
Application Developer's Guide

Release 6.5.2

We Put the World in the World Wide Web®

Application Developer's Guide

Published April 2009

Copyright © 2004-2009 Basis Technology Corporation. All rights reserved. This document is property of and is proprietary to Basis Technology
Corporation. It is not to be disclosed or reproduced in whole or in part without the express written consent of Basis Technology Corporation.

Basis Technology, We Put the World in the World Wide Web, Rosette, Nichibei, and Geoscope are registered trademarks of Basis Technology
Corporation. All other brand names may be trademarks of their respective owners.

Lexical data used in this product Copyright © 2006 Basis Technology Corporation. Individual portions of the lexical data used in this product are
Copyright © 2005 Nara Institute of Science and Technology, Copyright © 2005 Appen Pty Ltd., Copyright © 2005 Hangul Research and Engineering
Center, Copyright © 2005 University of Hawaii.

The Tcl regular expression engine is Copyright © by the Regents of the University of California, Sun Microsystems, Inc., Scriptics Corporation,
ActiveState Corporation and other parties

The Expat XML parser is Copyright © 1998-2000 Thai Open Source Software Center Ltd. and Clark Cooper, Copyright © 2001-2003 Expat
Maintainers.

The Tcl Regular Expressions Manual Page is Copyright © 1998 Sun Microsystems, Inc., Copyright © 1999 Scriptics Corporation, Copyright ©
1995-1997 Roger E. Critchlow Jr.

Basis Technology Corp.

One Alewife Center
Cambridge, MA 02140
F 617.386.2020
E ProductSupport@basistech.com

Preface .. ix
1. In this Guide ... ix
2. Other Documentation .. ix
3. What's New .. ix

1. Introduction to the Rosette Linguistics Platform .. 1
1.1. Key Features ... 1
1.2. Architecture Overview ... 2

1.2.1. RLP Language Processors ... 3
1.2.2. RLP Environments and Contexts ... 3
1.2.3. RLP Configuration ... 4
1.2.4. RLP Result Data .. 4
1.2.5. Core of an RLP Application ... 4

2. RLP Getting Started .. 5
2.1. Downloading RLP .. 5
2.2. Installing the RLP SDK ... 5
2.3. Installing the RLP Documentation ... 6
2.4. Running the RLP Command-line Utility ... 6

2.4.1. Using the go Script .. 7
2.4.2. What Takes Place When You Run the go Script .. 9
2.4.3. Using the RLP Command-Line Utility to Process Your Own Text 10

2.5. Using the Windows Demo ... 13
2.6. Supported Platforms and BT_BUILD Values .. 13

2.6.1. SDK Package File Name .. 14
2.6.2. Documentation Package File Name .. 15

3. Creating an RLP Application .. 17
3.1. Overview ... 17
3.2. Defining the Objectives .. 17
3.3. Defining an RLP Environment ... 17
3.4. Defining an RLP Context .. 18

3.4.1. Preparing the Input .. 18
3.4.2. Language Processors ... 18
3.4.3. Language Analyzer User Dictionaries ... 19
3.4.4. Context Properties ... 19
3.4.5. Sample Context Configurations ... 19

3.5. Coding the Application ... 20
3.6. Setting Up the RLP Environment .. 21

3.6.1. Setting the Basis Root Directory .. 21
3.6.2. Capturing Log Output .. 21
3.6.3. Initializing the Environment .. 23

3.7. Getting License Information .. 24
3.7.1. C++: BT_RLP_Environment License Methods .. 24
3.7.2. Java: RLPEnvironment License Methods .. 24

3.8. Setting Up the Context .. 25
3.8.1. Instantiating a Context in C++ ... 25
3.8.2. Instantiating a Context in Java ... 25
3.8.3. Setting Context Properties .. 26

3.9. Processing Input .. 26
3.9.1. Input Is a File ... 26
3.9.2. Input Is Not a File ... 26

3.10. Introduction to Our Sample Applications .. 27
3.11. Sample C++ Application ... 28
3.12. Sample Java Application ... 34
3.13. Building and Running the Applications .. 40

iii

3.13.1. Building and Running the Sample C++ Applications 40
3.13.2. Building and Running the Sample Java Applications 41

4. Working with Named Entities ... 45
4.1. Introduction .. 45
4.2. Identifying Named Entities .. 45
4.3. Setting Up an RLP Application to Return Named Entities .. 46
4.4. Accessing the Named Entities that RLP has Found ... 47
4.5. The Standard Set of Named Entities .. 47
4.6. Joining Adjacent Named Entities .. 49
4.7. Consistency Returning Named Entities .. 50
4.8. Blacklisting Named Entities ... 50

4.8.1. Creating a Blacklist Dictionary Source File .. 50
4.8.2. Compiling the Blacklist Dictionary ... 51
4.8.3. Where to Put the Blacklist Dictionary ... 51
4.8.4. Updating the Named Entity Redactor Configuration File 51

4.9. Extending the Coverage of Named Entities ... 52
4.9.1. Customizing Gazetteer ... 53
4.9.2. Creating Regular Expressions .. 56

5. Using the RLP C API .. 59
5.1. Introduction .. 59
5.2. Sample C Application ... 59
5.3. Sample C Application For Handling Arabic Alternative Analyses 65
5.4. Sample C Application for Examining the RLP License ... 67
5.5. Building and Running the Sample C Applications .. 67

5.5.1. Building the C Sample Applications ... 67
5.5.2. Running the C Samples .. 68

6. Using the .NET API ... 69
6.1. Introduction .. 69
6.2. Sample C# Application ... 69
6.3. Building and Running the Sample C# Application ... 71

6.3.1. Building the Sample C# Application ... 71
6.3.2. Running the Sample C# Application ... 72

7. Processing Multilingual Text .. 73
7.1. Strategy for Handling Multilingual Text ... 73
7.2. RLBL .. 73

7.2.1. RLBL Context .. 73
7.3. Processing Language Regions .. 74

7.3.1. Single-Language Context .. 74
7.4. From the Coding Perspective ... 74

7.4.1. Code examples ... 75
7.4.2. C++ Fragment .. 75
7.4.3. Java Fragment .. 76

8. Preparing Your Data for Processing ... 77
8.1. Preparing Plain Text ... 77

8.1.1. Plain Text in Any Encoding .. 77
8.1.2. Plain Text in UTF-16LE/BE .. 78

8.2. Preparing Marked-Up or Binary Input ... 79
8.2.1. Using iFilter ... 79
8.2.2. HTML Stripper ... 80
8.2.3. Handling XML Without iFilter .. 80

8.3. Other Considerations .. 81
8.3.1. Normalizing Text .. 81
8.3.2. File Size .. 81

9. Accessing RLP Result Data .. 83

Application Developer's Guide

iv

9.1. Result Types ... 83
9.2. Handling RLP Results in C++ .. 89

9.2.1. Using a Token Iterator ... 89
9.2.2. Using a Result Iterator ... 92
9.2.3. Using the Named Entity Iterator ... 97
9.2.4. Getting Results from the Context Object .. 98

9.3. Handling RLP Results in Java .. 98
9.3.1. Using RLPResultAccess .. 99
9.3.2. RLPResultRandomAccess ... 102

10. RLP Runtime Configuration ... 105
10.1. Redistribution ... 105
10.2. Environment Configuration .. 105
10.3. Reducing Your Processors ... 105

10.3.1. Individual Processor Configuration ... 106
10.4. Testing the Redistribution .. 106
10.5. Minimal Configuration ... 106

10.5.1. Arabic Minimal Configuration ... 107
10.5.2. Chinese Minimal Configuration ... 107
10.5.3. European (BL1) Languages Minimal Configuration 107
10.5.4. Japanese Minimal Configuration .. 107
10.5.5. Korean Minimal Configuration .. 108
10.5.6. Farsi (Persian) Minimal Configuration ... 108
10.5.7. Urdu Minimal Configuration ... 108

10.6. Language Processor Resources ... 109
10.7. Managing RLP Configuration Files ... 119

10.7.1. The Configuration Files .. 119
10.7.2. Editing Configuration Files ... 119
10.7.3. Initializing the RLP Environment ... 121
10.7.4. Note On the Sample Applications ... 121

11. RLP Processors .. 123
11.1. Overview ... 123

11.1.1. Text Being Processed ... 124
11.2. Global Context Properties .. 125
11.3. Arabic Script Normalization ... 125
11.4. Processors .. 126

11.4.1. Arabic Base Linguistics .. 126
11.4.2. Base Linguistics Language Analyzer ... 129
11.4.3. Base Noun Phrase Detector ... 132
11.4.4. Chinese Language Analyzer .. 133
11.4.5. Chinese Script Converter .. 139
11.4.6. Farsi (Persian) Base Linguistics .. 141
11.4.7. FragmentBoundaryDetector ... 143
11.4.8. Gazetteer ... 144
11.4.9. HTML Stripper ... 146
11.4.10. iFilter .. 147
11.4.11. Japanese Language Analyzer ... 147
11.4.12. Korean Language Analyzer ... 151
11.4.13. Language Boundary Detector ... 152
11.4.14. ManyToOneNormalizer .. 153
11.4.15. mime_detector .. 155
11.4.16. Named Entity Extractor .. 156
11.4.17. Named Entity Redactor ... 160
11.4.18. Regular Expression .. 163

Application Developer's Guide

v

11.4.19. REXML ... 165
11.4.20. Rosette Core Library for Unicode ... 168
11.4.21. Rosette Language Identifier ... 178
11.4.22. Sentence Boundary Detector .. 183
11.4.23. Script Boundary Detector .. 184
11.4.24. Stopwords .. 185
11.4.25. Text Boundary Detector .. 186
11.4.26. Tokenizer ... 187
11.4.27. Unicode Converter ... 187
11.4.28. Urdu Base Linguistics ... 188

12. User-Defined Data .. 191
12.1. Customizing Stopwords .. 191

12.1.1. Creating Stopword Dictionaries (Not for Chinese, Korean, or Japanese) 191
12.1.2. Configuring Stopwords ... 192
12.1.3. Editing the Stopwords List for Chinese, Korean, or Japanese 193

12.2. Creating User Dictionaries ... 193
12.2.1. European Language User Dictionaries ... 193
12.2.2. Chinese User Dictionaries ... 196
12.2.3. Japanese User Dictionaries .. 199
12.2.4. Korean User Dictionary .. 202
12.2.5. Entering Non-Standard Characters in a Japanese User Dictionary 205
12.2.6. Creating Normalization Dictionaries ... 205

A. Part-of-Speech Tags ... 209
A.1. Arabic POS Tags .. 209
A.2. Chinese POS Tags - Simplified and Traditional .. 210
A.3. Czech POS Tags ... 211
A.4. Dutch POS Tags ... 212
A.5. English POS Tags ... 214
A.6. French POS Tags .. 216
A.7. German POS Tags .. 217
A.8. Greek POS Tags ... 219
A.9. Hungarian POS Tags ... 220
A.10. Italian POS Tags ... 222
A.11. Japanese POS Tags .. 224
A.12. Korean POS Tags .. 225
A.13. Polish POS Tags ... 226
A.14. Portuguese POS Tags ... 227
A.15. Russian POS Tags ... 229
A.16. Spanish POS Tags ... 230

B. Morphological and Special Tags ... 233
B.1. German Morphological Tags ... 233
B.2. German Special Tags ... 233
B.3. English Morphological Tags ... 234
B.4. English Special Tags ... 234
B.5. Spanish Morphological Tags ... 234
B.6. Spanish Special Tags ... 235
B.7. French Morphological Tags .. 235
B.8. French Special Tag .. 235
B.9. Hungarian Special Tags .. 235
B.10. Italian Morphological Tags ... 235
B.11. Italian Special Tags ... 236
B.12. Dutch Morphological Tags .. 236
B.13. Dutch Special Tags .. 236
B.14. Portuguese Special Tags ... 237

Application Developer's Guide

vi

C. Tcl Regular Expression Syntax ... 239
C.1. Name .. 239
C.2. Description .. 239
C.3. Different Flavors of REs ... 239
C.4. Regular Expression Syntax ... 239
C.5. Bracket Expressions .. 241
C.6. Escapes ... 242
C.7. Metasyntax .. 245
C.8. Matching ... 246
C.9. Limits and Compatibility .. 247
C.10. Basic Regular Expressions .. 247
C.11. Tcl License .. 248

D. Error Codes .. 249
E. Guidelines for Reporting Bugs ... 253

E.1. Background Information ... 253
E.1.1. Platform .. 253
E.1.2. Version ... 253

E.2. Reproducing the Bug with the rlp Command-line Utility ... 253
E.3. Reproducing in a Sample Application ... 254

F. The Rosette Demo ... 257
F.1. Launching the GUI Demo ... 257
F.2. What the Demo Does ... 257
F.3. How to Run the RLP Demo ... 257

F.3.1. Input the text to be analyzed .. 257
F.3.2. Edit or load the text ... 258
F.3.3. Specify the language (optional) ... 258
F.3.4. Apply a Demo Process ... 258
F.3.5. View the analysis results .. 259
F.3.6. Save the analysis results (optional) ... 259

F.4. Layout of the Demo Display .. 259
F.5. Using the List View .. 260

F.5.1. Column order, size, sorting ... 261
F.5.2. Font Selection .. 261

F.6. Using the Text Window .. 261
F.7. Customizing and Saving Display Settings .. 262

F.7.1. Saving and Loading Settings ... 262
F.7.2. Customizing the Legend ... 262

F.8. The Named Entities Editor .. 263
F.8.1. Files the Named Entities Editor Modifies ... 263
F.8.2. Opening the Named Entitities Editor ... 263
F.8.3. Adding Named Entities with Gazetteers .. 264
F.8.4. Gazetteer Options ... 265
F.8.5. Adding Named Entities with Regular Expressions 265
F.8.6. Adding New Named Entity Types .. 267
F.8.7. Deleting a User-Defined Named Entity Type .. 267

F.9. Troubleshooting: the RLP Log ... 267
F.10. Process Context Files ... 267

Glossary .. 269
Index .. 279

Application Developer's Guide

vii

viii

Preface
The Rosette Linguistics Platform (RLP) is designed for document handling systems that need to identify,
classify, analyze, index, and search unstructured text in many different languages. By integrating RLP,
developers can enable their applications to process raw text data by identifying the language and encoding
of a given document, converting the text to Unicode, and performing comprehensive linguistic analysis
and entity extraction of text in English and a variety of Asian, European and Middle Eastern languages.

1. In this Guide
This guide explains how to install, configure, and use RLP to process and analyze text in a variety of
languages. Major topics include:

• Introduction to the RLP Feature Set and Architecture [1]
• Installing RLP [5]
• Using the RLP Command-Line Utility [6]
• Creating an RLP Application [17]
• Sample RLP Applications [27]
• Named Entities [45]
• Processing Multilingual Text [73]
• Preparing Data for Processing [77]
• Accessing RLP Result Data [83]
• Configuring RLP for Distribution with an Application [105]
• User-Defined Data: Stopwords and User Dictionaries [191]
• Appendixes on Parts of Speech [209] , Morphological and Special Tags [233] , Tcl Regular Expression

Syntax [239] , Error Codes [249] , Guidelines for Bug Reporting [253] , and the Windows Rosette
Demo [257] .

• A Glossary [269]

2. Other Documentation
This developer's guide is intended to be used with

• Release Notes [RLP-6.5.2-ReadMe.html]

The RLP Release Notes contain up-to-date information about new features and bug fixes in this release.

• API Reference [api-reference/index.html]

The API Reference includes HTML documentation generated from source code for the C++ and Java
APIs.

3. What's New
The following features are new in RLP 6.5.

• Named Entities. Expanded named entity [45] support to include Russian and three new entity
types: TITLE, NUMBER, and DISTANCE. For this release, we have acquired, annotated, and performed
statistical training with new data; improved and added more regular expressions; and introduced internal
language-specific binary gazetteers (created by Basis Technology). To improve performance, the
PERCENT entity type has been removed.

ix

Added Regular Expression [163] support for naming and reusing regular expressions (including
expression fragments).

Added Named Entity Redactor [160] support for joining adjacent named entities into a single named
entity. By default, adjacent TITLE and PERSON entities are joined into a PERSON entity.

Added the com.basistech.neredact.prefer_length property. When set to true (the
default), this property instructs the Named Entity Redactor [160] to resolve a conflict between
overlapping candidate entities in favor of the longer candidate.

Added the com.basistech.neredact.max_entity_tokens property. When a named entity
returned by NamedEntityExtractor contains more than this number of tokens (the default is 8), Named
Entity Redactor [160] discards the entity.

Added the FragmentBoundaryDetector [143] , which uses whitespace to separate items in fragmentary
text (such as lists and tables), so that the NamedEntityExtractor [156] will not combine a series of
fragments into a single entity. The Regular Expression [163] processor also contains a new context
property (com.basistech.regexp.respect_boundaries) that you can set to instruct the
processor not to cross fragment boundaries when matching text.

Added support for language-specific text gazetteers. See Gazetteer Dictionary Paths [145] .

Java API Updates in com.basistech.rlp.RLPResultAccess: Added access to NamedEntityData.
Replaced getIntegerData() with getDetectedLanguage() and getDetectedScript,
which return the appropriate com.basistech.util Enum type (LanguageCode and ISO639).

Added API to guarantee that multiple instances of an entity are consistently returned [50] with the
same entity type

Added a facility for creating a blacklist [50] of strings that are not to be returned by the Named Entity
Extractor for the specified entity type.

• Expanded the .NET API [69] to provide complete access to RLP functionality. The .NET API is
modeled on the Java API.

• Enhanced the Base Linguistics (BL1) [129] processor to be run simultaneously in multiple threads.

• Replaced the Japanese Orthographic Normalizer (JON) with the ManyToOneNormalizer [153] , which
provides a multi-language utility for using language-specific normalization dictionaries to provide
normalized tokens. We continue to distribute a Japanese normalization dictionary. Users can add their
own normalization dictionaries for any of the languages we support.

• Moved sample code for integrating RLP with Lucene and Solr into a separate package (rlplucene-6.0.0-
sdk-unix.tar.gz or rlplucene-6.0.0-sdk-win.zip).

• Added support for instantiating multiple Environment objects in the same process. Each of these
Environment objects is a wrapper for the same underlying Environment. Accordingly all Environment
objects must be initialized with the same environment configuration (normally rlp-global.xml).

• Replaced Unix Make files and Windows Visual Studio Solution and Project files with scripts for building
the C++ , C, and .NET sample applications. The Unix .sh scripts are designed to be run in a Bash Shell.
The Windows.bat scripts should be run in the Command Prompt. We continue to provide Ant scripts
for building and running the Java sample applications, as well as Unix .sh scripts and Windows .bat
scripts for running all the sample applications.

• RLI can now detect UTF-16LE and UTF-16BE, even if the endianness does not match the endianness
of the host operating system. If the endianness of the file matches the endiannnes of the host, RLI reports

What's New

x

the encoding as UTF-16. If the endianness of file and host do not match, RLI reports the full encoding:
UTF-16LE or UTF-16BE.

• Approximately 24,000 traditional Chinese words have been added to the Chinese dictionary.

• Replaced the Mac OS 10.4 (Darwin 8.9.1) platform for 32-bit Intel platform with the universal Mac OS
10.5 (Darwin 9) platform for 32-bit and 64-bit Intel.

• The sparc-solaris9-gcc345 platform has been renamed to sparc-solaris9-gcc34.

• For Base Linguistics Language Analyzer [129] , added caching of morphological data about commonly
used words in English and German to accelerate linguistic processing.

Consult the RLP Release Notes (RLP-6.5.2-ReadMe.html) for full details about changes to RLP in this
release.

What's New

xi

xii

Chapter 1. Introduction to the Rosette
Linguistics Platform

The Rosette Linguistics Platform (RLP) is the backbone of Basis Technology's text and language analysis
technology. RLP provides advanced natural-language processing techniques to help your applications
unlock information in unstructured text. RLP includes modules for language and encoding identification,
converting text to Unicode, identifying basic linguistic features, and locating key entities like the names
of people, places, and objects of interest. RLP supports English and a variety of Asian, European, and
Middle Eastern languages. The detailed linguistic information provided by RLP can be used to increase
the accuracy and depth of information-retrieval, text-mining, entity-extraction, and other text-analysis
applications.

1.1. Key Features
RLP is packaged with modules for Named Entity Extraction (NE) and Base Linguistics (BL): base noun
phrase detection, tokenization, sentence boundary detection, part-of-speech tagging, and morphological
analysis including stemming, alternative readings (transcriptions), and compound analysis. These modules
can process Arabic, Chinese, Czech, Dutch, English, Farsi (Persian), French, German, Greek, Hungarian,
Italian, Japanese, Korean, Polish, Portuguese, Russian, Spanish, and Urdu.

Language support for each of these operations is indicated in the following table:

Table 1.1. RLP Language Support for Base Linguistics (BL) and Named Entity
Extraction (NE)

Language Base Linguistics NE

 Tokenization POS SBD BNP Stemming Compounds Readings

Arabic ✓ ✓ ✓ ✓ ✓ n/a ✓

Chinese (Simplified) ✓ ✓ ✓ ✓ n/a n/a ✓ ✓

Chinese (Traditional) ✓ ✓ ✓ ✓ n/a n/a ✓ ✓

Czech ✓ ✓ ✓ ✓ n/a ✓

Dutch ✓ ✓ ✓ ✓ ✓ ✓ ✓

Englisha ✓ ✓ ✓ ✓ ✓ n/a n/a ✓

Farsi (Persian) ✓ ✓ ✓ n/a ✓

French ✓ ✓ ✓ ✓ ✓ n/a ✓

German ✓ ✓ ✓ ✓ ✓ ✓ ✓

Greek ✓ ✓ ✓ ✓ n/a ✓

Hungarian ✓ ✓ ✓ ✓ ✓ ✓

Italian ✓ ✓ ✓ ✓ ✓ n/a ✓

Japanese ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Korean ✓ ✓ ✓ ✓ ✓ ✓

Polish ✓ ✓ ✓ ✓ n/a ✓

Portuguese ✓ ✓ ✓ ✓ ✓ n/a ✓

Russian ✓ ✓ ✓ ✓ n/a ✓

1

Language Base Linguistics NE

 Tokenization POS SBD BNP Stemming Compounds Readings

Spanish ✓ ✓ ✓ ✓ ✓ n/a ✓

Urdu ✓ ✓ ✓ n/a ✓
aRLP also provides specialized support for upper-case English text. When processing English text that is entirely upper case, specify
the English Upper-Case language code (en_uc).

POS is part-of-speech tagging, SBD is sentence-boundary detection, and BNP is base-noun-phrase
detection. For Chinese, the readings are pinyin transcriptions; for Japanese, the readings are Furigana
transcriptions rendered in Hiragana. Blanks in this table indicate that the functionality is not available; n/
a indicates that the feature does not apply to that language.

If you work with multilingual input data, RLP provides tools for locating regions of contiguous text in a
single language, so that you can process each region with the appropriate language processors.

In addition to the languages listed above, the Rosette Language Identifier (RLI) [178] can identify text
in the following languages: Albanian, Transliterated Arabic, Bahasa Indonesia, Bahasa Malay, Bengali,
Bulgarian, Catalan, Croatian, Danish, Estonian, Finnish, Gujarati, Hebrew, Hindi, Icelandic, Kannada,
Kurdish, Latvian, Lithuanian, Malayalam Norwegian, Pashto, Transliterated Pashto, Transliterated Farsi
(Persian), Romanian, Serbian (Cyrillic and Latin), Slovak, Slovenian, Somali, Swedish, Tagalog, Telugu,
Thai, Turkish, Ukrainian, Transliterated Urdu, Uzbek (Cyrillic and Latin), and Vietnamese.

Other key features:

• RLP is written in a portable subset of ISO/ANSI C++.

• C++, C, Java, and .NET APIs are available. The APIs do not vary from one human language to another.

Text is internally encoded in Unicode (UTF-16).

• RLP operations are thread safe.

Note

RLP's features are enabled by license keys issued by Basis Technology. Please contact us to obtain
the required evaluation or production license file, and refer to Installing RLP [5] for
information about where to put the license file.

1.2. Architecture Overview
RLP consists of a collection of language processors, tied together by a common runtime environment. Each
processor is responsible for performing a particular task, such as linguistic analysis or entity extraction,
and generating a set of result data that applications can use and manipulate. The language processors are
dynamically loaded; they are shared-object libraries on Unix systems and dynamically linked libraries
(DLLs) on Windows.

All of the language processors available to the system -- as defined by the RLP license -- are kept in an
environment. A context specifies an ordered set of language processors used to perform a particular task.
A single environment can support multiple concurrent contexts. The language processors and their related
data (such as dictionaries or language models) are stored in one location where they may be shared by
different contexts.

Each context provides access to the results generated by the language processors in that context.

Architecture Overview

2

1.2.1. RLP Language Processors

The RLP language processors perform a variety of roles: detecting the encoding, MIME type (document
type), and language of the input; stripping markup (such as HTML tags); converting the input to a standard
Unicode form for further processing; normalizing variant spellings; performing various types of linguistic
analysis; and generating output that other language processors or the application can use.

An application uses an ordered sequence of language processors (a context) to process the input text. In
many cases, one language processor requires the output of another language processor as input for its own
operation.

1.2.2. RLP Environments and Contexts

The RLP environment represents the global state of RLP, including license information and the language
processors you can use. The environment loads and maintains the various language processors. It tracks
all the language processors and can delay the loading and initialization of language processors until they
are actually used.

An RLP context specifies an ordered series of language processors. Created by the environment, a single
context defines a set of operations to be performed on a document.

For example, a context for extracting Japanese named entities might consist of the Unicode Converter (for
converting UTF-8, for example, to the appropriate form of UTF-16 for the platform), the Japanese Language
Analyzer (for tokenization and POS tagging), the Sentence Boundary Detector, the Base Noun Phrase
detector, the Named Entity Extractor, the Gazetteer (to find named entities listed in gazetteers), the Regular
Expression processor (to find named entities, such as dates or email addresses, identified with regular
expressions), the Named Entity Redactor (for resolving duplication or overlaps), and the REXML processor
(for generating a report).

A context for performing Japanese named entity extraction:

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE contextconfig SYSTEM "http://www.basistech.com/dtds/2003/
 contextconfig.dtd">
<contextconfig>
 <languageprocessors>
 <language processor>Unicode Converter</languageprocessor>
 <!-- Japanese Language Analyzer -->
 <languageprocessor>JLA</languageprocessor>
 <languageprocessor>SentenceBoundaryDetector</languageprocessor>
 <languageprocessor>BaseNounPhrase</languageprocessor>
 <languageprocessor>NamedEntityExtractor</languageprocessor>
 <languageprocessor>Gazetteer</languageprocessor>
 <!-- Regular Expression-->
 <languageprocessor>RegExpLP</languageprocessor>
 <!-- Named Entity Redactor -->
 <languageprocessor>NERedactLP</languageprocessor>
 <!-- REXML generates an XML report -->
 <languageprocessor>REXML</languageprocessor>
 </languageprocessors>
</contextconfig>

Multiple contexts can be created from a single environment, and contexts can be executed in their own
threads, given that all RLP processors are re-entrant.

An environment can be used in more than one processing thread with no locking. A context cannot be
shared by multiple threads.

RLP Language Processors

3

1.2.3. RLP Configuration

Processing resources are made available to an application by defining an environment and creating contexts
within that environment. An environment defines licensing information and available processors. A context
defines which processors will be run and in what order when RLP processes input text. You use an XML
file or XML string to define the environment, and another XML file or string to define a context.

1.2.4. RLP Result Data

The application of a context to the input text generates a set of result data. You may use a language processor
to display this result data to the user. The context also provides programmatic access to this data.

1.2.5. Core of an RLP Application

An RLP application defines an environment and one or more contexts, applies each context to input text,
collects the result data of interest, and manipulates that data as required to meet its goals. The combination
of environment, contexts, and result data provides a flexible framework for developing natural language
processing (NLP) applications.

RLP Configuration

4

Chapter 2. RLP Getting Started
This chapter shows you how to download and install RLP, and how to use the RLP command-line utility
to process sample data and your own text.

2.1. Downloading RLP
To install and use RLP, you need to download three files:

• A compressed SDK package file

The SDK package must be the correct package for your platform. See Supported Platforms [13] .

• A compressed documentation package file

The documentation package includes this book, release notes, and HTML API references for the C++,
C, and Java APIs.

• A license file (rlp-license.xml)

The license contains a set of keys that define the language operations you are authorized to perform with
RLP.

When you contact Basis Technology to obtain a copy of RLP (for production use or for evaluation), we
send you an email with private download links to the license file (rlp-licenses.xml), the SDK package,
and the documentation package. These links expire after 30 days. If you need an extension, please
contact ProductSupport@basistech.com .

Click the links to download these files to your workstation.

The SDK is a .zip file for Windows or a compressed archive (.tar.gz) for Unix. The file
names include version number and platform designation. See Supported Platforms
[13] .

The documentation is a .zip file for Windows or a compressed archive (.tar.gz) for Unix.
See Documentation package file name [15] .

2.2. Installing the RLP SDK
Extract the SDK compressed package file you downloaded, and put the RLP license file in the RLP licenses
directory.

1. Extract the SDK compressed package file to a directory on your local volume

Windows example (with rlp-6.5.2-sdk-ia32-w32-msvc80.zip):
a. In Explorer, double click the package file.
b. In the Compressed Folder window that appears, use the Extraction Wizard to extract the package

to a directory (such as C:\rlp-6.5.2-sdk-ia32-w32-msvc80).

Unix example (with rlp-6.5.2-sdk-1a32-glibc22-gcc32.tar.gz):
a. Put the file you have downloaded in the directory where you want to install the SDK (such as /usr/

local/BasisTech/BT_RLP_6.5.2).
b. Extract the package in that directory.

5

mv rlp-6.5.2-sdk-1a32-glibc22-gcc32.tar.gz /usr/local/BasisTech/BT_RLP_6.5.2
cd /usr/local/BasisTech/BT_RLP_6.5.2
gunzip rlp-6.5.2-sdk-1a32-glibc22-gcc32.tar.gz
tar -xf rlp-6.5.2-sdk-1a32-glibc22-gcc32.tar

Installation Directory: BT_ROOT.
If you install other Basis Technology SDKs that use the RLP SDK, such as the RLP Name
Components(RLP-NC) SDK, you should install these SDKs in the same installation directory. The
documentation uses BT_ROOT or Basis root directory to designate the installation directory. RLP
applications must set the path to the Basis root directory (for example, C:\rlp-6.5.2-sdk-ia32-w32-
msvc80 or /usr/local/BasisTech/BT_RLP_6.5.2), so make a note of it for future use.

2. Copy the license file provided in the installation package into BT_ROOT/rlp/rlp/licenses. RLP does
not run without a valid license file. If you wish to upgrade from an evaluation license or add support
for another language or another RLP feature, contact Basis Technology Corp. at
ProductSupport@basistech.com .

3. Unix only. Add the RLP library directory to the LD_LIBRARY_PATH environment variable (or its
equivalent for your Unix operating system). The RLP library directory is BT_ROOT/rlp/lib/
BT_BUILD , where BT_BUILD is the platform identifier embedded in your SDK package file name
(see Supported Platforms [13]). For example:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:\
/usr/local/BasisTech/BT_RLP_6.5.2/rlp/lib/ia32-glibc22-gcc32/

2.3. Installing the RLP Documentation
Extract the compressed documentation package .zip or .tar.gz [15] file you downloaded to the
BT_ROOT/rlp/doc directory.

The RLP documentation set includes the following:

• Release Notes (RLP-6.5.2-ReadMe.html) with up-to-date information about new features and bug fixes
in this release

• The RLP Application Developer's Guide (contains this chapter)

• Online reference to the C++, C, Java, and .NET APIs

2.4. Running the RLP Command-line Utility
Before you begin integrating RLP with your applications (see Creating an RLP application [17]), you
may want to use the RLP command-line utility to help you understand the capabilities of RLP.

The RLP command-line utility is an executable: rlp.exe in Windows and rlp in Unix. This utility is in the
binary directory:

BT_ROOT/rlp/bin/BT_BUILD

where BT_BUILD is the platform identifier embedded in your SDK package file name (see Supported
Platforms [13]).

Windows example: If you installed rlp-6.5.2-sdk-ia32-w32-msvc71.msi to C:\RLP-SDK-6.5.2, the
command line utility is

C:\RLP-SDK-6.5.2\rlp\bin\ia32-w32-msvc71\rlp.exe

Installing the RLP Documentation

6

Unix example: If you expanded rlp-6.5.2-sdk-ia32-glibc22-gcc32.tar.gz to /usr/local/BasisTech/
BT_RLP_6.5.2 the command line utility is

/usr/local/BasisTech/BT_RLP_6.5.2/rlp/bin/ia32-glibc22-gcc32/rlp

2.4.1. Using the go Script

The RLP distribution includes a script that you can use to run the RLP command-line utility with sample
data: go.bat in Windows and go.sh in Unix. This script is in:

BT_ROOT/rlp/samples/scripts/BT_BUILD

Windows example: If you installed rlp-6.5.2-sdk-ia32-w32-msvc71.msi to C:\RLP-SDK-6.5.2, the
go script is

C:\RLP-SDK-6.5.2\rlp\samples\scripts\ia32-w32-msvc71\go.bat

Unix example: If you expanded rlp-6.5.2-sdk-ia32-glibc22-gcc32.tar.gz to /usr/local/BasisTech/
BT_RLP_6.5.2 the go script is

/usr/local/BasisTech/BT_RLP_6.5.2/rlp/samples/scripts/ia32-glibc22-gcc32/go.sh

1. Use the command-line prompt (Windows) or bash shell (Unix) to navigate to the sample scripts
directory.

Warning

To find the required resources and work correctly, the go script must be run from the sample
scripts directory: BT_ROOT/rlp/samples/scripts/BT_BUILD .

The RLP license file (rlp-licenses.xml) must be in BT_ROOT/rlp/rlp/licenses. If it is not,
RLP will not run.

2. Run the go script with one argument: the two-letter ISO639 code (more than two letters in special cases,
such as Simplified Chinese) for a language for which you have an RLP license. Use one of the codes
from the following table.

Language of text to analyze Windows command Unix command

Arabic go.bat ar ./go.sh ar

Chinese - Simplified go.bat zh_sc ./go.sh zh_sc

Chinese - Traditional go.bat zh_tc ./go.sh zh_tc

Czech go.bat cs ./go.sh cs

Dutch go.bat nl ./go.sh nl

English go.bat en ./go.sh en

Farsi (Persian) go.bat fa ./go.sh fa

French go.bat fr ./go.sh fr

German go.bat de ./go.sh de

Greek go.bat el ./go.sh el

Hungarian go.bat hu ./go.sh hu

Italian go.bat it ./go.sh it

Using the go Script

7

Language of text to analyze Windows command Unix command

Japanese go.bat ja ./go.sh ja

Korean go.bat ko ./go.sh ko

Polish go.bat pl ./go.sh pl

Portuguese go.bat pt ./go.sh pt

Russian go.bat ru ./go.sh ru

Spanish go.bat es ./go.sh es

Urdu go.bat ur ./go.sh ur

The RLP command-line utility analyzes the input text and generates an XML report on what it finds.
The report includes an xml-stylesheet processing instruction.

Use your browser to open rlp-output.xml. The browser applies the xml-stylesheet to the file and
displays the resulting HTML.

Using the go Script

8

Figure 2.1. Report on English Sample Text

2.4.2. What Takes Place When You Run the go Script

The go script passes the following parameters to the RLP command-line utility:

1. The ISO639 language code you supply when you call go

2. BT_ROOT, the Basis root directory

The RLP command-line utility begins by using this parameter to set the Basis root directory.

3. Environment

What Takes Place When You Run the go Script

9

The environment defines the scope of operations available to RLP during this session and provides a
pointer to your RLP license, which specifies which operations you are licensed to perform. The
environment is specified with an XML configuration file: BT_ROOT/rlp/etc/rlp-global.xml.

4. Context

The context defines the sequence of processors that the RLP command-line utility applies to the sample
input text. The context is defined with an XML configuration file. The go script specifies BT_ROOT/
rlp/samples/etc/rlp-context.xml.

5. Input text

The input text is a UTF-8 text file in BT_ROOT/rlp/samples/data. The file name takes the form
<ln>-text.txt where <ln> is the language code you enter on the command line. For example, the
sample file for English is en-text.txt.

The RLP command-line utility does the following:

1. Sets the Basis root directory.

2. Uses the environment configuration file to set up the runtime environment.

3. Uses the context configuration file to create a context object.

4. Uses the context object to process the input text. The context object defined with rlp-context.xml
performs the following tasks:

a. Converts the text to UTF-16.

b. Tokenizes the text (each token is a word, multiword expression, possessive affix, or punctuation).

c. Tags the part of speech for each token (not currently supported for Farsiand Urdu).

d. Locates sentence boundaries.

e. Identifies noun phrases (not supported for some languages).

f. Finds named entities of various types (not supported for some languages).

g. Generates an XML report with an xml-stylesheet processing instruction so browsers can
display the report as HTML.

If the XML report you see is missing any of this information, your RLP license does not authorize one or
more processors for the language you selected. To upgrade your license, contact Basis Technology Corp.
at ProductSupport@basistech.com . Note: Named Entity extraction, Noun Phrase extraction,
and Part-of-Speech detection are not supported for some languages.

2.4.3. Using the RLP Command-Line Utility to Process Your Own Text

Instead of using the go script, you can run the RLP command-line utility with the necessary arguments
from the command line or with your own batch file or shell script. Call rlp with arguments for language,
RLP root directory, environment configuration file, context configuration file, and input file: 1

rlp[.exe] [-l ln] -root BT_ROOT envConfig contextConfig inputFile [-v]

1On Unix platforms, you must set LD_LIBRARY_PATH (or the equivalent environment variable for your platform) to include BT_ROOT.rlp/lib/
BT_BUILD.

Using the RLP Command-Line Utility to Process Your Own Text

10

ln is the two-letter ISO639 language code. You must include -l ln , unless your context includes the RLP
Language Identifier (RLI) and you RLP license authorizes the use of RLI.

Table 2.1. ISO639 Language Codes

Language Code

Arabic ar

Chinese - Simplified zh_sc

Chinese - Traditional zh_tc

Czech cs

Dutch nl

English en

Upper-Case Englisha en_uc

Farsi (Persian) fa

French fr

German de

Greek el

Hungarian hu

Italian it

Japanese ja

Korean ko

Polish pl

Portuguese pt

Russian ru

Spanish es

Urdu ur
aFor more accurate processing of English text that is entirely upper case, use the en_uc language code.

BT_ROOT is the Basis Technology root directory. You must include -root BT_ROOT.

envConfig is the pathname of the environment configuration file.

contextConfig is the pathname of the context configuration file.

inputFile is the pathname of the input file.

-v instructs the utility to write the version of RLP to the console.

Example 2.1. Processing a Unicode Input File

If your text is in a Unicode format (UTF-8, UTF-16, or UTF-32), you can use the same context configuration
file the go script uses. This context configuration includes the Language Identifier (RLI), so you can also
use it to process Unicode files for which you do not know the language.

1. Run the RLP command-line utility with the following parameters:

[-l ln] -root BT_ROOT envConfig contextConfig inputFile

Using the RLP Command-Line Utility to Process Your Own Text

11

ln is the ISO639 language code. If you do not know the language code, you can omit this parameter:
RLI determines the language.

BT_ROOT is the pathname of the Basis root directory.

envConfig is the pathname of BT_ROOT /rlp/etc/rlp-global.xml.

contextConfig is the pathname of BT_ROOT /rlp/samples/etc/rlp-context.xml.

inputFile is the pathname of the Unicode input file.

2. Examine the report the output processor generates: rlp-output.xml.

Example 2.2. Processing Non-Unicode Text

If the text file you want to process is not Unicode, and your license includes RLI and RCLU, use the
Language Identifier processor (RLI) and the Core Library for Unicode (RCLU). RLI identifies the language
and the encoding. RCLU can convert from many text encodings to UTF-16. For information about RLP
requirements for text encoding, see Preparing your Data for Processing [77] .

To handle such text you need a context configuration file with RLI and RCLU, both listed before the
processors that tokenize the text, tag parts of speech, and locate noun phrases, named entities, and sentence
boundaries.

The sample context configuration file rlp-context-rclu.xml includes the required processors.

1. Run The RLP command-line utility with the following parameters:

[-l ln] -root BT_ROOT envConfig contextConfig inputFile

If you know the language, include -l and the two-letter ISO639 language code. If you do not know the
language, do not include this parameter.

BT_ROOT is the Basis root directory.

envConfig is the pathname of the environment configuration file: BT_ROOT/rlp/etc/rlp-
global.xml.

contextConfig is the pathname to the context configuration file that starts with RLI and RCLU:
BT_ROOT/rlp/samples/etc/rlp-context-rclu.xml.

inputFile is the pathname to the input text file.

2. Examine the report the REXML processor generates: rlp-output.xml.

2.4.3.1. Other Uses

By using the RLP command-line utility to apply a different context configuration file to a different input
file, you can generate a wide variety of result data. For more information about context configurations, see
Defining an RLP context [18] .

You can include command-line parameters to specify encoding and property values to be passed to RLP
processors.

For example, you can pass a com.basistech.rexml.output_pathname property setting to
instruct REXML to direct output to a file. See REXML [165] .

Using the RLP Command-Line Utility to Process Your Own Text

12

For a complete list of the arguments that the RLP command-line utility accepts, run

rlp[.exe] -h

The following table lists the sample context configuration files that are shipped with RLP. They are in
BT_ROOT /rlp/samples/etc.

Sample Context Configuration File Purpose

rlp-context.xml General purpose for Unicode input: generates UTF-16, detects
language, handles text in all supported languages, identifies named
entities, generates XML report.

rlp-context-no-op.xml General purpose for Unicode input, with no XML report.

rlp-context-rclu.xml General purpose for non-Unicode input.

2.5. Using the Windows Demo
For Windows users, we supply a separate package that includes a GUI demo. See The Rosette Demo
[257] .

2.6. Supported Platforms and BT_BUILD Values
You must install an SDK package that is appropriate for your platform. The supported platforms and C++
compilers are listed in the table below.

If you are planning to use the C++ (or C) API, use the SDK package that incorporates the compiler you
plan to use.

If you are planning to use the Java API, you can use any Java SDK 1.5 package (or later) built for your OS
version and architecture. Java is supported except where noted otherwise.

If your platform and compiler do not appear in the following list, please contact Basis Technology Corp.
at ProductSupport@basistech.com .

Table 2.2. Supported Platforms

OS CPU Compiler BT_BUILDa

AIX 5.2 PowerPC xlc 5.2 ppc-aix52-xlcb

FreeBSD 4.8 IA32 3.4 ia32-freebsd48-gcc34b

FreeBSD 6.0 AMD64 gcc 3.4.4 amd64-freebsd6-gcc344b

FreeBSD 6.0 IA32 gcc 3.4.4 ia32-freebsd6-gcc344b

HP-UX 11.00 IA64 HP aCC 5.41 ia64-hpux11-aCC541b

HP-UX 11.00 PA-RISC32 HP aCC A.03.33 parisc-hpux11-aCC333-aab

Linux (glibc 2.2) IA32 gcc 3.2 ia32-glibc22-gcc32

Linux (glibc 2.3) AMD64 gcc 3.4 amd64-glibc23-gcc34

Linux (glibc 2.3) AMD64 gcc 4.0 amd64-glibc23-gcc40

Linux (glibc 2.3) IA32 gcc 3.2 ia32-glibc23-gcc32

Linux (glibc 2.3) IA32 gcc 3.4.4 ia32-glibc23-gcc34

Linux (glibc 2.3) IA32 gcc 4.0 ia32-glibc23-gcc40

Using the Windows Demo

13

OS CPU Compiler BT_BUILDa

Linux (glibc 2.4) AMD64 gcc 4.1 amd64-glibc24-gcc41

Linux (glibc 2.4) IA32 gcc 4.1 ia32-glibc24-gcc41

Linux (glibc 2.5) AMD64 gcc 4.1 amd64-glibc25-gcc41

Linux (glibc 2.5) AMD64 gcc 4.2 amd64-glibc25-gcc42

Linux (glibc 2.5) IA32 gcc 4.1 ia32-glibc25-gcc41

Linux (glibc 2.5) IA32 gcc 4.2 ia32-glibc25-gcc42

MAC OS 10.5 (Darwin 9) 32-bit/64-bit Intel gcc 4.0 universal-darwin9-gcc40

Solaris 10 AMD64 CC 5.8 amd64-solaris10-cc58

Solaris 10 AMD64 gcc 4.1.2 amd64-solaris10-gcc41

Solaris 10 IA32 CC 5.8 ia32-solaris10-cc58

Solaris 10 IA32 gcc 3.4 ia32-solaris10-gcc34

Solaris 10 SPARC32 CC 5.8 sparc-solaris10-cc58

Solaris 10 SPARC64 CC 5.8 sparc-solaris10-cc58-64

Solaris 10 SPARC64 gcc 4.1.2 sparc-solaris10-gcc412-64

Solaris 7-8 SPARC32 CC 5.2 (Forte Developer 6) sparc-solaris28-cc52

Solaris 7-8 SPARC64 CC 5.2 (Forte Developer 6) sparc-solaris28-cc52-64

Solaris 9 IA32 gcc 3.4.5 ia32-solaris9-gcc34

Solaris 9 SPARC32 CC 3.4 sparc-solaris9-gcc34

Solaris 9 SPARC32 CC 5.8 (Sun Studio 11) sparc-solaris9-cc58

Solaris 9 SPARC64 CC 5.8 (Sun Studio 11) sparc-solaris9-cc58-64

Solaris 9 SPARC64 gcc 4.1 sparc-solaris9-gcc41-64

Windows 32 IA32 Visual Studio 7.1 ia32-w32-msvc71

Windows 32 IA32 Visual Studio 7.1 ia32-w32-msvc71-staticc

Windows 32 IA32 Visual Studio 8.0 ia32-w32-msvc80

Windows 32 IA32 Visual Studio 8.0 ia32-w32-msvc80-staticc

Windows 64 AMD64 Visual Studio 8.0 amd64-w64-msvc80

Windows 64 AMD64 Visual Studio 8.0 amd64-w64-msvc80-staticc

a BT_BUILD is embedded in the name of the download package. It is also the subdirectory name used in various locations for platform-
specific files, such as binary library files.
bJava not supported.
cBuilt with a statically linked library. Does not include support for the Java API, the Core Library for Unicode (RCLU) [168] ,
iFilter [147] , or HTML Stripper [146] .

2.6.1. SDK Package File Name

The compressed SDK package file names take the form

 rlp- <ver> -sdk- BT_BUILD . <ext>

where <ver> is RLP version (6.5.2 for the 6.5.2 release), BT_BUILD is in the table above, and <ext>
is tar.gz for Unix platforms and .exe for Windows.

For the RLP 6.5.2 release, the package file names are:

SDK Package File Name

14

• rlp-6.5.2-sdk-ppc-aix52-xlc.tar.gz
• rlp-6.5.2-sdk-ia32-freebsd48-gcc34.tar.gz
• rlp-6.5.2-sdk-amd64-freebsd6-gcc344.tar.gz
• rlp-6.5.2-sdk-ia32-freebsd6-gcc344.tar.gz
• rlp-6.5.2-sdk-ia64-hpux11-aCC541.tar.gz
• rlp-6.5.2-sdk-parisc-hpux11-aCC333-aa.tar.gz
• rlp-6.5.2-sdk-ia32-glibc22-gcc32.tar.gz
• rlp-6.5.2-sdk-amd64-glibc23-gcc34.tar.gz
• rlp-6.5.2-sdk-amd64-glibc23-gcc40.tar.gz
• rlp-6.5.2-sdk-ia32-glibc23-gcc32.tar.gz
• rlp-6.5.2-sdk-ia32-glibc23-gcc34.tar.gz
• rlp-6.5.2-sdk-ia32-glibc23-gcc40.tar.gz
• rlp-6.5.2-sdk-amd64-glibc24-gcc41.tar.gz
• rlp-6.5.2-sdk-ia32-glibc24-gcc41.tar.gz
• rlp-6.5.2-sdk-amd64-glibc25-gcc41.tar.gz
• rlp-6.5.2-sdk-amd64-glibc25-gcc42.tar.gz
• rlp-6.5.2-sdk-ia32-glibc25-gcc41.tar.gz
• rlp-6.5.2-sdk-ia32-glibc25-gcc42.tar.gz
• rlp-6.5.2-sdk-universal-darwin9-gcc40.tar.gz
• rlp-6.5.2-sdk-amd64-solaris10-cc58.tar.gz
• rlp-6.5.2-sdk-amd64-solaris10-gcc41.tar.gz
• rlp-6.5.2-sdk-ia32-solaris10-cc58.tar.gz
• rlp-6.5.2-sdk-ia32-solaris10-gcc34.tar.gz
• rlp-6.5.2-sdk-sparc-solaris10-cc58.tar.gz
• rlp-6.5.2-sdk-sparc-solaris10-cc58-64.tar.gz
• rlp-6.5.2-sdk-sparc-solaris10-gcc412-64.tar.gz
• rlp-6.5.2-sdk-sparc-solaris28-cc52.tar.gz
• rlp-6.5.2-sdk-sparc-solaris28-cc52-64.tar.gz
• rlp-6.5.2-sdk-ia32-solaris9-gcc34.tar.gz
• rlp-6.5.2-sdk-sparc-solaris9-gcc34.tar.gz
• rlp-6.5.2-sdk-sparc-solaris9-cc58.tar.gz
• rlp-6.5.2-sdk-sparc-solaris9-cc58-64.tar.gz
• rlp-6.5.2-sdk-sparc-solaris9-gcc41-64.tar.gz
• rlp-6.5.2-sdk-ia32-w32-msvc71.zip
• rlp-6.5.2-sdk-ia32-w32-msvc71-static.zip
• rlp-6.5.2-sdk-ia32-w32-msvc80.zip
• rlp-6.5.2-sdk-ia32-w32-msvc80-static.zip
• rlp-6.5.2-sdk-amd64-w64-msvc80.zip
• rlp-6.5.2-sdk-amd64-w64-msvc80-static.zip

2.6.2. Documentation Package File Name

The documentation is available in a .zip file for Windows and a .tar.gz for Unix. (The contents are
identical.)

For the RLP 6.5.2 release, the English documentation package file names are:

• rlp-6.5.2-doc-unix.tar.gz
• rlp-6.5.2-doc-win.zip

The Japanese documentation package files names are:

• rlp-6.5.2-doc-ja-unix.tar.gz
• rlp-6.5.2-doc-ja-win.zip

Documentation Package File Name

15

16

Chapter 3. Creating an RLP Application
This document walks you through the process of creating an RLP application to extract information from
text. Prior to running the application, you may or may not know the language of the text, but the text is
assumed to all be in the same language. For information about how to process text input that may contain
passages in different languages, see Processing Multilingual Text [73] .

3.1. Overview
• Define the objectives [17]

• Define an RLP environment [17]

• Define an RLP context [18]

• Prepare the input [18]

• Write the application [20]

• Build and run the application [40]

3.2. Defining the Objectives
You want to extract useful information from text, information that may be gleaned with a combination of
linguistic analysis, dictionaries, and word lists that map words and phrases to entities of interest, such as
geographical place names, the names of people, organizations, and so on. For an overview of the linguistic
analysis that RLP can perform with various languages, see Key Features [1] .

Perhaps you want all the words that appear in the text, in which case you should decide whether you want
the words as they appear in text (tokens) or in their dictionary form (stems). You may want nouns or noun
phrases. If the input is Arabic, you may want vocalized transliterations of the names that appear in the text.
You may want all sentences in which a particular verb or noun, or named entity appears. You may want
RLP to identify the language or to process streams of text in multiple languages. Once you have determined
what kind of data you need, you can define the RLP context that generates the relevant result data.

Based on your objectives and the language and encoding of your input text, you will define an environment
and a context to process the text. Applying the context to the input text generates the result data that your
application can use.

For information about the types of data that RLP can produce, see RLP Result Types [83] .

3.3. Defining an RLP Environment
An RLP runtime environment maintains ownership of language processors, and their associated data. It
also defines the path to your RLP license file.

RLP is distributed with an environment configuration file that you can use as is: BT_ROOT/rlp/etc/rlp-
global.xml, where BT_ROOT/rlp is the Basis root directory.

You may want to edit the preload setting for some processors. If a processor is used frequently, setting
preload to "yes" may improve performance. When preload is set to "no", RLP does not load the
processor until it is actually used. You can also remove any processors that you do not plan to use in the
applications that use this environment configuration.

17

If you instantiate more than one environment object in a process, each object is in fact a wrapper for a
single underlying environment object. Accordingly all of the environment objects must be initialized with
the same environment configuration (normally BT_ROOT/rlp/etc/rlp-global.xml).

3.4. Defining an RLP Context
The RLP context specifies an ordered list of language processors made available by the environment for
processing the input text. 1 With the exception of the Unicode Converter, the processors that appear in
the context are a subset of the processors listed in the environment configuration.

The RLP context object posts the input text to internal storage. All language processors get their input from
and post results to internal storage. Some language processors process raw data and generate UTF-16 raw
text. Other language processors scan the UTF-16 raw text and post tokens, named entities, etc. A given
processor may depend on other processors, which means it requires as input the output generated by one
or more of the processors that precede it in the context sequence.

The context determines which RLP results are created. In most cases, the body of your application works
with these results.

3.4.1. Preparing the Input

The input must be in an encoding and a format that RLP can handle. For the details, see Preparing Your
Data for Processing [77] .

To perform linguistic analysis, the RLP language processors work with text encoded as UTF-16. The byte
order is big-endian or little-endian, depending on your platform. If your input text is UTF-16 in the correct
byte order for your platform, no conversion of the input text is required. If the input includes a byte order
mark (BOM), see Handling the BOM [78] .

For plain text in any standard encoding, you can use the Unicode Converter, followed by the RLI
and RCLU language processors. If the input is Unicode, Unicode Converter converts it to UTF-16
with the correct byte order for the current platform. If the input is not Unicode, RLI detects the encoding
(RLI also detects the language). If the input is not Unicode, RCLU converts the text to the required form
of UTF-16. See Preparing Text in Any Encoding [77] .

If the input includes markup in addition to text (HTML, XML, PDF, RTF, and Microsoft Office documents),
you can use the iFilter processor (Windows only) or HTML Stripper, to remove the markup before
linguistic analysis takes place. For more information see, Preparing Marked Up Input [79] .

3.4.2. Language Processors

Some language processors apply to a specific language or set of languages. Other language processors
apply to many or all supported languages. For example, the BL1 processor applies to a number of European
languages, and CLA is for processing Simplified or Traditional Chinese, whereas the Gazetteer,
NamedEntityExtractor, and NERedactLP apply to many languages.

The order in which processors appear in the context configuration determines the order in which they will
run. Order is important. Some processors take their input from the output of a previous processor rather
than directly from the input text. In other words, some processors depend on the inclusion of another
processor. For example, you must run the Tokenizer and SentenceBoundaryDetector (in that
order) before you can run ARBL (Arabic Base Linguistics), FABL (Farsi Base Linguistics), or URBL (Urdu
Base Linguistics).

1In releases prior to RLP 5.2.0, processors were divided into three categories in an RLP context: an input processor, language processors, and an
optional output processors. This distinction no longer exists. All RLP processors are now called language processors.

Defining an RLP Context

18

For information about each of the language processors, their settings and dependencies, see Language
Processors [123] .

3.4.3. Language Analyzer User Dictionaries

Some language processors, called Language Analyzers, use dictionaries to help process text in a given
language. RLP supplies one or more dictionaries for each supported language. For some languages and
language analyzers, you can create one or more user dictionaries.
A user dictionary can contain words specific to an industry or application. User dictionaries may also
specify segmentation behavior for existing words. For example, you may want to prevent a compound
word that is a product name from being segmented.

Currently, user dictionaries are supported for the following language analyzers: Base Linguistics Language
Analyzer (European languages), Chinese Language Analyzer, Japanese Language Analyzer, and Korean
Language Analyzer. For more information about creating and using user dictionaries with these language
analyzers, please see their specific documentation in RLP Processors [123] .

3.4.4. Context Properties

The context maintains a property list of name/value pairs. Many processors look for properties to control
their behavior. For example, the REXML Processor redirects output to a file if the
com.basistech.rexml.output_pathname context property is set to a valid file pathname. To
see the context properties for a given language processor, see "Context Properties" for that processor in
RLP Processors [123] .

The name of a processor-specific context property is prefixed by com.basistech.<processor
name> , such as com.basistech.rexml.output_pathname. A global context property
[125] may apply to more than one processor, and includes a prefix to indicate its scope, such as
com.basistech.bl.query (bl stands for base linguistics).

Properties can be set via entries in the context configuration XML document. The following entry, for
example, tells REXML to send its output (an XML report) to a file:

<property name="com.basistech.rexml.output_pathname" value="c:\reports\rexml-out.xml"/>

Context properties can also be set through the API. See Setting Context Properties [26] .

3.4.5. Sample Context Configurations

3.4.5.1. General Purpose: Language and Encoding Not Known

The following sample context uses Unicode Converter to convert Unicode input to UTF-16. If the
input is not Unicode, the context uses RLI and RCLU to identify encoding and language, and convert the
input to UTF-16. It then includes language processors for all the languages RLP supports. At runtime, any
processors that are not needed to process the input are inactive. If you know that some languages will never
appear, you can remove the corresponding language processors.

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE contextconfig SYSTEM "contextconfig.dtd">

<contextconfig>
 <languageprocessors>
 <languageprocessor>Unicode Converter</languageprocessor>
 <languageprocessor>BL1</languageprocessor>
 <languageprocessor>JLA</languageprocessor>

Language Analyzer User Dictionaries

19

 <languageprocessor>CLA</languageprocessor>
 <languageprocessor>KLA</languageprocessor>
 <languageprocessor>Tokenizer</languageprocessor>
 <languageprocessor>SentenceBoundaryDetector</languageprocessor>
 <languageprocessor>ARBL</languageprocessor>
 <languageprocessor>FABL</languageprocessor>
 <languageprocessor>URBL</languageprocessor>
 <languageprocessor>Stopwords</languageprocessor>
 <languageprocessor>BaseNounPhrase</languageprocessor>
 <languageprocessor>NamedEntityExtractor</languageprocessor>
 <languageprocessor>Gazetteer</languageprocessor>
 <languageprocessor>RegExpLP</languageprocessor>
 <languageprocessor>NERedactLP</languageprocessor>
 </languageprocessors>
</contextconfig>

3.4.5.2. Unicode Input and Base Linguistic Analysis for One Language

The following sample is much more specific. It uses the Unicode Converter to convert Japanese text
from UTF-8 (or some other Unicode encoding) to UTF-16. The JLA language processor (Japanese
Language Analyzer) segments Japanese text into separate words and assigns part-of-speech tags to each
word. If com.basistech.jla.deep_compound_decomposition is set to "true" (the default
is "false"), JLA recursively decomposes into smaller components any tokens marked in the dictionary
as decomposable. ManyToOneNormalizer uses the sample Japanese normalization dictionary
[154] to return the normalized form of Japanese word variants. This context does not identify named
entities.

<?xml version="1.0"?>
<!DOCTYPE contextconfig SYSTEM "contextconfig.dtd">
<contextconfig>
 <properties>
 <property name="com.basistech.jla.deep_compound_decomposition" value="true"/>
 </properties>
 <languageprocessors>
 <languageprocessor>Unicode Converter</languageprocessor>
 <languageprocessor>JLA</languageprocessor>
 <languageprocessor>ManyToOneNormalizer</languageprocessor>
 </languageprocessors>
</contextconfig>

3.4.5.3. Other

For an example that handles HTML, PDF, or Microsoft Office documents, see Using iFilter [79] .

For an example that processes multilingual text, see RLBL Context [73] and Single-Language
Context [74] .

3.5. Coding the Application
Choose your programming language: C++, C, Java (1.5 or later), or .NET. 2 RLP has implemented an
API for each of these languages. In either case, the essential steps an application must complete are the
same.

2See Using the RLP C API [59] .

Coding the Application

20

Steps

C++ only: Verify that RLP runtime library is compatible with the library used for compilation.

1. Process parameters required to run the application.

Standard parameters include path to the Basis root directory, environment configuration XML, context
configuration XML, context and property settings, language and encoding of the input text.

2. Set up the RLP environment [21] .

Set the Basis root directory, set up diagnostic logging, and instantiate and configure the environment.
You may also want to collect information about the RLP features your license authorizes you to use.

3. Set up the RLP context [25] .

Use the environment object and an XML context configuration file (or string) to instantiate a context
object. Set context properties as appropriate (see RLP Processors [123]).

4. Use the context object to process the input [26] .

5. Handle the RLP results generated during the previous step. This is the heart of your application. For
detailed information, see Accessing RLP Results [83] .

6. Release the resources you have allocated.

3.6. Setting Up the RLP Environment
This section contains information about initializing the runtime environment and capturing diagnostic log
output.

3.6.1. Setting the Basis Root Directory

The Basis root directory is the directory in which you installed RLP.

If you are using C++, use BT_RLP_Environment::SetBTRootDirectory to set the Basis root
directory.

If you are using Java, there are two ways to set the Basis root directory:

• (Preferred) Use com.basistech.util.Pathnames.setBTRoot to set the Basis root directory

• Set the bt.root system property. You can do this from the command line when you launch the Java
virtual machine:

java -Dbt.root=BT_ROOT ...

where BT_ROOT is the path to the Basis root directory.

In Java, you must also create an EnvironmentParameters object before you proceed to the next step.
For example:

EnvironmentParameters envParams = new EnvironmentParameters();

3.6.2. Capturing Log Output

To instruct RLP to capture diagnostic information, do the following:

Setting Up the RLP Environment

21

1. Create a log callback function.
2. Register the log callback function.
3. Set the log level (specify the kinds of messages you want to log).

