem ta­<lb/> citi declinabant: aut eam minime nece&longs;&longs;ariam ad Ari&longs;t. percipiendam <lb/> &longs;ententiam a&longs;&longs;erebant; quo quid ab&longs;urdius, quid &longs;tudio&longs;orum progre&longs;­<lb/> &longs;ibus pernicio&longs;ius excogitari pote&longs;t? </s> <s id="s.000044">Eorum verò nonnulli eorumdem <lb/> locorum expo&longs;itionem audacter nimis aggrediebantur, <expan abbr="atq;">atque</expan> hinc pueri­<lb/> les illæ, ac ridiculæ expo&longs;itiones pa&longs;&longs;im auditæ, cuiu&longs;modi e&longs;t illa, quan­<lb/> do Ari&longs;toteles ait, quod illi frequenti&longs;&longs;imum e&longs;t, omnis triangulus ha­<lb/> bet tres; nihil aliud &longs;ignificari volunt, quàm omnem triangulum habe­<lb/> re tres angulos. </s> <s id="s.000045">quod &longs;i dicat, omnis triangulus habet tres æquales duo­<lb/> bus rectis: hic hærent, hinc anguntur: <expan abbr="cumq;">cumque</expan> ex his angu&longs;tijs, ac tricis <lb/> &longs;e minimè expedire valeant, aurea verba illa, quibus ingentes &longs;apientiæ <lb/> the&longs;auri continentur, alto &longs;ilentij velo contegere Mathematicarum eos <lb/> cogit in&longs;citia: vnde illud, quod Græcæ linguæ imperitis mutata oratio­<lb/> ne acclamandum illis foret, Mathematicum e&longs;t, non legitur. </s> <s id="s.000046">Nec mi­<lb/> nus elegans illa altera expo&longs;itio; Diametrum e&longs;&longs;e incommen&longs;urabilem <lb/> co&longs;tæ; quod &longs;æpe apud Ari&longs;t. legentibus occurrit, nihil aliud &longs;ibi velle, <lb/> quam Diametrum e&longs;&longs;e longiorem co&longs;ta, quam quidem a&longs;ymetriæ huius <lb/> ignorantiam Plato de legibus dial. 7. non hominum, &longs;ed &longs;uum, <expan abbr="peco-rumq;">peco­<lb/> rumque</expan> appellare non dubitauit. </s> <s id="s.000047">Quid illa? </s> <s id="s.000048">cum Ari&longs;t. ait duo cubi, cu­<lb/> bus, ip&longs;um loqui putant de duplatione Geometrici cubi, nondum in­<lb/> uenta; non intelligentes, eum ibi de numeris cubis &longs;ermonem habere. <lb/> </s> <s id="s.000049">Auerroes ip&longs;e tantus vir 5. Phy&longs;. commen. <!-- REMOVE S-->15. quàm &longs;e Mathematicis, <lb/> reliqui&longs;que Philo&longs;ophis irridendum præbet dum à permutata propor­<lb/> tione putat &longs;erectè in hunc modum pluribus apud ip&longs;um verbis explica­<lb/> tum, argumentari,</s> </p> <p type="main"> <s id="s.000050"><emph type="italics"/>Vt &longs;e habet voluntas noua ad effectum nouum, <lb/> It a voluntas antiqua ad effectum antiquum. <lb/> </s> <s id="s.000051">Ergo permutatim, vt &longs;e habebit voluntas noua ad effectum <lb/> antiquum, ita voluntas antiqua ad effectum nouum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000052"><expan abbr="Spectatũ">Spectatum</expan> admi&longs;&longs;i ri&longs;um teneatis amici? </s> <s id="s.000053">nego, ait; qui&longs;piam con&longs;equen­ <pb pagenum="8" xlink:href="009/01/008.jpg"/>tiam, non enim hoc e&longs;t argumentari à permutata ratione, deberet enim <lb/> inferre, &longs;ic, ergo ita &longs;e habebit voluntas noua ad antiquam, quemad­<lb/> modum effectus nouus ad antiquum. </s> <s id="s.000054">quæ vitio&longs;a argumentatio quan­<lb/> tumuis læuis &longs;it, & manife&longs;ta, quo&longs;dam tamen magni nominis philo&longs;o­<lb/> phantes adeò tor&longs;it, vt adhuc torqueat.</s> </p> <p type="main"> <s id="s.000055">Quanta autem mi&longs;eratione digni, qui publicè aliquando apud &longs;uos <lb/> auditores totam Per&longs;pectiuam, qua nihil iucundius e&longs;t, de medio tolle­<lb/> re conati &longs;unt, propterea quod illæ vi&longs;uales lineæ, illi anguli, illæ pyra­<lb/> mides, aut coni, quibus vi&longs;io perficitur nullibi extarent, &longs;ed e&longs;&longs;ent vana <lb/> quædam opticorum figmenta. </s> <s id="s.000056">Quì verò fieri potuit, vt non aduerterint <lb/> i&longs;ti &longs;e Ari&longs;toteli &longs;uo manife&longs;te repugnare, qui &longs;æpius de lineis vi&longs;ualibus <lb/> per&longs;pectiuum pertractare a&longs;&longs;erit, <expan abbr="di&longs;crimen&qacute;">di&longs;crimenque</expan>; inter lineam phy&longs;icam, & <lb/> opticam a&longs;&longs;ignat, <expan abbr="ip&longs;ius&qacute;">ip&longs;iusque</expan>; optices tanquam veræ &longs;cientiæ mentionem <lb/> &longs;æpius facit.</s> </p> <p type="main"> <s id="s.000057">Alij ex altera parte contra A&longs;tronomos in &longs;urgunt, eccentricos, <expan abbr="atq;">atque</expan> <lb/> epiciclos omnes de cœlo detrahere cupientes. </s> <s id="s.000058">Verum id i&longs;ti nulla ex­<lb/> pre&longs;&longs;a nedum probabili ratione faciunt, falsò exi&longs;timantes A&longs;tronomos <lb/> admirandam illam Cœlorum fabricam a&longs;&longs;erere, non autem &longs;upponere: <lb/> &longs;ed a&longs;tronomi illam &longs;upponunt, <expan abbr="eam&qacute;">eamque</expan>; propterea hypothe&longs;im <expan abbr="appellãt">appellant</expan>, <lb/> non a&longs;&longs;erunt. </s> <s id="s.000059">Quod &longs;i aliqua probabili ratione id facerent, vti nonnulli <lb/> ex recentioribus, quorum Ticho Coripheus e&longs;t, laudandi potius, quam <lb/> vituperandi e&longs;&longs;ent. </s> <s id="s.000060">Impugnant <expan abbr="itaq;">itaque</expan> a&longs;tronomachi i&longs;ti hypothe&longs;im pro <lb/> a&longs;&longs;ertione; <expan abbr="tales&qacute;">talesque</expan>; &longs;æpè hi &longs;unt, vt non &longs;atis intelligant, quid &longs;it Aequa­<lb/> tor, aut Zodiacus, ne dum quid Epiciclus, aut Eccentricus. </s> <s id="s.000061">Nec defuit <lb/> qui viginti duo argumenta excogitarit, <expan abbr="atq;">atque</expan> in medium protulerit, qui­<lb/> bus contra A&longs;tronomos probare conatus e&longs;t, nullo modo Solem, aut <lb/> Lunam moueri po&longs;&longs;e motibus contrarijs, ide&longs;t, ab oriente in <expan abbr="occid&etilde;tem">occidentem</expan> <lb/> motu diurno, & proprio ab occidente in orientem. </s> <s id="s.000062">Sed exi&longs;timandum <lb/> e&longs;t <expan abbr="i&longs;tũ">i&longs;tum</expan> Lunam nouam à Sole quotidie magis, ac magis ver&longs;us orientem <lb/> recedere, nunquam animaduerti&longs;&longs;e; ab ea enim hanc motuum concor­<lb/> diam didici&longs;&longs;et.</s> </p> <p type="main"> <s id="s.000063">Quid tandem <expan abbr="dic&etilde;dum">dicendum</expan> de quodam magni nominis Philo&longs;opho, om­<lb/> nium tamen <expan abbr="Mathematicarũ">Mathematicarum</expan> experte, qui in publica di&longs;putatione axio­<lb/> ma illud Mathematicum, omne totum e&longs;t maius &longs;ua parte, in &longs;en&longs;u in <lb/> quo à Mathematicis effertur negare non erubuit, eò, quod in infinito, <lb/> vt aiebat non concederetur ab omnibus. </s> <s id="s.000064">&longs;cilicet non intelligebat ma­<lb/> thematicum tantummodo tractare de Quantitate finita, ac terminata, <lb/> in qua axioma prædictum ab omnibus conceditur. </s> <s id="s.000065">Neque vero hic <lb/> nonnullorum infen&longs;us in Mathematicas animus quieuit, verum etiam <lb/> eò progre&longs;&longs;us e&longs;t, vt eas omnes omnino conuellere, atque ex albo &longs;cien­ <pb pagenum="9" xlink:href="009/01/009.jpg"/>tiarum, quamuis non Ari&longs;totele tantum, &longs;ed ip&longs;a etiam veritate repu­<lb/> gnante, expungere conati &longs;int; <expan abbr="idq;">idque</expan> ne&longs;cio an vlla alia de cau&longs;a egerint, <lb/> quàm quod eas non &longs;atis calerent; non &longs;ecus <expan abbr="atq;">atque</expan> Ae&longs;opica illa Vulpes, <lb/> quæ cum cauda mutilata e&longs;&longs;et, caudarum mutilationem reliquis vulpi­<lb/> bus vafrè per&longs;uadere conabatur. </s> <s id="s.000066">Verum enim verò optimè &longs;cio, ea, <lb/> qu&etail; hactenus dicta &longs;unt non in omnes no&longs;tri temporis Philo&longs;ophos qua­<lb/> drare, cum non pauci hodie quoque &longs;int, qui more antiquorum Mathe­<lb/> maticis &longs;uffulti, optimè &longs;uis &longs;tudijs con&longs;ulentes, reliquam Philo&longs;ophiam <lb/> non &longs;ine magno compendio aggrediuntur. </s> <s id="s.000067">Quo fit, vt cæteros ageo­<lb/> metretos ita antecellant, vt eorum Magi&longs;tri appellari po&longs;&longs;int, & <expan abbr="debeãt">debeant</expan>; <lb/> tales fuerunt in primis Vicomercatus, Cardanus, Zabarella, Toletus, <lb/> Bonamicus, & alij, quibus paulo antiquiores fuerunt D. Tho. <!-- REMOVE S-->& Scotus, <lb/>Hi omnes Mathematicarum auxilio, quantum inter reliquos philo&longs;o­<lb/> phantes excelluerint, nemo e&longs;t qui non nouerit. </s> <s id="s.000068">Illud hoc loco minimè <lb/> tacendum, Iacobum Zabarellam in &longs;uis logicæ commentarijs te&longs;tari &longs;e <lb/> bis &longs;umma diligentia totum Euclidem perlegi&longs;&longs;e, vt perfectè Ari&longs;t. de <lb/> demon&longs;tratione &longs;ententiam a&longs;&longs;equi po&longs;&longs;et.</s> </p> <p type="main"> <s id="s.000069">Hi ridiculas illas, ac pueriles expo&longs;itiones &longs;uperius allatas minimè <lb/> effutierunt, neque reliquis &longs;upra recen&longs;itis incommodis obnoxij fue­<lb/> runt, quibus magno etiam cum dedecore alij Mathematicarum ope ca­<lb/> rentes afficiuntur.</s> </p> <p type="main"> <s id="s.000070">In horum igitur gratiam operam diligenter dedi, vt quantum in me <lb/> e&longs;&longs;et damna à me &longs;upra enarrata aliqua ex parte re&longs;arcirem. </s> <s id="s.000071">Quaprop­<lb/> ter loca hæc mathematica num rectè e&longs;&longs;ent è græco in latinum tran&longs;lata <lb/> diligenter prius expendi. </s> <s id="s.000072">Deinde claritate, quàm potui maxima eadem <lb/> loca interpretatus &longs;um, & in horum, de quibus dixi gratiam, quædam <lb/> fanè tenuia pro&longs;equutus &longs;um, quæ alioquin libenter omi&longs;i&longs;&longs;em. </s> <s id="s.000073">Tum fi­<lb/> guras omnes, aut correxi, aut re&longs;titui, aut nouas appo&longs;ui. </s> <s id="s.000074">Hoc igitur <lb/> no&longs;tro qualicunque labore poterit qui&longs;que omnia illa facile intelligere, <lb/> <expan abbr="atq;">atque</expan> enumerata incommoda euitare, vnum tantummodo à Lectore ma­<lb/> thematicarum experte requiram, vt principia &longs;altem illa, &longs;cilicet defini­<lb/> tiones, po&longs;tulata, & axiomata, quæ primò Euclideis libro præponuntur, <lb/> diligenter prius perlegat cum illa &longs;ua per&longs;picuitate omnibus &longs;int obuia; <lb/> cætera ego explicanda recipio. </s> <s id="s.000075">Obiter etiam auctaria nonnulla partim <lb/> mathematica, partim naturalia in&longs;erui, quæ ob nouitatem, ac pulchri­<lb/> tudinem grata Lectori, atque iucunda fore exi&longs;timaui.</s> </p> <p type="main"> <s id="s.000076">Sciat præterea Lector no&longs;trum in&longs;titutum e&longs;&longs;e loca hæc mathemati­<lb/> ca, quatenus mathematica &longs;unt declarare, &longs;iue ea &longs;upplere, quæ ex ma­<lb/> thematicis petenda e&longs;&longs;ent: reliqua autem me tantum attingere, quan­<lb/> tum harum rerum cum illis connexio po&longs;tulat.</s> </p> <pb pagenum="10" xlink:href="009/01/010.jpg"/> <p type="main"> <s id="s.000077">His omnibus placuit appendices opportune nonnullas addere, qua­<lb/> rum prima de natura mathematicarum &longs;cientiarum: altera, qua omnes <lb/> demon&longs;trationes primi libri Euclidis breuiter ad Logicam normam ex­<lb/> penduntur, vt pateat, quonam demon&longs;trationis genere <expan abbr="c&etilde;&longs;eri">cen&longs;eri</expan> <expan abbr="vnaqu&etail;q;">vnaqu&etail;que</expan> <lb/> debeat, & ex illis de cæteris iudicium fiat. </s> <s id="s.000078">Tandem in gratiam etiam <lb/> Mathematicorum tertiam appendicem appendi, qua omnia loca Ari&longs;t. <lb/> <!-- REMOVE S-->Geometrica ad Euclidis ordinem referuntur; vnde & ip&longs;i ad &longs;uas pr&etail;le­<lb/> ctiones exornandas aliquid &longs;ubinde depromere queant.</s> </p> <p type="main"> <s id="s.000079">Fruere igitur amice Lector hoc no&longs;tro qua liquali labore, quo ad ple­<lb/> nam totius Ari&longs;t. intelligentiam, cui adhuc mathematicarum ignoratio <lb/> ob&longs;titit peruenire tandem po&longs;&longs;is: <expan abbr="illud&qacute;">illudque</expan>; experiaris, quod optimus qui­<lb/> dam Philo&longs;ophus, cum totum hunc librum perlegi&longs;&longs;et, effatus e&longs;t, vide­<lb/> licet, opus hoc <emph type="italics"/>Aristotelicæ expo&longs;itionis complementum ad hanc v&longs;que <lb/> diem de&longs;ideratum<emph.end type="italics"/> iure ac meritò nuncupari po&longs;&longs;e.</s> </p> <p type="main"> <s id="s.000080">Illud demum tanquam parergon addam, quod ego his elucubran­<lb/> dis experientia didici, ad veram &longs;cilicet, ac perfectam to­<lb/> tius Ari&longs;totelis intelligentiam linguæ in primis <lb/> græcæ, necnon mathematicarum om­<lb/> nium di&longs;ciplinarum haud medio­<lb/> crem cognitionem ne­<lb/> ce&longs;&longs;ariam e&longs;&longs;e. <lb/> </s> <s id="s.000081">Vale.<!-- KEEP S--></s> </p> </section> <pb pagenum="11" xlink:href="009/01/011.jpg"/> <section> <p type="head"> <s id="s.000082">Pr&etail;cipua qu&etail;dam, aut noua, aut re&longs;taurata, <lb/> quæ obiter pertractantur.<lb/> <arrow.to.target n="table1"/></s> </p> <table> <table.target id="table1"/> <row> <cell><emph type="italics"/>1<emph.end type="italics"/></cell> <cell><emph type="italics"/>De re&longs;olutione. numero marginali.<emph.end type="italics"/></cell> <cell><emph type="italics"/>4<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>2<emph.end type="italics"/></cell> <cell><emph type="italics"/>De figuris vacuum replentibus, vbi Aristotelis, & expo-&longs;itorum erratum aperitur. num.<emph.end type="italics"/></cell> <cell><emph type="italics"/>121<emph.end type="italics"/></cell> </row> <row> <cell/> <cell><emph type="italics"/>Inibi, Apum mirabilis quædam in cellis &longs;uis hexagonis constituendis indu&longs;tria detegitur. num.<emph.end type="italics"/></cell> <cell><emph type="italics"/>120<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>3<emph.end type="italics"/></cell> <cell><emph type="italics"/>De ijs, quæ aquæ in&longs;ident, vnà cum noua demonstratione problema-tis illius Archimedis, quo metallorum mixtionem indi&longs;&longs;oluta Co-rona, explorauit. in additione. ante num.<emph.end type="italics"/></cell> <cell><emph type="italics"/>124<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>4<emph.end type="italics"/></cell> <cell><emph type="italics"/>De Cometa, recentiorum &longs;ententia. num.<emph.end type="italics"/></cell> <cell><emph type="italics"/>136<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>5<emph.end type="italics"/></cell> <cell><emph type="italics"/>De altitudine montis Cauca&longs;i.<emph.end type="italics"/></cell> <cell><emph type="italics"/>148<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>6<emph.end type="italics"/></cell> <cell><emph type="italics"/>De Terræ rotunditate, ac mundi duratione.<emph.end type="italics"/></cell> <cell><emph type="italics"/>151<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>7<emph.end type="italics"/></cell> <cell><emph type="italics"/>De Iride. in additione.<emph.end type="italics"/></cell> <cell><emph type="italics"/>181<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>8<emph.end type="italics"/></cell> <cell><emph type="italics"/>Scytala quid.<emph.end type="italics"/></cell> <cell><emph type="italics"/>250<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>9<emph.end type="italics"/></cell> <cell><emph type="italics"/>Securis antiqua quæ, & qua ratione fieret.<emph.end type="italics"/></cell> <cell><emph type="italics"/>258<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>10<emph.end type="italics"/></cell> <cell><emph type="italics"/>Statera antiqua quæ,<emph.end type="italics"/></cell> <cell><emph type="italics"/>259<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>11<emph.end type="italics"/></cell> <cell><emph type="italics"/>De Ae&longs;tu Maris.<emph.end type="italics"/></cell> <cell><emph type="italics"/>272<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>12<emph.end type="italics"/></cell> <cell><emph type="italics"/>Araneorum indu&longs;tria nuper patefacta: vbi Democritus contra Ari&longs;t. defenditur.<emph.end type="italics"/></cell> <cell><emph type="italics"/>293<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>13<emph.end type="italics"/></cell> <cell><emph type="italics"/>De Lucis figuratione, & rerum &longs;imulacris in ob&longs;curo loco.<emph.end type="italics"/></cell> <cell><emph type="italics"/>345<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>14<emph.end type="italics"/></cell> <cell><emph type="italics"/>De Pupilla oculi.<emph.end type="italics"/></cell> <cell><emph type="italics"/>408<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>15<emph.end type="italics"/></cell> <cell><emph type="italics"/>De Mathematicarum natura. propè finem operis.<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>16<emph.end type="italics"/></cell> <cell><emph type="italics"/>Clarorum Mathematicorum Chronologia, in fine operis.<emph.end type="italics"/></cell> <cell/> </row> </table> </section> <pb pagenum="12" xlink:href="009/01/012.jpg"/> <section> <p type="head"> <s id="s.000083"><emph type="italics"/>PRIMVS INDEX LOCORVM ARIST.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="head"> <s id="s.000084"><emph type="italics"/>Quæ in hoc opere explicantur, iuxta ordine librorum <lb/> ip&longs;ius ex vulgata editione Lugdunen&longs;i.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000085">In Prædicamentis.</s> </p> <p type="main"> <s id="s.000086"><emph type="italics"/>Capite s. </s> <s id="s.000087">de Relatione, vbi de Quadratura circuli.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000088"><emph type="italics"/>Cap. de Priori, vbi de Principijs Mathematicarum,<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000089"><emph type="italics"/>Cap. de Motu, vbi de Gnomone.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="head"> <s id="s.000090">In Primo Priorum Re&longs;olutoriorum.</s> </p> <p type="main"> <s id="s.000091"><emph type="italics"/>Ad titulum libri de Re&longs;olutione.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000092"><emph type="italics"/>Cap. 23. &longs;ect 1. libri 1. de Incommen&longs;urabilibus.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000093"><emph type="italics"/>Cap. 24. &longs;ecti 1. lib. 1. de De&longs;criptionibus.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000094"><emph type="italics"/>Cap. 2. &longs;ect 2. lib. 1. de De&longs;criptionibus.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000095"><emph type="italics"/>Cap. 3. &longs;ecti 2. lib. 1. de Incommen&longs;urabili.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000096"><emph type="italics"/>Cap. 1. &longs;ecti 3. lib. 1. de eo, quod est, omnis triangulus habet tres angulos æquales <lb/> æquales duobus rectis: Aequalitas Geometrica, quæ.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000097"><emph type="italics"/>Cap. eodem, de exemplis, quibus vtuntur Geometræ.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000098">In &longs;ecundo Priorum Re&longs;ol.<!-- REMOVE S--><emph type="italics"/>Cap. 21. de lineis Paralellis, &longs;eu Coalternis.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000099"><emph type="italics"/>Cap. eodem. </s> <s id="s.000100">de Paralellis, & de triangulo.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000101"><emph type="italics"/>Cap. 26. Quod omnis triangulus habet tres, & c.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000102"><emph type="italics"/>Cap. 31. de Abductione.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000103"><emph type="italics"/>Cap. codem, de circuli Quadratura, &longs;ecundum Hippocratem Chium.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="head"> <s id="s.000104">In primo Po&longs;teriorum.</s> </p> <p type="main"> <s id="s.000105"><emph type="italics"/>Textu primo, De Præcognitis Mathematicarum.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000106"><emph type="italics"/>T. 2. Omnis triangulus habet tres, & c.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000107"><emph type="italics"/>T. 5. De Diametro incommen&longs;urabili. </s> <s id="s.000108">Item De Mathematicarum Principijs.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000109"><emph type="italics"/>T. eodem, De Indiui&longs;ibilitate vnitatis.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000110"><emph type="italics"/>T. 9. De Puncto, & linea. </s> <s id="s.000111">Item de recto, & circulari. </s> <s id="s.000112">Item de numero pari, impari; <lb/> primo, & compo&longs;ito; æquilatero, & altera parte longiore.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000113"><emph type="italics"/>T. 11. Lineæ punctum inest per &longs;e, & c.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000114"><emph type="italics"/>T. 13. De Parallelis. <!-- KEEP S--></s> <s id="s.000115">De I&longs;o&longs;cele. </s> <s id="s.000116">De Alterna Proportione, <lb/> Item quod omnis triangulus habet tres, & c.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000117"><emph type="italics"/>T. 14. De ij&longs;dem cum præcedentibus.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000118"><emph type="italics"/>T. 20. Magnitudines euadunt numeri. </s> <s id="s.000119">Item, quod non duo cubi cubus. </s> <s id="s.000120">Item de <lb/> Mathematicis &longs;ubalternatis.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000121"><emph type="italics"/>T. 23. Quadratura circuli &longs;ecundum Bry&longs;onem. </s> <s id="s.000122">Item per&longs;ectam illam e&longs;&longs;e Demon­<lb/> &longs;trationem, qua Geometræ o&longs;tendunt, quod Omnis triangulus habet tres, & c. <lb/> <!-- KEEP S--></s> <s id="s.000123">Per&longs;pectiuam, & Mechanicam &longs;ubalternari Geometriæ, Mu&longs;icam, Arithmeticæ.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000124"><emph type="italics"/>T. 24. De numero pari, impari, quadrangulo, cubo. </s> <s id="s.000125">In Geometria quid irrationale, <lb/> refrangi, concurrere. </s> <s id="s.000126">Quid Astronomia con&longs;ideret.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000127"><emph type="italics"/>T. 25. Geometram non mentiri in &longs;uis exemplis.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000128"><emph type="italics"/>T. 28. De Parallelis.<emph.end type="italics"/><!-- KEEP S--></s> </p> <pb pagenum="13" xlink:href="009/01/013.jpg"/> <p type="main"> <s id="s.000129"><emph type="italics"/>T. 29. Cur in Mathematicis non &longs;it Paralogi&longs;mus. <!-- KEEP S--></s> <s id="s.000130">Item quid multiplicata propor­<lb/> tio. </s> <s id="s.000131">Quid Cæneus dixerit. </s> <s id="s.000132">Cur Affectiones <expan abbr="Mathematicorũ">Mathematicorũ</expan> maximè <expan abbr="conuertãtur">conuertantur</expan>.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000133"><emph type="italics"/>T. 30. De Lunæ &longs;phæricitate. </s> <s id="s.000134">Quid &longs;tereometria. </s> <s id="s.000135">& De &longs;ubalternatione, &c. </s> <s id="s.000136">& Ma­<lb/> thematicorum e&longs;t &longs;cire Propter quid: &longs;en&longs;itiuorum verò &longs;cire Quod.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000137"><emph type="italics"/>T. 37. I&longs;o&longs;celes, & Scalenum habere tres æquales, &c.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000138"><emph type="italics"/>T. 38. Quid Mina, quid Die&longs;is.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000139"><emph type="italics"/>T. 39. Habere tres angulos æquales, &c. </s> <s id="s.000140">Item, quod omnis figura habet &longs;uos angu­<lb/> los externos æquales quatuor tantum rectis.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000141"><emph type="italics"/>T. 43. Triangulum tres æquales, &c. </s> <s id="s.000142">De Eclyp&longs;i.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000143"><emph type="italics"/>De combu&longs;tione per refractionem ex &longs;phæra vitrea. </s> <s id="s.000144">De principijs &longs;cientiarum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000145"><emph type="italics"/>T. 44. Diameter incommen&longs;urabilis.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000146">In 2. Po&longs;teriorum.</s> </p> <p type="main"> <s id="s.000147"><emph type="italics"/>T. 1. Aequalitas, & inæqualitas. </s> <s id="s.000148">Terram e&longs;&longs;e in medio mundi ab A&longs;tronomis per­<lb/> fectè demon&longs;tratur. </s> <s id="s.000149">Item Quid con&longs;onantia.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000150"><emph type="italics"/>T. 2. Omnis triangulus habet tres, &c. </s> <s id="s.000151">Item de Definitionibus Mathematicarum.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000152"><emph type="italics"/>T. 7. Geometra, quædam accipit, quædam demon&longs;trat.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000153"><emph type="italics"/>T. 11. Angulum in &longs;emicirculo rectum e&longs;&longs;e probari à Geometra per cau&longs;am materia­<lb/> lem. </s> <s id="s.000154">Zabarella correctus.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000155"><emph type="italics"/>T. 24. Echo, Imago è &longs;peculo, Iris.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000156"><emph type="italics"/>T. 25. Permutatim proportionale quid; exemplum in triangulis.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000157">In primo lib. <!-- REMOVE S-->Topicorum.</s> </p> <p type="main"> <s id="s.000158"><emph type="italics"/>Cap. 13. Diameter est incommen&longs;urabilis. </s> <s id="s.000159">Vox acuta velox, cur. </s> <s id="s.000160">&c. </s> <s id="s.000161">Colores in <lb/> Mu&longs;ica, qui. </s> <s id="s.000162">tria genera veteris Mu&longs;icæ.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000163">In 4. libro.</s> </p> <p type="main"> <s id="s.000164"><emph type="italics"/>Cap. 1. loco 1. lineæ in&longs;ecabiles.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000165">In 6. libro.</s> </p> <p type="main"> <s id="s.000166"><emph type="italics"/>Cap. 2. loco 32. Definitio lineæ.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000167">In 8. libro.</s> </p> <p type="main"> <s id="s.000168"><emph type="italics"/>Cap. 2. loco 41. V&longs;us Definitionum in Mathematicis.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000169"><emph type="italics"/>Cap. 4. loco 86. Elementa geometrica: Numeri capitales.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000170">In Elenchorum lib. 1.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000171"><emph type="italics"/>Cap. 10. Quid P&longs;eudographia. </s> <s id="s.000172">Quadratura rur&longs;us Hippocratis, & Bry&longs;onis. </s> <s id="s.000173">Mathe­<lb/> maticæ non contentio&longs;æ. </s> <s id="s.000174">Quadratio Antiphontis.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000175">Ex 1. Phy&longs;ic.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000176"><emph type="italics"/>T. 11. De Quadraturis circuli Hippocratis, & Antiphontis.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000177">Ex 2. Phy&longs;ic.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000178"><emph type="italics"/>T. 20. Quatenus Per&longs;pectiuus con&longs;ideret lineam.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000179"><emph type="italics"/>T. 28. Quid con&longs;onantia Diapa&longs;on.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000180"><emph type="italics"/>T. 68. Mathematicas Demon&longs;trationes habere cau&longs;am, quæ reducitur ad defini­<lb/> tionem.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000181"><emph type="italics"/>T. 8. De nece&longs;&longs;ario, quod e&longs;t in Mathematicis. <!-- KEEP S--></s> <s id="s.000182">& omnis triangulus habet tres an­<lb/> gulos, &c.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000183">Ex 3. Phy&longs;ic.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000184"><emph type="italics"/>T. 76. Quinam numeri dicantur Gnomones.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000185"><emph type="italics"/>T. 31. Quonam infinito vtantur Mathematici.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000186"><emph type="italics"/>T. 71. De infinito Mathematica.<emph.end type="italics"/><!-- KEEP S--></s> </p> <pb pagenum="14" xlink:href="009/01/014.jpg"/> <p type="head"> <s id="s.000187">Ex 4. Phy&longs;ic.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000188"><emph type="italics"/>T. 120. De commen&longs;urab. </s> <s id="s.000189">& incommen&longs;.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000190">Ex 5. Phy&longs;ic.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000191"><emph type="italics"/>T. 6. De chordis, graui, acuta; media, & vltima.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000192">Ex 8. Phy&longs;ic.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000193"><emph type="italics"/>T. 15. Omnis triangulus habet tres æquales, &c.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000194">Ex 1. de Cœlo.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000195"><emph type="italics"/>T. 33. De minimo indiui&longs;ibili.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000196"><emph type="italics"/>T. 36. Ratione vtitur lineari; vt probet mundum e&longs;&longs;e finitum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000197"><emph type="italics"/>T. 48. Commen&longs;urab. <!-- REMOVE S-->& incommen&longs;urab. </s> <s id="s.000198">quid.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000199"><emph type="italics"/>T. 119. Omnis triangulus habet tres, &c. </s> <s id="s.000200">Item de commen&longs;urabili.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000201">Ex 2. de Cœlo.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000202"><emph type="italics"/>T. 24. Plato ex planis &longs;olida componebat, quì.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000203"><emph type="italics"/>T. 25. Ordo figurarum planarum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000204"><emph type="italics"/>T. 31. Aquæ &longs;uperficiem e&longs;&longs;e &longs;phæricam.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000205"><emph type="italics"/>T. 46. Maiorem circulum velocius moueri. </s> <s id="s.000206">Recentiorum ob&longs;eruationes.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000207"><emph type="italics"/>T. 57. De ordine Cœlorum ex &longs;ententia A&longs;tronomorum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000208"><emph type="italics"/>T. 59. De rotunditate Lunæ, bis.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000209"><emph type="italics"/>T. 107. Centrum duplex grauit: & molis. </s> <s id="s.000210">Qua ratione grauia ad mundi centrum <lb/> aptarentur.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000211"><emph type="italics"/>T. 109. Terram e&longs;&longs;e rotundam. </s> <s id="s.000212">alio item modo.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000213"><emph type="italics"/>T. 110. Terram e&longs;&longs;e paruam re&longs;pectu Cœli.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000214"><emph type="italics"/>T. 111. Mare occidentale coniungi indico.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000215"><emph type="italics"/>T. 112. De quantitate Terræ.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="head"> <s id="s.000216">Ex 3. de Cœlo.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000217"><emph type="italics"/>T. 40. Vt componatur &longs;phæra.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000218"><emph type="italics"/>T. 66. Omne corpus diui&longs;ibile.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000219"><emph type="italics"/>T. 66. Quænam planarum figurarum totum &longs;patium repleant. </s> <s id="s.000220">Hinc de admirabili <lb/>Apum ingenio.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000221"><emph type="italics"/>T. eodem. </s> <s id="s.000222">Num plures Pyramides locum replere valeant, vbi Ari&longs;toteles, & omnes <lb/> expo&longs;itores erra&longs;&longs;e o&longs;tenduntur.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000223"><emph type="italics"/>T. 71. Terram e&longs;&longs;e cubum, cur dictum &longs;it.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000224">Ex 4. de Cœlo.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000225"><emph type="italics"/>T. 33. Extare centrum Mundi, quò grauia tendunt, à quo leuia abeant.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000226"><emph type="italics"/>T. 44. & <expan abbr="&longs;eq.">&longs;eque</expan> Cur quædam grauiora quàm aqua, &longs;upernatent.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000227">Ex 2. de Generatione, & Corruptione.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000228"><emph type="italics"/>Tex. 56. Cur Planetæ duobus motibus moueri dicantur.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000229">Ex 1. Meteororum.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000230"><emph type="italics"/>Summa prima cap. 3. De magnitudine Terræ ad a&longs;tra, & &longs;olem collata.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000231"><emph type="italics"/>Cap. eodem. </s> <s id="s.000232">De magnitudine A&longs;trorum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000233"><emph type="italics"/>Cap. 4. De ordine Luminarium Solis, & Lunæ.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000234"><emph type="italics"/>Summa 2. cap. 3. de Mercurij stella. </s> <s id="s.000235">Item de Cometa: e&longs;&longs;e in Cœlo.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000236"><emph type="italics"/>Cap. 5. De Magnitudine Solis, & de vmbra Terræ.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000237"><emph type="italics"/>Cap. 5. De Glaxia.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000238"><emph type="italics"/>Cap. 6. Sententia Ari&longs;totelis de Glaxia, partim defenditur: vera, deinde <lb/> aperitur.<emph.end type="italics"/></s> </p> <pb pagenum="15" xlink:href="009/01/015.jpg"/> <p type="main"> <s id="s.000239"><emph type="italics"/>Summa 4. cap 1. De Monte Parna&longs;&longs;o, dubia. </s> <s id="s.000240">Mare extraneum, quod. </s> <s id="s.000241">Errata quæ­<lb/> dam veterum Geographorum, & Ari&longs;t. corriguntur. </s> <s id="s.000242">Altitudo montis Cauca&longs;i.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000243"><emph type="italics"/>Cap. 2. De permutatione Aquarum, & continentis. </s> <s id="s.000244">Noua ob&longs;eruatio de rotundi­<lb/> tate Terræ, <expan abbr="atq;">atque</expan> Mundi duratione.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000245">Ex 2. Meteororum.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000246"><emph type="italics"/>Summa 1. cap. 1. De Mari rubro.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000247"><emph type="italics"/>Summa 2. cap. 2. De ortu stellarum fixarum: Item de occa&longs;u earumdem.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000248"><emph type="italics"/>Cap. eodem, De Canicula. </s> <s id="s.000249">De Zonis temperatis. </s> <s id="s.000250">Corona Ariadnæ. </s> <s id="s.000251">Zonam torridam <lb/> falsò putabant inho&longs;pitalem. </s> <s id="s.000252">cur habitabilis.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000253"><emph type="italics"/>Cap. 3. De Ventorum &longs;itu.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000254">Ex 3. Meteor.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000255"><emph type="italics"/>Summa 2. cap. 2. De Halone, &longs;eu Area, &longs;eu Corona, Mathematica demon&longs;tratio.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000256"><emph type="italics"/>Cap. 4. De Iridis figura Mathematica demon&longs;tratio, &longs;ed deficiens. </s> <s id="s.000257">Noua de eadem <lb/> tractatio.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000258"><emph type="italics"/>Cap. 5. De Parelio. <!-- KEEP S--></s> <s id="s.000259">Rationes Ari&longs;totelis refelluntur.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000260">Ex 1. De Anima.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000261"><emph type="italics"/>Tex. 11. Quid rectum, quid obliquum. </s> <s id="s.000262">& omnis triangulus habet tres, &c.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000263"><emph type="italics"/>T. 13. Sphæra planum tangit in puncto.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000264">Ex 2. De Anima.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000265"><emph type="italics"/>T. 12. Definitionem formalem, & cau&longs;alem explicat exemplo Quadrationis Geo­<lb/> metricæ.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000266"><emph type="italics"/>T. 86. Acutum, & Graue, vt differant.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000267"><emph type="italics"/>T. 159. De Solis magnitudine ad terram.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000268">Ex 3. De Anima.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000269"><emph type="italics"/>T. 21. Incommen&longs;urabile.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000270"><emph type="italics"/>T. 25. Indiui&longs;ibilia e&longs;&longs;e priuationes.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000271"><emph type="italics"/>T. 32. Permutata proportio.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000272">Ex lib. <!-- REMOVE S-->De Sen&longs;u.</s> </p> <p type="main"> <s id="s.000273"><emph type="italics"/>Capite 6. Die&longs;is.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000274"><emph type="italics"/>Cap. 8. Nete. </s> <s id="s.000275">Diapa&longs;on. <!-- KEEP S--></s> <s id="s.000276">Diapen&longs;e.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000277">Ex lib. <!-- REMOVE S-->De Memoria, & Rem.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000278"><emph type="italics"/>Cap. 1. Omnis triangulus habet tres, &c.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000279"><emph type="italics"/>Cap. 3. Mathemata facile remini&longs;cibilia.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000280">Ex lib. <!-- REMOVE S-->De Somnijs.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000281"><emph type="italics"/>Cap. 2. Terra, cur nauigantibus moueri videatur.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000282"><emph type="italics"/>Cap. 3. Cur Oculus digito dimotus res geminatas videat.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000283">Ex 1. Methaphy&longs;.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000284"><emph type="italics"/>Cap. 1. Initium Mathematicarum ab Aegyptiorum Sacerdotibus. </s> <s id="s.000285">Item, Automata, <lb/> quæ &longs;olstitia. </s> <s id="s.000286">Diameter incommen&longs;.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000287"><emph type="italics"/>Summa 2. cap. 3. Pythagorei Mathematicas cæteris præferebant.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000288"><emph type="italics"/>T. 47. Geometria habet &longs;uas præcognitiones.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000289">Ex 2. Methaphy&longs;.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000290"><emph type="italics"/>T. 14. Leges apud Mu&longs;icos quid.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000291">Ex 3. Methaphy&longs;.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000292"><emph type="italics"/>Tex. <!-- KEEP S--></s> <s id="s.000293">Mathematicas puras carere cau&longs;is efficiente, & finali. </s> <s id="s.000294">Ari&longs;tippus, vt Mathe­<lb/> maticas &longs;ugillaret. </s> <s id="s.000295">Tetragoni&longs;mus est inuentio mediæ.<emph.end type="italics"/></s> </p> <pb pagenum="16" xlink:href="009/01/016.jpg"/> <p type="main"> <s id="s.000296"><emph type="italics"/>Tex. 8. Geodæ&longs;ia quid.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000297">Ex 4. Methaphy&longs;.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000298"><emph type="italics"/>T. 4. Quæ &longs;int primæ, & quæ &longs;ecundæ inter Mathematicas.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000299"><emph type="italics"/>T. 28. Diameter, commen&longs;urabilis.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000300">Ex 5. Methaphy&longs;.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000301"><emph type="italics"/>T. 2. Exemplum cau&longs;æ formalis ex Diapa&longs;on. <!-- KEEP S--></s> <s id="s.000302">Quæ &longs;int proportiones Mu&longs;icales.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000303"><emph type="italics"/>T. 3. Quæ &longs;it Materia in Mathematicis.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000304"><emph type="italics"/>T. 4. Quidnam &longs;int elementa apud Geometras.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000305"><emph type="italics"/>T. 12. Die&longs;is.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000306"><emph type="italics"/>T. 17. Diameter incommen&longs;urab. </s> <s id="s.000307">Quid potentia vnius lineæ.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000308"><emph type="italics"/>T. 34. Diameter incommen&longs;urabilis.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000309">Ex 6. Methaphy&longs;.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000310"><emph type="italics"/>T. 1. Principia, elementa, & cau&longs;æ in Mathem.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000311"><emph type="italics"/>T. 8. Diameter. </s> <s id="s.000312">commen&longs;urab.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000313"><emph type="italics"/>T. 20. De&longs;criptiones. </s> <s id="s.000314">Omnis triangulus habet tres, &c. </s> <s id="s.000315">Cur Angulus in &longs;emicir­<lb/> culo rectus.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000316"><emph type="italics"/>T. 22. Omnis triangulus habet tres, &c.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000317">Ex 10. Methaphy&longs;.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000318"><emph type="italics"/>T. 4. Motum diurnum men&longs;uram reliquorum. </s> <s id="s.000319">Die&longs;is.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000320"><emph type="italics"/>T. 11. Similes figuræ quæ. </s> <s id="s.000321">Diuer&longs;um in Math. quid.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000322">Ex 11. Methaphy&longs;.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000323"><emph type="italics"/>Cap. 2. Ortus punctorum, linearum, &longs;uperficierum.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000324">Ex 12. Methaphy&longs;.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000325"><emph type="italics"/>T. 44. Peculiari&longs;&longs;imam Philo&longs;ophiam, Mathematicorum videlicet, A&longs;tronomiam <lb/> pluralitatem Cœlorum docere.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000326"><emph type="italics"/>T. 45. Numerus orbium cœle&longs;tium &longs;ecundum Eudoxum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000327"><emph type="italics"/>T. 46. Itidem ex Eudoxo.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000328"><emph type="italics"/>T. 47. Orbium cœle&longs;tium numerus, & fabrica ex Calippo.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000329">Ex 13. Methaphy&longs;.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000330"><emph type="italics"/>Cap. 3. Qua ratione Mathematici tractant de Bono.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="head"> <s id="s.000331">In Mechanicas Quæ&longs;tiones.</s> </p> <p type="main"> <s id="s.000332"><emph type="italics"/>Cap. 1. Quæ &longs;it Mechanica facultas.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000333"><emph type="italics"/>Cap. 2. De Admirandis circuli.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000334"><emph type="italics"/>Quæ&longs;tio 1. De Libra. <!-- KEEP S--></s> <s id="s.000335">cur maior, exactior. </s> <s id="s.000336">inibi Ari&longs;t. lap&longs;us.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000337"><emph type="italics"/>Quæ&longs;t. 2. Duplex Libra. <!-- KEEP S--></s> <s id="s.000338">Piccolomineus reiectus.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000339"><emph type="italics"/>Quæ&longs;t. 3. De Vecte.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000340"><emph type="italics"/>Quæ&longs;t. 4. De Remo; Petri Nonÿ in Arist. correctio.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000341"><emph type="italics"/>Quæ&longs;t. 5. De Temone Nauis.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000342"><emph type="italics"/>Quæ&longs;t. 6. De Antenna.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000343"><emph type="italics"/>Quæ&longs;t. 8 De Rota.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000344"><emph type="italics"/>Quæ&longs;t. 9. De Trochlea, & Scytali. figura antiquæ &longs;cytalis.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000345"><emph type="italics"/>Quæ&longs;t. 10. De Libra vacua.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000346"><emph type="italics"/>Qùæ&longs;t. <!-- REMOVE S-->11. De Curru, & &longs;cytala.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000347"><emph type="italics"/>Quæ&longs;t. 13. De lugo. </s> <s id="s.000348">De Succula.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000349"><emph type="italics"/>Quæ&longs;t. 15. De Vmbelicis.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000350"><emph type="italics"/>Quæ&longs;t. 16. De ligni oblongi, ac breuis flexura.<emph.end type="italics"/></s> </p> <pb pagenum="17" xlink:href="009/01/017.jpg"/> <p type="main"> <s id="s.000351"><emph type="italics"/>Quæ&longs;t. 17. De Cuneo.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000352"><emph type="italics"/>Quæ&longs;t. 18. De Trochlea; error Piccolominei.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000353"><emph type="italics"/>Quæ&longs;t. 19. De Securi. </s> <s id="s.000354">Securis veteris figura, & con&longs;tructio; vnà cum affectione <lb/> eius mirabili.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000355"><emph type="italics"/>Quæ&longs;t. 20. De Statera. <!-- KEEP S--></s> <s id="s.000356">Veteris stateræ figura restaurata.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000357"><emph type="italics"/>Quæ&longs;t. 21. De Dentiforcipe.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000358"><emph type="italics"/>Quæ&longs;t. 22. De Nucifrago.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000359"><emph type="italics"/>Quæ&longs;t. 23. De Motibus in Rhombo.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000360"><emph type="italics"/>Quæ&longs;t. 24. De duobus circulis concentricis.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000361"><emph type="italics"/>Quæ&longs;t. 25. De funibus lectulorum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000362"><emph type="italics"/>Quæ&longs;t. 26. De ligno humeris gestato.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000363"><emph type="italics"/>Quæ&longs;t. 27. De ponderibus humero ge&longs;tatis.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000364"><emph type="italics"/>Quæ&longs;t. 28. De Tollenone.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000365"><emph type="italics"/>Quæ&longs;t. 29. De onere à duobus phalanga ge&longs;tato.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000366"><emph type="italics"/>Quæ&longs;t. 30. De &longs;urgente à &longs;e&longs;&longs;ione.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000367">In libello De Mundo ad Alex.<!-- REMOVE S--><emph type="italics"/>Cap. 2. Ordo Planetarum.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000368"><emph type="italics"/>Cap. 3. De Cometis.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000369"><emph type="italics"/>Cap. 5. De fluxu maris. </s> <s id="s.000370">noua de maris æ&longs;tu &longs;ententia.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000371">In libro De Admirandis audit.</s> </p> <p type="main"> <s id="s.000372"><emph type="italics"/>Num. <!-- REMOVE S-->8. De nouo orbe.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000373"><emph type="italics"/>Nu. </s> <s id="s.000374">100. De I&longs;tro, error Ari&longs;t. & veterum Geographorum.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000375">In libello De lineis in&longs;ecabilibus.</s> </p> <p type="main"> <s id="s.000376"><emph type="italics"/>Primus locus. </s> <s id="s.000377">De commen&longs;urabili, & incommen&longs;urabili.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000378"><emph type="italics"/>2. locus. </s> <s id="s.000379">De figuris incommen&longs;.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000380"><emph type="italics"/>3. locus. </s> <s id="s.000381">Quæ linea rationalis, quæ irrationalis. </s> <s id="s.000382">Binomio, Apotome.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000383"><emph type="italics"/>4. locus. </s> <s id="s.000384">De communi men&longs;ura.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000385"><emph type="italics"/>5. locus. </s> <s id="s.000386">Lineæ rectæ motus in &longs;emicirculum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000387"><emph type="italics"/>6. locus. </s> <s id="s.000388">Circulorum æqualium ab inuicem motus.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000389"><emph type="italics"/>7. locus. </s> <s id="s.000390">Multum Mathematicis demon&longs;trationibus tribuitur ab Ari&longs;totele.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000391"><emph type="italics"/>8. locus. </s> <s id="s.000392">Si extarent indiuidua, omnes lineæ e&longs;&longs;ent commen&longs;.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000393"><emph type="italics"/>9. locus. </s> <s id="s.000394">Idem probat aliteŕ.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000395"><emph type="italics"/>10. locus. </s> <s id="s.000396">Idem ex triangulo.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000397"><emph type="italics"/>11. locus. </s> <s id="s.000398">Idem ex quadrato.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000399"><emph type="italics"/>12. Ex diui&longs;ione lineæ idem confirmatur.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000400"><emph type="italics"/>13. Idem eodem ferè modo cum præcedenti.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000401"><emph type="italics"/>14. A quadrato cuiu&longs;uis lineæ.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000402"><emph type="italics"/>15. Idem probat ex &longs;uperficie, & ex corpore.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000403"><emph type="italics"/>16. Idem ex contactu circuli cum linea recta.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000404">Ex lib. 9. Hi&longs;toriæ Animalium.</s> </p> <p type="main"> <s id="s.000405"><emph type="italics"/>Cap. 39. error Ari&longs;t. & noua ob&longs;eruatio de admiranda quadam Aranearum indu&longs;tria.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000406">De Ince&longs;&longs;u Animal.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000407"><emph type="italics"/>Cap. 7. qua ratione in gre&longs;&longs;u fiat hypotenu&longs;a. </s> <s id="s.000408">& ea quid &longs;it.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000409">De Motu Animal.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000410"><emph type="italics"/>Cap. 1. in flexuris animalium e&longs;&longs;e centrum, & circulum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000411"><emph type="italics"/>Cap. 3. Automata.<emph.end type="italics"/><!-- KEEP S--></s> </p> <pb pagenum="18" xlink:href="009/01/018.jpg"/> <p type="head"> <s id="s.000412">De Generatione Animal.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000413"><emph type="italics"/>Lib. 2. cap. 1. Automata.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000414"><emph type="italics"/>Lib. 2. cap. 4. Omnis triangulus habet tres, &c. </s> <s id="s.000415">Ibidem Diametrum e&longs;&longs;e incommen­<lb/> &longs;urabilem co&longs;tæ, habet cau&longs;am, & demon&longs;trationem.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000416">In Ethicis ad Nicom.</s> </p> <p type="main"> <s id="s.000417"><emph type="italics"/>Lib. 1. cap. 7. Faber, & Geometra diuersè con&longs;iderant angulum rectum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000418"><emph type="italics"/>Lib. 2. cap. 6. De Arithmetica proportione.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000419"><emph type="italics"/>cap. 9. Centrum circuli reperire.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000420"><emph type="italics"/>Lib. 3. cap. 3. Diameter, & latus incommen&longs;urabilis: Item quid re&longs;olutio Geome­<lb/> trica: Quid de&longs;ignatio.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000421"><emph type="italics"/>Lib. 5. cap. 3. Vnitarius numerus. </s> <s id="s.000422">Quid Proportionalitas. <!-- KEEP S--></s> <s id="s.000423">Eam in 4. terminis con­<lb/> &longs;i&longs;tere. </s> <s id="s.000424">Item quid Permutata proportio. </s> <s id="s.000425">Item quid Geometrica proportio. </s> <s id="s.000426">Propor­<lb/> tio continuata, & di&longs;iuncta quid.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000427"><emph type="italics"/>cap. 6. Proportio Geometrica, & Arithmetica.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000428"><emph type="italics"/>Lib. 6. cap. 5. Omnis triangulus, &c.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000429"><emph type="italics"/>cap. 8. Principia Mathematica non pendere ab experientia.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000430"><emph type="italics"/>Lib. 7. cap. 8. De principijs Mathem.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="head"> <s id="s.000431">Ex 1. Magnorum Moralium.</s> </p> <p type="main"> <s id="s.000432"><emph type="italics"/>Cap. 1. Numerus pariter par.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000433"><emph type="italics"/>Cap. 2. Omnis triangulus habet, &c.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000434"><emph type="italics"/>Cap. 10 Omnis triangulus habet, &c.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000435"><emph type="italics"/>Cap. 16. Quadratum quatuor rectis æquales habere.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000436"><emph type="italics"/>Cap. 30. Proportionale in quatuor terminis con&longs;i&longs;tit.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000437">Ex 1. lib. <!-- REMOVE S-->Moralium Eudemiorum.</s> </p> <p type="main"> <s id="s.000438"><emph type="italics"/>Cap. 5. Duplum inter multiplices rationes primum tenet locum.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000439">Ex 1. lib. <!-- REMOVE S-->Mor. <!-- REMOVE S-->Eudemiorum.</s> </p> <p type="main"> <s id="s.000440"><emph type="italics"/>Cap. Omnis triangulus habet tres, &c.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000441"><emph type="italics"/>Cap. 10. Diametrum commen&longs;. </s> <s id="s.000442">e&longs;&longs;e. </s> <s id="s.000443">Circuli quadratio.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000444"><emph type="italics"/>Cap. 12. Triangulus habet tres, &c.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000445">Ex 7. lib. <!-- REMOVE S-->Mor. <!-- REMOVE S-->Eudemiorum.</s> </p> <p type="main"> <s id="s.000446"><emph type="italics"/>Cap. 12. Diametralis oppo&longs;itio.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000447">Ex 3. lib. <!-- REMOVE S-->Politicorum.</s> </p> <p type="main"> <s id="s.000448"><emph type="italics"/>Cap. 2. Modi Dorius, & Phrygius apud Mu&longs;icos, quì.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000449">Ex 4. lib. <!-- REMOVE S-->Polit.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000450"><emph type="italics"/>Cap. 3. Modus Doricus, & Phrygius.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000451">Ex 5. lib. <!-- REMOVE S-->Polit.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000452"><emph type="italics"/>Cap. 1. Aequitas Arithmetica, & quæ &longs;ecundum dignitatem.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000453">Ex 8. Polit.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000454"><emph type="italics"/>Cap. 5. Mu&longs;ica nuda, & cum melodia. </s> <s id="s.000455">Rithmus quid.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000456"><emph type="italics"/>Harmonia lydia. </s> <s id="s.000457">Rithmus quid &longs;it dicetur in Problematibus.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000458"><emph type="italics"/>Cap. 7. Harmoniæ, & Rithmi, vt in præcedenti.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000459">Ex Problematibus.</s> </p> <p type="main"> <s id="s.000460"><emph type="italics"/>Sectione 1. num. </s> <s id="s.000461">3. De ortu &longs;yderum inerrantium: Succulæ, Hypades, Atlantides, <lb/> Virgiliæ, Pleiades. </s> <s id="s.000462">num. </s> <s id="s.000463">17. De occa&longs;u affixarum &longs;tellarum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000464"><emph type="italics"/>Sectione 15. num. </s> <s id="s.000465">1. Diametri ethymon.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000466"><emph type="italics"/>num. </s> <s id="s.000467">2. Iterum Diametri ethymologia.<emph.end type="italics"/></s> </p> <pb pagenum="19" xlink:href="009/01/019.jpg"/> <p type="main"> <s id="s.000468"><emph type="italics"/>num. </s> <s id="s.000469">3. Denarius numerus cur perfectus. </s> <s id="s.000470">eius dignitates. </s> <s id="s.000471">Petri Apponen&longs;is deceptio.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000472"><emph type="italics"/>4. De inæquali &longs;olis vmbrarum incremento.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000473"><emph type="italics"/>5. Cur Solis illuminationes &longs;emper rotundæ, quamuis per angulo&longs;a foramina ingre­<lb/> diantur.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000474"><emph type="italics"/>6. Cur Luna &longs;emiplena videtur linea recta terminari? </s> <s id="s.000475">vbi de illuminatione Lunæ, <lb/> quæ experientia docetur.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000476"><emph type="italics"/>7. Cur Sol, & Luna videantur plana?<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000477"><emph type="italics"/>8. De vmbris Solis orientis, occidentis, meridiantis.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000478"><emph type="italics"/>9. Cur Lunæ, quàm Solis minores vmbræ?<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000479"><emph type="italics"/>10. Cur in defectu Solis etiam illuminationes ip&longs;ius defectiuæ &longs;unt? </s> <s id="s.000480">modus commodè <lb/> videndi eclyp&longs;im Solis.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000481"><emph type="italics"/>Sect. <!-- REMOVE S-->16. nu. </s> <s id="s.000482">1. Cur ba&longs;es bullarum in aquis &longs;unt albæ?<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000483"><emph type="italics"/>3. Opplumbati tali.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000484"><emph type="italics"/>4. De re&longs;ultu cadentium in terram.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000485"><emph type="italics"/>5. Cur conus, & cylindrus diuersè moueantur.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000486"><emph type="italics"/>6. De voluminum &longs;ectione.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000487"><emph type="italics"/>12. Idem cum præcedenti 3.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000488"><emph type="italics"/>13. Idem cum 4 &longs;uperiori. </s> <s id="s.000489">reflexio radiorŭm pulchrè comparatur corporŭm re&longs;ultationi.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000490">Ex &longs;ectione 19. De Mu&longs;ica.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000491"><emph type="italics"/>num. </s> <s id="s.000492">2. Lineæ duplæ quadratum quadruplum. </s> <s id="s.000493">Hoc loco &longs;equentium probl. </s> <s id="s.000494">cau&longs;a, <lb/> præmittitur totius Mu&longs;icæ ortus breuis tractatio.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000495"><emph type="italics"/>3. Vox tam in hypate, quam in nete cantando rumpitur.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000496"><emph type="italics"/>4. Cur facilius hypate, quam nete canitur?<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000497"><emph type="italics"/>5. Cur &longs;uauius notam cantilenam audimus?<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000498"><emph type="italics"/>7. Cur veteres hypatem omittebant.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000499"><emph type="italics"/>8. Cur grauis &longs;onum potest acutæ?<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000500"><emph type="italics"/>9. Cur cantus ad tibiam vnam, aut lyram &longs;uauior?<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000501"><emph type="italics"/>10. Teretizare, quid.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000502"><emph type="italics"/>11. Vox de&longs;inens acutior fit.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000503"><emph type="italics"/>12. Grauior è fidibus cantilenam &longs;u&longs;cipit.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000504"><emph type="italics"/>13. In Diapa&longs;on graue e&longs;t acuti Antiphonum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000505"><emph type="italics"/>14. Cur Diapa&longs;on vnica vox videtur. </s> <s id="s.000506">Punicum quid.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000507"><emph type="italics"/>15. Leges Mu&longs;icæ, quæ. </s> <s id="s.000508">Genera, Diatonicum, Chromaticum, Encharmonium. <lb/> </s> <s id="s.000509">Tetrachorda quæ.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000510"><emph type="italics"/>16. Antiphonum &longs;uauius est &longs;ymphono, cur.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000511"><emph type="italics"/>17. Cur &longs;ola Diapa&longs;on canitur. </s> <s id="s.000512">Magadis quid. </s> <s id="s.000513">Magadare.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000514"><emph type="italics"/>18. De Antiphonis.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000515"><emph type="italics"/>19. Cur Diapente, & Diabe&longs;&longs;acon non canunt in Antiphonis.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000516"><emph type="italics"/>20. Me&longs;e &longs;ola di&longs;&longs;onante, totum de&longs;&longs;onat p&longs;alterium.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000517"><emph type="italics"/>21. Vocum grauium errores manifestiores, cur?<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000518"><emph type="italics"/>23. Cur nete duplo acutior, quam hypate?<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000519"><emph type="italics"/>24. Nete interpellata, hypate re&longs;onare videtur.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000520"><emph type="italics"/>25. Cur Me&longs;e &longs;ic appellata e&longs;t.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000521"><emph type="italics"/>27. Cur &longs;ola audibilia mores obtinent. </s> <s id="s.000522">Rithmus quid.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000523"><emph type="italics"/>28. Cur cantilenæ quædam leges decebantur?<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000524"><emph type="italics"/>30. De Harmonijs, &longs;eu Modis, &longs;eu Tonis pri&longs;corum.<emph.end type="italics"/></s> </p> <pb pagenum="20" xlink:href="009/01/020.jpg"/> <p type="main"> <s id="s.000525"><emph type="italics"/>31. Vetustiores fui&longs;&longs;e magis Melopæos.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000526"><emph type="italics"/>32. De ip&longs;ius Diapa&longs;on ethymo.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000527"><emph type="italics"/>33. Cur aptè de acuto in graue, non è contra canitur?<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000528"><emph type="italics"/>34. Cur bi&longs;diapente, aut bi&longs;diate&longs;&longs;aron con&longs;onantia non e&longs;t.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000529"><emph type="italics"/>35. Cur diapa&longs;on omnium pulcherrima e&longs;t con&longs;onantia?<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000530"><emph type="italics"/>36. Me&longs;e &longs;ola di&longs;&longs;onante, tota perit harmonia.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000531"><emph type="italics"/>37. Cur difficilius acutum canere, quam graue?<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000532"><emph type="italics"/>38. Cur Rythmo, & harmonij omnes gaudent?<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000533"><emph type="italics"/>39. Cur &longs;uauius e&longs;t &longs;ymphonum vni&longs;ono?<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000534"><emph type="italics"/>40. Cur &longs;olam Diapa&longs;on magadari &longs;olent?<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000535"><emph type="italics"/>41. Idem cum 5.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000536"><emph type="italics"/>42. Idem cum 34.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000537"><emph type="italics"/>43. Idem cum 24. Iugum in lyra veteri quodnam fuerit, vna cum figura vete­<lb/> ris lyræ.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000538"><emph type="italics"/>44. Cur &longs;uauius ad tibiam, quam ad lyram cantatur?<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000539"><emph type="italics"/>45. Idem cum 25. &longs;uperiori.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000540"><emph type="italics"/>46. Idem cum 22.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000541"><emph type="italics"/>47. Idem cum 26.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000542"><emph type="italics"/>48. Idem cum 7. quid Grauiden&longs;um.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000543"><emph type="italics"/>49. Idem cum 30. In choris tragœdiarum, nec &longs;ubdorius, nec &longs;ubphrygius modus <lb/> erat in v&longs;u.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000544"><emph type="italics"/>50. Cur grauior Melodia e&longs;t etiam mollior?<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000545"><emph type="italics"/>51. Dolia duo æqualia, quorum alterum plenum &longs;it, alterum dimidium, Diapa&longs;on <lb/> re&longs;onant.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000546">Ex &longs;ectione 23.</s> </p> <p type="main"> <s id="s.000547"><emph type="italics"/>De immer&longs;ione Nauigij.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000548">Ex &longs;ectione 30.</s> </p> <p type="main"> <s id="s.000549"><emph type="italics"/>6. Omnis triangulus habet tres æquales, &c.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000550">Ex &longs;ectione 31.</s> </p> <p type="main"> <s id="s.000551"><emph type="italics"/>7. Cur o culos, <expan abbr="ab&longs;q;">ab&longs;que</expan> vlla vi, ab inuicem di&longs;&longs;ociari nequimus?<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000552"><emph type="italics"/>Cur duobus oculis res vna tantum videatur. </s> <s id="s.000553">Cur aliquando rei vi&longs;æ gemina­<lb/> tio accidat.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000554"><emph type="italics"/>11. Cur di&longs;tractis oculis res vna duæ apparent?<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000555"><emph type="italics"/>17. Oculo in latera contorto, cur non fit geminatio.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000556"><emph type="italics"/>21. Cur &longs;olam rectitudinem vnico oculo in&longs;piciamus.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000557">Auctarium De Oculi Pupilla.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000558"><emph type="italics"/>Oculi fabrica præmittitur, colores oculi vbi &longs;int: vnde qui noctu vident.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000559"><emph type="italics"/>Primo. </s> <s id="s.000560">De pupillæ voce.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000561"><emph type="italics"/>2. Cur in oculo appareat.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000562"><emph type="italics"/>3. Cur non in tota cornea.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000563"><emph type="italics"/>4. Pupillæ definitio.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000564"><emph type="italics"/>5. Cur nigra in omnibus hominibus.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000565"><emph type="italics"/>6. Cur in Sole euane&longs;cat.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000566"><emph type="italics"/>7. Quantitas ip&longs;ius num videatur?<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000567"><emph type="italics"/>8. Cur modo maior, modo minor videatur, & cui&longs;dam lepida deceptio.<emph.end type="italics"/></s> </p> <pb pagenum="21" xlink:href="009/01/021.jpg"/> <p type="main"> <s id="s.000568">Additamentum de natura Mathematicarum di&longs;ciplinarum.</s> </p> <p type="main"> <s id="s.000569"><emph type="italics"/>Primo. </s> <s id="s.000570">De &longs;ubiecto Mathem. &longs;eu de materia intelligibili: vbi o&longs;tenduntur definitio­<lb/> nes Mathematicæ e&longs;&longs;e perfecti&longs;&longs;imæ.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000571">2. <emph type="italics"/>Demon&longs;trationes Mathematicas e&longs;&longs;e perfecti&longs;&longs;imas.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000572">3. <emph type="italics"/>Obiectiones: <expan abbr="atq;">atque</expan> etiam calumniæ diluuntur.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000573">4. <emph type="italics"/>De præstantia cognitionis, quam Geometria, & Arithmetica gignunt.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000574">5. <emph type="italics"/>De 4. Mathematicis medijs: A&longs;tronomia, Per&longs;pectiua, Mu&longs;ica, Mechanica.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000575">6. <emph type="italics"/>Appendix de re&longs;olutione omnium demonstrationum primi Euclidis.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000576">7. <emph type="italics"/>Clarorum Mathematicorum Chronicon.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000577"><emph type="bold"/>Finis Primi Indicis.<emph.end type="bold"/></s> </p> </section> <pb pagenum="22" xlink:href="009/01/022.jpg"/> <section> <p type="head"> <s id="s.000578"><emph type="italics"/>ALTER INDEX<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000579"><emph type="italics"/>Quo loca Aristotelis Geometrica, in hoc Opere explicata, <lb/> ad Euclidem, &longs;ecundum propo&longs;itionum ordinem refe­<lb/> runtur; vt Mathematicarum Profe&longs;&longs;ores habeant, <lb/> vnde &longs;uas prælectiones aliquando valeant locupletare.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000580"><emph type="italics"/>In Primo Elem. Euclidis.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000581">Ad verbum ip&longs;um <emph type="italics"/>(Elementum Euclidis)<emph.end type="italics"/> vide infra tex. <!-- REMOVE S-->4. quinti <lb/> Methaph.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000582">Ad principia primi elementorum, vide infra tex. <!-- REMOVE S-->5. pri. <!-- REMOVE S-->Po&longs;ter.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000583">Ad definitionem 10. pri. <!-- REMOVE S-->pro angulo recto, vide 30. quæ&longs;t. </s> <s id="s.000584">Mecha­<lb/> nic. <!-- REMOVE S-->& cap. 7. lib. 1. Eth.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000585">Ad axioma 10. quamuis Ari&longs;toteles nihil hac de re dicat; &longs;cias tamen velim <lb/> hoc vno axiomate qu&etail;&longs;tionem <expan abbr="quãdam">quandam</expan> inter Philo&longs;ophos valdè difficilem, <lb/> facile di&longs;&longs;olui. </s> <s id="s.000586">ea e&longs;t, vtrum marmor, aut adamas, aliudue quidpiam infle­<lb/> xibile &longs;ucce&longs;&longs;iuè findi, & aperiri po&longs;&longs;it. </s> <s id="s.000587">qui enim aiunt, &longs;ic refelluntur, quia <lb/> nimirum &longs;equeretur, duas rectas lineas habere &longs;egmentum commune: in­<lb/> telligantur enim duæ lineæ, vna in vna &longs;uperficie, altera vero in altera, quæ <lb/> antequam incipiat apertio, congruant; Quoniam igitur tota illa apertio <lb/> non fit in in&longs;tanti, &longs;ed &longs;ucce&longs;&longs;iuè, facta iam aliqua apertionis parte con&longs;i­<lb/> derentur prædictæ lineæ, erit igitur earum pars aliqua ab inuicem &longs;epara­<lb/> ta, altera verò adhuc alteri congruens, ergo &longs;equetur, duas lineas habere <lb/> &longs;egmentum commune, quod e&longs;t impo&longs;&longs;ibile, quia contra 10. axioma.</s> </p> <p type="main"> <s id="s.000588">Ad Calcem axiomatum primi accommodetur tex. <!-- REMOVE S-->1. primi Po&longs;ter.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000589">Ad primam primi, po&longs;t ip&longs;ius explicationem, commodè declarari pote&longs;t, cur <lb/> Ari&longs;t. Demon&longs;trationes Geometricas appellet De&longs;criptiones, & De&longs;igna­<lb/> tiones, vide cap. de Priori, & cap. 24. &longs;ecti primi, libri primi Priorum, & <lb/> tex. <!-- REMOVE S-->4. quinti Methaph. <!-- REMOVE S-->& tex. <!-- REMOVE S-->20. &longs;exti Methaph. <!-- REMOVE S-->& cap. 3. lib. 3. Ethic. <lb/> <!-- KEEP S--></s> <s id="s.000590">Item ad primam primi, vide tex. <!-- REMOVE S-->7. &longs;ecundi Po&longs;ter. loco 2.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000591">Ad 5. primi, vide cap. 24. &longs;ecti 1 lib. 1. Priorum.</s> </p> <p type="main"> <s id="s.000592">Ad 21. primi, vide tex. <!-- REMOVE S-->20. primi Po&longs;ter. <!-- REMOVE S-->loco 2.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000593">Ad 22. primi, vide locum 10. de lineis in&longs;ecabilibus.</s> </p> <p type="main"> <s id="s.000594">Ad 28. primi, vide cap. 21. & cap. 22. &longs;ecundi <expan abbr="Priorũ">Priorum</expan>, & tex. <!-- REMOVE S-->13. primi Po&longs;ter.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000595">Ad 32. primi, vide cap. 1. &longs;ecti 3. lib. 1. Prior. <!-- REMOVE S-->& cap. 26. &longs;ecundi <expan abbr="Priorũ">Priorum</expan>, & tex. <!-- REMOVE S-->2. <lb/> primi Po&longs;ter. loco 4. & tex. <!-- REMOVE S-->23. primi Po&longs;ter. <!-- REMOVE S-->vbi ait hanc e&longs;&longs;e poti&longs;&longs;imam <lb/> <expan abbr="demõ&longs;trationem">demon&longs;trationem</expan>. </s> <s id="s.000596">& tex. <!-- REMOVE S-->37. primi Po&longs;ter. & tex. <!-- REMOVE S-->39. primi Po&longs;ter. <!-- KEEP S--></s> <s id="s.000597">Ibidem <lb/> loco 4. & tex. <!-- REMOVE S-->43. primi Po&longs;ter. <!-- REMOVE S-->& tex. <!-- REMOVE S-->2. &longs;ecundi Po&longs;ter. <!-- REMOVE S-->bis. </s> <s id="s.000598">& tex. <!-- REMOVE S-->89. &longs;e­<lb/> cundi Phy&longs;. & tex. <!-- REMOVE S-->15. octaui Phy&longs;. <!-- REMOVE S-->& tex. <!-- REMOVE S-->119. primi de Cœlo. <!-- KEEP S--></s> <s id="s.000599">& tex. <!-- REMOVE S-->25. <lb/> &longs;ecundi de Cœlo. <!-- KEEP S--></s> <s id="s.000600">tex 11. primi de Anima. <!-- REMOVE S-->& cap. 1. de mem. </s> <s id="s.000601">& remini&longs;c. <lb/> </s> <s id="s.000602">& tex. <!-- REMOVE S-->35. quinti Methaphy&longs;. & tex. <!-- REMOVE S-->20. &longs;exti Methaphy&longs;. <!-- REMOVE S-->& tex. <!-- REMOVE S-->22. &longs;exti <lb/> Methaphy&longs;. <!-- REMOVE S-->& cap. 4. lib. 2. de Generat. <!-- REMOVE S-->animal. <!-- KEEP S--></s> <s id="s.000603">& cap. 5. lib. 6. Ethic. <!-- REMOVE S-->& <lb/> cap. 2. Magnorum Moral. & cap. 10. Mag. Moral. & cap. 16. Mag. Moral. <lb/> <!-- REMOVE S-->& cap. <!-- REMOVE S-->7. &longs;ecundi Eudem. & cap. <!-- REMOVE S-->12. &longs;ecundi Eudem. <!-- REMOVE S-->& problema 6. &longs;ectio­ <pb pagenum="23" xlink:href="009/01/023.jpg"/>nis 30. tot Ari&longs;totelis loca illu&longs;trat vnica hæc Euclidis Demon&longs;tratio.</s> </p> <p type="main"> <s id="s.000604">Ad &longs;cholion præcedentis 32. primi, vide tex. <!-- REMOVE S-->39. primi Po&longs;ter. loco 3. Item <lb/> tex. <!-- REMOVE S-->25. &longs;ecundi Po&longs;ter. <!-- REMOVE S-->loco vlt.</s> </p> <p type="main"> <s id="s.000605">Ad 45. primi, vide locum 9. de lineis in&longs;ecabilibus.</s> </p> <p type="main"> <s id="s.000606">Ad 46. primi, vide locum 11. de lineis in&longs;ecabilibus.</s> </p> <p type="main"> <s id="s.000607">Ad 47. primi, vide locum 11. de lineis in&longs;ecab. </s> <s id="s.000608">Item locum 14. de ij&longs;dem.</s> </p> <p type="head"> <s id="s.000609"><emph type="italics"/>In &longs;ecundo Elem.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000610">Ad 2. definitionem 2. Gnomonis, vide cap. de Motu in Po&longs;tprædicam. </s> <s id="s.000611">Qua­<lb/> dratum augetur Gnomone circumpo&longs;ito.</s> </p> <p type="main"> <s id="s.000612">Ad 14. propo&longs;. </s> <s id="s.000613">2. opportunum e&longs;t Auditores de Quadratura circuli erudire, <lb/> vide igitur cap. de relatione in prædicam. </s> <s id="s.000614">& cap. 31. &longs;ecundi Priorum, & <lb/> tex. <!-- REMOVE S-->23. primi Po&longs;ter. & finem 1. cap. primi Elenchorum. </s> <s id="s.000615">lege primam Ar­<lb/> chimedis de dimen&longs;ione circuli.</s> </p> <p type="head"> <s id="s.000616"><emph type="italics"/>In tertio Elem.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000617">Ad primam 3. vide cap. 9. lib. 2. Ethycorum.</s> </p> <p type="main"> <s id="s.000618">Ad 2. tertij, vide tex. <!-- REMOVE S-->13. lib. 1. de Anima. <!-- REMOVE S-->& locum 16. de lineis in&longs;ecab.</s> </p> <p type="main"> <s id="s.000619">Ad 31. tertij, vide tex. <!-- REMOVE S-->11. &longs;ecundi Po&longs;ter. & tex. <!-- REMOVE S-->20. &longs;exti Methaph. <!-- REMOVE S-->loco 2.<!-- KEEP S--></s> </p> <p type="head"> <s id="s.000620"><emph type="italics"/>In quarto.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000621">Ad commentarium P. <!-- REMOVE S-->Clauij extremum lib. 4. elementorum. </s> <s id="s.000622">lege tex. <!-- REMOVE S-->66. <lb/> tertij de Cœlo.<!-- KEEP S--></s> </p> <p type="head"> <s id="s.000623"><emph type="italics"/>In quinto.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000624">Ad 4. definitionem 5. vide cap. 3. lib. 2. Ethyc.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000625">Ad 9. definitionem 5. vide cap. 3. lib. 5. Ethyc. <!-- REMOVE S-->loco 4. & cap. 31. primi Ma­<lb/> gnorum Moralium.</s> </p> <p type="main"> <s id="s.000626">Ad 10. definitionem 5. vide tex. <!-- REMOVE S-->29. primi Po&longs;ter. loco 2.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000627">Ad 12. definitionem 5. vide tex. <!-- REMOVE S-->13. primi Po&longs;ter. <!-- REMOVE S-->loco 3. & tex. <!-- REMOVE S-->25. &longs;ecundi <lb/> Po&longs;ter. <!-- REMOVE S-->& tex. <!-- REMOVE S-->32. tertij de Anima. <!-- REMOVE S-->& cap. 3. lib. 5. Ethyc. <!-- REMOVE S-->loco 4.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000628">Ad 16. propo&longs;. </s> <s id="s.000629">5. vide tex. <!-- REMOVE S-->25. &longs;ecundi Po&longs;ter. loco 2. ex hac Euclidis demon­<lb/> &longs;tratione patet, vitio&longs;am e&longs;&longs;e illam Auerrois argumentationem, 8. Phy&longs;. <lb/> <!-- REMOVE S-->comm. <!-- REMOVE S-->15. &longs;cilicet.</s> </p> <p type="main"> <s id="s.000630">Vt &longs;e habet voluntas antiqua ad antiquum effectum, <lb/> Ita &longs;e habet etiam voluntas noua ad effectum nouum: <lb/> Ergo permutando, ita &longs;e habebit voluntas antiqua ad effectum nouum. <lb/> </s> <s id="s.000631">Quemadmodum voluntas noua ad effectum antiquum.</s> </p> <p type="main"> <s id="s.000632">Non enim in permutando confert antecedentem ad antecedentem, & con­<lb/> &longs;equentem ad con&longs;equentem, vt par erat, &longs;ed confert antecedentem ad <lb/> con&longs;equentem, quod non licet.</s> </p> <p type="head"> <s id="s.000633"><emph type="italics"/>In &longs;exto.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000634">Ad 2. propo&longs;it. </s> <s id="s.000635">6. vide cap. 2. lib. 8. Topicorum loco 41.</s> </p> <p type="main"> <s id="s.000636">Ad 13. &longs;exti, vide tex. <!-- REMOVE S-->12. &longs;ecundi de Anima, & tex. <!-- REMOVE S-->3. tertij Methaphy&longs;.<!-- REMOVE S--><emph type="italics"/>In &longs;eptimo.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000637">Ad primam definitionem 7. vide tex. <!-- REMOVE S-->5. primi Po&longs;ter.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000638">Ad 8. definitionem 7. vide cap. 1. lib. 1. Magnorum Moral.<!-- KEEP S--></s> </p> <p type="head"> <s id="s.000639"><emph type="italics"/>In octauo.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000640">Ad 4. propo&longs;. </s> <s id="s.000641">9. vide tex. <!-- REMOVE S-->20. primi Po&longs;ter. loco 2.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000642">Ad 8. propo&longs;. </s> <s id="s.000643">9. vide problem. </s> <s id="s.000644">3. &longs;ectionis 15. loco 4.<!-- KEEP S--></s> </p> <pb pagenum="24" xlink:href="009/01/024.jpg"/> <p type="head"> <s id="s.000645"><emph type="italics"/>In decimo.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000646">Ad primam definitionem 10. vide cap. 23. &longs;ecti 1. primi Priorum. </s> <s id="s.000647">& tex. <!-- REMOVE S-->48. <lb/> primi de Cœlo.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000648">Ad 118. decimi, vide cap. 23. &longs;ecti 1. libri 1. Priorum. </s> <s id="s.000649">& &longs;ecto 2. cap. 23. li­<lb/> bri 1. Priorum. </s> <s id="s.000650">& cap. 22. lib. 2. Priorum. </s> <s id="s.000651">& tex. <!-- REMOVE S-->5. primi Po&longs;ter. & tex. <!-- REMOVE S-->44. <lb/> primi Po&longs;ter. <!-- REMOVE S-->& cap. 15. primi Po&longs;ter. <!-- REMOVE S-->& tex. <!-- REMOVE S-->119. primi de Cœlo. <!-- KEEP S--></s> <s id="s.000652">& tex. <lb/> <!-- REMOVE S-->120. quarti Phy&longs;. & tex. <!-- REMOVE S-->21. tertij de Anima. <!-- REMOVE S-->& cap. 1. primi Methaphy&longs;. <lb/> <!-- REMOVE S-->& tex. <!-- REMOVE S-->28. quarti Met. <!-- REMOVE S-->& tex. <!-- REMOVE S-->34. quinti Met. <!-- REMOVE S-->& tex. <!-- REMOVE S-->8. &longs;exti Met. <!-- REMOVE S-->& cap. 4. <lb/> lib. 2. de Generat. <!-- REMOVE S-->animal. <!-- KEEP S--></s> <s id="s.000653">& lib. 3. cap. 3. Ethyc. <!-- REMOVE S-->& cap. 10. &longs;ecundi Eu­<lb/> dem. <!-- KEEP S--></s> <s id="s.000654">tot Ari&longs;t. loca ab hac vna Euclidis Demon&longs;tratione illu&longs;trantur.</s> </p> <p type="head"> <s id="s.000655"><emph type="italics"/>In decimotertio.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000656">Ad primam propo&longs;. </s> <s id="s.000657">13. &longs;ecundum editionem Commandini, aut Zamberti. <lb/> <!-- KEEP S--></s> <s id="s.000658">vide initio Priorum, in verbum (Re&longs;olutio)</s> </p> <p type="main"> <s id="s.000659">Atque hæc &longs;unt, quæ ex Elementorum opere Ari&longs;toteles pa&longs;&longs;im v&longs;urpauit, <lb/> quæque nos infra explicabimus.</s> </p> <p type="head"> <s id="s.000660"><emph type="bold"/>Finis Secundi Indicis.<emph.end type="bold"/></s> </p> <p type="main"> <s id="s.000661">Quæ verò ad alias Mathematicas, Mu&longs;icam &longs;cilicet, Per&longs;pe­<lb/> ctiuam, Mechanicam, & A&longs;tronomiam pertinens, facilè <lb/> poterunt ex primo Indice ad vnamquamque earum &longs;eor­<lb/> &longs;um cum libuerit, &longs;ecerni.</s> </p> </section> <pb pagenum="25" xlink:href="009/01/025.jpg"/> <section> <p type="head"> <s id="s.000662"><emph type="italics"/>TERTIVS INDEX ALPHABETICVS,<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.000663"><emph type="italics"/>cuius numeri re&longs;pondent numeris marginalibus Operis.<emph.end type="italics"/><lb/> <arrow.to.target n="table2"/></s> </p> <table> <table.target id="table2"/> <row> <cell><emph type="italics"/>A<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Abductio quid. eius inuentor. numero 16. marginali.<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Acuti den&longs;um quid.<emph.end type="italics"/></cell> <cell>399</cell> </row> <row> <cell><emph type="italics"/>Aequalitas mathematica, quæ.<emph.end type="italics"/></cell> <cell>10</cell> </row> <row> <cell><emph type="italics"/>Ae&longs;tus maris natura.<emph.end type="italics"/></cell> <cell>272</cell> </row> <row> <cell><emph type="italics"/>Aequitas arithmetica, & æquitas &longs;ecundum dignitatem.<emph.end type="italics"/></cell> <cell>330</cell> </row> <row> <cell><emph type="italics"/>Agathir&longs;i populi.<emph.end type="italics"/></cell> <cell>382</cell> </row> <row> <cell><emph type="italics"/>Angulus quid. vt nominari debeat 10. angulum in &longs;emicirculo e&longs;&longs;e rectum o&longs;tendi per cau&longs;am materialem.<emph.end type="italics"/></cell> <cell>71</cell> </row> <row> <cell><emph type="italics"/>Angulus rectus variè con&longs;ideratur à Geometra, & à Fabro.<emph.end type="italics"/></cell> <cell>301</cell> </row> <row> <cell><emph type="italics"/>Antiphontis quadratura circuli.<emph.end type="italics"/></cell> <cell>13</cell> </row> <row> <cell><emph type="italics"/>Antennæ nauis problema.<emph.end type="italics"/></cell> <cell>248</cell> </row> <row> <cell><emph type="italics"/>Antiphonæ voces.<emph.end type="italics"/> 358. 363. 370. 371.</cell> <cell>373</cell> </row> <row> <cell><emph type="italics"/>Apum mirabilis indu&longs;tria.<emph.end type="italics"/></cell> <cell>120</cell> </row> <row> <cell><emph type="italics"/>Apotome linea, quæ.<emph.end type="italics"/></cell> <cell>279</cell> </row> <row> <cell><emph type="italics"/>Aquæ &longs;uperficiem e&longs;&longs;e &longs;phæricam ratione mathematica.<emph.end type="italics"/></cell> <cell>107</cell> </row> <row> <cell><emph type="italics"/>Arithmetica proportio.<emph.end type="italics"/></cell> <cell>302</cell> </row> <row> <cell><emph type="italics"/>Aranei industria patefacta, qua ad res inaca&longs;&longs;as tran&longs;eat.<emph.end type="italics"/></cell> <cell>293</cell> </row> <row> <cell><emph type="italics"/>filum emittit ex &longs;ece&longs;&longs;u contra Ari&longs;totelem pro Democrito.<emph.end type="italics"/></cell> <cell><emph type="italics"/>ibidem.<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>Astronomiæ principia duo, Apparentia, & Ob&longs;eruatio.<emph.end type="italics"/></cell> <cell>8</cell> </row> <row> <cell><emph type="italics"/>Automata, quæ.<emph.end type="italics"/> 199. 298.</cell> <cell><emph type="italics"/>a. b.<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>B<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Ba&longs;is ballarum in aqua, cur &longs;it alba, & cur non faciat vmbram.<emph.end type="italics"/></cell> <cell>351</cell> </row> <row> <cell><emph type="italics"/>Binomium linea, quæ.<emph.end type="italics"/></cell> <cell>279</cell> </row> <row> <cell><emph type="italics"/>Bra&longs;ilien&longs;es, qua ratione numerare &longs;oliti.<emph.end type="italics"/></cell> <cell>340</cell> </row> <row> <cell><emph type="italics"/>Bry&longs;onis quadratura circuli.<emph.end type="italics"/></cell> <cell>35</cell> </row> <row> <cell><emph type="italics"/>C<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Calippi opinio de numero Cœlorum.<emph.end type="italics"/></cell> <cell>236</cell> </row> <row> <cell><emph type="italics"/>Cantilenam notam &longs;uauius, quam ignotam audimus.<emph.end type="italics"/></cell> <cell>362</cell> </row> <row> <cell><emph type="italics"/>Centrum circuli reperire. 303. Centrum mundi mathematicè o&longs;tenditur. 123. Cen-trum grauitatis, & molis.<emph.end type="italics"/> 38.</cell> <cell>112</cell> </row> <row> <cell><emph type="italics"/>Chordarum veterum nomina.<emph.end type="italics"/></cell> <cell>359</cell> </row> <row> <cell><emph type="italics"/>Circuli quadratura quid. an po&longs;&longs;ibilis. num. 1. Circulorum concentricorum maiores velocius moueri. 108. Circuli admiranda. 239. De circulorum concentricorum volutatione.<emph.end type="italics"/></cell> <cell>263</cell> </row> <row> <cell><emph type="italics"/>Coalternæ lineæ, quæ.<emph.end type="italics"/> 12. 14.</cell> <cell>44</cell> </row> <row> <cell><emph type="italics"/>Cœlorum ordinem petendum ex A&longs;tronomis 109. item numerum<emph.end type="italics"/></cell> <cell>233</cell> </row> <row> <cell><emph type="italics"/>Colores in mu&longs;ica 78. Colores oculorum vnde.<emph.end type="italics"/></cell> <cell>408</cell> </row> <row> <cell><emph type="italics"/>Cometarum tractatiuncula ex recentioribus, qui eas in Cœlo collocant. 136. e&longs;&longs;e &longs;u-pra aerem longi&longs;&longs;imo &longs;altem interuallo o&longs;tenditur mathematicè. 129. in additione.<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Con&longs;onantia, quid. 64. quibus numeris con&longs;onantiæ con&longs;tent.<emph.end type="italics"/></cell> <cell>210</cell> </row> <row> <cell><emph type="italics"/>Conus, & cylindrus, cur variè mouentur.<emph.end type="italics"/></cell> <cell>355</cell> </row> <pb pagenum="26" xlink:href="009/01/026.jpg"/> <row> <cell><emph type="italics"/>Cubus numerus. duo cubi cubus, quid &longs;ignificet.<emph.end type="italics"/></cell> <cell>33</cell> </row> <row> <cell><emph type="italics"/>Curru problema.<emph.end type="italics"/></cell> <cell>252</cell> </row> <row> <cell><emph type="italics"/>Cunei problema.<emph.end type="italics"/></cell> <cell>256</cell> </row> <row> <cell><emph type="italics"/>Cylindri, & coni motus comparatio problematica.<emph.end type="italics"/></cell> <cell>335</cell> </row> <row> <cell><emph type="italics"/>D<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Definitiones mathematicæ e&longs;&longs;e e&longs;&longs;entiales, & perfe&longs;&longs;imas. cap. 1. de nat. Math. definitionum v&longs;us in Mathematicis.<emph.end type="italics"/></cell> <cell>81</cell> </row> <row> <cell><emph type="italics"/>De&longs;criptio, & de&longs;cribere, quid.<emph.end type="italics"/> 2. 6. 7.</cell> <cell>205</cell> </row> <row> <cell><emph type="italics"/>De&longs;ignatio pro demon&longs;tratione mathematica.<emph.end type="italics"/></cell> <cell>305</cell> </row> <row> <cell><emph type="italics"/>Demon&longs;trationis perfectæ exemplum. 36. demon&longs;trationum mathematicarum præ-&longs;tantia. cap. 4. de nat. Mathem.<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Dentiforcipis problema.<emph.end type="italics"/></cell> <cell>260</cell> </row> <row> <cell><emph type="italics"/>Denarij numeri perfectio. 339. cur <expan abbr="v&longs;q;">v&longs;que</expan> ad denariŭ omnes <expan abbr="g&etilde;tes">gentes</expan> <expan abbr="numer&etilde;t">numerent</expan>.<emph.end type="italics"/></cell> <cell>339. 8. <emph type="italics"/>&c.<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>Diameter incommen&longs;urabilis costæ. 5. diametri etymon.<emph.end type="italics"/></cell> <cell>337</cell> </row> <row> <cell><emph type="italics"/>Diapa&longs;on quid. 90. 350. omnium con&longs;onantiarum pulcherrima.<emph.end type="italics"/></cell> <cell>388</cell> </row> <row> <cell><emph type="italics"/>Diapa&longs;on diapente.<emph.end type="italics"/></cell> <cell>359</cell> </row> <row> <cell><emph type="italics"/>Diapente con&longs;onantia, quæ.<emph.end type="italics"/></cell> <cell>359</cell> </row> <row> <cell><emph type="italics"/>Diate&longs;&longs;aron con&longs;onantia, quæ.<emph.end type="italics"/></cell> <cell>359</cell> </row> <row> <cell><emph type="italics"/>Di&longs;d apa&longs;on con&longs;onantia, quæ.<emph.end type="italics"/></cell> <cell>359</cell> </row> <row> <cell><emph type="italics"/>Die&longs;is, quid.<emph.end type="italics"/> 53.</cell> <cell>226</cell> </row> <row> <cell><emph type="italics"/>Dolia duo, quomodo aliquando Diapa&longs;on re&longs;onent.<emph.end type="italics"/></cell> <cell>402</cell> </row> <row> <cell><emph type="italics"/>Duplum inter multiplicia primum e&longs;t.<emph.end type="italics"/></cell> <cell>322</cell> </row> <row> <cell><emph type="italics"/>E<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Elementa mundi non componi ex figuris geometricis.<emph.end type="italics"/></cell> <cell>120</cell> </row> <row> <cell><emph type="italics"/>Elementa geometrica, quæ.<emph.end type="italics"/> 82.</cell> <cell>213</cell> </row> <row> <cell><emph type="italics"/>Eudoxi opinio de numero Cœlorum.<emph.end type="italics"/></cell> <cell>234</cell> </row> <row> <cell><emph type="italics"/>Exempla mathematicorum, qualia. 11. non e&longs;&longs;e fal&longs;a.<emph.end type="italics"/></cell> <cell>43</cell> </row> <row> <cell><emph type="italics"/>Exemplorum veritas, & conformitas, quatenus requirantur.<emph.end type="italics"/></cell> <cell>36</cell> </row> <row> <cell><emph type="italics"/>F<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Figuram omnem planam habere &longs;uos angulos externos <expan abbr="quotcŭmq;">quotcŭmque</expan> æquales quatuor rectis angulis, quæ e&longs;t mira proprietas.<emph.end type="italics"/></cell> <cell>59</cell> </row> <row> <cell><emph type="italics"/>Figuræ &longs;imiles, quæ.<emph.end type="italics"/></cell> <cell>70</cell> </row> <row> <cell><emph type="italics"/>Figurarum planarum ordo 88. quæ nam totum locum repleant.<emph.end type="italics"/></cell> <cell>96</cell> </row> <row> <cell><emph type="italics"/>Figurarum &longs;olidarum, quænam totum locum repleant: vbi Ari&longs;t. & omnium expo&longs;i-torum ratum aperitur.<emph.end type="italics"/></cell> <cell>121</cell> </row> <row> <cell><emph type="italics"/>Figuratio lucis.<emph.end type="italics"/></cell> <cell>345</cell> </row> <row> <cell><emph type="italics"/>Figurationes pro demon&longs;trationibus Mathem.<emph.end type="italics"/></cell> <cell>194</cell> </row> <row> <cell><emph type="italics"/>Filum Araneorum, ex qua parte corporis exeat, & ex qua materia.<emph.end type="italics"/></cell> <cell>293</cell> </row> <row> <cell><emph type="italics"/>Fluxus, ac refluxus maris.<emph.end type="italics"/></cell> <cell>272</cell> </row> <row> <cell><emph type="italics"/>Funium lectorum problema.<emph.end type="italics"/></cell> <cell>264</cell> </row> <row> <cell><emph type="italics"/>G<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Galaxia quid. 131. Ari&longs;toteles defen&longs;us.<emph.end type="italics"/> 132.</cell> <cell>140</cell> </row> <row> <cell><emph type="italics"/>Galibei recens ob&longs;eruatio.<emph.end type="italics"/></cell> <cell>141</cell> </row> <row> <cell><emph type="italics"/>Generatria Mu&longs;icæ veteris. 78. Fusè explicantur.<emph.end type="italics"/></cell> <cell>371</cell> </row> <row> <cell><emph type="italics"/>Geodæ&longs;ia.<emph.end type="italics"/></cell> <cell>207</cell> </row> <row> <cell><emph type="italics"/>Geographiæ veteris plura errata,<emph.end type="italics"/> 145. 146. 147. 148.</cell> <cell>149</cell> </row> <pb pagenum="27" xlink:href="009/01/027.jpg"/> <row> <cell><emph type="italics"/>Gnomon, quid. 3. &<emph.end type="italics"/></cell> <cell>331</cell> </row> <row> <cell><emph type="italics"/>Gnomones numeri.<emph.end type="italics"/></cell> <cell>93</cell> </row> <row> <cell><emph type="italics"/>Graue qua ratione ad centrum mundi de&longs;cenderet, eiqué aptaretur.<emph.end type="italics"/></cell> <cell>112</cell> </row> <row> <cell><emph type="italics"/>Grauiden&longs;um, quid.<emph.end type="italics"/></cell> <cell>399</cell> </row> <row> <cell><emph type="italics"/>H<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Halonis demon&longs;tratio.<emph.end type="italics"/></cell> <cell>161</cell> </row> <row> <cell><emph type="italics"/>Hippocratis chij quadratura circuli. 17. <expan abbr="eiu&longs;d&etilde;">eiu&longs;dem</expan> quadratura lunulæ optima.<emph.end type="italics"/></cell> <cell>17</cell> </row> <row> <cell><emph type="italics"/>Hyades, Atlantides, & Succulæ.<emph.end type="italics"/></cell> <cell>335</cell> </row> <row> <cell><emph type="italics"/>Hypate, quid.<emph.end type="italics"/></cell> <cell>360</cell> </row> <row> <cell><emph type="italics"/>Hypotenu&longs;a in ince&longs;&longs;u animalium.<emph.end type="italics"/></cell> <cell>294</cell> </row> <row> <cell><emph type="italics"/>I<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Illuminationes Solis deficientis per foramina tran&longs;euntes, eur &longs;int defectiuæ.<emph.end type="italics"/></cell> <cell>350</cell> </row> <row> <cell><emph type="italics"/>modus videndi eclyp&longs;im facilis, ac iucundus.<emph.end type="italics"/></cell> <cell><emph type="italics"/>ibidem.<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>Ince&longs;&longs;us animalium lineis explicatur.<emph.end type="italics"/></cell> <cell>294. <emph type="italics"/>& <expan abbr="&longs;eqq.">&longs;eqque</expan><emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>Incommen&longs;urabilia, quæ, & eorum inuentores.<emph.end type="italics"/></cell> <cell>5</cell> </row> <row> <cell><emph type="italics"/>Indiui&longs;ibilia mathematica e&longs;&longs;e priuationes. 189. oriri ex diui&longs;ione. 231. eorum duo genera.<emph.end type="italics"/></cell> <cell>276</cell> </row> <row> <cell><emph type="italics"/>Infinito, qua ratione vtantur Mathematici.<emph.end type="italics"/> 94.</cell> <cell>96</cell> </row> <row> <cell><emph type="italics"/>Iridis demon&longs;tratio &longs;ecundum Ari&longs;t. 163. & &longs;equentibus. Item noua de Iride tra-ctatio. ibidem in additione.<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Iugum in lyra quid, & eius figura.<emph.end type="italics"/></cell> <cell>396</cell> </row> <row> <cell><emph type="italics"/>L<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Leges mu&longs;icales.<emph.end type="italics"/></cell> <cell>204</cell> </row> <row> <cell><emph type="italics"/>Libra maior, cur exactior. initio Mechanicarum quæ&longs;t.<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Linea, quæ terminus est illuminationis in Luna, cur modo recta, modo curua vi-deatur.<emph.end type="italics"/></cell> <cell>346</cell> </row> <row> <cell><emph type="italics"/>Lineæ rationales, & irrationales, &c.<emph.end type="italics"/></cell> <cell>279</cell> </row> <row> <cell><emph type="italics"/>Lumen oculorum noctu videntium, in qua oculi parte manet. in addit. de Pupilla.<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Lumen Solis, cur &longs;it circulare, quamuis per foramina angulo&longs;a ingrediatur.<emph.end type="italics"/></cell> <cell>345</cell> </row> <row> <cell><emph type="italics"/>Luna plana, cur appareat, cum &longs;it &longs;phærica. 347. cur in eadem altitudine cum Sole &longs;upra horizontem, maiorem vmbram efficiat.<emph.end type="italics"/></cell> <cell>349</cell> </row> <row> <cell><emph type="italics"/>Lunam e&longs;&longs;e &longs;phæricam. 48. illuminari &longs;phæricè quid: ibidem & de illuminatione Lu-næ. iterum e&longs;&longs;e &longs;phæricam ab eclyp&longs;ibus.<emph.end type="italics"/></cell> <cell>111</cell> </row> <row> <cell><emph type="italics"/>Luminarium Solis, & Lunæ ordo.<emph.end type="italics"/></cell> <cell>133</cell> </row> <row> <cell><emph type="italics"/>Lychanos, quid.<emph.end type="italics"/></cell> <cell>360</cell> </row> <row> <cell><emph type="italics"/>Lyræ veteris figura.<emph.end type="italics"/></cell> <cell>396</cell> </row> <row> <cell><emph type="italics"/>M<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Magalis, &longs;eu magas, & magadi&longs;&longs;are.<emph.end type="italics"/> 373.</cell> <cell>393</cell> </row> <row> <cell><emph type="italics"/>Materia intelligibilis. fusè verò. explicatur in tract. de nat. Mathem.<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Mathematicæ mediæ, &longs;eu &longs;ubalternatæ habent propter quid &longs;uarum demon&longs;iratio-nem.<emph.end type="italics"/></cell> <cell>50</cell> </row> <row> <cell><emph type="italics"/>Mathematici negant reperiri quantitatem indiui&longs;ibilem, &longs;eu minimam.<emph.end type="italics"/></cell> <cell>100</cell> </row> <row> <cell><emph type="italics"/>Mathematicæ non &longs;unt contentio&longs;æ. 83. ostendunt per cau&longs;am formalcm.<emph.end type="italics"/></cell> <cell>91</cell> </row> <row> <cell><emph type="italics"/>Mathematicas inuenerunt Aegyptij Sacerdotes.<emph.end type="italics"/></cell> <cell>198</cell> </row> <row> <cell><emph type="italics"/>Mathematicæ o&longs;tendunt per cau&longs;am materialem, & formalem. 205. earum vtilitas. ibidem. De earum natura. in proprio tractatu.<emph.end type="italics"/></cell> <cell/> </row> <pb pagenum="28" xlink:href="009/01/028.jpg"/> <row> <cell><emph type="italics"/>Mathematicæ maximè tractant de Bono, & Pulcro, qua ratione.<emph.end type="italics"/></cell> <cell>237</cell> </row> <row> <cell><emph type="italics"/>Mechanica facultas, quæ.<emph.end type="italics"/></cell> <cell>238</cell> </row> <row> <cell><emph type="italics"/>Melodia.<emph.end type="italics"/></cell> <cell>331</cell> </row> <row> <cell><emph type="italics"/>Melopeia quid.<emph.end type="italics"/></cell> <cell>384</cell> </row> <row> <cell><emph type="italics"/>Medium Demonstrationum Mathem. in earum tractatu.<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Me&longs;e quid.<emph.end type="italics"/></cell> <cell>360</cell> </row> <row> <cell><emph type="italics"/>Mina in men&longs;uris quid.<emph.end type="italics"/></cell> <cell>53</cell> </row> <row> <cell><emph type="italics"/>Monochordium.<emph.end type="italics"/></cell> <cell>359</cell> </row> <row> <cell><emph type="italics"/>Motus nauigij, & remi comparatio. 247. Pulchra P. Nonij in id annotatio con-tra Ari&longs;t.<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Modi mu&longs;ici.<emph.end type="italics"/></cell> <cell>383</cell> </row> <row> <cell><emph type="italics"/>Modorum antiquorum ordo, numerus, &c.<emph.end type="italics"/></cell> <cell>383</cell> </row> <row> <cell><emph type="italics"/>Motus primi mobilis, &longs;eu diurnus e&longs;t men&longs;ura cœlestium motuum.<emph.end type="italics"/></cell> <cell>225</cell> </row> <row> <cell><emph type="italics"/>Mu&longs;ici recentiores reprehen&longs;i. 331. & in fine Chronologiæ.<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Mu&longs;icæ totius elementa.<emph.end type="italics"/></cell> <cell>359</cell> </row> <row> <cell><emph type="italics"/>Mu&longs;ica nuda, & cum melodia.<emph.end type="italics"/></cell> <cell>331</cell> </row> <row> <cell><emph type="italics"/>N<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Nete quid.<emph.end type="italics"/></cell> <cell>360</cell> </row> <row> <cell><emph type="italics"/>Nucifragi in&longs;trumenti problema.<emph.end type="italics"/></cell> <cell>261</cell> </row> <row> <cell><emph type="italics"/>Numerus, par, impar, primus, & compo&longs;itus, quadratus, &longs;eu æquilaterus, altera parte longior. 24. Cubus num.<emph.end type="italics"/></cell> <cell>33</cell> </row> <row> <cell><emph type="italics"/>Numeri capitales, qui.<emph.end type="italics"/></cell> <cell>82</cell> </row> <row> <cell><emph type="italics"/>Numerum parem e&longs;&longs;e cau&longs;am infiniti: imparem verò finiti.<emph.end type="italics"/></cell> <cell>93</cell> </row> <row> <cell><emph type="italics"/>Numerorum parium alij &longs;unt primi, alij non.<emph.end type="italics"/></cell> <cell>224</cell> </row> <row> <cell><emph type="italics"/>Numerus vnitarius.<emph.end type="italics"/></cell> <cell>307</cell> </row> <row> <cell><emph type="italics"/>O<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Oculi cur moueantur con&longs;imiliter.<emph.end type="italics"/></cell> <cell>405</cell> </row> <row> <cell><emph type="italics"/>Oculi anathome.<emph.end type="italics"/></cell> <cell>408. <emph type="italics"/>&c.<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>Omophonæ voces.<emph.end type="italics"/> 372.</cell> <cell>392</cell> </row> <row> <cell><emph type="italics"/>Oppo&longs;itio diametralis e&longs;t omnium maxima.<emph.end type="italics"/></cell> <cell>327</cell> </row> <row> <cell><emph type="italics"/>Ortus, & occa&longs;us &longs;yderum, quid, & quotuplex: vbide Orione, & Canicula.<emph.end type="italics"/></cell> <cell>153</cell> </row> <row> <cell><emph type="italics"/>P<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Paranete quæ voces, aut chordæ.<emph.end type="italics"/></cell> <cell>360</cell> </row> <row> <cell><emph type="italics"/>Parame&longs;e<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Parhypate<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Parelia, cur appareant nondum &longs;atis explicari.<emph.end type="italics"/></cell> <cell>182</cell> </row> <row> <cell><emph type="italics"/>Parna&longs;&longs;us mons, vbinam &longs;it. Item paropame&longs;&longs;us.<emph.end type="italics"/></cell> <cell>145</cell> </row> <row> <cell><emph type="italics"/>Partes quantitatis &longs;unt materia illius.<emph.end type="italics"/></cell> <cell>211</cell> </row> <row> <cell><emph type="italics"/>Per&longs;pectiuus, quatenus con&longs;ideret lineam.<emph.end type="italics"/></cell> <cell>89</cell> </row> <row> <cell><emph type="italics"/>Pa&longs;&longs;iones Mathematicorum cum &longs;ubiecto conuertuntur.<emph.end type="italics"/></cell> <cell>47</cell> </row> <row> <cell><emph type="italics"/>Pila chri&longs;tallina, vel vitrea, qua ratione comburat.<emph.end type="italics"/></cell> <cell>60</cell> </row> <row> <cell><emph type="italics"/>Planetæ, qua ratione moueantur duplici motu.<emph.end type="italics"/></cell> <cell>130</cell> </row> <row> <cell><emph type="italics"/>Plato &longs;olida ex planis componebat. 105. cur Elementis figuras Geometricas attri-bueret.<emph.end type="italics"/></cell> <cell>122</cell> </row> <row> <cell><emph type="italics"/>Planetarum ordo.<emph.end type="italics"/></cell> <cell>271</cell> </row> <row> <cell><emph type="italics"/>Principia Mathematicorum.<emph.end type="italics"/> 2.</cell> <cell>118</cell> </row> <pb pagenum="29" xlink:href="009/01/029.jpg"/> <row> <cell><emph type="italics"/>Principia &longs;cientiarum duplicia. Ex quibus, & circa quod.<emph.end type="italics"/></cell> <cell>61</cell> </row> <row> <cell><emph type="italics"/>Principia Mathematica non pendere ab experientia.<emph.end type="italics"/></cell> <cell>315</cell> </row> <row> <cell><emph type="italics"/>Proportio alterna. 28. multiplicata, &longs;eu multiplex &longs;ecundum Cæneum.<emph.end type="italics"/></cell> <cell>46</cell> </row> <row> <cell><emph type="italics"/>P&longs;eudographia quid.<emph.end type="italics"/></cell> <cell>83</cell> </row> <row> <cell><emph type="italics"/>Proportionalitas quid.<emph.end type="italics"/></cell> <cell>308</cell> </row> <row> <cell><emph type="italics"/>Proportio continuata, & di&longs;iuncta quid. 310. alterna, &longs;eu permutata quid.<emph.end type="italics"/></cell> <cell><emph type="italics"/>inibi.<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>Proportio Geometrica. 311. Arithmetica.<emph.end type="italics"/></cell> <cell>302</cell> </row> <row> <cell><emph type="italics"/>Proportio &longs;ecundum dignitatem, e&longs;t Geometrica.<emph.end type="italics"/></cell> <cell>330</cell> </row> <row> <cell><emph type="italics"/>Problemata mu&longs;icalia varia à 360. <expan abbr="v&longs;q;">v&longs;que</expan> ad finem &longs;ectionis 19. problematum.<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Punicum, mu&longs;icum in&longs;trumentum.<emph.end type="italics"/></cell> <cell>370</cell> </row> <row> <cell><emph type="italics"/>Pupillæ oculi etymon., & natura. 408. cur in oculo no&longs;tro imago pupillæ appareat. problem.<emph.end type="italics"/> 2.</cell> <cell><emph type="italics"/>ibidem.<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>Cur nigra in omnibus hominibus. probl.<emph.end type="italics"/> 5.</cell> <cell/> </row> <row> <cell><emph type="italics"/>Cur in Sole euane&longs;cat. probl.<emph.end type="italics"/> 6.</cell> <cell/> </row> <row> <cell><emph type="italics"/>Cur modo maior, modo minor appareat.<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Pythagorici primi Mathematicis <expan abbr="operã">operam</expan> dedere, easqué ceteris &longs;cientijs præponebat.<emph.end type="italics"/></cell> <cell>202</cell> </row> <row> <cell><emph type="italics"/>Q<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Qvadratura circuli. vide circulus. de quadratura figurarum rectangularum, & quadraturæ duplex definitio cau&longs;alis, & formalis.<emph.end type="italics"/></cell> <cell>185</cell> </row> <row> <cell><emph type="italics"/>Quantitas an con&longs;tet ex indiui&longs;ibili. toto libello de lineis in&longs;ecabilibus argumentis mathematicis.<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>R<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Remi problema.<emph.end type="italics"/></cell> <cell>245</cell> </row> <row> <cell><emph type="italics"/>Re&longs;olutio logica, & mathematica, vt conueniant. 4. &<emph.end type="italics"/></cell> <cell>305</cell> </row> <row> <cell><emph type="italics"/>Re&longs;ultus cadentium in terram, quibus angulis fiat.<emph.end type="italics"/></cell> <cell>354</cell> </row> <row> <cell><emph type="italics"/>Rythmus fusè explicatur.<emph.end type="italics"/></cell> <cell>381</cell> </row> <row> <cell><emph type="italics"/>Rubrum mare duplex.<emph.end type="italics"/></cell> <cell>152</cell> </row> <row> <cell><emph type="italics"/>S<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Scythala quid, & eius figura 250. &<emph.end type="italics"/></cell> <cell>252</cell> </row> <row> <cell><emph type="italics"/>Securis problema, vbi de antiquæ &longs;ecuris figura, & angulo pulchra demon&longs;tran-tur.<emph.end type="italics"/></cell> <cell>258</cell> </row> <row> <cell><emph type="italics"/>Semitonium, quid.<emph.end type="italics"/></cell> <cell>360</cell> </row> <row> <cell><emph type="italics"/>Solem e&longs;&longs;e terra multo maiorem: probatur.<emph.end type="italics"/></cell> <cell>131</cell> </row> <row> <cell><emph type="italics"/>Sphæram planum tangit in puncto. demon&longs;tratur.<emph.end type="italics"/></cell> <cell>184</cell> </row> <row> <cell><emph type="italics"/>Statera antiqua, quæ: eius figura, & problema.<emph.end type="italics"/></cell> <cell>259</cell> </row> <row> <cell><emph type="italics"/>Stereomatria, vt differat à Geometria.<emph.end type="italics"/></cell> <cell>49</cell> </row> <row> <cell><emph type="italics"/>Succula.<emph.end type="italics"/></cell> <cell>253</cell> </row> <row> <cell><emph type="italics"/>Symphonæ voces.<emph.end type="italics"/> 372.</cell> <cell>392</cell> </row> <row> <cell><emph type="italics"/>Symphonia.<emph.end type="italics"/></cell> <cell>391</cell> </row> <row> <cell><emph type="italics"/>T<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Temonis nauis problema.<emph.end type="italics"/></cell> <cell>246</cell> </row> <row> <cell><emph type="italics"/>Terram e&longs;&longs;e rotundam ex eclyp&longs;i. 114. Item aliter. 115. e&longs;&longs;e re&longs;pectu Cœli paruam valde. 115. e&longs;&longs;e cubum cur Plato voluerit.<emph.end type="italics"/></cell> <cell>122</cell> </row> <row> <cell><emph type="italics"/>Terræ quantitas.<emph.end type="italics"/></cell> <cell>115</cell> </row> <row> <cell><emph type="italics"/>Terram paulatim reduci ad pefféctam rotunditatem.<emph.end type="italics"/></cell> <cell>151</cell> </row> <row> <cell><emph type="italics"/>Tetragoni&longs;mus. vide Quadratura.<emph.end type="italics"/></cell> <cell/> </row> <pb pagenum="30" xlink:href="009/01/030.jpg"/> <row> <cell><emph type="italics"/>Teretizare, quid.<emph.end type="italics"/></cell> <cell>366</cell> </row> <row> <cell><emph type="italics"/>Tetrachordon, quid.<emph.end type="italics"/></cell> <cell>386</cell> </row> <row> <cell><emph type="italics"/>Tollenonis problema.<emph.end type="italics"/></cell> <cell>267</cell> </row> <row> <cell><emph type="italics"/>Tonus mu&longs;icus, qui; vnde oriatur.<emph.end type="italics"/></cell> <cell>360</cell> </row> <row> <cell><emph type="italics"/>Trochleæ problemata.<emph.end type="italics"/> 249. 250.</cell> <cell>251</cell> </row> <row> <cell><emph type="italics"/>Tunicæ oculi. 408. in tractatu de Pupilla.<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>V<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Ventorum nomina, & &longs;itus.<emph.end type="italics"/></cell> <cell>160. <emph type="italics"/>a.<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>Vectis quotuplex, & c.<emph.end type="italics"/></cell> <cell>244</cell> </row> <row> <cell><emph type="italics"/>Veteres canere &longs;olitos non &longs;olum in choris, &longs;ed etiam in &longs;cenis.<emph.end type="italics"/> 371. 384.</cell> <cell>400</cell> </row> <row> <cell><emph type="italics"/>Virgiliæ, Pleiades.<emph.end type="italics"/></cell> <cell>335</cell> </row> <row> <cell><emph type="italics"/>Vi&longs;æ res gemmantur di&longs;tractis oculis.<emph.end type="italics"/></cell> <cell>406</cell> </row> <row> <cell><emph type="italics"/>Vi&longs;æ rei geminatio non fit altero oculo in latera torto, cur.<emph.end type="italics"/></cell> <cell>407</cell> </row> <row> <cell><emph type="italics"/>Vi&longs;us res vi&longs;as, cur non duplicet, etiam &longs;i duos oculos habeamus.<emph.end type="italics"/></cell> <cell>405</cell> </row> <row> <cell><emph type="italics"/>Vmbelici litoralis problema.<emph.end type="italics"/></cell> <cell>254</cell> </row> <row> <cell><emph type="italics"/>Vmbram terræ parum &longs;upra Lunam tran&longs;cendere.<emph.end type="italics"/></cell> <cell>137</cell> </row> <row> <cell><emph type="italics"/>Vmbrarum incrementa, & decrementa, cur inæqualia.<emph.end type="italics"/> 344.</cell> <cell>348</cell> </row> <row> <cell><emph type="italics"/>Vi&longs;us res geminat, &longs;i alter oculorum digito pellatur, cur.<emph.end type="italics"/></cell> <cell>197</cell> </row> <row> <cell><emph type="italics"/>Vocum mu&longs;icalium antiquæ appellationes.<emph.end type="italics"/></cell> <cell>360</cell> </row> <row> <cell><emph type="italics"/>Vox acuta velocior, grauis verò tarda, cur.<emph.end type="italics"/></cell> <cell>77</cell> </row> <row> <cell><emph type="italics"/>Voluminum &longs;ectio modo rectam lineam, modo curuam refert, cur.<emph.end type="italics"/></cell> <cell>356</cell> </row> <row> <cell><emph type="italics"/>Vnitas, cur indiui&longs;ibilis.<emph.end type="italics"/></cell> <cell>22</cell> </row> <row> <cell><emph type="italics"/>Z<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Zonas terræ, vt Arist. de&longs;ignet: & quæ &longs;ecundum ip&longs;um &longs;int habitabiles.<emph.end type="italics"/></cell> <cell>156</cell> </row> <row> <cell><emph type="italics"/>Zonam torridam quatuor reddunt habitabilem.<emph.end type="italics"/></cell> <cell>159</cell> </row> </table> <p type="head"> <s id="s.000664">Finis Tertij Indicis.</s> </p> <pb pagenum="31" xlink:href="009/01/031.jpg"/> </section> <section> <p type="main"> <s id="s.000665">Vi&longs;um e&longs;t etiam opportunum Lectori fore, ea &longs;imul in vnum <lb/> loca colligere, in quibus Ari&longs;toteles mihi vi&longs;us e&longs;t in Ma­<lb/> thematicis &longs;copum non attigi&longs;&longs;e, vt alij pr&etail;&longs;ertim Peripa­<lb/> tetici facilius ea inuenire, <expan abbr="atq;">atque</expan> de ij&longs;dem iudicium ferre <lb/> po&longs;&longs;int.<lb/> <arrow.to.target n="table3"/></s> </p> <table> <table.target id="table3"/> <row> <cell><emph type="italics"/>121<emph.end type="italics"/></cell> <cell><emph type="italics"/>Nvmero marginali: vbi ait plura Octaedra, &longs;eu Pyramides re-plere locum: in quo omnes pariter expo&longs;itores lap&longs;i &longs;unt.<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>124<emph.end type="italics"/></cell> <cell><emph type="italics"/>Latitudinem figura, ait, cau&longs;am e&longs;&longs;e &longs;upernatationis. & aquam re&longs;i&longs;tere &longs;impliciter diui&longs;ioni.<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>136<emph.end type="italics"/></cell> <cell><emph type="italics"/>Cometas in &longs;uprema aeris regione collocat; cuius contrarium ibi line ari demon&longs;tratione ostenditur.<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>147<emph.end type="italics"/></cell> <cell><emph type="italics"/>Ait Tanaim, & Indum oriri ex monte Paropami&longs;&longs;o. & c.<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>148<emph.end type="italics"/></cell> <cell><emph type="italics"/>Ait, tertia parte noctis Cauca&longs;i verticem illuminari à Sole.<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>149<emph.end type="italics"/></cell> <cell><emph type="italics"/>Ait Danubium ex Pyreneo monte defluere.<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>150<emph.end type="italics"/></cell> <cell><emph type="italics"/>Ait fluuium quendam non minorem Rhodano in Liguria ab&longs;orberi, & iterum egredi.<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>152<emph.end type="italics"/></cell> <cell><emph type="italics"/>Ait Rubrum mare parum Atlantico Oceano commi&longs;ceri.<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>159<emph.end type="italics"/></cell> <cell><emph type="italics"/>Zonam torridam inhabitabilem exi&longs;timat.<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>164<emph.end type="italics"/></cell> <cell><emph type="italics"/>Putat Iridis angulos non po&longs;&longs;e vnum &longs;upra alterum collocari, &longs;ed tantummodo in orbem.<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>182<emph.end type="italics"/></cell> <cell><emph type="italics"/>Rationes, quas in Parelij dubitationibus affert, videntur inanes.<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>236<emph.end type="italics"/></cell> <cell><emph type="italics"/>In &longs;ubducendo cœle&longs;tium orbium numero, memoria labitur.<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>243<emph.end type="italics"/></cell> <cell><emph type="italics"/>Ait lineam O L, &longs;uperare lineam L R, quantitate P L, vt in figura.<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>245<emph.end type="italics"/></cell> <cell><emph type="italics"/>Remum ad vectem primi generis reducit.<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>246<emph.end type="italics"/></cell> <cell><emph type="italics"/>Temonem nauis reducit ad vectem primi generis.<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>247<emph.end type="italics"/></cell> <cell><emph type="italics"/>In motu Remi collato cum motu Nauigij, à Nonio erroris manifestè arguitur. eodem modo in motu Temonis.<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>250<emph.end type="italics"/></cell> <cell><emph type="italics"/>Ait maioribus trochleis, aut rotulis facilius onera &longs;ubleuari.<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>256<emph.end type="italics"/></cell> <cell><emph type="italics"/>Reducit cuneum ad vectem primi generis.<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>270<emph.end type="italics"/></cell> <cell><emph type="italics"/>Cur res in vorticibus ad medium ferantur, veram cau&longs;am a&longs;signa-re non videtur.<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>275<emph.end type="italics"/></cell> <cell><emph type="italics"/>Ait Danubium altero ramo in Mediterraneum, altero in Pontum effluere.<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>293<emph.end type="italics"/></cell> <cell><emph type="italics"/>Negat Araneum filum ab intrin&longs;eco emittere, Democritum iniuria refellens. quamuis hoc vltimum ad Phy&longs;icum pertineat.<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>403<emph.end type="italics"/></cell> <cell><emph type="italics"/>Problem. 2. &longs;ect. 2 3. non benè videtur a&longs;signare cau&longs;am variæ im-mer&longs;ionis nauigij.<emph.end type="italics"/></cell> </row> </table> <pb xlink:href="009/01/032.jpg"/> <!--blank page --> </section> </front> <body> <chap> <pb pagenum="33" xlink:href="009/01/033.jpg"/> <p type="head"> <s id="s.000666">LOCA <lb/>MATHEMATICA <lb/>EX LIBRO <lb/>PRÆDICAMENTORVM <lb/> Per ordinem declarata.</s> </p> <p type="main"> <s id="s.000667"><arrow.to.target n="marg1"/></s> </p> <p type="margin"> <s id="s.000668"><margin.target id="marg1"/>1</s> </p> <p type="main"> <s id="s.000669">Ex c. <!-- REMOVE S-->3. De his, quæ ad aliquid. </s> <s id="s.000670">Porrò quemadmodum vnus angulus vni angulo æqualis e&longs;t, ita <lb/> <expan abbr="aliquãdo">aliquando</expan> duo anguli &longs;unt vni angulo æquales, vt patet, &longs;i vnus angulus, v.g. <lb/> <!-- REMOVE S-->angulus B A C, vbi ait <emph type="italics"/>(Scientia verò &longs;i non &longs;it, <lb/> nihil probibet e&longs;&longs;e &longs;cibile, vt circuli quadratura, &longs;i e&longs;t &longs;cibilis, <lb/> &longs;cientia quidem eius nondum e&longs;t)<emph.end type="italics"/> Cum velit Ari&longs;t. o&longs;tendere, <lb/> nó omnia correlatiua &longs;imul e&longs;&longs;e natura, id de &longs;cibili, & &longs;cien­<lb/> tia variè probat, præ&longs;ertim verò, quia multa &longs;int &longs;cibilia, <lb/> quæ tamen nondum &longs;ciantur, vt patet, inquit, in Quadratu­<lb/> ra circuli, & &longs;cientia ip&longs;ius, quia quamuis ip&longs;a circuli quadratura &longs;it &longs;cibi­<lb/> lis, nondum tamen &longs;imul cum ip&longs;a, &longs;cientia illius extat. </s> <s id="s.000671">Quæ vt perfectè <lb/> intelligantur, &longs;ciendum e&longs;t, quadraturam circuli, quæ à Græcis tetrago­<lb/> ni&longs;mus dicitur, nihil aliud e&longs;&longs;e, quàm propo&longs;ito cuilibet circulo exhibere <lb/> quadratum æquale. </s> <s id="s.000672">Quæ æqualitas debet intelligi de areis, &longs;eu &longs;patijs, ita <lb/> vt area circuli, &longs;eu &longs;patium illud, &longs;iue &longs;uperficies illa circularis, &longs;it æqualis <lb/> areæ, &longs;eu &longs;uperficiei quadratæ. </s> <s id="s.000673">Qua in re plurimi decipiuntur exi&longs;timantes <lb/> per quadraturam cir culi inquiri æqualitatem linearum, ita vt circumferen­<lb/> tia circuli debeat e&longs;&longs;e æqualis ambitui, &longs;eu quatuor lateribus quadrati: <lb/> quod omnino fal&longs;um e&longs;t.</s> </p> <p type="main"> <s id="s.000674">Quadratio porrò circuli dupliciter proponi pote&longs;t, vel tanquam Theo­<lb/> rema, vel tanquam Problema <emph type="italics"/>(theorema autem e&longs;t propo&longs;itio, in qua nihil fa­<lb/> ciendum proponitur; problema verò aliquid fieri expo&longs;cit)<emph.end type="italics"/> neutrum autem tem­<lb/> pore Ari&longs;t. erat adinuentum nam theorema inuentum e&longs;t po&longs;t ip&longs;um ducen­<lb/> tis circiter annis ab Archimede: problema verò nondum à quoquam per­<lb/> fectè potuit reperiri. </s> <s id="s.000675">qua di&longs;tinctione &longs;aluari po&longs;&longs;unt nonnulli, vt Boetius <lb/> hoc loco, qui aiunt, &longs;e vidi&longs;&longs;e Demon&longs;trationem quadraturæ huius, &longs;i nimi­<lb/> rum intelligant theorema. </s> <s id="s.000676">& alij etiam verum a&longs;&longs;erunt, dum negant hacte­<lb/> nus repertam e&longs;&longs;e, &longs;i nimirum de problemate loquantur, theorema Archi­ <pb pagenum="34" xlink:href="009/01/034.jpg"/>medis e&longs;t propo&longs;itio prima acuti&longs;&longs;imi libelli de Dimen&longs;ione circuli; e&longs;t au­<lb/> tem huiu&longs;modi. </s> <s id="s.000677">Quilibet circulus æqualis e&longs;t triangulo rectangulo, cuius <lb/> quidem &longs;emidiameter vni laterum, quæ circa rectum angulum &longs;unt, ambi­<lb/> tus verò ba&longs;i eius e&longs;t æqualis.</s> </p> <figure id="id.009.01.034.1.jpg" place="text" xlink:href="009/01/034/1.jpg"/> <p type="main"> <s id="s.000678">Sit, v.g. <!-- REMOVE S-->datus circulus, cuius &longs;emidiameter A B; & fit triangulum rectangu­<lb/> lum A B C, cuius angulus B, &longs;it rectus, & latus B A, <expan abbr="con&longs;titu&etilde;s">con&longs;tituens</expan> angulum re­<lb/> ctum B, cum ba&longs;i B C, &longs;it æquale &longs;emidiametro A B; ba&longs;is verò B C, &longs;it æqua­<lb/> lis peripheriæ eiu&longs;dem circuli dati. </s> <s id="s.000679">demon&longs;trat iam ibi Archimedes acuta <lb/> æquè, ac euidenti demon&longs;tratione triangulum i&longs;tud æquale e&longs;&longs;e circulo illi. <lb/> </s> <s id="s.000680">quod perinde e&longs;t, ac &longs;i o&longs;tendi&longs;&longs;et cuinam quadrato &longs;it æqualis, cum per vl­<lb/> timam 2. Eucl. <!-- REMOVE S-->po&longs;&longs;imus triangulo huic quadratum æquale con&longs;truere, quod <lb/> con&longs;equenter dato circulo æquale erit. </s> <s id="s.000681">Quod &longs;i in modum Problematis ita <lb/> proponatur: Dato circulo æquale quadratum con&longs;truere, nondum inuenta <lb/> e&longs;t ratio, quæ demon&longs;tratione confirmetur, qua id geometricè penitus, hoc <lb/> e&longs;t ad æqualitatem mathematicam, &longs;eu exacti&longs;&longs;imam effici po&longs;&longs;it, <expan abbr="tota&qacute;">totaque</expan>; dif­<lb/> ficultas po&longs;ita e&longs;&longs;e videtur in inue&longs;tigando, quonam modo exhibeamus li­<lb/> neam rectam B C, æqualem peripheriæ circuli dati. </s> <s id="s.000682">quam nullus hactenus <lb/> geometricè illi æqualem potuit exhibere, <expan abbr="atq;">atque</expan> exhibita <expan abbr="euid&etilde;ti">euidenti</expan> demon&longs;tra­<lb/> tione comprobare; Quamuis Archimedes acumine &longs;anè mirabili in lib. de <lb/> lineis &longs;piralibus, eam <expan abbr="quoq;">quoque</expan> theorematicè, non tamen problematicè inue­<lb/> &longs;tigauit. </s> <s id="s.000683">nam propo&longs;itione 18. illius <expan abbr="admirãdi">admirandi</expan> operis inuenit lineam rectam <lb/> æqualem circumferentiæ primi circuli &longs;piralis lineæ; propo&longs; verò 19. repe­<lb/> rit aliam rectam æqualem circumferentiæ &longs;ecundi circuli. </s> <s id="s.000684">tu ip&longs;um con&longs;ule, <lb/> &longs;i admirandarum rerum contemplatione delectaris. </s> <s id="s.000685">Multa hac de re Pap­<lb/> pus Alexandrinus lib. 4. Math. coll. </s> <s id="s.000686">& Ioannes Buteo vnico volumine om­<lb/> nes quadraturas tain pri&longs;corum, quam recentiorum <expan abbr="cõprehen&longs;us">comprehen&longs;us</expan> e&longs;t. </s> <s id="s.000687">Qua­<lb/> re qui plura cupit, eos adeat; nos tamen infra &longs;uis locis explicabimus tres <lb/> illas celebres antiquorum Antiphontis, Bri&longs;&longs;onis, & Hippocratis quadra­<lb/> turas, quamuis fal&longs;as, <expan abbr="quarũ">quarum</expan> &longs;æpe meminit Ari&longs;t. & alij. </s> <s id="s.000688">&longs;olet autem à non­<lb/> nullis di&longs;putari, vtrum quadratura i&longs;ta problematica &longs;it po&longs;&longs;ibilis, nec ne, <lb/> cum videant eam à nemine, quamuis diu magno labore perqui&longs;itam, hacte­<lb/> nus adinuentam e&longs;&longs;e. </s> <s id="s.000689">ego quidem e&longs;&longs;e po&longs;&longs;ibilem exi&longs;timo, quis enim dubi­<lb/> tare pote&longs;t, po&longs;&longs;e exi&longs;tere quadratum æquale circulo propo&longs;ito? </s> <s id="s.000690">Quod &longs;i po­<lb/> te&longs;t fieri, quare non etiam demon&longs;trari? </s> <s id="s.000691">pr&etail;fertim cum videamus ab Archi­<lb/> mede iam inuentam e&longs;&longs;e, quatenus Theorema e&longs;t. </s> <s id="s.000692">& præterea con&longs;tet, Hip­<lb/> pocratem quadra&longs;&longs;e lunulam, vt &longs;uo loco dicemus, & Archimedem in libel­ <pb pagenum="35" xlink:href="009/01/035.jpg"/>lo de quadratura Paraboles, quadra&longs;&longs;e ip&longs;am Parabolem, quæ tamen duæ fi­<lb/> guræ, lunula &longs;cilicet, & parabola &longs;unt curuilineæ.</s> </p> <p type="main"> <s id="s.000693"><arrow.to.target n="marg2"/></s> </p> <p type="margin"> <s id="s.000694"><margin.target id="marg2"/>2</s> </p> <p type="main"> <s id="s.000695">Ex cap. de Priori <emph type="italics"/>(in &longs;cientijs demon&longs;tratiuis e&longs;t prius, & po&longs;terius ordine, <lb/> elementa enim priora &longs;unt ijs, quæ de&longs;cribuntur, nam principia prior a &longs;unt theore­<lb/> matibus ordine)<emph.end type="italics"/> verba illa, nam principia, &c. </s> <s id="s.000696">quæ non &longs;unt in antiqua tran­<lb/> &longs;latione de&longs;ump&longs;imus ex ca&longs;tigati&longs;&longs;imo græco codice editionis Francfor­<lb/> dien&longs;is, propterea quod totum hunc locum declarant; &longs;unt autem i&longs;ta, <lb/> <foreign lang="greek">ai/ gar arxai/ pro/terai tw=n qewrhma/twn th| ta/ch. </foreign> per &longs;cientias autem demon&longs;tra­<lb/> tiuas intelligendas e&longs;&longs;e hoc loco ip&longs;as Mathematicas ex eo patet, quod illis <lb/> a&longs;&longs;ignet Ari&longs;t. De&longs;criptiones; nam hoc verbo, De&longs;criptiones, &longs;eu figuratio­<lb/> nes, &longs;olet ip&longs;e Mathematicas Demon&longs;trationes innuere, quod in ip&longs;is figu­<lb/> rationes, & De&longs;criptiones adhibeantur, vt alijs locis patebit: idcirco ver­<lb/> ba illa à nobis addita ex græco, optimè <expan abbr="præced&etilde;tia">præcedentia</expan> exponunt, cum per ele­<lb/> menta intelligantur principia, qualia &longs;unt initio Euclidis, & per de&longs;criptio­<lb/> nes exponant theoremata. </s> <s id="s.000697">quod autem principia illa ordine priora &longs;int de­<lb/> mon&longs;trationibus, &longs;iue ip&longs;as præcedant, ex ip&longs;a primi Euclidis in&longs;pectione <lb/> patere pote&longs;t.</s> </p> <p type="main"> <s id="s.000698"><arrow.to.target n="marg3"/></s> </p> <p type="margin"> <s id="s.000699"><margin.target id="marg3"/>3</s> </p> <p type="main"> <s id="s.000700">Ex cap. de motu <emph type="italics"/>(Quadratum augetur Gnomone circumpo&longs;ito)<emph.end type="italics"/> Gnomon vox <lb/> græca inter alia &longs;ignificat in&longs;trumentum illud, quod Latini tum amu&longs;&longs;im, <lb/> <figure id="id.009.01.035.1.jpg" place="text" xlink:href="009/01/035/1.jpg"/><lb/> tum normam appellant, Itali verò, Squadra, ad <lb/> cuius &longs;imilitudinem Geometræ denominarunt fi­<lb/> guram quandam, &longs;eu portionem cuiu&longs;uis paralle­<lb/> logrammi, vt videre e&longs;t in definitione &longs;ecunda <lb/> 2. elem. </s> <s id="s.000701">& in præ&longs;enti figura, in qua quadratum <lb/> A B C D, circumpo&longs;ito gnomone E F G, augetur, <lb/> & fit maius quadratum H B I L.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000702">Idem etiam verum e&longs;t in quadrato arithmeti­<lb/> co, &longs;iue in numero quadrato: is enim pariter ad­<lb/> dito Gnomone augetur. </s> <s id="s.000703">i. </s> <s id="s.000704">addito numero impari. <lb/> </s> <s id="s.000705">quemadmodum infra 3. Phy&longs;. tex. <!-- REMOVE S-->26. fusè explicabimus.</s> </p> </chap> <chap> <p type="head"> <s id="s.000706"><emph type="italics"/>Ex Primo Priorum re&longs;olutoriorum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000707"><arrow.to.target n="marg4"/></s> </p> <p type="margin"> <s id="s.000708"><margin.target id="marg4"/>4</s> </p> <p type="main"> <s id="s.000709">Aliquorum opinio e&longs;t, Ari&longs;totelem ho&longs;ce libros appella&longs;&longs;e re&longs;olu­<lb/> torios, quod per illos doceat &longs;yllogi&longs;mum, ac demon&longs;trationem <lb/> iam factam in &longs;ua immediata principia re&longs;oluere, quam opinio­<lb/> nem meum non e&longs;t, nunc refellere. </s> <s id="s.000710">per&longs;ua&longs;um tamen mihi e&longs;t, rem <lb/> multo aliter &longs;e habere, veram rationem huius tituli petendam e&longs;&longs;e ex peni­<lb/> tiori Mathematicorum eruditione. </s> <s id="s.000711">Sciendum <expan abbr="itaq;">itaque</expan> id, quod tradit Pappus <lb/> Alex. initio &longs;eptimi Mathem. collect. </s> <s id="s.000712">antiqui&longs;&longs;imos videlicet Geometras, <lb/> Euclidem, Apollonium Pergæum, & Ari&longs;t&etail;um &longs;crip&longs;i&longs;&longs;e libros de re&longs;olutio­<lb/> ne, in quibus ars tradebatur, qua propo&longs;ito quouis theoremate, aut proble­<lb/> mate po&longs;&longs;ent facile ex eo, tanquam vero accepto inue&longs;tigare aliquam veri­<lb/> tatem, per quam deinde componerent illius, quod quærebatur, Demon&longs;tra­<lb/> tionem; inue&longs;tigationem illam appellabant re&longs;olutionem: compo&longs;itionem <lb/> verò nominabant di&longs;cur&longs;um <expan abbr="illũ">illum</expan>, quo ex vero illo per re&longs;olutionem inuento, <pb pagenum="36" xlink:href="009/01/036.jpg"/>o&longs;tendebant conclu&longs;ionem. </s> <s id="s.000713">Porrò Diogenes Laert. <!-- REMOVE S-->huius re&longs;olutionis in­<lb/> uentorem facit Platonem: à quo eam Leodamas Tha&longs;ius didicit, cuius be­<lb/> neficio, pluries deinde Geometricas demon&longs;trationes adinuenit. </s> <s id="s.000714">definitio <lb/> <expan abbr="vtriu&longs;q;">vtriu&longs;que</expan> e&longs;t apud Euclidem ad primam propo&longs;. 13. Elem. iuxta tran&longs;latio­<lb/> nem Zamberti, & Commandini; vbi etiam <expan abbr="quinq;">quinque</expan> priora theoremata, pri­<lb/> mò per re&longs;olutionem, deinde per compo&longs;itionem demon&longs;trantur, quæ tan­<lb/> quam per&longs;picua exempla rei propo&longs;itæ in&longs;eruire po&longs;&longs;unt. </s> <s id="s.000715">&longs;unt præterea fre­<lb/> quentes huiu&longs;modi re&longs;olutiones in operibus Archimedis, Apollonij, & Pap­<lb/> pi. </s> <s id="s.000716">extat adhuc liber Datorum Euclidis, qui geometricis re&longs;olutionibus in­<lb/> &longs;eruiebat. </s> <s id="s.000717">vtinam extarent etiam alij de re&longs;olutione, quorum auxilio non <lb/> tantopere recentiores Mathematici in inueniendis Demo&longs;trationibus la­<lb/> borarent; hanc re&longs;olutionem, &longs;ic Pappus fu&longs;ius, quam Euclides explicat; <lb/> re&longs;olutio e&longs;t via à quæ&longs;ito tanquam conce&longs;&longs;o per ea, quæ ex ip&longs;o con&longs;equun­<lb/> tur ad aliquod certum, & conce&longs;&longs;um: in re&longs;olutione enim id, quod quæritur <lb/> tanquam factum, & verum &longs;upponentes, quid ex hoc &longs;equatur, con&longs;idera­<lb/> mus, quou&longs;que incidamus in aliquod iam cognitum, vel quod &longs;it è numero <lb/> principiorum. </s> <s id="s.000718">Quod quidem erat &longs;ignum euidens, quæ&longs;itum quoque verum <lb/> e&longs;&longs;e. </s> <s id="s.000719">eadem omnino habet Proclus in comm. <!-- REMOVE S-->ad &longs;extam primi elem. </s> <s id="s.000720">Quod <lb/> porrò Ari&longs;t. ip&longs;e hanc re&longs;olutionem Mathematicam cognouerit e&longs;&longs;e medij <lb/> inqui&longs;itionem manife&longs;tum e&longs;t ex cap. 3. lib. 3. Ethyc. <!-- REMOVE S-->vbi &longs;ic ait <emph type="italics"/>(Qui enim <lb/> con&longs;ultat, quærere videtur, & re&longs;oluere prædicto modo, quemadmodum de&longs;igna­<lb/> tiones)<emph.end type="italics"/> vbi per de&longs;ignationes intelligit Geometricas demon&longs;trationes, vt <lb/> &longs;upra innuimus, & infra probabimus; cum ergo con&longs;ultatio nihil aliud &longs;it, <lb/> quam medij idonei ad finem in rebus agendis inqui&longs;itio, eamque dicat e&longs;&longs;e <lb/> &longs;imilem re&longs;olutioni Geometricæ, manife&longs;tum e&longs;t, ip&longs;am <expan abbr="quoq;">quoque</expan> re&longs;olutionem <lb/> e&longs;&longs;e medij in rebus &longs;peculatiuis idonei perue&longs;tigationem. </s> <s id="s.000721">Exi&longs;timo igitur <lb/> cum docti&longs;&longs;imis Zabarella, Burana, Toleto, & alijs, Ari&longs;totilem non &longs;olum <lb/> hanc &longs;uam logicam ad mathematicarum &longs;cientiarum typum compegi&longs;&longs;e, <lb/> verum potius imitatum e&longs;&longs;e opus illud Euclidis de re&longs;olutione, atque ex eo <lb/> non &longs;olum plurima exempla Geometrica, verum etiam titulum de&longs;ump&longs;i&longs;&longs;e, <lb/>præ&longs;ertim cum argumentum e&longs;&longs;et ferè idem vtrobique, &longs;ed Ari&longs;t. intentio <lb/> fuerit accommodare re&longs;olutionem omnibus <expan abbr="&longs;ci&etilde;tijs">&longs;cientijs</expan>; Euclidis verò, & alio­<lb/> rum Geometriæ &longs;oli. </s> <s id="s.000722">hinc patere pote&longs;t, cur hi libri re&longs;olutorij in&longs;cribantur, <lb/> quod &longs;cilicet tradunt methodum, qua valeamus quæ&longs;itum quoduis re&longs;olue­<lb/> re, ide&longs;t, ex quæ&longs;ito tanquam vero inue&longs;tare aliquam veritatem, per quam <lb/> deinde propo&longs;itæ quæ&longs;tionis rationem methodo compo&longs;itiua reddamus. </s> <s id="s.000723">Et <lb/> verò cum reliquas appellationes Problematis, Theorematis, Propo&longs;itionis, <lb/> definitionum, po&longs;tulatorum, axiomatum, & alia huiu&longs;modi ex Geometri­<lb/> cis ad omnes &longs;cientias tran&longs;tulerit, quid ni etiam re&longs;olutionem? </s> <s id="s.000724">maximè <lb/> verò, quia &longs;i horum lib. intentio e&longs;&longs;et docere iam factum &longs;yllogi&longs;mum in &longs;ua <lb/> principia re&longs;oluere, parum e&longs;&longs;et vtilis; imò nec vtilis, &longs;ed &longs;uperfluum quid. <lb/> </s> <s id="s.000725">at verò vbinam docuit hanc re&longs;olutionem? </s> <s id="s.000726">profecto nullibi. </s> <s id="s.000727">quid opus e&longs;t <lb/> iam factum &longs;yllogi&longs;mum re&longs;oluere? </s> <s id="s.000728">at verò propo&longs;itam quæ&longs;tionem re&longs;ol­<lb/> uere veterum mathematicorum more, hoc opus, hic labor e&longs;t.</s> </p> <p type="main"> <s id="s.000729">Hanc porrò re&longs;olutionem attendendam e&longs;&longs;e primò penes formam, quam <lb/> docet primis duobus analyticis; &longs;ecundò penes materiam, quam tradit duo­ <pb pagenum="37" xlink:href="009/01/037.jpg"/>bus vltimis, non prætereundum. </s> <s id="s.000730">reliquas duas logicæ partes, Topicam &longs;ci­<lb/> licet, & Elenchos, quæ &longs;yllogi&longs;mos probabilem, & apparentem docent, no­<lb/> luit appellare re&longs;olutorios, quamuis inuentionem mediorum doceant, quia <lb/> iam mos i&longs;te inoleuerat apud Philo&longs;ophos, & Mathematicos, vt illa &longs;ola <lb/> pars, quæ ex materia nece&longs;&longs;aria doceret &longs;yllogi&longs;mum demon&longs;tratiuum con­<lb/> &longs;truere, diceretur re&longs;olutio: cum Mathematici, qui primi de re&longs;olutione <lb/> &longs;crip&longs;erunt, talem materiam &longs;olum con&longs;iderent.</s> </p> <p type="main"> <s id="s.000731"><arrow.to.target n="marg5"/></s> </p> <p type="margin"> <s id="s.000732"><margin.target id="marg5"/>5</s> </p> <p type="main"> <s id="s.000733">Ex cap. 23. &longs;ecti primi lib. 1. <emph type="italics"/>(Vt quod diameter incommen&longs;urabilis eo, quod <lb/> imparia æqualia paribus fiant, &longs;i fuerit po&longs;ita commen&longs;urabilis. </s> <s id="s.000734">æqualia igitur fieri <lb/> imparia paribus ratiocinantur, diametrum vtrò incommen&longs;urabilem e&longs;&longs;e ex &longs;uppo­<lb/> &longs;itione <expan abbr="mon&longs;trãt">mon&longs;trant</expan>, quoniam fal&longs;um accidit propter contradictionem)<emph.end type="italics"/> Euclides pri­<lb/> mis duabus definitionibus 10. elem. </s> <s id="s.000735">definit, quæ nam &longs;int magnitudines <lb/> commen&longs;. </s> <s id="s.000736">& quæ incommen&longs;. </s> <s id="s.000737">&longs;ic; commen&longs;. </s> <s id="s.000738">magnitudines dicuntur, quas <lb/> <figure id="id.009.01.037.1.jpg" place="text" xlink:href="009/01/037/1.jpg"/><lb/> eadem men&longs;ura metitur, vt &longs;i fuerint duæ magnitu­<lb/> dines, A, & B, quas eadem men&longs;ura C, ide&longs;t quan­<lb/> titas C, metiatur, ide&longs;t <expan abbr="quãtitas">quantitas</expan> C, applicata quan­<lb/> titati A, & per ip&longs;am aliquoties replicata ip&longs;am ad­<lb/> æquatè ab&longs;umat, vt &longs;i linea C, quinquies &longs;uper li­<lb/> neam A, replicata eam præcisè, & perfectè omninò <lb/> adæquaret: & eadem linea C, applicata lineæ B, & &longs;uper illam ter, v.g. <!-- REMOVE S-->re­<lb/> petita ip&longs;am con&longs;umeret, diceretur <expan abbr="vtranq;">vtranque</expan> metiri, & proinde duas lineas <lb/> A, & B, e&longs;&longs;e comm. <!-- REMOVE S-->definit po&longs;tea <expan abbr="incomm&etilde;&longs;">incommen&longs;.</expan> hoc modo, incomm. autem, qua­<lb/> rum nullam contingit communem men&longs;uram reperiri; vt &longs;i duarum linea­<lb/> <figure id="id.009.01.037.2.jpg" place="text" xlink:href="009/01/037/2.jpg"/><lb/> rum, A, B, nunquam po&longs;&longs;et reperiri aliqua men&longs;u­<lb/> ra, quæ <expan abbr="vtranq;">vtranque</expan> adæquatè metiretur, v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;i linea <lb/> C, men&longs;uraret A, quater &longs;umpta, ter autem &longs;umpta <lb/> non adæquaret omnino <expan abbr="lineã">lineam</expan> B, &longs;ed deficeret, vel ex­<lb/> cederet aliquantulum, <expan abbr="atq;">atque</expan> hoc fieret in quauis alia <lb/> men&longs;ura, loco ip&longs;ius C, a&longs;&longs;umpta, &longs;iue maior, &longs;iue <lb/> minor ip&longs;a C, vt <expan abbr="vtranq;">vtranque</expan> nunquam perfectè metiretur, e&longs;&longs;ent duæ illæ lineæ <lb/> incommen&longs;. </s> <s id="s.000739">Extare porrò tales lineas, & &longs;uperficies, & corpora, <expan abbr="ea&qacute;">eaque</expan>; quam­<lb/> plurima, ac penè infinita ex 10. Elem. manife&longs;tum e&longs;t. </s> <s id="s.000740">inuentum autem hu­<lb/> ius a&longs;ymmetriæ, quod Pythagoricis veteres attribuunt, mihi &longs;emper vi&longs;um <lb/> e&longs;t omni maius admiratione, cum nulla experientia, <expan abbr="nullus&qacute;">nullusque</expan>; effectus in ip­<lb/> &longs;ius cognitionem potuerit pri&longs;cos illos Geometras inducere. </s> <s id="s.000741">Quapropter <lb/> non immeritò diuinus ille Plato lib. 7. de legib. </s> <s id="s.000742">huius a&longs;ymmetriæ ignora­<lb/> tionem, adeo dete&longs;tatus e&longs;t, vt eam non hominum, &longs;ed &longs;uum, pecorumque <lb/> ignorantiam cen&longs;uerit. </s> <s id="s.000743">inter lineas incommen&longs;. &longs;unt diameter, & latus eiu&longs;­<lb/> dem quadrati, quia nulla pote&longs;t reperiri men&longs;ura quantumuis exigua, vti <lb/> <figure id="id.009.01.037.3.jpg" place="text" xlink:href="009/01/037/3.jpg"/><lb/> e&longs;t lineola E, in præ&longs;enti quadrato, etiam&longs;i illam in <lb/> infinitum &longs;ubdiuidas, quæ <expan abbr="vtranq;">vtranque</expan> lineam, diame­<lb/> trum &longs;cilicet A C, & latus quoduis ex quatuor, v.<!-- REMOVE S-->g. <lb/> <!-- REMOVE S-->latus B C, præcisè omnino metiatur. </s> <s id="s.000744">theorema <lb/> i&longs;tud demon&longs;tratur in vltima 10. Elem. eodem me­<lb/> dio, quod ab Ari&longs;totele hic innuitur; Euclides ex <lb/>&longs;uppo&longs;itione alterius partis contradictionis ip&longs;ius <pb pagenum="38" xlink:href="009/01/038.jpg"/>propo&longs;itionis, quæ fal&longs;a e&longs;t, nimirum &longs;uppo&longs;ito prædictas lineas e&longs;&longs;e comm. <lb/> <!-- REMOVE S-->deducit ad impo&longs;&longs;ibile, &longs;iue, vt ait hic Ari&longs;t. fal&longs;um ratiocinatur, quod &longs;ci­<lb/> licet idem numerus e&longs;&longs;et par, & impar, quod Ari&longs;t. &longs;ignificat, quando ait, <lb/> imparia æqualia paribus fiunt. </s> <s id="s.000745">ex quo ab&longs;urdo deducitur fal&longs;am e&longs;&longs;e prædi­<lb/> ctam &longs;uppo&longs;itionem, quæ a&longs;truebat e&longs;&longs;e comm. <!-- REMOVE S-->& proinde altera pars con­<lb/> tradictionis, quæ e&longs;t, e&longs;&longs;e incomm. <!-- REMOVE S-->vera a&longs;truitur. </s> <s id="s.000746">ex quibus &longs;atis videtur ex­<lb/> plicari hic locus. </s> <s id="s.000747">videas igitur, quàm leuiter nonnulli no&longs;træ tempe&longs;tatis <lb/> ageometreti i&longs;tud exponant, dicentes diametrum e&longs;&longs;e incomm. <!-- REMOVE S-->co&longs;tæ, nihil <lb/> aliud &longs;ignificare, quam diametrum e&longs;&longs;e longiorem co&longs;ta, qua expo&longs;itione <lb/> nihil ineptius. </s> <s id="s.000748">Aduerte tandem figuram vulgatæ editionis e&longs;&longs;e ineptam, <lb/> cum habeat duo quadrata alterum &longs;uper diametro alterius, quorum maius <lb/> &longs;uperuacaneum e&longs;t.</s> </p> <p type="main"> <s id="s.000749"><arrow.to.target n="marg6"/></s> </p> <p type="margin"> <s id="s.000750"><margin.target id="marg6"/>6</s> </p> <p type="main"> <s id="s.000751">Et cap. 24. &longs;ecti primi libri primi <emph type="italics"/>(Sed magis efficitur manife&longs;tum in de&longs;cri­<lb/> ptionibus, vt quod æquicruris, qui ad ba&longs;im æquales &longs;int, ad centrum ductæ A B, <lb/>A C, &longs;i igitur æqualem accipiat A G, angulum ip&longs;i A B D, non omnino exi&longs;timans <lb/> æquales, qui &longs;emicirculorum, & rur&longs;us G, ip&longs;i D, non omnem a&longs;&longs;umens eum, qui &longs;e­<lb/> cti. </s> <s id="s.000752">amplius ab æqualibus existentibus totis angulis, & ablatorum æquales e&longs;&longs;e re­<lb/> liquos E, F, quod ex principio petet, ni&longs;i acceperit ab æqualibus demptis æqualia <lb/> derelinqui.)<emph.end type="italics"/> Primum &longs;cias characteres vulgatæ editionis, vna cum figura ip­<lb/> &longs;is re&longs;pondente, e&longs;&longs;e mendo&longs;os; propterea ex textu græco vtrunque corri­<lb/> gendum putaui in hunc, quem vidi&longs;ti modum. </s> <s id="s.000753">Secundo, per de&longs;criptiones <lb/> Ari&longs;t. intelligere <expan abbr="demõ&longs;trationes">demon&longs;trationes</expan> Geometricas &longs;upra diximus, quod ex hoc <lb/> loco euidenter confirmatur, vbi manife&longs;tè loco de&longs;criptionis &longs;upponit li­<lb/> nearem demon&longs;trationem. </s> <s id="s.000754">In hoc <expan abbr="itaq;">itaque</expan> exemplo vult Ari&longs;t. illud demon­<lb/> &longs;trare, quod Euclides in 5. primi o&longs;tendit, alio tamen modo, &longs;cilicet I&longs;o&longs;ce­<lb/> lium triangulorum, qui ad ba&longs;im &longs;unt anguli, inter &longs;e &longs;unt æquales. </s> <s id="s.000755">e&longs;t au­<lb/> tem figura in omnibus textibus deprauata, quam &longs;ic puto <expan abbr="rè&longs;tītuendam">rè&longs;tituendam</expan> e&longs;&longs;e <lb/> ex quodam græco codice, qui characteres hoc modo appo&longs;uerat. </s> <s id="s.000756">&longs;it I&longs;o&longs;ce­<lb/> <figure id="id.009.01.038.1.jpg" place="text" xlink:href="009/01/038/1.jpg"/><lb/> les C A B, cuius ba&longs;is C B, Dico angulos &longs;upra ba&longs;im, <lb/> in quibus literæ E F, e&longs;&longs;e inuicem æquales. </s> <s id="s.000757">facto centro <lb/> in A, de&longs;cribatur circulus A B C, tran&longs;iens per puncta <lb/> C B, iam &longs;ic. </s> <s id="s.000758">omnes anguli &longs;emicirculi &longs;unt æquales in­<lb/> ter &longs;e, ergo anguli A C G, A B D, &longs;unt æquales. </s> <s id="s.000759">Præte­<lb/> rea cùm anguli eiu&longs;dem &longs;ectionis &longs;int æquales ad inui­<lb/> cem, erunt anguli &longs;ectionis C B D G, nimirum anguli, <lb/> in quibus &longs;unt G, & D, inter &longs;e æquales: <expan abbr="cum&qacute;">cumque</expan>; hi duo <lb/> anguli &longs;ectionis &longs;int partes <expan abbr="angulorũ">angulorum</expan> &longs;emicirculi A C G, <lb/> A B D, &longs;i illi ab his auferantur, auferuntur æquales anguli ab æqualibus an­<lb/> gulis, ergo anguli, qui remanent, &longs;cilicet E, & F, erunt æquales, quod erat <lb/> demon&longs;trandum. </s> <s id="s.000760">hinc Ari&longs;t. infert manife&longs;tum e&longs;&longs;e oportere in omni &longs;yllo­<lb/> gi&longs;mo, reperiri vniuer&longs;ales, & affirmatiuas propo&longs;itiones, vt Factum e&longs;t in <lb/> præcedenti aliter e&longs;&longs;et petitio principij. </s> <s id="s.000761">Quænam vero &longs;it æqualitas, quam <lb/> Geometræ con&longs;iderant, infra cap. 1. &longs;ecti 3. explicabitur.</s> </p> <p type="main"> <s id="s.000762"><arrow.to.target n="marg7"/></s> </p> <p type="margin"> <s id="s.000763"><margin.target id="marg7"/>7</s> </p> <p type="main"> <s id="s.000764">Ex cap. 2. &longs;ecti 2. lib. 1. <emph type="italics"/>(Secundum veritatem quidem ex ijs, quæ &longs;ecundum <lb/> veritatem de&longs;cribuntur ine&longs;&longs;e, ad dialecticos autem &longs;yllogi&longs;mos ex propo&longs;itionibus <lb/> &longs;ecundum opinionem)<emph.end type="italics"/> verba illa; ex ijs, quæ <expan abbr="&longs;ecundũ">&longs;ecundum</expan> veritatem de&longs;cribuntur <pb pagenum="39" xlink:href="009/01/039.jpg"/>ine&longs;&longs;e; &longs;ic græcè, <foreign lang="greek">e/k tw=n kata\ alhqei/an diagegramme/non </foreign> vbi manife&longs;tè vtitur <lb/> verbo, De&longs;cribere, per quod &longs;uperius annotauimus apud Ari&longs;t. &longs;ignificari <lb/> Geometricas demon&longs;trationes, nam eas opponit dialecticis &longs;yllogi&longs;mis, &longs;e­<lb/> quentibus verbis, cum dixit (ad dialecticos autem &longs;yllogi&longs;mos ex propo&longs;i­<lb/> tionibus &longs;ecundum opinionem) hac adhibita con&longs;ideratione, quam inter­<lb/> pres non videtur adhibui&longs;&longs;e, &longs;en&longs;us huius loci non erit ob&longs;curus.</s> </p> <p type="main"> <s id="s.000765"><arrow.to.target n="marg8"/></s> </p> <p type="margin"> <s id="s.000766"><margin.target id="marg8"/>8</s> </p> <p type="main"> <s id="s.000767">Ex eodem loco paulo po&longs;t <emph type="italics"/>(Quare principia quidem, quæ &longs;ecundum <expan abbr="vnum-quodq;">vnum­<lb/> quodque</expan> &longs;unt experimenti est tradere: dico autem, vt a&longs;trologicam experientiam <lb/> a&longs;trologicæ &longs;cientiæ: acceptis enim apparentibus <expan abbr="&longs;uffici&etilde;ter">&longs;ufficienter</expan>, ita inuentæ &longs;unt a&longs;tro­<lb/> logicæ demonstrationes)<emph.end type="italics"/> Cum rationem tradat inueniendorum mediorum ad <lb/>quodlibet problema demon&longs;trandum; nunc docet, non omnia in &longs;cientijs <lb/>po&longs;&longs;e probari, aut demoν&longs;trari: principia enim &longs;cientiarum <expan abbr="nõ">non</expan> demon&longs;tran­<lb/> tur, &longs;ed &longs;ola experientia manife&longs;ta &longs;unt; vt patet in A&longs;tronomia, quæ ab ex­<lb/> perientia &longs;ua &longs;olet &longs;tabilire principia: principijs autem <expan abbr="experim&etilde;to">experimento</expan> con&longs;ti­<lb/> tutis ex ip&longs;is reliqua problemata <expan abbr="demon&longs;trãtur">demon&longs;trantur</expan>. </s> <s id="s.000768">duo autem &longs;unt apud a&longs;tro­<lb/> nomos genera experimenti, primum dicitur Phænomena, ide&longs;t, <expan abbr="appar&etilde;tiæ">apparentiæ</expan>; <lb/> & &longs;unt ea, quæ vulgo omnibus patent, vt Solem oriri, & occidere; a&longs;tra fer­<lb/> ri circulariter, diem augeri modo, modo minui: & his &longs;imilia. </s> <s id="s.000769">alterum ge­<lb/> nus dicitur ob&longs;eruationes, quæ tantummodo a&longs;tronomiæ peritis per ob&longs;er­<lb/> uationem innote&longs;cunt, vt Solem inæqualiter ferri proprio motu per Zodia­<lb/> cum; aliquando maiorem, aliquando minorem videri; plures dies immo­<lb/> rari citra æquatiorem in parte Zodiaci boreali, quam in altera vltra æqua­<lb/> torem au&longs;trali. </s> <s id="s.000770">dies naturales e&longs;&longs;e inuicem inæquales, &c. </s> <s id="s.000771">ex quibus deinde <lb/> ponunt eccentricos, & augem, ad &longs;aluandas tum apparentias, tum ob&longs;erua­<lb/> tiones; & hac ratione a&longs;trologica &longs;cientia paulatim reperta e&longs;t, ac in dies <lb/> reperitur.</s> </p> <p type="main"> <s id="s.000772"><arrow.to.target n="marg9"/></s> </p> <p type="margin"> <s id="s.000773"><margin.target id="marg9"/>9</s> </p> <p type="main"> <s id="s.000774">Ex cap. 3. &longs;ecti 2. lib. 1. <emph type="italics"/>(Vt an ne diameter incomm.)<emph.end type="italics"/> loquitur de a&longs;ymme­<lb/> tria diametri, & co&longs;tæ eiu&longs;dem quadrati, de qua fusè egimus &longs;uperius in <lb/> cap. 23. &longs;ecti 1. huius libri; quæ &longs;i repetantur, optimè hunc <expan abbr="locũ">locum</expan> declarant.</s> </p> <p type="main"> <s id="s.000775"><arrow.to.target n="marg10"/></s> </p> <p type="margin"> <s id="s.000776"><margin.target id="marg10"/>10</s> </p> <p type="main"> <s id="s.000777">Ex cap. 1. &longs;ecti 3. lib. 1. <emph type="italics"/>(Sit A, duo recti, in quo B, triangulus, in quo C, <lb/> æquicrus, ip&longs;i <expan abbr="itaq;">itaque</expan> C, ine&longs;t A. per B; ip&longs;i vero B, non amplius per aliud, per &longs;e <lb/> namque triangulus habet duos rectos)<emph.end type="italics"/> nullum aliud exemplum tam frequenter <lb/> v&longs;urpat Philo&longs;ophus, quam i&longs;tud ex Mathematicis de&longs;umptum de triangu­<lb/> lo, &longs;cilicet, omnis triangulus habet tres angulos æquales duobus rectis an­<lb/> gulis, cuius Demon&longs;tratio e&longs;t in 32. primi Elem. quod, vt probè intelliga­<lb/> tur, explicandum e&longs;t penes quid attendenda &longs;it æqualitas inter angulum, & <lb/> angulum, quod facile a&longs;&longs;equemur, &longs;i meminerimus angulum e&longs;&longs;e inclinatio­<lb/> nem illam, quam duæ lineæ non in directum po&longs;itæ faciunt: &longs;iue etiam (vt <lb/> melius percipiamus) angulum e&longs;&longs;e acumen illud, &longs;iue mucronem <expan abbr="illũ">illum</expan>, quem <lb/> duæ lineæ non in directum con&longs;titutæ faciunt, vt duarum linearum A B, A C, <lb/> <figure id="id.009.01.039.1.jpg" place="text" xlink:href="009/01/039/1.jpg"/><lb/> inclinatio in puncto A, &longs;iue acumen illud, &longs;iue mucro, <lb/> e&longs;t ratio anguli. </s> <s id="s.000778">&longs;olum igitur duo anguli erunt æqua­<lb/> les, <expan abbr="quãdo">quando</expan> vnius acumen æquale erit acumini alterius; <lb/> etiam &longs;i lineæ con&longs;tituentes vnum angulum &longs;int lon­<lb/> giores lineis alterum angulum con&longs;tituentibus, quia <lb/>quantitas anguli non attenditur penes longitudinem <pb pagenum="40" xlink:href="009/01/040.jpg"/><expan abbr="linearũ">linearum</expan>, &longs;ed penes inclinationem, & mucronem, quem faciunt: vnde etiam&longs;i <lb/> duæ lineæ prædictæ A B, A C, productæ, &longs;iue etiam decurtatæ fuerint, dum­<lb/> modo &longs;itus, &longs;iue po&longs;itio ip&longs;arum, quam ad inuicem habent, non varietur, <lb/> erit &longs;emper eadem quantitas anguli A. <!-- KEEP S--></s> <s id="s.000779">Aduertendum præterea rationem <lb/> anguli non po&longs;&longs;e &longs;aluari in &longs;olo puncto A, in quo lineæ concurrunt, &longs;ed ne­<lb/> ce&longs;&longs;ariam e&longs;&longs;e aliquam quantitatem, quamuis exiguam, linearum A B, A C. <lb/> <!-- KEEP S--></s> <s id="s.000780">Notandum etiam, quod in nominatione angulorum, quæ fit per tres lite­<lb/> ras, &longs;emper literam illam e&longs;&longs;e medio loco proferendam, quæ ad acumen ip­<lb/> &longs;um po&longs;ita e&longs;t, vt in &longs;uperiori, litera A, debet &longs;emper media proferri, dicen­<lb/> do angulum B A C, &longs;iue C A B, <expan abbr="nũquam">nunquam</expan> tamen licet dicere angulum A C B, <lb/> vel C B A. <!-- KEEP S--></s> <s id="s.000781">Porrò quemadmodum vnus angulus vni angulo æqualis e&longs;t, ita <lb/> <expan abbr="aliquãdo">aliquando</expan> duo anguli &longs;unt vni angulo æquales, vt patet, &longs;i vnus angulus, v.g. <lb/> <!-- REMOVE S-->angulus B A C, diuidatur in duos angulos à linea A D. tunc enim duo angu­<lb/> <figure id="id.009.01.040.1.jpg" place="text" xlink:href="009/01/040/1.jpg"/><lb/> li partiales B A D, D A C, erunt æquales totali angulo <lb/> B A C, cum partes omnes &longs;imul &longs;umptæ &longs;int &longs;uo toti æqua­<lb/> les. </s> <s id="s.000782">pariter tres anguli po&longs;&longs;unt æquari & vni, & duobus <lb/> alijs angulis, quando nimirum a cumina, &longs;iue mucrones il­<lb/> li &longs;imul ad vnum punctum con&longs;tituti <expan abbr="adæquar&etilde;tur">adæquarentur</expan> mucro­<lb/> ni illi, quem con&longs;tituerent alij duo anguli, quibus illi tres <lb/> &longs;unt pares, v.g. <!-- REMOVE S-->&longs;int tres anguli trianguli A B C, <expan abbr="&longs;int&qacute;">&longs;intque</expan>; alij duo anguli recti, <lb/> <figure id="id.009.01.040.2.jpg" place="text" xlink:href="009/01/040/2.jpg"/><lb/> quos linea perpendicularis D E, facit cum li­<lb/> nea F G; &longs;it <expan abbr="inquã">inquam</expan> anguli recti D E F, D E G, <lb/> tunc tres anguli illius <expan abbr="triãguli">trianguli</expan> <expan abbr="dic&etilde;tur">dicentur</expan> æqua­<lb/> les duobus hi&longs;ce rectis, &longs;i tres illi mucrones <lb/> trianguli &longs;imul &longs;umpti, & vniti ad punctum <lb/> E, ad quod duo <expan abbr="quoq;">quoque</expan> mucrones angulorum <lb/> <figure id="id.009.01.040.3.jpg" place="text" xlink:href="009/01/040/3.jpg"/><lb/> rectorum coeunt, congruent omnino duobus <lb/> prædictis angulis rectis, &longs;iue duobus illis mu­<lb/> cronibus angulorum rectorum, &longs;iue con&longs;ti­<lb/> tuent lineam rectam F E G, &longs;icuti faciunt <lb/> etiam duo illi anguli recti; &longs;iue etiam dica­<lb/> mus, occupabunt idem &longs;patium omninò, & <lb/> præcisè, quod occupant duo recti: v.g. <!-- REMOVE S-->&longs;i mucro B, ibi poneretur, faceret <lb/> angulum F E H, & &longs;i ibi iuxta ip&longs;um apponeretur mucro A, faceret angulum <lb/> H E I. quem &longs;i deinceps &longs;ub&longs;equetur reliquus angulus C, con&longs;titueret <expan abbr="reli-quũ">reli­<lb/> quum</expan> angulum I E G. iam, vt vides, illi tres anguli ad E, tran&longs;lati, &longs;unt æqua­<lb/> les duobus rectis ad E, pariter con&longs;titutis, cum illi tres fiant partes duorum <lb/>rectorúm, vel quia occupant idem &longs;patium, vel eandem lineam rectam F E G, <lb/> con&longs;tituant. </s> <s id="s.000783">habet igitur omne triangulum &longs;iue &etail;quilaterum, &longs;iue &longs;calenum, <lb/> &longs;iue I&longs;o&longs;celes mirabilem hanc proprietatem, vt tres anguli, cuiu&longs;uis trian­<lb/> guli &longs;int æquales duobus rectis angulis. </s> <s id="s.000784">Quam demon&longs;trationem primi om­<lb/> nium Pythagorici perfecerunt, vt refert Proclus ad 32. primi Elem. Eucli­<lb/> des deinde ibidem aliter, quam Pythagorici idem demon&longs;trauit. </s> <s id="s.000785">Quod &longs;i <lb/> quis huius rei <expan abbr="experi&etilde;tiam">experientiam</expan> aliquam velit; etiam&longs;i non exactam (cum æqua­<lb/> litas mathematica non cadat &longs;ub &longs;en&longs;um, &longs;ed &longs;ola intelligentia percipiatur, <lb/>quippe quæ in materia intelligibili, non autem &longs;en&longs;ibili ver&longs;atur, & cuius <pb pagenum="41" xlink:href="009/01/041.jpg"/>æqualitas nullum di&longs;crimen, quantumuis minimum admittat, quod &longs;en&longs;ui <lb/> vitare ob &longs;ui imperfectionem non licet: vnde inter eæ, quæ mathematicè <lb/> &longs;unt æqualia, nullus intellectus aliquam valeat reperire differentiam) &longs;umat <lb/> inquam triangulum quodpiam materiale, vt ex charta, quantum fieri po­<lb/>te&longs;t perfectum, deinde ducat lineam vnam perpendicularem &longs;uper aliam, <lb/> quæ &longs;cilicet faciat, cum illa duos angulos rectos. </s> <s id="s.000786">po&longs;tea ab&longs;cindat tres an­<lb/> gulos trianguli materialis, <expan abbr="eos&qacute;">eosque</expan>; ita &longs;imul componat, vt mucrones illorum <lb/> &longs;int vniti, & contigui ad punctum lineæ perpendicularis cum altera, vti e&longs;t <lb/>in &longs;uperiori figura punctum E; & illicò apparebit tres illos angulos mate­<lb/> riales obtegere adæquatè totum illud &longs;patium duorum rectorum, quos per­<lb/> pendicularis con&longs;tituit. </s> <s id="s.000787">Hoc autem experiri poteris in diuer&longs;is admodum <lb/> triangulis Scalenis, Rectangulis, I&longs;o&longs;celibus, Aequilateris, &c. </s> <s id="s.000788">non &longs;ine de­<lb/> lectatione, atque hic e&longs;t &longs;en&longs;us illorum verborum, omnis triangulus habet <lb/> tres &etail;quales duobus rectis. </s> <s id="s.000789">Ab&longs;tineo à demon&longs;trationibus geometricis, quo­<lb/> niam ij, qui Mathematicis &longs;unt imbuti, no&longs;tra hac opera parum indigent. <lb/> </s> <s id="s.000790">&longs;i quis tamen volet, con&longs;ulat 32. primi Elem. <!-- KEEP S--></s> <s id="s.000791">Ex hac igitur declaratione <lb/> licet cogno&longs;cere nonnullos ageometretos locum hunc, & &longs;imiles &longs;ub&longs;equen­<lb/> tes non &longs;atis intelligere, dicentes, nihil aliud verba illa Ari&longs;t. velle &longs;ignifi­<lb/> care, quàm omnem triangulum habere tres angulos, quod inquiunt, noti&longs;­<lb/> &longs;imum e&longs;t. </s> <s id="s.000792">Sed &longs;i incidant in &longs;equentia; æquales duobus rectis, tunc, cum <lb/> hæc non intelligant, ab&longs;tinent etiam à priorum declaratione, quibus præ­<lb/> mi&longs;&longs;is facile e&longs;t Ari&longs;t. textum percipere. </s> <s id="s.000793">&longs;it A, duo recti, ide&longs;t, duo anguli <lb/> recti &longs;int pa&longs;&longs;io demon&longs;tranda, in quo B, triangulus, in quo C, æquicrus. </s> <s id="s.000794">ip&longs;i <lb/> itaque C, ide&longs;t triangulo æquicru&longs;i, ine&longs;t A, &longs;cilicet duo recti, hoc e&longs;t, ine&longs;t <lb/> æquicru&longs;i hæc, pa&longs;&longs;io habere tres angulos æquales duobus rectis per B, ide&longs;t <lb/> per <expan abbr="triangulũ">triangulum</expan> vniuer&longs;ale, quia hæc proprietas e&longs;t trianguli propria, & <expan abbr="cõpe-tit">compe­<lb/> tit</expan> æquicru&longs;i, non vt æquicrus e&longs;t, &longs;ed, vt triangulum e&longs;t; quare B, non erit <lb/> medium ip&longs;ius A, quia prædicta pa&longs;&longs;io. </s> <s id="s.000795">A, non competit triangulo B, per <lb/> aliud, &longs;ed per &longs;e, de eo enim primo, & per &longs;e demon&longs;tratur in 32. primi Elem. <lb/> optimè Aegydius, & Niphus in hunc locum.</s> </p> <p type="main"> <s id="s.000796"><arrow.to.target n="marg11"/></s> </p> <p type="margin"> <s id="s.000797"><margin.target id="marg11"/>11</s> </p> <p type="main"> <s id="s.000798">Ex eodem cap. <emph type="italics"/>(Non oportet autem exi&longs;timare penes id, quod exponimus, ali­<lb/> quid accidere ab&longs;urdum, nihil enim vtimur eo, quod e&longs;t hoc aliquid e&longs;&longs;e. </s> <s id="s.000799">&longs;ed &longs;icut <lb/> Geometra pedalem, & rectam hanc, & &longs;ine latitudine dicit, quæ non &longs;unt. </s> <s id="s.000800">verum <lb/> non &longs;ic vtitur, tanquam ex his ratiocinans)<emph.end type="italics"/> Quoniam Ari&longs;t. in exemplis affert <lb/> pro rebus characteres, A, B, C, po&longs;&longs;et qui&longs;piam &longs;u&longs;picari aliquod propterea <lb/> ab&longs;urdum accidere: cui &longs;u&longs;picioni Ari&longs;t. re&longs;pondet, dicens, nihil inde ab&longs;ur­<lb/> di accidere po&longs;&longs;e, quoniam ip&longs;e vtitur hi&longs;ce literis, <expan abbr="nõ">non</expan> quatenus literæ &longs;unt, <lb/> &longs;ed quatenus rerum vicem, pro quibus exponuntur, gerunt: quemadmodum <lb/> etiam Geometræ faciunt, qui lineam, quæ pedalis non e&longs;t, pedalem, & quæ <lb/> non e&longs;t recta, rectam; & quæ lata e&longs;t, non latam, &longs;upponunt, & tamen nihil <lb/> inde ab&longs;urdi contingit. </s> <s id="s.000801">Ex quibus intelligimus per lineas illas &longs;en&longs;ibiles, & <lb/> phy&longs;icas, quas Geometræ in &longs;uis figuris ducunt, intelligendas e&longs;&longs;e lineas ve­<lb/> rè Mathematicas omni latitudine carentes; vtitur enim inquit Ari&longs;t. <!-- REMOVE S-->Geo­<lb/> metra lineis phy&longs;icis, non tanquam phy&longs;icis, nec de eis tanquam de phy&longs;icis <lb/> lineis ratiocinatur, &longs;ed ijs vtitur tanquam verè mathematicis. </s> <s id="s.000802">idem dicen­<lb/>dum e&longs;t de &longs;uperficiebus, necnon de corporibus, quæ ijdem Geometræ de­<lb/> &longs;cribunt, vt per ea, de verè mathematicis di&longs;currant.</s> </p> </chap> <pb pagenum="42" xlink:href="009/01/042.jpg"/> <chap> <p type="head"> <s id="s.000803"><emph type="italics"/>Ex Libro &longs;ecundo Priorum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000804"><arrow.to.target n="marg12"/></s> </p> <p type="margin"> <s id="s.000805"><margin.target id="marg12"/>12</s> </p> <p type="main"> <s id="s.000806">Ex cap. 21. <emph type="italics"/>(Quod faciunt, qui coalternas putant &longs;cribere, latent enim ip&longs;e<lb/>&longs;e ip&longs;os talia accipientes, quæ non est po&longs;&longs;ibile monstrare uon exi&longs;tentibus <lb/> coalternis)<emph.end type="italics"/> Vult Ari&longs;t. exemplo mathematico explicare, quid &longs;it pe­<lb/> titio principij. </s> <s id="s.000807">vbi per coalternas intelligit parallelas lineas, vox <lb/> enim græca <foreign lang="greek">parallhlos,</foreign> idem &longs;ignificat, ac mutuus, & coalternus. </s> <s id="s.000808">quoad <lb/> exempli explicationem vtor figura textibus apponi &longs;olita, quæ e&longs;t præ&longs;ens. <lb/> <figure id="id.009.01.042.1.jpg" place="text" xlink:href="009/01/042/1.jpg"/><lb/> probat Euclides in 28. primi Elem. quod &longs;i <lb/> linea recta quædam, vti E F, cadens &longs;uper <lb/> duas rectas, vti &longs;unt A B, C D, fecerit angu­<lb/> los alternos &etail;quales, angulos <expan abbr="nimirũ">nimirum</expan> A G H, <lb/> G H D, ij enim dicuntur alterni; &longs;iue alios <lb/> duos, nimirum B G H, G H C, hi enim &longs;unt <lb/> <expan abbr="quoq;">quoque</expan> alterni; probat inquam has duas li­<lb/> neas A B, C D, e&longs;&longs;e inuicem parallelas. </s> <s id="s.000809">Iam &longs;i quis vellet probare, &longs;e duas <lb/> parallelas duxi&longs;&longs;e, hac ratione, quia &longs;cilicet faciunt prædictos angulos al­<lb/> ternos æquales; & probaret facere angulos alternos æquales, quia &longs;unt pa­<lb/> rallelæ, hic peteret principium, ide&longs;t, illud, quod principio <expan abbr="probandũ">probandum</expan> erat, <lb/> afferret pro ratione, & cau&longs;a, quod dicitur peti principium, quia tunc pe­<lb/> timus, vt concedatur nobis, id, quod principio, & primo omnium demon­<lb/> &longs;trare propo&longs;ueramus. </s> <s id="s.000810">aduerte, quod characteres, qui &longs;unt in &longs;equentibus <lb/> verbis huius loci, non appellant characteres figuræ appo&longs;itæ; in quo quidam <lb/> decepti, nullo pacto poterant locum hunc intelligere.</s> </p> <p type="main"> <s id="s.000811"><arrow.to.target n="marg13"/></s> </p> <p type="margin"> <s id="s.000812"><margin.target id="marg13"/>13</s> </p> <p type="main"> <s id="s.000813">Ex cap. 22. lib. 2. Priorum <emph type="italics"/>(Vt &longs;i volens mon&longs;trare, quod diameter e&longs;t incom­<lb/> men&longs;. argueret Zenonis rationem, quod non e&longs;t moueri)<emph.end type="italics"/> &longs;uperius &longs;ecto 3. lib. 1. <lb/> fusè explicauimus hanc a&longs;ymmetriam, quam &longs;i quis vellet demon&longs;trare ea­<lb/> dem illa ratione, qua Zeno motum impugnabat, quia &longs;cilicet <expan abbr="m&etilde;&longs;ura">men&longs;ura</expan> com­<lb/>munis, quæ debet vtramque, quantitatem men&longs;urare, debet in men&longs;urando <lb/>infinitas partes pertran&longs;ire, nimirum medietates medietatum in infinitum, <lb/> e&longs;t autem impo&longs;&longs;ibile pertran&longs;ire infinitas huiu&longs;modi partes, & propterea <lb/> non poterit metiri, <expan abbr="neq;">neque</expan> vnam, <expan abbr="neq;">neque</expan> alteram ex <expan abbr="quãtitatibus">quantitatibus</expan>, quæ putaban­<lb/> tur commen&longs;urabiles, afferret hic, inquit Ari&longs;t. non cau&longs;am pro cau&longs;a.</s> </p> <p type="main"> <s id="s.000814"><arrow.to.target n="marg14"/></s> </p> <p type="margin"> <s id="s.000815"><margin.target id="marg14"/>14</s> </p> <p type="main"> <s id="s.000816">Ex eodem cap. <emph type="italics"/>(Quoniam idem <expan abbr="vtiq;">vtique</expan> fal&longs;um per plures petitiones accidere <lb/> nihil forta&longs;&longs;e inconueniens, veluti coalternas coincidere; & &longs;i maior e&longs;t extrin&longs;ecus <lb/> angulus intrin&longs;eco; & &longs;i triangulus habet plures rectos duobus)<emph.end type="italics"/> per plures po&longs;i­<lb/> tiones &longs;ubaudi fal&longs;as. </s> <s id="s.000817">per coalternas intellige lineas æquidi&longs;tantes, &longs;eu pa­<lb/> rallelas, vt in &longs;uperiori cap. monuimus. </s> <s id="s.000818">Cæterum Euclides propo&longs;. </s> <s id="s.000819">28. pri­<lb/> mi Elem. o&longs;tendit, quod &longs;i fuerint duæ parallelæ veluti in præcedenti figura, <lb/> A B, C D, &longs;uper quas alia recta E F, incidat, nece&longs;&longs;ario faciet angulum ex­<lb/> trin&longs;ecum E G B, v. <!-- REMOVE S-->g. <!-- REMOVE S-->æqualem interno, & oppo&longs;ito, & ad ea&longs;dem partes, <lb/> angulo videlicet G H D. &longs;i ergo inquit Ari&longs;t &longs;upponamus i&longs;tud fal&longs;um, an­<lb/> gulum &longs;cilicet E G B, externum e&longs;&longs;e maiorem angulo interno G H D, &longs;equi­<lb/> tur etiam fal&longs;um, videlicet lineas <expan abbr="æquidi&longs;tãtes">æquidi&longs;tantes</expan> A B, C D, concurrere. </s> <s id="s.000820">& pro­<lb/>batur con&longs;equentia hoc modo, quia &longs;i angulus E G B, maior e&longs;t angulo <pb pagenum="43" xlink:href="009/01/043.jpg"/>G H D, appo&longs;ito <expan abbr="vtiq;">vtique</expan> communi angulo B G H, erant primum, duo anguli <lb/> E G B, B G H, maiores, quam &longs;int duo B G H, G H D, quia &longs;i inæqualibus <lb/> æqualia addantur, tota erunt inæqualia, vt prius per 4, axioma: hoc loco <lb/> communis angulus additur &longs;emel maiori angulo, & &longs;emel minori; & ideo <lb/> totum illud, in quo e&longs;t maior angulus, adhuc maius e&longs;t altero toto, in quo <lb/> minor angulus continetur. </s> <s id="s.000821">at illi duo E G B, B G H, per 13. primi, &longs;unt <lb/> æquales duobus rectis angulis, ergo duo <expan abbr="quoq;">quoque</expan> recti erunt maiores duobus <lb/> internis B G H, D H G, &longs;iue hi duo interni erunt minores duobus rectis. <lb/> </s> <s id="s.000822">At quando hi duo interni &longs;unt minores duobus rectis, tunc lineæ A B, C D, <lb/> &longs;unt concurrentes, &longs;i protrahantur ad partes prædictorum <expan abbr="angulorũ">angulorum</expan>. </s> <s id="s.000823">quod <lb/> P. <!-- REMOVE S-->Clauius luculenti, & hactenus de&longs;iderata demon&longs;tratione ad 28. primi <lb/> demon&longs;trauit. </s> <s id="s.000824"><expan abbr="Atq;">Atque</expan> hoc pacto ex prima fal&longs;a &longs;uppo&longs;itione, nimirum angu­<lb/> lum illum externum e&longs;&longs;e maiorem interno, & oppo&longs;ito; &longs;equitur fal&longs;um, ni­<lb/> mirum lineas parallelas concurrere.</s> </p> <p type="main"> <s id="s.000825">Præterea &longs;i &longs;upponamus aliam fal&longs;itatem, &longs;cilicet triangulum habere tres <lb/> angulos maiores duobus rectis, &longs;equetur eadem iterum fal&longs;itas, &longs;cilicet pa­<lb/> <figure id="id.009.01.043.1.jpg" place="text" xlink:href="009/01/043/1.jpg"/><lb/> rallelas coincidere, & probatur &longs;ic; &longs;int enim <lb/> <expan abbr="triãguli">trianguli</expan> A B C, tres anguli maiores, quam duo <lb/> recti anguli, & per punctum C, ducta &longs;it recta <lb/> C D, parallela lateri B A. quia ergo angulus <lb/> A, æqualis e&longs;t angulo &longs;ibi alterno A C D, per <lb/> 29. primi, & quia totalis angulus B C D, æqua­<lb/> lis e&longs;t duobus angulis B C A, A C D, quos tanquam &longs;uas partes adæquatas <lb/> continet, quorum alter, &longs;cilicet A C D, e&longs;t æqualis angulo A. erit idem to­<lb/> talis angulus B C D, æqualis duobus angulis A, & A C B, trianguli propo&longs;i­<lb/> ti. </s> <s id="s.000826">ergo totus i&longs;te angulus B C D, &longs;imul cum reliquo <expan abbr="triãguli">trianguli</expan> angulo B. con­<lb/> &longs;tabit compo&longs;itionem ex tribus angulis trianguli dati: & con&longs;equenter ta­<lb/> lis compo&longs;itio trium angulorum erit maior, quam &longs;int duo anguli recti. </s> <s id="s.000827">ex <lb/> quo &longs;equitur duas rectas B A, C D, &longs;uper quas cadit linea B C, faciens duos <lb/> angulos internos, & ad ea&longs;dem partes, &longs;cilicet A B D, maiores duobus re­<lb/> ctis non e&longs;&longs;e parallelas, &longs;ed concurrentes (vt patet ex nuper citata demon­<lb/> &longs;tratione P. Clauij) quod fal&longs;um e&longs;t. </s> <s id="s.000828">& &longs;equitur ex &longs;ecunda fal&longs;a &longs;uppo&longs;itio­<lb/> ne. </s> <s id="s.000829">ex quibus textus Ari&longs;t. videtur &longs;atis clarus.</s> </p> <p type="main"> <s id="s.000830"><arrow.to.target n="marg15"/></s> </p> <p type="margin"> <s id="s.000831"><margin.target id="marg15"/>15</s> </p> <p type="main"> <s id="s.000832">Ex cap. 26. <emph type="italics"/>(Vt &longs;i A, duo recti, in quo autem P., triangulus, in quo vero C, <lb/>&longs;en&longs;ibilis triangulus, &longs;u&longs;picari <expan abbr="namq;">namque</expan> po&longs;&longs;et aliquis non e&longs;&longs;e C, &longs;ciens, quod omnis <lb/> triangulus habet duos rectos: quare &longs;imul no&longs;cet, & ignorabit idem. </s> <s id="s.000833">no&longs;ce enim <lb/> omnem triangulum, quod duobus rectis, non &longs;implex e&longs;t: &longs;ed hoc quidem eo, quod <lb/> vniuer&longs;alem habet &longs;cientiam: illud autem eo, quod &longs;ingularem. </s> <s id="s.000834">&longs;ic igitur, vt vni­<lb/> uer&longs;ale nouit C, quod duo recti; vt autem &longs;ingulare non nouit, quare non habebit <lb/> contrarias)<emph.end type="italics"/> vide, quæ diximus lib. 1. &longs;ecto 3. cap. 1. ex quibus quidquid Ma­<lb/> thematicum e&longs;t hic, clarum redditur. </s> <s id="s.000835">reliqua verò, quæ ad Logicum &longs;pe­<lb/> ctant, huius loci commentatores pro&longs;equuntur.</s> </p> <p type="main"> <s id="s.000836">In cap. 31. de Abductione.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000837"><arrow.to.target n="marg16"/></s> </p> <p type="margin"> <s id="s.000838"><margin.target id="marg16"/>16</s> </p> <p type="main"> <s id="s.000839">Notandum hic cum eruditi&longs;&longs;imo Burana, Abductionem hanc, de qua in hoc <lb/> cap. agitur e&longs;&longs;e vocem mathematicam, <expan abbr="cam&qacute;">eamque</expan>; Ari&longs;t. quemadmodum multa <lb/> alia à Mathematicis mutuatum ad omnes alias &longs;cientias tran&longs;tuli&longs;&longs;e. </s> <s id="s.000840">e&longs;&longs;e <pb pagenum="44" xlink:href="009/01/044.jpg"/>autem terminum mathematicum colligitur manife&longs;tè ex Proelo, qui lib. 3. <lb/> in comm. <!-- REMOVE S-->Elem. Euclidis ad primam propo&longs;itionem primi Elementi, pag. <lb/> </s> <s id="s.000841">121. &longs;ic ait, Abductio verò e&longs;t tran&longs;itus à propo&longs;ito problemate, vel theo­<lb/> remate ad aliud, quo cognito, aut comparato Propo&longs;itum quoque per&longs;pi­<lb/> cuum e&longs;t. </s> <s id="s.000842">Exempli cau&longs;a, cum cubi duplicatio propo&longs;ita e&longs;&longs;et ad inue&longs;ti­<lb/> gandam quæ&longs;tionem in aliud tran&longs;tulere, quod illud propo&longs;itum con&longs;equi­<lb/> tur, ad duarum nempe mediarum linearum inuentionem tran&longs;lata e&longs;t quæ­<lb/> &longs;tio, & &longs;ic quærebant deinceps, quonam modo datis duabus rectis lineis, <lb/> duæ mediæ proportionales reperirentur. </s> <s id="s.000843">Primum autem dicunt Hippocra­<lb/> tem Chium pr&etail;dictorum titulorum, Abductionem feci&longs;&longs;e, qui & lunulæ qua­<lb/> dratum fecit æquale, & alia multa in Geometria inuenit. </s> <s id="s.000844">hæc Proclus. <!-- KEEP S--></s> <s id="s.000845">vbi <lb/> non di&longs;&longs;imulandum nos re&longs;titui&longs;&longs;e verbum, Abductionem, cuius loco inter­<lb/> pres Procli vtitur inductionis voce, &longs;equuti & rationem, & græcum textum, <lb/> qui no&longs;tram hanc expo&longs;itionem euidenter po&longs;tulat, <foreign lang="greek">apagwgh\</foreign> enim valet & <lb/> inductionem, & abductionem, &longs;ed abductio omnino rei propo&longs;itæ quadrat.</s> </p> <p type="main"> <s id="s.000846">Notandum præterea Hippocratem Chium fui&longs;&longs;e auctorem huius Abdu­<lb/> ctionis, <expan abbr="eum&qacute;">eumque</expan>; feci&longs;&longs;e Abductionem à propo&longs;ito Problemate quadrandi cir­<lb/> culi, vnde manife&longs;tè apparet, Ari&longs;totelem ex Mathematicis hunc terminum <lb/> mutuò accepi&longs;&longs;e, quandoquidem ex ij&longs;dem accepit etiam exemplum Abdu­<lb/>ctionis Mathematicæ, imò etiam exemplum ip&longs;ius authoris Abductionis <lb/> Mathematicæ. </s> <s id="s.000847">&longs;yllogi&longs;mus autem Hippocratis, quo o&longs;tendebat circuli qua­<lb/> draturam reducebatur ad has propo&longs;itiones, omnis rectilinea figura qua­<lb/> dratur, &longs;ed circulus reducitur ad figuram rectilineam, ergo circulus qua­<lb/> dratur. </s> <s id="s.000848">in probatione minoris facta e&longs;t Abductio, cum enim ip&longs;e vellet re­<lb/> ctificare circumferentiam circuli per lunulas, nec valeret, alij per lineam, <lb/> quandam quadratricem, vt e&longs;t apud Pappum <expan abbr="Alexandrinũ">Alexandrinum</expan>, & apud P. <!-- REMOVE S-->Cla­<lb/> uium in fine &longs;exti Elem. & alij aliter fru&longs;tra conarentur, facta e&longs;t Abductio <lb/>circa probationem minoris, in qua adhuc Mathematici ver&longs;antur; quæ pro­<lb/> batio, &longs;i tandem inueniri po&longs;&longs;et, mox &longs;equeretur principale <expan abbr="propo&longs;itũ">propo&longs;itum</expan> pro­<lb/> blema, nimirum circulus quadraretur; vide quæ &longs;crip&longs;imus in cap. 3. Præ­<lb/> dicam. <!-- REMOVE S-->de hac re, quia plurimum hunc conferunt. </s> <s id="s.000849">&longs;ed iam ad textus expli­<lb/> cationem veniamus.</s> </p> <p type="main"> <s id="s.000850"><arrow.to.target n="marg17"/></s> </p> <p type="margin"> <s id="s.000851"><margin.target id="marg17"/>17</s> </p> <p type="main"> <s id="s.000852">Ex eodem cap. <emph type="italics"/>(Veluti &longs;i K, e&longs;&longs;et quadrari, in quo autem E, rectilineum, in <lb/> quo verò F, circulus, &longs;i ip&longs;ius E F, vnum &longs;olum e&longs;&longs;et medium, hoc, quod e&longs;t, cum <lb/> lunulis æqualem fieri circulum rectilineo, e&longs;&longs;e po&longs;&longs;et propè ip&longs;um cogno&longs;cere, cum <lb/> vero B C, neque credibilius &longs;it, quam A C, <expan abbr="neq;">neque</expan> pauca media, non dico Abductio­<lb/> nem: <expan abbr="neq;">neque</expan> quando B C, &longs;it immediatum, tale enim &longs;cientia est)<emph.end type="italics"/> Aduerte figuram <lb/> vulgatæ editionis e&longs;&longs;e mendo&longs;am, & propterea re&longs;tituendam e&longs;&longs;e, qualis pri­<lb/> ma &longs;equens ex Simplicio ad tex. <!-- REMOVE S-->11. primi Phy&longs;ic. <!-- REMOVE S-->hoc modo Hippocrates <lb/> Chius conabatur circulum ad quadrum redigere; fit circulus A B G C, qua­<lb/> drandus; con&longs;tituatur <expan abbr="itaq;">itaque</expan> &longs;uper diametro eius B C, quadratum B C D F, <lb/> cuius diameter B D, &longs;ecatur bifariam in G, à circumferentia circuli dati, <lb/> quod patet ducta &longs;emidiametro H G, perpendiculari ex B C, quæ &longs;uo extre­<lb/> mo puncto G, &longs;ecat bifariam, & <expan abbr="diametrũ">diametrum</expan> B D, & circumferentiam B G C. <lb/> facto ergo centro G, de&longs;cribatur alter circulus per puncta B C D F, <expan abbr="conne-ctatur&qacute;">conne­<lb/> ctaturque</expan>; recta G C. in triangulo orthogonio B C D, latus B D, &longs;ubtenditur <pb pagenum="45" xlink:href="009/01/045.jpg"/><figure id="id.009.01.045.1.jpg" place="text" xlink:href="009/01/045/1.jpg"/><lb/> angulo recto C, ergo quadratum eius ex corol­<lb/> lario 47. primi, duplum erit quadrati B C, quare <lb/> etiam circulus B C D F, duplus erit circuli A B­<lb/> G C, per 2. duodecimi, & &longs;emicirculus B C D, <lb/> duplus erit &longs;emicirculi B A C: & quadrans B E­<lb/> C G, æqualis erit &longs;emicirculo B A C: ablato igi­<lb/> tur communi &longs;egmento B E C H, remanet lunu­<lb/> la B A C E, æqualis triangulo B C G, quod trian­<lb/> gulum &longs;i per vltimam &longs;ecundi quadretur, erit lu­<lb/> nula B A C, con&longs;equenter quadrata. </s> <s id="s.000853"><expan abbr="hucu&longs;q;">hucu&longs;que</expan> be­<lb/> nè procedit Hippocrates. <!-- KEEP S--></s> <s id="s.000854">&longs;ed vt reliquum circu­<lb/> li quadret, &longs;ic pergit, ponatur recta L M, dupla <lb/> ip&longs;ius B C, &longs;upra quam &longs;emicirculus de&longs;cribatur <lb/> <figure id="id.009.01.045.2.jpg" place="text" xlink:href="009/01/045/2.jpg"/><lb/> L O M, cui in&longs;cribatur hexagoni <lb/> æquilateri dimidium L Q S M, & &longs;u­<lb/> per tribus hexagoni lateribus, &longs;int <lb/> tres &longs;emicirculi, vt in figura. </s> <s id="s.000855">& <expan abbr="quo-niã">quo­<lb/> niam</expan> diameter L M, dupla e&longs;t <expan abbr="vniu&longs;-cuiu&longs;q;">vniu&longs;­<lb/> cuiu&longs;que</expan> <expan abbr="diametrorũ">diametrorum</expan> B C, L Q, Q S, <lb/> S M, erit &longs;emicirculus L O M, &etail;qua­<lb/> lis quatuor &longs;emicirculis prædictis <lb/> per 2. duodecimi, & per 4. &longs;ecundi <lb/> ablatis igitur tribus <expan abbr="&longs;egm&etilde;tis">&longs;egmentis</expan> com­<lb/> munibus L N Q, Q O S, S P M, relinquetur trapezium L Q S M, æquale &longs;e­<lb/> micirculo B A C, & tribus lunulis L H Q N, Q R S O, S X M P, ab&longs;cindan­<lb/> tur <expan abbr="itaq;">itaque</expan> de trapezio tria triangula æqualia tribus lunulis, eo modo, quo &longs;u­<lb/> pra in prima figura factum e&longs;t, & quod relinquetur æquale erit &longs;emicirculo <lb/> B A C. quod deinde quadretur per vlt. </s> <s id="s.000856">&longs;ecundi, &longs;ed aduerte, quod quando <lb/> ait, ab&longs;cindantur de trapezio tria triangula æqualia lunulis, eo modo, quo <lb/> &longs;upra, committit deceptionem, quia eodem modo, quo &longs;upra minimè id fa­<lb/> cere po&longs;&longs;umus, quia in &longs;uperiori figura triangula erant con&longs;tituta &longs;uper la­<lb/> tus B C, quadrati B C D F, intra circulum de&longs;cripti, qui circulus facit cum <lb/> B C, maius <expan abbr="&longs;egmentũ">&longs;egmentum</expan>, quam faciat &longs;emicirculus L O M, cum lateribus L Q, <lb/> Q S, S M. & propterea &longs;emicirculus i&longs;te non habet eandem proportionem <lb/> ad vnamquamque lunularum &longs;uarum, quam habet &longs;emicirculus &longs;uperior <lb/> B C D, ad lunulam B A C E. <expan abbr="atq;">atque</expan> hæc e&longs;t fallacia, quam authorem &longs;uum mi­<lb/> nimè latui&longs;&longs;e putandum, cuius Ari&longs;t. &longs;æpius mentionem in &longs;equentibus fa­<lb/> ciet : quì enim fieri pote&longs;t, vt tam acutus inuentor, adeo manife&longs;tum erro­<lb/> rem non vidi&longs;&longs;et, verum propter adinuenti excellentiam, authori &longs;uo pla­<lb/> cuit paralogy&longs;mus. </s> <s id="s.000857">mirabilis tamen &longs;emper habita e&longs;t illa &longs;uperior lunulæ <lb/> quadratio. </s> <s id="s.000858">Ex quibus &longs;atis clara e&longs;&longs;e po&longs;&longs;unt ea, quæ ad <expan abbr="Mathematicũ">Mathematicum</expan> per­<lb/> tinent, ad locum hunc de Abductione declarandum. </s> <s id="s.000859">facta e&longs;t igitur abdu­<lb/> ctio ab Hippocrate in quadratione trium po&longs;teriorum lunularum, in qua­<lb/> rum quadratione diu immoratus, nunquam ni&longs;i cum paralogy&longs;mo quadra­<lb/> re valuit. </s> <s id="s.000860">Hæc pluribus, vt &longs;equentibus etiam textibus, in quibus huius te­<lb/> tragoni&longs;mi fit mentio &longs;atisfacere po&longs;&longs;imus. </s> <s id="s.000861">Hippocrates i&longs;te Chius e&longs;t alter <pb pagenum="46" xlink:href="009/01/046.jpg"/>ab illo Hippocrate Coo medicorum Magi&longs;tro, vt colligitur ex Alexandre <lb/> Aphrod. <!-- REMOVE S-->in Primum Meteororum de Cometis.<!-- KEEP S--></s> </p> </chap> <chap> <p type="head"> <s id="s.000862"><emph type="italics"/>Ex Primo Posteriorum re&longs;olutoriorum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000863"><arrow.to.target n="marg18"/></s> </p> <p type="margin"> <s id="s.000864"><margin.target id="marg18"/>18</s> </p> <p type="main"> <s id="s.000865">Textu primo <emph type="italics"/>(Omnis doctrina, & omnis di&longs;ciplina di&longs;cur&longs;iua ex præexi­<lb/> &longs;tenti fit cognitione. </s> <s id="s.000866">manife&longs;tum autem hoc &longs;peculantibus in omnibus, <lb/> Mathematicæ <expan abbr="namq;">namque</expan> &longs;cientiarum per hunc modum accedunt)<emph.end type="italics"/> quo mo­<lb/> do Mathematicæ fiant ex præcedenti cognitione, &longs;cilicet Princi­<lb/> piorum per&longs;picuè quilibet videbit, qui &longs;altem primum <expan abbr="Elem&etilde;torum">Elementorum</expan> Eucli­<lb/> dis, vel è ianuis in&longs;pexerit; pr&etail;cedunt enim primo principiorum tria gene­<lb/> ra, quorum primum continet definitiones &longs;ubiecti Geometriæ, vt definitio­<lb/> nes lineæ, &longs;uperficiei, trianguli, &c: Secundum continet Po&longs;tulata. </s> <s id="s.000867">Tertium <lb/> Axiomata, &longs;eu communes omnium conceptiones, & &longs;ententias, ex quibus <lb/>tanquam ex vberrimis, & chri&longs;tallinis fontibus Demon&longs;trationes Geome­<lb/> tricæ deriuantur. </s> <s id="s.000868">Idem vìdere licet in operibus aliorum Geometrarum, <lb/> Archimedis, Apollonij, Pappi, & cæterorum. </s> <s id="s.000869">Aliæ &longs;imiliter mathematicæ, <lb/> vt Arithmetica, Per&longs;pectiua, Mu&longs;ica, Mechanica, A&longs;tronomia, non ni&longs;t ex <lb/> præmi&longs;&longs;is, ac manife&longs;ti&longs;simis principijs &longs;uas demon&longs;trationes deducunt. <lb/> </s> <s id="s.000870">Nulla porrò alia &longs;cientia tam di&longs;tinctè &longs;ua præmittit principia, <expan abbr="tam&qacute;">tamque</expan>; per­<lb/> &longs;picua, &longs;icuti Mathematicæ, vt non immeritò Philo&longs;ophus eas, tamquam <lb/> veræ &longs;cientiæ <expan abbr="typũ">typum</expan>, <expan abbr="eum&qacute;">eumque</expan>; omnibus numeris ab&longs;olutum &longs;ibi ob oculos pro­<lb/> po&longs;uerit, ex quo veræ &longs;cientiæ de&longs;criptionem hi&longs;ce libris complecteretur.</s> </p> <p type="main"> <s id="s.000871"><arrow.to.target n="marg19"/></s> </p> <p type="margin"> <s id="s.000872"><margin.target id="marg19"/>19</s> </p> <p type="main"> <s id="s.000873">Tex. 2. <emph type="italics"/>(Quod enim omne triangulum habet duobus rectis æquales, præ&longs;ciuit: <lb/> quod autem hoc, quod e&longs;t in &longs;emicirculo triangulum e&longs;t, &longs;imul inducens cognouit)<emph.end type="italics"/><lb/> vide primo, quæ &longs;upra libro 1. Prior. <!-- REMOVE S-->&longs;ecto 3. cap. 1. explicaui de angulis <lb/> trianguli. </s> <s id="s.000874">deinde &longs;cias, quod quando Ari&longs;t. ait, hoc, quod e&longs;t in &longs;emicircu­<lb/> lo triangulum, &c. </s> <s id="s.000875">alludit ad demon&longs;trationem quandam, quam ip&longs;e infe­<lb/> rius in exemplum adducet, & quæ e&longs;t in 3. Elem. Euclidis 31. in qua talis fi­<lb/> gura proponitur qualis e&longs;t præ&longs;ens, in qua vides triangulum A B C. in &longs;e­<lb/> <figure id="id.009.01.046.1.jpg" place="text" xlink:href="009/01/046/1.jpg"/><lb/> micirculo. </s> <s id="s.000876">tunc autem dicitur triangulum in <lb/> &longs;emicirculo, quando ba&longs;is ip&longs;ius e&longs;t diameter <lb/> &longs;emicirculi, & reliqua duo latera ita concur­<lb/>runt &longs;imul in angulum B, vt ip&longs;um pariter in <lb/> circumferentia con&longs;tituant, quibus pr&etail;mi&longs;sis <lb/> &longs;ic textum explicaueris: quod enim omne <lb/> triangulum habet tres angulos æquales duo­<lb/> bus rectis angulis præ&longs;ciuit vniuer&longs;aliter per <lb/> 32. primi; quod autem hoc particulare triangulum A B C, quod e&longs;t in &longs;e­<lb/>micirculo habeat eandem proprietatem, &longs;imul, ac qui&longs;piam animaduertit <lb/> illud e&longs;&longs;e triangulum cogno&longs;cit, <expan abbr="ab&longs;q;">ab&longs;que</expan> vlla demon&longs;tratione, &longs;ed &longs;olum virtu­<lb/> te illius maioris propo&longs;itionis; omne triangulum habet tres, &c.</s> </p> <p type="main"> <s id="s.000877"><arrow.to.target n="marg20"/></s> </p> <p type="margin"> <s id="s.000878"><margin.target id="marg20"/>20</s> </p> <p type="main"> <s id="s.000879">Tex. 5. <emph type="italics"/>(Vera quidem igitur oportet e&longs;&longs;e, quoniam non e&longs;t non ens &longs;cire, vt quod <lb/>diameter &longs;it commen&longs;urabilis)<emph.end type="italics"/> con&longs;ule ea, quæ &longs;crip&longs;imus ad cap. 23. primi <lb/> Priorum, &longs;ecto 1. &longs;ine quibus locus hic &longs;atis intelligi nequit; ijs autem per­<lb/> ceptis &longs;ic <expan abbr="locũ">locum</expan> hunc explicare po&longs;&longs;umus, cum diameter quadrati &longs;it incom­ <pb pagenum="47" xlink:href="009/01/047.jpg"/>men&longs;urabilis lateri &longs;ui quadrati, fal&longs;um erit dicere diametrum e&longs;&longs;e com­<lb/> men&longs;urabilem prædicto lateri, quod autem fal&longs;um e&longs;t, illud non e&longs;t; igitur <lb/> impo&longs;sibile e&longs;t &longs;cire diametrum e&longs;&longs;e commen&longs;urabile.</s> </p> <p type="main"> <s id="s.000880"><arrow.to.target n="marg21"/></s> </p> <p type="margin"> <s id="s.000881"><margin.target id="marg21"/>21</s> </p> <p type="main"> <s id="s.000882">Hoc eodem cap. plura dicuntur de Principijs Demon&longs;trationis, &longs;iue &longs;cien­<lb/> tiæ, vt &longs;unt Dignitates, Po&longs;itiones, Definitiones, & &longs;imilia, quæ quo modo <lb/> &longs;e habeant, & quo modo illis Demon&longs;trationes innitantur, optimè ex con­<lb/> templatione primi libri Elem. Euclidis percipi pote&longs;t. </s> <s id="s.000883">vt propterea benè ij <lb/> &longs;entiant, inter quos præcipui &longs;unt Toletus, & Zabarella, qui a&longs;&longs;erunt, Ari&longs;t. <lb/> Mathematicas &longs;cientias tamquam typum perfecti&longs;simarum &longs;cientiarum <lb/> &longs;ibi ob oculos propo&longs;ui&longs;&longs;e; ex quo typo veræ &longs;cientiæ de&longs;criptionem his li­<lb/> bris complectaretur.</s> </p> <p type="main"> <s id="s.000884"><arrow.to.target n="marg22"/></s> </p> <p type="margin"> <s id="s.000885"><margin.target id="marg22"/>22</s> </p> <p type="main"> <s id="s.000886">Eodem tex. <!-- REMOVE S-->5. <emph type="italics"/>(Ponit enim Arithmeticus vnitatem indiui&longs;ibilem e&longs;&longs;e &longs;ecun­<lb/> dum quantum)<emph.end type="italics"/> hoc quamquam non ponatur ab Arithmeticis expre&longs;sè, præ­<lb/> &longs;upponitur tamen ab eis: nu&longs;quam enim Euclides in totis tribus Arithme­<lb/> ticis libris, infra vnitatem de&longs;cendit, vt propterea appareat, ip&longs;am in quan­<lb/> titate di&longs;creta e&longs;&longs;e minimum, & indiui&longs;ibile. </s> <s id="s.000887">Verum dubitabit fortè qui&longs;­<lb/> piam hoc modo, &longs;i vnitas minimum, <expan abbr="atq;">atque</expan> indiui&longs;ibile e&longs;t in quanto di&longs;creto, <lb/> qua igitur ratione Arithmetici practici eam diuidunt in dimidium, in trien­<lb/> tem, in quadrantem, & alijs &longs;imiliter modis, vnde numeri illi, qui fractio­<lb/> nes appellantur, exurgunt? </s> <s id="s.000888">Re&longs;pondemus, <expan abbr="quotie&longs;eunq;">quotie&longs;cunque</expan> vnitas diuiditur ab <lb/> Arithmeticis, tunc ip&longs;i eam accipiunt tanquam totum quoddam <expan abbr="cõtinuum">continuum</expan> <lb/> in plures partes diui&longs;ibile: &longs;iue tanquam aggregatum quoddam vnitatum, <lb/> quæ vnitates &longs;unt partes illius, vt quando dicunt, vnum horæ quadrantem, <lb/> vel duos horæ quadrantes, vel tres horæ quadrantes, accipiunt horam tan­<lb/> quam aggregatum quatuor quadrantum, & propterea numeri illi 1/4. 2/4. 3/4. <lb/> & &longs;imiles fractiones, nihil aliud &longs;unt, quam numeri partium vnius horæ: ex <lb/> quo patet huiu&longs;modi fractiones omnes reduci ad numeros integros, qui <lb/> enim dicit tres quadrantes 3/4. dicit tres partes alicuius totius, quod intel­<lb/> ligitur diui&longs;um e&longs;&longs;e in 4. æquales partes, ex quibus illæ tres tantummodo <lb/> numerat.</s> </p> <p type="main"> <s id="s.000889"><arrow.to.target n="marg23"/></s> </p> <p type="margin"> <s id="s.000890"><margin.target id="marg23"/>23</s> </p> <p type="main"> <s id="s.000891">Tex. 9. <emph type="italics"/>(Per &longs;e autem, <expan abbr="quæcunq;">quæcunque</expan> & in&longs;unt in eo, quod quid e&longs;t, vt triangulo li­<lb/> nea, & lineæ punctum; &longs;ub&longs;tantia <expan abbr="namq;">namque</expan> ip&longs;orum ex his e&longs;t, & in oratione dicen­<lb/> te, quid e&longs;t, in&longs;unt)<emph.end type="italics"/> aggreditur explicare quænam &longs;int ea, quæ per &longs;e dicun­<lb/> tur: <expan abbr="quot&qacute;">quotque</expan>; modis dicatur aliquid per &longs;e. </s> <s id="s.000892">quorum primus e&longs;t, ea &longs;cilicet, <lb/> per &longs;e de aliquo &longs;ubiecto dici, <expan abbr="quæcunq;">quæcunque</expan> in definitione illius ponuntur, cu­<lb/> iu&longs;modi &longs;unt linea, & punctum, quæ per &longs;e prædicantur, illa de triangulo, <lb/>i&longs;tud de linea; in definitione enim trianguli ponitur linea recta, quia linea <lb/> recta dum terminat illam &longs;uperficiem, quæ dicitur triangulus illi trianguli <lb/> naturam impertitur, & ideo triangulus definitur &longs;ic, triangulus e&longs;t figura <lb/> tribus lineis rectis terminata. </s> <s id="s.000893">&longs;imiliter in definitione lineæ, non infinitæ, <lb/> &longs;ed finitæ, & terminatæ ponitur punctum, quia duo puncta, quæ &longs;unt extre­<lb/> ma illius, faciunt, vt ea &longs;it line a finita, & definitur &longs;ic, linea finita e&longs;t lon­<lb/>gitudo, cuius extrema &longs;unt puncta. </s> <s id="s.000894">quamuis autem hæc definitio apud Eu­<lb/> clidem expre&longs;&longs;a non habeatur, tamen ex definitionibus ip&longs;ius præ&longs;ertim &longs;e­<lb/> cunda, tertia, & quarta elici pote&longs;t.</s> </p> <p type="main"> <s id="s.000895"><arrow.to.target n="marg24"/></s> </p> <p type="margin"> <s id="s.000896"><margin.target id="marg24"/>24</s> </p> <p type="main"> <s id="s.000897">Eodem tex. <!-- REMOVE S-->9. <emph type="italics"/>(Et <expan abbr="quibu&longs;cunq;">quibu&longs;cunque</expan> inexi&longs;tentium ip&longs;is, ip&longs;æ &longs;unt in oratione, quid<emph.end type="italics"/> <pb pagenum="48" xlink:href="009/01/048.jpg"/><emph type="italics"/>est declarante, quemadmodum rectum ine&longs;t lineæ, & circulare: & impar, & par <lb/> numero, & primum, & compo&longs;itum, & æquilaterum, & altera parte longius. & <lb/> <expan abbr="oĩbus">omnibus</expan> bis in&longs;unt in oratione, quid e&longs;t <expan abbr="declarãte">declarante</expan>, ibi quidem linea, hic vero numerus)<emph.end type="italics"/><lb/> quia locus hic benè exponitur à Toleto, & melius etiam à Conymbr. </s> <s id="s.000898">addam <lb/> tantummodo quædam, quæ ad perfectam eius intelligentiam de&longs;iderantur. <lb/> </s> <s id="s.000899">Sciendum igitur primò, nu&longs;quam ab Euclide definiri rectum, circulare, <lb/> impar, par, primum, compo&longs;itum, æquilaterum, nec altera parte longius: <lb/> <expan abbr="verũ">verum</expan> ab ip&longs;o in definitionibus primi definiri lineam rectam, non tamen cir­<lb/> cularem expre&longs;sè. </s> <s id="s.000900">in definitionibus deinde &longs;eptimi definiri <expan abbr="numerũ">numerum</expan> parem, <lb/> & imparem, item numerum primum, & compo&longs;itum, & æquilaterum, & al­<lb/> tera parte longiorem. </s> <s id="s.000901">ex quibus definitionibus po&longs;&longs;unt erui definitiones re­<lb/> cti, circularis, imparis, & cæterorum, quorum hic Ari&longs;toteles meminit. <lb/> </s> <s id="s.000902">Cæterum Euclides definitione 11. &longs;eptimi, &longs;ic definit numerum primum: <lb/> primus numerus e&longs;t, quem vnitas &longs;ola metitur. </s> <s id="s.000903">numerus autem, vel vnitas <lb/> metiri dicitur alium numerum, quando &longs;æpius repetita ip&longs;um omnino ad­<lb/> æquat, vt ternarius metitur nouenarium, quia ter repetitus ip&longs;um ad vn­<lb/> guem explet. </s> <s id="s.000904">illi igitur numeri dicuntur ab Arithmeticis primi, qui à nullo <lb/> alio, præterquam ab vnitate men&longs;urantur, quales &longs;unt, 2. 3. 5. 7. &c. </s> <s id="s.000905">Defi­<lb/> nitione verò 13. definit numerum compo&longs;itum &longs;ic; compo&longs;itus numerus e&longs;t, <lb/> quem numerus qui&longs;piam metitur, vt &longs;enarius erit compo&longs;itus, quia ip&longs;um <lb/> binarius metitur, nam ter repetitus, ip&longs;i perfectè adæquatur.</s> </p> <p type="main"> <s id="s.000906">Per æquilaterum, intelligit quadratum, quadratus autem numerus defi­<lb/> nitione 18. &longs;eptimi &longs;ic explicatur: Quadratus numerus e&longs;t, qui &longs;ub duobus <lb/> æqualibus numeris continetur, ide&longs;t, qui fit ex ductu vnius numeri in &longs;e ip­<lb/> <figure id="id.009.01.048.1.jpg" place="text" xlink:href="009/01/048/1.jpg"/><lb/> &longs;um, vt &longs;i ducantur 3. in 3. fient 9. qui continetur &longs;ub duobus <lb/> ternarijs; omnes autem ternarij &longs;unt æquales. </s> <s id="s.000907">is autem nu­<lb/> merus dicetur quadratus, quia, vt apparet in figura, nouem <lb/> ip&longs;ius vnitates po&longs;&longs;unt in plano ita ad inuicem collocari, vt <lb/> referant quadratum; & &longs;icuti quadratum geometricum ha­<lb/> bet latera æqualia, ita etiam quadratum arithmeticum: &longs;i­<lb/> ue numerus quadratus, habet &longs;ua latera æqualia, quot enim vnitates &longs;unt <lb/> in vno, tot etiam &longs;unt in reliquis, vt in præ&longs;enti &longs;unt tres vnitates in &longs;ingulis <lb/> lateribus. </s> <s id="s.000908">pr&etail;terea quemadmodum quadratum geometricum re&longs;olui pote&longs;t <lb/> in plura quadrata, ita etiam arithmeticum, vt præ&longs;ens, qui re&longs;oluitur in <lb/> quatuor quadrata arithmetica. </s> <s id="s.000909"><expan abbr="Neq;">Neque</expan> enim pote&longs;t quilibet numerus, vt opi­<lb/> nantur ageometreti, in hunc modum di&longs;poni, &longs;ed &longs;olum ij, qui producuntur <lb/> ex multiplicatione numeri alicuius in &longs;e ip&longs;um.</s> </p> <p type="main"> <s id="s.000910">Per altera parte longius, intelligit numerum, qui producitur à duobus <lb/> <figure id="id.009.01.048.2.jpg" place="text" xlink:href="009/01/048/2.jpg"/><lb/> numeris inæqualibus inuicem multiplicatis, qualis e&longs;t <lb/> duodenarius, qui ex ductu trium in quatuor produci­<lb/> tur, & refert figuram altera parte longiorem, &longs;iue, vt <lb/> ait Boetius longilateram, cuius vnum latus e&longs;t maius <lb/> altero, vt in appo&longs;ita figura videre licet. </s> <s id="s.000911">atque hæc <lb/> &longs;unt, quæ ex Mathematicis petenda erant, ad huius <lb/> loci intelligentiam.</s> </p> <p type="main"> <s id="s.000912"><arrow.to.target n="marg25"/></s> </p> <p type="margin"> <s id="s.000913"><margin.target id="marg25"/>25</s> </p> <p type="main"> <s id="s.000914">Tex. 11. <emph type="italics"/>(Per &longs;e autem, & &longs;ecundum quod ip&longs;um, idem, vt per &longs;e lineæ inest<emph.end type="italics"/> <pb pagenum="49" xlink:href="009/01/049.jpg"/><emph type="italics"/>punctum, & rectum; etenim &longs;ecundum quod linea, & triangulo, &longs;ecundum quod <lb/> triangulum duo recti: etenim per &longs;e triangulum duobus rectis æquale. </s> <s id="s.000915">Vniuer&longs;ale <lb/> autem e&longs;t tunc, quando in quolibet, & primo mon&longs;tratur, vt duos rectos habere, <lb/> <expan abbr="neq;">neque</expan> figuræ e&longs;t vniuer&longs;ale, quamuis e&longs;t mon&longs;trare de figura, quod duos rectos habet, <lb/> &longs;ed non de qualibet figura, <expan abbr="neq;">neque</expan> vtitur qualibet figura monstrans, quadrangulum <lb/> enim figura a quidem est, non habet autem duobus rectis æquales. </s> <s id="s.000916">Aequicrus verò <lb/>habet quidem <expan abbr="quodcunq;">quodcunque</expan> duobus rectis æquales, &longs;ed non primò, &longs;ed triangulum <lb/> prius. </s> <s id="s.000917">quod igitur quoduis primum mon&longs;tratur duos rectos habens, aut <expan abbr="quodcunq;">quodcunque</expan> <lb/> aliud, huic primo ine&longs;t vniuer&longs;ale, & demonstratio de hoc vniuer&longs;aliter e&longs;t, de alijs <lb/> verò quodammodo, non per &longs;e, <expan abbr="neq;">neque</expan> de æquicrure e&longs;t vniuer&longs;aliter, &longs;ed in plus)<emph.end type="italics"/> pro <lb/> quorum intelligentia nece&longs;&longs;aria &longs;unt ea, quæ primo Priorum &longs;ecto 3. cap. 1. <lb/> &longs;crip&longs;imus. </s> <s id="s.000918">deinde memineris figuram vniuer&longs;aliorem e&longs;&longs;e triangulo, & tri­<lb/> angulum vniuer&longs;alius æquicrure. </s> <s id="s.000919">quando ait (vt duos rectos habere) vult <lb/> dicere, habere duos angulos rectos non actu, &longs;ed potentia; quæ affectio e&longs;t <lb/> trianguli, quia, vt &longs;uperius diximus, habet tres angulos æquales duobus <lb/> rectis angulis: quæ proprietas vniuer&longs;aliter, & primò competit triangulo. <lb/> </s> <s id="s.000920">non autem figuræ, quia figura e&longs;t vniuer&longs;alior. </s> <s id="s.000921"><expan abbr="neq;">neque</expan> i&longs;o&longs;celi, quia i&longs;o&longs;celes e&longs;t <lb/> re&longs;trictius triangulo. </s> <s id="s.000922">omittimus reliqua &longs;ingillatim exponere, tum quia &longs;a­<lb/> tis clara &longs;unt, tum quia ab interpretibus benè explicantur.</s> </p> <p type="main"> <s id="s.000923"><arrow.to.target n="marg26"/></s> </p> <p type="margin"> <s id="s.000924"><margin.target id="marg26"/>26</s> </p> <p type="main"> <s id="s.000925">Tex. 13. <emph type="italics"/>(Si quis igitur mon&longs;trauerit, quod rectæ <expan abbr="nõ">non</expan> coincidunt, videbitur <expan abbr="vtiq;">vtique</expan> <lb/>huius e&longs;&longs;e demonstratio, eo quod in omnibus e&longs;t rectis; non e&longs;t autem: &longs;i quidem <lb/> non quoniam &longs;ic æquales, fit hoc, &longs;ed &longs;ecundum quod <expan abbr="quomodocunq;">quomodocunque</expan> æquales)<emph.end type="italics"/> pro­<lb/> ponit tres errores, qui circa demon&longs;trationem de vniuer&longs;ali contingunt, <lb/> quos omnes Geometricis exemplis illu&longs;trat; affert autem primo pro tertio <lb/> errore duo exempla, quorum primum in præmi&longs;&longs;is verbis continetur, <expan abbr="atq;">atque</expan> <lb/> ex 28. primi Elem. de&longs;umitur, quam propterea primo loco exponendam <lb/> <figure id="id.009.01.049.1.jpg" place="text" xlink:href="009/01/049/1.jpg"/><lb/> cen&longs;ui. </s> <s id="s.000926">Quando igitur duæ rectæ con&longs;titu­<lb/> tæ fuerint, vt A B, C D, in quas alia recta, <lb/> vt G F, incidens, faciat duos angulos in­<lb/> ternos, re&longs;pectu rectarum A B, C D, & ad <lb/> ea&longs;dem partes rectæ E F, vt &longs;unt ex parte <lb/> &longs;ini&longs;tra anguli A G H, C H G; exparte ve­<lb/> rò dextra B G H, D H G; &longs;i <expan abbr="inquã">inquam</expan> linea E F, <lb/> fecerit duos illos angulos ex parte &longs;ini&longs;tra &longs;imul &longs;umptos, æquales duobus <lb/> rectis angulis, vel duos ex parte dextra pariter æquales duobus rectis, pro­<lb/> bat Euclides rectas A B, C D, non concurrere, &longs;iue parallelas e&longs;&longs;e. </s> <s id="s.000927">Verum, <lb/> quia linea E F, pote&longs;t facere aliquando prædictos angulos non <expan abbr="tantũ">tantum</expan> æqua­<lb/> les duobus rectis, verum etiam rectos, quo etiam modo <expan abbr="probar&etilde;tur">probarentur</expan> cædem <lb/> lineæ e&longs;&longs;e parallelæ, vt in &longs;equenti figura, cum &longs;int anguli A G I, C I G, re­<lb/> <figure id="id.009.01.049.2.jpg" place="text" xlink:href="009/01/049/2.jpg"/><lb/> cti, probabitur de rectis A B, C D, æquidi&longs;tan­<lb/> tia. </s> <s id="s.000928">Ex his facile textum in hunc modum expo­<lb/> nemus; &longs;i quis igitur mon&longs;trauerit, quod rectæ <lb/>A B, C D, nunquam coincidunt, etiam&longs;i in infi­<lb/> nitum producantur, &longs;eu quod &longs;unt æquidi&longs;tantes, <lb/> quando anguli prædicti interni &longs;unt duo recti, <lb/> videbitur <expan abbr="vtiq;">vtique</expan> huius e&longs;&longs;e demon&longs;tratio de vniuer&longs;ali per &longs;e, & de primo &longs;u­ <pb pagenum="50" xlink:href="009/01/050.jpg"/>biecto, vel &longs;ecundum quod ip&longs;um, eò quod probatur vniuer&longs;aliter de lineis <lb/> omnibus habentibus prædictos angulos rectos. </s> <s id="s.000929">non autem de omni, &longs;ecun­<lb/> dum quod ip&longs;um, &longs;i quidem non competit affectio hæc, e&longs;&longs;e parallelas, li­<lb/> neis habentibus illos angulos rectos actu; &longs;ed primò, & vniuer&longs;aliter, & &longs;e­<lb/> cundum quod ip&longs;um competit lineis habentibus illos angulos æquales duo­<lb/> bus rectis, <expan abbr="quomodocunq;">quomodocunque</expan> æquales &longs;int duobus rectis, &longs;iue ambo &longs;int recti, <lb/> &longs;iue vnus acutus, alter obtu&longs;us, &longs;ed tamen ambo &longs;imul æquentur duobus re­<lb/> ctis, quales &longs;unt lineæ primæ figuræ. </s> <s id="s.000930">In tertio igitur errore, vniuer&longs;ale exi­<lb/> &longs;tit quidem, & habet nomen, &longs;ed tamen prætermittetur, &longs;eu &longs;trictius &longs;ume­<lb/> tur, quam oportet. </s> <s id="s.000931">alij latini, quos quidem viderim, præter Zabarellana <lb/> perperam omnino ob mathematicarum ignorantiam, exemplum i&longs;tud in­<lb/> terpretantur.