Mercurial > hg > mpdl-xml-content
view texts/archimedesOldCVSRepository/archimedes/xml/cevag_geome_022_la_1692.xml @ 12:f9a6b8344c3a
DESpecs 2.0 Autumn 2009
author | Klaus Thoden <kthoden@mpiwg-berlin.mpg.de> |
---|---|
date | Thu, 02 May 2013 11:14:40 +0200 |
parents | 22d6a63640c6 |
children |
line wrap: on
line source
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE archimedes SYSTEM "../dtd/archimedes.dtd"> <archimedes xmlns:xlink="http://www.w3.org/1999/xlink"> <info> <author>Ceva, Giovanni</author> <title>Geometria motus</title> <date>1692</date> <place>Bologna</place> <translator/> <lang>la</lang> <cvs_file>cevag_geome_022_la_1692.xml</cvs_file> <cvs_version/> <locator>022.xml</locator> </info> <text> <front> <section> <pb xlink:href="022/01/001.jpg"/> <figure id="id.022.01.001.1.jpg" xlink:href="022/01/001/1.jpg"/> <pb xlink:href="022/01/002.jpg"/> <pb xlink:href="022/01/003.jpg"/> <p type="main"> <s id="s.000001"><emph type="center"/>GEOMETRIA<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000002"><emph type="center"/>MOTUS<emph.end type="center"/></s> </p> <p type="main"> <s id="s.000003"><emph type="center"/>OPVSCVLVM GEOMETRICVM<emph.end type="center"/></s> </p> <p type="main"> <s id="s.000004"><emph type="center"/>A'<emph.end type="center"/><!-- REMOVE S--><emph type="center"/><emph type="italics"/>IOANNE CEVA MEDIOLANENSI<emph.end type="italics"/><emph.end type="center"/></s> </p> <p type="main"> <s id="s.000005"><emph type="center"/>In gratiam Aquarum excogitatum.<emph.end type="center"/></s> </p> <p type="main"> <s id="s.000006"><emph type="center"/>CONTINET DVOS LIBROS<emph.end type="center"/></s> </p> <p type="main"> <s id="s.000007"><emph type="center"/>Primum de Simplici Motu, <lb/>Alterum de Compo&longs;ito.<emph.end type="center"/><!-- KEEP S--></s> </p> <figure id="id.022.01.003.1.jpg" xlink:href="022/01/003/1.jpg"/> <p type="main"> <s id="s.000008"><emph type="center"/>BONONIÆ, M. DC. XCII.<emph.end type="center"/><lb/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000009"><emph type="center"/>Typis HH. </s> <s id="s.000010">Antonij Pi&longs;arij Superiorum permi&longs;&longs;u.<emph.end type="center"/></s> </p> <pb xlink:href="022/01/004.jpg"/> <pb xlink:href="022/01/005.jpg"/> <p type="main"> <s id="s.000011"><emph type="center"/>SERENISSIMO<emph.end type="center"/></s> </p> <p type="main"> <s id="s.000012"><emph type="center"/>MANTVÆ DUCI<emph.end type="center"/></s> </p> <p type="main"> <s id="s.000013"><emph type="center"/>FERDINANDO <lb/>CAROLO.<emph.end type="center"/></s> </p> <p type="main"> <s id="s.000014"><emph type="italics"/>ITerum, Sereni&longs;&longs;ime Princeps, tuis aduolutus <lb/>genibus opu&longs;culum exhibeo, in quo naturam motuum, pleniori <lb/>methodo, quàm puto antea &longs;it actum, geometricè exequor. <lb/></s> <s id="s.000015">Neceße habui hæc præmittere, quò viam aperirem, & quo­<lb/>dammodo alueum &longs;ternerem aquarum doctrinæ, quarum <lb/>argumentum vtili&longs;&longs;imum, & profundæ indaginis iam diu <lb/>meditor. </s> <s id="s.000016">Quam arduum &longs;it, & per quas &longs;alebras eun­<lb/>dum, vt nouum aliquid luce dignum è latebris naturæ eruarur <lb/>vtinam Cel&longs;itudini tuæ aliquis veritatum non vulgarium <lb/>indagator fidem faceret; &longs;cio equidem, & laboris improbitas <lb/>tangeret benigni&longs;&longs;imum animum tuum, & &longs;imul naturæ inge­<lb/>nium &longs;u&longs;piceres, quæ mentibus aliquorum vim inuentricem <lb/>in&longs;eruit, vt eorum iugi cogitatione humanis v&longs;ibus prouide-<emph.end type="italics"/><pb xlink:href="022/01/006.jpg"/><emph type="italics"/>ret. </s> <s id="s.000017">Et verò (&longs;i in hoc genere de me quidquam confiteri decet) <lb/>ni&longs;i aduer&longs;æ valetudinis experimento prudentior factus indo­<lb/>lem meam huiu&longs;cemodi &longs;tudijs intemperanter addictam ali­<lb/>quot ab hinc annis compe&longs;cuißem; nec non quotidie munus à <lb/>Cel&longs;itudine Tua &longs;ummo cum honore & beneficentia demanda­<lb/>tum (adeo vt hoc etiam nomine Te&longs;eruatorem meum appella­<lb/>re po&longs;&longs;im) inde me reuoca&longs;&longs;et; eorum, credo equidem, ponderi, <lb/>a&longs;&longs;iduæque contemplationi &longs;uccumbere nece&longs;&longs;e erat. </s> <s id="s.000018">Vnde au­<lb/>tem, Cel&longs;i&longs;&longs;ime dux, huic &longs;cientiæ tanta vis, vt quos &longs;ibi &longs;emet <lb/>adiunxerit, nonni&longs;i altiori ratione queat a &longs;e ip&longs;a dimittere? <lb/></s> <s id="s.000019">An quod forta&longs;&longs;e vbi animus publicæ vtilitati de&longs;eruire cæpe­<lb/>rit, veluti in naturæ concilium admi&longs;&longs;us, &longs;ui quodammodo <lb/>oblitus, propriam humilioremque &longs;edem reui&longs;ere dedignetur; an <lb/>quia, cùm inter cæteras &longs;cientias Geometria demon&longs;trationem, <lb/>hoc e&longs;t veritatem &longs;inceram, & quandam primi veri particu­<lb/>lam profiteatur, hinc ne&longs;cio quid diuinum habent &longs;ibi <expan abbr="propo&longs;itũ">propo&longs;itum</expan>, <lb/>vnde nonni&longs;i Deo impellente, vbi nimirum officia, potiorque <lb/>ratio id po&longs;tulant, ab eius intuitu retrahatur. </s> <s id="s.000020">Hoc equidem <lb/>puto; atque hinc diuina Geometria iure optimo a docti&longs;&longs;imis, & <lb/>clari&longs;&longs;imis viris pa&longs;&longs;im nuncupatur. </s> <s id="s.000021">Quamobrem nemo non <lb/>eam &longs;u&longs;piciat, eiu&longs;que cultores oppidò diligat; ob eamque <expan abbr="causã">causam</expan> <lb/>huic etiam qualicunque opu&longs;culo benignè annuas &longs;pero, adeo <lb/>vt iam Te in terris Dominum, Altorem, Seruatorem, Patro­<lb/>numque appellare non dubitem, quam vna cum Cel&longs;i&longs;&longs;ima do­<lb/>mo mihi, tot tibi nominibus deuincto, &longs;uperi vt &longs;eruent &longs;o&longs;pi­<lb/>tentque, enixè oro, ac omnibus votis exopto.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000022"><emph type="italics"/>Sereni&longs;simæ Cel&longs;itudinis Tuæ<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000023"><emph type="italics"/>Humillimus, & Ob&longs;equenti&longs;&longs;imus Seruus<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000024">Ioannes Ceua. <!-- KEEP S--></s> </p> </section> </front> <body> <chap> <pb pagenum="1" xlink:href="022/01/007.jpg"/> <p type="main"> <s id="s.000025"><emph type="center"/>GEOMETRIA<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000026"><emph type="center"/>MOTVS.<emph.end type="center"/></s> </p> <p type="main"> <s id="s.000027"><emph type="center"/>DEF. I.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000028">CVrrat mobile ab A in D &longs;ecundùm rectam <arrow.to.target n="marg1"/><lb/>AD, & linea BHI &longs;it naturæ illius, vt dedu­<lb/>ctis ad AD perpendicularibus AB, CH, DI <lb/>ex punctis quibu&longs;cunque A, C, D; veloci­<lb/>tatum gradus, quos mobile &longs;ortitur in ij&longs;­<lb/>dem punctis A, C, D men&longs;urentur ab ip&longs;is <lb/>rectis AB, CH, CI. <!-- KEEP S--></s> <s id="s.000029">Figuram planam BADIHB apellabi­<lb/>mus gene&longs;im motus ab A in D. <!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000030"><margin.target id="marg1"/><emph type="italics"/>Tab.<emph.end type="italics"/> 1. <emph type="italics"/>Fig.<emph.end type="italics"/> 1.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000031"><emph type="center"/>DEF. II.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000032">II&longs;dem manentibus, &longs;it etiam alia linea EFG talis natu­<lb/><arrow.to.target n="marg2"/><lb/>ræ, vt protractis rectis BA in E, HC in F, & ID in G ha­<lb/>beat DG ad CF eandem reciprocè rationem, quam HC <lb/>ad ID. </s> <s id="s.000033">Item &longs;it CF ad HE vt reciprocè BA ad HC, vo­<lb/>cabimus figuram planam ADGIEA imaginem tempo­<lb/>ris motus ab A in D iuxta gene&longs;im prædictam. </s> </p> <p type="margin"> <s id="s.000034"><margin.target id="marg2"/><emph type="italics"/>Tab.<emph.end type="italics"/> 1. <emph type="italics"/>Fig.<emph.end type="italics"/> 2.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000035"><emph type="center"/>DEF. III.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000036">ADhuc po&longs;ita illa gene&longs;i, intelligatur linea PON eius <lb/><arrow.to.target n="marg3"/><lb/>naturæ, vt &longs;i &longs;it KL ad LM vt tempus lationis ab A <lb/>in C ad tempus ab eodem C in D, habeat &longs;emper KP ad <lb/>LO eandem rationem, quam AB ad CH; & LO ad NM <lb/>eandem, quam HC ad ID: Figuram planam PKMNOP <pb pagenum="2" xlink:href="022/01/008.jpg"/>vocabimus imaginem iuxta gene&longs;im BADI motus ab <lb/>A in D. <!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000037"><margin.target id="marg3"/><emph type="italics"/>Tab.<emph.end type="italics"/> 1. <emph type="italics"/>Fig.<emph.end type="italics"/> 3.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000038"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000039"><emph type="italics"/>Patet, cum motus &longs;unt æquabiles, gene&longs;es, & imagines figu­<lb/>ras eße parallelogrammas.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000040"><emph type="center"/>DEF. IV.<emph.end type="center"/><lb/><arrow.to.target n="marg4"/><!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000041"><margin.target id="marg4"/><emph type="italics"/>Tab.<emph.end type="italics"/> 1. <emph type="italics"/>Fig.<emph.end type="italics"/> 4.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000042">SI &longs;int duæ gene&longs;es, aut imagines ABCD, FEG, ita vt <lb/>cum gene&longs;es &longs;int, habeat AB ad FE eandem rationem, <lb/>quam velocitas in A ad velocitatem in F, & cum imagines <lb/>velocitatum, quarum tempora AD, FG, velocitas, quam <lb/>habet mobile in&longs;tanti A ad velocitatem alterius mobilis <lb/>in&longs;tanti F, &longs;it vt AB ad FE, & demum ip&longs;is figuris vt imagi­<lb/>nibus temporum con&longs;ideratis habeat velocitas in A ad <lb/>velocitatem in F rationem eandem, quam AB ad FE, vo­<lb/>cabuntur tum gene&longs;es illæ, cum imagines inter &longs;e homo­<lb/>geneæ. </s> </p> <p type="main"> <s id="s.000043"><emph type="center"/>DEF. V.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000044">EAm planam Figuram, in qua ductæ quotcunque <lb/>&etail;quidi&longs;tantes eò deinceps decre&longs;cunt, quò ad idem <lb/>extremum propiores fiunt, acuminatam nuncupabimus. </s> </p> <p type="main"> <s id="s.000045"><emph type="center"/>DEF. VI. AX. I.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000046">INter maximam, & minimam eiu&longs;dem imaginis veloci­<lb/>tatem cadit quædam media, qua tantùm velocitate, &longs;i <lb/>conciperetur motus æquabilis, nihilominùs eodem tem­<lb/>pore idem &longs;patium curreretur, ac iuxta imaginem propo&longs;i­<lb/>tam: eam ergo mediam velocitatem dicimus propo&longs;itæ <lb/>imaginis æquatricem. </s> </p> <pb pagenum="3" xlink:href="022/01/009.jpg"/> <p type="main"> <s id="s.000047"><emph type="center"/>AX. II.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000048">SPatium iuxta imaginem velocitatum quamcunque <lb/>exactum, vel iuxta æquatricem imaginis e&longs;t maius eo <lb/>&longs;patio, quod curreretur eodem tempore minima eiu&longs;dem <lb/>imaginis velocitate; &longs;ed minus eo, quod velocitate ma­<lb/>xima. </s> </p> <p type="main"> <s id="s.000049"><emph type="center"/>AX. III.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000050">TEmpus, quo curritur &longs;patium iuxta quamlibet tem­<lb/>poris imaginem, maius e&longs;t eo, quo idem &longs;patium <lb/>curreretur maxima velocitate, &longs;ed contra minus eo altero, <lb/>quo ip&longs;um &longs;patium minima velocitate exigeretur, earum <lb/>videlicet, quæ &longs;unt in gene&longs;i, aut imagine velocitatum pro­<lb/>po&longs;iti motus, cuius nempe illa e&longs;t imago temporis. </s> <s id="s.000051">Fit er­<lb/>go, vt tempus æquale ei, quo illud ip&longs;um &longs;patium currere­<lb/>tur iuxta propo&longs;itam imaginem, &longs;it inter vtrumque dicto­<lb/>rum temporum maximi, & minimi. </s> </p> <p type="main"> <s id="s.000052"><emph type="center"/>AX. IV.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000053">QVæcunque excogitetur figura plana, vel e&longs;t paralle­<lb/>logrammum, vel acuminata figura, aut ex his com­<lb/>po&longs;itum. </s> <s id="s.000054">Has tamen figuras inter binas volu­<lb/>mus parallelas, ita vt vnum latus &longs;it ip&longs;as nectens normali­<lb/>ter parallelas, quanquam etiam loco parallelarum po&longs;&longs;int <lb/>e&longs;&longs;e puncta, nempè vbi de&longs;inunt in acuminatas pror&longs;us <lb/>figuras. </s> </p> <p type="main"> <s id="s.000055"><emph type="center"/>PROP. I. THEOR. I.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000056">TEmpora, quibus duo motus complentur &longs;unt in ra­<arrow.to.target n="marg5"/><lb/>tione imaginum homogenearum ip&longs;orum <expan abbr="temporũ">temporum</expan>. </s> </p> <pb pagenum="4" xlink:href="022/01/010.jpg"/> <p type="margin"> <s id="s.000058"><margin.target id="marg5"/><emph type="italics"/>Tab.<emph.end type="italics"/> 1. <emph type="italics"/>Fig.<emph.end type="italics"/> 5.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000059">Motus &longs;int primò æquabiles, curratque mobile &longs;patium <lb/>AB tempore, cuius imago CAB, curratur item ab alio mo­<lb/>bili &longs;patium DE tempore, cuius imago DEF, & &longs;int ip&longs;æ <lb/><arrow.to.target n="marg6"/><lb/>temporum imagines inter&longs;e homogeneæ, &longs;cilicet FD ad <lb/>AC eandem habeat rationem, quam velocitas in A ad <lb/>velocitatem in D. Dico, tempus per AB ad id per DE e&longs;­<lb/><arrow.to.target n="marg7"/><lb/>&longs;e vt figura ABC, ad DEF. <!-- KEEP S--></s> <s id="s.000060">Cum motus æquabiles &longs;int <lb/>erunt figuræ dictarum imaginum rectangula, propterea il­<lb/>lorum ratio componetur ex rationibus altitudinum AB ad <lb/><arrow.to.target n="marg8"/><lb/>DE, & ba&longs;ium AC ad DF, ex ij&longs;dem verò rationibus &longs;pa­<lb/>tiorum &longs;cilicet, & reciproca velocitatum (&longs;unt enim ima­<lb/>gines inter &longs;e homogeneæ) nectitur etiam ratio temporum, <lb/>quibus <expan abbr="percurrũtur">percurruntur</expan> ip&longs;a &longs;patia AB, DE iuxta gene&longs;es ima­<lb/>ginum ACB, DEF, ergo e&longs;t eadem ratio inter illa tempo­<lb/>ra, ac inter imagines &longs;uas. <lb/><arrow.to.target n="marg9"/></s> </p> <p type="margin"> <s id="s.000061"><margin.target id="marg6"/><emph type="italics"/>Def.<emph.end type="italics"/> 4. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000062"><margin.target id="marg7"/><emph type="italics"/>Cor. <!-- KEEP S--></s> <s id="s.000063">Def.<emph.end type="italics"/> 3. <lb/><emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000064"><margin.target id="marg8"/><emph type="italics"/>Gal. <!-- KEEP S--></s> <s id="s.000065">pr. <!-- REMOVE S-->S de <lb/>motu æquab. <lb/></s> <s id="s.000066">Def.<emph.end type="italics"/> 4. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000067"><margin.target id="marg9"/><emph type="italics"/>Tab.<emph.end type="italics"/> 1. <emph type="italics"/>fig.<emph.end type="italics"/> 6. <lb/><emph type="italics"/>Def.<emph.end type="italics"/> 5. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000068">2. Sit motus vnus æquabilis, alter verò quicunque; &longs;it <lb/>tamen imago huius temporis figura acuminata vt ALGE, <lb/>& alterius temporis prædicti motus æquabilis, &longs;it HFM, </s> </p> <p type="main"> <s id="s.000069"><arrow.to.target n="marg10"/><lb/>quæ rectangulum erit: Dico, imaginibus homogeneis exi­<lb/>&longs;tentibus, fore inter has eandem rationem, ac homologè <lb/>inter tempora decur&longs;uum ab A in E, & ab F in M iuxt&atail; <lb/>gene&longs;es imaginum temporum propo&longs;itarum. </s> <s id="s.000070">Si enim non <lb/>e&longs;t ita, &longs;it quædam alia magnitudo Y, maior, vel minor <lb/>imagine acuminata ALGE, quæ ad imaginem FHM ha­<lb/>beat eandem rationem, quam tempus per AE iuxta imagi­<lb/>nem ALGE ad tempus per FM iuxta imaginem alteram <lb/>FHM; &longs;it verò magnitudinis Y differentia ab imagine ma­<lb/>gnitudo Z. <!-- KEEP S--></s> <s id="s.000071">Secetur AE bifariam in C, pariterque &longs;eg­<lb/>menta AC, CE bifariam in B, D, & &longs;ic vlteriùs progredia­<lb/>tur, donec, &longs;i compleatur rectangulum po&longs;tremum, & ma­<lb/>ximum DG, hoc minus exi&longs;tat quam Z. <!-- KEEP S--></s> <s id="s.000072">Tum ductis reli­<lb/>quis æquidi&longs;tantibus CI, BK, & à punctis N, I, K, I alijs <lb/>etiam æquidi&longs;tantibus rectæ AE, efficiatur ip&longs;i ALGE cir­<lb/>cum&longs;cripta figura, con&longs;tans ex rectangulis æquealtis AK <pb pagenum="5" xlink:href="022/01/011.jpg"/>BI, CN, DG, & in&longs;cripta compo&longs;ita ex rectangulis inter &longs;e <lb/>pariter æquealtis BL, CR, DI, EN. <!-- KEEP S--></s> <s id="s.000073">Cum circum&longs;cript&atail; <lb/>figura differat ab in&longs;cripta exce&longs;&longs;u, quo rectangulum DG <lb/>&longs;uperat BL; (nam reliqua circum&longs;cripta AK, BI, CN, re­<lb/>liquis in&longs;criptis æqualia &longs;unt) &longs;equitur, exce&longs;&longs;um illum e&longs;&longs;e <lb/>minorem magnitudine Z. <!-- KEEP S--></s> <s id="s.000074">Si ergo magnitudo Y ponatur <lb/>maior magnitudine ALGE pro exce&longs;&longs;u Z, maior etiam erit <lb/>circum&longs;cripta AK, BI, CN, DG. <!-- KEEP S--></s> <s id="s.000075">Quòd &longs;i contrà Y intelli­<lb/>gatur minor ip&longs;a ALGE ex defectu Z, erit quoque eadem <lb/>Y minor, quàm in&longs;cripta figura BL, CK, DI, EN. <!-- KEEP S--></s> <s id="s.000076">Itaque <lb/>nunc, &longs;i fieri pote&longs;t, &longs;it Y maior magnitudine ALGE per ip­<lb/>&longs;um exce&longs;&longs;um Z, & intelligantur tot motus, quot &longs;unt re­<lb/>ctangula in circum&longs;cripta figura, &longs;cilicet &longs;int ip&longs;i motus ab <lb/>A in B, à B in C, à C in D, & à D in E &longs;ecundum deinceps, <lb/>temporum imagines AK, BI, CN, DG rectangula, quæ <lb/>&longs;int inter&longs;e, & propo&longs;itis imaginibus homogeneæ, qui <lb/>motus erunt proptereà æquabiles. </s> <s id="s.000077">His po&longs;itis, tempus <lb/><arrow.to.target n="marg11"/><lb/>per FM iuxta imaginem MH ad tempus per AB iuxta ima­<lb/>ginem rectangulum AK eandem habet rationem, quam re­<lb/>ctangulum MH ad rectangulum AK, &longs;imiliter idem tem­<lb/>pus per FM &longs;ecundùm ip&longs;am imaginem rectangulum MH <lb/><arrow.to.target n="marg12"/><lb/>ad &longs;ingula reliqua tempora per BC, CD, DE imaginibus <lb/>deinceps rectangulis BI, CN, DG habet eandem rationem, <lb/>quam rectangulum MH ad &longs;ingula eodem ordine rectan­<lb/>gula BI, CN, DG. <!-- KEEP S--></s> <s id="s.000078">Quo circa totidem rectangula ex MH, <lb/><arrow.to.target n="marg13"/><lb/>quot &longs;unt illa, ex quibus con&longs;tat circum&longs;cripta figura, ha­<lb/>bebunt ad ea ip&longs;a circum&longs;cripta rectangula, &longs;eu ad eandem <lb/>circum&longs;criptam figuram AK, BI, CN, DG eandem ratio­<lb/>nem, quam totidem tempora eiu&longs;dem imaginis MH ad &longs;i­<lb/>mul tempora, quorum imagines &longs;unt illa ip&longs;a circum&longs;cripta <lb/>rectangula AK, BI, CN, DG. <!-- KEEP S--></s> <s id="s.000079">Quare etiam vnicum re­<lb/>ctangulum MH ad circum&longs;criptam figuram AK, BI, CN, <lb/>DG erit in eadem ratione, in quo vnicum tempus per FM <lb/>iuxta imaginem MH ad omnia &longs;imul illa tempora iuxt&atail; <pb pagenum="6" xlink:href="022/01/012.jpg"/>imagines, quæ &longs;unt dicta circum&longs;cripta rectangula. </s> <s id="s.000080">Et <lb/>quoniam figura imaginis e&longs;t acuminata, habetque vi def. <lb/><!-- REMOVE S-->2. huius, applicatas, quæ &longs;unt in ratione reciproca veloci­<lb/>tatum, quibus nempe mobile afficitur in punctis &longs;patij, à <lb/>quibus deducuntur ip&longs;æ applicatæ; hinc fit, vt earum ve­<lb/>locitatum, quas mobile habet in decur&longs;u rectæ AB, ea, qu&etail; <lb/>in A maxima &longs;it, & quæ in B minima. </s> <s id="s.000081">Eodem modo iuxta <lb/>reliquas imagines BKIC, CIND, DNGE, quæ itidem acu­<lb/>minatæ &longs;unt, velocitates in fine decur&longs;uum C, D, E (&longs;unt <lb/>enim omnes versùs A acuminatæ) minimæ erunt, & ma­<lb/>ximæ initio dictorum &longs;patiorum. </s> <s id="s.000082">Ideo tempora, qu&etail; im­<lb/><arrow.to.target n="marg14"/><lb/>penduntur iuxta illas imagines, &longs;eu ip&longs;am <expan abbr="imagin&etilde;">imaginem</expan> ALGE, <lb/>cuius illæ &longs;unt omnes partes, minora erunt temporibus, <lb/>quæ decurrerent, &longs;i illi decur&longs;us forent æquabiles ex mini­<lb/>mis illis velocitatibus exacti, vel quod in idem recidit, &longs;i <lb/>illi decur&longs;us e&longs;&longs;ent iuxta imagines rectangulorum circum­<lb/>&longs;criptorum AK, BI, CN, DG; itaque rectangulum MH ad <lb/>figuram circum&longs;criptam AK, BI, CN, DG habebit mino­<lb/>rem rationem, quàm tempus per FM imagine MH ad tem­<lb/>pus per AE imagine ALGE, &longs;eu quàm rectangulum MH <lb/>habet ex hypothe&longs;i ad magnitudinem Y; igitur circum&longs;cri­<lb/>pta figura, quæ priùs minor o&longs;ten&longs;a fuit magnitudine Y; <lb/>nunc maior concluditur; quod cum &longs;it ab&longs;urdum, &longs;equi­<lb/>tur falsò nos po&longs;ui&longs;&longs;e magnitudinem Y maiorem; quà&mtail; <lb/>ALGE. <!-- KEEP S--></s> <s id="s.000083">At &longs;i Y minor ponatur, <expan abbr="quã">quam</expan> magnitudo ALGE de­<lb/>fectu Z; in&longs;cripta, vt &longs;upra, figura con&longs;tante ex rectangulis <lb/>æquè altis BL, CK, DI, EN, vt &longs;cilicet differentia ab ima­<lb/>gine &longs;it minor magnitudine Z, liquebit, magnitudinem Y <lb/>minorem e&longs;&longs;e in&longs;cripta figura BL, CK, DI, EN; deind&etail; <lb/>procedendo vt &longs;upra, inueniemus rectangulum MH ad in­<lb/>&longs;criptam figuram BL, CK, DI, EN in eadem ratione, i&ntail; <lb/>quo tempus per FM imagine MH ad omnia &longs;imul decur­<lb/>&longs;uum tempora per AB, BC, CD, DE iuxta imagines re­<lb/>ctangula in&longs;cripta BL, CH, DI, EN; Hæc verò tempor&atail; <pb pagenum="7" xlink:href="022/01/013.jpg"/>minora &longs;unt temporibus iuxta imagines ALKB, BKIC, <lb/>CIND, INGE (nam velocitates initio decur&longs;uum per <lb/>dictas rectas diximus e&longs;&longs;e maximas, & quibus <expan abbr="con&longs;iderã-tur">con&longs;ideran­<lb/>tur</expan> illi motus æquabiles &longs;ecundùm imagines ip&longs;a illa re­<lb/>ctangula in&longs;cripta) ergo rectangulum MH ad in&longs;cripta&mtail; <lb/>figuram BL, CK, DI, EN habebit maiorem rationem, <expan abbr="quã">quam</expan> <lb/>tempus per FM iuxta imaginem MH ad tempora &longs;imul <lb/>imaginibus ALKB, BKIC, CIND, DNGE, &longs;iue ad tempus <lb/>iuxta imaginem ALGE ex illis compo&longs;itam. </s> <s id="s.000084">Ideoque re­<lb/>ctangulum MH ad ip&longs;am in&longs;criptam figuram habebit ma­<lb/>iorem rationem, quàm ad magnitudinem Y, idcirco Y, quæ <lb/>minor o&longs;ten&longs;a fuit in&longs;criptà figura BL, CK, DI, EN, nunc <lb/>hac alia via maiorem inuenimus; ergo cum rur&longs;us hoc &longs;it <lb/>ab&longs;urdum, nece&longs;&longs;e e&longs;t magnitudinem Y neque minore&mtail; <lb/>e&longs;&longs;e magnitudine ALGE, propterea æquales inter &longs;e <expan abbr="erũt">erunt</expan>, <lb/>atque adeo tempus per FM imagine MN ad tempus per <lb/>AE imagine ALGE habebit eandem rationem, quam ima­<lb/>go MH ad imaginem ALGE. <!-- KEEP S--></s> <s id="s.000085">Quod &c. <!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000086"><margin.target id="marg10"/><emph type="italics"/>Cor. <!-- KEEP S--></s> <s id="s.000087">Def.<emph.end type="italics"/> 3. <lb/><emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000088"><margin.target id="marg11"/><emph type="italics"/>Cor. <!-- KEEP S--></s> <s id="s.000089">Def.<emph.end type="italics"/> 3. <lb/><emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000090"><margin.target id="marg12"/><emph type="italics"/>Ex pramiß&atail; <lb/>parte.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000091"><margin.target id="marg13"/><emph type="italics"/>Euang. <!-- REMOVE S-->Tor­<lb/>ric. <!-- REMOVE S-->lem.<emph.end type="italics"/> 18. <emph type="italics"/>in <lb/>libro de dim. <lb/></s> <s id="s.000092">parabolæ.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000093"><margin.target id="marg14"/><emph type="italics"/>Ax.<emph.end type="italics"/> 3. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000094">3. Imagines propo&longs;itæ &longs;int duæ acuminatæ. </s> <s id="s.000095">Dico ni­<lb/><arrow.to.target n="marg15"/><lb/>hilominus, tempora iuxta illas imagines per AE, HI e&longs;&longs;e vt <lb/>ip&longs;æ imagines ALGE ad HIK, quæ &longs;int inter &longs;e homoge­<lb/>neæ vt &longs;emper &longs;upponetur. </s> <s id="s.000096">Nam &longs;i intelligatur alius mo­<lb/>tus per MF iuxta imaginem rectangulum MFN, qui æqua­<lb/><arrow.to.target n="marg16"/><lb/>bilis erit, manife&longs;tum e&longs;t ex &longs;ecundo ca&longs;u, tempus per AE <lb/>iuxta imaginem ALGE ad tempus per FM iuxta <expan abbr="imagin&etilde;">imaginem</expan> <lb/>rectangulum MH, habere eandem rationem, quam imago <lb/>ALGE ad imaginem rectangulum MH; & &longs;imiliter tem­<lb/>pus per FM imagine rectangulum MN ad tempus per HI <lb/>iuxta imaginem HKI habet eandem rationem, quam ima­<lb/>go NM ad imaginem HKI, ergo ex æquali tempus per AE <lb/>ad tempus per HI &longs;ecundùm imagines propo&longs;itas erit vt <lb/>imago ip&longs;a ALGE ad imaginem HKI. </s> <s id="s.000097">Quod &c. <!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000098"><margin.target id="marg15"/><emph type="italics"/>Tab.<emph.end type="italics"/> 1. <emph type="italics"/>Fig.<emph.end type="italics"/> 7.</s> </p> <p type="margin"> <s id="s.000099"><margin.target id="marg16"/><emph type="italics"/>Cor. <!-- KEEP S--></s> <s id="s.000100">Def.<emph.end type="italics"/> 3 <lb/><emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000101">4. Demum imagines &longs;int quæcunque, modò &longs;int ho­<lb/><arrow.to.target n="marg17"/><lb/>mogeneæ, ADFB, GHKL: Dico rur&longs;us inter &longs;e e&longs;&longs;e vt tem-<pb pagenum="8" xlink:href="022/01/014.jpg"/>pora per AB, AK iuxta ip&longs;a imagines. </s> <s id="s.000102">Vel enim hæ ima­<lb/>gines &longs;unt &longs;implices, hoc e&longs;t tantùm parallelogramm&etail;, aut <lb/>tantùm acuminatæ, & tunc &longs;upra o&longs;tendimus propo&longs;itum, <lb/>quemadmodum etiam &longs;i vna acuminata, altera parallelo­<lb/>gramma; vel non &longs;unt huiu&longs;modi & componentur ex illis. <lb/><arrow.to.target n="marg18"/><lb/>Sint ergo in imagine ADFB partes ab æquidi&longs;tantibus di­<lb/>&longs;tinctæ ADEN, OFB acuminatæ & NEFO paralellogram-<lb/><arrow.to.target n="marg19"/><lb/>mum, erunt hæ procul dubio inter &longs;e, totique imagini ho­<lb/>mogeneæ; &longs;int pariter in alia imagine partes GHCM, <lb/>MCKL, per æquidi&longs;tantem MC di&longs;tinctæ inter &longs;e acumi­<lb/><arrow.to.target n="marg20"/><lb/>natæ, quæ itidem inter &longs;e, & imagini, cuius &longs;unt partes, ho­<lb/>mogeneæ erunt. </s> <s id="s.000103">His acceptis, quoniam tempus per AN <lb/><arrow.to.target n="marg21"/><lb/>iuxta imaginem ADEN acuminatam ad tempus per HC <lb/>iuxta aliam imaginem item acuminatam HGMC, habet <lb/>eandem rationem, ac imago ADEN ad <expan abbr="imagin&etilde;">imaginem</expan> GHCM. <lb/>&longs;imiliter tempus per HC iuxta imaginem GHCM ad tem­<lb/>pus per CK iuxta imaginem acuminatam MCKL e&longs;t vt <lb/>illa ad hanc imaginem; componendo, inde per conuer&longs;io­<lb/>nem rationis, & conuertendo, tempus per HC &longs;ecundùm <lb/>imaginem GHCM ad tempora &longs;imul per HC, CK, <expan abbr="quorũ">quorum</expan> <lb/>imagines GHCM, MCKL, hoc e&longs;t ad tempus per HK iux­<lb/>ta imaginem GHKL habebit <expan abbr="eãdem">eandem</expan> rationem, quam ima­<lb/>go GHCM ad imaginem GHCL; & ideo ex æquali tem­<lb/>pus per AN, cuius imago ADEN, ad tempus per HK, iux­<lb/>ta imaginem GHKL, erit in eadem ratione, in qua e&longs;t ima­<lb/>go ADEN ad imaginem GHKL. <!-- KEEP S--></s> <s id="s.000104">Præterea tempus per <lb/>AN iuxta imaginem ADEN ad idem ip&longs;um tempus habet <lb/>eandem rationem, quam imago ADEN ad eandem ip&longs;am; <lb/>tempus per NO iuxta imaginem rectangulum NEPO ad <lb/><arrow.to.target n="marg22"/><lb/>tempus prædictum per AN e&longs;t in eadem ratione <expan abbr="imaginũ">imaginum</expan> <lb/>NEPO ad ADEN, & &longs;imiliter tempus per OB iuxta ima­<lb/>ginem OPFB habet ad tempus per AN eandem rationem, <lb/>ac imago OPFB ad imaginem &longs;æpè dictam ADEN; <expan abbr="itaq;">itaque</expan> ex <lb/>lem. 18. Toric. <!-- REMOVE S-->in lib. de dim: parabolæ, erunt tria <expan abbr="t&etilde;pora">tempora</expan> per <pb pagenum="9" xlink:href="022/01/015.jpg"/>AN, NO, OB iuxta imagines deinceps ADEN, NEPO, <lb/>OPFB, hoc e&longs;t erit tempus per AB iuxta imaginem ADFB <lb/>ad &longs;imul tria tempora per AN iuxta eandem imaginem <lb/>ADEN, vt imago ADFB ad triplum imaginis ADEN, & <lb/>cum tria æqualia tempora per AN ad vnicum ex illis &longs;it <lb/>vt triplum imaginis ADEN ad vnicam imaginem; &longs;equi­<lb/>tur ex æquali tempus per AB ad tempus per AN iuxt&atail; <lb/>imaginem ADEN habere eandem rationem, quam imago <lb/>ADFB ad imaginem ADEN: & o&longs;ten&longs;um fuit tempus per <lb/>AN iuxta imaginem ADEN ad tempus per HK iuxta <lb/>imaginem GHKL habere eandem rationem, quam imago <lb/>ADEN ad imaginem GHKL, ergo rur&longs;us, & tandem ex <lb/>æquali, tempus per AB iuxta imaginem ADFB ad <expan abbr="t&etilde;pus">tempus</expan> <lb/>per HK iuxta imaginem GHKL habebit eandem <expan abbr="ration&etilde;">rationem</expan>, <lb/>quam imago ADFB ad imaginem GHKL. <!-- KEEP S--></s> <s id="s.000106">Quod &c. <!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000107"><margin.target id="marg17"/><emph type="italics"/>Tab.<emph.end type="italics"/> 1 <emph type="italics"/>Fig. 9<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000108"><margin.target id="marg18"/><emph type="italics"/>Ax.<emph.end type="italics"/> 4. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000109"><margin.target id="marg19"/><emph type="italics"/>Def.<emph.end type="italics"/> 4. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000110"><margin.target id="marg20"/><emph type="italics"/>Def:<emph.end type="italics"/> 4. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000111"><margin.target id="marg21"/><emph type="italics"/>Ex tertia <lb/>parte huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000112"><margin.target id="marg22"/><emph type="italics"/>Ex<emph.end type="italics"/> 2. <emph type="italics"/>part&etail; <lb/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000113"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000114"><emph type="italics"/>Hinc colligitur, &longs;i prima magnitudo ad &longs;ecundam fuerit vt <lb/>tertia ad quartam, item alia prima ad aliam &longs;ecundam vt <lb/>alia tertia ad aliam quartam, & &longs;ic vlteriùs quoad vi&longs;u&mtail; <lb/>fuerit, &longs;int præterea omnes primæ, item omnes tertiæ inter&longs;e <lb/>æquales, con&longs;tat, inquam, primarum vnam ad omnes &longs;ecun­<lb/>das habere eandem rationem, ac vna tertiarum ad omnes <lb/>quartas.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000115"><emph type="center"/>PROP. II. THEOR. II.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000116">Spatia, quæ curruntur iuxta qua&longs;cunque homogeneas <lb/><expan abbr="velocitatũ">velocitatum</expan> imagines, &longs;unt inter&longs;e, vt eædem illæ ima­<lb/>gines. </s> <s id="s.000117">Sint primùm motus æquabiles, curraturque &longs;pa­<lb/><arrow.to.target n="marg23"/><lb/>tium AB iuxta imaginem velocitatum, quæ rectangulum <lb/>erit ILMK, &longs;patium verò DE tran&longs;igatur iuxta imagine&mtail; <lb/>prædictæ homogeneam rectangulum FHNG (nam erunt <pb pagenum="10" xlink:href="022/01/016.jpg"/>homogeneæ ip&longs;æ imagines, &longs;i vt ex Def. <!-- REMOVE S-->4. huius IL ad HF <lb/>erit vt velocitas in&longs;tanti I ad velocitatem mobilis in&longs;tanti <lb/>F) Dico &longs;patium AB ad DE e&longs;&longs;e vt imago rectangulu&mtail; <lb/>ILMK ad imaginem rectangulum FHNG. </s> <s id="s.000118">Componuntur <lb/>ip&longs;a illa rectangula ex ratione altitudinum IK ad FG, & ex <lb/>ea ba&longs;ium IL ad FH; verùm ex ij&longs;dem, ea nempe <expan abbr="temporũ">temporum</expan> <lb/><arrow.to.target n="marg24"/><lb/>IK ad FG, atque ea velocitatum IL ad FH componitur <lb/>etiam ratio &longs;patiorum AB ad DE, ergo ip&longs;a &longs;patia erunt vt <lb/>propo&longs;it&etail; imagines. <lb/><arrow.to.target n="marg25"/></s> </p> <p type="margin"> <s id="s.000119"><margin.target id="marg23"/><emph type="italics"/>Tab.<emph.end type="italics"/> 1. <emph type="italics"/>Fig.<emph.end type="italics"/> 9. <lb/><emph type="italics"/>Cor. <!-- KEEP S--></s> <s id="s.000120">Dif.<emph.end type="italics"/> 3. <lb/><emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000121"><margin.target id="marg24"/><emph type="italics"/>Gil. <!-- REMOVE S-->de motu <lb/>æquabili.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000122"><margin.target id="marg25"/><emph type="italics"/>Tab.<emph.end type="italics"/> 1. <emph type="italics"/>fig<emph.end type="italics"/> 10.</s> </p> <p type="main"> <s id="s.000123">2. Sint nunc motus iuxta imagines, quarum altera acu­<lb/>minata, altera rectangulum &longs;it. </s> <s id="s.000124">Dico rur&longs;us &longs;patium AB, <lb/>quod curritur iuxta imaginem ABCD ad &longs;patium DE, <lb/>quod curritur iuxta alteram imaginem, e&longs;&longs;e vt imago <lb/>ABCD ad imaginem PHNG. <!-- KEEP S--></s> <s id="s.000125">Ni&longs;i ita &longs;it, erit alia magni­<lb/>tudo Y maior, vel minor imagine ABCD, quæ quidem ad <lb/>alteram imaginem HPGN habebit eandem rationem, <expan abbr="quã">quam</expan> <lb/>&longs;patium AB ad DE. <!