3.6.2.1. Log Channels and Levels

Setting the log level specifies which channels are communicated to the callback function. RLP provides
three channels, each with its corresponding level:

Channel Level Description

0 warning Non-fatal errors

1 error Serious runtime errors

2 info Helpful information

The default logging level is "error".

You can set logging level to a single channel (e.g., "warning"), a comma-delimited list of channels (e.g.,
"warning,error"), or "all" (equivalent to "warning,error,info"). If you want to mute all channels, set logging
level to "none".

For information about the codes returned if you include the "error" level, see Error codes [249] .

3.6.2.2. Capturing Log Output in C++

Create a callback function that conforms to the following prototype:

void log_callback(void* info_p, int channel, const char* message)

info_p is the data passed as the first parameter when you use SetLogCallbackFunction to register
the callback: it can be any value you want (or NULL).

channel is the channel number the message is being written to: BT_LOG::WARNING_CHANNEL,
BT_LOG::ERROR_CHANNEL, or BT_LOG::INFO_CHANNEL.

message is the text of the message.

Here is a callback function that writes log messages to the open file that is established when the function
is registered:

static log_callback(void* info, int channel, char const* message){
 fprintf((FILE*) info, "%d\t%s\n", channel, message);
}

The environment class provides static functions for registering the callback function and setting log level.
For example:

//Register log_callback to write log messages to stderr.
BT_RLP_Environment::SetLogCallbackFunction((void*) stderr, log_callback);
//Post all channels to the callback.
BT_RLP_Environment::SetLogLevel("all");

3.6.2.3. Capturing Log Output in Java

Create a class that implements RLPEnvironment.LogCallback, which contains a message()
method. Then register the callback, and set the log level. For example:

Capturing Log Output

22

public class MyCallback implements RLPEnvironment.LogCallback {
 public void message(int channel, String message){
 System.err.println(channel + "\t" + message);
 }
}
//Use the EnvironmentParameters object to set log callback and log level.
envParams.setsetLogCallback(new MyCallback());
envParams.setLogLevel("all");

3.6.2.4. Alternative

If you want RLP to post messages to standard error, you can set the BT_RLP_LOG_LEVEL environment
value to indicate which channels you want sent to standard error (warnings, errors, and/or info). If you set
this environment variable, you do not need to perform any of the steps listed above.

Valid values are (case insensitive): none, all, info, warning, error. Multiple values can be set in a comma
separated list. For example:

export BT_RLP_LOG_LEVEL=all
export BT_RLP_LOG_LEVEL=none
export BT_RLP_LOG_LEVEL=warning,error

Note

Any setting of BT_RLP_LOG_LEVEL is overridden by a call to the C++ SetLogLevel function
or the Java setLogLevel method, unless you pass "" as the parameter, in which case RLP uses
the BT_RLP_LOG_LEVEL setting (if it is set), or "error" (if is not set).

3.6.3. Initializing the Environment

If you are using C++:

1. Create an empty RLP environment.
2. Use the global configuration file to initialize the environment.

//Instantiate the environment.
BT_RLP_Environment* rlp = BT_RLP_Environment::Create();
//envConfig, the pathname of rlp-global.xml, was set from a command-line
//argument. If you put the environment configuration xml in a buffer,
//use InitializeFormBuffer.
BT_Result rc; //For function results.
rc = rlp->InitializeFromFile(envConfig);

If you are using Java:

1. Define the path to the global configuration file as an environment parameter.
2. Instantiate an environment object with the environment parameters object.
3. Initialize the environment.

// envConfig, path to rlp-global.xml, set from command line.
envParams.setEnvironmentDefinition(new File(envConfig));
//Instantiate and initialize the environment.
RLPEnvironment env = new RLPEnvironment(envParams);
env.initialize();

Initializing the Environment

23

3.7. Getting License Information
The RLP license you have obtained from Basis Technology determines the scope of operations you can
perform with RLP. If you are unsure of exactly what you have, you can consult your RLP license file: rlp-
license.xml (normally in the rlp/rlp/licenses subdirectory under the Basis root directory).

If you attempt to use a processor or process a language for which you do not hold a license, RLP issues a
warning and continues operation.

Warning

Be sure you have purchased the licenses that are required for the processors that you want to use
in your applications. Turn on the warning channel in your logging callback to receive such
notification.

RLP provides an API for gathering information about your license. The environment object provides
methods for determining whether you have a valid license, whether it authorizes base linguistics and named
entity extraction for a given language, and whether it authorizes support for a given named feature. This
release includes sample applications that demonstrate how to use this API: samples/cplusplus/
examine_license.cpp and samples/java/ExamineLicense.java.

3.7.1. C++: BT_RLP_Environment License Methods

To determine whether you have a valid license, use

bool HasLicenses() const = 0;

To determine whether your license includes base linguistics or named entity extraction for a given language,
use

bool HasLicenseForLanguage(BT_LanguageID lid, BT_UInt32 functionality) const = 0;

To determine whether your license includes support for a named feature, use

virtual bool HasLicenseForNamedFeature(const char *feature,
 BT_UInt32 functionality) const = 0;

Language IDs are defined in bt_language_names.h. The arguments you can use for functionality
and feature are defined in bt_rlp_license_types.h.

These methods are used in the examineLicenses method of the Sample C++ Application [28] .

3.7.2. Java: RLPEnvironment License Methods

To determine whether you have a valid license, use

boolean hasLicenses() throws RLPException

To determine whether you license includes base linguistics or named entity extraction for a given language,
use

boolean hasLicenseForLanguage(int language_id, int functionality)
 throws RLPException

To determine whether your license includes support for a named feature, use

Getting License Information

24

boolean hasLicenseForNamedFeature(String feature, int functionality)
 throws RLPException

Language IDs are enumerated in com.basistech.util.LanguageCode. The arguments you can
use for functionality and feature are defined in com.basistech.rlp.RLPConstants.

These methods are used in the examineLicenses method of the Sample Java Application [35] .

3.8. Setting Up the Context
After initializing the environment, use the environment object to instantiate a context. The context can only
contain a subset of the processors defined in the environment. A context configuration XML file or string
defines the context; see Defining a Context [18] .

3.8.1. Instantiating a Context in C++

If the context configuration is an external XML file, use the
BT_RLP_Environment::GetContextFromFile method.

If the context configuration is embedded in the application, use the
BT_RLP_Environment::GetContextFromBuffer method.

The following fragment gets the context configuration from an external file:

//Get context configuration XML file pathname from the
//command line. For example:
const char* contextPath = argv[2];
BT_RLP_Context* context;
//rc is BT_Result return code; rlp is BT_RLP_Environment object.
rc = rlp->GetContextFromFile(contextPath, &context);
if (rc != BT_OK) {
 cerr << "Unable to create the context." << endl;
 delete rlp;
 return 1;
}

The sample C++ application that appears later in this chapter gets the context from a buffer. See item 3. in
Sample C++ Application [28] .

3.8.2. Instantiating a Context in Java

The ContextParameters class provides two versions of the setContextDefinition method.
One version takes File (the context configuration file) as an argument. The other version takes a String (the
context configuration XML).

Warning

If you use an XML String rather than an XML file, and the XML declaration contains an
encoding attribute (optional), the encoding MUST be set to UTF-8. For example: <?xml
version='1.0' encoding='utf-8'?>.

Once you have a ContextParameters object with a context, you can use the RLPEnvironment
getContext method to instantiate the context.

The following fragment gets the context from a String within the application:

Setting Up the Context

25

ContextParameters contextParam = new ContextParameters();
//contextSpec is a String with the context configuration XML.
contextParam.setContextDefinition(contextSpec);
RLPContext context = rlpEnv.getContext(contextParam);

The sample Java application that appears later in this chapter gets the context from a file. See item 3. in
Sample Java Application [34] .

3.8.3. Setting Context Properties

Many RLP processors have properties that you can set. A context property may be global rather than
processor-specific [125] . You can set properties in the context configuration. You can also use the context
object to set properties (overriding settings in the configuration). A context configuration may include
property settings

In C++, use the BT_RLP_Context::setPropertyValue method to set context properties.

In Java, use the RLPContext.setProperty method to set context properties.

Both methods take two String parameters: property name and property value. For information about context
properties, see RLP Processors [123] .

3.9. Processing Input
Once you have set up an environment and used it to instantiate a context, you can use the context object
to process the input text. The context method you use depends on whether or not the input is a file. If the
input is not a file, the context method you use depends on encoding.

For detailed information about the C++ API, see ProcessFile, and ProcessBuffer in
BT_RLP_Context [api-reference/cpp-reference/classBT__RLP__Context.html].

For the details of the Java API, see the process methods in RLPContext [api-reference/java-reference/
com/basistech/rlp/RLPContext.html].

3.9.1. Input Is a File

In C++, use the BT_RLP_Context::ProcessFile method. For an example, see item 4. in the Sample
C++ Application [28] .

In Java, use one of the RLPContext.process methods that takes a String pathname parameter.
For an example, see item 4. in the Sample Java Application [34] .

These methods post raw input data to internal storage. Unless you are using iFilter to process the file,
the context must include RLI/RCLU or Unicode Converter to generate the UTF-16 raw text required
by other language processors.

iFilter requires a File

If your context includes iFilter, the input must be a file.

3.9.2. Input Is Not a File

If the text input is not a file, determine whether the encoding matches what the RLP processors require on
the current platform.

Setting Context Properties

26

3.9.2.1. Encoding Does Not Match RLP Requirements

If the encoding is not UTF-16 with the correct byte order for the platform, you must call a process method
that works with a buffer that can contain text in any encoding.

In C++, use the BT_RLP_Context::ProcessBuffer method.

In Java, use one of the RLPContext process methods that includes a byte[], ByteBuffer, or
char[] parameter for the input data.

These methods post raw input data in RLP internal storage. The context must include RLI and RCLU, or
Unicode Converter to generate the UTF-16 raw text required by other language processors.

3.9.2.2. Input is UTF-16 with Platform Byte Order

If the text input is UTF-16 with the correct byte order for your platform, you can use one of the API methods
described in the previous section, or you can call a more efficient method that generates the UTF-16 raw
text required for processing. If the input includes a byte order mark (BOM), you may want to strip the
BOM (the first character) before you process the input text. See Handling the BOM [78] .

In C++, use the BT_RLP_Context::ProcessBufferUTF16 method. For an example, see RLBL C
++ Fragment [75]

In Java, use one of the RLPContext.process methods that takes a String data parameter.

For an example, see RLBL Java Fragment [76] .

The methods described in this section generate the UTF-16 raw text required for processing. Your context
does not need RCLU or Unicode Converter; if it includes either of those processors, they are ignored.

3.10. Introduction to Our Sample Applications
The sample applications that follow are designed to provide you with a shell or template that you can use
as a starting point for creating your own applications. 3 Look in the samples tree for the source files and
the tools for building and running these samples.

The code comments indicate how each application implements the steps listed above. The fundamental
changes you must make are the following:

• Adjust the input parameters.

For runtime flexibility, you will probably use input parameters to define most of the following: Basis
root directory, language, encoding, context configuration, input text. 4

• Set up the RLP log callback to provide the information you need to understand any problems that may
arise as you are running RLP.

• Define a context that generates the results you need.

You can embed your context configuration in the application. For flexibility and wider use, you may
want to maintain a separate context configuration file.

3For a sample C application, see Using the RLP C API [59] .
4Use the ISO639 language code [11] to designate the language.

Introduction to Our Sample Applications

27

• Use the context to process the input text.

• Handle the RLP results as your needs dictate.

This is the heart of your application. The samples illustrate the basic procedures for accessing the
different kinds of result objects that processing text input can generate.

For information about building and running these samples and the other samples included with the RLP
distribution, see Building and Running the Sample C++ Applications [40] and Building and Running
the Sample Java Applications [41] .

3.11. Sample C++ Application
C++ source file: rlp_sample.cpp. Input parameters are passed in from the command line, and the RLP
context configuration document is embedded in the source code.

// Include the RLP interfaces
#include <bt_rlp.h>
#include <bt_language_names.h>
#include <bt_rlp_ne_iterator.h>

// Basis Tech string class, for UTF16 -> UTF-8 handling
#include <bt_xstring.h>

// C++ includes
#include <iostream>
#include <fstream>
#include <cstring>
#include <vector>

using namespace std;

//prototypes
static void handleResults(BT_RLP_Context* context, ofstream& out);
static void log_callback(void* info_p, int channel, const char* message);

//Use an XML string or file to define a context. The context is an
//ordered sequence of processors and related settings that specify
//the processing that RLP performs on the input. This app defines
//the context in the string below.

//This is a general-purpose context configuration.
// - The Unicode Converter converts the input file from UTF-8 (or any other
// Unicode encoding) to UTF-16 for internal processing.
// - Depending on the language of the input, the appropriate language analyzer
// (BL1, JLA, CLA, KLA, or ARBL) performs a variety of tasks appropriate for
// that language. For example, JLA tokenizes Japanese text, assigns part of
// speech tags, and determines alphabetic (Hiragana) readings for native
// Japanese words in Kanji.
// - BaseNounPhrase detects noun phrases.
// - SentenceBoundaryDetector delimits the sentences in the input.
// - Stopwords uses the language-specific stopwords dictionary to tag tokens
// as stopwords.
// - NamedEntityExtractor, Gazeteer, RegExpLP, and NamedEntityRedactor locate
// named entities.
static const char* CONTEXT =
 "<?xml version='1.0'?>"
 "<contextconfig>"

Sample C++ Application

28

 "<languageprocessors>"
 "<languageprocessor>Unicode Converter</languageprocessor>"
 "<languageprocessor>BL1</languageprocessor>"
 "<languageprocessor>JLA</languageprocessor>"
 "<languageprocessor>CLA</languageprocessor>"
 "<languageprocessor>KLA</languageprocessor>"
 "<languageprocessor>Tokenizer</languageprocessor>"
 "<languageprocessor>SentenceBoundaryDetector</languageprocessor>"
 "<languageprocessor>ARBL</languageprocessor>"
 "<languageprocessor>FABL</languageprocessor>"
 "<languageprocessor>URBL</languageprocessor>"
 "<languageprocessor>Stopwords</languageprocessor>"
 "<languageprocessor>BaseNounPhrase</languageprocessor>"
 "<languageprocessor>NamedEntityExtractor</languageprocessor>"
 "<languageprocessor>Gazetteer</languageprocessor>"
 "<languageprocessor>RegExpLP</languageprocessor>"
 "<languageprocessor>NERedactLP</languageprocessor>"
 "</languageprocessors>"
 "</contextconfig>";

/**
* 1. Process input parameters.
* 2. Set up RLP environment.
* 3. Set up RLP context for processing input.
* 4. Process input.
* 5. Work with the results.
* 6. Clean up.
*/
int main(int argc, const char* argv[])
{
 if (!BT_RLP_Library::VersionIsCompatible()) {
 fprintf(stderr, "RLP library mismatch: have %s expect %s\n",
 BT_RLP_Library::VersionString(),
 BT_RLP_LIBRARY6.5.2STRING);
 return 1;
 }

 //1. Process input parameters. This application gets the following
 // from the command line:
 // - Basis root directory
 // - language ISO639 code
 // - pathname of the environment config file
 // - pathname of the input file
 // - pathname of the output file (encoded in utf-8)
 if (argc != 6) {
 cerr << "Usage: " << argv[0]
 << " BT_ROOT LANGUAGE ENV_CONFIG_FILE INPUT_FILE OUTPUT_FILE" << endl;
 return 1;
 }
 const char* btRoot = argv[1];
 // Get BT language ID (defined in bt_language_names.h)
 // from ISO639 code.
 const BT_LanguageID langID = BT_LanguageIDFromISO639(argv[2]) ;
 if (langID ==BT_LANGUAGE_UNKNOWN) {
 cerr << "Warning: Unknown ISO639 language code: " << argv[2] << endl;
 return 1;
 }
 const char* envConfig = argv[3];
 const char* inputFile = argv[4];

Sample C++ Application

29

 const char* outputFile = argv[5];
 ofstream out(outputFile);
 if (!out) {
 cerr << "Couldn't open output file: " << outputFile << endl;
 return 1;
 }

 //2. Set up the environment.

 //2.1 Use BT_RLP_Environment static methods to set the Basis root
 // directory, to designate a log callback function, and to set
 // log level.
 BT_RLP_Environment::SetBTRootDirectory(btRoot);
 BT_RLP_Environment::SetLogCallbackFunction((void*) stderr,
 log_callback);
 //Log level is some combination of "warning,error,info" or "all".
 BT_RLP_Environment::SetLogLevel("error");

 //2.2 Create a new (empty) RLP environment.
 BT_RLP_Environment* rlp = BT_RLP_Environment::Create();
 if (rlp == 0) {
 cerr << "Unable to create the RLP environment." << endl;
 return 1;
 }
 //2.3 Initialize the empty environment with the global environment
 // configuration file.
 BT_Result rc = rlp->InitializeFromFile(envConfig);
 if (rc != BT_OK) {
 cerr << "Unable to initialize the environment." << endl;
 delete rlp;
 return 1;
 }

 //3. Get a context from the environment. In this case the context
 // configuration is embedded in the app as a string. It could also
 // be read in from a file.
 BT_RLP_Context* context;
 rc = rlp->GetContextFromBuffer((const unsigned char*) CONTEXT,
 strlen(CONTEXT),
 &context);
 if (rc != BT_OK) {
 cerr << "Unable to create the context." << endl;
 delete rlp;
 return 1;
 }

 //4. Use the context object to processes the input file. Must include
 // language id unless using RLI processor to determine language.
 rc = context->ProcessFile(inputFile, langID);
 if (rc != BT_OK) {
 cerr << "Unable to process the input file '"
 << inputFile << "'." << endl;
 rlp->DestroyContext(context);
 delete rlp;
 return 1;
 }
 //5. Gather results of interest produced by processing the input text.
 handleResults(context, out);
 fprintf(stdout, "\nSee output file: %s\n\n", outputFile);

Sample C++ Application

30

 //6. Remove any objects still lying around.
 rlp->DestroyContext(context);
 delete rlp;
 return 0;
}

//5. Get results of interest and write to file.
static void handleResults(BT_RLP_Context* context, ofstream& out) {
 try {
 //5.1 Use the context object to get single-valued results: language,
 // encoding, raw text, transcribed text (Arabic).
 BT_UInt32 lang = context->GetIntegerResult(BT_RLP_DETECTED_LANGUAGE);
 const char* langName = BT_ISO639FromLanguageID(lang);
 const BT_Char8* encoding =
 context->GetStringResult(BT_RLP_DETECTED_ENCODING);
 out << "Language: " << langName << "(" << lang << ")\t";
 if (encoding != 0)
 out << "Encoding: " << encoding << endl;
 BT_UInt32 len = 0;
 const BT_Char16* rawText =
 context->GetUTF16StringResult(BT_RLP_RAW_TEXT, len);
 bt_xstring rawText_as_utf8(rawText, len);
 out << "Raw text: " << rawText_as_utf8.c_str() << endl << endl;

 //5.2 Use token iterator to get information related to tokens: tokens,
 // token offsets, part of speech tags, stems, normalized tokens,
 // stopwords, compounds, and readings.
 BT_RLP_TokenIteratorFactory* factory =
 BT_RLP_TokenIteratorFactory::Create();

 //Provide access to readings and compounds.
 factory->SetReturnReadings(true);
 factory->SetReturnCompoundComponents(true);

 //Create the iterator and destroy the factory.
 BT_RLP_TokenIterator* token_iter = factory->CreateIterator(context);
 factory->Destroy();

 vector<bt_xwstring> tokens;
 while (token_iter->Next()) {
 //Get the data you want for each token.
 //Get the token (BT_RLP_TOKEN).
 const BT_Char16* token = token_iter->GetToken();
 tokens.push_back(bt_xwstring(token));

 //Get the token index (not currently used).
 //BT_UInt32 index = token_iter->GetIndex();

 //Get the part of speech (BT_RLP_PART_OF_SPEECH) for the token.
 const char* pos = token_iter->GetPartOfSpeech();
 //and so on ...

 //Convert the token from UTF-16 to UTF-8 and dump it.
 bt_xstring token_as_utf8(token);
 out << "Token: " << token_as_utf8.c_str() << endl;

 //The POS tag is stored as a null-terminated ASCII string,
 //so it is can be writen out directly.

Sample C++ Application

31

 if(pos){
 out << " POS: " << pos << endl;
 }

 //Get readings (for Japanese, render Kanji characters in
 // the Hiragana alphabet).
 int numReadings = token_iter->GetNumberOfReadings();
 if (numReadings > 0) {
 out << " Readings: ";
 for (int i = 0; i < numReadings; ++i) {
 const BT_Char16* reading = token_iter->GetReading(i);
 //Dump as UTF-8.
 bt_xstring token_as_utf8(reading);
 out << token_as_utf8.c_str() << " ";
 }
 out << endl;
 }

 //Get compounds (see documentation for applicable languages)
 int numCompoundComponents = token_iter->GetNumberOfCompoundComponents();
 if (numCompoundComponents > 0) {
 out << " Compound components: ";
 for (int i = 0; i < numCompoundComponents; ++i) {
 const BT_Char16* reading = token_iter->GetCompoundComponent(i);
 //Dump as UTF-8.
 bt_xstring token_as_utf8(reading);
 out << token_as_utf8.c_str() << " ";
 }
 out << endl;
 }
 out << endl;
 }

 //5.3 Use result iterator to get other results, such as base noun phrases,
 // and gazetteer names. Note: Can use result iterator to get any/all
 // results.

 //Get base noun phrases.
 BT_RLP_ResultIterator* result_iter =
 context->GetResultIterator(BT_RLP_BASE_NOUN_PHRASE);

 const BT_RLP_Result* bnp;
 while ((bnp = result_iter->Next()) != NULL){
 //The result is a pair of integers, indexes of the first and last + 1
 //tokens in the base noun phrase.
 BT_UInt32 first, last;
 bnp->AsIntegerPair(first, last);
 out << "Base Noun Phrase: ";
 // Use the tokens vector to construct the base noun phrases.
 // Convert tokens from UTF-16 to UTF-8.
 for (unsigned j = first; j < last; ++j) {
 bt_xstring u8token(tokens[j].c_str());
 out << u8token.c_str() << " ";
 }
 out << endl;
 }

 //5.4 Use named entity iterator to get information about named entities.

Sample C++ Application

32

 BT_RLP_NE_Iterator_Factory *nif = BT_RLP_NE_Iterator_Factory::Create();
 BT_RLP_NE_Iterator *ni = nif->CreateIterator(context);
 //Ensure that multiple instances of a named entity are returned
 //with the same entity type.
 nif->SetConsistentType(true);
 nif->Destroy();
 while (ni->Next()) {
 const BT_Char16 *neWide = ni->GetRawNamedEntity();
 bt_xstring ne_as_utf8(neWide);
 BT_UInt32 neType = ni->GetType();
 //Get string representation of named entity type.
 const char* typeName = BT_RLP_NET_ID_TO_STRING(neType);
 out <<"Named Entity: " <<typeName <<" " <<ne_as_utf8.c_str() << endl;
 }
 ni->Destroy();

 //Cleanup
 context->DestroyResultIterator(result_iter);
 token_iter->Destroy();
 }
 catch (BT_RLP_InvalidResultRequest& e) {
 cerr << "Exception: " << e.what() << endl;
 }
 catch (...) {
 cerr << "Unhandled exception." << endl;
 }
}

/**
* The application registers this function to receive diagnostic log entries.
* RLP Environment LogLevel determines which message channels (error, warning.
* info) are posted to the callback.
*/
static void log_callback(void* info_p, int channel, const char* message)
{
 static const char* szINFO = "INFO : ";
 static const char* szERROR = "ERROR : ";
 static const char* szWARN = "WARN : ";
 static const char* szUNKNOWN = "UNKWN : ";
 const char* szLevel = szUNKNOWN;
 switch(channel) {
 case 0:
 szLevel = szWARN;
 break;
 case 1:
 szLevel = szERROR;
 break;
 case 2:
 szLevel = szINFO;
 break;
 }
 fprintf((FILE*) info_p, "%s%s\n", szLevel, message);
}

/*
Local Variables:
mode: c
tab-width: 2

Sample C++ Application

33

c-basic-offset: 2
End:
*/

3.12. Sample Java Application
RLPSample reads in its input parameters from a properties file. The context configuration document is
also a separate file.

Input parameters: RLPSample.properties.

RLPSample.properties
input values for RLPSample

Sample code replaces $BT_ROOT with the command-line arg
for the Basis Technology root directory.

env = $BT_ROOT/rlp/etc/rlp-global.xml
context = $BT_ROOT/rlp/samples/etc/rlp-context-no-op.xml
input = $BT_ROOT/rlp/samples/data/de-text.txt

#ISO639 language code
lang = de

mime_charset = UTF-8

log_level can be a comma-delimited list from the following:
'warning,error,info' -- or it can be 'all' or 'none'
log_level = error

output destination
out = RLPSample-out.txt

Context configuration: rlp-context-no-op.xml.

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE contextconfig SYSTEM "http://www.basistech.com/dtds/2003/contextconfig.dtd">
<!-- This context is useful with applications that do not need REXML
 because they produce their own output. -->
<contextconfig>
 <languageprocessors>
 <languageprocessor>Unicode Converter</languageprocessor>
 <languageprocessor>BL1</languageprocessor>
 <languageprocessor>JLA</languageprocessor>
 <languageprocessor>CLA</languageprocessor>
 <languageprocessor>KLA</languageprocessor>
 <languageprocessor>Tokenizer</languageprocessor>
 <languageprocessor>SentenceBoundaryDetector</languageprocessor>
 <languageprocessor>ARBL</languageprocessor>
 <languageprocessor>FABL</languageprocessor>
 <languageprocessor>URBL</languageprocessor>
 <languageprocessor>Stopwords</languageprocessor>
 <languageprocessor>BaseNounPhrase</languageprocessor>
 <languageprocessor>NamedEntityExtractor</languageprocessor>
 <languageprocessor>Gazetteer</languageprocessor>
 <languageprocessor>RegExpLP</languageprocessor>
 <languageprocessor>NERedactLP</languageprocessor>
 </languageprocessors>
</contextconfig>

Sample Java Application

34

Java source: RLPSample.java.

 import com.basistech.rlp.RLPConstants;
import com.basistech.util.Pathnames;
import com.basistech.util.LanguageCode;
import com.basistech.rlp.EnvironmentParameters;
import com.basistech.rlp.RLPEnvironment;
import com.basistech.rlp.ContextParameters;
import com.basistech.rlp.RLPContext;
import com.basistech.rlp.RLPResultAccess;
import com.basistech.rlp.NamedEntityData;

import java.text.MessageFormat;
import java.text.ChoiceFormat;
import java.io.File;
import java.io.FileInputStream;
import java.io.InputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.FileOutputStream;
import java.io.PrintStream;
import java.util.List;
import java.util.Iterator;
import java.util.Map;
import java.util.Properties;
import java.util.Enumeration;

/* RLPSample ilustrates the basic pattern for using RLP to process an
 * input file and to work with the results that are generated.
 *
 * 1. Load parameters required to run the application.
 * 2. Set up the RLP environment.
 * 3. Set up an RLP context.
 * 4. Use the context to process the input text.
 * 5. Capture results of interest generated during the previous step.
 * 6. Close the context and environment objects.
*/

public class RLPSample {
 /**
 * Instantiates and runs RLPSample.
 */
 public static void main(String args[]) {
 if (args.length < 2) {
 System.err.println("Usage: must call with 2 args: " +
 "the BT_ROOT directory and the properties file pathname");
 System.exit(1);
 }

 new RLPSample().run(args[0], args[1]);
 }

 /**
 * Performs the steps listed above.
 * @param btRoot the BT_ROOT directory (the install directory)
 * @param rlpProps the path to the properties file
 */
 void run(String btRoot, String rlpProps) {
 try {
 //1. Load input parameters.

Sample Java Application

35

 // App gets the Basis root directory and a
 // properties file from the command line.
 // Other parameters are loaded from the
 // properties file:
 // * env - environment configuration file
 // * context - context configuration file
 // * input - text input file
 // * lang - ISO639 language code
 // * mime_charset - charset encoding of input
 // * log_level - log level
 // * out - output file
 Properties props = loadProperties(btRoot, rlpProps);

 //2. Set up the RLP environment.

 //2.1 Set the Basis root directory and create an
 // EnvironmentParameters object.
 Pathnames.setBTRootDirectory(btRoot);
 EnvironmentParameters envParams = new EnvironmentParameters();

 //2.2 Set up logging.
 //See LogCallback inner class below.
 envParams.setLogCallback(new LogCallback());
 //Log level is some combination of "warning,error,info"
 //or "all" or "none".
 envParams.setLogLevel(props.getProperty("log_level"));

 //2.3 Instantiate and initialize the environment.
 //Use the environment configuration file to define
 //the environment.
 String environmentPath = props.getProperty("env");
 envParams.setEnvironmentDefinition(new File(environmentPath));
 RLPEnvironment rlpEnv = new RLPEnvironment(envParams);
 rlpEnv.initialize();

 //3. Set up the context.
 ContextParameters contextParam = new ContextParameters();
 String contextPath = props.getProperty("context");
 contextParam.setContextDefinition(new File(contextPath));

 RLPContext rlpContext = rlpEnv.getContext(contextParam);

 //If not using RLI to determine language, must specify
 //the language of the input file.
 LanguageCode language = LanguageCode.UNKNOWN;
 if (props.getProperty("lang") != null) {
 language = LanguageCode.lookupByISO639(props.getProperty("lang"));
 }

 //4. Process the input file, including the charset of the file and
 // language id.
 String input = props.getProperty("input");
 String mime_charset = props.getProperty("mime_charset");
 rlpContext.process(input, mime_charset, language);

 //5. Handle the results generated by the processors.
 String outFile = props.getProperty("out");
 handleResults(rlpContext, outFile);

Sample Java Application

36

 // 6. Close context and environment.
 rlpContext.close();
 rlpEnv.close();
 }
 catch (Exception exc) {
 exc.printStackTrace();
 System.exit(1);
 }
 }

 /**
 * Loads properties from RLPSample.properties: environment XML
 * file, context XML file, input file, language, input file charset,
 * log callback, log file, output file.
 */
 Properties loadProperties(String btRoot, String rlpProps)
 throws FileNotFoundException, IOException {

 Properties props = new Properties();
 InputStream in = new FileInputStream(rlpProps);
 props.load(in);
 in.close();
 // Need to change '/' in paths if non-UNIX platform.
 // Paths are relative to the BT_ROOT directory, so need to replace
 // "$BT_ROOT" in property values with btRoot.
 char sep = File.separatorChar;
 Enumeration propsEnum = props.propertyNames();
 while (propsEnum.hasMoreElements()) {
 String key = (String)propsEnum.nextElement();
 String value = props.getProperty(key);
 String newValue = value;
 if (value.startsWith("$BT_ROOT"))
 newValue = btRoot + value.substring("$BT_ROOT".length());
 if (sep != '/' && newValue.indexOf('/') > -1)
 newValue=newValue.replace('/', sep);
 if (!newValue.equals(value))
 props.setProperty(key, newValue);
 }
 return props;
 }

 /**
 * Instructs RLP to send message to designated output (standard out or a
 * file). Can log warnings, errors, info messages. RLPEnvironment
 * LogLevel determines which messages are posted to the callback.
 */
 class LogCallback implements RLPEnvironment.LogCallback {
 public void message(int channel, String message) {
 MessageFormat form = new MessageFormat("{0} {1}");
 ChoiceFormat numFormat =
 new ChoiceFormat("0#WARN:|1#ERROR:|2#INFO:");
 form.setFormatByArgumentIndex(0, numFormat);
 System.err.print(form.format(new Object[]
 {new Integer(channel), message}));
 }
 }

 /**
 * Assembles some of the result data and reports to the user:

Sample Java Application

37

 * detected language
 * detected encoding
 * tokens
 * noun phrases
 * named entities
 * stem and part of speech for each token
 * compounds (if input is German or Dutch)
 * sentence boundaries
 *
 * @param context RLP context responsible for processing the input
 * @param outFile report file name
 */
 void handleResults(RLPContext rlpContext, String outFile) {
 try {
 // Target for result data.
 final PrintStream out;
 // Write file with UTF-8 encoding.
 FileOutputStream fos = new FileOutputStream(outFile);
 out = new PrintStream(fos, false, "UTF-8");
 // Inform the user.
 System.out.println("See results in " + outFile);

 //Instantiate a result access object. It can be used to get all
 //results.
 RLPResultAccess resultAccess = new RLPResultAccess(rlpContext);

 //Get language and encoding (singleton values).
 LanguageCode langCode = resultAccess.getDetectedLanguage();
 //Get the ISO639 language code and the language name from the LanguageCode.
 if (langCode != null) {
 String iso639Code = langCode.ISO639();
 String encoding =
 resultAccess.getStringResult(RLPConstants.DETECTED_ENCODING);
 out.println("ISO639 language code: " + iso639Code + "; Encoding: " + encoding);
 }
 //Get access to the tokens.
 List<Object> tokenList = resultAccess.getListResult(RLPConstants.TOKEN);

 //Get base noun phrases.
 List<Object> bnpList =
 resultAccess.getListResult(RLPConstants.BASE_NOUN_PHRASE);
 Iterator<Object> iter;
 if (bnpList != null && tokenList != null) {
 //Use tokens to assemble each noun phrase.
 iter = bnpList.iterator();
 while (iter.hasNext()) {
 //Each element is int[2]: start and end+1 token indexes for
 //the noun phrase.
 int[] startEndIndexes = (int[])iter.next();
 out.print("Noun phrase:");
 for (int i = startEndIndexes[0]; i < startEndIndexes[1]; i++) {
 out.print(" " + (String)tokenList.get(i));
 }
 out.println();
 }
 }
 //Get named entity data.
 //Ensure that multiple instances of a named entity are returned
 //with the same entity type.

Sample Java Application

38

 resultAccess.setConsistentType(true);
 NamedEntityData[] neData = resultAccess.getNamedEntityData(true);
 for (int i = 0; i < neData.length; i++){
 String normalizedNE = neData[i].getNormalizedNamedEntity();
 String typeName = neData[i].toString();
 out.println("Normalized Named entity (" + typeName + "): "
 + normalizedNE);
 }
 //Get sentence boundaries.
 //Each Integer result is the index of the token after
 //the end of the sentence, which is also the first token in
 //the next sentence.
 List<Object> sbList =
 resultAccess.getListResult(RLPConstants.SENTENCE_BOUNDARY);
 if (sbList != null && tokenList != null) {
 iter = sbList.iterator();
 int start = 0; //for first sentence
 while (iter.hasNext()) {
 int end = ((Integer)iter.next()).intValue();
 out.print("SENTENCE:");
 // Assemble the sentence.
 for (int i = start; i < end; i++) {
 out.print(" " + (String)tokenList.get(i));
 }
 out.println();
 start = end; //for next sentence
 }
 }
 //Get stem and part of speech for each token.
 List<Object> stemList = resultAccess.getListResult(RLPConstants.STEM);
 List<Object> posList = resultAccess.getListResult(RLPConstants.PART_OF_SPEECH);
 if (stemList != null && posList != null) {
 iter = posList.iterator();
 //Walk through the token list, stem list and pos list (then nth stem
 // and nth pos tag refer to the nth token).
 for (int i = 0; i < tokenList.size(); i++) {
 out.println("Token Stem POS: " + (String)tokenList.get(i) +
 " " + (String)stemList.get(i) + " " + (String)posList.get(i));
 }
 }
 //Get compound words if available (German, Dutch, or Japanese).
 //Note: Also use getMapResult for readings and token variations.
 Map<Integer, String[]> map = resultAccess.getMapResult(RLPConstants.COMPOUND);
 if (map != null) {
 Iterator<Integer> iter2 = map.keySet().iterator();
 while (iter2.hasNext())
 {
 //Key is the token index.
 Integer key = iter2.next();
 out.print("Compound: " +
 (String)tokenList.get(key.intValue())+ ":");
 //Value is the compound elements that make up the token.
 String[] value = map.get(key);
 for (int i = 0 ; i < value.length; i++) {
 out.print(" " + value[i]);
 }
 out.println();
 }
 }

Sample Java Application

39

 // Output complete.
 out.close();
 }
 catch (Exception e) {
 e.printStackTrace();
 System.exit(1);
 }
 }

}

3.13. Building and Running the Applications
The RLP distribution includes the source files and binary builds for three C++ sample applications and
three Java sample applications, including the samples described in this chapter.
The distribution also includes scripts for building and running these sample applications. You do not need
to build these samples to run them, but you may want to make your own modifications to the sources and
rebuild, and you can use these scripts as the starting point for setting up a build environment for your own
applications.

3.13.1. Building and Running the Sample C++ Applications

RLP ships with three sample C++ applications:

• rlp_sample

Illustrates the basic pattern for processing text. See Sample C++ Application [28] .

• rlbl_sample

Illustrates the pattern for processing multilingual text [73] .

• examine_license

Illustrates the API for gathering information about the scope of your RLP license.

The source files for these samples are in BT_ROOT/rlp/samples/cplusplus.

3.13.1.1. Building the C++ Sample Programs

RLP supplies a script for building the C++ sample programs. On Windows platforms, the script is
BT_ROOT/rlp/samples/cplusplus/build.bat. On Unix platforms, the script is BT_ROOT/rlp/samples/
cplusplus/build.sh.

Important

The compiler and linker for your platform must be on your path.

If you are running Windows 32, you can run vsvars32.bat from the Common7\Tools directory
in your Visual Studio installation. If you are running Windows 64, run vcvarsamd.bat from the
VC\bin\amd64\vcvarsamd64.bat directory in your Visual Studio installation

If you are running Unix, be sure you have set the PATH environment variable to include the
compiler and linker for your platform.

Building and Running the Applications

40

Before you call the script, you must set the BT_BUILD environment variable. You must also run the script
from the BT_ROOT/rlp/samples/cplusplus directory.

Windows example:

set BT_BUILD=ia32-w32-msvc80
cd \btroot\rlp\samples\cplusplus
build.bat

Unix example:

export BT_BUILD=ia32-glibc22-gcc32
cd ~/btroot/rlp/samples/cplusplus
./build.sh

The build script calls another script in the same directory with BT_BUILD embedded in the script name:
build_BT_BUILD_cpp_samples.[sh|bat]. You can examine this script for the command that is used to
compile and link each of the C++ samples.

An executable for each sample program with the same name as the C++ source file is placed in
BT_ROOT/rlp/bin/BT_BUILD.

3.13.1.2. Running the C++ Samples

The RLP distribution includes a script for running the C++ samples: go-cpp-samples.bat (Windows) or
go-cpp-samples.sh (Unix). This script is in BT_ROOT/rlp/samples/scripts/BT_BUILD . The script runs
all the samples. You can use it as a model for creating your own command-line scripts.

On Unix

On Unix platforms, you must set LD_LIBRARY_PATH (or its equivalent environment variable
for your Unix operating system) to include the RLP library directory: BT_ROOT/rlp/lib/
BT_BUILD .

3.13.2. Building and Running the Sample Java Applications

To compile a Java RLP application, you must place btrlp.jar and btutil.jar on the classpath. 5 These jars
are located in BT_ROOT/rlp/lib/BT_BUILD , where BT_ROOT is the installation directory, and
BT_BUILD is based on the operating system and C++ compiler for your platform. See Supported
Platforms [13] in Installing RLP.

To run your application, you must place the application, btrlp.jar, and btutil.jar on the classpath. On
Linux, you must set LD_LIBRARY_PATH (or its equivalent environment variable for your Unix operating
system) to include the RLP library directory: BT_ROOT/rlp/lib/BT_BUILD .

RLP ships with three sample Java applications:

• RLPSample

Illustrates the basic pattern for processing text. See Sample Java Application [34] .

• MultiLangRLP

5 btutil.jar contains a property file (com.basistech.util.build.properties) that defines the relative path from BT_ROOT to
java.library.path. This path includes BT_BUILD, so btutil.jar can only be used on the platform on which it was originally installed. If you
want to port the JAR to a different platform, you must replace or override com.basistech.util.build.properties.

Building and Running the Sample Java Applications

41

Illustrates the pattern for processing multilingual text [73] .

• ExamineLicense

Illustrates the API for gathering information about the scope of your RLP license.

The source files for these samples are in BT_ROOT/rlp/samples/java. This directory also includes an Ant
script that you can use to build and to run these samples. The script requires Ant (1.6.5 or later) with the
JAVA_HOME environment variable set to the root of your Java SDK (1.5 or later). You should also set the
ANT_HOME environment variable to point to the root of the Ant installation and put the ANT_HOME/
bin directory on your PATH. For more information, see Ant. [http://ant.apache.org/]

3.13.2.1. Using the Ant Script

The Ant script requires one input property: bt.arch with the value of BT_BUILD (ia32-w32-
msvc71, for example). If you set this property in the script (build.xml), you will not need to include it on
the command line.

Go to BT_ROOT/rlp/samples/java and run Ant:

ant -Dbt.arch=BT_BUILD target

where target is one of the Ant build targets as described in the following table.

target Description

[NONE] (Default) Build all samples. Samples are compiled and placed in
BT_ROOT/rlp/samples/java/build/BT_BUILD/rlpsamples.jar. For all
builds, the class files are purged after the jar is created.

clean Remove build files.

build.RLPSample Build RLPSample and put the class files and properties file in
rlpsamples.jar.

build.MultiLangRLP Build MultiLangRLP and put the class files and properties file in
rlpsamples.jar.

build.ExamineLicense Build ExamineLicense and put the class file in rlpsamples.jar.

RLPSample Run RLPSample: include BT_ROOT and the path to a properties file with
other arguments (RLPSample.properties) as command-line
arguments.

MultiLangRLP Run MultiLangRLP: include BT_ROOT and the path to a properties file
with other arguments (MultiLangRLP.properties) as command-
line arguments.

ExamineLicense Run ExamineLicense: include BT_ROOT and the path to the RLP
environment configuration file as command-line arguments.

As you create your own applications, you can use this Ant script as the starting point for establishing your
own build procedures.

3.13.2.2. Running the Java Samples from the Command Line

The RLP distribution includes a script for running the Java samples: go-java-samples.bat (Windows) or
go-java-samples.sh (Unix). This script is in BT_ROOT/rlp/samples/scripts/BT_BUILD . To run the

Building and Running the Sample Java Applications

42

http://ant.apache.org/
http://ant.apache.org/

script, you must set the JAVA_HOME environment variable to the root of your Java SDK (1.5 or later). The
script runs both samples. You can use it as a model for creating your own command-line scripts.

Building and Running the Sample Java Applications

43

44

Chapter 4. Working with Named Entities

4.1. Introduction
A named entity refers to an object of potential interest, such as a person, organization, location, or date.
When you process a document, locating named entities can help you classify the document and determine
what kinds of data of interest it is likely to contain.

As shipped, RLP can identify a variety of entity types in a number of languages. You can also extend RLP
coverage to include more entities, additional entity types, and additional languages.

For example, the Rosette Demo [257] finds the named entities highlighted and listed below in a news
story :

4.2. Identifying Named Entities
RLP provides three mechanisms for finding named entities and a redactor for resolving differences:

• Statistical Analysis. Using contextual features specified by a computational linguist and a substantial
body of text in which named entities have been tagged by native speakers, Basis Technology has
developed statistical models for a variety of named entity types in a number of languages. For more
information, download Basis Technology's Entity Extraction Whitepaper: Entity Extraction Enables
"Discovery" [http://www.basistech.com/entity-extraction/entity-extraction-whitepaper.html].

Entity types include location, organization, person, geo-political entity, facility, religion, nationality,
and title. Supported languages include Arabic, Simplified and Traditional Chinese, Dutch, English, Farsi
(Persian), French, German, Italian, Japanese, Korean, Russian, Spanish, and Urdu. In conjunction with
the base linguistics analysis performed by other RLP processors, the Named Entity Extractor [156]
uses its statistical model to identify named entities of these types when processing a document in one of
these languages.

45

http://www.basistech.com/entity-extraction/entity-extraction-whitepaper.html
http://www.basistech.com/entity-extraction/entity-extraction-whitepaper.html
http://www.basistech.com/entity-extraction/entity-extraction-whitepaper.html

• Regular Expressions. RLP comes with a collection of regular expressions in regex-config.xml that
the Regular Expression [163] processor uses to find named entities. This collection includes language-
specific expressions for distance, longitude and latitude, number, date, and time. It also includes generic
expressions (all languages) for credit card number, email address, money, number, personal ID number,
phone number, URL, and Universal Transverse Mercator coordinates.

You can edit existing regular expressions and add your own regular expressions to this collection,
potentially expanding the scope of languages and entity types.

• Gazetteers. There are two types of gazetteers: binary gazetteers and text gazetteers. A gazetteer of
either type contains a list of names associated with an entity type. A gazetteer may be language specific
or may apply to all languages. The Gazetteer [144] processor returns text that matches any entry from
the gazetteers listed in gazetteer-options.xml. You can normalize whitespace, ignore case, and perform
other normalizations to customize the matching algorithm the processor applies. Like regular
expressions, you can use text gazetteers to expand the scope of languages and entity types

Binary gazetteers are provided by Basis. Users cannot view or edit binary gazetteers.

A text gazetteer is a file you create with a list of the names you associate with a particular entity type
and, optionally, with a particular language.

• Redactor. The Named Entity Redactor [160] processor uses weighting factors that you can
customize and, optionally, entity length to resolve any conflict between the three preceding processors.
If, for example, the Named Entity Extractor and the Gazetteer each identify the same phrase (or
overlapping text) as a named entity (perhaps one says it is a PERSON, and the other a LOCATION),
the weights you have assigned tell the Named Entity Redactor which source and named entity type to
report.

4.3. Setting Up an RLP Application to Return Named
Entities

Creating an RLP Application [17] walks you through the process of establishing an RLP application to
extract information from input documents. The only special concerns when it comes to getting named
entitities is to be sure you include in your RLP context the language processors that are required to identify
named entities in the input.

The following context includes the language processors required to get named entities from plain text in
all the languages that RLP supports.

<contextconfig>
 <languageprocessors>
<languageprocessor>Unicode Converter </languageprocessor>
 <languageprocessor>RLI</languageprocessor>
 <languageprocessor>RCLU</languageprocessor>
 <languageprocessor>BL1</languageprocessor>
 <languageprocessor>JLA</languageprocessor>
 <languageprocessor>CLA</languageprocessor>
 <languageprocessor>KLA</languageprocessor>
 <languageprocessor>Tokenizer</languageprocessor>
 <languageprocessor>SentenceBoundaryDetector</languageprocessor>
 <languageprocessor>ARBL</languageprocessor>
 <languageprocessor>FABL</languageprocessor>
 <languageprocessor>URBL</languageprocessor>
 <languageprocessor>BaseNounPhrase</languageprocessor>
 <languageprocessor>NamedEntityExtractor</languageprocessor>
 <languageprocessor>Gazetteer</languageprocessor>

Setting Up an RLP Application to Return Named Entities

46

 <languageprocessor>RegExpLP</languageprocessor>
 <languageprocessor>NERedactLP</languageprocessor>
 </languageprocessors>
</contextconfig>

If your input text is not plain text, see Preparing Marked-Up or Binary data [79] , which provides
information about handling HTML, XML, PDF, RTF, Microsoft Office documents, and XML.

4.4. Accessing the Named Entities that RLP has Found
For the data that RLP returns for each named entity it finds, see NAMED_ENTITY [86] .

To use the C++ API to access named entities, see Using the Named Entity Iterator [97] .

To use the Java API, see RLPResultRandomAccess [103] .

4.5. The Standard Set of Named Entities
With no user modifications, Named Entity Extractor, Gazetteer, and the Regular Expression processor
return the named entity types identified in the table below.

As noted in the table, some of the regular expressions for locating named entities are language-specific;
others are generic.

Table 4.1. Named Entitity Types , Languages, and Processors

Named Entity Languages Language Processor

FACILITY Arabic, English, Japanese, Korean,
Farsi (Persian), Russian, Simplified
Chinese, Traditional Chinese, Urdu,
Upper-Case English

Named Entity
Extractor

GPE Arabic, English, Japanese, Korean,
Farsi (Persian), Russian, Simplified
Chinese, Traditional Chinese, Urdu,
Upper-Case English

LOCATION Arabic, Dutch, English, French,
German, Italian, Japanese, Korean,
Farsi (Persian), Russian, Simplified
Chinese, Spanish, Traditional
Chinese, Urdu, Upper-Case English

NATIONALITY Arabic, English, Japanese, Farsi
(Persian), Simplified Chinese,
Traditional Chinese, Urdu, Upper-
Case English

ORGANIZATION Arabic, Dutch, English, French,
German, Italian, Japanese, Korean,
Farsi (Persian), Russian, Simplified
Chinese, Spanish, Traditional
Chinese, Urdu, Upper-Case English

Accessing the Named Entities that RLP has Found

47

Named Entity Languages Language Processor

PERSON Arabic, Dutch, English, French,
German, Italian, Japanese, Korean,
Farsi (Persian), Russian, Simplified
Chinese, Spanish, Traditional
Chinese, Urdu, Upper-Case English

Named Entity
Extractor

RELIGION Arabic, English, Japanese, Farsi
(Persian), Simplified Chinese,
Traditional Chinese, Urdu, Upper-
Case English

TITLE Arabic, English, Japanese, Korean,
Russian, Simplified Chinese,
Traditional Chinese, Upper-Case
English

NATIONALITY Russian

Gazetteer
RELIGION Russian

TITLE French, German, Italian, Spanish,
Dutch, Portuguese, Farsi (Persian),
Urdu

IDENTIFIER:CREDIT_CARD_NUM generic

Regular Expression

IDENTIFIER:DISTANCE Arabic, German, Dutch, English,
Upper-Case English, Spanish, Farsi
(Persian), French, Portuguese,
Italian, Russian, Japanese, Simplified
Chinese, Traditional Chinese,
Korean

IDENTIFIER:EMAIL generic

IDENTIFIER:LATITUDE_LONGITUDE Arabic, German, Dutch, English,
Upper-Case English, Spanish, Farsi
(Persian), French, Portuguese,
Italian, Hungarian, Czech, Greek,
Russian, Polish, Japanese, Simplified
Chinese, Traditional Chinese,
Korean

IDENTIFIER:MONEY generic

IDENTIFIER:NUMBER Arabic, German, Dutch, English,
Upper-Case English, Spanish, Farsi
(Persian), French, Portuguese,
Italian, Russian, Japanese, Simplified
Chinese, Traditional Chinese

IDENTIFIER:PERSONAL_ID_NUM generic

IDENTIFIER:PHONE_NUMBER generic

IDENTIFIER:URL generic

IDENTIFIER:UTM generic

The Standard Set of Named Entities

48

Named Entity Languages Language Processor

TEMPORAL:DATE Arabic, German, Dutch, English,
Upper-Case English, Spanish, Farsi
(Persian), French, Portuguese,
Italian, Hungarian, Czech, Greek,
Russian, Polish, Japanese, Simplified
Chinese, Traditional Chinese,
Korean Regular Expression

TEMPORAL:TIME Arabic, German, Dutch, English,
Upper-Case English, Spanish, Farsi
(Persian), French, Portuguese,
Italian, Russian, Japanese, Simplified
Chinese, Traditional Chinese,
Korean

Definitions

• FACILITY: A man-made structure or architectural entity such as a building, stadium, monument, airport,
bridge, factory, or museum.

• GPE: An geo-political entity comprised of three elements: a population, a geographic location and a
government. A country, state, city, or other location that contains both a population and a centralized
government.

• IDENTIFIER:UTM: Universal Transverse Mercator coordinates for a geographical location.

• LOCATION: Name of a geographically defined place such as a continent, body of water, mountain,
park, or full address. It also refers to a region that either spans GPE boundaries (such as Middle East,
Northeast, West Coast) or is contained within a larger GPE (such as Sunni Triangle, Chinatown).

Important: For those languages that do not include GPE, LOCATION is expanded to include GPE.

• NATIONALITY: Reference to a country or region of origin, such as American or Swiss.

• ORGANIZATION: A corporation, institution, government agency, or other group of people defined by
an established organizational structure.

• PERSON: A human identified by name, nickname or alias.

• RELIGION: Reference to an organized religion or theology as well as its followers.

• TITLE: Appellation associated with a person by virtue of occupation, office, birth, or as an honorific.

4.6. Joining Adjacent Named Entities
If two named entities are adjacent, you may wish to join them into a single named entity. By default,
adjacent TITLE elements are joined into a single TITLE element, and TITLE and PERSON elements (in
either order) are joined into a single PERSON element. You can modify these specifications and add your
own join specifications. [162] .

Joining Adjacent Named Entities

49

4.7. Consistency Returning Named Entities
The linguistic context in which an entity appears helps the Named Entity Extractor [156] identify and
assign a type to the entity. Hence it is possible that different instances of an entity, appearing multiple times
in a document, may be returned with different types.

If you want to guarantee that the Named Entity Redactor [160] always returns multiple occurrences of
a given entity with the same type, no matter the linguistic context, RLP provides APIs for returning all
instances of a named entity with the type assigned to the first instance.

For each language, the set method takes a boolean (true to enforce consistency), and the get method returns
the current boolean setting. The default setting is false. For reference documentation, see the API
Reference [api-reference/index.html].

C++. The BT_RLP_NE_Iterator_Factory class includes SetConsistentType and
GetConsistentType functions

Java. com.basistech.rlp.RLPResultAccess and
com.basistech.rlp.ResultRandomAccess include setConsistentType and
getConsistentType methods.

C. The C API includes BT_RLP_NE_Iterator_Factory_SetConsistentType and
BT_RLP_NE_Iterator_Factory_GetConsistentType functions.

.NET. The Context class includes SetConsistentType and GetConsistentType functions

4.8. Blacklisting Named Entities
If you want to exclude certain entities that are sometimes returned by the Named Entity Extractor
[156] , you can create one or more blacklist dictionaries. Each dictionary you create applies to a specific
entity type, and you may not use more than one dictionary for an entity type. The Named Entity
Redactor [160] does not return entities for this type that are in this dictionary. You can instruct the Named
Entity Redactor to log occurrences of blacklisted entities to a file.

For efficiency, a blacklist dictionary must be compiled into a binary form with big-endian or little-endian
byte order to match the platform.

Procedure for Blacklisting Named Entities

1. Create the dictionary source file [50] .

2. Compile the user dictionary [51] .

3. Put the dictionary in an appropriate location [51] .

4. Edit the Nanmed Entity Redactor configuration file to include the blackist dictionary and (optionally)
to log any blacklist entries that are encountered when processing documents [51] .

4.8.1. Creating a Blacklist Dictionary Source File

The source file for a blacklist dictionary is UTF-8 encoded. The file may begin with a byte order mark
(BOM). Each entry is a single line. For example:

Consistency Returning Named Entities

50

General Mechanics
Test User
Big Mac

Use Normalized Tokens in the Blacklist Entries

For those languages for which RLP returns normalized tokens (currently Arabic, Urdu, and Farsi),
named entities are returned as normalized tokens. Accordingly, each token in the blacklist entries
should be a NORMALIZED_TOKEN [86] .

4.8.2. Compiling the Blacklist Dictionary

For efficient processing, the dictionary must be in a binary form. The byte order of the binary dictionary
must match the byte order of the runtime platform. The platform on which you compile the dictionary
determines the byte order. To use the dictionary on both a little-endian platform (such as an Intel x86 CPU)
and a big-endian platform (such as a Sun SPARC), generate a binary dictionary on each of these platforms.

The script for generating a binary dictionary is BT_ROOT/rlp/rlp/tools/build_blacklist.bat for Windows
and BT_ROOT/rlp/rlp/tools/build_blacklist.sh for Unix.

The BT_ROOT and BT_BUILD environment variables must be set. BT_BUILD specifies the platform
identifier embedded in your SDK package file name (see Supported Platforms [13]).

Windows example:

set BT_ROOT="c:\Program Files\Basis Technology\btroot"
set BT_BUILD=ia32-w32-msvc80

You run this script from the command line with two arguments: the source file and the binary file to be
created. For example:

build_blacklist.bat blacklist-person.txt blacklist-person-LE.bin

LE or BE. LE indicates that the byte order in this file is little endian. You can compile the same source
file on a big-endian platform and replace LE with BE in the binary file name. As illustrated below in the
Named Entity Redactor configuration file, you can use the same configuration file for both platforms: RLP
replaces <env name="endian"/> with LE on a little-endian platform and with BE on a big-endian
platform. If you are not using a configuration file that applies to both little-endian and big-endian platforms,
you do not need to include LE or BE in the binary file name, or <env name="endian"/> in the
configuration file.

4.8.3. Where to Put the Blacklist Dictionary

You can put the blacklist dictionary where you want. For example, you might want to create a blacklist
directory: BT_ROOT/rlp/blacklist.

Place the binary file you have generated in the location of your choice.

4.8.4. Updating the Named Entity Redactor Configuration File

For each blacklist dictionary you generate, you must place a blacklist element in the Named Entity
Redactor configuration file [162] : BT_ROOT/rlp/etc/neredact-config.xml. The blacklist elements must
be contained in a blacklists element as illustrated below.

For example, suppose you create blacklist-person.bin (for PERSON) and gpe-org (for GPE), and place
these files in BT_ROOT/rlp/blacklist.

Compiling the Blacklist Dictionary

51

<neredactconfig>
 <joiners>
 <joiner left='TITLE' right='TITLE' joined='TITLE'/>
 <joiner left='TITLE' right='PERSON' joined='PERSON'/>
 <joiner left='PERSON' right='TITLE' joined='PERSON'/>
 </joiners>
 <blacklists>
 <!-- No more than one dictionary per entity type-->
 <blacklist type='PERSON'><env name="root"/>/blacklist/bl-person-<env name="endian"/>.bin</blacklist>
 <blacklist type='GPE'><env name="root"/>/blacklist/bl-gpe-<env name="endian"/>.bin</blacklist>
 </blacklists>
 <blacklistlog><env name="root"/>/blacklist/blacklist.log</blacklistlog>
</neredactconfig>

Each blacklist element must have a type attribute identifying the entity type. The content of the
element is the path to the binary file. At runtime, RLP replaces <env name="root"/> with the absolute path
to BT_ROOT/rlp.

The <env name="endian"/> in the dictionary name is replaced at runtime with "BE" if the platform byte
order is big-endian or "LE" if the platform byte order is little-endian. If you are not working on both big-
endian and little-endian platforms, you can omit "BE" or "LE" from the binary filename and <env
name="endian"> from the entry in the configuration file.

If you want to log blacklist entries when they are encountered, include a blaclistlogelement as
illustrated above with the path to the log file.

Each entry in the blacklist logfile is a line with 4 tab-separated fields:

1. Date and time. Format is yyyy-mm-dd:HH:MM:SS in 24-hours format
2. Source file or "buffer" (if the input data is processed from a buffer rather than a file)
3. Named entity type
4. The entity

For example:

2009-03-03:22:34:54 /data/file1.txt PERSON Test User

Note: user can specify date and time format as supported in C library function strftime. The default format
is specified with %Y-%m-%d:%H:%M:%S. Set the BT_BLACKLIST_DATETIME_FORMAT environment
variable to override the default date and time format.

For example (Unix):

export BT_BLACKLIST_DATETIME_FORMAT=%m/%d/%Y-%H:%M:%S

4.9. Extending the Coverage of Named Entities
You can extend the coverage for the entity types listed above as well as create new entitiy types.

The Named Entity Editor

The Rosette Demo (Windows only) includes a Named Entity Editor, which you can use with some
restrictions to modify named entity definitions, create new named entity types, and extend the set
of languages that are analyzed for named entities. See Using the Named Entities Editor [263] .
The Named Entity Editor does not provide access to named regular expressions. You can edit the
XML configuration files directly, which provides access to all features.

Extending the Coverage of Named Entities

52

The Named Entity Extractor uses binary data files to locate entities for eight entity types: PERSON,
LOCATION, ORGANIZATION, GPE (geo-political entity), FACILITY, RELIGION, NATIONALITY,
and TITLE.

The Gazetteer and Regular Expressions processors are customizable in terms of the data (entities) they
return, and the entity types and subtypes (predefined or user-defined) with which they tag individual
entities.

Types and Subtypes. As explained in Result Types: NAMED_ENTITY [86] , an integer triple is
generated for each named entity. The first two integers define the range of tokens that make up the entity.
The third integer identifies the entity type and optional subtype, as well as the processor (Named Entity
Extractor, Gazetteer, or Regular Expression). RLP maps these integers to strings (TYPE[:SUBTYPE]),
such as "PERSON" and "ORGANIZATION:GOVERNMENT". By convention, the names for predefined
types and subtypes are upper case. The integers and strings for predefined types and subtypes are specified
in bt_ne_types.h (C++) and com.basistech.rlp.RLPNENamedConstants (Java), which also
define the API for getting from integer to string and vice versa.

Defining your own Types and Subtypes. You can define your own types and subtypes. You define the
name; RLP takes care of defining the unique integer to be used to identify this type/subtype and origin.
Use the same API as for user-defined and predefined types to get from integer to string and vice versa.

For Gazetteer, you define types and lists of the names you want to find for each type. The types may
be predefined or user defined. See Customizing Gazetteer [53] .

For the Regular Expression processor, you define the types and rules for finding named entities.
The types may be predefined or user defined. See Creating Regular Expressions [56] .

You can also provide "weights" to predefined and user-defined types to determine how the Named Entity
Redactor [160] resolves conflicts when more than one processor returns the same or an overlapping set
of tokens.

4.9.1. Customizing Gazetteer

By its nature, Gazetteer [144] is designed to be customized such that it guarantees the return of words
or phrases as named entities. This language processor uses user-created gazetteer files to identify specific
words or phrases within the input text. A gazetteer may contain entries for a specific language or may be
generic. If it is generic, it is applied to text in any language. See Gazetteer Dictionary Paths [145] .

Multiple files may be defined for multiple purposes, such as tracking famous personalities in news media,
infectious diseases in journal articles, or specific product names and trademarks in market reports.

Important

The Gazetteer only uses the gazetteers specified in the Gazetteer options file, BT_ROOT/rlp/etc/
gazetteer-options.xml.