</s> </p> <p type="main"> <s id="s.000932"><arrow.to.target n="marg27"/></s> </p> <p type="margin"> <s id="s.000933"><margin.target id="marg27"/>27</s> </p> <p type="main"> <s id="s.000934">Ibidem <emph type="italics"/>(Et &longs;i triangulum non e&longs;&longs;et aliud, quam I&longs;o&longs;celes, &longs;ecundum quod I&longs;o­<lb/> &longs;celes videretur <expan abbr="vtiq;">vtique</expan> ine&longs;&longs;e)<emph.end type="italics"/> i&longs;tud e&longs;t &longs;ecundum exemplum tertij erroris. </s> <s id="s.000935">Por­<lb/> rò cum tres &longs;int &longs;pecies triangulorum, æquilaterum, I&longs;o&longs;celes, Scalenum, &longs;i <lb/> accideret, vt ex illis tribus vna tantum &longs;pecies, v. <!-- REMOVE S-->g. <!-- REMOVE S-->I&longs;o&longs;celes in mundo re­<lb/> periretur; <expan abbr="tunc&qacute;">tuncque</expan>; qui&longs;piam de I&longs;o&longs;cele o&longs;tenderet affectionem quampiam, <lb/> putans &longs;e <expan abbr="o&longs;t&etilde;di&longs;&longs;e">o&longs;tendi&longs;&longs;e</expan> pa&longs;&longs;ionem de proprio &longs;ubiecto, & primo, falleretur, quia <lb/> aifectio illa competeret I&longs;o&longs;celi, non vt huic &longs;peciei I&longs;o&longs;celis, &longs;ed quatenus <lb/> e&longs;t triangulum, cui primo, & per &longs;e, & &longs;ecundum quod ip&longs;um conuenit. </s> <s id="s.000936">hoc <lb/> loco di&longs;ce&longs;&longs;imus à Zabarella, qui putat i&longs;tud e&longs;&longs;e exemplum primi erroris, <lb/> cum verba textus adeo clara &longs;int, vt expo&longs;itionem illius nullo modo admit­<lb/> tant. </s> <s id="s.000937">&longs;unt autem hæc textus verba <emph type="italics"/>(Et &longs;i triangulum non e&longs;&longs;et aliud, quam I&longs;o­<lb/> &longs;celes, &longs;ecundum quod I&longs;o&longs;celes videretur <expan abbr="vtiq;">vtique</expan> ine&longs;&longs;e)<emph.end type="italics"/> quibus verbis manife&longs;tè <lb/> apparet Ari&longs;t. accipere pro &longs;ubiecto vniuer&longs;ali non indiuiduum vnum, vt in <lb/> primo errore contingit, &longs;ed &longs;peciem loco generis, &longs;cilicet I&longs;o&longs;celes, quod <lb/> e&longs;t &longs;pecies trianguli pro genere ip&longs;o, nimirum pro Triangulo. </s> <s id="s.000938">ait enim, &longs;i <lb/> non e&longs;&longs;et aliud, quam I&longs;o&longs;celes, <expan abbr="&longs;ecundũ">&longs;ecundum</expan> quod I&longs;o&longs;celes: quibus verbis cla­<lb/>rè &longs;peciem, non indiuiduum, &longs;ignificat, ex his duobus exemplis manife&longs;tus <lb/> e&longs;t tertius error, qui erat, quando erat <emph type="italics"/>(vt in parte totum)<emph.end type="italics"/> <expan abbr="quod&qacute;">quodque</expan>; illis verbis <lb/> expo&longs;uerat <emph type="italics"/>(vel contingit etiam, vt in parte totum, in quo mon&longs;tratur: ijs enim, <lb/> quæ &longs;unt in parte inerit quidem demon&longs;tratio, & erit de omni, &longs;ed tamen non erit <lb/> huius primi vniuer&longs;aliter demon&longs;tratio. </s> <s id="s.000939">dico autem huius primi, &longs;ecundum quod <lb/> huius demonstrationem, quando &longs;it primi vniuer&longs;aliter)<emph.end type="italics"/> ide&longs;t, quando vniuer&longs;ale <lb/> &longs;ubiectum exi&longs;tit quidem, &longs;ed tamen non de ip&longs;o &longs;it demon&longs;tratio, &longs;ed de ali­<lb/> qua parte ip&longs;ius, v. <!-- REMOVE S-->g. <!-- REMOVE S-->de &longs;pecie aliqua demon&longs;tratur aliquid, quod deberet <lb/> o&longs;tendi primò de ip&longs;o vniuer&longs;ali, cum illi primò competat.</s> </p> <p type="main"> <s id="s.000940"><arrow.to.target n="marg28"/></s> </p> <p type="margin"> <s id="s.000941"><margin.target id="marg28"/>28</s> </p> <p type="main"> <s id="s.000942">Ibidem <emph type="italics"/>(Et proportionale, quod alternatim, &longs;ecundum quod numeri, & &longs;ecun­<lb/> dum quod lineæ, & &longs;ecundum quod &longs;olida, & &longs;ecundum quod tempora: quemad­<lb/> modum & mon&longs;trabatur aliquando &longs;eor&longs;um, contingens <expan abbr="vtiq;">vtique</expan> de omnibus vnica <lb/>demon&longs;tratione mon&longs;trari; &longs;ed quia non &longs;unt nominatum quidam omnia hæc vnum, <lb/> numeri, longitudines, tempora &longs;olida, & &longs;pecie differunt à &longs;einuicem &longs;eor&longs;um <expan abbr="ac-cipiebãtur">ac­<lb/> cipiebantur</expan>. </s> <s id="s.000943">nunc autem vniuer aliter mon&longs;tratur, <expan abbr="neq;">neque</expan> enim &longs;ecundum quod lineæ, <lb/>aut &longs;ecundum quod numeri, inerat; &longs;ed &longs;ecundum quod hoc, quod vniuer&longs;ale &longs;up­<lb/> ponunt e&longs;&longs;e)<emph.end type="italics"/> affert exemplum &longs;ecundi erroris, qui accidit, quando vniuer&longs;a­<lb/> le exi&longs;tit quidem, &longs;ed tamen e&longs;t innominatum, pro cuius explicatione &longs;cien­ <pb pagenum="51" xlink:href="009/01/051.jpg"/>dum quid &longs;it alterna proportio. </s> <s id="s.000944">Alternam igitur proportionem definit Eu­<lb/> clides definitione 12. quinti, &longs;ic, e&longs;t &longs;umptio antecedentis ad <expan abbr="anteced&etilde;tem">antecedentem</expan>, <lb/> <figure id="id.009.01.051.1.jpg" place="text" xlink:href="009/01/051/1.jpg"/><lb/> & con&longs;equentis ad con&longs;equentem. </s> <s id="s.000945">Explico, exponantur qua­<lb/> tuor quantitates proportionales, v.g. <!-- REMOVE S-->vt 6. ad 3. ita &longs;int 4. ad <lb/> 2. &longs;i igitur argumentemur &longs;ic, vt 6. ad 3. ita 4. ad 2. ergo al­<lb/> ternatim erit, vt 6. ad 4. ita 3. ad 2. &longs;iue dixerimus, vt pri­<lb/> mum ad &longs;ecundum, ita tertium ad quartum, igitur alterna­<lb/> tim erit, vt primum ad tertium, ita &longs;ecundum ad quartum: valebit con&longs;e­<lb/> quentia; quæ quidem probatur deinde propo&longs;itione 16. quinti de magnitu­<lb/> dinibus, hoc e&longs;t in vniuer&longs;um de lineis, &longs;uperficiebus, & &longs;olidis. </s> <s id="s.000946">quando igi­<lb/> tur Ari&longs;t. ait, mon&longs;tramus proportionale, ide&longs;t, qua&longs;uis quatuor quantita­<lb/> tes proportionales, habere hanc proprietatem, vt &longs;int etiam alternatim <lb/> proportionales, & non mon&longs;tramus vnica demon&longs;tratione de omni quouis <lb/> proportionali, &longs;ed &longs;eparatim de magnitudinibus in 16. quinti, de numeris <lb/> in 13. &longs;eptimi, & &longs;eor&longs;um de temporibus in a&longs;tronomia, vel phy&longs;ica; hoc <lb/> modo non o&longs;tendimus vniuer&longs;aliter de primo &longs;ubiecto, quia talis affectio <lb/> conuenit &longs;ingulis, non vt numeri, aut magnitudines, aut tempora &longs;unt, &longs;ed <lb/> &longs;ecundum quandam naturam illis omnibus communem, cui primò illa pa&longs;­<lb/> &longs;io debetur; quæ quidem natura communis nomine caret, & propterea e&longs;t <lb/> cau&longs;a erroris.</s> </p> <p type="main"> <s id="s.000947"><arrow.to.target n="marg29"/></s> </p> <p type="margin"> <s id="s.000948"><margin.target id="marg29"/>29</s> </p> <p type="main"> <s id="s.000949"><emph type="italics"/>Nunc autem vniuer&longs;aliter demon&longs;tratur)<emph.end type="italics"/> nu&longs;quam apud Mathematicos in­<lb/> uenio hanc demon&longs;trationem vniuer&longs;alem de illo communi omnibus præ­<lb/> dictis, quare dicendum cum Zabarella, illud, nunc, e&longs;&longs;e intelligendum &longs;ic, <lb/> nunc autem, ide&longs;t, in præ&longs;entia autem deberet vniuer&longs;aliter demon&longs;trari, <lb/> quod tamen cum non fiat, contingit nos decipi putantes vniuer&longs;aliter de­<lb/> mon&longs;tra&longs;&longs;e. </s> <s id="s.000950">vel dicendum i&longs;tud verificari tantum de lineis, &longs;uperficiebus, & <lb/> &longs;olidis, de quibus &longs;imul in vnica natura communi, quæ e&longs;t magnitudo, de­<lb/> mon&longs;tratur in 16. quinti vniuer&longs;aliter. </s> <s id="s.000951"><expan abbr="atq;">atque</expan> hoc modo explicatum e&longs;t exem­<lb/> plum &longs;ecundi erroris, qui verbis illis <emph type="italics"/>(Vel &longs;it quidem, &longs;ed innominatum &longs;it in <lb/> rebus &longs;pecie differentibus)<emph.end type="italics"/> continebatur.</s> </p> <p type="main"> <s id="s.000952"><arrow.to.target n="marg30"/></s> </p> <p type="margin"> <s id="s.000953"><margin.target id="marg30"/>30</s> </p> <p type="main"> <s id="s.000954">Ibidem <emph type="italics"/>(Propter hoc &longs;i quis mon&longs;trauerit &longs;ingulum triangulum. </s> <s id="s.000955">demon&longs;tratio­<lb/> ne aut vna, aut altera, quod duos rectos habet vnumquodque, <expan abbr="æquilateiũ">æquilaterum</expan> &longs;eor&longs;um, <lb/> & &longs;calenum, & æquicrus: nondum nouit triangulum, quod duobus rectis, ni&longs;i &longs;o­<lb/> phi&longs;tico modo, <expan abbr="neq;">neque</expan> vniuer&longs;aliter triangulum, <expan abbr="neq;">neque</expan> &longs;i vllum e&longs;t præter prædicta <lb/> triangulum alterum. </s> <s id="s.000956">non enim &longs;ecundum quod triangulum, <expan abbr="neq;">neque</expan> omne triangulum, <lb/> ni&longs;i &longs;ecundum numerum, &longs;ecundum &longs;peciem autem non omne; & &longs;i nullum e&longs;t, quod <lb/> non nouit)<emph.end type="italics"/> vltimo loco ponit exemplum primi erroris, quem &longs;upra verbis il­<lb/> lis <emph type="italics"/>(Quando vel nihil &longs;it accipere &longs;uperius, præter &longs;ingulare)<emph.end type="italics"/> expre&longs;&longs;erat, quod, <lb/> vt benè intelligamus, opus e&longs;t ea, legere, quæ libro primo Priorum &longs;ecto 3. <lb/> cap. 1. &longs;crip&longs;imus de proprietate illa trianguli, quod &longs;cilicet habet tres an­<lb/> gulos æquales duobus rectis angulis, quibus præmi&longs;&longs;is, &longs;ic deinde locum <lb/> hunc interpretaberis; Propter hoc, quod præcedenti textu dictum e&longs;t; no­<lb/> tandum in primo errore vniuer&longs;ale, tanquam &longs;i non e&longs;&longs;et vniuer&longs;ale o&longs;ten­<lb/> ditur de &longs;ingulari, &longs;i quis igitur mon&longs;trauerit &longs;ingillatim de <expan abbr="vnoquoq;">vnoquoque</expan> trian­<lb/> gulo in &longs;ingulari, &longs;cilicet de vno æquilatero, tantum, & de vno Scaleno, & <lb/>de vno I&longs;o&longs;cele, &longs;eparatim, vtens aut eadem demon&longs;tratione dum de <expan abbr="vno&qacute;">vnoque</expan>; <pb pagenum="52" xlink:href="009/01/052.jpg"/>&longs;eparatim o&longs;tendit, aut vtens diuer&longs;is demon&longs;trationibus, vna pro æquila­<lb/> tero, altera pro I&longs;o&longs;cele, tertia pro Scaleno, o&longs;tendens, quod <expan abbr="vnumquodq;">vnumquodque</expan> <lb/> illorum habet tres angules æquales duobus rectis angulis; i&longs;te nondum no­<lb/> uit triangulum omne habere talem affectionem, ni&longs;i modo &longs;ophi&longs;tico, quia <lb/> non cogno&longs;cit hanc affectionem illis <expan abbr="cõpetere">competere</expan> propter naturam illam com­<lb/> munem trianguli, cui primo, & per &longs;e competit; & neque vniuer&longs;aliter co­<lb/> gno&longs;cit triangulum omne e&longs;&longs;e tale, etiam &longs;i nullum aliud reperiatur trian­<lb/> gulum, præter illud æquilaterum, vel illud I&longs;o&longs;celes, vel illud Scalenum, de <lb/> quibus &longs;eparatim <expan abbr="demõ&longs;trauit">demon&longs;trauit</expan>, & &longs;ecundum numerum, ide&longs;t de vnoquoque, <lb/> quatenus e&longs;t vnum numero. </s> <s id="s.000957">non nouit autem &longs;ecundum &longs;peciem, idest fecun­<lb/> dum naturam, & formam communem illis tribus indiuiduis, quæ e&longs;t natu­<lb/> ra trianguli. </s> <s id="s.000958">hoc autem e&longs;&longs;e exemplum primi erroris manife&longs;tè conuincitur, <lb/> tum ex verbis illis, quando nihil &longs;it &longs;uperius, præter &longs;ingulare, tum ex hu­<lb/> ius textus verbis illis <emph type="italics"/>(Singulum triangulum)<emph.end type="italics"/> & ex illis <emph type="italics"/>(Ni&longs;i &longs;ecundum nume­<lb/> rum)<emph.end type="italics"/> ide&longs;t, ni&longs;i de vno, quod &longs;it vnum numero. </s> <s id="s.000959">propterea nos de &longs;ingulari <lb/> triangulo omi&longs;&longs;a Zabarellæ &longs;ententia explicauimus tandem in confirma­<lb/>tionem no&longs;træ expo&longs;itionis in hæc tria errata illud non omittendum, &longs;atius <lb/> e&longs;&longs;e dicere, Ari&longs;t. attuli&longs;&longs;e pro tribus erratis tria exempla ordine retrogra­<lb/> do, quàm, quod facit Zabarella, primum e&longs;&longs;e pro tertio, &longs;ecundum pro pri­<lb/> mo, tertium verò pro &longs;ecundo; eo enim modo, Ari&longs;t. confu&longs;ionem nulla ra­<lb/> tione, imò contra omnem rationem imponimus.</s> </p> <p type="main"> <s id="s.000960"><arrow.to.target n="marg31"/></s> </p> <p type="margin"> <s id="s.000961"><margin.target id="marg31"/>31</s> </p> <p type="main"> <s id="s.000962">Textu 14. continet quidem quædam mathematica, &longs;ed ferè eadem cum <lb/> &longs;uperioribus, quæ quia tum ex prædictis facile intelligi po&longs;&longs;unt, tum quia <lb/> benè ab expo&longs;itoribus explicantur, ne actum agamus, prætermittimus.</s> </p> <p type="main"> <s id="s.000963"><arrow.to.target n="marg32"/></s> </p> <p type="margin"> <s id="s.000964"><margin.target id="marg32"/>32</s> </p> <p type="main"> <s id="s.000965">Tex. 20. <emph type="italics"/>(Ni&longs;i magnitudines numeri &longs;int)<emph.end type="italics"/> hoc e&longs;t, ni&longs;i magnitudines &longs;int di­<lb/> feretæ, ita vt cadant &longs;ub numerum, vt &longs;i linea quæpiam diuidatur in partes <lb/> decem, vel duodecim, tunc euadit quantitas di&longs;creta, &longs;iue numerus. </s> <s id="s.000966">& tunc <lb/> linea numerus e&longs;t. </s> <s id="s.000967">idem de &longs;uperficie, ac &longs;olido intelligendum.</s> </p> <p type="main"> <s id="s.000968"><arrow.to.target n="marg33"/></s> </p> <p type="margin"> <s id="s.000969"><margin.target id="marg33"/>33</s> </p> <p type="main"> <s id="s.000970">Ibidem <emph type="italics"/>(Propter hoc Geometriæ non licet mon&longs;trare, quod contrariorum vna <lb/> e&longs;e &longs;cientia, &longs;ed neque quod duo cubi cubus)<emph.end type="italics"/> quo ad verba illa, duo cubi cubus, <lb/> quæ ad nos pertinent, vult Ari&longs;t. docere, quod non debet Geometra o&longs;ten­<lb/>dere numerorum affectiones (per cubos enim intelligit numeros quo&longs;dam <lb/> &longs;ic dictos, vt paulo po&longs;t o&longs;tendam) vt &longs;i quis vellet geometricè o&longs;tendere id, <lb/> quod o&longs;tenditur in 4. noni Elem. &longs;cilicet, &longs;i cubus numerus cubum numerum <lb/> multiplicauerit, productus numerus erit pariter cubus. </s> <s id="s.000971">nonnulli latinorum <lb/> perperam textum hunc expo&longs;uerunt putantes reperiri &longs;olummodo cubos <lb/> geometricos, at Euclides definit. </s> <s id="s.000972">19. &longs;eptimi, &longs;ic arithmeticum cubum de­<lb/> finit, cubus numerus e&longs;t, qui &longs;ub tribus numeris æqualibus continetur, qua­<lb/> lis e&longs;t. </s> <s id="s.000973">8. qui e&longs;t ad in&longs;tar cubi geometrici, & continetur &longs;ub tribus binarijs <lb/> multiplicatis inuicem, quæ multiplicatio &longs;ic in&longs;tituitur, exponuntur tres bi­<lb/> <figure id="id.009.01.052.1.jpg" place="text" xlink:href="009/01/052/1.jpg"/><lb/> narij, 2, 2, 2, primus ducitur in &longs;ecundum, & producitur. <lb/> </s> <s id="s.000974">4. qui e&longs;t numerus quadratus huius figuræ, <figure id="id.009.01.052.2.jpg" place="text" xlink:href="009/01/052/2.jpg"/>, deinde <lb/> tertius binarius ducitur in prædictum quadratum 4. & pro­<lb/> ducitur 8. qui dicitur cubus, quia &longs;i intelligantur duo qua­<lb/> ternarij, vnus &longs;upra alterum, vt in præ&longs;enti figura refe­<lb/> runt cubicam figuram, cuius tam longitudo, quam latitudo, <pb pagenum="53" xlink:href="009/01/053.jpg"/>& altitudo, e&longs;t 2. Similiter cubus numerus e&longs;t 27. quia &longs;it ex tribus terna­<lb/> rijs inuicem modo prædicto multiplicatis, 3. 3. 3. nam 3. in 3. ductis &longs;it 9. <lb/> <figure id="id.009.01.053.1.jpg" place="text" xlink:href="009/01/053/1.jpg"/><lb/> qui e&longs;t quadratus. </s> <s id="s.000975">quo deinde ducto in tertium ter­<lb/> narium, producitur 27. qui e&longs;t cubus, & refert figu­<lb/> ram cubicam hanc. </s> <s id="s.000976">Iam verò &longs;i cubus 8. multipli­<lb/> cet cubum 27. procreabitur 216. qui pariter cubus <lb/> e&longs;t. </s> <s id="s.000977"><expan abbr="atq;">atque</expan> hoc &longs;ibi volunt verba illa, &longs;i duo cubi cubus, <lb/> ide&longs;t, &longs;i duo numeri cubi multiplicentur mutuò, cu­<lb/> bus alter producetur; ex quibus videas, quam in­<lb/> eptè illi <expan abbr="interpret&etilde;tur">interpretentur</expan> hunc locum, qui dicunt, Ari­<lb/> &longs;totilem velle dicere non pertinere ad Geometram <lb/> probare duos cubos geometricos &longs;ibi additos face­<lb/> re alium cubum, quod erat problema Delphicum de <lb/> duplatione cubi, nondum inuentum; bis enim i&longs;ti peccant, primo in Logi­<lb/> cam, quia &longs;ic non tran&longs;iret Geometra de genere in genus, ip&longs;ius enim e&longs;t <lb/> agere de duplatione cubi; &longs;ecundò in Mathematicas, cum nondum noue­<lb/>rint arithmeticos cubos; & præterea ignorent duos cubos &longs;ibi additos, non <lb/> facere alium cubum. </s> <s id="s.000978">Quod præterea hoc loco intelligendi &longs;int cubi arith­<lb/> metici certò certius con&longs;tat, ex &longs;equenti 24. textu, vbi &longs;ic dicitur <emph type="italics"/>(Veluti <lb/> Arithmetica quidem, quid impar, aut par, aut quadrangulum, aut cubus.)<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000979"><arrow.to.target n="marg34"/></s> </p> <p type="margin"> <s id="s.000980"><margin.target id="marg34"/>34</s> </p> <p type="main"> <s id="s.000981">Ibidem <emph type="italics"/>(<expan abbr="Neq;">Neque</expan> alij &longs;cientiæ quod alterius, ni&longs;i <expan abbr="quæcunq;">quæcunque</expan> ita &longs;e habent inter &longs;e, <lb/> vt &longs;it alterum &longs;ub altero, vt per&longs;pectiua ad Geometriam, & harmonica ad Arith­<lb/> meticam)<emph.end type="italics"/> excipit ab illa regula (qua prohibetur, quamuis &longs;cientiam in alie­<lb/> nam falcem immittere) &longs;cientias &longs;ubalternatas, quæ propriè in Mathemati­<lb/> cis reperiuntur, Per&longs;pectiua enim propriè &longs;ubalternatur Geometriæ, quia <lb/> vtitur Demon&longs;trationibus linearibus, quas applicat lineis vi&longs;ualibus, & Mu­<lb/> &longs;ica &longs;ubalternatur Arithmeticæ, quia ab ip&longs;a mutuatur <expan abbr="demõ&longs;trationes">demon&longs;trationes</expan> nu­<lb/> merorum, quas applicat numeris &longs;onoris. </s> <s id="s.000982">v.g. <!-- REMOVE S-->Per&longs;pectiua dicit, ea, quæ vi­<lb/> dentur eminus videri minora, quam quæ videntur cominus, quia illa viden­<lb/> tur &longs;ub angulo minori, hæc verò &longs;ub angulo maiori, quod verò remotiora <lb/> videantur &longs;ub angulo minori, quam propinquiora cæteris paribus probat <lb/> <figure id="id.009.01.053.2.jpg" place="text" xlink:href="009/01/053/2.jpg"/><lb/> per 21. primi Elem. &longs;it enim ma­<lb/> gnitudo vi&longs;a A B, remotior ab o­<lb/> culo in C, po&longs;ito, & vi&longs;a propin­<lb/> quior ab oculo in D. ductis lineis <lb/> vi&longs;ualibus C A, C B: D A, D B; ab <lb/> oculis C, & D, ad extremitates <lb/> &longs;pectatæ magnitudinis, erit remo­<lb/> tioris vi&longs;ionis angulus C, minor <lb/> angulo D, propinquioris, vt ex præallegata Demon&longs;tratione pater. </s> <s id="s.000983">Hine <lb/> per&longs;picuè vides, qua ratione Per&longs;pectiua Geometriæ &longs;ubalternetur, &longs;iue <lb/> quid &longs;it ip&longs;a &longs;ubalternatio, vbi medium e&longs;t Geometricum, conclu&longs;io autem <lb/> optica. </s> <s id="s.000984">Exemplum &longs;ubalternationis Mu&longs;icæ &longs;it, <expan abbr="con&longs;onãtia">con&longs;onantia</expan> Diapa&longs;on, quam <lb/> vulgò octauam appellant in data chorda collocare, hoc e&longs;t, vocem grauio­<lb/> rem facere duplam vocis acutioris &longs;umatur chorda A B, & diuidatur bifa­<lb/>riam, &longs;ine in æqualia in C; tota igitur chorda A B, ad dimidium A C, habet <pb pagenum="54" xlink:href="009/01/054.jpg"/><figure id="id.009.01.054.1.jpg" place="text" xlink:href="009/01/054/1.jpg"/><lb/> proportionem, quam 2. ad 1. <lb/> &longs;iue duplam, ergo etiam &longs;o­<lb/> nus totius chordæ A B, ad <expan abbr="&longs;o-nũ">&longs;o­<lb/> num</expan> chordæ dimidiæ A C, ha­<lb/> bebit eandem rationem, <expan abbr="nimirũ">nimirum</expan> quam 2. ad 1. &longs;iue duplam. </s> <s id="s.000985">&longs;ed &longs;onus chor­<lb/> dæ A B, ad &longs;onum chordæ A C, con&longs;onat diapa&longs;on, &longs;eu octauam, ergo in <lb/> data chorda collocata e&longs;t con&longs;onantia diapa&longs;on, quod oportebat. </s> <s id="s.000986">vides me­<lb/> dium e&longs;&longs;e arithmeticam, conclu&longs;ionem verò harmonicam. </s> <s id="s.000987">Aliud exemplum <lb/> Tonus, quod e&longs;t <expan abbr="interuallũ">interuallum</expan> primæ vocis, Vt, ad &longs;ecundam, Rè, in duo æqua­<lb/> lia &longs;emitonia diuidi nequit, ratio e&longs;t Arithmetica, quia proportio &longs;uper­<lb/> particularis in duo æqualia arithmeticè &longs;ecari nequit; at Tonus con&longs;i&longs;tit in <lb/> ratione &longs;uperparticulari, nempè in &longs;e&longs;quioctaua, ergo Tonus bifariam diui­<lb/> di nequit. </s> <s id="s.000988">de&longs;umptum e&longs;t ex Boetio.</s> </p> <p type="main"> <s id="s.000989"><arrow.to.target n="marg35"/></s> </p> <p type="margin"> <s id="s.000990"><margin.target id="marg35"/>35</s> </p> <p type="main"> <s id="s.000991">Tex. 23. <emph type="italics"/>(Est autem &longs;ic mon&longs;trare, quemadmodum Bry&longs;o quadraturam, &longs;ecun­<lb/> dum enim commune mon&longs;trant tales rationes)<emph.end type="italics"/> cum velit o&longs;tendere veram de­<lb/> mon&longs;trationem con&longs;tare debere ex proprijs, non autem ex communibus; <lb/> primum affert exemplum demon&longs;trationis cuiu&longs;dam Bry&longs;onis, quæ ex com­<lb/> munibus procedat, vt autem benè intelligamus, quale&longs;nam &longs;int huiu&longs;modi <lb/> demon&longs;trationes, quæ per communia o&longs;tendunt, legenda prius ea &longs;unt, quæ <lb/> &longs;crip&longs;imus de quadratura circuli in pr&etail;dicamento relationis. </s> <s id="s.000992">Bry&longs;o itaque, <lb/> vt tradit Alexander, in hunc modum conabatur quadrare <expan abbr="circulũ">circulum</expan>. </s> <s id="s.000993">&longs;it qua­<lb/>drandus circulus A B C D, cui circum&longs;cribatur quadratum E F G H. per <lb/> 7 quarti, & alterum quadratum I L M N, eidem in&longs;cribatur per 6. quarti, <lb/> quid autem &longs;it circum&longs;cribere, & in&longs;cribere figuram circulo, ex definitione <lb/> <figure id="id.009.01.054.2.jpg" place="text" xlink:href="009/01/054/2.jpg"/><lb/> 3. & 4. eiu&longs;dem libri petatur, quamuis <lb/> ex in&longs;pectione figuræ <expan abbr="pr&etail;s&etilde;tis">pr&etail;sentis</expan> &longs;atis per­<lb/> cipi po&longs;&longs;it; deinde aliud <expan abbr="quadratũ">quadratum</expan> me­<lb/> dium inter prædicta duo con&longs;tituatur, <lb/> <expan abbr="&longs;it&qacute;">&longs;itque</expan>; O P Q R. </s> <s id="s.000994">Iam &longs;ic o&longs;tendebat i&longs;tud <lb/> medium quadratum e&longs;&longs;e æquale circu­<lb/> lo propo&longs;ito. </s> <s id="s.000995"><expan abbr="Quæcunq;">Quæcunque</expan> &longs;unt, &longs;imul ma­<lb/> iora eodem, & minora eodem, &longs;unt in­<lb/> uicem æqualia, &longs;ed circulus, & quadra­<lb/> tum medium, &longs;unt ambo maiora qua­<lb/> drato in&longs;cripto, & ambo minora qua­<lb/> drato circum&longs;cripto, ergo circulus, & <lb/> quadratum medium, &longs;unt æqualia. </s> <s id="s.000996">vte­<lb/> batur, inquit Ari&longs;t pr&etail;dicto principio, <lb/> etiam numeris, lineis, temporibus, & <lb/> qualitatibus communi, <expan abbr="neq;">neque</expan> deducto ex natura circuli, aut quadrati, de qui­<lb/> bus erat demon&longs;tratio. </s> <s id="s.000997">præterea aduertendum e&longs;t, illud e&longs;&longs;e fal&longs;um, nam &longs;ex, <lb/> & quinque, ambo &longs;unt maiores, quam quatuor, & minores, quam &longs;eptem, <lb/> & tamen non &longs;unt æquales.</s> </p> <p type="main"> <s id="s.000998"><arrow.to.target n="marg36"/></s> </p> <p type="margin"> <s id="s.000999"><margin.target id="marg36"/>36</s> </p> <p type="main"> <s id="s.001000">In codem textu <emph type="italics"/>(<expan abbr="Vnumquodq;">Vnumquodque</expan> autem &longs;cimus, non &longs;ecundum accidens, quando <lb/> &longs;ecundum illud cogno&longs;camus, &longs;ecundum quod ine&longs;t ex principijs illius, &longs;ecundam <lb/> quod illud; vt duobus rectis æquales, habere, cui ine&longs;t per &longs;e, quod dictum e&longs;t ex<emph.end type="italics"/> <pb pagenum="55" xlink:href="009/01/055.jpg"/><emph type="italics"/>principijs huius)<emph.end type="italics"/> affert nunc exemplum alterius demon&longs;trationis, quæ non <lb/> ex communibus, vt præcedens Bry&longs;onis, &longs;ed ex proprijs principijs o&longs;tendit <lb/> affectionem de &longs;ubiecto proprio. </s> <s id="s.001001">E&longs;t autem illud exemplum toties decan­<lb/> tatum de triangulo habente tres angulos æquales duobus rectis angulis; id­<lb/> circo operæpretium e&longs;&longs;e puto explicare demon&longs;trationem, 32. primi Eucli­<lb/> dis, quæ i&longs;tud ex proprijs principijs demon&longs;trat, & quam hoc loco Ari&longs;to­<lb/> teles innuit, hoc enim modo ip&longs;ius Ari&longs;t. mentem probè penetrare poteri­<lb/> <figure id="id.009.01.055.1.jpg" place="text" xlink:href="009/01/055/1.jpg"/><lb/> mus. </s> <s id="s.001002">&longs;it ergo <expan abbr="triãgulum">triangulum</expan> A B C. <!-- KEEP S--></s> <s id="s.001003">Dico ag­<lb/> gregatum <expan abbr="triũ">trium</expan> ip&longs;ius angulorum A, B, C, <lb/> e&longs;&longs;e æquale aggregato ex duobus angu­<lb/> lis rectis (vt autem melius intelligas, quæ <lb/> &longs;equuntur, lege prius ea, quæ dicta &longs;unt <lb/> in lib. 1. Priorum &longs;ecto 3. cap. 1.) produ­<lb/> catur latus B C, <expan abbr="v&longs;q;">v&longs;que</expan> in D, vt fiat angulus <lb/> externus A C D; Iam &longs;ic, quoniam <expan abbr="pro-batũ">pro­<lb/> batum</expan> e&longs;t in 13. primi, duos angulos, quos <lb/> facit linea A C, cum linea B D, &longs;cilicet angulos A C B, A C D, e&longs;&longs;e pares <lb/> duobus rectis: & quia pariter in prima parte huius propo&longs;. </s> <s id="s.001004">32. probatum <lb/> e&longs;t ab Euclide duos angulos A B, e&longs;&longs;e æquales externo angulo A C D: &longs;i ter­<lb/> tius angulus reliquus A C B, &longs;umatur bis, &longs;emel cum duobus angulis A, B, <lb/> & &longs;emel cum externo A C D, <expan abbr="add&etilde;tur">addentur</expan> æqualia æqualibus, & propterea tres <lb/> anguli A, B, A C B, &longs;imul &longs;umpti, erunt æquales duobus A C D, A C B, &longs;imul <lb/> &longs;umptis; &longs;ed his duobus &longs;unt æquales duo recti, ergo cum quæ &longs;unt æqualia <lb/> vni tertio, &longs;int etiam æqualia inuicem, erit aggregatum trium angulorum <lb/> A, B, A C B, æquale aggregato duorum rectorum; quod erat demon&longs;tran­<lb/> dum. </s> <s id="s.001005">Medium <expan abbr="itaq;">itaque</expan> huius demon&longs;trationis, &longs;i res ad trutinam Logicam ex­<lb/> pendatur, e&longs;t, quod partes aggregati <expan abbr="triũ">trium</expan> <expan abbr="angulorũ">angulorum</expan> A, B, A C B, &longs;unt æqua­<lb/> les partibus aggregati <expan abbr="duorũ">duorum</expan>, & ideo <expan abbr="aggregatũ">aggregatum</expan>, aggregato æqua­<lb/> le e&longs;t. </s> <s id="s.001006">quod medium e&longs;t in genere cau&longs;æ materialis. </s> <s id="s.001007">quod verò partes illius <lb/> &longs;int æquales partibus huius, probatur, per dignitatem <expan abbr="illã">illam</expan>, quæ &longs;unt æqualia <lb/> vni tertio, &longs;unt etiam inter &longs;e. </s> <s id="s.001008">partes porrò aggregati trium angulorum <lb/> erant hæ, anguli A, B, vna; altera verò angulus A C B; partes verò aggre­<lb/> gati duorum rectorum erant A C B, A C D, quibus partibus, illæ &longs;unt æqua­<lb/> les, & ideo totum toti æquale. </s> <s id="s.001009">quod medium e&longs;t omnino intrin&longs;ecum, & ex <lb/> proprijs ip&longs;ius trianguli, &longs;iue ex proprijs angulorum ip&longs;ius, cum &longs;int ip&longs;ius <lb/> partes. </s> <s id="s.001010">quod pariter medium ex parte pa&longs;&longs;ionis, quæ demon&longs;tratur, e&longs;t ex <lb/> proprijs, cum &longs;int partes illius materiales. </s> <s id="s.001011">per materiam autem oportet <lb/> hoc loco intelligere materiam intelligibilem, ide&longs;t quantitatem à qualita­<lb/>tibus ab&longs;tractam, & terminatam, de qua pluribus agemus infra in tractatu <lb/> de natura mathematicarum. </s> <s id="s.001012">Hinc videas eos magnopere decipi, qui pu­<lb/> tant, hanc demon&longs;trationem e&longs;&longs;e per extrin&longs;eca, eò quod ad demon&longs;tran­<lb/> dum producatur linea B C, in D, putantes lineam illam productam C D, <lb/> e&longs;&longs;e demon&longs;trationis medium; lineæ <expan abbr="namq;">namque</expan> huiu&longs;modi, quæ in demon&longs;tra­<lb/> tionibus geometricis con&longs;truuntur, nunquam &longs;unt media propria demon­<lb/> &longs;trationum, &longs;ed tantummodo a&longs;&longs;umuntur ad probandum medium iam ex­<lb/> cogitatum e&longs;&longs;e veram cau&longs;am conclu&longs;ionis. </s> <s id="s.001013">Hinc etiam manife&longs;tè colligas <pb pagenum="56" xlink:href="009/01/056.jpg"/>Mathematicas facultates habere demon&longs;trationes perfecti&longs;&longs;imas, quod <lb/> ageometreti negare &longs;olent, &longs;ed audacter aiunt exempla Ari&longs;t. non e&longs;&longs;e vera: <lb/> <expan abbr="neq;">neque</expan> requiri veritatem exemplorum; in <expan abbr="quorũ">quorum</expan> <expan abbr="vtroq;">vtroque</expan> peccant, nam dictum <lb/> illud v&longs;urpari &longs;olet, & debet de exemplis moralibus. </s> <s id="s.001014">at vero requiri confor­<lb/> mitatem exemplorum cum regulis traditis, nemo &longs;anæ mentis dubitabit. <lb/> </s> <s id="s.001015">Verum i&longs;ti confundunt conformitatem cum veritate. </s> <s id="s.001016">Veritas exemplo tunc <lb/> ine&longs;t, quando illud, quod in exemplo narratur, verè extitit, vt &longs;i quis in <lb/> exemplum pudicitiæ afferret hi&longs;toriam Io&longs;ephi, <expan abbr="verũ">verum</expan> i&longs;tud e&longs;&longs;et exemplum. <lb/> </s> <s id="s.001017">quæ veritas in exemplis moralibus non &longs;emper e&longs;t nece&longs;&longs;aria, talia exempla <lb/> &longs;unt &longs;æpè parabolæ, & fabulæ, quæ nunquam extiterunt, v. <!-- REMOVE S-->g. <!-- REMOVE S-->narratur ab <lb/> Ari&longs;t. de quodam filio, qui patrem crudeliter traxerat, qui po&longs;tea grandior <lb/> factus, cum filium procrea&longs;&longs;et, ab eodem pariter raptatus e&longs;t ip&longs;e, v&longs;que ad <lb/> eundem locum, quo ip&longs;e patrem &longs;uum impiè raptauerat. </s> <s id="s.001018">non e&longs;t nece&longs;&longs;e, ta­<lb/> lem extiti&longs;&longs;e filium, <expan abbr="neq;">neque</expan> patrem. </s> <s id="s.001019">Verumtamen &longs;emper conformitas exem­<lb/> pli cum regulis, & præceptis, quæ traduntur nece&longs;&longs;aria e&longs;t, alioquin exem­<lb/> pla de&longs;truerent id, quod præceptio con&longs;truit, <expan abbr="illi&qacute;">illique</expan> contraria e&longs;&longs;et, quod om­<lb/> nino ab&longs;urdum foret. </s> <s id="s.001020">non &longs;ecus, ac &longs;i quis vellet alium docere characteres <lb/> latinos, <expan abbr="illi&qacute;">illique</expan>; barbaros, quos Gothicos vocant in exemplum proponeret. </s> <s id="s.001021">re­<lb/> quiritur igitur &longs;emper in omni exemplo conformitas cum eo, quod doce­<lb/> tur; in moralibus tamen non &longs;emper requiritur veritas, vti diximus; Alij <lb/> verò dicunt non requiri in exemplis determinatam veritatem, &longs;ed &longs;atis e&longs;&longs;e, <lb/> &longs;i exemplum verum &longs;it &longs;ecundum opinionem aliquorum: <expan abbr="quorũ">quorum</expan> &longs;ententiam <lb/> non improbamus. </s> <s id="s.001022">Exempla igitur ab Ari&longs;t. pa&longs;&longs;im ex mathematicis allata, <lb/> congrua, <expan abbr="conformia&qacute;">conformiaque</expan>; omninò &longs;unt ip&longs;ius doctrinæ, aliter ip&longs;um perpetuò <lb/> mentientem facimus. </s> <s id="s.001023">Po&longs;tremò illud etiam e&longs;t aduertendum, fortè Ari&longs;t. in <lb/> præ&longs;enti textu &longs;pecta&longs;&longs;e <expan abbr="nõ">non</expan> ad hanc Euclidianam demon&longs;trationem, &longs;ed po­<lb/> tius ad Pithagoricam. </s> <s id="s.001024">Pithagorei enim eam aliter, quamuis per idem me­<lb/> dium, &longs;cilicet à cau&longs;a materiali, demon&longs;trabant; con&longs;truebant enim aliter, <lb/> <expan abbr="neq;">neque</expan> vlla vtebantur diui&longs;ione. </s> <s id="s.001025">quod dictum velim propter nonnullos, qui ab <lb/> huiu&longs;modi diui&longs;ionibus abhorrent, <expan abbr="timent&qacute;">timentque</expan>; ne demon&longs;trationis perfectio­<lb/> ni per eas plurimum derogetur. </s> <s id="s.001026">Pithagoreorum demon&longs;trationem vide <lb/> apud Clauium in &longs;cholio 32. primi Euclidis, quam ex Eudemo etiam Pro­<lb/> clus in comm. <!-- REMOVE S-->eiu&longs;dem recitat.</s> </p> <p type="main"> <s id="s.001027"><arrow.to.target n="marg37"/></s> </p> <p type="margin"> <s id="s.001028"><margin.target id="marg37"/>37</s> </p> <p type="main"> <s id="s.001029">Ibidem <emph type="italics"/>(Sed quemadmodŭm harmonica per Arithmeticam)<emph.end type="italics"/> vide &longs;upra tex. <!-- REMOVE S-->20.</s> </p> <p type="main"> <s id="s.001030"><arrow.to.target n="marg38"/></s> </p> <p type="margin"> <s id="s.001031"><margin.target id="marg38"/>38</s> </p> <p type="main"> <s id="s.001032">Ibidem <emph type="italics"/>(Demon&longs;tratio autem non computatur in aliud genus; ni&longs;i, vt dictum <lb/>e&longs;t geometricæ demon&longs;trationes in Per&longs;pectiuas, aut Mechanicas, & arithmeticæ in <lb/> harmonicas)<emph.end type="italics"/> exempla &longs;ubalternationis Per&longs;pectiuæ, & Mu&longs;icæ in tex. <!-- REMOVE S-->20. at­<lb/> tulimus; nunc Mechanicæ &longs;ubalternationis, quam hic Ari&longs;t. in&longs;inuat, exem­<lb/> plum &longs;it illud, quod Archimedes prop. 14. primi Aequep. <!-- REMOVE S-->demon&longs;trat, ni­<lb/> mirum centrum grauitatis omnis trianguli e&longs;&longs;e punctum illud, in quo rectæ <lb/> lineæ ab angulis trianguli ad dimidia latera oppo&longs;ita ductæ concurrunt. </s> <s id="s.001033">&longs;it <lb/> triangulum A B C, à cuius angulis A, & B, ducantur duæ rectæ A D, B E, ita <lb/> vt bifariam &longs;ecent latera A C, B C, in punctis D, & E, & concurrant in F. <lb/> <!-- KEEP S--></s> <s id="s.001034">Dico F, e&longs;&longs;e centrum grauitatis propo&longs;iti trianguli. </s> <s id="s.001035">Quoniam enim in 13. <lb/> Aequep. <!-- REMOVE S-->probauit centrum grauitatis e&longs;&longs;e in ea linea, quæ ducta ab angulo <lb/> quouis &longs;ecat oppo&longs;itum latus bifariam, crit in linea A D, <expan abbr="centrũ">centrum</expan> grauitatis. <pb pagenum="57" xlink:href="009/01/057.jpg"/><figure id="id.009.01.057.1.jpg" place="text" xlink:href="009/01/057/1.jpg"/><lb/> &longs;ed eadem ratione erit etiam in linea B E, er­<lb/> go non ni&longs;i in puncto F, quod <expan abbr="&longs;olũ">&longs;olum</expan> e&longs;t in vtra­<lb/> que, quod erat demon&longs;trandum. </s> <s id="s.001036">ex quibus ap­<lb/> paret, qua ratione mechanica conclu&longs;io Geo­<lb/> metriæ &longs;ubiaceat, dum lineari di&longs;cur&longs;u ip&longs;a <lb/> demon&longs;tratio perficitur. </s> <s id="s.001037">Scias præterea cen­<lb/> trum grauitatis e&longs;&longs;e tale punctum, ex quo &longs;i &longs;u­<lb/> &longs;pendatur corpus triangulare vniformis cra&longs;­<lb/> &longs;itici, manet &longs;emper horizonti parallelum, &longs;i <lb/> tamen antequam &longs;u&longs;penderetur, iacebat plano horizontis, æquidi&longs;tans; <lb/> <expan abbr="neq;">neque</expan> &longs;i &longs;u&longs;pen&longs;um feratur huc illud nutat, &longs;ed &longs;emper in <expan abbr="cod&etilde;">codem</expan> &longs;itu per&longs;euerat.</s> </p> <p type="main"> <s id="s.001038"><arrow.to.target n="marg39"/></s> </p> <p type="margin"> <s id="s.001039"><margin.target id="marg39"/>39</s> </p> <p type="main"> <s id="s.001040">Tex. 24. <emph type="italics"/>(Veluti Arithmetica quidem quid impar, aut par; aut quadrangu­<lb/> lum, aut cubus)<emph.end type="italics"/> cogno&longs;cas hinc certò certius quadrangulum, & cubum e&longs;&longs;e <lb/> &longs;pecies numerorum, &longs;icuti &longs;upra tex. <!-- REMOVE S-->9. & 20. explicauimus, quò nunc te vi­<lb/> ci&longs;&longs;im, vt præ&longs;entem locum intelligas, remittimus.</s> </p> <p type="main"> <s id="s.001041"><arrow.to.target n="marg40"/></s> </p> <p type="margin"> <s id="s.001042"><margin.target id="marg40"/>40</s> </p> <p type="main"> <s id="s.001043">Ibidem <emph type="italics"/>(Geometrica verò quid irrationale, aut refrangi, aut concurrere)<emph.end type="italics"/> per <lb/> verbum, irrationale, non videtur Ari&longs;t. intellexi&longs;&longs;e proprietatem illam duo­<lb/> rum linearum incommen&longs;urabilium longitudine, & potentia, quia v&longs;us fui&longs;­<lb/> &longs;et verbo, <foreign lang="greek">a/orhton.</foreign> quod apud Geometras v&longs;urpari &longs;olet in illa &longs;ignificatio­<lb/> ne, &longs;ed v&longs;us e&longs;t verbo, <foreign lang="greek">a\logon,</foreign> quod latinè redditur improportionale.</s> </p> <p type="main"> <s id="s.001044"><arrow.to.target n="marg41"/></s> </p> <p type="margin"> <s id="s.001045"><margin.target id="marg41"/>41</s> </p> <p type="main"> <s id="s.001046">Per verbum <emph type="italics"/>(Refrangi)<emph.end type="italics"/> &longs;eu frangi, intelligit lineam aliquam rectam, non <lb/>in directum tendere, &longs;ed in aliquo puncto frangi, &longs;eu declinari à rectitudine, <lb/> ita vt con&longs;tituat angulum.</s> </p> <p type="main"> <s id="s.001047">Per verbum <emph type="italics"/>(Concurrere)<emph.end type="italics"/> intelligit, non e&longs;&longs;e parallelas, &longs;ed ad idem ali­<lb/> quod punctum coire, &longs;i protrahantur.</s> </p> <p type="main"> <s id="s.001048"><arrow.to.target n="marg42"/></s> </p> <p type="margin"> <s id="s.001049"><margin.target id="marg42"/>42</s> </p> <p type="main"> <s id="s.001050">Ibidem <emph type="italics"/>(Et Astrologia &longs;imiliter)<emph.end type="italics"/> per A&longs;trologiam intelligit Ari&longs;t. non iu­<lb/> diciariam, quamuis à recentioribus hoc nomine vocetur, &longs;ed quam hodie <lb/> dicunt A&longs;tronomiam, <expan abbr="ait&qacute;">aitque</expan>; ip&longs;am con&longs;iderare quantitatem, figuram, mo­<lb/> tum, & locum totius Mundi, ac partium ip&longs;ius integrantium, vt &longs;unt Cœli, <lb/> & Elementa.</s> </p> <p type="main"> <s id="s.001051"><arrow.to.target n="marg43"/></s> </p> <p type="margin"> <s id="s.001052"><margin.target id="marg43"/>43</s> </p> <p type="main"> <s id="s.001053">Tex. 25. <emph type="italics"/>(<expan abbr="Neq;">Neque</expan> Geometra fal&longs;a &longs;upponit, quemadmodum quidam a&longs;&longs;eruere di­<lb/> centes, quod non oportet fal&longs;o vti: Geometram verò mentiri dicentem pedalem, non <lb/> pedalem, aut rectam de&longs;criptam, non rectam <expan abbr="exist&etilde;tem">existentem</expan>: Geometra verò nihil con­<lb/>cludit eò, quod hæc e&longs;t linea, &longs;ed quæ per hæc o&longs;tenduntur)<emph.end type="italics"/> innuit his verbis eam <lb/> materiam intelligibilem, quæ e&longs;t &longs;ubiectum Geometriæ: eam &longs;cilicet, quæ <lb/> &longs;ub figuris Geometricis &longs;en&longs;ibilibus, & <expan abbr="plerunq;">plerunque</expan> fal&longs;is latet; nam &longs;æpè Geo­<lb/> metra vtitur linea quadam &longs;en&longs;ibili pro recta, quæ verè nec e&longs;t linea mathe­<lb/> matica, nec recta; &longs;upponit aliquando talem lineam e&longs;&longs;e pedalem, quæ ve­<lb/> rè non e&longs;t pedalis: Verumtamen non mentitur, quia re&longs;picit ad veram li­<lb/> neam mathematicam, quæ &longs;ub illa intelligitur, & quæ recta concipitur; & <lb/> quidem hæc omnia verè concipiuntur, quoniam ita e&longs;&longs;e re vera po&longs;&longs;unt.</s> </p> <p type="main"> <s id="s.001054"><arrow.to.target n="marg44"/></s> </p> <p type="margin"> <s id="s.001055"><margin.target id="marg44"/>44</s> </p> <p type="main"> <s id="s.001056">Tex. 28. <emph type="italics"/>(Coaltern as verò coincidere)<emph.end type="italics"/> per coalternas intelligendas e&longs;&longs;e pa­<lb/> rallelas lineas, alias, & nunc <expan abbr="quoq;">quoque</expan> monemus.</s> </p> <p type="main"> <s id="s.001057"><arrow.to.target n="marg45"/></s> </p> <p type="margin"> <s id="s.001058"><margin.target id="marg45"/>45</s> </p> <p type="main"> <s id="s.001059">Tex. 29. <emph type="italics"/>(In Mathematicis verò non est &longs;imiliter paralogi&longs;mus, quoniam me­<lb/> diŭ e&longs;t &longs;emper, quod duplex, de hoc enim omni, & hoc rur&longs;us de alio dicitur omni)<emph.end type="italics"/><lb/> aduerte, quod quamuis nonnulli codices habeant pro, in mathematicis, in <pb pagenum="58" xlink:href="009/01/058.jpg"/>di&longs;ciplinis, idem tamen apud græcos <foreign lang="greek">maqhmata</foreign> &longs;unt, ac apud latinos di&longs;ci­<lb/> plinæ; verbum autem <foreign lang="greek">maqhmata</foreign> v&longs;urpat hoc loco Ari&longs;toteles. <!-- KEEP S--></s> <s id="s.001060">Porrò non <lb/> e&longs;t in mathematicis, &longs;icut in alijs paralogi&longs;mus, quia in omni demon&longs;tra­<lb/> tione maius extremum dicitur de omni medio, & rur&longs;us medium dicitur de <lb/> omni minori extremo, ac &longs;i diceret mathematicæ demon&longs;trationes &longs;unt in <lb/> primo modo, qui barbarè à latinis recentioribus Barbara appellatur. </s> <s id="s.001061">Hæc <lb/> e&longs;t autem pulcherrima mathematicarum commendatio, quippe præclarum <lb/> e&longs;t à laudato laudari. </s> <s id="s.001062">In mathematicis, inquit, non accidit &longs;imiliter para­<lb/> logi&longs;mus, ide&longs;t, tam frequenter, quemadmodum in &longs;yllogi&longs;mis dialecticis, <lb/> quia modus argumentandi mathematicarum e&longs;t perfecti&longs;&longs;imus, quippe in <lb/> primo modo primæ figuræ.</s> </p> <p type="main"> <s id="s.001063"><arrow.to.target n="marg46"/></s> </p> <p type="margin"> <s id="s.001064"><margin.target id="marg46"/>46</s> </p> <p type="main"> <s id="s.001065">Eodem tex. <emph type="italics"/>(Contingit autem quo&longs;dam non &longs;yllogi&longs;ticè dicere, & quod ex vtri&longs;­<lb/> que con&longs;equentia accipiunt, quemadmodum & Cæneus facit, quod ignis in multi­<lb/> plici proportione: etenim ignis celeriter gignitur, vt ait: & hæc est proportio. </s> <s id="s.001066">&longs;ic <lb/>autem non e&longs;t &longs;yllogi&longs;mus, ni&longs;i celerrimam proportio &longs;equatur multiplex: & ignem <lb/> celerrima in motu proportio)<emph.end type="italics"/> verba illa (in multiplici proportione) græcè &longs;ic <lb/> &longs;e habent, <foreign lang="greek">en th| pollaplasioni analogia|,</foreign> quod melius redditur latinè in mul­<lb/> tiplici proportione, quemadmodum fecimus, quam in multiplicata, quem­<lb/> admodum in vulgata editione. </s> <s id="s.001067">porrò quid inter multiplicem, & multipli­<lb/> catam rationem inter&longs;it, optimè declarat no&longs;ter Clauius ad 4. definit. </s> <s id="s.001068">lib. 5. <lb/> Elem. ex quo etiam loco pauca decerpam, quæ huic loco declarando con­<lb/> ducunt. </s> <s id="s.001069">Proportio igitur multiplex e&longs;t habitudo inter duas quantitates in­<lb/> æquales, quarum maior continet minorem, bis, vel ter, vel quater, &c. </s> <s id="s.001070">vn­<lb/> de proportio multiplex habet &longs;ub &longs;e genera infinita, quando enim maior <lb/> continet minorem bis, dicitur Dupla: quando ter, Tripla: quando quater, <lb/> Quadrupla: & &longs;ic in infinitum: v. <!-- REMOVE S-->g. <!-- REMOVE S-->2. ad 1. e&longs;t proportio dupla; 3. ad 1. tri­<lb/> pla; 4. ad 1. quadrupla, &c. </s> <s id="s.001071">omnes tamen continentur &longs;ub genere multipli­<lb/> cis rationis. </s> <s id="s.001072">porrò &longs;i qu&etail;piam proportio ex genere multiplici progrediatur <lb/> per plures terminos, v. <!-- REMOVE S-->g. <!-- REMOVE S-->proportio quadrupla progrediatur hoc modo, <lb/> 1. 4. 16. 64. 256. &c. </s> <s id="s.001073">fit, vt &longs;ub&longs;equentes termini mirum in modum augean­<lb/> tur. </s> <s id="s.001074">hic vides primum ip&longs;am quadruplam rationem in di&longs;po&longs;itis terminis <lb/> progredi, quia quilibet &longs;equens terminus ad præcedentem e&longs;t quadruplus. <lb/> </s> <s id="s.001075">cernis etiam in paucis terminis, quinque &longs;cilicet magnum factum e&longs;&longs;e incre­<lb/> mentum, cum <expan abbr="v&longs;q;">v&longs;que</expan> ad 256. excreuerint. </s> <s id="s.001076">Cæneus igitur dicens ignem augeri <lb/> &longs;ecundum multiplicem rationem, vnam ex prædictis intelligebat aliquam, <lb/> quia quælibet illarum magnopere cre&longs;cit, &longs;i propagetur, vt ad 10. quinti <lb/> definit. </s> <s id="s.001077">traditur: & vt paulo ante exemplo licuit per&longs;picere. </s> <s id="s.001078">argumentaba­<lb/> tur igitur Cæneus in hunc modum; quod in multiplici ratione augetur, ce­<lb/> lerrimè augetur: ignis celerrimè augetur, ergo ignis in multiplici ratione <lb/> augetur, quæ argumentatio vitio&longs;a e&longs;t, ex duabus quippe affirmatiuis in &longs;e­<lb/> cunda figura procedens, vt colligitur ex verbis illis tex. <emph type="italics"/>(Ex viri&longs;que con&longs;e­<lb/> quentia accipiunt<emph.end type="italics"/>) ex his mathematica huius locis patere &longs;atis po&longs;&longs;unt.</s> </p> <p type="main"> <s id="s.001079"><arrow.to.target n="marg47"/></s> </p> <p type="margin"> <s id="s.001080"><margin.target id="marg47"/>47</s> </p> <p type="main"> <s id="s.001081">Ibidem (<emph type="italics"/>Conuertuntur autem magis, quæ&longs;unt in mathematicis, quoniam nul­<lb/> lum accidens accipiunt (in quo quidem ijs præ&longs;tăt, quæ di&longs;putationibus traduntur) <lb/> &longs;ed definitiones<emph.end type="italics"/>) Hæc e&longs;t altera mathematicarum laus, vnde earum quoque <lb/> præ&longs;tantia elucet, quia &longs;cilicet mathematicæ pro medijs vtuntur definitio­ <pb pagenum="59" xlink:href="009/01/059.jpg"/>nibus &longs;ubiecti, aut pa&longs;&longs;ionis, quæ nullo modo &longs;unt accidentalia conclu&longs;ioni, <lb/> v. <!-- REMOVE S-->g. <!-- REMOVE S-->in prima Euclidis demon&longs;tratione per definitionem &longs;ubiecti probantur <lb/> tres lineæ e&longs;&longs;e æquales, quia nimirum &longs;int &longs;emidiametri circulorum æqua­<lb/> lium, quæ e&longs;t ip&longs;arum definitio. </s> <s id="s.001082">& in 4. primi probantur ba&longs;is, & anguli <lb/> vnius trianguli æquales e&longs;&longs;e ba&longs;i, & angulis alterius trianguli per formalem <lb/> definitionem pa&longs;&longs;ionis, videlicet æqualitatis, quæ traditur in octauo axio­<lb/> mate &longs;ic, quæ &longs;ibi mutuo congruunt, ea inter &longs;e &longs;unt æqualia. </s> <s id="s.001083">probat igitur <lb/> Euclides in quarta ba&longs;im, & angulos vnius trianguli e&longs;&longs;e æqualia ba&longs;i, & an­<lb/> gulis alterius trianguli, quia o&longs;tendit, quod, &longs;i ba&longs;is illa huic ba&longs;i, & illi an­<lb/> guli hi&longs;ce angulis &longs;uperponantur, congruunt; ex qua congruentia mutua, <lb/> quæ e&longs;t æqualitatis definitio, infert æqualitatem ip&longs;arum ba&longs;ium, necnon <lb/> angulorum. </s> <s id="s.001084">eadem deinde æqualitatis definitione totam demon&longs;trationem <lb/> concludit, &longs;cilicet totum triangulum toti triangulo æquale e&longs;&longs;e, quia vnum <lb/> alteri congruat. </s> <s id="s.001085">A&longs;tronomi <expan abbr="quoq;">quoque</expan> demon&longs;trant eclyp&longs;im de Luna, per in­<lb/> terpo&longs;itionem terræ inter Lunam, & Solem, quæ interpo&longs;itio e&longs;t definitio <lb/> cau&longs;alis ip&longs;ius eclyp&longs;is, &longs;cilicet pa&longs;&longs;ionis. </s> <s id="s.001086">huiu&longs;modi <expan abbr="&longs;exc&etilde;tas">&longs;excentas</expan> reperies apud <lb/> Geometras, Arithmeticos, A&longs;tronomos, <expan abbr="cæteros&qacute;">cæterosque</expan>; Mathematicas demon­<lb/> &longs;trationes: ita vt meritò dixerit Ari&longs;t. Mathematicas alias omnes natura­<lb/> les &longs;cientias, quæ di&longs;putabilibus rationibus traduntur ex hac parte antecel­<lb/> lere. </s> <s id="s.001087">a&longs;&longs;umunt igitur terminos conuertibiles, quia adhibent &longs;æpè definitio­<lb/> nes ad demon&longs;trandum. </s> <s id="s.001088">Reliqua logici expo&longs;itores declarant.</s> </p> <p type="main"> <s id="s.001089"><arrow.to.target n="marg48"/></s> </p> <p type="margin"> <s id="s.001090"><margin.target id="marg48"/>48</s> </p> <p type="main"> <s id="s.001091">Tex. 30. (<emph type="italics"/>Rur&longs;us quemadmodum mon&longs;trant Lunam, quod &longs;phærica &longs;it per aug­<lb/>menta: &longs;i enim quod ita augetur, e&longs;t &longs;phæricum; augetur autem Luna; planŭm quod <lb/> &longs;phærica<emph.end type="italics"/>) Illius demon&longs;trationis, quæ ab effectu procedit, affert exemplum <lb/> ex a&longs;tronomia; A&longs;tronomi enim demon&longs;trant Lunam e&longs;&longs;e &longs;phæricam ab ef­<lb/> fectu ip&longs;ius &longs;phæricitatis, qui e&longs;t illuminatio &longs;phærica: &longs;ic enim ratiocinan­<lb/> tur: ea, quæ &longs;phæricè illuminantur &longs;unt &longs;phærica, Luna &longs;phæricè illumina­<lb/> tur, ergo &longs;phærica e&longs;t: quæ argumentatio fu&longs;ius explicanda e&longs;t; quod ait, <lb/> quod ita augetur, ide&longs;t, &longs;phæricè, e&longs;t &longs;phæricum, ide&longs;t, quia lumen nouæ Lu­<lb/> næ augetur &longs;phæricè, hoc e&longs;t, ad eum modum, quo quæuis &longs;phæra obiecta <lb/> corpori lumino&longs;o &longs;olet illuminari. </s> <s id="s.001092">illuminatio porrò Lunæ in &longs;e &longs;emper e&longs;t <lb/> eadem, quia &longs;emper dimidium Lunæ quod Solem a&longs;picit, illuminatur; dici­<lb/> tur tamen augeri re&longs;pectu oculi no&longs;tri, quia &longs;cilicet initio facto à nouilunio <lb/> pars illuminata incipit quotidie magis vergere ad oculum no&longs;trum, ita vt <lb/> in dies maiorem, ac maiorem illuminationem videamus, donec opponatur <lb/> Soli, in qua oppo&longs;itione totum ferè Lunæ <expan abbr="illuminatũ">illuminatum</expan> con&longs;picitur. </s> <s id="s.001093">Vt autem <lb/> huius illuminationis non iniucundam facias experientiam; cape &longs;phæram <lb/> quampiam &longs;olidam manu, cum qua recede ad medium cubiculi, & pone lu­<lb/> men &longs;eor&longs;um ad partem aliquam: deinde brachio exten&longs;o oppone &longs;phæram <lb/> lumini, quo &longs;itu nihil de illuminatione videbis, quamuis dimidium ferè il­<lb/> lius illuminetur. </s> <s id="s.001094">po&longs;tea conuerte te ip&longs;um ibidem paulatim, ita vt aliquid <lb/> illuminationis oculo tuo appareat; & videbis partem illam illuminationis, <lb/> falcatæ, &longs;eu nouæ Lunæ &longs;imilem. </s> <s id="s.001095">Deinde adhuc magis te conuerte, & cer­<lb/> nes illuminationem dimidiatæ Lunæ &longs;imilem: verte adhuc te ip&longs;um donec <lb/> &longs;it &longs;phæra ita lumini oppo&longs;ita, vt inter ip&longs;am, & lumen oculus tuus &longs;it me­<lb/> dius; apparebit tunc tota illuminatio, quæ erit in&longs;tar plenilunij. </s> <s id="s.001096">perge ad­ <pb pagenum="60" xlink:href="009/01/060.jpg"/>huc te ip&longs;um conuertere, & videbis paulatim lumen oculo tuo decre&longs;cere <lb/> non aliter ac in Luna &longs;ene&longs;cente. </s> <s id="s.001097"><expan abbr="atq;">atque</expan> hoc e&longs;t &longs;phæricè illuminari, fierique <lb/> &longs;phærica illuminationis augmenta. </s> <s id="s.001098">cum ergo videamus Lunam eo modo lu­<lb/> mine augeri, quo &longs;phæra, hinc ip&longs;am <expan abbr="quoq;">quoque</expan> &longs;phæricam e&longs;&longs;e argumentamur.</s> </p> <p type="main"> <s id="s.001099"><arrow.to.target n="marg49"/></s> </p> <p type="margin"> <s id="s.001100"><margin.target id="marg49"/>49</s> </p> <p type="main"> <s id="s.001101">Po&longs;t nonnulla (<emph type="italics"/>Vt Per&longs;pectiua ad Geometriam, & Mechanica ad Stereome­<lb/> tricam, & Harmonica ad Arithmeticam, vt Apparentia ad A&longs;trologicam<emph.end type="italics"/>) &longs;upra <lb/> tex. <!-- REMOVE S-->20. exempla &longs;ubalternationum Per&longs;pectiuæ, & Mechanicæ cum Geo­<lb/> metria &longs;unt allata. </s> <s id="s.001102">hic primo notandum Stereometriam non e&longs;&longs;e &longs;cientiam <lb/> di&longs;tinctam à Geometria, ni&longs;i &longs;icuti partem à toto: nam cum Geometria <lb/> con&longs;ideret quantitatem, &longs;ecundum tres dimen&longs;iones, longitudinem, latitu­<lb/>dinem, & profunditatem, oritur triplex illius diui&longs;io, de lineis, de &longs;uperfi­<lb/> ciebus, de &longs;olidis. </s> <s id="s.001103">pars igitur, quæ de &longs;olidis tractat, <expan abbr="partim&qacute;">partimque</expan>; continetur <lb/> 11. 12. 13. 14. & 15. Euclidis, partim aliorum Geometrarum libris, vt li­<lb/> bro Archim. <!-- REMOVE S-->de Sphæra, & Cyl. <!-- REMOVE S-->& &longs;imilibus, dicitur Stereometria à græco <lb/> <foreign lang="greek">stereon,</foreign> ide&longs;t &longs;olidum. </s> <s id="s.001104">Porrò cur malit Ari&longs;t. Mechanicam &longs;ubalternari Ste­<lb/> reometriæ, quam toti Geometriæ, qua tamen, vt videre e&longs;t apud Archime­<lb/> dem, innititur, fortè ea ratio e&longs;t, quia Mechanica præcipuè con&longs;iderat ma­<lb/> chinas, quæ corpora &longs;unt, & propterea præcipuè, & primò debet Stereome­<lb/> triæ, quæ corpora pariter contemplatur, &longs;ubalternari. </s> <s id="s.001105">Quod ait Apparen­<lb/>tia ad A&longs;trol. <!-- KEEP S--></s> <s id="s.001106">intelligit per Apparentia vulgarem quandam Nautarum, & <lb/> Agricolarum a&longs;tronomiam, quæ quodammodo &longs;ubalternatur, & pendet ex <lb/> &longs;cientia A&longs;trologiæ; indiget enim cognitione ortus, & motus a&longs;trorum, <lb/> præ&longs;ertim Lunæ, Hyadum, Pleiadum, & Canis. </s> <s id="s.001107">Reliqua <expan abbr="v&longs;q;">v&longs;que</expan> ad finem ca­<lb/> pitis optimè à Zabarella explicantur, <expan abbr="neq;">neque</expan> ad nos pertinet, cum de Mathe­<lb/> maticis agant, quatenus ad Logicum &longs;pectant.</s> </p> <p type="main"> <s id="s.001108"><arrow.to.target n="marg50"/></s> </p> <p type="margin"> <s id="s.001109"><margin.target id="marg50"/>50</s> </p> <p type="main"> <s id="s.001110">Po&longs;t nonnulla (<emph type="italics"/>Hic enim ip&longs;um quidem quod &longs;en&longs;itiuorum e&longs;t &longs;cire, ip&longs;um ve­<lb/> rò Propter quid Mathematicorum; hi <expan abbr="namq;">namque</expan> habent cau&longs;arum demon&longs;trationes, <lb/> &c.<emph.end type="italics"/>) &longs;en&longs;us e&longs;t in &longs;ubalternatis, & dependentibus di&longs;ciplinis, quas &longs;en&longs;itiuas <lb/> appellat, quia de rebus &longs;en&longs;ibilibus &longs;unt, vt in Per&longs;pectiua de obiectis vi&longs;ibi­<lb/> libus, & in Mu&longs;ica de &longs;onis cogno&longs;citur Quod, ide&longs;t effectus: cuius effectus <lb/> cau&longs;a, &longs;eu Propter quid &longs;citur auxilio Mathematicarum, ide&longs;t, traditur à <lb/> &longs;cientijs &longs;ubalternantibus. </s> <s id="s.001111">v. <!-- REMOVE S-->g. <!-- REMOVE S-->alicuius effectus in Per&longs;pectiua cau&longs;a inqui­<lb/>ritur, & inuenitur ope Geometriæ, cui illa &longs;ubiacet. </s> <s id="s.001112">Hic obiter notandum, <lb/> Ari&longs;t. fateri manife&longs;tè Mathematicas &longs;ubalternatas, &longs;eu medias o&longs;tendere <lb/> per cau&longs;as, quas &longs;ubalternantium ope perue&longs;tigant.</s> </p> <p type="main"> <s id="s.001113"><arrow.to.target n="marg51"/></s> </p> <p type="margin"> <s id="s.001114"><margin.target id="marg51"/>51</s> </p> <p type="main"> <s id="s.001115">Et po&longs;tea (<emph type="italics"/>Se habet autem & ad Per&longs;pectiuam, vt hæc ad Geometriam, alia ad <lb/>hanc, vt quod e&longs;t de Iride ip&longs;um enim quod Naturalis e&longs;t &longs;cire, ip&longs;um verò Prop­<lb/> ter quid Per&longs;pectiui<emph.end type="italics"/>) &longs;icut &longs;e habet, inquit, <expan abbr="&longs;ci&etilde;tià">&longs;cientià</expan> Naturalis de Iride ad Per­<lb/> &longs;pectiuam, ita Per&longs;pectiua ad Geometriam. </s> <s id="s.001116">qua verò ratione cau&longs;a Iridis <lb/> pertineat ad opticam, <expan abbr="atq;">atque</expan> hine tandem ad Geometriam, optimè patebit <lb/> in Meteoris, cum ip&longs;ius demon&longs;trationem afferemus.</s> </p> <p type="main"> <s id="s.001117"><arrow.to.target n="marg52"/></s> </p> <p type="margin"> <s id="s.001118"><margin.target id="marg52"/>52</s> </p> <p type="main"> <s id="s.001119">Tex. 37. (<emph type="italics"/>Vt æquicruri, & Scaleno hoc, quod e&longs;t duobus rectis æquales habere <lb/> &longs;ecandum commune aliquod ine&longs;t<emph.end type="italics"/>) quid &longs;it habere tres æquales duobus rectis <lb/> &longs;atis explicatum e&longs;t lib. r. </s> <s id="s.001120">Priorum &longs;ecto 3. cap. r. </s> <s id="s.001121">nunc igitur paraphra&longs;im <lb/> &longs;olum huius loci dabo. </s> <s id="s.001122">Triangulo I&longs;o&longs;celi, & Scaleno convenit pa&longs;&longs;io illa,<lb/> habere tres angulos æquales duobus rectis angulis &longs;ecundum aliquod com­ <pb pagenum="61" xlink:href="009/01/061.jpg"/>mune, quia illis competit, quatenus ambo &longs;unt figura quædam, ide&longs;t, qua­<lb/> tenus <expan abbr="vtrumq;">vtrumque</expan> illorum triangulum e&longs;t; triangulo <expan abbr="namq;">namque</expan> omni primo com­<lb/> petit habere tres angulos æquales duobus rectis.</s> </p> <p type="main"> <s id="s.001123"><arrow.to.target n="marg53"/></s> </p> <p type="margin"> <s id="s.001124"><margin.target id="marg53"/>53</s> </p> <p type="main"> <s id="s.001125">Tex. 38. (<emph type="italics"/>Et quemadmodum in alijs principium &longs;implex, hoc autem non idem <lb/> vbique, &longs;ed in pondere quidem mina, in cătu verò die&longs;is<emph.end type="italics"/>) Die&longs;is apud Mu&longs;icos e&longs;t <lb/> pars Toni. </s> <s id="s.001126">Tonus autem e&longs;t interuallum duarum vocum, quale e&longs;t inter pri­<lb/> mam vocem, Vt, & &longs;ecundam Rè, vt modo loquuntur. </s> <s id="s.001127">i&longs;tud interuallum <lb/> diuidunt Mu&longs;ici primum in &longs;emitonia, non tamen æqualia, &longs;ed vnum maius <lb/> altero. </s> <s id="s.001128">minus iterum in duas partes æquales &longs;ubdiuidunt, quarum <expan abbr="vtramq;">vtramque</expan> <lb/> veteres harmonici die&longs;im dixerunt. </s> <s id="s.001129">& h&etail;c die&longs;is e&longs;t minima vox ab eis con­<lb/> &longs;iderata; & quæ prima cadit &longs;ub &longs;en&longs;um; & propterea veluti &longs;implex prin­<lb/>cipium, & elementum, ex quo alia maiora interualla con&longs;tent; & in quod <lb/> re&longs;oluuntur. <foreign lang="greek">die/ois</foreign> porrò græcè valet inter alia, diui&longs;ionem. </s> <s id="s.001130">igitur interual­<lb/> lum i&longs;tud minimum dictum e&longs;t die&longs;is, quod &longs;it quædam diui&longs;io, &longs;eu &longs;egmen­<lb/>tum Toni (<emph type="italics"/>Quemadmodum in pondere mina<emph.end type="italics"/>) qui de ponderibus antiquis tra­<lb/> ctant, a&longs;&longs;erunt, Minam fui&longs;&longs;e maiorem libra per &longs;emunciam, æquipondera­<lb/> bat enim centum drachmis: quæ refragantur huic loco. </s> <s id="s.001131">&longs;ed fortè <expan abbr="dic&etilde;dum">dicendum</expan>, <lb/> Ari&longs;t. con&longs;idera&longs;&longs;e, Minam re&longs;pectu Talenti, re&longs;pectu enim illius dici pote&longs;t <lb/> principium, cum &longs;ex millia minarum in Attico talento continerentur.</s> </p> <figure id="id.009.01.061.1.jpg" place="text" xlink:href="009/01/061/1.jpg"/> <p type="main"> <s id="s.001132"><arrow.to.target n="marg54"/></s> </p> <p type="margin"> <s id="s.001133"><margin.target id="marg54"/>54</s> </p> <p type="main"> <s id="s.001134">Tex. 39. <emph type="italics"/>(Si enim quod duobus rectis ine&longs;t, non in <lb/> quantum æquicrus, &longs;ed in quantum triangulus, no­<lb/> &longs;cens, &c.)<emph.end type="italics"/> ide&longs;t, &longs;i enim qui cogno&longs;cit, quod ha­<lb/> bere tres angulos æquales duobus rectis conuenit <lb/> æquicruri, non quatenus æquicrus e&longs;t, &longs;ed quate­<lb/> nus triangulus e&longs;t, &c. </s> <s id="s.001135">quid &longs;it habere tres æqua­<lb/> les duobus rectis, &c. </s> <s id="s.001136">fusè explicatum e&longs;t in lib. 1. <lb/> Priorum &longs;ecto 3. cap. 1. quò te nunc mitto.</s> </p> <p type="main"> <s id="s.001137"><arrow.to.target n="marg55"/></s> </p> <p type="margin"> <s id="s.001138"><margin.target id="marg55"/>55</s> </p> <p type="main"> <s id="s.001139">Po&longs;t pauca <emph type="italics"/>(Ine&longs;t omni triangulo hoc quod est <lb/> duos, &c.)<emph.end type="italics"/> ide&longs;t, hæc proprietas, quæ e&longs;t habere <lb/> duos angulos rectos non actu, &longs;ed per æquiualen­<lb/> tiam trium angulorum trianguli. </s> <s id="s.001140">Vide quæ im­<lb/>mediatè &longs;upra de hac re dixi, & quò te remi&longs;i.</s> </p> <p type="main"> <s id="s.001141"><arrow.to.target n="marg56"/></s> </p> <p type="margin"> <s id="s.001142"><margin.target id="marg56"/>56</s> </p> <p type="main"> <s id="s.001143">Eodem tex <emph type="italics"/>(Quando igitur cogno&longs;cimus, quod <lb/> quatuor exteriores &longs;unt æquales, quoniam I&longs;o&longs;celes, <lb/>adhuc deficit, propier quid I&longs;o&longs;celes? </s> <s id="s.001144">quoniam trian­<lb/> gulus: & hoc quoniam figura rectilinea, &c.)<emph.end type="italics"/> exem­<lb/> plo geometrico vult o&longs;tendere demon&longs;trationem <lb/> vniuer&longs;alem e&longs;&longs;e particulari præ&longs;tantiorem: e&longs;t <lb/> autem exemplum de pulcherrima, <expan abbr="atq;">atque</expan> admira­<lb/> bili proprietate, quæ omnibus figuris rectilineis <lb/> conuenit, e&longs;t <expan abbr="&qacute;">que</expan>; huiu&longs;modi: Omnis figuræ rectili­<lb/>neæ anguli externi omnes &longs;imul &longs;umpti, &longs;unt æqu<lb/> les quatuor rectis angulis, quæ affectio demon­<lb/> &longs;tratur in &longs;cholio 32. primi Elem. dicuntur autem <lb/> anguli externi, qui productis lateribus fiunt, vt in <lb/>triangulo præ&longs;enti anguli externi &longs;unt, B D C,<pb pagenum="62" xlink:href="009/01/062.jpg"/>D F E, F B A, ita vt quælibet figura tot angulos externos &longs;ortiatur, quot <lb/> habet latera; cum exproductis lateribus oriantur. </s> <s id="s.001145">Vt autem propo&longs;itio ve­<lb/> rificetur, &longs;ingula latera ordinatim &longs;unt producenda, hoc e&longs;t, ver&longs;us eandem <lb/> partem, vt in figuris appo&longs;itis vides. </s> <s id="s.001146">Quæuis igitur figura rectilinea, &longs;iue <lb/> trilatera &longs;it, &longs;iue quadrilatera, vel etiam millelatera, & proinde mille quo­<lb/> que angulos externos habeat, hanc tamen mirabilem proprietatem (quod <lb/> vix credi pote&longs;t) po&longs;&longs;idet, vt omnes illi anguli externi &longs;imul &longs;int æquales <lb/> quatuor rectis angulis. </s> <s id="s.001147">vnde tres externi anguli trianguli, & quatuor exter­<lb/> ni quadranguli, & quinque externi <expan abbr="p&etilde;tagoni">pentagoni</expan>, &c. </s> <s id="s.001148">&longs;unt æquales quatuor tan­<lb/> tum rectis, nec aliter res &longs;e habet in figura millelatera. </s> <s id="s.001149">Ex quo fit, vt an­<lb/>guli externi cuiu&longs;uis figuræ &longs;int æquales angulis omnibus externis alterius <lb/> cuiu&longs;libet figuræ. </s> <s id="s.001150">Ari&longs;t. igitur inquit, quando cogno&longs;cimus, quod quatuor <lb/> angulis rectis &longs;unt æquales exteriores omnes anguli alicuius figuræ, quo­<lb/> niam figura illa e&longs;t triangulum &longs;calenum, adhuc talis cognitio e&longs;t defecti­<lb/> ua, quia non illi competit illa pa&longs;&longs;io, quia &longs;it triangulum &longs;calenum, neque <lb/> competit &longs;caleno, quia &longs;it triangulum; &longs;ed his omnibus competit, quia &longs;unt <lb/> figuræ rectilineæ, cui hæc proprietas ine&longs;t primo, & vniuer&longs;aliter: qui igi­<lb/> tur &longs;cit, &longs;calenum habere prædictam affectionem, ex eo, quod &longs;it figura re­<lb/> ctilinea, perfectius &longs;cit, quia nihil amplius quæri pote&longs;t, quia illa figura re­<lb/> ctilinea illud vniuer&longs;ale e&longs;t, cui primo competit; reliquis autem per illam. <lb/> </s> <s id="s.001151">qui igitur vniuer&longs;ale &longs;cit, perfectius &longs;cit; quod volebat Ari&longs;t. demon&longs;trare.</s> </p> <p type="main"> <s id="s.001152"><arrow.to.target n="marg57"/></s> </p> <p type="margin"> <s id="s.001153"><margin.target id="marg57"/>57</s> </p> <p type="main"> <s id="s.001154">Eodem tex. <emph type="italics"/>(Vt &longs;i quis nouit, quod omnis triangulus habet tres duobus rectis <lb/> æquales)<emph.end type="italics"/> nihil frequentius. </s> <s id="s.001155">vide &longs;upra lib. 1. Priorum &longs;ecto 3. cap. 1.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.001156"><arrow.to.target n="marg58"/></s> </p> <p type="margin"> <s id="s.001157"><margin.target id="marg58"/>58</s> </p> <p type="main"> <s id="s.001158">Tex. 43. <emph type="italics"/>(Sed planum, quod et&longs;i e&longs;&longs;et &longs;entire triangulum, quod duobus rectis <lb/> æquales habet angulos)<emph.end type="italics"/> vide &longs;upra lib. 1. Priorum &longs;ecto 3. cap. 1.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.001159"><arrow.to.target n="marg59"/></s> </p> <p type="margin"> <s id="s.001160"><margin.target id="marg59"/>59</s> </p> <p type="main"> <s id="s.001161">Po&longs;t pauca <emph type="italics"/>(Quare & &longs;i &longs;upra Lunam e&longs;&longs;emus, & videremus obiectam terram, <lb/> non <expan abbr="vtiq;">vtique</expan> &longs;ciremus cau&longs;am eclyp&longs;is)<emph.end type="italics"/> loquitur de defectu Lunæ, qui fit, quando <lb/> terra inter Lunam, & Solem po&longs;ita, impedit, ne lumen Solis feratur in Lu­<lb/> nam, &longs;ed efficit, vt vmbra ip&longs;ius terræ eam contegat.</s> </p> <p type="main"> <s id="s.001162"><arrow.to.target n="marg60"/></s> </p> <p type="margin"> <s id="s.001163"><margin.target id="marg60"/>60</s> </p> <figure id="id.009.01.062.1.jpg" place="text" xlink:href="009/01/062/1.jpg"/> <p type="main"> <s id="s.001164">Et paulo po&longs;t <emph type="italics"/>(Quemadmodŭm &longs;i vi­<lb/> trum perforatum videremus, & lumen <lb/> permeans, planum vtique e&longs;&longs;et propter <lb/> quid comburit)<emph.end type="italics"/> Ioquitur de ea com­<lb/> bu&longs;tione, cuæ fit per refractionem <lb/> media &longs;phæra vitrea. </s> <s id="s.001165">de qua Vitel­<lb/> lio propo&longs;. </s> <s id="s.001166">48. decimi libri; non au­<lb/> tem de ea, quæ fit per reflexionem <lb/> ex &longs;peculo concauo quando combu­<lb/> &longs;tio fit per refractionem, cau&longs;atur à <lb/> radijs Solis vitrum permeantibus, <lb/> in quo ita franguntur, vt egredien­<lb/> tes è vitro &longs;imul vniantur, ex qua <lb/> vnione ita calor intenditur, vt ibi <lb/> comburat. </s> <s id="s.001167">vt in appo&longs;ita figura cer­<lb/> nere facile e&longs;t; in qua radij à Sole <lb/> manentes, &longs;phæram vitream perua­ <pb pagenum="63" xlink:href="009/01/063.jpg"/>dunt, <expan abbr="atq;">atque</expan> in exitu ita refraguntur, vt ad A, punctum coaceruati, ibi po&longs;­<lb/> &longs;int, &longs;i quid combu&longs;tibile occurrat, comburere. </s> <s id="s.001168">Si igitur, inquit Ari&longs;t. vide­<lb/> remus illos radios &longs;ic permeare, & refrangi, planum <expan abbr="vtiq;">vtique</expan> nobis e&longs;&longs;et pro­<lb/> pter quid incendant.<lb/> <arrow.to.target n="marg61"/></s> </p> <p type="margin"> <s id="s.001169"><margin.target id="marg61"/>61</s> </p> <p type="main"> <s id="s.001170">Ad finem tex. <!-- REMOVE S-->43. <emph type="italics"/>(Principia enim duplicia &longs;unt, ex quibus, & circa quod: <lb/> quæ quidem igitur, ex quibus, communia &longs;unt: quæ autem circa quod propria, vt <lb/> numerus, magnitudo)<emph.end type="italics"/> nonnulli codices corruptè legunt (vt numerus magni­<lb/> tudine) &longs;ed ex græco tex. <!-- REMOVE S-->corrigendi &longs;unt, vti fecimus. </s> <s id="s.001171">Cæterum per prin­<lb/> cipia, ex quibus intelligit Dignitates, quia ex illis di&longs;currimus. </s> <s id="s.001172">per princi­<lb/> pia verò circa quod, intelligit Definitiones, quibus, vt apparet apud Eucli­<lb/> dem, explicatur &longs;ubiectum, circa quod &longs;cientia ver&longs;atur; vt in definitioni­<lb/> bus primi Elem. docemur, quid &longs;it linea, quid triangulum, quid circulus, <lb/> quid magnitudines reliquæ, quæ &longs;unt materia, circa quam Geometria &longs;pe­<lb/> culatur. </s> <s id="s.001173">In &longs;eptimo verò traduntur definitiones numerorum, quid &longs;it nu­<lb/> merus, quid impar, quid compo&longs;itus, quadratus, cubus, & reliquæ nume­<lb/> rorum &longs;pecies, quæ &longs;unt materia &longs;eptimi, octaui, & noni, in quibus de Arith­<lb/> metica tractatur.</s> </p> <p type="main"> <s id="s.001174"><arrow.to.target n="marg62"/></s> </p> <p type="margin"> <s id="s.001175"><margin.target id="marg62"/>62</s> </p> <p type="main"> <s id="s.001176">Tex. 44. <emph type="italics"/>(Commen&longs;urabilem namq; e&longs;&longs;e diametrum verè opinari, ab&longs;urdum e&longs;t)<emph.end type="italics"/><lb/> vide, quæ de <expan abbr="comm&etilde;&longs;urabilitate">commen&longs;urabilitate</expan> diametri quadrati cum latere expo&longs;uimus <lb/> lib. 1. Priorum &longs;ecto 1. cap. 23. ait igitur Ari&longs;t. ab&longs;urdum e&longs;&longs;e opinari dia­<lb/> metrum e&longs;&longs;e commen&longs;urabilem co&longs;tæ, &longs;eu lateri eiu&longs;dem quadrati, reli­<lb/> qua &longs;unt Logica.</s> </p> </chap> <chap> <p type="head"> <s id="s.001177"><emph type="italics"/>Ex Secundo Posteriorum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.001178"><arrow.to.target n="marg63"/></s> </p> <p type="margin"> <s id="s.001179"><margin.target id="marg63"/>63</s> </p> <p type="main"> <s id="s.001180">Tex. 1. <emph type="italics"/>(Dico autem &longs;impliciter quidem &longs;ubiectum, vt Lunam, aut ter­<lb/> ram, aut Solem, aut triangulum; aliquid verò defectum, æqualitatem, <lb/> inæqualitatem. </s> <s id="s.001181">&longs;i in medio, aut non)<emph.end type="italics"/> Zabarella locum hunc, etiam <lb/> quatenus ad Mathematicum attinet, optimè declarat. </s> <s id="s.001182">In quæ­<lb/> &longs;tionibus, & demon&longs;trationibus duo &longs;unt, &longs;ubiectum, & <expan abbr="prædicatũ">prædicatum</expan>, <expan abbr="vtriu&longs;q;">vtriu&longs;que</expan> <lb/> cau&longs;æ exi&longs;tunt, & quæruntur: v. <!-- REMOVE S-->g. <!-- REMOVE S-->Luna, terra, Sol, & triangulum &longs;unt &longs;u­<lb/> biectum in demon&longs;tratione, quorum prædicata &longs;unt, Lunæ quidem, & So­<lb/> lis, eclyp&longs;is. </s> <s id="s.001183">terræ autem e&longs;&longs;e in medio mundi, quod ab A&longs;tronomis ratione <lb/> ab eclyp&longs;ibus de&longs;umpta, euidentius, quam ab alio quoquam demon&longs;tratur, <lb/>vt patet ex tractatu de &longs;phæra. </s> <s id="s.001184">in quo Zabarella non probatur, qui &longs;olum <lb/> ait, terram e&longs;&longs;e in medio mundi, à Phy&longs;icis demon&longs;trari. </s> <s id="s.001185"><expan abbr="triãgulum">triangulum</expan> autem, <lb/> &longs;eu angulorum ip&longs;ius <expan abbr="prædicatũ">prædicatum</expan> e&longs;t æqualitas, & inæqualitas: vt cum in 32. <lb/> primi Elem. demon&longs;trat Euclides, omne triangulum habere tres angulos <lb/> æquales duobus rectis.</s> </p> <p type="main"> <s id="s.001186"><arrow.to.target n="marg64"/></s> </p> <p type="margin"> <s id="s.001187"><margin.target id="marg64"/>64</s> </p> <p type="main"> <s id="s.001188">Ibidem <emph type="italics"/>(Quid e&longs;t con&longs;onantia? </s> <s id="s.001189">ratio numerorum in acuto, & graui, &c)<emph.end type="italics"/> tan­<lb/> git breuiter Ari&longs;t. cau&longs;am formalem con&longs;onantiæ, & con&longs;equenter defini­<lb/> tionem ip&longs;ius. </s> <s id="s.001190">definiunt igitur Mu&longs;ici con&longs;onantiam hoc modo; Con&longs;onan­<lb/> tia e&longs;t compo&longs;itio &longs;oni grauis, & acuti, quæ &longs;uauiter auribus accidit; & quo­<lb/> rum &longs;onorum proportio ad inuicem &longs;it &longs;icuti proportio numerorum, qui <lb/> quaternario includuntur: vt e&longs;t proportio 2. ad 1. vel 3. ad 1. vel 4. ad 1. <lb/> vel 3. ad 2. vel 4. ad 3. <expan abbr="Quotie&longs;eunq;">Quotie&longs;cunque</expan> igitur duo &longs;oni habuerin quampiam <pb pagenum="64" xlink:href="009/01/064.jpg"/>ex <expan abbr="quinq;">quinque</expan> prædictis proportionibus, &longs;i &longs;imul coaluerint, ita vt ex eis vnus <lb/> tantum &longs;onus efficiatur; &longs;onus ille erit concordans, & auribus gratus. </s> <s id="s.001191"><expan abbr="atq;">atque</expan> <lb/> hæc e&longs;t &longs;ententia pri&longs;corum præ&longs;ertim Pythagoreorum, qui propterea di­<lb/> cebant non licere Mu&longs;ico vltra quaternarium pertran&longs;ire, eò quod &longs;olæ pro­<lb/> portiones, vt diximus, numerorum quaternario contentorum, concordem, <lb/> ac con&longs;onantem concentum efficere poterant: quod vt adhuc melius per­<lb/> <figure id="id.009.01.064.1.jpg" place="text" xlink:href="009/01/064/1.jpg"/><lb/> cipiamus, accipe exemplum. </s> <s id="s.001192">Sint duæ chordæ <lb/> A, & B, æqualis cra&longs;&longs;itici, & æquè ten&longs;æ. </s> <s id="s.001193">qua­<lb/> rum A, dupla &longs;it ip&longs;ius B, quia igitur corpora <lb/> &longs;onantia &longs;unt in dupla proportione, erunt pa­<lb/> riter eorum &longs;oni in ratione dupla (vt patet ex <lb/> principijs harmonicæ) hoc e&longs;t, <expan abbr="eorũ">eorum</expan> &longs;oni erunt, <lb/> vt 2. ad 1. quia &longs;cilicet &longs;onus maioris chordæ A, erit duplus ad &longs;onum mi­<lb/> noris chordæ B. hoc e&longs;t, erit, vt 2. ad 1. & propterea, &longs;i &longs;imul ambæ chordæ <lb/> pul&longs;entur, &longs;onus, quem ex duobus mixtum edent, con&longs;onans, <expan abbr="atq;">atque</expan> grati&longs;&longs;i­<lb/> mus auribus no&longs;tris perueniet. </s> <s id="s.001194">huiu&longs;modi porrò con&longs;onantia, quæ e&longs;t in <lb/> proportione dupla, <expan abbr="quæ&qacute;">quæque</expan> omnium &longs;uaui&longs;&longs;ima e&longs;t, à græcis dicebatur Dia­<lb/>pa&longs;on. </s> <s id="s.001195"><expan abbr="atq;">atque</expan> hæc in præ&longs;entia &longs;ufficiant, cum plura de his ad &longs;ectionem pro­<lb/> blematum 19. quæ tota e&longs;t de Mu&longs;ica, dicenda &longs;int.</s> </p> <p type="main"> <s id="s.001196"><arrow.to.target n="marg65"/></s> </p> <p type="margin"> <s id="s.001197"><margin.target id="marg65"/>65</s> </p> <p type="main"> <s id="s.001198">Tex. 2. <emph type="italics"/>(Vt quod omnis triangulus duobus rectis æquales habet)<emph.end type="italics"/> vide anno­<lb/> tata lib. 1. Priorum &longs;ecto 3. cap. 1.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.001199"><arrow.to.target n="marg66"/></s> </p> <p type="margin"> <s id="s.001200"><margin.target id="marg66"/>66</s> </p> <p type="main"> <s id="s.001201">Eodem tex. <emph type="italics"/>(Definitiones verò apparent omnes &longs;upponentes, & accipientes <lb/> ip&longs;um quid e&longs;t, vt Mathematicæ, quid vnitas, quid par, & impar)<emph.end type="italics"/> alludit ad de­<lb/> finitiones 7. Elem. vbi agitur de numeris. </s> <s id="s.001202">Quæ verò hoc loco de principijs <lb/> dicuntur, luculenti&longs;&longs;imè patent con&longs;ideranti definitiones, & axiomata, quæ <lb/> Mathematicis demon&longs;trationibus in omnibus ferè libris præmittuntur; ex <lb/> quibus &longs;tatim demon&longs;trationes deriuantur.</s> </p> <p type="main"> <s id="s.001203"><arrow.to.target n="marg67"/></s> </p> <p type="margin"> <s id="s.001204"><margin.target id="marg67"/>67</s> </p> <p type="main"> <s id="s.001205">Et paulo po&longs;t <emph type="italics"/>(<expan abbr="Neq;">Neque</expan> <expan abbr="vtiq;">vtique</expan> de plano figura, non enim e&longs;t planum figura, <expan abbr="neq;">neque</expan> fi­<lb/> gura planum)<emph.end type="italics"/> alludit ad definitiones planarum figurarum, qualis e&longs;t circu­<lb/> lus, cuius definitio e&longs;t inter definitiones primi Elem. 15. & e&longs;t huiu&longs;modi: <lb/> circulus e&longs;t figura plana, &longs;ub vnica linea comprehen&longs;a, quæ periphæria ap­<lb/> pellatur, ad quam ab vno puncto eorum, quæ intra figuram &longs;unt po&longs;ita, ca­<lb/> dentes omnes rectæ lineæ inter &longs;e &longs;unt æquales: in qua quidem definitione <lb/> non prædicatur planum de figura, nec figura de plano: <expan abbr="neq;">neque</expan> enim planum, <lb/> &longs;eu plana &longs;uperficies e&longs;t figura &longs;ecundum &longs;e, ni&longs;i terminetur; <expan abbr="neq;">neque</expan> figura e&longs;t <lb/> plana &longs;uperficies, cum plurimæ &longs;int figuræ curuæ, & præterea &longs;olidæ quam­<lb/> plurimæ.</s> </p> <p type="main"> <s id="s.001206"><arrow.to.target n="marg68"/></s> </p> <p type="margin"> <s id="s.001207"><margin.target id="marg68"/>68</s> </p> <p type="main"> <s id="s.001208">Ibidem <emph type="italics"/>(Quoniam mon&longs;tratum e&longs;t I&longs;o&longs;celes habere tres angulos æquales duo­<lb/> bus rectis, &longs;i id de omni triangulo mon&longs;tratum &longs;it)<emph.end type="italics"/> ex dictis lib. 1. Priorum &longs;ecto <lb/> 3. cap. 1. petatur huius loci declaratio.</s> </p> <p type="main"> <s id="s.001209"><arrow.to.target n="marg69"/></s> </p> <p type="margin"> <s id="s.001210"><margin.target id="marg69"/>69</s> </p> <p type="main"> <s id="s.001211">Tex. 7. <emph type="italics"/>(Quid enim &longs;ignificat triangulum, accipit Geometra)<emph.end type="italics"/> vt manife&longs;tum <lb/> e&longs;t in 20. definitione primi Elem.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.001212"><arrow.to.target n="marg70"/></s> </p> <p type="margin"> <s id="s.001213"><margin.target id="marg70"/>70</s> </p> <p type="main"> <s id="s.001214">Ibidem <emph type="italics"/>(Quod autem &longs;it, monstrat)<emph.end type="italics"/> vt per&longs;picuum e&longs;t in prima <expan abbr="demõ&longs;tra-tione">demon&longs;tra­<lb/> tione</expan> primi Elem. vbi triangulum æquilaterum con&longs;truit, & po&longs;tea probat <lb/> illud e&longs;&longs;e triangulum æquilaterum. </s> <s id="s.001215">Certum tamen e&longs;t, Geometram &longs;uppo­<lb/> nere triangulum in communi, cum inter definitiones ip&longs;ius contineatur, <pb pagenum="65" xlink:href="009/01/065.jpg"/>quod tamen non ob&longs;tat, quominus probare po&longs;&longs;it, aliquando po&longs;&longs;e <expan abbr="cõ&longs;trni">con&longs;trui</expan>, <lb/> & e&longs;&longs;e aliquod particulare triangulum, vt fit in prædicta demon&longs;tratione, <lb/> Euclidis.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.001216"><arrow.to.target n="marg71"/></s> </p> <p type="margin"> <s id="s.001217"><margin.target id="marg71"/>71</s> </p> <p type="main"> <s id="s.001218">Tex. 11. <emph type="italics"/>(Manife&longs;tum autem, & &longs;ic, propter quid e&longs;t rectus in &longs;emicirculo)<emph.end type="italics"/><lb/> affert exemplum demon&longs;trationis per cau&longs;am materialem, <expan abbr="id&qacute;">idque</expan>; vti &longs;olet ex <lb/> Mathematicis petitum, e&longs;t enim apud Euclidem 31. demon&longs;tratio 3. Elem. <lb/> vbi ip&longs;e o&longs;tendit angulum in &longs;emicirculo e&longs;&longs;e rectum. </s> <s id="s.001219">Vbi aduertendum e&longs;t <lb/> propo&longs;itionem hanc 31. ab Euclide demon&longs;trari duobus modis; ex quibus <lb/> &longs;ecundum innuit hoc loco Ari&longs;t. cui a&longs;cripta e&longs;t figura &longs;imilis huic no&longs;træ; <lb/> in editione Clauiana. </s> <s id="s.001220">quod fortè non benè aduertens Iacobus Zabarella, <lb/> alioquin in his &longs;atis oculatus incidit in errorem, dicens, &longs;e nullo pacto vi­<lb/> dere medium Euclidianæ demon&longs;trationis e&longs;&longs;e cau&longs;am materialem; quod <lb/> tamen nos mox aperiemus. </s> <s id="s.001221">per angulum in &longs;emicirculo intelligas eum, qui <lb/> fit à lineis ductis ab extremitatibus diametri, & &longs;imul in quoduis punctum <lb/> <figure id="id.009.01.065.1.jpg" place="text" xlink:href="009/01/065/1.jpg"/><lb/> circumferentiæ coeuntibus, vt in figura <lb/> præ&longs;enti vides lineas A C, B C, ad C, pun­<lb/> ctum conuenire, <expan abbr="ibi&qacute;">ibique</expan>; facere angulum, <lb/> A C B, qui dicitur angulus in &longs;emicircu­<lb/> lo, quia de&longs;criptus e&longs;t in &longs;emicirculo A­<lb/> C B. <expan abbr="e&longs;t&qacute;">e&longs;tque</expan>; &longs;anè mirabilis hæc &longs;emicirculi <lb/> proprietas, cum <expan abbr="vbicunq;">vbicunque</expan> punctum C, in <lb/> periphæria &longs;umptum fuerit, &longs;emper ta­<lb/> men angulus A C B, fiat rectus. </s> <s id="s.001222">quod Euclides eodem pror&longs;us medio, quod <lb/> Ari&longs;t. hic innuit, hoc modo demon&longs;trat. </s> <s id="s.001223">ducta enim recta D C, à centro D, <lb/> ad punctum C, exurgunt duo l&longs;o&longs;celia triangula A D C, C D B, ergo per <lb/> 5. primi, anguli D C A, D A C, &longs;unt æquales: pariter anguli D C B, D B C, <lb/> æquales &longs;unt. </s> <s id="s.001224">& quia per 32. primi, anguli D A C, D C A, &longs;imul &longs;unt æqua­<lb/> les angulo externo C D B, & inter &longs;e æquales, erit angulus A C D, dimidium <lb/> anguli C D B. eadem ratione probatur angulus D C B, e&longs;&longs;e dimidium an­<lb/> guli C D A. ergo totus angulus A C B, dimidium erit duorum angulorum <lb/> A D C, C D B, qui per 13. primi, &longs;unt vel recti, vel duobus rectis <expan abbr="æquiual&etilde;t">æquiualent</expan>. <lb/> </s> <s id="s.001225">Sequitur igitur, angulum A C B, in &longs;emicirculo e&longs;&longs;e dimidium duorum re­<lb/> ctorum; & quia omnes recti &longs;unt æquales, &longs;equitur dimidium duorum re­<lb/> ctorum, nihil aliud e&longs;&longs;e, quam vnum rectum angulum, ergo angulus in &longs;e­<lb/> micirculo, cum &longs;it &longs;emi&longs;&longs;is duorum <expan abbr="rectorũ">rectorum</expan>, erit vnus rectus angules; quod <lb/> erat probandum. </s> <s id="s.001226">ex quibus vides medium illud, quod Ari&longs;t. a&longs;&longs;ump&longs;it, e&longs;&longs;e <lb/> omnino idem cum eo, quo Euclides vtitur, &longs;cilicet, e&longs;&longs;e dimidium duorum <lb/> rectorum, & propterea e&longs;&longs;e rectum: quod etiam medium in toto demon­<lb/> &longs;trationis decur&longs;u e&longs;t vltimum, & principale, quod proximè conclu&longs;ionem <lb/> attingit, & propterea dici meretur e&longs;&longs;e medium huius demon&longs;trationis. <lb/> </s> <s id="s.001227">Cæterum, quod medium i&longs;tud &longs;it in genere cau&longs;æ materialis, patet ex eo, <lb/> quod e&longs;t, e&longs;&longs;e dimidium; nam e&longs;&longs;e dimidium, vel e&longs;&longs;e tertiam partem, & &longs;i­<lb/> milia, nihil aliud e&longs;t, quam e&longs;&longs;e partem; e&longs;&longs;e autem partem e&longs;t e&longs;&longs;e materiam <lb/> totius, etiam ex &longs;ententia ip&longs;ius Ari&longs;t. ex hac præterea materia conflatur <lb/> definitio minoris extremi, vel &longs;ubiecti; dum dicitur, angulus in &longs;emicircu­<lb/> lo e&longs;t dimidium duorum rectorum. </s> <s id="s.001228">&longs;yllogi&longs;mus enim reducitur tandem ad <pb pagenum="66" xlink:href="009/01/066.jpg"/>hanc formam, dimidium duorum rectorum e&longs;t rectus, angulus in &longs;emicir­<lb/> culo e&longs;t dimidium duorum <expan abbr="rectorũ">rectorum</expan>, ergo angulus in &longs;emicirculo e&longs;t rectus. <lb/> </s> <s id="s.001229">vides in minori propo&longs;itione contineri definitionem &longs;ubiecti materialem? <lb/> </s> <s id="s.001230">adeò vt hæc &longs;it demon&longs;tratio omnibus numeris ab&longs;oluta per cau&longs;am mate­<lb/> rialem, vt benè &longs;entit Ari&longs;t. <!-- KEEP S--></s> <s id="s.001231">Reliqua ad logicum pertinent, etiam&longs;i per cha­<lb/> racteres more mathematicorum exponantur.</s> </p> <p type="main"> <s id="s.001232"><arrow.to.target n="marg72"/></s> </p> <p type="margin"> <s id="s.001233"><margin.target id="marg72"/>72</s> </p> <p type="main"> <s id="s.001234">Tex. 24. <emph type="italics"/>(Vt propter quid re&longs;onat? </s> <s id="s.001235">aut propter quid apparet? </s> <s id="s.001236">aut propter quid <lb/> Iris? <!-- KEEP S--></s> <s id="s.001237">omnia enim hæc idem problemata &longs;unt genere, omnia enim &longs;unt refractio, &longs;ed <lb/> &longs;pecie altera)<emph.end type="italics"/> propter quid re&longs;onat? </s> <s id="s.001238">&longs;cilicet echo; propter quid apparet? <lb/> </s> <s id="s.001239">&longs;cilicet imago in &longs;peculo. </s> <s id="s.001240">dicit cau&longs;am echo, imaginis in &longs;peculo, & iridis <lb/> in nubibus e&longs;&longs;e eandem; nimirum refractionem; quamuis tres illæ refractio­<lb/> nes, &longs;eu; vt melius loquamur, reflexiones differant &longs;pecie ab inuicem, illa <lb/> enim e&longs;t repercu&longs;&longs;io vocis; hæc reflexio &longs;peciei vi&longs;ibilis ex corpore ter&longs;o; <lb/> i&longs;ta <expan abbr="deniq;">denique</expan> radiorum Solis ex nube rorida in &longs;tato angulo repercu&longs;&longs;us. </s> <s id="s.001241">qua <lb/> ratione autem i&longs;ta omnia fiant, longum e&longs;&longs;et exponere, & ab intelligentia <lb/> huius loci fortè alienum. </s> <s id="s.001242">Illud tamen non prætereundum, quod &longs;i propriè <lb/> cum Per&longs;pectiuis loqui velimus, dicendum e&longs;&longs;e, omnia illa e&longs;&longs;e reflexionem, <lb/> non refractionem. </s> <s id="s.001243">nam reflexio e&longs;t, quando linea vi&longs;ualis, per quam fertur <lb/>&longs;pecies in aliquod corpus ter&longs;um, impingit, ex quo deinde ad oculos refle­<lb/> ctitur. </s> <s id="s.001244">refractio tunc e&longs;t, quando &longs;pecies obiecti vi&longs;ibilis tran&longs;it per media <lb/> diuer&longs;æ cra&longs;&longs;itiei., vt quando &longs;pecies lapilli per aquam primùm, deinde per <lb/>aerem means ad oculum peruenit; tunc enim linea, per quam &longs;pecies pro­<lb/> greditur, frangitur in confinio aquæ, & aeris, ita vt &longs;pecies non per vnicam <lb/> lineam rectam, &longs;ed per fractam, &longs;eu refractam in confinio illo, oculis tan­<lb/> dem accidat.</s> </p> <p type="main"> <s id="s.001245">In fine textus <emph type="italics"/>(Quoniam Luna deficit)<emph.end type="italics"/> non intelligit defectum illum, qui <lb/> eclyp&longs;is appellatur, &longs;ed ilium, quo paulatim lumen Lunæ minus oculis no­<lb/> &longs;tris apparet: decre&longs;cente enim Luna &longs;olent humida augeri.</s> </p> <p type="main"> <s id="s.001246"><arrow.to.target n="marg73"/></s> </p> <p type="margin"> <s id="s.001247"><margin.target id="marg73"/>73</s> </p> <p type="main"> <s id="s.001248">Tex. 25. <emph type="italics"/>(Vt propter quid, & permutatim proportionale? </s> <s id="s.001249">& c.<emph.end type="italics"/>) quod quan­<lb/> titates, quæ &longs;unt proportionales, &longs;int etiam alternatim, &longs;eu permutatim <lb/> proportionales explicatum e&longs;t ad tex. <!-- REMOVE S-->13. primi Po&longs;ter. quæ etiam nece&longs;&longs;a­<lb/> ria &longs;unt ad hunc locum benè intelligendum. </s> <s id="s.001250">Illud autem commune propter <lb/> quod ea, quæ &longs;unt proportionalia, &longs;int etiam permutatim proportionalia, <lb/> e&longs;t quoddam innominatum, de quo ibi dictum e&longs;t, quod cum conueniat li­<lb/> neis, & numeris, & tamen &longs;eparatim de vtri&longs;que illa pa&longs;&longs;io demon&longs;tretur, <lb/> quærit cuinam primò, & per &longs;e conueniat hæc pa&longs;&longs;io, e&longs;&longs;e permutatim pro­<lb/> portionale; &longs;cilicet quidnam &longs;it illud innominatum; in quo deinde commu­<lb/> nicent lineæ, & numeri, vt inde habeant e&longs;&longs;e etiam permutatim propor­<lb/> tionalia.</s> </p> <p type="main"> <s id="s.001251"><arrow.to.target n="marg74"/></s> </p> <p type="margin"> <s id="s.001252"><margin.target id="marg74"/>74</s> </p> <p type="main"> <s id="s.001253">Ibidem (<emph type="italics"/>Hic quidem forta&longs;&longs;e proportionaliter habere latera, & angulos<emph.end type="italics"/>) vult <lb/>indicare, in quonam con&longs;i&longs;tat &longs;imilitudo inter duas figuras rectilineas geo­<lb/> metricas, quam &longs;imilitudinem Euclides definit. </s> <s id="s.001254">1. &longs;exti, &longs;ic explicat: &longs;imi­<lb/> les figuræ rectilíneæ &longs;unt; quæ & angulos &longs;ingulos, &longs;ingulis angulis æquales <lb/> habent, <expan abbr="atq;">atque</expan> etiam latera, quæ circa angulos æquales &longs;unt proportionalia. <lb/> </s> <s id="s.001255">vt &longs;i duo triangula appo&longs;ita habeant angulos æquales, <expan abbr="angulũ">angulum</expan> A, angulo D: <lb/>angulum B, angulo E. angulum C, angulo F. & præterea latera, quæ &longs;unt <pb pagenum="67" xlink:href="009/01/067.jpg"/><figure id="id.009.01.067.1.jpg" place="text" xlink:href="009/01/067/1.jpg"/><lb/> circa angulos æquales, v. <!-- REMOVE S-->g. <!-- REMOVE S-->circa an­<lb/> gulos A, & D, habeant proportiona­<lb/> lia, hoc e&longs;t, vt latus A B, ad latus A C; <lb/> ita &longs;it latus D E, ad latus D F; & &longs;ic de <lb/> lateribus alijs circa reliquos angulos <lb/> æquales; erunt tunc prædicta duo tri­<lb/> angula &longs;imilia.</s> </p> <p type="main"> <s id="s.001256"><arrow.to.target n="marg75"/></s> </p> <p type="margin"> <s id="s.001257"><margin.target id="marg75"/>75</s> </p> <p type="main"> <s id="s.001258">Ibidem (<emph type="italics"/>Vt extrin&longs;ecos æquales e&longs;&longs;e<emph.end type="italics"/>) ide&longs;t extrin&longs;ecos angulos cuiu&longs;uis fi­<lb/> guræ rectilineæ æquales e&longs;&longs;e quatuor rectis angulis: vide quæ &longs;crip&longs;imus de <lb/> hac re ad tex. <!-- REMOVE S-->39. &longs;ecundi Po&longs;ter. quæ huic pariter loco &longs;atisfaciunt.</s> </p> </chap> <chap> <p type="head"> <s id="s.001259"><emph type="italics"/>EX TOPICIS.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.001260"><emph type="italics"/>Ex Primo Libro.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.001261"><arrow.to.target n="marg76"/></s> </p> <p type="margin"> <s id="s.001262"><margin.target id="marg76"/>76</s> </p> <p type="main"> <s id="s.001263">Cap. 13. (<emph type="italics"/>Con&longs;iderare, quod diameter est co&longs;tæ incommen&longs;urabilis<emph.end type="italics"/>) vide <lb/> quæ de hac re &longs;crip&longs;i lib. 1. Priorum &longs;ecto 1. cap. 23.</s> </p> <p type="main"> <s id="s.001264"><arrow.to.target n="marg77"/></s> </p> <p type="margin"> <s id="s.001265"><margin.target id="marg77"/>77</s> </p> <p type="main"> <s id="s.001266">Eodem cap. (<emph type="italics"/>Similiter autem & acutum; non enim idem &longs;impliciter <lb/> in omnibus dicitur: nam vox acuta quidem velox (&longs;icut dicunt, qui &longs;e­<lb/>cundum numeros harmonici &longs;unt) angulus autem acutus, qui minor e&longs;t recto; gla­<lb/> dius verò, qui e&longs;t anguli acuti<emph.end type="italics"/>) affert tres &longs;pecies acuti, aliud dicens e&longs;&longs;e acu­<lb/> tum, quod e&longs;t in voce acuta; aliud, quod e&longs;t in angulo acuto: aliud denique, <lb/> quod e&longs;t in gladio acuto horum enim trium acumen diuer&longs;o modo &longs;e habet. <lb/> </s> <s id="s.001267">nam acumen vocis, & &longs;oni ex celeritate motus, qua aer percu&longs;&longs;us impelli­<lb/> tur; grauitatem autem ex tarditate oriri tradiderunt antiqui Mu&longs;ici om­<lb/> nes: quamuis non ex &longs;ola celeritate, & tarditate, &longs;ed ex alijs etiam cau&longs;is <lb/> oriri po&longs;&longs;e voluerint. </s> <s id="s.001268">Primus <expan abbr="omniũ">omnium</expan> Architas Tarentinus, vt e&longs;t apud Por­<lb/> phirium in harmonicis Ptolæmei, & Zarlinum pag. </s> <s id="s.001269">58. complem. </s> <s id="s.001270">mu&longs;ica­<lb/> lium, ait, &longs;i virga celerius feriat aerem, gigni motum celeriorem in aere, <lb/> <expan abbr="atq;">atque</expan> hinc &longs;onum acutiorem reddi, experientia con&longs;tat: &longs;i autem eadem vir­<lb/> ga tardius aerem feriat, gigni motum in aere tardiorem, ex quo etiam &longs;o­<lb/> num grauem, vt experientia docet. </s> <s id="s.001271">Ptolæmeus deinde lib. 1. cap. 3. Harm. <lb/> <!-- REMOVE S-->cum ex alijs, tum ex celeritate oriri &longs;onum acutum, grauem verò ex tardi­<lb/> tate a&longs;&longs;erit; vt &longs;i chorda eadem parum inten&longs;a pul&longs;etur, tardius aerem ver­<lb/> berat, & ideo grauiorem &longs;onum efficit: &longs;i autem magis intendatur, validius <lb/> aerem pul&longs;abit, & proinde citiorem motum illi imprimet, & propterea <lb/> acutiorem &longs;onum reddet. </s> <s id="s.001272">hæc ille. </s> <s id="s.001273">videmus etiam, quod cannæ organo­<lb/> rum maiores cum plus aeris moueant, & idcirco tardius, &longs;onum grauiorem <lb/> emittunt, quàm cannæ graciliores, quæ quia parum aeris cient, & ideo ce­<lb/> lerius, &longs;onum acutum edunt. </s> <s id="s.001274">ab hac &longs;ententia po&longs;teriores Mu&longs;ici non recel&longs;<lb/>&longs;erunt, vt videre e&longs;t apud Zarlinum.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.001275">In quo po&longs;tea con&longs;i&longs;tat ratio acuti anguli, explicat <expan abbr="induc&etilde;s">inducens</expan> definitionem <lb/> ip&longs;ius, quæ e&longs;t inter definitiones primi Elem. huiu&longs;modi, Angulus acutus <lb/> e&longs;t, qui minor recto e&longs;t. </s> <s id="s.001276">Demum explicat, cur nam gladius dicatur acutus, <lb/> quia nimirum habet angulum acutum &longs;uperficialem, ide&longs;t, quem duæ &longs;uper­<lb/> ficies &longs;imul in acie gladij concurrentes efficiunt.</s> </p> <pb pagenum="68" xlink:href="009/01/068.jpg"/> <p type="main"> <s id="s.001277"><arrow.to.target n="marg78"/></s> </p> <p type="margin"> <s id="s.001278"><margin.target id="marg78"/>78</s> </p> <p type="main"> <s id="s.001279">Eodem cap. (<emph type="italics"/>Rur&longs;um &longs;i eorundem; quæ &longs;unt &longs;ub eodem nomine diuer&longs;æ diffe­<lb/> rentiæ &longs;unt; vt coloris, qui e&longs;t in corporibus, & in melodijs<emph.end type="italics"/>) veteres Mu&longs;ici can­<lb/> tilenas omnes ad tria genera reuocarunt, videlicet Enharmonicum, Chro­<lb/>maticum, & Diatonicum; quæ di&longs;tinguebantur inuicem ex varia diui&longs;ione <lb/>interuallorum, ex quibus ip&longs;orum Monochordia con&longs;tabant: &longs;iue ex varijs <lb/> vocum interuallis, v. <!-- REMOVE S-->g. <!-- REMOVE S-->quia in vno continebantur plures toni, vt in Diato­<lb/> nico; in alio plures die&longs;es, vt in Enharmonico; in tertio verò plura &longs;emito­<lb/> nia, vt in Chromatico: quæ vox deducitur à chroma, græco, quod latinis <lb/> e&longs;t color; quare Chromaticum latinè redditur coloratum. </s> <s id="s.001280">Hic e&longs;t igitur <lb/> color ille, quem hic Ari&longs;t. innuit. </s> <s id="s.001281">quod genus for&longs;itan à calore denomina­<lb/> batur, quòd ip&longs;ius notæ mu&longs;icales e&longs;&longs;ent coloratæ, vt hoc modo ab alijs ge­<lb/> neribus digno&longs;ceretur. quam con&longs;uetudinem exi&longs;timat Zarlinus cap. 46. &longs;e­<lb/> cundæ partis, etiam no&longs;tra tempe&longs;tate aliquo modo per&longs;euerare, cum vi­<lb/> deamus in organis, & alijs huiu&longs;modi in&longs;trumentis, quæ pinnas, vulgò ta­<lb/>&longs;tos, habent; illas inquam pinnas, quæ chromaticis interuallis deputatæ <lb/> &longs;unt, colore nigro tinctas e&longs;&longs;e.</s> </p> </chap> <chap> <p type="head"> <s id="s.001282"><emph type="italics"/>Libro Quarto.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.001283"><arrow.to.target n="marg79"/></s> </p> <p type="margin"> <s id="s.001284"><margin.target id="marg79"/>79</s> </p> <p type="main"> <s id="s.001285">Cap. 1. loco 10. (<emph type="italics"/>Si quis in&longs;ecabiles ponens lineas<emph.end type="italics"/>) nonnulli antiquorum <lb/> Philo&longs;ophorum putarunt omnia ex indiui&longs;ibilibus componi, vt Demo­<lb/> critus, & Leucippus, & propterea dixerunt, etiam lineas con&longs;tare ex lineis <lb/>quibu&longs;dam adeò paruis, quæ omnino e&longs;ient in&longs;ecabiles, &longs;eu indiui&longs;ibiles: de <lb/> quibus plura in libello de line is in&longs;ecabilibus.</s> </p> </chap> <chap> <p type="head"> <s id="s.001286"><emph type="italics"/>Libro Sexto.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.001287"><arrow.to.target n="marg80"/></s> </p> <p type="margin"> <s id="s.001288"><margin.target id="marg80"/>80</s> </p> <p type="main"> <s id="s.001289">Cap. 2. loco 32. (<emph type="italics"/>Vt qui lineam definiunt longitudinem &longs;ine latitudine e&longs;&longs;e<emph.end type="italics"/>) <lb/>&longs;upponimus lectorem intellexi&longs;&longs;e definitiones &longs;altem primi Elem. in­<lb/> ter quas definitio lineæ e&longs;t &longs;ecunda, <expan abbr="cadem&qacute;">eademque</expan>; cum hac Ari&longs;totelis.<!-- KEEP S--></s> </p> </chap> <chap> <p type="head"> <s id="s.001290"><emph type="italics"/>Libro Octauo.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.001291"><arrow.to.target n="marg81"/></s> </p> <p type="margin"> <s id="s.001292"><margin.target id="marg81"/>81</s> </p> <p type="main"> <s id="s.001293">Cap. 2. loco 41. (<emph type="italics"/>Videntur autem in di&longs;ciplinis, &longs;eu Mathematicis quædam <lb/>ob definitionis defectum non facile de&longs;cribi; vt & quoniam, quæ ad latus &longs;e­<lb/> cat planum linea, &longs;imiliter diuidit & lineam, & locum: definitione autem dicta, <lb/> &longs;tatim manife&longs;tum e&longs;t, quod dicitur, nam eandem ablationem habent loca, & linea, <lb/> &longs;ive latus planæ figuræ, est autem definitio eiu&longs;dem proportionis hæc<emph.end type="italics"/>) mendosè <lb/>legitur à nonnullis (<emph type="italics"/>E&longs;t distem definitio eiu&longs;dem orationis hæc<emph.end type="italics"/>) quos puto de­<lb/> ceptos ab æquiuoco <foreign lang="greek">lsgous</foreign> quod & orationem, & rationem, &longs;iue proportio­<lb/> nem &longs;ignificat: hic autem &longs;ignificare proportionem res &longs;ubrecta &longs;atis mani­<lb/> fe&longs;tat. </s> <s id="s.001294">Notandum po&longs;tea cum Alexandro (quod & &longs;uperius alias commo­<lb/>nui in cap. de Priori, & alibi) per verbum (De&longs;cribi) &longs;ignificari hoc loco <lb/> geometricè demon&longs;trare, quoniam Geometræ <expan abbr="nõ">non</expan> ni&longs;i adhibitis de&longs;criptio­<lb/>nibus, &longs;eu figuris demon&longs;trant. </s> <s id="s.001295">Vult autem Ari&longs;t. exemplo mathematico <lb/> o&longs;tendere, difficile e&longs;&longs;e di&longs;putare, aut <expan abbr="argum&etilde;tari">argumentari</expan>, ni&longs;i prius rectè a&longs;&longs;ignetur <pb pagenum="69" xlink:href="009/01/069.jpg"/>definitio illius rei, de qua di&longs;&longs;eritur. </s> <s id="s.001296">Porrò exemplum mathematicum hic <lb/> allatum &longs;ic videtur explicandum: Conetur aliquis demon&longs;trare hanc pro­<lb/> po&longs;itionem; &longs;i linea ducta fuerit æquidi&longs;tans lateri vnius plani trianguli, &longs;e­<lb/>cabit & latera, & locum, ide&longs;t &longs;uperficiem illam triangularem &longs;imiliter, ide&longs;t <lb/> <figure id="id.009.01.069.1.jpg" place="text" xlink:href="009/01/069/1.jpg"/><lb/> in eadem proportione, vt in triangulo A B C, <lb/> linea D E, parallela ba&longs;i B C, &longs;ecat latera A B, <lb/> & A C, in punctis D, & E, in eadem ratione, <lb/> in qua etiam fecat totum triangulum, ita vt <lb/> eadem &longs;it proportio lineæ A D, ad D B, & lineæ <lb/> A E, ad E C, quæ e&longs;t partium totalis trianguli <lb/>A B C, &longs;cilicet quæ e&longs;t partis A D E, ad partem <lb/> E D C, fiue ad partem D E B. quod con&longs;tat ex <lb/> &longs;ecunda 6. Elem. <!-- KEEP S--></s> <s id="s.001297">Inquit ergo Ari&longs;t. <!-- KEEP S--></s> <s id="s.001298">Si quis <lb/> vellet hoc demon&longs;trare nondum præmi&longs;&longs;a defi­<lb/> nitione eorum, quæ habent eandem rationem, &longs;iue nondum definitione al­<lb/> lata quantitatum proportionalium, hic difficile id valeret o&longs;tendere: at ve­<lb/>rò allata prius definitione quantitatum proportionalium facile demon&longs;tra­<lb/> bit. </s> <s id="s.001299">Subdit verò Ari&longs;t. dictam definitionem, dicens, tunc quantitates e&longs;&longs;e <lb/> proportionales, quando habent eandem ablationem, ide&longs;t, eandem diui&longs;io­<lb/> nem, ide&longs;t, eadem diui&longs;io ne tantum proportionaliter de vna, quantum de <lb/> altera magnitudine re&longs;ecatur: Quemadmodum etiam Euclides loco cita­<lb/> to probat, latera illius trianguli, & &longs;uperficiem e&longs;&longs;e &longs;imiliter diui&longs;a, ex quo <lb/> &longs;equitur e&longs;&longs;e proportionalia. </s> <s id="s.001300">Porrò Euclides definit. </s> <s id="s.001301">&longs;eptima 5. paulo ali­<lb/> ter definit quantitates proportionales e&longs;&longs;e illas, quæ eandem habent ratio­<lb/> nem, v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;i &longs;it, vt prima ad &longs;ecundam, ita tertia ad quartam. </s> <s id="s.001302">ex quibus <lb/> quoad Mathematicas &longs;pectat, huic loco &longs;atisfactum &longs;it.</s> </p> <p type="main"> <s id="s.001303"><arrow.to.target n="marg82"/></s> </p> <p type="margin"> <s id="s.001304"><margin.target id="marg82"/>82</s> </p> <p type="main"> <s id="s.001305">Cap. 4. loco 86. <emph type="italics"/>(Tentandum autem, & ea, in quæ &longs;æpi&longs;&longs;imè incidunt di&longs;puta­<lb/> tiones, tenere, nam quemadmodum in Geometria ante opus e&longs;t circa elementa exer­<lb/> citatum e&longs;&longs;e, & in numeris circa capitales promptè &longs;e habere, & multum refert ad <lb/>hoc, & alium numerum cogno&longs;cere multiplicatum)<emph.end type="italics"/> Elementa vocabant antiqui <lb/> demon&longs;trationes faciliores, & &longs;impliciores, quales propriè &longs;unt omnes, quæ <lb/> &longs;ex prioribus libris Euclidianis continentur: ex illis enim tanquam ex ele­<lb/> mentis ab&longs;tru&longs;iores, & difficiliores demon&longs;trationes deducebant. </s> <s id="s.001306"><expan abbr="atq;">atque</expan> hæc <lb/> e&longs;t ratio, cur Euclides &longs;uos libros elementa nuncupauerit. </s> <s id="s.001307">ait igitur curan­<lb/> dum e&longs;&longs;e horum elementorum cognitionem in promptu habere, quia fre­<lb/> quens de ip&longs;is incidit di&longs;putatio. </s> <s id="s.001308">Per capitales numeros intelligo &longs;implices <lb/> ab vnitate, <expan abbr="v&longs;q;">v&longs;que</expan> ad nouem inclu&longs;iuè. </s> <s id="s.001309">& quando ait, alium numerum cogno­<lb/> &longs;cere multiplicatum, &longs;ignificat vtile valdè e&longs;&longs;e ad quotidianum v&longs;um <lb/> cogno&longs;cere, quemnam numerum producant numeri capitales, <lb/> &longs;i ad inuicem multiplicentur, quamuis huiu&longs;modi co­<lb/> gnitio facilis, ac leuis &longs;it: qua de cau&longs;a vide­<lb/> mus v&longs;que in hanc diem pueros diu in <lb/> Abaco memoriter perdi&longs;cen­<lb/> do detineri.</s> </p> </chap> <chap> <pb pagenum="70" xlink:href="009/01/070.jpg"/> <p type="head"> <s id="s.001310"><emph type="italics"/>Ex Primo Elenchorum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.001311"><arrow.to.target n="marg83"/></s> </p> <p type="margin"> <s id="s.001312"><margin.target id="marg83"/>83</s> </p> <p type="main"> <s id="s.001313">Cap. 10. <emph type="italics"/>(Nam p&longs;eudographiæ non contentio&longs;æ (&longs;ecundum enim ea, quæ <lb/> &longs;ub arte &longs;unt, captio&longs;æ &longs;unt ratiocinationes) <expan abbr="neq;">neque</expan> &longs;i aliqua e&longs;t p&longs;eudogra­<lb/> phia circa verum, vt Hippocratis quadratura, quæ per lunulas, &longs;ed, vt <lb/> Bry&longs;&longs;o quadrauit circulum; & tamet&longs;i quadretur circulus, quia tamen <lb/> non &longs;ecundum rem, ideo &longs;ophi&longs;ticus)<emph.end type="italics"/> qua ratione Hippocrates orbi quadrum <lb/> exhibere æquale tentauerit, explicatum e&longs;t abundè in 2. Priorum cap. 31. <lb/> & quo itidem modo Bry&longs;&longs;o lib. 1. Po&longs;ter. tex. <!-- REMOVE S-->23. <expan abbr="&longs;olũmodo">&longs;olummodo</expan> id hoc loco no­<lb/> tandum per p&longs;eudographiam intelligere, vt apertè etiam inferius explicat, <lb/> Geometricam demon&longs;trationem fallacem, eò quod demon&longs;trationes geo­<lb/>metricæ fiant adhibitis de&longs;criptionibus, &longs;eu figurationibus: p&longs;eudographia <lb/> autem latinè idem e&longs;t, ac fal&longs;a de&longs;criptio; quemadmodum è contrariò, &longs;i­<lb/> cuti &longs;upra in Topicis, & alibi ob&longs;eruaui, per de&longs;cribere intelligit geometri­<lb/> cè demon&longs;trare, & per de&longs;criptiones intelligit demon&longs;trationes geometri­<lb/> cas. </s> <s id="s.001314">Qua ratione item Hippocrates ex ijs, quæ &longs;ub arte Geometriæ &longs;unt, <lb/> procederet ibi dictum e&longs;t, propter quod non e&longs;t contentio&longs;a, quamuis fallax <lb/> ip&longs;ius demon&longs;tratio: appellat enim Ari&longs;t illas demon&longs;trationes contentio­<lb/> &longs;as, quæ non procedunt ex proprijs illius &longs;cientiæ, in qua fiunt, &longs;ed ex com­<lb/> munibus alijs &longs;cientijs: captio&longs;as verò, & &longs;ophi&longs;ticas, quæ ex proprijs &longs;cien­<lb/> tiæ, in qua fiunt, decipiunt. </s> <s id="s.001315">At verò demon&longs;tratio, &longs;eu p&longs;eudographia Bry&longs;­<lb/> &longs;onis erat contentio&longs;a, quia ex communibus, & extra Geometriam petitis <lb/> argumentabatur: quemadmodum ibi explicatum e&longs;t.</s> </p> <p type="main"> <s id="s.001316"><arrow.to.target n="marg84"/></s> </p> <p type="margin"> <s id="s.001317"><margin.target id="marg84"/>84</s> </p> <p type="main"> <s id="s.001318">Eodem cap. <emph type="italics"/>(Quadratura per lunulas non contentio&longs;a)<emph.end type="italics"/> inquit Hippocratis <lb/> tetragoni&longs;mum, de quo in 2. Priorum, quæ non contentio&longs;a dicitur, quia ex <lb/> proprijs Geometriæ deducebatur.</s> </p> <p type="main"> <s id="s.001319"><arrow.to.target n="marg85"/></s> </p> <p type="margin"> <s id="s.001320"><margin.target id="marg85"/>85</s> </p> <p type="main"> <s id="s.001321">Ibidem <emph type="italics"/>(Bry&longs;&longs;onis autem contentio&longs;a: & illam quidem non e&longs;t transferre, ni&longs;i <lb/> ad Geometriam &longs;olum; eo quod ex proprijs &longs;it principijs)<emph.end type="italics"/> <expan abbr="quãdo">quando</expan> ait <emph type="italics"/>(& illam qui­<lb/> dem)<emph.end type="italics"/> intelligit quadrationem Hippocratis. </s> <s id="s.001322">vide 2. Prior cap. 31. & quæ pau­<lb/> lo ante in præcedentibus locis diximus.</s> </p> <p type="main"> <s id="s.001323"><arrow.to.target n="marg86"/></s> </p> <p type="margin"> <s id="s.001324"><margin.target id="marg86"/>86</s> </p> <p type="main"> <s id="s.001325">Ibidem <emph type="italics"/>(Hanc autem ad plures)<emph.end type="italics"/> intelligit tetragoni&longs;mum Bry&longs;&longs;onis, qui <lb/> per communia deducebatur. </s> <s id="s.001326">lege &longs;uperius dicta in præcedentibus locis hu­<lb/> ius capituli.</s> </p> <p type="main"> <s id="s.001327"><arrow.to.target n="marg87"/></s> </p> <p type="margin"> <s id="s.001328"><margin.target id="marg87"/>87</s> </p> <figure id="id.009.01.070.1.jpg" place="text" xlink:href="009/01/070/1.jpg"/> <p type="main"> <s id="s.001329">Ad finem cap. <emph type="italics"/>(Aut vt Antiphon quadra­<lb/> uit)<emph.end type="italics"/> &longs;imile peccatum pecca&longs;&longs;e Antiphon­<lb/> tem in orbe quadrando, ac Hippocratem, <lb/> Ari&longs;t. his verbis videtur &longs;ignificare, ide&longs;t, <lb/> ip&longs;um, quamuis ex proprijs Geometriæ, <lb/> fal&longs;is tamen ratiocinatum e&longs;&longs;e. </s> <s id="s.001330">Cæterum <lb/> Antiphontem in hunc modum orbem ad <lb/> quadrum redigere tenta&longs;&longs;e, tradit Simpli­<lb/> cius. </s> <s id="s.001331">circulo quadrando in&longs;cribebat pri­<lb/> mò quadratum A B C D. deinde in &longs;ingu­<lb/> lis quatuor &longs;egmentis in&longs;cribebat totidem <lb/>trigona æquilatera, vt patet in ad&longs;cripta <pb pagenum="71" xlink:href="009/01/071.jpg"/>figura. </s> <s id="s.001332">po&longs;tea &longs;uper &longs;ingula latera horum triangulorum in reliquis &longs;egmen­<lb/> tis in&longs;cribebat adhuc triangula &longs;imilia triangulo A I E. alia in&longs;uper trigona <lb/> &longs;uper latera i&longs;torum con&longs;tituebat, donec ambitus figuræ illius multilateræ <lb/>in circulo delineatæ, circumferentiæ circuli aptaretur. </s> <s id="s.001333">quod fieri po&longs;&longs;e ille <lb/> falsò contra Geometriæ principia a&longs;&longs;umebat; e&longs;t enim principium Geome­<lb/> tricum continuum e&longs;&longs;e diui&longs;ibile in infinitum, <expan abbr="neq;">neque</expan> per diui&longs;ionem ab&longs;umi <lb/>po&longs;&longs;e; cui principio aduer&longs;atur, dum putat &longs;e con&longs;umpturum totum circu­<lb/> lum, diuidendo illud in triangula &longs;emper minora; vel quia putat, lineam <lb/> curuam con&longs;tare ex minimis lineis rectis. </s> <s id="s.001334">Similiter igitur <expan abbr="atq;">atque</expan> Hippocra­<lb/>tes errauit, qúi pariter in Geometria fallebatur: Antiphon quidem contra <lb/> principia illius: Hippocrates verò a&longs;&longs;umens fal&longs;i quidpiam in Geometria. <lb/> <!-- KEEP S--></s> <s id="s.001335">At Bry&longs;&longs;o, eo quod per communia alijs &longs;cientijs deduceret ratiocinatio­<lb/> nem propterea p&longs;eudographia Antiphontis non litigio&longs;a quidem, &longs;ed <lb/> tamen fallax extitit, non enim per communia alijs &longs;cientijs <lb/> procedat; vnde nec transferri poterat ip&longs;ius fal&longs;a de­<lb/> &longs;criptio, &longs;eu demon&longs;tratio extra Geometriæ li­<lb/> mites, quod cau&longs;a e&longs;t contentionis.</s> </p> <p type="head"> <s id="s.001336"><emph type="italics"/>Logicorum locorum finis.<emph.end type="italics"/></s> </p> </chap> <pb pagenum="72" xlink:href="009/01/072.jpg"/> <chap> <p type="head"> <s id="s.001337">EX PRIMO LIBRO <lb/> PHYSICORVM.<lb/> <arrow.to.target n="marg88"/></s> </p> <p type="margin"> <s id="s.001338"><margin.target id="marg88"/>88</s> </p> <p type="main"> <s id="s.001339">Tex. 11. <emph type="italics"/>(Simul autem <expan abbr="neq;">neque</expan> conuenit omnia &longs;oluere', &longs;ed <expan abbr="quæcunq;">quæcunque</expan> ex <lb/> principijs aliquis demon&longs;trans <expan abbr="m&etilde;titur">mentitur</expan>; <expan abbr="quæcunq;">quæcunque</expan> verò non, minimè: <lb/> vt tetragoni&longs;mum, eum quidem, qui per &longs;ectiones Geometrici est di&longs;­<lb/> &longs;oluere: illum autem, qui Antiphontis non Geometrici e&longs;t<emph.end type="italics"/>) Tetrago­<lb/> ni&longs;mum, &longs;eu circuli quadraturam per &longs;ectiones, e&longs;&longs;e illam Hip­<lb/> pocratis Chij exi&longs;timant græci expo&longs;itores, qui per lunulas, quas Ari&longs;t. &longs;e­<lb/> ctiones appellat, orbem quadrare tentabat. </s> <s id="s.001340">Eius demon&longs;trationem expli­<lb/> caui ad cap. 31. de Abductione in 2. Priorum, quam inibi videas. </s> <s id="s.001341">hoc &longs;olum <lb/> hic notandum pertinere ad Geometram, ip&longs;am refellere, quia ex fal&longs;a qua­<lb/> dam præmi&longs;&longs;a ex Geometria de&longs;umpta, ratiocinabatur, idcirco debet (in­<lb/> quit Ari&longs;t.) Geometra illius deceptionem inuenire. </s> <s id="s.001342">Tetragoni&longs;mum autem <lb/> Antiphontis non e&longs;t Geometræ <expan abbr="cõfutare">confutare</expan>, quia aduer&longs;abatur principijs Geo­<lb/> metriæ, &longs;upponebat enim circuli circumferentiam ex indiuiduis, <expan abbr="minimis&qacute;">minimisque</expan>; <lb/> lineis rectis componi: cuius fal&longs;am demon&longs;trationem explicatam inuenies <lb/> ad cap. 10. primi Elench. <!-- REMOVE S-->po&longs;&longs;umus addere tertiam rationem quia &longs;cilicet <lb/> Hippocrates non procedebat per communia alijs &longs;cientijs, vt videre e&longs;t ad <lb/> tex. <!-- REMOVE S-->23. primi Po&longs;ter. cap. 8. vbi ip&longs;ius p&longs;eudographiam expo&longs;ui. Quemad­<lb/> modum igitur Geometra di&longs;&longs;oluit fal&longs;as tantummodo rationes eas, quæ &longs;er­<lb/> uatis Geometricis principijs procedunt; non autem eas, quæ Geometriæ <lb/> principia conuellunt: ita Phy&longs;ico non incumbit <expan abbr="cõtra">contra</expan> Parmenidem, ac Me­<lb/> li&longs;&longs;um naturæ principia de&longs;truentes di&longs;ceptare, aut fallaces eorum rationes <lb/> coarguere. </s> <s id="s.001343">Hoc volebat Ari&longs;toteles inferre.</s> </p> </chap> <chap> <p type="head"> <s id="s.001344"><emph type="italics"/>Ex Secundo Phy&longs;icorum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.001345"><arrow.to.target n="marg89"/></s> </p> <p type="margin"> <s id="s.001346"><margin.target id="marg89"/>89</s> </p> <p type="main"> <s id="s.001347">Tex. 20. (<emph type="italics"/>Geometria enim de phy&longs;ica linea con&longs;iderat, &longs;ed non quatenus <lb/> e&longs;t phy&longs;ici: Per&longs;pectiua autem mathematicam quidem lineam, &longs;ed non <lb/> quatenus phy&longs;ica e&longs;t<emph.end type="italics"/>) quamuis textus hic non pertineat ad Mathe­<lb/> maticum, libuit tamen illum in ordinem no&longs;trum recen&longs;ere, ope­<lb/> ræpretium etenim e&longs;t ea, quæ in ip&longs;o continentur à nonnullis recentioribus <lb/> rectè intelligi, vt ab his moniti, ab inani quadam optices impugnatione ab­<lb/> &longs;tineant, ac tandem ex Ari&longs;t. lineas illas vi&longs;uales quas ip&longs;i de medio tollunt, <lb/> per&longs;picuè videant. </s> <s id="s.001348">cætera, quæ in præcedentibus locis Ari&longs;t. de Natura Ma­<lb/> thematicarum habet, &longs;unt præter no&longs;trum in&longs;titutum.</s> </p> <p type="main"> <s id="s.001349"><arrow.to.target n="marg90"/></s> </p> <p type="margin"> <s id="s.001350"><margin.target id="marg90"/>90</s> </p> <p type="main"> <s id="s.001351">Tex. 28. (<emph type="italics"/>Alio autem modo, forma, & exemplum: hæc autem e&longs;t ratio ip&longs;ius, <lb/> quod quid erat e&longs;&longs;e, & huius genera, vt ip&longs;ius diapa&longs;on duo ad vnum, & omnino <lb/> numerus, & partes, quæ in ratione &longs;unt<emph.end type="italics"/>) vt benè intelligas, quod in præ&longs;enti <lb/> textu <expan abbr="mathematicũ">mathematicum</expan> e&longs;t, con&longs;ule prius, quæ &longs;crip&longs;i ad tex. <!-- REMOVE S-->1. cap. primi 2. Po­<lb/> &longs;ter. <!-- REMOVE S-->&longs;uper verba illa (<emph type="italics"/>Quid e&longs;t con&longs;onantia?<emph.end type="italics"/>) vbi per&longs;picuè videbis, cur <expan abbr="con-&longs;onãtiæ">con­<lb/> &longs;onantiæ</expan>, quæ dicitur Diapa&longs;on, e&longs;&longs;entia, & definitio &longs;it ip&longs;a proportio dupla, <lb/> quæ &longs;ub his num. </s> <s id="s.001352">2.1. continetur: quibus per&longs;pectis facilis erit phy&longs;ico totius <lb/> loci intelligentia.</s> </p> <pb pagenum="73" xlink:href="009/01/073.jpg"/> <p type="main"> <s id="s.001353"><arrow.to.target n="marg91"/></s> </p> <p type="margin"> <s id="s.001354"><margin.target id="marg91"/>91</s> </p> <p type="main"> <s id="s.001355">Tex. 68. (<emph type="italics"/>Aut enim ad ip&longs;um quid e&longs;t, reducitur ip&longs;um propter quid in immo­<lb/>bilibus, vt in Mathematicis, ad definitionem enim recti, aut commen&longs;urabilis, aut <lb/> alius cuiu&longs;piam reducitur vltimum<emph.end type="italics"/>) ex his manife&longs;tè videas Mathematicas <expan abbr="de-mõ&longs;trare">de­<lb/> mon&longs;trare</expan> per cau&longs;am formalem, cum cau&longs;am ip&longs;am ad ip&longs;um quid e&longs;t, ide&longs;t, <lb/> ad definitionem reducant. </s> <s id="s.001356">quorum exempla in logicis ex Mathematicis at­<lb/> tuli: &longs;ed etiam &longs;equentis loci exemplum de triangulo idem apertè manife­<lb/> &longs;tat; in quo probat duos angulos A C B, A C D, e&longs;&longs;e rectos, ex definitione <lb/> ip&longs;orum, &longs;iue ex definitione lineæ perpendicularis A C, quod idem e&longs;t.</s> </p> <p type="main"> <s id="s.001357"><arrow.to.target n="marg92"/></s> </p> <p type="margin"> <s id="s.001358"><margin.target id="marg92"/>92</s> </p> <p type="main"> <s id="s.001359">Tex 89. (<emph type="italics"/>E&longs;t autem nece&longs;&longs;arium in Mathematicis, & in his, quæ &longs;ecundum <lb/>naturam fiunt qua&longs;i eodem modo; quoniam enim hoc rectum e&longs;t, nece&longs;&longs;e e&longs;t, trian­<lb/>gulum tres angulos habere æquales duobus rectis; &longs;ed non, &longs;i hoc, illud; &longs;ed &longs;i hoc <lb/> non e&longs;t, <expan abbr="neq;">neque</expan> rectum e&longs;t.<emph.end type="italics"/>) cum animaduerterim non parum e&longs;&longs;e di&longs;&longs;en&longs;ionis, & <lb/> difficultatis in exemplo hoc mathematico explicando, ita vt recentiores <lb/> quidam textum <expan abbr="hũc">hunc</expan> pro arbitratu &longs;uo perperam latinè verterint: ideò pri­<lb/> mum ex græcis codicibus interpretationem hanc veram attuli. </s> <s id="s.001360">deinde, quia <lb/> etiam græci in exemplo mathematico enodando, vel malè, vt Simplicius; <lb/> vel ob&longs;curè nimis, vt reliqui; Latini verò vel nihil, vel peius multò loquun­<lb/> tur, ideò &longs;ic ego exponendum cen&longs;ui. </s> <s id="s.001361">cum velit Ari&longs;t. o&longs;tendere nece&longs;&longs;ita­<lb/>tem, quæ in &longs;cientijs inter præmi&longs;&longs;as, &longs;eu medium, & conclu&longs;ionem reperi­<lb/> tur, affert exemplum illud mathematicum &longs;ibi familiare, demon&longs;trationem <lb/> &longs;cilicet illam, qua o&longs;tenditur, omne triangulum habere tres angulos æqua­<lb/> les duobus rectis angulis, cuius fu&longs;i&longs;&longs;imam explicationem inuenies &longs;upra in <lb/> primo Priorum, &longs;ecto 3. cap. 1. quam nece&longs;&longs;e e&longs;t, con&longs;ulas. </s> <s id="s.001362">pro medio autem <lb/> huius pa&longs;&longs;ionis accipit lineam perpendicularem, quam innuit verbis illis <lb/> <emph type="italics"/>(quoniam enim hoc rectum e&longs;t<emph.end type="italics"/>) vt in figura &longs;it triangulum A B C, <expan abbr="&longs;it&qacute;">&longs;itque</expan>; vt latus <lb/> <figure id="id.009.01.073.1.jpg" place="text" xlink:href="009/01/073/1.jpg"/><lb/> A C, &longs;it perpendiculare <expan abbr="cũ">cum</expan> latere B C, & pro­<lb/> ducatur B C, in D; tunc triangulum A B C, <lb/> habere tres angulos, A, B, & A C B, æquales <lb/> duobus rectis planum erit: nam <expan abbr="cũ">cum</expan> latus A C, <lb/> &longs;it perpendiculare (quod Ari&longs;t. dicit, cum <expan abbr="re-ctũ">re­<lb/> ctum</expan> hoc &longs;it) erunt duo anguli deinceps A C B, <lb/> A C D, recti, ex definitione lineæ perpendicu­<lb/> laris, cum ergo duo anguli A, & B, externo, <expan abbr="recto&qacute;">rectoque</expan>; A C D, &longs;int æquales per <lb/> 32. primi, & reliquus angulus A C B, communis, ide&longs;t, &longs;it angulus triangu­<lb/> li, & angulus vnus lineæ perpendicularis, & ideò rectus; manife&longs;tè apparet, <lb/> tres angulos A, B, A C B, e&longs;&longs;e æquales nece&longs;&longs;ariò duobus rectis, ex po&longs;itio­<lb/> ne illius recti, &longs;iue lateris perpendicularis, quia ex verò, verum nece&longs;&longs;ariò <lb/> &longs;equitur; non tamen po&longs;ita hac pa&longs;&longs;ione, &longs;iue conclu&longs;ione, habere &longs;cilicet <lb/> tres angulos æquales duobus rectis, nece&longs;&longs;ariò &longs;equitur illud e&longs;&longs;e rectum, <lb/>ide&longs;t latus illud A C, e&longs;&longs;e perpendiculare ad latus B C, quia verum <lb/> &longs;equi pote&longs;t ex verò, & falsò. </s> <s id="s.001363">valebit tamen hæc con&longs;equen­<lb/> tia, &longs;i triangulum non habet hanc proprietatem, ne­<lb/> que illud rectum e&longs;t, ide&longs;t, <expan abbr="neq;">neque</expan> latus prædi­<lb/>ctum erit <expan abbr="perp&etilde;diculare">perpendiculare</expan>, quia fal&longs;um <lb/>non, ni&longs;i ex fal&longs;o &longs;equitur.</s> </p> </chap> <pb pagenum="74" xlink:href="009/01/074.jpg"/> <chap> <p type="head"> <s id="s.001364"><emph type="italics"/>Ex Tertio Phy&longs;icorum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.001365"><arrow.to.target n="marg93"/></s> </p> <p type="margin"> <s id="s.001366"><margin.target id="marg93"/>93</s> </p> <p type="main"> <s id="s.001367">Tex. 26. <emph type="italics"/>(Et hi quidem infinitum e&longs;&longs;e par; hoc enim compræhen&longs;ura, & <lb/> ab impari terminatum tribuit ijs, quæ &longs;unt, infinitatem. </s> <s id="s.001368">&longs;ignum autem <lb/>huius id e&longs;&longs;e, quod contingit in numeris, circumpo&longs;itis enim Gnomoni­<lb/>bus circa vnum, & &longs;eor&longs;um, aliquando quidem &longs;emper aliam fieri &longs;pe­<lb/> ciem, aliquando autem vnam)<emph.end type="italics"/> vt melius percipiantur ea, quæ &longs;equuntur, lege <lb/> prius, quæ in cap. de Motu in po&longs;t prædicamentis &longs;crip&longs;i de Gnomone, ad <lb/> &longs;imilitudinem enim Gnomonis illius Geometrici, inueniuntur etiam in nu­<lb/> meris Gnomones Arithmetici. </s> <s id="s.001369">Pythagorici enim (à quibus i&longs;ta mutuatus <lb/> e&longs;t Ari&longs;t. numeros impares &longs;olos appellabant Gnomones, eò quod in for­<lb/> mam normæ æquilateræ, &longs;iue Gnomonis con&longs;titui po&longs;&longs;int, vt patet in his <lb/> <figure id="id.009.01.074.1.jpg" place="text" xlink:href="009/01/074/1.jpg"/><lb/> nimirum in ternario, quinario, &longs;eptenario, & &longs;ic de <lb/> reliquis imparibus. </s> <s id="s.001370">pares autem numeri, quia ne­<lb/> queunt in figuram normæ æquilateræ di&longs;poni, cum <lb/> non habeant vnitatem pro angulo, & paria po&longs;tea la­<lb/> tera, vt oportet, non merentur appellari Gnomones, vt quaternarius, &longs;i di­<lb/> &longs;ponatur &longs;ic <figure id="id.009.01.074.2.jpg" place="text" xlink:href="009/01/074/2.jpg"/> non refert Gnomonem, quia lateribus in&etail;qualibus con­<lb/> &longs;tat; <expan abbr="neq;">neque</expan> &longs;i hoc modo <figure id="id.009.01.074.3.jpg" place="text" xlink:href="009/01/074/3.jpg"/> quia dee&longs;t huic figuræ angularis vnitas, quæ <lb/>illi nece&longs;&longs;aria e&longs;t. </s> <s id="s.001371">Pythagorici igitur dicebant, numerum parem ideò e&longs;&longs;e <lb/> infinitum ip&longs;um, quia videbant ip&longs;um e&longs;&longs;e cau&longs;am perpetuæ diui&longs;ionis, cum <lb/> quælibet res quanta &longs;it diui&longs;ibilis bifariam, ide&longs;t in duo &longs;ecundum numerum <lb/> parem, & &longs;ubdiui&longs;ibilis po&longs;tea bifariam, & &longs;ic in infinitum, vt de linea pro­<lb/> blematicè probatur in 10. primi Elem. quamuis theorematicè &longs;it axioma. <lb/> </s> <s id="s.001372">hunc porrò numerum parem dicebant terminatum e&longs;&longs;e ab impari, quia ori­<lb/> tur ex diui&longs;ione cuiu&longs;uis rei, quæ vna &longs;it, &longs;umentes vnitatem pro impari. <lb/> </s> <s id="s.001373">&longs;ignum præterea huius finitatis ab impari, & infinitatis à pari numero pro­<lb/> cedentis, aiunt e&longs;&longs;e Gnomones, numeros &longs;cilicet impares: Gnomones enim, <lb/> ide&longs;t impares numeri vnitati additi, producunt eandem perpetuò numero­<lb/> rum formam, videlicet quadratum: at verò è contrariò numeri pares vni­<lb/> tati additi, conflant perpetuò varias numerorum formas: quapropter vi­<lb/>dentur numeri impares e&longs;&longs;e finitatis cau&longs;a; &longs;icut pares ex aduersò infinitatis <lb/> principium. </s> <s id="s.001374">quæ vt melius intelligas, declaranda e&longs;t 26. propo&longs;. </s> <s id="s.001375">7. Arith­<lb/> metices lordani, vbi i&longs;tud idem demon&longs;trat, quæ e&longs;t hæc. </s> <s id="s.001376">&longs;it vnitas, & &longs;uo or­<lb/> dine &longs;equantur impares, vt in &longs;equenti hac &longs;erie apparet 1. 3. 5. 7. 9. & c. <lb/> <figure id="id.009.01.074.4.jpg" place="text" xlink:href="009/01/074/4.jpg"/><lb/> &longs;i igitur vnitati addatur ternarius in Gnomo­<lb/> nis modum, vt vides in prima figura, produ­<lb/> cetur quaternarius numerus, qui e&longs;t numerus <lb/> quadratus (quid &longs;it quadratus numerus expli­<lb/> caui in Logicis tex. <!-- REMOVE S-->9. primi Po&longs;ter.) et&longs;i huic <lb/> quaternario addatur &longs;equens impar, qui e&longs;t <lb/>quinarius in modum Gnomonis, vt in &longs;ecunda <lb/> figura, &longs;it numerus nouenarius, qui pariter e&longs;t quadratus. </s> <s id="s.001377">et&longs;i huic &longs;imiliter <lb/>addatur &longs;equens impar, nimirum &longs;eptenarius, conflabitur &longs;edenarius, qui <lb/> numerus pariter quadratus e&longs;t, vt in tertia figura, & hoc modo, &longs;i in infini­ <pb pagenum="75" xlink:href="009/01/075.jpg"/>tum procedatur, numeri &longs;emper quadrati progignentur. </s> <s id="s.001378">Vides igitur, qui <lb/> ratione Gnomonum, &longs;iue imparium additione fiat &longs;emper eadem &longs;pecies, <lb/> &longs;cilicet quadratus numerus, quod &longs;ignum e&longs;t, inquiunt, imparem numerum <lb/> non infinitatis, &longs;ed finitatis e&longs;&longs;e auctorem. </s> <s id="s.001379">Po&longs;t prædictam 26. propo&longs;itio­<lb/>nem Iordani, &longs;unt aliquot propo&longs;itiones, quarum &longs;umma hæc e&longs;t: &longs;i pares <lb/> numeri ab vnitate coaceruentur; coaceruati erunt &longs;emper variæ formæ nu­<lb/> merorum. </s> <s id="s.001380">quæ &longs;ic explicantur: &longs;int ab vnitate pares di&longs;po&longs;iti ordinatim <lb/> hoc modo, 1. 2. 4. 6. &c. </s> <s id="s.001381">&longs;i igitur vnitati binarius coaceruetur, fit numerus <lb/> <figure id="id.009.01.075.1.jpg" place="text" xlink:href="009/01/075/1.jpg"/><lb/> triangularis, vt in prima figura. </s> <s id="s.001382">&longs;i huic ternario <lb/> coaceruetur &longs;equens par, fiet altera &longs;pecies, ni­<lb/> mirum hexagonus numerus, vt in &longs;ecunda figu­<lb/> ra. </s> <s id="s.001383">cui &longs;i &longs;equens addatur par, &longs;cilicet &longs;enarius, <lb/> fiet iterum noua numeri forma, v. <!-- REMOVE S-->g. <!-- KEEP S--></s> <s id="s.001384">dodecago­<lb/> nus, vt in tertia figura. </s> <s id="s.001385">& &longs;ic &longs;emper in infinitum nouæ ac variæ numerorum <lb/> formæ ex hac additione parium prouenient, quod argumento e&longs;t numerum <lb/> parem infiniti naturam &longs;apere. </s> <s id="s.001386">Porrò reperiri numeros triangulares, pen­<lb/> tagonos, & &longs;imiles, con&longs;tat ex Arithmetica Nicomachi, Boetij, & Iordani, <lb/>citati in definitionibus 7. &longs;uæ Arithmeticæ, atque ex tractatu Diophantis <lb/> Alex. de numeris rectangulis. </s> <s id="s.001387"><expan abbr="atq;">atque</expan> ex his locus hic &longs;atis clarus redditur.</s> </p> <p type="main"> <s id="s.001388"><arrow.to.target n="marg94"/></s> </p> <p type="margin"> <s id="s.001389"><margin.target id="marg94"/>94</s> </p> <p type="main"> <s id="s.001390">Tex. 31. <emph type="italics"/>(Vtuntur etiam Mathematici infinito)<emph.end type="italics"/> <expan abbr="aliquãdo">aliquando</expan> Mathematici du­<lb/> cunt lineas quantumuis longas, &longs;eu indefinitæ longitudinis, quas etiam in­<lb/> finitas appellant: & hoc modo vtuntur infinito, vt infra tex. <!-- REMOVE S-->71. ip&longs;e Ari&longs;t. <lb/> exponit. </s> <s id="s.001391">alio præterea modo vtuntur infinito, vt quando &longs;upponunt data <lb/> quauis quantitate po&longs;&longs;e &longs;umi maiorem, vel etiam minorem in infinitum, vt <lb/> patet ex 6. po&longs;tulato primi Elem. editionis Clauianæ. </s> <s id="s.001392">numerum <expan abbr="quoq;">quoque</expan> au­<lb/> geri po&longs;&longs;e in infinitum, e&longs;t &longs;ecundum po&longs;tulatum libri 7. Elem. vel demum <lb/> quando probant quamlibet lineam po&longs;&longs;e diuidi bifariam, quia hinc &longs;equitur <lb/> po&longs;&longs;e &longs;ub diuidi in <expan abbr="infinitũ">infinitum</expan>; his igitur modis Mathematicis <expan abbr="infinitũ">infinitum</expan> in v&longs;u e&longs;t.</s> </p> <p type="main"> <s id="s.001393"><arrow.to.target n="marg95"/></s> </p> <p type="margin"> <s id="s.001394"><margin.target id="marg95"/>95</s> </p> <p type="main"> <s id="s.001395">Tex. 68. & 69. plura de magnitudine, & numero continent; &longs;ed quæ non <lb/> indigeant opera no&longs;tra.</s> </p> <p type="main"> <s id="s.001396"><arrow.to.target n="marg96"/></s> </p> <p type="margin"> <s id="s.001397"><margin.target id="marg96"/>96</s> </p> <p type="main"> <s id="s.001398">Tex. 71. <emph type="italics"/>(Non remouet autem ratio Mathematicos à contemplatione auferens <lb/> &longs;ic e&longs;&longs;e infinitum, vt actu &longs;it ver&longs;us augmentum, vt intran&longs;ibile, <expan abbr="ncq;">neque</expan> enim nunc in­<lb/> digent infinito, <expan abbr="neq;">neque</expan> vtuntur, &longs;ed &longs;olum e&longs;&longs;e <expan abbr="quantumcunqu;">quantumcunque</expan> velint finitam)<emph.end type="italics"/> ratio <lb/> phy&longs;ica tollens infinitum actu, non e&longs;t Mathematicis impedimento, quia ip&longs;i <lb/> non vtuntur infinito actu; quam enim ip&longs;i ducunt lineam infinitam, non e&longs;t <lb/> verè infinita, &longs;ed indefinita, eam enim quantumlibet magnam producunt, vt <lb/> po&longs;&longs;it ad demon&longs;trandum &longs;ufficere.</s> </p> </chap> <chap> <p type="head"> <s id="s.001399"><emph type="italics"/>Ex Quarto Phy&longs;icorum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.001400"><arrow.to.target n="marg97"/></s> </p> <p type="margin"> <s id="s.001401"><margin.target id="marg97"/>97</s> </p> <p type="main"> <s id="s.001402">Tex. 120. ter in hoc textu meminit commen&longs;urabilitatis, & incommen­<lb/> &longs;urabilitatis, quæ e&longs;t diametri ad co&longs;tam: cuius explicationem vide <lb/> primo Priorum, &longs;ecto primo, cap. 23.</s> </p> </chap> <pb pagenum="76" xlink:href="009/01/076.jpg"/> <chap> <p type="head"> <s id="s.001403"><emph type="italics"/>Ex Quinto Phy&longs;icorum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.001404"><arrow.to.target n="marg98"/></s> </p> <p type="margin"> <s id="s.001405"><margin.target id="marg98"/>98</s> </p> <p type="main"> <s id="s.001406">Tex. 6. <emph type="italics"/>(Vt media grauis ad vltimam, & acuta ad primam)<emph.end type="italics"/> alludit ad or­<lb/> dinem chordarum in mu&longs;icis in&longs;trumentis, vbi media chorda edit &longs;o­<lb/> num, re&longs;pectu quidem vltimæ, & &longs;upremæ chordæ grauem: re&longs;pectu verò <lb/> primæ, & infimæ acutum.</s> </p> </chap> <chap> <p type="head"> <s id="s.001407"><emph type="italics"/>Ex Octauo Phy&longs;icorum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.001408"><arrow.to.target n="marg99"/></s> </p> <p type="margin"> <s id="s.001409"><margin.target id="marg99"/>99</s> </p> <p type="main"> <s id="s.001410">Tex. 15. <emph type="italics"/>(Etenim triangulus habet tres angulos æquales duobus rectis angulis)<emph.end type="italics"/><lb/> lib. 1. Priorum, &longs;ecto 3. cap. 1. huius rei explicationem reperies.</s> </p> </chap> <chap> <p type="head"> <s id="s.001411"><emph type="italics"/>EX PRIMO DE COELO.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.001412"><arrow.to.target n="marg100"/></s> </p> <p type="margin"> <s id="s.001413"><margin.target id="marg100"/>100</s> </p> <p type="main"> <s id="s.001414">Tex. 33. <emph type="italics"/>(Vt &longs;i quis minimam quădam e&longs;&longs;e dicat magnitudinem, hic enim <lb/> minimum introducens, maxima <expan abbr="vbiq;">vbique</expan> amoueret mathematicorŭm)<emph.end type="italics"/> ide&longs;t, <lb/> &longs;i quis, vt Democritus po&longs;uerit in magnitudinibus e&longs;&longs;e minima, <lb/> &longs;eu indiui&longs;ibilia, ex quibus entia mathematica componerentur, <lb/> hic euerteret maxima mathematicorum, ide&longs;t maxime ip&longs;orum demon&longs;tra­<lb/> tiones, atque etiam effata euerterentur: v. <!-- REMOVE S-->g. <!-- REMOVE S-->10. primi Elem. quæ docet <lb/> quamlibet lineam po&longs;&longs;e diuidi bifariam nulla e&longs;&longs;et, quia linea illa, quæ con­<lb/> &longs;taret ex tribus Democriti atomis, nulla ratione bifariam &longs;ecari po&longs;&longs;et. </s> <s id="s.001415">pa­<lb/> riter totus ferè decimus liber Elem. deceptiuus, & nullus e&longs;&longs;et, &longs;i enim da­<lb/> rentur illæ atomi, ex quibus <expan abbr="quãtitas">quantitas</expan> conflaretur, nullæ e&longs;&longs;ent lineæ incom­<lb/> men&longs;urabiles, quandoquidem omnes communi illa, ac indiuidua, commen­<lb/> &longs;urarentur. </s> <s id="s.001416">po&longs;tulatum <expan abbr="quoq;">quoque</expan> illud, qualibet data magnitudine &longs;umi po&longs;&longs;e <lb/> minorem pror&longs;us irritum redderetur, quia data atomo, illa minor accipi <lb/> non po&longs;&longs;et.</s> </p> <p type="main"> <s id="s.001417"><arrow.to.target n="marg101"/></s> </p> <p type="margin"> <s id="s.001418"><margin.target id="marg101"/>101</s> </p> <p type="main"> <s id="s.001419">Tex. 36. <emph type="italics"/>(Sit <expan abbr="itaq;">itaque</expan> linea, in qua A G E, infinita ad partes E; & alia vtrinque <lb/> infinita, in qua <foreign lang="greek">b</foreign> B; &longs;i <expan abbr="itaq;">itaque</expan> de&longs;cribat circulum linea A G E, circa centrum G, fe-<emph.end type="italics"/><lb/> <figure id="id.009.01.076.1.jpg" place="text" xlink:href="009/01/076/1.jpg"/><lb/> <emph type="italics"/>retur circulariter linea A G E, &longs;ecans ali­<lb/> quando lineam <foreign lang="greek">b</foreign> B, tempore finito; totum <lb/> enim tempus, in quo circulariter latum <lb/> e&longs;t Cœlum finitum e&longs;t, & ablatum igitur, <lb/>quo &longs;ecans ferebatur; erit igitur aliquod <lb/>principium, quo primum linea A G E, li­<lb/> neam <foreign lang="greek">b</foreign> B, &longs;ecuit. </s> <s id="s.001420">&longs;ed impo&longs;&longs;ibile est; non <lb/> est igitur circulariter verti <expan abbr="infinitũ">infinitum</expan>, quare <lb/> <expan abbr="neq;">neque</expan> mundum, &longs;i e&longs;&longs;et infinitus)<emph.end type="italics"/> quamuis <lb/> textus hic parum &longs;it mathematicus, <lb/> quia tamen &longs;upponit figuram mathe­<lb/> maticam, quæ in codicibus pariter, ac <lb/> commentarijs de&longs;ideratur, illam pla­<lb/> cuit apponere. </s> <s id="s.001421">in qua quidem, quamuis duæ lineæ infinitæ &longs;upponantur, vna <lb/> ad alteram <expan abbr="tãtum">tantum</expan> partem in qua E: altera verò ad <expan abbr="vtramq;">vtramque</expan> partem <foreign lang="greek">b,</foreign> & B, <pb pagenum="77" xlink:href="009/01/077.jpg"/>non potuerunt tamen de&longs;cribi, ni&longs;i finitæ; appo&longs;itæ idcircò &longs;unt ad partes <lb/> illas, ad quas deberent e&longs;&longs;e infinitæ lineolæ quædam infinitatem indicantes. <lb/> </s> <s id="s.001422">debemus po&longs;tea, vt mentem Ari&longs;t. percipiamus concipere lineam A G E, <lb/> moueri circulariter facto centro in G. quæ quia infinita &longs;upponitur ad par­<lb/> tem E, &longs;ecabit nece&longs;&longs;ariò alteram <expan abbr="vtrinq;">vtrinque</expan> infinitam <foreign lang="greek">b</foreign> B, <expan abbr="illam&qacute;">illamque</expan>; nece&longs;&longs;ariò <lb/> finito tempore percurret, finito enim tempore tota mundi circulatio per­<lb/> agitur, &longs;patio videlicet viginti quatuor horarum. </s> <s id="s.001423">ex quo Ari&longs;t. infert mun­<lb/> dum non po&longs;&longs;e e&longs;&longs;e infinitæ magnitudinis; quia &longs;i mundus e&longs;&longs;et infinitus; &. <lb/> </s> <s id="s.001424">duæ lineæ infinitæ, quales &longs;unt prædictæ in ip&longs;o, <expan abbr="atq;">atque</expan> cum ip&longs;o moueri alte­<lb/> ra earum A E, intelligatur, alteram <foreign lang="greek">b</foreign> B, manentem in tempore finito, ide&longs;t, <lb/> in diurna conuer&longs;ione pertran&longs;ibit: fieri autem nequit, vt infinita magni­<lb/> tudo finito tempore percurratur; quare dicendum e&longs;t, mundum e&longs;&longs;e finita <lb/> magnitudine præditum.</s> </p> <p type="main"> <s id="s.001425"><arrow.to.target n="marg102"/></s> </p> <p type="margin"> <s id="s.001426"><margin.target id="marg102"/>102</s> </p> <p type="main"> <s id="s.001427">Tex. 48. <emph type="italics"/>(Nihil autem refert grauitates, commen&longs;urabiles &longs;int, an incommen­<lb/>&longs;urabiles)<emph.end type="italics"/> quidnam &longs;it commen&longs;urabilitas, & incommen&longs;urabilitas, expli­<lb/> catum e&longs;t lib. 1. Priorum, &longs;ecto 1. cap. 23.</s> </p> <p type="main"> <s id="s.001428"><arrow.to.target n="marg103"/></s> </p> <p type="margin"> <s id="s.001429"><margin.target id="marg103"/>103</s> </p> <p type="main"> <s id="s.001430">Tex. 119. <emph type="italics"/>(Est autem impo&longs;&longs;ibile, & po&longs;&longs;ibile; fal&longs;um, & verum, ex &longs;uppo&longs;itio­<lb/> ne quidem, dico autem, vt triangulum impo&longs;&longs;ibile e&longs;t duos rectos habere, &longs;i hæc)<emph.end type="italics"/><lb/> ide&longs;t, &longs;i &longs;upponantur fal&longs;a quædam, quæ &longs;upponi po&longs;&longs;unt, &longs;equetur impo&longs;&longs;i­<lb/> bile e&longs;&longs;e triangulum habere tres angulos æquales duobus rectis angulis, vi­<lb/> de, quæ &longs;crip&longs;i lib. 1. Priorum, &longs;ecto 3. cap. 1. de hoc, quod e&longs;t, habere tres <lb/> angulos æquales duobus rectis. </s> <s id="s.001431">v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;i in triangulo pag. </s> <s id="s.001432">73. producto late­<lb/> re A C, in D. &longs;i &longs;upponatur externus angulus B C D, non e&longs;&longs;e æqualis duobus <lb/>internis, & oppo&longs;itis A, & B, nunquam poterimus eo modo, quo Euclides, <lb/> demon&longs;trare pa&longs;&longs;ionem prædictam de triangulo A B C. huiu&longs;modi impo&longs;&longs;i­<lb/> bile, cuius oppo&longs;itum non &longs;olum po&longs;&longs;ibile, &longs;ed etiam nece&longs;&longs;arium e&longs;t, vocat <lb/> Ari&longs;t. impo&longs;&longs;ibile ex &longs;uppo&longs;itione, quia &longs;cilicet impo&longs;&longs;ibile euadit ex quo­<lb/> dam fal&longs;o &longs;uo &longs;uppo&longs;ito, vt in allato exemplo, triangulum habere tres an­<lb/> gulos æquales duobus rectis, quamuis nece&longs;&longs;arium &longs;it, tamen ex fal&longs;a &longs;up­<lb/>po&longs;itione, impo&longs;&longs;ibile eua&longs;it.</s> </p> <p type="main"> <s id="s.001433"><arrow.to.target n="marg104"/></s> </p> <p type="margin"> <s id="s.001434"><margin.target id="marg104"/>104</s> </p> <p type="main"> <s id="s.001435">Ibidem <emph type="italics"/>(Et diameter commen&longs;urabilis est co&longs;tæ, &longs;i hæc)<emph.end type="italics"/> vide primo Priorum, <lb/> &longs;ecto 3. cap. 23. hoc &longs;olum nunc addendum <emph type="italics"/>(Si hæc)<emph.end type="italics"/> v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;i &longs;upponamus li­<lb/> neas e&longs;&longs;e compo&longs;itas ex indiui&longs;ibilibus, con&longs;ectarium erit diametrum e&longs;&longs;e <lb/> commen&longs;urabilem co&longs;tæ, quia indiui&longs;ibile illud, ex quo vtraque linea con­<lb/> &longs;tat, erit <expan abbr="vtriu&longs;q;">vtriu&longs;que</expan> men&longs;ura communis.</s> </p> </chap> <chap> <p type="head"> <s id="s.001436"><emph type="italics"/>Ex Secundo de Cælo.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.001437"><arrow.to.target n="marg105"/></s> </p> <p type="margin"> <s id="s.001438"><margin.target id="marg105"/>105</s> </p> <p type="main"> <s id="s.001439">Tex. 24. <emph type="italics"/>(Amplius qui &longs;olida diuidunt in plana, <expan abbr="atq;">atque</expan> ex planis corpora <lb/> generant, his te&longs;tes fui&longs;&longs;e videntur: &longs;olam enim figurarum &longs;olidarum <lb/> &longs;phæram non diuidunt, vt non plures &longs;uperficies. </s> <s id="s.001440">quam vnam <expan abbr="hab&etilde;um">habentem</expan>. <lb/> </s> <s id="s.001441">diui&longs;io enim in plana non perinde efficitur, vt qui&longs;piam <expan abbr="diuid&etilde;s">diuidens</expan> in par­<lb/>tes diuidat totum, &longs;ed vt in &longs;pecie diuer&longs;a: patet igitur &longs;phæram e&longs;&longs;e &longs;olidarum <lb/> primam)<emph.end type="italics"/> qui &longs;olida diuidunt in plana, ea diuidunt <expan abbr="&longs;ecũdum">&longs;ecundum</expan> numerum &longs;uper­<lb/>ficierum, quibus ambiuntur, v. <!-- REMOVE S-->g. <!-- REMOVE S-->diuidunt cubum in &longs;ex &longs;uperficies, quia <lb/>cubus &longs;ex quadratis planis &longs;uperficiebus continetur: qua ratione nequeunt <pb pagenum="78" xlink:href="009/01/078.jpg"/>&longs;phæram in plana vlla re&longs;oluere, <expan abbr="neq;">neque</expan> in alias plures &longs;uperficies, quia &longs;phæ­<lb/> ra ambitur vnica tantum &longs;uperficie &longs;phærica. </s> <s id="s.001442">quando verò ex planis corpo­<lb/> ra generant, vt facit Plato in Timæo, accipíunt primò triangulum æquila­<lb/> terum, & ex quatuor triangulis æquilateris &longs;imul compactis conficiunt py­<lb/> ramidem; & hoc modo alia &longs;olida à pluribus &longs;uperficiebus ambita con&longs;ti­<lb/> tuunt: verum hac ratione nullo modo po&longs;&longs;unt &longs;phæram componere, quia <lb/> vnica tantum, <expan abbr="ea&qacute;">eaque</expan>; &longs;phærica &longs;uperficie compræhenditur: <expan abbr="atq;">atque</expan> hoc pacto i&longs;ti <lb/> diuidentes, & componentes corpora fidem faciunt, &longs;phæram, cum ex nullis <lb/> componatur, &longs;olidorum e&longs;&longs;e primam.</s> </p> <p type="main"> <s id="s.001443"><arrow.to.target n="marg106"/></s> </p> <p type="margin"> <s id="s.001444"><margin.target id="marg106"/>106</s> </p> <p type="main"> <s id="s.001445">Tex. 25. <emph type="italics"/>(Est autem, & &longs;ecundum numerorum ordinem a&longs;&longs;ignantibus, &longs;ic po­<lb/> nentibus rationabili&longs;&longs;imam, circulum quidem &longs;ecundum vnum; triangulum autem <lb/> &longs;ecundum dualitatem, quoniam duo recti. </s> <s id="s.001446">&longs;i autem &longs;ecundum triangulum, vnum. <lb/> </s> <s id="s.001447">circulus non erit figura)<emph.end type="italics"/> In ordine figurarum conueniens e&longs;t, inquit, primam <lb/> facere circulum propter &longs;implici&longs;simam ip&longs;ius naturam, cum vnica, ac per­<lb/> fecta circulari linea comprehendatur: <expan abbr="Triangulũ">Triangulum</expan> verò &longs;ecundam, quoniam <lb/> duo anguli recti, ide&longs;t, quia triangulum habet tres angulos æquales duobus <lb/>rectis angulis; quod fusè explicatum e&longs;t lib. 1. Priorum, &longs;ecto 3. cap. 1. De­<lb/> mum &longs;i primum locum dederimus triangulo, nullus alius remanet pro cir­<lb/> culo, quod e&longs;t inconueniens, ergo circulus prima figura erit.</s> </p> <p type="main"> <s id="s.001448"><arrow.to.target n="marg107"/></s> </p> <p type="margin"> <s id="s.001449"><margin.target id="marg107"/>107</s> </p> <p type="main"> <s id="s.001450">Tex. 31. <emph type="italics"/>(At verò, quod aquæ &longs;uperficies talis &longs;it, manife&longs;tum e&longs;t hac &longs;uppo&longs;i­<lb/> tione &longs;umpta, quod apta natura e&longs;t &longs;emper confluere aqua ad magis concauum: ma­<lb/> gis autem concauum e&longs;t, quod centro propinquius est. </s> <s id="s.001451">ducantur ergo ex centro A,<emph.end type="italics"/><lb/> <figure id="id.009.01.078.1.jpg" place="text" xlink:href="009/01/078/1.jpg"/><lb/> <emph type="italics"/>linea A B, & linea A C, & producatur, in qua B C, <lb/> ducta igitur ad ba&longs;im linea, in qua A D, minor e&longs;t eis, <lb/> quæ ex centro. </s> <s id="s.001452">magis igitur concauus locus e&longs;t, quare <lb/> influet aqua, donec <expan abbr="vtiq;">vtique</expan> æquetur. </s> <s id="s.001453">æqualis e&longs;t autem eis, <lb/> quæ ex centro linea A E, quare nece&longs;&longs;e e&longs;t apud eas, quæ <lb/> ex centro, e&longs;&longs;e aquam, tunc enim quie&longs;cet. </s> <s id="s.001454">linea autem, <lb/> quæ eas, quæ ex centro tangit, circularis e&longs;t, &longs;phærica <lb/> igitur aquæ &longs;uperficies e&longs;t, in qua B E C.)<emph.end type="italics"/> toto hoc <lb/> textu lineari demon&longs;tratione probat aquæ manen­<lb/> tis &longs;uperficiem e&longs;&longs;e &longs;phæricam: quæ demon&longs;tratio <lb/> per&longs;picua euadit, &longs;i figura, quæ in codicibus tam <lb/> græcis, quam latinis, <expan abbr="atq;">atque</expan> etiam in commentarijs de&longs;ideratur, quemadmo­<lb/> dum fecimus, re&longs;tituatur. </s> <s id="s.001455">&longs;it igitur in præcedenti figura A, centrum mundi, <lb/> ex quo educantur duæ rectæ lineæ æquales A B, A C, quæ deinde alia recta <lb/> B C, coniungantur. </s> <s id="s.001456">educatur <expan abbr="quoq;">quoque</expan> recta alia ex centro A, quæ pertingat <lb/> ad B C, quæ ba&longs;is e&longs;t trianguli B A C, & producatur vlterius quantumlibet <lb/> in E. intelligatur demum circumferentia tran&longs;ire per puncta B, & C, quia <lb/> illæ duæ lineæ A B, A C, &longs;unt æquales, quæ circumferentia alteram A D, quæ <lb/> fuit protracta, &longs;ecet in E. <!-- KEEP S--></s> <s id="s.001457">Iam &longs;ic argumentatur: aqua natura &longs;ua &longs;emper <lb/>defluit ad locum magis concauum, ide&longs;t, ad loca centro A, terræ propin­<lb/> quiora, quale e&longs;&longs;et in figura locus D, re&longs;pectu locorum B, & C, quia A D, <lb/> linea minor e&longs;t ijs, quæ ex centro eductæ &longs;unt A B, A C. quapropter aqua <lb/>debet defluere ex B, ad D, vel ex C, ad idem D, donec pertingat ad E. qui <lb/> locus non e&longs;t decliuior punctis B, & C. quare cum loca B, E, C, quæ &longs;unt ex­ <pb pagenum="79" xlink:href="009/01/079.jpg"/>trema linearum, &longs;int æquè decliuia, nece&longs;&longs;e e&longs;t aquæ &longs;uperficiem apud ip&longs;a <lb/> con&longs;i&longs;tere, tunc enim debet quie&longs;cere, aliter nunquam quie&longs;ceret; &longs;ed vide­<lb/> mus aquam manentem, & quietam, ergo quie&longs;cit circa puncta B, E, C, à <lb/> centro terræ æquidi&longs;tantia, per quæ tran&longs;it linea circularis coniungens illa; <lb/>et&longs;i &longs;uperficies per eiu&longs;modi loca pertran&longs;iret, e&longs;&longs;et &longs;phærica: &longs;ed &longs;uperfi­<lb/> cies aquæ tran&longs;it per talia loca, ergo &longs;phærica e&longs;t. </s> <s id="s.001458">Huius etiam habes acu­<lb/> ti&longs;&longs;imam Archimedis demon&longs;trationem initio libelli de ijs, quæ vehuntur <lb/> in aqua, quam in &longs;uam &longs;phæram retulit Clauius.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.001459"><arrow.to.target n="marg108"/></s> </p> <p type="margin"> <s id="s.001460"><margin.target id="marg108"/>108</s> </p> <p type="main"> <s id="s.001461">Tex. 46. <emph type="italics"/>(Reliquum e&longs;t orbes quidem moueri, stellas verò quie&longs;cere, & infixas <lb/> ip&longs;is orbibus ferri; &longs;olum enim &longs;ic nullum ab&longs;urdum accidit. </s> <s id="s.001462">celeriorem enim e&longs;&longs;e <lb/> maioris circuli velocitatem, rationabile e&longs;t circa idem centrum infixis: vt enim in <lb/> alijs maius corpus velocius fertur propria latione, &longs;ic, & in circularibus: maius <lb/> enim e&longs;t eorum, quæ auferuntur ab eis, quæ ex centro, maioris circuli &longs;egmentum)<emph.end type="italics"/><lb/> ex intellectione vltimæ periodi textus totius intelligentia pendet: &longs;it igitur <lb/> <figure id="id.009.01.079.1.jpg" place="text" xlink:href="009/01/079/1.jpg"/><lb/> figura præ&longs;ens, in qua cum &longs;int duo circuli concen­<lb/> trici, vnus altero maior, <expan abbr="eductæ&qacute;">eductæque</expan>; &longs;int ex <expan abbr="c&etilde;tro">centro</expan> duæ <lb/> &longs;emidiametri A D, A E, quæ <expan abbr="vtrunq;">vtrunque</expan> circulum &longs;e­<lb/> cant, apparet maius e&longs;&longs;e <expan abbr="&longs;egmentũ">&longs;egmentum</expan> D E, quod è ma­<lb/> iori circulo &longs;emidiametri ex <expan abbr="c&etilde;tro">centro</expan> eductæ auferunt, <lb/> quam &longs;egmentum B C, minoris circuli, quod ei&longs;dem <lb/>&longs;emidiametris intercipitur. </s> <s id="s.001463">Verumtamen &longs;i circuli <lb/> ambo &longs;imul moueantur, maior circulus æquali tem­<lb/> pore maius illud &longs;patium D E, & minor minus B C, <lb/> pertran&longs;ibit: idem igitur de cœle&longs;tibus orbibus di­<lb/> cendum, qui quamuis omnes diurnum &longs;imul motum <lb/> ab&longs;oluunt, maiores tamen celerius conuertuntur: quo fit, vt &longs;tellæ maiori­<lb/> bus circulis infixæ, <expan abbr="atq;">atque</expan> delatæ, maiori celeritate &longs;uos cur&longs;us peragant, ne­<lb/> que oportet eas, dum mouentur cœlum di&longs;&longs;ecare, quod accideret, &longs;i pro­<lb/>prio motu veluti pi&longs;ces per aquam progrederentur.</s> </p> <p type="main"> <s id="s.001464">Hæc quidem Ari&longs;t. con&longs;entanea ob&longs;eruationibus veterum A&longs;tronomo­<lb/> rum; at verò illis no&longs;træ ætatis ob&longs;eruationes repugnant; præ&longs;ertim illæ, <lb/> quæ fiunt circa &longs;tellas errantes: ex quibus fatendum e&longs;&longs;e videtur, Cœlum, <lb/> qua parte Planetas continet, liquidum e&longs;&longs;e, ac per illud Planetas proprio <lb/> motu, ceu pi&longs;ces in aqua progredi. </s> <s id="s.001465">Tycho <expan abbr="namq;">namque</expan> Brahe, <expan abbr="alij&qacute;">alijque</expan>; plures exactè <lb/> demon&longs;trant Cometas in regione Planetarum e&longs;&longs;e, <expan abbr="eos&qacute;">eosque</expan>; motu quodam in <lb/> tran&longs;uer&longs;um moueri, quo nece&longs;&longs;ario C&etail;lú deberent perforare; ijdem o&longs;ten­<lb/> dunt nonnullos Planetas, Martem præ&longs;ertim, ac Venerem modo &longs;upra So­<lb/> lem, modo infra a&longs;cendere, & de&longs;cendere. </s> <s id="s.001466">Idem patet ex ob&longs;eruatione no­<lb/> ua per nouum Tele&longs;copij i <expan abbr="&longs;trum&etilde;tum">&longs;trumentum</expan> in Venere facta, quæ lunulata <expan abbr="vtrinq;">vtrinque</expan> <lb/> à Sole apparet: quando nimirum e&longs;t in imo epicyclo. </s> <s id="s.001467"><expan abbr="iterum&qacute;">iterumque</expan>; rotunda ve­<lb/> luti Luna plena, cum in &longs;ummo epicyclo ver&longs;atur: quæ minimè apparerent, <lb/> ni&longs;i &longs;upra, ac infra Solem circumiret. </s> <s id="s.001468">His rationibus conantur ip&longs;i proba­<lb/> re Cœlum e&longs;&longs;e liquidum; <expan abbr="atq;">atque</expan> in eo Planetas, veluti aues in aere, permeare: <lb/>quarum &longs;olutio mihi nulla occurrit, alijs forta&longs;&longs;is occurret.</s> </p> <p type="main"> <s id="s.001469"><arrow.to.target n="marg109"/></s> </p> <p type="margin"> <s id="s.001470"><margin.target id="marg109"/>109</s> </p> <p type="main"> <s id="s.001471">Tex. 57. <emph type="italics"/>(De ordine autem ip&longs;orum, quo quidem modo &longs;ingula di&longs;ponantur, vt <lb/> quædam &longs;int priora, quædam posteriora, & quomodo &longs;patijs &longs;e ă<expan abbr="habeãt">habeant</expan> ad inuicem,<emph.end type="italics"/> <pb pagenum="80" xlink:href="009/01/080.jpg"/><emph type="italics"/>ex ijs circa A&longs;trologiam, con&longs;ideretur: dicitur enim &longs;ufficienter)<emph.end type="italics"/> &longs;umit hoc loco <lb/> A&longs;trologiam, pro A&longs;tronomia, &longs;i iuxta recentiores loqui velimus. </s> <s id="s.001472">Dicit igi­<lb/> tur ordinem cœlorum, ac &longs;yderum, item &longs;itum, & proportiones magnitu­<lb/>dinum eorundem, cum per naturalis &longs;cientiæ principia &longs;ciri nequeant, ex <lb/> rationibus A&longs;tronomorum petenda e&longs;&longs;e, apud quos i&longs;ta &longs;ufficienter <expan abbr="demon-&longs;tr&etilde;tur">demon­<lb/> &longs;trentur</expan>. </s> <s id="s.001473">& meritò quidem hæc dicuntur; po&longs;teriores enim ab Ari&longs;t. ordines, <lb/> &longs;itus, ac magnitudines tam cœlorum, quam &longs;yderum firmis rationibus, <expan abbr="atq;">atque</expan> <lb/> inuentu peracutis demon&longs;trarunt. </s> <s id="s.001474">quorum princeps fuit ptolæmeus; no&longs;tra <lb/> tamen ætate Tycho Brahe, qui certis ob&longs;eruationibus, quas maximo labo­<lb/> re, ac &longs;umptu exantlauit, in nonnullis à Ptolæmeo, ac reliquis di&longs;&longs;entjt: &longs;tan­<lb/> dum autem e&longs;&longs;e recentioribus ob&longs;eruationibus apud A&longs;tronomiæ peritos in <lb/> confe&longs;&longs;o e&longs;t.</s> </p> <p type="main"> <s id="s.001475"><arrow.to.target n="marg110"/></s> </p> <p type="margin"> <s id="s.001476"><margin.target id="marg110"/>110</s> </p> <p type="main"> <s id="s.001477">Tex. <emph type="italics"/>(Luna autem o&longs;tenditur per ea, quæ circa vi&longs;um, quod &longs;phærica &longs;it: non <lb/> enim <expan abbr="vtiq;">vtique</expan> fieret accre&longs;cens, & decre&longs;cens, plurimŭm quidem alter a ex parte curua, <lb/> altera concaua, aut <expan abbr="vtrmq;">vtrinque</expan> curua, &longs;emel autem bipartita)<emph.end type="italics"/> ait per ea, quæ circa <lb/> vi&longs;um, ide&longs;t per opticem probari Lunam e&longs;&longs;e &longs;phæricam: &longs;ed con&longs;ule, quæ <lb/> primo Po&longs;ter. tex. <!-- REMOVE S-->3. de hac re &longs;crip&longs;i, & plenam etiam huius loci intelligen­<lb/> tiam a&longs;&longs;equeris, præ&longs;ertim &longs;i experimentum ibi traditum inieris.</s> </p> <p type="main"> <s id="s.001478"><arrow.to.target n="marg111"/></s> </p> <p type="margin"> <s id="s.001479"><margin.target id="marg111"/>111</s> </p> <p type="main"> <s id="s.001480">Ibidem <emph type="italics"/>(Et rur&longs;us per Astrologica, quia <expan abbr="vtiq;">vtique</expan> non e&longs;&longs;ent &longs;olis eclyp&longs;es lunulæ <lb/>&longs;peciem præfeferentes. </s> <s id="s.001481">Quare &longs;i vnum est tale, palam e&longs;t, quod & alia <expan abbr="vtiq;">vtique</expan> erunt <lb/> talia)<emph.end type="italics"/> &longs;icuti <expan abbr="præced&etilde;s">præcedens</expan> &longs;phæricitatis Lunæ ratio ex Per&longs;pectiua de&longs;umpta e&longs;t, <lb/> ita præ&longs;ens ex A&longs;tronomia, ex eò enim, quod eclyp&longs;is Solis habeat figuram <lb/> lunulæ, ide&longs;t, &longs;i in&longs;tar Lunæ falcatæ, probant A&longs;tronomi Lunam e&longs;&longs;e &longs;phæri­<lb/> cam. </s> <s id="s.001482">intellige tamen partem illam Solis, quæ non eclyp&longs;atur, habere figu­<lb/> ram lunulæ, pars enim à Luna obumbrata non videtur, et&longs;i videretur oua­<lb/>lem quandam &longs;peciem, præ&longs;eferret: pars igitur, illa e&longs;t corniculata, quia <lb/> <figure id="id.009.01.080.1.jpg" place="text" xlink:href="009/01/080/1.jpg"/><lb/> cum Solis defectio ex interpo&longs;itione Lunæ inter nos, & <lb/> Solem contingat, & Luna &longs;it &longs;phærica, nece&longs;&longs;ariò &longs;phæ­<lb/> ricè, & circulariter Solem obumbrabit; quare pars illa <lb/> non obumbrata remanet falcata, & corniculata, vt in <lb/>præ&longs;enti figura videre e&longs;t; vbi cernis, Lunam Solem or­<lb/> biculariter offu&longs;care in linea A D C, partem Solis de­<lb/> tectam <expan abbr="contentã">contentam</expan> lineis curuis A B C D, e&longs;&longs;e lunularem, <lb/> & falcatam; cum ergo in hunc modum fiat Solis deli­<lb/> quium, &longs;ignum certum e&longs;t, Lunam e&longs;&longs;e &longs;phæricam.</s> </p> <p type="main"> <s id="s.001483"><arrow.to.target n="marg112"/></s> </p> <p type="margin"> <s id="s.001484"><margin.target id="marg112"/>112</s> </p> <p type="main"> <s id="s.001485">Tex. 107. <emph type="italics"/>(Quod autem dubitatur, hoc e&longs;t; videre autem non e&longs;t difficile, &longs;i pa­<lb/> rum con&longs;iderauerimus, & di&longs;tinxerimus, quonam modo cen&longs;eamus quantamuis ma­<lb/> gnitudinem grauem ad medium ferri. </s> <s id="s.001486">manife&longs;tum enim e&longs;t, quod non quou&longs;que ex­<lb/> tremum tangat ip&longs;um centrum; &longs;ed maior pars vincat, oportet, <expan abbr="quou&longs;q;">quou&longs;que</expan> &longs;uo medio <lb/> ip&longs;um medium compræhendat; <expan abbr="hucn&longs;q;">hucu&longs;que</expan> enim habet propen&longs;ionem)<emph.end type="italics"/> &longs;en&longs;us Ari&longs;to­<lb/> telis e&longs;t, debere nos exi&longs;timare, quod &longs;i quæpiam grauis magnitudo de&longs;cen­<lb/>dat ad centrum mundi, eam non perman&longs;uram, &longs;tatim ac ip&longs;ius extremum <lb/>centrum mundi attigent; &longs;ed eò <expan abbr="v&longs;q;">v&longs;que</expan> de&longs;cen&longs;uram, <expan abbr="quou&longs;q;">quou&longs;que</expan> ip&longs;ius medium, <lb/>mundi medium, &longs;iue centrum a&longs;&longs;equutum &longs;it; maior enim ip&longs;ius pars, in qua <lb/> &longs;cilicet medium e&longs;t, minorem partem propellit, donec vtrinque à centro <lb/> mundi æquè emineat; omne enim graue <expan abbr="hucu&longs;q;">hucu&longs;que</expan> habet propen&longs;ionem, &longs;iue <pb pagenum="81" xlink:href="009/01/081.jpg"/><expan abbr="hucu&longs;q;">hucu&longs;que</expan> grauitat, v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;i lapis illuc de&longs;cenderet, non quie&longs;ceret &longs;tatim ac <lb/> prima ip&longs;ius pars ad mundi centrum pertingeret, &longs;ed reliquæ ip&longs;ius partes <lb/> adhuc grauitarent, <expan abbr="&longs;ic&qacute;">&longs;icque</expan>; vlterius primam partem impellerent, donec lapi­<lb/>dis medium, mundi medio congrueret: quo facto lapis quie&longs;ceret. </s> <s id="s.001487">quæ num <lb/> vera &longs;int, vt intelligamus, oportet prius præmittere, iuxta Mathematicos <lb/> duplex e&longs;&longs;e medium, &longs;iue centrum cuiu&longs;uis magnitudinis: aliud enim e&longs;t <lb/> centrum molis, aliud e&longs;t centrum grauitatis. </s> <s id="s.001488">centrum molis e&longs;t illud pun­<lb/> ctum, à quo extrema æquidi&longs;tant: centrum grauitatis e&longs;t punctum illud, à <lb/> quo extrema æque ponderant, &longs;iue à quo graue &longs;u&longs;pen&longs;um æquè ponderat, <lb/> &longs;iue in æquilibrio manet. </s> <s id="s.001489">Porrò in corporibus regularibus, &longs;i vniformia &longs;int <lb/> idem, & vnum &longs;unt centrum molis, ac centrum grauitatis: vt in &longs;phæra <lb/>plumbea, idem erit <expan abbr="vtrumq;">vtrumque</expan> centrum: &longs;i verò difformia &longs;int in grauitate, <lb/> vt in &longs;phæra partim plumbea, partim lignea, diuer&longs;um erit centrum molis, <lb/> à centro grauitatis; illud enim erit in medio &longs;phæræ; centrum verò graui­<lb/> tatis in parte plumbea exi&longs;tet. </s> <s id="s.001490">In corporibus deinde irregularibus, etiam&longs;i <lb/> &longs;int vniformis ponderis, aliud tamen e&longs;&longs;e pote&longs;t centrum molis à <expan abbr="c&etilde;tro">centro</expan> gra­<lb/> uitatis, vt in corpore oblongo, cuius alterum extremum &longs;it reliquis parti­<lb/> bus multò maius, vti e&longs;t claua: vbi centrum molis erit in medio longitudi­<lb/> nis clauæ; centrum verò grauitatis, erit propinquius capiti clauæ. </s> <s id="s.001491">quando <lb/> igitur Ari&longs;t. ait, graue de&longs;cen&longs;urum, donec ip&longs;ius medium, &longs;iue centrum, <lb/> mundi centrum attingat; benè dicit, &longs;i de medio grauitatis intelligat; ma­<lb/> lè autem &longs;i de medio molis. </s> <s id="s.001492">quia grauia omnia ratione centri grauitatis <lb/> ponderant, <expan abbr="neq;">neque</expan> manent; ni&longs;i ip&longs;um maneat: quare ni&longs;i ip&longs;um <expan abbr="attingãt">attingant</expan> cen­<lb/> trum mundi &longs;emper grauitabunt, & mouebuntur. </s> <s id="s.001493">Verum enim verò ex an­<lb/> tiquorum monumentis manife&longs;tum e&longs;t, Archimedem, qui multò po&longs;t Ari­<lb/> &longs;totelem floruit, primum omnium de centro grauitatis e&longs;&longs;e philo&longs;ophatum, <lb/> qua ratione dicendum e&longs;&longs;et, Ari&longs;totelem de centro, molis loquutum e&longs;&longs;e, <lb/> & perinde non <expan abbr="v&longs;quequaq;">v&longs;quequaque</expan> verè.</s> </p> <p type="main"> <s id="s.001494"><arrow.to.target n="marg113"/></s> </p> <p type="margin"> <s id="s.001495"><margin.target id="marg113"/>113</s> </p> <p type="main"> <s id="s.001496">Tex. 109. <emph type="italics"/>(Præterea <expan abbr="quoq;">quoque</expan> & per ea, quæ apparent &longs;ecundum &longs;en&longs;um, neque <lb/> enim Lunæ eclyp&longs;es tales <expan abbr="haber&etilde;t">haberent</expan> deci&longs;iones; nunc enim in ijs, quæ &longs;ecundum men­<lb/> &longs;em fiunt, figurationibus, omnes accipit diui&longs;iones: etenim recta fit, & vtrinque <lb/> curua, & concaua)<emph.end type="italics"/> probat terram e&longs;&longs;e &longs;phæricam ratione a&longs;tronomica, ex <lb/> Lunæ eclyp&longs;ibus de&longs;umpta: nam ni&longs;i terra e&longs;&longs;et rotunda, nunquam Luna in <lb/> eclyp&longs;i haberet tales deci&longs;iones, ide&longs;t non haberet falcatas, aut lunulatas <lb/>partes illas, quæ in eclyp&longs;i ob&longs;curantur, & qua&longs;i à Luna re&longs;ecantur. </s> <s id="s.001497">quam­<lb/> uis enim &longs;ingulis men&longs;ibus Luna terminetur modo linea concaua, vt quan­<lb/> do noua e&longs;t; modo recta, vt quando diuidua e&longs;t: modo vtrinque curua, vt <lb/>cum à diuidua ad plenilunium tendit. </s> <s id="s.001498">quod fu&longs;ius primo Po&longs;ter. tex. <!-- REMOVE S-->30. ex­<lb/> po&longs;ui. </s> <s id="s.001499">in eclyp&longs;ibus tamen &longs;emper curuam habet lineam illam, quæ partem <lb/>eclyp&longs;atam de&longs;init; vt paulo po&longs;t explicabo. </s> <s id="s.001500">Vide precedentem textum 59. <lb/> & ca, quæ ibi annotaui, <expan abbr="quæq;">quæque</expan> tibi propo&longs;ui, & plenam huius loci intelligen­<lb/> tiam a&longs;&longs;equeris. </s> <s id="s.001501">vide etiam, quæ mox &longs;ubdam circa huius loci reliquum.</s> </p> <p type="main"> <s id="s.001502"><arrow.to.target n="marg114"/></s> </p> <p type="margin"> <s id="s.001503"><margin.target id="marg114"/>114</s> </p> <p type="main"> <s id="s.001504">Ibidem <emph type="italics"/>(Circa autem eclyp&longs;es, &longs;emper curuam habet terminătem lineam: qua­<lb/>re quoniam eclyp&longs;im patitur propter terræ obiectionem, terræ <expan abbr="circumfer&etilde;tia">circumferentia</expan> &longs;phæ­<lb/> rica exi&longs;tens, figuræ cau&longs;a erit)<emph.end type="italics"/> probat rotunditatem terræ ab eclyp&longs;i lunari, <lb/> ex eo, quod Luna &longs;phæricè eclyp&longs;etur, quod innuitur illis verbis, &longs;emper <pb pagenum="82" xlink:href="009/01/082.jpg"/>curuam habet terminantem lineam, linea &longs;cilicet, quæ terminat partem <lb/> eclyp&longs;atam à non eclyp&longs;ata, &longs;emper apparet circularis; cum autem hæc li­<lb/> nea &longs;it terminus vmbræ terræ, quæ lumen obumbrat, &longs;ignum <expan abbr="manife&longs;tũ">manife&longs;tum</expan> e&longs;t <lb/> vmbram ip&longs;am e&longs;&longs;e rotundam; nam cum Luna deficiat propter terræ obie­<lb/> ctionem inter ip&longs;am, & Solem, ita, vt vmbra terræ protendatur <expan abbr="v&longs;q;">v&longs;que</expan> ad Lu­<lb/> nam, <expan abbr="eam&qacute;">eamque</expan>; in omni eclyp&longs;atione, &longs;iue eclyp&longs;is &longs;it &longs;upra terram, &longs;iue infra, <lb/> ad quamlibet <expan abbr="deniq;">denique</expan> partem terræ fiat, orbiculariter eam contegit, &longs;ignum <lb/> per&longs;picuum e&longs;t terram proijcere quoquouer&longs;us vmbram rotundam, quæ vt <lb/> in &longs;phæra o&longs;tenditur, e&longs;t rotunda ad modum coni; cum ergo vmbra terræ <lb/> ex quauis parte proijciatur, &longs;it rotunda, certò certius colligitur, <expan abbr="terram&qacute;">terramque</expan>; <lb/> <expan abbr="quoq;">quoque</expan> ip&longs;am rotunda figura præditam e&longs;&longs;e. </s> <s id="s.001505">hanc eandem rationem, &longs;i libue­<lb/> rit, fu&longs;ius pertractatam videre poteris apud P. <!-- REMOVE S-->Clauium in &longs;phæra.</s> </p> <p type="main"> <s id="s.001506"><arrow.to.target n="marg115"/></s> </p> <p type="margin"> <s id="s.001507"><margin.target id="marg115"/>115</s> </p> <p type="main"> <s id="s.001508">Tex. <emph type="italics"/>(Præterea per astrorum apparentiam, non &longs;olum manife&longs;tum e&longs;t, quod re<lb/>tunda, &longs;ed & quod magnitudine non magna &longs;it; paruo enim facto nobis tran&longs;itu ad <lb/>meridiem, & Vr&longs;am, manife&longs;tè fit alter horizon circulus, ita vt a&longs;tra, quæ &longs;uper <lb/>caput, magnam habeant mutationem, & non eadem appareant, & ad Vr&longs;am, & ad <lb/>meridiem tran&longs;euntibus, quædam enim in Aegypto quidem stellæ <expan abbr="vid&etilde;tur">videntur</expan>, & cir­<lb/> ca Cyprum, in ijs autem, quæ ad Vr&longs;am vergunt regionibus, non <expan abbr="via&etilde;tur">videntur</expan>. </s> <s id="s.001509">& a&longs;tro­<lb/> rum ea, quæ &longs;emper in ijs, quæ ad Vr&longs;am vergunt, apparent, in illis locis occidunt. <lb/> </s> <s id="s.001510">Quare non &longs;olum ex his manife&longs;tum e&longs;t rotundam e&longs;&longs;e figuram terræ, &longs;ed & &longs;phæræ <lb/> non magnæ: non enim tam celeriter in&longs;igne quippiam faceret, tran&longs;latis nobis adeò <lb/> parum)<emph.end type="italics"/> hic textus ei, qui &longs;phæram mundi audiuerit perfacilis e&longs;t: propte­<lb/> rea eum breuiter &longs;ic paraphra&longs;ticè exponam. </s> <s id="s.001511">Terram e&longs;&longs;e rotundam, <expan abbr="atq;">atque</expan> <lb/> re&longs;pectu cœle&longs;tium corporum non magnam, &longs;ignum e&longs;t, quod facto à nobis <lb/> paruo itinere &longs;iue ad meridionalem plagam, &longs;iue ad <expan abbr="&longs;ept&etilde;trionalem">&longs;eptentrionalem</expan> (quam <lb/> Vr&longs;am dicit) magnopere mutatur horizon: quod apparet primo ex varia­<lb/>tione a&longs;trorum, nam quæ in primo loco &longs;upra no&longs;trum verticem <expan abbr="trã&longs;ibant">tran&longs;ibant</expan>, <lb/> in &longs;ecundo loco non amplius, &longs;ed alia, <expan abbr="atq;">atque</expan> alia valde ab inuicem &longs;eiuncta <lb/> <figure id="id.009.01.082.1.jpg" place="text" xlink:href="009/01/082/1.jpg"/><lb/>ex facto quamuis paruo itinere tran&longs;eunt. </s> <s id="s.001512">&longs;it in <lb/> præ&longs;enti figura terra, vbi A, in qua facta parua <lb/> mutatione ex loco F, in locum G, fieret magna <lb/> mutatio <expan abbr="a&longs;trorũ">a&longs;trorum</expan> ver&longs;icalium B, in C, quæ mul­<lb/> tum ab inuicem di&longs;tant. </s> <s id="s.001513">&longs;i autem terra e&longs;&longs;et <lb/> maior, v. <!-- REMOVE S-->g. <!-- REMOVE S-->circulus medius, tunc facta maio­<lb/> ri mutatione ex D, in E, fieret eadem a&longs;trorum <lb/> variatio ex B, in C; &longs;ed cum nos experiamur <lb/>fieri magnam a&longs;trorum mutationem, ex parua <lb/> locorum intercapedine, &longs;ignum e&longs;t magnope­<lb/> re mutari horizontem, ac proinde terram e&longs;&longs;e <lb/> rotundam, ac re&longs;pectu cœle&longs;tium corporum <lb/> paruam. </s> <s id="s.001514">aliud præterea &longs;ignum huius horizontis permutationis e&longs;t, quod <lb/> &longs;tellæ, quæ in priori loco &longs;upra horizontem apparebant, mutato paululum <lb/> loco ad alterutram plagam, &longs;tatim ab&longs;conduntur; aliæ verò nouæ <expan abbr="appar&etilde;t">apparent</expan> <lb/>vt in Aegypto, & Cypro, &longs;tella, quæ dicitur Canobus &longs;upra horizontem <lb/> a&longs;cendit; quæ &longs;i paululum Vr&longs;am, &longs;eu &longs;eptentrionem ambulaueris, &longs;tatim <lb/> latitabit. </s> <s id="s.001515">Demum eiu&longs;dem citæ mutationis finitoris indicium etiam &longs;it,<pb pagenum="83" xlink:href="009/01/083.jpg"/>quod regiones &longs;eptentrionales incolentibus plurima &longs;unt a&longs;tra, quæ nun­<lb/>quam occidunt, quamuis horizontem leuiter per&longs;tringant, quæ tamen Cy­<lb/> prijs, <expan abbr="atq;">atque</expan> Aegyptijs oriuntur, <expan abbr="atq;">atque</expan> occidunt. </s> <s id="s.001516">ex quibus & rotunditas, & <lb/> paruitas terræ colligi pote&longs;t. </s> <s id="s.001517">has ea&longs;dem rationes fu&longs;ius explicatas repe­<lb/> ries apud P. <!-- REMOVE S-->Clauium in &longs;phæra.</s> </p> <p type="main"> <s id="s.001518"><arrow.to.target n="marg116"/></s> </p> <p type="margin"> <s id="s.001519"><margin.target id="marg116"/>116</s> </p> <p type="main"> <s id="s.001520">Tex. 111. <emph type="italics"/>(Quapropter existimantes eum, qui circa Herculeas columnas e&longs;t lo­<lb/>cum coniungi ei, qui circa Indiam, & hoc modo mare vnum e&longs;&longs;e, non admodum <lb/> incredibilia exi&longs;timare videntur &c.)<emph.end type="italics"/> exi&longs;timatores ho&longs;ce non perperam exi­<lb/> &longs;tima&longs;&longs;e apertè <expan abbr="cõuincunt">conuincunt</expan> Chri&longs;tophori Columbi, Argonautarum principis <lb/> nauigationes; quibus nouus orbis repertus e&longs;t, qui inter columnas Hercu­<lb/> lis, <expan abbr="atq;">atque</expan> orientalem Indiam totus vna <expan abbr="cũ">cum</expan> mari Oceano Atlantico interiacet.</s> </p> <p type="main"> <s id="s.001521"><arrow.to.target n="marg117"/></s> </p> <p type="margin"> <s id="s.001522"><margin.target id="marg117"/>117</s> </p> <p type="main"> <s id="s.001523">Tex. 112. <emph type="italics"/>(Mathematicorum etiam, qui circumferentiæ magnitudinem ratio­<lb/>cinari tentant, ad 400. dicunt &longs;tadiorum millia, &c.)<emph.end type="italics"/> quam &longs;ubtilibus rationi­<lb/> bus inue&longs;tigauerint A&longs;tronomi quantitatem terræ, optimè, ac dilucidè ex­<lb/> ponitur à P. <!-- REMOVE S-->Clauio in &longs;phæra: quem &longs;i libet, con&longs;ule, ne inani labore opu­<lb/> &longs;culum i&longs;tud exere&longs;cat.</s> </p> </chap> <chap> <p type="head"> <s id="s.001524"><emph type="italics"/>Ex Tertio de Cœlo.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.001525"><arrow.to.target n="marg118"/></s> </p> <p type="margin"> <s id="s.001526"><margin.target id="marg118"/>118</s> </p> <p type="main"> <s id="s.001527">Tex. 40. <emph type="italics"/>(Figuræ autem omnes componuntur ex pyramidibus: rectilinea <lb/>quidem ex rectilineis: &longs;phæra verò ex octo partibus componitur)<emph.end type="italics"/> Ale­<lb/>xander exi&longs;timat, Ari&longs;totelem dicere &longs;phæram con&longs;tare ex octo <lb/> partibus illis, quæ de&longs;ignantur per tres circulos, quorum duo &longs;e­<lb/>cant &longs;e mutuò ad angulos rectos, vt in &longs;phæra mundi faciunt duo coluri; <lb/> tertius verò medios illos diuidit æquidi&longs;tanter à &longs;ectionibus <expan abbr="illorũ">illorum</expan> mutuis, <lb/> quemadmodum æquator in &longs;phæra mundi &longs;ecat duos coluros. </s> <s id="s.001528">ex quibus &longs;e­<lb/> ctionibus tota &longs;phæra in octo partes diuiditur, quibus &longs;phæram componi <lb/> vult Ari&longs;toteles. <!-- KEEP S--></s> <s id="s.001529">aduerte tamen hanc &longs;phæræ compo&longs;itionem nullo modo <lb/> habere partes actu, cum &longs;phæra &longs;it vnica &longs;implici &longs;uperficie terminata; &longs;ed <lb/> quæ tantum &longs;int à prædictis imaginatis circulis de&longs;ignatæ: at verò aliæ fi­<lb/> guræ, quæ pluribus planis terminantur, vt cubus, octaedrum, & &longs;imilia, quæ <lb/>Ari&longs;t. vocat rectilineas, quia terminantur &longs;uperficiebus rectilineis actu di­<lb/> &longs;tinctis ab inuicem ex natura &longs;ua, non per no&longs;tram de&longs;ignationem, ideò re­<lb/> ctè dicuntur componi ex pyramidibus, v. <!-- REMOVE S-->g. <!-- REMOVE S-->dicimus cubum componi ex &longs;ex <lb/> pyramidibus, quia cum habeat &longs;ex ba&longs;es, cogitamus &longs;upra <expan abbr="vnamquamq;">vnamquamque</expan> il­<lb/> larum &longs;ingulas pyramides erigi, quarum omnium vertices ad idem punctum <lb/> medium intra cubum imaginatum coeant. </s> <s id="s.001530">& &longs;ic de reliquis &longs;olidis. </s> <s id="s.001531">quæ qua <lb/> ratione re&longs;oluantur in plures pyramides, con&longs;tat ex 10. 11. 12. & 13. Ele­<lb/> mentorum Euclidis, at verò in &longs;phæra nullum reale compo&longs;itionis, aut di­<lb/> ui&longs;ionis fundamentum reperitur.</s> </p> <p type="main"> <s id="s.001532"><arrow.to.target n="marg119"/></s> </p> <p type="margin"> <s id="s.001533"><margin.target id="marg119"/>119</s> </p> <p type="main"> <s id="s.001534">Tex. <emph type="italics"/>(Ad hæc nece&longs;&longs;e e&longs;t non omne corpus e&longs;&longs;e diui&longs;ibile dicere, &longs;ed repugnare <lb/>certi&longs;&longs;imis &longs;cientijs; nam Mathematicæ ip&longs;um quidem intelligibile, accipiunt diui­<lb/> &longs;ibile)<emph.end type="italics"/> ip&longs;um intelligibile, ide&longs;t, quantitatem ab&longs;tractam tam continuam, <lb/>quam di&longs;cretam, quam &longs;tatuunt Philo&longs;ophi e&longs;&longs;e &longs;ubiectam materiam ma­<lb/> thematicarum. </s> <s id="s.001535">quam ideo appellant intelligibilem, quia cum &longs;it ab&longs;tracta <lb/> per intellectum à &longs;en&longs;ibilibus affectionibus, re&longs;tat vt &longs;it tantummodo intel­ <pb pagenum="84" xlink:href="009/01/084.jpg"/>lectu perceptibilis. </s> <s id="s.001536">Hanc eandem &longs;upponunt e&longs;&longs;e diui&longs;ibilem in infinitum, <lb/> vt &longs;upra 3. Phy&longs;. textu 31. dictum e&longs;t.</s> </p> <p type="main"> <s id="s.001537"><arrow.to.target n="marg120"/></s> </p> <p type="margin"> <s id="s.001538"><margin.target id="marg120"/>120</s> </p> <p type="main"> <s id="s.001539">Tex. 66. <emph type="italics"/>(Omninò autem eniti &longs;implicibus corporibus figuras tribuere irratio­<lb/> nabile e&longs;t. </s> <s id="s.001540">primò quidem, quia accidit non repleri totum; nam in planis tres figuræ <lb/> videntur implere locum, Triangulus, Quadratum, & Sexangulus)<emph.end type="italics"/> per &longs;implicia <lb/> corpora intelligit quatuor elementa. </s> <s id="s.001541">Vult enim probare quatuor elemen­<lb/> ta non habere figuras illas mathematicas, quas illis Plato tribuebat, vt au­<lb/> tem Ari&longs;t. rationem probè percipiamus, &longs;ciendum, quod implere totum, <lb/> &longs;iue locum, illæ figuræ dicuntur, quæ &longs;imul &longs;uis angulis in plano quopiam ad <lb/> vnum, <expan abbr="atq;">atque</expan> idem punctum vnitæ locum illum totum, qui circa punctum il­<lb/> lud con&longs;i&longs;tit, <expan abbr="cõtegunt">contegunt</expan>, ita vt nihil vacui inter ip&longs;as relinquatur. </s> <s id="s.001542">tales &longs;unt, <lb/> quibus fieri po&longs;&longs;unt pauimenta, oportet enim, vt &longs;imul vnitæ nihil vacui in <lb/> pauimento relinquant. </s> <s id="s.001543">huiu&longs;modi &longs;unt triangula æquilatera (de his enim <lb/> intelligendus e&longs;t textus) quadrata, & hexagona, &longs;iue &longs;exilatera regularia; <lb/> <figure id="id.009.01.084.1.jpg" place="text" xlink:href="009/01/084/1.jpg"/><lb/> nam &longs;ex triangula æquilatera &longs;imul iuncta in plano paui­<lb/> re po&longs;&longs;unt, vt patet in figura præ&longs;enti; ratio huius e&longs;t, <lb/> quia omnes anguli circa idem punctum (y. </s> <s id="s.001544">g. <!-- REMOVE S-->A, in hac <lb/> figura) in plano, quotquot fuerint con&longs;tituti, &longs;unt æqua­<lb/> les quatuor rectis, ex coroll. </s> <s id="s.001545">&longs;ecundo 15. primi Elemen­<lb/> ti: cum igitur &longs;ex anguli, trianguli æquilateri <expan abbr="æquiualeãt">æquiualeant</expan> <lb/> quatuor rectis angulis, con&longs;tituti omnes circa punctum <lb/> A, totum locum circa illud implere po&longs;&longs;unt. </s> <s id="s.001546">Quadratum etiam replere lo­<lb/> <figure id="id.009.01.084.2.jpg" place="text" xlink:href="009/01/084/2.jpg"/><lb/>cum manife&longs;tum e&longs;t, cum enim ip&longs;ius anguli &longs;int recti, &longs;i <lb/> quatuor quadrata ad idem punctum A, copulentur, vt in <lb/> figura apparet, replebunt eadem de cau&longs;a vacuum.</s> </p> <p type="main"> <s id="s.001547">Hexagonum quoque regulare, ide&longs;t æquilaterum, & <lb/> æquiangulum idem præ&longs;tare pote&longs;t; cum enim tres angu­<lb/> li ip&longs;ius æquiualeant quatuor rectis, &longs;i tria hexagona ad <lb/> idem punctum A, vt in figura adaptentur, nece&longs;&longs;ariò ni­<lb/> hil vacui inter ip&longs;a relinquetur, vt in figura hac o&longs;tenditur. </s> <s id="s.001548">præter has tres <lb/> <figure id="id.009.01.084.3.jpg" place="text" xlink:href="009/01/084/3.jpg"/><lb/>figuras, nulla alia reperitur, quæ i&longs;tud efficere po&longs;­<lb/> &longs;it. </s> <s id="s.001549">cuius demon&longs;trationem perfectam videre pote­<lb/> ris in fine commentarij P. <!-- REMOVE S-->Clauij &longs;uper 4. Elem. nos <lb/> ea tantum attingimus, quæ percipi po&longs;&longs;int ab homi­<lb/> ne vix mathematicis tincto: &longs;ed tamen, quæ &longs;en&longs;um <lb/> Ari&longs;totelis patefaciunt. </s> <s id="s.001550">Aliæ porrò figuræ replen­<lb/> tes locum planum, quibus aliquando Architectores <lb/> vtuntur, vel &longs;unt irregulares, vel ad prædictas redu­<lb/> ci po&longs;&longs;unt. </s> <s id="s.001551">cum igitur tres tantum ex figuris planis <lb/> totum repleant, hæ &longs;olæ poterunt elementis attri­<lb/> bui, ac propterea non &longs;ufficient, ni&longs;i pro tribus elementis. </s> <s id="s.001552">quare quartum <lb/> <expan abbr="ab&longs;q;">ab&longs;que</expan> figura relinquetur; quod e&longs;t ab&longs;urdum.</s> </p> <pb pagenum="85" xlink:href="009/01/085.jpg"/> <p type="head"> <s id="s.001553"><emph type="italics"/>Admirabilis quædam A&pgrave;um industria.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.001554">Cæterum occa&longs;ione harum figurarum illud hoc loco apponere vi­<lb/> &longs;um e&longs;t, quod Pappus <expan abbr="Alexãdrinus">Alexandrinus</expan> initio quinti libri collectionum <lb/> mathematicarum &longs;cribit, De admirabili Apum indu&longs;tria, atque <lb/> prudentia in con&longs;truendo &longs;uas cellulas figura hexagona regulari. <lb/> </s> <s id="s.001555">cum enim vellent omne vacuum excludere, & præterea capaci&longs;&longs;imam <expan abbr="om-niũ">om­<lb/> nium</expan> figuram habere, hexagonam accepere, quæ inter prædictas tres vtrum­<lb/> que præ&longs;tat, nam & inane omne excludit, & illarum trium capaci&longs;&longs;ima e&longs;t, <lb/> cum magis ad circularem figuram accedat: vt patet ex tractatu de figuris <lb/>I&longs;operimetris, qui e&longs;t apud Clauium in &longs;phæra, necnon in Geometria pra­<lb/> ctica. </s> <s id="s.001556">hoc ideò libentius recen&longs;ui, quia animaduerti naturales hi&longs;toriogra­<lb/> phos omnes latere, vel ip&longs;um Aldobrandum no&longs;trum, qui quamuis indu­<lb/> &longs;trio&longs;æ Apis in&longs;tar omnia delibauerit, i&longs;tud tamen de Apibus artificium tan­<lb/> ta &longs;apientia plenum, ne&longs;cio quo modo prætermi&longs;it.</s> </p> <p type="main"> <s id="s.001557"><arrow.to.target n="marg121"/></s> </p> <p type="margin"> <s id="s.001558"><margin.target id="marg121"/>121</s> </p> <p type="main"> <s id="s.001559">Ibidem <emph type="italics"/>(In &longs;olidis verò duæ &longs;olum pyramis, & cubus)<emph.end type="italics"/> ide&longs;t replent locum <lb/> &longs;olidum. </s> <s id="s.001560">nullum reperi, qui in hoc loco explicando non errauerit; nam Græ­<lb/> ci, qui alioqui &longs;olent mathematica probè intelligere, hic omnes lap&longs;i &longs;unt, <lb/> <expan abbr="&longs;ecum&qacute;">&longs;ecumque</expan>; & Arabes, & Latinos in <expan abbr="eãdem">eandem</expan> foueam &longs;upra &longs;e mi&longs;erè traxerunt. <lb/> </s> <s id="s.001561">communis ferè error omnium fuit, pyramides plures &longs;imul compactas po&longs;­<lb/> &longs;e replere &longs;olidum locum. </s> <s id="s.001562">quod vt melius intelligamus, &longs;ciendum e&longs;t, reple­<lb/> re locum <expan abbr="&longs;olidũ">&longs;olidum</expan> nihil aliud e&longs;&longs;e, quam &longs;i plura corpora &longs;olida &longs;imul ad idem <lb/> punctum coaptata, ita con&longs;tipentur, vt totum &longs;patium, quod e&longs;t circa pun­<lb/> ctum illud omninò occupent, hoc e&longs;t, nihil vacui inter ip&longs;a relinquatur: &longs;i­<lb/> cut enim prædictæ tres figuræ planæ, de quibus paulò ante, replent locum <lb/>planum, ide&longs;t &longs;uperficiem; ita cubi replent &longs;olidum, ide&longs;t &longs;oliditatem &longs;imul <lb/> vniti con&longs;tituunt, ita vt &longs;i octo cubi &longs;imul ad idem punctum <expan abbr="coapt&etilde;tur">coaptentur</expan>, con­<lb/>&longs;tituant corpus &longs;olidum ex octo illius con&longs;tatum, <expan abbr="nihil&qacute;">nihilque</expan>; inane inter ip&longs;os <lb/> cubos relinquatur. </s> <s id="s.001563">& &longs;icuti planæ illæ figuræ erant conficiendis pauimentis <lb/> aptæ, ita &longs;olidæ hæ muris, qui corpora &longs;unt &longs;olida, <expan abbr="con&longs;tru&etilde;dis">con&longs;truendis</expan> idonea &longs;unt. <lb/> </s> <s id="s.001564"><expan abbr="Notã">Notam</expan> dum præterea, quod per pyramidem debemus intelligere pyramidem <lb/> regularem, quæ dicitur etiam Tetraedrum, <expan abbr="e&longs;t&qacute;">e&longs;tque</expan>; &longs;ecunda inter <expan abbr="quinq;">quinque</expan> cor­<lb/> pora regularia rectilinea, quæ alias Platonica corpora dicuntur. </s> <s id="s.001565"><expan abbr="eorum&qacute;">eorumque</expan>; <lb/>definitiones &longs;unt in 11. Elem. <!-- KEEP S--></s> <s id="s.001566">Tetraedrum autem &longs;ic definitur, e&longs;t figura &longs;o­<lb/> lida &longs;ub quatuor triangulis æquilateris, <expan abbr="atq;">atque</expan> inuicem æqualibus contenta: <lb/> de hac inquam e&longs;t &longs;ermo. </s> <s id="s.001567">quia &longs;i liceret intelligere de irregularibus figuris, <lb/>infinitæ reperirentur figuræ tam planæ, quam &longs;olidæ, quæ vtrumque locum <lb/> complerent. </s> <s id="s.001568">Aduertendum tandem Ari&longs;t. videri loqui de repletione loci <lb/> &longs;olidi, quia tran&longs;it à planïs figuris ad &longs;olidas. </s> <s id="s.001569">& quia &longs;i hæ duæ pyramis, & <lb/>cubus replent locum &longs;olummodo &longs;ecundum &longs;uas &longs;uperficies, quæ &longs;unt trian­<lb/> gulum, & quadratum, iam de his cum proximè ante dixi&longs;&longs;et, quid opus fui&longs;­<lb/> &longs;et idem po&longs;t modum repetere. </s> <s id="s.001570">ad hæc &longs;i in medium &longs;olida hæc duo profert, <lb/> <expan abbr="ait&qacute;">aitque</expan>; ip&longs;a replere locum, intelligens, planum, profectò non loquitur forma­<lb/>liter, ide&longs;t de ip&longs;is, vt &longs;olida &longs;unt. </s> <s id="s.001571">Quare Ari&longs;t. videretur &longs;ibi non con&longs;tare, <lb/> vel perperam exi&longs;tima&longs;&longs;e plura Tetraedra complere &longs;oliditatem. </s> <s id="s.001572">deceptus <pb pagenum="86" xlink:href="009/01/086.jpg"/>fortè fuit Ari&longs;t. eò quod videret Ico&longs;aedrum con&longs;tare ex viginti pyramidi­<lb/> bus, verùm illæ non &longs;unt regulares, ide&longs;t <expan abbr="nõ">non</expan> &longs;unt Tetraedra, vt po&longs;tea o&longs;ten­<lb/> dam. </s> <s id="s.001573">Verum quidem e&longs;t octo cubos &longs;imul adactos &longs;oliditatem conficere, <lb/> quia ad id nece&longs;&longs;arij &longs;unt octo anguli &longs;olidi, quos octo cubi præbere po&longs;&longs;unt, <lb/> cum anguli ip&longs;orum &longs;int recti, & &longs;olidi. </s> <s id="s.001574">Verum enim verò plures pyramides <lb/> regulares, &longs;iue plura Tetraedra non po&longs;&longs;e replere vacuum, <expan abbr="&longs;olidum&qacute;">&longs;olidumque</expan>; con­<lb/> &longs;tituere, ex eo patet, quia &longs;i id præ&longs;tarent, conflarent nece&longs;&longs;ariò, vel vnum <lb/> ex <expan abbr="quinq;">quinque</expan> corporibus regularibus, de quibus in 13. Elemen. <!-- REMOVE S-->vel aliud quod­<lb/> piam; non aliud, nam, vt patet ex &longs;cholio 13. Elem. non dantur, ni&longs;i illa. <lb/> </s> <s id="s.001575">quinque; <expan abbr="neq;">neque</expan> vllum ex illis, quia diameter huiu&longs;modi corporis, quod com­<lb/> poneretur ex illis pyramidibus, e&longs;&longs;et dupla lateris eiu&longs;dem, vt patet, quia <lb/> pyramides illæ omnes concurrerent ad centrum &longs;phæræ illas omnes com­<lb/> plectentis, quare latus vnius pyramidis à &longs;uperficie &longs;phæræ incipiens de&longs;i­<lb/> neret in centrum, ergo latus i&longs;tud e&longs;&longs;et &longs;emidiameter, quapropter tota dia­<lb/>meter illius &longs;ph&etail;ræ, & con&longs;equenter huius corporis in illa in&longs;cripti, e&longs;&longs;et du­<lb/> pla lateris eiu&longs;dem figuræ &longs;olidæ in&longs;criptæ, &longs;ed nullo talis proportio diame­<lb/> tri alicuius ex illis <expan abbr="quinq;">quinque</expan> &longs;olidis regularibus ad latus eiu&longs;dem reperitur, <lb/> quæ &longs;it nimirum dupla, vt patet ex vltimis demon&longs;trationibus 13. Elem. ini­<lb/> tio facto à 13. demon&longs;tratione, in quibus nulla reperitur proportio dupla <lb/> inter diametrum, & latus eiu&longs;dem alicuius ex illis &longs;olidis; ex quibus mani­<lb/> fe&longs;tum e&longs;t, plures regulares pyramides quouis pacto &longs;imul vnitas nullo mo­<lb/> do replere locum &longs;olidum. </s> <s id="s.001576">cum igitur animaduerterem, &longs;en&longs;um Ari&longs;t. nullo <lb/> modo po&longs;&longs;e verificari de repletione &longs;olidi per plura Tetraedra, & omnes <lb/> tamen commentatores auctoritate Ari&longs;t. decepti pro ip&longs;o &longs;tarent, dubius, <lb/> <expan abbr="anceps&qacute;">ancepsque</expan>; diu hæ&longs;i, neque quid quam mea Minerua a&longs;&longs;erere au&longs;us &longs;um, &longs;ed P. <lb/> <!-- REMOVE S-->Clauium præceptorem meum per literas con&longs;ului, qui in hunc modum hu­<lb/> mani&longs;&longs;imè re&longs;pondit; cubus implet locum quater &longs;umptus, ad idem enim <lb/> punctum quatuor cubi coaptantur: &longs;ic etiam pyramis &longs;exies &longs;umpta, &longs;eu &longs;ex <lb/>pyramides ad idem punctum iunctæ ratione &longs;ub&longs;tantium <expan abbr="triangulorũ">triangulorum</expan> æqui­<lb/> laterorum. </s> <s id="s.001577">Verum hac ratione non videntur implere locum &longs;olidum, fa­<lb/>teor; &longs;ed tamen Ari&longs;t. in eo tex. <!-- REMOVE S-->non loquitur de repletione loci &longs;olidi. </s> <s id="s.001578">hæc <lb/> ip&longs;e. </s> <s id="s.001579">&longs;i igitur libeat Ari&longs;totelem, quod fortè Clauius intendebat defendere, <lb/> dicendum e&longs;t cum eo Ari&longs;t non loqui de repletione loci &longs;olidi: <expan abbr="neq;">neque</expan> loqui <lb/> de cubo, & Tetraedro, quatenus &longs;unt corpora, &longs;ed quatenus habent &longs;uper­<lb/> ficies, cubus quidem &longs;ex quadratas, Tetraedrum autem quatuor æquilate­<lb/> ras &longs;uperficies, quæ duæ figuræ, vt &longs;upra in hoc textu vidimus, replent lo­<lb/> cum: <expan abbr="atq;">atque</expan> hoc modo facimus Ari&longs;totelem non formaliter loquentem. </s> <s id="s.001580">ex­ <lb/> aduersò ne videamur magis Ari&longs;t. quam veritatem &longs;equi, videtur dicen­<lb/> dum, Ari&longs;totilem formaliter locutum e&longs;&longs;e, & vt patet ex rationibus &longs;upra <lb/> allatis de repletione &longs;olidi e&longs;&longs;e intelligendum, vt etiam intellexerunt omnes <lb/> huius loci expo&longs;itores; Verumtamen ip&longs;um erra&longs;&longs;e, dum plures pyramides <lb/> replere &longs;olidum exi&longs;timauit. </s> <s id="s.001581">Vtrumuis dixerimus, non tamen Ari&longs;t. ab om­<lb/>ni errore vindicabimus. </s> <s id="s.001582">Hoc tamen certum e&longs;t, ex prædictis, Græcos om­<lb/> nes pariter, ac Latinos, illos &longs;equentes, lapos e&longs;&longs;e, a&longs;&longs;erentes duodecim py­<lb/> ramides complere &longs;olidum locum, <expan abbr="atq;">atque</expan> Dodecaedrum con&longs;tituere; nam py­<lb/> ramides Dodecaedron con&longs;tituentes non &longs;unt regulares, ide&longs;t, non &longs;unt Te­ <pb pagenum="87" xlink:href="009/01/087.jpg"/>traedra (de quibus tamen Ari&longs;t. loquitur) vt patet ex &longs;upra dictis. </s> <s id="s.001583">Indul­<lb/> geas Lector, &longs;i hoc loco nece&longs;&longs;e fuit in Geometriæ penetralia ingredi: ope­<lb/> ræpretium enim e&longs;t aliquando ip&longs;is Mathematicis &longs;atisfacere. </s> <s id="s.001584">tu verò, &longs;i <lb/> adeo es mathematicis imbutus, con&longs;ule po&longs;tremas demon&longs;tra. </s> <s id="s.001585">13. Elem. & <lb/> præcipuè &longs;cholium vltimum, vbi plura de his corporibus &longs;citu digni&longs;&longs;ima, <lb/> <expan abbr="atq;">atque</expan> huc &longs;pectantia reperies ex his omnibus Mathematica, quæ no&longs;træ &longs;unt <lb/> partes, per&longs;picuè &longs;atis expo&longs;uimus.</s> </p> <p type="main"> <s id="s.001586">Multo po&longs;t tempore, quàm hæc &longs;crip&longs;eram incidi fortè in cap. 38. &longs;pecu­<lb/> lationem 10. Benedicti de placitis Ari&longs;t. <!-- REMOVE S--><expan abbr="reperi&qacute;">reperique</expan>; ab eo vno Ari&longs;t. hoc loco <lb/> erroris notari, dum a&longs;&longs;eruit duodecim pyramides replere <expan abbr="locũ">locum</expan> corporeum, <lb/> ide&longs;t, vt exponit ip&longs;e, &longs;ex pyramides &longs;uper hexagonam aliquam figuram <lb/> &longs;uperficialem, & &longs;ex &longs;ub eadem, id præ&longs;tarent, cum potius maius vacuum <lb/> remaneat ad quamlibet partium &longs;upra, & infra, quam plenum. </s> <s id="s.001587">hæc ip&longs;e. </s> <s id="s.001588">&longs;ed <lb/> expo&longs;itio i&longs;ta puerili, ne dum Ari&longs;t. ingenio pror&longs;us indigna e&longs;t: vt propte­<lb/> rea exi&longs;timem ca&longs;u potius eum Ari&longs;t. rectè reprehendi&longs;&longs;e, quam ex certa <lb/> &longs;cientia, cum illius erratum maiori errato conetur corrigere. </s> <s id="s.001589">Incidi po­<lb/> &longs;tremò in Indicem librorum, quem Maurolyius &longs;uæ Co&longs;mographiæ præpo­<lb/> nit, vbi &longs;ic ait: Demon&longs;tramus autem in libello de figuris planis, <expan abbr="&longs;olidis&qacute;">&longs;olidisque</expan>; <lb/>locum replentibus, cubos per &longs;e, pyramides verò cum octaedris compactas <lb/> dumtaxat implere locum, qua in re Auerroem erra&longs;&longs;e pueriliter manife&longs;tum <lb/> erit. </s> <s id="s.001590">Vides igitur tanti viri auctoritate confirmari no&longs;tram &longs;ententiam, py­<lb/> ramides videlicet per &longs;e, non replere vacuum. </s> <s id="s.001591">cum igitur con&longs;tet vnam tan­<lb/> tum ex figuris &longs;olidis, &longs;iue etiam dicas, vt perperam Ari&longs;t. & alij plures exi­<lb/> &longs;timarunt, replere totum &longs;olidum; nulla ratione poterunt <expan abbr="elem&etilde;ta">elementa</expan> quatuor, <lb/> quatuor diuer&longs;is figuris indui, &longs;ed vnum tantummodo, quare reliqua <expan abbr="ab&longs;q;">ab&longs;que</expan> <lb/> figura remanere nece&longs;&longs;e e&longs;&longs;et: quod e&longs;t omnino inconueniens.</s> </p> <p type="main"> <s id="s.001592"><arrow.to.target n="marg122"/></s> </p> <p type="margin"> <s id="s.001593"><margin.target id="marg122"/>122</s> </p> <p type="main"> <s id="s.001594">Tex. 71 <emph type="italics"/>(Deinde &longs;i terra e&longs;t cubus &c.)<emph.end type="italics"/> lege definitiones 11. Elem. quæ &longs;unt <lb/>admodum faciles, ibi reperies definitiones quinque corporum regularium, <lb/> quorum figuras Plato elementis tribuebat: qua verò id ratione faceret, ha­<lb/> bes in &longs;phæra Clau. <!-- KEEP S--></s> <s id="s.001595">Simpl. <!-- REMOVE S-->etiam hoc loco &longs;atisfacit.</s> </p> </chap> <chap> <p type="head"> <s id="s.001596"><emph type="italics"/>Ex Quarto de Cœlo.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.001597"><arrow.to.target n="marg123"/></s> </p> <p type="margin"> <s id="s.001598"><margin.target id="marg123"/>123</s> </p> <p type="main"> <s id="s.001599">Tex. 33. <emph type="italics"/>(Deinde ad &longs;imiles videtur angulos ignis quidem &longs;ur&longs;um ferri, <lb/>terra autem deor&longs;um, & omninò quod grauitatem habet, quare nece&longs;&longs;e <lb/> est ferri ad medium. </s> <s id="s.001600">hoc autem vtrum accidit ad ip&longs;um terræ medium, <lb/> an ad vniuer&longs;i, quoniam idem ip&longs;orum &longs;it, alius &longs;ermo e&longs;t)<emph.end type="italics"/> cum vellet <lb/> <figure id="id.009.01.087.1.jpg" place="text" xlink:href="009/01/087/1.jpg"/><lb/> probare Ari&longs;toteles dari <expan abbr="pũctum">punctum</expan> quoddam in medio <lb/> mundi, ad quod grauia de&longs;cendant, & concurrent: <lb/> & à quo leuia a&longs;cendat; vtitur, præter alias, etiam <lb/> ratione aliqua ex parte mathematica; quæ e&longs;t huiu&longs;­<lb/> modi. </s> <s id="s.001601">videmus ignem, & cætera l&etail;uia a&longs;cendere à <lb/> terra &longs;ur&longs;um ad angulos æquales; &longs;imiliter videmus <lb/>terram, & c&etail;tera grauia de&longs;cendere ad terram deor­<lb/> &longs;um ad angulos æquales, quod &longs;ignum e&longs;t omnia i&longs;ta <lb/> idem mundi medium re&longs;picere: v.g. <!-- REMOVE S-->&longs;it terra in figu­<lb/> ra præ&longs;enti circulus E C D, cuius medium, &longs;ine cen­ <pb pagenum="88" xlink:href="009/01/088.jpg"/>trum A. via, qua a&longs;cendit ignis &longs;it in linea A C B, quæ facit angulos in &longs;u­<lb/> perficie terræ æquales, nimirum angulos B C D, B C E. &longs;imiliter terra per <lb/>eandem lineam <expan abbr="faci&etilde;s">faciens</expan> eo&longs;dem angulos æquales de&longs;cendit. </s> <s id="s.001602">linea autem, quæ <lb/> facit tales angulos tendit ad centrum &longs;phæræ A, vt patet ad &longs;en&longs;um in figu­<lb/> ra, & probari pote&longs;t geometricè ex primis tertij Elem. ex quibus patet tam <lb/> læuia, quam grauia, quæ per talem lineam ferantur, re&longs;picere centrum A, <lb/> &longs;phæræ. </s> <s id="s.001603">Vtrum autem i&longs;tud centrum &longs;it idem cum <expan abbr="c&etilde;tro">centro</expan> totius mundi, alius, <lb/> inquit, e&longs;t &longs;ermo, hoc e&longs;t, ad a&longs;tronomum pertinet. </s> <s id="s.001604">vide igitur hac de re <lb/> pulchram de&longs;&longs;ertationem apud Clauium in &longs;phæra: qui probat euidenter <lb/> e&longs;&longs;e vnum, & idem.</s> </p> <p type="main"> <s id="s.001605"><arrow.to.target n="marg124"/></s> </p> <p type="margin"> <s id="s.001606"><margin.target id="marg124"/>124<!-- KEEP S--></s> </p> <p type="main"> <s id="s.001607"><emph type="italics"/>Hoc loco de&longs;ideratur commentarius in cap. vlt. </s> <s id="s.001608">de Cœlo. <!-- KEEP S--></s> <s id="s.001609">cuius loco ìn-<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.001610"><arrow.to.target n="marg125"/><lb/> <arrow.to.target n="marg126"/><lb/> <emph type="italics"/>terim Lector adeat Di&longs;cur&longs;um Italicum Galilæi Galilæi, de his,<emph.end type="italics"/><lb/> <arrow.to.target n="marg127"/><lb/> <emph type="italics"/>quæ in aqua mouentur, ac natant: ubi propè finem, plura in hu-<emph.end type="italics"/><lb/> <arrow.to.target n="marg128"/><lb/> <emph type="italics"/>ius capitis explicationem affert.<emph.end type="italics"/><lb/> <arrow.to.target n="marg129"/></s> </p> <p type="margin"> <s id="s.001611"><margin.target id="marg125"/>125</s> </p> <p type="margin"> <s id="s.001612"><margin.target id="marg126"/>126</s> </p> <p type="margin"> <s id="s.001613"><margin.target id="marg127"/>127</s> </p> <p type="margin"> <s id="s.001614"><margin.target id="marg128"/>128</s> </p> <p type="margin"> <s id="s.001615"><margin.target id="marg129"/>129</s> </p> </chap> <chap> <p type="head"> <s id="s.001616"><emph type="italics"/>Ex Lib. 2. de Generatione, & Corruptione.<emph.end type="italics"/><lb/> <arrow.to.target n="marg130"/><!-- KEEP S--></s> </p> <p type="margin"> <s id="s.001617"><margin.target id="marg130"/>130</s> </p> <p type="main"> <s id="s.001618">Tex. 56. <emph type="italics"/>(ldeoqué non prima latio cau&longs;a Generationis, & Corruptionis e&longs;t, <lb/> &longs;ed quæ &longs;ecundum obliquum circulum, in hac enim & continuum vnum <lb/> e&longs;t & moueri duobus motibus)<emph.end type="italics"/> per primam lationem intelligit mo­<lb/>tum primi mobilis, qui &longs;it &longs;uper polis mundi, quo Stellæ omnes <lb/> ab oriente in occidentem rectà feruntur. </s> <s id="s.001619">per obliquum verò circulum in­<lb/> telligit Zodiacum, qui obliquus e&longs;t, quia poli eius &longs;unt alij à polis mundi, & <lb/> quia non tendit rectà ab ortu ad occa&longs;um, &longs;ed in &longs;phæra mundi tran&longs;uer­<lb/> &longs;us e&longs;t, & deflectit à &longs;eptentrione in meridiem, quamuis non rectà, vt in <lb/> &longs;phæra explicari &longs;olet. </s> <s id="s.001620">motus ergo Planetarum, qui fit &longs;ecundum hunc cir­<lb/> culum, & ip&longs;e obliquus, & tran&longs;uer&longs;us codem modo erit; ferrentur que per <lb/> eum à Borea ad Au&longs;trum, & è conuer&longs;o; ex quo acce&longs;&longs;u, & rece&longs;&longs;u efficiunt <lb/> æ&longs;tatem, & hyemem, item generationes, & corruptiones. </s> <s id="s.001621">Sol porrò, & pla­<lb/> netæ, qui motibus proprijs hunc circulum peragunt, dicuntur moueri duo­<lb/> bus motibus, & quidem contrarijs: quoniam dum Sol. </s> <s id="s.001622">v. <!-- REMOVE S-->g. <!-- REMOVE S-->per Zodiacum <lb/> graditur motu proprio, interim etiam à primo mobili fertur ab ortu in oc­<lb/> ca&longs;um: ex quibus duobus motibus fit vnus tantum Solis motus &longs;piralis, qui <lb/> mixtus e&longs;t, ide&longs;t, qui fit à duobus motoribus; vnde re vera Sol non mouetur <lb/> duobus motibus contrarijs re ip&longs;a di&longs;tinctis; hoc enim impo&longs;&longs;ibile e&longs;t: &longs;ed <lb/> motu mixto ex duobus, qui &longs;piralis e&longs;t, circa mundum de&longs;cribens &longs;piras ab <lb/> vno tropico ad alterum: qui, vt dixi, cau&longs;atur à duobus motoribus, qui &longs;unt <lb/> Sol ip&longs;e, mouens &longs;e ip&longs;um per Zodiacum: & primum mobile mouens in&longs;u­<lb/> per ip&longs;um Solem, & Zodiacum ab ortu in occa&longs;um circa mundum.</s> </p> </chap> <pb pagenum="89" xlink:href="009/01/089.jpg"/> <chap> <p type="head"> <s id="s.001623"><emph type="italics"/>EX PRIMO METEORORVM.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.001624"><arrow.to.target n="marg131"/></s> </p> <p type="margin"> <s id="s.001625"><margin.target id="marg131"/>131</s> </p> <p type="main"> <s id="s.001626">Svmma 1. cap. 3. <emph type="italics"/>(Moles autem terræ quanta &longs;it ad ambientes magnitudi­<lb/>nes, non immanifestum, iam enim vi&longs;um est per a&longs;trologica theoremata, <lb/> quod multò etiam quibu&longs;dam a&longs;tris est minor)<emph.end type="italics"/> Quantitas terræ non &longs;o­<lb/> lum ab&longs;olutè con&longs;iderata, ab A&longs;tronomis explorata habetur, vt vi­<lb/> dere e&longs;t in &longs;phæra Clauij; &longs;ed etiam re&longs;pectiuè con&longs;iderata, ide&longs;t re&longs;pectu <lb/> aliorum elementorum, & ip&longs;orum etiam a&longs;trorum; cuius demon&longs;trationes <lb/> &longs;unt partim in libello Ari&longs;tarchi Samij, de magnitudine, & di&longs;tantia Solis, <lb/> & Lunæ, partim apud Ptolæmeum in magna Syntaxi, &longs;iue Almage&longs;to: par­<lb/> tim apud Albategnium de &longs;cientia &longs;tellarum: partim demum apud Ticho­<lb/> nem Brahe. </s> <s id="s.001627">Porrò facile e&longs;t demon&longs;trare Solem e&longs;&longs;e terra multò maiorem, <lb/> terram verò maiorem Luna, <expan abbr="id&qacute;">idque</expan>; ex eclyp&longs;i lunari, cuius imaginem habes <lb/> in figura &longs;equenti; vbi vmbra terræ e&longs;t D B E, in quam Luna nigricans im­<lb/> mergitur, ac lumine deficit, reliqua cognitu &longs;unt facilia: quia igitur A&longs;tro­<lb/> nomi ob&longs;eruarunt vmbram terræ paulò &longs;upra Lunam pertingere, cum &longs;upe­<lb/> riora a&longs;tra non adeat, hinc collegerunt eam nece&longs;&longs;ariò e&longs;&longs;e acuminatam, &longs;eu <lb/> conicam, vt figura refert. </s> <s id="s.001628">Cum ergo terra vmbram proijciat turbinatam, <lb/> nece&longs;&longs;ariò corpus Solis, quod ip&longs;am illuminat, eadem maior erit: quoti­<lb/> diana enim experientia docemur, corpore illuminante exi&longs;tente maiore <lb/> quà &longs;it illuminatum, vmbram proijci fa&longs;tigiatam: cum deinde Solem val­<lb/> de a terra di&longs;tare certum &longs;it, optimè infertur, eum re&longs;pectu terræ e&longs;&longs;e maxi­<lb/> mum: quanto enim duæ lineæ, &longs;iue radij B A, B C. à terra ad partes Solis <lb/> <figure id="id.009.01.089.1.jpg" place="text" xlink:href="009/01/089/1.jpg"/><lb/> magis elongantur, tan­<lb/> to maius corpus <expan abbr="illu-minãs">illu­<lb/> minans</expan> intercipiunt. </s> <s id="s.001629">ha­<lb/> ctenus de magnitudine <lb/> terræ ad Solem. </s> <s id="s.001630">Cum <lb/> verò Luna eclyp&longs;atio­<lb/> nis tempore, aliquan­<lb/> do non &longs;olum tota in <lb/> vmbræ vertice lateat, <lb/> verùm etiam <expan abbr="aliquãdo">aliquando</expan> <lb/> moram trahat, euidens <lb/> e&longs;t, eam e&longs;&longs;e multò mi­<lb/> norem illa vmbræ par­<lb/> te, in quam immergi­<lb/> tur; quæ pars cum &longs;it <lb/> conicæ vmbræ media, <lb/>erit multò gracilior <lb/> quàm &longs;it ip&longs;a terra. <lb/> </s> <s id="s.001631">Ex quo manife&longs;tè apparet, Lunam, quæ illa vmbra minor e&longs;t, e&longs;&longs;e à fortio­<lb/> ri multò minorem ip&longs;a terre&longs;tri mole. </s> <s id="s.001632">Atque hæc de comparatione terræ <lb/> ad Lunam. <!-- KEEP S--></s> <s id="s.001633">harum rerum demon&longs;trationes exactiores pertractare non e&longs;t <lb/> huius loci.</s> </p> <p type="main"> <s id="s.001634"><arrow.to.target n="marg132"/></s> </p> <p type="margin"> <s id="s.001635"><margin.target id="marg132"/>132</s> </p> <p type="main"> <s id="s.001636">Eodem cap. <emph type="italics"/>(Con&longs;iderantes vtique, quæ nunc o&longs;tenduntur per Mathematica<emph.end type="italics"/> <pb pagenum="90" xlink:href="009/01/090.jpg"/><emph type="italics"/>&longs;ufficienter, fortè vtique de&longs;isterent ab hac puerili opinione; valde enim &longs;implex <lb/> e&longs;t putare <expan abbr="vnumquodq;">vnumquodque</expan> eorum quæ feruntur e&longs;&longs;e paruum magnitudinibus, quia vi­<lb/>detur a&longs;picientibus, hinc nobis &longs;ic)<emph.end type="italics"/> vtinam i&longs;ta, necnon alia his &longs;imilia, quæ <lb/> pa&longs;&longs;im apud Ari&longs;t. occurrunt, <expan abbr="pleriq;">plerique</expan> no&longs;træ ætatis con&longs;iderarent, qui nulla <lb/> ratione probari po&longs;&longs;e exi&longs;timant, Solem, v. <!-- REMOVE S-->g. <!