-- KEEP S--></s> <s id="s.000126">Sit primùm maior exce&longs;&longs;u Z. Cir­<lb/>cum&longs;cribatur; vt egimus in &longs;ecunda parte primæ huius, fi­<lb/>gura imagini ABCD con&longs;tans ex rectangulis æquè altis, <lb/>excedatque imaginem ABCD exce&longs;&longs;u minori, quam Z; &longs;it <lb/>ergo circum&longs;cripta illa AE, HF, IG, KG, quam primò fa­<lb/>cilè o&longs;tendemus minorem magnitudine Y; nam hæc exce&longs;­<lb/>&longs;u magis di&longs;tat ab imagine, quàm circum&longs;cripta illa. </s> <s id="s.000127">Præ­<lb/>terea &longs;i intelligantur tot motus æquabiles, quot &longs;unt <expan abbr="rectã-gula">rectan­<lb/>gula</expan> circum&longs;cripta, ij nempe, qui fierent temporibus AH, <lb/>HI, IK, KD iuxta deinceps imagines ip&longs;a rectangula AE, <lb/>HF, IG, KC inter&longs;e, & propo&longs;itis imaginibus homogeneas, <lb/>velocitates, quibus ijdem motus con&longs;iderarentur, forent <lb/>HE, IF, KG, DC, nimirum maximæ imaginum ABEH, <lb/>HEFI, IFGK, KGCD; Cumque ita &longs;it, longiora &longs;patia cur­</s> </p> <p type="main"> <s id="s.000128"><arrow.to.target n="marg26"/><lb/>rerentur iuxta imagines rectangula circum&longs;cripta, quam <lb/>ij&longs;dem temporibus, imaginibu&longs;que po&longs;tremis, hoc e&longs;t <expan abbr="quã">quam</expan> <lb/>tempore AD iuxta imaginem ABCD; obidque &longs;patium <lb/>AB ad DE, &longs;eu magnitudo Y ad imaginem HPGN habe-<pb pagenum="11" xlink:href="022/01/017.jpg"/>bit minorem rationem, quàm omnes illæ &longs;imul imagines, <lb/><arrow.to.target n="marg27"/><lb/>&longs;eu quam circum&longs;cripta figura AE, HF, IG, KC ad ean­<lb/>dem imaginem HPGN; quare Y, quæ priùs o&longs;ten&longs;a fuit <lb/>maior, nunc reperitur minor eadem circum&longs;cripta, quod <lb/>cum fieri nequeat, impo&longs;&longs;ibile etiam e&longs;t magnitudinem Y <lb/>maiorem e&longs;&longs;e magnitudine imaginis ABCD. <!-- KEEP S--></s> <s id="s.000129">Sit ergo mi­<lb/>nor, &longs;i etiam fieri pote&longs;t, & defectus ip&longs;ius Y &longs;upra ABCD <lb/>&longs;it Z. <!-- KEEP S--></s> <s id="s.000130">In&longs;cribatur imagini figura ex rectangulis æquealtis, vt <lb/>nempe deficiat ab imagine defectu minori Z; &longs;ic enim ip&longs;a <lb/>in&longs;cripta, quæ &longs;it AB, IE, KF, DG erit magnitudine pro­<lb/>pinquior imagini ABCD, quàm Y, ideoque Y minor erit <lb/>dicta in&longs;cripta figura. </s> <s id="s.000131">Deinde, quoniam, &longs;i ponantur mo­<lb/>tus æquabiles, quorum imagines rect angula in&longs;cripta HB, <lb/>IE, KF, DG, quæque inter &longs;e, & propo&longs;itis imaginibus &longs;int <lb/>homogeneæ; velocitates, quibus efficerentur dicti motus, <lb/>e&longs;&longs;ent AB, IE, KF, DG, minimæ &longs;cilicet imaginum ABEH <lb/>HEFI, IFGK. KGCD, & ideo &longs;patia, quæ percurrerentur <lb/>temporibus HA, HI, IK, KD imaginibus illis, maiora e&longs;­<lb/><arrow.to.target n="marg28"/><lb/>&longs;ent, quàm quæ ij&longs;dem temporibus tran&longs;igerentur iuxt&atail; <lb/>imagines prædictas rectangula circum&longs;cripta, hinc fit vt <lb/>&longs;patium AB ad DE, &longs;eu magnitudo Y ad imagine HPGN <lb/>habeat maiorem rationem, quàm in&longs;cripta figura ad ean­<lb/>dem imaginem HPGN; quare Y, quæ minor erat in&longs;cripta <lb/>figura, modò re&longs;ultat maior, non ergo Y minor e&longs;&longs;e pote&longs;t <lb/>imagine ABCD, &longs;ed neque maior vt o&longs;tendimus, ergo &longs;pa­<lb/>tium AB ad DE erit, vt imago ABCD ad imaginem <lb/>PHNG. <!-- KEEP S--></s> <s id="s.000132">Quod &c. <!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000133"><margin.target id="marg26"/><emph type="italics"/>Ax.<emph.end type="italics"/> 2. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000134"><margin.target id="marg27"/><emph type="italics"/>Cor. <!-- KEEP S--></s> <s id="s.000135">pr.<emph.end type="italics"/> 1. <emph type="italics"/>hu­<lb/>ius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000136"><margin.target id="marg28"/><emph type="italics"/>Ex.<emph.end type="italics"/> 2 <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000137">3. & 4. Si verò imagines acuminatæ &longs;int, aut demum <lb/>quæ cumque, eodem prorsùs modo, quo prima propo&longs;itio­<lb/>ne, o&longs;tendemus hoc etiam propo&longs;itum, ergo patet omne <lb/>intentum. </s> </p> <pb pagenum="12" xlink:href="022/01/018.jpg"/> <p type="main"> <s id="s.000138"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000139"><emph type="italics"/>Cum prorsùs geometricè o&longs;tenderimus &longs;uperiores duas pro­<lb/>po&longs;itiones, vtili&longs;&longs;imum e&longs;t ob&longs;eruare, quomodo liceat vti tem­<lb/>poris in&longs;tantibus, non vt punctis prorsùs geometricis, &longs;ed vt <lb/>quantitatibus dicam minoribus quibu&longs;cunque datis. </s> <s id="s.000140">Hinc <lb/>oritur indiui&longs;ibilium methodus, quæ intelligentiam affert <lb/>faciliorem, ac &longs;i rigori geometrico penitus in&longs;i&longs;teremus, quam­<lb/>quam eæ tamen difficiliores Geometras mihi magis decer&etail; <lb/>videantur.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000141"><emph type="center"/>PROP. III. THEOR. III.<emph.end type="center"/><lb/><arrow.to.target n="marg29"/><!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000142"><margin.target id="marg29"/><emph type="italics"/>Tab.<emph.end type="italics"/> 2, <emph type="italics"/>Fig.<emph.end type="italics"/> 1.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000143">SPatia, quæ curruntur iuxta quaslibet homogeneas ve­<lb/>locitatum imagines, nectuntur ex rationibus tempo­<lb/>rum, ac æquatricum. </s> </p> <p type="main"> <s id="s.000144">Velocitates æquatrices duorum motuum, quorum ima­<lb/>gines velocitatum &longs;int ABCD, EFHI ponantur AG, EL. <lb/><!-- KEEP S--></s> <s id="s.000145">Dico &longs;patia, &longs;eu ip&longs;as imagines componi ex ratione tem­<lb/>porum AD ad EI; & ex ea æquatricum AE ad EL. <!-- KEEP S--></s> <s id="s.000146">Nam <lb/>&longs;i motus, qui e&longs;t iuxta imaginem ABCD per&longs;eueret velo­<lb/>citate AG, e&longs;&longs;et quidem æquabilis, idemque &longs;patium illa </s> </p> <p type="main"> <s id="s.000147"><arrow.to.target n="marg30"/><lb/>velocitate, & tempore AD percurreretur, ac &longs;ecundù&mtail; <lb/>imaginem ABCD; Itaque exi&longs;tente rectangulo DE, quod <lb/><arrow.to.target n="marg31"/><lb/>e&longs;set imago velocitatum illius motus æquabilis, foret idem <lb/><arrow.to.target n="marg32"/><lb/>æquale imagini ABCD (nam imagines ABCD, & DG <lb/>homogeneæ &longs;unt) eodem modo imago rectangulum VL <lb/>æquale e&longs;set imagini EFHI. </s> <s id="s.000148">Cum ergo duæ imagines re­<lb/>ctangula DE, IL componantur ex rationibus temporum <lb/>AD ad EI, & ex ea æquatricum AG ad EL; ex ij&longs;de&mtail; <lb/>prorsùs rationibus etiam imagines propo&longs;itæ prædictis re­<lb/>ctangulis æquales nectentur. </s> <s id="s.000149">Et ideo &longs;patia, quæ propo­<lb/>&longs;itis imaginibus tran&longs;iguntur, quæque ip&longs;is proportionalia <pb pagenum="13" xlink:href="022/01/019.jpg"/>&longs;unt, componentur ex rationibus temporum, & ex rationi­<lb/>bus æquatricum. </s> </p> <p type="margin"> <s id="s.000150"><margin.target id="marg30"/><emph type="italics"/>Def.<emph.end type="italics"/> 6. <emph type="italics"/>Ax.<emph.end type="italics"/> 1.<!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000151"><margin.target id="marg31"/><emph type="italics"/>Cor.<emph.end type="italics"/> 3. <emph type="italics"/>Def.<emph.end type="italics"/> 3. <lb/><emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000152"><margin.target id="marg32"/><emph type="italics"/>Pr.<emph.end type="italics"/> 2. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000153"><emph type="center"/><emph type="italics"/>Corollarium I.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000154"><emph type="italics"/>Hinc patet &longs;i lineæ, quæ in imagine velocitatum tempus <lb/>exhibet, aplicetur rectangulum æquale propo&longs;itæ imagini ve­<lb/>locitatum, fore vt latitudo eiu&longs;dem rectanguli, &longs;it velocitas <lb/>æquatrix propo&longs;itæ imaginis.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000155"><emph type="center"/><emph type="italics"/>Corollarium II.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000156"><emph type="italics"/>Item constat, vbi tempora, vel æquatrices velocitates fue­<lb/>rint æquales, rationem &longs;patiorum e&longs;&longs;e eandem, quæ æquatri­<lb/>cum, vel quæ temporum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000157"><emph type="center"/><emph type="italics"/>LEMMA.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000158"><emph type="italics"/>Si quælibet ratio compo&longs;ita &longs;it ex quotcumque rationibus, <lb/>harum quælibet nectetur ex propo&longs;ita, & ex reliquis contra­<lb/>riò &longs;umptis rationibus. </s> <s id="s.000159">Sit A ad B compo&longs;ita ex rationibus E <lb/>æd F; G ad H; & I ad K. <!-- KEEP S--></s> <s id="s.000160">Dico quamlibet ist arum puta G ad <lb/>K con&longs;tare ex rationibus A ad B, & ex reliquis reciprocè &longs;um­<lb/>ptis F ad E, & I ad K. <!-- KEEP S--></s> <s id="s.000161">Vt E ad F, ita &longs;it A ad C, & vt D ad B <lb/>&longs;ic I ad K; erit C ad D, vt G ad H; <expan abbr="ideoq;">ideoque</expan> C ad D, hoc e&longs;t G ad<emph.end type="italics"/><lb/><arrow.to.target n="table1"/><lb/><emph type="italics"/>H nectetur ex C ad A, &longs;eu F ad G, & ex rationibus A ad B, <lb/>B ad D, &longs;iue K ad I. <!-- KEEP S--></s> <s id="s.000162">Quod &c.<emph.end type="italics"/><!-- KEEP S--></s> </p> <pb pagenum="14" xlink:href="022/01/020.jpg"/> <table> <table.target id="table1"/> <row> <cell><emph type="italics"/>A<emph.end type="italics"/></cell> <cell><emph type="italics"/>E<emph.end type="italics"/></cell> <cell/> <cell/> </row> <row> <cell><emph type="italics"/>C<emph.end type="italics"/></cell> <cell><emph type="italics"/>F<emph.end type="italics"/></cell> <cell><emph type="italics"/>I.<emph.end type="italics"/></cell> <cell><emph type="italics"/>K<emph.end type="italics"/></cell> </row> <row> <cell><emph type="italics"/>D<emph.end type="italics"/></cell> <cell><emph type="italics"/>G<emph.end type="italics"/></cell> <cell/> <cell/> </row> <row> <cell><emph type="italics"/>B<emph.end type="italics"/></cell> <cell><emph type="italics"/>H<emph.end type="italics"/></cell> <cell/> <cell/> </row> </table> <p type="main"> <s id="s.000163"><emph type="center"/>PROP. IV. THEOR. IV.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000164">TEmpora, quibus ab&longs;oluuntur duo motus componun­<lb/>tur ex ratione &longs;patiorum, & ex reciproca æquatri­<lb/>cum. </s> <s id="s.000165">Cum enim &longs;patia <expan abbr="componãtur">componantur</expan> ex ratione temporum, <lb/><arrow.to.target n="marg33"/><lb/>& ex ea velocitatum æquatricum, &longs;equitur per prædictum <lb/>Lemma, quòd tempora nectantur ex rationibus &longs;patiorum, <lb/>& reciproca æquatricum. </s> </p> <p type="margin"> <s id="s.000166"><margin.target id="marg33"/><emph type="italics"/>Pr.<emph.end type="italics"/> 3. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000167"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000168"><emph type="italics"/>Manife&longs;tum e&longs;t &longs;patia, vel æquatrices velocitates, &longs;i &longs;int <lb/>æquales, e&longs;&longs;e tempora in reliqua ratione reciproca æquatri­<lb/>cum, vel &longs;patiorum non reciproca.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000169"><emph type="center"/>PROP. V. THEOR. V.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000170">ÆQuatrices velocitates componuntur ex rationibus <lb/>&longs;patiorum, & reciproca temporum. </s> </p> <p type="main"> <s id="s.000171">Cum &longs;patia componantur ex rationibus temporum, & <lb/>velocitatum æquatricum, manife&longs;tum e&longs;t ex eodem Lem­<lb/>mate, velocitates ip&longs;as necti ex rationibus &longs;patiorum, & <lb/>reciproca temporum. </s> </p> <p type="main"> <s id="s.000172"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000173"><emph type="italics"/>Deducitur, æquatrices velocitates e&longs;&longs;e vt tempora reciprocè <lb/>&longs;umpta, vel vt &longs;patia, &longs;i altera ratio fuerit æqualitatis.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000174"><emph type="center"/>D. <!-- KEEP S--></s> <s id="s.000175">E F. VII.<emph.end type="center"/><lb/><arrow.to.target n="marg34"/><!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000176"><margin.target id="marg34"/><emph type="italics"/>Tab.<emph.end type="italics"/> 2. <emph type="italics"/>Fig.<emph.end type="italics"/> 2.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000177">SI in gene&longs;ibus homogeneis AEC, GFK exi&longs;tente AB <lb/>ad BC &longs;icut GI ad IK, habeat AE ad BD eandem ra-<pb pagenum="15" xlink:href="022/01/021.jpg"/>tionem, ac GF ad IH, motus, qui fiunt iuxta illas gene&longs;es, <lb/>vocentur inter &longs;e &longs;imiles, & ip&longs;æ gene&longs;es dicentur &longs;imilium <lb/>motuum; quod verò attinet ad rectas AE, BD, GF, IH apel­<lb/>labimus applicatas ad homologa puncta A, B, G, I propor­<lb/>tionales. </s> </p> <p type="main"> <s id="s.000178"><emph type="center"/>PROP. VI. THEOR. VI.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000179">SI in imaginibus temporum homogeneis, applicatæ v­<lb/>nius fuerint ad homologa puncta, proportionales ap­<lb/>plicatis alterius imaginis, motus, quorum &longs;unt ip&longs;æ imagi­<lb/>nes, &longs;imiles erunt. </s> </p> <p type="main"> <s id="s.000180">Imagines temporum &longs;int &MLABC, &ONGIK, quæ </s> </p> <p type="main"> <s id="s.000181"><arrow.to.target n="marg35"/><lb/>&longs;int homogeneæ, & cum GI ad IK &longs;it vt AB ad BC, habeat <lb/>quoque AL ad BM eandem rationem, ac GN ad IO. Di­<lb/>co, motus, quorum &longs;unt illæ imagines temporum inter &longs;e &longs;i­<lb/>miles e&longs;&longs;e. </s> </p> <p type="margin"> <s id="s.000182"><margin.target id="marg35"/><emph type="italics"/>Tab.<emph.end type="italics"/> 2. <emph type="italics"/>fig.<emph.end type="italics"/> 3.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000183">Sint apud ip&longs;as imagines eorundem motuum gene&longs;es, <lb/>&longs;cilicet EAC, FGK inter&longs;e homogeneæ. </s> <s id="s.000184">Exi&longs;tente AL ad <lb/>BM, vt GN ad IO, erit conuertendo BM ad AL vt IO ad <lb/>GN; &longs;ed vt BM ad AL ita ob gene&longs;im EA ad DB, & vt IO <lb/><arrow.to.target n="marg36"/><lb/>ad GN, &longs;ic FG ad HI. ergo EA ad DB e&longs;t vt FG ad HI, erat <lb/>autem vt AB ad BC ita etiam GI ad IK, ergo motus &longs;unt <lb/><arrow.to.target n="marg37"/><lb/>&longs;imiles, & ip&longs;æ imagines &longs;imilium motuum. </s> </p> <p type="margin"> <s id="s.000185"><margin.target id="marg36"/><emph type="italics"/>Def.<emph.end type="italics"/> 2. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000186"><margin.target id="marg37"/><emph type="italics"/>Def.<emph.end type="italics"/> 7. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000187"><emph type="center"/>PROP. VII. THEOR. VII.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000188">SI in imaginibus velocitatum vnius, applicate fuerint ex <lb/><arrow.to.target n="marg38"/><lb/>punctis homologè &longs;umptis proportionales applicatis <lb/>alterius imaginis, motus iuxta ip&longs;as imagines erunt &longs;imi­<lb/>les, ideoque ip&longs;æ imagines &longs;imilium motuum. </s> </p> <p type="margin"> <s id="s.000189"><margin.target id="marg38"/><emph type="italics"/>Tab.<emph.end type="italics"/> 2. <emph type="italics"/>fig.<emph.end type="italics"/> 4.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000190">Velocitatum imagines &longs;int ABCD, NPRT, &longs;itque AB <lb/>ad EF in eadem ratione, in qua NP ad TR; Dico exi&longs;tenti­<lb/>bus etiam BF ad FC, vt PQ ad QR e&longs;&longs;e propo&longs;itas imagi­<lb/>nes &longs;imilium motuum. </s> <s id="s.000191">Intelligantur eorundem motuum <pb pagenum="16" xlink:href="022/01/022.jpg"/>gene&longs;es GHKL, YZ 43. & &longs;it pariter HI ad IK, vt &longs;egmen­<lb/>tum ABFE ad EFCD. </s> <s id="s.000192">Sit &longs;imiliter Z <gap/> ad <gap/> 4 vt &longs;eg­<lb/>mentum NPQV ad VQRT, ducti&longs;que applicatis IM, QV, <lb/>manife&longs;tum e&longs;t, vt velocitas AB æqualis e&longs;t velocitati GH, <lb/>&longs;ic EF æqualem fore ip&longs;i IM; nam quia &longs;patium <expan abbr="tran&longs;actũ">tran&longs;actum</expan> <lb/>iuxta imaginem ABFE ad &longs;patium tran&longs;actum imagine <lb/><arrow.to.target n="marg39"/><lb/>EFCD e&longs;t vt illa ad hanc imaginem, nempe vt HI ad IK, <lb/>erit mobile in&longs;tanti F in puncto I, & ideo inibi erit veloci­<lb/>tas eadem, quam habet mobile in&longs;tanti F, &longs;cilicet æquales <lb/>erunt EF, IM. </s> <s id="s.000193">Eodem modo erunt æquales QV, <gap/> 2, & <lb/>&longs;unt etiam æquales NP, YZ, ergo &longs;icut &longs;e habet AB ad EF, <lb/>ita erit GH ad MI, & vt e&longs;t NP ad <expan abbr="Vq.">Vque</expan> ita erit YZ ad 2 <gap/><lb/>Præterea concipiatur figura OPRSXO &longs;imilis ip&longs;i ABCD, <lb/>&longs;cilicet &longs;it CB ad PR vt AB ad OP, vel (cum &longs;int BF ad <lb/>FC ita PQ ad QR, vt EF ad homologam XQ, erit &longs;eg­<lb/>mentum ABFE ad &longs;ibi &longs;imile &longs;egmentum OPQX in dupli­<lb/>cata ratione laterum homologorum EF ad XQ, & item in <lb/><expan abbr="ead&etilde;">eadem</expan> duplicata ratione erunt inter&longs;e &longs;imilia <expan abbr="&longs;egm&etilde;ta">&longs;egmenta</expan> EFCD <lb/>ad XQRS, &longs;ed cum etiam OPQX &longs;egmentum ad NPQV, <lb/>& XQRS ad &longs;egmentum VQRT &longs;int in eadem ratione <lb/>eiu&longs;dem QX ad QV, erit ex æquali &longs;egmentum ABFE ad <lb/>&longs;egmentum NPQV, vt &longs;egmentum EFCD ad VQRT, & <lb/>permutando, &longs;egmentum ABFE ad &longs;egmentum EFCD ha­<lb/>bebit eandem rationem, ac &longs;egmentum NPQV ad VQRT <lb/>&longs;cilicet erit HI ad IK vt Z <gap/> ad <gap/> 4, ob idque con&longs;tat ge­<lb/>ne&longs;ium applicatas vnius proportionales e&longs;&longs;e applicatis al­<lb/>terius, quare &longs;imiles motus erunt, qui fiunt iuxta imagines <lb/>velocitatum propo&longs;itas. </s> </p> <p type="margin"> <s id="s.000194"><margin.target id="marg39"/><emph type="italics"/>Pr.<emph.end type="italics"/> 2. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000195"><emph type="center"/>PROP. VIII. THEOR. VIII.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000196">SPatia, quæ curruntur &longs;imilibus motibus &longs;unt in ratione <lb/>compo&longs;ita temporum, & homologarum velocitatum, <lb/>inter quas &longs;unt extremæ, aut primæ. </s> </p> <pb pagenum="17" xlink:href="022/01/023.jpg"/> <p type="main"> <s id="s.000197">Imagines velocitatum &longs;imilium motuum &longs;int BCDE, <lb/><arrow.to.target n="marg40"/><lb/>GMKI, & iuxta eas percurrantur &longs;patia A, F. <!-- KEEP S--></s> <s id="s.000198">Dico i&longs;ta com­<lb/>poni ex rationibus temporum BE ad GI, & ex ea veloci­<lb/>tatem extremarum ED ad IK. <!-- KEEP S--></s> <s id="s.000199">Fiat vt BE ad GI, ita BC <lb/>ad GH, intelligatur que GHLI figura &longs;imilis ip&longs;i BDE. Quo­<lb/><arrow.to.target n="marg41"/><lb/>niam &longs;patium A ad F, hoc e&longs;t imago BCDE ad imaginem <lb/>GMKI componitur ex ratione imaginis BCDE ad figu­<lb/>ram &longs;ibi &longs;imilem GHLI, & ex ratione huius ad imaginem <lb/>GMKI: prior ratio e&longs;t duplicata homologorum lateru&mtail; <lb/>BE ad GI, &longs;eu e&longs;t compo&longs;ita ex BE ad GI, & ex huic &longs;imi­<lb/>li ratione ED ad IL, & ratio altera, imaginis &longs;cilicet GHLI <lb/>ad imaginem GMKI e&longs;t, vt LI ad IK; ergo ex æquali ima­<lb/>go BCDE ad imaginem GMKI, hoc e&longs;t &longs;patium A ad &longs;pa­<lb/>tium F, componetur ex ratione temporum BE ad GI, & ex <lb/>rationibus ED ad LI, & IL ad IK, &longs;cilicet nectetur ex ra­<lb/>tione BE ad GI, & ED ad IK, quæ po&longs;trema cum &longs;it ratio <lb/>velocitatum extremarum ED ad IK; con&longs;tat, quod propo­<lb/>&longs;uimus, &longs;patia &longs;imilium motuum componi ex ratione tem­<lb/>porum, & ex ratione homologarum velocitatum, hoc e&longs;t <lb/>extremarum. </s> </p> <p type="margin"> <s id="s.000200"><margin.target id="marg40"/><emph type="italics"/>Tab.<emph.end type="italics"/> 2. <emph type="italics"/>Fig.<emph.end type="italics"/> 5</s> </p> <p type="margin"> <s id="s.000201"><margin.target id="marg41"/><emph type="italics"/>Pr.<emph.end type="italics"/> 2. <emph type="italics"/>huiu.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000202"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000203"><emph type="italics"/>Si tempora fuerint æqualia, &longs;imilium motuum &longs;patia <expan abbr="erũt">erunt</expan> <lb/>vt extremæ, vel &longs;ummæ velocitates, & contra, &longs;i i&longs;tæ æquales <lb/>&longs;int, erunt &longs;patia vt tempora.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000204"><emph type="center"/><emph type="italics"/>Corollarium II.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000205"><emph type="italics"/>Cum &longs;patia &longs;imilium motuum nectantur ex ratione tem­<lb/>porum & ex ea velocitatum &longs;ummarum, &longs;eu earum, quæ <expan abbr="sũt">sunt</expan> <lb/>ad in&longs;tantia &longs;imiliter &longs;umpta in rectis BE, GI, constat ex <lb/>lem: infra cor.<emph.end type="italics"/> 2. <emph type="italics"/>pr.<emph.end type="italics"/> 3. <emph type="italics"/>huius tempora componi ex rationi­<lb/>bus &longs;patiorum &longs;imilium motuum, & ex recìproca dictarum <emph.end type="italics"/><pb pagenum="18" xlink:href="022/01/024.jpg"/><emph type="italics"/>velocitatum. </s> <s id="s.000206">Ex eadem ratione patet e&longs;&longs;e velocitates &longs;um­<lb/>mas, vel homologas vti diximus in ratione compo&longs;ita dicto­<lb/>rum &longs;patiorum, & ip&longs;orum temporum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000207"><emph type="center"/><emph type="italics"/>Corollarium III.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000208"><emph type="italics"/>Quare &longs;i alteræ de dua<gap/>bus componentibus æqualis fuerit, <lb/>reliqua tantùm computanda erit.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000209"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000210"><emph type="italics"/>Hinc emergit omnis ferè doctrina grauium cum <expan abbr="de&longs;cendũt">de&longs;cendunt</expan> <lb/>pror&longs;us libera, aut &longs;uper planis inclinatis ad horizonte&mtail;: <lb/>nec accidit veritates iam patefactas huc rur&longs;us lectoris taedio <lb/>afferre, &longs;ed libeat potius, rationem metiendarum imaginum, <lb/>quamuis longitudine immen&longs;arum, no&longs;tra methodo exponere.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000211"><emph type="center"/>DEF. VIII.<emph.end type="center"/><lb/><arrow.to.target n="marg42"/><!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000212"><margin.target id="marg42"/><emph type="italics"/>Tab.<emph.end type="italics"/> 2. <emph type="italics"/>Fig.<emph.end type="italics"/> 6.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000213">SInt inter binas parallelas AB, GH, et IK, PQ planæ fi­<lb/>guræ ABHG, IKQP, & in altera earum ducta altitudi­<lb/>ne RV, &longs;int inter &longs;e ip&longs;æ figuræ talis naturæ, vt cum &longs;it <lb/>GABH ad &longs;egmentum EABF factum per æquidi&longs;tantem <lb/>ip&longs;i GH &longs;icut VR ad RT, verificetur &longs;emper (ducta æqui­<lb/>di&longs;tanti NTO ip&longs;i PQ) e&longs;&longs;e GH ad EF vt reciprocè NO ad <lb/>PQ tunc huiu&longs;modi figuras vocabimus inter &longs;e auuer&longs;as. </s> </p> <p type="main"> <s id="s.000214"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000215"><emph type="italics"/>Sequitur ex vi nunc allatæ deffin., lineam IK tunc e&longs;&longs;e in­<lb/>finitam, cum AB fuerit punctum, & ideo &longs;imul con&longs;tat figu­<lb/>ram IPQK immen&longs;am e&longs;&longs;e longitudine versùs K aut I, aut <lb/>vtrinque, &longs;i nempe producerentur nunquam coituræ lineæ <lb/>QP, IK.<emph.end type="italics"/><!-- KEEP S--></s> </p> <pb pagenum="19" xlink:href="022/01/025.jpg"/> <p type="main"> <s id="s.000216"><emph type="center"/>PROP. IX. THEOR. IX.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000217">REctangulum &longs;ub altitudine, & ba&longs;i vnius auuer&longs;arum <lb/>ad ip&longs;am auuer&longs;am figuram, eandem habet <expan abbr="ration&etilde;">rationem</expan>, <lb/>ac altera auuer&longs;a figura ad rectangulum ex ba&longs;i in altitudi­<arrow.to.target n="marg43"/><lb/>nem eiu&longs;dem huius figuræ. </s> </p> <p type="margin"> <s id="s.000219"><margin.target id="marg43"/><emph type="italics"/>Tab.<emph.end type="italics"/> <gap/>. <emph type="italics"/>fig.<emph.end type="italics"/> 7.</s> </p> <p type="main"> <s id="s.000220">Sint auuer&longs;æ figuræ ACB, GFDEG. </s> <s id="s.000221">Dico rectangu­<lb/>lum DF in DE ad figuram GFDEG, eandem habere ratio­<lb/>nem ac figura ACBA ad rectangulum AB in BC. <!-- KEEP S--></s> <s id="s.000222">Sint pri­<lb/>mùm ABC, FDE anguli recti, & ducta qualibet HI paral­<lb/><arrow.to.target n="marg44"/><lb/>lela BC, &longs;it BAC ad HIA vt DF ad KF, erit ob naturam <lb/>auuer&longs;arum KL ad DE vt BC ad HI; itaque &longs;i ponatur e&longs;&longs;e <lb/>quidam motus ab F in D iuxta imaginem <expan abbr="velocitatũ">velocitatum</expan> BAC, <lb/><arrow.to.target n="marg45"/><lb/>erit GFDEG imago temporis eiu&longs;dem motus; nam imago <lb/><arrow.to.target n="marg46"/><lb/>BAC ad imaginem HIA e&longs;t vt &longs;patium DF ad &longs;patium FK <lb/>& velocitas BC ad <expan abbr="velocitat&etilde;">velocitatem</expan> HI vt reciprocè KL ad DE. <lb/><!-- KEEP S--></s> <s id="s.000223">Sit etiam alius motus, &longs;ed æquabilis, cuius imago velocita­<lb/>tum æqualis &longs;it, & homogenea ip&longs;i BAC, rectangulum <expan abbr="n&etilde;-pe">nen­<lb/>pe</expan> AB in BM, & ideo &longs;i fiat BM ad BC &longs;icut DE ad DN, <lb/>concipiaturque rectangulum FD in DN, erit hoc imago <lb/><arrow.to.target n="marg47"/><lb/>temporis dicti motus æquabilis, homogenea, & æqualis <lb/>imagini GFDEG; nam <expan abbr="t&etilde;pora">tempora</expan>, &longs;cilicet imagines GFDEG, <lb/><arrow.to.target n="marg48"/><lb/>FD in DN rectangulum componuntur ex rationibus &longs;pa­<lb/><arrow.to.target n="marg49"/><lb/>tiorum, hoc e&longs;t imaginum velocitatum inter&longs;e æqualium, <lb/>ABM, ACB, & reciproca æquatricum pariter æqualium <lb/>BM, BM. </s> <s id="s.000224">Cum igitur rectangulum FD in DN æquale &longs;it <lb/><arrow.to.target n="marg50"/><lb/>imagini, &longs;eu figuræ GFDEG, habebit eadem figur&atail; <lb/>GFDEG ad rectangulum FD in DE eandem rationem, <lb/>quam DN ad DE, hoc e&longs;t quam BC ad BM, &longs;eu quam re­<lb/>ctangulum AB in BC ad rectangulum AB in BM, aut ad ei <lb/>æqualem figuram ABC; & conuertendo, manife&longs;tum e&longs;t <lb/>quod propo&longs;uimus, nempe rectangulum FD in DE ad fi­<lb/>guram GFDEG habere eandem <expan abbr="ration&etilde;">rationem</expan>, ac figura ACBA <pb pagenum="20" xlink:href="022/01/026.jpg"/>ad rectangulum AB in BC. quod erat demon&longs;trandum <lb/>primo loco. </s> </p> <p type="margin"> <s id="s.000225"><margin.target id="marg44"/><emph type="italics"/>Def.<emph.end type="italics"/> 8. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000226"><margin.target id="marg45"/><emph type="italics"/>Def:<emph.end type="italics"/> 2. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000227"><margin.target id="marg46"/><emph type="italics"/>pr.<emph.end type="italics"/> 2. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000228"><margin.target id="marg47"/><emph type="italics"/>Def.<emph.end type="italics"/> 2. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000229"><margin.target id="marg48"/><emph type="italics"/>pr.<emph.end type="italics"/> 1. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000230"><margin.target id="marg49"/><emph type="italics"/>pr.<emph.end type="italics"/> 4. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000231"><margin.target id="marg50"/><emph type="italics"/>Cor. <!-- KEEP S--></s> <s id="s.000232">pr.<emph.end type="italics"/> 3. <emph type="italics"/>hu­<lb/>ius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000233">2. Si verò propo&longs;itæ figuræ &longs;int quæcunque auuer&longs;æ <lb/><arrow.to.target n="marg51"/><lb/>DAE, QPLMQ poterunt hæ reuocari ad qua&longs;dam alias <lb/>FKG, RSZX, quæ &longs;int inter ea&longs;dem parallelas, queis com­<lb/>prehenduntur propo&longs;itæ figuræ, ad eo vt exi&longs;tentibus re­<lb/>ctis angulis KFG, RXZ &longs;int ip&longs;æ binæ figuræ ab ij&longs;dem pa­<lb/>rallelis interceptæ. </s> <s id="s.000234">inter &longs;e æqualiter analogæ hoc e&longs;t du­<lb/>ctis æquidi&longs;tantibus, vt vi&longs;um fuerit IHBC, VTNO, &longs;int <lb/>&longs;emper interiectæ lineæ IH, BC, & VT, NO æquales: hoc <lb/>modo non tantùm liquet figuras FKG, DAE, nec no&ntail; <lb/>RSZX, PQML æquales inter &longs;e e&longs;&longs;e, verùm etiam FKG ad <lb/>IKH e&longs;&longs;e in eadem ratione, in qua QPLMQ ad QPNOQ, <lb/>quamobrem ex prima parte, rectangulum ZX in RM ad <lb/>figuram SRXZS, hoc e&longs;t rectangulum LM in altitudinem <lb/>figuræ QPLMQ ad hanc ip&longs;am figuram habebit eandem <lb/>rationem, quam figura FKG ad rectangulum KF in FG, <lb/>vel quam figura DAE ad rectangulum DE in altitudinem <lb/>eiu&longs;dem huius figuræ DAE; quo circa con&longs;tat omne pro­<lb/>po&longs;itum. </s> </p> <p type="margin"> <s id="s.000235"><margin.target id="marg51"/><emph type="italics"/>Tab.<emph.end type="italics"/> 2. <emph type="italics"/>Fig.<emph.end type="italics"/> 8.</s> </p> <p type="main"> <s id="s.000236"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000237"><emph type="italics"/>Patet in prima parte repertum e&longs;&longs;e rectangulum FD i&ntail;<emph.end type="italics"/><lb/><arrow.to.target n="marg52"/><lb/><emph type="italics"/>DN æquale figuræ GFDEG, licèt hæc immen&longs;e longitudinis <lb/>&longs;it versùs G, & ob id manife&longs;tum e&longs;t, quòd quamuis aliqu&atail; <lb/>figura &longs;it &longs;inè fiue longa, non ideo &longs;emper magnitudinem ha­<lb/>bet infinitam. </s> <s id="s.000238">Et &longs;imul illud con&longs;tat, vbi vna auuer&longs;arum, &longs;eu <lb/>vbi imago velocitatum, aut temporis &longs;it magnitudine termi­<lb/>nata, etiam altera auuer&longs;arum, vel imaginum erit huiu&longs;­<lb/>modi &c.<emph.end type="italics"/><!-- KEEP S--></s> </p> <pb pagenum="21" xlink:href="022/01/027.jpg"/> <p type="margin"> <s id="s.000239"><margin.target id="marg52"/><emph type="italics"/>Cor. <!-- KEEP S--></s> <s id="s.000240">pr.<emph.end type="italics"/> 18. <lb/><emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000241"><emph type="center"/>PROP. X. THEOR. X.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000242">IN quouis parallelogrammo BD &longs;int deinceps diagona­<lb/><arrow.to.target n="marg53"/><lb/>les AGC, AHC, AIC, ALC, aliæque numerò infinitæ, <lb/>ita vt acta quælibet recta EF parallela BA <expan abbr="ãs">&longs;ecans</expan> ip&longs;as dia­<lb/>gonales in punctis G, L, H, I, &longs;it &longs;emper DA ad AF, vt CD, <lb/>aut EF ad FG; quadratum ex DA ad quadratum AF vt <lb/>EF ad FH; cubus ex DA ad cubum ex AF vt EF ad FI; <lb/>quadroquadratum ex DA ad quadroquadratum ex AF <lb/>vt EF ad FL; & &longs;ic continuò procedendo per infinitas ex <lb/>ordine pote&longs;tates: Stephanus de Angelis Author &longs;ubtilis, <lb/>ac celeberrimus, libro &longs;uo infin. parabolarum vocat trian­<lb/>gulum rectilineum ABC parabolam primam, BAHC &longs;e­<lb/>cundam; tertiam BAIC, quartam BALC, & ita in infini­<lb/>tum: His definitis docet ex Cauallerio parallelogrammum <lb/>BD ad quancunque dictarum parabolarum &longs;ibi in&longs;cripta­<lb/>rum e&longs;&longs;e vt numerus, vel exponens parabolæ vnitate au­<lb/>ctus ad ip&longs;um exponentem, &longs;iue numerum parabol&etail;, qua­<lb/>re ad primam habebit ip&longs;um parallelogrammum eandem <lb/>rationem, ac 2 ad 1; ad &longs;ecundam vt 3 ad 2; ad tertiam vt <lb/>4 ad 3, & ita deinceps de reliquis; itaque per conuer&longs;io­<lb/>nem rationis habebit ip&longs;um parallelogrammum ad exce&longs;­<lb/>&longs;um illius &longs;upra quancunque parabolarum dictarum, &longs;cili­<lb/>cet ad trilineum primum AGCD eandem rationem, quam <lb/>2 ad 1, ad &longs;ecundum quam 3 ad 1, & &longs;ic deinceps quam <lb/>numerus trilinei vnitate auctus ad ip&longs;am vnitatem. </s> <s id="s.000244">Sed <lb/>e&longs;t etiam admonendum verticem dictarum parabolarum <lb/>e&longs;&longs;e punctum A, & per con&longs;equens AB diametrum, & BC <lb/>ordinatim aplicatam, &longs;eu ba&longs;im. </s> </p> <pb pagenum="22" xlink:href="022/01/028.jpg"/> <p type="margin"> <s id="s.000245"><margin.target id="marg53"/><emph type="italics"/>Tab.<emph.end type="italics"/> 2. <emph type="italics"/>Fig.<emph.end type="italics"/> 9.</s> </p> <p type="main"> <s id="s.000246"><emph type="center"/>PROP. XI. THEOR. XI.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000247">II&longs;dem adhuc manentibus, idem de Angelis mon&longs;trat eo­<lb/>dem illo tractatu pr. <!-- REMOVE S-->3. &longs;i quæcunque ex dictis parabo­<lb/>lis &longs;ecta &longs;it qualibet recta parallela ba&longs;i BC, e&longs;&longs;e parabolam <lb/>ad re&longs;ectam portionem ver&longs;us verticem, vt pote&longs;tas ba&longs;is, <lb/>cuius exponens e&longs;t numerus parabolæ vnitate auctus ad <lb/>&longs;imilem pote&longs;tatem ex ba&longs;i re&longs;ectæ portionis; itaque i&ntail; <lb/>prima parabola e&longs;t vt quadratum ad quadratum, in &longs;ecun­<lb/>da vt cubus ad cubum, & &longs;ic de cæteris. </s> <s id="s.000248">Similiter &longs;i &longs;ece­<lb/>tur quodlibet ex infinitis trilineis linea GF ba&longs;i CD paral­<lb/>lela, erit trilineum ad &longs;uperius &longs;ui &longs;egmentum vt pote&longs;tas <lb/>ex DA, cuius exponens e&longs;t numerus trilinei vnitate auctus <lb/>ad &longs;imilem pote&longs;tatem ex AF. quare trilineum primu&mtail; <lb/>CAD ad GAF erit vt quadratum ex DA ad quadratum <lb/>ex FA, &longs;ecundum CHAD ad &longs;egmentum HAF vt cubus <lb/>ad cubum, & ita in cæteris eodem ordine. </s> </p> <p type="main"> <s id="s.000249"><emph type="center"/>PROP. XII. THEOR. XII.<emph.end type="center"/><lb/><arrow.to.target n="marg54"/><!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000250"><margin.target id="marg54"/><emph type="italics"/>Tab.<emph.end type="italics"/> 3. <emph type="italics"/>fig.<emph.end type="italics"/> 1.