4.9.1.1. The Gazetteer Source File

Note: A user-defined gazetteer source file may either be a flat text file, as described below, or an XML
file [55] .

Gazetteer processes text and isolates specific terms defined by the user in a Gazetteer Source File (GSF),
which has the following properties:

• The file is UTF-8 encoded.

Customizing Gazetteer

53

• Each comment line is prefixed with #.

• The first non-comment line is the TYPE[:SUBTYPE], which applies to the entire GSF, and will be used
as the entity type name for output. Type and subtype may be predefined or user-defined [53] .

• The file contains user-defined entity strings, one per line.

For example, suppose you wantnumber to track common infectious diseases. You might create a GSF that
looks like this:

File: infectious-diseases-gazetteer.txt
#
DISEASE:INFECTIOUS
tuberculosis
e. coli
malaria
influenza

In many cases, a single GSF may not be enough. You may create as many GSFs as you like. For example,
perhaps you also want to search for the scientific names of the infectious disease in the example above.
You might create a file like this:

File: latin-infectious-gazetteer.txt
#
DISEASE:INFECTIOUS
Mycobacterium tuberculosis
Escherichia coli
Plasmodium malariae
Orthomyxoviridae

Perhaps you wish to be able to track certain diseases by their causes:

File: infectious-bacterial-gazetteer.txt
#
DISEASE:BACTERIAL
Escherichia coli
E. coli
Staphylococcus aureus
Streptococcus pneuminiae
Salmonella

Or perhaps you wish to track specific diseases showing resistance to antibiotics:

File: resistant-diseases-gazetteer.txt
#
DISEASE:RESISTANT
Staphylococcus aureus
Streptococcus pneumoniae
Salmonella spp.
Campylobacter jejuni
Escherichia coli
Enterococcus faecium

Or the drugs used to treat them:

File: antimicrobial-drugs-gazetteer.txt
#
DRUG:ANTIMICROBIAL
methicillin
vancomycin

Customizing Gazetteer

54

macrolide
fluoroquinolone

Any or all of these gazetteer source files may be used by Gazetteer.

4.9.1.2. Using Multiple Gazetteer Source Files

The Gazetteer options file, BT_ROOT/rlp/etc/gazetteer-options.xml, specifies the gazetteers that are used
when the Gazetteer runs. For example:

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE gazetteerconfig SYSTEM "gazetteerconfig.dtd">
<gazetteerconfig>
 <DictionaryPaths>
 <DictionaryPath><env name="root"/>/rlp/source/samples/gazetteer1.txt</DictionaryPath>
 <DictionaryPath><env name="root"/>/rlp/source/samples/gazetteer2.txt</DictionaryPath>
 <!-- BinDictionaryPath elements for the binary gazetteers that Basis ships are not included
 in this view -->
 </DictionaryPaths>
</gazetteerconfig>

Suppose you wish to track infectious diseases, particularly those diseases that have developed resistance
to antimicrobial drugs. Then you might configure gazetteer-options.xml as follows, using example GSFs
from the previous section:

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE gazetteerconfig SYSTEM "gazetteerconfig.dtd">
<gazetteerconfig>
 <DictionaryPaths>
 <DictionaryPath><env name="root"/>/rlp/source/samples/infectious-diseases-gazetteer.txt</DictionaryPath>
 <DictionaryPath><env name="root"/>/rlp/source/samples/resistant-diseases-gazetteer.txt</DictionaryPath>
 <DictionaryPath><env name="root"/>/rlp/source/samples/antimicrobial-drugs-gazetteer.txt</DictionaryPath>
 <!-- BinDictionaryPath elements for the binary gazetteers that Basis ships are not included
 in this view -->
 </DictionaryPaths>
</gazetteerconfig>

4.9.1.3. Gazetteer Source Files in XML

In addition to the text format described above, Basis Technology has defined an XML format for gazetteers.
Use the following subset of gazetteer.dtd: 1

 <!ELEMENT gazetteer (header,entities) >
 <!ELEMENT header (type) >
 <!-- Named Entity TYPE[:SUBTYPE] -->
 <!ELEMENT type (#PCDATA)>
 <!ELEMENT entities (entity+) >
 <!ELEMENT entity (names) >
 <!ELEMENT names (name+)>
 <!ELEMENT name (data)>
 <!--Text of the name -->
 <!ELEMENT data (#PCDATA)>

The following example shows the Infectious Diseases Gazetteer defined above in plain text [54] in the
XML format:

1Gazetteers may be used for other purposes, such as providing input for a Rosette Name Index (see the RLP Name Components Application
Developer's Guide), in which case the XML may use additional elements specified in gazetteer.dtd. The Gazetteer [144] processor ignores
elements that do not appear in the subset defined here.

Customizing Gazetteer

55

<?xml version='1.0' encoding='utf-8' standalone='no'?>
<!DOCTYPE gazetteer SYSTEM "gazetteer.dtd">
<gazetteer>
 <header>
 <type>DISEASE:INFECTIOUS</type>
 </header>
 <entities>
 <entity>
 <names>
 <name>
 <data>tuberculosis</data>
 </name>
 <name>
 <data>tb</data>
 </name>
 </names>
 </entity>
 <entity>
 <names>
 <name>
 <data>e. coli</data>
 </name>
 </names>
 </entity>
 <entity>
 <names>
 <name>
 <data>malaria</data>
 </name>
 </names>
 </entity>
 <entity>
 <names>
 <name>
 <data>influenza</data>
 </name>
 </names>
 </entity>
 </entities>
</gazetteer>

For more information, see Gazetteer [144] .

4.9.2. Creating Regular Expressions

The Regular Expression language processor [163] uses a configuration file (regex-config.xml) to map
the strings matching each regular expression defined in that file to a language and a named entity
TYPE[:SUBTYPE]. Add to or modify this file to enable the processor to find the desired named entities.

The type attribute for each <regexp> element specifies the type and optional subtype of the entities to
be returned by the regular expression in the <regexp> element . Type and subtype may be predefined or
user-defined [53] . For example, if the type is "COMPOUND" and subtype is "ORGANIC",
type="COMPOUND:ORGANIC".

The Regular Expression language processor uses the Tcl regular expression engine with some character
class extensions. It is compatible with the Perl 5 regular expression syntax, with the exceptions noted below.

Creating Regular Expressions

56

Differences with Perl 5

• Syntax:

• \y is used (not \b) to match word boundaries.

• \m and \M match only the beginnings and ends of words respectively.

• Lookbehind assertions are not supported.

• Recursive patterns are not supported.

• Conditional matches (?(condition)yes-pattern|no-pattern) are not supported.

• Atomic groups (?>group) are not supported.

• Using character properties (\p{} and \P{}) to match characters is not supported.

The Basis Technology implementation has extended character classes to cover a number of character
properties (see below).

4.9.2.1. Character Classes

Tcl supports the full Unicode locale. Character classes are extended to cover all Unicode characters.

Standard Character Classes. [:alpha:] A letter. [:upper:] An upper-case letter. [:lower:] A lower-case
letter. [:digit:] A decimal digit. [:xdigit:] A hexadecimal digit. [:alnum:] An alphanumeric (letter or digit).
[:print:] An alphanumeric (same as [:alnum:]). [:blank:] A space or tab character. [:space:] A character
producing whitespace in displayed text. [:punct:] A punctuation character. [:graph:] A character with a
visible representation. [:cntrl:] A control character.

Character Classes for Unicode Properties. [:Cc:] Control. [:Cf:] Format. [:Co:] Private Use. [:Cs:]
Surrogate. [:Ll:]Lower-case letter. [:Lm:] Modifier letter. [:Lo:] Other letter. [:Lt:]Title-case letter. [:Lu:]
Upper-case letter. [:Mc:] Spacing mark. [:Me:] Enclosing mark. [:Mn:] Non-spacing mark. [:Nd:] Decimal
Number. [:Nl:] Letter number. [:No:] Other number. [:Pc:] Connector punctuation. [:Pd:] Dash punctuation.
[:Pe:] Close punctuation. [:Pf:] Final punctuation. [:Pi:] Initial punctuation. [:Po:] Other punctuation. [:Ps:]
Open punctuation. [:Sc:] Currency symbol. [:Sk:] Modifier symbol. [:Sm:] Mathematical symbol. [:So:]
Other symbol. [:Zl:] Line separator. [:Zp:] Paragraph separator. [:Zs:] Space separator.

Character Classes for Writing Scripts. [:Arabic:] [:Armenian:] [:Bengali:] [:Bopomofo:] [:Braille:]
[:Buginese:] [:Buhid:] [:Canadian_Aboriginal:] [:Cherokee:] [:Common:] [:Coptic:] [:Cyrillic:]
[:Devanagari:] [:Ethiopic:] [:Georgian:] [:Glagolitic:] [:Greek:] [:Gujarati:] [:Gurmukhi:] [:Han:]
[:Hangul:] [:Hanunoo:] [:Hebrew:] [:Hiragana:] [:Inherited:] [:Kannada:] [:Katakana:] [:Khmer:] [:Lao:]
[:Latin:] [:Limbu:] [:Malayalam:] [:Mongolian:] [:Myanmar:] [:New_Tai_Lue:] [:Ogham:] [:Oriya:]
[:Runic:] [:Sinhala:] [:Syloti_Nagri:] [:Syriac:] [:Tagalog:] [:Tagbanwa:] [:Tai_Le:] [:Tamil:] [:Telugu:]
[:Thaana:] [:Thai:] [:Tibetan:] [:Tifinagh:] [:Yi:]

You can use these character class extensions just like the standard character classes.

For example, [[:Hiragana:]] matches a single Hiragana character, and [[:Zs:]] matches a whitespace
character.

Reference Documentation. For a description of Tcl syntax for regular expressions, see Tcl Regular
Expression Syntax [239] . Unless you specify otherwise (see "Metasyntax"), a regular expression is
understood to be an Advanced Regular Expression (ARE) as described in that documentation.

Creating Regular Expressions

57

58

Chapter 5. Using the RLP C API

5.1. Introduction
In response to customer requests, RLP now includes a C API. For reference documentation, see API
Reference [api-reference/index.html].

To review the basic structure of an RLP application, consult Creating an RLP Application [17] , which
also includes C++ and Java samples. The C samples that follow are designed to help you incorporate RLP
functionality in your C applications.

5.2. Sample C Application
C source file: rlp_sample_c.c. Input parameters are passed in from the command line, and the RLP context
configuration document is embedded in the source code.

// C includes
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <locale.h>

// Include the RLP interfaces
#include <bt_types.h> // bool, true, false, BT_Char16 etc.
#include <bt_rlp_c.h> // The RLP C API header.
#include <bt_rlp_ne_types.h> // BT_RLP_NET_ID_TO_STRING
#include <bt_xwchar.h> // bt_xutf16toutf8

// Forward declaration of private functions
static void handleResults(BT_RLP_ContextC* contextp, FILE* out);
static void log_callback(void* info_p, int channel, const char* message);
static void putus(const BT_Char16* str, FILE* out);

//Use an XML string or file to define a context. The context is an
//ordered sequence of processors and related settings that specify
//the processing that RLP performs on the input. This app defines
//the context in the string below.

//This is a general-purpose context configuration.
// - The Unicode Converter converts the input file from UTF-8 (or any other
// Unicode encoding) to UTF-16 for internal processing.
// - Depending on the language of the input, the appropriate language analyzer
// (BL1, JLA, CLA, KLA, or ARBL) performs a variety of tasks appropriate for
// that language. For example, JLA tokenizes Japanese text, assigns part of
// speech tags, and determines alphabetic (Hiragana) readings for native
// Japanese words in Kanji.
// - BaseNounPhrase detects noun phrases.
// - SentenceBoundaryDetector delimits the sentences in the input.
// - Stopwords uses the language-specific stopwords dictionary to tag tokens
// as stopwords.
// - NamedEntityExtractor, Gazeteer, RegExpLP, and NamedEntityRedactor locate
// named entities.
static const char* CONTEXT =
 "<?xml version='1.0'?>"
 "<contextconfig>"
 "<languageprocessors>"

59

 "<languageprocessor>Unicode Converter</languageprocessor>"
 "<languageprocessor>BL1</languageprocessor>"
 "<languageprocessor>JLA</languageprocessor>"
 "<languageprocessor>CLA</languageprocessor>"
 "<languageprocessor>KLA</languageprocessor>"
 "<languageprocessor>Tokenizer</languageprocessor>"
 "<languageprocessor>SentenceBoundaryDetector</languageprocessor>"
 "<languageprocessor>ARBL</languageprocessor>"
 "<languageprocessor>FABL</languageprocessor>"
 "<languageprocessor>URBL</languageprocessor>"
 "<languageprocessor>Stopwords</languageprocessor>"
 "<languageprocessor>BaseNounPhrase</languageprocessor>"
 "<languageprocessor>NamedEntityExtractor</languageprocessor>"
 "<languageprocessor>Gazetteer</languageprocessor>"
 "<languageprocessor>RegExpLP</languageprocessor>"
 "<languageprocessor>NERedactLP</languageprocessor>"
 "</languageprocessors>"
 "</contextconfig>";

/**
 * 1. Process input parameters.
 * 2. Set up RLP environment.
 * 3. Set up RLP context for processing input.
 * 4. Process input.
 * 5. Work with the results.
 * 6. Clean up.
*/
int main(int argc, char* argv[])
{
 BT_Result rc;
 BT_RLP_EnvironmentC *envp;
 BT_RLP_ContextC *contextp;
 const char* btRoot;
 BT_LanguageID langID;
 const char* envConfig;
 const char* inputFile;
 const char* outputFile;
 FILE* out;

 if (!BT_RLP_CLibrary_VersionIsCompatible(BT_RLP_CLIBRARY_INTERFACE_VERSION)){
 fprintf(stderr, "RLP library mismatch: have C lib %ld expect %ld\nOr incompatibility "
 "between the core (%s) and C binding libraries.\n",
 BT_RLP_CLibrary_VersionNumber(),
 BT_RLP_CLIBRARY_INTERFACE_VERSION,
 BT_RLP_Library_VersionString());
 return 1;
 }

 //1. Process input parameters. This application gets the following
 // from the command line:
 // - Basis root (BT_ROOT) directory
 // - language ISO639 code
 // - pathname of the environment config file
 // - pathname of the input file
 // - pathname of the output file (encoded in utf-8)
 if ((argc != 6)
 || ((argc == 2) && (0 == strncmp(argv[1], "-h", 2)))) {
 fprintf(stderr,
 "Usage: %s BT_ROOT LANGUAGE ENV_CONFIG_FILE INPUT_FILE OUTPUT_FILE\n",

Sample C Application

60

 argv[0]);
 return 1;
 }

 btRoot = argv[1];
 // Get BT language ID (defined in bt_language_names.h)
 // from ISO639 code.
 langID = BT_LanguageIDFromISO639(argv[2]) ;
 if (langID == BT_LANGUAGE_UNKNOWN) {
 fprintf(stderr, "Warning: Unknown ISO639 language code: %s\n", argv[2]);
 return 1;
 }
 envConfig = argv[3];
 inputFile = argv[4];
 outputFile = argv[5];

 out = fopen(outputFile, "w");
 if (out == 0) {
 fprintf(stderr, "Couldn't open output file: %s\n", outputFile);
 return 1;
 }

 //2. Set up the environment.

 //2.1 Use BT_RLP_ENVIRONMENT static methods to set the root directory,
 // to designate a log callback function, and to set
 // log level.
 BT_RLP_Environment_SetBTRootDirectory(btRoot);
 fprintf(out, "The rlp root directory now is: %s\n", BT_RLP_Environment_RootDirectory());
 BT_RLP_Environment_SetLogCallbackFunction((void*) stderr, log_callback);
 //Log level is some combination of "warning,error,info" or "all".
 BT_RLP_Environment_SetLogLevel("error");

 //2.2 Create a new (empty) RLP environment.
 envp = BT_RLP_Environment_Create();
 if (envp == 0) {
 fprintf(stderr, "Env create failed.\n");
 return 1;
 }

 //2.3 Initialize the empty environment with the global environment
 // configuration file.
 rc = BT_RLP_Environment_InitializeFromFile(envp, envConfig);
 if (rc != BT_OK){
 fprintf(stderr, "Env initialize failed. %d returned.\n", rc);
 return 1;
 }

 //3. Get a context from the environment. In this case the context
 // configuration is embedded in the app as a string. It could also
 // be read in from a file.
 rc = BT_RLP_Environment_GetContextFromBuffer(envp,
 (const unsigned char*)CONTEXT,
 strlen(CONTEXT),
 &contextp);
 if (rc != BT_OK){
 fprintf(stderr, "GetContextFromBuffer failed. %d returned.\n", rc);
 BT_RLP_Environment_Destroy(envp);
 return 1;

Sample C Application

61

 }

 //4. Use the context object to process the input file. Must include
 // language id unless using RLI processor to determine language.
 rc = BT_RLP_Context_ProcessFile(contextp,
 inputFile, langID, "UTF-8", 0);
 if (rc != BT_OK){
 fprintf(stderr, "Unable to process the input file %s. %d returned.\n", inputFile, rc);
 BT_RLP_Environment_DestroyContext(envp, contextp);
 BT_RLP_Environment_Destroy(envp);
 return 1;
 }

 //5. Gather results of interest produced by processing the input text.
 handleResults(contextp, out);
 fprintf(stdout, "\nSee output file: %s\n\n", outputFile);
 //6. Remove any objects still lying around.
 BT_RLP_Environment_DestroyContext(envp, contextp);
 BT_RLP_Environment_Destroy(envp);
 return 0;
}

//5. Get results of interest and publish to file.
static void handleResults(BT_RLP_ContextC* contextp, FILE* out)
{
 BT_UInt32 lang;
 const char* langName;
 const char* encoding;
 BT_UInt32 len = 0;
 const BT_Char16* rawText;
 BT_RLP_TokenIteratorFactoryC* factoryp;
 BT_RLP_TokenIteratorC* tkitp;
 BT_RLP_ResultIteratorC* resitp;
 const BT_RLP_ResultC* bnpp; // Holder for a Base Nouse Phrase as well as a NE
 BT_UInt32 nn, i, j;
 const BT_Char16** tokens;
 int tkix = 0; // Index for the next token
 BT_UInt32 numReadings, numCompoundComponents;

 //5.1 Use the context object to get single-valued results: language,
 // encoding, raw text, transcribed text (Arabic).
 lang = BT_RLP_Context_GetIntegerResult(contextp, BT_RLP_DETECTED_LANGUAGE);
 langName = BT_ISO639FromLanguageID(lang);
 encoding =
 (const char*)BT_RLP_Context_GetStringResult(contextp, BT_RLP_DETECTED_ENCODING);
 fprintf(out, "Language: %s (%d)\n", langName, lang);
 if (encoding != 0)
 fprintf(out, "Encoding: %s\n", encoding);

 rawText =
 BT_RLP_Context_GetUTF16StringResult(contextp, BT_RLP_RAW_TEXT, &len);

 fprintf(out, "Raw text: ");
 putus(rawText, out);

 //5.2 Use token iterator to get information related to tokens: tokens,
 // token offsets, part of speech tags, stems, normalized tokens,
 // stopwords, compounds, and readings.

Sample C Application

62

 factoryp = BT_RLP_TokenIteratorFactory_Create();
 if (factoryp == 0){
 fprintf(stderr, "TokenIteratorFactory_Create failed. ");
 exit(1);
 }

 //Provide access to readings and compounds.
 BT_RLP_TokenIteratorFactory_SetReturnReadings(factoryp, true);
 BT_RLP_TokenIteratorFactory_SetReturnCompoundComponents(factoryp, true);

 //Create the iterator and destroy the factory.
 tkitp = BT_RLP_TokenIteratorFactory_CreateIterator(factoryp, contextp);
 if (tkitp == 0) {
 fprintf(stderr, "CreateIterator failed. ");
 exit(1);
 }

 BT_RLP_TokenIteratorFactory_Destroy(factoryp);

 nn = BT_RLP_TokenIterator_Size(tkitp);
 tokens = (const BT_Char16**) malloc(sizeof(BT_Char16*) * nn); // Must free()
 fprintf(out, "\n");

 while(BT_RLP_TokenIterator_Next(tkitp)){
 const char *pos;
 const BT_Char16* token;
 BT_UInt32 ix, start, end;

 token = BT_RLP_TokenIterator_GetToken(tkitp);
 tokens[tkix++] = token;
 pos = BT_RLP_TokenIterator_GetPartOfSpeech(tkitp);
 ix = BT_RLP_TokenIterator_GetIndex(tkitp);
 start = BT_RLP_TokenIterator_GetStartOffset(tkitp);
 end = BT_RLP_TokenIterator_GetEndOffset(tkitp);

 fprintf(out, "#%d: s:%d, e:%d, ", ix, start, end);
 if (pos) {
 fprintf(out, "pos:%s, ", pos);
 }
 fprintf(out, "text:");
 putus(token, out);
 fprintf(out, "\n");

 //Get readings (for Japanese, render Kanji characters in
 // the Hiragana alphabet).
 numReadings = BT_RLP_TokenIterator_GetNumberOfReadings(tkitp);
 if (numReadings > 0) {
 fprintf(out, " Readings: ");
 for (i = 0; i < numReadings;i++) {
 const BT_Char16* reading =
 BT_RLP_TokenIterator_GetReading(tkitp, i);
 putus(reading, out);
 }
 fprintf(out, "\n");
 }

 //Get compounds (see documentation for applicable languages).
 numCompoundComponents =
 BT_RLP_TokenIterator_GetNumberOfCompoundComponents(tkitp);

Sample C Application

63

 if (numCompoundComponents > 0) {
 fprintf(out, " Compound components: ");
 for (i = 0; i < numCompoundComponents; i++) {
 const BT_Char16* reading =
 BT_RLP_TokenIterator_GetCompoundComponent(tkitp, i);
 putus(reading, out);
 fprintf(out, " ");
 }
 fprintf(out, "\n");
 }
 }
 fprintf(out, "\n");

 //5.3 Use result iterator to get other results, such as base noun phrases,
 // gazetteer names, and named entities. Note: Can use result iterator
 // to get any/all results.

 //Get base noun phrases.
 resitp = BT_RLP_Context_GetResultIterator(contextp, BT_RLP_BASE_NOUN_PHRASE);
 while ((bnpp = BT_RLP_ResultIterator_Next(resitp)) != NULL){
 //The result is a pair of integers, indexes of the first and last + 1
 //tokens in the base noun phrase.
 BT_UInt32 first, last;

 BT_RLP_Result_AsIntegerPair(bnpp, &first, &last);
 fprintf(out, "Base Noun Phrase: ");
 // Use the tokens vector to construct the base noun phrases.
 for(j = first; j < last; j++) {
 putus(tokens[j], out);
 fprintf(out, " ");
 }
 fprintf(out, "\n");
 }

 BT_RLP_Context_DestroyResultIterator(contextp, resitp);

 //Get named entities.
 resitp = BT_RLP_Context_GetResultIterator(contextp, BT_RLP_NAMED_ENTITY);
 while ((bnpp = BT_RLP_ResultIterator_Next(resitp)) != NULL){
 //Each result is three integers, indexes of the first and last + 1
 //tokens, and type/subtype.
 BT_UInt32 first, last, type;
 const char* typeName;

 BT_RLP_Result_AsIntegerTriple(bnpp, &first, &last, &type);
 typeName = BT_RLP_NET_ID_TO_STRING(type);
 fprintf(out, "%s ", typeName);
 //Uses token indexes to assemble the named entity.
 //Convert tokens from UTF-16 to UTF-8.
 for (i = first; i < last; i++) {
 putus(tokens[i], out);
 fprintf(out, " ");
 }
 fprintf(out, "\n");
 }

 //Cleanup
 free((void*)tokens);
 BT_RLP_Context_DestroyResultIterator(contextp, resitp);

Sample C Application

64

 BT_RLP_TokenIterator_Destroy(tkitp);
 fprintf(out, "End of sample program.\n");
 fclose(out);
}

/**
* The application registers this function to receive diagnostic log entries.
* RLP Environment LogLevel determines which message channels (error, warning.
* info) are posted to the callback.
*/
static void log_callback(void* info_p, int channel, char const* message)
{
 static char* szINFO = "INFO : ";
 static char* szERROR = "ERROR : ";
 static char* szWARN = "WARN : ";
 static char* szUNKNOWN = "UNKWN : ";
 char* szLevel = szUNKNOWN;
 switch(channel) {
 case 0:
 szLevel = szWARN;
 break;
 case 1:
 szLevel = szERROR;
 break;
 case 2:
 szLevel = szINFO;
 break;
 }
 fprintf((FILE*) info_p, "%s%s\n", szLevel, message);
}

/*
 * Output a UTF-16 string to a file in UTF-8.
 */
static void putus(const BT_Char16* t, FILE* out)
{
#define BYTEBUF_MAX_SIZE 1024
 static char bytebuf[BYTEBUF_MAX_SIZE];
 bt_xutf16toutf8(bytebuf, t, BYTEBUF_MAX_SIZE);
 fputs(bytebuf, out);
}

/*
Local Variables:
mode: c
tab-width: 2
c-basic-offset: 2
End:
*

5.3. Sample C Application For Handling Arabic Alternative
Analyses

C source file: ar-rlp_sample_alternatives_c.c. Input parameters are passed in from the command line,
and the RLP context configuration document is embedded in the source code.

Sample C Application For Handling Arabic Alternative Analyses

65

This application is similar to the sample documented above. The important distinction is that it is designed
to handle Arabic text and to extract alternative analyses (lemmas, roots, stems, normalized tokens, and
parts of speech). The following fragments highlight the distinctive features of this sample.

 //Set the lemma, root and alternative results properties.
 BT_RLP_Context_SetPropertyValue(contextp, "com.basistech.arbl.roots","true");
 BT_RLP_Context_SetPropertyValue(contextp, "com.basistech.arbl.lemmas","true");
 BT_RLP_Context_SetPropertyValue(contextp, "com.basistech.arbl.alternatives","true");

 //Use a token iterator (*tkitp) to get each token and to get alternative analyses.
 while(BT_RLP_TokenIterator_Next(tkitp)){
 const BT_Char16* token;
 BT_UInt32 ix, start, end;

 token = BT_RLP_TokenIterator_GetToken(tkitp);
 assert(token!=0);
 tokens[tkix++] = token;

 ix = BT_RLP_TokenIterator_GetIndex(tkitp);
 start = BT_RLP_TokenIterator_GetStartOffset(tkitp);
 end = BT_RLP_TokenIterator_GetEndOffset(tkitp);

 printf("#%d: s:%d, e:%d, token:", ix, start, end);
 putus(token);
 printf("\n");

 //Get alternative analyses (for Arabic only).
 numAnalyses = BT_RLP_TokenIterator_GetNumberOfAnalyses(tkitp);
 if (numAnalyses > 0) {

 const BT_Char16 * altNorm;
 const BT_Char16 * altLemma;
 const BT_Char16 * altStem;
 const BT_Char16 * altRoot;
 const char * altPOS;
 int count=0;

 printf(" Alternative Analyses: \n");

 while(BT_RLP_TokenIterator_NextAnalysis(tkitp)) {
 ++count;

 altNorm = BT_RLP_TokenIterator_GetNormalForm(tkitp);
 printf("\tNormal\t%d :", count);
 putus(altNorm);
 printf("\n");

 altPOS = BT_RLP_TokenIterator_GetPartOfSpeech(tkitp);
 printf("\tPOS\t%d :%s\n", count, altPOS);

 altStem = BT_RLP_TokenIterator_GetStemForm(tkitp);
 printf("\tStem\t%d :", count);
 putus(altStem);
 printf("\n");

 altLemma = BT_RLP_TokenIterator_GetLemmaForm(tkitp);
 //com.basistech.arbl.lemmas could be "false".
 if (altLemma!=0){

Sample C Application For Handling Arabic Alternative Analyses

66

 printf("\tLemma\t%d :", count);
 putus(altLemma);
 printf("\n");
 }

 altRoot = BT_RLP_TokenIterator_GetRootForm(tkitp);
 //com.basistech.arbl.roots could be "false".
 if (altRoot!=0){
 printf("\tRoot\t%d :", count);
 putus(altRoot);
 printf("\n");
 }
 printf("\n");
 }
 printf("\n");
 }
 }

5.4. Sample C Application for Examining the RLP License
C source file: examine_license_c.c. Input parameters (the Basis Root directory and the path to the RLP
environment configuration file) are passed in from the command line.

This application generates the list of features that your RLP license authorizes.

5.5. Building and Running the Sample C Applications
The source files for the C samples are in BT_ROOT/rlp/samples/capi:

• rlp_sample_c.c
• ar-rlp_sample_alternatives_c.c
• examine_license_c.c

5.5.1. Building the C Sample Applications

RLP supplies a script for building the C++ sample programs. On Windows platforms, the script is
BT_ROOT/rlp/samples/capi/build.bat. On Unix platforms, the script is BT_ROOT/rlp/samples/capi/
build.sh.

Important

The compiler and linker for your platform must be on your path.

If you are running Windows 32, you can run vsvars32.bat from the Common7\Tools directory
in your Visual Studio installation. If you are running Windows 64, run vcvarsamd.bat from the
VC\bin\amd64\vcvarsamd64.bat directory in your Visual Studio installation

If you are running Unix, be sure you have set the PATH environment variable to include the
compiler and linker for your platform.

Before you call the script, you must set the BT_BUILD environment variable. You must also run the script
from the BT_ROOT/rlp/samples/capi directory.

Windows example:

Sample C Application for Examining the RLP License

67

set BT_BUILD=ia32-w32-msvc80
cd \btroot\rlp\samples\capi
build.bat

Unix example:

export BT_BUILD=ia32-glibc22-gcc32
cd ~/btroot/rlp/samples/capi
./build.sh

The build script calls another script in the same directory with BT_BUILD embedded in the script name:
build_BT_BUILD_c_samples.[sh|bat]. You can examine this script for the command that is used to
compile and link each of the C samples.

An executable for each sample program with the same name as the C source file is placed in BT_ROOT/
rlp/bin/BT_BUILD.

5.5.2. Running the C Samples

The RLP distribution includes a script for running the C samples: go-c-samples.bat (Windows) or go-c-
samples.sh (Unix). This script is in BT_ROOT/rlp/samples/scripts/BT_BUILD . The script runs both
samples. You can use it as a model for creating your own command-line scripts.

On Unix

On Unix platforms, you must set LD_LIBRARY_PATH (or its equivalent environment variable
for your Unix operating system) to include the RLP library directory: BT_ROOT/rlp/lib/
BT_BUILD .

Running the C Samples

68

Chapter 6. Using the .NET API

6.1. Introduction
RLP includes a .NET wrapper that provides a .NET API for customers on the ia32-w32-msvc80 and
amd64-w64-msvc80 platforms: Windows 32-bit and 64-bit with the Visual Studio 8.0 compiler.
The .NET wrapper uses the .NET 2.0 Framework to provide access to RLP functionality. For reference
documentation, see API Reference [api-reference/index.html].

To review the basic structure of an RLP application, consult Creating an RLP Application [17] , which
also includes C++ and Java samples. The C# sample that follows is designed to help you incorporate RLP
functionality in your .NET applications.

6.2. Sample C# Application
C# source file: RLPSample.cs.

Input parameters for BT_ROOT (the Basis root directory), language ID, and input file are passed in from
the command line. The sample uses the standard environment configuration file and one of the sample
context files used for processing Unicode input.

using System;
using System.IO;
using System.Text;
using System.Collections;
using BasisTechnology.RLP;

namespace rlp_sample_csharp
{
 /// <summary>
 /// Basis Technology RLP C# sample program.
 /// </summary>
 class RLPSample
 {
 /// <summary>
 /// The main entry point for the Basis Technology RLP C# sample program.
 /// </summary>
 [STAThread]
 static void Main(string[] args)
 {
 Console.WriteLine("");
 Console.WriteLine("Basis Technology RLP C# sample program.");
 Console.WriteLine("");

 if(args.Length != 3)
 {
 Console.WriteLine("Usage: rlp_sample_csharp [rlp-root] [language] [input-file]");
 return;
 }

 //
 // Extract command line options
 //
 string rlp_root = args[0];
 string language_code = args[1];
 string inputFile = args[2];

69

 //
 // Define the RLP configuration files we will use.
 //
 string env_def = rlp_root + "/etc/rlp-global.xml";
 string context_def = rlp_root + "/samples/etc/rlp-context-no-op.xml";

 //
 // Echo our runtime parameters
 //
 Console.WriteLine(" RLP root dir: " + rlp_root);
 Console.WriteLine(" Environment definition file: " + env_def);
 Console.WriteLine(" Context definition file: " + context_def);
 Console.WriteLine(" Language: " + language_code);
 Console.WriteLine(" Input file: " + inputFile);
 Console.WriteLine("");

 // Set the RLP root directory so that RLP executables
 // can be located at run time.
 BasisTechnology.RLP.Environment.SetRootDirectory(rlp_root);
 // Get the numeric ID of the language desired
 LanguageID lid = LanguageNameUtils.LanguageIDFromISO639(language_code);
 // Read the input file
 string text;
 using(StreamReader fs = File.OpenText(inputFile))
 {
 text = fs.ReadToEnd();
 }

 // Create the RLP environment object.
 using (BasisTechnology.RLP.Environment env = BasisTechnology.RLP.Environment.Create())
 {
 try
 {
 env.InitializeFromFile(env_def);
 }
 catch (BasisTechnology.RLP.Error e)
 {
 Console.WriteLine(e.GetMessage());
 System.Environment.Exit(1);
 }
 // Create the RLP processing context. (We can create as many as needed.)
 using (Context ctx = env.CreateContextFromFile(context_def))
 {
 // Process the text
 ctx.ProcessBuffer(text, lid);
 // Access results
 bool safeOnly = true;
 object r = ctx.GetResultData(ResultType.TOKEN, safeOnly);
 // The TOKEN result is an array of strings.
 string[] tokens = (string[])r;
 int ntoks = tokens.Length;
 // The COMPOUND result is a hash table.
 // The key is the token index
 r = ctx.GetResultData(ResultType.COMPOUND, safeOnly);
 Hashtable comps = (Hashtable)r;
 // The NAMED_ENTITY result is an array of NEData objects.
 NamedEntityData[] NE = ctx.GetNamedEntityResultData(true);
 // Print results to stdout as UTF-8.

Sample C# Application

70

 using (StreamWriter sw =
 new StreamWriter(Console.OpenStandardOutput(), System.Text.Encoding.UTF8))
 {
 sw.WriteLine("TOKENS:");
 for(uint ix = 0; ix < ntoks; ix++)
 {
 sw.Write(tokens[ix]);
 if(comps != null)
 {
 string[] strs = (string[])comps[ix];
 if(strs != null)
 {
 sw.Write("\t(Compound components:");
 for(uint i = 0; i < strs.Length; i++)
 {
 if(i > 0)
 {
 sw.Write(" - ");
 }
 sw.Write(strs[i]);
 }
 sw.Write(")");
 }
 }
 sw.WriteLine();
 }
 sw.WriteLine("Named Entities:");
 if(NE!= null)
 for(uint i=0; i < NE.Length; i++)
 {
 sw.WriteLine(NE[i].NormalizedNamedEntity + " - " + NE[i].GetNETypeName());
 }
 }
 }
 }
 }
 }

6.3. Building and Running the Sample C# Application
The executable for the sample C# application is shipped with the release, so you do not need to build the
application to run it. You may, however, be interested in modifying and rebuilding the application.

The source file for the C# sample is BT_ROOT/rlp/samples/csharp/rlp_sample_csharp/
RLPSample.cs.

6.3.1. Building the Sample C# Application

RLP supplies a script for building the C# sample program: BT_ROOT/rlp/samples/csharp/
rlp_sample_csharp/build.bat.

Important

The compiler and linker for your platform must be on your path.

On the Windows 32 platform, you can run vsvars32.bat from the Common7/Tools directory in
your Visual Studio installation.

Building and Running the Sample C# Application

71

Before you call the script, you must set the BT_BUILD environment variable. You must also run the script
from the BT_ROOT/rlp/samples/csharp/rlp_sample_csharp directory.

Example:

set BT_BUILD=ia32-w32-msvc80
cd \btroot\rlp\samples\csharp\rlp_sample_csharp
build.bat

The build script calls another script with in the same directory with BT_BUILD embedded in the script
name: build_BT_BUILD_csharp_samples.bat. You can examine this script for the command that is used
to compile and link the C# sample.

An executable with the same name as the C# source file is placed in BT_ROOT/rlp/bin/BT_BUILD.

6.3.2. Running the Sample C# Application

The RLP ia32-w32-msvc80 and amd64-w64-msvc80distributions include a script for running the
C# sample: go-csharp-samples.bat. Depending on your platform, this script is in BT_ROOT/rlp/samples/
scripts/ia32-w32-msvc80 or BT_ROOT/rlp/samples/scripts/amd64-w64-msvc80.

Use the command-line prompt to navigate to the directory that contains the script.

The C# sample displays the parameters it is using, parses the input file, and outputs information about the
input to standard output. The output includes each token. If the input contains compounds (such as German,
Dutch, and Japanese text), the output also identifies the individual components that make up each
compound.

The output is encoded as UTF-8, so you may want to direct it to a file, which you can then read with an
application such as Notepad that can correctly display UTF-8.

For example, to run the sample and view the output:

go-csharp-samples.bat >out.txt
Notepad out.txt

Running the Sample C# Application

72

Chapter 7. Processing Multilingual Text
Text files containing material written in more than one language are not uncommon. This chapter provides
information about using RLP to process multilingual text.

Keep in mind that the procedure documented in Creating an RLP Application [17] is based on the
assumption that you are using RLP to process input text in a single language. If you include the required
language processors (and you have the necessary RLP license), you can use the same context to process
files in a variety of languages, but each file contains text in a single language. Either you identify the
language when you use the context to process the input, or you include the Language Identifier (RLI) in
the context, in which case RLI identifies the language for the language processors that follow.

7.1. Strategy for Handling Multilingual Text
If you want to extract information from a text file with text in more than one language, do the following:

1. Use an RLP context with the Rosette Language Boundary Locator [73] (RLBL) to identify language
regions within the input text. Each language region contains contiguous text in a single language.

2. Use another RLP context to process each region [74] individually.

7.2. RLBL
Formerly known as the Multilingual Language Identifier (MLI), the Rosette Language Boundary Locator
(RLBL) is a collection of three language processors that you can use to detect boundaries between the
language regions within multilingual input. You include these processors in an RLP context in the order
in which they appear below. 1

1. Text Boundary Detector [186] detects sentence-level text boundaries in a language-independent
fashion.

2. Script Boundary Detector [184] detects boundaries between language scripts, such as Latin, Cyrillic,
Arabic, and Hangul (Korean).

3. Language Boundary Detector [152] uses text boundaries, script boundaries, and RLI functionality,
to identify language regions.

7.2.1. RLBL Context

The context you define to process multilingual text should contain the processors to convert the input to
plain text in UTF-16 encoding (see Preparing the Input [18]) and the three RLBL processors in the correct
order, but no other language processors (the other language processors handle single-language text). Such
a context produces raw text (a UTF-16 image of the input) and the information you need to identify each
language region and extract it from the raw text.

A standard RLBL context configuration is as follows. Note the shortened processor names
("Detector" has been removed): Text Boundary, Script Boundary, and Language
Boundary. For information about properties you can set, see Language Boundary Detector Context
Properties [152] .

<?xml version='1.0'?>
<contextconfig>

1For information about the Unicode standards regarding text boundaries and script names, see Unicode Standard Annex #29 [http://
www.unicode.org/reports/tr29] and Unicode Standard Annex #24 [http://www.unicode.org/reports/tr24].

73

http://www.unicode.org/reports/tr29
http://www.unicode.org/reports/tr29
http://www.unicode.org/reports/tr29
http://www.unicode.org/reports/tr24
http://www.unicode.org/reports/tr24

 <languageprocessors>
 <languageprocessor>Unicode Converter</languageprocessor>
 <languageprocessor>Text Boundary</languageprocessor>
 <languageprocessor>Script Boundary</languageprocessor>
 <languageprocessor>Language Boundary</languageprocessor>
 </languageprocessors>
 </contextconfig>

7.3. Processing Language Regions
Once you have identified language regions, you can process each region with a context designed to handle
text in a single language. The Language Boundary Detector provides the information you need to extract
each language region from the raw text and to process the region with the appropriate language identifier.

7.3.1. Single-Language Context

The input is UTF-16 raw text, so the context configuration for a language region does not require a processor
to generate raw text (see Processing UTF-16 input [27]). The following context configuration provides
general coverage. If the text for a region is Japanese, for example, JLA processes the text, and the other
language-specific processors (BL1, CLA, KLA, and ARBL) do nothing.

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE contextconfig
 SYSTEM "http://www.basistech.com/dtds/2003/contextconfig.dtd">
<contextconfig>
 <languageprocessors>
 <languageprocessor>BL1</languageprocessor>
 <languageprocessor>JLA</languageprocessor>
 <languageprocessor>CLA</languageprocessor>
 <languageprocessor>KLA</languageprocessor>
 <languageprocessor>Tokenizer</languageprocessor>
 <languageprocessor>SentenceBoundaryDetector</languageprocessor>
 <languageprocessor>ARBL</languageprocessor>
 <languageprocessor>FABL</languageprocessor>
 <languageprocessor>URBL</languageprocessor>
 <languageprocessor>Stopwords</languageprocessor>
 <languageprocessor>BaseNounPhrase</languageprocessor>
 <languageprocessor>NamedEntityExtractor</languageprocessor>
 <languageprocessor>Gazetteer</languageprocessor>
 <languageprocessor>RegExpLP</languageprocessor>
 <languageprocessor>NERedactLP</languageprocessor>
 </languageprocessors>
</contextconfig>

7.4. From the Coding Perspective
After you process input parameters and set up the environment, do the following:

1. Instantiate two context objects: an RLBL context for processing the input text and a standard context
for processing each language region.

2. Use the RLBL context to process the input text.

3. Get the following result data from the RLBL context: raw text and language regions.

The raw text is the input text in UTF-16.

Processing Language Regions

74

For each language region, the result data (LANGUAGE_REGION [85]) is 6 integers. Of primary
interest are the raw text offsets that delimit each region and the language identifier for the region.

Note

You can also collect result data for script regions and sentence-level text boundaries. If you
want sentence boundaries, you can get more accurate data for each language region during the
next step.

4. Process each region with the second context, and use that context to get results of interest.

For each region, the input is a portion of the UTF-16 raw text with the appropriate language identifier.

5. Perform the required cleanup.

7.4.1. Code examples

The following code fragments illustrate the process for looping through the regions returned by an RLBL
context, using a standard context to process each region, and calling a method to handle the results for each
region.

Both fragments use two RLP context objects: rlblContext and context. The configuration for these
contexts is along the lines illustrated above. See RLBL Context [73] and Single-Language context
[74] .

For details about setting up the RLP environment, instantiating a context, processing an input file, and
handling the result data for each language region, see Creating an RLP Application [17] .

7.4.2. C++ Fragment
//Multilingual text has been processed with rlblContext.

//Get raw text.
BT_UInt32 len = 0;
const BT_Char16* rlblRawText =
 rlblContext->GetUTF16StringResult(BT_RLP_RAW_TEXT, len);

//Get language regions.
BT_RLP_ResultIterator* rlblResult_iter =
 rlblContext->GetResultIterator(BT_RLP_LANGUAGE_REGION);

//Get each region, process it, and handle the results.
const BT_RLP_Result* rlblResult;
while ((rlblResult = rlblResult_iter->Next()) != NULL){
 BT_UInt32 numbers[6];
 rlblResult->AsUnsignedIntegerVector(numbers, 6);
 BT_UInt32 start, end, level, type, script;
 BT_LanguageID language;
 start = numbers[0];
 end = numbers[1];
 level = numbers[2];
 type = numbers[3];
 script = numbers[4];
 language = BT_LanguageID(numbers[5]);

Code examples

75

 //Get pointer to start of region in the raw text.
 BT_Char16* rawRegion = rlblRawText + start;
 //Use pointer to start of region, length of region, and language
 //identifier to process the raw text for the language region.
 BT_Result rc =
 context->ProcessUTF16Buffer(rawRegion, end - start, language);
 if (rc !=BT_OK) {
 cerr << "Unable to process region." << endl;
 delete rlblContext;
 delete context;
 delete rlp;
 return 1;
 }
 //Handle results for the region.
 handleRegion(context);
}

For examples of how to extract result data for each region, see See handleResults() in rlp_sample
[28] .

The complete application from which the preceding fragment has been extracted is in samples/
cplusplus: rlbl_sample.cpp. See Building and Running the Sample C++ Applications [40] .

7.4.3. Java Fragment

////Multilingual text has been processed with rlblContext.

//Get raw text.
RLPResultAccess resultAccess = new RLPResultAccess(rlblContext);
String rawText = resultAccess.getStringResult(RLPConstants.RAW_TEXT);

//Get Language regions.
List regions = resultAccess.getListResult(RLPConstants.LANGUAGE_REGION);

//Work with each region.
Iterator iter = langRegionList.iterator();
while (iter.hasNext()){
 int[] langRegion = (int[])iter.next();
 int start = langRegion[0];
 int end = langRegion[1];
 int level = langRegion[2];
 int type = langRegion[3];
 int script = langRegion[4];
 int langId = langRegion[5];

 //Process raw text for the region.
 context.process(rawText.substring(start, end), langId);
 //Handle the results for the region.
 handleResults(context);
}

For examples of how to extract result data for each region, see See handleResults() in RLPSample
[34] .

The complete application from which the preceding fragment has been extracted is in samples/java:
MultiLang.java and MultiLang.properties. See Building and Running the Sample Java Applications
[41] .

Java Fragment

76

Chapter 8. Preparing Your Data for Processing
Most of the RLP language processors process text in Unicode UTF-16LE or UTF-16BE (little-endian or
big-endian byte order, depending on the platform byte order). For accurate linguistic analysis, the text
should be plain text; it should not contain markup or a binary format, such as is found in HTML, XML,
PDF, or Microsoft Office documents. The MIME type (document type) should be text/plain; if the MIME
type is otherwise (such as text/html or application/pdf), plain text should be extracted from the input.

The text you want to process is likely not to be UTF-16 and it may contain markup that degrades the
accuracy of linguistic analysis.

RLP provides language processors for detecting the encoding and MIME type of your input, for extracting
plain text if the MIME type is not text/plain, and for converting the input to the required UTF-16 encoding.
This chapter explains how to define contexts that perform the necessary conversions before performing
the operations that require UTF-16 and plain text. See Preparing Marked Up Input [79] .

8.1. Preparing Plain Text
For input text that does not contain markup, you need to convert the text to UTF-16 in the correct byte
order for your platform (unless it is already in that encoding).

RLP provides procedures for handling two basic categories of input text:

Category Description

Any Encoding [77] Plain text in any standard encoding.

UTF-16LE/BE (platform byte order) [78] Plain Text in Unicode UTF-16LE or UTF-16BE encoding
that conforms to the platform byte order.

8.1.1. Plain Text in Any Encoding

Any encoding means text with no markup in a Unicode or commonly used non-Unicode encoding. For the
encodings that RLP can handle, see Unicode Converter [187] and RCLU Encodings [171] .

In the context configuration, use the Unicode Converter, RLI (Rosette Language Identifier), and RCLU
(Rosette Code Library for Unicode) language processors (in that order) as the first three language
processors. Note: if you are using mime_detector, you should put it first.

If the input is Unicode, Unicode Converter converts it to UTF-16 with the correct byte order for the current
platform.

If the input is not Unicode, RLI [178] detects encoding (it also detects language), and the RCLU
processor [168] converts the text to UTF-16 for use by subsequent language processors.

Here is a general purpose context that begins by identifying the encoding and converting the input to
UTF-16:

<contextconfig>
 <languageprocessors>
 <languageprocessor>Unicode Converter </languageprocessor>
 <languageprocessor>RLI</languageprocessor>
 <languageprocessor>RCLU</languageprocessor>
 <!-- Other language processors, such as the following -->
 <languageprocessor>BL1</languageprocessor>
 <languageprocessor>JLA</languageprocessor>

77

 <languageprocessor>CLA</languageprocessor>
 <languageprocessor>KLA</languageprocessor>
 <languageprocessor>Tokenizer</languageprocessor>
 <languageprocessor>SentenceBoundaryDetector</languageprocessor>
 <languageprocessor>ARBL</languageprocessor>
 <languageprocessor>FABL</languageprocessor>
 <languageprocessor>URBL</languageprocessor>
 <languageprocessor>Stopwords</languageprocessor>
 <languageprocessor>BaseNounPhrase</languageprocessor>
 <languageprocessor>NamedEntityExtractor</languageprocessor>
 <languageprocessor>Gazetteer</languageprocessor>
 <languageprocessor>RegExpLP</languageprocessor>
 <languageprocessor>NERedactLP</languageprocessor>
 </languageprocessors>
</contextconfig>

Notes

If you know the encoding and the language, you can include these values as parameters when you
process the text, in which case RLI is not required in the context.

If you know the input is Unicode, you can omit RLI and RCLU (keep RLI if you need to identify
the language).

If you know the input is not Unicode, you can omit Unicode Converter.

8.1.2. Plain Text in UTF-16LE/BE

If your text is in UTF-16 in the platform byte order (e.g., UTF-16LE on an Intel x86 CPU or UTF-16BE
on a Sun Sparc), you do not need to convert the text, unless you want to rely on the Unicode Converter to
strip the BOM.

1. (Optional) Strip the byte order mark (BOM).

Handling the BOM

Unicode data may start with a byte order mark (BOM), the character code U+FEFF. UTF-16
and UTF-32 data require the BOM to indicate byte order. For UTF-8, byte order is not an issue,
but UTF-8 data may include a BOM as an encoding signature.

RLP does not use a BOM in its internal UTF-16 encoding. Byte order for the platform is known,
and the BOM is unnecessary. If, however, your input is UTF-16 with a BOM and you do not
pass it through Unicode Converter or RCLU, the BOM remains. If you have UTF-16 data with
the correct byte order for your platform, but it includes a BOM, you probably want to strip the
BOM (the first character) before you process the data.

2. In the context configuration, do not include a processor for converting the input to UTF-16:

<contextconfig>
 <languageprocessors>
 <!--Note: If you want to detect language, start with RLI. -->
 <languageprocessor>RLI</languageprocessor>
 <languageprocessor>BL1</languageprocessor>
 <languageprocessor>JLA</languageprocessor>
 <languageprocessor>CLA</languageprocessor>
 <languageprocessor>KLA</languageprocessor>
 <languageprocessor>Tokenizer</languageprocessor>

Plain Text in UTF-16LE/BE

78

 <languageprocessor>SentenceBoundaryDetector</languageprocessor>
 <languageprocessor>ARBL</languageprocessor>
 <languageprocessor>FABL</languageprocessor>
 <languageprocessor>URBL</languageprocessor>
 <languageprocessor>Stopwords</languageprocessor>
 <languageprocessor>BaseNounPhrase</languageprocessor>
 <languageprocessor>NamedEntityExtractor</languageprocessor>
 <languageprocessor>Gazetteer</languageprocessor>
 <languageprocessor>RegExpLP</languageprocessor>
 <languageprocessor>NERedactLP</languageprocessor>
 </languageprocessors>
</contextconfig>

8.2. Preparing Marked-Up or Binary Input
Even if the input is encoded as Unicode, it may contain data other than pure text, such as HTML or XML
markup tags. For linguistic processing, markup tags are extraneous text. The RLP language processors
have been statistically trained with "normal" text from a variety of sources. For example, the Language
Identifier (RLI) uses n-gram statistics to determine language. Markup tags degrade language detection.
Part-of-speech tag disambiguation and Named Entity recognition also suffer from extraneous tag tokens.
If you leave the tags in, RLP generates less accurate results.

PDF files and Microsoft Office documents use proprietary binary formats. The text content must be
extracted from such a file before RLP can process it.

8.2.1. Using iFilter

Only on Windows

iFilter [147] is only available on Windows and requires an input file.

iFilter extracts plain text from text with markup and proprietary formats. The result is UTF-16 raw text
from which all the extraneous data has been stripped. You can use iFilter to process files of the following
MIME types:

MIME Type File Type (standard file extensions)

text/plain Text (txt, TXT)

text/html HTML (html, htm, HTM, HTML)

text/xml XML (xml, XML)

text/rtf Rich Text Format (rtf, RTF)

application/pdf Acrobat PDF (pdf, PDF)

application/msword Microsoft Word (doc, DOC)

application/vnd.ms-excel Microsoft Excel (xls, XLS)

application/vnd.ms-powerpoint Microsoft Powerpoint (ppt, PPT)

application/vnd.ms-access Microsoft Access (mdb, MDB)

You must provide iFilter a file pathname and a MIME type (from the table above). You can specify the
MIME type when you call the API method for processing the input. You can also use the mime_detector
[155] language processor to detect MIME type.

The following context is a general-purpose context for handling the MIME types listed above.

Preparing Marked-Up or Binary Input

79

<contextconfig>
 <languageprocessors>
 <languageprocessor>mime_detector</languageprocessor>
 <languageprocessor>iFilter</languageprocessor>
 <languageprocessor>RLI</languageprocessor>
 <languageprocessor>BL1</languageprocessor>
 <languageprocessor>JLA</languageprocessor>
 <languageprocessor>CLA</languageprocessor>
 <languageprocessor>KLA</languageprocessor>
 <languageprocessor>Tokenizer</languageprocessor>
 <languageprocessor>SentenceBoundaryDetector</languageprocessor>
 <languageprocessor>ARBL</languageprocessor>
 <languageprocessor>FABL</languageprocessor>
 <languageprocessor>URBL</languageprocessor>
 <languageprocessor>Stopwords</languageprocessor>
 <languageprocessor>BaseNounPhrase</languageprocessor>
 <languageprocessor>NamedEntityExtractor</languageprocessor>
 <languageprocessor>Gazetteer</languageprocessor>
 <languageprocessor>RegExpLP</languageprocessor>
 <languageprocessor>NERedactLP</languageprocessor>
 </languageprocessors>
</contextconfig>

8.2.2. HTML Stripper

RLP includes another strategy for handling HTML data. This strategy is not limited to Windows, it can be
used to process buffers as well as files, and it internally uses RLI and RCLU to identify the encoding and
convert the input to UTF-16.

Here is a general purpose context that incorporates the HTML Stripper:

<contextconfig>
 <languageprocessors>
 <languageprocessor>HTML Stripper</languageprocessor>
 <languageprocessor>RLI</languageprocessor>
 <languageprocessor>BL1</languageprocessor>
 <languageprocessor>JLA</languageprocessor>
 <languageprocessor>CLA</languageprocessor>
 <languageprocessor>KLA</languageprocessor>
 <languageprocessor>Tokenizer</languageprocessor>
 <languageprocessor>SentenceBoundaryDetector</languageprocessor>
 <languageprocessor>ARBL</languageprocessor>
 <languageprocessor>FABL</languageprocessor>
 <languageprocessor>URBL</languageprocessor>
 <languageprocessor>Stopwords</languageprocessor>
 <languageprocessor>BaseNounPhrase</languageprocessor>
 <languageprocessor>NamedEntityExtractor</languageprocessor>
 <languageprocessor>Gazetteer</languageprocessor>
 <languageprocessor>RegExpLP</languageprocessor>
 <languageprocessor>NERedactLP</languageprocessor>
 </languageprocessors>
</contextconfig>

8.2.3. Handling XML Without iFilter

One simple way to remove the XML tags from an XML document (including XHTML) is to use an XSLT
processor (such as Xalan or Saxon) to apply an XSL stylesheet to the document with output method set to
text. Here is such a stylesheet that also strips out extraneous whitespace and generates UTF-8 plain text:

HTML Stripper

80

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <!--strip xml tags -->
 <xsl:output method="text" encoding="utf-8" indent="no"/>
 <!-- strip whitespace -->
 <xsl:strip-space elements="*"/>
</xsl:stylesheet>

8.3. Other Considerations

8.3.1. Normalizing Text

In many cases, Unicode allows a given string to be represented in multiple forms. This issue arises, for
example, when representing a word that contains a character with an accent or diacritic mark. The issue
also arises in Asian character sets, where some characters can be rendered in either a "half-width" or a
"full-width" format, each with its own codepoint. In Japanese, for instance, both Katakana and Latin letters
("Romaji") can be written in both formats. In Chinese and Korean encodings, only Latin letters appear in
both forms.

Normalization eliminates non-meaningful differences in the representation of Unicode strings, in the
interest of simplifying linguistic processing, indexing, and other operations.

The Rosette Core Library for Unicode [168] (RCLU) provides a number of properties that you can set
to normalize text. The Japanese Language Analyzer [147] (JLA) also includes a property that you can
set to normalize Arabic numerals in Japanese text (see com.basistech.jla.normalize.result.token [150]).

8.3.2. File Size

While there is no set limit to the size of file that you can input into RLP, we do recommend that you process
files less than 10 MB. Processing larger files may adversely affect performance. How RLP responds to
large input files is difficult to predict as the response depends on the processors you specify, the operating
system you use, and the hardware (particularly RAM) of the machine you run it on.

We recommend that you split very large files into smaller files that can be more easily processed.

Other Considerations

81

82

Chapter 9. Accessing RLP Result Data
While processing a text stream, the RLP language processors generate a number of types of result objects.
Processors post these results to internal storage making them available for subsequent processors, and for
handling by the RLP application, which is the subject of this chapter.

When you use a context object to process input, RLP begins by posting the raw data, with any parameters
you supply (such as language, encoding, filename, and MIME type) to internal storage. The first job of the
processors is to generate UTF-16 raw text (stripped of extraneous data if necessary, such as HTML tags).
Other language processors scan the raw text and generate other results types: tokens, part-of-speech tags,
sentence boundaries, base noun phrases, named entities, and so on. Each processor in the context has access
to the results that have been posted by earlier processors. The RLP context configuration, including property
settings, and the settings in the processor options files influence the output that the processors generate.
For more information, see RLP Processors [123] and Defining an RLP Context [18] .

9.1. Result Types
RLP defines integer constants for the result types.

The Type column in the following table provides the core type names that you can map to the appropriate
C++ or Java constant. For C++ (BT_RLP_ TYPE), see bt_rlp_result_types.h. For Java
(RLPConstants. TYPE), see com.basistech.rlp.RLPConstants.

The Data column indicates the data type or structure for each result.

In addition to describing the type, the Description column indicates the processors that generate this result
type.

Type Data Description

ALTERNATIVE_LEMMAS Integer
and
UTF-16
string
vector

Alternative LEMMA [85] results. For each token,
provides the token index and the alternative lemmas.

Generated by Arabic Base Linguistics [126] if
com.basistech.arbl.alternatives and
com.basistech.arbl.lemmas are set to
true.

ALTERNATIVE_NORM Integer
and
UTF-16
string
vector

Alternative NORMALIZED_TOKEN [86]
results. For each token, provides the token index and
the alternative normalized tokens.

Generated by Arabic Base Linguistics [126] if
com.basistech.arbl.alternatives is set
to true.

ALTERNATIVE_PARTS_OF_SPEECH Integer
and
ASCII
string
vector

Alternative PART_OF_SPEECH [86] results. For
each token, provides the token index and the
alternative parts of speech.

Generated by Arabic Base Linguistics [126] if
com.basistech.arbl.alternatives is set
to true.

83

Type Data Description

ALTERNATIVE_ROOTS Integer
and
UTF-16
string
vector

Alternative ROOTS [87] results. For each token,
provides the token index and the alternative roots.

Generated by Arabic Base Linguistics [126] if
com.basistech.arbl.alternatives and
com.basistech.arbl.roots are set to
true.

ALTERNATIVE_STEMS Integer
and
UTF-16
string
vector

Alternative STEM [87] results. Provides the token
index and the alternative stems.

Generated by Arabic Base Linguistics [126] if
com.basistech.arbl.alternatives is set
to true.

BASE_NOUN_PHRASE Integer
pair

Index of first token and index + 1 of last token in the
noun phrase.

Generated by the Base Noun Phrase Detector
[132] for Arabic, Chinese (Simplified and
Traditional), Dutch, English, French, German,
Italian, Japanese, and Spanish.

COMPOUND Integer
and
UTF-16
string
vector

Index to a token that represents a compound word and
vector of components that make up the compound.

Generated by Base Linguistics Language Analyzer
[129] (for German, Dutch, and Hungarian); Chinese
Language Analyzer [133] ; Japanese Language
Analyzer [147] ; and Korean Language Analyzer
[151] .

DETECTED_ENCODING ASCII
string

Name of the character encoding.

Generated by Unicode Converter [187] and Rosette
Language Identifier [178] . You may also pass this
value to RLP when you process text, or use the RLP
context object to set this value.

DETECTED_LANGUAGE Integer RLP-defined language code for the text. For C++, see
bt_language_names.h. For Java, see
com.basistech.util.LanguageCode.

Generated by the Rosette Language Identifier
[178] , which produces a single value (the first
language found if the text contains multiple
languages). You may also use the RLP context object
to set this value programmatically. Reposted by the
Chinese Script Converter [139] .

If the text does contain multiple languages, use the
Language Boundary Processor [152] to return
LANGUAGE_REGION results (see below).

Result Types

84

Type Data Description

DETECTED_SCRIPT Integer ISO15924 code for the writing script. For C++, see
bt_iso_15924_codes.h. For Java, see
com.basistech.util.ISO15924.

Generated by the Rosette Language Identifier
[178] . Reposted by the Chinese Script Converter
[139] .

LANGUAGE_REGION Six
integers

Defines a language region:

1. Raw-text offset for start of region
2. Raw-text offset + 1 for end of region
3. Level: (currently not used)
4. Type: (currently not used)
5. Script (currently not used)
6. Language identifier (see

DETECTED_LANGUAGE above)

Generated by the Language Boundary Detector
[152] .

LEMMA UTF-16
string

Canonical form of a lexeme. In Arabic, a vocalized
form useful for searches (a singular and plural noun,
for example, share the same lemma, as does a verb in
its perfect and imperfect tenses; the lemma for all
domonstrative and relative pronouns is the masculine
singular).