-- REMOVE S-->terra e&longs;&longs;e centies &longs;exagies &longs;e­<lb/> xies maiorem; &longs;ed etiam, quod peius e&longs;t, negant e&longs;&longs;e maiorem; ad demon­<lb/> &longs;trationes autem a&longs;tronomicas dicunt &longs;e exi&longs;timare eas e&longs;&longs;e fallaces; at que <lb/>impo&longs;&longs;ibile e&longs;&longs;e nos res adeo à nobis di&longs;tantes &longs;ufficienter perue&longs;tigare: <lb/> quanto &longs;apientius, ac prudentius eorum Magi&longs;ter Ari&longs;t. alibi &longs;æpius, &longs;ed hoc <lb/> præcipuè loco; quippe qui Mathematicis &longs;ufficienter excultus erat; quibus <lb/> i&longs;ti de&longs;tituti, nullo vnquam modo ve&longs;tigia præceptoris a&longs;&longs;equi poterunt.</s> </p> <p type="main"> <s id="s.001637"><arrow.to.target n="marg133"/></s> </p> <p type="margin"> <s id="s.001638"><margin.target id="marg133"/>133</s> </p> <p type="main"> <s id="s.001639">Summa 1. cap. 4. <emph type="italics"/>(Quæ igitur astrorum e&longs;t, velox quidem; longè autem: quæ <lb/>verò Lunæ deor&longs;um quidem, tarda autem: quæ autem Solis ambo hæc habet &longs;uffi­<lb/> cienter)<emph.end type="italics"/> quæ igitur a&longs;trorum, ide&longs;t latio a&longs;trorum e&longs;t velox, &longs;ed procul à ter­<lb/> ra; Lunæ verò latio terræ quidem proxima, tarda tamen: at verò Solis la­<lb/> tio medio modo &longs;e habet inter vtrumque, ide&longs;t, quia <expan abbr="neq;">neque</expan> nimis vt a&longs;tra di­<lb/> &longs;tat, <expan abbr="neq;">neque</expan> tardè &longs;icut Luna circunfertur. </s> <s id="s.001640">exi&longs;timo Ari&longs;t. loqui de motu diur­<lb/> no, quia &longs;ecundum hunc a&longs;tra inerrantia &longs;unt Sole citatiora, Sol verò ip&longs;a <lb/> Luna citior. </s> <s id="s.001641">Verumenimuerò illud non prætereundum, quod plurium inua­<lb/> luerit opinio exi&longs;timantium Ari&longs;t. his verbis, Solem &longs;upra Lunam proximè <lb/> colloca&longs;&longs;e; quod tamen ex ip&longs;is nullo pacto deduci pote&longs;t; &longs;ed &longs;olummodo <lb/> ip&longs;um &longs;upra Lunam colloca&longs;&longs;e. </s> <s id="s.001642">quod &longs;i ita &longs;en&longs;i&longs;&longs;et venia dignus haberetur, <lb/> cum tunc temporis nondum fortè adinuentæ e&longs;&longs;ent demon&longs;trationes illæ <lb/> a&longs;tronomicæ, quibus ordo Planetarum certi&longs;&longs;imè con&longs;tat, <expan abbr="Sol&qacute;">Solque</expan>; medius in­<lb/> ter Planetas collocatur. </s> <s id="s.001643">At verò nulla ratione ferendi &longs;unt <expan abbr="quicunq;">quicunque</expan> no&longs;tra <lb/> hac tempe&longs;tate non &longs;olum Ari&longs;t. ita &longs;en&longs;i&longs;&longs;e, &longs;ed etiam contra firmi&longs;&longs;imas <lb/> aftronomorum demon&longs;trationes, quibus adeò Ari&longs;t. deferebat, vnica, vt pu­<lb/> tant ip&longs;ius auctoritate fulti, Solem &longs;ecundum à Luna locum occupare om­<lb/> ni ope defendunt.</s> </p> <p type="main"> <s id="s.001644"><arrow.to.target n="marg134"/></s> </p> <p type="margin"> <s id="s.001645"><margin.target id="marg134"/>134</s> </p> <p type="main"> <s id="s.001646">Summa 2. cap. 3. <emph type="italics"/>(Quod accidit circa Mercurij stellam, quia enim modicum <lb/> <expan abbr="&longs;upera&longs;c&etilde;dis">&longs;upera&longs;cendis</expan>, &longs;æpè non apparet, it a vt po&longs;t tempus multum appareat)<emph.end type="italics"/> quod Mer­<lb/> curius non ni&longs;i rarò con&longs;pici po&longs;&longs;it, cau&longs;a e&longs;t, quia parum à Sole elongatur, <lb/> &longs;iue ip&longs;um antecedat, &longs;iue &longs;ub&longs;equatur. </s> <s id="s.001647">ex quo fit, vt diu ferè &longs;imul cum So­<lb/>le circumferatur, & propterea &longs;iue oriatur, &longs;iue occidat, parum &longs;upra ho­<lb/> rizontem eleuatus apparere pote&longs;t, quod Ari&longs;t. ait modicum <expan abbr="&longs;upera&longs;c&etilde;dit">&longs;upera&longs;cendit</expan>. <lb/> </s> <s id="s.001648">vnde fit tum propter nimiam Solis vicinitatem, cuius lumine tegitur; tum <lb/> propter vapores, qui horizonti vt plurimum incumbunt, vt rarò, & po&longs;t ma­<lb/> gna temporis interualla con&longs;piciatur. </s> <s id="s.001649">non me fugit hæc omnia ab a&longs;trono­<lb/> mis per epiciclum excu&longs;ari; &longs;ed ego mediocritati eorum, in quorum gra­<lb/> tiam hæc &longs;cribo, con&longs;ultum volo.</s> </p> <p type="main"> <s id="s.001650"><arrow.to.target n="marg135"/></s> </p> <p type="margin"> <s id="s.001651"><margin.target id="marg135"/>135</s> </p> <p type="main"> <s id="s.001652">Eodem cap. <emph type="italics"/>(Ad au&longs;trum autem quando feratur, copiam quidem habere talís <lb/>humiditatis, &longs;ed quia parua e&longs;t &longs;ectio circuli, quæ &longs;uper terram, quæ autem deor­<lb/> &longs;um multiplex, non po&longs;&longs;e vi&longs;um hominum fractum ferri ad Solem, <expan abbr="neq;">neque</expan> ip&longs;i tropico <lb/> au&longs;trino appropinquanti; <expan abbr="neq;">neque</expan> in æ&longs;tiuis ver&longs;ionibus exi&longs;tente Sole. <!-- KEEP S--></s> <s id="s.001653">quapropter in <lb/> lis quidem locis neque fieri cometem ip&longs;um. </s> <s id="s.001654">quando verò ad Boream &longs;ubdefecerit, <lb/>accipere comam, quia magna e&longs;t circunferentia, quæ e&longs;t &longs;upra horizontem; quæ au-<emph.end type="italics"/> <pb pagenum="91" xlink:href="009/01/091.jpg"/><emph type="italics"/>tem e&longs;t &longs;ubtus, pars circuli parua; facilè enim vi&longs;um hominum pertingere tunc ad <lb/> Solem)<emph.end type="italics"/> cur cometa in regione au&longs;trali vltra Solis, <expan abbr="anni&qacute;">annique</expan>; vias con&longs;titutus <lb/>non appareret, cau&longs;am referebat Hippocrates paruitatem circuli, quem <lb/> motu diurno cometa de&longs;cribebat, ob quam adeò parum &longs;upra horizontem <lb/> attolleretur, vt <expan abbr="nõ">non</expan> po&longs;&longs;et vi&longs;us no&longs;ter ab ip&longs;o ad Solem reflecti; quod &longs;ecun­<lb/> dum ip&longs;um erat nece&longs;&longs;arium ad cometarum apparitionem. </s> <s id="s.001655">loquitur igitur <lb/>Hippocrates de circulis, quos diurna conuer&longs;ione cometes circumducit, qui <lb/> omninò &longs;imiles &longs;unt ijs, quos etiam Sol, <expan abbr="reliqua&qacute;">reliquaque</expan>; a&longs;tra eodem motu de &longs;i­<lb/> gnant. </s> <s id="s.001656">qui quidem omnes in no&longs;tra &longs;phæra obliqua ita &longs;e habent, vt ij, qui <lb/>&longs;unt vltra æquatorem ad Capricorni tropicum, minus &longs;upra horizontem <lb/>extent, quàm infra deprimantur, & tanto minus, quanto magis ab æquato­<lb/>re in au&longs;trum recedunt: contra verò faciunt, qui citra æquatorem ad Can­<lb/>cri conuer&longs;ionem collocantur, quanto enim magis ab æquatore in boream <lb/> remouentur, tantò eorum &longs;ectio, quæ e&longs;t &longs;upra horizontem, maior e&longs;t ea, <lb/> quæ infra horizontem latet. </s> <s id="s.001657">quæ quidem omnia clara &longs;unt adhibita &longs;phæra <lb/> materiali, quam &longs;i ad tuam poli eleuationem accommodaueris, illicò vi­<lb/> debis tropici, Cancri &longs;ectionem, quæ e&longs;t &longs;upra horizontem multo maiorem <lb/> ea, quæ e&longs;t infra. </s> <s id="s.001658">oppo&longs;itum verò in altero Capricorni tropico, cuius mini­<lb/> mam portionem &longs;upra, maximam verò infra horizontem exi&longs;tere videbis. <lb/> </s> <s id="s.001659">Idem proportionaliter imaginari debes de circulis, quos cometa tam vltra <lb/> Capricornum, quàm citra Cancrum delineat; nam eorum, qui &longs;unt vltra <lb/> Capricornum ad au&longs;trum minores adhuc &longs;ectiones &longs;upra horizontem exi­<lb/> &longs;terent, quàm opus &longs;it ad cometen &longs;pectandum. </s> <s id="s.001660"><expan abbr="At&qacute;ue">Atque</expan> hæc cau&longs;a e&longs;t ex &longs;en­<lb/> tentia Hippocr. <!-- REMOVE S-->cur in illa au&longs;trali plaga <expan abbr="nũquam">nunquam</expan> cometes effulgeat. </s> <s id="s.001661">è con­<lb/> trario autem, quia ad boream &longs;ectiones illæ maximæ &longs;unt, <expan abbr="aptæ&qacute;">aptæque</expan>; ad refra­<lb/> ctionem vi&longs;us no&longs;tri v&longs;que ad Solem, idcircò in hac mundi parte cometas <lb/> con&longs;picere &longs;olemus. </s> <s id="s.001662">Reliqua Vicomercatus, <expan abbr="atq;">atque</expan> Alexand. <!-- REMOVE S-->optimè expli­<lb/> cant, quos tu con&longs;ule, ne actum agatur.</s> </p> </chap> <chap> <p type="head"> <s id="s.001663"><emph type="italics"/>In cap. 4. &longs;ummæ 2. lib. 1. Meteor. <!-- REMOVE S-->de Cometis.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.001664"><arrow.to.target n="marg136"/></s> </p> <p type="margin"> <s id="s.001665"><margin.target id="marg136"/>136</s> </p> <p type="main"> <s id="s.001666">In præ&longs;enti cap. <!-- REMOVE S-->Ari&longs;t. &longs;uam de Cometis &longs;ententiam exponit: Come­<lb/> tam nimirum infra Lunam in elementari mundo procreari, & ignitum <lb/> quoddam Meteoron, ex lenta, pingui, <expan abbr="&longs;icca&qacute;">&longs;iccaque</expan>; materia à terra in &longs;u­<lb/> premam aeris regionem attracta, exi&longs;tere; <expan abbr="ibi&qacute;">ibique</expan>; rapti aeris calore, <lb/> vel elementi ignis (quod illic e&longs;&longs;e putat) vicinitate, vel etiam vi a&longs;trorum <lb/> incendi, <expan abbr="atq;">atque</expan> impelli. </s> <s id="s.001667">Hanć porrò opinionem & &longs;i probabilibus tantum ra­<lb/> tionibus confirmatam vulgò tamen <expan abbr="v&longs;q;">v&longs;que</expan> ad hanc diem receptam, cum fal­<lb/> &longs;am e&longs;&longs;e a&longs;tronomi exi&longs;timent, non erit abs re rationes eas ex &longs;ecundo pro­<lb/> gymn. </s> <s id="s.001668">Tichonis volumine, de&longs;umptas hic breuiter referre, quibus a&longs;trono­<lb/> mus ille eos &longs;upra Lunam in ætherea regione collocauit: quas quidem ra­<lb/> tiones ille ex diuturnis ob&longs;eruationibus per exqui&longs;ita organa factis adinue­<lb/> nit: ea&longs;que Mathematicis linearum, ac numerorum demon&longs;trationibus <lb/> explicauit.</s> </p> <p type="main"> <s id="s.001669">Prima. <!-- KEEP S--></s> <s id="s.001670">&longs;ed vt ab auctoritate, in quam obiter incidimus <expan abbr="initiũ">initium</expan> faciamus, <lb/>non e&longs;t exi&longs;timandum nonnullos &longs;olum ex recentioribus id con&longs;tanter a&longs;&longs;e­<pb pagenum="92" xlink:href="009/01/092.jpg"/>uera&longs;&longs;e, &longs;ed &longs;uperiori etiam ætate id ip&longs;um Hieron. </s> <s id="s.001671">Cardan. <!-- REMOVE S-->libro de &longs;ubtili­<lb/> tate conatus e&longs;t, <expan abbr="neq;">neque</expan> irrito conatu, demon&longs;trare; qui præterea idem cum <lb/>&longs;e ip&longs;o &longs;en&longs;i&longs;&longs;e ait Albumazar. </s> <s id="s.001672">quibus etiam ex antiquis Seneca annumeran­<lb/> dus e&longs;t. </s> <s id="s.001673">pr&etail;dicti autem recentiores omnes varijs demon&longs;trationibus ex ac­<lb/>curata ob&longs;eruatione erutis illud certò certius confirmare contendunt: <expan abbr="id&qacute;">idque</expan>; <lb/> non in vno dumtaxat, &longs;ed in <expan abbr="quinq;">quinque</expan> cometis; quorum demon&longs;trationes apud <lb/> Tychonem partim in progymn. </s> <s id="s.001674">partim in epi&longs;t. <!-- REMOVE S-->fu&longs;ius explicatas reperies.</s> </p> <p type="main"> <s id="s.001675">2. Quarum poti&longs;&longs;ima illa e&longs;t, quæ ex parallaxi, &longs;eu a&longs;pectus diuer&longs;itate <lb/> de&longs;umitur, certi&longs;&longs;imum enim e&longs;t lumen illud e&longs;&longs;e altero &longs;ublimius, quod mi­<lb/> norem exhibet parallaxim: expertos autem &longs;e e&longs;&longs;e hi omnes, affirmant ho­<lb/> &longs;ce quinque cometas multò minorem pati parallaxim, quam Lunam; imò <lb/> quempiam minorem, quàm Sol ip&longs;e patiatur, quo po&longs;ito manife&longs;tè conuin­<lb/> ceretur eos omnes &longs;upra Lunam in ætherea regione efful&longs;i&longs;&longs;e.</s> </p> <p type="main"> <s id="s.001676">3. Ratio, qua etiam ante nouas ob&longs;eruationes vti &longs;olebant, de&longs;umitur <lb/> ex motu cometæ diurno, quo &longs;cilicet oritur, & occidit, quemadmodum cæ­<lb/> tera &longs;ydera, hoc e&longs;t &longs;patio 24. horarum diurnam conuer&longs;ionem circa totam <lb/> terram ab&longs;oluit. </s> <s id="s.001677">&longs;i igitur comete e&longs;&longs;et in &longs;ublimiori aeris regione, vbi cæte­<lb/> ra ignita meteora collocantur, <expan abbr="moueretur&qacute;">mouereturque</expan>; diurno motu circa terram, &longs;e­<lb/> queretur nece&longs;&longs;ariò eum tanta velocitate videri à nobis circumferri, vt po­<lb/> tius fulgor quidam, &longs;eu radius pertran&longs;iens ab oriente in occidentem appa­<lb/> reret, quam &longs;tella qu&etail;dam: <expan abbr="id&qacute;">idque</expan>; propter propinquitatem; a&longs;tra enim ob ni­<lb/> miam di&longs;tantiam videntur tardè moueri, quamuis veloci&longs;&longs;imè moueantur.</s> </p> <figure id="id.009.01.092.1.jpg" place="text" xlink:href="009/01/092/1.jpg"/> <p type="main"> <s id="s.001678">Quod melius ex &longs;equenti figura <lb/> <expan abbr="cõuincitur">conuincitur</expan>, vbi circulus interior e&longs;t <lb/> terra, cuius &longs;emidiameter A B. cir­<lb/> culus verò exterior e&longs;t cometæ gy­<lb/> rus, quem ip&longs;e &longs;patio 24. horarum <lb/> percurrit, qui &longs;ecundum veram pro­<lb/> portionem deberet adhuc ip&longs;i terræ <lb/> propinquior, ac proinde minor e&longs;&longs;e, <lb/> iuxta aeris &longs;upremam partem. </s> <s id="s.001679">hori­<lb/> zon e&longs;t recta D C, tangens terram in <lb/> B, vbi e&longs;t oculus no&longs;ter, qui nihil in­<lb/> fra ip&longs;am D C, videre pote&longs;t; quare <lb/> &longs;i cometa 24. horarum totum gyrum <lb/> D C E, percurrit, non videbitur, ni&longs;i <lb/> quando percurret portionem D C, <lb/> &longs;upra horizontem; quæ quidem por­<lb/> tio, <expan abbr="neq;">neque</expan> &longs;emihoræ re&longs;ponderet, &longs;i fi­<lb/> gura iuxta veram proportionem con&longs;trueretur. </s> <s id="s.001680">experientia tamen con&longs;tat, <lb/> cometas videri &longs;upra horizontem tot horis, quot &longs;tellæ fixæ, &longs;ub quibus mo­<lb/> uentur: non ergo e&longs;t in &longs;upremo aere. </s> <s id="s.001681">Quod &longs;i fiat figura, in qua exterior <lb/> cometæ ambitus adeò magnus &longs;it, vt ip&longs;ius portio D C, &longs;upra horizontem <lb/> exi&longs;tens, re&longs;pondeat tempori, quo cometa &longs;upra no&longs;trum pariter horizon­<lb/> tem &longs;pectatur, ea figura terræ &longs;emidiametrum A B. toties multiplicabit, vt <lb/> ip&longs;i Lunæ circuitui proximè accedat.</s> </p> <pb pagenum="93" xlink:href="009/01/093.jpg"/> <p type="main"> <s id="s.001682">Præterea aiunt, quis &longs;anæ mentis dixerit, Meteoron vllum ex materia <lb/> vaga, ac fluxa con&longs;tans, po&longs;&longs;e tanta pernicitate moueri, vt diurnam con­<lb/> uer&longs;ionem ab&longs;oluat? </s> <s id="s.001683">vnde illi motus i&longs;te? </s> <s id="s.001684">præ&longs;ertim cum videamus cætera <lb/> ignita meteora e&longs;&longs;e ad modum temporanea, <expan abbr="atq;">atque</expan> euanida.</s> </p> <p type="main"> <s id="s.001685">4. Comprobationem nobis &longs;uppeditant ex via, &longs;eu ductus circuli, quem <lb/> toto durationis tempore proprio cur&longs;u de&longs;ignarunt: prædicti <expan abbr="namq;">namque</expan> quin­<lb/> que cometæ motu &longs;ibi proprio, quo ab occidente non omninò orientem <lb/> ver&longs;us, &longs;ed ad aquilonem deflectentes ab initio &longs;uæ apparitionis, <expan abbr="v&longs;q;">v&longs;que</expan> ad vl­<lb/>timum finem exqui&longs;iti&longs;&longs;imè portionem circuli maximi in c&etail;lo de&longs;ignarunt; <lb/>non aliter quàm Sol proprio motu per eclypticam in cœlo mundi &longs;phæram <lb/> in duo æqualia diuidentem de&longs;cribit. </s> <s id="s.001686">necnon aliter ac Luna &longs;uum iter per <lb/> circulum maximum cœlum bifariam diuidentem perficit. </s> <s id="s.001687">quapropter co­<lb/> metas ho&longs;ce <expan abbr="nõ">non</expan> minus quam Sol, vel Luna in ip&longs;o æthere &longs;patiatos e&longs;&longs;e con­<lb/> tendunt. </s> <s id="s.001688">qui enim, aiunt, fieri potui&longs;&longs;et, &longs;i in mundo elementari flagra&longs;&longs;ent, <lb/> vt tam regulari, <expan abbr="atq;">atque</expan> con&longs;tanti ductu circuli maximi portionem tam exactè <lb/> delinea&longs;&longs;ent, quam quidem inter elementa vagum, <expan abbr="atq;">atque</expan> in&longs;tabilem pro ma­<lb/> teriæ in&longs;tabilitate exercere debui&longs;&longs;ent?</s> </p> <p type="main"> <s id="s.001689">5. Adde, quod in maximo hoc circulo de&longs;cribendo, etiam &longs;i inæquali ve­<lb/> locitate vi&longs;i &longs;int moueri, inæqualitatem tamen illam regularem <expan abbr="vbiq;">vbique</expan> &longs;em­<lb/> per &longs;eruauerunt, in principio quidem velociores, deinde &longs;ucce&longs;&longs;iuè, & pro­<lb/> portionaliter velocitatem illam &longs;imili analogia &longs;emper &longs;eruata <expan abbr="inhibuerũt">inhibuerunt</expan>, <lb/> nullo igitur pacto inordinatam inæqualitatem, qua à tardiore motu &longs;ubito <lb/> in celeriorem, & rur&longs;us &longs;tatim ab hoc in <expan abbr="illũ">illum</expan> pro&longs;ilirent exhibuerunt: prout <lb/> omnia Meteora, quæ in mundi parte elementari ex flammanti materia ge­<lb/> nerantur, talem di&longs;parem, <expan abbr="atq;">atque</expan> incon&longs;tantem motum obtinere cernuntur.</s> </p> <p type="main"> <s id="s.001690">6. Argumento præterea e&longs;t cometas ho&longs;ce minimè elementares fui&longs;&longs;e, <lb/>quod hic eorum proprius motus, quo maximo illo tramite ferebantur, nun­<lb/> quam tantus fuit, vt proprium Lunæ motum, vel tardi&longs;&longs;imum adæquauerit, <lb/> quæ quidem cum lenti&longs;&longs;ima e&longs;t plus denis gradibus vna die promouetur; <lb/> cum tamen cometæ initio cum veloci&longs;&longs;imi &longs;unt non multum vltra quinos <lb/> gradus diurno motu progre&longs;&longs;i &longs;int, vt ob id longè &longs;upra Lunam cur&longs;um &longs;uum <lb/> ab&longs;olui&longs;&longs;e manife&longs;tè comprobari po&longs;&longs;it: quo enim &longs;ydera magis à terra at­<lb/> tolluntur, <expan abbr="octauæ&qacute;">octauæque</expan>; &longs;phæræ propius accedunt, eò tardioribus proprijs la­<lb/>tionibus proferuntur: ita vt &longs;tellæ i&longs;tæ cœlo ad&longs;cititiæ &longs;upra Lunam admo­<lb/> dum euehendæ videantur. </s> <s id="s.001691">Quod &longs;i in &longs;uprema aeris regione conflagrarent, <lb/> qua nam ratione vnà cum toto cœlo diurnam conuer&longs;ionem ab&longs;olui&longs;&longs;ent: <lb/> <expan abbr="neq;">neque</expan> enim putandum e&longs;t &longs;upremum hunc aeris limbum eadem perne citate, <lb/> qua cœle&longs;tes orbes, verum minori admodum imò tardi&longs;&longs;imè à diurno mo­<lb/> tu, &longs;i tamen eo rapitur circumduci.</s> </p> <p type="main"> <s id="s.001692">7. Tandem argumentum ex ip&longs;orum duratione de&longs;umatur. </s> <s id="s.001693">cætera nam­<lb/> que meteora &longs;tatim <expan abbr="atq;">atque</expan> apparuerint, veluti temporanea pror&longs;us, <expan abbr="atq;">atque</expan> eua­<lb/> nida extinguuntur: At verò cometæ ad men&longs;em aliquando integrum per­<lb/> &longs;euerant. </s> <s id="s.001694">quì igitur fieri potuerit, vt in hac corruptibili <expan abbr="mũdi">mundi</expan> parte ex ma­<lb/>teria adeò fluxa, & vaga, quam illis Ari&longs;toteles &longs;upponit, tandiu perdura­<lb/> re potui&longs;&longs;ent.</s> </p> <p type="main"> <s id="s.001695"><expan abbr="Atq;">Atque</expan> hæ &longs;unt rationes, quibus plurimi a&longs;tronomorum recentiorum, co­ <pb pagenum="94" xlink:href="009/01/094.jpg"/>metas ho&longs;ce motum æthereæ regioni conformem, contrà quam Ari&longs;t. opi­<lb/>natus e&longs;t, obtinui&longs;&longs;e, manife&longs;tum e&longs;&longs;e volunt; ac proinde eorum locum, & <lb/> cur&longs;um in cœle&longs;ti mundi parte extiti&longs;&longs;e, &longs;e comproba&longs;&longs;e exi&longs;timant: qua de <lb/> re prudentis Lectoris e&longs;to iudicium: <expan abbr="neq;">neque</expan> enim, vt ille cecinit, no&longs;trum e&longs;t, <lb/> tantas componere lites.</s> </p> <p type="main"> <s id="s.001696">Verumenimuerò Peripatetica omnis &longs;chola reclamat; Cœlum e&longs;t inge­<lb/>nerabile, & incorruptibile, nihil igitur noui cœlo pote&longs;t accidere. </s> <s id="s.001697">&longs;ed age <lb/> re&longs;pondent, nonne omnium a&longs;tronomorum con&longs;en&longs;u &longs;tellæ tres nouæ no&longs;tro <lb/> hoc &longs;æculo in cœlo toti mundo con&longs;picuæ illuxerunt? </s> <s id="s.001698"><expan abbr="eas&qacute;">easque</expan>; in octaua &longs;phæ­<lb/>ra re&longs;edi&longs;&longs;e con&longs;tans e&longs;t omnium a&longs;&longs;ertio? </s> <s id="s.001699">quarum prior anno 1572. in con­<lb/> &longs;tellatione Ca&longs;&longs;iopeæ apparuit. </s> <s id="s.001700">Secunda anno 1600. in Cygno, quæ nec dum <lb/> extinguitur. </s> <s id="s.001701">Tertia anno 1604. inter Sagittarij &longs;tellas vi&longs;a e&longs;t, de quibus vi­<lb/> de P. <!-- REMOVE S-->Clauium in &longs;phæra breuiter de illis tractantem: aut &longs;i mauis, & vacat, <lb/> vide quoad primam primum volumen progymna&longs;matum Tychonis Brahe, <lb/> vbi etiam aliorum a&longs;tronomorum de eadem certi&longs;&longs;imas commentationes <lb/> reperies. </s> <s id="s.001702">con&longs;ule etiam de reliquis duabus Ioannis Kepleri Cæ&longs;areæ Maie­<lb/> &longs;tatis Mathematici commentaria; & coactus libenter fateberis noui ali­<lb/> quid cœlo aduenire po&longs;&longs;e.</s> </p> <p type="main"> <s id="s.001703">Po&longs;tremò tandem po&longs;&longs;et qui&longs;piam in hunc <expan abbr="modũ">modum</expan> opponere: etiam &longs;i con­<lb/> &longs;tet <expan abbr="quinq;">quinque</expan> cometas c&etail;lo oberra&longs;&longs;e, non propterea dicemus reliquos omnes <lb/> e&longs;&longs;e pariter cœle&longs;tes, <expan abbr="nullum&qacute;">nullumque</expan>; proinde &longs;ublunarem. </s> <s id="s.001704">Huic memorati A&longs;tro­<lb/> nomi &longs;ic re&longs;ponderent; id quidem mathematica, & infallibili ratione non <lb/> colligi, imò aliquot parum infra Lunam extiti&longs;&longs;e, non omninò negandum <lb/> videri: at verò in &longs;uperiori aeris plaga, in tam fluxa, ac in&longs;tabili mundi par­<lb/> te, cometas vnquam efful&longs;i&longs;&longs;e, nemo &longs;ibi ob allatas rationes meritò per&longs;ua­<lb/> dere po&longs;&longs;e.</s> </p> <p type="main"> <s id="s.001705"><arrow.to.target n="marg137"/></s> </p> <p type="margin"> <s id="s.001706"><margin.target id="marg137"/>137</s> </p> <p type="main"> <s id="s.001707">Summæ 2. cap. 5. <emph type="italics"/>(Ad hæc autem &longs;i quemadmodum o&longs;tenditur in ijs, quæ cir­<lb/>ca Astrologiam &longs;peculationibus, Solis magnitudo maior e&longs;t quàm terræ; & di&longs;tan­<lb/> tia multò maior a&longs;trorum ad terram quàm So is; &longs;icut Solis ad terram quàm Lu­<lb/> næ; non <expan abbr="vtiq;">vtique</expan> longè alicubi à terra conus, qui à Sole, conijciet radios, <expan abbr="neq;">neque</expan> vtique <lb/>vmbra terræ, quæ vocatur nox, erit apud astra; &longs;ed nece&longs;&longs;e Solem omnia a&longs;tra cir­<lb/> cun&longs;picere, & nulli ip&longs;orum terram ob&longs;istere)<emph.end type="italics"/> ex dictis &longs;umma 1. cap. 3. huius, <lb/> & ex figura ibi de&longs;cripta, facilè e&longs;t intelligere præ&longs;entem locum; nam cum <lb/> Sol &longs;it multò maior terra, vt ibi probatur, ac minus di&longs;ter à terra quàm fixæ <lb/> &longs;tellæ, magis tamen quàm Luna, vt patet ex &longs;olari eclyp&longs;i, &longs;equitur nece&longs;&longs;a­<lb/> riò vmbram terræ, quæ nox e&longs;t ip&longs;a, effici turbinatam, & valdè procul à ter­<lb/> ra acumen coni vmbræ a&longs;cendet, &longs;ed paulò &longs;upra Lunam conus hic vmbræ <lb/> permittet radios Solis &longs;e ip&longs;um ambientes iterum &longs;imul committi, quod il­<lb/> lis verbis <emph type="italics"/>(Conijciet radios)<emph.end type="italics"/> ide&longs;t committet radios expre&longs;&longs;it Ari&longs;t. cum igi­<lb/> tur vmbra apud Lunam &longs;it &longs;atis gracilis, breui &longs;upra Lunam de&longs;inet, neque <lb/> vllo pacto ad affixa &longs;ydera protendetur, <expan abbr="neq;">neque</expan> illis tenebras offundet. </s> <s id="s.001708">quod <lb/> etiam experientia confirmat, cum nunquam a&longs;tra illa, quæ Soli opponuntur, <lb/> <expan abbr="quæ&qacute;">quæque</expan>; vertex vmbræ collimat, vllam <expan abbr="patiãtur">patiantur</expan> eclyp&longs;im. </s> <s id="s.001709">quare &longs;ine vllo ter­<lb/>ræ impedimento Sol pote&longs;t affixa omnia &longs;ydera per lu&longs;trare. </s> <s id="s.001710">Exactiores ha­<lb/> rum rerum demon&longs;trationes &longs;unt alterius loci.</s> </p> <p type="main"> <s id="s.001711"><arrow.to.target n="marg138"/></s> </p> <p type="margin"> <s id="s.001712"><margin.target id="marg138"/>138</s> </p> <p type="main"> <s id="s.001713">Eodem cap. <emph type="italics"/>(Amplius autem e&longs;t tertia quædam opinio de ip&longs;o, dicunt enim<emph.end type="italics"/> <pb pagenum="95" xlink:href="009/01/095.jpg"/><emph type="italics"/>quidam lac e&longs;&longs;e reflexionem no&longs;tri vi&longs;us ad Solem; &longs;icut & &longs;tellam comatam; im­<lb/> po&longs;&longs;ibile autem e&longs;t & hoc, &longs;i enim videns quieuerit & &longs;peculum, & quod videtur <lb/> omne in eodem puncto &longs;peculi eadem apparebit <expan abbr="vtiq;">vtique</expan> pars imaginis, &longs;i autem mo­<lb/> ueatur &longs;peculum, & quod videtur, in eadem quidem di&longs;tantia ad videns, & quie­<lb/> &longs;cens; ad inuicem autem <expan abbr="neq;">neque</expan> æquè velociter, <expan abbr="neq;">neque</expan> in eadem &longs;emper di&longs;tantia im­<lb/> po&longs;&longs;ibile eandem imaginem in eadem e&longs;&longs;e parte &longs;peculi. </s> <s id="s.001714">Quæ autem in lactis circu­<lb/> lo feruntur a&longs;tra, & Sol, ad quem fit reflexio, mouentur manentibus nobis, & &longs;i­<lb/> militer, & æqualiter ad nos di&longs;tantia; à &longs;e ip&longs;is autem non æqualiter: aliquando <lb/> enim medijs noctibus Delphin oritur, aliquando verò diluculo. </s> <s id="s.001715">partes autem lactis <lb/> eædem manent in vnoquoque; atqui non oportebat, &longs;i erat imago, &longs;ed non in ei&longs;dem <lb/> adhuc e&longs;&longs;et hæc pa&longs;&longs;io locis)<emph.end type="italics"/> in his Ari&longs;t. confutat opinionem dicentium Gala­<lb/> xiam apparere per quandam reflexionem vi&longs;us no&longs;tri ab illa parte c&etail;li, ceu, <lb/>ex quodam &longs;peculo ad Solem: probat autem hoc e&longs;&longs;e impo&longs;&longs;ibile ratione <lb/> de&longs;umpta ex parte Optices, quæ dicitur Catoptrica, &longs;iue &longs;pecularia, quia <lb/> tractat de vi&longs;ione reflexa, quæ fit mediante &longs;peculo, quam quidem rationem <lb/> &longs;i vellem mathematicè explicare, longa nimis, ac præter in&longs;titutum fieret <lb/> tractatio. </s> <s id="s.001716">Pauca tamen addam, quæ Ari&longs;totelis <expan abbr="&longs;ent&etilde;tiam">&longs;ententiam</expan> &longs;atis per&longs;picuam <lb/> reddant. </s> <s id="s.001717">&longs;i igitur inquit, Galaxia nihil aliud e&longs;&longs;et quàm reflexio no&longs;tri vi&longs;us <lb/> ex illa cœli parte, in qua ip&longs;a apparet tanquam ex &longs;peculo ad Solem, ita vt <lb/>nihil aliud ip&longs;a e&longs;&longs;et, quàm Sol vi&longs;us per reflexionem ex illa cœli parte tan­<lb/> quam &longs;peculo; &longs;equeretur eam non &longs;emper in eadem cœli parte apparere, <lb/> &longs;ed modo in vna, modo in alia, ita vt &longs;patio vnius anni totum cœlum perua­<lb/> garetur: quod tamen non accidit. </s> <s id="s.001718">quod autem illud con&longs;equatur manife­<lb/> &longs;tum e&longs;&longs;e pote&longs;t ex ob&longs;eruatione eorum, quæ ex &longs;peculis videntur: tunc enim <lb/> res per &longs;pe culum vi&longs;a in eadem &longs;peculi parte apparet, quando & videns, & <lb/> &longs;peculum, & obiectum immota manent: quod &longs;i & &longs;peculum, & obiectum ad <lb/> inuicem accedant, vel recedant, &longs;eruata tamen eadem ab in&longs;pectore di&longs;tan­<lb/> tia, nullo modo fieri pote&longs;t, vt eadem imago, in eadem &longs;peculi parte &longs;pe­<lb/> ctanti videatur, ni&longs;i obiectum &longs;peculo per eandem lineam accedat, &longs;ecun­<lb/> dum quam illi incidebat. </s> <s id="s.001719">At verò partibus illis lactei circuli, &longs;iue a&longs;tris, quæ <lb/> in eo fulgent, Sol perpetuò accedit, vel recedit, <expan abbr="neq;">neque</expan> per lineam incidentiæ <lb/> <expan abbr="eãdem">eandem</expan>, &longs;eruata tamen eadem à nobis di&longs;tantia, quod quidem inde patet, quia <lb/> Delphini con&longs;tellatio, qui in ip&longs;o ferè lacte exi&longs;tit, <expan abbr="aliquãdo">aliquando</expan> medijs noctibus, <lb/> aliquando verò mane, aliquando etiam ve&longs;peri oritur; quod inde accidit, <lb/> quia illi Sol modò appropinquat, modò coniungitur, modò ab eo recedit, <lb/> quare nece&longs;&longs;e e&longs;&longs;et, vt lacteus orbis, non &longs;emper in ij&longs;dem locis, &longs;ed perpe­<lb/> tuò in alijs, <expan abbr="atq;">atque</expan> alijs cerneretur, cuius tamen contrarium videmus. </s> <s id="s.001720">ex qui­<lb/> bus con&longs;tat fal&longs;am omninò e&longs;&longs;e eorum &longs;ententiam, qui Galaxiam per huiu&longs;­<lb/>modi reflexionem fieri opinabantur. </s> <s id="s.001721">Quæ dicta &longs;unt de &longs;peculo, & obiecto <lb/> &longs;atius e&longs;t a&longs;&longs;umpto aliquo &longs;peculo experiri, quàm ea pluribus ob&longs;curare: qua <lb/>etiam experientia Ari&longs;t. ratio confirmabitur.</s> </p> <p type="main"> <s id="s.001722"><arrow.to.target n="marg139"/></s> </p> <p type="margin"> <s id="s.001723"><margin.target id="marg139"/>139</s> </p> <p type="main"> <s id="s.001724">Ibidem <emph type="italics"/>(Quæ autem in lactis cir culo feruntur astra, & Sol, ad quem fit refle­<lb/>xio, mouentur manentibus nobis, & &longs;imiliter, & æqualiter ad nos di&longs;tantia à &longs;e <lb/> ip&longs;is autem non æqualiter)<emph.end type="italics"/> quæ hic ab Ari&longs;totele dicuntur <expan abbr="nõ">non</expan> &longs;unt v&longs;que quaque <lb/>vera propter apogæum, ac perigæum Solis, quæ quidem duo ab omnibus <lb/> a&longs;tronomis a&longs;&longs;eruatur: quando igitur Sol e&longs;t in apogæo, maiori multo in­ <pb pagenum="96" xlink:href="009/01/096.jpg"/>teruallo di&longs;tat à nobis, quàm quando e&longs;t in perigæo, interuallum enim illud <lb/> con&longs;tat diametris terræ duobus, & quadraginta, hoc e&longs;t milliarijs 208000. <lb/> ferè, ide&longs;t octonis millibus &longs;upra ducenta millia. </s> <s id="s.001725">quæ differentia facit vt Sol <lb/> manife&longs;tè appareat nobis minor apogæus, quàm perigæus. </s> <s id="s.001726">Sol præterea &longs;i­<lb/> militer ip&longs;is inerrantibus &longs;tellis fit tantumdem modo remotior, modo pro­<lb/> pinquior: &longs;ed fortè Ari&longs;t. i&longs;ta non occurrerunt, vel tunc temporis nondum <lb/> per&longs;pecta erant.</s> </p> <p type="main"> <s id="s.001727"><arrow.to.target n="marg140"/></s> </p> <p type="margin"> <s id="s.001728"><margin.target id="marg140"/>140</s> </p> <p type="main"> <s id="s.001729">Ibidem <emph type="italics"/>(Aliquando enim medijs noctibus Delphin oritur)<emph.end type="italics"/> vt probet, Gala­<lb/> xiam non &longs;emper &longs;eruare à Sole di&longs;tantiam eandem, accipit tanquam huius <lb/> rei &longs;ignum, manife&longs;tum, quod Delphini con&longs;tellatio aliquando medijs no­<lb/> ctibus oriatur &longs;upra horizontem, aliquando verò diluculo; non ideò tamen <lb/> putes hanc rationem &longs;upponere Delphinum e&longs;&longs;e in ip&longs;o lacteo circulo, quod <lb/> tamen verum non e&longs;t, non enim e&longs;t in Galaxia, &longs;ed tamen illi proximus, vt <lb/> noctu videre e&longs;t in cœlo, vel etiam &longs;i mauis in globo a&longs;tronomico: non ta­<lb/> men ob id Ari&longs;t. ratio minus valida redditur, cum Delphinus &longs;emper Gala­<lb/> xiæ eodem modo &longs;it proximus, <expan abbr="eo&qacute;">eoque</expan>; moto, ip&longs;a pariter moueatur.</s> </p> <p type="main"> <s id="s.001730"><arrow.to.target n="marg141"/></s> </p> <p type="margin"> <s id="s.001731"><margin.target id="marg141"/>141</s> </p> <p type="main"> <s id="s.001732">Summæ 2. cap. 6. Sunt qui velint Ari&longs;t. <!-- REMOVE S-->Galaxiam nihil aliud e&longs;&longs;e, quàm <lb/> quandam refractionem lucis &longs;tellarum illarum, quæ &longs;unt in ætherea Gala­<lb/> xia, quæ inquam refractio fiat circa &longs;upremam aeris regionem ex occur&longs;u <lb/> exhalationum, quæ ibi perpetuò con&longs;eruantur, & vi earumdem &longs;tellarum <lb/> &longs;ur&longs;um &longs;emper attrahuntur, quæ refractio fiat ad eum modum, quo halo cir­<lb/> ca Solem, & Lunam. <!-- KEEP S--></s> <s id="s.001733">& quemadmodum halo, &longs;iue area omnibus <expan abbr="vndecunq;">vndecunque</expan> <lb/> a&longs;picientibus &longs;emper videntur in eodem cœli loco, hoc e&longs;t è regione Solis, <lb/> vel Lunæ; &longs;imiliter Galaxia in aere omnibus <expan abbr="vndecunq;">vndecunque</expan> intuentibus appa­<lb/> reat in eadem cœli parte, ide&longs;t ex aduersò eorumdem &longs;yderum, quæ cœle­<lb/> &longs;tem lacteam viam conficiunt. </s> <s id="s.001734">Porrò qui &longs;ic mentem Ari&longs;t. exponunt, nul­<lb/> lo modo po&longs;&longs;unt à Mathematicis redargui per rationem de&longs;umptam à di­<lb/> uer&longs;itate a&longs;pectus (quam po&longs;tea explicabo) quamuis phy&longs;icis rationibus re­<lb/> fellantur. </s> <s id="s.001735">Alij &longs;unt, quorum &longs;ententia magis videtur <expan abbr="improbãda">improbanda</expan>, eò quod <lb/> Ari&longs;t. &longs;ummum Philo&longs;ophum pueriliter in a&longs;tronomia lap&longs;um fateri cogan­<lb/> tur. </s> <s id="s.001736">Exi&longs;timant hi Galaxiam hanc Ari&longs;totelicam nihil aliud e&longs;&longs;e, quàm ip­<lb/> &longs;as tenues exhalationes in aere &longs;ubuectas, directèque infra &longs;tellas illas la­<lb/> cteum circulum in cœlo con&longs;tituentes nobis obiectas. </s> <s id="s.001737">qui præter innumera, <lb/> ac magna ab&longs;urda è naturali Philo&longs;ophia petita, vnum maximum ex A&longs;tro­<lb/> nomia, nempè ex diuer&longs;itate a&longs;pectus de&longs;umptum, nullo modo vitare po&longs;­<lb/> &longs;unt; <expan abbr="e&longs;t&qacute;">e&longs;tque</expan>; huiu&longs;modi, quia &longs;i lacteus hic circulus e&longs;&longs;et in aere, non ab om­<lb/> nibus, <expan abbr="neq;">neque</expan> ex omni terræ loco per eadem &longs;ydera commeare cerneretur, &longs;ed <lb/> è diuer&longs;is, & præcipuè ab inuicem valde di&longs;&longs;itis, circa diuer&longs;a a&longs;tra &longs;e &longs;e ocu­<lb/> lis no&longs;tris obijceret: at te&longs;timonio &longs;en&longs;us con&longs;tat, Galaxiam &longs;emper in eo­<lb/> dem loco; <expan abbr="eadem&qacute;">eademque</expan>; à &longs;yderibus fixis di&longs;tantia albicare, ergò nullo modo <lb/> viam hanc in aere qua&longs;i pendulam fabricare debemus. </s> <s id="s.001738">rationem hanc di­<lb/> uer&longs;itatis a&longs;pectus a&longs;tronomicè magis explicatam reperies apud Clauium <lb/> in &longs;phæra. </s> <s id="s.001739">Porrò hæc ratio quamuis adeo certa, ac no&longs;tra tempe&longs;tate vul­<lb/> gata, parum tamen à nonnullis de rebus Meteorologicis commentaria con­<lb/> farcinantibus intellecta, minimè eos ab&longs;terrere potuit, quin prædictam opi­<lb/> nionem, non &longs;olum Ari&longs;toteli imponerent, verum etiam ip&longs;i <expan abbr="tãquam">tanquam</expan> veram <pb pagenum="97" xlink:href="009/01/097.jpg"/>a&longs;truerent: huiu&longs;modi patiuntur incommoda, qui <expan abbr="ab&longs;q;">ab&longs;que</expan> Mathematicarum <lb/> auxilio Philo&longs;ophiam aggrediuntur.</s> </p> <p type="main"> <s id="s.001740"><arrow.to.target n="marg142"/></s> </p> <p type="margin"> <s id="s.001741"><margin.target id="marg142"/>142</s> </p> <p type="main"> <s id="s.001742">Eodem cap. <emph type="italics"/>(Ad hæc autem locus plenus e&longs;t a&longs;tris maximis, & fulgidi&longs;&longs;imis, <lb/> & adhuc &longs;par&longs;is vocatis)<emph.end type="italics"/> non &longs;olum viam hanc lacteam a&longs;tris plurimis refer­<lb/> ti&longs;&longs;imam e&longs;&longs;e videmus, &longs;ed præterea eandem &longs;tellarum admodum feracem <lb/> appellare licebit, &longs;i quidem &longs;tellæ omnes illæ nouæ, quæ no&longs;tra tempe&longs;tate <lb/> apparuerunt, omnes in hac via exortæ &longs;unt. </s> <s id="s.001743">prima enim anno 1572. efful&longs;it <lb/> in Ca&longs;&longs;iopea; altera anno 1600. in Cygno. </s> <s id="s.001744">tertia demum anno 1604. in Sa­<lb/> gittario, quæ omnes con&longs;tellationes intra lacteum circulum continentur. <lb/> </s> <s id="s.001745">Veri&longs;&longs;imum præterea e&longs;&longs;e hoc idem confirmatur in&longs;trumenti illius mirabi­<lb/> lis auxilio, quod &longs;uperiori anno in Belgio excogitatum, & po&longs;tea in Italia <lb/> à Galilæo perfectius <expan abbr="redditũ">redditum</expan> e&longs;t, <expan abbr="quod&qacute;">quodque</expan>; ip&longs;e primum Italicè Cannocchiale, <lb/> Latinè verò, & quidem aptè à Græcis mutuato vocabulo alius Tele&longs;copium <lb/> appellauit: hoc inquam &longs;pecillo adhibito per&longs;picuum &longs;tatim fit non &longs;olum <lb/> in via lactea innumeras &longs;tellas contineri, verum quid ip&longs;a &longs;it, certò certius <lb/> con&longs;tat; &longs;ed &longs;atius e&longs;t ip&longs;ius Galilæi verba ex Nuncio &longs;ydereo referre: Quod <lb/> tertio inquit, loco à nobis fuit ob&longs;eruatum e&longs;t ip&longs;iu&longs;met lactei circuli e&longs;&longs;en­<lb/> tia, &longs;en materies, quam Tele&longs;copij beneficio adeò ad &longs;en&longs;um licet intueri, <lb/> vt & altercationes omnes, quæ per tot &longs;æcula Philo&longs;ophos excruciarunt ab <lb/> oculata certitudine <expan abbr="dirimãtur">dirimantur</expan>, <expan abbr="nos&qacute;">nosque</expan>; à verbo&longs;is di&longs;putationibus liberemur: <lb/> e&longs;t enim Galaxia nihil aliud, quàm innumerarum &longs;tellarum coaceruatim <lb/> con&longs;itarum congeries, in <expan abbr="quãcunq;">quancunque</expan> enim regionem illius &longs;pecillum dirigas, <lb/>&longs;tatim &longs;tellarum ingens frequentia &longs;e &longs;e in con&longs;pectum profert, <expan abbr="quarũ">quarum</expan> com­<lb/> plures &longs;atis magnæ, ac valdè con&longs;picuæ videntur; &longs;ed exiguarum multitudo <lb/> pror&longs;us inexplorabilis e&longs;t. </s> <s id="s.001746">hæc ille.</s> </p> <p type="main"> <s id="s.001747"><arrow.to.target n="marg143"/></s> </p> <p type="margin"> <s id="s.001748"><margin.target id="marg143"/>143</s> </p> <p type="main"> <s id="s.001749">Eodem cap. <emph type="italics"/>(Con&longs;ideretur autem & circulus, & quæ &longs;unt in ip&longs;o a&longs;tra ex de­<lb/> &longs;criptione)<emph.end type="italics"/> id e&longs;t, con&longs;ideretur Galaxia, & a&longs;tra ip&longs;ius in&longs;piciantur diligenter <lb/> ex de&longs;criptione alicuius Globi a&longs;tronomici, in quo &longs;olent A&longs;tronomi omnes <lb/> con&longs;tellationes, ac &longs;tellas &longs;uis locis reddere, <expan abbr="atq;">atque</expan> etiam lacteum ip&longs;um cir­<lb/> culum graphicè effingere. </s> <s id="s.001750">huiu&longs;modi globum veteres &longs;ph&etail;ram Aratæam di­<lb/> cebant ab Arato Poeta græco, qui <expan abbr="cõ&longs;tellationes">con&longs;tellationes</expan> omnes carmine pro&longs;equu­<lb/> tus e&longs;t, ac proinde globum hunc ordine expo&longs;uit:</s> </p> <p type="main"> <s id="s.001751"><arrow.to.target n="marg144"/></s> </p> <p type="margin"> <s id="s.001752"><margin.target id="marg144"/>144</s> </p> <p type="main"> <s id="s.001753">Eodem cap. <emph type="italics"/>(Spar&longs;a autem vocata)<emph.end type="italics"/> putò &longs;par&longs;a hæc &longs;ydera illa e&longs;&longs;e, quæ <lb/> recentiores informia appellant, eò quod ad aliorum a&longs;teri&longs;morum formas <lb/> minimè reuocentur.</s> </p> <p type="main"> <s id="s.001754"><arrow.to.target n="marg145"/></s> </p> <p type="margin"> <s id="s.001755"><margin.target id="marg145"/>145</s> </p> <p type="main"> <s id="s.001756">Summa 4. cap. 1. <emph type="italics"/>(In A&longs;ia igitur plurimi ex Parna&longs;&longs;o vocato monte videntur <lb/>fluentes)<emph.end type="italics"/> rectè dubitat Alexander, qua ratione mons Parna&longs;&longs;us ab Ari&longs;t. po­<lb/> natur in A&longs;ia, cum certò certius con&longs;tet, ip&longs;um in Græcia Europæ regione <lb/> &longs;itum e&longs;&longs;e. </s> <s id="s.001757">fortè legendum e&longs;t, vt vult Vicomercatus, ex Paropame&longs;&longs;o, non <lb/> autem ex Parna&longs;&longs;o, quamuis Græci codices aduer&longs;entur; Paropame&longs;&longs;um <lb/> <expan abbr="namq;">namque</expan> Plinius, & Strabo in A&longs;ia collocant, <expan abbr="volunt&qacute;">voluntque</expan>; ip&longs;um e&longs;&longs;e iugum quod­<lb/>dam montis Cauca&longs;i: Cauca&longs;um autem &longs;upra Pontum oriri, & <expan abbr="v&longs;q;">v&longs;que</expan> ad Hir­<lb/> canum, & vltra mare per totam A&longs;iam &longs;e proferre, tradunt veteres Geo­<lb/> graphi. </s> <s id="s.001758">vide The&longs;aurum geographicum Abrahami Ortelij. </s> <s id="s.001759">Strabo lib. 15. <lb/> &longs;ic: Indiam à &longs;eptentrione Tauri extrema terminant, ab Ariana v&longs;que in <lb/> orientale mare, quæ extrema indigenæ particulatim nominant Poropami&longs;­ <pb pagenum="98" xlink:href="009/01/098.jpg"/>&longs;um, Emodum, Imauum, & alijs nominibus: Macedones verò Cauca&longs;um <lb/> vocant.</s> </p> <p type="main"> <s id="s.001760"><arrow.to.target n="marg146"/></s> </p> <p type="margin"> <s id="s.001761"><margin.target id="marg146"/>146</s> </p> <p type="main"> <s id="s.001762">Ibidem <emph type="italics"/>(Apparet mare, quod e&longs;t extra)<emph.end type="italics"/> intelligit illud mare <expan abbr="Oceanũ">Oceanum</expan>, quod <lb/> Arabiam, ac Per&longs;iam alluit, <expan abbr="Indico&qacute;">Indicoque</expan>; Oceano committitur: <expan abbr="quod&qacute;">quodque</expan>; à pri­<lb/> &longs;cis Geographis Rubrum mare appellatur, cuius alterum Rubrum mare, <lb/> quod inter Africam, & Arabiam &longs;e in&longs;inuat, e&longs;t quidam &longs;inus, quem nunc <lb/> communiter omnes Rubrum mare appellant. </s> <s id="s.001763">de illo inquam meritò intel­<lb/> ligit Alexander, non de hoc Aegyptiaco, cum ex a&longs;pectu illius à monte Pa­<lb/> ropame&longs;&longs;o, &longs;equatur ip&longs;um e&longs;&longs;e editi&longs;&longs;imum, quod non &longs;equeretur ex altero <lb/> ob illius propinquitatem. </s> <s id="s.001764">Dixit autem mare, quod e&longs;t extra, ide&longs;t extra <lb/> terram habitatam, ad di&longs;tinctionem maris Mediterranei, quod e&longs;t intra <lb/> terram habitatam, ac propterea Mediterraneum dictum e&longs;t.</s> </p> <p type="main"> <s id="s.001765"><arrow.to.target n="marg147"/></s> </p> <p type="margin"> <s id="s.001766"><margin.target id="marg147"/>147</s> </p> <p type="main"> <s id="s.001767">Ibidem <emph type="italics"/>(Ex hoc igitur fluunt & alij fluuij, & Bactrus, & Choa&longs;pes, & Ara­<lb/> xes. </s> <s id="s.001768">ab hoc autem ab&longs;cinditur Tanais pars exi&longs;tens in Meotidem paludem fluit au­<lb/> tem, & Indus ex ip&longs;o, omnium fluuiorum fluxio maxima)<emph.end type="italics"/> hæc omnia &longs;unt fal&longs;a, <lb/> & impo&longs;&longs;ibilia; nam cum Bactrus Bactrianam regionem irriget, quæ e&longs;t vl­<lb/> tra Per&longs;iam, Choa&longs;pes verò Per&longs;iam ip&longs;am, Indus <expan abbr="deniq;">denique</expan> in India oriatur: <lb/> quì fieri pote&longs;t, vt in Regionibus adeò inuicem di&longs;&longs;itis orti fluuij ab eodem <lb/> <expan abbr="quoq;">quoque</expan> Paropame&longs;&longs;o monte ortum ducant. </s> <s id="s.001769">nec minus fal&longs;um e&longs;t illud de Ta­<lb/> nai, quod &longs;it qua&longs;i ip&longs;ius Araxis ramus quidam, Tanais enim ex Riphæis <lb/> <expan abbr="mõtibus">montibus</expan> Scythiæ delabitur in Meotidem paludem longè longius ab Araxi. <lb/> <!-- KEEP S--></s> <s id="s.001770"><expan abbr="eum&qacute;">eumque</expan>; terminum inter Europam, & A&longs;iam Geographi con&longs;tituunt, vnde <lb/> Diony&longs;ius Afer &longs;ic cecinit:</s> </p> <p type="main"> <s id="s.001771"><emph type="italics"/>Europam, <expan abbr="atq;">atque</expan> A&longs;iam Tanais di&longs;terminat amnis.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.001772">verùm huiu&longs;modi errata Ari&longs;t. <!-- REMOVE S--><expan abbr="atq;">atque</expan> adeò Geographis illius temporis con­<lb/> donanda &longs;unt, cum nondum Geographia &longs;atis exculta e&longs;&longs;et.</s> </p> <p type="head"> <s id="s.001773"><emph type="italics"/>De altitudine montis Cauca&longs;i.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.001774"><arrow.to.target n="marg148"/></s> </p> <p type="margin"> <s id="s.001775"><margin.target id="marg148"/>148</s> </p> <p type="main"> <s id="s.001776">Eod. <!-- REMOVE S-->cap. <emph type="italics"/>(Cauca&longs;us autem maximus mons e&longs;t eorum qui ad ori<expan abbr="&etilde;tem">entem</expan> æ&longs;tiua­<lb/> lem, & multitudine, & altitudine &longs;igna autem altitudinis quidem, quia <lb/> videtur & à vocatis Profundis, & à nauigantibus in Stagnum in&longs;uper il­<lb/> lu&longs;trantur à Sole ip&longs;ius &longs;ummitates, v&longs;que ad tertiam partem nocte, & ab <lb/> aurora, & iterum a ve&longs;pera)<emph.end type="italics"/> Cauca&longs;us mons &longs;itus e&longs;t inter mare Euxinum, & <lb/> Ca&longs;pium, &longs;upra Cholchidem, & Iberiam regiones, vbi polus eleuatur 47. <lb/> circiter grad. <!-- REMOVE S-->ac re&longs;pectu Græciæ, & maris Euxini vergit ad eam mundi pla­<lb/> gam, vnde illis æ&longs;tiuo tempore Sol oritur. </s> <s id="s.001777">ait Ari&longs;t. eum e&longs;&longs;e omnium mon­<lb/> tium illius plagæ alti&longs;&longs;imum, quod probat primò, quia admodum à longè <lb/> cernitur, <expan abbr="nimirũ">nimirum</expan> ab illo Euxini loco, qui Profunda vocatur, eò quòd à Nau­<lb/> tis nu&longs;quam ibi fundus reperiatur. </s> <s id="s.001778">& præterea à Nauigantibus in Stagnum, <lb/> &longs;iue in Meotidem paludem, quæ quidem loca minimùm di&longs;tant a Cauca&longs;o <lb/> 560. milliaribus. </s> <s id="s.001779">Secundò, probat il ius altitudinem ex eo, quòd &longs;ummi­<lb/> tates ip&longs;ius <expan abbr="v&longs;q;">v&longs;que</expan> ad tertiam partem nocte, & ve&longs;peri à Sole illu&longs;trentur. </s> <s id="s.001780">Lo­<lb/> cum hunc fusè pertractat eruditi&longs;&longs;imus Iacobus Mazonius &longs;ectione 3. & 4. <lb/> de Comparatione Platonis, & Ari&longs;t. quo in opere plurima habet ex Mathe­<lb/> maticis de&longs;umpta, quibus naturalem Philo&longs;ophiam mirificè illu&longs;trat, <expan abbr="mani-fe&longs;tum&qacute;">mani­<lb/> fe&longs;tumque</expan>; reddit, quàm nece&longs;&longs;ariæ &longs;int Mathematicæ ad philo&longs;ophicæ veri­ <pb pagenum="99" xlink:href="009/01/099.jpg"/>tatis in&longs;pectionem. </s> <s id="s.001781">Is igitur &longs;ect. </s> <s id="s.001782">3. cap. 5. de hoc Ari&longs;t. loco &longs;ie loquitur: <lb/>hic locus diligenter expendendus videtur tum quia difficillimus e&longs;t, <expan abbr="tũ">tum</expan> quia <lb/> multis an&longs;am dedit reprehendendi Ari&longs;t. tanquam puerilia effutientem. </s> <s id="s.001783">tex­<lb/> tus <expan abbr="itaq;">itaque</expan> Ari&longs;t. duplicem habet &longs;en&longs;um; alter à quo non abhorret <expan abbr="Alexãder">Alexander</expan>; <lb/> vt tertia illa pars ad montem referatur, qua&longs;i dicat, quod antequam Sol ima <lb/> montis illu&longs;tret, illuminat illius cacumen <expan abbr="v&longs;q;">v&longs;que</expan> ad tertiam montis partem: <lb/> &longs;ed hæc Mazonij expo&longs;itio nulla e&longs;t, cuiu&longs;libet enim montis etiam medio­<lb/> cris altitudinis Sol illu&longs;trat non &longs;olum tertiam partem, &longs;ed & dimidium, & <lb/> duas tertias, & ferè totum, antequam ad planam illius ba&longs;im de&longs;cendat. <lb/> </s> <s id="s.001784">Ego &longs;ic exponendum cen&longs;eo, vt Ari&longs;t. dicat, mane, ide&longs;t initio Crepu&longs;culi <lb/> matutini, & ve&longs;pere, ide&longs;t, in fine Crepu&longs;culi ve&longs;pertini ip&longs;ius tertiam par­<lb/> tem illuminatam con&longs;pici ab ijs, quorum horizonti tunc incipit, vel de&longs;init <lb/> Crepu&longs;culum; ex quibus illi nece&longs;&longs;ariò re&longs;pectu Cauca&longs;i &longs;unt occidentales, <lb/> quì manè hoc vident, vti &longs;unt ij, qui in Euxino, &longs;eu Ponto, & Meotide naui­<lb/> gant, vel loca proxima inhabitant: illi verò, qui in fine Crepu&longs;culi ve&longs;per­<lb/> tini hoc cernunt, nece&longs;&longs;ariò re&longs;pectu Cauca&longs;i erunt orientales. </s> <s id="s.001785">Alter huius <lb/> loci &longs;en&longs;us e&longs;t, ait Mazonius, vt non de tertia montis parte, &longs;ed de tertia <lb/> noctis portione loquatur, ita vt manè. </s> <s id="s.001786">v. <!-- REMOVE S-->g. <!-- REMOVE S-->initio tertiæ, & vltimæ noctis <lb/> parte, cacumen Cauca&longs;i illuminetur. </s> <s id="s.001787">hæc ille. </s> <s id="s.001788">vbi animaduertendum expo­<lb/> &longs;itionem <expan abbr="hãc">hanc</expan> parùm differre à no&longs;tra modò allata, cùm <expan abbr="vtraq;">vtraque</expan> in idem tem­<lb/> pus recidat; nam &longs;i dixerimus initio Crepu&longs;culi matutini illuminari ter­<lb/> tiam partem Cauca&longs;i, tempus hoc coincidit cum initio tertiæ partis noctis, <lb/> quantitas enim Crepu&longs;culi in poli eleuatione 47. grad. <!-- REMOVE S-->qualem habet Cau­<lb/> ca&longs;us, per totam æ&longs;tatem tres horas plus minus continet, vt patet ex tabu­<lb/> la quantitatis Crepu&longs;culi, quæ e&longs;t apud Nonium, & apud Clauium in &longs;phæ­<lb/> ra vltimæ editionis; quæ quantitas reperiri geometrico calculo pote&longs;t, vt <lb/> docent Nonius, Clauius, & Maginus lib. 10. primi mob. </s> <s id="s.001789">quod quidem trium <lb/> circiter horarum tempus e&longs;t tertia ferè noctis pars in ijs regionibus, quibus <lb/> polus eleuatur 47. grad. <!-- REMOVE S-->&longs;iue ergo dicamus id contingere initio Crepu&longs;culi, <lb/> &longs;iue initio tertiæ partis noctis, erit idem tempus, trium &longs;cilicet horarum. <lb/> </s> <s id="s.001790">&longs;i ergo, inquit Mazonius, &longs;equamur priorem declarationem, nece&longs;&longs;arium <lb/> e&longs;t dicere, quod ea tertia pars montis, quæ initio auroræ Solis lumine per­<lb/> funditur, &longs;it ea montis altitudo, qua ip&longs;e exuperat illam aeris regionem, <lb/> vnde Crepu&longs;culum incipit apparere. </s> <s id="s.001791">quo po&longs;ito aptè, ac &longs;agaciter altitudi­<lb/> nem Cauca&longs;i inue&longs;tigat hoc pacto. </s> <s id="s.001792">præmittit autem &longs;eptem propo&longs;itiones <lb/> apud Mathematicos manife&longs;tas, quas ego mi&longs;&longs;as facio cum non mihi nece&longs;­<lb/> &longs;ariæ videantur. </s> <s id="s.001793">po&longs;tea &longs;ic di&longs;currit; His ergo ita &longs;e habentibus, dico nos in­<lb/> uenire po&longs;&longs;e viam, qua &longs;altem rudi Minerua, montis altitudinem comper­<lb/> tam habeamus. </s> <s id="s.001794">&longs;i enim in principio Crepu&longs;culi v. <!-- REMOVE S-->g. <!-- REMOVE S-->matutini (ita enim, vt <lb/> &longs;upra annotaui intelligendus e&longs;t Ari&longs;t.) illuminatur tertia pars, nece&longs;&longs;arium <lb/>videtur tertiam illam partem &longs;upra eam regionem collocari, ex qua Cre­<lb/> pu&longs;culum in planitie apparere incipit, &longs;ed illa regio ex Alhazino, & Vitell. <lb/> <!-- REMOVE S-->de Crepu&longs;culis milliaribus 52. à terra recedit, ergo duæ tertiæ montis par­<lb/> tes, quæ Solem initio auroræ non vident, &longs;unt 52. milliaria ad perpendicu­<lb/> lum, & tertia alia pars illuminata e&longs;t ad perpendiculum 26. milliaria: ita <lb/> vt totius montis altitudo perpendicularis &longs;it 78. mill. <!-- REMOVE S-->&longs;ed papè in quos acu­ <pb pagenum="100" xlink:href="009/01/100.jpg"/>leos imprudens me conieci? </s> <s id="s.001795">rident enim hoc Ari&longs;t. dictum Mathematici, <lb/> putant enim eum pueriliter lap&longs;um e&longs;&longs;e. </s> <s id="s.001796">Cæterum ego pro præceptoris tu­<lb/>tela, dico eum &longs;equutum e&longs;&longs;e famam. </s> <s id="s.001797">hæc Mazonius, quorum nonnulla in­<lb/> digent con&longs;ideratione cuiu&longs;modi, &longs;unt illa, quando dicit, nece&longs;&longs;arium vi­<lb/> detur, quod ea pars &longs;upra eam regionem attollatur, vnde Crepu&longs;culum in <lb/>planitie apparere incipit. </s> <s id="s.001798">videtur enim his verbis velle dicere, quod quan­<lb/> do habitantibus planitiem, quæ e&longs;t ad pedem montis Cauca&longs;i, vel horizon­<lb/> tem eiu&longs;dem, incipit Crepu&longs;culum, ij&longs;dem etiam tunc tertia montis pars <lb/> appareat illuminata; in quo &longs;en&longs;u errat po&longs;tea in colligenda montis altitu­<lb/> dine, quamuis enim verum e&longs;&longs;et partem illuminatam eminere totam &longs;upra <lb/> 52. milliaria, non tamen &longs;equitur ip&longs;am &longs;olam eminere, &longs;ed alia etiam pars <lb/> eminere pote&longs;t, quod &longs;ic geometricè demon&longs;trabo. </s> <s id="s.001799">de&longs;cribatur enim figura <lb/> <figure id="id.009.01.100.1.jpg" place="text" xlink:href="009/01/100/1.jpg"/> <pb pagenum="101" xlink:href="009/01/101.jpg"/>illa, qua ad vaporum altitudines indagandas vtuntur Alhazenus, Vitellio, <lb/> & Clauius, in qua terræ globus e&longs;t F L G E, regiò vaporum, & exhalatio­<lb/> num M X N T. horizon a&longs;tronomicus O P. phy&longs;icus Q R, tangens terram <lb/> in puncto F, vbi etiam ponendus e&longs;t huius horizontis habitator, vnà cum. <lb/> </s> <s id="s.001800">Cauca&longs;o F V. <!-- KEEP S--></s> <s id="s.001801">Sol A B C, qui initio Crepu&longs;culi infra horizontem O P, depri­<lb/> mitur gr. <!-- REMOVE S-->18. vti ab A&longs;tronomis compertum e&longs;t, hoc e&longs;t, arcum D P, e&longs;&longs;e <lb/> grad. <!-- REMOVE S-->18. radius autem C I K, tangens terram, incipit illuminare halitus, <lb/> qui &longs;unt ad K, in extremo horizonte &longs;en&longs;ibili F K. quique po&longs;&longs;unt videri ab <lb/> oculo in F, ide&longs;t ab huius horizontis habitatore. </s> <s id="s.001802">Cæterùm prædicti autho­<lb/> res po&longs;t longam ratiocinationem ex calculo planorum <expan abbr="triangulorũ">triangulorum</expan> tandem <lb/> o&longs;tendunt in triangulo H F K, latus H K, continere milliaria 3631. ex quo <lb/>detracta H L, &longs;emidiametro terræ, quæ e&longs;t milliar. 3579. reliqua L K, &longs;um­<lb/>ma halituum eleuatio relinquatur 52. milliar. </s> <s id="s.001803">quibus ab ip&longs;is demon&longs;tra­<lb/> tis, &longs;i H F, terræ &longs;emidiameter, quæ continet milliar. 3579. ponatur &longs;inus <lb/> totus 100000. & latus F K, ponatur tangens anguli ad H, quem pr&etail;dicti au­<lb/> thores probant e&longs;&longs;e grad. <!-- REMOVE S-->8. 54. erit F K, tangens partium 15659. fiat igi­<lb/> tur per 2. pro. </s> <s id="s.001804">trjang. </s> <s id="s.001805">rectil. </s> <s id="s.001806">Clauij;<lb/> <arrow.to.target n="table4"/></s> </p> <table> <table.target id="table4"/> <row> <cell>vt H F, &longs;inus totus,</cell> <cell>ad milliar.</cell> <cell>ita tangens F K,</cell> <cell>ad milliar.</cell> </row> <row> <cell>100000.</cell> <cell>3579.</cell> <cell>15659.</cell> <cell>560.</cell> </row> </table> <p type="main"> <s id="s.001807">& inueniemus per auream regulam latus F K, continere milliar. </s> <s id="s.001808">560. quan­<lb/> ta &longs;cilicet e&longs;t di&longs;tantia ab oculo no&longs;tro ad exhalationes Crepu&longs;culi initium <lb/> efficientes. </s> <s id="s.001809">Con&longs;ideremus iam triangulum F K V, vt ip&longs;ius latus F V, quæ <lb/> e&longs;t Cauca&longs;i altitudo, in milliaribus innote&longs;cat. </s> <s id="s.001810">iam ip&longs;ius latus F K, inno­<lb/> tuit, angulus verò ad F, e&longs;t rectus; at angulus ad K, &longs;ic manife&longs;tabitur; in <lb/> quadrilatero F K I H, quatuor anguli &longs;unt æquales 4. rectis ex 32. primi. </s> <s id="s.001811">duo <lb/> autem F, & I, &longs;unt recti ex 18. 3. ergo reliqui duo H, & K, æquales erunt duo­<lb/> bus rectis, quorum alter H, e&longs;t gr. <!-- REMOVE S-->17. 48. vt præditi Mathematici <expan abbr="o&longs;t&etilde;dunt">o&longs;tendunt</expan>, <lb/> reliquus igitur ad K, erit gr. <!-- REMOVE S-->162. 12. vt compleat duos rectos. </s> <s id="s.001812">qui &longs;i detra­<lb/> hatur à duobus rectis, qui &longs;unt deinceps ad lineam F K, reliquus angulus <lb/> F K V, erit gr. <!-- REMOVE S-->17. 48. &longs;i ergo latus F K, notum ponatur &longs;inus totus 100000. <lb/> latus verò F V, tangens anguli noti, erit ip&longs;a 32100. fiat igitur,<lb/> <arrow.to.target n="table5"/></s> </p> <table> <table.target id="table5"/> <row> <cell>vt F K, &longs;inus totus,</cell> <cell>ad milliar.</cell> <cell>ita F V, tangens</cell> <cell>ad milliar.</cell> </row> <row> <cell>100000.</cell> <cell>560.</cell> <cell>32100.</cell> <cell>180.</cell> </row> </table> <p type="main"> <s id="s.001813"><expan abbr="inueniemus&qacute;">inueniemusque</expan>; latus F V, continere milliar. </s> <s id="s.001814">180. cuius pars F X, quæ e&longs;t in­<lb/> fra habituum altitudinem continet milliar. </s> <s id="s.001815">52. quibus detractis ex 180. re­<lb/> manent 128. pro tota X V, quæ tota e&longs;t &longs;upra vapores, nondum tamen illu­<lb/> minata. </s> <s id="s.001816">vnde patet Mazonium erra&longs;&longs;e in colligenda hoc modo Cauca&longs;i al­<lb/> titudine, ex prima Crepu&longs;culi illuminatione in horizonte Cauca&longs;i facta, <lb/> cum ex præmi&longs;&longs;o calculo con&longs;tet partem montis F V, totam tunc temporis <lb/> e&longs;&longs;e tenebro&longs;am, quamuis &longs;uperet multò regionem vaporum, contrà quàm <lb/> ip&longs;e putabat, &longs;uperat enim eam milliar. </s> <s id="s.001817">128. quare duæ tertiæ montis erunt <lb/> non 52. mill. <!-- REMOVE S-->vt ip&longs;e ait, &longs;ed mill. <!-- REMOVE S-->180. & proinde tota altitudo erit mill. <!-- REMOVE S-->270. <lb/> quod &longs;anè ridiculum e&longs;t, cum nullius montis altitudo &longs;e&longs;quimilliare tran­<lb/> &longs;cendat. </s> <s id="s.001818">Quod &longs;i &longs;equamur alteram expo&longs;itionem, vt nimirum Ari&longs;tot. <!-- REMOVE S-->lo­<lb/> quatur non de tertia montis parte, &longs;ed noctis, ita vt dicat, circa initium <lb/> tertiæ partis noctis apicem montis illu&longs;trari, altitudo eius erit tantum­ <pb pagenum="102" xlink:href="009/01/102.jpg"/>modo 180. quot continet latus F V. vt vidimus, quæ quamuis illa minor &longs;it, <lb/> adhuc tamen ab&longs;urda e&longs;t.</s> </p> <p type="main"> <s id="s.001819">Si verò dixerimus Ari&longs;t. intelligere hæc omnia, non re&longs;pectu horizontis <lb/> Cauca&longs;i, &longs;ed alterius, cuius habitator in principio &longs;ui Crepu&longs;culi tertiam <lb/> Cauca&longs;i partem iam illu&longs;tratam videat, vti accideret &longs;i Cauca&longs;us &longs;tatuere­<lb/> tur in L K, vbi incipit Crepu&longs;culum habitanti in F. tunc e&longs;&longs;et altitudo tanta, <lb/> quanta colligit Mazonius, &longs;i tamen Ari&longs;t. intelligatur de tertia montis par­<lb/> te; e&longs;t enim L K, altitudo habituum 52. mill. <!-- REMOVE S-->& duæ tertiæ montis, quare <lb/> totus mons erit 78. &longs;i autem intelligatur circa tertiam noctis partem, mon­<lb/>tis apicem illuminatum videri ab habitatore F, &longs;ic altitudo eius erit tan­<lb/> tummodo 52. mill. <!-- REMOVE S-->quæ tamen adhuc omnem veritatem nimium &longs;uperat. <lb/> </s> <s id="s.001820">Cum ergo hinc inde &longs;equantur ab&longs;urda, putat Mazonium excu&longs;andum e&longs;&longs;e <lb/> Ari&longs;tot. dicendo eum &longs;equutum e&longs;&longs;e famam, <expan abbr="loquutum&qacute;">loquutumque</expan>; e&longs;&longs;e populariter. <lb/> </s> <s id="s.001821">Verumenimuerò &longs;apientiores iudicent num rectè philo&longs;ophus, cuius e&longs;t re­<lb/> condita, <expan abbr="atq;">atque</expan> abdita docere, excu&longs;etur, &longs;i dicatur, eum, popularem famam <lb/> &longs;equutum e&longs;&longs;e.</s> </p> <p type="main"> <s id="s.001822">Tandem monendus mihi Lector e&longs;t, in demon&longs;tratione Magini, quæ e&longs;t <lb/> apud Mazonium &longs;ect. </s> <s id="s.001823">4. citati operis; a&longs;&longs;umi radium Solis tangentem terræ <lb/> globum, qui cum horizonte faciat angulum gr. <!-- REMOVE S-->18. quod fal&longs;um e&longs;t, &longs;olus <lb/> enim radius centralis, qui à centro Solis ad centrum terræ ducitur talem <lb/> facit angulum, <expan abbr="atq;">atque</expan> hac de cau&longs;a ip&longs;e colligit altitudinem no&longs;tra maiorem; <lb/> no&longs;tra e&longs;t 270. mill. <!-- REMOVE S-->&longs;ua verò 276. vbi etiam, &longs;icut & nos a&longs;&longs;umit horizon­<lb/> tem Cauca&longs;i.</s> </p> <p type="main"> <s id="s.001824">Aduertendum tandem Mazonium admodum aduer&longs;antia loquutum e&longs;&longs;e, <lb/> &longs;ect. </s> <s id="s.001825">enim 3. demon&longs;tratinè concludit altitudinem 76. mill. <!-- REMOVE S-->&longs;ect. </s> <s id="s.001826">verò 4. &longs;i­<lb/> mul <expan abbr="cũ">cum</expan> Magino demon&longs;tratiuè pariter colligit altitudinem eiu&longs;dem 276. m. <lb/> </s> <s id="s.001827">quæ nimis ab inuicem di&longs;crepant, cum tamen <expan abbr="vtrobiq;">vtrobique</expan> demon&longs;tret, & ve­<lb/> ritas &longs;it vna. </s> <s id="s.001828">At verò cau&longs;a huius di&longs;crepantiæ e&longs;t, quòd &longs;ect. </s> <s id="s.001829">3. accipit Cre­<lb/> pu&longs;culum non horizontis Cauca&longs;i, &longs;ed illius, in cuius extremitate orientali, <lb/> vbi incipit Crepu&longs;culum, Cauca&longs;us &longs;itus &longs;it, <expan abbr="di&longs;tet&qacute;">di&longs;tetque</expan>; ab habitatore 560. m. <lb/> </s> <s id="s.001830">vt &longs;upra o&longs;tendimus. </s> <s id="s.001831">&longs;ect. </s> <s id="s.001832">verò 4. accipit horizontem ip&longs;ius Cauca&longs;i, vt ex <lb/> figura illic de&longs;cripta videre e&longs;t. </s> <s id="s.001833">ex hac igitur horizontum varia &longs;uppo&longs;itio­<lb/> ne, varia etiam altitudo colligitur, quamuis <expan abbr="vtrobiq;">vtrobique</expan> ex <expan abbr="vtraq;">vtraque</expan> &longs;uppo&longs;itio­<lb/> ne <expan abbr="vtramq;">vtramque</expan> altitudinem rectè concludat. </s> <s id="s.001834"><expan abbr="Atq;">Atque</expan> hæc de Cauca&longs;o &longs;ufficiant.</s> </p> <p type="main"> <s id="s.001835"><arrow.to.target n="marg149"/></s> </p> <p type="margin"> <s id="s.001836"><margin.target id="marg149"/>149</s> </p> <p type="main"> <s id="s.001837">Eodem cap. <emph type="italics"/>(Ex Pyreneo autem, hic autem est mons ad occidentem æquino­<lb/>ctialem in Gallia, fluunt i&longs;ter, & Tarte&longs;&longs;us, iste quidem extra columnas, I&longs;ter au­<lb/>tem per totam Europam in Pontum Euxinum)<emph.end type="italics"/> Ari&longs;t. fortè &longs;equutus e&longs;t Herodo­<lb/>tum, qui falsò tradit I&longs;trum, &longs;ine Dannbium ex Pyreneis defluere, nam Iu­<lb/> ce clarius con&longs;tat ip&longs;um ex ijs Alpibus, quæ Heluetiorum montes dicuntur, <lb/> propè Ba&longs;ileam ex Adula monte ortum ducere. </s> <s id="s.001838"><expan abbr="neq;">neque</expan> verum e&longs;t Tarte&longs;&longs;um, <lb/> quem & Bœtim alij nominant ex Pyreneis de&longs;cendere. </s> <s id="s.001839">Tarte&longs;&longs;um hunc Ma­<lb/> ginus putat e&longs;&longs;e Tagum, cui fauet vocabulorum quali&longs;cunque &longs;imilitudo. <lb/> </s> <s id="s.001840">extra tamen columnas Herculis qui&longs;quis &longs;it in Oceanum occidentale illa­<lb/> bitur. </s> <s id="s.001841">Igno&longs;cenda &longs;unt i&longs;ta Ari&longs;t. tunc enim Geographia <expan abbr="nondũ">nondum</expan> adoleuerat.</s> </p> <p type="main"> <s id="s.001842"><arrow.to.target n="marg150"/></s> </p> <p type="margin"> <s id="s.001843"><margin.target id="marg150"/>150</s> </p> <p type="main"> <s id="s.001844">Ad finem eiu&longs;dem cap. <emph type="italics"/>(Et circa Ligu&longs;ticam non minor Rhodano ab&longs;orbetur <lb/> quidam fluuius, & iterum egreditur &longs;ecundum alium locum)<emph.end type="italics"/> <expan abbr="incompertũ">incompertum</expan> & hoc <pb pagenum="103" xlink:href="009/01/103.jpg"/>Ari&longs;t. vt &longs;uperiora, ob Geographiæ illius &longs;eculi imperfectionem, nu&longs;quam <lb/> enim in tota Liguria quidpiam tale reperitur.</s> </p> <p type="head"> <s id="s.001845"><emph type="italics"/>De Terræ rotunditate.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.001846"><arrow.to.target n="marg151"/></s> </p> <p type="margin"> <s id="s.001847"><margin.target id="marg151"/>151</s> </p> <p type="main"> <s id="s.001848">Svmma 4. cap. 2. quod e&longs;t de permutatione, & vici&longs;&longs;itudine aquarum, <lb/> & continentis. </s> <s id="s.001849">Pergratum Lectori fore exi&longs;timaui, nec alienum ab <lb/> in&longs;tituto, &longs;i occa&longs;ione huius permutationis maris, ac terræ, rem ex­<lb/>po&longs;uero &longs;citu digni&longs;&longs;imam, quam pridem ob&longs;eruare cœpi, ac in dies <lb/> ob&longs;eruo, præ&longs;ertim cum nullus præteritorum &longs;criptorum, quod &longs;ciam, eam <lb/> literis mandauerit: Terræ &longs;cilicet totius molem paulatim reduci ad perfe­<lb/> ctam &longs;phæricitatem, ita vt aliquando nece&longs;&longs;e &longs;it futurum ip&longs;am à mari inun­<lb/> dari, <expan abbr="atq;">atque</expan> omninò inhabitabilem reddi. </s> <s id="s.001850">Primum igitur illud ex &longs;acris lite­<lb/> ris &longs;tatuendum, orbem terræ in &longs;uo primordio fui&longs;&longs;e ab opifice rerum om­<lb/> nium, figura &longs;phærica donatum, hoc e&longs;t <expan abbr="ab&longs;q;">ab&longs;que</expan> montium eminentijs, atque <lb/> vallium depre&longs;&longs;ionibus. </s> <s id="s.001851">quod patet ex eo, quia <expan abbr="tũc">tunc</expan> tota Mari obtegebatur, <lb/> ita vt minimè apta e&longs;&longs;et animantibus ad inhabitandum. </s> <s id="s.001852">redditam verò ha­<lb/> bitabilem, cum ip&longs;ius conditor <expan abbr="quãdam">quandam</expan> ip&longs;ius partem humiliorem, & quan­<lb/> dam eminentiorem effeci&longs;&longs;et; transferendo nimirum maximam terræ por­<lb/> tionem ex vno loco in alium, vnde illic maris concauitas, i&longs;tic verò mon­<lb/> tium &longs;ublimitas emer&longs;it. </s> <s id="s.001853">quo facto aquæ omnes in loca illa decliuiora &longs;ua <lb/> &longs;pontè rece&longs;&longs;erunt, quæ aquarum congregatio Mare appellatum e&longs;t. </s> <s id="s.001854">Hine <lb/> nonnulli auctores graui&longs;&longs;imi a&longs;&longs;erere non dubitarunt, montes <expan abbr="cõflatos">conflatos</expan> fui&longs;­<lb/> &longs;e ex terra illa, quæ locum illum occupabat, quem po&longs;tea maria inua&longs;erunt. <lb/> </s> <s id="s.001855">quæ cum ita &longs;int. </s> <s id="s.001856">&longs;equitur terram <expan abbr="nũc">nunc</expan> e&longs;&longs;e extra naturalem &longs;uam figuram, & <lb/> propterea in quodam &longs;tatu violento, <expan abbr="viol&etilde;tum">violentum</expan> autem <expan abbr="nullũ">nullum</expan> <expan abbr="perpetuũ">perpetuum</expan>. </s> <s id="s.001857">præ­<lb/> terea cum terra &longs;it grauior quàm aqua, nulla ratione deberent terræ partes <lb/> &longs;uperiores a quæ &longs;uperficiem &longs;uperare, cuius tamen <expan abbr="contrariũ">contrarium</expan> accidit, nam <lb/> &longs;uperficies ip&longs;a terræ, & multò magis <expan abbr="mõtana">montana</expan> loca &longs;uperficiem maris cuiu&longs;­<lb/> uis non parum &longs;uperant; quæ altera violentia terræ, & aquæ ine&longs;t, & ideò <lb/> minimè mirum e&longs;t, imò <expan abbr="vtriu&longs;q;">vtriu&longs;que</expan> naturæ valdè conueniens terram redire ad <lb/> pri&longs;tinam, ac primigeniam figuram, ex qua con&longs;ectarium erit aquam <expan abbr="quoq;">quoque</expan> <lb/> &longs;uam pariter illam &longs;ibi primæuam recuperaturam e&longs;&longs;e figuram. </s> <s id="s.001858">cau&longs;am au­<lb/> tem re&longs;tauratricem huius terrenæ <expan abbr="rotũditatis">rotunditatis</expan> e&longs;&longs;e aquas tum pluuiales, tum <lb/> fluuiales iamdiù ob&longs;eruauimus, vt ex &longs;equentibus ob&longs;eruationibus patebit.</s> </p> <p type="main"> <s id="s.001859">Primò, videmus flumina quotidie montium radices corrodere, ac qua&longs;i <lb/> &longs;uffodere, ita vt pa&longs;&longs;im ex hoc, vel illo monte magnas faciant ruinas, ac pr&etail;­<lb/> cipitia, <expan abbr="atq;">atque</expan> hinc inde prærupti appareant montes, vt meritò legamus apud <lb/>Iob cap. 14. alluuione paulatim terra con&longs;umitur. </s> <s id="s.001860">humum porrò illam ex <lb/> montibus delap&longs;am &longs;emper ad loca humiliora fluuij &longs;ecum detrahunt. </s> <s id="s.001861">Ex <lb/> continua etiam hac inter montes corro&longs;ione facta manife&longs;tè apparet, flumi­<lb/> num alueos in montanis modò e&longs;&longs;e humiliores quàm olim, quamuis contra­<lb/>rium accidat alueis fluuiorum per plana decurrentium, qui modò altiores <lb/> &longs;unt <expan abbr="quã">quam</expan> exordio mundi, vt paulò po&longs;t <expan abbr="o&longs;t&etilde;dam">o&longs;tendam</expan>. </s> <s id="s.001862">Illud autem liquidò apparet <lb/> ex &longs;ignis, &longs;eu &longs;ymbolis, &longs;eu ex &longs;imilitudine terræ, aut lapidis, quæ in alti&longs;&longs;imis <lb/> fluminum ripis hinc inde pa&longs;&longs;im <expan abbr="vid&etilde;tur">videntur</expan>, quæ indicio &longs;unt montes illos iam <pb pagenum="104" xlink:href="009/01/104.jpg"/>olim fui&longs;&longs;e continuos, <expan abbr="atq;">atque</expan> vnam, <expan abbr="eandem&qacute;">eandemque</expan>; terram <expan abbr="contin&etilde;tem">continentem</expan>, antequam <lb/> flumen eos ab inuicem &longs;epararet; <expan abbr="flumen&qacute;">flumenque</expan>; ip&longs;um olim altius, vbi &longs;unt &longs;igna <lb/> illa ambula&longs;&longs;e; quemadmodum in Pyramo Ciliciæ amne ob&longs;eruauit Strabo, <lb/> dum libro 12. de illius ripis hæc tradit, mira præterea e&longs;t montis cæ&longs;ura, <lb/> per quam alueus ducitur; nam quemadmodum in petris per medium &longs;ci&longs;&longs;is <lb/> contingit, alterius partis depre&longs;&longs;ioribus ita conuenire alterius partis emi­<lb/> nentias, vt coniungi po&longs;&longs;int: &longs;ic videre e&longs;t imminentes flumini petras vtrin­<lb/> que ferè <expan abbr="v&longs;q;">v&longs;que</expan> ad montis &longs;umma pertendentes duorum, triumuè iugerum <lb/> &longs;patio concauitates qua&longs;dam eminentijs oppo&longs;itas habere. </s> <s id="s.001863">hæc Strabo de <lb/> vno, quod nos in pluribus ob&longs;eruauimus. </s> <s id="s.001864">Pr&etail;terea videmus quotidie pluuias <lb/> aquas, idem quantum po&longs;&longs;unt efficere, &longs;uperficies montium, eorum maxi­<lb/> mè, qui coluntur, perpetuò ab&longs;umentes, <expan abbr="atq;">atque</expan> ad loca conuallium deducen­<lb/> tes. </s> <s id="s.001865">hinc videre e&longs;t, montes cæteris duriores, vt &longs;unt lapido&longs;i, cæteris altio­<lb/> res reman&longs;i&longs;&longs;e; quippe qui magis & pluuijs, & fluuialibus aquis &longs;ua duritie <lb/> ob&longs;titerunt. </s> <s id="s.001866">idem montani incolæ omnes confirmant, qui omnes aiunt &longs;ibi <lb/> hanc montium demolitionem iampridem innotui&longs;&longs;e, ex eo quod nonnulli <lb/> montes olim &longs;ibi impedimento erant, ne arcem, turremuè in vlteriore mon­<lb/> te &longs;itam con&longs;picerent, quam deinde plures po&longs;t annos intermedio monte <lb/> depre&longs;&longs;o, commodè videbant. </s> <s id="s.001867">Ad hæc; antiqua in montium verticibus con­<lb/> &longs;tituta ædeficia, propterea intercidunt, quia terra hinc, & inde ab aquis <lb/>paulatim con&longs;umpta, <expan abbr="deor&longs;um&qacute;">deor&longs;umque</expan>; delap&longs;a, fundamenta ip&longs;orum nuda primò <lb/> relinquit; deindé terra etiam ip&longs;a, qua fundamenta innitebatur &longs;en&longs;im de­<lb/> lap&longs;a, ip&longs;a <expan abbr="quoq;">quoque</expan> fundamenta vnà cum toto ædeficio nece&longs;&longs;e e&longs;t collabi, hu­<lb/> ius &longs;igna infinita propemodum videri po&longs;&longs;unt; vnum tamen, quod toti orbi <lb/>con&longs;picuum e&longs;t, non ommittam; Capitolium videlicet Romanum, cuius <lb/> modo fundamenta tota extant, quæ olim altè &longs;ub terram de&longs;cendebant. </s> <s id="s.001868">vi­<lb/> de pulcherrimam hac de re tractationem apud Georgium Agricolam lib. 3. <lb/> cap. 1. qui amplius addit illud, quod & mihi maximè probatur; flumina ni­<lb/> mirum producere montes, <expan abbr="colles&qacute;">collesque</expan>; hoc modo; vult enim initio mundi non <lb/> extiti&longs;&longs;e tot particulares montes ab inuicem di&longs;cretos, &longs;ed fui&longs;&longs;e perpetua <lb/> quædam terræ iuga eminentia quidem, &longs;ed non tot vallibus di&longs;&longs;ecta: v. <!-- REMOVE S-->g. <lb/> <!-- REMOVE S-->mons no&longs;ter Apenninus erat iugum, &longs;iue dor&longs;um quoddam terræ eminens <lb/> quidem, &longs;ed nullis vallibus in tot particulares colles, aut montes di&longs;&longs;ectum; <lb/> &longs;ed po&longs;tquam flumina à &longs;ummitate ip&longs;ius deor&longs;um fluere cœperunt; paula­<lb/> tim corrodentes humum in dies magis, ac magis effecerunt valles, <expan abbr="atq;">atque</expan> hac <lb/> ratione in colles, <expan abbr="montes&qacute;">montesque</expan>; plurimos totus Apenninus diui&longs;us e&longs;t. </s> <s id="s.001869">hæc de <lb/> montibus &longs;ufficiant, nunc ad plana de&longs;cendamus.</s> </p> <p type="main"> <s id="s.001870">Contrarium igitur omninò accidere videmus in planis, quoniam eædem <lb/> aquæ, quæ ex montibus quotidie terram &longs;ecum deducunt, eam ad humilio­<lb/> ra loca, vt &longs;unt plana, & campe&longs;tria, &longs;iue ibi &longs;int maria, &longs;iue arida, compor­<lb/> tant, <expan abbr="eam&qacute;">eamque</expan>; ibidem deponunt. </s> <s id="s.001871">hinc videmus antiqua ædeficia in planis locis <lb/> ex&longs;tructa, e&longs;&longs;e iam penè tota &longs;epulta, contra quam in montanis, cuius exem­<lb/> plum habes etiam Romæ propè ip&longs;um Capitolium, in Arcu triumphali Sep­<lb/> timij, qui iam ferè totus ruino&longs;a vndique terra obruitur. </s> <s id="s.001872">&longs;ic Pantheon. </s> <s id="s.001873">&longs;ic <lb/> etiam templa Epi&longs;copalia, quæ <expan abbr="plerunq;">plerunque</expan> &longs;atis peruetu&longs;ta &longs;unt, admodum <lb/> infra terram con&longs;piciuntur. </s> <s id="s.001874">Idem affirmant cœmentarij, & architectores <pb pagenum="105" xlink:href="009/01/105.jpg"/>omnes, quibus <expan abbr="vbiq;">vbique</expan> terrarum, dum in planis ædeficiorum fundamenta ex­<lb/> canant, occurrit primò terra quædam, quam ip&longs;i motam appellant, quæ li­<lb/> gnis, ruderibus, ferramentis, numi&longs;matis, &longs;epulturis, <expan abbr="varijs&qacute;">varijsque</expan>; rebus per­<lb/> mixta e&longs;t; qua eruta, reperitur terra alia, quam nunquam fui&longs;&longs;e motam, ap­<lb/> paret, ex eo quod &longs;olida, ac benè compacta &longs;it, neque vllis externis rebus, <lb/> præ&longs;ertim artificiatis admixta, terra illa, quam motam dicunt, variam va­<lb/> rijs in locis &longs;ortita e&longs;t altitudinem, prout aquæ plurimum, vel minimum <lb/> montanæ terræ huc, vel illuc comportarunt: alicubi vt hic Parmæ erit &longs;ex <lb/> vlnarum, alibi viginti, vt Mutinæ; alibi triginta, vt Romæ, nonnullis in lo­<lb/> cis. </s> <s id="s.001875">Comprobatur tandem hæc no&longs;tra ob&longs;eruatio ex arte illa, qua per ea&longs;­<lb/> dem fluuiales aquas &longs;olent, tam loca depre&longs;&longs;iora per aggerationem paula­<lb/> tim replere, <expan abbr="atq;">atque</expan> eleuare: quàm etiam altiora per aquarum earumdem cor­<lb/> ro&longs;ionem deprimere. </s> <s id="s.001876">qua in arte exercitati&longs;&longs;imum P. <!-- REMOVE S-->Augu&longs;tinum Spernac­<lb/> ciatum no&longs;træ Societatis videmus modo de mandato Summi Pontificis Pa­<lb/> dum, ac Renum Bononien&longs;em ob aggerationem &longs;tagnantes in mari emitte­<lb/> re; cui totus hic no&longs;ter di&longs;cur&longs;us maximè probatur. </s> <s id="s.001877">Ex quibus omnibus &longs;e­<lb/> quitur &longs;uperficiem terræ tam montium, quam planorum quotidie variari. <lb/> </s> <s id="s.001878">illam nimirum deprimi, hanc attolli. </s> <s id="s.001879">vnde aliud maximum notandum &longs;e­<lb/> quitur, videlicet hac tempe&longs;tate non e&longs;&longs;e eandem agrorum &longs;uperficiem, quæ <lb/> erat antiquitus, cum in montanis agris &longs;it multò humilior, in campe&longs;tribus <lb/> verò altior, quàm antiqua illa, ac primigenia; quapropter mirum videri <lb/> non debet, &longs;i quorumdam locorum adeò immutata natura e&longs;t, vt quæ olim <lb/> genero&longs;a vina ferebant, vel quouis alio e&longs;&longs;ent prædita munere, adeò dege­<lb/> nerauerint, vt & vina, & alia nullius modò valoris, vel in parua copia pro­<lb/> ferant. </s> <s id="s.001880">Quod verò ad marium aggerationem &longs;pectat, dicimus ij&longs;dem aquis <lb/>magnam arenarum copiam perpetuò importantibus, fieri aggerationem, <lb/> hoc e&longs;t littora quotidie magis cre&longs;cere, &longs;eu in mare ingredi, & con&longs;equen­<lb/> ter mare recedere. </s> <s id="s.001881">quod primò Ari&longs;t. te&longs;timonio in hoc cap. comprobatur, <lb/> cum quo pariter &longs;entiunt veteres Geographi, & Hi&longs;torici omnes. </s> <s id="s.001882">Ari&longs;t. igi­<lb/> tur in comprobationem huius adducit primò magnam Aegypti aggeratio­<lb/> nem; pars enim illa Aegypti, quæ Delta, <expan abbr="Nili&qacute;">Nilique</expan>; donum appellatur ab He­<lb/> rodoto, ex arenis, & limo, ex Aethyopiæ montibus &longs;imul cum Nilo in mare <lb/> delabentibus, e&longs;t conflata, <expan abbr="atq;">atque</expan> antiquo littori addita, cui locum paulatim <lb/> mare ce&longs;&longs;it; <expan abbr="e&longs;t&qacute;">e&longs;tque</expan>; propterea donum Nili appellata, quod ab ip&longs;o illuc are­<lb/> nas importante &longs;it facta. </s> <s id="s.001883">&longs;ecundum, Ari&longs;t. exemplum e&longs;t Ammonia Regio, <lb/> cuius humiliora loca. </s> <s id="s.001884">f. </s> <s id="s.001885">maritima, palam e&longs;t, inquit, quod aggeratione facta, <lb/> fiunt &longs;tagna, & continens: &longs;uccedente autem tempore, &longs;tagnans aqua ob <lb/> nouam aggerationem de&longs;iccata e&longs;t, & iam annihilata. </s> <s id="s.001886">tertium e&longs;t Meotidis <lb/> Paludis; At verò, ait, & quæ &longs;unt circa Meotidem Paludem creuerunt allu­<lb/> uione fluuiorum tantum, vt multò minores magnitudine naues, nunc innare <lb/> po&longs;&longs;int, quàm anno ab hinc &longs;exage&longs;imo. </s> <s id="s.001887">quare ex hoc facilè e&longs;t ratiocinari, <lb/> quod & primò, vt multa &longs;tagnorum, ita & hoc opus e&longs;t fluuiorum, & tan­<lb/> dem nece&longs;&longs;e e&longs;t totum fieri &longs;iccum. </s> <s id="s.001888"><expan abbr="quartũ">quartum</expan> e&longs;t illi Bo&longs;phorus Tracius; quod <lb/> vnà cum præcedentibus &longs;atius e&longs;t apud ip&longs;um, vel potius apud eius expo&longs;i­<lb/> torem Vicomercatum videre, vt breuitati con&longs;ulatur. </s> <s id="s.001889">Accedit & Plinij te­<lb/>&longs;timonium, qui tradit multas terras na&longs;ci, non &longs;olum fluminum inuectu, &longs;ed <pb pagenum="106" xlink:href="009/01/106.jpg"/>etiam marium rece&longs;&longs;u; &longs;ic mare ab Ambraciæ portu 10. millia pa&longs;&longs;uum; ab <lb/> Athenarum verò <expan abbr="quinq;">quinque</expan> millia, & alijs in locis plus minu&longs;uè rece&longs;&longs;i&longs;&longs;e &longs;cri­<lb/> bit. </s> <s id="s.001890">Huc facit locus quidam Strabonis ex lib. 12. de Pyramo Ciliciæ fluuio: <lb/> &longs;ic; montes verò egre&longs;&longs;us tantum limum in mare deducit, partim ex Ca­<lb/>taonia, partim ex Ciliciæ campis, vt huiu&longs;modi de eo oraculum feratur;</s> </p> <p type="main"> <s id="s.001891"><emph type="italics"/>Tempus erit rapidis olim cum Pyramus vndis <lb/>In &longs;acram veniet conge&longs;to litore, Cyprum:<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.001892">hic enim fluuius è regione Cypri in&longs;ulæ in mari influit, &c. </s> <s id="s.001893">hæc Strabo.</s> </p> <p type="main"> <s id="s.001894">Verùm recentiora non de&longs;unt exempla. </s> <s id="s.001895">Rauenna olim erat in extremo <lb/> littore &longs;ita, nunc paulatim aggeratione aucto litore, mare multum ab ea <lb/> rece&longs;&longs;it. </s> <s id="s.001896">Patauium pariter, vt fertur mare alluebat, quod modo 25. pa&longs;&longs;uum <lb/> millibus ab eo di&longs;tat. </s> <s id="s.001897">Aæ&longs;tuarium ip&longs;um Venetum, ob arenas à varijs flu­<lb/> minibus in ip&longs;um immi&longs;&longs;as adeò fundum extulit, vt vix amplius nauigatio­<lb/> ni &longs;it aptum, <expan abbr="periculam&qacute;">periculamque</expan>; &longs;it ne Venetiarum mirabilis locus, ex maritimo <lb/> fiat terre&longs;tris. </s> <s id="s.001898">demum exemplum &longs;it Bononien&longs;ium Renus, qui quamuis exi­<lb/> guus &longs;it torrens, paucis tamen annis Padum ip&longs;um, in quem immi&longs;&longs;us fue­<lb/> rat arena ita repleuit, vt & &longs;ibi, & Pado magno vicinorum agrorum damno <lb/> viam in mare ob&longs;truxerit. </s> <s id="s.001899">Cum igitur mare ob hanc ad aggerationem co­<lb/> gatur &longs;e quotidie magis recipere, <expan abbr="fiat&qacute;">fiatque</expan>; propterea alueus ip&longs;ius angu&longs;tior, <lb/> <expan abbr="atq;">atque</expan> elatior, nece&longs;&longs;e e&longs;t etiam ip&longs;am quoque maris aquam quotidie magis <lb/> coangu&longs;tari, <expan abbr="atq;">atque</expan> attolli, & aliquando futurum, vt exundare incipiat. </s> <s id="s.001900">quod <lb/> iam <expan abbr="pleri&longs;q;">pleri&longs;que</expan> in locis accidit, vt in littore Baltico, Danico, & Hollandico, <lb/> quibus in locis &longs;unt hac tempe&longs;tate extructi prælongi, ac præalti aggeres <lb/> contra maritimas innundationes: quibus antiquitus minimè fui&longs;&longs;e opus hi­<lb/> &longs;toricorum, ac <expan abbr="Geographorũ">Geographorum</expan> &longs;ilentium comprobat. </s> <s id="s.001901">Hoc igitur modo ter­<lb/> ra, qua montes, <expan abbr="colles&qacute;">collesque</expan>; con&longs;tant paulatim ab aquis in maris concauitates <lb/> deportata, cau&longs;a e&longs;t, vt mare &longs;en&longs;im modo hac, modo illac, terræ &longs;uperfi­<lb/> ciei &longs;uperfundatur, <expan abbr="terra&qacute;">terraque</expan>; iterum, quemadmodum exordio mundi inhabi­<lb/>tabilis reddatur: quod tunc maximè accidet cum aquæ tam fluuiales, quàm <lb/> pluuiæ, &longs;uper faciem terræ perpetuò di&longs;currentes, totam illam montanam <lb/> terram in pri&longs;tinum locum, vbi ab initio fuerat, <expan abbr="vnde&qacute;">vndeque</expan>; &longs;ublata fuit, re&longs;ti­<lb/> tuerint; tunc terra erit iterum rotunda, & &longs;phærica, hoc e&longs;t &longs;uæ primigeniæ <lb/> iterum figuræ re&longs;tituetur: quapropter mare etiam rur&longs;us &longs;icut initio mundi <lb/> totam terræ faciem <expan abbr="circumquaq;">circumquaque</expan> innundabit, quod probare volebam.</s> </p> <p type="main"> <s id="s.001902"><emph type="italics"/>Tantum æui mutare potest longæua vetu&longs;tas.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.001903">Hinc nonnulla colligi po&longs;&longs;unt non minus notatu, ac &longs;citu, quàm præceden­<lb/> tia digni&longs;&longs;ima, quibus Ethnicorum Philo&longs;ophorum error redarguatur, &longs;ides <lb/> verò no&longs;tra magis roboretur: mundum nimirum ab æterno neutiquam ex­<lb/> titi&longs;&longs;e, vel &longs;altem terram ab æterno non fui&longs;&longs;e hac figura præditam, qua nunc <lb/>videmus, nec mundum perpetuò duraturum. </s> <s id="s.001904">nam &longs;i hæc montuo&longs;a illi figu­<lb/> ra ab æterno ine&longs;&longs;et, iampridem tota illa montium tubero&longs;itas fui&longs;&longs;et ab <lb/> aquis exæ&longs;a, & con&longs;umpta: <expan abbr="neq;">neque</expan> æterna erit, quia &longs;ucce&longs;&longs;u temporis, vt pro­<lb/> bauimus, reducetur ad rotunditatem, <expan abbr="atq;">atque</expan> à mari innundabitur, & idcircò <lb/> inhabitabilis, vnde nece&longs;&longs;ariò mortalium genus interibit. </s> <s id="s.001905">Quapropter ni&longs;i <lb/> igne illo, quem &longs;acræ literæ innuunt catacly&longs;mus ille præueniatur, aqua <lb/> mundus interiturus e&longs;&longs;et. </s> <s id="s.001906">&longs;ed de his hactenus.</s> </p> <pb pagenum="107" xlink:href="009/01/107.jpg"/> <p type="main"> <s id="s.001907">Quoad magnum illud Diluuium, quod Ari&longs;t. hoc capite exi&longs;timat po&longs;t <lb/> multa &longs;ecula reuolui, hoc veritati e&longs;&longs;e con&longs;entaneum argumento &longs;unt, ac <lb/> pariter admirationi varia <expan abbr="cõchiliorum">conchiliorum</expan> genera, quæ tùm in Apennino mon­<lb/> te, tùm in Alpibus ob&longs;eruaui; <expan abbr="Ìdem&qacute;">Ìdemque</expan>; in alijs mundi partibus inueniri pu­<lb/> to; præ&longs;ertim in tam immen&longs;a copia, <expan abbr="atq;">atque</expan> intra vi&longs;cera montium colloca­<lb/>ta, quæ nulla vis humana illuc contuli&longs;&longs;et, ni&longs;i temporibus catacly&longs;mi ebul­<lb/> lientibus aquis maris &longs;uper terram facta fui&longs;&longs;et hæc varia rerum maritima­<lb/> rum cum terre&longs;tribus commixtio: quæ quidem optimè ex Pomponio Mela <lb/> comprobantur, qui libro 1. de Numidia &longs;ic narrat: interius, & longè &longs;atis <lb/> à litore, &longs;i fides res capit, mirum admodum, &longs;pinæ pi&longs;cium, <expan abbr="Muricũ">Muricum</expan>, <expan abbr="O&longs;treo-rum&qacute;">O&longs;treo­<lb/> rumque</expan>; fragmenta, &longs;axi atritu, vti &longs;olent fluctibus, & non differentia mari­<lb/> nis, infixæ cautibus anchoræ, <expan abbr="alia&qacute;">aliaque</expan>; huiu&longs;modi &longs;igna, & ve&longs;tigia effu&longs;i olim <lb/> <expan abbr="v&longs;q;">v&longs;que</expan> ad ea loca pelagi, in campis nihil alentibus e&longs;&longs;e inuenirique narrantur. <lb/> </s> <s id="s.001908">neque locus ille Ouid. <!-- REMOVE S-->Met. <!-- REMOVE S-->15. extra rem:</s> </p> <p type="main"> <s id="s.001909"><emph type="italics"/>Vidi ego, quod fuerat olim &longs;olidi&longs;&longs;ima petra <lb/>E&longs;&longs;e fretum, vidi factas ex æquore terras: <lb/> Et procul à Pelago conchæ iacuere marinæ, <lb/> Et vetus inuenta e&longs;t in montibus anchora &longs;ummis.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.001910">Nos autem Chri&longs;tiani ad Noemi Diluuium i&longs;ta referre debemus.</s> </p> </chap> <chap> <p type="head"> <s id="s.001911"><emph type="italics"/>Ex Secundo Meteororum.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.001912"><arrow.to.target n="marg152"/></s> </p> <p type="margin"> <s id="s.001913"><margin.target id="marg152"/>152</s> </p> <p type="main"> <s id="s.001914">Cap. 1. ait multa e&longs;&longs;e maria, quæ ad inuicem non communicant. <lb/> </s> <s id="s.001915">Eorum rubrum mare vnum e&longs;&longs;e; quod cum Oceano <expan abbr="Atlãtico">Atlantico</expan>, qui <lb/> e&longs;t extra Herculeum fretum ad occidentem parum videtur com­<lb/> mi&longs;ceri &longs;iue Ari&longs;t. pro Rubro mari intelligat Oceanum illum, qui <lb/> Arabiam, ac Per&longs;iam alluit, &longs;iue illius &longs;inum, qui Arabiam, <expan abbr="atq;">atque</expan> Aethiopiam <lb/> interluit, fal&longs;um e&longs;t ip&longs;um parum communicare cum occidentali Oceano, <lb/> vt quotidianis Lu&longs;itanorum nauigationibus ad Indos patet. </s> <s id="s.001916">&longs;ed meritò hoc <lb/> Ari&longs;tot. condonandum, cum tunc temporis nondum tota Africa e&longs;&longs;et certò <lb/> circumlu&longs;trata, <expan abbr="neq;">neque</expan> iter ab Hi&longs;pania ad Indos maritimum, adeo nunc fre­<lb/> quens, patefactum e&longs;&longs;et.</s> </p> <p type="main"> <s id="s.001917"><arrow.to.target n="marg153"/></s> </p> <p type="margin"> <s id="s.001918"><margin.target id="marg153"/>153</s> </p> <p type="main"> <s id="s.001919">Summæ 2. cap. 2. <emph type="italics"/>(Quapropter & circa Orionis ortum maximè fit tranquilli­<lb/> tas)<emph.end type="italics"/> quando Medici, Philo&longs;ophi, Poetæ, ac reliqui auctores loquuntur de <lb/> ortu a&longs;trorum fixorum, aut con&longs;tellationum, quæ &longs;unt in firmamento, vti <lb/> e&longs;t Orion (& Canis, de quo po&longs;tea) intelligunt &longs;emper de ortu ip&longs;orum, qui <lb/> fit matutino tempore, quando &longs;cilicet vel &longs;imul cum Sole, vel paulò ante <lb/> Solem emergunt, ita vt videantur à nobis; qui ortus dicitur Co&longs;micus, tunc <lb/> propriè, quando &longs;imul a&longs;trum cum Sole oritur; quando autem incipit appa­<lb/>rere mane ante Solem, dicitur ortus Heliacus. </s> <s id="s.001920">i. </s> <s id="s.001921">&longs;olaris, quia oritur quodam­<lb/> modo ex radijs Solis, &longs;ub quibus antea latebat. </s> <s id="s.001922">A&longs;tra verò inerrantia, & <lb/> planetæ Sole tardiores oriuntur <expan abbr="vtroq;">vtroque</expan> modo. </s> <s id="s.001923">nam cùm ip&longs;a Sol, quippe il­<lb/> lis velocior primum a&longs;&longs;equitur, ea &longs;uo lumine obtegit, <expan abbr="e&longs;t&qacute;">e&longs;tque</expan>; hic occa&longs;us eo­<lb/> rum heliacus: cum verò eadem præterierit, ac po&longs;t &longs;e reliquerit fit, vt mo­<lb/> tu diurno toto cœlo conuer&longs;o, mane ante Solem effulgeant, &longs;iue heliacè <lb/>oriantur: & cum quotidie magis Sol ab illis recedat, ip&longs;aque magis à Sole <pb pagenum="108" xlink:href="009/01/108.jpg"/>elongentur, fit, vt quotidie magis ortum Solis anticipent, & citius mane au­<lb/> te Solem videantur. </s> <s id="s.001924"><expan abbr="&longs;ic&qacute;">&longs;icque</expan>; tanto in dies citius, vt deinde media etiam nocte <lb/> oriantur; tum ante mediam noctem po&longs;tea paulò ante occa&longs;um Solis. <!-- KEEP S--></s> <s id="s.001925">de­<lb/> mum cum fuerint Soli oppo&longs;ita, occidente Sole oriantur, qui ortus dicitur <lb/> Ve&longs;pertinus, vel Acronicus. </s> <s id="s.001926">po&longs;tea oriuntur &longs;emper in die ante Solis occa­<lb/> &longs;um, donec Sol ip&longs;a iterum a&longs;&longs;equatur, <expan abbr="ea&qacute;">eaque</expan>; radijs &longs;uis offu&longs;cet, quod e&longs;t he­<lb/> liacè occidere; & mox cum ip&longs;o Sole occumbant, quod Acronicè e&longs;t occi­<lb/> dere. </s> <s id="s.001927">Totum porrò illud tempus, quo per diem oriuntur, non eorum ortui, <lb/> &longs;ed occa&longs;ui deputatur, eò quod non cernuntur oriri, vt &longs;equenti loco expli­<lb/> cabitur. </s> <s id="s.001928">Quæ omnia adhibito Globo a&longs;tronomico, in quo con&longs;tellationes <lb/> omnes depictæ &longs;unt, <expan abbr="eo&qacute;">eoque</expan>; ad tui poli eleuationem con&longs;tituto, appo&longs;itoque <lb/> Sole &longs;uo loco in Zodiaco, qui paulatim per Zodiacum orientem ver&longs;us gra­<lb/>diatur, & interim diurno motu globus conuertatur, ad &longs;en&longs;um manife&longs;ta <lb/> apparebunt. </s> <s id="s.001929">In &longs;umma auctores intelligunt de ortu, qui mane fit ante So­<lb/> lem, quia tunc primum po&longs;t diuturnas latebras incipit apparere. </s> <s id="s.001930"><expan abbr="nõ">non</expan> autem <lb/> intelligunt de ortu Acronico, quia ante hunc ortum videbatur noctu, <expan abbr="itaq;">itaque</expan> <lb/> ortu Acronico non fit noua apparitio; ideo de hoc non intelligunt. </s> <s id="s.001931">fit au­<lb/> tem ortus hic Orionis, heliacus, & matutinus, de quo Ari&longs;t. hoc loco, & alij <lb/> auctores, no&longs;tra hac tempe&longs;tate paulò ante Solis ingre&longs;&longs;um in Cancrum, &longs;i­<lb/> ue ante &longs;ol&longs;titium æ&longs;tiuum circa 22. Iunij.<!-- REMOVE S--><arrow.to.target n="marg154"/></s> </p> <p type="margin"> <s id="s.001932"><margin.target id="marg154"/>154</s> </p> <p type="main"> <s id="s.001933">Eodem cap. <emph type="italics"/>(Incertus autem, & mole&longs;tus Orion e&longs;&longs;e videtur & occumbens, & <lb/> oriens, quia in tran&longs;mutatione temporis accidit occa&longs;us, & ortus, a&longs;tate, aut hye­<lb/> me, & propter magnitudinem a&longs;tri dierum &longs;it aliqua pluralitas)<emph.end type="italics"/> hoc loco Vico­<lb/> mercatus ex &longs;ententia a&longs;tronomorum occa&longs;um Orionis fieri autumni tem­<lb/> pore, Sole Scorpionem ob&longs;idente docet, quod & verba Ari&longs;t. clarè &longs;ignifi­<lb/> cant, cum dicat ortum ip&longs;ius fieri æ&longs;tate; in tran&longs;mutatione verò temporis, <lb/> videlicet in autumno fieri occa&longs;um. </s> <s id="s.001934">Porrò occa&longs;us hic fieri incipit primum <lb/> mane oriente Sole, <expan abbr="dicitur&qacute;">diciturque</expan>; occa&longs;us co&longs;micus, quia dum Sol e&longs;t in oriente, <lb/> Orion e&longs;t in occidente, & infra orizontem cadit: deinde paulò ante Solis or­<lb/> tum, &longs;ed tamen nocturno tempore, ita vt occa&longs;us eius videri po&longs;&longs;it, donec <lb/> occidat parum po&longs;t Solis occa&longs;um, & tandem cum Sole ip&longs;o heliacè euane­<lb/> &longs;cat. </s> <s id="s.001935">Scriptores autem ferè &longs;emper cum loquuntur de occa&longs;u inerrantium <lb/> &longs;yderum, de eo, qui noctu videatur, intelligunt: &longs;icuti ortum intelligunt <lb/> eum, qui noctu fit, <expan abbr="noctu&qacute;">noctuque</expan>; videtur. </s> <s id="s.001936">affixa <expan abbr="namq;">namque</expan> &longs;ydera per &longs;ex fermè men­<lb/> &longs;es noctu oriuntur, <expan abbr="oriri&qacute;">oririque</expan>; ea con&longs;picimus, & propterea totum illud tem­<lb/> pus, ortui ip&longs;orum deputamus: Reliquum verò <expan abbr="t&etilde;pus">tempus</expan>, quo per diem oriun­<lb/> tur, & idcircò ortus illorum minimè apparet, nulla ratione ortui debuit <lb/> a&longs;cribi: totum verò tempus, quo noctu occidunt, & occidere cernuntur, oc­<lb/> ca&longs;ui illorum meritò attribuitur. </s> <s id="s.001937">& <expan abbr="quemadmodũ">quemadmodum</expan> temporis illius initium, <lb/> quo primo de nocte apparere incipiunt, dicitur ab&longs;olutè ortus cuiu&longs;uis &longs;y­<lb/> deris; &longs;ic etiam initium temporis illius, quo primum per noctem ea occide­<lb/> re videmus, &longs;impliciter occa&longs;um appellamus.</s> </p> <p type="main"> <s id="s.001938"><arrow.to.target n="marg155"/></s> </p> <p type="margin"> <s id="s.001939"><margin.target id="marg155"/>155</s> </p> <p type="main"> <s id="s.001940">Eodem cap. <emph type="italics"/>(Ete&longs;iæ autem flant post ver&longs;iones, & Canis ortum)<emph.end type="italics"/> per ver&longs;io­<lb/> nes intelligit tropicos, quod & tropici etymon confirmat, <expan abbr="cũ">cum</expan> tropicus idem <lb/> valeat, ac conuer&longs;iuus. </s> <s id="s.001941">circa Canis ortum eadem &longs;unt notanda, quæ &longs;upra <lb/>de ortu Orionis annotaui; intelligit enim eum Canis ortum, qui mane fiat <pb pagenum="109" xlink:href="009/01/109.jpg"/>primum paulò ante Solis ortum, cum &longs;cilicet incipit apparere.</s> </p> <p type="main"> <s id="s.001942">Cum porrò in c&etail;lo &longs;it Canis maior, & Canis minor, qui & Procyon, ide&longs;t <lb/> Anticanis dicitur, exi&longs;timo Canem maiorem e&longs;&longs;e eum, qui vulgò Canicula <lb/> nominatur, <expan abbr="&longs;olet&qacute;">&longs;oletque</expan>; vehementes, ac noxios calores excitare. </s> <s id="s.001943">de quo etiam <lb/> putò Ari&longs;t. intelligere. </s> <s id="s.001944">eius porrò ortus in no&longs;tra poli eleuatione quadra­<lb/> ginta quinque graduum, circa diem tertium Augu&longs;ti contingit, Sole autem <lb/> 10. gradum Leonis occupante. </s> <s id="s.001945">Ex Magini tabulis ante ephemerides.</s> </p> <p type="main"> <s id="s.001946"><arrow.to.target n="marg156"/></s> </p> <p type="margin"> <s id="s.001947"><margin.target id="marg156"/>156</s> </p> <p type="main"> <s id="s.001948">Eodem cap. <emph type="italics"/>(Duobus enim exi&longs;tentibus &longs;egmentis habitabilis regionis: vno <lb/> quidem ad &longs;uperiorem polum, qui no&longs;ter e&longs;t; altero ad alterum, & ad meridiem: <lb/> <expan abbr="ea&qacute;">eaque</expan>, tympani &longs;peciem habeant, talem enim figuram terræ excidunt ex centro ip&longs;ius <lb/>ductæ lineæ, & faciunt duos conos, hunc quidem habentem ba&longs;im tropicum, alte­<lb/> rum autem habentem ba&longs;im circulum &longs;emper manifestum, verticem autem in me­<lb/> dio terræ. </s> <s id="s.001949">eodem autem modo ad inferiorem polum alij duo coni terræ &longs;egmenta fa­<lb/> ciunt)<emph.end type="italics"/> vt benè duas ha&longs;ce terræ portiones, quas &longs;olas habitabiles putat Ari­<lb/> &longs;tot. concipias, <expan abbr="reliquaq;">reliquaque</expan> huius loci intelligas, in&longs;pice &longs;equentem figuram. <lb/> <figure id="id.009.01.109.1.jpg" place="text" xlink:href="009/01/109/1.jpg"/><lb/> Maior circulus &longs;it cœlum, in quo polus L, articus; M, antarticus, ille eleua­<lb/> tus &longs;upra no&longs;trum horizontem S N, 45. gradibus, i&longs;te verò totidem infra <lb/> depre&longs;&longs;us. </s> <s id="s.001950"><expan abbr="&longs;int&qacute;">&longs;intque</expan>; diametri circuli &longs;emper apparentium maximi S R, necnon <pb pagenum="110" xlink:href="009/01/110.jpg"/>diametri &longs;emper occultorum maximi Y N: tropicorum item T Q, Cancri, <lb/> X O, Capricorni, vt vides in figura. </s> <s id="s.001951">Terra &longs;it A B C H G F E D Z K. à cu­<lb/> ius centro Z, educantur primo duæ lineæ rectæ Z R, Z S. ad circulum &longs;em­<lb/> per apparentium maximum, quæ in terra tran&longs;eant per puncta B, K. & iun­<lb/> gatur linea B K: iam vides conum S R Z, cuius ba&longs;is e&longs;t circulus &longs;emper ap­<lb/> parens S R, vertex autem Z, in centro terræ, vt ait Ari&longs;tot. <!-- KEEP S--></s> <s id="s.001952">educantur nunc <lb/> duæ aliæ rectæ ad tropicum Cancri Z T, Z Q, quæ in terra faciant puncta <lb/> I, C, <expan abbr="iungatur&qacute;">iungaturque</expan>; recta I C; hic pariter vides conum alterum T Q Z, cuius ba­<lb/> &longs;is e&longs;t circulus Cancri, vertex verò centrum terræ Z. con&longs;idera iam figuram <lb/> B K I C, inter duas rectas B K, I C, & duos circuli terræ arcus contentam; <lb/> hanc Ari&longs;t. appellat tympanum vnum terræ habitabile, quod e&longs;t ad Vr&longs;am, <lb/> ide&longs;t in &longs;eptentrionali plaga, in qua &longs;umus nos: quæ quidem portio &longs;i con&longs;i­<lb/> deretur vt &longs;olida, & à reliqua terra præci&longs;a, erit corpus rotundum, <expan abbr="vtrinq;">vtrinque</expan> <lb/> tamen duobus planis circulis ad in&longs;tar tympani terminatum: Ductis dein­<lb/> de &longs;imiliter alijs quattuor lineis à centro Z, ver&longs;us polum antarticum fit al­<lb/> terum tympanum H D E G, au&longs;tralis terræ habitabilis, vt in figura manife­<lb/> &longs;tum e&longs;t. </s> <s id="s.001953">fui&longs;&longs;e autem huiu&longs;modi habitabilis terræ &longs;egmenta figuræ tympa­<lb/> ni &longs;imilia, optimè declarant veteres figuræ geographicæ Ptol&etail;mei, & patet <lb/> etiam ex longitudine, & latitudine, vt benè ait Ari&longs;t. quas Geographi por­<lb/> tioni terræ habitabili attribuebant, longitudinem enim dixerunt eius di­<lb/> men&longs;ionem ab occa&longs;u ad ortum: latitudinem autem à &longs;eptentrione in meri­<lb/> diem, eò quòd illa multò hac longior e&longs;&longs;et. </s> <s id="s.001954">Ex quibus apparet habitatam <lb/> fui&longs;&longs;e veluti Zonam, terram ab occa&longs;u ad ortum præcingentem. </s> <s id="s.001955">quæ Zona <lb/> &longs;i &longs;umatur cum &longs;oliditate, quam ambit, ab Ari&longs;t. tympano a&longs;&longs;imilatur.</s> </p> <p type="main"> <s id="s.001956"><arrow.to.target n="marg157"/></s> </p> <p type="margin"> <s id="s.001957"><margin.target id="marg157"/>157</s> </p> <p type="main"> <s id="s.001958">Eodem cap. <emph type="italics"/>(Hæ autem habitari &longs;olæ po&longs;&longs;ibiles: & <expan abbr="neq;">neque</expan> vltra ver&longs;iones; vm­<lb/> bra enim non <expan abbr="vtiq;">vtique</expan> e&longs;&longs;et ad Vr&longs;am: nunc autem inhabitabilia prius fiunt loca, quàm <lb/> &longs;ubdeficiat, aut permutetur vmbra ad meridiem. </s> <s id="s.001959">Quæ autem &longs;ub Vr&longs;a, è frigore <lb/> inhabitabilia)<emph.end type="italics"/> quod ait vltra ver&longs;iones, ide&longs;t intra tropicos in ip&longs;a &longs;cilicet <lb/> Zona torrida, non po&longs;&longs;e habitari, fal&longs;um e&longs;&longs;e o&longs;tendunt plurimæ regiones <lb/> tam veteris, quam noui orbis, &longs;uperiori &longs;eculo patefactæ, in quibus magna <lb/> in amœnitate, ac fertilitate, <expan abbr="&longs;ummis&qacute;">&longs;ummisque</expan>; delicijs viuitur. </s> <s id="s.001960">Quoad vmbram il­<lb/> lam, intellige meridianam. </s> <s id="s.001961">i. </s> <s id="s.001962">quam Sole circa meridiem exi&longs;tente, nos qui <lb/> Boreales &longs;umus, &longs;emper ad <expan abbr="&longs;ept&etilde;trionem">&longs;eptentrionem</expan> proijcimus. </s> <s id="s.001963">Quod &longs;i ad meridiem <lb/> perrexerimus, occurret inhabitabilis (vt falsò putat) terra, prius quam. <lb/> </s> <s id="s.001964">vmbra meridiana in Boream vergens deficiat. </s> <s id="s.001965">quæ &longs;igna &longs;unt no&longs;tram habi­<lb/> tationem e&longs;&longs;e citra Zonam torridam, in Boreali parte. </s> <s id="s.001966">Quæ autem &longs;ub Vr­<lb/> &longs;a, ide&longs;t &longs;ub polo arctico, ob nimium frigus inho&longs;pita omninò habetur, nam</s> </p> <p type="main"> <s id="s.001967"><emph type="italics"/>Quod latus mundi nebulæ, <expan abbr="malus&qacute;">malusque</expan>; <lb/> Iupiter vrget.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.001968">Verumtamen, quæ &longs;ub <expan abbr="vtroq;">vtroque</expan> polo partes &longs;unt adhuc incognitæ manent.</s> </p> <p type="main"> <s id="s.001969"><arrow.to.target n="marg158"/></s> </p> <p type="margin"> <s id="s.001970"><margin.target id="marg158"/>158</s> </p> <p type="main"> <s id="s.001971">Eodem cap: <emph type="italics"/>(Fertur autem, & corona &longs;ecundam hunc locum, videtur enim &longs;u­<lb/>per caput e&longs;&longs;e nobis, cum fuerit &longs;ecundum meridianum)<emph.end type="italics"/> con&longs;tellatio videlicet, <lb/> quæ corona Ariadnæ dicitur, hæc cum in cœlo manife&longs;tè &longs;it Borealis, <expan abbr="no-&longs;tro&qacute;">no­<lb/> &longs;troque</expan>; vertici noctu, quando meridianum pertran&longs;it, incumbat: clarè indi­<lb/> cat nos <expan abbr="quoq;">quoque</expan> e&longs;&longs;e Boreales.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.001972"><arrow.to.target n="marg159"/></s> </p> <p type="margin"> <s id="s.001973"><margin.target id="marg159"/>159</s> </p> <p type="main"> <s id="s.001974">Eodem cap. <emph type="italics"/>(Et quidem ad latitudinem <expan abbr="v&longs;q;">v&longs;que</expan> ad inhabitabilia &longs;cimus habita-<emph.end type="italics"/> <pb pagenum="111" xlink:href="009/01/111.jpg"/><emph type="italics"/>tam, hic enim propter frigus non amplius habitant, illic autem propter æ&longs;tum)<emph.end type="italics"/><lb/> illic autem, ide&longs;t &longs;ub Zona torrida, compertum autem e&longs;t nunc totam ferè <lb/> torridam Zonam, & quidem alicubi percommodè habitari, cuius cau&longs;æ &longs;unt <lb/> quatuor, quæ ip&longs;um latuerunt. </s> <s id="s.001975">prima <expan abbr="ea&qacute;">eaque</expan>; toti Zonæ torridæ communis, <lb/> e&longs;t perpetuum æquinoctium, quo Sol tantum &longs;upra, quantum infra terram <lb/> immoratur. </s> <s id="s.001976">accedit, quòd Sol nocturno tempore maximè ad imum cœli fe­<lb/> ratur, <expan abbr="plurimum&qacute;">plurimumque</expan>; ab horizonte, <expan abbr="&longs;upero&qacute;">&longs;uperoque</expan>; hemi&longs;pherio recedat. </s> <s id="s.001977">atque ob <lb/> hanc &longs;olam rationem Campanus in &longs;ua &longs;phæra Zonam hanc putat maximè <lb/> e&longs;&longs;e habitabilem: quamuis hæc &longs;ola cau&longs;a, vt quotidiana docet experientia, <lb/> non &longs;ufficiat. </s> <s id="s.001978">&longs;ecunda &longs;unt pluuiæ, quæ alicubi quotidie &longs;tata hora decidunt. <lb/> </s> <s id="s.001979">tertia venti, qui veluti flabella quædam aerem agitant. </s> <s id="s.001980">quarta præalti mon­<lb/> tes perpetuis niuibus ob&longs;iti. </s> <s id="s.001981">quæ quatuor torridam hanc pa&longs;&longs;im refrigerant, <lb/> atque habitabilem reddunt.</s> </p> <p type="main"> <s id="s.001982"><arrow.to.target n="marg160"/></s> </p> <p type="margin"> <s id="s.001983"><margin.target id="marg160"/>160.a</s> </p> <p type="main"> <s id="s.001984">Summæ 2. cap. 3. de <expan abbr="v&etilde;tis">ventis</expan> <emph type="italics"/>(Oportet autem de &longs;itu &longs;imul rationes ex de&longs;criptio <lb/> ne con&longs;iderare)<emph.end type="italics"/> ide&longs;t rationes ventorum ex de&longs;criptione, ide&longs;t in figura ali­<lb/> qua, vt in &longs;equenti con&longs;iderare; &longs;olet enim Ari&longs;t. figuras, imò demon&longs;tratio­<lb/> nes ip&longs;as Mathematicorum, de&longs;criptiones appellare, vt &longs;æpius in Logicis <lb/> monuimus.</s> </p> <p type="main"> <s id="s.001985"><emph type="italics"/>De&longs;criptus &longs;it igitur, vt clarior res euadat horizontis circulus quapropter, & <lb/> rotundus)<emph.end type="italics"/> vt in &longs;equenti figura circulus A G B H, de&longs;criptus horizontem <lb/> referret,</s> </p> <figure id="id.009.01.111.1.jpg" place="text" xlink:href="009/01/111/1.jpg"/> <pb pagenum="112" xlink:href="009/01/112.jpg"/> <p type="main"> <s id="s.001986"><emph type="italics"/>Oportet autem ip&longs;ius alteram portionem intelligere, quæ nobis habitatur; quæ <lb/> eodem modo diuidi poterit)<emph.end type="italics"/> ide&longs;t oportet intelligere ip&longs;ius horizontis, vel ter­<lb/> ræ habitatæ partem, quæ quamuis rotunda non &longs;it, poterit tamen, ac &longs;i ro­<lb/> tunda e&longs;&longs;et in figura circulari repre&longs;entari, <expan abbr="atq;">atque</expan> in plures partes eo modo, <lb/> quo circulus &longs;ecatur, &longs;ecari.</s> </p> <p type="main"> <s id="s.001987"><emph type="italics"/>Supponatur autem primò contraria &longs;ecundum locum, e&longs;&longs;e plurimum di&longs;tantia <lb/> &longs;ecundum locum; &longs;icut &longs;ecundum &longs;peciem contraria, plurimum di&longs;tant &longs;ecundum <lb/> &longs;peciem. </s> <s id="s.001988">plurimum autem di&longs;tant &longs;ecundum locum, quæ per diametrum opponuntur, <lb/> &longs;it igitur vbi A, occidens æquinoctionalis, contrarius autem huic locus vltimus B, <lb/> ortus æquinoctionalis)<emph.end type="italics"/> ide&longs;t in &longs;equenti figura ducta diametro B A. in altera <lb/> ip&longs;ius extremitate vbi A. &longs;it occa&longs;us æquinoctialis, qui fit Sole exi&longs;tente in <lb/> alterutro æquinoctio; huic igitur per diametrum opponatur ortus æquino­<lb/> ctialis in B. qui pariter contingit tempore æquinoctiorum: linea autem B A, <lb/> refert ip&longs;um æquatorem.</s> </p> <p type="main"> <s id="s.001989"><emph type="italics"/>Alia autem diameter hanc perpendiculariter &longs;ecet, cuius punctum illud, in quo <lb/> G, &longs;it Vr&longs;a: huic autem contrarium ex oppo&longs;ito illud, in quo H, meridies)<emph.end type="italics"/> hæc dia­<lb/> meter erit ip&longs;a linea meridiana. </s> <s id="s.001990">pro Vr&longs;a verò intelligit &longs;eptentrionem, <lb/> quod ibi &longs;it Vr&longs;æ con&longs;tellatio.</s> </p> <p type="main"> <s id="s.001991"><emph type="italics"/>Id autem, in quo F, ortus æ&longs;tiualis; in quo verò E, occidens æ&longs;tiualis)<emph.end type="italics"/> quæ duo <lb/> puncta iunguntur linea F E, quæ refert &longs;ectionem tropici, Cancri cum ho­<lb/> rizonte: ortus enim, & occa&longs;us æ&longs;tiualis contingunt Sole Cancri tropicum <lb/> percurrente.</s> </p> <p type="main"> <s id="s.001992"><emph type="italics"/>Id autem, in quo D, oriens hyemalis; vbi verò C, occidens hyemalis)<emph.end type="italics"/> linea au­<lb/> tem D C, erit &longs;ectio tropici Capricorni, & horizontis; Sole enim hunc tro­<lb/> picum attingente ortus, & occa&longs;us hybernus fiunt.</s> </p> <p type="main"> <s id="s.001993"><emph type="italics"/>Ab F, autem ducatur diameter ad C, & à D, ad E. quoniam igitur plurimum <lb/> di&longs;tantia &longs;ecundum locum, contraria &longs;unt &longs;ecundum locum: plurimum autem di­<lb/> stantia, quæ &longs;ecundum diametrum; nece&longs;&longs;arium e&longs;t, & flatuum hos inuicem con­<lb/> trarios e&longs;&longs;e, <expan abbr="quicunq;">quicunque</expan> &longs;ecundum diametrum exi&longs;tunt. </s> <s id="s.001994">vocantur autem &longs;ecundum po­<lb/> &longs;itionem locorum venti &longs;ic; Zephyrus quidem ab A, hoc enim e&longs;t occidens æquino­<lb/> ctialis. </s> <s id="s.001995">Boreas autem, & Aparetias à G. hic enim Vr&longs;a, contrarius autem huic <lb/> Notus ab H. <!-- KEEP S--></s> <s id="s.001996">Meridies enim e&longs;t hic, à quo flat, & H, ip&longs;i G, contrarium e&longs;t; &longs;ecun­<lb/> dum enim diametrum &longs;unt. </s> <s id="s.001997">Ab F, autem Cæcias; hic enim oriens æ&longs;tiuus e&longs;t; cui <lb/> contrarius est, non qui flat ab E, &longs;ed qui à C. Libs, i&longs;te enim ab occidente hyemali <lb/> flat; <expan abbr="est&qacute;">estque</expan>, illi contrarius, quia &longs;ecundum diametrum illi opponitur. </s> <s id="s.001998">Qui verò à D, <lb/> Eurus, i&longs;te enim ab horiente hyberno flat, vicinus existens Noto, vnde & &longs;æpè Eu­<lb/> ronoti flare dicuntur: <expan abbr="cõtrarius">contrarius</expan> autem huic, non qui à C. Libs, &longs;ed qui ab E, quem <lb/> vocant, hi quidem Arge&longs;ten, hi autem Olympium, alij verò Scironem; iste enim ab <lb/> occidente æ&longs;tiuo flat, & &longs;ecundum diametrum ip&longs;i &longs;olus opponitur. </s> <s id="s.001999">Venti igitur, qui <lb/> &longs;ecundum diametrum po&longs;iti &longs;unt, & quibus alij aduer&longs;antur, ij &longs;unt. </s> <s id="s.002000">Alij autem <lb/> &longs;unt, &longs;ecundum quos non &longs;unt contrarij venti, ab I, quem vocant Tra&longs;ciam, qui me­<lb/>dius e&longs;t inter Argesten, & Apparitiam, à K, autem, quem vocant Me&longs;en, Medius <lb/> enim e&longs;t Cæciæ, & Aparetiæ. </s> <s id="s.002001">Diameter autem K I, iuxta circulum &longs;emper con&longs;pi­<lb/> cuum e&longs;&longs;e &longs;olet, non tamen exactè)<emph.end type="italics"/> ide&longs;t linea K I, &longs;olet in horizonte referre <lb/> diametrum circuli omnium &longs;emper apparentium maximi, eo quod &longs;it ferè <lb/>&longs;ub diametro illius, in qualibet enim &longs;phæra obliqua, ide&longs;t, in qua polus ele­<pb pagenum="113" xlink:href="009/01/113.jpg"/>uatur, intelligunt A&longs;tronomi circulum quendam &longs;emper apparentium ma­<lb/>ximum, quem de&longs;cribunt ex ip&longs;o polo, tanquam centro, & interuallo v&longs;que <lb/> ad horizontem, circa ip&longs;um polum: hunc appellant &longs;emper apparentium, <lb/> maximum, quia intra hunc alios quamplurimos concipiunt circa eundem <lb/> polum, quorum minores &longs;emper &longs;unt polo propinquiores. </s> <s id="s.002002">huius igitur dia­<lb/> metrum vult Ari&longs;t. per lineam, quæ à K, in I, duceretur (quamuis non exa­<lb/> ctè) repre&longs;entari.</s> </p> <p type="main"> <s id="s.002003"><emph type="italics"/>Contrarij autem non &longs;unt his &longs;tatibus, <expan abbr="neq;">neque</expan> ip&longs;i Me&longs;e, &longs;piraret enim <expan abbr="vtiq;">vtique</expan> aliquis <lb/> ab eo, in quo M. hoc enim illi e&longs;t &longs;ecundum diametrum; <expan abbr="neq;">neque</expan> Trafciæ ab N, enim, <lb/> quod punctum per diametrum aduer&longs;um illi e&longs;t, &longs;piraret. </s> <s id="s.002004">Ni&longs;i ab eo veniat, qui ta­<lb/> men non longè progreditur ventus quidam, quem accolæ Phæniciam vocant. </s> <s id="s.002005">maxi­<lb/> mè igitur præcipui, & definiti venti hi &longs;unt: <expan abbr="hoc&qacute;">hocque</expan>, modo di&longs;po&longs;iti)<emph.end type="italics"/> &longs;upradicta por­<lb/> rò omnia ex &longs;equenti figura optimè poterunt intelligi, quam diligenti ope­<lb/> ra ad mentem Ari&longs;t. ex græcis codicibus re&longs;tituere conatus &longs;um, cum ani­<lb/>maduerterem figuras valdè deprauatas pa&longs;&longs;im apud <expan abbr="cõmentatores">commentatores</expan> reperiri. <lb/> </s> <s id="s.002006">Porrò ad literam M, in figura &longs;crip&longs;i ventum Libonotum, quem Ari&longs;t. qui­<lb/> dem non ponit propter ip&longs;ius paruitatem; imò apertè dicit Hele&longs;pontum <lb/> non habere contrarium: &longs;ed feci, vt completum ventorum numerum, quem <lb/> alij tradunt, haberemus.</s> </p> </chap> <chap> <p type="head"> <s id="s.002007"><emph type="italics"/>Ex Tertio Meteororum.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.002008"><arrow.to.target n="marg161"/></s> </p> <p type="margin"> <s id="s.002009"><margin.target id="marg161"/>160.b</s> </p> <p type="main"> <s id="s.002010">Antequam textuum explicationem aggrediar, illud animaduerten-<lb/> dum e&longs;t, <expan abbr="vbicunq;">vbicunque</expan> interpretatio antiqua vtitur verbis, refractio, <lb/> & refrangere; ibi Vicomercatum in &longs;ua interpretatione meritò, <lb/> & propriè v&longs;um e&longs;&longs;e verbis; reflexio, & reflecti: differunt enim <lb/> valdè apud Opticos refractio, & reflexio, vt etiam refrangere, & reflectere. <lb/> </s> <s id="s.002011">propterea optimè hoc loco Olympiodorus di&longs;tinguit inter <foreign lang="greek">anaklasin, kai <lb/>diaklasin,</foreign> reflexionem, & refractionem. </s> <s id="s.002012">Reflexio enim fit ex repercu&longs;&longs;o, vt <lb/> quando lumen Solis incidens in aliquod &longs;peculum, inde re&longs;ilit in oppo&longs;itum <lb/> parietem, illud re&longs;ilire e&longs;t propriè per&longs;pectiuis reflecti, vnde reflexio. </s> <s id="s.002013">Re­<lb/> fractio autem fit ex tran&longs;pectu: vt quando lapis, qui e&longs;t in aqua, emittit <lb/> fuam &longs;peciem ad oculum, qui e&longs;t in aere, tunc enim, quia &longs;pecies lapidis re­<lb/> pre&longs;entatiua non tendit recta ad oculum, &longs;ed in confinio aquæ, & aeris fran­<lb/> gitur, dicitur fieri refractio, & refrangi, in refractione igitur requiruntur <lb/>duo media, per quæ fiat vi&longs;io, quæ &longs;int diuer&longs;æ den&longs;itatis, vt &longs;unt aqua, & <lb/> aer: vapor, exhalatio, & aer: vitrum, & aer, &c. </s> <s id="s.002014">quando igitur videmus <lb/> Solem, aut Lunam per vapores, aut exhalationes fit refractio, quia den&longs;ior <lb/> e&longs;t vapor, & exhalatio, quam aer.</s> </p> <p type="main"> <s id="s.002015">Notandum etiam Aream, de qua mox dicam explicari po&longs;&longs;e tam per re­<lb/> flexionem, quàm per refractionem: per reflexionem, quia &longs;upponunt Philo­<lb/>&longs;ophi e&longs;&longs;e in acre rorido innumera &longs;pecula parua inuicem valdè proxima, <lb/>ide&longs;t guttulas, per quas reflectatur ad oculum no&longs;trum &longs;pecies &longs;yderis. </s> <s id="s.002016">per <lb/>refractionem verò, vt vult Vitellio, quia &longs;umit totum illum aerem humi­<lb/> dum magis den&longs;um e&longs;&longs;e aere paro, qui e&longs;t circa oculos no&longs;tros, & hoc modo <lb/>con&longs;tituit diuer&longs;a media in den&longs;itate, per quam fiat vi&longs;io; corpus inquam <pb pagenum="114" xlink:href="009/01/114.jpg"/>illud humidum den&longs;ius, & aerem deinde circa oculum rarius. </s> <s id="s.002017">Vicomerca­<lb/> tus igitur quamuis vtatur voce reflexionis in Halone, non tamen ex prædi­<lb/>ctis videtur reprehendendus.</s> </p> <p type="main"> <s id="s.002018"><arrow.to.target n="marg162"/></s> </p> <p type="margin"> <s id="s.002019"><margin.target id="marg162"/>161</s> </p> <p type="main"> <s id="s.002020">Summæ 2. cap. 2. De Areæ figura <emph type="italics"/>(Refrangitur autem à con&longs;i&longs;tente caligine <lb/> circa Solem, aut Lunam vi&longs;us; quapropter non ex oppo&longs;ito &longs;icut iris, apparet. </s> <s id="s.002021"><expan abbr="Vn-diq;">Vn­<lb/> dique</expan> autem &longs;imiliter refracto, nece&longs;&longs;e e&longs;t circulum e&longs;&longs;e, aut circuli partem. </s> <s id="s.002022">ab co­<lb/> dem enim &longs;igno ad idem &longs;ignum æquales frangentur &longs;uper circuli lineam &longs;emper. </s> <s id="s.002023">&longs;it <emph.end type="italics"/><lb/> <figure id="id.009.01.114.1.jpg" place="text" xlink:href="009/01/114/1.jpg"/><lb/> <emph type="italics"/>enim à puncto, in quo A, ad B, fracta, & ea, quæ est <lb/> A C B, & quæ A F B, & quæ A D B, æquales autem <lb/>& hæ A C, A F, A D, inuicem. </s> <s id="s.002024">& quæ ad B, inui­<lb/> cem &longs;cilicet C B, E B, D B. & protrahatur A E B, <lb/> quare trianguli æquales, etenim &longs;uper æqualem, quæ <lb/> e&longs;t A E B, ducantur autem <expan abbr="perp&etilde;diculares">perpendiculares</expan> ad A E B, <lb/> ex angulis; à C, quidem, quæ e&longs;t C E; ab F, autem, <lb/> quæ e&longs;t F E; à D, autem, quæ e&longs;t D E, æquales itaque <lb/>hæ, in æqualibus enim triăngulis, & in vno plano om­<lb/>nes, ad rectum enim omnes ei, quæ e&longs;t A E B. & ad <lb/> vnum punctum E, copulantur, circulus igitur erit <lb/> de&longs;cripta, centrum autem E. &longs;it autem B, quidem Sol, <lb/> A, autem vi&longs;us, quæ autem e&longs;t circa C D F, circun­<lb/> ferentia nubes, à qua refrangitur vi&longs;us ad Solem)<emph.end type="italics"/><lb/> quia &longs;uppono Aream, &longs;iue Halonem fieri per re­<lb/> fractionem, vt vult etiam Vitellio, propterea <lb/> <expan abbr="præmitt&etilde;dum">præmittendum</expan> e&longs;t principium quoddam, quo tra­<lb/> ctatio de refractione innititur; e&longs;t autem huiu&longs;­<lb/> modi; ea, quæ <expan abbr="vid&etilde;tur">videntur</expan> per refractionem, &longs;iue &longs;ub <lb/> aliquo refractionis angulo, manentibus nobis & <lb/> a&longs;tro, & medio ij&longs;dem in locis, non po&longs;&longs;unt vide­<lb/> ri &longs;ub diuer&longs;o angulo à priori, nec per con&longs;e<expan abbr="qu&etilde;s">quens</expan> <lb/> alibi apparere. </s> <s id="s.002025">v. <!-- REMOVE S-->g. <!-- REMOVE S-->Sol (vt in præ&longs;enti figura) <lb/> videatur ab oculo A, media nube C D F, &longs;ub an­<lb/> gulo refractionis B C A, vel B F A, & alijs &longs;imilibus angulis in eadem nube; <lb/> manente igitur oculo A, & a&longs;tro B, necnon nube C D E. eodem in loco, im­<lb/> po&longs;&longs;ibile e&longs;t Solem videri ab eodem oculo &longs;ub diuer&longs;o angulo à priori, nec <lb/> con&longs;equenter alibi apparere, quam in B. <!-- KEEP S--></s> <s id="s.002026">Nunc ad textus declarationem, in <lb/> quo continetur Geometrica demon&longs;tratio rotunditatis Areæ, quam &longs;ic bre­<lb/> uiter prius veteres excogitarunt: Viderunt primò Solem in Area apparere <lb/> in orbem, & con&longs;imiliter: hinc intulerunt nece&longs;&longs;e e&longs;&longs;e apparere etiam per <lb/> con&longs;imiles, &longs;iue æquales refractionis angulos; quia diuer&longs;i anguli, diuer&longs;am <lb/> etiam <expan abbr="appar&etilde;tiam">apparentiam</expan> efficiunt: atqui con&longs;imiles, &longs;iue æquales refractionis an­<lb/> gulos nece&longs;&longs;e e&longs;t in circulum <expan abbr="cõ&longs;titui">con&longs;titui</expan>, vt mox con&longs;tabit; cau&longs;a igitur rotun­<lb/> ditatis huius, e&longs;t angulorum refractionis æqualitas. </s> <s id="s.002027">Sed iam textum Ari&longs;t. <lb/>qui geometricam huius rei continet demon&longs;trationem, explicemus. </s> <s id="s.002028">Suppo­<lb/> nit igitur primò Ari&longs;t. lineas vi&longs;uales à &longs;ydere B, ad oculos no&longs;tros A, per <lb/> nubem roridam C D F, procedentes, in nube con&longs;imiliter refrangi, ide&longs;t <expan abbr="vn-diq;">vn­<lb/> dique</expan> circa Solem, Lunamuè facere angulos refractionis æquales. </s> <s id="s.002029">quod etiam <pb pagenum="115" xlink:href="009/01/115.jpg"/>patet ex 48. 10. Vitellionis; vt in figura, in qua &longs;ydus B, oculus A, nubes <lb/> C D F, radij vi&longs;uales tres refracti in nube &longs;int B C A, B D A, B E A, facien­<lb/> tes con&longs;imilem refractionem, ide&longs;t angulos refractos B C A, B D A, B E A, <lb/> æquales in punctis C, D, F: <expan abbr="atq;">atque</expan> hoc e&longs;t con&longs;imilem facere refractionem. <lb/> </s> <s id="s.002030">Supponit &longs;ecundò lineas à &longs;ydere ad nubem, v&longs;que exten&longs;as e&longs;&longs;e æquales, vt <lb/> &longs;unt B C, B D, B F: &longs;imiliter reliquas tres à nube ad vi&longs;um A. pares e&longs;&longs;e C A, <lb/> D A, F A. his &longs;uppo&longs;itis, &longs;i deinde protrahatur recta A B, ab oculo ad &longs;ydus, <lb/>exurgunt tria triangula omninò æqualia, & &longs;imilia, cum duo latera vnius <lb/> &longs;int æqualia duobus alterius <expan abbr="vtrunq;">vtrunque</expan> vtrique, & angulus angulo, & præterea <lb/> ba&longs;is &longs;it communis; ideò per quartam primi &longs;unt omninò æqualia. </s> <s id="s.002031">ducan­<lb/> tur nunc ex angulis C, D, F, tres perpendiculares ad rectam A B, quæ &longs;int <lb/> C E, D E, F E, in figura; quæ tres nece&longs;&longs;ariò erunt æquales, cum &longs;int ductæ <lb/> ab angulis æqualibus æqualium triangulorum ad communem ba&longs;im, & di­<lb/> uident nece&longs;&longs;ariò ba&longs;im in eodem puncto E, cum diuidant triangula æqua­<lb/> lia proportionaliter; <expan abbr="erunt&qacute;">eruntque</expan>; propterea hæ tres rectæ in eodem plano, quod <lb/> in nube concipitur ex 5. 11. Quare &longs;i concipiamus &longs;uperficiem, &longs;iue planum <lb/> delineari circa E, ad interuallum linearum æqualium C E, D E, F E, de­<lb/> &longs;criptus erit circulus per 9. tertij, cuius circumferentia C D F. <!-- KEEP S--></s> <s id="s.002032">Ex quibus <lb/> patet tria illa puncta C, D, E, per quæ Sol tran&longs;paret e&longs;&longs;e in orbem di&longs;po&longs;i­<lb/> ta. </s> <s id="s.002033">cau&longs;a igitur rotunditatis Areæ, e&longs;t &longs;imilitudo angulorum refractionis, <lb/> quibus Sol tran&longs;paret: vel ideo rotunda e&longs;t, quia &longs;imiles anguli nece&longs;&longs;ariò <lb/> in orbem con&longs;tituuntur, vt o&longs;ten&longs;um e&longs;t. </s> <s id="s.002034">Eadem ratione omnia alia puncta <lb/> eiu&longs;dem <expan abbr="circũferentiæ">circunferentiæ</expan> &longs;unt puncta, per quæ Sol videtur refractè; & hoc mo­<lb/> do ad &longs;imilitudinem trium linearum A C B, A D B, A F B, refractarum, in­<lb/> finitæ <expan abbr="vndiq;">vndique</expan> intelligendæ &longs;unt, quarum aliæ refrangantur in circunferentia <lb/> prædicta, aliæ verò in alia periphæria maiori, aliæ etiam in minori, ita vt <lb/> ex tota nube fiant refractiones circulares plurimæ, ex quibus in nube area <lb/> con&longs;tituatur. </s> <s id="s.002035"><expan abbr="Atq;">Atque</expan> hæc cur Halonis figura orbicularis videatur, rationem <lb/> reddunt, <expan abbr="vna&qacute;">vnaque</expan>; textui lucem afferunt.</s> </p> <p type="head"> <s id="s.002036"><emph type="italics"/>Summæ 2. cap. 4. De Iridis figura.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.002037"><arrow.to.target n="marg163"/></s> </p> <p type="margin"> <s id="s.002038"><margin.target id="marg163"/>162</s> </p> <p type="main"> <s id="s.002039"><emph type="italics"/>Qvod autem <expan abbr="neq;">neque</expan> circulum po&longs;&longs;ibile &longs;it fieri Iridis, <expan abbr="neq;">neque</expan> maiorem &longs;emicir­<lb/> culo portionem, & de alijs accidentibus circa ip&longs;am, ex de&longs;criptione <lb/> erit con&longs;iderantibus manife&longs;tum)<emph.end type="italics"/> In Logicis &longs;æpius monui Ari&longs;t. per <lb/> de&longs;criptiones intelligere geometricas demon&longs;trationes, quod <lb/> etiam hoc loco confirmatur, vbi Geometrica demon&longs;tratione quam de&longs;cri­<lb/> ptionem appellat, Iridis figuræ accidentia o&longs;tendit; nimirum cur &longs;it quidem <lb/> circularis, nunquam tamen circulus integer, imò <expan abbr="neq;">neque</expan> &longs;emicirculo vnquam <lb/> maior, &longs;ed tamen &longs;emicirculo minor.</s> </p> <p type="main"> <s id="s.002040"><arrow.to.target n="marg164"/></s> </p> <p type="margin"> <s id="s.002041"><margin.target id="marg164"/>163</s> </p> <p type="main"> <s id="s.002042">Ibidem <emph type="italics"/>(Hemi&longs;phærio enim exi&longs;tente &longs;uper horizontis circulum in quo A. cen­<lb/> tro autem K, alio autem quodam oriente puncto, in quo G, &longs;i lineæ, quæ à K, &longs;ecun­<lb/> dum conum excidentes faciant velut axem lineam in qua G K, & à K. ad M, co­<lb/> pulatæ refrangantur ab hemi&longs;phærio ad G, &longs;uper maiorem angulum, circuli circun­<lb/> ferentiam incident lineæ, quæ à K, & &longs;i quidem in ortu, aut in occa&longs;u a&longs;tri reflexio <lb/> fiat, &longs;emicirculus ab <expan abbr="horizõte">horizonte</expan> a&longs;&longs;umetur &longs;uper terram factus. </s> <s id="s.002043">&longs;i autem &longs;upra, minor<emph.end type="italics"/> <pb pagenum="116" xlink:href="009/01/116.jpg"/><figure id="id.009.01.116.1.jpg" place="text" xlink:href="009/01/116/1.jpg"/><lb/> <emph type="italics"/>&longs;emper &longs;emicirculo, minus autem, <lb/> cum in meridie fuerit a&longs;trum)<emph.end type="italics"/> quod <lb/> &longs;upra monui, iterum moneo, <expan abbr="re-tin&etilde;dam">re­<lb/> tinendam</expan> vocem reflexionis, <expan abbr="quã-uis">quam­<lb/> uis</expan> in antiqua tran&longs;latione lega­<lb/> tur refractio, e&longs;t enim apud om­<lb/> nes in confe&longs;&longs;o Iridem fieri per <lb/> reflexionem. </s> <s id="s.002044">E&longs;t igitur in &longs;upe­<lb/> riori figura, quam textui, vt par <lb/> erat re&longs;titui, horizon G K O. cuius centrum K. in quo e&longs;t vi&longs;us no&longs;ter, <expan abbr="&longs;it&qacute;">&longs;itque</expan>; <lb/> hemi&longs;phærium no&longs;trum in arcu G A M O, repræ&longs;entatum, <expan abbr="&longs;it&qacute;">&longs;itque</expan>; nubes rori­<lb/> da, in qua Iris appareat, vbi M, quod punctum M, nubem referens, in figu­<lb/> ra ponitur in hemi&longs;phærij ambitu, quod cœlum repræ&longs;entat, cum tamen <lb/>nubes parum à terra &longs;ubuehatur; id enim ad demon&longs;trationem ferè perinde <lb/> e&longs;t. </s> <s id="s.002045">in oriente G, &longs;it a&longs;trum. </s> <s id="s.002046">&longs;i ergò lineæ vi&longs;uales à K, ad M, nubem tenden­<lb/> tes reflectantur &longs;uper maiorem angulum M K G, ad G, erit reflexarum vna <lb/> veluti M G. <!-- KEEP S--></s> <s id="s.002047">Porro omnes lineæ vi&longs;uales, quæ ad nubem M, incidunt, nece&longs;­<lb/> &longs;ariò, vt probabo, cadent in ambitum circularem. </s> <s id="s.002048">debemus enim innume­<lb/>ras lineas imaginari à K, in coni figuram excidentes, cuius vertex &longs;it in K, <lb/> & axis G K O, quas omnes repræ&longs;entat vna K M, <expan abbr="melius&qacute;">meliusque</expan>; repræ&longs;entabit, fi <lb/> cogitemus axem G K O, circa polos G, O, manentes circumuolui, <expan abbr="&longs;ecum&qacute;">&longs;ecumque</expan>; <lb/> lineam K M, circumducere. </s> <s id="s.002049">in hac etiam giratione linea K M, tran&longs;ibit per <lb/> omnes illas lineas, quas imaginabamur; <expan abbr="de&longs;cribet&qacute;">de&longs;cribetque</expan>; conum, quem illæ con­<lb/> formare debebant. </s> <s id="s.002050">In prædicta autem axis volutatione, extremum M, li­<lb/> neæ K M, nece&longs;&longs;ariò de&longs;cribit circulum, qui e&longs;t circulus Iridis, & e&longs;t ba&longs;is <lb/> memorati coni.</s> </p> <p type="main"> <s id="s.002051">Si igitur oriente, vel occidente a&longs;tro fiat iris, Iris erit &longs;emicirculus, ide&longs;t <lb/> illa &longs;emi&longs;&longs;is circuli pr&etail;dicti (quem horizon bifariam diuidit) quæ &longs;upra ter­<lb/> ram extabit. </s> <s id="s.002052">&longs;i autem a&longs;trum eleuatum &longs;upra horizontem fuerit, quando fit <lb/> iris, erit &longs;emper arcus Iridis &longs;emicirculo minor; <expan abbr="tunc&qacute;">tuncque</expan>; minimus <expan abbr="cũ">cum</expan> a&longs;trum <lb/> <expan abbr="meridianũ">meridianum</expan> <expan abbr="circulũ">circulum</expan> occupauerit. </s> <s id="s.002053">h&etail;c tria &longs;unt, quæ deinceps <expan abbr="probãda">probanda</expan> recipit.</s> </p> <p type="main"> <s id="s.002054"><arrow.to.target n="marg165"/></s> </p> <p type="margin"> <s id="s.002055"><margin.target id="marg165"/>264</s> </p> <figure id="id.009.01.116.2.jpg" place="text" xlink:href="009/01/116/2.jpg"/> <p type="main"> <s id="s.002056">Ibidem <emph type="italics"/>(Sit enim in <expan abbr="ori&etilde;te">oriente</expan> pri­<lb/> mum vbi G, & refracta &longs;it K M, <lb/> ad G, & planum erectum &longs;it in quo <lb/> A, à triangulo in quo G K M, cir­<lb/> culus igitur erit &longs;ectio &longs;phæræ, qui <lb/> maximus &longs;it in quo A, differet enim <lb/>nihil &longs;i quod<expan abbr="cŭq;">cŭque</expan> eorum, quæ &longs;uper <lb/> G K, &longs;ecundum triangulŭ K M G, <lb/> erectum fuerit planum. </s> <s id="s.002057">lineæ igitur <lb/>ab ijs, quæ G, K, ductæ in hac ratio­<lb/>ne non con&longs;tituentur ad aliud, & <lb/> aliud punctum, quàm &longs;emicirculi <lb/> in quo A. <!-- KEEP S--></s> <s id="s.002058">Quoniam enim puncta <lb/> G, K, data &longs;unt, & quæ K M, vtique data erit; & quæ M G, ad M K; datam igi­<lb/> tur circunferentiam tanget M, fit <expan abbr="itaq;">itaque</expan> hæc in qua M N, quare &longs;ectio circunferen-<emph.end type="italics"/> <pb pagenum="117" xlink:href="009/01/117.jpg"/><emph type="italics"/>tiarum data e&longs;t. </s> <s id="s.002059">apud autem aliud punctum, quam ip&longs;ius M N, circunferentiæ, ab <lb/> ij&longs;dem punctis, eadem ratio in eodem plano non con&longs;i&longs;tit)<emph.end type="italics"/> eorum omnium, quæ <lb/> demon&longs;tranda &longs;unt, præmittenda &longs;unt duo nece&longs;&longs;aria fundamenta. </s> <s id="s.002060">Primum <lb/> e&longs;t; ea, quæ videmus per reflexionem &longs;ub quopiam angulo, manentibus no­<lb/> bis &longs;peculo, & obiecto ij&longs;dem in locis, non po&longs;&longs;unt videri &longs;ub alio diuer&longs;o <lb/> angulo, nec alibi con&longs;equenter apparere. </s> <s id="s.002061">v. <!-- REMOVE S-->g. <!-- REMOVE S-->in &longs;uperiori figura, quam <lb/> textui re&longs;tituimus exi&longs;tente Sole in G, oculo in K, & nube in M. ex qua ra­<lb/>dius Solis G M, reflectatur ad vi&longs;um in K, per <expan abbr="lineã">lineam</expan> M K, &longs;ub angulo G M K, <lb/> impo&longs;&longs;ibile e&longs;t manentibus illis, vt dixi, videri Solem in nube M, &longs;ub diuer­<lb/> &longs;o angulo à priori, nec alibi apparere. </s> <s id="s.002062">Alterum e&longs;t apud Opticos vulga­<lb/> tum; ea &longs;cilicet, quæ per reflexionem (de quorum numero e&longs;t Iris) viden­<lb/> tur, videri, tunc &longs;olum, quando angulus incidentiæ fuerit æqualis angulo <lb/> reflexionis, quia tunc breui&longs;&longs;imis lineis fit vi&longs;io; quibus &longs;oli, natura (&longs;i fieri <lb/> <figure id="id.009.01.117.1.jpg" place="text" xlink:href="009/01/117/1.jpg"/><lb/> pote&longs;t) vtitur. </s> <s id="s.002063">v. <!-- REMOVE S-->g. <!-- REMOVE S-->in figura præ&longs;enti &longs;it &longs;pe­<lb/> culum C D E, obiectum A, oculus B, linea in­<lb/> cidentiæ e&longs;t A D, & angulus pariter inciden­<lb/> tiæ e&longs;t A D C. linea verò D B, e&longs;t linea refle­<lb/> xionis, & angulus pariter reflexionis e&longs;t B D­<lb/> E, qui duo anguli ni&longs;i fuerint æquales, nun­<lb/> quam videbitur obiectum A, ab oculo B, hinc <lb/> e&longs;t, quod aliquando po&longs;ito &longs;peculo, obiectum <lb/> quamuis illi aduer&longs;um, à nobis pariter ante <lb/> &longs;peculum con&longs;titutis, videri nequit, quia &longs;ci­<lb/> licet in tali po&longs;itione &longs;peculi, obiecti, & no&longs;tri, nulla linea incidentiæ, ide&longs;t, <lb/> quæ ab obiecto in &longs;peculum tendit, facere pote&longs;t angulum cum &longs;peculo, qui <lb/> dicitur angulus incidentiæ, æqualem angulo illi, quem facit linea eadem re­<lb/>flexa à &longs;peculo ad oculum, quem dicunt angulum reflexionis. </s> <s id="s.002064">Cum ergo in <lb/> Iride videamus colorem Solis per reflexionem, tunc &longs;olum apparebit Iris, <lb/> quando Sol, nubes, & oculus fuerint in ea con&longs;titutione, qua radius <expan abbr="incid&etilde;s">incidens</expan> <lb/> nubi, & radius à nube repercu&longs;&longs;us faciant pares angulos. </s> <s id="s.002065">Et quia quando <lb/>nubes ro&longs;cida perpendiculariter opponitur Soli, & nobis, po&longs;&longs;unt fieri præ­<lb/> dicti anguli æquales non in vno loco nubis, &longs;ed in pluribus, con&longs;titutis ta­<lb/> men in circuli periphæria, hinc fit, quod Solis color reflectatur ex pluribus <lb/> locis in orbem con&longs;titutis, quæ reflexio e&longs;t ip&longs;ius Iridis arcus. </s> <s id="s.002066">ex Vitellion <lb/> 63. 10. Totam autem figuræ Iridis demon&longs;trationem &longs;ic breuiter puto ad­<lb/> inuentam e&longs;&longs;e. </s> <s id="s.002067">cum Sol in Iride videatur in orbem, <expan abbr="atq;">atque</expan> con&longs;imiliter, ne ce&longs;­<lb/> &longs;e e&longs;t id prouenire ex angulis reflexionum con&longs;imilibus, &longs;iue æqualibus: di&longs;­<lb/> &longs;imiles enim anguli, di&longs;&longs;imilem <expan abbr="vtiq;">vtique</expan> efficiunt Solis <expan abbr="appar&etilde;tiam">apparentiam</expan>. </s> <s id="s.002068">atqui con­<lb/> &longs;imiles anguli, &longs;iue æquales, non ni&longs;i in orbem po&longs;&longs;unt con&longs;titui; igitur an­<lb/> gulorum æqualitas cau&longs;a erit rotundationis arcus. </s> <s id="s.002069">h&etail;c e&longs;t &longs;umma totius di­<lb/> &longs;cur&longs;us, quem pluribus, & nimis ob&longs;curè Ari&longs;t. explicat.</s> </p> <p type="main"> <s id="s.002070">Inquit igitur Ari&longs;t. &longs;it enim in oriente, &c. </s> <s id="s.002071">vbi aggreditur probare vnum <lb/> ex tribus illis, quæ &longs;upra propo&longs;uit, nimirum tunc Iridem e&longs;&longs;e &longs;emicircu­<lb/> lum, quando a&longs;trum fuerit in oriente, &longs;iue in horizonte, vbi G. &longs;i igitur per <lb/> triangulum G M K, intelligamus <expan abbr="planũ">planum</expan> exten&longs;um, in quo A, in figura, adeo <lb/> magnum, vt totum &longs;ecet hemi&longs;phærium, faciet in &longs;uperficie hemi&longs;phærij &longs;e­ <pb pagenum="118" xlink:href="009/01/118.jpg"/>ctionem, quæ erit portio maximi circuli, per 6. Theodo&longs;ij, cum planum &longs;e­<lb/> cans hemi&longs;phærium, tran&longs;eat per <expan abbr="centrũ">centrum</expan> ip&longs;ius, quæ &longs;ectio, &longs;iue circuli por­<lb/>tio repræ&longs;entatur in figura, per &longs;emicirculum in quo A, &longs;iue in quo G A M­ <lb/> R O. nihil autem refert quodcunque intelligas planum &longs;uper axem G K O, <lb/> tran&longs;iens &longs;iue per triangulum G K M, &longs;iue per aliud illi &longs;imile. </s> <s id="s.002072">Præmitten­<lb/> dum præterea non po&longs;&longs;e in &longs;emicirculo &longs;uperiori, quod e&longs;t planum, & &longs;ectio <lb/> trianguli G K M, poni alias duas lineas. </s> <s id="s.002073">v. <!-- REMOVE S-->g. <!-- REMOVE S-->G R, K R, ad aliud punctum, <lb/> vti e&longs;t R, quæ habeant eandem inuicem proportionem, quam habent prio­<lb/> res duæ G M, K M, quod probatur, quia &longs;i &longs;int vt G M, ad K M, ita G R, ad <lb/> K R, cum G R, &longs;it centro K, propinquior quam G M, erit etiam eadem G R, <lb/> longior ip&longs;a G M, per 15. 3. & tamen deberet e&longs;&longs;e æqualis illi; quemadmo­<lb/> dum K M, e&longs;t æqualis alteri K R; nequeunt autem duæ lineæ inæquales inui­<lb/> cem, habere eandem rationem ad duas inuicem æquales: ergo non habent <lb/> eandem rationem G M, & K M, quam habent G R, & K R. quod &longs;i punctum <lb/> R, &longs;umatur &longs;upra M, erit &longs;imilis <expan abbr="demõ&longs;tratio">demon&longs;tratio</expan>, &longs;i literæ M, & R, loca permu­<lb/> tent. </s> <s id="s.002074">his po&longs;itis, ait <emph type="italics"/>(Quoniam enim G, K, puncta data &longs;unt, & c.)<emph.end type="italics"/> ide&longs;t data <lb/> &longs;unt po&longs;itione, cum notum &longs;it vbi &longs;int. </s> <s id="s.002075">G, enim e&longs;t in ortu. </s> <s id="s.002076">K, verò in centro <lb/>horizontis, &longs;equitur, quod etiam linea G K, cuius ip&longs;a &longs;unt extrema, data <lb/> &longs;it, & po&longs;itione, & magnitudine, per 26. Datorum Euclidis. <!-- KEEP S--></s> <s id="s.002077">eadem quoque <lb/> ratione data erit K M, linea; &longs;iue quia e&longs;t æqualis ip&longs;i G K, &longs;iue quia per <lb/> a&longs;trolabium po&longs;&longs;umus ip&longs;ius longitudinem, & po&longs;itionem inue&longs;tigare; qua­<lb/> re & punctum M, datum erit per 27. Datorum, quare & linea G M, data <lb/> erit quoad &longs;itum, & magnitudinem per 26. Datorum. <!-- KEEP S--></s> <s id="s.002078">Quare per primam <lb/> Datorum erit data proportio linearum G M, M K, punctum <expan abbr="itaq;">itaque</expan> M, tanget <lb/> ambitum datum, qui ba&longs;is e&longs;t coni, quem linea K M, de&longs;cribit in reuolutio­<lb/> ne axis G K O, &longs;uper polis G, O. cum enim data &longs;it K M, po&longs;itu, & magni­<lb/> tudine, <expan abbr="ea&qacute;">eaque</expan>; &longs;it latus prædicti coni, &longs;equitur periphæriam, vel ambitum ba­<lb/> &longs;is coni e&longs;&longs;e datum per &longs;imilem definitionem 5. definitioni Datorum. <!-- KEEP S--></s> <s id="s.002079">&longs;it <expan abbr="au-t&etilde;">au­<lb/> tem</expan> ambitus ille in figura &longs;equenti notatus literis L M N. qui ambitus L M N, <lb/> non e&longs;t <expan abbr="concipi&etilde;dus">concipiendus</expan> in eodem plano &longs;emicirculi G A N O, quemadmodum <lb/> falsò pingitur in figura; &longs;ed debemus ip&longs;um concipere tanquam erectum ad <lb/> angulos rectos cum prædicto &longs;emicirculo, necnon cum horizonte G K O. <lb/> <!-- KEEP S--></s> <s id="s.002080">Iam &longs;i <expan abbr="triãgulum">triangulum</expan> G M K, prioris figuræ circumuoluatur circa axem G K O, <lb/> punctum ip&longs;ius M, de&longs;cribit prædictum ambitum L M N. hunc ambitum <lb/>inquit Ari&longs;tot. <!-- REMOVE S-->linea K M, attinget, <expan abbr="erit&qacute;">eritque</expan>; hic ambitus datus, vt dictum e&longs;t. <lb/> <figure id="id.009.01.118.1.jpg" place="text" xlink:href="009/01/118/1.jpg"/><lb/> Erit præterea &longs;ectio circunferentiarum ho­<lb/>rizontis, & huius ambitus data, cuius extre­<lb/> ma puncta e&longs;&longs;ent L, & N. &longs;i enim <expan abbr="cõcipiamus">concipiamus</expan> <lb/> in figura non &longs;olum horizontis diametrum <lb/> G K O, &longs;ed etiam circunferentiam (in qua <lb/> circunferentia e&longs;&longs;ent duo illa puncta L, & N, <lb/>vt in præ&longs;enti de&longs;criptione melius intellige­<lb/> tur, in qua horizon G N O L, & ambitus <lb/> prædictus e&longs;t L M N, qui debet intelligi ele­<lb/> uatus &longs;upra horizontem perpendiculariter) <lb/>tunc &longs;ectio ip&longs;ius mutua cum horizonte e&longs;&longs;et <pb pagenum="119" xlink:href="009/01/119.jpg"/>linea N P L, cuius extrema puncta &longs;unt L, N, quæ data erunt, cum &longs;int ex­<lb/> trema lineæ K M, circumlatæ; & quemadmodum dabatur &longs;uperius punctum <lb/> M. eadem ratione ex Datis, dabitur punctum N, & L. quare etiam &longs;ectio <lb/> N P L, quæ inter data puncta continetur, data erit ex 26. Datorum.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.002081">Illud nunc in memoriam <expan abbr="reuocãdum">reuocandum</expan>, quod paulò ante probaui, nimirum <lb/> proportionem linearum G M, K M, non po&longs;&longs;e &longs;eruari in alijs lineis, quæ &longs;int <lb/> in eodem plano trianguli G M K, &longs;i ducantur ab ij&longs;dem punctis G, K. pote&longs;t <lb/> tamen &longs;eruari in alijs duabus, quæ cadant in prædictum ambitum, &longs;iue <expan abbr="cir-cunfer&etilde;tiam">cir­<lb/> cunferentiam</expan> L M N, <expan abbr="quæ&qacute;">quæque</expan>; &longs;int in alio plano, <expan abbr="quã">quam</expan> in plano trianguli G M K, <lb/> quod tamen tran&longs;eat per axem G K O, <expan abbr="&longs;it&qacute;">&longs;itque</expan>; vnum ex planis illis, de quibus <lb/> &longs;upra dictum e&longs;t. </s> <s id="s.002082">Verumenimuerò ad quid probatio hæc? </s> <s id="s.002083">non po&longs;&longs;e duas <lb/> alias lineas in eodem plano, &c.? exi&longs;timo Ari&longs;t. idcircò hoc proba&longs;&longs;e, quia <lb/> &longs;i aliæ duæ lineæ habentes eandem rationem, po&longs;&longs;ent collocari in eodem <lb/> plano; e&longs;&longs;ent <expan abbr="permutãdo">permutando</expan> illæ duæ (in priori figura) G R, R K. <expan abbr="vtraq;">vtraque</expan> <expan abbr="vtriq;">vtrique</expan> <lb/> æquales prioribus G M, M K, per quas videtur Iris, cum enim K R, &longs;it æqua­<lb/> lis ip&longs;i K M, erit, & G M, æqualis ip&longs;i G R, per 7. 5. & in eius &longs;cholio. </s> <s id="s.002084">qua­<lb/> re natura ageret tam per lineas breui&longs;&longs;imas <expan abbr="ag&etilde;do">agendo</expan> per has, quam per illas, <lb/> <expan abbr="hoc&qacute;">hocque</expan>; pacto per has etiam Iris videri po&longs;&longs;et. </s> <s id="s.002085">cum ergò con&longs;tet non po&longs;&longs;e has <lb/> e&longs;&longs;e prioribus proportionales, &longs;ed maiorem, vel minorem, alteram illarum, <lb/> quàm &longs;it G M, &longs;equitur, quod non faciunt angulum æqualem angulo G M K, <lb/> &longs;ub quo videtur Iris, <expan abbr="nimirũ">nimirum</expan> angulum G R K, qui &longs;it æqualis angulo G M K; <lb/> habet enim Iris hunc angulum determinatum, ita vt &longs;ub maiori, vel mino­<lb/> ri videri nequeat; ex 10. Bapti&longs;ta Porta. </s> <s id="s.002086">&longs;i autem punctum R, e&longs;&longs;et infra M, <lb/> angulus G R K, e&longs;&longs;et minor angulo Iridis G M K, &longs;i verò &longs;upra e&longs;&longs;et maior <lb/> eodem, quod vel ad &longs;en&longs;um patere pote&longs;t in quouis circulo, <expan abbr="id&qacute;">idque</expan>; &longs;ufficiat, ne <lb/> longior euadat hæc tractatio. </s> <s id="s.002087">Fortè etiam addi pote&longs;t, quod alibi exi&longs;ten­<lb/> te puncto R, quàm in M, non po&longs;&longs;ent anguli incidentiæ, & reflexionis e&longs;&longs;e <lb/> æquales, quæ cau&longs;a e&longs;&longs;et cur &longs;ub alio angulo, quam prædicto G M K, Iris <lb/> non appareret.</s> </p> <p type="main"> <s id="s.002088">Prædicta omnia &longs;unt &longs;ecundum Ari&longs;tot. di&longs;cur&longs;um, & figurationem dicta, <lb/> nam &longs;ecundum veritatem po&longs;&longs;unt in eadem nube con&longs;titui plures anguli <lb/> æquales, nec tamen in eodem orbe, &longs;ed vnus &longs;upra <expan abbr="alterũ">alterum</expan>; vt in figura præ­<lb/> <figure id="id.009.01.119.1.jpg" place="text" xlink:href="009/01/119/1.jpg"/><lb/> &longs;enti, &longs;i nubes e&longs;&longs;et vbi B D. <lb/> oculus in C, Sol in A. e&longs;&longs;ent <lb/> duo anguli A B C, A D C, æ­<lb/> quales per 33. 3. qui tamen <lb/> non &longs;unt in gyrum con&longs;tituti, <lb/> po&longs;&longs;et igitur, per <expan abbr="illorũ">illorum</expan> vtrun­<lb/> que Sol Iridem efficere. </s> <s id="s.002089">atque <lb/> animaduer&longs;io h&etail;c videtur ma­<lb/> gni <expan abbr="mom&etilde;ti">momenti</expan> e&longs;&longs;e, ad Iridis <expan abbr="de-mon&longs;tration&etilde;">de­<lb/> mon&longs;trationem</expan> con&longs;tituendam: <lb/> cum hinc v&longs;itatæ demon&longs;tra­<lb/> tiones infringatur. </s> <s id="s.002090">Fortè confugiendum e&longs;t ad illud, quod Maurolycus, & <lb/> 10. Bapti&longs;ta Porta ob&longs;eruarunt; debere <expan abbr="nimirũ">nimirum</expan> di&longs;tantiam ab oculo ad cen­<lb/> trum Iridis e&longs;&longs;e æqualem altitudini, &longs;iue &longs;emidiametro Iridis. </s> <s id="s.002091">Ita vt non &longs;o­ <pb pagenum="120" xlink:href="009/01/120.jpg"/>lum requiratur idem angulus, &longs;ed etiam tanta Iridis altitudo, <expan abbr="quãta">quanta</expan> requi­<lb/> ritur vt angulus in orbem con&longs;tituatur, ex quo Iris po&longs;&longs;it apparere. </s> <s id="s.002092">hæc à <lb/> nemine hactenus animaduer&longs;a placuit addere, vt ex ijs demon&longs;tratio Iridis <lb/> omnibus numeris aliquando ab&longs;olui po&longs;&longs;it, quod infra (ni fallor, fauente <lb/> Deo) præ&longs;tabimus.<lb/> <arrow.to.target n="marg166"/></s> </p> <p type="margin"> <s id="s.002093"><margin.target id="marg166"/>165</s> </p> <p type="main"> <s id="s.002094">Ibidem <emph type="italics"/>(Extraponatur igitur quædam linea, quæ D B, & &longs;eindatur vt M G, ad <lb/> M K, &longs;ic quæ D, ad B, maior autem quæ M G, ea quàm M K, quoniam &longs;uper ma­<lb/> iorem angulum reflexio coni, maiori enim angulo &longs;ubtenditur trianguli M K G. <lb/> <!-- KEEP S--></s> <s id="s.002095">Maior igitur e&longs;t & ip&longs;a D, ip&longs;a B. addatur igitur ad eam, quæ B, ea in qua F, vt <lb/> &longs;it quod D, ad B, quæ B F, ad D. <!-- KEEP S--></s> <s id="s.002096">Deinde quod F, ad K G, quæ B, ad aliam fiat, <lb/> quæ K P. & à P, ad M, copuletur quæ P M, erit igitur P. polus circuli, ad quem <lb/> lineæ, quæ à K, incidunt)<emph.end type="italics"/> <expan abbr="hucu&longs;q;">hucu&longs;que</expan> o&longs;tendit lineas vi&longs;uales cadere ad M, pun­<lb/> ctum in Iridis periphæriam, pergit deinceps inue&longs;tigare polum, & po&longs;tea <lb/> centrum eiu&longs;dem ambitus, vtraque autem exi&longs;tere in horizonte reperit, vt <lb/> hinc inferat Iridis portionem illam, quæ oriente Sole &longs;upra horizontem ap­<lb/> paret, e&longs;&longs;e &longs;emicirculum, vt propo&longs;uerat. </s> <s id="s.002097">Differt autem polus circuli à cen­<lb/> tro eiu&longs;dem circuli. </s> <s id="s.002098">polus e&longs;t punctum extra planum circuli, ex quo tamen <lb/> vt <expan abbr="c&etilde;tro">centro</expan> adhibito circino circuli periphæria de&longs;cribi pote&longs;t; &longs;ic polus æqua­<lb/> toris e&longs;t idem, qui polus mundi: <expan abbr="centrũ">centrum</expan> verò e&longs;t in plano &longs;ui cir culi, &longs;ic cen­<lb/> trum æquatoris e&longs;t idem cum centro mundi, cum æquator per illud incedat.</s> </p> <p type="main"> <s id="s.002099">Dicit <expan abbr="itaq;">itaque</expan> Ari&longs;t. cum data &longs;it proportio linearum K M, & M G, in &longs;upe­<lb/> riori &longs;ecunda figura numeri 164. quam nunc iterum in&longs;picere opertet; ex­<lb/> <figure id="id.009.01.120.1.jpg" place="text" xlink:href="009/01/120/1.jpg"/><lb/> ponatur alia linea recta B D. quæ diui­<lb/> datur in partes B, & D. proportionales <lb/> cum lineis K M, G M, per 10. 6. cum <lb/> ergo K M, &longs;it minor quàm G M, per 19. <lb/> primi, quia in triangulo G M K, oppo­<lb/> nitur minori angulo, erit <expan abbr="quoq;">quoque</expan> B, minor quàm D, addatur iam ip&longs;i B. linea <lb/> nea F, ita vt &longs;it tota F B, tertia proportionalis ad duas B, & D, per 11. 6. <lb/> hoc ordine, vt F B, ad D. ita D, ad B. <!-- KEEP S--></s> <s id="s.002100">Deinde vt &longs;e habet F, ad K G. ita &longs;it <lb/> B, ad aliam, quæ &longs;it K P, in eadem figura per 12. 6. & à puncto P, ad M, iun­<lb/> gatur recta P M. <!-- KEEP S--></s> <s id="s.002101">Dico P, e&longs;&longs;e polum circuli, quem dixi Iridis, & in quem li­<lb/> neæ à K, procedentes turbinis formam effingunt, probatur autem ab Ari&longs;t. <lb/> in &longs;equentibus.</s> </p> <p type="main"> <s id="s.002102"><arrow.to.target n="marg167"/></s> </p> <p type="margin"> <s id="s.002103"><margin.target id="marg167"/>166</s> </p> <p type="main"> <s id="s.002104">Ibidem <emph type="italics"/>(Erit etiam, quod quæ F, ad K G. & quæ B, ad K P. & quæ D, ad P M. <lb/>non enim &longs;it, &longs;ed aut ad minorem, aut ad maiorem ea, quæ P M, nihil enim differet. <lb/> </s> <s id="s.002105">&longs;it enim ad P R. eandem ergo rationem G K, & K P, & P R, inuicem habebunt, <lb/> quam quæ F, B, D: quæ autem F, B, D, proportionales crant, quod quidem D, ad <lb/> B. quæ F B, ad D: quare quod quæ P G, ad P R, quæ P R, ad eam, quæ P K. &longs;i igi­<lb/> tur ab ijs, quæ K G, quæ G R, & K R, ad R, coniungantur, coniunctæ hæ eandem <lb/> habebunt rationem, quam quæ G P, ad eam, quæ P R, circa eundem enim angulum <lb/> P, proportion aliter, & quæ trianguli G P R, & eius, qui K R P. quare & quæ G R, <lb/> ad eam quæ K R, eandem rationem habebit, quam & quæ G P, ad eam quæ P R, <lb/> habet autem & quæ M G, ad M K, eam rationem, quam quæ D, ad eam quæ B, <lb/>quare ambæ à punctis G K, non &longs;olum ad circunferentiam M N, con&longs;tituentur ean­<lb/>dem habentes rationem, &longs;ed & alibi, quod quidem impo&longs;&longs;ibile)<emph.end type="italics"/> incipit, vt dixi, <pb pagenum="121" xlink:href="009/01/121.jpg"/>probare P, e&longs;&longs;e polum prædicti ambitus, &longs;ic. </s> <s id="s.002106">Primò enim &longs;ciendum in præ­<lb/> mi&longs;&longs;a con&longs;tructione e&longs;&longs;e, vt F, ad G K, & B, ad K P, ita D, ad P M. nam &longs;i non <lb/> &longs;it eadem ratio D, ad P M, cum alijs prædictis, erit eadem ratio eiu&longs;dem D, <lb/>ad aliam maiorem, vel minorem ip&longs;a P M. &longs;it ad minorem P R. nihil enim <lb/> refert &longs;iue dixeris habere eandem rationem ad minorem, &longs;iue ad maiorem, <lb/> ergo permutando erunt G K, K P, P R, proportionales cum F, B, D. &longs;ed li­<lb/> neæ F, B, D, erant proportionales <expan abbr="compon&etilde;do">componendo</expan> hoc modo, vt F B, ad D, ita <lb/> D, ad B: quare &longs;imiliter erunt vt G P, ad P R, ita P R, ad P K. per 18. 5. &longs;i igi­<lb/> tur à punctis G, & K, figuræ nu. </s> <s id="s.002107">164. <expan abbr="iungãtur">iungantur</expan> lineæ ad R, quæ &longs;int G R, K R, <lb/> erit vt G R, ad K R, ita G P, ad P R. quia orta <expan abbr="sũt">sunt</expan> duo <expan abbr="triãgula">triangula</expan> G P R, K P R, <lb/> quæ habent eundem angulum ad P. & latera proportionalia circa dictum <lb/> angulum. </s> <s id="s.002108">e&longs;t etiam vt G P, ad P R, in maiori triangulo, ita P R, ad K P, in <lb/> minori, ex con&longs;tructione, quare per 6. 6. erunt illa duo triangula æquian­<lb/> gula; ergò per 4. 6. erunt latera circum æquales angulos proportionalia; <lb/> quare erit vt G P, ad P R. ita G R, ad R K: erat autem vt K M, ad G M, ita <lb/> B, ad D. & ita etiam G P, ad P R; ergò per 11. 5. vt K M, ad M G. ita K R, <lb/> ad R G, intra eandem circunferentiam, & in eodem plano: quod e&longs;&longs;e im­<lb/> po&longs;&longs;ibile &longs;upra o&longs;tendimus, hoc autem impo&longs;&longs;ibile, &longs;equitur &longs;i neges e&longs;&longs;e vt <lb/> F, ad G K; & B, ad K P, ita D, ad P M.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.002109"><arrow.to.target n="marg168"/></s> </p> <p type="margin"> <s id="s.002110"><margin.target id="marg168"/>167</s> </p> <p type="main"> <s id="s.002111">Ibidem <emph type="italics"/>(Quoniăm igitur quæ D, <expan abbr="neq;">neque</expan> ad minorem ea, quæ P M, <expan abbr="neq;">neque</expan> ad maiorem <lb/>(&longs;imiliter enim demon&longs;trabimus) palam e&longs;t, quod ad ip&longs;am <expan abbr="vtiq;">vtique</expan> erit, in qua P M, <lb/> quare erit, quod quæ M P, ad P K, quæ P G, ad M P. <!-- KEEP S--></s> <s id="s.002112">Si igitur eo in quo P, polo <lb/>vtens, di&longs;tantia autem ea, in qua P M, circulus de&longs;cribatur, omnes angulos attin­<lb/> get, quos reflexæ faciunt, quæ à K, G. &longs;i autem non, &longs;imiliter o&longs;tendentur eandem <lb/> babere rationem, quæ alibi, quam in &longs;emicirculo con&longs;tituuntur; quod quidem erat <lb/> impo&longs;&longs;ibile)<emph.end type="italics"/> quoniam igitur, inquit, linea D, <expan abbr="neq;">neque</expan> ad minorem, <expan abbr="neq;">neque</expan> ad ma­<lb/> iorem quam P M, habet eam rationem, quæ e&longs;t ip&longs;ius F, ad G K, aut ip&longs;ius <lb/> B, ad K P. &longs;imiliter enim demon&longs;tratur ab&longs;urdum &longs;equi. </s> <s id="s.002113">palàm e&longs;t, quoniam <lb/> erit D, ad P M, vt prædictæ ad prædictas: quare componendo, & permu­<lb/> tando, erunt tandem vt G P, ad P M, ita P M, ad P K, & ita G M, ad M K, <lb/> a&longs;&longs;ump&longs;imus enim in con&longs;tructione e&longs;&longs;e G M, ad M K, ita F B, ad D, & D, ad <lb/> B. quare cum &longs;it vt G M, ad M K, ita F B, ad D. & G P, ad P M. & P M, ad <lb/> K P; erunt per 11. 5. vt G M, ad M K. ita G P, ad P M. & P M, ad P K. &longs;i quis <lb/> igitur vtens puncto P, tanquam polo, & interuallo P M, circulum de&longs;cribat, <lb/> omnes angulos reflexionis attinget, quos faciunt lineæ productæ à K, & re­<lb/> flexæ ab M, ad G. harum enim infinitam multitudinem debemus imaginari <lb/> à K, ad infinita puncta M, produci in ambitu illo con&longs;tituta, <expan abbr="re&longs;lecti&qacute;">reflectique</expan>; ad G. <lb/> &longs;i enim non attingat omnes illos angulos, &longs;equitur, vt &longs;upra, in eodem &longs;emi­<lb/> circulo <expan abbr="cõ&longs;titui">con&longs;titui</expan> po&longs;&longs;e duas alias rectas proportionales prioribus G M, M K, <lb/> quod e&longs;t impo&longs;&longs;ibile. </s> <s id="s.002114">Porrò &longs;ub angulo G M K, linearum G M, M K, Iris <lb/> apparet: quare apparebit etiam &longs;ub alijs omnibus, quæ à punctis G K, duci <lb/> po&longs;&longs;unt ad extremum lineæ P M, quia erunt in eadem ratione cum illis; cum <lb/> non de&longs;inant in eundem <expan abbr="&longs;emicirculũ">&longs;emicirculum</expan>, &longs;ed in ambitum Iridis M N, in quo M, <lb/> punctum imaginamur circumduci. </s> <s id="s.002115">Ex quibus pater P, e&longs;&longs;e polum Iridis, ex <lb/> quo per puncta M, vbi &longs;it reflexio, de&longs;cribitur arcus attingens omnes Iridis <lb/> reflexiones.</s> </p> <pb pagenum="122" xlink:href="009/01/122.jpg"/> <p type="main"> <s id="s.002116"><arrow.to.target n="marg169"/></s> </p> <p type="margin"> <s id="s.002117"><margin.target id="marg169"/>168</s> </p> <p type="main"> <s id="s.002118">Ibidem <emph type="italics"/>(Si igitur circumducas &longs;emicirculŭm, in quo A, circa diametrum in qua <lb/> G K P, que à G, K, reflexæ ad id in quo M; in omnibus planis &longs;imiliter &longs;e habebunt, <lb/>& æqualem facient angulum, qui K M G, & quem etiam facient angulum, quæ <lb/> K P, & P M, &longs;uper eam, quæ G P, &longs;emper æqualis erit. </s> <s id="s.002119">Trianguli igitur &longs;uper eam, <lb/> quæ G P, æquales ei, qui G M P. con&longs;i&longs;tunt. </s> <s id="s.002120">horum autem perpendiculares ad idem <lb/> &longs;ignum cadent eius, quæ G P, & æquales erunt, cadunt ad <foreign lang="greek">w,</foreign> centrum ergò circuli <lb/> <foreign lang="greek">w</foreign> &longs;emicirculus autem, qui circa M N, ab&longs;ectus e&longs;t ab horizonte)<emph.end type="italics"/> hac vltima <lb/> textus parte concludit Iridis portionem &longs;upra horizontem a&longs;tro <expan abbr="ori&etilde;te">oriente</expan> exi­<lb/> &longs;tentem e&longs;&longs;e &longs;emicirculum, hoc modo; &longs;i igitur imaginatione circumducas <lb/> &longs;emicirculum, in quo A, circa diametrum horizontis G K P, in hac circum­<lb/> uolutione duæ lineæ G M, M K, in omnibus planis con&longs;titui po&longs;&longs;ibilibus cir­<lb/> ca prædictam diametrum, quæ &longs;upra etiam fieri à triangulis infinitis dixi­<lb/> mus, &longs;ucce&longs;&longs;iuè erunt; &longs;iue percurrent &longs;imiliter omnia illa plana, & facient <lb/> vbique angulum Iridis K M G, eundem: pariter duæ lineæ K P, P M, facient <lb/> vndique eundem angulum K P M. quare omnia triangula in predictis planis <lb/> imaginata, & <expan abbr="cõ&longs;tituta">con&longs;tituta</expan> &longs;uper linea G P, &longs;imilia ip&longs;i G M P, & æqualia erunt; <lb/> &longs;i igitur ab angulis ip&longs;orum, in quibus M, ductæ &longs;int perpendiculares ad la­<lb/> tus G P, omnes cadent in idem punctum <foreign lang="greek">w,</foreign> vt in figura; <expan abbr="quarũ">quarum</expan> vna erit M <foreign lang="greek">w,</foreign><lb/> quæ tamen cæteras omnes repre&longs;entabit, <expan abbr="eis&qacute;">eisque</expan>; omnibus in volutatione axis <lb/> G K <foreign lang="greek">w,</foreign> coincidit; erunt autem omnes æquales, quandoquidem &longs;unt trian­<lb/> gulorum æqualium. </s> <s id="s.002121"><expan abbr="erunt&qacute;">eruntque</expan>; in eodem eiu&longs;dem circuli plano, & punctum <foreign lang="greek">w,</foreign><lb/> erit centrum ip&longs;ius. </s> <s id="s.002122">&longs;imilia dicta &longs;unt in Halone. </s> <s id="s.002123">Cum ergò ip&longs;ius centrum <lb/> <foreign lang="greek">w</foreign>, &longs;it in diametro horizontis G K <foreign lang="greek">w</foreign> P O, manife&longs;tum fit portionem eius, quæ <lb/> &longs;upra horizontem eminet, e&longs;&longs;e &longs;emicirculum, qui in figura notatur lineis <lb/> L M N. <!-- KEEP S--></s> <s id="s.002124">Atque hoc accidit Sole, vel Luna in horizonte exi&longs;tentibus; quod <lb/> erat primo loco demon&longs;trandum.</s> </p> <p type="main"> <s id="s.002125">Porrò &longs;ciendum po&longs;&longs;e nos breuius polum prædictum inuenire, &longs;i nimirum <lb/> <figure id="id.009.01.122.1.jpg" place="text" xlink:href="009/01/122/1.jpg"/><lb/> ad M, ducatur M P, faciens angulum K P M, æqua­<lb/> lem angulo G M K, per 23. primi, erunt enim duo <lb/> triangula <expan abbr="æquiãgula">æquiangula</expan> G P M, K P M, angulus enim <lb/> P, e&longs;t communis, angulus verò M K P, e&longs;t æqualis <lb/> duobus G, & G M K, per 32. primi, ergo etiam <lb/> duobus ad M, &longs;iue toti G M P, & reliquus K M P, <lb/> reliquo, quare per 4.6. latera circa angulos æqua­<lb/> les proportionalia erunt, & omologa G M, ad M K, ita G P, ad P M, quæ <lb/>æqualibus angulis &longs;ubtenduntur. </s> <s id="s.002126"><expan abbr="ea&longs;d&etilde;">ea&longs;dem</expan> autem proprietates habebant etiam <lb/> triangula Ari&longs;t. in figura, de qua paulò ante dicebam. </s> <s id="s.002127">Verba illa <emph type="italics"/>(Quæ ali­<lb/>bi quam in &longs;emicirculo constituuntur)<emph.end type="italics"/> &longs;unt perperam in antiqua tran&longs;latione <lb/> tran&longs;lata, nam Græcè &longs;ic, <foreign lang="greek">ai alloqi toῡ hmikoklnou/ sunistamenai,</foreign> transferenda <lb/> e&longs;&longs;ent, quæ in alio circuli loco concurrunt.</s> </p> <p type="main"> <s id="s.002128"><arrow.to.target n="marg170"/></s> </p> <p type="margin"> <s id="s.002129"><margin.target id="marg170"/>169</s> </p> <p type="main"> <s id="s.002130">Ibidem <emph type="italics"/>(Iterum &longs;it horizon quidem in quo A C. oriatur autem &longs;upra hunc G, <lb/> axis autem &longs;it nunc in quo G P. <!-- KEEP S--></s> <s id="s.002131">Alia igitur omnia &longs;imiliter o&longs;tendentur vt & prius. <lb/> </s> <s id="s.002132">Polus autem circuli, in quo P, erit &longs;ub horizonte eo, in quo A C, eleuato puncto, <lb/> in quo G. in eadem autem & polus, & centrum circuli, & terminantis nunc ortum, <lb/> e&longs;t enim i&longs;te, in quo G P. <!-- KEEP S--></s> <s id="s.002133">Quoniam autem &longs;upra diametrum, quæ A C, quod K G, <lb/> centrum vtique erit &longs;ub horizonte priori eius, in quo A C, in linea K P, in quo <foreign lang="greek">w,</foreign><emph.end type="italics"/> <pb pagenum="123" xlink:href="009/01/123.jpg"/><figure id="id.009.01.123.1.jpg" place="text" xlink:href="009/01/123/1.jpg"/><lb/> <emph type="italics"/>Quare minor erit &longs;uperior &longs;ectio &longs;emicir­<lb/> culo, in qua S T, (nam Q S T, &longs;emicir­<lb/> culus est, nunc autem inter&longs;ectus e&longs;t ab <lb/> horizonte A C; <expan abbr="itaq;">itaque</expan> Q S, di&longs;parens erit) <lb/> eleuato ip&longs;o Sole)<emph.end type="italics"/> demon&longs;trat propo&longs;i­<lb/> tionem &longs;ecundam nimirum Sole &longs;upra <lb/>horizontem eleuato, ambitum Iridis <lb/> e&longs;&longs;e minorem circuli portionem, &longs;iue <lb/> &longs;emicirculo minorem. </s> <s id="s.002134">&longs;it igitur in fi­<lb/> gura &longs;uperiori, quam textui <expan abbr="cõgruen-tem">congruen­<lb/> tem</expan> re&longs;tituimus, linea A C, horizon­<lb/> talis, &longs;upra quam Sol &longs;it eleuatus in <lb/> circulo altitudinis in loco G, axis au­<lb/> rem coni, quem reflexè faciunt &longs;it <lb/> G K <foreign lang="greek">w</foreign> P. alia igitur omnia, quæ &longs;upra exi&longs;tente in ortu a&longs;tro o&longs;ten&longs;a &longs;unt, hic <lb/> pariter o&longs;tendi po&longs;&longs;unt, &longs;cilicet Iridem fieri tantum per lineas proportiona­<lb/> les, & æquales lineis G M, M K, quia Iris videri nequit, ni&longs;i in tali, ac deter­<lb/> minata reflexione, & angulo, vt initio &longs;uppo&longs;ui; & quia lineæ illis propor­<lb/> tionales non po&longs;&longs;unt alibi con&longs;titui, quam in ambitu circulari, & in diuer&longs;is <lb/> planis, &longs;equitur, vt &longs;upra Iridem e&longs;&longs;e circularem M N L; <expan abbr="eius&qacute;">eiusque</expan>; polum P, & <lb/> centrum <foreign lang="greek">w,</foreign> inueniemus &longs;imiliter in axe G K <foreign lang="greek">w</foreign> P, & quia axis hic &longs;ecat hori­<lb/> zontem in K, in hac vltima figura propter eleuationem Solis &longs;upra A C, in <lb/> G, &longs;equitur partem axis, in qua <foreign lang="greek">w,</foreign> & P, exi&longs;tunt, infra horizontem deprimi. <lb/> </s> <s id="s.002135">& quia (vt pater ex 64. 10. Vitell.) & P, polus, & centrum <foreign lang="greek">w,</foreign> Iridis, & cen­<lb/>trum K, circuli horizontis, cuius &longs;cilicet diameter e&longs;&longs;et A K S, & Sol, &longs;unt <lb/> in eadem linea G K <foreign lang="greek">w</foreign> P, &longs;i centrum Iridis <foreign lang="greek">w,</foreign> &longs;it infra horizontem, patet mi­<lb/> norem circuli portionem, quam &longs;it &longs;emicirculus &longs;upra horizontem eminere, <lb/> in qua po&longs;ui literas S L T, nam Q S L T R, e&longs;t &longs;emicirculus, cuius pars con­<lb/> tenta inter duos arcus Q S, & T R, e&longs;t infra horizontem. </s> <s id="s.002136">debemus autem <lb/> hunc &longs;emicirculum, & hanc portionem ip&longs;ius S L T, extantem &longs;upra hori­<lb/> zontem imaginari erectam e&longs;&longs;e, vt planum ip&longs;ius circuli faciat angulos re­<lb/> ctos &longs;iue &longs;it perpendiculare cum axe G K P; & <expan abbr="circulũ">circulum</expan> altitudinis A G M N, <lb/> modo fungi vice horizontis. </s> <s id="s.002137">&longs;ic enim &longs;ola portio S L T, appareret nobis, <expan abbr="e&longs;-&longs;et&qacute;">e&longs;­<lb/> &longs;etque</expan>; rationabiliter con&longs;tituta. </s> <s id="s.002138">Ex quibus 2. Ari&longs;t. propo&longs;itio manife&longs;ta e&longs;t.</s> </p> <p type="main"> <s id="s.002139"><arrow.to.target n="marg171"/></s> </p> <p type="margin"> <s id="s.002140"><margin.target id="marg171"/>180</s> </p> <p type="main"> <s id="s.002141">Ibidem <emph type="italics"/>(Minima autem cum in meridie, quanto enim &longs;uperius G, tanto infe­<lb/> rius & polus, & centrum circuli erit)<emph.end type="italics"/> probat tertiam propo&longs;itionem, nimi­<lb/> rum Sole exi&longs;tente in meridie minimam <expan abbr="omniũ">omnium</expan> e&longs;&longs;e Iridis arcus portionem: <lb/> ratio autem e&longs;t, quia tunc G, &longs;iue Sol, e&longs;t alti&longs;&longs;imus &longs;upra horizontem, & <lb/> con&longs;equenter <foreign lang="greek">w;</foreign> centrum Iridis e&longs;t depre&longs;si&longs;&longs;imum, quare tunc maxima cir­<lb/> culi Iridis portio ab&longs;condetur, & proinde minima apparebit, quod erat vl­<lb/> timo <expan abbr="demõ&longs;trandum">demon&longs;trandum</expan>. </s> <s id="s.002142">Non me latet has Ari&longs;t. figurationes e&longs;&longs;e apud Olym­<lb/> piodorum nonnullis obiectionibus obnoxias, &longs;ed cum facilè dilui po&longs;&longs;int, & <lb/> etiam &longs;i non diluantur, &longs;aluetur tamen veritas Ari&longs;totelicæ demon&longs;tratio­<lb/> nis, breuitati &longs;tudens, con&longs;ultò eas prætermitto.</s> </p> <p type="main"> <s id="s.002143">Aduertendum præterea Vicomercatum inordinatè citare librum Dato­<lb/> rum Euclidis, & <expan abbr="quandoq;">quandoque</expan> etiam malè citare Euclidem ip&longs;um. </s> <s id="s.002144">peius verò <pb pagenum="124" xlink:href="009/01/124.jpg"/>faciunt ij, qui has demon&longs;trationes <expan abbr="ab&longs;q;">ab&longs;que</expan> vlla libri Datorum mentione ex­<lb/> plicare conantur, cum manife&longs;tè illo innitantur.</s> </p> <p type="main"> <s id="s.002145">Cæterum &longs;i quis breues, ac dilucidas harum rerum demon&longs;trationes re­<lb/> quirat, is legat 74. 75. 76. propo&longs;itiones 10. Vitell. <!-- REMOVE S-->vel &longs;equentem no&longs;tram <lb/> de Iride additionem. </s> <s id="s.002146">ego enim longiorem hanc, <expan abbr="atq;">atque</expan> impeditam Ari&longs;t. tra­<lb/> ctationem in gratiam textus illius, vt in&longs;tituti mei ratio po&longs;tulabat, per&longs;e­<lb/> quutus &longs;um.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.002147"><arrow.to.target n="marg172"/></s> </p> <p type="margin"> <s id="s.002148"><margin.target id="marg172"/>181</s> </p> <p type="main"> <s id="s.002149">Ibidem <emph type="italics"/>(Quod autem in minoribus quidem diebus ijs, qui po&longs;t æquinoctium au­<lb/> tumnale <expan abbr="cõtingit">contingit</expan> &longs;emper fieri Iridem: in longioribus aurem diebus ijs qui ab æqui­<lb/>noctio altero, ad æquinoctium alterum circa meridiem non fit Iris, cau&longs;a est, quia <lb/> quæ ad Vr&longs;am &longs;ectiones omnes maiores &longs;unt &longs;emicirculo, & &longs;emper ad maiores quod <lb/> autem e&longs;t occultum, paruum: quæ autem ad æquatoris meridiem &longs;ectiones, quæ qui­<lb/> dem &longs;upra &longs;ectio, parua; quæ autem &longs;ub terra magna, & &longs;emper maiores, quæ lon­<lb/> gius. </s> <s id="s.002150">quare in ijs, qui ad æ&longs;tiuas ver&longs;iones diebus propter magnitudinem &longs;ectionis, <lb/> antequam veniat G, ad medium &longs;ectionis, infra iam pœnitus fit P; propterea quod <lb/> longè di&longs;tat à terra meridies propter magnitudinem &longs;ectionis. </s> <s id="s.002151">In ijs autem diebus, <lb/>qui ad hyemales ver&longs;iones, quia non multŭμ &longs;unt &longs;upra terram &longs;ectiones circulorum, <lb/> contrarium nece&longs;&longs;arium fieri, modicum enim eleuato in quo G, in meridie fit Sol)<emph.end type="italics"/><lb/> quærit cur po&longs;t æquinoctium autumnale v&longs;que ad vernum, hoc e&longs;t hyemali <lb/> tempore, Iris appareat etiam Sole meridiem occupante: reliquo autem <lb/> tempore æ&longs;tiuo, quod e&longs;t ab æquinoctio verno ad autumnale appareat tan­<lb/> tum Sole vel in ortu, aut occa&longs;u exi&longs;tente, vel parum &longs;upra terram &longs;ublato. <lb/> </s> <s id="s.002152">cau&longs;a autem huius refert in &longs;ectiones parallelorum circulorum, quos Sol <lb/> diurno motu inter <expan abbr="vtrunq;">vtrunque</expan> <expan abbr="tropicũ">tropicum</expan> de&longs;cribit: nam &longs;ectiones parallelorum, <lb/> qui &longs;unt ad Vr&longs;am, ide&longs;t in parte &longs;phæræ Boreali, qui omnes &longs;unt inter æqua­<lb/> torem, & tropicum Cancri; &longs;ectiones inquam horum circulorum, quæ &longs;unt <lb/> &longs;upra horizontem, maiores &longs;unt &longs;ectionibus infra horizontem depre&longs;&longs;is, & <lb/>&longs;emper eò maiores, quò propiores &longs;unt Cancro, ita vt magna valdè &longs;it ea <lb/> portio, quæ e&longs;t &longs;upra terram, exigua verò admodum, quæ infra (intelligan­<lb/> tur hæc in &longs;phæra obliqua, cuius polus eleuetur grad. <!-- REMOVE S-->45. circiter) quare <lb/> quando a&longs;trum G, con&longs;cenderit meridiem, adeò P, polus Iridis, & etiam <foreign lang="greek">w,</foreign><lb/> centrum eius infra terram deprimitur, vt aut nihil, aut in&longs;en&longs;ibile quid de <lb/> Iridis ambitu &longs;upra terram eleuari po&longs;&longs;it, contrarium accidit in parallelis <lb/> meridionalibus, quia eorum &longs;ectiones &longs;uperiores &longs;unt &longs;emper inferioribus <lb/> minores, quapropter etiam &longs;i a&longs;trum ad meridiem eleuetur, parum tamen <lb/> attollitur, & con&longs;equenter centrum <foreign lang="greek">w,</foreign> Iridis parum infra horizontem <lb/> de&longs;cendit, ac propterea etiam in meridie pars ip&longs;ius &longs;atis ma­<lb/> gna con&longs;picitur. </s> <s id="s.002153">quæ omnia adhibita &longs;phæra materia­<lb/> li, eaque a&longs;tronomicè ad &longs;uam eleuationem <lb/> accommodata, nullo negotio li­<lb/> cebit intueri.</s> </p> <pb pagenum="125" xlink:href="009/01/125.jpg"/> <p type="head"> <s id="s.002154"><emph type="italics"/>Additio de Iride.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.002155">Cvm &longs;uperior Ari&longs;tot. de Iride tractatio ob&longs;cura, ac tricis pluribus <lb/> impedita eua&longs;erit, <expan abbr="cum&qacute;">cumque</expan>; aliorum etiam demon&longs;trationes aliqua <lb/>ex parte vacillent, vi&longs;um e&longs;t breuiter expeditam, <expan abbr="atq;">atque</expan> ab&longs;olutam <lb/> ip&longs;ius apponere demon&longs;trationem. </s> <s id="s.002156">Cum igitur in cœle&longs;ti arcu <lb/> duo poti&longs;&longs;imum &longs;int, quæ &longs;ui admiratione <expan abbr="Philo&longs;ophorũ">Philo&longs;ophorum</expan> animos in &longs;ui con­<lb/> templationem alliciant, colores, &longs;cilicet, & figura: nos mirabilem illam co­<lb/> lorum triadem, tanquam alienam, phy&longs;icis relinquentes, de figura ip&longs;ius iu­<lb/> re mathematico di&longs;&longs;eremus: rotunditatis &longs;cilicet Iridis cau&longs;am opticis ra­<lb/> tionibus venabimur, cur aliquando &longs;emicirculus, aliquando &longs;emicirculo mi­<lb/> nor appareat. </s> <s id="s.002157">vt igitur ordine procedamus.</s> </p> <p type="main"> <s id="s.002158">Primo loco aduertendum e&longs;t tria ad Iridis vi&longs;ionem e&longs;&longs;e nece&longs;&longs;aria, So­<lb/> lem, oculum, & nubem tenuem, ac ro&longs;cidam, quæ &longs;cilicet minutis guttulis <lb/> iam &longs;cateat; hac enim ratione guttulæ illæ innumera erunt veluti parua <lb/> &longs;pecula, quæ lumen Solis ob paruitatem imperfecto quodam modo repre­<lb/> &longs;entare po&longs;&longs;int, ex tali enim repre&longs;entatione Iris apparet. </s> <s id="s.002159">quæ tria debent <lb/> e&longs;&longs;e ita di&longs;po&longs;ita, vt Sol, oculus, & centrum Iridis &longs;int in eadem recta linea <lb/> con&longs;tituta, <expan abbr="oculus&qacute;">oculusque</expan>; medium locum, inter Solem, & Iridis <expan abbr="c&etilde;trum">centrum</expan> obtineat, <lb/> vt in prima figura videre e&longs;t, in qua Sol vbi A, oculus in C. nubes verò <lb/> G H L E, in qua apparet Iris in arcu E B F, quem debemus concipere e&longs;&longs;e <lb/> in rece&longs;&longs;u, vt pictores aiunt, depictum. </s> <s id="s.002160">i. </s> <s id="s.002161">non in hoc &longs;itu, & ouali figura, &longs;ed <lb/> <figure id="id.009.01.125.1.jpg" place="text" xlink:href="009/01/125/1.jpg"/><lb/> e&longs;&longs;e perfectè &longs;emicircularem, <expan abbr="habere&qacute;">habereque</expan>; talem po&longs;itionem, vt pars ip&longs;ius B F, <lb/> &longs;it citra chartam eleuata, <expan abbr="ip&longs;i&qacute;">ip&longs;ique</expan>; perpendicularis, pars verò E B, vltra pagi­ <pb pagenum="126" xlink:href="009/01/126.jpg"/>nam rectà recedat, <expan abbr="&longs;ic&qacute;">&longs;icque</expan>; diameter Iridis E F, faciat angulos rectos cum <lb/> linea horizontali A C L, in quo &longs;itu oculo C, totus ex oppo&longs;ito directè &longs;pe­<lb/> ctaretur, non aliter ac Iridem ip&longs;am con&longs;picere &longs;olemus. </s> <s id="s.002162">Quod autem ne­<lb/> ce&longs;&longs;aria &longs;it nubes ro&longs;cida, pulcherrima hac experientia <expan abbr="cõprobatur">comprobatur</expan>: &longs;i enim <lb/> in Sole po&longs;iti ore aquam efflantes leui a&longs;pergine aerem Soli, ac nobis ad­<lb/> uer&longs;um irroremus, actutum Iridis arcum guttulis illis, quamuis volitanti­<lb/>bus inhærentem &longs;umma voluptate &longs;pectabimus. </s> <s id="s.002163">Quod præterea oculus no­<lb/> &longs;ter, cum Iridem videmus, medius &longs;it inter Solem, & Iridis centrum, expe­<lb/> rimento diuturno, manife&longs;tum e&longs;t.</s> </p> <p type="main"> <s id="s.002164">Secundò, notandum e&longs;t, arcum per reflexionem fieri: quod quidem pri­<lb/> mo eadem experientia, qua præcedens conclu&longs;io confirmatur: deinde, quia <lb/> Iridem &longs;emper in oppo&longs;ita Soli, ac nobis parte <expan abbr="cõ&longs;picimus">con&longs;picimus</expan>; quemadmodum <lb/> in eadem figura o&longs;tenditur, quod aliter quàm per reflexionem fieri nequit.</s> </p> <p type="main"> <s id="s.002165">Tertiò, &longs;ciendum e&longs;t ex Maurolyco, & 10. Bapti&longs;ta Porta, tantam e&longs;&longs;e di­<lb/> &longs;tantiam C D, ab oculo ad centrum arcus, quanta e&longs;t altitudo, &longs;eu &longs;emidia­<lb/> meter D B, ob&longs;eruarunt enim ip&longs;i angulos D C B, & C B D, e&longs;&longs;e &longs;emirectos, <lb/> & proinde æquales, & con&longs;equenter duo latera C D, D B, trianguli C D B, <lb/> per 6. 1. æqualia &longs;unt.</s> </p> <p type="main"> <s id="s.002166">Quartò, con&longs;iderandum e&longs;t lineas A B, A D, ob maximam Solis ab Iride <lb/> di&longs;tantiam in&longs;en&longs;ibiliter differre; & ideò &longs;upponi po&longs;&longs;unt æquidi&longs;tantes, <lb/> quare angulus A B C, qui æqualis e&longs;t alterno B C D, &longs;umi pote&longs;t ab&longs;que vllo <lb/> errore pro &longs;emirecto. </s> <s id="s.002167">hic autem angulus A B C, dicitur angulus reflexionis <lb/> Iridis, &longs;ub tali enim reflexione lumen Solis occurrens nubi in B, reflectitur <lb/> ad oculum C.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.002168">Quintò, &longs;equitur ex prædictis arcum videri &longs;emper &longs;ub &longs;tato, ac determi­<lb/> nato reflexionis angulo, &longs;cilicet &longs;ub &longs;emirecto, <expan abbr="neq;">neque</expan> po&longs;&longs;e per alium videri. <lb/> </s> <s id="s.002169">quod etiam probari pote&longs;t ex Ari&longs;t. quia nimirum videmus arcum apparere <lb/> con&longs;imiliter in ambitu circulari, ergò nece&longs;&longs;ariò apparebit <expan abbr="vbiq;">vbique</expan> in toto il­<lb/> lo ambitu per con&longs;imilem reflexionem, &longs;iue per æquales reflexionis angulos, <lb/> pro quibus omnibus vnus cernitur in figura angulus A B C.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.002170">Sextò, ad Iridis vi&longs;ionem, præter ea, requiri aeris rorantis multiplica­<lb/> tionem; &longs;icuti enim nebulam videre nequimus, ni&longs;i aer exhalatione illa in­<lb/> fectus multus &longs;it ante oculum no&longs;trum: &longs;ic etiam exi&longs;timo ad Iridis appari­<lb/> tionem, opus e&longs;&longs;e plurima nube rore&longs;cente, vt ex multiplicatione guttula­<lb/> rum, quarum aliæ po&longs;t alias &longs;int, totus tandem Iris appareat. </s> <s id="s.002171">quia paucæ <lb/> guttulæ, etiam &longs;i quælibet illarum aliquid Iridis efficeret, ob paruitatem <lb/> tamen illarum, nulla arcus figura &longs;pectaretur. </s> <s id="s.002172">Quod &longs;i ante oculum pluri­<lb/> mæ &longs;int in toto aere aliæ po&longs;t alias, tunc &longs;e mutuò iuuantes, obiectum &longs;atis <lb/>&longs;en&longs;ibile, quod Iris e&longs;t, efficere po&longs;&longs;unt. </s> <s id="s.002173">Adde, quod etiam ex tali guttula­<lb/> rum multiplicatione, aer opacatur, quæ opacatio plurimum iuuat ad Iri­<lb/> dem &longs;pectandam.</s> </p> <p type="main"> <s id="s.002174">Septimò, Iridis rotundationis cau&longs;am ex præmi&longs;&longs;is con&longs;tare poti&longs;&longs;imum <lb/> ex duabus. </s> <s id="s.002175">primò, ex angulo reflexionis determinato, qui videlicet &longs;it ferè <lb/> &longs;emirectus. </s> <s id="s.002176">&longs;ecundò, ex paribus di&longs;tantijs C D, D B, huiu&longs;modi enim plures <lb/> anguli, qui ad Iridem &longs;unt nece&longs;&longs;arij (debent enim &longs;ingulæ Iridis partes &longs;ub <lb/> huiu&longs;modi angulo repre&longs;entari) non po&longs;&longs;unt aliter quàm in gyrum <expan abbr="cõ&longs;titui">con&longs;titui</expan>, <pb pagenum="127" xlink:href="009/01/127.jpg"/>quem gyrum optimè concipiemus, &longs;i imaginemur triangulum A B C, cir­<lb/> cumuerti circa lineam horizontalem A C L, fixam, tanquam circa axem. </s> <s id="s.002177">in <lb/> hac enim conuer&longs;ione angulus Iridis B, de&longs;cribet circulum, qui erit Iris, & <lb/>pertran&longs;ibit omnes angulos, qui in tali Solis, oculi, ac nubis &longs;itu, arcum ef­<lb/> ficere &longs;unt idonei.</s> </p> <p type="main"> <s id="s.002178">Sed contra prædicta de angulo Iridis determinato eadem nobis obijcies, <lb/> quæ nos &longs;upra ad finem numeri 164. Ari&longs;t. & alijs obiecimus, plures <expan abbr="nimi-rũ">nimi­<lb/> rum</expan> po&longs;&longs;e con&longs;titui angulos æquales angulo Iridis B, in plano trianguli A B C, <lb/> qui non &longs;int in eodem orbe con&longs;tituti, in quo &longs;unt omnes anguli B. <!-- KEEP S--></s> <s id="s.002179">Iridem <lb/> reflectentes, <expan abbr="quiq;">quique</expan> reflexionem faciant ad eundem oculum C, vnde &longs;equitur <lb/> prædictam Iridis altitudinem non e&longs;&longs;e, vti diximus, determinatam, cum <lb/> po&longs;&longs;it angulus B, alios &longs;ibi æquales tam &longs;upra, quàm infra habere, qua ra­<lb/> tione deberet etiam Iris, & altius, & inferius apparere.</s> </p> <p type="main"> <s id="s.002180">Huic dubitationi re&longs;pondeo, quod quamuis huiu&longs;modi plures anguli <lb/> æquales fiant, non tamen Iridis generationi ob&longs;tant, quinimò ad eam valdè <lb/> nece&longs;&longs;arij &longs;unt; <expan abbr="cũ">cum</expan> enim omnes &longs;int in <expan abbr="circunfer&etilde;tia">circunferentia</expan> circuli A C D B, quar­<lb/> tæ figuræ num. </s> <s id="s.002181">164. quæ modo in&longs;picienda e&longs;t, vt &longs;unt in ea anguli A D C, <lb/> A B C; quæ circunferentia ob &longs;ui circuli immen&longs;itatem ad &longs;en&longs;um e&longs;t in&longs;tar <lb/> lineæ rectæ, fit vt omnes illi anguli tàm qui &longs;upra B, quàm qui infra &longs;unt, <lb/> &longs;int quoad &longs;en&longs;um in eadem recta C D B, ante vi&longs;um proten&longs;a, <expan abbr="&longs;ic&qacute;">&longs;icque</expan>; Iris, qui <lb/> apparet in D, & in B, &c. </s> <s id="s.002182">ob medij rorantis multiplicationem vnam <expan abbr="tãtùm">tantùm</expan> <lb/> oculo Iridem repre&longs;entet. </s> <s id="s.002183">locus tamen, in quo apparet, & vbi e&longs;t angulus <lb/> B, qui propriè Iridis appellatur, e&longs;t in tanta di&longs;tantia à centro arcus, quan­<lb/> ta e&longs;t ab eodem centro ad oculum, vt &longs;upra dictum e&longs;t.</s> </p> <p type="main"> <s id="s.002184">Quod verò alibi extra circunferentiam illius circuli, poni nequeat angu­<lb/>lus æqualis angulo B, præ&longs;entis figuræ, qui reflectat ad C. patet &longs;ic, &longs;it enim <lb/> angulus A N O, &longs;emirectas, & ideò æqualis angulo B, erunt ergo B C, N O, <lb/> parallelæ, quare non concurrent ambæ ad C, &longs;ed altera ad E, altera verò ad <lb/> O, quæ propterea oculo in O, po&longs;ito Iridem efficeret, non autem oculo C: <lb/> <expan abbr="&longs;ic&qacute;">&longs;icque</expan>; oculus C, & oculus O, viderent diuer&longs;os arcus. </s> <s id="s.002185">eodem modo o&longs;tendi <lb/> pote&longs;t, <expan abbr="neq;">neque</expan> in &longs;uperiori parte nubis vbi P, con&longs;titui po&longs;&longs;e angulum æqualem <lb/> angulo B, qui oculo C, Iridem valeat o&longs;tendere. </s> <s id="s.002186">Ex quibus &longs;atis patefacta <lb/> e&longs;t cau&longs;a rotunditatis arcus, angulus &longs;cilicet determinatus cum di&longs;tantia­<lb/> rum C D, D B, paritate, necnon cum medij rorantis &longs;ufficienti multiplica­<lb/> tione. </s> <s id="s.002187">Ex his etiam Iridis definitio in hunc modum concinnari pote&longs;t, Iris <lb/> e&longs;t arcus multicolor in nube rorida, ex radiorum Solis, aut Lunæ reflexio­<lb/>ne &longs;ub &longs;tatuto angulo effulgens.</s> </p> <p type="main"> <s id="s.002188">Octauo loco Problemata nonnulla re&longs;oluemus.</s> </p> <pb pagenum="128" xlink:href="009/01/128.jpg"/> <p type="head"> <s id="s.002189"><emph type="italics"/>Problema Primum.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.002190">Cur oriente, aut occumbente Sole, Iris &longs;emicirculus e&longs;t?</s> </p> <p type="main"> <s id="s.002191">Cau&longs;a huius hæc e&longs;t; &longs;upra enim dictum e&longs;t, in omni Iridis appari­<lb/> tione tria hæc, Solem, oculum, & Iridis centrum e&longs;&longs;e in eadem re­<lb/> cta linea, v. <!-- REMOVE S-->g. <!-- REMOVE S-->in linea A C D, præcedentis figuræ, cum igitur Sol <lb/> tam oriens, quam occidens &longs;it in horizonte, v. <!-- REMOVE S-->g. <!-- REMOVE S-->in A, horizontis <lb/> puncto, &longs;imiliter oculus &longs;it in C, horizontis centro, con&longs;ectarium e&longs;t, cen­<lb/> trum etiam Iridis D, e&longs;&longs;e pariter in horizontis &longs;uperficie, quare &longs;ecabitur <lb/> ab horizonte per centrum, vnde etiam &longs;equitur ip&longs;ius Iridis portionem <lb/> E B F, quæ &longs;upra horizontem extat e&longs;&longs;e &longs;emicirculum. </s> <s id="s.002192">Quod &longs;i horizon non <lb/> ob&longs;taret, <expan abbr="integrũ">integrum</expan> Iris compleret orbem, <expan abbr="cerneretur&qacute;">cernereturque</expan>; toto ambitu B F M E.<!-- KEEP S--></s> </p> <p type="head"> <s id="s.002193">An <expan abbr="quando&qacute;">quandoque</expan>; maior &longs;emicirculo appareat?</s> </p> <p type="head"> <s id="s.002194"><emph type="italics"/>Problema Secundum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.002195">Maior quidem, imò etiam integer circulus, &longs;ed ab oculo in &longs;ummitate <lb/> montis con&longs;tituto, <expan abbr="Sole&qacute;">Soleque</expan>; iam multum eleuato videri pote&longs;t, vt in <lb/> hac &longs;ecunda figura cernitur, vbi euecto Sole ad locum E, &longs;upra horizontem <lb/> <figure id="id.009.01.128.1.jpg" place="text" xlink:href="009/01/128/1.jpg"/><lb/> A B, poterit oculus in vertice montis C, po&longs;itus Iridem F G H I, comple­<lb/> tam videre, quia infra lineam E C D, in qua exi&longs;tunt Sol, oculus, & Iridis <lb/> centrum, nihil e&longs;t ad partes D, vbi nubes irrorat, quod Iridis apparitioni <lb/> &longs;it impedimento.</s> </p> <pb pagenum="129" xlink:href="009/01/129.jpg"/> <p type="head"> <s id="s.002196">Cur quanto Sol altior e&longs;t, tanto inferior, <expan abbr="tanto&qacute;">tantoque</expan>; &longs;emicir­<lb/> culo minor appareat Iris?<!-- KEEP S--></s> </p> <p type="head"> <s id="s.002197"><emph type="italics"/>Problema Tertium.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.002198">Qvia eleuato Sole ad E, vt in hac tertia figura, nece&longs;&longs;ario centrum Iri­<lb/> dis D, infra horizontem A B, deprimetur, cum in eadem recta E C D. <lb/> <figure id="id.009.01.129.1.jpg" place="text" xlink:href="009/01/129/1.jpg"/><lb/> Sol E, oculus C, <expan abbr="centrũ&qacute;">centrumque</expan>; Iridis D, exi&longs;tant: vnde nece&longs;&longs;ariò &longs;equitur Iridis <lb/> portionem F G H, &longs;upra horizontem extantem, &longs;emicirculo minorem e&longs;&longs;e.</s> </p> <p type="head"> <s id="s.002199">Cur Iris in&longs;equentes fugit, fugientes verò in&longs;equitur?</s> </p> <p type="head"> <s id="s.002200"><emph type="italics"/>Problema Quartum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.002201">Pvlcherrimum i&longs;tud phænomenon primus omnium Philippus Mendæus <lb/> Platonis di&longs;cipulus, ob&longs;eruauit; Cuius ratio e&longs;t, quia arcus non ni&longs;i &longs;ub <lb/>determinato angulo, di&longs;tantijs etiam illis paribus, ac tandem idonea a&longs;per­<lb/> gino&longs;æ nubis multiplicatione &longs;pectatur; quapropter &longs;i quis per aerem to­<lb/> tum <expan abbr="vndiq;">vndique</expan> ro&longs;cidum inambulet, <expan abbr="vbicunq;">vbicunque</expan> illi anguli, <expan abbr="illæ&qacute;">illæque</expan>; conditiones af­<lb/> fuerint Iris apparebit: quod &longs;i in aperta planitie obequitans arcu con&longs;pe­<lb/> cto, additis equo calcaribus citatum cur&longs;um ad eum direxerit, fugientem <lb/> ante &longs;e Iridem &longs;umma cum iucunditate mirabitur.</s> </p> <p type="main"> <s id="s.002202">Ex dictis pr&etail;tere a patet, &longs;impliciter nimis eos hallucinari, qui exi&longs;timant <lb/> in plana, aut concaua nubis &longs;uperficie Iridem tantummodo apparere po&longs;&longs;e.</s> </p> <pb pagenum="130" xlink:href="009/01/130.jpg"/> <p type="head"> <s id="s.002203">Cur lunares Irides fiunt rariores?</s> </p> <p type="head"> <s id="s.002204"><emph type="italics"/>Problema Quintum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.002205">Qvoniam iuxta plenilunia tantum, cum &longs;cilicet Luna plurimo lumine <lb/> abundat, quod Iridem efficere debet, contingunt: præterea quia cum <lb/> lunare lumen debile &longs;it, ni&longs;i aliæ cau&longs;æ perfectæ admodum concur­<lb/> rant, quod rarò accidit, Iris nullo modo effulgere valet. </s> <s id="s.002206">Hactenus de Iri­<lb/> dis figura &longs;it &longs;atis.</s> </p> <p type="head"> <s id="s.002207"><emph type="italics"/>Summa 2. cap. 5. De Parelio.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.002208"><arrow.to.target n="marg173"/></s> </p> <p type="margin"> <s id="s.002209"><margin.target id="marg173"/>182</s> </p> <p type="main"> <s id="s.002210">Textus <emph type="italics"/>(Fiunt autem vt diximus, & Virgæ, & Parelia in ortu, & oc­<lb/> ca&longs;u, & nec &longs;upra Solem, nec infra, &longs;ed ex lateribus, nec propè admo­<lb/> dum, nec procul omninò. </s> <s id="s.002211">propinquam enim concretionem Sol di&longs;&longs;oluit: <lb/> &longs;i autem procul ab&longs;it, a&longs;pectus non reflectetur, &longs;i enim à paruo &longs;peculo <lb/> procul protenditur imbecillus fit. </s> <s id="s.002212">quare, & Coronæ è regione Solis non fiunt. </s> <s id="s.002213">&longs;i igi­<lb/> tur &longs;upra fuerit, & proxima; eam Sol di&longs;&longs;oluet: &longs;i verò procul a&longs;pectus minor <lb/>quam vt reflecti po&longs;&longs;it in Solem non incidet; à latere autem fieri pote&longs;t, vt &longs;pecu­<lb/> lum ita distet à Sole, vt non &longs;oluatur, & a&longs;pectus totus ad eum perueniat, eo quod <lb/> ad terram dum fertur, qua&longs;i per immen&longs;um feratur, peruenire nequeat. </s> <s id="s.002214">&longs;ub Sole <lb/> verò non fit, quia cum ad terram propius acce&longs;&longs;erit à Sole di&longs;&longs;oluitur, cum medium <lb/> cœli tenuerit a&longs;pectus di&longs;trahitur. </s> <s id="s.002215">omninò ne à latere quidem, Sole medium cœli <lb/>tenente, efficitur, quia a&longs;pectus &longs;ub terram non fertur, quare exiguus ad &longs;peculum <lb/>producitur, & qui reflectitur pror&longs;us imbecillis redditur)<emph.end type="italics"/> ibi <emph type="italics"/>(propinquam enim <lb/> concretionem Sol di&longs;&longs;oluit)<emph.end type="italics"/> rationes, quas affert circa Parelia videntur (auda­<lb/> cter loquar) admodum debiles. </s> <s id="s.002216">præ&longs;ens ea e&longs;t, vt Parelium non fiat propè <lb/> Solem, quia illa nubis concretio, quæ Parelio nece&longs;&longs;aria e&longs;t, nequit adeo So­<lb/> li propinqua e&longs;&longs;e, quia nimirum Sol ob propinquitatem eam di&longs;&longs;olueret; &longs;ed <lb/> quis non videt eam nubem, quam vulgò exi&longs;timamus e&longs;&longs;e Soli propinquam, <lb/> &longs;eu qua&longs;i inter nos, & Solem tantum, imò etiam minus aliquando à Sole ve­<lb/> rè di&longs;tare, quàm alia, quàm vulgò remotiorem à Sole putabimus? </s> <s id="s.002217">præte­<lb/> rea omnes nubes no&longs;tri horizontis re vera æquidi&longs;tare à Sole certum e&longs;t, ob <lb/> maximam enim Solis di&longs;tantiam totus no&longs;ter horizon phy&longs;icus e&longs;t in&longs;en&longs;i­<lb/> bilis quantitatis ad Solem, & vnius puncti vicem gerit.</s> </p> <p type="main"> <s id="s.002218">Ibi verò <emph type="italics"/>(Si autem procul ab&longs;it, &c.)<emph.end type="italics"/> reddit rationem, cur parelium non <lb/> appareat in nube à Sole valde remota &longs;ecundum vulgarem æ&longs;timationem, <lb/> vnde vulgarem etiam rationem affert, ait enim, nubem illam e&longs;&longs;e veluti &longs;pe­<lb/> culum Solis repre&longs;entatiuum, &longs;peculum autem tàm longè à Sole po&longs;itum, <lb/> reddi debile, & proptereá non po&longs;&longs;e Solis imaginem referre: Verùm ratio <lb/> hæc nulla e&longs;&longs;e videtur, quis enim ignorat non propterea e&longs;&longs;e remotius à So­<lb/> le, quamuis maiorem habere videatur à Sole lateralem di&longs;tantiam, vt pau­<lb/> lò ante dixi? </s> <s id="s.002219">Eandem rationem illi dubitationi accommodat, cur <expan abbr="neq;">neque</expan> vi­<lb/> deatur &longs;upra Solem, quamuis non ei quadret, pote&longs;t enim aliqua nubes vi­ <pb pagenum="131" xlink:href="009/01/131.jpg"/>deri &longs;upra Solem, quæ tamen remotior &longs;it à Sole, quam illa, in qua Parelium <lb/> gignitur. </s> <s id="s.002220">Ait po&longs;tea <emph type="italics"/>(A latere autem, &c.)<emph.end type="italics"/> cur appareat in nube fatis Soli <lb/> à latere vicina, in di&longs;tantiam à Sole refert: &longs;ed quæ dudum dicta &longs;unt, i&longs;tud <lb/> <expan abbr="quoq;">quoque</expan> refellunt. </s> <s id="s.002221">Verba illa <emph type="italics"/>(Eo quod ad terram dum fertur qua&longs;i per immen&longs;um <lb/> feratur, peruenire nequeat)<emph.end type="italics"/> videntur alieno loco dicta; &longs;imilia præcedentibus <lb/> &longs;unt reliqua, præ&longs;ertim quæ ibi <emph type="italics"/>(Sub Sole verò non fit, quia cum ad terram pro­<lb/> pius acce&longs;&longs;erit)<emph.end type="italics"/> cur non videatur infra Solem, rationem quandam, quæ fortè <lb/> inanis e&longs;t reddit; nunquid enim non po&longs;&longs;umus tam infra Solem, quàm &longs;upra <lb/> ita &longs;peculum accommodare, vt Solem no&longs;tris vi&longs;ibus remittat? </s> <s id="s.002222">huic certè <lb/> Optice tota repugnat. </s> <s id="s.002223">Cum igitur Mathematica ratione hæ rationes non <lb/> con&longs;i&longs;tant, alias alij excogitent. </s> <s id="s.002224">Mirum tamen e&longs;t, omnes, quos viderim <lb/> commentatores, eas tanquam optimas admittere.</s> </p> <p type="head"> <s id="s.002225"><emph type="italics"/>In quarto Meteororum nihil Mathematicum occurrit.<emph.end type="italics"/></s> </p> </chap> <chap> <p type="head"> <s id="s.002226"><emph type="italics"/>EX LIB. PRIMO DE ANIMA.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.002227"><arrow.to.target n="marg174"/></s> </p> <p type="margin"> <s id="s.002228"><margin.target id="marg174"/>183</s> </p> <p type="main"> <s id="s.002229">Tex. 11. <emph type="italics"/>(Videtur autem non &longs;olum ip&longs;um quid e&longs;t cogno&longs;cere vtile e&longs;&longs;e <lb/> ad cogno&longs;cendas cau&longs;as accidentium &longs;ub&longs;tantijs: &longs;icut in Mathemati­<lb/>cis quid rectum, & quid obliquum, aut quid linea, & planum, ad co­<lb/>gno&longs;cendum quot rectis, trianguli anguli &longs;unt æquales)<emph.end type="italics"/> quid &longs;it <expan abbr="vnum-quodq;">vnum­<lb/> quodque</expan> ex prædictis patet tum ex definitionibus primi Elem. tum ex com­<lb/> mentarijs ip&longs;arum; quamuis autem ibi non definiatur <expan abbr="rectũ">rectum</expan>, nec obliquum <lb/> in genere, definitur tamen linea recta, & obliqua, & plana &longs;uperficies, &longs;iue <lb/> planum, ex quibus facilè definitio recti, & obliqui colligi pote&longs;t: quæ defi­<lb/> nitiones nece&longs;&longs;ariæ &longs;unt ad cogno&longs;cendum quot rectis angulis æquales &longs;int <lb/>tres anguli cuiu&longs;uis trianguli. </s> <s id="s.002230">vide quæ de hac æqualitate &longs;crip&longs;i lib, primo <lb/> Priorum, &longs;ecto 3. cap. 1.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.002231"><arrow.to.target n="marg175"/></s> </p> <p type="margin"> <s id="s.002232"><margin.target id="marg175"/>184</s> </p> <p type="main"> <s id="s.002233">Tex. 13. <emph type="italics"/>(Si igitur e&longs;t aliqua animæ operatio, aut pa&longs;&longs;io propria, continget vti­<lb/> que ip&longs;am &longs;eparari: &longs;i verò nulla e&longs;t propria ip&longs;ius non vtique erit &longs;eparabilis. </s> <s id="s.002234">&longs;ed <lb/> &longs;icut recto in quantum rectum multa accidunt, vt tangere æneam &longs;phæram &longs;ecun­<lb/> dum punctum, non tamen tanget hoc, rectum ip&longs;um &longs;eparatum: in&longs;eparabile enim, <lb/> &longs;i quidem cum corpore quodam &longs;emper e&longs;t)<emph.end type="italics"/> Propo&longs;itio 2. tertij Elem. &pacute;robat li­<lb/> <figure id="id.009.01.131.1.jpg" place="text" xlink:href="009/01/131/1.jpg"/><lb/> neam rectam, duo quælibet puncta <expan abbr="quãtumuis">quantumuis</expan> pro­<lb/> pinqua in circuli ambitu a&longs;&longs;umpta coniungentem <lb/> cadere intra circulum. </s> <s id="s.002235">v. <!-- REMOVE S-->g. <!-- REMOVE S-->puncta A B, quantum­<lb/>uis &longs;ibi inuicem propinqua unerint, attamen &longs;i line a <lb/> A B, ea coniungat, ip&longs;a cadet intra circulum, & <lb/> veluti chorda &longs;ubtendet arcum A B, quantulum­<lb/> cunque. </s> <s id="s.002236">ex qua demon&longs;tratione colligitur in corol­<lb/> lario eius lineam rectam tangentem circulum ip­<lb/> &longs;um in vnico puncto tangere. </s> <s id="s.002237">v. <!-- REMOVE S-->g. <!-- REMOVE S-->rectam C D, tan­<lb/> gere circulum in puncto E. &longs;i enim dixeris tangere <lb/> in duobus admodum propinquis, vt in E F, tunc non erit amplius tangens, <lb/> &longs;ed &longs;ecans, quia vt modo dixi, pars lineæ rectæ, quæ <expan abbr="cõiungeret">coniungeret</expan> puncta E F, <pb pagenum="132" xlink:href="009/01/132.jpg"/>intra circulum per &longs;ecundam præallegatam caderet, quod e&longs;t ab&longs;urdum, <lb/> quia contra hypothe&longs;im, cum &longs;upponamus illam &longs;olùm tangere, non autem <lb/> &longs;ecare circulum. </s> <s id="s.002238">Ex hac Euclidis doctrina Theodo&longs;ius primo &longs;phæricorum, <lb/> propo&longs;itione 3. probat planum, &longs;iue &longs;uperficiem planam tangere &longs;phæram <lb/> in vnico puncto, vt hoc loco innuit Philo&longs;ophus. <!-- KEEP S--></s> <s id="s.002239">probat autem hac ferè ra­<lb/> <figure id="id.009.01.132.1.jpg" place="text" xlink:href="009/01/132/1.jpg"/><lb/> tione. </s> <s id="s.002240">&longs;it &longs;phæra A B C, quæ tangat quodpiam planum <lb/> in duobus punctis A, B, &longs;i fieri pote&longs;t. </s> <s id="s.002241">per quæ duo pun­<lb/> cta intelligatur ducta recta linea A B, intelligatur <expan abbr="etiã">etiam</expan> <lb/> circulus A B C, qui &longs;ecet &longs;phæram per centrum C. & <lb/> per puncta A, B, ergo ex demon&longs;tratis ab Euclide li­<lb/> nea A B, quæ coniungit puncta A B, cadet intra prædi­<lb/> ctum circulum; &longs;ed linea hæc e&longs;t in plano tangente ex <lb/> &longs;uppo&longs;itione, circulus verò in &longs;phæra; ergò cum linea <lb/> cadat intra circulum, cadet etiam nece&longs;&longs;ariò planum <lb/> in quo e&longs;t linea, & cum linea cadat intra circulum, cadet etiam nece&longs;&longs;ariò <lb/> intra &longs;phæram; <expan abbr="idem&qacute;">idemque</expan>; faciet planum, quod eam nece&longs;&longs;ariò &longs;equatur, ergò <lb/> planum &longs;ecat &longs;phæram, non autem tangit, quod e&longs;t ab&longs;urdum, quia contra <lb/> hypothe&longs;im, &longs;upponunt autem Mathematici, entia hæc mathematica e&longs;&longs;e <lb/> perfecta, qualia in &longs;ublunaribus fortè non reperiuntur; ænea enim &longs;phæra <lb/> nulla erit perfectè rotunda, vel planum aliquod perfectè complanatum, vt <lb/> ip&longs;i &longs;upponunt, eò quod materiæ imperfectio, ac ruditas id nequaquam pa­<lb/> tiatur. </s> <s id="s.002242">quare cum huiu&longs;modi entia non reperiantur ab&longs;tracta ab impura hac <lb/> materia, nullum erit inquit Ari&longs;t. ab&longs;tractum planum, quod po&longs;&longs;it mathe­<lb/> maticè, <expan abbr="atq;">atque</expan> adeò in vnico puncto mathematico &longs;phæram tangere. </s> <s id="s.002243"><expan abbr="hucu&longs;q;">hucu&longs;que</expan> <lb/> nece&longs;&longs;aria &longs;unt mathematica ad huius loci <expan abbr="intelligentiã">intelligentiam</expan>. </s> <s id="s.002244">ex quibus ea etiam, <lb/> quæ ad phy&longs;icum &longs;pectant manife&longs;ta fiunt, nimirum &longs;icut entia mathemati­<lb/> ca à materia non exi&longs;tunt &longs;eparata, quia &longs;ic nullam haberent operationem; <lb/> ita etiam anima, &longs;i nullam habet propriam operationem non exi&longs;tet à cor­<lb/> pore &longs;eparata.</s> </p> </chap> <chap> <p type="head"> <s id="s.002245"><emph type="italics"/>Ex Secundo de Anima.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.002246"><arrow.to.target n="marg176"/></s> </p> <p type="margin"> <s id="s.002247"><margin.target id="marg176"/>185</s> </p> <p type="main"> <s id="s.002248">Tex. 12. <emph type="italics"/>(Non enim &longs;olum ip&longs;um, quod &longs;it, oportet definitiuam rationem <lb/>o&longs;tendere, &longs;icut plures definitionum dicunt, &longs;ed & cau&longs;am ine&longs;&longs;e, & ap­<lb/> parere. </s> <s id="s.002249">nunc autem, vt conclu&longs;iones rationes definitionum &longs;unt, vt quid <lb/> tetragoni&longs;mus? </s> <s id="s.002250">æquale altera parte longiori rectangulum æquilaterum <lb/> e&longs;&longs;e, talis autem definitio ratio conclu&longs;ionis. </s> <s id="s.002251">dicens autem, quod tetragoni&longs;mus e&longs;t <lb/> medij inuentio rei cau&longs;am dicit)<emph.end type="italics"/> aggre&longs;&longs;urus Ari&longs;t. animæ definitionem præ­<lb/> mittit duplicem e&longs;&longs;e definitionem, alteram &longs;cilicet, quæ explicat &longs;olum rei <lb/> e&longs;&longs;entiam, quam dicunt formalem definitionem; alteram verò, quæ præte­<lb/> rea explicat etiam rei cau&longs;am, quam dicunt cau&longs;alem definitionem: vtram­<lb/> que autem exemplo Geometrico explicat.</s> </p> <p type="main"> <s id="s.002252">In cap. igitur de relatione plura &longs;crip&longs;i de tetragoni&longs;mo, &longs;eu quadratio­<lb/> ne circuli, quæ huc &longs;pectant. </s> <s id="s.002253">propterea nunc tantum propria huius loci <expan abbr="de-clarãda">de­<lb/> claranda</expan> re&longs;tant. </s> <s id="s.002254">loquitur igitur hic Philo&longs;ophus non de quadratione circuli,<pb pagenum="133" xlink:href="009/01/133.jpg"/>&longs;ed figuræ rectilineæ illius, quæ dicitur Altera parte longior, qualis e&longs;t præ­<lb/> &longs;ens figura A B C D, cuius quadrandæ ratio e&longs;t huiu&longs;modi. </s> <s id="s.002255">per 13. 6. inue­<lb/> <figure id="id.009.01.133.1.jpg" place="text" xlink:href="009/01/133/1.jpg"/><lb/> niatur recta linea media proportionalis inter <lb/> duo latera figuræ A B, B C, <expan abbr="ea&qacute;">eaque</expan>; &longs;it B D, in &longs;e­<lb/> quenti figura. </s> <s id="s.002256">e&longs;&longs;e autem mediam proportio­<lb/> nalem nihil aliud e&longs;t quam ita e&longs;&longs;e A B, ad B D, <lb/> &longs;icut B D, ad B C. <expan abbr="dicitur&qacute;">diciturque</expan>; media proportio­<lb/> nalis, quia in hac habitudine medium locum obtinet. </s> <s id="s.002257">quadratum autem li­<lb/> neæ B D, æquale e&longs;t rectangulo dato A B C D, per 17.6. Inuentio porrò hu­<lb/> ius mediæ proportionalis, quia facilis e&longs;t, & &longs;citu iucunda, eam &longs;ic habeto. <lb/> <figure id="id.009.01.133.2.jpg" place="text" xlink:href="009/01/133/2.jpg"/><lb/> accipe duo latera A B, & B C, <expan abbr="quadrãdi">quadrandi</expan> rectan­<lb/> guli, <expan abbr="ea&qacute;">eaque</expan>; in directum con&longs;titue, vt vnicam re­<lb/> ctam con&longs;tituant A C, vt apparet in figura; de­<lb/> inde diui&longs;a tota A C, bifariam in E, facto cen­<lb/> tro in E, de&longs;cribe &longs;emicirculum &longs;uper lineam <lb/> A C, demum à puncto B, in quo duo latera con­<lb/> iunguntur, erigatur linea perpendicularis <expan abbr="v&longs;q;">v&longs;que</expan> <lb/> ad periphæriam, quæ &longs;it B D. hæc enim B D, e&longs;t media proportionalis inter <lb/> latera A B, B D, quam nimirum habitudinem habet A B, ad B D, eam quo­<lb/> que obtinet B D, ad B C. <!-- KEEP S--></s> <s id="s.002258">Quadratum igitur huius B D, hoc e&longs;t quadratum, <lb/>cuius quatuor latera &longs;int æqualia lineæ B D, quale e&longs;t præ&longs;ens, æquale erit <lb/> <figure id="id.009.01.133.3.jpg" place="text" xlink:href="009/01/133/3.jpg"/><lb/> dato &longs;uperiori rectangulo A B C D, <expan abbr="atq;">atque</expan> hoc modo per­<lb/> acta erit quadratio, &longs;eu tetragoni&longs;mus dati quadrilateri <lb/> A B C D. <!-- KEEP S--></s> <s id="s.002259">Vides igitur, qua ratione quadratum con&longs;ti­<lb/> tuatur æquale dato quadrilatero; & qua rationem inuen­<lb/> tio illius mediæ proportionalis &longs;it cau&longs;a quadraturæ re­<lb/> ctanguli, & proinde &longs;i quis dicat quadrationem hanc e&longs;&longs;e <lb/> effectionem rectanguli æquilateri, ide&longs;t quadrati, æqualis dato quadrilate­<lb/> ro, hic definitionem formalem &longs;olum afferet: quæ definitio, vt dixit in Lo­<lb/> gicis, e&longs;t in&longs;tar conclu&longs;ionis. </s> <s id="s.002260">&longs;i quis verò dicat tetragoni&longs;mum hunc quadri­<lb/> lateri dati e&longs;&longs;e mediæ prædictæ inuentionem cau&longs;alem afferet definitionem, <lb/> cum rei cau&longs;am dicat. </s> <s id="s.002261">Aduerte 10. Grammaticum immeritò accu&longs;are Ale­<lb/> xandrum, quod dicat quadrationem hanc per inuentionem mediæ propor­<lb/> tionalis tradi in 2. Elem. nam verè in 14. 2. traditur talis inuentio, quam­<lb/>uis enim ibi nulla fiat expre&longs;&longs;a mentio huiu&longs;modi mediæ, in ip&longs;a tamen ea <lb/> reperitur, ac per eam figuræ rectilineæ quadrantur: quod patet ex figura <lb/> 14. prædictæ, quæ eadem e&longs;t cum figura 13. 6. qua docemur prædictam in­<lb/> uentionem.</s> </p> <p type="main"> <s id="s.002262"><arrow.to.target n="marg177"/></s> </p> <p type="margin"> <s id="s.002263"><margin.target id="marg177"/>186</s> </p> <p type="main"> <s id="s.002264">Tex. 86. <emph type="italics"/>(Acutum mouet &longs;en&longs;um in tempore pauco multùm: graue autem in <lb/>multo parùm; non igitur velox e&longs;t acutum, graue autem tardum, ed &longs;it illius qui­<lb/> dem propter velocitatem motus huiu&longs;modi, huius autem propter tarditatem)<emph.end type="italics"/> vide <lb/> quæ de hac re primo topic. </s> <s id="s.002265">cap. 13. dicta &longs;unt, illa enim omnia in hunc lo­<lb/> cum quadrant. </s> <s id="s.002266">Verum occurrit illa dubitatio; quod cum Ari&longs;t. ibi dicat <lb/> <emph type="italics"/>(Vox acuta quidem velox)<emph.end type="italics"/> hic autem <emph type="italics"/>(Non igitur velox e&longs;t acutum<emph.end type="italics"/>) repugnan­<lb/> tia dicere videtur. </s> <s id="s.002267">cui dubitationi &longs;ic occurrendum; vt dicamus ibi Philo­<lb/>&longs;ophum dicere vocem acutam e&longs;&longs;e velocem, quatenus acumen vocis oritur <pb pagenum="134" xlink:href="009/01/134.jpg"/>ex velocitate motus aerem impellentis. </s> <s id="s.002268">hic verò di&longs;tinguere acutum à ve­<lb/> loci, tanquam effectum à cau&longs;a.