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000251">SIt modò ACD angulus rectus, & linea FE talis naturæ, <lb/>vt deductis ad libitum rectis AF, BE parallelis ip&longs;i <lb/>CD, pote&longs;tas ex CA ad &longs;imilem pote&longs;tatem ex CB &longs;it reci­<lb/>procè vt alia quædam pote&longs;tas ex BE ad &longs;imilem huic po­<lb/>te&longs;tatem ex AF; patet rectas CA, CD nondum iungi cum <lb/>EF, quamuis in immen&longs;um vnà producerentur. </s> <s id="s.000252">Ab hoc <lb/>proprietate VValli&longs;ius & Fermatius &longs;ubtili&longs;&longs;imi authores <lb/>vocauerunt curuam FE nouam hyperbolam, & eius a&longs;­<lb/>&longs;ymptotos AC, CD. </s> <s id="s.000253">Omnes huiu&longs;modi hyperbolæ, quæ <lb/>infinitæ numero &longs;unt, terminantur ad vnam partem ma­<lb/>gnitudine, cum hyperbola <expan abbr="cõmunis">communis</expan>, &longs;eu Apolloniaca &longs;it in <lb/>vtranque partem magnitudine infinita. </s> <s id="s.000254">Quod ergo exi­<lb/>mium e&longs;t, o&longs;tenderunt ip&longs;i authores rectangulum FA i&ntail; <pb pagenum="23" xlink:href="022/01/029.jpg"/>AC ad &longs;patium hyperbolicum quà finitum e&longs;t, licèt &longs;inè <lb/>fine longum, eandem habere rationem, quam differentia <lb/>exponentium pote&longs;tatum hyperbolæ ad exponentem po­<lb/>te&longs;tatis minoris. </s> <s id="s.000255">Quare &longs;i in hyperbola &longs;it vt cubus CB <lb/>ad cubum CA ita quadratum AF ad quadratum BE, erit <lb/>prædictum rectangulum CA in AF dimidium Spatij &longs;inè <lb/>fine producti A & FA; at &longs;i quadratum CB ad quadratum <lb/>CA &longs;it vt recta AF ad rectam BE, rectangulum ip&longs;um CA <lb/>in AF æquale erit &longs;patio A & FA, quòd &longs;i pote&longs;tas CA vel <lb/>CB non fuerit altior pote&longs;tate ex BE, vel AF, tunc ip&longs;um <lb/>illud &longs;patium, infinitum quoque erit magnitudine, etenim <lb/>nullus exce&longs;&longs;us exponentis prædictæ pote&longs;tatis ex CA &longs;u­<lb/>pra exponentem pote&longs;tatis BE, habet ad numerum expo­<lb/>nentis pote&longs;tatis BE rationem infinitam. </s> </p> <p type="main"> <s id="s.000256"><emph type="center"/>DEMONSTRATIO.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000257">SVpradictum propo&longs;itum habetur in commercio epi­<lb/>&longs;tolico Ioannis Valli&longs;ij Epi&longs;tola quarta, quem libellum <lb/>vnà cum alijs docti&longs;&longs;imis &longs;uis operibus Vincentius Viuia­<lb/>nus ingens æui no&longs;tri Geometra, antequam &longs;umma cu&mtail; <lb/>humanitate mi&longs;i&longs;&longs;et, eidem ip&longs;i quadraturam vnius ex di­<lb/>ctis hyperbolis ex no&longs;tris principijs deductam, ac excogi­<lb/>tatam, indicauimus. </s> <s id="s.000258">Cum verò po&longs;tea nobis eueni&longs;&longs;et <lb/>vniuer&longs;aliorem ad alias hyperbolas (&longs;emper communi ex­<lb/>cepta) accomodatam reperij&longs;&longs;e, huc debemus afferre, pri­<lb/>mùm vt quendam fructum &longs;cientiæ huius; deinde cum di­<lb/>ctorum authorum ip&longs;am propo&longs;itionis demon&longs;trationem <lb/>non habuerimus, & demum quia ip&longs;arum hyperbolarum <lb/>men&longs;ura, ac quadratura in aquarum rationibus erunt po­<lb/>ti&longs;&longs;imum ex v&longs;u. </s> <s id="s.000259">Sit igitur BC vna ex infinitis hyperbolis, <arrow.to.target n="marg55"/><lb/>quarum a&longs;&longs;ymptoti AE, EL; Sint etiam quæcunque apli­<lb/>catæ AB, DC a&longs;symptoto EL æquidi&longs;tantes, & habeat <lb/>DE ad EA eandem rationem v. <!-- REMOVE S-->g. <!-- KEEP S--></s> <s id="s.000261">quam cubus ex AB ad <pb pagenum="24" xlink:href="022/01/030.jpg"/><arrow.to.target n="marg56"/><lb/>cubum DC. </s> <s id="s.000262">Patet &longs;i proponeretur illi auuer&longs;a figur&atail; <lb/><arrow.to.target n="marg57"/><lb/>FGK, e&longs;&longs;etque AE ad DE vt figura GFK ad figuram IHK <lb/>e&longs;&longs;e etiam FG ad IH vt DC ad AB, e&longs;t autem cubus ex <lb/>DC ad cubum ex AB vt AE ad ED; ergo etiam figur&atail; <lb/>FGK ad IHK (&longs;unt enim FG, IH parallel&etail;) habebit ean­<lb/>dem rationem, ac cubus ex FG ad cubum ex IH: Itaqu&etail; <lb/>GFK erit comunis parabola, hoc e&longs;t quadratica, &longs;eu <expan abbr="&longs;ecũ-">&longs;ecun­<lb/></expan><arrow.to.target n="marg58"/><lb/>da in &longs;erie infinitarum parabolarum, & ob id eadem GFK <lb/><arrow.to.target n="marg59"/><lb/>parabola ad rectangulum GF in FK erit vt 2 ad 3, in qua <lb/>ratione &longs;e habebit quoque rectangulum BA in AE ad &longs;pa­<lb/>tium infinitè longum & BM, et erit vt 2 ad 1; &longs;cilicet vt ex­<lb/>ce&longs;&longs;us exponentis maioris pote&longs;tatis, quæ cubica e&longs;t, &longs;uper <lb/>numerum exponentis, qui hoc ca&longs;u e&longs;t tantùm vnitas ra­<lb/>dicis, e&longs;t ad hunc ip&longs;um exponentem, &longs;eu vnitatem lineæ <lb/>indicantem, quod concordat cum propo&longs;ita dictoru&mtail; <lb/>authorum. </s> </p> <p type="margin"> <s id="s.000263"><margin.target id="marg55"/><emph type="italics"/>Tab.<emph.end type="italics"/> 3. <emph type="italics"/>Fig.<emph.end type="italics"/> 3.<!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000264"><margin.target id="marg56"/><emph type="italics"/>Tab.<emph.end type="italics"/> 3. <emph type="italics"/>fig<emph.end type="italics"/> 2.<!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000265"><margin.target id="marg57"/><emph type="italics"/>Def.<emph.end type="italics"/> 8. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000266"><margin.target id="marg58"/><emph type="italics"/>Pr.<emph.end type="italics"/> 10. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000267"><margin.target id="marg59"/><emph type="italics"/>Pr.<emph.end type="italics"/> 9. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000268"><emph type="center"/><emph type="italics"/>Exemplum aliud.<emph.end type="italics"/><emph.end type="center"/><lb/><arrow.to.target n="marg60"/></s> </p> <p type="margin"> <s id="s.000269"><margin.target id="marg60"/><emph type="italics"/>In eadem fi­<lb/>guræ.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000270">SIt etiam cubus ex DE ad cubum ex AE, &longs;icut quadra­<lb/>to quadratum AB ad quadroquadratum DC, & rur­<lb/>&longs;us propo&longs;ita GKF auer&longs;a huius hyperbolæ: patet &longs;i &longs;it AE <lb/>ad DE vt figura GFK ad figuram IKH, e&longs;&longs;e etiam FG ad </s> </p> <p type="main"> <s id="s.000271"><arrow.to.target n="marg61"/><lb/>IH vt DC ad AB; cumque &longs;it cubus ex AE ad cubum ex <lb/>DE &longs;icut quadroquadratum ex DC ad <expan abbr="quadroquadratũ">quadroquadratum</expan> <lb/>ex AB, erit etiam quadroquadratum ex FG ad quadro­<lb/>quadratum ex IH, vt cubus ex AE ad cubum ex DE; &longs;i <lb/>igitur intelligatur quædam ratio, quæ &longs;it &longs;ubduodecupla <lb/>tam rationis quadroquadratorum quàm huic &longs;imilis cu­<lb/>borum prædictorum, erit porrò FG ad IH triplicata, & <lb/>AE ad ED quadruplicata eiu&longs;dem dictæ &longs;ubduodecuplæ; <lb/>quamobrem etiam ratio figuræ GFK ad <expan abbr="figurã">figuram</expan> IHK, quæ <lb/>e&longs;&longs;e debet vt AE ad ED, erit quadruplicata eiu&longs;dem &longs;ub­<lb/>duodecuplæ: & ideò &longs;i ponamus IK ad KI in ratione <pb pagenum="25" xlink:href="022/01/031.jpg"/>eiu&longs;dem &longs;ubduodecuplæ, erit figura GFK illius naturæ, vt <lb/><arrow.to.target n="marg62"/><lb/>&longs;it &longs;emper cubus ex FK ad cubum ex KI &longs;icut GF ad IH, & <lb/>hoc modo eadem illa figura erit trilineum tertium, &longs;eu cu­<lb/>bicum, ex quo ergo &longs;equitur, GFK ad HIK &longs;it in eadem ra­<lb/>tione, in qua quadroquadratum ex FK ad quadroqua­<lb/>dratum ex KI, hoc e&longs;t &longs;it vt AE ad ED; &longs;equiturque etiam <lb/><arrow.to.target n="marg63"/><lb/>ob hoc figuram GFK &longs;ubquadruplam e&longs;le circum&longs;cripti <lb/>rectanguli GF in FK; e&longs;t autem vt trilineum GFK ad <expan abbr="rectã-">rectan­<lb/></expan><arrow.to.target n="marg64"/><lb/>gulum GF in FK circum&longs;criptum, &longs;ic rectangulum ABME <lb/>ad auuer&longs;am eidem trilineo figuram AB & EA, ergo re­<lb/>ctangulum ABME &longs;ubquadruplum erit eiu&longs;dem figuræ <lb/>AB & EA longitudinis infinitæ, quare ip&longs;um rectangulum <lb/>erit &longs;ubtriplum portionis & BM & longitudinis pariter im­<lb/>men&longs;æ. </s> <s id="s.000272">Cum ita &longs;it, con&longs;tat exemplo hoc quoque, <expan abbr="eand&etilde;">eandem</expan> <lb/>illam rationem e&longs;&longs;e exce&longs;&longs;um maioris exponentis &longs;upr&atail; <lb/>minorem exponentem ad hoc ip&longs;um, dictarum <expan abbr="pote&longs;tatũ">pote&longs;tatum</expan> <lb/>hyperbolæ. </s> </p> <p type="margin"> <s id="s.000273"><margin.target id="marg61"/><emph type="italics"/>Def.<emph.end type="italics"/> 8. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000274"><margin.target id="marg62"/><emph type="italics"/>Pr.<emph.end type="italics"/> 10. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000275"><margin.target id="marg63"/><emph type="italics"/>Pr.<emph.end type="italics"/> 10. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000276"><margin.target id="marg64"/><emph type="italics"/>Pr.<emph.end type="italics"/> 9. <emph type="italics"/>huius<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000277"><emph type="center"/>PROP. XIII. THEOR. XIII.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000278">SVperior demon&longs;tratio effecta fui&longs;&longs;et ampli&longs;&longs;ima, &longs;i pr&etail;­<lb/>ponere volui&longs;&longs;emus <expan abbr="quadraturã">quadraturam</expan> vt datam omnis ge­<lb/>neris parabolarum, & trilineorum, verùm cum i&longs;ta pars <expan abbr="nõ">non</expan> <lb/>&longs;it plenè tradita, vt videre e&longs;t quinto libro infinitarum pa­<lb/>rabolarum eiu&longs;dem de Angelis, &longs;atius ideo duximus qua­<lb/>draturam hyperbolarum à VVali&longs;io, & Fermatio acuti&longs;&longs;i­<lb/>mis illis viris propo&longs;itam omnino veram admittere, vt indè <lb/>eam parabolarum & trilineorum vniuer&longs;alem, quam adhuc <lb/>ab alijs non habemus, facillimè, compendiosèque depro­<lb/>meremus. </s> <s id="s.000279">Hanc igitur ita proponimus vt &longs;ubinde o&longs;ten­<lb/>damus. </s> </p> <p type="main"> <s id="s.000280">Si &longs;imiles pote&longs;tates applicatarum fuerint in eadem ra­<lb/>tione, ac &longs;unt inter&longs;e pote&longs;tates quædam aliæ, & eiu&longs;dem <lb/>gradus diametrorum ab ip&longs;is applicatis ab&longs;ci&longs;&longs;arum v&longs;que <pb pagenum="26" xlink:href="022/01/032.jpg"/>ad verticem parabolarum, vel trilineorum; erit rectangu­<lb/>lum ad parabolam &longs;ibi in&longs;criptam vt aggregatum <expan abbr="expon&etilde;-tium">exponen­<lb/>tium</expan> vtriu&longs;que pote&longs;tatis ad exponentem altioris ip&longs;arum <lb/>pote&longs;tatum parabolæ; & ad trilineum vt aggregatum ex­<lb/>ponentium pote&longs;tatum trilinei ad exponentem inferioris <lb/>pote&longs;tatis eiu&longs;demmet trilinei. </s> <s id="s.000281">Sic enim in expo&longs;ita figu­<lb/>ra prædicta, &longs;i e&longs;&longs;et quadratum ex FG ad quadratum ex <lb/>IH, &longs;icut cubus ex FK ad cubum ex IH, e&longs;&longs;et rectangulum <lb/>GF in FK ad figuram GFK (quæ tunc foret trilineum, vt <lb/>5 ad 2; nam vbi pote&longs;tas ab&longs;ci&longs;&longs;arum maior e&longs;t illa applica. <lb/></s> <s id="s.000282">tarum e&longs;t &longs;emper GF trilineum. </s> <s id="s.000283">Simili modo, &longs;i &longs;it vt qua­<lb/>dratum ex FK ad quadratum ex KI ita cubocubus ex FG <lb/>ad cubocubum ex IH; hoc e&longs;t &longs;i &longs;it cubus ex FG ad <expan abbr="cubũ">cubum</expan> <lb/>ex IH, vt linea FK ad KI (tolluntur enim vtrinque ex &longs;imi­<lb/>libus &longs;imiles rationes) erit &longs;igura GFK parabola, ad quam <lb/>&longs;ibi circum&longs;criptum rectangulum eandem habebit <expan abbr="ration&etilde;">rationem</expan>, <lb/>quam 4 ad 3, & &longs;ic dicendum erit de omnibus alijs para­<lb/>bolis atque trilineis. </s> </p> <p type="main"> <s id="s.000284"><emph type="center"/>DEMONSTRATIO.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000285">VErùm vt propo&longs;itum o&longs;tendamus, e&longs;to quælibet ex <lb/>parabolis GFK, nimirum quadratocubus ex FG ad <lb/>quadratocubum ex IH habeat eandem rationem, qua&mtail; <lb/>cubus ex FK ad cubum ex IK. Demon&longs;tro, rectangulum <lb/>GF in FK habere eandem rationem ad parabolam GFK, <lb/>quam aggregatum exponentium 8 ad maiorem exponen­<lb/>tem 5. Primùm, quam rationem habet rectangulum GF in <lb/>FK ad parabolam GFK, eandem habebit rectangulum HI <lb/>in IK ad parabolam HIK (hoc enim demon&longs;trabimus in­<lb/>frà) permutandoque, erit rectangulum GF in FK ad re­<lb/>ctangulum HI in IK, vt parabola GFK ad parabolam HIK; <lb/>componuntur verò illa rectangula ex rationibus GF ad <lb/>IH, & FK ad IK, ergo etiam parabola ad parabolam com-<pb pagenum="27" xlink:href="022/01/033.jpg"/>ponetur ex ij&longs;dem rationibus; & quoniam ductis inuicem <lb/>exponentibus po&longs;&longs;unt con&longs;iderari quindecim rationes in­<lb/>ter &longs;e &longs;imiles, ex quibus con&longs;tet tam ratio dictorum cubo­<lb/>rum, quàm huic &longs;imilis altera quadratocuborum, & tunc <lb/>GF ad IH erit triplicata, et FK ad KI quintuplicata <expan abbr="eiu&longs;d&etilde;">eiu&longs;dem</expan> <lb/>&longs;ubquindecuplæ rationis, quæ &longs;it A ad B; ergo &longs;imul ad­<lb/>ditis ij&longs;dem rationibus, quintuplicata &longs;cilicet, & triplicata <lb/>exiliet ratio octuplicata ip&longs;ius A ad B; proptereaque pa­<lb/>rabola GFK ad HIK, &longs;eu &longs;i con&longs;ideremus figuram & BAEL <lb/>auuer&longs;am parabolæ GFK, ita vt AE ad ED &longs;it vt para­<lb/><arrow.to.target n="marg65"/><lb/>bola GFK ad <expan abbr="parabolã">parabolam</expan> HIK; AE ad ED erit pariter octu­<lb/>plicata eiu&longs;dem A ad B; & cum &longs;it ob naturam <expan abbr="auuer&longs;arũ">auuer&longs;arum</expan> <lb/>FG ad HI vt DC ad AB; erit DC ad AB triplicata <expan abbr="eiu&longs;d&etilde;">eiu&longs;dem</expan> <lb/>rationis A ad B, qnare vt cubus AE ad cubum DE, it&atail; <lb/>quadratocubocubus DC ad quadratocubocubum ex <lb/>AB: rectangulum igitur ABME ad &longs;patium hyperbolicum <lb/>infin<gap/> è longum & BM & erit vt quinque ad tria, & ad vni­<lb/><arrow.to.target n="marg66"/><lb/>uer&longs;um &longs;patium & BAE & vt 5 ad 8, in qua nempe ratio­<lb/>ne debet e&longs;&longs;e parabola GF<emph type="italics"/>K<emph.end type="italics"/> ad rectangulum GF in FK. <lb/><arrow.to.target n="marg67"/><lb/>Quod &c. <!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000286"><margin.target id="marg65"/><emph type="italics"/>Def.<emph.end type="italics"/> 8. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000287"><margin.target id="marg66"/><emph type="italics"/>Pr.<emph.end type="italics"/> 12 <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000288"><margin.target id="marg67"/><emph type="italics"/>Pr.<emph.end type="italics"/> 9. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000289"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000290"><emph type="italics"/>Con&longs;tat &longs;i fuerit ratio A ad B eò &longs;ubmultiplicata rationis <lb/>applicatarum, quoties e&longs;t numerus exponentis pote&longs;tatis ab­<lb/>&longs;ci&longs;&longs;arum eiu&longs;dem parabolæ, e&longs;&longs;e ip&longs;am parabolam ad &longs;ui por­<lb/>tionem in tam multiplicata ratione A ad B, ac e&longs;t numerus <lb/>aggregati exponentium ambarum pote&longs;tatum parabola. </s> <s id="s.000291">Nam <lb/>cum e&longs;&longs;et quadratocubus ex FG ad quadratocubum ex IH, &longs;i­<lb/>cut cubus ex FK ad cubum ex IK, propo&longs;ita in&longs;uper e&longs;&longs;et A ad <lb/>B. &longs;ubquindecupla alterius dictarum &longs;imilium rationum ex <lb/>pote&longs;t atibus parabola, o&longs;ten&longs;um fuit rationem A ad B &longs;ubtri­<lb/>plicatam ip&longs;ius GF ad IH, & &longs;ubquintuplicatam alterius FK <lb/>ad KI, & tandem o&longs;tendimus parabolam GFK ad portionem <emph.end type="italics"/><pb pagenum="28" xlink:href="022/01/034.jpg"/><emph type="italics"/>eius HIK eße in octuplicata ratione eiu&longs;dem A ad B; quod <lb/>idem omnino diceretur &longs;i figura GFK trilineum e&longs;&longs;et. </s> <s id="s.000292">Ratio <lb/>autem A ad B dicetur impo&longs;terum logarithmica pote&longs;tatum <lb/>parabolæ, &longs;eu trilinei, aut hyperbolæ.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000293"><emph type="center"/>ASSVMPTVM.<emph.end type="center"/></s> </p> <p type="main"> <s id="s.000294">REliquum e&longs;t vt o&longs;tendamus, parabolam GFK ad <lb/>portionem HIK e&longs;&longs;e vt rectangulum GF ad rectan­<lb/>gulum HI in IK, &longs;cilicet e&longs;&longs;e in ratione compo&longs;ita ba&longs;ium, <lb/>& altitudinum parabolarum, quod nempe &longs;ic o&longs;tendetur, <lb/>Sit vt &longs;upra FGK parabola, eiu&longs;que portio IHK; exi&longs;tenti­<lb/>bus verò applicatis FG, IH, fiat EG ad IE vt FK ad KI, &longs;it­<lb/><arrow.to.target n="marg68"/><lb/>que IE ba&longs;is, et K vertex parabol&etail; IEK &longs;imilis ip&longs;i GFK pa­<lb/>tet propter &longs;imilitudinem figurarum, e&longs;&longs;e parabolam GFK <lb/>ad parabolam IEK in eadem duplicata ratione FG ad IE, <lb/>in qua nempe e&longs;t rectangulum GF in FK ad &longs;ibi &longs;imile re­<lb/>ctangulum EI in IK, ob idque rectangulum GF in FK ad <lb/>rectangulum EI in IK, cum &longs;int inter&longs;e vt parabola GFK ad <lb/>parabolam EIK, hæc verò parabola ad ip&longs;am IHK habeat <lb/>eandem rationem, ac IE ad IH; &longs;eu ob eandem altitudinem <lb/>IK vt rectangulum EI in IK ad rectangulum HI in IK, erit <lb/>ex æquali parabola GFK ad parabolam HIK vt rectangu­<lb/>lum GF in FK ad rectangulum HI in IK. <!-- KEEP S--></s> <s id="s.000295">Quod &c. <!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000296"><margin.target id="marg68"/><emph type="italics"/>Tab.<emph.end type="italics"/> 3. <emph type="italics"/>Fig.<emph.end type="italics"/> 2.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000297"><emph type="center"/>PROP. XIV. THEOR. XIV.<emph.end type="center"/><lb/><arrow.to.target n="marg69"/><!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000298"><margin.target id="marg69"/><emph type="italics"/>Tab.<emph.end type="italics"/> 2. <emph type="italics"/>fig.<emph.end type="italics"/> 3.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000299">IN quacunque hyperbola (excepta &longs;emper conica) cu­<lb/>ius a&longs;&longs;ymptoti EA, EM, &longs;i &longs;it pote&longs;tas applicatarum DC <lb/>AB altior pote&longs;tate ab&longs;ci&longs;&longs;arum AE, ED (&longs;ic enim finit&atail; <lb/>erit magnitudine &longs;ecundum eam a&longs;&longs;ymptoton, quæ appli­<lb/>catis parallela e&longs;t) &longs;patium ip&longs;um hyperbolæ & BAE & <lb/>ad &longs;ui portionem & CDE & habebit eandem rationem, ac <lb/>rectangulum BAE ad rectangulum CDE, &longs;eu (a&longs;&longs;umpta <pb pagenum="29" xlink:href="022/01/035.jpg"/>ratione logarithmica A ad B pote&longs;tatum hyperbolæ) <expan abbr="quã">quam</expan> <lb/>pote&longs;tas ex A, cuius exponens e&longs;t differentia <expan abbr="exponentiũ">exponentium</expan> <lb/>pote&longs;tatum hyperbolæ ad &longs;imilem pote&longs;tatem ex B. <!-- KEEP S--></s> </p> <p type="main"> <s id="s.000300"><emph type="center"/>DEMONSTRATIO.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000301">QVam rationem habet rectangulum BAE ad &longs;patium <lb/>& BAE &, eandem habet rectangulum CDE ad </s> </p> <p type="main"> <s id="s.000302"><arrow.to.target n="marg70"/><lb/>&longs;patium & CDE, & permutando erit rectangu­<lb/>lum BAE ad CDE, &longs;icut &longs;patium & BAE & ad &longs;patiu&mtail; <lb/>& CDE &; &longs;i igitur in eadem propo&longs;ita hyperbola &longs;it po­<lb/>te&longs;tas applicatarum DC, AB quintuplicata ip&longs;ius A ad B, <lb/>& AE ad ED &longs;eptuplicata &longs;it eiu&longs;dem; erit &longs;eptuplicat&atail; <lb/>applicatarum in eadem ratione, ac quintuplicata ab&longs;ci&longs;&longs;a­<lb/>rum; &longs;cilicet quadratoquadratocubus ex DC ad &longs;imilem <lb/>pote&longs;tatem ex AB erit vt quadratocubus ex AE ad qua­<lb/>dratocubum ex DE, eritque &longs;ic maior pote&longs;tas applicata­<lb/>rum, atque adeo componetur rectangulum EAB ad EDC <lb/>ex &longs;eptuplicata ip&longs;ius A ad B, qualis e&longs;t AE ad ED, & &longs;ub­<lb/>quintuplicata eiu&longs;dem A ad B, quæ e&longs;t AB ad DC; nimi­<lb/>rùm erit rectangulum EAB ad EDC in duplicata tantum <lb/>ratione ip&longs;ius A ad B: quare &longs;patium & BAE & ad id <lb/>& CDE &, quæ &longs;unt inter &longs;e, vt ip&longs;a rectangula, erit vt po­<lb/>te&longs;tas ex A, cuius exponens e&longs;t differentia exponentium & <lb/>S pote&longs;tatum hyperbolæ ad &longs;imilem pote&longs;tatem ex B. <lb/><!-- KEEP S--></s> <s id="s.000303">Quod &c. <!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000304"><margin.target id="marg70"/><emph type="italics"/>Pr.<emph.end type="italics"/> 12. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000305"><emph type="center"/>PROP. XV. THEOR. XV.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000306">SI ab exponente pote&longs;tatis applicatarum hyperbol&etail; de­<lb/>trahatur exponens minoris pote&longs;tatis ab&longs;ci&longs;&longs;arum, po­<lb/>te&longs;tas reliqui exponetis erit applicatarum auuer&longs;æ figuræ, <lb/>in ab&longs;ci&longs;&longs;is verò ade&longs;t vtrobique eadem pote&longs;tas. </s> <s id="s.000307">Itaque <lb/>cum in &longs;uperiori hyperbola re&longs;idui exponentis pote&longs;tas <pb pagenum="30" xlink:href="022/01/036.jpg"/>quadratum e&longs;&longs;et, porrò in eius auuer&longs;a e&longs;&longs;et pote&longs;tas appli­<lb/>catarum quadratica, & ab&longs;ci&longs;&longs;arum quadratocubica. </s> </p> <p type="main"> <s id="s.000308"><emph type="center"/>DEMONSTRATIO.<emph.end type="center"/><lb/><arrow.to.target n="marg71"/><!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000309"><margin.target id="marg71"/><emph type="italics"/>Tab.<emph.end type="italics"/> 3. <emph type="italics"/>Fig.<emph.end type="italics"/> 3.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000310">ESto rur&longs;us hyperbola & BAE &, et &longs;icut dictum e&longs;t <lb/>AE ad ED &longs;it in &longs;eptuplicata ratione logarithmicæ <lb/>rationis A ad B, at DC ad AB in quintuplicata, videlicet <lb/>quadratocubus ex AE ad quadratocubum ex DE eandem <lb/>habeat rationem, ac quadratoquadratocubus ex DC ad <lb/>&longs;imilem pote&longs;tatem ex AB; Dico in auuer&longs;a figura pote&longs;ta­<lb/>tem aplicatarum e&longs;&longs;e quadratum, cuius <expan abbr="expon&etilde;s">exponens</expan> 2 e&longs;t dif­<lb/>ferentia exponentium pote&longs;tatum hyperbolæ; pote&longs;tatem <lb/>verò ab&longs;ci&longs;&longs;arum eandem e&longs;&longs;e, ab&longs;ci&longs;&longs;arum eiu&longs;dem hyper­<lb/>bolæ. </s> <s id="s.000311">Sit vt &longs;upra FK ad KI vt hyperbola & BAE & ad <lb/>& CDE &, hoc e&longs;t, &longs;it vt pote&longs;tas ex A, cuius exponens </s> </p> <p type="main"> <s id="s.000312"><arrow.to.target n="marg72"/><lb/>e&longs;t differentia exponentium pote&longs;tatum hyperbolæ ad &longs;i­<lb/>milem pote&longs;tatem ex B, & ideo FK ad KI erit duplicata ip­<lb/>&longs;ius A ad B, &longs;ed DC ad AB eiu&longs;dem illius logarithmicæ <lb/>quintuplicata; e&longs;tque in hac eadem ratione etiam GF ad <lb/>IH; ergo cum duplicata huius &longs;it &longs;imilis quintuplicatæ KF <lb/>ad KI (nam vtraque ratio continet decies A ad B) pater, <lb/>quadratum ex FG ad quadratum ex IH e&longs;&longs;e eam pote&longs;ta­<lb/>tem, quam propo&longs;uimus euenire in applicatis auuer&longs;æ, cum <lb/>aliàs in ab&longs;ci&longs;&longs;is &longs;it vtrobique pote&longs;tas eadem, nempe qua­<lb/>dratocubi. </s> <s id="s.000313">Quod &c. <!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000314"><margin.target id="marg72"/><emph type="italics"/>Pr.<emph.end type="italics"/> 14. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000315"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000316"><emph type="italics"/>Patet ex noto trilineo, vel parabola FGK e&longs;&longs;e in auuer&longs;a, <lb/>&longs;cilicet in hyperbola & BAE & (quæ tunc e&longs;t &longs;emper magnitu­<lb/>dine finita iuxta a&longs;symptoton EM &) pote&longs;tatem <expan abbr="applicatarũ">applicatarum</expan>, <lb/>qua pro exponente habet &longs;ummam exponentium pote&longs;tatum <lb/>parabolæ, aut trilinei; nam cum eßet in trilineo pracedenti<emph.end type="italics"/><pb pagenum="31" xlink:href="022/01/037.jpg"/><emph type="italics"/>quadratum ex FG ad quadratum ex IH vt quadratocubus <lb/>ex FK ad quadratocubum ex IK, fuit equidem in hyperbol&atail; <lb/>quadratoquadratocubus ex DC<gap/> quadratoquadratocubum <lb/>ex AB &longs;icut quadratocubus ex AE ad &longs;imilem pote&longs;tatem ex <lb/>DE, &longs;cilicet inuariata pote&longs;tate ab&longs;er&longs;arum in ambabus au­<lb/>uer&longs;is. </s> <s id="s.000317">Quare ex pote&longs;tatibus notis vnius auuer&longs;arum fa­<lb/>cilè inote&longs;cent pote&longs;tates alterius, atque etiam illius magnitu­<lb/>do. </s> <s id="s.000318">Nunc redeamus ad motus, nouamque adhuc methodum, <lb/>quam hoc loco re&longs;eruauimus, afferamus.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000319"><emph type="center"/>DEF. IX.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000320">SIt quædam Gene&longs;is ACBH, cuius imago temporis <lb/>& DCB &; item &longs;it FCBK gene&longs;is alterius motus ab <lb/><arrow.to.target n="marg73"/><lb/>eodem C in B; & actà rectà OIGE ip&longs;i AFCD parallel&atail;, <lb/>ponantur CD, GE loco minimorum temporum, ita vt <expan abbr="t&etilde;-pore">ten­<lb/>pore</expan> CD, dum mobile ex C affectum velocitate CA, <lb/>currat minimum &longs;patiolum indicatum per C, cui e&longs;t æqua­<lb/>le &longs;patiolum aliud indicatum per G, quodque tran&longs;igitur <lb/>tempore GE velocitate GD (nam vt e&longs;&longs;ent illa &longs;patia i&ntail; <lb/>C, G æqualia, effectum fuit vt velocitas AC ad GD ean­<lb/>dem reciprocè rationem haberet, ac tempus GE ad CD, <lb/>id quod patet ex natura gene&longs;is ACBH, & imaginis & <lb/>DCB &) et hic rur&longs;us notatu digni&longs;&longs;imum e&longs;t nulli errori <lb/>obnoxium e&longs;&longs;e, quòd æquabiles in illis minimis &longs;patiolis <lb/>intellexerimus motus, quamuis potius deberet videri, in <lb/>ij&longs;dem interuallis reperiri innumeras, ac inæquales veloci­<lb/>tates, queis nempe efficerentur motus inæquabiles, quòd <lb/>gene&longs;es inæquabiles &longs;int. </s> <s id="s.000321">Cur i&longs;ta &longs;e ita habeant, hic non <lb/>e&longs;t nobis di&longs;putandum, ego enim puto, non ex indiui&longs;ibili <lb/>velocitates alijs &longs;uccedere, &longs;ed reuera minutulum tempo­<lb/>ris con&longs;iderari debere antequam motus diuer&longs;imodè pro­<lb/>cedat, nempe ac &longs;i velocitas, quæ &longs;uccedere debet priori, <lb/>non ita &longs;it in promptu, aut non ita &longs;tatim mobile afficiat ad <pb pagenum="32" xlink:href="022/01/038.jpg"/>motum &longs;ibi proportionatum. </s> <s id="s.000322">Sed linquamus hæc alijs di&longs;­<lb/>putanda: &longs;atis nobis &longs;it, methodum no&longs;tram, quoad <expan abbr="no&longs;trũ">no&longs;trum</expan> <lb/>e&longs;t, demon&longs;trare. </s> <s id="s.000323">Ijs igitur vt &longs;upra propo&longs;itis, concipia­<lb/>tur adhuc tempore CD velocitate FC <expan abbr="&longs;patiũ">&longs;patium</expan> exigi quod­<lb/>dam, item aliud tempore EG, velocitateque GI, & &longs;ic per <lb/>omnes qua&longs;cunque applicatas: quæritur, quod &longs;patiu&mtail; <lb/>vltimò exactum e&longs;&longs;et, hoc e&longs;t quam rationem id haberet ad <lb/>illud alterum &longs;patium, quod eodem tempore tran&longs;igitur <lb/>iuxta gene&longs;im HACB, cuius imago temporis CD & B. <lb/><!-- KEEP S--></s> <s id="s.000324">I&longs;ti duo motus in exemplo e&longs;&longs;ent, &longs;i in quodam plano mo­<lb/>ueretur formica, dum ip&longs;um planum vna eius extremitate <lb/>immobili circumduceretur, Sic formica difficiliùs <expan abbr="a&longs;c&etilde;de-ret">a&longs;cende­<lb/>ret</expan> prout ip&longs;um planum magis ad horizontem erigeretur. <lb/></s> <s id="s.000325">Iam motus extremitatis plani circumactæ habet gene&longs;im <lb/>ACBH, cuius temporis imago & DCB &, et altera gene&longs;is <lb/>FCBK tribueretur motui formicæ, nam vt <expan abbr="dictũ">dictum</expan> e&longs;t varius <lb/>motus formicæ pendet ex latione plani, ideò velocitates <lb/>eiu&longs;dem (nam in plano immobili ponimus æquabiliter fer­<lb/>ri) durant ij&longs;dem temporibus, quibus velocitates præcipuæ <lb/>gene&longs;is ACBH. <!-- KEEP S--></s> <s id="s.000326">Sit denique LMSR imago velocitatum <lb/>iuxta gene&longs;im ACBH, cuius temporis imago CD & B; pa­<lb/>tet &longs;i &longs;it MP ad PS &longs;icut imago temporis CDEG ad ima­<lb/>ginem & BGE &, fore LM ad PQ vt AC ad OG, & con­<lb/>cepta etiam figura MNOTS inter parallelas LMN, RST <lb/>ita vt &longs;it &longs;emper MN ad PO &longs;icut FC ad GI, nec non LM <lb/>ad MN vt AC ad FC. (&longs;unt enim initio motuum in C, aut <lb/>in&longs;tanti M, velocitates gene&longs;ium AC, CF, &longs;cilicet LM, MN; <lb/>& in G, hoc e&longs;t in&longs;tanti P &longs;unt velocitates OC, GI; nimi­<lb/>rum QP, PO) vocetur proinde gene&longs;is FCBK &longs;puria, ac <lb/>ad&longs;tricta imagini temporis & DCB &, cuius imago veloci­<lb/>tatum MNTS pariter &longs;puria, homogenea tamen ip&longs;i legiti­<lb/>mæ LMSR. <!-- KEEP S--></s> </p> <pb pagenum="33" xlink:href="022/01/039.jpg"/> <p type="margin"> <s id="s.000327"><margin.target id="marg73"/><emph type="italics"/>Tab.<emph.end type="italics"/> 3. <emph type="italics"/>fig.<emph.end type="italics"/> 4.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000328"><emph type="center"/>PROP. XVI. THEOR. XVI.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000329">SI &longs;int duo motus iuxta gene&longs;es legitimam, & &longs;puriam, <lb/>erunt mobilium exacta &longs;patia, vt imagines inter&longs;e <lb/>homogeneæ velocitatum, legitima ad &longs;puriam. </s> </p> <p type="main"> <s id="s.000330">E&longs;to gene&longs;is legitima ACBH, cuius imago temporis <lb/><arrow.to.target n="marg74"/><lb/>& DCA &, & imago velocitatum MLRS. </s> <s id="s.000331">Sit etiam gene­<lb/>&longs;is altera illi homogenea, &longs;ed &longs;puria, & ad&longs;tricta imagini <lb/>temporis & DCB &, cuius imago velocitatum &longs;puria, prio­<lb/>rique legitimæ homogenea NMST. Dico, &longs;patia iuxta has <lb/>imagines tran&longs;acta e&longs;&longs;e vt ip&longs;æ imagines legitima LMSR <lb/>ad &longs;puriam NMST. </s> <s id="s.000332">Cum temporis momenta M, P in­<lb/>telligantur ex minimis temporibus, quæ proponi po&longs;&longs;unt, <lb/>inter&longs;e æqualibus, & quibus æquabiliter perdurant ve­<lb/>locitates, quas mobile &longs;ortitur in aduentu &longs;uo in punctis <lb/>C, G, erit vt velocitas FC ad velocitatem GI &longs;ic inter&longs;e <lb/><arrow.to.target n="marg75"/><lb/>&longs;patia, quæ i&longs;tis velocitatibus, temporibu&longs;que illis æqua­<lb/>libus percurrerentur, in qua ratione e&longs;t etiam NM ad OP. <lb/></s> <s id="s.000333">Deinde momento M peragerentur &longs;patia proportionalia <lb/>velocitatibus FC, AC, &longs;eu rectis NM, ML, momento <lb/>autem P &longs;patia proportionalia velocitatibus GI, GD, <lb/>in qua ratione e&longs;t etiam OP ad PQ, & &longs;ic deinceps <lb/>procedendo per &longs;ingula temporis MR momenta, adeo <lb/>vt, cum &longs;patium velocitate FC exactum ad id veloci­<lb/>tate CA, &longs;it vt NM ad ML, &longs;patium velocitate IG ad id <lb/>exactum velocitate GD &longs;it vt OP ad PQ, & &longs;int præterea <lb/>primæ inter&longs;e, hoc e&longs;t &longs;patia velocitatibus FC, GI tran­<lb/>&longs;acta, proportionalia tertijs, &longs;patijs videlicet tran&longs;actis <lb/>velocitatibus ML, PQ ergo vt omnes primæ ad omnes <lb/>tertias quantitates, hoc e&longs;t omnia &longs;patia tran&longs;acta iuxta <lb/>gene&longs;im FCBK ad omnia &longs;patia iuxta gene&longs;im ACB, ita <lb/>erit &longs;umma &longs;ecundarum ad omnes quartas, &longs;cilicet i&longs;ta <lb/>erit imago NMST ad imaginem LMSR. <!-- KEEP S--></s> <s id="s.000334">Quod & c. <!-- KEEP S--></s> </p> <pb pagenum="34" xlink:href="022/01/040.jpg"/> <p type="margin"> <s id="s.000335"><margin.target id="marg74"/><emph type="italics"/>Tab.<emph.end type="italics"/> 3. <emph type="italics"/>Fig.<emph.end type="italics"/> 4.<!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000336"><margin.target id="marg75"/><emph type="italics"/>Pr.<emph.end type="italics"/> 3. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000337"><emph type="center"/>LIBER ALTER<emph.end type="center"/></s> </p> <p type="main"> <s id="s.000338"><emph type="center"/>DE<emph.end type="center"/></s> </p> <p type="main"> <s id="s.000339"><emph type="center"/>Motu Compo&longs;ito.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000340">MOtum appellamus compo&longs;itum, vbi dum fer­<lb/>tur mobile, con&longs;ideratur habere plures i&ntail; <lb/>diuer&longs;as partes, vel <expan abbr="etiã">etiam</expan> in eandem partem <lb/>conatus, ex quibus oriatur tertia vis di&longs;tin­<lb/>cta ab illis. </s> <s id="s.000341">Hunc librum, cum expleueri­<lb/>mus, non pauca vnà cum priori, dicta erunt de motu, erit­<lb/>que ea methodus, qua &longs;imul geometrica quædam, difficil­<lb/>lima &longs;citu &longs;atis breuiter o&longs;tendemus. </s> <s id="s.000342">Nam vibrationes <lb/>pendulorum exigi temporibus; quæ &longs;int in &longs;ubduplicat&atail; <lb/>ratione longitudinum eorundem, planè tandem con&longs;tabit <lb/>aliàs nobis di&longs;&longs;entientibus: aperiemus etiam, qua arte in­<lb/>telligi queant anguli rectilinei curuilineis æquales; nec non <lb/>exponemus parabolas quibu&longs;dam &longs;piralibus æquales, vt <lb/>e&longs;t vulgata &longs;pirali Archimedeæ, cùm videlicet ba&longs;is para­<lb/>bolæ radio circuli &longs;piralem continentis, & dimidium huius <lb/>circumferentiæ circuli altitudini eiu&longs;dem parabolæ, æqua­<lb/>les &longs;int. </s> </p> <p type="main"> <s id="s.000343"><emph type="center"/>PROP. I. THEOR. I.<emph.end type="center"/><lb/><arrow.to.target n="marg76"/><!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000344"><margin.target id="marg76"/><emph type="italics"/>Tab.<emph.end type="italics"/> 4. <emph type="italics"/>Fig.<emph.end type="italics"/> 1.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000345">SI in eadem recta linea currantur &longs;patia temporibus <lb/>æqualibus, & &longs;int motus &longs;implices, ac ad ea&longs;dem par­<lb/>tes tendentes, eadem illa &longs;patia &longs;imul motu compo&longs;ito, ab <lb/>eodemque mobili duabus illis gene&longs;ibus affecto, vnicoque <lb/>ex dictis temporibus æqualibus, excurrentur. </s> </p> <pb pagenum="35" xlink:href="022/01/041.jpg"/> <p type="main"> <s id="s.000346">Curratur LI iuxta imaginem velocitatum HAEF, et IO <lb/>iuxta aliam dictæ homogeneam BAED. </s> <s id="s.000347">Dico LO &longs;um­<lb/>mam dictorum &longs;patiorum LI, IO exactum iri vnico tem­<lb/>pore AE, &longs;i nempe mobile feratur <expan abbr="&longs;ecũdum">&longs;ecundum</expan> vtranque ima­<lb/>ginem. </s> </p> <p type="main"> <s id="s.000348">Per quodlibet punctum, &longs;eu temporis momentum M <lb/>agatur recta GMC parallela HB, vel FD. <!-- KEEP S--></s> <s id="s.000349">Habebit mobi­<lb/>le momento A, <expan abbr="dũ">dum</expan> &longs;cilicet mouetur motu compo&longs;ito duas <lb/>&longs;imul velocitates AH, AB, ide&longs;t vnicam HB. </s> <s id="s.000350">Similiter mo­<lb/>mento M habebit GC, & momento E ip&longs;am FD. <!