Generated by Arabic Base Linguistics [126] if
com.basistech.arbl.lemmas is set to
true.

MANY_TO_ONE_NORMALIZED_TOKEN UTF-16
string

Normalized form of a token as determined by the
ManyToOneNormalizer [153] and a language-
specific normalization dictionary. If the token does
not appear in an appropriate normalization dictionary,
the MANY_TO_ONE_NORMALIZED_TOKEN is
identical to the TOKEN [88] . See also
NORMALIZED_TOKEN [86] .

MAP_OFFSETS Integer Maps a character in normalized text to its location
prior to normalization. Generated by Rosette Core
Library for Unicode [168] when
com.basistech.rclu.mapoffsets is true.
(The default is false.) Useful when you need to
manipulate the original input text while processing
text that the Rosette Core Library for Unicode has
normalized.

Result Types

85

Type Data Description

MIME_TYPE ASCII
string

MIME type of input. Supplied by user or generated
by mime_detector [155] . RLP recognizes the
following MIME types:

• text/plain
• text/html
• text/xml
• text/rtf
• application/pdf
• application/msword
• application/vnd.ms-excel
• application/vnd.ms-powerpoint
• application/ms.access

NAMED_ENTITY Integer
triple

Defines a named entity:

1. Index of first token in the named entity
2. Index + 1 of last token in the named entity
3. RLP-defined integer designating the source (1st

byte), type (2nd and 3rd bytes), and optional
subtype (4th byte) of the entity. The source
designates one of three processors: Named Entity
Extractor, Regular Expressions Processor, or
Gazetteer.

RLP maps types and subtypes to strings. For C++, see
bt_rlp_ne_types.h. For Java, see
com.basistech.rlp.RLPNENameMap Strings
for types and subtypes are defined in BT_ROOT/rlp/
etc/ne-types.xml, and may also be defined in
gazetteers and in the configuration file for regular
expressions. See Customizing Named Entities [52] .

Generated by the Named Entity Extractor [156] ,
the Regular Expression processor [163] , the the
Gazetteer [144] processor, and the Named Entity
Redactor [160] , which should be included with any
of the preceding processors.

NORMALIZED_TOKEN UTF-16
string

The normalized form for the token.

Generated byArabic Base Linguistics [126] , Farsi
Base Linguistics [141] , and Urdu Base
Linguistics [188] processors. See also
MANY_TO_ONE_NORMALIZED_TOKEN [85] .

PART_OF_SPEECH ASCII
string

Part of speech for the token. See Part of Speech
Tags [209] .

Generated by Base Linguistics Language Analyzer
[129] , Arabic Base Linguistics [126] , Chinese
Language Analyzer [133] , Japanese Language
Analyzer [147] , and Korean Language Analyzer
[151] .

Result Types

86

Type Data Description

RAW_TEXT UTF-16
string

The input text.

Generated by the Unicode Converter [187] or
Rosette Core Library for Unicode [168] , or
instantiated from the input by a context process
method that takes UTF-16 as input (see Processing
UTF-16 Input [27]). Reposted by the Chinese Script
Converter [139] .

READING Integer
and
UTF-16
string
vector

Alternate readings (transcriptions) for a token.
Provides the index to the token and the alternate
readings.

Generated by the Chinese Language Analyzer
[133] and Japanese Language Analyzer [147] .

ROOTS UTF-16
string

For Semitic languages, the root for the stem or
normalized token.

Generated by Arabic Base Linguistics [126] ,
provided (1) arbl-options.xml includes a valid
rootpath entry, and (2)
com.basistech.arbl.roots is set to
true.

SCRIPT_REGION Integer
triple

Defines a script region:

1. Raw-text offset for start of region
2. Raw-text offset+ 1 for end of region
3. ISO15924 script identifier

RLP provides utilities for mapping ISO15924 integer
values to 4-character codes and English names. For
C++, see bt_iso15924.h. For Java, see
com.basistech.util.ISO15924.

Generated by the Script Boundary Detector [184] .

SENTENCE_BOUNDARY Integer Index of last token + 1 for the sentence. The value for
the previous sentence (0 for the first sentence) is the
index of the first token in the sentence.

Generated by Base Linguistics Language Analyzer
[129] and Sentence Boundary Detector [183] (in
conjunction with Tokenizer or the appropriate
language processor).

STEM UTF-16
string

The dictionary form for the token.

Generated by the Base Linguistics Language
Analyzer [129] , Arabic Base Linguistics [126] ,
Chinese Language Analyzer [133] , Korean
Language Analyzer [151] , Japanese Language
Analyzer [147] , Farsi Base Linguistics [141] , and
Urdu Base Linguistics [188] .

Result Types

87

Type Data Description

STOPWORD Integer Index for a token that is a stopword.

Generated by the Chinese Language Analyzer
[133] , the Japanese Language Analyzer [147] , the
Korean Language Analyzer [151] , and the
Stopwords processor [185] using the language-
specific stopword dictionary specified in the
processor configuration file: cla-options.xml, jla-
options.xml, kla-options.xml (specifies directory
containing dictionaries), or stop-options.xml.

TEXT_BOUNDARIES Integer Raw-text offset + 1 of a sentence-level text boundary.

Generated by the Text Boundary Detector [186] ,
which uses Unicode rules (UAX 29 [http://
www.unicode.org/reports/tr29/]) for determining
sentence boundaries.

If you have identified the language, you can use the
Sentence Boundary Detector [183] to generate
SENTENCE_BOUNDARY results (see above).

TOKEN UTF-16
string

An atomic element from the input text, such as word,
number, multiword expression, possessive affix, or
punctuation.

Generated by Chinese Language Analyzer [133] ,
Chinese Script Converter (CSC) [139] , Base
Linguistics Language Analyzer [129] , Japanese
Language Analyzer [147] , Korean Language
Analyzer [151] , Tokenizer [187] (for use
primarily by Arabic Base Linguistics [126] , Farsi
Base Linguistics [141] , and Urdu Base
Linguistics [188]). SentenceBoundary Detector
[183] and Chinese Script Converter [139] may
update and repost the TOKEN results.

TOKEN_OFFSET Integer
pair

Raw-text start and end + 1 offsets for the token.

Generated by Base Linguistics Language Analyzer
[129] , Chinese Language Analyzer [133] ,
Japanese Language Analyzer [147] , Korean
Language Analyzer [151] , Sentence Boundary
Detector [183] , Tokenizer [187] , and Chinese
Script Converter [139] (which may update and
repost the TOKEN results).

TOKEN_SOURCE_ID Integer Identifies the dictionary in which the token was
found.

Generated by Japanese Language Analyzer [147] .

Result Types

88

http://www.unicode.org/reports/tr29/
http://www.unicode.org/reports/tr29/
http://www.unicode.org/reports/tr29/

Type Data Description

TOKEN_SOURCE_NAME UTF-16
string

Name of the dictionary identified by
TOKEN_SOURCE_ID. For the system dictionary and
any user dictionary that you have not named or
compiled, the name is "" (empty string). For
information about assigning a name to a user
dictionary, see Creating the source file for a Japanese
Language Analyzer User Dictionary [200] .

Generated by Japanese Language Analyzer [147] .

TOKEN_VARIATIONS Integer
and
UTF-16
string
vector

Variant orthographic representations of a token
(word). Provides the token index and a vector of
variant representations. Useful for producing search
strings.

Generated by Arabic Base Linguistics [126] if
com.basistech.arbl.variations is set to
true, and Farsi Base Linguistics [141] if
com.basistech.fabl.variations is set to
true.

TRANSCRIBED_TEXT UTF-16
string

Currently unused.

9.2. Handling RLP Results in C++
After using a context object to process a text file or buffer, use the following to access the results that have
been generated.

• A token iterator [89]

Provides access to tokens and several related result types. For access to multiple result types returned
by a token iterator, use a token iterator instead of a set of result iterators.

• One or more result iterators [92]

Provides access to all result types, but you need a separate iterator for each type. Use a result iterator to
get a single result type; use multiple result iterators to get multiple result types not available with the
token iterator.

• A named entity iterator [97]

Provides access to named entities.

• The context object [98]

Provides access to single-valued result types and avoids the overhead of creating a result iterator to
perform a single iteration.

9.2.1. Using a Token Iterator

BT_RLP_TokenIterator coordinates access to a number of result objects associated with each token.
For each iteration, you can get token, stem, normalized token, part of speech, and offset. For compound
tokens (in German, Dutch, Hungarian, Korean, Japanese, or Chinese, for example) you can also get the

Handling RLP Results in C++

89

individual components of the compound. You can also set the iterator to give alternative readings
(transcriptions) for each token, provided the language processor supports readings. For Arabic tokens, you
can get lemmas, alternative lemmas, alternative normalized tokens, alternatve roots, alternative stems, and
alternative parts of speech.

For descriptions of the result types, see Result types [83] .

Result type Data you can get with a token iterator

BT_RLP_TOKEN The token and its index. Use GetToken().

BT_RLP_TOKEN_OFFSET The raw-text offsets (start and end + 1) for the token. Use
GetStartOffset() and GetEndOffset().

BT_RLP_PART_OF_SPEECH The part of speech for the token. Use
GetPartOfSpeech().

BT_RLP_STEM The stem [87] (dictionary form) for the token. Use
GetStemForm().

BT_RLP_MANY_TO_ONE_NORMALIZED_TO
KEN

The many-to-one normalized form of a token [85] . Use
GetManyToOneNormalForm()

BT_RLP_NORMALIZED_TOKEN The normalized form for the token. Use
GetNormalForm().

BT_RLP_STOPWORD Whether or not the token is a stopword. Use
IsStopword().

BT_RLP_COMPOUND The number of components that make up the compound
and the value of each. To get this information, set the
token iterator factory accordingly
(SetReturnCompoundComponents(true)).
Use GetNumberOfCompoundComponents() and
GetCompoundComponent(BT_UInt32
index).

BT_RLP_READING The number of readings and the value for each. To get
this data, set the token iterator factory accordingly
(SetReturnReadings(true)) and use
GetNumberOfReadings() and
GetReading(BT_UInt32 index).

BT_RLP_TOKEN_SOURCE_ID Identifier for the dictionary in which the token was
found. To get this data (for Japanese input only), set
com.basistech.jla.generate_token_sour
ces to true and use GetSourceId()

BT_RLP_TOKEN_SOURCE_NAME Name of the dictionary identified by
BT_RLP_TOKEN_SOURCE_ID. To get this data (for
Japanese input only), set
com.basistech.jla.generate_token_sour
ces to true and use GetSourceName(BT_UInt32
id)

BT_RLP_LEMMA Lemma for the token. To get this data (for Arabic input
only), set com.basistech.arbl.lemmas to true
and use GetLemmaForm()

Using a Token Iterator

90

Result type Data you can get with a token iterator

BT_RLP_ALTERNATIVE_LEMMAS Alternative lemmas for the token. To get this data (for
Arabic input only), set
com.basistech.arbl.lemmas and
com.basistech.arbl.alternatives to true,
use GetNextAnalysis() to step through the
analyses, and use GetLemmaForm() to get the lemma
for each analysis

BT_RLP_ALTERNATIVE_NORM Alternative normalized tokens for the token. To get this
data (for Arabic input only), set
com.basistech.arbl.alternatives to true,
use GetNextAnalysis() to step through the
analyses, and use GetNormalForm() to get the
normalized token for each analysis

BT_RLP_ROOTS Root for the token. To get this data (Arabic input only),
set com.basistech.arbl.roots to true, and use
GetRootForm().

BT_RLP_ALTERNATIVE_ROOTS Alternative roots for the token. To get this data (for
Arabic input only), set
com.basistech.arbl.roots and
com.basistech.arbl.alternatives to true,
use GetNextAnalysis() to step through the
analyses, and use GetRootForm() to get the root for
each analysis

BT_RLP_ALTERNATIVE_STEMS Alternative stems for the token. To get this data (for
Arabic input only), set
com.basistech.arbl.alternatives to true
and use GetNextAnalysis() to step through the
analyses, and GetStemForm() to get the stems for
each analysis

BT_RLP_ALTERNATIVE_PARTS_OF_SPEE
CH

Alternative parts of speech for the token. To get this data
(for Arabic input only), set
com.basistech.arbl.alternatives to true
and use GetNextAnalysis() to step through the
analyses, and GetPartOfSpeech() to get the part of
speech for each analysis

Procedure 9.1. How to Use a Token Iterator

1. Create a token iterator factory.

BT_RLP_TokenIteratorFactory* factory =
 BT_RLP_TokenIteratorFactory::Create();

2. To decompose compound tokens or access readings (and the language processor supports the
operation), set the factory object accordingly.

//Provides access to readings.
factory->SetReturnReadings(true);

Using a Token Iterator

91

//Provides access to the components of compound tokens.
factory->SetReturnCompoundComponents(true);

3. Use the factory object to create a token iterator for the context which processed the text.

// context points to the BT_RLP_Context object used to process the text
BT_RLP_TokenIterator* iter = factory->CreateIterator(context);

4. Destroy the token iterator factory.

factory->Destroy();

5. Use the token iterator to access each token and obtain the data of interest.

while (iter->Next()) {
 //Get the data you want for each token.

 //Gets the token (BT_RLP_TOKEN).
 const BT_Char16* token = iter->GetToken();

 //Gets the token index.
 BT_UInt32 index = iter->GetIndex();

 //Gets the part of speech (BT_RLP_PART_OF_SPEECH) for the token.
 const char* pos = iter->GetPartOfSpeech();

 //Get alternative analyses (Arabic text only).
 if (iter->GetNumberOfAnalyses > 0) {
 const BT_Char16* altLemma;
 const BT_Char16* altRoot;
 while (iter->GetNextAnalysis) {
 altLemma = iter->GetLemmaForm();
 altRoot = iter->GetRootForm();
 //Handle altLemma and altRoot...
 }
 }
 //And so on.
}

6. Destroy the token iterator.

iter->Destroy();

9.2.2. Using a Result Iterator

You can use a BT_RLP_ResultIterator object to iterate through the results of a specified type. If
you are only interested in a single type, or if you want results of a type not returned by the token iterator,
use a result iterator. To get the results of more than one type, you must use a separate result iterator for
each type.

As you iterate through the results of a given type, the result iterator returns a pointer to each result object.
The structure of the data associated with the result object is determined by the result type. See Result data
structures [93] for the data structure associated with each result type and the BT_RLP_Result method
for accessing the data.

Procedure 9.2. How to Use a Result Iterator

1. Use the context object to create a result iterator for the desired result type.

Using a Result Iterator

92

//For example, create a result iterator to get base noun phrases.
BT_RLP_ResultIterator* iter =
 context->GetResultIterator(BT_RLP_BASE_NOUN_PHRASE);

2. Use the result iterator to access each result object, and the result object to access the data.

const BT_RLP_Result* bnp;
while ((bnp = iter->Next()) != NULL){
 //The result is a pair of integers, indexes of the first token and last
 //token + 1 in the base noun phrase.
 BT_UInt32 first, last;
 bnp->AsIntegerPair(first, last);
 //Use the result...
}

3. Destroy the result iterator.

context->DestroyResultIterator(iter);

9.2.2.1. Result Data Structures

The following table maps each result type to a result data structure. As indicated below, the
BT_RLP_Result class provides a method for accessing each data structure.

For descriptions of the result types, see Result types [83] .

Result type Data structure

BT_RLP_TOKEN Null-terminated UTF-16 string [94]

BT_RLP_TOKEN_SOURCE_NAME

BT_RLP_STEM

BT_RLP_MANY_TO_ONE_NORMALIZED_TOKEN

BT_RLP_NORMALIZED_TOKEN

BT_RLP_ROOTS

BT_RLP_GAZETEER_NAMES

BT_RLP_LEMMA

BT_RLP_RAW_TEXT Non-null-terminated UTF-16 string and string
length [94]BT_RLP_TRANSCRIBED_TEXT

BT_RLP_PART_OF_SPEECH String of 8-bit chars [94]

BT_RLP_DETECTED_ENCODING

BT_RLP_MIME_TYPE

BT_RLP_DETECTED_LANGUAGE Integer [95]

BT_RLP_DETECTED_SCRIPT

BT_RLP_STOPWORD

BT_RLP_SENTENCE_BOUNDARY

BT_RLP_TEXT_BOUNDARIES

BT_RLP_MAP_OFFSETS

BT_RLP_SOURCE_ID

Using a Result Iterator

93

Result type Data structure

BT_RLP_COMPOUND Integer and vector of UTF-16 strings [95]

BT_RLP_ALTERNATIVE_LEMMAS

BT_RLP_ALTERNATIVE_NORM

BT_RLP_ALTERNATIVE_ROOTS

BT_RLP_ALTERNATIVE_STEMS

BT_RLP_READING

BT_RLP_TOKEN_VARIATIONS

BT_RLP_ALTERNATIVE_PARTS_OF_SPEECH Integer and vector of ASCII strings [95]

BT_RLP_TOKEN_OFFSET Integer pair [96]

BT_RLP_BASE_NOUN_PHRASE

BT_RLP_NAMED_ENTITYY Integer triple [96]

BT_RLP_SCRIPT_REGION

BT_RLP_LANGUAGE_REGION Integer vector [96]

9.2.2.2. Null-terminated UTF-16 String

The BT_RLP_Result method

 const BT_Char16* AsUTF16String()

returns a null-terminated UTF16 string for the following result types:

• BT_RLP_TOKEN
• BT_RLP_TOKEN_SOURCE_NAME
• BT_RLP_STEM
• BT_RLP_LEMMA
• BT_RLP_NORMALIZED_TOKEN
• BT_RLP_MANY_TO_ONE_NORMALIZED_TOKEN
• BT_RLP_ROOTS

9.2.2.3. Non-Null-Terminated UTF-16 String and String Length

The BT_RLP_Result method

 const BT_Char16* AsCountedUTF16String(BT_UInt32 &length)

returns a UTF-16 string that is not null terminated for each of the following result types. The length
parameter returns the length of the string. A single iteration returns all the data. Alternatively, use the
context object [98] to return these single-valued types:

• BT_RLP_RAW_TEXT
• BT_RLP_TRANSCRIBED_TEXT

9.2.2.4. Null-Terminated String of 8-Bit Characters

The BT_RLP_Result method

 const BT_Char8* AsString()

returns a null-terminated string of 8-bit chars for the following result types:

Using a Result Iterator

94

• BT_RLP_PART_OF_SPEECH
• BT_RLP_DETECTED_ENCODING
• BT_RLP_MIME_TYPE

9.2.2.5. Integer

The BT_RLP_Result method

 BTUInt32 AsUnsignedInteger()

returns a 32-bit unsigned integer for the following result types:

• BT_RLP_DETECTED_LANGUAGE
• BT_RLP_DETECTED_SCRIPT
• BT_RLP_STOPWORD
• BT_RLP_SENTENCE_BOUNDARY
• BT_RLP_TEXT_BOUNDARIES
• BT_RLP_MAP_OFFSETS
• BT_RLP_TOKEN_SOURCE_ID

9.2.2.6. Integer and Vector of UTF-16 Strings

The BT_RLP_Result method

void AsIntegerUTF16StringVectorPair(BT_Uint32 &index,
 BT_RLP_Result_UTF16StringVector const *&strings)

returns the index to the token to which the result applies and a vector of UTF-16 strings for the following
types:

• BT_RLP_COMPOUND
• BT_RLP_READING
• BT_RLP_TOKEN_VARIATIONS
• BT_RLP_ALTERNATIVE_LEMMAS
• BT_RLP_ALTERNATIVE_NORM
• BT_RLP_ALTERNATIVE_ROOTS
• BT_RLP_ALTERNATIVE_STEMS

BT_RLP_Result_UTF16StringVector provides access to the size of the vector

BT_UInt32 BT_RLP_Result_UTF16StringVector::Size()

and a pointer to the specified string in the vector

 BT_Char16 const* BT_RLP_Result_UTF16StringVector::Get(BT_UInt32 index)

9.2.2.7. Integer and Vector of ASCII Strings

The BT_RLP_Result method

void AsIntegerStringVectorPair(BT_Uint32 &index,
 BT_RLP_Result_StringVector const *&strings)

returns the index to the token to which the result applies and a vector of ASCII strings for the following
type:

• BT_RLP_ALTERNATIVE_PARTS_OF_SPEECH

Using a Result Iterator

95

9.2.2.8. Integer Pair

The BT_RLP_Result method

 void AsIntegerPair(BTUInt32 &a, BTUInt32 &b)

Returns a pair of 32-bit unsigned integers for the following result types:

• BT_RLP_TOKEN_OFFSET

a is the raw-text offset of the start of the token.

b is the raw-text offset + 1 of the end of the token.

• BT_RLP_BASE_NOUN_PHRASE

a is the index of the first token in the noun phrase.

b is the index + 1 of the last token in the noun phrase.

9.2.2.9. Integer Triple

The BT_RLP_Result method

 void AsIntegerTriple(BTUInt32 &a, BTUInt32 &b, BTUInt32 &c)

returns three 32-bit unsigned integers for the following result types:

• BT_RLP_NAMED_ENTITY 1

a is the index of the first token in the named entity.

b is the index + 1 of the last token in the named entity.

c identifies the named entity type.

• BT_RLP_SCRIPT_REGION

a is the raw-text offset for the start of the script region.

b is the raw-text offset + 1 for the end of the script region.

c identifies the script.

9.2.2.10. Integer Vector

The BT_RLP_Result method

 void AsUnsignedIntegerVector(BTUInt32* vector, BTUInt32 size)

returns a vector of unsigned 32-bit integers for the following result type:

• BT_RLP_LANGUAGE_REGION

The vector contains six integers: start, end, level, type, script (not used), and language.

1See also Named Entity Iterator [97] .

Using a Result Iterator

96

9.2.3. Using the Named Entity Iterator

You can use the BT_RLP_NE_Iterator to iterate through NAMED_ENTITY [86] results generated
by Named Entity Extractor [156] , the Regular Expression processor [163] , the Gazetteer [144]
processor, and the Named Entity Redactor [160] .

Named Entity Iterator or Result Iterator? As described in the previous section, you can use the result
iterator [92] to iterate through named entities. The named entity iterator simplifies access to named entities
and provides some additional control over the data you can collect. If normalized tokens [86] are available,
the named entity iterator provides direct access to the normalized tokens in the named entities. You can
also instruct the iterator to strip affixes (prefixes and suffixes) from these tokens. These features are useful
in applications designed to generate query strings.

Note: Currently, RLP generates normalized tokens and supports affix stripping for Arabic only. You can
set Arabic Base Linguistics [126] to generate normalized tokens.

Procedure 9.3. How to Use the Named Entity Iterator

1. Create a Named Entity Iterator Factory.

BT_RLP_NE_Iterator_Factory* factory = BT_RLP_NE_Iterator_Factory::Create();

2. If you want to strip prefixes and suffixes from the tokens in the named entities, set the factory
StripAffixes flag to true. Currently, the stripping of affixes only applies to Arabic.

//Strip prefixes and suffixes.
factory->setStripAffixes(true);

3. Use the factory object to create the iterator for the context with which you have processed the text.

BT_RLP_NE_Iterator ne_iter = factory->CreateIterator(context);

4. Destroy the factory

factory->Destroy();

5. Use the Named Entity Iterator to iterate over the named entities in the context and get data of interest.

while (ne_iter->Next()) {
 //Get the data you want for each named entity.

 //Get the number of tokens in the named entity.
 BT_UInt32 size = ne_iter->Size();

 //Get the named entity as it appeared in the text.
 const BT_Char16* ne_raw = ne_iter->GetRawNamedEntity();

 //Get the normalized named entity.
 // * Whitespace between tokens is normalized to a single space.
 // * Uses normalized tokens if available; otherwise tokens.
 const BT_Char16* ne_normal = ne_iter->GetNamedEntity();

 //Get the named entity type (an integer), and its string representation
 //("PERSON", "LOCATION", "ORGANIZATION", ...).
 BT_UInt32 type = ne_iter->GetType();
 const char* type_name = BT_RLP_NET_ID_TO_STRING(type);

 //Get the token offsets for the start and end of the named entity.

Using the Named Entity Iterator

97

 BT_UInt32 start_token_offset = ne_iter->GetStartOffset();
 BT_UInt32 end_token_offset = ne_iter->GetEndOffset();

 //and so on ...
}

6. Destroy the Named Entity Iterator

ne_iter->Destroy();

9.2.4. Getting Results from the Context Object

You can use the BT_RLP_Context object to get single-valued results, that is results that do not require
an iterator. BT_RLP_Context also provides access to integer arrays, where each integer is a single result.

Single-valued Results

• Use

BT_Char8 const *GetStringResult(BT_RLP_EntityType type)

where type is BT_RLP_DETECTED_ENCODING. The result is an ASCII string.

• Use

BTUInt32 GetIntegerResult(BT_RLP_EntityType type)

where type is BT_RLP_DETECTED_LANGUAGE or BT_RLP_DETECTED_SCRIPT. The result is
an unsigned integer.

• Use

BT_Char16 const *GetUTF16StringResult(BT_RLP_EntityType type,
 BT_UInt32& resultLength)

where type is BT_RLP_RAW_TEXT or BT_RLP_TRANSCRIBED_TEXT, and resultLength
returns the length of the string. The result is a UTF-16 non-null-terminated string.

Multi-Valued Integer Results

• Provides support for getting an array of unsigned integers for sentence or text boundaries.

Use

BT_UInt32 const *GetUnsignedIntegerArrayResults(BT_RLP_EntityType type,
 BT_UInt32& count)

where type is BT_RLP_SENTENCE_BOUNDARY or BT_RLP_TEXT_BOUNDARIES and count
returns the size of the array of integers. The result is an array of integers.

9.3. Handling RLP Results in Java
RLPResultAccess [99] provides access to all the RLP result types.

RLPResultRandomAccess [102] is deprecated.

Getting Results from the Context Object

98

9.3.1. Using RLPResultAccess

Depending on the result type, call one of four methods:

• getListResult() returns a list of Strings, Integers, or int arrays.

• getMapResult() returns a sorted set of Map entries. For each entry, the key is an Integer token index
and the value is an array of Strings.

• getStringResult() returns a single String.

• getIntegerResult() returns a single Integer.

Procedure 9.4. How to Use RLPResultAccess

After you have used a context object to process text:

1. Instantiate an RLPResultAccess object.

//context is the RLPContext object used to process the text.
RLPResultAccess resultAccess = new RLPResultAccess(context);

2. Use the appropriate methods to retrieve the result data you want. For lists and maps, use the standard
java.util API to access individual results.

//For example, get a list of tokens, and a list of noun phrases.
//Each noun phrase object is int[2] with indexes that indicate
//the range of tokens that make up the noun phrase.
List tokenList = resultAccess.getListResult(RLPConstants.TOKEN);
List bnpList = resultAccess.getListResult(RLPConstants.BASE_NOUN_PHRASE)
Iterator iter = bnpList.iterator();
while (iter.hasNext()){
 // Start and end+1 token indexes for noun phrase.
 int[] pair = (int[])iter.next();
 int start = pair[0];
 int end = pair[1];
 StringBuffer nounPhrase = new StringBuffer();
 //Assemble the noun phrase.
 for (int i = start; i < end; i++){
 if (i < start)
 nounPhrase.append(" ");
 nounPhrase.append((String)tokenList.get(i));
 }
 //Handle the noun phrase.
 System.out.println("Noun Phrase: " + nounPhrase.toString());
}

//If the language contains (and you are using a processor that supports)
//compound words, you can get a Map of compounds. Each Integer key
//is the index of the corresponding token, and the value is an array of
//the Strings that make up the compound.
Map compoundMap = resultAccess.getMapResult(RLPConstants.COMPOUND);
iter = map.keySet().iterator();
while (iter.hasNext()){
 Integer key = (Integer)iter.next();
 //Can use the key to get the associated token.
 String token = tokenList.get(key.intValue());
 String[] value = (String[])map.get(key);

Using RLPResultAccess

99

 //Handle the compound...
}

//Singleton Integer and String results.
Integer langId =
 resultAccess.getIntegerResult(RLPConstants.DETECTED_LANGUAGE);
// Use langID int value to get the ISO639 2-letter language code.
String language = BTLanguageCodes.ISO639FromLanguageID(langId.intValue());

String mimeCharset =
 resultAccess.getStringResult(RLPConstants.DETECTED_ENCODING);

9.3.1.1. RLP Result Types and RLPResultAccess Methods

Result type RLPResultAccess method

RLPConstants.TOKEN getListResult() [101]

RLPConstants.PART_OF_SPEECH

RLPConstants.STEM

RLPConstants.MANY_TO_ONE_NORMALIZED_TOKEN

RLPConstants.NORMALIZED_TOKEN

RLPConstants.ROOTS

RLPConstants.LEMMA

RLPConstants.GAZETEER_NAMES

RLPConstants.STOPWORD

RLPConstants.SENTENCE_BOUNDARY

RLPConstants.TEXT_BOUNDARIES

RLPConstants.TOKEN_OFFSET

RLPConstants.BASE_NOUN_PHRASE

RLPConstants.NAMED_ENTITY

RLPConstants.SCRIPT_REGION

RLPConstants.LANGUAGE_REGION

RLPConstants.MAP_OFFSETS

RLPConstants.TOKEN_SOURCE_ID

RLPConstants.TOKEN_SOURCE_NAME

RLPConstants.COMPOUND getMapResult() [102]

RLPConstants.READING

RLPConstants.TOKEN_VARIATIONS

RLPConstnats.ALTERNATIVE_LEMMA

RLPConstants.ALTERNATIVE_NORM

RLPConstants.ALTERNATIVE_PARTS_OF_SPEECH

RLPConstants.ALTERNATIVE_ROOTS

RLPConstants.ALTERNATIVE_STEMS

Using RLPResultAccess

100

Result type RLPResultAccess method

RLPConstants.DETECTED_LANGUAGE getIntegerResult() [102]

RLPConstants.DETECTED_SCRIPT

RLPConstants.DETECTED_ENCODING getStringResult() [102]

RLPConstants.RAW_TEXT

RLPConstants.TRANSCRIBED_TEXT

RLPConstants.MIME_TYPE

9.3.1.2. RLPResultAccess getListResult() Method

 public List getListResult(int type)

returns a list of objects as follows:

type Objec
t

Comment

RLPConstants.TOKEN String A token [88]

RLPConstants.PART_OF_SPEEC
H

String A POS tag [86]

RLPConstants.STEM String Dictionary form of token [87]

RLPConstants.LEMMA String Lemma of token [85]

RLPConstants.MANY_TO_ONE_N
ORMALIZED_TOKEN

String A many-to-one normalized token [85]

RLPConstants.NORMALIZED_TO
KEN

String A normalized token [86]

RLPConstants.LEMMA String Lemma of token [85]

RLPConstants.ROOTS String Semitic root of word [87]

RLPConstants.TOKEN_SOURCE_
NAME

String (Japanese only) Name of the dictionary associated with the
TOKEN_SOURCE_ID [89]

RLPConstants.STOPWORD Intege
r

A stopword [88]

RLPConstants.SENTENCE_BOUN
DARY

Intege
r

Token index of sentence boundary (last token + 1 for the
sentence). [87]

RLPConstants.TEXT_BOUNDARI
ES

Intege
r

Offset for sentence-level text boundary (offset + 1 of end of
sentence) [88]

RLPConstants.MAP_OFFSETS Intege
r

Maps character in normalized text to its location in the pre-
normalized text. [85]

RLPConstants.TOKEN_SOURCE_
ID

Intege
r

(Japanese only) Identifies the dictionary in which the token
was found [88]

RLPConstants.TOKEN_OFFSET int[2] Pair of token offsets [88]

RLPConstants.BASE_NOUN_PHR
ASE

int[2] Token indexes delimiting a noun phrase [84]

RLPConstants.NAMED_ENTITY int[3] Token indexes delimiting a named entity and entity type
[86] (see also getNamedEntityData [103])

Using RLPResultAccess

101

type Objec
t

Comment

RLPConstants.SCRIPT_REGION int[3] Offsets and ID for a script region [87]

RLPConstants.LANGUAGE_REGI
ON

int[6] Offsets (2), level, type, script (not used), and language ID
for a language region [85]

9.3.1.3. RLPResultAccess getMapResult() Method

 public Map getMapResult(int type)

returns a sorted set of map entries where the key for each entry is an Integer index to the associated token
and the value is String[] (compound components, readings, or token alternatives). Use this method to
retrieve results of the following type:

• RLPConstants.COMPOUND
• RLPConstants.READING
• RLPConstants.TOKEN_VARIATIONS
• RLPConstants.ALTERNATIVE_LEMMAS
• RLPConstants.ALTERNATIVE_NORM
• RLPConstants.ALTERNATIVE_PARTS_OF_SPEECH
• RLPConstants.ALTERNATIVE_ROOTS
• RLPConstants.ALTERNATIVE_STEMS

9.3.1.4. RLPResultAccess getIntegerResult() Method

 public Integer getIntegerResult(int type)

returns a single Integer for the following result types:

• RLPConstants.DETECTED_LANGUAGE
• RLPConstants.DETECTED_SCRIPT

9.3.1.5. RLPResultAccess getStringResult() Method

 public String getStringResult(int type)

returns a single String for the following result types:

• RLPConstants.DETECTED_ENCODING
• RLPConstants.RAW_TEXT
• RLPConstants.TRANSCRIBED_TEXT
• RLPConstants.MIME_TYPE

9.3.2. RLPResultRandomAccess

The result random access object provides a single call that returns the entire result set for the specified
result type. Depending on type, you must cast the return value accordingly.

For most usage patterns, we recommend you use RLPResultAccess. For more information about this
lower-level API, see the Javadoc.

RLPResultRandomAccess

102

9.3.2.1. getNamedEntityData

You can use the getNamedEntityData() method to collect data about NAMED_ENTITY [86]
results generated by Named Entity Extractor [156] , the Regular Expression processor [163] , the
Gazetteer [144] processor, and the Named Entity Redactor [160] .

getNamedEntityData() or getListResult(). As described in the previous section, you can use the
getListResult() [101] to obtain the delimiting token indexes and entity type for each named entity.
getNamedEntityData() simplifies access to named entities and provides some additional control
over the data you can collect. If normalized tokens [86] are available, the named entity iterator provides
direct access to the normalized tokens in the named entities. You can also instruct the iterator to strip affixes
(prefixes and suffixes) from these tokens. These features are useful in applications designed to generate
query strings.

Note: Currently, RLP generates normalized tokens and supports affix stripping for Arabic only. You can
set Arabic Base Linguistics [126] to generate normalized tokens.

Procedure 9.5. How to Get Named Entity Data

1. Instantiate a RLPResultRandomAccess object

//context is the RLPContext object used to process the data.
RLPResultRandomAccess resultRA = new RLPResultRandomAccess(context);

2. Get an array of NamedEntityData objects (one for each named entity).

//If the text is Arabic and you have configured the processor to return normalized tokens,
//you can set stripAffixes to true to remove particle prefixes and suffixes from the
//named entity tokens.
boolean stripAffixes = true;
NamedEntityData neData = resultRA.getNamedEntityData(stripAffixes);

3. Used NamedEntityData methods to obtain the data of interest.

//For example, get normalized named entities and the String representation
//of their entity types.
for (int i = 0; i < neData.length; i++){
 //For all languages, normalized named entities contain a single space between tokens.
 //For Arabic text, the tokens are normalized tokens, if Arabic Base Linguistics is
 //configured to return normalized tokens.
 //To get the named entitites as they appear in the source text, use getRawNamedEntity().
 String normalizedNE = neData[i].getNormalizedNamedEntity();
 String typeName = neData[i].toString();
 //Handle the named entity.
 out.println("Normalized Named entity (" + typeName + "): " + normalizedNE);
}

RLPResultRandomAccess

103

104

Chapter 10. RLP Runtime Configuration
This chapter describes how to configure RLP to run with other applications or to be redistributed with other
applications.

10.1. Redistribution
When delivering your application to your customers, you may wish to include just a subset of RLP, either
to reduce your distribution size or to improve performance. This section explains how to pare off unwanted
processors, move portions of RLP into your own directory structure, and reconfigure your context(s).

To prepare to redistribute RLP with your application, do the following tasks:

1. Environment Configuration.

2. Context configuration; choose the processors you wish to distribute.

3. Alter the configuration files for each processor you include.

4. Include the necessary DLL or shared-object library files.

5. Don't forget the RLP license file.

These steps are discussed in further detail below.

10.2. Environment Configuration
When redistributing RLP with another application, you may have to move RLP out of its original directory .
If so, the application must set a new Basis root directory (BT_ROOT), where root means the installation
directory, the parent of the top-level rlp directory. See Setting the Basis Root Directory [21] .

Many RLP language processors use dictionaries and other resource files. The configuration file for each
processor specifies resource pathnames. Each pathname begins with <env name="root"/>. At
runtime, RLP replaces this element with the pathname to the BT_ROOT/rlp directory. When you distribute
an application, the location of the resources relative to the Basis root directory should not change. If it does
change, you must edit the processor configuration files accordingly.

10.3. Reducing Your Processors
If you intend to ship all RLP functionality with your application, stop here. Read on if you want to streamline
the performance of your application and reduce the size of your distribution by distributing only those RLP
processors that your application needs.

First, determine which processors you need. Then edit the context configuration XML document , as
described in Creating an RLP Application [17] , to include only those processors. Remember to check
each processor's dependencies, as discussed in RLP Processors [123] , and include all processors that
your chosen processors rely upon to function. For example, if you wish to include the Arabic Base
Linguistics language processor, you must also include the Tokenizer language processor.

For each processor that you remove, you can also remove the processor DLL or shared-object library file
from the binary directory (BT_ROOT/rlp/bin/BT_BUILD), where BT_ROOT is the Basis root directory
and BT_BUILD is the platform identifier embedded in your SDK package file name (see Supported
Platforms [13]). Use rlp-global.xml to identify the processor DLL or shared-object library file (see
below).

105

Many of the language processors use an options file to designate the location of dictionaries and data files
that the processor uses. For these processors, rlp-global.xml specifies the pathname of the options file. If
your context does not include a given processor, you do not need any of the resources listed in the options
file for that processor.

For example, rlp-global.xml contains the following entry for Arabic Base Linguistics (ARBL):

<languageprocessor name="ARBL" preload="no">
 <path type="so">bt_lp_arbl</path>
 <optionspath><env name="root"/>/etc/arbl-options.xml</optionspath>
</languageprocessor>

The processor DLL or shared-object library is identified by the path element: bt_lp_arb (the filename
of the Windows DLL also contains a version number). The options file is identified by the
optionspath element. <env name="root"/> means the RLP root directory (BT_ROOT/rlp). So
the ARBL options file is BT_ROOT/rlp/etc/arble-options.xml. This file designates the dictionary and
data files that ARBL uses.

<arblconfig>
 <compatpath><env name="root"/>/arla/dicts/compat_table-<env name="endian"/>.bin</compatpath>
 <prefixpath><env name="root"/>/arla/dicts/dictPrefixes-<env name="endian"/>.bin</prefixpath>
 <rootpath><env name="root"/>/arla/dicts/dictRoots-<env name="endian"/>.bin</rootpath>
 <stempath><env name="root"/>/arla/dicts/dictStems-<env name="endian"/>.bin</stempath>
 <suffixpath><env name="root"/>/arla/dicts/dictSuffixes-<env name="endian"/>.bin</suffixpath>
 <modelpath><env name="root"/>/arla/dicts/ar_pos_model-<env name="endian"/>.bin</modelpath>
 <model2path>
 <env name="root"/>/arla/dicts/ar_pos_model2-<env name="endian"/>.bin</model2path>
</arblconfig>

Any element that starts with <env name="root"/> designates the pathname of a resource file. If the
pathname includes <env name="endian"/>, substitute LE or BE in the filename, depending on
whether the platform byte order is little-endian or big-endian.

So if your context does not include ARBL (you are not processing Arabic text), you do not need the ARBL
processor or the data files listed above.

For a list of the files associated with each language processor, see Language Processor Resources
[109] .

10.3.1. Individual Processor Configuration

After selecting your processors, you may also need to edit their individual configuration files, which specify
dictionary locations and default parameters that may need to be modified.

10.4. Testing the Redistribution
We strongly recommend that you test your redistribution of RLP before shipping it with your application.
To check the basic functionality of RLP, you can run the RLP command-line utility [6] . You should also
run your own application in a variety of situations to ensure that RLP continues to function correctly.

10.5. Minimal Configuration
In order to optimize the performance of your application while using RLP, you may wish to start with a
minimal configuration, and then add processors and reset properties as necessary.

The following sections show configuration files designed to minimize RLP's memory usage.

Individual Processor Configuration

106

10.5.1. Arabic Minimal Configuration

10.5.1.1. Context Configuration

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE contextconfig SYSTEM
 "http://www.basistech.com/dtds/2003/contextconfig.dtd">

<contextconfig>
 <languageprocessors>
 <languageprocessor>Unicode Converter</languageprocessor>
 <languageprocessor>Tokenizer</languageprocessor>
 <languageprocessor>SentenceBoundaryDetector</languageprocessor>
 <languageprocessor>ARBL</languageprocessor>
 </languageprocessors>
</contextconfig>

10.5.2. Chinese Minimal Configuration

10.5.2.1. Context Configuration

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE contextconfig SYSTEM
 "http://www.basistech.com/dtds/2003/contextconfig.dtd">

<contextconfig>
 <properties>
 <!-- To minimize memory usage-->
 <property name="com.basistech.cla.pos" value="no"/>
 <property name="com.basistech.cla.readings" value="no"/>
 </properties>

 <languageprocessors>
 <languageprocessor>Unicode Converter</languageprocessor>
 <languageprocessor>CLA</languageprocessor>
 </languageprocessors>
</contextconfig>

10.5.3. European (BL1) Languages Minimal Configuration

10.5.3.1. Context Configuration

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE contextconfig SYSTEM
 "http://www.basistech.com/dtds/2003/contextconfig.dtd">

<contextconfig>
 <languageprocessors>
 <languageprocessor>Unicode Converter</languageprocessor>
 <languageprocessor>BL1</languageprocessor>
 </languageprocessors>
</contextconfig>

10.5.4. Japanese Minimal Configuration

10.5.4.1. Context Configuration

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE contextconfig SYSTEM

Arabic Minimal Configuration

107

 "http://www.basistech.com/dtds/2003/contextconfig.dtd">

<contextconfig>
 <languageprocessors>
 <languageprocessor>Unicode Converter</languageprocessor>
 <languageprocessor>JLA</languageprocessor>
 </languageprocessors>
</contextconfig>

10.5.5. Korean Minimal Configuration

10.5.5.1. Context Configuration

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE contextconfig SYSTEM
 "http://www.basistech.com/dtds/2003/contextconfig.dtd">

<contextconfig>
 <languageprocessors>
 <languageprocessor>Unicode Converter</languageprocessor>
 <languageprocessor>KLA</languageprocessor>
 </languageprocessors>
</contextconfig>

10.5.6. Farsi (Persian) Minimal Configuration

10.5.6.1. Context Configuration

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE contextconfig SYSTEM
 "http://www.basistech.com/dtds/2003/contextconfig.dtd">

<contextconfig>
 <languageprocessors>
 <languageprocessor>Unicode Converter</languageprocessor>
 <languageprocessor>Tokenizer</languageprocessor>
 <languageprocessor>SentenceBoundaryDetector</languageprocessor>
 <languageprocessor>FABL</languageprocessor>
 </languageprocessors>
</contextconfig>

10.5.7. Urdu Minimal Configuration

10.5.7.1. Context Configuration

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE contextconfig SYSTEM
 "http://www.basistech.com/dtds/2003/contextconfig.dtd">

<contextconfig>
 <languageprocessors>
 <languageprocessor>Unicode Converter</languageprocessor>
 <languageprocessor>Tokenizer</languageprocessor>
 <languageprocessor>SentenceBoundaryDetector</languageprocessor>
 <languageprocessor>URBL</languageprocessor>
 </languageprocessors>
</contextconfig>

Korean Minimal Configuration

108

10.6. Language Processor Resources
Each language processor has a DLL or shared-object library. Many language processors have an options
file, which along with other settings, designates the dictionary and other data files that the processor uses.

The remainder of this section provides the following information about each language processor:

Name
Case-sensitive name used to designate the processor in a context configuration file.

DLL or Shared-Object File
The processor file in BT_ROOT/rlp/bin/BT_BUILD . The DLL file names also include a version
number.

Options File
The processor configuration file.

Data Files
The dictionaries and other data files used by the processor. These files are specified in the options file
and may include user-defined files, such as user dictionaries or stopword lists.

Many binary files exist in two forms depending on the byte order of your platform. For (LE|BE) in
a file name, substitute LE if the platform byte order is little endian, BE if the byte order is big endian.

For more information about each processor, see RLP Processors [123] .

Arabic Base Linguistics

Name
ARBL

DLL or Shared-Object File
bt_lp_arbl

Options File
BT_ROOT/rlp/etc/arbl-options.xml

Data Files
BT_ROOT/rlp/arla/dicts/compat_table-(LE|BE).bin
BT_ROOT/rlp/arla/dicts/dictPrefixes-(LE|BE).bin
BT_ROOT/rlp/arla/dicts/dictRoots-(LE|BE).bin
BT_ROOT/rlp/arla/dicts/dictStems-(LE|BE).bin
BT_ROOT/rlp/arla/dicts/dictSuffixes-(LE|BE).bin
BT_ROOT/rlp/arla/dicts/ar_pos_model-(LE|BE).bin
BT_ROOT/rlp/arla/dicts/ar_pos_model2-(LE|BE).bin
BT_ROOT/rlp/arla/dicts/dictVocalizations-(LE|BE).bin
BT_ROOT/rlp/arla/dicts/dictGlosses-(LE|BE).bin
BT_ROOT/rlp/arla/dicts/dictLemmas-(LE|BE).bin

Base Noun Phrase Detector

Name
BaseNounPhrase

DLL or Shared-Object File
bt_lp_bnp

Language Processor Resources

109

Options File
BT_ROOT/rlp/etc/bnp-config.xml

Data Files
BT_ROOT/rlp/rlp/dicts/de_bnp_(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/de_bnp_data.bin
BT_ROOT/rlp/rlp/dicts/nl_bnp_(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/nl_bnp_data.bin
BT_ROOT/rlp/rlp/dicts/en_bnp_(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/en_bnp_data.bin
BT_ROOT/rlp/rlp/dicts/ja_bnp_(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/ja_bnp_data.bin
BT_ROOT/rlp/rlp/dicts/es_bnp_(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/es_bnp_data.bin
BT_ROOT/rlp/rlp/dicts/pt_bnp_(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/pt_bnp_data.bin
BT_ROOT/rlp/rlp/dicts/fr_bnp_(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/fr_bnp_data.bin
BT_ROOT/rlp/rlp/dicts/it_bnp_(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/it_bnp_data.bin
BT_ROOT/rlp/rlp/dicts/zh_bnp_(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/zh_bnp_data.bin
BT_ROOT/rlp/rlp/dicts/ar_bnp_(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/ar_bnp_data.bin

Base Linguistics Language Analyzer

Name
BL1

DLL or Shared-Object File
bt_lp_bl1

Options File
BT_ROOT/rlp/etc/bl1-config.xml

Data Files: Greek
BT_ROOT/rlp/bl1/dicts/el/*

Data Files: French
BT_ROOT/rlp/bl1/dicts/fr/*

Data Files: English
BT_ROOT/rlp/bl1/dicts/en/*

Data Files: Dutch
BT_ROOT/rlp/bl1/dicts/nl/*

Data Files: English Uppercase
BT_ROOT/rlp/bl1/dicts/en_uc/*
BT_ROOT/rlp/bl1/dicts/en/*

Data Files: Portuguese
BT_ROOT/rlp/bl1/dicts/pt/*

Language Processor Resources

110

Data Files: Russian
BT_ROOT/rlp/bl1/dicts/ru/*

Data Files: German
BT_ROOT/rlp/bl1/dicts/de/*

Data Files: Italian
BT_ROOT/rlp/bl1/dicts/it/*

Data Files: Hungarian
BT_ROOT/rlp/bl1/dicts/hu/*

Data Files: Polish
BT_ROOT/rlp/bl1/dicts/pl/*

Data Files: Czech
BT_ROOT/rlp/bl1/dicts/cs/*

Data Files: Spanish
BT_ROOT/rlp/bl1/dicts/es/*

Chinese Language Analyzer

Name
CLA

DLL or Shared-Object File
bt_lp_cla

Options File
BT_ROOT/rlp/etc/cla-options.xml

Data Files
BT_ROOT/rlp/cma/dicts/zh_lex_(LE|BE).bin
BT_ROOT/rlp/cma/dicts/zh_reading_(LE|BE).bin
BT_ROOT/rlp/cma/dicts/zh_stop.utf8

Chinese Script Converter

Name
CSC

DLL or Shared-Object File
bt_lp_csc

Options File
BT_ROOT/rlp/etc/csc-options.xml

Data Files
BT_ROOT/rlp/cma/dicts/zh_lex_(LE|BE).bin
BT_ROOT/rlp/c2c/dicts/SCTTCmpt_(LE|BE).bin
BT_ROOT/rlp/c2c/dicts/TCTSCmpt_(LE|BE).bin

Language Processor Resources

111

Farsi Base Linguistics

Name
FABL

DLL or Shared-Object File
bt_lp_fabl

Options File
BT_ROOT/rlp/etc/fabl-options.xml

Data Files
BT_ROOT/rlp/fabl/dicts/compat_table-(LE|BE).bin
BT_ROOT/rlp/fabl/dicts/dictPrefixes-(LE|BE).bin
BT_ROOT/rlp/fabl/dicts/dictStems-(LE|BE).bin
BT_ROOT/rlp/fabl/dicts/dictSuffixes-(LE|BE).bin
BT_ROOT/rlp/fabl/dicts/dictVocalizations-(LE|BE).bin
BT_ROOT/rlp/fabl/dicts/dictGlosses-(LE|BE).bin

Gazetteer

Name
Gazetteer

DLL or Shared-Object File
bt_lp_gazetteer

Options File
BT_ROOT/rlp/etc/gazetteer-options.xml

Data Files
BT_ROOT/rlp/rlp/dicts/fr-titles-gazetteer-(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/de-titles-gazetteer-(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/it-titles-gazetteer-(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/es-titles-gazetteer-(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/nl-titles-gazetteer-(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/pt-titles-gazetteer-(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/fa-titles-gazetteer-(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/ur-titles-gazetteer-(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/ru-nat-rel-gazetteer-(LE|BE).bin

HTML Stripper

Name
HTML Stripper

DLL or Shared-Object File
bt_lp_htmlstripper

Options File
None

Data Files
None

Language Processor Resources

112

iFilter

Name
iFilter

DLL or Shared-Object File
bt_lp_ifilter

Options File
None

Data Files
None

Japanese Language Analyzer

Name
JLA

DLL or Shared-Object File
bt_lp_jma

Options File
BT_ROOT/rlp/etc/jla-options.xml

Data Files
BT_ROOT/rlp/jma/dicts/JP_(LE|BE).bin
BT_ROOT/rlp/jma/dicts/JP_(LE|BE)_Reading.bin
BT_ROOT/rlp/jma/dicts/JP_stop.utf8

Korean Language Analyzer

Name
KLA

DLL or Shared-Object File
bt_lp_kla

Options File
BT_ROOT/rlp/etc/kla-options.xml

Data Files
BT_ROOT/rlp/kma/dicts/
BT_ROOT/rlp/utilities/data/
BT_ROOT/rlp/kma/dicts/kr_stop.utf8

Language Boundary Detector

Name
Language Boundary

DLL or Shared-Object File
bt_lp_lbd

Options File
None

Language Processor Resources

113

Data Files
None

ManyToOneNormalizer

Name
ManyToOneNormalizer

DLL or Shared-Object File
bt_lp_m1norm

Options File
BT_ROOT/rlp/etc/normalizer-options.xml

Data Files
BT_ROOT/rlp/jma/dicts/jon_(LE|BE).bin

mime_detector

Name
mime_detector

DLL or Shared-Object File
bt_lp_mime_detector

Options File
None

Data Files
None

Named Entity Extractor

Name
NamedEntityExtractor

DLL or Shared-Object File
bt_lp_ne

Options File
BT_ROOT/rlp/etc/ne-config.xml

Data Files: Russian
BT_ROOT/rlp/rlp/dicts/ru-memm-(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/ru-funcwords-(LE|BE).bin

Data Files: French
BT_ROOT/rlp/rlp/dicts/fr-memm-(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/fr-funcwords-(LE|BE).bin

Data Files: English
BT_ROOT/rlp/rlp/dicts/en-memm-(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/en-funcwords-(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/en-gazetteer-(LE|BE).bin

Language Processor Resources

114

Data Files: Dutch
BT_ROOT/rlp/rlp/dicts/nl-memm-(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/nl-funcwords-(LE|BE).bin

Data Files: English Uppercase
BT_ROOT/rlp/rlp/dicts/en_uc-memm-(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/en_uc-funcwords-(LE|BE).bin

Data Files: German
BT_ROOT/rlp/rlp/dicts/de-memm-(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/de-funcwords-(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/de-gazetteer-(LE|BE).bin

Data Files: Korean
BT_ROOT/rlp/rlp/dicts/ko-memm-(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/ko-funcwords-(LE|BE).bin

Data Files: Italian
BT_ROOT/rlp/rlp/dicts/it-memm-(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/it-funcwords-(LE|BE).bin

Data Files: Urdu
BT_ROOT/rlp/rlp/dicts/ur-memm-(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/ur-funcwords-(LE|BE).bin

Data Files: Farsi (Persian)
BT_ROOT/rlp/rlp/dicts/fa-memm-(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/fa-funcwords-(LE|BE).bin

Data Files: Arabic
BT_ROOT/rlp/rlp/dicts/ar-memm-(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/ar-funcwords-(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/ar-gazetteer-(LE|BE).bin

Data Files: Simplified Chinese
BT_ROOT/rlp/rlp/dicts/zh_sc-memm-(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/zh-funcwords-(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/zh_sc-gazetteer-(LE|BE).bin

Data Files: Japanese
BT_ROOT/rlp/rlp/dicts/ja-memm-(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/ja-funcwords-(LE|BE).bin

Data Files: Spanish
BT_ROOT/rlp/rlp/dicts/es-memm-(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/es-funcwords-(LE|BE).bin

Data Files: Traditional Chinese
BT_ROOT/rlp/rlp/dicts/zh_tc-memm-(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/zh-funcwords-(LE|BE).bin
BT_ROOT/rlp/rlp/dicts/zh_tc-gazetteer-(LE|BE).bin

Named Entity Redactor

Name
NERedactLP

Language Processor Resources

115

DLL or Shared-Object File
bt_lp_ne_redact

Options File
BT_ROOT/rlp/etc/neredact-config.xml

Data Files
None

Core Library for Unicode

Name
RCLU

DLL or Shared-Object File
bt_lp_rclu

Options File
None

Data Files
None

Other (File names Include the RCLU version number)
Windows (required at compile time): btuc
Windows (loaded at runtime): btchi, btjpn, btkor, btlat, btrow
Unix (required at compile time): BT_ROOT/rlp/lib/BT_BUILD/libbtunicode
Unix (loaded at runtime): btchi, btjpn, btkor, btlat, btrow

Regular Expression

Name
RegExpLP

DLL or Shared-Object File
bt_lp_regexp

Options File
BT_ROOT/rlp/etc/regex-config.xml

Data Files
None

REXML

Name
REXML

DLL or Shared-Object File
bt_op_rexml

Options File
None

Data Files
None

Language Processor Resources

116

Rosette Language Identifier

Name
RLI

DLL or Shared-Object File
bt_lp_rli

Options File
None

Data Files
None

Other
Windows: bteuclid
Unix: BT_ROOT/rlp/lib/BT_BUILD/libbteuclid

Script Boundary

Name
Script Boundary

DLL or Shared-Object File
bt_lp_scrbd

Options File
None

Data Files
None

Sentence Boundary Detector

Name
SentenceBoundaryDetector

DLL or Shared-Object File
bt_lp_sbd

Options File
BT_ROOT/rlp/etc/sbd-config.xml

Data Files
BT_ROOT/rlp/rlp/dicts/de-dict.dict
BT_ROOT/rlp/rlp/dicts/en-dict.dict

Stopwords

Name
Stopwords

DLL or Shared-Object File
bt_lp_stop

Language Processor Resources

117

Options File
BT_ROOT/rlp/etc/stop-options.xml

Data Files
BT_ROOT/rlp/etc/en-stopwords.txt

Text Boundary Detector

Name
Text Boundary

DLL or Shared-Object File
bt_lp_tbd

Options File
None

Data Files
None

Tokenizer

Name
Tokenizer

DLL or Shared-Object File
bt_lp_tokenizer

Options File
None

Data Files
None

Unicode Converter

Name
Unicode Converter

DLL or Shared-Object File
bt_lp_unicode_converter

Options File
None

Data Files
None

Urdu Base Linguistics

Name
URBL

DLL or Shared-Object File
bt_lp_urbl

Language Processor Resources

118

Options File
BT_ROOT/rlp/etc/urbl-options.xml

Data Files
BT_ROOT/rlp/urbl/dicts/compat_table-(LE|BE).bin
BT_ROOT/rlp/urbl/dicts/dictPrefixes-(LE|BE).bin
BT_ROOT/rlp/urbl/dicts/dictStems-(LE|BE).bin
BT_ROOT/rlp/urbl/dicts/dictSuffixes-(LE|BE).bin
BT_ROOT/rlp/urbl/dicts/dictVocalizations-(LE|BE).bin
BT_ROOT/rlp/urbl/dicts/dictGlosses-(LE|BE).bin

10.7. Managing RLP Configuration Files
The RLP SDK uses a number of configuration files to determine the name and location of resources,
including the RLP license, language processors, dictionaries, and other data files. This section details the
measures you need to take if you want to move the RLP configuration files or associated resource files to
locations other than their original location in the SDK distribution.

10.7.1. The Configuration Files

Their Original Location. The RLP configuration files are in BT_ROOT/rlp/etc, where BT_ROOT is
the root of the RLP SDK installation and a value you specify during RLP initialization.

Environment Configuration. The environment configuration file (rlp-global.xml) provides the path
to the RLP license, the named entities configuration file (ne-types.xml), and the language processor option
files (bl1-config.xml, arbl-options.xml, jla-options.xml, etc.).

RLP License. The RLP license file (BT_ROOT/rlp/rlp/licenses/rlp-license.xml) defines the scope of
the RLP features that you are authorized to use in your applications.

Named Entities Configuration. The named entities configuration file (ne-types.xml) defines the names
of entity types and subtypes and the weights for resolving conflicts between statistical analysis, regular
expressions, and gazetteers when more than one processor identifies the same or overlapping text as an
entity.

Option Files. The option files define processor-specific settings, including the paths to dictionaries and
other resources.

If you move some or all of these files.

1. You must edit the configuration files [119] to reflect the new locations.

2. During RLP initialization, be sure to provide the correct location of the environment configuration
file [121] .

The values you provide at initialization enable RLP to find the environment configuration file. The
environment configuration file must include the correct path to the license and the other configuration files,
which must include the correct path to the resources they use.

10.7.2. Editing Configuration Files

The only edits you need to make in the configuration files are to correct the paths. Each path is prepended
with <env name="root"/>, which RLP interprets as BT_ROOT/rlp, using the BT_ROOT that you
specified during initialization.

Managing RLP Configuration Files

119

10.7.2.1. Editing the Environment Configuration File

The environment configuration file (rlp-global.xml) specifies the path to the processor options files. For
each processor that uses an options file, the associated <languageprocessor> element contains an
<optionspath> element, which uses <env name="root/> to begin each path with an absolute
reference to BT_ROOT/rlp. For example:

 <languageprocessor name="BaseNounPhrase" preload="no">
 <path type="so">bt_lp_bnp</path>
 <optionspath><env name="root"/>/etc/bnp-config.xml</optionspath>
 </languageprocessor>

If RLP is installed in C:/Program Files/Basis Technology/RLP SDK, the pathname of the Base Noun
Phrase Detector options file is C:/Program Files/Basis Technology/RLP SDK/rlp/etc/bnp-config.xml.

You do not need to edit the path unless you move the options file to a different location.

For any paths that you edit, we recommend that you use absolute paths. 1 You can prepend your paths
with <env name="root"/>, or you can put in a literal string that provides the complete absolute path.
If, for example, you move bnp-config.xml to C:\configurations, you can specify the path as follows:

<optionspath><env name="root"/>/../../../configurations/bnp-config.xml</optionspath>

or

<optionspath>C:/configurations/bnp-config.xml</optionspath>

Note: On Windows, you can also use the '\' directory delimiter, but '/' works fine and is consistent with the
current path layout in the RLP configuration files.

10.7.2.2. Editing the Language Processor Option Files

Each of the language processor option files specifies the path to the resources the processor requires. As
in the environment configuration file, each path specification begins with <env name="root/>, which
at runtime RLP replaces with the absolute path to BT_ROOT/rlp.

For example, bnp-config.xml provides the path to a grammar file and a data file for each language it
support. For Japanese:

 <config language="ja">
 <grammarpath><env name="root"/>/rlp/dicts/ja_bnp_<env name="endian"/>.bin</grammarpath>
 <datapath><env name="root"/>/rlp/dicts/ja_bnp_data.bin</datapath>
 </config>

If you move these files to C:/my_application/dicts, you could edit the entry to read:

 <!-- BT_ROOT is C:/Program Files/Basis Technology/RLP SDK-->
 <config language="ja">
 <grammarpath><env name="root"/>/../../../my_application/dicts/ja_bnp_<env name="endian"/>.bin</grammarpath>
 <datapath><env name="root"/>/../../../my_application/dicts/ja_bnp_data.bin</datapath>
 </config>

or

 <config language="ja">
 <grammarpath>C:/my_application/dicts/ja_bnp_<env name="endian"/>.bin</grammarpath>

1If you use a relative path, it is relative to the working directory of the current process, not the location of the file that designates the path. Accordingly
you can only use relative paths if the working path is guaranteed to be consistent for all RLP applications that use these configuration files.

