
12 The Essential MOF (EMOF) Model

12.1 Introduction

This chapter defines Essential MOF, which is the subset of MOF that closely corresponds
to the facilities found in OOPLs and XML. The value of Essential MOF is that it
provides a straightforward framework for mapping MOF models to implementations
such as JMI and XMI for simple metamodels. A primary goal of EMOF is to allow
simple metamodels to be defined using simple concepts while supporting extensions (by
the usual class extension mechanism in MOF) for more sophisticated metamodeling
using CMOF. Both EMOF and CMOF (defined in the next chapter) reuse the UML2
InfrastructureLibrary. The motivation behind this goal is to lower the barrier to entry for
model driven tool development and tool integration.

The EMOF Model merges the Basic package from UML2 and includes additional
language capabilities defined in this specification. The EMOF model merges the
Reflection, Identifiers, and Extension capability packages to provide services for
discovering, manipulating, identifying, and extending metadata.

EMOF, like all metamodels in the MOF 2 and UML 2 family, is described as a CMOF
model. However, full support of EMOF requires it to be specified in itself, removing any
package merge and redefinitions that may have been specified in the CMOF model. This
chapter provides the CMOF model of EMOF, and the complete, merged EMOF model.
This results in a complete, standalone model of EMOF that has no dependencies on any
other packages, or metamodeling capabilities that are not supported by EMOF itself.

Note - The abstract semantics specified in "CMOF Abstract Semantics" on page 53 are
optional for EMOF.

The relationship between EMOF and InfrastructureLibrary::Core::Basic requires further
explanation. EMOF merges Basic with the MOF capabilities and a few extensions of its
own that are described below. Ideally, EMOF would just extend Basic using subclasses
that provide additional properties and operations. Then EMOF could be formally
specified in EMOF without requiring package merge. However, this is not sufficient
because Reflection has to introduce Object in the class hierarchy as a new superclass of
Basic::Element which requires the merge. As a result of the merge, EMOF is a separate
model that merges Basic, but does not inherit from it.

By using PackageMerge, EMOF is directly compatible with Basic XMI files. Defining
EMOF using package merge also ensures EMOF will get updated with any changes to
Basic. The reason for specifying the complete, merged EMOF model in this chapter is to
provide a metamodel that can be used to bootstrap metamodel tools rooted in EMOF
without requiring an implementation of CMOF and package merge semantics.



Figure 12.1 - EMOF Model- Overview

The EMOF model provides the minimal set of elements required to model object-
oriented systems. EMOF reuses the Basic package from UML 2.0 InfrastructureLibrary
as is for metamodel structure without any extensions, although it does introduce some
constraints.

12.2 EMOF Merged Model

This section provides the complete EMOF model merged with Basic and the MOF
capabilities. It is completely specified in EMOF itself after applying the package merge
semantics described in Infrastructure. The description of the model elements is identical
to that found in UML 2.0 Infrastructure and is not repeated here.

Basic

EMOF merges InfrastructureLibrary::Core::Basic from UML 2.0 Infrastructure. The
results of the merge are given in the following diagrams. The results of merging the
capabilities described in the next section are also shown in some of the diagrams.



Figure 12.2 - EMOF Classes

Figure 12.3 - EMOF Data Types



Figure 12.4 - EMOF Packages

Figure 12.5 - EMOF Types

12.3 Merged Elements from MOF

The EMOF Model merges the following packages from MOF. See the capabilities
chapters (9 through 11) for diagrams of the EMOF capabilities.

Identifiers
Reflection
PrimitiveTypes
Extensions

12.4 EMOF Constraints

The type of Operation::raisedException is limited to be Class rather than Type.1.
Notationally, the option is disallowed of suppressing navigation arrows such that
bidirectional associations are indistinguishable from non-navigable associations.

2.

Names are required for all Types and Properties (though there is nothing to prevent
these names being automatically generated by a tool).

3.

Core::Basic and EMOF does not support visibilities. All property visibilities4.



expressed in the UML MOF model will be ignored (and everything assumed to be
public). Name clashes through names thus exposed should be avoided.
The definitions of Boolean, Integer, and String are consistent with the following
implementation definitions:

Boolean: http://www.w3.org/TR/xmlschema-2/#boolean
Integer: http://www.w3.org/TR/xmlschema-2/#integer
String: http://www.w3.org/TR/xmlschema-2/#string

5.

All the abstract semantics specified in the Chapter 15, "CMOF Abstract
Semantics" are optional for EMOF.

6.

X is an object and therefore supports reflection if
MOF::Object.isInstance(X)==true.

7.

12.5 EMOF Definitions and Usage Guidelines for the Basic Model

When the EMOF package is used for metadata management the following usage rules
apply.

Package

Although EMOF defines Package and nested packages, EMOF always refers to
model elements by direct object reference. EMOF never uses any of the names of
the elements. There are no operations to access anything by NamedElement::name.
Instances of EMOF models may provide additional namespace semantics to nested
packages as needed.

Properties

All properties are modified atomically.
When a value is updated, the old value is no longer referred to.
Derived properties are updated when accessed or when their derived source
changes as determined by the implementation. They may also be updated
specifically using set() if they are updateable

Type==DataType

The value of a Property is the default when an object is created or when the
property is unset.
Properties of multiplicity upper bound > 1 have empty lists to indicate no values
are set. Values of the list are unique if Property.isUnique==true.
"Identifier" properties are properties having property.idID==true.

Type==Class

Properties of multiplicity upper bound == 1 have value null to indicate no object is
referenced.
Properties of multiplicity upper bound > 1 have empty lists to indicate no objects
are referenced. Null is not a valid value within the list.
EMOF does not use the names of the properties, the access is by the Property
argument of the reflective interfaces. It does not matter what the names of the
Properties are, the names are never used in EMOF. There is no special meaning for



Object Management Group
http://www.omg.org

Voice: (781) 444-0404

having similar names. The same is true for operations, there is no use of the names,
and there is no name collision, override, or redefinition semantics. EMOF does not
have an invoke method as part of the reflective interface, so there are no semantics
for calling an EMOF operation. The names and types of parameters are never
compared and there is no restriction on what they can have singly or in
combination. Other instances of EMOF metamodels, or language mappings, such
as JMI2, may have additional semantics or find that there are practical restrictions
requiring more specific definitions of the meaning of inheritance.

Property::isComposite==true

An object may have only one container.
Container properties are always multiplicity upper bound 1.
Only one container property may be non-null.
Cyclic containment is invalid.
If an object has an existing container and a new container is to be set, the object is
removed from the old container before the new container is set.
Adding a container updates both the container and containment properties on the
contained and containing objects, respectively. The opposite end is updated first.
The new value is added to this property.

Property::isComposite==false, Bidirectional

The object is first removed from the opposite end of the property.
If the new value's opposite property is of multiplicity upper bound == 1, its old
value is removed.
This object is added to the new value's opposite property.
The new value is added to this property.

Object

Everything that may be accessed by MOF is an Object.
An Object that is not also an Element may be an instance of one DataType.