-- KEEP S--></s> <s id="s.000351">Itaque </s> </p> <p type="main"> <s id="s.000352"><arrow.to.target n="marg77"/><lb/>erit HBDF imago velocitatum compo&longs;iti motus, qui fiet <lb/>tempore AE iuxta imaginem, quæ aggregatum e&longs;t <expan abbr="dictarũ">dictarum</expan> <lb/>HAEF, ABDE. <!-- KEEP S--></s> <s id="s.000353">E&longs;t verò LI ad IO vt imago HAEF ad <lb/>imaginem ABDE; ergo conuertendo, componendoqu&etail; <lb/>erit vt LI ad LO, &longs;ic imago HAEF ad imaginem HBDF; <lb/>propterea quemadmodum &longs;patium LI currebatur iuxt&atail; <lb/>imaginem HAEF, &longs;ic LO percurretur imagine HBDF &longs;olo, <lb/>eodemque tempore AE. <!-- KEEP S--></s> <s id="s.000354">Quod &c. <!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000355"><margin.target id="marg77"/><emph type="italics"/>Def.<emph.end type="italics"/> 3. <emph type="italics"/>prima.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000356"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000357"><emph type="italics"/>Hinc patet graue perpendiculariter, violenterque deiectum <lb/>minimè ad terram venturum aggregato virium, quarum vna <lb/>e&longs;t ab impellente impreßa, altera verò à grauitate <expan abbr="depend&etilde;s">dependens</expan>. <lb/></s> <s id="s.000358">Nam ex impartita vt celerior fit ca&longs;us, quam vt graue in de­<lb/>cur&longs;u &longs;uo po&longs;&longs;it ex acceleratione naturali eum gradum acqui­<lb/>rere, quem certè &longs;ponte &longs;ua tantùm de&longs;cendens in fine eiu&longs;dem <lb/>altitudinis adeptum e&longs;&longs;et. </s> <s id="s.000359">Hoc ita verum e&longs;t, vt aliquando <lb/>minimum inter&longs;it, inter impetum ab ambabus cau&longs;is proue­<lb/>nientem, & eum, qui a &longs;ola oritur grauitate, quamobrem pa­<lb/>rum is proficeret, qui conaretur maiorem impetum componere <lb/>in ca&longs;u grauis, illi nempe adiecta vi, mobile idem in decur&longs;u <lb/>impellente, vltra natiuam grauitatem, quod tamen fieri haud <lb/>dubiè po&longs;&longs;et, &longs;i ca&longs;us obliquus eßet.<emph.end type="italics"/></s> </p> <pb pagenum="36" xlink:href="022/01/042.jpg"/> <p type="main"> <s id="s.000360"><emph type="italics"/>Illud quoque hac occa&longs;ione aperiendum e&longs;t, graue naturali­<lb/>ter de&longs;cendens eò concitatiùs ferri, quoad potentia re&longs;i&longs;tentis <lb/>aeris (validior namque i&longs;ta fit, vbi mobilis ca&longs;us e&longs;t celerior) <lb/>vi grauitatis mobili inhærenti exaquatur, tunc enim cau&longs;&atail; <lb/>vlterioris accelerationis adempta e&longs;t, con&longs;umiturque in lucta­<lb/>tione aeris contranitentis: quare tunc grane progrederetur <lb/>æquabili motu, id quòd citiùs euenire deberet &longs;i grane intr&atail; <lb/>aquam de&longs;cendat.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000361"><emph type="center"/>PROP. II. THEOR. II.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000362">SI in eadem recta duos motus &longs;ibi contrarios, &longs;implices, <lb/>ac eodem tempore peractos intelligamus, mobile di­<lb/>ferentiam illorum &longs;patiorum, &longs;i vtroque motu e&longs;&longs;et affe­<lb/>ctum, percurreret. <lb/><arrow.to.target n="marg78"/></s> </p> <p type="margin"> <s id="s.000363"><margin.target id="marg78"/><emph type="italics"/>Tab.<emph.end type="italics"/> 4. <emph type="italics"/>Fig.<emph.end type="italics"/> 2.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000364">Curratur à puncto L &longs;patium LO imagine velocitatum <lb/>ABFG, & codem tempore curratur etiam recta OM ex <lb/>puncto altero O, &longs;cilicet contrario motu, & iuxta <expan abbr="imagin&etilde;">imaginem</expan> <lb/>AHIG prædict&etail; homogeneam. </s> <s id="s.000365">Dico mobile, <expan abbr="cõpo&longs;ito">compo&longs;ito</expan> ex <lb/>vtri&longs;que motu, & tempore ip&longs;o AG cur&longs;urum differentiam <lb/>LM dictorum &longs;patiorum LO, OM. </s> </p> <p type="main"> <s id="s.000366">Primùm intra parallelas AB, GF non &longs;e &longs;ecent lineæ <arrow.to.target n="marg79"/><lb/>BF, HI, & ducatur quælibet DC æquidi&longs;tans AB, vel GF, <lb/>quæ fecet HI in E. <!-- KEEP S--></s> <s id="s.000368">Manife&longs;tum e&longs;t, mobile, compo&longs;ito <lb/>motu feratur habere duplicem velocitatem, vnam AB al­<lb/>teram illi oppo&longs;itam AH, ob idque moueri ver&longs;us O &longs;ol&atail; <lb/>velocitate HB differentia dictarum inter&longs;e pugnantium <lb/>velocitatum: pariter momento D feretur mobile veloci­<lb/>tate EC differentia duarum DE, DC, & in&longs;tanti G habebit <lb/><arrow.to.target n="marg80"/><lb/>differentialem IF; ex quo &longs;equitur figuram BHEIFCB, dif­<lb/>ferentiam imaginum ABFG, HAGI, aptatam tempori AC <lb/>imaginem e&longs;&longs;e velocitatum compo&longs;iti motus. </s> <s id="s.000369">Hoc po­<lb/><arrow.to.target n="marg81"/><lb/>&longs;ito habebit LM ad LO eandem rationem, ac BHIF ad <lb/>ABFG; Propterea LM, quæ e&longs;t differentia &longs;patiorum LO, <pb pagenum="37" xlink:href="022/01/043.jpg"/>MO curretur iuxta imaginem BHIF, nempe compo&longs;ito <lb/>motu, & tempore AG. <!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000370"><margin.target id="marg79"/><emph type="italics"/>Tab.<emph.end type="italics"/> 4. <emph type="italics"/>Fig.<emph.end type="italics"/> 2.<!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000371"><margin.target id="marg80"/><emph type="italics"/>Def.<emph.end type="italics"/> 3 <emph type="italics"/>prima.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000372"><margin.target id="marg81"/><emph type="italics"/>Pr.<emph.end type="italics"/> 2. <emph type="italics"/>prim&atail; <lb/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000373">2. Se nunc &longs;ecent lineæ BF, HI in C. <!-- KEEP S--></s> <s id="s.000374">Ducatur CD pa­<lb/><arrow.to.target n="marg82"/><lb/>rallela alteri æquidi&longs;tantium AB, GF. <!-- KEEP S--></s> <s id="s.000375">Con&longs;tat ex prima <lb/>parte, quòd mobile compo&longs;ito motu, & iuxta imaginem <lb/>HBC feretur ver&longs;us O tempore AD; &longs;it ergo &longs;patium, quod <lb/>curreretur illa imagine, PR, & ob id LO ad PR eande&mtail; <lb/><arrow.to.target n="marg83"/><lb/>habebit rationem quam imago ABFG ad imagine&mtail; <lb/>HBC. </s> </p> <p type="margin"> <s id="s.000376"><margin.target id="marg82"/><emph type="italics"/>Tab.<emph.end type="italics"/> 4. <emph type="italics"/>fig.<emph.end type="italics"/> 3.<!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000377"><margin.target id="marg83"/><emph type="italics"/>Pr.<emph.end type="italics"/> 2. <emph type="italics"/>prima<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000378">Similiter dum mobile mouetur tempore DG iuxta ima­<lb/>gines DCIG, DCFG, feretur verè &longs;ecundùm imagine&mtail; <lb/><arrow.to.target n="marg84"/><lb/>FCI ver&longs;us L, quamobrem &longs;i &longs;patium, quod exigeretur <lb/>hac imagine &longs;it RQ, habebit i&longs;tud ad LO eandem rationem, <lb/><arrow.to.target n="marg85"/><lb/>quam imago CFI ad imaginem ABFG, & ideo ex æquali <lb/>QR ad PR &longs;e habebit vt imago CFI ad imaginem HBC; &longs;i <lb/>igitur ponatur ABFG maior imagine AHIG, demptà co­<lb/>muniter AHCFG relinquetur HBC maior imagine CEI, & <lb/>ideo etiam PR maior QR: curritur verò PR versùs R tem­<lb/>pore AD, & RQ versùs P tempore DG, ergo toto tempo­<lb/>re AG curretur PQ differentia &longs;patiorum PR, RQ Cum <lb/>verò HBC ad CFI, &longs;it vt PR ad RQ, erit diuidendo vt ex­<lb/>ce&longs;&longs;us imaginis HBC &longs;upra imaginem FCI ad imagine&mtail; <lb/>i&longs;tam, ita PQ ad QR, & o&longs;ten&longs;um e&longs;t QR ad LO, &longs;icut ima­<lb/>go FCI ad imaginem ABFG, ergo ex æquali exce&longs;&longs;us ima­<lb/>ginis HBC &longs;upra imaginem AHIG habebit eandem ratio­<lb/>nem ad imaginem AHIG, ac PQ ad LO, at e&longs;t in illa <expan abbr="ead&etilde;">eadem</expan> <lb/>ratione etiam LM ad LO (e&longs;t enim LO ad MO vt imago <lb/>ABFG ad imaginem AHIG) ergo PQ erit æqualis LM, <lb/>atque adeo mobile dum currit vtroque motu, hoc e&longs;t iux­<lb/>ta &longs;imul duas imagines propo&longs;itas contrariorum motuum, <lb/>peraget &longs;patium LM versùs O &longs;ecundùm imaginem, quæ <lb/>differentia e&longs;t propo&longs;itarum ABFG, AHIG, tempore AG. <lb/><!-- KEEP S--></s> <s id="s.000379">Quod &c. <!-- KEEP S--></s> </p> <pb pagenum="38" xlink:href="022/01/044.jpg"/> <p type="margin"> <s id="s.000380"><margin.target id="marg84"/><emph type="italics"/>Ex prim&atail; <lb/>parte.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000381"><margin.target id="marg85"/><emph type="italics"/>Pr.<emph.end type="italics"/> 2. <emph type="italics"/>prima.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000382"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000383"><emph type="italics"/>Deducìtur, mobile nullum &longs;patium emen&longs;urum, vbi ima­<lb/>gines &longs;implicium motuum fuerint aquales.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000384"><emph type="center"/>PROP. III. THEOR. III.<emph.end type="center"/><lb/><arrow.to.target n="marg86"/><!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000385"><margin.target id="marg86"/><emph type="italics"/>Tab.<emph.end type="italics"/> 4. <emph type="italics"/>Fig.<emph.end type="italics"/> 4.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000386">REperire eam velocitatem, eamque directionem, quæ <lb/>orirentur, &longs;i mobile pluribus eodem momento velo­<lb/>citatibus, &longs;eu conatibus affectum e&longs;&longs;et. </s> <s id="s.000387">Opportet autem <lb/>non &longs;olum has velocitates, verùm etiam earum directio­<lb/>nes manife&longs;tas e&longs;&longs;e. </s> </p> <p type="main"> <s id="s.000388">Habeat mobile A, eodem momento conatum AB, quo <lb/>tendat in R; AC; quo in C; & AD, quo in D. <!-- KEEP S--></s> <s id="s.000389">Quæritur ve­<lb/>locitas, & directio, quas mobile habiturum e&longs;&longs;et in multi­<lb/>plici illa affectione (Nam actu vnam velocitatem, vnam­<lb/>que tantùm directionem &longs;ortiri debet) Ex duabus qui­<lb/>bu&longs;que AD, AC intelligatur perfici parallelogrammum <lb/>ACED, & ducta diametro AE fiat itidem aliud parallelo­<lb/>grammum ABFE, cuius agatur diameter AF. </s> <s id="s.000390">Dico AF <lb/>e&longs;&longs;e quæ&longs;itam velocitatem, ac directionem, quibus mobile <lb/>ex illis pluribus conatibus motum &longs;uum in&longs;titueret. </s> </p> <p type="main"> <s id="s.000391">Si mobili A currendum e&longs;&longs;et æquabili motu &longs;patium <lb/>AE, pertran&longs;iret eodem tempore tam rectam AD, quàm </s> </p> <p type="main"> <s id="s.000392"><arrow.to.target n="marg87"/><lb/>ip&longs;am AC; nam cum fertur ab A in E verè de&longs;cendit ab A <lb/>in C, & ab A in D motu pariter æquabili; ergo AD ad <lb/>AC, erit vt velocitas, qua curritur per AD ad velocitatem, <lb/>qua curritur per AC. <!-- KEEP S--></s> <s id="s.000393">Itaque &longs;i mobile dum e&longs;t in A in­<lb/>telligatur affectum velocitatibus AD, AC habentibus di­<lb/>rectiones ip&longs;as rectas AD, AC, perinde e&longs;&longs;et, ac &longs;i &longs;ola fo­<lb/>ret mobili velocitas vnâ cum directione AE. <!-- KEEP S--></s> <s id="s.000394">Eadem ra­<lb/>tione AF velocitas habens directionem AF, æquipollebit <lb/>duabus velocitatibus AB, AE iuxta directiones rectas ea&longs;-<pb pagenum="39" xlink:href="022/01/045.jpg"/>dem ABAE; hoc æquiualebit tribus AB, AC, AD. <!-- KEEP S--></s> <s id="s.000395">Mo­<lb/>bile igitur ex affectione trium illorum conatuum, vt &longs;up­<lb/>po&longs;itum fuit, nitetur &longs;ecundùm AF velocitate ip&longs;a AF <lb/>Quod &c. <!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000396"><margin.target id="marg87"/><emph type="italics"/>Gal. </s> <s id="s.000397">pr. <!-- REMOVE S-->de mo­<lb/>tu aquab.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000398"><emph type="center"/>DEF. I.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000399">ACcelerationem alicuius motus, tunc intelligimus, <expan abbr="cũ">cum</expan> <lb/>velocitates, quæ &longs;ubinde mobili adueniunt, non de­<lb/>lentur, &longs;ed pror&longs;us integræ, atque indelebiles mobili in ip&longs;o <lb/>motu per&longs;euerant. </s> <s id="s.000400">Ex quo &longs;equitur motum &longs;implicem di­<lb/>ci, cum præteritæ velocitates protinus euane&longs;cunt, illæ­<lb/>que tantum con&longs;iderantur, quæ mobili &longs;ubinde oriun­<lb/>tur. </s> </p> <p type="main"> <s id="s.000401"><emph type="center"/>PROP. IV. PROB. II.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000402">IMaginem accelerationis cuiu&longs;cunque &longs;implicis motus <lb/>exhibere. </s> </p> <p type="main"> <s id="s.000403">Imago velocitatum &longs;implicis motus e&longs;to rectangulum <lb/><arrow.to.target n="marg88"/><lb/>AFDC: &longs;ic motus e&longs;t æquabilis, vt acceleretur debent in­<lb/><arrow.to.target n="marg89"/><lb/>&longs;tanti C vigere omnes velocitates in imagine AFDC <expan abbr="cõ-prehen&longs;æ">con­<lb/>prehen&longs;æ</expan>, & item ducta quacunque BE parallela AF, vel <lb/><arrow.to.target n="marg90"/><lb/>CD, erit mobile momento B affectum omnibus antece­<lb/>dentibus velocitatibus, comprehen&longs;is nempe ab imaginis <lb/>portione AFEB; quare &longs;i ponamus HLG imaginem e&longs;&longs;&etail; <lb/>accelerationis, itaut nempe tempus GL æquale &longs;it tempo­<lb/>ri AC; item KL æquale tempori AB, erit vt figura CAFD <lb/>ad figuram BAFE, &longs;ic velocitas, qua mobile fertur <expan abbr="mom&etilde;-to">momen­<lb/>to</expan> G ad velocitatem, quam habet in&longs;tanti K; & ideo quia <lb/>ponitur imago &longs;implicis motus rectangulum AFDC, erit <lb/>rectangulum CF ad BF, hoc e&longs;t recta CA ad AB immò <lb/>LG ad LK, vt GH ad KI; quamobrem GLH imago velo­<lb/><arrow.to.target n="marg91"/><lb/>citatum huiu&longs;modi motus, erit triangulum. </s> <s id="s.000404">Quod &longs;i ima-<pb pagenum="40" xlink:href="022/01/046.jpg"/>go &longs;implicis motus fui&longs;&longs;et triangulum, imago velocitatum <lb/>accelerationis foret trilineum &longs;ecundum, & ita pro­<lb/>portionaliter de infinitis numero accelerationibus. </s> </p> <p type="margin"> <s id="s.000405"><margin.target id="marg88"/><emph type="italics"/>Tab.<emph.end type="italics"/> 4. <emph type="italics"/>fig.<emph.end type="italics"/> <gap/>.</s> </p> <p type="margin"> <s id="s.000406"><margin.target id="marg89"/><emph type="italics"/>Cor. <!-- KEEP S--></s> <s id="s.000407">def.<emph.end type="italics"/> 3. <emph type="italics"/>pri­<lb/>mi.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000408"><margin.target id="marg90"/><emph type="italics"/>Def.<emph.end type="italics"/> 1. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000409"><margin.target id="marg91"/><emph type="italics"/>Def.<emph.end type="italics"/> 3 <emph type="italics"/>primi.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000410"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000411"><emph type="italics"/>Hinc obiter habemus, quo pacto imago velocitatum corpo­<lb/>rum naturaliter de&longs;cendentium triangulum &longs;it. </s> <s id="s.000412">Nam quo­<lb/>libet momento &longs;ui ca&longs;us habet graue idem in&longs;e principiu&mtail; <lb/>motus, &longs;eu grauitas, ex qua concipitur imago &longs;implicis motus <lb/>&longs;i nempe priores gradus velocitatis &longs;ubinde deperirent, at <lb/>quia in eius de&longs;cen&longs;u pror&longs;us per&longs;euerant (id enim &longs;upponi­<lb/>tur ab&longs;trahendo ab aere) inde motus concitatur, & fit vti di­<lb/>ximus imago accelerationis triangulum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000413"><emph type="center"/>AXIOMA<emph.end type="center"/></s> </p> <p type="main"> <s id="s.000414">QVælibet linea, vt fluxus puncti concipi po­<lb/>te&longs;t. </s> </p> <p type="main"> <s id="s.000415"><emph type="center"/>AX. II.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000416">VT propo&longs;ita linea ex fluxu puncti exarètur, duò tan­<lb/>tùm nece&longs;&longs;aria &longs;unt, &longs;cilicet motus, & puncti di­<lb/>rectio. </s> </p> <p type="main"> <s id="s.000417"><emph type="center"/>PROP. V. THEOR. III.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000418">REcta, quæ priùs de&longs;cripta e&longs;t, pote&longs;t alijs à primis <lb/>velocitatibus, rur&longs;us exarari. </s> </p> <p type="main"> <s id="s.000419">Nam punctum pote&longs;t fluere &longs;ecundum quamcunque <lb/>rectam, quocunque motu, ergo illam pote&longs;t etiam quibu&longs;­<lb/>cunque velocitatibus affectum rur&longs;us exarare. </s> </p> <pb pagenum="41" xlink:href="022/01/047.jpg"/> <p type="main"> <s id="s.000420"><emph type="center"/>PROP. VI. THEOR. IV.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000421">VT eadem recta ex fluxu puncti renouetur, opportet in <lb/>quocunque illius puncto &longs;eruari pri&longs;tinas directio<lb/>nes, </s> </p> <p type="main"> <s id="s.000422">Cum, vti diximus, ad de&longs;criptionem lineæ duo tantùm <lb/><arrow.to.target n="marg92"/><lb/>exigantur, nempe motus, & puncti directio; motus verò po­<lb/>te&longs;t e&longs;&longs;e quilibet, &longs;equitur ergo directionem, alteram de <lb/>duobus, &longs;eruari debere. </s> </p> <p type="margin"> <s id="s.000423"><margin.target id="marg92"/><emph type="italics"/>Ax.<emph.end type="italics"/> 2. <emph type="italics"/>buius. <lb/></s> <s id="s.000424">pr.<emph.end type="italics"/> 5. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000425"><emph type="center"/>DEF. II.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000426">LIneam dicimus curuam, in qua &longs;umptis duobus ad­<lb/>libitum punctis, recta, quæ ip&longs;a puncta coniunge­<lb/>ret, nullam cum propo&longs;ita linea partem &longs;it habitura com­<lb/>munem. </s> </p> <p type="main"> <s id="s.000427"><emph type="center"/>PROP. VII. THEOR. V.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000428">DIrectiones puncti de&longs;cribentis lineam, iuxta rectas <lb/>lineas concipi debent. </s> </p> <p type="main"> <s id="s.000429">Dum punctum fluere intelligimus, ine&longs;t in eo &longs;ingulis <lb/>momentis certus, ac præfixus gradus velocitatis, quo tan­<lb/>tùm attento, rectà, <expan abbr="æquabiliq;">æquabilique</expan> motu in certam partem con­<lb/>tenderet; at huiu&longs;modi iter, aliud non e&longs;t, quàm directio <lb/>puncti, qua eius temporis momento profici&longs;citur; ergo iux­<lb/>ta rectas lineas, directiones omnes con&longs;iderari opportet. </s> </p> <p type="main"> <s id="s.000430"><emph type="center"/>PROP. VIII. THEOR. VI.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000431">TAngens, & directio motus in quouis curuæ puncto <lb/>e&longs;t vna, <expan abbr="atq;">atque</expan> eadem recta. </s> </p> <p type="main"> <s id="s.000432">Nam in de&longs;criptione <expan abbr="cuiu&longs;cunq;">cuiu&longs;cunque</expan> rectæ procedit pun­<lb/><arrow.to.target n="marg93"/><pb pagenum="42" xlink:href="022/01/048.jpg"/>ctum iuxta tendentias rectas, obliquatur tamen ob &longs;ub&longs;e­<lb/>quentes, aliò tendentes ni&longs;us, & ob id di&longs;trahitur punctum <lb/>ip&longs;um à priori tendentia, idem accidit ex alia parte &longs;i re­<lb/>flaxi&longs;&longs;et idem punctum, nempe hinc inde vnicam rectam <lb/>eandemque, continuantibus oppo&longs;itis ad idem punctum <lb/>directionibus, ergo directio, & tangens vna, & eadem e&longs;t <lb/>recta. </s> </p> <p type="margin"> <s id="s.000433"><margin.target id="marg93"/><emph type="italics"/>Pr.<emph.end type="italics"/> 7. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000434"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000435"><emph type="italics"/>Hinc &longs;equitur, vnicam lineam dicendam e&longs;&longs;e, cum à quo­<lb/>cunque illius puncto vnica tantùm ex vtraque parte egre­<lb/>ditur tangens.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000436"><emph type="center"/>DEF. III.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000437">QVòd &longs;i ex aliquo puncto duæ tangentes hinc inde <lb/>egredientes angulum efficiant; tunc propo&longs;itam li­<lb/>neam inflexam dicemus, & punctum, in quo &longs;unt <lb/>contactus, inflexionis appellabitur. </s> </p> <p type="main"> <s id="s.000438"><emph type="center"/><emph type="italics"/>Corollarium I.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000439"><emph type="italics"/>Ab hi&longs;ce deffinitionibus, & priori coroll. </s> <s id="s.000440">manat artificium <lb/>componendi duas curuas, vel curuam & rectam, adeout vni­<lb/>cam lineam efforment, nullumque angulum; nempe cum &longs;ic <lb/>inuicem iungamus, vt tangentes ad punctum connexus, vnam <lb/>tantùm rectam efficiant.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000441"><emph type="center"/><emph type="italics"/>Corollarium II.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000442"><emph type="italics"/>Sed & illud patet, quibus angulis inflectantur lineæ inui­<lb/>cem compo&longs;itæ, &longs;i ad punctum inflexionis angulum tangen­<lb/>tium ob&longs;eruauerimus, &longs;unt enim inter&longs;e æquales, licèt diuer­<lb/>&longs;a &longs;peciei, cum vnus &longs;it curuilineus, & rectilineus alter.<emph.end type="italics"/></s> </p> <pb pagenum="43" xlink:href="022/01/049.jpg"/> <p type="main"> <s id="s.000443"><emph type="center"/>PROP. IX. THEOR. VII.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000444">TAngens, &longs;eu directio motus in quocunque curuæ <lb/>puncto e&longs;t illa recta, quæ vtrinque &longs;tatim cadens <lb/>extra curuæ conuexum ad eandem, quàm fieri pote&longs;t ex <lb/>vtraque parte accedit. </s> </p> <p type="main"> <s id="s.000445">Nam alia quæque recta tran&longs;iens per punctum conta­<lb/>ctus ad &longs;ectionem magis accedere nequit, quin ip&longs;am illinc <lb/>&longs;ecet, ob id extra conuexum eius non cadet, ab altera ve­<lb/>rò parte magis à propo&longs;ita curua &longs;eparabitur, quamobrem <lb/>nulla alia recta, quàm tangens poterit &longs;imul extra curuam <lb/>e&longs;&longs;e, & quàm fieri pote&longs;t ad ip&longs;am accedere. </s> </p> <p type="main"> <s id="s.000446"><emph type="center"/>DEF. IV.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000447">LIneæ AC, AD occurrant &longs;ibi in A, quod punctum in­<lb/><arrow.to.target n="marg94"/><lb/>telligatur transferri ab A in C vnà cum linea AD <lb/>&longs;emper &longs;ibi parallela, quo tempore punctum A currat ip­<lb/>&longs;am latam lineam ex A in D. <!-- KEEP S--></s> <s id="s.000448">Manife&longs;tum e&longs;t idip&longs;um <lb/>punctum A de&longs;cripturum e&longs;&longs;e motu compo&longs;ito lineam <lb/>quandam AB diagonalem &longs;uperficiei parallelogrammæ <lb/>ABCD. <!-- KEEP S--></s> <s id="s.000449">Vocamus ergo diagonalem illam &longs;emitam com­<lb/>po&longs;iti motus, & AC, AD latera illius. </s> </p> <p type="margin"> <s id="s.000450"><margin.target id="marg94"/><emph type="italics"/>Tab.<emph.end type="italics"/> 4. <emph type="italics"/>fig.<emph.end type="italics"/> 6.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000451"><emph type="center"/><emph type="italics"/>Corollarium I.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000452"><emph type="italics"/>Manife&longs;tum e&longs;t mobile dum currit AB tran&longs;ire etiam AC, <lb/>AD, licèt curuæ &longs;int, nam verè transfertur illo tempore, tam <lb/>ad lineam CB quam ad DB.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000453"><emph type="center"/><emph type="italics"/>Corollarium II.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000454"><emph type="italics"/>Præterea &longs;i ducerentur, aut&longs;int AC, CB, DA, DB, AB<emph.end type="italics"/><pb pagenum="44" xlink:href="022/01/050.jpg"/><emph type="italics"/>rectæ lineæ, efficeretur ex ijs parallelogrammum ACBD, cu­<lb/>ius diameter AB; quamobrem ex datis punctis C, A, D repe­<lb/>riretur &longs;tatim punctum B, &longs;cilicet extremum &longs;emitæ compo­<lb/>&longs;iti motus, cuius latera ip&longs;æ curuæ, aut rectæ AC, AD<emph.end type="italics"/> —. </s> </p> <p type="main"> <s id="s.000455"><emph type="center"/>PROP. X. PROB. III.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000456">EX datis <expan abbr="quotcunq;">quotcunque</expan> lateribus compo&longs;iti motus, huius <lb/><arrow.to.target n="marg95"/><lb/>&longs;emitæ terminum exhibere. </s> </p> <p type="margin"> <s id="s.000457"><margin.target id="marg95"/><emph type="italics"/>Tab.<emph.end type="italics"/> 4. <emph type="italics"/>Fig.<emph.end type="italics"/> 7.</s> </p> <p type="main"> <s id="s.000458">Si latera compo&longs;iti motus e&longs;&longs;ent duo tantùm AB, AC. <lb/><!-- KEEP S--></s> <s id="s.000459">Facto parallelogrammo vt dictum e&longs;t, inueniretur pun­<lb/>ctum E extremum motus: & <expan abbr="quæcunq;">quæcunque</expan> &longs;it &longs;emita, &longs;eu mo­<lb/>tus, pote&longs;t idem E &longs;upponi tanquam extremum alterius la­<lb/>teris, adeoque, &longs;i motus con&longs;tet ex tribus lateribus AC, <lb/>AB, AD, perinde &longs;it ac &longs;i foret duorum laterum AE, AD; <lb/>nam AC, AD valent &longs;imul ac &longs;olum AE; cum ita &longs;it, facto <lb/>etiam parallelogrammo EADF ex datis punctis E, A, D, <lb/>habebitur F extremum &longs;emitæ, cuius &longs;unt tria latera CA, <lb/>AD, AB — </s> </p> <p type="main"> <s id="s.000460"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000461"><emph type="italics"/>Deducitur artificium de&longs;cribendæ &longs;emitæ AE, vel AF, &longs;i <lb/>nempe a&longs;&longs;umptis partibus AG, AH, AI in dictis lateribus, <lb/>quæ quidem &longs;ciantur percurri temporibus æqualibus, &longs;i per <lb/>ip&longs;as &longs;ingulas mobile punctum ferretur eo modo, quo in com­<lb/>po&longs;ito motu nititur per ea&longs;dem directiones; reperietur in­<lb/>quam punctum K in &longs;emita AE, atque L in &longs;emita AF: qua­<lb/>re hoc modo &longs;umptis alijs, atque alijs partibus in ip&longs;is lateri­<lb/>bus, reperientur alia, atque alia puncta ad ip&longs;am &longs;emita&mtail; <lb/>pertinentia, quorum tandem beneficio, facile erit qua&longs;itam <lb/>fermè &longs;emitam exarare.<emph.end type="italics"/></s> </p> <pb pagenum="45" xlink:href="022/01/051.jpg"/> <p type="main"> <s id="s.000462"><emph type="center"/>PROP. XI. PROB. IV.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000463">EX datis imaginibus velocitatum, iuxta quas &longs;implici <lb/><arrow.to.target n="marg96"/><lb/>motu currantur latera compo&longs;iti motus; datis item <lb/>tangentibus ad quæcunque puncta ip&longs;orum laterum, repe­<lb/>rire &longs;emitam compo&longs;iti motus, nec non directiones, <expan abbr="veloci-tate&longs;q;">veloci­<lb/>tate&longs;que</expan> puncti de&longs;cribentis ip&longs;am &longs;emitam. </s> </p> <p type="margin"> <s id="s.000464"><margin.target id="marg96"/><emph type="italics"/>Tab.<emph.end type="italics"/> 4. <emph type="italics"/>fig.<emph.end type="italics"/> 8.</s> </p> <p type="main"> <s id="s.000465">Opportet tamen latera ip&longs;a, <expan abbr="itemq;">itemque</expan> imagines prædictas, <lb/>in imperatas &longs;ecari po&longs;&longs;e rationes, quamquam nos non la­<lb/>teat, in lateribus curuis hoc effici non po&longs;&longs;e, præterqua&mtail; <lb/>aliquatenus in periphærijs circulorum. </s> </p> <p type="main"> <s id="s.000466">Sint AB, AF latera compo&longs;iti motus, quæ quidem &longs;eor­<lb/>&longs;im currantur eodem tempore QM, &longs;cilicet AB iuxta ima­<lb/>ginem MNPQ, et AF iuxta imaginem alteram ei homoge­<lb/>neam TMQR. </s> <s id="s.000467">Ponatur AB circuli arcus, quem tangat re­<lb/>cta BC æqualis QB, at AF lineam', quæ parabola &longs;it, con­<lb/>tingat recta FG æqualis RQ Reperiemus illicò punctum <lb/><arrow.to.target n="marg97"/><lb/>H extremum &longs;emitæ compo&longs;iti motus; &longs;unt enim data pun­<lb/>cta A, F, B. <!-- KEEP S--></s> <s id="s.000468">Cum igitur mobile venerit in H. Dico, eo <lb/>temporis momento velocitatem, ac directionem HL, quæ <lb/>recta diameter e&longs;t parallelogrammi, cuius duo latera &longs;unt <lb/>dictæ lineæ HI, HK; Iam vti diximus punctum H e&longs;t ex­<lb/>tremum compo&longs;iti motus, quare eo momento, quo pun­<lb/>ctum mobile e&longs;t in H, habet inibi ea&longs;dem illas velocitates, <lb/>quas haberet in B, et F, dum &longs;eor&longs;im illa latera excurri&longs;&longs;et; <lb/>&longs;cilicet con&longs;ideratur ip&longs;um mobile habens &longs;imul velocita­<lb/>tem HI æqualem, ac æquedirectam, &longs;eu æquidi&longs;tantem <lb/>ip&longs;i CB, cui e&longs;t æqualis alia QP; & velocitatem HK æqua­<lb/>lem, &longs;imiliterque directam, ip&longs;i GF æquali RQ Cum ita <lb/><arrow.to.target n="marg98"/><lb/>&longs;it erit HL velocitas, & directio quæ&longs;ita momento <expan abbr="q.">que</expan> Eo­<lb/>dem modo, &longs;i &longs;it, vel fiat vt imago PNMQ ad ONMV <lb/>(ducta &longs;cilicet applicata SVO) ita BA ad AX, et ONMV <lb/>ad imaginem VMTS, vt XA ad AI, percurrentur AX, AI <lb/><arrow.to.target n="marg99"/><pb pagenum="46" xlink:href="022/01/052.jpg"/>eodem tempore MV, eritque ob id in X velocitas, & dire­<lb/>ctio, tangens ip&longs;a ZX æqualis VO, & in I velocitas, & di­<lb/>rectio, tangens 2 I æqualis VS; Itaque datis punctis X, I, A <lb/><arrow.to.target n="marg100"/><lb/>dabitur etiam Y extremum &longs;emitæ compo&longs;iti motus, cuius <lb/>latera AX, AI, & ideo mobile dum e&longs;t in Y momento V <lb/>affectum erit duplici velocitate, hoc e&longs;t Y 4 æquali ve­<lb/>locitati ZX, &longs;eu VO, ac æquidi&longs;tante eidem ZX, et veloci­<lb/>tate altera Y 3 æquali, & æquèdirecta ip&longs;i 2 I: quare ex <lb/>datis punctis 4, Y, 3 inuenietur punctum S quartus angu­<lb/>lus parallelogrammi habentis diametrum YI, quæ quidem <lb/><arrow.to.target n="marg101"/><lb/>erit directio, & velocitas mobilis currentis compo&longs;ito mo­<lb/>tu in&longs;tanti V. <!-- KEEP S--></s> <s id="s.000469">Cumque alia quotcunque puncta eadem <lb/>methodo reperire queamus, per quæ duci po&longs;&longs;it linea ferè <lb/>quæ&longs;itam &longs;emitam repræ&longs;entans, <expan abbr="atq;">atque</expan> emulans, patet idcir­<lb/>co, quod propo&longs;uimus. </s> </p> <p type="margin"> <s id="s.000470"><margin.target id="marg97"/><emph type="italics"/>Pr,<emph.end type="italics"/> 10. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000471"><margin.target id="marg98"/><emph type="italics"/>Ex pr.<emph.end type="italics"/> 3. <emph type="italics"/>hu.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000472"><margin.target id="marg99"/><emph type="italics"/>Pr.<emph.end type="italics"/> 2. <emph type="italics"/>primi <lb/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000473"><margin.target id="marg100"/><emph type="italics"/>Cor.<emph.end type="italics"/> 2. <emph type="italics"/>def.<emph.end type="italics"/> 3. <lb/><emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000474"><margin.target id="marg101"/><emph type="italics"/>Pr.<emph.end type="italics"/> 3. <emph type="italics"/>huius<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000475"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000476"><emph type="italics"/>Cum verò directiones &longs;int idem, ac tangentes, liquet HL<emph.end type="italics"/><lb/><arrow.to.target n="marg102"/><lb/><emph type="italics"/>VS tangentes e&longs;&longs;e compo&longs;iti motus.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000477"><margin.target id="marg102"/><emph type="italics"/>Pr.<emph.end type="italics"/> 8 <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000478"><emph type="center"/>PROP. XII. THEOR. VIII.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000479">CVm imagines velocitatum, iuxta quas curruntur du&etail; <lb/><arrow.to.target n="marg103"/><lb/>rectæ, quæ &longs;int latera compo&longs;iti motus, &longs;unt paral-<lb/>lelogrammum, & triangulum; tunc &longs;emita compo&longs;iti motus <lb/>erit communis parabola. </s> </p> <p type="margin"> <s id="s.000481"><margin.target id="marg103"/><emph type="italics"/>Tab.<emph.end type="italics"/> 5. <emph type="italics"/>Fig.<emph.end type="italics"/> 1.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000482">Tempore HM curratur latus AC iuxta imaginem velo­<lb/>citatum HILM rectangulum, & latus AB iuxta imaginem <lb/><arrow.to.target n="marg104"/><lb/>triangulum HMN; erit CA ad AB, vt imago <expan abbr="parallelogrã-mum">parallelogram­<lb/>mum</expan> HILM ad aliam imaginem triangulum NHM. </s> <s id="s.000483">Fiat <lb/><arrow.to.target n="marg105"/><lb/><expan abbr="parellogrãmum">parellogrammum</expan> ACDB erit in D extremum &longs;emitæ com­<lb/>po&longs;iti motus, quæ &longs;i ponatur AFC; Dico e&longs;&longs;e parabolam. <lb/></s> <s id="s.000484">Sumatur in ip&longs;a linea quoduis punctum F, ab ip&longs;o dedu-<pb pagenum="47" xlink:href="022/01/053.jpg"/>cta FE parallela AB, vti etiam FG parallela AC, erunt <lb/><arrow.to.target n="marg106"/><lb/>AE, AG latera compo&longs;iti motus, cuius &longs;emita AF: Con­<lb/>cipiatur modò P momentum, quo mobile ade&longs;t in F, & <lb/>ducta OPK parallela alteri HI, vel NL, erit imago MHIL ad <lb/><arrow.to.target n="marg107"/><lb/><expan abbr="imagin&etilde;">imaginem</expan> PHIK, hoc e&longs;t MH ad HP, vt CA ad AE, &longs;eu vt BD <lb/>ad GF. <!-- KEEP S--></s> <s id="s.000485">Pariter erit imago NHM ad <expan abbr="imagin&etilde;">imaginem</expan> OHP, hoc e&longs;t <lb/>quadratum ex MH ad <expan abbr="quadratũ">quadratum</expan> ex PH; immò id ex BO ad <lb/>illud ex GF, vt BA ad AG; quamobrem punctum F cadet <lb/>in curuam parabolicam communem, cuius diameter AB, <lb/>& ba&longs;is, &longs;eu ordinatim applicata BD, &longs;cilicet AFD erit ip&longs;a <lb/>curua parabolica. </s> <s id="s.000486">Quod &c. <!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000487"><margin.target id="marg104"/><emph type="italics"/>pr.<emph.end type="italics"/> 2. <emph type="italics"/>primum <lb/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000488"><margin.target id="marg105"/><emph type="italics"/>Pr.<emph.end type="italics"/> 3. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000489"><margin.target id="marg106"/><emph type="italics"/>Ex eadem.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000490"><margin.target id="marg107"/><emph type="italics"/>Pr.<emph.end type="italics"/> 2. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000491"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000492"><emph type="italics"/>Quoniam graue, quod iaculatur extræ perpendiculum, li­<lb/>berum ab omni obice, ni&longs;i turbaretur eius motus à propri&atail; <lb/>grauitate pergerct moueri æquabiliter iuxta directionem, ve­<lb/>locitatemque ei traditam; habet verò coniunctam grauita­<lb/>tem, qua, ni&longs;i ab impre&longs;&longs;o impetu flecteretur motus, de&longs;cen­<lb/>deret iuxta perpendiculum motu naturaliter concitato, cuius <lb/>imago velocitatum, triangulum e&longs;t; Hinc propterea gran&etail; <lb/>vltra perpendiculum proiectum de&longs;cribit in cur&longs;u &longs;uo, motu <lb/>&longs;cilicet compo&longs;ite, parabolam vulgatam. </s> <s id="s.000493">Verùm enim verò <lb/>de&longs;criptionem i&longs;t am nece&longs;&longs;e aliquo pacto e&longs;t ex duabus cau&longs;is <lb/>vitiari, hoc est ab aeris re&longs;i&longs;tentia, & perpendiculis non in­<lb/>ter&longs;e parallelis, quippe in idem, <expan abbr="vnumq;">vnumque</expan> punctum, vniuer&longs;i <lb/>centrum, conuergentibus.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000494"><emph type="center"/>PROP. XIII. THEOR. IX.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000495">SI ab a&longs;&longs;umpto hyperbolæ puncto, recta axi primo pa­<lb/><arrow.to.target n="marg108"/><lb/>rallela deducatur, quæ ad &longs;ecundam diametrum per­<lb/>tingat; Quadrilineum comprehen&longs;um ab ip&longs;a curua hy­<lb/>perbolica. </s> <s id="s.000496">& dictis tribus rectis, erit imago velocitatis il-<pb pagenum="48" xlink:href="022/01/054.jpg"/>lius motus de&longs;cribentis curuam parabolicam, cuius ba&longs;is <lb/>ad axem eius habet eandem rationem, quam duplus axis <lb/>propo&longs;itæ hyperbolæ ad ductam illam <expan abbr="æquidi&longs;tãtem">æquidi&longs;tantem</expan> inter <lb/>eiu&longs;dem hyperbolæ a&longs;&longs;ymptotos interiectam. </s> </p> <p type="margin"> <s id="s.000497"><margin.target id="marg108"/><emph type="italics"/>Tab.<emph.end type="italics"/> 5. <emph type="italics"/>fig.<emph.end type="italics"/> 2.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000498">Hyperbolæ IRS &longs;it centrum H, &longs;emiaxis HI, a&longs;&longs;ymptoti <lb/>HT, NH, et SN parallela HI; tùm ducta HM &longs;ecunda dia­<lb/>metro hyperbolæ, intelligatur de&longs;criptio parabolæ AFD; <lb/>itaut duplus axis hyperbolæ, hoc e&longs;t quadruplum ip&longs;ius <lb/>HI ad NT eandem habeat rationem, quam DB ba&longs;is pa­<lb/>rabolæ ad BA axim eiu&longs;dem. </s> <s id="s.000499">Dico quadrilineum HISM <lb/>e&longs;&longs;e imaginem velocitatum, iuxta quam motu compo&longs;ito <lb/>de&longs;cribitur parabola AFD; & cum &longs;it homogenea imagi­<lb/><arrow.to.target n="marg109"/><lb/>nibus HILM, HTM, e&longs;&longs;e quoque rectangulum HDLM ad <lb/>imaginem ip&longs;am HISM vt recta CA ad curuam AFD. <lb/></s> <s id="s.000500">Fiat rectangulum ACDB, et HM &longs;it tempus, quo curritur <lb/><arrow.to.target n="marg110"/><lb/>vtrunque latus AB, AC, nempe axis AB motu grauium <lb/>iuxta imaginem triangulum HTM, alterum verò latus AC <lb/><arrow.to.target n="marg111"/><lb/>æquabili motu iuxta imaginem rectangulum HILM, quod <lb/>quidem erit HILM; etenim AB ad &longs;patium AC e&longs;t vt ima­<lb/>go triangulum HMT ad imaginem rectangulum HILM, <lb/>&longs;cilicet e&longs;t vt MT ad duplam HI, vel vt NT ad quadru­<lb/>plam HI, quemadmodum po&longs;uimus. </s> <s id="s.000501">Iam mon&longs;trauimus <lb/>lineam, quæ curritur iuxta illas imagines motu compo&longs;ito <lb/>parabolam e&longs;&longs;e, cuius diameter AB, & ba&longs;is BD; & pro­<lb/>pterea erit ip&longs;a AFD (nam vnica tantum parabola ex <lb/>datis AB, BD po&longs;itione, ac magnitudine, axi &longs;cilicet, ac <lb/>ba&longs;i dari pote&longs;t) Ducatur nunc à quolibet puncto F dictæ <lb/>parabolæ rectæ FE, FG parallelogrammum con&longs;tituentes <lb/>AEFG; & P &longs;it momentum, quo mobile punctum inueni­<lb/><arrow.to.target n="marg112"/><lb/>tur in F. <!-- KEEP S--></s> <s id="s.000502">Habebit inibi ip&longs;o temporis momento P veloci­<lb/>tatem PQ iuxta directionem GF, &longs;unt verò i&longs;tæ directiones <lb/>&longs;ibi ip&longs;is perpendiculares; ergo recta, quæ diameter e&longs;&longs;et <lb/>rectanguli AEFG, & ob id potentiâ æqualis duabus PK, <lb/><arrow.to.target n="marg113"/><lb/>PQ erit gradus velocitatis, quem mobile habet momen-<pb pagenum="49" xlink:href="022/01/055.jpg"/>to F motu compo&longs;ito currens; verùm quia quadratum ex <lb/>PR &etail;quatur rectangulo ORQ vnà cum quadrato ex PQ, & <lb/><arrow.to.target n="marg114"/><lb/>e&longs;t ob hyperbolam rectangulum ORQ æquale quadrato <lb/>ex HI, vel PK; ergo PR quadratum æquale erit duobus &longs;i­<lb/>mul quadratis PQ, PK; itaque PR erit gradus velocitatis <lb/>prædicti mobilis in F momento P, compo&longs;itoque motu <lb/>currentis iuxta curuam parabolicam. </s> <s id="s.000503">Pariter momento <lb/>M, cum mobile e&longs;&longs;et in D velocitas compo&longs;iti motus foret <lb/>MS pote&longs;tate æqualis duabus MT, ML, ac demum in A <lb/>initio motus velocitas e&longs;t HI: quare HISM erit imago ve­<lb/>locitatis motus compo&longs;iti dum mobile punctum de&longs;crip&longs;e­<lb/><arrow.to.target n="marg115"/><lb/>rit curuam parabolicam AFD, e&longs;tque illa imago imagini­<lb/>bus diui&longs;orum, &longs;eu &longs;implicium, motuum homogenea; ergo <lb/>con&longs;tat ba&longs;im etiam BD ad parabolam AFD eandem ha­<lb/>bere rationem, quam rectangulum HILM ad quadrili­<lb/>neum HISM. </s> <s id="s.000504">Quod &c. <!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000505"><margin.target id="marg109"/><emph type="italics"/>Def.<emph.end type="italics"/> 7. <emph type="italics"/>primi <lb/>& pr.<emph.end type="italics"/> 12. <emph type="italics"/>pri­<lb/>mi huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000506"><margin.target id="marg110"/><emph type="italics"/>Cor. <!-- KEEP S--></s> <s id="s.000507">pr.<emph.end type="italics"/> 4. <emph type="italics"/>hu.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000508"><margin.target id="marg111"/><emph type="italics"/>Pr.<emph.end type="italics"/> 2. <emph type="italics"/>primi <lb/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000509"><margin.target id="marg112"/><emph type="italics"/>Ex pr.<emph.end type="italics"/> 12. <emph type="italics"/>hu.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000510"><margin.target id="marg113"/><emph type="italics"/>Pr.<emph.end type="italics"/> 3. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000511"><margin.target id="marg114"/><emph type="italics"/>Pr.<emph.end type="italics"/> 11. <emph type="italics"/>l.<emph.end type="italics"/> 2. <emph type="italics"/>co­<lb/>nic.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000512"><margin.target id="marg115"/><emph type="italics"/>Def.<emph.end type="italics"/> 3. <emph type="italics"/>prima <lb/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000513"><emph type="center"/><emph type="italics"/>Corollarium. <!-- REMOVE S-->I.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000514"><emph type="italics"/>Patet, cum latera compo&longs;iti motus &longs;int duo, & &longs;ibi ip&longs;is per­<lb/>pendicularia, tunc gradum velocitatis eìu&longs;dem motus compo­<lb/>&longs;iti æqualem e&longs;&longs;e potentiâ duobus &longs;imul gradibus, quos habet <lb/>mobile eodem momento, ac &longs;i &longs;eor&longs;im intelligatur in ip&longs;is ferri <lb/>lateribus.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000515"><emph type="center"/><emph type="italics"/>Corollarium. <!-- REMOVE S-->II.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000516"><emph type="italics"/>Si verò con&longs;iderentur imagines primi &longs;ecundique Ca&longs;us <lb/>inter&longs;e homogenea, erit vt quadrilineum HISM primi ad<emph.end type="italics"/><lb/><arrow.to.target n="marg116"/><lb/><emph type="italics"/>quadrilineum ij&longs;dem literis notatum &longs;ecundi ca&longs;us, vt cur­<lb/>ua illa parabolica ad hanc &longs;ecundi ca&longs;us parabolam.<emph.end type="italics"/></s> </p> <pb pagenum="50" xlink:href="022/01/056.jpg"/> <p type="margin"> <s id="s.000517"><margin.target id="marg116"/><emph type="italics"/>Pr<emph.end type="italics"/> 2. <emph type="italics"/>prim&atail; <lb/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000518"><emph type="center"/><emph type="italics"/>Corollarium. <!-- REMOVE S-->III.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000519"><emph type="italics"/>Illud etiam con&longs;tat, e&longs;&longs;e in vtroque ca&longs;u vt quadrilineum <lb/>HIRP ad ip&longs;um PRSM, ita AF ad FD.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000520"><emph type="center"/>PROP. XIV. THEOR. X.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000521">PRopo&longs;itis Spirali Archimedea primæ circulationis <lb/><arrow.to.target n="marg117"/><lb/>ABD, et AGF <expan abbr="cõmuni">communi</expan> parabola, &longs;it FG ba&longs;is huius <lb/>æqualis radio DA, et GA &longs;it dimidium circumferenti&etail; cir­<lb/>culi AEG; erit parabola AGF axem habens GA æqualis <lb/>propo&longs;itæ &longs;pirali. </s> </p> <p type="margin"> <s id="s.000522"><margin.target id="marg117"/><emph type="italics"/>Tab.<emph.end type="italics"/> 5. <emph type="italics"/>fig.<emph.end type="italics"/> 3.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000523">Sit PNK communis hyperbola, cuius coniugati &longs;emia­<lb/><arrow.to.target n="marg118"/><lb/>xes &longs;int IK, IH, & a&longs;&longs;ymptotos IO. <!-- KEEP S--></s> <s id="s.000524">E&longs;to etiam axis hy­<lb/>perbolæ huius, dupla &longs;cilicet IK, ad HO illi &etail;quidi&longs;tantem <lb/>vt FG ad AG. <!-- KEEP S--></s> <s id="s.000525">Iam con&longs;tat quadrilineum IHPK fore ima­<lb/>ginem velocitatum, iuxta quam curreretur parabola AGF <lb/>tempore IH: &longs;i modo o&longs;tendimus hoc ip&longs;um <expan abbr="quadrilineũ">quadrilineum</expan> <lb/>e&longs;&longs;e pariter homogeneam imaginem alterius compo&longs;iti <lb/>motus, quo videlicet de&longs;cribitur &longs;piralis propo&longs;ita ABD, <lb/><arrow.to.target n="marg119"/><lb/>palam erit, ip&longs;am parabolam eidem illi &longs;pirali æqualem fu­<lb/>turam. </s> <s id="s.000526">Ducatur recta KL, quæ æquidi&longs;tet IH; item ex <lb/>quouis puncto Q <expan abbr="t&etilde;poris">temporis</expan> IH alia deducatur recta QRMN <lb/>parallela IK: erit parallelogrammum rectangulum HIKL <lb/>imago velocitatum, iuxta quam curritur FG, et HIO trian­<lb/>gulum imago, qua curritur AG motu grauium de&longs;cenden­<lb/>tium: Verùm quia eodem tempore IH, &longs;i mobile currat <lb/>æquabili motu DA æqualem FG, e&longs;t eius imago idem re­<lb/>ctangulum IHKL, curriturque illo eodem tempore IH (&longs;pi­<lb/>rali exigente) omnis circuli circunferentia AGEA æqua­<lb/>bili etiam motu ab extremitate A radij AD circumducti in <lb/>de&longs;criptione &longs;piralis; ob idque factum e&longs;t, vt IK ad HO e&longs;­<lb/>&longs;et vt DA ad circunferentiam ip&longs;am AGEA; nam hoc mo-<pb pagenum="51" xlink:href="022/01/057.jpg"/>do rectangulum IH in HO e&longs;t imago velocitatum eiu&longs;­<lb/>dem motus per AGEA. </s> <s id="s.000527">Ducatur nunc ex quocun­<lb/><arrow.to.target n="marg120"/><lb/>que momento Q linea QRMN ip&longs;i IK æquidi&longs;tans, & au­<lb/>&longs;picato motu ex centro D momento I, vt nempe oriatur <lb/>&longs;piralis, intelligatur momento Q ventum e&longs;&longs;e in B, quamo­<lb/>brem ductâ DBE, erit rectangulum, &longs;eu imago QIKR ad <lb/>imaginem rectangulum HIKL, ita DB ad DE, in qua ra­<lb/>tione, cum propter &longs;piralem, &longs;it etiam circunferentia AGE <lb/>ad circunferentiam AGEA, erit rectangulum IQ in HO <lb/>imago velocitatis per AGE, e&longs;tque velocitas iuxta tangen­<lb/>tem in E ad velocitatem iuxta tangentem circulum BC in <lb/>B vt ED ad DB, &longs;eu vt HO ad QM; ergo cum iuxta <expan abbr="tang&etilde;-tem">tangen­<lb/>tem</expan> in A, hoc e&longs;t in E velocitas &longs;it HO, erit &longs;ecundùm tan­<lb/>gentem circulum BC in B, ip&longs;a QM velocitas; propterea­<lb/>que imago triangulum HIO, quæ in parabolæ de&longs;criptio­<lb/>ne erat per AG, nunc erit per omnes tangentes circulos &longs;u­<lb/>binde cre&longs;centes ex D in E: &longs;cilicet momento I, erit mobi­<lb/>li puncto &longs;ecundùm DA, velocitas IK; momento Q du&mtail; <lb/>ade&longs;t in B, erit &longs;ecundùm BE velocitas QR, & iuxta <expan abbr="tang&etilde;-tem">tangen­<lb/>tem</expan> in B circuli BC velocitas QM; quæ ambæ, hoc e&longs;t ve­<lb/>locitates QR, QM cum &longs;int normaliter directæ, erit eidem <lb/><arrow.to.target n="marg121"/><lb/>mobili in B iuxta &longs;piralem velocitas QN potentia ip&longs;is am­<lb/>babus æqualis. </s> <s id="s.000528">Similiterque momento H cum mobil&etail; <lb/>fuerit in A, erit velocitas iuxta &longs;piralem, ip&longs;a HP æqualis <lb/>potentiâ duabus velocitatibus HL iuxta radium, et HO <lb/>iuxta tangentem; & &longs;ic omnino liquet, ip&longs;um quadrilineum <lb/>HIKP e&longs;&longs;e imaginem velocitatum tam in de&longs;criptione pa­<lb/>rabolæ AGF, quàm &longs;piralis Archimedeæ DBA, & cum &longs;it <lb/>in ij&longs;dem de&longs;criptionibus homogenea &longs;ibi ip&longs;i, con&longs;tat ip­<lb/><arrow.to.target n="marg122"/><lb/>&longs;as curuis æquales e&longs;&longs;e. </s> <s id="s.000529">Nam vt imago illa ad &longs;e ip&longs;am ita <lb/>parabola ad &longs;piralem prædictam. </s> <s id="s.000530">Quod &c. <!-- KEEP S--></s> </p> <pb pagenum="52" xlink:href="022/01/058.jpg"/> <p type="margin"> <s id="s.000531"><margin.target id="marg118"/><emph type="italics"/>Pr.<emph.end type="italics"/> 13. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000532"><margin.target id="marg119"/><emph type="italics"/>Pr. <gap/>. </s> <s id="s.000533">prima.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000534"><margin.target id="marg120"/><emph type="italics"/>Pr.<emph.end type="italics"/> 2. <emph type="italics"/>prima.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000535"><margin.target id="marg121"/><emph type="italics"/>Pr.<emph.end type="italics"/> 8. <emph type="italics"/>huius & <lb/>Cor. <!-- KEEP S--></s> <s id="s.000536">pr.<emph.end type="italics"/> 13.</s> </p> <p type="margin"> <s id="s.000537"><margin.target id="marg122"/><emph type="italics"/>Pr.<emph.end type="italics"/> 2. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000538"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000539"><emph type="italics"/>Hinc aparet, &longs;piralem DB ad &longs;piralem DBG eandem habe­<lb/>re rationem, quam quadrilineum QIKN ad quadrilineum <lb/>HIKP; pariterque rectam DA ad eandem &longs;piralem DCB ha­<lb/>bere ip&longs;am rationem, ac rectangulum HIKL ad dictum qua­<lb/>drilineum HIKP. </s> <s id="s.000540">Eodem ferè modo exhiberi pißet ratio &longs;pi­<lb/>ralis ad &longs;piralem, licèt plurium inter&longs;e circulationum, eritque <lb/>pror&longs;us ea, quam habet vnum ad alterum eiu&longs;dem illius na­<lb/>turæ, quadrilineorum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000541"><emph type="center"/>PROP. XV. THEOR. XI.<emph.end type="center"/><lb/><arrow.to.target n="marg123"/><!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000542"><margin.target id="marg123"/><emph type="italics"/>Tab.<emph.end type="italics"/> 5. <emph type="italics"/>Fig.<emph.end type="italics"/> 4.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000543">SPiralis orta ex motu naturaliter accelerato per <expan abbr="radiũ">radium</expan> <lb/>circuli comprehendentis &longs;piralem ip&longs;am, & ex motu <lb/>æquabili circa <expan abbr="circumferentiã">circumferentiam</expan> eiu&longs;dem circuli, æqualis e&longs;t <lb/>ei curuæ parabolicæ natæ ex motu compo&longs;ito, cuius vnum <lb/>latus curritur iuxta imaginem trianguli, nempe motu gra­<lb/>uium, alterum verò latus iuxta imaginem trilinei &longs;ecundi, <lb/>habebitque parabola ip&longs;a axim æqualem radio, & ba&longs;i&mtail; <lb/>tertiæ parti circunferentiæ eiu&longs;dem circuli &longs;piralem com­<lb/>prehendentis. </s> </p> <p type="main"> <s id="s.000544">E&longs;to &longs;piralis ACB, quæ &longs;ignatur ex motu <expan abbr="pũcti">puncti</expan> A æqua<lb/>biliter lati circa circumferentiam ADA, dum nempe <expan abbr="eod&etilde;">eodem</expan> <lb/>tempore IF, punctum B currit à quiete lineam BA motu <lb/>grauium de&longs;cendentium; &longs;it verò imago velocitatum dicti <lb/>motus æquabilis per ADA rectangulum HGFI, & alte­<arrow.to.target n="marg124"/><lb/>rius motus imago, (quæ triangulum erit) e&longs;to FEIM. Pa­<lb/><arrow.to.target n="marg125"/><lb/>tet, quia ip&longs;æ imagines ponuntur homogeneæ, e&longs;&longs;e rectan­<lb/>gulum HGFI ad triangulum IFM vt ADA circumferentia <lb/>ad radium BA, & propterea IM ad IH erit vt BA ad dimi­<lb/>dium circunferentiæ AEDA. </s> <s id="s.000546">Sumatur quodlibet <expan abbr="mom&etilde;-tum">momen­<lb/>tum</expan> K, & ducatur ONKL æquidi&longs;tans HM, puteturque <pb pagenum="53" xlink:href="022/01/059.jpg"/>eodem illo momento mobile <expan abbr="v&etilde;tum">ventum</expan> e&longs;&longs;e in C &longs;piralis pro­<lb/>po&longs;itæ BCA: agatur per ip&longs;um punctum radius BCD, & &longs;ic <lb/>illo momento extremitas A currendo circa periphæriam <lb/>reperietur in D, eritque circunferentia AED ad ip&longs;am <lb/>AEDA, vt imago rectangulum OGFK ad <expan abbr="imagin&etilde;">imaginem</expan> GHIF, <lb/>hoc e&longs;t erit vt KF ad FI; at BC ad BD erit vt imago trian­<lb/>gulum KFL ad triangulum FIM, nempe vt quadratum KF <lb/>ad quadratum FI, e&longs;t autem vt BD ad BC ita velocitas <lb/>iuxta tangentem in D ad velocitatem iuxta tangentem in <lb/>C circulum, cuius radius BC; &longs;cilicet ita velocitas IH ad <lb/>velocitatem KN, quadrati nempe IF ad quadratum KF, & <lb/>ob id velocitates, quæ &longs;unt iuxta tangentes circulos &longs;ubin­<lb/>de <expan abbr="cre&longs;c&etilde;tes">cre&longs;centes</expan> ex centro B, <expan abbr="erũt">erunt</expan> expre&longs;&longs;æ in trilineo HNFIH <lb/>&longs;ecundo, cuius &longs;cilicet indoles e&longs;t vt ab&longs;ci&longs;&longs;arum quadrata <lb/>&longs;int vt applicatæ. </s> <s id="s.000547">His compo&longs;itis, intellecti&longs;que erit in B, <lb/>momento F, nulla velocitas, in C momento K duæ velo­<lb/>citates quarum vnà KI mobile iret iuxta CD, &longs;ed cum al­<lb/>tera &longs;it KN iuxta tangentem circulum, cuius radius CB, ne­<lb/><arrow.to.target n="marg126"/><lb/>ctitur vna ex duabus illis, quibus <expan abbr="ei&longs;d&etilde;">ei&longs;dem</expan> potentia e&longs;t æqua­<lb/><arrow.to.target n="marg127"/><lb/>lis, & qua idem mobile mouetur iuxta &longs;piralem illo mo­<lb/>mento K. <!-- KEEP S--></s> <s id="s.000548">Similiter cum mobile e&longs;t in D, &longs;cilicet momento <lb/>I, habebit velocitatem potentia æqualem HI, qua dirigitur <lb/>iuxta tangentem, & velocitati IM, qua &longs;ecundùm radium, <lb/>Itaque imago velocitatum mobilis de&longs;cribentis &longs;piralem <lb/>propo&longs;itis motibus tempore IF, ea erit, cuius applicatæ <lb/>&longs;unt vbique æquales potentia ijs applicatis, quæ ab <expan abbr="eod&etilde;">eodem</expan> <lb/>momento intelligi queunt in imaginibus &longs;implicibus, nem­<lb/>pe partialium motuum, HNFI, IFM. </s> <s id="s.000549">Cum præterea OT <lb/>ponatur tertia pars e&longs;&longs;e circumferentiæ AEDA, & e&longs;t <expan abbr="etiã">etiam</expan> <lb/>trilineum HFI vtpote &longs;ecundum tertia pars <expan abbr="parallelogrã-mi">parallelogram<lb/>mi</expan> HGFI, erit triangulum IFM ad trilineum ip&longs;um HFI vt <lb/><arrow.to.target n="marg128"/><lb/>BA, vel ei æqualis QO ad OT; curritur verò vt &longs;upponi­<lb/>tur OQ tempore IF iuxta imaginem triangulum IFM, ergo <lb/><arrow.to.target n="marg129"/><lb/>eodem tempore iuxta trilineum HNF curretur alterum la-<pb pagenum="54" xlink:href="022/01/060.jpg"/>tus OT, &longs;iue ba&longs;is parabolæ QI. </s> <s id="s.000550">Si itaque parabola ip&longs;a <lb/>putetur e&longs;&longs;e ORI, in qua punctum R e&longs;to vbi mobile ade&longs;t <lb/>momento K, deducantur verò ab eodem illo puncto RS <lb/>parallela axi QO, et RP æquidi&longs;tans QI, vel OT, profectò <lb/>in O, momento F, &longs;icuti in &longs;pirali, nulla erit mobili veloci­<lb/>tas, &longs;ed cum e&longs;t in R momento K habebit geminam veloci­<lb/>tatem, KL &longs;ecundùm SR, et KN iuxta PR perpendicularem <lb/>ip&longs;i SR, quæ duæ velocitates itidem component vnicam <lb/>potentia &longs;imul illis æqualem, & cum idem dicatur de qui­<lb/>bu&longs;cunque alijs punctis parabolæ, momentis temporis FI <lb/>re&longs;pondentibus, manife&longs;tum e&longs;t &longs;pirali BCA, & parabolæ <lb/>ORI vnicam, eandemque e&longs;&longs;e imaginem velocitatum, pro­<lb/>pterquam quòd ip&longs;æ curuæ, quòd &longs;int vt imagines, erunt <lb/>inter&longs;e æquales. <lb/><arrow.to.target n="marg130"/></s> </p> <p type="margin"> <s id="s.000551"><margin.target id="marg124"/><emph type="italics"/>Cor. <!-- KEEP S--></s> <s id="s.000552">pr.<emph.end type="italics"/> 4. <lb/><emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000553"><margin.target id="marg125"/><emph type="italics"/>Pr.<emph.end type="italics"/> 2. <emph type="italics"/>prim&atail;<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000554"><margin.target id="marg126"/><emph type="italics"/>Pr.<emph.end type="italics"/> 8. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000555"><margin.target id="marg127"/><emph type="italics"/>Cor. <!-- KEEP S--></s> <s id="s.000556">prop.<emph.end type="italics"/> 13. <lb/><emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000557"><margin.target id="marg128"/><emph type="italics"/>Pr.<emph.end type="italics"/> 10. <emph type="italics"/>primi <lb/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000558"><margin.target id="marg129"/><emph type="italics"/>Pr.<emph.end type="italics"/> 2. <emph type="italics"/>primi <lb/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000559"><margin.target id="marg130"/><emph type="italics"/>Pr.<emph.end type="italics"/> 2. <emph type="italics"/>prima.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000560"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000561"><emph type="italics"/>Exemplo traditarum curuarum, po&longs;&longs;unt innumeræ &longs;pira­<lb/>les &longs;uis parabolis æquales excogitari, nec ideo res minùs de­<lb/>mon&longs;trabitur, &longs;i loco rectarum, &longs;eu laterum OT, OP compo&longs;iti <lb/>motus, &longs;ub&longs;tituantur circuli, aut circulorum arcus, qui ad re­<lb/>ctos angulos &longs;e &longs;ecent, &longs;cilicet <expan abbr="cũ">cum</expan> tangentes ad punctum infle­<lb/>xionis, &longs;eu occur&longs;us ip&longs;arum curuarum &longs;ibi ip&longs;is perpendicu­la<lb/>res fuerint. </s> <s id="s.000562">Quòd &longs;i ip&longs;a curua latera ad rectos angulos non <lb/>&longs;e &longs;ecent curuæ nihilominus ab ip&longs;o compo&longs;ito motu na&longs;cen­<lb/>tes poterunt exhiberi curuas parabolicas exequantes, quarum <lb/>itidem latera &longs;int rectæ eundem angulum, quem prædictæ <expan abbr="tã-gentes">tan­<lb/>gentes</expan>, comprehendentes. </s> <s id="s.000563">Sed de his &longs;atis, nunc dicamus ea <lb/>tempora, quibus duorum pendulorum &longs;imiles vibrationes ab­<lb/>&longs;oluuntur, hoc e&longs;t Galilei &longs;ententiam demon&longs;trabimus, quam <lb/>quondam haud ruditer decepti fal&longs;am credidimus.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000564"><emph type="italics"/>Vincentius Viuianus eximius no&longs;tri æui Geometra vt tue­<lb/>retur Galilei &longs;ententiam, cuius digni&longs;&longs;imè &longs;e fui&longs;&longs;e di&longs;cipu­<lb/>lum profitetur, tradidit mihi per admodum Reuerendum, at-<emph.end type="italics"/><pb pagenum="55" xlink:href="022/01/061.jpg"/><emph type="italics"/>que culti&longs;&longs;imum Patrem Io&longs;eph Ferronum è Societate Ie&longs;u, de­<lb/>mon&longs;trationem &longs;uam verè pulcherrimam, ac di&longs;erti&longs;&longs;imè <lb/>exaratam, qua vna potui&longs;&longs;em de Galilei aßerto &longs;atisfactus <lb/>e&longs;&longs;e; eam demon&longs;trationem, ij&longs;dem pror&longs;us verbis, ac figuris, <lb/>quibus ad me peruenit hic duxi reponendam, ne gloria&mtail;, <lb/>quam Vir tantus meretur, ip&longs;i videremur no&longs;tra, quam inde <lb/>&longs;ubdemus, demon&longs;tratione, &longs;ubripere.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000565"><emph type="italics"/>Inquit ergo.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000566">TEmpora naturalium de cur&longs;uum &longs;phærarum grauium <lb/><arrow.to.target n="marg131"/><lb/>per &longs;imiles, &longs;imiliterque ad horizontem inclinatos <lb/>arcus curuarum linearum in planis, aut verticalibus, aut <lb/>ad horizontem æqualiter inclinatis de&longs;criptarum, & quæ <lb/>totæ &longs;int ad ea&longs;dem partes cauæ, inter&longs;e &longs;unt in &longs;ubdupli­<lb/>cata ratione chordarum eorundem arcuum homologè <lb/>&longs;umptarum. </s> </p> <p type="margin"> <s id="s.000567"><margin.target id="marg131"/><emph type="italics"/>Tab.<emph.end type="italics"/> 6. <emph type="italics"/>fig.<emph.end type="italics"/> 1. 2 <lb/>3. 4.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000568">Ex puncto A ad curuam lineam BCD extra ip&longs;am i&ntail; <lb/>plano po&longs;itam, & in totum ad ea&longs;dem partes cauam, quæ­<lb/>cunque ea &longs;it (vel nimirum pars aliqua circumferentiæ <lb/>circuli, vel alicuius ex infinitis ellip&longs;ibus, aut parabolis, aut <lb/>hyperbolis, aut &longs;piralibus, aut cycloidibus, vel concoidis, <lb/>vel ci&longs;oidis, &longs;eu alterius cuiu&longs;cumque ex notis, vel ignotis <lb/>curuis educantur omnes rectæ AB, AC, AD &c. <!-- KEEP S--></s> <s id="s.000569">quæ à <lb/>punctis E, F, C, vel intra, vel extra eas &longs;umptis proportio­<lb/>nalibus &longs;ecentur, ita vt &longs;it AB ad AE, &longs;icut AC ad AF, & <lb/>&longs;icut AD ad AG &c. <!-- KEEP S--></s> <s id="s.000570">& hoc &longs;emper. </s> <s id="s.000571">Sic enim dubio pro­<lb/>cul apparet, prout facillimum e&longs;t o&longs;tendere, lineam EFG <lb/>tran&longs;euntem per &longs;ingula puncta E, F, G &longs;ic inuenta, cur­<lb/>uam <expan abbr="quoq;">quoque</expan> e&longs;&longs;e, & eiu&longs;dem penitus naturæ, ac data BCD <lb/>eique &longs;imilem, &longs;imiliterque cum ip&longs;a po&longs;itam, atque in to­<lb/>tum cauam ad ea&longs;dem partes, ad quas ponitur caua ip&longs;&atail; <lb/>BCD. </s> <s id="s.000572">Concipiatur modò planum, in quo manent huiu&longs;­<lb/>modi &longs;imilium curuarum &longs;imiles arcus BCD, EFG, vel e&longs;&longs;e <lb/>ad horizontem erectum, nempè verticale, vel ad ip&longs;u&mtail; <pb pagenum="56" xlink:href="022/01/062.jpg"/>horizontem inclinatum iuxta curuitates ip&longs;orum arcuum <lb/>BCD, EFG inflexas e&longs;&longs;e &longs;uperficies eidem plano erectas, <lb/>ita tamen, vt &longs;uper has po&longs;itis grauibus &longs;phæris in A, E per <lb/>ip&longs;as &longs;ic inflexas &longs;uperficies eædem &longs;phæræ naturaliter <lb/>decurrere queant; id quod &longs;anè accidet, cum arcus BCD <lb/>totus fuerit infra horizontalem IL ex arcus &longs;ubli­<lb/>miori puncto B ductam, fuerintque ab hac continuati re­<lb/>ce&longs;&longs;us, ac totus ad vnam partem perpendiculi BH: nam &longs;ic <lb/>talis quoque erit alter arcus EFG illi BCD &longs;imilis, &longs;imili­<lb/>terque po&longs;itus. </s> <s id="s.000573">His omnibus &longs;ic manentibus: Dico tem­<lb/>pus decur&longs;us &longs;phæræ grauis E per &longs;imilem, &longs;imiliterque po­<lb/>&longs;itum arcum EFG, e&longs;&longs;e in &longs;ubduplicata ratione chordarum <lb/>BO, EG arcus ip&longs;os &longs;ubtendentium. </s> <s id="s.000574">Secto enim bifariam <lb/>angulo BAD per rectam AC arcum BD &longs;ecantem in C, <lb/>atque arcum EFG in F, iungantur chordæ BC, CD, et EF, <lb/>FG, quæ ex huiu&longs;modi curuarum natura cadent totæ intra <lb/>ip&longs;os arcus, &longs;ed in prima, & &longs;ecunda figura ad partes poli <lb/>A, in tertia verò, & quarta ad oppo&longs;itas. </s> </p> <p type="main"> <s id="s.000575">Et quoniam, ex talium curuarum gene&longs;i, e&longs;t vt BA ad <lb/>AE, ita DA, ad AG, erit BD ip&longs;i EG parallela, hoc e&longs;t <lb/>vtraque ad horizontem æqualiter inclinata, atque in ra­<lb/>tione BA ad AE. <!-- KEEP S--></s> <s id="s.000576">Similiter cum &longs;it, vt BA ad AE, ita CA <lb/>ad AF, etiam BC, EF inter&longs;e æquidi&longs;tabunt, &longs;eu ad hori­<lb/>zontem æqualiter inclinabuntur, eruntque in ratione ea­<lb/>dem, ac BA ad AE. <!-- KEEP S--></s> <s id="s.000577">Idemque o&longs;tenditur de chordis CD, <lb/>FG, quare ex magni Galilei &longs;ententia de motu naturaliter <lb/>accelerato indubitanter &longs;equitur tempus decur&longs;us &longs;phæræ <lb/>grauis ex B in D per binas chordas BC, CD ad tempus <lb/>decur&longs;us per vnicam BD, e&longs;&longs;e vt tempus decur&longs;us grauis <lb/>&longs;phæræ ex E in G per binas EF, FG ad tempus decur&longs;us <lb/>per vnicam EG: eadem itidem ratione demon&longs;tratur (an­<lb/>gulis pariter BAC, CAD bifariam &longs;ectis per rectas, quæ <lb/>&longs;imiles arcus BC, EF, ac CD, FG duas in partes diuidant) <lb/>ex quatuor vtrinque arcuum horum cordis, illas inter&longs;e <pb pagenum="57" xlink:href="022/01/063.jpg"/>homologas, &longs;imile&longs;que arcus &longs;ubtendentes ad horizonte m <lb/>e&longs;&longs;e æqualiter inclinatas, ac alteram alteri in ratione ea­<lb/>dem, in qua &longs;unt rectæ AB, AE &c: ac propterea ex ea­<lb/>dem Galilei &longs;cientia con&longs;tabit vtique, tempus decur&longs;us ex <lb/>B in C &longs;phæræ grauis B per quatuor chordas quatuor par­<lb/>tes arcus BCD &longs;ubtendentes ad tempus decur&longs;us per vni­<lb/>cam BD, e&longs;&longs;e vt tempus decur&longs;us &longs;phæræ grauis E ex E in <lb/>G per quatuor illis homologas chordas quatuor partes <lb/>arcus EFG pariter &longs;ubtendentes ad tempus decur&longs;us per <lb/>vnicam chordam EG: & hoc &longs;emper ita euenire demon­<lb/>&longs;trabitur quantacunque, & maxima fuerit in perpetua an­<lb/>gulorum bi&longs;ectione æquèmultiplicitas in vtroque arcu <lb/>talium chordarum homologè &longs;umptarum, ac inter&longs;e pro­<lb/>portionalium, æqualiterque ad horizontem inclinatarum: <lb/>Propterquam quòd &longs;emper decur&longs;us ex B in D per aggre­<lb/>gatum chordarum omnium in arcu BCD ad tempus de­<lb/>cur&longs;us per &longs;olam chordam BD e&longs;&longs;e vt tempus decur&longs;us ex <lb/>E in G per aggregatum totidem chordarum in arcu EFG <lb/>ad tempus decur&longs;us per vnicam chordam EG; adeo vt de­<lb/>nique iure optimo educi po&longs;&longs;e videatur, tempus decur&longs;us <lb/>grauis ex B in D per aggregatum infinitarum chordarum <lb/>totum arcum BCD con&longs;tituentium, &longs;eu tempus per ip&longs;um <lb/>arcum BCD ad tempus decur&longs;us per &longs;olam cordam BD <lb/>e&longs;&longs;e vt tempus decur&longs;us grauis ex E in G per aggregatum <lb/>totidem infinitarum chordarum dictis homologè propor­<lb/>tionalium, æqualiterque &longs;ingulæ &longs;ingulis ad horizonte&mtail; <lb/>inclinatarum, ac totum arcum EFG conformantium, &longs;iue <lb/>vt tempus per ip&longs;um arcum EFG per &longs;olam chordam EG. <lb/></s> <s id="s.000578">Quocirca permutando, tempus, decur&longs;us &longs;phæræ grauis B <lb/>per arcum BCD ad tempus decur&longs;us &longs;phæræ grauis E per <lb/>arcum &longs;imilem, &longs;imiliterque po&longs;itum EG erit vt tempus <lb/>decur&longs;us per chordam BD ad tempus decur&longs;us per chor­<lb/>dam EG; &longs;ed ex eadem Galilaica &longs;cientia de motu, tempus <lb/>decur&longs;us per chordam BD ad tempus decur&longs;us per æqua-<pb pagenum="58" xlink:href="022/01/064.jpg"/>iter inclinatam EG e&longs;t in &longs;ubduplicata ratione ip&longs;aru&mtail; <lb/>chordarum BD, EG; ergo tempus quoque decur&longs;us ex B <lb/>per arcum BCD ad tempus decur&longs;us ex E per arcum EFG <lb/>e&longs;t in eadem &longs;ubduplicata ratione chord&etail; BD ad chordam <lb/>EG, quod o&longs;tendendum propo&longs;uimus. </s> </p> <p type="main"> <s id="s.000579"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000580"><emph type="italics"/>Ex modò osten&longs;is &longs;uper prima, ac &longs;ecunda figura, manife­<lb/>&longs;tum fit celeberrimum illud magni Galilei pronuntiatum, <lb/>quòd videlicet, ratio temporum &longs;imilium vibrationum pen­<lb/>dulorum &longs;it &longs;ubduplicata rationis longitudinum filorum ho­<lb/>mologè &longs;umptorum, non tantum verum e&longs;&longs;e de vibrationibus <lb/>pendulorum per arcus &longs;imiles, &longs;imiliterque po&longs;itos, &longs;umptos <lb/>ex circulorum quadrantibus ad perpendiculum v&longs;que termi­<lb/>nantes, &longs;ed etiam de vibrationibus per arcus quo&longs;cumque &longs;i­<lb/>miles quadrantum à perpendiculo &longs;eiunctos: dummodo ip&longs;i <lb/>&longs;imiles arcus &longs;int quoque &longs;imiliter po&longs;iti: quales nimirùm ap­<lb/>parent in figuris prima, ac &longs;ecunda arcus BCD, EFG, dum <lb/>grauia B, E ex filis, aut ha&longs;tulis AB, AE circa punctum A <lb/>conuertibilibus appen&longs;a concipiantur.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000581"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000582"><emph type="italics"/>Si curua BCD, EFG in prima, & &longs;ecunda figura fuerint <lb/>&longs;imiles arcus ex circulis commune centrum A habentibus; ac <lb/>in verticali plano po&longs;itis, & in prima figura recta AB, AE <lb/>fuerint fila aut ha&longs;tulæ quædam circa clauum A conuertibi­<lb/>les, in &longs;ecunda verò recta AB, AE concipiantur, vt ha&longs;tulæ <lb/>inflexibiles, volubile&longs;que circa imum punctum E, atque ex <lb/>huiu&longs;modi filorum, aut ha&longs;tularum terminis B, E pendeant <lb/>graues &longs;phæræ B, E (cum eadem &longs;int tempora prout a&longs;&longs;umi­<lb/>tur quoque ab ip&longs;o met Ceua) tempora inquam decur&longs;uum <lb/>liberorum granium B, E per arcus BCD, EFG, ac tempor&atail;<emph.end type="italics"/><pb pagenum="59" xlink:href="022/01/065.jpg"/><emph type="italics"/>de&longs;cen&longs;uum ip&longs;orum grauium per eo&longs;dem arcus (vel hac à <lb/>filis pendeant, vel ab hastulis &longs;ustineantur) erit quoque tem­<lb/>pus de&longs;cen&longs;us, &longs;eu vibrationis penduli B per arcum BCD ad <lb/>tempus de&longs;cen&longs;us, &longs;eu vibrationis penduli E per arcum EFD <lb/>in &longs;ubduplicata ratione chordæ BD ad chordam EG; &longs;ed hæc <lb/>ratio chordarum BD, EG eadem e&longs;t, ac ratio filorum, aut ha­<lb/>&longs;tularum AB, AE; Ergo tempus vibrationis penduli AB per <lb/>arcum BCD ad tempus vibrationis penduli AE per arcum il­<lb/>li &longs;imilem, &longs;imiliterque po&longs;itum EFG est quoque in &longs;ubdupli­<lb/>cata ratione longitudinum, vel filorum, aut ha&longs;tularum, ex <lb/>quibus eadem grauia pendula &longs;imiles vibrationes ab&longs;oluunt <lb/>BCD, EFG.