Editing Configuration Files

120

 <datapath>C:/my_application/dicts/ja_bnp_data.bin</datapath>
 </config>

If you are only deploying on Windows, as the example implies, you can replace <env
name="endian"/> with LE (little endian).

Review each of the option files for the processors you plan to use, and edit the path specifications, using
the absolute path to the resource, or <env name="root/> plus the relative path from BT_ROOT/rlp
to the resource.

10.7.3. Initializing the RLP Environment

After setting BT_ROOT, provide the path to the environment configuration file when you initialize the RLP
environment.

As illustrated in the sample applicatons in the RLP Application Developer's Guide, the C++, Java, C,
and .NET APIs include calls for setting BT_ROOT and the pathname of the environment configuration file.

See:

• C++ Sample [28]
• Java Sample [34]
• C Sample [59]
• .NET sample [69]

10.7.4. Note On the Sample Applications

The sample applications shipped with RLP and the scripts for building and running the samples are based
on the distribution path structure. If you move the samples or the files they use (the environment
configuration file, processor option files, input files, RLP context files), you must modify the scripts and
sample sources accordingly.

Initializing the RLP Environment

121

122

Chapter 11. RLP Processors

11.1. Overview
The RLP language processors are documented in this chapter in the format described below.

Note that licenses are required on a per-language, per-feature basis. Before a language processor runs, it
checks for a license for the given language and feature (e.g., English tokenizing). Licensing failures are
recorded in a log if logging is turned on to report the warning channel. See Logging [21] for more details.
RLP also provides an API for determining the scope of features enabled by your license. See Getting
License Information [24] .

The documentation for each processor contains the following information:

Name
Name used to specify the processor in a context configuration file. Names are case-sensitive.

Dependencies
If the processor relies on the result(s) of another processor, then it is listed here by Name.

Note that the transitive closure of dependencies is not shown here; if processor C depends on the output
of B, and B depends on the output of A, then the Dependencies section for C only includes B, not B
and A.

Use processor dependencies to optimize the context configuration file. First, make sure that all desired
language processors are included in the file. Then make sure that all dependencies are included for
each of the processors. To maximize performance, remove everything else.

For example, to create a context that handles Unicode-encoded English and Japanese down to the
sentence boundary detection level, with REXML formatted output, the context configuration file
should look like the following:

<contextconfig>
 <languageprocessors>
 <languageprocessor>Unicode Converter</languageprocessor>
 <languageprocessor>BL1</languageprocessor>
 <languageprocessor>JLA</languageprocessor>
 <languageprocessor>SentenceBoundaryDetector</languageprocessor>
 <languageprocessor>REXML</languageprocessor>
 </languageprocessors>
</contextconfig>

For English, the BL1 processor provides tokenization, POS tagging, and sentence boundaries. The
JLA does nothing, because it produces output only for Japanese. The SentenceBoundaryDetector does
nothing, because BL1 has already produced sentence boundaries.

For Japanese, BL1 does nothing because Japanese is not a supported BL1 language. JLA provides
tokenization and POS tagging (and possibly readings and compounds). SentenceBoundaryDetector
provide sentence boundaries in this case, because there are no existing sentence boundary results when
it is run.

Language Dependent
Indicates whether the processor is language specific and lists the languages it can process. You can
employ either of the following techniques to inform the language-specific processors of the language
of the input text. Processors in the context that do not process the specified language do nothing.

123

• Use the Rosette Language Identifier (RLI) [178] to detect the language.

• Use the RLP Context object to specify the language.

For the C++ API, see ProcessFile, and ProcessBuffer in BT_RLP_Context [api-
reference/cpp-reference/classBT__RLP__Context.html]. For the Java API, see the process
methods in RLPContext [api-reference/java-reference/com/basistech/rlp/RLPContext.html].

XML-Configurable Options
If the processor has an XML options file that the user can configure, this section details the format of
the file and describes each option.

Context Properties
Describes context properties that configure the runtime behavior of the processor. See also Global
Context Properties [125] .

Many processors have options that may be configured in the context configuration file. Properties can
be set via entries in the context configuration XML file, as determined by the contextconfig DTD:

<!ELEMENT properties (property+)>
<!ELEMENT property EMPTY>
<!ATTLIST property name CDATA #REQUIRED>
 <!ATTLIST property value CDATA #REQUIRED>

The syntax of the configuration is very important. When a context property is specified in a
configuration file, its name must be prefixed by com.basistech. <processor name>. For example,
The following setting specifies the REXML output file:

<property name="com.basistech.rexml.output_pathname"
 value="rlp-output.xml"/>

Boolean Properties

You must use one of the following case-sensitive values to set a boolean property: "yes",
"true", "no", "false". For example,

<property name="com.basistech.cla.break_at_alphanum_intraword_punct"
 value="TRUE"/>

does not work. Depending on the processor, using an invalid value is either interpreted as
false or is ignored (the default setting is used).

Context properties can also be specified via the API. See Setting Context Properties [26] .

Description
This section describes in detail the functionality provided by the processor.

11.1.1. Text Being Processed

An RLP language processor is designed either to process text in one language (the common case) or to
process text in multiple languages.

One language at a time. Most RLP language processors are designed to process text in a single language.
You either specify the language when you use the context object to process the input text, or you use the
Language Identifier [178] to identify the language. The context may include multiple language
processors, but only the processors applicable to the language of the input text are used. For example, if

Text Being Processed

124

the input text is Japanese and the context includes the Japanese and Chinese language analyzers (JLA and
CLA), JLA processes the text and CLA is inactive.

Input text in more than one language. Three of the processors are designed to process input text that may
contain multiple languages and multiple writing scripts: Text Boundary Detector [186] , Script Boundary
Detector [184] , and Language Boundary Detector [152] . Collectively, these three language processors
make up the Rosette Language Boundary Locator (RLBL), formerly known as the Multilingual Language
Identifier (MLI). You use these processors in the order listed to determine language regions. Then you can
extract each region from the raw text and submit it to another context with the appropriate language
identifier for detailed linguistic processing.

11.2. Global Context Properties
Most context properties apply to a single language processor (the processor name is embedded in the
property name) and are described in the section on that processor. A global context property is not processor
specific; it may apply to multiple languages and multiple language processors.

The mechanisms for setting global context properties and processor-specific context properties is the same;
see Setting Context Properties [26] .

Global Context Property Type Default Description

com.basistech.bl.query boolean false If set to true, the base linguistics processor treats the
input as a query (search terms), not as prose
(sentences).

Accelerates processing and avoids the errors
identifying STEMs [87] that may occur when
attempting to apply contextual analysis to a
linguistically arbitrary collection of words. Given
the absence of syntactic context, POS [86] tags are
not returned.

Currently applies to the Arabic Base Linguistics
[126] , the Farsi Base Linguistics [141] , and Urdu
Base Linguistics [188] processors.

11.3. Arabic Script Normalization
ARBL [126] , FABL [141] , and URBL [188] apply Arabic script normalization respectively to
Arabic, Farsi (Persian), and Urdu input text prior to performing language-specific normalization.

Important

If processing text in Arabic script that includes characters from Arabic Presentation Forms A (U
+FB50 - U+FDFF) and/or Arabic Presentation Forms B (U+FE70 - U+FEFF), use RCLU
[168] with com.basistech.rclu.FormKCNormalization [169] set to true to
normalize these characters to standard Arabic script characters (U+0600 - U+06FF). Otherwise,
these characters are not recognized as Arabic-script characters and the words containing them are
not recognized as Arabic, Farsi (Persian), or Urdu.

When you examine the results generated by RLP, keep in mind that some fonts do not accurately
display all Arabic ligatures. The Scheherazade Sil International font does an excellent job of
rendering Arabic ligatures.

Global Context Properties

125

• The following diacritics are removed: kashida, dammatan, kasratan, fatha, damma, kasra, shadda,
sukun.

• The following characters are removed: left-to-right marker, right-to-left marker, zero-width joiner,
BOM, non-breaking space, soft hyphen, full stop.

• Alef maksura is converted to yeh unless it is at the end of the word or followed by hamza.

• All numbers are are converted to Arabic numbers (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) 1 , thousand separators are
removed, and the decimal separator changed to a period (U+002E). The normalizer handles cases where

.is (incorrectly) used as the decimal separator (reh) ر

• Alef with hamza above: ٵ (U+0675), ٲ (U+0672), or ا (U+0627) combined with ٔ(U+0654) is converted

to أ (U+0623).

• Alef with madda above: ا (U+0627) combined with ٓ(U+0653) is converted to آ (U+0622).

• Alef with hamza below: ٳ (U+0673) or ا (U+0627) combined with ٕ (U+0655) is converted to إ (U+0625).

• Misra to Ain: Misra (U+060F) is converted to ع (U+0639).

• Swash kaf to kaf: ڪ (U+06AA) is converted to ک (U+06A9).

• Heh: ە (U+06D5) is converted to ه (U+0647).

• Teh marbuta: ۃ (U+06C3) is converted to ة (U+0629).

• Yeh with hamza above: The following combinations are converted to ئ (U+0626).

combined with ٔ(U+0654) (U+06CC) ی

combined with ٔ(U+0654) (U+0649) ى

combined with ٔ(U+0654) (U+064A) ي

• Waw with hamza above: و (U+0648) combined with ٔ(U+0654), ٷ (U+0677), or ٶ (U+0676) is

converted to ؤ (U+0624).

11.4. Processors

11.4.1. Arabic Base Linguistics

Name
ARBL

Dependencies
Tokenizer, SentenceBoundaryDetector

1As distinguished from the Arabic-Indic numerals often used in Arabic script (٩ ,٨ ,٧ ,٦ ,٥ ,٤ ,٣ ,٢ ,١ ,٠) or the Eastern Arabic-Indic numerals often
used in Farsi (Persian) and Urdu Arabic script (۰, ۱, ۲, ۳, ۴, ۵, ۶, ۷, ۸, ۹).

Processors

126

Language Dependent
Arabic

XML-Configurable Options
None. The paths to the ARBL dictionaries and related resources are defined in BT_ROOT/rlp/etc/arbl-
options.xml.

Context Properties

For brevity, the com.basistech.arbl prefix has been removed from the property names in the
first column. Hence the full name for roots is com.basistech.arbl.roots.

Property Type Default Description

alternatives boolean false If set to true, ARBL posts an additional results of type
ALTERNATIVE_NORM, ALTERNATIVE_LEMMAS,
ALTERNATIVE_ROOTS, ALTERNATIVE_STEMS, and
ALTERNATIVE_PARTS_OF_SPEECH.

lemmas boolean false If set to true, ARBL posts an additional result of type LEMMA.

roots boolean false If set to true, ARBL posts an additional result of type ROOTS.

variations boolean false If set to true, ARBL posts an additional result of type
TOKEN_VARIATION.

When processing a query (a collection of one or more search terms) rather than prose (one or more
sentences), set the com.basistech.bl.query global context property [125] to true.

Description
The ARBL language processor performs morphological analysis and part-of-speech (POS) tagging for
texts written in Modern Standard Arabic.

The processor generates the following result types:

• STEM [87]
• NORMALIZED_TOKEN [86]
• PART_OF_SPEECH [86]
• TOKEN_VARIATIONS [89] — if com.basistech.arbl.variations is true (default is

false).
• ROOTS [87] — if com.basistech.arbl.roots is true (default is false).
• LEMMA [85] — if com.basistech.arbl.lemmas is true (default is false).
• Alternative Analyses — if com.basistech.arbl.alternatives is true (default is false).

Unless com.basistech.bl1.query is set to true, the first analysis is the disambiguated
analysis, and the others are not ordered. If com.basistech.bl1.query is set to true,
disambiguation does not take place and the analyses are not ordered.
• ALTERNATIVE_STEMS [84]
• ALTERNATIVE_NORM [83]
• ALTERNATIVE_PARTS_OF_SPEECH [83]
• ALTERNATIVE_ROOTS [84] — com.basistech.arbl.roots must be set to true
• ALTERNATIVE_LEMMAS [83] — com.basistech.arbl.lemmas must be set to true

Normalization

Each Arabic token is normalized prior to morphological analysis. Unless
com.basistech.bl.query is set to true, ARBL may choose a token variant during morphological
analysis and normalize it to produce the value for the NORMALIZED_TOKEN result.

Arabic Base Linguistics

127

For languages written in Arabic script, normalization is performed in two stages: generic Arabic script
normalization [125] and language-specific normalization.

The following language-specific normalizations are performed on the output of the Arabic script
normalization:

• Zero-width non joiner (U+200C) and superscript alef ٰ (U+0670) are removed.

• Fathatan ً (U+064B) is removed.

• Farsi yeh (U+06CC) is normalized to yeh (U+064A) if it is initial or medial; if final, it is normalized
to alef maksura (U+0649).

• Kaf ک (U+06A9) is converted to ك (U+0643).

• Heh ہ (U+06C1) or ھ (U+06BE) is converted to ه (U+0647).

Following morphological analysis, the normalizer does the following:

• Alef wasla ٱ (U+0671) is replaced with plain alef ا (U+0627).

• If a word starts with the incorrect form of an alef, the normalizer retrieves the correct form: plain

alef ا (U+0627), alef with hamza above أ (U+0623), alef with hamza below إ (U+0625), or

alef with madda above آ (U+0622).

Variations

The analyzer can generate a number of variant forms for each Arabic token to account for the
orthographic irregularity seen in contemporary written Arabic. Each variation is added to the output
of the previous variation, starting with the normalized form:

• If a token contains a word-final hamza preceded by yeh or alef maksura, then a variant is created
that replaces these with hamza seated on yeh.

• If a token contains waw followed by hamza on the line, a variant is created that replaces these with
hamza seated on waw.

• Variants are created where word-final heh is replaced by teh marbuta, and word-final alef
maksura is replaced by yeh.

When the com.basistech.arbl.variations property setting is true the generated
orthographic variations for a token are returned in the TOKEN_VARIATIONS result. Regardless of
the property setting, these variations are generated and considered in the morphological analysis and
POS tagging.

The stem returned in the STEM result is the normalized token with affixes (such as prepositions,
conjunctions, the definite article, proclitic pronouns, and inflectional prefixes) removed.

When the com.basistech.arbl.roots property is true, the consonantal root for the token is
generated, if possible.

Arabic Base Linguistics

128

A Note on Stemming

In the process of stripping morphemes (affixes) from a token, ARBL produces a STEM, a
LEMMA, and a ROOT. Stems and lemmas result from stripping most of the inflectional
morphemes, while roots result from stripping derivational morphemes.

Inflectional morphemes indicate plurality or verb tense. Different forms, such as singular and
plural noun, or past and present verb tense share the same stem if the forms are regular. If
some of the forms are irregular, they do not share the same stem, but do share the same lemma.
Since stems and lemmas preserve the meaning of words, they are very useful in text retrieval
and search in general.

Words that have a more distant linguistic relationship share the same root.

Examples. The singular form الكتابة (al-kitaaba, the writing) and plural form كتابات
(kitaabaat, writings) share the same stem: كتاب (kitaab). On the other hand, كُتُب (kutub,

books) is an irregular form and does not have the same stem as كِتَاب (kitaab, book). But

both forms do share the same lemma, which is the singular form كِتَاب (kitaab). The words

 and ,(kutub, books) كُتُب ,(al-maktab, the desk) المَكْتَب ,(maktaba, library) مكتبة

are related in the sense that a library contains books and (al-kitaaba, the writing) الكتابة
desks, a desk is used to write on, and writings are often found in books. All of these words

share the same root: َكَتَب (kataba).

11.4.2. Base Linguistics Language Analyzer

Name
BL1

Dependencies
None (see below)

Language Dependent
Yes. This language processor processes many European languages. The supported languages are the
following:

Language Code Language

cs Czech

de German

el Greek

en English

en_uc Upper-Case Englisha

es Spanish

fr French

hu Hungarian

it Italian

nl Dutch

Base Linguistics Language Analyzer

129

Language Code Language

pl Polish

pt Portuguese

ru Russian
aFor more accurate processing of upper-case English text, specify the en_uc language code in place of en.

See Appendix B [209] for a listing of the POS tags for these languages.

XML-Configurable Options
BL1 uses a memory limit, language-specific machinery, and optional user dictionaries specified in
BT_ROOT/rlp/etc/bl1-config.xml.

For each language, the machinery may include a tokenizing FST (finite state transducer), a
morphological lookup script, default part-of speech tags, special tags for internal use only, and an
internal lemma dictionary used during disambiguation.

Memory limit. The bl1config memory-limit attribute defines the limit on the amount of
language machinery BL1 will load into memory. Each time BL1 is called, it loads resources for the
language being processed, and holds these resources for the remainder of the RLP environment session.
If BL1 is called multiple times with input in different languages, the memory requirements increase.
If the defined limit is reached, BL1 reports a warning, clears memory, re-initializes, and, continues
processing the next language. By default, the limit is 200,000,000 bytes: <bl1config memory-
limit="200000000">. You can modify this limit; if you set it to 0, there is no limit. Keep in mind
that if the limit is too high, BL1 is forced to start paging, and performance deteriorates.

multiprogramming-limit. The multiprogramming-limit specifies the number of threads
that may execute in the BL1 processor simultaneously. The default is 100. Simultaneously executing
threads make simultaneous demands upon the virtual memory space available to BL1. If the application
in use exploits multiple threads, and a multiple-core multi-processor is in use, it is advantageous to
support at least that many threads. But if, in a highly parallel and multiprogrammed application such
as a web server, thread memory contention results in decreased performance, it may be advantageous
to experiment with bringing this number down nearer to the number of processor cores.

Morphological Lookup Script. The only setting you can modify for a language is the
morphological lookup script. Two scripts are provided for each language:

lookup-mor.txt
This script uses full morphological tagging internally. These extra tags are used by
NamedEntityExtractor [156] for more accurate results. This is the default script.

lookup-lem.txt
This script uses only part-of-speech tags. These are shorter than the full morphological tags, so
less memory is used and the lookups are faster (around 10 percent). Do not use this script if
NamedEntityExtractor results are needed.

For example, to change the morphological lookup script for English from full morphological tagging
to part-of-speech tagging, revise the <morpho-script> in the English section:

<bl1-options language="en">
 <tokenizer><env name="root"/>/bl1/dicts/en/tokenize.fst</tokenizer>
 <morpho-dir><env name="root"/>/bl1/dicts/en</morpho-dir>
 <morpho-script>
 <env name="root"/>/bl1/dicts/en/lookup-mor.txt
 </morpho-script>

Base Linguistics Language Analyzer

130

 ...
</bl1-options>

so that it reads

 <morpho-script>
 <env name="root"/>/bl1/dicts/en/lookup-lem.txt
 </morpho-script>

User Dictionaries. You can create one or more user dictionaries for each language that BL1 supports.
To instruct BL1 to employ a user dictionary, you must add a <user-dict> element to the appropriate
language section in bl1-config.xml. The following example adds a German user dictionary.

 <bl1-options language="de">
 <tokenizer><env name="root"/>/bl1/dicts/de/tokenize.fst</tokenizer>
 ...
<user-dict>
<env name="root"/>/bl1/dicts/de/userdict-<env name="endian"/>.bin</user-dict>
</bl1-options>

<env-name="endian"> evaluates to LE on little-endian platforms and BE on big-endian
platforms. To deploy a user dictionary on both little-endian platforms (such as an Intel x86 CPU) and
big-endian platforms (such as Sun's SPARC), compile separate dictionaries for each. For more
information, see European Language User Dictionaries [193] .

Morphological Caching. For both English and German, the configuration file includes a <morpho-
cache> element with the path to a morphological dictionary for commonly used words. This dictionary
is cached at runtime to improve the speed with which BL1 can analyze text in these languages.

Pathnames. The BL1 configuration file specifies pathnames to various resources, including the
morphological directory where FSTs, data files, and scripts are kept. Each pathname begins with <env
name="root">. At runtime, RLP replaces this element with the pathname to the RLP root directory
(BT_ROOT/rlp). When you distribute an application, the location of the resources relative to RLP
root should not change. See Environment Configuration [105] .

Context Properties
None

Description
The Base Linguistics Language Processor provides tokenization, sentence boundary detection,
stemming, and part-of-speech tagging for the supported languages. By default, it returns the following
results:

• TOKEN [88]
• TOKEN_OFFSET [88]
• SENTENCE_BOUNDARY [87]
• PART_OF_SPEECH [86]
• STEM [87] 2

For languages with compound words (German, Dutch, and Hungarian), the components are separated
and returned in COMPOUND [84] results.

2Depending on the PART_OF_SPEECH BL1 assigns to a TOKEN, the STEM may vary. For example, the English "getting" may return "get" (verb:
PARTPRES or VPROG) or "getting" (adjective or noun: ADJING or NOUNING), depending on context.

Base Linguistics Language Analyzer

131

Note

Tokenizer and Sentence Boundary Detector are no longer necessary for BL1, and thus they
do nothing when BL1 precedes them in the context.

User Dictionaries
You may create your own dictionaries for the languages that BL1 supports. See European Language
User Dictionaries [193] .

11.4.3. Base Noun Phrase Detector

Name
BaseNounPhrase

Dependencies
Tokenized text and part-of-speech tags: BL1, CLA, JLA, KLA; or Tokenizer and ARBL.

Language Dependent
Arabic, Chinese, Dutch, English, French, German, Italian, Japanese, Korean, Portuguese, Spanish.

XML-Configurable Options
The BaseNounPhrase options are defined in BT_ROOT/rlp/etc/bnp-config.xml. For example:

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE bnpconfig SYSTEM "bnpconfig.dtd">

<bnpconfig version="2.0">
 <config language="de">
 <grammarpath><env name="root"/>/rlp/dicts/de_bnp.bin</grammarpath>
 <datapath><env name="root"/>/rlp/dicts/de_bnp_data.bin</datapath>
 </config>

 <config language="en">
 <grammarpath><env name="root"/>/rlp/dicts/en_bnp.bin</grammarpath>
 <datapath><env name="root"/>/rlp/dicts/en_bnp_data.bin</datapath>
 </config>

 <config language="ja">
 <grammarpath><env name="root"/>/rlp/dicts/ja_bnp.bin</grammarpath>
 <datapath><env name="root"/>/rlp/dicts/ja_bnp_data.bin</datapath>
 </config>

</bnpconfig>

This file conforms to bnpoconfig.dtd:

<!ENTITY % pathname "(#PCDATA | env)+"
<!ELEMENT bnpconfig (config)+>
<!ATTLIST bnpconfig version #FIXED "2.0">
<!ELEMENT config (grammarpath, datapath)>
<!ATTLIST config language CDATA #REQUIRED>
<!ELEMENT grammarpath %pathname>
<!ELEMENT datapath %pathname>
<!ELEMENT env EMPTY>
<!ATTLIST env name CDATA #REQUIRED>

BaseNounPhrase data is available for ten languages: Arabic, Chinese (Simplified and Traditional),
Dutch, English, French, German, Italian, Japanese, and Spanish.

Base Noun Phrase Detector

132

The names of the grammar and data files are all patterned on ln _bnp.bin and ln _bnp_data.bin,
where ln is replaced by the ISO 639-1 two-letter language code.

Context Properties
None

Description
One of the most important kinds of structure to assign to a document is the identification of noun
phrases (NP). A phrase is a self-contained group of words with a discrete meaning; a noun phrase is
a phrase that functions as a noun in a sentence. Examples of noun phrases include (almost) every title
of a book, movie, play and piece of music.

Noun phrases can also be recursive. That is, a noun phrase may contain other noun phrases as
component parts. For instance, the following are all noun phrases:

it
apples
the apple
the green apple
the round red juicy apple
the green apple on the table
the red apple on the table in the kitchen
the red apple that I ate at lunch yesterday

A base noun phrase is a noun phrase that is not recursive, that is, it does not contain other noun phrases
inside it. So, the first five noun phrases in the list above are base noun phrases, and the remaining ones
are complex noun phrases that contain base noun phrases inside them. Below, the list of noun phrases
is repeated with the base noun phrases bracketed:

[it]
[apples]
[the apple]
[the green apple]
[the round red juicy apple]
[the green apple] on [the table]
[the red apple] on [the table] in [the kitchen]
[the red apple] that [I] ate at [lunch] yesterday

Note

A noun phrase that involves an associative relationship between two nouns is treated as a
single base noun phrase. For example, ' king of France' and 'ambitious student of linguistics'
are single, non-recursive noun phrases.

For each supported language, RLP supplies a model of what constitutes a base noun phrase. At each
point in the input, RLP detects the longest possible base noun phrase consistent with the model.

The BASE_NOUN_PHRASE [84] results consist of a pair of integers for each noun-phrase identified:
index of the first token in the phrase and index + 1 of the last token in the phrase.

11.4.4. Chinese Language Analyzer

Name
CLA

Dependencies
None

Chinese Language Analyzer

133

Language Dependent
Chinese (Simplified and Traditional)

XML-Configurable Options
The options for the Chinese Language Processor are described by the BT_ROOT/rlp/etc/cla-
options.xml file. For example:

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE claconfig SYSTEM "claconfig.dtd">

<claconfig>
 <dictionarypath>
 <env name="root"/>/cma/dicts/zh_lex_<env name="endian"/>.bin</dictionarypath>
 <readingdictionarypath>
 <env name="root"/>/cma/dicts/zh_reading_<env name="endian"/>.bin</readingdictionarypath>
 <stopwordspath><env name="root"/>/cma/dicts/zh_stop.utf8</stopwordspath>
</claconfig>

The configuration file conforms to claconfig.dtd:

<!ENTITY % pathname "(#PCDATA | env)+"
<!ELEMENT claconfig (dictionarypath, posdictionarypath,
 readingdictionarypath, stopwordspath)>
<!ELEMENT dictionarypath (#PCDATA | env)*>
<!ELEMENT readingdictionarypath (#PCDATA | env)*>
<!ELEMENT stopwordspath (#PCDATA | env)*>
<!ELEMENT lockdictionary EMPTY >
<!ATTLIST lockdictionary value (yes | no) 'no'>
<!ELEMENT env EMPTY >
<!ATTLIST env name CDATA #REQUIRED>

The dictionarypath specifies the path name to the main dictionary used for segmentation. Users
must use the main dictionary that comes with the analyzer. In addition, users can create and employ
user dictionaries [196] . This option must be specified at least once. Users can specify one main
dictionary and zero or more user dictionaries.

The readingdictionarypath specifies the path to the analyzer's reading dictionary, which is
used to look up readings for segmented tokens.

The stopwordspath specifies the pathname to the stopwords list used by the analyzer. To
customize the stopwords list; see Editing the Stopwords List for Chinese, Korean, or Japanese
[193] .

The lockdictionary value indicates whether or not the pages containing the dictionary are locked
in RAM.

Context Properties
The following table lists the context properties supported by the CLA processor. Note that for brevity
the com.basistech.cla prefix has been removed from the property names in the first column.
Hence the full name for break_at_alphanum_intraword_punct is
com.basistech.cla.break_at_alphanum_intraword_punct.

Chinese Language Analyzer

134

Property Type Default Description

break_at_alphanum_intraword_pu
nct

boolean false If true, CLA considers
punctuation between
alphanumeric characters as
a break. For example, the
text "www.basistech.com"
is segmented as a single
token when the option is
false, but as five tokens
when it is true: "www", ".",
"basistech", ".", and "com".

decomposecompound boolean true If true, CLA decomposes
compound words into their
components. A word is
subject to decomposition if
it is a user-dictionary entry
with a decomposition
pattern [197] or a noun in
the CLA dictionary that
contains more than 4
characters. Words are never
decomposed into a sequence
of single-character units.

favor_user_dictionary boolean false If true, resolve conflicts
between a user dictionary
[196] and a system
dictionary in favor of the
user dictionary.

generate_all boolean true If true, all the readings for a
token are returned. For
single characters, these are
returned in brackets,
separated by semicolons.

ignore_stopwords boolean false If false, stopwords are
returned and the vector of
STOPWORD results [88]
is instantiated.aIf true,
tokens that are stopwords
are not returned to the caller.

Chinese Language Analyzer

135

Property Type Default Description

limit_parse_length non-
negativ
e
integer

0 (no limit) Sets the maximum number
of characters, n that are
processed in a single parse
buffer as a sentence. CLA
normally starts parsing after
it detects a sentence
boundary. When a limit is
set, CLA starts parsing
within n characters, even if
a sentence boundary has not
yet been detected. Setting a
limit avoids delays when the
processor encounters
thousands of characters but
no sentence boundary.
Note: Basis Technology
recommends setting the
limit n to at least 100.
Depending on the type of
text being processed, any
number less than 100 may
degrade tokenization
accuracy or cause CLA to
split a valid token across
buffers and not detect the
token correctly.

normalize_result_token false boolean If true, CLA generates
STEM [87] results with
normalized number tokens:
full-width Latin digits and
punctuation are converted to
their half-width
counterparts, grouping
separators are removed
(e.g., 2,000 becomes 2000),
and Hanzi numerals and
mixed Hanzi/Latin numeric
expressions are converted to
Latin.

pos boolean true If true,
PART_OF_SPEECH [86]
results are calculated.

Chinese Language Analyzer

136

Property Type Default Description

reading_by_character boolean false If true, the reading for a
polysyllabic token is
determined on a per-
character basis, instead of
by the token as a whole.
Generally speaking, this
usage is problematic for
polyphonic Hanzi, such as
都, which can be read as
dou1 or du1 depending on
the context. For example,
when followed by 市, it is
pronounced du1 (as in
du1shi4), but is pronounced
dou1 when used alone.

reading_type string "tone_marks" Sets the representation of
tones. Possible values:
• "tone_marks"b --

diacritics over the
appropriate vowels

• "tone_numbers" -- a
number from 1-4,
suffixed to each syllable

• "no_tones" -- pinyin
without tone presentation

• "cjktex" -- pinyin
generated as macros for
the CJKTeX pinyin.sty
style

readings boolean true If true, READING [87]
results are calculated. These
results contain the pinyin
transcription of the word in
most cases, and alternative
pinyin transcriptions when
the recognized word has
more than one way to be
pronounced.

separate_syllables boolean false If true, the syllables in the
reading for a polysyllabic
token are separated by a
vertical line ("|").

Chinese Language Analyzer

137

Property Type Default Description

use_v_for_u_diaresis boolean false If true, v is used instead of
ü. The value is implicitly
true when
reading_type is
"cjktex," and is ignored
when reading_type is
"tone_marks". The
substitution of v is common
in environments that lack
diacritics. It is probably
most useful when
reading_type is
"tone_numbers".

whitespace_is_number_sep boolean true Whether the Chinese
language processor treats
whitespace (horizontal and
vertical) as a number
separator. If true, the text
"1995 1996" is segmented
as two tokens; if false, the
same text is segmented as a
single token. Note: the
default behavior
(whitespace is a numeric
separator) yields different
behavior than CLA versions
prior to Release 4.3.

aIf stopwords are returned, you can determine with the C++ API whether a given token is a stopword by calling
BT_RLP_TokenIterator::IsStopword. In Java, you can use the List contains method to see whether the list of
stopword references returned by RLPResultAccess getListResult(RLPConstants.STOPWORD) contains the
Integer index of the token.
bThe readings are generated in Unicode, and not all Unicode fonts include glyphs for the codepoints used to represent
"tone_marks".

Description
The Chinese Language Processor segments Chinese text into separate tokens (words and punctuation)
and assigns part-of-speech (POS) tags to each token. For the list of POS tags with examples, see
Chinese POS Tags - Simplified and Traditional [210] . CLA also reports offsets for each token, and
alternative readings, if any, for Hanzi or Hanzi compounds.

The Chinese Language Processor returns the following result types:

• TOKEN [88]
• TOKEN_OFFSET [88]
• PART_OF_SPEECH [86] — if com.basistech.cla.pos is true (the default)
• COMPOUND [84] — if com.basistech.cla.decomposecompound is true (the default)
• READING [87] (pinyin transcriptions) — if com.basistech.cla.readings is true (the

default)
• STEM [87] — if com.basistech.cla.normalize_result_token is true (the default

is false)
• STOPWORD [88] — if com.basistech.cla.ignore_stopwords is false (the default)

Chinese Language Analyzer

138

Chinese User Dictionaries
You can create user dictionaries for words specific to an industry or application. User dictionaries
allow you to add new words, personal names, and transliterated foreign words. In addition, you can
specify how existing words are segmented. For example, you may want to prevent a product name
from being segmented even if it is a compound. For more information, see Chinese User
Dictionaries [196] .

11.4.5. Chinese Script Converter

Name
CSC

Dependencies
None

Language Dependent
Chinese (Simplified and Traditional)

XML-Configurable Options
The options for the Chinese Script Converter are defined in BT_ROOT/rlp/etc/csc-options.xml.
Modify this file as necessary. A sample configuration follows:

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE cscconfig SYSTEM "http://www.basistech.com/dtd/cscconfig.dtd">
<cscconfig>
 <worddictionarypath>
 <env name="root"/>/cma/dicts/zh_lex_<env name="endian"/>.bin</worddictionarypath>
 <s2tmappingdictionarypath>
<env name="root"/>/c2c/dicts/SCTTCmpt_<env name="endian"/>.bin</s2tmappingdictionarypath>
 <t2smappingdictionarypath>
<env name="root"/>/c2c/dicts/TCTSCmpt_<env name="endian"/>.bin</t2smappingdictionarypath>
</cscconfig>

This file conforms to the cscconfig.dtd:

<!ELEMENT cscconfig (worddictionarypath,
 s2tmappingdictionarypath, t2smappingdictionarypath)>
<!ELEMENT worddictionarypath (#PCDATA | env)*>
<!ELEMENT s2tmappingdictionarypath (#PCDATA | env)*>
<!ELEMENT t2smappingdictionarypath (#PCDATA | env)*>
<!ELEMENT env EMPTY >
<!ATTLIST env name CDATA #REQUIRED>

The worddictionarypath specifies the pathname to a dictionary used for segmentation, which is
performed in the orthographic and lexemic modes of conversion as described below.

The s2tmappingdictionarypath specifies the pathname to a dictionary used in orthographic and lexemic
conversion. from Simplified Chinese to Traditional Chinese.

The t2smappingdictionarypath specifies the pathname to a dictionary used in orthographic and lexemic
conversion. from Traditional Chinese to Simplified Chinese.

Note that the conversion dictionaries are not in the same directory as the word dictionary.

Context Properties
The following table lists the context properties supported by the CSC processor. For brevity, the
com.basistech.csc. prefix has been removed from the property names in the first column. For

Chinese Script Converter

139

example, the full name of conversion_level is
com.basistech.csc.conversion_level.

Property Type Default Description

conversion_level string "lexemic" The type of conversion to perform. Possible
values are "codepoint", "orthographic", and
"lexemic", as described below.

source_locale string "cn" Chinese-speaking region of the source text.
Currently supported possible values are
"cn" (People's Republic of China),
"tw" (Taiwan), "hk" (Hong Kong),
"sg" (Singapore), and "mo" (Macau).

source_script string "sc" Script of the source text. Possible values are
"sc" (simplified), "tc-tw" (traditional,
Taiwan), "tc-hk" (traditional, Hong Kong),
and "tc-cn" (traditional, People-s Republic
of China).

destination_locale string "tw" Chinese-speaking region of the destination
text. Currently supported possible values
are "cn" (People's Republic of China),
"tw" (Taiwan), "hk" (Hong Kong),
"sg" (Singapore), and "mo" (Macau).

destination_script string "tc-tw" Script of the destination text. Possible
values are "sc" (simplified), "tc-
tw" (traditional, Taiwan), "tc-
hk" (traditional, Hong Kong), and "tc-
cn" (traditional, People-s Republic of
China).

Description
There are two forms of standard written Chinese. Simplified Chinese and Traditional Chinese.
Simplified Chinese (SC) is used in the People’s Republic of China (PRC). SC normally uses the
GB2312-80 or GBK character set. Traditional Chinese (TC) is used in Taiwan, Hong Kong, and Macau.
TC normally uses the Big Five character set. Conversion from one script to another is a complex matter.
The main problem of SC to TC conversion is that the mapping is one-to-many. For example, the
simplified form 发 maps to either of the traditional forms 發 or 髮. Conversion must also deal with
vocabulary differences and context-dependence.

The Chinese Script Converter converts text in simplified script to text in traditional script, or vice
versa. The conversion can be on any of three levels. The first is codepoint conversion, which uses a
mapping table to convert characters on a codepoint-by-codepoint basis. For example, the simplified
form 头发 might be converted to a traditional form by first mapping 头 to 頭, and then 发 to either
髮 or 發. Using this approach, however, there is no recognition of 头发 as a word, the choice could
be 發, in which case the end result 頭發 would be nonsense. On the other hand, the choice of 髮 would
lead to errors for other words. So while conversion mapping is straightforward, it is unreliable.

The second level of conversion is orthographic. This level relies upon identification of the words in a
text. Within each word, orthographic variants of each character may be reflected in the conversion. In
the above example, 头发 would be identified as a word. It would be converted to a traditional variant
of the word, 头髮. There would be no basis for converting it to 頭發, because the conversion considers
the word as a whole rather than the individual characters.

Chinese Script Converter

140

The third level of conversion is lexemic. This level also relies upon identification of words. But rather
than converting a word to an orthographic variant, the aim here is to convert it to an entirely different
word. For example, "computer" is usually 计算机 in SC but 電脳 in TC. Whereas codepoint conversion
is strictly character-by-character and orthographic conversion is character-by-character within a word,
lexemic conversion is word-by-word.

The Chinese Script Converter returns the following result types (replacing any values already set with
the correct values resulting from the conversion):
• RAW_TEXT [87]
• TOKEN [88] — In the case of orthographic and lexemic conversion, the tokens are the converted

words in the destination script. In the case of codepoint conversion, the tokens are the converted
characters in the destination script.

• TOKEN_OFFSET [88]
• DETECTED_LANGUAGE [84]
• DETECTED_SCRIPT [85]

11.4.6. Farsi (Persian) Base Linguistics

Name
FABL

Dependencies
Tokenizer, SentenceBoundaryDetector

Language Dependent
Farsi (Persian)

XML-Configurable Options
None. The paths to the FABL dictionaries and related resources are defined in BT_ROOT/rlp/etc/
fabl-options.xml.

Context Properties

For brevity, the com.basistech.fabl prefix has been removed from the property name in the
first column. Hence the full name for variations is com.basistech.fabl.variations.

Property Type Default Description

variations boolean false If set to true, FABL posts an additional result of type
TOKEN_VARIATION.

Description

The FABL language processor performs morphological analysis for text written in Farsi (Persian). 3

The processor generates the following result types:

• STEM [87]
• NORMALIZED_TOKEN [86]
• TOKEN_VARIATIONS [89] (if the com.basistech.fabl.variations property is true)

3We still use "Persian" in the API to refer to the language widely spoken in Iran. In a future release, we will complete the shift from "Persian" to
"Farsi". This enables us to distinguish between the Persian dialects spoken in Iran (Farsi) and Afghanistan (Dari).

Farsi (Persian) Base Linguistics

141

Normalization

Each Farsi token is normalized prior to morphological analysis. During morphological analysis, FABL
may choose a token variant and normalize it to produce the value for the NORMALIZED_TOKEN result.

Normalization is performed in two stages: generic Arabic script normalization [125] and Farsi-
specific normalization.

The following Farsi-specific normalizations are performed on the output of the Arabic script
normalization:

• Fathatan (U+064B) and superscript alef (U+670) are removed.

• Alef أ (U+0623), إ (U+0625), or ٱ (U+0671) is converted to ا (U+0627).

• Kaf ك (U+0643) is converted to ک (U+06A9).

• Heh Heh goal (U+06C1) or heh doachashmee (U+06BE) is converted to heh (U+0647).

• Heh with hamza ۂ (U+06C2) is converted to ۀ (U+06C0).

• Yeh ي (U+064A) or ى (U+0649) is converted to ی (U+06CC).

Following morphological analysis:

• Zero-width non joiner (U+200C) and superscript alef ٰ (U+0670) are removed.

Variations

The analyzer can generate a variant form for some tokens to account for the orthographic irregularity
seen in contemporary written Farsi. Each variation is generated with the normalized form:

• If a word contains hamza on yeh (U+626), a variant is generated replacing the hamza on yeh with
Farsi yeh (U+06CC).

• If a word contains hamza on waw (U+0624), a variant is generated replacing the hamza on waw
with waw (U+0648).

• If a word contains a zero-width non joiner (U+200C), a variant is generated without the zero-width
non joiner.

• If a word ends in teh marbuta (U+0629), two variants are generated. The first replaces the teh
marbuta with teh (U+062A); the second replaces the teh marbuta with heh (U+0647).

When the com.basistech.fabl.variations property setting is true , the generated
orthographic variations for a token are returned in the TOKEN_VARIATIONS result. Regardless of
the property setting, these variations are generated and considered in the morphological analysis.

A Note on Stemming

The stem returned in the STEM result is the normalized token with affixes (prefixes and
suffixes) removed.

In removing prefixes and suffixes, FABL takes particular care with regard to the Unicode
zero-width non joiner (U+200C). Farsi makes extensive use of compound words. In Farsi

Farsi (Persian) Base Linguistics

142

orthography, the components of a compound are not separated by whitespace. However, they
are also not joined even when the last letter of the leading component could be joined to the
first letter of the following component. The zero-width non joiner is used to prevent renderers
from joining. When stemming, FABL does not stem compounds joined with the zero-width
non joiner, such as نگارروزنامه (journalist); FABL does not remove either part of the
compound.

As a general principle, words containing zero-width non joiner and/or superscript alef will
have the same stem as the same words without zero-width non joiner or the superscript
alef.

If com.basistech.bl.query is false (the default), FABL generates up to 20
orthographic variants for each token that might have other forms of spelling. For instance,
words ending in teh marbuta could have an alternative orthographic variant with a final teh
instead, especially if the borrowed word adheres to the Farsi derivational morphology ت
rules. If the word is parseable, FABL performs morphological analysis to determime the stem.
If the word is not parseable, FABL takes the next parseable alternative orthographic variant
and returns its stem.

If com.basistech.bl.query is true, FABL does not generate orthographic variants.
If the word is parseable, FABL performs morphological analysis to determine the stem. If
the word is not parseable, FABL sets the stem to the value of the entire word.

11.4.7. FragmentBoundaryDetector

Name
FragmentBoundaryDetector

Dependencies
Requires tokens, which are generated by BL1 [129] , CLA [133] , JLA [147] , KLA [151] ,
SentenceBoundaryDetector [183] , or Tokenizer [187] .

FragmentBoundaryDetector should be placed in the RLP Context after other processors that locate
sentence boundaries (BL1, Sentence Boundary Detector) and before processors that extract named
entities (NamedEntityExtractor [156] , Regular Expression [163] if
com.basistech.regexp.respect_boundaries is set to true).

Language Dependent
No

XML-Configurable Options
None

Context Properties
None

Description
Adds extra sentence boundaries [87] at tabs, newlines, and multiple whitespace characters (such as
3 or more spaces) in text fragments, such as lists and tables. The processor does not add sentence
boundaries in portions of text that it judges to be standard prose.

If sentence boundaries already exist, FragmenetBoundaryDetector appends the sentence boundaries
it finds. The result is a set of unique sentence boundaries in the order they appear in the document.

This processor may be useful if you are using NamedEntityExtractor to extract named entities from
text that does not form sentences or that contains sections that do not form sentences. For example:

FragmentBoundaryDetector

143

George Washington
John Adams
Thomas Jefferson

If the FragmentBoundaryDetector is not in the RLP Context, the NamedEntityExtractor tags the
preceding text as a single PERSON entity. When the FragmentBoundaryDetector is in the RLP
Context, this text is tagged as three separate PERSON entities.

11.4.8. Gazetteer

Name
Gazetteer

Dependencies
Tokenized text: Tokenizer or language analyzer.

Language Dependent
The processor is not language dependent, but individual gazetteers may be language specific or generic
(for all languages).

XML-Configurable Options
The file BT_ROOT/rlp/etc/gazetteer-options.xml specifies normalization options and one or more
gazetteers. For example:

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE gazetteerconfig SYSTEM "gazetteerconfig.dtd">
<gazetteerconfig>
<option name="NormalizeCase" value="true" />
<option name="NormalizeSpace" value="true" />
<option name="NormalizeKana" value="false" />
<option name="NormalizeWidth" value="false" />
<option name="NormalizeDiacritics" value="false" />
<DictionaryPaths>
 <!-- BinDictionaryPath elements specify precompiled binary gazetteers for use by Basis Technology.
 They are not listed in this extract from the configuration file. -->

<!-- Insert your dictionaries here (each entry on a single line)
 <DictionaryPath><env name="root"/>/your/path/here</DictionaryPath>
-->
</DictionaryPaths>
</gazetteerconfig>

Note: At runtime, RLP replaces <env name="root"/> with the path to the RLP root directory
(BT_ROOT/rlp).

Normalization Options. These normalization options are applied to gazetteer entries when the
gazetteers are loaded and to input text when scanned for matches.

NormalizeCase If true, normalizes gazetteer entries and input text to lower case.

NormalizeSpace If true, normalizes whitespace in gazetteer entries to a single space.

NormalizeKana If true, convert Hiragana characters to Katakana in gazetteer entries and
the input text.

NormalizeWidth If true, normalizes half-width and full-width characters in the gazetteer
and in the input text to "generic-width" characters.

Gazetteer

144

NormalizeDiacritics If true, strips diacritics and accents from gazetteer entries and input
text.

Dictionary Paths. For each gazetteer, include a DictionaryPath element with an optional
language attribute: the ISO639 language code for the language that the regular expression can be
applied to (see ISO639 Language Codes [11]). If the attribute is left out, the gazetteer is applied to
all languages.

For example,

<DictionaryPath language="ko"><env name="root"/>/kma/gaz/Korean-gaz.txt</DictionaryPath>

is used for Korean text only, whereas

<DictionaryPath><env name="root"/>/gaz/Generic-gaz.txt</DictionaryPath>

is used for text in any language.

The BinDictionaryPath elements define the language and path for the binary gazetteers that
Basis provides for finding titles, nationality, and religion (see the Standard Set of Named Entities
[47]).

Context Properties
The following table lists the context properties supported by the Gazetteer processor. Note that for
brevity the com.basistech.gazetteer prefix has been removed from the property names in
the first column. For example, the full name for report_partial_matches is
com.basistech.gazetteer.report_partial_matches.

Property Type Defaulta Description

report_partial_matches boolean false Report matches that do not line up with
token boundaries. For example, report a
match for "the" in "thermal".

space_matches_whitespace boolean true If true, the space character in gazetteer
entires matches any whitespace in the input
text. To normalize whitespace in gazetteer
entries to a single space, set
NormalizeSpace to true in gazetteer-
options.xml (see above).

aFor binary gazetteers, the default settings always apply.

Description
The Gazetteer processes text that has already passed through another language processor and isolates
specific terms defined by the user in a text gazetteer or terms defined by Basis in a binary gazetteer.
Users cannot read or edit the contents of a binary gazetteer. A text gazetteer has the following
properties:

• UTF-8 encoded file

• Comment line(s) prefixed with #.

• The first non-comment line is the named entity type, which applies to all entries in the gazetteer,
and will be used as the entity type name for output. The syntax for the name is type:subtype, where
subtype is optional. If the type and subtype appear in BT_ROOT/rlp/etc/ne-types.xml, the Named

Gazetteer

145

Entity Redactor [160] will use the weighting assigned in that file to resolve duplicates or overlaps.
If the type does not appear in that file, it gets the default weighting of 10.

• User-defined entity strings, one per line.

For example:

File: en-gazetteer.txt
#
This is a user-defined gazetteer file.
Gazetteer file is a UTF-8 text file.
Comment line starts with # in the beginning of line.
The first non-comment line is the entity type,
which will be used to label named entities found.
All other lines after the named entity type are gazetteer entries.
#
MESSAGE
message in a bottle
ordinary mail

The Gazetteer performs the following:

• Generates an internal lookup structure based on the gazetteer files specified in gazetteer-
options.xml. Individual gazetteer files may be language specific or generic. A gazetteer that is
specified to be language specific, is only applied to text in that language. A generic gazetteer is
applied to text in any language. See Dictionary Paths [145] .

• Searches the input raw text for matches of entries in the gazetteer and generates
NAMED_ENTITY [86] results. Each NE token consists of three integers:

• Index of first token in the named entity

• Index + 1 of last token in the named entity.

• Entity type - which maps to the named entity type string that appears at the beginning of the
gazetteer.

For detailed information about creating Gazetteer files, see Customizing Gazetteer [53] .

11.4.9. HTML Stripper

Name
HTML Stripper

Dependencies
None

Language Dependent
No

XML-Configurable Options
None

Context Properties
None

Description

HTML Stripper

146

HTML input includes markup tags that degrade the accuracy of linguistic analysis. HTML Stripper
strips HTML tags from the input, detects the encoding, and converts the plain text to the correct UTF-16
for the runtime platform. If the MIME type of the input is not text/html, HTML Stripper does nothing.

If the input is HTML, the HTML Stripper generates the following results: RAW_TEXT [87] and
DETECTED_ENCODING [84] .

Notes On HTML Stripping

HTML Stripper strips the content of <script> elements and HTML comments (<!-- this is a
comment-->), and converts character entity references (such as & and >) to
characters.

See also the iFilter [147] processor.

11.4.10. iFilter

Name
iFilter

Dependencies
Windows only. Requires input file pathname and MIME type.

To provide the pathname, use BT_RLP_Context ProcessFile (C++) or one of the
RLPContext process methods (Java) that takes a filename parameter.

To provide the MIME type, include the mime_detector [155] processor in the context before
iFilter, or include it with the pathname in the API call to process the input.

Language Dependent
No

XML-Configurable Options
None

Context Properties
None

Description
Uses the Microsoft Indexing Service to extract plain text from the input file. The output is UTF-16
RAW_TEXT [87] . RLP recognizes the following MIME types:

• text/plain
• text/html
• text/xml
• text/rtf
• application/pdf
• application/msword
• application/vnd.ms-excel
• application/vnd.ms-powerpoint
• application/ms.access

11.4.11. Japanese Language Analyzer

Name
JLA

iFilter

147

Dependencies
None

Language Dependent
Japanese

XML-Configurable Options

Settings for the Japanese Language Analyzer are specified in BT_ROOT/rlp/etc/jla-options.xml. This
file includes pathnames for the main dictionary used for tokenization and POS tagging, the reading
dictionary (with yomigana pronunciation aids expressed in Hiragana), a stopwords list, and may
include one or more user dictionaries.

The user can edit the stopwords list [191] and create user dictionaries [199] .

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE jlaconfig SYSTEM "jlaconfig.dtd">
<jlaconfig>
<DictionaryPaths>
 <DictionaryPath><env name="root"/>/jma/dicts/JP_<env name="endian"/>.bin</DictionaryPath>
 <!-- Add a DictionaryPath for each user dictionary -->
</DictionaryPaths>

<!-- We only support one JLA reading dictionary -->
<ReadingDictionaryPath><env name="root"/>/jma/dicts/JP_<env name="endian"/>_Reading.bin
 </ReadingDictionaryPath>

<StopwordsPath><env name="root"/>/jma/dicts/JP_stop.utf8</StopwordsPath>
</jlaconfig>

The <env name="endian"/> in the dictionary name is replaced at runtime with either "BE" or "LE" to
match the platform byte order: big-endian or little-endian. For example, Sun's SPARC and Hewlett
Packard's PA-RISC are big-endian, whereas Intel's x86 CPUs are little-endian.

The StopwordsPath specifies the pathname to the stopwords list used by the analyzer. To
customize the stopwords list; see Editing the Stopwords List for Chinese, Korean, or Japanese
[193] .

Context Properties
The following table lists the context properties supported by the JLA processor. Note that for brevity
the com.basistech.jla prefix has been removed from the property names in the first column.
Hence the full name for decomposecompound is
com.basistech.jla.decomposecompound.

Property Type Defaul
t

Description

decomposecompound boolean true If true, JLA decomposes
compound words into their
components. a

deep_compound_decomposition boolean false If true, JLA recursively
decomposes into smaller
components the components
marked in the dictionary as being
decomposable.a

Japanese Language Analyzer

148

Property Type Defaul
t

Description

favor_user_dictionary boolean false If true, JLA favors words in the
user dictionary (over the standard
Japanese dictionary) during
tokenization.

generate_token_sources boolean false If true, JLA generates a
TOKEN_SOURCE_ID [88]
result for each token. You can use
the TOKEN_SOURCE_ID to get
the TOKEN_SOURCE_NAME
[89] of the dictionary.

ignore_separators boolean true If true, JLA ignores whitespace
separators when tokenizing input
text. If false, JLA treats whitespace
separators as token delimiters.
Note that Japanese orthography
allows a newline to occur in the
middle of a word.

ignore_stopwords boolean false If true, tokens that are stopwords
are not returned to the caller. If
false, tokens that are stopwords are
returned and the vector of
STOPWORD results [88] is
instantiated.b

limit_parse_length 0 or
positive
integer

0 (no
limit)

Sets the maximum number of
characters, n that are processed in
a single parse buffer as a sentence.
JLA normally starts parsing after it
detects a sentence boundary.
When a limit is set, JLA starts
parsing within n characters, even if
a sentence boundary has not yet
been detected. Setting a limit
avoids delays when the processor
encounters thousands of characters
but no sentence boundary. Note:
Basis Technology recommends
setting the limit n to at least 100.
Depending on the type of text
being processed, any number less
than 100 may degrade tokenization
accuracy or cause JLA to split a
valid token across buffers and not
detect the token correctly.

Japanese Language Analyzer

149

Property Type Defaul
t

Description

normalize_result_token boolean false If true, JLA generates STEM
[87] results with middle dots
removed from words (e.g., ワール
ド・ミュージック is normalized
to ワールドミュージック) and
with normalized number tokens:
zenkaku (full-width) Arabic
numerals such as １０，０００
are converted to half-width
numerals and commas are
removed (e.g., 2,000 becomes
2000); Kanji numerals are
converted to half-width numerals
(e.g., 四千三百 becomes 4300).

segment_non_japanese boolean true When true, non-Japanese text is
segmented at Latin script and
number boundaries. For example,
206xs is tokenized as 206 and xs.
If false, 206xs is tokenized as
206xs.

separate_numbers_from_counters boolean true If true, JLA returns numbers and
their counters as separate tokens.
Warning: If you set it to false, you
degrade the accuracy of the Base
Noun Phrase Detector and Named
Entity Extractor.

separate_place_name_from_suffi
x

boolean true If true, JLA separates place names
from their suffixes (e.g., 岡山県 is
tokenized to 岡山 and 県).
Warning: If you set it to false, you
degrade the accuracy of the Base
Noun Phrase Detector and Named
Entity Extractor.

aTo access the components that make up the compound, use the COMPOUND [84] result.
bIf stopwords are returned, you can determine with the C++ API whether a given token is a stopword by calling
BT_RLP_TokenIterator::IsStopword. In Java, you can use the List contains method to see whether the list of
stopword references returned by RLPResultAccess getListResult(RLPConstants.STOPWORD) contains the
Integer index of the token.

Description
The Japanese Language Analyzer tokenizes Japanese text into separate words and assigns a Part-of-
Speech (POS) tag to each word; see Japanese POS Tags [224] . The Japanese Language Processor
returns the following result types:

• TOKEN [88]
• TOKEN_OFFSET [88]
• PART_OF_SPEECH [86]
• STEM [87] — if com.basistech.jla.normalize_result_token is true (the default

is false)
• COMPOUND [84] — if com.basistech.jla.decomposecompound is true (the default)

Japanese Language Analyzer

150

• READING [87] (Furigana transcriptions rendered in Hiragana)
• STOPWORD [88] — if com.basistech.jla.ignore_stopwords is false (the default)
• TOKEN_SOURCE_ID [88] — if com.basistech.jla.generate_token_sources is

true (the default is false)
• TOKEN_SOURCE_NAME [89] — if
com.basistech.jla.generate_token_sources is true (the default is false)

Japanese User Dictionaries
JLA includes the capability to create and use one or more user dictionaries for words specific to an
industry or application. User dictionaries allow you to add new words, personal names, and
transliterated foreign words. In addition, you can specify how compound words are tokenized. For
example, you may want to prevent a product name from being segmented even if it is a compound.
For more information, see Japanese User Dictionaries [199] .

11.4.12. Korean Language Analyzer

Name
KLA

Dependencies
None

Language Dependent
Korean

XML-Configurable Options

The options for the Korean Language Processor are defined in BT_ROOT/rlp/etc/kla-options.xml.
For example:

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE klaconfig SYSTEM "klaconfig.dtd">
<klaconfig>
<dictionarypath><env name="root"/>/kma/dicts/</dictionarypath>
<utilitiesdatapath><env name="root"/>/utilities/data/</utilitiesdatapath>
<stopwordspath><env name="root"/>/kma/dicts/kr_stop.utf8</stopwordspath>
</klaconfig>

The configuration file must conform to klaconfig.dtd:

<!ELEMENT klaconfig (dictionarypath, utilitiesdatapath)>
<!ELEMENT dictionarypath (#PCDATA)>
<!ELEMENT utilitiesdatapath (#PCDATA)>
<!ELEMENT stopwordspath (#PDCATA)>

Note that for the Korean Language Processor, the dictionarypath points to the directory that
contains the required dictionaries. This is different from the Japanese and Chinese Language Processor
behavior, which requires a path to each dictionary that you are including.

The utilitiesdatapath must specify utilities/data. This contains internal transcription tables.

The stopwordspath specifies the pathname to the stopwords list used by the analyzer. To
customize the stopwords list; see Editing the Stopwords List for Chinese, Korean, or Japanese
[193] .

Context Properties
The following table lists the context property supported by the KLA processor. Note that for brevity
the com.basistech.kla prefix has been removed from the property names in the first column.

Korean Language Analyzer

151

Hence the full name for ignore_stopwords is
com.basistech.kla.ignore_stopwords.

Property Type Default Description

ignore_stopwords boolean false If false, stopwords are returned and the vector of
STOPWORD results [88] is instantiated.aIf true, tokens
that are stopwords are not returned to the caller.

aIf stopwords are returned, you can determine with the C++ API whether a given token is a stopword by calling
BT_RLP_TokenIterator::IsStopword. In Java, you can use the List contains method to see whether the list of
stopword references returned by RLPResultAccess getListResult(RLPConstants.STOPWORD) contains the
Integer index of the token.

Description
The Korean Language Processor segments Korean text into separate words and compounds, reports
the length of each word and the stem, and assigns a Part-of-Speech (POS) tag to each word; see Korean
POS Tags [225] . KLA also returns a list of compound analyses (may be empty).

The Korean Language Processor returns the following result types:

• TOKEN [88]
• TOKEN_OFFSET [88]
• PART_OF_SPEECH [86]
• COMPOUND [84]
• STEM [87]
• STOPWORD [88] — if com.basistech.kla.ignore_stopwords is false (the default)

Korean User Dictionary
KLA provides a user dictionary that users can edit and recompile. For more information, see Korean
User Dictionary [202] .

11.4.13. Language Boundary Detector

Name
Language Boundary

Dependencies
Text Boundary Detector, Script Boundary Detector

Language Dependent
No

XML-Configurable Options
None

Context Properties
The context properties available to control the runtime behavior of the Language Boundary Detector
are listed below. As with all context properties, they can be specified either in the context or via the
API. For brevity, the com.basistech.lbd prefix has been removed from the property names in
the first column. Hence the full name for max_region is
com.basistech.lbd.max_region.

Language Boundary Detector

152

Property Type Default Description

max_region integer 65536 The maximum number of Unicode characters to be analyzed at one
time. If a potential language region (see the Description below) has
more than this number of characters, only the first max_region
characters are analyzed.

min_region integer 20 The minimum number of Unicode characters to be analyzed at one
time. If a potential language region (see the Description below)
does not have at least min_region characters, it is combined with
the next potential region before being analyzed.

Description

The Language Boundary Detector is used in conjunction with Script Boundary Detector [184] and
Text Boundary Detector [186] to identify language regions within input text that contains multiple
languages. All elements within a language region belong to the same language.

How it works. Each script region is evaluated as a potential language region. If the evaluation is
ambiguous, each text region (sentence) within the script region is evaluated. Mid-sentence language
boundaries are not detected unless the script changes as well.

Language Boundary Detector returns a result, LANGUAGE_REGION [85] , consisting of an array
of integer sextuplets (of which three integers are reserved and currently not used). Each sextuplet
consists of the beginning character offset of a region, the end offset + 1 of the region, the nesting level
of the region (currently unused), the type of the region (currently unused), the script of the region
(currently unused), and the language of the region.

You can use the results to submit individual regions (from the raw text) to an RLP context designed
to perform linguistic processing for an individual language and script.

For more information about using the Language Boundary Detector to handle multilingual text, see
Processing Multilingual Text [73] .

11.4.14. ManyToOneNormalizer

Name
ManyToOneNormalizer

Dependencies
Requires tokenization of the input text. For example, requires JLA for Japanese, CLA for Chinese,
and BL1 for the European languages.

For complete coverage, requires the analyzers that produce tokens for the languages specified in the
options file (described below).

Language Dependent
The languages of the normalization dictionaries specified in the options file determine the
ManyToOneNormalizer's language scope.

XML-Configurable Options
The ManyToOneNormalizer uses an options file, BT_ROOT/rlp/etc/normalizer-options.xml, that
specifies the language and path for each normalization dictionary. The RLP distribution includes a
Japanese normalization dictionary. You can add normalization dictionaries for any of the languages
supported by RLP.

ManyToOneNormalizer

153

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE normoptions SYSTEM "normconfig.dtd">
<normoptions>
 <dictionaries>
 <dictionarypath language="ja">
 <env name="root"/>/jma/dicts/jon_<env name="endian"/>.bin</dictionarypath>
 <!-- Add additional normalizer dictionaries here -->
 </dictionaries>
</normoptions>

Context Properties
None

Description

For each token in the input text, the ManyToOneNormalizer performs a lookup in the normalization
dictionary or dictionaries for the corresponding language and returns a
MANY_TO_ONE_NORMALIZED_TOKEN [85] . The normalization dictionary contains
normalized tokens and token variants. If the token does not appear as a token variant in the dictionary,
the token and normalized token are identical.