</s> </p> <p type="main"> <s id="s.002269"><arrow.to.target n="marg178"/></s> </p> <p type="margin"> <s id="s.002270"><margin.target id="marg178"/>187</s> </p> <p type="main"> <s id="s.002271">Tex. 159. <emph type="italics"/>(Apparent autem, & fal&longs;a, de quibus &longs;imul exi&longs;timationem veram <lb/>habet, vt apparet &longs;ol vnius pedis, per&longs;ua&longs;um autem e&longs;t, eum maiorem e&longs;&longs;e habitata)<emph.end type="italics"/><lb/> habitata, ide&longs;t terra habitata. </s> <s id="s.002272">Vide, quæ cap. 3. &longs;ummæ 1. primi Meteor. <lb/> <!-- KEEP S--></s> <s id="s.002273">Item capite 5. &longs;ummæ 2. de Solis magnitudine &longs;crip&longs;i, ea enim huic loco <lb/> abundè &longs;atisfaciunt.</s> </p> </chap> <chap> <p type="head"> <s id="s.002274"><emph type="italics"/>Ex Tertio de Anima.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.002275"><arrow.to.target n="marg179"/></s> </p> <p type="margin"> <s id="s.002276"><margin.target id="marg179"/>188</s> </p> <p type="main"> <s id="s.002277">Tex. 21. <emph type="italics"/>(Vt incommen&longs;urabile, & diameter)<emph.end type="italics"/> vide, quæ de incom­<lb/> men&longs;uratione diametri, & co&longs;tæ &longs;cripta &longs;unt lib. 1. Priorum, cap. <lb/> 23. vnde &longs;atis huic loco fieri pote&longs;t.</s> </p> <p type="main"> <s id="s.002278"><arrow.to.target n="marg180"/></s> </p> <p type="margin"> <s id="s.002279"><margin.target id="marg180"/>189</s> </p> <p type="main"> <s id="s.002280">Tex 25. <emph type="italics"/>(Punctum autem, & omnis diui&longs;io, & &longs;ic indiui&longs;ibile mon­<lb/>&longs;tratur &longs;icut priuatio)<emph.end type="italics"/> punctum enim cum &longs;it terminus lineæ, e&longs;t negatio vl­<lb/> terioris lineæ <emph type="italics"/>(Et omnis diui&longs;io)<emph.end type="italics"/> innuit his verbis præter punctum, lineam <lb/> etiam, & &longs;uperficiem, nam quemadmodum punctus oritur ex diui&longs;ione li­<lb/> neæ, ita linea ex diui&longs;ione &longs;uperficiei, & &longs;uperficies ex diui&longs;ione corporis. <lb/> </s> <s id="s.002281">& quamuis punctum, linea, &longs;uperficies, &longs;int indiui&longs;ibilia, mon&longs;trantur ta­<lb/> men quatenus &longs;unt priuationes, &longs;eu negationes, illud vlterioris lineæ, i&longs;ta <lb/> vlterioris &longs;uperficiei, hæc tandem vlterioris corporis.</s> </p> <p type="main"> <s id="s.002282"><arrow.to.target n="marg181"/></s> </p> <p type="margin"> <s id="s.002283"><margin.target id="marg181"/>190</s> </p> <p type="main"> <s id="s.002284">Tex. 32. <emph type="italics"/>(Sit igitur vt A, quidem album, ad B, quod nigrum; &longs;ic C, ad D; qua­<lb/> re & permutatim)<emph.end type="italics"/> ide&longs;t, quare & permutando (vt aiunt Geometræ) erit vt <lb/> A, ad C, ita B, ad D, hunc argumentandi modum à permutata proportio­<lb/> ne explicaui in primo Po&longs;ter. cap. 5. tex. <!-- REMOVE S-->13. dicitur etiam alterna ratio; <lb/> & definitur ab Euclide definitione 12, 5.<!-- KEEP S--></s> </p> </chap> <chap> <p type="head"> <s id="s.002285"><emph type="italics"/>Ex Libro de Sen&longs;u.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.002286"><arrow.to.target n="marg182"/></s> </p> <p type="margin"> <s id="s.002287"><margin.target id="marg182"/>191</s> </p> <p type="main"> <s id="s.002288">Cap, 6. <emph type="italics"/>(Et qui in Die&longs;i &longs;onus latet, quamuis continuum exi&longs;tentem audit <lb/>omnem cantum, di&longs;tantia enim eius ad extremos &longs;onos latet)<emph.end type="italics"/> quid &longs;it <lb/> Die&longs;is apud Mu&longs;icos explicatum e&longs;t primo Po&longs;ter. tex. <!-- REMOVE S-->38. cum <lb/> autem Die&longs;is &longs;it minima di&longs;tantia, &longs;eu vt loquuntur Mu&longs;ici, mini­<lb/> mum <expan abbr="interuallũ">interuallum</expan> inter duas voces, hinc fit vt hæc minima di&longs;tantia inter ex­<lb/> tremos &longs;onos non exaudiatur, quemadmodum nec minima particula alicu­<lb/> ius magni corporis à longè vi&longs;i <expan abbr="nõ">non</expan> percipitur, &longs;ed latet inter extrema illius.</s> </p> <p type="main"> <s id="s.002289"><arrow.to.target n="marg183"/></s> </p> <p type="margin"> <s id="s.002290"><margin.target id="marg183"/>192</s> </p> <p type="main"> <s id="s.002291">Cap. 8. <emph type="italics"/>(<expan abbr="Vnumquodq;">Vnumquodque</expan> magis e&longs;t &longs;entire &longs;implex exi&longs;tens, quàm mixtum, velut <lb/> vinum non temperatum, quàm temperatum; & mel, & colorem, & neten &longs;olam. <lb/> </s> <s id="s.002292">quàm in diapa&longs;on, quia ob&longs;curant &longs;e inuicem)<emph.end type="italics"/> nete apud veteres mu&longs;icos erat <lb/> in mu&longs;icis in&longs;trumentis omnium chordarum acuti&longs;&longs;ima, cuiu&longs;modi apud <lb/> nos e&longs;t, quam vulgò canto appellant. </s> <s id="s.002293">Hypate verò erat chorda omnium <lb/> graui&longs;&longs;ima, qualis e&longs;t ea, quam modo Ba&longs;&longs;o vocant. </s> <s id="s.002294">hæ duæ &longs;imul pul&longs;atæ <lb/>edebant con&longs;onantiam, quæ Diapa&longs;on dicitur, & vulgò octaua. </s> <s id="s.002295">ex quibus <lb/> &longs;en&longs;us verberum Ari&longs;t. manife&longs;tus e&longs;t.</s> </p> <pb pagenum="135" xlink:href="009/01/135.jpg"/> <p type="main"> <s id="s.002296"><arrow.to.target n="marg184"/></s> </p> <p type="margin"> <s id="s.002297"><margin.target id="marg184"/>193</s> </p> <p type="main"> <s id="s.002298">Eodem cap. <emph type="italics"/>(Velut Diapa&longs;on, & Diapente)<emph.end type="italics"/> quid &longs;it con&longs;onantia Diapa­<lb/> &longs;on, explicaui in primo Po&longs;ter. tex. <!-- REMOVE S-->1. Diapente verò e&longs;t con&longs;onantia ex duo­<lb/> <figure id="id.009.01.135.1.jpg" place="text" xlink:href="009/01/135/1.jpg"/><lb/> bus &longs;onis coale&longs;cens, quorum proportio &longs;it vt <lb/> 3. ad 2. quæ dicitur &longs;e&longs;quialtera. </s> <s id="s.002299">v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;int duæ <lb/>chordæ æqualis cra&longs;&longs;itiei, <expan abbr="atq;">atque</expan> æquè ten&longs;æ: vna <lb/> tamen habeat ad alteram proportionem &longs;e&longs;­<lb/> quialteram, vt in figura apparet; &longs;i &longs;imul pul­<lb/> &longs;entur, edent con&longs;onantiam Diapente. <!-- KEEP S--></s> <s id="s.002300">vulgò autem quinta.</s> </p> </chap> <chap> <p type="head"> <s id="s.002301"><emph type="italics"/>Ex Libro de Memoria, & remini&longs;centia.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.002302"><arrow.to.target n="marg185"/></s> </p> <p type="margin"> <s id="s.002303"><margin.target id="marg185"/>194</s> </p> <p type="main"> <s id="s.002304">Cap. 1. <emph type="italics"/>(Sic meminit eos, qui trianguli, quod duobus rectis æquales)<emph.end type="italics"/> ide&longs;t <lb/> &longs;ic meminit tres angulos cuiu&longs;uis trianguli &longs;imul &longs;umptos æqua­<lb/> les e&longs;&longs;e duobus angulis rectis &longs;imul &longs;umptis. </s> <s id="s.002305">lege annotata primo <lb/> Po&longs;ter. &longs;ecto 3. cap. 1.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.002306"><arrow.to.target n="marg186"/></s> </p> <p type="margin"> <s id="s.002307"><margin.target id="marg186"/>195</s> </p> <p type="main"> <s id="s.002308">Cap. 3. <emph type="italics"/>(Sunt facilè remini&longs;cibilia, <expan abbr="quæcunq;">quæcunque</expan> habent ordinationem aliquam, <lb/> vt mathemata)<emph.end type="italics"/> h&etail;c Philo&longs;ophus dicens &longs;pectabat ad mirabilem illam, ac per­<lb/> petuam de mon&longs;trationum connexionem, qua Geometræ omnes, & præci­<lb/> puè Euclides opera &longs;ua ab initio ad finem v&longs;que, diuino planè ingenij acu­<lb/> mine deduxerunt.</s> </p> </chap> <chap> <p type="head"> <s id="s.002309"><emph type="italics"/>Ex Libro de Somnijs.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.002310"><arrow.to.target n="marg187"/></s> </p> <p type="margin"> <s id="s.002311"><margin.target id="marg187"/>196</s> </p> <p type="main"> <s id="s.002312">Cap. 2. <emph type="italics"/>(Cur autem fallimur, cau&longs;a e&longs;t, quoniam non &longs;olum cum &longs;en&longs;ibile <lb/> mouetur apparent quælibet, &longs;ed etiam cum &longs;en&longs;us ip&longs;e mouetur, &longs;i eodem <lb/> modo moueatur, quemadmodum à &longs;en&longs;ibili. </s> <s id="s.002313">dico autem velut terra vi­<lb/> detur nauigantibus moueri, dummodo vi&longs;us ab alio)<emph.end type="italics"/> reddit rationem, <lb/> cur nauigantibus videatur terra ip&longs;a moueri, ac retrocedere, non autem <lb/>ip&longs;i nauigantes, quin potius ip&longs;i &longs;ibi &longs;tare videantur. </s> <s id="s.002314">cau&longs;am igitur eam e&longs;­<lb/> &longs;e ait, quia ex motu nauis, terra ip&longs;a manente, accidit, vt eodem modo im­<lb/> mutetur &longs;en&longs;us vi&longs;us, ac &longs;i terra ip&longs;a moueretur, vi&longs;us verò quie&longs;ceret. <lb/> </s> <s id="s.002315">At cur eodem modo afficitur &longs;en&longs;us? </s> <s id="s.002316">Per&longs;pectiui rationem e&longs;&longs;e dicunt, quia <lb/> ea, quæ circa oculum &longs;unt, vt nauis, & ea, quæ in naui &longs;unt, non mutant &longs;i­<lb/> tum re&longs;pectu oculi, quemadmodum facerent, &longs;i nos ip&longs;i &longs;ine naui progrede­<lb/> remur. </s> <s id="s.002317">arbores autem, & reliqua, quæ in terra &longs;unt, variant &longs;itum re&longs;pectu <lb/> oculi, non &longs;ecus, ac &longs;i ip&longs;æ arbores retro deferrentur. </s> <s id="s.002318">propterea igitur vi&longs;us <lb/> tunc arbores remeare iudicat, quia quæ circa oculum &longs;unt re&longs;pectu ip&longs;ius <lb/> oculi non mouentur, &longs;iue non variant &longs;itum ad ip&longs;um; ex variatione enim <lb/> &longs;itus rei re&longs;pectu oculi, percipimus cuiu&longs;uis rei localem motum.</s> </p> <p type="main"> <s id="s.002319"><arrow.to.target n="marg188"/></s> </p> <p type="margin"> <s id="s.002320"><margin.target id="marg188"/>197</s> </p> <p type="main"> <s id="s.002321">Cap. 3. <emph type="italics"/>(Quemadmodum igitur, &longs;i quem lateat &longs;uppo&longs;itus oculo digitus, non <lb/>&longs;olum apparebit, &longs;ed etiam putabitur duo, quod e&longs;t vnum. </s> <s id="s.002322">Si verò non lateat appa­<lb/> rebit quidem, non putabitur tamen)<emph.end type="italics"/> e&longs;t hæc optica deceptio, quæ tunc accidit, <lb/> cum aliquod obiectum intuentes, interim digito alterum oculum &longs;ur&longs;um <lb/> pellimus, ita vt oculi propterea varient &longs;itum re&longs;pectu obiecti, &longs;iue non eo­ <pb pagenum="136" xlink:href="009/01/136.jpg"/>dem &longs;itu vterque obiectum intueatur, hoc e&longs;t, vt optici aiunt, axes vi&longs;uales <lb/> non amplius concurrunt &longs;imul in rem vi&longs;am. </s> <s id="s.002323">Vnde &longs;equitur &longs;peciem rei in­<lb/> tentionalem oculis vario &longs;itu affectis imprimi, ac proinde eam eundem &longs;i­<lb/> tum in vtroque oculo minimè obtinere, &longs;ed ea, quæ oculo à &longs;uo naturali <lb/>&longs;tatu dimoto accidit ab altera alterius oculi differt; quapropter vario <lb/>etiam modo, duplici nimirum, obiectum repre&longs;entant. </s> <s id="s.002324">atque hæc <lb/> ip&longs;a cau&longs;a e&longs;t, cur illud, quod vnum tantum e&longs;t, duo tamen <lb/> emoto oculorum altero, videatur. </s> <s id="s.002325">Vide Alhaze­<lb/> num lib. 3. propo&longs;it. </s> <s id="s.002326">11. & 12. & infra <lb/> Problem. 7. &longs;ectionis 31.</s> </p> </chap> <pb pagenum="137" xlink:href="009/01/137.jpg"/> <chap> <p type="head"> <s id="s.002327">EX PRIMO <lb/> METAPHYSICAE.</s> </p> <p type="main"> <s id="s.002328"><arrow.to.target n="marg189"/></s> </p> <p type="margin"> <s id="s.002329"><margin.target id="marg189"/>198</s> </p> <p type="main"> <s id="s.002330">Capite 1. <emph type="italics"/>(Circa Aegyptum Mathematicæ artes constitutæ &longs;unt; illic <lb/> enim gens Sacerdotum vacare permittitur)<emph.end type="italics"/> Notanda maximè no­<lb/> bilis Mathematicarum origo, cum ab Aegyptiorum Sacerdoti­<lb/> bus te&longs;te Philo&longs;opho fuerint adinuentæ, quibus occa&longs;ionem præ­<lb/> buit anniuer&longs;aria agrorum ob Nili innundationem, diui&longs;io: cum enim iam <lb/> perplures dimetiendorum agrorum rationes repertæ fui&longs;&longs;ent, Sacerdotes <lb/>ip&longs;i, quibus per otium licebat, illarum praxium demon&longs;trationes cœperunt <lb/> perue&longs;tigare, <expan abbr="&longs;ic&qacute;">&longs;icque</expan>; paulatim po&longs;tea Geometria amplius exculta adoleuit; <lb/> quæ deinde ij&longs;dem ad res a&longs;tronomicas per&longs;crutandas <expan abbr="adium&etilde;to">adiumento</expan> fuit, <expan abbr="hac&qacute;">hacque</expan>; <lb/> ratione reliquas etiam in mathematicas inciderunt.</s> </p> <p type="main"> <s id="s.002331"><arrow.to.target n="marg190"/></s> </p> <p type="margin"> <s id="s.002332"><margin.target id="marg190"/>199</s> </p> <p type="main"> <s id="s.002333">Cap. 2. <emph type="italics"/>(Sicut de præ&longs;tigio&longs;is, quæ per &longs;e mouentur, illi qui nondum &longs;peculati <lb/> &longs;unt cau&longs;am<emph.end type="italics"/>) verbis illis (<emph type="italics"/>Quæ per &longs;emouentur<emph.end type="italics"/>) vnica dictio <expan abbr="Græcare&longs;põdet">Græca re&longs;pondet</expan>, <lb/> Automata. <!-- KEEP S--></s> <s id="s.002334">erant autem Automata apud veteres Gr&etail;cos machinæ qu&etail;dam, <lb/> quæ à Mathematicis Mechanicæ artis occultis quibu&longs;dam ingenijs, ea arte <lb/> con&longs;truebantur, vt à &longs;eip&longs;is de loco ad locum, ac &longs;i viuæ e&longs;&longs;ent &longs;pontè pro­<lb/>grederentur; vnde, & automata, qua&longs;i &longs;pontanea dicebantur. </s> <s id="s.002335">Extat adhuc <lb/> de huiu&longs;modi machinis liber Heronis Alexandrini, quem nuper ex græco <lb/> latinum reddidit docti&longs;&longs;imus Abbas Gua&longs;tallenfis. </s> <s id="s.002336">de huiu&longs;modi artificio&longs;is <lb/> operibus, quibus &longs;æpè pri&longs;ci ita admirationi fuere, vt præ&longs;tigia quædam ar­<lb/> tificium ignorantibus, viderentur, intelligit hoc loco Ari&longs;t.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.002337"><arrow.to.target n="marg191"/></s> </p> <p type="margin"> <s id="s.002338"><margin.target id="marg191"/>200</s> </p> <p type="main"> <s id="s.002339">Cap. 3. (<emph type="italics"/>Aut de &longs;ol&longs;titijs<emph.end type="italics"/>) quid &longs;ol&longs;titium, cur dicatur &longs;ol&longs;titium, & cur Sol <lb/> in <expan abbr="vtroq;">vtroque</expan> topico, quoad dierum incrementum, ac decrementum, & quoad <lb/> eleuationem eius, aut depre&longs;&longs;ionem meridianam, videatur moras trahere, <lb/> quamuis no&longs;trum &longs;it explicare, ob rei tamen facilitatem omittantur. </s> <s id="s.002340">Hoc <lb/> tantum &longs;cias velim &longs;ol&longs;titiorum cau&longs;am e&longs;&longs;e Zodiaci ad Tropicos longio­<lb/> rem adhæ&longs;ionem, ide&longs;t, quòd Zodiacus propè contactum tropicorum ab ijs <lb/> parum recedat, cum ergo Sol motu proprio &longs;emper per Zodiacum inam­<lb/> bulet, fit vt ip&longs;e <expan abbr="quoq;">quoque</expan> pariter modicum à tropicis remoueatur, imò pluri­<lb/> mum &longs;ecus illos incedat, ita vt eo tempore, quo ad eos paulatim accedit, <lb/> aut ab eis paulatim recedit, qua&longs;i &longs;tare, &longs;iue quie&longs;cere apud eo&longs;dem videa­<lb/> tur: <expan abbr="atq;">atque</expan> hinc etiam quantitas <expan abbr="dierũ">dierum</expan>, ac noctium videatur ferè nihil variari; <lb/>& noua eleuatio, aut depre&longs;&longs;io Solis &longs;upra horizontem nulla ferè appareat.</s> </p> <p type="main"> <s id="s.002341"><arrow.to.target n="marg192"/></s> </p> <p type="margin"> <s id="s.002342"><margin.target id="marg192"/>201</s> </p> <p type="main"> <s id="s.002343">Ibidem (<emph type="italics"/>Aut de diametri incommen&longs;urabilitate, admirabile enim omnibus vi­<lb/> detur, &longs;i quid, cum non &longs;it minimum non men&longs;uretur, decet autem in contrarium, <lb/>& in melius &longs;ecundum prouerbium con&longs;umare, quemadmodŭm in his fit, cum di&longs;cant, <lb/>nihil enim magis vir Geometricus admiraretur, quàm &longs;i diameter commen&longs;urabi­<lb/>lis fieret<emph.end type="italics"/>) vide quæ de hac commen&longs;urabilitate &longs;crip&longs;i lib. 1. Priorum, &longs;ect. </s> <s id="s.002344">1. <lb/> cap. 1. Videtur inquit mirum à principio Geometriam aggredienti diame­<lb/> trum, & latus eiu&longs;dem quadrati non commen&longs;urari, cum in neutro eorum <lb/> detur minimum, &longs;eu indiui&longs;ibile, videtur enim omne diui&longs;ibile po&longs;&longs;e men&longs;u­ <pb pagenum="138" xlink:href="009/01/138.jpg"/>rari. </s> <s id="s.002345">po&longs;tea tamen cum in Geometria ver&longs;atus fuerit, maximè admirare­<lb/> tur, &longs;i audiret diametrum e&longs;&longs;e lateri commen&longs;urabilem.</s> </p> <p type="main"> <s id="s.002346"><arrow.to.target n="marg193"/></s> </p> <p type="margin"> <s id="s.002347"><margin.target id="marg193"/>202</s> </p> <p type="main"> <s id="s.002348">Summa 2. cap. 3. (<emph type="italics"/>Pythagorici primi Mathematicis operam dedere, hæc præpo­<lb/> nebant, & in cis enutriti, eorum principia, entium <expan abbr="quoq;">quoque</expan> cunctorum putant e&longs;&longs;e <lb/> principia<emph.end type="italics"/>) vtinam no&longs;trates Philo&longs;ophi Pythagoricos imitarentur; enimue­<lb/> rò multò melius & &longs;ibi, & Philo&longs;ophiæ con&longs;ulerent. </s> <s id="s.002349">At verò non &longs;ine ma­<lb/> gno artium, <expan abbr="atq;">atque</expan> di&longs;ciplinarum omnium di&longs;pendio à plurimis hac tempe­<lb/> &longs;tate de&longs;pectui habentur; &longs;ed quid mirum cum quas &longs;cientiarum omnium <lb/>alumni Pythagorei omnibus &longs;cientijs anteferebant; eas no&longs;tri &longs;eculi quam­ <lb/> plures omnibus alijs facultatibus po&longs;thabeant.</s> </p> <p type="main"> <s id="s.002350"><arrow.to.target n="marg194"/></s> </p> <p type="margin"> <s id="s.002351"><margin.target id="marg194"/>203</s> </p> <p type="main"> <s id="s.002352">Tex. 47. (<emph type="italics"/>Qui Geometriam di&longs;cit aliqua præ&longs;cire contingit<emph.end type="italics"/>) ide&longs;t definitio­<lb/> nes, po&longs;tulata, axiomata, quæ &longs;unt tria principiorum genera, ex quibus to­<lb/> ta Geometria deducitur.</s> </p> </chap> <chap> <p type="head"> <s id="s.002353"><emph type="italics"/>Ex Secundo Metaphy&longs;icæ.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.002354"><arrow.to.target n="marg195"/></s> </p> <p type="margin"> <s id="s.002355"><margin.target id="marg195"/>204</s> </p> <p type="main"> <s id="s.002356">Tex. 14. (<emph type="italics"/>Quantam verò vim con&longs;uetudo habeat, leges declarant, in qui­<lb/> bus fabulo&longs;a, ac puerilia plus po&longs;&longs;unt propter con&longs;uetudinem, quàm &longs;i <lb/> ea cogno&longs;ceremus<emph.end type="italics"/>) per leges intelligit cantilenas illas, quas vete­<lb/> res Mu&longs;ici leges appellabant, eò quòd eas &longs;olas, cæteris abroga­<lb/> tis liceret lata lege decantari. </s> <s id="s.002357">Vide declarationem problematis 15. & 28. <lb/> &longs;ect. </s> <s id="s.002358">19. <expan abbr="problematũ">problematum</expan> vbi <expan abbr="tanquã">tanquam</expan> in proprio loco i&longs;ta fu&longs;ius pertractabuntur.</s> </p> </chap> <chap> <p type="head"> <s id="s.002359"><emph type="italics"/>Ex Tertio Metaphy&longs;icæ.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.002360"><arrow.to.target n="marg196"/></s> </p> <p type="margin"> <s id="s.002361"><margin.target id="marg196"/>205</s> </p> <p type="main"> <s id="s.002362">Tex. 3. Verba huius textus, cum &longs;atis per&longs;picua &longs;int, ac parum ma­<lb/> thematicis indigeant, omittenda duxi. </s> <s id="s.002363">Quod ad mathematicas <lb/> attinet, ait, eas non demon&longs;trare, nec per cau&longs;am finalem, nec <lb/> per efficientem (quod intelligendum e&longs;t de Mathematicis puris, <lb/> & &longs;peculatiuis nam mathematicæ practicæ reliquas etiam cau&longs;as, efficien­<lb/> tem, & finalem nece&longs;&longs;ariò habere debent, quapropter &longs;ophi&longs;ta quidam no­<lb/> mine Ari&longs;tippus, eas irridebat, <expan abbr="atq;">atque</expan> adeo illiberalibus, ac &longs;edentarijs arti­<lb/> bus po&longs;thabebat, quæ cau&longs;am efficientem, quia &longs;cilicet operantur, & fina­<lb/> lem &longs;cilicet quæ&longs;tum &longs;ibi proponunt. </s> <s id="s.002364">fuit autem i&longs;te ex Plutarcho, & Laer­<lb/> tio primus, qui pacto pretio doceret, <expan abbr="philo&longs;ophiam&qacute;">philo&longs;ophiamque</expan>; faceret quæ&longs;tuo&longs;am: <lb/> <expan abbr="ideo&qacute;">ideoque</expan>; mathematicas paruipendebat, quòd neglecta cau&longs;a efficiente, nihil <lb/> efficerent; & finali, nihil lucrarentur. </s> <s id="s.002365">videas igitur quales &longs;int pulcherrima­<lb/> rum facultatum contemptores, ij nimirum, qui philo&longs;ophiæ, aut lucri, aut <lb/> ambitionis cau&longs;a dant operam. </s> <s id="s.002366">Quod autem Mathematicæ nihil efficiant, <lb/> <expan abbr="nihil&qacute;">nihilque</expan>; lucrentur, ne videamur vtile paruifacere, e&longs;t omninò fal&longs;um: &longs;unt <lb/> enim plures mathematicæ practicæ, quæ innumera, <expan abbr="atq;">atque</expan> <expan abbr="admirãda">admiranda</expan> efficiunt <lb/> opera, <expan abbr="quæ&qacute;">quæque</expan>; magnos quæ&longs;tus quotidie faciunt. </s> <s id="s.002367">huiu&longs;modi &longs;unt Geometria <lb/> practica, qua men&longs;urationes omnes vel &longs;olo vi&longs;u perficiuntur. </s> <s id="s.002368">Arithmeti­<lb/> ca, cuius v&longs;us quàm latè patet? </s> <s id="s.002369">Mu&longs;ica practica, qua quotidie ip&longs;i oblecta­ <pb pagenum="139" xlink:href="009/01/139.jpg"/>mur; <expan abbr="Deo&qacute;">Deoque</expan>; Optimo Maximo laudes debitas concinimus. </s> <s id="s.002370">Mechanica pra­<lb/> ctica, cuius ope ingentia pondera, vel exigua vi, <expan abbr="inuita&qacute;">inuitaque</expan>; natura &longs;u&longs;q; <expan abbr="de&qacute;">deque</expan>; <lb/> commouentur. </s> <s id="s.002371">Per&longs;pectiua, quæ Pictoribus, & Architectoribus adeo in&longs;er­<lb/> uit, vt <expan abbr="ab&longs;q;">ab&longs;que</expan> ea nihil fermè audeant. </s> <s id="s.002372">A&longs;tronomia tandem, &longs;i in praxim de­<lb/> ducatur, ex vna &longs;olum eclyp&longs;ium prædictione, quantam vniuer&longs;o orbi ad­<lb/> mirationem parit? </s> <s id="s.002373">mitto hanc &longs;olam dierum, men&longs;ium, & annorum di&longs;tri­<lb/> butionem, ac temporum emendationem exhibere, rem adeò Reipublicæ <lb/> Chri&longs;tianæ nece&longs;&longs;ariam.</s> </p> <p type="main"> <s id="s.002374"><arrow.to.target n="marg197"/></s> </p> <p type="margin"> <s id="s.002375"><margin.target id="marg197"/>206</s> </p> <p type="main"> <s id="s.002376">Eodem tex. <!-- REMOVE S-->3. (<emph type="italics"/>Item & in cæteris tunc &longs;cire vnumquodque arbitramur torum, <lb/> quorum &longs;unt demonstrationes, cum quid e&longs;t &longs;ciamus, vt puta quid tetragoni&longs;mus, <lb/> quòd inuentio mediæ<emph.end type="italics"/>) eadem reperies &longs;uperius in &longs;ecundo de Anima, tex. <!-- REMOVE S-->12. <lb/> fu&longs;ius explicata.</s> </p> <p type="main"> <s id="s.002377"><arrow.to.target n="marg198"/></s> </p> <p type="margin"> <s id="s.002378"><margin.target id="marg198"/>207</s> </p> <p type="main"> <s id="s.002379">Tex. 8. (<emph type="italics"/>Si enim in hoc differret &longs;olum Geometria à Geodæ&longs;ia, quod hæc quidem <lb/> eorum e&longs;t, quæ &longs;entimus, illa verò non &longs;en&longs;ibilium e&longs;t<emph.end type="italics"/>) Geodæ&longs;ia e&longs;t pars Geo­<lb/> metriæ practicæ, ea &longs;cilicet, quæ circa diui&longs;ionem &longs;uperficierum ver&longs;atur. <lb/> </s> <s id="s.002380">audi Pedia&longs;mum de men&longs;uratione: Terræ inquit men&longs;uratio in duas partes <lb/> diuiditur, Geometriam &longs;cilicet, & Geodæ&longs;iam: Areæ <expan abbr="namq;">namque</expan> &longs;ecundum ar­<lb/> tem men&longs;uratio, & terræ men&longs;uratio e&longs;t, & meritò Geometria vocatur. <lb/> </s> <s id="s.002381">Vnius verò, & eiu&longs;dem areæ, &longs;eu loci diui&longs;io inter diuer&longs;as per&longs;onas, parti­<lb/> tio quædam e&longs;t terræ, & iure optimo Geodæ&longs;ia appellatur. </s> <s id="s.002382">hæc ille. </s> <s id="s.002383">dicitur <lb/> autem Geodæ&longs;ia à <foreign lang="greek">gea</foreign>, terra, & <foreign lang="greek">da/iw</foreign>, diuido. </s> <s id="s.002384">Vocabulum tamen i&longs;tud Geo­<lb/> dæ&longs;iæ fuit po&longs;tea ad latiorem tran&longs;latum &longs;ignificationem: extat enim Geo­<lb/> dæ&longs;ia Heronis Mechanici antiqui &longs;criptoris, quampridem Baroccius lati­<lb/> nitate donauit, quæ quidem ars e&longs;t eadem cum Geometria practica, cum <lb/>non &longs;olum diui&longs;iones, &longs;ed men&longs;urationes omnes etiam per dioptricam fa­<lb/> cultatem, &longs;eu per lineas vi&longs;uales doceat inue&longs;tigare.</s> </p> </chap> <chap> <p type="head"> <s id="s.002385"><emph type="italics"/>Ex Quarto Metaphy&longs;icæ.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.002386"><arrow.to.target n="marg199"/></s> </p> <p type="margin"> <s id="s.002387"><margin.target id="marg199"/>208</s> </p> <p type="main"> <s id="s.002388">Tex. 4. <emph type="italics"/>(Philo&longs;ophus <expan abbr="namq;">namque</expan> e&longs;t, vt ille, qui Mathematicus dicitur, & <lb/>hæc enim habet partes: ac prima quædam, & &longs;ecunda &longs;cientia e&longs;t: cæ <lb/> teræ <expan abbr="quoq;">quoque</expan> con&longs;equenter in mathematibus<emph.end type="italics"/>) inter mathematicas pri­<lb/> mæ &longs;cientiæ &longs;unt Geometria, & Arithmetica, quia ip&longs;æ à cæteris <lb/> nulla ratione dependent; imò cæteræ ip&longs;is innituntur, quæ &longs;ecundæ hoc lo­<lb/> co appellantur, hæ &longs;unt Per&longs;pectiua, Mu&longs;ica, Mechanica, A&longs;tronomia. <!-- KEEP S--></s> <s id="s.002389">illas <lb/> duas recentiores &longs;ubalternantes, has verò &longs;ecundas &longs;ubalternatas vocant. <lb/> </s> <s id="s.002390">Exempla &longs;ubalternationum varia attuli in Logicis tex. <!-- REMOVE S-->20. & 23. primi Po­<lb/> &longs;ter. <!-- REMOVE S-->vbi clarè licet intueri quid &longs;it &longs;ubalternatio, vnde etiam præ&longs;ens lo­<lb/> cus illu&longs;tratur.</s> </p> <p type="main"> <s id="s.002391"><arrow.to.target n="marg200"/></s> </p> <p type="margin"> <s id="s.002392"><margin.target id="marg200"/>209</s> </p> <p type="main"> <s id="s.002393">Tex. 28. (<emph type="italics"/>Vti diametrum commen&longs;urabilem e&longs;&longs;e<emph.end type="italics"/>) legenda &longs;unt ea, quæ libro <lb/> primo Priorum, &longs;ecto 1. cap. 23. de hac commen&longs;urabilitate, & incommen­<lb/> &longs;urabilitate tractata &longs;unt.</s> </p> </chap> <pb pagenum="140" xlink:href="009/01/140.jpg"/> <chap> <p type="head"> <s id="s.002394"><emph type="italics"/>Ex Quinto Metaphy&longs;icæ.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.002395"><arrow.to.target n="marg201"/></s> </p> <p type="margin"> <s id="s.002396"><margin.target id="marg201"/>210</s> </p> <p type="main"> <s id="s.002397">Tex. 2. (<emph type="italics"/>Alia verò cau&longs;a e&longs;t forma, & exemplar: hæc autem e&longs;t ratio ip­<lb/>&longs;ius quid erat e&longs;&longs;e, & horum genera, vt ip&longs;ius Diapa&longs;on duo ad vnum, <lb/>& &longs;impliciter numerus, & partes, quæ in ratione &longs;unt<emph.end type="italics"/>) affert exem­<lb/> plum cau&longs;æ formalis ex Mu&longs;ica petitum; <expan abbr="ait&qacute;">aitque</expan>; cau&longs;am formalem <lb/> illius con&longs;onantiæ, quæ Diapa&longs;on dicitur, <expan abbr="e&longs;t&qacute;">e&longs;tque</expan>; omnium perfecti&longs;&longs;ima, e&longs;&longs;e <lb/> duplam proportionem, ide&longs;t, quæ e&longs;t inter duo, & vnum, id, quod omnes <lb/> Mu&longs;ici <expan abbr="fat&etilde;tur">fatentur</expan>. </s> <s id="s.002398">quod vt inelius intelligas, repete, quæ in 2. Po&longs;ter. ad tex. <!-- REMOVE S-->1. <lb/>&longs;cripta &longs;unt: necnon quæ in libro de Sen&longs;u in cap. 8. Amplius inquit cau&longs;am <lb/> formalem genericam eiu&longs;dem Diapa&longs;on e&longs;&longs;e numerum, & partes numeri, <lb/> &longs;ub numero enim continentur & duo, & vnum. </s> <s id="s.002399">Occurrit hoc loco vnum <lb/> magnopere notandum, videlicet tam con&longs;onantias, quam di&longs;&longs;onantias ha­<lb/> bere proportiones numerorum, hoc tamen di&longs;crimine, quod con&longs;onantiæ <lb/> habent &longs;olùm proportiones numerorum eorum, qui quaternario continen­<lb/> tur, ex veterum præ&longs;ertim Pythagoreorum &longs;ententia, qui propterea vltra <lb/> quaternarium progredi vetabant. </s> <s id="s.002400">Recentiores tamen u&longs;que ad &longs;enarium <lb/> procedunt, quippe, qui omnes vocum con&longs;onantias admittunt, quæ pro­<lb/> portionibus numerorum &longs;enario contentorum præditæ &longs;int. </s> <s id="s.002401">Di&longs;&longs;onantiæ <lb/>verò &longs;ecundum pri&longs;cos habent proportiones numerorum extra quaterna­<lb/> rium progredientium, iuxta no&longs;tros autem extra &longs;enarium. </s> <s id="s.002402">qua de re pluri­<lb/> bus Zarlinus colloquio 2. definit. </s> <s id="s.002403">3.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.002404"><arrow.to.target n="marg202"/></s> </p> <p type="margin"> <s id="s.002405"><margin.target id="marg202"/>211</s> </p> <p type="main"> <s id="s.002406">Tex. 3. <emph type="italics"/>(Partes <expan abbr="quoq;">quoque</expan> totius<emph.end type="italics"/>) ide&longs;t &longs;unt materia; loquitur enim de cau&longs;a <lb/> materiali. </s> <s id="s.002407">libuit locum hunc annotare in gratiam Geometricarum demon­<lb/> &longs;trationum, quorum media &longs;æpè &longs;unt ex cau&longs;a materiali &longs;umpta, quod ta­<lb/> men non ita ab omnibus ob&longs;eruatur, <expan abbr="quotie&longs;cunq;">quotie&longs;cunque</expan> enim probant affectio­<lb/> nem quampiam de aliquo &longs;ubiecto, ex eo, quod &longs;ubiectum illud &longs;it, vel di­<lb/> midium alicuius, vel duplum, vel reliquum, vel tertia pars, & his &longs;imilia, <lb/> erit talis ratio in genere cau&longs;æ materialis. </s> <s id="s.002408"><expan abbr="neq;">neque</expan> e&longs;t cur recentiores quidam, <lb/>naturalibus &longs;cientijs a&longs;&longs;ueti, negent huiu&longs;modi materiam veram e&longs;&longs;e mate­<lb/>riam, ac proinde neque, Geometricas demon&longs;trationes veras e&longs;&longs;e demon&longs;tra­<lb/> tiones; dicendum enim talem quidem materiam non e&longs;&longs;e veram materiam <lb/> phy&longs;icam, & proinde illas demon&longs;trationes <expan abbr="nõ">non</expan> e&longs;&longs;e veras naturales demon­<lb/>&longs;trationes, e&longs;&longs;e tamen veram materiam intelligibilem, quæ Geometriæ &longs;u­<lb/> bijcitur, & proinde demon&longs;trationes illas veras e&longs;&longs;e demon&longs;trationes Geo­<lb/> metricas; id quod Ari&longs;t. &longs;æpius in libris Po&longs;ter, apertè &longs;ignificat, tum a&longs;&longs;er­<lb/> tionibus, tum exemplis quamplurimis. </s> <s id="s.002409">Quapropter cauendum e&longs;t illis, ne <lb/> ingrati animi notam incurrant, dum pulcherrimam artem re&longs;olutoriam, <lb/> quam Ari&longs;t. à Mathematicis acceptam omnibus &longs;cientijs accommodauit <lb/> (vt initio Priorum o&longs;ten&longs;um e&longs;t) eam ip&longs;i ita alijs facultatibus adaptent, vt <lb/> Mathematicis ip&longs;is, ex quibus orta, & &longs;ub quibus adoleuit, pulla ratione <lb/>conuenire po&longs;&longs;it. </s> <s id="s.002410">De hac materia fu&longs;ius infra in additamento de natura Ma­<lb/> thematicarum.</s> </p> <p type="main"> <s id="s.002411"><arrow.to.target n="marg203"/></s> </p> <p type="margin"> <s id="s.002412"><margin.target id="marg203"/>212</s> </p> <p type="main"> <s id="s.002413">Tex. 3. (<emph type="italics"/>Et ip&longs;ius Diapa&longs;on duplum, & numerus<emph.end type="italics"/>) &longs;cilicet cau&longs;æ formales <lb/> &longs;unt, quemadmodum &longs;upra tex. <!-- REMOVE S-->2. huius cap. explicatum e&longs;t.</s> </p> <pb pagenum="141" xlink:href="009/01/141.jpg"/> <p type="main"> <s id="s.002414"><arrow.to.target n="marg204"/></s> </p> <p type="margin"> <s id="s.002415"><margin.target id="marg204"/>213</s> </p> <p type="main"> <s id="s.002416">Tex. 4. (<emph type="italics"/>Similiter autem figurationum <expan abbr="quoq;">quoque</expan> elementa dicuntur, ac &longs;impliciter <lb/>demon&longs;trationum primæ enim demon&longs;trationes, quæ in pluribus demonstrationibus <lb/> in&longs;unt, hæc elementa demon&longs;trationum dicuntur<emph.end type="italics"/>) verbo (<emph type="italics"/>Figurationum<emph.end type="italics"/>) &longs;iue <expan abbr="de-&longs;criptionũ">de­<lb/> &longs;criptionum</expan>, Ari&longs;t, intelligere demon&longs;trationes Geometricas, &longs;æpius dictum <lb/> e&longs;t, præ&longs;ertim in Logicis, & ex hoc loco pariter confirmatur. </s> <s id="s.002417">Ex hoc por­<lb/> rò loco illud innote&longs;cit dignum, quod præcipuè à Mathematico non igno­<lb/> retur, quæ nam &longs;int demon&longs;trationes illæ, quæ nomine <expan abbr="elementorũ">elementorum</expan> debeant <lb/>appellari, necnon cau&longs;a cur Euclides &longs;uum opus elementa nuncupauerit, <lb/> &longs;unt enim illæ, quæ in pluribus demon&longs;trationibus in&longs;unt, ide&longs;t, quæ &longs;æpius <lb/> in alijs demon&longs;trationibus citantur, vti &longs;unt præcipuè &longs;ex priores libri Eu­<lb/> clidis: <expan abbr="atq;">atque</expan> hac ratione elementa appellantur.</s> </p> <p type="main"> <s id="s.002418"><arrow.to.target n="marg205"/></s> </p> <p type="margin"> <s id="s.002419"><margin.target id="marg205"/>214</s> </p> <p type="main"> <s id="s.002420">Tex. 12. <emph type="italics"/>(Principium <expan abbr="itaq;">itaque</expan> &longs;cibilis, circa <expan abbr="vnumquodq;">vnumquodque</expan> ip&longs;um vnum, non e&longs;t au­<lb/>tem idem in cunctis generibus vnum, &longs;ed hic quidem die&longs;is, hic verò vocalis, aut <lb/> muta)<emph.end type="italics"/> ide&longs;t, in Mu&longs;ica quidem principium omnium, & elementum e&longs;t die­<lb/> &longs;is, quæ e&longs;t minima vox, aut &longs;onus, qui &longs;ub Mu&longs;ici con&longs;iderationem cadat. <lb/> </s> <s id="s.002421">Porrò ad tex. <!-- REMOVE S-->38. primi Po&longs;ter. de die&longs;i plura &longs;unt dicta.</s> </p> <p type="main"> <s id="s.002422"><arrow.to.target n="marg206"/></s> </p> <p type="margin"> <s id="s.002423"><margin.target id="marg206"/>215</s> </p> <p type="main"> <s id="s.002424">Tex. 17. <emph type="italics"/>(Veluti diametrum commen&longs;urabilem e&longs;&longs;e impo&longs;&longs;ibile est)<emph.end type="italics"/> huius expo­<lb/> &longs;itionem inuenies 1. Priorum, &longs;ecto 1. cap. 23.</s> </p> <figure id="id.009.01.141.1.jpg" place="text" xlink:href="009/01/141/1.jpg"/> <p type="main"> <s id="s.002425"><arrow.to.target n="marg207"/></s> </p> <p type="margin"> <s id="s.002426"><margin.target id="marg207"/>216</s> </p> <p type="main"> <s id="s.002427">Tex. eodem <emph type="italics"/>(Metaphoricè autem, quæ in Geometria po­<lb/> tentia dicitur)<emph.end type="italics"/> potentiam vnius lineæ appellant Geometræ <lb/> quadratum illius, ide&longs;t quadratum &longs;uper ip&longs;am con&longs;tru­<lb/> ctum. </s> <s id="s.002428">v. <!-- REMOVE S-->g. <!-- REMOVE S-->quadratum in quo C, dicitur potentia lineæ <lb/> D B, quia &longs;uper illam con&longs;tructum e&longs;t.</s> </p> <p type="main"> <s id="s.002429"><arrow.to.target n="marg208"/></s> </p> <p type="margin"> <s id="s.002430"><margin.target id="marg208"/>217</s> </p> <p type="main"> <s id="s.002431">Tex. 34. (<emph type="italics"/>Quemadmodum dicitur diametrum e&longs;&longs;e commen&longs;urabilem<emph.end type="italics"/>) vide an­<lb/>notata 1. Priorum, &longs;ecto 1. cap. 23.</s> </p> <p type="main"> <s id="s.002432"><arrow.to.target n="marg209"/></s> </p> <p type="margin"> <s id="s.002433"><margin.target id="marg209"/>218</s> </p> <p type="main"> <s id="s.002434">Tex. 35. (<emph type="italics"/>Vt triangulo duos rectos habere<emph.end type="italics"/>) ide&longs;t affectio trianguli e&longs;t habe­<lb/> re tres angulos æquales duobus rectis angulis. </s> <s id="s.002435">Vide declarationem huius <lb/>lib. primo Priorum, &longs;ecto 3. cap. 1.<!-- KEEP S--></s> </p> </chap> <chap> <p type="head"> <s id="s.002436"><emph type="italics"/>Ex Sexto Metaphy&longs;icæ.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.002437"><arrow.to.target n="marg210"/></s> </p> <p type="margin"> <s id="s.002438"><margin.target id="marg210"/>219</s> </p> <p type="main"> <s id="s.002439">Tex. 1. (<emph type="italics"/>Mathematicorum quoque principia, elementa, & cau&longs;æ &longs;unt<emph.end type="italics"/>) <lb/> notanda &longs;unt hæc aduer&longs;us quo&longs;dam, qui negant in Mathemati­<lb/> cis cau&longs;as reperiri, vt hinc <expan abbr="quoq;">quoque</expan> illis &longs;cientiam auferant. </s> <s id="s.002440">enim­<lb/> uerò apertè patet eos falli ex toto hoc Ari&longs;t. di&longs;cur&longs;u.</s> </p> </chap> <chap> <p type="head"> <s id="s.002441"><emph type="italics"/>Ex Nono Metaphy&longs;icæ.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.002442"><arrow.to.target n="marg211"/></s> </p> <p type="margin"> <s id="s.002443"><margin.target id="marg211"/>220</s> </p> <p type="main"> <s id="s.002444"><emph type="italics"/>Vt &longs;i quis dicat diametrum po&longs;&longs;e commen&longs;urari, non tamen commen&longs;u­<lb/> rabitur<emph.end type="italics"/>) & paulò infra (<emph type="italics"/>Commen&longs;urari enim impo&longs;&longs;ibile e&longs;t<emph.end type="italics"/>) expo&longs;i­<lb/> tionem horum reperies 1. Priorum, &longs;ecto 1. cap. 23.</s> </p> <p type="main"> <s id="s.002445"><arrow.to.target n="marg212"/></s> </p> <p type="margin"> <s id="s.002446"><margin.target id="marg212"/>221</s> </p> <p type="main"> <s id="s.002447">Tex. 20. (<emph type="italics"/>De&longs;criptiones <expan abbr="quoq;">quoque</expan> actu inueniuntur, diuidentes nanque <lb/>inuenirent, quod &longs;i diui&longs;æ e&longs;&longs;ent, manife&longs;tè e&longs;&longs;ent, nunc autem in&longs;unt potentia, cur <lb/> triangulus duo recti? </s> <s id="s.002448">quia qui circa vnum punctum anguli duobus rectis æquales<emph.end type="italics"/> <pb pagenum="142" xlink:href="009/01/142.jpg"/><emph type="italics"/>&longs;unt, &longs;i igitur quæ ad latus educeretur, videnti mox e&longs;&longs;et manife&longs;tum<emph.end type="italics"/>) per de&longs;cri­<lb/> ptiones, vel figurationes, vel de&longs;ignationes intelligendas e&longs;&longs;e demon&longs;tra­<lb/> tiones Geometricas &longs;æpius &longs;upra dictum e&longs;t, & pariter ex hoc loco com­<lb/> probatur. </s> <s id="s.002449">Dicit igitur, quod demon&longs;trationes &longs;uas Geometræ inueniunt, <lb/> reducendo ad actum ea, quæ erant in potentia, diuidentes enim educunt in <lb/>actum, figuras, angulos, lineas, & cætera huiu&longs;modi, quæ prius &longs;olùm erat <lb/> in potentia, ex quibus po&longs;tea &longs;uas demon&longs;trationes perficiunt (<emph type="italics"/>Cur triangu­<lb/> lus duo recti<emph.end type="italics"/>) affert exemplum eius, quod proximè dixerat, &longs;cilicet Geome­<lb/> tras demon&longs;trare producendo ad actum entia quædam Mathematica, quod <lb/> exemplum, vt intelligas ijs opus habes, quæ primo Priorum, &longs;ecto 3. cap. 1. <lb/> con&longs;cripta &longs;unt (<emph type="italics"/>Cur triangulus duo recti?<emph.end type="italics"/>) ide&longs;t, cur triangulus habet tres <lb/> angulos æquales duobus rectis angulis (<emph type="italics"/>Quia qui circa vnum punctum anguli <lb/> duobus rectis angulis æquales &longs;unt<emph.end type="italics"/>) ni&longs;i hoc dictum ad bonum trahatur &longs;en&longs;um, <lb/> <figure id="id.009.01.142.1.jpg" place="text" xlink:href="009/01/142/1.jpg"/><lb/> fal&longs;um e&longs;t, nam omnes anguli, qui circa vnum <lb/> punctum, v. <!-- REMOVE S-->g. <!-- REMOVE S-->A, &longs;unt con&longs;tituti, æquales &longs;unt <lb/> non duobus, vt e&longs;t in textu, &longs;ed quatuor rectis, <lb/> vt patet ex corollario 2. 15. primi Elem. quot­<lb/> quot enim anguli con&longs;tituantur ad punctum A, <lb/> omnes &longs;imul erunt æquales quatuor rectis, quos <lb/> faciunt præ&longs;entes lineæ B C, D E. vniuer&longs;i enim <lb/> illi congruent his quatuor rectis: &longs;ed Ari&longs;t. &longs;en­<lb/> &longs;us e&longs;t omnes angulos ad ea&longs;dem partes con&longs;ti­<lb/> tutos, v. <!-- REMOVE S-->g. <!-- REMOVE S-->ad partes &longs;uperiores lineæ B C, e&longs;&longs;e <lb/> æquales duobus rectis B A D, D A C, vt o&longs;tenditur in 13. primi, necnon <lb/> etiam patere pote&longs;t ex corollario 2. 15. eiu&longs;dem. </s> <s id="s.002450">tales &longs;unt quatuor anguli <lb/> ad &longs;uperiores partes lineæ B C, & ad punctum A, con&longs;tituti, qui, vt patet, <lb/> <figure id="id.009.01.142.2.jpg" place="text" xlink:href="009/01/142/2.jpg"/><lb/> &longs;unt æquales duobus rectis B A D, D A C, <lb/> tales etiam &longs;unt in hac &longs;ecunda figura tres <lb/> anguli B C A, A C D, D C E, qui quidem <lb/> æquales &longs;unt duobus rectis angulis. </s> <s id="s.002451">hoc <lb/> &longs;en&longs;i&longs;&longs;e Ari&longs;t. patet ex demon&longs;tratione 32. <lb/> primi, quæ demon&longs;trat <expan abbr="memoratã">memoratam</expan> ab Ari­<lb/> &longs;tot. trianguli affectionem, & ad quam <lb/> propterea ip&longs;e &longs;pectabat, cuius figura e&longs;t <lb/> eadem cum hac &longs;ecunda, in qua Euclides o&longs;tendit prædictos tres angulos <lb/> æquari duobus rectis. </s> <s id="s.002452">&longs;ubdit po&longs;tea, &longs;i igitur linea C D, quæ ad latus A B, <lb/> parallela e&longs;t in potentia, educeretur in actum, videnti mox e&longs;&longs;et manife&longs;tum <lb/> tres angulos trianguli A B C, e&longs;&longs;e pares duobus rectis. </s> <s id="s.002453">ducta enim C D, pa­<lb/> rallela lateri B A, apparet &longs;tatim angulus A, æqualis angulo A C D, & an­<lb/> gulus B, angulo D C E; cum reliquus verò <expan abbr="triãguli">trianguli</expan> angulus B C A, &longs;it apud <lb/>prædictos duos ad idem punctum C, con&longs;titutus; <expan abbr="atq;">atque</expan> omnes hi tres duobus <lb/>rectis æquentur, mox in&longs;picienti talem figurationem manife&longs;tum fit tres an­<lb/>gulos illius trianguli e&longs;&longs;e duobus rectis æquales.</s> </p> <p type="main"> <s id="s.002454"><arrow.to.target n="marg213"/></s> </p> <p type="margin"> <s id="s.002455"><margin.target id="marg213"/>222</s> </p> <p type="main"> <s id="s.002456">Ibidem (<emph type="italics"/>Cur in &longs;emicirculo vniuer&longs;aliter rectus? </s> <s id="s.002457">quia &longs;i tres æquales, & quæ <lb/> ba&longs;is e&longs;t duo, & quæ ex medio &longs;upra stat recta, videnti manifestum erit ei, qui illud <lb/> &longs;ciat<emph.end type="italics"/>) In 2. Po&longs;ter. tex. <!-- REMOVE S-->11. inuenies huius loci expo&longs;itionem. </s> <s id="s.002458">nunc &longs;olùm <pb pagenum="143" xlink:href="009/01/143.jpg"/><figure id="id.009.01.143.1.jpg" place="text" xlink:href="009/01/143/1.jpg"/><lb/> hæc addenda &longs;unt. </s> <s id="s.002459">Re&longs;pondet Ari&longs;t. quæ­<lb/> &longs;ito pr&etail;cedenti, cur &longs;cilicet angulus in &longs;e­<lb/> micirculo &longs;it rectus, qualis e&longs;t in figura <lb/> angulus A C B, <expan abbr="dicit&qacute;">dicitque</expan>; cau&longs;am e&longs;&longs;e, quia <lb/> in figura tres lineæ &longs;unt æquales, duæ ni­<lb/> mirum, in quas ba&longs;is B A, diuiditur, quæ <lb/> &longs;unt B D, D A, & tertia, quæ ex medio <lb/> ba&longs;is erigitur, <expan abbr="e&longs;t&qacute;">e&longs;tque</expan>; D C, cum omnes &longs;int <lb/>&longs;emidiametri eiu&longs;dem circuli. </s> <s id="s.002460">educta <expan abbr="itaq;">itaque</expan> linea D C, de potentia in actum, <lb/> &longs;i cuipiam trium harum linearum æqualitas innote&longs;cat, continuò ei etiam <lb/> manife&longs;tum erit angulum A C B, in &longs;emicirculo, e&longs;&longs;e rectum. </s> <s id="s.002461">quia &longs;tatim ap­<lb/> parent duo i&longs;o&longs;celia B D C, A D C, quorum anguli ad ba&longs;es B C, A C, &longs;unt <lb/> æquales inuicem; & anguli duo ad D, &longs;unt dupli duorum <expan abbr="angulorũ">angulorum</expan> A C D, <lb/> D C B, ex quibus conflatur totus angulus A C B, ergo duo anguli ad D, &longs;unt <lb/> dupli anguli B C A, &longs;ed duo anguli ad D, &longs;unt æquales duobus rectis, ergo <lb/> duo recti &longs;unt dupli anguli A C B, ergo angulus B C A, e&longs;t dimidium duo­<lb/> rum rectorum. </s> <s id="s.002462">cum autem omnes recti &longs;int æquales, con&longs;ectarium e&longs;t dimi­<lb/> dium duorum rectorum e&longs;&longs;e angulum rectum. </s> <s id="s.002463">patet igitur, qua ratione ex <lb/> ductu linearum prædictarum actu, manife&longs;tum fiat angulum in &longs;emicirculo <lb/> A C B, e&longs;&longs;e rectum. </s> <s id="s.002464">ne mireris &longs;i vulgatam tran&longs;lationem antiquam non <lb/> &longs;um &longs;equutus, indigebat enim correctione, quam iuxta græcum exem­<lb/> plar adhibui.</s> </p> <p type="main"> <s id="s.002465"><arrow.to.target n="marg214"/></s> </p> <p type="margin"> <s id="s.002466"><margin.target id="marg214"/>223</s> </p> <p type="main"> <s id="s.002467">Tex. 22. (<emph type="italics"/>Vt puta &longs;i triangulum non putet mutari, non opinabitur modo duos <lb/> rectos habere, modo non, mutaretur enim<emph.end type="italics"/>) quia nimirum huius habemus &longs;cien­<lb/> tiam per demon&longs;trationem 32. primi Elementorum. <!-- KEEP S--></s> <s id="s.002468">quomodo autem tri­<lb/> angulus habeat duos rectos, ide&longs;t tres angulos æquales duobus rectis angu­<lb/> lis, explicatum e&longs;t primo Priorum, &longs;ecto 3. cap. 1.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.002469"><arrow.to.target n="marg215"/></s> </p> <p type="margin"> <s id="s.002470"><margin.target id="marg215"/>224</s> </p> <p type="main"> <s id="s.002471">Ibidem (<emph type="italics"/>Verum aliquid quidem, aliquid verò non, vt puta parem numerum <lb/> primum nullum e&longs;&longs;e; aut quo&longs;dam quidem, quo&longs;dam verò non<emph.end type="italics"/>) definitione 11. <lb/> 7. Elem. &longs;ic numerus ille, qui à Mathematicis dicitur primus, definitur, pri­<lb/> mus numerus e&longs;t, quem vnitas &longs;ola metitur, vnde patet inter numeros pa­<lb/> res &longs;olum binarium e&longs;&longs;e primum, cum ip&longs;um &longs;ola vnitas bis replicata men­<lb/> &longs;uraret. </s> <s id="s.002472">quaternarium autem, &longs;enarium, &c. </s> <s id="s.002473">pares, non e&longs;&longs;e primos, cum <lb/> eos non &longs;ola vnitas, &longs;ed alius numerus metiatur: quaternarium enim bina­<lb/> rius bis replicatus men&longs;urat: &longs;enarium men&longs;urat & binarius, & ternarius: <lb/> quare verum erit exi&longs;timare inter pares numeros aliquos e&longs;&longs;e primos, ide&longs;t <lb/> binarium, aliquos verò non, ide&longs;t cæteros pares vltra binarium.</s> </p> </chap> <chap> <p type="head"> <s id="s.002474"><emph type="italics"/>Ex Decimo Metaphy&longs;icæ.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.002475"><arrow.to.target n="marg216"/></s> </p> <p type="margin"> <s id="s.002476"><margin.target id="marg216"/>225</s> </p> <p type="main"> <s id="s.002477">Tex. 4. (<emph type="italics"/>Ac etiam motum &longs;implici, & veloci&longs;&longs;imo motu men&longs;urant, mi­<lb/> nimum enim tempus hic habet. </s> <s id="s.002478">quapropter in A&longs;trologia tale vnŭm prin­<lb/> cipium, & men&longs;ura e&longs;t. </s> <s id="s.002479">motum enim æqualem, & veloci&longs;&longs;imŭm cœli &longs;up­<lb/>ponunt, ad quem cæteros iudicant<emph.end type="italics"/>) intelligit motum diurnum, quam <lb/>primo cœlo, &longs;eu mobili a&longs;cribunt, hic enim veloci&longs;&longs;imus e&longs;t omnium reli­<pb pagenum="144" xlink:href="009/01/144.jpg"/>quorum cœle&longs;tium motuum, ac &longs;implici&longs;&longs;imus, & valdè vniformis, ac regu­<lb/> laris, & propterea minimum habet tempus, ide&longs;t tempus vnius diei natura­<lb/> lis, quo tempore totum primum mobile circulationem integram perficit. <lb/> </s> <s id="s.002480">per minimum tempus, po&longs;&longs;unt etiam intelligi partes diei, quæ &longs;unt horæ, & <lb/> horarum partes. </s> <s id="s.002481">con&longs;iderant hunc motum in circulo æquàtoris, quia æqua­<lb/>tor motu primi mobilis, &longs;eu diurno vniformiter, ae maximè regulariter <lb/> mouetur: hac de cau&longs;a hunc motum tanquam reliquorum men&longs;uram, ac <lb/> normam meritò a&longs;&longs;ump&longs;erunt.</s> </p> <p type="main"> <s id="s.002482"><arrow.to.target n="marg217"/></s> </p> <p type="margin"> <s id="s.002483"><margin.target id="marg217"/>226</s> </p> <p type="main"> <s id="s.002484">Ibidem <emph type="italics"/>(Et in Mu&longs;ica Die&longs;is primus &longs;en&longs;ibilis &longs;onus, quia minimum)<emph.end type="italics"/> ide&longs;t mi­<lb/> nimum interuallum, quod à Mu&longs;icis con&longs;ideretur, e&longs;t men&longs;ura maiorum in­<lb/> teruallorum. </s> <s id="s.002485">ad tex. <!-- REMOVE S-->38. primi Po&longs;ter. &longs;atis dictum e&longs;t de Die&longs;i, quæ videas.</s> </p> <p type="main"> <s id="s.002486"><arrow.to.target n="marg218"/></s> </p> <p type="margin"> <s id="s.002487"><margin.target id="marg218"/>227</s> </p> <p type="main"> <s id="s.002488">Eodem tex. <!-- REMOVE S-->&longs;ed cap. 3. <emph type="italics"/>(Nox &longs;emper autem men&longs;ura numero vnum e&longs;t, verum <lb/>aliquando plura, vt puta die&longs;es duæ, non quidem &longs;ecundum auditum, &longs;ed in ratio­<lb/> nibus, & voces plures, quibus men&longs;uramus, & diameter duobus men&longs;uratur, & la­<lb/> tus, & omnes magnitudines)<emph.end type="italics"/> ita corrigenda e&longs;t antiqua tran&longs;latio. </s> <s id="s.002489">quid die&longs;is <lb/> dictum &longs;it ad tex. <!-- REMOVE S-->38. primi Po&longs;ter. quando autem ait <emph type="italics"/>(Vt puta duæ die&longs;es)<emph.end type="italics"/><lb/> ide&longs;t duæ die&longs;es &longs;unt men&longs;ura vnius interualli mu&longs;ici, qui tonus appellatur: <lb/> quæ quidem duæ die&longs;es non &longs;unt men&longs;ura &longs;en&longs;ibilis, quæ &longs;cilicet auribus per­<lb/> cipiatur, &longs;ed tantummodò exi&longs;tunt in numerorum proportionibus, ibi per <lb/> intellectum excogitatis, quando ait <emph type="italics"/>(Et voces plures quibus men&longs;uramus)<emph.end type="italics"/><lb/> quando vtimur eodem interuallo, &longs;iue eadem voce ad cantus men&longs;uram, <lb/> tunc &longs;unt plures men&longs;uræ numero, quamuis vna tantum &longs;pecie. Ait <emph type="italics"/>(Et dia­<lb/> meter duobus men&longs;uratur)<emph.end type="italics"/> v. <!-- REMOVE S-->g. <!-- REMOVE S-->duobus &longs;emidiametris: vel duobus pedibus. <lb/> </s> <s id="s.002490">& latus pariter quadrati, duobus. </s> <s id="s.002491">v. <!-- REMOVE S-->g. <!-- REMOVE S-->pedibus mensuratur; eode<expan abbr="m&qacute;">mque</expan>; mo­<lb/>do reliquæ omnes magnitudines po&longs;&longs;unt ab eadem men&longs;ura &longs;æpius replica­<lb/> ta men&longs;urari.</s> </p> <p type="main"> <s id="s.002492"><arrow.to.target n="marg219"/></s> </p> <p type="margin"> <s id="s.002493"><margin.target id="marg219"/>228</s> </p> <p type="main"> <s id="s.002494">Eodem tex. <emph type="italics"/>(Semper autem men&longs;ura eiu&longs;dem generis e&longs;t, magnitudinum nam­<lb/>que magnitudo, & &longs;ecundum vnumquodque, longitudinis longitudo<emph.end type="italics"/>) ex his ratio <lb/> manife&longs;ta apparet, cur Geometræ practici men&longs;urent longitudines per ali­<lb/> quam longitudinem, vt puta per vlnam, digitum, vnciam, &c. </s> <s id="s.002495">&longs;uperficies <lb/> etiam per aliquam &longs;uperficiem, &longs;ed quæ &longs;it quadrata, vt puta per vlnam qua­<lb/> dratam, palmum quadratum, &c. </s> <s id="s.002496">corpora <expan abbr="quoq;">quoque</expan> per corpus, quod tamen <lb/> &longs;it cubus, vt per vlnam cubicam, palmum cubicum, vnciam cubicam, &c.</s> </p> <p type="main"> <s id="s.002497"><arrow.to.target n="marg220"/></s> </p> <p type="margin"> <s id="s.002498"><margin.target id="marg220"/>229</s> </p> <p type="main"> <s id="s.002499">Tex. 11. <emph type="italics"/>(Similia verò &longs;i cum non &longs;int eadem &longs;impliciter, nec &longs;ecundum &longs;ub&longs;tan­<lb/>tiam &longs;ubiectam indifferentia &longs;ecundum formam eadem &longs;it: quemadmodum quadra­<lb/>tum maius minori &longs;imile e&longs;t, & lineæ inæquales, hæ enim &longs;imiles quidem, verŭm non <lb/> cædem &longs;impliciter &longs;unt)<emph.end type="italics"/> Prima definitio &longs;exti definit &longs;imiles figuras eas e&longs;&longs;e, <lb/> quæ &longs;unt æquiangulæ inuicem, & quæ habent latera proportionalia circa <lb/> æquales angulos. </s> <s id="s.002500">cum ergò quadratum maius, & minus &longs;int æquiangula, <lb/> quia habent omnes angulos rectos; & præterea habeant latera circa æqua­<lb/> les angulos proportionalia, &longs;icut enim latera maioris quadrati circa vnum <lb/> angulum rectum &longs;unt in proportione æqualitatis; ita <expan abbr="quoq;">quoque</expan> latera minoris <lb/> circa vnum angulum rectum &longs;unt illis proportionalia, cum &longs;int inuicem pa­<lb/> riter in proportione æqualitatis, erunt nece&longs;&longs;ariò &longs;imilia hæc duo quadrata. <lb/> </s> <s id="s.002501">duæ etiam, exempli gratia, lineæ rectæ &longs;unt inuicem &longs;imiles, quamuis vna <lb/> &longs;it maior altera.</s> </p> <pb pagenum="145" xlink:href="009/01/145.jpg"/> <p type="main"> <s id="s.002502"><arrow.to.target n="marg221"/></s> </p> <p type="margin"> <s id="s.002503"><margin.target id="marg221"/>230</s> </p> <p type="main"> <s id="s.002504">Eodem tex. <emph type="italics"/>(Tertium &longs;icut illa, quæ in Mathematicis)<emph.end type="italics"/> tertium &longs;cilicet mo­<lb/> dum diuer&longs;i, ponit in entibus Mathematicis, &longs;icut enim po&longs;uit idem e&longs;&longs;e in <lb/> Mathematicis, quando duæ figuræ &longs;unt &longs;imiles, & æquales: ita ex oppo&longs;ito <lb/> diuer&longs;um erit in Mathematicis, quando duæ figuræ fuerint di&longs;&longs;imiles, & in­<lb/> æquales, <expan abbr="dicentur&qacute;">dicenturque</expan>; diuer&longs;æ, in quo con&longs;i&longs;tat &longs;imilitudo figurarum dictum <lb/> e&longs;t in præcedenti expo&longs;itione.</s> </p> </chap> <chap> <p type="head"> <s id="s.002505"><emph type="italics"/>Ex Vndecimo Metaphy&longs;icæ.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.002506"><arrow.to.target n="marg222"/></s> </p> <p type="margin"> <s id="s.002507"><margin.target id="marg222"/>231</s> </p> <p type="main"> <s id="s.002508">Svmma r. </s> <s id="s.002509">cap. 2. <emph type="italics"/>(Si quis verò lineas, aut quæ has &longs;equuntur, dico autem <lb/> primas &longs;uperficies principia e&longs;&longs;e ponat. </s> <s id="s.002510">hæc non &longs;unt &longs;ub&longs;tantiæ &longs;eparabiles, <lb/> verùm &longs;ectiones, & diui&longs;iones, illæ quidem in &longs;uperficierum, hæc verò cor­<lb/> porum, puncta verò linearum &longs;unt, & etiam ip&longs;arum earumdem termini; <lb/> hæc autem omnia in alijs &longs;unt, & nihil &longs;eparabile e&longs;t)<emph.end type="italics"/> ait puncta oriri ex &longs;ectio­<lb/> ne lineæ, quamuis &longs;int etiam termini illius; lineas verò oriri ex diui&longs;ione <lb/> &longs;uperficierum, quamuis &longs;int etiam termini illarum. </s> <s id="s.002511">&longs;uperficies <expan abbr="quoq;">quoque</expan> oriri <lb/> ex diui&longs;ione corporum, quamuis &longs;int etiam termini, illorum. </s> <s id="s.002512">Hæc placuit <lb/> annotare propter <expan abbr="ip&longs;orũ">ip&longs;orum</expan> conuenientiam <expan abbr="cũ">cum</expan> ijs, quæ à Geometris traduntur.</s> </p> <p type="main"> <s id="s.002513"><arrow.to.target n="marg223"/></s> </p> <p type="margin"> <s id="s.002514"><margin.target id="marg223"/>232</s> </p> <p type="main"> <s id="s.002515">Summa 3. cap. 2. <emph type="italics"/>(Vt puta &longs;ub Cane fiat frigus)<emph.end type="italics"/> ide&longs;t &longs;ub ortum Canis cœ­<lb/> læ&longs;tis, &longs;eu Caniculæ. <!-- KEEP S--></s> <s id="s.002516">Vide quæ libro &longs;ecundo Meteororum, &longs;umma 2. cap. 2. <lb/> de hac &longs;tella &longs;crip&longs;imus.</s> </p> </chap> <chap> <p type="head"> <s id="s.002517"><emph type="italics"/>Ex Duodecimo Metaphy&longs;icæ.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.002518"><arrow.to.target n="marg224"/></s> </p> <p type="margin"> <s id="s.002519"><margin.target id="marg224"/>233</s> </p> <p type="main"> <s id="s.002520">Tex. 44. <emph type="italics"/>(Pluralitatem verò lationum ex peculiari&longs;&longs;ima Philo&longs;ophia <lb/> Mathematicarum &longs;cientiarum, videlicet ex A&longs;tronomia con&longs;iderandum <lb/> est: hæc enim de &longs;ub&longs;tantia &longs;en&longs;ibili quidem, ac &longs;empiterna &longs;peculatur)<emph.end type="italics"/><lb/> pluralitatem nimirum cœle&longs;tium motuum petendam e&longs;&longs;e a&longs;&longs;erit <lb/> ex præcipua totius Philo&longs;ophiæ parte, quam ait e&longs;&longs;e A&longs;tronomiam. </s> <s id="s.002521">dignum <lb/> porrò con&longs;ideratione e&longs;t, quanti faciat Ari&longs;t. Mathematicas di&longs;ciplinas, ac <lb/> præcipuè &longs;yderalem &longs;cientiam.</s> </p> <p type="main"> <s id="s.002522"><arrow.to.target n="marg225"/></s> </p> <p type="margin"> <s id="s.002523"><margin.target id="marg225"/>234</s> </p> <p type="main"> <s id="s.002524">Tex. 45. <emph type="italics"/>(Eudoxus igitur Solis, & Lunæ lationem po&longs;uit fieri à tribus orbibus, <lb/>quorum primus quidem e&longs;&longs;et, qui inerrantium &longs;tellarum; &longs;ecundus verò &longs;ecundum <lb/> id, quod per medium Zodiacum; tertius tandem, &longs;ecundum quem qui in latitudine <lb/> Zodiaci obliquatur. </s> <s id="s.002525">in maiori autem latitudine obliquari eum &longs;ecundum quem Lu­<lb/>na, quàm eum &longs;ecundum quem Sol fertur)<emph.end type="italics"/> Eudoxi tempore nondum &longs;atis ex­<lb/> culta fuerat A&longs;tronomia, vt propterea minimè mirandum &longs;it, eum hoc lo­<lb/> co imperfecta admodum circa c&etail;le&longs;tia tradere. </s> <s id="s.002526">omittit enim in Sole orbem <lb/> motum augis conficientem; necnon duos eccentricos, qui &longs;olis anomaliam, <lb/> <expan abbr="atq;">atque</expan> eccentricitatis variationem excu&longs;ant. </s> <s id="s.002527">attribuit præterea Soli motum <lb/> quendam in latitudinem, quod fal&longs;um e&longs;t omninò, cum Sol perpetuò directè <lb/> &longs;ub eclyptica incedat. </s> <s id="s.002528">In Luna pariter plures nece&longs;&longs;arios illi orbes ad motus <lb/> ip&longs;ius &longs;aluandos prætermittit. </s> <s id="s.002529">Ex &longs;ententia tamen Tychonis Brahe hos or­<lb/> bes, ac circulos tanquam ab inuicem di&longs;tinctos abrogare debemus.</s> </p> <pb pagenum="146" xlink:href="009/01/146.jpg"/> <p type="main"> <s id="s.002530"><arrow.to.target n="marg226"/></s> </p> <p type="margin"> <s id="s.002531"><margin.target id="marg226"/>235</s> </p> <p type="main"> <s id="s.002532">Tex. 46. <emph type="italics"/>(Errantium verò &longs;tellarum <expan abbr="vniu&longs;cuiu&longs;q;">vniu&longs;cuiu&longs;que</expan> in quatuor &longs;phæris, quarum <lb/>primam quidem, & &longs;ecundam eandem illis e&longs;&longs;e: etenim, quæ fixarum e&longs;t eam illam <lb/>e&longs;&longs;e, quæ omnes fert: at eam, quæ &longs;ub ip&longs;a ordinata e&longs;t, ac quæ &longs;ecundum Zodiacum <lb/> lationem habet, communem omnibus e&longs;&longs;e. </s> <s id="s.002533">Tertiæ verò omnium polos in eo, quod <lb/> per medium Zodiacum e&longs;t. </s> <s id="s.002534">Quartæ autem lationem &longs;ecundum eum, qui obliquatus <lb/>ad medium eius e&longs;t; e&longs;&longs;e verò tertiæ &longs;phæræ polos aliarum quidem proprios, Veneris <lb/> autem, & Mercurij eo&longs;dem)<emph.end type="italics"/> pergit tradere theoriam reliquorum errantium <lb/> <expan abbr="quinq;">quinque</expan> &longs;yderum, &longs;ecundum mentem Eudoxi, qui propriè Planetæ dicuntur: <lb/> Sol autem, & Luna hoc nomine non e&longs;t complexus, eo quod ip&longs;a mereantur <lb/> potius duo mundi luminaria appellari, quàm cum c&etail;teris &longs;tellis in ordinem <lb/> redigi. </s> <s id="s.002535">Reliquis igitur <expan abbr="quinq;">quinque</expan> erronibus &longs;ingulis quatuor &longs;phæris attribue­<lb/> bat, quarum prima, & &longs;ecunda eodem modo &longs;e habebant, ac in Sole, & Lu­<lb/> na, etenim octaua &longs;phæra, &longs;eu firmamentum, quod affixa &longs;ibi &longs;ydera differt <lb/> communicabat, &longs;ecundum ip&longs;um reliquis inferioribus &longs;phæris motum &longs;uum <lb/> peculiarem, videlicet diurnum, quo ab oriente in occidentem tota c&etail;li ma­<lb/> china conuertebatur. </s> <s id="s.002536">fecundam eam facit, quæ Planetas omnes &longs;ecundum <lb/> Zodiaci longitudinem ab occidente in <expan abbr="ori&etilde;tem">orientem</expan> vehebat, quæ pariter eodem <lb/> modo &longs;e habet in &longs;ingulis. </s> <s id="s.002537">Tertiam verò eam confinxit, cuius poli e&longs;&longs;ent in <lb/> eclyptica, in quibus cita, ab eclyptica vltrò, <expan abbr="citro&qacute;">citroque</expan>; dilataretur. </s> <s id="s.002538">Quartam <lb/> demum po&longs;uit, quæ tertiam bifariam &longs;ecaret, <expan abbr="eam&qacute;">eamque</expan>; tali motu cieret, ne ab <lb/> eclyptica plus iu&longs;to ver&longs;us mundi polos exorbitaret. </s> <s id="s.002539">porrò in reliquis vo­<lb/> luit polos tertij orbis e&longs;&longs;e peculiares, Veneri autem, & Mercurio eo&longs;dem <lb/> e&longs;&longs;e, ide&longs;t e&longs;&longs;e in eadem linea. </s> <s id="s.002540">Ex mente igitur Eudoxi cœle&longs;tes orbes in <lb/> vniuer&longs;um 27. numerantur, in Sole &longs;imul, ac Luna 6. in reliquis quinque er­<lb/> rantibus 20. <expan abbr="atq;">atque</expan> octauæ &longs;phæræ 1. Non me later, has Eudoxi po&longs;itiones, <lb/> ob ratas po&longs;teriorum a&longs;tronomorum ob&longs;eruationes non &longs;ub&longs;i&longs;tere. </s> <s id="s.002541">at verò <lb/> hic non ip&longs;ius placita, &longs;ed præcipuè textus intelligentiam per&longs;equor.</s> </p> <p type="main"> <s id="s.002542"><arrow.to.target n="marg227"/></s> </p> <p type="margin"> <s id="s.002543"><margin.target id="marg227"/>236</s> </p> <p type="main"> <s id="s.002544">Tex. 47. <emph type="italics"/>(At Calippus &longs;itum quidem &longs;phærarum eundem Eudoxo ponebat, hoc <lb/> e&longs;t di&longs;tantiarum ordinem. </s> <s id="s.002545">pluralitatem autem &longs;tellæ quidem Iouis, ac Saturni ean­<lb/> dem illi attribuebat. </s> <s id="s.002546">Solis verò, & Lunæ duas adhuc putabat &longs;phæras addendas <lb/>e&longs;&longs;e, &longs;i quis eorum, quæ &longs;en&longs;ibiliter apparent, cau&longs;as a&longs;&longs;ignare debeat. </s> <s id="s.002547">Cæteris ve­<lb/> rò errantium vnicuique vnam. </s> <s id="s.002548">nece&longs;&longs;e verò e&longs;&longs;e, &longs;i debent omnes &longs;imul po&longs;itæ, quæ <lb/> apparent reddere, &longs;ecundam <expan abbr="vnamquamq;">vnamquamque</expan> errantium alteras &longs;phæras vna paucio­<lb/> res e&longs;&longs;e, quæ reuoluant, & ad idem po&longs;itione &longs;emper primam eius astri &longs;phæram, <lb/> quod inferius ordinatum e&longs;t, con&longs;tituant. </s> <s id="s.002549">hoc enim modo &longs;olùm contingit errantium <lb/> lationem omnia facere. </s> <s id="s.002550">Cùm igitur, in quibus ip&longs;a quidem feruntur &longs;phæris, hæ <lb/>quidem octo, bæ verò <expan abbr="vigintiquinq;">vigintiquinque</expan> &longs;int. </s> <s id="s.002551">horum &longs;ane non oportet illas &longs;olas reuo­<lb/>lui, in quibus fertur, quod infimè ordinatum e&longs;t. </s> <s id="s.002552">quæ quidem duarum &longs;phærarum <lb/> primas reuoluant, &longs;ex erunt. </s> <s id="s.002553">quæ verò po&longs;teriorum quatuor, &longs;exdecim. </s> <s id="s.002554">cunctarum <lb/> verò numerus, tùm earum quæ ferunt, tùm quæ reuoluunt eas, quinquaginta quin­<lb/> que. </s> <s id="s.002555">quòd &longs;i Lunæ, & Soli, non addat aliquis quos diximus motus, omnes &longs;phæræ <lb/> erunt &longs;eptem, & quadraginta. </s> <s id="s.002556">pluralitas <expan abbr="itaq;">itaque</expan> &longs;phærarum tanta &longs;it)<emph.end type="italics"/> textum hunc <lb/> per paraphra&longs;im &longs;ic explico; Calippus igitur eundem quidem ordinem, at­<lb/> que di&longs;tantiam &longs;phærarum cum Eudoxo ponebat: <expan abbr="eandem&qacute;">eandemque</expan>; pluralitatem <lb/>orbium mouentium Saturnum, ac Iouem; quatuor <expan abbr="nimirũ">nimirum</expan> <expan abbr="vnicuiq;">vnicuique</expan> eorum. <lb/> </s> <s id="s.002557">&longs;ed putabat &longs;oli duas addendas, ac Lunæ &longs;imiliter, &longs;i quis eorum <expan abbr="appar&etilde;tias">apparentias</expan> <pb pagenum="147" xlink:href="009/01/147.jpg"/>&longs;aluare vellet. </s> <s id="s.002558">cæteris verò errantium, Marti, Veneri, & Mercurio <expan abbr="vnicuiq;">vnicuique</expan> <lb/> vnam. </s> <s id="s.002559">nece&longs;&longs;e præterea exi&longs;timabat e&longs;&longs;e, vt prædictæ omnes &longs;phæræ &longs;imul <lb/> apparentias omnes excu&longs;arent, addendas e&longs;&longs;e alias &longs;ingulis planetis toti­<lb/> dem &longs;phæras vna minus, quas Reuoluentes appellabat; ita vt qui quatuor <lb/>Mouentes &longs;phæras habui&longs;&longs;et, tribus præterea reuoluentibus opus haberet: <lb/> quæ &longs;phæræ reuoluentes id præ&longs;tabant, vt qua&longs;i priores Mouentes ita in of­<lb/> ficio continerent, vt priori po&longs;itioni a&longs;trum, quod interiori orbi affigebur <lb/> &longs;uo tempore re&longs;tituerent, vt Alexander exponit. </s> <s id="s.002560">hoc enim &longs;olummodo po&longs;­<lb/> &longs;ibile putabat omnes errantium lationes nos imitari po&longs;&longs;e. </s> <s id="s.002561">Cum igitur mo­<lb/> uentes &longs;phæræ illæ quidem Saturni, ac Iouis &longs;int octo; reliquorum verò vi­<lb/> gintiquinque, nam reliqui Planetæ <expan abbr="quinq;">quinque</expan> &longs;inguli &longs;phæras <expan abbr="quinq;">quinque</expan> mouentes <lb/> habent, quæ omnes &longs;imul numerum <expan abbr="vigintiquinq;">vigintiquinque</expan> explent: quarum omnium <lb/> &longs;olæ inferiores, quibus a&longs;trum affixum volebat, non indigebant reuoluente, <lb/> &longs;equitur duorum &longs;uperiorum Saturni, & Iouis, quorum octo erant mouen­<lb/> tes, &longs;ex debere e&longs;&longs;e reuoluentes. </s> <s id="s.002562">Inferiorum verò quatuor planetarum re­<lb/> uoluentes erunt &longs;exdecim: &longs;ed hoc loco Ari&longs;t. memoria fallit, deberet enim <lb/> dicere, reliquorum <expan abbr="quinq;">quinque</expan> planetarum reuoluentes erunt vigintì, &longs;unt enim <lb/> planetæ &longs;eptem, quorum Saturno, ac Ioui &longs;upremis &longs;ex reuoluentes attri­<lb/>buit habita ratione &longs;phærarum mouentium; reliquis igitur <expan abbr="quinq;">quinque</expan> planetis <lb/> habita ratione &longs;uorum orbium mouentium, 25. cum &longs;inguli habeant <expan abbr="quinq;">quinque</expan> <lb/>mouentes, habebunt ex præ&longs;cripto Calippi &longs;inguli 4. reuoluentes; ac pro­<lb/> inde 20. in vniuer&longs;um erunt reuoluentes. </s> <s id="s.002563">Omnium igitur &longs;phærarum tam <lb/> mouentium, quàm reuoluentium &longs;ummam ait, &longs;ed perperam, e&longs;&longs;e quinqua­<lb/>ginta quinque; cum enim mouentes Saturni, & Iouis &longs;int 8. reliquorum au­<lb/> tem 25. reuoluentes verò Saturni, & Iouis &longs;int 6. reliquorum autem, vt ip­<lb/> &longs;e memoria fal&longs;us ponit, &longs;exdecim, conflant quidem &longs;ummam prædictam, <lb/> &longs;ed illi in memoria reuocandus e&longs;t, planeta ille, quem oblitus e&longs;t, cuius &longs;unt <lb/> quatuor reuoluentes, qui prioribus additi &longs;phærarum errantium numerum <lb/> quinquaginta nouem con&longs;tituent: quibus etiam addenda e&longs;t octaua &longs;phæra, <lb/> &longs;eu firmamentum, quod inerrantium &longs;edes e&longs;t, non enim &longs;olum errantium, <lb/> &longs;ed omnium cœle&longs;tium orbium numerum inue&longs;tigare volebat, <expan abbr="&longs;ic&qacute;">&longs;icque</expan>; e&longs;&longs;ent <lb/> omnes &longs;ecundum Calippum &longs;ph&etail;ræ &longs;exaginta. </s> <s id="s.002564">Quod &longs;i Lunæ, & Soli non ad­<lb/> dantur &longs;ingulis duo mouentes, vt facit Calippus, <expan abbr="neq;">neque</expan> con&longs;equenter quatuor <lb/> illis debiti reuoluentes non erunt omnes, 55. verùm, detractis octo prædi­<lb/> ctis, erunt tantum 47. &longs;eu vt melius loquatur non erunt in vniuer&longs;um, 60. &longs;ed <lb/> 52. tantum. </s> <s id="s.002565">Hactenus de numero cœlorum.</s> </p> </chap> <chap> <p type="head"> <s id="s.002566"><emph type="italics"/>Ex Decimotertio Metaphy&longs;icæ.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.002567"><arrow.to.target n="marg228"/></s> </p> <p type="margin"> <s id="s.002568"><margin.target id="marg228"/>237</s> </p> <p type="main"> <s id="s.002569">Svmma 1. cap. 3. <emph type="italics"/>(Qui dicunt Mathematicas &longs;cientias nihil de bono, vel <lb/> pulchro dicere, fal&longs;um dicunt. </s> <s id="s.002570">dicunt. </s> <s id="s.002571">n. </s> <s id="s.002572">& maximè <expan abbr="o&longs;t&etilde;dunt">o&longs;tendunt</expan>. </s> <s id="s.002573">nam & &longs;i non <lb/> nominant, quia tamen opera, & rationes ostendunt, non ne dicunt de eis? <lb/> </s> <s id="s.002574">pulchra <expan abbr="namq;">namque</expan> maximè &longs;pecies &longs;unt, ordo, commen&longs;uratio, & definitŭ, quæ <lb/> maximè à Mathematicis &longs;cientijs o&longs;tenduntur, &c.)<emph.end type="italics"/> placuit hæc in Mathemati­<lb/> carum commendationem, ac defen&longs;ionem apponere, cum non de&longs;int hac <lb/>no&longs;tra tempe&longs;tate ageometreti complures, qui eas libenter &longs;ugillare &longs;olent.</s> </p> </chap> <pb pagenum="148" xlink:href="009/01/148.jpg"/> <chap> <p type="head"> <s id="s.002575"><emph type="italics"/>IN MECHANICAS QVÆSTIONES.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.002576">Qvidquid Mathematicum in his quæ&longs;tionibus occurret, illud, vt <lb/> plurimum per paraphra&longs;im exponemus, ita tamen, vt tex. <!-- REMOVE S-->Ari&longs;t. <lb/> & figuræ textui re&longs;pondentes per eam, quantum fieri poterit re­<lb/> &longs;tituantur, & &longs;i quæ &longs;e offerent difficilia, pro viribus &longs;oluantur. <lb/> </s> <s id="s.002577">E&longs;t autem nonnullis in locis textus tam græcus, quàm latinus adeò corrup­<lb/> tus, ac deprauatus, vt nullo modo emendari queat.</s> </p> <p type="head"> <s id="s.002578"><emph type="italics"/>Caput Primum.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.002579">Quæ &longs;it artis Mechanicæ facultas.</s> </p> <p type="main"> <s id="s.002580"><arrow.to.target n="marg229"/></s> </p> <p type="margin"> <s id="s.002581"><margin.target id="marg229"/>238</s> </p> <p type="main"> <s id="s.002582">Eorum, quæ miraculo &longs;unt, alia quidem natura contingunt, <expan abbr="&longs;unt&qacute;">&longs;untque</expan>; ea, <lb/> quorum ignorantur cau&longs;æ: alia verò &longs;unt, quæ præter naturam per <lb/> artificium aliquod ad hominum vtilitatem perficiuntur, in multis <lb/> <expan abbr="namq;">namque</expan> natura ei, quod nobis v&longs;ui e&longs;&longs;e pote&longs;t, contrarium facit, quod <lb/> inde oritur, quia natura eundem &longs;emper, ac &longs;implicem &longs;eruat modum: quod <lb/> autem nobis vtile e&longs;t, plurimas &longs;ubit varietates. </s> <s id="s.002583">quando igitur quippiam <lb/> præter naturam facere opportuerit, illud, quod faciendum e&longs;t, difficultate <lb/> &longs;ua nos remoratur, <expan abbr="arte&qacute;">arteque</expan>; propterea indigemus. </s> <s id="s.002584">quamobrem eam artis <lb/> partem, quæ huiu&longs;modi &longs;uccurrit difficultatibus, Mechanicam appellamus. <lb/> </s> <s id="s.002585">Cæterùm optimè Antiphon Poeta in hunc modum cecinit;</s> </p> <p type="head"> <s id="s.002586"><emph type="italics"/>Arte &longs;uperamus ea, in quibus à natura vincimur.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.002587">Quemadmodum accidit, cum minora &longs;uperant maiora, & quæcunque exi­<lb/> guam vim habentia, magna tamen mouent pondera, & omnia ferè illa, quæ <lb/> &longs;ub ea cadunt problemata, quæ mechanica nuncupari <expan abbr="&longs;ol&etilde;t">&longs;olent</expan>. </s> <s id="s.002588">&longs;unt autem hæc <lb/> <expan abbr="neq;">neque</expan> naturalibus omninò quæ&longs;tionibus eadem, <expan abbr="neq;">neque</expan> &longs;eiugata valde: verùm <lb/> mathematicarum contemplationum, <expan abbr="naturaliumq;">naturaliumque</expan> communia. </s> <s id="s.002589">Po&longs;tea in <lb/> græcis codicibus hæc &longs;equuntur (<foreign lang="greek">to\ men ga\r w= di/a twn maqhmatikw=n dhlon: to<lb/>de peri\ o(/, di\a tw=n fusikw=n</foreign>) ide&longs;t, &longs;i quidem quomodo &longs;int, &longs;eu qua ratione <lb/> exi&longs;tant, manife&longs;tum e&longs;t per Mathematica: illud verò circa quod ver&longs;antur, <lb/> hoc e&longs;t obiectum, de quo pertractant Mechanicæ quæ&longs;tiones per &longs;cientias <lb/> phy&longs;icas habetur, ide&longs;t res naturalis e&longs;t; e&longs;t enim pondus, & vis, aut poten­<lb/> tia pondus ip&longs;um mouens, quatenus quanta &longs;unt; &longs;iue dixeris e&longs;t quantitas <lb/> ponderum, <expan abbr="atq;">atque</expan> potentiarum. </s> <s id="s.002590">Mathematicæ enim mediæ, de quorum nu­<lb/> mero e&longs;t facultas Mechanica, con&longs;iderant quantitatem rei alicuius <lb/> determinatæ, &longs;ic A&longs;tronomia circa cœle&longs;tium corporum, <expan abbr="mo-tuum&qacute;">mo­<lb/> tuumque</expan>; quantitates, Per&longs;pectiua circa linearum vi&longs;ua­<lb/> lium; Mu&longs;ica circa &longs;onorum quantitates ver­<lb/> &longs;antur. </s> <s id="s.002591">quæ placuit annotare, vt &longs;cien­<lb/> tiæ huius naturam per&longs;pectam <lb/> haberemus.</s> </p> <pb pagenum="149" xlink:href="009/01/149.jpg"/> <p type="head"> <s id="s.002592">De dignitatibus, <expan abbr="admirandis&qacute;">admirandisque</expan>; Circuli proprietatibus.</s> </p> <p type="head"> <s id="s.002593"><emph type="italics"/>Cap. Secundum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.002594"><arrow.to.target n="marg230"/></s> </p> <p type="margin"> <s id="s.002595"><margin.target id="marg230"/>239</s> </p> <p type="main"> <s id="s.002596">Cvm vellet Ari&longs;t. mirabilium effectuum, quos in Mechanicis admi­<lb/> ramur, cau&longs;am referre in circulum: meritò ante omnia de admi­<lb/> randa ip&longs;ius circuli natura di&longs;&longs;erit, quo minus mirum deinde vi­<lb/>deatur prædictas mirabiles operationes ex ip&longs;o procedere. </s> <s id="s.002597">quan­<lb/> doquidem exadmiranda cau&longs;a admirabiles effectus prodire debeant. </s> <s id="s.002598">qua­<lb/>lia &longs;unt ea, quæ circa vectem, cum magna <expan abbr="omniũ">omnium</expan> admiratione contingunt. <lb/> </s> <s id="s.002599">videmus enim exiguam pror&longs;us vim ingens pondus, quod <expan abbr="ab&longs;q;">ab&longs;que</expan> vecte mini­<lb/> mè mouere po&longs;&longs;et, addito etiam ip&longs;ius vectis pondere, facilè <expan abbr="quocunq;">quocunque</expan> vo­<lb/> luerit propellere. </s> <s id="s.002600">quod quidem auditu ab&longs;urdum foret, ni&longs;i vi&longs;u con&longs;taret. <lb/> </s> <s id="s.002601">omnium autem huiu&longs;modi cau&longs;æ principium circulus obtinet: & hoc qui­<lb/> dem meritò, ex admirabili enim, quippiam mirandum accidere rationi <lb/>omninò con&longs;entaneum e&longs;t.</s> </p> <p type="main"> <s id="s.002602">Primò igitur maximè admirandum e&longs;t contraria &longs;imul fieri, aut exi&longs;tere:<lb/> circulus tamen ex contrarijs e&longs;t con&longs;titutus, oritur enim circulus ex com­<lb/>moto, & manente, quæ quidem naturaliter &longs;unt inuicem contraria. </s> <s id="s.002603">&longs;it au­<lb/> tem circulus ex commoto, & manente, quia oritur ex circumuolutione <lb/> vnius rectæ lineæ, cuius alterum extremum fixum manet, alterum verò cir­<lb/> cumagitur; quamobrem i&longs;thæc cernentes minus admirari <expan abbr="cõuenit">conuenit</expan> reliquas, <lb/> quæ in ip&longs;o &longs;unt contrarietates. </s> <s id="s.002604">cuiu&longs;modi e&longs;t hæc, quod cum linea, quæ cir­<lb/> culi orbem complectitur, <expan abbr="quæ&qacute;">quæque</expan>; circunferentia appellatur, nullam habeat <lb/> latitudinem, ei tamen contraria quodammodo in&longs;unt, concauum &longs;cilicet, <lb/> & curuum; quæ quidem eo modo &longs;unt contraria, quo etiam magnum, & pa­<lb/> ruum, horum enim medium e&longs;t æquale; illorum verò rectum. </s> <s id="s.002605">& &longs;icuti quan­<lb/> do magnum, & paruum inuicem commutantur, ita vt quod magnum e&longs;t fiat <lb/> paruum, quod verò paruum fiat magnum, nece&longs;&longs;e e&longs;t, vt perueniant ad <lb/> æquale priu&longs;quam ad extremum alterutrum; ita linea curua antequam fiat <lb/> concaua, debet prius fieri recta: & ex concaua, vt tran&longs;eat ad conuexam, <lb/> & circularem, debet &longs;imiliter prius e&longs;&longs;e recta.</s> </p> <p type="main"> <s id="s.002606">Alterum contrarium, quod circulo ine&longs;t, e&longs;t &longs;imul <expan abbr="cõtrarijs">contrarijs</expan> motibus mo­<lb/>neri: &longs;imul enim ad anteriorem mouetur locum, & ad po&longs;teriorem. </s> <s id="s.002607">& eo­<lb/> dem modo linea illa, quæ ex vno extremo manens, ex altero verò circum­<lb/>lata circulum de&longs;cribit, &longs;e habet; contraria enim &longs;imul continet, primum <lb/> &longs;cilicet, & extremum. </s> <s id="s.002608">Ex quo enim primo loco circumagi incipit ad eun­<lb/> dem rur&longs;us po&longs;tremò reuertitur, ita, vt primum ip&longs;ius, & po&longs;tremum idem <lb/> &longs;int; quapropter, vt prius dicebamus non e&longs;t inconueniens, ip&longs;um circulum <lb/> miraculorum omnium e&longs;&longs;e principium. </s> <s id="s.002609">Admiranda igitur ea, quæ circa li­<lb/>bram fiunt, ad circulum <expan abbr="tãquam">tanquam</expan> cau&longs;am referuntur, quæ verò circa vectem <lb/> ad ip&longs;am libram: alia autem ferè omnia, quæ circa mechanicas contingunt <lb/> motiones, ad vectem reducuntur.</s> </p> <p type="main"> <s id="s.002610">Præter prædicta aliud tandem mirum ip&longs;i ine&longs;t, quia nimirum cum innu­<lb/> mera &longs;int puncta in vna <expan abbr="eadem&qacute;">eademque</expan>; linea, quæ &longs;emidiameter e&longs;t, omnia tamen <pb pagenum="150" xlink:href="009/01/150.jpg"/>quando &longs;emidiameter circa centrum mouetur, quamuis cum ip&longs;a mouean­<lb/>tur, inæquali velocitate mouentur; Nam punctum illud &longs;emper velocius <lb/> mouetur, quod remotius e&longs;t à centro circuli, &longs;eu à manente &longs;emidiametri <lb/> termino, & proinde illud tardius, quod centro proximius e&longs;t. </s> <s id="s.002611"><expan abbr="Atq;">Atque</expan> ex hac <lb/> mira circuli proprietate, <expan abbr="pleraq;">pleraque</expan> miraculorum accidunt circuli motioni­<lb/> bus, vt in &longs;equentibus quæ&longs;tionibus manife&longs;tum erit.</s> </p> <p type="main"> <s id="s.002612">Quoniam autem &longs;ecundum contrarias &longs;imul motiones mouetur circulus, <lb/> & alterum quidem diametri extremum vbi A, in figura præ&longs;enti antror&longs;um <lb/> <figure id="id.009.01.150.1.jpg" place="text" xlink:href="009/01/150/1.jpg"/><lb/> mouetur; alterum verò vbi B, retror­<lb/> &longs;um, efficiunt nonnulli, vt ab vnica mo­<lb/> tione multi contrariò &longs;imul mouean­<lb/> tur denticulati circuli: vt &longs;unt ij, quos <lb/> in locis proponunt &longs;acris, quorum alij <lb/> &longs;unt ænei, alij ferrei. </s> <s id="s.002613">&longs;i enim circulus <lb/> A B, alterum circulum C D, contige­<lb/> rit, mota diametro A B, ita vt A, an­<lb/> tror&longs;um eat, commouebit alteram dia­<lb/> metrum C D, ita vt C, retror&longs;um, hoc e&longs;t in contrarium ip&longs;i A, veniat, in <lb/> contrarium igitur mouebitur &longs;ecundus circulus C D, ad circulum A B, & <lb/> rur&longs;us circulus E F. in contrarium ip&longs;i C D, commouebitur ab ip&longs;o C D, ob <lb/> eandem rationem. </s> <s id="s.002614">eodem etiam modo &longs;i plures fuerint, idem facient vno <lb/> &longs;olo tanquam primo motore <expan abbr="cõmoto">commoto</expan>. </s> <s id="s.002615">hanc igitur circuli naturam animad­<lb/> uertentes Architecti, in&longs;trumentum artificiosè <expan abbr="fabricãt">fabricant</expan>, motus principium <lb/> occultantes, vt machinæ &longs;olù manife&longs;tum &longs;it illud, quod admirationem <lb/> parit, cau&longs;a verò lateat: quod genus machinarum Automata dicebantur, <lb/> quia &longs;pontè à &longs;e ip&longs;is mouebantur.</s> </p> <p type="main"> <s id="s.002616">In primis igitur, quæ circa libram accidunt, dubitare faciunt, quamnam <lb/> ob cau&longs;am maiores libræ minoribus &longs;int exactiores: huius autem rei prin­<lb/> cipium e&longs;t illud, quod &longs;upra innuimus, quod &longs;cilicet, quæ à centro plus di­<lb/> &longs;tat linea, &longs;iue quæ longior e&longs;t, eadem vi commota citius fertur, quam illa, <lb/> quæ minus à centro di&longs;tat, &longs;eu quæ minor e&longs;t. </s> <s id="s.002617">Porrò citius bifariam dicitur; <lb/> &longs;iue enim in minori tempore æquale pertran&longs;it &longs;patium: &longs;iue in æquali tem­<lb/> pore, maius conficit interuallum; citius feci&longs;&longs;e dicitur. </s> <s id="s.002618">&longs;i autem duæ lineæ <lb/> circa idem centrum moueantur vna maior, & altera minor in æquali tem­<lb/> pore; maior maiorem circulum de&longs;cribet, quam minor; quia circulus à ma­<lb/>iori de&longs;criptus, alterum à minori delineatum circumpleρetur, <expan abbr="atq;">atque</expan> intra &longs;e <lb/> continebit; maius autem e&longs;t continens, quàm <expan abbr="cont&etilde;tum">contentum</expan>. </s> <s id="s.002619">horum autem cau­<lb/> &longs;a, quoniam quæ circulum de&longs;cribit linea, duabus fertur lationibus, quæ nul­<lb/> lam inuicem obtinent analogiam: quod antequam probemus, &longs;ciendum <lb/> e&longs;t, quod, quidquid duobus motibus inuicem proportionatis, mouetur, ne­<lb/>ce&longs;&longs;e e&longs;t, quod motu ex illis mixto progrediatur per lineam rectam, quæ dia­<lb/> meter e&longs;t quadrilateri, cuius latera habeant illam proportionem, quam <lb/> duo illi motus. </s> <s id="s.002620">&longs;it enim in figura proportio lateris A B, ad latus A C, quam <lb/> ctiam habent duo motus, &longs;ecundum quos latum quodpiam feratur, <expan abbr="&longs;it&qacute;">&longs;itque</expan>; la­<lb/> tum illud A, & feratur motu vno ver&longs;us B, per lineam A B, altero verò mo­<lb/> tu feratur ver&longs;us C. quod fiet &longs;i cogitemus latus A B, <expan abbr="de&longs;c&etilde;dere">de&longs;cendere</expan> ver&longs;us M C, <pb pagenum="151" xlink:href="009/01/151.jpg"/><figure id="id.009.01.151.1.jpg" place="text" xlink:href="009/01/151/1.jpg"/><lb/>ip&longs;i æquidi&longs;tanter, dum punctum A, mouetur <lb/> ad B. his duabus lationibus A, latum. </s> <s id="s.002621">nece&longs;&longs;a­<lb/>riò motu mixto progredietur per diametrum <lb/> A M, quod &longs;ic probari pote&longs;t; &longs;it iam A, mo­<lb/> tum primo motu <expan abbr="v&longs;q;">v&longs;que</expan> ad D, linea verò ex &longs;e­<lb/> cundo motu &longs;it in G F E, quo motu punctum <lb/> A, quod erat in D, <expan abbr="tractũ">tractum</expan> erit in F. quod pun­<lb/> ctum e&longs;t in diametro A M, quoniam enim mo­<lb/> uetur duobus motibus, cum lineis A B, A C, proportionalibus, motus au­<lb/> tem <expan abbr="hucu&longs;q;">hucu&longs;que</expan> &longs;unt A D, A E, quæ debent e&longs;&longs;e proportionales, cum A B, A C <lb/> compleatur rectangulum A D F E, erunt &longs;imiliter proportionalia F E, D E, <lb/> cum &longs;int æqualia duobus D A, A E, quare per 26. 6. cum quadrilaterum <lb/> paruum A D F E, &longs;it &longs;imile toti A B M C, erit A M, <expan abbr="vtriu&longs;q;">vtriu&longs;que</expan> diameter, ergò <lb/> punctum F, in quo e&longs;t A, e&longs;t in diametro A M. eodem modo, de quouis pun­<lb/> cto in linea A B, ad quod A, perueniat, probabitur ab altero motu de&longs;cen­<lb/> di&longs;&longs;e v&longs;que ad diametrum. </s> <s id="s.002622">&longs;emper ergò latum A, per rectam A M, diame­<lb/> trum quadrilateri, cum illis motibus proportionalibus progreditur, quod <lb/> probandum erat. </s> <s id="s.002623">è conuersò manife&longs;tum etiam e&longs;t, quod &longs;i quid &longs;ecundum <lb/> diametrum duabus fertur lationibus, eas lationes e&longs;&longs;e proportionales late­<lb/> ribus quadrilateri, cuius e&longs;t illa diameter, &longs;i enim illæ lationes non &longs;unt la­<lb/> teribus proportionales, latum illud non feretur &longs;ecundum diametrum il­<lb/> lam, &longs;ed &longs;ecundum aliam alterius quadrilateri.</s> </p> <p type="main"> <s id="s.002624">Quod &longs;i quid duabus lationibus nullam habentibus proportionem per­<lb/> petuò ferratur, impo&longs;&longs;ibile e&longs;t ip&longs;um motu mixto lineam rectam de&longs;cribere. <lb/> </s> <s id="s.002625">&longs;i enim dixeris illud po&longs;&longs;e de&longs;cribere rectam lineam, tunc circa rectam il­<lb/> lam tanquam diametrum de&longs;cribam quadrilaterum, & po&longs;tea o&longs;tendam, vt <lb/> proximè o&longs;ten&longs;um e&longs;t, illud latum e&longs;&longs;e &longs;ecundum laterum illius proportio­<lb/> nem, quare impo&longs;&longs;ibile e&longs;t id, quod mouetur duabus lationibus nullam in­<lb/> uicem rationem habentibus, ferri per lineam rectam: quapropter <expan abbr="dic&etilde;dum">dicendum</expan> <lb/> e&longs;t hoc modo <expan abbr="latũ">latum</expan>, nece&longs;&longs;ariò ferri circulariter, &longs;iue per lineam circularem. <lb/> </s> <s id="s.002626">Quod autem ea, quæ de&longs;cribit circulum linea, dum altero eius manente <lb/> extremo circumagitur, duabus &longs;imul feratur lationibus, ex quibus motus <lb/> orbicularis oriatur, manife&longs;tum e&longs;t ex &longs;uperioribus, quia & antror&longs;um, & <lb/> retror&longs;um impellitur; tùm etiam, quia &longs;i rectà tenderet recta <expan abbr="de&longs;crib&etilde;s">de&longs;cribens</expan> cir­<lb/> <figure id="id.009.01.151.2.jpg" place="text" xlink:href="009/01/151/2.jpg"/><lb/> culum, nunquam ad diametri perpendiculum <lb/> perueniret, &longs;ed tamen peruenit, ita vt &longs;it ip&longs;a <lb/> à centro perpendicularis diametro. </s> <s id="s.002627">&longs;it circuli <lb/> figura A B C D, in qua extremum diametri <lb/> B, feratur ad alterum extremum vbi D, per <lb/> ip&longs;ius diametri B D, circumuolutionem circa <lb/> centrum F, nece&longs;&longs;e e&longs;t aliquando B, perueniat <lb/> ad C. &longs;i igitur B, feretur duabus lationibus <lb/> aliquo modo proportionatis, v. <!-- REMOVE S-->g. <!-- REMOVE S-->vt e&longs;t pro­<lb/> portio lateris B E, ad E C, latus, &longs;equeretur <lb/> ex demon&longs;tratis ip&longs;um B, ferri per <expan abbr="rectã">rectam</expan> B C, <lb/>quæ diameter e&longs;&longs;et quadrilateri B E C G. &longs;ed <pb pagenum="152" xlink:href="009/01/152.jpg"/>quia in nulla proportione fertur, propterea per circularem lineam B E C, <lb/> progreditur ad C, ita vt ip&longs;a diameter B D, in po&longs;itione A C, fiat perpendi­<lb/> cularis priori diametro B D. ex quibus &longs;equitur eam moueri duobus moti­<lb/> bus nullam rationem habentibus; quod erat intentum.</s> </p> <p type="main"> <s id="s.002628">Hoc modo Ari&longs;t. probare conatur, lineam circulum de&longs;cribentem, dua­<lb/>bus ferri lationibus, quæ nullam habeant analogiam: Verùm, vt liberè fa­<lb/> tear nullo modo mihi videtur intentum a&longs;&longs;equi, nam <expan abbr="neq;">neque</expan> ex dictis pater, <lb/> ip&longs;am duobus motibus ferri, quibus opus e&longs;&longs;et: neque patet eos (quamuis <lb/> concedantur) nullam inuicem habere analogiam: qui enim fieri pote&longs;t, vt <lb/> duo motus reperiantur, quì nulla &longs;e mutuò habitudine re&longs;piciant? </s> <s id="s.002629">Præte­<lb/> rea &longs;i B, ferretur illis motibus, non &longs;equitur debere moueri per lineam cir­<lb/> cularem, cum præter lineam rectam &longs;int plures curuæ, quæ tamen non &longs;unt <lb/> circulares, vt &longs;unt &longs;ectiones parabolicæ, & lineæ &longs;pirales. </s> <s id="s.002630">Deinde pergit.</s> </p> <p type="main"> <s id="s.002631"><arrow.to.target n="marg231"/></s> </p> <p type="margin"> <s id="s.002632"><margin.target id="marg231"/>241</s> </p> <p type="main"> <s id="s.002633">Vt autem cau&longs;a appareat, cur ea, quæ à centro longior e&longs;t linea velocius <lb/> moueatur, &longs;iue quod in eadem &longs;emidiametro remotiora puncta à <expan abbr="c&etilde;tro">centro</expan> ve­<lb/> locius moueantur, vt &longs;upra dictum e&longs;t, &longs;ciendum e&longs;t, Quod &longs;i duo mouean­<lb/> tur ab eadem potentia, quorum vnum à quopiam alio mouente plus repel­<lb/> latur à motu priori, alterum verò minus, rationi <expan abbr="cõ&longs;entaneum">con&longs;entaneum</expan> e&longs;&longs;e, tardius <lb/> moueri id, quod plus, eo quod minus impeditur; quod videtur accidere <lb/> maiori, & minori illarum, quæ à centro egre&longs;&longs;æ circulos delineant. </s> <s id="s.002634">quoniam <lb/> enim propius e&longs;t manenti eius, quæ minor e&longs;t extremum, quàm extremum <lb/> maioris, propterea plus à centro, cui propius e&longs;t, retrahitur à priori mo­<lb/> tu, <expan abbr="hinc&qacute;">hincque</expan>; motus eius tardior redditur, ide&longs;t, quia centro propius e&longs;t; hinc <lb/> fit, vt extremum illud de&longs;cribat lineam circularem quidem, &longs;ed tamen <lb/> curuiorem quam de&longs;cribat extremum longioris lineæ, quæ circulum minus <lb/> curuum, &longs;eu magis ad rectam lineam accedentem delineat. </s> <s id="s.002635">omni quidem <lb/> igitur lineæ circulum de&longs;cribenti i&longs;tud accidit, vt duobus feratur motioni­<lb/> bus; vna quidem, quæ illi naturalis, ac &longs;ecundum circunferentiam, qua re­<lb/> ctà tenderet ni&longs;i impediretur: altera verò, quæ illi innaturalis, qua in tran&longs;­<lb/> uer&longs;um agitur, &longs;eu &longs;ecus centrum, ob quam cogitur in gyrum duci, minor <lb/> autem linea &longs;ecundum hanc motionem innaturalem plus fertur, quàm ma­<lb/> ior, ide&longs;t plus ip&longs;ius progre&longs;&longs;io inflectitur in orbem; quia enim e&longs;t centro <lb/> <figure id="id.009.01.152.1.jpg" place="text" xlink:href="009/01/152/1.jpg"/><lb/> vicinior, quod quodammodo retra­<lb/> hit à motu naturali, propterea ma­<lb/> gis vincitur, quàm remotior. </s> <s id="s.002636">Quod <lb/> ex his erit <expan abbr="manife&longs;tũ">manife&longs;tum</expan>. </s> <s id="s.002637">&longs;it circulus vbi <lb/> B C E D, & alter in eo minor, vbi <lb/> N M O P, circa idem centrum A. & <lb/> proijciantur diametri in magno qui­<lb/> dem C D, B E, in minori verò M O, <lb/> N P. & altera parte longius quadri­<lb/> laterum compleatur D K R C. &longs;i igi­<lb/> tur &longs;emidiameter A B, circumacta <lb/> de&longs;cribit circulum maiorem, reuer­<lb/> titur tandem ad locum B A, vnde di­<lb/> gre&longs;&longs;a e&longs;t. </s> <s id="s.002638">&longs;imiliter M A, circumuoluta <pb pagenum="153" xlink:href="009/01/153.jpg"/>redibit ad priorem po&longs;itionem in M A. <!-- KEEP S--></s> <s id="s.002639">Tardius autem fertur M A, quàm <lb/> B A, vt dictum e&longs;t, quia maior illi fit retractio à recta progre&longs;&longs;ione. </s> <s id="s.002640">Sit igi­<lb/> tur linea A B, mota v&longs;que ad locum A L F, & à puncto L, ducatur L Q, per­<lb/> pendicularis ip&longs;i A B, in minori circulo. </s> <s id="s.002641">& rur&longs;us ducatur L S, parallela ei­<lb/> dem A B, & à puncto S, in maiori circulo ducatur S T, perpendicularis ei­<lb/> dem B A, necnon F X. erunt igitur S T, L Q, latera rectanguli T L, æqualia <lb/> per 34. primi. </s> <s id="s.002642">erit po&longs;tea B T, minor quam M Q, quia æquales rectæ S T, <lb/> L Q, ductæ à circunferentia ad diametrum perpendiculares in circulis in­<lb/> æqualibus, ea quæ e&longs;t in maiori circulo minorem re&longs;ecat diametri portio­<lb/> nem, quàm quæ in minori.</s> </p> <p type="main"> <s id="s.002643">In quanto autem tempore ip&longs;a A L, lata e&longs;t per circunferentiam M L, in <lb/> tanto temporis &longs;patio in maiori circulo B, extremum ip&longs;ius B A, latum erit <lb/>per maiorem arcum quàm &longs;it B S; iam con&longs;iderandum e&longs;t motus vtriu&longs;que <lb/> lineæ in hoc ca&longs;u æquales e&longs;&longs;e, &longs;unt enim de&longs;cripti per lineas æquales T S, <lb/> Q L, quæ &longs;unt rectæ; tam enim linea B A, quàm M A, naturali motu recta <lb/> tenderet, vt dictum e&longs;t, <expan abbr="peragra&longs;&longs;et&qacute;">peragra&longs;&longs;etque</expan>; illa rectam T S: hæc verò rectam Q L. <lb/> <!-- KEEP S--></s> <s id="s.002644">Verum lationes innaturales &longs;unt impares, latio enim B T, breuior e&longs;t M <expan abbr="q.">que</expan> <lb/> quantitate autem B T, retracta e&longs;t B A, à motu &longs;ibi naturali, & recto: quan­<lb/> titate verò M Q, retracta e&longs;t M A, vnde apparet motu hoc violento magis <lb/> retractam e&longs;&longs;e minorem M A, quàm maiorem B A, quod erat primo de­<lb/> clarandum.</s> </p> <p type="main"> <s id="s.002645">Quod autem ob id A B, maior c&etail;lerius mota &longs;it motu naturali, quàm mi­<lb/> nor M A, palàm fiet. </s> <s id="s.002646">quia enim oportet <expan abbr="vtramq;">vtramque</expan> lineam maiorem, & mi­<lb/> norem eadem vi motam, confeci&longs;&longs;e binos illos motus proportionales, ide&longs;t <lb/> ita &longs;e debet habere motus naturalis maioris ad motum innaturalem eiu&longs;­<lb/> dem, quemadmodum &longs;e habet motus naturalis minoris ad motum innatu­<lb/> ralem eiu&longs;dem: Oportet ergo, vt &longs;i A B, & A M, &longs;unt eadem vi commotæ, <lb/> vt &longs;it eadem ratio T S, ad Q L, quæ e&longs;t B T, ad M Q, non e&longs;t autem, vt o&longs;ten­<lb/> &longs;um e&longs;t; ergo linea A B, eadem vi commota, ac M A, conficit plu&longs;quam <lb/> B S, &longs;ed nece&longs;&longs;ariò peruenit ad F. hoc enim in puncto erunt prædicti motus <lb/> proportionales, vt oportet, erit enim motus naturalis in maiori perpendi­<lb/> cularis F X, & innaturalis B X, in minori verò naturalis L Q, innaturalis <lb/> M <expan abbr="q.">que</expan> quod &longs;i ducantur rectè B F, M L, apparebunt duo triangula æquian­<lb/> gula B X F, M Q L, & erunt per 4. 6. vt F X, ad B X. ita L Q, ad M Q, & <lb/> permutando erunt etiam vt F X, ad L Q, ita B X, ad M <expan abbr="q.">que</expan> ide&longs;t, vt motus <lb/> naturalis ad naturalem, ita innaturalis ad innaturalem. </s> <s id="s.002647">In alio autem lo­<lb/> co præter F, non erunt eædem proportiones.</s> </p> <p type="main"> <s id="s.002648">Ex quibus patere &longs;atis pote&longs;t, cur A B, longior à centro velocius mouea­<lb/> tur quàm minor M A, &longs;eu cur puncta eiu&longs;dem B A, velocius vertuntur, quo <lb/> longius ab&longs;unt à centro A, ide&longs;t maiorem arcum B F, peractum e&longs;&longs;e à B, <lb/> quàm &longs;it arcus M L, peractus ab M, quod erat o&longs;tendendum.</s> </p> <p type="main"> <s id="s.002649">Atque hic e&longs;t di&longs;cur&longs;us ille Ari&longs;t. quo putat &longs;e cau&longs;am aperui&longs;&longs;e, cur lon­<lb/> gior &longs;emidiameter velocius moueatur: quod num rectè attigerit, non puto <lb/> operæpretium e&longs;&longs;e hoc loco di&longs;cutere, præ&longs;ertim cum ad naturalem Philo­<lb/> &longs;ophum &longs;pectet.</s> </p> <p type="main"> <s id="s.002650">Mihi tamen maximè con&longs;iderandum videtur hoc ip&longs;um quod a&longs;&longs;eruit, & <pb pagenum="154" xlink:href="009/01/154.jpg"/>ex &longs;e patet, remotiores &longs;cilicet partes diametrorum à centro velocius mo­<lb/> ueri, quàm viciniores; ex hac enim maiori velocitate &longs;equitur maiore etiam <lb/> vi moueri, vnde & potentiæ mouenti in extremo eius vis augebitur, & plus <lb/> poterit quam &longs;ola &longs;ine vecte, e&longs;t enim vectis duæ &longs;emidiametri altera alte­<lb/> ram longior; ex quibus fortè apparet vnde vectis vires oriantur.</s> </p> <p type="main"> <s id="s.002651">His igitur tanquam huius Mechanicæ facultatis principijs po&longs;itis, ad va­<lb/> rias Quæ&longs;tiones di&longs;cutiendas accedit.</s> </p> <p type="head"> <s id="s.002652"><emph type="italics"/>QVÆSTIO PRIMA<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.002653"><emph type="italics"/>De Libra.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.002654"><arrow.to.target n="marg232"/></s> </p> <p type="margin"> <s id="s.002655"><margin.target id="marg232"/>242</s> </p> <p type="main"> <s id="s.002656">Cvr autem maiores libræ minoribus &longs;int exactiores, palàm e&longs;t ex <lb/> præmi&longs;&longs;is principijs. </s> <s id="s.002657">con&longs;iderare enim oportet, quod in motu li­<lb/> bræ de&longs;cribitur quidam circulus, cuius diameter &longs;unt ip&longs;a libræ <lb/>brachia, centrum verò e&longs;t &longs;partum, &longs;iue trutina; hoc enim pun­<lb/> ctum in motu libræ manet: duo verò brachia &longs;unt veluti duæ &longs;emidiametri <lb/> <figure id="id.009.01.154.1.jpg" place="text" xlink:href="009/01/154/1.jpg"/><lb/> à centro exeuntes, vt in figura cerne­<lb/> re e&longs;t, in qua centrum, &longs;iue &longs;partum <lb/> e&longs;t vbi C, reliqua &longs;unt manife&longs;ta. </s> <s id="s.002658">In <lb/> eadem porrò figura libra maior &longs;it <lb/> A B. minor verò circa idem &longs;partum <lb/> C, &longs;it F G. <!-- KEEP S--></s> <s id="s.002659">Iam vt præmi&longs;&longs;um e&longs;t, ea­<lb/> dem vi, vel eodem onere in lance B, <lb/> po&longs;ito, mouebitur velocius brachium <lb/> libræ maioris, quàm minoris &longs;it ma­<lb/> ior tran&longs;lata ad <expan abbr="locũ">locum</expan> D E, ergò com­<lb/> mota e&longs;t per arcum B E, vel A D. <!-- KEEP S--></s> <s id="s.002660">Minor autem libra acta e&longs;&longs;et per mino­<lb/> rem arcum G I, vel F H, melius autem apparet arcus B E, maior, quam mi­<lb/> nor G I, <expan abbr="atq;">atque</expan> hoc e&longs;t, quòd maiores libras exactiores facit. </s> <s id="s.002661"><expan abbr="hinc&qacute;">hincque</expan>; etiam e&longs;t, <lb/> quòd nonnulla pondera in minimis libris adeò paruam brachiorum aper­<lb/> tionem faciant, vt ægrè percipi po&longs;&longs;it; in magnis verò propter brachiorum <lb/> longitudinem valdè &longs;en&longs;ibilem efficiant. </s> <s id="s.002662">quædam verò benè, & in magnis, <lb/> & in paruis apparent, &longs;ed tamen &longs;emper melius in magnis ob dictam ratio­<lb/> nem. </s> <s id="s.002663">Quamobrem machinantur ij, qui purpuram vendunt, vt pendendo <lb/> defraudent, tum in medio libræ non ponentes &longs;partum, vt hoc modo bra­<lb/> chium ex vna parte longius factum facilius moueatur, & proinde à minori <lb/> purpuræ pondere; tum etiam <expan abbr="plumbũ">plumbum</expan> in lancem illam infundentes inquam <lb/> merces imponitur, vel partem illam lancis, quam magis grauitare cu­<lb/> piunt ex ligno radici proximo, vel ex nodo&longs;o facientes: lignum <lb/> enim, quod radici proximum e&longs;t, graue admodum e&longs;t, <lb/> quemadmodum etiam nodus; quia nodus e&longs;t, <lb/> quædam radix. </s> <s id="s.002664"><expan abbr="Atq;">Atque</expan> hæc e&longs;t huius pri­<lb/> mæ quæ&longs;tionis paraphra&longs;is.</s> </p> <pb pagenum="155" xlink:href="009/01/155.jpg"/> <p type="head"> <s id="s.002665"><emph type="italics"/>QVÆSTIO SECVNDA<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.002666"><emph type="italics"/>De Libra<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.002667"><arrow.to.target n="marg233"/></s> </p> <p type="margin"> <s id="s.002668"><margin.target id="marg233"/>243</s> </p> <p type="main"> <s id="s.002669"><emph type="italics"/>Cvr &longs;i quidem &longs;ur&longs;um fuerit &longs;partum, quando deor&longs;um lato pondere, qui&longs;­<lb/> piam id amouet, rur&longs;um a&longs;cendit libra? </s> <s id="s.002670">Si autem deor&longs;um constitutum <lb/> fuerit, non a&longs;cendit, &longs;ed manet? </s> <s id="s.002671">An quia &longs;ur&longs;um &longs;parto quidem exi&longs;ten­<lb/> te plus libræ extra perpendiculum fit, &longs;partum enim e&longs;t perpendiculum, <lb/> quare nece&longs;&longs;e est deor&longs;um ferri id, quod plus est, donec a&longs;cendat, quæ bifariam li­<lb/>bram diuidit ad ip&longs;um perpendiculŭm, cum onus incumbat ad libræ partem tractam.<emph.end type="italics"/><lb/> <figure id="id.009.01.155.1.jpg" place="text" xlink:href="009/01/155/1.jpg"/><lb/> <emph type="italics"/>&longs;it libra vbi recta B C, &longs;partum autem <lb/> A D: hoc igitur &longs;ur&longs;um erecto, perpendi­<lb/> culum erit vbi A D M. &longs;i igitur in ip&longs;o B, <lb/> ponatur onus, B, quidem de&longs;cendet vbi E; <lb/> C, autem a&longs;cendat vbi H, quamobrem ea, <lb/> quæ bifariam libram &longs;ecat, primò quidem <lb/> erit D M, ip&longs;ius perpendiculi; incumben­<lb/> te autem onere erit D G, quare libræ ip­<lb/> &longs;ius vbi E H, quod extra A M, perpendi­<lb/> culum e&longs;t, vbi e&longs;t D D H, maius e&longs;t dimidio. </s> <s id="s.002672">&longs;i igitur amoueatur onus ab ip&longs;o E, ne­<lb/> ce&longs;&longs;e e&longs;t H, deor&longs;um ferri, minus enim e&longs;t ip&longs;um E D. &longs;i quidem igitur &longs;ur&longs;um ha­<lb/> buerit &longs;partum, propter hoc a&longs;cendit libra. </s> <s id="s.002673">&longs;i autem deor&longs;um fuerit, id quod &longs;ub­<lb/> stat, contrarium facit; plus enim dimidio fit libræ, quæ deor&longs;um e&longs;t, pars, quàm <lb/> quod perpendiculum &longs;ecet; quapropter non a&longs;cendit, pars enim eleuata leuior e&longs;t.<emph.end type="italics"/><lb/> <figure id="id.009.01.155.2.jpg" place="text" xlink:href="009/01/155/2.jpg"/><lb/> <emph type="italics"/>&longs;it libra vbi N G, perpendiculum autem <lb/> K L M, bifariam igitur &longs;ecatur N G. im­<lb/> po&longs;ito autem onere in ip&longs;o N, erit quidem <lb/> N, vbi O, ip&longs;um autem G, vbi R; K L, au­<lb/> tem vbi K P, quare maius e&longs;t L P O, quàm <lb/> L R, ip&longs;o P L. <!-- KEEP S--></s> <s id="s.002674">Ablato igitur onere, ne­<lb/> ce&longs;&longs;e e&longs;t manere; incumbit enim, ceu onus <lb/> exce&longs;&longs;us medietatis in quo P L.)<emph.end type="italics"/> Aduer­<lb/> te textum græcum e&longs;&longs;e mendo&longs;um, la­<lb/> tinum vero mendo&longs;i&longs;&longs;imum. </s> <s id="s.002675">Ego partim ex certa rei intelligentia, vti vi­<lb/> des re&longs;titui. </s> <s id="s.002676"><expan abbr="Idem&qacute;">Idemque</expan>; circa figuras præ&longs;titi. </s> <s id="s.002677">Porrò quoniam Piccolomineus, <lb/> & &longs;i plurimum, vt ip&longs;e fatetur, in&longs;udauerit, non tamen &longs;olutionem huius <lb/> quæ&longs;tionis e&longs;t a&longs;&longs;ecutus, eam tibi ex Mechanicis Guidibaldi tradam. </s> <s id="s.002678">Ari&longs;t. <lb/> igitur ponit duas libræ &longs;pecies, &longs;iue potius duas eiu&longs;dem libræ po&longs;itiones, <lb/>vnam, quæ habet &longs;partum, &longs;iue perpendiculum &longs;upra; alteram, quæ infra. <lb/> <figure id="id.009.01.155.3.jpg" place="text" xlink:href="009/01/155/3.jpg"/><lb/> vt in præ&longs;enti figura, &longs;it libra B C, cuius <lb/> &longs;partum, &longs;iue perpendiculum A D, &longs;it &longs;ur­<lb/> &longs;um, ita vt in puncto A, &longs;it affixum perpen­<lb/> diculum, & circa idem punctum A, tan­<lb/> quam circa centrum tota libra circum­<lb/> uertatur. </s> <s id="s.002679">hæc e&longs;t prima libræ collocatio. </s> <s id="s.002680">&longs;it deinde libra B C, cuius &longs;partum, <lb/> &longs;iue perpendiculum A D, &longs;it deor&longs;um, vt in altera figura, <expan abbr="&longs;it&qacute;">&longs;itque</expan>; circa pun­ <pb pagenum="156" xlink:href="009/01/156.jpg"/><figure id="id.009.01.156.1.jpg" place="text" xlink:href="009/01/156/1.jpg"/><lb/> ctum A, tanquam circa <expan abbr="centrũ">centrum</expan>, aut axem <lb/> ita fixum, vt ip&longs;i libræ conuer&longs;io innita­<lb/> tur, quæ e&longs;t altera libræ po&longs;itio. </s> <s id="s.002681">Quærit <lb/> igitur, cur &longs;i in libra &longs;ur&longs;um <expan abbr="hab&etilde;te">habente</expan> per­<lb/> pendiculum, & centrum, ponatur ex vna <lb/> parte onus quodpiam, v. <!-- REMOVE S-->g. <!-- REMOVE S-->in parte B, vt in prima textus figura factum e&longs;t, <lb/> libra de primo &longs;itu B C, mouetur ad &longs;itum E H, &longs;ed tamen ablato pondere <lb/> reuertitur &longs;ua &longs;pontè ad pri&longs;tinum &longs;itum B C. &longs;i autem in libra, cuius per­<lb/> pendiculum, ac centrum deor&longs;um &longs;it, vt in &longs;ecunda figura textus, pondus <lb/> imponatur, ip&longs;a quidem à &longs;itu B C, ad &longs;itum O R, transferretur; verumta­<lb/> men ablato onere, <expan abbr="nõ">non</expan> amplius ad priorem po&longs;itionem, vti prior, reuertitur.</s> </p> <p type="main"> <s id="s.002682">Huic quæ&longs;tioni, vt re&longs;pondeat, tacitè &longs;upponit omne graue tendere de­<lb/> or&longs;um, hoc pacto, vt centrum grauitatis ip&longs;ius tendat per lineam rectam <lb/> ad mundi centrum ab ip&longs;o grauitatis centro protractam, quam lineam Di­<lb/> rectionis Recentiores appellant. </s> <s id="s.002683">&longs;ciendum autem centrum grauitatis e&longs;&longs;e <lb/> punctum quoddam in quolibet graui, ex quo &longs;i graue illud &longs;u&longs;pendatur, &longs;em­<lb/> per manet in æquilibrio, nec vnquam po&longs;itionem re&longs;pectu &longs;uarum partium <lb/> mutat, quamuis ita &longs;u&longs;pen&longs;um huc illuc transferatur. </s> <s id="s.002684">Ita Pappus Alexan­<lb/> drinus initio octaui libri Mathematicarum collectionum. </s> <s id="s.002685">Totius igitur li­<lb/> bræ ab&longs;que onere centrum grauitatis e&longs;&longs;et circa punctum D, quod e&longs;&longs;et di­<lb/> &longs;tinctum à centro circumuolutionis A. quod grauitatis centrum, &longs;emper <lb/> quantum fieri pote&longs;t, &longs;i nihil ob&longs;tet, centro mundi appropinquat; & propte­<lb/> rea facit, vt prior libra &longs;ine onere &longs;u&longs;pen&longs;a in A, in æquilibrio, atque hori­<lb/> zonti parallela permaneat, &longs;tante enim D, centro mundi maximè propin­<lb/> quo, &longs;iue in loco humillimo, erit inter punctum A, & centrum mundi, ac <lb/> con&longs;equenter in linea directionis. </s> <s id="s.002686">quæ linea directionis in prima figura <lb/> textus e&longs;&longs;et eadem cum perpendiculo A D M, manente libra &longs;ine pondere <lb/> horizonti parallela; in <expan abbr="&longs;ecũda">&longs;ecunda</expan> autem figura textus coincideret pariter cum <lb/> perpendiculo K L M, antequam libra ob impo&longs;itum onus ab æquilibrio di­<lb/> moueretur. </s> <s id="s.002687">per hanc enim lineam centrum grauitatis libræ, quod e&longs;t propè <lb/> puncta D, & L, tenderet ad mundi centrum, &longs;i libra liberè ad centrum mun­<lb/> di dilaberetur. </s> <s id="s.002688">his præmi&longs;&longs;is &longs;ic quæ&longs;tioni &longs;atisfacit, & primò primæ parti, <lb/> quando nimirum &longs;partum &longs;upernè collocatum e&longs;t. </s> <s id="s.002689">Ratio igitur, cur tunc li­<lb/> bra amoto pondere ad horizontis æquilibrium reuertatur e&longs;t, quia pondus <lb/> libræ impo&longs;itum in altera tantum libræ parte, grauitando impellit libram <lb/> ad alium &longs;itum E H, ita vt maior pars libræ con&longs;tituatur ex altera parte li­<lb/>neæ directionis prioris A D M, in qua etiam parte exi&longs;tit centrum grauita­<lb/> tis libræ ip&longs;ius, e&longs;t enim circa D, quod centrum vi ponderis incumbentis in <lb/> E, cogitur paulùm a&longs;cendere, <expan abbr="atq;">atque</expan> contra ip&longs;ius naturalem inclinationem à <lb/> mundi centro recedere, vt &longs;i in libra B C, appendatur onus in B, vt in pri­<lb/> ma textus figura; B, de&longs;cendet ad E, & C, a&longs;cendet ad H, & centrum graui­<lb/>tatis D, paulùm a&longs;cendet à centro mundi, & linea A D M, quæ libram bi­<lb/> fariam &longs;ecabat modo tran&longs;lato perpendiculo in A D G, non amplius cam <lb/> bifariam &longs;ecabit; &longs;ed libræ E H, maior pars erit vltra perpendiculum A D­<lb/> M, quæ maior pars e&longs;t D D H.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.002690">Si igitur nunc onus amoueatur libræ E H, centrum grauitatis, quod e&longs;t <pb pagenum="157" xlink:href="009/01/157.jpg"/>ad D, remanet vltra priorem Directionis lineam; & quia pondus non am­<lb/> plius illi æ que ponderat, grauitabit, & quia libra cùm affixa &longs;it ad A, nequit <lb/> deor&longs;um recta tendere, circumferretur circa A, trahente ip&longs;am grauitatis <lb/> centro, cum nihil ob&longs;it, donec iterum perpendiculum A D G, priori &longs;itui <lb/> A D M, congruat: hac enim ratione centrum grauitatis, quantum pote&longs;t, <lb/> iuxta naturam &longs;uam de&longs;cendet, <expan abbr="libra&qacute;">libraque</expan>; ad pri&longs;tinum æquilibrij B C, &longs;itum <lb/> re&longs;tituetur. </s> <s id="s.002691">Si autem deor&longs;um fuerit &longs;partum in &longs;ecunda figura textus, im­<lb/> po&longs;ito pondere contrarium accidit, quia maior pars libræ, & in qua cen­<lb/> trum grauitatis e&longs;t, in tali motu de&longs;cendit: altera autem pars minor, ac læ­<lb/> uior &longs;ur&longs;um tollitur. </s> <s id="s.002692">& quia graue natura &longs;ua nequit a&longs;cendere, propterea <lb/> ablato pondere non reuertitur ad æquilibrium B C, cum centrum grauita­<lb/> tis a&longs;cendere ne queat, quod tunc oporteret.</s> </p> <p type="main"> <s id="s.002693">Sit libra N G, in &longs;ecunda figura, cuius perpendiculum, <expan abbr="&longs;imul&qacute;">&longs;imulque</expan>; directio­<lb/>nis linea &longs;it K L M, quæ libram in prima po&longs;itione diuidit bifariam; impo&longs;i­<lb/> to autem onere in N. N, trahetur ad O, & G, ad R, & K L, vbi K P. quare <lb/> maior e&longs;t O L, in quo <expan abbr="centrũ">centrum</expan> grauitatis, & propterea grauior quàm &longs;it L R: <lb/> &longs;uperat enim O L, ip&longs;am L R, exce&longs;&longs;u duplæ P L, quod facilè apparet &longs;i po­<lb/> natur tota O R, 10. & dimidia O P, & O R, 5. & P L, ponatur 2. erit enim <lb/> tunc O L, 7. & L R, 3. quæ hanc &longs;uperat 4. duplo &longs;cilicet ip&longs;ius P L, 2. qua­<lb/> re ne&longs;cio cur Ari&longs;t. dicat, ip&longs;am O L, &longs;uperare ip&longs;am L R, &longs;olùm quantitate <lb/> P L. <!-- KEEP S--></s> <s id="s.002694">Quapropter etiam &longs;i onus auferatur, nece&longs;&longs;e e&longs;t ibi libram manere, <lb/> quia maior, & grauior ip&longs;ius pars deor&longs;um e&longs;t, nec pote&longs;t natura &longs;ua læui­<lb/> tare, vel a&longs;cendere, vt oporteret, &longs;i ad pri&longs;tinum &longs;itum N G, re&longs;titui debe­<lb/> ret. </s> <s id="s.002695">remanebit igitur in O R.</s> </p> <p type="main"> <s id="s.002696">Ex his, quæ&longs;tionis &longs;olutionem, textus explicationem, ac re&longs;titutio­<lb/> nem habeto.</s> </p> <p type="main"> <s id="s.002697">Aduertendum quoad &longs;ecundam libram, ne &longs;imul cum 10. Bapti&longs;ta Bene­<lb/> dicto in libro &longs;peculationum immeritò Ari&longs;t. erroris arguamus: ip&longs;e enim, <lb/> quia libram hanc non agnouit, au&longs;us e&longs;t affirmare, Ari&longs;tot. hoc loco fal&longs;um <lb/>pror&longs;us dixi&longs;&longs;e, cum dixit libram &longs;parto infimè collocato, non redire ad <lb/> pri&longs;tinam po&longs;itionem.</s> </p> <p type="head"> <s id="s.002698"><emph type="italics"/>QVÆSTIO TERTIA<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.002699"><emph type="italics"/>De Vecte.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.002700"><arrow.to.target n="marg234"/></s> </p> <p type="margin"> <s id="s.002701"><margin.target id="marg234"/>244</s> </p> <p type="main"> <s id="s.002702">Cvm textus tam græci, quàm latini mendis &longs;cateant, <expan abbr="neq;">neque</expan> hi textus <lb/> maioris &longs;int momenti, eos per paraphra&longs;im explicabo, in qua ta­<lb/> men totus textus continebitur, <expan abbr="atq;">atque</expan> emendabitur. </s> <s id="s.002703">Cur exiguæ <lb/> vires (quemadmodum à principio dictum e&longs;t) adhibito vecte, ma­<lb/> iora mouent pondera, quam <expan abbr="ab&longs;q;">ab&longs;que</expan> vecte? </s> <s id="s.002704">contrarium enim videtur debere <lb/> fieri, nam mouenti additur grauitas vectis, & ideò pondus augetur, ergò <lb/> difficilius ip&longs;um cum vecte, quàm &longs;ine eo mouere deberet.</s> </p> <p type="main"> <s id="s.002705">Vectis porrò e&longs;t in&longs;trumentum oblongum, quo ad &longs;ubleuandum graue <lb/> quodpiam vtuntur opifices, quod innititur cuidam fulcimento, quod græcè <lb/>hypomoclion dicitur: hypomoclion autem oneri leuando, quantum fieri <pb pagenum="158" xlink:href="009/01/158.jpg"/>pote&longs;t proximum e&longs;&longs;e debet, vt vectis pars longior &longs;it ad partes potentiæ <lb/> mouentis. </s> <s id="s.002706">vt plurimum verò fulcimentum e&longs;t inter pondus, & potentiam: <lb/> aliquando etiam e&longs;t ex altero vectis extremo, ita vt onus &longs;it inter fulturam, <lb/> & potentiam; aliquando potentia e&longs;t inter vtrunque, vnde tres vectis &longs;pe­<lb/> cies exi&longs;tunt. </s> <s id="s.002707">vt in &longs;ubiectis figuris apparet. </s> <s id="s.002708">In prima, vectis e&longs;t A B, fultu­<lb/> <figure id="id.009.01.158.1.jpg" place="text" xlink:href="009/01/158/1.jpg"/><lb/> ra E, onus C. potentia autem &longs;eu vis, <lb/> &longs;eu aliud pondus <expan abbr="mou&etilde;s">mouens</expan> &longs;it vbi D. quæ <lb/> deor&longs;um in D, præmens eleuabit &longs;ur­<lb/> &longs;um ex altera parte onus C. & vectis <lb/> circa fulturam E, tanquam centrum <lb/> conuertetur. </s> <s id="s.002709">In altera figura pondus <lb/> e&longs;t inter fulturam, & potentiam, ful­<lb/> tura autem in altera extremitate, vt <lb/> patet in figura, hic autem potentia <lb/> non præmit deor&longs;um in D: &longs;ed &longs;ur&longs;um <lb/> vectem eleuando pondus C, attollitur. <lb/> </s> <s id="s.002710">In tertia tandem figura potentia, e&longs;t <lb/> inter vtrunque, e&longs;t enim in D, ibique <lb/> &longs;ur&longs;um vrget. </s> <s id="s.002711">verum tamen e&longs;t hunc vectem artificibus e&longs;&longs;e inutilem, quip­<lb/> pe qui nullo modo iuuet potentiam, imò verò pondus ip&longs;um grauius reddit: <lb/> <expan abbr="neq;">neque</expan> hoc genere in his Mechanicis indigemus.</s> </p> <p type="main"> <s id="s.002712">Re&longs;pondet igitur dubitationi, dicens rationem huius incrementi poten­<lb/> tiæ motricis, quod fit a&longs;&longs;umpto vecte fortè inde oriri, quod vectis &longs;it quæ­<lb/> dam libra, cuius alterum brachium &longs;it altero longius; in prima autem quæ­<lb/> &longs;tione explicatum e&longs;t, cur libra maior, maiorem vim habeat, eam ad cir­<lb/> culum reducendo; vectis autem fit libra, hypomoclion enim e&longs;t loco &longs;parti, <lb/> tam enim &longs;partum, quam hypomoclion veluti centra manent. </s> <s id="s.002713">quoniam ve­<lb/> rò ab eodem pondere, c&etail;lerius, &longs;iue maiori vi mouetur linea, quantò lon­<lb/> gior à centro fuerit, vt dictum e&longs;t de admiranda circuli natura; hinc fit, vt <lb/> cum duæ &longs;int in vecte potentiæ, &longs;iue duo pondera, mouens, & motum, illud <lb/> facilius ac maiore vi moueat, &longs;iue vires ex vecte acquirat, quod longiorem <lb/> vectis partem pre&longs;&longs;erit. </s> <s id="s.002714">quemadmodum igitur pars vectis longior, quæ &longs;pe­<lb/> ctabat ad mouentem potentiam, &longs;uperat minorem partem, in qua e&longs;t mo­<lb/> tum; ita etiam maius e&longs;t pondus <expan abbr="motũ">motum</expan>, quàm mouens. </s> <s id="s.002715">&longs;emper autem quan­<lb/> to ab hypomoclio magis di&longs;tabit potentia, tantò facilius mouebit, cuius <lb/> cau&longs;a &longs;upra reddita e&longs;t, quoniam nimirum, quæ plus à centro elongatur ma­<lb/> iorem de&longs;cribit circulum, qui magis ad lineam rectam accedit: quare ab <lb/> eadem potentia adhibito vecte, tantò facilius pars vectis mouens dimoue­<lb/> bitur, quantò magis à fulcimento di&longs;tabit. </s> <s id="s.002716">Exempli gratia &longs;it in &longs;uperiori <lb/> prima figura vectis A B, pondus C, mouens D, hypomoclion E, in qua præ­<lb/> dicta poteris contemplari. </s> <s id="s.002717">vltima illa textus verba <emph type="italics"/>(Quod autem vbi D, mo­<lb/> uens, vbi F, motum autem vbi C, pondus in G,)<emph.end type="italics"/> videntur &longs;uperuacanea, atque <lb/> mendosè addita.</s> </p> <p type="main"> <s id="s.002718">In hac quæ&longs;tione re&longs;pexit Ari&longs;t. &longs;olùm ad primam vectis &longs;peciem. </s> <s id="s.002719">Illud <lb/> demum, quod dixit eandem habere rationem potentiam ad pondus, quàm <lb/>partes vectis inuicem demon&longs;tratum e&longs;t po&longs;tea acuti&longs;&longs;imè ab Archimede <pb pagenum="159" xlink:href="009/01/159.jpg"/>propo&longs;itione 6. & 7. de æqueponderantibus: & no&longs;tra <expan abbr="t&etilde;pe&longs;tate">tempe&longs;tate</expan> alio quam­<lb/> uis modo, & vnica demon&longs;tratione à Guido Vbaldo in &longs;uis Mechanicis pro­<lb/> po&longs;itione 1. de Vecte, quæ e&longs;t huiu&longs;modi; Potentia &longs;u&longs;tinens pondus vecti <lb/> appen&longs;um, eandem ad ip&longs;um pondus proportionem habet, quam vectis di­<lb/> &longs;tantia inter fulcimentum, ac ponderis &longs;u&longs;pen&longs;ionem, ad di&longs;tantiam, à fulci­<lb/> mento ad potentiam interiectam. </s> <s id="s.002720">quod de omni vecte ab eo demon&longs;tratur, <lb/> cuius propo&longs;itionis &longs;en&longs;us e&longs;t hic; in &longs;uperiori prima figura &longs;i pars vectis <lb/> E B, fuerit, v.g. <!-- REMOVE S-->quadrupla partis A E; etiam pondus C, erit quadruplo ma­<lb/> ius pondere, &longs;eu vi in D, quæ ip &longs;um C, ope vectis &longs;u&longs;tinet. </s> <s id="s.002721">quod etiam trans­<lb/> ferre debes ad &longs;ecundam figuram.</s> </p> <p type="head"> <s id="s.002722"><emph type="italics"/>QVÆSTIO QVARTA<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.002723"><emph type="italics"/>De Remo.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.002724"><arrow.to.target n="marg235"/></s> </p> <p type="margin"> <s id="s.002725"><margin.target id="marg235"/>245</s> </p> <p type="main"> <s id="s.002726">EI, qui &longs;uperiora intellexerit &longs;atis clara videtur. </s> <s id="s.002727">Illud tamen non <lb/> omittendum, &longs;cilicet dicendum potius Remum e&longs;&longs;e vectem &longs;ecundi <lb/> generis, quàm primi, quod fortè Ari&longs;t. non animaduertit, nec Pic­<lb/> colomineus, nam mare e&longs;t hypomoclion, re&longs;pectu enim nauis non <lb/> mouetur, &longs;ed manet, &longs;calmus autem &longs;imul cum tota naui e&longs;t pondus motum; <lb/> verè enim nauis ip&longs;a mouetur. </s> <s id="s.002728">mouens e&longs;t ip&longs;e remex. </s> <s id="s.002729">Reliqua in textu <lb/> &longs;unt clara.</s> </p> <p type="head"> <s id="s.002730"><emph type="italics"/>QVÆSTIO QVINTA<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.002731"><emph type="italics"/>De Temone Nauis.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.002732"><arrow.to.target n="marg236"/></s> </p> <p type="margin"> <s id="s.002733"><margin.target id="marg236"/>246</s> </p> <p type="main"> <s id="s.002734">Qvemadmodum in præcedenti quæ&longs;tione Ari&longs;t. vectem &longs;ecundi ge­<lb/> neris ad &longs;olutionem non adhibuit, vt par erat, & propterea ob&longs;cu­<lb/>rior eua&longs;it, ita etiam in præ&longs;enti, qu&etail;&longs;tionem ad vectem primi ge­<lb/> neris reducit, quæ ad alterum reducendà erat: <expan abbr="atq;">atque</expan> hinc ob&longs;curi­<lb/> tas, atque prolixitas &longs;olutionis manauit. </s> <s id="s.002735">E&longs;t enim propriè Temo, &longs;iue gu­<lb/> bernaculum nauis, vectis &longs;ecundi generis, vt mox explicabo, e&longs;t enim temo <lb/> <figure id="id.009.01.159.1.jpg" place="text" xlink:href="009/01/159/1.jpg"/><lb/> in&longs;trumentum in extrema nanis par­<lb/>te, &longs;eu puppi affixum, vt in figura pre­<lb/> &longs;enti vides tabellam, in qua B C D, <lb/> cuius manubrium A B, intra nauim <lb/> recipitur, quæ tabella, &longs;eu temo in <lb/> duobus cardinibus, vbi C, & D, cir­<lb/> cumuertitur à Nauis gubernatore, <lb/> manubrium vbi A, tractante; ex qua <lb/> conuer&longs;ione nauigium, quò vult ip&longs;e <lb/> gubernator facilè dirigit, ip&longs;umque <lb/> nauigium huc illuc quamuis adeò magnum ip&longs;e &longs;olus impellit, & agitat. </s> <s id="s.002736">e&longs;t <lb/> enim temo vectis, cuius auxilio vires mirum in modum augentur, nam to­<lb/> ta A B, e&longs;t ip&longs;a Vectis longitudo, cuius hypomoclion e&longs;t mare, cui contra­ <pb pagenum="160" xlink:href="009/01/160.jpg"/>nititur tabella B E; onus autem e&longs;t puppis, quod onus præ&longs;ertim in cardini­<lb/> bus C D, mouenti re&longs;i&longs;tit, & quod præcipuè mouere gubernator intendit. <lb/> </s> <s id="s.002737">cum igitur motum onus &longs;it intra vectis extrema, hypomoclion in extremo <lb/> ad B E, vbi in motu temonis tabella mare vrget, quod minimè cedit, <expan abbr="ip&longs;a&qacute;">ip&longs;aque</expan>; <lb/> in hoc motu ferè maneat, & fiat qua&longs;i centrum, circa quod totus temo cir­<lb/> cumducitur, patet temonem e&longs;&longs;e vectem &longs;ecundæ &longs;peciei, vt dicebam. </s> <s id="s.002738">quod <lb/> etiam hinc patere pote&longs;t, quia temo e&longs;t veluti remus, cuius &longs;calmus &longs;int car­<lb/> dines C, D. &longs;icut ergo remus e&longs;t vectis &longs;ecundi generis, cuius pondus e&longs;t <lb/>&longs;calmus, & mare hypomoclion; ita temo erit vectis eiu&longs;dem generis, cuius <lb/> pondus erit vbi cardines, fultura verò mare.</s> </p> <p type="main"> <s id="s.002739">Quærit igitur Ari&longs;t. vnde nam tantas vires paruus nauis temo guberna­<lb/> tori &longs;uggerat, <expan abbr="re&longs;pondet&qacute;">re&longs;pondetque</expan>; propterea id contingere, quod temo vectis na­<lb/> turam obtineat, cuius inquit onus e&longs;t mare, melius autem, vt dixi, dixi&longs;&longs;et <lb/> onus e&longs;&longs;e nauim, mare autem hypomoclion, mouens autem e&longs;t gubernator. <lb/> </s> <s id="s.002740">Differunt autem remus, & temo, quamuis <expan abbr="vterq;">vterque</expan> &longs;it vectis, quoniam remus <lb/> &longs;ecundum latitudinem nauis, &longs;eu ad latera nauis mari obnititur. </s> <s id="s.002741">temo au­<lb/> tem in directum ferè nauigij con&longs;titutus mare &longs;cindit. </s> <s id="s.002742">hinc fit, vt remus ad <lb/> nauem antror&longs;um rectà agitandam, gubernaculum verò ad eam in latera, <lb/>& obliquè contorquendam idoneum &longs;it. </s> <s id="s.002743">quoniam enim mare e&longs;t hypomo­<lb/> clion, fit vt dum gubernator mouet an&longs;am temonis in A, &longs;eu ad dextram, <lb/> &longs;eu ad &longs;ini&longs;tram &longs;ecum ad eandem partem trahat nauigium, quod temoni <lb/> e&longs;t connexum; ad <expan abbr="cõtrariam">contrariam</expan> tamen partem trahit ei, &longs;ecundum quam mare <lb/> impingit. </s> <s id="s.002744"><expan abbr="atq;">atque</expan> hoc pacto remus antror&longs;um, temo verò obliquè nauim agit.</s> </p> <p type="main"> <s id="s.002745">Po&longs;thæc &longs;equuntur huiu&longs;modi verba <emph type="italics"/>(In extremo autem, & non in medio <lb/> iacet, quoniam <expan abbr="mou&etilde;ti">mouenti</expan> facillimum est ab extremo motum mouere: prima enim pars <lb/>celerrimè fertur, quoniam quemadmodum in ijs, quæ feruntur in fine deficit latio, <lb/> &longs;ic ip&longs;ius continui in fine imbecili&longs;&longs;ima e&longs;t latio, imbecili&longs;&longs;ima autem ad <expan abbr="expell&etilde;dum">expellendum</expan> <lb/>est facilis, propter hæc igitur in puppi gubernaculum ponitur)<emph.end type="italics"/> quorum &longs;en&longs;us <lb/> videtur difficilis, <expan abbr="neq;">neque</expan> græcus textus excu&longs;andus e&longs;t, benè enim tran&longs;lata <lb/> &longs;unt. </s> <s id="s.002746">Piccolominæus quidem plura quàm Ari&longs;t. fatur, &longs;ed non clariora. </s> <s id="s.002747">dif­<lb/> ficultas e&longs;t in verbis illis <emph type="italics"/>(Prima enim pars celerrimè fertur)<emph.end type="italics"/> & in illis <emph type="italics"/>(Sic ip­<lb/>&longs;ius continui in fine imbecili&longs;&longs;ima e&longs;t latio)<emph.end type="italics"/> videtur velle dicere, quod quando <lb/> continuum aliquod proiectum fertur per aera, pars ip&longs;ius anterior ea e&longs;t, <lb/> quæ præ cæteris partibus principaliter mouetur, & ad cuius motum reliquæ <lb/>po&longs;teriores tanquam &longs;ub&longs;equentes moueantur; qua&longs;i dicat tota vis lationis <lb/> e&longs;t in anteriori parte: &longs;iue ip&longs;i impetus maior ine&longs;t: videmus enim proiecta, <lb/> quorum vna pars e&longs;t cæteris grauior, quia ei parti melius imprimitur mo­<lb/> tus, eam etiam fieri anteriorem in latione, quamuis initio fuerit po&longs;terior. <lb/> </s> <s id="s.002748">&longs;ic etiam quando graue fertur deor&longs;um, dicimus ip&longs;um ferri &longs;ecundum cen­<lb/> trum grauitatis ip&longs;ius, <expan abbr="ibi&qacute;">ibique</expan>; maiorem vim grauitandi exi&longs;tere, &longs;ic in proie­<lb/> ctis partem anteriorem dicere po&longs;&longs;umus e&longs;&longs;e, &longs;ecundum quam totum conti­<lb/> nuum fertur: <expan abbr="ibi&qacute;">ibique</expan>; totum e&longs;&longs;e impetum lationis, & propterea etiam maio­<lb/> ri impetu, <expan abbr="atq;">atque</expan> celerrimè ferri: & <expan abbr="con&longs;equ&etilde;ter">con&longs;equenter</expan> partem po&longs;teriorem, quam­<lb/> uis priorem æqua velocitate con&longs;equatur, non tamen tanto impetu, cum ip­<lb/>&longs;a ad alterius impetum moueatur, & propterea latio ip&longs;ius e&longs;t admodum <lb/> imbecillis.</s> </p> <pb pagenum="161" xlink:href="009/01/161.jpg"/> <p type="main"> <s id="s.002749">Si quis &longs;agittam per aerem latam à &longs;uo motu vellet deflectere, eam faci­<lb/> lius in po&longs;teriore parte à &longs;uo cur&longs;u deuiaret, quàm in anteriore. </s> <s id="s.002750">hunc con­<lb/> cinui corporis motum continuo proiectorum motui a&longs;&longs;imilat: quemadmo­<lb/> dum enim motus proiectorum in fine debilior lente&longs;cit: &longs;ic totum conti­<lb/> nuum in po&longs;trema parte &longs;egnius impellitur. </s> <s id="s.002751">Quia igitur nauis e&longs;t <expan abbr="cõtinuum">continuum</expan>, <lb/> quod vi remorum recta antror&longs;um fertur, & propterea maiore vi prora, <lb/> quàm puppis, facilius e&longs;t à &longs;uo directo cur&longs;u nauem deflectere, eam in pup­<lb/> pi, quàm in prora commouendo. </s> <s id="s.002752">hac igitur de cau&longs;a, gubernaculum puppi <lb/> affigitur. </s> <s id="s.002753">quæ quidem ratio, & quantum valeat, & an naui quadret, & num <lb/> benè &longs;it explicata, phy&longs;icorum e&longs;t iudicare.</s> </p> <p type="main"> <s id="s.002754">Ego tamen aliam huius rationem video, quia nimirum &longs;i temo in priori <lb/> parte e&longs;&longs;et, quando à rectitudine ip&longs;ius nauis ad dextram, aut ad &longs;ini&longs;tram <lb/>e&longs;&longs;et inclinandus, tunc quia aqua in vnam tantum ip&longs;ius partem, &longs;eu faciem <lb/> tota impingeret, in eam &longs;cilicet, quæ antror&longs;um re&longs;piceret, eam aqua re­<lb/> tror&longs;um &longs;imul cum tota naui auerteret, <expan abbr="&longs;ic&qacute;">&longs;icque</expan>; totam nauim inuerteret, ita <lb/> vt prora, cui adhæreret temo extrema fieret. </s> <s id="s.002755">impetus igitur aquæ, & naui­<lb/> gij temonati, cogit temonem e&longs;&longs;e po&longs;tremum non primum, nec medium. <lb/> </s> <s id="s.002756"><expan abbr="atq;">atque</expan> hinc oritur nece&longs;&longs;itas <expan abbr="eũ">eum</expan> po&longs;teriori parti affigendi. </s> <s id="s.002757">&longs;ubdit po&longs;tea aliam <lb/> eiu&longs;dem rationem, quia nimirum parua motione facta in puppi multo ma­<lb/> ius interuallum cogitur mutare prora; nam idem angulus, quo eius lineæ <lb/> &longs;unt longiores, eò maiorem &longs;ubten&longs;am &longs;ibi lineam re&longs;picit, quod facilè in <lb/> <figure id="id.009.01.161.1.jpg" place="text" xlink:href="009/01/161/1.jpg"/><lb/> ad&longs;cripta figura intueri licet; in qua duæ <lb/> lineæ A B, A C, continent angulum A, cui <lb/> angulo &longs;ubtenduntur tres lineæ parallelæ <lb/> F G, D E, B C, quarum B C, maxima e&longs;t, <lb/> quia ibi maiores, &longs;iue remotiores &longs;unt ab <lb/> angulo A, duæ rectæ A B, A C, ip&longs;um con­<lb/> tinentes, quod Geometricè per 4. 6. pro­<lb/> bari pote&longs;t. </s> <s id="s.002758">&longs;ic etiam facta motione, vel <lb/> parua in puppi, tota nauis transfertur ad <lb/> alium &longs;itum, ita vt prora multum aliò transferatur, quod non accideret, &longs;i <lb/> eadem motio fieret ad medium nauigij. </s> <s id="s.002759">propterea igitur apti&longs;&longs;imè puppi <lb/> gubernaculum connectitur.</s> </p> <p type="main"> <s id="s.002760"><arrow.to.target n="marg237"/></s> </p> <p type="margin"> <s id="s.002761"><margin.target id="marg237"/>247</s> </p> <p type="main"> <s id="s.002762">Ex ij&longs;dem etiam rationibus mathematicis patet, cur magis antror&longs;um <lb/> procedit nauigium, quàm remi ip&longs;ius palmula retror&longs;um: eadem enim ma­<lb/> gnitudo, ij&longs;dem mota viribus in aere plus, quàm in aqua progreditur. <lb/> </s> <s id="s.002763">Sit igitur A B, remus, G, verò &longs;calmus. </s> <s id="s.002764">A, autem in nauigio &longs;it remi initium. <lb/> </s> <s id="s.002765">B, verò in mari palmula. </s> <s id="s.002766">&longs;i igitur A, vbi D, transferatur, per totum &longs;pa­<lb/> tium A D, non permeabit tantumdem &longs;patij B, <expan abbr="v&longs;q;">v&longs;que</expan> ad E. <!-- KEEP S--></s> <s id="s.002767">B E, enim ponitur <lb/> æqualis ip&longs;i A D, &longs;ed minus interuallum propter re&longs;i&longs;tentiam aquæ ex &longs;up­<lb/> po&longs;itione percurret, quale e&longs;t B F, quod minus e&longs;t quàm A D, quare etiam li­<lb/> nea B G, abbreuiabitur, <expan abbr="erit&qacute;">eritque</expan>; veluti F Y, quæ etiam erit minor ip&longs;a D G, <lb/>quæ facta e&longs;t D Y, propter duo &longs;imilia triangula D Y A, B Y F, &longs;imilia au­<lb/> tem triangula &longs;unt ea, quorum anguli vnius &longs;unt æquales angulis alterius, <lb/> quo po&longs;ito &longs;unt etiam latera vnius proportionalia lateribus alterius, vt pa­<lb/> tet ex prima definitione 6. necnon ex quarta eiu&longs;dem demon&longs;tratione. </s> <s id="s.002768">hæc <pb pagenum="162" xlink:href="009/01/162.jpg"/><figure id="id.009.01.162.1.jpg" place="text" xlink:href="009/01/162/1.jpg"/><lb/> quidem duo triangula &longs;unt &longs;imi­<lb/> lia, & rectè concluditur F Y, mi­<lb/> nus e&longs;&longs;e quàm D Y, &longs;ed tamen <lb/> non videntur i&longs;ta propo&longs;itum <lb/> o&longs;tendere, quod erat, plus nauim <lb/> procedere, quàm palmulam re­<lb/> trocedere. </s> <s id="s.002769">Fateor quidem tex­<lb/> tum hunc e&longs;&longs;e ob&longs;curi&longs;&longs;imum, <lb/> <expan abbr="id&qacute;">idque</expan>; propterea fortè quia e&longs;t admodum corruptus, præ&longs;ertim circa chara­<lb/> cteres, qui corrigendi &longs;unt vti nos facimus. </s> <s id="s.002770">ne&longs;cio qua ratione Piccolomi­<lb/> neus videatur &longs;ibi locum hunc explica&longs;&longs;e. </s> <s id="s.002771">For&longs;itan addenda &longs;unt nonnulla <lb/> hoc pacto; cum initio remigationis ponamus remum in &longs;itu A B, in fine ve­<lb/> rò primæ impul&longs;ionis in D F, &longs;calmum verò circa medium remi in G, pri­<lb/> mo; vltimo erit etiam circa medium D F, vbi H, quare &longs;calmus tran&longs;latus <lb/> e&longs;t à G, ad H, <expan abbr="tota&qacute;">totaque</expan>; G H, perficit, quam deberet Ari&longs;tot. vt &longs;ibi con&longs;taret <lb/> probare e&longs;&longs;e maiorem ip&longs;a B F, quam palmula obiuit, & con&longs;equenter pro­<lb/> ba&longs;&longs;et nauigium plus proce&longs;&longs;i&longs;&longs;e, quàm palmula rece&longs;&longs;erit: quod propo&longs;ue­<lb/> rat. </s> <s id="s.002772">Verum hoc non demon&longs;trat; <expan abbr="neq;">neque</expan> ex præmi&longs;&longs;is deduci pote&longs;t. </s> <s id="s.002773">po&longs;tea <lb/> &longs;ubdit <emph type="italics"/>(Stans autem erit medium vbi e&longs;t G, in contrarium enim ip&longs;i, qu<foreign lang="greek"/>od in mari <lb/>e&longs;t, extremo B, procedit, vbi extremum in nauigio e&longs;t A, non procederet autem <lb/>vbi est D, ni&longs;i commoueretur nauigiŭm, & eò transferretur vbi e&longs;t remi principium)<emph.end type="italics"/><lb/> vbi in textu mendosè legitur C, pro G.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.002774">Sen&longs;us porrò horum verborum e&longs;t hic; &longs;i remus circa &longs;calmum G, verte­<lb/> retur, & tamen nauis ab eo non propelleretur, &longs;ed &longs;taret, tunc medium na­<lb/> uis maneret vbi G, per motum enim remi impellitur in contrarias partes <lb/> ip&longs;i palmulæ B, quæ e&longs;t in mari, quia &longs;equitur motum alterius extremi A, <lb/> manubrij &longs;cilicet remi, qui e&longs;t in naui: quod autem nauigium à remo mo­<lb/> neatur, &longs;ignum e&longs;t, quia manubrium A, non procederet vbi e&longs;t D, ni&longs;i pari­<lb/> ter cum remo nauigium illor&longs;um con&longs;equeretur. </s> <s id="s.002775">Hæc quidem Ari&longs;t. circa <lb/> motum nauigij imperfectè admodum ni&longs;i textus corruptionem cau&longs;etur, di­<lb/> xi&longs;&longs;e videatur. </s> <s id="s.002776">Quapropter operæpretium me facturum exi&longs;timo, &longs;i Petri <lb/> Nonij acuti&longs;&longs;imi Mathematici, &longs;ubtili&longs;&longs;imas, <expan abbr="&longs;citu&qacute;">&longs;cituque</expan>; digni&longs;&longs;imas in præ&longs;ens <lb/>problema annotationes hoc loco de&longs;crip&longs;ero, ex quibus perfectè, ac ma­<lb/> thematicè toti huic quæ&longs;tioni fit &longs;atis, quæ &longs;ic &longs;e habent.</s> </p> <p type="head"> <s id="s.002777"><emph type="italics"/>In Problema Mechanicum Arist. de motu Nauigij <lb/> ex remis, annotatio Petri Nonij.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.002778">Cvm olim di&longs;cipulis no&longs;tris mechanicas Ari&longs;t. quæ&longs;tiones interpre­<lb/> taremur, nonnulla circa problema illud annotauimus, cur magis <lb/> procedat nauigium, quam remi palmula in contrarium. </s> <s id="s.002779">Ari&longs;tot. <lb/> enim ratiocinatio ob&longs;cura e&longs;t; quam nos tamen, vt aliquid lucis <lb/> haberet, ad hunc modum explicauimus; & propter materiæ &longs;imilitudinem <lb/> hi&longs;ce no&longs;tris libris de nauigandi ratione adiunximus. </s> <s id="s.002780">Supponit autem ip&longs;e <lb/> auctor remi palmulam retrocedere, quoties nauigium in anteriora progre­ <pb pagenum="163" xlink:href="009/01/163.jpg"/>ditur, <expan abbr="locum&qacute;">locumque</expan>; &longs;calmi, &longs;uper quo circulari motu remus vertitur, in medio <lb/> ip&longs;ius remi po&longs;itum e&longs;&longs;e, vt &longs;cilicet tantum di&longs;tet à manubrio, quantum à <lb/> palmula. </s> <s id="s.002781">Duæ <expan abbr="itaq;">itaque</expan> rectæ lineæ ponantur æquales A B, & D E, quæ quidem <lb/> in C, puncto medio &longs;e inuicem &longs;ecent, & connectantur A B, & D E: remus <lb/> autem in initio vnius remigationis po&longs;itionem habeat rectam lineam A B, <lb/> <expan abbr="&longs;it&qacute;">&longs;itque</expan>; A, manubrium; B, palmula; C, verò &longs;calmus. </s> <s id="s.002782">Cum igitur A, remi ca­<lb/> put in fine ip&longs;ius remigationis eò tran&longs;latum fuerit D, non erit B, vbi E; &longs;i <lb/> <figure id="id.009.01.163.1.jpg" place="text" xlink:href="009/01/163/1.jpg"/><lb/> enim ibi fuerit; remus igitur po&longs;itionem <lb/> habebit rectam lineam D E; & quoniam <lb/> contrapo&longs;iti anguli, qui ad C, æquales &longs;unt, <lb/> & duo latera A C, & D C, trianguli A D C, <lb/> duobus lateribus B C, & C E, trianguli B­<lb/> E C, æqualia etiam &longs;unt: reliqui igitur an­<lb/> guli, <expan abbr="atq;">atque</expan> ba&longs;es ip&longs;orum <expan abbr="triãgulorum">triangulorum</expan> æqua­<lb/> les erunt per 4. propo&longs;itionem primi libri <lb/> Euclidis, & propterea tantum &longs;patium per­<lb/> curret B, quantum A: &longs;calmus verò C, im­<lb/> motus omninò erit: & nauigium idcircò, in <lb/> quo ip&longs;e &longs;calmus, immotum etiam erit con­<lb/> tra hypothe&longs;im. </s> <s id="s.002783">&longs;upponitur enim in que&longs;tio­<lb/> ne, quod nauigium illa remigatione in anteriora moueatur, remi verò pal­<lb/> mula retrocedat. </s> <s id="s.002784">Scalmus porrò quamquam circularis remi motus expers <lb/> &longs;it; motu tamen nauigij commouetur. </s> <s id="s.002785">Remus igitur po&longs;itionem habeat in <lb/>fine ip&longs;ius remigationis rectam lineam D Z, quæ quidem rectam A B, &longs;ecet <lb/> in T, inter B, & C; rectam verò B E, in Z. <!-- KEEP S--></s> <s id="s.002786">Et quoniam duo coalterni anguli <lb/> C A D, & C B E, æquales <expan abbr="o&longs;t&etilde;&longs;i">o&longs;ten&longs;i</expan> &longs;unt, & angulus A T D, contrapo&longs;ito B T Z, <lb/> æqualis e&longs;t: duo igitur triangula A T D, & B Z T, æquiangula erunt per 32. <lb/> primi, & communem &longs;ententiam. </s> <s id="s.002787">Similia <expan abbr="itaq;">itaque</expan> erunt ip&longs;a triangula, <expan abbr="late-ra&qacute;">late­<lb/> raque</expan>; habebunt proportionalia per 4. 6. &longs;icut A T, ad B T, ita D A, ad B Z. <lb/> <!-- KEEP S--></s> <s id="s.002788">Maior e&longs;t autem A T, quàm B T: maior igitur D A, quàm B Z, quod etiam <lb/> per <expan abbr="cõmunem">communem</expan> <expan abbr="&longs;ent&etilde;tiam">&longs;ententiam</expan> neglecta <expan abbr="triangulorũ">triangulorum</expan> &longs;imilitudine concludi pote&longs;t.</s> </p> <p type="main"> <s id="s.002789">Maius <expan abbr="itaq;">itaque</expan> &longs;patium decurrit manubrium, quàm remi palmula, <expan abbr="atq;">atque</expan> illuc <lb/> tran&longs;uehetur nauigium, quò remi capulus deportatus fuerit: nauigium igi­<lb/> tur in diuer&longs;a procedens, plus &longs;patij, quàm remi palmula tran&longs;mittet. </s> <s id="s.002790">Vti­<lb/> mur aurem tralatione, <expan abbr="atq;">atque</expan> demon&longs;trationis figura Victoris Fau&longs;ti. </s> <s id="s.002791">Aduer­<lb/> tendum e&longs;t tamen, quod cum remus po&longs;itionem habuerit D Z, remi palmu­<lb/> la erit infra Z. <!-- KEEP S--></s> <s id="s.002792">Nam quoniam <expan abbr="triãguli">trianguli</expan> A D C, duo latera A C, & D C, æqua­<lb/>lia po&longs;ita &longs;unt: duo igitur anguli, qui ad D, & A, æquales erunt: angulus <lb/> igitur A D T, angulo D A T, maior erit: & idcircò latus A T, trianguli A­<lb/> T D, latere D T, maius erit per 19. primi. </s> <s id="s.002793">Aæqualis porrò o&longs;ten&longs;us e&longs;t an­<lb/> guius B Z T, angulo A D T, præterea angulus D A T; angulo T B Z, æqua­<lb/> lis: angulus igitur B Z T, angulo T B Z, maior erit, & propterea latus B T, <lb/> trianguli B T Z, latere T Z, maius erit: tota igitur recta linea A B, tota <lb/> D Z, maior erit: & idcircò cum remus po&longs;itionem habuerit rectam lineam <lb/> D Z palmula erit vltra Z. <!-- KEEP S--></s> <s id="s.002794">E&longs;to igitur in K, & connectantur rectæ lineæ B D, <lb/>& B K: &longs;patium igitur decur&longs;um ab ip&longs;a palmula non erit B Z, &longs;ed B K: quod <pb pagenum="164" xlink:href="009/01/164.jpg"/>quidem minus etiam o&longs;tendemus e&longs;&longs;e ip&longs;o D A. <!-- KEEP S--></s> <s id="s.002795">Nam quoniam duo latera <lb/> B D, & D K, trianguli B D K, duobus lateribus B D, & D E, <expan abbr="triãguli">trianguli</expan> B E D, <lb/>æqualia &longs;unt, &longs;ed minor e&longs;t angulus B D K, angulo B D E: minor igitur erit <lb/> ba&longs;is B K, ba&longs;e B E, per 24. primi, quod demon&longs;trandum erat</s> </p> <p type="main"> <s id="s.002796">Præterea, quod Ari&longs;t. ratiocinando &longs;umit tantum &longs;patium conficere na­<lb/> uigium, quantum remi manubrium, ambiguum e&longs;t. </s> <s id="s.002797">Nam remi manubrium <lb/> duabus fertur motionibus: vna propria, <expan abbr="circulari&qacute;">circularique</expan>; &longs;uper &longs;calmo: altera <lb/> verò, qua vnà fertur cum ip&longs;o nauigio. </s> <s id="s.002798">&longs;patium igitur, quod omninò decur­<lb/>&longs;um e&longs;t à remi manubrio, eo quod à nauigio confectum e&longs;t, maius erit. </s> <s id="s.002799">At <lb/> &longs;i paria &longs;patia decur&longs;a e&longs;&longs;e intelligat à remi manubrio motu proprio, & à <lb/> nauigio, <expan abbr="neq;">neque</expan> hoc difficultate caret. </s> <s id="s.002800">Nam nauigium interdum maius &longs;pa­<lb/> tium percurret, interdum minus, iuxta remigum vires, & prout mari remi <lb/> palmula immer&longs;a fuerit: remi verò manubrium tamet&longs;i ab exiguis viribus <lb/> moueatur haud minorem tamen ambitum de&longs;cribet, quàm &longs;i à multo ma­<lb/> iore virtute moueretur. </s> <s id="s.002801">Quapropter, vt huiu&longs;modi Ari&longs;t. &longs;ententiam exa­<lb/>minaremus, Theoremata, quæ &longs;equuntur, demon&longs;trauimus.</s> </p> <p type="head"> <s id="s.002802"><emph type="italics"/>PROPOSITIO PRIMA.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.002803">Si Remiges nauigium mouere po&longs;&longs;unt, maius &longs;emper &longs;pa­<lb/> tium remi manubrium percurrit, quàm nauigium.</s> </p> <p type="main"> <s id="s.002804">Sit enim remus A C, manubrium A, &longs;calmus B, qui propter nauigij <lb/>motum &longs;patium percurrat à B, in D, in quo loco ip&longs;e remus A C, &longs;i­<lb/> <figure id="id.009.01.164.1.jpg" place="text" xlink:href="009/01/164/1.jpg"/><lb/> tum rectitudinis habeat E F. <!-- KEEP S--></s> <s id="s.002805">Spatium <lb/>itaque, quod A, conficit, curua linea <lb/> &longs;it A E, cui recta linea re&longs;pondeat A Z, in re­<lb/>ctam E F, perpendicularis. </s> <s id="s.002806">Nauigium verò <lb/>idem &longs;patium conficiet, quod &longs;calmus B: aio <lb/> igitur ip&longs;am A Z, rectam lineam, recta B D, <lb/> maiorem e&longs;&longs;e. </s> <s id="s.002807">&longs;ecet enim recta A C, rectam <lb/> E F, in G: æquiangula &longs;unt igitur bina trian­<lb/> gula A G Z, & B G D, quapropter &longs;icut A G, <lb/> ad B G, &longs;ie A Z, ad B D, per. </s> <s id="s.002808">4. 6. libri Eucli­<lb/>dis: maior e&longs;t autem A G, ip&longs;a B G, & maior <lb/> igitur erit A Z, quam B D. & proinde maius <lb/> &longs;patium remi manubrium percurrit, quam <lb/> nauigium, quod demon&longs;trandum erat.</s> </p> <p type="main"> <s id="s.002809">Quod &longs;i à puncto B, rectam lineam vtrinque <lb/> ducamus H K, ad remi men&longs;uram, rectos facientem angulos cum B D, <expan abbr="re-ctam&qacute;">re­<lb/> ctamque</expan>; A Z, &longs;ecantem in I, manife&longs;tè intelligemus ip&longs;am rectam A Z, con­<lb/> &longs;tare ex A I, & I Z, quarum prior re&longs;pondet curuæ A H, quæ motu proprio <lb/> manubrij de&longs;cripta e&longs;t; po&longs;terior verò æqualis e&longs;t rectæ B D, quæ motu na­<lb/> uigij decur&longs;a e&longs;t.</s> </p> <pb pagenum="165" xlink:href="009/01/165.jpg"/> <p type="head"> <s id="s.002810"><emph type="italics"/>PROPOSITIO SECVNDA.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.002811">Si remi manubrium motu proprio, & nauigium, æqualia <lb/> &longs;patia pertran&longs;ierint, fieri non poterit, vt palmula mo­<lb/> ueatur: &longs;ed veluti centrum immota manebit.</s> </p> <p type="main"> <s id="s.002812">Esto iterum remus A C, manubrium A, &longs;calmus B: tantum autem &longs;pa­<lb/> tium conficiat nauigium; quantum motu proprio A. Dico, quod C, <lb/> remi palmula immota manebit. </s> <s id="s.002813">Nam &longs;i a loco &longs;uo dimota fuerit: <lb/> &longs;patium igitur permeet C D, ad po&longs;teriora: quo quidem decur&longs;o, <lb/>remus A C, po&longs;itionem rectitudinis habeat F D, &longs;calmus <expan abbr="itaq;">itaque</expan> B, tran&longs;latus <lb/> erit in G. <!-- KEEP S--></s> <s id="s.002814">Excitetur autem à puncto B, in <expan abbr="vtramq;">vtramque</expan> partem linea E B R, ad <lb/> <figure id="id.009.01.165.1.jpg" place="text" xlink:href="009/01/165/1.jpg"/><lb/> rectos angulos &longs;uper B G, & à <expan abbr="pũcto">puncto</expan> A, recta A H, <lb/> &longs;uper D F: itemque à puncto E, recta C E, &longs;uper <lb/> E R; ip&longs;arum verò rectarum linearum E R, & <lb/> A H, &longs;ectio &longs;it in K, &longs;ed C F., & D F, &longs;it in Z, & quo­<lb/> niam A K, id &longs;patium e&longs;t, quod motu proprio re­<lb/> mi manubrium permeauit, curuilineo enim re­<lb/> &longs;pondeat A R, recta autem B G, id &longs;patium e&longs;t, <lb/> quod nauigium confecit: ip&longs;æ igitur rectæ lineæ <lb/> H K, & B G, æquales erunt. </s> <s id="s.002815">Atqui in duobus æqui­<lb/> angulis triangulis E B C, & B A K, vel per 26. <lb/> propo&longs;itionem primi Euclidis, vel 4. 6. æquales <lb/> e&longs;&longs;e concludes A K, & E C, rectas lineas: quapro­<lb/> pter æqualis erit E C, rectæ B G, per communem <lb/> &longs;ententiam: eidem autem B G, æqualis e&longs;t E Z, <lb/> in parallelogrammo, per 34. propo&longs;itionem ip­<lb/> &longs;ius primi libri: æqualis igitur erit recta E Z, re­<lb/> ctæ E C, pars toti, quod e&longs;t impo&longs;&longs;ibile. </s> <s id="s.002816">Et pro­<lb/> pterea immota manebit palmula C, quod erat à <lb/> nobis o&longs;tendendum.</s> </p> <p type="head"> <s id="s.002817"><emph type="italics"/>PROPOSITIO TERTIA.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="head"> <s id="s.002818">Si remi manubrium motu proprio duplum confecerit &longs;pa­<lb/> tium, quàm nauigium, tantum prouehetur ea remiga­<lb/> tione nauigium, quantum palmula retroce&longs;&longs;erit.</s> </p> <p type="main"> <s id="s.002819">Remus enim incipiente motu po&longs;itionem habeat A C, de&longs;inente <lb/> verò rectitudinis &longs;itum F G. &longs;calmus igitur B, propter nauigij <lb/>motum, &longs;patium conficiet B D. <!-- KEEP S--></s> <s id="s.002820">Excitetur à puncto B, in <expan abbr="vtramq;">vtramque</expan> <lb/> partem perpendicularis E Z, in quam veniant a punctis A, & C, <lb/>ad rectos angulos rectæ lineæ A E, & C Z: &longs;patium autem A E, à manubrio <pb pagenum="166" xlink:href="009/01/166.jpg"/><figure id="id.009.01.166.1.jpg" place="text" xlink:href="009/01/166/1.jpg"/><lb/> decur&longs;um motu proprio &longs;patij B D, duplum <lb/> &longs;it: recta verò linea C H, curuæ re&longs;pondeat <lb/> C G, quæ à remi palmula de&longs;cripta e&longs;t. </s> <s id="s.002821">Di­<lb/> co ip&longs;as rectas lineas B D, & C H, æquales <lb/> e&longs;&longs;e. </s> <s id="s.002822">Nam in duobus triangulis B A E, & <lb/> C B Z, duæ rectæ lineæ A E, & C Z, æqua­<lb/> les &longs;unt. </s> <s id="s.002823">In parallelogrammo autem B H, <lb/> duæ B D, & H Z, æquales, atqui recta A E, <lb/> dupla e&longs;t rectæ B D, per hypothe&longs;im; dupla <lb/> e&longs;t igitur, & C Z, rectæ H Z, quapropter <lb/> C H, & H Z, æquales erunt, Duæ igitur <lb/> C H, & B D, æquales per communem &longs;en­<lb/> tentiam.</s> </p> <p type="main"> <s id="s.002824">Et quia nauigium tantum &longs;patium de­<lb/> currit &longs;emper, quantum &longs;calmus: &longs;i igitur <lb/> remi manubrium motu proprio duplum <lb/> confecerit &longs;patium, quàm nauigium, tan­<lb/> tum prouehetur nauigium, quantum pal­<lb/> mula retroce&longs;&longs;erit, quod demon&longs;trandum <lb/> erat.</s> </p> <p type="head"> <s id="s.002825"><emph type="italics"/>PROPOSITIO QVARTA.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.002826">Si nauigium minus &longs;patium decurrat, quàm remi manu­<lb/> brium, &longs;ed &longs;upra dimidium, magis prouehetur, quàm pal­<lb/> mula retrocedat; &longs;i verò citra dimidium, minus.</s> </p> <p type="main"> <s id="s.002827">In de&longs;cripta enim figura ponatur B D, minor quam A E, &longs;ed eius dimi­<lb/> dio maior. </s> <s id="s.002828">Dico, quod ip&longs;a B D, maior e&longs;t quàm C H. <!-- KEEP S--></s> <s id="s.002829">Nam B D, & <lb/> H Z, æquales &longs;unt: Ad hæc A E, & C Z, æquales &longs;unt rectæ lineæ; ma­<lb/> ior igitur erit H Z, dimidio ip&longs;ius A E: quapropter reliqua C H, mi­<lb/> nor dimidio erit eiu&longs;dem A E, & minor igitur erit C H, quàm B D. <!-- KEEP S--></s> <s id="s.002830">Spa­<lb/> tium autem B D, id e&longs;t, quod nauigium conficit, &longs;patium verò C H, remi <lb/> palmula in contrarium decurrit; idcircò prior pars Theorematis vera e&longs;t. <lb/> </s> <s id="s.002831">Po&longs;terior autem &longs;imiliter o&longs;tendetur. </s> <s id="s.002832">&longs;i enim B D, minor e&longs;t dimidio ip&longs;ius <lb/> A E: minor igitur erit, & H Z, dimidio eiu&longs;dem A E; & quoniam A E, & <lb/> C Z, æquales &longs;unt: reliqua igitur C H, dimidio eiu&longs;dem A E, maior erit: & <lb/> proinde minor erit B D, quàm C H. <!-- KEEP S--></s> <s id="s.002833">Nauigium igitur minus &longs;patium de­<lb/> curret in anteriora, quam remi palmula in contrarium, quod demon&longs;tran­<lb/> dum &longs;u&longs;cepimus.</s> </p> <p type="head"> <s id="s.002834"><emph type="italics"/>Corollarium.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.002835">Ex hac, & præcedenti infertur, quod &longs;i remi manubrium motu proprio <lb/> maius &longs;patium decurrat, quàm nauigium, &longs;iue id &longs;it duplum, &longs;iue mi­ <pb pagenum="167" xlink:href="009/01/167.jpg"/>nus duplo, &longs;iue maius duplo, &longs;patium, quod nauigium interim decurrit ad <lb/> anteriora, & quod palmula remi in contrarium &longs;imul iuncta, ei quod ip&longs;um <lb/> remi manubrium motu proprio conficit, æqualia erunt. </s> <s id="s.002836">&longs;emper enim B D, <lb/> æqualis e&longs;t H Z: tota verò C Z, quæ æqualis e&longs;t A E, ex &longs;uis partibus C H, <lb/> & H Z, con&longs;tabit.</s> </p> <p type="head"> <s id="s.002837"><emph type="italics"/>Propo&longs;itionis conuer&longs;io.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.002838">Si nauigium longius progrediatur, quàm remi palmula re­<lb/> trocedat, &longs;patium conficiet plu&longs;quam dimidium eius, <lb/> quod motu proprio remi manubrium decurrit: <lb/> &longs;i minus, citra dimidium.</s> </p> <p type="head"> <s id="s.002839"><emph type="italics"/>Huius demon&longs;tratio ex &longs;upradictis facilè colligi poterit.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.002840"><emph type="italics"/>PROPOSITIO QVINTA.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.002841">Si celerius feratur nauigium, quàm remi manubrium, mo­<lb/> uebitur palmula in vlteriora, <expan abbr="nil&qacute;">nilque</expan>; vnquam retroce­<lb/> det, <expan abbr="id&qacute;">idque</expan>; &longs;patium decurret, quo nauigij motus <lb/> motum manubrij &longs;uperat.</s> </p> <p type="main"> <s id="s.002842">Habeat enim remus incipiente motu po&longs;itionem A C: de&longs;inente <lb/> <figure id="id.009.01.167.1.jpg" place="text" xlink:href="009/01/167/1.jpg"/><lb/> verò <expan abbr="&longs;itũ">&longs;itum</expan> rectitudinis F G. &longs;cal­<lb/> mus igitur B, propter nauigij <lb/> motum tran&longs;latus, erit in D, &longs;it <lb/> <expan abbr="itaq;">itaque</expan> &longs;patium B D, maius quàm A H, à re­<lb/> mi manubrio motu proprio decur&longs;um: &longs;ic <lb/> enim celerius dicetur ferri <expan abbr="nauigiũ">nauigium</expan>, quàm <lb/> manubrium. </s> <s id="s.002843">Dico, quòd palmula C, in <lb/> vlteriora mouebitur. </s> <s id="s.002844">Nam cum &longs;calmus <lb/> B, prouectus fuerit in D: tran&longs;lata erit ip­<lb/>&longs;a palmula C, vbi G, in rectitudinis &longs;itu, <lb/> <expan abbr="&longs;patium&qacute;">&longs;patiumque</expan>; conficiet C G, curuilineum, cui <lb/> re&longs;pondet C K: mouebitur igitur palmula <lb/> in vlteriora. </s> <s id="s.002845">Nihil autem vnquam retro­<lb/> cedere, o&longs;tendetur in hunc modum. </s> <s id="s.002846">eadem <lb/> enim celeritate mouentur A, in H, & C, <lb/> ver&longs;us I, circa &longs;calmum. </s> <s id="s.002847">Atqui per hypo­<lb/> the&longs;im celerius fertur nauigium, quam A. <lb/> in H, celerius igitur ip&longs;um nauigium fer­<lb/>tur, quàm C, ver&longs;us I. &longs;ed mouetur idem <pb pagenum="168" xlink:href="009/01/168.jpg"/>C. ip&longs;a nauigij celeritate ver&longs;us K; celerius igitur ferretur C, ad K, quam <lb/> ad I, quapropter nihil vnquam retrocedet ip&longs;um C, imò verò in vlteriora <lb/> progredietur, <expan abbr="&longs;patium&qacute;">&longs;patiumque</expan>; decurret C K, quod quidem relinquitur detracto <lb/> I C, ex I K. &longs;i enim remi palmula tota ip&longs;a nauigij celeritate moueretur, vl­<lb/> tra K, progrederetur, cum B, perueniret ad D: &longs;ed retrahitur interim, pro­<lb/> pter eum motum, qui fit circa B. <!-- KEEP S--></s> <s id="s.002848">Sic igitur palmulæ celeritate, quæ à mo­<lb/> tu nauigij prouenit retardata, decur&longs;um &longs;patium erit C K. <!-- KEEP S--></s> <s id="s.002849">Videtur autem <lb/> &longs;olo remorum impul&longs;u hoc fieri non po&longs;&longs;e, &longs;ed alia in&longs;uper virtute impel­<lb/> lente opus e&longs;&longs;e, vt venti, vel aquæ.</s> </p> <p type="main"> <s id="s.002850">Ex his Theorematis liquet, inquit Nonius, quàm incerta interroget Ari­<lb/> &longs;toteles, & quàm in&longs;citè re&longs;pondeat. </s> <s id="s.002851">Nam non continuò &longs;i nauigium in an­<lb/>teriora mouetur, remi palmula retrocedet; neque etiam &longs;i retrocedat, mi­<lb/> nus &longs;patìum tran&longs;mittit in contrarium, quàm nauigium progrediatur. </s> <s id="s.002852">De­<lb/> mon&longs;trant hoc &longs;ecunda, & tertia propo&longs;itio. </s> <s id="s.002853">Remi verò manubrium motu <lb/> proprio, qui circa &longs;calmum fit, & vnà cum nauigij motu maius &longs;patium con­<lb/> ficit quàm nauigium. </s> <s id="s.002854">&longs;olo autem proprio motu, &longs;i contingat tantum &longs;pa­<lb/> tium conficere, quantum nauigium, fieri non poterit, vt palmula mouea­<lb/> tur. </s> <s id="s.002855">fru&longs;tra igitur conatur in vniuer&longs;um demon&longs;trare remi manubrium ma­<lb/> ius &longs;patium decurrere, quàm palmulam in contrarium. </s> <s id="s.002856">Præterea quando <lb/> nauigium <expan abbr="lõgius">longius</expan> progreditur, quàm remi palmula regrediatur, minus &longs;pa­<lb/> tium decurrit, quam manubrium: igitur hon æquale. </s> <s id="s.002857">Et proinde con&longs;tat <lb/> neque veritatem in propo&longs;ito, neque demon&longs;trationem in ijs, quæ conge­<lb/> rit, reperiri.</s> </p> <p type="main"> <s id="s.002858">Huiu&longs;que Petrus Nonius:</s> </p> <p type="main"> <s id="s.002859">Reliqua huius textus vtinam quemadmodum &longs;unt clara, ita etiam vera <lb/> e&longs;&longs;ent: &longs;ed quia quæ modo dixit de remo, eadem temoni applicat propte­<lb/> rea ij&longs;dem etiam obnoxia &longs;unt difficultatibus.</s> </p> <p type="head"> <s id="s.002860"><emph type="italics"/>QVÆSTIO SEXTA<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.002861"><emph type="italics"/>De Antenna.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.002862"><arrow.to.target n="marg238"/></s> </p> <p type="margin"> <s id="s.002863"><margin.target id="marg238"/>248</s> </p> <p type="main"> <s id="s.002864">Qværit cur quanto Antenna &longs;ublimior fuerit, ij&longs;dem velis, & vento <lb/> eodem celerius ferantur nauigia. </s> <s id="s.002865">Re&longs;pondet inde id prouenire, <lb/> quia malus, &longs;iue arbor nauis in huiu&longs;modi ventorum impul&longs;u ve­<lb/> ctis euadit, cuius auxilio idem ventus, qui mouens e&longs;t, maiorem <lb/> vim acquirit, quanto longior fuerit pars vectis, quæ inter hypomoclion, & <lb/> vim mouentem intercipitur: quando autem altior fuerit antenna, tunc ea <lb/> vectis pars longior euadit, & propterea accidit, vt vires ventorum augean­<lb/> tur. </s> <s id="s.002866">&longs;ed i&longs;ta melius in figura in&longs;piciamus. </s> <s id="s.002867">&longs;it nauis A B, cuius arbor C D E, <lb/> antenna F C G, velum F G H, vectis e&longs;t arbor, cuius fultura e&longs;t in E, extre­<lb/> mo mali in fundo nauis, onus autem in D, vbi malus exit è carina. </s> <s id="s.002868">mouens <lb/> potentia e&longs;t ventus, qui mouet in antenna F C G. quanto igitur &longs;ublimior <lb/> e&longs;t antenna, tanto longior euadit vectis E C, <expan abbr="tanto&qacute;">tantoque</expan>; maiores fiunt venti <lb/> vires. </s> <s id="s.002869">dixi autem onus e&longs;&longs;e in D, quia &longs;i nauis vento ob&longs;i&longs;teret, ip&longs;a inuerte­<lb/>retur hac ratione, vt puppis A, eleuata, prora B, demergeretur, manente <pb pagenum="169" xlink:href="009/01/169.jpg"/><figure id="id.009.01.169.1.jpg" place="text" xlink:href="009/01/169/1.jpg"/><lb/> veluti centro parte E. quia ve­<lb/> rò ob maris liquiditatem na­<lb/>uis minimè ob&longs;i&longs;tit, &longs;ed facilè <lb/> cedens à ventis vrgetur, hinc <lb/> fit, vt meritò dixerim pondus <lb/> nauis e&longs;&longs;e ad D, fulcimentum <lb/> verò ad E.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.002870">Quæ&longs;tio &longs;eptima, & &longs;atis per <lb/> &longs;e clara e&longs;t; <expan abbr="neq;">neque</expan> Mathemati­<lb/> ci e&longs;t eam exponere.</s> </p> <p type="head"> <s id="s.002871"><emph type="italics"/>QVÆSTIO OCTAVA<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.002872"><emph type="italics"/>De Rota.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="head"> <s id="s.002873">Cur ex figurarum genere quæcunque rotundæ &longs;unt, & cir­<lb/> culares facilius mouentur?</s> </p> <p type="main"> <s id="s.002874"><arrow.to.target n="marg239"/></s> </p> <p type="margin"> <s id="s.002875"><margin.target id="marg239"/>249</s> </p> <p type="main"> <s id="s.002876">Tribus autem modis circulum rotari contingit; aut enim &longs;ecun­<lb/> dum ap&longs;idem, &longs;iue curuaturam centro &longs;imul moto, quemadmo­<lb/> dum plau&longs;trorum rotæ vertuntur: aut circa manentem axem, <lb/> tanquam centrum veluti rotulæ illæ, ex quibus trochlea compo­<lb/> nitur; vel quibus ad puteos vtimur, quæ quidem rectæ ad horizontem &longs;o­<lb/> lent con&longs;titui. </s> <s id="s.002877">aut quem ad modum rota figuli, quæ pariter circa <expan abbr="man&etilde;s">manens</expan> cen­<lb/> trum gyratur, &longs;ed qua&longs;i pro&longs;trata horizonti æquidi&longs;tans collocata e&longs;t. </s> <s id="s.002878">Quæ <lb/> igitur primo modo mouentur, fortè facilius quam figuræ rectilineæ, vt &longs;unt <lb/> triangulares, quadratæ, pentagonæ, &c. </s> <s id="s.002879">mouentur, quia circulares figuræ <lb/> parua &longs;ui parte, & qua&longs;i in puncto planum, &longs;eu pauimentum contingunt, vn­<lb/> de fit, vt <expan abbr="neq;">neque</expan> offen&longs;ent, <expan abbr="neq;">neque</expan> impingant; cuius cau&longs;a e&longs;t, quia à terra &longs;emo­<lb/> tus e&longs;t angulus, ide&longs;t tali angulo planum contingunt, vt ab eo &longs;tatim rotæ <lb/> curuatura à terra eleuari incipiat, & propterea parum terræ hæreat: in fi­<lb/> guris verò rectilineis, in quadrata. </s> <s id="s.002880">v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;ecus accidit, quia ab angulo ad an­<lb/> gulum linea recta tenditur, vnde in ip&longs;ius volutatione po&longs;t contactum vnius <lb/> anguli tota recta linea &longs;equens, plano adaptabitur, & non &longs;emouebitur &longs;ta­<lb/> tim in altum, & ideò multum offen&longs;abit, & impinget, <expan abbr="tarde&qacute;">tardeque</expan>; idcircò mo­<lb/> uebitur. </s> <s id="s.002881">Præterea circulares etiam, &longs;i cui obuiam fiunt corpori, illud &longs;imi­<lb/>liter &longs;ecundum pu&longs;illum tangunt: rectilineæ verò figuræ, rectitudine &longs;ua <lb/> plani multum contingerent. </s> <s id="s.002882">Ad hæc motor mouens huiu&longs;modi rotas, eas <lb/> mouet, quò nutant: nam quando rota erecta e&longs;t &longs;uper pauimentum, dia­<lb/>meter ip&longs;ius, quæ à contactu pauimenti ad angulos rectos, ad &longs;upremum <pb pagenum="170" xlink:href="009/01/170.jpg"/>rotæ perducitur totum rotæ pondus in duas æquas partes diuidit, ita vt ta­<lb/> le pondus in æquilibrio con&longs;tituatur, cum ex vna parte tantum &longs;it, quantum <lb/> ex altera; ex quo fit, vt vel exigua vis ip&longs;am impellere valeat: quando enim <lb/> duo æqualia pondera &longs;unt in æquilibrio, quelibet vis pote&longs;t ea ab æquilibrio <lb/> dimouere. </s> <s id="s.002883">quando po&longs;tea rota e&longs;t in motu, vel cum primum ei motus fuerit <lb/> à motore inditus, &longs;emper nutat ad partes illas, ad quas primum fuit incita­<lb/> ta per impre&longs;&longs;am motionem, quapropter nullo negotio ad ea&longs;dem partes, <lb/> &longs;eu antror&longs;um mouetur; quò enim <expan abbr="vnumquodq;">vnumquodque</expan> vergit, illuc facillimè fer­<lb/> tur: quemadmodum è contrario difficillimum e&longs;t in contrariam nutus &longs;ui <lb/> partem vnumquodque pellere. </s> <s id="s.002884">Huc etiam pertinet, quod nonnulli dicunt, <lb/> circuli nimirum periphæriam perenni ver&longs;ari motu, <expan abbr="atq;">atque</expan> hinc facilius mo­<lb/> ueri. </s> <s id="s.002885">&longs;icuti etiam dicunt, quod manentia propterea manent, quia contrani­<lb/> tuntur, & ob&longs;i&longs;tunt mouenti: quod fortè dicebant propter maximam circu­<lb/>li ad motum aptitudinem. </s> <s id="s.002886">& quia &longs;icut diameter ad diametrum, ita maio­<lb/> ris circuli periphæria ad minoris periphæriam (vt po&longs;tea o&longs;tendam) & quia <lb/> quo <expan abbr="lõgior">longior</expan> diameter e&longs;t, eò facilius, vt initio probaui, mouetur, fit vt etiam <lb/> periphæria maioris facilius, quàm minoris moueatur, &longs;iue dixeris, quod an­<lb/> gulus maioris circuli ad angulum minoris nutum quendam habet; & quia <lb/> facilius mouetur angulus maioris, quàm minoris, fit, vt maior rota adhi­<lb/> beatur ad minorem mouendam: & quia intra maiorem infinitæ circa idem <lb/> centrum concipi po&longs;&longs;unt, hinc fit, vt rotæ maiores facilius moueantur, & <lb/> motæ moueant cæteras intra &longs;e contentas. </s> <s id="s.002887">quod dictum e&longs;t de nutu anguli <lb/> maioris circuli ad angulum minoris ex appo&longs;ita figura facilè patebit, vbi <lb/> <figure id="id.009.01.170.1.jpg" place="text" xlink:href="009/01/170/1.jpg"/><lb/> pro minore angulo intelligendus e&longs;t arcus C B, <lb/> pro maiore autem arcus D E, quorum <expan abbr="vterq;">vterque</expan> vo­<lb/> catur angulus, quoniam angulo A, qui e&longs;t in cen­<lb/> tro opponuntur. </s> <s id="s.002888">Atque hæc &longs;ufficiant de ijs, quæ <lb/>primo modo mouentur.</s> </p> <p type="main"> <s id="s.002889">Nunc ad ea, quæ reliquis duobus modis cieri <lb/> &longs;olent, quæ &longs;cilicet non mouentur &longs;ecundum ap&longs;i­<lb/> dem, &longs;ed aut iuxta planitiem, ide&longs;t, quæ æquidi­<lb/>&longs;tanter pauimento collo<expan abbr="cãtur">cantur</expan>, vt rotæ figulorum, <lb/> aut quæ in loco à terra eleuato, vt troclearum or­<lb/> biculi. </s> <s id="s.002890">rotæ hæ facilius ip&longs;æ, & ea etiam, quæ ip&longs;is annectuntur commouen­<lb/> tur, quam &longs;i rectilinea figura con&longs;tarent; non quia parua &longs;ui portione vel <lb/> tangant planum, vel offen&longs;ent, &longs;ed ob aliam inclinationem, de qua initio <lb/> huius operis ante quæ&longs;tiones dictum e&longs;t, vbi diximus circulum duas incli­<lb/> nationes ad motum obtinere, &longs;ecundum quas à motore mouetur; vna e&longs;t, <lb/> quam diximus naturalem, qua &longs;olet cieri &longs;ecundum periphæriam, motor <lb/> enim &longs;emper mouet circulum in periphæria, & &longs;ecundum hanc inclinatio­<lb/> nem extremum diametri rectà, non circulariter moueretur: hanc inclina­<lb/> tionem fortè habet à materia grauitante, & in ip&longs;o circulo con&longs;tituta in <lb/> æquilibrio: quæ autem in æquilibrio, facillimè cedunt; & qui talia mouent, <lb/> qua&longs;i prius mota mouent, & ideò facillimè. </s> <s id="s.002891">Secundum igitur inclinatio­<lb/> nem hanc, quæ in obliquum e&longs;t, ide&longs;t, quæ &longs;ecundum circunferentiam &longs;it, <lb/> ip&longs;am rotam mouens facillimè mouet. </s> <s id="s.002892">altera latio e&longs;t, &longs;ecundum quam cir­ <pb pagenum="171" xlink:href="009/01/171.jpg"/>culus à &longs;eip&longs;o &longs;ecundum diametrum mouetur, ide&longs;t circa &longs;uum centrum re­<lb/> trahit continuò extrema diametri; ne recta &longs;ecundum naturalem lationem <lb/> ferantur, &longs;ed in orbem circulariter circa centrum gyrentur. </s> <s id="s.002893">hæc Ari&longs;t. <!-- KEEP S--></s> <s id="s.002894">Re­<lb/> &longs;tat vt &longs;atisfaciam promi&longs;&longs;is.</s> </p> <p type="main"> <s id="s.002895">Dictum e&longs;t ab Ari&longs;t. in textu <emph type="italics"/>(Sicut diameter ad diametrum, ita maior circu­<lb/> lus ad maiorem)<emph.end type="italics"/> quæ verba intelligenda e&longs;&longs;e non de circulis, &longs;ed de periphæ­<lb/> rijs, vti expo&longs;ui, manife&longs;tum e&longs;t ex 11. propo&longs;it. </s> <s id="s.002896">5. Pappi Alexandrini, quæ <lb/> talis e&longs;t: Circulorum circunferentiæ inter &longs;e &longs;unt vt diametri. </s> <s id="s.002897">quam etiam <lb/> Pater Clauius demon&longs;trat propo&longs;. </s> <s id="s.002898">2. lib. 8. & propo&longs;. </s> <s id="s.002899">1. lib. 4. Geom. <!-- REMOVE S-->pract. <lb/> <!-- REMOVE S-->&longs;i autem de ip&longs;is circulis intelligerentur fal&longs;a e&longs;&longs;ent, non enim e&longs;t circulus <lb/> ad circulum, vt diameter ad diametrum; &longs;ed circuli &longs;unt inter &longs;e, quemad­<lb/> modum à diametris ip&longs;orum quadrata per &longs;ecundam 12. Elem. quadrata <lb/> autem &longs;unt inter &longs;e in duplicata ratione laterum per 20. 6. <expan abbr="eiusq;">eiusque</expan> corolla­<lb/> rium; hoc e&longs;t &longs;i fiat, vt latus maioris quadrati ad latus minoris, ita latus mi­<lb/> noris ad aliam tertiam lineam, erit quadratum maius ad minus, vt latus <lb/> ip&longs;ius ad tertiam illam lineam; non autem vt ad latus minoris. </s> <s id="s.002900">cum ergo <lb/> circulus &longs;it ad circulum, vt quadratum diametri ad quadratum diametri, <lb/> & quadrata non <expan abbr="habeãt">habeant</expan> rationem laterum, &longs;eu diametrorum prædictorum, <lb/> &longs;ed illorum duplicatam, <expan abbr="neq;">neque</expan> circuli inuicem illam habere poterunt.</s> </p> <p type="main"> <s id="s.002901">Illud demum non ignorandum, quod Guidus Vbaldus propo&longs;it. </s> <s id="s.002902">1. de Tro­<lb/> chlea, demon&longs;trat, quod nimirum potentia &longs;u&longs;tinens pondus per rotulam, <lb/> cui funis &longs;upernæ fuerit circumductus, qualis ea e&longs;t, qua ad hauriendam ex <lb/> puteis aquam vtimur, talis inquam potentia e&longs;t æqualis ponderi; cuius ra­<lb/> tio e&longs;t, quia tunc trochlea fit vectis, cuius fulcimentum e&longs;t in medio vectis, <lb/> pondus verò, & potentia in extremitatibus &longs;unt, & æquidi&longs;tant ab hypomo­<lb/> clio, & propterea cum &longs;it eadem proportio ponderis ad potentiam, quæ di­<lb/> &longs;tantiæ ad di&longs;tantiam, vt &longs;upra qu&etail;&longs;t. </s> <s id="s.002903">3. probatum e&longs;t ex Archimede, & Gui­<lb/> do Vbaldo, di&longs;tantiæ autem &longs;int æquales, erunt etiam pondus, & potentia <lb/> æqualia, ide&longs;t, &longs;i pondus e&longs;&longs;et vnius libræ, &longs;u&longs;tineretur à tanta vi, <expan abbr="quãta">quanta</expan> opus <lb/> e&longs;t ad libram vnam &longs;u&longs;tinendam, & non amplius. </s> <s id="s.002904">vt autem clarè appareat <lb/> vectis in trochlea, & hypomoclion, & æquales di&longs;tantiæ, &longs;it figura, in qua <lb/> <figure id="id.009.01.171.1.jpg" place="text" xlink:href="009/01/171/1.jpg"/><lb/> pondus D, ductario funi D C B E, alligatum. </s> <s id="s.002905">poten­<lb/> tia <expan abbr="&longs;u&longs;tin&etilde;s">&longs;u&longs;tinens</expan> E. axis autem erit diameter rotulæ B A C, <lb/> nam potentia premit rotulam in B, & pondus in C, & <lb/> cum rotula &longs;u&longs;tineatur in A, à &longs;u&longs;pen&longs;orio F A. erit <lb/> punctum A, hypomoclion, quia in motu vectis eua­<lb/> dit centrum, <expan abbr="e&longs;t&qacute;">e&longs;tque</expan>; punctum manens. </s> <s id="s.002906">æquales autem <lb/> di&longs;tantiæ <expan abbr="vtrinq;">vtrinque</expan> ab hypomoclio &longs;unt B A, A C, &longs;unt <lb/> enim ex centro eodem. </s> <s id="s.002907">ex quibus manife&longs;tum e&longs;t hu­<lb/> iu&longs;modi rotulam nullam vim mouenti addere, &longs;ed &longs;o­<lb/> lum illud præ&longs;tat, vt omne tollat impedimentum, <lb/> quemadmodum ait Ari&longs;t. manife&longs;tum etiam e&longs;t ma­<lb/> iorem vim quamlibet, quam &longs;it ea, quæ &longs;u&longs;tinet, po&longs;&longs;e <lb/> idem pondus &longs;ur&longs;um mouere. </s> <s id="s.002908">hæc & præ&longs;enti loco, & <lb/> &longs;equentibus lucem afferre po&longs;&longs;unt.</s> </p> <pb pagenum="172" xlink:href="009/01/172.jpg"/> <p type="head"> <s id="s.002909"><emph type="italics"/>QVÆSTIO NONA<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.002910"><emph type="italics"/>De Trochleis, & Scytalis.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.002911"><arrow.to.target n="marg240"/></s> </p> <p type="margin"> <s id="s.002912"><margin.target id="marg240"/>250</s> </p> <p type="main"> <s id="s.002913"><emph type="italics"/>Cvr ea, quæ per maiores circulos tollantur, & trahuntur facilius, & ci­<lb/> tius mouentur? </s> <s id="s.002914">veluti per maiores trochleas, quàm per minores, & &longs;cy­<lb/> talas &longs;imiliter? </s> <s id="s.002915">An quanto maior fuerit illa, quæ à centro e&longs;t, in æquali <lb/> temporis &longs;patio maius &longs;patium conficit? </s> <s id="s.002916">quamobrem æqualì inexi&longs;tente <lb/> onere, idem faciet, &longs;icuti diximus maiores libras minoribus exactiores e&longs;&longs;e; &longs;par­<lb/> tum enim in illis centrum e&longs;t: partes verò libræ vtrinque à &longs;parto &longs;unt veluti lineæ <lb/> ex centro)<emph.end type="italics"/> Cum textus huius quæ&longs;tionis fatis clarus &longs;it, præ&longs;ertim &longs;i prius <lb/> legantur, quæ dicta &longs;unt de libra in prima quæ&longs;t. </s> <s id="s.002917">& quæ de rota, & trochlea <lb/> in proxima præcedenti, à paraphra&longs;i ip&longs;ius &longs;uper&longs;edebo. </s> <s id="s.002918">Illud tamen, quod <lb/> magis nece&longs;&longs;arium e&longs;t, non omittam, vt &longs;cilicet difficultatibus quibu&longs;dam <lb/> occurram. </s> <s id="s.002919">Et primo, quod Ari&longs;t. ait, ea quæ per maiores circulos veluti <lb/> trochleas, &longs;eu rotulas trahuntur, facilius trahi, quàm ea, quæ per minores, <lb/> non videtur ex omni parte verom. </s> <s id="s.002920">nam &longs;icuti in <expan abbr="præced&etilde;ti">præcedenti</expan> quæ&longs;tione o&longs;ten­<lb/> &longs;um e&longs;t ex Guido Vbaldo, trochlea &longs;implex, &longs;iue rotula illa &longs;triata, cui funis <lb/> &longs;upernè inditur, vt in &longs;uperiori figura; nullas addit vires potentiæ, quia re­<lb/> ducitur ad vectem, cuius fultura &longs;it in medio ip&longs;ius. </s> <s id="s.002921">&longs;iue igitur rotula illa <lb/> magna fuerit, &longs;iue parua, &longs;emper in talem vectem re&longs;oluetur, & propterea, <lb/> vt etiam experientia con&longs;tat eodem labore aquam hauriunt, &longs;iue rotula illa <lb/> magna fuerit, &longs;ine parua. </s> <s id="s.002922">nec minus vera videtur re&longs;pon&longs;io, cum ait <emph type="italics"/>(An quia <lb/> quanto maior fuerit illa, quæ à centro e&longs;t, in æquali <expan abbr="t&etilde;pore">tempore</expan> maius mouetur &longs;patium)<emph.end type="italics"/><lb/> quæ quidem vera &longs;unt, &longs;i intelligantur hoc modo, nimirum, quod quando <lb/> plures <expan abbr="circul&longs;conc&etilde;trici">circuli concentrici</expan>, <expan abbr="atq;">atque</expan> inuicem connexi fuerint, ita vt vnus &longs;ine alijs <lb/> moueri nequeat, tunc quanto maior fuerit diameter, & con&longs;equenter cir­<lb/> cunferentia, tanto velocius mouebitur. </s> <s id="s.002923">&longs;i autem intelligantur de duobus <lb/> circulis ab inuicem &longs;eparatis, quorum vnus <expan abbr="ab&longs;q;">ab&longs;que</expan> altero moueri pote&longs;t, vt &longs;ie <lb/> quando vtimur modo rotula magna, modo parua ad aquam hauriendam <lb/> non videntur vera, in quo &longs;en&longs;u manife&longs;tè loquitur Ari&longs;t. <!-- KEEP S--></s> <s id="s.002924">Quapropter vt &longs;in­<lb/> cerè loquar, nunc ne&longs;cio, qua ratione Ari&longs;t ab errore excu&longs;are valeam, alijs <lb/> fortè occurret.</s> </p> <p type="main"> <s id="s.002925">Secundo loco videndum quid &longs;int &longs;cyntalæ. </s> <s id="s.002926">Vt autem con&longs;tat ex &longs;equenti <lb/> quæ&longs;tione 11. &longs;cyntala erat in&longs;trumentum quoddam vectorium, quod ro­<lb/> tas, &longs;icut currus, aliter tamen factas, habebat, porrò <foreign lang="greek">skutalh\,</foreign> ide&longs;t &longs;cytala <lb/> inter alia &longs;ignificat <expan abbr="baculũ">baculum</expan>, &longs;iue lignum oblongum, ac teres, qualia ea &longs;unt, <lb/> quibus vtimur in &longs;ucculis, vulgò Na&longs;pe; & in axe in peritrochio, vt videre <lb/> e&longs;t apud <expan abbr="Guidũ">Guidum</expan> Vbaldum. </s> <s id="s.002927">hinc factum e&longs;t, vt apud Lacædemonios &longs;cytala <lb/> &longs;ignificaret quoddam genus epi&longs;tolæ, quam &longs;cytalem laconicam dicebant, <lb/> quia in charta in&longs;tar zonæ oblonga, & circa &longs;cytalam, hoc e&longs;t circa bacillum <lb/>quendam &longs;piratim circumuoluta exarabatur; ita vt ver&longs;us &longs;cripturæ &longs;ecun­<lb/>dum &longs;urculi longitudinem ducerentur, ex quo fiebat, vt per iuncturas mem­<lb/> branæ, literæ, ac verba procederent, membranam hanc ex &longs;cytala reuolu­<lb/> tam, & aliter complicatam Imperatori mittebant, re&longs;olutio autem mem­ <pb pagenum="173" xlink:href="009/01/173.jpg"/>branæ literas truncas, atque mutilas reddebat; cum partim continerentur <lb/> citra iuncturas, partim vltra: eæquè partes, quæ &longs;imul fuerant &longs;criptæ, & <lb/>continuatæ, po&longs;t re&longs;olutionem erant ab inuicem valde di&longs;&longs;itæ. </s> <s id="s.002928">quapropter <lb/> Imperator commenti totius con&longs;cius, eandem membranam &longs;cytali alteri <lb/> priori omninò &longs;imili, <expan abbr="æquali&qacute;">æqualique</expan>; eodem modo, quo prius circumponebat, <expan abbr="&longs;ic&qacute;">&longs;icque</expan>; <lb/> iuncturæ priores redibant, quæ literas, ac verba mutila, & imperfecta in <lb/> integrum re&longs;tituebant, vt facilè legi po&longs;&longs;ent. </s> <s id="s.002929">hoc illi vtebantur &longs;ecreto, cum <lb/> literas ad Imperatores &longs;uos mi&longs;&longs;as, ho&longs;tibus occultas e&longs;&longs;e volebant.</s> </p> <p type="main"> <s id="s.002930">Ex quibus conijcere licet &longs;cytalam fui&longs;&longs;e lignum oblongum, & teres, &longs;iue <lb/> vt Geometræ dicunt, Cylindrum; in cuius tamen extremitatibus e&longs;&longs;ent <lb/> margines duo aliquantulum prominentes, ceu binæ rotæ, cum ip&longs;o tamen <lb/> continuæ, & connexæ, vt cum ip&longs;o &longs;imul conuoluerentur; non tamen tan­<lb/> <figure id="id.009.01.173.1.jpg" place="text" xlink:href="009/01/173/1.jpg"/><lb/> quam circa axem. </s> <s id="s.002931">cuius hanc accipe fi­<lb/> guram. </s> <s id="s.002932">Quærit igitur Ari&longs;t. cur huiu&longs;­<lb/> modi &longs;cytalæ facilius moueantur, quo <lb/> maiores ip&longs;arum &longs;unt rotæ. </s> <s id="s.002933">Cui quæ­<lb/> &longs;tioni &longs;imul, ij&longs;demque verbis, quibus <lb/> quæ&longs;tioni de maioribus rotulis re&longs;pondet, &longs;ed non &longs;atisfacit ob eandem ra­<lb/> tionem, quam ibi attuli. </s> <s id="s.002934">Crediderim tamen maiores &longs;cytalas, & maiores <lb/> curruum rotas, & alia id generis, quæ volutantur, ita vt motu progre&longs;&longs;iuo <lb/> mutent locum, facilius moueri, &longs;ed ob aliam cau&longs;am, quia nimirum maio­<lb/> res rotæ minus &longs;i quid obuiam fiat, offen&longs;ant, quia &longs;ua magnitudine quem­<lb/> libet obicem facilè &longs;uperare po&longs;&longs;unt; cuius cau&longs;a e&longs;t angulus <expan abbr="acuti&longs;&longs;imũs">acuti&longs;&longs;imus</expan>, <lb/> quem cum terra facit; at verò exiguæ rotæ, &longs;i cui maiori ob&longs;taculo obuia­<lb/> rint, ip&longs;um nequeunt &longs;uperare, aut &longs;upera&longs;cendere, quia angulum cum ter­<lb/> ra faciunt in&longs;to maiorem, vnde facilè ip&longs;orum cur&longs;us inhibetur, <expan abbr="ip&longs;æ&qacute;">ip&longs;æque</expan>; pro­<lb/> pterea præ maioribus tardiores euadunt. </s> <s id="s.002935">Atque hæc in hanc quæ&longs;tionem <lb/> dicta &longs;ufficiant.</s> </p> <p type="head"> <s id="s.002936"><emph type="italics"/>QVÆSTIO DECIMA<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.002937"><emph type="italics"/>De libra vacua, & alijs &longs;imilibus.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.002938"><arrow.to.target n="marg241"/></s> </p> <p type="margin"> <s id="s.002939"><margin.target id="marg241"/>251</s> </p> <p type="main"> <s id="s.002940">Cvr libræ, quæ omni incumbente pondere &longs;unt vacuæ ab impo&longs;ito <lb/> pondere facilius mouentur, quàm &longs;i quopiam inexi&longs;tente pondere <lb/> aliud rur&longs;us onus &longs;uperaddatur. </s> <s id="s.002941">&longs;imiliter etiam rota, & huiu&longs;modi <lb/> quippiam, quod grauius quidem e&longs;t, difficilius commouetur quàm <lb/> læue, v. <!-- REMOVE S-->g. <!-- REMOVE S-->rota ferrea difficilius, quàm lignea. </s> <s id="s.002942">&longs;imiliter quæ maiora &longs;unt, <lb/> etiam &longs;i ex eadem materia con&longs;tent difficilius mouentur quàm minora, vt <lb/> rota maior ferrea, quàm minor etiam ferrea. </s> <s id="s.002943">Habet hæc quæ&longs;tio tres par­<lb/> tes, quibus Ari&longs;t. re&longs;pondet dicens, quod graue e&longs;t ægrè moneri non &longs;olum <lb/>contra nutum &longs;uum, ide&longs;t &longs;ur&longs;um, &longs;ed etiam in obliquum, &longs;eu ad latera, quia <lb/> grauia deor&longs;um <expan abbr="nutãt">nutant</expan>, non &longs;ur&longs;um, nec in tran&longs;uer&longs;um: ideo libræ cum one­<lb/>re, quia &longs;unt grauiores, & rota ferrea quàm lignea, & ferrea etiam maior, <lb/> quàm minor grauior e&longs;t, ideò difficilius agitatur.</s> </p> <p type="main"> <s id="s.002944">Contra quam re&longs;pon&longs;ionem &longs;ic fortè obijcies; in præcedenti enim quæ­ <pb pagenum="174" xlink:href="009/01/174.jpg"/>&longs;tione dictum e&longs;t ab Ari&longs;t. maiores trochleas, & &longs;cytalas, minoribus facilius <lb/> commoueri, hic autem dicit maiorem rotam difficilius quàm minorem mo­<lb/> ueri. </s> <s id="s.002945">Hanc obiectionem Piccolomineus di&longs;&longs;imula&longs;&longs;e videtur, cui ego, inge­<lb/> nuè fateor, me &longs;atisfacere ne&longs;cire, vt enim in præcedenti annotaui, nulla <lb/> mihi ratio Ari&longs;t. excu&longs;andi occurrit, alijs fortè occurret. </s> <s id="s.002946">In præ&longs;enti au­<lb/> tem benè quidem re&longs;pondet, &longs;ed tamen intimam rei cau&longs;am non attingit.</s> </p> <p type="main"> <s id="s.002947">Sciendum igitur e&longs;t id, quod Guidus Vbaldus in tractatu de libra pluri­<lb/> bus demon&longs;trauit: quod &longs;i quoduis graue &longs;u&longs;pendatur pror&longs;us in <expan abbr="c&etilde;tro">centro</expan> gra­<lb/> uitatis, ita vt in perfecto &longs;it æquilibrio, tunc &longs;iue magnum, &longs;iue paruum, <lb/> &longs;iue graue, grauiu&longs;uè fuerit, à quauis exigua vi poterit ab æquilibrio dimo­<lb/> ueri. </s> <s id="s.002948">cur ergo in libris, & rotis grauioribus, aut maioribus <expan abbr="experi&etilde;tia">experientia</expan> con­<lb/> trarium o&longs;tendit? </s> <s id="s.002949">ratio e&longs;t, quia hæc omnia communiter non collocantur, <lb/> ita vt circa centrum &longs;uum, quod etiam centrum grauitatis e&longs;t, conuerti <lb/> po&longs;&longs;int: verum aptantur circa axem, & quidem iu&longs;to maiorem, laxiu&longs;que <lb/> circa ip&longs;um conuertuntur, vnde fit, vt ip&longs;a ob in&longs;itam grauitatem premant <lb/> axem in &longs;uperiori parte, vnde quando ab aliquo gyrantur, non propriè gy­<lb/> rant, &longs;ed in &longs;uperiori axis parte hærentes ip&longs;um atterunt; ex qua attritione <lb/> fit, vt retardentur, <expan abbr="id&qacute;">idque</expan>; eò magis, quo grauiora magis premunt; hærent, <lb/> <expan abbr="difficilius&qacute;">difficiliusque</expan>; propterea raptantur potius, quàm gyrentur.</s> </p> <p type="main"> <s id="s.002950">Ex his, & textus, & ratio Ari&longs;totelis &longs;atis clara redduntur.</s> </p> <p type="head"> <s id="s.002951"><emph type="italics"/>QVÆSTIO VNDECIMA<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.002952"><emph type="italics"/>De Scytala, & Curru.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.002953"><arrow.to.target n="marg242"/></s> </p> <p type="margin"> <s id="s.002954"><margin.target id="marg242"/>252</s> </p> <p type="main"> <s id="s.002955">Cvr &longs;uper &longs;cytalas facilius portantur onera quàm &longs;uper currus, cum <lb/> tamen currus magnas habeant rotas, &longs;cytalæ verò pu&longs;illas?</s> </p> <p type="main"> <s id="s.002956">Quidnam &longs;cytala e&longs;&longs;et explicatum e&longs;t in 9. quæ&longs;t. </s> <s id="s.002957">Quo autem <lb/> modo per &longs;cytalas onera <expan abbr="port&etilde;tur">portentur</expan>, &longs;ic, accipe: exi&longs;timo binas &longs;cy­<lb/> talas inuicem æquidi&longs;tantes, & aliquantulum &longs;emotas inuicem &longs;ic di&longs;poni, <lb/> vt efficiant in&longs;trumentum vectorium currus in&longs;tar, & fortè veteres vteban­<lb/> tur his &longs;cytalis eo modo, quo nunc architectores vtuntur duobus illis lignis <lb/> longis, ac rotundis, quæ vulgò dicuntur Ruccioli.</s> </p> <p type="main"> <s id="s.002958">Re&longs;pondet igitur id accidere, quia rotæ &longs;cytalarum &longs;imul &longs;unt cum &longs;uo <lb/>axe compactæ, ita vt &longs;imul cum ip&longs;o rotentur: rotæ autem curruum, quia <lb/> &longs;eiunctæ &longs;unt ab earum axe, ita vt &longs;ine illius rotatione ip&longs;æ voluantur, fit vt <lb/>illæ firmius incedant, nec huc, <expan abbr="illuc&qacute;">illucque</expan>; nutent, veluti rotæ plau&longs;tri: <expan abbr="neq;">neque</expan> illæ <lb/> ad ip&longs;um axem offen&longs;ent, quemadmodum i&longs;tæ. </s> <s id="s.002959">addit aliam rationem, quia <lb/> currus nimia oneris grauitate premens rotas ip&longs;as ferè &longs;i&longs;tit, quod &longs;cytalis <lb/> non accidit, cum rotæ ip&longs;arum vnum, & idem cum &longs;uo &longs;int axe. </s> <s id="s.002960">quæ ratio <lb/> quantum valeat, ne&longs;cio, nam quamuis rotæ &longs;cytalarum non premantur ab <lb/> axe, premitur tamen axis ip&longs;arum ab onere, à quo &longs;imiliter &longs;i&longs;ti debe­<lb/> rent &longs;cytalæ.</s> </p> <p type="main"> <s id="s.002961">Crediderim ego facilius portari magna onera per &longs;cytalas, propter ip&longs;a­<lb/> rum firmitatem, currus enim <expan abbr="ip&longs;orumq;">ip&longs;orumque</expan> rotæ &longs;unt multò debiliores, neque <lb/> maioribus oneribus &longs;ufficiunt. </s> <s id="s.002962">Concludit po&longs;tea quæ&longs;tionem dicens, quia <pb pagenum="175" xlink:href="009/01/175.jpg"/>igitur &longs;cytalæ ab ip&longs;o onere non ita premuntur quin moueri melius po&longs;&longs;int <lb/> quàm currus, imò ab ip&longs;o onere iam commoto, ip&longs;æ quoque incitentur, & <lb/> præterea à potentia per planum infernè, benè &longs;ub&longs;tratum, & complanatum <lb/> trahantur, fit, vt qua&longs;i in duobus locis ip&longs;arum rotæ impellantur ab onere <lb/> &longs;upra, & à potentia infra; &longs;icque facilius quam currus ingentia præ&longs;ertim <lb/> onera vehunt.</s> </p> <p type="head"> <s id="s.002963"><emph type="italics"/>De Funda.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.002964"><emph type="italics"/>QVÆSTIO DVODECIMA.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.002965">Non videtur declaratione indigere.</s> </p> <p type="head"> <s id="s.002966"><emph type="italics"/>QVÆSTIO DECIMATERTIA<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.002967"><emph type="italics"/>De Iugo, & Succula.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.002968"><arrow.to.target n="marg243"/></s> </p> <p type="margin"> <s id="s.002969"><margin.target id="marg243"/>253</s> </p> <p type="main"> <s id="s.002970">Declarandum prius quid &longs;it hoc loco iugum: e&longs;t igitur iugum li­<lb/> gnum illud cylindricum, quod vulgò dicitur Subbio. </s> <s id="s.002971">quorum bi­<lb/> na ponuntur in ea machina textoria, quam vulgò dicunt Telaio, <lb/> qua&longs;i telarium, eo quod in ip&longs;a telæ texantur. </s> <s id="s.002972">alteri autem iugo <lb/> conuoluitur &longs;tamen: alteri verò contexta iam tela &longs;ubinde cum opus e&longs;t cir­<lb/> cumponitur: quæ duo textores faciunt ip&longs;a iuga conuertendo. </s> <s id="s.002973">quæ vt faci­<lb/> lius conuertant, iugis vtrinque in&longs;erunt per bina foramina binos collopes. <lb/> </s> <s id="s.002974">qui collopes &longs;unt duo ligna oblonga &longs;atis gracilia vnius vlnæ ferè in longi­<lb/> tudinem; quibus <expan abbr="appræh&etilde;&longs;is">appræhen&longs;is</expan>, <expan abbr="motis&qacute;">motisque</expan>; iugum facilè ver&longs;atur. </s> <s id="s.002975">quanto autem <lb/> collopes &longs;unt longiores, facilius iugum circumagitur. </s> <s id="s.002976">cuius cau&longs;a e&longs;t, quia <lb/> collops ad vectem reducitur, cuius fultura e&longs;t circa medium iugi, pondus <lb/> verò e&longs;t extima iugi &longs;uperficies è qua telæ, aut &longs;taminis pondus pendet: in <lb/> altera verò extremitate collopis, quæ extra iugum multum prominet, e&longs;t <lb/> potentia: ibi enim textoris manus premit, vel trahit. </s> <s id="s.002977">quando ergò longior <lb/> e&longs;t collops, ea pars, quæ e&longs;t inter fulturam, & vim, augetur; altera non mu­<lb/> tata; quia &longs;emper inter fulturam, &longs;eu centrum iugi, & vltimam iugi &longs;uper­<lb/>ficiem continetur; quanto autem illa hanc &longs;uperat, tantum virium po­<lb/> tentiæ addi.</s> </p> <p type="main"> <s id="s.002978">Secundò, videndum quid &longs;it &longs;uccula: hanc vulgò Na&longs;pa appellant, ni fal­<lb/> lor à verbo græco <foreign lang="greek">a)gaspa/w,</foreign> oriunda, quod &longs;ur&longs;um extrahere &longs;ignificat. </s> <s id="s.002979">cum <lb/> quo, & voce, & &longs;ignificatione conuenit; e&longs;t enim in&longs;trumentum, quo &longs;æpius <lb/> architectores in extrahendis &longs;ur&longs;um ruderibus effo&longs;&longs;is vtuntur. </s> <s id="s.002980">e&longs;t autem <lb/>compago quædam cylindrica non admodum longa, cui ex vna parte poti&longs;­<lb/> &longs;imum prominent plures collopes non mobiles, vt in iugo, verum &longs;tabiles, <lb/> ac cum ip&longs;a &longs;uccula compacti, quibus manu appræhen&longs;is &longs;uccula &longs;upra bi­<lb/> nos polos ver&longs;atur, <expan abbr="ei&qacute;">eique</expan>; interim ductarius funis circumuoluitur, &longs;ecumque <lb/> &longs;ur&longs;um pondus educit. </s> <s id="s.002981">cuius imaginem <expan abbr="qualcmcunq;">qualemcunque</expan> in&longs;pice. </s> <s id="s.002982">quærit igitur, <lb/>cur quanto gracilius fuerit corpus &longs;ucculæ A B, tanto facilius vertitur. <lb/> </s> <s id="s.002983">Ratio e&longs;t, quia collops, quemadmodum etiam iugum, reducitur ad vectem, <pb pagenum="176" xlink:href="009/01/176.jpg"/><figure id="id.009.01.176.1.jpg" place="text" xlink:href="009/01/176/1.jpg"/><lb/> cuius hypomoclion e&longs;t in medio <lb/> &longs;ucculæ, &longs;iue in axe ip&longs;ius &longs;ucculæ; <lb/> potentia verò e&longs;t in &longs;ummitatibus <lb/> collopum, vt in C, E, F, D, pon­<lb/> dus verò e&longs;t vbi funis ductarius <lb/> cum onere pendet è &longs;uccula in &longs;u­<lb/> perficie nimirum, vt vbi L, quare <lb/> pars vectis inter axim, & &longs;uperfi­<lb/> ciem &longs;ucculæ eadem e&longs;t, quæ inter <lb/> hypomoclium, & pondus. </s> <s id="s.002984">quanto <lb/> igitur &longs;ucculæ corpus gracilius fuerit, tanto hæc pars minuetur; & con&longs;e­<lb/> quenter altera inter hypomoclium, & potentiam productior euadet: eaque <lb/> propter facilius à motore ver&longs;abitur.</s> </p> <p type="head"> <s id="s.002985"><emph type="italics"/>De ligno ad genu fracto.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.002986"><emph type="italics"/>QVÆSTIO DECIMAQVARTA.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.002987">Satis per&longs;e clara videtur.</s> </p> <p type="head"> <s id="s.002988"><emph type="italics"/>QVÆSTIO DECIMAQVINTA<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.002989"><emph type="italics"/>De Vmbilicis.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.002990"><arrow.to.target n="marg244"/></s> </p> <p type="margin"> <s id="s.002991"><margin.target id="marg244"/>254</s> </p> <p type="main"> <s id="s.002992">Notandum primò, quæ Græcis <foreign lang="greek">*krokai,</foreign> ide&longs;t Crocæ dicuntur, Latinis <lb/> Vmbilicos appellari; de his enim loquitur Cic. <!-- REMOVE S-->2. de Oratore, vbi <lb/> &longs;ic, non audeo dicere de talibus viris, &longs;ed tamen ita narrare &longs;ole­<lb/> bat Sceuola, conchas, eos, & vmbilicos ad Caietam, & ad Lucri­<lb/> num legere con&longs;ueui&longs;&longs;e. </s> <s id="s.002993">hos autem vmbilicos exponunt Grammatici e&longs;&longs;e <lb/> lapillos paruos, acrotundos, polito&longs;que, de quibus etiam Ari&longs;t. loquitur. <lb/> </s> <s id="s.002994">Quare decipitur Piccolomineus dum negat, nos harum crocarum latinum <lb/> nomen habere. </s> <s id="s.002995">Cæterùm, & quæ&longs;tio, & re&longs;pon&longs;io, ex &longs;uperioribus &longs;atis <lb/> per&longs;picua e&longs;&longs;e videntur.</s> </p> <p type="head"> <s id="s.002996"><emph type="italics"/>QVÆSTIO DECIMASEXTA<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.002997"><emph type="italics"/>De ligno oblongo.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.002998"><arrow.to.target n="marg245"/></s> </p> <p type="margin"> <s id="s.002999"><margin.target id="marg245"/>255</s> </p> <p type="main"> <s id="s.003000">Ex appo&longs;ita figura totus huius problematis textus, alioquin &longs;atis cla­<lb/> rus patebit. </s> <s id="s.003001">&longs;int duo ligna oblonga, vnum altero longius, & cra&longs;&longs;ius. <lb/> </s> <s id="s.003002">in eleuatione maioris, fulcimentum e&longs;t in B, vbi manus altera ferè <lb/> manens appræhendit; in C, verò, vbi altera manus mouens premit <lb/> e&longs;t potentia, &longs;iue maius onus. </s> <s id="s.003003">in A, verò onus ip&longs;ius ligni, deor&longs;um tendens <lb/> premit, quod nunc e&longs;t in&longs;tar potentiæ motricis, quare A, & C, &longs;unt &longs;ibi in­<lb/> uicem, & potentiæ, & pondera. </s> <s id="s.003004">In minori autem ligno, onus ligni in D, <pb pagenum="177" xlink:href="009/01/177.jpg"/><figure id="id.009.01.177.1.jpg" place="text" xlink:href="009/01/177/1.jpg"/><lb/> fultura manus in E, potentia alterius ma­<lb/>nus in F. iam inquit Ari&longs;t. maius lignum <lb/> A B C, magis flectitur, quamuis cra&longs;&longs;ius <lb/>&longs;it, quàm lignum D E F, quod e&longs;t tenuius, <lb/> &longs;ed multò breuius; quia in maiori onus <lb/> ip&longs;ius ligni, quod circa A, deor&longs;um pre­<lb/> mit <expan abbr="lõgius">longius</expan> di&longs;tat ab hypomoclio B, quàm <lb/> in minori ligno. </s> <s id="s.003005">Ex quo &longs;equitur iuxta <lb/> ip&longs;ius principia, vt onus A, facilius lignum mouere, aut inflectere <lb/> po&longs;&longs;it.</s> </p> <p type="main"> <s id="s.003006">Cæterùm exi&longs;timo, quod &longs;i maioris ligni longitudo ad eiu&longs;dem <lb/> cra&longs;&longs;itiem haberet <expan abbr="eãdem">eandem</expan> proportionem, quàm minoris longitudo ad eiu&longs;­<lb/> dem cra&longs;&longs;itiem, <expan abbr="&longs;ic&qacute;">&longs;icque</expan>; <expan abbr="vtrumq;">vtrumque</expan> e&longs;&longs;et ab hypomoclio in eadem ratione diui­<lb/> &longs;um, fore, vt <expan abbr="vtrunq;">vtrunque</expan> eodem modo inflecteretur, quia haberent pondera <lb/> eandem rationem ad di&longs;tantias ab hypomoclio, oportet igitur vt &longs;int non <lb/> analoga, &longs;ed aloga, vt eis præ&longs;ens problema Ari&longs;totelis vnà cum eiu&longs;dem <lb/> &longs;olutione competat.</s> </p> <p type="head"> <s id="s.003007"><emph type="italics"/>QVÆSTIO XVII.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="head"> <s id="s.003008"><emph type="italics"/>De Cuneo.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.003009"><arrow.to.target n="marg246"/></s> </p> <p type="margin"> <s id="s.003010"><margin.target id="marg246"/>256</s> </p> <p type="main"> <s id="s.003011">Cvr paruo cuneo magna finduntur onera, & corporum moles, <expan abbr="adeoq;">adeoque</expan> <lb/> valida fit impre&longs;&longs;io? </s> <s id="s.003012">fortè, quia cuneus duobus vectibus &longs;ibi inui­<lb/> cem oppo&longs;itis con&longs;tat; quorum vterque, & potentiam mouentem, <lb/> & hypomoclion, & <expan abbr="põdus">pondus</expan> habet. </s> <s id="s.003013">hypomoclion autem illud ip&longs;um <lb/> e&longs;&longs;e ait, quod cuneo diuellitur; hoc autem dicit Ari&longs;tot. quia non agnouit <lb/> alium, præter primi generis vectem, vt &longs;upra etiam dixi.</s> </p> <p type="main"> <s id="s.003014">Verum &longs;atius e&longs;t cum Guido Vbaldo reducere cuneum ad duos &longs;ecundi <lb/> generis vectes, quorum fultura &longs;it in cunei apice extremo, pondus verò in­<lb/> tra vectem, ea nimirum pars ligni, que à cuneo vrgetur, ac diuellitur. </s> <s id="s.003015">cuneo <lb/> præterea vires adduntur ex valida mallei percu&longs;&longs;ione; malleus autem ip&longs;e <lb/> magna vi percutit, quia motus mouet, &longs;eu quia mouens malleum, mouet <lb/> ip&longs;um etiam dum e&longs;t in ip&longs;a latione, vnde ip&longs;a lationis celeritate malleus <lb/> fit valentior: <expan abbr="hoc&qacute;">hocque</expan>; modo paruos cunei vectes maiores con&longs;equuntur vires, <lb/> <figure id="id.009.01.177.2.jpg" place="text" xlink:href="009/01/177/2.jpg"/><lb/> quàm ip&longs;a vectium magnitudo po&longs;tulet. <lb/> </s> <s id="s.003016">&longs;it cuneus A B C. lignum autem &longs;cinden­<lb/> dum D E F G, <expan abbr="vectes&qacute;">vectesque</expan> duo &longs;int A C, & <lb/> B C, quorum commune hypomoclion e&longs;t <lb/> in C, onus autem vectis B C, e&longs;t pars li­<lb/> gni G, hæc enim ip&longs;i contranititur, <expan abbr="atq;">atque</expan> <lb/> ab eo expellitur. </s> <s id="s.003017">potentia verò mouens <lb/> vectem e&longs;t in malleo, dum &longs;uperius latus <lb/> cunei A B, percutit. </s> <s id="s.003018">alter huic auer&longs;us <lb/> vectis e&longs;t latus A C, cuius fultura e&longs;t C, <lb/>eadem cum priori, onus propul&longs;atum D,<pb pagenum="178" xlink:href="009/01/178.jpg"/>potentia cum altero communis e&longs;t in latere A B, à malleo validè percu&longs;&longs;o. <lb/> </s> <s id="s.003019">cunei igitur virtus partim ex vectibus, partim ex percu&longs;&longs;ione con&longs;tat.</s> </p> <p type="head"> <s id="s.003020"><emph type="italics"/>QVÆSTIO XVIII.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="head"> <s id="s.003021"><emph type="italics"/>De Trochlea.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.003022"><arrow.to.target n="marg247"/></s> </p> <p type="margin"> <s id="s.003023"><margin.target id="marg247"/>257</s> </p> <p type="main"> <s id="s.003024">Hvius quæ&longs;tionis &longs;en&longs;us, ac verba optimè intelligentur ex &longs;equen­<lb/> tibus. </s> <s id="s.003025">Trochlea, vt patet ex &longs;uperioribus Ari&longs;t. e&longs;t orbiculus in <lb/> periphæria &longs;triatus, vna cum toto loculumento, cui in&longs;eritur: <lb/> cuius imaginem ad 8. quæ&longs;t. </s> <s id="s.003026">exhibui. </s> <s id="s.003027">Apud Architectores verò <lb/> trochlea con&longs;tat &longs;altem ex duobus prædictis loculamentis, in quibus &longs;unt <lb/> orbiculi; & vnus orbiculus e&longs;t &longs;upernè collocatus, alter verò infernè, vt pa­<lb/> tebit in &longs;equenti figuratione: quod <expan abbr="in&longs;trumentũ">in&longs;trumentum</expan> nunc vulgò dicitur Taglia, <lb/> à nonnullis dicitur etiam Rechamo. </s> <s id="s.003028">Auxilio huius in&longs;trumenti machinato­<lb/> res parua vi attollunt ingentia pondera. </s> <s id="s.003029">communiter autem con&longs;tat ex plu­<lb/> <figure id="id.009.01.178.1.jpg" place="text" xlink:href="009/01/178/1.jpg"/><lb/> ribus orbiculis, qui partim &longs;uperiori loculamento, <lb/>partim inferiori inditi &longs;unt, per quos orbiculos cer­<lb/> ta lege circumductus e&longs;t ductarius funis, qui deinde <lb/> in &longs;ui po&longs;trema parte à potentia tractus omnes illos <lb/> orbiculos, per quos tran&longs;it circumuoluens inferius <lb/> loculamentum, cui appen&longs;um e&longs;t pondus, vnà cum <lb/>pondere attollit. </s> <s id="s.003030">figuram &longs;implicis trochleæ, con­<lb/> &longs;tantis &longs;cilicet ex duobus tantum orbiculis, facilita­<lb/> tis cau&longs;a exhibebo, in hac enim melius apparebit, <lb/> qua ratione trochlea ad vectem reducatur. </s> <s id="s.003031">vnde, & <lb/> Ari&longs;t. &longs;en&longs;um, quamuis ob&longs;curi&longs;&longs;imum, ac proinde <lb/> problematis &longs;olutionem optimè percipere licebit. <lb/> </s> <s id="s.003032">Sit igitur orbiculus &longs;uperior A, qui in pegmate I K­<lb/> L D, voluatur circa axem G, <expan abbr="&longs;it&qacute;">&longs;itque</expan>; pegma i&longs;tud &longs;upe­<lb/> rius fixum, & immobile à clauo H, pendens. </s> <s id="s.003033">Infe­<lb/> rior orbiculus B, in loculamento O P Q R, circa <lb/> axem B, conuoluatur: &longs;itque funis ductarius circa <lb/> hos orbiculos hoc modo circumductus. </s> <s id="s.003034">primo ca­<lb/> put funis religetur clauo D, in &longs;uperiori pegmate <lb/> infixo, hinc demi&longs;&longs;us &longs;ubtus inferiorem rotulam per <lb/> ip&longs;ius &longs;triam de&longs;cendat per puncta L S, a&longs;cendatque <lb/> po&longs;tea per M E N, ad &longs;uperiorem rotulam, &longs;upra <lb/> quam a&longs;cendat per punctum T, <expan abbr="de&longs;cendat&qacute;">de&longs;cendatque</expan>; ad V, & <lb/> inde demittatur ad <expan abbr="pot&etilde;tiam">potentiam</expan> F. Iam &longs;i quepiam po­<lb/> tentia in F, traxerit funem F V, deor&longs;um, interim <lb/> partes T, N, E, M, &longs;ur&longs;um attrahentur, & locula­<lb/> mentum inferius &longs;imul cum appen&longs;o pondere eleua­<lb/> bitur, manente tamen interim fune prope D, vbi <lb/> clauo D, e&longs;t religatus, & immobilis. </s> <s id="s.003035">&longs;ed vbinam hic <lb/> vectis? </s> <s id="s.003036">con&longs;idera diametrum M L, inferioris orbiculi, hæc enim ea e&longs;t, quæ <pb pagenum="179" xlink:href="009/01/179.jpg"/>vectem gerit. </s> <s id="s.003037">huius enim extrema L M, à fune tanguntur, & ab eius medio <lb/>B, onus pendet, & grauitat; & quia funis in M, &longs;ur&longs;um trahitur, <expan abbr="&longs;ecum&qacute;">&longs;ecumque</expan>; ex <lb/>parte illa &longs;ur&longs;um elenat diametrum L M, erit potentia mouens, & eleuans <lb/> in M. pondus verò intra vectem ad B, medium vectis; quare fulcimentum <lb/> erit in reliquo extremo L, vbi funis &longs;u&longs;tinet loculamentum, & vbi diameter, <lb/> &longs;eu vectis innititur. </s> <s id="s.003038">quare diameter hæc e&longs;t vectis &longs;ecundi generis expo&longs;iti. <lb/> </s> <s id="s.003039">aduerte præterea vectem hunc e&longs;&longs;e mobilem, &longs;imul cum <expan abbr="fulcim&etilde;to">fulcimento</expan>, quia dum <lb/> ex parte M, &longs;ur&longs;um tollitur &longs;imul cum toto orbiculo, ac loculamento, &longs;ub­<lb/> &longs;equitur etiam alterum extremum L, quod fune fulcitur, & in ip&longs;o fune &longs;ur­<lb/>&longs;um ver&longs;us D, a&longs;cendit; & hoc modo inferius tignum cum onere tandem ad <lb/> &longs;uperius tignum &longs;ublatum erit. </s> <s id="s.003040">hinc verum dixi&longs;&longs;e Ari&longs;t. con&longs;tat, trochleam <lb/> &longs;cilicet idem e&longs;&longs;e, ac vectem. </s> <s id="s.003041">quod tamen de &longs;olo inferiori orbiculo intelli­<lb/> gi debet, &longs;uperior enim rotula quamuis vectis fiat, non tamen vires vllas <lb/> potentiæ tribuit, cum eius hypomoclion &longs;it in medio, quemadmodum &longs;upra <lb/> ad 8. quæ&longs;t. </s> <s id="s.003042">expo&longs;ui. </s> <s id="s.003043">Inferior igitur ille e&longs;t, qui mouenti maximo e&longs;t adiu­<lb/> mento. </s> <s id="s.003044">quod &longs;i &longs;cire aueas quantum iuuet, re&longs;pondeo ip&longs;um vires potentiæ <lb/> duplicare; adeo vt &longs;i quatuor. </s> <s id="s.003045">v. <!-- REMOVE S-->g. <!-- REMOVE S-->homines erant nece&longs;&longs;arij ad pondus tol­<lb/> lendum, auxilio huius &longs;implicis trochleæ duo tantum &longs;ufficiant. </s> <s id="s.003046">quod &longs;i ad­<lb/> dantur duo alij orbiculi, vnus &longs;uperior, alter inferior, rur&longs;us vires duplica­<lb/> buntur, <expan abbr="erit&qacute;">eritque</expan>; vnus <expan abbr="tãtum">tantum</expan> homo nece&longs;&longs;arius. </s> <s id="s.003047">quod &longs;i plures aliæ rotulæ tam <lb/>&longs;upernè, quàm infernè addantur, vt &longs;olet in maioribus trochleis, quas ve­<lb/> teres Poly&longs;pa&longs;tos, ide&longs;t multum trahentes dixerunt, augebuntur vires in in­<lb/> finitum. </s> <s id="s.003048">quod dixi de virium duplicatione con&longs;tat ex 6. & 7. propo&longs;itione <lb/> Archimedis de Aequip. <!-- KEEP S--></s> <s id="s.003049">quia enim in vecte no&longs;tro L M, dupla e&longs;t proportio <lb/> inter L M, & L B, eadem etiam proportio erit inter pondus, & potentiam, <lb/> quare pondus C, duplum erit potentiæ in M, hoc e&longs;t à minore potentia &longs;ibi <lb/> &longs;ubdupla &longs;u&longs;tinebitur: & à quauis adhuc <expan abbr="quantumcunq;">quantumcunque</expan> maiore eleuabitur.</s> </p> <p type="main"> <s id="s.003050">Qui plura de trochlea de&longs;iderat, adeat Guidi Vbaldi, Mechanica, cuius <lb/> auxilio fateor me verum &longs;en&longs;um harum Mechanicarum Ari&longs;t. & præ&longs;ertim <lb/> huius loci enuclea&longs;&longs;e. </s> <s id="s.003051">quæ &longs;i cum Piccolominei expo&longs;itione contuleris, vide­<lb/> bis eum nequaquam cognoui&longs;&longs;e, vbi nam vectis in trochlea lateret, eumque <lb/> tam &longs;uperiorem, quàm inferiorem <expan abbr="rotulã">rotulam</expan> æquè vectem facere; in quo etiam <lb/> Io. <!-- REMOVE S-->Bapti&longs;ta Benedictus pariter erra&longs;&longs;e videtur in &longs;uis &longs;peculationibus, cum <lb/> inferiores tantummodo vice vectium fungantur, vt probatum e&longs;t.