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000583"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000584"><emph type="italics"/>Cæterùm non me latet con&longs;tructionem, ac demonstratio-<emph.end type="italics"/><lb/><arrow.to.target n="marg132"/><lb/><emph type="italics"/>nem à nobis &longs;uperiùs allatam nonnullis euidentiorem forta&longs;&longs;e <lb/>eua&longs;uram, &longs;i ommi&longs;&longs;a illa continua bi&longs;ectione angulorum &longs;i­<lb/>miles, &longs;imiliterque po&longs;itos arcus ab&longs;cindentium ex &longs;imilibus <lb/>curuis ibidem de&longs;criptis; atque ommi&longs;&longs;a pariter continua co­<lb/>niunctione chordarum, vt ibi factum fuit, horum vice, vt in <lb/>quinta figura, ex punctis B, D binæ tangentes curuam BCD <lb/>ducantur BH, DH, quæ omninò mutuò &longs;e &longs;ecabunt in puncto <lb/>H (ob conditiones in ip&longs;a Theorematis expo&longs;itione vltimo lo­<lb/>co po&longs;itas) atque ex E, G ip&longs;is BH, DH agantur æquidistan­<lb/>tes, quæ iunctæ, AH &longs;imul occurrent in I, curuamque EFG <lb/>contingent pariter ad E, G (quæ omnia &longs;i opus fuerit, facilè <lb/>demon&longs;trabuntur) ac in&longs;uper, &longs;i à puncto C, in quo iunct&atail; <lb/>AH &longs;ecat arcum BCD, agatur tangens LM primas BH, DH <lb/>&longs;ecans in LM; Per F verò, in quo AICH &longs;ecat arcum EFG <lb/>agatur NO parallela tangenti LM, quæ curuam pariter EFG <lb/>tanget ad F, ac tangentes EI, GI &longs;ecabit ad NO: & &longs;i iunctis <lb/>in&longs;uper AL, AM, eadem, quam nunc explicauimus, continue­<lb/>tur con&longs;tructio per alias, atque alias tangentes, ac parallelas<emph.end type="italics"/><pb pagenum="60" xlink:href="022/01/066.jpg"/><emph type="italics"/>&c. </s> <s id="s.000585">&longs;ic enim vnicuique harum curuarum circum&longs;cribetur <lb/>rectilineum, primò ex binis tangentibus, &longs;ecundò ex tribus, <lb/>tertiò ex quinque, quartò ex &longs;eptem, & &longs;ic vlteriùs iuxta re­<lb/>liquos impares numeros &longs;ucce&longs;&longs;iuè &longs;umptos; atque omnia pa­<lb/>ria talium æquidi&longs;tantium tangentium eam &longs;emper inter &longs;e <lb/>rationem &longs;eruabunt, quam habent chorda BD, EG, &longs;en quam <lb/>habent rectæ BA, EA, <expan abbr="eruntq;">eruntque</expan> inter&longs;e æqualiter inclinatæ; <lb/><expan abbr="adeoq;">adeoque</expan> tempora decur&longs;uum grauium B, E tam per &longs;ummas <lb/>binarum tangentium BH, HD, EI, IG, quàm per minores <lb/>&longs;ummas, ex quinque &longs;imul chordis vtrinque &longs;umptas, aut <lb/>quàm per alias &longs;emper minores &longs;ummas huiu&longs;modi tangen­<lb/>tium iuxta quantumuis maiorem numerum imparem æquè <lb/>multipliciter &longs;umptarum, erunt perpetuò proportionalia tem­<lb/>poribus decur&longs;uum per chordas BD, EG; & hoc &longs;emper; etiam­<lb/>&longs;i per huiu&longs;modi decrementa aggregatorum ex tangentibus <lb/>vtrinque æquèmultipliciter &longs;umptis, deueniatur ad vltimus, <lb/>ac breui&longs;&longs;imas ip&longs;is arcubus circum&longs;criptiones polygonorum <lb/>ex lateribus numero innumerabiliter aquèmultiplicibus, hoc <lb/>e&longs;t ad ip&longs;os &longs;imiles, &longs;imiliterque po&longs;itos arcus BCD, EFG, <lb/>quorum &longs;ingula homologorum laterum, &longs;eu punctorum paria, <lb/>vt B, & E; C et F; D, et G &c. <!-- KEEP S--></s> <s id="s.000586">haberi poßunt tanquam tot <lb/>paria parallelarum, ac proportionalium tangentium ip&longs;os &longs;i­<lb/>miles, ac &longs;imiliter po&longs;itos arcus con&longs;tituentia. </s> <s id="s.000587">Quapropter <lb/>ratio <expan abbr="quoq;">quoque</expan> temporum decur&longs;uum per ip&longs;os arcus, &longs;imilis erit <lb/>rationi temporum decur&longs;uum per chordas; &longs;ed horum decur­<lb/>&longs;uum ratio &longs;ubdupla e&longs;t rationis inter ip&longs;as chordas. </s> <s id="s.000588">Quare, <lb/>& alia hac methodo con&longs;taret propo&longs;itum.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000589"><margin.target id="marg132"/><emph type="italics"/>Tab.<emph.end type="italics"/> 6 <emph type="italics"/>fig.<emph.end type="italics"/> 5.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000590"><emph type="italics"/>Hactenus graui&longs;&longs;imus Vir; &longs;upere&longs;t modò, vt quemadmo­<lb/>dum annuimus, veritatem eandem no&longs;tra quoque methodo, <lb/>confirmemus, vt ijs, quibus &longs;atis probat demon&longs;tratio allata, <lb/>&longs;it nostra, quam afferemus, in experimentum traditarum hùc <lb/><expan abbr="v&longs;q;">v&longs;que</expan> rerum; & quibus &longs;ecùs acciderit ex aliqua dubitatione, <lb/>hæc per demon&longs;trationes no&longs;tras pror&longs;us, &longs;tatimq tollatur. <lb/></s> <s id="s.000591">Illud etiam admoneo, eam rem non tantum me o&longs;ten&longs;urum,<emph.end type="italics"/><pb pagenum="61" xlink:href="022/01/067.jpg"/><emph type="italics"/>vt pulcherrima, <expan abbr="vtilimaq;">vtilimaque</expan> veritas pluribus demon&longs;trationi­<lb/>bus aperiatur; verùm potius vt ampli&longs;&longs;ima Methodus, qua tum <lb/>vtemur, aliorum motuum demon&longs;trandorum in exemplum <lb/>veniat.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000592"><emph type="center"/>PROP. XVI. THEOR. XII.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000593">IN eadem recta CD coeant duæ planæ, <expan abbr="inter&longs;eq;">inter&longs;eque</expan> &longs;imiles, <lb/><arrow.to.target n="marg133"/><lb/>ac pror&longs;us æquales figuræ ADCA, BDCB, & quidem <lb/>ita, vt ab eodem puncto M &longs;i ducatur MH parallela CA, <lb/>et ML ip&longs;i CB, &longs;it &longs;emper MH æqualis ML, quemadmo­<lb/>dum æquales &longs;unt inter&longs;e CA, CB. <!-- KEEP S--></s> <s id="s.000594">Dico (&longs;i concipiatur <lb/>&longs;olidum eius indolis, vt ductis rectis BA, LH cadant i&longs;tæ <lb/>omninò in &longs;olidi i&longs;tius &longs;uperficie; ip&longs;um verò &longs;olidum, quod <lb/>&longs;it BADC, &longs;ecetur plano quolibet æquidi&longs;tante figuræ <lb/>BCD) fore, vt &longs;ectio i&longs;ta KFEIK, &longs;it pror&longs;us &longs;imilis, æqua­<lb/>li&longs;que alteri conterminæ AEI; &longs;ed opportet, vt palam e&longs;t, <lb/>coeuntes illæ figuræ non in eodem plano reperiantur. </s> </p> <p type="margin"> <s id="s.000595"><margin.target id="marg133"/><emph type="italics"/>Tab.<emph.end type="italics"/> 6. <emph type="italics"/>fig.<emph.end type="italics"/> 7.</s> </p> <p type="main"> <s id="s.000596">Cum duo plana inuicem parallela KIE, BCD &longs;ecent <lb/>alia duo inter&longs;e item parallela ACB, HML, erunt commu­<lb/>nes &longs;ectiones, inter&longs;e omnes æquidi&longs;tantes rectæ lineæ KI, <lb/>GF, ML, CB. <!-- KEEP S--></s> <s id="s.000597">Cum verò ob naturam &longs;olidi, &longs;ectiones <lb/>BAC, IHM triangula &longs;int rectilinea, erit vt BC ad CA, <lb/>ita KI ad IA. <!-- KEEP S--></s> <s id="s.000598">Sunt autem priores inter&longs;e æquales, ergo & <lb/>po&longs;tremæ KI, AI inter&longs;e æquabuntur. </s> <s id="s.000599">Eademque ratione <lb/>&longs;unt æquales HG, GF: & quoniam ob &longs;imilitudinem figu­<lb/>rarum angulus BCD æquatur angulo ACD, & angulus <lb/>BCD æqualis angulo KIE (nam etiam CD, IE &longs;unt rectæ <lb/>æquidi&longs;tantes, cum nempe &longs;int communes &longs;ectiones plani <lb/>DCA &longs;ecantis duo æquidi&longs;tantia KIE, BCD) ergo cu&mtail; <lb/>angulus pariter ACD æquet angulum AIE, erunt anguli <lb/>KIE, AIE, et FGE, HGF æquales. </s> <s id="s.000600">Quod &c. <!-- KEEP S--></s> </p> <pb pagenum="62" xlink:href="022/01/068.jpg"/> <p type="main"> <s id="s.000601"><emph type="center"/>PROP. XVII. THEOR. XIII.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000602">II&longs;dem manentibus. </s> <s id="s.000603">Dico triangula ACB, LHM e&longs;&longs;&etail; <lb/>&longs;imilia. </s> <s id="s.000604">Sunt enim parallelæ &c. <!-- KEEP S--></s> <s id="s.000605">inter&longs;e tam rectæ CB, <lb/>ML, quàm CA, MH; ideo anguli ACB, HML inter&longs;e <lb/>æquabuntur, & &longs;unt circa eos proportionalia latera, nem. <lb/></s> <s id="s.000606">pe BC ad CA, vt LM, MH; ergo con&longs;tat propo&longs;itum. </s> </p> <p type="main"> <s id="s.000607"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000608"><emph type="center"/><emph type="italics"/>Simul con&longs;tat rectas AB, LH inter&longs;e æquidi&longs;tare.<emph.end type="italics"/><emph.end type="center"/></s> </p> <p type="main"> <s id="s.000609"><emph type="center"/>PROP. XVIII. THEOR. XIV.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000610">II&longs;dem vt &longs;upra manentibus, ita tamen vt ACD &longs;it an­<lb/>gulus rectus (&longs;ic enim DC perpendicularis erit duabus <lb/>AC, CB) Dico &longs;olidum huiu&longs;modi ad pri&longs;ma, cuius ba&longs;is <lb/>ABC, & altitudo CD eandem habere rationem, quam &longs;o­<lb/>lidum rotundum ortum ex rotatione figuræ CAD circ&atail; <lb/>axem CD ad cylindrum genitum ex conuer&longs;ione rectan­<lb/>guli AC in CD circa eundem axem. <lb/><arrow.to.target n="marg134"/></s> </p> <p type="margin"> <s id="s.000611"><margin.target id="marg134"/><emph type="italics"/>Tab.<emph.end type="italics"/> 6. <emph type="italics"/>Fig.<emph.end type="italics"/> 8.</s> </p> <p type="main"> <s id="s.000612">Compleatur ip&longs;um pri&longs;ma, & &longs;it quidem AQDPBC, <lb/>quod &longs;ecetur vnà cum propo&longs;ito &longs;olido per quoduis pla­<lb/>num ba&longs;i ACB æquidi&longs;tans: fiet in pri&longs;mate &longs;ectio trian­<lb/>gulum OMN &longs;imile, æqualeque ip&longs;i ACB, & in altero &longs;o­<lb/>lido triangulum LHM eidem ACB &longs;imile. </s> <s id="s.000613">Triangulum <lb/>ACB pri&longs;matis ad <expan abbr="triãgulum">triangulum</expan> idem &longs;olido propo&longs;ito com­<lb/>mune, e&longs;t vt circulus radio CA de&longs;criptus ad circulum <lb/>eundem; Item triangulum NOM &longs;ectio pri&longs;matis e&longs;t ad <lb/>triangulum LHM &longs;ectionem propo&longs;iti &longs;olidi, vt circulus ex <lb/>radio MO de&longs;criptus ad circulum radio MH. </s> <s id="s.000614">Cum dein­<lb/>de idem dicatur de alijs omnibus &longs;ectionibus pri&longs;matis, & <pb pagenum="63" xlink:href="022/01/069.jpg"/>propo&longs;iti &longs;olidi erunt omnes &longs;imul primæ, quæ inter&longs;&etail; </s> </p> <p type="main"> <s id="s.000615"><arrow.to.target n="marg135"/><lb/>æquales &longs;unt, ad omnes &longs;imul &longs;ecundas vt omnes tertiæ, <lb/>his partibus inter&longs;e æqualibus, ad omnes quartas; &longs;cilicet <lb/>erunt omnia triangula pri&longs;matis, &longs;eu ip&longs;um pri&longs;ma ad om­<lb/>nia triangula propo&longs;iti &longs;olidi, &longs;eu ad ip&longs;um &longs;olidum, vt om­<lb/>nes circuli eius cylindri, qui oritur ex conuer&longs;ione figuræ <lb/>ADCA circa axem CD, hoc e&longs;t vt ip&longs;um &longs;olidum rotun­<lb/>dum, &longs;eu cylindrus ad omnes &longs;imul circulos &longs;olidi rotundi <lb/>geniti ex rotatione figuræ AHDCA circa axem <expan abbr="ipsũ">ipsum</expan> CD, <lb/>&longs;eu ad ip&longs;um propo&longs;itum &longs;olidum. </s> <s id="s.000616">Quod &c. <!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000617"><margin.target id="marg135"/><emph type="italics"/>lemmæ<emph.end type="italics"/> 18. <emph type="italics"/>in <lb/>libro de dim. <lb/></s> <s id="s.000618">parab. </s> <s id="s.000619">Euang. <lb/><!-- REMOVE S-->T&etail;rricel.<emph.end type="italics"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000620"><emph type="center"/>PROP. XIX. THEOR. XV.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000621">ET rur&longs;us ip&longs;a manente figura patet, &longs;i ducantur HR, <lb/>LS parallelæ MD, fore non &longs;olum figuram AHDPA, <lb/>&longs;imilem, ac æqualem BLDQB; verùm etiam APRHA ip&longs;i <lb/>BLSQB: Cum ita &longs;it, aio, eundem cylindrum ad &longs;oli­<lb/>dum rotundum genitum, ex volutatione figuræ APD cir­<lb/>ca eundem axem CD eandem rationem habere, ac pri&longs;ma <lb/><expan abbr="prædictũ">prædictum</expan>, cuius ba&longs;is ACB, altitudo AP ad &longs;olidum, quod <lb/>&longs;upere&longs;t ex ip&longs;o pri&longs;mate, dempto &longs;olido ACBLDHA. <!-- KEEP S--></s> </p> <p type="main"> <s id="s.000622">Nam ex præterita propo&longs;itione nouimus, dictum pri&longs;ma <lb/>ad &longs;olidum eius partem ACBLDHA e&longs;&longs;e vt cylindrus or­<lb/>tus ex conuer&longs;ione rectanguli CP circa axem CD ad par­<lb/>tem eius rotundum circa axem eundem CD conuer&longs;a fi­<lb/>gura ADC, ergo per conuer&longs;ionem rationis, erit id quod <lb/>propo&longs;uimus. </s> </p> <p type="main"> <s id="s.000623"><emph type="center"/>DEF. IV.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000624">QVodcunque ex dictis propo&longs;itis &longs;olidis vocetur ab <lb/>ea figura, iuxta quam intelligitur ortum. </s> <s id="s.000625">Scilicet <lb/>ACBLDHA dicatur à figura AHDCA, & alte­<lb/>rum, quod fuit re&longs;iduum prædictum dicatur à figura AH­<lb/>DPA. <!-- KEEP S--></s> </p> <pb pagenum="64" xlink:href="022/01/070.jpg"/> <p type="main"> <s id="s.000626"><emph type="center"/>PROP. XX. THEOR. XVI.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000627">SI à quibu&longs;cunque figuris fuerint duo &longs;olida, hæc inter­<lb/><arrow.to.target n="marg136"/><lb/>&longs;e erunt vt &longs;olida alia genita ex conuer&longs;ione illarum <lb/>figurarum circa communem &longs;ectionem &longs;imilium, æqua­<lb/>lium, ac inter&longs;e coeuntium figurarum. </s> </p> <p type="margin"> <s id="s.000628"><margin.target id="marg136"/><emph type="italics"/>Tab.<emph.end type="italics"/> 6. <emph type="italics"/>Fig.<emph.end type="italics"/> 9.</s> </p> <p type="main"> <s id="s.000629">Solidum à figura ABC &longs;it CAFDBC, & quod e&longs;t à fi­<lb/>gura GLH e&longs;to HGILH. </s> <s id="s.000630">Dico illud ad hoc &longs;olidum e&longs;&longs;e <lb/>vt rotundum natum ex conuer&longs;ione figuræ ABC circ&atail; <lb/>axem CE ad rotundum ortum ex <expan abbr="cõuer&longs;ione">conuer&longs;ione</expan> figuræ GLH <lb/>circa axem HL. <!-- KEEP S--></s> <s id="s.000631">Opportet tamen angulos ACF, GHI <lb/>æquales e&longs;&longs;e. </s> <s id="s.000632">Intelligantur pri&longs;mata triangularia, quorum <lb/>ba&longs;es ACF, GHI, & altitudines CE, HL; hoc e&longs;t &longs;int ip&longs;a <lb/>&longs;olida pri&longs;matica AFCEBD, GIHLMK. </s> <s id="s.000633">Solidum à figu­<lb/><arrow.to.target n="marg137"/><lb/>ra ABC ad pri&longs;ma AFCEBD habet eandem rationem, <lb/>quam &longs;olidum rotundum ortum ex conuer&longs;ione &longs;iguræ <lb/>ABC circa axem CE ad cylindrum natum ex rotatione <lb/>ABEC circa eundem axem CE; hic verò cylindrus ad cy­<lb/>lindrum alium natum ex rotatione rectanguli GMLH cir­<lb/>ca axem HL e&longs;t vt pri&longs;ma, cuius ba&longs;is ACF, altitudineque <lb/>CE ad alterum pri&longs;ma ba&longs;em habens GHI &longs;imilem ip&longs;i CF <lb/>(nam circa angulos æquales H, C &longs;unt latera etiam pro­<lb/>portionalia, nempe æqualia) & altitudinem HL. <!-- KEEP S--></s> <s id="s.000634">Solidum <lb/>præterea, hoc e&longs;t pri&longs;ma GKHM ad &longs;olidum, quod e&longs;t à <lb/><arrow.to.target n="marg138"/><lb/>plano GLH habet eandem rationem, ac cylindrus, qui fit <lb/>ex conuer&longs;ione rectanguli HM circa axem HL ad &longs;olidum <lb/>rotundum ortum ex circumactione figuræ GLH circa ip­<lb/>&longs;um axem HL, ergo ex æquali erit &longs;olidum à figura ABC <lb/>ad &longs;olidum à figura GLH, vt rotundum ex rotatione figu­<lb/>ræ ABC circa axem CE ad rotundum alterum ex conuer­<lb/>&longs;ione alterius figuræ GLH circa axem HL. <!-- KEEP S--></s> <s id="s.000635">Quod &c. <!-- KEEP S--></s> </p> <pb pagenum="65" xlink:href="022/01/071.jpg"/> <p type="margin"> <s id="s.000636"><margin.target id="marg137"/>18. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000637"><margin.target id="marg138"/><emph type="italics"/>Ex eadem.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000638"><emph type="center"/>PROP. XXI. THEOR. XVI.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000639">PRopo&longs;itis ij&longs;dem &longs;olidis, erunt inter &longs;e, vt momenta fi­<lb/>gurarum a quibus &longs;unt, quæ tamen figuræ &longs;u&longs;pen&longs;æ <lb/>&longs;int ex longitudinibus deductis ab ip&longs;arum grauitatu&mtail; <lb/>centris v&longs;que ad coeuntium figurarum communes illas &longs;e­<lb/>ctiones. </s> </p> <p type="main"> <s id="s.000640">Figuræ, à quibus &longs;unt &longs;olida, ponantur ABC, GLH, <expan abbr="c&etilde;-">cen­<lb/></expan><arrow.to.target n="marg139"/><lb/>tra grauitatum illarum M, N; axes, &longs;iue communes &longs;ectio­<lb/>nes coeuntium binarum inter&longs;e &longs;imilium, ac æqualium fi­<lb/>gurarum à quibus dicuntur ip&longs;a &longs;olida; & demum MO, NP <lb/>perpendiculares &longs;int ab ip&longs;is centris ad illas communes &longs;e­<lb/>ctiones deductæ CE, HL. Dico, &longs;olidum à plana figur&atail; <lb/>ABC ad &longs;olidum a plana GHL eandem habere rationem, <lb/>ac momentum figuræ ABC pendentis ex MO ad momen­<lb/><arrow.to.target n="marg140"/><lb/>tum alterius figuræ &longs;u&longs;pen&longs;æ ex NP, &longs;unt enim hæc &longs;oli­<lb/>da inter&longs;e, vt rotunda, quorum genetrices figuræ ABC, <lb/>GLH circa axes CE, HL, huiu&longs;modi verò &longs;olida &longs;unt vt <lb/><arrow.to.target n="marg141"/><lb/>momenta propo&longs;ita; ergo &longs;olidum à plana figura ABC ad <lb/>&longs;olidum à plana GLH, erit vt momentum figuræ ABC <lb/>&longs;u&longs;pen&longs;æ ex MO ad momentum GLH pendentis ex NP. <lb/><!-- KEEP S--></s> <s id="s.000641">Quod &c. <!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000642"><margin.target id="marg139"/><emph type="italics"/>Tab.<emph.end type="italics"/> 6. <emph type="italics"/>fig.<emph.end type="italics"/> 10.</s> </p> <p type="margin"> <s id="s.000643"><margin.target id="marg140"/><emph type="italics"/>pr.<emph.end type="italics"/> 20. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000644"><margin.target id="marg141"/><emph type="italics"/>Ter. <!-- REMOVE S-->lem.<emph.end type="italics"/> 31. <lb/><emph type="italics"/>in libro </s> <s id="s.000645">di­<lb/>men. parabolæ. <emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000646"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000647"><emph type="italics"/>Cum ip&longs;a illa momenta nectantur ex rationibus figurarum <lb/><arrow.to.target n="marg142"/><lb/>ABC, GLH, & ex longitudinibus, ex quibus pendent ip&longs;æ fi­<lb/>gura (nam habentur vt grauia) ex ij&longs;dem etiam rationibus <lb/>componentur &longs;olida, qua &longs;unt ab ip&longs;is figuris—<emph.end type="italics"/></s> </p> <pb pagenum="66" xlink:href="022/01/072.jpg"/> <p type="margin"> <s id="s.000648"><margin.target id="marg142"/>Ex mechani­<lb/>cis,</s> </p> <p type="main"> <s id="s.000649"><emph type="center"/>PROP. XXII. THEOR. XVII.<emph.end type="center"/><lb/><arrow.to.target n="marg143"/><!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000650"><margin.target id="marg143"/><emph type="italics"/>Tab.<emph.end type="italics"/> 7. <emph type="italics"/>fig.<emph.end type="italics"/> 1.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000651">IMagines velocitatum, &longs;eu &longs;patia, quæ curruntur accele­<lb/>ratis motibus, &longs;unt vt &longs;olida ab imaginibus &longs;implicium <lb/>motuum, ex quibus ip&longs;i gignuntur accelerati. </s> </p> <p type="main"> <s id="s.000652">Sint imagines &longs;implicium motuum ABC, GLH, & &longs;oli­<lb/>da ab ip&longs;is imaginibus (angulis ACQ, GHD &longs;emper re­<lb/>ctis, aut &longs;altem æqualibus) intelligantur ABCRQ, GLHD. <lb/>Dico, vt &longs;unt inter&longs;e i&longs;ta &longs;olida, &longs;ic e&longs;&longs;e homologè &longs;patium <lb/>exactum tempore AC motu accelerato ex &longs;implici motu <lb/>imaginis ABC ad &longs;patium tran&longs;actum tempore GH motu <lb/>item accelerato ex &longs;implici imagine priori homogene&atail; <lb/>GLH: &longs;ecetur &longs;olidum ABCRQ plano æquidi&longs;tanti QCR, <!-- KEEP S--></s> </p> <p type="main"> <s id="s.000653"><arrow.to.target n="marg144"/><lb/>quod faciat in &longs;olido ip&longs;o &longs;ectionem TSVX: erit hæc figu­<lb/>ra pror&longs;us &longs;imilis, ac æqualis conterminæ ABVI; quare <lb/><arrow.to.target n="marg145"/><lb/>cum in accelerato motu velocitas, quæ habetur momen­<lb/>to C ad velocitatem momento S &longs;it vt imago ABC &longs;im­<lb/><arrow.to.target n="marg146"/><lb/>plex ad &longs;egmentum eius ABVS: erit etiam QCR æqualis <lb/>ABC ad &longs;ectionem &longs;olidi TSVX, quæ æquatur ABVS, vt <lb/>illa eadem velocitas momento C mobili inhærens ad ve­<lb/>locitatem momento S alterius accelerati motus. </s> <s id="s.000654">E&longs;t au­<lb/>tem &longs;ectio TSVX ad libitum &longs;umpta; ergo &longs;olidum ABC­<lb/><arrow.to.target n="marg147"/><lb/>QR pote&longs;t &longs;umi merito vt imago velocitatum accelerati <lb/><arrow.to.target n="marg148"/><lb/>motus, cuius &longs;implex imago ABC: & eodem modo &longs;oli­<lb/>dum alterum vicem geret imaginis velocitatum alterius <lb/>motus ex &longs;implici imagine GLH, itaque erit ob homoge­<lb/>neitatem &longs;patium tran&longs;actum motu accelerato iuxta &longs;im­<lb/>plicem imaginem ABC ad &longs;patium tran&longs;actum motu ac­<lb/>celerato iuxta &longs;implicem imaginem GLH, <expan abbr="t&etilde;poribus">temporibus</expan> AC, <lb/>GH, vt &longs;olidum ABCQR ad ALHD, </s> </p> <pb pagenum="67" xlink:href="022/01/073.jpg"/> <p type="margin"> <s id="s.000655"><margin.target id="marg144"/>16. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000656"><margin.target id="marg145"/>4. <emph type="italics"/>huius,<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000657"><margin.target id="marg146"/>16. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000658"><margin.target id="marg147"/><emph type="italics"/>Def.<emph.end type="italics"/> .3. <emph type="italics"/>primi <lb/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000659"><margin.target id="marg148"/><emph type="italics"/>& Def.<emph.end type="italics"/> 1. <emph type="italics"/>hu­<lb/>ius vnà cum <lb/>pr.<emph.end type="italics"/> 4. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000660"><emph type="center"/>PROP. XXII. THEOR. XVIII.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000661">SInt nunc CE, HL communes &longs;ectiones imaginum &longs;im­<lb/><arrow.to.target n="marg149"/><lb/>plicium ABC, GLH, &longs;i extenderentur cum &longs;ujs æqua­<lb/>libus, ac &longs;imilibus coeuntibus figuris. </s> <s id="s.000662">E&longs;to pariter M cen­<lb/>trum grauitatis imaginis ABC, et N grauitatis alterius ima­<lb/>ginis GLH; actis demùm MO, NP perpendicularibus ad <lb/>ip&longs;as CE, HL. Dico, &longs;patium accelerati motus ab imagine <lb/>&longs;implici ABC ad <expan abbr="&longs;patiũ">&longs;patium</expan> accelerati alterius motus ab ima­<lb/>gine &longs;implici GLH componi ex ratione imaginis ABC ad <lb/>imaginem GLH, & ex ea perpendicularis MO ad perpen­<lb/>dicularem NP. <!-- KEEP S--></s> <s id="s.000663">Cum hæc ip&longs;a &longs;patia &longs;int o&longs;ten&longs;a, vt &longs;oli­<lb/><arrow.to.target n="marg150"/><lb/>da à figuris ABC, GLH; hæc verò &longs;unt vt momenta ip&longs;a­<lb/><arrow.to.target n="marg151"/><lb/>rum figurarum &longs;u&longs;pen&longs;arum ex MO, NP. <!-- KEEP S--></s> <s id="s.000664">Ergo quemad­<lb/>modum momenta i&longs;ta nectuntur ex rationibus figurarum <lb/><arrow.to.target n="marg152"/><lb/>tanquam magnitudinum ABC ad LGH, & di&longs;tantiarum <lb/>MO ad NP, ita pariter ex his nectentur propo&longs;ita &longs;patia. </s> </p> <p type="margin"> <s id="s.000665"><margin.target id="marg149"/><emph type="italics"/>Tab.<emph.end type="italics"/> 7. <emph type="italics"/>Fig.<emph.end type="italics"/> 2.<!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000666"><margin.target id="marg150"/>21. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000667"><margin.target id="marg151"/>20. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000668"><margin.target id="marg152"/><emph type="italics"/>Ex mechani­<lb/>cis.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000669"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000670"><emph type="italics"/>Patet communes &longs;ectiones CE, HL e&longs;&longs;e æquidi&longs;tantes ap­<lb/>plicatis AB, HL, quæ in imaginibus &longs;umuntur perpendicula­<lb/>res rectis AC, GH. nam HL est recta, in quam coeunt figura <emph.end type="italics"/><lb/><arrow.to.target n="marg153"/><lb/><emph type="italics"/>planæ &longs;imiles, ac æquales.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000671"><margin.target id="marg153"/><emph type="italics"/>Pr<emph.end type="italics"/> 2. <emph type="italics"/>prim&atail; <lb/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000672"><emph type="center"/>PROP. XXIV. THEOR. XIX.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000673">SI imagines &longs;implicium motuum fuerint &longs;imiles, &longs;imili­<lb/>terque &longs;u&longs;pen&longs;æ, imagines velocitatum accelerato­<lb/>rum motuum erunt in triplicata ratione temporum &longs;impli­<lb/>cium motuum, aut in triplicata homologarum, vel extre­<lb/>marum velocitatum eorundem &longs;implicium motuum. </s> </p> <p type="main"> <s id="s.000674">Cum centra grauitatum &longs;imilium imaginum, &longs;eu figu­<lb/><arrow.to.target n="marg154"/><pb pagenum="68" xlink:href="022/01/074.jpg"/>rarum, &longs;int puncta in ij&longs;dem figuris &longs;imiliter po&longs;ita, ponun­<lb/>tur verò imagines &longs;imiliter &longs;u&longs;pen&longs;æ, ergo &longs;equitur ip&longs;as <lb/>longitudines e&longs;&longs;e vt latera homologa dictarum imaginum, <lb/>&longs;cilicet vt tempus AC ad tempus FG, vel vt extremæ ve­<lb/>locitates BC ad KE. <!-- KEEP S--></s> <s id="s.000675">Quamobrem imagines ip&longs;æ, cum &longs;int <lb/>in duplicata ratione laterum homologorum, &longs;i huic dupli­<lb/>catæ addatur alia ratio &longs;imilis rationi longitudinum, fiet <lb/>ratio imaginum velocitatum, &longs;eu &longs;patiorum acceleratorum <lb/>motuum ex &longs;implicibus illis deriuantium triplicata tempo­<lb/>rum, vel extremarum velocitatum &longs;implicium motuum. </s> </p> <p type="margin"> <s id="s.000676"><margin.target id="marg154"/><emph type="italics"/>Tab.<emph.end type="italics"/> 7. <emph type="italics"/>Fig.<emph.end type="italics"/> 3.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000677"><emph type="center"/>PROP. XXV. THEOR. XX.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000678">SI verò &longs;implices motus extiterint &longs;imiles, <expan abbr="æqualibu&longs;q;">æqualibu&longs;que</expan> <lb/>temporibus ab&longs;oluantur, imagines acceleratorum <lb/><arrow.to.target n="marg155"/><lb/>motuum erunt in &longs;ola ratione amplitudinum imaginum <lb/>&longs;implicium. </s> </p> <p type="margin"> <s id="s.000679"><margin.target id="marg155"/><emph type="italics"/>Tab.<emph.end type="italics"/> 7. <emph type="italics"/>fig.<emph.end type="italics"/> 4.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000680">Sint imagines &longs;imilium, ac &longs;implicium motuum BAC, <lb/>KFG, quarum grauitatis centra D, H, erunt ex hypothe&longs;i <lb/><arrow.to.target n="marg156"/><lb/>tempora AC, FG æqualia; & ideo &longs;patia, &longs;cilicet imagines <lb/><arrow.to.target n="marg157"/><lb/>velocitatum BAC, KFG habebunt eandem rationem, <lb/>quam &longs;ummæ, aut extremæ motuum &longs;implicium velocita­<lb/>tes, &longs;cilicet, quam amplitudines imaginum, &longs;eu gene&longs;um: <lb/>&longs;unt verò di&longs;tantiæ DE, HI pariter æquales, quia AC, FG <lb/><arrow.to.target n="marg158"/><lb/>æquales &longs;unt; ergo cum &longs;patia acceleratorum motuum ne­<lb/>ctantur ex imaginibus &longs;implicium motuum ABC, KFG, & <lb/>ex di&longs;tantijs DE ad HI, liquet ip&longs;a &longs;patia e&longs;&longs;e in vnica, &longs;o­<lb/>laque ratione amplitudinum BC, KG, aut amplitudinum <lb/>gene&longs;um. </s> </p> <p type="margin"> <s id="s.000681"><margin.target id="marg156"/>8 <emph type="italics"/>primi huius<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000682"><margin.target id="marg157"/>2 <emph type="italics"/>primi huius<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000683"><margin.target id="marg158"/>23. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000684"><emph type="center"/>PROP. XXVI. THEOR. XX.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000685">AT &longs;i &longs;implicium, &longs;imiliumque motuum fuerint imagi­<lb/>nes æquè amplæ, imagines acceleratorum motuum, <pb pagenum="69" xlink:href="022/01/075.jpg"/>&longs;iue tempora erunt in duplicata ratione temporum i&longs;to­<lb/>rum, vel illorum motuum. </s> </p> <p type="main"> <s id="s.000686">Amplitudines imaginum &longs;implicium, velocitatumque <lb/><arrow.to.target n="marg159"/><lb/>BAC, KFG &longs;unto BC, KG, quæ æquales &longs;int. </s> <s id="s.000687">Dico &longs;pa­<lb/>tia acceleratorum motuum ab illis &longs;implicibus imaginibus <lb/>fore in duplicata ratione temporum AC ad FG (qu&etail; &longs;em­<lb/>per in acceleratis ponuntur eadem, ac in &longs;implicibus, nec <lb/>aliter e&longs;&longs;e po&longs;&longs;unt.) Vt FG ad GK, ita &longs;it AC ad CL, & <lb/>intelligatur LAC imago alterius motus &longs;imilis motui, cuius <lb/>imago BAC, vel KFG. <!-- KEEP S--></s> <s id="s.000688">Facilè demon&longs;trabitur ip&longs;am fi­<lb/><arrow.to.target n="marg160"/><lb/>guram LAC &longs;imilem e&longs;&longs;e ip&longs;i KFG, & ad BAC eande&mtail; <lb/>habere rationem, quam LC ad BC. <!-- KEEP S--></s> <s id="s.000689">Cum ergo imago BAC <lb/>ad imaginem KFG componatur ex ratione imaginis BAC <lb/>ad LAC (quæ &longs;unt vt BC ad CL) & ex ratione imagi­<lb/>nis ALC ad imaginem KFG, quæ &longs;unt in ratione compo­<lb/>&longs;ita LC ad KG, et AC ad FG: priores verò duæ rationes <lb/>componunt vnicam æqualitatis, ergo relinquitur, imagi­<lb/>nem BAC ad imaginem KFG e&longs;&longs;e vt AC ad FG; &longs;patium <lb/>verò accelerati motus ex &longs;implici imagine BAC ad accele­<lb/>ratum ex &longs;implici KFG nectitur ex ratione imaginum &longs;im­<lb/><arrow.to.target n="marg161"/><lb/>plicium ip&longs;arum, & ex ea di&longs;tantiarum DE, HI à centris <lb/>grauitatum deductarum D, H, et &longs;unt hæ rectæ in eadem <lb/>ratione, ac altitudines AC, FG (nam in figuris, &longs;eu imagi­<lb/>nibus &longs;imilium motuum BAC, LAC centra grauitatum <lb/>&longs;unt in eadem recta parallela ip&longs;i BC, & in LAC, KFG <lb/>&longs;unt in punctis &longs;imiliter po&longs;itis, adeo ut, &longs;icut po&longs;itum e&longs;t, <lb/>ratio ip&longs;arum di&longs;tantiarum in ip&longs;is figuris LAC, KFG, &longs;eu <lb/>BAC, KEG eadem &longs;it, ac laterum homologorum LC ad <lb/>KG, vel AC ad FG) ergo &longs;patium accelerati motus ex &longs;im­<lb/>plici imagine KFG, erit vt quadratum ex AC ad quadra­<lb/>tum ex FG, nempe in duplicata ratione temporum &longs;impli­<lb/>cium motuum. </s> </p> <pb pagenum="70" xlink:href="022/01/076.jpg"/> <p type="margin"> <s id="s.000690"><margin.target id="marg159"/><emph type="italics"/>Tab.<emph.end type="italics"/> 7. <emph type="italics"/>fig.<emph.end type="italics"/> 5.<!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000691"><margin.target id="marg160"/><emph type="italics"/>Def.<emph.end type="italics"/> 7. <emph type="italics"/>primi <lb/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000692"><margin.target id="marg161"/>23. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000693"><emph type="center"/>PROP. XXVII. THEOR. XXI.<emph.end type="center"/><lb/><arrow.to.target n="marg162"/><!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000694"><margin.target id="marg162"/><emph type="italics"/>Tab.<emph.end type="italics"/> 7. <emph type="italics"/>fig.<emph.end type="italics"/> 6.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000695">DEmùm &longs;i &longs;int imagines, quæcunque velocitatum &longs;im­<lb/>plicium, &longs;imiliumque motuum, imagines accelera­<lb/>torum motuum, &longs;eu &longs;patia ijs motibus exacta componen­<lb/>tur ex duplicata temporum ratione, & ex ea amplitudi­<lb/>num, vel applicatarum homologarum earundem imagi­<lb/>num. </s> </p> <p type="main"> <s id="s.000696">Imagines &longs;imilium, &longs;impliciumque motuum &longs;int BAC, <lb/>KFG. Dico, imagines acceleratorum motuum ab illis &longs;im­<lb/>plicibus deriuantium habere rationem compo&longs;itam ex du­<lb/>plicata temporum AC ad FG, & amplitudinum imaginum <lb/>dictarum, vel gene&longs;um. </s> <s id="s.000697">Intelligatur alius &longs;imilis motus, <lb/>cuius velocitatum imago &longs;it DFG æquèampla, ac homo­<lb/>genea ip&longs;i BCA; nimirum &longs;it DG æqualis BC. <!-- KEEP S--></s> <s id="s.000698">Quoniam <lb/>imago accelerati motus ex &longs;implici imagine BA ad imagi­<lb/>nem accelerati ex &longs;implici imagine KFG componitur ex <lb/>ratione imaginis accelerati motus, cuius &longs;implex imago <lb/>BAC ad imaginem accelerati motus ex &longs;implici DFG, & <lb/>ex imagine huius accelerati motus ad accelerati imaginem <lb/>à &longs;implici KFG; e&longs;t autem prior ratio imaginum, &longs;eu &longs;pa­<lb/>tiorum acceleratis motibus percur&longs;orum ip&longs;a temporum </s> </p> <p type="main"> <s id="s.000699"><arrow.to.target n="marg163"/><lb/>duplicata AC ad FG, & altera dictarum imaginum, &longs;eu <lb/>&longs;patiorum item acceleratis motibus confectorum, & quo­<lb/><arrow.to.target n="marg164"/><lb/>rum &longs;implices imagines &longs;unt DFG, KFG, e&longs;t eadem, ac ra­<lb/>tio amplitudinum DG, &longs;eu BC ad KG. </s> <s id="s.000700">Ergo cum i&longs;tæ <lb/>amplitudines &longs;int eædem, ac illæ gene&longs;um, con&longs;tat propo­<lb/>&longs;itam rationem acceleratorum motuum ex &longs;implicibus <lb/>imaginibus BAC, KFG habere rationem compo&longs;itam ex <lb/>duplicata temporum AC ad FG, & ex ea amplitudinum <lb/>imaginum &longs;implicium BC ad KG, &longs;eu amplitudinum gene­<lb/>&longs;um. </s> <s id="s.000701">Quod &c. <!-- KEEP S--></s> </p> <pb pagenum="71" xlink:href="022/01/077.jpg"/> <p type="margin"> <s id="s.000702"><margin.target id="marg163"/><emph type="italics"/>Pr.<emph.end type="italics"/> 26 <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000703"><margin.target id="marg164"/>25. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000704"><emph type="center"/>PROP. XXVIII. THEOR. XXII.