With the exception of a sample Japanese normalization dictionary (described below), normalization
dictionaries are user defined. See Creating Normalization Dictionaries [205] .

Sample Japanese Normalization Dictionary
The sample Japanese normalization dictionary that RLP provides supports the following
normalizations:

• Normalization of words written in Katakana. Foreign and borrowed words are expressed
phonetically and thus may vary in their transcription to Japanese Katakana.

Examples:

Spelling Variants Normalized Form

ダンスセラピ

ダンスセラピーダンステラピ

ダンステラピー

エクスポ エキスポ

バーミューダ
バーミューダー

バミューダ

ファミリーコンピュータ/
ファミコン

ファミリーコンピューター

ベニス

ベネチア
ベネツィア

ヴェネチア

ヴェネチア

• Normalization of older forms of Kanji to more common-use, modern Kanji forms.

Examples:

ManyToOneNormalizer

154

Older Kanji Form Normalized Form

渡邊 渡辺

國語 国語

大學 大学

關數 関数

11.4.15. mime_detector

Name
mime_detector

Dependencies
None: pathname of input file is optional.

Language Dependent
No

XML-Configurable Options
None

Context Properties
The context properties available to control the runtime behavior of the mime_detector processor are
listed below. For brevity, the com.basistech.mime_detector prefix has been removed from
the property names in the first column. Hence the full name for ignore_pathname is
com.basistech.mime_detector.ignore_pathname.

Property Type Default Description

ignore_pathname boolean false If true, causes mime_detector to ignore pathname
when attempting to detect the MIME type. Set to true
if file extension of input file is likely to be wrong or
ambiguous.

force_detection boolean false If true, causes mime_detector to run, even if
MIME type has already been posted (in user API call
to process the input).

Description
Detects the MIME_TYPE [86] of the input file. Often used in conjunction with iFilter [147] or
HTML Stripper [146] to extract plain text from files with markup. The mime_detector processor can
use the file extension or analyze the contents to detect the following MIME types:

• text/plain
• text/html
• text/xml
• text/rtf
• application/pdf
• application/msword
• application/vnd.ms-excel
• application/vnd.ms-powerpoint
• application/ms.access

mime_detector

155

11.4.16. Named Entity Extractor

Name
NamedEntityExtractor

Dependencies
Depends on the language; see below.

Arabic Tokenizer, SentenceBoundaryDetector, ARBL, BaseNounPhrase

Simplified Chinese CLA, SentenceBoundaryDetector, BaseNounPhrase

Traditional Chinese CLA, SentenceBoundaryDetector, BaseNounPhrase

Dutch BL1, BaseNounPhrase

English BL1, BaseNounPhrase

French BL1, BaseNounPhrase

German BL1, BaseNounPhrase

Italian BL1, BaseNounPhrase

Japanese JLA, SentenceBoundaryDetector, BaseNounPhrase

Korean KLA, SentenceBoundaryDetector

Farsi Tokenizer, SentenceBoundaryDetector, FABL

Russian BL1

Spanish BL1, BaseNounPhrase

Urdu Tokenizer, SentenceBoundaryDetector, URBL

Language Dependent
Arabic, Simplified and Traditional Chinese, Dutch, English, French, German, Italian, Japanese,
Korean, Farsi (Persian), Russian, Spanish, and Urdu.

XML-Configurable Options

The Named Entity Extractor uses language-specific binary data files to locate named entities when it
is processing input. These files are not user configurable. The data file pathnames for each language
are specified in the named entities configuration file: BT_ROOT/rlp/etc/ne-config.xml. Each
pathname begins with <env name="root">. At runtime, RLP replaces this element with the
pathname to the RLP root directory (BT_ROOT/rlp). When you distribute an application, the location
of the data files relative to RLP root should not change. See Defining an RLP Environment [17] .

Context Properties
None. The maximum number of tokens that may be included in a named entity returned by the Named
Entity Extractor is defined by the com.basistech.neredact.max_entity_tokens (see
NamedEntityRedactor [160]).

Description
A named entity is a proper noun or adjective, such as the name of a person ("George W. Bush"), an
organization ("Red Cross"), a location ("Mt. Washington"), a geo-political entity ("New York"), a
facility ("Fenway Park"), a nationality ("American"), a religion ("Christian"), or a title ("Professor").
The Named Entity Extractor has been statistically trained to identify entities of these eight types in
some or all of the languages listed above: PERSION, ORGANIZATION, LOCATION, GPE,
FACILITY, NATIONALITY, RELIGION, and TITLE. For more information, see Named Entities
[45] .

Named Entity Extractor

156

The Named Entity Extractor returns a list of identified entities. Each entity is defined by three integers:
index of the first token in the entity, index of the last token + 1 in the entity, and the entity type. See
NAMED_ENTITY [86] .

Table 11.1. Named Entity Type Constants

Name C++ Constant Java Constant

LOCATION BT_NE_TYPE_LOCATION RLPNEConstants.NE_TYPE_LOCATION

ORGANIZATION BT_NE_TYPE_ORGANIZATION RLPNEConstants.NE_TYPE_ORGANIZATION

PERSON BT_NE_TYPE_PERSON RLPNEConstants.NE_TYPE_PERSON

GPE BT_NE_TYPE_GPE RLPNEConstants.NE_TYPE_GPE

FACILITY BT_NE_TYPE_FACILITY RLPNEConstants.NE_TYPE_FACILITY

RELIGION BT_NE_TYPE_RELIGON RLPNEConstants.NE_TYPE_RELIGION

NATIONALITY BT_NE_TYPE_NATIONALITY RLPNEConstants.NE_TYPE_NATIONALITY

TITLE BT_NE_TYPE_TITLE RLPNEConstants.NE_TYPE_TITLE

To find other entity types (such dates, email addresses, or weapons), use Gazetteer [144] and the
Regular Expression [163] processors. Note: Gazetteer also uses binary gazetteers to identify TITLE,
NATIONALITY, and RELIGION entities in several languages for which the Named Entity Extractor
has not yet been trained to find TITLE.

Currently, named entity extraction is supported for the following languages: Arabic, Simplified
Chinese, Traditional Chinese, Dutch, English, Upper-Case English 4 , French, German, Italian,
Japanese, Korean, Farsi, Russian, Spanish, and Urdu.

11.4.16.1. Examples of Extracted Named Entities in Different Languages 5

Language Label Named Entity

Arabic LOCATION القاھرة شمال
ORGANIZATION الديمقراطي الوطني الحزب
PERSON طنطاوي سيد محمد
GPE المنوفية
FACILITY دانباي مدرسة
RELIGION المسيحيين
NATIONALITY المصريين
TITLE الملك

4Use the en_uc language code when you process upper-case English text.
5. For the named entity types that are extracted for various languages, see the Standard Set of Named Entites [47] . For the definition of named
entity types, see Named Entity Type Definitions [49] .

Named Entity Extractor

157

Language Label Named Entity

Simplified Chinese LOCATION 亚洲

ORGANIZATION 新华网

PERSON 王祥林

GPE 武汉市

FACILITY 广佛地铁

RELIGION 逊尼派

NATIONALITY 亚裔

TITLE 多羅郡王

Traditional Chinese LOCATION 歐洲

ORGANIZATION 新華網

PERSON 王優玲

GPE 北京

FACILITY 布達拉宮

RELIGION 天主教

NATIONALITY 華人

TITLE 多羅郡王

Dutch LOCATION Duitsland

ORGANIZATION Europese Commissie

PERSON Franz Beckenbauer

English LOCATION Mt. Washington

ORGANIZATION Red Cross

PERSON George W. Bush

GPE New York

FACILITY Fenway Park

RELIGION Christian

NATIONALITY American

TITLE prime minister

French LOCATION Mer Méditerranée

ORGANIZATION Organisation Européenne pour la Recherche Nucléaire

PERSON Eric Borgeaux

German LOCATION Berlin

ORGANIZATION Bayerische Motoren Werke

PERSON Karl Gauss

Italian LOCATION Monte Vesuvio

ORGANIZATION Nazioni Unite

PERSON Dominique Villepin

Named Entity Extractor

158

Language Label Named Entity

Japanese LOCATION 硫黄島

ORGANIZATION 朝日新聞社

PERSON 石原

GPE 東京都

FACILITY 横須賀基地

RELIGION イスラム

NATIONALITY イラン人

TITLE 女史

Korean LOCATION 아시아

ORGANIZATION 연합뉴스

PERSON 이승만

GPE 서울

FACILITY 프라자 호텔

TITLE 사장

Farsi LOCATION گرينويچ
ORGANIZATION بوئينگ
PERSON کوالتا ايما
GPE اندونزی
FACILITY مانادو فرودگاه
RELIGION شيعه
NATIONALITY ھندی

RUSSIAN LOCATION Ниагарский водопад

ORGANIZATION Организация Объединенных Наций

PERSON Сергей Бодров-младший

GPE Бостон

FACILITY Эйфелева башня

TITLE Председатель

Spanish LOCATION Andalucía

ORGANIZATION El Pais

PERSON Manuel Pizarro

Named Entity Extractor

159

Language Label Named Entity

Urdu LOCATION ايشيا جنوبی
ORGANIZATION افواج آسٹريلوی
PERSON الفيصل سعود
GPE آباد اسالم
FACILITY کونسليٹ امريکی
RELIGION مسلم
NATIONALITY بھارتی

11.4.17. Named Entity Redactor

Name
NERedactLP

Dependencies
Any of the following language processors: Gazetteer, NamedEntityExtractor, RegExpLP

Language Dependent
No

XML-Configurable Options
NERedactLP uses two configuration files, one to remove duplicates, the other to join adjacent named
entities and blacklist (exclude) named entities that you are not interested in seeing.

Removing Duplicates. NERedactLP uses BT_ROOT/rlp/etc/ne-types.xml to remove duplicates
when named entities are returned by more than one processor or different processors tag the same or
an overlapping set of tokens as more than one named entity. For each named entity type, this file
assigns three integer weight values.

Weight Name Processor that returns the named entity

statistical Named Entity Extractor [156]

gazetteer Gazetteer [144]

regex Regular Expression [163]

Here is a fragment from ne-types.xml.

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE ne_types SYSTEM "netypes.dtd">

<ne_types>
 <ne_type>
 <name>PERSON</name>
 <weight name="statistical" value="9" />
 <weight name="gazetteer" value="10" />
 <weight name="regex" value="10" />
 </ne_type>
 <ne_type>
 <name>ORGANIZATION</name>

Named Entity Redactor

160

 <subtypes>
 <name>GOVERNMENT</name>
 <name>COMMERCIAL</name>
 <name>EDUCATIONAL</name>
 <name>NONPROFIT</name>
 </subtypes>
 <weight name="statistical" value="9" />
 <weight name="gazetteer" value="10" />
 <weight name="regex" value="10" />
 </ne_type>
 <!-- other ne_types -->
 ...
 ...
</ne_types>

As the file is shipped, statistical weights are 9 and gazetteer and regular expression weights are 10.
Adjust these weights to instruct NeRedactLP which processor it should favor if more than one
processor returns the same named entity, or which entity type it should favor if processors return
different types for the same set of tokens in the input.

If, for example, you want to favor gazetteer entries over regular expressions, and favor both over values
returned by statistical analysis, you could set the weights as follows:

 <weight name="statistical" value="0" />
 <weight name="gazetteer" value="10" />
 <weight name="regex" value="5" />

If different processors identify a given string as different types, processor weights determine which
type is returned. If, for example, statistical (Named Entity Extractor) identifies "Foo" as an
ORGANIZATION and gazetteer (Gazetteer) identifies it as MY_TYPE, the weights in the preceding
example specify that gazetteer outranks statistical, so the entity is returned as MY_TYPE.

If com.basistech.neredact.prefer_length is true (the default), a conflict between
alternative overlapping entities is resolved in favor of the longer candidate.

When you define new entity types for gazetteers and regular expressions, you should add those entity
types to ne-types.xml if you want to control how the redactor resolves conflicts. Types that do not
appear in this file receive weights of 10 for all three processors.

Apart from setting weights, it is a good idea to put the entity types you define for gazetteers and regular
expressions in ne-types.xml so that the file also serves as a central repository for the entity types that
you are using.

neredact-config.xml. NERedactLP uses BT_ROOT/rlp/etc/neredact-config.xml to determine
when and how to combine named entitites that are adjacent to each other, and to blacklist named
entities that you do not want to see.

<neredactconfig>
 <joiners>
 <joiner left='TITLE' right='TITLE' joined='TITLE'/>
 <joiner left='TITLE' right='PERSON' joined='PERSON'/>
 <joiner left='PERSON' right='TITLE' joined='PERSON'/>
 </joiners>
 <blacklists>

 <blacklist type='PERSON'><env name="root"/>/blacklist/bl-person-<env name="endian"/>.bin</blacklist>
 <blacklist type='GPE'><env name="root"/>/blacklist/bl-gpe-<env name="endian"/>.bin</blacklist>
 </blacklists>

Named Entity Redactor

161

 <blacklistlog><env name="root"/>/blacklist/blacklist.log</blacklistlog>
</neredactconfig>

Joining Adjacent Entities. When NERedactLP joins named entitites that are adjacent to each other,
the result of the join operation as a single named entity.

By default, entities are considered adjacent if they are separated by 0 to 5 whitespace characters. To
override the default, a joiner may specify the adjacency-regex attribute, shown here with the
default written explicitly:

<joiner left='TITLE' adjacency-regex='\s{0,5}' right='PERSON' joined='PERSON'/>

For example, to join "George Bush" and "President" in "George Bush, President" you can with
adjacency-regex='[\s,]+' . NERedactLP uses the Tcl regular expression engine used by
the Regular Expression [163] processor.

As shipped, neredact-config.xml specifies that adjacent TITLE elements are to be joined into a single
TITLE element, and that TITLE and PERSON elements in either order are to be joined into a single
PERSON element:

 <joiners>
 <joiner left='TITLE' right='TITLE' joined='TITLE'/>
 <joiner left='TITLE' right='PERSON' joined='PERSON'/>
 <joiner left='PERSON' right='TITLE' joined='PERSON'/>
 </joiners>

You can edit this file to add new join specifications and to edit or remove the existing join
specifications. Each joiner element has three attributes:
• left -- The element that appears on the left side of the adjacent entities
• right -- The element that appears on the right side of the adjacent entities
• joined -- The element that this combination of adjacent elements produces

Blacklisting Named Entities. If you want to exclude certain entities that are sometimes returned
by the Named Entity Extractor [156] , you can create one or more blacklist dictionaries. Each
dictionary you create applies to a specific entity type. The Named Entity Redactor does not return
entities for this type that are in this dictionary. You can instruct the Named Entity Redactor to log
occurrences of blacklisted entities to a file. For information about creating blacklist dictionaries, see
Blacklisting Named Entities [50] .

The following fragment specifies blacklist dictionaries for PERSON and GPE and a file (optional)
where occurrences of blacklist entries are logged.

 <blacklists>
 <!-- No more than one dictionary per entity type-->
 <blacklist type='PERSON'><env name="root"/>/blacklist/bl-person-<env name="endian"/>.bin</blacklist>
 <blacklist type='GPE'><env name="root"/>/blacklist/bl-gpe-<env name="endian"/>.bin</blacklist>
 <blacklistlog><env name="root"/>/blacklist/blacklist.log</blacklistlog>
 </blacklists>

Context Properties

For brevity, the com.basistech.neredact prefix has been removed from the property name in
the first column. Hence the full name for prefer_length is
com.basistech.neredact.prefer_length.

Named Entity Redactor

162

Property Type Default Description

prefer_length boolean true If true, NERedactLP resolves a conflict between
overlapping entities in favor of the longer
candidate entity rather than the weight associated
with each candidate entity and its source (weight
is used if both candidates are of the same length).
If set to false, NERedactLP uses weight to resolve
the conflict.

max_entity_tokens positive
integer

8 The maximum number of tokens allowed in an
entity returned by NamedEntityExtractor [156] .
NERedactLP discards entities from
NamedEntityExtractor with more than this number
of tokens.

Description

A named entity is a proper noun, such as the name of a person ("Bill Gates") or an organization
("Microsoft") or a location ("New York City"). It can also be a specific date ("July 14, 1789"). Three
RLP processors detect named entities: Gazetteer [144] , Named Entity Extractor [156] , and Regular
Expressions [163] .

A named entity may be detected more than once or may overlap with another named entity (the same
token may appear in more than one named entity). NERedactLP detects and eliminates duplication
and overlapping. For each duplicate, NERedactLP assigns the named entity to a single source, using
the weights assigned in BT_ROOT/rlp/etc/ne-types.xml. Types and subtypes that do not appear in
that file (such as types defined in gazetteers or the regular expression configuration file, and not
included in ne-types.xml), are assigned the default weight of 10. If Gazetteer, Regular Expressions,
and Named Entity Extractor have the same weight for a given named entity, the choice is arbitrary.

If alternative candidate entities overlap, the longer candidate is returned if
com.basistech.fabl.prefer_length is true (the default). For example, "January 3, 1754
inches" contains two overlapping entities: "January 3, 1754" (TEMPORAL:DATE) and "1754
inches" (IDENTIFIER:DISTANCE). The Named Entity Redactor returns the TEMPORAL:DATE
entity. On the other hand, if com.basistech.fabl.prefer_length is set to false and
IDENTIFIER:DISTANCE is assigned a greater weight than TEMPORAL:DATE for regular
expressions, the Named Redactor returns the IDENTIFIER:DISTANCE entity.

The joining of adjacent named entities, as described above, is the final step in the redaction process.

11.4.18. Regular Expression

Name
RegExpLP

Dependencies
Any tokenizing processor. FragmentBoundaryDetector [143] if
com.basistech.regexp.respect_boundaries is set to true.

Language Dependent
The processor is not language dependent, but individual regular expressions may be language specific
or generic (for all languages).

Regular Expression

163

XML-Configurable Options
The regular expressions are defined in BT_ROOT/rlp/etc/regex-config.xml. We suggest you take a
look at this file before reading further.

The configuration file conforms to rlpregexp.dtd:

<!ELEMENT regexps (regexp|define)+>
<!ELEMENT regexp (#PCDATA)>

<!ATTLIST regexp type CDATA #REQUIRED>
<!ATTLIST regexp note CDATA #IMPLIED>
<!ATTLIST regexp allow-partial-matches CDATA #IMPLIED>
<!ATTLIST regexp lang CDATA #IMPLIED>

<!ELEMENT define (#PCDATA)>
<!ATTLIST define name CDATA #REQUIRED>
<!ATTLIST define lang CDATA #IMPLIED>

type. The type attribute is the named-entity type to which text matched by the regular expression
is assigned.

In the XML file, values take the form "TYPE[:SUBTYPE]" (such as "IDENTIFIER" or
"IDENTIFIER:PHONE_NUMBER"). Regular expressions are particularly suited for identifying
named entities that display a fixed pattern, such as the following:

TYPE:SUBTYPE Description

TEMPORAL:DATE A date

TEMPORAL:TIME A time

IDENTIFIER:EMAIL An email address

IDENTIFIER:URL A URL

IDENTIFIER:IP_ADDRESS An Internet IP address

IDENTIFIER:PHONE_NUMBER A phone number

IDENTIFIER:PERSONAL_ID_NUM A personal ID, such as social security number

IDENTIFIER:NUMBER A number

IDENTIFIER:LATITUDE_LONGITUDE Longitude and latitude

IDENTIFIER:DISTANCE A distance

For the named entity types that are extracted for various languages by Regular Expression with the
configuration file as shipped, see the Standard Set of Named Entites [47]

lang. The optional lang attribute is the ISO639 language code for the language for which the
regular expression applies (see ISO639 Language Codes [11] . If the attribute is left out, the regular
expression applies to all languages.

note. The optional note attribute lets you include a note about the regular expressions for your
own use when maintaining this file.

allow-partial-matches. The optional allow-partial-matches="yes" attribute
setting allows you to return entities that do not begin and end on token (word) boundaries. We
recommend that you not use this setting. If you do, for example, and you have defined a COLOR entity
of "red", a possible return value is "Frederick".

Regular Expression

164

The define Element. The define element allows you to define regular expressions that you
can use repeatedly by reference to its name attribute. To use the content in a regexp element, include
${name} where name matches the name attribute in the define element. You may include the
lang attribute in the define element, in which case RLP will attempt to match the lang attribute
of the regexp element that contains the reference.

Example:

<define lang="en" name="time_ampm">(?:[pa]\.?\s?m\.?)</define>
<!-- ... stands for the rest of the regular expression in which the reference is embedded -->
<regexp lang="en" type="TEMPORAL:TIME">...${time_ampm}...<regexp>

If ${time_ampm} appears in a regexp lang="en" element, RLP substitutes this expression. If
it does not find a define name="time_ampm lang="en" element, RLP looks for a define
name="time_ampm element without the lang attribute. If it does not find such an element, an error
occurs.

Context Properties

For brevity, the com.basistech.regexp prefix has been removed from the property name in the
first column. Hence the full name for respect_boundaries is
com.basistech.regexp.respect_boundaries.

Property Type Default Description

respect_boundaries boolean false If set to true, RegExpLP evaluates the input fragment
by fragment so that named entities do not cross
fragment boundaries set by
FragmentBoundaryDetector [143] .

Performance is slower if com.basistech.regexp.respect_boundaries is set to true. But
if the input text contains non-prose fragments, setting this property to true may improve the results.
For example, a regular expression coded as \d+\s\d+ matches 100 000 (the space is a thousands
separator). If com.basistech.regexp.respect_boundaries is false (the default), the
expression also matches

123
456
789

If FragmentBoundaryDetector has run and the property is set to true, this expression matches each of
the three numbers separately.

Description
RegExpLP lets you define regular expressions for named entities. The expressions can be associated
with a single language (in which case they are only applied to documents in that language) or can be
applied to all languages.

The content of each regexp element is a Tcl regular expression. For information about regular
expression syntax, see Creating Regular Expressions [56] .

RegExpLP returns the following result type: NAMED_ENTITY [86] .

11.4.19. REXML

REXML

165

Name
REXML

Dependencies
None

Language Dependent
No

XML-Configurable Options
None

Context Properties

The following context properties control the runtime behavior of the REXML processor. For brevity,
the com.basistech.rexml prefix has been removed from the property names in the first column.
Hence the full name for output_pathname is
com.basistech.rexml.output_pathname.

Property Type Default Description

output_pathname string A directive to deliver output to a specified file
pathname. The file is overwritten. If this
property is absent or an empty string, output is
delivered to standard output (stdout).

raw_text string "none" Causes REXML to output RAW_TEXT
[87] in the given format. Legal values (case-
sensitive) are as follows:

"cdata" -- Text is written in an XML CDATA
section.

"as_is" -- Text is written as is. This may result
in invalid XML, if for example, the text
contains &, <, or >.

"escape" -- Text is written with XML entities
for the following characters: &, <, >, ".

"none" -- No text is written.

suppress_header_commen
t

boolean false Governs inclusion in the REXML output of
the RLP version used to generate the file.

token_positions boolean true A directive to deliver (or not deliver) the XML
elements that specify the token offsets: the
position element. If true, the processor
delivers position elements as sub-
elements of a token element.

REXML

166

Property Type Default Description

transcribed_text string "none" Causes REXML to output
TRANSCRIBED_TEXT [89] in the given
format. Legal values (case-sensitive) are as
follows:

"cdata" -- Text is written in an XML CDATA
section.

"as-is" -- Text is written as is. This may result
in invalid XML, if for example, the text
contains &, <, or >.

"escape" -- Text is written with XML entities
for the following characters: &, <, >, ".

"none" -- No text is written.

xsl_pathname string A directive to write an XSL style sheet
reference into the output REXML. Used most
naturally in conjunction with
output_pathname. Existence, validity,
and proper location of the style sheet is the
user's responsibility. Pathname must be in a
form appropriate for XSL, not the local file
system.

Description
The REXML processor converts the results of language processing into an XML format, specified
by BT_ROOT/rlp/config/DTDs/rexml.dtd. REXML does not generate any RLP results.

For example, suppose the following:

1. The input text is UTF-8 and consists of the single sentence, "The Patriots won."

2. The Unicode Converter has converted the text to UTF-16.

3. The Language Identifier (RLI) has determined that the language is English.

4. The Base Linguistics Analyzer (BL1) has parsed the text.

5. The REXML processor is run on the results.

REXML generates the following XML report:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE rexml:document SYSTEM 'http://www.basistech.com/DTDs/rexml.dtd'>
<!DOCTYPE rexml:document SYSTEM 'http://www.basistech.com/DTDs/rexml.dtd'>
<rexml:document xmlns:rexml='http://www.basistech.com/2003/rexml'>
<header>
 <language>en</language>
<original-encoding>UTF8</original-encoding>
</header>
<contents>
<tokens>
 <token index='0'>
 <word>The</word>

REXML

167

 <position start='0' end='3' />
 <pos>DET</pos>
 <stem>the</stem>
 </token>
 <token index='1'>
 <word>Patriots</word>
 <position start='4' end='12' />
 <pos>NOUN</pos>
 <stem>patriot</stem>
 </token>
 <token index='2'>
 <word>won</word>
 <position start='13' end='16' />
 <pos>VPAST</pos>
 <stem>win</stem>
 </token>
 <token index='3'>
 <word>.</word>
 <position start='16' end='17' />
 <pos>SENT</pos>
 <stem>.</stem>
 </token>
</tokens>
<sentences>
 <sentence>
 <sentenceStart>0</sentenceStart>
 <sentenceEnd>4</sentenceEnd>
 </sentence>
</sentences>
</contents>
</rexml:document>

REXML returns no RLP result type.

11.4.20. Rosette Core Library for Unicode

Name
RCLU

Dependencies
Encoding: supplied by RLI [178] or by user. See RCLU Encodings [171]

Language Dependent
No

XML-Configurable Options
None

Context Properties
The following context properties control the runtime behavior of RCLU.
All of the following context properties activate character transformations when set to the value "yes"
or "true". The default setting for all these properties is "false". For brevity, the
com.basistech.rclu prefix has been removed from the property names in the first column.
Hence the full name for BackSlashToYen is com.basistech.rclu.BackslashToYen.

Rosette Core Library for Unicode

168

Property Type Default Description

BackslashToYen boolean false Converts back slash character U+005C to Yen
sign U+00A5.

BackslashToWon boolean false Converts back slash character U+005C to Won
sign U+20A9.

FormCNormalization boolean false Implements the Form C normalization forms as
defined by the Unicode 3.1 standard, i.e.,
performs canonical decomposition followed by
canonical composition.

FormDNormalization boolean false Implements the Form D normalization forms as
defined by the Unicode 3.1 standard, i.e.,
performs canonical decomposition.

FormKCNormalization boolean false Implements the Form KC normalization forms as
defined by the Unicode 3.1 standard, i.e.,
performs compatibility decomposition followed
by canonical composition.

If processing text in Arabic script that includes
characters from Arabic Presentation Forms A (U
+FB50 - U+FDFF) and/or Arabic Presentation
Forms B (U+FE70 - U+FEFF), set
FormKCNormalization to true to normalize
these characters to standard Arabic script
characters (U+0600 - U+06FF); if you do not,
these characters are not recognized as Arabic-
script characters. See also Arabic Script
Normalization [125] .

FormKDNormalization boolean false Implements the Form KD normalization forms as
defined by the Unicode 3.1 standard, i.e.,
performs compatibility decomposition.

FromSGMLEntity boolean false Converts SGML entities within the Unicode text
to their Unicode character equivalents. For
example, the string "&" is converted to the
Unicode ampersand character, U+0026.
Hexadecimal SGML entities are also converted.

HankakuToZenkaku boolean false Identical to ToFullWidthTransform except that
this transform also takes care to combine
decomposed half-width Katakana characters into
their composed full-width counterparts.

KanaToHebonRomaji boolean false This transform transliterates the Katakana and
Hiragana characters in the text to Latin characters
using the Hebon system of phonetic
transliteration.

KanaToKunreiRomaji boolean false This transform transliterates the Katakana and
Hiragana characters in the text to Latin characters
using the Kunrei system of phonetic
transliteration.

Rosette Core Library for Unicode

169

Property Type Default Description

mapoffsets boolean false If true, and FormCNormalization,
FormDNormalization,
FormKDNormalization, or
FormKCNormalization is true, returns
MAP_OFFSETS [85] . Normalization may
transform one Unicode character into two or three
characters or vice versa. Each element in the array
is the original text character index corresponding
to the character of transformed text indicated by
the element's position in the array. If
mapoffsets is false or none of the
transformations listed above are performed, the
MAP_OFFSETS result is null. If mapoffsets
is true, one of the transformations listed above is
performed, and one or more additional
transformations not listed above are performed,
the MAP_OFFSETS result is undefined.

RomajiToHiragana and
RomajiToKatakana

boolean false These two transforms are supplied mostly for
symmetry. They attempt to convert Latin
characters to a phonetic equivalent in either
Hiragana or Katakana, but since this operation is
only loosely defined it should not be relied upon
for accurate output.

ToCombiningMark boolean false ToCombiningMark transforms a diacritical
character in its "spacing mark" form to its
"combining mark" form. It is usually used in
conjunction with FormC.

ToCR boolean false Standardizes the line/paragraph separators in the
text to match Macintosh standards.

ToCRLFTransform boolean false Standardizes the line/paragraph separators in the
text to match Windows standards.

ToEBCDICNewLine boolean false Standardizes the line/paragraph separators in the
text to match EBCDIC standards.

ToFullwidth boolean false Converts half-width Latin and Katakana
characters to their full-width equivalents.

ToHalfwidth boolean false Converts full-width Latin and Katakana
characters to their half-width equivalents.

ToHiragana boolean false Converts all Japanese Katakana characters to their
Hiragana equivalents.

ToKatakana boolean false Converts all Japanese Hiragana characters to their
Katakana equivalents.

ToLargeKana boolean false Transforms small kana characters (Hiragana or
Katakana) to their large equivalents.

ToLatinNumber boolean false Converts sequences of digits in other script
systems to their Latin equivalents. Special
handling is provided for Japanese numbers.

Rosette Core Library for Unicode

170

Property Type Default Description

ToLF boolean false Standardizes the line/paragraph separators in the
text to match Unix standards.

ToLineSeparator boolean false Standardizes the line separators in the text to
match Unicode standards.

ToLowercase boolean false Converts letters to lower case. This is the
recommended transform for case-insensitive
string comparison. If a test is supplied, the
transform only applies to the characters for which
the test is true.

ToParagraphSeparator boolean false Standardizes the paragraph separators in the text
to match Unicode standards.

ToSmallKana boolean false Transforms large kana characters to their small
equivalents.

ToSpacingMark boolean false Transforms a diacritical character in its
"combining mark" form to its "spacing mark"
form. It is usually used in conjunction with
FormDTransform .

ToUppercase boolean false ToUppercase transforms all lower case Latin
letters to upper case (this includes both "half-
width" and "full-width" Latin characters).

YenToBackslashAndOve
rbar
ToTildeTransform

boolean false Converts Yen sign U+00A5 to back slash U+005C
and overbar U+203 E to tilde U+007E.

ZenkakuToHankaku boolean false Identical to ToHalfWidthTransform except
that this transform also takes care to divide
composed full-width Katakana characters into
their decomposed half-width counterparts.

Description
The RCLU language processor converts the input text to UTF-16 (RAW_TEXT [87]) as required
by other language processors. RCLU also performs transformations, as determined by the context
properties described above and in the order the properties are listed in the context definition. If RCLU
normalizes the text and com.basistech.rclu.mapoffsets [170] is set to true (the default
is false), RCLU returns MAP_OFFSETS [85] .

If you do not provide an encoding, RLI must precede RCLU to detect the encoding. For more
information, see Language Identifier (RLI) [178] .

External Encoding Other Names

Adobe-Standard-Encoding csAdobeStandardEncoding

Adobe-Symbol-Encoding csHPPSMath

Adobe-Zapf-Dingbats-Encoding csZapfDingbats

Arabic ISO-8859-6, csISOLatinArabic, iso-ir-127, ISO_8859-6, ECMA-114,
ASMO-708

ASCII US-ASCII, ANSI_X3.4-1968, iso-ir-6, ANSI_X3.4-1986, ISO646-US,
us, IBM367, csASCII

Rosette Core Library for Unicode

171

External Encoding Other Names

big-endian ISO-10646-UCS-2, BigEndian, 68k, PowerPC, Mac, Macintosh,
UTF-16BE

Big5 csBig5, cn-big5, x-x-big5

Big5Plus Big5+, csBig5Plus

BMP ISO-10646-UCS-2, BMPstring

CCSID-1027 csCCSID1027, CCSID1027, IBM1027

CCSID-1047 csCCSID1047, CCSID1047, IBM1047

CCSID-1390 csCCSID1390, CCSID1390, IBM1390

CCSID-290 csCCSID290, CCSID290, IBM290

CCSID-300 csCCSID300, CCSID300, IBM300

CCSID-930 csCCSID930, CCSID930, IBM930

CCSID-935 csCCSID935, CCSID935, IBM935

CCSID-937 csCCSID937, CCSID937, IBM937

CCSID-939 csCCSID939, CCSID939, IBM939

CCSID-942 csCCSID942, CCSID942, IBM942

ChineseAutoDetect csChineseAutoDetect, Candidate, encodings:, GB2312, Big5,
GB18030, UTF32:UTF8, UCS2, UTF32

CNS-11643 EUC-H, csCNS11643EUC, EUC-TW, TW-EUC, H-EUC,
CNS-11643-1992, EUC-H-1992, csCNS11643-1992-EUC, EUC-
TW-1992, TW-EUC-1992, H-EUC-1992

CNS-11643-1986 EUC-H-1986, csCNS11643_1986_EUC, EUC-TW-1986, TW-
EUC-1986, H-EUC-1986

CP10000 csCP10000, windows-10000

CP10001 csCP10001, windows-10001

CP10002 csCP10002, windows-10002

CP10003 csCP10003, windows-10003

CP10004 csCP10004, windows-10004

CP10005 csCP10005, windows-10005

CP10006 csCP10006, windows-10006

CP10007 csCP10007, windows-10007

CP10008 csCP10008, windows-10008

CP10010 csCP10010, windows-10010

CP10017 csCP10017, windows-10017

CP10029 csCP10029, windows-10029

CP10079 csCP10079, windows-10079

CP10081 csCP10081, windows-10081

CP10082 csCP10082, windows-10082

CP1026 csCP1026, windows-1026

CP1250 csCP1250, windows-1250

Rosette Core Library for Unicode

172

External Encoding Other Names

CP1251 WinCyrillic, csCP1251, windows-1251

CP1252 WinLatin1, csCP1252, windows-1252

CP1253 csCP1253, windows-1253

CP1254 csCP1254, windows-1254

CP1255 csCP1255, windows-1255

CP1256 csCP1256, windows-1256

CP1257 csCP1257, windows-1257

CP1258 csCP1258, windows-1258

CP1361 csCP1361, windows-1361

CP20105 csCP20105, windows-20105

CP20261 csCP20261, windows-20261

CP20269 csCP20269, windows-20269

CP20273 csCP20273, windows-20273

CP20277 csCP20277, windows-20277

CP20278 csCP20278, windows-20278

CP20280 csCP20280, windows-20280

CP20284 csCP20284, windows-20284

CP20285 csCP20285, windows-20285

CP20290 csCP20290, windows-20290

CP20297 csCP20297, windows-20297

CP20420 csCP20420, windows-20420

CP20423 csCP20423, windows-20423

CP20833 csCP20833, windows-20833

CP20838 csCP20838, windows-20838

CP20866 KOI8-R, KOI8, csCP20866, windows-20866

CP20871 csCP20871, windows-20871

CP20880 csCP20880, windows-20880

CP20905 csCP20905, windows-20905

CP21025 csCP21025, windows-21025

CP21027 csCP21027, windows-21027

CP21866 KOI8-RU, KOI8-U, csCP21866, windows-21866

CP28591 csCP28591, windows-28591

CP28592 csCP28592, windows-28592

CP28593 csCP28593, windows-28593

CP28594 csCP28594, windows-28594

CP28595 csCP28595, windows-28595

CP28596 csCP28596, windows-28596

CP28597 csCP28597, windows-28597

Rosette Core Library for Unicode

173

External Encoding Other Names

CP28598 csCP28598, windows-28598

CP28599 csCP28599, windows-28599

CP38598 csCP38598, windows-38598

CP437 IBM437, 437, csPC8CodePage437, csCP437, windows-437

CP500 IBM500, csCP500, windows-500

CP708 csCP708, windows-708

CP720 csCP720, windows-720

CP737 csCP737, windows-737

CP775 csCP775, windows-775

CP850 IBM850, 850, csPC850Multilingual, csCP850, windows-850

CP852 IBM852, csCP852, windows-852

CP855 IBM855, csCP855, windows-855

CP857 IBM857, csCP857, windows-857

CP860 IBM860, csCP860, windows-860

CP861 IBM861, csCP861, windows-861

CP862 IBM862, csCP862, windows-862

CP863 IBM863, csCP863, windows-863

CP864 IBM864, csCP864, windows-864

CP865 IBM865, csCP865, windows-865

CP866 IBM866, DosCyrillic, csCP866, windows-866

CP869 IBM869, csCP869, windows-869

CP870 IBM870, csCP870, windows-870

CP874 csCP874, windows-874

CP875 csCP875, windows-875

CP936 GBK, csCP936, windows-936

CP949 csCP949, windows-949

CP950 csCP950, windows-950

csISCIIGujarati ISCII-Gujarati

csRoman8 hp-roman8, roman8, r8, csHPRoman8

EBCDIC IBM037, CP037, ebcdic-cp-us, ebcdic-cp-ca, ebcdic-cp-wt, ebcdic-cp-
nl, csIBM037, CP37, csCP37, windows-37

EUC-JP EUC-J, csEUCPkdFmtJapanese,
Extended_UNIX_Code_Packed_Format_for_Japanese, J-EUC, JP-
EUC, x-euc-jp

EUC-JP-JIS-Roman EUC-JP, csEUCJPJISRoman

EUC-JP-JIS-RomanRoundtrip EUC-JP, csEUCJPJISRomanRoundtrip, EUC-JP-JIS-RomanRT,
csEUCJPJISRomanRT

Rosette Core Library for Unicode

174

External Encoding Other Names

EUC-JPRoundtrip EUC-JP, EUC-JRoundtrip, csEUCPkdFmtJapaneseRoundtrip,
Extended_UNIX_Code_Packed_Format_for_JapaneseRoundtrip, J-
EUCRoundtrip, JP-EUCRoundtrip, x-euc-jpRoundtrip, EUC-JPRT,
EUC-JRT, csEUCPkdFmtJapaneseRT,
Extended_UNIX_Code_Packed_Format_for_JapaneseRT, J-EUCRT,
JP-EUCRT, x-euc-jpRT

EUC-KR csEUCKR, KS_C_5861-1992, K-EUC

EUC-KR:HP-Printer

GB12345 GB12345-80, GB12345-90

GB18030 GB18030, csGB18030

GB2312 GB231280, csGB2312, csGB231280, GB_2312-80, EUC-CN

Greek ISO-8859-7, greek8, csISOLatinGreek, iso-ir-126, ISO_8859-7,
ELOT_928, ECMA-118

Hebrew ISO-8859-8, csISOLatinHebrew, iso-ir-138, ISO_8859-8

HKSCS csHKSCS, Big5-HKSCS, csBig5-HKSCS

HZ-GB-2312 HZ, csHZGB2312

ISCII-Bengali csISCIIBengali, x-iscii-be, windows-57003

ISCII-Devanagari csISCIIDevanagari, x-iscii-de, windows-57002

ISCII-Kannada csISCIIKannada, x-iscii-ka, windows-57008

ISCII-Malayalam csISCIIMalayalam, x-iscii-ma, windows-57009

ISCII-Tamil csISCIITamil, x-iscii-ta, windows-57004

ISCII-Telugu csISCIITelugu, x-iscii-te, windows-57005

ISO-2022-CN csISO2022CN

ISO-2022-JP csISO2022JP

ISO-2022-JPRoundtrip csISO2022JPRoundtrip, ISO-2022-JPRT

ISO-2022-KR csISO2022KR

ISOLatinCyrillic ISO-8859-5, Cyrillic, csISOLatinCyrillic, iso-ir-144, ISO_8859-5

JapaneseAutoDetect csJapaneseAutoDetect, Candidate, encodings:, EUC-JP, EUC-JP-JIS-
Roman, ISO-2022-JP, UTF32:UTF8, UCS2

Java

JIS_X0201 X0201, csHalfWidthKatakana, IBM897

JIS_X_0208 JIS-X-0208, JIS_X0208-1983, csISO87JISX0208, x0208, iso-ir-87,
JIS_C6226-1983

Johab csJohab

KoreanAutoDetect csKoreanAutoDetect, Candidate, encodings:, EUC-KR, CP949,
UTF32:UTF8, UCS2

Latin1 ISO-8859-1, l1, IBM819, csISOLatin1, iso-ir-100, ISO_8859-1

Latin2 ISO-8859-2, l2, csISOLatin2, iso-ir-101, ISO_8859-2

Latin3 ISO-8859-3, l3, csISOLatin3, iso-ir-109, ISO_8859-3

Latin4 ISO-8859-4, l4, csISOLatin4, iso-ir-110, ISO_8859-4

Rosette Core Library for Unicode

175

External Encoding Other Names

Latin5 ISO-8859-9, l5, csISOLatin5, iso-ir-148, ISO_8859-9

Latin6 ISO-8859-10, l6, csISOLatin6, iso-ir-157, ISO_8859-10

Latin7 iso-8859-13, l7, csISOLatin7, ISO_8859-13, ISO/IEC, 8859-13

Latin8 iso-8859-14, l8, csISOLatin8, iso-ir-199, ISO_8859-14, ISO/IEC,
8859-14

Latin9 ISO-8859-15, l9, csISOLatin9, ISO_8859-15, ISO/IEC, 8859-15

little-endian ISO-10646-UCS-2, LittleEndian, x86, UTF-16LE

MacArabic csMacArabic, x-mac-arabic

MacCentralEuropean csMacCentralEuropean, MacPolish, MacCzech, MacSlovak,
MacHungarian, MacEstonian, MacLatvian, MacLithuanian, x-mac-ce,
x-mac-centraleurroman

MacChineseSimplified csMacChineseSimplified, x-mac-chinesesimp

MacChineseTraditional csMacChineseTraditional, x-mac-chinesetrad

MacCroatian csMacCroatian, x-mac-croatian

MacCyrillic csMacCyrillic, x-mac-cyrillic

MacDevanagari csMacDevanagari, x-mac-devanagari

MacDingbats csMacDingbats, x-mac-dingbats

MacGreek csMacGreek, x-mac-greek

MacGujarati csMacGujarati, x-mac-gujarati

MacGurmukhi csMacGurmukhi, x-mac-gurmukhi

MacHebrew csMacHebrew, x-mac-hebrew

MacIcelandic csMacIcelandic, x-mac-icelandic

MacJapanese csMacJapanese, x-mac-japanese

MacKorean csMacKorean, x-mac-korean

MacRoman csMacRoman, x-mac-roman

MacRomanian csMacRomanian, x-mac-romanian

MacSymbol csMacSymbol, x-mac-symbol

MacThai csMacThai, x-mac-thai

MacTurkish csMacTurkish, x-mac-turkish

MacUkrainian csMacUkrainian, x-mac-ukrainian

NextStep csNextStep

Shift-JIS Shift_JIS, csShiftJISMS, csShiftJIS, CP932, csCP932, windows-932,
MS_Kanji, Windows-31J, csWindows31J, SJIS, ShiftJIS, Shift, JIS, X-
SJIS, x-ms-cp932, Shift-JIS-ASCII

Shift-JIS78 Shift_JIS, csShiftJIS78, SJIS78, ShiftJIS78, Shift-JIS-Roman

Shift-JIS78Roundtrip Shift_JIS, csShiftJIS78Roundtrip, SJIS78Roundtrip,
ShiftJIS78Roundtrip, Shift-JIS-RomanRoundtrip

Rosette Core Library for Unicode

176

External Encoding Other Names

Shift-JISRoundtrip csShiftJISMSRoundtrip, CP932Roundtrip, windows-932Roundtrip,
MS_KanjiRoundtrip, SJISRoundtrip, ShiftJISRoundtrip,
JISRoundtrip, X-SJISRoundtrip, x-ms-cp932Roundtrip, Shift-JIS-
ASCIIRoundtrip, Shift-JISRT, CP932RT, windows-932RT,
MS_KanjiRT, SJISRT, ShiftJISRT, Shift, JISRT, X-SJISRT, x-ms-
cp932RT, Shift-JIS-ASCIIRT

Shift_JIS-2004 csShiftJIS2004, ShiftJis2004, ShiftJISX0213, Shift_JISX0213,
ShiftJIS-X

TCVN NSCII

Thai csISOLatinThai, ISO_8859-11

UCS2 UCS-2, unicode, ISO-10646-UCS-2, UTF-16

Unicode11:big-endian UNICODE-1-1-UCS-2

Unicode11:BOM:big-endian UNICODE-1-1-UCS-2

Unicode11:BOM:Java

Unicode11:BOM:little-endian UNICODE-1-1-UCS-2

Unicode11:BOM:UCS2 UNICODE-1-1-UCS-2

Unicode11:BOM:UTF-
EBCDIC

Unicode11:BOM:UTF7 UNICODE-1-1-UTF-7

Unicode11:BOM:UTF8 UNICODE-1-1-UTF-8

Unicode11:Java

Unicode11:little-endian UNICODE-1-1-UCS-2

Unicode11:UCS2 UNICODE-1-1-UCS-2

Unicode11:UTF-EBCDIC

Unicode11:UTF7 UNICODE-1-1-UTF-7

Unicode11:UTF8 UNICODE-1-1-UTF-8

Unicode20:BOM:Java

Unicode20:BOM:UTF-
EBCDIC

Unicode20:BOM:UTF7 UTF-7

Unicode20:BOM:UTF8 UTF-8

Unicode20:little-endian ISO-10646-UCS-2

Unicode20:UCS2 ISO-10646-UCS-2

UTF-EBCDIC UTF8-EBCDIC, UTF-8-EBCDIC

UTF32 UTF-32

UTF32:big-endian UTF-32

UTF32:BOM:big-endian UTF-32

UTF32:BOM:little-endian UTF-32

UTF32:little-endian UTF-32

UTF32:UCS2 UTF-32

Rosette Core Library for Unicode

177

External Encoding Other Names

UTF32:UTF8 UTF-8

UTF7 UTF-7

UTF8 UTF-8

UTF8BOM UTF-8

VIQR Vietnet

VISCII viscii

VNI

VPS

11.4.21. Rosette Language Identifier

Name
RLI

Dependencies
None

Language Dependent
No

XML-Configurable Options
None

Context Properties

The following context properties control the runtime behavior of the Language Identifier. For brevity,
the com.basistech.rli prefix has been removed from the property names in the first column.
Hence the full name for hint_language is com.basistech.rli.hint_language.

Property Type Default Description

hint_language string Form: "ISOLanguageCode, weight". Generates an
RLI language hint. The language is denoted by a
(usually) two-letter ISO639 language code [11] .
The weight is a float from 1-99. The hint reduces
the distance of the input profile from the specified
language's profile by the specified weight (treated
as a percentage). For example, "de, 50.005" reduces
the distance of the input profile from the German
language profile by 50.005%. Default weight is 1.0;
accordingly, "nl" reduces the distance from the
Dutch language profile by 1.0%. If the language is
known with a very high confidence, then a large
hint weight can be used to suppress language
detection, leaving only encoding detection to be
performed.

Rosette Language Identifier

178

Property Type Default Description

min_valid_characters integer 4 Sets the minimum number of bytes of required valid
(non-whitespace) characters in the input data. 4
bytes may include 1 to 4 UTF-8 characters. If the
input data has less than the minimum number of
bytes of valid characters, no detection is performed.
Value range is an integer 1 or greater.

profile_depth integer 1200 Sets the maximum number (depth) of n-grams to be
used in input profile. If depth is 100, the 100 most
frequent n-grams are included in the input profile.
A small depth improves detection speed but reduces
detection accuracy. Value range is an integer 1 or
greater.

Description
The Language Identifier (RLI) identifies the language, encoding, and writing script of the input.

If the input is (or may be) Unicode, put Unicode Converter [187] in the context in front of RLI.

Use RLI with RCLU [168] to convert non-Unicode text to UTF-16.

RLI compares the input document against the statistical profile for every supported language and
encoding (see RLI Languages and Encodings [180]).

RLI uses an n-gram algorithm for its language and encoding detection. Each built-in profile contains
the quad-grams (i.e., four consecutive bytes) that are most frequently encountered in documents using
a given language and encoding. The default number of n-grams is 10,000 for double-byte encodings
and 5,000 for single-byte encodings. When input text is submitted for detection, a similar n-gram
profile is built based on that data. The input profile is then compared with all the built-in profiles (a
vector distance measure between the input profile and the built-in profile is calculated). The pre-built
profiles are then returned in ascending order by the (shortest) distance of the input from the pre-built
profiles.

Note: If you are interested in ranking and analyzing multiple language possibilities, rather than simply
obtaining the most likely language, use the Basis Technology Rosette Language Identifier standalone
product, which allows you to set thresholds for tagging possible matches as ambiguous or invalid, to
influence rankings with language-hint settings, and to iterate over all possible language matches with
their respective rankings.

RLI returns three results associated with the profile that ranks highest:

• DETECTED_LANGUAGE [84]

An integer corresponding to one of the language IDs in the table below. The language IDs are defined
in bt_language_names.h (C++) and com.basistech.BTLanguageCodes (Java).

• DETECTED_ENCODING [84]

A string corresponding to one of the encodings in the table below.

• DETECTED_SCRIPT [85]

An integer representing the ISO15924 code for the writing script. As noted in the following table,
RLI can detect certain languages (such as Arabic, Kurdish, Pashto, Farsi, Serbian, Urdu, and Uzbek)
when the text is transliterated into Latin script, in addition to text in the native script for that language.

Rosette Language Identifier

179

For the ISO15924 codes, see see bt_iso_15924_codes.h or
com.basistech.util.ISO15924.

Table 11.2. RLI Languages and Encodings

Language Encoding(s) Language ID Codea

Unknown Unknown BT_LANGUAGE_UNKNOWN un

Albanian windows-1252,
ISO-8859-1, UTF-8

BT_LANGUAGE_ALBANIAN sq

Arabic windows-1256,
windows-720,
ISO-8859-6, UTF-8

BT_LANGUAGE_ARABIC ar

Arabic
(Transliterated)

windows-1252,
ISO-8859-1,
windows-1256,
UTF-8

BT_LANGUAGE_ARABIC ar

Bengali ISCII-Bengali,
UTF-8

BT_LANGUAGE_BENGALI bn

Bulgarian windows-1251,
ISO-8859-5, KOI8-
R, UTF-8

BT_LANGUAGE_BULGARIAN bg

Catalan windows-1252,
ISO-8859-1, UTF-8

BT_LANGUAGE_CATALAN ca

Chinese (Simplified) HZ-GB-2312,
GB2312, ISO-2022-
CN, UTF-8

BT_LANGUAGE_SIMPLIFIEDCHINESE zh_sc

Chinese (Traditional) Big5, UTF-8 BT_LANGUAGE_TRADITIONALCHINESE zh_tc

Croatian windows-1250,
ISO-8859-2, UTF-8

BT_LANGUAGE_CROATIAN hr

Czech windows-1250,
ISO-8859-2, UTF-8

BT_LANGUAGE_CZECH cs

Danish windows-1252,
ISO-8859-1, UTF-8

BT_LANGUAGE_DANISH da

Dutch windows-1252,
ISO-8859-1, UTF-8

BT_LANGUAGE_DUTCH nl

English windows-1252,
ISO-8859-1, UTF-8

BT_LANGUAGE_ENGLISH en

English (Upper Case) windows-1252,
ISO-8859-1, UTF-8

BT_LANGUAGE_ENGLISH_UC en_uc

Estonian windows-1257,
ISO-8859-13, UTF-8

BT_LANGUAGE_ESTONIAN et

Finnish windows-1252,
ISO-8859-1, UTF-8

BT_LANGUAGE_FINNISH fi

French windows-1252,
ISO-8859-1, UTF-8

BT_LANGUAGE_FRENCH fr

Rosette Language Identifier

180

Language Encoding(s) Language ID Codea

German windows-1252,
ISO-8859-1, UTF-8

BT_LANGUAGE_GERMAN de

Greek windows-1253,
ISO-8859-7, UTF-8

BT_LANGUAGE_GREEK el

Gujarati ISCII-Gujarati,
UTF-8

BT_LANGUAGE_GUJARATI gu

Hebrew windows-1255,
ISO-8859-8, UTF-8

BT_LANGUAGE_HEBREW he

Hindi ISCII-Devanagari,
UTF-8

BT_LANGUAGE_HINDI hi

Hungarian windows-1250,
ISO-8859-2, UTF-8

BT_LANGUAGE_HUNGARIAN hu

Icelandic windows-1252,
ISO-8859-1, UTF-8

BT_LANGUAGE_ICELANDIC is

Indonesian windows-1252,
ISO-8859-1, UTF-8

BT_LANGUAGE_INDONESIAN id

Italian windows-1252,
ISO-8859-1, UTF-8

BT_LANGUAGE_ITALIAN it

Japanese EUC-JP, Shift_JIS,
ISO-2022-JP, UTF-8

BT_LANGUAGE_JAPANESE ja

Kannada ISCII-Kannada,
UTF-8

BT_LANGUAGE_KANNADA kn

Korean EUC-KR, ISO-2022-
KR, UTF-8

BT_LANGUAGE_KOREAN ko

Kurdish (Cyrillic) windows-1256,
UTF-8

BT_LANGUAGE_KURDISH ku

Kurdish (Latin) windows-1252,
ISO-8859-1,
windows-1256,
UTF-8

BT_LANGUAGE_KURDISH ku

Latvian windows-1257,
ISO-8859-13, UTF-8

BT_LANGUAGE_LATVIAN lv

Lithuanian windows-1257,
ISO-8859-13, UTF-8

BT_LANGUAGE_LITHUANIAN lt

Macedonian windows-1251,
ISO-8859-5, UTF-8

BT_LANGUAGE_MACEDONIAN mk

Malay windows-1252,
ISO-8859-1, UTF-8

BT_LANGUAGE_MALAY ms

Malayalam ISCII-Malayalam,
UTF-8

BT_LANGUAGE_MALAYALAM ml

Norwegian windows-1252,
ISO-8859-1, UTF-8

BT_LANGUAGE_NORWEGIAN no

Pashto windows-1256,
UTF-8

BT_LANGUAGE_PASHTO ps

Rosette Language Identifier

181

Language Encoding(s) Language ID Codea

Pashto
(Transliterated)

windows-1252,
ISO-8859-1,
windows-1256,
UTF-8

BT_LANGUAGE_PASHTO ps

Farsi (Persian) windows-1256,
UTF-8

BT_LANGUAGE_PERSIAN fa

Farsi (Transliterated) windows-1252,
ISO-8859-1,
windows-1256,
UTF-8

BT_LANGUAGE_PERSIAN fa

Polish windows-1250,
ISO-8859-2, UTF-8

BT_LANGUAGE_POLISH pl

Portuguese windows-1252,
ISO-8859-1, UTF-8

BT_LANGUAGE_PORTUGUESE pt

Romanian windows-1250,
ISO-8859-2, UTF-8

BT_LANGUAGE_ROMANIAN ro

Russian windows-1251,
ISO-8859-5, KOI8-
R, IBM866, x-mac-
cyrillic, UTF-8

BT_LANGUAGE_RUSSIAN ru

Serbian (Cyrillic) windows-1251,
ISO-8859-5, UTF-8

BT_LANGUAGE_SERBIAN sr

Serbian (Latin) windows-1250,
ISO-8859-2, UTF-8

BT_LANGUAGE_SERBIAN sr

Slovak windows-1250,
ISO-8859-2, UTF-8

BT_LANGUAGE_SLOVAK sk

Slovenian windows-1250,
ISO-8859-2, UTF-8

BT_LANGUAGE_SLOVENIAN sl

Somali windows-1252,
ISO-8859-1, UTF-8

BT_LANGUAGE_SOMALI so

Spanish windows-1252,
ISO-8859-1, UTF-8

BT_LANGUAGE_SPANISH es

Swedish windows-1252,
ISO-8859-1, UTF-8

BT_LANGUAGE_SWEDISH sv

Tagalog windows-1252,
ISO-8859-1, UTF-8

BT_LANGUAGE_TAGALOG tl

Tamil ISCII-Tamil, UTF-8 BT_LANGUAGE_TAMIL ta

Telugu ISCII-Telugu,
UTF-8

BT_LANGUAGE_TELUGU te

Thai windows-874,
UTF-8

BT_LANGUAGE_THAI th

Turkish windows-1254,
UTF-8

BT_LANGUAGE_TURKISH tr

Rosette Language Identifier

182

Language Encoding(s) Language ID Codea

Ukrainian windows-1251,
ISO-8859-5, KOI8-
R, UTF-8

BT_LANGUAGE_UKRAINIAN uk

Urdu windows-1256,
UTF-8

BT_LANGUAGE_URDU ur

Urdu (Transliterated) windows-1252,
ISO-8859-1,
windows-1256,
UTF-8

BT_LANGUAGE_URDU ur

Uzbek (Cyrillic) windows-1251,
ISO-8859-5, KOI8-
R, UTF-8

BT_LANGUAGE_UZBEK uz

Uzbek (Latin) windows-1251,
ISO-8859-5, UTF-8

BT_LANGUAGE_UZBEK uz

Vietnamese TCVN, VIQR,
VISCII, VPS, VNI,
UTF-8

BT_LANGUAGE_VIETNAMESE vi

aISO639 two-letter language codes, except for Simplified and Traditional Chinese, and upper-case English, which include Basis
Technology two-letter extensions for .

11.4.22. Sentence Boundary Detector

Name
SentenceBoundaryDetector

Dependencies
Requires tokens. See the following table:

Language Dependency

Farsi (Persian) Tokenizer

Urdu Tokenizer

Arabic, Farsi, Urdu Tokenizer

Chinese (Simplified and Traditional) CLA

Japanese JLA

Korean KLA

Englisha Tokenizer

Germana Tokenizer

Frencha Tokenizer

Italiana Tokenizer

Spanisha Tokenizer
aNot recommended. See below.

Language Dependent
Arabic, Simplified and Traditional Chinese, Japanese. For more accurate results with English, German,
French, Italian, Spanish, use BL1 [129] to detect sentence boundaries. SentenceBoundaryDetector
does nothing when it follows BL1. If you do want to use SentenceBoundaryDetector with a European
language, do not include BL1.

Sentence Boundary Detector

183

XML-Configurable Options
None. If you use SentenceBoundaryDetector to process German or English text, it uses a dictionary
for more accurate boundary detection. The paths to the dictionaries are specified in BT_ROOT/rlp/
etc/sbd-config.xml. These dictionaries are not user configurable.

Context Properties
None

Description
In each language, RLP detects where sentence boundaries are in documents. This is more
straightforward in Japanese than in other languages, as the end-of-sentence marker in Japanese is not
used for other purposes. In German and English, in addition to marking sentence boundaries the period
is also used to mark abbreviations. This creates a great deal of ambiguity. Consider the following
sentences:

Mr. Smith went to N.Y.U. Law School. He then worked for John J. Jones in Mass.
He said, "I always sail on weekends." Finally, "Or on weekdays," he added.

Note that periods need not end sentences when they end an abbreviation; however, periods can end
abbreviations and at the same time end a sentence. Also they interact with other punctuation, especially
quotation marks.

The Sentence Boundary Detector returns a list of SENTENCE_BOUNDARY [87] indexes
representing the end token + 1 of each sentence in the input string. It also reads and, if necessary,
reposts the TOKEN [88] results.

11.4.23. Script Boundary Detector

Name
Script Boundary

Dependencies
None

Language Dependent
No

XML-Configurable Options
None

Context Properties
None

Description

The Script Boundary Detector determines regions of homogeneous script within input text. That is,
all characters within a script region belong to a common script. The Script Boundary Detector returns
a result, SCRIPT_REGION [87] , consisting of an array of integer triples. Each triple consists of the
beginning character offset of a region, the end offset + 1 of the region, and an ISO15924script code.
RLP provides utilities for mapping ISO15924 integer values to 4-character codes and English names.
For C++, see bt_iso15924.h. For Java, see com.basistech.util.ISO15924.

You may use the Script Boundary Detector in conjunction with the Text Boundary Detector [186]
and Language Boundary Detector [152] to identify individual language and script regions within
input text that contains multiple languages and scripts. You may want to use the results to submit

Script Boundary Detector

184

individual regions (from the raw text) to an RLP context designed to perform linguistic processing for
an individual language and script.

Given that the Script Boundary Detector is mainly used to provide input to the Language Boundary
Detector, it has the following characteristics:

• Script-neutral characters like punctuation and digits do not produce a change in script.

• Hiragana and Katakana are reported as CJK script so as not to produce script changes in a region
containing typical Japanese text.

For more information about using the Language Boundary Detector to handle multilingual text, see
Processing Multilingual Text [73] .

11.4.24. Stopwords

Name
Stopwords

Dependencies
Tokenized text: Tokenizer or language analyzer.

Note: You cannot use the Stopwords processor with Chinese, Japanese, or Korean input. The
Chinese [133] , Japanese [147] , and Korean [151] language analyzers have an
ignore_stopwordscontext property that can be set to return (or not return) stopwords. The
Stopwords processor does nothing if run after any of these processors.

Language Dependent
You can create stopwords [191] for Arabic, Czech, Dutch, English, French, German, Greek,
Hungarian, Italian Polish, Portuguese, Russian, and Spanish.