</s> </p> <p type="main"> <s id="s.003052"><expan abbr="Atq;">Atque</expan> ex his &longs;atis mihi videtur textus, ac &longs;en&longs;us Ari&longs;t. illu&longs;trari.</s> </p> <p type="head"> <s id="s.003053"><emph type="italics"/>QVÆSTIO XVIIII.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.003054"><emph type="italics"/>De Securi.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003055"><arrow.to.target n="marg248"/></s> </p> <p type="margin"> <s id="s.003056"><margin.target id="marg248"/>258</s> </p> <p type="main"> <s id="s.003057">Partim ex &longs;e, partim ex dictis in 17. quæ&longs;t. </s> <s id="s.003058">&longs;atis clara e&longs;t. </s> <s id="s.003059">placet au­<lb/> tem his, quæ de cuneo, & &longs;ecuri dicta &longs;unt, nonnulla ex Guido Vbal­<lb/> do loco corollarij adijcere, videlicet. </s> <s id="s.003060">Ad huiu&longs;modi facultatis in­<lb/>&longs;trumentum ea <expan abbr="quoq;">quoque</expan> omnia commodè referri po&longs;&longs;unt, quæ percu&longs;­<lb/> &longs;ione, &longs;iue impul&longs;u incidunt, diuidunt, perforant, <expan abbr="huiu&longs;modi&qacute;">huiu&longs;modique</expan>; alia obeunt <lb/> munera; vt en&longs;es, gladij, mucrones, &longs;ecures, terebræ, & &longs;imilia: &longs;erra <expan abbr="quoq;">quoque</expan> <lb/> ad hoc reducitur, dentes enim percutiunt, <expan abbr="cunei&qacute;">cuneique</expan>; in&longs;tar exi&longs;tunt.</s> </p> <pb pagenum="180" xlink:href="009/01/180.jpg"/> <p type="head"> <s id="s.003061"><emph type="italics"/>Additio de veteri Securi, & Bipenne.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003062">Libet etiam huic tractationi de &longs;ecuri nonnulla addere, quæ olim oc­<lb/> ca&longs;ione ex Proclo accepta in tenebris diu delite&longs;centia in lucem re­<lb/> &longs;tituimus, &longs;unt autem hæc. </s> <s id="s.003063">Primò, antiquæ &longs;ecuris, necnon bipen­<lb/> nis figuram re&longs;tituam. </s> <s id="s.003064">Secundò, o&longs;tendam angulum &longs;ecuris, qui <lb/> curuilineus e&longs;t, æqualem e&longs;&longs;e angulo trianguli æquilateri, qui rectilineus e&longs;t. <lb/> </s> <s id="s.003065">Proclus igitur in comm. <!-- REMOVE S-->23. primi Euclidis, &longs;ic ait: o&longs;ten&longs;um fuit ab anti­<lb/> quis, &longs;cilicet Geometris, quod angulus figuræ illius, quæ &longs;ecuri &longs;imilis e&longs;t, <lb/> æqualis e&longs;t angulo rectilineo, quippe qui duabus tertijs anguli recti æqualis <lb/> e&longs;t. </s> <s id="s.003066">hanc anguli &longs;ecuris affectionem, cum nec ille, nec alij, quod &longs;ciam de­<lb/> mon&longs;trent, ego paulò po&longs;t demon&longs;trabo. </s> <s id="s.003067">deinde &longs;ubdit; fit autem huiu&longs;mo­<lb/> di &longs;ecuralis figura, quæ pelecoides vocatur duobus circulis per centra &longs;e <lb/> mutuò &longs;ecantibus. </s> <s id="s.003068">hæc Proclus. <!-- KEEP S--></s> <s id="s.003069">Ex his autem po&longs;tremis verbis de&longs;criptio­<lb/> nem antiquæ &longs;ecuris, &longs;ic puto eruendam. </s> <s id="s.003070">Ducatur primo recta A C, quæ <lb/> <figure id="id.009.01.180.1.jpg" place="text" xlink:href="009/01/180/1.jpg"/><lb/> erit in&longs;tar manubrij &longs;ecuris. </s> <s id="s.003071">de­<lb/> inde ex centro C, interuallo. </s> <s id="s.003072">v. <!-- REMOVE S-->g. <lb/> C B, de&longs;cribatur circulus B F; &longs;i­<lb/> militer eodem interuallo B D, ex <lb/> centro D, de&longs;cribatur circulus <lb/> B E; tandem ex B, centro, atque <lb/> eodem interuallo ducatur alius <lb/> circulus D E F C, qui priores duos &longs;ecabit in punctis E F. <expan abbr="cõ&longs;ideremus">con&longs;ideremus</expan> iam, <lb/> reliquis circulorum partibus ommi&longs;&longs;is, curuilineam figuram B E F, quam <lb/> e&longs;&longs;e veteris &longs;ecuris formam ex <expan abbr="&longs;ent&etilde;tia">&longs;ententia</expan> Proclinon e&longs;t dubitandum, cum cir­<lb/> culis &longs;e mutuò per centra &longs;ecantibus con&longs;tituatur, vt vult ip&longs;e, & præterea <lb/> habeat angulos E F, tantos, quantos ip&longs;e tradit, vt mox patebit; linea au­<lb/> tem A B C, &longs;ecuris manubrium refert.</s> </p> <p type="main"> <s id="s.003073">Quod autem tam angulus E, quàm angulus F, &longs;int æquales duabus tertijs <lb/>vnius anguli recti, &longs;iue quod idem e&longs;t angulo trianguli æquilateri, manife­<lb/>&longs;tum erit hoc modo. </s> <s id="s.003074">De&longs;cribatur iterum &longs;ecuralis figura prædicto modo, <lb/> &longs;<expan abbr="itq;">itque</expan> ea A B C. ducantur præterea ad &longs;ingulos angulos tres rectæ A B, B C, <lb/>C A, quæ con&longs;tituunt triangulum æquilaterum A B C, tria enim ip&longs;ius late­<lb/> <figure id="id.009.01.180.2.jpg" place="text" xlink:href="009/01/180/2.jpg"/><lb/> ra &longs;ubtendunt tres arcus æquales A B, B C, C A, <lb/> &longs;unt enim tres &longs;extantes æqualium circulorum, <lb/> ut facilè colligi pote&longs;t ex 15. 4. ex quo etiam &longs;e­<lb/>quitur tres illas circulorum portiones, quas re­<lb/> ctè cum &longs;uis arcubus con&longs;tituunt e&longs;&longs;e inuicem <lb/>æquales, & &longs;imiles portiones nimirum A B E, <lb/> B C D, C A F. hinc pr&etail;terea &longs;equitur angulos ip­<lb/> &longs;arum e&longs;&longs;e inuicem æquales, angulos, v.g. <!-- REMOVE S-->A B E, <lb/>C B D, mixtos e&longs;&longs;e æquales, quod facilè e&longs;t per imaginariam &longs;uperpo&longs;itio­<lb/> nem demon&longs;trare. </s> <s id="s.003075">cum igitur prædicti duo anguli &longs;int æquales, &longs;itque inter <lb/>eos medius alius angulus E B C, qui pariter mixtus e&longs;t, &longs;i ip&longs;e addatur tam <lb/>angulo C B D, quàm angulo A B E, inuicem æqualibus, erunt duo anguli <pb pagenum="181" xlink:href="009/01/181.jpg"/>A B C, rectilineus, & E B D, curuilineus æquales. </s> <s id="s.003076">ille autem e&longs;t angulus <lb/> æquilateri, qui æqualis e&longs;t duabus tertijs vnius recti ex corollario 32. primi. <lb/> </s> <s id="s.003077">hic verò e&longs;t angulus &longs;ecuris. </s> <s id="s.003078">e&longs;t igitur angulus &longs;ecuris æqualis duabus ter­<lb/> tijs vnius recti, vt ait Proclus, quod demon&longs;trandum erat. </s> <s id="s.003079">quod etiam ma­<lb/>nife&longs;tum &longs;ignum e&longs;t &longs;ecuris figuram a me re&longs;titutam e&longs;&longs;e illam veterem, de <lb/> qua idem Proclus loquitur.</s> </p> <p type="main"> <s id="s.003080">Re&longs;tat, vt de antiquæ bipennis etiam figura di&longs;&longs;eramus; quæ nihil aliud <lb/> erat, quàm duplex &longs;ecuris, &longs;iue &longs;ecuris anceps, qualis e&longs;t præ&longs;ens figura, vt <lb/> <figure id="id.009.01.181.1.jpg" place="text" xlink:href="009/01/181/1.jpg"/><lb/> propterea etiam &longs;æpius <expan abbr="bip&etilde;nis">bipennis</expan> ip­<lb/> &longs;a &longs;ecuris appelletur. </s> <s id="s.003081">dicitur enim <lb/> bipennis, qua&longs;i binis pinnis, quæ &longs;e­<lb/> cures erant, con&longs;tet, vt & Græcis <lb/> <foreign lang="greek">dipteros</foreign> dicebatur. </s> <s id="s.003082">te&longs;te etiam No­<lb/> nio, illud bipenne e&longs;t, quod <expan abbr="vtrinq;">vtrinque</expan> <lb/> acutum e&longs;t. </s> <s id="s.003083">collegi autem <expan abbr="vtcunq;">vtcunque</expan> <lb/> hanc bipennis figuram ex Simmiæ <lb/> peruetufti poetæ græci <expan abbr="epigrãmate">epigrammate</expan>, quod Simmiæ &longs;ecuris appellatur. </s> <s id="s.003084">quod <lb/> epigramma carminibus loco linearum con&longs;tat, quæ in &longs;ecuris formam con­<lb/> &longs;tituta &longs;unt.</s> </p> <p type="main"> <s id="s.003085">Sciendum namque e&longs;t Simmiam, poeticam hanc &longs;ecurim concinna&longs;&longs;e in <lb/> gratiam Epei illius, qui equum Troianum ligneum fuerat architectatus, vt <lb/> e&longs;t apud Virg. <!-- KEEP S--></s> <s id="s.003086">Et ip&longs;e doli fabricator Epeus. <!-- KEEP S--></s> <s id="s.003087">qui cum &longs;oluendi voti cau&longs;a <lb/> vellet &longs;ecurim, &longs;iue bipennem, qua in equi Durij molitione v&longs;us fuerat, Mi­<lb/> neruæ Deæ, quod &longs;ibi in eo opere faciendo auxilio fui&longs;&longs;et, dedicare, <expan abbr="eam&qacute;">eamque</expan>; <lb/> vt Ari&longs;t. in libello de admirandis audit. </s> <s id="s.003088">num. </s> <s id="s.003089">104. narrat, in templo græ­<lb/> cæ Mineruæ, quod erat in Gargaria Italiæ Regione propè Metapontum, <lb/> &longs;u&longs;pendere, a præfato Simmia quæ&longs;iuit, vt epigrammate aliquo dedicatio­<lb/> nem hanc &longs;uam complecteretur. </s> <s id="s.003090">qui vt illi morem gereret ingenio&longs;æ illius <lb/> bipennis dedicationem, vt melius imitaretur, &longs;ecuri hac carminum com­<lb/> plexus e&longs;t. </s> <s id="s.003091">quæ dedicatio, &longs;iue epigramma, quod adhuc extat, deinceps &longs;e­<lb/> curis Simmiæ vocitata e&longs;t; ex qua figura bipennis illius, equi Durij fabrica­<lb/> tricis nobis adhuc magna cum voluptate innotuit. </s> <s id="s.003092">Porrò gratum, <expan abbr="atq;">atque</expan> ad <lb/> ea, quæ diximus intelligenda vtile Lectori fore arbitrati &longs;umus, ip&longs;am Sim­<lb/> miæ bipennem ex operibus Theocriti, quibus addi &longs;olet, huc referre; quam <lb/> P. <!-- REMOVE S-->Ricardus E&longs;ius de no&longs;tra Societate linguæ græcæ periti&longs;&longs;imus, in hunc <lb/> modum tran&longs;tulit. </s> <s id="s.003093">hoc autem ordine legenda e&longs;t: lectio à manubrio <lb/> incipiat, deinde legatur carmen; forti&longs;&longs;imæ Deæ, quod &longs;ub&longs;e­<lb/> quatur; dedit Epeus, & &longs;ic in orbem lectio, <expan abbr="v&longs;q;">v&longs;que</expan> ad me­<lb/> dium circumducatur. </s> <s id="s.003094">hæc &longs;unt, quæ præ&longs;ertim <lb/> in gratiam eorum, qui &longs;uaui&longs;&longs;imo an­<lb/> tiquitatis &longs;tudio tenentur, la­<lb/> tere nolui.</s> </p> <pb pagenum="182" xlink:href="009/01/182.jpg"/> <p type="head"> <s id="s.003095"><emph type="italics"/>Simmiæ Rhodij <lb/> Bipennis.<emph.end type="italics"/></s> </p> <figure id="id.009.01.182.1.jpg" place="text" xlink:href="009/01/182/1.jpg"/> <pb pagenum="183" xlink:href="009/01/183.jpg"/> <p type="head"> <s id="s.003096"><emph type="italics"/>QVÆSTIO XX.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="head"> <s id="s.003097"><emph type="italics"/>De Statera.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.003098"><arrow.to.target n="marg249"/></s> </p> <p type="margin"> <s id="s.003099"><margin.target id="marg249"/>259</s> </p> <p type="main"> <s id="s.003100">Antequam ad textus explicationem accedamus, con&longs;ultius e&longs;&longs;e iu­<lb/> dico veteris &longs;tateræ figuram, atque de&longs;criptionem præmittere, <lb/> quàm ex hoc Ari&longs;t. loco, magna mihi licuit cum delectatione col­<lb/> ligere: quod etiam antiquitatis &longs;tudio&longs;is pergratum fore non du­<lb/> bito: <expan abbr="atq;">atque</expan> hinc etiam ineptas, <expan abbr="atq;">atque</expan> ad &longs;cititias textus huius figuras tanquam <lb/> adulterinas reijcere; <expan abbr="in&qacute;">inque</expan>; earum locum veras re&longs;tituere licebit. </s> <s id="s.003101">erat igitur <lb/> <figure id="id.009.01.183.1.jpg" place="text" xlink:href="009/01/183/1.jpg"/><lb/> &longs;tatera, quantum ex Ari&longs;t. conijcio <lb/> primum ha&longs;ta oblonga, qualis e&longs;t in <lb/> præ&longs;enti figura A B, ex cuius altero <lb/> extremo B, pendebat appendicu­<lb/> lum, quod propriè æquipondium <lb/> dicitur: ex altera verò extremitate <lb/> A, lanx vna pendebat; in qua carnes, aliæuè merces ponderabantur: in me­<lb/> dia <expan abbr="deniq;">denique</expan> ha&longs;ta paribus interuallis plures trutinæ, ex quibus &longs;ingulis modo <lb/> hac, modo illa, prout pondus emptoris po&longs;tulabat &longs;u&longs;pendebatur, <expan abbr="atq;">atque</expan> in­<lb/> terim tantum mercis lanci imponebatur, donec æquipondio præpondera­<lb/> ret in æquilibrio. </s> <s id="s.003102">&longs;ingulæ autem trutinæ ad aliquod determinatum pondus <lb/> trutinandum, erant con&longs;titutæ, v. <!-- REMOVE S-->g. <!-- REMOVE S-->vna ad &longs;ex libras, altera ad octo, &c. <lb/> </s> <s id="s.003103">quam diui&longs;ionem, ac fabricam &longs;tateræ non e&longs;t difficilè exhibere, cum ex Ar­<lb/> chimede propo&longs;. </s> <s id="s.003104">6. & 7. de æquip. </s> <s id="s.003105">eadem &longs;it proportio inter pondus mer­<lb/> cis, & pondus æquipondij, quæ e&longs;t permutatim inter di&longs;tantias vtrinque ab <lb/> a&longs;&longs;umpta trutina, quæ in trutinando hypomoclij vicem gerit: nam &longs;tatera <lb/> reducitur ad vectem; pondus erit æquipondium; & merces in lance erit po­<lb/> tentia mouens: &longs;unt autem in tota &longs;tateræ ha&longs;ta trutinæ plures, hoc enim <lb/> modo tota fit vniformis quoad pondus. </s> <s id="s.003106">æquipondium præterea debet ha­<lb/> bere tantum pondus, quantum e&longs;t in nuda lance, vt &longs;ic tota &longs;tatera &longs;it per &longs;e <lb/> &longs;ola æquilibrabilis: & præterea debet habere pondus &longs;tatum, a c legitimum, <lb/> v. <!-- REMOVE S-->g. <!-- REMOVE S-->vnius libræ, aut duarum, aut trium, prout magis <expan abbr="trutinãdæ">trutinandæ</expan> merci ido­<lb/> neum erit, & hoc erit proprium æquipondij pondus. </s> <s id="s.003107">vt autem ex &longs;ingulis <lb/> trutinis &longs;ingula pondera ponderentur. </s> <s id="s.003108">&longs;ingulis nota aliqua &longs;culpenda e&longs;t, vt <lb/> facilè mercatores merces ponderent, quod hac ratione fieri pote&longs;t. </s> <s id="s.003109">pona­<lb/> mus æquipondium e&longs;&longs;e 12. librarum. </s> <s id="s.003110">dico, quod trutina C, dabit in lance <lb/> pondus mercis 12. librarum, &longs;i ex ea fiat æquilibrium, e&longs;t enim vt A C, ad <lb/> C B, ita permutatim æquipondium 12. ad mercem; &longs;ed A C, ip&longs;i C B, e&longs;t <lb/> æqualis, ergò etiam æquipondium 12. erit merci æquale, hoc e&longs;t vtrunque <lb/> erit, 12. librarum.</s> </p> <p type="main"> <s id="s.003111">Similiter &longs;i fieret æquilibrium ex trutina D, e&longs;&longs;et vt A D, 3. ad B D, 9. <lb/> ita 12. ad 36. tandem trutina E, æquilibrante, e&longs;&longs;et vt A E, 9. ad E B, 3. ita <lb/> 12. ad 4. Si igitur trutina C, notetur 12. numero, trutina D, num. </s> <s id="s.003112">36. tru­<lb/> tina E, num. </s> <s id="s.003113">4. & idem de cæteris: &longs;tatim facilè erit quodlibet pondus per <lb/> huiu&longs;modi &longs;tateram exhibere. </s> <s id="s.003114">Vnde videas contrario ab illis modo in no­ <pb pagenum="184" xlink:href="009/01/184.jpg"/>&longs;tris &longs;tateris æquipondium totam ha&longs;tam percurrere; in illis verò manentè <lb/> æquipondio trutinam quodammodo per ha&longs;tam moueri.</s> </p> <p type="main"> <s id="s.003115">His præmi&longs;&longs;is ad textus paraphra&longs;im veniamus.</s> </p> <p type="main"> <s id="s.003116">Cur &longs;tatera, qua carnes ponderantur, paruo appendiculo magna truti­<lb/> nat onera, cum alioquin tota &longs;tatera nihil aliud &longs;it, quàm dimidiata libra, <lb/> vbi enim onus mercis imponitur vna lanx pendet, quam vnicam &longs;tatera ha­<lb/> bet; in altera autem parte, vbi libra habet alteram lancem, &longs;tatera nullam <lb/> habet, &longs;ed &longs;ola &longs;ine lance e&longs;t. </s> <s id="s.003117">Cau&longs;a igitur e&longs;t, quia &longs;tatera &longs;imul, & libra e&longs;t, <lb/> & vectis. </s> <s id="s.003118">libra e&longs;t, quia &longs;partorum, &longs;iue trutinarum quælibet fit veluti cen­<lb/> trum libræ, <expan abbr="in&qacute;">inque</expan>; altera parte e&longs;t lanx; in altera verò loco lancis ip&longs;um æqui­<lb/> pondium, quod libræ incumbit, <expan abbr="fungitur&qacute;">fungiturque</expan>; vice alterius lancis, cui &longs;it onus <lb/> impo&longs;itum; manife&longs;tum enim e&longs;t, quod æquipondium &longs;tateræ tantumdem <lb/> trahit oneris, quantum e&longs;t illud, quod in altera lance e&longs;t. </s> <s id="s.003119">eapropter &longs;tatera <lb/> quodammodo tot libras in &longs;e continet, quot trutinas: quarum vna quæque <lb/> cum &longs;it intra appendiculum, & lancem, apta e&longs;t e&longs;&longs;e medium, &longs;eu centrum <lb/> &longs;tateræ, <expan abbr="atq;">atque</expan> adeo etiam libræ; quæ vnam quidem lancem habeat ex vna <lb/> parte, ex altera verò pro lance æquipondium. </s> <s id="s.003120">&longs;tatera verò dicitur, quate­<lb/> nus ex vna parte habet non lancem, &longs;ed perpendiculum. </s> <s id="s.003121">&longs;ed hoc nihil e&longs;t <lb/> aliud quàm e&longs;&longs;e plures in vna libras; Cur autem &longs;parta, quæ lanci, &longs;iue ap­<lb/> pen&longs;o oneri proximiora &longs;unt, maiora &longs;ubleuent onera, cau&longs;a e&longs;t vectis natu­<lb/> ra, quæ &longs;tateræ ine&longs;t. </s> <s id="s.003122">e&longs;t enim &longs;tatera vectis, quamuis quodammodo inuer­<lb/>&longs;us, e&longs;t enim ip&longs;ius fulcimentum trutina ip&longs;a &longs;upernè collocata, pondus ve­<lb/>rò leuandum e&longs;t ip&longs;a merx, potentia verò appendiculum. </s> <s id="s.003123">quantò autem pro­<lb/> ductior fuerit pars vectis à fulcimento ad potentiam, tanto facilius poten­<lb/> tia mouet, vt in præ&longs;entia accidit. </s> <s id="s.003124">mouet autem <expan abbr="v&longs;q;">v&longs;que</expan> ad æquilibrium; <expan abbr="hoc&qacute;">hocque</expan>; <lb/> modo pars illa productior &longs;tateræ, quæ vergit ad æquipondium, facit, vt <lb/> onus &longs;tateræ impo&longs;itum facilè trutinetur.</s> </p> <p type="head"> <s id="s.003125"><emph type="italics"/>QVÆSTIO XXI.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="head"> <s id="s.003126"><emph type="italics"/>De Dentiforcipe.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.003127"><arrow.to.target n="marg250"/></s> </p> <p type="margin"> <s id="s.003128"><margin.target id="marg250"/>260</s> </p> <p type="main"> <s id="s.003129">Cvr Medici facilius dentes extrahunt dentiforcipis onere adiecto, <lb/> quàm &longs;i &longs;ola manu vtantur? </s> <s id="s.003130">fortè, quia ex manu facilius dens ela­<lb/> bitur propter &longs;ui ip&longs;ius lubricitatem, quàm ex forcipe. </s> <s id="s.003131">Vel etiam, <lb/> quia digiti propter carnis mollitiem cedentem nequeunt dentem <lb/>firmiter circumplecti; ferrum verò, cum vndique durum æque &longs;it, nec ce­<lb/>dens, melius dentem comprehendit. </s> <s id="s.003132">Aut tandem, quia forceps hæc duos <lb/> in &longs;e continet contrarios vectes; quorum, vnum tantum e&longs;t hypomoclion, <lb/> <figure id="id.009.01.184.1.jpg" place="text" xlink:href="009/01/184/1.jpg"/><lb/>eorum &longs;cilicet connexio; Virtute igitur <lb/> vectis arctius dentem per&longs;tringunt, <expan abbr="atq;">atque</expan> <lb/> adeò obtinent, <expan abbr="atq;">atque</expan> hinc etiam facilius <lb/> commouent. </s> <s id="s.003133">&longs;it dentiforcipis figura, ex­<lb/> po&longs;ita, cuius alterum extremum, vbi &longs;unt <lb/> A, B, e&longs;t illud, quod binis &longs;emicirculis <lb/> concurrentibus dentem arctè <expan abbr="cõ&longs;tringit">con&longs;tringit</expan>, <pb pagenum="185" xlink:href="009/01/185.jpg"/>& commouet. </s> <s id="s.003134">Vectis vnus e&longs;t A G D, alter B G C, communis fultura e&longs;t G, <lb/> vbi e&longs;t ip&longs;orum decu&longs;&longs;ata connexio; dens loco ponderis e&longs;t; vtroque igitur <lb/> C, & D, tanquam manubrijs vectium dentem Medici compræhendentes ip­<lb/> &longs;um facilè commouent: quando autem commotus fuerit, facilius manu, <lb/> quàm in&longs;trumento extrahitur.</s> </p> <p type="head"> <s id="s.003135"><emph type="italics"/>QVÆSTIO XXII.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="head"> <s id="s.003136"><emph type="italics"/>De Instrumento Nucifrago.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.003137"><arrow.to.target n="marg251"/></s> </p> <p type="margin"> <s id="s.003138"><margin.target id="marg251"/>261</s> </p> <p type="main"> <s id="s.003139">Tempore Ari&longs;t. vt colligitur ex hac quæ&longs;tione, ad frangendas nu­<lb/> ces peculiare in&longs;trumentum ligneum adhibeant, quod erat in&longs;tar <lb/> forcipis, ita tamen concinnatum, vt non ad &longs;cindendum, nec ad <lb/> extrahendum, &longs;ed ad frangendum per <expan abbr="cõpre&longs;&longs;ionem">compre&longs;&longs;ionem</expan> e&longs;&longs;et aptum. <lb/> </s> <s id="s.003140">cuius hanc qualemcumque figuram in&longs;pice. </s> <s id="s.003141">cuius latus inferius A D, fortè <lb/> alicui fulcimento in plano horizontis, fixum hærebat: alterum verò A C, <lb/> manu tractabatur, vt &longs;ic expeditæ nucium plurima quantitas breui po&longs;&longs;et <lb/> confringi. </s> <s id="s.003142">Credibile e&longs;t nucifragam hanc ad capita F E, habui&longs;&longs;e aliquod <lb/> impedimentum, ne omninò con&longs;tringeretur, vt nuces <expan abbr="franger&etilde;tur">frangerentur</expan> quidem, <lb/> non autem comminuerentur. </s> <s id="s.003143">Cur igitur nuces <expan abbr="ab&longs;q;">ab&longs;que</expan> ictu facilè confringun­<lb/> tur hi&longs;ce in&longs;trumentis, quæ ad eum fiunt v&longs;um? </s> <s id="s.003144">contrarium <expan abbr="namq;">namque</expan> accidere <lb/> deberet, vtentes enim prædictis in&longs;trumentis, omnibus illis viribus de&longs;ti­<lb/> tuuntur, quas motio, ac violentia percu&longs;&longs;ionis afferre &longs;olent. </s> <s id="s.003145">præterea cur <lb/> ligneo vtuntur, ac proinde leui? </s> <s id="s.003146">non ne aptius e&longs;&longs;et durum, <expan abbr="atq;">atque</expan> pondero­<lb/> &longs;um veluti ferreum?</s> </p> <p type="main"> <s id="s.003147">His re&longs;pondendum e&longs;t, nucifragum i&longs;tud in&longs;trumentum reduci ad binos <lb/> vectes, quemadmodum etiam dentiforcipem. </s> <s id="s.003148">nux igitur hoc modo duplici <lb/> vecte comprimitur. </s> <s id="s.003149">vecte autem facilè onera quælibet <expan abbr="obuiãtia">obuiantia</expan> diuelluntur. <lb/> </s> <s id="s.003150">qui duo vectes vnicum habent hypomoclion ip&longs;am &longs;cilicet connexionem <lb/> <figure id="id.009.01.185.1.jpg" place="text" xlink:href="009/01/185/1.jpg"/><lb/> A. vectes &longs;unt binæ in&longs;trumenti ha&longs;tæ, F A D, <lb/> E A C. <expan abbr="dilatãdo">dilatando</expan> igitur extrema C D, deducun­<lb/> tur etiam alia extrema F, E, & impo&longs;ita nuce in <lb/> hiatu K, quæuis potentia con&longs;tringendo C, D, <lb/> con&longs;tringet &longs;imul F, E, <expan abbr="ip&longs;am&qacute;">ip&longs;amque</expan>; nucem confrin­<lb/> get. </s> <s id="s.003151">quod igitur cum percu&longs;&longs;ione feci&longs;&longs;et pon­<lb/> dus mallei, id valentiori vectium virtute efficiunt F A D, E A C. quanto au­<lb/> tem locus nucis K, propinquior fuerit hypomoclio A, tanto celerius <lb/> confringitur, quia partes vectium A C, A D, tunc à centro <lb/> A, productiores fiunt, ide&longs;t multò maiores fiunt, <lb/> quàm &longs;int di&longs;tantiæ inter nucem, & cen­<lb/> trum A, quod maximè poten­<lb/> tiam iuuat.</s> </p> <p type="main"> <s id="s.003152">Ex quibus præ&longs;enti quæ&longs;tioni &longs;atisfactum videtur.</s> </p> <pb pagenum="186" xlink:href="009/01/186.jpg"/> <p type="head"> <s id="s.003153"><emph type="italics"/>QVÆSTIO XXIII.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="head"> <s id="s.003154"><emph type="italics"/>De Rhombo.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.003155"><arrow.to.target n="marg252"/></s> </p> <p type="margin"> <s id="s.003156"><margin.target id="marg252"/>262</s> </p> <p type="main"> <s id="s.003157">Rhombus ex definitione 23. primi Elem. e&longs;t figura æquilatera qui­<lb/> <figure id="id.009.01.186.1.jpg" place="text" xlink:href="009/01/186/1.jpg"/><lb/> dem, &longs;ed non æquiangula, habet enim <lb/> binos oppo&longs;itos angulos acutos, & alies <lb/> binos oppo&longs;itos obtu&longs;os, talis e&longs;t præ­<lb/> &longs;ens figura A B D C. <!-- KEEP S--></s> <s id="s.003158">In præ&longs;enti porrò quæ&longs;tione <lb/> &longs;upponitur punctum A, quod e&longs;t vnum extremum <lb/> in rhombo moueri &longs;uper latus A B, ver&longs;us B, & &longs;i­<lb/> militer interim æqua velocitate moueri alterum <lb/>extremum B, &longs;uper idem latus A B, ver&longs;us A, & in­<lb/> terim dum hæc duo puncta hoc modo &longs;ibi obuiam <lb/> procedunt, moueri latus totum A B, eadem ve­<lb/> locitate, ver&longs;us latus C D, ita vt &longs;emper ip&longs;i C D, <lb/>æquidi&longs;ter, <expan abbr="de&longs;cendat&qacute;">de&longs;cendatque</expan>; per latera A C, B D, quo­<lb/> u&longs;que ip&longs;i C D, congruat.</s> </p> <p type="main"> <s id="s.003159">Horum igitur trium motuum quemadmodum <lb/> æquæ &longs;unt celeritates, ita etiam &longs;patia, quibus peraguntur, nam puncta duo <lb/> mouentur in latere A B, ip&longs;um verò A B, mouetur in lateribus A C, & B D, <lb/> quæ cum priori A B, &longs;unt æqualia.</s> </p> <p type="main"> <s id="s.003160">Aduertendum præterea, quod hac ratione duo puncta A, & B, duabus la­<lb/> tionibus mouebuntur, &longs;i quidem proprio motu <expan abbr="mou&etilde;tur">mouentur</expan> in ip&longs;o latere A B, <lb/> & quia latus A B, per quod ip&longs;a incedunt eodem tempore mouetur ver&longs;us <lb/> C D, &longs;equitur, quod etiam ip&longs;a hoc eodem motu ferantur. </s> <s id="s.003161">erit igitur ip&longs;o­<lb/> rum motus ex his duobus mixtus; & quidem ip&longs;ius A, latio erit per longio­<lb/> rem diametrum A D; ip&longs;ius verò B, per breuiorem B C. <!-- KEEP S--></s> <s id="s.003162">Quare cum pun­<lb/> ctum A, peruenerit ad D, etiam punctum B, eadem c&etail;leritate acce&longs;&longs;erit ad <lb/> C. maius autem e&longs;t &longs;patium A D, quod confecit A, quam &longs;patium B C, con­<lb/> fectum a C. <!-- KEEP S--></s> <s id="s.003163">Quærit igitur primò, cur cùm A, & B, mota &longs;int æquali celeri­<lb/>tate in vtra que latione, vnum tamen maiorem lineam, quàm alterum per­<lb/> tran&longs;iuit? </s> <s id="s.003164">Quærit &longs;ecundò, cur punctum B, confecit lineam B C, quæ mi­<lb/> nor e&longs;t quam ip&longs;um latus A C, quod in &longs;uo motu conficit latus A B, quando <lb/> ad D C, acce&longs;&longs;it. </s> <s id="s.003165">& tamen B, duplici fertur latione; A B, verò vnica; vtrun­<lb/> que autem in æquali velocitate? </s> <s id="s.003166">Quod autem punctus A, motu illo de&longs;cri­<lb/> bat lineam A D, punctus verò B. lineam B C, manife&longs;tum erit hoc modo. </s> <s id="s.003167">&longs;it <lb/> v. <!-- REMOVE S-->g. <!-- REMOVE S-->punctum A, motu proprio delatum, <expan abbr="v&longs;q;">v&longs;que</expan> ad punctum E, medium late­<lb/> ris A B, erit interim totum latus A B, tran&longs;latum vbi e&longs;t F G, hoc e&longs;t, ad &longs;ui <lb/> itineris dimidium, quia horum motus ponuntur æquales: hoc autem motu <lb/> ip&longs;um punctum A, erit nece&longs;&longs;ariò in K, hoc e&longs;t in linea A D, vt dicebamus. <lb/> </s> <s id="s.003168">Similiter in fine <expan abbr="vtriu&longs;q;">vtriu&longs;que</expan> motus, A, erit in B, proprio motu, &longs;ed alieno in D, <lb/> extremo &longs;cilicet lineæ A D. &longs;imili ratione o&longs;tendi pote&longs;t de ip&longs;o B, qui cum <lb/> æqua velocitate moueatur, ac punctum A, quando A erit in E; B, pariter <lb/> illi occurret in E, proprio motu: &longs;ed alieno à latere B A, proueniente erit <pb pagenum="187" xlink:href="009/01/187.jpg"/>in K, vbi etiam ob alterum motum erit A: erit igitur B, in linea B C, vt vo­<lb/> lebamus. </s> <s id="s.003169">à quo po&longs;tea di&longs;cedens ver&longs;us C, motu pariter compo&longs;ito &longs;i&longs;titur <lb/> tandem in C, extremo lineæ pariter B C. eodem ergo tempore duo rhombi <lb/> extrema puncta æquè velocia, &longs;ecundum <expan abbr="vtramq;">vtramque</expan> lationem mota, interual­<lb/> la nequaquam æqualia confecerunt, &longs;ed A, maius, nimirum A D; B, verò <lb/> minus nimirum B C.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.003170">Ex quibus etiam &longs;ecundæ quæ&longs;tionis explicatio, & dubitandi ratio pate­<lb/> bit: nam cum in rhombo duo &longs;int obtu&longs;i anguli B, & C, & duo acuti A, & D, <lb/> punctus ille, qui ab obtu&longs;o angulo B, recedit, fertur duabus lationibus inui­<lb/> cem ferè contrarijs, propria enim tendit &longs;ur&longs;um ad A, aliena verò deor&longs;um <lb/> trahitur ver&longs;us D; cau&longs;a huius contrarietatis &longs;unt lineæ D B, B A, obtu&longs;um <lb/> angulum continentes, quæ à prædicto angulo in contrarias partes &longs;eparan­<lb/> tur: per has autem lineas fiunt prædicti motus, vnde ip&longs;i quoque contrarij <lb/> &longs;int nece&longs;&longs;e e&longs;t: & propterea &longs;e mutuò impediunt: <expan abbr="atq;">atque</expan> hinc nece&longs;&longs;e e&longs;t pun­<lb/>ctum B, motu compo&longs;ito hinc inhibito minus interuallum B C, pertran&longs;ire. <lb/> </s> <s id="s.003171">At verò punctum A, quia ab acuto angulo de&longs;cendit, <expan abbr="vtraq;">vtraque</expan> latione fertur <lb/> deor&longs;um, quæ lationes &longs;e mutuò iuuant, <expan abbr="faciunt&qacute;">faciuntque</expan>; vt A, maius, quamuis eo­<lb/> dem tempore, & eadem celeritate peragret &longs;patium A D. nam punctum A, <lb/> &longs;ua &longs;pontè <expan abbr="de&longs;c&etilde;dit">de&longs;cendit</expan> per latus A B, & ab ip&longs;o latere A B, quod fertur ad C D, <lb/> pariter deor&longs;um vehitur. </s> <s id="s.003172">nihil igitur mirum fit, &longs;i A, maius <expan abbr="interuallũ">interuallum</expan> A D, <lb/> quam B C, percurrat. </s> <s id="s.003173">cau&longs;a verò huius motuum concordiæ e&longs;t angulus acu­<lb/> tus A, ob quem latera rhombi magis inuicem approximantur, redduntque <lb/> longiorem A D, quàm B C: è contrariò autem, quo obtu&longs;iores &longs;unt anguli <lb/> B, C, minorem faciunt ip&longs;am B C, latera enim &longs;emper magis ad rectam li­<lb/> neam accedunt; donec tandem omni angulo euane&longs;cente in directum con­<lb/> &longs;tituantur; quo ca&longs;u congruerent cum linea A D, <expan abbr="rhombus&qacute;">rhombusque</expan>; ip&longs;e amplius <lb/> nullus e&longs;&longs;et.</s> </p> <p type="main"> <s id="s.003174">Ex his igitur &longs;equitur, quod punctum A, ab angulo A, acuto di&longs;cedens, <lb/> duobus feratur motibus &longs;imilibus ad eandem partem tendentibus, & quò <lb/> acutiores &longs;unt anguli, eò magis tendent ad eandem partem; & melius &longs;e <lb/>mutuò iuuabunt. </s> <s id="s.003175">B, autem vice ver&longs;a, quoniam quanto obtu&longs;ior e&longs;t angulus <lb/> B, tanto magis latera illius diuaricantur; duæ etiam motiones, quibus B, <lb/> progreditur in diuer&longs;as partes tendent; fiunt enim per illa latera; & tanto <lb/> etiam magis &longs;ibi contrariæ erunt; <expan abbr="magis&qacute;">magisque</expan>; &longs;ibi mutuò impedimento erunt. <lb/> </s> <s id="s.003176">& propterea punctum B, minus interuallum, quale e&longs;t B C, percurret, quan­<lb/> do A, maius A D, percurrit.</s> </p> <p type="main"> <s id="s.003177">Ad &longs;ecundam verò quæ&longs;tionis partem, re&longs;pondeo con&longs;iderandum e&longs;&longs;e <lb/> latus B A, moueri vnico motu ad D C, quare à nullo impedi­<lb/> tur, vnde nihil mirum videri debet, quòd ip&longs;um vnica <lb/> latione maius conficiat &longs;pacium quàm B, quod <lb/> quamuis duplici pellatur motu, vnus <lb/> tamen ab altero inhibetur.</s> </p> <pb pagenum="188" xlink:href="009/01/188.jpg"/> <p type="head"> <s id="s.003178"><emph type="italics"/>QVÆSTIO XXIIII.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="head"> <s id="s.003179"><emph type="italics"/>De duobus circulis.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003180"><arrow.to.target n="marg253"/></s> </p> <p type="margin"> <s id="s.003181"><margin.target id="marg253"/>263</s> </p> <p type="main"> <s id="s.003182">Vnde e&longs;t, quod &longs;i duo circuli, vnus altero maior, circa idem cen­<lb/> trum po&longs;iti, volutentur, ita vt etiam centrum feratur, eo &longs;cilicet <lb/> modo, quo plau&longs;trorum rotæ &longs;olent, &longs;ecundum æqualem lineam <lb/> conuoluuntur, &longs;iue æquale &longs;patium conficiunt: &longs;i verò &longs;eor&longs;um <lb/> &longs;eparati quilibet eodem modo volutetur, non æquale <expan abbr="&longs;patiũ">&longs;patium</expan> pertran&longs;ibunt, <lb/> &longs;ed maior maiorem lineam, quàm minor; <expan abbr="id&qacute;">idque</expan>; ea proportione, quam inui­<lb/> cem eorum circunferentiæ obtinent, cum in hac veluti rotæ conuolutione, <lb/> circunferentia tota &longs;ucce&longs;&longs;iuè decur&longs;o &longs;patio adaptetur, ita vt tanta &longs;it de­<lb/> cur&longs;a linea, quanta e&longs;t rotæ circunferentia? </s> <s id="s.003183">Quin etiam eodem exi&longs;tente <lb/> <expan abbr="vtriu&longs;q;">vtriu&longs;que</expan> centro, aliquando confectum &longs;patium ab <expan abbr="vtroq;">vtroque</expan> tantum e&longs;t, quan­<lb/> tum minor circulus &longs;olus, &longs;ecundum &longs;uam periphæriam reuolutus perfeci&longs;­<lb/> &longs;et; <expan abbr="quando&qacute;">quandoque</expan>; verò quantum maior &longs;olus ab&longs;olui&longs;&longs;et. </s> <s id="s.003184">Quod autem maior <lb/> &longs;olus in &longs;ua reuolutione maiorem lineam de&longs;cribat, manife&longs;tum e&longs;t hinc, <lb/> quia &longs;en&longs;u patet maiorem circunferentiam in maiori circulo &longs;ubtendere <lb/> angulum, qui fit à diametris in centro; minorem verò circunferentiam <lb/> &longs;ubtendere eundem angulum in minori orbe, vt etiam in 8. quæ&longs;t. </s> <s id="s.003185"><expan abbr="dictũ">dictum</expan> e&longs;t: <lb/> eandem igitur, vt proximè dixi habebunt etiam proportionem illæ lineæ, <lb/> quæ à &longs;ingulis &longs;eor&longs;um orbibus reuolutis de&longs;ignabuntur. </s> <s id="s.003186">Quod præterea &longs;e­<lb/> cundum æqualem conuoluuntur, quando circa idem po&longs;iti fuerint centrum, <lb/> manife&longs;tum e&longs;t, ita tamen, vt aliquando ambæ æquales &longs;int ei, &longs;ecundum <lb/> quam &longs;olus maior conuolueretur; aliquando verò &longs;ecundum quam minor. <lb/> <figure id="id.009.01.188.1.jpg" place="text" xlink:href="009/01/188/1.jpg"/><lb/> &longs;it enim circulus maior quidem vbi <lb/> D F C, minor verò vbi E G B, <expan abbr="vtriq;">vtrique</expan> <lb/> autem centrum A, linea, &longs;ecundum <lb/> quam quadrans F C, maioris per &longs;e <lb/> rotaretur, &longs;it F L. linea verò, &longs;ecun­<lb/> dum quam <expan abbr="quadrãs">quadrans</expan> G B, minoris &longs;e­<lb/> iuncti à maiori, volutaretur &longs;it G K, <lb/> quæ æqualis e&longs;t dicto quadranti G B, <lb/> &longs;icut etiam F I, æqualis e&longs;t quadran­<lb/> ti F C. &longs;i quis igitur impellat mino­<lb/> rem orbem mouens &longs;imul commune <lb/> centrum A, cui maior e&longs;t circumpo­<lb/> &longs;itus, donec diameter A B, perpendicularis &longs;it lineæ G K, in puncto K. tunc <lb/> pariter diameter maioris A C, erit perpendicularis lineæ F L, in puncto L. <lb/> <!-- KEEP S--></s> <s id="s.003187">G K, autem, & F L, nece&longs;&longs;ariò erunt æquales per 34. primi, æquales igitur <lb/> lineas hoc modo peragrarunt inæquales circunferentiæ, &longs;iue quadrantes <lb/> G B, F C. &longs;i autem quadrantes hoc præ&longs;tant, manife&longs;tum e&longs;t, quod & toti <lb/> ambitus idem efficiunt, quare quando tota periphæria G B E G, fuerit re­<lb/> uoluta etiam tota F C D F, &longs;uum orbem <expan abbr="completũ">completum</expan> habebit. </s> <s id="s.003188">&longs;imiliter &longs;i ma­<lb/>iorem quis mouerit, cui minor &longs;it annexus eodem exi&longs;tente centro, &longs;imul ac <pb pagenum="189" xlink:href="009/01/189.jpg"/>diameter A C, erit perpendicularis ad F I, in puncto I, erit etiam A B, per­<lb/> pendicularis ip&longs;i G M, in M; &longs;unt autem G M, & F I, æquales, quare quan­<lb/> do F C, quadrans maioris pertran&longs;iuerit rectam F C, etiam C B, quadrans <lb/> minoris tran&longs;actam habebit illi parem G M. hoc autem accidit nulla inter­<lb/> cedente mora in vllo ip&longs;orum: quando enim mouetur maior, nihil ce&longs;&longs;at <lb/> minor: & quando minor agitur, maior nunquam quie&longs;cit. </s> <s id="s.003189">quod &longs;i hoc acci­<lb/> dit quartæ parti circulorum, idem, & totis accidit periphærijs. </s> <s id="s.003190">vbi in&longs;uper <lb/> illud etiam mirum, centrum nimirum ip&longs;orum eadem celeritate motum, <lb/>ac vnica &longs;emper exi&longs;tenti latione, modo maius, modo minus &longs;patium per­<lb/> ficere; idem verò eadem velocitate latum, æquale &longs;emper deberet interual­<lb/> lum tran&longs;ilire. </s> <s id="s.003191">& tamen in præ&longs;entia vtrouis modo moueas eadem pernici­<lb/> tate, modò maius, modò minus &longs;patium pertran&longs;ibit.</s> </p> <p type="main"> <s id="s.003192">Huius quæ&longs;tionis enodandæ cau&longs;a, &longs;upponendum primò e&longs;t, quod eadem, <lb/> &longs;eu æqualis potentia, hanc quidem magnitudinem tardius, illam verò citius <lb/> mouere pote&longs;t. </s> <s id="s.003193">&longs;i enim fuerit quippiam, quod à &longs;eip&longs;o moueri minimè ap­<lb/> tum &longs;it; & aliud, quod à &longs;e ip&longs;o moueri aptum &longs;it; qui hoc &longs;imul cum illo <lb/> coniunctum mouerit, tardius mouebit, quàm &longs;i ip&longs;um &longs;olum moueret. </s> <s id="s.003194">& &longs;i <lb/> quid moueatur, quod aptum &longs;it ex &longs;e moueri, verumtamen in eo motu nihil <lb/> ex &longs;e moueatur, perinde e&longs;t, ac &longs;i minimè aptum &longs;it ad motum, & proinde <lb/> tardius mouebitur; nec fieri poterit, vt plu&longs;quam mouens moueatur, cum <lb/> nihil innata motione vtatur. </s> <s id="s.003195">Si quis igitur minorem circulum, quem mo­<lb/> do B, appello, mouerit &longs;upra &longs;uam circunferentiam, cui annexus &longs;it maior, <lb/> quem modo appello A, &longs;ic quidem maior mouebitur, non autem ex &longs;e, &longs;ed <lb/> &longs;olum quatenus à minori feretur, vnde tantum pertran&longs;ibit de recta F L, <lb/> quantum à minori fuerit impul&longs;us; tantum autem e&longs;t impul&longs;us, quantum <lb/> minor e&longs;t motus; quare æqualem cum illo viam confecit. </s> <s id="s.003196">&longs;i igitur minor fe­<lb/> cit pedalem G K, maior confecit etiam pedalem F L, quia maior nihil de <lb/> proprio motu addidit, &longs;ed &longs;olum motione minoris e&longs;t tran&longs;latus. </s> <s id="s.003197">&longs;imiliter <lb/> &longs;i quis rotet maiorem &longs;upra &longs;uam circunferentiam annexo minori, tantum <lb/> minor mouebitur, quantum à maiori deportabitur, quia nihil ex &longs;e impel­<lb/> litur. </s> <s id="s.003198">Verum &longs;i &longs;eor&longs;um ambo ex &longs;e &longs;ecundum &longs;uos ambitus moueantur, &longs;iue <lb/> citò, &longs;iue tardè, eadem etiam velocitate perficiant integram &longs;uæ periphæ­<lb/> riæ volutationem, maior maius, minor verò minus conficiet &longs;patium.</s> </p> <p type="main"> <s id="s.003199">Sed fortè augebitur difficultas con&longs;ideranti, quod prædicti circuli &longs;unt <lb/> circa idem centrum, & circa illud mouentur. </s> <s id="s.003200">moueri autem circulum cir­<lb/> ca &longs;uum centrum, e&longs;t moueri &longs;ecundum &longs;uum naturalem motum, ad quem <lb/> circuli ex &longs;e &longs;unt apti. </s> <s id="s.003201">&longs;i verò vnus moueretur circa &longs;uum centrum, alter ve­<lb/> rò non, vt quando alter alteri non e&longs;t circa idem centrum compactus, & ab <lb/> altero mouetur, vbi manife&longs;tè apparet, quod fertur omninò ab illo, & in il­<lb/> la latione non circumuertitur circa proprium centrum, quare tunc minimè <lb/> mirum e&longs;t, &longs;i <expan abbr="neq;">neque</expan> plus, <expan abbr="neq;">neque</expan> minus &longs;patium conficiat, quàm ab altero de­<lb/> portetur, cui quoquo modo adiacet, aut appen&longs;us e&longs;t extra illius centrum.</s> </p> <p type="main"> <s id="s.003202">Huic obiectioni <expan abbr="re&longs;pond&etilde;dum">re&longs;pondendum</expan> e&longs;t, quod quamuis prædicti orbes &longs;int con­<lb/> centrici, nihilominus non mouentur ambo &longs;uamet motione, &longs;ed ille, qui ab <lb/> alio fertur mouetur &longs;ecundum motionem illam, tanquam &longs;i nullam ad eam <lb/>haberet aptitudinem; quamuis enim po&longs;&longs;it moueri circa centrum illud A,<pb pagenum="190" xlink:href="009/01/190.jpg"/>propria natura, in præ&longs;enti tamen ca&longs;u minimè vtitur illa aptitudine; & <lb/> propterea motus debet moueri, quantum mouens, nec plus, nec minus.</s> </p> <p type="main"> <s id="s.003203">Quòd autem &longs;pectat ad id, quod initio dicebatur de eodem centro, & de <lb/> mouente eadem velocitate, & de æquali ab inæqualibus orbibus pertran&longs;i­<lb/>ta linea, &longs;ube&longs;t huic dubitationi paralogi&longs;mus: quamuis enim &longs;it idem am­<lb/> borum centrum, e&longs;t tamen vnius centrum per &longs;e in motione, alteri verò per <lb/> accidens, veluti per accidens e&longs;t eundem virum e&longs;&longs;e mu&longs;icum, & album. </s> <s id="s.003204">ille <lb/> enim circulus, qui mouet alterum, obtinet illud centrum per &longs;e, & ex natu­<lb/> ra &longs;ua; alter verò, qui mouetur, habet illud idem per accidens, quia non <lb/> vtitur illo tanquam centro. </s> <s id="s.003205">non igitur circa idem &longs;impliciter centrum fit <lb/> horum motus, &longs;ed alio modo vnus, alio modo alter, vnde & reliquis dubi­<lb/> tationibus facilè &longs;atisfiet.</s> </p> <p type="head"> <s id="s.003206"><emph type="italics"/>QVÆSTIO XXV.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="head"> <s id="s.003207"><emph type="italics"/>De Lecto<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003208"><arrow.to.target n="marg254"/></s> </p> <p type="margin"> <s id="s.003209"><margin.target id="marg254"/>264</s> </p> <p type="main"> <s id="s.003210">Cvr lectulorum &longs;pondas faciunt &longs;ecundum duplam proportionem, <lb/> hoc e&longs;t longiorem &longs;pondam duplo longiorem, quàm &longs;it altera: il­<lb/> lam enim &longs;ex pedum, vel paulò plus, hanc verò trium? </s> <s id="s.003211">præterea <lb/> cur re&longs;tes, quibus culcitræ &longs;u&longs;tinentur non extendunt per diame­<lb/> trum, &longs;ed per tran&longs;uer&longs;um?</s> </p> <p type="main"> <s id="s.003212">Ad primum re&longs;pondetur ideò facere &longs;pondas in dupla ratione, vt &longs;int hu­<lb/> mano corpori proportionatæ, &longs;ic enim lecti longitudinem habebunt qua­<lb/> tuor cubitorum, latitudinem verò duorum, in tali enim &longs;patio commo­<lb/> dè cubamus.</s> </p> <p type="main"> <s id="s.003213">Ad &longs;ecundum verò dicendum extendi illos funes non per diametrum, &longs;ed <lb/> ex oppo&longs;ito, quia hoc modo ligna ip&longs;ius lecti minus di&longs;trahuntur: facilè <lb/> enim ex natura &longs;ua ligna hæc ab inuicem &longs;ecundum longum &longs;eparantur; ar­<lb/> ctius autem ductis funibus per tran&longs;uer&longs;um, quàm per diametrum inuicem <lb/> con&longs;tringuntur: præterea, quia &longs;ic etiam funes minus laborant, cum &longs;int eo­<lb/>rum ductus breuiores; & quia debent &longs;u&longs;tinere onus &longs;tragulorum, <expan abbr="atq;">atque</expan> cul­<lb/> cìtrarum, &longs;ic certè ex hoc onere minus laborabunt &longs;i tran&longs;uer&longs;im, quàm &longs;i <lb/> diametraliter &longs;ubtendantur.</s> </p> <p type="main"> <s id="s.003214">Tertia demum ratio e&longs;t, quia hac ratione minus re&longs;tium ab&longs;umitur, quæ <lb/> <figure id="id.009.01.190.1.jpg" place="text" xlink:href="009/01/190/1.jpg"/><lb/>vt benè intelligatur, de&longs;criba­<lb/> tur lectuli figura A F G K, & <lb/> bifariam diuidatur latus F G, <lb/> in B. & quia tota F G, dupla <lb/> e&longs;t ip&longs;ius A F, erit dimidium <lb/> F B, æquale ip&longs;i A F. & propte­<lb/> rea tot erunt foramina, quibus <lb/> funes immittuntur in F B, quot <lb/> in A F. <expan abbr="ext&etilde;dunt">extendunt</expan> autem funem <lb/> hoc modo incipiunt ab A, & <lb/> ducunt ad B, po&longs;tea per C, re­ <pb pagenum="191" xlink:href="009/01/191.jpg"/>uertuntur ad D; hinc flectunt per H, v&longs;que ad E, & per G, angulum iterum <lb/> de&longs;cendunt ad M, à quo recta tendunt in F, hinc per 2. deducunt ad 3. à quo <lb/> foramine, per foramen 4. reflexum faciunt ad 5. à quo iterum per B, de&longs;cen­<lb/> dunt ad angulum K, <expan abbr="ibi&qacute;">ibique</expan>; alterum funis extremum de&longs;init: <expan abbr="hoc&qacute;">hocque</expan>; modo duo <lb/> anguli A, & K, re&longs;tis habent capita, & re&longs;tes exten&longs;æ &longs;unt non diametrali­<lb/> ter, &longs;ed tran&longs;uer&longs;im.</s> </p> <p type="main"> <s id="s.003215">Notandum autem, quod re&longs;tes æquales &longs;unt cum &longs;uis curuaturis. </s> <s id="s.003216">v. <!-- REMOVE S-->g. <!-- REMOVE S-->re­<lb/> &longs;tis A B, cum &longs;ua curuatura B C, æqualis e&longs;t re&longs;ti C D, vnà cum eius curua­<lb/> tura D H, & aliæ eodem modo &longs;e habent, quia eadem demon&longs;tratio omni­<lb/> bus accommodari pote&longs;t: quia enim figura A B G M, parallelogrammum <lb/> e&longs;t, æqualia enim &longs;unt latera B G, A M, & quot foramina &longs;unt in vno, tot <lb/> etiam &longs;unt in altero, <expan abbr="ea&qacute;">eaque</expan>; inuicem æquidi&longs;tant, &longs;equitur omnes re&longs;tes e&longs;&longs;e <lb/> parallelas, & æquales, per 33, primi. </s> <s id="s.003217">ex qua etiam &longs;equitur prædictas cu­<lb/> ruaturas, B C, D H, E G, e&longs;&longs;e æquales. </s> <s id="s.003218">quare manife&longs;tum e&longs;t in dimidio le­<lb/> ctulo tot e&longs;&longs;e re&longs;tes æquales re&longs;ti A B, quot &longs;unt foramina in dimidio latere <lb/> B G, vel in dimidio F B, hoc e&longs;t e&longs;&longs;e quatuor. </s> <s id="s.003219">porrò oportet quantitatem <lb/> harum omnium re&longs;tium per&longs;crutari, vt eam cum quantitate re&longs;tium diame­<lb/> traliter exten&longs;arum conferamus, quod geometricè hoc modo a&longs;&longs;eque mur: <lb/> triangulum enim B G K, rectangulum e&longs;t, ergò per 47. primi, quadrata la­<lb/>terum B G, G K, æqualia &longs;unt quadrato lineæ B K: latus B G, e&longs;t trium pe­<lb/> dum, quemadmodum etiam latus G K quadratus autem numerus ternarij <lb/> e&longs;t 9. ergo duo quadrati numeri 9. &longs;iue 18. æquales &longs;unt quadrato lineæ B K, <lb/> ergò linea B K, e&longs;t radix quadrata numeri 18. quæ radix non pote&longs;t exactè <lb/> in numeris repræ&longs;entari, e&longs;t enim, vt aiunt, radix &longs;urda. </s> <s id="s.003220">verumtamen per <lb/> radicum extractionem, <expan abbr="atq;">atque</expan> approximationem ea poni pote&longs;t e&longs;&longs;e 41/4. ide&longs;t <lb/> quatuor pedum cum vna quarta. </s> <s id="s.003221">cum igitur in toto lecto &longs;int huiu&longs;modi <lb/> octo re&longs;tes, erit omnium &longs;umma pedum 34. ferè. </s> <s id="s.003222">&longs;i autem &longs;eeundum diame­<lb/> trum extendantur re&longs;tes, vti factum e&longs;t in lectulo A B C D, neutiquam re­<lb/> &longs;tes omnes &longs;imul &longs;uperiori quantitati adæquabuntur, &longs;ed illam longè &longs;upe­<lb/> <figure id="id.009.01.191.1.jpg" place="text" xlink:href="009/01/191/1.jpg"/><lb/> rabunt. </s> <s id="s.003223">Sit igitur lectus A B­<lb/> C D, in quo diametraliter du­<lb/> ctæ &longs;int re&longs;tes B D, E H, & re­<lb/> liquæ, vt in figura. </s> <s id="s.003224">harûm quan­<lb/> titas &longs;i per 47. primi, & per ra­<lb/> dicis quadratæ extractionem <lb/> inueniatur, erit &longs;umma earum <lb/> pedum quadraginta cum dimi­<lb/> dio; quæ quantitas præcedenti <lb/> maior e&longs;t &longs;ex pedibus cum di­<lb/> midio.</s> </p> <p type="main"> <s id="s.003225"><expan abbr="Atq;">Atque</expan> hic e&longs;t &longs;en&longs;us Ari&longs;t. quamuis tex. <!-- REMOVE S-->ip&longs;ius propter nimiam tam in græ­<lb/> cis, quàm in latinis codicibus corruptionem, totus re&longs;titui nequiuerit.</s> </p> <pb pagenum="192" xlink:href="009/01/192.jpg"/> <p type="head"> <s id="s.003226"><emph type="italics"/>QVÆSTIO XXVI.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="head"> <s id="s.003227"><emph type="italics"/>De ligno humeris gestato.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003228"><arrow.to.target n="marg255"/></s> </p> <p type="margin"> <s id="s.003229"><margin.target id="marg255"/>265</s> </p> <p type="main"> <s id="s.003230">Cvr difficilius e&longs;t <expan abbr="lõga">longa</expan> ligna ab extremo &longs;uper humeros ferre, quàm <lb/> &longs;ecundum medium, cùm tamen <expan abbr="vtroq;">vtroque</expan> modo &longs;it &longs;emper idem pon­<lb/> dus? </s> <s id="s.003231">An quia dum fertur lignum &longs;uper humeros ab altero extre­<lb/>mo, alterum extremum vibratur, & agitatur, quæ agitatio ip&longs;ius <lb/> lationem impedit? </s> <s id="s.003232">An quia licet nihil inflectatur ob agitationem, <expan abbr="neq;">neque</expan> ma­<lb/> gnam habeat longitudinem, difficilius tamen ab extremo fertur, quoniam <lb/> facilius ex medio eleuatur, quàm ab extremo, & quia latio e&longs;t qua&longs;i quæ­<lb/> dam continua eleuatio, propterea etiam difficilius &longs;ic portatur? </s> <s id="s.003233">cau&longs;a au­<lb/> tem cur facilius ex medio eleuetur e&longs;t, quia hoc modo totum lignum fit ve­<lb/> ctis, cuius hypomoclion e&longs;t in medio, vbi is, qui eleuat, tenet aut fert: ex­<lb/> trema autem &longs;ibi mutuò <expan abbr="æqueponderãt">æqueponderant</expan>, ita vt <expan abbr="ab&longs;q;">ab&longs;que</expan> vllo alio auxilio, â tan­<lb/> ta vi, quantum e&longs;t totum ligni pondus &longs;u&longs;tineatur; quod &longs;i ab extremo ele­<lb/> uetur non &longs;ufficit amplius prædicta vis, &longs;ed opus erit maiori, quia non &longs;o­<lb/>lum oportebit illud eleuare, &longs;ed præterea etiam illud in æquilibrio con&longs;ti­<lb/> tuere, & con&longs;eruare. </s> <s id="s.003234">pondus enim totius ligni vergit ferè ad alteram ligni <lb/>medietatem, quæ ab hypomoclio productior euadit, quapropter ad onus <lb/> i&longs;tud æquilibrandum, opus e&longs;t alia potentia in altero extremo. </s> <s id="s.003235">&longs;it lignum <lb/> <figure id="id.009.01.192.1.jpg" place="text" xlink:href="009/01/192/1.jpg"/><lb/> A B, &longs;u&longs;pen&longs;um ex medio C. <lb/> hoc modo lignum ponderi­<lb/> bus libratum &longs;uis manet in <lb/> æquilibrio, pote&longs;tque à &longs;ola <lb/> potentia illud eleuante etiam deferri: quia A, & B, extrema &longs;e mutuò &longs;u&longs;ti­<lb/> <figure id="id.009.01.192.2.jpg" place="text" xlink:href="009/01/192/2.jpg"/><lb/> nent. </s> <s id="s.003236">quod &longs;i non ex medio eleuaretur, <lb/> &longs;ed ab extremo, vt in &longs;ecunda figura, <lb/> eleuans potentia ex C, æqualis oportet, <lb/> vt &longs;it præcedenti; &longs;ed præterea opus e&longs;t <lb/> alia vi, quæ in B, æquiponderet alteri <lb/> extremo A, quod magis grauitat, quo ab C, longius fuerit; & hoc modo in <lb/> æquilibrio con&longs;titutum, & con&longs;eruatum poterit non &longs;olum eleuari, &longs;ed <lb/> etiam circumferri.</s> </p> <p type="head"> <s id="s.003237"><emph type="italics"/>QVÆSTIO XXVII.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="head"> <s id="s.003238"><emph type="italics"/>De Gestatis &longs;uper humerum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003239"><arrow.to.target n="marg256"/></s> </p> <p type="margin"> <s id="s.003240"><margin.target id="marg256"/>266</s> </p> <p type="main"> <s id="s.003241">Cvr &longs;i valdè procerum &longs;uerit idem pondus difficilius &longs;uper humeros <lb/> ge&longs;tatur, etiam &longs;i ex medio illud feratur, quàm &longs;i breuius &longs;it? </s> <s id="s.003242">quod <lb/> enim dudum dictum e&longs;t cau&longs;a non e&longs;t, &longs;ed vibratio, & &longs;uccu&longs;&longs;atio <lb/> ligni nunc e&longs;t: quando enim ab humero productius fuerit, magis <lb/> vibrantur extrema, quam ob rem contingit portantem difficilius ge&longs;tare. <lb/> </s> <s id="s.003243">vibrationis autem cau&longs;a e&longs;t, quoniam ab eadem vi mouente magis extrema <pb pagenum="193" xlink:href="009/01/193.jpg"/>huc illuc transferuntur, quanto procerius fuerit lignum, quia tunc maior <lb/> fit di&longs;tantià à centro, &longs;eu hypomoclio, quod modo e&longs;t humerus ip&longs;e. </s> <s id="s.003244">&longs;it vt <lb/> in prima præcedentis quæ&longs;tionis figura, humerus vbi A. di&longs;tantiæ autem ab <lb/> ip&longs;o centro &longs;unt A B, A C, quod autem maior di&longs;tantia; faciliorem reddat <lb/> motum o&longs;ten&longs;um e&longs;t initio huius operis.</s> </p> <p type="head"> <s id="s.003245"><emph type="italics"/>QVÆSTIO XXVIII.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="head"> <s id="s.003246"><emph type="italics"/>De Tollenone.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.003247"><arrow.to.target n="marg257"/></s> </p> <p type="margin"> <s id="s.003248"><margin.target id="marg257"/>267</s> </p> <p type="main"> <s id="s.003249">In&longs;trumentum i&longs;tud, quod græca voce Leonicus interpres Celonia vo­<lb/> cat, latinis dicitur Tolleno, à tollendo; quod etiam manife&longs;tum e&longs;t <lb/> ex Fe&longs;to, qui ait, Tolleno e&longs;t genus machinæ, quo hauritur aqua in al­<lb/> teram partem prægrauante pondere; quæ tollenonis de&longs;criptio om­<lb/> ninò machinæ præ&longs;entis quæ&longs;tionis competit. </s> <s id="s.003250">Hi&longs;pani Telonam fortè a tol­<lb/> lenone nuncupant. </s> <s id="s.003251">E&longs;t autem tolleno <expan abbr="in&longs;trumentũ">in&longs;trumentum</expan> hauriendæ è puteo aquæ <lb/> idoneum, quo ru&longs;tici pa&longs;&longs;im vtuntur: <expan abbr="id&qacute;">idque</expan>; iuxta puteos &longs;tabile, ac firmum <lb/> con&longs;truunt, quale à figura &longs;equenti refertur. </s> <s id="s.003252">vbi puteus F, tolleno con&longs;tat <lb/> <figure id="id.009.01.193.1.jpg" place="text" xlink:href="009/01/193/1.jpg"/><lb/> erecto tigno D C, & tran&longs;­<lb/> uer&longs;a ha&longs;ta A C B, vnà cum <lb/> fune B E, & hydria E. ap­<lb/> ponitur præterea onus &longs;a­<lb/> tis graue ad <expan abbr="part&etilde;">partem</expan> A, quale <lb/> e&longs;t G. ha&longs;ta porrò A B, ve­<lb/> luti vectis circa <expan abbr="pũctum">punctum</expan> C, <lb/> tanquam hypomoclion, <lb/> <expan abbr="&longs;us&qacute;">&longs;usque</expan>; <expan abbr="de&qacute;">deque</expan>; agitur, à poten­<lb/> tia funem B E, trahente. <lb/> </s> <s id="s.003253">&longs;ed iam textus exponatur.</s> </p> <p type="main"> <s id="s.003254">Cur iuxta puteos tolle­<lb/> nones faciunt eo, quo vi­<lb/> &longs;untur modo, ligno enim <lb/> tran&longs;uer&longs;o A B, adiungunt <lb/> onus plumbi G, cum alio­<lb/> quin vas ip&longs;um E, & vacuum, & plenum pondus habeat: cur inquam, vt fa­<lb/> cilius moueant tollenonem, tollenonis oneri onus addunt G? </s> <s id="s.003255">An quoniam <lb/> cùm opus hauriendi diuidatur in duo, in intingendi nimirum, & &longs;ur&longs;um tra­<lb/> hendi tempora: accidit quidem <expan abbr="ab&longs;q;">ab&longs;que</expan> plumbi onere facilius intingere, quia <lb/> tunc vas e&longs;t vacuum: at verò &longs;ur&longs;um vas deinde plenum trahere, laborio­<lb/> &longs;ius erit. </s> <s id="s.003256">&longs;i verò addatur onus G, tunc quidem paulò difficilius intingemus, <lb/> &longs;ed tamen vas plenum po&longs;tea multò facilius, quod opus, & labor e&longs;t, &longs;ur&longs;um <lb/> educemus: operæpretium igitur e&longs;t, onus illud plumbi, aut lapidis adiun­<lb/> gere in extremo A, quia &longs;ic pondus illud tanquam quædam potentia vecte <lb/> A B, vtens &longs;ur&longs;um hydriam plenam rapiet, <expan abbr="hac&qacute;">hacque</expan>; ratione nos labore leua­<lb/> bit, <expan abbr="totum&qacute;">totumque</expan>; hauriendi opus demi&longs;&longs;ione, <expan abbr="atq;">atque</expan> eleuatione <expan abbr="con&longs;tãs">con&longs;tans</expan>, alleuabit,</s> </p> <pb pagenum="194" xlink:href="009/01/194.jpg"/> <p type="head"> <s id="s.003257"><emph type="italics"/>QVÆSTIO XXVIIII.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="head"> <s id="s.003258"><emph type="italics"/>De onere phalanga gestato.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003259"><arrow.to.target n="marg258"/></s> </p> <p type="margin"> <s id="s.003260"><margin.target id="marg258"/>268</s> </p> <p type="main"> <s id="s.003261">Cvr quando &longs;uper ligno, aut huiu&longs;modi quopiam duo portauerint <lb/> homines æquale pondus, non &longs;imiliter grauantur, ni&longs;i quando pon­<lb/> dus in medio eorum fuerit; &longs;ed magis ille premitur, cui onus vici­<lb/> nius fuerit? </s> <s id="s.003262">An quia lignum illud vectis efficitur, cuius hypomo­<lb/> clion e&longs;t vbi pondus ge&longs;tatum &longs;u&longs;penditur; ge&longs;tantium autem oneri proxi­<lb/> mior gerit vicem illius, quod vecte mouetur, remotior verò e&longs;t potentia <lb/> vecte mouens. </s> <s id="s.003263">quanto igitur plus di&longs;tat ab hypomoclio, &longs;eu ge&longs;tato ponde­<lb/> re, tanto facilius mouet, hoc e&longs;t, alterum magis deor&longs;um premit, contra­<lb/> nitente nimirum ge&longs;tato onere <expan abbr="tãquam">tanquam</expan> hypomoclio. </s> <s id="s.003264">&longs;i autem in medio fue­<lb/> rit pondus, nihilo magis alter ge&longs;tantium fit id, quod vecte mouetur, quàm <lb/> alter; <expan abbr="neq;">neque</expan> magis mouet: &longs;ed eodem modo alter alteri fit pondus.</s> </p> <p type="main"> <s id="s.003265">Cæterum &longs;ciendum huiu&longs;modi lignum, quo tran&longs;uer&longs;o onera <expan abbr="deportãtur">deportantur</expan> <lb/> dici à latinis phalangam, vnde etiam verbum phalangare deducitur, quod <lb/> huiu&longs;modi ge&longs;tationem &longs;ignificat; <expan abbr="e&longs;t&qacute;">e&longs;tque</expan>; Vitruuio v&longs;itatum, & Afranio, qui <lb/> ait, capream vnam &longs;emilaceram quaterni &longs;imul phalangabant.</s> </p> <p type="head"> <s id="s.003266"><emph type="italics"/>QVÆSTIO XXX.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="head"> <s id="s.003267"><emph type="italics"/>De &longs;urgente à &longs;eßione.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003268"><arrow.to.target n="marg259"/></s> </p> <p type="margin"> <s id="s.003269"><margin.target id="marg259"/>269</s> </p> <p type="main"> <s id="s.003270">Cvm &longs;edemus, præcipuè &longs;i commodè &longs;edeamus, &longs;olemus duos angu­<lb/> los rectos facere, vnum quidem, quem facit thorax cum femore; <lb/> alterum quem facit femur cum crure, vt in figura thorax &longs;it A B, <lb/> <figure id="id.009.01.194.1.jpg" place="text" xlink:href="009/01/194/1.jpg"/><lb/> femur B C, crus C D, anguli duo recti &longs;unt B, <lb/> & C. <!-- KEEP S--></s> <s id="s.003271">Quærit igitur, cur quando &longs;urgere volumus angu­<lb/> los ho&longs;ce rectos in acutos commutamus, nam crus re­<lb/> trahimus &longs;ub femur ad acutum angulum, v. <!-- REMOVE S-->g. <!-- REMOVE S-->ad po&longs;itio­<lb/> nem C F. <expan abbr="fit&qacute;">fitque</expan>; acutus angulus B C F. &longs;imiliter thoracem <lb/> femori aptamus ad acutum angulum E B C, alioquin &longs;ur­<lb/> gere non valemus? </s> <s id="s.003272">An quia id, quod æquale e&longs;t, quietis <lb/> <expan abbr="vbiq;">vbique</expan> e&longs;t cau&longs;a, rectus autem angulus e&longs;t angulus æquali­<lb/> tatis, <expan abbr="atq;">atque</expan> &longs;tationis? </s> <s id="s.003273"><expan abbr="quæcunq;">quæcunque</expan> enim angulis rectis con­<lb/> &longs;tant, vt quadratum, vt cubus, quieti, ac &longs;tationi &longs;unt <lb/>idonea, vt propterea Pytagorei dicerent terram e&longs;&longs;e cubicam, propter ip­<lb/> &longs;ius immobilitatem. </s> <s id="s.003274">e&longs;t autem angulus rectus, angulus æqualitatis, quia <lb/> omnes anguli recti &longs;unt inuicem æquales, vel quia linea illa, quæ angulum <lb/> rectum facit e&longs;t perpendicularis alteri lineæ, cui incumbit, <expan abbr="æqualiter&qacute;">æqualiterque</expan>; in <lb/> <expan abbr="vtramq;">vtramque</expan> partem inclinata e&longs;t: quapropter fit, vt quæcunque con&longs;tituta &longs;int <lb/>&longs;uper &longs;uperficiem terræ ad angulos rectos non cadant, &longs;ed recta maneant. <lb/> </s> <s id="s.003275">pariter <expan abbr="quæcunq;">quæcunque</expan> ad angulos rectos pauimento incumbunt, non &longs;olum, quia <lb/>cum illo faciant angulos rectos, &longs;ed etiam, quia &longs;imul faciunt cum &longs;uperficie <pb pagenum="195" xlink:href="009/01/195.jpg"/>terræ perpendiculum. </s> <s id="s.003276">An quia qui &longs;urgit fit rectus; rectus autem manens, <lb/>oportet, vt &longs;it &longs;uperficiei terræ perpendicularis. </s> <s id="s.003277">debet igitur e&longs;&longs;e &longs;ecundum <lb/> eandem rectitudinem, ide&longs;t caput &longs;upra thoracem, thorax verò &longs;upra femo­<lb/> ra, femora verò &longs;upra crura in eadem rectitudine, quæ horizonti perpendi­<lb/> culariter in&longs;i&longs;tat: quando autem &longs;edemus thorax, & crura, non &longs;unt in ea­<lb/> dem linea horizonti perpendiculariter erecta, quapropter nece&longs;&longs;e e&longs;t pedes <lb/> retrahere, caput autem reclinare, vt &longs;ic in eadem recta linea horizonti per­<lb/> pendiculariter con&longs;tituantur, <expan abbr="hoc&qacute;">hocque</expan>; modo a&longs;&longs;urgere erit po&longs;&longs;ibile.</s> </p> <p type="main"> <s id="s.003278"><arrow.to.target n="marg260"/></s> </p> <p type="margin"> <s id="s.003279"><margin.target id="marg260"/>270</s> </p> <p type="main"> <s id="s.003280">Reliquæ quæ&longs;tiones ad Phy&longs;icum &longs;pectant. </s> <s id="s.003281">In 33. aperit propriam &longs;en­<lb/> tentiam de motu proiectorum.</s> </p> <p type="main"> <s id="s.003282">In 35. & vltima de vortice quamuis videatur mathematicam &longs;apere, e&longs;t <lb/> tamen phy&longs;ica. </s> <s id="s.003283">Eius autem re&longs;olutiones tres ab Ari&longs;t. allatas, fal&longs;as e&longs;&longs;e <lb/> &longs;u&longs;picor; experientia enim docet, quod &longs;i quippiam ponatur &longs;upra rotam <lb/> figuli, id non ad centrum, &longs;ed extra rotam proijcitur. </s> <s id="s.003284">&longs;ed cau&longs;a e&longs;t, quia in <lb/>vortice aqua ip&longs;a &longs;piratim circumcurrens tandem in centrum, vbi demer­<lb/> gitur de&longs;cendit; nece&longs;&longs;e igitur e&longs;t, vt etiam ea, quæ in ip&longs;a &longs;unt, &longs;imul cum <lb/> illa ad centrum per plures conuolutiones deducantur. </s> <s id="s.003285">Cæterum &longs;i quis ve­<lb/> lit Mechanicam facultatem &longs;eriò aggredi, nequaquam paucis his ab Ari&longs;t. <lb/> traditis, <expan abbr="eis&qacute;">eisque</expan>; leui brachio pertractatis, contentus &longs;it: verùm Archimedem <lb/> de Aquæponderantibus, Commandinum, ac Lucam Valerium de centro <lb/> grauitatis &longs;olidorum, ac tandem Guidi Vbaldi Mechanica adeat, vbi hu­<lb/> ius &longs;cientiæ admiranda plurima, <expan abbr="ea&qacute;">eaque</expan>; firmi&longs;&longs;imè demon&longs;trata reperiet.</s> </p> </chap> <chap> <p type="head"> <s id="s.003286"><emph type="italics"/>IN LIBELLVM DE MVNDO <lb/> AD ALEXANDRVM.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003287">Cvm plures libellum hunc Ari&longs;t. attribuant, cogor loca ip&longs;ius ma­<lb/> thematica ex in&longs;tituto exponere.</s> </p> <p type="main"> <s id="s.003288"><arrow.to.target n="marg261"/></s> </p> <p type="margin"> <s id="s.003289"><margin.target id="marg261"/>271</s> </p> <p type="main"> <s id="s.003290">In 2. cap. recen&longs;et Planetarum ordinem, iuxta antiqui&longs;&longs;imorum <lb/> A&longs;tronomorum traditiones, qui ob paucas, <expan abbr="eas&qacute;">easque</expan>; imperfectas ob­<lb/>&longs;eruationes multa ignorarunt, <expan abbr="atq;">atque</expan> in multis, & præcipuè in ordine Plane­<lb/> tarum &longs;tatuendo, fal&longs;i &longs;unt: A&longs;tronomi enim po&longs;teriores, & maximè Ptolæ­<lb/> meus, vnà cum recentioribus no&longs;tri &longs;eculi alium ordinem exactioribus ob­<lb/> &longs;eruationibus, <expan abbr="atq;">atque</expan> demon&longs;trationibus a&longs;truentes vetu&longs;ti&longs;&longs;imorum illorum <lb/> errores patefecerunt. </s> <s id="s.003291">E&longs;t autem verus ordo, vt Luna &longs;it omnium terris pro­<lb/> xima, deinde Mercurius, tùm Venus, po&longs;tea Sol, Mars, Iupiter, <expan abbr="Saturnus&qacute;">Saturnusque</expan>; <lb/> à terris alti&longs;&longs;imus, quos omnes &longs;tellarum affixarum &longs;phæra, quæ etiam fir­<lb/> mamentum dicitur, complectitur. </s> <s id="s.003292">non me latet huius no&longs;tri &longs;eculi di­<lb/> ligenti&longs;&longs;imos a&longs;tronomos nouam mundani &longs;y&longs;tematis hy­<lb/> pothe&longs;im inducere; &longs;ed ea prædicto Planctarum <lb/> ordini parum, aut nihil repugnat.</s> </p> <pb pagenum="196" xlink:href="009/01/196.jpg"/> <p type="head"> <s id="s.003293"><emph type="italics"/>De æstu Maris.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.003294"><arrow.to.target n="marg262"/></s> </p> <p type="margin"> <s id="s.003295"><margin.target id="marg262"/>272</s> </p> <p type="main"> <s id="s.003296">In 3. cap. <emph type="italics"/>(Aiunt etiam multos æstus vndarumqué &longs;ublationes fiatis quibu&longs;­<lb/>dam temporibus cum Luna circumagi)<emph.end type="italics"/> Perpaucis maris fluxum, & reflu­<lb/>xum attingit, qui quia ex motu præcipuè Lunæ pendet, non videtur <lb/> alienum hoc loco eum fu&longs;ius explicare, <expan abbr="atq;">atque</expan> nonnullis difficultatibus <lb/>occurrere, quibus recentiores nonnulli nimis implicantur. </s> <s id="s.003297">Ae&longs;tus maris <lb/> e&longs;t quædam maris ebullitio, ob quam vt &longs;olet in ebullientibus aquis, mare <lb/> intume&longs;cit: fiunt autem in toto mundo duobus tantum in locis ex hoc æ&longs;tu <lb/> tumores duo, quorum vnus &longs;emper directè Lunæ &longs;ubiacet, alter verò in <lb/> auer&longs;a terræ parte, &longs;iue huic antipoda, & diametraliter oppo&longs;ita.</s> </p> <p type="main"> <s id="s.003298">Ex his Marium tumoribus fit vt aquæ, quæ naturæ &longs;ua decliuiora petunt, <lb/>qua&longs;i exundantes ad littora fluant. </s> <s id="s.003299">atque hic aquarum cur&longs;us fluxus maris <lb/> appellatur. </s> <s id="s.003300">decre&longs;cente deinde maris æ&longs;tu, & tumore ex rece&longs;&longs;u Lunæ, aquæ <lb/> iterum ad medium mare refluunt: <expan abbr="atq;">atque</expan> hic maris refluxus dicitur. </s> <s id="s.003301">Cum au­<lb/> tem in toto die &longs;int 24. horæ & &longs;emper &longs;int &longs;imul in mundo duo æ&longs;tus, & tu­<lb/> mores, fit vt &longs;int pariter &longs;emper in mundo duo fluxus, qui tumores illos co­<lb/> mitantur; necnon duo refluxus, qui eo&longs;dem &longs;ub&longs;equantur; hinc fit vt <expan abbr="vni-cuiq;">vni­<lb/> cuique</expan> illorum &longs;ex heræ <expan abbr="conueniãt">conueniant</expan>, &longs;ex fluxui, &longs;ex refluxui, qui &longs;ub Luna fiunt; <lb/> &longs;ex verò fluxui, & &longs;ex tandem refluxui Lunæ auer&longs;is, quæ totam Lunæ circa <lb/> mundum periodum 25. horarum expleant. </s> <s id="s.003302">Cau&longs;am autem cur mare hoc <lb/> modo &longs;tatis horis, paulò tamen &longs;erius ob Lunæ tardiorem ortum &longs;emper <lb/> cre&longs;cat, & decre&longs;cat antiqui omnes in Lunam retulerunt, vt primus omnium <lb/> Ari&longs;t. hoc loco, deinde Strabo, Pomponius Mela, Plinius, Solinus, & alij <lb/> plures idem &longs;en&longs;erunt. </s> <s id="s.003303">Lunam &longs;cilicet eam habere vim in mare, vt pars il­<lb/>la, quæ Lunæ &longs;ubiacet, &longs;iue quam Luna radijs ferit, æ&longs;tuet, & turgeat; non <lb/> aliter pars maris huic antipoda, & auer&longs;a, quamuis tota terræ moles inter <lb/> <figure id="id.009.01.196.1.jpg" place="text" xlink:href="009/01/196/1.jpg"/><lb/> ip&longs;am, & Lunam interpona­<lb/> tur, æ&longs;tuat, fluxumque, ac re­<lb/> fluxum quamuis priori mi­<lb/> norem, efficit. </s> <s id="s.003304">quæ omnia <lb/> melius in figura cernentur; <lb/> vbi infra Lunam vides tumo­<lb/> rem A, ex quo fluxus deriua­<lb/> tur. </s> <s id="s.003305">& in parte huic auer&longs;a <lb/> tumorem B, ex quo alter flu­<lb/> xus deriuatur. </s> <s id="s.003306">& quia in alijs <lb/> duobus mundi lateribus non <lb/> <expan abbr="fiũt">fiunt</expan> huiu&longs;modi tumores, imò <lb/> mare ob refrigerationem <lb/> &longs;ub&longs;idet, ibi fiunt duo reflu­<lb/> xus C, & D, ita vt &longs;emper &longs;int <lb/> in mari præ&longs;ertim Oceano <lb/> quatuor prædicti effectus, qui <lb/> &longs;imul, vt ait hic Ari&longs;t. & ex­ <pb pagenum="197" xlink:href="009/01/197.jpg"/>perientia te&longs;tatur, &longs;imul cum Luna circa mundum circumaguntur. </s> <s id="s.003307">hoc e&longs;t <lb/> &longs;i Luna, quæ modo e&longs;t in &longs;uperiori parte meridionali, venerit ad locum E, <lb/>occidentalem, eam fluxus A, &longs;ub&longs;equitur, <expan abbr="vergit&qacute;">vergitque</expan>; tumorem &longs;uum ad occi­<lb/> dentem E, vnde, & fluxus B, promouebitur ad orientem, ita vt punctum F, <lb/> orientalem a&longs;piciat.</s> </p> <p type="main"> <s id="s.003308">Alij præterea duo refluxus eadem proportione promoti erunt, vbi prius <lb/> erant fluxus: quæ <expan abbr="con&longs;equ&etilde;tia">con&longs;equentia</expan> ad Lunam perpetua, manife&longs;tum e&longs;t, &longs;ignum, <lb/>ho&longs;ce fluxus, ac refluxus non aliunde quàm à Luna manare. </s> <s id="s.003309">quod adhuc ma­<lb/> nife&longs;tius erit, &longs;i con&longs;ideremus, quod quanto tardius quotidie Luna oritur, <lb/> tanto etiam maris æ&longs;tus tardius incipit. </s> <s id="s.003310">Porrò vt appareat hanc e&longs;&longs;e vete­<lb/> rum &longs;ententiam libet hic attexere quædam ex lib. 3. Strabonis, quæ ip&longs;e ex <lb/> Po&longs;&longs;idonio acceperat. </s> <s id="s.003311">&longs;ic. </s> <s id="s.003312">Oceani verò motum ait, &longs;cilicet Po&longs;&longs;idonius, &longs;y­<lb/> deris &longs;ubire circuitum, quendam quidem diurnum, quendam men&longs;truum, <lb/> quendam annuum, vt Lunæ etiam contingit. </s> <s id="s.003313">quo etiam tempore i&longs;ta &longs;uper <lb/> horizontem a&longs;cenderit, mare terram a&longs;cendere incipit, &longs;en&longs;u te&longs;te, <expan abbr="quou&longs;q;">quou&longs;que</expan> <lb/> ad cœli medium Luna con&longs;cenderit. </s> <s id="s.003314">Vbi verò declinare &longs;ydus ip&longs;um cœ­<lb/> perit, &longs;en&longs;im rur&longs;us à terra pelagus ad medium mare reuertitur, donec ad <lb/>occidentis punctum Luna de&longs;cenderit. </s> <s id="s.003315">deinde tanto eadem incon&longs;tantia <lb/>tempore manet, quanto Luna ad ip&longs;um occa&longs;um coniungitur, & adhuc tan­<lb/>to magis, quanto &longs;ub terram mota, &longs;ignum ab horizonte di&longs;tet. </s> <s id="s.003316">po&longs;tea rur­<lb/>&longs;us mare a&longs;cendere, quou&longs;que &longs;ub tellurem in medio cœli &longs;it Luna, deinde <lb/> mare à littore regredi quoad iterum Luna in orientem procedat, ac &longs;upra <lb/>horizontem eleuetur, con&longs;i&longs;tere verò v&longs;que quo &longs;ignum &longs;upra terram eleue­<lb/> tur, & rur&longs;us terras mare a&longs;cendere. </s> <s id="s.003317">Hanc diurnam e&longs;&longs;e circuitionem a&longs;&longs;e­<lb/> rit Po&longs;&longs;idonius, men&longs;truam verò, &c. </s> <s id="s.003318">vbi pergit explicare, qua ratione, ma­<lb/>ria etiam alijs motibus men&longs;truo. </s> <s id="s.003319">&longs;cilicet, & annuo cieantur, iuxta Lunæ <lb/> periodos men&longs;truam, & annuam. </s> <s id="s.003320">Eadem omninò habet Plinius, & alij ve­<lb/> teres omnes, quos tu con&longs;ulere poteris vnde mirum videri debeat, cur re­<lb/> centiores plurimi, <expan abbr="neq;">neque</expan> veterum auctoritate, <expan abbr="neq;">neque</expan> ratione, aut experientia <lb/> nixi, hanc maris affectionem, à Luna effici negarint.</s> </p> <p type="main"> <s id="s.003321">Verum ip&longs;i duabus poti&longs;&longs;imum rationibus id negant.</s> </p> <p type="main"> <s id="s.003322">Prima e&longs;t, quod vario admodum tempore, & modo in diuer&longs;is fiant ma­<lb/> ribus, & in nonnullis nihil horum æ&longs;tuum appareat.</s> </p> <p type="main"> <s id="s.003323">Huic re&longs;pondendum e&longs;t, id ex varia marium di&longs;po&longs;itione, tum etiam va­<lb/>rio &longs;itu, quo Lunam a&longs;piciunt prouenire. </s> <s id="s.003324">hoc modo videmus vario tempo­<lb/> re, & modo, in toto orbe effici dies, ac noctes, æ&longs;tatem, & hyemem; & ta­<lb/> men certum e&longs;t Solem i&longs;ta omnia efficere. </s> <s id="s.003325">Sed melius etiam huic dubita­<lb/> tioni occurremus certa quadam, <expan abbr="atq;">atque</expan> omninò explorata experientia ex ar­<lb/> te Nautica de&longs;umpta. </s> <s id="s.003326">libri enim nautici ab&longs;que vlla dubitatione Lunæ hæc <lb/>omnia verè a&longs;cribunt, dum qua&longs;dam regulas tradunt, eas tamen pro varijs <lb/>maribus varias, quibus per ætatem Lunæ, & &longs;itum ip&longs;ius &longs;upra horizontem <lb/> illius maris certò certius horam fluxus; & refluxus, imò eorum etiam ma­<lb/>gnitudinem præno&longs;cunt, ac prædicunt. </s> <s id="s.003327">huiu&longs;modi librum vidi ego Parmæ, <lb/> manu &longs;criptum, auctore Augu&longs;tino Cæ&longs;areo, quem ille olim Sereni&longs;s. <!-- REMOVE S-->Duci <lb/> Octauio dono dederat. </s> <s id="s.003328">quod &longs;i hi æ&longs;tus à Luna minimè penderent, nulla ra­<lb/>tione regulæ illæ effici potui&longs;&longs;ent, quibus per ætatem ip&longs;ius, ac &longs;itum &longs;upra <lb/> horizontem eos prædicere tuto valerent.</s> </p> <pb pagenum="198" xlink:href="009/01/198.jpg"/> <p type="main"> <s id="s.003329">Secunda verò ratio, quæ maximè eos torquet e&longs;t quanam ratione à Luna <lb/> effici po&longs;&longs;it &longs;ecundus refluxus B, primò oppo&longs;itus, cum tota terræ moles in­<lb/> teriecta ob&longs;tare videatur.</s> </p> <p type="main"> <s id="s.003330">Verum huic difficultati optimè ex opticis &longs;atisfacere po&longs;&longs;umus, fi dixe­<lb/> rimus, æ&longs;tum illum effici quidem à Luna, & Sole, &longs;ed tamen per lumen ex <lb/> &longs;yderibus ad partem illam auer&longs;am reflexum; quod vt melius explicetur, & <lb/> confirmetur. </s> <s id="s.003331">Illud primò &longs;ciendum non &longs;olam Lunam, verum etiam Solem <lb/>ad æ&longs;tum maris ciendum concurrere, quamuis primas in hoc Lunæ conce­<lb/> dat; experientia enim con&longs;tat maiorem fieri fluxum, quando Sol, & Luna <lb/> &longs;imul &longs;unt coniuncta, vt in nouilunio accidit, quia lumina, & eorum virtu­<lb/> tes vnitæ fortius eandem maris partem directis radijs percellunt. </s> <s id="s.003332">&longs;imiliter <lb/> maior fit, quando luminaria &longs;unt oppo&longs;ita, vt in plenilunio contingit, quia <lb/> tunc radij vnius directi, a&longs;&longs;ociantur cum reflexis alterius radijs, <expan abbr="hoc&qacute;">hocque</expan>; mo­<lb/> do duplicati ea&longs;dem terræ partes, & directè, & reflexè feriunt, vt melius in <lb/> &longs;equenti figura patebit.</s> </p> <p type="main"> <s id="s.003333">Secundò præmittendum e&longs;t, lumen Solis, & Lunæ reflecti ex den&longs;is, ac per­<lb/>politis corporibus, vti &longs;unt omnia &longs;ydera.</s> </p> <p type="main"> <s id="s.003334">Tertiò, ex opticis a&longs;&longs;umendum, &longs;i corpora plurima &longs;phærica lumen re­<lb/>flectentia fuerint in circulari ambitu con&longs;tituta, quemadmodum &longs;unt &longs;tellæ <lb/> affixæ in ambitu firmamenti collocatæ, reflectere <expan abbr="plurimũ">plurimum</expan> lumen ad vnum, <lb/> & idem punctum, quod &longs;it inter lumen, & ambitum illum; quod a&longs;&longs;umptum <lb/> manife&longs;tum e&longs;t ex Iride, vbi ex plurimis &longs;phæricis guttulis lumen Solis re­<lb/> flectitur ad oculum; quamuis geometricè, & quidem facilè à Per&longs;pectiuo <lb/> demon&longs;trari po&longs;&longs;it.</s> </p> <p type="main"> <s id="s.003335">Quartò, ex opticis, dato corpore lumino&longs;o, & &longs;phærico reflectente, & <lb/> puncto quouis, ad quod po&longs;&longs;it reflecti lumen, pote&longs;t inueniri in &longs;phæra refle­<lb/> ctente punctum reflexionis.</s> </p> <p type="main"> <s id="s.003336">Quintò, quanto radij perpendiculariores incidunt, tanto maiorem <lb/> vim habere.</s> </p> <p type="main"> <s id="s.003337">Sit ergò Sol, & Luna &longs;imul, vt in figura <expan abbr="&longs;it&qacute;">&longs;itque</expan>; octauæ &longs;phæræ portio A B C, <lb/> cum innumeris in ea affixis &longs;yderibus. </s> <s id="s.003338">e&longs;&longs;e autem totum cœlum &longs;tellis penè <lb/> infinitis, ac con&longs;tipatis refertum &longs;en&longs;ui palam fit, adhibito nouo illo, ac mi­<lb/> rabili Tele&longs;copij inuento.</s> </p> <p type="main"> <s id="s.003339">Iam, vt patet ex 39.5. Alhazeni, ex &longs;ingulis &longs;tellis Solis, ac Lunæ lumen <lb/> reflecti pote&longs;t (ni&longs;i quid ob&longs;tet) ad partem terræ D, luminaribus auer&longs;am, <lb/> vt quarto loco &longs;uppo&longs;ui. </s> <s id="s.003340">& præterea ex &longs;tellis circa B, po&longs;itis radij Solis re­<lb/> percuti po&longs;&longs;unt ad eandem terræ partem D, perpendiculares, qui præ cæte­<lb/> ris maximam vim obtinent. </s> <s id="s.003341">quemadmodum lineæ in figura reflexæ <expan abbr="vtcunq;">vtcunque</expan> <lb/> o&longs;tendunt, ideò a&longs;&longs;erendum e&longs;t eos, æ&longs;tum D, excitare præcipuè po&longs;&longs;e, <expan abbr="neq;">neque</expan> <lb/> terræ quantitas Solis luci obe&longs;t, cum con&longs;tet vmbram terræ parum &longs;upra <lb/> Lunæ cœlum produci. </s> <s id="s.003342">pote&longs;t tamen Lunæ e&longs;&longs;e impedimento quoad hos ra­<lb/> dios perpendiculares; &longs;ed tamen alios minus perpendiculares, &longs;eu parum <lb/> obliquos nullo modo impedire pote&longs;t, quo minus ad D, re&longs;iliant. </s> <s id="s.003343">qui quam­<lb/> uis &longs;int minus quàm perpendiculares efficaces, obtinent tamen non modi­<lb/> cam vim. </s> <s id="s.003344">Ex &longs;tellis igitur circa A, & C, reflecti pote&longs;t ex quarto fundamen­<lb/> to lumen <expan abbr="vtriu&longs;q;">vtriu&longs;que</expan> luminaris ad D, quod &longs;atis e&longs;t efficax, cùm ferè perpendi­ <pb pagenum="199" xlink:href="009/01/199.jpg"/><figure id="id.009.01.199.1.jpg" place="text" xlink:href="009/01/199/1.jpg"/><lb/> culariter terræ D, incidat. </s> <s id="s.003345">quamuis autem ex &longs;tellis F, E, lumen aliquod ad <lb/> D, tran&longs;mittatur, tamen cum obliquè admodum illi accidat, nihil penè ef­<lb/> ficere valet. </s> <s id="s.003346">Verumenimuerò qui&longs;piam in hunc modum obijciet: hac ra­<lb/> tione deberet fieri etiam æ&longs;tus in terræ lateribus H, I, quando quidem etiam <lb/> illuc lumen ex quarto fundamento reflecti pote&longs;t.</s> </p> <p type="main"> <s id="s.003347">Cui &longs;ic re&longs;pondendum, po&longs;&longs;e quidem aliquod lumen illuc re&longs;ilire, &longs;ed ta­<lb/> men exiguum admodum, & proinde nullius penè roboris, quod experientia <lb/> de&longs;umpta ex illuminatione Lunæ comprobari pote&longs;t; videmus enim, quod <lb/> quanto Luna magis Soli opponitur, & proinde &longs;uam illuminationem magis <lb/> ver&longs;us terram obuertit, vt in plenilunio, tanto maiorem eam vim habere <lb/> æ&longs;tus excitandi. </s> <s id="s.003348">multo verò minorem, quando e&longs;t in a&longs;pectu Solis quadrato, <lb/> quia dimidiam tantum &longs;ui illuminationem nobis reflectit. </s> <s id="s.003349">Idem proportio­<lb/> naliter de &longs;tellis dicendum, quæ enim luminari maximè opponuntur, vt quæ <lb/> &longs;unt circa B, illæ totam illuminationem terræ o&longs;tendunt, vnde, & efficacio­<lb/> res &longs;unt. </s> <s id="s.003350">cæteræ, quo magis ab illis di&longs;tant minus de &longs;ua illuminatione ter­<lb/> ræ, &longs;eu mari <expan abbr="obuertũt">obuertunt</expan>, & proinde minus efficiunt. </s> <s id="s.003351">vnde fit, vt quamuis non­<lb/> nulli radij etiam perpendiculares ad terræ latera H, I, referri po&longs;&longs;int, tamen <lb/> quia pauciores &longs;unt, quàm alibi, propterea nullam ibi æ&longs;tus <expan abbr="prouocãdi">prouocandi</expan> vim <lb/> obtinent. </s> <s id="s.003352">&longs;ydera porrò illa, quæ &longs;upra Solem exi&longs;tunt, etiam &longs;i ip&longs;orum illu­ <pb pagenum="200" xlink:href="009/01/200.jpg"/>minatio tota ad terras vergat, tamen in lateribus terræ prædictis nihil ef­<lb/> ficiunt, quia in illa vel obliquè admodum radij incidunt, vel ea tantummo­<lb/> do tangunt. </s> <s id="s.003353">Verum illuminatione &longs;ua ea&longs;dem maris partes, quæ &longs;unt ad G, <lb/> vnà cum Sole, ac Luna percellunt.</s> </p> <p type="main"> <s id="s.003354">Ex quibus apparet duas tantum orbis terræ partes totis, ac plenis a&longs;tro­<lb/>rum luminibus impeti, in quibus &longs;cilicet duo oppo&longs;iti æ&longs;tus ebulliunt.</s> </p> <p type="main"> <s id="s.003355">Idem po&longs;&longs;umus hoc modo confirmare, quia cum totum firmamentum &longs;it <lb/> innumeris penè &longs;yderibus &longs;tipatum, loco concaui, ac &longs;phæriçi &longs;peculi ha­<lb/> beri pote&longs;t, & proinde illius in&longs;tar amborum luminarium lumen reflectere; <lb/> qua ratione patet omnem ferè ad partes prædictas D, emitti reflexionem.</s> </p> <p type="main"> <s id="s.003356">His rationibus manife&longs;tum e&longs;&longs;e patet prædictum æ&longs;tus tumorem lumina­<lb/> ribus auer&longs;um, <expan abbr="atq;">atque</expan> antipodum ex prædicta reflexione exurgere.</s> </p> <p type="main"> <s id="s.003357">Po&longs;&longs;et etiam qui&longs;piam &longs;ic opponere, &longs;i illuc prædicta luminum reflexio <lb/> pertineret, non &longs;olum illam aquarum ebullitionem efficeret, verum etiam <lb/> lucem aliquam eòdem afferret, quod tamen &longs;en&longs;u minimè apparet. </s> <s id="s.003358">cui &longs;ic <lb/> re&longs;pondendum videtur, nece&longs;&longs;arium non e&longs;&longs;e, vt reflexio illa, quæ hoc modo <lb/> mare afficit tanta &longs;it, vt etiam illud luce &longs;olito maiori afficiat; quod <expan abbr="expe-ri&etilde;tia">expe­<lb/> rientia</expan> con&longs;tat in alijs c&etail;li influxibus: quàm &longs;æpè enim Luna nubilo&longs;o etiam <lb/>tempore, fluxum, ac refluxum priorem parit, cum tamen nullam tunc lu­<lb/> cem nobis afferat? </s> <s id="s.003359">quamuis enim lumen &longs;tellarum &longs;uperficiem maris non <lb/> attingat, attingit tamen &longs;uperficiem vaporum, exhalationum, ac nubium, <lb/> quæ terram in &longs;phæræ modum ambiunt, ac parum à terra <expan abbr="circumquaq;">circumquaque</expan> at­<lb/> tolluntur: quem exhalationum ambitum deinde luminarium virtus facilè <lb/> penetrare pote&longs;t. </s> <s id="s.003360">Nullum præterea lumen apparet, quia lumen reflexum <lb/> præ&longs;ertim ex conuexis corporibus, vt &longs;unt &longs;tellæ, valde debile e&longs;t, quia <expan abbr="con-uexũ">con­<lb/> uexum</expan> illud reflectendo non vnit, &longs;ed di&longs;gregat, contra quam facit concauum.</s> </p> <p type="main"> <s id="s.003361">Tandem quærere quis po&longs;&longs;et, cur æ&longs;tus hic &longs;ecundus minor &longs;it priori. </s> <s id="s.003362">Cui <lb/> re&longs;pondendum, quia ille à directis radijs, hic verò à reflexis progignitur: <lb/> radios autem reflexos debiliores e&longs;&longs;e directis optici docent, <expan abbr="atq;">atque</expan> experien­<lb/> tia confirmat.</s> </p> <p type="main"> <s id="s.003363">Porrò quando luminaria &longs;unt oppo&longs;ita, vt &longs;i Luna e&longs;&longs;et in B, Sol verò in K, <lb/> tunc maximus fit <expan abbr="vterq;">vterque</expan> fluxus, quia radij directi <expan abbr="vtriu&longs;q;">vtriu&longs;que</expan> vniuntur cum ra­<lb/> dijs reflexis alterius; ita vt <expan abbr="vterq;">vterque</expan> æ&longs;tus fiat, & per radium reflexum, & per <lb/> directum &longs;imul, v. <!-- REMOVE S-->g. <!-- REMOVE S-->æ&longs;tus, qui Lunæ &longs;ubiacet fit per radium Lunæ directum, <lb/> & quia Sol e&longs;t in oppo&longs;itione cum Luna, &longs;it vt ip&longs;ius radij reflectantur, & <lb/> vniantur cum directis Lunæ ad eundem tumorem excitandum. </s> <s id="s.003364">&longs;imiliter in­<lb/> fra Solem directè alius fit à directis ip&longs;ius radijs; & quia Luna ei opponitur <lb/> lumen eius ad <expan abbr="v&longs;q;">v&longs;que</expan> &longs;ydera pertinens reuertitur, <expan abbr="vna&qacute;">vnaque</expan>; cum directa Solis lu­<lb/> ce ad eundem efficiendum concurrit.</s> </p> <p type="main"> <s id="s.003365">Exi&longs;tentibus demum luminaribus circa quadratum a&longs;pectum, vt &longs;i Luna <lb/> e&longs;&longs;et in F, Sole exi&longs;tente in K. exiguus, ac penè nullus fit fluxus, quia eorum <lb/> vires non &longs;unt vnitæ, cùm radij nec incidentes, nec reflexi vniantur imò vi­<lb/>res eorum &longs;eparatæ maria in contrarias partes di&longs;trahunt, vnde fit, vt neu­<lb/> tro alteri concedente, apud neutrum victoria con&longs;tet.</s> </p> <p type="main"> <s id="s.003366"><expan abbr="Atq;">Atque</expan> hæc e&longs;t mea de æ&longs;tu maris per reflexionem &longs;ententia. </s> <s id="s.003367">quam iamdiu <lb/> inuentam, <expan abbr="atq;">atque</expan> auditoribus meis &longs;æpius explicatam, reperi tandem non &longs;ine <pb pagenum="201" xlink:href="009/01/201.jpg"/>gaudio fui&longs;&longs;e etiam &longs;ubtili&longs;&longs;imi Scoti opinionem, quam ip&longs;e breuiter in pri­<lb/> mum &longs;ent. </s> <s id="s.003368">de creatione mundi tantummodo &longs;ine vlla expo&longs;itione, <expan abbr="atq;">atque</expan> con­<lb/> firmatione proponit. </s> <s id="s.003369">in eadem pror&longs;us &longs;ententia e&longs;t Rogerius Bachon inter <lb/> Opticos probati&longs;&longs;imus, cap. 5. de Speculis Mathematicis.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.003370">Aliorum demum opinationes, &longs;iue Angelo cuidam, &longs;iue virtuti totam <lb/> terram peruadenti hunc æ&longs;tum a&longs;cribentium, non e&longs;t meum refellere, cum <lb/> non phy&longs;icum, &longs;ed mathematicum agere in&longs;tituerim.</s> </p> <p type="main"> <s id="s.003371"><arrow.to.target n="marg263"/></s> </p> <p type="margin"> <s id="s.003372"><margin.target id="marg263"/>273</s> </p> <p type="main"> <s id="s.003373">Cap. 7. <emph type="italics"/>(Quod Imagunculas animatas e&longs;&longs;e, &c.)<emph.end type="italics"/> huiu&longs;modi imagines, & <lb/> &longs;tatuas, quæ &longs;pontè mouebantur Græci appellarunt Automata, ide&longs;t &longs;pon­<lb/> tanea, cuiu&longs;modi &longs;unt automata Heronis, Alexandrini, quæ adhuc extant.</s> </p> </chap> <chap> <p type="head"> <s id="s.003374"><emph type="italics"/>IN LIBELLVM <lb/> De admirandis auditionibus.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003375"><arrow.to.target n="marg264"/></s> </p> <p type="margin"> <s id="s.003376"><margin.target id="marg264"/>274</s> </p> <p type="main"> <s id="s.003377">Nvmero 82. Quæ de illa in&longs;ula extra Herculis columnas &longs;ita narrat, <lb/> eam putant recentiores Geographi, & quidem meritò nouo orbi <lb/> conuenire.</s> </p> <p type="main"> <s id="s.003378"><arrow.to.target n="marg265"/></s> </p> <p type="margin"> <s id="s.003379"><margin.target id="marg265"/>275</s> </p> <p type="main"> <s id="s.003380">Numero 100. Quæ de I&longs;tro, &longs;iue Dannubio tradit, eum &longs;cilicet <lb/> e&longs;&longs;e bifidum, <expan abbr="altero&qacute;">alteroque</expan>; ramo in Pontum, altero verò in Mediterraneum ex­<lb/> onerari: &longs;unt contra omnes recentiores Geographos; apparet tamen eam <lb/> fui&longs;&longs;e veterum nonnullorum opinionem, quos <expan abbr="&longs;e&qacute;uutus">&longs;equutus</expan> Ari&longs;t. deceptus e&longs;t, <lb/> à quibus etiam multò po&longs;t fal&longs;i &longs;unt Diodorus, Pomponius, & Solinus, qui <lb/> I&longs;trum I&longs;triæ Prouincìæ fluuium faciunt, quem ex I&longs;tro Germaniæ veluti ra­<lb/> mum contra omnem veritatem deriuant. </s> <s id="s.003381">Verùm hoc illis condonandum <lb/> præ&longs;ertim antiquioribus, cum tunc temporis Geographia parum e&longs;&longs;et <lb/> exculta.</s> </p> <p type="main"> <s id="s.003382">Primus Strabo hanc fal&longs;itatem libro 1. redarguit, & po&longs;t ip&longs;um Plinius <lb/> I&longs;trum i&longs;tum fabulo&longs;um appellat.</s> </p> </chap> <chap> <p type="head"> <s id="s.003383"><emph type="italics"/>IN LIBELLVM <lb/> De lineis in&longs;ecabilibus, &longs;iue indiuiduis.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003384"><arrow.to.target n="marg266"/></s> </p> <p type="margin"> <s id="s.003385"><margin.target id="marg266"/>276</s> </p> <p type="main"> <s id="s.003386">Di&longs;putat libellus hic &longs;anè acuti&longs;&longs;imus, Vtrum quantitas con&longs;tet ex <lb/> indiui&longs;ibilibus, quam qu&etail;&longs;tionem recentiores agitant in Phy&longs;icis <lb/> tractatione de Quantitate; <expan abbr="atq;">atque</expan> hinc nonnulla &longs;umunt argumen­<lb/> ta: plura &longs;umpturi ni&longs;i operis ob&longs;curitas, & mathematicarum, <lb/> ignoratio hactenus ob&longs;titi&longs;&longs;et.</s> </p> <p type="main"> <s id="s.003387">Sciendum igitur primo loco, nos po&longs;&longs;e duo indiui&longs;ibilium genera in quan­<lb/> titate concipere. </s> <s id="s.003388">primum eorum, quæ verè indiuidua &longs;unt, <expan abbr="nullas&qacute;">nullasque</expan>; habent <lb/>partes, &longs;iue nullo modo &longs;unt quanta; cuiu&longs;modi e&longs;t <expan abbr="punctũ">punctum</expan> mathematicum.</s> </p> <p type="main"> <s id="s.003389">Alterum quorumdam indiui&longs;ibilium quidem, &longs;ed tamen quantorum cu­<lb/> iu&longs;modi e&longs;&longs;ent, quædam adeò minimæ lineæ, quæ omnem effugiant diui&longs;io­<lb/>nem: ex quibus antiqui opinabantur lineas totales, ac diuiduas componi. <lb/> </s> <s id="s.003390">atque de hoc &longs;ecundo indiuiduorum, quantorum genere videtur opu&longs;culum <pb pagenum="202" xlink:href="009/01/202.jpg"/>i&longs;tud di&longs;&longs;erere. </s> <s id="s.003391">& quia partim rationibus phy&longs;icis, partim geometricis vti­<lb/> tur, ideò nec omninò phy&longs;icus nec omninò mathematicus e&longs;t. </s> <s id="s.003392">Ego igitur, <lb/>quæ mathematica &longs;unt, ex in&longs;tituto exponere aggrediar.</s> </p> <p type="main"> <s id="s.003393">Ad intelligentiam igitur huius operis nece&longs;&longs;arium e&longs;t noui&longs;&longs;e, quæ nam <lb/> &longs;int quantitates commen&longs;urabiles, & quæ in commen&longs;urabiles. </s> <s id="s.003394">quæ prima, <lb/> & &longs;ecunda definitione 10. Elem. explicantur; <expan abbr="ego&qacute;">egoque</expan>; eas primo Priorum oc­<lb/> ca&longs;ione a&longs;ymetriæ diametri cum co&longs;ta &longs;atis expo&longs;ui: vtrumuis locum vide­<lb/> ris præ&longs;enti nece&longs;&longs;itati con&longs;ultum erit.</s> </p> <p type="main"> <s id="s.003395"><arrow.to.target n="marg267"/></s> </p> <p type="margin"> <s id="s.003396"><margin.target id="marg267"/>277</s> </p> <p type="main"> <s id="s.003397">Primus locus Mathematicus e&longs;t hic <emph type="italics"/>(Po&longs;tremò ex ijs, quæ tradunt Mathe­<lb/> maticis imbuti di&longs;ciplinis, quiuis lineam aliquam in&longs;ecabilem e&longs;&longs;e concedet. </s> <s id="s.003398">nam <lb/> &longs;i, vt aiunt, illæ commen&longs;urabiles &longs;unt lineæ, quæ eadem men&longs;ura dimetiri queunt, <lb/>& nihil impedit, quin omnes commen&longs;urabiles re ip&longs;a dimetiantur, extabit profe­<lb/> ctò longitudo aliqua, qua omnes commen&longs;urabuntur; quæ nece&longs;&longs;ario erit indiuidua, <lb/> nam &longs;i dicatur e&longs;&longs;e diuidua, huius <expan abbr="quoq;">quoque</expan> men&longs;uræ partes, men&longs;uram aliquam com­<lb/> munem habebunt, partes enim toti commen&longs;urabiles &longs;unt ita, vt portio partis il­<lb/> lius, quæ dimidium totius fuerat, efficiatur dupla alterius; quoniam autem hoc <lb/> fieri nequit, atoma debet e&longs;&longs;e men&longs;ura hæc communis.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003399"><emph type="italics"/>Eodem modo, & quæ &longs;imul ab ip&longs;a men&longs;ura commen&longs;uratæ, tanquam omnes ex <lb/> ea men&longs;ura compo&longs;itæ &longs;unt lineæ, veluti ex atomis conflantur.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003400">Affert rationem quandam ex Mathematicis, qua nonnulli probabant ex­<lb/> tare lineas atomas, ex quibus cæteræ lineæ tanquam partibus con&longs;tarent: <lb/> ac proinde negabant lineas e&longs;&longs;e in infinitum diuiduas, &longs;eu quamlibet lineam <lb/> &longs;ecari po&longs;&longs;e, &longs;ed a&longs;&longs;erebant <expan abbr="diuid&etilde;do">diuidendo</expan>, tandem ad indiuiduas <expan abbr="deueniendũ">deueniendum</expan> e&longs;&longs;e.</s> </p> <p type="main"> <s id="s.003401">Præmi&longs;&longs;a igitur, vt monui commen&longs;urabilium, & incommen&longs;urabilium <lb/> linearum cognitione in hunc modum, & textum Ari&longs;tot. & rationem ip&longs;o­<lb/> rum exponam.</s> </p> <p type="main"> <s id="s.003402">Mathematici o&longs;tendunt extare lineas commen&longs;urabiles, quæ &longs;cilicet ea­<lb/> dem communi men&longs;ura men&longs;urantur: at nihil impedit quin omnes <expan abbr="cõmen-&longs;urabiles">commen­<lb/> &longs;urabiles</expan> re ip&longs;a men&longs;urentur, debet ergò extare vna aliqua longitudo, qua <lb/> omnes commen&longs;urabiles dimetiamur. </s> <s id="s.003403">hanc autem nece&longs;&longs;e e&longs;t e&longs;&longs;e atomam, <lb/> nam &longs;i diuidua &longs;tatuatur, poterit &longs;emper &longs;ecari, & &longs;ub&longs;ecari bifariam, qua­<lb/> re cum partes huiu&longs;modi &longs;int toti commen&longs;urabiles, &longs;equetur aliam exi&longs;tere <lb/> men&longs;uram, qua omnes hæ partes, & proinde tota linea commen&longs;urentur. <lb/> </s> <s id="s.003404">Verùm hoc fieri nequit, nam hoc pacto non e&longs;&longs;et vna tantum longitudo om­<lb/> nium commen&longs;urabilium linearum communis men&longs;ura, verùm plures, & <lb/> plures in infinitum, quod e&longs;t contra Mathematicorum placita. </s> <s id="s.003405">dicendum, <lb/> itaque, communem illam omnium men&longs;uram e&longs;&longs;e omnis diui&longs;ionis exper­<lb/> tem; & propterea etiam lineas omnes commen&longs;urabiles ex atomis lineis <lb/> componi, quæ nimirum prædictæ communi men&longs;uræ æquales &longs;int. </s> <s id="s.003406"><expan abbr="atq;">atque</expan> hæc <lb/> e&longs;t illarum prima argumentatio.</s> </p> <p type="main"> <s id="s.003407"><arrow.to.target n="marg268"/></s> </p> <p type="margin"> <s id="s.003408"><margin.target id="marg268"/>278</s> </p> <p type="main"> <s id="s.003409">Secundus locus <emph type="italics"/>(Idem etiam contingit in figuris planis, quæ à lineis rationa­<lb/> libus procreantur: nam omnes huiu&longs;modi figuræ erunt etiam inuicem commen&longs;ura­<lb/> biles, quare <expan abbr="ēadem">eadem</expan> ratione, qua in lineis proximè v&longs;i &longs;umus, &longs;equetur earum com­<lb/> munem men&longs;uram e&longs;&longs;e pariter indiuiduam.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003410">Sciendum e&longs;t omnes lineas <expan abbr="cõmen&longs;urabiles">commen&longs;urabiles</expan> longitudine, e&longs;&longs;e etiam com­<lb/> men&longs;urabiles (vt aiunt Geometræ) potentia, ide&longs;t &longs;ecundum quadrata ea­ <pb pagenum="203" xlink:href="009/01/203.jpg"/>rum, &longs;iue dicas quadrata <expan abbr="quoq;">quoque</expan> earum e&longs;&longs;e commen&longs;urabilia, v. <!-- REMOVE S-->g. <!-- REMOVE S-->linea dua­<lb/> <figure id="id.009.01.203.1.jpg" place="text" xlink:href="009/01/203/1.jpg"/><lb/> rum vnciarum, & linea trium vnciarum &longs;unt <lb/> commen&longs;urabiles longitudine, & potentia, <lb/> quia potentia lineæ duarum vnciarum, &longs;iue <lb/> <expan abbr="quadratũ">quadratum</expan>, e&longs;t quatuor vnciarum &longs;uperficia­<lb/> lium: & quadratum lineæ trium vnciarum, <lb/> e&longs;t nouem vnciarum quadratarum, vt patet <lb/> in figuris, quorum quadratorum communis <lb/> men&longs;ura e&longs;t vncia vna quadrata. </s> <s id="s.003411">atque hanc <lb/> illi nullo modo diuidi po&longs;&longs;e contendebant.</s> </p> <p type="main"> <s id="s.003412"><arrow.to.target n="marg269"/></s> </p> <p type="margin"> <s id="s.003413"><margin.target id="marg269"/>279</s> </p> <p type="main"> <s id="s.003414">Tertius locus <emph type="italics"/>(Præterea &longs;i quis communem &longs;tatam, ac determinatam men&longs;u­<lb/>ram faciat diuiduam, non erit amplius in rerum natura linea vlla rationalis, aut <lb/> irrationalis, re&longs;pectu expo&longs;itæ, ac determinatæ lineæ; neque aliarum vlla erit, de <lb/> quibus modo dictum e&longs;t, veluti quam Apotomen vocant ex duobus nominibus. </s> <s id="s.003415">Ve­<lb/> rùm neque &longs;ecundum &longs;e aliquam definitam naturam habebunt, &longs;ed collatæ &longs;ibi ip&longs;is <lb/> tam rationales, quàm irrationales erunt omnes.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003416">Hæc e&longs;t alia eorumdem ratio ad idem comprobandum: quam, vt benè <lb/> percipiamus, nonnulla prius ex definitionibus 10. Elem. &longs;unt explicanda: <lb/> vt quæ nam &longs;int lineæ rationales, quæ irrationales, quæ ex binis nomini­<lb/> bus, quæ Apotomæ.</s> </p> <p type="main"> <s id="s.003417">Propo&longs;ita igitur linea quapiam, v. <!-- REMOVE S-->g. <!-- REMOVE S-->trium palmorum qualis e&longs;t linea A, <lb/> po&longs;&longs;unt inueniri quamplurimæ lineæ, quarum aliæ &longs;int illi longitudine com­<lb/> <figure id="id.009.01.203.2.jpg" place="text" xlink:href="009/01/203/2.jpg"/><lb/> men&longs;urabiles, &longs;iue quæ cum expo&longs;ita A, ha­<lb/> beant communem men&longs;uram. </s> <s id="s.003418">v. <!-- REMOVE S-->g. <!-- REMOVE S-->linea B, <lb/> <expan abbr="quinq;">quinque</expan> palmorum e&longs;t commen&longs;urabilis lineæ <lb/> A, quia vtramque communis men&longs;ura vnius <lb/> palmi metitur: aliæ verò &longs;int eidem A, lon­<lb/> gitudine incommen&longs;urabiles, qualis e&longs;&longs;et diameter C D, quadrati lineæ A, <lb/> quæ e&longs;t cum latere A, incommen&longs;urabilis ex vltima 10.</s> </p> <figure id="id.009.01.203.3.jpg" place="text" xlink:href="009/01/203/3.jpg"/> <p type="main"> <s id="s.003419">Cæterum lineam primò expo&longs;itam, vt e&longs;t in præ­<lb/> &longs;entia A, quod e&longs;&longs;et notæ quantitatis, Græci appella­<lb/> runt <foreign lang="greek">*rh/thn,</foreign> ide&longs;t rationalem, quemadmodum Latini <lb/> eam appellant.</s> </p> <p type="main"> <s id="s.003420">Linearum autem longitudine <expan abbr="incomm&etilde;&longs;urabilium">incommen&longs;urabilium</expan> <lb/> cum expo&longs;ita rationali A, aliæ &longs;unt, quæ tamen &longs;unt <lb/> commen&longs;urabiles eidem potentia, ide&longs;t con&longs;tituunt <lb/> quadrata, quæ &longs;unt commen&longs;urabilia quadrato ra­<lb/> tionali A, vt linea C D, cum &longs;it diameter quadrati li­<lb/> neæ A, quadratum exhibet, quod e&longs;t duplum quadrati lineæ A, ex 47. primi, <lb/> quadratum autem lineæ A, e&longs;t nouem, igitur quadratum eius duplum erit <lb/> octodecim, quadratum &longs;cilicet lineæ C D. octodecim autem, & nouem &longs;unt <lb/> <expan abbr="cõmen&longs;urabilia">commen&longs;urabilia</expan> communi vnitatis men&longs;ura, huiu&longs;modi lineæ dicuntur com­<lb/>men&longs;urabiles potentia tantum, potentia. </s> <s id="s.003421">n. </s> <s id="s.003422">lineæ dicuntur <expan abbr="quadratũ">quadratum</expan> illius.</s> </p> <p type="main"> <s id="s.003423">Quæ igitur rationali propo&longs;itæ &longs;unt commen&longs;urabiles aliquo modo, &longs;iue <lb/> longitudine, & potentia (<expan abbr="quæcunq;">quæcunque</expan> enim commen&longs;urabilis e&longs;t longitudine, <lb/> e&longs;t etiam potentia) &longs;iue potentia &longs;olùm, rationales ip&longs;æ quoque dicuntur. <pb pagenum="204" xlink:href="009/01/204.jpg"/><figure id="id.009.01.204.1.jpg" place="text" xlink:href="009/01/204/1.jpg"/><lb/> Aliæ verò (quarum permultæ in decimo reperiun­<lb/> tur) quæ nec longitudine, nec potentia illi &longs;unt <lb/> commen&longs;urabiles, irrationales appellantur, qua­<lb/> lis e&longs;&longs;et media proportionalis E F, inter duas A, <lb/> & C D, in præ&longs;enti figura ex 11. 10.</s> </p> <p type="main"> <s id="s.003424">Sciendum præterea ex 37. 10. & &longs;equentibus, <lb/> quod ex duabus lineis rationalibus re&longs;pectu rationalis expo&longs;itæ. </s> <s id="s.003425">v. <!-- REMOVE S-->g. <!-- REMOVE S-->A, com­<lb/> men&longs;urabilibus inuicem tantum potentia, componitur linea, quæ cum ea­<lb/> <figure id="id.009.01.204.2.jpg" place="text" xlink:href="009/01/204/2.jpg"/><lb/> dem expo&longs;ita e&longs;t irrationalis, <expan abbr="vocatur&qacute;">vocaturque</expan>; ex <lb/> duobus nominibus, &longs;iue Binomium, vt &longs;i ex <lb/> latere A, & diametro C D, componatur li­<lb/> nea A C D, erit irrationalis cum rationali <lb/> A, <expan abbr="dicetur&qacute;">diceturque</expan>; binomium. </s> <s id="s.003426">Amplius ex 74. 10. & &longs;equentibus, &longs;i prædictum <lb/> minus nomen, &longs;iue minor linea A, detrahatur ex maiori nomine C D, vt re­<lb/> linquatur B D linea, erit ip&longs;a reliqua B D, irrationalis, quam po&longs;tea appel­<lb/> lant Apotomen, &longs;iue latinè Re&longs;iduum.</s> </p> <p type="main"> <s id="s.003427">Po&longs;tremò, & hoc non ignorandum ex 43. 10. lineam, &longs;iue <expan abbr="binomiũ">binomium</expan> A C D, <lb/> non po&longs;&longs;e diuidi in alio puncto, præter C, in duas lineas, quæ &longs;int rationales <lb/> expo&longs;itæ, & potentia tantum inuicem commen&longs;urabiles.</s> </p> <p type="main"> <s id="s.003428">His præmi&longs;&longs;is textum, ac rationem illorum explicabo in hunc modum.</s> </p> <p type="main"> <s id="s.003429">Si quis faciat diuiduam lineam illam, quæ e&longs;t communis <expan abbr="m&etilde;&longs;ura">men&longs;ura</expan> omnium <lb/> commen&longs;urabilium, &longs;equetur hoc ab&longs;urdum contra demon&longs;trationes 10. <lb/> quod nulla erit amplius linea rationalis, nec irrationalis, quia &longs;i communis <lb/> men&longs;ura diuidatur, tolletur ea de rerum natura; vnde non erit amplius in­<lb/> ter lineas &longs;ymetria vlla, quare neque vllæ erunt rationales, e&longs;&longs;e enim ratio­<lb/> nale oritur ex commen&longs;urabilitate. </s> <s id="s.003430">quare <expan abbr="neq;">neque</expan> extabit illa rationalis expo­<lb/> &longs;ita, ad quam cæteræ relatæ dicuntur rationales, vel irrationales: quapro­<lb/> pter etiam irrationales nullæ erunt, <expan abbr="neq;">neque</expan> vlla alia erit ex prædictis, veluti <lb/> nec irrationalis illa, quam vocant Apotomen ex Binomio, &longs;iue ex duobus <lb/> nominibus, de qua Euclides propo&longs;. </s> <s id="s.003431">74. 10. & &longs;equentibus pertractat.</s> </p> <p type="main"> <s id="s.003432">Notandum in ver&longs;u illo <emph type="italics"/>(Apotomen ex duobus nominibus compo&longs;itam)<emph.end type="italics"/> vni­<lb/> ca voce illa <emph type="italics"/>(Compo&longs;itam)<emph.end type="italics"/> addita ab Interprete Iatino, quæ non extat in tex. <lb/> <!-- REMOVE S-->græco, magnum Ari&longs;toteli imponi erratum, cum hac ratione dicat apoto­<lb/> men ex duobus nominibus e&longs;&longs;e compo&longs;itam, quod fal&longs;i&longs;&longs;imum e&longs;t. </s> <s id="s.003433">Apotome <lb/> enim, vt &longs;upra dictum e&longs;t, ne dum ex duobus nominibus con&longs;tat, verum ip­<lb/> &longs;a e&longs;t re&longs;iduum lineæ maioris, &longs;i minor ab ip&longs;a detrahatur. </s> <s id="s.003434">Verumenimuero <lb/> vox illa <emph type="italics"/>(Compo&longs;itam)<emph.end type="italics"/> in nullo codice reperitur, quare pro arbitrio, atque <lb/> ex Geometriæ in&longs;citia addita, tolli debet, ne tantæ in&longs;citiæ Ari&longs;t. ip&longs;e re­<lb/> darguatur. </s> <s id="s.003435">hæc in hunc locum &longs;ufficiant.</s> </p> <p type="main"> <s id="s.003436"><arrow.to.target n="marg270"/></s> </p> <p type="margin"> <s id="s.003437"><margin.target id="marg270"/>280</s> </p> <p type="main"> <s id="s.003438">Quartus locus <emph type="italics"/>(Quod verò de commen&longs;urabilibus lineis po&longs;tremò dicunt, om­<lb/>nes vna quadam, & eadem men&longs;ura oportere men&longs;urari, fal&longs;um e&longs;t admodum, & <lb/> nequaquam Mathematicorum &longs;uppo&longs;itionibus concordat. </s> <s id="s.003439">non enim ita &longs;upponunt <lb/> Geometræ, <expan abbr="neq;">neque</expan> vtile ip&longs;is i&longs;tud foret, imò potius aduer&longs;aretur, lineas omnes com­<lb/>men&longs;urabiles e&longs;&longs;e, & omnium commen&longs;urabilium linearum communem men&longs;uram <lb/> exi&longs;timare. </s> <s id="s.003440">quamobrem ridiculum e&longs;t eos, qui dicunt &longs;e demonstrare ex Geometra­<lb/> rum decretis, & ex quibus Mathematici docent in contentio&longs;am pariter, ac falla­<emph.end type="italics"/> <pb pagenum="205" xlink:href="009/01/205.jpg"/><emph type="italics"/>cem diuertere argumentationem, præ&longs;ertim tam inualidam. </s> <s id="s.003441">nam multis modis im­<lb/>becillis e&longs;t eiu&longs;modi ratio, & quouis modo licet euitare, ne aut inu&longs;itata dicere, aut <lb/> argui videamur.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003442">Refellit hoc loco &longs;uperiores rationes in tribus locis præmi&longs;&longs;is allatas, <lb/> quibus nonnulli probabant quantitatem ex indiuiduis con&longs;tare, & proinde <lb/> concedenda e&longs;&longs;e quædam Quanta, omninò atoma; &longs;ic igitur inquit. </s> <s id="s.003443">Quod <lb/>verò de commen&longs;urabilibus lineis dicunt, omnes videlicet vnica quadam, <lb/> <expan abbr="eadem&qacute;">eademque</expan>; determinata men&longs;ura men&longs;urari oportere, fal&longs;um omninò e&longs;t, & <lb/> contra mathematicorum dogmata, non enim Geometræ hoc a&longs;&longs;erunt, cùm <lb/>ip&longs;orum demon&longs;trationibus aduer&longs;etur; &longs;ed <expan abbr="tantũ">tantum</expan> dicunt omnes lineas, quæ <lb/> ad inuicem &longs;unt commen&longs;urabiles, commen&longs;urari, vna <expan abbr="eadem&qacute;">eademque</expan>; men&longs;ura, <lb/> <figure id="id.009.01.205.1.jpg" place="text" xlink:href="009/01/205/1.jpg"/><lb/> &longs;ed non tamen vnica, ide&longs;t non vnica, ac determi­<lb/> nata. </s> <s id="s.003444">po&longs;&longs;unt enim e&longs;&longs;e plures <expan abbr="eædem&qacute;">eædemque</expan>; men&longs;uræ <lb/> communes plurium quantitatum commen&longs;ura­<lb/> bilium, vt præ&longs;entium trium linearum 4. 6. 8. <lb/> communis <expan abbr="m&etilde;&longs;ura">men&longs;ura</expan> e&longs;t linea 2. binarius enim tres <lb/> numeros 4.6. & 8. men&longs;urat. </s> <s id="s.003445">& &longs;i linea 2. bifariam <lb/> &longs;ecetur, erit dimidium eius linea 1. quæ pariter <lb/> erit communis men&longs;ura trium prædictarum li­<lb/> nearum, cûm vnitas &longs;it omnium numerorum communis men&longs;ura. benè ve­<lb/> rum e&longs;t, quod Geometræ, quando &longs;impliciter loquuntur de huiu&longs;modi com­<lb/> muni men&longs;ura, intelligunt de ea, quæ inter omnes e&longs;t maxima: vt in prædi­<lb/> ctis tribus lineis maxima earum communis men&longs;ura e&longs;t linea 2. <expan abbr="Atq;">Atque</expan> hoc &longs;i­<lb/> bi volunt Geometræ, ex quibus totus hic textus intelligi pote&longs;t.</s> </p> <p type="main"> <s id="s.003446"><arrow.to.target n="marg271"/></s> </p> <p type="margin"> <s id="s.003447"><margin.target id="marg271"/>281</s> </p> <p type="main"> <s id="s.003448">Quintus locus <emph type="italics"/>(Ob rectæ verò lineæ motum in &longs;emicirculum, quam nece&longs;&longs;e e&longs;t <lb/> in rectum ita diuidere, vt infinitæ circunferentiæ, & interualla totidem inuenian­<lb/> tur)<emph.end type="italics"/> Interpres latinus &longs;ic vertit <emph type="italics"/>(Ob rectæ verò lineæ motum in &longs;emicirculum <lb/> diuiduas non credere, &c.)<emph.end type="italics"/> vbi verba illa <emph type="italics"/>(Diuiduas non credere)<emph.end type="italics"/> pro arbitrio, <lb/> ac &longs;ine ratione, imò contra rationem addidit: tum quia in Græco textu non <lb/> extant, tum quia &longs;en&longs;us totius &longs;ententiæ is e&longs;t, vt potius debui&longs;&longs;et affirmati­<lb/> uè dicere <emph type="italics"/>(Diuiduas credere)<emph.end type="italics"/> nam Ari&longs;toteles videtur &longs;ic <expan abbr="argum&etilde;tari">argumentari</expan>, quan­<lb/> <figure id="id.009.01.205.2.jpg" place="text" xlink:href="009/01/205/2.jpg"/><lb/> do recta linea A B, vt in appo&longs;ita figura mo­<lb/> uetur intrando in &longs;emicirculum C A D B, ita <lb/> vt primò &longs;it in &longs;itu A B, &longs;ecundò in E F, tertiò <lb/> in G H, & &longs;imiliter in alijs omnibus &longs;emicir­<lb/> culi locis, nece&longs;&longs;ariò accidit, vt infinitæ peri­<lb/> ph&etail;riæ, quales <expan abbr="sũt">sunt</expan> A B, E A B F, G E A B F H, <lb/> cadant inter infinitas partes lineæ ingredien­<lb/> tis, vt &longs;unt A B, E F, G H, <expan abbr="atq;">atque</expan> tam tota recta <lb/> ingrediens, quàm totus &longs;emicirculus, diuidatur in partes infinitas, ita vt <lb/> nulla pars lineæ rectæ, <expan abbr="neq;">neque</expan> vlla &longs;emicirculi &longs;uper&longs;it, quæ &longs;e &longs;e mutuò non <lb/> diuidantur, ergò nihil tam in linea, quàm in &longs;emicirculo remanet, quod non <lb/> &longs;ecetur: tota igitur linea recta, & periphæria illa diuidua e&longs;t, quam ob rem <lb/> nullo modo con&longs;tare pote&longs;t ex indiuiduis, ex quibus manife&longs;tum e&longs;t perpe­<lb/> ram additamentum illud factum e&longs;&longs;e, & &longs;imul ratio, & textus Ari&longs;t. eadem <lb/> opera patefacta &longs;unt.</s> </p> <pb pagenum="206" xlink:href="009/01/206.jpg"/> <p type="main"> <s id="s.003449"><arrow.to.target n="marg272"/></s> </p> <p type="margin"> <s id="s.003450"><margin.target id="marg272"/>282</s> </p> <p type="main"> <s id="s.003451">Sextus locus <emph type="italics"/>(Rur&longs;us <expan abbr="quoq;">quoque</expan> facilè per&longs;uaderi pote&longs;t ex mota duorurm circulo­ <lb/>rum æqualium, nam qui&longs;quis horum moueatur, oportet per maiorem &longs;emicirculum <lb/>moueri, & quæcunque alia huiu&longs;modi constituta &longs;unt de lineis, fieri non po&longs;&longs;e, vt <lb/> talis vllus motus peragatur, quin prius omnibus, & &longs;ingulis interiectis occurrat. <lb/> </s> <s id="s.003452">Atque hæc Mathematicorum &longs;cita, multò magis ab omnibus conce&longs;&longs;a &longs;unt, quàm <lb/> illorum dicta.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003453">Hæc e&longs;t alia ratio, qua probat totam circuli periphæriam e&longs;&longs;e diuiduam. <lb/> <figure id="id.009.01.206.1.jpg" place="text" xlink:href="009/01/206/1.jpg"/><lb/> &longs;int enim duo circuli æquales primum in eo­<lb/> dem loco, <expan abbr="vocentur&qacute;">vocenturque</expan>; A, & B, deinde circu­<lb/> lus B, moueatur, & di&longs;cedat à circulo A, ma­<lb/> nente; &longs;tatim <expan abbr="namq;">namque</expan> pars egre&longs;&longs;a E F G, erit <lb/> maior &longs;emicirculo, & &longs;emper fiet maior, ac <lb/> maior. </s> <s id="s.003454"><expan abbr="atq;">atque</expan> in tali motu omnes partes egre­<lb/> dientis circuli &longs;ecantur ab omnibus partibus <lb/> circuli manentis. </s> <s id="s.003455">vnde patet nihil e&longs;&longs;e in eo­<lb/> rum periphærijs, quod non diuidatur. </s> <s id="s.003456">nul­<lb/> lum igitur in eis e&longs;t indiuiduum. </s> <s id="s.003457">falluntur igitur aduer&longs;arij.</s> </p> <p type="main"> <s id="s.003458"><arrow.to.target n="marg273"/></s> </p> <p type="margin"> <s id="s.003459"><margin.target id="marg273"/>283</s> </p> <p type="main"> <s id="s.003460">Septimus locus <emph type="italics"/>(Quamuis autem ex confutatis nuper rationibus appareat, ne­<lb/> que probabile, neque nece&longs;&longs;arium e&longs;&longs;e lineas vllas indiuiduas extare, tamen ex ijs <lb/>etiam, quæ deinceps &longs;ubiungam, multò magis per&longs;picuum euadet. </s> <s id="s.003461">& primò quidem <lb/> per ea, quæ Mathematici demon&longs;trant, at que addi&longs;cenda proponunt, quæ mutare <lb/> non decet, ni&longs;t probabiliores rationes habeamus. </s> <s id="s.003462">Nam neque lineæ, neque rectæ li­<lb/> neæ definitio cum in&longs;ecabili linea con&longs;entit, vt quæ nec inter duo puncta exten&longs;a <lb/>&longs;it, nec medium vllam habeat.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003463">Idem, &longs;ed paulò mutatis verbis po&longs;tea repetit, quæ fortè ab aliquo per <lb/> errorem addita &longs;unt. </s> <s id="s.003464">Verumenimuerò maximè con&longs;iderandum e&longs;t, quan­<lb/> tum hoc loco Ari&longs;t. Mathematicis demon&longs;trationibus tribuat: quod dixe­<lb/> rim propter recentiores quo&longs;dam, qui eò audaciæ deuenerunt, vt Euclidis <lb/> firmi&longs;&longs;imas, <expan abbr="atq;">atque</expan> Ari&longs;tot. te&longs;timonio, <expan abbr="veterum&qacute;">veterumque</expan>; Philo&longs;ophorum omnium <lb/> comprobatas, negare non verentur Demon&longs;trationes.</s> </p> <p type="main"> <s id="s.003465">Cæterùm Ari&longs;t. iterum opinionem <expan abbr="a&longs;&longs;er&etilde;tium">a&longs;&longs;erentium</expan> lineas in&longs;ecabiles hoc mo­<lb/> do confutat: nam &longs;i inquit, lineam illam, quam vocant in&longs;ecabilem, e&longs;t non <lb/> &longs;olum linea, &longs;ed etiam linea recta, illi conueniret rectæ lineæ definitio, &longs;ed <lb/> nullo modo pote&longs;t ci conuenire, ergò tollendæ &longs;unt de rerum natura huiu&longs;­<lb/> modi lineæ. </s> <s id="s.003466">Porrò definitio lineæ e&longs;t, vt &longs;it longitudo latitudinis expers, & <lb/> &longs;i recta &longs;it ex æquo &longs;ua interiacet puncta extrema, ergò ip&longs;a linea media erit <lb/> inter duo indiuidua extrema puncta; at verò linea, quam ip&longs;i volunt e&longs;&longs;e <lb/> indiuiduum quoddam, qua ratione medium erit inter alia duo indiuidua? <lb/> </s> <s id="s.003467">ip&longs;i enim <expan abbr="vid&etilde;tur">videntur</expan> velle i&longs;tam lineam non habere medium vllum, &longs;i enim con­<lb/>cederent habere medium, iam po&longs;&longs;et in medio &longs;ecari, quod ip&longs;i nequaquam <lb/> concederent: patet igitur definitionem lineæ minimè illi conuenire, & pro­<lb/> pterea <expan abbr="neq;">neque</expan> e&longs;&longs;e inter lineas enumerandam.</s> </p> <p type="main"> <s id="s.003468"><arrow.to.target n="marg274"/></s> </p> <p type="margin"> <s id="s.003469"><margin.target id="marg274"/>284</s> </p> <p type="main"> <s id="s.003470">Octauus locus <emph type="italics"/>(Deinde omnes lineæ commen&longs;urabiles erunt: nam omnes ab in­<lb/> diuiduis lineis dimetientur, quæqué; longitudine, quæqué; potentia &longs;unt commen&longs;urabi­<lb/> les. </s> <s id="s.003471">indiuiduæ autem lineæ &longs;ibi ip&longs;is commen&longs;urabiles &longs;unt longitudine, cum inter &longs;e <lb/> fiat æquales; quare potentia quoque, quod &longs;i hoc e&longs;t, diuiduum erit quadratum.<emph.end type="italics"/></s> </p> <pb pagenum="207" xlink:href="009/01/207.jpg"/> <p type="main"> <s id="s.003472">Pergit adhuc nouis rationibus aduer&longs;arios refellere, dicens, &longs;i extarent <lb/> huiu&longs;modi indiuiduæ lineæ, &longs;equeretur omnes omninò lineas e&longs;&longs;e commen­<lb/> &longs;urabiles, quod e&longs;t contra demon&longs;trata in 10. Elem. quia cum omnes lineæ <lb/> <expan abbr="con&longs;t&etilde;t">con&longs;tent</expan> per ip&longs;os ex lineis atomis, i&longs;tæ atomæ e&longs;&longs;ent omnium linearum com­<lb/> munes men&longs;uræ, vnde & illæ, quæ dicuntur potentia tantum commen&longs;ura­<lb/> biles, vt &longs;upra explicaui, erunt etiam commen&longs;urabiles longitudine. </s> <s id="s.003473">indiui­<lb/> duæ verò ip&longs;æ, cum &longs;int inuicem æquales, erunt ip&longs;æ <expan abbr="quoq;">quoque</expan> commen&longs;urabi­<lb/> les longitudine, quare & potentia, omnes enim longitudine commen&longs;ura­<lb/> biles, &longs;unt etiam potentia commen&longs;urabiles, ex 9. 10. vnde &longs;equitur qua­<lb/> drata earum omnia e&longs;&longs;e <expan abbr="quoq;">quoque</expan> commen&longs;urabilia: <expan abbr="atq;">atque</expan> hinc con&longs;equitur, in­<lb/> quit, ea e&longs;&longs;e <expan abbr="quoq;">quoque</expan> diuidua (quam con&longs;ecutionem probat infra num. </s> <s id="s.003474">290.) <lb/> vnde &longs;equeretur ip&longs;am <expan abbr="quoq;">quoque</expan> lineam latus quadrati po&longs;&longs;e diuidi, non igitur <lb/> ponenda erat indiuidua.</s> </p> <p type="main"> <s id="s.003475"><arrow.to.target n="marg275"/></s> </p> <p type="margin"> <s id="s.003476"><margin.target id="marg275"/>285</s> </p> <p type="main"> <s id="s.003477">Nonus Iocus, cuius latinam interpretationem, cum admodum e&longs;&longs;et de­<lb/> prauata ex græco textu, in hunc modum correxi <emph type="italics"/>(Præterea cùm circa maio­<lb/>rem latitudinem facit applicata, æquale ei, quod ab indiuidua, & pedali copulatis <lb/> circa bipedalem, minorem faciet latitudinem, quàm &longs;it indiuidua: erit minus, quod <lb/> circa indiuiduam)<emph.end type="italics"/> ide&longs;t cùm minor linea applicata cum maiore, latitudinem <lb/> <figure id="id.009.01.207.1.jpg" place="text" xlink:href="009/01/207/1.jpg"/><lb/> faciat. </s> <s id="s.003478">v. <!-- REMOVE S-->g. <!-- REMOVE S-->linea minor A B, applicata cum ma­<lb/> iori B C, vt in figura, ita vt contineant figuram <lb/> A B C D. <!-- KEEP S--></s> <s id="s.003479">Minor A B, facit latitudinem figuræ, <lb/> maior verò B C, facit longitudinem. </s> <s id="s.003480">Iam cum <lb/> aduer&longs;arij velint extare huiu&longs;modi lineas ato­<lb/> mas, con&longs;tituatur figura &longs;ub vna ex illis, quæ &longs;it v. <!-- REMOVE S-->g. <!-- REMOVE S-->A B, & altera maiori, <lb/> quæ &longs;it pedalis, v. <!-- REMOVE S-->g. <!-- REMOVE S-->B C, vt in præcedenti figura, &longs;umatur deinde linea bi­<lb/> <figure id="id.009.01.207.2.jpg" place="text" xlink:href="009/01/207/2.jpg"/><lb/> pedalis E F, cui per 45. primi ap­<lb/> plicetur &longs;patium E F G H, æquale <lb/> &longs;patio &longs;uperiori A B C D, nece&longs;&longs;a­<lb/> riò latitudo E H, huius &longs;ecundæ fi­<lb/> guræ minor erit quàm latitudo il­<lb/>lius, hoc e&longs;t minor, quàm &longs;it indiuidua A B, quod e&longs;t ab&longs;urdum. </s> <s id="s.003481">vel dicere <lb/> oportet <expan abbr="&longs;patiũ">&longs;patium</expan> circa indiuiduam A B, e&longs;&longs;e minus quàm i&longs;tud po&longs;terius, quod <lb/> e&longs;t contra con&longs;tructionem, & propterea pariter inconueniens, non igitur <lb/> huiu&longs;modi lineæ &longs;unt ponendæ.</s> </p> <p type="main"> <s id="s.003482"><arrow.to.target n="marg276"/></s> </p> <p type="margin"> <s id="s.003483"><margin.target id="marg276"/>286</s> </p> <p type="main"> <s id="s.003484">Decimus locus <emph type="italics"/>(Cum ex tribus datis lineis triangulus componatur, ex tribus <lb/> <expan abbr="quoq;">quoque</expan> indiuiduis lineis componi poterit. </s> <s id="s.003485">in omni autem æquilatero perpendicularis <lb/>in mediam ba&longs;im incidit, quare, & in medium indiuiduæ.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003486">Ex 22. primi Elem. ex tribus datis lineis, quarum quælibet duæ &longs;int, re­<lb/> liqua maiores pote&longs;t con&longs;titui triangulum: poterit igitur ex tribus indiui­<lb/> <figure id="id.009.01.207.3.jpg" place="text" xlink:href="009/01/207/3.jpg"/><lb/> duis con&longs;titui <expan abbr="triãgulum">triangulum</expan>, <expan abbr="illud&qacute;">illudque</expan>; æquilaterum, cum omnes in­<lb/> diuiduæ lineæ &longs;int æquales. </s> <s id="s.003487">&longs;it igitur ex eis triangulum A B C, <lb/> &longs;i igitur ab angulo A, ducatur perpendicularis A D, ad ba&longs;im <lb/> B C, eam bifariam &longs;ecabit ex &longs;cholio 26. primi, erit igitur li­<lb/> nea B C, &longs;ecabilis, contra quam aduer&longs;arij opinantur.</s> </p> <p type="main"> <s id="s.003488"><arrow.to.target n="marg277"/></s> </p> <p type="margin"> <s id="s.003489"><margin.target id="marg277"/>287</s> </p> <p type="main"> <s id="s.003490">Vndecimus locus <emph type="italics"/>(Si quadratum ex quatuor indiuiduis con&longs;tituatur diametro <lb/> protracta, & perpendiculari ducta, quadrati co&longs;ta potentia <expan abbr="perp&etilde;dicularem">perpendicularem</expan>, diame-<emph.end type="italics"/> <pb pagenum="208" xlink:href="009/01/208.jpg"/><emph type="italics"/>trumqué mediam æquat: quare non erit minima. </s> <s id="s.003491">neque duplum erit &longs;patium à diame­<lb/> tro con&longs;urgens illius, quod ab indiuidua procreatur: nans æquali ablato, reliquum <lb/>erit minus indiuidua, nam &longs;i æqualis, diameter quadruplum de&longs;criberet, &c.) <emph.end type="italics"/><lb/> <figure id="id.009.01.208.1.jpg" place="text" xlink:href="009/01/208/1.jpg"/><lb/> ide&longs;t &longs;i per 46 primi quadratum. </s> <s id="s.003492">v.g. <!-- REMOVE S-->A B C D, ex qua­<lb/> tuor in&longs;ecabilibus componatur, cuius diametro B C, <lb/> perpendicularis A E, in&longs;i&longs;tat, erit per 47. primi qua­<lb/> dratum lineæ A B, æquale quadratis <expan abbr="linearũ">linearum</expan> A E, E B, <lb/> quare tam E B, quàm A E, minores erunt ip&longs;a A B; <lb/> quare ip&longs;a non erit minima cum &longs;it indiuidua, quod e&longs;t <lb/> ab&longs;urdum. </s> <s id="s.003493">Præterea ex &longs;cholio 47. primi, quadratum <lb/> C B F G, diametri C B, duplum e&longs;t quadrati A B C D, <lb/> ergò diameter C B, maior quàm A B. <!-- KEEP S--></s> <s id="s.003494">Auferatur igitur ab ip&longs;a, C B, æqua­<lb/> lis ip&longs;i A B, quæ igitur reliqua erit, vel erit æqualis ip&longs;i A B, vel minor. </s> <s id="s.003495">non <lb/> æqualis, quia tunc diameter dupla e&longs;&longs;et lateris A B, & quadratum diametri <lb/> quadruplum foret quadrati lateris A B. ex &longs;cholio 4. &longs;ecundi, quod ab&longs;ur­<lb/> dum e&longs;t, repugnat enim 47. primi. </s> <s id="s.003496">nec minor, quia hoc modo exi&longs;teret linea <lb/> quædam minor minima, &longs;cilicet atoma, quod pariter e&longs;t inconueniens.</s> </p> <p type="main"> <s id="s.003497"><arrow.to.target n="marg278"/></s> </p> <p type="margin"> <s id="s.003498"><margin.target id="marg278"/>288</s> </p> <p type="main"> <s id="s.003499">Duodecimus locus <emph type="italics"/>(Amplius &longs;i quæuis linea præter in&longs;ectilem in partes diui­ <lb/> di pote&longs;t, tùm æquales, tùm inæquales, &longs;eindatur linea in tria fru&longs;ta, quæ non con­<lb/> &longs;tet ex tribus atomis, &longs;ed vniuer&longs;aliter ex imparibus numero atomis, &longs;ic diui&longs;a erit <lb/> linea indiuidua. </s> <s id="s.003500">&longs;imiliter autem &longs;i in duo diuidatur linea, quæ ex imparibus <expan abbr="cõ&longs;tat">con&longs;tat</expan>)<emph.end type="italics"/><lb/> hoc e&longs;t detur linea quæpiam ab aduer&longs;ario ex lineis indiuiduis numerò im­<lb/> paribus, con&longs;tans. </s> <s id="s.003501">v. <!-- REMOVE S-->g. <!-- REMOVE S-->ex quinque; hæc diuidi pote&longs;t in tres æquas partes <lb/> per 10.6. Si igitur diuidatur in tria æqualia, nece&longs;&longs;ariò tres ex atomis illam <lb/> integrantibus erunt di&longs;&longs;ectæ, nam tertia quælibet pars continebit indiui­<lb/> duam vnam cum duabus tertijs alterius partibus. </s> <s id="s.003502">idem accidet &longs;i bifariam <lb/> per 10. primi, &longs;ecetur quæuis ex imparibus numero atomis conflata.</s> </p> <p type="main"> <s id="s.003503"><arrow.to.target n="marg279"/></s> </p> <p type="margin"> <s id="s.003504"><margin.target id="marg279"/>289</s> </p> <p type="main"> <s id="s.003505">Decimustertius locus <emph type="italics"/>(Quod &longs;i bifariam quidem non omnis linea finditur, &longs;ed <lb/> quæ &longs;olum ex paribus conflata &longs;it. </s> <s id="s.003506">&longs;i iam in duas partes diui&longs;a, in <expan abbr="quæcunq;">quæcunque</expan> diuidi <lb/> pote&longs;t diuideretur, &longs;ic <expan abbr="quoq;">quoque</expan> in&longs;ectilis linea diuideretur, quando ex paribus compo­<lb/> &longs;ita, per inæqualia &longs;cinderetur)<emph.end type="italics"/> ide&longs;t, quod &longs;i dixerit aduer&longs;arius, non omnem <lb/> lineam bifariam diuidi po&longs;&longs;e, &longs;ed eam &longs;olùm, quæ ex numero paribus atomis <lb/> con&longs;titerit: ea igitur diuidatur primo bifariam. </s> <s id="s.003507">deinde iterum diuidatur <lb/> quomodocunque, ide&longs;t & bifariam, & non bifariam, nam hoc etiam pacto <lb/> indiuidua diuidetur, quod e&longs;t inconueniens.</s> </p> <p type="main"> <s id="s.003508"><arrow.to.target n="marg280"/></s> </p> <p type="margin"> <s id="s.003509"><margin.target id="marg280"/>290</s> </p> <p type="main"> <s id="s.003510">Decimusquartus locus <emph type="italics"/>(Amplius non e&longs;&longs;et cuiu&longs;uis lineæ quadratum: habe­<lb/> ret enim longitudinem, & latitudinem; <expan abbr="atq;">atque</expan> idcircò diui&longs;ibile erit, cum illa quidem <lb/>aliquid, hæc autem aliquid aliud; quod &longs;i quadratum diuiduum e&longs;t, & linea, vnde <lb/> procreatur, diuidua erit)<emph.end type="italics"/> po&longs;&longs;e &longs;uper quamuis datam lineam quadratum de­<lb/> &longs;cribi patet ex 46. primi, quadratum igitur de&longs;criptum ab indiuidua, cum <lb/> &longs;it &longs;uperficies, latitudinem, ac longitudinem habebit, quæ diuer&longs;æ &longs;unt di­<lb/> men&longs;iones. </s> <s id="s.003511">poterit ergò &longs;ecundum <expan abbr="vtramq;">vtramque</expan> diuidi; ex qua diui&longs;ione nece&longs;­<lb/> &longs;ariò latera ip&longs;ius, hoc e&longs;t lineæ, quas indiuiduas illi ponunt diuidentur, <lb/>quod e&longs;t inconueniens, non igitur indiuiduæ erunt.</s> </p> <p type="main"> <s id="s.003512"><arrow.to.target n="marg281"/></s> </p> <p type="margin"> <s id="s.003513"><margin.target id="marg281"/>291</s> </p> <p type="main"> <s id="s.003514">Decimusquintus locus <emph type="italics"/>(Adhuc etiam, vt linea &longs;ic, & &longs;uperficies, & corpus <lb/>erit impartibile: vno quippe indiuiduo exi&longs;tente, cætera <expan abbr="quoq;">quoque</expan> con&longs;equentur, quia<emph.end type="italics"/> <pb pagenum="209" xlink:href="009/01/209.jpg"/><emph type="italics"/>vnum per aliud diuiditur, at corpus indiuiduum non e&longs;t, cum in &longs;e latitudinem, & <lb/> profunditatem contineat: quare nec linea pote&longs;t e&longs;&longs;e atoma. </s> <s id="s.003515">corpus &longs;iquidem in &longs;u­<lb/>perficies, &longs;uperficies verò in lineas &longs;oluitur)<emph.end type="italics"/> hoc e&longs;t: præterea, quemadmodum <lb/>linea per aduer&longs;arium extat indiuidua, &longs;ic & &longs;uperficies ab eadem linea de­<lb/> &longs;cripta erit atoma, & corpus ab hac &longs;uperficie de&longs;criptum erit impartibile. <lb/> </s> <s id="s.003516">Sciendum enim, quod ex motu puncti de&longs;cribitur linea: ex motu lineæ de­<lb/> &longs;cribitur &longs;uperficies: ex motu tandem &longs;uperficiei corpus ortum habet, vt &longs;o­<lb/> let in horum definitionibus explicari.</s> </p> <p type="main"> <s id="s.003517">Si igitur horum vnum nempè linea &longs;it atoma, & reliqua, quæ ab ip&longs;a ma­<lb/> nant erunt indiui&longs;a, quia corpus diuiditur per &longs;uperficiem, & &longs;uperficies <lb/> per lineam, ide&longs;t ad diui&longs;ionem corporis nece&longs;&longs;e e&longs;t diuidi &longs;uperficiem, & ad <lb/> &longs;uperficiei diui&longs;ionem diuidi lineam, quæ ip&longs;am terminat. </s> <s id="s.003518">At cum omne <lb/> corpus latitudinem, & profunditatem habeat, nullum poterit extare cor­<lb/> pus, quod diuidi nequeat; quare neque illud, quod ab atoma linea oriretur. <lb/> </s> <s id="s.003519">Quare nec linea illa corporis procreatrix erit indiuidua; corpus &longs;iquidem <lb/> in &longs;uperficies, & &longs;uperficies in lineas quodammodo re&longs;oluitur: & ex diui­<lb/> &longs;ione &longs;olidi &longs;uperficies &longs;ecari debet, & demum &longs;uperficiei, &longs;ectionem lineæ <lb/> &longs;ectio &longs;ub&longs;equitur. </s> <s id="s.003520">Tollendæ igitur &longs;unt de rerum natura lineæ atomæ.</s> </p> <p type="main"> <s id="s.003521"><arrow.to.target n="marg282"/></s> </p> <p type="margin"> <s id="s.003522"><margin.target id="marg282"/>292</s> </p> <p type="main"> <s id="s.003523">Decimus&longs;extus locus <emph type="italics"/>(Quin etiam orbis circunferentia rectam lineam pluri­<lb/> bus tanget punctis, punctus enim contactus, quiqué e&longs;t in circulo, quiqué e&longs;t in recta, <lb/> &longs;e &longs;e mutuò tangunt. </s> <s id="s.003524">quod &longs;i hoc fieri nequit, <expan abbr="neq;">neque</expan> punctus punctum tangere valet: <lb/> quod &longs;i &longs;e tangere nequeunt, <expan abbr="neq;">neque</expan> linea punctis con&longs;tare pote&longs;t, nam neque punctum <lb/> tangere nece&longs;&longs;arium e&longs;t.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003525">In 2. 3. & corollario eius demon&longs;tratur circuli peripheriam tangere re­<lb/> ctam lineam in vnico puncto. </s> <s id="s.003526">iam &longs;i linea con&longs;taret ex punctis indiuiduis <lb/> tanquam partibus, po&longs;&longs;et circulus <expan abbr="tãgere">tangere</expan> rectam lineam in duobus punctis. <lb/> <figure id="id.009.01.209.1.jpg" place="text" xlink:href="009/01/209/1.jpg"/><lb/> Sit circulus, cuius centrum A, tangens lineam <lb/> rectam B C, con&longs;tantem ex punctis, quorum vnus <lb/> &longs;it in extremo D, lineæ B D, alterum verò in E, <lb/> principio lineæ E C, circulus A, tangere poterit <lb/> in F, termino communi vtriu&longs;que lineæ, hocque <lb/> modo tanget <expan abbr="vtrunq;">vtrunque</expan> punctum D, & E, quod e&longs;t <lb/> impo&longs;&longs;ibile per 2. 3. &longs;equitur igitur <expan abbr="neq;">neque</expan> illa duo puncta D, E, &longs;e mutuò tan­<lb/> gere, & eadem ratione nulla alia <expan abbr="pũcta">puncta</expan> eiu&longs;dem lineæ, ex quibus manife&longs;tum <lb/> e&longs;t, impo&longs;&longs;ibile e&longs;&longs;e, lineam ex huiu&longs;modi punctis con&longs;tare po&longs;&longs;e.</s> </p> <p type="main"> <s id="s.003527">Reliqua huius opu&longs;culi, quamuis Mathematica alicui videri po&longs;&longs;int, <lb/> non tamen &longs;unt, non enim linearibus indigent demon&longs;trationi­<lb/> bus, <expan abbr="neq;">neque</expan> ex Geometriæ principijs procedunt. </s> <s id="s.003528">ad Phy&longs;i­<lb/> cum igitur pertinebunt, cuius e&longs;t di&longs;putare, num <lb/> indiuidua exi&longs;tant, & quomodo in quanti­<lb/> tate, <expan abbr="id&qacute;">idque</expan>; rationibus aliunde, quàm <lb/> ex Geometria deductis.</s> </p> <pb pagenum="210" xlink:href="009/01/210.jpg"/> <p type="head"> <s id="s.003529"><emph type="italics"/>In Librum de Propriet. <!-- REMOVE S-->Elementorum.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.003530">Libellum de cau&longs;is proprietatum Elementorum, quamuis nonnulla <lb/> mathematica loca contineat, tamen, quia certò con&longs;tat ex ijs, <lb/> quæ in eo de Secta Arabum, de Sclauis, de Dalmatis, qui multis <lb/> po&longs;t Ari&longs;totelem &longs;æculis floruerunt, auctorem alium e&longs;&longs;e ab Ari&longs;to­<lb/> tele con&longs;ultò & meritò omi&longs;i.</s> </p> <p type="head"> <s id="s.003531"><emph type="italics"/>In Librum de Cau&longs;is.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.003532">Alterum de cau&longs;is libellum pariter prætermi&longs;i, cum is vocibus Arabi­<lb/>cam barbariem redolentibus &longs;cateat: phra&longs;is præterea, & qu&etail;dam <lb/>de Deo dicta, planè indicant authorem non e&longs;&longs;e Ari&longs;totelem; &longs;ed potius <lb/> Arabem quempiam.</s> </p> </chap> <pb pagenum="211" xlink:href="009/01/211.jpg"/> <chap> <p type="head"> <s id="s.003533">EX LIBRO NONO <lb/> DE HIST. ANIMALIVM</s> </p> <p type="head"> <s id="s.003534"><emph type="italics"/>Araneorum industriæ.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003535"><arrow.to.target n="marg283"/></s> </p> <p type="margin"> <s id="s.003536"><margin.target id="marg283"/>293</s> </p> <p type="main"> <s id="s.003537">Cap. 39. <emph type="italics"/>(Aranei &longs;tatim cum editi &longs;unt, fila mittunt, non ab intrin&longs;eco <lb/> tanquam excrementum, vt Democritus ait, &longs;ed ab extrin&longs;eco de &longs;uo cor­<lb/> pore, veluti cortice; aut more eorum animalium, quæ &longs;uos villos iacu­<lb/> lantur, vt hystricis)<emph.end type="italics"/> Cum olim in hunc locum incidi&longs;&longs;em, ince&longs;&longs;it <lb/>animum meum illa cupido, vt &longs;cilicet certò &longs;cirem, num iure, an iniuria <lb/> Ari&longs;t. Democritum hoc loco reijceret, Araneum fila ab intrin&longs;eco emitte­<lb/> re a&longs;&longs;erentem: quapropter ad magi&longs;tram rerum experientiam confugi, ac­<lb/> cepto manu bacillo Araneum quendam ex ijs, qui circulares telas, quas <lb/> <expan abbr="nõnulli">nonnulli</expan>, & quidem aptè labyrinthos appellant, ingenio <expan abbr="vtiq;">vtique</expan> mathematico <lb/>contexunt, &longs;ic adij, vt Araneus pro arbitrio &longs;uper bacillum liberè inambu­<lb/> laret, dum ip&longs;e interim curio&longs;ius illum ob&longs;eruarem, quanam videlicet ex <lb/> parte filum foras ederet; cum ecce tibi Araneus experienti mihi vltrò fa­<lb/> uens &longs;e &longs;e ex baculo demi&longs;it, ita tamen, vt ex filo &longs;uo in aere &longs;u&longs;pen&longs;us re­<lb/> maneret. </s> <s id="s.003538">cum primum ob&longs;eruo ip&longs;um inuer&longs;um, hoc e&longs;t capite deor&longs;um, & <lb/> ventre &longs;ur&longs;um pendere. </s> <s id="s.003539">vt autem acutius cernerem, eum opacæ cuidam rei <lb/> oppo&longs;ui, ne præ nimia luce tenui&longs;&longs;imum aranei filum aciem oculorum effu­<lb/> geret; quo facto in temperata luce illa, clari&longs;&longs;imè videbam filum ex &longs;ece&longs;&longs;u <lb/> aranei prodire. </s> <s id="s.003540"><expan abbr="Araneum&qacute;">Araneumque</expan>; vno pede filum illud retinere, ne amplius exi­<lb/> ret, <expan abbr="longius&qacute;">longiusque</expan>; fieret, quàm &longs;uo con&longs;ilio par e&longs;&longs;et. </s> <s id="s.003541">coegi deinde ip&longs;um a&longs;cen­<lb/> dere, & de&longs;cendere &longs;æpius, donec certò certius, mihi con&longs;titi&longs;&longs;et filum illud <lb/> non ab extrin&longs;eco, vt hoc loco Ari&longs;t. affirmat, &longs;ed ab intrin&longs;eco quippe ex <lb/> &longs;ece&longs;&longs;u prodire, ac proinde veri&longs;&longs;imam e&longs;&longs;e quamuis ab Ari&longs;t. reiectam De­<lb/> mocriti &longs;ententiam. </s> <s id="s.003542">cum Ari&longs;t. pariter errauit Vly&longs;&longs;es Aldobrandus in &longs;uo <lb/> de in&longs;ectis pulcherrimo, <expan abbr="atq;">atque</expan> docti&longs;&longs;imo Opere.</s> </p> <p type="main"> <s id="s.003543">Verumenimuerò opportunè accidit, vt huius dubitationis &longs;olutio, aliam <lb/> mihi alterius quæ&longs;tionis, iam olim &longs;ummis votis expetitam afferret expli­<lb/> cationem. </s> <s id="s.003544">ea e&longs;t huiu&longs;modi. </s> <s id="s.003545">&longs;æpius fueram expertus, Araneos quo&longs;dam e&longs;­<lb/> &longs;e, qui ex vno loco ad alium omninò &longs;ibi inacce&longs;&longs;ibilem, tran&longs;eant, &longs;iue quod <lb/> idem e&longs;t, ex eo loco, ad illum fila deducant, vt ex vna arbore ad aliam; <lb/> quamuis inter <expan abbr="vtramq;">vtramque</expan> aut aquæ, aut den&longs;i&longs;&longs;ima &longs;pineta, ac &longs;epes interpo­<lb/> nantur. </s> <s id="s.003546">quod maximè mane æquitantes experimur, dum nobis fila per vias <lb/> tran&longs;uer&longs;a, oculis, atque vultui obuiantia adhærent. </s> <s id="s.003547">Qua ratione id Ara­<lb/>neus perficeret, neminem, qui literis manda&longs;&longs;et, reperi, ne ip&longs;um quidem. <lb/> </s> <s id="s.003548">Vly&longs;&longs;em Aldobrandum, qui in hac eruditorum palæ&longs;tra, maiores no&longs;tros <lb/> omnes videtur &longs;upera&longs;&longs;e. </s> <s id="s.003549">Phy&longs;iologi à me hac de re interrogati, varij va­<lb/>ria, nec con&longs;entientia re&longs;pondebant. </s> <s id="s.003550">Alij aiebant Araneum &longs;e demittere, <lb/> ac &longs;u&longs;pendere ex vna arbore, & deinde ad aliam à vento perferri, at ego his <lb/> minimè a&longs;&longs;entiebar, quia m Araneo nullum e&longs;&longs;et naturale in&longs;trumentum, <pb pagenum="212" xlink:href="009/01/212.jpg"/>veluti velum, in quod ventus po&longs;&longs;it impingere. </s> <s id="s.003551">Alij Araneum ex vna arbo­<lb/> re de&longs;cendere, & po&longs;tea alteram con&longs;cendere, interim emi&longs;&longs;um retro filum <lb/> raptando, ac deinde &longs;ur&longs;um attrahendo attollere, ac prætendere: &longs;ed ho­<lb/> rum re&longs;pon&longs;ionum ob plurima impedimenta, quæ tenui&longs;&longs;imum filum &longs;æpius <lb/> &longs;cidi&longs;&longs;ent, &longs;ubridens refellebam. </s> <s id="s.003552">Alij verò aiebant Araneum qualitate qua­<lb/> dam præditum e&longs;&longs;e, qua ip&longs;e per aera, non &longs;ecus, ac per aquam pi&longs;ces, & <lb/> per aerem volucres, ambulare po&longs;&longs;et. </s> <s id="s.003553">Verum opinatio i&longs;ta, ne ri&longs;u quidem <lb/> digna videbatur. </s> <s id="s.003554">Huius igitur quæ&longs;iti &longs;olutionem, quam omnes ad hanc <lb/> <expan abbr="v&longs;q;">v&longs;que</expan> diem latui&longs;&longs;e putò, <expan abbr="quam&qacute;">quamque</expan>; omnibus grati&longs;&longs;imam fore cognoui tibi lo­<lb/> co auctarij initio promi&longs;&longs;i, nunc per&longs;oluam. </s> <s id="s.003555">accidit ergò, vt dicebam, vt <lb/> dum Araneus fugæ cupidus ex bacillo in temperatæ lucis loco, nimirum è <lb/> regione alicuius opaci penderet, vt cernerem ex filo illo, ex quo &longs;u&longs;pende­<lb/> batur plura alia fila hinc inde alternatim prodire, quemadmodum ex alter­<lb/> nis arundinum nodis folia ena&longs;ci &longs;olent. </s> <s id="s.003556">quæ fila, innata læuitate, per ae­<lb/> rem quoquo ver&longs;us ceu natantia diffundebantur. </s> <s id="s.003557">factum e&longs;t autem, vt eo­<lb/> rum vnum quendam arboris cuiu&longs;dam ramum attingeret, <expan abbr="ei&qacute;">eique</expan>; &longs;tatim adhæ­<lb/> reret; quod illicò Araneus optimè per&longs;en&longs;it, quippe quod filum illud vi&longs;ce­<lb/> ribus eius ex altero capite affigeretur, atque per filum illud, alijs ommi&longs;&longs;is, <lb/>&longs;ubitò, vti egregius funambulus accurrit, &longs;ed tamen pedibus &longs;ur&longs;um, dor&longs;o <lb/> autem deor&longs;um, non &longs;upra filum, &longs;ed infra ad ramum illum &longs;e contulit, <expan abbr="&longs;ic&qacute;">&longs;icque</expan>; <lb/> me ho&longs;tem &longs;uum fuga &longs;æpius elu&longs;it. </s> <s id="s.003558">Ex qua repetita &longs;æpius ob&longs;eruatione lu­<lb/> ce clarius comperi Araneum non &longs;implex filum, &longs;ed ramo&longs;um, ac multiplex <lb/> emittere, <expan abbr="atq;">atque</expan> aliquando ex &longs;ece&longs;&longs;u etiam ip&longs;o duo &longs;imul eijcere, <expan abbr="alterũ">alterum</expan> quo <lb/> <figure id="id.009.01.212.1.jpg" place="text" xlink:href="009/01/212/1.jpg"/><lb/> &longs;u&longs;pendatur, alterum <lb/> verò, quod &longs;orte hac, <lb/> <expan abbr="atq;">atque</expan> illac volitans, ali­<lb/> cui rei occurrat, <expan abbr="atq;">atque</expan> <lb/> hæreat, per quod po­<lb/> &longs;tea ip&longs;e incedens, ad <lb/> locum &longs;ibi prius inac­<lb/> ce&longs;&longs;um, aditum parat. <lb/> </s> <s id="s.003559">qua inre fures eos per­<lb/> bellè imitatur, qui <lb/>&longs;cholas ex funibus con­<lb/> textas, ac hamis fer­<lb/> reis munitas, ad fene­<lb/> &longs;tras proijciunt, vt per <lb/>eas ibi affixas con&longs;cen­<lb/> dere queant. </s> <s id="s.003560">quæ om­<lb/> nia ex appo&longs;ita figura <lb/> melius percipies, vbi <lb/> ex &longs;ini&longs;tra arbore pen­<lb/> det Araneus A, ex filo <lb/> B A, ex quo tanquam <lb/> rami alia fila C G, D H, <lb/> E I, M O, F L, alter­ <pb pagenum="213" xlink:href="009/01/213.jpg"/>natim prodeunt, ac per aerem hinc inde volitant. </s> <s id="s.003561">Si ergò filum E I, dextræ <lb/> arbori occurrerit, <expan abbr="ei&qacute;">eique</expan>; hæ&longs;erit, vt in figura, illicò Araneus huius rei con­<lb/> &longs;cius per filum A E I, a&longs;cendit, <expan abbr="&longs;e&qacute;">&longs;eque</expan>; ad prius inacce&longs;&longs;am &longs;ibi dextram arbo­<lb/> rem transfert; <expan abbr="atq;">atque</expan> deinde inter <expan abbr="vtramq;">vtramque</expan> ducto iam filo vno, pote&longs;t vltrò, <lb/> <expan abbr="citro&qacute;">citroque</expan>; means, &longs;uam etiam circularem, ac labyrinthiacam telam in mu&longs;ca­<lb/> rum capturam contexere; quales aliquando inter duas arbores admira­<lb/> ri &longs;olemus.</s> </p> <p type="main"> <s id="s.003562">Quæres fortè, num Araneus filum intus tanquam in glomo, vel &longs;pira con­<lb/> uolutum contineat? </s> <s id="s.003563">dicam, quod non &longs;ine experientia conijcio, exi&longs;timo <lb/> Araneum non continere intra &longs;e filum vllum, verum humorem quendam <lb/> vi&longs;co&longs;um, qui in tenui&longs;&longs;ima fila &longs;it ductilis; quemadmodum videmus acci­<lb/> dere gummi, quæ di&longs;rupta exhibet lentorem quendam, qui &longs;olo attritu ita <lb/> digitis hæret, vt amoto &longs;en&longs;im digito, filum tenue, & oblongum valdè de­<lb/> ducatur, hoc inde conijcio, quia aliquando cum ventrem Araneorum &longs;ecui&longs;­<lb/> &longs;em nullum intus filum, &longs;ed &longs;olus humor quidam lentus apparuit.</s> </p> <p type="main"> <s id="s.003564">Cùm ex paruulis hi&longs;ce meis ob&longs;eruationibus circa animalculum i&longs;tud <lb/> vnum tam præclara cognoui&longs;&longs;em, quæ nullus ad hanc <expan abbr="v&longs;q;">v&longs;que</expan> diem, quod &longs;ciam <lb/> ob&longs;erua&longs;&longs;et; animaduerti lati&longs;&longs;imum patere campum ad animalium hi&longs;to­<lb/> riam ampliandam, &longs;i ij, qui huic pulcherrimæ cognitioni dant operam, non <lb/> ijs &longs;olum, quæ ab alijs per&longs;cripta &longs;unt contenti e&longs;&longs;ent, verùm etiam certi&longs;­<lb/> &longs;imis, <expan abbr="atq;">atque</expan> explorati&longs;&longs;imis experientijs ea coniungerent.</s> </p> <p type="main"> <s id="s.003565">Atque hæc de Araneo &longs;atis.</s> </p> </chap> <chap> <p type="head"> <s id="s.003566"><emph type="italics"/>De ince&longs;&longs;u animalium.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003567"><arrow.to.target n="marg284"/></s> </p> <p type="margin"> <s id="s.003568"><margin.target id="marg284"/>294</s> </p> <p type="main"> <s id="s.003569">Cap. 7. <emph type="italics"/>(Etenim habentia pedes, quoniam &longs;uper <expan abbr="vtrumq;">vtrumque</expan> oppo&longs;itorum cru­<lb/> rum vici&longs;&longs;im &longs;tant, pondusqué &longs;ustinent, nece&longs;&longs;e habent altero progredien­<lb/> te, inflectere alterum; æqualia namque longitudine nata &longs;unt habere op­<lb/> po&longs;ita membra. </s> <s id="s.003570">& quod ponderi &longs;ub&longs;tat rectum e&longs;&longs;e oportet, vt perpen­<lb/> diculum ad terram. </s> <s id="s.003571">quando autem progreditur, fit hypotenu&longs;a, valens manentem <lb/> magnitudinem, & eam, quæ interiacet. </s> <s id="s.003572">quoniam autem æqualia &longs;unt membra, ne­<lb/> ce&longs;&longs;e e&longs;t inflecti id, quod manet, aut in poplite, aut in conflexione)<emph.end type="italics"/> Vult probare <lb/> in gre&longs;&longs;u nece&longs;&longs;ariam e&longs;&longs;e aliquam flexionem membrorum. </s> <s id="s.003573">verum prius <lb/> &longs;ciendum, quod lineam hypotenu&longs;am, quemadmodum etiam Athenæus lib. <lb/> <!-- REMOVE S-->10. te&longs;tatur, eam appellant geometræ, quæ in triangulo rectangulo recto <lb/> angulo &longs;ubtenditur, vnde & denominata e&longs;t hypotenu&longs;a, ide&longs;t &longs;ubten&longs;a, vt <lb/> <figure id="id.009.01.213.1.jpg" place="text" xlink:href="009/01/213/1.jpg"/><lb/> in triangulo A B C, cuius angulus B, rectus &longs;it, recta <lb/> A C, angulo recto B, &longs;ubten&longs;a, hypotenu&longs;a dicitur. <lb/> </s> <s id="s.003574">Ari&longs;t. igitur ait, quod antequam animal ambulare in­<lb/> cipiat, dum &longs;cilicet manet, habet crura, quæ manent <lb/> recta, &longs;iue perpendicularia horizonti, cum autem in­<lb/> cipit progredi nece&longs;&longs;e e&longs;t <expan abbr="vtrũq;">vtrunque</expan> crus inclinari ad ho­<lb/> rizontem. </s> <s id="s.003575">nam primum crus in ingre&longs;&longs;u prolatum fit <lb/> hypotenu&longs;a, quia &longs;cilicet &longs;ubtendit angulum rectum, <lb/> quem facit alterum crus adhuc quie&longs;cens, cum hori­ <pb pagenum="214" xlink:href="009/01/214.jpg"/>zonte; vt in &longs;uperiori triangulo, &longs;i concipiamus crura fui&longs;&longs;e duo latera A B, <lb/> A D, quæ manente animali, fui&longs;&longs;ent ambo &longs;imul in &longs;itu A B, perpendicula­<lb/> ria horizonti; incipiens autem animal ambulare, proferat primo crus A D, <lb/> A D, fiet hypotenu&longs;a trianguli A B C, & quia crus hoc A D, factum hypo­<lb/>tenu&longs;a æquale e&longs;t alteri manenti A B, nequit totius veræ hypotenu&longs;æ A C, <lb/>officio fungi, quæ æquiualet toti A D, & præterea interiacenti D C, vt ea au­<lb/> <figure id="id.009.01.214.1.jpg" place="text" xlink:href="009/01/214/1.jpg"/><lb/>tem hypotenu&longs;a debet e&longs;&longs;e maior, quia opponitur <lb/> maiori angulo nimirum recto B, quam latus A B, <lb/> quod angulo acuto C, opponitur per 19. primi, & <lb/> propterea ni&longs;i alterum &longs;ub&longs;equens crus A B, incli­<lb/> netur, vt in &longs;ecunda figura, non pote&longs;t hypotenu&longs;a <lb/> A D, terram attingere, <expan abbr="atq;">atque</expan> hac de cau&longs;a nece&longs;&longs;e <lb/> e&longs;t, vt initio gre&longs;&longs;us <expan abbr="vtrumq;">vtrumque</expan> crus, quod prius per­<lb/> pendiculare erat, inclinetur; inclinato igitur crure <lb/> A B, antror&longs;um tunc prolatum crus A C, terram <lb/> contingit, <expan abbr="&longs;ic&qacute;">&longs;icque</expan>; factus e&longs;t primus gre&longs;&longs;us B C.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.003576"><arrow.to.target n="marg285"/></s> </p> <p type="margin"> <s id="s.003577"><margin.target id="marg285"/>295</s> </p> <p type="main"> <s id="s.003578">Eodem loco <emph type="italics"/>(Signum autem, quod hoc ita &longs;e habet illud est. </s> <s id="s.003579">&longs;i quis enim iuxta <lb/> parietem per terram ambulet, quæ de&longs;ignatur linea non e&longs;t recta, &longs;ed obtorta, quo­<lb/> niam minorem quidem flectentis fieri de&longs;criptam nece&longs;&longs;e e&longs;t; &longs;tantis autem, & ere­<lb/> cti maiorem)<emph.end type="italics"/> Vt probet, quod animal in gradiendo modo attollitur, modo <lb/> deprimitur, &longs;ignum hoc affert, quia &longs;i quis &longs;ecus parietem per terram am­<lb/> bulet, linea quam vertex capitis in pariete de&longs;ignat non e&longs;t recta, &longs;eb obtor­<lb/> ta: quæ linea optimè de&longs;ignatur, &longs;i ambulantis vmbra in pariete apparens <lb/> &longs;imul, cum ip&longs;o in pariete ambulet; videmus enim vmbram illam modo al­<lb/> tiorem fieri, modo breuiorem; quod &longs;ignum e&longs;t ambulantem modo incli­<lb/> nari, quando &longs;cilicet crus alterum profert, &longs;eu crura dilatat; modo erigi, <lb/>cum crus &longs;ub&longs;equens præcedenti coniungit, tune enim incedens fit horizon­<lb/> ti perpendicularis.</s> </p> <p type="main"> <s id="s.003580"><arrow.to.target n="marg286"/></s> </p> <p type="margin"> <s id="s.003581"><margin.target id="marg286"/>296</s> </p> <p type="main"> <s id="s.003582">Eodem cap. <emph type="italics"/>(Quoniam autem fiat ad rectum, vel concidet recto minore effe­<lb/> cto, vel non progredietur: &longs;i enim altero crure recto progreditur alterum, maius <lb/> erit cum &longs;it æquale: hoc <expan abbr="nanq;">nanque</expan> poterit, & id, quod quie&longs;cit, & ip&longs;am hypotenu­<lb/> &longs;am, nece&longs;&longs;e igitur e&longs;t, & inflectere id, quod procurrit, & inflexum &longs;imul alterum <lb/> extendere, membra enim triangulorum æquilaterorum efficiuntur, <expan abbr="caput&qacute;">caputque</expan>, fit infe­<lb/> rius, vbi perpendiculum fuerit, in quo firmatum e&longs;t)<emph.end type="italics"/> Hæc &longs;unt ferè eadem cum <lb/> ijs, quæ in primo huius capitis loco dicta &longs;unt. </s> <s id="s.003583">proinde ea cum duabus illis <lb/> triangulorum figuris repetenda &longs;unt, vt breuius quæ nunc re&longs;tant explicen­<lb/> tur. </s> <s id="s.003584">quoniam igitur animal antequam gradiatur, maximè homo, &longs;tat hori­<lb/> zonti perpendicularis, nece&longs;&longs;e e&longs;t ad progrediendum, vt fiat aliqua mem­<lb/> brorum inflexio, &longs;i enim homo &longs;ine vlla &longs;ui corporis flexura inclinet &longs;e ad <lb/> horizontem, ita vt cum horizonte faciat ex anteriori parte. </s> <s id="s.003585">v. <!-- REMOVE S-->g. <!-- REMOVE S-->angulum <lb/> recto minorem, &longs;iue acutum, vel concidet, vel non poterit progredi; &longs;i enim <lb/> alterum crus præmitteretur, altero manente perpendiculari, <expan abbr="&longs;ic&qacute;">&longs;icque</expan>; progre­<lb/> deretur qui&longs;piam, &longs;equeretur crus prolatum, quale e&longs;t A D, iu priori trian­<lb/> gulo, debere fieri maius altero crure A B, manente, quia fieret tota hypo­<lb/> tenu&longs;a A C, &longs;ie enim terram attingeret; at non pote&longs;t fieri illo maius, quia <lb/> e&longs;t illi æquale, ergò hac ratione ince&longs;&longs;us fieri nequit. </s> <s id="s.003586">nece&longs;&longs;e igitur refle­ <pb pagenum="215" xlink:href="009/01/215.jpg"/>ctere <expan abbr="vtrumq;">vtrumque</expan> crus non &longs;olum ad horizontem, &longs;ed etiam circa aliquam cor­<lb/> poris flexuram, vel nodum, vt circa genu, aut alia. </s> <s id="s.003587">crura enim in gre&longs;&longs;u fiunt <lb/> latera &longs;uperiora trianguli i&longs;o&longs;celis, vt in &longs;ecunda figura patuit, cuius ba&longs;is <lb/> e&longs;t pa&longs;&longs;us. </s> <s id="s.003588">& tunc caput ambulantis fit inferius, quàm antequam gradere­<lb/> <figure id="id.009.01.215.1.jpg" place="text" xlink:href="009/01/215/1.jpg"/><lb/> tur; quia tunc ambo crura erant horizonti perpen­<lb/> dicularia. </s> <s id="s.003589">quando autem caput fuerit in linea <expan abbr="per-p&etilde;diculari">per­<lb/> pendiculari</expan> trianguli i&longs;o&longs;celis, tunc erit inferius quàm <lb/> alibi, vt in pr&etail;&longs;enti figura, linea <expan abbr="perp&etilde;dicularis">perpendicularis</expan> trian­<lb/> guli huius i&longs;o&longs;celis e&longs;t linea A E, quia ba&longs;i B C, per­<lb/> pendicularis incidit; quando igitur caput ambulan­<lb/> tis. </s> <s id="s.003590">v. <!-- REMOVE S-->g. <!-- REMOVE S-->D, fuerit in hac linea, <expan abbr="tũc">tunc</expan> erit inferius quàm <lb/> in quauis alia gre&longs;&longs;us parte: quia tunc crura A B, <lb/> A C, &longs;unt maximè diuaricata, & proinde angulus A, <lb/> & &longs;imul punctum D, maximè demi&longs;&longs;a.</s> </p> </chap> <chap> <p type="head"> <s id="s.003591"><emph type="italics"/>De motu animalium.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003592"><arrow.to.target n="marg287"/></s> </p> <p type="margin"> <s id="s.003593"><margin.target id="marg287"/>297</s> </p> <p type="main"> <s id="s.003594">Cap. 1. <emph type="italics"/>(Primum quidem in animalibus: oportet enim &longs;i moueatur aliqua <lb/>particularum quie&longs;cere aliquam, & propter hoc, & flexus animalibus <lb/>in&longs;unt: tanquam enim centro vtuntur flexibus & fit tota pars, in qua <lb/> e&longs;t flexus & vna, & duæ; & recta, & flexa, quæ permutatur potentia, <lb/> & actu, propter flexum. </s> <s id="s.003595">cum autem flectitur, & mouetur, hoc quidem &longs;ignum mo-<emph.end type="italics"/><lb/> <figure id="id.009.01.215.2.jpg" place="text" xlink:href="009/01/215/2.jpg"/><lb/> <emph type="italics"/>vetur, illud autem manet in flexibus, quemadmodum <expan abbr="vtiq;">vtique</expan> &longs;i dia­<lb/> metri, quæ quidem A D, maneat, quæ cutem B, moueatur, & <lb/> fiat A C, &longs;ed hic quidem videtur, &longs;ecundum omnem modum in­<lb/> diui&longs;ibile e&longs;&longs;e centrum. </s> <s id="s.003596">etenim moueri, vt aiunt, fingunt in ip&longs;is, <lb/> non enim mouetur mathematicorum aliquid.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003597">Intendit probare nece&longs;&longs;e e&longs;&longs;e ad motum animalium, vt <lb/> vna pars quie&longs;cat, dum altera mouetur. </s> <s id="s.003598">propter hoc enim inquit flexus ani­<lb/> malibus in&longs;unt, vbi in græco pro voce flexus legitur <foreign lang="greek">kampth,</foreign> quod &longs;ignifi­<lb/> cat nodum, articulum, & <expan abbr="deniq;">denique</expan> locum ip&longs;um, vbi fit membri flexura, tan­<lb/> quam enim centro quodam vtuntur flexibus, ide&longs;t nodis, &longs;eu iuncturæ &longs;unt <lb/> in motu membrorum in&longs;tar centri. </s> <s id="s.003599">v. <!-- REMOVE S-->g. <!-- REMOVE S-->nodus cubiti fit centrum, cum bra­<lb/> chij parte, quæ e&longs;t inter humerum, & cubitum manente, reliquum brachij <lb/> circumducimus; &longs;ic manente genu tanquam centro, crus huc illud agita­<lb/> mus, & fit tota pars. </s> <s id="s.003600">v. <!-- REMOVE S-->g. <!-- REMOVE S-->totum brachium, in quo e&longs;t cubiti iunctura, & vna <lb/> tota pars, quando manet rectum; & duæ <expan abbr="quãdo">quando</expan> in flexura cubiti brachium <lb/>inflectitur; & fit tota hæc longitudo recta prius, po&longs;tea flexa: quæ propter <lb/> flexuram modo vna e&longs;t actu, &longs;ed duæ potentia. </s> <s id="s.003601">modo duæ in actu, &longs;ed vna in <lb/> potentia. </s> <s id="s.003602">cum autem flectitur, & mouetur brachium, vnum quidem &longs;ignum, <lb/> &longs;iue punctum, quod e&longs;t extremum partis manentis, manet; alterum verò &longs;i­<lb/> gnum, &longs;iue punctum, quod e&longs;t extremum partis motæ <expan abbr="e&longs;t&qacute;">e&longs;tque</expan>; alteri &longs;igno con­<lb/> tiguum mouetur &longs;imul cum tota parte mota. </s> <s id="s.003603">quemadmodum, &longs;i diametri <lb/> &longs;uperioris figuræ, pars D A, maneat, pars autem A B, moueatur ad A C, <lb/> erit huius flexuræ centrum A, quod vt extremum lineæ D A, manentis, ma­ <pb pagenum="216" xlink:href="009/01/216.jpg"/>net: vt verò extremum motæ A B, mouetur. </s> <s id="s.003604">quamuis in mathematicis hæc <lb/> quidem duorum centrorum di&longs;tinctio nulla &longs;it, quia centrum mathemati­<lb/> cum omninò indiuiduum e&longs;t: neque in mathematicis e&longs;t propriè motus, <lb/> quamuis enim aliquando Mathematici dicant, &longs;i linea, vel &longs;i punctum mo­<lb/> ueretur, vel moueatur, & &longs;imilia, huiu&longs;modi tamen motus &longs;unt rebus ma­<lb/> thematicis extrin&longs;eci, nec quatenus hoc modo mouentur con&longs;iderantur: <lb/> patet igitur, qua ratione Ari&longs;tot. partem manentem in motu nece&longs;&longs;ariam <lb/> e&longs;&longs;e velit.</s> </p> <p type="main"> <s id="s.003605"><arrow.to.target n="marg288"/></s> </p> <p type="margin"> <s id="s.003606"><margin.target id="marg288"/>298 a</s> </p> <p type="main"> <s id="s.003607">Cap. 5. <emph type="italics"/>(Quemadmodum autem &longs;pontanea mouentur paruo motu facto)<emph.end type="italics"/> Spon­<lb/> tanea i&longs;ta erant machinæ, quæ à &longs;eip&longs;is mouebantur, quas Græci automata <lb/>dixerunt, cuiu&longs;modi &longs;unt Automata Heronis Alexandrini, quæ adhuc <expan abbr="extãt">extant</expan>.</s> </p> <p type="main"> <s id="s.003608">Cap. 8. E&longs;t ibi quoddam triangulum cum elementis more geometrarum <lb/> depictum, vnde locus ille videri po&longs;&longs;it mathematicus, verumtamen nullo <lb/> modo geometriæ auxilio indiget.</s> </p> </chap> <chap> <p type="head"> <s id="s.003609"><emph type="italics"/>De generatione animalium.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003610"><arrow.to.target n="marg289"/></s> </p> <p type="margin"> <s id="s.003611"><margin.target id="marg289"/>298.b</s> </p> <p type="main"> <s id="s.003612">Lib. 2. cap. 1. <emph type="italics"/>(Sitqué perinde ac admirabilia illa &longs;pontanea)<emph.end type="italics"/> Intelligit ma­<lb/> chinas illas miro artificio confictas, quæ à &longs;e ip&longs;is intrin&longs;eco prin­<lb/> cipio mouebantur, quas Græci veteres Automata, ide&longs;t &longs;pontanea, <lb/> vel &longs;pontina, vt vertit Interpres vocabant, cuiu&longs;modi &longs;unt Auto­<lb/> mata Heronis Alexandrini, quæ adhuc extant græca, <expan abbr="quæ&qacute;">quæque</expan>; ab Abbate Gua­<lb/> &longs;tallen&longs;i in Italicum &longs;unt conuer&longs;a. </s> <s id="s.003613">Automata hodie &longs;unt Horologia, quæ ex <lb/> multis dentatis rotis Germani con&longs;truunt.</s> </p> <p type="main"> <s id="s.003614"><arrow.to.target n="marg290"/></s> </p> <p type="margin"> <s id="s.003615"><margin.target id="marg290"/>299</s> </p> <p type="main"> <s id="s.003616">Lib. 2. cap. 4. <emph type="italics"/>(Nam & triangula figura duobus rectis æquale &longs;emper habet)<emph.end type="italics"/><lb/> vide quæ de hac re &longs;crip&longs;i lib. 1. Priorum, &longs;ecto 3. cap. 1.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.003617"><arrow.to.target n="marg291"/></s> </p> <p type="margin"> <s id="s.003618"><margin.target id="marg291"/>300</s> </p> <p type="main"> <s id="s.003619">Ibidem <emph type="italics"/>(Et diametrum incommen&longs;urabilem e&longs;&longs;e cum co&longs;ta &longs;empiternum e&longs;t: at­<lb/> tamen cau&longs;a eorum aliqua & demon&longs;tratio e&longs;t.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003620">Quæ libro 1. Priorum, &longs;ecto 1. cap. 23. de hac re annotata &longs;unt, abundè <lb/> huic etiam loco &longs;atisfaciunt.</s> </p> </chap> <chap> <p type="head"> <s id="s.003621"><emph type="italics"/>In Ethica, &longs;eu Moralia ad Nicomachum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003622"><arrow.to.target n="marg292"/></s> </p> <p type="margin"> <s id="s.003623"><margin.target id="marg292"/>301</s> </p> <p type="main"> <s id="s.003624">Lib. 1. cap. 7. <emph type="italics"/>(Faber enim, & Geometra diuer&longs;o modo rectum angulum <lb/> <expan abbr="vtriq;">vtrique</expan> con&longs;iderant: ille quatenus <expan abbr="&longs;olũ">&longs;olum</expan> ad opus vtile e&longs;t, hic verò cum ve­<lb/> ritatis &longs;peculator &longs;it, quid, & qualis &longs;it, indagat)<emph.end type="italics"/> Id quod dicit Ari&longs;t. <lb/> confirmatur ex eo, quod Fabri omnes vtuntur amu&longs;&longs;i, &longs;eu norma, <lb/> <figure id="id.009.01.216.1.jpg" place="text" xlink:href="009/01/216/1.jpg"/><lb/> quæ nihil aliud e&longs;t quàm angulus rectus, quæ vulgò <lb/> &longs;quadra dicitur, vt eius auxilio angulum ip&longs;um re­<lb/> ctum in opus conferant, <expan abbr="&longs;ic&qacute;">&longs;icque</expan>; normæ, aut amu&longs;&longs;is du­<lb/> ctu &longs;ua ip&longs;i opera ad angulos rectos, ide&longs;t quadrata, <lb/> conficiunt. </s> <s id="s.003625">Geometra verò con&longs;iderat eundem an­<lb/> gulum, quatenus fit à linea &longs;uper lineam aliam per­<lb/> pendiculariter in&longs;i&longs;tente, vt e&longs;t in definit. </s> <s id="s.003626">10. primi, <pb pagenum="217" xlink:href="009/01/217.jpg"/>vt in figura, vbi linea A B, in&longs;i&longs;tens alteri D C, perpendiculariter, ide&longs;t ita <lb/> vt faciat angulos hinc inde æqualis A B D, A B C, prædictos inquam duos <lb/> angulos con&longs;iderat e. </s> <s id="s.003627">&longs;e rectos. </s> <s id="s.003628">contemplatur præterea Geometra omnes <lb/> angulos rectos e&longs;&longs;e inter &longs;e æquales, vt in 12. axiomate primi Elem. ponitur, <lb/> & &longs;imilia plura alia, quorum con&longs;iderationem Faber omninò negligit.</s> </p> <p type="main"> <s id="s.003629"><arrow.to.target n="marg293"/></s> </p> <p type="margin"> <s id="s.003630"><margin.target id="marg293"/>302</s> </p> <p type="main"> <s id="s.003631">Libro 2. capite 6. <emph type="italics"/>(Id quod &longs;ecundum Arithmeticam rationem medium e&longs;t)<emph.end type="italics"/><lb/> Arithmetica ratio, fiue proportio ea e&longs;t, cuius termini cre&longs;cunt per æqua­<lb/> les exce&longs;&longs;us, vt 2. 6. 10. 14. horum enim terminorum exce&longs;&longs;us æquales &longs;unt, <lb/> cum &longs;int omnes quaternarij. </s> <s id="s.003632">&longs;imiliter inter hos terminos 3. 6. 9. 12. e&longs;t arith­<lb/> metica analogia, cùm omnes ternario numero &longs;uperent præcedentes, & à <lb/> &longs;equentibus &longs;uperentur. </s> <s id="s.003633">Porrò apud Mathematicos tria &longs;unt genera pro­<lb/> portionum, &longs;iue medietatum, Arithmetica quam modo &longs;uppo&longs;ui; Geome­<lb/> trica, & Harmonica, quas inferius oblata occa&longs;ione opportunius explicabo.</s> </p> <figure id="id.009.01.217.1.jpg" place="text" xlink:href="009/01/217/1.jpg"/> <p type="main"> <s id="s.003634"><arrow.to.target n="marg294"/></s> </p> <p type="margin"> <s id="s.003635"><margin.target id="marg294"/>303</s> </p> <p type="main"> <s id="s.003636">Lib. 2. cap. 9. <emph type="italics"/>(Vt circuli medium deprehendere non <lb/> cuiu&longs;libet, &longs;ed <expan abbr="&longs;ci&etilde;tis">&longs;cientis</expan> &longs;olummodo e&longs;t)<emph.end type="italics"/> Reperire medium, <lb/> &longs;iue centrum dati circuli docet Euclides propo&longs;itio­<lb/> ne prima 3. hoc modo. </s> <s id="s.003637">in dato circulo ducatur vt­<lb/> cunque recta B C, quæ per 10. primi diuidatur bifa­<lb/> riam in F, & per F, ducatur <expan abbr="perp&etilde;dicularis">perpendicularis</expan> A E F D, <lb/> quæ &longs;ecetur bifariam in E, <expan abbr="erit&qacute;">eritque</expan>; punctum E, non &longs;o­<lb/> lum ip&longs;ius lineæ medium; &longs;ed etiam totius circuli <lb/>centrum, quemadmodum ibi demon&longs;trat Euclides.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.003638"><arrow.to.target n="marg295"/></s> </p> <p type="margin"> <s id="s.003639"><margin.target id="marg295"/>304</s> </p> <p type="main"> <s id="s.003640">Lib. 3. cap. 3. <emph type="italics"/>(De æternis autem nemo con&longs;ultat, vt <lb/> de mundo, aut diametro, & latere, quod nulla inter &longs;e <lb/> æquabilitate conueniant)<emph.end type="italics"/> Qua ratione diameter, & latus eiu&longs;dem quadrati <lb/>nulla æquabilitate, ide&longs;t nulla communi men&longs;ura inter &longs;e conueniant, fusè <lb/> explicatum e&longs;t libro Priorum, &longs;ecto 1. cap. 23.</s> </p> <p type="main"> <s id="s.003641"><arrow.to.target n="marg296"/></s> </p> <p type="margin"> <s id="s.003642"><margin.target id="marg296"/>305</s> </p> <p type="main"> <s id="s.003643">Eodem cap. <emph type="italics"/>(Qui enim con&longs;ultat quærere videtur, & re&longs;oluere prædicto modo, <lb/> quemadmodum de&longs;ignationes)<emph.end type="italics"/> Per de&longs;ignationes Ari&longs;t. intelligere geometri­<lb/> cas demon&longs;trationes &longs;æpius dictum e&longs;t in logicis textibus, quod pariter ex <lb/> hoc loco confirmatur. </s> <s id="s.003644">quando autem ait <emph type="italics"/>(Re&longs;oluere prædicto modo, quemad­<lb/> modum de&longs;ignationes)<emph.end type="italics"/> innuit re&longs;olutionem geometricam, de qua abundè di­<lb/> ctum e&longs;t in explicatione tituli librorum Re&longs;olutoriorum; quam expo&longs;ui, ni­<lb/> hil aliud e&longs;&longs;e, quam medij inqui&longs;itionem ad id, quod propo&longs;itum fuerit de­</s> </p> <p type="main"> <s id="s.003645"><arrow.to.target n="marg297"/><lb/> mon&longs;trandum. </s> <s id="s.003646">veram autem, <expan abbr="atq;">atque</expan> germanam fui&longs;&longs;e huiu&longs;modi explicatio­<lb/>nem, hoc loco Ari&longs;t. ip&longs;e confirmat, cum hanc re&longs;olutionem dicat e&longs;&longs;e &longs;imi­<lb/> lem con&longs;ultationi, &longs;iue inqui&longs;itioni mediorum ad finem in rebus practicis <lb/>con&longs;equendum; ip&longs;a verò e&longs;t inqui&longs;itio mediorum ad id, quod in rebus &longs;pe­<lb/> culatiuis propo&longs;itum e&longs;t, demon&longs;trandum. </s> <s id="s.003647">con&longs;ultatio igitur e&longs;t in rebus <lb/> practicis, quod in &longs;peculatiuis e&longs;t re&longs;olutio.<lb/> <arrow.to.target n="marg298"/></s> </p> <p type="margin"> <s id="s.003648"><margin.target id="marg297"/>306</s> </p> <p type="margin"> <s id="s.003649"><margin.target id="marg298"/>307</s> </p> <p type="main"> <s id="s.003650">Lib. 5. cap. 3. <emph type="italics"/>(Quod enim proportione con&longs;tat, id non tam vnitario numero, <lb/> quàm numero in vniuer&longs;um proprium e&longs;t)<emph.end type="italics"/> Per vnitarium numerum intelligitur <lb/>numerus ex vnitatibus ab&longs;tractis conφlatus, ide&longs;t, cuius vnitates non &longs;int res <lb/> phy&longs;icæ, &longs;ed à naturalibus ab&longs;tractæ, qualis con&longs;iderat Arithmeticus: omni <lb/>tamen numero &longs;iue ab&longs;tracto, &longs;iue non, conuenit proportiones &longs;u&longs;cipere, <lb/> id e&longs;t & numero, & rebus numeratis.</s> </p> <pb pagenum="218" xlink:href="009/01/218.jpg"/> <p type="main"> <s id="s.003651"><arrow.to.target n="marg299"/></s> </p> <p type="margin"> <s id="s.003652"><margin.target id="marg299"/>308</s> </p> <p type="main"> <s id="s.003653">Ibidem <emph type="italics"/>(N im proportio æqualitas e&longs;t rationum)<emph.end type="italics"/> Per proportionem hoc lo­<lb/> co intelligenda e&longs;t illa, quam nunc appellant proportionalitatem, quæ e&longs;t <lb/> duarum rationum, &longs;eu proportionum &longs;imilitudo, &longs;iue æqualitas, vt manife­<lb/> &longs;tum e&longs;t ex 4. definit. </s> <s id="s.003654">5. Elem. v. <!-- REMOVE S-->g. <!-- REMOVE S-->cum &longs;it eadem ratio 9. ad 6. quæ e&longs;t 6. ad <lb/> 4. propterea hæc rationum &longs;imilitudo, vel æqualitas dicitur ip&longs;a proportio, <lb/> &longs;eu di&longs;tinctionis gratia Proportionalitas.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.003655"><arrow.to.target n="marg300"/></s> </p> <p type="margin"> <s id="s.003656"><margin.target id="marg300"/>309</s> </p> <p type="main"> <s id="s.003657">Ibidem <emph type="italics"/>(In quatuorqué minimis reperitur, di&longs;iunctam &longs;anè in quatuor con&longs;istere <lb/>per&longs;picuum e&longs;t: &longs;ed & continentem nihilominus, vno enim hæc perinde, aψ duobus <lb/>vtitur, bi&longs;que id accipit in hunc modum, qualis primi re&longs;pectus e&longs;t ad &longs;ecundum, <lb/>talis &longs;ecundi ad tertium; bis enim hic, &longs;ecundum dictum e&longs;t, quare &longs;i &longs;ecundum bis <lb/> po&longs;itum &longs;it, quatuor erunt ea, quæ con&longs;tant proportione)<emph.end type="italics"/> Quæ hic ab Ari&longs;tot. di­<lb/> cuntur de&longs;umpta &longs;unt, partim ex definit. </s> <s id="s.003658">6. 5. partim ex 9. definit. </s> <s id="s.003659">eiu&longs;dem. <lb/> </s> <s id="s.003660">breuiter autem &longs;ic &longs;e habent. </s> <s id="s.003661">Ad con&longs;tituendam proportionalitatem ne­<lb/> ce&longs;&longs;arij &longs;unt omninò quatuor termini, quod quidem primum per&longs;picuum <lb/>e&longs;t in ea proportionalitate, quam Di&longs;iunctam vocant, quæ e&longs;t huiu&longs;modi, <lb/> vt 9. ad 6. ita 3. ad 2. deinde <expan abbr="verũ">verum</expan> e&longs;t etiam in ea, quam continuam dicunt, <lb/> quæ talis e&longs;t, vt 9. ad 6. ita 6. ad 4. quæ in tribus quidem terminis 9. 6. 4. <lb/>con&longs;i&longs;tit, &longs;ed tamen, quia medius 6. <expan abbr="vtrumq;">vtrumque</expan> re&longs;picit extremum, ideò vices <lb/> duorum gerit, ac proinde e&longs;t, ac &longs;i hoc modo termini di&longs;ponantur 9. 6. 6. 4. <lb/> vbi 6. bis ponitur, <expan abbr="&longs;unt&qacute;">&longs;untque</expan>; quatuor huius etiam proportionalitatis termini. <lb/> </s> <s id="s.003662">hinc Ari&longs;t. textum &longs;atis intelligere poteris.</s> </p> <p type="main"> <s id="s.003663"><arrow.to.target n="marg301"/></s> </p> <p type="margin"> <s id="s.003664"><margin.target id="marg301"/>310</s> </p> <p type="main"> <s id="s.003665">Eodem cap. <emph type="italics"/>(Sicut igitur primus terminus &longs;e habebit ad &longs;ecundum, ita tertius <lb/> ad quartum; igitur etiam alterna vice, &longs;icut primus ad tertium, ita &longs;ecundus ad <lb/> quartum. </s> <s id="s.003666">quare etiam totum ad totum, quod di&longs;tributio binatim copulat. </s> <s id="s.003667">quæ &longs;i <lb/> etiam ita compo&longs;ita fuerint, iustè copulat)<emph.end type="italics"/> Accipit Ari&longs;t. illum argumentandi <lb/> modum, quem Geometræ alternam rationem vocant, <expan abbr="quàm&qacute;">quàmque</expan>; definit. </s> <s id="s.003668">12. <lb/> 5. exponunt, vt eam rebus ip&longs;is accommodet, <expan abbr="atq;">atque</expan> in praxim deducat; e&longs;t <lb/> autem huiu&longs;modi, &longs;int primum quatuor termini proportionales, ide&longs;t, vt <lb/> primus ad &longs;ecundum, ita tertius ad quartum. </s> <s id="s.003669">v. <!-- REMOVE S-->g. <!-- REMOVE S-->vt 9. ad 6. ita 3. ad 2. <lb/> valet con&longs;equentia hæc, ergò etiam alternatim erit, vt primus ad tertium, <lb/> ita &longs;ecundus ad quartum, v. <!-- REMOVE S-->g. <!-- REMOVE S-->in allato exemplo, ita erit 9. ad 3. vt 6. ad 2. <lb/> quam &longs;equelam e&longs;&longs;e validam probat deinde Euclides propo&longs;it. </s> <s id="s.003670">16. 5. hinc <lb/> aliam deducit con&longs;equentiam, quam Euclides propo&longs;it. </s> <s id="s.003671">12. 5. demon&longs;trat, <lb/> dum ait, quare etiam totum ad totum erit. </s> <s id="s.003672">v. <!-- REMOVE S-->g. <!-- REMOVE S-->quia conclu&longs;um e&longs;t ita e&longs;&longs;e <lb/> 9. ad 3. quemadmodum 6. ad 2. ita etiam erit totum ad totum, ide&longs;t ita <lb/> etiam erunt antecedentes termini &longs;imul ad con&longs;equentes &longs;imul, v. <!-- REMOVE S-->g. <!-- REMOVE S-->ita erit <lb/> etiam totum 15. quod e&longs;t totum ex antecedentibus terminis 9. & 6. ad to­<lb/> tum 5. conflatum ex con&longs;equentibus terminis 3. & 2. In &longs;umma igitur &longs;i fue­<lb/> rit vt 9. ad 3. ita 6. ad 2. ita etiam erit 15. ad 5. quod verum e&longs;&longs;e apparet in <lb/> his numeris, cum tam 9. ad 3. quà 6. ad 2. & 15. ad 5. habeant triplam <lb/> proportionem.</s> </p> <p type="main"> <s id="s.003673">Horum exemplum in rebus practicis &longs;it hoc: &longs;it vt Plato ad Proclum, ita <lb/> mille aurei ad quingentos aureos, ergò alternatim ita erit Plato ad 1000. <lb/> aureos, &longs;icuti Proclus ad 500. quare ita etiam totum erit ad totum, &longs;cilicet <lb/> Plato, & Proclus &longs;imul ad 1000. & 500. &longs;imul, quæ duo tota, di&longs;tributio mo­<lb/>ralis, ac practica diuidit, & binatim copulat, hoc modo dicens, vt Plato ad <pb pagenum="219" xlink:href="009/01/219.jpg"/>Proclum, ita 1000. ad 500, & po&longs;tea, vt Plato ad 1000. ita Proclus ad 500. <lb/> iuxta <expan abbr="vtriu&longs;q;">vtriu&longs;que</expan> merita, & quidem i&longs;ta e&longs;t huiu&longs;modi moralis di&longs;tributio, cum <lb/> modis argumentandi ab Euclide comprobatis, nitatur.</s> </p> <p type="main"> <s id="s.003674"><arrow.to.target n="marg302"/></s> </p> <p type="margin"> <s id="s.003675"><margin.target id="marg302"/>311</s> </p> <p type="main"> <s id="s.003676">Ibidem <emph type="italics"/>(Hanc verò proportionalitatem Mathematici Geometricam vocant: <lb/> propterea quod in Geometrica euenit, vt eandem totum ad totum rationem habeat, <lb/> quam habet alterutrum, ad alterutrum)<emph.end type="italics"/> ide&longs;t, hanc duarum Geometricarum <lb/> rationum &longs;imilitudinem Mathematici proportionalitatem Geometricam <lb/> appellant, propterea quod in hac duarum rationum geometricarum &longs;imili­<lb/> tudine accidit, vt &longs;it totum ad totum, quemadmodum etiam partes toto­<lb/> rum, vt &longs;upra explicatum e&longs;t; quod non accidit in duarum proportionum <lb/> arithmeticarum &longs;imilitudine; &longs;i enim ponamus has duas rationes arithme­<lb/> ticas &longs;imiles, vt 10. ad 8. ita 6. ad 4. quæ &longs;unt &longs;imiles, propter &longs;imiles exce&longs;­<lb/> &longs;us primorum, & &longs;ecundorum terminorum, cum <expan abbr="vbiq;">vbique</expan> exce&longs;&longs;us &longs;it binarij. <lb/> </s> <s id="s.003677">non erit tamen totum 16. ad totum 12. in eadem ratione cum diui&longs;is ter­<lb/> minis, cum ibi &longs;it exce&longs;&longs;us binarij, hic verò quaternarij. </s> <s id="s.003678">hæc videtur e&longs;&longs;e <lb/> Ari&longs;t. ratio; quam adhuc melius declara&longs;&longs;e libet. </s> <s id="s.003679">Geometrica igitur pro­<lb/> portionalitas ita dicta e&longs;t, quia quælibet proportio pote&longs;t in materia Geo­<lb/> metrica, lineis, &longs;uperficiebus, & corporibus continuari in quatuor termi­<lb/> nis, ita vt proportionalitas, &longs;eu &longs;imilitudo rationum exurgat, quod in nu­<lb/>meris fieri &longs;emper nequit, cum plures &longs;int proportiones, quæ numeris ex­<lb/> primi nequeunt, vt &longs;unt eæ, quas irrationales appellant, cuiu&longs;modi e&longs;t inter <lb/> diametrum, & co&longs;tam eiu&longs;dem quadrati, cuius nec proportio, nec propor­<lb/> tionalitas in numeris reperiri pote&longs;t, quæ tamen in lineis, &longs;uperficiebus, ac <lb/> corporibus e&longs;&longs;e po&longs;&longs;unt: e&longs;t enim vt diameter vnius quadrati ad latus eiu&longs;­<lb/> dem, ita idem latus ad aliam lineam inuentam per 11. 6. vel vt diameter ad <lb/> co&longs;tam, ita quælibet alia linea ad aliam inuentam, per 12. 6. omnis igitur <lb/> proportionalitas rebus Geometricis ine&longs;&longs;e pote&longs;t; non autem numeris, in <lb/> quibus &longs;olum po&longs;&longs;unt e&longs;&longs;e rationes rationales, &longs;eu <expan abbr="rerũ">rerum</expan> commen&longs;urabilium; <lb/> latius igitur patet Geometrica hæc &longs;imilitudo, quàm Arithmetica, cùm <lb/> Geometrica complectatur tam rationales, quàm irrationales. </s> <s id="s.003680">meritò igi­<lb/> tur talis proportionalitas appellari debuit à rebus Geometricis, in quibus <lb/> &longs;emper reperitur, non autem ab Arithmeticis, cum quibus &longs;æpius reperiri <lb/> nequit. </s> <s id="s.003681">Vide Campanum in explicatione definitionis 3. 5. Elemen.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.003682"><arrow.to.target n="marg303"/></s> </p> <p type="margin"> <s id="s.003683"><margin.target id="marg303"/>312</s> </p> <p type="main"> <s id="s.003684">Ibidem <emph type="italics"/>(Non e&longs;t autem continens hæc proportio: non enim vnus, & idem ter­<lb/> minus efficitur, & cui, & quod)<emph.end type="italics"/> ide&longs;t, hæc proportionalitas contracta ad res <lb/> practicas, non e&longs;t continens, ide&longs;t, quæ con&longs;i&longs;tat in tribus tantum terminis, <lb/> quorum medius e&longs;t, ad quem refertur primus, & is qui refertur ad ter­<lb/> tium; &longs;ed e&longs;t di&longs;iuncta, quia con&longs;tat &longs;emper quatuor terminis, quorum duo <lb/> &longs;unt per&longs;onæ aliquæ, reliqui verò duo &longs;unt res, quæ per&longs;onis debentur, vt &longs;i <lb/> &longs;int Plato, & Proclus, quibus iuxta meritorum quantitatem debeant diuidi <lb/> 1500. aurei, debent diuidi aurei in duas partes, quæ habeant eam propor­<lb/> tionem, quam habet Plato ad Proclum. </s> <s id="s.003685">quod &longs;i Plato duplum m&etail;ruit quàm <lb/> Proclus, erit vt Plato ad Proclum, ita 1000. ad 500.</s> </p> <p type="main"> <s id="s.003686">Ex quibus patet hanc analogiam in rebus agendis non ni&longs;i in quatuor <lb/> terminis con&longs;i&longs;tere po&longs;&longs;e, & ideo non e&longs;&longs;e continuam, &longs;ed di&longs;iunctam, vt vo­<lb/> lebat Ari&longs;tot.<!-- KEEP S--></s> </p> <pb pagenum="220" xlink:href="009/01/220.jpg"/> <p type="main"> <s id="s.003687"><arrow.to.target n="marg304"/></s> </p> <p type="margin"> <s id="s.003688"><margin.target id="marg304"/>313</s> </p> <p type="main"> <s id="s.003689">Lib. 5. cap. 6. <emph type="italics"/>(Atque id vel proportione vel numero)<emph.end type="italics"/> ide&longs;t, vel proportio­<lb/> nalitate Geometrica, vel Arithmetica; quæ autem &longs;it proportionalitas <lb/> Geometrica, dictum e&longs;t paulò ante in prioribus locis Mathematicis huius <lb/> quinti libri; quæ verò &longs;it proportionalitas Arithmetica dictum e&longs;t &longs;uperius <lb/> lib. 2. cap. 6. Verum hæc Arithmetica proportionalitas, meritò ab Ari&longs;tot. <lb/> hic contradi&longs;tincta e&longs;t à proportionalitate Geometrica: quia Arithmetica <lb/> hæc analogia attenditur &longs;olum, iuxta eundem exce&longs;&longs;um numerorum, non, <lb/> autem iuxta proportionem, &longs;eu habitudinem terminorum ad inuicem, quod <lb/> maximè in Geometrica &longs;pectatur. </s> <s id="s.003690">propterea Mathematici <expan abbr="c&etilde;&longs;ent">cen&longs;ent</expan> eam vo­<lb/> candam e&longs;&longs;e potius medietatem Arithmeticam, quam proportionalita­<lb/> tem, cum quibus nunc Ari&longs;t. con&longs;entit.</s> </p> <p type="main"> <s id="s.003691"><arrow.to.target n="marg305"/></s> </p> <p type="margin"> <s id="s.003692"><margin.target id="marg305"/>314</s> </p> <p type="main"> <s id="s.003693">Lib. 6. cap. 5. <emph type="italics"/>(Verbi cau&longs;a triangulum tres angulos duobus rectis æquales ha­<lb/>bere, vel non habere)<emph.end type="italics"/> lib. 1. Priorum, &longs;ecto 3. cap. 1. fusè hanc trianguli affe­<lb/> ctionem expo&longs;ui.</s> </p> <p type="main"> <s id="s.003694"><arrow.to.target n="marg306"/></s> </p> <p type="margin"> <s id="s.003695"><margin.target id="marg306"/>315</s> </p> <p type="main"> <s id="s.003696">Lib. 6. cap. 8. <emph type="italics"/>(Nam illud etiam con&longs;ideratione dignum videtur. </s> <s id="s.003697">quid &longs;it, quod <lb/> puer fieri Mathematicus pote&longs;t, &longs;apiens autem naturalis non pote&longs;t. </s> <s id="s.003698">An quia illa <lb/> per ab&longs;tractionem &longs;unt, horum autem principia ab experientia &longs;umuntur)<emph.end type="italics"/> Ex hoc <lb/> loco manife&longs;tè apparet Ari&longs;t. exi&longs;timare principia Mathematica nullo mo­<lb/> do nobis per experientiam innote&longs;cere, quod nonnulli negant.</s> </p> <p type="main"> <s id="s.003699"><arrow.to.target n="marg307"/></s> </p> <p type="margin"> <s id="s.003700"><margin.target id="marg307"/>316</s> </p> <p type="main"> <s id="s.003701">Lib. 7. cap. 8. <emph type="italics"/>(In actionibus autem principium illud e&longs;t, cuius cau&longs;a res fit, <lb/> &longs;icut in Mathematicis &longs;uppo&longs;itiones; nam neque illic ratio e&longs;t, quæ doctrinam tra­<lb/> dat principiorum, neque hic<emph.end type="italics"/>) Suppo&longs;itionum, &longs;iue principiorum Mathemati­<lb/> corum tria &longs;unt genera, definitiones, po&longs;tulata, axiomata, quæ in ip&longs;o primi <lb/> Elementorum ve&longs;tibulo proponuntur: &longs;olaque terminorum explicatione <lb/> <expan abbr="ab&longs;q;">ab&longs;que</expan> vllo di&longs;cur&longs;u, addi&longs;cuntur.</s> </p> </chap> <chap> <p type="head"> <s id="s.003702"><emph type="italics"/>Ex primo Libro Magnorum Moralium.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003703"><arrow.to.target n="marg308"/></s> </p> <p type="margin"> <s id="s.003704"><margin.target id="marg308"/>317</s> </p> <p type="main"> <s id="s.003705">Cap. 1. (<emph type="italics"/>Nec enim lu&longs;titia e&longs;t numerus pariter par<emph.end type="italics"/>) vt &longs;cilicet dicebat <lb/> Pythagoras. </s> <s id="s.003706">Porrò definit. </s> <s id="s.003707">8. 7. &longs;ic habetur: Pariter par nume­<lb/> rus e&longs;t, quem par numerus per numerum parem, ide&longs;t paribus vi­<lb/> cibus, metitur, cuiu&longs;modi e&longs;t numerus 24. quem numerus 6. me­<lb/> titur per numerum parem, nimirum per 4. quia &longs;cilicet numerus 6. paribus <lb/> vicibus, quippe per 4. &longs;iue quater ip&longs;um numerum 24. men&longs;urat, quia to­<lb/> ties in ip&longs;o adæquatè continetur.</s> </p> <p type="main"> <s id="s.003708"><arrow.to.target n="marg309"/></s> </p> <p type="margin"> <s id="s.003709"><margin.target id="marg309"/>318</s> </p> <p type="main"> <s id="s.003710">Cap. 2. (<emph type="italics"/>Ab&longs;urdum enim &longs;it, volenti o&longs;tendere triangulum duobus rectis æqua­<lb/>les habere angulos, &longs;umere principium huiu&longs;modi, anima immortalis est<emph.end type="italics"/>) Repete, <lb/> quæ de hac trianguli proprietate fusè &longs;crip&longs;i lib. 1. Priorum, &longs;ect. </s> <s id="s.003711">3. cap. 1. <lb/> quam affectionem debet Geometra demon&longs;trare ex Geometriæ principijs, <lb/> quemadmodum facit Euclides in 32. primi, non autem ex principijs extrin­<lb/> &longs;ecis, vt quod anima &longs;it immortalis.</s> </p> <p type="main"> <s id="s.003712"><arrow.to.target n="marg310"/></s> </p> <p type="margin"> <s id="s.003713"><margin.target id="marg310"/>319</s> </p> <p type="main"> <s id="s.003714">Cap. 10. <emph type="italics"/>(Vt enim habuerint principia, ita, quæ de principijs ortum ducunt, <lb/> Per&longs;picuè autem licet hoc in Geometria magis intueri, vbi cum aliqua &longs;ump&longs;eris <lb/> principia, vt ea habuerint, ita etiam, quæ ip&longs;a con&longs;equuntur: velut &longs;i triangulum <lb/> duobus rectis æquales habet angulos, quadratum <expan abbr="quoq;">quoque</expan> quatuor angulis rectis ha-<emph.end type="italics"/> <pb pagenum="221" xlink:href="009/01/221.jpg"/><emph type="italics"/>beat nece&longs;&longs;e e&longs;t. </s> <s id="s.003715">& &longs;i triangulum &longs;ecus, ita etiam, & quadratum commutabitur, <lb/> ex altera parte enim ei re&longs;pondet. </s> <s id="s.003716">& &longs;i quadratum quatuor angulis rectis æquales, <lb/> non habuerit angulos ne quidem triangulum duobus rectis habebit æquales)<emph.end type="italics"/> Hanc <lb/> trianguli affectionem, habere &longs;cilicet, &longs;uos tres angulos æquales duobus re­<lb/> ctis angulis abundè explicaui libro 1. Priorum, &longs;ecto 3. cap. 1. quam Eucli­<lb/> des propo&longs;it. </s> <s id="s.003717">32. primi demon&longs;trauit, ex qua demon&longs;tratione, tanquam ex <lb/> Geometrico principio &longs;equitur omne <expan abbr="quoq;">quoque</expan> quadrangulum habere quatuor <lb/> angulos æquales quatuor rectis angulis; omne <expan abbr="namq;">namque</expan> quadrangulum e&longs;t po­<lb/> tentia duo triangula, cum diuidatur ducta ip&longs;ius diametro in duo <expan abbr="trìãgula">trìangula</expan>. <lb/> </s> <s id="s.003718">quod &longs;i triangulus proprietatem illam non haberet, <expan abbr="neq;">neque</expan> hæc quadrangulo <lb/> conueniret. </s> <s id="s.003719">& &longs;i quadrangulum non haberet quatuor angulos æquales qua­<lb/> tuor rectis angulis, neque triangulum habere po&longs;&longs;et tres angulos æqua­<lb/> les duobus rectis, cum nihil &longs;it aliud triangulum, quàm dimidiatum qua­<lb/> drangulum.</s> </p> <p type="main"> <s id="s.003720"><arrow.to.target n="marg311"/></s> </p> <p type="margin"> <s id="s.003721"><margin.target id="marg311"/>320</s> </p> <p type="main"> <s id="s.003722">Cap. 16. <emph type="italics"/>(In Geometria &longs;i quidem cum quis dixerit quadrangulŭm quatuor rectis <lb/>æquales habere, & percunctatur propter quid, occurrit, quia etiam triangulŭm duo­<lb/> bus rectis æquales habet. </s> <s id="s.003723">in his igitur ex determinato &longs;ibi principio propter quid <lb/> a&longs;&longs;ump&longs;erunt)<emph.end type="italics"/> Lege, quæ proximè in præcedenti loco expo&longs;ui, ea enim om­<lb/> nia huc etiam pertinent. </s> <s id="s.003724">hoc &longs;olum addendum ad illorum verborum (<emph type="italics"/>Ex de­<lb/> terminato &longs;ibi principio propter quid a&longs;&longs;ump&longs;erunt<emph.end type="italics"/>) intelligentiam, ide&longs;t ex vna <lb/> conclu&longs;ione demon&longs;trata, tanquam principio alia demon&longs;trant; quod rectè <lb/> fieri Ari&longs;t. in primo Po&longs;ter. docet.</s> </p> <p type="main"> <s id="s.003725"><arrow.to.target n="marg312"/></s> </p> <p type="margin"> <s id="s.003726"><margin.target id="marg312"/>321</s> </p> <p type="main"> <s id="s.003727">Cap. 31. (<emph type="italics"/>A qui proportionale in quatuor nihilominus perficitur: nam quem­<lb/> admodum A, ad B, ita C, ad D.<emph.end type="italics"/>) ide&longs;t proportionalitas in quatuor terminis <lb/> con&longs;i&longs;tit, quemadmodum pluribus &longs;upra lib. 5. cap. 3. Ethycorum explica­<lb/> tum e&longs;t: quò nunc Lectorem ablego.</s> </p> </chap> <chap> <p type="head"> <s id="s.003728"><emph type="italics"/>Ex primo Libro Moralium Eudemiorum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003729"><arrow.to.target n="marg313"/></s> </p> <p type="margin"> <s id="s.003730"><margin.target id="marg313"/>322</s> </p> <p type="main"> <s id="s.003731">Cap. 5 (<emph type="italics"/>Vt &longs;i duplum multiplicium primum est, non licet multiplex com­<lb/> muniter prædicatum &longs;eparari, quippe, quod duplo prius e&longs;t<emph.end type="italics"/>) Inter pro­<lb/> portionum genera vnum e&longs;t, quod dicitur multiplex, quod &longs;ub &longs;e <lb/> infinitas &longs;pecies continet, vt Duplum, Triplum, Quadruplum, & c. <lb/> <!-- REMOVE S-->in infinitum. </s> <s id="s.003732">vbi vides, cur Ari&longs;t. dixerit duplum e&longs;&longs;e primum inter multi­<lb/> plicia, cum verè naturali ordine numerorum ip&longs;i primus debeatur locus. <lb/> </s> <s id="s.003733">Vides etiam cur non liceat, Multiplex ip&longs;um genus commune prædicatum <lb/> omnibus &longs;peciebus veluti Idæam &longs;eparari; tunc enim ait, ip&longs;um mul­<lb/> tiplex ab&longs;tractum e&longs;&longs;et prius ordine ip&longs;o primo multiplici, &longs;ci­<lb/> licet duplo; & Duplum non e&longs;&longs;et primum inter mul­<lb/> tiplicia, quæ <expan abbr="vtraq;">vtraque</expan> &longs;unt ab&longs;urda; non igitur <lb/> illud tanquam Idæam licet &longs;epa­<lb/> ratum ponere.</s> </p> </chap> <pb pagenum="222" xlink:href="009/01/222.jpg"/> <chap> <p type="head"> <s id="s.003734"><emph type="italics"/>Ex Secundo Moralium Eudem.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.003735"><arrow.to.target n="marg314"/></s> </p> <p type="margin"> <s id="s.003736"><margin.target id="marg314"/>323</s> </p> <p type="main"> <s id="s.003737">Cap. 7. <emph type="italics"/>(Nam &longs;i habenti trigono duos rectos, nece&longs;&longs;e e&longs;t tetragonum qua­<lb/> tuor rectis con&longs;tare, manife&longs;tum e&longs;t, quod trigonus duos rectos habens <lb/> cau&longs;a eius exi&longs;tat. </s> <s id="s.003738">Verùm &longs;i quid in trigono mutaris, nece&longs;&longs;arium e&longs;t, & <lb/> in tetragono mutes, vt &longs;i tres habuerunt, &longs;ex; & &longs;i quatuor, octo; &longs;in <lb/> verò non mutes, vt illud, ita hoc <expan abbr="quoq;">quoque</expan> habeat nece&longs;&longs;e e&longs;t)<emph.end type="italics"/> Lege prius, quæ &longs;upra <lb/> lib. 1. Magnor. <!-- REMOVE S-->moral. </s> <s id="s.003739">cap. 10. &longs;crip&longs;i, ex quibus po&longs;tea &longs;ic locum hunc in­<lb/> terpretaberis, &longs;i triangulum habet tres angulos æquales duobus rectis an­<lb/> gulis, nece&longs;&longs;e e&longs;t quodcunque quadrilaterum habere &longs;uos quatuor angulos <lb/> æquales quatuor rectis, quia omne quadrangulum continet duo triangula; <lb/> & &longs;i natura trianguli fuerit immutata ita, vt habeat tres angulos æquales <lb/> non duobus, &longs;ed tribus rectis, tunc nece&longs;&longs;e erit tetragonum <expan abbr="quoq;">quoque</expan> mutatum <lb/> e&longs;&longs;e, quia nece&longs;&longs;ariò habebit &longs;uos angulos æquales non quatuor tantum re­<lb/> ctis, &longs;ed &longs;ex: pariter &longs;i triangulum habeat tres angulos quatuor rectis pa­<lb/> res, quadrangulum &longs;uos habebit angulos, octo rectis æquiualentes. </s> <s id="s.003740">His igi­<lb/> tur ex Geometria &longs;atisfactum &longs;it.</s> </p> <p type="main"> <s id="s.003741"><arrow.to.target n="marg315"/></s> </p> <p type="margin"> <s id="s.003742"><margin.target id="marg315"/>324</s> </p> <p type="main"> <s id="s.003743">Cap. 10. <emph type="italics"/>(Multa verò opinione concipiunt, quæ penes nos non &longs;unt, vt diame­<lb/> trum commen&longs;urabilem e&longs;&longs;e)<emph.end type="italics"/> Quæ lib. 1. Priorum, &longs;ecto 3. cap. 23. de a&longs;yme­<lb/> tria diametri, & co&longs;tæ eiu&longs;dem quadrati allata &longs;unt, &longs;atis huic etiam loco <lb/> facere po&longs;&longs;unt.</s> </p> <p type="main"> <s id="s.003744"><arrow.to.target n="marg316"/></s> </p> <p type="margin"> <s id="s.003745"><margin.target id="marg316"/>325</s> </p> <p type="main"> <s id="s.003746">Eodem cap. <emph type="italics"/>(Quapropter non deremotis apud Indos, nec de circuli quadratu­<lb/> ra deliberamus: nam illa ad nos non &longs;pectant, hoc verò fieri nequit)<emph.end type="italics"/> Quid &longs;it cir­<lb/> culi quadratio, & qua ratione eam antiqui inue&longs;tigauerint in Prædicamen­<lb/> to Relationis, & alibi in Logicis, pluribus explicatum e&longs;t. </s> <s id="s.003747">An verò po&longs;&longs;i­<lb/> bilis &longs;it circuli quadratura, re&longs;pondendum e&longs;t cum di&longs;tinctione, nam theo­<lb/> rematicè quidem facta e&longs;t ab Archimede, cum ip&longs;e probauerit circulum, <lb/> quemuis æqualem e&longs;&longs;e triangulo, cuius vnum latus circa angulum rectum <lb/>&longs;it circuli &longs;emidiameter, alterum verò circunferentia. </s> <s id="s.003748">Problematicè verò, <lb/> ide&longs;t, vt opere ip&longs;o efficiamus <expan abbr="triãgulum">triangulum</expan> illud, nondum à quoquam ritè per­<lb/> actum e&longs;t: & propterea problema hoc difficile admodum cen&longs;endum e&longs;t, <lb/> præ&longs;ertim cum tota Geometrarum antiquitas, <expan abbr="atq;">atque</expan> po&longs;teritas in ip&longs;um fru­<lb/> &longs;tra <expan abbr="hucu&longs;q;">hucu&longs;que</expan> in&longs;udauerit, <expan abbr="atq;">atque</expan> adeò etiam moraliter impo&longs;&longs;ibile exi&longs;timan­<lb/> dum e&longs;t. </s> <s id="s.003749">quo &longs;en&longs;u locutum e&longs;&longs;e Ari&longs;t. hoc loco crediderim, dum ait, illud <lb/> fieri non po&longs;&longs;e. </s> <s id="s.003750">ab&longs;olutè tamen a&longs;&longs;erere non debemus e&longs;&longs;e impo&longs;&longs;ibilem, cum <lb/> nulla id demon&longs;tratione certum &longs;it, imò ego &longs;impliciter, vt aiunt, credo e&longs;­<lb/> &longs;e po&longs;&longs;ibilem, cum alia theoremata, <expan abbr="atq;">atque</expan> problemata (quale e&longs;t pytagoreum <lb/> illud celebre, quod 47. locum in primo Elemen. <!-- REMOVE S-->occupat, & pro cuius adin­<lb/>uentione Pythagoras Mu&longs;is Hecatombas &longs;acrificauit) olim fuerint diù à <lb/> multis inca&longs;&longs;um quæ&longs;ita, <expan abbr="atq;">atque</expan> impo&longs;&longs;ibilia habita, quæ po&longs;tea tandem re­<lb/> perta &longs;unt.</s> </p> <p type="main"> <s id="s.003751"><arrow.to.target n="marg317"/></s> </p> <p type="margin"> <s id="s.003752"><margin.target id="marg317"/>326</s> </p> <p type="main"> <s id="s.003753">Cap. 12. (<emph type="italics"/>Si triangulo duo recti, nece&longs;&longs;um e&longs;t hoc con&longs;equi<emph.end type="italics"/>) ide&longs;t, &longs;i triangu­<lb/> lum habet tres angulos æquales duobus rectis, nece&longs;&longs;e e&longs;t con&longs;equi, vt &longs;upe­<lb/> rius &longs;epius dixit, quod quadrilaterum habeat quatuor angulos æquales qua­<lb/> tuor rectis, lib. 1. Magn. <!-- REMOVE S-->moral. </s> <s id="s.003754">cap. 10. &longs;atis de hac re dictum e&longs;t.</s> </p> </chap> <pb pagenum="223" xlink:href="009/01/223.jpg"/> <chap> <p type="head"> <s id="s.003755"><emph type="italics"/>Ex Septimo Moralium Eudem.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.003756"><arrow.to.target n="marg318"/></s> </p> <p type="margin"> <s id="s.003757"><margin.target id="marg318"/>327</s> </p> <p type="main"> <s id="s.003758">Cap. 12. (<emph type="italics"/>luxtaqué diametrum iungit<emph.end type="italics"/>) ide&longs;t diametraliter opponit, quæ <lb/> e&longs;t omnium maxima oppo&longs;itio, ita vt quæ diametraliter oppo&longs;ita <lb/> &longs;unt, amplius di&longs;tare nequeant, quia diameter e&longs;t maxima om­<lb/> nium di&longs;tantia, &longs;iue fit diameter quadrilateræ figuræ, &longs;iue circuli.</s> </p> </chap> <chap> <p type="head"> <s id="s.003759"><emph type="italics"/>Ex Libro 3. Politicorum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003760"><arrow.to.target n="marg319"/></s> </p> <p type="margin"> <s id="s.003761"><margin.target id="marg319"/>328</s> </p> <p type="main"> <s id="s.003762">Cap. 2. (<emph type="italics"/>Ceu harmoniam earumdem vocem aliam e&longs;&longs;e dicimus, & modò <lb/> Doricam, modò Phrygiam vocitamus<emph.end type="italics"/>) Harmonias Doricam, & Phry­<lb/> giam veteres Mu&longs;ici, vt Ari&longs;toxenes, Euclides, Ptolæmeus vocant <lb/> Tonos, & Modos, Dorium &longs;cilicet, & Phrygium. </s> <s id="s.003763">per mu&longs;icum au­<lb/> tem modum intelligebant quandam vocum con&longs;titutionem, &longs;eu rithmum, <lb/> quem nos hodie vulgò ariam vocamus, vt doctè explicat Io&longs;ephus Zarlinus <lb/> in 4. parte In&longs;titut. <!-- REMOVE S-->Mu&longs;icalium, necnon in lib. 6. &longs;upplem. </s> <s id="s.003764">Denominati au­<lb/> tem fuerunt prædicti, <expan abbr="alij&qacute;">alijque</expan>; plures modi à nationibus illis, apud quas ma­<lb/> ximè in v&longs;u erant, vt Dorius à Dorien&longs;ibus; Phrygius à Phrygijs; Lydius à <lb/> Lydijs. </s> <s id="s.003765">Porrò præter prædictos modos alij plures à veteribus Mu&longs;icis com­<lb/> memorantur; variè tamen, alij enim tres, alij &longs;eptem, alij quindecim, vel <lb/> &longs;eptemdecim etiam connumerarunt; Tres tamen præcipui, & ad quos reli­<lb/> qui reuocabantur, fuerunt Dorius, Phrygius, & Lydius. </s> <s id="s.003766">quorum hæ fuerunt <lb/> proprietates. </s> <s id="s.003767">Dorius erat grauis, &longs;euerus, & bellico&longs;us. </s> <s id="s.003768">vnde pri&longs;ci exi&longs;ti­<lb/> marunt ip&longs;um in hominum animos prudentiam, ca&longs;titatem, <expan abbr="atq;">atque</expan> virtutem <lb/> inducere. </s> <s id="s.003769">Phrygius verò erat hilaris, lætus, placidus, ac propterea fe&longs;tis, <lb/> & choreis idoneus. </s> <s id="s.003770">vnde prouerbium illud vetus ortum habuit, à Dorio ad <lb/> Phrygium, ide&longs;t à rebus alti&longs;&longs;imis, & &longs;erijs ad humiles, & iucundas. </s> <s id="s.003771">Hos <lb/> ambos &longs;olos Plato, & Ari&longs;t. in Rempublicam admi&longs;erunt. </s> <s id="s.003772">Lydius demum <lb/> modus erat horribilis, mœ&longs;tus, ac tri&longs;tis, <expan abbr="ideo&qacute;">ideoque</expan>; lamentationibus, ac la­<lb/> crymis aptus. </s> <s id="s.003773">Hoc in funeribus mortuos lamentantes vtebantur, ita vt pre­<lb/> &longs;entibus lacrymas cierent, <expan abbr="vita&qacute;">vitaque</expan>; functos lacrymis pro&longs;equerentur.</s> </p> <p type="main"> <s id="s.003774">Recentiores Mu&longs;ici &longs;uos modos vocant Tonos, in quibus vtinam anti­<lb/> quos imitarentur, illi enim &longs;uis rithmis, modi&longs;uè auditorum animos varijs <lb/> pro illorum varietate motibus mirè afficiebant: &longs;ed no&longs;tri, rithmos in &longs;uis <lb/> cantilenis negligunt, nec illis curæ e&longs;t, vt per rithmos hominum affectiones <lb/> percellant, cum tamen Plato a&longs;&longs;erat Mu&longs;ici officium e&longs;&longs;e rithmos adinueni­<lb/> re; præterea quod animis ciendis valdè ob&longs;tat, cantilenæ verba, ac &longs;en&longs;um <lb/>pror&longs;us per &longs;uos, quos vocant, contrapunctos, omninò offu&longs;cant, vt nihil <lb/> præter magnum quendam vocum &longs;trepitum concordem exaudiatur: <expan abbr="qui&qacute;">quique</expan>; <lb/> rithmis imitari hominum mores deberent, mimicis quibu&longs;dam adinuentis <lb/> id præ&longs;tare conantur.</s> </p> <p type="main"> <s id="s.003775">Verùm hac de re legantur eruditi&longs;&longs;imi Dialogi de Mu&longs;ica Vincentij Ga­<lb/> lilæi, cuius præcipuas rationes in fine huius operis, & chronologiæ videre <lb/> poteris. </s> <s id="s.003776">Cæterum, qui plura de modis tam antiquis, quàm nouis de&longs;iderat, <pb pagenum="224" xlink:href="009/01/224.jpg"/>con&longs;ulat Io&longs;ephum Zarlinum in 4. parte In&longs;titutionum Mu&longs;icalium, necnon <lb/> lib. 6. &longs;upplemen. <!-- REMOVE S-->virum vatia eruditione refertum, <expan abbr="de&qacute;">deque</expan>; Mu&longs;ica in primis <lb/> optimè meritum.</s> </p> </chap> <chap> <p type="head"> <s id="s.003777"><emph type="italics"/>Ex Quarto Politicorum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003778"><arrow.to.target n="marg320"/></s> </p> <p type="margin"> <s id="s.003779"><margin.target id="marg320"/>329</s> </p> <p type="main"> <s id="s.003780">Cap. 3. (<emph type="italics"/>Eodemqué modo in harmonijs, vt quidam tradunt: nam & in illis <lb/> po&longs;uerunt duas &longs;pecies, vnam Doricam, alteram Phrygiam: cæteras <lb/> verò omnes vel ad Doricam, vel ad Phrygiam referri.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003781">Vide proximè in præcedenti loco dicta, quæ omnia ita etiam <lb/> huic loco quadrant, vt præterea nihil de&longs;ideretur.</s> </p> </chap> <chap> <p type="head"> <s id="s.003782"><emph type="italics"/>Ex Quinto Politicorum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003783"><arrow.to.target n="marg321"/></s> </p> <p type="margin"> <s id="s.003784"><margin.target id="marg321"/>330.a</s> </p> <p type="main"> <s id="s.003785">Cap. 1. (<emph type="italics"/>Quare opus e&longs;t partim arithmetica æquitate vti, partim ea, quæ <lb/> e&longs;t &longs;ecundum dignitatem.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003786">Arithmeticam medietatem &longs;upra explicaui lib. 2. cap. 6. Ethi­<lb/> corum. </s> <s id="s.003787">per eam deinde, quæ e&longs;t &longs;ecundum dignitatem, intelligit <lb/> Geometricam, quam &longs;upra lib. 5. cap. 3. Ethicorum expo&longs;ui. </s> <s id="s.003788">vtimur enim <lb/> ea, quando opus e&longs;t di&longs;tribuere præmia non omnibus æqualiter, &longs;ed habita <lb/> ratione meritorum vniu&longs;cuiu&longs;que. </s> <s id="s.003789">quando autem non &longs;ecundum per&longs;ona­<lb/> rum dignitatem, &longs;ed omnibus æqualiter fit di&longs;tributio, illa dicitur Arithme­<lb/> tica proportionalitas, quia &longs;eruat eandem <expan abbr="vbiq;">vbique</expan> differentiam terminorum.</s> </p> <p type="main"> <s id="s.003790"><arrow.to.target n="marg322"/></s> </p> <p type="margin"> <s id="s.003791"><margin.target id="marg322"/>330.b</s> </p> <p type="main"> <s id="s.003792">Cap. 12. & vlt. (<emph type="italics"/>In Republica verò Platonis Socrates de mutationibus loqui­<lb/> tur, nec tamen rectè. </s> <s id="s.003793">illius enim Reip. <!-- REMOVE S-->quæ e&longs;t optima, <expan abbr="atq;">atque</expan> prima, mutatio nulla <lb/> propria a&longs;&longs;ignatur. </s> <s id="s.003794">inquit enim cau&longs;am e&longs;&longs;e mutationis, quia &longs;ic natura compara­<lb/> tum &longs;it, vt nihil permaneat, &longs;ed in ambitu quodam temporis, mutationem recipiat. <lb/> </s> <s id="s.003795">e&longs;&longs;e verò principium horum, inquit, quorŭm &longs;e&longs;quitertia radix quinario iuncta, duas <lb/> exhibet harmonias. </s> <s id="s.003796">inquiens quando numerus huius diagrammatis efficiatur &longs;oli­<lb/> dus<emph.end type="italics"/>) Quoad textus interpretationem, nonnulli pro (&longs;e&longs;quitertia radix) ver­<lb/> tunt (&longs;e&longs;quitertius cubus) &longs;ed qua id ratione ignoro. </s> <s id="s.003797">græcum verbum e&longs;t <lb/> <foreign lang="greek">puqmh\n,</foreign> quod fundamentum, latus, & radicem &longs;ignificat, non autem cubum. <lb/> </s> <s id="s.003798">præterea &longs;en&longs;ui radix, non autem cubus quadrare pote&longs;t. </s> <s id="s.003799">Porrò &longs;ciendum <lb/> Ari&longs;t. locum hunc ex Platonis lib. 8. de Rep. <!-- REMOVE S-->accepi&longs;&longs;e, loco Mathematico <lb/> ob&longs;curi&longs;&longs;imo, vbi ille de Reip. <!-- REMOVE S-->&longs;eu Gubernation is mutatione, ac duratione <lb/> pertractat. </s> <s id="s.003800">quì locus adeò &longs;emper ob&longs;curus habitus e&longs;t, vt Cicero ip&longs;e cum <lb/> rem pœnitus ob&longs;curam &longs;ignificare vellet, dicere &longs;olitus e&longs;&longs;et, numero Plato­<lb/> nis ob&longs;curius. </s> <s id="s.003801">quam ob cau&longs;am Theon Smyrnæus, qui Mathematica Plato­<lb/> nis loca commentarijs illu&longs;trauit, hi&longs;ce tenebris lucem nullam afferre au&longs;us <lb/> e&longs;t, verùm eas di&longs;&longs;imulans cautè declinauit. </s> <s id="s.003802">cùm igitur præ&longs;ens Ari&longs;t. locus <lb/>&longs;it illius Platonici particula quædam, quid mirum, &longs;i non minori ob&longs;curita­<lb/> te, ac difficultate impeditus &longs;it? </s> <s id="s.003803">vnde etiam &longs;equitor huius explicationem, <lb/> ab illius explicatione petendam e&longs;&longs;e. </s> <s id="s.003804">Locum illum Platonis fu&longs;i &longs;imè expli­<lb/> cat Mar&longs;ilius Ficinus to 2. operum &longs;uorum pag. </s> <s id="s.003805">1413. vbi pag. </s> <s id="s.003806">1421. cap. 12. <pb pagenum="225" xlink:href="009/01/225.jpg"/>illius commentarij propè finem præ&longs;ens Ari&longs;t. locus ex præmi&longs;&longs;is ab eo bre­<lb/> uiter, ac dilucidè declaratur. </s> <s id="s.003807">quæ explanatio, quoniam mihi præ cæteris ar­<lb/> ridet, eam hoc loco, explicatiorem tamen, referam. </s> <s id="s.003808">Illud autem præ&longs;cien­<lb/> dum e&longs;t, hæc quæ a Socrate lib. 8. de Repub. <!-- REMOVE S-->recen&longs;entur, confingi à Mu&longs;is, <lb/> tanquam oraculum quoddam ob&longs;curi&longs;&longs;imum effata; quo arcana quædam <lb/> my&longs;teria de Rerump. <!-- REMOVE S-->durationibus, ac mutationibus continerentur.</s> </p> <p type="main"> <s id="s.003809">Aiebat igitur Socrates, Mu&longs;arum &longs;piritu afflatus, optimam Politiam, op­<lb/> timis &longs;cilicet legibus, ac moribus con&longs;titutam, &longs;ua natura omninò immu­<lb/> tabilem, <expan abbr="atq;">atque</expan> adeò diuturnam per &longs;e fore. </s> <s id="s.003810">Verumtamen mutationi obno­<lb/>xiam e&longs;&longs;e, quoniam &longs;ie natura comparatum e&longs;t, vt cuncta, quæ naturæ &longs;inu <lb/> continentur, certa quadam annorum, vel &longs;æculorum periodo exacta, mu­<lb/> tationem &longs;ubire fatali lege, cogantur. </s> <s id="s.003811">tunc autem harum vice&longs;&longs;itudinum <lb/> principium contingere, fatidicæ Mu&longs;æ &longs;ignificare voluerunt, cùm is anno­<lb/> rum, vel &longs;æculorum numerus ab illius Reip. <!-- REMOVE S-->exordio elap&longs;us fuerit, qui &longs;it <lb/> numerus &longs;olidus, & cubus, eius numeri, in quo optima Reipub. <!-- REMOVE S-->con&longs;titutio <lb/> con&longs;i&longs;tit. </s> <s id="s.003812">hic porrò numerus, in quo Reip. <!-- REMOVE S-->perfectio &longs;tatuitur, e&longs;t Duodena­<lb/> rius, quem multis in locis, varias ob rationes extulit Plato, præcipuè verò, <lb/> quoniam in &longs;e ip&longs;o duas continet harmonias, &longs;iue duas proportiones har­<lb/> monicas, quæ &longs;imul iunctæ, perfecti&longs;&longs;imam omnium conflant harmoniam, <lb/> quæ Diapa&longs;on dicitur. </s> <s id="s.003813">duæ autem illæ rationes harmonicæ &longs;unt Se&longs;quiter­<lb/> tia, & Se&longs;quialtera. </s> <s id="s.003814">Se&longs;quitertia reperitur primò inter hos numeros 4. 3. <lb/> cùm enim ea inter duas voces, aut &longs;onos reperitur, ij edunt harmoniam, <lb/> &longs;eu con&longs;onantiam illam, quæ Diate&longs;&longs;aron appellatur. </s> <s id="s.003815">&longs;imul autem ijdem ad­<lb/> diti efficiunt 7. qui numerus propterea in textu dicitur radix Epitrite, &longs;iue <lb/> Se&longs;quitertia, quoniam vt vidimus <expan abbr="cõponitur">componitur</expan> ex numeris 4. 