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000705">SI gene&longs;es &longs;imilium, &longs;impliciumque motuum fuerint <lb/>æquèamplæ, imagines acceleratorum motuum erunt <lb/>in duplicata ratione temporum, vel altitudinum ip&longs;arum <lb/>gene&longs;um. </s> </p> <p type="main"> <s id="s.000706">Gene&longs;es &longs;imilium, ac &longs;implicium motuum &longs;unto ABC, <lb/><arrow.to.target n="marg165"/><lb/>DEF, quarum amplitudines æquales &longs;int AC, DF. Dico, <lb/>imagines, &longs;iue &longs;patia acceleratorum motuum e&longs;&longs;e in dupli­<lb/>cata ratione temporum, vel altitudinum BC ad EF. </s> <s id="s.000707">Cum <lb/>AC, DF &longs;int gradus velocitatum in extremitatibus &longs;impli­<lb/>cium decur&longs;uum, etiam imagines velocitatum, iuxta ip&longs;as <lb/>gene&longs;es, quæ &longs;int inter&longs;e homogeneæ, erunt æquèamplæ, <lb/>& &longs;unt &longs;imilium motuum; ergo imagines acceleratorum <lb/><arrow.to.target n="marg166"/><lb/>motuum, iuxta &longs;implices illas gene&longs;es, aut imagines æquè­<lb/>amplas erunt in duplicata ratione temporum: &longs;unt autem <lb/>imagines velocitatum æquèamplæ, &longs;imiliumque motuum, <lb/><arrow.to.target n="marg167"/><lb/>hoc e&longs;t &longs;patia BC ad EF vt ip&longs;a tempora; ergo &longs;patia acce­<lb/>leratorum, propo&longs;itorumque motuum erunt in ratione du­<lb/>plicata altitudinum BC, EF &longs;implicium gene&longs;um, ABC, <lb/>DEF. <!-- KEEP S--></s> <s id="s.000708">Quod &c. <!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000709"><margin.target id="marg165"/><emph type="italics"/>Tab.<emph.end type="italics"/> 7. <emph type="italics"/>Fig.<emph.end type="italics"/> 7.</s> </p> <p type="margin"> <s id="s.000710"><margin.target id="marg166"/>26. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000711"><margin.target id="marg167"/>26. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000712"><emph type="center"/>PROP. XXIX. THEOR. XXIII.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000713">SI gene&longs;es &longs;imilium, &longs;impliciumque motuum fuerint <lb/>æquèaltæ, imagines, &longs;iue &longs;patia, acceleratorum mo­<lb/>tuum erunt vt tempora, vel reciprocè vt amplitudines ge­<lb/>ne&longs;um ip&longs;orum &longs;implicium motuum. </s> </p> <p type="main"> <s id="s.000714">Gene&longs;es &longs;imilium, &longs;impliciumque motuum, ac inter&longs;e <lb/><arrow.to.target n="marg168"/><lb/>homogeneæ &longs;int BAC, DEF, quæ habeant altitudines <lb/>AC, EF æquales. </s> <s id="s.000715">Dico, imagines acceleratorum motuum <lb/>e&longs;&longs;e inter &longs;e, vt tempora dictorum &longs;implicium motuum, vel <lb/>reciprocè vt amplitudines ip&longs;arum gene&longs;um. </s> <s id="s.000716">Concipian-<pb pagenum="72" xlink:href="022/01/078.jpg"/>tur imagines velocitatum <expan abbr="&longs;impliciũ">&longs;implicium</expan> motuum, &longs;cilicet GHI <lb/>iuxta gene&longs;im BAC, et MKL iuxta <expan abbr="alterã">alteram</expan> gene&longs;im DEF, & <lb/>quia, vtpotè homogene&etail;, &longs;unt inter &longs;e vt &longs;patia &etail;qualia AC <lb/>ad EF, <expan abbr="erũt">erunt</expan> ip&longs;æ imagines &etail;quales inter &longs;e, <expan abbr="cũ">cum</expan> verò ob &longs;imili <lb/><expan abbr="tudin&etilde;">tudinem</expan> motuum eæ ip&longs;æ imagines nectantur ex rationibus <lb/>GI ad ML, & ex ea, quam habet HI ad KL, &longs;equitur e&longs;&longs;e <lb/>GI ad ML, vt KL ad IH, & demum quia acceleratorum <lb/>motuum &longs;patia à &longs;implicibus imaginibus GHI, MKL ne­<lb/>ctuntur ex duplicata temporum HI ad KL, & ex ea ampli­<lb/><arrow.to.target n="marg169"/><lb/>tudinum GI ad ML, &longs;iue ex ea, quam habet KL ad HI, re­<lb/>linquitur, &longs;patia acceleratis illis motibus confecta e&longs;&longs;e in <lb/>&longs;ola, <expan abbr="vnicaq;">vnicaque</expan> ratione temporum HI ad KL, vel in ei &etail;qua­<lb/>li ratione, reciproca amplitudinum imaginum ML ad GI, <lb/>vel gene&longs;um DF ad BC. <!-- KEEP S--></s> <s id="s.000717">Quod &c, </s> </p> <p type="margin"> <s id="s.000718"><margin.target id="marg168"/><emph type="italics"/>Tab.<emph.end type="italics"/> 7. <emph type="italics"/>fig.<emph.end type="italics"/> 8.</s> </p> <p type="margin"> <s id="s.000719"><margin.target id="marg169"/>27. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000720"><emph type="center"/>PROP. XXX. THEOR. XXIV.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000721">QVæcunque fuerint gene&longs;es &longs;imilium, &longs;impliciumque <lb/>motuum, dum inter&longs;e homogeneæ, &longs;patia accelera­<lb/>tis motibus ex illis &longs;implicibus exacta nectentur <lb/>ex duplicata ratione altitudinum, & reciproca amplitudi­<lb/>num earundem &longs;implicium gene&longs;um, </s> </p> <p type="main"> <s id="s.000722">Sint quæcunque &longs;imilium motuum gene&longs;es BAC, KFG. <lb/><arrow.to.target n="marg170"/><lb/>Dico, &longs;patia acceleratorum motuum, ab ijs &longs;implicibus de­<lb/>riuantium, componi ex duplicata ratione altitudinum AC <lb/>ad FG, & ex ratione extremarum velocitatum, &longs;eu ampli­<lb/>tudinum reciprocè &longs;umptarum ip&longs;arum gene&longs;um: e&longs;to alia <lb/>gene&longs;is DFG illis homogenea, & motu pariter &longs;imilis cum <lb/>ij&longs;dem gene&longs;ibus. </s> <s id="s.000723">Eadem &longs;it amplitudine æqualis BAC, <lb/>& altitudo eius &longs;it FG, &longs;patia acceleratorum motuum ex <lb/><arrow.to.target n="marg171"/><lb/>&longs;implicibus gene&longs;ibus æquales amplitudines habentibus, <lb/>& &longs;imilium motuum BAC, DFG &longs;unt in duplicata ratione <lb/>rectarum, &longs;eu altitudinum AC ad FG, & &longs;patia accelera­<lb/><arrow.to.target n="marg172"/><pb pagenum="73" xlink:href="022/01/079.jpg"/>torum motuum ex &longs;implicibus gene&longs;ibus, quæ &longs;int in ea­<lb/>dem altitudine DFG, KFG, &longs;unt in reciproca ratione am­<lb/>plitudinum, &longs;eu primarum velocitatum KG ad DG, vel <lb/>BC; ex æquali igitur &longs;patia acceleratorum motuum ex <lb/>propo&longs;itis &longs;implicibus gene&longs;ibus BAC, KFG nectentur ex <lb/>ratione duplicata altitudinum AC ad FG, & reciproca <lb/>amplitudinum KG ad BC earundem gene&longs;um BAC, <lb/>KFG. <!-- KEEP S--></s> <s id="s.000724">Quod &c. <!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000725"><margin.target id="marg170"/><emph type="italics"/>Tab.<emph.end type="italics"/> 7. <emph type="italics"/>fig.<emph.end type="italics"/> 6.<!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000726"><margin.target id="marg171"/>28. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000727"><margin.target id="marg172"/>29. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000728"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000729"><emph type="italics"/>At quia in &longs;patijs, quæ accelerato motu peraguntur; non <lb/>&longs;eruatur ratio altitudinum gene&longs;um &longs;implicium, ex quo ori­<lb/>tur in hac methodo quædam percipiendi difficultas; ideo &longs;e­<lb/>quenti problemate, alij&longs;que iam notis veritatibus, rem planè <lb/>illu&longs;trabimus, ac &longs;imul doctrina v&longs;um trademus.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000730"><emph type="center"/>PROP. XXXI. PROB. VI.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000731">EX datis &longs;patijs accelerato motu confectis, cogniti&longs;­<lb/>que primis, aut po&longs;tremis &longs;imilium, &longs;impliciumque <lb/>motuum velocitatibus, reperire tempora ip&longs;orum de­<lb/>cur&longs;uum. </s> </p> <p type="main"> <s id="s.000732">Spatia motibus acceleratis exacta &longs;unt C, D, & velo­<lb/><arrow.to.target n="marg173"/><lb/>tates, &longs;eu amplitudines gene&longs;um ponantur e&longs;&longs;e A, B, &longs;cili­<lb/>cet A principio motus per C, & B initio motus per D, quæ­<lb/>ritur ratio temporum, quibus exiguntur propo&longs;ita &longs;patia. <lb/></s> <s id="s.000733">Vt A ad B, ita fiat C ad E, & inter E, et D &longs;umatur F me­<lb/>dia proportionalis. </s> <s id="s.000734">Dico ip&longs;a tempora e&longs;&longs;e vt E ad F. <lb/><!-- KEEP S--></s> <s id="s.000735">Componuntur &longs;patia acceleratis motibus exacta ex ratio­<lb/><arrow.to.target n="marg174"/><lb/>ne quadratorum temporum, & ex ea amplitudinum, &longs;eu <lb/>homologarum velocitatum in &longs;implicibus motibus, &longs;imili­<lb/><arrow.to.target n="marg175"/><lb/>bu&longs;que &longs;umptarum; & ideo temporum quadrata necten­<lb/>tur ex ratione &longs;patiorum C ad D, & ex reciproca ampli-<pb pagenum="74" xlink:href="022/01/080.jpg"/>tudinum E ad C; temporum igitur quadrata erunt vt E ad <lb/>D, ip&longs;a verò tempora vt E ad F. <!-- KEEP S--></s> <s id="s.000736">Quod &c. <!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000737"><margin.target id="marg173"/><emph type="italics"/>Tab.<emph.end type="italics"/> 8. <emph type="italics"/>Fig.<emph.end type="italics"/> 1.<!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000738"><margin.target id="marg174"/>27. <emph type="italics"/>huiuij<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000739"><margin.target id="marg175"/><emph type="italics"/>lem. </s> <s id="s.000740">pr.<emph.end type="italics"/> 3. <emph type="italics"/>pri­<lb/>mi huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000741"><emph type="center"/>PROP. XXXII. PROB. VII.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000742">EXdatis &longs;patijs accelerato motu tran&longs;actis, datis item <lb/>primis velocitatibus &longs;imilium, &longs;impliciumque mo­<lb/>tuum, inuenire altitudines &longs;implicium gene&longs;um, ex quibus <lb/><arrow.to.target n="marg176"/><lb/>propo&longs;ita &longs;patia effecta &longs;unt. </s> </p> <p type="margin"> <s id="s.000743"><margin.target id="marg176"/><emph type="italics"/>Tab.<emph.end type="italics"/> 7. <emph type="italics"/>fig.<emph.end type="italics"/> 1. <lb/>30. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000744">Spatia &longs;int E, D reliquis, vt &longs;upra, manentibus: quoniam <lb/>&longs;patia accelerato motu tran&longs;acta componuntur ex ratio­<lb/>nibus amplitudinum gene&longs;um &longs;implicium, &longs;imiliumqu&etail; <lb/>motuum reciprocè &longs;umptarum B ad A, &longs;iue E ad C, & ex <lb/>ea quadratorum altitudinum ip&longs;arum gene&longs;um; erit ratio <lb/>dictarum altitudinum duplicata C ad D; quare F, &longs;i &longs;it me­<lb/>dia proportionalis, non inter E, & D (vt antea po&longs;uimus) <lb/>&longs;ed inter C ad D; erit &longs;anè C ad F ratio altitudinum gene­<lb/>&longs;um &longs;implicium, &longs;imiliumque motuum, quam quereba­<lb/>mus. </s> </p> <p type="main"> <s id="s.000745"><emph type="center"/><emph type="italics"/>Exemplum primum.<emph.end type="italics"/><emph.end type="center"/></s> </p> <p type="main"> <s id="s.000746">SI idem graue naturaliter cadens percurrerit à quiete <lb/>duo &longs;patia; tempora erunt in ratione &longs;ubduplicat&atail; <lb/>eorundem &longs;patiorum. </s> </p> <p type="main"> <s id="s.000747">Ex Cor. <!-- KEEP S--></s> <s id="s.000748">pr: 4. huius con&longs;tat rectangula e&longs;&longs;e gene&longs;es &longs;im­<lb/>plicium motuum grauium naturaliter de&longs;cendentium, & <lb/>ex def. <!-- REMOVE S-->7. primi liquet ea&longs;dem gene&longs;es e&longs;&longs;e motuum &longs;imi­<lb/>lium. </s> <s id="s.000749">Cumque eiu&longs;dem mobilis naturaliter cadentis ve­<lb/>locitas à quiete &longs;it vna, eademque; &longs;implices motus erunt <lb/>ij, vt gene&longs;um &longs;imilium, &longs;impliciumque motuum amplitu­<lb/>dines æquales &longs;int, proptereaque, vt in figura præcedentis <lb/>propo&longs;itionis æquales erunt C, E, atque adeo &longs;patiu&mtail; <lb/>C, &longs;iue E ad D erit in duplicata ratione temporum E ad F. <!-- KEEP S--></s> </p> <pb pagenum="75" xlink:href="022/01/081.jpg"/> <p type="main"> <s id="s.000750"><emph type="center"/><emph type="italics"/>Exemplum II.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000751"><emph type="center"/>PROP. XXXIV. THEOR. XXVII.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000752">TEmpora &longs;imilium vibrationum &longs;unt in &longs;ubduplicata <lb/>ratione arcuum exactorum, &longs;eu longitudinum pen­<lb/>dulorum, quorum &longs;unt vibrationes. </s> <s id="s.000753">Sint grauia pendula <lb/>LA, LF, quæ ab eadem recta LF di&longs;cedentia currant &longs;u&longs;­<lb/><arrow.to.target n="marg177"/><lb/>pen&longs;a ex L duos &longs;imiles arcus circulares FI, AC. <!-- KEEP S--></s> <s id="s.000754">Dico <lb/>tempora horum de&longs;cen&longs;uum e&longs;&longs;e in ratione &longs;ubduplicat&atail; <lb/>arcuum FI, AC, &longs;eu longitudinum filorum, aut ha&longs;tularum <lb/>FA, LA. </s> <s id="s.000755">Ducamus quamcumque rectam LBG, erit AB <lb/>ad BC, vt FG ad GI, & cum præterea velocitates pendu­<lb/>lorum a quiete in A, F &longs;int æquales, pariterque velocita­<lb/>tes æquales a quiete in B, G; erit velocitas in A ad veloci­<lb/>tatem in B, vt velocitas in F ad velocitatem in G, quare <lb/>con&longs;ideratis arcubus ABC, FGI, vt altitudines rect&etail;, (quæ <lb/>item forent in B, G proportionaliter &longs;ect&etail;) gene&longs;um &longs;imi­<lb/><arrow.to.target n="marg178"/><lb/>lium &longs;impliciumque motuum, quarum amplitudines æqua <lb/>les &longs;unt, erunt &longs;patia in acceleratis decur&longs;ubus per FI, AC <lb/>in ratione duplicata temporum, &longs;cilicet ip&longs;i arcus, aut lon­<lb/>gitudines LF, LA erunt in ratione duplicata temporu&mtail;. <lb/></s> <s id="s.000756">Quod &c. <!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000757"><margin.target id="marg177"/><emph type="italics"/>Tab.<emph.end type="italics"/> 8. <emph type="italics"/>fig.<emph.end type="italics"/> 2.<!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000758"><margin.target id="marg178"/><emph type="italics"/>Def.<emph.end type="italics"/> 7. <emph type="italics"/>primi.<gap/><emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000759">Idem demon&longs;tratum e&longs;&longs;et beneficio imaginum, quæ vt­<lb/>pote eorundem illorum motuum &longs;implicium, forent etiam <lb/>&longs;imilium, & &longs;unt amplitudines æquales, etenim eæde&mtail; <lb/>&longs;unt, ac gene&longs;um ergo rur&longs;us &longs;patia, hoc e&longs;t arcus ABC, <lb/>FGI, nempe longitudines filorum IF, AC erunt in ratione <lb/>duplicata temporum. </s> <s id="s.000760">Quod &c. <!-- KEEP S--></s> </p> <pb pagenum="76" xlink:href="022/01/082.jpg"/> <p type="main"> <s id="s.000761"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000762"><emph type="italics"/>Vides, quàm breuiter rei di&longs;ficillimæ demon&longs;trationem at­<lb/>tulimus, nec dubium, quin illa extendi queat ad qua&longs;cum­<lb/>que lineas decur&longs;uum, dummodo &longs;imiles, ac &longs;imiliter po&longs;itas in <lb/>ij&longs;dem, vel æqualibus ab horizonte planis elenatis, quemad­<lb/>modum Dominus Viuianus pulcherrimè propo&longs;uit.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000763"><emph type="center"/><emph type="italics"/>Exemplum III.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000764"><emph type="center"/>PROP. XXXV. THEOR. XXVIII.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000765">TEmpora lationum à quiete per plana eandem eleua­<lb/><arrow.to.target n="marg179"/><lb/>tionem habentia &longs;unt homologè vt longitudines <lb/>planorum. </s> </p> <p type="margin"> <s id="s.000766"><margin.target id="marg179"/><emph type="italics"/>Tab.<emph.end type="italics"/> 8. <emph type="italics"/>fig.<emph.end type="italics"/> 3.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000767">Sint plana AB, AC eandem eleuationem AD habentia. <lb/></s> <s id="s.000768">Dico tempus lationis per AC ad id per AB e&longs;&longs;e vt AC ad <lb/>AB. (hæc Torricellij propo&longs;itio, <expan abbr="expo&longs;itioq;">expo&longs;itioque</expan> e&longs;t, hancque <lb/>eandem veritatem ex no&longs;tris principijs demon&longs;trare <expan abbr="visũ">visum</expan> <lb/>e&longs;t, non vt de re illa dubitemus, immò contrà, quòd de e&atail; <lb/>plenè &longs;atisfacti &longs;imus, ex eo rur&longs;us demon&longs;trandam &longs;u&longs;ce­<lb/>pimus, vt exinde methodus no&longs;tra, quàm vera &longs;it, eluce&longs;­<lb/>cat) Momentum de&longs;cen&longs;us inplano AC ad id de&longs;cen&longs;us &longs;u­<lb/><arrow.to.target n="marg180"/><lb/>per plano AB e&longs;t vt AB ad AC; &longs;unt autem <expan abbr="de&longs;cendentiũ">de&longs;cendentium</expan> <lb/>grauium, etiam &longs;uper planis inclinatis motus, quos &longs;impli­<lb/>ces appellamus, inter &longs;e &longs;imiles, nempe quorum gene&longs;es <lb/><arrow.to.target n="marg181"/><lb/>&longs;unt rectangula; ergo habebimus &longs;implices gene&longs;es, vnam, <lb/>cuius altitudo AC amplitudoque AB; alteram, cuius am­<lb/>plitudo AC, altitudo autem AB; itaque propo&longs;itis &longs;patijs <lb/>AC, AB, primi&longs;que velocitatibus AB, AC, &longs;i fiat AB ad AC <lb/>vt CA ad EA, erit EA ad AB duplicata <expan abbr="t&etilde;porum">temporum</expan>, & ideo <lb/><arrow.to.target n="marg182"/><lb/>ratio temporum per AC, AB erit CA ad AB. <!-- KEEP S--></s> <s id="s.000769">Quod &c. <!-- KEEP S--></s> </p> <pb pagenum="77" xlink:href="022/01/083.jpg"/> <p type="margin"> <s id="s.000770"><margin.target id="marg180"/><emph type="italics"/>Tor. <!-- REMOVE S-->pr.<emph.end type="italics"/> 2. <emph type="italics"/>de <lb/>motu <expan abbr="grauiũ">grauium</expan>.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000771"><margin.target id="marg181"/><emph type="italics"/>Cor pr.<emph.end type="italics"/> 4. <lb/><emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000772"><margin.target id="marg182"/>31. <emph type="italics"/>vel<emph.end type="italics"/> 27. <emph type="italics"/>hu.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000773"><emph type="center"/><emph type="italics"/>Exemplum IV.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000774"><emph type="center"/>PROP. XXXVI. THEOR. XXIX.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000775">II&longs;dem pror&longs;us manentibus demon&longs;trarunt Gallileus, ac <lb/>Torricellius, gradus velocitatum acqui&longs;itos in B, et C <lb/>eiu&longs;dem mobilis de&longs;cendentis à quiete in A pares e&longs;&longs;e; <lb/>idip&longs;um nos o&longs;tendemus. </s> </p> <p type="main"> <s id="s.000776">Cum tempora &longs;int vt AC ad AB, & velocitates à quie­<lb/>te in ratione reciproca temporum, &longs;cilicet vt AB ad AC, <lb/><arrow.to.target n="marg183"/><lb/>&longs;int deinde velocitates eæ vt amplitudines imaginum &longs;im­<lb/>plicium, &longs;imiliumque illorum motuum (nam amplitudines <lb/>imaginum velocitatum &longs;unt pror&longs;us eædem, ac illæ gene­<lb/>&longs;um) erunt ip&longs;æ imagines &longs;implicium motuum æquales; <lb/>nam tempora, quæ &longs;ummuntur vt altitudines imaginum <lb/>reciprocantur, vt dictum e&longs;t, amplitudinibus, &longs;eu primis à <lb/><arrow.to.target n="marg184"/><lb/>quiete velocitatibus, at in motibus acceleratis ip&longs;æ inte­<lb/>græ imagines &longs;implicium motuum &longs;unt loco graduum ve­<lb/>locitatum in extremo &longs;patiorum acqui&longs;itorum; ergo in B, et <lb/>C gradus velocitatum æquales erunt. </s> </p> <p type="margin"> <s id="s.000777"><margin.target id="marg183"/><emph type="italics"/>Tab.<emph.end type="italics"/> 8. <emph type="italics"/>fig.<emph.end type="italics"/> 4. <lb/>33. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000778"><margin.target id="marg184"/>4. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000779"><emph type="center"/>PROP. XXXVII. THEOR. XXX.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000780">SI æqualia pondera, &longs;u&longs;pen&longs;a &longs;int ex filis, quorum par­<lb/>tes inter&longs;e æquales, præ tractione æqualiter elongen<lb/>ter tempora in reditu ip&longs;orum filorum, cum ab ip&longs;is graui­<lb/>bus &longs;tatim liberantur, æqualia erunt. </s> <s id="s.000781">Hoc primùm <expan abbr="demõ-">demon­<lb/></expan><arrow.to.target n="marg185"/><lb/>&longs;trabimus alia via, tum methodo no&longs;tra, vt de ea aliud <lb/>exemplum tradamus. </s> <s id="s.000782">Sint funiculi AB, DC, & ex ijs <lb/>pendeant æqualia grauia B, C, adeo vt &longs;umptis hinc indè <lb/>partibus æqualibus eorundem funiculorum, con&longs;tet ip&longs;as <lb/>æqualiter ab ip&longs;is grauibus trahi, atque produci. </s> <s id="s.000783">Dico, &longs;i <lb/>elongationes &longs;int HB, GC, & omnibus &longs;ic &longs;tantibus pon-<pb pagenum="78" xlink:href="022/01/084.jpg"/>dera &longs;ubmoueantur ex B, et C funiculis cæ&longs;is, fore vt eæ­<lb/>dem extremitates re&longs;tituantur in H, et G æqualibus tem­<lb/>poribus. </s> <s id="s.000784">Sit AE æqualis DC, erit porrò elongatio facta <lb/>per idem graue B, quæ &longs;it EF, æqualis GC; propterea li­<lb/>beratis funiculis ad B, et C, eodem tempore re&longs;tituetur C <lb/>in G, ac E in F, quo tempore etiam B in H re&longs;titutum fue­<lb/>rit; nam vno puncto in primum &longs;uum locum redito, etiam <lb/>alia &longs;ingula in &longs;uum locum perueni&longs;&longs;e, opportebit. </s> </p> <p type="margin"> <s id="s.000785"><margin.target id="marg185"/><emph type="italics"/>Tab.<emph.end type="italics"/> 8. <emph type="italics"/>fig.<emph.end type="italics"/> 5.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000786"><emph type="center"/><emph type="italics"/>Exemplum.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000787">HAc occa&longs;ione de funiculis erit non iniucunda di&longs;er­<lb/>tatio, remque &longs;ic adhuc intactam promouebimus, <lb/>&longs;imulque demon&longs;trabimus. </s> </p> <p type="main"> <s id="s.000788">Idip&longs;um propo&longs;itum no&longs;tris principijs &longs;ic demon&longs;tra­<lb/>mus. </s> </p> <p type="main"> <s id="s.000789">Sint <expan abbr="ead&etilde;">eadem</expan>, quæ &longs;upra, &longs;cilicet conceptis in filo AB quot­<lb/>libet partibus inter&longs;e æqualibus, <expan abbr="lõgitudin&etilde;que">longitudinenque</expan> totam im­<lb/>plentibus, hæ &longs;ingulæ æqualiter à pondere B trahentur, <lb/>eritque BH &longs;umma omnium dictarum partium elongatio­<lb/>num, & eodem pacto EF erit &longs;umma elongationum <expan abbr="partiũ">partium</expan> <lb/>omnium in AE contentarum, ab eodemque pondere effe­<lb/>ctarum; propterea vt AB ad BH, ita erit AE ad EF; quamo <lb/>brem velocitas etiam puncti B &longs;ublato pondere B erit ad <lb/>velocit atem puncti E ob eandem detractionem, vt BH ad <lb/>EF, vel BA ad EA (nam quot &longs;unt partes concept&etail; i&ntail; <lb/>vtraque fili longitudine, totidem &longs;unt etiam impetus inter <lb/>&longs;e æquales) idem o&longs;tenderemus &longs;i loco ponderis B, minus <lb/>quodcumque &longs;u&longs;penderemus, vt &longs;cilicet puncta B, et E ad <lb/>quemuis locum &longs;uperius remanerent, librarenturque cum <lb/>re&longs;i&longs;tentijs <expan abbr="partiũ">partium</expan> eò elongatarum, ergo tran&longs;itus ex B in H, <lb/><arrow.to.target n="marg186"/><lb/>& puncti E in F &longs;ubducto pondere B erunt motus &longs;imilium <lb/>&longs;impliciumque; &longs;ed motus ex C in G exempto pondere C <lb/>e&longs;t pror&longs;us idem, ac motus E in F, ergo motus &longs;imiles, ac <pb pagenum="79" xlink:href="022/01/085.jpg"/>&longs;implices ex B in H, & ex C in G, ex quibus fiunt accele­<lb/>rati, gene&longs;es habebunt, quarum primæ velocitates, &longs;eu am­<lb/>plitudines proportionales &longs;unt altitudinibus earundem, <lb/>&longs;patijs nimirum CG, BH accelerato motu exigendis; qua­<lb/>mobrem componentur ex ratione ip&longs;arum velocitatum, <lb/>&longs;eu amplitudinum CG ad BH, & ex ea quadratorum tem­<lb/>porum, quæ proinde æqualitatis erit; itaque etiam huius <lb/>&longs;ubduplicata; hoc e&longs;t tempora in tran&longs;itibus accelarato <lb/>motu exactis, erunt paria. </s> </p> <p type="margin"> <s id="s.000790"><margin.target id="marg186"/><emph type="italics"/>pr.<emph.end type="italics"/> 4. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000791"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000792"><emph type="italics"/>Hinc patet, vbi æquè cra&longs;&longs;is filis eiu&longs;demque materiei vel <lb/>cedentiæ &longs;u&longs;pen&longs;a &longs;int æqualia pondera, tunc primas velocita­<lb/>tes, &longs;ubductis ponderibus, fore in eadem ratione <expan abbr="elongationũ">elongationum</expan>, <lb/>vel longitudinum filorum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000793"><emph type="center"/>PROP. XXXVIII. THEOR. XXXI.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000794">SI extremitatibus funiculorum ex vna parte <expan abbr="firmatorũ">firmatorum</expan>, <lb/>ac eandem cra&longs;&longs;itiem habentium, nec non eiu&longs;dem <lb/>cædentiæ exi&longs;tentium, fuerint &longs;u&longs;pen&longs;a æqualia pondera, <lb/>quæ inde ij&longs;dem longitudinibus &longs;eruatis, quomodo opor­<lb/>tet tollantur, erunt &longs;patia recur&longs;uum, temporibus &longs;impli­<lb/>cium motuum exacta in ratione longitudinum pendulo­<lb/>rum. </s> </p> <p type="main"> <s id="s.000795">Sit funiculus AC æquè cra&longs;&longs;us ac BD, & &longs;u&longs;pen&longs;is <lb/>hinc inde ponderibus æqualibus, elongatio primi funiculi <lb/>&longs;it CE, & alterius &longs;it DF. <!-- KEEP S--></s> <s id="s.000796">Dico &longs;patia temporibus &longs;impli­<lb/>cium imaginum, ab extremitatibus &longs;olutis exacta, fore i&ntail; <lb/>ratione longitudinum ip&longs;orum funiculorum. </s> </p> <p type="main"> <s id="s.000797">Iam con&longs;tat CE ad DF e&longs;&longs;e, vt AC ad BD, in qua ratione <lb/>&longs;unt etiam velocitates à quiete, dum pondera &longs;ubduceren­<lb/>tur ex E, et F, vel ex alijs punctis quibu&longs;cunque &longs;i æqualia <pb pagenum="80" xlink:href="022/01/086.jpg"/>pondera &longs;u&longs;pen&longs;a fui&longs;&longs;ent maioris, vel minoris ponderis, <lb/>&longs;ic enim concipiuntur gene&longs;es &longs;imilium, &longs;impliciumque <lb/>motuum, quarum altitudines æquantur elongationibus <lb/>funiculorum; propterea &longs;patia recur&longs;uum temporibus &longs;im­<lb/>plicium motuum exacta, nectentur ex rationibus duplicata <lb/>CE ad DF, hoc e&longs;t AC ad BD, & ex reciproca filorum, <lb/>&longs;cilicet BD ad AC, quæ ratio, vti diximus, e&longs;t reciproc&atail; <lb/>primarum velocitatum, &longs;eu amplitudinum gene&longs;um &longs;impli­<lb/>cium, ergo ip&longs;a &longs;patia in reditu filorum ab extremitatibus <lb/>&longs;olutis exacta, erunt vt AC ad BF, &longs;eu vt CE ad DF. <lb/><!-- KEEP S--></s> <s id="s.000798">Quod &c. <!-- KEEP S--></s> </p> <p type="main"> <s id="s.000799"><emph type="center"/>PROP. XXXIX. THEOR. XXXI.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000800">TEmpora &longs;implicium, &longs;imiliumque dictorum motuum <lb/>&longs;unt æqualia. </s> </p> <p type="main"> <s id="s.000801">Nam cor. </s> <s id="s.000802">2. pr. <!-- REMOVE S-->8. huius primi demon&longs;tratum e&longs;t, tem­<lb/>pora &longs;implicium, &longs;imiliumque motuum componi ex ratio­<lb/>ne &longs;patiorum, &longs;eu altitudinum gene&longs;um, & reciproca pri­<lb/>marum, aut extremarum velocitatum, &longs;eu amplitudinum <lb/>gene&longs;um: &longs;unt autem altitudines gene&longs;um tractiones, &longs;eu <lb/>elongationes funiculorum, quæ &longs;unt vt longitudines funi­<lb/>culorum, ergo tempora æqualia erunt. </s> </p> <p type="main"> <s id="s.000803"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000804"><emph type="italics"/>Con&longs;tat, tempora a &longs;implicium gene&longs;um in tractionibus fu­<lb/>niculorum, e&longs;&longs;e compo&longs;ita ex ratione elongationum funiculo­<lb/>rum, & ex reciproca primarum velocitatum.<emph.end type="italics"/></s> </p> <pb pagenum="81" xlink:href="022/01/087.jpg"/> <p type="main"> <s id="s.000805"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000806"><emph type="italics"/>Superioris propo&longs;itionis veritas concordat cum prop.<emph.end type="italics"/> 37. <emph type="italics"/>hu­<lb/>ius, in eo tantùm variatur, quod ibi ponuntur data &longs;pati&atail; <lb/>elongitiones funiculorum, hic verò tempora &longs;impliciu&mtail; <lb/>motuum, & quia elongationes o&longs;ten&longs;æ &longs;unt proportionales &longs;pa<lb/>tijs nunc exactis, manife&longs;tum e&longs;t, no&longs;tri iuris e&longs;&longs;e modò &longs;patia <lb/>acceleratis motibus exact a ex temporibus &longs;implicium <expan abbr="motuũ">motuum</expan> <lb/>datis concludere, modò contrà, ex &longs;patijs altitudinibus gene­<lb/>&longs;um proportionalibus, qua item data &longs;unt, tempora inuenire, <lb/>qua proinde methodus mihi videtur ampli&longs;&longs;ima.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000807"><emph type="center"/>PROP. XXXX. THEOR. XXXIII.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000808">SI eiu&longs;dem cra&longs;&longs;itiei funiculis pondera dependeant, qu&etail; <lb/>&longs;int in ratione reciproca longitudinum ip&longs;orum funi­<lb/>culorum, &longs;patia temporibus gene&longs;um &longs;implicium motuum <lb/>exacta erunt in ratione duplicata elongationum. <lb/><arrow.to.target n="marg187"/></s> </p> <p type="margin"> <s id="s.000809"><margin.target id="marg187"/><emph type="italics"/>Tab.<emph.end type="italics"/> 8. <emph type="italics"/>Fig.<emph.end type="italics"/> 6.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000810"><expan abbr="Nã">Nam</expan> &longs;i &longs;it <expan abbr="põdus">pondus</expan> E ad F &longs;icuti <expan abbr="lõgitudo">longitudo</expan> DB ad CA, & &longs;int, <lb/>cra&longs;sities <expan abbr="funiculorũ">funiculorum</expan> æquales erit &longs;anè ratio, quæ <expan abbr="cõponi-tur">componi­<lb/>tur</expan> ex ratione <expan abbr="funiculorũ">funiculorum</expan>, & ex ea <expan abbr="põderum">ponderum</expan>, æqualitatis; ob <lb/>idque gene&longs;es <expan abbr="&longs;impliciũ">&longs;implicium</expan> <expan abbr="motuũ">motuum</expan>, <expan abbr="quarũ">quarum</expan> altitudines CE, DF <lb/><expan abbr="habebũt">habebunt</expan> amplitudines, <expan abbr="n&etilde;pe">nempe</expan> primas velocitates inter&longs;e &etail;qua<lb/>les (nam cum pondera erant æqualia, primæ velocitates <lb/>proportionabantur longitudinibus <expan abbr="funiculorũ">funiculorum</expan>, ideo, cum </s> </p> <p type="main"> <s id="s.000811"><arrow.to.target n="marg188"/><lb/>pondera reciprocantur longitudinibus ij&longs;dem, &longs;eu viribus <lb/>funiculorum, fit vt primæ velocitates æquales reddantur) <lb/>cum ergo ita &longs;it, &longs;patia recur&longs;uum temporibus imaginu&mtail; <lb/>&longs;implicium & accelerato motu confecta erunt in ratione <lb/>duplicata elongationum. </s> </p> <pb pagenum="82" xlink:href="022/01/088.jpg"/> <p type="margin"> <s id="s.000812"><margin.target id="marg188"/>28. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000813"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000814"><emph type="italics"/>Cum ex eadem pr.<emph.end type="italics"/> 28. <emph type="italics"/>huius, eadem &longs;patia &longs;int vt quadra­<lb/>ta temporum, erunt ip&longs;a tempera in ratione &longs;ubduplicat&atail; <lb/>elongationum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000815"><emph type="center"/>PROP. XXXXI THEOR. XXXIV.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000816">SI funiculis æqualem cra&longs;&longs;itiem habentibus fuerint &longs;u&longs;­<lb/><arrow.to.target n="marg189"/><lb/>pen&longs;a inæqualia pondera, &longs;patia, quæ acceleratis mo­<lb/>tibus, ac temporibus gene&longs;um &longs;implicium recurruntur ne­<lb/>ctentur ex ratione duplicata elongationum, & ex duabus <lb/>reciprocè &longs;umptis rationibus, nempe longitudinum prima­<lb/>rum funiculorum, antequam pondera &longs;u&longs;penderentur; & <lb/>ip&longs;orum ponderum. </s> </p> <p type="margin"> <s id="s.000817"><margin.target id="marg189"/><emph type="italics"/>Tab.<emph.end type="italics"/> 8. <emph type="italics"/>Fig.<emph.end type="italics"/> 6.<!-- KEEP S--></s> </p> <p type="main"> <s id="s.000818">In antecedenti figura illud primum &longs;atis patet, quòd &longs;i <lb/>loco ponderis F &longs;u&longs;pen&longs;um fui&longs;&longs;et pondus aliud grauius, <lb/>aut leuius, prior velocitas in a&longs;cen&longs;u fili, &longs;eu funiculi, aut <lb/>chordæ aucta, vel imminuta fui&longs;&longs;et pro magnitudine pon­<lb/>deris &longs;ub&longs;tituti; quamobrem priores velocitates ex inæqua <lb/>litate ponderum eidem chordæ &longs;u&longs;pen&longs;orum dependentes <lb/>forent, vt ip&longs;a pondera; verùm cum &longs;uppo&longs;itis funiculis <lb/>æqualia pondera &longs;u&longs;pen&longs;a veniunt, primæ velocitates &longs;unt <lb/><arrow.to.target n="marg190"/><lb/>vt longitudines funiculorum, ergo velocitates primæ, cum <lb/>inæqualia &longs;unt pondera, quæ &longs;ubtrahuntur, nectentur ex <lb/>ratione longitudinum funiculorum, & ex ea ponderum <lb/>inæqualium: quæcumque igitur &longs;it tractio DF, gene&longs;es ha­<lb/>bebimus &longs;imilium &longs;impliciumque motuum, vnam, cuius al­<lb/>titudo CE, & alteram habentem altitudinem DF, & &longs;unt <lb/>earundem gene&longs;um amplitudines, &longs;eu primæ velocitates <lb/>in ratione compo&longs;ita funiculorum AC ad BD, & ponderis <lb/><arrow.to.target n="marg191"/><lb/>pendentis ex E ad pondus &longs;u&longs;pen&longs;um in F; ergo &longs;patia ac­<lb/>celeratis motibus tran&longs;acta temporibus gene&longs;um <expan abbr="&longs;impliciũ">&longs;implicium</expan> <pb pagenum="83" xlink:href="022/01/089.jpg"/>nectentur ex ratione dublicata elongationum, &longs;iue altitu­<lb/>dinum gene&longs;um, & ex duabus rationibus reciprocè &longs;um­<lb/>ptis funiculorum AC ad BD, & ponderum E ad F. <lb/><!-- KEEP S--></s> <s id="s.000819">Quod &c. <!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000820"><margin.target id="marg190"/><emph type="italics"/>Cor. <!-- KEEP S--></s> <s id="s.000821">pr.<emph.end type="italics"/> 37. <lb/><emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000822"><margin.target id="marg191"/>30. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000823"><emph type="center"/>PROP. XXXXII. THEOR. XXXV.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000824">II&longs;dem po&longs;itis, &longs;i &longs;patia recur&longs;uum erunt ip&longs;æ elongatio­<lb/>nes, tempora, quibus ab extremitatibus &longs;olutis recur­<lb/>runtur, erunt in ratione &longs;ubduplicata eorundem. </s> <s id="s.000825">Nam cum <lb/>gene&longs;es &longs;imilium, &longs;impliciumque motuum &longs;int æquè am­<lb/>plæ, erunt, tempora in ratione &longs;ubduplicata imaginum, <lb/>&longs;eu &longs;patiorum acceleratorum motuum, &longs;unt verò &longs;patia <lb/>ip&longs;æ elongationes; ergo &c. <!