XML-Configurable Options

The Stopwords options are specified in BT_ROOT/rlp/etc/stop-options.xml. For example:

<?xml version="1.0" encoding="utf-8" standalone="no" ?>
<!DOCTYPE stopconfig SYSTEM "stopconfig.dtd">

<stopoptions>
<dictionaries>
<!-- Paths to your stopword dictionary files go here. Each file is a
list of words, one-per-line, in UTF-8. Stopword processing is applied
to the tokens, not the stems.
-->
<dictionarypath language="en"><env name="root"/>/etc/en-stopwords.txt
 </dictionarypath>

</dictionaries>
</stopoptions>

Each dictionarypath specifies the pathname of the user-defined stopwords file for the indicated
language. The stopwords file is a list of words, one per line, encoded in UTF-8. Blank lines and lines
starting with "#" are ignored.

Context Properties

Stopwords

185

Description
The Stopword processor marks tokens considered to be stopwords, based on their presence in the
appropriate language-specific stopword dictionary.

The STOPWORD [88] result type contains the results: the token number of each stopword. For
example, the English input sentence, "We went to the movie." has the following six tokens:

We
went
to
the
movie
.

(Note that token offsets start with 0.) Assuming that "to" and "the" are in the English stopwords file,
the STOPWORD result will contain two entries: 2 and 3, indicating that tokens number 2 and 3 are
stopwords.

In output from the REXML output processor, tokens identified as stopwords have the attribute
stopword="yes" attached to its token element.

Stopword processing applies to the token's surface form, not to the stem. Comparison is case sensitive;
e.g., "The" and "the" are different tokens.

For more detailed information about creating Stopwords files, see User-Defined Data: Customizing
Stopwords [191] .

11.4.25. Text Boundary Detector

Name
Text Boundary

Dependencies
None

Language Dependent
No

XML-Configurable Options
None

Context Properties
None

Description

For use with the Script Boundary Detector [184] and Language Boundary Detector [152] to identify
individual language and script regions within input text that contains multiple languages and scripts.
You can use the results to submit individual regions (from the raw text) to an RLP context designed
to perform linguistic processing for an individual language and script.

For more information about using the Language Boundary Detector to handle multilingual text, see
Processing Multilingual Text [73] .

The Text Boundary Detector determines sentence unit boundaries as defined by Unicode Standard
Annex #29 [http://www.unicode.org/reports/tr29/]. It does not search for sentence units but rather the
boundaries between them. Though there are language-dependent factors here (see Sentence Boundary

Text Boundary Detector

186

http://www.unicode.org/reports/tr29/
http://www.unicode.org/reports/tr29/
http://www.unicode.org/reports/tr29/

Detector [183]), the processor uses Unicode requirements to find likely boundaries without knowing
the language of the text. The boundaries are defined in terms of character properties. The Text
Boundary Detector returns a result, TEXT_BOUNDARIES [88] , consisting of an array of character
offsets. Each offset represents the end character + 1 of each sentence unit in the input text. For example,
a value of 12 indicates that character 11 is the last character before the boundary.

11.4.26. Tokenizer

Name
Tokenizer

Dependencies
None

Language Dependent
No

XML-Configurable Options
None

Context Properties
None.

Description
The Tokenizer provides word tokenization functionality based on the algorithms provided in Chapter
5 of The Unicode Standard 3.0 and UAX #29 Text Boundaries in Unicode 4.0.

If BL1 [129] , CLA [133] , JLA [147] , and/or KLA [151] are in the context, they should precede
the Tokenizer. These language processors do their own tokenization, and the Tokenizer does nothing
if one of them has already run. DO NOT place Tokenizer before BL1, CLA, JLA, or KLA in the
context; if you do so, Tokenizer performs language-neutral tokenization, and the other processors are
unable to generate language-specific tokens, part-of-speech tags, and other critical information.

ARBL [126] , FABL [141] , and URBL [188] depend on the Tokenizer (and Sentence Boundary
Detector [183]).

11.4.27. Unicode Converter

Name
Unicode Converter

Dependencies
Input must be in a UTF-8, UTF-16, or UTF-32 encoding. If the user supplies the encoding in an API
call to a context object, it must be one of the following strings:

• UTF-8
• UTF-8BOM
• CESU-8
• UTF-16BE
• UTF-16LE
• UTF-16
• UTF-32BE
• UTF-32LE
• UTF-32

Tokenizer

187

Language Dependent
No

XML-Configurable Options
None

Context Properties
None

Description
The Unicode Converter takes text in any of the Unicode encoding forms (UTF-8, big- and little-endian
UTF-16 and UTF-32) and converts it to UTF-16 (RAW_TEXT) [87] . The processor does not perform
language detection.

If present, the Unicode byte-order mark (BOM) is removed prior to conversion to UTF-16; subsequent
language processors in the RLP context do not see the BOM.

Sections 2.5 and 2.6 of The Unicode Standard, Version 4.0 discusses the Unicode encoding forms and
encoding schemes at great length.

11.4.28. Urdu Base Linguistics

Name
URBL

Dependencies
Tokenizer, SentenceBoundaryDetector

Language Dependent
Urdu

XML-Configurable Options
None. The paths to the URBL dictionaries and related resources are defined in urbl-options.xml.

Context Properties
When processing a query (a collection of one or more search terms) rather than prose (one or more
sentences), set the com.basistech.bl.query global context property [125] to true.

Description

The URBL language processor performs morphological analysis for texts written in Urdu.

The processor generates the following result types:

• STEM [87]
• NORMALIZED_TOKEN [86]

Normalization

Each Urdu token is normalized prior to morphological analysis. The normalized form is returned in
the NORMALIZED_TOKEN result.

Normalization is performed in two stages: generic Arabic script normalization [125] and Urdu-
specific normalization.

The following language-specific normalizations are performed on the output of the Arabic script
normalization:

Urdu Base Linguistics

188

• Fathatan (U+064B), zero-width non joiner (U+200C), and jazm (U+06E1) are removed.

• Alef أ (U+0623), إ (U+0625), or ٱ (U+0671) is converted to ا (U+0627).

• Kaf ك (U+0643) is converted to ک (U+06A9).

• Heh with hamza ۀ (U+06C0) is converted to ۂ (U+06C2).

• Yeh ي (U+064A) or ى (U+0649) is converted to ی (U+06CC).

• Small high dotless head of khah ۡ (U+06E1) is removed.

Variations

The analyzer can generate a number of variant forms for each Urdu token to account for the
orthographic irregularity seen in contemporary written Urdu. Each variation is generated over the
output of the previous, starting with the normalized form:

• If a word contains hamza on yeh (U+0626), a variant is generated replacing the hamza on yeh with
Farsi yeh (U+06CC).

• If a word contains hamza on waw (U+0624), a variant is generated replacing the hamza on waw
with waw (U+0648).

• If a word contains a superscript alef (U_0670), a variant is generated without the superscript alef.

• If a word contains heh doachasmee (U+06BE), a variant is generated replacing the heh
doachasmee with heh goal (U+06C1).

• If a word ends with teh marbuta (U+0647), a variant is generated replacing the teh marbuta with
heh goal (U+06C1).

A Note on Stemming

The stem returned in the STEM result is the normalized token with affixes (such as
prepositions, conjunctions, the definite article, proclitic pronouns, and inflectional prefixes)
removed.

Normalization before stemming removes all diacritics, and performs orthographic
normalization, such as converting all alifs to the plain alif or converting all non-Urdu Arabic
Unicode characters such as yeh (U+064A) or alif maksura (U+0649) to the Farsi yeh (U
+06CC).

As a general principle, words containing zero-width non joiner and/or superscript alef will
have the same stem as the same words without zero-width non joiner or the superscript
alef.

If com.basistech.bl.query is false (the default), URBL generates up to 20
orthographic variants for each token that might have other forms of spelling. If the word is
parseable, URBL performs morphological analysis to determime the stem. If the word is not
parseable, URBL takes the next parseable alternative orthographic variant and returns its
stem.

Urdu Base Linguistics

189

If com.basistech.bl.query is true, URBL does not generate orthographic variants.
If the word is parseable, URBL performs morphological analysis to determine the stem. If
the word is not parseable, URBL sets the stem to the value of the entire word.

Urdu Base Linguistics

190

Chapter 12. User-Defined Data
Several of the RLP language processors use or even require user-defined data of some form. This chapter
describes how to create and integrate user-defined data with those RLP processors:

User-Defined Data Language Processor

Stopwords [191] Stopwords [185]

User Dictionaries [193] (European) Base Linguistics Analyzer (BL1) [129]

Chinese Language Analyzer (CLA) [133]

Japanese Language Analyzer (JLA) [147]

Korean Language Analyzer (KLA) [151]

(Any RLP-supported language) ManyToOneNormalizer [153]

For information about expanding or modifying the scope of Named Entities (Named Entity Extractor
(NamedEntityExtractor) [156] , Gazetteer [144] , Regular Expressions (RegExpLP) [163]), see
Extending the Coverage of Named Entities [52] .

12.1. Customizing Stopwords
In the context of information retrieval, a stopword is a word that appears so frequently in a language that
it is statistically insignificant when performing a search. For example, in English, the words "a" and "the"
appear in virtually any document, and thus do not aid in finding a specific category of documents. Some
information retrieval systems choose to ignore stopwords when performing a search.

For supported languages other than Chinese, Korean, and Japanese, the Stopwords language processor uses
user-defined dictionaries very similar to the Gazetteer Source Files to identify and exclude stopwords. A
sample stopword dictionary for English, en-stopwords.txt, is in the rlp/etc directory. Each dictionary file
is a list of words, one word per line, in UTF-8 format. Stopword processing of these files is applied to the
tokens, not the stems.

For Chinese, Korean, and Japanese, the corresponding language processor uses a stopwords list in
UTF-8 encoding. See Editing the Stopwords List for Chinese, Korean, or Japanese [193] .

12.1.1. Creating Stopword Dictionaries (Not for Chinese, Korean, or
Japanese)

If you are processing text in multiple languages, you may want to create a stopword file for each of the
languages you intend to process. For example, you might create a simple Spanish stopword dictionary, es-
stopwords.txt, as follows:

a
adonde
al
como
con
conmigo
contigo
cuando
cuanto
de
del

191

donde
el
ella
ellas
ellos
eres
es
esta
estamos
estan
estas
la
las
los
mas
mucho
muchos
nosotros
pero
pues
que
quien
son
soy
todo
todos
tu
tus
usted
ustedes
yo

This list is by no means comprehensive. As you use RLP, you may find more words that should be treated
as stopwords.

12.1.2. Configuring Stopwords

The Stopwords options are specified by the stop-options.xml file using the stopconfig.dtd. For example:

<?xml version="1.0" encoding="utf-8" standalone="no" ?>
<!DOCTYPE stopconfig SYSTEM "stopconfig.dtd">

<stopoptions>
<dictionaries>
<!-- Paths to your stopword dictionary files go here. Each file is a list
of words, one-per-line, in UTF-8. Stopword processing is applied to the
tokens, not the stems.
-->
<dictionarypath language="en"><env name="root"/>/etc/en-stopwords.txt
 </dictionarypath>
<dictionarypath language="es"><env name="root"/>/etc/es-stopwords.txt
 </dictionarypath>
</dictionaries>
</stopoptions>

The DTD file includes:

<!ELEMENT stopoptions (dictionaries)>
<!ELEMENT dictionaries (dictionarypath+)>

Configuring Stopwords

192

<!ELEMENT dictionarypath (#PCDATA)>
<!ATTLIST dictionarypath language CDATA #REQUIRED>

The config file will now use both the sample English stopword dictionary and your newly created Spanish
stopword dictionary.

For complete information on using the Stopwords language processor, see Stopwords [185] .

12.1.3. Editing the Stopwords List for Chinese, Korean, or Japanese

The Chinese Language Analyser (CLA) [133] , Korean Language Analyzer (KLA) [151] , and Japanese
Language Analyzer (JLA) [147] each use a stopwords list to define stopwords. The path to the stopwords
list is specified in the processor configuration file.

Language Configuration File Default Stopwords Dictionary

Chinese BT_ROOT/rlp/etc/cla-options.xml BT_ROOT/rlp/cma/dicts/zh_stop.utf8

Korean BT_ROOT/rlp/etc/kla-options.xml BT_ROOT/rlp/kma/dicts/kr_stop.utf8

Japanese BT_ROOT/rlp/etc/jla-options.xml BT_ROOT/rlp/jma/dicts/JP_stop.utf8

You may want to add stopwords to these files. When you edit one of these files, you must follow these
rules:

• The file must be encoded in UTF-8.
• Each line represents exactly one lexeme (stopword).
• Prefix comments with #.
• The file may include blank lines.

12.2. Creating User Dictionaries
Some of the RLP language analyzers can extract information from user dictionaries. Depending on the
language, this information may include part of speech and morphological data to help the analyzer identify
named entities, decompose compound forms, and perform other tasks.

For the languages supported by these analyzers, you may want to create user dictionaries for words specific
to a particular industry or application.

RLP currently supports user dictionaries for the following languages:

• European Languages supported by the Base Linguistics Analyzer (BL1) [193]

• Chinese (CLA) [196]

• Japanese (JLA) [199]

• Korean (KLA) [202]

You can also create normalization dictionaries [205] for any of the languages the RLP supports.

12.2.1. European Language User Dictionaries

You can create one or more user dictionaries for each of the languages supported by Base Linguistics
Analyzer (BL1) [129] : Czech, Dutch, English, Upper-Case English, French, German, Greek, Hungarian,
Italian, Polish, Portuguese, Russian, and Spanish.

For optimal performance, keep the number of dictionaries you create per language to a minimum.

Editing the Stopwords List for Chinese, Korean, or Japanese

193

Procedure for Creating a User Dictionary

1. Create a source file [194] .

2. Compile the source file [195] .

3. Put the binary file in the BL1 dictionary directory for the language [195] .

4. Edit the BL1 configuration file to include the user dictionary [196] .

12.2.1.1. Creating the Source File

The source file for a user dictionary is UTF-8 encoded. The file may begin with a byte order mark (BOM).
Empty lines are ignored.

Each entry is a single line. The Tab character separates word from analysis:

word Tab analysis

In some cases (as described below) the word or analysis may be empty.

The word is a rlp-results.stem TOKEN [88] . In a few cases (such as "New York"), it may contain one or
more space characters. The three characters '[', ']', and '\' must be escaped by prefixing the character with
'\'. If, for example, the word is 'ABC\XYZ', enter it as 'ABC\\XYZ'.

Important

BL1 user dictionary lookups occur after tokenization. If your dictionary contains a word like 'hi
there', it will not be found because the tokenizer identifies 'hi' and 'there' as separate tokens.

The analysis is the STEM [87] with 0 or more morphological tags and special tags, and a required POS
[86] tag. Tags are placed in square brackets ([]). POS tags and morphological tags begin with "+". The
maximum size of an analysis is 128, where normal characters count as 1 and tags count as 2.

Morphological tags are used by the Named Entity Extractor [156] to help identify named entities (Dutch,
English, French, German, Italian, and Spanish).

Special tags are used to divide compound words into their components (German, Dutch, and Hungarian)
and to define boundaries for multi-word baseforms, contractions and elisions, and words with clitics
(German, Dutch, Hungarian, English, French, Italian, and Portuguese).

Morphological and special tags appear in Appendix C: Morphological and Special Tags [233] .

A POS tag identifying part of speech is required and is the last (right-most) tag in the analysis. Valid POS
tags appear in Appendix B: Part-of-Speech Tags [209] .

English examples:

dog dog[+NOUN]
Peter Peter[+Masc][+PROP]
NEW YORK New[^_]York[+Place][+City][+PROP]
doesn't does[^=]not[+VDPRES]

Variations: You may want to provide more than one analysis for a word or more than one version of a
word for an analysis. To avoid unnecessary repetition, include lines with empty analyses (word + Tab),
and lines with empty words (Tab + analysis). A line with an empty analysis uses the previous non-empty
analysis. A line with an empty word uses the previous non-empty word.

European Language User Dictionaries

194

The following example includes two analyses for "telephone" (noun and verb), and two renditions of "dog"
for the same analysis (noun). Note: the dictionary lookup is case sensitive.

telephone telephone[+NOUN]
 telephone[+VI]
dog dog[+NOUN]
Dog

12.2.1.2. Compiling the User Dictionary

BL1 uses the dictionary in a binary form. The byte order of the binary dictionary must match the byte order
of the runtime platform. To use the dictionary on both a little-endian platform (such as an Intel x86 CPU)
and a big-endian platform (such as Sun's SPARC), generate two binary dictionaries. The platform on which
you generate the dictionary determines the byte order of the output.

The script for generating a binary dictionary is BT_ROOT/rlp/bl1/dicts/tools/build_user_dict.sh.

Prerequisites

• Unix or Cygwin (for Windows).

• Python 2.4 on your command path.

• The Unix sort command on your command path.

• The BT_ROOT environment variable must be set to BT_ROOT , the Basis root directory. For example,
if RLP SDK is installed in /usr/local/basistech, set the BT_ROOT environment variable to /usr/local/
basistech. 1

• The BT_BUILD environment variable must be set to the platform identifier embedded in your SDK
package file name (see Supported Platforms [13]).1

To compile the dictionary into a binary format that BL1 can use, issue the following command:

build_user_dict.sh lang input output

lang is the two-letter language code (en_uc for Upper-Case English). See BL1 [129] .

input is the pathname of the dictionary source file.

output is the pathname of the binary dictionary file. If you are generating a little-endian and a big-endian
dictionary, use user_dict-LE.bin for the little-endian file and user_dict-BE.bin for the big-endian dictionary.
Note: choose a descriptive name for user_dict.

Windows example with English dictionary:

./build_user_dict.sh en user_dict.utf8 user_dict-LE.bin

Unix example with English dictionary:

./build_user_dict.sh en user_dict.utf8 user_dict-BE.bin

12.2.1.3. Where to Put the Binary Dictionary

You can put binary dictionaries where you want, but you must put the pathname to the dictionary in the
BL1 configuration file (see the next section).

1In place of setting BT_ROOT and BT_BUILD, you can set a single environment variable (BINDIR) to BT_ROOT/rlp/bin/BT_BUILD .

European Language User Dictionaries

195

To organize the placement of user dictionaries, you may want to put the binary dictionary file in a
BT_ROOT/rlp/bl1/dicts language directory where the directory name matches the language code. For
example, put an English user dictionary in BT_ROOT/rlp/bl1/dicts/en.

12.2.1.4. Updating the BL1 Configuration File

For each user dictionary, add a <user-dict> element to the appropriate language section in bl1-
config.xml.

Example: English user dictionary is available as both a little-endian and a big-endian binary dictionary.

<bl1-options language="en">
 ...
 ...
 <user-dict><env name="root"/>/bl1/dicts/en/userdict-<env name="endian"/>.bin</user-dict>
</bl1-options>

<env-name="endian"> evaluates to LE on little-endian platforms and BE on big-endian platforms.
You must compile separate dictionaries for each.

Example: German user dictionary available in only one form (little-endian or big-endian).

<bl1-options language="de">
 ...
 ...
 <user-dict><env name="root"/>/bl1/dicts/de/userdict.bin</user-dict>
 </bl1-options>

Note

At runtime, RLP replaces <env name="root"/> with the path to the RLP root directory:
BT_ROOT/rlp.

For more information about the BL1 configuration file, see BL1 [129] .

12.2.2. Chinese User Dictionaries

You can create user dictionaries for words specific to an industry or application. User dictionaries allow
you to add new words, personal names, and transliterated foreign words. In addition, you can specify how
existing words are segmented. For example, you may want to prevent a product name from being segmented
even if it is a compound.

For efficiency, Chinese user dictionaries are compiled into a binary form with big-endian or little-endian
byte order to match the platform.

Procedure for Using a Chinese User Dictionary

1. Create the dictionary [197] .

2. Compile the user dictionary [198] .

3. Put the dictionary in the BT_ROOT/rlp/cma/dicts directory [199] .

4. Edit the CLA configuration file to include the user dictionary [199] .

Chinese User Dictionaries

196

12.2.2.1. Creating the User Dictionary

The source file for a Chinese user dictionary is UTF-8 encoded. The file may begin with a byte order mark
(BOM). Empty lines are ignored. A comment line begins with #.

Each entry is a single line:

word Tab POS Tab DecompPattern

where word is the noun, POS is one of the user-dictionary part-of-speech tags listed below, and
DecompPattern (optional) is the decomposition pattern: a comma-delimited list of numbers that specify
the number of characters from word to include in each component of the compound (0 for no
decomposition). The individual components that make up the compound are in the COMPOUND [84]
results.

User Dictionary POS Tags (case-insensitive)

• NOUN
• PROPER_NOUN
• PLACE
• PERSON
• ORGANIZATION
• GIVEN_NAME
• FOREIGN_PERSON

For example, the user dictionary entry

深圳发展銀行 organization 2,2,2

indicates that 東京三菱銀行 should be decomposed into three two-character components:

深圳
发展
銀行

The sum of the digits in the pattern must match the number of characters in the entry. For example,

深圳发展銀行 noun 4,9

is invalid because the entry has 6 characters while the pattern is for a 13-character string. The correct entry
is:

深圳发展銀行 noun 2,4

The POS and decomposition pattern can be in Chinese full-width numerals and Roman letters. For example:

上海证券交易所 ｏｒｇａｎｉｚａｔｉｏｎ １,２,３,１

Decomposition can be prevented by specifying a pattern with the special value "0" or by specifying a pattern
consisting of a single digit with the length of the entry.

For example:

北京人 noun 0

or

北京人 noun 3

Chinese User Dictionaries

197

Tokens matching this entry will not be decomposed. To prevent a word that is also listed in a system
dictionary from being decomposed, set com.basistech.cla.favor_user_dictionary to true.

12.2.2.2. Compiling the User Dictionary

CLA requires the dictionary as described above to be in a binary form. The byte order of the binary
dictionary must match the byte order of the runtime platform. The platform on which you compile the
dictionary determines the byte order. To use the dictionary on both a little-endian platform (such as an Intel
x86 CPU) and a big-endian platform (such as a Sun SPARC), generate a binary dictionary on each of these
platforms.

The script for generating a binary dictionary is BT_ROOT/rlp/cma/source/samples/build_user_dict.sh.

Prerequisites

• Unix or Cygwin (for Windows).

• Python 2.4 on your command path.

• The BT_ROOT environment variable must be set to BT_ROOT , the Basis root directory. For example,
if RLP SDK is installed in /usr/local/basistech, set the BT_ROOT environment variable to /usr/local/
basistech.

• The BT_BUILD environment variable must be set to the platform identifier embedded in your SDK
package file name (see Supported Platforms [13]).

To compile the dictionary into a binary format, issue the following command:

build_user_dict.sh input output

For example, if you have a user dictionary named user_dict.utf8, build the binary user dictionary
user_dict.bin with the following command:

./build_user_dict.sh user_dict.utf8 user_dict.bin

Note

If you are making the user dictionary available for little-endian and big-endian platforms, you can
compile the dictionary on both platforms, and differentiate the dictionaries by using
user_dict_LE.bin for the little-endian dictionary and user_dict_BE.bin for the big-endian
dictionary.

12.2.2.3. Non-Compiled User Dictionaries

For backwards compatibility, CLA continues to support non-compiled user dictionaries. Keep in mind that
non-compiled dictionaries are less efficient and contain less information. A non-compiled user dictionary
must be in UTF-8 and may contain comments, single-field (word) entries, and double-field entries with a
word and a decomposition pattern:

• Comment lines beginning with a pound sign (#).

• Word entries (one word per line with no POS, but may include a Tab and a decomposition pattern). The
decomposition pattern is a series of one or more digits without commas. For example:

深圳发展銀行 24

Chinese User Dictionaries

198

12.2.2.4. Where to Put the User Dictionary

We recommend that you put your Chinese user dictionaries in BT_ROOT/rlp/cma/dicts, where BT_ROOT
is the root directory of the RLP SDK.

12.2.2.5. Updating the CLA Configuration File

To instruct CLA to use your user dictionary, add a <dictionarypath> element to cla-options.xml.
For example, suppose the binary user dictionary is named user_dict.bin and is in BT_ROOT/rlp/cma/
dicts. Modify BT_ROOT/rlp/etc/cla-options.xml to include the new <dictionarypath> element.

<claconfig>
 ...
 ...
 <dictionarypath><env name="root"/>/cma/dicts/user_dict.bin</dictionarypath>
</claconfig>

If you are making the user dictionary available for little-endian and big-endian platforms, and you are
differentiating the two files as indicated above ("LE" and "BE"), you can set up the CLA configuration file
to choose the correct binary for the runtime platform:

<claconfig>
 ...
 ...
 <dictionarypath><env name="root"/>/cma/dicts/user_dict_<env name="endian"/>.bin</dictionarypath>
</claconfig>

The <env name="endian"/> in the dictionary name is replaced at runtime with "BE" if the platform byte
order is big-endian or "LE" if the platform byte order is little-endian.

Note

At runtime, RLP replaces <env name="root"/> with the path to the RLP root directory:
BT_ROOT/rlp.

You can specify multiple user dictionaries in the options file.

If you are not compiling a Chinese user dictionary, you can put a reference to the source file in the CLA
configuration file. For example, suppose the user dictionary is named userdic.utf8 and is in BT_ROOT/
rlp/cma/dicts. Modify BT_ROOT/rlp/etc/cla-options.xml to include the new <dictionarypath>
element.

<claconfig>
 ...
 ...
 <dictionarypath><env name="root"/>/cma/dicts/user_dict.bin</dictionarypath>
 <dictionarypath><env name="root"/>/cma/dicts/userdict.utf8</dictionarypath>
</claconfig>

12.2.3. Japanese User Dictionaries

JLA includes the capability to create and use one or more user dictionaries for nouns specific to an industry
or application. User dictionaries allow you to add new nouns, including also personal and organizational
names, and transliterated foreign nouns. In addition, you can specify how compound nouns are tokenized.
For example, you may want to prevent a product name from being segmented even if it is a compound.

Japanese User Dictionaries

199

For efficiency, Japanese user dictionaries are compiled into a binary form with big-endian or little-endian
byte order to match the platform.

Procedure for Creating and Using a Japanese User Dictionary

1. Create the user dictionary [200] .

2. Compile the source file [201] .

3. Put the user dictionary in the JLA dictionary directory [202] .

4. Edit the JLA configuration file to include the user dictionary [202] .

12.2.3.1. Creating the Source File

The source file for a Japanese user dictionary is UTF-8 encoded. The file may begin with a byte order mark
(BOM). Empty lines are ignored. A comment line begins with #.

If you want to identify the dictionary (see TOKEN_SOURCE_NAME [89]) where JLA found each token,
you must assign each user dictionary a name, and you must compile the dictionary [201] . At the top of
the file, enter

!DICT_LABEL Tab Dictionary Name

where Dictionary Name is the name you want to assign to the dictionary.

Each entry in the dictionary is a single line:

word Tab POS Tab DecompPattern

where word is the noun, POS is one of the user-dictionary part-of-speech tags listed below, and
DecompPattern (optional) is the decomposition pattern: a comma-delimited list of numbers that specify
the number of characters from word to include in each component of the compound (0 for no
decomposition). The individual components that make up the compound are in the COMPOUND [84]
results.

User Dictionary POS Tags

• NOUN
• PROPER_NOUN
• PLACE
• PERSON
• ORGANIZATION
• GIVEN_NAME
• SURNAME
• FOREIGN_PLACE_NAME
• FOREIGN_GIVEN_NAME
• FOREIGN_SURNAME

Examples:

デジタルカメラ NOUN
デジカメ NOUN 0
東京証券取引所 ORGANIZATION 2,2,3
狩野 SURNAME 0

Japanese User Dictionaries

200

The POS and decomposition pattern can be in Japanese full-width numerals and Roman letters. For
example:

東京証券取引所 ｏｒｇａｎｉｚａｔｉｏｎ ２,２,３

The "2,2,3" decomposition pattern instructs JLA to decompose this compound entry into

東京
証券
取引所

A user dictionary may also contain entries that include Private Use Area (PUA) characters. See Entering
Non-Standard Characters in a User Dictionary [205] .

12.2.3.2. Compiling the User Dictionary

JLA requires the dictionary as described above to be in a binary form. The byte order of the binary dictionary
must match the byte order of the runtime platform. The platform on which you compile the dictionary
determines the byte order. To use the dictionary on both a little-endian platform (such as an Intel x86 CPU)
and a big-endian platform (such as a Sun SPARC), generate a binary dictionary on each of these platforms.

The script for generating a binary dictionary is BT_ROOT/rlp/jma/source/samples/build_user_dict.sh.

Prerequisites

• Unix or Cygwin (for Windows).

• Python 2.4 on your command path.

• The Unix egrep command on your command path.

• The BT_ROOT environment variable must be set to BT_ROOT , the Basis Technology root directory.
For example, if RLP SDK is installed in /usr/local/basistech, set the BT_ROOT environment variable
to /usr/local/basistech.

• The BT_BUILD environment variable must be set to the platform identifier embedded in your SDK
package file name (see Supported Platforms [13]).

To compile the dictionary into a binary format that JLA can use, issue the following command:

build_user_dict.sh input output

For example, if you have a user dictionary named user_dict.utf8, build the binary user dictionary
user_dict.bin with the following command:

./build_user_dict.sh user_dict.utf8 user_dict.bin

Note

If you are making the user dictionary available for little-endian and big-endian platforms, you can
compile the dictionary on both platforms, and differentiate the dictionaries by using
user_dict_LE.bin for the little-endian dictionary and user_dict_BE.bin for the big-endian
dictionary.

The extension for the Japanese dictionary files (system and user) does not have to be .bin.

Japanese User Dictionaries

201

12.2.3.3. Non-Compiled User Dictionaries

For backwards compatibility, JLA continues to support non-compiled user dictionaries. Keep in mind that
non-compiled dictionaries are less efficient and contain less information. A non-compiled user dictionary
must be in UTF-8 and may contain comments, single-field (word) entries, and double-field entries with a
word and a decomposition pattern:

• Comment lines beginning with a pound sign (#).

• Word entries (one word per line with no POS, but may include a Tab and a decomposition pattern). The
decomposition pattern is a series of one or more digits without commas. For example:

東京証券取引所 223

12.2.3.4. Where to Put the User Dictionary

We recommend that you put your Japanese user dictionaries in BT_ROOT/rlp/jma/dicts, where
BT_ROOT is the root directory of the RLP SDK.

12.2.3.5. Updating the JLA Configuration File

To use user_dict.bin with JLA, modify the jla-options.xml file to include it. For example, if you put your
user dictionary in the location we recommend (the directory that contains the system Japanese dictionary).
modify it to read as follows:

<DictionaryPaths>
 <DictionaryPath><env name="root"/>/jma/dicts/JP_<env name="endian"/>.bin</DictionaryPath>
 <!-- Add a DictionaryPath for each user dictionary -->
 <DictionaryPath>
 <env name="root"/>/jma/dicts/user_dict.bin
 </DictionaryPath>
 </DictionaryPaths>

If you are making the user dictionary available for little-endian and big-endian platforms, and you are
differentiating the two files as indicated above ("LE" and "BE"), you can set up the JLA configuration file
to choose the correct binary for the runtime platform:

<DictionaryPaths>
 <DictionaryPath><env name="root"/>/jma/dicts/JP_<env name="endian"/>.bin</DictionaryPath>
 <!-- Add a DictionaryPath for each user dictionary -->
 <DictionaryPath>
 <env name="root"/>/jma/dicts/user_dict_<env name="endian"/>.bin
 </DictionaryPath>
 </DictionaryPaths>

The <env name="endian"/> in the dictionary name is replaced at runtime with "BE" if the platform byte
order is big-endian or "LE" if the platform byte order is little-endian.

Note

At runtime, RLP replaces <env name="root"/> with the path to the RLP root directory:
BT_ROOT/rlp.

You can specify multiple user dictionaries in the options file.

12.2.4. Korean User Dictionary

Korean User Dictionary

202

Korean Language Analyzer (KLA) [151] provides one dictionary that users can edit and recompile.

Note: Prior to Release 6.0, the contents of this dictionary were maintained in two separate dictionaries: a
Hangul dictionary and a compound noun dictionary.

As specified in the KLA options file [151] dictionarypath element, this dictionary in its compiled
form is in BT_ROOT/rlp/kma/dicts. If your platform is little-endian, the compiled dictionary filename is
kla-usr-LE.bin. If your platform is big-endian, the compiled dictionary filename is kla-usr-BE.bin. You
can modify and recompile this dictionary. Do not change its name.

Procedure for Modifying the User Dictionary

1. Edit the dictionary source file [203] .

2. Recompile the dictionary [204] .

12.2.4.1. Editing the Dictionary Source File

The source file for the compiled user dictionary shipped with RLP is BT_ROOT/rlp/kma/samples/kla-
usrdict.u8. The source file is UTF-8 encoded. A comment line begins with #. The file begins with a number
of comment lines that document the format of the dictionary entries.

Each dictionary entry is a single line:

word Tab POS Tab DecompPattern

word is the stem form of the word. Verbs and adjectives should not include the "-ta" suffix.

POS is one or more of the user-dictionary part-of-speech tags listed below. An entry can have multiple
parts of speech; simply concatenate the part of speech codes. For example, the POS for a verb that can be
used transitively and intransitively is "IT".

DecompPattern (optional) is the decomposition pattern for a compound noun: a comma-delimited list of
numbers that specify the number of characters from word to include in each component of the compound
(0 for no decomposition). KLA uses a decomposition algorithm to decompose compound nouns that contain
no DecompPattern. The individual components that make up the compound are in the COMPOUND
[84] results.

POS Meaning

N Noun

P Pronoun

U Auxiliary noun

M Numeral

c Compound noun

T Transitive verb

I Intransitive verb

W Auxiliary verb

S Passive verb

C Causative verb

J Adjective

K Auxiliary adjective

Korean User Dictionary

203

POS Meaning

B Adverb

D Determiner

L Interjection (exclamation)

Examples:

개배때기 N
그러더니 B
그러던 D
꿰이 TC
개인홈페이지 c
경품대축제 c 2,3

One compound noun (개인홈페이지) contains no decomposition pattern, so KLA uses a decomposition
algorithm to decompose it. For the other compound noun (경품대축제) , the "2,3" decomposition pattern
instructs KLA to decompose it into

경품
대축제

You can add new entries and modify or delete existing entries.

12.2.4.2. Compiling the User Dictionary

Compile the dictionary on the little-endian or big-endian platform on which you plan to use the dictionary.

The script for generating a binary dictionary is BT_ROOT/rlp/kma/source/samples//
build_user_dict.sh.

Prerequisites

• Unix or Cygwin (for Windows).

• Python 2.4 on your command path.

• The Unix sort command on your command path.

• The BT_ROOT environment variable must be set to BT_ROOT, the Basis Technology root directory. For
example, if JLA is installed in /usr/local/basistech, set BT_ROOT to /usr/local/basistech.

• The BT_BUILD environment variables must be set to the platform identifier embedded in your JLA
package name, such as ia32-glibc22-gcc32. For a list of the BT_BUILD values, see Supported
Platforms and BT_BUILD Values [13] .

To compile the dictionary into a binary format, issue the following command:

build_user_dict.sh input output

where input is the input filename (kla-userdict.u8, unless you have changed the name) and ouput
is kla-usr-LE.bin if your platform is little-endian or kla-usr-BE.bin if your platform is big-
endian.

Korean User Dictionary

204

12.2.4.3. Notes on the Name and Location of the User Dictionary

You must put the binary user dictionary in the dictionary directory specified by the dictionarypath
element in kla-options.xml [151] . As shipped, this directory is BT_ROOT/rlp/kma/dicts. As indicated
above, the default filename for the user dictionary is kla-usr-LE.bin or kla-usr-BE.bin.

There can only be one user dictionary, so we recommend you use the default filename. If you want to use
a different filename, you must add a userdictionarypath element to kla-options.xml with the
filename (no path). Suppose, for example, that you have compiled the user dictionary with the name my-
kla-usr-LE.bin and placed that file in the dictionary directory. Edit kla-options.xml so it contains
userdictionarypath as indicated below:

<klaconfig>
 <dictionarypath<env name="root"/>/kma/dicts</dictionarypath>
 <userdictionarypath>my-kla-usr-LE.bin</userdictionarypath>
 ..
 ..
<klaconfig>

12.2.5. Entering Non-Standard Characters in a Japanese User
Dictionary

In a Japanese user dictionary, you may want to include terms that include Unicode Private Use Area (PUA)
characters for user-defined characters (UDC) .

PUA Characters. Characters in the hexadecimal range E000 - F8FF. Use \uxxxx where the u is lower-
case and each x is a hexadecimal character.

12.2.6. Creating Normalization Dictionaries

If your context configuration includes the ManyToOneNormalizer [153] , that processor uses any
normalization dictionaries specified in BT_ROOT/rlp/etc/normalizer-options.xml for the language of the
input text to return a MANY_TO_ONE_NORMALIZED_TOKEN [85] for each token in the input text.

Use one or more normalization dictionaries if you want to normalize word variants to their standard
representation.

A Sample Japanese Normalization Dictionary

The RLP SDK includes a compiled sample Japanese normalization dictionary [154] . You can
also create and use your own Japanese normalization dictionaries.

Important

When you create a Japanese, Chinese, or Korean normalization dictionary, you should also add
the variants to a Japanese, Chinese or Korean user dictionary. If you do not, JLA, CLA, or KLA
may not be able to tokenize the variants correctly, given the absence of spaces between words in
Chinese and Japanese text and the variable use of spaces in Korean text.

Procedure for Creating and Using a Normalization Dictionary

1. Create the normalization dictionary [206] .

2. Compile the source file [206] .

Entering Non-Standard Characters in a Japanese User Dictionary

205

3. Put the normalization dictionary in the appropriate dictionary directory [207] .

4. Edit the ManyToOneNormalizer configuration file to include the normalization dictionary [207] .

12.2.6.1. Creating the Normalization Dictionary

The source file for a normalization dictionary is UTF-8 encoded. The file may begin with a byte order mark
(BOM). Empty lines are ignored. A comment line begins with #.

Each entry is a single line containing a normalized word and one or more word variants:

normalized_word Tab variant_word_1 Tab variant_word_2 ...

where normalized_word is the normalized word and each variant_word_n is a word variant that you want
to normalize.

The following entry in an English normalization dictionary normalizes manoeuvre or manoeuver to
maneuver (the standard US spelling):

maneuver manoeuvre manoeuver

12.2.6.2. Compiling the Source File

The ManyToOneNormalizer requires the dictionary as described above to be in a binary form. The byte
order of the binary dictionary must match the byte order of the runtime platform. The platform on which
you compile the dictionary determines the byte order. To use the dictionary on both a little-endian platform
(such as an Intel x86 CPU) and a big-endian platform (such as a Sun SPARC), generate a binary dictionary
on each of these platforms.

The script for generating a binary dictionary is BT_ROOT/rlp/rlp/tools/build_normalize_dict.sh.

Prerequisites

• Unix or Cygwin (for Windows).

• Python 2.4 on your command path.

• The Unix uniq command on your command path.

• The BT_ROOT environment variable must be set to BT_ROOT , the Basis root directory. For example,
if RLP SDK is installed in /usr/local/basistech, set the BT_ROOT environment variable to /usr/local/
basistech.

• The BT_BUILD environment variable must be set to the platform identifier embedded in your SDK
package file name (see Supported Platforms [13]).

To compile the dictionary into a binary format, issue the following command:

build_normalize_dict.sh input output

For example, if you have a German normalization dictionary in BT_ROOT/rlp/bl1/dicts/de named
normalize_dict_de.utf8, build the binary normalization dictionary normalize_dict_de.bin with the
following command in the BT_ROOT/rlp/rlp/tools directory:

./build_normalize_dict.sh ../../bl1/dicts/de/normalize_dict_de.utf8 ../../bl1/dicts/de/normalize_dict_de.bin

Creating Normalization Dictionaries

206

Note

If you are making the normalization dictionary available for little-endian and big-endian
platforms, you can compile the dictionary on both platforms, and differentiate the dictionaries by
using user_dict_LE.bin for the little-endian dictionary and user_dict_BE.bin for the big-endian
dictionary.

12.2.6.3. Where to Put the Normalization Dictionary

You can put the binary dictionary where you want, but you must put the pathname to the dictionary in the
ManyToOneNormalizer configuration file (see the next section).

To organize the placement of normalization dictionaries, you may want to put the binary dictionary in the
dicts directory for the processor that tokenizes that language, or, in the case of BL1, in a subdirectory that
matches the language code for the dictionary. So for example, you could place a Chinese normalization
dictionary in BT_ROOT/rlp/cma/dicts and a German normalization dictionary in BT_ROOT/rlp/bl1/dicts/
de.

12.2.6.4. Updating the ManyToOneNormalizer Options File

To instruct ManyToOneNormalizer to use your normalization dictionary, add a <dictionarypath>
element to normalize-options.xml. For example, suppose the binary normalization dictionary is named
normalize_dict_de.bin and is in BT_ROOT/rlp/bl1/dicts/de. Modify BT_ROOT/rlp/etc/normalize-
options.xml to include the new <dictionarypath> element.

<normoptions>
 <dictionaries>
 ...
 ...
 <dictionarypath language="de">
 <env name="root"/>/bl1/dicts/de/normalize_dict_de.bin</dictionarypath>
 </dictionaries>
</normoptions>

For a list of the language codes you can use, see ISO639 Language Codes [11] .

If you are making the normalization dictionary available for little-endian and big-endian platforms, and
you are differentiating the two files as indicated above ("LE" and "BE"), you can set up the CLA
configuration file to choose the correct binary for the runtime platform:

<normoptions>
 <dictionaries>
 ...
 ...
 <dictionarypath language="de">
 <env name="root"/>/cma/dicts/normalize_dict_de_<env name="endian"/>.bin</dictionarypath>
 </dictionaries>
</normoptions>

The <env name="endian"/> in the dictionary name is replaced at runtime with "BE" if the platform byte
order is big-endian or "LE" if the platform byte order is little-endian.

Note

At runtime, RLP replaces <env name="root"/> with the path to the RLP root directory:
BT_ROOT/rlp.

Creating Normalization Dictionaries

207

You can specify multiple normalization dictionaries in the options file. If you have multiple normalization
dictionaries for a given language, and the same variant appears in more than one dictionary, the
ManyToOneNormalizer returns the first normalization it finds.

Important

To include many-to-one normalization when you process data, your context configuration must
include the ManyToOneNormalizer, as illustrated in the sample context configuration file in
Unicode Input and Base Linguistics Analysis for One Language [20] . In the context
configuration, ManyToOneAnalyzer must appear after the analyzers that tokenize text for the
languages specified in the options file (such as JLA for Japanese, CLA for Chinese, and BL1 for
English).

Creating Normalization Dictionaries

208

Appendix A. Part-of-Speech Tags

A.1. Arabic POS Tags

Tag Description Example

ABBREV abbreviation ب ف ا
ADJ adjective عَرَبِي اَألَمْرِيكِيّ،
ADV adverb ثُمَّ ھُنَاكَ،
CONJ conjunction وَ
CV verb (imperative) أَضِفْ
DEM_PRON demonstrative pronoun ھٰذَا
DET determiner لِل
EOS end of sentence . ؟ !
EXCEPT_PART exception particle إال
FOCUS_PART focus particle أما
FUT_PART future particle سَوْفَ
INTERJ interjection آه
INTERROG_PART interrogative particle ھَلْ
IV verb (imperfect) يَأْكُلُ يَكْتُبُ،
IV_PASS verb (passive imperfect) يُشَارُ يُضَافُ،
NEG_PART negative particle لَن
NON_ARABIC not Arabic script a b c

NOUN noun بَيْتْ كُمْبِيُوتَرْ، طَائِرْ،
NOUN_PROP proper noun مُحَمَّدْ طَوُنِي،
NO_FUNC unknown part of speech

NUM numbers (Arabic-Indic numbers,
Latin, and text-based cardinal)

14 ،١٤ عَشَرْ، أَرْبَعَة
PART particle إِيَّاهُ أَيَّتُھَا،
PREP preposition فِي أَمَامْ،
PRONOUN pronoun ھُوَ
PUNC punctuation ؛.؟، () :

209

Tag Description Example

PV perfective verb قَالَ كَانَت،
PV_PASS passive perfective verb أُعْتَبَر
RC_PART resultative clause particle فَلَمَا
REL_ADV relative adverb حَيْثُ
REL_PRON relative pronoun اَللَّذَانِ اَلَّذِي،
SUB_CONJ subordinating conjunction إِذ إِذَا،
VERB_PART verbal particle لَقَدْ

A.2. Chinese POS Tags - Simplified and Traditional

Tag Description Simplified Chinese Traditional
Chinese

A adjective 可爱 可愛

D adverb 必定 必定

E idiom/phrase 胸有成竹 胸有成竹

EOS sentence final punctuation 。 。

F non-derivational affix 鸳 鴛

I interjection 吧 吧

J conjunction 但是 但是

M onomatope 丁丁 丁丁

NA abbreviation 日 日

NC common noun 水果 水果

NM measure word 个 個

NN numeral ３, 2, 一 ３, 2, 一

NP proper noun 英国 英國

NR pronoun 我 我

NT temporal noun 一月 一月

OC construction 越～越～ 越～越～

PL particle 之 之

PR preposition 除了 除了

PUNCT non-sentence-final
punctuation

, 「」（）； , 《》（）

U unknown

V verb 跳舞 跳舞

W derivational suffix 家 家

WL direction word 下 下

Chinese POS Tags - Simplified and Traditional

210

Tag Description Simplified Chinese Traditional
Chinese

WV word element - verb 以 以

X generic affix 老 老

XP generic prefix 可 可

XS generic suffix 员 員

A.3. Czech POS Tags

Tag Description Example

ADJ adjective: nominative [vál] silný [vítr]

adjective: genitive [k uvedení] zahradní [slavnosti]

adjective: dative [k] veselým [lidem]

adjective: accusative [jak zdolat] ekonomické [starosti]

[vychutná] jeho [radost]

adjective: instrumental první bushovou [zastávkou]

adjective: locative [na] druhém [okraji silnice]

adjective: vocative ty rudá [krávo]

ordinal [obsadil] 12. [místo]

ADV adverb velmi, nejvíce, daleko, jasno

CLIT clitic bych, by, bychom, byste

CM comma ,

CONJ conjunction a, i, ale, aby, nebo, však, protože

DATE date 11. 12. 1996, 11. 12.

INTJ interjection ehm, ach

NOUN noun: nominative [je to] omyl

noun: genitive [krize] autority státu

noun: dative [dostala se k] moci

noun: accusative [názory na] privatizaci

noun: instrumental [Marx s naprostou] jistotou

noun: locative [ve vlastním] zájmu

noun: vocative [ty] parlamente

abbreviation, initial, unit v., mudr., km/h, m3

NUM_ACC numeral: accusative [máme jen] jednu [velmoc]

NUM_DAT numeral: dative [jsme povinni] mnoha [lidem]

NUM_DIG digit 123, 2:0, 1:23:56, -8.9, -8 909

NUM_GEN numeral: genitive [po dobu] dvou [let]

NUM_INS numeral: instrumental [s] padesáti [hokejisty]

NUM_LOC numeral: locative [po] dvou [závodech]

Czech POS Tags

211

Tag Description Example

NUM_NOM numeral: nominative oba [kluby tají, kde]

NUM_ROM Roman numeral V

NUM_VOC numeral: vocative [vy] dva [, zastavte]

PREP preposition dle [tebe], ke [stolu], do [roku], se
[mnou]

PREPPRON prepositional pronoun nač

PRON_ACC pronoun: accusative [nikdo] je [nevyhodí]

PRON_DAT pronoun: dative [kdy je] mu [vytýkána]

PRON_GEN pronoun: genitive [u] nás [i kolem] nás

PRON_INS pronoun: instrumental [mezi] nimi [být]

PRON_LOC pronoun: locative [aby na] ní [stál]

PRON_NOM pronoun: nominative já [jsem jedinou]

PRON_VOC pronoun: vocative vy [dva, zastavte]

PROP proper noun Pavel, Tigrid, Jacques, Rupnik, Evropy

PTCL particle ano, ne

PUNCT punctuation () { } [] ;

REFL_ACC reflexive pronoun: accusative se

REFL_DAT reflexive pronoun: dative si

REFL_GEN reflexive pronoun: genitive sebe

REFL_INS reflexive pronoun: instrumental sebou

REFL_LOC reflexive pronoun: locative sobě

SENT sentence final punctuation . ! ? ...

VERB_IMP verb: imperative odstupte !

VERB_INF verb: infinitive [mohli si] koupit

VERB_PAP verb: past participle mohli [si koupit]

VERB_PRI verb: present indicative [trochu nás] mrzí

VERB_TRA verb: transgressive maje [ode mne]

A.4. Dutch POS Tags

Tag Description Example

ADJA attributive adjective [een] snelle [auto]

ADJD adverbial or predicative adjective [hij rijdt] snel

ADV non-adjectival adverb [hij rijdt] vaak

ART article een [bus], het [busje]

CARD cardinals vijf

CIRCP right part of circumposition [hij viel van dit dak] af

CM comma ,

CMPDPART right truncated part of compound honden- [kattenvoer]

Dutch POS Tags

212

Tag Description Example

COMCON comparative conjunction [zo groot] als, [groter] dan

CON co-ordinating conjunction [Jan] en [Marie]

CWADV interrogative adverb or subordinate
conjunction

wanneer [gaat hij weg ?], wanneer [hij
nu weggaat]

DEMDET demonstrative determiner deze [bloemen zijn mooi]

DEMPRO demonstrative pronoun deze [zijn mooi]

DIG digits 1, 1.2

INDDET indefinite determiner geen [broer]

INDPOST indefinite postdeterminer [de] beide [broers]

INDPRE indefinite predeterminer al [de broers]

INDPRO indefinite pronoun beide [gingen weg]

INFCON infinitive conjunction om [te vragen]

ITJ interjections Jawel, och, ach

NOUN common noun or proper noun [de] hoed, [het goede] gevoel, [de]
Betuwelijn

ORD ordinals vijfde, 125ste, 12de

PADJ postmodifying adjective [iets] aardigs

PERS personal pronoun hij [sloeg] hem

POSDET possessive pronoun mijn [boek]

POSTP postposition [hij liep zijn huis] in

PREP preposition [hij is] in [het huis]

PROADV pronominal adverb [hij praat] hierover

PTKA adverb modification [hij wil] te [snel]

PTKNEG negation [hij gaat] niet [snel]

PTKTE infinitive particle [hij hoopt] te [gaan]

PTKVA separated prefix of pronominal adverb
or verb

[daar niet] mee [hij loopt] mee

PUNCT other punctuation " ' ` { } [] < > - ---

RELPRO relative pronoun [de man] die [lachte]

RELSUB relative conjunction [Het kind] dat, [Het feit] dat

SENT sentence final punctuation ; . ?

SUBCON subordinating conjunction Hoewel [hij er was]

SYM symbols @, %

VAFIN finite auxiliary verb [hij] is [geweest]

VAINF infinite auxiliary verb [hij zal] zijn

VAPP past participle auxiliary verb [hij is] geweest

VVFIN finite substantive verb [hij] zegt

VVINF infinitive substantive verb [hij zal] zeggen

VVPP past participle substantive verb [hij heeft] gezegd

Dutch POS Tags

213

Tag Description Example

WADV interrogative adverb waarom [gaat hij]

WDET interrogative or relative determiner [de vrouw] wier [man....]

WPRO interrogative or relative pronoun [de vraag] wie ...

A.5. English POS Tags

Tag Description Example

ADJ (basic) adjective [a] blue [book], [he is] big

ADJCMP comparative adjective [he is] bigger, [a] better [question]

ADJING adjectival ing-form [the] working [men]

ADJPAP adjectival past participle [a] locked [door]

ADJPRON pronoun (with determiner) or adjective [the] same; [the] other [way]

ADJSUP superlative adjective [he is the] biggest; [the] best [cake]

ADV (basic) adverb today, quickly

ADVCMP comparative adverb sooner

ADVSUP superlative adverb soonest

CARD cardinal (except one) two, 123, IV

CARDONE cardinal one [at] one [time] ; one [dollar]

CM comma ,

COADV coordination adverbs either, neither either [by law or by force]; [he didn't
come] either

COORD coordinating conjunction and, or

COSUB subordinating conjunction because, while

COTHAN conjunction than [bigger] than

DET determiner the [house], a [house], this [house], my
[house]

DETREL relative determiner whose [the man] whose [hat ...]

INFTO infinitive marker to [he wants] to [go]

ITJ interjection oh!

MEAS measure abbreviation [50] m. [wide], yd

MONEY currency plus cardinal $1,000

NOT negation not [he will] not [come in]

NOUN common noun house

NOUNING nominal ing-form [the] singing [was pleasant], [the]
raising [of the flag]

ORD ordinal 3rd, second

PARTPAST past participle (in subclause) [while] seated[, he instructed the
students]; [the car] sold [on Monday]

PARTPRES present participle (in subclause), gerund [while] doing [it];[they began]
designing [the ship];having [said this ...]

English POS Tags

214

Tag Description Example

POSS possessive suffix 's [Peter] 's ; [houses] '

PREDET pre-determiner such such [a way]

PREP preposition in [the house], on [the table]

PREPADVAS preposition or adverbial as as [big] as

PRON (non-personal) pronoun everybody, this [is] mine

PRONONE pronoun one one [of them]; [the green] one

PRONPERS personal pronoun I, me, we, you

PRONREFL reflexive pronoun myself, ...

PRONREL relative pronoun who, whom, whose;
which; that

[the man] who [wrote that book], [the
ship] that capsized

PROP proper noun Peter, [Mr.] Brown

PUNCT punctuation (other than SENT and CM) "

QUANT quantifier all, any, both, double, each,
enough, every, (a) few, half, many,
some

many [people]; half [the price]; all [your
children]; enough [time]; any [of these]

QUANTADV quantifier or adverb much, little much [better] , [he cares] little

QUANTCMP quantifier or comparative adverb more,
less

more [people], less [expensive]

QUANTSUP quantifier or superlative adverb most,
least

most [people], least [expensive]

SENT sentence final punctuation . ! ? :

TIT title Mr., Dr.

VAUX auxiliary (modal) [he] will [run], [I] won't [come]

VBI infinitive or imperative of be [he will] be [running]; be [quiet!]

VBPAP past participle of be [he has] been [there]

VBPAST past tense of be [he] was [running], [he] was [here]

VBPRES present tense of be [he] is [running], [he] is [old]

VBPROG ing-form of be [it is] being [sponsored]

VDI infinitive of do [He will] do [it]

VDPAP past participle of do [he has] done [it]

VDPAST past tense of do [we] did [it], [he] didn't [come]

VDPRES present tense of do [We] do [it], [he] doesn't [go]

VDPROG ing-form of do [He is] doing [it]

VHI infinitive or imperative of have [he would] have [come]; have [a look!]

VHPAP past participle of have [he has] had [a cold]

VHPAST past tense of have [he] had [seen]

VHPRES present tense of have [he] has [been watching]

VHPROG ing-form of have [he is] having [a good time]

VI verb infinitive or imperative [he will] go, [he comes to] see; listen [!]

English POS Tags

215

Tag Description Example

VPAP verb past participle [he has] played, [it is] written

VPAST verb past tense [I] went, [he] loved

VPRES verb present tense [we] go, [she] loves

VPROG verb ing-form [you are] going

VS verbal 's (short for is or has) [he] 's [coming]

WADV interrogative adverb when [did ...], where [did ...], why
[did ...]

WDET interrogative determiner which [book], whose [hat]

WPRON interrogative pronoun who [is], what [is]

A.6. French POS Tags

Tag Description Example

ADJ2_INV special number invariant adjective gros

ADJ2_PL special plural adjective petites, grands

ADJ2_SG special singular adjective petit, grande

ADJ_INV number invariant adjective heureux

ADJ_PL plural adjective gentils, gentilles

ADJ_SG singular adjective gentil, gentille

ADV adverb finalement, aujourd'hui

CM comma ,

COMME reserved for the word comme comme

CONJQUE reserved for the word que' que

CONN connector subordinate conjunction si, quand

COORD coordinate conjunction et, ou

DET_PL plural determiner les

DET_SG singular determiner le, la

MISC miscellaneous miaou, afin

NEG negation particle ne

NOUN_INV number invariant noun taux

NOUN_PL plural noun chiens, fourmis

NOUN_SG singular noun chien, fourmi

NUM numeral treize, 13, XIX

PAP_INV number invariant past participle soumis

PAP_PL plural past participle finis, finies

PAP_SG singular past participle fini, finie

PC clitic pronoun [donne-]le, [appelle-]moi, [donne-]lui

PREP preposition (other than à, au, de, du, des) dans, après

PREP_A preposition "à'' à, au, aux

French POS Tags

216

Tag Description Example

PREP_DE preposition "de'' de, d', du, des

PRON pronoun il, elles, personne, rien

PRON_P1P2 1st or 2nd person pronoun je, tu, nous

PUNCT punctuation (other than comma) : -

RELPRO relative/interrogative pronoun (except
"que'')

qui, quoi, lequel

SENT sentence final punctuation . ! ? ;

SYM symbols @ %

VAUX_INF infinitive auxiliary être, avoir

VAUX_P1P2 1st or 2nd person auxiliary verb, any
tense

suis, as

VAUX_P3PL 3rd person plural auxiliary verb, any
tense

seraient

VAUX_P3SG 3rd person singular auxiliary verb, any
tense

aura

VAUX_PAP past participle auxiliary eu, été

VAUX_PRP present participle auxiliary verb ayant

VERB_INF infinitive verb danser, finir

VERB_P1P2 1st or 2nd person verb, any tense danse, dansiez, dansais

VERB_P3PL 3rd person plural verb, any tense danseront

VERB_P3SG 3rd person singular verb, any tense danse, dansait

VERB_PRP present participle verb dansant

VOICILA reserved for voici, voilà'' voici, voilà

A.7. German POS Tags

Tag Description Example

ADJA (positive) attributive adjective [ein] schnelles [Auto]

ADJA2 comparative attributive adjective [ein] schnelleres [Auto]

ADJA3 superlative attributive adjective [das] schnellste [Auto]

ADJD (positive) predicative or adverbial
adjective

[es ist] schnell, [es fährt] schnell

ADJD2 comparative predicative or adverbial
adjective

[es ist] schneller, [es fährt] schneller

ADJD3 superlative predicative or adverbial
adjective

[es ist am] schnellsten, [er meint daß er
am] schnellsten [fährt].

ADV non-adjectival adverb oft, heute, bald, vielleicht

ART article der [Mann], eine [Frau]

CARD cardinal 1, eins, 1/8, 205

CIRCP circumposition, right part [um der Ehre] willen

German POS Tags

217

Tag Description Example

CM comma ,

COADV adverbial conjunction aber, doch, denn

COALS conjunction als als

COINF infinitival conjunction ohne [zu fragen], anstatt [anzurufen]

COORD coordinating conjunction und, oder

COP1 coordination 1st part entweder [... oder]

COP2 coordination 2nd part [weder ...] noch

COSUB subordinating conjunction weil, daß, ob [ich mitgehe]

COWIE conjunction wie wie

DATE date 27.12.2006

DEMADJ demonstrative adjective solche [Mühe]

DEMDET demonstrative determiner diese [Leute]

DEMINV invariant demonstrative solch [ein schönes Buch]

DEMPRO demonstrative pronoun jener [sagte]

FM foreign word article, communication

INDADJ indefinite adjective [die] meisten [Leute], viele [Leute],
[die] meisten [sind da], viele [sind da]

INDDET indefinite determiner kein [Mensch]

INDINV invariant indefinite manch [einer]

INDPRO indefinite pronoun man [sagt]

ITJ interjection oh, ach, weh, hurra

NOUN common noun, nominalized adjective,
nominalized infinitive, or proper noun

Hut, Leute, [das] Gute, [das] Wollen,
Peter, [die] Schweiz

ORD ordinal 2., dritter

PERSPRO personal pronoun ich, du, ihm, mich, uns

POSDET possessive determiner mein [Haus]

POSPRO possessive pronoun [das ist] meins

POSTP postposition [des Geldes] wegen

PREP preposition in, auf, wegen, mit

PREPART preposition article im, ins, aufs

PTKANT sentential particle ja, nein, bitte, danke

PTKCOM comparative particle desto [schneller]

PTKINF particle: infinitival zu [er wagt] zu [sagen]

PTKNEG particle: negation nicht nicht

PTKPOS positive modifier zu [schnell], allzu [schnell]

PTKSUP superlative modifier am [schnellsten]

PUNCT other punctuation, bracket ; : () [] - "

REFLPRO reflexive sich sich

German POS Tags

218

Tag Description Example

RELPRO relative pronoun [der Mann,] der [lacht]

REZPRO reciprocal einander einander

SENT sentence final punctuation . ? !

SYMB symbols @, %

TRUNC truncated word, (first part of a
compound or verb prefix)

Ein- [und Ausgang], Kinder- [und
Jugendheim], be- [und entladen]

VAFIN finite auxiliary [er] ist, [sie] haben

VAINF auxiliary infinitive [er will groß] sein

VAPP auxiliary past participle [er ist groß] geworden

VMFIN finite modal [er] kann, [er] mochte

VMINF modal infinitive [er wird kommen] können

VPREF separated verbal prefix [er kauft] ein, [sie sieht] zu

VVFIN finite verb form [er] sagt

VVINF infinitive [er will] sagen, einkaufen

VVIZU infinitive with incorporated zu [um] einzukaufen

VVPP past participle [er hat] gesagt

WADV interrogative adverb wieso [kommt er?]

WDET interrogative determiner welche [Nummer?]

WINV invariant interrogative welch [ein ...]

WPRO interrogative pronoun wer [ist da?]

A.8. Greek POS Tags

Tag Description Example

ADJ (basic) adjective παιδικό

ADV (basic) adverb ευχαρόστως

ART article η, της

CARD cardinal χόλια

CLIT clitic (pronoun) τον, τοό

CM comma ,

COORD coordinating conjunction και

COSUBJ conjunction with subjunctive αντό [να]

CURR currency $

DIG digits 123

FM foreign word article

FUT future tense particle θα

INTJ interjection χό

ITEM item 1.2

Greek POS Tags

219

Tag Description Example

NEG negation particle όη

NOUN common noun βιβλόο

ORD ordinal τρότα

PERS personal pronoun εγό

POSS possessive pronoun όας, τους

PREPART preposition with article στο

PRON pronoun αυτοό

PRONREL relative pronoun οποόες

PROP proper noun Μαρόα

PTCL particle ας

PUNCT punctuation (other than SENT and CM) : -

QUOTE quotation marks "

SENT sentence final punctuation . ! ?