3. Se&longs;quitertiam <lb/> rationem habentibus. </s> <s id="s.003816">Se&longs;quialtera verò ratio reperitur primò inter hos <lb/> numeros 3. 2. cùm enim duo &longs;oni in earum fuerint ratione &longs;uauem edent <lb/> <expan abbr="con&longs;onãtiam">con&longs;onantiam</expan>, quæ Diapente nominatur; &longs;imul autem ijdem compo&longs;iti Qui­<lb/> narium efficiunt; cui quinario &longs;e&longs;quitertia radix adiuncta, quæ e&longs;t 7. Duo­<lb/> denarium componunt: qui propterea duas exhibet harmonias. </s> <s id="s.003817">Præterea <lb/> hæ duæ harmoniæ &longs;imul copulatæ conflant &longs;uaui&longs;&longs;imam Diapa&longs;on con&longs;onan­<lb/> tiam, nam iunctæ &longs;imul prædictæ duæ rationes &longs;e&longs;quialtera, & &longs;e&longs;quitertia, <lb/> eo modo quo tradunt Mu&longs;ici, hoc &longs;cilicet modo 4. 3. 2. oritur inter extre­<lb/> mos numeros dupla ratio, quæ ip&longs;ius Diapa&longs;on e&longs;t forma. </s> <s id="s.003818">nam ratio 4.ad 3. <lb/> e&longs;t &longs;e&longs;quitertia; ratio 3. ad 2. e&longs;t &longs;e&longs;quialtera; ratio verò 4. ad 2. quæ ex il­<lb/> lis componitur, e&longs;t dupla. </s> <s id="s.003819">quòd &longs;i duo &longs;oni duplam hanc rationem nacti fue­<lb/>rint, con&longs;onantiam Diapa&longs;on &longs;uaui&longs;&longs;imam re&longs;onabunt. </s> <s id="s.003820">Cùm igitur nume­<lb/> rus 12. harmonias ha&longs;ce complectatur, per eum Mu&longs;æ optimum Reip. <!-- REMOVE S-->ini­<lb/> tium, ac &longs;tatum &longs;ignificare voluerunt. </s> <s id="s.003821">Verumenimuerò cum numerus hu­<lb/> ius diagrammatis, ide&longs;t huiu&longs;cemodi conditionis, qui e&longs;t 12. factus fuerit <lb/> &longs;olidus, hoc e&longs;t, quando Re&longs;p. benè con&longs;tituta ad eam annorum, vel &longs;æculo­<lb/> rum periodum peruenerit, qui &longs;it numerus &longs;olidus numeri 12. tunc fatali <lb/> ordine, mutationem pati incipiet, atque in peius, cùm optimi mutatio &longs;it <lb/> pe&longs;sima, prolabi. </s> <s id="s.003822">porrò numerus &longs;olidus ip&longs;ius 12. e&longs;t 1728. vti mox expli­<lb/> cabo. </s> <s id="s.003823">vult igitur Socrates ibi my&longs;ticè &longs;ignificare po&longs;t tot annorum, aut &longs;æ­<lb/> culorum numerum Remp. <!-- REMOVE S-->omnem quamuis optimam, in deterius prolap&longs;u­<pb pagenum="226" xlink:href="009/01/226.jpg"/>ram, cùm enim ad &longs;ummam perfectionem peruenerit, quæ in numero &longs;oli­<lb/> do, & cubico &longs;ignificatur, &longs;i vlterius progre&longs;sura &longs;it, nece&longs;&longs;ariò &longs;ummam <lb/> perfectionem præteribit, ac derelinquet. </s> <s id="s.003824">Quòd autem numerus 1728. &longs;it <lb/> numerus &longs;olidus, & cubus ip&longs;ius Duodenarij &longs;ic palàm fiet, &longs;i tamen prius, <lb/> ea repetiueris, quæ &longs;upra in primo Po&longs;ter. num. </s> <s id="s.003825">33. marginali, de numero <lb/> Quadrato, & Cubo dicta &longs;unt: e&longs;t autem cubus numerus is, qui ex gemina­<lb/> to ductu alicuius numeri in &longs;e ip&longs;um, producitur. </s> <s id="s.003826">multiplica igitur primò <lb/> 12. in 12. & producetur numerus 144. qui quadratus, & planus e&longs;t. </s> <s id="s.003827">rur&longs;us <lb/> duc 12. in hunc 144. <expan abbr="producetur&qacute;">produceturque</expan>; numerus 1728. quì cubus, ac proinde <lb/> &longs;olidus e&longs;t, vt loco citato explicauimus. </s> <s id="s.003828"><expan abbr="Atq;">Atque</expan> hæc Socratici huius my&longs;terij <lb/> explicatio &longs;ufficiat.</s> </p> </chap> <chap> <p type="head"> <s id="s.003829"><emph type="italics"/>Ex Octauo Politicorum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003830"><arrow.to.target n="marg323"/></s> </p> <p type="margin"> <s id="s.003831"><margin.target id="marg323"/>331</s> </p> <p type="main"> <s id="s.003832">Cap. 5. (<emph type="italics"/>Mu&longs;icam verò omnes fatemur e&longs;&longs;e ex iucundi&longs;&longs;imis, &longs;iue nuda &longs;it, <lb/> &longs;iue cum melodia<emph.end type="italics"/>) Quamuis latina interpretatio pro melodia, di­<lb/> cat, modulatione, Gr&etail;cus tamen textus habet <foreign lang="greek">meta melwdias,</foreign> ide&longs;t <lb/> <expan abbr="cũ">cum</expan> melodia. </s> <s id="s.003833">per Mu&longs;icam nudam, forte Ari&longs;toteles intelligit eam, <lb/> quæ &longs;olis &longs;onis <expan abbr="ab&longs;q;">ab&longs;que</expan> oratione con&longs;tat; per melodiam verò intelligit eam, <lb/> quam Io&longs;ephus Zarlinus in 2. parte &longs;uarum In&longs;titutionum Mu&longs;icalium defi­<lb/> nit, quæ e&longs;t concentus plurium vocum harmonicus cum rithmo, & oratio­<lb/> ne, ide&longs;t, qua canitur oratio aliqua &longs;ub aliquo rithmo, aut modo, &longs;iue vt <lb/>nunc loquimur, conqualchearia.</s> </p> <p type="main"> <s id="s.003834">Ex quibus liquet no&longs;tros contrapunti&longs;tas toto cœlo aberrare, dum &longs;uas <lb/> cantilenas, ab&longs;que vlla verborum intelligentia, atque ab&longs;que vllo rithmo <lb/> di&longs;perdunt.</s> </p> <p type="main"> <s id="s.003835"><arrow.to.target n="marg324"/></s> </p> <p type="margin"> <s id="s.003836"><margin.target id="marg324"/>332</s> </p> <p type="main"> <s id="s.003837">Eodem capite propè finem meminit harmoniæ Lydiæ, Mixtæ, Doricæ, <lb/> Phrygiæ. </s> <s id="s.003838">de quibus &longs;upra 3. lib. <!-- REMOVE S-->Polit. <!-- REMOVE S-->cap. 2. tractaui, <expan abbr="earum&qacute;">earumque</expan>; proprieta­<lb/> tes, quas hic Ari&longs;t. recen&longs;et ibi connumeraui.</s> </p> <p type="main"> <s id="s.003839"><arrow.to.target n="marg325"/></s> </p> <p type="margin"> <s id="s.003840"><margin.target id="marg325"/>333</s> </p> <p type="main"> <s id="s.003841">Ibidem meminit etiam Rithmorum, & Harmonie. </s> <s id="s.003842">Quid Rithmus dictum <lb/> e&longs;t &longs;uperius lib. 3. Politic. <!-- REMOVE S-->e&longs;&longs;e quem nunc vulgò ariam cantores, ac tibici­<lb/> nes appellant.</s> </p> <p type="main"> <s id="s.003843">Harmonia e&longs;t plurium vocum ex acuto, & graui concors modulatio.</s> </p> <p type="main"> <s id="s.003844">Verùm de his fu&longs;ius in Problematibus Mu&longs;icis, &longs;ect. </s> <s id="s.003845">19.</s> </p> <p type="main"> <s id="s.003846"><arrow.to.target n="marg326"/></s> </p> <p type="margin"> <s id="s.003847"><margin.target id="marg326"/>334</s> </p> <p type="main"> <s id="s.003848">Cap. 7 (<emph type="italics"/>Con&longs;iderandum vtrum omnibus vtendum &longs;it harmonijs, & rithmis<emph.end type="italics"/>) <lb/> Vide quæ &longs;upra lib. 3. Politic. <!-- REMOVE S-->cap. 2. annotaui.</s> </p> <p type="head"> <s id="s.003849"><emph type="italics"/>In Oeconomicis nihil Mathematicum reperi.<emph.end type="italics"/></s> </p> </chap> <pb pagenum="227" xlink:href="009/01/227.jpg"/> <chap> <p type="head"> <s id="s.003850"><emph type="italics"/>EX PROBLEMATIBVS ARIST.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.003851"><emph type="italics"/>Ex Sectione Prima.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003852"><arrow.to.target n="marg327"/></s> </p> <p type="margin"> <s id="s.003853"><margin.target id="marg327"/>335</s> </p> <p type="main"> <s id="s.003854">Sectione 1. num. </s> <s id="s.003855">3. <emph type="italics"/>(Quemadmodum tempora, ita &longs;yderum ortus, Orionis <lb/> Arcturi, Virgiliarum, Caniculæ, qui flatus, imbresqué excitant, qui &longs;ereni­<lb/> tates, frigora, tepore&longs;uè &longs;olent afferre)<emph.end type="italics"/> Intelligit de ortu co&longs;mico, qui <lb/> fit, quando a&longs;trum &longs;imul cum Sole oritur: quem ortum abundè in 2. <lb/> Meter. <!-- REMOVE S-->&longs;umma 2. cap. 2. explicatum inuenies. </s> <s id="s.003856">Vt autem intelligas, quænam <lb/> &longs;int Orionis, Arcturi, Virgiliarum, & Caniculæ con&longs;tellationes, & in qua <lb/> cœli parte &longs;int collocatæ, &longs;atius e&longs;t globum aliquem a&longs;tronomicum, in quo <lb/> a&longs;teri&longs;mi omnes clarè depicti &longs;int, intueri, quàm hoc loco pluribus verbis <lb/> rem per &longs;e claram, ob&longs;curare. </s> <s id="s.003857">De Orione plura dicta &longs;unt 2. Meter. <!-- REMOVE S-->præ­<lb/> &longs;ertim quo tempore oriatur. </s> <s id="s.003858">Arcturus verò, &longs;iue Bootes, primæ magnitu­<lb/> dinis &longs;tella, mane vnà cùm Sole in no&longs;tro climate ex Magini Tabulis, circa <lb/> 28. diem Septembris oritur. </s> <s id="s.003859">De Virgilijs tamen illud exi&longs;timo <expan abbr="aduert&etilde;dum">aduertendum</expan>, <lb/>quod in Tauri a&longs;teri&longs;mo, duæ aliæ partiales con&longs;tellationes continentur; in <lb/> capite enim ip&longs;ius, &longs;unt illæ, quæ & Hiades, & Atlantides, & Succulæ nuncu­<lb/> pantur. </s> <s id="s.003860">in dor&longs;o autem &longs;unt illæ, quæ Pleiades, & Virgiliæ &longs;unt appellatæ,</s> </p> <p type="main"> <s id="s.003861"><emph type="italics"/>Quæ &longs;eptem dici, &longs;ex tamen e&longs;&longs;e &longs;olent.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003862">Vt cecinit Ouidius, quandoquidem &longs;eptima ferè nunquam apparet. </s> <s id="s.003863">has vul­<lb/> gus Gallinellam vocat. </s> <s id="s.003864">quod &longs;i eas per Tele&longs;copium in&longs;piciamus, mirum di­<lb/> ctu, ea&longs;dem plures e&longs;&longs;e, quàm quadraginta &longs;tellas minimas clarè videbimus, <lb/> vt optimè primus omnium Galilæus ob&longs;eruauit. </s> <s id="s.003865">Porrò con&longs;tellatio Tauri in <lb/> no&longs;tris regionibus oriri cum Sole, incipit vno circiter &longs;e&longs;quimen&longs;e po&longs;t ver­<lb/> num æquinoctium. </s> <s id="s.003866">De Canicula &longs;atis dixi in 2. Meteor. <!-- REMOVE S-->&longs;umma 2. cap. 2.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.003867"><arrow.to.target n="marg328"/></s> </p> <p type="margin"> <s id="s.003868"><margin.target id="marg328"/>336</s> </p> <p type="main"> <s id="s.003869">Eadem &longs;ect. </s> <s id="s.003870">num. </s> <s id="s.003871">17. <emph type="italics"/>(Cur à Virgiliarum occa&longs;u ad Fauonij v&longs;que flatus, bi <lb/>poti&longs;&longs;imum pereant, qui morbo longo laborant, & &longs;enes, quam iuuenes potius?) <emph.end type="italics"/><lb/> Lege, quæ &longs;crip&longs;i de occa&longs;u &longs;yderum lib. 2. Meteor. <!-- REMOVE S-->&longs;umma 2. cap. 2. dein­<lb/> de, quæ in &longs;uperiore proximè loco de Virgilijs: quibus hæc pauca <expan abbr="addãtur">addantur</expan>. <lb/> </s> <s id="s.003872">cum intelligat de co&longs;mico Virgiliarum occa&longs;u, qui noctu apparet, <expan abbr="incipit&qacute;">incipitque</expan>; <lb/> tunc primum, quando oriente Sole, ip&longs;e occumbunt, nece&longs;&longs;e e&longs;t occa&longs;um <lb/> hunc incipere po&longs;t autumnale <expan abbr="æquinoctiũ">æquinoctium</expan> ferè &longs;e&longs;quimen&longs;e in no&longs;tris regio­<lb/> nibus; cum enim Virgiliæ &longs;int in Tauro, nece&longs;&longs;e e&longs;t occidente Tauro initio <lb/> dixi, vt Sol &longs;it in oppo&longs;ito &longs;igno, videlicet in Scorpione; in quo a&longs;teri&longs;mo <lb/> Sol reperitur po&longs;t prædictum æquinoctium vno ferè men&longs;e cum dimidio. </s> <s id="s.003873">de <lb/> hac re plura Plinius lib. 18. cap. 31.</s> </p> <p type="head"> <s id="s.003874"><emph type="italics"/>Ex Sectione 15.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003875"><arrow.to.target n="marg329"/></s> </p> <p type="margin"> <s id="s.003876"><margin.target id="marg329"/>337</s> </p> <p type="main"> <s id="s.003877">Nvm. <!-- REMOVE S-->1. <emph type="italics"/>(Cur linea ab angulo ad angulum ducta, &longs;ola ex omnibus, quæ fi­<lb/>guras rectilineas bifariam &longs;ecant, diameter vocata e&longs;t? </s> <s id="s.003878">An quod dia­<lb/> meter, vt nomen ip&longs;um de&longs;ignat, duas in partes figuram æquè dimetien­<lb/>do diuidit, nihil dimen&longs;æ figuræ defiruens? </s> <s id="s.003879">igitur hæc, quæ per commi&longs;­<lb/>&longs;uras, hoc est, per angulos figuram diuidit, appellanda e&longs;t diameter, quoniam hæc<emph.end type="italics"/> <pb pagenum="228" xlink:href="009/01/228.jpg"/><emph type="italics"/>figuram non de&longs;truit, quamuis diuidat. </s> <s id="s.003880">quemadmodum faciunt; qui va&longs;a militaria <lb/> partiuntur. </s> <s id="s.003881">At cæteræ lineæ, quæ per lineas compo&longs;itam figuram &longs;ecant, eam cor­<lb/>rumpunt: committitur enim rectilinea figura in angulis, vel &longs;ecundum angulos)<emph.end type="italics"/><lb/> Vt rectè problema hoc percipiamus, proponenda e&longs;t figura rectilinea, & <lb/>vna ex ijs, quæ parallelogramma dicuntur, vt &longs;unt Quadratum, Quadrila­<lb/> <figure id="id.009.01.228.1.jpg" place="text" xlink:href="009/01/228/1.jpg"/><lb/> terum, Rhombus, Rhomboides, cuiu&longs;mo­<lb/> di e&longs;t præ&longs;ens, aliter verba Ari&longs;t. illi non <lb/> &longs;emper quadrarent, quia illarum diameter <lb/> illas &longs;emper bifariam non &longs;e caret. </s> <s id="s.003882">quemad­<lb/> modum videre e&longs;t in trapezio. </s> <s id="s.003883">& pentagono <lb/> etiam æquilatero. </s> <s id="s.003884">Quærit igitur, cur ex om­<lb/> nibus lineis, quæ quadrilaterum A B C D, <lb/> bifariam diuidunt, quales &longs;unt E F, G H, & <lb/> D B. &longs;ola D B, quæ ab angulo ad angulum <lb/> ducta e&longs;t, mœruit appellari diameter. </s> <s id="s.003885">Re&longs;pondet autem, eam fortè appel­<lb/> lationem hanc præ cæteris inde promerui&longs;&longs;e, quòd, quamuis aliæ omnes <lb/> æquè parallelogrammum dimetiantur, &longs;ola tamen ip&longs;a D B, ip&longs;um non de­<lb/> &longs;truit, nec &longs;cindit, cùm ei nouam aliquam diui&longs;ionem non inferat, &longs;ed id per <lb/> angulos &longs;ecet, vbi prius laterum commi&longs;&longs;uræ <expan abbr="erãt">erant</expan>: reliquæ verò omnes no­<lb/> uas figuræ &longs;ectiones inferunt, cùm eius latera in punctis E, F, G, H, <expan abbr="diuidãt">diuidant</expan>, <lb/> vbi nulla prius erat diui&longs;io; quapropter ip&longs;am quodammodo de&longs;truunt, <lb/> <expan abbr="atq;">atque</expan> corrumpunt. </s> <s id="s.003886">Aduertè vulgatam ver&longs;ionem latinam hanc <emph type="italics"/>(Angulis enim <lb/> constant, quæ rectis lineis continentur)<emph.end type="italics"/> malè græco textui <foreign lang="greek">sugkeintai gar to\ <lb/> euqugrammon kata\ tas gwni/as,</foreign> re&longs;pondere, qui &longs;ic latinè reddendus e&longs;t: com­<lb/> ponitur enim rectilineum iuxta angulos; quæ interpretatio vera e&longs;t, quia <lb/> anguli &longs;unt laterum commi&longs;&longs;uræ, vt dictum e&longs;t.</s> </p> <p type="main"> <s id="s.003887"><arrow.to.target n="marg330"/></s> </p> <p type="margin"> <s id="s.003888"><margin.target id="marg330"/>338</s> </p> <p type="main"> <s id="s.003889">Eadem &longs;ect. </s> <s id="s.003890">num. </s> <s id="s.003891">2. <emph type="italics"/>(cur diameter ita e&longs;t appellata? </s> <s id="s.003892">Vtrum quoniam &longs;ola bi­<lb/> partitò figuram diuidat? </s> <s id="s.003893">An quod &longs;ola figuram &longs;ecat per partes, &longs;iue membra, qui­<lb/> bus in flexa coarctatur, cùm cæteræ per latera diuidant?)<emph.end type="italics"/> præ&longs;entis problematis <lb/>expo&longs;itio petatur ex præcedentis expo&longs;itione.</s> </p> <p type="main"> <s id="s.003894"><arrow.to.target n="marg331"/></s> </p> <p type="margin"> <s id="s.003895"><margin.target id="marg331"/>339</s> </p> <p type="main"> <s id="s.003896">In problemate 3. <emph type="italics"/>(Cur homines omnes tam Græci, quàm Barbari ad decem <lb/> <expan abbr="v&longs;q;">v&longs;que</expan> numerare con&longs;ueuere, & c. <!-- KEEP S--></s> <s id="s.003897">Vtrum quod denarius numerus perfectus &longs;it: con­<lb/>tinet enim omnia numerorum genera. </s> <s id="s.003898">vt par, impar, quadratum, quadrantale, lon­<lb/> gum, planum, primum, compo&longs;itum)<emph.end type="italics"/> Cur omnes nationes miro quodam con­<lb/> &longs;en&longs;u &longs;uos numeros in denas, veluti in gradus quo&longs;dam diuidant, Ari&longs;toteles <lb/> cau&longs;am indagaturus, re&longs;pondet primò id fortè accidi&longs;&longs;e ob denarij numeri <lb/>perfectionem: cuius perfectionis hoc e&longs;t indicium, quod denarius contineat <lb/> omnes numerorum &longs;pecies. </s> <s id="s.003899">quæ quidem omnes numerorum &longs;pecies in defi­<lb/> nitionibus 7. Elem. exponuntur, quas con&longs;ulere debes. </s> <s id="s.003900">in denario numero <lb/> contineri numeros pares, ac impares, per &longs;e patet. </s> <s id="s.003901">continetur etiam in eo <lb/> quadratus numerus, imò duo quadrati numeri, nam, & quaternarius e&longs;t <lb/> numerus quadratus, quippe qui ex ductu binarij in binarium producatur: <lb/> item nouenarius e&longs;t quadratus, quippe qui ex multiplicatione ternarij in <lb/> ternarium gignitur. </s> <s id="s.003902">Porrò pro quadrantali numero intelligendus e&longs;t nume­<lb/> rus cubus, erat. </s> <s id="s.003903">n. </s> <s id="s.003904">quadratal apud Romanos vas cubicæ figuræ: imò in græ­<lb/> co textu voci huic quadrantali, re&longs;pondet <foreign lang="greek">kubos,</foreign> ide&longs;t, cubus. </s> <s id="s.003905">vnde apud la­<pb pagenum="229" xlink:href="009/01/229.jpg"/>tinos quadrantal pro cubo &longs;olet v&longs;urpari. </s> <s id="s.003906">in denario autem <expan abbr="cõtinetur">continetur</expan> etiam <lb/> hic numerus, e&longs;t enim octonarius numerus cubus, fit enim ex binario ter in <lb/> &longs;e ip&longs;um multiplicato, hoc modo; duo bis faciunt quatuor: rur&longs;us duo qua­<lb/> ter faciunt octo; quem ex definitione numeri cubi, con&longs;tat e&longs;&longs;e cubum. </s> <s id="s.003907">qua <lb/> ratione deinde reliqui numeri, longus, planus, primus, compo&longs;itus, in de­<lb/> nario exi&longs;tant, facilè e&longs;t cogno&longs;cere, dummodo eorum definitiones tenean­<lb/> tur, quæ initio 7. Elem. traduntur.</s> </p> <p type="main"> <s id="s.003908"><arrow.to.target n="marg332"/></s> </p> <p type="margin"> <s id="s.003909"><margin.target id="marg332"/>340</s> </p> <p type="main"> <s id="s.003910">Ibidem <emph type="italics"/>(An quod denarius fons, <expan abbr="atq;">atque</expan> principium e&longs;t, quippe qui ex vno, duo­<lb/> bus, tribus, & quatuor con&longs;tet)<emph.end type="italics"/> Aliam denarij dignitatem a&longs;&longs;ignat, quam ex <lb/>Plutarcho lib. 1. cap. 3. de Placitis Philo&longs;ophorum, optimè po&longs;&longs;umus intel­<lb/> ligere: vbi &longs;ic ait: Pythagorei aiebant denarium e&longs;&longs;e Naturam, quoniam <lb/> omnes gentes <expan abbr="v&longs;q;">v&longs;que</expan> ad decem natura duce numerabant. </s> <s id="s.003911">tum etiam, quia ex <lb/> quaternario con&longs;tabat, ide&longs;t, ex his quatuor numeris 1. 2. 3. 4. qui &longs;imul ad­<lb/> diti faciunt decem: quaternarium enim Pythagorei multis de cau&longs;is, quas <lb/> apud Petrum Bungum de my&longs;terijs numerorum videre poteris, adeò extol­<lb/> lebant, vt dicerent ex quaternario naturalia, omnia con&longs;tare, vt quaterni­<lb/> tati omnia accepta referrent. </s> <s id="s.003912">vnde etiam per ip&longs;um conceptis his ver&longs;ibus <lb/> iurare &longs;olebant,</s> </p> <p type="main"> <s id="s.003913"><emph type="italics"/>Iuro per omnipotentem animæ, qui Tetrada no&longs;træ <lb/> Perpetuos fontes naturæ infudit habentem.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003914">Pr&etail;cipua verò cau&longs;a, cur tantopere Pythagorei quaternitatem celebrarint, <lb/> refertur à Mar&longs;ilio Ficino cap. 24. compendij in Tymeum, his verbis: ex <lb/> quatuor elementis, geometrica, & harmonica ratione coniunctis inuicem, <lb/> vniuer&longs;um Mundum compo&longs;itum Pythagorei omnes exi&longs;timant: con&longs;onan­<lb/>tiam horum in cœlo &longs;emper e&longs;&longs;e perfectam, &longs;ub cœlo autem aliquando di&longs;­<lb/> &longs;onantem. </s> <s id="s.003915">volebant ergò totum mundum, tam æthereum, quàm elementa­<lb/> rem, con&longs;tare ex quatuor elementis; & ideò ex quaternario omnia con&longs;ta­<lb/> re dicebant. </s> <s id="s.003916">hac de cau&longs;a Pythagorei in mu&longs;icis con&longs;onantijs, vltra quater­<lb/> narium progredi vetabant; hoc e&longs;t nullam admittebant con&longs;onantiam, quæ <lb/> numeris quaternario <expan abbr="cont&etilde;tis">contentis</expan> non exprimeretur, idcircò &longs;upra quadruplam <lb/> non a&longs;cendebant. </s> <s id="s.003917">Verùm inter alias quaternitatis dignitates hanc maximi <lb/> faciebant, quod denarius ex ip&longs;a, vti modo dictum e&longs;t, componeretur; cu­<lb/> ius excellentiam in ip&longs;um proinde denarium transfundebant, dicebantque <lb/> denarium e&longs;&longs;e numerum perfectum, & aliorum numerorum fontem, atque <lb/> principium. </s> <s id="s.003918">quemadmodum natura ip&longs;a quaternario <expan abbr="cõ&longs;tans">con&longs;tans</expan>, erat omnium <lb/> rerum origo. </s> <s id="s.003919">Ex quibus manife&longs;tum e&longs;t Ari&longs;t. <!-- REMOVE S-->Problema hoc, <expan abbr="atq;">atque</expan> eius &longs;o­<lb/> lutionem ex Pythagoreorum philo&longs;ophia accepi&longs;&longs;e.</s> </p> <p type="main"> <s id="s.003920"><arrow.to.target n="marg333"/></s> </p> <p type="margin"> <s id="s.003921"><margin.target id="marg333"/>341</s> </p> <p type="main"> <s id="s.003922">Ibidem <emph type="italics"/>(An quia corpora, quæ feruntur numero nouenario continentur)<emph.end type="italics"/> Puto <lb/> hæc nouem corpora, quæ mouentur, e&longs;&longs;e cœlos, primum &longs;cilicet Mobile, <lb/> Firmamentum, & &longs;eptem Planetarum orbes: quibus &longs;i addas &longs;phæram ele­<lb/> mentarem, habebis denarium corporum perfecti&longs;&longs;imum, ex quo tota Mun­<lb/> di machina componitur.</s> </p> <p type="main"> <s id="s.003923"><arrow.to.target n="marg334"/></s> </p> <p type="margin"> <s id="s.003924"><margin.target id="marg334"/>342</s> </p> <p type="main"> <s id="s.003925">Ibidem <emph type="italics"/>(An quod decem proportionibus, quatuor cubales numeri con&longs;umun­<lb/> tur, è quibus numeris vniuer&longs;um con&longs;tare Pythagoreis placet?)<emph.end type="italics"/> Aliam denarij <lb/>perfectionem affert, quam ex 8. 9. Elem. <!-- REMOVE S-->comprobare, <expan abbr="atq;">atque</expan> intelligere po&longs;­<lb/> &longs;umus. </s> <s id="s.003926">e&longs;t autem 8. 9. Elem. propo&longs;itio hæc: &longs;i decem numeri in eadem pro­ <pb pagenum="230" xlink:href="009/01/230.jpg"/>portione progrediantur ab vnitate incipientes, erunt ex illis quatuor cubi, <lb/> v.g. <!-- REMOVE S-->in &longs;erie duplæ proportionis progrediantur hi decem termini: 1. 2. 4. 8. <lb/> 16. 32. 64. 128. 256. 512. ex his decem numeris &longs;unt quatuor cubi, nimi­<lb/> rum hi 1. 8. 64. 512. numerus cubus e&longs;t, qui fit ex tribus æqualibus numeris <lb/> in &longs;e multiplicatis. </s> <s id="s.003927">&longs;ic vnitas e&longs;t cubus, quia fit ex vnitatibus tribus in &longs;e du­<lb/> ctis, nam 1. in 1. facit 1. & rur&longs;us i&longs;tud 1. in 1. facit 1. &longs;ic etiam 8. e&longs;t cubus, <lb/> quia fit ex tribus his numeris æqualibus 2. 2. 2. inuicem ductis hoc modo, <lb/> 2. in 2. facit 4. rur&longs;us 4. in 2. facit 8. qui e&longs;t cubus. </s> <s id="s.003928">&longs;ic 64. fit ex tribus hi&longs;ce <lb/> 4. 4. 4. pariter. </s> <s id="s.003929">512. fit ex tribus his 8. 8. 8. <expan abbr="e&longs;t&qacute;">e&longs;tque</expan>; propterea cubus. </s> <s id="s.003930">&longs;imiliter <lb/> &longs;i alia progre&longs;&longs;io in&longs;tituatur v&longs;que ad decem terminos, erunt in ea quatuor <lb/> cubi, eodem ordine, quo in &longs;uperiori progre&longs;&longs;ione, ide&longs;t primo loco, 4.7. & <lb/> 10. v.g. <!-- REMOVE S-->&longs;it tripla progre&longs;&longs;io hæc 1. 3. 9. 27. 81. 243. 729. 2182. 6546. 19638. <lb/> quatuor cubi erunt hi 1. 27. 729. 19638. quorum latera cubica, &longs;unt hi nu­<lb/> meri 1. 3. 9. 27.</s> </p> <p type="main"> <s id="s.003931">Po&longs;tquam huius loci explicationem ex allegata Euclidiana demon&longs;tratio­<lb/> ne attuli&longs;&longs;em, incidi in Petri Apponen&longs;is horum problematum commenta­<lb/> ria, qui aliam à &longs;e confictam expo&longs;itionem affert, <expan abbr="ait&qacute;">aitque</expan>; &longs;e per quatuor inte­<lb/> gros annos labora&longs;&longs;e, antequam eam inuenire, <expan abbr="locum&qacute;">locumque</expan>; hunc intelligere <lb/> po&longs;&longs;et. </s> <s id="s.003932">e&longs;t autem hæc; Denarius componitur ex quaternario, ide&longs;t ex qua­<lb/> tuor primis numeris cubis, &longs;cilicet 1. 9. 27. 64. qui &longs;unt cubi, & &longs;imul additi <lb/> con&longs;tituunt decem denas, ide&longs;t <expan abbr="c&etilde;tum">centum</expan>. </s> <s id="s.003933">quæ cum nulli Mathematicæ demon­<lb/>&longs;trationi innitatur, nec vniuer&longs;alis &longs;it, ex &longs;e apparet, quàm &longs;it <expan abbr="comm&etilde;titia">commentitia</expan>, <lb/> & ab Ari&longs;t. mente aliena. </s> <s id="s.003934">Enim uerò me antea ip&longs;ius commentarijs carui&longs;­<lb/> &longs;e gaui&longs;us &longs;um, quibus ni&longs;i carui&longs;&longs;em, veritate ip&longs;a carui&longs;&longs;em, acquieui&longs;&longs;em <lb/> enim illius fictioni, quæ <expan abbr="vtcunq;">vtcunque</expan> videtur quadrare, <expan abbr="hoc&qacute;">hocque</expan>; pacto veritatis in­<lb/>quirendæ occa&longs;io &longs;ublata fui&longs;&longs;et.</s> </p> <p type="main"> <s id="s.003935"><arrow.to.target n="marg335"/></s> </p> <p type="margin"> <s id="s.003936"><margin.target id="marg335"/>343</s> </p> <p type="main"> <s id="s.003937">Ibidem <emph type="italics"/>(An quod omnes homines digitis decem lege naturali creantur? </s> <s id="s.003938">it aque <lb/>&longs;ui numeri qua&longs;i calculos adipi&longs;centes hac eadem multitudine, cætera <expan abbr="quoq;">quoque</expan> nume­<lb/> rant)<emph.end type="italics"/> hæc Ari&longs;t. ratio confirmatur ex recentiorum relationibus de populis <lb/> Bra&longs;iliæ, qui cum per &longs;ummam barbariem, in omni rerum ignoratione ver­<lb/> &longs;arentur, ex digitis tamen, <expan abbr="vtcunq;">vtcunque</expan> numerabant. </s> <s id="s.003939"><expan abbr="cum&qacute;">cumque</expan>; vellent &longs;ignificare <lb/> quinque dicebant, manum vnam: cum verò decem dicebant, manus duas: <lb/> cum viginti dicebant, manus, & pedes. </s> <s id="s.003940">& &longs;imiliter in alijs. </s> <s id="s.003941">non tamen hac <lb/> ratione longè progrediebantur.</s> </p> <p type="main"> <s id="s.003942"><arrow.to.target n="marg336"/></s> </p> <p type="margin"> <s id="s.003943"><margin.target id="marg336"/>344</s> </p> <p type="main"> <s id="s.003944">In 4. problema. </s> <s id="s.003945">quoniam textus huius problematis, tam apud græcos, <lb/> quàm latinos mendo&longs;us apparet, eum propterea per &longs;equentem paraphra­<lb/> &longs;im exponam, qua & intelligi, & re&longs;titui etiam poterit. </s> <s id="s.003946">Quæ&longs;tio autem e&longs;t <lb/> de inæquali incremento, ac decremento vmbrarum Solis, quæ propriè de <lb/> vmbris in plano horizontali proiectis, quas rectas vmbras appellant intel­<lb/>ligenda e&longs;t: hæ enim inæqualiter cre&longs;cunt, & decre&longs;cunt, &longs;i quidem mane <lb/> plurimum, po&longs;tea parum, tandem nihil ferè circa meridiem minuuntur, po­<lb/> &longs;itis tamen æqualibus temporibus. </s> <s id="s.003947">Quærit igitur Ari&longs;t. cur cum Sol eodem <lb/> vigore feratur, non idem tamen incrementum, decrementumuè vmbrarum <lb/> exultet? </s> <s id="s.003948">pro cuius intelligentia, ac &longs;olutione in&longs;picienda e&longs;t figura &longs;equens: <lb/> in qua &longs;emicirculus, &longs;iue arcus A B C, &longs;it is, per quem Sol incedit, dum ele­<lb/> uatur &longs;upra horizontem H I; & quia Sol vniformiter &longs;candit hunc arcum, <pb pagenum="231" xlink:href="009/01/231.jpg"/><figure id="id.009.01.231.1.jpg" place="text" xlink:href="009/01/231/1.jpg"/><lb/> &longs;int duo arcus æquales A B, B C. <lb/> in plano autem horizontis ere­<lb/> ctum &longs;it corpus G D, quod à So­<lb/> le con&longs;piciatur, &longs;iue illuminetur. <lb/> </s> <s id="s.003949"><expan abbr="&longs;it&qacute;">&longs;itque</expan>; primum Sol in A. radius ip­<lb/> &longs;ius per verticem D, tran&longs;iliens <lb/> erit A D I; vmbra verò erit G I. <lb/> <!-- KEEP S--></s> <s id="s.003950">Sole deinde in B, exi&longs;tente, erit <lb/> radius B D E, & vmbra G E. <!-- KEEP S--></s> <s id="s.003951">So­<lb/> le tandem in C. <expan abbr="radio&qacute;">radioque</expan>; C D F. <lb/> vmbra erit G F. <!-- KEEP S--></s> <s id="s.003952">Dicit ergò Ari&longs;t. quod cum anguli A D B, B D C, &longs;int ex <lb/> æqualibus arcubus A B, B C. ad centrum D, con&longs;tituti, erunt æquales, qua­<lb/> re erunt etiam æquales alij duo anguli illis ad verticem oppo&longs;iti, per 15. <lb/> primi, qui &longs;unt contenti in triangulo G D I. quod <expan abbr="triã">tria</expan>ngulum fit à radio pri­<lb/> mo D I, re con&longs;pecta à Sole G D, & vmbra G I. anguli inquam F D E, E D I, <lb/> qui &longs;unt ad verticem prædictis angulis, erunt, & ip&longs;i æquales inuicem.</s> </p> <p type="main"> <s id="s.003953">Supponit præterea pro certo radium D I, qui cæteris longius prolabitur, <lb/> e&longs;&longs;e maiorem propinquiore D E. <expan abbr="ip&longs;um&qacute;">ip&longs;umque</expan>; D E, maiorem e&longs;&longs;e reliquo radio <lb/> D F. oportet autem <expan abbr="radiũ">radium</expan> B E, terminari in puncto E, quod &longs;it citra radium <lb/> D I. & radium D F, de&longs;inere in F, citra radium D E, aliter &longs;equitur lineam <lb/> rectam B E, vel C F, &longs;ecare lineam recta A I, in pluribus punctis, quàm vno <lb/> D. quod e&longs;t impo&longs;&longs;ibile. </s> <s id="s.003954">cùm ergò totus angulus F D I, diuidatur à linea <lb/> D E, in duos angulos æquales F D E, E D I. <expan abbr="&longs;it&qacute;">&longs;itque</expan>; latus D I, maius latere D F. <lb/>erit ex &longs;cholio 19. primi Elemen. <!-- REMOVE S-->linea E I, maior, quam F E, quæ &longs;unt duæ <lb/> inæquales vmbræ, quæ tamen re&longs;pondent æqualibus arcubus A B, B C. &longs;imi­<lb/> liter vmbra F E, maior e&longs;&longs;e probaretur &longs;equenti qualibet vmbra, quæ tamen <lb/> ex arcu æquali procederet. </s> <s id="s.003955">& &longs;ic deinceps v&longs;quequò Sol e&longs;&longs;et in meridie, vbi <lb/> vmbra e&longs;&longs;et omnium minima.</s> </p> <p type="main"> <s id="s.003956">Atque ex his patet, cur quamuis Sol vniformiter in cœlo moueatur, vm­<lb/> brarum tamen incrementa, &longs;int di&longs;paria, nec vniformia. </s> <s id="s.003957">eadem intelligen­<lb/> da &longs;unt de vmbrarum decrementis promeridianis Sole ad occa&longs;um labente: <lb/> tunc enim, vt ille cecinit.</s> </p> <p type="main"> <s id="s.003958"><emph type="italics"/>Maioresqué cadunt altis de montibus vmbræ.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003959">Aduerte verba illa (<emph type="italics"/>Angulus D E, maior, quam E F, angulo D G, est<emph.end type="italics"/>) e&longs;&longs;e <lb/> mendo&longs;a, etiam in græco textu; vnde, & malè in latinum tran&longs;lata: <expan abbr="neq;">neque</expan> in <lb/> græco e&longs;t vox, angulus: aliter Ari&longs;t. quæ&longs;tioni non &longs;atisfaceret. </s> <s id="s.003960">quare di­<lb/> cendum, & interpretandum videtur, quemadmodum à me factum e&longs;t.</s> </p> <p type="main"> <s id="s.003961"><arrow.to.target n="marg337"/></s> </p> <p type="margin"> <s id="s.003962"><margin.target id="marg337"/>345</s> </p> <p type="main"> <s id="s.003963">In 5. problema. </s> <s id="s.003964">Difficile admodum e&longs;t problema i&longs;tud, & cuius &longs;olutio­<lb/> nem nullus veterum, quod &longs;ciam, perfectè attigit: quamuis Vitellio nu. </s> <s id="s.003965">39. <lb/> lib. 2. hoc idem proponat, ac &longs;oluere contendat: Verùm nec Ari&longs;t. nec Vi­<lb/> tellio intellectui &longs;atisfaciunt mathematico: probabilia tamen afferunt. </s> <s id="s.003966">op­<lb/>timè hae de re Maurolicus, in &longs;uis Po&longs;thumis, nuper editis Photi&longs;mis, & Ke­<lb/> plerus, in paralip. </s> <s id="s.003967">ad Vitell. <!-- KEEP S--></s> <s id="s.003968">Sen&longs;um Ari&longs;t. ac textum pariter per paraphra­<lb/> &longs;im exponam, ita tamen, vt eius textus ex hac paraphra&longs;i omninò clarus <lb/> euadat. </s> <s id="s.003969">Quærit igitur; cur lumen Solis ingrediens per quadrangularia, &longs;eu <lb/>triangularia foramina, vel etiam per rimulas, cùm po&longs;tea recipiatur in pla­<pb pagenum="232" xlink:href="009/01/232.jpg"/>no &longs;atis ab illo foramine remoto, vt in pariete, vel pauimento, non recipi­<lb/> tur in eadem figura, per quam ingre&longs;&longs;um e&longs;t; quamuis. </s> <s id="s.003970">n. </s> <s id="s.003971">foramen &longs;it angulo­<lb/> &longs;um, illuminatio tamen in oppo&longs;ito plano facta e&longs;t &longs;emper circularis, &longs;i pla­<lb/> num &longs;it &longs;atis remotum, & radio Solis directè, &longs;eu perpendiculariter obie­<lb/> ctum: &longs;i enim non &longs;it perpendiculariter, &longs;ed obliquè, tunc illuminationes <lb/>apparent non omnino circulares, &longs;ed ouales; quemadmodum quotidie ac­<lb/> cidere videmus in pauimentis, vbi omnes ferè huiu&longs;modi illuminationes <lb/> ellip&longs;es &longs;unt, quamuis Sol per angulo&longs;a foramina ingrediatur. </s> <s id="s.003972">quæ ellip&longs;es &longs;i <lb/> in plano Solis radio <expan abbr="perp&etilde;diculariter">perpendiculariter</expan> obiecto recipiantur, perfecti euadunt <lb/> orbes. </s> <s id="s.003973">hoc etiam, inquit Ari&longs;t, in cratibus patet; crates enim illæ habebant <lb/> foramina angulo&longs;a, atque oblonga, fiunt enim crates ex virgis decu&longs;&longs;atis, <lb/> quorum foramina &longs;unt quadrilatera, per quæ Sol ingrediens, non tamen <lb/> recipit angulo&longs;am figuram, &longs;ed in debita remotione rotundatur. </s> <s id="s.003974">Re&longs;pon­<lb/> det propo&longs;itæ quæ&longs;tioni dicens; radijs Solis fortè illud accidere, quod & ra­<lb/> dijs vi&longs;ualibus, qui ab oculo ad rem con&longs;pectam producuntur: ij enim in <lb/> turbinis, &longs;eu coni figuram aguntur, cuius apex e&longs;t in oculo, ba&longs;is autem e&longs;t <lb/> in re vi&longs;a: & quamuis res vi&longs;a &longs;it angulo&longs;a, vt triangula, vel quadrangula, <lb/> tamen &longs;i à longè con&longs;piciatur, circularis apparet; vnde & figura vi&longs;ualium <lb/> radiorum, quæ in proximum obiectum incidens ba&longs;im angulo&longs;am, remoto, <lb/> quantum &longs;atis e&longs;t, obiecto, ba&longs;im habebit orbicularem. </s> <s id="s.003975">eodem igitur modo <lb/> de Solis radijs exi&longs;timare debemus: qui quamuis per angulo&longs;a foramina in­<lb/> trent, tamen, &longs;i in remoto obiecto recipiantur, figuram circularem &longs;ortien­<lb/> tur: quod &longs;i non &longs;atis remoto plano occurrant, angulo&longs;am etiam figuram <lb/> pro foraminis qualitate efficient: & quidem eo foramini &longs;imiliorem, quo ei <lb/> propior erit coni lumino&longs;i ba&longs;is. </s> <s id="s.003976">vel aliter etiam <expan abbr="re&longs;pond&etilde;dum">re&longs;pondendum</expan> e&longs;t, hoc mo­<lb/> do; figura Solis, quæ orbicularis e&longs;t, vndique lineis rectis, &longs;eu radijs, quos <lb/> emittit, circundata e&longs;t, qui radij cum intrent per foramina lineis <expan abbr="quoq;">quoque</expan> re­<lb/> ctis contenta, accidunt lateribus figuræ foraminis, & propterea cum rectæ <lb/> lineæ lineis rectis applicentur, deberent hi radij in figuram rectilineam con­<lb/> formari; quod & faciunt, vt patet in cratium fene&longs;tellis, vbi &longs;i radij po&longs;t in­<lb/> gre&longs;&longs;um &longs;tatim in plano quopiam recipiantur, figuram efficiunt fene&longs;tellæ &longs;i­<lb/> milem. </s> <s id="s.003977">quod &longs;i in plano, &longs;atis remoto, de&longs;inant, non amplius angulo&longs;am, <lb/> &longs;ed circularem illuminationem efficient. </s> <s id="s.003978">Cuius cau&longs;a e&longs;t, quia, vt initio di­<lb/> xi, eodem modo lumen, &longs;eu radij Solis producuntur, quo etiam radij vi­<lb/> &longs;uales, quod inde patere pote&longs;t, quia per&longs;pectiui eadem de <expan abbr="vtri&longs;q;">vtri&longs;que</expan> & &longs;uppo­<lb/> nunt, & o&longs;tendunt. </s> <s id="s.003979">quemadmodum igitur quando oculi no&longs;tri a&longs;pectus ad <lb/> figuram rectilineam, & angulo&longs;am, quæ propinqua &longs;it directus, eam angu­<lb/>lo&longs;am iudicat, vt re vera e&longs;t, quam deinde longè &longs;emotam oualem, aut cir­<lb/> cularem exi&longs;timat; propterea quod radij vi&longs;uales ad extremitates laterum <lb/> figuræ, &longs;iue angulos ip&longs;ius proten&longs;i euane&longs;cunt, quia imbecilli admodum <lb/> &longs;unt; &longs;unt autem imbecilli, quia, <expan abbr="cũ">cum</expan> tendant ad angulos, quæ minimæ partes <lb/> &longs;unt obiecti, & quidem longè &longs;emoti, fit, vt ij anguli &longs;ub angulo adeò paruo <lb/>ad oculum veniant, vt &longs;ub eo vi&longs;io fieri nequeat; idcircò cùm anguli cerni <lb/> nequeant, obiectum &longs;ub circulari figura apparebit. </s> <s id="s.003980">&longs;ed quantum lateris re­<lb/> cti vi&longs;i in turbine vi&longs;uali continetur, ac &longs;ub angulo vi&longs;ioni idoneo ad ocu­<lb/> lum defertur, id tantum in vi&longs;um agere pote&longs;t. </s> <s id="s.003981">Reliquum, quod e&longs;t in an­<pb pagenum="233" xlink:href="009/01/233.jpg"/>gulis ob dictam rationem non pote&longs;t, quia radij vi&longs;uales, vt dictum e&longs;t, in­<lb/> di&longs;creti &longs;unt, & confu&longs;i. </s> <s id="s.003982"><expan abbr="neq;">neque</expan> hoc mirum, cùm multa videre nullo pacto po&longs;­<lb/> &longs;imus, quamuis no&longs;tro attingantur a&longs;pectu, vt ea, quæ &longs;unt in tenebris, cui <lb/> &longs;imile accidit, cum quadratum à longè vi&longs;um videtur habere plurimos an­<lb/>gulos; atq; adeò ad rotunditatem, &longs;i remoueatur adhuc, accedere, vt etiam <lb/> circulus videatur. </s> <s id="s.003983">Cùm enim, vt &longs;upra dixi, a&longs;pectus in turbinis modum <lb/> procedat quoties figura con&longs;pecta vlterius &longs;epo&longs;ita e&longs;t, radij vi&longs;uales, qui ad <lb/> angulos tendant, quoniam & imbecilli, & pauci &longs;unt, ob dictam cau&longs;am rem <lb/> a&longs;&longs;equi nequeunt: qui autem in mediam partem concurrunt, hi per&longs;i&longs;tere <lb/>po&longs;&longs;unt, vtpotè, conferti, & validi: ergò cum figura propè e&longs;t, anguli <expan abbr="quoq;">quoque</expan> <lb/> a&longs;pici po&longs;&longs;unt, aucta di&longs;tantia non po&longs;&longs;unt. </s> <s id="s.003984">hac etiam de cau&longs;a linea circu­<lb/> laris valdè di&longs;tans, & in &longs;itu, quo conuexum ad oculum rectà vergat: & in <lb/> Luna die octauo, quando dimidia e&longs;t linea illa, quæ illuminatam partem à <lb/> non illuminata diuidit, recta videtur, quamuis circularis &longs;it, e&longs;t enim in <lb/> &longs;phærico corpore de&longs;ignata. </s> <s id="s.003985">quando enim circunferentia propè e&longs;t, vi&longs;us <lb/> di&longs;cernere valet quanto pars altera, parte altera, &longs;it propior; vnde rotun­<lb/> ditas apparet: at cùm procul abe&longs;t rectè &longs;entire nequit, &longs;ed æqualem par­<lb/> tium &longs;itum cernere &longs;ibi videtur, <expan abbr="eam&qacute;">eamque</expan>; propterea rectam iudicat. </s> <s id="s.003986">hæc igi­<lb/> tur, quæ accidere vi&longs;ui certum e&longs;t, eadem &longs;imiliter radijs Solis conuenire <lb/> par e&longs;t credere. </s> <s id="s.003987">ex quibus iam patere pote&longs;t, cur lumen Solis per quadrila­<lb/> teras figuras profluens illuminationem rotundam reddat.</s> </p> <p type="head"> <s id="s.003988"><emph type="italics"/>De Lucis Figuratione.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.003989"><expan abbr="Atq;">Atque</expan> hæc e&longs;t &longs;olutio admirandi huius effectus ab Ari&longs;t. allata, quæ <lb/> quoniam non paucas habet difficultates, aliam ex Maurolyco de­<lb/> &longs;umptam, quæ &longs;atis demon&longs;tratiua e&longs;t, afferam.</s> </p> <p type="main"> <s id="s.003990">Primò igitur illud Per&longs;pectiuus principium &longs;tatuendum e&longs;t, ex <lb/> quolibet corporis lucidi puncto, ad quodlibet medij punctum, lumen rectis <lb/> lineis quoquouer&longs;us emicare, ita vt lumen à quouis puncto lucidi, tanquam <lb/> à centro <expan abbr="circumquaq;">circumquaque</expan> effu&longs;um in modum &longs;phæræ diffundatur.</s> </p> <p type="main"> <s id="s.003991">Secundò, quò magis duorum vicinorum circulorum peripheriæ augen­<lb/> tur, eò magis ad vnius circuli &longs;imilitudinem accedere; vt in hac figura cer­<lb/> <figure id="id.009.01.233.1.jpg" place="text" xlink:href="009/01/233/1.jpg"/><lb/> nere licet, vbi &longs;unt primò duo parui <lb/> circuli circa centra A, & B, de&longs;cripti, <lb/> quorum circunferentiæ cre&longs;cant <expan abbr="v&longs;q;">v&longs;que</expan> <lb/> ad circunferentias C D, & E F, quo in­<lb/> cremento po&longs;ito, &longs;tatim vel ad &longs;en&longs;um <lb/> manife&longs;tum e&longs;t, has duas maiores pe­<lb/>ripherias, magis referre vnius circuli <lb/> &longs;imilitudinem, quàm referant duo pa­<lb/> rui circelli. </s> <s id="s.003992">quod &longs;i e&longs;&longs;ent tres circelli, <lb/> qui augerentur, magis adhuc vnicum <lb/> circulum imitarentur; <expan abbr="&longs;ic&qacute;">&longs;icque</expan>; deinceps, <lb/>quò plures eò perfectius: & quò magis <pb pagenum="234" xlink:href="009/01/234.jpg"/>etiam augentur eò perfectius. </s> <s id="s.003993"><expan abbr="propterea&qacute;">proptereaque</expan>; poterunt aliquando exactè cir­<lb/> culum quò ad &longs;en&longs;um imitari. </s> <s id="s.003994">quod de circulis dictum e&longs;t, intelligi etiam de­<lb/> bet de omnibus alijs figuris eiu&longs;dem &longs;peciei, vt de duabus ellip&longs;ibus, aut <lb/> de duobus triangulis, &c.</s> </p> <p type="main"> <s id="s.003995">Tertiò, lumen Solis per foramen tam <expan abbr="exiguũ">exiguum</expan>, quod &longs;it in&longs;tar puncti tran&longs;­<lb/> mi&longs;&longs;um, <expan abbr="figurã">figuram</expan> Solis rotundam videlicet, quamuis conuer&longs;am referre; quod <lb/> <figure id="id.009.01.234.1.jpg" place="text" xlink:href="009/01/234/1.jpg"/><lb/> hac de&longs;criptione patefiet. </s> <s id="s.003996">&longs;it Sol vbi A B, fora­<lb/> men in&longs;tar puncti vbi E. illuminatio, in planum <lb/> radio Solis perpendiculariter obiectum, &longs;it C I D. <lb/> aio eam e&longs;&longs;e in&longs;tar Solis rotundam, inuer&longs;am ta­<lb/> men. </s> <s id="s.003997">nam &longs;i ab omnibus punctis &longs;olaris periphe­<lb/> riæ radij per vnicum punctum E, rectà transfe­<lb/> rantur ad planum rectà obiectum, vbi C D, con­<lb/> flabunt duas conicas &longs;uperficies A E B, C E D, <lb/> ba&longs;es habentes circulos A B, C D, verticem verò <lb/> eundem E. <!-- KEEP S--></s> <s id="s.003998">Cùm igitur illuminatio C D, &longs;it ve­<lb/> luti &longs;ectio lumino&longs;i coni C E D, quæ perpendicu­<lb/> lariter eum &longs;ecat, ex Apollonij conicis circulus <lb/> erit, ac proinde Solis figuram imitabitur. </s> <s id="s.003999">erit <lb/> tamen inuer&longs;a, quia cum, vt dictum e&longs;t in prima <lb/> prænotatione, radij rectis lineis ferantur, pun­<lb/> ctum A, &longs;ini&longs;trum, repre&longs;entabitur in D, parte <lb/> dextra. </s> <s id="s.004000">B, verò dexterum apparebit in C, parte <lb/> &longs;ini&longs;tra, & H, in anteriore parte Solis, feretur in <lb/> I, punctum illuminationis po&longs;terius: <expan abbr="atq;">atque</expan> eodem <lb/> modo reliqua puncta in contrarias partes trans­<lb/> ferentur. </s> <s id="s.004001">Quod &longs;i planum terminans conum ra­<lb/> dio&longs;um non illi &longs;it perpendiculare, &longs;ed obliquum, <lb/> vti e&longs;t G F, &longs;ectionem faciet ellipticam ex eodem <lb/> Apollonio, <expan abbr="ideo&qacute;">ideoque</expan>; Solis il luminatio, quod pluri­<lb/> mùm accidit, oualis apparet. </s> <s id="s.004002">Quod dictum e&longs;t de Solis illuminatione, in­<lb/>telligi etiam debet de alijs quibu&longs;uis lucidis, vel coloratis luce perfu&longs;is, quæ <lb/>&longs;uas &longs;pecies emittunt, cuiu&longs;uis &longs;int figuræ, eodem enim modo o&longs;tendemus <lb/> eorum illuminationes, &longs;eu &longs;pecies debere figuram ip&longs;orum primitiuam re­<lb/> ferre, quamuis inuer&longs;am.</s> </p> <p type="main"> <s id="s.004003">Quartò, dico, Cau&longs;am huius apparentiæ primariam e&longs;&longs;e ip&longs;am Solis ro­<lb/>tunditatem, quæ per &longs;ingula foraminis cuiu&longs;uis puncta in oppo&longs;itum planum <lb/> &longs;e &longs;e transfundit. </s> <s id="s.004004">quod enim nuper de vnico puncto o&longs;ten&longs;um e&longs;t, idem intel­<lb/> ligendum e&longs;t de &longs;ingulis foraminis punctis, per &longs;ingula enim puncta &longs;ingulæ <lb/> illuminationes rotundæ in aduer&longs;um planum tran&longs;mittuntur, quæ quò lon­<lb/> gius à foramine proce&longs;&longs;erint, cò perfectiorem rotunditatem a&longs;&longs;equentur, ob <lb/> eam cau&longs;am, quàm in &longs;ecunda prænotatione innuimus. </s> <s id="s.004005">quæ vt explicatius <lb/> tractentur, neuè in hac Solis luce cæcutiamus, linearem demon&longs;trationem <lb/> afferemus. </s> <s id="s.004006">&longs;it &longs;olare corpus A B, foramen verò <expan abbr="quali&longs;cunq;">quali&longs;cunque</expan> figuræ, veluti ri­<lb/> mula C D, per quam Solis &longs;plendor illap&longs;us oppo&longs;itum planum, in quo F E, <lb/> collu&longs;tret. </s> <s id="s.004007">iam ex infinitis punctis rimulæ C D, &longs;atis erit extrema duo C, D, <pb pagenum="235" xlink:href="009/01/235.jpg"/>con&longs;iderare. </s> <s id="s.004008">per punctum igitur D, ducantur radij A D E, B D K. per pun­<lb/> ctum verò C, ducantur alij A C H, B C F, qui cùm ab extremitatibus Solis <lb/> profluant, reliquos omnes radios intra &longs;e continebunt. </s> <s id="s.004009">ex tertia igitur pr&etail;­<lb/> notatione per punctum C, procedit rotunda illuminatio, cuius diameter <lb/> <figure id="id.009.01.235.1.jpg" place="text" xlink:href="009/01/235/1.jpg"/><lb/> F H, &longs;imiliter per punctum D, illuminatio <lb/> rotunda emanat, cuius diameter K E, & pa­<lb/> riter ex omnibus alijs rimulæ punctis ro­<lb/> tundi &longs;plendores in &longs;uperficiem, vbi F E, <lb/> tran&longs;mittuntur. </s> <s id="s.004010">Iam dicimus has duas illu­<lb/> minationes ex prænotatis &longs;ecundo loco, <lb/> quàm longius planum F E, à foramine de­<lb/> &longs;titerit, vt &longs;i e&longs;&longs;et in L M, ad vnius circuli <lb/> rotunditatem magis accedere, vt apparet <lb/> in plano L M, vbi maiores factæ &longs;unt illumi­<lb/> nationes, & ideò magis ad vnam circula­<lb/> rem accedunt. </s> <s id="s.004011"><expan abbr="manife&longs;tũ">manife&longs;tum</expan> eft enim, quò lon­<lb/> gius radij C F, C H, producti fuerint, eò <lb/> maiorem fore <expan abbr="diametrũ">diametrum</expan> illuminationis F H. <lb/> euadet enim L O, & &longs;imiliter ex productio­<lb/> ne radiorum D K, D E, diameter alterius <lb/> illuminationis K E, augebitur, & fiet N M. <lb/> & con&longs;equenter duæ ip&longs;arum peripheriæ &longs;i­<lb/> mul maiores fient, ac proinde ad vnius cir­<lb/> culi &longs;imilitudinem ex <expan abbr="&longs;ecũda">&longs;ecunda</expan> notatione per­<lb/> uenient. </s> <s id="s.004012">& quamuis ex radiorum produ­<lb/> ctione augeantur non &longs;olum prædictæ dia­<lb/> metri illuminationum, &longs;ed etiam earum <lb/> differentiæ F K, & H E; hæ tamen differen­<lb/> tiæ re&longs;pectu illorum nihil, quod &longs;en&longs;ibile &longs;it <lb/> augentur; quod inde oritur, quia angulus F C H, maior e&longs;t angulo F B K, <lb/> per 16. primi Elem. & ideò crura F C, H C, magis dilatata &longs;unt quàm cru­<lb/> ra F B, K B, & ideò &longs;i producantur, multò magis cre&longs;cit F H, dum euadit <lb/> M N, quàm F K, dum euadit M O. eodem modo magis cre&longs;cit K E, dum fit <lb/> O L, quàm H E, dum fit K L. quare ex &longs;ecunda notatione earum periphe­<lb/> riæ ad vnius orbis figuram tandem concurrere videbuntur. </s> <s id="s.004013">multò autem <lb/> euidentius ad rotunditatem accederent, &longs;i tertia illuminatio per tertium <lb/> aliquod punctum tran&longs;iens, &longs;ic perueniret; & quo plures, eò etiam perfectius, <lb/> omnes enim rotundæ e&longs;&longs;ent, & ex radiorum proce&longs;&longs;u augerentur, atque ad <lb/> vnius orbis formam &longs;e &longs;e reciperent.</s> </p> <p type="main"> <s id="s.004014">Hæ porrò, quæ Geometricè comprobata &longs;unt, libet etiam iucunda qua­<lb/> dam experientia confirmare; fiant igitur in fene&longs;tra quapiam duo, vel tria <lb/> parua admodum foramina, inuicem proxima, per quæ totidem illumina­<lb/> tiones ad obiectam chartam transferantur, hæ admota foramini charta <lb/> paruæ, ac &longs;ibi mutuò parum incumbentes apparebunt, & proinde vnicum <lb/> circulum non præ&longs;eferent; quò autem longius charta remouebitur, eò ma­<lb/> iores fient, ac &longs;ibi mutuò magis incumbentes, ac idcircò in vnum ferè cir­ <pb pagenum="236" xlink:href="009/01/236.jpg"/>culum coale&longs;cent. </s> <s id="s.004015">nunquam tamen ad geometricam rotunditatem perue­<lb/> nient, quamuis illam &longs;en&longs;ui obijciant.</s> </p> <p type="main"> <s id="s.004016">Aliter Ioannes Keplerus totam hanc demon&longs;trationem in&longs;tituit, quem tu <lb/> in &longs;uis ad Vitellionem Paralipom. <!-- REMOVE S-->con&longs;ule. </s> <s id="s.004017">eius tantum experientiam non <lb/> iniucundam, qua i&longs;tud probat, non grauabor referre. </s> <s id="s.004018">cap. igitur &longs;ecundo <lb/> de Figuratione lucis hæc habet: librum in &longs;ublimi locaui, qui e&longs;&longs;et loco lu­<lb/> centis corporis, hunc inter & pauimentum figebatur tabella foramine mul­<lb/>tangulo. </s> <s id="s.004019">filum deinde ex vno libri angulo per foramen in pauimentum de­<lb/> mi&longs;&longs;um, ita incidebat in pauimento, vt terminos foraminis raderet, cuius <lb/> ve&longs;tigia creta imitabar; qua ratione creabatur figura in pauimento &longs;imilis <lb/> foramini. </s> <s id="s.004020">Idem accidebat, annexo filo ex altero, tertio, quarto libri angu­<lb/> lo, <expan abbr="adeo&qacute;">adeoque</expan>; ex infinitis marginum punctis. </s> <s id="s.004021"><expan abbr="Itaq;">Itaque</expan> infinitarum in pauimento <lb/> figurarum foraminis exilium &longs;eries adumbrabat magnam, & quadrangulam <lb/> libri figuram. </s> <s id="s.004022">hic primus e&longs;t in hoc labore &longs;ucce&longs;&longs;us. </s> <s id="s.004023">hæc ille; ex quibus po­<lb/> &longs;tea &longs;uam demon&longs;trationem adornauit. </s> <s id="s.004024">His igitur per&longs;picuè demon&longs;tratis <lb/> facilè erit nonnulla corollaria inde contexere.</s> </p> <p type="main"> <s id="s.004025">Primum, &longs;i ad planum F E, radius perpendiculariter incidat, illuminatio <lb/> erit circulus, &longs;i verò obliquè ellip&longs;is, vt in tertio loco vidimus. </s> <s id="s.004026">cùm igitur <lb/> pauimentis, ac parietibus hæ illuminationes, vt plurimum obliquè acci­<lb/> dant, ideò ferè &longs;emper ouales apparent.</s> </p> <p type="main"> <s id="s.004027">Secundum, quod quidem magni momenti e&longs;t, e&longs;t enim, vti &longs;cientiam de­<lb/> cet, vniuer&longs;ale, quod enim o&longs;ten&longs;um e&longs;t de Sole, eodem modo o&longs;tendi pote&longs;t <lb/> de quouis lucido, & de quouis corpore illuminato &longs;uam &longs;peciem diffunden­<lb/> te. </s> <s id="s.004028">&longs;imili enim modo demon&longs;trare po&longs;&longs;umus cur Sol eclyp&longs;im patiens, illu­<lb/> minationem pariter eclyp&longs;atam efficiat, & inuer&longs;am. </s> <s id="s.004029">eadem e&longs;t ratio de <lb/> Lunæ illuminationibus.</s> </p> <p type="main"> <s id="s.004030">Tertium, & quidem &longs;citu digni&longs;&longs;imum <expan abbr="quodq;">quodque</expan> hactenus doctorum viro­<lb/> rum ingenia latuit, rationem reddere hinc po&longs;&longs;umus, cur &longs;i fene&longs;tris omni­<lb/> bus ob&longs;eratis, conclaue ob&longs;curum reddatur, tenui tantùm relicto forami­<lb/> ne, per quod externo lumini aditus patent, formæ externarum rerum pro­<lb/> priæ, quamuis inuer&longs;æ, in oppo&longs;ito plano, appareant. </s> <s id="s.004031">eadem &longs;cilicet de cau­<lb/> &longs;a, qua & Solis imago propria, <expan abbr="quoniã">quoniam</expan> videlicet per &longs;ingula foraminis pun­<lb/> cta, vt tertio loco patuit, <expan abbr="vnaquæq;">vnaquæque</expan> res, &longs;eu lucida, &longs;eu illuminata tantùm <lb/> &longs;it, per &longs;ingula foraminis puncta, &longs;ingulas proprias emittit imagines, quæ <lb/> omnes po&longs;tea in vnam ex iu&longs;ta di&longs;tantia coale&longs;cunt. </s> <s id="s.004032"><expan abbr="atq;">atque</expan> eadem ratione in­<lb/>uertuntur. </s> <s id="s.004033">ob quam etiam rationem &longs;olares maculæ in Solis &longs;plendoribus, <lb/> non eodem &longs;itu quem in Solis di&longs;co obtinent, &longs;ed inuer&longs;o &longs;pectantur. </s> <s id="s.004034">atque <lb/> hæc pro in&longs;tituto dicta &longs;ufficiant.</s> </p> <p type="main"> <s id="s.004035"><arrow.to.target n="marg338"/></s> </p> <p type="margin"> <s id="s.004036"><margin.target id="marg338"/>346</s> </p> <p type="main"> <s id="s.004037">In 6. Problema. </s> <s id="s.004038">quoniam vulgata interpretatio videtur mendo&longs;a, cum in <lb/> multis textui græco non con&longs;entiat, eam &longs;ic emendatam accipe <emph type="italics"/>(Cur Lunæ <lb/> &longs;phærica exi&longs;tente, rectam cum &longs;emiplena e&longs;t, cernimus? </s> <s id="s.004039">An quoniam eodem in <lb/> plano a&longs;pectus noster ver&longs;atur, vt circuli ambitus, quem Lunæ Solingruens facit, <lb/>quod cùm accidit, Sol recta linea videtur; cum enim quid &longs;uum a&longs;pectum &longs;phæræ <lb/> admouerit, orbem videre nece&longs;&longs;e &longs;it; Luna autem &longs;phærica &longs;it, eamqué Sol a&longs;piciat; <lb/>orbis profectò id e&longs;&longs;e debet, quod à Sole efficitur. </s> <s id="s.004040">Hic ergò cum è regione &longs;e nobis <lb/> præbet, totus videtur, & &longs;ic plenilunium apparet, cùm autem mutatur propter<emph.end type="italics"/> <pb pagenum="237" xlink:href="009/01/237.jpg"/><emph type="italics"/>Solis di&longs;ce&longs;&longs;um peripheria eius a&longs;pici pote&longs;t, ita vt recta appareat. </s> <s id="s.004041">altera verò pars <lb/> circularis, quoniam ex aduersò no&longs;tri a&longs;pectus hemi&longs;phærium e&longs;t; talis verò appa­<lb/>ret &longs;emicirculus. </s> <s id="s.004042">&longs;emper enim Luna a&longs;pectui nostro oppo&longs;ita e&longs;t, &longs;ed quando Sol in­<lb/> cubuerit, non videtur, & repletur post diem octauum &longs;ecundum dimidium; quo­<lb/>niam paulatim Sol euadens, orbem nobis facit inclinatiorem; ita verò circulus ad <lb/> oculum no&longs;trum di&longs;po&longs;itus, &longs;imilis videtur &longs;ectioni conicæ. </s> <s id="s.004043">lunaris verò apparet <lb/> iam Sole amoto; cùm enim ad extrema puncta peruenerit, iuxta quæ dimidiata <lb/> apparet, circulus fit Solis, & Solis circunferentia videtur; non enim amplius in <lb/> directum vi&longs;ui iacet, &longs;ed præterit. </s> <s id="s.004044">quo facto, & per eadem puncta ducto circulo, ne­<lb/> ce&longs;&longs;e e&longs;t lunularem apparere: pars enim aliqua circuli &longs;tatim a&longs;pectui patet, priori è <lb/> contra exi&longs;tente, ita vt de &longs;plendido re&longs;ecetur. </s> <s id="s.004045">tum etiam extrema <expan abbr="man&etilde;t">manent</expan> in eodem, <lb/> vt oporteat lunularem apparere magis, & minus, &longs;ecundum Solis motum. </s> <s id="s.004046">per­<lb/> moto enim Sole, & circulus, &longs;ecundum quem con&longs;picitur, reuertitur ad eadem <lb/> puncta. </s> <s id="s.004047">&longs;ecundum enim infinitas inclinationes accidit inclinari: &longs;i quidem maxi­<lb/> mi circuli per eadem puncta duci po&longs;&longs;unt infiniti)<emph.end type="italics"/> Vt rectè textum hunc intel­<lb/> ligas, lege prius, quæ de Lunæ illuminatione lib. 1. Po&longs;t. <!-- REMOVE S-->tex. <!-- REMOVE S-->30. dicta &longs;unt. <lb/> </s> <s id="s.004048">& ante omnia experire in pila aliqua lumini lucernæ, aut candelæ obiecta, <lb/> & circumlata, omnes illius &longs;pheræ illuminationes, vt ibi docui. </s> <s id="s.004049">videbis enim <lb/> qua ratione linea illa, quæ confinium e&longs;t partis illuminatæ, & partis ob&longs;cu­<lb/> ræ, aliquando videatur lunularis, aliquando oualis, aliquando recta linea, <lb/> quorum rationem Ari&longs;t. in præ&longs;enti problemate inquirit. </s> <s id="s.004050">lege præterea, &longs;i <lb/> plenam huius rei cognitionem de&longs;ideras, propo&longs;it. </s> <s id="s.004051">74. 75. 76. 77. libri 4. <lb/>Vitellionis, vbi hæc omnia exactè, & non leui brachio, vt hic fit ab Ari&longs;tot. <lb/> <!-- REMOVE S-->demon&longs;trantur. </s> <s id="s.004052">Interim tamen huius loci explicationem hanc accipe. </s> <s id="s.004053">Cur <lb/> cùm Luna &longs;emiplena e&longs;t, linea illa, quæ terminus e&longs;t partis illuminatæ, & <lb/> partis ob&longs;curæ, <expan abbr="quæ&qacute;">quæque</expan>; Lunam bifariam diuidit, videtur linea recta, cùm ta­<lb/> men non &longs;it; cùm enim fit in globo&longs;a &longs;uperficie Lunæ, nece&longs;&longs;ariò circularis <lb/> <figure id="id.009.01.237.1.jpg" place="text" xlink:href="009/01/237/1.jpg"/><lb/> e&longs;t? </s> <s id="s.004054">vt autem rem hanc melius intelli­<lb/> gamus, præ&longs;ens figura illuminationis <lb/> Lunæ in&longs;picienda e&longs;t: vbi oculus no&longs;ter <lb/> e&longs;t in centro mundi A; vnde varias Lu­<lb/> næ illuminationes a&longs;picit: è quibus <lb/> octo tantum, in figura &longs;unt depictæ: in <lb/> quibus videre e&longs;t Lunæ &longs;emper dimi­<lb/> dium illud, &longs;iue hemi&longs;phærium, quod <lb/> Solem a&longs;picit, e&longs;&longs;e illuminatum, cuius <lb/> terminus, &longs;iue ba&longs;is e&longs;t linea K L, <expan abbr="e&longs;t&qacute;">e&longs;tque</expan>; <lb/>confinium illu&longs;tratæ partis, & opacæ. <lb/> </s> <s id="s.004055">quæ linea &longs;emper in Luna e&longs;t circula­<lb/> ris, cum &longs;it in &longs;ph&etail;rico corpore: quan­<lb/> do tamen Luna videtur &longs;emiplena, vt <lb/> <expan abbr="quãdo">quando</expan> e&longs;t in D, vel in K. hæc linea K L, <lb/> videtur recta. </s> <s id="s.004056">ratio huius e&longs;t, quia exi­<lb/> &longs;tente Luna &longs;emiplena, circulus K D L, <lb/> qui e&longs;t ba&longs;is illuminationis &longs;olaris, e&longs;t in eodem plano cum oculo A, &longs;iue in <lb/>eadem rectitudine, vt apparet in figura, vbi, fi linea K D L, &longs;umatur loco <pb pagenum="238" xlink:href="009/01/238.jpg"/>diametri prædicti circuli, & produci intelligatur ver&longs;us oculum A, per ip­<lb/>&longs;um tran&longs;ilit; quo in &longs;itu, &longs;i circulus oculo &longs;ubijciatur, non planam ip&longs;ius <lb/> &longs;uperficiem, &longs;ed circunferentiam <expan abbr="tantũ">tantum</expan> a&longs;picit, <expan abbr="fit&qacute;">fitque</expan>; vt non lineam curuam, <lb/> &longs;ed rectam videre videatur, vt in præcedenti problemate diximus, & Per­<lb/> &longs;pectiui demon&longs;trant, & Vitellio lib. 4. propo&longs;it. </s> <s id="s.004057">5. & propo&longs;it. </s> <s id="s.004058">50.</s> </p> <p type="main"> <s id="s.004059">Quidquid porrò &longs;phæram a&longs;pexerit, nece&longs;&longs;ariò ita illam a&longs;picit, vt quod <lb/> de ip&longs;a videt, &longs;it orbiculare, cum ergò Sol Lunam a&longs;piciat, &longs;iue illuminet, <lb/> debet illuminatio illa e&longs;&longs;e orbicularis, hoc e&longs;t habere orbicularem ba&longs;im, vt <lb/> in figura patet, in qua Sol a&longs;piciens Lunam, quamuis in diuer&longs;is locis po&longs;i­<lb/> tam, eius tamen &longs;emper dimidium illu&longs;trat, cuius dimidij ba&longs;is e&longs;t circula­<lb/> ris, <expan abbr="repre&longs;entatur&qacute;">repre&longs;entaturque</expan>; in lineis K B L, K C L, K D L, & c&etail;teris &longs;imilibus, quan­<lb/> do igitur Luna e&longs;t in tali po&longs;itione, vt totus ille orbis illuminationis oculis <lb/> no&longs;tris in A, po&longs;itis obijciatur, totus vna cum tota illuminatione con&longs;pici­<lb/> tur, vt accidit, quando Luna e&longs;t in F. <expan abbr="tunc&qacute;">tuncque</expan>; e&longs;t oppo&longs;ita diametraliter So­<lb/> li, <expan abbr="e&longs;t&qacute;">e&longs;tque</expan>; Plenilunium. <!-- KEEP S--></s> <s id="s.004060">Cùm autem Luna vetus mutatur in nouam, receden­<lb/> do à Sole, vt quando tran&longs;it à B, in C, tunc <expan abbr="circũferentia">circunferentia</expan> K B L, prædicti or­<lb/> bis, quæ Luna in B, exi&longs;tente, videri non poterat, incipit videri quando fue­<lb/> rit in C. <expan abbr="cernitur&qacute;">cerniturque</expan>; pars illius illuminationis circa punctum L, quæ videtur <lb/> falcata; quæ pars recedente adhuc magis Luna à Sole, &longs;emper augetur, ide&longs;t <lb/> &longs;emper maior illuminationis pars cernitur: ita vt cùm fuerit in D, &longs;emiple­<lb/> na appareat, & linea K D L, quæ ibi orbicularis e&longs;t, oculo in A, videtur re­<lb/> ctà, ob cau&longs;am &longs;uperius dictam; tunc igitur lumen Lunæ ex vna parte vide­<lb/> tur terminari linea recta, ex altera circulari, ita vt figura luminis &longs;it &longs;emi­<lb/> circulus. </s> <s id="s.004061">Porrò Luna &longs;emper ex &longs;e oculis no&longs;tris opponitur, quamuis non <lb/> &longs;emper cernatur, vt accidit in Nouilunio, quando &longs;cilicet Luna e&longs;t infra <lb/>Solem in B, quia cum Sol &longs;it &longs;upra ip&longs;am, illuminat hemi&longs;phærium eius &longs;u­<lb/> perius, quod oculo in A, e&longs;t auer&longs;um; & ideò videri nequit; po&longs;tea paula­<lb/> tim recidendo à Sole, incipit hemi&longs;phærium illu&longs;tratum ad oculum A, ver­<lb/> gere, & ideo con&longs;pici, <expan abbr="&longs;ic&qacute;">&longs;icque</expan>; primo apparet lunularis, &longs;eu falcata, deinde mi­<lb/> nus, ac minus falcata, quia linea interior falcis minus curuatur, & &longs;ectio­<lb/> nem conicam, quam oualem dicunt, refert: deinde magis ad rectitudinem <lb/> accedit, ita vt circa octauum diem, &longs;eu circa primum Lunæ quadrantem, <lb/>linea illa videatur recta, Luna autem dixotomos, &longs;eu dimidiata; vbi enim <lb/> circunferentia illuminationis Solis, ad puncta deuenit vltima, per quæ Lu­<lb/> na bifariam diuiditur, apparet tantum oculo circunferentia illius, & nullo <lb/> modo ip&longs;um circuli planum, qui ba&longs;is e&longs;t: &longs;ed, vt &longs;upra etiam dictum e&longs;t, <lb/> planum eius productum &longs;ecaret oculum in A, exi&longs;tentem, & &longs;tatim ab hoc <lb/> &longs;itu mutatur, & præterit, quod cùm fit, nece&longs;&longs;e e&longs;t, vt prædictus circulus per <lb/>&longs;umma puncta K L, de&longs;ignatus, non amplius recta linea, &longs;ed curua, & lunu­<lb/> laris appareat, quia aliquo modo planum prædicti circuli ad oculos incli­<lb/> natur, priori tamen circunferentia ex aduersò oculorum, vt dictum e&longs;t, exi­<lb/> &longs;tente, <expan abbr="atq;">atque</expan> hoc modo ex inclinatione ba&longs;is ad oculum aliquid lucis amplius <lb/> re&longs;ecatur, ide&longs;t ab oculo cernitur. </s> <s id="s.004062">tum etiam extrema huius circunferentiæ <lb/>in codem per&longs;i&longs;tunt, ide&longs;t in ei&longs;dem punctis, & propterea linea illa magis, <lb/>& minus incuruatur pro Solis remotione; ita vt tandem reuertatur ad ea­<lb/> dem puncta. </s> <s id="s.004063">fieri enim pote&longs;t, vt infinitas inclinationes &longs;u&longs;cipiat, &longs;i quidem <pb pagenum="239" xlink:href="009/01/239.jpg"/>per eadem duo extrema puncta K, L, duci po&longs;&longs;unt infiniti circuli maximi. <lb/> </s> <s id="s.004064"><expan abbr="Atq;">Atque</expan> hæc e&longs;t Ari&longs;totelis &longs;ententia, non &longs;ine ingrata tautologia, tandem <expan abbr="vt-cunq;">vt­<lb/> cunque</expan> expre&longs;&longs;a.</s> </p> <p type="main"> <s id="s.004065"><arrow.to.target n="marg339"/></s> </p> <p type="margin"> <s id="s.004066"><margin.target id="marg339"/>347</s> </p> <p type="main"> <s id="s.004067">In 7. problema <emph type="italics"/>(Cur Sol, & Luna plana e&longs;&longs;e videntur, cùm tamen &longs;phærica <lb/> &longs;int? </s> <s id="s.004068">An, vt ea omnia, quorum quodnam plus, minu&longs;uè, di&longs;tet, incertum &longs;it, æquè <lb/> po&longs;ita e&longs;&longs;e videntur? </s> <s id="s.004069">&longs;ic etiam res, quamuis vna, cùm plures tamen habeat partes, <lb/> ni&longs;i varius color ad&longs;it, partes illæ omnes, ex æquo collocatas videri nece&longs;&longs;e e&longs;t: quod <lb/> autem ex æquo videtur, nece&longs;&longs;arium etiam e&longs;t æquabile, ac planum apparere)<emph.end type="italics"/><lb/> Quæ&longs;tionem hanc demon&longs;tratiuè pertractat Vitellio lib. 4. propo&longs;it. </s> <s id="s.004070">65. Eu­<lb/> clides etiam theor. </s> <s id="s.004071">25. optices. </s> <s id="s.004072">cæterùm textus &longs;atis clarus videtur: vbi au­<lb/> tem ait <emph type="italics"/>(ni&longs;i varius color ad&longs;it)<emph.end type="italics"/> hoc ait, quia nonnulli colores &longs;unt, qui fa­<lb/> ciunt, vt obiecta appareant prominentiora, & proinde propinquiora; ta­<lb/> les &longs;unt colores, qui præ cæteris Iucidiores &longs;unt: alij verò &longs;unt, qui obiecta <lb/> deprimunt, & proinde remouent; cuiu&longs;modi &longs;unt colores omnes tenebri­<lb/> co&longs;i. </s> <s id="s.004073">po&longs;ito igitur in re vi&longs;a eodem colore, partes illius ob magnam di&longs;tan­<lb/> tiam <expan abbr="vid&etilde;tur">videntur</expan> æqualiter à vi&longs;u di&longs;tare, & ideo res plana apparet. </s> <s id="s.004074">quia, quam­<lb/> uis di&longs;tantiæ illæ partium ab oculo ab inuicem differant, tamen parum dif­<lb/> ferunt, idcircò eas &longs;en&longs;us iudicat æquales, <expan abbr="&longs;ic&qacute;">&longs;icque</expan>; æqualiter iudicamus di&longs;tare <lb/> partes remoti&longs;&longs;imæ &longs;phæræ, quamuis pars illa, cui linea vi&longs;ualis perpendi­<lb/> culariter accidit, &longs;it propinquior; &longs;iue illa, quæ e&longs;t in medio hemiphærij vi&longs;i: <lb/> partes autem, quæ &longs;unt circa ba&longs;im dicti hemi&longs;phærij &longs;int remotiores. </s> <s id="s.004075">reli­<lb/> qua ex &longs;e manife&longs;ta &longs;unt.</s> </p> <p type="main"> <s id="s.004076"><arrow.to.target n="marg340"/></s> </p> <p type="margin"> <s id="s.004077"><margin.target id="marg340"/>348</s> </p> <p type="main"> <s id="s.004078">In 8. problema <emph type="italics"/>(Cur Sol oriens, <expan abbr="etq;">etque</expan> occidens vmbras efficit longas; efferens <lb/> &longs;e, minores: obtinens cœli medium minimas? </s> <s id="s.004079">An quod oriens primo vmbram ter­<lb/> ræ æquidi&longs;tantem reddit, ac infinitam p&etail;nè protrahit, deinde longam, & po&longs;tea mi­<lb/> norem &longs;ubinde? </s> <s id="s.004080">quia linea recta, quæ de &longs;uperiori puncto elicitur, interius cadit.<emph.end type="italics"/><lb/> <figure id="id.009.01.239.1.jpg" place="text" xlink:href="009/01/239/1.jpg"/><lb/> <emph type="italics"/>&longs;it Gnomon A B. Sol, vbi C, & vbi D. <lb/> radius igitur ex C, prefici&longs;cens, e&longs;t C F, <lb/>& exterius procedit, quàm radius D E. <lb/> e&longs;t autem vmbra B E, Sole &longs;ublimiori <lb/> exi&longs;tente: vmbra verò B F, Sole humi­<lb/> liori. </s> <s id="s.004081">ergò quò Sol altior fuerit, eò mi­<lb/> nor vmbra erit, minimaqué tunc erit, cum <lb/> Sol &longs;uper caput no&longs;trum ver&longs;abitur)<emph.end type="italics"/><lb/> Problema præ&longs;ens e&longs;t idem <expan abbr="cũ">cum</expan> quar­<lb/> to huius &longs;ectionis: eadem igitur ex­<lb/> po&longs;itio <expan abbr="vtriq;">vtrique</expan> in&longs;eruiat. </s> <s id="s.004082">hoc &longs;olum addendum e&longs;t, Gnomonem apud græcos <lb/> inter cætera &longs;ignificare &longs;tylum &longs;olaris horologij: in quo &longs;en&longs;u hoc loco po­<lb/> nitur. </s> <s id="s.004083">&longs;ignificat præterea amu&longs;&longs;im, &longs;eu normam, quæ nihil aliud e&longs;t, quam <lb/> quidam angulus rectus materialis: & quoniam &longs;tylus horologij figitur ad <lb/> angulos rectos in plano horizontali, propterea ip&longs;e <expan abbr="quoq;">quoque</expan> Gnomon appel­<lb/> latus e&longs;t: imò <expan abbr="pleriq;">plerique</expan> amu&longs;&longs;im quandam horologijs præ&longs;ertim viatorijs, lo­<lb/> co &longs;tyli accommodant.</s> </p> <p type="main"> <s id="s.004084"><arrow.to.target n="marg341"/></s> </p> <p type="margin"> <s id="s.004085"><margin.target id="marg341"/>349</s> </p> <p type="main"> <s id="s.004086">In 9. <emph type="italics"/>(Cur vmbræ Lunæ maiores, quam Solis &longs;unt cùm eodem proueniant per­<lb/> pendiculo? </s> <s id="s.004087">An quod Sol &longs;uperior, quam Luna e&longs;t? </s> <s id="s.004088"><expan abbr="itaq;">itaque</expan> nece&longs;&longs;e e&longs;t radium à &longs;upe­<lb/> riore procedentem intus cadere. </s> <s id="s.004089">&longs;it Gnomon A D, Luna B Sol C, Lunæ radius B F.<emph.end type="italics"/> <pb pagenum="240" xlink:href="009/01/240.jpg"/><figure id="id.009.01.240.1.jpg" place="text" xlink:href="009/01/240/1.jpg"/><lb/> <emph type="italics"/>ergò vmbra Lunæ D F, Solis radius <lb/> C E; vmbra igitur nece&longs;&longs;ariò minor <lb/> e&longs;t, e&longs;t enim D E.)<emph.end type="italics"/> de hac re vide <lb/> Spheram P. Clauij, cap. de Ordine <lb/> cœlorum, vnde huius textus expo­<lb/> &longs;itionem in hunc modum licebit af­<lb/> ferre. </s> <s id="s.004090">Quando igitur Ari&longs;t. quærit, <lb/> cur Luna maiores proijciat vm­<lb/> bras, qua Sol, debet &longs;upponere So­<lb/> lem, & Lunam e&longs;&longs;e in eadem altitu­<lb/> dine &longs;upra horizontem, v. <!-- REMOVE S-->g. <!-- REMOVE S-->e&longs;&longs;e <expan abbr="vtrunq;">vtrunque</expan> in eadem linea recta C D, ducta à <lb/> centro mundi ad Solem; &longs;ic enim habebunt eandem ambo eleuationem &longs;u­<lb/> pra horizontem G H, vt factum e&longs;t in figura: aliter Sol etiam faciet vmbras <lb/> Lunæ vmbris modo longiores, modo breuiores. </s> <s id="s.004091">cur igitur, inquit, exi&longs;tente <lb/> <expan abbr="vtroq;">vtroque</expan> in eadem altitudine, &longs;iue in eadem recta C D. vmbræ lunares factæ à <lb/> Gnomone D A, &longs;unt vmbris &longs;olaribus longiores?</s> </p> <p type="main"> <s id="s.004092">Re&longs;pondet id fortè accidere, quia Sol multò remotior &longs;it à centro mun­<lb/> di D, quàm Luna. <!-- KEEP S--></s> <s id="s.004093">vnde quamuis æquè &longs;upra horizontem &longs;int eleuata, cum <lb/> ambo &longs;int in linea C D. tamen propter Lunæ propinquitatem ad centrum <lb/> mundi, fit vt magnitudo &longs;tyli D A, re&longs;pectu Lunæ &longs;it valdè &longs;en&longs;ibilis, quæ ta­<lb/> men collata <expan abbr="cũ">cum</expan> Sole à terra remoti&longs;&longs;imo nullius euadit &longs;en&longs;ibilitatis; <expan abbr="idem&qacute;">idemque</expan>; <lb/> e&longs;t punctum D, ac punctum A. ex quo fit, vt radius Lunæ B F, cadat extra <lb/> radium Solis C E: <expan abbr="hinc&qacute;">hincque</expan>; rur&longs;us nece&longs;&longs;e e&longs;t vmbram Solis D E, minorem e&longs;­<lb/> &longs;e vmbra Lunæ D F. <!-- KEEP S--></s> <s id="s.004094">Quod &longs;i concipiamus Lunam magis à terris di&longs;tantem, <lb/> <expan abbr="Soli&qacute;">Solique</expan>; propinquiorem, vt in puncto R, tunc amborum radij &longs;imul ferè co­<lb/> incident: <expan abbr="&longs;ic&qacute;">&longs;icque</expan>; æquales ferè vmbræ <expan abbr="vtriu&longs;q;">vtriu&longs;que</expan> erunt.</s> </p> <p type="main"> <s id="s.004095">Huius rei facilè experientiam facere poteris, &longs;i per quadrantem Solis al­<lb/> titudine notata, &longs;imul etiam ip&longs;ius vmbram ex quopiam magno Gnomone <lb/> proiectam ob&longs;eruaueris: deinde eadem Lunæ &longs;plendentis altitudine per cal­<lb/> culum ob&longs;eruata vmbram lunarem eiu&longs;dem Gnomonis cum vmbra &longs;olari <lb/> contuleris: inuenies enim lunarem &longs;olari longiorem.</s> </p> <p type="main"> <s id="s.004096"><arrow.to.target n="marg342"/></s> </p> <p type="margin"> <s id="s.004097"><margin.target id="marg342"/>350</s> </p> <p type="main"> <s id="s.004098">In 10. problem. <emph type="italics"/>(Propter quid in Solis eclyp&longs;ibus, &longs;i quis &longs;pectet per cribrum, <lb/>aut per folium, veluti platani, vel alterius latifolij, vel per digitos altera manu <lb/> &longs;uper alteram coniungens &longs;plendores, qui in terra fiunt &longs;unt lunulæ? </s> <s id="s.004099">An quod &longs;icu­<lb/>ti lux per foramen angulo&longs;um &longs;plendens, turbo, & conus fit: cau&longs;a verò, quia duo <lb/> efficiuntur coni, vnus à Sole ad foramen, & alter hinc ad terram, qui &longs;imul <expan abbr="hab&etilde;t">habent</expan> <lb/> vertices. </s> <s id="s.004100">quando igitur &longs;ic &longs;e habet; & &longs;uperiori parte circulari detrahitur, erunt <lb/> è contrariò lucis lunulæ in terra; ex peripheria enim lunulari procedunt radij. </s> <s id="s.004101">quæ <lb/> autem in digitis, aut cribris, veluti foramina fiunt, manife&longs;tius id faciunt, quàm <lb/> magna foramina. </s> <s id="s.004102">A Luna autem hoc non fit, <expan abbr="neq;">neque</expan> ip&longs;a deficiente, <expan abbr="neq;">neque</expan> cre&longs;cente, <lb/> <expan abbr="neq;">neque</expan> decre&longs;cente, quia &longs;plendores extremitatum eius non &longs;unt manife&longs;ti, & certi. <lb/> </s> <s id="s.004103">&longs;ed in medio poti&longs;&longs;imum <expan abbr="&longs;pl&etilde;det">&longs;plendet</expan>. </s> <s id="s.004104">lunula autem falcata exiguam habet latitudinem)<emph.end type="italics"/><lb/> Vt rectè, atque non &longs;ine delectatione problema præ&longs;ens intelligas, lege ea, <lb/> quæ in additione ad problema 5. huius &longs;ectionis &longs;crip&longs;imus de Figuratione <lb/> lucis: deinde operæpretium erit audire, quid dicat Gemma Fri&longs;ius in tra­<lb/>ctatu de Radij a&longs;tronomici &longs;tructura, cap. 18. vbi loquitur de Solis deliquij <pb pagenum="241" xlink:href="009/01/241.jpg"/>dimen&longs;ione, his verbis, extat, inquit, alius modus dimetiéndæ &longs;olaris eclyp­<lb/> &longs;is, omnium facillimus, ac certi&longs;&longs;imus, cuius nos admonuit Era&longs;mus Rei­<lb/> noldus in comm. <!-- REMOVE S-->in Theoricas Peurbarhij. </s> <s id="s.004105">tempore igitur &longs;olaris defectus, <lb/> intra parietes v&longs;piam, clau&longs;is omnibus fene&longs;tris, admittatur Solis radius, <lb/> per angu&longs;tum foramen rotundum; <expan abbr="excipiatur&qacute;">excipiaturque</expan>; radius hic in plana tabella, <lb/> vbi certo quantum Sol defecerit ad vnguem, licet videre, <expan abbr="ab&longs;q;">ab&longs;que</expan> vlla intui­<lb/>tus mole&longs;tia, ac tam perfectè, atque fi in cœlo coram ade&longs;&longs;es) hæc ille, licet <lb/> autem videre, quia illuminatio in tabella excepta, quæ alias &longs;olet e&longs;&longs;e cir­<lb/> cularis, erit tempore eclyp&longs;is ip&longs;a pariter cum Sole defectiua, <expan abbr="atq;">atque</expan> in&longs;tar fal­<lb/> catæ lunulæ. </s> <s id="s.004106">deinde &longs;ubdit; verum hoc omninò &longs;cire nece&longs;&longs;arium e&longs;t, con­<lb/> trario modo apparere defectum illum in tabula per radios Solis, quàm in <lb/> cœlo contingit: hoc e&longs;t, &longs;i in cœlo &longs;uperior pars deliquium patiatur, in ra­<lb/> dijs apparebit inferior deficere, vt ratio exigit optica) <expan abbr="hucu&longs;q;">hucu&longs;que</expan> Gemma Fri­<lb/> &longs;ius; ex quo etiam placuit accipere totius huius <expan abbr="experi&etilde;tiæ">experientiæ</expan> figuram, quam <lb/> <figure id="id.009.01.241.1.jpg" place="text" xlink:href="009/01/241/1.jpg"/><lb/> ip&longs;e <expan abbr="cuiu&longs;dã">cuiu&longs;dam</expan> eclyp&longs;is an­<lb/> ni 1544. apponit. </s> <s id="s.004107">e&longs;t au­<lb/> tem hæc. </s> <s id="s.004108">in qua Sol <expan abbr="de-fici&etilde;s">de­<lb/> ficiens</expan> e&longs;t A B C. pars in­<lb/> ferior B D P C, ip&longs;a e&longs;t <lb/> lumine priuata; &longs;uperior <lb/> B A P D, &longs;plendens, quæ <lb/> &longs;imilis e&longs;t falcatæ lunu­<lb/> læ. </s> <s id="s.004109">radij Solis <expan abbr="ingrediũ-tur">ingrediun­<lb/> tur</expan> in cubiculum per fo­<lb/> ramen E. <expan abbr="excipiuntur&qacute;">excipiunturque</expan>; <lb/> in tabella K M N O, fo­<lb/> ramini, &longs;eu radio Solis <lb/> <expan abbr="perp&etilde;diculariter">perpendiculariter</expan> oppo­<lb/> &longs;ita: in qua propterea <lb/> apparet Solis illuminatio, non vt alias circularis, &longs;ed manca, ac defectiua, <lb/> lunulæ in&longs;tar: <expan abbr="e&longs;t&qacute;">e&longs;tque</expan>; G H I L, quæ inuer&longs;o modo &longs;e habet, ac in cœlo, quem­<lb/> admodum figura o&longs;tendit: cuius cau&longs;a e&longs;t, quia radij Solis A E, D E, C E, <lb/> po&longs;t foraminis ingre&longs;&longs;um commutantur, quia &longs;e mutuò &longs;ecant, vnde qui &longs;u­<lb/> periores erant, fiunt inferiores intra foramen, & in tabella; &longs;ic radius A E, <lb/> omnibus &longs;uperior, po&longs;t ingre&longs;&longs;um fit omnibus inferior; e&longs;t enim E H, <expan abbr="de&longs;i-nit&qacute;">de&longs;i­<lb/> nitque</expan>; in puncto H, omnium illuminationis infimo. </s> <s id="s.004110">reliqua autem pars cir­<lb/> culi illuminationis G L I F, deficit, quia pars Solis B D P C, quæ ip&longs;am illu­<lb/>&longs;trare &longs;olet, propter eclyp&longs;im nullos per foramen E, immittit radios. </s> <s id="s.004111">Ve­<lb/> rum eclyp&longs;is tempore, etiam &longs;i huiu&longs;modi illuminationes intra cubiculum <lb/> non ob&longs;eruentur, &longs;ed foris, manife&longs;tè omnes apparent, non &longs;ecus, ac ip&longs;e &longs;ol <lb/> defectiuæ: tales &longs;ùnt omnes, quæ per quælibet foramina, in quolibet paui­<lb/>mento, aut oppo&longs;ito pariete apparent: de quibus etiam Ari&longs;tot. in præ&longs;enti <lb/> problemate loquitur. </s> <s id="s.004112">ex his facilè e&longs;t verborum Ari&longs;t. &longs;en&longs;um a&longs;&longs;equi. </s> <s id="s.004113">Quæ­<lb/> rit igitur, cur tempore &longs;olaris deliquij, &longs;i Solis illuminationes per cribri fo­<lb/> ramina, aut inter alicuius arboris folia, ex ijs, quæ lata habent folia, aut <lb/> inter manuum decu&longs;&longs;atos digitos, ingredientes, atque in terra apparentes, <pb pagenum="242" xlink:href="009/01/242.jpg"/>&longs;pectemus, eas falcatas, ac lunulatas, videamus; non autem, vt &longs;olemus, <lb/> rotundas. </s> <s id="s.004114">Re&longs;pondet, id fortè accidere, quia lux per foramen intrans, fit <lb/> conus natura &longs;ua, vt in 5. problemate pr&etail;cedenti, explicatum e&longs;t. </s> <s id="s.004115">& in præ­<lb/> &longs;enti figura conus lucis intrantis per foramen E, figuratur à lineis E F, E H, <lb/> quibus &longs;imiles alias plurimas debemus concipere ab E, ad circularem ba­<lb/> &longs;im F G L I, quæ turbinem perfectum efficiunt. </s> <s id="s.004116">alius præterea conus e&longs;t à fo­<lb/> ramine ad Solem, cuius ba&longs;is e&longs;t A B C P, circulus Solis: & continetur &longs;ub <lb/> infinitis radijs, quorum duo &longs;unt A E, C E; <expan abbr="vter&qacute;">vterque</expan>; autem habet verticem ad <lb/> E, quia igitur plures radij &longs;uperioris coni deficiunt, ideò etiam in inferiori <lb/> deficient: <expan abbr="erit&qacute;">eritque</expan>; &longs;itus eorum inuer&longs;us ob radiorum inter&longs;ectionem ad pun­<lb/> ctum E, <expan abbr="erit&qacute;">eritque</expan>; &longs;plendor in tabella apparens lunulatus, quia ex parte Solis <lb/> pariter lunulata producitur. </s> <s id="s.004117">cætera &longs;atis &longs;unt per &longs;e clara.</s> </p> <p type="head"> <s id="s.004118"><emph type="italics"/>Ex Sectione 16.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.004119"><arrow.to.target n="marg343"/></s> </p> <p type="margin"> <s id="s.004120"><margin.target id="marg343"/>351</s> </p> <p type="main"> <s id="s.004121">In 1. problema <emph type="italics"/>(Cur ba&longs;es bullarum in aquis &longs;unt albæ; & &longs;i in Sole ponan­<lb/> tur, non faciunt vmbram; &longs;ed bullæ reliquum vmbram facit, ba&longs;is verò non <lb/> facit, &longs;ed circulariter à Sole illuminatur. </s> <s id="s.004122">quod verò mirabilius e&longs;t, quod <expan abbr="neq;">neque</expan> <lb/> &longs;i quodpiam lignum in aquam inferatur in Sole, hæc &longs;ub aqua diuiduntur. <lb/> </s> <s id="s.004123">An non fit vmbra, &longs;ed à Sole di&longs;&longs;ipatur vmbra? </s> <s id="s.004124">fi igitur vmbra est non in&longs;pectum, <lb/>& à Sole circulariter in&longs;picitur moles: hoc verò impo&longs;&longs;ibile e&longs;&longs;e o&longs;tenditur in Op­<lb/> ticis. </s> <s id="s.004125"><expan abbr="neq;">neque</expan> enim minimum, à maximo totum con&longs;pici pote&longs;t)<emph.end type="italics"/> Cùm ex ip&longs;ius textus <lb/>verbis &longs;atis per&longs;picuè appareat, quid proponatur, reliqua &longs;ic breuiter ex­<lb/> ponam. </s> <s id="s.004126">quod igitur de ligno ait, exi&longs;timo hoc modo <expan abbr="accipiendũ">accipiendum</expan>, vt lignum <lb/> illud in aqua ponatur &longs;ub bulla, ita vt vmbra bullæ cadat &longs;uper ip&longs;um, <expan abbr="tũc&qacute;">tuncque</expan>; <lb/> vmbra illius &longs;imiliter apparebit defectiua, quia ba&longs;is illuminatio ip&longs;am ex <lb/> parte de&longs;truet. </s> <s id="s.004127">Re&longs;pondet, An non fit vmbra, &longs;ed à Sole vmbra fugatur? <lb/> </s> <s id="s.004128">quæ verba &longs;ubob&longs;cura &longs;unt; <expan abbr="neq;">neque</expan> re&longs;pon&longs;io videtur allata ad &longs;oluendum pro­<lb/> blema, &longs;ed ad eum magis confirmandum. </s> <s id="s.004129">deinde ait: &longs;i igitur nihil aliud e&longs;t <lb/> vmbra, quam id, quod non a&longs;picitur à Sole, & à Sole tamen videamus illu­<lb/> minari totam bullæ ba&longs;im circulariter, nece&longs;&longs;e e&longs;t totam etiam bullam <expan abbr="vn-diq;">vn­<lb/> dique</expan> à Sole illuminari, & con&longs;pici, quod tamen impo&longs;&longs;ibile e&longs;&longs;e demon&longs;tra­<lb/> tur ab opticis: ip&longs;i enim demon&longs;trant, nullum corpus, quantumuis mini­<lb/> mum, totum po&longs;&longs;e circum&longs;pici à quamuis maximo illuminante. </s> <s id="s.004130">quod qui­<lb/> dem antiquitus demon&longs;trauit Ari&longs;tarchus Samius in libello de di&longs;tantijs So­<lb/> <figure id="id.009.01.242.1.jpg" place="text" xlink:href="009/01/242/1.jpg"/><lb/> lis, & Lunæ: & <lb/> po&longs;tea Vitellio <lb/> lib. 2. propo&longs;. </s> <s id="s.004131">27. <lb/> & ex figura præ­<lb/> &longs;enti facilè e&longs;t id <lb/> intelligere: <expan abbr="ĩ">i</expan>n qua <lb/> &longs;it Sol &longs;phæra A, <lb/> illuminans &longs;phæ­<lb/> rulam B, extre­<lb/> mi radij DF, EF. <pb pagenum="243" xlink:href="009/01/243.jpg"/>vmbra erit igitur G F H, ad partes C, Soli auer&longs;as. </s> <s id="s.004132">quas nunquam Sol, etiam <lb/> &longs;i &longs;phæra B, arenulæ vnius grano minor fuerit poterit illu&longs;trare. </s> <s id="s.004133">quæ quidem <lb/> non &longs;oluunt quæ&longs;tionem, &longs;ed eam difficiliorem reddunt. </s> <s id="s.004134">Quapropter non <lb/> videtur Ari&longs;t. volui&longs;&longs;e hoc di&longs;cutere, &longs;ed &longs;olum tanquam mirum quodam <lb/> proponere. </s> <s id="s.004135">quod &longs;i quid mutire liceat, vbi tantus philo&longs;ophus admirabun­<lb/>dus obmute&longs;cit, dixerim propterea ba&longs;im bullæ non adumbrari ab vmbra <lb/> ip&longs;ius bullæ, quia cum bulla &longs;it &longs;phærica, & tran&longs;parens, Solis lumen eam <lb/> peruadit, <expan abbr="atq;">atque</expan> ex &longs;uperficie concaua ad illius ba&longs;im partim reflectitur, <expan abbr="&longs;ic&qacute;">&longs;icque</expan>; <lb/> eam illuminat. </s> <s id="s.004136">quamuis enim &longs;it diaphana, non tamen omninò tran&longs;parens <lb/> e&longs;t, cum aqua &longs;it aere cra&longs;&longs;ior: bulla autem e&longs;t ex aqua. </s> <s id="s.004137">&longs;uperficiem autem <lb/> bullæ concauam id efficere debere, patet ex concaua figura, quæ maximè <lb/> reflexioni e&longs;t apta.</s> </p> <p type="main"> <s id="s.004138"><arrow.to.target n="marg344"/></s> </p> <p type="margin"> <s id="s.004139"><margin.target id="marg344"/>352</s> </p> <p type="main"> <s id="s.004140">In 3. problem. <emph type="italics"/>(Cur in magnitudinibus, quæ pondere &longs;unt inæquali, accidit, vt <lb/> &longs;i partem moueas læuiorem, circunferatur, quod iacitur; vt in talis fieri opplum­<lb/> batis videmus)<emph.end type="italics"/> Ari&longs;totelis tempore tales tali opplumbati erant in v&longs;u, qui <lb/> exemplo præ&longs;enti que&longs;tioni e&longs;&longs;e po&longs;&longs;ent: Aptius nunc exemplum de&longs;umi po­<lb/> te&longs;t ex bacillo aliquo, cuius altera extremitas &longs;it cæteris partibus multò <lb/> grauior, qui &longs;i per aerem manibus eiaculatur, &longs;olet, dum per aerem fertur, <lb/> circumuerti.</s> </p> <p type="main"> <s id="s.004141"><arrow.to.target n="marg345"/></s> </p> <p type="margin"> <s id="s.004142"><margin.target id="marg345"/>353</s> </p> <p type="main"> <s id="s.004143">Ibidem <emph type="italics"/>(Sin autem alterum altero fertur cælerius, circulo ferri nece&longs;&longs;e e&longs;t, cùm <lb/> in hoc &longs;olo figuræ genere efficiatur, vt puncta eadem &longs;ubalterna, lineas inæquales <lb/>po&longs;&longs;int eodem tempore permeare)<emph.end type="italics"/> Quando, inquit, duo puncta in eadem magni­<lb/> tudine po&longs;ita mouentur ad motum illius, & tamen non æqualiter progre­<lb/> diuntur, &longs;ignum e&longs;t, illam magnitudinem moueri circulariter, & proinde <lb/> vel e&longs;&longs;e circulum, vel &longs;altem circuli in modum conuerti; cum in &longs;olo orbi­<lb/> culari motu contingat, vt duo puncta inæqualiter a centro remota, po&longs;&longs;int <lb/> inæquales lineas eodem tempore permeare, punctum enim, quod <expan abbr="c&etilde;tro">centro</expan> pro­<lb/> pinquius e&longs;t, breuiorem de&longs;cribit lineam, quod autem remotius, maiorem.</s> </p> <p type="main"> <s id="s.004144"><arrow.to.target n="marg346"/></s> </p> <p type="margin"> <s id="s.004145"><margin.target id="marg346"/>354</s> </p> <p type="main"> <s id="s.004146">In 4. problem. </s> <s id="s.004147">&longs;atis e&longs;&longs;e exi&longs;timo per paraphra&longs;im præ&longs;ens problema ex­<lb/> ponere, ex qua tamen, vbi opus fuerit, textus corrigatur. </s> <s id="s.004148">Cur ea, quæ in <lb/> terram cadunt, <expan abbr="atq;">atque</expan> re&longs;iliunt angulos ad planitiem, faciunt &longs;imiles vtraque <lb/> <figure id="id.009.01.243.1.jpg" place="text" xlink:href="009/01/243/1.jpg"/><lb/> ex parte, qua planum tetigerint? </s> <s id="s.004149">v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;i <lb/> corpus quodpiam cadat ex puncto D, per <lb/> lineam D C, &longs;uper planum A B, ex puncto <lb/> C, vbi cæciderat, re&longs;ilit per lineam C E, <lb/> ita vt faciat duos angulos æquales vtrin­<lb/> que ad punctum. </s> <s id="s.004150">C, angulum &longs;cilicet in­<lb/> cidentiæ D C B, & angulum reflexionis <lb/> E C A? </s> <s id="s.004151">An quod omnia i&longs;ta, natura qui­<lb/> dem &longs;ua feruntur per rectam lineam, vi­<lb/> demus enim grauia omnia deor&longs;um re­<lb/> ctà tendere; &longs;i autem aliquod impedi­<lb/> mentum occurrat, vt fit, quando plano <lb/> terræ occurrunt, tunc lineam illam, quam infra terram facerent <expan abbr="eundem&qacute;">eundemque</expan>; <lb/> angulum, quem infra <expan abbr="planũ">planum</expan> facerent, &longs;upra faciunt, v. <!-- REMOVE S-->g. <!-- REMOVE S-->mobile per lineam <lb/>D C, cadens, ni&longs;i ob&longs;titi&longs;&longs;et planum A B, tetendi&longs;&longs;et per lineam rectam <pb pagenum="244" xlink:href="009/01/244.jpg"/>D C G, <expan abbr="feci&longs;&longs;et&qacute;">feci&longs;&longs;etque</expan>; propterea angulum A C G, infra planum, æqualem angulo <lb/> D C B, quo ceciderat. </s> <s id="s.004152">cum igitur nequeat prædictum angulum infra pla­<lb/> num conficere, par eft, vt eum re&longs;iliendo &longs;upra planum efficiat; propterea <lb/> re&longs;ilit per lineam C E; quæ <expan abbr="angulũ">angulum</expan> A C E, &longs;upra cum plano con&longs;tituit æqua­<lb/> lem angulo A C G, infra, & proinde æqualem <expan abbr="etiã">etiam</expan> angulo incidentiæ D C B. <lb/> <!-- KEEP S--></s> <s id="s.004153">Duobus porrò modis grauia &longs;uper terræ planitiem cadunt; aut enim per­<lb/> pendiculariter, & fecundum mundi diametrum decidunt; aut obliquè, &longs;eu <lb/> in latera. </s> <s id="s.004154">quæ igitur primo modo de&longs;cendunt, ide&longs;t perpendiculariter, &longs;eu <lb/> quæ angulos rectos cum plano faciunt, ea etiam re&longs;iliunt perpendiculariter, <lb/>&longs;eu ad angulos rectos, & ideo nece&longs;&longs;ariò per eandem lineam, qua decide­<lb/> rant, repercutiuntur; cuius cau&longs;a e&longs;&longs;e pote&longs;t, quia diameter &longs;cilicet mundi, <lb/> per quam delap&longs;a &longs;unt, ea bifariam diuidit, vt in figura, graue E, per D C, <lb/> <figure id="id.009.01.244.1.jpg" place="text" xlink:href="009/01/244/1.jpg"/><lb/> plano A B, perpendicularem de&longs;cendat; <lb/> quæ <expan abbr="perp&etilde;dicularis">perpendicularis</expan> coincidit cum mun­<lb/> di diametro, perpendicula enim omnia <lb/> ad mundi centrum tendunt; graue igi­<lb/> tur E, dum puncto C, alliditur, diuidi­<lb/> tur bifariam, à diametro mundi D C: <lb/> vnde & in æquilibrio con&longs;tituitur, ita vt <lb/> nulla &longs;it maior ratio, cur ad partem <lb/> vnam, quàm ad alteram re&longs;ultet, & ideo <lb/> <expan abbr="conueni&etilde;s">conueniens</expan> e&longs;t, ip&longs;um per eandem lineam <lb/> D C, reuerti; &longs;ic enim faciet etiam an­<lb/> gulos incidentiæ, & reflexionis æquales. <lb/> </s> <s id="s.004155">quæ verò &longs;ecundo modo decidunt, ide&longs;t <lb/> obliquè, & &longs;ecundum latera: quoniam non &longs;ecundum perpendiculum, &longs;ed <lb/> ex puncto extra perpendiculum po&longs;ito, planum feriunt, accidit vt à puncto <lb/> incidentiæ C, vt in priori figura, in contrariam partem repul&longs;a re&longs;ulcent; <lb/>de&longs;cenderant enim ex D, & in contrariam partem, &longs;cilicet ad E, prioris fi­<lb/> guræ reflectuntur. </s> <s id="s.004156">quòd &longs;i huiu&longs;modi grauia &longs;int rotunda, facilius in contra­<lb/> rias partes exurgunt, propter ip&longs;orum figuram motui, ac re&longs;ultationi ap­<lb/>ti&longs;&longs;imam; &longs;iue moueantur, ita vt centrum eorum etiam locum permutet, <lb/> &longs;iue ita vt quie&longs;cat. </s> <s id="s.004157">quæ verò non &longs;unt rotunda, &longs;ed rectilinea, idem faciunt, <lb/> quoniam perpendiculum ip&longs;orum, ide&longs;t linea, per quam deberent perpen­<lb/> diculariter re&longs;ultare ob impul&longs;um eliditur, & flectitur ad altiorem partem, <lb/> vbi nimirum e&longs;t linea C E, in priori figura, ita vt à perpendiculo quodam­<lb/> modo deflectantur. </s> <s id="s.004158">quemadmodum ij, quorum pars altera inferior, v. <!-- REMOVE S-->g. <!-- REMOVE S-->al­<lb/> terum crus ab&longs;cinditur, qui coguntur à rectitudine priori in alteram par­<lb/> tem, vel etiam retror&longs;um cadere: quando, vt dixi, eorum perpendiculum, <lb/> quod perpendiculariter eleuatum e&longs;t, & &longs;ecundum quod corpus ip&longs;um de­<lb/> beret æquari, &longs;eu in æquilubrio con&longs;titui, antror&longs;um pellitur. </s> <s id="s.004159">Porrò in his, <lb/> quæ ob grauitatem de&longs;cendunt; deor&longs;um, & retror&longs;um, opponuntur; deor­<lb/> &longs;um enim e&longs;t pars, quæ ad terram, anterior verò ea pars e&longs;t, quæ &longs;ur&longs;um, &longs;eu <lb/> retror&longs;um, vergit. </s> <s id="s.004160">quod igitur in his grauibus, &longs;iue rotundis, &longs;iue rectilineis <lb/> e&longs;t ca&longs;us ex vna parte, idem præ&longs;tat ex oppo&longs;ita parte latio, qua re&longs;urgunt, <lb/>ide&longs;t ad angulos pares fit ca&longs;us, & latio: propterea neutra eorum ad rectum <pb pagenum="245" xlink:href="009/01/245.jpg"/>angulum repercutiuntur, <expan abbr="neq;">neque</expan> &longs;ecundum perpendicularem, quia perpendi­<lb/> culum eductum ex puncto ca&longs;us diuidit ea bifariam. </s> <s id="s.004161">fieri autem nequit, vt <lb/> ad idem <expan abbr="punctũ">punctum</expan> C, plani A B. plura perpendicula erigantur ex 13. 11. Elem. <lb/> (vt in &longs;ecunda figura, &longs;ola linea C D, perpendicularis e&longs;&longs;e pote&longs;t ad idem, <lb/> punctum C,) quibus perpendiculis grauia <expan abbr="diuidãtur">diuidantur</expan> bifariam, <expan abbr="atq;">atque</expan> in æqui­<lb/> librio con&longs;tituantur: quod tamen &longs;equeretur, &longs;i linea reflexionis eorum, quæ <lb/> obliquè cadunt, e&longs;&longs;et perpendicularis, ab hac enim diuiderentur bifariam, <lb/> & præterea etiam ab alia, quæ perpendicularis verè e&longs;t: & præterea etiam <lb/> à priori linea incidentiæ, quæ pariter e&longs;&longs;et perpendicularis, cum &longs;imiliter <lb/> cadat, <expan abbr="atq;">atque</expan> reflexa, <expan abbr="diuider&etilde;tur">diuiderentur</expan> bipartitò. </s> <s id="s.004162">Quod ab&longs;urdum e&longs;t. </s> <s id="s.004163">&longs;ed cùm ad­<lb/> uer&longs;am quidem in partem <expan abbr="ferãtur">ferantur</expan>, & non ad angulum rectum, reliquum e&longs;t, <lb/> vt ad acutum angulum re&longs;iliant, ex altera puncti incidentiæ parte, quia an­<lb/> gulus rectus e&longs;t terminus, intra quem omnes anguli aduer&longs;i <expan abbr="contin&etilde;tur">continentur</expan>, qua­<lb/> les &longs;unt in prima figura ij, quorum vnum angulum incidentiæ, alterum re­<lb/> flexionis appellant.</s> </p> <p type="main"> <s id="s.004164">Notandum quoad ver&longs;ionem latinam Theodori Gazæ, quod vbi &longs;unt ver­<lb/> ba illa <emph type="italics"/>(Aut colei violantur)<emph.end type="italics"/> in græco e&longs;t, <foreign lang="greek">kolutrous u)farpazousi.</foreign> quorum ver­<lb/>borum paraphra&longs;im omi&longs;i, quia the&longs;auri, aut lexica græca nullam huius ver­<lb/> bi notionem afferunt, quæ huic loco quadret, dicunt enim ex Athenæo <foreign lang="greek">tous <lb/>koluqrous</foreign>, &longs;ignificare ficus maturas: Suidas verò ait e&longs;&longs;e quoddam plantæ ge­<lb/> nus: quorum neutrum ad rem facit. </s> <s id="s.004165">propterea vel textus corruptus e&longs;t, vel <lb/> metaphoricè v&longs;us e&longs;t Ari&longs;t. hoc verbo, cuius metaphoræ modò intelligen­<lb/> tiam non habemus.</s> </p> <p type="main"> <s id="s.004166"><arrow.to.target n="marg347"/></s> </p> <p type="margin"> <s id="s.004167"><margin.target id="marg347"/>355</s> </p> <p type="main"> <s id="s.004168">In 5. problem. <emph type="italics"/>(Cur Cylinder propul&longs;us fertur in directum, &longs;uisqué terminanti­<lb/> bus orbibus lineas rectas de&longs;cribit, turbo verò &longs;uo manente murone circunfertur, <lb/> at que in &longs;uo terminante orbe orbem de&longs;cribit? </s> <s id="s.004169">&c.)<emph.end type="italics"/> Ad huius textus intelligen­<lb/> tiam fatis e&longs;t no&longs;&longs;e, quid Cylindrus, & quid Conus, &longs;iue turbo &longs;it. </s> <s id="s.004170">conum igi­<lb/> tur ex definitione 8. 11. &longs;ic po&longs;&longs;umus de&longs;cribere, e&longs;&longs;e corpus ex vna parte <lb/>acuminatum, ex altera verò planum, quod planum dicitur ba&longs;is coni, <expan abbr="e&longs;t&qacute;">e&longs;tque</expan>; <lb/> circulus: vulgò appellatur Pyramis rotunda. </s> <s id="s.004171">Cylindrum verò ex definit. </s> <s id="s.004172">21. <lb/> eiu&longs;dem 11. &longs;ic po&longs;&longs;umus explicare: e&longs;&longs;e corpus rotundum <expan abbr="oblongũ">oblongum</expan>, æqua­<lb/> lis vtrinque cra&longs;&longs;itiei, cuius duæ ba&longs;es &longs;unt circuii: <expan abbr="e&longs;t&qacute;">e&longs;tque</expan>; veluti fru&longs;tum co­<lb/> lumnæ. </s> <s id="s.004173">his cognitis poteris nullo negotio totius problematis &longs;olutionem <lb/> ex textu Ari&longs;t. percipere.</s> </p> <p type="main"> <s id="s.004174"><arrow.to.target n="marg348"/></s> </p> <p type="margin"> <s id="s.004175"><margin.target id="marg348"/>356</s> </p> <p type="main"> <s id="s.004176">In 6. probl. <emph type="italics"/>(Cur voluminum &longs;ectio plana, & recta, &longs;i quidem fuerit ba&longs;i volu­<lb/>minis æquidi&longs;tans, explicata lineam rectam o&longs;tendit: &longs;i verò fuerit ba&longs;i inclinata, <lb/>tortuo&longs;am? </s> <s id="s.004177">An quia accidit, vt circulis illius &longs;ectionis in eodem plano existenti­<lb/> bus, hanc quidem &longs;ectionem non adiacentem e&longs;&longs;e. </s> <s id="s.004178">&longs;ed hic quidem pius, illic verò mi­<lb/> nus ab eadem distare. </s> <s id="s.004179">Ita vt explicato volumine circuli quidem ij, qui in eodem, <lb/>&longs;unt plano, & principium habent in eodem plano, ex &longs;e ip&longs;is euolutis faciět rectam <lb/> lineam: e&longs;t enim facta recta ex circulis, qui &longs;unt in eodem plano; ita vt etiam re­<lb/> cta exi&longs;tat in plano. </s> <s id="s.004180">At verò obliquæ illius &longs;ectionis linea explicata, non exi&longs;tens <lb/>primæ æquidi&longs;tans, &longs;ed hic quidem plus, illic verò minus ab ea recedens, propterea <lb/>quod etiam ip&longs;a &longs;ectio ita &longs;e habeat ad eandem non εrit in eodem plano: <expan abbr="itaq;">itaque</expan> <expan abbr="neq;">neque</expan> <lb/> recta, <expan abbr="neq;">neque</expan> enim eiu&longs;dem rectæ pars in vno plano, pars verò alia in alio plano e&longs;&longs;e <lb/> pote&longs;t)<emph.end type="italics"/> &longs;i Theodorus Gaza loco horum verborum <emph type="italics"/>(Cur &longs;ectio chartarum, &longs;iue <emph.end type="italics"/>e <pb pagenum="246" xlink:href="009/01/246.jpg"/><emph type="italics"/>papyri)<emph.end type="italics"/> ver&longs;i&longs;&longs;et; cur voluminum &longs;ectio, quemadmodum ego feci, quod, & <lb/> facere debebat, iuxta <expan abbr="græcorũ">græcorum</expan> <expan abbr="verborũ">verborum</expan> notionem, <foreign lang="greek">*dia ti/ tw=n bibli/wn h\ tomh</foreign>, <lb/> locum hunc non &longs;olum non ob&longs;cura&longs;&longs;et, verum etiam clarum omninò red­<lb/> didi&longs;&longs;et, e&longs;t enim Problema de &longs;ectione voluminis papyracei, quibus vete­<lb/> res illi &longs;cribebant. </s> <s id="s.004181">quapropter optimè intelliges textum hunc, &longs;i huiu&longs;modi <lb/> volumen bis &longs;ecueris, primo quidem &longs;ectione ba&longs;i voluminis parallela; &longs;e­<lb/> cundo verò &longs;ectione tran&longs;uer&longs;ali, &longs;eu obliqua ad ba&longs;im: nam explicata pri­<lb/> ma &longs;ectione apparebit eam e&longs;&longs;e lineam rectam: euoluta verò <expan abbr="&longs;ecũda">&longs;ecunda</expan> &longs;ectio­<lb/>ne apparebit eam e&longs;&longs;e tortuo&longs;am, & flexuo&longs;am; Ari&longs;t. <!-- REMOVE S-->reddens rationem, <lb/> cur hæc &longs;it tortuo&longs;a, ait id e&longs;&longs;e, quia &longs;ectione obliqua exi&longs;tente, ide&longs;t ex vna <lb/> parte depre&longs;&longs;iori, & ex altera altiori, &longs;equitur, quod circuli, qui ex tali &longs;e­<lb/> ctione oriuntur non remanent in eodem plano, dum euoluuntur; quare <expan abbr="neq;">neque</expan> <lb/> linea, ex qua illi circuli con&longs;tant, poterit e&longs;&longs;e in eodem plano, & ideo <expan abbr="neq;">neque</expan> <lb/> recta e&longs;&longs;e poterit, quia fieri nequit, vt eiu&longs;dem lineæ pars &longs;it in plano vno, <lb/> pars verò in altero; quod o&longs;tenditur in prima 11. Elem. quæ e&longs;t hæc; rectæ <lb/> lineæ pars quædam non e&longs;t in &longs;ubiecto plano, pars verò in &longs;ublimi.</s> </p> <p type="main"> <s id="s.004182"><arrow.to.target n="marg349"/></s> </p> <p type="margin"> <s id="s.004183"><margin.target id="marg349"/>357</s> </p> <p type="main"> <s id="s.004184">In 12. problem. </s> <s id="s.004185">quod e&longs;t idem cum tertio &longs;uperiori, videnda &longs;unt, quæ ibi <lb/> annotaui, hic tamen aliter &longs;oluitur, &longs;ed tanta facilitate, vt nihil præte­<lb/> rea opus &longs;it.</s> </p> <p type="main"> <s id="s.004186"><arrow.to.target n="marg350"/></s> </p> <p type="margin"> <s id="s.004187"><margin.target id="marg350"/>358</s> </p> <p type="main"> <s id="s.004188">In 13. probl. </s> <s id="s.004189">quod e&longs;t idem cum quarto præcedenti, repetenda e&longs;t illius. <lb/> </s> <s id="s.004190">explicatio, vt huic in&longs;eruiat. </s> <s id="s.004191">Ari&longs;t. autem pulchrè, & aptè a&longs;&longs;imilat refle­<lb/> xionem corporum reflexioni radiorum vi&longs;ualium ex &longs;peculis; vbi, vt docent <lb/> Per&longs;pectiui, radius vi&longs;ualis &longs;peculo incidens, facit &longs;emper angulum æqua­<lb/> lem ei, quem facit radius reflexus; e&longs;t enim apud eos axioma, angulus in­<lb/> cidentiæ æqualis e&longs;t angulo reflexionis.</s> </p> </chap> <chap> <p type="head"> <s id="s.004192"><emph type="italics"/>SECTIO XIX.<!-- KEEP S--></s> <lb/> <s id="s.004193">De Mu&longs;ica.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.004194"><arrow.to.target n="marg351"/></s> </p> <p type="margin"> <s id="s.004195"><margin.target id="marg351"/>359</s> </p> <p type="main"> <s id="s.004196">Problema primum ex &longs;e clarum e&longs;t.</s> </p> <p type="main"> <s id="s.004197">In 2. problema. </s> <s id="s.004198">In verba illa <emph type="italics"/>(Sed quemadmodum linea bipedalis non <emph.end type="italics"/><lb/> <figure id="id.009.01.246.1.jpg" place="text" xlink:href="009/01/246/1.jpg"/><lb/> <emph type="italics"/>duplum, &longs;ed quadruplum quoddam de&longs;cribit, <lb/> &longs;ic, &c.)<emph.end type="italics"/> ide&longs;t, quemadmodum linea bi­<lb/> pedalis, quæ quamuis &longs;it dupla lineæ pedalis non <lb/> tamen de&longs;cribit quadratum duplum quadrati il­<lb/> lius, &longs;ed quadruplum: vt probatur in &longs;cholio 4. <lb/> 2. Elem. & videre e&longs;t in hac figura, vbi linea A B, <lb/> e&longs;t dupla lineæ A C. quadratum verò lineæ A B, <lb/> &longs;cilicet quadratum A B D E, e&longs;t <expan abbr="quadruplũ">quadruplum</expan> qua­<lb/> drati lineæ A C, quadrati nimirum A C F G. re­<lb/> liqua huius textus manife&longs;ta &longs;unt</s> </p> <p type="main"> <s id="s.004199">Scias Lector, me nullum, horum de Mu&longs;ica Problematum (quemadmo­<lb/> dum & in pluribus alijs mathematicis locis accidit) vidi&longs;&longs;e expo&longs;itorem, <lb/> præter vnum Petrum Aponentem, quem tamen tanquam omninò his rebus <lb/> elucidandis ineptum, reieci.</s> </p> <pb pagenum="247" xlink:href="009/01/247.jpg"/> <p type="main"> <s id="s.004200">Vt autem cætera problemata rectè, ac facilè &longs;oluantur, operæpretium <lb/> e&longs;t, ortum, ac generationem totius Mu&longs;icæ breuiter præmittere; natura <lb/> enim ip&longs;ius ritè per&longs;pecta, ea deinde, quæ ip&longs;am con&longs;equuntur nullo nego­<lb/> tio percipi po&longs;&longs;unt.</s> </p> <p type="main"> <s id="s.004201">Primò igitur &longs;ciendum e&longs;t, duplicem nos po&longs;&longs;e con&longs;iderare in voce, &longs;ono­<lb/> uè varietatem. </s> <s id="s.004202">prima e&longs;t, qua eadem vox, aut &longs;onus modo maior, modo mi­<lb/> nor efficitur, vt quando eadem chorda lentè pul&longs;ata &longs;onum edit exiguum; <lb/> vehementer verò percu&longs;&longs;a, maiorem emittit &longs;onum. </s> <s id="s.004203">huiu&longs;modi vocem ap­<lb/> pellant Mu&longs;ici continuam. </s> <s id="s.004204">Philo&longs;ophi fortè eam vocarent vocis exten&longs;io­<lb/> nem. </s> <s id="s.004205">&longs;ecunda vocis differentia, aut varietas e&longs;t, cum ab vna voce ad aliam <lb/> tran&longs;imus, vt cum à graui ad acutiorem a&longs;cendimus, vel contra, ab acuta <lb/> ad grauem de&longs;cendimus, ita vt hæc &longs;it mutatio ab vna voce ad aliam, hanc <lb/> harmonici di&longs;cretam vocem dicunt. </s> <s id="s.004206">quam fortè Philo&longs;ophi ex varia vocis <lb/> inten&longs;ione prouenire iure dixerint. </s> <s id="s.004207">Hanc porrò di&longs;cretam vocem, altera <lb/> omi&longs;&longs;a, con&longs;iderant Mu&longs;ici. <!-- KEEP S--></s> <s id="s.004208">qua ratione autem, & in quot, qua&longs;uè voces eam <lb/> diui&longs;erint antiqui, paucis accipe.</s> </p> <p type="main"> <s id="s.004209">Cape duas chordas æreas, ex ijs &longs;cilicet, quas in cytharis adhibere <expan abbr="&longs;ol&etilde;t">&longs;olent</expan>; <lb/>nam quæ ex inte&longs;tinis ouium fiunt, vt plurimum aut fal&longs;æ &longs;unt, aut aeris mu­<lb/> tationi obnoxiæ. </s> <s id="s.004210">&longs;int hæ duæ chordæ æquales omninò, atque æquè inten&longs;æ, <lb/> <figure id="id.009.01.247.1.jpg" place="text" xlink:href="009/01/247/1.jpg"/><lb/> ita vt &longs;int vni&longs;onæ, hoc e&longs;t, vna <expan abbr="tan-tũ">tan­<lb/> tum</expan> vox &longs;it. </s> <s id="s.004211">quamuis duæ fides. </s> <s id="s.004212">opor­<lb/> tet autem, vt &longs;int &longs;uper regula ali­<lb/> qua lignea oblonga, & perpolita, <lb/> collocatæ, <expan abbr="quemadmodũ">quemadmodum</expan> &longs;uper ma­<lb/> nubrio alicuius mu&longs;ici in&longs;trumenti. <lb/> </s> <s id="s.004213">hanc regulam veteres appellant regulam harmonicam, vel etiam mono­<lb/> chordium; quo in&longs;trumento omnes con&longs;onantias, ac <expan abbr="di&longs;&longs;onãtias">di&longs;&longs;onantias</expan>, <expan abbr="atq;">atque</expan> etiam <lb/> interualla mu&longs;ica experiebantur. </s> <s id="s.004214">altera iam ex illis diuidatur bifariam in <lb/> E. deinde &longs;ub puncto E, pone quem vulgò Tactum dicunt, veteres autem, <lb/> hemi&longs;phærium à figura denominabant, erat autem in&longs;tar vnius Tacti mobi­<lb/> lis: &longs;uppo&longs;ito igitur in E, Tacto, preme ibi chordam, ita vt altera tantum <lb/> ip&longs;ius medietas, v. <!-- REMOVE S-->g. <!-- REMOVE S-->E D, tota pul&longs;ari, atque re&longs;onare po&longs;&longs;it; pul&longs;a igitur <lb/> chordam vtranque &longs;imul, &longs;cilicet totam A B, & dimidiam E D, ita vt &longs;imul <lb/> re&longs;onent. </s> <s id="s.004215">& audies &longs;uaui&longs;&longs;imam omnium con&longs;onèntiam, ex &longs;ono totius A B, <lb/> & &longs;ono dimidiæ E D, conflatam. </s> <s id="s.004216">hunc veteres Diapa&longs;on, ide&longs;t per omnes <lb/> &longs;ubaudi, chordas appellabant, quia in <expan abbr="antiquorũ">antiquorum</expan> mu&longs;icis in&longs;trumentis chor­<lb/> dæ duæ omnium extremæ, ide&longs;t graui&longs;&longs;ima, & acuti&longs;&longs;ima omnium fidium, <lb/> con&longs;onantiam hanc continebant: ita vt à graui&longs;&longs;ima omnium facto tran&longs;itu <lb/> per omnes chordas ad omnium &longs;upremam, & acuti&longs;&longs;iman, con&longs;onantiam <lb/> hanc &longs;uaui&longs;&longs;imam exaudirent. </s> <s id="s.004217">appellatur etiam Dupla ratione proportio­<lb/>nis vnius vocis ad alteram, vox enim chordæ A B, e&longs;t duplo maior, aut gra­<lb/> uior voce dimidiæ E D. quemadmodum enim corpora &longs;ononantia &longs;e habent <lb/> ad inuicem, ita &longs;e &longs;oni eorum. </s> <s id="s.004218">chorda autem A B, dupla e&longs;t chordæ E D. <lb/>nunc eam vulgus Octauam appellat, eo quod à prima voce, <expan abbr="ea&qacute;">eaque</expan>; graui&longs;&longs;i­<lb/> ma, quæ Vt dicitur, <expan abbr="v&longs;q;">v&longs;que</expan> ad eam vocem, quæ ei in con&longs;onantia diapa&longs;on re­<lb/> &longs;pondent, &longs;unt hæ octo voces, Vt, Re, Mi, Fa, Sol, Re, Mi, Fa. <!-- KEEP S--></s> <s id="s.004219">ex quibus <pb pagenum="248" xlink:href="009/01/248.jpg"/>prima, Vt, & vltima, Fa, quæ octaua e&longs;t, con&longs;onantiam diapa&longs;on, aut du­<lb/> plam, aut octauam reddunt.</s> </p> <p type="main"> <s id="s.004220">Rur&longs;us eadem chorda C D, diuidatur in tres partes æquales in punctis <lb/> <figure id="id.009.01.248.1.jpg" place="text" xlink:href="009/01/248/1.jpg"/><lb/> F, G. <!-- KEEP S--></s> <s id="s.004221">F D igitur erit duæ ter­<lb/> tiæ tam totius C D, quàm to­<lb/> tius A B. ponatur iam tactus <lb/> in F, <expan abbr="percutiãtur&qacute;">percutianturque</expan>; &longs;imul A B, <lb/> & F D; audietur con&longs;onantia <lb/> &longs;uauis admodum, & perfecta <lb/> quidem, &longs;ed <expan abbr="nõ">non</expan> tamen, vt Dia­<lb/> pa&longs;on. <!-- KEEP S--></s> <s id="s.004222">hanc pri&longs;ci Diapente dixerunt, ide&longs;t per <expan abbr="quinq;">quinque</expan> &longs;ubaudi chordas, eò <lb/> quod prima, & quinta chorda, hanc con&longs;onarent. </s> <s id="s.004223">&longs;ecundum proportionem <lb/> verò dicitur &longs;e&longs;quialtera, quoniam chorda A B, ad chordam F D, e&longs;t &longs;e&longs;qui­<lb/> altera, & con&longs;equenter etiam earum &longs;oni erunt in eadem ratione. </s> <s id="s.004224">&longs;e&longs;quial­<lb/> tera autem proportio e&longs;t, quando maior quantitas A B, continet minorem <lb/> F D, &longs;emel,& adhuc dimidium ip&longs;ius. </s> <s id="s.004225">vulgò quinta, quia ex prima voce, Vt, <lb/> & quinta, Sol, con&longs;tat.</s> </p> <p type="main"> <s id="s.004226">Eadem iterum chorda in quatuor æquas partes &longs;ecetur in punctis H, E, I, <lb/> <figure id="id.009.01.248.2.jpg" place="text" xlink:href="009/01/248/2.jpg"/><lb/> ita vt chorda H D, &longs;it tres quartæ <lb/> totius A D. facto deinde tactu in <lb/> H, pul&longs;entur &longs;imul A B, H D, & au­<lb/> dietur con&longs;onantia quidem, &longs;ed <lb/> duabus præcedentibus imperfe­<lb/> ctior. </s> <s id="s.004227">hæc antiquitus Diate&longs;&longs;aron, <lb/> ide&longs;t per quatuor, &longs;ubaudi chor­<lb/> das, aut voces, &longs;imili ratione, qua &longs;uperiores dicta fuit. </s> <s id="s.004228">re&longs;pectu autem pro­<lb/> portionis chordarum, ac &longs;onorum dicitur &longs;e&longs;quitertia, quia maior A B, mi­<lb/> norem H D, &longs;emel, & adhuc tertiam ip&longs;ius partem continet. </s> <s id="s.004229">vulgò nunc di­<lb/> citur, quarta, quid inter primam vocem, Vt, & quartam, Fa, reperiatur. <lb/> </s> <s id="s.004230">Iam verò &longs;i in eadem chorda C D, ponantur puncta H, & F, vt in præcedenti <lb/> figura, & &longs;imul duæ chordæ H D, & F D, hoc e&longs;t tres quartæ, & duæ tertiæ, <lb/> arithmeticis rationibus comparentur, reperiemus maiorem H D, ad mi­<lb/> norem F D, proportionem habere &longs;e&longs;quioctauam, & &longs;onum maioris H D, <lb/> ad minorem F D, eandem habebit rationem, hoc e&longs;t, vt nouis vocabulis <lb/> vtamur inter Fa, & Sol, e&longs;&longs;e &longs;e&longs;quioctauam proportionem; &longs;i autem &longs;imul <lb/> hi duo &longs;oni exaudiantur di&longs;&longs;onantiam auribus facient. </s> <s id="s.004231">di&longs;tantiam porrò <lb/>hanc inter voces Fa, Sol, &longs;iue inter chordas H D, F D, &longs;iue inter duo inter­<lb/> ualla H D, F D, harmonici, quorum ratio e&longs;&longs;et &longs;e&longs;quioctaua Tonum appel­<lb/> larunt. </s> <s id="s.004232">Diui&longs;erunt po&longs;tea totam C D, in nouem partem æquales, quarum <lb/> prima &longs;it in puncto K, diui&longs;a, ita vt tota C D, ad reliquam K D, quæ conti­<lb/> net octo partes ex illis, habeat rationem &longs;e&longs;quioctauam, hoc pariter inter­<lb/>uallum Toni erit, cuius primum &longs;onum, ide&longs;t totius C D, nunc dicunt, Vt, <lb/> &longs;ecundum verò &longs;onum reliquæ chordæ K D, dicunt, Re Reliquam po&longs;tea <lb/> K D, &longs;imiliter in nouem partes diui&longs;erunt, cuius prima pars &longs;it in puncto L, <lb/> notata. </s> <s id="s.004233">& eadem ratione inter chordam K D, & chordam L D, <expan abbr="earum&qacute;">earumque</expan>; &longs;o­<lb/> nos erit &longs;e&longs;quioctaua proportio. </s> <s id="s.004234">&longs;onum chordæ L D, nunc appellant, Mi. <pb pagenum="249" xlink:href="009/01/249.jpg"/>Interuallum verò, quod inter chordam L D, & chordam H D, remanet, non <lb/> habet proportionem &longs;e&longs;quioctauam, &longs;ed dimidio ferè minorem, & propte­<lb/> rea huiu&longs;modi interuallum &longs;emitonium, & etiam die&longs;is, &longs;iue diui&longs;io, appel­<lb/> latur. </s> <s id="s.004235">Interuallum verò illud, quod inter puncta F, & E, remanet, diui&longs;e­<lb/> runt eodem modo, quo diui&longs;um fuit &longs;patium inter C, & H, & repercerunt <lb/> ea&longs;dem iterum voces; &longs;int diui&longs;iones illæ punctis M, & N, notatæ; & pari­<lb/> ter hic etiam inter N, & E, &longs;iue inter Mi, & Fa, e&longs;t alterum &longs;emitonium. <lb/> </s> <s id="s.004236">&longs;unt igitur hæ octo voces, Vt, Re, Mi, Fa, Sol, Re, Mi, Fa, quæ totam Dia­<lb/> pa&longs;on componunt, vt enim &longs;upra dictum e&longs;t inter Vt, & Fa, <expan abbr="vltimũ">vltimum</expan>, e&longs;t con­<lb/> &longs;onantia diapa&longs;on, &longs;iue dicamus inter chordam C D, vel A B, & chordam <lb/> E D. ex interuallis autem,quæ &longs;unt inter voces, duo &longs;unt &longs;emitonia, &longs;cilicet <lb/> vnum inter Mi, & Fa, notatum literis L, H. & alterum inter vltima Mi, & <lb/> Fa, &longs;ignatum notis N, E. reliqua <expan abbr="quinq;">quinque</expan> interualla &longs;unt integri toni. </s> <s id="s.004237">Aduer­<lb/> tendum præterea e&longs;t, ab Vt, <expan abbr="v&longs;q;">v&longs;que</expan> ad primum Sol, e&longs;&longs;e con&longs;onantiam Dia­<lb/> pente, quæ continet tria interualla toniaca, & vnum &longs;emitonium; in vni­<lb/> uer&longs;um tamen &longs;unt <expan abbr="quinq;">quinque</expan> voces, Vt, Re, Mi, Fa, Sol.</s> </p> <p type="main"> <s id="s.004238">Notandum etiam, quod à Sol, <expan abbr="v&longs;q;">v&longs;que</expan> ad vltimum Fa, &longs;unt quatuor voces, <lb/> Sol, Re, Mi, Fa,quæ omninò &longs;imiles &longs;unt primis quatuor, Vt, Re, Mi Fa. <!-- KEEP S--></s> <s id="s.004239">hæ <lb/> tamen &longs;unt grauiores, illæ verò acutiores, & quemadmodum ab Vt, ad pri­<lb/> mum Fa, e&longs;t Diate&longs;&longs;aron, ita etiam à Sol, <expan abbr="v&longs;q;">v&longs;que</expan> ad vltimum Fa, e&longs;t altera Dia­<lb/> te&longs;&longs;aron. </s> <s id="s.004240">Ex quibus vltimò notandum &longs;equitur, duas con&longs;onantias Diate&longs;­<lb/> &longs;aron, & Diapente totam con&longs;tituere Diapa&longs;on: &longs;iue Diapa&longs;on diuidi in <lb/> vnam Diate&longs;&longs;aron, & vnam Diapente; nam ab Vt, ad Sol, e&longs;t Diapente; à <lb/> Sol, verò in Fa, po&longs;tremum, e&longs;t Diate&longs;&longs;aron. <!-- KEEP S--></s> <s id="s.004241">quod etiam aliter con&longs;tabit, &longs;i <lb/> dicamus ab Vt, ad primum Fa, e&longs;&longs;e Diate&longs;&longs;aron, vt patet ex chordæ diui&longs;io­<lb/> ne: ex Fa, autem primò ad vltimum Fa, e&longs;&longs;e Diapente: vt manife&longs;tum e&longs;t <lb/> ex quatuor ip&longs;ius interuallis, quorum tria &longs;unt Toni, reliquum verò &longs;emito­<lb/> nium, quæ etiam erant in altera Diapente inter Vt, & Sol, contenta.</s> </p> <p type="main"> <s id="s.004242">Nunc rur&longs;us fiat tactus in I, e&longs;t autem I D, quarta pars totius C D. per­<lb/> cutiantur &longs;imul A B, & I D; <expan abbr="edetur&qacute;">edeturque</expan>; &longs;uaui&longs;&longs;ima con&longs;onantia Di&longs;diapa&longs;on <lb/> appellata, propterea quod ex duabus Diapa&longs;on con&longs;tet; quarum prima e&longs;t <lb/> inter A B, &longs;iue C D, & E D: &longs;ecunda verò inter ip&longs;am E D, & I D. harum <lb/> enim proportio dupla e&longs;t, &longs;icuti illarum. </s> <s id="s.004243">proportio huius e&longs;t quadrupla, vt <lb/> ex diui&longs;ione con&longs;tat; vulgò dicitur decimaquinta, quia à primo Vt, <expan abbr="v&longs;q;">v&longs;que</expan> ad <lb/> hanc vocem,quæ etiam Fa, nominatur, e&longs;&longs;ent quindecim voces, &longs;i interual­<lb/> lum E I, eo modo diuideretur, quo diui&longs;um e&longs;t primum C E.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.004244">Po&longs;tremò &longs;it G D, tertia pars totius C D, <expan abbr="fiat&qacute;">fiatque</expan>; in G, tactus, pul&longs;entur &longs;i­<lb/>mul A B, G D. audietur &longs;uauis con&longs;onantia, quæ Diapa&longs;ondiapente nomi­<lb/> natur, quod con&longs;tet ex vna Diapa&longs;on contenta interuallo C E, &longs;iue duabus <lb/> chordis C D, E D, & vna Diapente contenta interuallo E G, &longs;iue chordis <lb/> E D, G D; nam chorda E D, ad chordam G D, &longs;e&longs;quialtera e&longs;t; quæ propor­<lb/> tio naturam ip&longs;ius diapente con&longs;tituit huius con&longs;onantiæ proportio e&longs;t tri­<lb/> pla, e&longs;t enim chorda A B, vel C D, tripla ip&longs;ius G D. vulgò dicitur duode­<lb/>cima, cò quod inter Vt, & Sol, notatum litera G, &longs;int duodecim voces, &longs;i in­<lb/> teruallum E O, &longs;uas recipiat diui&longs;iones. </s> <s id="s.004245">ex quibus omnibus manife&longs;tum e&longs;t <lb/> auris experimento, e&longs;&longs;e omninò quinque con&longs;onantias, tres &longs;implices Dia­ <pb pagenum="250" xlink:href="009/01/250.jpg"/>pa&longs;on, Diapente, Diate&longs;&longs;aron; duas verò compo&longs;itas, Di&longs;diapa&longs;on, & Dia­<lb/> pa&longs;ondiapente.</s> </p> <p type="main"> <s id="s.004246">Illud po&longs;tremò loco non ignorandum, aliter has voces Vt, Re, &c. </s> <s id="s.004247">vete­<lb/> res illos Græcos denomina&longs;&longs;e, nam primam, ide&longs;t graui&longs;&longs;imam vocem, &longs;iue <lb/> chordam, quam modò Vt, dicunt, eam ip&longs;i Hypaten vocarunt, & reliquas <lb/> ordine &longs;equenti.</s> </p> <figure id="id.009.01.250.1.jpg" place="text" xlink:href="009/01/250/1.jpg"/> <p type="main"> <s id="s.004248">Vt, Hypate — ide&longs;t Principalis.</s> </p> <p type="main"> <s id="s.004249">Re, Parhypate —— Po&longs;tprincipalis.</s> </p> <p type="main"> <s id="s.004250">Mi, Lychanos —— Index.</s> </p> <p type="main"> <s id="s.004251">Fa, Me&longs;e ———— Media.</s> </p> <p type="main"> <s id="s.004252">Sol, Parame&longs;e —— Po&longs;tmedia.</s> </p> <p type="main"> <s id="s.004253">Re, Trite———— Tertia.</s> </p> <p type="main"> <s id="s.004254">Mi, Paranete —— Antepenultima.</s> </p> <p type="main"> <s id="s.004255">Fa, Nete ———— Vltima, vel &longs;uprema.</s> </p> <p type="main"> <s id="s.004256">His paucis ex magno Mu&longs;icæ Campo decerptis problematum declara­<lb/> tionem &longs;atis in&longs;tructi aggrediamur.</s> </p> <p type="main"> <s id="s.004257"><arrow.to.target n="marg352"/></s> </p> <p type="margin"> <s id="s.004258"><margin.target id="marg352"/>360</s> </p> <p type="main"> <s id="s.004259">Problema 3. <emph type="italics"/>(Cur maximè in cantando Parhypatem, vox rumpi non minus &longs;o­<lb/> leat, quam in Nete, &longs;upremisqué quamquam cùm interuallo ampliori? </s> <s id="s.004260">An quod eius <lb/> cantus & perdifficilis est, & cantandi primordium obtinet? </s> <s id="s.004261">difficilis autem pro­<lb/> pter inten&longs;ionem, & compre&longs;&longs;ionem vocis e&longs;t, quibus in rebus e&longs;t labor, & difficul­<lb/> tas: corrumpi autem quæqué maximè &longs;olent, quoties labore acrius opprimuntur)<emph.end type="italics"/><lb/> Quærit Ari&longs;t. cur qui eam vocem cantant, quæ Parhypate dicitur, non mi­<lb/> nus defatigetur, <expan abbr="vocem&qacute;">vocemque</expan>; perdat, quam qui Neten, aut aliam ex acutiori­<lb/> bus vocibus, ip&longs;i Nete proximam, vt Paranetem. </s> <s id="s.004262">ratio dubitandi e&longs;t, quia <lb/> Parhypate e&longs;t vox grauis, & quæ paruo interuallo di&longs;tat à graui&longs;&longs;ima om­<lb/> nium Hypate: at verò Nete, <expan abbr="aliæ&qacute;">aliæque</expan>; illi viciniores &longs;unt acuti&longs;&longs;imæ, <expan abbr="magnis&qacute;">magnisque</expan>; <lb/> ab Hypate di&longs;tant interuallis. </s> <s id="s.004263">Re&longs;pondet, id accidere ob difficultatem, quæ <lb/> in eius cantu reperitur; quæ difficultas laborem infert, labor autem vocem <lb/> <expan abbr="corrũpit">corrumpit</expan>. </s> <s id="s.004264">&longs;ed vnde hæc difficultas? </s> <s id="s.004265">re&longs;pondet inde prouenire, quia hæc vox <lb/> cantandi principium e&longs;t. </s> <s id="s.004266">vbi per cantandi principium puto ip&longs;um intellige­<lb/>re &longs;emitonium, &longs;iue die&longs;im, nam, vt ip&longs;e ait primo <lb/> <figure id="id.009.01.250.2.jpg" place="text" xlink:href="009/01/250/2.jpg"/><lb/> re &longs;emitonium, &longs;iue die&longs;im, nam, vt ip&longs;e ait primo <lb/> Po&longs;ter. cap. 38. die&longs;is h&etail;c, &longs;iue &longs;emitonium dicitur <lb/> principium cantus, quia minimum e&longs;t omnium in­<lb/> teruallorum, quæ voce po&longs;&longs;int exprimi: <expan abbr="atq;">atque</expan> ex eo <lb/> alia interualla con&longs;tant, <expan abbr="e&longs;t&qacute;">e&longs;tque</expan>; veluti illorum ele­<lb/> mentum. </s> <s id="s.004267">vide illius loci explanationem. </s> <s id="s.004268">Iam ve­<lb/> rò difficile admodum e&longs;&longs;e cantare per &longs;emitonia, <lb/> per&longs;picuum e&longs;t cantoribus, quod oporteat, vt ait <lb/> Ari&longs;t. vocem, quantum opus e&longs;t, intendere, &longs;imul <lb/> ac comprimere, ne &longs;cilicet in maius iu&longs;to inter­<lb/> uallum erumpat.</s> </p> <p type="main"> <s id="s.004269">Verum dubitabis, cur Ari&longs;t. ponat &longs;emitonium <lb/> ab Hypate ad Parhypatem, cùm &longs;uperius <expan abbr="dictũ">dictum</expan> &longs;it, <lb/>&longs;emitonium e&longs;&longs;e tantummodo inter Mi, & Fa, ide&longs;t <lb/> inter Lychanon, & Me&longs;en. <!-- KEEP S--></s> <s id="s.004270">Scias igitur alios aliter <lb/> <expan abbr="interuallorũ">interuallorum</expan> ordinem feci&longs;&longs;e: inter quos Lychaon <pb pagenum="251" xlink:href="009/01/251.jpg"/>antiqui&longs;&longs;imus Mu&longs;icus &longs;ic ea di&longs;po&longs;uit; vt in præ&longs;enti ordine, vbi, vt vides <lb/> inter hypatem, & perhypatem, e&longs;t &longs;emitonij interuallum. </s> <s id="s.004271">ad hunc Lichaonis <lb/>igitur ordinem videtur Ari&longs;t. re&longs;pexi&longs;&longs;e. </s> <s id="s.004272">ego verò &longs;uperius communiorem <lb/> viam, nec adeò antiquam &longs;equutus &longs;um. <!-- KEEP S--></s> <s id="s.004273">ex Boethio, & Zarlino.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.004274"><arrow.to.target n="marg353"/></s> </p> <p type="margin"> <s id="s.004275"><margin.target id="marg353"/>361</s> </p> <p type="main"> <s id="s.004276">Probl. 4. <emph type="italics"/>(Séd cur hæc difficile, hypate facilè cantatur, cum non ni&longs;i die&longs;i di­<lb/> &longs;crepent? </s> <s id="s.004277">An quod hypate remi&longs;&longs;ior e&longs;t, <expan abbr="atq;">atque</expan> etiam læuius à con&longs;titutione a&longs;cendi­<lb/> tur? </s> <s id="s.004278">hæc eadem cau&longs;a est, cur ad vnam cantari videantur, quæ ad hanc parane­<lb/> temqué cantantur. </s> <s id="s.004279">agendum enim e&longs;t, cum intentione, conditionequé moribus idonea <lb/>pro voluntate. </s> <s id="s.004280">quæ verò cau&longs;a e&longs;t, vt cum con&longs;onantia &longs;it?)<emph.end type="italics"/> Ide&longs;t, cur parhypa­<lb/> te, de qua in præcedenti problemate dictum e&longs;t, difficilius canitur, quam <lb/> hypate, cùm tamen ab inuicem di&longs;tent non ni&longs;i &longs;emitonij interuallo? </s> <s id="s.004281">for&longs;i­<lb/> tan id accidit, quia hypate e&longs;t remi&longs;&longs;ior, cùm &longs;it omnium graui&longs;&longs;ima, hoc <lb/> e&longs;t, non e&longs;t opus in ea decantanda, ita vocem intendere, quemadmodum in <lb/> parhypate, quæ acutior e&longs;t. </s> <s id="s.004282">reliqua huius loci verba exi&longs;timo e&longs;&longs;e admodum <lb/> mendo&longs;a tam græcè, quàm latinè, cùm nonnulla in eis &longs;int, quæ nullo pacto <lb/> ad rem faciunt, præ&longs;ertim extrema &longs;ententia. </s> <s id="s.004283">& con&longs;ultius e&longs;&longs;e exi&longs;timo fa­<lb/> teri me ea non intelligere, quam ea violenter huc, <expan abbr="atq;">atque</expan> illuc diducere.</s> </p> <p type="main"> <s id="s.004284"><arrow.to.target n="marg354"/></s> </p> <p type="margin"> <s id="s.004285"><margin.target id="marg354"/>362</s> </p> <p type="main"> <s id="s.004286">Probl. 5. <emph type="italics"/>(Cur &longs;uauius cantilenam, quam nouimus, audire &longs;olemus, quam eam, <lb/> quam ignoramus? </s> <s id="s.004287">Vtrum, quia cùm quod cantatur, agno&longs;cimus, tunc magis ma­<lb/> nife&longs;tus e&longs;t, qui veluti &longs;copum a&longs;&longs;equitur. </s> <s id="s.004288">id autem contemplatu &longs;uaue e&longs;t. </s> <s id="s.004289">An quia <lb/> di&longs;cere &longs;eu intelligere &longs;uaue e&longs;t, cuius ratio e&longs;t, quia hoc quidem ver&longs;atur in acci­<lb/> pienda &longs;cientia, illud verò in vtenda. </s> <s id="s.004290">præterea &longs;olitum in&longs;olito &longs;uauius e&longs;t?)<emph.end type="italics"/> Vbi <lb/> Theodorus Gaza po&longs;uerat, calcem re&longs;titui ex græco textu, &longs;copum, vt res <lb/> ip&longs;a etiam po&longs;tulabat. </s> <s id="s.004291">Porrò tres affert rationes, cur &longs;uauius &longs;it notam <lb/> iam cantilenam au&longs;cultare, quàm ignotam. </s> <s id="s.004292">prima e&longs;t, quia, cùm cogno&longs;ci­<lb/> mus, quod cantatur, tunc &longs;copus, ac finis, in quem cantor, ac tota tendit <lb/> cantilena manife&longs;tus e&longs;t, <expan abbr="&longs;ic&qacute;">&longs;icque</expan>; eam melius percipimus; quia dum ip&longs;am au­<lb/> dimus, &longs;copum etiam ip&longs;ius, cuius contemplatio iucunda e&longs;t, contempla­<lb/> mur. </s> <s id="s.004293">quemadmodum iucundius e&longs;t &longs;pectare currentem canem, & iam cap­<lb/>tantem feram, &longs;i &longs;imul feram etiam ip&longs;am, quæ &longs;copus ip&longs;ius e&longs;t, quam &longs;i fe­<lb/> ram minimè videamus. </s> <s id="s.004294">&longs;ecunda e&longs;t, quia ip&longs;um di&longs;cere, ac intelligere dele­<lb/> ctabile e&longs;t, & huius quidem ratio manife&longs;ta e&longs;t tam in accipienda, quàm in <lb/> vtenda &longs;cientia: dum igitur cantilenam <expan abbr="primũ">primum</expan> audimus, quam prius igno­<lb/> rabamus, &longs;cientiam illius tantum accipimus; dum autem notam au&longs;culta­<lb/> mus, non &longs;olum ip&longs;am, &longs;ed ip&longs;ius etiam &longs;copum contemplantes, ea perfectè <lb/> vtimur. </s> <s id="s.004295">tertia ratio e&longs;t, quia res &longs;olitæ plerumque, quam in&longs;olitæ iucundio­<lb/> res exi&longs;tunt.</s> </p> <p type="main"> <s id="s.004296">Probl. 6. & per &longs;e &longs;atis clarum e&longs;t; & ad harmonicam non &longs;pectat.</s> </p> <p type="main"> <s id="s.004297"><arrow.to.target n="marg355"/></s> </p> <p type="margin"> <s id="s.004298"><margin.target id="marg355"/>363</s> </p> <p type="main"> <s id="s.004299">Probl. 7. <emph type="italics"/>(Cur veteres cum &longs;eptem fidibus concentus di&longs;ponerent, hypaten, non <lb/> neten relinquebant? </s> <s id="s.004300">An falsò id dicitur (earum enim <expan abbr="vtramq;">vtramque</expan> &longs;eruarunt; &longs;ed tri­<lb/> ten adimere &longs;olebant) An non? </s> <s id="s.004301">&longs;ed quia grauior &longs;onum pote&longs;t acutioris. </s> <s id="s.004302">ergò hypa­<lb/> te magis antiphonum, quam nete reddebat; nam vt acutum vim de&longs;iderat plenio­<lb/> rem, &longs;ic graue exprimi facilius pote&longs;t)<emph.end type="italics"/> Propter quid, inquit, antiqui&longs;&longs;imi Mu­<lb/>&longs;icorum cùm ex &longs;eptem tantum chordis mu&longs;ica in&longs;trumenta <expan abbr="componer&etilde;t">componerent</expan>, <lb/> neten non hypatèn omittebant? </s> <s id="s.004303">&longs;upra octo voces, &longs;eu chordas recen&longs;ui, <expan abbr="ra-tionem&qacute;">ra­<lb/> tionemque</expan>; ip&longs;arum, vnà cum antiquis appellationibus explicaui, quarum <pb pagenum="252" xlink:href="009/01/252.jpg"/><figure id="id.009.01.252.1.jpg" place="text" xlink:href="009/01/252/1.jpg"/><lb/> prima e&longs;t hypate, vltima verò note, quibus re­<lb/> petitis facilè e&longs;t intelligere, quod re&longs;pondet <lb/> Ari&longs;t. <!-- KEEP S--></s> <s id="s.004304">Re&longs;pondet enim id non omninò verum <lb/> cen&longs;eri debere, nam vtramque quidem hypa­<lb/> tem, &longs;cilicet & neten a&longs;&longs;umebant; triten verò <lb/> <expan abbr="omittebãt">omittebant</expan>. </s> <s id="s.004305">quibus verbis ordinem, quem Ter­<lb/> pander inuexit, in&longs;inuare videtur, nam vt ait <lb/> Pau&longs;anias in Lachonicis, Timothæus quatuor <lb/> chordas, antiquis &longs;eptem chordis à Terpan­<lb/> dro ordinatis addidit, quarum &longs;eptem chor­<lb/> darum hic erat ordo, & nomenclatura, & in­<lb/> terualla; è quibus triten ademptam videre e&longs;t, <lb/> vt Ari&longs;t. innuit.</s> </p> <p type="main"> <s id="s.004306">Subdit po&longs;tea aliam rationem dicens; fortè &longs;atius e&longs;&longs;e dicere neten qui­<lb/> dem antiquitus fui&longs;&longs;e prætermi&longs;&longs;am, relicta hypate, co quod hypate, cum <lb/> di&longs;tet per octauam, &longs;eu per Diapa&longs;on à Nete, erat illius Antiphonum, ide&longs;t, <lb/> erat vox eiu&longs;dem naturæ, & ferè eadem cum ea. </s> <s id="s.004307">&longs;ciendum. </s> <s id="s.004308">n. </s> <s id="s.004309">Mu&longs;icos docere <lb/> voces omnes <expan abbr="v&longs;q;">v&longs;que</expan> ad &longs;eptem e&longs;&longs;e ab inuicem differentes, & diuer&longs;æ naturæ <lb/>cùm autem ad octauam ventum e&longs;t, tunc redire voces iterum eiu&longs;dem na­<lb/> turæ, & ferè eædem cum præcedentibus: ita vt octaua &longs;it eadem cum pri­<lb/> ma, & nona cum &longs;ecunda, & decima cum tertia, & &longs;ic de reliquis, quæ om­<lb/> nes di&longs;tant per octonarium, &longs;ine &longs;unt octauæ. </s> <s id="s.004310"><expan abbr="dicebantur&qacute;">dicebanturque</expan>; huiu&longs;modi voces <lb/> Antiphonæ, qua&longs;i contra&longs;onantes, vel vici&longs;&longs;im &longs;onantes (vide infra annota­<lb/> ta in 14. Probl.) quarum vox grauior, cùm dupla &longs;it, acutioris edit &longs;onum, <lb/> qui duplus e&longs;t &longs;oni acutioris, &longs;iue qui bis in &longs;e continet <expan abbr="&longs;onũ">&longs;onum</expan> acutioris. </s> <s id="s.004311">Qua­<lb/> re relicta hypate, & dempta nete, quarum illa e&longs;t huius dupla, nihil ferè ad­<lb/> emptum fui&longs;&longs;e videbatur, cùm &longs;onus nete contineretur in &longs;ono hypates. </s> <s id="s.004312">hac <lb/> igitur de cau&longs;a veteres illi netem potius, quam hypatem omi&longs;erunt. </s> <s id="s.004313">præte­<lb/> rea dici pote&longs;t, eos hypatem potius retinui&longs;&longs;e, quia cùm remi&longs;&longs;ior &longs;it, fa­<lb/> cilius cantatur; Nete autem cùm acuti&longs;&longs;ima &longs;it maiore vi, vt cantetur, <lb/> opus habet.</s> </p> <p type="main"> <s id="s.004314"><arrow.to.target n="marg356"/></s> </p> <p type="margin"> <s id="s.004315"><margin.target id="marg356"/>364</s> </p> <p type="main"> <s id="s.004316">Probl. 8. <emph type="italics"/>(Cur grauis &longs;onum pote&longs;t acutæ? </s> <s id="s.004317">An quia maius e&longs;t; etenim quemad­<lb/> modum graue obtu&longs;o, &longs;ic acutum acuto angulo &longs;imile e&longs;t)<emph.end type="italics"/> Ex intelligentia præ­<lb/>cedentis problematis, præ&longs;ens fatis ferè clarum e&longs;t: imò ex illo ortum i&longs;tud <lb/> e&longs;&longs;e videtur. </s> <s id="s.004318">quærit, cur vox grauior po&longs;&longs;it vocem acutiorem, &longs;iuè illi æqui­<lb/> ualeat, vt dictum e&longs;t, in præcedenti de Antiphonis. </s> <s id="s.004319">cau&longs;a e&longs;t, inquit, quia <lb/>grauis maior e&longs;t, quàm acuta; grauis enim oritur à maiori corpore, vt à <lb/> chorda maiori, vt &longs;uperius apparuit; vel à maiori canna, vt patet in Orga­<lb/> nis. </s> <s id="s.004320">voces autem, & &longs;oni eandem habent cum corporibus &longs;onantibus pro­<lb/> portionem. </s> <s id="s.004321">quare grauis &longs;onus maior e&longs;t acuto; <expan abbr="cũ">cum</expan> igitur maior &longs;it, eum in <lb/> &longs;e continebit, <expan abbr="eum&qacute;">eumque</expan>; poterit. </s> <s id="s.004322">e&longs;t enim grauis &longs;onus &longs;imilis angulo obtu&longs;o, & <lb/> acutus &longs;onus &longs;imilis acuto angulo: obtu&longs;us autem angulus maior e&longs;t acuto, <lb/> <expan abbr="eum&qacute;">eumque</expan>; in &longs;e continet. </s> <s id="s.004323"><expan abbr="eum&qacute;">eumque</expan>; propterea pote&longs;t.</s> </p> <p type="main"> <s id="s.004324"><arrow.to.target n="marg357"/></s> </p> <p type="margin"> <s id="s.004325"><margin.target id="marg357"/>365</s> </p> <p type="main"> <s id="s.004326">Probl. 9. <emph type="italics"/>(Cur &longs;olitarias cantilenas &longs;uauius audire &longs;olemus, &longs;i ad tybiam, aut <lb/>ad lyram vnam cantatur, cùm tamen ad fides, canticumqué idem, modo <expan abbr="vtroq;">vtroque</expan> per­<lb/> agatur? </s> <s id="s.004327">nam &longs;i idem ita amplius fit, plus ad plures tibias, <expan abbr="atq;">atque</expan> etiam &longs;uauius e&longs;&longs;e<emph.end type="italics"/> <pb pagenum="253" xlink:href="009/01/253.jpg"/><emph type="italics"/>oportet? </s> <s id="s.004328">An quoniam manife&longs;tior e&longs;t &longs;copus eius, cùm ad vnam lyram, vel tibiam <lb/> cantatur? </s> <s id="s.004329">ad plures verò &longs;uauitas &longs;eruari non pote&longs;t, cùm cantilena offu&longs;cetur, te­<lb/> taqué penè deleatur)<emph.end type="italics"/> Cur &longs;olitariæ cantilenæ (quas Græci Monodias appella­<lb/> bant, & ab vna tantum per&longs;ona cantabantur) &longs;uauiores &longs;unt, &longs;i ad lyram <lb/> vnam, vel ad tibiam vnam, quam &longs;i ad plures lyras, aut tibias accinantur; <lb/>cùm tamen vtroque modo, ide&longs;t tam ad lyram, quàm ad tibiam, & tam ad <lb/> vnam, quàm ad plures idem canticum per&longs;onetur. </s> <s id="s.004330">& cùm idem canticum <lb/> ad plures lyras, aut tibias decantatum in maius exere&longs;cat, deberet etiam <lb/> &longs;uauius auribus accidere. </s> <s id="s.004331">Re&longs;pondet fortè monodiam iucundiorem e&longs;&longs;e ad <lb/>vnum in&longs;trumentum, quia ip&longs;ius &longs;copus tunc manife&longs;tior e&longs;t: pluribus au­<lb/> tem adhibitis in&longs;trumentis &longs;uauitas &longs;eruari nequit, cùm cantilena tot &longs;onis <lb/> offu&longs;cetur, ac tota penè obruatur. </s> <s id="s.004332">Verumenimuerò vtinam recentiores Mu­<lb/> &longs;icæ contrapunti&longs;tæ, i&longs;ta, quæ hoc loco ab Ari&longs;t tradita &longs;unt ritè animad­<lb/> uertent. </s> <s id="s.004333">non <expan abbr="vtiq;">vtique</expan> tanta verborum, <expan abbr="atq;">atque</expan> rithmorum confu&longs;ione, <expan abbr="atq;">atque</expan> pluri­<lb/> morum in&longs;trumentorum &longs;trepitu gauderent: ex quibus eorum cantilena ita <lb/> offu&longs;catur, vt nulla omninò reddatur; <expan abbr="&longs;olus&qacute;">&longs;olusque</expan>; &longs;trepitus quidam ingens aures <lb/> obtundat; quem modum non &longs;ine huius ætatis dedecore, futura &longs;ecula non <lb/> &longs;ine irri&longs;ione mirabuntur: non aliter, ac nos &longs;emipri&longs;cæ ætatis architectu­<lb/> ram, & &longs;culpturam irridere &longs;olemus.</s> </p> <p type="main"> <s id="s.004334"><arrow.to.target n="marg358"/></s> </p> <p type="margin"> <s id="s.004335"><margin.target id="marg358"/>366</s> </p> <p type="main"> <s id="s.004336">Probl. 10. &longs;atis clarum ex &longs;e. </s> <s id="s.004337">illud &longs;olum notatione dignum e&longs;t, Teretiza­<lb/> re, quod e&longs;t canere, vt modo aiunt, non verba, &longs;ed notas, fui&longs;&longs;e idem, quod <lb/>nunc &longs;olmifationem, aut lalagen decantare.</s> </p> <p type="main"> <s id="s.004338"><arrow.to.target n="marg359"/></s> </p> <p type="margin"> <s id="s.004339"><margin.target id="marg359"/>367</s> </p> <p type="main"> <s id="s.004340">Probl. 11. <emph type="italics"/>(Cur vox, aut &longs;onus de&longs;inens acutoir fit? </s> <s id="s.004341">An quia minor, vt quæ fa­<lb/> cta &longs;it imbecillior?)<emph.end type="italics"/> lege quæ in probl. </s> <s id="s.004342">8. annotata &longs;unt, & huic quoque &longs;atis­<lb/> factum erit.</s> </p> <p type="main"> <s id="s.004343"><arrow.to.target n="marg360"/></s> </p> <p type="margin"> <s id="s.004344"><margin.target id="marg360"/>368</s> </p> <p type="main"> <s id="s.004345">Probl. 12. <emph type="italics"/>(Quamobrem quæ grauior è fidibus eft &longs;emper modulationem, aut <lb/> cantilenam &longs;u&longs;cipit: nam &longs;i oporteat canere parame&longs;en cùm &longs;ola me&longs;e, nihilominus <lb/> medium gignetur: &longs;i verò me&longs;en, nece&longs;&longs;arium ambo, &longs;ola non gignitur? </s> <s id="s.004346">An quia <lb/> graue magnum e&longs;t, itaque validius: & in magno paruum ine&longs;i. </s> <s id="s.004347">& per interceptio­<lb/> nem duæ netæ ex hypate fiunt)<emph.end type="italics"/> Vt facilè præ&longs;ens problema intelligatur, ha­<lb/> bendus e&longs;t ob oculos ordo antiquarum chordarum, quem &longs;upra ante pro­<lb/> blema tertium expo&longs;ui. </s> <s id="s.004348">Quærit cur fidicines &longs;olerent modulationem tam <lb/> cum cautu, quàm &longs;ine cantu à graui&longs;&longs;ima omnium chordarum exordiri:<lb/> ide&longs;t primam omnium graui&longs;&longs;imam chordam pul&longs;are; vt ip&longs;a reliquis acu­<lb/> tioribus, qua&longs;i dux præiret, quam reliquæ &longs;equerentur: & &longs;i oporteat cane­<lb/> re parame&longs;en vnà cùm me&longs;e, quæ grauior e&longs;t, gignitur, non &longs;onus parame­<lb/> &longs;es, &longs;ed ip&longs;ius me&longs;es redditur. </s> <s id="s.004349">&longs;i verò oporteat canere me&longs;en, id non pote&longs;t <lb/> fieri per &longs;olam parame&longs;en, &longs;ed <expan abbr="vtraq;">vtraque</expan> nece&longs;&longs;aria e&longs;t, vel &longs;altem ip&longs;a me&longs;e. <lb/> </s> <s id="s.004350">Ratio huius, inquit, e&longs;t, quia quod graue e&longs;t, magnum e&longs;t, & proinde acuto <lb/> etiam validius. </s> <s id="s.004351">præterea in magno etiam paruum ine&longs;t: grauior igitur vox <lb/> maior e&longs;t, ac validior, quàm acuta, vt &longs;uperius explicatum e&longs;t; meritò igi­<lb/> tur &longs;onus grauior pr&etail;ire debet, <expan abbr="atq;">atque</expan> ad modulationem alios prouocare, cùm <lb/> reliquas &longs;ecum tanquam partes proprias naturaliter trahat. </s> <s id="s.004352">quando autem <lb/> parame&longs;e, ac me&longs;e &longs;imul canuntur, tunc me&longs;e &longs;ola videtur exaudiri; quia <lb/> cùm ip&longs;a grauior &longs;it, quàm parame&longs;e, erit etiam ip&longs;a maior, ac validior, & <lb/>propterea &longs;onus parame&longs;es in &longs;ono me&longs;es euane&longs;cit, &longs;iue &longs;uperuacaneus e&longs;t,<pb pagenum="254" xlink:href="009/01/254.jpg"/>At verò &longs;ola parame&longs;e nequit præter proprium &longs;onum, etiam &longs;onum me&longs;es <lb/> efficere; quia cùm parame&longs;e &longs;it acutior, quàm me&longs;e, vt patet ex præceden­<lb/> tibus, erit etiam ip&longs;a minor, ac imbecillior: idcircò ad &longs;onum me&longs;es effi­<lb/> ciendum, aut me&longs;e cum parame&longs;e, aut &longs;altem &longs;ola me&longs;e nece&longs;&longs;aria e&longs;t. </s> <s id="s.004353">quòd <lb/> autem grauior &longs;onus &longs;it acuto maior, hinc patet, quia duæ netæ in hypate <lb/> continentur; &longs;i enim &longs;onus hypates bifariam diuidatur, v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;i flatus ex ali­<lb/> qua graui&longs;&longs;ima canna exiens ita intercipiatur, vt medius tantum per can­<lb/> nam effletur, fit &longs;onus ex hypate nete, ex dimidio nimirum flatu hypates fit <lb/> nete; idem patet in chordis, quia dimidium alicuius chordæ, vt &longs;upra pa­<lb/> tuit, ad totam, e&longs;t nete ad hypatem. </s> <s id="s.004354">duæ igitur nete in hypate continentur <lb/> <emph type="italics"/>(Cantilenam &longs;u&longs;cipit)<emph.end type="italics"/> ide&longs;t &longs;oliti erant ad grauiorem vocem canere. </s> <s id="s.004355">hic e&longs;t <lb/> fortè &longs;en&longs;us Ari&longs;totelis.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.004356"><arrow.to.target n="marg361"/></s> </p> <p type="margin"> <s id="s.004357"><margin.target id="marg361"/>369</s> </p> <p type="main"> <s id="s.004358">Problema 13. <emph type="italics"/>(Cur in con&longs;onantia Diapa&longs;on graue quidem acuti antiphonum <lb/> accipi potest; grauis verò acutum non pote&longs;t? </s> <s id="s.004359">An maximè, quia in vtroque mo­<lb/> dus <expan abbr="vtriu&longs;q;">vtriu&longs;que</expan> contentus est? </s> <s id="s.004360">Sed &longs;i minus, certè in graui acutum e&longs;t, maius enim <lb/> graue e&longs;t)<emph.end type="italics"/> Cur inquit, ex duobus &longs;onis, qui Diapa&longs;on efficiant, grauis qui­<lb/> dem habet in &longs;e Antiphonum acuti, ide&longs;t, in &longs;e continet etiam acutum: at <lb/> verò acutus non habet antiphonum grauis, ide&longs;t non continet in &longs;e grauem. <lb/> </s> <s id="s.004361">Ratio e&longs;t, inquit, quia in <expan abbr="vtraq;">vtraque</expan> continetur &longs;onus, &longs;eu modus <expan abbr="vtriu&longs;q;">vtriu&longs;que</expan> qua­<lb/> tenus voces huius con&longs;onantiæ &longs;unt eiu&longs;dem naturæ, vt in 7. Probl. dictum <lb/> e&longs;t. </s> <s id="s.004362">Sed melius e&longs;t Dicere, quia in graui tanquam in magno acutum veluti <lb/> paruum includitur, vt paulò ante fu&longs;ius explicatum e&longs;t.</s> </p> <p type="main"> <s id="s.004363"><arrow.to.target n="marg362"/></s> </p> <p type="margin"> <s id="s.004364"><margin.target id="marg362"/>370</s> </p> <p type="main"> <s id="s.004365">Problema 14. <emph type="italics"/>(Cur Antiphonŭm con&longs;onantiæ Diapa&longs;on ita latitat, vt vni&longs;onum <lb/> e&longs;&longs;e videatur, veluti in Punico, aut homine? </s> <s id="s.004366">Quæ <expan abbr="namq;">namque</expan> po&longs;ita in acutis &longs;unt, non <lb/> vni&longs;ona, &longs;ed ex proportione &longs;ibi Diapa&longs;on concinentia re&longs;pondent? </s> <s id="s.004367">An modus pro­<lb/> portionis facit, vt &longs;onus qua&longs;i <expan abbr="id&etilde;">idem</expan> e&longs;&longs;e appareat? </s> <s id="s.004368">Proportio. </s> <s id="s.004369">n. </s> <s id="s.004370">in &longs;onis æqualitas e&longs;t; <lb/> a quale autem omne ad vnitatem <expan abbr="refer&etilde;dum">referendum</expan> e&longs;t. </s> <s id="s.004371">hoc idem in fi&longs;tolis etiam euenit, vt <lb/> falli aures po&longs;&longs;int)<emph.end type="italics"/> Quænam &longs;int voces Antiphonæ in 7. Probl. dictum e&longs;t. </s> <s id="s.004372">quod <lb/> ad textum attinet pro verbo, atropo, quod in Gazæ translatione legitur, <lb/> repo&longs;ui, Homine, Græcè enim e&longs;t, <foreign lang="greek">anqrwpw|,</foreign> ex quo fortè mendosè factum <lb/> e&longs;t illud, atropo. </s> <s id="s.004373">quod quid &longs;ibi velit, nu&longs;quam reperitur: Verbum præte­<lb/> rea Punicum, puto &longs;ignificare in&longs;trumentum aliquod mu&longs;icum Ph&etail;nicibus <lb/> v&longs;itatum, vel ab eis repertum, Græcè enim legitur in <foreign lang="greek">foi/nikw|</foreign>. His præmi&longs;­<lb/> &longs;is, quæritur, cur Antiphonum, ide&longs;t vocum corri&longs;pondentia in Diapa&longs;on <lb/> ita latitat, vt non duæ voces differentes, &longs;ed duæ vni&longs;onæ, fiue vni&longs;onum <lb/> videatur? </s> <s id="s.004374">vt manife&longs;tè audire e&longs;t in in&longs;trumento Punico, & in humana voce? <lb/> </s> <s id="s.004375">Dubitationis cau&longs;a e&longs;t, quia voces acutæ nullo modo cum grauioribus &longs;ibi <lb/> Antiphonis vni&longs;onæ &longs;unt, &longs;ed per octo voces ab illis in acutum di&longs;tant.</s> </p> <p type="main"> <s id="s.004376">Re&longs;pondet modum proportionis, ide&longs;t duplam proportionem, quæ inter <lb/> huiu&longs;modi voces reperitur in cau&longs;a e&longs;&longs;e, vt voces illæ videantur vni&longs;onæ. </s> <s id="s.004377">e&longs;t <lb/> enim proportio dupla (quæ forma ip&longs;ius Diapa&longs;on e&longs;t) &longs;implici&longs;sima, & pri­<lb/> ma inter omnes mu&longs;icales proportiones. </s> <s id="s.004378">dupla enim proportio e&longs;t omnium <lb/> prima, ac &longs;implici&longs;&longs;ima, reliquæ enim, vt &longs;unt tripla, &longs;elquialtera, &longs;e&longs;qui­<lb/> tertia, & huiu&longs;modi aliæ, &longs;unt ip&longs;a compo&longs;itiores. </s> <s id="s.004379">In dupla enim propor­<lb/> tione altera quantitas diuiditur tantum bifariam, vt &longs;uperius patuit: diui&longs;io <lb/>porrò bifariam, &longs;iue in partes æquales e&longs;t prima <expan abbr="omniũ">omnium</expan>, quia magis ad vni­ <pb pagenum="255" xlink:href="009/01/255.jpg"/><expan abbr="tate&etilde;">tatem</expan>, siue ad indiui&longs;um, & ad æquale accedit, cùm in partes æquas diuidat: <lb/> & cùm ad eam opus &longs;it unica tantum diuisione. </s> <s id="s.004380">In alijs proportionalibus, vt <lb/> in tripla, opus e&longs;t duabus diui&longs;ionibus, vt supra patuit: &longs;imiliter in alijs, &longs;e&longs;­<lb/> quialtera, &longs;e&longs;quitertia, opus e&longs;t pluribus diui&longs;ionibus: cùm igitur ip&longs;a præ­<lb/>cæteris magis ad æqualitatem, & vnitatem accedat, facit,vt voces ip&longs;ius <lb/>videantur ferè æquales, hoc e&longs;t ferè eædem, & vni&longs;onæ, & eiu&longs;dem naturæ: <lb/>id, quod etiam in &longs;i&longs;stolis adeò verum e&longs;t, vt aliquando aures decipiant, cùm <lb/>nimirum aures iudicent duas fi&longs;stulas e&longs;&longs;e aut vnam tantum, aut duas vni­<lb/> &longs;onas, quæ tamen re vera &longs;unt in con&longs;onantia Diapa&longs;on.<arrow.to.target n="marg363a"/></s> </p> <p type="margin"> <s id="s.004381"><margin.target id="marg363a"/>371</s> </p> <p type="main"> <s id="s.004382">Probl. 15 (Cur genus cantilenæ, quod lex apellatum e&longs;t non per anti&longs;trophos <lb/> olim agebatur, cùm tamen cæteris chorici canticis anti&longs;trophi v&longs;us non dee&longs;&longs;et? <lb/> </s> <s id="s.004383">An quod olim leges à certatoribus, & pugilibus agebantur, qui cùm iam egregiè <lb/> imitari, <expan abbr="valenterq&qacute;">valenterque</expan>; pertendere po&longs;&longs;ent, cantum prolixum, ac varium efficiebant <lb/> <expan abbr="itaq&qacute;">itaque</expan> vt verba, ita etiam moduli, <expan abbr="numeriq&qacute;">numerique</expan> variè &longs;ubinde imitationem in&longs;equeban­<lb/> tur; imitari <expan abbr="namq&qacute;">namque</expan> modulamine potius, quam vocabulis nece&longs;&longs;e e&longs;t. </s> <s id="s.004384">Quamobrem <lb/> dithryambi etiam po&longs;teaquam imitari coeperunt, anti&longs;trophis amplius non vtuntur <lb/> quamquam plurimum ante vterentur. </s> <s id="s.004385">Cuius rei cau&longs;a e&longs;t, quod olim homines li­<lb/> beri, atque ingenui &longs;olebant ip&longs;i tripudiare, atque choreas ducere: ïtaque multos <lb/> e&longs;&longs;e, qui certatorio cantu fungi po&longs;&longs;ent, erat difficile: quapropter illis in more fue­<lb/> rat, vt modulos enharmonios cantarent. </s> <s id="s.004386">Vnus enim crebrò cantilenam mutare, <lb/> <expan abbr="variamq&qacute;">variamque</expan>, contexere facilius pote&longs;t, quàm multi; & certator, quàm qui mores con­<lb/> &longs;eruat: quocirca &longs;implicius illi modulari debuerant. </s> <s id="s.004387">Anti&longs;trophus autem simplex <lb/> e&longs;t, e&longs;t enim numerus, & ab vno men&longs;uratur: hæc eadem causa e&longs;t, cur in &longs;cena nul­<lb/> li &longs;int anti&longs;trophi: in choro verò maximè. </s> <s id="s.004388">Hi&longs;trio namque &longs;imul & certator, & <lb/> imitator e&longs;t: chorus verò minus imitatur) </s> <s id="s.004389">Cur cantilenæ quædam antiquitus <lb/> leges apellarentur, infra Probl. 28. explicabitur. </s> <s id="s.004390">Anti&longs;trophon hoc loco <lb/> &longs;umitur pro &longs;tropha, &longs;trophæ autem nihil aliud &longs;unt, quàm Odarum partes <lb/> illæ &longs;ibi numerò, & genere carminum con&longs;imiles, ex quibus tota ode <expan abbr="coñ">con&longs;tat</expan>. <lb/> </s> <s id="s.004391">Dithryambi erant hymni in honorem Bacchi decantari &longs;oliti. </s> <s id="s.004392">Tandem, vt <lb/> intelligamus quidnam e&longs;&longs;ent modi enharmonij, sciendum e&longs;t veteres illos <lb/> Mu&longs;icos tria totius mu&longs;icæ genera feci&longs;&longs;e, <expan abbr="Diatonicuũ">Diatonicum</expan>, Chromaticum, Enhar­<lb/> monicum. </s> <s id="s.004393">quæ genera ab invicem di&longs;tinguebantur, &longs;ecundum variam Te­<lb/> trachordorum <expan abbr="coñ">con&longs;titutionem</expan>; ex tetrachordis enim totam &longs;eriem, &longs;eu Mo­<lb/> nochordium, &longs;eu regulam harmonicam componebant. </s> <s id="s.004394">Erat autem tetra­<lb/> chordum intervallum Diate&longs;&longs;aron, con&longs;tans ex quatuor chordis, &longs;eu voci­<lb/> bus, vt, re, mi, fa; <expan abbr="quaruũ">quarum</expan> vocum interualla vnius tetrachordi generis, vnius, <lb/> differebant ab interuallis alterius tetrachordi alterius generis, v.g. in ge­<lb/>nere Diatonico erat huiu&longs;modi tetra chordium, cuius primum interualllum <lb/> <figure id="id.009.01.255.1.jpg" place="text" xlink:href="009/01/255/1.jpg"/>erat &longs;emitonium, reliqua verò duo erant to­<lb/> ni. </s> <s id="s.004395">& à prima voce Hypate, ad vltimam Me­<lb/> &longs;en, erat con&longs;onantia Diate&longs;&longs;eron huic tetra­<lb/> chordo addebant aliud &longs;imile, mediante tono <lb/> vno inter vtrunque: ita vt ex duobus confla­<lb/> retur tota diapa&longs;on à gravi hypate, ad &longs;upre­<lb/> mam Neten. </s> <s id="s.004396">his interuallis, ac tetrachordis <lb/>in genere Diatonico cantabatur. Genus verò <pb pagenum="256" xlink:href="009/01/256.jpg"/><figure id="id.009.01.256.1.jpg" place="text" xlink:href="009/01/256/1.jpg"/><lb/> <expan abbr="chromaticũ">chromaticum</expan> inter chordas &longs;ui tetrachor­<lb/> di <expan abbr="&longs;equ&etilde;tia">&longs;equentia</expan> interualla &longs;eruabat. </s> <s id="s.004397"><expan abbr="trihemi-toniũ">trihemi­<lb/> tonium</expan> autem interuallum ex tribus &longs;emi­<lb/> tonijs con&longs;tabat, &longs;eu ex vno toto, & vno <lb/> &longs;emitonio ex duobus huiu&longs;modi tetra­<lb/> chordis &longs;uum monochordium, &longs;eu &longs;uas <lb/> octo voces, &longs;eu &longs;uam Diapa&longs;on genus <lb/> chromaticum componebat. </s> <s id="s.004398">Enharmo­<lb/> nicum tandem genus tetrachordo vtebatur, cuius interualla erant ea, quæ <lb/> &longs;equuntur.</s> </p> <figure id="id.009.01.256.2.jpg" place="text" xlink:href="009/01/256/2.jpg"/> <p type="main"> <s id="s.004399">Erat hic etiam inter hypate, & Me&longs;e Diate&longs;&longs;aron; huic aliud tetrachor­<lb/> dum pariter addebatur, vt in alijs generibus, ex quibus tota Diapa&longs;on <expan abbr="cõ-flabatur">con­<lb/> flabatur</expan>. </s> <s id="s.004400">Huiu&longs;cemodi igitur tetrachordis <expan abbr="vnumquodq;">vnumquodque</expan> genus &longs;uum &longs;y&longs;te­<lb/> ma, &longs;iue <expan abbr="con&longs;titution&etilde;">con&longs;titutionem</expan> Diapa&longs;on componebat, <expan abbr="add&etilde;do">addendo</expan> priori tetrachordo <lb/> aliud <expan abbr="tetrachordũ">tetrachordum</expan>, ita vt Me&longs;e vltima chorda primi tetrachordi, cùm Nete <lb/> vltima &longs;ecundi tetrachordi Diapente re&longs;onaret; prima verò hypate, cùm <lb/> vltima Nete Diapa&longs;on efficerent, vt &longs;uperius in &longs;erie Lychaonis videre e&longs;t.</s> </p> <p type="main"> <s id="s.004401">Ex quibus patet quinam e&longs;&longs;ent enharmonij moduli, &longs;iue interualla, qui­<lb/> bus enharmonium genus decantaretur. </s> <s id="s.004402">Sciendum præterea ex lib. 3. Mu&longs;i­<lb/> corum Ptol. <!-- REMOVE S-->modulos enharmonios fui&longs;&longs;e graues, & &longs;eueros, vt idcirco Do­<lb/> rien&longs;es, quorum modi grauitate, ac &longs;eueritate præditi erant, ip&longs;is maximè <lb/> delectarentur. </s> <s id="s.004403">Vnde etiam patere pote&longs;t enharmonios modos minimè cer­<lb/>tatorijs canticis idoneos fui&longs;&longs;e. </s> <s id="s.004404">His præmi&longs;&longs;is, &longs;ic textum facilè exponere <lb/> e&longs;t: cur cantilenæ genus illud, quod lex appellatur, non per anti&longs;trophos, <lb/> &longs;eu &longs;trophas olim agebatur, cùm tamen cæteris chor&etail;arum, ac chori can­<lb/> ticis anti&longs;trophi, &longs;eu &longs;trophæ non dee&longs;&longs;ent. </s> <s id="s.004405">Ratio huius for&longs;itan hæc e&longs;t; <lb/> quia v&longs;us anti&longs;trophorum, &longs;eu &longs;tropharum eundem &longs;emper modum per to­<lb/> tam cantilenam &longs;eruat, cùm cantilena con&longs;tet ex pluribus &longs;trophis &longs;ibi &longs;i­<lb/> milibus: quapropter &longs;tropharum v&longs;us maximè ei conuenit, qui <expan abbr="eund&etilde;">eundem</expan> &longs;em­<lb/> per morem in cantando retinet, è contra verò ei, qui varios mores, <expan abbr="variũ&qacute;">variunque</expan>; <lb/> <expan abbr="cantũ">cantum</expan> &longs;tudet efficere minimè quadrat: talis enim non indiget &longs;tatutis &longs;tro­<lb/> phis, nec rithmis, vt &longs;unt odæ, &longs;ed potius carmine libero, vt &longs;unt heroica <lb/> poemata hexametris ver&longs;ibus contexta. </s> <s id="s.004406">quia igitur olim certatores, ac pu­<lb/> giles, qui viribus pollebant, <expan abbr="qui&qacute;">quique</expan>; egregiè varios mores imitabantur; cùm <lb/> cantum varium, ac prolixum, intentum, ac remi&longs;&longs;um efficere valerent, hu­<lb/> iu&longs;modi leges decantabant, propterea nullis &longs;trophis vtebantur, vt &longs;cilicet <lb/> facilius in omnes partes po&longs;&longs;et vox, & cantus excurrere. </s> <s id="s.004407"><expan abbr="Itaq;">Itaque</expan> vt verba, ita <lb/>etiam modulos, ac numeros, prout imitatio requirebat, &longs;ubinde varios red­<lb/> debant; modulatione enim melius, quam verbis ip&longs;is imitatio perficitur. <pb pagenum="257" xlink:href="009/01/257.jpg"/>hac eadem de cau&longs;a hymni Dithyrambici, po&longs;tquam ad imitationem adhi­<lb/> beri cœperunt, vt liberius imitationi in&longs;eruirent, &longs;trophis, quibus antea, <lb/>plurimum abundabant, priuati &longs;unt. </s> <s id="s.004408">cur autem olim &longs;trophas habuerint, <lb/> quibus modo carent, cau&longs;a e&longs;t, quia olim nobiles viri &longs;olebant ip&longs;i choros, <lb/> <expan abbr="choreas&qacute;">choreasque</expan>; adire, <expan abbr="atq;">atque</expan> in ip&longs;is tripudiare, ac canere; chori autem, & choreæ <lb/> &longs;trophas &longs;emper habuerunt, in choris enim eundem &longs;emper morem, ac mo­<lb/> dum, rithmumuè con&longs;eruant; quapropter difficile erat inuenire multos, qui <lb/> certatorio, ac vario &longs;emper cantu, <expan abbr="varia&qacute;">variaque</expan>; imitatione decantarent: talis <lb/> enim cantus &longs;trophas reijcit: eadem de cau&longs;a modulos enharmonios vte­<lb/> bantur in &longs;uis canticis, quippe qui graues, ac &longs;eueri erant, <expan abbr="neq;">neque</expan> idonei va­<lb/> rijs rationibus, ac moribus. </s> <s id="s.004409">vnus enim, vt accidit in cantu certatorio can­<lb/> tilenam facilius pro libito in omnes partes immutare pote&longs;t, quàm multi, <lb/> vt &longs;olent e&longs;&longs;e in choro. </s> <s id="s.004410">& certator etiam facilius id præ&longs;tat, quam qui eun­<lb/> dem &longs;emper morem, ac modum retinet, quocirca &longs;implicius, quod fit per <lb/> &longs;trophas illi, qui in choris <expan abbr="canebãt">canebant</expan>, modulari debuerant; &longs;tropha enim &longs;im­<lb/> plex e&longs;t, <expan abbr="vno&qacute;">vnoque</expan>; tempore, ac men&longs;ura &longs;emper eadem men&longs;uratur. </s> <s id="s.004411">hæc eadem <lb/>cau&longs;a e&longs;t, cur in &longs;cena nullus, vbi variæ imitationes aguntur, in choro verò, <lb/> vbi &longs;emper eodem tenore proceditur, plurimus &longs;tropharum v&longs;us &longs;it: Hi&longs;trio <lb/> namque, quì in &longs;cena agit, & certator, & imitator &longs;imul e&longs;t; chorus autem <lb/> minus imitatur, hoc e&longs;t &longs;implici, <expan abbr="atq;">atque</expan> vniformi &longs;emper imitatione procedit.</s> </p> <p type="main"> <s id="s.004412"><arrow.to.target n="marg363"/></s> </p> <p type="margin"> <s id="s.004413"><margin.target id="marg363"/>372</s> </p> <p type="main"> <s id="s.004414">Probl. 16. <emph type="italics"/>(Qua de cau&longs;a Antiphonum &longs;uauius est &longs;ymphono? </s> <s id="s.004415">An quia in an­<lb/>tiphono manife&longs;tior est ip&longs;a con&longs;onantia, quàm eùm ad &longs;ymphoniam cantatur: ne­<lb/>ce&longs;&longs;e enim e&longs;t in &longs;ymphonia alteram vocem alteri vni&longs;onam e&longs;&longs;e; ita vt duæ in ean­<lb/> dem coale&longs;centes altera alteram offu&longs;care po&longs;&longs;it)<emph.end type="italics"/> Per antiphonum intelligit nunc <lb/> Ari&longs;t. con&longs;onantiam ex vocibus <expan abbr="differ&etilde;tibus">differentibus</expan> conflatam, cuiu&longs;modi e&longs;t Dia­<lb/> pa&longs;on, Diapente, & Diate&longs;&longs;aron: per &longs;ymphonum intelligit con&longs;onantiam <lb/> ex vocibus eiu&longs;dem inten&longs;ionis, &longs;iue ex vni&longs;onis. </s> <s id="s.004416">non me latet aliter Mu&longs;i­<lb/> cos antiphonas, &longs;ymphonas, ac homophonas accipere. </s> <s id="s.004417">vide Prolæm. <!-- REMOVE S-->lib. 1. <lb/> cap. 7. harm. </s> <s id="s.004418">&longs;ed hoc loco ita accipiendas e&longs;&longs;e, vti dixi, manife&longs;tum e&longs;t ex <lb/> Ari&longs;t. contextu. </s> <s id="s.004419">Ait igitur &longs;uauiorem e&longs;&longs;e antiphonarum con&longs;onantiam, <lb/> quam vni&longs;onarum; quia ibi con&longs;onantia melius percipitur; nam in vocibus <lb/>vni&longs;onis, vox alteri voci con&longs;onans, eundem cum illa edit &longs;onum, ita vt duæ <lb/> in vnam, <expan abbr="eandem&qacute;">eandemque</expan>; pror&longs;us coale&longs;cant, <expan abbr="&longs;ic&qacute;">&longs;icque</expan>; altera alteram offu&longs;cet, vnde <lb/> con&longs;onantia, quæ ex pluribus con&longs;tare debet, non percipitur.</s> </p> <p type="main"> <s id="s.004420"><arrow.to.target n="marg364"/></s> </p> <p type="margin"> <s id="s.004421"><margin.target id="marg364"/>373</s> </p> <p type="main"> <s id="s.004422">Probl. 17. <emph type="italics"/>(Cur &longs;ola Diapa&longs;on con&longs;onantia cantatur? </s> <s id="s.004423">&longs;ecundum hanc enim, & <lb/> nullam aliam magadare &longs;olent. </s> <s id="s.004424">An quod hæc &longs;ola ex fidibus inuicem antiphonis <lb/> con&longs;tat? </s> <s id="s.004425">in antiphonis autem etiam&longs;i alteram tantum canis, idem efficies, voces <lb/>enim vtriu&longs;que chordæ vna &longs;ola continet. </s> <s id="s.004426">ita vt in hac con&longs;onantia, quamuis vox <lb/> vna tantum cantetur, tota tamen con&longs;onantia quodammodo canitur. </s> <s id="s.004427">ita vt in hac <lb/> &longs;ymphonia, & vnica voce canente, & duabus, exurgat quodammodo harmonia. <lb/> </s> <s id="s.004428">vel vna decantante, altera verò per tibiam &longs;onante, veluti vnam ambæ, con&longs;tituunt. <lb/> </s> <s id="s.004429">propterea in &longs;ola Diapa&longs;on canere &longs;olemus, quoniam, inquam, voces antiphonæ <lb/> vnius, eiu&longs;demqué chordæ vocem obtinent)<emph.end type="italics"/> Sciendum primò apud veteres v&longs;ui <lb/> fui&longs;&longs;e in&longs;trumentum quoddam mu&longs;icum, quod Magadis, & Magas appella­<lb/> batur, ad quod &longs;uas cantilenas canere &longs;olebant, <expan abbr="atq;">atque</expan> hoc erat <foreign lang="greek">magadi/zein</foreign><lb/> magadi&longs;&longs;are. </s> <s id="s.004430">Erat autem vnius chordæ tantum, vel vnius vocis, &longs;i fortè fue­ <pb pagenum="258" xlink:href="009/01/258.jpg"/>rit tibia, ide&longs;t, quod vnicam vocem, & non plures &longs;imul ederet, quemad­<lb/> modum refert Zarlinus; quamuis varias voces &longs;ucce&longs;&longs;iuè po&longs;&longs;et edere. </s> <s id="s.004431">hoc <lb/> enim pacto ad ip&longs;um canentes, Diapa&longs;on cum ip&longs;o facilè effeci&longs;&longs;ent. </s> <s id="s.004432">Notan­<lb/> dum præterea Ari&longs;t. &longs;umere in textu Antiphonum pro &longs;ola Diapa&longs;on. <!-- KEEP S--></s> <s id="s.004433">Quæ­<lb/> rit igitur, cur canentes &longs;oliti &longs;int per &longs;olam Diapa&longs;on con&longs;onantiam cane­<lb/> re, quod probat ex v&longs;u Magadis, quod vulgò ad cantum adhibere &longs;olebant, <lb/> cùm eo enim omnes in Diapa&longs;on conueniebant. </s> <s id="s.004434">Cau&longs;am huius in identita­<lb/> tem, vt aiunt, <expan abbr="vocũ">vocum</expan>, ex quibus Diapa&longs;on con&longs;tat, refert. </s> <s id="s.004435">quamuis enim non <lb/> &longs;int vni&longs;onæ duæ voces octauam con&longs;tituentes, &longs;unt tamen eiu&longs;dem naturæ, <lb/> & acutior, vt &longs;upra dictum e&longs;t, re&longs;pectu grauioris e&longs;t eadem cum graui, in <lb/> acutiori vocum ordine, qua&longs;i renata. </s> <s id="s.004436">ob quam adeò perfectam duorum vo­<lb/> cum &longs;imilitudinem fit, vt illarum altera cantata, aut &longs;onata, altera natura­<lb/> liter ad illius præ&longs;entiam excitetur, & decantetur: vnde huiu&longs;modi voces <lb/> mutuam obtinent altera alterius vim. </s> <s id="s.004437">Hinc fit, vt pa&longs;&longs;im in agris, ac pra­<lb/> tis ip&longs;i me&longs;&longs;ores, <expan abbr="atq;">atque</expan> pa&longs;tores naturalia quadam harum vocum &longs;imilitudi­<lb/> ne prouocati, &longs;olam Diapa&longs;on con&longs;onantiam &longs;uauiter &longs;imul canentes, &longs;uos <lb/> labores fœliciter fallant.</s> </p> <p type="main"> <s id="s.004438"><arrow.to.target n="marg365"/></s> </p> <p type="margin"> <s id="s.004439"><margin.target id="marg365"/>374</s> </p> <p type="main"> <s id="s.004440">Probl. 18. <emph type="italics"/>(Sed cur Solis Antiphonis vocibus hoc ine&longs;t? </s> <s id="s.004441">An quod &longs;ole pari in­<lb/> teruallo di&longs;tant à Me&longs;e. </s> <s id="s.004442">Medietas igitur &longs;imilitudinem quandam tonorum efficit, <lb/> vt &longs;en&longs;us aurium dicat, quod eadem, & quod ambæ extremæ)<emph.end type="italics"/> Quærit cau&longs;am <lb/> tantæ &longs;imilitudinis inter voces Diapa&longs;on con&longs;tituentes, de qua &longs;imilitudi­<lb/> ne <expan abbr="dictũ">dictum</expan> e&longs;t in præcedenti problemate: ait igitur fortè hanc &longs;imilitudinem <lb/> inde prouenire, quod <expan abbr="vtra&qacute;">vtraque</expan>; illarum <expan abbr="duarũ">duarum</expan> vocum, quæ Diapa&longs;on efficiunt, <lb/> æquidi&longs;tat à Me&longs;e, &longs;eu Media: grauis deor&longs;um, acuta verò &longs;ur&longs;um: quare <lb/> tot gradus grauitatis grauis obtinebit, quot acuta acuminis, igitur &longs;imilli­<lb/> mæ erunt, & propterea auditus iudicat vnam e&longs;&longs;e, quæ quidem ratio iuxta <lb/> ordinem <expan abbr="Terpãdri">Terpandri</expan>, & antiquorum illius æui nullam habet <expan abbr="difficultat&etilde;">difficultatem</expan>, cùm <lb/> &longs;eptem tantum fidibus, quarum media Me&longs;e erat totum <expan abbr="Monochordiũ">Monochordium</expan> con­<lb/> &longs;tituerent. </s> <s id="s.004443">At verò in ordine Lychaonis, & po&longs;teriorum, qui octo chordas <lb/> a&longs;&longs;umebant, aliter re &longs;e haberet.</s> </p> <p type="main"> <s id="s.004444"><arrow.to.target n="marg366"/></s> </p> <p type="margin"> <s id="s.004445"><margin.target id="marg366"/>375</s> </p> <p type="main"> <s id="s.004446">Probl. 19. <emph type="italics"/>(Cur non canunt Diapente, & Diate&longs;&longs;aron in Antiphonis? </s> <s id="s.004447">An quod <lb/> non eadem con&longs;onandi ratio ijs ine&longs;t, quæ in Diapa&longs;on: in qua vox grauis eundem <lb/> habet in grauitate modum, quem acuta in acumine: ita vt, & eadem vox quidem, <lb/> & &longs;imul diuer&longs;a oriatur. </s> <s id="s.004448">At però in Diapente, & Diate&longs;&longs;aron non ita est, quam­<lb/> obrem &longs;onus vocis oppo&longs;itæ non apparet; non enim e&longs;t idem)<emph.end type="italics"/> Cur in quotidia­<lb/> nis cantilenis, in quibus voces non vni&longs;onæ, &longs;ed diuer&longs;æ, &longs;eu antiphonæ ad­<lb/> hibentur, non vtuntur vocibus Diapente, aut Diate&longs;&longs;aron re&longs;onantibus, &longs;ed <lb/> tantum, vt antea dictum e&longs;t, Diapa&longs;on. <!-- KEEP S--></s> <s id="s.004449">Ratio, inquit, e&longs;t, quia inter voces <lb/> illarum non e&longs;t tanta &longs;imilitudo, quanta in vocibus Diapa&longs;on con&longs;onantiæ, <lb/> in qua vox grauis tanta e&longs;t in grauitate, quanta acuta in acumine; & proin­<lb/> de non ita naturaliter, ac facilè &longs;e produnt, & canuntur, quemadmodum <lb/> Diapa&longs;on, vbi vox altera alteram ob naturalem &longs;imilitudinem prouocat.</s> </p> <p type="main"> <s id="s.004450"><arrow.to.target n="marg367"/></s> </p> <p type="margin"> <s id="s.004451"><margin.target id="marg367"/>376</s> </p> <p type="main"> <s id="s.004452">Probl. 20. <emph type="italics"/>(Cur &longs;i quis, mota Me&longs;e, alijs quamuis omnibus chordis benè con­<lb/> &longs;onantibus, in&longs;trumento vtatur, non &longs;olŭ cum ad Me&longs;es &longs;onŭ peruenerit, &longs;ed etiam <lb/> in reliqua melodia, aures anget, modumque <expan abbr="incõinnum">incom<gap/>innum</expan> efficient: &longs;i verò Lycha­<lb/> nos, aut alia quæpiam mota fuerit, tunc di&longs;crimen, aut inc<expan abbr="õ">on</expan>cinnitas &longs;olum appare-<emph.end type="italics"/> <pb pagenum="259" xlink:href="009/01/259.jpg"/><emph type="italics"/>bit, cùm ip&longs;am, quis pul&longs;auerit? </s> <s id="s.004453">An non ratione id optima accidit? </s> <s id="s.004454">quandoqui­<lb/> dem optima <expan abbr="quæq;">quæque</expan> melodiæ gratia &longs;æpè Me&longs;e vtuntur: omne&longs;que probi Poetæ cre­<lb/> brò ad me&longs;en veniunt: & &longs;i ab ea di&longs;ce&longs;&longs;erint, ad eam &longs;tatim reuertuntur: nec vllam <lb/> aliam toties repetunt. </s> <s id="s.004455">quemadmodum igitur demptis ex oratione quibu&longs;dam con­<lb/> iunctionibus (veluti <foreign lang="greek">te\, & h)/</foreign>) non e&longs;t amplius &longs;ermo græcus; alijs verò detractis <lb/>nihil &longs;ermoni detrahitur; eò, quod illis vti &longs;æpè nece&longs;&longs;e e&longs;t, his verò perrarò. </s> <s id="s.004456">&longs;ic <lb/>etiam &longs;onus me&longs;es e&longs;t veluti aliorum &longs;onorum coniunctio, maximeque pulchriorŭ; <lb/> propterea eius &longs;onus &longs;æpi&longs;&longs;imè a&longs;&longs;umi &longs;olet)<emph.end type="italics"/> Si quis ea, quæ initio dicta &longs;unt, pro­<lb/> bè tenuerit, facilè ad huius problematis intelligentiam perueniet; per me­<lb/> &longs;en motam intellige de &longs;uo &longs;ibi conuente &longs;tatu <expan abbr="dimotã">dimotam</expan>, & ideò ab alijs chor<lb/> dis di&longs;&longs;onantem. </s> <s id="s.004457">Idem quærit Probl. 38.</s> </p> <p type="main"> <s id="s.004458"><arrow.to.target n="marg368"/></s> </p> <p type="margin"> <s id="s.004459"><margin.target id="marg368"/>377</s> </p> <p type="main"> <s id="s.004460">Probl. 21. <emph type="italics"/>(Cur qui grauius căntant, &longs;i ab&longs;onant deprehendi facilius po&longs;&longs;unt, quă, <lb/> qui cantant acutius: nec verò &longs;ecus in rithmis accidit. </s> <s id="s.004461">euidentiores enim, qui pec­<lb/> cant in grauiori. </s> <s id="s.004462">Vtrum, quòd plus temporis graue obtinet? </s> <s id="s.004463">plus autem plenius à <lb/>&longs;en&longs;u auriŭm percipi pote&longs;t. </s> <s id="s.004464">Vel quia illud in ampliori tempore agitur, & ideò am­<lb/> pliorem etiam &longs;ui &longs;en&longs;ationem exhibet. </s> <s id="s.004465">Velox autem, & acutŭ facilè ob &longs;uam ve­<lb/> locitatem latitat)<emph.end type="italics"/> Quid e&longs;&longs;et rithmus explicabitur in problemate 27. <expan abbr="&longs;equ&etilde;-ti">&longs;equen­<lb/> ti</expan> ait: <emph type="italics"/>(Velox autem, & acutum)<emph.end type="italics"/> Cur vox acuta &longs;it velox, <expan abbr="dictũ">dictum</expan> e&longs;t in 1. Top. <lb/> <!-- REMOVE S-->cap. 13. reliqua &longs;unt &longs;atis clara.</s> </p> <p type="main"> <s id="s.004466">Probl. 22. ex &longs;e manife&longs;tum e&longs;t: atque idem cum &longs;equenti num. </s> <s id="s.004467">46.</s> </p> <p type="main"> <s id="s.004468"><arrow.to.target n="marg369"/></s> </p> <p type="margin"> <s id="s.004469"><margin.target id="marg369"/>378</s> </p> <p type="main"> <s id="s.004470">Probl. 23. <emph type="italics"/>(Cur Nete duplo acutior e&longs;t hypate? </s> <s id="s.004471">An primum, quod cum ner­<lb/> uus parte &longs;ui dimidia, & totus &longs;imul pul&longs;atur, Diapa&longs;on concinentia exultat: quod <lb/> pariter in fi&longs;tulis apparet, &longs;onus enim, qui per medium foramen emergit Diapa&longs;on <lb/> cum eo re&longs;onat, qui per totam fi&longs;tulam exit. </s> <s id="s.004472">In cæteris etiam duplo interuallo Dia­<lb/> pa&longs;on continetur, nam, & qui tibias perforant, it a eas o&longs;&longs;umunt. </s> <s id="s.004473">& qui fi&longs;tulas aptè <lb/>elaborant, &longs;umitatem extremam tăntum hypates circumlinunt: netem verò ad <expan abbr="v&longs;q;">v&longs;que</expan> <lb/> dimidium obturant. </s> <s id="s.004474">& in Triquetris P&longs;alterijs, nerui, quorum alter &longs;it alterius <lb/> longitudine duplus, æquè intenti Diapa&longs;on reddunt. </s> <s id="s.004475">Diapente verò &longs;e&longs;quialtera <lb/> proportione; Diate&longs;&longs;aron autem &longs;e&longs;quitertio interuallo continetur)<emph.end type="italics"/> Ex ijs, quæ <lb/> initio huius tractationis de Monochordij diui&longs;ione, <expan abbr="de&qacute;">deque</expan>; Diapa&longs;on, <expan abbr="Diap&etilde;-te">Diapen­<lb/> te</expan>, Diate&longs;&longs;aron con&longs;onantiarum ordine, ac proportione dicta &longs;unt, per&longs;pi­<lb/> cua omnino redduntur omnia, quæ hic quæruntur, & redduntur. </s> <s id="s.004476">Illud no­<lb/> tandum Triquetrum P&longs;alterium in&longs;trumentum mu&longs;icum fui&longs;&longs;e, à triangula­<lb/> ri figura denominatum, no&longs;træ for&longs;an Harpæ, per&longs;imile: in quo fides e&longs;&longs;ent <lb/> eo modo di&longs;po&longs;itæ, ac intentæ, vt in Harpa.</s> </p> <p type="main"> <s id="s.004477"><arrow.to.target n="marg370"/></s> </p> <p type="margin"> <s id="s.004478"><margin.target id="marg370"/>379</s> </p> <p type="main"> <s id="s.004479">Probl. 24. <emph type="italics"/>(Cur &longs;i quis p&longs;allens netem pul&longs;atam apprehenderit, &longs;olam Hypa­<lb/> tem re&longs;onare videbitur? </s> <s id="s.004480">An quod tinnitus huius maximè connaturalis e&longs;t &longs;ono il­<lb/> lius, illique con&longs;onus. </s> <s id="s.004481">quia igitur cum &longs;uo con&longs;imili augetur, hoc ce&longs;&longs;ante, ille &longs;o­<lb/> lus apparet &longs;oni verò alij propter paruitatem euane&longs;cunt)<emph.end type="italics"/> Cur &longs;i quis dum p&longs;al­<lb/> terium pul&longs;atur, neten pul&longs;atam &longs;onantem manu apprehenderit, ita vt &longs;o­<lb/>num ip&longs;ius interpellet, &longs;onus ille intermortuus, ac dimidiatus, videbitur &longs;o­<lb/>nus hypates, & non alterius chordæ, quia, vt dictum e&longs;t, hypates, & nete, <lb/> Diapa&longs;on re&longs;onant; cuius con&longs;onantiæ voces &longs;unt eiu&longs;dem naturæ, aut val­<lb/> dè <expan abbr="connaturãles">connaturales</expan>; imò &longs;onus hypates duplus e&longs;t &longs;oni netes. </s> <s id="s.004482">Interpellato igi­<lb/> tur acutioris &longs;ono, reliquus qui ip&longs;i adeò &longs;imilis e&longs;t meritò videbitur hypa­<lb/>tes: &longs;oni verò aliarum chordarum ob ip&longs;orum paruitatem, quia nimirum <pb pagenum="260" xlink:href="009/01/260.jpg"/>minores, quam &longs;ub dupli illius &longs;unt, omninò euane&longs;cunt. </s> <s id="s.004483">Hic e&longs;t &longs;en&longs;us he­<lb/> rum verborum; vtrum autem allata ratio &longs;it bona, aliorum e&longs;to iudicium. <lb/> </s> <s id="s.004484">Idem quærit num. </s> <s id="s.004485">43.</s> </p> <p type="main"> <s id="s.004486"><arrow.to.target n="marg371"/></s> </p> <p type="margin"> <s id="s.004487"><margin.target id="marg371"/>380</s> </p> <p type="main"> <s id="s.004488">Probl. 25. <emph type="italics"/>(Cur in harmonijs chorda illa, quæ dicitur Me&longs;e, &longs;eu media, &longs;ic ap­<lb/>pellata e&longs;t? </s> <s id="s.004489">cum inter octo nullum medium &longs;it? </s> <s id="s.004490">An quoniam olim harmoniæ &longs;ep­<lb/> tem fidibus con&longs;tabant, qui numerus medium habet)<emph.end type="italics"/> Ex ordine chordarum Li­<lb/> chaonis, & <expan abbr="Terpãdri">Terpandri</expan>, quorum alter &longs;eptem, alter verò octo chordis mono­<lb/> chordium conflabat, vt &longs;upra recen&longs;ui, huic loco abundè &longs;atisfieri pote&longs;t.</s> </p> <p type="main"> <s id="s.004491">Probl. 26. &longs;atis ex &longs;e clarum e&longs;t, <expan abbr="atq;">atque</expan> idem cum num. </s> <s id="s.004492">47.</s> </p> <p type="main"> <s id="s.004493"><arrow.to.target n="marg372"/></s> </p> <p type="margin"> <s id="s.004494"><margin.target id="marg372"/>381</s> </p> <p type="main"> <s id="s.004495">Probl. 27. <emph type="italics"/>(Cur inter omnia, quæ &longs;ub &longs;en&longs;us cadunt, &longs;ola audibilia mores obti­<lb/> nent? </s> <s id="s.004496">quamuis &longs;ine &longs;ermone aliquid modulemur, mores tamen præ &longs;e ip&longs;a modula­<lb/> tio fert, &longs;ed nec color, nec odor, nec &longs;apor id habet. </s> <s id="s.004497">An quia motum non &longs;olŭ eum <lb/>obtinet, quo ip&longs;e &longs;trepitus aures mouet (talis enim motio reliquis etiam &longs;en&longs;ibus <lb/> ine&longs;t, nam, & color mouet vi&longs;um) &longs;ed illum etiam quem po&longs;t prædictum, <expan abbr="&longs;ub&longs;equ&etilde;-tem">&longs;ub&longs;equen­<lb/> tem</expan> percipimus: hic. </s> <s id="s.004498">n. </s> <s id="s.004499">&longs;imilitudinem habet, & in rithmis, & in &longs;onorum grauium, <lb/> & acutorum ordine: non autem in eorum mixtione; quod in alijs &longs;en&longs;ibilibus non <lb/> e&longs;t. </s> <s id="s.004500">porrò motus ip&longs;i practici &longs;unt, praxis autem morum index est)<emph.end type="italics"/> Mores obti­<lb/> nere, aut præ&longs;eferre nihil aliud e&longs;t, quàm mores illius referre, & in mentem <lb/> reuocare, à quo talis motus, aut &longs;onus prouenire &longs;olet, qui &longs;onus mores il­<lb/> los refert. </s> <s id="s.004501">propterea videmus cantilenas nonnullas turpes mores reddere, <lb/> vt la&longs;ciuiam, procacitatem, leuitatem, quia à natura <expan abbr="hominũ">hominum</expan> turpium, vt <lb/> la&longs;ciuorum profici&longs;ci <expan abbr="&longs;ol&etilde;t">&longs;olent</expan>, <expan abbr="eos&qacute;">eosque</expan>; decent. </s> <s id="s.004502">alij <expan abbr="cãtus">cantus</expan> ex oppo&longs;ito bonos mo­<lb/>res referunt, vt grauitatem, temperantiam, æ&longs;titatem; qui quidem ex pro­<lb/> borum hominum natura prodire &longs;olent, <expan abbr="eos&qacute;">eosque</expan>; decent. </s> <s id="s.004503">Illud in prophanis <lb/> canticis, i&longs;tud verò in Eccle&longs;ia&longs;ticis quotidie experimur; cur autem Audi­<lb/> bilia præ cætéris mores referant, cau&longs;am Ari&longs;t. refert in motum illum, qui <lb/> in &longs;onis, & vocibus percipitur. </s> <s id="s.004504"><expan abbr="neq;">neque</expan> hic motus e&longs;t is, quo &longs;onus aures immu­<lb/> tat, hoc enim commune e&longs;t omnibus &longs;en&longs;orijs, vt à &longs;uis obiectis immuten­<lb/>tur, & afficiantur: &longs;ed is e&longs;t, qui prædictam aurium immutationem &longs;ub&longs;e­<lb/> quitur, <expan abbr="intellectu&qacute;">intellectuque</expan>; percipitur, v.g. <!-- REMOVE S-->quando audimus cantilenam, &longs;onus ip­<lb/> &longs;e primò aures ferit, <expan abbr="eas&qacute;">easque</expan>; afficit; deinde percipimus vocis ip&longs;ius motum, <lb/>& qua&longs;i cur&longs;um, quo à graui in acutum, & è cóntra, aliquando celeriter, ali­<lb/> quando tardè vario modulamine mouetur. </s> <s id="s.004505">huiu&longs;modi motus habet in &longs;e <lb/>morum &longs;imilitudinem; hac igitur de cau&longs;a audibilia mores referunt. </s> <s id="s.004506">Vide <lb/> infra probl. </s> <s id="s.004507">39.</s> </p> <p type="main"> <s id="s.004508">Iam explicandum e&longs;t breuiter, quid &longs;it rithmus, quem Latini numerum <lb/> dicunt partim ex Platone, partim ex Ari&longs;t. <!-- KEEP S--></s> <s id="s.004509">Plato lib. 2. de leg. <!-- REMOVE S-->&longs;ic. </s> <s id="s.004510">alia qui­<lb/> dem animalia non habent &longs;en&longs;ationem ordinationis, & inordinationis mo­<lb/> tuum, quibus rithmus, & harmonia nomen e&longs;t. </s> <s id="s.004511">Ari&longs;t. infra probl. </s> <s id="s.004512">38. &longs;ic. <lb/> </s> <s id="s.004513">rithmo verò gaudemus, quia habet numerum manife&longs;tum, ordinatum, ra­<lb/> tumque: vnde & nos ordinatè mouet. </s> <s id="s.004514">Ex quibus patet, rithmum e&longs;&longs;e cer­<lb/>tam, ac &longs;tatam periodum aliquot interuallerum &longs;ibi &longs;uccedéntium in quouis <lb/> motu in determinata men&longs;ura temporis. </s> <s id="s.004515">quæ periodus &longs;olet &longs;æpius recur­<lb/> rere, aut repeti. </s> <s id="s.004516">dictum e&longs;t in quouis motu, quia in choreis pedum pul&longs;a­<lb/> tione, ac motu, rithmi complures efficiuntur, quos choreæ magi&longs;tri <expan abbr="doc&etilde;t">docent</expan>, <lb/> qualis e&longs;t is, quem vulgò <expan abbr="dicũt">dicunt</expan> Gagliarda. </s> <s id="s.004517">Digitorum etiam motu, & mal­ <pb pagenum="261" xlink:href="009/01/261.jpg"/>leorum ictibus pote&longs;t rithmus fieri: <expan abbr="atq;">atque</expan> adeò cæteris omnibus, quæ in &longs;uo <lb/> motu certis interuallis mouentur; ita vt etiam pi&longs;tores ip&longs;i machina &longs;ua il­<lb/> la, qua ma&longs;&longs;am &longs;ubigunt, rithmum quendam efficere &longs;oleant. </s> <s id="s.004518">His porrò mo­<lb/> tus &longs;i in vocibus, ac &longs;onis mu&longs;icis, &longs;eu in cantilenis exi&longs;tat, præcipuè rithmus <lb/> dicitur, quod &longs;i concinnus &longs;it, & elegans aures &longs;uauiter mulcet, <expan abbr="animum&qacute;">animumque</expan>; <lb/> in varias pa&longs;&longs;iones inducit: rithmum hunc, qui in cantilenis e&longs;t, vulgò can­<lb/> tores appellant Ariam. <!-- KEEP S--></s> <s id="s.004519">Vnde qui intelligit, quid &longs;int Ariæ, quæ pa&longs;&longs;im can­<lb/>tantur, ac &longs;onantur, facilè etiam quid &longs;it rithmus, intelliget. </s> <s id="s.004520">Hic igitur <lb/> rithmus miram habet in &longs;e morum &longs;imilitudinem, quæ con&longs;i&longs;tit in motu <lb/> rithmi, &longs;eu in ordine interuallorum apti&longs;&longs;imo, per quæ vox a&longs;cendit, & de­<lb/> &longs;cendit: nullo autem modo con&longs;i&longs;tit in mixtione &longs;onorum grauium, & acu­<lb/> torum; ex hac enim mixtione non rithmus, &longs;ed con&longs;onantia exurgit. </s> <s id="s.004521">mo­<lb/> tus autem omnis fit per aliquam actionem, actio verò omnis e&longs;t morum il­<lb/> lius, cuius e&longs;t actio manife&longs;tatrix. </s> <s id="s.004522">ex quibus patet, cur in cantilenis rithmi­<lb/> cis mores appareant, non autem in cæteris &longs;en&longs;uum obiectis.</s> </p> <p type="main"> <s id="s.004523"><arrow.to.target n="marg373"/></s> </p> <p type="margin"> <s id="s.004524"><margin.target id="marg373"/>382</s> </p> <p type="main"> <s id="s.004525">Problema 28. <emph type="italics"/>(Cur pleræque cantilenæ leges appellantur? </s> <s id="s.004526">An quod homines <lb/> priusqué, literas &longs;cirent, leges cantabant, ne eas obliuione traderent, quod etiam <lb/>no&longs;tra ætate Agathyr&longs;is in more e&longs;t. </s> <s id="s.004527">ergò primas po&longs;teriorum cantilenarum, eodem <lb/> appellauerunt nomine, quo omnes &longs;uperiores vocantur)<emph.end type="italics"/> Agathyr&longs;i populi à Pli­<lb/> nio, & Pomponio Mela &longs;upra paludem Meotidem inter Scythicas nationes <lb/> numerantur. </s> <s id="s.004528">cur autem cantilenæ nonnullæ leges dicerentur, præter ratio­<lb/>nem hic ab Ari&longs;tot. allatam, aliam Plutarchus de Mu&longs;ica affert, vbi &longs;ic ait: <lb/> Non enim antiquitus pro libidine cuiu&longs;que, vti nunc, licebat fidibus canere, <lb/> nec rithmos, <expan abbr="concentus&qacute;">concentusque</expan>; transferre; in ip&longs;is <expan abbr="namq;">namque</expan> legibus accommoda­<lb/> tam cuique tentionem tuebantur, cuius rei cau&longs;a id nominis inditum erat; <lb/> leges enim &longs;unt vocatæ quoniam præ&longs;criptum, qua&longs;i lege, <expan abbr="cautum&qacute;">cautumque</expan>; erat, ne <lb/> quis pro qualibet, vnam &longs;peciem, <expan abbr="formam&qacute;">formamque</expan>; tentionis lege &longs;ancitam, tran&longs;­<lb/> grederetur. </s> <s id="s.004529">hæc ille. </s> <s id="s.004530">fubdit po&longs;tea alias fui&longs;&longs;e &longs;imiles illis harmonijs, quas <lb/> nunc &longs;onatas dicimus, fui&longs;&longs;e tamen &longs;tatas, ac determinatas numero, quibus <lb/> &longs;olis vti liceret.</s> </p> <p type="main"> <s id="s.004531">Probl. 29. Idem e&longs;t cum præcedenti 27. eadem igitur <expan abbr="quoq;">quoque</expan> &longs;it explicatio.</s> </p> <p type="main"> <s id="s.004532"><arrow.to.target n="marg374"/></s> </p> <p type="margin"> <s id="s.004533"><margin.target id="marg374"/>383</s> </p> <p type="main"> <s id="s.004534">Probl. 30. <emph type="italics"/>(Cur <expan abbr="neq;">neque</expan> hypodorium, <expan abbr="neq;">neque</expan> hypophrygium est in tragœdiarum obo­<lb/> ro? </s> <s id="s.004535">An quia non habet anti&longs;trophon, vtpotè quæ &longs;cenica &longs;unt, imitationiqué, accom­<lb/> modata)<emph.end type="italics"/> huc pertinent ea, quæ ad cap. 2. lib. 3. Polit. <!-- REMOVE S-->&longs;crip&longs;i, de tonis, Do­<lb/> rio, Phrygio, Lydio. </s> <s id="s.004536">quibus nunc hæc addo, ex Boetio lib. 4. tonus, &longs;en mo­<lb/> dus erat quædam cantus con&longs;titutio, ab hypate <expan abbr="v&longs;q;">v&longs;que</expan> ad netem, proprio rith­<lb/> mo modificata: ita vt modos Dorius alium rithmum, à Phrygio, & reliquis <lb/> di&longs;crepantem haberet. </s> <s id="s.004537">quilibet preterea modus &longs;uam certam &longs;edem in Mo­<lb/> nochordio obtinebat, vnde &longs;equebatur vnum e&longs;&longs;e reliquis omnibus <lb/> grauiorem, alium e&longs;&longs;e omnium acuti&longs;&longs;imum, reliquos verò in­<lb/> termedios, alijs grauiores fui&longs;&longs;e, vt in &longs;equenti figura, <lb/> in qua, tanquam in tabella, omnia, quæ de hi&longs;ce <lb/> modis dici &longs;olent, per&longs;picuè licet <lb/>intueri.</s> </p> <pb pagenum="262" xlink:href="009/01/262.jpg"/> <p type="head"> <figure id="id.009.01.262.1.jpg" place="text" xlink:href="009/01/262/1.jpg"/> <s id="s.004538"><emph type="italics"/>ORDO ANTIQVORVM MODORVM.<emph.end type="italics"/><lb/> <arrow.to.target n="table6"/></s> </p> <table> <table.target id="table6"/> <row> <cell/> <cell/> <cell/> <cell/> <cell/> <cell/> <cell/> <cell>Nete.</cell> </row> <row> <cell/> <cell/> <cell/> <cell/> <cell/> <cell/> <cell/> <cell>T.</cell> </row> <row> <cell/> <cell/> <cell/> <cell/> <cell/> <cell/> <cell>Nete.</cell> <cell>Paranete.</cell> </row> <row> <cell/> <cell/> <cell/> <cell/> <cell/> <cell/> <cell>S.</cell> <cell>S.</cell> </row> <row> <cell/> <cell/> <cell/> <cell/> <cell/> <cell>Nete.</cell> <cell>Paranete.</cell> <cell>Trite.</cell> </row> <row> <cell/> <cell/> <cell/> <cell/> <cell/> <cell>T.</cell> <cell>T.</cell> <cell>T.</cell> </row> <row> <cell/> <cell/> <cell/> <cell/> <cell>Nete.</cell> <cell>Paranete.</cell> <cell>Trite.</cell> <cell>Me&longs;e.</cell> </row> <row> <cell/> <cell/> <cell/> <cell/> <cell>T.</cell> <cell>T.</cell> <cell>T.</cell> <cell>T.</cell> </row> <row> <cell/> <cell/> <cell/> <cell>Nete.</cell> <cell>Paranete.</cell> <cell>Trite.</cell> <cell>Me&longs;e.</cell> <cell>Lychanos.</cell> </row> <row> <cell/> <cell/> <cell/> <cell>S.</cell> <cell>S.</cell> <cell>S.</cell> <cell>S.</cell> <cell>S.</cell> </row> <row> <cell/> <cell/> <cell>Nete.</cell> <cell>Paranete.</cell> <cell>Trite.</cell> <cell>Me&longs;e.</cell> <cell>Lychanos</cell> <cell>Parhypate</cell> </row> <row> <cell/> <cell/> <cell>T.</cell> <cell>T.</cell> <cell>T.</cell> <cell>T.</cell> <cell>T.</cell> <cell>T.</cell> </row> <row> <cell/> <cell>Nete.</cell> <cell>Paranete.</cell> <cell>Trite.</cell> <cell>Me&longs;e.</cell> <cell>Lychanos.</cell> <cell>Parhypat.</cell> <cell>Hypate.</cell> </row> <row> <cell/> <cell>T.</cell> <cell>T.</cell> <cell>T.</cell> <cell>T.</cell> <cell>T.</cell> <cell>T.</cell> <cell>T.</cell> </row> <row> <cell>Nete.</cell> <cell>Paranete.</cell> <cell>Trite.</cell> <cell>Me&longs;e.</cell> <cell>Lychanos.</cell> <cell>Parhypat.</cell> <cell>Hypatc.</cell> <cell>Pro&longs;lamb.</cell> </row> <row> <cell>T.</cell> <cell>T.</cell> <cell>T.</cell> <cell>T.</cell> <cell>T.</cell> <cell>T.</cell> <cell>T.</cell> <cell>— —</cell> </row> <row> <cell>Paranete.</cell> <cell>Trite.</cell> <cell>Me&longs;e.</cell> <cell>Lychanos</cell> <cell>Parhypat.</cell> <cell>Hypate.</cell> <cell>Pro&longs;lamb.</cell> <cell>Hypermix</cell> </row> <row> <cell>S.</cell> <cell>S.</cell> <cell>S.</cell> <cell>S.</cell> <cell>S.</cell> <cell>S.</cell> <cell>— —</cell> <cell>tolydius.</cell> </row> <row> <cell>Trite.</cell> <cell>Me&longs;e.</cell> <cell>Lychanos.</cell> <cell>Parhypat.</cell> <cell>Hypate.</cell> <cell>Pro&longs;lamb.</cell> <cell>Mixtolyd.</cell> <cell/> </row> <row> <cell>T.</cell> <cell>T.</cell> <cell>T.</cell> <cell>T.</cell> <cell>T.</cell> <cell>— —</cell> <cell/> <cell/> </row> <row> <cell>Me&longs;e.</cell> <cell>Lychanos.</cell> <cell>Parhypat.</cell> <cell>Hypate.</cell> <cell>Pro&longs;lamb.</cell> <cell>Lydius.</cell> <cell/> <cell/> </row> <row> <cell>T.</cell> <cell>T.</cell> <cell>T.</cell> <cell>T.</cell> <cell>— —</cell> <cell/> <cell/> <cell/> </row> <row> <cell>Lychanos</cell> <cell>Parhypat.</cell> <cell>Hypate.</cell> <cell>Pro&longs;lamb.</cell> <cell>Phrygius.</cell> <cell/> <cell/> <cell/> </row> <row> <cell>S.</cell> <cell>S.</cell> <cell>S.</cell> <cell>— —</cell> <cell/> <cell/> <cell/> <cell/> </row> <row> <cell>Parhypate</cell> <cell>Hypate.</cell> <cell>Pro&longs;lamb.</cell> <cell>Dorius.</cell> <cell/> <cell/> <cell/> <cell/> </row> <row> <cell>T.</cell> <cell>T.</cell> <cell>— —</cell> <cell/> <cell/> <cell/> <cell/> <cell/> </row> <row> <cell>Hypate.</cell> <cell>Pro&longs;lamb.</cell> <cell>Hypolyd.</cell> <cell/> <cell/> <cell/> <cell/> <cell/> </row> <row> <cell>T.</cell> <cell>— —</cell> <cell/> <cell/> <cell/> <cell/> <cell/> <cell/> </row> <row> <cell>Pro&longs;lamb.</cell> <cell>Hypophry</cell> <cell/> <cell/> <cell/> <cell/> <cell/> <cell/> </row> <row> <cell>— —</cell> <cell>gius.</cell> <cell/> <cell/> <cell/> <cell/> <cell/> <cell/> </row> <row> <cell>Hypodor.</cell> <cell/> <cell/> <cell/> <cell/> <cell/> <cell/> <cell/> </row> </table> <pb pagenum="263" xlink:href="009/01/263.jpg"/> <p type="main"> <s id="s.004539">In qua apparet Hypodorium fui&longs;&longs;e omnium <expan abbr="graui&longs;&longs;imũ">graui&longs;&longs;imum</expan>, quo acutior erat <lb/>tono vno Hypophrygius; &longs;ic reliqui præcedentibus erant vel tono, vel &longs;e­<lb/> mitonio acutiores. </s> <s id="s.004540">literæ T, & S, &longs;ignificant Tonos, & Semitonia, quibus <lb/> voces &longs;ingulorum modorum di&longs;tabant. </s> <s id="s.004541">ex quibus etiam apparet vario or­<lb/> dine interualla vnius Modi &longs;e habui&longs;&longs;e, <expan abbr="atq;">atque</expan> in alio. </s> <s id="s.004542">præterea <expan abbr="vnumquemq;">vnumquemque</expan> <lb/> modum vnius Diapa&longs;on con&longs;titutionem habui&longs;&longs;e. </s> <s id="s.004543">tres illi Hypodorius, Hy­<lb/> pophrygius, Hypolydius, ita &longs;unt appellati, quod collocati e&longs;&longs;ent infra Do­<lb/> rium, Phrygium, Lydium per vnum Tetrachordum, vt patet in figura. </s> <s id="s.004544">&longs;ed <lb/> vt adhuc melius hanc rem intelligamus, dicendum e&longs;t cum Zarlino lib. 4. <lb/> In&longs;tit. <!-- KEEP S--></s> <s id="s.004545">Modos fui&longs;&longs;e varias &longs;pecies cantilenarum proprios rithmos haben­<lb/> tes, certo ordine, ac certo carmine, <expan abbr="certo&qacute;">certoque</expan>; etiam in&longs;trumento decantari <lb/> &longs;olitas: denominabantur autem Doriæ, Phrygiæ, &c. </s> <s id="s.004546">ab illis &longs;cilicet natio­<lb/>nibus, apud quas magis e&longs;&longs;ent in v&longs;u. </s> <s id="s.004547">huiu&longs;modi modos nos hodie Arias ap­<lb/> pellamus, <expan abbr="eas&qacute;">easque</expan>; pariter à varijs nationibus denominamus, vt quas dicimus <lb/> Spagnolettam, France&longs;cam, Græcam, Neapolitanam, Siculam, &c.</s> </p> <p type="main"> <s id="s.004548">De qualitatibus horum modorum plura veteres, ac Zarlinus ip&longs;e citato <lb/> loco: <expan abbr="nos&qacute;">nosque</expan>; nonnulla &longs;upra in Politicis diximus. </s> <s id="s.004549">Quod ad hunc locum &longs;pe­<lb/> ctat, videndum quales e&longs;&longs;ent Hypodorius, & Hypophrygius: quod Ari&longs;t. ip­<lb/> &longs;e infra Problem. 49. docet, ait enim, modum hypophrygium animos Lym­<lb/> phatis, &longs;imiles reddere, <expan abbr="cogere&qacute;">cogereque</expan>; debacchari: Hypodorium verò e&longs;&longs;e mo­<lb/> dum magnificum, con&longs;tantem, grauemque. </s> <s id="s.004550"><expan abbr="vtrumq;">vtrumque</expan> autem fui&longs;&longs;e variæ imi­<lb/> tationi aptum, <expan abbr="ideo&qacute;">ideoque</expan>; carui&longs;&longs;e &longs;trophis: quæ ad eandem &longs;emper imitatio­<lb/> nem, <expan abbr="eundem&qacute;">eundemque</expan>; morem tendunt: vt &longs;upra Probl. 15. explicaui. </s> <s id="s.004551">ex quibus <lb/> intelligere po&longs;&longs;umus Problema præ&longs;ens; modus &longs;cilicet Hypodorius, & Hy­<lb/> pophrygius à choro Tragœdiarum arcebantur, quia carebant anti&longs;trophis, <lb/> quibus chorus gaudebat; chorus enim non imitabatur varios mores, <expan abbr="va-rios&qacute;">va­<lb/> riosque</expan>; hominum affectus, &longs;ed eodem &longs;eruato affectu per ea&longs;dem &longs;trophas ad <lb/> finem <expan abbr="v&longs;q;">v&longs;que</expan> perueniebat. </s> <s id="s.004552">erant autem prædicti duo modi &longs;cenis idonei, quia <lb/> in &longs;cena varios mores, affectus, & animi pa&longs;&longs;iones imitabantur, <expan abbr="atq;">atque</expan> ad eo&longs;­<lb/> dem variè auditorum animos impellebant; ad quod peragendum ip&longs;i erant <lb/> idonei te&longs;te Ari&longs;t. citato loco. </s> <s id="s.004553">cùm præ&longs;ertim anti&longs;trophis carerent, quæ ob­<lb/> &longs;i&longs;tere variæ, ac multiplici imitationi poterant. </s> <s id="s.004554">&longs;i plura de modis, aut tonis <lb/> de&longs;ideras, con&longs;ule Ptolæm. <!-- REMOVE S-->lib. 2. harm. </s> <s id="s.004555">Boetium lib. 4. Io&longs;ephum Zarli­<lb/> num lib. 4. In&longs;tit. <!-- REMOVE S-->& lib. 6. Supplem. <!-- REMOVE S-->mu&longs;icorum.</s> </p> <p type="main"> <s id="s.004556">Illud nunc occurrit maximè notandam. </s> <s id="s.004557">Veteres non &longs;olum in choris, &longs;ed <lb/>in ip&longs;a &longs;cena etiam cantare, aut &longs;onorare &longs;olitos fui&longs;&longs;e, quod manife&longs;tè ap­<lb/> paret ex problemate 75. ex 30. præ&longs;enti, necnon ex 31. & 49. &longs;equentibus.</s> </p> <p type="main"> <s id="s.004558"><arrow.to.target n="marg375"/></s> </p> <p type="margin"> <s id="s.004559"><margin.target id="marg375"/>384</s> </p> <p type="main"> <s id="s.004560">Probl. 31. <emph type="italics"/>(Cur Phrynicus, cæteriqué, illius ætatis Mu&longs;ici magis Melopæi erăt? <lb/> </s> <s id="s.004561">An quoniam tunc temporis in tragædijs carmine contextis maior erat <expan abbr="cātilenarum">cantilenarum</expan> <lb/> v&longs;us)<emph.end type="italics"/> Apud Suidam inter plures Phrynicos, vnus recen&longs;etur patria Athe­<lb/>nien&longs;is, & Poeta Tragicus, qui circa Olympiadem 67. floruit: quem puto <lb/>hunc e&longs;&longs;e, de quo in hoc problemate agitur. </s> <s id="s.004562">hic enim Poeta Tragicus quo­<lb/>que erat, vt apparet ex illis verbis (in tragœdijs carmine contextis) quod <lb/> autem &longs;imul Mu&longs;icus e&longs;&longs;et, non videtur dubium; antiquitus enim, vt rectè <lb/> etiam Zarlinus ob&longs;eruabit, ijdem erant Poetæ, & Mu&longs;ici, quod optimè ex <lb/> Plutarco dé mu&longs;ica confirmatur, vbi plures connumerat antiquos Mu&longs;icos, <pb pagenum="264" xlink:href="009/01/264.jpg"/>quì &longs;imul Poet&etail; extiterunt, &longs;ic ait; Ste&longs;ichorus, & veteres alij <expan abbr="Poetarũ">Poetarum</expan>, qui <lb/> carmina adhibitis modulis condidere. </s> <s id="s.004563">&longs;ed quid erat Melopæia? </s> <s id="s.004564">ex Ari&longs;to­<lb/> xeno, <expan abbr="atq;">atque</expan> Euclide; Melopæia e&longs;t v&longs;us harmonicæ tractationi &longs;ubiectorum, <lb/> ad decorum propo&longs;iti argumenti. </s> <s id="s.004565">ex qua definitione patet Melopæum eum <lb/> fui&longs;&longs;e, quem modo vocant Compo&longs;itorem. </s> <s id="s.004566">dicitur Melopæia, qua&longs;i cantus <lb/> effectrix. </s> <s id="s.004567">is igitur erat Melopæus, qui res &longs;ubiectas harmonicæ &longs;cientiæ, vt <lb/> &longs;unt &longs;onus, interualla, genera, modi, con&longs;onantiæ, di&longs;&longs;onantiæ ritè in v&longs;um <lb/> vocabat: vnde cantilenas humana oratione con&longs;tructas ad decorum, ide&longs;t <lb/> pro rei argumento conuenientibus rythmis modulabatur. </s> <s id="s.004568">Antiquitus igi­<lb/> tur Melopæiæ magis &longs;tudebant, quàm Ari&longs;t. tempe&longs;tate, quia tunc tempo­<lb/> ris magis erant in tragædijs cantilenæ in v&longs;u, quam po&longs;tea.</s> </p> <p type="main"> <s id="s.004569"><arrow.to.target n="marg376"/></s> </p> <p type="margin"> <s id="s.004570"><margin.target id="marg376"/>385</s> </p> <p type="main"> <s id="s.004571">Probl. 32. <emph type="italics"/>(Cur Diapa&longs;on con&longs;onantiam dicimus, non ratione numeri Diao­<lb/>cto, vti Diate&longs;&longs;aron, & Diapente? </s> <s id="s.004572">An quod antiquitus non pluribus, quàm &longs;ep­<lb/> tem vterentur numeris? </s> <s id="s.004573">Deinde Terpander tritè exempta, Neten adiunxit, eiusqué <lb/>temporibus con&longs;onantia hæc dicta e&longs;t Diapa&longs;on, non Diaocto: quippe quæ &longs;eptem <lb/>non octo con&longs;taret)<emph.end type="italics"/> Lege, quæ &longs;upra ad 7. problem. </s> <s id="s.004574">&longs;unt annotata de ordine <lb/> chordarum, quem Terpander induxit. </s> <s id="s.004575">Septem nimirum chordas <expan abbr="cõ&longs;tituit">con&longs;tituit</expan>, <lb/> inter quas Trite de&longs;iderabatur, vt ibi explicaui. </s> <s id="s.004576">quare Terpander non im­<lb/>mutauit numerum chordarum antiquum, &longs;ed tantummodo Neten cum Tri<lb/> te commutauit. </s> <s id="s.004577">Tempore igitur Terpandri cum &longs;eptem e&longs;&longs;ent <expan abbr="tantũ">tantum</expan> chor­<lb/> dæ in p&longs;alterijs, etiam&longs;i prima cum vltima con&longs;onantiam Diapa&longs;on re&longs;ona­<lb/> ret, non tamen potuit hæc con&longs;onantia appellari Diaocto. </s> <s id="s.004578">Boetius lib. 1. <lb/> cap. 20. Mu&longs;icæ, prædicta a&longs;&longs;erit de Terpandro. </s> <s id="s.004579">Suidas ait <expan abbr="Terpandrũ">Terpandrum</expan> fui&longs;&longs;e <lb/> <expan abbr="Lesbiũ">Lesbium</expan>, & Poetam Lyricum, qui primus lyram ex &longs;eptem chordis fecit, cùm <lb/> prius à Mercurio ex quatuor tantum con&longs;tructa fui&longs;&longs;et. </s> <s id="s.004580">Cæterum ip&longs;a Dia­<lb/> pa&longs;on &longs;ic dicta e&longs;t, qua&longs;i per omnes, quia à prima chorda per omnes a&longs;cen­<lb/> dendo ad vltimam perueniebatur, cum qua prima Diapa&longs;on re&longs;onabat. </s> <s id="s.004581">vel <lb/> quia intra Diapa&longs;on reliquæ omnes con&longs;onantiæ concinentur, quæ dicuntur <lb/> primæ: quæ enim &longs;upra Diapa&longs;on &longs;unt, eædem &longs;unt cum prædictis, &longs;iue eiu&longs;­<lb/> dem naturæ; &longs;ed quæ repetuntur, vt &longs;upra &longs;æpe dictum e&longs;t.</s> </p> <p type="main"> <s id="s.004582"><arrow.to.target n="marg377"/></s> </p> <p type="margin"> <s id="s.004583"><margin.target id="marg377"/>386</s> </p> <p type="main"> <s id="s.004584">Probl. 33. <emph type="italics"/>(Cur aptius de acuto in graue canitur, quam de graue in acutum? <lb/> </s> <s id="s.004585">Vtrum, quod ita fit, vt à &longs;uo inchoetur principio? </s> <s id="s.004586">neruus enim, qui medius, & dux <lb/> e&longs;t &longs;ecundi tetrachordi, acuti&longs;&longs;imus est. </s> <s id="s.004587">illo autem modo non à principio, &longs;ed à fine <lb/> exordiretur. </s> <s id="s.004588">An quod graue genero&longs;ius, & &longs;onantius ab acuto oriri pote&longs;t)<emph.end type="italics"/> Na­<lb/> turale e&longs;t omnibus, cùm canere incipiunt, ab acuto incipere; cum autem <lb/> de&longs;inunt, in graui de&longs;inere: quod &longs;i quis <expan abbr="contrariũ">contrarium</expan> faciat, ineptè agere æ&longs;ti­<lb/> mabitur? </s> <s id="s.004589">Huius quæritur cau&longs;a. </s> <s id="s.004590">Vbi explicandum quid &longs;it tetrachordum. <lb/> </s> <s id="s.004591">Tetrachordum igitur erat &longs;y&longs;tema, vel <expan abbr="cõ&longs;titutio">con&longs;titutio</expan> quatuor chordarum, qui­<lb/> bus Diate&longs;&longs;aron con&longs;tabat. </s> <s id="s.004592">in maximo autem &longs;y&longs;temate, quod erat duarum <lb/> Diapa&longs;on, &longs;iue Di&longs;diapa&longs;on, erant plura tetrachorda. </s> <s id="s.004593">horum primum illud <lb/> erat, quod in parte graui&longs;&longs;ima <expan abbr="collocatũ">collocatum</expan> erat, cuius hæ erant chordæ, Hy­<lb/> pate, Parhypate, Lychanos, Me&longs;e. </s> <s id="s.004594">&longs;i igitur in&longs;trumentum habuerit tantum <lb/>duo tetrachorda, neruus medius crit ip&longs;a Me&longs;e, quæ e&longs;t acuti&longs;&longs;ima primi te­<lb/> trachordi, e&longs;t præterea hæc Me&longs;e veluti dux reliquarum chordarum, nam, <lb/> vt dictum e&longs;t in Probl. 20. e&longs;t in medio carum vti dux; &longs;æpi&longs;&longs;imè omnium <lb/>pul&longs;atur: ca &longs;ola ab alijs di&longs;&longs;onante, reliquæ omnes videntur di&longs;&longs;onare. </s> <s id="s.004595">cùm <pb pagenum="265" xlink:href="009/01/265.jpg"/>igitur alijs præ&longs;tet <expan abbr="&longs;it&qacute;">&longs;itque</expan>; &longs;ui tetrachordi acuti&longs;&longs;ima, <expan abbr="cõuenienter">conuenienter</expan> natura du­<lb/> ce fit, vt ab acuta voce cantum exordiamur. </s> <s id="s.004596">ide&longs;t &longs;icut in tetrachoreo prin­<lb/> cipalis e&longs;t acuta, &longs;iue principium tetrachordi e&longs;t acutum, ita etiam princi­<lb/> pium cantus debet e&longs;&longs;e acutum. </s> <s id="s.004597">Quod &longs;i à graui cantandi principium fa­<lb/> ceremus, à fine potius, quàm à principio contra naturæ ordinem <expan abbr="principiũ">principium</expan> <lb/> faceremus. </s> <s id="s.004598">Theodorus Gaza vertit, primi tetrachordi, verum in vulgatis, <lb/> atque correctis codicibus græcis legitur, <foreign lang="greek">para/tetraxordou,</foreign> quod non pri­<lb/> mum, &longs;ed potius &longs;ub&longs;equens tetrachordum, &longs;ignificare videtur. </s> <s id="s.004599">vtrumuis le­<lb/> gamus, explicatio allata &longs;ufficere pote&longs;t. </s> <s id="s.004600">Subdit po&longs;tea aliam re&longs;pon&longs;io­<lb/> nem, quod nimirum hoc modo grauis vox cantilenam claudens, quando ex <lb/> acuto quodammodo orta e&longs;t, genero&longs;ior, <expan abbr="atq;">atque</expan> &longs;onantior euadit.</s> </p> <p type="main"> <s id="s.004601"><arrow.to.target n="marg378"/></s> </p> <p type="margin"> <s id="s.004602"><margin.target id="marg378"/>387</s> </p> <p type="main"> <s id="s.004603">Probl. 34. <emph type="italics"/>(Cur bis Diapente, aut bis Diate&longs;&longs;aron <expan abbr="cõ&longs;onantia">con&longs;onantia</expan> <expan abbr="cõponi">componi</expan> non pote&longs;t, <lb/> bis <expan abbr="aũt">autem</expan> Diapa&longs;on pote&longs;t? </s> <s id="s.004604">An, quòd bis Diapente, non bis Diate&longs;&longs;aron e&longs;t: &longs;ed Dia­<lb/> te&longs;&longs;aron, & Diapente in vnă Diapa&longs;on concurrunt)<emph.end type="italics"/> Quamuis textus <expan abbr="aliquantulũ">aliquantulum</expan> <lb/> <expan abbr="&etilde;t">et</expan> græcus corruptus &longs;it, verumtamen &longs;en&longs;um Ari&longs;t. ex &longs;equentibus percipie­<lb/> mus. </s> <s id="s.004605">Pro intelligentia igitur huius problematis placet hic de&longs;cribere <expan abbr="demõ-&longs;trationem">demon­<lb/> &longs;trationem</expan> 16. lib. 3. docti&longs;&longs;imi Fabri &longs;tapulentis, qua ip&longs;e ve&longs;tigijs <expan abbr="antiquo-rũ">antiquo­<lb/> rum</expan> inhærens optimè præ&longs;enti quæ&longs;tioni &longs;atisfacit. </s> <s id="s.004606">e&longs;t <expan abbr="aũt">aut</expan> huiu&longs;modi: Bi&longs;dia­<lb/> te&longs;&longs;aron, aut bis <expan abbr="Diap&etilde;te">Diapente</expan> <expan abbr="nullã">nullam</expan> con&longs;onantiam <expan abbr="cõponere">componere</expan> pote&longs;t, omnis <expan abbr="namq;">namque</expan> <lb/> con&longs;onantia, aut in proportione multiplici, aut in &longs;uperparticulari collo­<lb/> canda e&longs;t, ex Pythagoreorum, <expan abbr="aliorum&qacute;">aliorumque</expan>; Mu&longs;icorum traditione; &longs;ed &longs;i duæ <lb/> Diate&longs;&longs;aron, aut duæ Diapente componantur, <expan abbr="neq;">neque</expan> multiplicem, neque &longs;u­<lb/> perarticularem creant rationem, ergò additæ nullam efficere valent <expan abbr="cõ&longs;o-nantiam">con&longs;o­<lb/> nantiam</expan>. </s> <s id="s.004607">duas Diapentes nullam facere rationem multiplicem, aut &longs;uper­<lb/> particularem patet ex numeris earum rationem continentibus &longs;imul addi­<lb/> tis, eo modo, quo Mu&longs;ici &longs;olent addere. </s> <s id="s.004608">ratio Diapentes e&longs;t &longs;e&longs;quialtera, &longs;i <lb/> ergo duæ &longs;e&longs;quialteræ &longs;imul continuentur, vt in his numeris. </s> <s id="s.004609">9. 6. 4. ratio <lb/> primi 9 ad vltimum 4. erit compo&longs;ita ex duabus &longs;e&longs;quialteris; ratio autem <lb/> 9. & 4. <expan abbr="neq;">neque</expan> e&longs;t multiplex, <expan abbr="neq;">neque</expan> &longs;uperarticularis, vt oporteret, &longs;ed e&longs;t multi­<lb/> plex &longs;uperparticularis, quæ ad con&longs;onantiam inepta e&longs;t. </s> <s id="s.004610">propterea igitur <lb/> duæ Diapentæ additæ nullam faciunt con&longs;onantiam. </s> <s id="s.004611">quod præterea expe­<lb/> rientia ip&longs;a manife&longs;tat. </s> <s id="s.004612">&longs;ed cur proprio multiplex, & &longs;uperarticularis &longs;unt <lb/> harmonicæ; multiplex verò &longs;uperarticularis, aut quælibet alia non? </s> <s id="s.004613">fortè <lb/> quia in illis maior &longs;eruatur integritas, quæ perfectio e&longs;t: in cæteris verò mi­<lb/> nor integritas, quæ imperfectio e&longs;t. </s> <s id="s.004614">quod melius in &longs;equenti problem. </s> <s id="s.004615">ex­<lb/> plicabitur. </s> <s id="s.004616">&longs;imiliter duas Diate&longs;&longs;aron nullam facere <expan abbr="ration&etilde;">rationem</expan> con&longs;onantem, <lb/> patet ex numeris illarum additis: eorum proportio e&longs;t &longs;e&longs;quitertia, <expan abbr="addã-tur">addan­<lb/> tur</expan>; ergò duæ &longs;e&longs;quitertiæ, vt in his numeris 16. 