-- KEEP S--></s> </p> <p type="main"> <s id="s.000826"><emph type="center"/>PROP. XXXXIII. THEOR. XXXVI.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000827">CHordæ non eiu&longs;dem cra&longs;&longs;itiei, eiu&longs;dem tamen mate­<lb/>riæ, ac longitudinis, tunc æquè trahentur vbi <expan abbr="&longs;u&longs;p&etilde;-&longs;a">&longs;u&longs;pen­<lb/>&longs;a</expan> pondera cra&longs;&longs;itut inibus proportionalia fuerint. </s> <s id="s.000828">Nam <lb/>cra&longs;&longs;ior chorda pote&longs;t concipi compo&longs;ita ex funiculis eiu&longs; <lb/>dem cra&longs;&longs;itiei alterius chordæ, &longs;i illa huius fuerit multiplex, <lb/>& &longs;i partes exilior funiculus fuerit alterius cra&longs;&longs;ioris, erit <lb/>cra&longs;&longs;ities alicuius alterius funiculi, quæ pluries accept&atail; <lb/>con&longs;tituere poterit vtranque cra&longs;&longs;itiem funiculorum pro­<lb/>po&longs;itorum (hìc enim non accidit enumerare cra&longs;&longs;ities in­<lb/>ter&longs;e irrationales, quippe quia, quod de iam dictis o&longs;ten­<lb/>derimus, de his quoque facilè e&longs;t iudicare, &longs;ecùs e&longs;&longs;emus <lb/>longi, quam par e&longs;t, poti&longs;&longs;imùm cum hæc præter <expan abbr="in&longs;titutũ">in&longs;titutum</expan> <lb/>adijciantur, & quidem vt con&longs;tet, quomodo methodus i&longs;ta <lb/>no&longs;tra facilis &longs;it, ac vtili&longs;&longs;ima) quapropter &longs;i cuique acce­<lb/>ptarum æqualium chordarum, pondera æqualia &longs;u&longs;pen&longs;a <lb/>&longs;int, porrò hæc omnes æquè trahentur ab ip&longs;is æqualibus <lb/>ponderibus, & &longs;ic etiam compo&longs;ita, nempe choidæ pro-<pb pagenum="84" xlink:href="022/01/090.jpg"/>po&longs;itæ; &longs;untque ita pondera in eadem ratione cra&longs;&longs;itierum, <lb/>&longs;icut propo&longs;uimus; ergo patet propo&longs;itum. </s> </p> <p type="main"> <s id="s.000829"><emph type="center"/>PROP. XXXXIV. THEOR. XXXVII.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000830">SI fuerint eiu&longs;dem materiæ funiculi, & &longs;int illis &longs;u&longs;pen&longs;a <lb/>pondera cra&longs;&longs;itiebus proportionalia, ratio &longs;patiorum <lb/>in reditibus accelerato motu exactorum, <expan abbr="t&etilde;poribus">temporibus</expan> &longs;im­<lb/><arrow.to.target n="marg192"/><lb/>plicium gene&longs;um, erit eadem ac funiculorum. </s> </p> <p type="margin"> <s id="s.000831"><margin.target id="marg192"/><emph type="italics"/>Tab.<emph.end type="italics"/> 8. <emph type="italics"/>fig.<emph.end type="italics"/> 6. <lb/>42. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000832">Nam, vt in præcedenti figura, erit tractio CE ad DF ita <lb/><arrow.to.target n="marg193"/><lb/>AC ad BD, vel AE ad BF, &longs;unt autem primæ velocitates, <lb/>&longs;eu amplitudines gene&longs;um &longs;implicium, &longs;imiliumque <expan abbr="motuũ">motuum</expan> <lb/>in ratione funiculorum, ergo decur&longs;uum &longs;patia motibus <lb/><arrow.to.target n="marg194"/><lb/>acceleratis exacta nectentur ex ratione duplicata altitu­<lb/>dinum gene&longs;um &longs;implicium, nempe duplicata <expan abbr="funiculorũ">funiculorum</expan>, <lb/>& reciproca amplitudinum, &longs;untque ip&longs;æ amplitudines <lb/>homologè vt longitudines funiculorum, ergo relinquitur <lb/>vt ip&longs;a &longs;patia &longs;int in vnica ratione longitudinum funicu­<lb/>lorum. </s> </p> <p type="margin"> <s id="s.000833"><margin.target id="marg193"/><emph type="italics"/>Cor. <!-- KEEP S--></s> <s id="s.000834">pr.<emph.end type="italics"/> 37. <lb/><emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000835"><margin.target id="marg194"/>27. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000836">Quòd &longs;i &longs;patia recur&longs;uum ponantur ip&longs;æ tractiones, vel <lb/>longitudines funiculorum, o&longs;tendetur tempora e&longs;&longs;e æqua­<lb/>lia, quemadmodum æqualia &longs;unt tempora &longs;uperius pro­<lb/>po&longs;ita &longs;implicium gene&longs;um. </s> </p> <p type="main"> <s id="s.000837"><emph type="center"/>PROP. XXXXV. THEOR. XXXVIII.<emph.end type="center"/><lb/><arrow.to.target n="marg195"/><!-- KEEP S--></s> </p> <p type="margin"> <s id="s.000838"><margin.target id="marg195"/><emph type="italics"/>Tab.<emph.end type="italics"/> 8. <emph type="italics"/>fig.<emph.end type="italics"/> 7.</s> </p> <p type="main"> <s id="s.000839">SI eiu&longs;dem materiei quibu&longs;cunque funiculis aligentur <lb/>quæcunque pondera, ijs &longs;ublatis a&longs;cen&longs;uum &longs;patia ab <lb/>extremitatibus &longs;olutis exacta temporibus gene&longs;um &longs;impli­<lb/>cium, ijs nempe quæ impenderentur in motibus iuxta &longs;im­<lb/>plices gene&longs;es, erunt in ratione compo&longs;ita quadratorum <lb/>elongationum chordarum, ex ea cra&longs;&longs;itierum, & ex duabus <lb/>reciprocè &longs;umptis rationibus, nempe longitudinum fu­<lb/>niculorum antequam traherentur; & &longs;u&longs;pen&longs;orum ponde­<lb/>rum. </s> </p> <pb pagenum="85" xlink:href="022/01/091.jpg"/> <p type="main"> <s id="s.000840">Funiculi AB, GH trahantur à ponderibus quibu&longs;cunque <lb/>C, I in C, et I. <!-- KEEP S--></s> <s id="s.000841">Dico &longs;i exempta &longs;int pondera, fore, vt &longs;patia <lb/>quæ acceleratis motibus exiguntur ab extremitatibus &longs;o­<lb/>lutis C, I &longs;int in ratione compo&longs;ita ex duplicata IH ad BC, <lb/>cra&longs;&longs;itudinis ad cra&longs;&longs;itudinem funiculorum AB, GH; dein­<lb/>de ex funiculi longitudine HG ad longitudinem AB, pon­<lb/>deri&longs;que I ad pondus C. <!-- KEEP S--></s> <s id="s.000842">Intelligatur funiculus, &longs;eu chor­<lb/>da, æque cra&longs;&longs;a, ac &longs;imiliter cedens, quàm GH (id quod <lb/>&longs;emper intelligimus quoties funiculi, inter&longs;e comparantur) <lb/>&longs;ed æquè longa, ac AB, &longs;itque illi pondus F adiectum, ad <lb/>quod C eandem habeat rationem, ac cra&longs;&longs;ities AB ad cra&longs;­<lb/>&longs;itiem DE, con&longs;tat elongationem EF æqualem fieri ip&longs;i <lb/>CB, & cum primæ velocitates, &longs;eu amplitudines æquè al­<lb/>tarum gene&longs;um &longs;imilium, &longs;impliciumque motuum &longs;int <expan abbr="etiã">etiam</expan> <lb/>æquales, &longs;patia decur&longs;uum acceleratis motibus exacta <expan abbr="erũt">erunt</expan> <lb/>pror&longs;us æqualia; &longs;unt verò funiculi DE, GH eiu&longs;dem cra&longs;­<lb/>&longs;itiei, ei&longs;que &longs;unt &longs;u&longs;pen&longs;a duo'pondera inæqualia F, I; ergo <lb/>decur&longs;uum &longs;patia ab extremitatibus &longs;olutis exacta <expan abbr="nect&etilde;-tur">necten­<lb/>tur</expan> ex ratione duplicata elongationum FE, &longs;eu CB ad IH, <lb/>ex ratione, quam habent longitudines funiculorum HG ad <lb/>DE, &longs;eu AB, & ex ea ponderum I ad F; verùm pondera I <lb/>ad F nectuntur ex rationibus ponderum I ad C et C ad F, <lb/>quæ po&longs;trema e&longs;t ratio cra&longs;&longs;itiei funiculi AB ad cra&longs;&longs;itiem <lb/>funiculi DE, &longs;eu GH; ergo vt propo&longs;uimus &longs;patia accele­<lb/>ratis motibus exacta, nectentur ex rationibus <expan abbr="quadratorũ">quadratorum</expan> <lb/>CB ad HI; cra&longs;&longs;itudinum funiculorum AB, GH; <expan abbr="ponderũ">ponderum</expan> <lb/>I ad C, & longitudinum HG ad AB. <!-- KEEP S--></s> <s id="s.000843">Quod &c. <!-- KEEP S--></s> </p> <p type="main"> <s id="s.000844"><emph type="center"/>PROP. XXXXVI. THEOR. XXXIX.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000845">TEmpora gene&longs;um &longs;implicium, dum chordis &longs;u&longs;pen­<lb/>duntur quæcunque grauia, nectuntur, ex ratione <lb/>elongationum funiculorum, & ex contrariè &longs;umptis ratio <lb/>nibus, cra&longs;&longs;itudinum, longitudinumque funiculorum, nec <pb pagenum="86" xlink:href="022/01/092.jpg"/>non ponderum funiculis &longs;u&longs;pen&longs;orum. </s> </p> <p type="main"> <s id="s.000846">Nam Cor: 2. pr. <!-- REMOVE S-->8. primi demon&longs;tratum e&longs;t, tempor&atail; <lb/>&longs;implicium &longs;imiliumque motuum componi ex ratione &longs;pa­<lb/>tiorum, &longs;eu altitudinum gene&longs;um, & reciproca primarum <lb/>velocitatum, &longs;eu amplitudinum gene&longs;um, &longs;unt autem alti­<lb/>tudines gene&longs;um tractiones, &longs;eu elongationes funiculorum; <lb/>velocitatesverò primæ nectuntur ex rationibus cra&longs;&longs;itudi­<lb/>num, & ex ea longitudinum funiculorum antequam tra­<lb/>herentur (hoc enim &longs;ubinde o&longs;tendemus) ergo tempora <lb/>propo&longs;ita &longs;implicium gene&longs;um, dum chordis <expan abbr="alligãtur">alligantur</expan> qu&etail;­<lb/>cunque inæqualia pondera, componentur ex rationibus <lb/>elongationum funiculorum, & ex contrariè &longs;umptis cra&longs;&longs;i­<lb/>tudinum, longitudinumque funiculorum, & ponderum. </s> </p> <p type="main"> <s id="s.000847"><emph type="center"/><emph type="italics"/>Aßumptum.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000848"><arrow.to.target n="marg196"/></s> </p> <p type="margin"> <s id="s.000849"><margin.target id="marg196"/><emph type="italics"/>Tab.<emph.end type="italics"/> 8. <emph type="italics"/>fig.<emph.end type="italics"/> 7.</s> </p> <p type="main"> <s id="s.000850">VErùm primæ velocitates in ij&longs;dem chordis componi <lb/>ex ratione cra&longs;&longs;itudinum, longitudinum <expan abbr="funiculorũ">funiculorum</expan>, <lb/>& &longs;u&longs;pen&longs;orum ponderum, &longs;ic o&longs;tendemus, </s> </p> <p type="main"> <s id="s.000851">Quoniam in eadem po&longs;trema figura velocitas, qua&mtail; <lb/>haberet funiculus AB ex liberatione ponderis e&longs;t æqualis <lb/>velocitati, quam haberet alius funiculus, vbi hic etiam li­<arrow.to.target n="marg197"/><lb/>beraretur à pondere, &longs;cilicet cum pondera cra&longs;&longs;itiebus fu­<lb/>niculorum proportionalia &longs;unt, & ip&longs;i funiculi æquè longi; <lb/>velocitas funiculi DE à pondere F ad velocitatem <expan abbr="eiu&longs;d&etilde;">eiu&longs;dem</expan> <lb/><arrow.to.target n="marg198"/><lb/>funiculi, &longs;i loco ponderis F &longs;ub&longs;titutum e&longs;&longs;et aliud æquale <lb/>ip&longs;i I, e&longs;&longs;et vt pondus F ad &longs;ub&longs;titutum, &longs;eu ad I, e&longs;t autem <lb/>velocitas eiu&longs;dem funiculi DE, dum fui&longs;&longs;et pondus ei &longs;u&longs;­<lb/>pen&longs;um æquale I ad velocitatem funiculi GH a pondere I <lb/>vt longitudo DE ad GH; ergo patet propo&longs;itum. </s> </p> <pb pagenum="87" xlink:href="022/01/093.jpg"/> <p type="margin"> <s id="s.000853"><margin.target id="marg197"/>43. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="margin"> <s id="s.000854"><margin.target id="marg198"/><emph type="italics"/>Ex<emph.end type="italics"/> 41. <emph type="italics"/>huius.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000855"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000856"><emph type="italics"/>Quod hucu&longs;que ostendimus in funiculis ponderibus de­<lb/>grauatis, non ab&longs;imili modo præst abimus in chordis ad <expan abbr="vtrã-que">vtran­<lb/>que</expan> extremitatem firmatis, & adductis, hoc tantum di&longs;crimi­<lb/>ne, vt &longs;i in ijs pondere &longs;ublato, motus extremitatis &longs;olutæ at­<lb/>tendebatur, hìc media parte attractâ chordâ, & &longs;ubinde &longs;ui <lb/>iuris relictâ, vibrationem eius ob&longs;eruamus, & equidem illa <lb/>omnia in hunc finem o&longs;tendimus, quippe ab hac re, plurima <lb/>vtili&longs;&longs;imæque veritates manere po&longs;&longs;unt. </s> <s id="s.000857">Nam de arcubus po&longs;&longs;es <lb/>pulcherrima in&longs;titui ratio, & qui vellet armonicorum &longs;ono­<lb/>rum, vel vocum per chordarum vibrationes editarum, tempo­<lb/>ra, cum &longs;oni ad aures perueniunt, inue&longs;tigare, reor non aliam <lb/>viam, quàm hanc ingredi nos debere, atque indè con&longs;onantia­<lb/>rum forta&longs;&longs;e naturam percipere po&longs;&longs;e, vt primus <gap/>ui<gap/> Gal­<lb/>lileus quamquam vibrationes ten&longs;arum chordarum <expan abbr="differãt">differant</expan> <lb/>ab ijs pendulorum.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000858"><emph type="center"/><emph type="italics"/>FINIS.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> <pb pagenum="88" xlink:href="022/01/094.jpg"/> <p type="main"> <s id="s.000859"><emph type="center"/>SPIEGATIONE<emph.end type="center"/></s> </p> <p type="main"> <s id="s.000860"><emph type="center"/>di vna nuoua &longs;pecie di Bale&longs;tra.<emph.end type="center"/><lb/><arrow.to.target n="marg199"/></s> </p> <p type="margin"> <s id="s.000861"><margin.target id="marg199"/><emph type="italics"/>Tab.<emph.end type="italics"/> 9.</s> </p> <p type="main"> <s id="s.000862">IN que&longs;ta figura &longs;i e&longs;prime vna nuoua <expan abbr="inu&etilde;-tione">inuen­<lb/>tione</expan> di Bale&longs;tra, la quale, ma&longs;&longs;imamente <lb/>in grande, per tirar granate, ò &longs;a&longs;&longs;i può e&longs;­<lb/>&longs;ere di gran con&longs;eguenze nella militare, co­<lb/>me dimo&longs;trera&longs;&longs;i. </s> </p> <p type="main"> <s id="s.000863">Dalle &longs;ue parti &longs;i verrà in cognitione del <lb/>modo di fabbricarta, e &longs;ono le &longs;eguenti. </s> </p> <p type="main"> <s id="s.000864">AM, MN &longs;ono amendue le braccia. </s> <s id="s.000865">Il punto M è il cen­<lb/>tro della machina. </s> <s id="s.000866">Per la cauità M deue pa&longs;lar la pall&atail; <lb/>&longs;cagliata dalla corda; e per di &longs;otto M &longs;i ferma & inca&longs;tra <lb/>nel manico, al modo delle bale&longs;tre communi. </s> <s id="s.000867">Ai due capi, <lb/>ò &longs;iano e&longs;tremità A, N &longs;i annette la fune. </s> <s id="s.000868">I punti A, E, F, <lb/>G, I, K &longs;ono in vna linea retta. </s> <s id="s.000869">Gl' interualli AE, EF, FG, <lb/>GI, IK, &longs;ono, benche non di nece&longs;&longs;ità, eguali. </s> <s id="s.000870">Le altezze, <lb/>ò comme&longs;&longs;ure KL, IH, GD, FC, EB perpendiculari, nell' <lb/>incuruar&longs;i dell' arco, &longs;i aprono intorno a' centri K, I, G, F, <lb/>E. <!-- KEEP S--></s> <s id="s.000871">Donde ne &longs;iegue, che prendendo la corda dal &longs;uo mez­<lb/>zo, e tirandola ver&longs;o O; amendue le braccia &longs;i aprono nel­<lb/>le predette comme&longs;&longs;ure, come compare nell' vno d'e&longs;&longs;i &longs;e­<lb/>gnato a punti con le lettere corri&longs;pondenti. </s> <s id="s.000872">Cia&longs;cuna <lb/>delle predette comme&longs;&longs;ure viene &longs;trettamente rin&longs;errat&atail; <lb/>da vna molla, come &longs;i vede in L, H, D, C, B; e que&longs;te mol­<lb/>le, quanto più &longs;i auuicinano al centro M, deuono e&longs;&longs;ere più <lb/>grandi e più ma&longs;&longs;iccie, in modo che, per cagione della <expan abbr="grã-dezza">gran­<lb/>dezza</expan> opportuna, vengano ad aprir&longs;i con egual facilità <lb/>dell'altre, e per cagione della gro&longs;&longs;ezza, habbiano nel &longs;er­<lb/>rar&longs;i maggior forza, ò &longs;ia momento, per la ragione, che &longs;ot­<lb/>to &longs;i dirà. </s> </p> <p type="main"> <s id="s.000873">Ciò pre&longs;uppo&longs;to, è facil co&longs;a dimo&longs;trare i vantaggi di <pb pagenum="89" xlink:href="022/01/095.jpg"/>que&longs;ta machina &longs;opra le ordinarie. </s> </p> <p type="main"> <s id="s.000874">Primieramente nel triangolo ALK, e&longs;&longs;endo le altezz&etail; <lb/>EB, FC, GD, IH, KL perpendicolari, e perciò paralelle; <lb/>ne &longs;iegue che le proportioni di AE ad EB, di AF ad FC, di <lb/>AG a GD, di AI ad IH, di AK a KL &longs;ieno tutte eguali; e <lb/>douendo e&longs;&longs;ere parimente eguali le re&longs;i&longs;tenze delle molle <lb/>in B, C, D, H, L, che &longs;i &longs;uppongono di egual neruo nell' <lb/>aprir&longs;i; ne &longs;iegue (&longs;econdo i principij della Meccanica) che <lb/>attraendo&longs;i con la fune l'e&longs;tremità A, nel mede&longs;imo tempo <lb/>e con la mede&longs;ima facilità vincera&longs;&longs;i l'equilibrio di tutte le <lb/>molle; la re&longs;i&longs;tenza delle quali &longs;i con&longs;idera in ragione di <lb/>pe&longs;o, &longs;i come le linee AE, EB; AF, FC; AG, GD; &c. <!-- REMOVE S-->&longs;i con­<lb/>&longs;iderano come vetti, ò lieue, che hanno i loro ippomoclij, ò <lb/>&longs;iano centri in E, F, G, I, K, e la potenza in A, la quale è <lb/>comune a tutte. </s> </p> <p type="main"> <s id="s.000875">In &longs;econdo luogo, hauendo il braccio AE al braccio EB <lb/>(il &longs;imile dica&longs;i degli altri) hauendo, dico, gran proportio­<lb/>ne, re&longs;terà molto ageuolato il moto. </s> </p> <p type="main"> <s id="s.000876">Terzo e&longs;&longs;endo molte le molle, e a prendo&longs;i tutte, ne deue <lb/>&longs;eguire vn notabile incuruamento d'amendue le braccia; <lb/>onde la&longs;ciando l'arco in libertà, e chiudendo&longs;i tutte le &longs;u­<lb/>det te molle nel mede&longs;imo tempo, cioè qua&longs;i in vn'attimo; <lb/>dourà la corda, che era tirata ver&longs;o O, pa&longs;&longs;are qua&longs;i in <expan abbr="i&longs;tã-te">i&longs;tan­<lb/>te</expan> ver&longs;o M; il che non potendo&longs;i fare &longs;e non con &longs;omma ve­<lb/>locità, per la grandezza dello &longs;patio; e a que&longs;ta corri&longs;pon­<lb/>dendo la forza, ne &longs;eguirà vn colpo molto con&longs;iderabile, e <lb/>vantaggio&longs;o, come cia&longs;cuno può arguire. </s> </p> <p type="main"> <s id="s.000877">Re&longs;tano hora a &longs;cior&longs;i alcune difficoltà. </s> <s id="s.000878">La prima è, <lb/>che, quantunque &longs;ia vero, che quella forza ba&longs;tante in A <lb/>per vincer l'equilibrio della molla B, quella mede&longs;ima al­<lb/>tre&longs;i &longs;ia &longs;ufficiente a vincer l' equilibrio di tutte l'altre, per <lb/>e&longs;&longs;ere eguali le proportioni delle vetti; ciò non o&longs;tante, <expan abbr="cõ-&longs;iderando&longs;i">con­<lb/>&longs;iderando&longs;i</expan> il braccio incuruato, come &longs;i vede nell' arco <lb/>KLA &longs;egnato a punti, le proportioni rie&longs;cono alterate; do-<pb pagenum="90" xlink:href="022/01/096.jpg"/>uendo&longs;i prendere per le lunghezze delle vetti &longs;udette, non <lb/>più le lunghezze di prima, ma bensi le applicate di detto <lb/>arco, cioe af, ag, ai, ak; delle quali aK, e l' altre a lei più <lb/>vicine &longs;i abbreuiano molto più quando l' arco è incurua­<lb/>to, che quando non è: Onde per tal ragione dourebbero <lb/>le parti più vicine al centro M aprir&longs;i meno dell'altre più <lb/>vicine alle e&longs;tremità. </s> <s id="s.000879">A ciò &longs;i ri&longs;ponde, che per e&longs;&longs;er la <lb/>corda a o più obliqua alla lunghezza a e di quel che &longs;ia all' <lb/>altre più vicine al centro M, quindi ne &longs;iegue, che per quel' <lb/>altra cagione s' aprono più ageuolmente le parti vicine al <lb/>centro; onde, temperata vna ragione con l' altra (quando <lb/>l' arco non &longs;ia e&longs;tremamente incuruato) &longs;i con&longs;egui&longs;ce vno <lb/>&longs;tato d'apertura opportuna. </s> </p> <p type="main"> <s id="s.000880">La &longs;econda difficoltà è che cia&longs;cuna molla nel &longs;uo re­<lb/>&longs;tringer&longs;i, par che cagioni qualche effetto contrario all'in­<lb/>tento. </s> <s id="s.000881">Imperoche, per e&longs;empio, nella molla B il mezzo <lb/>anello, che ri&longs;guarda l'e&longs;tremità A, nello &longs;tringer&longs;i fà ben&longs;i <lb/>il &longs;uo douere, perche il &longs;uo moto è ver&longs;o il centro M; ma l' <lb/>altra metà, che ri&longs;guarda il &longs;udetto centro M, nello &longs;trin­<lb/>ger&longs;i, hauendo il &longs;uo moto ver&longs;o A, &longs;i oppone al chiudi­<lb/>mento della molla &longs;eguente C; e il &longs;imile dica&longs;i dell' altre. <lb/></s> <s id="s.000882">A ciò &longs;i è po&longs;to rimedio col far più grandi, e più ma&longs;&longs;iccie <lb/>le molle più vicine al centro M, accre&longs;cendole, e ingro&longs;&longs;an­<lb/>dole di mano in mano opportunamente. </s> <s id="s.000883">Quindi ne &longs;egue <lb/>che per la maggior grandezza <expan abbr="cõ&longs;entono">con&longs;entono</expan> egualmente all' <lb/>aprir&longs;i con facilità; ma all' incontro nel &longs;errar&longs;i, per e&longs;&longs;ere <lb/>più ma&longs;&longs;iccie, e di maggior corpo, vengono ad hauere <lb/>maggior momento delle men corpulenti, &longs;uperando co&ntail; <lb/>ciò non &longs;olo il detto moto oppo&longs;to, ma etiandio impri­<lb/>mendo maggior moto al ferro dell'arco, con cui &longs;i acco­<lb/>muna il moto. </s> </p> <p type="main"> <s id="s.000884">Auuerta&longs;i, che quanto &longs;aranno di maggior numero le <lb/><expan abbr="cõme&longs;lure">comme&longs;ture</expan>, le molle di maggior pe&longs;o, e l'arco più pouero di <lb/>corpo, tanto riu&longs;cirà il colpo a di&longs;mi&longs;ura maggiore, per l' <pb pagenum="91" xlink:href="022/01/097.jpg"/>incuruamento notabile delle braccia, e per il maggior mo­<lb/>mento delle molle; e ciò con adoperare la mede&longs;ima <lb/>forza. </s> </p> <p type="main"> <s id="s.000885">Auuerta&longs;i parimente, che il braccio AE, è il &longs;uo corri&longs;­<lb/>pondente deuono e&longs;&longs;ere alquanto più corti, cioè A vna <lb/>delle e&longs;tremità dell'arco deue e&longs;&longs;ere più ver&longs;o il centro di <lb/>quel che &longs;ia il concor&longs;o delle linee LB, KE, come pure dall' <lb/>altra parte; perche &longs;i vede che aprendo&longs;i meno le parti vi­<lb/>cine ad A, l'altre molle fanno miglior effetto. </s> </p> <p type="main"> <s id="s.000886">Finalmente la &longs;perienza ha mo&longs;trato, che e&longs;&longs;endo&longs;i la­<lb/>uorata vna tal machina con pochi&longs;&longs;imi nodi, ageuoli&longs;&longs;ima <lb/>ad aprir&longs;i, e &longs;enza hauer ingrandite e ingro&longs;late le molle, <lb/>che più &longs;i vanno auuicinando al centro M, come &longs;i è det­<lb/>to; con tutto ciò l' ordigno è riu&longs;cito di forza molto &longs;upe­<lb/>riore a vna bale&longs;tra grande, e difficilif&longs;ima a inarcar&longs;i. </s> <s id="s.000887">On­<lb/>de non dubito, che, facendo&longs;i con tutte le regole accenna­<lb/>te, non debba riu&longs;cire vna machina di effetto marauiglio&longs;o <lb/>aggiungendo che per tirar granate dourebbero i bracci <lb/>e&longs;&longs;er di legno, armati di ferro &longs;ol doue &longs;i richiede. </s> </p> <pb pagenum="92" xlink:href="022/01/098.jpg"/> <p type="main"> <s id="s.000888"><emph type="center"/>Nouum genus Bali&longs;tæ <lb/>Explicatio.<emph.end type="center"/><!-- KEEP S--></s> </p> <p type="main"> <s id="s.000889"><arrow.to.target n="marg200"/></s> </p> <p type="margin"> <s id="s.000890"><margin.target id="marg200"/><emph type="italics"/>Tab.<emph.end type="italics"/> 9.</s> </p> <p type="main"> <s id="s.000891">IN hac figura exprimitur nouum genus Bali­<lb/>&longs;tæ, quæ machina præ&longs;ertim in mole maio­<lb/>ri, non parum vtilitatis afferre pote&longs;t rei mi­<lb/>litari ad eiaculanda mi&longs;&longs;ilia, vt demon&longs;tra­<lb/>bitur. </s> <s id="s.000892">Ex eius verò partibus, quas &longs;ubinde <lb/>recen&longs;eo, etiam modus &longs;tructuræ apparebit. </s> </p> <p type="main"> <s id="s.000893">AM, MX &longs;unt brachia. </s> <s id="s.000894">Punctum M centrum machi­<lb/>næ. </s> <s id="s.000895">Per cauitatem M tran&longs;it telum emi&longs;&longs;um. </s> <s id="s.000896">Infra M in­<lb/>&longs;eritur manubrium, vt in bali&longs;tis vulgaribus. </s> <s id="s.000897">Extremis <lb/>capitibus A, N adnectitur funis. </s> <s id="s.000898">Puncta A, E, F, G, I, K <lb/>&longs;unt in linea recta. </s> <s id="s.000899">Interualla AE, EF, FG, GI, IK &longs;unt (li­<lb/>cèt non nece&longs;&longs;ariò) æqualia. </s> <s id="s.000900">Altitudinis, &longs;eu commi&longs;&longs;uræ <lb/>KL, IH, GD, FC, EB &longs;unt perpendiculares rectæ occultæ <lb/>KA. </s> <s id="s.000901">Singulæ autem, dum curuatur arcus, aperiuntur cer­<lb/>ca centra K, I, G, F, E. <!-- KEEP S--></s> <s id="s.000902">Hinc &longs;equitur vt funis ex medio <lb/>dum attrahitur in O, aperiantur prædictæ commi&longs;&longs;uræ, &longs;eu <lb/>nodi, & curuentur vtraque brachia, vt in eorum altero ap­<lb/>paret punctis notato. </s> <s id="s.000903">Quilibet ex his nodis arcti&longs;&longs;imè &longs;trin­<lb/>gitur &longs;upernè, a &longs;uo elaterio, vt videre e&longs;t in L, H, D, C, B. <lb/><!-- KEEP S--></s> <s id="s.000904">Elateria autem quò propinquiora centro M tanto maiora, <lb/>& cra&longs;&longs;iora debent e&longs;&longs;e remotioribus: Hinc fit vt, propter <lb/>molem opportunè auctam, æquè facilè aperiantur, ac cæ­<lb/>tera; & vice ver&longs;a, propter cra&longs;&longs;itiem maiorem, &longs;ibi relicta <lb/>validiùs re&longs;tringantur. </s> <s id="s.000905">Cuius rei paulo infra rationem <lb/>dabimus. </s> </p> <p type="main"> <s id="s.000906">His po&longs;itis facile e&longs;t o&longs;tendere, quantum præ&longs;tet hu­<lb/>iu&longs;cemodi machina vulgaribus & communibus bali&longs;tis. </s> </p> <p type="main"> <s id="s.000907">Primùm, in Triangulo ALK cùm altitudines EB, FC, <lb/>GD, IH, KL &longs;int perpendiculares, ideoque parallelæ, hinc <pb pagenum="93" xlink:href="022/01/099.jpg"/>&longs;it vtrationes AE ad EB, AF ad FC, AG ad GD, AI ad <lb/>IH, AK ad KL &longs;int æquales. </s> <s id="s.000908">Sunt pariter æquales re&longs;i­<lb/>&longs;tentiæ elateriorum in B, C, D, H, L (po&longs;uimus enim ela­<lb/>teria ita opportunè aucta vt æquè facile &longs;ingula aperian­<lb/>tur) ergo (ex primis principijs mechanicorum) dum attra­<lb/>huntur fune extrema capita A, N, eodem tempore, eadem­<lb/>que facili ate vincetur æquilibrium omnium elateriorum, <lb/>quorum re&longs;i&longs;tentia in &longs;ingulis con&longs;ideratur in ratione pon­<lb/>deris, quemadmodum lineæ AE, EB; AF, FC; AG, GD <lb/>&c. <!-- REMOVE S-->con&longs;iderantur vt vectes, quorum hippomoclia &longs;eu <expan abbr="c&etilde;-tra">cen­<lb/>tra</expan> &longs;unt in E, F, G, I, K, potentia autem con&longs;ideratur in A <lb/>communis omnibus. </s> </p> <p type="main"> <s id="s.000909">Secundò, cùm AE ad EB (idem die de cæteris) habeant <lb/>magnam proportionem, facilè aperientur nodi, & curuabi­<lb/>tur arcus; quantumuis augeatur numerus nodorum. </s> </p> <p type="main"> <s id="s.000910">Tertiò Cum &longs;int plures nodi, atque omnes aperiantur, <lb/>nece&longs;&longs;e e&longs;t vt brachia arcus valdè incuruentur; <expan abbr="quamobr&etilde;">quamobrem</expan> <lb/>&longs;i idem arcus &longs;ibi relinquatur, prædicti nodi omnes, vi ela­<lb/>teriorum, ictu oculi claudentur; eodemque puncto tempo­<lb/>ris corda ex O percurret totum &longs;patium v&longs;que ad M: Quòd <lb/>cùm fieri nequeat ni&longs;i &longs;umma velocitate, propter magni­<lb/>tudinem prædicti &longs;patij, & velocitati re&longs;pondent vis, atque <lb/>impetus, nece&longs;&longs;e e&longs;t vt hinc &longs;equatur ictus valde notabilis, <lb/>vt facilè e&longs;t vnicuique conijcere. </s> </p> <p type="main"> <s id="s.000911">Super &longs;unt nunc difficultates nonnullæ &longs;oluendæ. </s> <s id="s.000912">Prima <lb/>e&longs;t, quòd licèt vis &longs;ufficiens in A ad vincendum <expan abbr="æquilibriũ">æquilibrium</expan> <lb/>elaterij B, illa eadem quoque &longs;ufficiat ad vincendum æqui­<lb/>librium cæterorum, propter æquales proportiones <expan abbr="vectiũ">vectium</expan>; <lb/>his tamen non ob&longs;tantibus, &longs;i con&longs;ideretur brachium iam <lb/>incuruatum, vt apparet in KLA punctis notato, proportio­<lb/>nes illæ cernuntur notabiliter variatæ. </s> <s id="s.000913">Neque enim pro <lb/>longitudinibus vectium &longs;umi po&longs;&longs;unt longitudines priores, <lb/>&longs;ed loco ip&longs;arum accipiendæ &longs;unt applicatæ arcus, videli­<lb/>cet af, ag, ai, ak quarum ak, eidemque propinquiores, <expan abbr="quã-">quan-</expan><pb pagenum="94" xlink:href="022/01/100.jpg"/>do arcus incuruatur, breuiores fiunt, quàm e&longs;&longs;ent ante&atail;. <lb/></s> <s id="s.000914">Re&longs;pondeo, quòd corda ao cùm &longs;it obliquior re&longs;pectu <lb/>longitudinis ae, quàm re&longs;pectu cæterarum centro propin­<lb/>quiorum, hinc fit vt, quantùm e&longs;t ex hac ratione, faciliùs <lb/>aperiantur partes propinquiores centro; quamobrem, vtra­<lb/>que ratione inuicem temperata, dummodo arcus non &longs;it <lb/>&longs;ummè incuruatus omnes partes aperientur, quantum &longs;a­<lb/>tis e&longs;t ad intentum. </s> </p> <p type="main"> <s id="s.000915">Altera difficultas e&longs;t, quod elaterium quodlibet dum <lb/>re&longs;tringitur videtur ob&longs;tare motui elaterij &longs;equentis. </s> <s id="s.000916">Nam, <lb/>exempli gratia, in elaterio B &longs;emiannulus re&longs;piciens extre­<lb/>mum A, dum &longs;tringitur, optimè præ&longs;tat &longs;uum effectum, <expan abbr="cũ">cum</expan> <lb/>eius motus &longs;it versùs centrum M At è contrario reliqua <lb/>pars, &longs;eu &longs;emiannulus re&longs;piciens prædictum centrum M, <expan abbr="cũ">cum</expan> <lb/>habeat &longs;uum motum ver&longs;us A videtur ob&longs;tare, quo minus <lb/>liberè claudatur &longs;equens elaterium C. <!-- KEEP S--></s> <s id="s.000917">Aque idem de cæte­<lb/>ris dicendum. </s> <s id="s.000918">Huic incommodo con&longs;ultum e&longs;t augendo <lb/>magnitudinem, & cra&longs;&longs;itiem elateriorum, quò magis acce­<lb/>dunt ad centrum M. </s> <s id="s.000919">Hinc enim &longs;equitur vt propter ma­<lb/>gnitudinem facilè con&longs;entiant arcui, dum incuruatur; at <lb/>dum idem arcus liberè &longs;ibi relinquitur, cum &longs;int corpulen­<lb/>tiora & cra&longs;&longs;iora habent maius momentum, quàm cætera <lb/>graciliora, ideoque non modo vincunt motum illum op­<lb/>po&longs;itum, &longs;ed etiam imprimunt maiorem motum ferro ar­<lb/>cus, cui ille motus communicatur. </s> </p> <p type="main"> <s id="s.000920">Aduerte quod commi&longs;&longs;uræ &longs;eu nodi, quò plures fuerint, <lb/>elateria autem maioris ponderis, arcus denique corporis <lb/>gracilioris equæ expeditioris, tanto ictus longat præ&longs;tan­<lb/>tior &longs;equetur, tum propter notabilem curuaturam brachio­<lb/>rum, tum propter momentum maius elateriorum, & <expan abbr="quid&etilde;">quidem</expan> <lb/>po&longs;ita eadem potentia, aut etiam minori, pro vt longitudi­<lb/>nes vectium &longs;tatuuntur. </s> </p> <p type="main"> <s id="s.000921">Aduerte etiam, longitudinem brachij AE, eiu&longs;demqu&etail; <lb/>corre&longs;pondentis debere cæteris paribus nonnihil imminui, <pb pagenum="95" xlink:href="022/01/101.jpg"/>quod fiet &longs;i A, alterum extremum arcus, &longs;it propriùs cen­<lb/>tro M, quàm &longs;it concur&longs;us linearum LB, KE. <!-- KEEP S--></s> <s id="s.000922">Idem dicen­<lb/>dum de altero extremo N. <!-- KEEP S--></s> <s id="s.000923">Nam cùm minus aperiantur <lb/>partes propinquiores puncto A, cætera elateria, vt com­<lb/>pertum e&longs;t, meliorem effectum præ&longs;tant. </s> </p> <p type="main"> <s id="s.000924">Fauet denique experientia. </s> <s id="s.000925">Nam huiu&longs;cemodi machi­<lb/>na pauci&longs;&longs;imis nodis con&longs;tructa, facillimæ curuaturæ, cum <lb/>elaterijs eiu&longs;dem pror&longs;us molis & cra&longs;&longs;itudinis; nihilomi­<lb/>nus longè &longs;uperauit vim bali&longs;tæ communis maximæ, & dif<lb/>ficillimæ flexionis. </s> <s id="s.000926">Quamobrem non dubito quin, &longs;i præ­<lb/>cepta &longs;uperiùs data exactè &longs;eruentur, elaborari po&longs;&longs;it ma­<lb/>china miræ vtilitatis. </s> <s id="s.000927">Adde po&longs;tremo ad iacienda <expan abbr="quædã">quædam</expan> <lb/>mi&longs;&longs;ilia, vt e&longs;t genus quoddam bolidum, vulgo <emph type="italics"/>granate,<emph.end type="italics"/> op­<lb/>portuniora e&longs;&longs;e brachia lignea, tantummodo, vbi nece&longs;&longs;i­<lb/>tas po&longs;tulat, armata ferro. </s> </p> <p type="main"> <s id="s.000928"><emph type="center"/><emph type="italics"/>FINIS.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s> </p> </chap> </body> <back> <pb xlink:href="022/01/102.jpg"/> <section> <p type="main"> <s id="s.000929"><emph type="italics"/>Vid. <!-- REMOVE S-->D. <!-- REMOVE S-->Bernardus Marchellus Re­<lb/>ctor Pœnitent. <!-- REMOVE S-->in Metropol. <!-- REMOVE S-->Bonon. <lb/><!-- REMOVE S-->pro Illu&longs;tri&longs;s. <!-- REMOVE S-->& Reverendi&longs;s. <!-- REMOVE S-->Domino <lb/>D. <!-- REMOVE S-->Iacobo Boncompagno Archiepi&longs;­<lb/>copo, & Principe.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000930"><emph type="italics"/>Vid. <!-- REMOVE S-->Silue&longs;ter Bonfiliolus Inqui&longs;itionis <lb/>reui&longs;or, & imprimi po&longs;&longs;e cen&longs;uit.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000931"><emph type="italics"/>Stante atte&longs;tatione.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000932"><emph type="center"/><emph type="italics"/>Imprimatur.<emph.end type="italics"/><emph.end type="center"/></s> </p> <p type="main"> <s id="s.000933"><emph type="italics"/>F. <!-- REMOVE S-->Io&longs;eph Maria Agudius Vicarius <lb/>Sancti Offi c ij Bononiæ.<emph.end type="italics"/></s> </p> <p type="main"> <s id="s.000934"><emph type="center"/>8 00 57<emph.end type="center"/></s> </p> <pb xlink:href="022/01/103.jpg"/> <p type="caption"> <s id="s.000935">TABVLA I.<lb/><figure id="id.022.01.103.1.jpg" xlink:href="022/01/103/1.jpg"/><!-- KEEP S--></s> </p> <pb xlink:href="022/01/104.jpg"/> <p type="caption"> <s id="s.000936">TABVLA II.<lb/><figure id="id.022.01.104.1.jpg" xlink:href="022/01/104/1.jpg"/><!-- KEEP S--></s> </p> <pb xlink:href="022/01/105.jpg"/> <p type="caption"> <s id="s.000937">TABVLA III.<lb/><figure id="id.022.01.105.1.jpg" xlink:href="022/01/105/1.jpg"/><!-- KEEP S--></s> </p> <pb xlink:href="022/01/106.jpg"/> <p type="caption"> <s id="s.000938">TABVLA VI.<lb/><figure id="id.022.01.106.1.jpg" xlink:href="022/01/106/1.jpg"/><!-- KEEP S--></s> </p> <pb xlink:href="022/01/107.jpg"/> <p type="caption"> <s id="s.000939">TABVLA V.<lb/><figure id="id.022.01.107.1.jpg" xlink:href="022/01/107/1.jpg"/><!-- KEEP S--></s> </p> <pb xlink:href="022/01/108.jpg"/> <p type="caption"> <s id="s.000940">TABVLA IV.<lb/><figure id="id.022.01.108.1.jpg" xlink:href="022/01/108/1.jpg"/><!-- KEEP S--></s> </p> <pb xlink:href="022/01/109.jpg"/> <p type="caption"> <s id="s.000941">TABVLA VII.<lb/><figure id="id.022.01.109.1.jpg" xlink:href="022/01/109/1.jpg"/><!-- KEEP S--></s> </p> <pb xlink:href="022/01/110.jpg"/> <p type="caption"> <s id="s.000942">TABVLA VIII.<lb/><figure id="id.022.01.110.1.jpg" xlink:href="022/01/110/1.jpg"/><pb xlink:href="022/01/111.jpg"/><figure id="id.022.01.111.1.jpg" xlink:href="022/01/111/1.jpg"/><!-- KEEP S--></s> </p> <pb xlink:href="022/01/112.jpg"/> <figure id="id.022.01.112.1.jpg" xlink:href="022/01/112/1.jpg"/> <p type="caption"> <s id="s.000943">TABVLA VIIII.<!-- KEEP S--></s> </p> </section> </back> </text> </archimedes>