12. 9. ratio primi 16. ad <lb/> extremum 9. nec multiplex, nec &longs;uperparticularis e&longs;t, vt oporteret: ergò <lb/> nullam con&longs;onantiam efficient. </s> <s id="s.004617">At verò, &longs;i vna Diate&longs;&longs;aron, & vna Dia­<lb/>pente, componantur, efficiunt Diapa&longs;on; quia ip&longs;arum rationes additæ du­<lb/> plam, quæ e&longs;t ratio Diapa&longs;on, efficiunt: dupla autem e&longs;t multiplex. </s> <s id="s.004618"><expan abbr="ponã-tur">ponan­<lb/> tur</expan> hi tres numeri 6. 4. 3. proportio primi 6. & &longs;ecundi 4. e&longs;t &longs;e&longs;quialtera, <lb/> pro Diapente. <!-- KEEP S--></s> <s id="s.004619">proportio &longs;ecundi 4. & 3. e&longs;t &longs;e&longs;quitertia pro Diate&longs;&longs;aron. <lb/> <!-- KEEP S--></s> <s id="s.004620">Iam proportio inter primum 6. & vltimum 3. e&longs;t dupla: quæ e&longs;t ratio ip&longs;ius <lb/> perfecti&longs;&longs;imæ con&longs;onantiæ Diapa&longs;on. <!-- KEEP S--></s> <s id="s.004621">Ex quibus Ari&longs;t. &longs;ententia manife&longs;ta <pb pagenum="266" xlink:href="009/01/266.jpg"/>e&longs;t. </s> <s id="s.004622">idem quærit etiam problemate 42. Hæc de ratione multiplici, & &longs;uper­<lb/> particulari dicta &longs;unt ex veterum &longs;ententia: recentiores enim mu&longs;icæ de­<lb/> prauatores plures alias rationes perperam inter harmonicas intru&longs;erunt.</s> </p> <p type="main"> <s id="s.004623"><arrow.to.target n="marg379"/></s> </p> <p type="margin"> <s id="s.004624"><margin.target id="marg379"/>388</s> </p> <p type="main"> <s id="s.004625">Probl. 35. <emph type="italics"/>(Cur Diapa&longs;on con&longs;onantia omnium pulcherrima e&longs;t? </s> <s id="s.004626">An quod <lb/> integris terminis huius proportiones continentur: cæterarum autem non integris? <lb/> </s> <s id="s.004627">cùm enim Nete dupla ad hypaten &longs;it, quocunque in genere Nete duo tenuerit, hy­<lb/> pate vnum habebit; & vbi hypate duo, Nete quatuor re&longs;onabit, & ita deinceps. <lb/> </s> <s id="s.004628">At verò eadem Nete me&longs;es &longs;e&longs;quialtera e&longs;t: proportio <expan abbr="namq;">namque</expan> &longs;e&longs;quialtera, qua <expan abbr="cõ-&longs;onantia">con­<lb/> &longs;onantia</expan> diapente concluditur, non integris numeris po&longs;ita e&longs;t: maior enim mino­<lb/> rem intra &longs;e continet totum, & partem eius dimidiam. </s> <s id="s.004629">quamobrem non integri <lb/> cùm integris comparantur, &longs;ed partes &longs;uper&longs;unt. </s> <s id="s.004630">Con&longs;onantia quoque Diate&longs;&longs;a­<lb/>ron proportione &longs;e&longs;quitertia continetur, quæ terminis con&longs;tat, quorum maior mi­<lb/> norem totum continet, & in&longs;uper tertiam eius partem. </s> <s id="s.004631">An quod ex amba­<lb/> bus con&longs;i&longs;tit, perfecti&longs;&longs;ima e&longs;t? </s> <s id="s.004632">& quoniam modulandi men&longs;uram hæc tenet, meri­<lb/> tò omnium eleganti&longs;&longs;ima)<emph.end type="italics"/> Proportio con&longs;onantiæ Diapa&longs;on e&longs;t &longs;icuti 2. ad 1. <lb/> vbi vides vtrunque terminum e&longs;&longs;e integrum, quia maior minorem bis inte­<lb/> grè continet. </s> <s id="s.004633">proportio verò con&longs;onantiæ Diapente, e&longs;t &longs;icuti 3. ad 2. vbi <lb/> maior terminus minorem non integrè continet, &longs;ed &longs;emel, & adhuc <expan abbr="dimidiũ">dimidium</expan> <lb/> illius. </s> <s id="s.004634">proportio <expan abbr="deni&qacute;">denique</expan>; Diate&longs;&longs;aron e&longs;t &longs;icuti 4. ad 3. vbi maior <expan abbr="minor&etilde;">minorem</expan> non <lb/> integrè continet, &longs;ed &longs;emel, & adhuc tertiam ip&longs;ius partem: breuiter deno­<lb/> minationes <expan abbr="harũ">harum</expan> <expan abbr="proportionũ">proportionum</expan> &longs;unt hi, 2/1. 1 1/2. 1 1/3. vbi vides, <expan abbr="primũ">primum</expan>, qui e&longs;t <lb/> Diapa&longs;on con&longs;tare ex integris numeris. </s> <s id="s.004635">&longs;ecundum verò, & tertium, qui &longs;unt <lb/> Diapente, & Diate&longs;&longs;aron exintegro cum fractione. </s> <s id="s.004636">maior autem perfectio <lb/> e&longs;t integritas, quam fractio, aut diui&longs;io. </s> <s id="s.004637">propterea perfectior reliquis e&longs;t <lb/> con&longs;onantia Diapa&longs;on: & Diapente adhuc perfectior, quam Diate&longs;&longs;aron, <lb/> quia illius numeri minorem habent fractionem, quam huius. </s> <s id="s.004638">Aliter re&longs;pon­<lb/> det po&longs;tea dicens, Diapa&longs;on perfectam e&longs;&longs;e adeò con&longs;onantiam; quoniam <lb/>ex duabus Diapente, & Diate&longs;&longs;aron con&longs;tat, vt &longs;upra ex diui&longs;ione mono­<lb/> chordij, & in præcedenti etiam problemate patuit. </s> <s id="s.004639">quæ ratio, quantum va­<lb/> leat, alij viderint. </s> <s id="s.004640">Re&longs;pondet tandem Diapa&longs;on ideò perfecti&longs;&longs;imam e&longs;&longs;e, <lb/> quia ip&longs;a &longs;it modulandi men&longs;ura, ide&longs;t, quia intra terminos huius <expan abbr="con&longs;onã-tiæ">con&longs;onan­<lb/> tiæ</expan> omnes aliæ &longs;implices con&longs;onantiæ continentur, vt &longs;upra initio explica­<lb/> ui. </s> <s id="s.004641">meritò igitur omnium eleganti&longs;&longs;ima e&longs;t. </s> <s id="s.004642">In græco textu &longs;uper&longs;unt <expan abbr="nō-nulla">non­<lb/> nulla</expan>, quæ meritò Gaza omi&longs;it, cum nullo pacto cùm præcedentibus cohæ­<lb/> reant. </s> <s id="s.004643">Verba illa <emph type="italics"/>(Cum enim nete ad hypatem dupla &longs;it, quocunque in genere <lb/>duo tenuerit, hypate vnŭμ habebit &c.)<emph.end type="italics"/> Videntur <foreign lang="greek">nsterog prwteron·</foreign> cum debui&longs;­<lb/> &longs;et dicere, hypatem duplam e&longs;&longs;e ip&longs;ius netes, vt &longs;upra patuit ex diui&longs;ione <lb/> regulæ harmonicæ. </s> <s id="s.004644">Fortè vult dicere neten e&longs;&longs;e duplò acutiorem, <expan abbr="quã">quam</expan> hy­<lb/> pate: vel fuit memoriæ lap&longs;us. </s> <s id="s.004645">quod ait <emph type="italics"/>(At verò eadem nete Me&longs;es &longs;e&longs;qui­<lb/> altera e&longs;t)<emph.end type="italics"/> vult dicere Me&longs;en ad neten habere &longs;e&longs;quialteram proportionem, <lb/> quamuis inuersè loquatur: qua ratione verò Me&longs;e ad netem &longs;e&longs;quialtera <lb/> &longs;it, ex diui&longs;ione monochordij initio tradita &longs;atis patere pote&longs;t.</s> </p> <p type="main"> <s id="s.004646"><arrow.to.target n="marg380"/></s> </p> <p type="margin"> <s id="s.004647"><margin.target id="marg380"/>389</s> </p> <p type="main"> <s id="s.004648">Probl. 36. <emph type="italics"/>(Cur &longs;i neruus medius ex &longs;uo intentionis modo dimotus fuerit, cæte­<lb/> ris <expan abbr="quoq;">quoque</expan> omnes nerui, &longs;onos di&longs;&longs;onos reddent: &longs;ed &longs;i, immoto illo manente, ali­<lb/> quis ex cæteris dimotus fuerit, &longs;olus hic, qui modo &longs;uo caruerit, aberrabit? </s> <s id="s.004649">An, <lb/>quod ratio concinendi, aptaneruorum omnium intentione continetur, quæ non ni&longs;<emph.end type="italics"/>i <pb pagenum="267" xlink:href="009/01/267.jpg"/><emph type="italics"/>per habitudinem quandam ad Me&longs;en, &longs;eu ad Medium, <expan abbr="accommodāda">accommodanda</expan> omnibus e&longs;t, <lb/> ordoqué, ratione illius di&longs;poni &longs;ingulis debet? </s> <s id="s.004650">ergo &longs;ublata concinendi cau&longs;a, <expan abbr="concē-tus">concen­<lb/> tus</expan> æquè cu&longs;todiri præterεa nequit. </s> <s id="s.004651">Veruntamen Me&longs;e &longs;ibi con&longs;tante, &longs;i quis alius <lb/> di&longs;creparit, meritò illius &longs;ola pars dee&longs;t: cæteri <expan abbr="uamq;">νamque</expan> omnes modum &longs;uæ <expan abbr="concin&etilde;-tiæ">concinen­<lb/> tiæ</expan> &longs;eruant integrum) (Neruus medius)<emph.end type="italics"/> ide&longs;t, Me&longs;e, &longs;ic appellata, quod me­<lb/> dia e&longs;&longs;et. <emph type="italics"/>(Quæ non ni&longs;i per habitudinem quandam ad Me&longs;en)<emph.end type="italics"/> hypate cum Me­<lb/> &longs;e con&longs;onabat Diate&longs;&longs;aron: nete cum eadem Me&longs;e con&longs;onabat Diapente, <lb/> quæ &longs;unt duæ præcipuæ con&longs;onantiæ, Diapa&longs;on integrantes; ergo &longs;ublata <lb/> Me&longs;e de &longs;uo &longs;tatu, illas pariter tolli nece&longs;&longs;e e&longs;t. </s> <s id="s.004652">eandem quæ&longs;tionem &longs;upra <lb/> Probl. 20. pertractauit, quàm nunc reui&longs;ere con&longs;ultum erit.</s> </p> <p type="main"> <s id="s.004653"><arrow.to.target n="marg381"/></s> </p> <p type="margin"> <s id="s.004654"><margin.target id="marg381"/>390</s> </p> <p type="main"> <s id="s.004655">Probl. 37. <emph type="italics"/>(Cur existente vocum acumine, &longs;ecundum paruum: grauitate au­<lb/> tem &longs;ecundum multum<emph.end type="italics"/> (<emph type="italics"/>quod enim graue e&longs;t, ob va&longs;titatem graue e&longs;t: quod verò <lb/> acutum ob paruitatem<emph.end type="italics"/>) <emph type="italics"/>difficilius e&longs;t acutas voces canere, quàm graues; & pauci <lb/> &longs;unt, qui &longs;uperna cantare valeant; & leges orthiæ, & acutæ cantu difficiles &longs;unt, <lb/> quod &longs;int valdè inten&longs;æ. </s> <s id="s.004656">Quamquam facilius &longs;it mouere exiguum, quam <expan abbr="magnũ">magnum</expan>: <lb/> idem <expan abbr="itaq;">itaque</expan> in aere deberet accidere. </s> <s id="s.004657">An quia non idem e&longs;t e&longs;&longs;e acutæ vocis à natu­<lb/> ræ, <expan abbr="atq;">atque</expan> <expan abbr="acutũ">acutum</expan> canere: verùm naturaliter imbecilla omnia acutæ &longs;unt vocis; prop­<lb/> terea ectici &longs;unt acutæ vocis, quia parum aeris non multum ciere po&longs;&longs;unt: paucus <lb/>verò velociter fertur; in cantu verò acutum canere &longs;ignum e&longs;t roboris, quod enim <lb/> valdè <expan abbr="fērtur">fertur</expan>, velociter fertur: & difficilè e&longs;t alta canere, at grauia &longs;unt humilia)<emph.end type="italics"/><lb/> Vt intelligas pr&etail;&longs;ens Problema, lege, quæ lib. 1. Top. <!-- REMOVE S-->c. <!-- REMOVE S-->3. &longs;crip&longs;i. </s> <s id="s.004658">Leges Or­<lb/> thiæ, erant cantilenæ (vt &longs;upra probl. </s> <s id="s.004659">28. patuit) inten&longs;a admodum, <expan abbr="alta&qacute;">altaque</expan>; <lb/> voce decantari &longs;olitæ, vnde, & Orthiæ &longs;unt dictæ; de quibus vide Herodo­<lb/> tum lib. <!-- REMOVE S-->I. & Agell. <!-- REMOVE S-->lib. 16. Plutarchus <expan abbr="quoq;">quoque</expan> de mu&longs;ica &longs;æpè meminit Or­<lb/> thiæ legis.</s> </p> <p type="main"> <s id="s.004660">Difficilius deberet e&longs;&longs;e canere graue, quàm <expan abbr="acutũ">acutum</expan>, quia graue e&longs;t in mul­<lb/> to, & acutum in paruo, vt patet in cannis. </s> <s id="s.004661">canna enim grauis e&longs;t maior, & <lb/> ideo plus aeris mouet. </s> <s id="s.004662">chorda etiam grauior, e&longs;t maior, ergò etiam plus <lb/> aeris impellit; idem in cæteris. </s> <s id="s.004663">facilius tamen e&longs;t graue, quam acutum: <lb/> præterea imbecilla, vt Ectici, mulieres, pueri, vocem habent naturaliter <lb/> acutam, ergò facilius deberet e&longs;&longs;e acutum canere, cùm exigua vis id præ­<lb/> &longs;tare videatur? </s> <s id="s.004664">Re&longs;pondet aliud e&longs;&longs;e canere acutum, & aliud à natura ha­<lb/> bere vocem acutam. </s> <s id="s.004665">qui enim cantat acutum, oportet, vt validè vocem in­<lb/> tendat exten&longs;iuè, <expan abbr="atq;">atque</expan> inten&longs;iuè, ide&longs;t opus e&longs;t acumine, & vociferatione, <lb/> quam debiles edere nequeunt; quia quamuis vocem <expan abbr="habeãt">habeant</expan> acutam, tamen <lb/> paruam habent. </s> <s id="s.004666"><expan abbr="Neq;">Neque</expan> difficile e&longs;t canere graue, quia a natura e&longs;t habere ar­<lb/> teriam magnam, & ideo multum aeris ciere, & proinde canere, quæ enim <lb/> naturaliter fiunt, facilè fiunt.</s> </p> <p type="main"> <s id="s.004667">Obijces, Ari&longs;t. in Probl. 26. & 47. dixi&longs;&longs;e contrarium, &longs;cilicet facilius <lb/> e&longs;&longs;e canere acutum, quam graue, ibi enim re&longs;pondet: vtrum, quod facilius <lb/> acutum, quam graue cantatur? </s> <s id="s.004668">Re&longs;pondeo primùm, Ari&longs;t. ibi non a&longs;&longs;ere­<lb/> re, &longs;ed dubitanter loqui. </s> <s id="s.004669">&longs;ecundò, hæc ab eo dicta e&longs;&longs;e problematicè, ide&longs;t <lb/> non con&longs;equenter, &longs;ed quæ po&longs;&longs;int in <expan abbr="vtramq;">vtramque</expan> partem di&longs;putari.</s> </p> <p type="main"> <s id="s.004670"><arrow.to.target n="marg382"/></s> </p> <p type="margin"> <s id="s.004671"><margin.target id="marg382"/>391</s> </p> <p type="main"> <s id="s.004672">Probl. 38. <emph type="italics"/>(Cur rithmo, modulo, cantico, & omninò &longs;ymphonijs gaudent om­<lb/> nes? </s> <s id="s.004673">An quia motibus naturalibus naturaliter gaudemus. </s> <s id="s.004674">iudicium, quod infantes <lb/>nuper editi, ip&longs;is delectantur. </s> <s id="s.004675">ob con&longs;uetudinem verò canticorum modis gaudemus.<emph.end type="italics"/> <pb pagenum="268" xlink:href="009/01/268.jpg"/><emph type="italics"/>rithmo autem gaudemus, quod habeat numerum ratum, & ordinatum, & quod <lb/> nos ordinatè moueat. </s> <s id="s.004676">magis enim proprium naturæ e&longs;t ordinatus motus, quam in­<lb/> ordinatus: & ideò magis etiam &longs;ecundum naturam e&longs;t. </s> <s id="s.004677">argumentum, quod cùm la­<lb/> boramus, & bibimus, & comedimus ordinatè, naturam, viresqué no&longs;tras, & &longs;erua­<lb/> mus, & augemus: cùm verò inordinatè eam corrumpimus, & dimouemus. </s> <s id="s.004678">morbi <lb/> enim dimotiones &longs;unt naturalis con&longs;titutionis corporis. </s> <s id="s.004679">con&longs;onantia verò lætamur, <lb/> quod &longs;it mixtio qu&etail;dam contrariorum, proportionem habentium ad inuicem. </s> <s id="s.004680">&longs;i qui­<lb/> dem proportio ordo e&longs;t, qui naturà quidem &longs;uauis est. </s> <s id="s.004681">mixtum verò omne &longs;uauius <lb/> e&longs;t immixto. </s> <s id="s.004682">præ&longs;ertim &longs;i cùm &longs;en&longs;ibile &longs;it, æquè <expan abbr="vtriu&longs;q;">vtriu&longs;que</expan> extremi vim retineat, in <lb/> con&longs;onantia porrò proportio e&longs;t)<emph.end type="italics"/> Quid rithmus &longs;it, &longs;upra num. </s> <s id="s.004683">27. explicaui. <lb/> </s> <s id="s.004684">&longs;ed optimè ex hoc loco elicitur rithmum e&longs;&longs;e certam quandam in aliquo <lb/> motu periodum, &longs;cilicet determinatorum ictuum, & temporum. </s> <s id="s.004685">Sympho­<lb/> niam, Mu&longs;ici dicunt e&longs;&longs;e plurium &longs;onorum conuenientium mixtionem, &longs;e­<lb/> cundum aliquem canendi modum. </s> <s id="s.004686">quod ait, pueri nuper editi ip&longs;is delecta­<lb/> ri &longs;olent. </s> <s id="s.004687">patet hoc modo; &longs;olo rithmo lætantur, quando incunabulum or­<lb/> dinatè agitatur: modis mu&longs;icis, cùm illis cantilena quæpiam etiam &longs;olita­<lb/> ria, vti e&longs;t Nenia accinitur: &longs;ymphonia tandem, quando mu&longs;ico aliquo in­<lb/>&longs;trumento addita etiam humana voce concinnitur. </s> <s id="s.004688">reliqua per &longs;e patent.</s> </p> <p type="main"> <s id="s.004689"><arrow.to.target n="marg383"/></s> </p> <p type="margin"> <s id="s.004690"><margin.target id="marg383"/>392</s> </p> <p type="main"> <s id="s.004691">Probl. 39. <emph type="italics"/>(Cur &longs;uauius e&longs;t &longs;ymphonum, quàm vni&longs;onum? </s> <s id="s.004692">An quod antipho­<lb/> num ip&longs;um quoque <expan abbr="con&longs;onã">con&longs;onam</expan> e&longs;t per Diapa&longs;on, quippe cùm ex pueris, virisqué fiat an­<lb/> tiphonum, qui ita inter &longs;e vocibus distant, vt Nete, & Hypate. </s> <s id="s.004693">omnis autem &longs;ym­<lb/> phonia &longs;eno &longs;implici &longs;uauior e&longs;t, cur autem ita dictum e&longs;t: quarum &longs;uaui&longs;&longs;ima est <lb/> Diapa&longs;on: Vni&longs;onum autem &longs;implicem &longs;onum habet)<emph.end type="italics"/> Cur &longs;uauior e&longs;t con&longs;onan­<lb/>tia, quæ oritur ex vocibus &longs;ymphonis, ide&longs;t, diuer&longs;is, quam quæ ij&longs;dem &longs;iue <lb/> vni&longs;onis? </s> <s id="s.004694">An quia talis con&longs;onantia magis ad naturam Diapa&longs;on accedit; <lb/> imò Diapa&longs;on ip&longs;a vna e&longs;t ex &longs;ymphonis; ip&longs;a autem fit ex puerorum, ac vi­<lb/> rorum vocibus, quæ inuicem di&longs;tant, vt Nete, & Hypate, ide&longs;t in dupla ra­<lb/> tione; omnis autem con&longs;onantia &longs;uauior e&longs;t &longs;ono &longs;implici: at verò &longs;ympho­<lb/> num continet diuer&longs;os &longs;onos: vni&longs;onum autem quamuis plures contineat, <lb/> tamen propter earum nimiam &longs;imilitudinem, perinde ac vna &longs;implex vox, <lb/> re&longs;pectu illius reputatur. </s> <s id="s.004695">non me latet aliter exponi voces &longs;ymphonon, & <lb/> omophon à Ptolæm. <!-- KEEP S--></s> <s id="s.004696">primo harm. </s> <s id="s.004697">cap. 7. & alijs: &longs;ed illa Ari&longs;tot. &longs;ententiæ <lb/> minimè quadrant. </s> <s id="s.004698">Probl. 16. &longs;uperius e&longs;t ferè idem cum hoc.</s> </p> <p type="main"> <s id="s.004699"><arrow.to.target n="marg384"/></s> </p> <p type="margin"> <s id="s.004700"><margin.target id="marg384"/>393</s> </p> <p type="main"> <s id="s.004701">Probl. 40. <emph type="italics"/>(Cur in &longs;ola Diapa&longs;on con&longs;onantia magadari &longs;olitum e&longs;t? </s> <s id="s.004702">An quia, <lb/> vt pedes carminum proportionem, aut æqualis ad æqualem, aut duo ad vnum, aut <lb/>aliam aliquam obtinent; ita &longs;oni, quibus con&longs;onantia confiat, motus rationem in­<lb/> ter &longs;e aliquam &longs;eruant. </s> <s id="s.004703">cæterarum igitur <expan abbr="con&longs;onātiarum">con&longs;onantiarum</expan> alterius quidem fines &longs;unt <lb/> imperfecti, cùm finiant ad dimidium. </s> <s id="s.004704">propterea nequeunt e&longs;&longs;e eiu&longs;dem facultatis. <lb/> </s> <s id="s.004705">eumqué &longs;int di&longs;pares, di&longs;crepantia illa &longs;en&longs;ui occurrit; quemadmodum in choris in <lb/> ip&longs;o fine alium maiori voce abundare accidit. </s> <s id="s.004706">Præterea ip&longs;i hypate accidit, vt eun­<lb/>dem finem habeat periodorum in &longs;onis cùm nete: vltimus enim à nete ictus ceris <lb/> factus hypate e&longs;t. </s> <s id="s.004707">quod cùm finiant in idem, quamuis non idem fecerint, euenit, vt <lb/> opus ab&longs;olui vnum, communequé po&longs;&longs;it, vt eis accidit, qui &longs;ub extremam cantilenam <lb/> pul&longs;ant; nam etiam&longs;i prius non &longs;onuerint, tamen quòd in idem de&longs;ierint hoc extre­<lb/> mo magis delectent, quam contri&longs;tauerint ante finem di&longs;crepantijs. </s> <s id="s.004708">quoniam igitur <lb/>in Diapa&longs;on, quod commune exultat cum differentijs &longs;uaui&longs;&longs;imum e&longs;t; magadari <emph.end type="italics"/> <pb pagenum="269" xlink:href="009/01/269.jpg"/><emph type="italics"/>autem ex contrarijs vocibus con&longs;i&longs;tat, propterea in Diapa&longs;on magadari &longs;olě)<emph.end type="italics"/> Hic <lb/> repetenda &longs;unt, quæ probl. </s> <s id="s.004709">17. annotaui, vbi quid Magadis, & Magadari <lb/> explicatum e&longs;t. </s> <s id="s.004710">repetenda &longs;unt pariter, quæ in 35. probl. </s> <s id="s.004711">de præ&longs;tantia con­<lb/> &longs;onantiæ Diapa&longs;on &longs;unt dicta. </s> <s id="s.004712">verba illa <emph type="italics"/>(Cum finiat ad dimidiam)<emph.end type="italics"/> <expan abbr="intelligē-da">intelligen­<lb/> da</expan> &longs;unt de Diapente, cuius rationis termini &longs;unt 1 1/2. qui ad dimidium fi­<lb/>niunt; po&longs;tea videtur aliquid addendum pro Diate&longs;&longs;aron, cuius <expan abbr="nimirū">nimirum</expan> ter­<lb/> mini &longs;unt 1 1/3. qui ad vnam tertiam finiunt; nequeunt igitur horum termi­<lb/> norum con&longs;onantiæ Diapente, & Diate&longs;&longs;aron, e&longs;&longs;e eiu&longs;dem facultatis cum <lb/> Diapa&longs;on, cuius rationis termini &longs;unt integri, vt 2. ad 1. verba illa <emph type="italics"/>(Præte­<lb/>rea ip&longs;i hypati accidit, & c.)<emph.end type="italics"/> vt intelligantur, vide problem. </s> <s id="s.004713">24. cum &longs;ua ex­<lb/> plicatione.</s> </p> <p type="main"> <s id="s.004714"><arrow.to.target n="marg385"/></s> </p> <p type="margin"> <s id="s.004715"><margin.target id="marg385"/>394</s> </p> <p type="main"> <s id="s.004716">Probl. 41. <emph type="italics"/>(Cur &longs;uauius cantum audimus, quem &longs;cimus, quam quem ignora­<lb/> mus? </s> <s id="s.004717">Vtrum, quoniam cum <expan abbr="cantilenã">cantilenam</expan> agno&longs;cimus, manife&longs;tior e&longs;t, qui veluti &longs;co­<lb/> pum, a&longs;&longs;equatur. </s> <s id="s.004718">cogno&longs;centium autem &longs;peculatio &longs;uauis e&longs;t. </s> <s id="s.004719">An quia accidit, vt <lb/> auditor vnà cum cantore afficiatur, qui notam cantat cantilenam, nam tunc audi­<lb/> tor illi qua&longs;i &longs;uccinit. </s> <s id="s.004720">Solet autem qui&longs;que alacriter canere, ni&longs;i ob aliquam nece&longs;­<lb/> &longs;itatem id faciat)<emph.end type="italics"/> Lege problem. </s> <s id="s.004721">5. eiu&longs;que explicationem, <expan abbr="erit&qacute;">eritque</expan> huic etiam <lb/> &longs;atisfactum.</s> </p> <p type="main"> <s id="s.004722"><arrow.to.target n="marg386"/></s> </p> <p type="margin"> <s id="s.004723"><margin.target id="marg386"/>395</s> </p> <p type="main"> <s id="s.004724">Probl. 42. <emph type="italics"/>(Cur nec bis Diapente, nec bis Diate&longs;&longs;aron con&longs;onant, &longs;ed bis Dia­<lb/> pa&longs;on. <!-- KEEP S--></s> <s id="s.004725">An quod Diapente con&longs;onantia est in proportione &longs;e&longs;quialtera? </s> <s id="s.004726">quod &longs;i tres <lb/> &longs;e&longs;quialteri, aut &longs;e&longs;quitertij numeri ordine di&longs;ponantur, extremi <expan abbr="nullã">nullam</expan> inuicem pro­<lb/> portionem habebunt, <expan abbr="neq;">neque</expan> enim multiplices, <expan abbr="neq;">neque</expan> &longs;uperparticulares erunt: At con­<lb/>&longs;onantia Diapa&longs;on, quoniam in dupla ratione con&longs;i&longs;tit, qua duplicata, quadruplam <lb/> extremi rationem obtinebunt. </s> <s id="s.004727">Itaque cum con&longs;onantia ex &longs;onis con&longs;iet proportio­<lb/> nem, habentibus, <expan abbr="proportionem&qacute;">proportionemque</expan>; habeant ij, qui interuallo bis Diapa&longs;on compo­<lb/> nuntur; minimè autem, ij, qui bis Diate&longs;&longs;aron, aut bis Diapente interuallis conti­<lb/> nentur; idcirco &longs;oni bis Diapa&longs;on con&longs;oni &longs;unt, cæteri verò <expan abbr="nequaquã">nequaquam</expan> ob prædicta)<emph.end type="italics"/><lb/> Quæ dicta &longs;unt ad probl. </s> <s id="s.004728">34. & 35. totum ferè hunc locum illu&longs;trant. </s> <s id="s.004729">Cæ­<lb/> terum <expan abbr="quãdo">quando</expan> Mu&longs;ici volunt duas &longs;e&longs;quialteras ratione &longs;imul addere, di&longs;po­<lb/> nunt ordine tres numeros habentes inuicem &longs;e&longs;quialteram rationem, vt &longs;e­<lb/> quentes 9. 6. 4. quam deinde habent rationem extremi 9. & 4. eam dicunt <lb/> <expan abbr="compo&longs;itã">compo&longs;itam</expan> ex duabus &longs;e&longs;quialteris: quæ quidem e&longs;t dupla &longs;e&longs;quiquarta, quæ <lb/> con&longs;onantiæ faciendæ inepta e&longs;t; &longs;iue quæ non e&longs;t con&longs;onantia harmonica; <lb/> vnde Mu&longs;ici dicunt eo&longs;dem numero nullam habere rationem, ide&longs;t harmo­<lb/> nicam, cum omnis harmonica &longs;it, aut multiplex, aut &longs;uperparticularis, vn­<lb/>de patet cur bis Diapente nullam pariat con&longs;onantiam. </s> <s id="s.004730">Similiter, duæ ra­<lb/>tiones &longs;e&longs;quitertiæ, 16. 12. 9. additæ efficiunt rationem, quæ e&longs;t inter 16. & <lb/> 9. quæ non e&longs;t harmonica, quia neque multiplex, neque &longs;uperpendicularis <lb/> e&longs;t; ideo apud Mu&longs;icos nulla e&longs;t; quamuis re vera ab Arithmeticis dicatur, <lb/> & &longs;it &longs;uperpartiens, & in &longs;pecie &longs;uperquintupartiens nonas. </s> <s id="s.004731">Duæ verò du­<lb/> plæ, vti 4. 2. 1. eo modo conflant rationem inter 4. & 1. quæ multiplex e&longs;t, <lb/>& quadrupla dicitur, ideò harmonica e&longs;t portio: vnde patet ratio, cur duæ <lb/> Diapa&longs;on con&longs;onant. </s> <s id="s.004732">talis autem con&longs;onantia appellatur Di&longs;diapa&longs;on, cu­<lb/> ius forma e&longs;t in ratione quadrupla.</s> </p> <p type="main"> <s id="s.004733"><arrow.to.target n="marg387"/></s> </p> <p type="margin"> <s id="s.004734"><margin.target id="marg387"/>396</s> </p> <p type="main"> <s id="s.004735">Probl. 43. <emph type="italics"/>(Cur &longs;i quis <expan abbr="p&longs;all&etilde;s">p&longs;allens</expan> neten apprehědat, &longs;ola hypate &longs;ub&longs;onare videtur? <lb/> </s> <s id="s.004736">An <expan abbr="quoniã">quoniam</expan> nete de&longs;inens & elangue&longs;cens euadit hypate; <expan abbr="indiciũ">indicium</expan>, quòd po&longs;t hypaten <emph.end type="italics"/>-<pb pagenum="270" xlink:href="009/01/270.jpg"/><emph type="italics"/>neten canore apti&longs;&longs;imè licet. </s> <s id="s.004737">qua&longs;i. </s> <s id="s.004738">n. </s> <s id="s.004739">cantus illius, &longs;it etiam huius &longs;imilitudinem ex <lb/> illa capiunt. </s> <s id="s.004740">cùm <expan abbr="aũt">aut</expan> Echo eius cantus quidam &longs;it (e&longs;t. </s> <s id="s.004741">n. </s> <s id="s.004742">tactus vocis netes de&longs;inen­<lb/> tis) &longs;onus idem exi&longs;tens &longs;ono hypates, meritò ob &longs;imilitudinem nete videtur moue­<lb/> re hypaten. </s> <s id="s.004743">&longs;cimus enim neten appræhen&longs;am non moueri; videntes verò hypatem <lb/> non appræhen&longs;am, & &longs;onitum ip&longs;ius audientes, ip&longs;am &longs;onare credimus. </s> <s id="s.004744">quod qui­<lb/> dem in multis nobis accidit, in quibus <expan abbr="neq;">neque</expan> ratione, <expan abbr="neq;">neque</expan> &longs;en&longs;u po&longs;&longs;umus certi ali­<lb/> quid videre. </s> <s id="s.004745">Præterea &longs;i nete maximè intenta percutiatur, accidit iugum tremere, <lb/> nihil igitur mirum. </s> <s id="s.004746">ip&longs;o commoto, omnes chordas &longs;imul commoueri, nec ab&longs;urdum <lb/> eas &longs;onum facere. </s> <s id="s.004747">&longs;onus quidem netes, & de&longs;inens, & incipiens alienus e&longs;t à cæte­<lb/>ris: de&longs;inens tamen idem cùm hypate: quo addito propriæ ip&longs;ius motioni, illius to­<lb/> tum videri, nihil ab&longs;urdi. </s> <s id="s.004748">e&longs;t verò maior, quam communis reliquarum chordarum <lb/>&longs;onus, quod illæ quidem, qua&longs;i à nete, propul&longs;æ molliter &longs;onant: nete verò totis vi­<lb/> ribus, omnium quippe vehementi&longs;&longs;ima. </s> <s id="s.004749">it aque &longs;ecundarius eius &longs;onus &longs;uperior reli­<lb/> quis erit; præ&longs;ertim cùm læui&longs;&longs;imo motu moueantur)<emph.end type="italics"/> Idem quæ&longs;iuit num. </s> <s id="s.004750">24. quæ <lb/> ibi dicta &longs;unt, huc etiam pertinent. </s> <s id="s.004751">quibus repetitis melius &longs;equentem pa­<lb/> raphra&longs;im percipies. </s> <s id="s.004752">Verum ante omnia antiquæ lyræ ex antiquis monu­<lb/> mentis figuram oculis &longs;ubijciam.</s> </p> <figure id="id.009.01.270.1.jpg" place="text" xlink:href="009/01/270/1.jpg"/> <p type="main"> <s id="s.004753">Porrò, vt tradit Vincentius Galilæus in &longs;uis Dialogis, erat eius figura, <lb/> qua&longs;i ex caprino capite con&longs;tructa, cuius duo brachia erant capræ cornua; <lb/> inferior pars cranium, quæ tota ba&longs;i complanatæ ita &longs;uperponebatur, vt in <lb/> quouis po&longs;ita plano recta con&longs;i&longs;teret, <expan abbr="neq;">neque</expan> vt ge&longs;taretur, opus erat. </s> <s id="s.004754">chordæ <lb/> ip&longs;ius, quæ e&longs;&longs;ent, & qua ratione e&longs;&longs;ent collocatæ, in figura apparet; quot <lb/> autem fuerint, pro temporum varietate determinandum e&longs;t, nam primo 4. <lb/> deinde 7. demum 8. fuerunt, & plures etiam. </s> <s id="s.004755">Iugum autem, cuius cau&longs;a fi­<lb/> guram appo&longs;ui, erat &longs;upernum illud tran&longs;uer&longs;arium, cui fides annecteban­<lb/> tur, vt idem Vincentius a&longs;&longs;erit. </s> <s id="s.004756">nunc ad textum.</s> </p> <pb pagenum="271" xlink:href="009/01/271.jpg"/> <p type="main"> <s id="s.004757">Cur &longs;i quis neten cæteris intactis, percu&longs;&longs;am, ac &longs;onantem manu compre­<lb/> hendat, ac &longs;i&longs;tat, videbitur audire hypaten? </s> <s id="s.004758">primo re&longs;pondet, id accidere, <lb/> quia &longs;onus ille extremus, quo nete ce&longs;&longs;at, euadit &longs;onus ip&longs;ius hypates. </s> <s id="s.004759">pro­<lb/> pterea igitur <expan abbr="tũc">tunc</expan> exi&longs;timamus audire hypatem. </s> <s id="s.004760">cuius rei indicium e&longs;t, quod <lb/> qui cantant hypaten, facilè ad neten cantandam tran&longs;eunt; cùm enim can­<lb/> tus hypates, &longs;it etiam cantus netes, & veluti illius echo, facilè e&longs;t ex hypa­<lb/> te &longs;imilitudinem netes accipere. </s> <s id="s.004761">præterea in hoc decipimur, quia cum au­<lb/> diamus &longs;onum hypates, <expan abbr="eam&qacute;">eamque</expan>; minimè tentam videamus, quemadmodum <lb/> neten videmus, eam &longs;onare meritò credimus; quod quidem in multis acci­<lb/> dit, vbi nec ratio, nec &longs;en&longs;us attingit, &longs;ic in &longs;cena aliquando putamus quem­<lb/> piam tuba &longs;onare, quod eam ori ip&longs;ius admotam videamus, cùm tamen <lb/> alius po&longs;t &longs;cenam lateat, qui tuba &longs;onet. </s> <s id="s.004762">&longs;imile accidit in nete, & hypate. <lb/> </s> <s id="s.004763">tertiò re&longs;pondet, quod quando quis neten percutit, quæ omnium inten&longs;i&longs;&longs;i­<lb/> ma e&longs;t, accidit, vt iugum, cui illa nectitur, moueatur, tremetque, ex quo <lb/> tremore fit, vt reliquæ omnes chordæ moueantur, ac tremant, & proinde <lb/> &longs;onum edant. </s> <s id="s.004764">cùm autem &longs;onus netis, & incipiens, & de&longs;inens &longs;it ferè idem <lb/> cum &longs;ono hypates, accidit in hoc ca&longs;u, vt &longs;onus de&longs;inentis netis, vniatur <lb/> cum &longs;ono hypates, <expan abbr="&longs;ic&qacute;">&longs;icque</expan>; manife&longs;tè totus ille &longs;onus hypates e&longs;&longs;e videatur. <lb/> </s> <s id="s.004765">cæteræ verò chordæ non audiuntur ob eorum &longs;onorum paruitatem, qui ideò <lb/> exigui &longs;unt, quia excitati &longs;unt ab impul&longs;u, & motu iugi, qui exiguus erat. <lb/> </s> <s id="s.004766">&longs;onus autem netes illis omnibus &longs;uperior e&longs;t, & quia ip&longs;a primò percu&longs;&longs;a e&longs;t, <lb/> & quia inten&longs;i&longs;&longs;ima e&longs;t, & celerrimè mouetur.</s> </p> <p type="main"> <s id="s.004767"><arrow.to.target n="marg388"/></s> </p> <p type="margin"> <s id="s.004768"><margin.target id="marg388"/>397</s> </p> <p type="main"> <s id="s.004769">Probl. 44. <emph type="italics"/>(Cur &longs;uauius &longs;olitariam cantilenam audimus, cùm ad tibiam, quam <lb/> cùm ad lyram cantatur? </s> <s id="s.004770">An quod omne &longs;uaue, quod <expan abbr="mixiũ">mixtum</expan> est cum &longs;uauiori, &longs;ua­<lb/> uius redditur? </s> <s id="s.004771">Atqui tibia, quam lyra &longs;uauior e&longs;t: ergò cantilena tibiæ admixta <lb/> &longs;uauior erit, quam lyræ. </s> <s id="s.004772">quoniam omne mixtum, immixto &longs;uauius, modo quis &longs;en­<lb/> &longs;um amborum percipiat. </s> <s id="s.004773">Vinum enim oximele &longs;uauius e&longs;t, quoniam quæ natura <lb/>permi&longs;cet, longè melius temperantur, quam quæ à nobis mi&longs;centur. </s> <s id="s.004774">Vinum enim <lb/> ex acuto, & dulci &longs;apore mixtum e&longs;t. </s> <s id="s.004775">Idem manifestant mala punica, quæ vino&longs;a <lb/> appellantur. </s> <s id="s.004776">Enimuerò cantilena, & tibia inuicem mi&longs;centur, ob &longs;imilitudinem, <lb/> &longs;piritu enim <expan abbr="vtraq;">vtraque</expan> perficitur. </s> <s id="s.004777">&longs;onus autem lyræ, quoniam non &longs;piritu &longs;it, <expan abbr="e&longs;t&qacute;">e&longs;tque</expan> mi­<lb/> nus &longs;en&longs;ibilis, quam tibiæ, minus voci immi&longs;cetur: quare &longs;en&longs;ui di&longs;crimen inferens, <lb/> minus &longs;uauis e&longs;t; quemadmodum de &longs;aporibus dictum e&longs;t. </s> <s id="s.004778">Adde, quod tibia &longs;oni­<lb/> tu &longs;uo, & humanæ vocis &longs;imilitudine, <expan abbr="pleros&qacute;">plerosque</expan> cantilenæ errores occultare pote&longs;t. <lb/> </s> <s id="s.004779">Sonus autem lyræ cùm exiguus, <expan abbr="atq;">atque</expan> voci immixtus, <expan abbr="ideoq;">ideoque</expan> manife&longs;tus per &longs;e, ma­<lb/> nife&longs;tum cantilenæ errorem, qua&longs;t appo&longs;ita regula facit. </s> <s id="s.004780">cùm verò multa in can­<lb/> tando peccentur, quod ex <expan abbr="vtri&longs;q;">vtri&longs;que</expan> compo&longs;itum e&longs;t, nece&longs;&longs;ariò peius e&longs;t)<emph.end type="italics"/> &longs;atis ex &longs;e <lb/> clarum e&longs;t.</s> </p> <p type="main"> <s id="s.004781"><arrow.to.target n="marg389"/></s> </p> <p type="margin"> <s id="s.004782"><margin.target id="marg389"/>398</s> </p> <p type="main"> <s id="s.004783">Probl. 45. <emph type="italics"/>(Cur neruum illum, quem Me&longs;en, &longs;eu medium dicimus, &longs;ic appella­<lb/> mus; cùm inter &longs;eptem, non autem inter octo &longs;it <expan abbr="mediũ">medium</expan>? </s> <s id="s.004784">An quod olim harmoniæ <lb/> &longs;eptem neruis con&longs;tabant, quorum medium e&longs;t. </s> <s id="s.004785">Præterea eorum, quæ inter quæuis <lb/> extrema continentur illud &longs;olum, quod medium e&longs;t, principium ctiam quoddam e&longs;t: <lb/> quod enim in medio eorum e&longs;t, quæ in aliquo interuallo ad vtrumuis extremorum <lb/> vergunt; illud &longs;olum, & <expan abbr="mediũ">medium</expan>, & principium est. </s> <s id="s.004786">cùm igitur in harmoniæ inter­<lb/> uillo extrema &longs;int hypate, & nete, <expan abbr="his&qacute;">hisque</expan> interiaceant reliqui &longs;oni, quorum is, qui <lb/> Me&longs;e dicitur, e&longs;t etiam principium, quippe <expan abbr="principiũ">principium</expan> alterius tetrachordi, idcircò<emph.end type="italics"/> <pb pagenum="272" xlink:href="009/01/272.jpg"/><emph type="italics"/>meritò Me&longs;e, &longs;eu medius dictus e&longs;t. </s> <s id="s.004787">principium enim, & medium vnum &longs;olum e&longs;&longs;e <lb/> potuit eorum, quæ inter extrema aliqua continentur)<emph.end type="italics"/> Idem quæ&longs;iuit &longs;upra num, <lb/> 25. vide igitur, quæ ibi annotaui. </s> <s id="s.004788">vide præterea, quæ nu. 35. de Tetrachor­<lb/> dis dicta &longs;unt, vbi cur Me&longs;e &longs;it dux, & principium primi tetrachordi appa­<lb/> rebit. </s> <s id="s.004789">Quæ&longs;tioni autem re&longs;pondet duplici modo. </s> <s id="s.004790">primò, quemadmodum <lb/> etiam in 25. &longs;ecundò, re&longs;pondet idcircò Me&longs;en ita e&longs;&longs;e appellatam, quod in­<lb/> ter eos &longs;onos inter extrema contentos rationem principij haberet, &longs;olent <lb/> enim ea, quæ inter extrema aliqua &longs;unt <expan abbr="cæterorũ">cæterorum</expan> principia, e&longs;&longs;e <expan abbr="etiã">etiam</expan> media.</s> </p> <p type="main"> <s id="s.004791">Probl. 46. e&longs;t idem cum &longs;uperiori 22. <expan abbr="vtrumq;">vtrumque</expan> autem ex &longs;e ita manife&longs;tum <lb/> e&longs;t, vt <expan abbr="ab&longs;q;">ab&longs;que</expan> harmonica facultate probè intelligatur.</s> </p> <p type="main"> <s id="s.004792">Probl. 47. idem cum 26. in quibus ait, facilius e&longs;&longs;e canere acutum, quàm <lb/> graue: in 37. verò contrarium: difficilius e&longs;&longs;e cantare acutum, quàm gra­<lb/> ue. </s> <s id="s.004793">&longs;ibi conciliabitur, &longs;i dixeris, hæc dicta e&longs;&longs;e problematicè.</s> </p> <p type="main"> <s id="s.004794"><arrow.to.target n="marg390"/></s> </p> <p type="margin"> <s id="s.004795"><margin.target id="marg390"/>399</s> </p> <p type="main"> <s id="s.004796">Probl. 48. <emph type="italics"/>(Cur veteres cùm &longs;eptem neruis concentus facerent, hypaten, non <lb/> neten reliquerunt? </s> <s id="s.004797">An non hypate, &longs;ed nunc <expan abbr="vocatã">vocatam</expan> paraneten, toniqué interuallum <lb/> ab&longs;tulerunt, vltima verò Acutiden&longs;i pro Me&longs;e vtebantur propterea ip&longs;am Me&longs;en <lb/> appellarunt. </s> <s id="s.004798">An quod &longs;uperioris Tetrachordi finis <expan abbr="principiũ">principium</expan> erat inferioris, & me­<lb/> dium extremorum habebat &longs;ecundum &longs;oni proportionem)<emph.end type="italics"/> Idem quæ&longs;iuit &longs;upra <lb/> num. </s> <s id="s.004799">7. vide igitur, quæ ibi expo&longs;ui; hoc loco quærendum re&longs;tat, quid &longs;it <lb/> illud Acutiden&longs;um. </s> <s id="s.004800">pro qua re vide Ari&longs;toxenum lib. 3. & Euclidem in I&longs;a­<lb/> goge ad Mu&longs;icam: Zarlinum tandem lib. 2. &longs;upplem. </s> <s id="s.004801">& 5. quæ res, quamuis <lb/> plura dicant, adhuc ob antiquitatem non &longs;atis intelliguntur. </s> <s id="s.004802">Quid e&longs;&longs;et Den­<lb/> &longs;um, exponit &longs;ic Euclides: Den&longs;um e&longs;t certa trium &longs;onorum, vel duorum <lb/> interuallorum ex ijs, qui Diate&longs;&longs;aron componunt di&longs;po&longs;itio talis, vt inter­<lb/> uallum, quod con&longs;tituunt hæ tres voces, vel hæc duo interualla, &longs;it maius <lb/> reliquo interuallo ip&longs;ius Diate&longs;&longs;aron. <!-- KEEP S--></s> <s id="s.004803">ponit præterea &longs;onorum alios e&longs;&longs;e <lb/> Grauiden&longs;os, alios Medioden&longs;os, alios Acutiden&longs;os. </s> <s id="s.004804">quibus con&longs;onant, quæ <lb/> Ari&longs;toxenus ait, dum ait den&longs;um fui&longs;&longs;e illam partem Diate&longs;&longs;aron, in qua <lb/> erant duo toni; &longs;ic enim reliquum, quod erat <expan abbr="&longs;emitoniũ">&longs;emitonium</expan> multò minus erat. <lb/> </s> <s id="s.004805">erant autem variæ Diate&longs;&longs;aron diui&longs;iones pro Generum varietate. </s> <s id="s.004806">Antiqui <lb/> igitur &longs;ecundum aliquam eorum diui&longs;ionem, quæ den&longs;um in parte acuta po­<lb/> nebat vltimam chordam illius den&longs;i, quæ pariter vltima erat illius Tetra­<lb/> chordi, &longs;iue Diate&longs;&longs;aron pro media vtebantur, <expan abbr="eam&qacute;">eamque</expan>; idcircò Me&longs;en appel­<lb/> larunt. </s> <s id="s.004807">quæ de Tetrachordis &longs;ubdit clara &longs;unt ex dictis num. </s> <s id="s.004808">33.</s> </p> <p type="main"> <s id="s.004809">Per &longs;uperius Tetrachordum intelligere debemus Acutius, &longs;ic enim finis <lb/> illius erit principium inferioris, ide&longs;t grauioris Tetrachordi; vult enim <lb/> Ari&longs;t. vt &longs;upra non &longs;emel vi&longs;um e&longs;t, acutiorem &longs;onum Tetrachordi e&longs;&longs;e illius <lb/> principium. </s> <s id="s.004810">vide præ&longs;ertim num. </s> <s id="s.004811">45. Antiqui igitur Paraneten omittentes, <lb/> aliam, quæ vltima erat in parte den&longs;a Tetrachordi, <expan abbr="quæ&qacute;">quæque</expan>; principium pri­<lb/> mi, & finis &longs;ecundi erat, pro Me&longs;e vtebantur, ex quibus quæ&longs;tioni vtcunque <lb/> inuolutè &longs;atis re&longs;pondet.</s> </p> <p type="main"> <s id="s.004812"><arrow.to.target n="marg391"/></s> </p> <p type="margin"> <s id="s.004813"><margin.target id="marg391"/>400</s> </p> <p type="main"> <s id="s.004814">Probl. 49. <emph type="italics"/>(Cur Tragœdiarum choris, <expan abbr="neq;">neque</expan> &longs;ubdorio, <expan abbr="neq;">neque</expan> &longs;ubphrygio cantandi <lb/> genere, vti mos e&longs;t? </s> <s id="s.004815">An quod modulŭm præ&longs;tare hæ harmoniæ nequeunt, quo choris <lb/> valdè opus e&longs;t; mores habet hypophrygius practicos (<expan abbr="quamobr&etilde;">quamobrem</expan> in Gerione excur­<lb/>&longs;us, & armatio ip&longs;o perficiunter) Subdorius verò magnificus, constans, <expan abbr="gram&longs;q;">graui&longs;que</expan> <lb/>e&longs;t, quocirca omnium harmoniarum maximè cytharæ conuenit. </s> <s id="s.004816">&longs;ed hæc ambo, vt<emph.end type="italics"/> <pb pagenum="273" xlink:href="009/01/273.jpg"/><emph type="italics"/>choris minimè congruunt, &longs;ic &longs;cenis &longs;unt magis dome&longs;tica; etenim &longs;cena Heroum <lb/> facta, dictaqué &longs;imulat. </s> <s id="s.004817">Veterum autem duces &longs;oli Heroes fuerunt. </s> <s id="s.004818">populi verò erant <lb/> Homines, ex quibus chorus con&longs;tat. </s> <s id="s.004819">quapropter choro competunt mores flebiles, & <lb/>æquales, & moduli; hæc enim humana &longs;unt. </s> <s id="s.004820">quæqué harmoniæ cæteræ aliæ non ha­<lb/> bent. </s> <s id="s.004821">minimè verò hypophrygius, qui lymphaticus, <expan abbr="atq;">atque</expan> bacchicus e&longs;t. </s> <s id="s.004822">At mixto­ <lb/> lydius illa præ&longs;tare pote&longs;t; propterea eo aliquo modo afficimur. </s> <s id="s.004823">magis autem debi­<lb/> les afficiuntur, quàm fortes, quapropter ille choris conuenit. </s> <s id="s.004824">Hypodorio verò, & <lb/> hypophrygio agimus, qui choro non conueniunt; est enim chorus, veluti curator <lb/> quidam otio&longs;us, ijs &longs;olum beneuolentiam præbens, quibus ade&longs;t)<emph.end type="italics"/> lege Probl. 30. <lb/> vbi idem quæ&longs;iuit. </s> <s id="s.004825">lege præterea, quæ ad num. </s> <s id="s.004826">15. annotaui: ex quibus lo­<lb/> cum hunc intelliges. </s> <s id="s.004827">quod ait <emph type="italics"/>(In Gerione excur&longs;us, & armatio)<emph.end type="italics"/> exi&longs;timo, <lb/> Gerionem hunc Tragœdiam fui&longs;&longs;e illam, quam Suidas in Nicomacho inter <lb/> Nicomachi Alexandrini Tragici Tragœdias recen&longs;et. </s> <s id="s.004828">excur&longs;us verò, & ar­<lb/> matio erant partes, quibus con&longs;tabat Tragœdia, quemadmodum no&longs;træ in <lb/> <expan abbr="quinq;">quinque</expan> actus diuiduntur. </s> <s id="s.004829">vide Zarlinum cap. 5. primæ partis In&longs;tit. <!-- REMOVE S-->vbi tra­<lb/> dit fabulam quandam Delonam dictam, quæ in modum Tragœdiæ habeba­<lb/> tur, fui&longs;&longs;e diui&longs;am in 5. partes, Explorationem, Prouocationem, Iambicum, <lb/> Spondeum, & Ouationem, aut Saltationem.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.004830"><arrow.to.target n="marg392"/></s> </p> <p type="margin"> <s id="s.004831"><margin.target id="marg392"/>401</s> </p> <p type="main"> <s id="s.004832">Probl. 50. <emph type="italics"/>(Cur in &longs;onis grauioribus &longs;ymphonia mollior euadit? </s> <s id="s.004833">An quod mo­<lb/> dulatus cantus &longs;ua quidem natura mollis e&longs;t, & quietus: &longs;ed admixti numeri, &longs;eu <lb/> rithmi ratione a&longs;perior redditur, & mouentior. </s> <s id="s.004834">cùm igitur &longs;onus granis, mollis, & <lb/>quietus &longs;it; &longs;onus autem acutus mouens, & irritans; omninò &longs;equitur admixito­<lb/> ne eiu&longs;dem numeri grauiorem cantum debere e&longs;&longs;e <expan abbr="quoq;">quoque</expan> molliorem; e&longs;t enim modu­<lb/> latus cantus ex ijs, quæ mollia &longs;unt)<emph.end type="italics"/> &longs;oni grauiores natura molliores &longs;unt, ide&longs;t, <lb/> molles mores reddunt, &longs;eu molles, <expan abbr="effœminatos&qacute;">effœminatosque</expan>; decent magis, quàm &longs;o­<lb/> ni acuti: moduli præterea, &longs;iue cantilenæ modulatæ, aut rithmi, molles na­<lb/> tura &longs;unt, vt &longs;uperius num. </s> <s id="s.004835">38. explicatum e&longs;t: &longs;i igitur vtrique & graui, & <lb/> acuto addatur numerus, nece&longs;&longs;ariò graue mollius euadet.</s> </p> <p type="main"> <s id="s.004836"><arrow.to.target n="marg393"/></s> </p> <p type="margin"> <s id="s.004837"><margin.target id="marg393"/>402</s> </p> <p type="main"> <s id="s.004838">Probl. 51. <emph type="italics"/>(Cur æqualium, & &longs;imilium doliorum, &longs;i vnum &longs;it inane; alterum <lb/> verò dimidiatum tinnitus eorum Diapa&longs;on re&longs;onabunt? </s> <s id="s.004839">An quoniam &longs;onus dimi­<lb/> diati cum &longs;ono vacui duplam habent inuicem proportionem: quid enim in i&longs;tis po­<lb/> tius, quàm in fi&longs;tulis res euariat? </s> <s id="s.004840">motum <expan abbr="namq;">namque</expan> eŭndem acutiorem putamus, quem <lb/> velociorem. </s> <s id="s.004841">in maioribus verò aer tardius occurrit, vt in duplis duplò, & cæteris <lb/> &longs;ecundum proportionem. </s> <s id="s.004842">in vtris etiam, duplus cùm dimidio Diapa&longs;on con&longs;onat)<emph.end type="italics"/><lb/> quæ initio dixi in diui&longs;ione monochordij, & alibi, &longs;ed præ&longs;ertim in Probl. 23. <lb/> locum hunc abundè declarant. </s> <s id="s.004843">Vbicunque enim corpus &longs;onans duplum e&longs;t <lb/> alterius corporis &longs;onantis, &longs;iue &longs;int chordæ, &longs;iue fi&longs;tulæ, &longs;iue dolia, &longs;iue vtres, <lb/> re&longs;onant Diapa&longs;on, cuius forma con&longs;i&longs;tit in proportione dupla, quæ in hu­<lb/> iu&longs;modi corporum &longs;onis reperitur.</s> </p> </chap> <chap> <p type="head"> <s id="s.004844"><emph type="italics"/>Ex Sectione 23.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.004845"><arrow.to.target n="marg394"/></s> </p> <p type="margin"> <s id="s.004846"><margin.target id="marg394"/>403</s> </p> <p type="main"> <s id="s.004847">Problema 2. <emph type="italics"/>(Cur nauigia onu&longs;tiora in portu, quàm in alto e&longs;&longs;e videntur? </s> <s id="s.004848">cæ­<lb/> lerius enim de alto in terram veniunt, quàm de terra in altum prouehantur? <lb/> </s> <s id="s.004849">An quod plus aquæ, quàm minus reniti validius pote&longs;t? </s> <s id="s.004850">parua enim oppre&longs;&longs;a onere<emph.end type="italics"/> <pb pagenum="274" xlink:href="009/01/274.jpg"/><emph type="italics"/>cedit, vt demergi nece&longs;&longs;e &longs;it: multa è contrariò repellit, ac &longs;ustinet. </s> <s id="s.004851">vis enim ea <lb/> e&longs;t aquæ. </s> <s id="s.004852">vt &longs;ur&longs;um ver&longs;us compellat inferius; ergò, vt in portu maris parùm, &longs;ic <lb/> multùm in alto e&longs;t: <expan abbr="itaq;">itaque</expan> plus oneris conuehi in portu videbitur, etiam mouebitur <lb/>ægrius, quia magis immergitur, & aqua minus reniti pote&longs;t: at verò in alto res <lb/>contra v&longs;u venit)<emph.end type="italics"/> &longs;en&longs;us verborum Ari&longs;t. &longs;atis per&longs;picuus e&longs;t, res tamen &longs;unt <lb/> magis expendendæ. </s> <s id="s.004853">primò <expan abbr="namq;">namque</expan> maximè ambigo de experientia ip&longs;a, quæ <lb/> huic quæ&longs;tioni &longs;ubijcitur, &longs;i enim vera &longs;unt ea, quæ ab A&longs;tronomis afferun­<lb/>tur, vt maris &longs;phæricitatem a&longs;&longs;erant, fal&longs;a nece&longs;&longs;ariò erit experientia hæc: <lb/> aiunt autem ip&longs;i pari velocitate nauigia è portu in altum euehi, <expan abbr="atq;">atque</expan> ex al­<lb/>to in portum appellant; quod &longs;ignum manife&longs;tum e&longs;t, &longs;uperficiem maris <expan abbr="ex-timã">ex­<lb/> timam</expan> æquè <expan abbr="vndiq;">vndique</expan> à centro mundi di&longs;tare, ac proinde omninò <expan abbr="&longs;phæricã">&longs;phæricam</expan> e&longs;&longs;e.</s> </p> <p type="main"> <s id="s.004854">Illud po&longs;tea, quod pro &longs;olutione Problematis affert, dum ait, nauim ma­<lb/> gis in portu, quàm in alto demergi (quoniam plus aquæ, valeat magis, quàm <lb/> minus, nauigij onus &longs;u&longs;tinere, parua enim aqua oppre&longs;&longs;a onere cædit faci­<lb/>lius, quàm multa) non paruam habet difficultatem. </s> <s id="s.004855">refragantur enim ma­<lb/> ximorum <expan abbr="Matnematicorũ">Mathematicorum</expan> demon&longs;trationes. </s> <s id="s.004856">Archimedes enim demon&longs;t. </s> <s id="s.004857">5. <lb/> lib. 1. de ijs, quæ vehuntur in aqua acuti&longs;&longs;imè demon&longs;trat; &longs;olidarum ma­<lb/> gnitudinum humido læuiorum, in humidum eò <expan abbr="v&longs;q;">v&longs;que</expan> demergi, vt tanta moles <lb/> humidi, quanta e&longs;t partis demer&longs;æ, eandem quam tota magnitudo, graui­<lb/> tatem habeat. </s> <s id="s.004858">quod idem Galilæus Galilæus, in Italico Di&longs;cur&longs;u de rebus, <lb/> quæ aquæ innatunt, &longs;ubtiliter <expan abbr="cõprobauit">comprobauit</expan>, vt videre e&longs;t apud ip&longs;um pag. </s> <s id="s.004859">14. <lb/> quæ cum certa &longs;int, &longs;equitur nece&longs;&longs;ariò fal&longs;um e&longs;&longs;e, maiorem aquæ copiam <lb/> altiùs nauim quàm minorem, extollere. </s> <s id="s.004860">dummodo tamen aqua <expan abbr="vtrobiq;">vtrobique</expan> &longs;it <lb/> eiu&longs;dem grauitatis. </s> <s id="s.004861">quare Galilæus pag. </s> <s id="s.004862">17. &longs;ic orationem claudit: valeant <lb/> inquit, eorum falsè opiniones, qui exi&longs;timant nauigium facilius à magna <lb/> aquæ copia &longs;u&longs;tineri, quàm à parua: quod Ari&longs;t. &longs;ect. </s> <s id="s.004863">23. probl. </s> <s id="s.004864">2. credidit: <lb/>cum contrà verum &longs;it, nauim æquè facilè in oceano, <expan abbr="atq;">atque</expan> in decem doliorum <lb/> aqua innatare, ac &longs;u&longs;tineri hæc ille.</s> </p> </chap> <chap> <p type="head"> <s id="s.004865"><emph type="italics"/>Ex Sectione 30.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.004866"><arrow.to.target n="marg395"/></s> </p> <p type="margin"> <s id="s.004867"><margin.target id="marg395"/>404</s> </p> <p type="main"> <s id="s.004868">Ad 6 Probl. <emph type="italics"/>(Cur nihil in eo delectamur, quod triangulum duobus rectis pa­<lb/> res angulos internos habere &longs;pectamus)<emph.end type="italics"/> vide quæ lib. 1. Priorum, &longs;ecto <lb/> 3. cap. 3. de hac trianguli proprietate annotaui, cuius etiam &longs;æpius Ari&longs;t. <lb/> meminit, nunquam tamen verbum illud, internos, præterquam hic, addi­<lb/> dit; vt autem benè intelligas quinam &longs;int hi anguli interni, & qui externi, <lb/> & quod etiam rectis externi æquiualeat, lege quæ ad tex. <!-- REMOVE S-->39. primi Po&longs;ter, <lb/> &longs;unt annotata.</s> </p> </chap> <chap> <p type="head"> <s id="s.004869"><emph type="italics"/>Ex Sectione 31.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.004870">Eorum, quæ ad oculos pertinent,</s> </p> <p type="main"> <s id="s.004871"><arrow.to.target n="marg396"/></s> </p> <p type="margin"> <s id="s.004872"><margin.target id="marg396"/>405</s> </p> <p type="main"> <s id="s.004873">Probl. 7. <emph type="italics"/>(Quam ob cau&longs;am <expan abbr="vtrunq;">vtrunque</expan> a&longs;pectum &longs;imul diuertere de&longs;tror&longs;um, & <lb/> &longs;ini&longs;tror&longs;um, & ad nares demittere valemus, & alterum ad dextram, & ad <lb/> &longs;ini&longs;tram, &longs;imul verò vnum dextror&longs;um, alterum &longs;ini&longs;tror&longs;um nequimus; &longs;imiliter <lb/> <expan abbr="neq;">neque</expan> deor&longs;um, <expan abbr="neq;">neque</expan> &longs;ur&longs;um. </s> <s id="s.004874">&longs;imul verò ad idem po&longs;&longs;umus, &longs;eparatim verò nequa-<emph.end type="italics"/> <pb pagenum="275" xlink:href="009/01/275.jpg"/><emph type="italics"/>quam? </s> <s id="s.004875">An quia quamuis &longs;int duo a&longs;pectus, ex vnico tamen principio eodem modo <lb/> dependent? </s> <s id="s.004876"><expan abbr="quæcunq;">quæcunque</expan> autem ita &longs;e habent, quoties alterum extremŭμ mouetur, ne­<lb/>ce&longs;&longs;e est alterum con&longs;equi ad idem; alterius enim extremum e&longs;t alterius extremi <lb/> principium. </s> <s id="s.004877">&longs;i igitur res vna nequit, &longs;imul in contraria moueri; nec a&longs;pectus pote­<lb/> runt: cùm ita accidat, vt extrema in partes aduer&longs;as moueantur, &longs;i quidem alter <lb/> &longs;ur&longs;um, alter deor&longs;um moueatur, initiumqué &longs;equi alterum a&longs;pectum; quod impo&longs;&longs;i­<lb/> bile. </s> <s id="s.004878">Oculorum verò limitas inde oritur, quia oculorum globi principio continen­<lb/> tur, quo & &longs;ur&longs;um, & deor&longs;um, & ad latera conuerti po&longs;&longs;int. </s> <s id="s.004879">cùm igitur ita &longs;int <lb/> collocati, vt &longs;itu inuicem &longs;imili re&longs;pondeant, <expan abbr="atq;">atque</expan> &longs;int in medio &longs;e &longs;e mouendi &longs;ur­<lb/> &longs;um, deor&longs;um, & ad latera, eodemqué in puncto vi&longs;um habeant, tali &longs;itu præcipuè <lb/> ab inuicem &longs;unt inuariabiles. </s> <s id="s.004880">qui verò in eodem puncto pupillas habent, limi non <lb/>&longs;unt, &longs;ed tamen ab inuicem differŭνt: nam alijs nigri aliquid occultatur, & &longs;ur&longs;um <lb/>proijciunt alba, veluti &longs;ternutaturi. </s> <s id="s.004881">alijs in angulŭμ oculi exteriorem, nigrŭμ vergit, <lb/> &longs;icuti furio&longs;is: alijs in interiorem ad nares, vt per&longs;onis tragicis, & &longs;eueris, qui &longs;unt <lb/> contuitu graui. </s> <s id="s.004882">Quibus verò &longs;itu di&longs;&longs;imili globi &longs;unt po&longs;iti, &longs;ed eodem puncto &longs;tant <lb/> pupillæ: aut quibus &longs;itus &longs;imilis e&longs;t, &longs;ed non idem punctum pupillarum hi nece&longs;&longs;ariò <lb/> limi &longs;unt. </s> <s id="s.004883">propterea toruè a&longs;piciunt, & oculos contrahunt; conantur enim in eun­<lb/> dem habitum collocare globum, alterum firmum continentes, alterŭ verò agitan­<lb/> tes. </s> <s id="s.004884">nece&longs;&longs;ariò enim limus e&longs;t, cui non eodem de puncto vi&longs;us prodeunt, quippe qui <lb/> dimotum contuendi principium, perinde ac ille, cui &longs;uppre&longs;&longs;o oculo res vna gemi­<lb/> nata videtur. </s> <s id="s.004885">ergò &longs;i oculus &longs;ur&longs;um dimotus e&longs;t, terminus in&longs;piciendi deor&longs;um e&longs;t: <lb/> &longs;ed &longs;i oculus deor&longs;um lap&longs;us e&longs;t, terminus &longs;ur&longs;um. </s> <s id="s.004886">Vno verò oculo à &longs;itu &longs;uo di­<lb/> moto, moueri quidem res vi&longs;a &longs;ur&longs;um, deor&longs;umuè ob id videtur, quia & pupilla: <lb/>&longs;ed geminata nunquam apparebit, ni&longs;i duo &longs;int vi&longs;us, qui contorqueantur. </s> <s id="s.004887">talis ap­<lb/> paret limo <foreign lang="greek">eterofqalmw|,</foreign> &longs;eu &longs;traboni, vt duplicata illi videatur. </s> <s id="s.004888">propter po&longs;itio­<lb/>nem verò id fit, quia &longs;cilicet oculus &longs;uo medio non &longs;it constitutus)<emph.end type="italics"/> Quæcunque ab <lb/> Ari&longs;t. hoc loco læuiter attinguntur, exactè ab opticis Alhazeno, & Vitell. <lb/> <!-- REMOVE S-->pertractantur. </s> <s id="s.004889">vide propo&longs;. </s> <s id="s.004890">26. lib. 3. Vitell. <!-- REMOVE S-->quæ e&longs;t hæc. </s> <s id="s.004891">Vno oculo moto <lb/> nece&longs;&longs;e e&longs;t alium eidem conformiter moueri.</s> </p> <p type="main"> <s id="s.004892">Quando ait <emph type="italics"/>(Et alterum ad dextram, & ad &longs;ini&longs;tram)<emph.end type="italics"/> &longs;ignificat nos po&longs;&longs;e <lb/> mouere alterum oculum, altero manente, quoquouer&longs;us: quod non video <lb/> quomodo verum &longs;it, alij fortè videbunt.</s> </p> <p type="main"> <s id="s.004893">Quando ait <emph type="italics"/>(<expan abbr="Atq;">Atque</expan> &longs;int in medio mouendi &longs;e &longs;e)<emph.end type="italics"/> per medium mouendi intel­<lb/> ligit Ari&longs;t. punctum, quod concipitur e&longs;&longs;e in medio inter &longs;ur&longs;um, & deor­<lb/> &longs;um; necnon inter dextrum, & &longs;ini&longs;trum oculorum in naturali po&longs;itione <lb/> manentium.</s> </p> <p type="main"> <s id="s.004894">Quando ait <emph type="italics"/>(Eodemque in puncto vi&longs;um habent)<emph.end type="italics"/> & <emph type="italics"/>(Quiverò in eodem pun­<lb/> cto pupillas habent)<emph.end type="italics"/> per idem <expan abbr="pũctum">punctum</expan> intelligo illud, quod in vno oculorum <lb/> habet eandem po&longs;itionem cum altero puncto alterius oculi, &longs;ic duo oculi <lb/> habebunt pupillas in codem puncto, quando eas habebunt con&longs;imiliter lo­<lb/> catas, & habebunt eandem in <expan abbr="vtroq;">vtroque</expan> oculo po&longs;itionem.</s> </p> <p type="main"> <s id="s.004895">Quando ait <emph type="italics"/>(Dimotum contuendi principiŭm habet<emph.end type="italics"/>) ide&longs;t, locum pupillæ non <lb/> habet in eodem &longs;itu, in quo oporteret, ide&longs;t non habet con&longs;imilem &longs;itum re­<lb/> &longs;pectu &longs;ur&longs;um, & deor&longs;um, dextror&longs;um, & &longs;ini&longs;tror&longs;um, alteri pupillæ.</s> </p> <p type="main"> <s id="s.004896">Quando ait <emph type="italics"/>(Perinde vt ille, cui res vna geminari oculo &longs;uppre&longs;&longs;o videtur)<emph.end type="italics"/> vt <lb/>rectius ea, quæ hoc loco ab Ari&longs;t. dicuntur, percipi po&longs;&longs;int, explicandum <pb pagenum="276" xlink:href="009/01/276.jpg"/>prius exi&longs;timo, cur quamuis geminatos oculos habeamus, res tamen vnicæ <lb/> non &longs;olent geminatæ videri, dummodo oculi à naturali &longs;uo &longs;itu non luxen­<lb/> tur, quod etiam à Vitell. <!-- REMOVE S-->propo&longs;it. </s> <s id="s.004897">28. & 46. lib. 3. pertractatur: quamuis <lb/> commentum illud Vitell. <!-- REMOVE S-->& Alaz. <!-- REMOVE S-->non placeat de neruorum opticorum <lb/> vnione, eò quod Anatomici refragentur.</s> </p> <p type="main"> <s id="s.004898">Dicendum igitur, quod cùm anima vna &longs;it, & obiectum etiam &longs;it vnum, <lb/> & cùm <expan abbr="vter&qacute;">vterque</expan>; oculus habeat con&longs;imilem omninò &longs;itum, &longs;it etiam, vt &longs;pecies <lb/>obiecti repre&longs;entatiua eodem modo in <expan abbr="vtroq;">vtroque</expan> oculo &longs;ituetur, ob quem con­<lb/> &longs;imilem &longs;itum, tum oculi, tum &longs;peciei &longs;it, vt anima vtatur duobus oculis, <lb/>tanquam vno oculo, & duabus &longs;peciebus tanquam vna &longs;pecie: &longs;i enim alter <lb/> oculus alteri oculo imponeretur, e&longs;&longs;ent omninò partes vnius congruentes <lb/> partibus alterius, & &longs;pecies vnius oculi congrueret, & vniretur pœnitus <lb/> cum altera alterius, &longs;ecundum &longs;ingulas earum partes con&longs;imiles. </s> <s id="s.004899">vt autem <lb/> &longs;pecies &longs;ituentur con&longs;imiliter in vtroque oculo nece&longs;&longs;e e&longs;t, vt <expan abbr="vter&qacute;">vterque</expan>; oculus <lb/> eodem modo a&longs;piciat <expan abbr="obiectũ">obiectum</expan>; quod tunc &longs;it, quando axes vi&longs;uales vtriu&longs;q; <lb/> oculi vniuntur in obiecto. </s> <s id="s.004900">axis porrò vi&longs;ualis e&longs;t linea ab obiecto tendens ad <lb/> centrum oculi, quæ tamen tran&longs;eat per centra corneæ, vueæ, & pupillæ. </s> <s id="s.004901">tunc <lb/> partes &longs;pecierum erunt omninò con&longs;imiliter collocatæ in <expan abbr="vtroq;">vtroque</expan> vi&longs;u: ita <lb/> vt pars &longs;peciei, quæ dextra e&longs;t in vno, &longs;it etiam dextra in altero. </s> <s id="s.004902">Intelligo <lb/> eandem partem re&longs;pectu obiecti, quæ refert eandem obiecti partem. </s> <s id="s.004903">quem­<lb/> admodum igitur nec duabus auribus audimus duas voces, nec duabus nari­<lb/> bus geminos odores, nec duplici manu duplicatas res tactas: ita anima, <lb/> &longs;eruatis, quæ nuper dixi, duobus vi&longs;ibus res vnam vnicè videre debet.</s> </p> <p type="main"> <s id="s.004904">Hinc facilius cogno&longs;cemus, qua de cau&longs;a res vi&longs;a aliquando geminetur. <lb/> </s> <s id="s.004905">quoties enim &longs;pecies eiu&longs;dem obiecti in altero oculorum habet alium &longs;itum, <lb/> quàm in altero, geminatio accidit, quia non habet con&longs;imilem &longs;itum, & &longs;i <lb/> vna alteri &longs;upponeretur, non re&longs;ponderent partes vnius dexteræ, v. <!-- REMOVE S-->g. <!-- REMOVE S-->par­<lb/> tibus dextris alterius; vnde non identificarentur; nec quæ e&longs;&longs;ent in eadem <lb/> parti oculi repre&longs;entarent eandem obiecti partem; & propterea oculi non <lb/> e&longs;&longs;ent quodammodo vnus oculus, cùm alter ab altero diuer&longs;imodè à &longs;pecie <lb/> informaretur. </s> <s id="s.004906">vt autem &longs;pecies <expan abbr="vtrumq;">vtrumque</expan> oculum con&longs;imiliter <expan abbr="inform&etilde;t">informent</expan>, ne­<lb/> <figure id="id.009.01.276.1.jpg" place="text" xlink:href="009/01/276/1.jpg"/><lb/> ce&longs;&longs;e e&longs;t, vt axes vi&longs;uales, quales <lb/> &longs;unt in appo&longs;ita figura, C B, D B, <lb/> ab oculis C, D, ad obiectum B, <lb/>ducti, in ip&longs;o obiecto B. imò in <lb/> eodem ip&longs;ius puncto vniantur: <lb/> quoties. </s> <s id="s.004907">n. </s> <s id="s.004908">res vi&longs;a <expan abbr="nõ">non</expan> e&longs;t in con­<lb/> cur&longs;u axium, vt e&longs;t res A. tunc <lb/> di&longs;&longs;imiliter &longs;peciem ad oculos <lb/> mittit, nam &longs;pecies puncti A, in oculo D, erit ad &longs;ini&longs;tram centri pupillæ; <lb/> in oculo verò C, erit ad dextram.</s> </p> <p type="main"> <s id="s.004909">Quando pariter alterum oculorum digito &longs;ur&longs;um, aut deor&longs;um compri­<lb/> mimus, fit, vt ille aliquantulum à loco &longs;uo naturali, & con&longs;imili &longs;itui alte­<lb/> rius dimoueatur; quare nece&longs;&longs;e, vt axis ip&longs;ius &longs;imiliter ad motum oculi di­<lb/> moueatur, nec amplius concurrat cum altero axe, in eodem obiecti puncto, <lb/> in quod alter <expan abbr="t&etilde;det">tendet</expan>, vel <expan abbr="&etilde;t">et</expan> in <expan abbr="alterũ">alterum</expan> <expan abbr="obiectũ">obiectum</expan>. </s> <s id="s.004910">vide Vitell. <!-- REMOVE S-->prop. 103. & 104. li. </s> <s id="s.004911">4.<!-- KEEP S--></s> </p> <pb pagenum="277" xlink:href="009/01/277.jpg"/> <p type="main"> <s id="s.004912">Quando ait <emph type="italics"/>(Si oculus &longs;ur&longs;um dimotus e&longs;t, terminus in&longs;piciendi deor&longs;um est)<emph.end type="italics"/><lb/>Per terminum in&longs;piciendi intelligo rem illam, quæ prius videbatur, & po&longs;t <lb/> oculi dimotionem infra axem vi&longs;ualem remanet.</s> </p> <p type="main"> <s id="s.004913">Quando ait <emph type="italics"/>(Sed geminata nunquam apparebit, ni&longs;i duo &longs;int vi&longs;us, qui contor­<lb/> queantur)<emph.end type="italics"/> ni&longs;i duplex &longs;it con&longs;pectus, ide&longs;t, ni&longs;i oculus vnus ab altero diffe­<lb/>renter &longs;ituetur, &longs;ic enim &longs;peciem diuersè re&longs;piciunt, non videbitur res du­<lb/> plicata.</s> </p> <p type="main"> <s id="s.004914">Quando ait <emph type="italics"/>(Tali apparet limo, &longs;eu &longs;traboni)<emph.end type="italics"/> græcè ait <foreign lang="greek">eterofqslmw</foreign>, quod <lb/> propriè &longs;ignificat eum, quem Latini Lu&longs;cum dicunt, qui vnius <expan abbr="tantũ">tantum</expan> e&longs;t ocu­<lb/> li. </s> <s id="s.004915">videtur tamen v&longs;urpa&longs;&longs;e illud pro limo, &longs;eu &longs;trabone, vt Gaza etiam ac­<lb/> cipit, &longs;ecus enim non po&longs;&longs;et illi res geminari, cùm ad id nece&longs;&longs;arij &longs;int duo <lb/> oculi, vt modo dixerat.</s> </p> <p type="main"> <s id="s.004916">Quando ait <emph type="italics"/>(Propter po&longs;itionem verò id fit)<emph.end type="italics"/> ex paulò ante dictis po&longs;&longs;unt <lb/> intelligi. </s> <s id="s.004917">verumtamen, & illud addam; Duplicis con&longs;pectus, vel gemina­<lb/>tionis cau&longs;a e&longs;&longs;e pote&longs;t, vel diuer&longs;us oculorum &longs;itus, vel etiam &longs;itus &longs;pecie­<lb/> rum diuer&longs;us, vt quando obiectum e&longs;t intra concur&longs;ionem axium, vt in <expan abbr="præ-ced&etilde;ti">præ­<lb/> cedenti</expan> figura, vbi etiam&longs;i oculi naturalem <expan abbr="&longs;itũ">&longs;itum</expan> con&longs;eruent, res geminabitur.</s> </p> <p type="main"> <s id="s.004918"><arrow.to.target n="marg397"/></s> </p> <p type="margin"> <s id="s.004919"><margin.target id="marg397"/>406</s> </p> <p type="main"> <s id="s.004920">Probl. 11. <emph type="italics"/>(Cur di&longs;tractis oculis res vna duæ apparent? </s> <s id="s.004921">An quod radij <expan abbr="vtriu&longs;q;">vtriu&longs;que</expan> <lb/> oculi ad idem <expan abbr="pũctum">punctum</expan> non concurrunt? </s> <s id="s.004922">qua&longs;i ergò duo videat, bis idem videre ani­<lb/> ma exi&longs;timat &longs;imile e&longs;t in permutatis digitis, vnum' enim duo apparet, tanquam bis <lb/> tactum<emph.end type="italics"/>) Præ&longs;ens Problema ex dictis in præcedenti problemate &longs;atis clarum <lb/> euadit: imò illa ex his vici&longs;&longs;im confirmantur.</s> </p> <p type="main"> <s id="s.004923">Quando ait (<emph type="italics"/>Radij <expan abbr="vtriu&longs;q;">vtriu&longs;que</expan> oculi ad idem punctum non concurrunt<emph.end type="italics"/>) intelligit <lb/> de axibus vi&longs;ualibus, quos in &longs;uperiori declaratos habes.</s> </p> <p type="main"> <s id="s.004924">Quando ait (<emph type="italics"/>Simile e&longs;t in permutatis digitis<emph.end type="italics"/>) vt pulcherrimum i&longs;tud experi­<lb/>mentum, quo res vna tacta, duæ videntur, experiaris oportet, vt globulum <lb/> quempiam duobus proximis digitis eiu&longs;dem manus tangas, ita vt vnus al­<lb/> terum decu&longs;&longs;et, &longs;iue tran&longs;cendat, vel ei conuoluatur, ita vt extremitates di­<lb/> gitorum permutent loca, vel vt extremum vnius &longs;it, vbi deberet e&longs;&longs;e extre­<lb/> mum alterius; deinde globulum inter <expan abbr="vtriu&longs;q;">vtriu&longs;que</expan> digiti extrema locatum, &longs;imul <lb/> tangant, tunc enim exi&longs;timabis te duos globulos tangere.</s> </p> <p type="main"> <s id="s.004925"><arrow.to.target n="marg398"/></s> </p> <p type="margin"> <s id="s.004926"><margin.target id="marg398"/>407</s> </p> <p type="main"> <s id="s.004927">Probl. 17. <emph type="italics"/>(Cur res vna non videtur geminari, &longs;i oculum in latera contorquent? <lb/> An quia con&longs;piciendi <expan abbr="principiũ">principium</expan> ab eadem linea &longs;umendum e&longs;t. </s> <s id="s.004928">duo autem videntur, <lb/>quando illud &longs;ur&longs;um, aut deor&longs;um mutatur; in latus verò nihil refert, ni&longs;i &longs;imul <lb/> &longs;ur&longs;um, aut deor&longs;um)<emph.end type="italics"/> quod præ&longs;enti problemate proponitur, non videtur <expan abbr="v&longs;-quequaq;">v&longs;­<lb/> quequaque</expan> verum, expertus enim &longs;um, moto etiam in latus oculo, res vi&longs;as, <lb/> quamuis magna cum difficultate, geminari. </s> <s id="s.004929">per lineam illam, à qua princi­<lb/> pium &longs;umitur con&longs;piciendi, intelligit lineam rectam tran&longs;euntem per cen­<lb/> tra <expan abbr="vcriu&longs;q;">vtriu&longs;que</expan> pupillæ. </s> <s id="s.004930">quod autem ait nihil referri, &longs;i oculus in latus, &longs;iue ad <lb/> prædictam lineam luxetur, fal&longs;um omninò puto ex dictis &longs;upra ad Probl. 7. <lb/>hoc enim modo alter oculus di&longs;&longs;imiliter ab altero collocatur, vnde nece&longs;&longs;e <lb/> e&longs;t <expan abbr="cõ&longs;equi">con&longs;equi</expan> geminationem &longs;ecus ac &longs;i &longs;ur&longs;um, aut deor&longs;um <expan abbr="alterũ">alterum</expan> luxaueris.</s> </p> <p type="main"> <s id="s.004931"><arrow.to.target n="marg399"/></s> </p> <p type="margin"> <s id="s.004932"><margin.target id="marg399"/>408</s> </p> <p type="main"> <s id="s.004933">Probl 21. <emph type="italics"/>(Cur alia quidem ambobus oculis potius in&longs;picimus; rectitudinem <lb/> verò, quæ e&longs;t in ver&longs;ibus, vnum oculum literis admouentes potius con&longs;picimus? <lb/> </s> <s id="s.004934">An quia ver&longs;us quidem coincidentes quemadmodum tradunt Optici, perturbatio­<lb/>nem quandam afferunt; quando verò vnico vi&longs;u in&longs;picimus, &longs;ecundum vnicam re-<emph.end type="italics"/> <pb pagenum="278" xlink:href="009/01/278.jpg"/><emph type="italics"/>ctam vi&longs;ualem lineam in&longs;picimus, qua tanquam recta regula melius ver&longs;uum re­<lb/>ctitudinem digno&longs;cimus; rectum enim recto dijudicatur.)<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.004935">Quando ait <emph type="italics"/>(V num oculum literis admouentes)<emph.end type="italics"/> quando volumus in&longs;picere <lb/> num rectus &longs;it &longs;cripturæ alicuius ver&longs;us, oculum alterum altero clau&longs;o, prin­<lb/> cipio, aut extremo illius ver&longs;us admouemus, vt hoc modo &longs;ecundum longi­<lb/> tudinem, non autem è regione illum intueamur, &longs;ic enim linea vi&longs;ualis re­<lb/> cta, qua&longs;i linea <expan abbr="quædã">quædam</expan> materialis rectitudini ver&longs;us coaptata,illã examinat.</s> </p> <p type="main"> <s id="s.004936">Libet his opticis Problematibus, auctarij loco, tractationem quandam <lb/> de Oculi pupilla, cùm &longs;it eiu&longs;dem argumenti, apponere, in qua nonnulla <lb/> &longs;citu digna, <expan abbr="atq;">atque</expan> iucunda, ac nuper ob&longs;eruata traduntur.</s> </p> <p type="head"> <s id="s.004937"><emph type="italics"/>De humani Oculi Pupilla.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.004938">Vt ea, quæ dicenda &longs;unt, facilius percipi po&longs;&longs;int, nece&longs;&longs;e e&longs;t breuiter <lb/> oculi fabricam, in qua mirum totius naturæ Opificis artificium elu­<lb/> cet, auxilio &longs;equentium figurarum præmittere.</s> </p> <figure id="id.009.01.278.1.jpg" place="text" xlink:href="009/01/278/1.jpg"/> <p type="main"> <s id="s.004939">A B C, cornea. </s> <s id="s.004940">&longs;patium A B, e&longs;t propriè corneæ pars tran&longs;lucida.</s> </p> <p type="main"> <s id="s.004941">E G F, vuea. </s> <s id="s.004942">H I, pupilla, &longs;eu foramen vueæ.</s> </p> <p type="main"> <s id="s.004943">L M N O P, aranea, quæ medium orbiculum M N Q, ambit.</s> </p> <p type="main"> <s id="s.004944">Referat ergò prima hæc figura humanum oculum, &longs;eu potius oculi &longs;e­<lb/> ctionem, qui nimirum di&longs;&longs;ectus &longs;it ab anteriori, <expan abbr="v&longs;q;">v&longs;que</expan> ad po&longs;teriorem partem <lb/> in duas æquas partes. </s> <s id="s.004945">qua &longs;ectione appareant omnes tunicæ, & humores,ex <lb/> quibus ille conflatur. </s> <s id="s.004946">con&longs;tat autem &longs;ecundum Anatomicos ex tribus tuni­<lb/> cis, <expan abbr="totidem&qacute;">totidemque</expan>; humoribus. </s> <s id="s.004947">verum figuram explicemus. </s> <s id="s.004948">Pedunculus ille C, <lb/> neruus e&longs;t opticus è cerebro manans, ex quo tanquam ex radice totus ena­<lb/> &longs;citur oculus.</s> </p> <p type="main"> <s id="s.004949">Exteriori illa circunferentia A B C, &longs;ignificatur membrana totum ocu­<lb/> lum complectens, quæ cornea propter duritiem appellatur. </s> <s id="s.004950">cuius pars pun­<lb/> ctis A, B, terminata, in&longs;tar Laternæ cornu, pellucida e&longs;t. </s> <s id="s.004951">hanc vulgò lucem <lb/> oculi, Medici Iridem maiorem appellant.</s> </p> <p type="main"> <s id="s.004952">Media illa, & imperfecta peripheria E H I F G, vuea ab acini vuæ nigræ <lb/> &longs;imilitudine nuncupatur; e&longs;t enim plurimum nigra. </s> <s id="s.004953">hæc vbi ad partem cor­<lb/> neæ tran&longs;lucidam A B, peruenit, eam qua&longs;i fugiens intra oculum &longs;ub&longs;idit, <pb pagenum="279" xlink:href="009/01/279.jpg"/>& tendens per loca E H I F, ip&longs;i corneæ, veluti <expan abbr="infundibulũ">infundibulum</expan> quoddam &longs;uppo­<lb/> nitur. </s> <s id="s.004954">hinc <expan abbr="aliorũ">aliorum</expan> anatomicorum figuras corrigere licebit, in quibus mem­<lb/> brana E H I E, <expan abbr="tanquã">tanquam</expan> plana &longs;uperficies ip&longs;i corneæ &longs;upponitur.nõ e&longs;t tamen <lb/> hac parte tota integra, nam, vt ait Plinius, medium eius fene&longs;trauit Pupilla. <lb/> <!-- KEEP S--></s> <s id="s.004955">ea e&longs;t paruum foramen rotundum inter puncta H, I.porrò &longs;i liceat <expan abbr="hãc">hanc</expan> vue&etail; <lb/>partem E, H, I, F, è directò integram a&longs;picere, &longs;imilis videbitur huic cir­<lb/> culo &longs;ecundæ figuræ A B C; in cuius medio circulus G H I, foramen e&longs;t, cui <lb/>tum Iridi minori, tum Pupillæ nomen e&longs;t; quæ no&longs;tri e&longs;t materia &longs;ermonis: <lb/> res quidem exigua, &longs;ed planè admirabilis: tantillo enim foramine, maria, <lb/> montes, innumera animalia, ac plantas graphicè, <expan abbr="atq;">atque</expan> adeò locis di&longs;tincta <lb/> animus no&longs;ter in&longs;picit; imò, vt cecinit Manilius.</s> </p> <p type="main"> <s id="s.004956"><emph type="italics"/>Paruula &longs;ic magnum perui&longs;it pupula Cœlum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.004957">Sic olim admirationi fuit Homeri Ilias, exiguis adeò litoris con&longs;cripta, vt <lb/> vnius nucis cortice clauderetur.</s> </p> <p type="main"> <s id="s.004958">Superficies huius membranæ E H I F, exterior, quæ &longs;cilicet corneam re­<lb/> &longs;picit, in homine varia e&longs;t, cæ&longs;ia, glauca, &longs;ubalbida, nigra. </s> <s id="s.004959">Excipiendi &longs;unt <lb/> à cæteris Sinarum gentes, quæ, vt po&longs;tremò perlatum e&longs;t à no&longs;tris PP. &longs;unt <lb/> omnes &longs;pectandi nigris oculis. </s> <s id="s.004960">Tartari etiam omnes virides habent oculos. <lb/> </s> <s id="s.004961"><expan abbr="vtri&qacute;">vtrique</expan>; &longs;cilicet tales habent oculos, quòd tales habeant vueas. </s> <s id="s.004962">ex hac enim <lb/> varius oculorum color: quippe qui non in exteriori &longs;uperficie corneæ, quæ <lb/> omninò diaphana e&longs;t, & propterea excolor, &longs;ed vueæ in&longs;idet. </s> <s id="s.004963">In nocturnis <lb/> tamen animalibus lucida e&longs;t; <expan abbr="atq;">atque</expan> hinc lux illa, cuius ope, circumfu&longs;us aer <lb/> adeò illu&longs;tratur, vt noctu videre queant. </s> <s id="s.004964">&longs;i qui etiam <expan abbr="hominũ">hominum</expan> noctu videant, <lb/> ij flaua, ac lucida vuea, vt ob&longs;eruaui, præditi &longs;unt: & ideò interdiù maiorem <lb/> Iridem flauum o&longs;tendunt. </s> <s id="s.004965">&longs;uperficies tandem illius, quæ oculi interiora con­<lb/> &longs;picit, nigerrimo colore, quì vel <expan abbr="Anatomicorũ">Anatomicorum</expan> digitos inficiat, intincta e&longs;t.</s> </p> <p type="main"> <s id="s.004966">Tertia tandem, quæ per P L M N O, incedit Aranea dicitur, e&longs;t enim in­<lb/> &longs;tar araneæ tenui&longs;&longs;ima, præ&longs;ertim, quà vuæ E H I F, &longs;upponitur. </s> <s id="s.004967">hæc præte­<lb/>rea globuli M K I N Q, anteriorem partem M H I N, circumue&longs;tit, qui in <lb/> ea affixus, non &longs;ecus ac Araneus in &longs;uæ araneæ centro, immobilis hæret. <lb/> </s> <s id="s.004968">hæc de tunicis.</s> </p> <p type="main"> <s id="s.004969">Reliqui &longs;unt humores tres, quibus oculus repleatur; po&longs;terius i&longs;tud &longs;pa­<lb/>tium P L Q O, humori vitreo ob vitri &longs;imilitudinem dicto, natura attri­<lb/> buit: anteriorem oculi &longs;edem inter corneam, & vueam, humor aqueus oc­<lb/> cupauit, &longs;ic dictus, quod &longs;it natura limpidi&longs;&longs;imus; quippe qui primus ingre­<lb/> dientia rerum &longs;imulacra excipiat. </s> <s id="s.004970">medium locum, prædictum &longs;cilicet glo­<lb/> bulum, quem aranea complectitur, humor chri&longs;tallinus &longs;ibi vindicauit. </s> <s id="s.004971">hic <lb/> quà corneam &longs;pectat &longs;phæricæ e&longs;t figuræ, atque ex hac parte foramen H I, <lb/> vueæ, &longs;eu pupillam ob&longs;idet, vt aduentantibus rerum &longs;imulacris &longs;it obuius, <lb/> <expan abbr="ea&qacute;">eaque</expan>; &longs;i&longs;tat, vnde factum e&longs;t illi <expan abbr="quoq;">quoque</expan> pupillæ nomen. </s> <s id="s.004972">Huic <expan abbr="quoq;">quoque</expan> Aranea &longs;i­<lb/> mul, & vuea tenui&longs;&longs;imis fibris in orbem connectuntur; quæ connexio non in <lb/> ora pupillæ extrema, &longs;ed circa ip&longs;am, vt in circulo D E F, &longs;ecundæ figuræ: <lb/> qui fibrarum circulus apparet etiam in vuea, e&longs;t enim veluti &longs;utura quædam <lb/> circularis circa pupillam, non longè tamen ab ip&longs;a. </s> <s id="s.004973">porrò iunctura hæc <lb/> adeò fortis e&longs;t, vt non &longs;ine aliqua vi vuea, & aranea inde à chri&longs;tallino di­<lb/> uellantur. </s> <s id="s.004974">Hæc de oculi fabrica nunc &longs;ufficiant.</s> </p> </chap> <pb pagenum="280" xlink:href="009/01/280.jpg"/> <chap> <p type="head"> <s id="s.004975"><emph type="italics"/>PROBLEMATA NONNVLLA <lb/> De Oculi Pupilla.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.004976">1. Cvr ei Pupillæ nomen inditum e&longs;t? </s> <s id="s.004977">Admiratione &longs;anè non caret <lb/>apud præcipuas linguas, miro quodam con&longs;en&longs;u, idem etymon <lb/> obtinere: &longs;cilicet denominatam e&longs;&longs;e ab imaguncula illa, quæ <lb/> veluti parua puppa, &longs;eu pupula, &longs;eu pupilla, qualis in figura <lb/> &longs;pectatur, perpetuò in paruo hoc vuæ circello &longs;pectatur. </s> <s id="s.004978">propter hanc igitur <lb/> puppam Hebræi circellum G B I, Bath, ide&longs;t filiolam, Græci <foreign lang="greek">korhn</foreign>, ide&longs;t puel­<lb/> lam, Latini demum pupillam cognominarunt.</s> </p> <p type="main"> <s id="s.004979">2. Atqui vnde imaguncula hæc, quæ in oculis no&longs;tris perpetuò &longs;pectatur? <lb/> </s> <s id="s.004980">&longs;cilicet ob ter&longs;itiem, & &longs;phæricitatem cornea e&longs;t in&longs;tar <expan abbr="cõuexi">conuexi</expan> &longs;peculi, quod <lb/> &longs;pectanti imaginem reddat, quam ergò videmus in aliorum oculis puppam, <lb/> no&longs;tra e&longs;t imago, quæ propterea tamen parua e&longs;t, quoniam oculus &longs;peculum <lb/> paruum, ac conuexum &longs;imul e&longs;t, cuius e&longs;t imagines rebus ip&longs;is multò mino­<lb/> res reflectere. </s> <s id="s.004981">vt in tractatu de Speculis optici demon&longs;trant.</s> </p> <p type="main"> <s id="s.004982">3. Cùm tota cornea, quæ Iris maior e&longs;t, &longs;it æquè tor&longs;a, ac perpolita, cur <lb/> non æquè tota hanc pupulam o&longs;tendit? </s> <s id="s.004983">&longs;ed è regione minoris Iridis ferè tan­<lb/> tum? </s> <s id="s.004984">cau&longs;a e&longs;t in promptu, quia nimirum &longs;peculum debet e&longs;&longs;e omnis colo­<lb/> ris expers, ne colores &longs;peculi coloribus imaginum mi&longs;ceantur; tali&longs;que e&longs;t <lb/> Iris minor,quæ etiam&longs;i videatur nigra, non tamen verè colorata e&longs;t, vt mox <lb/> o&longs;tendam: at verò maiori Iridi colores vueæ &longs;ub&longs;unt, qui ne &longs;peculi officio <lb/> fungatur, &longs;unt impedimento. </s> <s id="s.004985">e&longs;t præterea Iris minor admodum opacata, <lb/> quæ altera conditio, maximè &longs;peculo nece&longs;&longs;aria e&longs;t: illa enim nigredo Iri­<lb/> dis minoris, &longs;eu pupillæ, non nigredo, &longs;ed opacitas e&longs;t, vt dicetur po&longs;tea.</s> </p> <p type="main"> <s id="s.004986">4. Cùm iam <expan abbr="cõ&longs;tet">con&longs;tet</expan> foramini vuæ G H I, à pupilla in ip&longs;o ver&longs;ante nomen <lb/> inditum e&longs;&longs;e; nec non vnde &longs;it ea pupilla, & cur tam parua; quæritur iam, <lb/> quid &longs;it pupilla, &longs;eu Iris minor, an &longs;cilicet &longs;it foramen illud vueæ, an potius <lb/> chri&longs;tallinus humor, qui in illud intruditur, <expan abbr="vacuum&qacute;">vacuumque</expan>; illius replet? </s> <s id="s.004987">Re­<lb/> &longs;pondeo, Ari&longs;t. humorem ip&longs;um <expan abbr="chri&longs;tallinũ">chri&longs;tallinum</expan> appella&longs;&longs;e pupillam: Galenum<lb/> tum chri&longs;tallinum, tum foramen ip&longs;um: aptè tamen <expan abbr="vtrumq;">vtrumque</expan> dici exi&longs;timo. <lb/> </s> <s id="s.004988">Chri&longs;tallinum quidem & quia replet vacuum illud, <expan abbr="atq;">atque</expan> è regione illius pu­<lb/> pillæ imaguncula &longs;pectatur. </s> <s id="s.004989">foramen verò, quia terminos illius rotunditatis <lb/> circum&longs;cribat. </s> <s id="s.004990">vnde aptius fortè dixeris, vtrumque, chri&longs;tallinum &longs;cilicet, <lb/> & foramen veluti partes ad totam pupillam con&longs;tituendam e&longs;&longs;e nece&longs;&longs;aria: <lb/> ita vt nihil aliud ip&longs;a &longs;it, quàm &longs;uperficies illa chri&longs;tallini; quæ vueæ fora­<lb/> mine continetur.</s> </p> <p type="main"> <s id="s.004991">5. Cur in omnibus hominibus nigra videtur? </s> <s id="s.004992">cum tamen nigri nihil ibi <lb/> e&longs;&longs;e ex anotomia con&longs;tet: imò ibi chri&longs;tallinus e&longs;t omninò pelluidus; & vl­<lb/> tra, <expan abbr="citra&qacute;">citraque</expan>; alij duo humores, vitreus, & aqueus, æquè tran&longs;parentes, <expan abbr="atq;">atque</expan> <lb/> omnis nigredinis expertes. </s> <s id="s.004993">vnde igitur nigredo illa? </s> <s id="s.004994">Dicendum e&longs;t nigre­<lb/> dinem hanc non e&longs;&longs;e veram, &longs;ed apparentem, <expan abbr="eam&qacute;">eamque</expan>; ex interna oculi opa­<lb/> citate; opacitatem verò ex foraminis paruitate, quæ lumen non admittat, <lb/>prouenire: quotidiana enim nos docet experientia fene&longs;tellas, & huiu&longs;modi <pb pagenum="281" xlink:href="009/01/281.jpg"/>alia foramina, quæ intus non &longs;int illuminata, &longs;ed tenebro&longs;a, nigra quamuis <lb/> minimè &longs;int, apparere. </s> <s id="s.004995">Idem præterea mihi ex anatome manife&longs;tè patuit, <lb/> cùm enim per &longs;ectionem ca&longs;u quodam pupilla oculi, quem &longs;ecabam, facta <lb/> fui&longs;&longs;et aliquanto mior, illicò nigredine omni exuta, alba vi&longs;a e&longs;t; quia &longs;ci­<lb/> licet patuit lumini aditus, quod internam oculi opacitatem fugauit. </s> <s id="s.004996">pro­<lb/> pterea in bobus, & capris, quia magna, & oblonga e&longs;t, quæ multum lucis <lb/> admittat, aloa &longs;imiliter, non vt in nobis nigra con&longs;picitur.</s> </p> <p type="main"> <s id="s.004997">6. Cur in clari&longs;&longs;ima luce Solis pupilla omninò euane&longs;cit? </s> <s id="s.004998">ex dictis in præ­<lb/> cedenti problemate, huic <expan abbr="quoq;">quoque</expan> &longs;atisfieri pote&longs;t. </s> <s id="s.004999">cùm enim clari&longs;&longs;imo lumi­<lb/>ni obijcitur, fit, vt oculi interiora illu&longs;trentur; vnde fugatis tenebris, & om­<lb/> ni opacitate, etiam nigredo illa nulla &longs;it.</s> </p> <p type="main"> <s id="s.005000">7. Po&longs;&longs;umus ne dum in oculos alterius intuemur, quanta &longs;it re vera, co­<lb/> gno&longs;cere? </s> <s id="s.005001">exi&longs;timo certam ip&longs;ius quantitatem oculos no&longs;tros omninò late­<lb/> re: videtur enim per refractionem, cùm &longs;it infra humorem aqueum aere <lb/>den&longs;iorem, at quæ refractè videntur ex medio den&longs;iore, ea maiora, quàm <lb/> &longs;int, apparere, demon&longs;trant Per&longs;pectiui. </s> <s id="s.005002">attamen cùm in luce &longs;atis tempe­<lb/> rata ver&longs;amur, &longs;i oculum directè, vt minor fiat refractio, &longs;pectemus, ip&longs;am <lb/> non multò verò maiorem &longs;pectabimus.</s> </p> <p type="main"> <s id="s.005003">8. Sed vnde nam illud mirum illi accidit, vt modo maior, modo minor <lb/> nullo fermè tempore interpo&longs;ito, euadat; & aliquando ad tantam magni­<lb/> tudinem exere&longs;cat, vt totam forè maiorem Iridem occupet; vt &longs;i in &longs;ecun­<lb/> da figura foramen B G I, <expan abbr="v&longs;q;">v&longs;que</expan> ad circulum L M N O, dilataretur? </s> <s id="s.005004">Antiquio­<lb/> res, vt Galenus, cùm ob&longs;erua&longs;&longs;ent eam, multò maiorem e&longs;&longs;e noctu, quam <lb/> interdiù, id &longs;olummodo ratione noctis, & diei contingere, <expan abbr="atq;">atque</expan> foramen il­<lb/> lud verè augeri, & minui exi&longs;timarunt. </s> <s id="s.005005">&longs;u&longs;pen&longs;um tamen Galenum reddit, <lb/> nulla huius motus organa reperiri, qua propter ad &longs;piritus animales confu­<lb/> git, <expan abbr="eis&qacute;">eisque</expan>; huius augmenti, & decrementi cau&longs;am attribuit: eiu&longs;dem &longs;enten­<lb/> tiæ e&longs;t 10. Bapti&longs;ta Porta, inter huius ætatis Per&longs;pectiuos celebris. </s> <s id="s.005006">Hiero­<lb/> nymus ab Aquapendente ab antiquioribus in eo di&longs;&longs;entit, quod cau&longs;am hu­<lb/> ius referat non in &longs;piritus, &longs;ed in proprietatem quandam ip&longs;ius vueæ natu­<lb/> ralem. </s> <s id="s.005007">Porrò cum ego &longs;ententias horum mente ver&longs;arem opportunè acci­<lb/> dit, vt vel ip&longs;o meridie cùm quodam in loco &longs;atis opaco colloquerer, <expan abbr="atq;">atque</expan> <lb/> eo illius capitis &longs;itu, vt oculi illius in multa e&longs;&longs;ent opacitate, cùm ecce tibi <lb/> pupillas illius, magna cum admiratione, adeò magnas con&longs;pexi, vt totam <lb/> ferè maiorem Iridem adæquarent; illicò hominem in claram lucem, atque <lb/> Solem deduxi; <expan abbr="atq;">atque</expan> ecce tibi repentè eædem pupillæ minimæ factæ &longs;unt. <lb/> </s> <s id="s.005008">eandem &longs;ubinde experientiam &longs;excenties ob&longs;eruaui, vnde duo notatu di­<lb/> gna innotuerunt.</s> </p> <p type="main"> <s id="s.005009">Primum e&longs;t: Maiores no&longs;tros hallucinatos e&longs;&longs;e cùm nocte tantummodo <lb/> magnas, per diem verò paruas fieri pupillas opinati &longs;unt: Verum id ratio­<lb/> ne lucis, & tenebrarum quouis tempore accidere patuit. </s> <s id="s.005010">vnde etiam in ob­<lb/> &longs;curi&longs;&longs;ima nocte admota oculis accen&longs;a candella, minuantur; amota &longs;tatim <lb/> augeantur. </s> <s id="s.005011">hinc accidit, pupillam hanc, Medicum quendam ætate no&longs;tra <lb/> celebrem fefelli&longs;&longs;e, quì dum ægrotum quendam in cubiculo &longs;atis tenebro&longs;o, <lb/> <expan abbr="oculis&qacute;">oculisque</expan>; laborantem curaret, animaduertit illius pupillas e&longs;&longs;e iu&longs;to maio­<lb/> res, quapropter plurima illi medicamenta pro pupillarum re&longs;trictione ad­ <pb pagenum="282" xlink:href="009/01/282.jpg"/>hibuit; &longs;ed omnia tamen irrita; cui ad mota luce, &longs;tatim &longs;unt imminutæ: <lb/> nec tamen æger conualuit. </s> <s id="s.005012">erat &longs;cilicet apparentia, non veritas.</s> </p> <p type="main"> <s id="s.005013">Secundum hoc modo patuit. </s> <s id="s.005014">C&etail;peram <expan abbr="namq;">namque</expan> pariter de principali quæ­<lb/> &longs;tione ambigere circa &longs;ententiam eorundem, num &longs;cilicet verè pupillæ mo­<lb/> dò dilatarentur, modò con&longs;tringerentur; an potius aliqua &longs;it, quæ eos fe­<lb/> fellerit apparentia. </s> <s id="s.005015"><expan abbr="atq;">atque</expan> tandem po&longs;t diuturnam ob&longs;eruationem, po&longs;t <expan abbr="plu-rimorũ">plu­<lb/> rimorum</expan> oculorum di&longs;&longs;ectionem, tutò au&longs;us &longs;um primò a&longs;&longs;erere, pupillas ve­<lb/> rè nec augeri, nec minui, &longs;ed meram illam e&longs;&longs;e apparentiam, quod &longs;equen­<lb/> tibus rationibus comprobabam.</s> </p> <p type="main"> <s id="s.005016">Primò, &longs;i verè tunc cum fermè maiorem totam Iridem occupant, relicta <lb/> tantummodo gracili in orbem armilla, dilatarentur, tunc nece&longs;&longs;ariò con­<lb/> nexio vueæ cum aranea &longs;cinderetur, cùm tunc pupillæ gyrum D E F, illius <lb/> connexionis ve&longs;tigium tran&longs;cendant; ac præterea tenui&longs;&longs;imæ illæ fibræ, qui­<lb/> bus con&longs;uitur, frangerentur, <expan abbr="&longs;tatim&qacute;">&longs;tatimque</expan>; iterum nemine auctore re&longs;arcirentur. <lb/> </s> <s id="s.005017">quod nec &longs;ine oculi detrimento, nec &longs;ine &longs;en&longs;u doloris aliquo fieri po&longs;&longs;e, quis <lb/> dicat? </s> <s id="s.005018">quæ omnia nullo modo con&longs;equuntur.</s> </p> <p type="main"> <s id="s.005019">Secundò, nulla extant huius organa motus, quod plures Anatomicos, <lb/> <expan abbr="atq;">atque</expan> Galenum ip&longs;um dubios reddit.</s> </p> <p type="main"> <s id="s.005020">Tertiò, Medici omnes volunt eos, qui angu&longs;tiori &longs;unt pupilla, acie ocu­<lb/> lorum plus valere, quàm qui &longs;unt latiori; &longs;i ergò i&longs;ta e&longs;&longs;et vera con&longs;trictio, <lb/> & dilatatio, accideret nos eodem p&etail;nè temporis momento, modò acutius, <lb/>modò hebetius videre: imò in temperata luce, vbi maior apparet, minus, <lb/> quam in clari&longs;&longs;ima luce, & Sole, vbi minima apparet, videremus. </s> <s id="s.005021">quibus <lb/> quotidiana refragatur experientia.</s> </p> <p type="main"> <s id="s.005022">Quartò, plura obiecta compræhenderet oculus in opacitate, quàm in cla­<lb/> ritate, & Sole: omnia enim illa videmus, quæ intra pyramidem vi&longs;ualem <lb/> continentur, quæ eò capacior, & latior e&longs;t, quò pupilla maior e&longs;t: habet <lb/> <expan abbr="namq;">namque</expan> hæc pyramis verticem in centro oculi, & po&longs;tea dilatatur ad dilata­<lb/> tionem foraminis vueæ, quod e&longs;t pupilla. </s> <s id="s.005023">verùm nos nunquam experimur <lb/> plura obiecta compræhendere in vmbra, quam in Sole.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005024">Quintò, &longs;i illa dilatatio vera e&longs;&longs;et, pupilla non &longs;emper in homine videre­<lb/> tur nigra; magnitudo enim foraminis multum luminis intra oculum admit­<lb/> teret, quod opacitatem, & nigredinem illam omnem fugaret; hac enim de <lb/> cau&longs;a in bobus, & capris alba cernitur. </s> <s id="s.005025">quapropter certò certius, & luce <lb/> clarius, motum hunc non verum, &longs;ed apparentem e&longs;&longs;e mihi, <expan abbr="atq;">atque</expan> alijs per­<lb/> &longs;uadebam.</s> </p> <p type="main"> <s id="s.005026">Verumenimuerò Græcorum illud adagium, &longs;ecundæ cogitationes &longs;unt <lb/> &longs;apientiores, veri&longs;&longs;imum e&longs;t, nam quinquennio po&longs;tquam hæc de pupillæ di­<lb/> latatione con&longs;crip&longs;eram, cùm iterum opticam publicè aggrederer, oculi <lb/> fabricam, <expan abbr="atq;">atque</expan> pupillæ motum i&longs;tum attentius con&longs;iderans, conatus &longs;um ob <lb/> &longs;equentes rationes prædictis euidentiores mutare &longs;ententiam, <expan abbr="atq;">atque</expan> a&longs;&longs;erere <lb/> verè pupillam augeri, ac minui, eò quod vuea ip&longs;a in luce verè con&longs;tringa­<lb/> tur, in opacitate verò, ac tenebris magno naturæ miraculo dilatetur.</s> </p> <p type="main"> <s id="s.005027">Prima ratio, cùm pupilla minuitur, eam perpetuò vue&etail; colores <expan abbr="cõ&longs;equun-tur">con&longs;equun­<lb/> tur</expan>, <expan abbr="eam&qacute;">eamque</expan>; circundant, &longs;iue cum ip&longs;a con&longs;tringuntur; quod minimè fieret, <lb/> ni&longs;i vuea ip&longs;a con&longs;tringeretur, <expan abbr="&longs;ic&qacute;">&longs;icque</expan>, foramen illud imminueret.</s> </p> <pb pagenum="283" xlink:href="009/01/283.jpg"/> <p type="main"> <s id="s.005028">Secunda, ex hac experientia; fac vt aliquis alterum &longs;ibi oculum manum <lb/> illi applicans tegat: & illicò &longs;ine vlla lucis mutatione videbis alterius ocu­<lb/> li pupillam modicùm, &longs;ed tamen &longs;en&longs;ibiliter &longs;atis dilatari.</s> </p> <p type="main"> <s id="s.005029">Tertia, animalia quædam, vt Catus, quando pupillam &longs;uam hanc dila­<lb/> tant, eam in orbem dilatant: quando verò con&longs;tringunt, eam in oualem, ac <lb/> tandem rimulam quandam con&longs;tringunt: <expan abbr="id&qacute;">idque</expan>; in eadem opacitate, quæ ar­<lb/> gumento &longs;unt vueam ip&longs;am moueri.</s> </p> <p type="main"> <s id="s.005030">Quarta, e&longs;t quidam oculorum morbus, quo æger <expan abbr="ab&longs;q;">ab&longs;que</expan> magno dolore lu­<lb/> cem nequit a&longs;picere: ergò &longs;ignum lucem aliquid intra oculum mouere po&longs;­<lb/> &longs;e, ex quo motu æger doleat; huiu&longs;modi ægrotum quendam ego aliquando <lb/> magna admiratione inui&longs;i. </s> <s id="s.005031">hæc adeò miranda in nobis &longs;ummus naturæ opi­<lb/> fex perpetuò operatur.</s> </p> <p type="main"> <s id="s.005032">Reliquum e&longs;t, vt &longs;uperioribus rationibus, quibus me diù deceptum fui&longs;&longs;e <lb/> exi&longs;timo, &longs;atisfaciam.</s> </p> <p type="main"> <s id="s.005033">Ad primam igitur re&longs;pondeo, etiam&longs;i vuea verè dilatetur, non indè ne­<lb/> ce&longs;&longs;ariò &longs;equi connexionem illam &longs;cindi debere: po&longs;&longs;unt enim tenui&longs;&longs;imæ il­<lb/> læ fibræ intendi, ac remitti: <expan abbr="&longs;ic&qacute;">&longs;icque</expan>; motui vueæ obtemperare.</s> </p> <p type="main"> <s id="s.005034">Ad &longs;ecundam, cau&longs;am efficientem huius dilatationis e&longs;&longs;e &longs;piritus; non <lb/> partem quampiam, aut organum materiale.</s> </p> <p type="main"> <s id="s.005035">Ad tertiam negandum e&longs;t illud Medicorum placitum.</s> </p> <p type="main"> <s id="s.005036">Ad quartam concedenda e&longs;t tota, &longs;ed tamen addendum e&longs;t, nos non ad­<lb/> uertere modò plura obiecta, modò pauciora videre, quia valde difficile e&longs;t <lb/> id ob&longs;eruare, porrò fateor difficile e&longs;&longs;e huic rationi &longs;atisfacere, quia non, <lb/> omninò con&longs;tat, qua ratione, & quo loco oculi fiat vi&longs;io.</s> </p> <p type="main"> <s id="s.005037">Ad quintam dicendum e&longs;t, nunquam foramen illud pupillæ ad <expan abbr="tãtam">tantam</expan> ma­<lb/> gnitudinem euadere, vt &longs;atis lucis admittat ad oculi internam opacitatem <lb/> fugandam. </s> <s id="s.005038">Præterea, quando dilatatur e&longs;t in loco &longs;atis opaco, vnde fit, vt <lb/> opacitas ambientis aeris minimè expellat oculi opacitatem; quin potius <lb/> eam iuuet nece&longs;&longs;e e&longs;t.</s> </p> <p type="main"> <s id="s.005039">9. Cur altero oculorum tecto, alterius pupilla aliquantulum dilatatur? <lb/> </s> <s id="s.005040">R. &longs;ciendum miram e&longs;&longs;e oculorum &longs;ocietatem, quò vnus intuetur, alter eò <lb/> etiam con&longs;pirat: quor&longs;um alter conuertitur, eor&longs;um & alter: anima enim <lb/> vtitur duobus oculis tanquam vno. </s> <s id="s.005041">quia igitur dum alter tegitur, ei &longs;imul <lb/> tenebræ offunduntur, quibus præ&longs;entibus pupilla illius ampliatur, vt &longs;upra <lb/> vidimus, nece&longs;&longs;e e&longs;t, ob oculorum fidam &longs;ocietatem, vt alterius etiam pu­<lb/> pilla augeatur. </s> <s id="s.005042">huic <expan abbr="re&longs;põ&longs;ioni">re&longs;pon&longs;ioni</expan> quis in hunc modum obijciet: cùm alter ocu­<lb/> lus &longs;it in lumine, ac eapropter pupillam con&longs;tringere debeat; cur non ei po­<lb/> tius alter morem gerit, <expan abbr="&longs;ic&qacute;">&longs;icque</expan>; pupillam, præ&longs;entibus etiam tenebris in &longs;uo <lb/> &longs;tatu continet. </s> <s id="s.005043">huic iterum re&longs;pondeo, quoniam alter, qui obtenebratur pu­<lb/> pillam ampliare, alter verò, qui illuminatur coarctare &longs;tudet, fit vt <expan abbr="vterq;">vterque</expan> <lb/> pupillam, modicum tamen, vt experientia docet, in orbem diducat.</s> </p> <p type="main"> <s id="s.005044"><expan abbr="Atq;">Atque</expan> hæc &longs;unt, quæ nuper circa oculi pupillam ob&longs;eruata, huic loco ad­<lb/> denda exi&longs;timaui.</s> </p> <p type="head"> <s id="s.005045">LAVS DEO.</s> </p> </chap> <pb xlink:href="009/01/284.jpg"/> <pb xlink:href="009/01/285.jpg"/> <chap> <p type="head"> <s id="s.005046">DE <lb/> MATHEMATICARVM <lb/> NATVRA DISSERTATIO.</s> </p> <p type="head"> <s id="s.005047">VNA CVM CLARORVM <lb/> <emph type="italics"/>MATHEMATICORVM <lb/> CHRONOLOGIA.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.005048">AD ILLVSTRISSIMVM AC NOBILISSIMVM <lb/> PETRVMFRANCISCVM MALASPINAM <lb/> ÆDIFICIORVM MARCHIONEM.</s> </p> <p type="head"> <s id="s.005049"><emph type="italics"/>Authore eodem Io&longs;epho Blancano è Societate IESV, <lb/> Mathematicarum in Parmen&longs;i Academia profe&longs;&longs;ore.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.005050">BONONIÆ M. DC. XV.<!-- KEEP S--></s> </p> <p type="head"> <s id="s.005051">Apud Bartholomæum Cochium. <!-- KEEP S--></s> <s id="s.005052">Superiorum permi&longs;&longs;u.</s> </p> <p type="head"> <s id="s.005053">Sumptibus Hieronymi Tamburini.</s> </p> <pb xlink:href="009/01/286.jpg"/> <pb pagenum="3" xlink:href="009/01/287.jpg"/> <p type="head"> <s id="s.005054">ILLVSTRISSIMO <lb/> AC NOBILISSIMO <lb/> PETROFRANCISCO <lb/> MALASPINAE<emph type="italics"/><lb/>ÆDIFICIORVM MARCHIONI.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.005055">Io&longs;eph Blancanus è Societate Ie&longs;u. <!-- REMOVE S-->S.P.D.</s> </p> <p type="main"> <s id="s.005056"><emph type="italics"/>Meam hanc de Mathematicarum natu­<lb/> ra Di&longs;&longs;ertationem, vnà cum illustrium, <lb/> Mathematicorum Chronologia, tibi Illu­<lb/> striß. <!-- REMOVE S-->Marchio iure meritò dicare, ac &longs;ub <lb/> clarißimi tui nominis patrocinio in lucem <lb/>dare constitui. </s> <s id="s.005057">primum quidem, vt mei perpetui erga te <lb/> amoris, & ob&longs;eruantiæ hoc vnum &longs;altem specimen exta­<lb/> ret; tum vt idoneum, æquumqué propo&longs;itæ Quæstionis iu­<lb/> dicem nanci&longs;cerer. </s> <s id="s.005058">Cùm enim ad iu&longs;tum arbitrum duo <lb/> potißimum requirantur, rerum &longs;cilicet cognitio, atque pru­<lb/> dentia, quem te rei, de qua agitur peritiorem, quemque pru­<lb/> dentiorem; inuenire potuerim? </s> <s id="s.005059">tu enim cùm Phy&longs;iologiæ, <lb/> ac Mathematicarum omnium Encyclopædiam mirum, <lb/> in modum excolueris, ad intima Mathematicarum pene-<emph.end type="italics"/> <pb pagenum="4" xlink:href="009/01/288.jpg"/><emph type="italics"/>tralia ita perua&longs;isti, vt Archimedis, & Apollonÿ ad­<lb/>mirandis, ac &longs;ubtilißimis demon&longs;trationibus detinearis. <lb/> </s> <s id="s.005060">Quanta porrò in rebus agendis prudentia valeas toti penè <lb/>Europæ innotuit, cùm pro no&longs;tris Sereniß. <!-- REMOVE S-->Ducibus non <lb/> &longs;olùm ad omnes ferè Italiæ, atque Germaniæ Principes, <lb/> verùm etiam ad Cæ&longs;aream Maie&longs;tatem, rebus fœliciter <lb/>ge&longs;tis, Legatus decimùm extiteris: ac demum à Sereniß. <lb/> <!-- REMOVE S-->Duce Ranutio inter primarios de Rep. <!-- KEEP S--></s> <s id="s.005061">Con&longs;iliorum Au­<lb/> thores, ad&longs;citus fueris. </s> <s id="s.005062">Cæterùm in Clarorum Mathe­<lb/> maticorum Chronologia perlegenda, &longs;æpißimè tibi nobili&longs;­<lb/>&longs;imi æquè, ac doctißimi Viri, tui omninò per&longs;imiles, oc­<lb/> current, quod tibi nonni&longs;i gratißimum accidere po&longs;&longs;e arbi­<lb/> tror. </s> <s id="s.005063">Complectere igitur,quà &longs;oles benignitate, atque clemen­<lb/>tia no&longs;tra hæc quantulacunque munu&longs;cula, quæ &longs;i tibi acce­<lb/> pta e&longs;&longs;e intellexero, tùm demum maximorum mu­<lb/> nerum loco habenda e&longs;&longs;e cen&longs;ebo. </s> <s id="s.005064">incolu­<lb/> mem tibi, ac fœlicem D. O. M. <lb/> long æuitatem tueatur. <lb/> </s> <s id="s.005065">Vale.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="head"> <s id="s.005066"><emph type="italics"/>Parmæ Idibus Nouembris M. DC. XIIII.<emph.end type="italics"/><lb/> <!-- KEEP S--></s> </p> <pb pagenum="5" xlink:href="009/01/289.jpg"/> <p type="head"> <s id="s.005067"><emph type="bold"/>ADDITAMENTVM.<emph.end type="bold"/></s> </p> <p type="head"> <s id="s.005068"><emph type="italics"/>DE NATVRA SCIENTIARVM <lb/> MATHEMATICARVM.<emph.end type="italics"/></s> </p> </chap> <chap> <p type="main"> <s id="s.005069">Qvoniam in hoc Opere multa ad Mathematicarum natu­<lb/>ram &longs;pectantia &longs;par&longs;im dicta &longs;unt, non ab re, <expan abbr="neq;">neque</expan> ingratum <lb/> Lectori fore duxi, ea quodammodo huc in vnum congerere, <lb/> quæ ad earum naturam ritè percipiendam nece&longs;&longs;aria e&longs;&longs;e vi­<lb/> derentur. </s> <s id="s.005070">præ&longs;ertim cùm recentiorum quamplurimi, qui eas <lb/> læuiter nimis attigerunt, hac de re, veluti cæci de colore, plu­<lb/> ribus ad internam tamen earum naturam minimè &longs;pectantibus, garrire ge­<lb/> &longs;tiant. </s> <s id="s.005071">Vt autem tractatio euadat planior, eam &longs;ic commodè partiemur, vt</s> </p> <p type="main"> <s id="s.005072">Primo, De materia, &longs;eu &longs;ubiecto harum di&longs;ciplinarum agamus.</s> </p> <p type="main"> <s id="s.005073">2. De medio Demon&longs;trationum Geometricarum, &longs;eu, vtrum &longs;int De­<lb/> mon&longs;trationes poti&longs;&longs;imæ.</s> </p> <p type="main"> <s id="s.005074">3. De præ&longs;tantia &longs;cientiæ, quam nobis pariunt.</s> </p> <p type="main"> <s id="s.005075">4. Aliquot calumniarum dilutio.</s> </p> <p type="main"> <s id="s.005076">5. De Mathematicis medijs.</s> </p> <p type="head"> <s id="s.005077"><emph type="italics"/>De&longs;ubiecto Geometræ, & Arithmeticæ, quod &longs;olet dici <lb/> Materia intelligibilis. </s> <s id="s.005078">Cap. 1.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.005079">Primò, agemus de puris Mathematicis Geometria, & Arithmetica, <lb/> quarum e&longs;t diuer&longs;a ratio à medijs, A&longs;tronomia, &longs;cilicet Per&longs;pecti­<lb/> ua, Mechanica, & Mu&longs;ica. <!-- KEEP S--></s> <s id="s.005080">Quantitas igitur ab&longs;tracta à materia <lb/> &longs;en&longs;ibili dupliciter con&longs;iderari &longs;olet. </s> <s id="s.005081">con&longs;ideratur enim à Phy&longs;ico, <lb/> & Mathematico &longs;ecundum &longs;e, ide&longs;t, ab&longs;olutè, quatenus Quantitas e&longs;t; &longs;iue <lb/>terminata &longs;it, &longs;iue non; qua ratione affectiones ip&longs;ius &longs;unt, diui&longs;ibilitas, lo­<lb/> cabilitas, figurabilitas, &c. </s> <s id="s.005082">à Geometra verò, & Arithmetico con&longs;idera­<lb/>tur non ab&longs;olutè, &longs;ed quatenus e&longs;t terminata, vt &longs;unt in quantitate continua <lb/> lineæ finitæ rectæ, aut curuæ, vt &longs;unt &longs;uperficies terminatæ, ex quibus variæ <lb/> fiunt figuræ, vt circulus, triangulum, &c. </s> <s id="s.005083">vt tandem &longs;unt &longs;olida item termi­<lb/> nata, ex quibus variæ exi&longs;tunt &longs;pecies &longs;olidarum figurarum, veluti, pyramis, <lb/> cubus, conus, cylindrus, &c. </s> <s id="s.005084">quæ ad Geometram pertinent. </s> <s id="s.005085">Quæ omnia in <lb/> quantitate etiam di&longs;creta, &longs;eu in numeris proportionaliter reperiuntur, <pb pagenum="6" xlink:href="009/01/290.jpg"/>quos &longs;olùm terminatos Arithmeticus accipit. </s> <s id="s.005086">e&longs;&longs;e autem genera hæc termi­<lb/> natæ Quantitatis Geometriæ, aut Arithmeticæ &longs;ubiectum, ex eo patet, quod <lb/> eas &longs;olas quantitates ip&longs;i definiunt, <expan abbr="de&qacute;">deque</expan>; ip&longs;is varias pa&longs;&longs;iones <expan abbr="demon&longs;trãt">demon&longs;trant</expan>, <lb/> <expan abbr="eas&qacute;">easque</expan>; omninò ab eis diuer&longs;as, quas Phy&longs;icus, & Metaphy&longs;icus in ea ab&longs;olu­<lb/> tè &longs;pectata con&longs;iderant. </s> <s id="s.005087">Vnde manife&longs;tum e&longs;t, has affectiones, quas Ma­<lb/> thematicus contemplatur ab ip&longs;a Quantitate, quatenus terminata e&longs;t ema­<lb/> nare; &longs;unt autem æqualitas, inæqualitas, talis diui&longs;io, transfiguratio, pro­<lb/> portiones variæ, commen&longs;uratio, incommen&longs;uratio, figurarum <expan abbr="cõ&longs;tructio-nes">con&longs;tructio­<lb/> nes</expan>, &c. </s> <s id="s.005088">Quæ &longs;anè affectiones ab intrin&longs;eca Quantitatis natura minimè <lb/> fluunt, po&longs;ita enim ea interminata, prædictæ pa&longs;&longs;iones non con&longs;equuntur, <lb/> nihil enim, ea &longs;ic po&longs;ita, e&longs;t æquale, aut inæquale, &c. </s> <s id="s.005089">&longs;ed addita Quantita­<lb/> ti terminatione, eæ ab ea per emanationem profluunt. </s> <s id="s.005090">Quapropter inrè di­<lb/> xeris formalem rationem Mathematicæ con&longs;iderationis e&longs;&longs;e Terminatio­<lb/> nem; & obiectum totale adæquatum e&longs;&longs;e Quantitatem terminatam, qua­<lb/> tenus terminata e&longs;t. </s> <s id="s.005091">Ex hac enim terminatione variæ oriuntur figuræ, & <lb/> numeri, quas Mathematicus definit, <expan abbr="de&qacute;">deque</expan>; ip&longs;is varia demon&longs;trat. </s> <s id="s.005092"><expan abbr="Atq;">Atque</expan> hæc <lb/>e&longs;t illa Quantitas, quæ dici &longs;olet materia intelligibilis, ad differentiam ma­<lb/> teriæ &longs;en&longs;ibilis, quæ ad Phy&longs;icum &longs;pectat; illa enim ab hac per intellectum <lb/> &longs;eparatur, ac &longs;olo intellectu percipitur. </s> <s id="s.005093">Continuum igitur, & di&longs;cretum, <lb/> <expan abbr="vtrumq;">vtrumque</expan> <expan abbr="terminatũ">terminatum</expan>, e&longs;t materia intelligibilis, illud Geometriæ, i&longs;tud Arith­<lb/> meticæ. </s> <s id="s.005094">Hinc etiam patet, cur dicatur Mathematicus con&longs;iderare Quan­<lb/> titatem finitam, quia accipit terminatam, quæ finita e&longs;t: quod enim habet <lb/> terminus, &longs;eu fines, finitum e&longs;t. </s> <s id="s.005095">quod &longs;i dari po&longs;&longs;et quantitas aliqua termi­<lb/> nata, & &longs;imul infinita, de ea etiam Demon&longs;trationes Euclidis fieri po&longs;&longs;ent; <lb/> &longs;i enim daretur triangulum infinitum, eodem modo de eo o&longs;tendi po&longs;&longs;et ha­<lb/> bere tres angulos æquales duobus rectis. </s> <s id="s.005096">Porrò hanc terminatam Quanti­<lb/>tatem e&longs;&longs;e Geometriæ, & Arithmeticæ &longs;ubiectum minimè cognouerunt ij, <lb/> qui Geometricas demon&longs;trationes impugnarunt, vt in eorum &longs;criptis vide­<lb/> re e&longs;t, quæ prima eis fuit errandi occa&longs;io.</s> </p> <p type="main"> <s id="s.005097">Porrò ex hac mathematica ab&longs;tractione à materia &longs;en&longs;ibili, fit vt materia <lb/> hæc ab&longs;tracta perfectionem quandam acquirat, quam perfectionem mathe­<lb/> maticam appellant. </s> <s id="s.005098">v. <!-- REMOVE S-->g. <!-- REMOVE S-->triangulum ab&longs;tractum e&longs;t omninò planum ex tri­<lb/> bus lineis omninò rectis, <expan abbr="tribus&qacute;">tribusque</expan>; angulis punctis omninò indiuiduis con­<lb/> &longs;titutum, quale in rerum natura (exceptis fortè cœle&longs;tibus) vix puto repe­<lb/> riri po&longs;&longs;e. </s> <s id="s.005099">vnde nonnulli &longs;olent Mathematicis illud obijcere; entia &longs;cilicet <lb/> mathematica non extare, ni&longs;i per &longs;olum intellectum. </s> <s id="s.005100">Verumenimuerò &longs;cien­<lb/> dum e&longs;t entia hæc mathematica, quamuis in ea perfectione non extent, id <lb/> tamen e&longs;&longs;e per accidens, con&longs;tat enim naturam, & artem figuras mathema­<lb/> ticas præcipuè intendere, quamuis propter materiæ &longs;en&longs;ibilis ruditatem, & <lb/> imperfectionem, quæ perfectas omninò figuras &longs;u&longs;cipere nequit, &longs;uo &longs;ine <lb/> fru&longs;trentur; natura enim in truncis arborum cylindri figuram affectat, in <lb/>pomis, & vuarum acinis aut &longs;phæricam, aut &longs;phæroidem, in cornea oculi <lb/> circulum; imò oculus ip&longs;æ maximè &longs;phæricus e&longs;t. </s> <s id="s.005101">Sol, <expan abbr="reliqua&qacute;">reliquaque</expan>; a&longs;tra com­<lb/> muni omnium con&longs;en&longs;u omninò &longs;phærica &longs;unt. </s> <s id="s.005102">ip&longs;a aquæ &longs;uperficies globo­<lb/> &longs;a e&longs;t. </s> <s id="s.005103"><expan abbr="terra&qacute;">terraque</expan>; ip&longs;a ni&longs;i ob&longs;taret materiæ cra&longs;&longs;ities, & diuer&longs;itas, rotunda pla­<lb/> nè euaderet. </s> <s id="s.005104">lineæ &longs;pirales conicæ nonne manife&longs;tè in marinis cochlæis de­<pb pagenum="7" xlink:href="009/01/291.jpg"/>&longs;ignantur? </s> <s id="s.005105">Cylindricæ, & planæ in nonnullis herbis? </s> <s id="s.005106">Ars præterea palàm <lb/> magis ea&longs;dem figuras pro&longs;equitur; artifices enim omnia ferè opificia qua­<lb/>dratis figuris, aut rotundis, aut circulis, aut ellip&longs;ibus induunt. </s> <s id="s.005107">Verum ip&longs;a <lb/> <expan abbr="quoq;">quoque</expan> ars, non &longs;ecus ac natura, quam imitatur &longs;uo fine ob materiæ rudita­<lb/> tem defraudatur. </s> <s id="s.005108">Quamuis igitur re ip&longs;a non exi&longs;tant, quia tamen tamin <lb/> mente Auctoris naturæ, quàm in humana, eorum Ideæ tamquam exacti&longs;&longs;i­<lb/> mi rerum typi, necnon tamquam exacta entia Mathematica exi&longs;tunt; Ideo <lb/> de ip&longs;is eorum idæis, quæ per &longs;e primò intenduntur, & quæ vera &longs;unt entia, <lb/> agit Mathematicus. </s> <s id="s.005109">Quapropter dicendum e&longs;t, entia hæc Geometrica om­<lb/> nibus numeris ab&longs;oluta e&longs;&longs;e entia per &longs;e, & vera; figuræ verò tum natura­<lb/> les, tum artificiales, quæ in rebus exi&longs;tunt, cùm à nullo efficiente intendan­<lb/> tur, e&longs;&longs;e entia per accidens, imperfecta, & fal&longs;a. </s> <s id="s.005110">v. <!-- REMOVE S-->g. <!-- REMOVE S-->triangulum in aliqua <lb/> charta depictum, non e&longs;t verum triangulum, &longs;ed verum <expan abbr="triangulũ">triangulum</expan> illud e&longs;t, <lb/> quod in idæa diuina e&longs;t. </s> <s id="s.005111">ex quibus obiter illud intelligas, cur &longs;cilicet ali­<lb/> quando Plato dixerit Deum geometrizare, ide&longs;t tanquam verum Geome­<lb/> tram non ni&longs;i perfecti&longs;&longs;imas idæas contemplari. </s> <s id="s.005112">Eodem etiam modo, Poe­<lb/> tæ, quì res perfectas imitari debent, eas &longs;altem vt plurimum, non vt exti­<lb/> terunt ver&longs;ibus decantant; &longs;ed quales e&longs;&longs;e debuerunt, confingunt, <expan abbr="atq;">atque</expan> lecto­<lb/> ribus, aut &longs;pectatoribus repræ&longs;entant. </s> <s id="s.005113">Vltimò dici pote&longs;t; hæc entia e&longs;&longs;e <lb/> po&longs;&longs;ibilia, quis enim neget Angelum, aut Deum ea po&longs;&longs;e efficere? </s> <s id="s.005114">ad obie­<lb/> ctum autem &longs;cientiæ &longs;atis e&longs;t e&longs;&longs;e po&longs;&longs;ibile; &longs;cientia enim ab&longs;trahit ab exi­<lb/> &longs;tentia &longs;ubiecti.</s> </p> <p type="main"> <s id="s.005115">In hac præterea intelligibili materia, alio modo materia alia accipitur, <lb/> cùm partes &longs;cilicet dicuntur materia totius, vt quando duo triangula com­<lb/> ponunt quodpiam quadrilaterum, &longs;unt illa duo trigona materia totius il­<lb/> lius quadrilateri.</s> </p> <p type="main"> <s id="s.005116">Similiter aliquando plures anguli partiales componunt tanquam mate­<lb/> riam totalem angulum. </s> <s id="s.005117">Idem dicendum de alijs &longs;imilibus, pariter e&longs;&longs;e ali­<lb/> cuius dimidium, aut tertiam partem, aut duplum, aut reliquum cuiu&longs;piam <lb/> totius, referuntur ad veram cau&longs;am materialem, <expan abbr="id&qacute;">idque</expan>; te&longs;te Ari&longs;t. tex. <!-- REMOVE S-->31.2. <lb/> & tex. <!-- REMOVE S-->3. 5. Metaph. & omnibus Philo&longs;ophis. </s> <s id="s.005118">quæ quidem materiæ accep­<lb/> tio, &longs;imilis e&longs;t acceptioni materiæ phy&longs;icæ, ex qua tanquam ex parte <expan abbr="cõpo-&longs;itum">compo­<lb/> &longs;itum</expan> con&longs;tatur: conflatur enim ex materia, & forma, tanquam partibus. <lb/> </s> <s id="s.005119">diuer&longs;a verò e&longs;t ab ea, quàm phy&longs;ici pa&longs;&longs;im v&longs;urpant, dum con&longs;iderant ma­<lb/>teriam, in qua, aut circa quam, vt aiunt. </s> <s id="s.005120">hoc tamen non ob&longs;tat, quominus <lb/> illa veram cau&longs;æ materialis rationem non obtineat. </s> <s id="s.005121">Quod etiam Geome­<lb/> tricarum demon&longs;trationum impugnatores videntur minimè aduerti&longs;&longs;e. </s> <s id="s.005122">quæ <lb/> illis &longs;ecunda errandi cau&longs;a extitit.</s> </p> <p type="main"> <s id="s.005123">Po&longs;tremò aduertendum, quòd magni <expan abbr="mom&etilde;ti">momenti</expan> e&longs;t, definitiones tam Geo­<lb/> metricæ, quàm Arithmeticæ e&longs;&longs;e omnino e&longs;&longs;entiales, quæ &longs;cilicet totam rei <lb/>quid ditatem explicent; minimè verò e&longs;&longs;e tantummodo nominis explicatio­<lb/> nes, aut definitiones, vt ijdem perperam exi&longs;timarunt, qui eorum tertius <lb/> e&longs;t error. </s> <s id="s.005124">quod quidem Ari&longs;t. &longs;en&longs;i&longs;&longs;e manife&longs;tum e&longs;t, <expan abbr="quotie&longs;cunq;">quotie&longs;cunque</expan> enim in <lb/>Analyticis de &longs;cientiarum principijs loquitur, inter ea definitiones Geome<lb/> triæ, & Arithmeticæ &longs;emper <expan abbr="cõnumerat">connumerat</expan>, quod minimè feci&longs;&longs;et, &longs;i &longs;olùm no­<lb/> minis e&longs;&longs;ent explicationes. </s> <s id="s.005125">Verum quidem e&longs;t eas, vt plurimum e&longs;&longs;e &longs;imul, <pb pagenum="8" xlink:href="009/01/292.jpg"/>& rei, & nominis expo&longs;itiones. </s> <s id="s.005126">quod &longs;æpè accidit, cùm &longs;cilicet nomina val­<lb/> dè perfecta, ac rei omnino conuenientia &longs;unt; nam</s> </p> <p type="main"> <s id="s.005127"><emph type="italics"/>Conueniunt rebus nomina &longs;æpè &longs;uis.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.005128">Huiu&longs;modi &longs;æpè &longs;unt, quæ perfectam continent etymologiam, vbi ip&longs;a <lb/> nominis expo&longs;itio, &longs;imul etiam e&longs;t rei e&longs;&longs;entialis definitio. </s> <s id="s.005129">tales &longs;unt &longs;æpè <lb/> nomina, & definitiones Geometricæ. <!-- KEEP S--></s> <s id="s.005130">Exempli cau&longs;a, talis e&longs;t definitio qua­<lb/> drati, nam quando dico, quadratum e&longs;t figura plana quatuor rectis lineis, <lb/> & quatuor angulis rectis con&longs;tans, explico &longs;imul rationem nominis, & ra­<lb/> tionem rei: dicitur enim quadratum á quatuor illis lineis. </s> <s id="s.005131">Explico deinde <lb/> totam eius e&longs;&longs;entiam, quando dico ip&longs;um con&longs;tare ex quatuor lineis rectis, <lb/> & quatuor angulis rectis, quæ duo &longs;imul iuncta con&longs;tituunt totam quadrati <lb/> e&longs;&longs;entiam, &longs;unt enim ip&longs;ius differentia con&longs;titutiua; loco autem generis e&longs;t <lb/> figura plana quadrilatera: quapropter erit hæc perfecti&longs;&longs;ima definitio, cùm <lb/>non &longs;olum nominis, &longs;ed etiam rei e&longs;&longs;entiam rotam patefaciat; &longs;tatim enim, <lb/> ac cogno&longs;cimus quadratum ex prædictis <expan abbr="cõ&longs;tare">con&longs;tare</expan> nihil amplius de ip&longs;ius e&longs;­<lb/> &longs;entia animus &longs;cire de&longs;iderat, &longs;ed acquie&longs;cit, vnde eam e&longs;&longs;e optimam defi­<lb/> nitionem manife&longs;tum e&longs;t. </s> <s id="s.005132">Huiu&longs;modi <expan abbr="quoq;">quoque</expan> e&longs;t definitio figuræ altera par­<lb/> te longioris, nam cùm dicitur, ea e&longs;t figura plana quadrilatera, quæ <expan abbr="rectã-gula">rectan­<lb/> gula</expan> quidem, & æquilatera non e&longs;t, patet inde, cur dicatur altera parte <expan abbr="lõ-gior">lon­<lb/> gior</expan>, quòd e&longs;t ip&longs;ius etymon: deinde ip&longs;ius e&longs;&longs;entia, ita innote&longs;cit, vt nihil <lb/> amplius de ea quærendum &longs;uper&longs;it. </s> <s id="s.005133">Similiter cum dicitur, <expan abbr="æquilaterũ">æquilaterum</expan> trian­<lb/> gulum e&longs;t, quod tria latera habet æqualia, ecce tibi, & nominis, & rei cau­<lb/> &longs;a. </s> <s id="s.005134">talis e&longs;t etiam prima 6. definitio, &longs;imiles figuræ rectilineæ &longs;unt, quæ & an­<lb/> gulos &longs;ingulos &longs;ingulis æquales habent, atque etiam latera, quæ <expan abbr="circũ">circum</expan> æqua­<lb/> les proportionalia; hic enim etymologia, & rei natura manife&longs;tatur. </s> <s id="s.005135">talis <lb/> adhuc e&longs;t prima definitio 10. commen&longs;urabiles magnitudines <expan abbr="dicũtur">dicuntur</expan>, quas <lb/> eadem men&longs;ura metitur. </s> <s id="s.005136">innumeras huiu&longs;modi alias, quæ apud alios Geo­<lb/> metras reperiuntur, mi&longs;&longs;as facio, ne in re tam clara longior &longs;im. </s> <s id="s.005137">&longs;ed alias <lb/> contemplemus, quæ nullo modo &longs;unt nominis definitionis, &longs;ed rei tantum, <lb/>prima Euclidis definitio, quæ e&longs;t Puncti, iuxta puncti naturam bipartita e&longs;t, <lb/> habet enim e&longs;&longs;e partim ab&longs;olutum, partim relatiuum; cùm in prima defi­<lb/> nitione dicitur. </s> <s id="s.005138">Punctum e&longs;t, cuius nulla pars e&longs;t, definitur quatenus ab&longs;o­<lb/> lutum, cùm po&longs;tea in tertia definitione dicitur, termini lineæ &longs;unt puncta, <lb/> definitur quatenus e&longs;t quid alterius: ex quibus tota puncti natura fit mani­<lb/> fe&longs;ta; etymologia verò ne <expan abbr="quaquã">quaquam</expan>; nam dicitur punctum à pungendo, qua&longs;i <lb/> &longs;it punctura quædam, quæ notio in Euclidis definitione minimè attingitur. <lb/> </s> <s id="s.005139">Similiter cum dicitur, line a e&longs;t longitudo latitudinis expers, vbinam nomi­<lb/> nis ratio? </s> <s id="s.005140">nam linea dicitur à lino, qua&longs;i lineum filum; antiquitus enim ex <lb/>lino fila fiebant, quibus fabri ad de&longs;ignationes vtebantur, quemadmodum <lb/> nunc ex cannabe: at in Euclidis definitione ridiculum e&longs;t hanc <expan abbr="ration&etilde;">rationem</expan> que­<lb/> rere; in qua tamen lineæ e&longs;&longs;entia perfectè apparet.</s> </p> <p type="main"> <s id="s.005141">Pariter quando definit &longs;uperficiem e&longs;&longs;e eam, quæ longitudinem, <expan abbr="latitudi-nem&qacute;">latitudi­<lb/> nemque</expan>; <expan abbr="tãtum">tantum</expan> habet, apparet quidem rei natura, at verò vbi nominis defi­<lb/> nitio, quæ e&longs;t, dici &longs;uperficiem, qua&longs;i &longs;upremam faciem? </s> <s id="s.005142">Cùm dicitur An­<lb/> gulus e&longs;t duarum linearum, &longs;e mutuò tangentium inclinatio, vbinam vocis <lb/> notio? </s> <s id="s.005143">aperitur tamen rei natura, & quidditas. </s> <s id="s.005144">Sed magis manife&longs;tum e&longs;t<pb pagenum="9" xlink:href="009/01/293.jpg"/>in linea perpendiculari, quæ proculdubio denominata e&longs;t à perpendiculo, <lb/> in definitione tamen nullum huius ve&longs;tigium: at verò quid ip&longs;a &longs;it, optimè <lb/> explicatur. </s> <s id="s.005145">Definitio porrò circuli videtur a&longs;&longs;ignari non per intrin&longs;eca, <lb/> &longs;ed tamen æquiualet intrin&longs;ecæ definitioni; quando enim dicitur circulus <lb/> e&longs;t figura plana, vncia linea contenta, ad quam ab vno puncto eorum, quæ <lb/> intra figuram &longs;unt, ductæ omnes lineæ &longs;unt æquales, perinde e&longs;t, ac &longs;i dice­<lb/> ret, circulus e&longs;t figura plana, cuius medium æquidi&longs;tat ab extremis, qu&etail; e&longs;t <lb/> e&longs;&longs;entialis; po&longs;ita enim hac æquidi&longs;tantia, ponitur nece&longs;&longs;ariò circulus. </s> <s id="s.005146">Ve­<lb/> rùm centri definitionem e&longs;&longs;e tantum nominis explicationem; ab&longs;urdum e&longs;t: <lb/>centrum enim vox gr&etail;ca e&longs;t, quæ primo &longs;ignificat &longs;timulum, vel aculeum il­<lb/> lum. </s> <s id="s.005147">quo Boues agit bubulcus.</s> </p> <p type="main"> <s id="s.005148">At Rhombi definitionem, quàm ridiculum e&longs;t, eam nominis &longs;olum expli­<lb/> cationem continere, cùm nihil minus. </s> <s id="s.005149">Dicitur enim Rhombus à cuiu&longs;dam <lb/> pi&longs;cis, vel cuiu&longs;dam textorij in&longs;trumenti <expan abbr="&longs;imilitudin&etilde;">&longs;imilitudinem</expan>, cuius figuram refert. <lb/> </s> <s id="s.005150">naturam tamen ip&longs;ius definitio aperit, ide&longs;t Rhombus e&longs;t figura plana qua­<lb/> drilatera, æquilatera, &longs;ed non rectangula. </s> <s id="s.005151">Idem per&longs;picere licet in defini­<lb/>tionibus corporum, quarum prima e&longs;t, &longs;olidum e&longs;t, quòd longitudinem, la­<lb/> titudinem, & cra&longs;&longs;itudinem habet; ex qua clarè tota rei natura per&longs;picitur. <lb/> </s> <s id="s.005152">Sed ne longior &longs;im, innumeras pene alias apud omnes Geometras reperies <lb/> omnino e&longs;&longs;entiales, quas prætero: eadem pror&longs;us de Arithmetic&etail; defini­<lb/>tionibus &longs;unt intelligenda, vt eas con&longs;ideranti &longs;tatim patebit. </s> <s id="s.005153">Quod &longs;i quis <lb/>iam fateatur ha&longs;ce definitiones e&longs;&longs;entiales e&longs;&longs;e, &longs;ed tamen adhuc Mathema­<lb/> ticis illas definitiones cau&longs;ales, quas demon&longs;tratio requirit, deneget; is &longs;i­<lb/> bi refragrantem audiat Ari&longs;t. qui tex. <!-- REMOVE S-->12. 2. de Anima; ait Tetragoni&longs;mi <lb/>extare duas definitiones, vnam formalem, &longs;eu e&longs;&longs;entialem, qu&etail; e&longs;t, Tetrago­<lb/> ni&longs;mus e&longs;t effectio quadrati æqualis dato æquilatero; altera verò cau&longs;alis, <lb/>&longs;cilicet Tetragoni&longs;mus e&longs;t inuentio medi&etail; proportionalis, quia linea illa me <lb/>dia proportionali, e&longs;t cau&longs;a quadrati æqualis datæ figuræ: vide no&longs;tram hu­<lb/> ius loci explicationem. </s> <s id="s.005154">Concedat is igitur oportet, Geometricas de fini­<lb/> tiones non &longs;olum nominales, &longs;ed etiam formales, & cau&longs;ales e&longs;&longs;e. </s> <s id="s.005155">quo no­<lb/> mine Mathematicas definitiones reliquarum &longs;cientiarum definitiones an­<lb/> tecellere iam certum e&longs;&longs;e pote&longs;t; cùm apud omnes Philo&longs;ophos in confe&longs;&longs;o <lb/> &longs;it, vltimas rerum <expan abbr="differ&etilde;tias">differentias</expan> nos latere, &longs;ine quibus vera definitio nulla e&longs;t; <lb/>adeò, vt etiam apud eo&longs;dem ambigatur, vtrum illa definitio hominis, ani­<lb/> mal rationale, vera &longs;it definitio nec ne.</s> </p> <p type="main"> <s id="s.005156">Obijces fortè iterum, definitiones ha&longs;ce Mathematicarum e&longs;&longs;e vt pluri­<lb/>mum definitiones &longs;ubiecti: at in poti&longs;&longs;ima demon&longs;tratione, ad quam tendi­<lb/> mus, requiri cau&longs;ales definitiones pa&longs;&longs;ionis primò, & per &longs;e; definitionem <lb/>verò &longs;ubiecti per accidens, vt quando aliquid immediatè ab ea procedens <lb/> de &longs;ubiecto ip&longs;o <expan abbr="demon&longs;randũ">demon&longs;trandum</expan> e&longs;t. </s> <s id="s.005157">re&longs;pondendum cen&longs;eo, primò, quod cùm <lb/>definitio cau&longs;alis pa&longs;&longs;ionis non &longs;it aliud, quam cau&longs;a ip&longs;ius, &longs;i in definitione <lb/> &longs;ubiecti continetur causa pa&longs;&longs;ionis, a&longs;&longs;umendo definitionem &longs;ubiecti, a&longs;&longs;u­<lb/>metur etiam definitio cau&longs;alis pa&longs;&longs;ionis. </s> <s id="s.005158">&longs;ecundò, quod in Mathematicis <lb/>definitiones ip&longs;ius &longs;ubiecti &longs;æpe euadunt definitiones pa&longs;&longs;ionis, vt infra cla­<lb/>rè patebit, quando nimirum ip&longs;um &longs;ubiectum. </s> <s id="s.005159">v. <!-- REMOVE S-->g. <!-- REMOVE S-->quadratum veluti pa&longs;&longs;io <lb/>de figuratione quapiam demon&longs;tratur; &longs;iue quando o&longs;tenditur ex quapiam <pb pagenum="10" xlink:href="009/01/294.jpg"/>con&longs;tructione rectè fieri quadratum, triangulum, lineam perpendicularem, <lb/> & &longs;imilia. </s> <s id="s.005160">tertiò, in præcedenti dubitatione dictum e&longs;&longs;e ex mente Ari&longs;tot. <lb/> etiam in Mathematicis e&longs;&longs;e definitiones cau&longs;ales, <expan abbr="id&qacute;">idque</expan>; <expan abbr="ex&etilde;plo">exemplo</expan> tetragoni&longs;mi <lb/> confirmatum. </s> <s id="s.005161">Ex his, quæ de &longs;cientiarum definitionibus dicta &longs;unt, notan­<lb/> da e&longs;t quædam di&longs;paritas inter alias &longs;cientias, & Mathematicas in modo <lb/> procedendi ad &longs;ubiecti proprij cognitionem. </s> <s id="s.005162">nam in demon&longs;trationibus à <lb/> &longs;igno, à quibus incipiunt vt plurimum aliæ &longs;cientiæ, &longs;ola cognitio nominis <lb/> &longs;ubiecti requiritur, non autem e&longs;&longs;entialis definitio; eius enim e&longs;&longs;entia, quæ <lb/> occulta e&longs;t, per accidentia, & proprietates à po&longs;teriori indagatur; qua de­<lb/>tecta ab ea iterum ad demon&longs;trandas pa&longs;&longs;iones di&longs;tinctè, & &longs;cientificè re­<lb/> gredimur. </s> <s id="s.005163">quod &longs;i primò perfecta obiecti cognitio obijceretur, vt &longs;it in Ma­<lb/> thematicis ob perfectus earum definitiones pulcherrimo naturæ ordine ab <lb/> e&longs;&longs;entia ip&longs;ius ad pa&longs;&longs;iones demon&longs;trandas procederemus, vt fit in demon­<lb/> &longs;trationibus à cau&longs;a, quales ferè &longs;emper &longs;unt in Geometria, & Arithmetica <lb/> exceptis demon&longs;trationibus ab impo&longs;sibili, vbi nobis primò tota &longs;ubiecti <lb/> natura ex præmi&longs;sis definitionibus obijcitur, ex qua deinde &longs;emper à priori <lb/> ad inue&longs;tigandas illius pa&longs;siones procedimus; in quo proce&longs;&longs;u definitio &longs;u­<lb/> biecti pr&etail;mitti, <expan abbr="eius&qacute;">eiusque</expan>; quidditas &longs;upponi debet. </s> <s id="s.005164">vnde etiam &longs;equitur Mathe­<lb/> maticas ha&longs;ce à notioribus nobis, & natura, vt vult Auerroes, & cæteri ferè <lb/> omnes, & ex no&longs;tris maximè Toletus qu&etail;&longs;t. </s> <s id="s.005165">4. &longs;ecundi Phy&longs;. procedere. </s> <s id="s.005166">no­<lb/>tioribus nobis, quia primum omnium manife&longs;ta e&longs;t tota figuræ e&longs;&longs;entia ex <lb/> definitione ip&longs;ius allata, ignotis adhuc ip&longs;ius affectionibus, notioribus na­<lb/> tura, quia prius natura e&longs;t &longs;ubiecti e&longs;&longs;entia, quàm pa&longs;siones, quæ ab ea ma­<lb/> nant, <expan abbr="de&qacute;">deque</expan>; ea demon&longs;trantur: <expan abbr="atq;">atque</expan> hæc cau&longs;æ e&longs;t, cur &longs;emper tanti factæ &longs;ine <lb/> Geometricæ demon&longs;trationes, <expan abbr="primum&qacute;">primumque</expan>; certitudinis gradum obtineant.</s> </p> <p type="head"> <s id="s.005167"><emph type="italics"/>De medio Demonstrationum Geometriæ, & Arith­<lb/> meticæ, &longs;eu, An &longs;int potißimæ Demon&longs;trationes. <lb/> </s> <s id="s.005168">Cap. 2.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.005169">Coguntur huius tempe&longs;tatis Mathematici ea, quæ antiqui&longs;simo po&longs;­<lb/> &longs;e&longs;sionis iure tutò hactenus po&longs;siderunt, à nonnullis recentioribus <lb/> ea diripere volentibus, omni conatu tutari. </s> <s id="s.005170">quis enim vnquam <lb/>alicuius nominis philo&longs;ophus ante Alexandrum Piccolomineum <lb/> extitit, qui Geometris poti&longs;simas Demon&longs;trationes eripere tentauerit? <lb/> </s> <s id="s.005171">profectò nullus fatetur ip&longs;e &longs;e primum inter recentiores hanc veritatem <lb/> olfeci&longs;&longs;e, &longs;ed verè omnium etiam antiquorum primus ip&longs;e fuit, nam duos, <lb/> vel tres, quos ex antiquis in &longs;uam &longs;ententiam pertrahere conatur, re vera, <lb/> vt infra patebit, minimè pertrahit.</s> </p> <p type="main"> <s id="s.005172">Primo igitur antiquorum auctoritates, præcipuè verò Ari&longs;t. pro parte af­<lb/> firmatiua afferemus. </s> <s id="s.005173">& verò indignum, <expan abbr="atq;">atque</expan> &longs;uperuacaneum exi&longs;timo, cùm <lb/>eo, qui Ari&longs;t. <!-- REMOVE S-->Analyticos po&longs;teriores legerit, de ip&longs;ius &longs;ententia di&longs;putare, <lb/> <expan abbr="cius&qacute;">eiusque</expan>; mentem, qua&longs;i in fru&longs;ta locis aliquot citandis &longs;ecare, cùm totis duo­<lb/> bus libris nihil aliud agere videatur, quàm <expan abbr="perfectã">perfectam</expan> Demon&longs;trationis id&etail;am <pb pagenum="11" xlink:href="009/01/295.jpg"/>ex Geometricis delineare; quippe qui omnes conditiones, <expan abbr="omnia&qacute;">omniaque</expan>; ad per­<lb/> fectam demon&longs;trationem nece&longs;&longs;aria, <expan abbr="vbiq;">vbique</expan> Geometricis demon&longs;trationibus <lb/> attribuat, <expan abbr="id&qacute;">idque</expan>; non &longs;olùm præceptis, &longs;ed etiam exemplis perpetuò confir­<lb/> met: ego quidem nihil vnquam Ari&longs;t. clarius expre&longs;si&longs;&longs;e, nihil fu&longs;ius com­<lb/> proba&longs;&longs;e exi&longs;timo, quàm Geometriæ demon&longs;trationes omnibus numeris ab­<lb/> &longs;olutas e&longs;&longs;e, ita vt Philo&longs;opho indignum omninò videatur &longs;ententiam ip&longs;ius <lb/> adeò manife&longs;tam aliò detorquere; &longs;atius e&longs;&longs;et, meo iudicio, palàm peri­<lb/> patetici nomen ex hac parte deponere, quàm hoc modo Peripateticorum <lb/> doctrinam, vt nonnulli faciunt, vel di&longs;simulare, vel tam perperam interpre­<lb/> tari. </s> <s id="s.005174">quamuis igitur &longs;atis e&longs;&longs;et lectorem ad libros analyticos, <expan abbr="corum&qacute;">eorumque</expan>; in­<lb/> terpretes amandare, non grauabor tamen loca aliquot &longs;electa, atque adeò <lb/> manife&longs;ta in medium afferre, vt magnopere mirandum &longs;it <expan abbr="cõtrariæ">contrariæ</expan> opinio­<lb/>nis authores ea pro libito interpretari. </s> <s id="s.005175">quorum primus &longs;it tex. <!-- REMOVE S-->23. primi Po­<lb/> &longs;ter. <emph type="italics"/>(<expan abbr="Vnumquodq;">Vnumquodque</expan> autem &longs;cimus non &longs;ecundum accidens, quando &longs;ecundum illud <lb/>cogno&longs;cimus, &longs;ecundum quod ine&longs;t, ex principijs illius, &longs;ecundum quod illud, vt <lb/> duobus rectis æquales habere, cui inest per &longs;e ex principijs huius)<emph.end type="italics"/> vbi manife&longs;tè <lb/> vides Ari&longs;t. a&longs;&longs;erere demon&longs;trationem illam, qua Geometra o&longs;tendit, omne <lb/> <expan abbr="triãgulum">triangulum</expan> habere tres angulos æquales duobus rectis procedere ex primis, <lb/> immediatis, ex ijs, quæ &longs;unt per &longs;e, & &longs;ecundum quod ip&longs;um; nullo autem <lb/> modo ex ijs, quæ &longs;unt per accidens. </s> <s id="s.005176">perinde ac &longs;i diceret eam e&longs;&longs;e poti&longs;si­<lb/> mam, <expan abbr="atq;">atque</expan> omnibus numeris ab&longs;olutam. </s> <s id="s.005177">verùm de hac demon&longs;tratione in­<lb/> ferius pluribus dicetur, interim vide citati loci no&longs;tram explicationem &longs;u­<lb/> pra in locis Mathem.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005178">Textu deinde 29. primi Po&longs;ter. <emph type="italics"/>(Conuertuntur autem magis quæ &longs;unt in Ma­<lb/>thematicis, quoniam nullum accidens (&longs;ed & hoc differunt ab ijs, quæ &longs;unt in di­<lb/> &longs;putationibus) &longs;ed definitiones)<emph.end type="italics"/> vbi vides Mathematicos nullum <expan abbr="accid&etilde;s">accidens</expan>, &longs;en <lb/> contingens accipere, &longs;ed definitiones, ide&longs;t, non per aliquod contingens, <lb/> &longs;ed per cau&longs;am formalem. </s> <s id="s.005179">tex. <!-- REMOVE S-->verò 31. <emph type="italics"/>(Figurarum autem maximè &longs;cientialis <lb/> est prima, mathematicæ <expan abbr="namq;">namque</expan> <expan abbr="&longs;ci&etilde;tiæ">&longs;cientiæ</expan> per hanc demon&longs;trationes ferunt, vt Arith­<lb/> metica, & Geometria, & Per&longs;pectiua, & ferè dixerim quæcunque ip&longs;ius Propter <lb/> quid con&longs;iderationem faciunt)<emph.end type="italics"/> po&longs;tea tex. <!-- REMOVE S-->11. 2. Po&longs;ter. a&longs;&longs;erit demon&longs;tratio­<lb/>nem illam, qua Geometra probat, angulum in &longs;emicirculo e&longs;&longs;e rectum, e&longs;&longs;e <lb/> à cau&longs;a materiali, imò eam tanquam optimum huiu&longs;modi demon&longs;trationis <lb/> exemplum affert. </s> <s id="s.005180">&longs;ed de hac eadem demon&longs;tratione infra iterum dicendum <lb/> erit; vide interim prædicti loci explicationem &longs;upra in locis Mathemat. </s> <s id="s.005181">al­<lb/> latam. </s> <s id="s.005182">hæc ex Logica &longs;ufficiant, ne huc toti po&longs;teriores in&longs;erantur. </s> <s id="s.005183">tex. <!-- REMOVE S-->68. <lb/> 2. Phy&longs;. <emph type="italics"/>(Aut enim ad ip&longs;um Quid est, reducitur ip&longs;um Propter quid vltimum in <lb/>immobilibus, vt in mathematicis, ad definitionem enim recti, aut commen&longs;urabi­<lb/>lis, aut alterius cuiu&longs;piam reducitur vltimum)<emph.end type="italics"/> ecce iterum cau&longs;a formalis in <lb/> Mathematicis demon&longs;trationibus. </s> <s id="s.005184">vide huius loci explicationem &longs;upra à <lb/> nobis allatam. </s> <s id="s.005185">6. Metaph. tex. <!-- REMOVE S-->1. <emph type="italics"/>(Mathematicorum <expan abbr="quoq;">quoque</expan> principia, elementa, <lb/> & cau&longs;æ &longs;unt)<emph.end type="italics"/> 11. Metaph. cap. 1. &longs;ummæ 3. <emph type="italics"/>(Patet igitur tria e&longs;&longs;e genera &longs;pe­<lb/> culatiuarum &longs;cientiarum, Naturalem, Mathematicam, Theologiam)<emph.end type="italics"/> ecce tibi, <lb/> quam clara &longs;it Ari&longs;t. &longs;ententia.</s> </p> <p type="main"> <s id="s.005186">Quod ad Platonis auctoritatem attinet, certum e&longs;t, eum in Mathematicis <lb/> cau&longs;am materialem, & formalem agnoui&longs;&longs;e, nam te&longs;te Ari&longs;t. primo Metaph. <pb pagenum="12" xlink:href="009/01/296.jpg"/>cap. 7. ip&longs;e non credebat aliarum cau&longs;arum, quàm formalis, & materialis, <lb/> quas Mathematici tractant, &longs;peculationem <expan abbr="philo&longs;ophicã">philo&longs;ophicam</expan> e&longs;&longs;e magnifacien­<lb/> dam; efficientem enim, & finalem <expan abbr="nũquam">nunquam</expan> explicuit, proptereaquod à Ma­<lb/> thematicis, nunquam tractarentur. </s> <s id="s.005187">Proclus præterea cap. 10. lib. 7. in Eu­<lb/> clidem, ait; Mathematicam verò omninò rerum &longs;empiternarum vim ha­<lb/> bentem, &longs;cientiam appellat Plato. </s> <s id="s.005188">& paulo po&longs;t, ne dicamus igitur, quod <lb/> Mathematicam à &longs;cientiarum numero Plato expellit. </s> <s id="s.005189">& in fine cap. ait. <lb/> <emph type="italics"/>(Mathematica tamen e&longs;t &longs;cientia, non vt à &longs;uppo&longs;itione immunis, &longs;ed vt propria­<lb/>rum in anima rationum cognitrix, & vt cau&longs;as conclu&longs;ionum afferens)<emph.end type="italics"/> nota illud, <lb/> cau&longs;as conclu&longs;ionum afferens. </s> <s id="s.005190">concludit po&longs;tea &longs;ic, hæc omnia de Platonis <lb/> &longs;ententia pro Mathematicis dicta &longs;int.</s> </p> <p type="main"> <s id="s.005191">Ip&longs;um præterea exi&longs;tima&longs;&longs;e eas e&longs;&longs;e ab&longs;oluti&longs;simas &longs;cientias ex multis ip­<lb/> &longs;ius dictis par e&longs;t credere; cur enim dixi&longs;&longs;et, Deum Geometrizare, ni&longs;i ob <lb/> &longs;ummam Geometriæ excellentiam? </s> <s id="s.005192">cur omnes ageometretos è gymna&longs;io <lb/> &longs;uo arcebat? </s> <s id="s.005193">cur eas in a&longs;cen&longs;u ad &longs;ummi Boni cognitionem naturali Phi­<lb/> lo&longs;ophiæ prætulit? </s> <s id="s.005194">quàm autem immeritò in <expan abbr="contrariã">contrariam</expan> &longs;ententiam alij eum <lb/> ad &longs;e pertrahant, infra apparebit, cùm calumnias diluemus.</s> </p> <p type="main"> <s id="s.005195">Sequatur tertio loco Procli ip&longs;ius authoritas, qui in primo, & &longs;ecundo <lb/> libro <expan abbr="cõm">comm</expan>. <!-- REMOVE S-->in Euclidem, totus e&longs;t in Mathematicis, præcipuè verò in Geo­<lb/> metria &longs;ummis laudibus cumulandis, <expan abbr="eas&qacute;">easque</expan>; e&longs;&longs;e perfecti&longs;&longs;imas &longs;cientias &longs;æ­<lb/> pius non &longs;olum a&longs;&longs;erit, &longs;ed etiam demon&longs;trat. </s> <s id="s.005196">Id igitur primum cap. 10. lib. <lb/> primi aggreditur, vbi fusè o&longs;tendit ex Platone e&longs;&longs;e &longs;cientias, quæ <expan abbr="cõclu&longs;io-num">conclu&longs;io­<lb/> num</expan> cau&longs;as afferant. </s> <s id="s.005197">i. </s> <s id="s.005198">perfecti&longs;&longs;imas habere <expan abbr="demõ&longs;trationes">demon&longs;trationes</expan>. </s> <s id="s.005199">& cap. 5. lib. 2. <lb/> de Euclide loquens, ait <emph type="italics"/>(Præcipuè verò circa Geometricam elementorum in&longs;ti­<lb/> tutionem eum qui&longs;piam admirabitur propter ordinem, & electionem eorum, quæ <lb/> per elementa di&longs;tribuit, etenim non ca a&longs;&longs;ump&longs;it omnia, quæ poterat dicere, &longs;ed ea <lb/> duntaxat, quæ elementari tradere potuit ordine. </s> <s id="s.005200">Adhuc autem omnis generis &longs;yl­<lb/> logi&longs;morum modus, alios quidem à cau&longs;is fidem &longs;u&longs;cipientes, alios verò à certis no­<lb/> tis perfectos, omnes autem inuincibiles, & certos, ad &longs;cientiamqué, accommodatos)<emph.end type="italics"/><lb/>notanda &longs;unt illa; à cau&longs;is fidem &longs;u&longs;cipientes, quibus præcipuè indicat, &longs;e in <lb/> Demon&longs;trationibus Euclidianis cau&longs;as agno&longs;cere.</s> </p> <p type="main"> <s id="s.005201">Lib. deinde 3. in comm. <!-- REMOVE S-->ad primam Euclidis propo&longs;it. </s> <s id="s.005202">hæc habet; <expan abbr="Quã-do">Quan­<lb/> do</expan> igitur &longs;yllogi&longs;mus Geometris per impo&longs;&longs;ibile fuerit, &longs;ymptoma tantùm <lb/> inuenire cupiunt, quando autem per præcipuam Demon&longs;trationem, tunc <lb/> rur&longs;us &longs;iquidem in particulari demon&longs;trationes fiant, cau&longs;a nondum mani­<lb/> fe&longs;ta e&longs;t, &longs;i verò in vniuer&longs;ali, in omnibus &longs;imilibus continuò & ip&longs;um pro­<lb/> pter quid manife&longs;tam fit. </s> <s id="s.005203">Ecce tibi iterum ip&longs;um Propter quid in Geome­<lb/> tricis. </s> <s id="s.005204">& in eod. </s> <s id="s.005205">com. </s> <s id="s.005206">po&longs;t multa; illam autem, quæ demon&longs;tratio dicitur, <lb/> quandoquidem propria <expan abbr="Demõ&longs;trationi">Demon&longs;trationi</expan> habentem inueniemus, & definitio­<lb/>nibus Medijs quæ&longs;itum o&longs;tendentem; hæc enim Demon&longs;trationis perfectio <lb/> e&longs;t. </s> <s id="s.005207">Vbi ob&longs;eruandum e&longs;t apud Proclum Geometram vti definitionibus pro <lb/> Medio; quòd requiritur ad exacti&longs;&longs;imam <expan abbr="Demon&longs;tration&etilde;">Demon&longs;trationem</expan>, vt ip&longs;e ait: quod <lb/> declarat exemplo primæ <expan abbr="Demõ&longs;trationis">Demon&longs;trationis</expan> Euclidis, cùm ait, quando autem <lb/> per de&longs;criptionem circulorum, quod con&longs;titutum e&longs;t Triangulum æquilate­<lb/> rum e&longs;&longs;e o&longs;tenditur, à cau&longs;a apprehen&longs;io fit, æqualitatem enim circulorum <lb/>cau&longs;am æqualitatis laterum illius e&longs;&longs;e dicemus. </s> <s id="s.005208">Quid igitur apud Proclum <pb pagenum="13" xlink:href="009/01/297.jpg"/>clarius dici poterat? </s> <s id="s.005209">quæ tamen omnia aduer&longs;arij videntur clau&longs;is de indu­<lb/> &longs;tria oculis præterij&longs;&longs;e; con&longs;tat enim ex opu&longs;culo Piccolominei ip&longs;um dili­<lb/> genter hoc con&longs;ilio Proclum perlegi&longs;&longs;e; quì igitur fieri potuit, quin ea vi­<lb/> derit. </s> <s id="s.005210">Sed hodie plurimi non ad verum, &longs;ed ad libitum philo&longs;ophamur.</s> </p> <p type="main"> <s id="s.005211">Placuit hos tres &longs;olos Platonem, Ari&longs;totilem, & Proclum ex veteribus pro <lb/> no&longs;tra &longs;ententia in <expan abbr="mediũ">medium</expan> adducere, propterea quod eos &longs;ibi adiungere <expan abbr="cõ-tra">con­<lb/> tra</expan> omnem rationem nitantur aduer&longs;arij, vt ex prædictis iam &longs;atis liquidè <lb/> con&longs;tat. </s> <s id="s.005212">Reliquorum verò Philo&longs;ophorum, tàm Græcorum, quàm <expan abbr="Arabũ">Arabum</expan>, <lb/> aut Latinorum placita citare &longs;uper&longs;edeo, etiam &longs;i omnes vno ore Geome­<lb/>tricas demon&longs;trationes tanquam omnium exacti&longs;&longs;imas celebrauerint, vel <lb/>te&longs;te ip&longs;o Piccolomineo, qui initio libelli de certitudine, Mathematica, &longs;ic <lb/> ait; omnes ferè Latini, vt D. Albertus, D. <!-- REMOVE S-->Tho nas, Mar&longs;ilius, Egydius, Zi­<lb/> mara, & <expan abbr="pleri&qacute;">plerique</expan>, alij vno ore Auerroem interpretati &longs;unt, dicere Mathema­<lb/> ticas demon&longs;trationes e&longs;&longs;e in primo gradu certitudinis, quod Mathemati­<lb/> cus ex notioribus nobis, & natura demon&longs;tret, quippequi vel &longs;olus, vel ma­<lb/> ximè demon&longs;tratione illa, quam poti&longs;&longs;imam appellant, vtatur, qua. </s> <s id="s.005213">&longs;. </s> <s id="s.005214">&longs;imul <lb/> & quod effectus &longs;it, & cur &longs;it liquidò innote&longs;cit. </s> <s id="s.005215">Verum ip&longs;e omnium pri­<lb/>mus ab&longs;olutè dici pote&longs;t, cum nullus ante ip&longs;um, cuius opera extent, id di­<lb/> cat; quamuis ip&longs;e fallo Proclum, Ari&longs;t. & Platonem &longs;ibi conetur adiungere. <lb/> </s> <s id="s.005216">Po&longs;t ip&longs;um verò &longs;oli duo ferè Pererius, & Conimbric. </s> <s id="s.005217">eum &longs;equuti &longs;unt. </s> <s id="s.005218">At <lb/> verò contrariam <expan abbr="&longs;ent&etilde;tiam">&longs;ententiam</expan> reliqui omnes po&longs;t ip&longs;um amplexi &longs;unt; ex qui­<lb/> bus &longs;olos duos, <expan abbr="eos&qacute;">eosque</expan>; præ&longs;tanti&longs;&longs;ios huiu&longs;ce tempe&longs;tatis philo&longs;ophos alle­<lb/> ga&longs;&longs;e &longs;it &longs;atis. </s> <s id="s.005219">Toletum. </s> <s id="s.005220">&longs;. </s> <s id="s.005221">& Zabarellam. <!-- KEEP S--></s> <s id="s.005222">Toletus enim quæ&longs;t. </s> <s id="s.005223">4. 2. Phy&longs;. <lb/> <!-- REMOVE S-->in 3. conclu&longs;ione habet i&longs;ta; Phy&longs;icus, & Mathematicus differunt in modo <lb/>demon&longs;trandi, Phy&longs;icus enim frequenter vtitur demon&longs;tratione &longs;igni, & ef­<lb/>fectus, quia ip&longs;ius cau&longs;æ frequentius &longs;unt occultæ, nec per &longs;e &longs;en&longs;ibiles, effe­<lb/> ctus verò &longs;unt &longs;en&longs;ibiles, vt mors, motus, &c. </s> <s id="s.005224">quæ ad &longs;en&longs;um patent, <expan abbr="quorũ">quorum</expan> <lb/> cau&longs;æ à &longs;en&longs;ibus &longs;unt remotæ. </s> <s id="s.005225">At Mathematicus frequentius à prioribus <lb/> procedit cum eius cau&longs;æ notiores &longs;int effectibus, à &longs;en&longs;u enim ab&longs;trahit, & <lb/> in intellectu notius e&longs;t, quod prius e&longs;t. </s> <s id="s.005226">videas Lector, quàm &longs;yncerè natu­<lb/> ralis philo&longs;ophiæ profe&longs;&longs;or vera de Mathematicis loquatur, ita vt etiam eas <lb/> illi præferat. </s> <s id="s.005227">Iacobus autem Zabarella in toto &longs;uo opere logico, perpetuò <lb/>Mathematicas demon&longs;trationes, vt poti&longs;&longs;imas agno&longs;cit, <expan abbr="exempla&qacute;">exemplaque</expan>; Ari&longs;t. <lb/> geometrica exponit tanquam vera, & omnino rebus ip&longs;is accommodata; <lb/> quare non e&longs;t, cur vnum, aut alterum ip&longs;ius locum hic de&longs;cribamus. </s> <s id="s.005228">illud <lb/> non prætermittam, ip&longs;um fateri &longs;e bis, teruè totum Euclidem &longs;edulò perle­<lb/> gi&longs;&longs;e, vt probè po&longs;&longs;et Ari&longs;t. mentem circa <expan abbr="demõ&longs;trationis">demon&longs;trationis</expan> naturam a&longs;&longs;equi, <lb/> cùm videret Ari&longs;t. <!-- REMOVE S--><expan abbr="quæcunq;">quæcunque</expan> de demon&longs;tratione præciperet, omnia ad Geo­<lb/> metricam normam, tanquam ad lydium lapidem examinare. </s> <s id="s.005229">Locus, vbi <lb/> hæc ait, mihi è memoria excidit, certus tamen &longs;um apud ip&longs;um ea me le­<lb/> gi&longs;&longs;e. </s> <s id="s.005230">quarto tandem loco, communi authoritate omnium antiquorum idem <lb/> comprobatur, apud quos &longs;emper demon&longs;trationes Geometric&etail; appellatæ <lb/> &longs;unt per antonoma&longs;iam demon&longs;trationes, non rationes, non opiniones, non <lb/> &longs;ententiæ, quemadmodum in reliquis philo&longs;ophiæ partibus fieri &longs;olet. </s> <s id="s.005231">Sed <lb/> iam ab authoritatibus ad rationes.</s> </p> <p type="main"> <s id="s.005232">Prima, Vera, & perfecta demon&longs;tratio ex Auerrois &longs;ententia debet à no­<pb pagenum="14" xlink:href="009/01/298.jpg"/>tioribus nobis, & natura procedere, tales &longs;unt Geometricæ vt paulo &longs;upra <lb/> patuit, ergò ip&longs;æ poti&longs;&longs;imæ erunt demon&longs;trationes.</s> </p> <p type="main"> <s id="s.005233">2. Ex Themi&longs;tio cap, 2. &longs;uæ paraphr. </s> <s id="s.005234">2. Po&longs;ter. Demon&longs;tratio poti&longs;&longs;ima <lb/> debet o&longs;tendere, & quod, & Propter quid. </s> <s id="s.005235">quod profectò cæteris demon­<lb/> &longs;trationibus melius præ&longs;tant Geometricæ, & Arithmeticæ. <!-- KEEP S--></s> <s id="s.005236">v. <!-- REMOVE S-->g. <!-- REMOVE S-->demon&longs;tra­<lb/> tio 32. 3. o&longs;tendit angulum in &longs;emicirculo e&longs;&longs;e rectum, quod omninò igno­<lb/> tum erat; & affert cau&longs;am, quæ pariter ignorabatur. </s> <s id="s.005237">Idem ferè faciunt aliæ <lb/> omnes. </s> <s id="s.005238">in Mathematicis verò medijs, in Phy&longs;ica, & Metaphy&longs;ica effectus <lb/> <expan abbr="plerumq;">plerumque</expan> noti &longs;unt, &longs;ed cau&longs;æ latent; dicendum igitur Geometricas demon­<lb/>&longs;trationes ex Auerroe, & Themi&longs;tio præ&longs;tanti&longs;&longs;imas e&longs;&longs;e.</s> </p> <p type="main"> <s id="s.005239">Tertia, quæ e&longs;t euidenti&longs;&longs;ima, &longs;umatur ex re&longs;olutione aliquot demon&longs;tra­<lb/> tionum. </s> <s id="s.005240">Quid enim opus e&longs;t di&longs;putationem hanc per extraneas ambages <lb/> agitare? </s> <s id="s.005241">cum licear qua&longs;i in rem præ&longs;entem ire, & veluti demon&longs;trationum <lb/> anatome facta oculis ip&longs;is earum media contueri. </s> <s id="s.005242">&longs;ed prius in memoriam <lb/> redigendum e&longs;t, illam e&longs;&longs;e perfecti&longs;&longs;imam demon&longs;trationem, quæ non &longs;olùm <lb/> rei demon&longs;trandæ cau&longs;am propriam, & adæquatam affert, verùm etiam <lb/> euidenti&longs;&longs;imè o&longs;tendit talem pa&longs;&longs;ionem ab illa cau&longs;a procedere, ita vt non <lb/> po&longs;sit, vt ait Ari&longs;t. aliter res &longs;e habere, in quo profectò Mathematicæ ex­<lb/> cellunt. </s> <s id="s.005243">Cau&longs;a verò hæc in Geometria, & Arithmetica aliquando e&longs;t mate­<lb/> rialis, quando &longs;cilicet vtuntur pro Medio partibus, re&longs;pectu totius; vel e&longs;t <lb/> formalis, quando nimirum Medium e&longs;t definitio &longs;ubiecti, aut pa&longs;sionis. </s> <s id="s.005244">non <lb/> me tamen latet omnem perfectam demon&longs;trationem alio &longs;en&longs;u dici à qui­<lb/> bu&longs;dam procedere per cau&longs;am formalem, quia in ea continetur cau&longs;alis de­<lb/> finitio pa&longs;sionis, quæ definitio cau&longs;am ip&longs;ius exhibet, & proinde tanquam <lb/> forma ip&longs;ius e&longs;t, quæ rem in e&longs;&longs;e con&longs;tituat.</s> </p> <p type="main"> <s id="s.005245">Secundò notandum e&longs;t: Omnem demon&longs;trationis di&longs;cur&longs;um re&longs;olui tan­<lb/> dem in aliquid, aut per &longs;e notum, aut à po&longs;teriori comprobatum. </s> <s id="s.005246">Satis. </s> <s id="s.005247">n. <lb/> </s> <s id="s.005248">e&longs;t, vt cau&longs;a euidentur appareat, <expan abbr="quocunq;">quocunque</expan> id modo fiat. </s> <s id="s.005249">hoc dixi propter <lb/>nonnullos, qui cùm in Geometric&etail; demon&longs;trationibus lineam, aut diui&longs;ionem <lb/> aliquam, rei, quæ o&longs;tenditur, non intrin&longs;ecam animaduertunt, &longs;tatim exi­<lb/> &longs;timant eas per extrin&longs;eca <expan abbr="demõ&longs;trare">demon&longs;trare</expan>: &longs;ed decipiuntur; quia non animad­<lb/>uertunt lineas illas, aut partitiones, non e&longs;&longs;e medium demon&longs;trationis, &longs;ed <lb/> adhiberi ad medij inuentionem, & connexionem cum pa&longs;&longs;ione. </s> <s id="s.005250">Quod au­<lb/> tem eorum dubitatio omninò vana &longs;it ex eo patet, quod plurimæ &longs;unt de­<lb/> mon&longs;trationes, quæ &longs;ine vlla linearum con&longs;tructione, aut diui&longs;ione compro­<lb/> bentur, vti &longs;unt 15.33 34.42. 36. in &longs;olo primo elementorum. </s> <s id="s.005251">atque hæc <lb/> erroris eorum præcipua cau&longs;a e&longs;t.</s> </p> <p type="main"> <s id="s.005252">His præmi&longs;&longs;is, primò o&longs;tendemus cau&longs;am formalem in Geometricæ de­<lb/> mon&longs;trationibus reperiri deinde materialem. </s> <s id="s.005253"><expan abbr="id&qacute;">idque</expan>; primò per re&longs;olutionem <lb/> prim&etail; Euclidis, quæ à cau&longs;a formali procedit. </s> <s id="s.005254">& quia hæc demon&longs;tratio <lb/> non theorema, &longs;ed problema e&longs;t, ideò &longs;ciendum, quòd minimè aduer&longs;arij <lb/> animaduerterunt, in omni problemate per <expan abbr="quandã">quandam</expan> <expan abbr="linearũ">linearum</expan> con&longs;tructionem <lb/> doceri aliquid effici. </s> <s id="s.005255">v. <!-- REMOVE S-->g. <!-- REMOVE S-->in præ&longs;enti docet Euclides, qua ratione de&longs;crip­<lb/> tis <expan abbr="quibu&longs;dã">quibu&longs;dam</expan> circulis circa datam lineam, <expan abbr="ductis&qacute;">ductisque</expan>; aliquot lineis modo pr&etail;­<lb/> &longs;cripto, gignatur <expan abbr="triangulũ">triangulum</expan> æquilaterum, vt rem con&longs;ideranti manife&longs;tum <lb/> e&longs;t. </s> <s id="s.005256">quare nullo modo lineamenta illa, vt ill&etail; circulorum &longs;emidiametri &longs;unt <pb pagenum="15" xlink:href="009/01/299.jpg"/>extrin&longs;eca rei, de qua demon&longs;tratur; quinimò &longs;ubiectum ip&longs;ius &longs;unt. </s> <s id="s.005257">Quia <lb/> verò facta con&longs;tructione, &longs;tatim per&longs;picuè apparet ortum e&longs;&longs;e triangulum, <lb/> æquilaterum, non e&longs;t illi cur&etail; probare illud e&longs;&longs;e triangulum, &longs;ed quia an &longs;it <lb/> æquilaterum ignoratur, idcircò totus demon&longs;trationis di&longs;cur&longs;us ver&longs;atur in <lb/> demon&longs;tranda trium illarum linearum æqualitate.</s> </p> <p type="main"> <s id="s.005258">Quem <expan abbr="quid&etilde;">quidem</expan> di&longs;cur&longs;um continere cau&longs;am, quamuis per &longs;e pateat, vt mox <lb/> apparebit, non dee&longs;t <expan abbr="tam&etilde;">tamen</expan> Procli authoritas adeò clara, vt magnopere mi­<lb/> rer Piccolomineum Procli &longs;tudio&longs;um, eam non vidi&longs;&longs;e: Proclus enim in <expan abbr="cõ-men">conm<lb/> men</expan>. <!-- REMOVE S-->huius demon&longs;trationis hæc habet; quando autem per de&longs;criptionem <lb/>circulorum, quod con&longs;tructum e&longs;t triangulum æquilaterum e&longs;&longs;e o&longs;tenditur, <lb/> à cau&longs;a apprehen&longs;io fit; &longs;imilitudinem. </s> <s id="s.005259">n. </s> <s id="s.005260">& æqualitatem circulorum cau&longs;am <lb/> dicimus e&longs;&longs;e æqualitatis laterum illius trianguli. </s> <s id="s.005261">Quibus verbis non &longs;olum <lb/> authoritas, &longs;ed ratio etiam optima, cur hæc &longs;it demon&longs;tratio à cau&longs;a, con­<lb/>tinetur, quia nimirum o&longs;tendit cau&longs;am æqualitatis laterum e&longs;&longs;e, quia &longs;int <lb/> &longs;emidiametri æqualium circulorum. </s> <s id="s.005262">Quæ argumentatio procedit à defini­<lb/> tione &longs;ubiecti, quod e&longs;t circulus: quamuis non tota, &longs;ed tantum quatenus <lb/>nece&longs;&longs;aria e&longs;t, afferatur, ide&longs;t definitio &longs;emidiametrorum, quod ad demon­<lb/> &longs;trandum &longs;ufficit, vt benè notat Zabarella, loquens de hac ip&longs;a demon&longs;tra­<lb/> tione; cùm igitur medium &longs;it definitio &longs;ubiecti, patet eam e&longs;&longs;e perfectam <lb/> demon&longs;trationem, in qua pa&longs;&longs;ionis o&longs;ten&longs;æ allata e&longs;t propria, & adæquata <lb/> cau&longs;a, quæ e&longs;t natura circuli. </s> <s id="s.005263"><expan abbr="&longs;ic&qacute;">&longs;icque</expan>; Euclides optimè demon&longs;traujt ex con­<lb/> &longs;tructione, quàm præceperat, gigni triangulum æquilaterum. </s> <s id="s.005264">Subiectum <lb/> igitur e&longs;t il a circulorum, ac linearum configuratio, medium definitio cir­<lb/> culi, pa&longs;&longs;io triangulum <expan abbr="æquilaterũ">æquilaterum</expan>. </s> <s id="s.005265">ex qua <expan abbr="demõ&longs;tratione">demon&longs;tratione</expan> erui pote&longs;t etiam <lb/> definitio pa&longs;&longs;ionis cau&longs;alis, ide&longs;t, e&longs;&longs;e triangulum æquilaterum ex tali <expan abbr="cõ&longs;tru-ctione">con&longs;tru­<lb/> ctione</expan> ortum. </s> <s id="s.005266">Quare huic nihil dee&longs;t ad perfectam <expan abbr="demon&longs;tration&etilde;">demon&longs;trationem</expan>. </s> <s id="s.005267">ex qui­<lb/> bus videas, quàm immeritò nonnulli eam impugnent, putantes eam e&longs;&longs;e per <lb/> extranea; cau&longs;a erroris fuit, quia exi&longs;timarunt ab&longs;olutè demon&longs;trari <expan abbr="triã-gulum">trian­<lb/> gulum</expan> illud e&longs;&longs;e æquilaterum. </s> <s id="s.005268">verùm decepti &longs;unt, quia in hoc, & in omni­<lb/> bus alijs problematis, demon&longs;tratur talem con&longs;tructionem parere triangu­<lb/> lum, vel <expan abbr="quadratũ">quadratum</expan>, vel quid aliud, vt patet Euclidem, vel obiter <expan abbr="in&longs;pici&etilde;ti">in&longs;picienti</expan>.</s> </p> <p type="main"> <s id="s.005269">Placet adhuc alteram à formali cau&longs;a procedentem expendere. </s> <s id="s.005270">ea e&longs;t 46. <lb/> primi elem. </s> <s id="s.005271">quæ &longs;imiliter problema e&longs;t, quo docet Euclides, qua ratione &longs;u­<lb/> pra data recta linea quadratum de&longs;cribatur. </s> <s id="s.005272">tradit igitur quandam linea­<lb/> rum con&longs;tructionem, ex qua po&longs;tea demon&longs;trat ortum e&longs;&longs;e quadratum, ita <lb/> vt con&longs;tructio illa &longs;it loco &longs;ubiecti, de qua demon&longs;tratvr e&longs;&longs;e quadratum. </s> <s id="s.005273">non <lb/> igitur intendit, vt nonnulli falsò putant, <expan abbr="demõ&longs;trare">demon&longs;trare</expan> ab&longs;olutè illud e&longs;&longs;e qua­<lb/> dratum, &longs;ed ex tali con&longs;tructione ortum e&longs;&longs;e quadratum duo autem &longs;unt de <lb/>e&longs;&longs;entia quadrati, primum habere quatuor latera æqualia, &longs;ecundum habe­<lb/> re quatuor angulos rectos, vt ex definitione con&longs;tat. </s> <s id="s.005274">Neutrum autem &longs;ine <lb/> altero &longs;ufficit, <expan abbr="nã">nam</expan> & Rhombus quatuor latera æqualia habet, & Altera par­<lb/> te longius habet quatuor angulos rectos, neutrum tamen quadratum e&longs;t. </s> <s id="s.005275">&longs;i <lb/> verò <expan abbr="vtrunq;">vtrunque</expan> &longs;imul cuipiam figuræ competat, illam nece&longs;&longs;ariò quadratum <lb/> e&longs;&longs;e efficient. </s> <s id="s.005276">Probat igitur Euclid. <!-- REMOVE S-->vtraq, euidenter ine&longs;&longs;e illi figuræ ex vi <lb/> illius con&longs;tructionis, & ideò illi quadrati definitionem competere. </s> <s id="s.005277">Quare <lb/> h&etail;c erit poti&longs;&longs;ima demon&longs;tratio, cùm cau&longs;am afferat <expan abbr="intrin&longs;ecã">intrin&longs;ecam</expan>, propriam, <pb pagenum="16" xlink:href="009/01/300.jpg"/>& adæquatam, propter quam res e&longs;t. </s> <s id="s.005278">Vbi notandum effectum re vera di&longs;tin­<lb/> gui à &longs;ua cau&longs;a, e&longs;&longs;e enim quadratum (qui effectus e&longs;t) non e&longs;t habere, qua­<lb/> tuor angulos rectos &longs;olum: <expan abbr="neq;">neque</expan> habere quatuor latera æqualia &longs;olum, &longs;ed <lb/> <expan abbr="vtrunq;">vtrunque</expan> &longs;imul in eodem; vnde re&longs;ultat totum, &longs;eu <expan abbr="compo&longs;itũ">compo&longs;itum</expan>, quod e&longs;t quid <lb/> diuer&longs;um à partibus &longs;eor&longs;um &longs;umptis. </s> <s id="s.005279">in demon&longs;tratione autem hac, cau&longs;a <lb/> &longs;unt partes &longs;eor&longs;im &longs;umptæ; effectus verò e&longs;t compo&longs;itum, ex earum vnione <lb/> re&longs;ultans. </s> <s id="s.005280">Notandum præterea eandem demon&longs;trationem procedere à de­<lb/> finitione &longs;ubiecti, nam illa duo quadrati e&longs;&longs;entialia, ex definitione eorum, <lb/>quæ &longs;unt in con&longs;titutione petuntur, quæ con&longs;titutio e&longs;t in&longs;tar &longs;ubiecti, vt &longs;u­<lb/> pra monui: ex hac autem definitione partium &longs;ubiecti in demon&longs;tratione <lb/> contenta, eruitur definitio cau&longs;alis ip&longs;ius pa&longs;sionis, quæ e&longs;t, quadratum e&longs;t <lb/> figura habens quatuor angulos rectos, & quatuor latera æqualia, ex tali <expan abbr="cõ-&longs;tructione">con­<lb/> &longs;tructione</expan> producta. </s> <s id="s.005281">Notandum tandem quouis modo &longs;iue à cau&longs;a, &longs;iue ab <lb/>effectu o&longs;tendantur illa duo e&longs;&longs;entialia quadrati, ine&longs;&longs;e ip&longs;i, nihil referre ad <lb/> demon&longs;trationis perfectionem. </s> <s id="s.005282">Satis. </s> <s id="s.005283">n. </s> <s id="s.005284">e&longs;t, &longs;i habeamus rei cau&longs;am <expan abbr="propriã">propriam</expan>, <lb/> ita vt aliter &longs;e habere nequeat. </s> <s id="s.005285">&longs;excentæ huiu&longs;modi per formalem cau&longs;am, <lb/> apud Euclid. <!-- REMOVE S-->Archim Appoll. <!-- KEEP S--></s> <s id="s.005286">& alios Geometras reperies. </s> <s id="s.005287">vide Appendi­<lb/> cem, ad finem operis, in qua omnes primi elem. </s> <s id="s.005288">demon&longs;trationes re&longs;olutas <lb/> inuenies, <expan abbr="plurimas&qacute;">plurimasque</expan>; à cu&longs;a formali.</s> </p> <p type="main"> <s id="s.005289">Sed iam materialem cau&longs;am indagemus, <expan abbr="id&qacute;">idque</expan>; duce Ari&longs;t. accipiamus igi<lb/>tur celeberrimam illam 32. primi elem. </s> <s id="s.005290">quam Mathematicis <expan abbr="&longs;oi&etilde;t">&longs;olent</expan> aduer&longs;a­<lb/> rij opponere. </s> <s id="s.005291">& quoniam &longs;upra tex. <!-- REMOVE S-->23. 1. Po&longs;ter. nos eam per cau&longs;am ma­<lb/>terialem procedere o&longs;tendimus, ideò ne actum agamus, <expan abbr="explication&etilde;">explicationem</expan> illam <lb/> nunc opus e&longs;t relegere. </s> <s id="s.005292">Hoc tamen loco partem ip&longs;ius primam, angulum, <lb/> videlicet externum cuiu&longs;uis trianguli, æqualem e&longs;&longs;e duobus internis, & op­<lb/> po&longs;itis, examinabo; cuius medium, &longs;i ad rigorem demon&longs;trationis rediga­<lb/> tur, e&longs;t hoc; externus angulus e&longs;t diui&longs;ibilis in duos angulos, quorum &longs;ingu­<lb/> li &longs;ingulis internis &longs;unt æ quales, ergo <expan abbr="etiã">etiam</expan> totalis anguius erit æqualis am­<lb/> bobus internis &longs;imul &longs;umptis. </s> <s id="s.005293">Quod autem externus angulus &longs;it diui&longs;ibilis <lb/> in duas partes æquales internis angulis probat diuidendo illum per lineam <lb/> illam oppo&longs;ito trianguli lateri parallelam, vnde &longs;tatim ex parallelarum na <lb/>tura apparet partiales angulos anguli externi æquales e&longs;&longs;e internis triangu<lb/> li; ex quo &longs;equitur totum externum angulum e&longs;&longs;e æqualem duobus internis <lb/> &longs;imul &longs;umptis. </s> <s id="s.005294">Hic autem modus argumentandus, à partibus po&longs;sibilibus ad <lb/> totum, e&longs;&longs;e à cau&longs;a materiali, apud omnes Philo&longs;ophos in <expan abbr="cõfe&longs;&longs;o">confe&longs;&longs;o</expan> e&longs;t, & Ari­<lb/> &longs;tot. ip&longs;e tex. <!-- REMOVE S-->3. 5. Metaph. id a&longs;&longs;erit. </s> <s id="s.005295">& tex. <!-- REMOVE S-->11. 2. Po&longs;ter. vtitur &longs;imili <expan abbr="ex&etilde;-plo">exem­<lb/> plo</expan> ad <expan abbr="material&etilde;">materialem</expan> cau&longs;am explicandam. </s> <s id="s.005296">quamuis autem Geometræ non di­<lb/> cant talem angulum, vel talem figuram e&longs;&longs;e <expan abbr="diui&longs;ibil&etilde;">diui&longs;ibilem</expan> in partes æquales alijs <lb/> quibu&longs;dam, &longs;ed &longs;tatim diuidant, id faciunt breuitatis cau&longs;a; vtuntur enim <lb/> actu pro potentia, quia actus potentiam &longs;upponit, quòd optimè Ari&longs;tot. 9. <lb/> Metaphy&longs;. tex. <!-- REMOVE S-->20. annotauit, &longs;ic; De&longs;criptiones quoque actu inueniuntur, <lb/>diuidentes namque inueniunt, quòd &longs;i diui&longs;æ e&longs;&longs;ent, manife&longs;tæ e&longs;&longs;ent, nunc <lb/> autem in&longs;unt potentia, &c. </s> <s id="s.005297">Cuius loci no&longs;tram &longs;uperius allatam explicatio­<lb/> nem habes. </s> <s id="s.005298">per de&longs;criptiones autem intelligit Geometricas demon&longs;tratio­<lb/> nes, vt &longs;æpius &longs;upra in opere o&longs;ten&longs;um e&longs;t. </s> <s id="s.005299">Innumeræ &longs;unt apud Geometras, <lb/> qu&etail; per hanc po&longs;sibilem diui&longs;ionem procedunt, <expan abbr="qu&etail;q;">qu&etail;que</expan> ideò &longs;unt à cau&longs;a ma­ <pb pagenum="17" xlink:href="009/01/301.jpg"/>teriali; plures autem e&longs;&longs;e in primo elem. </s> <s id="s.005300">con&longs;tat ex appendice in fine ope­<lb/> ris addita. </s> <s id="s.005301">Notandum hic <expan abbr="quoq;">quoque</expan> cau&longs;am e&longs;&longs;e natura &longs;ua di&longs;tinctam ab effe­<lb/> ctu, non &longs;ecus ac potentia ab actu; nam ex eo, quòd po&longs;&longs;it aliquid diuidi in <lb/> partes æquales aliquibus, &longs;equitur illud totum e&longs;&longs;e actu æquale alteri, & e&longs;t <lb/>à priori, quia partes natura prius &longs;unt toto, cùm &longs;int ip&longs;ius cau&longs;a. </s> <s id="s.005302">Notan­<lb/> dum hic etiam parallelam illam, qua angulus diuiditur, duci ad <expan abbr="mediũ">medium</expan> de­<lb/> mon&longs;trationis indagandum, nequaquam verò ip&longs;am e&longs;&longs;e medium, & idcir­<lb/> cò demon&longs;trationem hanc non e&longs;&longs;e per extrin&longs;eca, ni&longs;i velis minorem <expan abbr="pro-po&longs;ition&etilde;">pro­<lb/> po&longs;itionem</expan> per extrin&longs;eca o&longs;tendi, quòd libenter concedimus, cùm i&longs;tud de­<lb/> mon&longs;trationi nihil deroget. </s> <s id="s.005303">E&longs;t autem per intrin&longs;ecam, propriam, & adæ­<lb/> quatam cau&longs;am illius æqualitatis, partes enim re&longs;pectu totius &longs;unt tales. <lb/> </s> <s id="s.005304">e&longs;t igitur poti&longs;&longs;ima demon&longs;tratio, quòd erat demon&longs;trandum.</s> </p> <p type="main"> <s id="s.005305">Po&longs;tquam Euclides hanc primam propo&longs;itionis partem demon&longs;trauit, <lb/> o&longs;tendit alteram. </s> <s id="s.005306">&longs;. </s> <s id="s.005307">omne triangulum habere tres, &c. </s> <s id="s.005308">quoniam partes duo­<lb/> rum rectorum &longs;unt æquales tribus angulis illis. </s> <s id="s.005309">quod medium pariter e&longs;t à <lb/> cau&longs;a materiali, à partibus ad totum. </s> <s id="s.005310">Vide huius explicationem tex. <!-- REMOVE S-->23. <lb/> 1. Po&longs;ter. vbi etiam videbis eam po&longs;&longs;e demon&longs;trari modo Pythagoreorum, <lb/> ab&longs;que vlla diui&longs;ione, &longs;ed per partes actu exi&longs;tentes. </s> <s id="s.005311">hoc dico propter eos, <lb/> qui per ha&longs;ce diui&longs;iones timent, ne non inueniatur medium á priori. </s> <s id="s.005312">&longs;ed vt <lb/>deponant penitus hunc &longs;crupulum, &longs;ciant in huiu&longs;modi demon&longs;trationibus, <lb/> quibus aliquid &etail;quale alteri adhibita diui&longs;ione demon&longs;tratur, &longs;&etail;pè accide­<lb/> re, vt non diuidatur, ni&longs;i vnus terminorum &etail;qualitatis, quare ex parte in­<lb/> diui&longs;i &etail;qualitas cau&longs;abitur à partibus actu pr&etail;cedentibus, & <expan abbr="con&longs;titu&etilde;tibus">con&longs;tituentibus</expan> <lb/> totum; quod videre e&longs;t in <expan abbr="vtraq;">vtraque</expan> parte huius. </s> <s id="s.005313">32. &longs;ecundum Euclidem, & in <lb/> 47. primi elem. </s> <s id="s.005314">& alijs plurimis.</s> </p> <p type="main"> <s id="s.005315">Sed primò Piccolom. <!-- REMOVE S-->ex Proclo obijcit h&etail;c <emph type="italics"/>(Quando enim eo, quòd extrin­<lb/>&longs;ecus angulus duobus internis, & oppo&longs;itis æqualis est, o&longs;tenditur triangulum ha­<lb/> bere tres angulos æquales duobus rectis, quomodo à cau&longs;a e&longs;t <expan abbr="demõstratio">demonstratio</expan> hæc? </s> <s id="s.005316">non <lb/> ne medium certum &longs;ignum est? </s> <s id="s.005317">etenim <expan abbr="neq;">neque</expan> externo exi&longs;tente angulo cùm interni <lb/> exi&longs;tant, duobus rectis æquales &longs;unt; e&longs;t. </s> <s id="s.005318">n. </s> <s id="s.005319">triangulum latere etiam non producto)<emph.end type="italics"/><lb/> Pergit deinde Proclus demon&longs;trare primam Euclidìs demon&longs;trationem e&longs;&longs;e <lb/> per cau&longs;am, & proinde veram demon&longs;trationem, quòd Piccolomin. <!-- REMOVE S-->in &longs;ua <lb/>citatione callidè videtur reticui&longs;&longs;e. </s> <s id="s.005320">Ad <expan abbr="obiection&etilde;">obiectionem</expan> re&longs;pondeo primò. </s> <s id="s.005321">angu­<lb/> lum externum in Euclidiana demon&longs;tratione minimè extraneum e&longs;&longs;e, quia <lb/> in hac &longs;ecunda parte a&longs;&longs;umitur pro &longs;ubiecto demon&longs;trationis, ide&longs;t pro par­<lb/>te duorum rectorum, ip&longs;e enim cum angulo &longs;ibi deinceps facit duos angulos <lb/> rectos, quibus tres anguli trianguli probantur &etail;quales: quod Proclus <expan abbr="nõ">non</expan> vi­<lb/> detur vidi&longs;&longs;e. </s> <s id="s.005322">Secundò, &longs;i h&etail;c Euclidiana illi <expan abbr="nõ">non</expan> probatur, accipiat de eadem <lb/> re Pythagoricam, qu&etail; ab&longs;que angulo externo, & ab <expan abbr="q;">que</expan> vlla diui&longs;ione probat <lb/>intentum; & erit omnis &longs;ublata dubitatio. </s> <s id="s.005323">Tertiò, &longs;i conuincerent aduer­<lb/> farij, quòd nequaquam faciunt, hanc non e&longs;&longs;e à priori, &longs;equitur ne propte­<lb/> rea reliquas omnes e&longs;&longs;e ei &longs;imiles, vt ip&longs;i inferre conantur? </s> <s id="s.005324">minimè <expan abbr="gentiũ">gentium</expan>. <lb/> </s> <s id="s.005325">quo logico iure ab vno particulari inferre volunt vniuer&longs;ale?</s> </p> <p type="main"> <s id="s.005326">Secundò, obijcies, pa&longs;&longs;ionem hanc, habere tres angulos, &c. </s> <s id="s.005327">non recipro­<lb/> cari cum triangulo, &longs;eu non e&longs;&longs;e &longs;ecundum quod ip&longs;um, vt aiunt Logici: re­<lb/>peritur enim figura qu&etail;dam pr&etail;ter triangulum, vt patet apud Proclum, qu&etail; <pb pagenum="18" xlink:href="009/01/302.jpg"/>eandem habet proprietatem. </s> <s id="s.005328">Re&longs;pondeo habere tres angulos rectilineos <lb/> (de his. </s> <s id="s.005329">n. </s> <s id="s.005330">Euclides agit) æquales, &c. </s> <s id="s.005331">cùm triangulo conuerti, nam Proclus <lb/> eam conuertit. </s> <s id="s.005332">figura autem illa alia, qu&etail; habet tres angulos &etail;quales duo­<lb/> bus rectis, non habet angulos rectilineos, <expan abbr="neq;">neque</expan>. </s> <s id="s.005333">n. </s> <s id="s.005334">rectilinea e&longs;t, vt apud Pro­<lb/> clum videre e&longs;t: & ideò non e&longs;t ad mentem Euclidis, aut Pythagor&etail;. </s> <s id="s.005335">&longs;ed iam <lb/> cum Proclo concludamus, &longs;ic; quia etiam illud <expan abbr="quoq;">quoque</expan> dicendum e&longs;t, quòd <lb/> internos angulos duobus rectis æquales habere, per &longs;e, & <expan abbr="&longs;ecundũ">&longs;ecundum</expan> quod ip­<lb/> &longs;um triangulo ine&longs;t: idcircò & Ari&longs;tot. in tractatu de demon&longs;tratione hoc <lb/> exemplum habet in promptu, &longs;ecundum quod ip&longs;um con&longs;iderans, h&etail;c ille.</s> </p> <p type="main"> <s id="s.005336">Aliam per cau&longs;am <expan abbr="material&etilde;">materialem</expan> ex mente Ari&longs;t. expendimus tex. <!-- REMOVE S-->11. 2. Po­<lb/> &longs;terior. <!-- REMOVE S-->vbi ait, angulum in &longs;emicirculo e&longs;&longs;e rectum, quoniam e&longs;t dimidium <lb/> duorum rectorum, quod medium e&longs;t in cau&longs;a materiali, e&longs;&longs;e enim dimidium <lb/> e&longs;t e&longs;&longs;e partem. </s> <s id="s.005337">Cau&longs;a igitur, quæ facit angulum illum e&longs;&longs;e rectum, e&longs;t di­<lb/> midia quantitas duorum rectorum, qu&etail; ip&longs;um con&longs;tituit; &longs;ed fortè melius <lb/> dicemus, &longs;i dixerimus, ideò e&longs;&longs;e rectum, quia e&longs;t diui&longs;ibilis in duas partes, <lb/> qu&etail; &longs;imul &longs;umpt&etail;, &longs;unt æquales dimidio duorum rectorum, &longs;iue vni recto. <lb/> </s> <s id="s.005338">Linea verò per quam diuiditur, non e&longs;t medium, &longs;ed medij manife&longs;tiua. <lb/> </s> <s id="s.005339">In &longs;equenti appendice ad finem Operis plures alias videbis in &longs;olo primo <lb/> elem. </s> <s id="s.005340">à cau&longs;a materiali.</s> </p> <p type="main"> <s id="s.005341"><expan abbr="Neq;">Neque</expan> verò nece&longs;&longs;e e&longs;&longs;e exi&longs;timo <expan abbr="demon&longs;tration&etilde;">demon&longs;trationem</expan> quampiam ex Arithme­<lb/> tica examinare, cùm <expan abbr="cõ&longs;tet">con&longs;tet</expan> eam eodem pror&longs;us modo cum Geometria de­<lb/> mon&longs;trare, vt planè in 78. & 9. elem. </s> <s id="s.005342">videre licet: imò <expan abbr="qu&etail;cunq;">qu&etail;cunque</expan> hactenus <lb/> de altera &longs;unt dicta, de vtraque intelligenda e&longs;&longs;e volumus, nam vt e&longs;t apud <lb/> Eutocium in comm. <!-- REMOVE S-->Apollonij: <foreign lang="greek">tauta gar maqhmata, dokounti eimen adelfa</foreign>.</s> </p> <p type="head"> <s id="s.005343"><emph type="italics"/>Contra prædicta generatim obijciuntur.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.005344">Primò, cau&longs;æ i&longs;tæ Geometric&etail; non videntur veræ cau&longs;&etail;, <expan abbr="non.n.">nonnisi</expan></s> <s id="s.005345">&longs;atis <lb/> videntur ab effectibus &longs;uis di&longs;tingui: nam in cau&longs;a formali partes <lb/> definitionis &longs;unt <expan abbr="id&etilde;">idem</expan> cum definito; & in cau&longs;a materiali partes &longs;unt <lb/> idem cum toto, ergo non &longs;unt ver&etail; cau&longs;æ, & proinde <expan abbr="neq;">neque</expan> veræ de­<lb/> mon&longs;trationes. </s> <s id="s.005346">Re&longs;pondeo primò, &longs;upra dictum e&longs;t, quando partes &longs;eor­<lb/>&longs;im, & non vt totum componentes &longs;umuntur, di&longs;tingui à toto, quod partes <lb/> vnitas &longs;ignificat, & præterea formam compo&longs;iti; quæ di&longs;tinctio non e&longs;t &longs;o­<lb/> lius rationis.</s> </p> <p type="main"> <s id="s.005347">Secundò, licet non appareat tanta di&longs;tinctio hic, quanta in Mathemati­<lb/> cis medijs, & Phy&longs;ica, e&longs;t tamen tanta, qu&etail; &longs;ufficiat ad perfecti&longs;&longs;imam de­<lb/> mon&longs;trationem, quod patet authoritate Ari&longs;t. <!-- REMOVE S-->Platonis, Procli, & omnium <lb/>Gr&etail;corum, Arabum, & Latinorum (præter duos, vel tres recentiores) qui <lb/> <expan abbr="o&etilde;s">omnes</expan> ha&longs;ce demon&longs;trationes per&longs;ecti&longs;&longs;imas, e&longs;&longs;e con&longs;entiunt, vt &longs;up. </s> <s id="s.005348">diximus.</s> </p> <p type="main"> <s id="s.005349">Tertiò, <expan abbr="quantacunq;">quantacunque</expan> &longs;it hæc di&longs;tinctio, certum e&longs;t eam non e&longs;&longs;e &longs;olius ra­<lb/> tionis, quod clarum e&longs;t, primo apud eos, qui putant relationem di&longs;tingui à <lb/> fundamento, vt aiunt, realiter, modaliter, vel formaliter. </s> <s id="s.005350">Secundò, <expan abbr="cõ&longs;tat">con&longs;tat</expan> <lb/> etiam apud reliquos omnes, præ&longs;ertim apud recentiores, qui variæ eam de­<lb/> nominant, alij. </s> <s id="s.005351">n. </s> <s id="s.005352">eam formalem, alij realem, alij modalem, alij ex natura <pb pagenum="19" xlink:href="009/01/303.jpg"/>rei, alij realem modalem, & alij alijs formalitatibus eam appellant; qui­<lb/> bus &longs;ingulis aliquam realitatem illi ine&longs;&longs;e &longs;ignificant, quæ &longs;ufficit ad per&longs;e­<lb/> ctam demon&longs;trationem. </s> <s id="s.005353">&longs;atis enim e&longs;t ad perfectam demon&longs;trationem, vt <lb/> per eam cau&longs;a propria, & adæquata effectus, iuxta rei naturam, detegatur, <lb/> &longs;ic enim intellectui no&longs;tro fit &longs;atis, vt acquie&longs;cat, & verum intueatur, quod <lb/> e&longs;t finis perfectæ demon&longs;trationis. </s> <s id="s.005354"><expan abbr="neq;">neque</expan> verò maior, aut minor di&longs;tinctio fa­<lb/> cit, vt cau&longs;a &longs;it magis, aut minus vera, &longs;ed vera illa e&longs;t cau&longs;a, quæ verè cau­<lb/> &longs;at effectum à &longs;e non ratione tantum di&longs;tinctum: & proinde vera illa demon­<lb/> &longs;tratio e&longs;t, quæ pér eam demon&longs;trat. </s> <s id="s.005355">quartò hæc, quamuis parua di&longs;tinctio, <lb/>multum tamen ex alia parte conducit ad demon&longs;trationis perfectionem, ex <lb/> ea enim fit, vt in demon&longs;tratione liquidò appareat, cau&longs;am illam e&longs;&longs;e ve­<lb/> ram, & propriam affectionis demon&longs;tratæ, ita vt non po&longs;&longs;it à propinquiori <lb/> procedere; quod in nulla alia &longs;cientia tam euidenter apparet.</s> </p> <p type="main"> <s id="s.005356">Obiectio 2. Geometra o&longs;tendit eandem conclu&longs;ionem per plures demon­<lb/> &longs;trationes, ergò per diuer&longs;a media, atqui vnius effectus e&longs;t vna tantum cau­<lb/> &longs;a propria, & adæquata.</s> </p> <p type="main"> <s id="s.005357">Re&longs;pondeo primò, eandem rem o&longs;tendi quidem per plures demon&longs;tratio­<lb/> nes, quarum vna e&longs;t à priori, altera verò à po&longs;teriori. </s> <s id="s.005358">&longs;ecundò, &longs;i omnes &longs;int <lb/> à priori, tunc e&longs;&longs;entialiter e&longs;&longs;e vnam tantum, plures verò accidentaliter, <lb/> quia in omnibus erit idem medium præcipuum, &longs;ed con&longs;tructio, qua illud <lb/> detegitur diuer&longs;a, vt patet in 32. primi, quam aliter Pythagorici, aliter Eu­<lb/> clides, aliter Proclus demon&longs;trarunt, &longs;ed tamen in omnibus e&longs;t idem Me­<lb/> dium, cau&longs;a &longs;cilicet materialis, quamuis diuer&longs;a &longs;it con&longs;tructio.</s> </p> <p type="main"> <s id="s.005359">Obiectio 3. Demon&longs;trationes Geometricæ non con&longs;tant ex proprijs, & <lb/> per &longs;e, non enim Geometra con&longs;iderat e&longs;&longs;entiam Quantitatis, neque eius <lb/> pa&longs;siones, quatenus ab illius e&longs;&longs;entia manant, quare ex communibus qui­<lb/> bu&longs;dam, & merè extrin&longs;ecis nece&longs;&longs;e e&longs;t procedere. </s> <s id="s.005360">Re&longs;pondeo ex dictis cap. <lb/> 1. de materia intelligibili, & definitionibus Geometricis huic obiectioni <lb/> abundè fieri &longs;atis. </s> <s id="s.005361">materia enim Geometriæ non e&longs;t quantitas &longs;ecundum &longs;e, <lb/>&longs;ed quatenus terminata, cuius totam e&longs;&longs;entiam ex definitionibus e&longs;&longs;entiali­<lb/> bus Geometra cogno&longs;cit: quorum <expan abbr="vtrumq;">vtrumque</expan> aduer&longs;arios latuit.</s> </p> <p type="main"> <s id="s.005362">Præterea fal&longs;um e&longs;t, Geometram ex communibus pluribus &longs;cientijs pro­<lb/> cedere, quod vetat Ari&longs;t. 1. Po&longs;ter. procedit enim ex principijs communi­<lb/> bus quantitatibus terminatis, ide&longs;t figuris, & numeris; quod non &longs;olum li­<lb/> cet, &longs;ed etiam debet fieri ex 1. Po&longs;ter. tex. <!-- REMOVE S-->20. & 25. <expan abbr="neq;">neque</expan> vnquam idem prin­<lb/> cipium repetit, ni&longs;i vbi e&longs;t effectus formalis ip&longs;ius, & non ni&longs;i contrahendo <lb/> ad illud particulare.</s> </p> <p type="head"> <s id="s.005363"><emph type="italics"/>Recentiorum calumniæ aduer&longs;us Mathematicas <lb/> diluuntur. </s> <s id="s.005364">Cap. 3.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.005365">Prima e&longs;t, qua Alexander Piccolomineus, & eius &longs;ectatores malè con­<lb/> tra Mathematicos Proclum adducunt, quod, vt manife&longs;tè videas, <lb/> hic tibi de&longs;cribam integram Procli &longs;ententiam, quam ille mutila­<lb/> tam citat, & quidem græcè, vt melius lateat. </s> <s id="s.005366">libro igitur 3. in Eu­ <pb pagenum="20" xlink:href="009/01/304.jpg"/>clid. <!-- REMOVE S-->&longs;ic habet: At cau&longs;am, & ip&longs;um Propter quid Geometriam minimè <lb/> contemplari pluribus vi&longs;um e&longs;t, huiu&longs;ce enim &longs;ententiæ e&longs;t Amphinomus <lb/> Ari&longs;t. duce. </s> <s id="s.005367">hæc &longs;unt, quæ Piccolomineus græcè citat, quibus deinde &longs;ubdit, <lb/> quid amplius quærimus pro hac &longs;ententia? </s> <s id="s.005368">&longs;ed non ne aduertis Lector, præ­<lb/> dictum &longs;ententiam non e&longs;&longs;e Procli, &longs;ed Amphinomi cuiu&longs;dam nullius nomi­<lb/>nis philo&longs;ophi, qui &longs;ub falsò Ari&longs;t. patrocinio Geometricæ cau&longs;as auferre <lb/> conabatur, quæ tamen ac &longs;i Procli ip&longs;ius e&longs;&longs;et à Piccolomineo in medium, <lb/> affertur. </s> <s id="s.005369">&longs;ed videamus, quæ Piccolomineus prætermi&longs;it, pergit po&longs;tea <lb/> Procius, inueniet autem aliquis (inquit Geminus) huius etiam inqui&longs;itio­<lb/> nem in Geometria, quo modo Geometræ non e&longs;t quærere qua de cau&longs;a, in <lb/> circulis quidem infinita multiangula in&longs;cribantur: in &longs;phæris verò multian­<lb/>gula &longs;olida æquilatera, & æquiangula ex &longs;imilibus planis con&longs;tructa infinita <lb/> in&longs;cribere e&longs;t impo&longs;sibile. </s> <s id="s.005370">ad quem enim &longs;pectaret hoc inue&longs;tigare præter <lb/> Geometram? </s> <s id="s.005371">Hæc e&longs;t &longs;ententia Gemini à Proclo allata ad Amphinomi opi­<lb/> nionem confutandam. </s> <s id="s.005372">Pergit po&longs;tea Proclus ex propria &longs;ententia &longs;ic; Quan­<lb/> do igitur Geometris &longs;yllogi&longs;mus per impo&longs;sibile fuerit, &longs;ymptoma tàntum <lb/> inuenire cupiunt, <expan abbr="quãdo">quando</expan> autem per præcipuam demon&longs;trationem, tunc rur­<lb/> &longs;us, &longs;i quidem in particulari demon&longs;trationes fiunt, cau&longs;a nondum manife­<lb/> &longs;ta e&longs;t, &longs;i verò in vniuer&longs;ali, in <expan abbr="omnibus&qacute;">omnibusque</expan>; &longs;imilibus <expan abbr="cõtinuò">continuò</expan> & ip&longs;um Propter <lb/> quid manife&longs;tum e&longs;t. </s> <s id="s.005373">hæc e&longs;t tota illius loci integra &longs;eries, quàm aduer&longs;arius <lb/> mutilatam obtrudebat. </s> <s id="s.005374">vbi apertè vides, Procli de Geometria &longs;ententiam.</s> </p> <p type="main"> <s id="s.005375">Secunda calumnia e&longs;t, qua contra Mathematicos Ari&longs;t. quamuis inuitum <lb/> interpretantur. </s> <s id="s.005376"><expan abbr="neq;">neque</expan> &longs;olum loca ip&longs;ius clari&longs;sima ex analyticis, phy&longs;icis, & <lb/> metaphy&longs;icis, quæ &longs;uperius recitauimus in alienum &longs;en&longs;um detorquent; &longs;ed <lb/> præter ea vnicum tantum locum, qui expre&longs;sè Mathematicis refragari vi­<lb/> deatur, afferunt, <expan abbr="cum&qacute;">cumque</expan>; &longs;ibi falsò fauere <expan abbr="cõfingunt">confingunt</expan>. </s> <s id="s.005377">is e&longs;t in angulo quodam <lb/> operum ip&longs;ius, in &longs;ecundò videlicet Moral. Eudem. cap. 7. &longs;ic, in immobi­<lb/> libus autem, vt in Mathematicis non per &longs;e, &longs;ed &longs;imilitudine quadam prin­<lb/> cipia appellantur. </s> <s id="s.005378">cuius germana interpretatio non contra, &longs;ed pro Mathe­<lb/> maticis e&longs;t: loquitur enim ibi Ari&longs;t. de principio <expan abbr="effici&etilde;te">efficiente</expan>, à quo fiunt actio­<lb/> nes humanæ, & per motum, vt doceret in homine e&longs;&longs;e principia quarundam <lb/> actionum, quæ propriæ &longs;unt hominis, & liberæ. </s> <s id="s.005379">talia autem principia ne­<lb/> gant e&longs;&longs;e in immobilibus, quoniam &longs;unt entia nece&longs;&longs;aria, & libertatis exper­<lb/> tia; e&longs;&longs;e tamen &longs;ecundum &longs;imilitudinem, ide&longs;t, vt &longs;e habent principia libera <lb/> ad actiones liberas, ita principia nece&longs;&longs;aria ad actiones nece&longs;&longs;arias: vnde <lb/> &longs;equitur, quod <expan abbr="quemadmodũ">quemadmodum</expan> principia libera &longs;unt adæquata cau&longs;a illarum <lb/> actionum; &longs;ic etiam principia Mathematica erunt cau&longs;æ adæquatæ <expan abbr="pa&longs;sio-nũ">pa&longs;sio­<lb/> num</expan> Mathematicarum; quod ip&longs;e Ari&longs;t. te&longs;tatur paulo po&longs;t, his verbis: nam <lb/> &longs;i habente trigono duos rectos, nece&longs;&longs;e e&longs;t, tetragonum quatuor rectis con­<lb/> &longs;tare, clarum e&longs;t, quod trigonus duos rectos habens cau&longs;a eius exi&longs;tit. </s> <s id="s.005380">& vt <lb/> intelligamus eum loqui de propria cau&longs;a, quæ &longs;it medium demon&longs;trationis, <lb/> &longs;ubdit; id autem nece&longs;&longs;ariò euenire patet ex analyticis. </s> <s id="s.005381">quare Mathemati­<lb/> cis maximè fauet hic locus, contra quàm aduer&longs;arij autumabant. </s> <s id="s.005382">nullus igi­<lb/> tur locus apud Ari&longs;t. reliquus e&longs;t, qui no&longs;træ &longs;ententiæ apertè non faueat.</s> </p> <p type="main"> <s id="s.005383">Tertia, qua contra Mathematicos Platonem ip&longs;um eximium Mathema­<lb/>ticarum fautorem, ac &longs;tudio&longs;um excitare conantur; aiunt enim ip&longs;um 7. de <pb pagenum="21" xlink:href="009/01/305.jpg"/>Rep. <!-- REMOVE S-->dicere Mathematicos circa quantitatem &longs;omniare. </s> <s id="s.005384">Verùm, ne falla­<lb/> cia &longs;ub&longs;it, ecce tibi Platonis verba è græco &longs;yncerè tran&longs;lata. </s> <s id="s.005385">Reliquæ ve­<lb/> rò, quas diximus verarum <expan abbr="rerũ">rerum</expan> quoquo modo e&longs;&longs;e participes, Geometriam <lb/> &longs;cilicet, <expan abbr="eius&qacute;">eiusque</expan>; comites circa ip&longs;am e&longs;&longs;entiam quodammodo &longs;omniant: &longs;yn­<lb/> cerè autem quicquam ab illis cernere impo&longs;&longs;ibile e&longs;t, tanti&longs;per dum &longs;uppo­<lb/> &longs;itionibus hærent, <expan abbr="eas&qacute;">easque</expan>; ratas, & immobiles adeo &longs;eruant, vt illarum ratio­<lb/> nem reddere nequeant. </s> <s id="s.005386">Aduerte primò Platonem non dicere Geometram <lb/> ab&longs;olutè &longs;omniare, &longs;ed quodammodo &longs;omniare: deinde non dicere circa <lb/> quantitatem, &longs;ed circa e&longs;&longs;entiam: vnde &longs;i liberet funem cum eis trahere <lb/> contentio&longs;um, <expan abbr="verbis&qacute;">verbisque</expan>; hærere, vt ip&longs;i faciunt, nihil contra Mathematicos <lb/> facerent. </s> <s id="s.005387">&longs;ed e&longs;to intelligat ip&longs;am quantitatem, videamus quid &longs;ibi velit. </s> <s id="s.005388">vt <lb/> autem i&longs;tud videamus, &longs;ciendum e&longs;t, totius 7. de Rep. <!-- REMOVE S-->di&longs;cur&longs;um e&longs;&longs;e in con­<lb/> &longs;tituendo Reip. <!-- REMOVE S-->Cu&longs;tode, & Gubernatore, quem in primis vult e&longs;&longs;e optimè <lb/> natura, tam ad agendum, quàm ad &longs;peculandum idoneum: vult præterea <lb/> ip&longs;um &longs;apienti&longs;&longs;imum e&longs;&longs;e, ide&longs;t Theologiam, quàm etiam Dialecticam no­<lb/> minat, optimè callere, per quam <expan abbr="ab&longs;q;">ab&longs;que</expan> vllo di&longs;cur&longs;u <expan abbr="rerũ">rerum</expan>, ac præcipuè &longs;um­<lb/> mi Boni e&longs;&longs;entias contempletur. </s> <s id="s.005389">ad hanc diuinam contemplationem, vt <lb/> peruenire po&longs;&longs;it, opus ait e&longs;&longs;e eum humanis aliquot di&longs;ciplinis imbutum e&longs;­<lb/> &longs;e. </s> <s id="s.005390">totam autem Philo&longs;ophiam inibi partitur in tres partes, in Dialecticam, <lb/> &longs;eu Theologiam, quam intellectui attribuit ab&longs;que vlla &longs;uppo&longs;itione, & di­<lb/> &longs;cur&longs;u: <expan abbr="hanc&qacute;">hancque</expan>; &longs;olam &longs;cientiæ nomine dignam e&longs;&longs;e exi&longs;timat. </s> <s id="s.005391">&longs;ecundò, in <lb/> Mathematicam, quam in cognitione, &longs;eu ratiocinatione collocat, & pro­<lb/> pterea principia &longs;upponit. </s> <s id="s.005392">tertiò tandem in opinionem, quæ ver&longs;atur circa <lb/> res naturales, quæ in imaginatione ab eo collocatur. </s> <s id="s.005393">Iuxta hanc trimem­<lb/> brem diui&longs;ionem ex Platonis &longs;ententia &longs;ic habet Mar&longs;ilius Ficinus in argu­<lb/> mento huius 7. de Rep. <!-- KEEP S--></s> <s id="s.005394">Diuina &longs;iquidem in tribus aquis repr&etail;&longs;entari viden­<lb/> tur, primò quidem licet <expan abbr="cõfu&longs;ius">confu&longs;ius</expan> in rationibus phy&longs;icis. </s> <s id="s.005395">&longs;ecundò, di&longs;tinctius <lb/> in Mathematicis. <!-- KEEP S--></s> <s id="s.005396">tertiò, clari&longs;&longs;imè in Metaphy&longs;icis. </s> <s id="s.005397">& paulo po&longs;t: Diuinas <lb/> <expan abbr="deniq;">denique</expan> formas omninò immortales, <expan abbr="res&qacute;">resque</expan>; veras Plato exi&longs;timat, quarum, <lb/> imagines quidem &longs;unt mathematicæ formæ, vmbræ verò res naturales. </s> <s id="s.005398">& <lb/> po&longs;tea: Cùm autem animaduertat Thaletem, Democritum, Anaxagoram, <lb/> tam negligentes in rebus diuinis fui&longs;&longs;e, quàm <expan abbr="dilig&etilde;tes">diligentes</expan> in naturalibus; Phæ­<lb/> recidem contra, & Pythagoram, <expan abbr="Pythagoreos&qacute;">Pythagoreosque</expan>; omnes Mathematicorum <lb/> Principes pariter &longs;ummos extiti&longs;&longs;e Theologos, <expan abbr="moribus&qacute;">moribusque</expan>; diuinos, meritò <lb/> partim ratione, partim experientia conclu&longs;it curio&longs;um naturalium &longs;tudium <lb/> animum à diuinis &longs;æpè auertere. </s> <s id="s.005399">& po&longs;t nonnulla: Quare &longs;eptimus hic liber <lb/>de Rep. vbi animum ad &longs;ummum Bonum, Solemque, ide&longs;t Deum, <expan abbr="idæas&qacute;">idæasque</expan>; <lb/> diuinas, qua&longs;i &longs;tellas, conuenientibus producit gradibus, nullam in ip&longs;o <lb/> a&longs;cen&longs;u naturalis peritiæ facit mentionem, &longs;ed mathematicos quo&longs;dam gra­<lb/> dus ad Diuina commodius perducentes adducit in medium, inter quos duo <lb/> &longs;unt puri, Arithmetica, & Geometria, &c. </s> <s id="s.005400">reliquas deinde Mathematicas <lb/> Plato enumerat, ac &longs;ingillatim commendat, <expan abbr="atq;">atque</expan> in Rempub. <!-- REMOVE S-->admittit. </s> <s id="s.005401">po&longs;t <lb/> multa iterum Ficinus &longs;ic, cùm ergò dicit, animam à lucerna ad Lunam, à <lb/> Luna ad Solem attolli, &longs;ignificat Plato à formis naturalibus ad Mathemati­<lb/> cas, ab his ad diuinas <expan abbr="deniq;">denique</expan> eleuari. </s> <s id="s.005402">& nonnullis intermi&longs;&longs;is, <expan abbr="deniq;">denique</expan> Theo­<lb/> logiam, quam etiam Metaphy&longs;icam, & Dialecticam dicit, omnibus facul­ <pb pagenum="22" xlink:href="009/01/306.jpg"/>tatibus anteponit, vt ducentem omnes, & ad &longs;uum officium vtentem mini­<lb/> &longs;terio &longs;ingularum. </s> <s id="s.005403">officium autem eius e&longs;&longs;e per totam entis progredi latitu­<lb/> dinem, <expan abbr="atq;">atque</expan> ad ip&longs;um Bonum totius entis cau&longs;am, &longs;e <expan abbr="cõferre">conferre</expan>, & quid <expan abbr="vnum-quodq;">vnum­<lb/> quodque</expan> &longs;it definire, rationem <expan abbr="cuius&qacute;">cuiusque</expan>; e&longs;&longs;entiæ a&longs;&longs;ignando, quiduè quamlibet <lb/> &longs;equatur e&longs;&longs;entiam demon&longs;trare. </s> <s id="s.005404">Cæteras autem facultates præ huius no­<lb/> bilitate iudicat e&longs;&longs;e &longs;eruiles: aut enim ad opiniones hominum declinant, aut <lb/> &longs;altem et&longs;i ad incorporea &longs;e &longs;e pro viribus erigunt, nihilominus circa illa <lb/> quodammodo &longs;omniant, quales e&longs;&longs;e inquit Mathematicas. <!-- KEEP S--></s> <s id="s.005405">ex quibus iam <lb/> clarè vides Platonem dixi&longs;&longs;e Mathematicas quodam modo &longs;omniare circa <lb/> e&longs;&longs;entiam rerum, non ab&longs;olutè, &longs;ed comparatione ad Theologiam: intelli­<lb/> gis etiam cur Mathematicas nolit &longs;cientias appellari, quia nimirum &longs;olam <lb/> Theologiam hoc nomine dignam cen&longs;ebat: qua de cau&longs;a minus Phy&longs;icam, <lb/> eodem nomine dignam putauit, cùm eam opinionem, Mathematicam verò <lb/> cogitationem, vel ratiocinationem dicat. </s> <s id="s.005406">ob eandem comparationem a&longs;&longs;e­<lb/> rit etiam Mathematicas minus e&longs;&longs;e certas, quam Theologiam, quoniam, <lb/> &longs;cilicet hæc nihil &longs;upponit, <expan abbr="nihil&qacute;">nihilque</expan>; di&longs;currit, &longs;ed intuetur: illæ verò iactis <lb/> quibu&longs;dam principijs, quæ probari nequeunt, di&longs;currunt, <expan abbr="propterea&qacute;">proptereaque</expan>; in <lb/> ip&longs;o di&longs;cur&longs;u pote&longs;t error aliquis contingere. </s> <s id="s.005407">eandem huius loci explica­<lb/> tionem habes apud Proclum cap. 10. lib. 1. in Euclid. <!-- REMOVE S-->&longs;ic; Verum quid &longs;ibi <lb/> velit Plato, quando in libris de Rep. <!-- REMOVE S-->à Mathematica &longs;cientiæ nomen ab&longs;tu­<lb/> lit breuiter dicam. </s> <s id="s.005408">& paulo po&longs;t; hanc <expan abbr="deniq;">denique</expan> &longs;cientiam, quam ab artibus <lb/> di&longs;tinguimus diuidens, vnam quidem &longs;uppo&longs;itionis expertem e&longs;&longs;e vult, alte­<lb/> ram verò ex &longs;uppo&longs;itione &longs;caturire. </s> <s id="s.005409">& po&longs;t pauca: & &longs;ic ait Mathematicam <lb/>tanquam &longs;uppo&longs;itionibus vtentem ab ea, quæ &longs;uppo&longs;itionibus caret, <expan abbr="perfe-cta&qacute;">perfe­<lb/> ctaque</expan>; e&longs;t &longs;cientia deficere: vna enim verè e&longs;t &longs;cientia, per quam omnia, quæ <lb/> &longs;unt cogno&longs;cere apti &longs;umus. </s> <s id="s.005410">per&longs;picuè igitur vides auctoritate horum phi­<lb/> lo&longs;ophorum hæc omnia Platonem non ab&longs;olutè, &longs;ed comparatè dixi&longs;&longs;e.</s> </p> <p type="main"> <s id="s.005411">Po&longs;t hæc Ficinus iterum ex &longs;ententia Platonis &longs;ic pergit: quoniam verò <lb/> di&longs;&longs;erendi facultas, &longs;i adole&longs;centibus tradatur opinionem hone&longs;ti debilitat, <lb/> vnde euadunt <expan abbr="intemperãtes">intemperantes</expan>, imò & &longs;uperbi, & impij, vt in Philebo quoque, <lb/> & legibus dicitur, idcircò ante trige&longs;imum ætatis annum in Mathematicis <lb/>erudiendi &longs;unt, <expan abbr="atq;">atque</expan> in publicis negotijs per interualla pariter exercendi. <lb/> </s> <s id="s.005412">concludamus tandem hæc pulcherrimo eiu&longs;dem 7. de Rep. <!-- REMOVE S-->loco, quem etiam <lb/> Proclus lib. 1. cap. 8. ad verbum ferè &longs;ic recitat: Ideo & in Repub. <!-- REMOVE S-->Socrates <lb/> rectè dixit, oculus, nimirum animæ, qui ab alijs &longs;tudijs excœcatur, <expan abbr="defodi-tur&qacute;">defodi­<lb/> turque</expan>; à Mathematicis tantum di&longs;ciplinis recreari, <expan abbr="excitari&qacute;">excitarique</expan>; rur&longs;us ad eius, <lb/> qui e&longs;t, contemplationem, & à &longs;imulacris ad ea, quæ vera &longs;unt: nam pulchri­<lb/> tudo, & ordo Mathematicarum rationum, firmitudoque, ac &longs;tabilitas con­<lb/> templationis, nos ip&longs;is coniungit intellectibus, <expan abbr="perfectè&qacute;">perfectèque</expan>; in ip&longs;is obfirmat, <lb/> perpetuò quidem manentibus, & diuina pulchritudine collucentibus, ac mu­<lb/> tuum ordinem &longs;eruantibus. </s> <s id="s.005413">Animaduerti&longs;ti Lector ex his paucis, quot lau­<lb/> dibus in hoc 7. de Repub. <!-- REMOVE S-->Mathematicæ à Platone cumulentur, vt totus ferè <lb/> liber quoddam ip&longs;arum encomium videatur: vnde mirum &longs;it, i&longs;tos ex eo­<lb/> dem &longs;eptimum locum illum contra Mathematicas, inter tot ip&longs;arum præ­<lb/> conia &longs;edulò emendica&longs;&longs;e, ac perperam interpretatos e&longs;&longs;e: &longs;icque Araneos <lb/>imitatos e&longs;&longs;e, qui ex mellifluis floribus, ex quibus Apes mella, venenum col­<pb pagenum="23" xlink:href="009/01/307.jpg"/>ligunt. </s> <s id="s.005414">Verumenimuerò quis vnquam de Platonis mente erga Mathemati­<lb/> cas dubitare poterit, cùm ip&longs;e omnes ageometretos è &longs;uo gymna&longs;io reijce­<lb/> ret; cùm quotidie, vt ex Philopono refert ip&longs;e Piccolomineus auditoribus <lb/> &longs;uis aliquod Problema Mathematicum proponeret. </s> <s id="s.005415">qui de legibus 6. & 7. <lb/> de &longs;ingulis Mathematicis addi&longs;cendis leges &longs;ancit, vbi <expan abbr="Geometriã">Geometriam</expan> adeò ex­<lb/> tollit, vt a&longs;&longs;erat, a&longs;ymetriam quantitatum ignorare, non <expan abbr="hominũ">hominum</expan>, &longs;ed por­<lb/> corum, ac pecorum ignorantiam e&longs;&longs;e. </s> <s id="s.005416">In Epinomide tandem quàm digna, <lb/> <expan abbr="quam&qacute;">quamque</expan>; præclarè de A&longs;tronomia, <expan abbr="de&qacute;">deque</expan>; Geometria, & Arithmetica, quæ ad <lb/> eam conferunt, prædicat. </s> <s id="s.005417">præcipua autem A&longs;tronomiæ laus ibi tradita e&longs;t, <lb/> quod ea, inter omnes &longs;cientias, animum ad cœle&longs;tia, <expan abbr="atq;">atque</expan> diuina attollit, <expan abbr="in-de&qacute;">in­<lb/> deque</expan>; ad &longs;ummi Boni cognitionem, <expan abbr="atq;">atque</expan> amorem allicit, quam veram e&longs;&longs;e <expan abbr="&longs;a-pi&etilde;tiam">&longs;a­<lb/> pientiam</expan> diuinitus inibi Plato pluribus fatetur. </s> <s id="s.005418">plura alia Platonis loca bre­<lb/> uitatis cau&longs;a, prætereo; quis enim, vel leuiter eum attingit, quì non per­<lb/> &longs;picuè videat, eum &longs;uper omnes Philo&longs;ophos e&longs;&longs;e Mathematicarum com­<lb/> mendatorem eximium.</s> </p> <p type="main"> <s id="s.005419">Quarta e&longs;t Mathematicas, Geometriam pre&longs;ertim con&longs;i&longs;tere in imagi­<lb/> natione potius, quàm in di&longs;cur&longs;u, & proinde &longs;cientias e&longs;&longs;e puerilis ingenij, <lb/> cùm pueri valeant imaginatione. </s> <s id="s.005420">accedit authoritas Ari&longs;t. qui 6. Eth. cap. 8, <lb/> ait, quid e&longs;t, quòd puer fieri Mathem. pote&longs;t, &longs;apiens, aut naturalis non po­<lb/> te&longs;t? </s> <s id="s.005421">præterea, quia antiquitus pueris ante alias tradebantur. </s> <s id="s.005422">Re&longs;pondeo, <lb/> quòd, vt in præcedenti re&longs;pon&longs;ione dictum e&longs;t ex Plat. <!-- REMOVE S-->&longs;ententia, non ima­<lb/>ginatio, &longs;ed ratiocinatio, &longs;eu cogitatio ver&longs;atur circa Mathematicas, ima­<lb/> ginatio autem circa naturalem Philo&longs;ophiam; &longs;ed audi Platonem in eodem <lb/> &longs;eptimo. </s> <s id="s.005423">Placet igitur, ait, primam partem vocare &longs;cientiam, &longs;ecundam <lb/> cogitationem, tertiam fidem, po&longs;tremam imaginationem. </s> <s id="s.005424">Con&longs;tat autem <lb/> vltimas duas ab ip&longs;o collocari in naturali peritia. </s> <s id="s.005425">ade&longs;t etiam Procli autho<lb/> ritas, qui cap. 5. lib. 1. &longs;ic habet; In&longs;trumentum <expan abbr="itaq;">itaque</expan> aptum ad iudicandum <lb/> cunctas res Mathematicas cogitationem ex Platonis &longs;ententia &longs;tatuimus, <lb/> quippequæ opinione quidem &longs;uperior e&longs;t, ab intelligentia verò &longs;uperatur. <lb/> </s> <s id="s.005426">Per cogitationem verò intelligendum e&longs;&longs;e quendam mentis motum, ide&longs;t <lb/> di&longs;cur&longs;um, tum ex vi græcè vocis <foreign lang="greek">Nohmatos,</foreign> tum ex vi Latinæ vocis manife­<lb/> &longs;tum e&longs;t; cogitatio enim dicitur qua&longs;i coagitatio. </s> <s id="s.005427">&longs; <expan abbr="m&etilde;tis">mentis</expan>, quæ idem e&longs;t cùm <lb/> di&longs;cur&longs;u, aut ratiocinatione: quare manife&longs;tum e&longs;t horum Philo&longs;ophorum <lb/> authoritate ratiocinationem ver&longs;ari circa Mathematicas, imaginationem <lb/> verò circa res phy&longs;icas, contra quam ip&longs;i contendebat. </s> <s id="s.005428">Verum quid opus <lb/> e&longs;t authoritate, vbi res ip&longs;a videri pote&longs;t, con&longs;ideret quilibet Geometricas <lb/> demon&longs;trationes, clarè videbit opus quidem e&longs;&longs;e non mediocri imagina­<lb/> tione, &longs;ed multo maiori di&longs;cur&longs;u, &longs;unt enim in nonnullis, 50. & 60. con&longs;e­<lb/> quentiæ, vna po&longs;t alteram inuicem connexæ. </s> <s id="s.005429">Sed quid dico in nonnullis cùm <lb/> totum Euclidis opus &longs;it perpetua quædam illationum catena mirabilis, ita <lb/>vt vltimæ ip&longs;ius demon&longs;trationes contineant, &longs;i re&longs;oluantur con&longs;ecutionum <lb/> miriadas; at verò omnis illationis expers pror&longs;us e&longs;t imaginatio. </s> <s id="s.005430">Si verò <lb/> ip&longs;arum inuentionem con&longs;ideremus, admirabiles omninò videbuntur, tum <lb/> quia res omnino ab&longs;tru&longs;as, & abditas <expan abbr="demõ&longs;trant">demon&longs;trant</expan>, tum quia media, quibus <lb/> eas <expan abbr="cõprobant">comprobant</expan>, diuino ingenij acumine indigent, vt inue&longs;tigentur; vt prop­<lb/> terea earum authores nomina &longs;ua immortalitati con&longs;ecrarint; &longs;ic Thale­ <pb pagenum="24" xlink:href="009/01/308.jpg"/>tis Mile&longs;ij 5. primi; Oenipodis 11. Pythagoreorum 32. Pythagoræ ip&longs;ius <lb/> 47. <expan abbr="inuentorũ">inuentorum</expan> adhuc nomina celebrantur: Hippocrati quadra&longs;&longs;e lunulam, <lb/> Archimedi Parabolam, quantam gloriam peperit? </s> <s id="s.005431">Apollonij Perg&etail;i Coni­<lb/> ca magni Geometræ nomen ei compararunt. </s> <s id="s.005432">hæc & plura alia non &longs;olum <lb/> puerilis ingenij acumen, verum etiam virilis captum magnis &longs;patijs &longs;upe­<lb/> rare videntur. </s> <s id="s.005433">Cur autem Ari&longs;t. dixerit puerum fieri po&longs;&longs;e Mathematicum <lb/>non autem &longs;apientem, aut naturalem, ip&longs;e declarat, quia <expan abbr="nimirũ">nimirum</expan> in <expan abbr="vtraq;">vtraque</expan> <lb/> eorum opus e&longs;t experientia, quæ in puero non e&longs;t, experientiam enim affert <lb/> temporis longitudo: facilius tamen puer moralia intelligit, quam Geome­<lb/> trica, facilius enim e&longs;t intelligere quid virtus, quid vitium, &c. </s> <s id="s.005434">quam quin­<lb/> tam, aut &longs;eptimam primi; non ideo tamen puer erit prudens, quia pruden­<lb/> tia non &longs;peculatiua, &longs;ed practica e&longs;t, <expan abbr="Itaq;">Itaque</expan> quod puer &longs;apiens, aut natura­<lb/> lis e&longs;&longs;e nequeat, defectus non e&longs;t ex parte intellectus, &longs;ed ex parte experien­<lb/> ti&etail;. </s> <s id="s.005435">Neque præterea dicendæ pueriles &longs;unt, quòd antiquitus, vt vult etiam <lb/> Plato, pueris primò <expan abbr="trader&etilde;tur">traderentur</expan>, quandoquidem in illis totius ætatis robur, <lb/>& florem in&longs;umebant, cùm ad 30. v&longs;q; ætatis annum in eis, occuparentur. <lb/> </s> <s id="s.005436">pueriles meritò dicerentur, &longs;i in pueritia tantùm eis operam dedi&longs;&longs;ent. </s> <s id="s.005437">Di­<lb/> cam &longs;yncerè, quod ip&longs;e, dum eas per plures annos docerem expertus &longs;um; <lb/> <expan abbr="quo&longs;cunq;">quo&longs;cunque</expan> reperi ingenio in Mathematicis pollere, hi pariter in alijs omni­<lb/> bus excellebant. </s> <s id="s.005438">Requirit enim &longs;tudium i&longs;tud omnes ingenij partes, imagi­<lb/> nationem, di&longs;cur&longs;um, & memoriam. </s> <s id="s.005439">Idcircò veteres puerorum ingenium <lb/> ad Mathematicas qua&longs;i ad Lydium lapidem experiebantur; <expan abbr="ijs&qacute;">ijsque</expan> inepti à <lb/> reliquis &longs;tudijs arcebantur. </s> <s id="s.005440">audi Platonem 7. de Repub. <!-- KEEP S--></s> <s id="s.005441">An & hoc aduer­<lb/> ti&longs;ti, quod homines natura Arithmetici ad omnes doctrinas, vt ita dixerim <lb/>acuti videantur.) & po&longs;tea concludens ait, propter omnes, quas adduxi­<lb/> mus rationes, haud quaquam negligenda hæc &longs;unt, &longs;ed in his præcipuè eru­<lb/> diendi, qui optimis &longs;unt ingenijs.</s> </p> <p type="main"> <s id="s.005442">Quinta, Geometria carpitur, quòd plures habeat demon&longs;trationes per <lb/> &longs;uperpo&longs;itionem factas, qui modus demon&longs;trandi videtur aduer&longs;arijs valdè <lb/> imperfectus, ac penè ridiculus. </s> <s id="s.005443">Sed <expan abbr="&longs;ci&etilde;dum">&longs;ciendum</expan> primò in toto Euclide e&longs;&longs;e <expan abbr="tan-tũmodo">tan­<lb/> tummodo</expan> tres per &longs;uperpo&longs;itionem. </s> <s id="s.005444">Secundò, eas e&longs;&longs;e tam perfectas, ac eui­<lb/>dentes, quàm reliquæ; falluntur, qui putant illam &longs;uperpo&longs;itionem e&longs;&longs;e de­<lb/> mon&longs;trationis medium, e&longs;t enim loco con&longs;tructionis: neque, quæ proban­<lb/> da &longs;unt æqualia, ea &longs;uperponuntur, vt ip&longs;i putant, hæc enim ratio nullius e&longs;­<lb/> &longs;et momenti, nec Geometrica, &longs;ed Phy&longs;ica potius, niteretur enim &longs;en&longs;ibus: <lb/> &longs;ed &longs;uperponuntur quædam, quæ æqualia &longs;unt, vt ex eorum &longs;uperpo&longs;itione <lb/> appareat æqualitas eorum, quæ non &longs;uperponuntur. </s> <s id="s.005445">Con&longs;idera quartam <lb/> primi videbis ibi &longs;uperponi quædam latera æqualia duorum triangulorum, <lb/> vt deinde ba&longs;es, quæ non &longs;uperponuntur, inferantur e&longs;&longs;e æquales: & ratio, <lb/> qua probantur æquales e&longs;t, quia congruunt, non quia &longs;uperponuntur, vt ip&longs;i <lb/> putant, nec intelligunt, quodnam &longs;it illius demon&longs;trationis medium.</s> </p> <p type="main"> <s id="s.005446">Sexta calumnia ridicula, e&longs;t cuiu&longs;dam, qui Geometras reprehendit, quòd <lb/> &longs;æpè vtantur circulo, vt patet, inquit, in prima, 6. 4. & 8. primi elem. </s> <s id="s.005447">&longs;i. </s> <s id="s.005448">n. </s> <s id="s.005449">lo­<lb/> quatur de circulo, qui figura e&longs;t, in &longs;ola <expan abbr="carũ">carum</expan> prima is adhibetur, vt patet, vel <lb/> figuras ip&longs;as more puerorum &longs;pectanti: &longs;i loquatur de circulo, quòd vitium <lb/> e&longs;t in <expan abbr="demõ&longs;trando">demon&longs;trando</expan>, id multo magis fal&longs;um e&longs;t, cùm in nulla <expan abbr="earũ">earum</expan> reperiatur.</s> </p> <pb pagenum="25" xlink:href="009/01/309.jpg"/> <p type="main"> <s id="s.005450">Septima e&longs;t, qua dicunt Geometras non habere materiam veram, & pro­<lb/> priam, ea enim Phy&longs;ica e&longs;t, & proinde <expan abbr="neq;">neque</expan> cau&longs;am materialem. </s> <s id="s.005451">Sed dicé­n<lb/> dum e&longs;t Geometras <expan abbr="quid&etilde;">quidem</expan> carere propria materia phy&longs;ica, non carere ta­<lb/> men propria materia Mathematica, quæ e&longs;t illa intelligibilis, de qua cap. 1. <lb/> dictum e&longs;t.</s> </p> <p type="main"> <s id="s.005452">Octaua, e&longs;t cuiu&longs;dam dicentis, opinionem <expan abbr="commun&etilde;">communem</expan> e&longs;&longs;e, Mathematicam <lb/>non e&longs;&longs;e propriè &longs;cientiam; &longs;ed hoc manife&longs;tè fal&longs;um e&longs;t, cum inter tot Phi­<lb/>lo&longs;ophos Græcos, Arabes, Latinos, &longs;olùm ip&longs;e duos, vel tres huius &longs;enten­<lb/> tiæ in medium po&longs;&longs;it afferre, Piccolom. .&longs;. </s> <s id="s.005453">quem &longs;equitur Pererius.</s> </p> <p type="main"> <s id="s.005454">Nona, e&longs;t alterius, qui Geometras damnat, quòd plura reuocant ad illud <lb/> vniuer&longs;ale axioma, quæ &longs;unt eadem vni tertio, &longs;unt eadem inter &longs;e. </s> <s id="s.005455">Verùm <lb/> i&longs;te malè Geometrarum principia nouit, axioma enim illud, nu&longs;quam apud <lb/> Mathematicos reperitur, <expan abbr="neq;">neque</expan> reperiri <expan abbr="põt">pot.</expan>, cum <expan abbr="quantitat&etilde;">quantitatem</expan> non inuoluat.</s> </p> <p type="main"> <s id="s.005456">Decima, qua dicunt entia Mathematica non extare: &longs;ed ex initio dictis <lb/> de materia intelligibili h&etail;c nota &longs;atis detergitur.</s> </p> <p type="main"> <s id="s.005457">Vndecima, ab&longs;tractionem à materia <expan abbr="multũ">multum</expan> derogare perfectioni Mathe­<lb/> maticarum demon&longs;trationum; cui re&longs;pondeat eruditi&longs;&longs;imus Toletus, qui <lb/> in 2. Phy&longs;. quæ&longs;t. </s> <s id="s.005458">4. &longs;ic ait: Phy&longs;icus frequentet vtitur demon&longs;tratione effe­<lb/> ctus, & &longs;igni, quia ip&longs;ius cau&longs;æ frequentius &longs;unt occultæ nec per &longs;e &longs;en&longs;ibiles, <lb/> at Mathematicus frequentius à prioribus procedit, cùm eius cau&longs;æ notio­<lb/> res &longs;int effectibus, à &longs;en&longs;u .n. </s> <s id="s.005459">ab&longs;trahit, & in intellectu notius e&longs;t, quòd prius <lb/> e&longs;t. </s> <s id="s.005460">Po&longs;tea in 4. conclu&longs;. </s> <s id="s.005461">&longs;ic ait: omnem phy&longs;icæ imperfectionem à materia <lb/> pendere, vnde Ari&longs;t. 2. Metaphy. <!-- REMOVE S-->tex. <!-- REMOVE S-->16. tradens huius non exactæ certitu­<lb/> dinis rationem ait: natura materiam habet: & po&longs;t pauca: At res Mathe­<lb/> maticæ, cùm ab hac materia &longs;eparent &longs;impliciter nece&longs;&longs;ariæ &longs;unt, &longs;emper <lb/> enim omnis triangulus habet tres angulos æquales duobus rectis. </s> <s id="s.005462">ex quibus <lb/> apparet omnem Mathematicarum perfectionem oriri ex ab&longs;tractione, con­<lb/> trà quàm putabat aduer&longs;arius.</s> </p> <p type="main"> <s id="s.005463">Duodecima e&longs;t, Mathematicas ab&longs;trahere à Bono: verùm eas ab ea libe­<lb/> rat Ari&longs;t. dum lib. 13. Metaphy&longs;. ait: qui dicunt Mathematicas &longs;cientias ni­<lb/> hil de bono, vel pulchro dicere, fal&longs;um dicunt: dicunt enim, & maximè <expan abbr="o&longs;t&etilde;-dunt">o&longs;ten­<lb/> dunt</expan>, nam etiam&longs;i non nominant, quia tamen opera, & rationes o&longs;tendunt, <lb/> non ne dicunt de eis? </s> <s id="s.005464">pulchri <expan abbr="nam&qacute;">namque</expan>; maximè &longs;pecies &longs;unt, ordo, commen­<lb/> &longs;uratio, & definitum, quæ maximè à Mathematicis &longs;cientijs o&longs;tenduntur.</s> </p> <p type="main"> <s id="s.005465">Decimatertia e&longs;t, <expan abbr="Geometriã">Geometriam</expan>, & <expan abbr="Arithmeticã">Arithmeticam</expan>, vt &longs;unt &longs;peculatiuæ &longs;cien­<lb/> ti&etail; e&longs;&longs;e inutiles, <expan abbr="atq;">atque</expan> iniucundas. </s> <s id="s.005466">Sed hæc oppo&longs;itio in omnes quadrat &longs;pe­<lb/> culatiuas, quæ non vtiles, &longs;ed gratia &longs;ui &longs;unt. </s> <s id="s.005467">quod maximè ij &longs;olent oppo­<lb/> nere, qui &longs;cientias, vt ille cecinit cauponantur, &longs;eu qui eas quæ&longs;tuo&longs;as fa­<lb/> ciunt. </s> <s id="s.005468">Verùm hos animo mercatores potius, quàm Philo&longs;ophos amande­<lb/> mus ad cap. 8. 9. & 10. libri primi Procli, vbi fusè de vtilitate <expan abbr="earũ">earum</expan> omnium <lb/> di&longs;&longs;erit. </s> <s id="s.005469">Quod &longs;i Philo&longs;ophus &longs;it, qui hæc opponat; huic illa &longs;ufficiat vtili­<lb/> tas, qua loca omnia Ari&longs;t. Mathematica, qu&etail; ferè <expan abbr="quadring&etilde;ta">quadringenta</expan> &longs;unt, facilè <lb/> Mathematicarum auxilio intelliguntur, <expan abbr="&longs;ic&qacute;">&longs;icque</expan>; ad plenam totius Ari&longs;t. intel­<lb/> ligentiam, tandem perueniri pote&longs;t.</s> </p> <p type="main"> <s id="s.005470">Quod attinet ad delectationem inuenient, inibi apud Proclum hæc, cui <lb/>Mathematicarum di&longs;ciplinarum cognitionem &longs;pernunt, voluptates, quæ in <pb pagenum="26" xlink:href="009/01/310.jpg"/>ip&longs;is &longs;unt, minimè degu&longs;tarunt. </s> <s id="s.005471">& quì Mathematicas ignorant iecunas ca­<lb/> piunt voluptates. </s> <s id="s.005472">Ex quibus fit, vt viri nobiles, ac Principes, quì non lu­<lb/> crandi, &longs;ed philo&longs;ophandi cau&longs;a literis dant operam, Mathematicis maxi­<lb/> mè &longs;tudijs delectentur. </s> <s id="s.005473">inter quos celeberrimi extiterunt, ex antiquis qui­<lb/> dem Archimedes Regum Siciliæ con&longs;anguineus; Boetius vir con&longs;ularis; <lb/> Alphon&longs;us Rex <expan abbr="Hi&longs;paniarũ">Hi&longs;paniarum</expan>: no&longs;tra verò ætate Marchio Guidobaldus, Prin­<lb/> ceps Ticho Brahe; Franci&longs;cus Candalla, & alij complures, quorum monu­<lb/> menta in omne æuum perman&longs;ura mundus admirabitur.</s> </p> <p type="main"> <s id="s.005474">Decimaquarta, &longs;ubiecti ignobilitatem Mathematicis exprobrant, quod <lb/> videlicet &longs;it accidens. </s> <s id="s.005475">&longs;ed re&longs;pondetur primò, quod quamuis &longs;it accidens, <lb/> e&longs;t tamen immateriale, & ab&longs;tractum, qua ratione inter &longs;ubiectum Phy&longs;icæ, <lb/> & Mathematicæ collocatur. </s> <s id="s.005476">&longs;ecundò, melius e&longs;&longs;e de aliquo accidente veri­<lb/>tates innumeras cogno&longs;cere, <expan abbr="eas&qacute;">easque</expan>; admirabiles, quàm circa <expan abbr="&longs;ub&longs;tantiã">&longs;ub&longs;tantiam</expan> ma­<lb/> terialem præ&longs;ertim, mille opinionum turbis, ac di&longs;&longs;en&longs;ionibus perpetuò huc <lb/> illuc agitari, <expan abbr="neq;">neque</expan> vnquam ad vllius &longs;ub&longs;tantiæ cognitionem peruenire. </s> <s id="s.005477">ter­<lb/> tiò, in Mathematicis medijs aliter &longs;e habere, vbi non nudam quantitatem, <lb/> &longs;ed vel cœle&longs;tia corpora omnium nobili&longs;&longs;ima, vel &longs;onos mu&longs;icos, vel vi&longs;ionis <lb/> modos, ac deceptiones, vel cau&longs;as virium machinarum eodem fine, ac &longs;co­<lb/> po, quo cæteri Philo&longs;ophi cætera contemplantur.</s> </p> <p type="main"> <s id="s.005478">Decimaquinta e&longs;t, quod &longs;iue ioco, &longs;iue ex eruditionis ignoratione addunt <lb/> Mathematicos legibus tum prophanis, tum &longs;acris &longs;æpius pro&longs;criptos, ac <lb/> damnatos fui&longs;&longs;e; <expan abbr="atq;">atque</expan> olim non rarò Imperatorum editis Romano imperio <lb/> pul&longs;os. </s> <s id="s.005479">Verùm i&longs;tis nequaquam opus e&longs;&longs;et re&longs;pondere, cùm vix nullus adeò <lb/> eruditionis expers reperiatur, quì ignoret illos p&longs;eudomathematicos fui&longs;&longs;e <lb/> eos, quì, & quidem aptius, & Genethliaci, & Chaldæi, & Iudiciarij dice­<lb/> bantur. </s> <s id="s.005480">quorum doctrina nullo mihi pacto probari pote&longs;t, cùm nullis nec <lb/> experientijs, nec rationibus fulciatur, &longs;ed mera vanitas, <expan abbr="atq;">atque</expan> impo&longs;tura, &longs;æ­<lb/> pè etiam &longs;uper&longs;titio &longs;it. </s> <s id="s.005481">vt propterea mirandum &longs;it, cur non p&etail;nitus huiu&longs;­<lb/> modi artes de medio tollantur, &longs;ed quod ait Cor. <!-- REMOVE S-->Tacitus lib. 1. hi&longs;tor. </s> <s id="s.005482">hoc <lb/> genus hominum potentibus infidum, &longs;perantibus fallax, in Ciuitate no­<lb/> &longs;tra, & vetabitur &longs;emper, & retinebitur. </s> <s id="s.005483">lege libros 12. Pici Mirandulani <lb/> contra A&longs;trologos. <!-- KEEP S--></s> <s id="s.005484">accedunt præterea Tycho, & Keplerus, quì quamuis <lb/> A&longs;tronomi, A&longs;tronomiam tamen i&longs;tam pluribus improbarunt. </s> <s id="s.005485">Calumniosè <lb/> tamen ij faciunt, quì illorum nebulonum culpam in omnes Mathematicos <lb/> transferre ge&longs;tiunt. </s> <s id="s.005486"><expan abbr="Atq;">Atque</expan> hæc tantummodo dicta velim, ne &longs;impliciores ab <lb/> i&longs;tis calumniatoribus decipiantur.</s> </p> <p type="main"> <s id="s.005487">Decima&longs;exta, qua in vniuer&longs;um proponunt hoc modo, vtrum Mathema­<lb/> ticæ h. </s> <s id="s.005488">beant perfectas demon&longs;trationes, po&longs;tea in di&longs;cur&longs;u multa contra <lb/>eas adducunt, quæ tandem in fine tractationis contra &longs;olas Geometriam, & <lb/> Arithmeticam valere fatentur. </s> <s id="s.005489">Quare ni&longs;i lector ad finem <expan abbr="v&longs;q;">v&longs;que</expan> omnia per­<lb/> legerit, quod rarò accidit, decipitur, putat enim in omnes Mathematicas <lb/> illa quadrare, cùm tamen ip&longs;i fateantur, &longs;e nunquam loquutos e&longs;&longs;e de me­<lb/> dijs A&longs;tronomia, Mu&longs;ica, Optica, Mechanica, quibus ine&longs;&longs;e veram &longs;cientiæ <lb/> demon&longs;tratiuæ rationem libenter concedunt.</s> </p> <p type="main"> <s id="s.005490">Decima&longs;eptima, e&longs;t cuiu&longs;dam recenti&longs;&longs;imi Philo&longs;ophi, quì vbi pluribus <lb/> contra Mathematicas di&longs;&longs;eruit, nihil, vt fieri &longs;olet, &longs;ibi obijcit, <expan abbr="verũ">verum</expan> com­ <pb pagenum="27" xlink:href="009/01/311.jpg"/>plura Ari&longs;t. & veterum philo&longs;ophorum loca &longs;ibi aduer&longs;antia di&longs;&longs;imulat: tan­<lb/> dem, quod nullus adhuc au&longs;us e&longs;t, concludit Mathematicam nullam e&longs;&longs;e <lb/> Philo&longs;ophiæ partem, cùm tamen apud Ari&longs;t. & omnes peripateticos nihil <lb/> frequentius occurrat, quam tres e&longs;&longs;e philo&longs;ophiæ partes, Phy&longs;icam, Mathe­<lb/> maticam, & Metaphy&longs;icam. </s> <s id="s.005491">ait præterea &longs;æpius certitudinem Mathemati­<lb/> cam ex eo prouenire, quod ad &longs;en&longs;um o&longs;tendant, &longs;eu quod &longs;en&longs;u ip&longs;arum ve­<lb/> ritates percipiantur; quod omninò fal&longs;um e&longs;&longs;e &longs;æpius &longs;upra probatum e&longs;t, <lb/> cùm eorum materia &longs;it omninò intelligibilis, non autem &longs;en&longs;ibilis, & nullus <lb/> e&longs;t, qui eas, vel leuiter attigerit, quì i&longs;tud palàm non fateatur.</s> </p> <p type="main"> <s id="s.005492">Scias <expan abbr="deniq;">denique</expan> candide Lector, me &longs;yncerè omnia, & &longs;olius veritatis amo­<lb/> re hucu&longs;que dixi&longs;&longs;e, vt experiri poteris, &longs;i authores, quos citaui, adieris, <lb/>quod vt facias, ob&longs;ecro, plura enim, quam dixi, reperies. </s> <s id="s.005493">è contrariò vi­<lb/> di&longs;ti, quàm &longs;olicitè, alij, quorum munus e&longs;&longs;et eas fouere, ac tueri, <expan abbr="cõtra">contra</expan> pul­<lb/>cherrimas ha&longs;ce facultates, ne&longs;cio quo con&longs;ilio tam &longs;olicitè egerint.</s> </p> <p type="head"> <s id="s.005494"><emph type="italics"/>De præstantia &longs;cientiæ, quam nobis pariunt Geometria, <lb/> & Arithmetica. <!-- KEEP S--></s> <s id="s.005495">Cap. 4.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.005496">Scientiarum nobilitas, <expan abbr="atq;">atque</expan> præ&longs;tantia non ex &longs;ubiecto, & medio &longs;o­<lb/> lum, verùm etiam, & quidem multò magis ex notitia, quæ per illas <lb/> acquiritur, <expan abbr="quippe&qacute;">quippeque</expan>; illarum finis e&longs;t, pen&longs;anda e&longs;t: quanto enim hæc <lb/> præ&longs;tantior, ac nobilior e&longs;t, tanto etiam illæ excellentiores &longs;unt ha­<lb/> bendæ. </s> <s id="s.005497">Verumenimuerò, vt ait Ari&longs;t. initio 2. Metaphyl. <!-- KEEP S--></s> <s id="s.005498">Finis &longs;cientiæ e&longs;t <lb/> veritas. </s> <s id="s.005499">quod & Plato confirmat, dum in Sympo&longs;io a&longs;&longs;erit, animi cibum e&longs;­<lb/> &longs;e veritatem, atqui Geometria, & Arithmetica, cùm &longs;emper euidentiam <lb/> pariant, &longs;emper etiam veritatem con&longs;equentur, vnde Ari&longs;t. 1. Ethic. <!-- REMOVE S-->cap. 7. <lb/> Geometram appellat veritatis &longs;peculatorem. </s> <s id="s.005500">cùm præterea reliquæ &longs;cien­<lb/> tiæ (Mathematicis medijs exceptis) rarò euidentiam pariant, rarò etiam <lb/> veritatem a&longs;&longs;equentur, &longs;ed ferè &longs;emper opiniones gignent, vnde eas meritò <lb/> non &longs;cientias, &longs;ed opiniones Plato voluit appellari: &longs;equitur ab&longs;olutè di­<lb/> cendum e&longs;&longs;e, Mathematicas reliquarum &longs;cientiarum præ&longs;tanti&longs;&longs;imas e&longs;&longs;e; <lb/> quemadmodum inter opiniones præ&longs;tanti&longs;&longs;imum quid e&longs;t veritas.</s> </p> <p type="main"> <s id="s.005501"><expan abbr="Neq;">Neque</expan> verò &longs;olum huius notitiæ excellentia à veritate de&longs;umitur, verum <lb/> etiam ab admirabilitate, &longs;unt enim conclu&longs;iones Mathematicæ (paruis ex­<lb/> ceptis) admirabiles veritates, licet enim cùm Cicer. <!-- REMOVE S-->primo de orat &longs;ic ad­<lb/> mirati; quis ignorat, ij, qui Mathematici vocantur quanta in ob&longs;curitate <lb/> rerum, & quàm in recondita arte, & multiplici, <expan abbr="&longs;ubtili&qacute;">&longs;ubtilique</expan>; ver&longs;antur? </s> <s id="s.005502">Et ve­<lb/> rò quis non admiratur, cùm intelligit, omne triangulum habere tres angu­<lb/> los æquales duobus rectis? </s> <s id="s.005503">& omnem figuram rectilineam habere angulos <lb/> externos, etiam&longs;i mille &longs;int, æquales tantummodo quatuor rectis? </s> <s id="s.005504">Item <lb/> duo parallelogramma &longs;uper eadem ba&longs;i, & in ij&longs;dem parallelis con&longs;tituta <lb/> æqualia e&longs;&longs;e, etiam&longs;i alterum quantumuis longum efficiatur? </s> <s id="s.005505">quàm admira­<lb/> bilis e&longs;t 47. primi, pro cuius inuentione Pythagoras Mu&longs;is Hecatombas <lb/> immolauit? </s> <s id="s.005506">In &longs;ecundò deinde Elem. lib. quàm &longs;ubtilis e&longs;t 14. quæ rectili­<lb/> neo cuiuis quadratum exhibet æquale. </s> <s id="s.005507">In tertiò po&longs;tea, quot <expan abbr="quanta&qacute;">quantaque</expan>; an­ <pb pagenum="28" xlink:href="009/01/312.jpg"/>gulus ille contingentiæ continet miracula, qui quamuis quantus &longs;it, neque <lb/> tamen à linea recta partiri. </s> <s id="s.005508">&longs;ed ne longior &longs;im, quis in 10. libro con&longs;iderans <lb/> illam tot magnitudinum a&longs;ymetriam, & diametrum e&longs;&longs;e co&longs;tæ incommen­<lb/> &longs;urabilem, non magnopere ob&longs;tupe&longs;cit, <expan abbr="atq;">atque</expan> cum Platone non a&longs;&longs;erit illius <lb/> ignorantiam, non hominum, &longs;ed &longs;uum, ac pecorum e&longs;&longs;e? </s> <s id="s.005509">In 13. quanto <lb/> &longs;tupore afficimur in illa <expan abbr="quinq;">quinque</expan> regularium corporum in eadem &longs;phæra in­<lb/> &longs;criptione? </s> <s id="s.005510">& cum intelligimus <expan abbr="quinq;">quinque</expan> tantum in tota rerum natura repe­<lb/> riri po&longs;&longs;e &longs;olida regularia? </s> <s id="s.005511">meritò igitur Cardanus lib. 16. de &longs;ubtilit. </s> <s id="s.005512">ait; <lb/> Euclidis &longs;unt duæ præcipuæ laudes, inconcu&longs;&longs;a dogmatum firmitas libri <lb/> elementorum, <expan abbr="perfectio&qacute;">perfectioque</expan>; adeò ab&longs;oluta, vt nullum opus iurè huic compa­<lb/> rare audeas, quibus fit, vt adeò veritatis lux in eo refulgeat, vt ij &longs;oli in ar­<lb/> duis quæ&longs;tionibus videantur po&longs;&longs;e verum à falsò di&longs;cernere, quì Euclidem <lb/> habeant familiarem.</s> </p> <p type="main"> <s id="s.005513">Quod &longs;i ad Archimedis opera oculum conuertamus, quam &longs;æpè nos ea <lb/> reddunt &longs;tupefactos? </s> <s id="s.005514">vt dum o&longs;tendit triangulum quoddam e&longs;&longs;e dato cir­<lb/> culo æquale. </s> <s id="s.005515">dum Parabolam ad quadratum redigit: dum planorum centra <lb/> grauitatis rimatur: dum totius arenæ mundum vniuer&longs;um complentis nu­<lb/> merum &longs;ubducit: dum quodlibet pondus, <expan abbr="atq;">atque</expan> adeò mundi machinam loco <lb/> dimoueri po&longs;&longs;e, vel ab vnica formica demon&longs;trat. </s> <s id="s.005516">quamquam hæc duo ad <lb/> medias pertinent. </s> <s id="s.005517">At libellus de lineis &longs;piralibus, & alter de ijs, quæ in aqua <lb/> vehuntur, quam admirandi &longs;unt? </s> <s id="s.005518">De &longs;phæra po&longs;tea, & cylindro varia de­<lb/>mon&longs;trans, quanto & alios, ac &longs;e ip&longs;um &longs;patio &longs;uperat, vt dum inter cætera <lb/> diuino planè acumine o&longs;tendit cuiu&longs;libet &longs;phæræ &longs;uperficiem quadruplam <lb/>e&longs;&longs;e circuli eiu&longs;dem maximi. </s> <s id="s.005519">Item &longs;i tria hæc, cylindrus, &longs;phæra, & conus, <lb/> &longs;int in eadem altitudine, <expan abbr="eorum&qacute;">eorumque</expan>; ba&longs;es &longs;int circuli maximi illius &longs;phæræ, <lb/> habere inuicem proportionem, quam <expan abbr="hab&etilde;t">habent</expan> hi numeri 3. 2. 1. quare ob tam <lb/> præclarum ingenij monumentum, &longs;epulcro ip&longs;ius marmoreo &longs;phæra, & cy­<lb/>lindrus marmorei &longs;unt impo&longs;iti, quemadmodum Cicero lib. 5. Tu&longs;cinarrat, <lb/> vbi etiam magnopere gloriatur, &longs;e cum in Sicilia Quæ&longs;tor e&longs;&longs;et, illud igno­<lb/>ratum ab Syracu&longs;anis &longs;eptum vndique, ac ve&longs;titum vepribus, & dumetis in­<lb/> daga&longs;&longs;e &longs;epulcrum. </s> <s id="s.005520">meritò igitur Cardanus lib. 16. de &longs;ubtil. </s> <s id="s.005521">eum tanquam <lb/> ingeniorum Phænicem &longs;upra omnes &longs;ubtilitate præ&longs;tantes viros, <expan abbr="atq;">atque</expan> adeo <lb/> &longs;upra Ari&longs;tot. ip&longs;um duplici ordine euexit; Archimedes, inquit, primus &longs;it <lb/> non &longs;olum ob monumenta illius nunc vulgata, &longs;ed ob mechanica, quibus <lb/> vires Romanorum &longs;æpius fregit. </s> <s id="s.005522">Apollonius deinde pergæus cognomento <lb/> Magnus Geometra, nulla ratione Archimede inferior, quam mira, quam <lb/> ab&longs;tru&longs;a in &longs;uis conicis in lucem profert? </s> <s id="s.005523">&longs;ed inter cætera illud <expan abbr="admirãdum">admirandum</expan>; <lb/> inueniri duas lineas, quas vocat a&longs;ymptotos, quæ &longs;i in infinitum producan­<lb/> tur, &longs;emper magis inuicem accedunt, nunquam tamen concurrunt. </s> <s id="s.005524">mi&longs;&longs;os <lb/> facio Hip&longs;iclem, Theodo&longs;ium tripolitam, Menelaum, Serenum, Pappum, & <lb/> alios, quorum opera omnem &longs;uperant admirationem, <expan abbr="ea&qacute;">eaque</expan>; mirabili adeo <lb/> connexione, ac certitudine tradita, vt nullus &longs;it, qui pri&longs;cis illis Geometris <lb/> ingenio cedere libenter nolit. </s> <s id="s.005525">Quapropter cum Cardano lib. 16. de &longs;ubtil. <lb/> </s> <s id="s.005526">hanc partem concludamus; nihil mirum igitur, inquit, Geometriam e&longs;&longs;e <lb/>omnium &longs;cientiarum &longs;ubtili&longs;&longs;imam, quæ cùm tamen à manife&longs;ti&longs;&longs;imis ini­<lb/> tium ducat, meritò an&longs;am præbuit, vt prima omnium etiam pueros doce­ <pb pagenum="29" xlink:href="009/01/313.jpg"/>retur. </s> <s id="s.005527">mirum e&longs;t, quam breui ex aperti&longs;&longs;imis ad ob&longs;curi&longs;&longs;ima trahat, & ex <lb/> humillimis in alti&longs;&longs;ima &longs;tatim a&longs;&longs;urgat.</s> </p> <p type="main"> <s id="s.005528">Sed iam Arithmeticæ etiam fructus in&longs;piciamus: in qua pr&etail;ter ea, quæ <lb/> Euclides, Iordanus, & Maurolicus egregia &longs;anè adinuenerunt, quàm mira­<lb/> bile e&longs;t illud veluti &longs;cientiarum mon&longs;trum, ac portentum, quod Algebram <lb/> vocant? </s> <s id="s.005529">nihil forta&longs;&longs;e in tota peritiæ Encyclopedia &longs;ubtilius, profundius ni­<lb/> hil, non humano ingenio par e&longs;t, &longs;ed quid cœlitus reuelatum dixeris: nume­<lb/> ros illos, quos &longs;urdos vocant, & qui nullo modo exprimi po&longs;&longs;unt, addit, &longs;ub­<lb/> trahit, multiplicat, diuidit, perinde ac &longs;i numeri communes e&longs;&longs;ent: illis ve­<lb/> rò, quos minores, quàm nihil <expan abbr="cõfingit">confingit</expan>, quid ab&longs;tru&longs;ius? </s> <s id="s.005530">quibus tamen <expan abbr="vtri&longs;&qacute;">vtri&longs;que</expan>; <lb/>admirandas adeò di&longs;&longs;oluit quæ&longs;tiones, & enigmata, vt ij, qui hanc callent <lb/> eruditionem, nihil in numerorum infinita ditione <expan abbr="ob&longs;curũ">ob&longs;curum</expan>, nihil arduum ti­<lb/> meant; vt propterea eos non homines, &longs;ed vel intelligentias qua&longs;dam &longs;epa­<lb/> ratas, aut præ&longs;tigiatores quo&longs;dam e&longs;&longs;e exi&longs;times.</s> </p> <p type="main"> <s id="s.005531">Hanc tandem Geometriæ, & Arithmeticæ tractationem ab&longs;oluentes, ex <lb/> pr&etail;dictis breuiter earum prærogatiuas &longs;ic per&longs;tringamus: quarum.</s> </p> <p type="main"> <s id="s.005532">Prima &longs;it, quòd omnes &longs;cientiæ partes ab inuicem di&longs;tinctas obtinent, vi­<lb/> delicet primo loco definitiones, <expan abbr="eas&qacute;">easque</expan>; e&longs;&longs;entiales. </s> <s id="s.005533">Secundò, po&longs;tulata. </s> <s id="s.005534">Ter­<lb/>tiò, axiomata, qu&etail; &longs;unt tria principiorum genera; ex quibus &longs;cientia dedu<lb/> citur. </s> <s id="s.005535">quapropter quarto loco &longs;uccedunt propo&longs;itiones cum &longs;uis demon­<lb/>&longs;trationibus: quæ partim problemata, partim Theoremata &longs;unt. </s> <s id="s.005536">hunc por­<lb/> rò doctrinæ ordinem pulcherrimum ab Ari&longs;t. etiam traditum, præterquam <lb/> in Mathematicis, & maximè hi&longs;ce puris nu&longs;quam e&longs;t reperire.</s> </p> <p type="main"> <s id="s.005537">Secunda, ex principiorum autem præmi&longs;&longs;orum certitudine fit, vt proce­<lb/> dant à notioribus nobis, & natura.</s> </p> <p type="main"> <s id="s.005538">Tertia, quod omnes earum comprobationes &longs;unt <expan abbr="demõ&longs;trationes">demon&longs;trationes</expan>, partim <lb/> à priori, partim à po&longs;teriori, vbi nihil probabile, nulla opinionum di&longs;cordia, <lb/> &longs;ed totum euidens, concors, & verum cernitur.</s> </p> <p type="main"> <s id="s.005539">Quarta, demon&longs;trationes à priori &longs;unt tantum à cau&longs;is intrin&longs;ecis mate­<lb/> ria, & forma.</s> </p> <p type="main"> <s id="s.005540">Quinta, demon&longs;trationes earum, vt plurimum, & quod, & propter quid <lb/> &longs;imul manife&longs;tant.</s> </p> <p type="main"> <s id="s.005541">Sexta, e&longs;t mirabilis, & perpetua demon&longs;trationum connexio, & depen­den<lb/> tia ab inuicem.</s> </p> <p type="head"> <s id="s.005542"><emph type="italics"/>De Mathematicis medijs, A&longs;tronomia, Per&longs;pectiua, <lb/> Mathematica, Mu&longs;ica. <!-- KEEP S--></s> <s id="s.005543">Cap. 5.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.005544">De materia harum, cùm apud Philo&longs;ophos conueniat, nihil e&longs;t, <lb/> cur de ea dicamus. </s> <s id="s.005545">Eas verò habere perfecti&longs;&longs;imas demon&longs;tra­<lb/> tiones, quibus etiam mirabiles veritates, <expan abbr="eas&qacute;">easque</expan>; &longs;citu iucundi&longs;&longs;i­<lb/> mas nobis patefaciunt, vna, <expan abbr="eadem&qacute;">eademque</expan>, opera breuiter demon&longs;tra­<lb/> bimus. </s> <s id="s.005546">non dee&longs;t tamen Ari&longs;t. authoritas 1. Po&longs;ter. tex. <!-- REMOVE S-->30. a&longs;&longs;erentis eas <lb/> habere cau&longs;as demon&longs;trationum, &longs;ic. </s> <s id="s.005547">Hic enim ip&longs;um quidem quòd &longs;en&longs;i­<lb/> tiuorum e&longs;t &longs;cire, ip&longs;um verò propter quid Mathematicorum, hi <expan abbr="nam&qacute;">namque</expan>; ha­ <pb pagenum="30" xlink:href="009/01/314.jpg"/>bent cau&longs;arum demon&longs;trationes. </s> <s id="s.005548">loquitur ibi de medijs hi&longs;ce facultatibus. <lb/> </s> <s id="s.005549">vide no&longs;tram illius loci explicationem &longs;uperius allatam; aut &longs;i mais <expan abbr="aliorũ">aliorum</expan>. <lb/> </s> <s id="s.005550">&longs;ed iam rem ip&longs;am oculis in&longs;piciamus.</s> </p> <p type="main"> <s id="s.005551">Et, vt ab A&longs;tronomia <expan abbr="initiũ">initium</expan> faciamus, <expan abbr="demõ&longs;tratio">demon&longs;tratio</expan> eclyp&longs;is Lunæ (etiam <lb/> Ari&longs;t. <!-- REMOVE S--><expan abbr="eius&qacute;">eiusque</expan>; interpretibus præcipuè Zabarella te&longs;tibus) non ne poti&longs;&longs;ima? <lb/> </s> <s id="s.005552">nam affectionis illius, &longs;eu defectus propriam, & adæquatam cau&longs;am euiden<lb/> tem facit, interpo&longs;itionem, videlicet terr&etail;. </s> <s id="s.005553">Idem de &longs;olari defectu dicen­<lb/> dum, cuius cau&longs;am o&longs;tendunt e&longs;&longs;e Lunæ obiectionem. </s> <s id="s.005554">quas demon&longs;tratio­<lb/> nes ab A&longs;tronomis inuentas e&longs;&longs;e ex <expan abbr="ip&longs;orũ">ip&longs;orum</expan> libris con&longs;tat. </s> <s id="s.005555">& quòd medio <expan abbr="vtã-tur">vtan­<lb/> tur</expan> Geometrico, nimirum circulo, & diametris, & diametrali oppo&longs;itione. <lb/> </s> <s id="s.005556">quàm deinde certæ &longs;int, patet ex eclyp&longs;ium infallibili prædictione.</s> </p> <p type="main"> <s id="s.005557">Secundò, cur Sol plures dies in parte Zodiaci æ&longs;tiua; quàm in hyberna <lb/> moratur? </s> <s id="s.005558">cau&longs;am afferunt Apogæum.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005559">Tertiò, cur Luna &longs;ucce&longs;&longs;iuè illuminatur? </s> <s id="s.005560">quia &longs;phærica e&longs;t.</s> </p> <p type="main"> <s id="s.005561">Quartò, cur in horologijs &longs;olaribus tropici &longs;unt lineæ curu&etail;? </s> <s id="s.005562">æquator <lb/> verò linea recta? </s> <s id="s.005563">quia illi &longs;unt &longs;ectiones conic&etail;, æquator verò e&longs;t &longs;ectio duo­<lb/> rum planorum.</s> </p> <p type="main"> <s id="s.005564">Quintò, cur Sol non totam &longs;imul terram illuminat, &longs;ed &longs;ucce&longs;&longs;iuè? </s> <s id="s.005565">quia <lb/> terra &longs;phærica e&longs;t.</s> </p> <p type="main"> <s id="s.005566">Quam deinde mirabiles, ac iucundæ &longs;unt cognitiones illæ, de quibus ip&longs;æ <lb/> &longs;acræ literæ mirabundæ loquuntur? </s> <s id="s.005567">altitudinem videlicet Cœli, <expan abbr="atq;">atque</expan> pro­<lb/> funditatem aby&longs;&longs;i improbo &longs;anè au&longs;u per&longs;crutari? </s> <s id="s.005568">terræ, Lunæ, Solis magni­<lb/> tudines, ac di&longs;tantias acumine planè diuino nobis euidenter tradidi&longs;&longs;e? </s> <s id="s.005569">to­<lb/> tius <expan abbr="deniq;">denique</expan> mundi fabricam, ac &longs;ymmetriam, qua cognitione nihil præ&longs;tan­<lb/> tius, poti&longs;sima hæc nobis philo&longs;ophia manife&longs;tum facit; vt jure liceat illud <lb/> accinere:</s> </p> <p type="main"> <s id="s.005570"><emph type="italics"/>Felices animæ, quibus hæc cogno&longs;cere primum<emph.end type="italics"/>, <lb/> <emph type="italics"/>Inque domos &longs;uper as &longs;candere cura fuit. <lb/> </s> <s id="s.005571">Admouere oculis di&longs;tantia &longs;ydera no&longs;tris<emph.end type="italics"/>, <lb/> <emph type="italics"/>Aetheraqué, ingenio &longs;uppo&longs;uere &longs;uo.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.005572">A&longs;tronomiæ pars iucunda æquè, ac mirabilis e&longs;t Geographia: qua, vel in <lb/> globo, vel in tabula, terras omnes, maria omnia, qua&longs;i præ&longs;entes licèt <expan abbr="cõ-templari">con­<lb/> templari</expan>. </s> <s id="s.005573">quoque loco vnumquodque &longs;it, qua zona, quo climate, magna iu­<lb/> cunditate percipitur.</s> </p> <p type="main"> <s id="s.005574">In per&longs;pectiua etiam <expan abbr="neq;">neque</expan> de&longs;unt perfectæ demon&longs;trationes, v. <!-- REMOVE S-->g. <!-- REMOVE S-->cur ocu­<lb/> lus &longs;phæricus? </s> <s id="s.005575">vt illi <expan abbr="vndiq;">vndique</expan> lineæ perpendiculares po&longs;&longs;int accidere. </s> <s id="s.005576">Sed cur <lb/> lineæ perpendiculares? </s> <s id="s.005577">vt di&longs;tincta fieret vi&longs;io; ecce cau&longs;æ finales. </s> <s id="s.005578">Cur <expan abbr="cõ-cauũ">con­<lb/> cauum</expan> <expan abbr="&longs;peculũ">&longs;peculum</expan> ibi vrit? </s> <s id="s.005579">quia &longs;olares radij reflexi illuc congregantur. </s> <s id="s.005580">Cur bacu<lb/> lus in aqua fractus apparet? </s> <s id="s.005581">quia per lineas refractas videtur. </s> <s id="s.005582">Cur Iris <expan abbr="rotũ-da">rotun­<lb/> da</expan>? </s> <s id="s.005583">quia non videtur, ni&longs;i &longs;ub &longs;tatuto angulo, qui non ni&longs;i in orbem collo­<lb/> cari pote&longs;t. </s> <s id="s.005584">vbi &longs;imul vides, quàm dignæ <expan abbr="quoq;">quoque</expan> &longs;int hæ cognitiones.</s> </p> <p type="main"> <s id="s.005585">In mechanicis po&longs;tea: cur cuneus tantas obtinet vires? </s> <s id="s.005586">quia e&longs;t vectis <lb/> geminatus. </s> <s id="s.005587">Vnde cochleæ tanta vis? </s> <s id="s.005588">quia con&longs;tat cuneo, & vecte. </s> <s id="s.005589">Verum <lb/> quid admirabilius, quàm quodlibet pondus, vel ip&longs;um vniuer&longs;um, vnius for­<lb/> micæ vi po&longs;&longs;e commoueri? </s> <s id="s.005590"><expan abbr="ip&longs;am&qacute;">ip&longs;amque</expan>; naturam, vt ait Ari&longs;t. vel inuitam &longs;upe­<lb/> rare. </s> <s id="s.005591">quàm &longs;ubtìlia &longs;unt ea, quæ de centro grauitatis Archimedes olim, nu­<pb pagenum="31" xlink:href="009/01/315.jpg"/>per verò Commandinus, & Lucas Valerius demon&longs;trarunt.</s> </p> <p type="main"> <s id="s.005592">Mu&longs;ica tandem &longs;uas habet <expan abbr="demõ&longs;trationes">demon&longs;trationes</expan>, v. <!-- REMOVE S-->g. <!-- REMOVE S-->Tonum con&longs;tare ex duo­<lb/> bus &longs;emitonijs minoribus, & commate, quia ratio &longs;e&longs;quioctaua duobus &longs;e­<lb/> mitonijs minoribus, & vno commate con&longs;tat. </s> <s id="s.005593">Tonus autem in &longs;e&longs;quiocta­<lb/> ua ratione con&longs;i&longs;tit. </s> <s id="s.005594">Item Diapentem con&longs;tare ex tribus tonis, & &longs;emitonio <lb/> minori; quia &longs;i ex &longs;e&longs;quialtero interuallo, quòd e&longs;t diapentes demas &longs;e&longs;qui­<lb/> tertium, re&longs;tat &longs;e&longs;quioctauum. </s> <s id="s.005595"><expan abbr="Se&longs;quitertiũ">Se&longs;quitertium</expan> verò continet duos tonos cum <lb/> &longs;emitonio minori; ecce cau&longs;æ materiales. </s> <s id="s.005596">Cur bis diapente, aut bis dia­<lb/> te&longs;&longs;aron con&longs;onantia <expan abbr="cõponi">componi</expan> non pote&longs;t? </s> <s id="s.005597">cau&longs;am huius habes &longs;upra &longs;ectio­<lb/> ne 19. problem. </s> <s id="s.005598">nu. </s> <s id="s.005599">34. &longs;ed quàm mirum e&longs;t Pythagoram &longs;onos in propor­<lb/> tiones diui&longs;i&longs;&longs;e, non &longs;ecus, ac &longs;i quantitates quædam permanentes e&longs;&longs;ent?</s> </p> <p type="main"> <s id="s.005600">Reliquum e&longs;&longs;et de Mathematicis etiam practicis <expan abbr="nõnulla">nonnulla</expan> dicere, in qui­<lb/> bus omnes <expan abbr="quoq;">quoque</expan> cau&longs;æ manife&longs;tæ reperiuntur; ex eò enim, quòd practicæ <lb/> &longs;unt, nece&longs;&longs;ariò finem inuoluunt. </s> <s id="s.005601">efficientem verò <expan abbr="materiã">materiam</expan>, & formam &longs;æ­<lb/> pè adhibent ad præmi&longs;&longs;as probandas, quas a&longs;&longs;umunt ad concludendum id, <lb/> quod principaliter intendunt. </s> <s id="s.005602">Porrò inter practicas omnium præ&longs;tanti&longs;&longs;i­<lb/> ma e&longs;t Geometria practica; quis enim non admiratur, cùm audit Geome­<lb/> tram &longs;olo vi&longs;u inacce&longs;&longs;as etiam magnitudines qua&longs;cunque, vt turres, vel <lb/> montes men&longs;urare?</s> </p> <p type="main"> <s id="s.005603">Ex quibus liquidò con&longs;tant Mathematicas habere perfecti&longs;&longs;imas <expan abbr="domõ-&longs;trationes">demon­<lb/> &longs;trationes</expan>, quarum cau&longs;&etail; ita ab effectu di&longs;tinguntur, vt nullis calumnijs &longs;int <lb/> obnoxiæ: quare etiam &longs;i aduer&longs;arij conuincant, quòd neutiquam faciunt, <lb/> Geometriam, & Arithmeticam illis carere; reliquis tamen prædictis con­<lb/> cedere coguntur: <expan abbr="eas&qacute;">easque</expan>; per omne <expan abbr="cau&longs;arũ">cau&longs;arum</expan> genus excurrere, quòd tan­<lb/>ta præterea euidentia præ&longs;tant, vt nihil ambiguum, nihil contro­<lb/> uer&longs;um relinquatur: Mathematic&etail; <expan abbr="namq;">namque</expan> te&longs;te etiam Ari&longs;t. <lb/> 1. Elenchorum non &longs;unt contentio&longs;æ. </s> <s id="s.005604">Vnde &longs;it, vt to­<lb/> ta hæc adeò digna, <expan abbr="atq;">atque</expan> admiranda cognitio &longs;it <lb/> mera veritas, quæ omnium &longs;cientiarum finis <lb/> atque animæ no&longs;træ cibus e&longs;t.</s> </p> <p type="head"> <s id="s.005605">LAVS DEO.</s> </p> </chap> <pb pagenum="32" xlink:href="009/01/316.jpg"/> <chap> <p type="head"> <s id="s.005606">APPENDIX.</s> </p> <p type="main"> <s id="s.005607"><emph type="italics"/>Placet nunc demum, vt melius àdhuc Mathematica­<lb/> rum natur a pateat, locaqué Arist. <!-- REMOVE S-->Mathematica ma­<lb/> gis illustrentur, Demon&longs;trationes primi Elemento­<lb/>rum Euclidis breuiter expendere, atque vnamquamque <lb/> ad &longs;uum demon&longs;trationis genus referre.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.005608">Prima igitur Demon&longs;tratione Euclides o&longs;tendit Triangulum il­<lb/> lud eo modo <expan abbr="cõ&longs;trnctum">con&longs;tructum</expan> e&longs;&longs;e æquilaterum, hoc proximo medio, <lb/> quia &longs;cilicet habet tria latera æqualia, quod medium e&longs;t ip&longs;ius <lb/> &longs;ubiecti demon&longs;trationis, &longs;iue trianguli æquilateri definitio: <lb/> quare hæc demon&longs;tratio erit per cau&longs;am formalem.</s> </p> <p type="main"> <s id="s.005609">Secunda Demon&longs;tratione o&longs;tendit duas lineas e&longs;&longs;e æquales, quoniam am­<lb/> bæ &longs;unt vni tertiæ æquales, quæ ratio nititur illi axiomati, quæ &longs;unt æqualia <lb/> vni tertio, &longs;unt etiam inter &longs;e. </s> <s id="s.005610">e&longs;t quidem demon&longs;tratio o&longs;ten&longs;iua, &longs;ed non <lb/> per cau&longs;am, verum à &longs;igno: e&longs;&longs;e enim æquales vni tertiæ, e&longs;t &longs;ignum æquali­<lb/> tatis earum.</s> </p> <p type="main"> <s id="s.005611">Tertia Demon&longs;tratio eodem medio vtitur, quo &longs;ecunda.</s> </p> <p type="main"> <s id="s.005612">Quarta Demon&longs;tratio o&longs;tendit, primò de illis duobus triangulis, quod <lb/> habent ba&longs;es æquales, quia ba&longs;es congruunt &longs;ibi mutuo. </s> <s id="s.005613">&longs;ecundò, o&longs;tendit <lb/> alios duos angulos e&longs;&longs;e æquales alijs duobus <expan abbr="vtrum&qacute;">vtrumque</expan>; <expan abbr="vtri&qacute;">vtrique</expan>; eadem ratione, <lb/> quia nimirum &longs;ibi mutuò congruunt. </s> <s id="s.005614">&longs;i dixeris igitur, quod &longs;ibi mutuò con­<lb/> gruere &longs;it definitio æqualis, erit demon&longs;tratio per cau&longs;am formalem; &longs;i au­<lb/> tem dixeris e&longs;&longs;e &longs;ignum æqualitatis, erit à &longs;igno, & à po&longs;teriori.</s> </p> <p type="main"> <s id="s.005615">5. O&longs;tendit de Triangulo I&longs;o&longs;cele, primò, quod Anguli, qui &longs;unt ad ba­<lb/> &longs;im, &longs;unt æquales, ratio e&longs;t, quia ablatis æqualibus ab æqualibus ip&longs;i &longs;unt <lb/> reliqui. </s> <s id="s.005616">Quæ quidem ratio etiam Ari&longs;t. te&longs;te, e&longs;t per cau&longs;am materialem; <lb/> nam e&longs;&longs;e dimidium, tertiam partem, duplum, reliquum, alicuius totius, & <lb/> &longs;imilia, nihil aliud e&longs;t, quàm e&longs;&longs;e partes re&longs;pectu totius; partes autem &longs;unt <lb/> materia, vt apertè docet Ari&longs;t. tex. <!-- REMOVE S-->3. lib. 5. Metaph. quem &longs;upra <expan abbr="cũ">cum</expan> alijs <expan abbr="ex-plicatũ">ex­<lb/> plicatum</expan> habes. </s> <s id="s.005617">&longs;ecundò, demon&longs;trat de eodem I&longs;o&longs;cele, angulos infra ba&longs;im <lb/> e&longs;&longs;e æquales, ratio, quia opponuntur &etail;qualibus lateribus <expan abbr="triangulorũ">triangulorum</expan> quar­<lb/> tæ præcedentis, quæ ratio videtur &longs;ignum quoddam æqualitatis eorum e&longs;&longs;e.</s> </p> <p type="main"> <s id="s.005618">6. Probat duo illa latera illius trianguli e&longs;&longs;e æqualia, ab impo&longs;&longs;ibili, quia <lb/> &longs;equeretur partem e&longs;&longs;e æqualem toti.</s> </p> <p type="main"> <s id="s.005619">7. Duas po&longs;teriores lineas cum duabus prioribus nece&longs;&longs;ariò coincidere <lb/> demon&longs;trat, quia aliter &longs;equeretur, vel partem e&longs;&longs;e æqualem toti: vel angu­<lb/> los l&longs;olcelis &longs;ub ba&longs;i e&longs;&longs;e inæquales, vel etiam eos, qui &longs;upra ba&longs;im, contra <lb/> quàm o&longs;ten&longs;um e&longs;t in quinta.</s> </p> <p type="main"> <s id="s.005620">8. Probat angulos illos fore æquales, quia congruunt: per 8. &longs;cilicet <lb/> axioma: videtur à &longs;igno.</s> </p> <pb pagenum="33" xlink:href="009/01/317.jpg"/> <p type="main"> <s id="s.005621">9 Probat angulum illum diui&longs;um e&longs;&longs;e bifariam, per <expan abbr="octauã">octauam</expan> pr&etail;cedentem: <lb/> e&longs;t ergo eiu&longs;dem naturæ.</s> </p> <p type="main"> <s id="s.005622">10 Probat lineam <expan abbr="illã">illam</expan> e&longs;&longs;e diui&longs;am in duas lineas æquales, quia illæ duæ <lb/> &longs;unt ba&longs;es triangulorum quart&etail;; hoc autem, e&longs;&longs;e ba&longs;es talium <expan abbr="triangulorũ">triangulorum</expan>, <lb/> videtur e&longs;&longs;e definitio; quare hæc demon&longs;tratio e&longs;&longs;et à definitione &longs;ubiecti, <lb/> & per cau&longs;am formalem.</s> </p> <p type="main"> <s id="s.005623">11 Probat illam lineam facere angulos rectos, quia facit angulos cum <lb/> &longs;ubiecta linea aquales; nam ex decima definitione &longs;i illi anguli &longs;int æquales, <lb/> qui fiunt à tali linea, erunt ip&longs;i quoque recti. </s> <s id="s.005624">demon&longs;tratio igitur e&longs;t à de­<lb/> finitione.</s> </p> <p type="main"> <s id="s.005625">12 Probat lineam illam e&longs;&longs;e perpendicularem ex definitione lineæ per­<lb/>pendicularis, quia nimirum facit angulos, cum &longs;ubiecta linea æquales, re­<lb/> cto&longs;uè; e&longs;t igitur demon&longs;tratio à definitione, à priori, per cau&longs;am formalem.</s> </p> <p type="main"> <s id="s.005626">13 Probat duos angulos e&longs;&longs;e æquales duobus angulis rectis, <expan abbr="quoniã">quoniam</expan> <expan abbr="vtri-&qacute;ue">vtri­<lb/> que</expan> &longs;unt æquales vni tertiæ rei. </s> <s id="s.005627">quare e&longs;t à &longs;igno.</s> </p> <p type="main"> <s id="s.005628">14 Probat intentum, quia aliter &longs;equeretur, partem toti æqualem e&longs;&longs;e.</s> </p> <p type="main"> <s id="s.005629">15 Probat angulos ad verticem æquales e&longs;&longs;e, quia &longs;i ab æqualibus, æqua­<lb/>lia demas ip&longs;i remaneat: vel &longs;unt reliqui. </s> <s id="s.005630">E&longs;t igitur demon&longs;tratio per cau­<lb/> &longs;am materialem, vt dictum e&longs;t in quinta.</s> </p> <p type="main"> <s id="s.005631">16 Probat angulum externum maiorem e&longs;&longs;e interno, quia e&longs;t maior alio <lb/> angulo æquali ip&longs;i interno. </s> <s id="s.005632">e&longs;t à &longs;igno.</s> </p> <p type="main"> <s id="s.005633">17 Probat duos angulos e&longs;&longs;e minores alijs duobus angulis, ex 4. axiom. <lb/> </s> <s id="s.005634">quia. </s> <s id="s.005635">&longs;. </s> <s id="s.005636">&longs;i inæqualibus adiecta &longs;int æqualia, tota erunt inæqualia: vbi cau&longs;a <lb/> inæqualitatis totorum, e&longs;t adiectum illud, quo adiecto conflatur duo tota: <lb/> quare adiectum illud e&longs;t; pars autem e&longs;t materia totius. </s> <s id="s.005637">demon&longs;trat igitur <lb/> per cau&longs;am materialem.</s> </p> <p type="main"> <s id="s.005638">18 Probat angulum vnum e&longs;&longs;e altero <expan abbr="maior&etilde;">maiorem</expan>, quia ille &longs;it veluti totum, <lb/> i&longs;te verò illius pars. </s> <s id="s.005639">reducitur ad cau&longs;am materialem.</s> </p> <p type="main"> <s id="s.005640">19 Probat propo&longs;itum ab impo&longs;&longs;ibili.</s> </p> <p type="main"> <s id="s.005641">20 Probat duo illa latera e&longs;&longs;e reliquo maiora, quia &longs;unt æqualia vni li­<lb/> neæ, quæ ip&longs;a reliquo latere maior e&longs;t. </s> <s id="s.005642">e&longs;t à &longs;igno.</s> </p> <p type="main"> <s id="s.005643">21 Probat illas duas rectas e&longs;&longs;e minores alijs duabus, ex eo, quòd &longs;int <lb/> minores quadam quantitate, quæ quantitas minor e&longs;t illis duabus. </s> <s id="s.005644">à &longs;igno.</s> </p> <p type="main"> <s id="s.005645">Secundò, probat <expan abbr="angulũ">angulum</expan> illum e&longs;&longs;e maiorem altero, quia. </s> <s id="s.005646">f. </s> <s id="s.005647">e&longs;t maior quo­<lb/> dam angulo, qui maior e&longs;t illo altero. </s> <s id="s.005648">pariter à &longs;igno.</s> </p> <p type="main"> <s id="s.005649">22 Probat per illud axioma, quæ &longs;unt æqualia vni tertio, &c.</s> </p> <p type="main"> <s id="s.005650">23 Probat duos angulos e&longs;&longs;e æquales, quòd &longs;int anguli oppo&longs;iti ba&longs;ibus <lb/> triangulorum octauæ. </s> <s id="s.005651">videtur à definitione horum angulorum.</s> </p> <p type="main"> <s id="s.005652">24 Probat latus illud e&longs;&longs;e maius altero latere, ex eo, quòd &longs;it æquale cui­<lb/> dam lateri, quod etiam e&longs;t maius illo latere.</s> </p> <p type="main"> <s id="s.005653">25 Probat propo&longs;itionem, deducens ad ab&longs;urdum.</s> </p> <p type="main"> <s id="s.005654">26 Demon&longs;trat deducendo ad inconueniens.</s> </p> <p type="main"> <s id="s.005655">27 Probat illas e&longs;&longs;e parallelas, quia nunquam concurrere po&longs;&longs;unt; e&longs;t à <lb/> definitione parallelarum.</s> </p> <p type="main"> <s id="s.005656">28 Puto à cau&longs;a demon&longs;trare, o&longs;tendit enim duas rectas e&longs;&longs;e æquidi&longs;tan­<lb/> tes, quia earum anguli alterni &longs;int æquales, illi enim anguli &longs;unt cau&longs;a æqui­ <pb pagenum="34" xlink:href="009/01/318.jpg"/>di&longs;tantiæ linearum. </s> <s id="s.005657">&longs;imile dicendum e&longs;t de &longs;ecunda parte demon&longs;trationis.</s> </p> <p type="main"> <s id="s.005658">29 Prima pars probatur ab impo&longs;&longs;ibili. </s> <s id="s.005659">&longs;ecunda à &longs;igno, quæ &longs;uat æqua­<lb/> lia vni tertio &c. </s> <s id="s.005660">Idem dicendum de tertia parte.</s> </p> <p type="main"> <s id="s.005661">30 Probat e&longs;&longs;e parallelas ex 27. primi, quare est <expan abbr="eiu&longs;d&etilde;">eiu&longs;dem</expan> naturæ cum illa.</s> </p> <p type="main"> <s id="s.005662">31 <expan abbr="Eand&etilde;">Eandem</expan> habet <expan abbr="ration&etilde;">rationem</expan>, quam 27. primi. </s> <s id="s.005663">per cau&longs;am igitur formalem.</s> </p> <p type="main"> <s id="s.005664">32 Primò, probat <expan abbr="anguiũ">anguium</expan> externum e&longs;&longs;e æqualem duabus internis, & ap­<lb/> po&longs;itis ex eo, quòd partes anguli externi, &longs;int æquales partibus illorum: ex <lb/> æqualitate.&longs; partium infert <expan abbr="æqualitat&etilde;">æqualitatem</expan> totorum: quæ demon&longs;tratio e&longs;t per <lb/> cau&longs;am materialem. </s> <s id="s.005665">Secundò, probat illam adeò celeberrimam, omnis <lb/> triangulus habet tres, &c. </s> <s id="s.005666">quàm fu&longs;i&longs;&longs;imè explicaui &longs;upra ad tex. <!-- REMOVE S-->23. primi <lb/> Po&longs;ter. vbi Ari&longs;t. eam in exemplum perfecti&longs;&longs;imæ demon&longs;trationis adducit.</s> </p> <p type="main"> <s id="s.005667">33 Partim per 4. primi, partim per 27. primi <expan abbr="demõ&longs;trat">demon&longs;trat</expan>: quapropter ad <lb/> earum naturam &longs;unt referendæ.</s> </p> <p type="main"> <s id="s.005668">34 Tria probat. </s> <s id="s.005669"><expan abbr="primũ">primum</expan>, per 26. primi, <expan abbr="&longs;ecundũ">&longs;ecundum</expan> per illud axioma, &longs;i æqua­<lb/>libus æqualia adijcias, tota &longs;unt æqualia, quod duobus angulis applicat. <lb/> </s> <s id="s.005670">quæ demon&longs;tratio e&longs;t à partibus ad tota: à cau&longs;a nimirum materiali. </s> <s id="s.005671">ter­<lb/> tium per 4. primi concludit.</s> </p> <p type="main"> <s id="s.005672">35 Procedit per cau&longs;am materialem: in omni enim ca&longs;u probat illa duo <lb/> parallelogramma e&longs;&longs;e æqualia, quia &longs;i æqualibus æqualia adijciantur, tota <lb/> erunt æqualia: vt in præcedenti dictum e&longs;t.</s> </p> <p type="main"> <s id="s.005673">36 Probat duo e&longs;&longs;e æqualia, quia &longs;unt vni tertio æqualia: videlicet à &longs;i­<lb/> gno, à po&longs;teriori.</s> </p> <p type="main"> <s id="s.005674">37 Probat duo triangula e&longs;&longs;e æqualia, quòd &longs;int dimidia duorum paral­<lb/> lelogrammorum æqualium: e&longs;t <expan abbr="itaq;">itaque</expan> à cau&longs;a materiali.</s> </p> <p type="main"> <s id="s.005675">38 Eadem ratione demon&longs;trat in hac, <expan abbr="atq;">atque</expan> in præcedenti.</s> </p> <p type="main"> <s id="s.005676">39 Propo&longs;itum probat, ad ab&longs;urdum deducendo aduer&longs;arium.</s> </p> <p type="main"> <s id="s.005677">40 Similiter demon&longs;trat ac in præcedenti 39.</s> </p> <p type="main"> <s id="s.005678">41 Probat vnum e&longs;&longs;e duplum alterius, quòd &longs;it duplum alterius, quod il­<lb/> li æquale e&longs;t. </s> <s id="s.005679">videtur à &longs;igno.</s> </p> <p type="main"> <s id="s.005680">42 Probat parallelogrammum, & <expan abbr="triangulũ">triangulum</expan> e&longs;&longs;e æqualia, quoniam <expan abbr="vtrũ-que">vtrun­<lb/> que</expan> duplum &longs;it eiu&longs;dem trianguli: videlicet per cau&longs;am materialem.</s> </p> <p type="main"> <s id="s.005681">43 Probat duo parallelogramma e&longs;&longs;e &etail;qualia, quoniam ablatis æquali­<lb/> bus ab æqualibus &longs;int re&longs;idua. </s> <s id="s.005682">cau&longs;a e&longs;t materialis.</s> </p> <p type="main"> <s id="s.005683">44 Probat parallelogrammum æquari triangulo, quia <expan abbr="vtrunq;">vtrunque</expan> cuidam <lb/> tertio æquatur. </s> <s id="s.005684">à &longs;igno videlicet.</s> </p> <p type="main"> <s id="s.005685">45 Probat totum parallelogrammum æquari toti rectilineo; eo, quòd <lb/> partes amborum totorum &longs;int æquales: e&longs;t per&longs;picua cau&longs;a materialis.</s> </p> <p type="main"> <s id="s.005686">46 Probat quadrilaterum quoddam e&longs;&longs;e quadratum ex definitione qua­<lb/> drati, quia &longs; habet quatuor angulos rectos, & quatuor latera æqualia. </s> <s id="s.005687">e&longs;t <lb/> igitur à cau&longs;a formali.</s> </p> <p type="main"> <s id="s.005688">47 Probat quadratum lateris angulo recto &longs;ub&longs;en&longs;i, e&longs;&longs;e æquale duobus <lb/> quadratis reliquorum <expan abbr="laterũ">laterum</expan> trianguli illius: & ratio de&longs;umpta e&longs;t à parti­<lb/> bus, quia. </s> <s id="s.005689">&longs;. </s> <s id="s.005690">partes prædicti quadrati æquales &longs;unt &longs;ingillatim pr&etail;dictis qua­<lb/> dratis; ergo totum quadratum totis illis quadratis æquale e&longs;t. </s> <s id="s.005691">manife&longs;ta e&longs;t <lb/> cau&longs;a materialis.</s> </p> <p type="main"> <s id="s.005692">48 Probat angulum quendam e&longs;&longs;e rectum, eo, quòd æqualis &longs;it cuidam <lb/> angulo recto. </s> <s id="s.005693">e&longs;t à &longs;igno.</s> </p> <pb pagenum="35" xlink:href="009/01/319.jpg"/> <p type="main"> <s id="s.005694">Hæc pauca &longs;ufficiant, vt Philo&longs;ophi habeant, vnde po&longs;&longs;int de Geometri­<lb/> cis demon&longs;trationibus dijudicare. </s> <s id="s.005695">non tamen qui&longs;piam exi&longs;timet idem iu­<lb/> dicium de reliquis Mathematicis e&longs;&longs;e faciendum, A&longs;tronomia enim, Opti­<lb/> ca, & ali&etail; vtuntur etiam alijs cau&longs;arum generibus in demon&longs;trando, vt &longs;up. <lb/> </s> <s id="s.005696">cap. 5. de natura Mathem. patuit. </s> <s id="s.005697">Et quamuis &longs;&etail;pè demon&longs;trent ab effe­<lb/>ctu, perpetuò tamen euidentiam efficiunt eam, vt nullam, vt ait Themi&longs;tius, <lb/> patiantur in&longs;tantiam.</s> </p> <p type="main"> <s id="s.005698">Hortabantur me nonnulli, vt eandem operam locis Mathematicis, quæ <lb/> apud Platonem &longs;unt, impenderem: quibus dum obtemperare vellem repe­<lb/> ri Theonem quendam Smirnæum Scriptorem Græcum, iam pridem idem <lb/> præ&longs;titi&longs;&longs;e, cuius opus adhuc Græcum a&longs;&longs;eruatur in Vaticana Bibliotheca, <lb/> vt ait Io&longs;ephus Auria in præf. </s> <s id="s.005699">ad &longs;uum Theodo&longs;ium Tripolitam; vbi <lb/>&longs;pondet &longs;e breui eum è Gr&etail;co à &longs;e conuer&longs;um, in lucem editu­<lb/> rum, quod an pr&etail;&longs;titerit ignoro. </s> <s id="s.005700">Curandum igitur e&longs;t, <lb/> à recentioribus Platonicis, vt tandem aliquan­<lb/> do, ne à quopiam actum agatur latina <lb/> voce, ac luce pariter donetur.</s> </p> <p type="head"> <s id="s.005701"><emph type="italics"/>LAVS DEO.<emph.end type="italics"/></s> </p> <pb xlink:href="009/01/320.jpg"/> <pb xlink:href="009/01/321.jpg"/> <p type="head"> <s id="s.005702">CLARORVM <lb/> MATHEMATICORVM <lb/> CHRONOLOGIA</s> </p> <p type="head"> <s id="s.005703">Eorum videlicet, qui rebus, aut &longs;criptis cla­<lb/> ruerunt, ex certis hi&longs;torijs deprompta.</s> </p> <p type="head"> <s id="s.005704"><emph type="italics"/>Omißis tum fabulo&longs;is, tum ob nimiam antiquitatem incertis, <lb/>veluti &longs;unt ea, quæ de Athlante, Zoroa&longs;tro, Endimione, <lb/> Orpheo, Lino, alijsqué traduntur.<emph.end type="italics"/></s> </p> <p type="head"> <s id="s.005705">Iubal verò pater canentium cithara, & organo, hoc e&longs;t Mu&longs;icæ <lb/> auctor, omi&longs;&longs;us e&longs;t eò, quòd nimio interuallo <lb/> cæteros antecedat.</s> </p> <pb xlink:href="009/01/322.jpg"/> <pb pagenum="39" xlink:href="009/01/323.jpg"/> <p type="head"> <s id="s.005706"><emph type="italics"/>PRIMVM SECVLVM INCIPIENS<emph.end type="italics"/><lb/> <arrow.to.target n="table7"/></s> </p> <table> <table.target id="table7"/> <row> <cell>Ab Orbe cond. anno</cell> <cell>3237</cell> </row> <row> <cell>Ante primam Olymp. ann.</cell> <cell>76</cell> </row> <row> <cell>Ante Vrbem cond. ann.</cell> <cell>100</cell> </row> <row> <cell>Ante Chri&longs;ti natiuitatem ann.</cell> <cell>852</cell> </row> <row> <cell>Io&longs;aphat Iudæorum Rege.</cell> <cell/> </row> <row> <cell>Aremulo Latinorum Rege.</cell> <cell/> </row> </table> <p type="head"> <s id="s.005707"><emph type="italics"/>Singula porrò &longs;ecula ex 100. annis constant. </s> <s id="s.005708">Anno huius &longs;eculi 76. <lb/> vel ante Vrb. <!-- REMOVE S-->cond. </s> <s id="s.005709">24. Olympiades initium &longs;ump&longs;erunt.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.005710">TERPANDER THEBANVS mu&longs;icus celeberrimus, Ho­<lb/> meri pronepos, de quo Ari&longs;t. in probl. </s> <s id="s.005711">& alij omnes veteres me­<lb/> minerunt: claruit paulo ante primam Olympiad. <!-- REMOVE S-->hoc e&longs;t ante <lb/> Chri&longs;ti natiuitatem 800. circiter annis. </s> <s id="s.005712">Lyram, quam olim <lb/> Orpheus tetrachordum fecerat, ip&longs;e heptachordum reddidit. <lb/> </s> <s id="s.005713">modulos lyricos, & leges fidium inuenit. </s> <s id="s.005714">adiecit &longs;uis, & Homeri carminibus <lb/> modos, quibus canerentur. </s> <s id="s.005715">Primus de Mu&longs;ica &longs;crip&longs;it. </s> <s id="s.005716">Lacædemonios in­<lb/> ter &longs;e di&longs;&longs;identes cantus &longs;uauitate &longs;edauit. </s> <s id="s.005717">quaternas in ludis Pythijs victo­<lb/> rias retuli&longs;&longs;e publicis monumentis traditum e&longs;t. </s> <s id="s.005718">ex Plutar. <!-- REMOVE S-->de Mu&longs;ica.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005719">Vt autem intelligas quidnam e&longs;&longs;ent leges, de quibus hic, & infra pa&longs;&longs;im <lb/> fit mentio, audi Plutarchum de Mu&longs;ica. <!-- KEEP S--></s> <s id="s.005720">Omninò inquit cytharæ <expan abbr="cãtus">cantus</expan> Ter­<lb/> pandri ratio omni ex parte &longs;implex perexit e&longs;&longs;e <expan abbr="v&longs;q;">v&longs;que</expan> ad ætatem Phrynidis, <lb/> non enim antiquitus pro libidine cuiu&longs;que (vti nunc) licebat fidibus cane­<lb/> re, nec rithmus, concentu&longs;uè transferre: in ip&longs;is <expan abbr="namq;">namque</expan> legibus accommo­<lb/> datam <expan abbr="cuiq;">cuique</expan> tentionem tuebatur, cuius rei cau&longs;a id nominis inditum erat: <lb/> leges enim &longs;unt vocatæ, quoniam præ&longs;criptum qua&longs;i lege, <expan abbr="cautum&qacute;">cautumque</expan>; erat, <lb/> ne quis per quamlibet vnam &longs;peciem, <expan abbr="formam&qacute;">formamque</expan>; tentionis tran&longs;grederetur.</s> </p> <p type="main"> <s id="s.005721">XENOCRATES Italus Locren&longs;is, po&longs;t Terpandrum, & ante Saca­<lb/> dam vixit, fuit Pæanum conditor. </s> <s id="s.005722">Patritius in Poetica.</s> </p> <p type="main"> <s id="s.005723">ARDVLVS TRÆZENIVS prior Clona, Tibianam mu&longs;icam <lb/> con&longs;tituit. </s> <s id="s.005724">Plutarchus de Mu&longs;ica.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005725">CLONAS ad imitationem Terpandri, primus leges Tibiarum fecit. <lb/> </s> <s id="s.005726">circa primam Olymp. <!-- REMOVE S-->Plut. <!-- REMOVE S-->de Mu&longs;ica.<!-- KEEP S--></s> </p> <pb pagenum="40" xlink:href="009/01/324.jpg"/> <p type="head"> <s id="s.005727"><emph type="italics"/>SECVNDVM SECVLVM INCIPIENS<emph.end type="italics"/><lb/> <arrow.to.target n="table8"/><!-- KEEP S--></s> </p> <table> <table.target id="table8"/> <row> <cell>Ab Vrbecondita.</cell> <cell/> </row> <row> <cell>Ab Orbe cond. ann.</cell> <cell>3337</cell> </row> <row> <cell>Olympiadis 6. ann.</cell> <cell>4</cell> </row> <row> <cell>Ante Chri&longs;ti natiuitatem ann.</cell> <cell>752</cell> </row> <row> <cell>Ozia ludæorum Rege.</cell> <cell/> </row> <row> <cell>Romulo Latinorum Rege.</cell> <cell/> </row> </table> <p type="main"> <s id="s.005728">SACADAS ARGIVVS conditor Modorum: & inuentor legis <lb/> Tripartilis. </s> <s id="s.005729">circa Ro. <!-- REMOVE S-->cond. </s> <s id="s.005730">Pindaro antiquior. </s> <s id="s.005731">ter vicit in ludis Py­<lb/> thijs. </s> <s id="s.005732">Plaut. <!-- REMOVE S-->& Patric.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005733">EVPHORBVS PHRYX ante Thaletem contemplationem <lb/> de lineis fecit, & triangulum Scalenum inuenit, ide&longs;t (ve opinor) modum <lb/> ip&longs;um con&longs;truendi excogitauit, hic igitur primus geometrizare cœpit. <lb/> </s> <s id="s.005734">Laertius in Thalete.</s> </p> <p type="head"> <s id="s.005735"><emph type="italics"/>TERTIVM SECVLVM INCIPIENS<emph.end type="italics"/><lb/> <arrow.to.target n="table9"/><!-- KEEP S--></s> </p> <table> <table.target id="table9"/> <row> <cell>Ab Vrbe cond. ann.</cell> <cell>101</cell> </row> <row> <cell>Ante Chri&longs;ti natiuitatem ann.</cell> <cell>652</cell> </row> <row> <cell>Mana&longs;&longs;e Iudæorum.</cell> <cell/> </row> <row> <cell>Tullo Ho&longs;tilio Romanorum Rege.</cell> <cell/> </row> </table> <p type="main"> <s id="s.005736">THALES MILESIVS ab Vrbe cond. </s> <s id="s.005737">ann. </s> <s id="s.005738">120. natus. </s> <s id="s.005739">hic pri­<lb/> mus omnium &longs;eptem Sapientum appellatus e&longs;t Sapiens. </s> <s id="s.005740">ex Aegy­<lb/> pto primus in Græciam Geometriam tran&longs;tulit. </s> <s id="s.005741">inuenit triangu­<lb/> lum in circulo orthogonicum, hoc e&longs;t, ni fallor, 31. tertij Elem. <lb/> <!-- KEEP S--></s> <s id="s.005742">Quintam, & 15. & 26. primi Elemen. <!-- REMOVE S-->adinuenit. </s> <s id="s.005743">illud etiam demon&longs;trauit, <lb/> Diametrum circulum bifariam &longs;ecare. </s> <s id="s.005744">tropicos, & æquinoctialem de&longs;igna­<lb/>uit. </s> <s id="s.005745">primus eclyp&longs;es Solis prædixit: quarum prima te&longs;te Piin. <!-- REMOVE S-->lib 2. cap. 12. <lb/> contigit ann. </s> <s id="s.005746">V. C. 170. men&longs;us e&longs;t Aegypti Pyramides ex vmbra. </s> <s id="s.005747">inuentor <lb/> fuit Vr&longs;æ minoris, ide&longs;t, eam primus ob&longs;eruauit, & alios docuit. </s> <s id="s.005748">ex præno­<lb/> tione, atque oliuarum emptione diuitias &longs;ibi comparauit. </s> <s id="s.005749">ante Methonem <lb/> ann. </s> <s id="s.005750">132.</s> </p> <p type="main"> <s id="s.005751">SIMONIDES LYRICVS octauam lyræ chordam addidit: hic <lb/> fuit inuentor Artis memoriæ. </s> <s id="s.005752">Plin.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005753">LYCAON Mu&longs;icus, nouum chordarum ordinem inuexit, quem habes <lb/> loco. </s> <s id="s.005754">344. locorum Mathematicorum, & octauam lyræ chordam addidit. <lb/> </s> <s id="s.005755">Boetius. </s> <s id="s.005756">Zarlinus.</s> </p> <p type="main"> <s id="s.005757">MAMERTINVS in&longs;ignis Geometra, <expan abbr="qui&qacute;">quique</expan>; multa geometrica ad­<lb/> inuenit. </s> <s id="s.005758">Thaleti &longs;ucce&longs;&longs;it.</s> </p> <p type="main"> <s id="s.005759">ANAXIMANDER MILESIVS Thaleti &longs;ucce&longs;&longs;or. </s> <s id="s.005760">Horologium <pb pagenum="41" xlink:href="009/01/325.jpg"/>Solare, Sphæram, <expan abbr="Gnomonem&qacute;">Gnomonemque</expan>, reperit, obliquitatem Zodiaci ob&longs;eruauit. <lb/> </s> <s id="s.005761">Terræ circuitum reperit. </s> <s id="s.005762">primus tabulam Geographicam expo&longs;uit. </s> <s id="s.005763">primus <lb/> Lunam aliena luce lucere demon&longs;trauit. </s> <s id="s.005764">&longs;phæram con&longs;truxit. </s> <s id="s.005765">Plin. Laert.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005766">CLEOSTRATVS Zodiacum in 12. &longs;igna diui&longs;it. </s> <s id="s.005767">paulo po&longs;t Ana­<lb/> ximandrum. </s> <s id="s.005768">Plin.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005769">HECATEVS MILESIVS primus codicem de &longs;itu orbis reliquit. <lb/> </s> <s id="s.005770">paulo po&longs;t Thaletem. </s> <s id="s.005771">Proclus in comm. <!-- REMOVE S-->Euclidis.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005772">AMETISTVS &longs;ummus Geometra, atque rerum geometricarum in­<lb/> uentor, frater Ste&longs;ichori poetæ. </s> <s id="s.005773">inter Thaletem, & Pyth. <!-- KEEP S--></s> <s id="s.005774">Proclus.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005775">POLEMON auditor Panetij Rhodij, tempore Ari&longs;tophanis gram­<lb/> matiei, orbis de&longs;criptionem fecit. </s> <s id="s.005776">Suidas.</s> </p> <p type="main"> <s id="s.005777">SAPPHO Poetria, & Mu&longs;ica. <!-- KEEP S--></s> <s id="s.005778">prima Plectri v&longs;um inuexit, cùm prius <lb/> digitis &longs;olum pul&longs;arent. </s> <s id="s.005779">inuentrix etiam Mixtolydij concentus. </s> <s id="s.005780">Plut.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005781">PYTHAGORAS SAMIVS, Aegypto, ac Per&longs;ide perlu&longs;trata, in <lb/> Mathematicis excelluit. </s> <s id="s.005782">primus Numerorum &longs;cientiam apud græcos illu­<lb/> &longs;trauit. </s> <s id="s.005783">Mu&longs;icæ theoricam ex Fabri malleis adinuenit. </s> <s id="s.005784">Luciferum, <expan abbr="atq;">atque</expan> He­<lb/> &longs;perum, quæ duo &longs;ydera putabantur, e&longs;&longs;e vnum, <expan abbr="atq;">atque</expan> idem Veneris a&longs;trum <lb/> docuit. </s> <s id="s.005785">omne triangulum habere tres, &c. </s> <s id="s.005786">quæ e&longs;t 32. primi Elem. primi <lb/> Pythag. <!-- REMOVE S-->demon&longs;trarunt. </s> <s id="s.005787">47. primi Elem. reperit, pro qua Mu&longs;is Hecatombas <lb/> immolauit. </s> <s id="s.005788">primus Mathematicæ ludum aperuit. </s> <s id="s.005789">Proclus. <!-- KEEP S--></s> <s id="s.005790">Plin.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005791">TELAVGES filius Pythagoræ, & magi&longs;ter Empedoclis, &longs;crip&longs;it de <lb/> Quaternario libros 4.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005792">ANAXIMENAS MILESIVS tempore Pythagoræ, dixit &longs;ydera <lb/> non &longs;olum &longs;upra terram, &longs;ed circa terram moueri. </s> <s id="s.005793">Laert.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005794">DAMON Mu&longs;icus, Pythag. <!-- REMOVE S--><expan abbr="adole&longs;c&etilde;tes">adole&longs;centes</expan>, aliquot luxuriæ deditos, har­<lb/> monicis canticis ad bonam frugem reuocauit. </s> <s id="s.005795">Zarlinus.</s> </p> <p type="head"> <s id="s.005796"><emph type="italics"/>QVARTVM SECVLVM INCIPIENS<emph.end type="italics"/><lb/> <arrow.to.target n="table10"/><!-- KEEP S--></s> </p> <table> <table.target id="table10"/> <row> <cell>Ab Vrbe cond. ann.</cell> <cell>201</cell> </row> <row> <cell>Ante Chri&longs;tum ann.</cell> <cell>552</cell> </row> <row> <cell>Sub Babylonica captiuitate Iudæorum.</cell> <cell/> </row> <row> <cell>Seruio Tullio Romanorum Rege.</cell> <cell/> </row> </table> <p type="head"> <s id="s.005797"><emph type="italics"/>Anno 44. huius &longs;eculi, Romæ exactis Regibus Con&longs;&longs;. <!-- REMOVE S-->&longs;ufficiuntur.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.005798">ANAXAGORAS CLAZOMENIVS primus lunarem <lb/> eclyp&longs;im prædixit, <expan abbr="eius&qacute;">eiusque</expan>; cau&longs;am patefecit. </s> <s id="s.005799">primus librum in lu­<lb/>cem edidit. </s> <s id="s.005800">dixit Solem e&longs;&longs;e maiorem Pelopomne&longs;o. </s> <s id="s.005801">&longs;crip&longs;it de <lb/> radijs vi&longs;iuis, vel de ratione &longs;cenographices. </s> <s id="s.005802">Vitr. lib. 7. Val. <lb/> <!-- REMOVE S-->Max. <!-- REMOVE S-->Diog. Laert.</s> </p> <p type="main"> <s id="s.005803">OENIPEDES CHIVS Democriti &longs;yncronus, inuenit 12. & 23. <lb/> primi Elem. huius di&longs;cipulus fuit Zenodorus.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005804">ZENODORVS auctor tractatus de figuris I&longs;operimetris, qui e&longs;t <lb/> apud Clauium in &longs;phæra, & in Geometric. <!-- REMOVE S-->pract. <!-- KEEP S--></s> <s id="s.005805">Theon enim, ex quo de­<pb pagenum="42" xlink:href="009/01/326.jpg"/>&longs;ump&longs;it Clauius, eum Zenodoro attribuit.</s> </p> <p type="main"> <s id="s.005806">PERICLES di&longs;cipulus Anaxagoræ, & Athenien&longs;ium Princeps; Athe­<lb/> nien&longs;es ob tetram Solis eclyp&longs;im trepidantes, & palantes, eclyp&longs;is natura <lb/> expo&longs;ita, &longs;edauit. </s> <s id="s.005807">Val. <!-- REMOVE S-->Max.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005808">HIPPOCRATES CHIVS, qui dum circulum quadrare conare­<lb/> tur, lunulam quadrauit. </s> <s id="s.005809">eius circuli quadraturam Ari&longs;t. &longs;æpè in paralogi&longs;mi <lb/> exemplum adducit, <expan abbr="eam&qacute;">eamque</expan>; breuiter expo&longs;uit. </s> <s id="s.005810">primus Elementa Geometri­<lb/> ca con&longs;crip&longs;it. </s> <s id="s.005811">primus in&longs;pexit duabus medijs proportionalibus <expan abbr="inu&etilde;tis">inuentis</expan> cu­<lb/>bum duplari po&longs;&longs;e. </s> <s id="s.005812">Erato&longs;thenes apud Eutocium in commen. <!-- REMOVE S-->Archimedis. <lb/> <!-- KEEP S--></s> <s id="s.005813">Proclus etiam.</s> </p> <p type="main"> <s id="s.005814">THEODORVS CYRENEVS &longs;odalis Hippocratis Chij, multis <lb/> Geometriam auxit. </s> <s id="s.005815">Proclus.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005816">PHRINIS in&longs;ignis Cytharedus. </s> <s id="s.005817">primus apud Athenien&longs;es cithara ce­<lb/> cinit. </s> <s id="s.005818"><expan abbr="primas&qacute;">primasque</expan>; in Panathenaicis tulit. </s> <s id="s.005819">fuit di&longs;cipulus Ari&longs;toclis, qui ex Ter­<lb/> pandri familia ortum trahebat.</s> </p> <p type="main"> <s id="s.005820">PHRINICVS, cuius Ari&longs;t. in Problem. mu&longs;icis cecinit: in&longs;ignis mu­<lb/> &longs;icus, ac tetrametri carminis inuentor.</s> </p> <p type="main"> <s id="s.005821">LASVS HERMINÆVS primus omnium de Mu&longs;ica &longs;crip&longs;it. </s> <s id="s.005822">Darij <lb/> Hida&longs;pis tempore. </s> <s id="s.005823">Suida.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005824">DIOCLES de Mu&longs;ica &longs;crip&longs;it. </s> <s id="s.005825">Suida.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005826">ISMENIVS CHORAVLES, te&longs;te Boetio, multis ægritudine la­<lb/> borantibus, &longs;ono, & cantu omnes animi mole&longs;tias deter&longs;it. </s> <s id="s.005827">eius æqualis fuit <lb/> Diony&longs;iodorus, & Nicomachus. </s> <s id="s.005828">Plin.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005829">NICOMACHVS Arithmeticus, quem Boetius &longs;equitur, & cuius ex­<lb/> tat græca arithmetica, vbi & de mu&longs;ica tractat ex Zarlino 8. &longs;upplem. </s> <s id="s.005830">mu­<lb/> &longs;icalium. </s> <s id="s.005831">Pappus lib. 3. eum Pythagoricum appellat; I&longs;idorus lib. 3. ethym. <lb/> </s> <s id="s.005832">videtur eum paulo po&longs;t Pythagoram collocare. </s> <s id="s.005833">eiu&longs;dem meminit Eutocius.</s> </p> <p type="main"> <s id="s.005834">EMPEDOCLES AGRIGENTINVS Pythagoricus, cantu furibundum <lb/> adole&longs;centem, ac nudo ferro ho&longs;tem impetentem compre&longs;&longs;it, ac &longs;edauit.</s> </p> <p type="main"> <s id="s.005835">TIMÆVS LOCRVS Pythagoricus, Mathemata &longs;crip&longs;it, te&longs;te Sui­<lb/> da. </s> <s id="s.005836">paulo maior Platone, à quo Plato &longs;uum Timæum in&longs;crip&longs;it, ac partim <lb/> de&longs;crip&longs;it. </s> <s id="s.005837">extat adhuc ip&longs;ius monumentum de natura mundi.</s> </p> <p type="main"> <s id="s.005838">SIMON Philo&longs;ophus Socratis amicus; &longs;crip&longs;it Dialogum de mu&longs;ica. <lb/> </s> <s id="s.005839">Diog. <!-- REMOVE S-->Laert.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005840">CRATISTVS, qui &longs;olo naturæ acumine, quoduis geometricum Pro­<lb/> blema, quamuis difficile re&longs;oluebat. </s> <s id="s.005841">Proclus.<!-- KEEP S--></s> </p> <pb pagenum="43" xlink:href="009/01/327.jpg"/> <p type="head"> <s id="s.005842"><emph type="italics"/>QVINTVM SECVLVM INCIPIENS<emph.end type="italics"/><lb/> <arrow.to.target n="table11"/><!-- KEEP S--></s> </p> <table> <table.target id="table11"/> <row> <cell>Ab Vrbe cond. ann.</cell> <cell>301</cell> </row> <row> <cell>Ante Chri&longs;tum ann.</cell> <cell>452</cell> </row> <row> <cell>P. Sextio, T. Memnio Con&longs;&longs;.</cell> <cell/> </row> </table> <p type="head"> <s id="s.005843"><emph type="italics"/>In quo Socrates &longs;eptuagenarius anno ab Vrbe cond. </s> <s id="s.005844">353. <lb/> Olymp. <!-- REMOVE S-->95. ann. </s> <s id="s.005845">1. moruur.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.005846">DEMOCRITVS MILESIVS anno vno maior natu quàm <lb/> Socrates. </s> <s id="s.005847">&longs;crip&longs;it de contactu circuli, & &longs;phæræ. </s> <s id="s.005848">de Geometria. <lb/> <!-- KEEP S--></s> <s id="s.005849">de lineis irrationalibus. </s> <s id="s.005850">de &longs;olidis. </s> <s id="s.005851">de numeris geometricis. </s> <s id="s.005852">Har­<lb/> monica, &longs;iue de Mu&longs;ica. <!-- KEEP S--></s> <s id="s.005853">de concentu, & harmonia. </s> <s id="s.005854">Actinogra­<lb/> phiam, &longs;iue de radijs, &longs;iue de Per&longs;pectiua, &longs;iue de Scenographice. </s> <s id="s.005855">certamen <lb/> Clep&longs;ydræ. </s> <s id="s.005856">de Planetis, de anno magno. </s> <s id="s.005857">Cœli, <expan abbr="t&etail;rræ&qacute;">t&etail;rræque</expan>; <expan abbr="de&longs;cription&etilde;">de&longs;criptionem</expan>. </s> <s id="s.005858">Laert.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005859">ANTISTHENES Socratis auditor de Mu&longs;ica <expan abbr="cõmentatus">commentatus</expan> e&longs;t. </s> <s id="s.005860">Laer.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005861">SIMMIAS Thebanus di&longs;cipulus Socratis, de Mu&longs;ica. <!-- KEEP S--></s> <s id="s.005862">Laert. <!-- KEEP S--></s> <s id="s.005863">Suid.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005864">PARMENIDES ELEATES primus dixit terram e&longs;&longs;e <expan abbr="rotũdam">rotundam</expan>, <lb/> & in medio mundi &longs;itam. </s> <s id="s.005865">Laert.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005866">PROTAGORAS de Mathematicis &longs;crip&longs;it. </s> <s id="s.005867">Laert.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005868">EPICVRVS ille Epicureorum Sectarius, de Mu&longs;ica &longs;crip&longs;it.</s> </p> <p type="main"> <s id="s.005869">METON, & EVCTEMON ante Alex. Mag. obitum ann. </s> <s id="s.005870">108. Athenis &longs;ol&longs;ti­<lb/> tium ob&longs;eruarunt. </s> <s id="s.005871">Methon primus tempe&longs;tatum <lb/> progno&longs;tica &longs;ingulis annis edidit. </s> <s id="s.005872">primus cyclum Enneadecaterida, vel Au­<lb/> reum numerum in Græcia in&longs;tituit; qui annus Methonis dicitur.</s> </p> <p type="main"> <s id="s.005873">PLATO, Socratis auditor, fuit maximè Mathematum &longs;tudio&longs;us; nam <lb/> &longs;ingulis diebus auditorib. </s> <s id="s.005874">&longs;uis geometricum problema proponebat. </s> <s id="s.005875">Ageo­<lb/> metretos è &longs;chola arcebat. </s> <s id="s.005876">primus &longs;ectiones conicas, & cylindericas inchoa­<lb/> uit. </s> <s id="s.005877">Modum demon&longs;trandi per Analy&longs;im inuenit, item modum agri dime­<lb/> tiendi pulcherrimum, vt apud Vitr. con&longs;tat. </s> <s id="s.005878">Delij eum tanquam oraculum <lb/> con&longs;uluerunt de modo aræ, &longs;iue cubi duplicandi, quos tamen ip&longs;e ad Eucli­<lb/> dem Geometram mode&longs;tè abire iu&longs;&longs;it: non <expan abbr="tam&etilde;">tamen</expan> omnino à problemate ab­<lb/> &longs;tinuit, extat enim apud <expan abbr="Eutociũ">Eutocium</expan> Platonis modus inuendi duas medias pro­<lb/> portionales, quibus inuentis, cubi duplicatio peracta e&longs;&longs;et. </s> <s id="s.005879">in &longs;uis pr&etail;terea <lb/> Dialogis <expan abbr="cõplura">complura</expan> habet Mathematica, quæ olim Theon Smyrneus, ac Phi­<lb/> lippus Mendæus commentarijs illu&longs;trarunt. </s> <s id="s.005880">Proclus Lucr.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005881">AMICLAS HERACLEOTES Platonis familiaris geometricas <lb/> inuentiones amplificauit.</s> </p> <p type="main"> <s id="s.005882">LEODAMAS THASIVS à Platone Analy&longs;im didicit, cuius ope <lb/> multa geometrica excogitauit.</s> </p> <p type="main"> <s id="s.005883">NEOCLIDES LEODAMANTE iunior, inter rerum geome­<lb/> tricarum repertores connumeratur. </s> <s id="s.005884">Proc.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005885">LEON di&longs;cipulus Neoclidis: Determinationem geometricam inuenit, <lb/> quæ di&longs;tinguit problema po&longs;&longs;ibile ab impo&longs;&longs;ibili. </s> <s id="s.005886">Geometrica elementa, <lb/>&longs;ecundus ab Hippocrate, &longs;ed accuratius con&longs;truxit. </s> <s id="s.005887">Procl.<!-- KEEP S--></s> </p> <pb pagenum="44" xlink:href="009/01/328.jpg"/> <p type="main"> <s id="s.005888">EVDOXIVS GNIDVIS A&longs;tronomus, Leonte iunior, & Platonis <lb/> Comes in Aegyptum. </s> <s id="s.005889">Quintum elem. </s> <s id="s.005890">Euclidis de proportionibus inuenit. <lb/> </s> <s id="s.005891">Theoremata multa vniuer&longs;alia reddidit, inuenit etiam Arachnen, horolo­<lb/> gium, videlicet &longs;olare, in quo lineæ horariæ, & arcus &longs;ignorum in modum <lb/>araneæ &longs;e &longs;ecant. </s> <s id="s.005892">Vitr. <!-- KEEP S--></s> <s id="s.005893">Octaetidem, ide&longs;t, Solis, ac Lunæ per octonos an­<lb/> nos recur&longs;us docuit. </s> <s id="s.005894">&longs;crip&longs;it de Geometria, & A&longs;tronomia. <!-- KEEP S--></s> <s id="s.005895">Mathematicas <lb/> ad v&longs;um mechanicum vnà cum Archita traducere conatus e&longs;t: quos am­<lb/> bos Plato redarguit, quòd Philo&longs;ophiam pro&longs;titui&longs;&longs;ent.</s> </p> <p type="main"> <s id="s.005896">ARCHITA TERENTIVS Mechanice inuentor: reprehen&longs;us à <lb/>Platone, vt modo dictum e&longs;t. </s> <s id="s.005897">Cubum reperit. </s> <s id="s.005898">ligneam <expan abbr="columbã">columbam</expan> volantem <lb/> exhibuit. </s> <s id="s.005899">qua præterea ratione duas medias reperiret, extat apud <expan abbr="Eutociũ">Eutocium</expan>.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005900">THEÆTETVS ATHENIENSIS Architæ Tarentini &longs;odalis, <lb/> cum quo Geometrica auxit. </s> <s id="s.005901">Procl. <!-- REMOVE S-->primus de <expan abbr="quinq;">quinque</expan> &longs;olidis tractauit. </s> <s id="s.005902">Laer. <lb/> <!-- REMOVE S-->inuenit 10. decimi.</s> </p> <p type="main"> <s id="s.005903">BRYSO, & ANTIPHON Circuli quadrationem inuenire conantur. </s> <s id="s.005904">extant <lb/> ip&longs;orum conatus apud Ari&longs;t. quos explicauimus in <lb/> locis Math.</s> </p> <p type="main"> <s id="s.005905">PHILIPPVS MENDÆVS di&longs;cipulus Platonis. </s> <s id="s.005906">loca Mathema­<lb/> tica operum Platonis explicauit. </s> <s id="s.005907">Comperit Iridem in&longs;equentes &longs;e fugere, <lb/> fugientes verò in&longs;equi.</s> </p> <p type="main"> <s id="s.005908">HELICO CYGICENVS Platonis familiaris, cùm Dyoni&longs;io Re­<lb/> gi &longs;olis defectum, qui tunc accidit, antea multò prænuncia&longs;&longs;et, Rex &longs;umma <lb/> admiratione affectus, argenti talentum ei donauit.</s> </p> <p type="main"> <s id="s.005909">PHILOSOPHVS, Platonis auditor. </s> <s id="s.005910">De interuallo Solis, & Lunæ. <!-- KEEP S--></s> <s id="s.005911">de <lb/> eclyp&longs;i. </s> <s id="s.005912">de magnitudine Solis, Lunæ, & terræ. </s> <s id="s.005913">de Planetis. </s> <s id="s.005914">de Arithmetica. <lb/> <!-- KEEP S--></s> <s id="s.005915">de numeris fecundis, de opticis, de circularibus, & medietatibus egit. </s> <s id="s.005916">Suida.<!-- KEEP S--></s> </p> <p type="head"> <s id="s.005917"><emph type="italics"/>SEXTVM SECVLVM INCIPIENS<emph.end type="italics"/><lb/> <arrow.to.target n="table12"/><!-- KEEP S--></s> </p> <table> <table.target id="table12"/> <row> <cell>Ab Vrbe cond. ann.</cell> <cell>401</cell> </row> <row> <cell>Ante Chri&longs;ti Natiuitatem ann.</cell> <cell>352</cell> </row> <row> <cell>Tito Manlio Dictatore.</cell> <cell/> </row> </table> <p type="main"> <s id="s.005918"><emph type="italics"/>In quo Alex. Mag. imperauit: <expan abbr="obijt&qacute;">obijtque</expan>; ann. </s> <s id="s.005919">ab Orbe cond. </s> <s id="s.005920">3791. <lb/> ab Vrbe cond. </s> <s id="s.005921">425.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.005922">THEVDIVS MAGNES, elementa geometrica tertius con­<lb/> &longs;truxit. </s> <s id="s.005923">Procl.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005924">CYGICINVS ATHENIENSIS geometrica amplia­<lb/> uit. </s> <s id="s.005925">Procl.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005926">HERMOTIMVS COLOPHONIVS, quartus elementa geo­<lb/> metrica vberiora reddidit.</s> </p> <p type="main"> <s id="s.005927">ARISTÆVS &longs;enior, ante Euclidem demon&longs;trauit de conicis: quem <lb/>Euclides in ij&longs;dem &longs;equutus e&longs;t. </s> <s id="s.005928">Item de re&longs;olutione. </s> <s id="s.005929">Item de locis &longs;olidis, <lb/> lib. 5. Pappus.</s> </p> <pb pagenum="45" xlink:href="009/01/329.jpg"/> <p type="main"> <s id="s.005930">GEMINVS demon&longs;trauit linearum tres tantùm e&longs;&longs;e &longs;imilares, <expan abbr="rectã">rectam</expan>, <lb/> circularem, & &longs;piralem cylindricam. </s> <s id="s.005931">Ortus <expan abbr="quoq;">quoque</expan> linearum &longs;piricarum, & <lb/> conchoidum, & ci&longs;&longs;oidum, tradidit. </s> <s id="s.005932">Propo&longs;itionem quintam primi ele­<lb/> mentorum vniuer&longs;alius, quam Thales, demon&longs;trauit; o&longs;tendit enim æqua­<lb/>les lineas rectas ab vno puncto ad vnam &longs;imilium partium lineam, ide&longs;t, vel <lb/> ad rectam, vel ad circularem, vel ad cylindricam, <expan abbr="incid&etilde;tes">incidentes</expan>, facere angulos <lb/> ad ba&longs;im æquales. </s> <s id="s.005933">Scrip&longs;it præterea lib. 6. <expan abbr="geometricarũ">geometricarum</expan> <expan abbr="enarrationũ">enarrationum</expan>. </s> <s id="s.005934">Procl.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005935">PERSEVS CITTICVS Po&longs;t Geminum: inuenit lineas &longs;piricas. <lb/> </s> <s id="s.005936">Proclus.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005937">MENECHMVS EVDOXI di&longs;cipulus, &longs;ectiones conicas reperit. <lb/> </s> <s id="s.005938">Tribus proportionibus tres alias adiecit. </s> <s id="s.005939">modus ip&longs;ius <expan abbr="inueni&etilde;di">inueniendi</expan> duas me­<lb/> dias, extat apud Eutocium.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005940">DINOSTRATVS Menechmi frater, geometrica <expan abbr="cõplura">complura</expan> reperit.</s> </p> <p type="main"> <s id="s.005941">XENOCRATES CHALCEDONIVS Platonis audit. </s> <s id="s.005942">de geo­<lb/> metria primum duos, deinde <expan abbr="quinq;">quinque</expan> lib. compo&longs;uit. </s> <s id="s.005943">Item de numeris lib. 1. <lb/> De a&longs;trologia lib. 6. Diog. <!-- REMOVE S-->Laert.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005944">EVCLIDES Megaren&longs;is geometra, Platonis tempore, &longs;iquidem te­<lb/> &longs;te Valer. <!-- REMOVE S-->Maxim. <!-- REMOVE S-->ad eum Plato, Delios aræ &longs;acr&etail; conductores amandauit. <lb/> </s> <s id="s.005945">Alexandriæ longo tempore dedit operatu di&longs;cipulis, vnde excellentem in <lb/> Mathematicis habitum con&longs;equutus e&longs;t, <expan abbr="neq;">neque</expan> <expan abbr="v&longs;quã">v&longs;quam</expan> deceptus e&longs;t. </s> <s id="s.005946">Papp. <!-- REMOVE S-->lib. 7. <lb/> vixit autem, & claruít, v&longs;que ad Ptolæmeum primum Aegypti Regem, vt <lb/>vult Procl &longs;it ne idem cum Euclide Megaren&longs;i auctore &longs;ectæ Megaricæ, du­<lb/> bitatur. </s> <s id="s.005947">Quintus geometrica elementa mira methodo contexuit. </s> <s id="s.005948">ip&longs;ius ex­<lb/> tant etiam Phœnomena, optica; catoptrica. </s> <s id="s.005949">mu&longs;ica. </s> <s id="s.005950">data. </s> <s id="s.005951">Item de re&longs;olu­<lb/> tione, de fallacijs, de locis ad &longs;uperficiem lib. 2. Conicorum lib. 4. Item <lb/> Pori&longs;matum lib. 3. quæ perierunt. </s> <s id="s.005952">Pappus, & Procl.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005953">L. PAPYRIVS cur&longs;or Rom&etail; primum &longs;olare horologium publico lo­<lb/> co con&longs;truxit. </s> <s id="s.005954">Plin.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005955">HERMOPHILVS cœcus Theopompum Geometriam &longs;ine abaco, <lb/> ac radio docuit.</s> </p> <p type="main"> <s id="s.005956">ARATVS Poeta Græcus, ante Hipparchum centum ferè annis, de <lb/> Cœlo, <expan abbr="&longs;tellis&qacute;">&longs;tellisque</expan>; eleganter cecinit.</s> </p> <p type="main"> <s id="s.005957">CALIPPVS Cygicenus a&longs;tronomus in&longs;ignis, cuius Ari&longs;tot. in Meta­<lb/> phy&longs;ic. <!-- REMOVE S-->meminit. </s> <s id="s.005958">periodum 76. annorum ex quatuor Methonis cyclis con­<lb/> flauit, qua Sol, & Luna iterum ad pri&longs;tina re&longs;tituantur: initium prime pe­<lb/> riodi &longs;tatuit <expan abbr="obitũ">obitum</expan> Darij Regis, &longs;eu initium Monarchiæ Gr&etail;corum. </s> <s id="s.005959">ex Al­<lb/> mag. <!-- REMOVE S-->Ptol.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005960">ARISTOT. <!-- KEEP S--></s> <s id="s.005961">Platonis auditor, & Alex. Magn. <!-- REMOVE S-->præceptor, &longs;crip&longs;it Me­<lb/> chanicas quæ&longs;tiones. </s> <s id="s.005962">librum vnum, quem appellauit <expan abbr="Mathematicũ">Mathematicum</expan>. </s> <s id="s.005963">&longs;ect. </s> <s id="s.005964">19. <lb/> problematum de mu&longs;ica Item alium librum de mu&longs;ica. </s> <s id="s.005965">Halonis, & Iridis <lb/> demon&longs;trationes apud ip&longs;um primum reperiuntur. </s> <s id="s.005966">pa&longs;&longs;im in &longs;uis operibus <lb/>omnis generis Mathemata ingerit.</s> </p> <p type="main"> <s id="s.005967">AVTOLYCVS præceptor Arce&longs;ilai, floruit circa Olymp. <!-- REMOVE S-->120. extat <lb/>eius &longs;ubtilis admodum liber de &longs;phæra, quæ mouetur, & alter de vario ortu <lb/> & occa&longs;u &longs;yderum. </s> <s id="s.005968">Diog Laer. <!-- REMOVE S-->in Arcelilao.</s> </p> <p type="main"> <s id="s.005969">THEOPHRASTVS Eri&longs;&longs;ius Ari&longs;t. di&longs;cipulus, & succe&longs;&longs;or, reliquit <pb pagenum="46" xlink:href="009/01/330.jpg"/>tres libros de mu&longs;ica, vnum de mu&longs;icis. </s> <s id="s.005970">Harmonicorum vnum. </s> <s id="s.005971">de men&longs;u­<lb/> ris vnum. </s> <s id="s.005972">de numeris vnum. </s> <s id="s.005973">Hi&longs;toriarum geometricarum quatuor. </s> <s id="s.005974">A&longs;tro­<lb/> logicæ hi&longs;toriæ 6. Arithmeticarum hi&longs;toriarum vnum. </s> <s id="s.005975">de lineis indiuiduis. <lb/> </s> <s id="s.005976">Diog. <!-- REMOVE S-->Laert.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005977">HERACLIDES Ponticus, Speu&longs;ippi, & Ari&longs;t. auditor. </s> <s id="s.005978">de Mu&longs;ica <lb/> lib. duos. </s> <s id="s.005979">de Geometria etiam &longs;crip&longs;it. </s> <s id="s.005980">Diog. <!-- REMOVE S-->Laert.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005981">DICEARCHVS Siculus, Ari&longs;t, auditor, primus montium altitudi­<lb/> nem perpendicularem dimen&longs;us e&longs;t; alti&longs;&longs;imum prodidit Pelion, nimirum <lb/> 1250. pa&longs;&longs;uum. </s> <s id="s.005982">Plinius lib. 2. c. <!-- REMOVE S-->67.</s> </p> <p type="main"> <s id="s.005983">ARISTOXENVS Tarentinus Mu&longs;icus, auditor Ari&longs;t. eius extant <lb/> harmonicorum lib. 3. Suid.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005984">CONON Geometra, & A&longs;tronomus in&longs;ignis. </s> <s id="s.005985">Ptolæmeo Philadelpho <lb/> gratificaturus, Berenices Comam in Cœlum tran&longs;ulit. </s> <s id="s.005986">libros 6. de A&longs;trolo­<lb/> gia compo&longs;uit. </s> <s id="s.005987">de eo Virgil.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005988"><emph type="italics"/>In medio duo &longs;igna, Conon. & quis fuit alter.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.005989">ille verò alter Pontano no&longs;tro in Virgilium e&longs;t Archimedes Cononi &longs;ynero­<lb/> nus, & familiaris. </s> <s id="s.005990">Hunc plurimi faciebat Archimedes, <expan abbr="eius&qacute;">eiusque</expan>; propterea <lb/> mortem in lib. de Quadrat. </s> <s id="s.005991">Parab. <!-- REMOVE S-->deflet.</s> </p> <p type="main"> <s id="s.005992">TIMOTHEVS Mu&longs;icus, cùm ad Alexandri magni men&longs;am orthium <lb/> modum caneret, regem velut in&longs;anum coegit ad arma: rur&longs;us remittente <lb/> cantu, regis etiam furorem remi&longs;it. </s> <s id="s.005993">Chromaticum genus inuexit. </s> <s id="s.005994">&longs;eptem <lb/> Terpandri chordis quatuor addidit. </s> <s id="s.005995">Plut. <!-- REMOVE S-->de mu&longs;ic.</s> </p> <p type="main"> <s id="s.005996">ARCHELAVS Chorographus, omnem terram ab Alex. Mag. pera­<lb/> gratam de&longs;crip&longs;it. </s> <s id="s.005997">Diog. Laert.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.005998">XENOPHANTVS Mu&longs;icus, certis modis Alex. Magn. <!-- REMOVE S-->ad arma pro <lb/> libito concitabat.</s> </p> <p type="main"> <s id="s.005999">ARISTARCHVS Samius, hoc tempore ante <expan abbr="Hipparchũ">Hipparchum</expan> 200. ann. <lb/> </s> <s id="s.006000">Scaphen, &longs;eu Hemi&longs;phærium, hoc e&longs;t horologium &longs;ciothericum in concauo <lb/> hemi&longs;phærico de&longs;crip&longs;it Vitr. extat ip&longs;ius egregium monumentum ingenij, <lb/> libellus de magnitudine, & di&longs;tantijs Solis, & Lunæ.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.006001">BEROSVS Chaldæus, tempore Antiochi Sotheris hemicyclium ex­<lb/> cauatum, genus horologij &longs;olaris reperit. </s> <s id="s.006002">dicebat Lunam e&longs;&longs;e pilam ex di­<lb/> midia parte candentem: reliqua habere ceruleo colore. </s> <s id="s.006003">cætera apud Vitr. <lb/> <!-- REMOVE S-->lib. 9. ei Athenien&longs;es ob diuinas prædictiones publicè in gymna&longs;io &longs;tatuam <lb/> inaurata lingua &longs;tatuere. </s> <s id="s.006004">Plin.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.006005">ARISTILLVS A&longs;tronomus, cuius ob&longs;eruationes circa inerrantes <lb/> &longs;tellas, &longs;æpè Ptol. <!-- REMOVE S-->7. Magnæ con&longs;tr. </s> <s id="s.006006">recen&longs;et. </s> <s id="s.006007"><expan abbr="videtur&qacute;">videturque</expan>; eum Timocharide <lb/> paulò antiquiorem facere.</s> </p> <p type="main"> <s id="s.006008">TIMOCHARIS ante Hipparchum ann. </s> <s id="s.006009">156. ab obitu verò Alexan. <lb/> <!-- REMOVE S-->Mag. ann. </s> <s id="s.006010">41. &longs;uas ob&longs;eruationes habuit, quas Ptolæmeus in Almage&longs;to re­<lb/> cen&longs;et. </s> <s id="s.006011">ob&longs;eruauit primam &longs;tellam Arietis po&longs;t &longs;ectionem vernalem gr. <!-- REMOVE S-->2.<!-- KEEP S--></s> </p> <pb pagenum="47" xlink:href="009/01/331.jpg"/> <p type="head"> <s id="s.006012"><emph type="italics"/>SEPTIMVM SECVLVM INCIPIENS<emph.end type="italics"/><lb/> <arrow.to.target n="table13"/><!-- KEEP S--></s> </p> <table> <table.target id="table13"/> <row> <cell>Ab Vrbe cond. anno</cell> <cell>501</cell> </row> <row> <cell>Ante Chri&longs;ti natiuitatem ann.</cell> <cell>252</cell> </row> </table> <p type="main"> <s id="s.006013">Con&longs;&longs;. <!-- REMOVE S-->D. Lunio.</s> </p> <p type="main"> <s id="s.006014">L. Po&longs;thumio.</s> </p> <p type="main"> <s id="s.006015">ERATOSTHENES Cyreneus &longs;ub Ptolymæo Euergete primo, & <lb/> duobus &longs;equentibus regibus, ab obitu Alex. ann. </s> <s id="s.006016">90. & totidem an­<lb/> te Hipparchum, a&longs;tronomicis in Aegypto vacabat, <expan abbr="reperit&qacute;">reperitque</expan>; Solis <lb/> declinationem gr. <!-- REMOVE S-->23. 51. primus terræ ambitum ratione vmbrarum <lb/> Solis inue&longs;tigauit, vt ex Cleomede refert Clauius in &longs;phæra, vbi eam fusè <lb/> explicat. </s> <s id="s.006017">Duplicandi cubi &longs;ummus fuit artifex, vt patet ex eius Me&longs;olabio <lb/> apud Pappum, & Eutocium, <expan abbr="atq;">atque</expan> ob id votiuam tabellam in templo con&longs;e­<lb/> crauit. </s> <s id="s.006018">extat epi&longs;tola ip&longs;ius ad Regem Ptolæmeum apud Eutocium, de ra­<lb/> tione cubi duplicandi.</s> </p> <p type="main"> <s id="s.006019">ARCHIMEDES Syracu&longs;anus ingeniorum Phœnix: quadraginta <lb/> ip&longs;ius mira adinuenta Mechanica fui&longs;&longs;e, tradit Pappus lib. 8. quorum vnum <lb/> fuit; datum pondus data potentia mouere, in quo fertur dixi&longs;&longs;e.</s> </p> <p type="main"> <s id="s.006020"><emph type="italics"/>Dic vbi contestam, & cœlum terramqué mouebo.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.006021">Alterum, quo portionem argenti auro mixtam in Corona illa deprehendit; <lb/> vnde præ lætitia è balneo nudus exiliuit; <expan abbr="atq;">atque</expan> per Vrbem domum <expan abbr="properãs">properans</expan> <lb/> clamabat <foreign lang="greek">e(urhka, e(urhka.</foreign></s> </p> <p type="main"> <s id="s.006022">Tertium &longs;it &longs;phæra illa vitrea, Automa celebre, quæ &longs;yderum <expan abbr="omniũ">omnium</expan> mo­<lb/> tus mirè imitabatur. </s> <s id="s.006023">de qua Claudianus pulcherrimum illud texit epigram­<lb/> ma: Iupiter in paruo, &c.</s> </p> <p type="main"> <s id="s.006024">Quartum, &longs;pecula parabolica con&longs;truxit, quibus ho&longs;tium naues procul <lb/> comburerentur.</s> </p> <p type="main"> <s id="s.006025">Quintum, chocleam aquaticam (ex Vitruuio, & Diodoro) qua in altum <lb/> aqua effertur excogitauit. </s> <s id="s.006026">quam Io&longs;ephus Cedretus no&longs;tra tempe&longs;tate re­<lb/> &longs;taurauit.</s> </p> <p type="main"> <s id="s.006027">Sextum, nauim graui pondere oneratam, machina quadam facillimè in <lb/> litus attraxit.</s> </p> <p type="main"> <s id="s.006028">Septimum, complures bellicas machinas fabricatus e&longs;t, quibus per trien­<lb/> nium contra ho&longs;tes Romanos patriam &longs;olus tutatus e&longs;t. </s> <s id="s.006029">reliqua ip&longs;ius adin­<lb/> uenta perierunt. </s> <s id="s.006030">Verumenimuerò admiranda mihi magis ip&longs;ius &longs;cripta mo­<lb/> numenta videntur, in quibus quidquid e&longs;t, totum Archimedis e&longs;t. </s> <s id="s.006031">quorum <lb/> memoria extat, hæc &longs;unt. </s> <s id="s.006032">De æquaponderantibus lib. 2. Circuli dimen&longs;io. <lb/> </s> <s id="s.006033">de lineis &longs;piralibus. </s> <s id="s.006034">quadratura paraboles. </s> <s id="s.006035">de conoidibus, & &longs;phæroidibus. <lb/> </s> <s id="s.006036">de arenæ numero. </s> <s id="s.006037">de ijs, quæ vehuntur in aqua. </s> <s id="s.006038">de &longs;phæra, & cylindro. </s> <s id="s.006039">de li­<lb/> bra. </s> <s id="s.006040">viaticum. </s> <s id="s.006041">de &longs;phæræ <expan abbr="cõ&longs;tructione">con&longs;tructione</expan>. </s> <s id="s.006042">de 13. &longs;olidis à &longs;e inuentis. </s> <s id="s.006043">lemmata. <lb/> </s> <s id="s.006044">de &longs;ectione circuli. </s> <s id="s.006045">de &longs;peculis comburentibus. </s> <s id="s.006046">M. <!-- REMOVE S-->Marcellus interdixerat <lb/> ne ille vnus captis Syracu&longs;is occideretur: tantus virtuti honos, vel ab ho&longs;ti­<lb/> bus haberi par e&longs;t. </s> <s id="s.006047">occi&longs;us e&longs;t autem ab ignaro milite, dum in patriæ dire­<lb/> ptione totus cuidam demon&longs;trationi vacaret.</s> </p> <pb pagenum="48" xlink:href="009/01/332.jpg"/> <p type="main"> <s id="s.006048">CTESIBVS Machinator &longs;ubtili&longs;&longs;imus: Pneumatica inuenit, ide&longs;t, <lb/> quæ &longs;piritu, ac vento motus efficerent, qua&longs;i &longs;piritalia. </s> <s id="s.006049">hydraulicas machi­<lb/> nas primus con&longs;truxit. </s> <s id="s.006050">adhuc viget machina illa Cte&longs;ibij, de qua Vitr. <!-- REMOVE S-->Hy­<lb/> draulica etiam horologia primus exhibuit.</s> </p> <p type="main"> <s id="s.006051">SVLPITIVS GALLVS <expan abbr="Cõ&longs;ul">Con&longs;ul</expan>, primus Romani generis rationem <lb/> eclyp&longs;ium in vulgus edidit, & pridie quam P. <!-- REMOVE S-->Aemilius Per&longs;en Regem &longs;upe­<lb/> raret, animos militum ob futuram &longs;equenti die eclyp&longs;im trepidaturos, bre­<lb/> ui futuri euentus, admonitione habita, confirmauit. </s> <s id="s.006052">Plin. Val. <!-- KEEP S--></s> <s id="s.006053">Max.<!-- KEEP S--></s> </p> <p type="head"> <s id="s.006054"><emph type="italics"/>OCTAVVM SECVLVM<emph.end type="italics"/><lb/> <arrow.to.target n="table14"/><!-- KEEP S--></s> </p> <table> <table.target id="table14"/> <row> <cell>Ab Vrbe cond. ann.</cell> <cell>601</cell> </row> <row> <cell>Ante Chri&longs;ti natiuitatem</cell> <cell>152</cell> </row> <row> <cell>Con&longs;. L. Mummio.</cell> <cell/> </row> </table> <p type="main"> <s id="s.006055">APOLLONIVS PERGÆVS &longs;ub Ptolæmeo euergete &longs;ecun­<lb/> do cognomento magnus Geometra, quod vniuer&longs;aliter de omni <lb/> Cono <expan abbr="elem&etilde;ta">elementa</expan> conica octo libris &longs;ubtili&longs;&longs;imis demon&longs;tra&longs;&longs;et. </s> <s id="s.006056">&longs;cri­<lb/> p&longs;it præterea de &longs;ectione proportionis, & &longs;patij. </s> <s id="s.006057">de locis planis <lb/> lib. 2. de perturbatis rationibus. </s> <s id="s.006058">de tactionibus. </s> <s id="s.006059">de inclinationibus. </s> <s id="s.006060">de cho­<lb/> clea. </s> <s id="s.006061">Pappus. </s> <s id="s.006062">modus ip&longs;ius inueniendi duas medias, extat apud Eutocium in <lb/> comm. <!-- REMOVE S-->Archimedis. <!-- KEEP S--></s> <s id="s.006063">pharetram. </s> <s id="s.006064">&longs;olaris horologij genus reperit. </s> <s id="s.006065">Vitr.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.006066">ISIDORVS Philo&longs;ophus, Hyp&longs;iclis Alexandrini præceptor; nam <lb/> Hyp&longs;icles in 15. Elem. vbi ponit inclinationes <expan abbr="quinq;">quinque</expan> <expan abbr="corporũ">corporum</expan> regularium, <lb/> ait &longs;e eas ab I&longs;idoro Magno præceptore &longs;uo accepi&longs;&longs;e. </s> <s id="s.006067">Plinius eum citat in <lb/> Geographicis. <!-- KEEP S--></s> <s id="s.006068">Suidas verò &longs;ic, I&longs;idorus Philo&longs;ophus, vt &longs;i quis alius philo­<lb/> &longs;ophatus e&longs;t in Mathematis.</s> </p> <p type="main"> <s id="s.006069">YPSICLES Alexandrinus, I&longs;idori di&longs;cipulus, qui libros duos Elemen­<lb/> torum 14. & 15. Euclidi addidit. </s> <s id="s.006070">nominat Apollonium. </s> <s id="s.006071">videtur his tempo­<lb/> ribus extiti&longs;&longs;e.</s> </p> <p type="main"> <s id="s.006072">PHILO BIZANTIVS mechanicus, mechanica fecit ante Hero­<lb/>nem, à quo memoratur; hunc exi&longs;timo eum e&longs;&longs;e, cuius Proclus ad octauam <lb/> primi meminit, referens ip&longs;ius demon&longs;trationem. </s> <s id="s.006073">modus ip&longs;ius inueniendi <lb/> duas medias legitur apud Eutocium in Archim.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.006074">POSSIDONIVS Philo&longs;ophus Panetij di&longs;cipulus, qui Rhodi tempo­<lb/> re Ciceronis docebat, à Plinio Mathematicus appellatur: à Strabone ve­<lb/> rò citatur in Geographicis. <!-- KEEP S--></s> <s id="s.006075">Geographica igitur &longs;crip&longs;it. </s> <s id="s.006076">huius ianuæ cùm <lb/> ad eum audiendum Pomponius Magnus adiret, Imperij fa&longs;ces &longs;ubmi&longs;it.</s> </p> <p type="main"> <s id="s.006077">SERENVS Antin&longs;en&longs;is: cuius &longs;unt Cylindricorum lib. 2. &longs;ubtili&longs;&longs;imi. <lb/> </s> <s id="s.006078">videtur in hæc tempora po&longs;t Apollonium incidi&longs;&longs;e.</s> </p> <p type="main"> <s id="s.006079">HERO <expan abbr="Alexãdrinus">Alexandrinus</expan> Cte&longs;ibij di&longs;cipulus, eius &longs;unt Automata; Spirita­<lb/> lia: de Balli&longs;tis. </s> <s id="s.006080">Mechanica. </s> <s id="s.006081">Barulcos. </s> <s id="s.006082">de Rotulis. </s> <s id="s.006083">de Horologijs aquaticis. <lb/> </s> <s id="s.006084">Camaricha. </s> <s id="s.006085">Cambe&longs;tria. </s> <s id="s.006086">modus ip&longs;ius <expan abbr="inueni&etilde;di">inueniendi</expan> duas medias legitur apud <lb/> Eutocium. <!-- KEEP S--></s> <s id="s.006087">Geometrumenon, ide&longs;t Geometria practica. </s> <s id="s.006088">de eo fit mentio ad <lb/> &longs;ecundam, & 25. primi elem. </s> <s id="s.006089">Proclus. <!-- KEEP S--></s> <s id="s.006090">Pappus. </s> <s id="s.006091">Vitr.<!-- KEEP S--></s> </p> <pb pagenum="49" xlink:href="009/01/333.jpg"/> <p type="main"> <s id="s.006092">HIPPARCVS, qui & Abrachis dicitur ab obitu Alexandri ann. </s> <s id="s.006093">100. <lb/> ante Ptolemæum 280. ob&longs;eruauit maximam Solis declinationem gr. <!-- REMOVE S-->23. 51. <lb/> Inuenit primam Arietis po&longs;t æquinotij Venrni punctum, gr. <!-- REMOVE S-->4. <expan abbr="nouã">nouam</expan> &longs;tellam <lb/> &longs;uo æuo genitam deprehendit, cuius occa&longs;ione in &longs;yderalem &longs;cientiam &longs;eriò <lb/> incubuit. </s> <s id="s.006094">primus igitur &longs;tellas numerauit, <expan abbr="&longs;uis&qacute;">&longs;uisque</expan>; locis a&longs;&longs;ignauit, organis <lb/> ad id excogitatis. </s> <s id="s.006095">Plin. Scrip&longs;it de motu Lunæ in latitudinem, & de Arati <lb/> phænomenis. </s> <s id="s.006096">ex Suida. <!-- KEEP S--></s> <s id="s.006097">Tabulas etiam a&longs;tronomicas, te&longs;te Ptol. <!-- REMOVE S-->condidit. <lb/> </s> <s id="s.006098">Adhuc extant eius lib. 3. in Arati Phænomena: & vnus A&longs;teri&longs;morum, <expan abbr="&longs;unt&qacute;">&longs;untque</expan>; <lb/> Græcè nuper editi.</s> </p> <p type="main"> <s id="s.006099">CLEOMEDES his &longs;eculis gr&etail;cè &longs;cribit Meteora, quibus tractat ea, <lb/> quæ in &longs;ph&etail;ra &longs;olent doceri. </s> <s id="s.006100">extat græcolatinus interprete, & &longs;cholia&longs;te Ro­<lb/> berto Balforeo, qui eum inter Po&longs;&longs;idonium, & Ptolemæum collocat. </s> <s id="s.006101">Item <lb/> Arithmeticam, & Harmonicam, quæ a&longs;&longs;eruantur in Bibliotecha Vaticana, <lb/> & S. Floræ. </s> <s id="s.006102">ex eodem Roberto.</s> </p> <p type="head"> <s id="s.006103"><emph type="italics"/>NONVM SEMISECVLVM<emph.end type="italics"/><lb/> <arrow.to.target n="table15"/></s> </p> <table> <table.target id="table15"/> <row> <cell>Continens ann.</cell> <cell>52</cell> </row> <row> <cell>Ab Vrbe cond. ann.</cell> <cell>701</cell> </row> <row> <cell>Ante Chri&longs;ti ortum ann.</cell> <cell>52</cell> </row> <row> <cell>Con&longs;. C. Pomp. Magno. <expan abbr="q.">que</expan> Cæcilio.</cell> <cell/> </row> </table> <p type="main"> <s id="s.006104">THEODOSIVS Tripolita de habitationibus. </s> <s id="s.006105">de diebus, & no­<lb/> ctibus. </s> <s id="s.006106">&longs;phæricorum lib. 3. de lineatione ædium. </s> <s id="s.006107">Commentaria <lb/> in Theud&etail; capita. </s> <s id="s.006108">in viaticum Archimedis. <!-- KEEP S--></s> <s id="s.006109">Sceptica capita a&longs;tro <lb/> logica. </s> <s id="s.006110">de vere. </s> <s id="s.006111">Horologium ad omne clima, ide&longs;t vniuer&longs;ale ex­<lb/> cogitauit. </s> <s id="s.006112">Vitr.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.006113">SOSIGENES A&longs;tronomus, cuius opera Iulius Cæ&longs;. <!-- REMOVE S-->Calend. <!-- REMOVE S-->correxit.</s> </p> <p type="main"> <s id="s.006114">Sequentes quinque extiterunt ante Vitr. ex quo eos de&longs;ump&longs;imus: &longs;ed <lb/> quanto ignoratur.</s> </p> <p type="main"> <s id="s.006115">ATHENÆVS de machinis, cuius extant duo fragmenta græca apud <lb/> Vitr in fine. </s> <s id="s.006116">non e&longs;t ille Dipno&longs;ophi&longs;tarum, ille enim vixit in &longs;ecundo Chri­<lb/> &longs;ti &longs;eculo. </s> <s id="s.006117">Eiu&longs;dem mechanica.</s> </p> <p type="main"> <s id="s.006118">DIONYSIODORVS, cuius fragmentum extat apud Eut. <!-- REMOVE S-->in <expan abbr="cõ-men">com­<lb/> men</expan>. <!-- REMOVE S-->Archimedis, quo &longs;ubtili&longs;&longs;ima demon&longs;tratio continetur &longs;ecandi &longs;phæ­<lb/> ram in datam rationem. </s> <s id="s.006119">Inuenit conum, ide&longs;t horologij &longs;olaris genus, fi­<lb/> guram conicam referens, vel in cono de&longs;criptam.</s> </p> <p type="main"> <s id="s.006120">SCOPAS Siracu&longs;anus Plinthum reperit genus horologij in Plintho de­<lb/> &longs;cripti: in&longs;tar quadratæ trabis erectæ, in cuius &longs;ummo erat horizontale, in <lb/> quatuor verò lateribus erant duo verticalia, au&longs;trale, & boreale. </s> <s id="s.006121">necnon <lb/> duo meridiana, orientale, & occidentale.</s> </p> <p type="main"> <s id="s.006122">PATROCLES fuit inuentor <foreign lang="greek">peleki/nou</foreign>, ide&longs;t <expan abbr="bip&etilde;nis">bipennis</expan>, quòd genus ho­<lb/> rologij &longs;olaris erat, figuram bipennis referens.</s> </p> <p type="main"> <s id="s.006123">PARMENION <foreign lang="greek">pros ta isoroumena</foreign> excogitauit, horologia videlicet, <lb/> quæ cœli hi&longs;toriam narrarent, horas, dies, men&longs;es, &longs;igna Zodiaci, & c.<!-- KEEP S--></s> </p> <pb pagenum="50" xlink:href="009/01/334.jpg"/> <p type="main"> <s id="s.006124">ANDRONICVS CYRESTES Athenis in turri octogona <expan abbr="Ane-mo&longs;copiũ">Ane­<lb/> mo&longs;copium</expan> primus collocauit. </s> <s id="s.006125">ex Vitruuio. <!-- KEEP S--></s> <s id="s.006126">ponendus igitur ante <expan abbr="Vitruuiũ">Vitruuium</expan>, <lb/> quanto tamen ignoratur. </s> <s id="s.006127"><expan abbr="Anemo&longs;copiũ">Anemo&longs;copium</expan> e&longs;t machina, continens ventorum <lb/> figuras, ac &longs;itus. </s> <s id="s.006128">cum indice mobili, qui ventum perflantem common&longs;trat: <lb/> quale Bononiæ e&longs;t in Epi&longs;copio.</s> </p> <p type="main"> <s id="s.006129">M. AGRIPPA, Augu&longs;ti gener, & Con&longs;. <!-- REMOVE S-->terrarum orbem proprijs <expan abbr="cõ-mentarijs">com<lb/> mentarijs</expan> de&longs;criptum, po&longs;tea in porticu depictum Pop. <!-- REMOVE S-->Rom. <!-- REMOVE S-->&longs;pectandum <lb/> propo&longs;uit. </s> <s id="s.006130">Plin. lib. 3. cap. 2.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.006131">C. IVLIVS CÆSAR Monarcha, primus &longs;crip&longs;it Metaphra&longs;im in <lb/> Arati Phœmena. </s> <s id="s.006132">Suid.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.006133">VITRVVIVS, qui in &longs;uo de architectura opere <expan abbr="cõplura">complura</expan> mi&longs;cet ma­<lb/> thematica. </s> <s id="s.006134">præcipuè illud, quòd de horologijs &longs;olaribus ex Analemmate <lb/> primus ex latinis, literis con&longs;ignauit. </s> <s id="s.006135">ait Venerem, & Mercurium circa So­<lb/> lem, tanquam centrum circumferri. </s> <s id="s.006136">&longs;uum opus Augu&longs;to dicauit.</s> </p> <p type="main"> <s id="s.006137">C. MANILIVS Antiochenus A&longs;trologus, & Poeta, primus latinis car­<lb/> minibus, quamuis Græcus, a&longs;tronomica cecinit. </s> <s id="s.006138">extat ip&longs;ius a&longs;tronomicon. <lb/> </s> <s id="s.006139">floruit &longs;ub Augu&longs;to.</s> </p> <p type="head"> <s id="s.006140"><emph type="italics"/>DECIMVM SECVLVM<emph.end type="italics"/><lb/> <arrow.to.target n="table16"/><!-- KEEP S--></s> </p> <table> <table.target id="table16"/> <row> <cell>Sed primum à natiuitate Chri&longs;ti.</cell> <cell/> </row> <row> <cell>Ab Orbe cond. ann.</cell> <cell>4089</cell> </row> <row> <cell>Ab Vrbe cond. ann.</cell> <cell>752</cell> </row> <row> <cell>Olympiade exacta</cell> <cell>194</cell> </row> <row> <cell>Octauiani Augu&longs;ti Imper. ann.</cell> <cell>42</cell> </row> </table> <p type="main"> <s id="s.006141">DIONYSIVS AFER, qui Græco poemate orbis &longs;itum de­<lb/> cantauit.</s> </p> <p type="main"> <s id="s.006142">MARINVS TYRIVS &longs;crip&longs;it de Geographia. <!-- KEEP S--></s> <s id="s.006143">eum Pto­<lb/> lemæus reprehendit.</s> </p> <p type="main"> <s id="s.006144">STRABO eruditi&longs;&longs;imè, ac fusè orbis &longs;itum, cuius <expan abbr="magnã">magnam</expan> partem pe­<lb/> ragrauerat, de&longs;crip&longs;it.</s> </p> <p type="main"> <s id="s.006145">SOLINVS, & P. MELA De &longs;itu orbis pariter con&longs;crip&longs;erat.</s> </p> <p type="main"> <s id="s.006146">STRATON AMASENVS Philo&longs;ophus, lib. 7. Geographicos <lb/> edidit Suid.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.006147">PLINIVS, omnis generis Mathemata &longs;uo operi <expan abbr="cõmi&longs;cuit">commi&longs;cuit</expan>. </s> <s id="s.006148">&longs;ed præ­<lb/> cipuè Geographica à 2. lib. <!-- REMOVE S--><expan abbr="v&longs;q;">v&longs;que</expan> ad 6.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.006149">ARTEMIDORVS tempore Strabonis, &longs;crip&longs;it Geographica, vt <lb/> patet ex Plinio, & Strabone, eum &longs;æpè citante.</s> </p> <p type="main"> <s id="s.006150">IV. HIGINIVS de &longs;ignis cœle&longs;tibus. </s> <s id="s.006151">de mundo, & &longs;phæra ad Quin­<lb/> tilianum.</s> </p> <p type="main"> <s id="s.006152">ANDROMACHVS Creteu&longs;is quem Theoricarum inuentorem fa­<lb/> cit Clauius.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.006153">MENELAVS, qui & Mile&longs;ius, po&longs;t Hipparchum a. </s> <s id="s.006154">224. ante Ptole­ <pb pagenum="51" xlink:href="009/01/335.jpg"/>m&etail;um 41. a&longs;tronomicis ob&longs;eruationibus dedit operam. </s> <s id="s.006155"><expan abbr="primã">primam</expan> Arietis po&longs;t <lb/> æquinoctium gr. <!-- REMOVE S-->6. 12. deprehendit. </s> <s id="s.006156">lib. 6. de &longs;ubten&longs;is, &longs;eu chordis. </s> <s id="s.006157">Item <lb/> lib. 3. de &longs;ph&etail;ricis triangulis, qui extant.</s> </p> <p type="main"> <s id="s.006158">PLVTARCHVS libellum de mu&longs;ica optima eruditione, ac doctrina <lb/> refertum reliquit; quem &longs;uperius &longs;æpè citauimus.</s> </p> <p type="head"> <s id="s.006159"><emph type="italics"/>VNDECIMVM SECVLVM<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.006160">Secundum verò à Chri&longs;to incipiens ab ann. <lb/> </s> <s id="s.006161">Chri&longs;ti 101.</s> </p> <p type="main"> <s id="s.006162">Clemente &longs;ummo Chri&longs;tianorum Pont.<!-- REMOVE S-->Imperante Traiano.</s> </p> <p type="main"> <s id="s.006163">DIOPHANTES Alexandrinus Algebræ, quam hodie vocant <lb/> mirabilis artifex: extant eius 13. libri Græci Arithmeticorum. <lb/> </s> <s id="s.006164">ponitur &longs;ub Antonino à Raphaele Bombello in Algebræ præfa­<lb/> tione.</s> </p> <p type="main"> <s id="s.006165">PTOLEMÆVS Alexandr. <!-- REMOVE S-->A&longs;tronomorum princeps. </s> <s id="s.006166">ob&longs;eruabat à <lb/> Natiuit. </s> <s id="s.006167">Chri&longs;ti ann. </s> <s id="s.006168">130. maximam Solis declinationem gr. <!-- REMOVE S-->23. 50. primam <lb/> Arietis po&longs;t æquinot. </s> <s id="s.006169">gr. <!-- REMOVE S-->6. 40. &longs;crip&longs;it magnam con&longs;tructionem, quam Al­<lb/> mage&longs;tum vocant. </s> <s id="s.006170">de Annalemmate. </s> <s id="s.006171">de momentis. </s> <s id="s.006172">Geographiam. <!-- KEEP S--></s> <s id="s.006173">Plani&longs;­<lb/> phærium. </s> <s id="s.006174">de &longs;peculis. </s> <s id="s.006175">libros mechanicos 3. canonem expeditum. </s> <s id="s.006176">de iudi­<lb/> cijs 4. centiloquium. </s> <s id="s.006177">&longs;tellarum inenarrantium &longs;ignificationes.</s> </p> <p type="main"> <s id="s.006178">SEXTVS EMPIRICVS, qui dum de Mathematicis in vtranque <lb/> partem &longs;ubtiliter di&longs;putat, de eis plura doctè in medium profert. </s> <s id="s.006179">ex Gen­<lb/> tiano Herueto eius interprete.</s> </p> <p type="head"> <s id="s.006180"><emph type="italics"/>DVODECIMVM SECVLVM<emph.end type="italics"/><lb/> <arrow.to.target n="table17"/><!-- KEEP S--></s> </p> <table> <table.target id="table17"/> <row> <cell>Tertium autem à Chri&longs;to incipiens</cell> <cell/> </row> <row> <cell>Ab ann. Chri&longs;ti</cell> <cell>201</cell> </row> <row> <cell>Victore &longs;ummo Pont.</cell> <cell/> </row> <row> <cell>Imperante Septimio Seuero.</cell> <cell/> </row> </table> <p type="main"> <s id="s.006181">PORPHIRIVS Philo&longs;ophus Platonicus &longs;crip&longs;it I&longs;agogem a&longs;tro­<lb/> nomicarum rerum lib. 3. Suid. <!-- KEEP S--></s> <s id="s.006182">is e&longs;t, cuius e&longs;t I&longs;agoge, de quinque <lb/> vniuer&longs;alibus. </s> <s id="s.006183">eius Proclus meminit ad 14. 18. & 20. propo&longs;itionem <lb/> primi elem. </s> <s id="s.006184">vbi illius demon&longs;trationes affert. </s> <s id="s.006185">Item Hypothipo&longs;es <lb/> a&longs;tronomicarum po&longs;itionum, ide&longs;t expo&longs;itio in Almage&longs;tum.</s> </p> <p type="main"> <s id="s.006186">CENSORINVS in eruditi&longs;&longs;imo libello de die Natali, plura habet <lb/> ad Mathematicas, præ&longs;ertim verò ad A&longs;tronomum &longs;pectantia.</s> </p> <p type="main"> <s id="s.006187">HIPPOLYTVS Epi&longs;copus, ob di&longs;cordias inter Latinos, & Græcos <lb/>de celebrando Pa&longs;chate paulo ante excitatas, primus &longs;cribit de cyclo Pa&longs;­<lb/> cali, <expan abbr="eius&qacute;">eiusque</expan>; inuentor celebratur. </s> <s id="s.006188">I&longs;idorus.<!-- KEEP S--></s> </p> <pb pagenum="52" xlink:href="009/01/336.jpg"/> <p type="head"> <s id="s.006189"><emph type="italics"/>DECIMVMTERTIVM SECVLVM<emph.end type="italics"/><lb/> <arrow.to.target n="table18"/><!-- KEEP S--></s> </p> <table> <table.target id="table18"/> <row> <cell>Quartum verò Chr. ab ann. Chri&longs;ti</cell> <cell>301</cell> </row> <row> <cell>Marcellino &longs;um. Pont.</cell> <cell/> </row> <row> <cell>Diocletiano, & Maximiano Impp.</cell> <cell/> </row> </table> <p type="head"> <s id="s.006190"><emph type="italics"/>Quo Scholæ florenti&longs;&longs;imæ Romæ, Athenis, Cæ&longs;areæ, <lb/> Constantinopoli, frequentabantur.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.006191">SEXTVS AVIENVS RVFFVS Arati ph&etail;nomena, & Dyoni­<lb/> &longs;ij Afri de &longs;itu orbis poema latine interpretatus e&longs;t.</s> </p> <p type="main"> <s id="s.006192">IVL. MATERNVS Siculus latinè &longs;crip&longs;it: &longs;ed de iudicijs.</s> </p> <p type="main"> <s id="s.006193">THEOPHILVS Epi&longs;copus <expan abbr="Alexãdrinus">Alexandrinus</expan> inter Aegyptios Ma­<lb/> thematicos celebris iu&longs;&longs;u Theodo&longs;ij &longs;enioris Imper. <!-- REMOVE S-->cyclum Pa&longs;chalem or­<lb/> dinauit: cui alium paulo po&longs;t contrarium Romanis Dyoni&longs;ius Abbas pro­<lb/> po&longs;uit.</s> </p> <p type="main"> <s id="s.006194">ABIFELDEA Princeps Syriæ, A&longs;syriæ, & Per&longs;idis, Geographus in­<lb/> &longs;ignis. </s> <s id="s.006195">eius Geographia a&longs;&longs;eruatur in Bibliotheca Palatina Arabicè &longs;cripta. <lb/> </s> <s id="s.006196">Corradus Ge&longs;nerus in Alfraganum.</s> </p> <p type="main"> <s id="s.006197">VALENS huius ætatis in&longs;ignis Mathematicus, qui iu&longs;&longs;u Con&longs;tantini <lb/> Magni, Vrbis Con&longs;tantinopolitanæ, quam tunc ip&longs;e ædificabat, genituram <lb/> ex cœle&longs;ti Themate inani labore dijudicauit. </s> <s id="s.006198">Zonaras.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.006199">EVSEBIVS Cæ&longs;arien&longs;is Epi&longs;copus &longs;cribit de cyclo Pa&longs;chali. </s> <s id="s.006200">I&longs;id.</s> </p> <p type="main"> <s id="s.006201">MAXIMVS Epirota &longs;ub Iuliano Apo&longs;tata &longs;crip&longs;it de numeris. </s> <s id="s.006202">Suid.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.006203">Quinque <expan abbr="&longs;equ&etilde;tes">&longs;equentes</expan> ponendi &longs;unt inter Archimedem, & Proclum; quo au­<lb/> tem loco ignoratur; Proclus enim recen&longs;ens Mathematicos v&longs;que ad Ar­<lb/> chimedem, de eis &longs;ilet.</s> </p> <p type="main"> <s id="s.006204">NICOMEDES, qui de line is conchoidibus &longs;crip&longs;it, per quas duas <lb/> medias proportionales exhibeat, <expan abbr="atq;">atque</expan> hinc cubum duplicabat. </s> <s id="s.006205">ij&longs;dem con­<lb/>choidibus angulum datum rectilineum trifariam &longs;ecabat. </s> <s id="s.006206">extant ip&longs;ius &longs;ub­<lb/> tili&longs;&longs;imi conatus apud Eutocium, & Pappum, & P. <!-- REMOVE S-->Clauium in Geometria <lb/> practica.</s> </p> <p type="main"> <s id="s.006207">EVDEMVS, qui Geometricas enarrationes con&longs;crip&longs;it. </s> <s id="s.006208">Item libel­<lb/> lum de angulo. </s> <s id="s.006209">Proclus.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.006210">MENELAVS Alexandrinus, cuius demon&longs;trationes affert Proclus <lb/> ad vige&longs;imamquintam primi elementi.</s> </p> <p type="main"> <s id="s.006211">GEMINVS RHODIVS, Procli Diadochi præceptor, græcè &longs;cri­<lb/> p&longs;it phænomena: quæ Mediolani in Bibliotheca Ambro&longs;iana a&longs;&longs;eruantur:<lb/> & quidem græcolatina, Edone Stildario interprete. </s> <s id="s.006212">Præterea de ortu li­<lb/> nearum &longs;piralium, conchoidarum, ci&longs;&longs;oidarum, <expan abbr="earum&qacute;">earumque</expan>; pa&longs;&longs;ionibus. </s> <s id="s.006213">Item <lb/> de Mathematicarum ordine.</s> </p> <p type="main"> <s id="s.006214">Circa finem huius quarti &longs;eculi fiunt <expan abbr="vndiq;">vndique</expan> Barbarorum irruptiones in <lb/> Rom. <!-- KEEP S--></s> <s id="s.006215">Imperium: Gothi &longs;ub Alarico Græcias inuadunt, <expan abbr="Athenas&qacute;">Athenasque</expan>; <expan abbr="capiũt">capiunt</expan>, <lb/> ac diripiunt.</s> </p> <pb pagenum="53" xlink:href="009/01/337.jpg"/> <p type="head"> <s id="s.006216"><emph type="italics"/>DECIMVMQVARTVM SECVLVM<emph.end type="italics"/><lb/> <arrow.to.target n="table19"/><!-- KEEP S--></s> </p> <table> <table.target id="table19"/> <row> <cell>Quintum verò Chri&longs;ti.</cell> <cell/> </row> <row> <cell>Ab ann. Chri&longs;ti</cell> <cell>401</cell> </row> <row> <cell>Ana&longs;ta&longs;io &longs;um. Pont.</cell> <cell/> </row> <row> <cell>Impp. Arcadio orienti, & Honorio occidenti.</cell> <cell/> </row> </table> <p type="head"> <s id="s.006217"><emph type="italics"/>Quo Roma ter capta, & imperio occidentis ab Odoacre exci&longs;o literæ, <lb/> & artes pa&longs;&longs;im pe&longs;&longs;undari incipiunt.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.006218">Sequentes duo ponendi &longs;unt ante Eutocium, &longs;ed quanto non comperio.</s> </p> <p type="main"> <s id="s.006219">DIOCLES, cuius modum inueniendi duas medias proportio­<lb/> nales, & modum &longs;ecandi &longs;phæram in datam rationem, refert Euto­<lb/> cius, de&longs;umptum ex libro de Pyrijs, &longs;eu igniarijs.</s> </p> <p type="main"> <s id="s.006220">SPORVS Nicenus, cuius etiam duarum mediarum inuentio e&longs;t apud <lb/> Eutocium in comm. <!-- REMOVE S-->Archim.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.006221">PROCLVS DIADOCHVS, qui Athenis Platonicæ &longs;cholæ præ­<lb/> fuit. </s> <s id="s.006222">&longs;crip&longs;it comm. <!-- REMOVE S-->in Euclidem eruditi&longs;s. </s> <s id="s.006223">Suid. <!-- KEEP S--></s> <s id="s.006224">Georgius Heni&longs;chius. </s> <s id="s.006225">Hy­<lb/> potypo&longs;es a&longs;tronomicas. </s> <s id="s.006226">&longs;phæram. </s> <s id="s.006227">Archimedem imitatus v&longs;torijs &longs;peculis, <lb/> Valentis naues Con&longs;tantinopolim ob&longs;identes combu&longs;&longs;it. </s> <s id="s.006228">Zenoras, qui eum <lb/> mirè commendat.</s> </p> <p type="main"> <s id="s.006229">CYRILLVS Epi&longs;copus Alexandrinus &longs;cribit de Cyclo pa&longs;chali. </s> <s id="s.006230">I&longs;id.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.006231">S. AVGVSTINVS Epi&longs;copus lib. 6. de Mu&longs;ica, Item de principijs <lb/> Geometriæ, & Arithmeticæ &longs;cribit.</s> </p> <p type="main"> <s id="s.006232">MARINVS Philo&longs;ophus Neapolitanus Procli di&longs;cipulus. </s> <s id="s.006233">eius e&longs;t Pro­<lb/> theoria in data Euclidis.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.006234">DEMETRIVS <expan abbr="Alexãdrinus">Alexandrinus</expan>, lineares aggre&longs;&longs;iones fecit. </s> <s id="s.006235">Papp. <!-- REMOVE S-->p.61.</s> </p> <p type="main"> <s id="s.006236">PHILO TYANÆVS de lineis genitis ex implicatione <foreign lang="greek">plhktoeidwn</foreign>,<lb/> & aliarum varij generis &longs;uperficierum. </s> <s id="s.006237">Pappus p. </s> <s id="s.006238">61.</s> </p> <p type="main"> <s id="s.006239">S. PROSPER Aquitanus de Cyclo pa&longs;chali. </s> <s id="s.006240">compo&longs;uit Cyclum ma­<lb/> gnum annorum 532. 10. Lucidus. <!-- KEEP S--></s> <s id="s.006241">I&longs;idorus.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.006242">PAPPVS Alexandrinus: cuius Mathematicæ collectiones extant. </s> <s id="s.006243">& <lb/> comm. <!-- REMOVE S-->in 5. Ptolæmei magnæ &longs;yntaxis. </s> <s id="s.006244">fecit etiam vniuer&longs;alem orbis de&longs;cri­<lb/> ptionem. </s> <s id="s.006245">de fluuijs Lybiæ. </s> <s id="s.006246">extant eius lemmata in Apollonium Pergæum.</s> </p> <p type="main"> <s id="s.006247">THEON Alexandrinus, cuius &longs;unt græca comm. <!-- REMOVE S-->in magnam &longs;yntaxim <lb/> Ptolæmei, præterea de Arithmetica. <!-- KEEP S--></s> <s id="s.006248">de ortu Caniculæ. <!-- KEEP S--></s> <s id="s.006249">de Nili a&longs;cen&longs;u. <lb/> </s> <s id="s.006250">comm. <!-- REMOVE S-->in paruum A&longs;trolabium. <!-- KEEP S--></s> <s id="s.006251">ex Suid. <!-- REMOVE S-->fuit Pappi &longs;yncronus.</s> </p> <p type="main"> <s id="s.006252">HYPATIA Theonis Geometræ filia Alex. Diophantis Arithmeticam <lb/> comment. </s> <s id="s.006253">illu&longs;trauit. </s> <s id="s.006254">pr&etail;terea in Conica Apollonij &longs;crip&longs;it. </s> <s id="s.006255">a&longs;tronomicum <lb/> canonem con&longs;truxit. </s> <s id="s.006256">claruit &longs;ub Arcadio, & Honorio.</s> </p> <p type="main"> <s id="s.006257">VICTORINVS Aquitanus A&longs;tronomus, ab Hilario Papa Romam <lb/> inuitatur ad Calendarij correctionem.</s> </p> <p type="main"> <s id="s.006258">EVTOCIVS A&longs;calonita po&longs;t Theonem, & Pappum &longs;crip&longs;it, eos enim <lb/> nominat. </s> <s id="s.006259">&longs;crip&longs;it commentaria in conica Apollonij, & in Archimedem de <lb/> &longs;phæra, & cylindro, de circuli dimen&longs;ione; & de æqueponderantibus.</s> </p> <pb pagenum="54" xlink:href="009/01/338.jpg"/> <p type="head"> <s id="s.006260"><emph type="italics"/>DECIMUMQVINTVM SECVLVM<emph.end type="italics"/><lb/> <arrow.to.target n="table20"/><!-- KEEP S--></s> </p> <table> <table.target id="table20"/> <row> <cell>Sextum verò Chri&longs;ti.</cell> <cell/> </row> <row> <cell>Ab ann. Chri&longs;ti</cell> <cell>501</cell> </row> <row> <cell>Symmacho &longs;um. Pont.</cell> <cell/> </row> <row> <cell>Imperante Ana&longs;ta&longs;io orienti.</cell> <cell/> </row> <row> <cell>Theodorico Rege Goth. Italiæ.</cell> <cell/> </row> </table> <p type="head"> <s id="s.006261"><emph type="italics"/>Hoc &longs;æculo Roma quartò capitur à Totila: & Longobardi <lb/> Italiam inuadunt.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.006262">BOETIVS vir clari&longs;&longs;imus, & Con&longs;ularis, latinè de Arithmetica, <lb/> de Mu&longs;ica, de Geometria practica: inuenit Chiterinum mu&longs;icum <lb/> in&longs;trumentum. </s> <s id="s.006263">Supplem. <!-- REMOVE S-->chron.</s> </p> <p type="main"> <s id="s.006264">CASSIODORVS vir clari&longs;&longs;imus, & Con&longs;ularis, &longs;cribit de <lb/> Arithmetica, de Geometria, de Mu&longs;ica, de A&longs;tronomia, de Pa&longs;chali com­<lb/> puto. </s> <s id="s.006265">Baronius.</s> </p> <p type="main"> <s id="s.006266">IOANNES <expan abbr="Grãmaticus">Grammaticus</expan> cognominato Philoponus, &longs;crip&longs;it de Arith­<lb/> metics. </s> <s id="s.006267">modus etiam quidam inueniendi duas medias ei tribuitur, vt apud <lb/> Clau. <!-- REMOVE S-->in Geometria practica. </s> <s id="s.006268">comm. <!-- REMOVE S-->in Nicomachi arithmeticam &longs;crip&longs;it.</s> </p> <p type="main"> <s id="s.006269">HERO Mechanicus, qui e&longs;t alius ab Herone Philo&longs;opho mechanico, de <lb/> quo &longs;uperius. </s> <s id="s.006270">eius extat liber de Geodæ&longs;ia, & alter de machinis bellicis. </s> <s id="s.006271">ait <lb/>ip&longs;e in Geodæ&longs;ia &longs;tellas fixas po&longs;t Ptolemæum, v&longs;que ad &longs;uam ætatem pro­<lb/> gre&longs;&longs;os e&longs;&longs;e grad. <!-- REMOVE S-->7. qui progre&longs;&longs;us, &longs;i Albatignio credimus annos &longs;altem 460. <lb/> importat, qui Ptolemæi ætati aditi Heronem in hoc &longs;eculum transferunt.</s> </p> <p type="main"> <s id="s.006272">HELIODORVS Lari&longs;&longs;eus, cuius extant optica græca. </s> <s id="s.006273">citat Hero­<lb/> nem mechanicum.</s> </p> <p type="main"> <s id="s.006274">DIONYSIVS exiguus Abbas Romanus, computum, & cyclum pa­<lb/> &longs;chalem aliter ac Græci ordinauit a. </s> <s id="s.006275">D. 532. quem latina Eccle&longs;ia po&longs;tea <lb/> <expan abbr="v&longs;q;">v&longs;que</expan> ad Calendarij correctionem &longs;ub Greg. <!-- REMOVE S-->13. factam, &longs;equuta e&longs;t: primus <lb/> annos à Chri&longs;to Domino numerare cœpit, qui prius à Diocletiano, &longs;iue à <lb/> per&longs;ecutione Diocletiani numerabantur. </s> <s id="s.006276">Chri&longs;tmanus in Alfrag.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.006277">S. GREGORIVS Magnus Papa in mu&longs;icis excelluit, <expan abbr="ei&qacute;">eique</expan>, adeo fuit <lb/> addictus, vt Clericos ip&longs;e mu&longs;icam doceret. </s> <s id="s.006278">canticum Eccle&longs;ia&longs;ticum ordi­<lb/> nauit, qui ab eo denominatur. </s> <s id="s.006279">choro etiam modum con&longs;tituit.</s> </p> <pb pagenum="55" xlink:href="009/01/339.jpg"/> <p type="head"> <s id="s.006280"><emph type="italics"/>DECIMUMSEXTVM SECVLVM<emph.end type="italics"/><lb/> <arrow.to.target n="table21"/><!-- KEEP S--></s> </p> <table> <table.target id="table21"/> <row> <cell>Septimum verò Chri. ab ann. Chri&longs;ti</cell> <cell>601</cell> </row> <row> <cell>Gregorio magno &longs;um. Pont.</cell> <cell/> </row> <row> <cell>Mauritio Imperatore orientis.</cell> <cell/> </row> <row> <cell>Longobardis in Italia regnantibus.</cell> <cell/> </row> </table> <p type="head"> <s id="s.006281"><emph type="italics"/>Arabes in A&longs;ia, & Africa, & Europa complura regna occupant.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.006282">ISIDORVS Hi&longs;palentis Epi&longs;copus, in &longs;uis de originibus libris om­<lb/> nium Mathematicarum compendia in&longs;erit: & de cyclo pa&longs;chali plu­<lb/> ribus agit: & in libro de Mundo breuiter tractatum de &longs;phæra per­<lb/> &longs;tringit.</s> </p> <p type="main"> <s id="s.006283">MARTIANVS CAPELLA, qui etiam Fœlix Mineus dicitur, ad <lb/> hæc tempora à Patricio in Poetica refertur, &longs;cilicet paulo ante Eraclium <lb/> Imper. <!-- REMOVE S-->&longs;crip&longs;it in &longs;uis nuptijs Mercurij cum Philologia, de 4. Mathematicis <lb/> Geometria, Arithmetica, Mu&longs;ica, A&longs;tronomia.<!-- KEEP S--></s> </p> <p type="head"> <s id="s.006284"><emph type="italics"/>DECIMVMSEPTIMVM SECVLVM<emph.end type="italics"/><lb/> <arrow.to.target n="table22"/><!-- KEEP S--></s> </p> <table> <table.target id="table22"/> <row> <cell>Octauum autem Chr. ab ann. Chri&longs;ti</cell> <cell>701</cell> </row> <row> <cell>Sergio &longs;um. Pont.</cell> <cell/> </row> <row> <cell>Imper. Tiberio Ab&longs;imero orientis.</cell> <cell/> </row> <row> <cell>Longobardis in Italia.</cell> <cell/> </row> </table> <p type="main"> <s id="s.006285">VENERABILIS BEDA de Arithmetica. <!-- KEEP S--></s> <s id="s.006286">de Mu&longs;ica. <!-- KEEP S--></s> <s id="s.006287">de <lb/> A&longs;trolabio. <!-- KEEP S--></s> <s id="s.006288">de Horologio &longs;olari. </s> <s id="s.006289">de computo Eccle&longs;ia&longs;tico. <lb/> </s> <s id="s.006290">Ecce tibi quanta literatorum paucitas Barbaris Imperium de­<lb/> ua&longs;tantibus.</s> </p> <p type="head"> <s id="s.006291"><emph type="italics"/>DECIMUMOCTAVVM SECVLVM<emph.end type="italics"/><lb/> <arrow.to.target n="table23"/><!-- KEEP S--></s> </p> <table> <table.target id="table23"/> <row> <cell>Nonum verò Chr. ab ann. Chri&longs;ti</cell> <cell>801</cell> </row> <row> <cell>Leone &longs;um. Pont.</cell> <cell/> </row> <row> <cell>Imper. occidenti Carolo Magno.</cell> <cell/> </row> <row> <cell>Irene verò orienti.</cell> <cell/> </row> </table> <p type="head"> <s id="s.006292"><emph type="italics"/>Literæ apud Arabes florere incipiunt.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.006293">ALMEON, &longs;iue Almamom Rex Arabum, ante Albategnium <lb/> ann. </s> <s id="s.006294">50. ob&longs;eruauit Solis maximam declinationem 23. 51. repe­<lb/> rit vni gradui terræ deberi mill. <!-- REMOVE S-->56. in campis Singar propè Ba­<lb/> byloniam.</s> </p> <pb pagenum="56" xlink:href="009/01/340.jpg"/> <p type="main"> <s id="s.006295">ALBATEGNIVS ARACENSIS Arabs, po&longs;t Ptolemæum ann. <lb/> </s> <s id="s.006296">750. à nat. </s> <s id="s.006297">Chri&longs;ti 880. ante Alfarabium 381. ob&longs;eruat Solis maximam de­<lb/> clinationem 23. 35. & primam Arietis po&longs;t æquinoctium grad. <!-- REMOVE S-->18. 2. Ara­<lb/> cta e&longs;t vrbs Syriæ, & patria ip&longs;ius, à qua dicitur Aracen&longs;is. </s> <s id="s.006298">extat liber eius <lb/> de &longs;cientia &longs;tellarum.</s> </p> <p type="main"> <s id="s.006299">MICHAEL PSELLVS Græcus Quadriuium, hoc e&longs;t de 4. Mathe­<lb/> maticis compendiosè &longs;crip&longs;it, & extat. </s> <s id="s.006300">Docuit filios Imperatoris. </s> <s id="s.006301">hic po­<lb/> nitur à Baronio.</s> </p> <p type="main"> <s id="s.006302">Sequentes 5. ponendi &longs;unt ante &longs;eculum 10. quo Suida &longs;cribens, eos me­<lb/> morat: quanto autem, ne&longs;cire fateor.</s> </p> <p type="main"> <s id="s.006303">PAVLVS Philo&longs;ophus, introductionem A&longs;trologiæ compo&longs;uit.</s> </p> <p type="main"> <s id="s.006304">PETOSCIRIS Aegyptius, A&longs;trologica è &longs;acris libris pertractauit.</s> </p> <p type="main"> <s id="s.006305">ACHILLES STATIVS Alexandrinus Epi&longs;copus. </s> <s id="s.006306">de &longs;phæra.</s> </p> <p type="main"> <s id="s.006307">ZOROMASDVS Chaldæus. </s> <s id="s.006308">Mathematica &longs;crip&longs;it.</s> </p> <p type="main"> <s id="s.006309">PELLES Aegien&longs;is. </s> <s id="s.006310">Arithmeticorum lib. 2.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.006311">GEBER Arabs, cuius extat Opus a&longs;tronomicum 9. libris di&longs;tinctum, <lb/>quo Ptolemæi Almage&longs;tum exponit, ac corrigit. </s> <s id="s.006312">initio agit de Triangulis <lb/> &longs;phæricis, quantum a&longs;tronomicis calculis opus e&longs;t.</s> </p> <p type="head"> <s id="s.006313"><emph type="italics"/>DECIMUMNONUM SECULUM<emph.end type="italics"/><lb/> <arrow.to.target n="table24"/></s> </p> <table> <table.target id="table24"/> <row> <cell>Decimum verò Chr. ab ann. Chri&longs;ti</cell> <cell>901</cell> </row> <row> <cell>Ioanne &longs;um. Pont.</cell> <cell/> </row> <row> <cell>Impp. Ludouico 4. occid.</cell> <cell/> </row> <row> <cell>Leone 6. orien.</cell> <cell/> </row> </table> <p type="head"> <s id="s.006314"><emph type="italics"/>Lingua vulgaris Italica incipit emergere. </s> <s id="s.006315">Baron.<emph.end type="italics"/><!-- REMOVE S-->GVIDO ARETINVS Monachus S. Benedicti, Romæ &longs;crip&longs;it <lb/> de Mu&longs;ica. <!-- KEEP S--></s> </p> <p type="main"> <s id="s.006316">nouam rationem cantus excogitauit. </s> <s id="s.006317">eius opera &longs;unt <lb/> Introductorium mu&longs;icæ, in quo ip&longs;e primus vocibus nomina in­<lb/> didit, Vt, Re, Mi, Fa, Sol, La: Item Micrologus de Mu&longs;ica.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.006318">ALFARABIVS Arabs, A&longs;tronomus celebris.</s> </p> <p type="main"> <s id="s.006319">ALBVMASAR Arabs, A&longs;tronomus celebris. </s> <s id="s.006320">de magnis coniunctio­<lb/> nibus, & alia iudiciaria.</s> </p> <p type="main"> <s id="s.006321">ALFRAGANVS Arabs, A&longs;tronomica elementa edidit.</s> </p> <p type="main"> <s id="s.006322">BAGDADINVS Arabs. <!-- KEEP S--></s> <s id="s.006323">de diui&longs;ione figurarum, extat.</s> </p> <p type="main"> <s id="s.006324">BEN MVSA Arabs. <!-- KEEP S--></s> <s id="s.006325">de figuris planis, & &longs;phæricis.</s> </p> <pb pagenum="57" xlink:href="009/01/341.jpg"/> <p type="head"> <s id="s.006326"><emph type="italics"/>VIGESIMVM SECVLVM<emph.end type="italics"/><lb/> <arrow.to.target n="table25"/><!-- KEEP S--></s> </p> <table> <table.target id="table25"/> <row> <cell>Vndecimum <expan abbr="verõ">verom</expan> Chr. ab ann. Chri&longs;ti</cell> <cell>1001</cell> </row> <row> <cell>Silue&longs;tro &longs;um. Pont.</cell> <cell/> </row> <row> <cell>Impp. Ottone 3. occid.</cell> <cell/> </row> <row> <cell>Ba&longs;ilio, & Con&longs;t. orient.</cell> <cell/> </row> </table> <p type="main"> <s id="s.006327">ALHAZENVS Arabs: eius extant optica doctè, ac &longs;ubtiliter <lb/> pertractata. </s> <s id="s.006328">Item opu&longs;culum de crepu&longs;culis, vbi aeris &longs;uprema <lb/> altitudinem acuti&longs;&longs;imè rimatur.</s> </p> <p type="main"> <s id="s.006329">CAMPANVS Italus, ac Nouaren&longs;is, primus Euclidem ex <lb/> Arabico in latinum tran&longs;tulit, ac &longs;cholijs illu&longs;trauit. </s> <s id="s.006330">Fuit optimus A&longs;tro­<lb/> nomus: &longs;crip&longs;it computum minorem, & maiorem, anno 1200. vt ip&longs;e ait. <lb/> </s> <s id="s.006331">Item &longs;phæram, & theoricas planetarum.</s> </p> <p type="main"> <s id="s.006332">ARZAEL Arabs Po&longs;t Albategnium ann. </s> <s id="s.006333">190. reperit Solis maximam <lb/> declinationem gr. <!-- REMOVE S-->23. 34.</s> </p> <p type="main"> <s id="s.006334">IS A CIVS ARGYRVS Græcus, de Pa&longs;chatis correctione. </s> <s id="s.006335">Cla­<lb/> uius in Calendario.</s> </p> <p type="head"> <s id="s.006336"><emph type="italics"/>VIGESIMVMPRIMVM SECVLVM<emph.end type="italics"/><lb/> <arrow.to.target n="table26"/><!-- KEEP S--></s> </p> <table> <table.target id="table26"/> <row> <cell>Duodec. verò à Chr. ab ann. Chri&longs;ti</cell> <cell>1001.</cell> </row> <row> <cell>Pa&longs;chali &longs;um. Pont.</cell> <cell/> </row> <row> <cell>Impp. Henrico 3. occid.</cell> <cell/> </row> <row> <cell>Alexio Commeno orient.</cell> <cell/> </row> </table> <p type="main"> <s id="s.006337">RABBI Abraham de Sphæra. </s> <s id="s.006338">Chri&longs;tm. <!-- REMOVE S-->in Alfrag.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.006339">IORDANVS Nemorarius, qui &longs;cribit de ponderibus, citat <lb/> Campanum, & Campanus in def. </s> <s id="s.006340">5. <expan abbr="elem&etilde;">elemen</expan>. </s> <s id="s.006341">citat Iordanum, qui <lb/> &longs;crip&longs;it de Arithmetica lib. 12. & data Arithmetica. <!-- KEEP S--></s> <s id="s.006342">& de A&longs;tro­<lb/> labio. </s> <s id="s.006343">qui &longs;cribit de Arithmetica appellatur etiam Nemorarius, vnde vnus, <lb/> & idem Iordanus videtur e&longs;&longs;e.</s> </p> <p type="main"> <s id="s.006344">AVERROES Arabs magnus commentator, fecit Epitomen Alma­<lb/> gi&longs;ti. </s> <s id="s.006345">Picus Mir. <!-- REMOVE S-->contra A&longs;trologos.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.006346">ALMEON Alman&longs;orius Arabs, po&longs;t Arzaelem ann. </s> <s id="s.006347">70. anno Domi­<lb/> ni 1140. declinationem Solis maximam reperit 23. 33.</s> </p> <p type="main"> <s id="s.006348">ALPETRAGIVS Arabs Almconis coætaneus ann. </s> <s id="s.006349">Domini 1145. <lb/> eandem cum eo in&longs;pexit declinationem.</s> </p> <p type="main"> <s id="s.006350">HVMENVS Aegyptius, cuius tabulæ a&longs;tronomiæ arabicè &longs;criptæ a&longs;­<lb/> &longs;eruàntur in Biblioth. <!-- REMOVE S-->Palatina. </s> <s id="s.006351">Chri&longs;tmanus in Alfr.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.006352">IOANNES Hi&longs;palen&longs;is circa 1142. conuertit Alfragnum in latinum. <lb/> </s> <s id="s.006353">ex Chri&longs;tmanno.</s> </p> <p type="main"> <s id="s.006354">THEON Smyrneus, circa hæc &longs;ecula, Græcè loco Mathematica apud <lb/> Platonem interpretatur. </s> <s id="s.006355">opus eius Græcum extat in Vatic. <!-- REMOVE S-->ex Io&longs;. <!-- REMOVE S-->Auria.</s> </p> <pb pagenum="58" xlink:href="009/01/342.jpg"/> <p type="head"> <s id="s.006356"><emph type="italics"/>XXII. SECVLVM<emph.end type="italics"/><lb/> <arrow.to.target n="table27"/><!-- KEEP S--></s> </p> <table> <table.target id="table27"/> <row> <cell>Decimum autem tertium Chr. ab ann. Domini</cell> <cell>1201</cell> </row> <row> <cell>Innocentio &longs;um. Pont.</cell> <cell/> </row> <row> <cell>Impp. Ottone 4. occid.</cell> <cell/> </row> <row> <cell>I&longs;acio orient.</cell> <cell/> </row> </table> <p type="main"> <s id="s.006357">VITELLIO, qui maiorum Optica in vnum conge&longs;&longs;it, ac dige&longs;­<lb/> &longs;it. </s> <s id="s.006358">Ri&longs;nerus.</s> </p> <p type="main"> <s id="s.006359">NICOLAVS CABASILLA Græcus, Ptolemæi &longs;ynta­<lb/> xis commentator.</s> </p> <p type="main"> <s id="s.006360">FEDERICVS Secundus Imperat. <!-- REMOVE S-->primus Almage&longs;tum ex Arabo in <lb/> latinum conuerti curauit, <expan abbr="adeo&qacute;">adeoque</expan>; a&longs;tronomiam omnem excoluit. </s> <s id="s.006361">Chri&longs;tm.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.006362">ALPHONSVS Rex Hi&longs;paniarum, cuius &longs;unt tabulæ Alphon&longs;inæ. </s> <s id="s.006363">ob. <lb/> </s> <s id="s.006364">&longs;eruauit ann. </s> <s id="s.006365">Domini 1250. primam Arietis po&longs;t æquinoctium gra. </s> <s id="s.006366">23. 40. <lb/> hic quadraginta <expan abbr="aureorũ">aureorum</expan> millia ad <expan abbr="a&longs;tronomiã">a&longs;tronomiam</expan> in lucem reuocandam cum <lb/> &longs;empiterna &longs;ui nominis gloria contulit.</s> </p> <p type="main"> <s id="s.006367">IOAN. de Sacrobo&longs;co angulus &longs;crip&longs;it de &longs;phæra; & de <expan abbr="cõputo">computo</expan> Eccle&longs;.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.006368">IOANNES autor &longs;ummæ Angel.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.006369">THEBIT Arabs, po&longs;t Almeonem an. <!-- REMOVE S-->50. an. <!-- REMOVE S-->1270. primus motum tre­<lb/> pidationis octauæ &longs;phær&etail; rimatus e&longs;t.</s> </p> <p type="main"> <s id="s.006370">PROFATIVS Iudæus ann. </s> <s id="s.006371">Dom. <!-- REMOVE S-->1300. po&longs;t Almeon ann. </s> <s id="s.006372">160. Solis <lb/> declinationem maximam annotauit. </s> <s id="s.006373">gr. <!-- REMOVE S-->23. 32.</s> </p> <p type="main"> <s id="s.006374">IOANNES GIRA Amalphen&longs;is inuen it <expan abbr="mirã">miram</expan> illam magnetis pro­<lb/> prietatem, qua ad polum &longs;emper conuertitur: vnde maxima rei Nauticæ <lb/> vtilitas, & acce&longs;&longs;io facta e&longs;t:</s> </p> <p type="main"> <s id="s.006375"><emph type="italics"/>Prima dedit nautis v&longs;um magnetis Amalphis.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.006376">Panormitanus. </s> <s id="s.006377">Ortelius tab. </s> <s id="s.006378">6.<!-- KEEP S--></s> </p> <p type="head"> <s id="s.006379"><emph type="italics"/>XXIII. SECVLVM<emph.end type="italics"/><lb/> <arrow.to.target n="table28"/><!-- KEEP S--></s> </p> <table> <table.target id="table28"/> <row> <cell>Decimum verò quartum Chr. ab ann. Domini</cell> <cell>1301</cell> </row> <row> <cell>Bonifacio &longs;um. Pont.</cell> <cell/> </row> <row> <cell>Impp. Alberto primo Au&longs;triaco occid.</cell> <cell/> </row> <row> <cell>Andronico Paleologo orient.</cell> <cell/> </row> </table> <p type="main"> <s id="s.006380">BARLAAM Monacus. <!-- KEEP S--></s> <s id="s.006381">Græcè de Arithmetica, nondum editus.</s> </p> <p type="main"> <s id="s.006382">ROGERIVS BACCON &longs;ub Clem. <!-- REMOVE S-->5. per&longs;pectiuam laudati&longs;&longs;i­<lb/> mam &longs;cribit. </s> <s id="s.006383">Item de loco &longs;tellarum. </s> <s id="s.006384">Item &longs;pecula Mathemati­<lb/> ca. <!-- KEEP S--></s> <s id="s.006385">10. Lucidus. <!-- KEEP S--></s> <s id="s.006386">Collim.<!-- REMOVE S-->MARCVS POLVS Venetus, per totum Orientem peruagatus, plurima <lb/> &longs;citu digni&longs;&longs;ima, de regnis A&longs;iæ Orientalibus breui comm. <!-- REMOVE S-->materna lingua <lb/> complexus e&longs;t.</s> </p> <p type="main"> <s id="s.006387">IOANNES Archiep. <!-- REMOVE S-->Cantuar. <!-- KEEP S--></s> <s id="s.006388">auctor per&longs;pectiuæ communis. </s> <s id="s.006389">po&longs;t Vitell. <lb/> <!-- REMOVE S-->& multò ante 1500. ann. </s> <s id="s.006390">ex Gaurico.</s> </p> <pb pagenum="59" xlink:href="009/01/343.jpg"/> <p type="head"> <s id="s.006391"><emph type="italics"/>XXIIII. SECVLVM<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.006392">Decimum verò quintum Chr. <!-- REMOVE S-->ab an. <!-- REMOVE S-->Dom. <!-- REMOVE S-->1401. incipiens.</s> </p> <p type="main"> <s id="s.006393">Bonifacio &longs;um. <!-- REMOVE S-->Pont.<!-- REMOVE S--> <lb/>Impp. <!-- REMOVE S-->Ruberto Au&longs;triaco occid.<!-- REMOVE S--> </lb>Emanuele Paleologo orien. <lb/><!-- REMOVE S--><emph type="italics"/>Anno 1453. Imperium orientis capitur à Mahumeto 2. <lb/> Turcarum Imperatore.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="head"> <s id="s.006394"><emph type="italics"/>Nouus orbis circa finem huius &longs;eculi detegitur.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.006395">LEONARDVS Pi&longs;anus, primus ex recentioribus de Algebra la­<lb/> tinè &longs;crip&longs;it. </s> <s id="s.006396">nondum editus.</s> </p> <p type="main"> <s id="s.006397">GEORGIVS PVRBACHIVS, Theoricas planetarum, edidit. <lb/> </s> <s id="s.006398">epitomen almage&longs;ti inchoauit, quam po&longs;tea Ioannes de Montere­<lb/> gio ab&longs;oluit. </s> <s id="s.006399">Item tabul. </s> <s id="s.006400">eclyp&longs;ium. </s> <s id="s.006401">declinationem Solis maximam, 23.28. <lb/> prodidit. </s> <s id="s.006402">&longs;crip&longs;it de horologio &longs;olari, & a&longs;&longs;eruatur in Bibliotheca <expan abbr="Vienn&etilde;&longs;i">Viennen&longs;i</expan>. <lb/> </s> <s id="s.006403">publicè Mathematicas, Viennæ, & Ferrari&etail; docuit.</s> </p> <p type="main"> <s id="s.006404">IACOBVS FABER Stapulen&longs;is edit <expan abbr="cõmentaria">commentaria</expan> in arthmeticam <lb/> Iordani. </s> <s id="s.006405">Item elementa mu&longs;icæ libris quatuor.</s> </p> <p type="main"> <s id="s.006406">FRANCHINVS GAFFVRIVS Lauden&longs;is, latinè <expan abbr="Mu&longs;icã">Mu&longs;icam</expan>, Theoricam, <lb/> & Practicam &longs;cribit 1496.</s> </p> <p type="main"> <s id="s.006407">IOANNES de Monteregio, Purbacchij di&longs;cipulus. </s> <s id="s.006408">Epitomen alme­<lb/> gi&longs;ti ab&longs;oluit. </s> <s id="s.006409">opus de triangulis planis, & &longs;phæricis. </s> <s id="s.006410">Tabulas directionum <lb/> fecit. </s> <s id="s.006411">primus ephemerides a&longs;tronomicas ad plures annos edidit. </s> <s id="s.006412">tangentes <lb/> lineas inuenit. </s> <s id="s.006413">item libellum de Cometa. </s> <s id="s.006414">Mathias Rex Vngariæ multis eum <lb/> auxit honoribus, & diuitijs. </s> <s id="s.006415">tandem Romam à Summo Pontifice ad Calen­<lb/> darij correctionem euocatus, ibi obijt, <expan abbr="&longs;epultus&qacute;">&longs;epultusque</expan>; e&longs;t in Pantheone. </s> <s id="s.006416">declina­<lb/> tionem Solis maximam. </s> <s id="s.006417">23.30. edixit. </s> <s id="s.006418">Monteregio plurimum debet omnis <lb/>literatorum po&longs;teritas, quòd veterum Græcorum ferè omnium, Archime­<lb/> dis, Apollonij, Sereni, Ptolemæi, & aliorum opera numero ferè triginta, in <lb/> latinum conuer&longs;a, Typis mandari curauerit. </s> <s id="s.006419">Ex Collimitij indice ante ta­<lb/> bulam primi mobilis Monteregij.</s> </p> <p type="main"> <s id="s.006420">PETRVS de ALIACO Card. <!-- REMOVE S-->Cameracen&longs;is 1414. &longs;ua&longs;it Concilio <expan abbr="Cõ-&longs;tantien&longs;i">Con­<lb/> &longs;tantien&longs;i</expan> correctionem Calendarij Romani. <!-- KEEP S--></s> <s id="s.006421">&longs;crip&longs;it de Calendarij corre­<lb/> ctione. </s> <s id="s.006422">de parallelis, &c. </s> <s id="s.006423">Chri&longs;tmanus in Alfraganum.</s> </p> <p type="main"> <s id="s.006424">F. LVCAS de Burgo edidit magnum volumen Italica lingua de arith­<lb/> metica, in quo algebram ex Leonardo Pi&longs;ano partim acceptam vulgauit: <lb/> ibi etiam de geometria practica. </s> <s id="s.006425">Item librum de diuina proportione.</s> </p> <p type="main"> <s id="s.006426">CHRISTOPHORVS, COLVMBVS Ligur, <expan abbr="Argonautũ">Argonautum</expan> princeps A&longs;tro­<lb/>nomiæ, & Geographiæ &longs;cientia fretus nouum Orbem, magno, ac f&etail;lici au­<lb/> &longs;u detexit.</s> </p> <p type="main"> <s id="s.006427">NICOLAVS CVSANVS Cardinalis, de Transformatione figurarum.</s> </p> <pb pagenum="60" xlink:href="009/01/344.jpg"/> <p type="head"> <s id="s.006428"><emph type="italics"/>XXV. SECVLVM<emph.end type="italics"/><lb/> <arrow.to.target n="table29"/><!-- KEEP S--></s> </p> <table> <table.target id="table29"/> <row> <cell>Decimum verò &longs;extum Chr. ab ann. Chri&longs;ti</cell> <cell>1501</cell> </row> <row> <cell>Alexandro 6. &longs;um. Pont.</cell> <cell/> </row> <row> <cell>Imper. Maximiliano occid.</cell> <cell/> </row> </table> <p type="head"> <s id="s.006429"><emph type="italics"/>Totius orbis circumnauigatio: & nouarum &longs;tellarum <lb/> fixarum apparitio.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.006430">IOANNES VERNERVS Germanus, a&longs;tronomicas Tabulas, quibus <lb/>loca &longs;tellarum exponit, declinationi Solis max. tribuit grad. <!-- REMOVE S-->23.28. <lb/> <expan abbr="primã">primam</expan> Arietis po&longs;t æquinoct. </s> <s id="s.006431">gr. <!-- REMOVE S-->26. an. <!-- REMOVE S-->15 4. de motu octauæ &longs;phæræ.</s> </p> <p type="main"> <s id="s.006432">FERDINANDVS MEGALANES rei nauticæ, ac proinde a&longs;tro­<lb/> nomiæ periti&longs;&longs;imus, fretum &longs;ibi cognomen inue&longs;tigauit, vnde po&longs;tea nauis <lb/> ip&longs;ius verè Victoria totius terræ <expan abbr="globũ">globum</expan> prima <expan abbr="omniũ">omnium</expan> <expan abbr="circũnauigauit">circunnauigauit</expan>. </s> <s id="s.006433">1519.</s> </p> <p type="main"> <s id="s.006434">IOAN. BLANCHINVS Ferrarien&longs;is, Tabulas a&longs;tronomicas compo&longs;uit.</s> </p> <p type="main"> <s id="s.006435">LVDOVICVS FOLIANVS Mutinen. <!-- REMOVE S-->latinè de mu&longs;ica Theorica. <!-- KEEP S--></s> <s id="s.006436">1529.</s> </p> <p type="main"> <s id="s.006437">NICOLAVS COPERNICVS, nouis ob&longs;eruationibus cœle&longs;tes motus <lb/> corrigit. </s> <s id="s.006438">1515. antiquam Cleantis opinione de motu terræ &longs;u&longs;citauit. </s> <s id="s.006439">ait <lb/> præterea, Solem in centro mundi quie&longs;cere. </s> <s id="s.006440">1530.</s> </p> <p type="main"> <s id="s.006441">ORONTIVS FINÆVS, Pari&longs;ijs Mathematicas docuit. </s> <s id="s.006442">varia compo­<lb/> &longs;uit, quæ pa&longs;&longs;im reperiuntur; legenda tamen cum antidoto Petri Nonij de <lb/> erratis Oren&longs;ij. </s> <s id="s.006443">1530.</s> </p> <p type="main"> <s id="s.006444">ERASMVS REINOLDVS eruditi&longs;&longs;imas Tabulas prutenicas. </s> <s id="s.006445">Item <expan abbr="cõ-mentaria">com­<lb/> mentaria</expan> in Theoricas Purbachij edidit.</s> </p> <p type="main"> <s id="s.006446">BARTHOLOMÆVS ZAMBERTVS, qui Euclidis Elementa, Optica, <lb/> Catoptrica, Phænomena, & Data ex Græcis Latina fecit.</s> </p> <p type="main"> <s id="s.006447">PAVLVS Epi&longs;copus Foro&longs;empronij. </s> <s id="s.006448">opus de Calendarij correctione, <lb/> quod Paulina dicitur. </s> <s id="s.006449">&longs;ub Leone X. con&longs;crip&longs;it.</s> </p> <p type="main"> <s id="s.006450">ANDREAS SCHONERVS. de Gnomonica acuti&longs;&longs;imè &longs;cribit.</s> </p> <p type="main"> <s id="s.006451">PETRVS APPIANVS de Geographia.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.006452">GEMMA Fri&longs;ius arithmeticam practicam, a&longs;trolabium, &c. </s> <s id="s.006453">&longs;cribit.</s> </p> <p type="main"> <s id="s.006454">MICHAEL STIFELIVS arithmeticam integram, in qua Algebram op­<lb/> tima methodo tradit.</s> </p> <p type="main"> <s id="s.006455">ALOYSIVS LILIVS, alter no&longs;tri æui So&longs;igenes, Calendarij <expan abbr="correction&etilde;">correctionem</expan> <lb/> excogitauit, qua cyclum Lunæ perpetuum, necnon &longs;tabilem æquinoctij &longs;e­<lb/> dem fa&longs;tis Eccle&longs;ia&longs;ticis indidit, quem &longs;equutus e&longs;t Greg. <!-- REMOVE S-->XIII. Papa, dum <lb/> anno Chri&longs;ti 1572. exemptis decem diebus, vniuer&longs;o Chri&longs;tiano orbi <expan abbr="Cal&etilde;-darium">Calen­<lb/> darium</expan> in perpetuum emendatum exhibuit. </s> <s id="s.006456">Eius frater Antonius Lilius <lb/> vixit &longs;ub Gregorio XIII.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.006457">RAPHAEL BOMBELLVS Bononien&longs;is. </s> <s id="s.006458">Italicè de Algebra.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.006459">PETRVS NONIVS Salacien&longs;is, vnico volumine varia pertractat. </s> <s id="s.006460">De <lb/> nautica. </s> <s id="s.006461">in Theoricas Parbachij. </s> <s id="s.006462">de erratis Orontij. </s> <s id="s.006463">de crepu&longs;culis.</s> </p> <p type="main"> <s id="s.006464">LVCAS GAVRICVS Epi&longs;copus Ciuitaten&longs;is, de Calendarij correctio­<lb/> ne. </s> <s id="s.006465">Schol. <!-- REMOVE S-->in almag.</s> </p> <pb pagenum="61" xlink:href="009/01/345.jpg"/> <p type="main"> <s id="s.006466">IOANNES BVTEO Logi&longs;tices, lib. 5. de arca Noe. </s> <s id="s.006467">de quadraturis cir­<lb/> culorum. </s> <s id="s.006468">tam antiquis, quam nouis.</s> </p> <p type="main"> <s id="s.006469">FRANCISCVS MAVROLY VS Abbas Siculus, <expan abbr="Co&longs;mographiã">Co&longs;mographiam</expan>. <!-- KEEP S--></s> <s id="s.006470">Ari­<lb/> thmeticorum lib. 3. de lineis horarijs Photi&longs;mos. </s> <s id="s.006471">& alia nonnulla, partim <lb/> nondum edita, quorum index habetur in &longs;ua Co&longs;mographia. </s> <s id="s.006472">primus de li­<lb/> neis &longs;ecantibus &longs;crip&longs;it.</s> </p> <p type="main"> <s id="s.006473">HIERONYMVS CARDANVS, artem magnam &longs;cribit, in qua de al­<lb/> gebra. </s> <s id="s.006474">ob&longs;eruauit Cometas e&longs;&longs;e in cœlo. </s> <s id="s.006475">in libris de &longs;ubtilitate, & varieta­<lb/> te plurima mi&longs;cet ex omnibus Mathematicis.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.006476">IOANNES Padouanus de horolgijs.</s> </p> <p type="main"> <s id="s.006477">FRANCISCVS FLVSSATES CANDALLA Gallus, nobili&longs;&longs;imo gene­<lb/> re ortus, commentaria in Euclidem: cui propria Minerua adiecit. </s> <s id="s.006478">16. li­<lb/> brum. </s> <s id="s.006479">hic in Academia Burdigalen&longs;i Mathematicarum profe&longs;&longs;ori, annuum <lb/> &longs;tipendium in perpetuum reliquit. </s> <s id="s.006480">&longs;i<expan abbr="&qacute;">que</expan>; eam Cathedram fundauit.</s> </p> <p type="main"> <s id="s.006481">FEDERICVS COMMANDINVS optimè meritus, &longs;i qui&longs;quam alius <lb/> de Mathematicis. <!-- KEEP S--></s> <s id="s.006482">Græcorum enim egregia monumenta nobis mira f&etail;lici­<lb/> tate traduxit, & expo&longs;uit. </s> <s id="s.006483">elementa Euclidis. <!-- KEEP S--></s> <s id="s.006484">conica Apollonij. <!-- KEEP S--></s> <s id="s.006485">opera Ar­<lb/> chimedis. </s> <s id="s.006486">Ari&longs;tarchum Samium. </s> <s id="s.006487">Bagdadinum de diui&longs;ione figurarum. </s> <s id="s.006488">Ne­<lb/> ronis &longs;piritalia. </s> <s id="s.006489">Pappum Alexandrinum. </s> <s id="s.006490">Analemma Ptolemæi. </s> <s id="s.006491">ex proprijs <lb/> verò. </s> <s id="s.006492">de centro grauit: &longs;olidorum. </s> <s id="s.006493">de lineis horarijs.</s> </p> <p type="main"> <s id="s.006494">IOANNES de ROIAS a&longs;trolabium.</s> </p> <p type="main"> <s id="s.006495">IOANNES STOFLERVS de fabrica, & v&longs;u a&longs;trolabij. </s> <s id="s.006496">commentaria <lb/> in &longs;phæram Procli. </s> <s id="s.006497">de calendario.</s> </p> <p type="main"> <s id="s.006498">ABRAHAMVS ORTELIVS Geographus. </s> <s id="s.006499">Theatrum mundi, & the&longs;au­<lb/> rum geographicum.</s> </p> <p type="main"> <s id="s.006500">GERARDVS MERCATOR Geographus, Ptolemæi geographiam re­<lb/> &longs;tituit. </s> <s id="s.006501">Atlas, opus geographicum eius e&longs;t.</s> </p> <p type="main"> <s id="s.006502">ALEXANDER PICCOLOMIN. &longs;cripfit Italicè &longs;phæram. </s> <s id="s.006503">Theoricas <lb/> planetarum. </s> <s id="s.006504">de &longs;tellis fixis. </s> <s id="s.006505">de magnitudine terræ, & aquæ.</s> </p> <p type="main"> <s id="s.006506">IOSEPHVS ZARLINVS de mu&longs;ica duos tomos Italicè.</s> </p> <p type="main"> <s id="s.006507">VINCENTIVS GALILEVS Florentinus. </s> <s id="s.006508">Italicè &longs;cribit quinque Dia­<lb/> logos de mu&longs;ica veteri, & noua: vbi optimè <expan abbr="recentiorũ">recentiorum</expan> Contrapunti&longs;tarum <lb/> (vt vocant) errata ab&longs;urdi&longs;&longs;ima manife&longs;tat.</s> </p> <p type="main"> <s id="s.006509">IO. BAPTISTA BENEDICTVS Gnomonica, & &longs;peculationes varias.</s> </p> <p type="main"> <s id="s.006510">M. IACOBVS CHRISTMANVS comm. in Alfraganum: cui addidit <expan abbr="cō-mentum">com<lb/> mentum</expan> eruditi&longs;&longs;imum de Calendarijs, & temporum connexione.</s> </p> <p type="main"> <s id="s.006511">IOSEPHVS AVRIA Neapolitanus optimè de Mathematicis meritus, <lb/> &longs;iquidem qua&longs;i alter <expan abbr="Cõmandmus">Commandinus</expan> pri&longs;corum monumenta Græca nobis ex­<lb/> ponere laborauit. </s> <s id="s.006512">eius &longs;unt: Autolycus de &longs;phera, quæ mouetur. </s> <s id="s.006513">Euclidis <lb/> phænomena. </s> <s id="s.006514">Theodo&longs;ius Tripolita de habitationibus: & de dicbus, & no­<lb/> ctibus. </s> <s id="s.006515">Item data Euclidis, nondum edita, quæ vt edantur, &longs;atago. </s> <s id="s.006516">plura <lb/> alia dedi&longs;&longs;et, ni mors interce&longs;&longs;i&longs;&longs;et.</s> </p> <p type="main"> <s id="s.006517">NICOLAVS RAIMARVS, libellum edit, quo acutè per &longs;olam pro&longs;tha­<lb/> phere&longs;im, totum &longs;phæricorum triangulorum calculum ab&longs;oluit. </s> <s id="s.006518">P. Clauius <lb/> in a&longs;trolabio.</s> </p> <p type="main"> <s id="s.006519">IOANNES BAPT. Vicomercatus, de horologio &longs;olari inuenit modum <pb pagenum="62" xlink:href="009/01/346.jpg"/>de&longs;cribendi plura horologia, & varia vna, & eadem opera ad Solem.</s> </p> <p type="main"> <s id="s.006520">FRANCISCVS BAROCIVS patricius Venetus, cui plutimum debe­<lb/> mus, tum ob Procli in Euclidem commentaria in latinum diligenter tran­<lb/> &longs;lata, tum propter Heronis Mechanici de machinis bellicis, necnon de Geo­<lb/> dæ&longs;ia tran&longs;lationem, <expan abbr="atq;">atque</expan> illu&longs;trationem. </s> <s id="s.006521">edidit præterea Co&longs;mographiam.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.006522">P. ALEXANDER FLORAVANTVS Capucinus, ingenio&longs;i&longs;&longs;imum, ac <lb/> commodi&longs;&longs;imum in&longs;trumentum ad horologia in muri de&longs;cribenda excogi­<lb/> tauit; quod Retehorarium appellauit. </s> <s id="s.006523">F. <!-- KEEP S--></s> <s id="s.006524">Cherubinus in &longs;uo de horologijs <lb/> Thaumalemmate.</s> </p> <p type="main"> <s id="s.006525">GVIDVS VBALDVS Marchio, ex nobili&longs;&longs;ima familia de Monte. </s> <s id="s.006526">edidit <lb/> Mechanica, Paraphra&longs;im in æquepond. </s> <s id="s.006527">Archimedis. <!-- KEEP S--></s> <s id="s.006528">A&longs;trolabium, Per&longs;pe­<lb/> ctiuam, omnia probati&longs;&longs;ima, & proprio marte adinuenta. </s> <s id="s.006529">Po&longs;thuma &longs;unt <lb/> Problem. a&longs;tron. </s> <s id="s.006530">& opus de Cochlea.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.006531">TICHO BRAHE Baro Danus, verus A&longs;tronomiæ in&longs;taurator. </s> <s id="s.006532">in id ad <lb/>200. aureorum millia in&longs;ump&longs;it; nam, & Palatium, & in&longs;trumenta &longs;umptuo­<lb/> &longs;a con&longs;truxit, & operas plurimas aluit. </s> <s id="s.006533">opera eius edita &longs;unt, tomus primus <lb/> de &longs;tella noua. </s> <s id="s.006534">alter de cometis, quas in cœlo reperit. </s> <s id="s.006535">epi&longs;tolæ. </s> <s id="s.006536">mechanica. <lb/> </s> <s id="s.006537">alia expectantur. </s> <s id="s.006538">a&longs;&longs;erit cœlum e&longs;&longs;e liquidum, & quartum ignis elementum <lb/> irridet. </s> <s id="s.006539">Venerem, & Martem modò &longs;upra Solem, modò infra ferri ob&longs;erua­<lb/> uit. </s> <s id="s.006540">obijt 1601.</s> </p> <p type="main"> <s id="s.006541">IO. BAPT. VILLALPVNDVS Soc. <!-- KEEP S--><!-- REMOVE S-->Ie&longs;u. <!-- REMOVE S-->in tertio tomo commentario­<lb/> rum in Ezechielem, librum vnum iu&longs;tæ magnitudinis habet, nouis demon­<lb/> &longs;trationibus Geometricis, & alijs pluribus, tum ad mechanicam, tum ad <lb/> men&longs;uras geometricas pertinentibus refertum.</s> </p> <p type="main"> <s id="s.006542">FRANCISCVS VIETA Gallus edidit, Canonem mathematicum, opus <lb/> re&longs;titutæ Mathematicæ analy&longs;eos, munimen aduer&longs;us nouam Cyclometri­<lb/> cam, P&longs;eudome&longs;olabum. </s> <s id="s.006543">Apollonius Gallus. <!-- KEEP S--></s> <s id="s.006544">Zetetica: & alia nonnulla.</s> </p> <p type="main"> <s id="s.006545">SIMON STEVINIVS Brugen&longs;is, edidit Problem. Geometric. <!-- REMOVE S-->lib. 5.<!-- KEEP S--></s> </p> <p type="head"> <s id="s.006546"><emph type="italics"/>XXVI. SECVLVM<emph.end type="italics"/><lb/> <arrow.to.target n="table30"/><!-- KEEP S--></s> </p> <table> <table.target id="table30"/> <row> <cell>Decimum verò &longs;eptimum Chr. ab ann. Domini</cell> <cell>1601</cell> </row> <row> <cell>Clemente 8. &longs;um. Pont.</cell> <cell/> </row> <row> <cell>Imp. Rodulpho 2. occid.</cell> <cell/> </row> </table> <p type="head"> <s id="s.006547"><emph type="italics"/>Reperitur Telo&longs;copium, quo in cœlo admiranda, ac noua <lb/> primum &longs;pectantur.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.006548">CHRISTOPHORVS CLAVIVS Bambergien&longs;is è Soc. <!-- KEEP S--><!-- REMOVE S-->Ie&longs;u, <lb/> præceptor meus. </s> <s id="s.006549">ip&longs;ius opera &longs;unt: &longs;phæra. </s> <s id="s.006550">gnomonica. </s> <s id="s.006551">commen­<lb/> taria in Euclidem. <!-- KEEP S--></s> <s id="s.006552">in Theodo&longs;ij &longs;phærica. </s> <s id="s.006553">de Triangulis planis, & <lb/> &longs;phæricis. </s> <s id="s.006554">A&longs;trolabium. <!-- KEEP S--></s> <s id="s.006555">in&longs;trumentum ad horologia de&longs;criben­<lb/> da. </s> <s id="s.006556">nona horologij de&longs;criptio per <expan abbr="Tang&etilde;tes">Tangentes</expan>. </s> <s id="s.006557">Arithmetica practica. </s> <s id="s.006558">Geome­<lb/> tria practica. </s> <s id="s.006559">Calendarij Romani à Greg. <!-- REMOVE S-->13. re&longs;tituti explicatio. </s> <s id="s.006560">Apologia <lb/>eiu&longs;dem Calendarij contra Mæ&longs;tlinum, & contra Io&longs;ephum Scaligerum. <pb pagenum="63" xlink:href="009/01/347.jpg"/>Algebra. <!-- KEEP S--></s> <s id="s.006561">in quibus multa partim à &longs;e inuenta optimè demon&longs;trat. </s> <s id="s.006562">obijt ann. <lb/> </s> <s id="s.006563">Domini 1612. 5. Februarij paulo po&longs;t mediam noctem annorum 75. fere.</s> </p> <p type="main"> <s id="s.006564">IO. ANTONIVS MAGINVS Bononiæ publicus <expan abbr="Mathematicarũ">Mathematicarum</expan> pro­<lb/> fe&longs;&longs;or. </s> <s id="s.006565">Geometriam practicam. </s> <s id="s.006566">Theoricas planetarum nouas, iuxta ob&longs;er­<lb/> uationes Copernici. <!-- KEEP S--></s> <s id="s.006567">Tabulas &longs;ecundorum mobilium. </s> <s id="s.006568">Primum mobile. </s> <s id="s.006569">Ta­<lb/> bulas directionum. </s> <s id="s.006570">commentaria in Ptolemæi Geographiam. <!-- KEEP S--></s> <s id="s.006571">Ephemerides <lb/> ad annos 50. & Italicè de admirandis effectibus &longs;peculi &longs;phærici &longs;crip&longs;it. <lb/> </s> <s id="s.006572">nunc Italiam magnum opus adornat.</s> </p> <p type="main"> <s id="s.006573">MARINVS GHETALDVS patricius Ragu&longs;inus. </s> <s id="s.006574">Promotus Archime­<lb/> des. </s> <s id="s.006575">de parabola, & &longs;peculo v&longs;torio. </s> <s id="s.006576">item Apollonius rediuiuus. </s> <s id="s.006577">& &longs;upplem. <lb/> </s> <s id="s.006578">Apoll. <!-- REMOVE S-->Galli. </s> <s id="s.006579">adhuc viuit.</s> </p> <p type="main"> <s id="s.006580">LVCAS VALERIVS Romæ publicus Mathematicarum profe&longs;&longs;or. </s> <s id="s.006581">de <lb/> centro grauit. </s> <s id="s.006582">&longs;olidorum. </s> <s id="s.006583">opus magno acumine con&longs;criptum. </s> <s id="s.006584">Item Qua­<lb/> dratura Paraboles aliter, quàm Archimedes adhuc viuit.</s> </p> <p type="main"> <s id="s.006585">ADRIANVS ROMANVS Belga, eius &longs;unt, Idæa Mathematica. <!-- KEEP S--></s> <s id="s.006586">Vra­<lb/> nographia. </s> <s id="s.006587">expo&longs;itio Archimedis de circuli dimen&longs;ione. </s> <s id="s.006588">exercitationes cy­<lb/> clicæ. </s> <s id="s.006589">de Triangulis &longs;phæricis.</s> </p> <p type="main"> <s id="s.006590">Nobili&longs;&longs;imus CAROLVS GESVALDVS Princeps Venu&longs;inus, no&longs;træ <lb/> tempe&longs;tatis Mu&longs;icorum, ac Melopæorum princeps, ac veteris Mu&longs;icæ re­<lb/> &longs;taurator. </s> <s id="s.006591">hic enim rithmis in Mu&longs;icam reuocatis, eos tum ad cantum, tum <lb/> ad &longs;onum Modulos adhibuit, vt cæteri omnes Mu&longs;ici, ei primas libenter de­<lb/> tulerint, <expan abbr="eius&qacute;">eiusque</expan>; Modos Cantores, ac Fidicines omnes, reliquis po&longs;thabitis, <lb/> <expan abbr="vbiq;">vbique</expan> auidè complectantur. </s> <s id="s.006592">obijt 1614.</s> </p> <p type="main"> <s id="s.006593">IO. BAPT. PORTA, eruditi&longs;&longs;imus æquè, ac nobili&longs;&longs;imus. </s> <s id="s.006594">editi &longs;unt eius <lb/> lib. 9. de Refractione optices. </s> <s id="s.006595">elementorum curuilineorum lib. 3. Interpre­<lb/> tatio primi Almage&longs;ti, cum comm. <!-- REMOVE S-->Theonis. </s> <s id="s.006596">de Munitione lib. 3. Pneuma­<lb/> ticorum lib. 3. Catoptrica nondum edita.</s> </p> <p type="main"> <s id="s.006597">P. BERNARDINVS SALINVS de Soc. <!-- KEEP S--><!-- REMOVE S-->Ie&longs;u. <!-- REMOVE S-->libri 11. in quibus &longs;uppo­<lb/> &longs;ita recta æquali circumferentiæ plurima veluti corollaria demon&longs;trantur. <lb/> </s> <s id="s.006598">de horologijs lib. 2. varia problemata a&longs;tronomica lib. 1. de men&longs;uris geo­<lb/> metricis lib. 1. quæ nondum edita a&longs;&longs;eruantur Genuæ in Colleg. <!-- REMOVE S-->Soc. <!-- KEEP S--><!-- REMOVE S-->no&longs;træ. <lb/> </s> <s id="s.006599">obijt ann. </s> <s id="s.006600">Domini circiter 1608.</s> </p> <p type="main"> <s id="s.006601">PETRVS ANTONIVS CATTALDVS Bononien&longs;is, <expan abbr="publicus&qacute;">publicusque</expan>; Bo­<lb/> noniæ Mathematicarum profe&longs;&longs;or. </s> <s id="s.006602">cuius opera iam edita &longs;unt, Elementa <lb/> numerorum arithmeticorum. </s> <s id="s.006603">Elementa Geometricorum. </s> <s id="s.006604">Algebra pro­<lb/> portionalis. </s> <s id="s.006605">de lineis rectis æquidi&longs;tantibus, & non æquidi&longs;tantibus; vbi <lb/> Po&longs;tulatum quintum, & &longs;eptimum primi Euclid. <!-- REMOVE S-->o&longs;ten&longs;iuè, ac breuiter de­<lb/> mon&longs;trat. </s> <s id="s.006606">De numeris perfectis. </s> <s id="s.006607">Transformatio Geometrica, qua o&longs;ten­<lb/> dit datum rectilineum, illud ip&longs;um reducere ad formam propo&longs;iti rectilinei. <lb/> </s> <s id="s.006608">De radice quadrata breui&longs;&longs;imè inuenienda. </s> <s id="s.006609">De quadratura circuli. </s> <s id="s.006610">Plures <lb/> lectiones mathematicæ. </s> <s id="s.006611">Apud ip&longs;um verò ab&longs;oluta, <expan abbr="atq;">atque</expan> ad Typum para­<lb/> ta hec &longs;unt: Archimedis defen&longs;io. </s> <s id="s.006612">Euclidis defen&longs;io. </s> <s id="s.006613">Algebra numeralis, <lb/> linealis, & applicata. </s> <s id="s.006614">Elementa numerorum denominatorum. </s> <s id="s.006615">De regula <lb/> aurea &longs;umma breuitate. </s> <s id="s.006616">Transformatio geometrica figur&etail;, in aliam cuius <lb/> ambitus, ac laterum numerus &longs;it propo&longs;itus. </s> <s id="s.006617">Algebra triangularis. </s> <s id="s.006618">Hor­<lb/> tus mathematicus. </s> <s id="s.006619">Continuatio algebræ proportionalis, vbi acuti&longs;&longs;imum <pb pagenum="64" xlink:href="009/01/348.jpg"/>opus zeteticorum docti&longs;&longs;imi Franci&longs;ci Vietæ exponit. </s> <s id="s.006620">Examen geometriæ <lb/> Caroli Bouilij.</s> </p> <p type="main"> <s id="s.006621">IOANNES KEPLERVS Mathematicus Cæ&longs;areus, à quo edita &longs;unt; <lb/> My&longs;terium co&longs;mographicum. </s> <s id="s.006622">De &longs;tellis nouis. </s> <s id="s.006623">Paralipomena ad Vitell. <lb/> <!-- REMOVE S-->vnà cum Optica a&longs;tronomica. </s> <s id="s.006624">Opus de &longs;tella Martis. <!-- KEEP S--></s> <s id="s.006625">Dioprice.</s> </p> <p type="main"> <s id="s.006626">GALILÆVS GALILÆVS Florentinus, cui plurimùm debet tota po&longs;te­<lb/> ritas, nam ope Tele&longs;copij nuper à Belgis inuenti, reperit quatuor planetas <lb/> circa Iouem errantes; & innumeras alias fixas; in Luna montes, ac valles; <lb/>nebulo&longs;as e&longs;&longs;e &longs;tellularum greges, Gallaxiam e&longs;&longs;e exiguorum a&longs;teri&longs;corum <lb/> agmen; Venerem in&longs;tar Lunæ augeri, & minui; Saturnum duobus &longs;tipari <lb/> &longs;atellitibus; hæc partim in &longs;uo Sydereo Nuncio exponit; partim in libro <lb/> Italicè &longs;cripto de Maculis &longs;olaribus, vbi &longs;e primum earum repertorem e&longs;&longs;e <lb/> contendit. </s> <s id="s.006627">Item Italicè de ijs, quæ natant, aut mouentur in aqua; opus <lb/> acuti&longs;&longs;imum; vbi aliquot Ari&longs;t. loca Mathematica expendit. </s> <s id="s.006628">adhuc viuit, <lb/> & nouum mundi Sy&longs;tema adornat.</s> </p> <p type="main"> <s id="s.006629">APELLES po&longs;t tabulam latens (&longs;ic ficto nomine appellari voluit P. <!-- REMOVE S-->Chri­<lb/>&longs;tophorus Scheiner Germanus è Societate no&longs;tra) maculas &longs;olares proprio <lb/> Marte animaduertit, quid circa eas eodem ferè tempore alij agerent, om­<lb/> ninò ne&longs;cius. </s> <s id="s.006630">eas tamen primus, libello ficti nominis, publici iuris fecit. <lb/> </s> <s id="s.006631">item libellum de Sole elliptico. </s> <s id="s.006632">1612.</s> </p> <p type="main"> <s id="s.006633">MARCVSANTONIVS de DOMINIS Archiepi&longs;copus Spalatri. </s> <s id="s.006634">de ra­<lb/> dijs vi&longs;us, & lucis: vbi inquirit Tele&longs;copij demon&longs;trationem.</s> </p> <p type="main"> <s id="s.006635">P. CHRISTOPHORVS GREIMBERGERVS è Societ. <!-- KEEP S--><!-- REMOVE S-->no&longs;tra, qui ad <lb/> A&longs;trolabium, & Horologia attulit non pauca ip&longs;o Clauio te&longs;te. </s> <s id="s.006636">nuper edi­<lb/> dit Catalogum veteres affixarum longitudines, & latitudines <expan abbr="confer&etilde;s">conferens</expan> cum <lb/> nouis. </s> <s id="s.006637">Item libellum de &longs;peculo v&longs;torio; & Appendicem ad practicam Co­<lb/> ni &longs;ectionem, cui annexa &longs;unt con&longs;ectaria, quæ circulorum contactui, <expan abbr="&longs;ectio-nem&qacute;">&longs;ectio­<lb/> nemque</expan>; angulorum curuilineorum concernunt.</s> </p> <p type="main"> <s id="s.006638">P. Fr. <!-- REMOVE S-->AGVILLONIVS BELGA è no&longs;tra Societ. <!-- KEEP S--><!-- REMOVE S-->edidit eleganti&longs;&longs;imum <lb/> Opticæ volumen; & alterum adornat.</s> </p> <p type="main"> <s id="s.006639">Huius &longs;eculi præcedens pars de&longs;init in anno Dom. <!-- REMOVE S-->1614. quo ip&longs;a Chro­<lb/> nologia pariter ab&longs;oluta e&longs;t.</s> </p> <p type="main"> <s id="s.006640"><expan abbr="Atq;">Atque</expan> hic finis e&longs;to breuis huius Chronologiæ, quæ continet auctores ferè <lb/> 257. annos verò 2464. in 26. &longs;ecula di&longs;tributa; in quam ex antiquis omnes <lb/> quot quot reperire potuimus, ex recentioribus &longs;electiores, qui aut &longs;crip­<lb/>tis, aut rebus claruerint, cooptauimus; alioquin recen&longs;endi fui&longs;&longs;ent omnes <lb/> Pythagorici, <expan abbr="atq;">atque</expan> omnes Platonici, qui omnes Mathematicis eximié naua­<lb/> bant operam. </s> <s id="s.006641">omnes præterea Poetæ ab Homero <expan abbr="v&longs;q;">v&longs;que</expan> ad Chri&longs;t<emph type="italics"/>i<emph.end type="italics"/> ferè &longs;ecu­<lb/>lum annumerandi fui&longs;&longs;ent, erant enim antiquitus poetæ omnes &longs;imul etiam <lb/> mu&longs;ici, vt per&longs;picuum e&longs;t ex ijs, quæ in libro de mu&longs;ica Plutarchus in hunc <lb/> modum ait; non equidem fui&longs;&longs;e immunem metri, numeriuè rati dictionem <lb/> poematum mu&longs;icorum, &longs;ed qualis Stetichori fuit, & veterum aliorum poe­<lb/> tarum, qui carmina adhibitis modulis condidere, Terpandrum <expan abbr="nanq;">nanque</expan> tra­<lb/> dunt adiectis ad &longs;ua, <expan abbr="atq;">atque</expan> Homeri carmina, per &longs;ingulas leges modis, &longs;oli­<lb/> tum in ludis cum concertatione editis canere.</s> </p> <p type="main"> <s id="s.006642"><expan abbr="Neq;">Neque</expan> mireris, quòd <expan abbr="rec&etilde;tcs">recentes</expan> mu&longs;icos omnes, quos Contrapunti&longs;tas appel­ <pb pagenum="65" xlink:href="009/01/349.jpg"/>lant, omi&longs;erim, id enim con&longs;ultò, ac meritò feci, cùm mihi ob&longs;equentes ra­<lb/> tiones, quas breuiter ex Dialogis de mu&longs;ica Vincentij Galilæi decerp&longs;i, <lb/> nomine mu&longs;ici, indigni videantur.</s> </p> <p type="main"> <s id="s.006643">Primò, quia officio mu&longs;ici minimè funguntur: e&longs;t autem ex Platonis, <expan abbr="atq;">atque</expan> <lb/> Ari&longs;tot. &longs;ententia, officium mu&longs;ici, rithmis, &longs;iue numeris vti ad auditorum <lb/> affectus excitandos: Contrapunti&longs;tæ verò i&longs;ti rithmum omnem, aut nume­<lb/> rum a &longs;pernantur.</s> </p> <p type="main"> <s id="s.006644">Secundò, quia &longs;uas illas quatuor, aut quinque partes &longs;ic &longs;imul <expan abbr="confundũt">confundunt</expan>, <lb/> vt nullum verbum, <expan abbr="nullus&qacute;">nullusque</expan>; rithmus percipiatur: &longs;ed mera tantummodo <lb/> mu&longs;ica quædam confu&longs;io: quam, qui audit ne&longs;cit quid audiat.</s> </p> <p type="main"> <s id="s.006645">Tertiò, quia eodem modo carmina, ac &longs;olutam orationem canunt, vt in­<lb/> telligere nequeas carmina ne, an pro&longs;am decantent. </s> <s id="s.006646">quod quidem maximè <lb/> e&longs;t inconueniens, & veteri mu&longs;icæ contrarium. </s> <s id="s.006647"><expan abbr="neq;">neque</expan> enim mu&longs;ica carminis <lb/> numerum offu&longs;care; &longs;ed eum magis exornare, <expan abbr="atq;">atque</expan> viuidum reddere debet.</s> </p> <p type="main"> <s id="s.006648">Quartò, quia cantilenæ &longs;en&longs;um omnem, dum diuer&longs;a verba &longs;imul plures, <lb/> in cantu pronunciant, ita tollunt, vt nihil omnino intelligatur: cùm tamen <lb/> mu&longs;ici officium &longs;it, cantilenæ &longs;ententiam cantu, & rithmo auditorum ani­<lb/> mis ita in genere, vt eos iuxta &longs;ententiæ illius <expan abbr="affectũ">affectum</expan>, afficiat, ac <expan abbr="cõmoueat">commoueat</expan>.</s> </p> <p type="main"> <s id="s.006649">Quintò, quia de indu&longs;tria <expan abbr="cõtra">contra</expan> leges antiquas repetitiones eiu&longs;dem, vel <lb/> <expan abbr="con&longs;onãtiæ">con&longs;onantiæ</expan>, vel cadentiæ, aut aiunt, <expan abbr="atq;">atque</expan> <expan abbr="etiã">etiam</expan> rithmi maximè vitant: quod <lb/> tamen ad animorum motus ciendos plurimùm valet.</s> </p> <p type="main"> <s id="s.006650">Sextò, quia non mu&longs;icè, &longs;ed mimicè, ide&longs;t non rithmis, &longs;ed modis à natu­<lb/> ra mu&longs;icæ alienis, ac ridiculis frequenter imitari ge&longs;tiunt.</s> </p> <p type="main"> <s id="s.006651">Hac igitur no&longs;tra <expan abbr="qualicunq;">qualicunque</expan> fruere lucubratiuncula: <expan abbr="atq;">atque</expan> in ea contem­<lb/> plare, quo <expan abbr="t&etilde;pore">tempore</expan>, & à quibus non &longs;olùm Mathematica, &longs;ed aliæ etiam <expan abbr="&longs;ci&etilde;-tiæ">&longs;cien­<lb/> tiæ</expan> ortum habuerunt: quando & apud quos floruerint, aut de&longs;ierint; ac <expan abbr="tã-dem">tan­<lb/> dem</expan> iterum reuiui&longs;cere c&etail;perint.</s> </p> <p type="main"> <s id="s.006652">Quòd &longs;i quæras, <expan abbr="quibu&longs;nã">quibu&longs;nam</expan> &longs;tudijs, tribus illis annorum millibus, quæ chro­<lb/> nologiam hanc no&longs;tram præce&longs;&longs;erunt, homines vacauerint, ac proinde, cur <lb/> tam &longs;erò literis operam nauare cæperint: re&longs;pondendum e&longs;&longs;e arbitror, <lb/> toto illo tempore homines fui&longs;&longs;e totos, tum in artibus inue­<lb/> niendis, atque excolendis, tum in vrbibus, atque <lb/> rebus publicis con&longs;tituendis: quippe­<lb/> quæ magis humanæ vitæ ne­<lb/> ce&longs;&longs;aria erant. <lb/> </s> <s id="s.006653">Vale.<!-- KEEP S--></s> </p> <p type="head"> <s id="s.006654">DEO OPT. MAX. LAVS.</s> </p> <pb xlink:href="009/01/350.jpg"/> <p type="head"> <s id="s.006655">INDEX<lb/> In præcedentem Chronologiam.<lb/> <arrow.to.target n="table31"/></s> </p> <table> <table.target id="table31"/> <row> <cell><emph type="italics"/>A<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Ardalus mu&longs;icus.<emph.end type="italics"/></cell> <cell><emph type="italics"/>&longs;ec.<emph.end type="italics"/> 1</cell> </row> <row> <cell><emph type="italics"/>Anaximander a&longs;tron.<emph.end type="italics"/></cell> <cell>3</cell> </row> <row> <cell><emph type="italics"/>Ameti&longs;tus geomctra.<emph.end type="italics"/></cell> <cell>3</cell> </row> <row> <cell><emph type="italics"/>Anaximenes a&longs;tron.<emph.end type="italics"/></cell> <cell>3</cell> </row> <row> <cell><emph type="italics"/>Anaxagoras astron.<emph.end type="italics"/></cell> <cell>4</cell> </row> <row> <cell><emph type="italics"/>Anti&longs;thenes mu&longs;icus.<emph.end type="italics"/></cell> <cell>5</cell> </row> <row> <cell><emph type="italics"/>Amiclas geom.<emph.end type="italics"/></cell> <cell>5</cell> </row> <row> <cell><emph type="italics"/>Antiphon geom.<emph.end type="italics"/></cell> <cell>5</cell> </row> <row> <cell><emph type="italics"/>Ari&longs;tæus geom.<emph.end type="italics"/></cell> <cell>6</cell> </row> <row> <cell><emph type="italics"/>Aratus a&longs;tron.<emph.end type="italics"/></cell> <cell>6</cell> </row> <row> <cell><emph type="italics"/>Aristoteles mathem.<emph.end type="italics"/></cell> <cell>6</cell> </row> <row> <cell><emph type="italics"/>Autolycus a&longs;tron.<emph.end type="italics"/></cell> <cell>6</cell> </row> <row> <cell><emph type="italics"/>Ari&longs;toxenes mu&longs;.<emph.end type="italics"/></cell> <cell>6</cell> </row> <row> <cell><emph type="italics"/>Archelaws geographus.<emph.end type="italics"/></cell> <cell>6</cell> </row> <row> <cell><emph type="italics"/>Ari&longs;tarchus a&longs;tron.<emph.end type="italics"/></cell> <cell>6</cell> </row> <row> <cell><emph type="italics"/>Arçhimedes mathem.<emph.end type="italics"/></cell> <cell>7</cell> </row> <row> <cell><emph type="italics"/>Apollónius magnus geometra.<emph.end type="italics"/></cell> <cell>8</cell> </row> <row> <cell><emph type="italics"/>Athenæus mechan.<emph.end type="italics"/></cell> <cell>9</cell> </row> <row> <cell><emph type="italics"/>Andronicus mechan.<emph.end type="italics"/></cell> <cell>9</cell> </row> <row> <cell><emph type="italics"/>Artemidorus geogr.<emph.end type="italics"/></cell> <cell>10</cell> </row> <row> <cell><emph type="italics"/>Andromachus astron.<emph.end type="italics"/></cell> <cell>10</cell> </row> <row> <cell><emph type="italics"/>Abifeldea geogr.<emph.end type="italics"/></cell> <cell>13</cell> </row> <row> <cell><emph type="italics"/>S. Augu&longs;tmus mathem.<emph.end type="italics"/></cell> <cell>14</cell> </row> <row> <cell><emph type="italics"/>Almaon Rex a&longs;tron.<emph.end type="italics"/></cell> <cell>18</cell> </row> <row> <cell><emph type="italics"/>Albaregnius a&longs;tron.<emph.end type="italics"/></cell> <cell>18</cell> </row> <row> <cell><emph type="italics"/>Achilles a&longs;tron.<emph.end type="italics"/></cell> <cell>18</cell> </row> <row> <cell><emph type="italics"/>Alfarabius a&longs;tron.<emph.end type="italics"/></cell> <cell>10</cell> </row> <row> <cell><emph type="italics"/>Alhuma&longs;ar a&longs;tron.<emph.end type="italics"/></cell> <cell>19</cell> </row> <row> <cell><emph type="italics"/>Alfraganus a&longs;tron.<emph.end type="italics"/></cell> <cell>19</cell> </row> <row> <cell><emph type="italics"/>Alhazenus opticus.<emph.end type="italics"/></cell> <cell>20</cell> </row> <row> <cell><emph type="italics"/>Arzael a&longs;tron.<emph.end type="italics"/></cell> <cell>20</cell> </row> <row> <cell><emph type="italics"/>Auerroes a&longs;tron.<emph.end type="italics"/></cell> <cell>21</cell> </row> <row> <cell><emph type="italics"/>Almeon Alman&longs;orius a&longs;tron.<emph.end type="italics"/></cell> <cell>21</cell> </row> <row> <cell><emph type="italics"/>Alpetragius a&longs;tr.<emph.end type="italics"/></cell> <cell>21</cell> </row> <row> <cell><emph type="italics"/>R. Abraham a&longs;tr.<emph.end type="italics"/></cell> <cell>21</cell> </row> <row> <cell><emph type="italics"/>Alfon&longs;us Rex a&longs;tr.<emph.end type="italics"/></cell> <cell>22</cell> </row> <row> <cell><emph type="italics"/>Andreas Schonerus gnonom.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>Aloy&longs;ius Lihus a&longs;ir.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>Abrahamus Ortelius geogr.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>Alexand. Florauantes gnom.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>Adrianus R. B. mathem.<emph.end type="italics"/></cell> <cell>26</cell> </row> <row> <cell><emph type="italics"/>Apelles Latens a&longs;tr.<emph.end type="italics"/></cell> <cell>26</cell> </row> <row> <cell><emph type="italics"/>B<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Bry&longs;o geom.<emph.end type="italics"/></cell> <cell>5</cell> </row> <row> <cell><emph type="italics"/>Bero&longs;us a&longs;tr.<emph.end type="italics"/></cell> <cell>6</cell> </row> <row> <cell><emph type="italics"/>Boetius mathem.<emph.end type="italics"/></cell> <cell>15</cell> </row> <row> <cell><emph type="italics"/>V. Beda mathem.<emph.end type="italics"/></cell> <cell>17</cell> </row> <row> <cell><emph type="italics"/>Bagdadinus geom.<emph.end type="italics"/></cell> <cell>19</cell> </row> <row> <cell><emph type="italics"/>Ben Mu&longs;a geom.<emph.end type="italics"/></cell> <cell>19</cell> </row> <row> <cell><emph type="italics"/>Barlaam arithm.<emph.end type="italics"/></cell> <cell>23</cell> </row> <row> <cell><emph type="italics"/>Bart. Zambertus geom.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>Bernardinus Salinus geom.<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>C<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Carolus Ge&longs;ualdus mu&longs;ic.<emph.end type="italics"/></cell> <cell>26</cell> </row> <row> <cell><emph type="italics"/>Clonas mu&longs;ic. &longs;ec.<emph.end type="italics"/></cell> <cell>1</cell> </row> <row> <cell><emph type="italics"/>Cleo&longs;tratus a&longs;tron.<emph.end type="italics"/></cell> <cell>3</cell> </row> <row> <cell><emph type="italics"/>Cratistus geom.<emph.end type="italics"/></cell> <cell>4</cell> </row> <row> <cell><emph type="italics"/>Cygicinus geom.<emph.end type="italics"/></cell> <cell>6</cell> </row> <row> <cell><emph type="italics"/>Calippus astron.<emph.end type="italics"/></cell> <cell>6</cell> </row> <row> <cell><emph type="italics"/>Conon mathem.<emph.end type="italics"/></cell> <cell>6</cell> </row> <row> <cell><emph type="italics"/>Cte&longs;ibius mechan.<emph.end type="italics"/></cell> <cell>7</cell> </row> <row> <cell><emph type="italics"/>Cleomedes a&longs;tr.<emph.end type="italics"/></cell> <cell>8</cell> </row> <row> <cell><emph type="italics"/>C. Manlius a&longs;tr.<emph.end type="italics"/></cell> <cell>9</cell> </row> <row> <cell><emph type="italics"/>Cen&longs;orinu a&longs;tr.<emph.end type="italics"/></cell> <cell>12</cell> </row> <row> <cell><emph type="italics"/>Cyrillus Epi&longs;c. astr.<emph.end type="italics"/></cell> <cell>14</cell> </row> <row> <cell><emph type="italics"/>Ca&longs;&longs;iodorus math.<emph.end type="italics"/></cell> <cell>15</cell> </row> <row> <cell><emph type="italics"/>Campanus geom.<emph.end type="italics"/></cell> <cell>20</cell> </row> <row> <cell><emph type="italics"/>Chri&longs;toph. Columb. nautic.<emph.end type="italics"/></cell> <cell>24</cell> </row> <row> <cell><emph type="italics"/>Cbr. Clauius mathem.<emph.end type="italics"/></cell> <cell>26</cell> </row> <row> <cell><emph type="italics"/>Chr. Gruenbergeius mathem.<emph.end type="italics"/></cell> <cell>26</cell> </row> <row> <cell><emph type="italics"/>Cardanus a&longs;tr.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>Cattaldus arithm.<emph.end type="italics"/></cell> <cell>26</cell> </row> <row> <cell><emph type="italics"/>D<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Damon mu&longs;ic.<emph.end type="italics"/></cell> <cell>3</cell> </row> <row> <cell><emph type="italics"/>Diocles mu&longs;ic.<emph.end type="italics"/></cell> <cell>4</cell> </row> <row> <cell><emph type="italics"/>Democritus mathem.<emph.end type="italics"/></cell> <cell>5</cell> </row> <row> <cell><emph type="italics"/>Dino&longs;tratus geom.<emph.end type="italics"/></cell> <cell>6</cell> </row> <row> <cell><emph type="italics"/>Dicearcbus geom.<emph.end type="italics"/></cell> <cell>6</cell> </row> <row> <cell><emph type="italics"/>Diony&longs;iodorus geom.<emph.end type="italics"/></cell> <cell>9</cell> </row> <pb xlink:href="009/01/351.jpg"/> <row> <cell><emph type="italics"/>Diony&longs;ius Afer geogr.<emph.end type="italics"/></cell> <cell>10</cell> </row> <row> <cell><emph type="italics"/>Diophantes arithm.<emph.end type="italics"/></cell> <cell>11</cell> </row> <row> <cell><emph type="italics"/>Diocles geom.<emph.end type="italics"/></cell> <cell>14</cell> </row> <row> <cell><emph type="italics"/>Demetrius geom.<emph.end type="italics"/></cell> <cell>14</cell> </row> <row> <cell><emph type="italics"/>Diony&longs;ius a&longs;tron.<emph.end type="italics"/></cell> <cell>15</cell> </row> <row> <cell><emph type="italics"/>E<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Evshorbus geometra.<emph.end type="italics"/></cell> <cell>2</cell> </row> <row> <cell><emph type="italics"/>Empedocles mu&longs;.<emph.end type="italics"/></cell> <cell>4</cell> </row> <row> <cell><emph type="italics"/>Epicurus mu&longs;.<emph.end type="italics"/></cell> <cell>5</cell> </row> <row> <cell><emph type="italics"/>Euctemon a&longs;tron.<emph.end type="italics"/></cell> <cell>5</cell> </row> <row> <cell><emph type="italics"/>Eudoxius a&longs;tron.<emph.end type="italics"/></cell> <cell>5</cell> </row> <row> <cell><emph type="italics"/>Euclides geom.<emph.end type="italics"/></cell> <cell>6</cell> </row> <row> <cell><emph type="italics"/>Erato&longs;thenes a&longs;tron.<emph.end type="italics"/></cell> <cell>7</cell> </row> <row> <cell><emph type="italics"/>Eu&longs;ebius Epi&longs;c. a&longs;tron.<emph.end type="italics"/></cell> <cell>13</cell> </row> <row> <cell><emph type="italics"/>Eudemus geom.<emph.end type="italics"/></cell> <cell>13</cell> </row> <row> <cell><emph type="italics"/>Eutocius geom.<emph.end type="italics"/></cell> <cell>14</cell> </row> <row> <cell><emph type="italics"/>Era&longs;mus Reinoldus a&longs;tron.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>F<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Franchinus mu&longs;.<emph.end type="italics"/></cell> <cell>24</cell> </row> <row> <cell><emph type="italics"/>Fr. Lucas arithm.<emph.end type="italics"/></cell> <cell>24</cell> </row> <row> <cell><emph type="italics"/>Ferd. Megalanes naut.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>Fr. Maurolycus mathem.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>Fr. Flu&longs;&longs;as geom.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>Feder. Command. mathem.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>Fr. Barocius mathem.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>Fr. Vieta mathem.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>Fr. Aguillonius optic.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>G<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Geminus geom.<emph.end type="italics"/></cell> <cell>6</cell> </row> <row> <cell><emph type="italics"/>Geminus Rhodius a&longs;tr. & geom.<emph.end type="italics"/></cell> <cell>13</cell> </row> <row> <cell><emph type="italics"/>S. Greg. mag. mu&longs;.<emph.end type="italics"/></cell> <cell>15</cell> </row> <row> <cell><emph type="italics"/>Geber a&longs;tron.<emph.end type="italics"/></cell> <cell>18</cell> </row> <row> <cell><emph type="italics"/>Guido Aret. mu&longs;.<emph.end type="italics"/></cell> <cell>19</cell> </row> <row> <cell><emph type="italics"/>Geor. Purbachius astron.<emph.end type="italics"/></cell> <cell>24</cell> </row> <row> <cell><emph type="italics"/>Gemma Fri&longs;ius mathem.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>Gerardus Mercator geogr.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>Guidu&longs;ubaldus mathem.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>Galilæus Galilæus a&longs;tron.<emph.end type="italics"/></cell> <cell>26</cell> </row> <row> <cell><emph type="italics"/>H<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Hecateus geogr.<emph.end type="italics"/></cell> <cell>3</cell> </row> <row> <cell><emph type="italics"/>Hippocr. Chius geom.<emph.end type="italics"/></cell> <cell>4</cell> </row> <row> <cell><emph type="italics"/>Helicon a&longs;tron.<emph.end type="italics"/></cell> <cell>5</cell> </row> <row> <cell><emph type="italics"/>Hermotimus geom.<emph.end type="italics"/></cell> <cell>6</cell> </row> <row> <cell><emph type="italics"/>Hermophilus geom.<emph.end type="italics"/></cell> <cell>6</cell> </row> <row> <cell><emph type="italics"/>Heraclides mu&longs;.<emph.end type="italics"/></cell> <cell>6</cell> </row> <row> <cell><emph type="italics"/>Hero mechan.<emph.end type="italics"/></cell> <cell>8</cell> </row> <row> <cell><emph type="italics"/>Hipparchus astron.<emph.end type="italics"/></cell> <cell>8</cell> </row> <row> <cell><emph type="italics"/>Hippolytus Epi&longs;c. a&longs;tron.<emph.end type="italics"/></cell> <cell>12</cell> </row> <row> <cell><emph type="italics"/>Hypatia a&longs;tron. & arithm.<emph.end type="italics"/></cell> <cell>14</cell> </row> <row> <cell><emph type="italics"/>Hero mechan. alter.<emph.end type="italics"/></cell> <cell>15</cell> </row> <row> <cell><emph type="italics"/>Heliodorus optic.<emph.end type="italics"/></cell> <cell>15</cell> </row> <row> <cell><emph type="italics"/>I<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Ismenius mu&longs;.<emph.end type="italics"/></cell> <cell>4</cell> </row> <row> <cell><emph type="italics"/>I&longs;idorus geom.<emph.end type="italics"/></cell> <cell>8</cell> </row> <row> <cell><emph type="italics"/>Iul. Cæ&longs;ar astron.<emph.end type="italics"/></cell> <cell>9</cell> </row> <row> <cell><emph type="italics"/>Iul. Higinius a&longs;tron.<emph.end type="italics"/></cell> <cell>10</cell> </row> <row> <cell><emph type="italics"/>Iul. Maternus a&longs;trol.<emph.end type="italics"/></cell> <cell>13</cell> </row> <row> <cell><emph type="italics"/>Io. Grammat. arithm.<emph.end type="italics"/></cell> <cell>15</cell> </row> <row> <cell><emph type="italics"/>I&longs;idorus mathem.<emph.end type="italics"/></cell> <cell>16</cell> </row> <row> <cell><emph type="italics"/>I&longs;acius a&longs;tron.<emph.end type="italics"/></cell> <cell>20</cell> </row> <row> <cell><emph type="italics"/>Iordanes arithm.<emph.end type="italics"/></cell> <cell>21</cell> </row> <row> <cell><emph type="italics"/>Io. de Sacrobo&longs;co a&longs;tron.<emph.end type="italics"/></cell> <cell>22</cell> </row> <row> <cell><emph type="italics"/>Io. Gira nautic.<emph.end type="italics"/></cell> <cell>22</cell> </row> <row> <cell><emph type="italics"/>Io. Epi&longs;c. optic.<emph.end type="italics"/></cell> <cell>23</cell> </row> <row> <cell><emph type="italics"/>Iacob. Faber mu&longs;.<emph.end type="italics"/></cell> <cell>24</cell> </row> <row> <cell><emph type="italics"/>Io. Monteregius a&longs;tron.<emph.end type="italics"/></cell> <cell>24</cell> </row> <row> <cell><emph type="italics"/>Io. Vernerus a&longs;tron.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>Io. Blanchinus a&longs;tron.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>Io. Buteo mathem.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>Io. Paduanus gnomon:<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>Io. Roias a&longs;tron.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>Io. Sto&longs;terus a&longs;tron.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>Io&longs;ephus Zarlinus mu&longs;.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>Io. Bapt. Benedictus gnomon.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>Io&longs;ephus Auria mathem.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>Iacob. Chri&longs;tm. a&longs;tron.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>Io. Bapt. Vicomerc. gnomon.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>Io. Villalpandus geom.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>Io. Ant. Maginus a&longs;tron.<emph.end type="italics"/></cell> <cell>26</cell> </row> <row> <cell><emph type="italics"/>Io. Keplerus mathem.<emph.end type="italics"/></cell> <cell>26</cell> </row> <row> <cell><emph type="italics"/>L<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Licaon mu&longs;.<emph.end type="italics"/></cell> <cell>3</cell> </row> <row> <cell><emph type="italics"/>La&longs;us mu&longs;.<emph.end type="italics"/></cell> <cell>4</cell> </row> <row> <cell><emph type="italics"/>Leodamas geom.<emph.end type="italics"/></cell> <cell>5</cell> </row> <row> <cell><emph type="italics"/>Leon geom.<emph.end type="italics"/></cell> <cell>5</cell> </row> <row> <cell><emph type="italics"/>L. Papirius gnomon.<emph.end type="italics"/></cell> <cell>6</cell> </row> <row> <cell><emph type="italics"/>Leonardus algebrat.<emph.end type="italics"/></cell> <cell>24</cell> </row> <row> <cell><emph type="italics"/>Ludouicus Folianus mu&longs;.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>Lucas Gaur. a&longs;tron.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>Lucas Valerius mechan.<emph.end type="italics"/></cell> <cell>26</cell> </row> <pb xlink:href="009/01/352.jpg"/> <row> <cell><emph type="italics"/>M<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Mamertimis geom.<emph.end type="italics"/></cell> <cell>3</cell> </row> <row> <cell><emph type="italics"/>Methon a&longs;tron.<emph.end type="italics"/></cell> <cell>5</cell> </row> <row> <cell><emph type="italics"/>Menechmus geom.<emph.end type="italics"/></cell> <cell>6</cell> </row> <row> <cell><emph type="italics"/>M. Agrippa geogr.<emph.end type="italics"/></cell> <cell>9</cell> </row> <row> <cell><emph type="italics"/>Marinus geogr.<emph.end type="italics"/></cell> <cell>10</cell> </row> <row> <cell><emph type="italics"/>Menelaus a&longs;tron.<emph.end type="italics"/></cell> <cell>10</cell> </row> <row> <cell><emph type="italics"/>Maximus arithm.<emph.end type="italics"/></cell> <cell>13</cell> </row> <row> <cell><emph type="italics"/>Menelaus geom.<emph.end type="italics"/></cell> <cell>13</cell> </row> <row> <cell><emph type="italics"/>Marinus Neapolit. geom.<emph.end type="italics"/></cell> <cell>14</cell> </row> <row> <cell><emph type="italics"/>Martianus mathem.<emph.end type="italics"/></cell> <cell>16</cell> </row> <row> <cell><emph type="italics"/>Michael P&longs;eltus mathem.<emph.end type="italics"/></cell> <cell>18</cell> </row> <row> <cell><emph type="italics"/>Mar. Polus geogr.<emph.end type="italics"/></cell> <cell>23</cell> </row> <row> <cell><emph type="italics"/>Michael Stif. arithra.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>Marinus Ghetaldus mechan.<emph.end type="italics"/></cell> <cell>26</cell> </row> <row> <cell><emph type="italics"/>N<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Nicomachus arithm.<emph.end type="italics"/></cell> <cell>4</cell> </row> <row> <cell><emph type="italics"/>Neoclides geom.<emph.end type="italics"/></cell> <cell>5</cell> </row> <row> <cell><emph type="italics"/>Nicomedes geom.<emph.end type="italics"/></cell> <cell>13</cell> </row> <row> <cell><emph type="italics"/>Nicolaus Caba&longs;illa a&longs;tron.<emph.end type="italics"/></cell> <cell>22</cell> </row> <row> <cell><emph type="italics"/>Nicolaus Cu&longs;anus geom.<emph.end type="italics"/></cell> <cell>24</cell> </row> <row> <cell><emph type="italics"/>Nic. Copern. astron.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>Nic. Raimarus geom.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>O<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Oenipedes geom.<emph.end type="italics"/></cell> <cell>4</cell> </row> <row> <cell><emph type="italics"/>Orontius matbem.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>P<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Polemon geogr.<emph.end type="italics"/></cell> <cell>3</cell> </row> <row> <cell><emph type="italics"/>Pythagoras mathem. &longs;ummus.<emph.end type="italics"/></cell> <cell>3</cell> </row> <row> <cell><emph type="italics"/>Pericles a&longs;tron.<emph.end type="italics"/></cell> <cell>4</cell> </row> <row> <cell><emph type="italics"/>Phrinis mu&longs;.<emph.end type="italics"/></cell> <cell>4</cell> </row> <row> <cell><emph type="italics"/>Phrinicus mu&longs;.<emph.end type="italics"/></cell> <cell>4</cell> </row> <row> <cell><emph type="italics"/>Parmenides a&longs;tron.<emph.end type="italics"/></cell> <cell>5</cell> </row> <row> <cell><emph type="italics"/>Protagoras mathem.<emph.end type="italics"/></cell> <cell>5</cell> </row> <row> <cell><emph type="italics"/>Plato mathem.<emph.end type="italics"/></cell> <cell>5</cell> </row> <row> <cell><emph type="italics"/>Philippus mathem.<emph.end type="italics"/></cell> <cell>5</cell> </row> <row> <cell><emph type="italics"/>Philo&longs;ophus a&longs;tron.<emph.end type="italics"/></cell> <cell>5</cell> </row> <row> <cell><emph type="italics"/>Per&longs;eus geom.<emph.end type="italics"/></cell> <cell>6</cell> </row> <row> <cell><emph type="italics"/>Philo mechan.<emph.end type="italics"/></cell> <cell>8</cell> </row> <row> <cell><emph type="italics"/>Po&longs;&longs;idonius mathem.<emph.end type="italics"/></cell> <cell>8</cell> </row> <row> <cell><emph type="italics"/>Patroclus gnomon.<emph.end type="italics"/></cell> <cell>9</cell> </row> <row> <cell><emph type="italics"/>Parmenion gnomon.<emph.end type="italics"/></cell> <cell>9</cell> </row> <row> <cell><emph type="italics"/>P. Mela geogr.<emph.end type="italics"/></cell> <cell>10</cell> </row> <row> <cell><emph type="italics"/>Plinius geogr.<emph.end type="italics"/></cell> <cell>10</cell> </row> <row> <cell><emph type="italics"/>Plutarchus mu&longs;.<emph.end type="italics"/></cell> <cell>10</cell> </row> <row> <cell><emph type="italics"/>Ptolemæus astron.<emph.end type="italics"/></cell> <cell>11</cell> </row> <row> <cell><emph type="italics"/>Porphirius a&longs;tron.<emph.end type="italics"/></cell> <cell>12</cell> </row> <row> <cell><emph type="italics"/>Philo geom.<emph.end type="italics"/></cell> <cell>14</cell> </row> <row> <cell><emph type="italics"/>Proclus geom.<emph.end type="italics"/></cell> <cell>14</cell> </row> <row> <cell><emph type="italics"/>S. Pro&longs;per a&longs;tron.<emph.end type="italics"/></cell> <cell>14</cell> </row> <row> <cell><emph type="italics"/>Pappus geom.<emph.end type="italics"/></cell> <cell>14</cell> </row> <row> <cell><emph type="italics"/>Paulus a&longs;tron.<emph.end type="italics"/></cell> <cell>18</cell> </row> <row> <cell><emph type="italics"/>Peto&longs;iris astron.<emph.end type="italics"/></cell> <cell>18</cell> </row> <row> <cell><emph type="italics"/>Pelles arithm.<emph.end type="italics"/></cell> <cell>18</cell> </row> <row> <cell><emph type="italics"/>Petrus de Aliaco a&longs;tron.<emph.end type="italics"/></cell> <cell>24</cell> </row> <row> <cell><emph type="italics"/>Paulus Epi&longs;c. a&longs;tron.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>Petrus Appianus geogr.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>Petrus Nonius mathem.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>R<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Rogerius Baccon optic.<emph.end type="italics"/></cell> <cell>23</cell> </row> <row> <cell><emph type="italics"/>Raphael arithm.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>S<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Sacadas mu&longs;.<emph.end type="italics"/></cell> <cell>2</cell> </row> <row> <cell><emph type="italics"/>Simonides lyric.<emph.end type="italics"/></cell> <cell>3</cell> </row> <row> <cell><emph type="italics"/>Sappho mu&longs;ic.<emph.end type="italics"/></cell> <cell>3</cell> </row> <row> <cell><emph type="italics"/>Simon mu&longs;ic.<emph.end type="italics"/></cell> <cell>4</cell> </row> <row> <cell><emph type="italics"/>Simmias mu&longs;ic.<emph.end type="italics"/></cell> <cell>5</cell> </row> <row> <cell><emph type="italics"/>Sulpitius a&longs;tron.<emph.end type="italics"/></cell> <cell>7</cell> </row> <row> <cell><emph type="italics"/>Serenus geom.<emph.end type="italics"/></cell> <cell>8</cell> </row> <row> <cell><emph type="italics"/>So&longs;igenes a&longs;tron.<emph.end type="italics"/></cell> <cell>9</cell> </row> <row> <cell><emph type="italics"/>Scopas gnomon.<emph.end type="italics"/></cell> <cell>9</cell> </row> <row> <cell><emph type="italics"/>Strabo geogr.<emph.end type="italics"/></cell> <cell>10</cell> </row> <row> <cell><emph type="italics"/>Solinus geogr.<emph.end type="italics"/></cell> <cell>10</cell> </row> <row> <cell><emph type="italics"/>Straton geogr.<emph.end type="italics"/></cell> <cell>10</cell> </row> <row> <cell><emph type="italics"/>Sextus Empir. mathem.<emph.end type="italics"/></cell> <cell>11</cell> </row> <row> <cell><emph type="italics"/>S. Auienus geogr.<emph.end type="italics"/></cell> <cell>13</cell> </row> <row> <cell><emph type="italics"/>Sporus geom.<emph.end type="italics"/></cell> <cell>14</cell> </row> <row> <cell><emph type="italics"/>T<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Terpander mu&longs;ic.<emph.end type="italics"/></cell> <cell>1</cell> </row> <row> <cell><emph type="italics"/>Thales Mile&longs;ius.<emph.end type="italics"/></cell> <cell>3</cell> </row> <row> <cell><emph type="italics"/>Telauges arithm.<emph.end type="italics"/></cell> <cell>3</cell> </row> <row> <cell><emph type="italics"/>Theodorus geom.<emph.end type="italics"/></cell> <cell>4</cell> </row> <row> <cell><emph type="italics"/>Timeus mathem.<emph.end type="italics"/></cell> <cell>4</cell> </row> <row> <cell><emph type="italics"/>Theætetus geom.<emph.end type="italics"/></cell> <cell>5</cell> </row> <row> <cell><emph type="italics"/>Theudius geom.<emph.end type="italics"/></cell> <cell>6</cell> </row> <row> <cell><emph type="italics"/>Theophra&longs;tus mathem.<emph.end type="italics"/></cell> <cell>6</cell> </row> <row> <cell><emph type="italics"/>Timotheus mu&longs;ic.<emph.end type="italics"/></cell> <cell>6</cell> </row> <row> <cell><emph type="italics"/>Timocharis a&longs;tron.<emph.end type="italics"/></cell> <cell>6</cell> </row> <row> <cell><emph type="italics"/>Theodoricus a&longs;tron.<emph.end type="italics"/></cell> <cell>9</cell> </row> <row> <cell><emph type="italics"/>Theophilus Epi&longs;c. astron.<emph.end type="italics"/></cell> <cell>13</cell> </row> <row> <cell><emph type="italics"/>Theon a&longs;tron.<emph.end type="italics"/></cell> <cell>14</cell> </row> <row> <cell><emph type="italics"/>Theon Smyrnæus mathem.<emph.end type="italics"/></cell> <cell>21</cell> </row> <pb xlink:href="009/01/353.jpg"/> <row> <cell><emph type="italics"/>Thebit a&longs;tron.<emph.end type="italics"/></cell> <cell>22</cell> </row> <row> <cell><emph type="italics"/>Ticho a&longs;tron.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>V<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Vincentius Galilæus mu&longs;ic.<emph.end type="italics"/></cell> <cell>25</cell> </row> <row> <cell><emph type="italics"/>Vitellio optic.<emph.end type="italics"/></cell> <cell>22</cell> </row> <row> <cell><emph type="italics"/>Victorinus astron.<emph.end type="italics"/></cell> <cell>14</cell> </row> <row> <cell><emph type="italics"/>Vitruuius gnomon.<emph.end type="italics"/></cell> <cell>9</cell> </row> <row> <cell><emph type="italics"/>Valens a&longs;trol.<emph.end type="italics"/></cell> <cell>13</cell> </row> <row> <cell><emph type="italics"/>X<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Xenocrates mu&longs;ic.<emph.end type="italics"/></cell> <cell>1</cell> </row> <row> <cell><emph type="italics"/>Xenocrates mathem.<emph.end type="italics"/></cell> <cell>6</cell> </row> <row> <cell><emph type="italics"/>Xenophantus mu&longs;ic.<emph.end type="italics"/></cell> <cell>6</cell> </row> <row> <cell><emph type="italics"/>Y<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Yp&longs;icles geometra.<emph.end type="italics"/></cell> <cell>8</cell> </row> <row> <cell><emph type="italics"/>Z<emph.end type="italics"/></cell> <cell/> </row> <row> <cell><emph type="italics"/>Zenodorus geometra.<emph.end type="italics"/></cell> <cell>4</cell> </row> </table> <p type="head"> <s id="s.006656"><emph type="italics"/>FINIS.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.006657">Ego Fr. <!-- REMOVE S-->Hieronymus Onuphrius Romanus, ex Conuentu S. <!-- REMOVE S-->Mariæ Gra­<lb/> tiarum, Doctor Colleg. <!-- REMOVE S-->& Lector publicus, ac Sancti&longs;s. <!-- REMOVE S-->Inqui&longs;itionis <lb/> Con&longs;ultor, vel libenti&longs;&longs;imè vidi, ac perlegi Opus hoc aureum in&longs;criptum, <lb/> LOCA ARISTOTELIS MATHEMATICA, & con&longs;criptum <lb/> ab Excellenti&longs;s. <!-- REMOVE S-->P. <!-- REMOVE S-->Io&longs;epho Blancano de Societ. <!-- KEEP S--><!-- REMOVE S-->IESV. & cùm in eo nihil re­<lb/> periatur, quod aut &longs;it contra Eccle&longs;ia&longs;ticas di&longs;ciplinas, aut quod pias aures <lb/> offendat, quinimo maxima emergat vtilitas ijs, qui Ari&longs;totelicum textum <lb/> con&longs;ultò amplectuntur, ideò po&longs;&longs;e typis dari cen&longs;ui, &c.</s> </p> <p type="head"> <s id="s.006658">Imprimatur</s> </p> <p type="head"> <s id="s.006659"><emph type="italics"/>Idem qui & &longs;upra nomine Reuerendi&longs;&longs;. <!-- REMOVE S-->P. Inqui&longs;it. <!-- REMOVE S-->Bonon.<emph.end type="italics"/></s> </p> <pb xlink:href="009/01/354.jpg"/> <p type="head"> <s id="s.006660"><emph type="italics"/>Errata, quæ Lectorem &longs;isterent, &longs;ic corrigantur.<emph.end type="italics"/><lb/> <arrow.to.target n="table32"/></s> </p> <table> <table.target id="table32"/> <row> <cell><emph type="italics"/>pag. linea. erratum. correctum.<emph.end type="italics"/></cell> <cell/> <cell/> <cell/> </row> <row> <cell>4</cell> <cell>2</cell> <cell>per&longs;ua&longs;i&longs;ti</cell> <cell>perua&longs;i&longs;ti</cell> </row> <row> <cell>18</cell> <cell>22</cell> <cell>quadratum</cell> <cell>quadrangulum</cell> </row> <row> <cell>36</cell> <cell>34</cell> <cell>inue&longs;tare</cell> <cell>inueftigare</cell> </row> <row> <cell>38</cell> <cell>15</cell> <cell>A G,</cell> <cell>A C G,</cell> </row> <row> <cell>39</cell> <cell>22</cell> <cell>æquatiorem</cell> <cell>æquatorem</cell> </row> <row> <cell>51</cell> <cell>46</cell> <cell><expan abbr="vnoq;">vnoque</expan></cell> <cell><expan abbr="vnoquoq;">vnoquoque</expan></cell> </row> <row> <cell>70</cell> <cell>in figura defiderantur duæ lineolæ rectæ A I, & I E,</cell> <cell/> <cell/> </row> <row> <cell>80</cell> <cell>13</cell> <cell>Tex.</cell> <cell>Textus 59.</cell> </row> <row> <cell>ibid.</cell> <cell>in figura pro O, ponatur C,</cell> <cell/> <cell/> </row> <row> <cell>82</cell> <cell>13</cell> <cell>Tex.</cell> <cell>Tex. 110.</cell> </row> <row> <cell>ibid.</cell> <cell>45</cell> <cell>Vr&longs;am</cell> <cell>ad Vr&longs;am</cell> </row> <row> <cell>83</cell> <cell>42</cell> <cell>Tex.</cell> <cell>Tex. 65.</cell> </row> <row> <cell>107</cell> <cell>10</cell> <cell>fides</cell> <cell>fidem</cell> </row> <row> <cell>ibid.</cell> <cell>11</cell> <cell>&longs;axiatritu</cell> <cell>&longs;ci&longs;&longs;a, & attrita</cell> </row> <row> <cell>166</cell> <cell>in 2 figura de&longs;ideratur linea P R.</cell> <cell/> <cell/> </row> <row> <cell>127</cell> <cell>28</cell> <cell>L,</cell> <cell>C,</cell> </row> <row> <cell>155</cell> <cell>in 2. figura dee&longs;t linea K P:</cell> <cell/> <cell/> </row> <row> <cell/> <cell>altera verò, quæ dextror&longs;um vergit, &longs;uperflua e&longs;t.</cell> <cell/> <cell/> </row> <row> <cell>220</cell> <cell>45</cell> <cell>quadratum</cell> <cell>quadrangulum</cell> </row> <row> <cell>221</cell> <cell>1</cell> <cell>quadratum</cell> <cell>quadrangulum</cell> </row> <row> <cell>231</cell> <cell>30</cell> <cell>incrementa</cell> <cell>decrementa</cell> </row> <row> <cell>ibid.</cell> <cell>31</cell> <cell>decrementis</cell> <cell>incrementis</cell> </row> <row> <cell>235</cell> <cell>19</cell> <cell>L O,</cell> <cell>M N,</cell> </row> <row> <cell>ibid.</cell> <cell>21</cell> <cell>N M,</cell> <cell>O L,</cell> </row> <row> <cell>ibid.</cell> <cell>34</cell> <cell>H L,</cell> <cell>N L,</cell> </row> <row> <cell>237</cell> <cell>in figura linea K D L, deberet directè ad punctum A, tendere</cell> <cell/> <cell/> </row> <row> <cell>256</cell> <cell>4</cell> <cell>toto</cell> <cell>tono</cell> </row> <row> <cell>264</cell> <cell>14</cell> <cell>numeris</cell> <cell>neruis</cell> </row> <row> <cell>266</cell> <cell>44</cell> <cell>cæteris</cell> <cell>cæteri</cell> </row> <row> <cell>267</cell> <cell>45</cell> <cell>indicium</cell> <cell>indicium</cell> </row> <row> <cell>274</cell> <cell>27</cell> <cell>contrà verum</cell> <cell>contrà, verum</cell> </row> <row> <cell>279</cell> <cell>30</cell> <cell>MKINQ,</cell> <cell>MHINQ,</cell> </row> <row> <cell/> <cell/> <cell><emph type="italics"/>In Additamento.<emph.end type="italics"/></cell> <cell/> </row> <row> <cell>9</cell> <cell>5</cell> <cell>vncìa</cell> <cell>vnica</cell> </row> <row> <cell>9</cell> <cell>28</cell> <cell>proportionali</cell> <cell>proportionalis</cell> </row> <row> <cell>14</cell> <cell>28</cell> <cell>diuionem</cell> <cell>diui&longs;ionem</cell> </row> <row> <cell>18</cell> <cell>22</cell> <cell>78.</cell> <cell>7. 8.</cell> </row> </table> <pb xlink:href="009/01/355.jpg"/> <p type="head"> <s id="s.006661">BONONIÆ</s> </p> <p type="head"> <s id="s.006662">Apud Bartholomæum Cochìum. </s> <s id="s.006663">1615.</s> </p> <p type="head"> <s id="s.006664">Superiorum permi&longs;&longs;u.<lb/> </s> </p> </chap> </body> </text> </archimedes>