SUBJ subjunctive particle να

SUBORD subordinating conjunction πως

SYMB special symbol *, %

VIMP verb (imperative) γρόψε

VIND verb (indicative) γρόφεις

VINF verb (infinitive) γρόφει

VPP past participle δικασόόνο

A.9. Hungarian POS Tags

Tag Description Example

ADJ (invariant) adjective kis

ADV adverb jól

ADV_PART adverbial participle állva

ART article az

AUX auxiliary szabad

CM comma ,

CONJ conjunction és

DEICT_PRON_NOM deictic pronoun: nominative ez

DEICT_PRON_ACC deictic pronoun: accusative ezt

DEICT_PRON_CASE deictic pronoun: other case ebbe

FUT_PART_NOM future participle: nominative teendõ

FUT_PART_ACC future participle: accusative teendõt

FUT_PART_CASE future participle: other case teendõvel

GENE_PRON_NOM general pronoun: nominative minden

Hungarian POS Tags

220

Tag Description Example

GENE_PRON_ACC general pronoun: accusative mindent

GENE_PRON_CASE general pronoun: other case mindenbe

INDEF_PRON_NOM indefinite pronoun: nominative más

INDEF_PRON_ACC indefinite pronoun: accusative mást

INDEF_PRON_CASE indefinite pronoun: other case mással

INF infinitive (verb) csinálni

INTERJ interjection jaj

LS list item symbol 1)

MEA measure, unit km

NADJ_NOM noun or adjective: nominative ifjú

NADJ_ACC noun or adjective: accusative ifjút

NADJ_CASE noun or adjective: other case ifjúra

NOUN_NOM noun: nominative asztal

NOUN_ACC noun: accusative asztalt

NOUN_CASE noun: other case asztalra

NUM_NOM numeral: nominative három

NUM_ACC numeral: accusative hármat

NUM_CASE numeral: other case háromra

NUM_PRON_NOM numeral pronoun: nominative kevés

NUM_PRON_ACC numeral pronoun: accusative keveset

NUM_PRON_CASE numeral pronoun: other case kevéssel

NUMBER numerals (digits) 1

ORD_NUMBER ordinal 1.

PAST_PART_NOM past participle: nominative meghívott

PAST_PART_ACC past participle: accusative meghívottat

PAST_PART_CASE past participle: other case meghívottakkal

PERS_PRON personal pronoun én

POSTPOS postposition alatt

PREFIX prefix át

PRES_PART_NOM present participle: nominative csináló

PRES_PART_ACC present participle: accusative csinálót

PRES_PART_CASE present participle: other case csinálónak

PRON_NOM pronoun: nominative milyen

PRON_ACC pronoun: accusative milyet

PRON_CASE pronoun: other case milyenre

PROPN_NOM proper noun: accusative Budapestet

PROPN_ACC proper noun: other case Budapestre

PROPN_CASE proper noun: nominative Budapest

Hungarian POS Tags

221

Tag Description Example

PUNCT punctuation (other than SENT or CM) ()

REFL_PRON_NOM reflexive pronoun: accusative magát

REFL_PRON_ACC reflexive pronoun: other case magadra

REFL_PRON_CASE reflexive pronoun: nominative magad

REL_PRON_NOM relative pronoun: nominative aki

REL_PRON_ACC relative pronoun: accusative akit

REL_PRON_CASE relative pronoun: other case akire

ROM_NUMBER Roman numeral IV

SENT sentence final punctuation ., ;

SPEC special string (URL, email) www.xzymn.com

SUFF suffix -re

TRUNC compound part asztal-

VERB verb csinál

A.10. Italian POS Tags

Tag Description Example

ADJEX proclitic noun modifier ex ex

ADJPL plural adjective belle

ADJSG singular adjective buono, narcisistico

ADV adverb lentamente, già, poco

CLIT clitic pronoun or adverb vi, ne, mi, ci

CM comma ,

CONJ conjunction e, ed, e/o

CONNADV adverbial connector quando, dove, come

CONNCHE relative pronoun or conjunction ch', che

CONNCHI relative or interrogative pronoun chi chi

DEMPL plural demonstrative quelli

DEMSG singular demonstrative ciò

DETPL plural determiner tali, quei, questi

DETSG singular determiner uno, questo, il

DIG digits +5, iv, 23.05, 3,45, 1997

INTERJ interjection uhi, perdiana, eh

ITEM list item marker A.

LET single letter [di tipo] C

NPL plural noun case

NSG singular noun casa, balsamo

ORDPL plural ordinal terzi

Italian POS Tags

222

Tag Description Example

ORDSG singular ordinal secondo

POSSPL plural possessive mie, vostri, loro

POSSSG singular possessive nostro, sua

PRECLIT pre-clitic me [lo dai], te [la rubo]

PRECONJ pre-conjunction dato [che]

PREDET pre-determiner tutto [il giorno], tutti [i problemi]

PREP preposition tra, di, con, su di

PREPARTPL preposition + plural article sulle, sugl', pegli

PREPARTSG preposition + singular article sullo, nella

PREPREP pre-preposition prima [di], rispetto [a]

PRON pronoun (3rd person singular/plural) sé [disgusto di] sé

PRONINDPL plural indefinite pronoun entrambi, molte

PRONINDSG singular indefinite pronoun troppa

PRONINTPL plural interrrogative pronoun quali, quanti

PRONINTSG singular interrogative pronoun cos'

PRONPL plural personal pronoun noi, loro

PRONREL invariant relative pronoun cui

PRONRELPL plural relative pronoun quali, quanti

PRONRELSG singular relative pronoun quale

PRONSG singular personal pronoun esso, io, tu, lei, lui

PROP proper noun Bernardo, Monte Isola

PUNCT other punctuation - ;

QUANT invariant quantifier qualunque, qualsivoglia

QUANTPL plural quantifier, numbers molti, troppe, tre

QUANTSG singular quantifier niuna, nessun

SENT sentence final punctuation . ! ? :

VAUXF finite auxiliary essere or avere è, sarò, saranno, avrete

VAUXGER gerund auxiliary essere or avere essendo, avendo

VAUXGER_CLIT gerund auxiliary + clitic essendogli

VAUXIMP imperative auxiliary sii, abbi

VAUXIMP_CLIT imperative auxiliary + clitic siatene, abbiatemi

VAUXINF infinitive auxiliary essere/avere esser, essere, aver, avere

VAUXINF_CLIT infinitive auxiliary essere/avere + clitic esserle, averle

VAUXPPPL plural past participle auxiliary stati/e, avuti/e

VAUXPPPL_CLIT plural past part. auxiliary + clitic statine, avutiti

VAUXPPSG singular past participle auxiliary stato/a, avuto/a

VAUXPPSG_CLIT singular past part. auxiliary + clitic statone, avutavela

VAUXPRPL plural present participle auxiliary essenti, aventi

Italian POS Tags

223

Tag Description Example

VAUXPRPL_CLIT plural present participle auxiliary +
clitic

aventile

VAUXPRSG singular present participle auxiliary essente, avente

VAUXPRSG_CLIT singular present participle auxiliary +
clitic

aventela

VF finite verb form blatereremo, mangio

VF_CLIT finite verb + clitic trattansi, leggevansi

VGER gerund adducendo, intervistando

VGER_CLIT gerund + clitic saziandole, appurandolo

VIMP imperative pareggiamo, formulate

VIMP_CLIT imperative + clitic impastategli, accoppiatevele

VINF verb infinitive sciupare, trascinar

VINF_CLIT verb infinitive + clitic spulciarsi, risucchiarsi

VPPPL plural past participle riposti, offuscati

VPPPL_CLIT plural past participle + clitic assestatici, ripostine

VPPSG singular past participle sbudellata, chiesto

VPPSG_CLIT singular past participle + clitic commossosi, ingranditomi

VPRPL plural present participle meditanti, destreggianti

VPRPL_CLIT plural present participle + clitic epurantile, andantivi

VPRSG singular present participle meditante, destreggiante

VPRSG_CLIT singular present participle + clitic epurantelo, andantevi

A.11. Japanese POS Tags

Tag Description Example

AA adnominal adjective その[人], この[日], 同じ

AJ normal adjective 美しい, 早い, 面白い

AN adjectival noun きれい[だ], 静か[だ], 正確[だ]

D adverb じっと, じろっと, ふと

EOS sentence-final punctuation 。.

FP non-derivational prefix 両[選手], 現[首相]

FS non-derivational suffix [綺麗]な, [派手]だ

HP honorific prefix お[風呂], ご[不在], ご[意見]

HS honorific suffix [小泉]氏, [恵美]ちゃん, [伊藤]さ
ん

I interjection こんにちは, ほら, どっこいしょ

J conjunction すなわち, なぜなら, そして

NC common noun 公園, 電気, デジタルカメラ

NE noun before numerals 文禄[三年]

Japanese POS Tags

224

Tag Description Example

NN numeral 3, 2, 五, 二百

NP proper noun 北海道, 斉藤

NR pronoun 私, あなた, これ

NU classifier [100]メートル, [3]リットル

O others BASIS

PL particle [雨]が[降る], [そこ]に[座る],
[私]は[一人]

PUNCT punctuation other than end of sentence ,「」（）；

UNKNOWN unknown デパ[地下], ヴェロ

V verb 書く, 食べます, 来た

V1 vowel-stem verb 食べ[る], 集め[る], 起き[る]

V5 consonant-stem verb 気負[う], 知り合[う], 行き交[う]

VN verbal noun 議論[する], ドライブ[する], 旅行
[する]

VS suru-verb 馳せ参[じる], 相半ば[する]

VX irregular verb 移り行[く], トラブ[る]

WP derivational prefix チョー[綺麗], バカ[正直]

WS derivational suffix [東京]都, [大阪]府, [白]ずくめ

A.12. Korean POS Tags

Tag Description Example

B adverb 혹은

D determiner 이

EOS sentence-final punctuation .

FW foreign word TV, alphabet

j josa (post-positional particle) 으로

N noun 책거리

NN number 6.25

PUNCT other punctuation ,)

UNKNOWN unknown part of speech

V verb/adjective 참고하시기, 바랍니다

L exclamation 와

Q symbol ㆍ(HANGUL LETTER ARAEA)

e Eomi (verb ending) '새 국민의 정부'라는

Korean POS Tags

225

A.13. Polish POS Tags

Tag Description Example

ADV adverb: adjectival szybko

adverb: comparative adjectival szybciej

adverb: superlative adjectival najszybciej

adverb: non-adjectival trochę, wczoraj

ADJ adjective: attributive (postnominal) [stopy] procentowe

adjective: attributive (prenominal) szybki [samochód]

adjective: predicative [on jest] ogromny

adjective: comparative attributive szybszy [samochód]

adjective: comparative predicative [on jest] szybszy

adjective: superlative attributive najszybszy [samochód]

adjective: superlative predicative [on jest] najszybszy

CJ/AUX conjunction with auxiliary być [robi wszystko,] żebyśmy [przyszli]

CM comma ,

CMPND compound part [ośrodek] naukowo-[badawczy]

CONJ conjunction a, ale, gdy, i, lub

DATE date expression 31.12.99

EXCL interjection aha, brawo, hej

FRGN foreign material cogito, numerus

NOUN noun: common reakcja, weksel

noun: proper Krzysztof, Francja

noun: nominalized adjective chory, [pośpieszny z] Krakowa

NUM numeral (cardinal) 22; 10,25; 5-7; trzy

ORD numeral (ordinal) 12. [maja], 2., 12go, 13go, 28go

PHRAS phraseology [po] polsku, [na] bosaka, [w] mig, fiku-
miku

PPERS personal pronoun ja, ty, on, ona, my, wy, mnie, tobie, jej,
jemu, nam, mi, ci, jego, go, nas, was

PR/AUX pronoun with auxiliary być [co] wyście [zrobili]

PREFL reflexive pronoun [nie może] sobie [przypomnieć],
[zabierz to ze] sobą, [warto] sobie
[zadać pytanie]

PREL relative pronoun który [problem], jaki [problem], co,
który [on widzi], jakie [mamuzeum]

PREP preposition od [dzisiaj], na [rynku walutowym]

Polish POS Tags

226

Tag Description Example

PRON pronoun: demonstrative [w] tym [czasie]

pronoun: indefinite wszystkie [stopy procentowe], jakieś
[nienaturalne rozmiary]

pronoun: "expletive" to [(jest) ostateczna decyzja]

pronoun: possessive nasi [dwaj bracia]

pronoun: interrogative Jaki [masz samochód?]

PRTCL particle także, nie, tylko, już

PT/AUX particle with auxiliary być gdzieście [byli]

PUNCT punctuation (other than CM or SENT) : () [] " " - ''

QVRB quasi-verb brak, szkoda

SENT sentence final punctuation . ! ? ;

SYMB symbol @ §

TIME time expression 11:00

VAUX auxiliary być, zostać

VFIN finite verb form: present [Agata] maluje [obraz]

finite verb form: future [Piotr będzie] malował [obraz]

VGER gerund [demonstrują] domagając [się zmian]

VINF infinitive odrzucić, stawić [się]

VMOD modal [wojna] może [trwać nawet rok]

VPRT verb participle: predicative [wynik jest] przesądzony

verb participle: passive [postępowanie zostanie] zawieszone

verb participle: attributive [zmiany] będące [wynikiem...]

A.14. Portuguese POS Tags

Tag Description Example

ADJ invariant adjective [duas saias] cor-de-rosa

ADJPL plural adjective [cidadãos] portugueses

ADJSG singular adjective [continente] europeu

ADV adverb directamente

ADVCOMP comparison adverb mais and menos [um país] mais [livre]

AUXBE finite "be" (ser or estar) é, são, estão

AUXBEINF infinitive "be" ser, estar

AUXBEINFPRON infinitive "be" with clitic sê-lo

AUXBEPRON finite "be" with clitic é-lhe

AUXHAV finite "have" tem, haverá

AUXHAVINF infinitive "have" (ter, haver) ter, haver

AUXHAVINFPRON infinitive "have" with clitic ter-se

AUXHAVPRON finite "have" with clitic tinham-se

Portuguese POS Tags

227

Tag Description Example

CM comma ,

CONJ (coordinating) conjunction [por fax] ou [correio]

CONJCOMP comparison conjunction do que [mais] do que [uma vez]

CONJSUB subordination conjunction para que, se, que

DEMPL plural demonstrative estas

DEMSG singular demonstrative aquele

DETINT interrogative or exclamative que [demostra a] que [ponto]

DETINTPL plural interrogative determiner quantas [vezes]

DETINTSG singular interrogative determiner qual [reação]

DETPL plural definite article os [maiores aplausos]

DETRELPL plural relative determiner ..., cujas [presações]

DETRELSG singular relative determiner ..., cuja [veia poética]

DETSG singular definite article o [service]

DIG digit 123

GER gerundive examinando

GERPRON gerundive with clitic deixando-a

INF verb infinitive reunir, conservar

INFPRON infinitive with clitic datar-se

INTERJ interjection oh, aí, claro

ITEM list item marker A. [Introdução]

LETTER isolated character [da seleção] A

NEG negation não, nunca

NOUN invariant common noun caos

NPL plural common noun serviços

NPROP proper noun PS, Lisboa

NSG singular common noun [esta] rede

POSSPL plural possessive seus [investigadores]

POSSSG singular possessive sua [sobrinha]

PREP preposition para, de, com

PREPADV preposition + adverb [venho] daqui

PREPDEMPL preposition + plural demonstrative desses [recursos]

PREPDEMSG preposition + singular demonstrative nesta [placa]

PREPDETPL preposition + plural determiner dos [Grandes Bancos]

PREPDETSG preposition + singular determiner na [construção]

PREPPRON preposition + pronoun [atrás] dela

PREPQUANTPL preposition + plural quantifier nuns [terrenos]

PREPQUANTSG preposition + singular quantifier numa [nuvem]

PREPREL preposition + invariant relative pronoun [nesta praia] aonde

Portuguese POS Tags

228

Tag Description Example

PREPRELPL preposition + plural relative pronoun [alunos] aos quais

PREPRELSG preposition + singular relative pronoun [área] através do qual

PRON invariant pronoun se, si

PRONPL plural pronoun as, eles, os

PRONSG singular pronoun a, ele, ninguém

PRONREL invariant relative pronoun [um ortopedista] que

PRONRELPL plural relative pronoun [as instalações] as quais

PRONRELSG singular relative pronoun [o ensaio] o qual

PUNCT other punctuation : () ;

QUANTPL plural quantifier quinze, alguns, tantos

QUANTSG singular quantifier um, algum, qualquer

SENT sentence final punctuation . ! ?

SYM symbols @ %

VERBF finite verb form corresponde

VERBFPRON finite verb form with clitic deu-lhe

VPP past participle (also adjectival use) penetrado, referida

A.15. Russian POS Tags

Tag Description Example

ADJ adjective красивая, зеленый, удобный,
темный

ADJ_CMP adjective: comparative красивее, зеленее, удобнее, темнее

ADV adverb быстро, просто, легко, правильно

ADV_CMP adverb: comparative быстрее, проще, легче, правильнее

AMOUNT currency + cardinal, percentages $20.000, 10%

CM comma ,

CONJ conjunction что,или и, а

DET determiner какой, некоторым [из вас],
который[час]

DIG numerals (digits) 1, 2000, 346

FRGN foreign word бутерброд, армия, сопрано

IREL relative/interrogative pronoun кто [сделает это?] каков
[результат?], сколько [стоит?], чей

ITJ interjection увы, ура

MISC (miscellaneous) АЛ345, чат, N8

Russian POS Tags

229

Tag Description Example

NOUN common noun: nominative case страна

common noun: accusative case [любить] страну

common noun: dative case [посвятить] стране

common noun: genitive case [история] страны

common noun: instrumental case [гордиться] страной

common noun: prepositional case гороворить о cтране

NUM numerals (spelled out) шестьсот, десять, два

ORD ordinal 12., 1.2.1., IX.

PERS personal pronoun я, ты, они, мы

PREP preposition в, на, из-под [земли], с [горы]

PRONADV pronominal adverb как, там, зачем, никогда, когда-
нибудь

PRON pronoun все, тем, этим, себя

PROP proper noun Россия, Арктика, Ивановых,
Александра

PTCL particle [но все] же,[постой]-ка [ну]-ка,

PTCL_INT introduction particle вот [она], вон [там], пускай, неужели,
ну

PTCL_MOOD mood marker [если] бы, [что] ли,[так] бы [и
сделали]

PTCL_SENT stand-alone particle впрочем, однако

PUNCT punctuation (other than CM or SENT) : ; " " ()

SENT sentence final punctuation . ? !

SYMB symbol *, ~

VAUX auxiliary verb быть,[у меня] есть

VFIN finite verb ходили, любила, сидит,

VGER verb gerund бывая, думая, засыпая

VINF verb infinitive ходить, любить, сидеть,

VPRT verp participle зависящий [от родителей], сидящего
[на стуле]

A.16. Spanish POS Tags

Tag Description Example

ADJ invariant adjective beige, mini

ADJPL plural adjective bonitos, nacionales

ADJSG singular adjective bonito, nacional

ADV adverb siempre, directamente

ADVADJ adverb, modifying an adjective muy [importante]

ADVINT interrogative adverb adónde, cómo, cuándo

Spanish POS Tags

230

Tag Description Example

ADVNEG negation no no

ADVREL relative adverb cuanta, cuantos

AUX finite auxiliary ser or estar es, fui, estaba

AUXINF infinitive ser, estar estar, ser

AUXINFCL infinitive ser, estar with clitic serme, estarlo

CM comma ,

COMO reserved for word como como

CONADV adverbial conjunction adonde, cuando

CONJ conjunction y, o, si, porque,sin que

DETPL plural determiner los, las, estas, tus

DETQUANT invariant quantifier demás, más, menos

DETQUANTPL plural quantifier unas, ambos, muchas

DETQUANTSG singular quantifier un, una, ningún, poca

DETSG singular determiner el, la, este, mi

DIG numerals (digits) 123, XX

HAB finite auxiliary haber han, hubo, hay

HABINF infinitive haber haber

HABINFCL infinitive haber with clitic haberle, habérseme

INTERJ interjection ah, bravo, olé

ITEM list item marker a)

NOUN invariant noun bragazas, fénix

NOUNPL plural noun aguas, vestidos

NOUNSG singular noun agua, vestido

NUM numerals (spelled out) once, tres, cuatrocientos

PAPPL past participle, plural contenidos, hechas

PAPSG past participle, singular privado, fundada

PREDETPL plural pre-determiner todas [las], todos [los]

PREDETSG singular pre-determiner toda [la], todo [el]

PREP preposition en, de, con, para, dentro de

PREPDET preposition + determiner al, del, dentro del

PRON pronoun ellos, todos, nadie, yo

PRONCLIT clitic pronoun le, la, te, me, os, nos

PRONDEM demonstrative pronoun eso, esto, aquello

PRONINT interrogative pronoun qué, quién, cuánto

PRONPOS possessive pronoun (el) mío, (las) vuestras

PRONREL relative pronoun (lo) cual, quien, cuyo

PROP proper noun Pablo, Beralfier

PUNCT punctuation (other than CM or SENT) ' ¡ ¿ : {

Spanish POS Tags

231

Tag Description Example

QUE reserved for word que que

SE reserved for word se se

SENT sentence final punctuation . ? ; !

VERBFIN finite verb form tiene, pueda, dicte

VERBIMP verb imperative dejad, oye

VERBIMPCL imperative with clitic déjame, sígueme

VERBINF verb infinitive evitar, tener, conducir

VERBINFCL infinitive with clitic hacerse, suprimirlas

VERBPRP present participle siendo, tocando

VERBPRPCL present participle with clitic haciéndoles, tomándolas

Spanish POS Tags

232

Appendix B. Morphological and Special Tags
When creating a user dictionary for For German, Dutch, Hungarian, English, French, Italian, Portuguese,
and Spanish, you can include morphological tags and/or special tags in individual dictionary entries.

Morphological Tags. The Named Entity Extractor [156] uses the Morphological tags listed in the
following sections to help it identify named entities.

Special Tags. For German, Dutch, and Hungarian, the Base Linguistics Language Analyzer (BL1) uses
special tags to divide compounds into their components.

For German, Dutch, Hungarian, English, French, Italian, and Portuguese, BL1 uses special tags to indicate
the boundaries in multi-word baseforms, contractions and elisions, and words with clitics. BL1 displays
these boundaries as spaces in the STEM [87] results.

B.1. German Morphological Tags

Tag Description Examples

+Bus business name Basis Technology, Daimler

+Continent continent Europa

+Country country, nation Deutschland

+First first name Hans, Maria

+Lake lake Bodensee

+Last family name Schiller, Maier

+Org organization Bundestag, UNO

+Prop proper noun Hans, Maier, Basis Technology

+Region region, mountain,... Zugspitze, Sahara

+River river Rhein, Donau

+Sea sea, ocean Nordsee, Mittelmeer

+State State, Bundesland, Kanton, ... Hessen, Uri, Arizona

+Title title (mainly for abbr.) Herr, Dr. [Maier]

+Town town, city Stuttgart

+TownCountry town and/or country Monaco

+TownState town and/or state Bremen

B.2. German Special Tags
BL1 uses the composition boundary and compound linking tags to handle compounds. It replaces ^& and
^_ with a space when it returns a STEM.

Tag Description Example: Token (STEM)

^# composition boundary Kindergarten (Kind^#Garten)

^- composition boundary (hyphen) US-weit (US^-weit)

^/ compound linking element Arbeitszeit (Arbeit^/s^#Zeit)

233

Tag Description Example: Token (STEM)

^& token boundary for contracted word form gib's (geben^&es)

^_ space in multi-word token ein wenig (ein^_wenig)

B.3. English Morphological Tags
These tags apply to English (en) and upper-case English (en_uc).

Tag Description Example

+Bus business name Basis Technology

+City city name London

+Continent continent name Europe

+Country country name Scotland

+Fam family name Clinton

+Fem proper noun feminine gender Mary

+Masc proper noun masculine gender Peter

+Misc miscellaneous place name Thames

+Place place name Everest

+Prop poper name Peter

+Title title Mister

+Usastate a state in the USA California

B.4. English Special Tags
These tags apply to English (en) and upper-case English (en_uc). BL1 replaces each of these tags with a
space when it returns a STEM.

Tag Description Example: Token (STEM)

^= separator for contracted forms don't (do^=not)

^_ space in multi-word baseforms New York (New^_York)

B.5. Spanish Morphological Tags

Tag Description Example

+Continent continent name Europa

+Lugar place Madrid

+Pay country España

+Soc company name ABC

+Titl title Señora

+Usastate a state in USA Texas

English Morphological Tags

234

B.6. Spanish Special Tags

Tag Description Example: Token (STEM)

^= separator for contracted forms al (a^=el)

^_ space in multi-word baseforms al uso (al^_uso)

^| derivation boundary duramente (duro^|)

B.7. French Morphological Tags

Tag Description Examples

+Location noun indicating location; may behave as an adverb rue, impasse, avenue

+PreN first name Nicolas, Marie

+Proper proper noun Paris, Jean

+Tit title Mme, Prof.

B.8. French Special Tag
BL1 replaces this tag with a space when it returns a STEM.

Tag Description Example: token (STEM)

^= separator for contracted forms aux (à^=le)

B.9. Hungarian Special Tags
BL1 uses the compound entry tag to handle compounds. It replaces ̂ | with a space when it returns a STEM.

Tag Description Example: Token (STEM)

^CB+ compound boundary hírnévre (hír^CB+név)

^| segment boundary (lexicalized) nemcsak (nem^|csak)

B.10. Italian Morphological Tags

Tag Description Example

+Cit name of a city Roma

+Continent continent (proper noun) Europa

+Fam family name Romano

+Giv given name Anna

+Lake name of lake Maggiore

+Mount name of mountain Vesuvio

+Org name of organization ONU

+Pay name of a state or country Italia

+Place place name Romagna

Spanish Special Tags

235

Tag Description Example

+Prop proper noun Paolo

+River name of river Po

+Sea name of sea or ocean Adriatico

+Title title signora

+Usastate a state in the USA Texas

B.11. Italian Special Tags
BL1 replaces each of these tags with a space when it returns a STEM.

Tag Description Example: Token (STEM)

^= separator for contractions and elisions allo (a^=lo)

^_ space in multi-word baseforms a meno de (a^_meno^_di)

^| derivation boundary or separator for clitics farti :: fare^|tu

B.12. Dutch Morphological Tags

Tag Description Example

+Abbr abbreviation km

+City city, town name Amsterdam

+Continent name of continent Europa

+Country name of country Holland

+Fam family name Bakker

+Giv given name Anna

+Org organization Basis Technology

+Place place Emmastraat

+Prop proper noun Anna

+Region region Brabant

+Title title prof.

+Usastate a state in USA Utah

B.13. Dutch Special Tags
BL1 uses the compound tags to handle compounds. It replaces ^_ with a space when it returns a STEM.

Tag Description Example: Token (STEM)

^# compound boundary prijscompensatie (prijs^#compensatie)

^\ \ boundary for compound linking element herhalingsprik (herhaling^\\s^#prik)

^_ space in multi-word token nu en dan (nu^_en^_dan)

Italian Special Tags

236

B.14. Portuguese Special Tags
BL1 replaces each of these tags with a space when it returns a STEM

Tag Description Example: Token (STEM)

^= separator for contractions and elisions lhas (ela^=elas)

^_ space in multi-word baseforms por causa de (por^_causa^_de)

^| derivation boundary or separator for clitics amá-lo (amar^|ele)

Portuguese Special Tags

237

238

Appendix C. Tcl Regular Expression Syntax
The Regular Expression [163] processor uses the Tcl regular expression engine to identify named entities
in input text. To see the named entity types that the Regular Expression processor with the shipped regular
expressions file returns, see Named Entities [45] . For background information about adding your own
regular expressions, see Creating Regular Expressions [56] .

This appendix contains information extracted from the Tcl re_syntax Manual Page [http://www.tcl.tk/man/
tcl/TclCmd/re_syntax.htm]. It also contains the Tcl Software License [248] .

Name [239]
Description [239]
Different Flavors of REs [239]
Regular Expression Syntax [239]
Metasyntax [245]
Matching [246]
Limits and Compatibility [247]
Basic Regular Expressions [247]

C.1. Name
re_syntax - Syntax of Tcl regular expressions.

C.2. Description
A regular expression describes strings of characters. It's a pattern that matches certain strings and doesn't
match others.

C.3. Different Flavors of REs
Regular expressions ("RE''s), as defined by POSIX, come in two flavors: extended REs ("EREs'') and
basic REs ("BREs''). EREs are roughly those of the traditional egrep, while BREs are roughly those of the
traditional ed. This implementation adds a third flavor, advanced REs ("AREs''), basically EREs with some
significant extensions.

This manual page primarily describes AREs. BREs mostly exist for backward compatibility in some old
programs; they will be discussed at the end. POSIX EREs are almost an exact subset of AREs. Features
of AREs that are not present in EREs will be indicated.

C.4. Regular Expression Syntax
Tcl regular expressions are implemented using the package written by Henry Spencer, based on the 1003.2
spec and some (not quite all) of the Perl5 extensions (thanks, Henry!). Much of the description of regular
expressions below is copied verbatim from his manual entry.

An ARE is one or more branches, separated by '|', matching anything that matches any of the branches.

A branch is zero or more constraints or quantified atoms, concatenated. It matches a match for the first,
followed by a match for the second, etc; an empty branch matches the empty string.

A quantified atom is an atom possibly followed by a single quantifier. Without a quantifier, it matches a
match for the atom. The quantifiers, and what a so-quantified atom matches, are:

239

http://www.tcl.tk/man/tcl/TclCmd/re_syntax.htm
http://www.tcl.tk/man/tcl/TclCmd/re_syntax.htm
http://www.tcl.tk/man/tcl/TclCmd/re_syntax.htm

*
a sequence of 0 or more matches of the atom

+
a sequence of 1 or more matches of the atom

?
a sequence of 0 or 1 matches of the atom

{ m }
a sequence of exactly m matches of the atom

{ m ,}
a sequence of m or more matches of the atom

{ m , n }
a sequence of m through n (inclusive) matches of the atom; m may not exceed n

*? +? ?? { m }? { m ,}? { m , n }?
non-greedy quantifiers, which match the same possibilities, but prefer the smallest number rather than
the largest number of matches (see Matching)

The forms using { and } are known as bounds. The numbers m and n are unsigned decimal integers with
permissible values from 0 to 255 inclusive.

An atom is one of:

(re)
re is any regular expression) matches a match for re, with the match noted for possible reporting

(?: re)
as previous, but does no reporting (a "non-capturing'' set of parentheses)

()
matches an empty string, noted for possible reporting

(?:)
matches an empty string, without reporting

[chars]
a bracket expression, matching any one of the chars (see BRACKET EXPRESSIONS for more detail)

.
matches any single character

\ k
(where k is a non-alphanumeric character) matches that character taken as an ordinary character, e.g.
\\ matches a backslash character

\ c
where c is alphanumeric (possibly followed by other characters), an escape (AREs only), see Escapes
below

{
when followed by a character other than a digit, matches the left-brace character '{'; when followed
by a digit, it is the beginning of a bound (see above)

Regular Expression Syntax

240

x
where x is a single character with no other significance, matches that character.

A constraint matches an empty string when specific conditions are met. A constraint may not be followed
by a quantifier. The simple constraints are as follows; some more constraints are described later, under
Escapes.

^
matches at the beginning of a line

$
matches at the end of a line

(?= re)
positive lookahead (AREs only), matches at any point where a substring matching re begins

(?! re)
negative lookahead (AREs only), matches at any point where no substring matching re begins

The lookahead constraints may not contain back references (see later), and all parentheses within them are
considered non-capturing.

An RE may not end with '\'.

C.5. Bracket Expressions
A bracket expression is a list of characters enclosed in '[]'. It normally matches any single character from
the list (but see below). If the list begins with '^', it matches any single character (but see below) not from
the rest of the list.

If two characters in the list are separated by '-', this is shorthand for the full range of characters between
those two (inclusive) in the collating sequence, e.g. [0-9] in ASCII matches any decimal digit. Two ranges
may not share an endpoint, so e.g. a-c-e is illegal. Ranges are very collating-sequence-dependent, and
portable programs should avoid relying on them.

To include a literal] or - in the list, the simplest method is to enclose it in [. and .] to make it a collating
element (see below). Alternatively, make it the first character (following a possible '^'), or (AREs only)
precede it with '\'. Alternatively, for '-', make it the last character, or the second endpoint of a range. To use
a literal - is the first endpoint of a range, make it a collating element or (AREs only) precede it with '\'.
With the exception of these, some combinations using [and escapes, all other special characters lose their
special significance within a bracket expression.

Within a bracket expression, a collating element (a character, a multi-character sequence that collates as
if it were a single character, or a collating-sequence name for either) enclosed in [. and .] stands for the
sequence of characters of that collating element. The sequence is a single element of the bracket expression's
list. A bracket expression in a locale that has multi-character collating elements can thus match more than
one character. So (insidiously), a bracket expression that starts with ^ can match multi-character collating
elements even if none of them appear in the bracket expression! (Note: Tcl currently has no multi-character
collating elements. This information is only for illustration.)

For example, assume the collating sequence includes a ch multi-character collating element. Then the RE
[[.ch.]]*c (zero or more ch's followed by c) matches the first five characters of 'chchcc'. Also, the RE
[^c]b matches all of 'chb' (because [^c] matches the multi-character ch).

Within a bracket expression, a collating element enclosed in [= and =] is an equivalence class, standing
for the sequences of characters of all collating elements equivalent to that one, including itself. (If there

Bracket Expressions

241

are no other equivalent collating elements, the treatment is as if the enclosing delimiters were '[.'and '.]'.)
For example, if o and ô are the members of an equivalence class, then '[[=o=]]', '[[=ô=]]', and '[oô]' are all
synonymous. An equivalence class may not be an endpoint of a range. (Note: Tcl currently implements
only the Unicode locale. It doesn't define any equivalence classes. The examples above are just
illustrations.)

Within a bracket expression, the name of a character class enclosed in [: and :] stands for the list of all
characters (not all collating elements!) belonging to that class. Standard character classes are:

alpha A letter.
upper An upper-case letter.
lower A lower-case letter.
digit A decimal digit.
xdigit A hexadecimal digit.
alnum An alphanumeric (letter or digit).
print An alphanumeric (same as alnum).
blank A space or tab character.
space A character producing white space in displayed text.
punct A punctuation character.
graph A character with a visible representation.
cntrl A control character.

A locale may provide others. See Character Classes [57] (Note that the current Tcl implementation has
only one locale: the Unicode locale.) A character class may not be used as an endpoint of a range.

There are two special cases of bracket expressions: the bracket expressions [[:<:]] and [[:>:]] are
constraints, matching empty strings at the beginning and end of a word respectively. A word is defined as
a sequence of word characters that is neither preceded nor followed by word characters. A word character
is an alnum character or an underscore (_). These special bracket expressions are deprecated; users of AREs
should use constraint escapes instead (see below).

C.6. Escapes
Escapes (AREs only), which begin with a \ followed by an alphanumeric character, come in several
varieties: character entry, class shorthands, constraint escapes, and back references. A \ followed by an
alphanumeric character but not constituting a valid escape is illegal in AREs. In EREs, there are no escapes:
outside a bracket expression, a \ followed by an alphanumeric character merely stands for that character
as an ordinary character, and inside a bracket expression, \ is an ordinary character. The latter is the one
actual incompatibility between EREs and AREs.

Character-entry escapes (AREs only) exist to make it easier to specify non-printing and otherwise
inconvenient characters in REs:

\a
alert (bell) character, as in C

\b
backspace, as in C

\B
synonym for \ to help reduce backslash doubling in some applications where there are multiple levels
of backslash processing

Escapes

242

\c X
(where X is any character) the character whose low-order 5 bits are the same as those of X, and whose
other bits are all zero

\e
the character whose collating-sequence name is 'ESC', or failing that, the character with octal value
033

\f
formfeed, as in C

\n
newline, as in C

\r
carriage return, as in C

\t
horizontal tab, as in C

\u wxyz
(where wxyz is exactly four hexadecimal digits) the Unicode character U+ wxyz in the local byte
ordering

\U stuvwxyz
(where stuvwxyz is exactly eight hexadecimal digits) reserved for a somewhat-hypothetical Unicode
extension to 32 bits

\v
vertical tab, as in C are all available.

\x hhh
(where hhh is any sequence of hexadecimal digits) the character whose hexadecimal value is 0x hhh
(a single character no matter how many hexadecimal digits are used).

\0
the character whose value is 0

\ xy
(where xy is exactly two octal digits, and is not a back reference (see below)) the character whose octal
value is 0 xy

\ xyz
(where xyz is exactly three octal digits, and is not a back reference (see below)) the character whose
octal value is 0 xyz

Hexadecimal digits are '0'-'9', 'a'-'f', and 'A'-'F'. Octal digits are '0'-'7'.

The character-entry escapes are always taken as ordinary characters. For example, \135 is] in ASCII, but
\135 does not terminate a bracket expression. Beware, however, that some applications (e.g., C compilers)
interpret such sequences themselves before the regular-expression package gets to see them, which may
require doubling (quadrupling, etc.) the '\'.

Class-shorthand escapes (AREs only) provide shorthands for certain commonly-used character classes:

\d
[[:digit:]]

Escapes

243

\s
[[:space:]]

\w
[[:alnum:]_] (note underscore)

\D
[^[:digit:]]

\S
[^[:space:]]

\W
[^[:alnum:]_] (note underscore)

Within bracket expressions, '\d', '\s', and '\w' lose their outer brackets, and '\D', '\S', and '\W' are illegal. (So,
for example, [a-c\d] is equivalent to [a-c[:digit:]]. Also, [a-c\D], which is equivalent to [a-c^[:digit:]], is
illegal.)

A constraint escape (AREs only) is a constraint, matching the empty string if specific conditions are met,
written as an escape:

\A
matches only at the beginning of the string (see Matching, below, for how this differs from '^')

\m
matches only at the beginning of a word

\M
matches only at the end of a word

\y
matches only at the beginning or end of a word

\Y
matches only at a point that is not the beginning or end of a word

\Z
matches only at the end of the string (see Matching, below, for how this differs from '$')

\ m
(where m is a nonzero digit) a back reference, see below

\ mnn
(where m is a nonzero digit, and nn is some more digits, and the decimal value mnn is not greater than
the number of closing capturing parentheses seen so far) a back reference, see below

A word is defined as in the specification of [[:<:]] and [[:>:]] above. Constraint escapes are illegal within
bracket expressions.

A back reference (AREs only) matches the same string matched by the parenthesized subexpression
specified by the number, so that (e.g.) ([bc])\1 matches bb or cc but not 'bc'. The subexpression must
entirely precede the back reference in the RE. Subexpressions are numbered in the order of their leading
parentheses. Non-capturing parentheses do not define subexpressions.

There is an inherent historical ambiguity between octal character-entry escapes and back references, which
is resolved by heuristics, as hinted at above. A leading zero always indicates an octal escape. A single non-

Escapes

244

zero digit, not followed by another digit, is always taken as a back reference. A multi-digit sequence not
starting with a zero is taken as a back reference if it comes after a suitable subexpression (i.e. the number
is in the legal range for a back reference), and otherwise is taken as octal.

C.7. Metasyntax
In addition to the main syntax described above, there are some special forms and miscellaneous syntactic
facilities available.

Normally the flavor of RE being used is specified by application-dependent means. However, this can be
overridden by a director. If an RE of any flavor begins with '***:', the rest of the RE is an ARE. If an RE
of any flavor begins with '***=', the rest of the RE is taken to be a literal string, with all characters considered
ordinary characters.

An ARE may begin with embedded options: a sequence (? xyz) (where xyz is one or more alphabetic
characters) specifies options affecting the rest of the RE. These supplement, and can override, any options
specified by the application. The available option letters are:

b
rest of RE is a BRE

c
case-sensitive matching (usual default)

e
rest of RE is an ERE

i
case-insensitive matching (see Matching, below)

m
historical synonym for n

n
newline-sensitive matching (see Matching, below)

p
partial newline-sensitive matching (see Matching, below)

q
rest of RE is a literal ("quoted'') string, all ordinary characters

s
non-newline-sensitive matching (usual default)

t
tight syntax (usual default; see below)

w
inverse partial newline-sensitive ("weird'') matching (see Matching, below)

x
expanded syntax (see below)

Embedded options take effect at the) terminating the sequence. They are available only at the start of an
ARE, and may not be used later within it.

Metasyntax

245

In addition to the usual (tight) RE syntax, in which all characters are significant, there is an expanded
syntax, available in all flavors of RE with the -expanded switch, or in AREs with the embedded x option.
In the expanded syntax, white-space characters are ignored and all characters between a # and the following
newline (or the end of the RE) are ignored, permitting paragraphing and commenting a complex RE. There
are three exceptions to that basic rule:

a white-space character or '#' preceded by '\' is retained
white space or '#' within a bracket expression is retained
white space and comments are illegal within multi-character symbols like the ARE '(?:' or the BRE '\('

Expanded-syntax white-space characters are blank, tab, newline, and any character that belongs to the
space character class.

Finally, in an ARE, outside bracket expressions, the sequence '(?# ttt)' (where ttt is any text not containing
a ')') is a comment, completely ignored. Again, this is not allowed between the characters of multi-character
symbols like '(?:'. Such comments are more a historical artifact than a useful facility, and their use is
deprecated; use the expanded syntax instead.

None of these metasyntax extensions is available if the application (or an initial ***= director) has specified
that the user's input be treated as a literal string rather than as an RE.

C.8. Matching
In the event that an RE could match more than one substring of a given string, the RE matches the one
starting earliest in the string. If the RE could match more than one substring starting at that point, its choice
is determined by its preference: either the longest substring, or the shortest.

Most atoms, and all constraints, have no preference. A parenthesized RE has the same preference (possibly
none) as the RE. A quantified atom with quantifier { m } or { m }? has the same preference (possibly none)
as the atom itself. A quantified atom with other normal quantifiers (including { m , n } with m equal to n)
prefers longest match. A quantified atom with other non-greedy quantifiers (including { m , n }? with m
equal to n) prefers shortest match. A branch has the same preference as the first quantified atom in it which
has a preference. An RE consisting of two or more branches connected by the | operator prefers longest
match.

Subject to the constraints imposed by the rules for matching the whole RE, subexpressions also match the
longest or shortest possible substrings, based on their preferences, with subexpressions starting earlier in
the RE taking priority over ones starting later. Note that outer subexpressions thus take priority over their
component subexpressions.

Note that the quantifiers {1,1} and {1,1}? can be used to force longest and shortest preference, respectively,
on a subexpression or a whole RE.

Match lengths are measured in characters, not collating elements. An empty string is considered longer
than no match at all. For example, bb* matches the three middle characters of 'abbbc', (week|wee)(night|
knights) matches all ten characters of 'weeknights', when (.*).* is matched against abc the parenthesized
subexpression matches all three characters, and when (a*)* is matched against bc both the whole RE and
the parenthesized subexpression match an empty string.

If case-independent matching is specified, the effect is much as if all case distinctions had vanished from
the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character outside a
bracket expression, it is effectively transformed into a bracket expression containing both cases, so that
x becomes '[xX]'. When it appears inside a bracket expression, all case counterparts of it are added to the
bracket expression, so that [x] becomes [xX] and [^x] becomes '[^xX]'.

Matching

246

If newline-sensitive matching is specified, . and bracket expressions using ^ will never match the newline
character (so that matches will never cross newlines unless the RE explicitly arranges it) and ^ and $ will
match the empty string after and before a newline respectively, in addition to matching at beginning and
end of string respectively. ARE \A and \Z continue to match beginning or end of string only.

If partial newline-sensitive matching is specified, this affects . and bracket expressions as with newline-
sensitive matching, but not ^ and '$'.

If inverse partial newline-sensitive matching is specified, this affects ^ and $ as with newline-sensitive
matching, but not . and bracket expressions. This isn't very useful but is provided for symmetry.

C.9. Limits and Compatibility
No particular limit is imposed on the length of REs. Programs intended to be highly portable should not
employ REs longer than 256 bytes, as a POSIX-compliant implementation can refuse to accept such REs.

The only feature of AREs that is actually incompatible with POSIX EREs is that \ does not lose its special
significance inside bracket expressions. All other ARE features use syntax which is illegal or has undefined
or unspecified effects in POSIX EREs; the *** syntax of directors likewise is outside the POSIX syntax
for both BREs and EREs.

Many of the ARE extensions are borrowed from Perl, but some have been changed to clean them up, and
a few Perl extensions are not present. Incompatibilities of note include '\b', '\B', the lack of special treatment
for a trailing newline, the addition of complemented bracket expressions to the things affected by newline-
sensitive matching, the restrictions on parentheses and back references in lookahead constraints, and the
longest/shortest-match (rather than first-match) matching semantics.

Henry Spencer's original 1986 regexp package, still in widespread use (e.g., in pre-8.1 releases of Tcl),
implemented an early version of today's EREs. There are four incompatibilities between regexp's near-
EREs ('RREs' for short) and AREs. In roughly increasing order of significance:

In AREs, \ followed by an alphanumeric character is either an escape or an error, while in RREs, it was
just another way of writing the alphanumeric. This should not be a problem because there was no reason
to write such a sequence in RREs.
{ followed by a digit in an ARE is the beginning of a bound, while in RREs, { was always an ordinary
character. Such sequences should be rare, and will often result in an error because following characters
will not look like a valid bound.
In AREs, \ remains a special character within '[]', so a literal \ within [] must be written '\\'. \\ also gives
a literal \ within [] in RREs, but only truly paranoid programmers routinely doubled the backslash.
AREs report the longest/shortest match for the RE, rather than the first found in a specified search order.
This may affect some RREs which were written in the expectation that the first match would be reported.
The careful crafting of RREs to optimize the search order for fast matching is obsolete (AREs examine
all possible matches in parallel, and their performance is largely insensitive to their complexity) but
cases where the search order was exploited to deliberately find a match which was not the longest/shortest
will need rewriting.

C.10. Basic Regular Expressions
BREs differ from EREs in several respects. '|', '+', and ? are ordinary characters and there is no equivalent
for their functionality. The delimiters for bounds are \{ and '\}', with { and } by themselves ordinary
characters. The parentheses for nested subexpressions are \(and '\)', with (and) by themselves ordinary
characters. ̂ is an ordinary character except at the beginning of the RE or the beginning of a parenthesized
subexpression, $ is an ordinary character except at the end of the RE or the end of a parenthesized
subexpression, and * is an ordinary character if it appears at the beginning of the RE or the beginning of

Limits and Compatibility

247

a parenthesized subexpression (after a possible leading '^'). Finally, single-digit back references are
available, and \< and \> are synonyms for [[:<:]] and [[:>:]] respectively; no other escapes are available.

C.11. Tcl License
This software is copyrighted by the Regents of the University of California, Sun Microsystems, Inc.,
Scriptics Corporation, ActiveState Corporation and other parties. The following terms apply to all files
associated with the software unless explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this software and its
documentation for any purpose, provided that existing copyright notices are retained in all copies and that
this notice is included verbatim in any distributions. No written agreement, license, or royalty fee is required
for any of the authorized uses. Modifications to this software may be copyrighted by their authors and need
not follow the licensing terms described here, provided that the new terms are clearly indicated on the first
page of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT
OF THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF,
EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE IS
PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO
OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR
MODIFICATIONS.

GOVERNMENT USE: If you are acquiring this software on behalf of the U.S. government, the
Government shall have only "Restricted Rights" in the software and related documentation as defined in
the Federal Acquisition Regulations (FARs) in Clause 52.227.19 (c) (2). If you are acquiring the software
on behalf of the Department of Defense, the software shall be classified as "Commercial Computer
Software" and the Government shall have only "Restricted Rights" as defined in Clause 252.227-7013 (c)
(1) of DFARs. Notwithstanding the foregoing, the authors grant the U.S. Government and others acting in
its behalf permission to use and distribute the software in accordance with the terms specified in this license.

Tcl License

248

Appendix D. Error Codes
RLP APIs and logs may return the error codes described below. Positive error codes indicate success
BT_OK or a non-error condition, either BT_NO_MORE_DATA or BT_WANT_MORE_DATA. Negative error
codes fall into the following categories:

Error Code Ranges

-1 to -49 Internal errors.

-50 to -99 Argument, class, or state validity errors.

-100 to -149 System (memory, file, etc.) errors.

-150 to -174 License Key library (btkey)

-10000 or higher Codes specific to RLP

Table D.1. Error Codes

Error # Hex # Error Name This error code is returned when...

1 1 BT_OK The function completed successfully.

2 2 BT_NO_MORE_DATA There is no more data. This is an
informational message and does not
necessarily mean that an error occurred
during processing.

3 3 BT_WANT_MORE_DATA The function cannot continue until the caller
passes the object more data. This is an
informational message and does not
necessarily mean that an error occurred
during processing.

-1 -1 BT_ERR_UNSPECIFIED The function encounters an unspecified
error.

-2 -2 BT_ERR_BUFFER_TRUNCATED The data written into a BT_Char16Buf
was truncated. This is an informational
message and does not necessarily mean that
an error occurred during processing.

-3 -3 BT_ERR_INTERNAL The function encounters an internal error.
Contact Basis Technology through the
appropriate email address for the product
you are using. In your email, carefully
describe the scenario in which the error
occurred.

-4 -4 BT_ERR_UNIMPLEMENTED The function does not implement the
functionality requested. Typically, this
happens when a platform-specific feature
cannot be used because it doesn't exist on the
present platform.

-50 -32 BT_ERR_INVALID_INSTANCE A handle passed to the function (generally a
C function) is invalid.

249

Error # Hex # Error Name This error code is returned when...

-51 -33 BT_ERR_INVALID_ARGUMENT An argument passed to the function is
invalid.

-52 -34 BT_ERR_INVALID_FILE_FORMAT A file whose name is passed to the function
has an invalid format.

-100 -64 BT_ERR_SYSTEM_ERROR The function encounters a system-level
error. The caller can check the value of
errno to determine the exact error.

-101 -65 BT_ERR_OUT_OF_MEMORY The function could not allocate new
memory, or if there is insufficient memory
for a required operation.

-102 -66 BT_ERR_FILE_NOT_FOUND A file whose name is passed to the function
could not be found.

-103 -67 BT_ERR_FILE_PERMISSION_DENIED A file whose name is passed to the function
could not be accessed because of a
permissions restriction.

-150 -96 BT_ERR_LICENSE_INVALID At initialization, a license file is present but
the required key is not valid. The key may be
missing a field, or a field value may not be
valid.

-151 -97 BT_ERR_LICENSE_EXPIRED At initialization, a license file is present but
has passed its expiration date.

-152 -98 BT_ERR_LICENSE_WRONG_PLATFORM At initialization, a license file is present but
the platform in the license key is not valid.

-153 -99 BT_ERR_LICENSE_NOT_AVAILABLE A license file is not available. This happens
when attempting to run a language processor
for which there is no license.

-154 -9A BT_ERR_LICENSE_FILE_NOT_FOUND At initialization, a license file could not be
found or could not be processed.

-155 -9B BT_ERR_DATA_NOT_LICENCED An attempt is made to create a dictionary
from a data file that is not licensed.

-156 -9C BT_ERR_DATUM_NOT_FOUND A datum, such as a record or table entry,
which has been requested, cannot be found
in the corresponding resource.

-157 -9D BT_ERR_DATA_GENERATION_INCOMP
ATIBLE

An attempt is made to initiate use of a
database, table, dictionary, or other data
collection which is not of a compatible
generation, i.e., was not built with, intended
to be used with, or operable with, the
versions of other comparable collections
already in use by the application or
subsystem.

-10000 -2710 BT_RLP_ERR_NO_LANGUAGE_PROCES
SORS

No language processors have been defined
(or could be loaded) within a context. A
context must have at least one language
processor to be valid.

250

Error # Hex # Error Name This error code is returned when...

-10002 -2712 BT_RLP_ERR_INVALID_PROCESSOR_
VERSION

A processor's internal API version does not
match the version required by the core RLP
library. This can occur if the processor is
newer than the version of RLP being used.

-10003 -2713 BT_RLP_ERR_NO_LICENSES_AVAILA
BLE

There are no license keys defined. This can
occur when the named license file exists but
does not contain valid key values.

-10004 -2714 BT_RLP_ERR_LANGUAGE_NOT_SUPPO
RTED

A processor does not support the language
requested. This is not necessarily an error; a
language processor can be called for a
language it doesn't support, in which case it
will do nothing, returning this value.

-10005 -2715 BT_RLP_ERR_REQUIRED_DATA_MISS
ING

A language processor required data that is
not available. For example, if named entity
extraction requires that the input be POS-
tagged and it is not, the language processor
may return this value.

-10006 -2716 BT_RLP_ERR_CHARSET_NOT_SUPPOR
TED

The application passes a mime charset to
\texttt{ProcessBuffer} or
\texttt{ProcessFile} and either the charset is
not acceptable to the processor or is invalid
or undefined. Note that some processors
ignore the charset or treat it as a hint, not a
firm declaration.

-10007 -2717 BT_RLP_ERR_INVALID_INPUT_DATA A processor detects data that it cannot
process. For example, a processor for a
specific file format returns this error when
the data is not in the specified file format.

-10008 -2718 BT_RLP_ERR_NO_ROOT_DIRECTORY The application has not established a Basis
root directory.

-10010 -271
A

BT_RLP_ERR_UNINITIALIZED_ENVI
RONMENT

The application attempts to create a context
before initializing an environment.

251

252

Appendix E. Guidelines for Reporting Bugs
When you encounter a bug in our software, we need to reproduce the bug before we can take steps to fix
it. This document provides guidelines that we ask you to follow so we can address the bug as quickly as
possible.

E.1. Background Information
Before reporting a bug to productsupport@basistech.com, please check that you are providing the following
information:

• product name
• version
• platform

We do keep records of versions shipped to customers. However, since many customers use multiple
versions and platforms, we ask that you tell us specifically which version and platform you are actually
using.

The easiest way to provide this information is to tell us the name of the SDK package you are using, such
as rlp-6.5.2-sdk-amd64-glibc23-gcc34.tar.gz or rlp-6.5.2-sdk-ia32-w32-msvc80.zip. The package
filename identifies product, version, and platform.

E.1.1. Platform

If you do not have the original package, the name of the subdirectory under rlp/bin is the platform name.
For example: amd64-glibc23-gcc34 or ia32-w32-msvc80.

E.1.2. Version

You can find the version by running the rlp command-line utility with the -v flag.

For information on running rlp, see Using the Command-line Utility [10] .

APIs for obtaining version information also exist:

C++
BT_RLP_Library::VersionNumber()
BT_RLP_Library::VersionString()

C
BT_RLP_CLibrary_VersionNumber()
BT_RLP_CLibrary_VersionString()

Java
RLPEnvironment::versionString()

E.2. Reproducing the Bug with the rlp Command-line
Utility

You may have found the bug in your own application. In many cases, it is not feasible for Basis to run or
debug your application, so we ask that you try to reproduce the bug with the rlp command-line tool. With

253

some effort, most bugs can be reproduced in this manner. The rlp[.exe] command-line utility is often
sufficient to reproduce bugs that you encounter using the C++, C, or Java APIs.

For more information, see Using the Command-line Utility to Process Your Own Text [10] .

A small percentage of bugs may be hard to reproduce with the rlp command-line utility. For example, the
bug may depend on multiple threads or a specific order of document processing. But please make every
effort to isolate a simple command-line test case before contacting Basis Technology.

If you can reproduce the bug with the command-line utility, please provide us the following:

• The command line you ran
• The RLP Environment configuration (usually rlp/etc/rlp-global.xml)
• The RLP Context configuration (such as rlp/samples/etc/rlp-context.xml)
• The input file you used
• The license you used (usually rlp/rlp/licenses/rlp-license.xml)

Example on Unix. Assume you have installed the RLP SDK to ~/btroot and that your platform is
amd64-glibc23-gcc34. You are using the default environment and context files. The input file is ~/
btroot/in.txt. For maximum output to the console, set the BT_RLP_LOG_LEVEL environment variable
to "all" before running the command.

export BT_RLP_LOG_LEVEL=all
export LD_LIBRARY_PATH= ~/btroot/rlp/lib/amd64-glibc23-gcc34
cd ~/btroot
rlp/bin/amd64-glibc23-gcc34/rlp -root . -lang en rlp/etc/rlp-global.xml rlp/samples/etc/rlp-context.xml \
in.txt

Example on Windows. Assume you have installed the RLP SDK to \btroot and that your platform is
ia32-w32-msvc80. You are using the default environment and context files. The input file is \btroot
\in.txt. For maximum output to the console, set the BT_RLP_LOG_LEVEL environment variable to "all"
before running the command.

cd \btroot
set BT_RLP_LOG_LEVEL=all
rlp\bin\ia32-w32-msvc80\rlp.exe -root . -lang en rlp\etc\rlp-global.xml rlp\samples\etc\rlp-context.xml
in.txt

If you use the default rlp-context.xml file, REXML [165] output is written to rlp-output.xml in the
current directory.

E.3. Reproducing in a Sample Application
If the rlp command-line tool is not sufficient to reproduce the bug (for example, you are using an RLP API
not called by the tool), you may write a small sample application tailored to provoke the bug. As a starting
point, you can use the core sample applications shipped with RLP:

C++
rlp/samples/cplusplus/rlp_sample.cpp (see also Sample C++ Application [28])

C
rlp/samples/capi/rlp_sample_c.c (see also Sample C Application [34])

Java
rlp/samples/java/RLPSample.java (see also Java Sample Application [59])

Reproducing in a Sample Application

254

Having created a small application that reproduces the bug, you can provide us with the application so that
we can also reproduce the bug, determine the cause, and work on a fix.

Reproducing in a Sample Application

255

256

Appendix F. The Rosette Demo
The Rosette Demo Package

The Rosette Demo is available as a separate package. It is no longer included in the RLP SDK
package for Windows platforms. For information about obtaining the Rosette Demo Package,
please contact ProductSupport@basistech.com .

F.1. Launching the GUI Demo
Be Sure the License is In Place. To use RLP functionality, you must copy the RLP license you obtain
from Basis Technology (rlp-license.xml) to RLP Demo\rlp\rlp\licenses, where RLP Demo is the
directory where you install the Demo.

Select All Programs → Basis Technology → Rosette Demo from the Windows Desktop start menu to
launch the demo.

The following text is also found in the demo's online help.

F.2. What the Demo Does
The Rosette Demo performs the following operations on input text in many languages. (Some operations
may be unavailable if they are not authorized by your RLP license .)

• For multilingual text, identify individual language regions so the operations described below can be
applied as appropriate to each language region.

• Identify the language, encoding, and MIME type.
• Tokenize the text, tag parts of speech, derive stems, analyze compounds, and provide phonetic

transcriptions.
• Extract base noun phrases.
• Extract named entities. You can also create and edit named entity definitions [263] .
• Convert text in Simplified Chinese script to Traditional Chinese script and vice versa.

To see the list of languages these operations support, see RLP Key Features [1] .

F.3. How to Run the RLP Demo

F.3.1. Input the text to be analyzed

If the text includes more than one language, select the Demo → Enable Multilingual Document
Analysis option. When this option is selected, RLP Demo applies each operation to the individual language
regions as appropriate for each language rather than homogeneously to the entire body of the text.

• Load a text file by selecting File → Open (Ctrl-O) or to open a text file in any language and encoding.
For information about the file, select File → Properties. 1

• Paste in text by selecting Edit → Paste (Ctrl-V) to paste copied text from an application into the Text
Window [261] .

• Type in your own text by selecting File → New (Ctrl-N) or .

1RLP accepts file formats including plain text, HTML, XML, PDF, Word, Excel, PowerPoint, and Access.

257

F.3.2. Edit or load the text

To edit text already in the Text Window, select Edit → Edit Text (Alt-W) or .

If you manually entered text into the input field, select to load the text; RLP Demo will display the text's
language.

F.3.3. Specify the language (optional)

By default, RLP uses the Rosette Language Identifier (RLI) to auto-detect the language. If the text is
multilingual and you have enabled multilingual processing on the Demo menu, RLP uses the Rosette
Language Boundary Locator (RLBL) to detect language regions.

You can manually select a language from the Demo → Language submenu. You must do this if your RLP
license does not contain RLI. 2 If you select a new language, any text in the Text Window is reprocessed
immediately.

The manually selected language setting remains in place until you choose a different language, or switch
the demo back to Auto-detect Language (Demo → Language → Auto-detect Language).

F.3.4. Apply a Demo Process

Select a process from the Demo menu, or click one of the shortcut buttons on the toolbar, and RLP
Demo color codes the processed results to show linguistic features of the input text.

2If your license does not contain RLI, any plain text files you open for processing must be in in a Unicode encoding (UTF-8, UTF-16, or UTF-32).

Edit or load the text

258

Not all functions may be applicable or available for all languages. See the full list of functions available
for each language [1] .

Rosette Language Identifier . Uses RLI to identify the language, script, MIME type, encoding,
and length.

Rosette Base Linguistics . Tokenizes the text and tags parts of speech. For applicable
languages [1] , it may also derive stems, analyze compounds, and generate phonetic transcriptions.

Base Noun Phrases. Identifies base noun phrases in the input text.

Rosette Entity Extractor . Uses statistical analysis, gazetteers, and regular expressions to identify
named entities

• Built-in entity types: locations, organizations, persons, geo-political entities, facilities, religions,
nationalities, titles, dates, and identifiers (credit card numbers, email addresses, latitudes and longitudes,
money, personal ID numbers, phone numbers, distances, URLs, and Univeral Transverse Mercator
coordinates).

• Adding entities: Once you have created a gazetteer [264] for a specific entity type, you can select
words in the Text Window and right click to add them to that named entity type. In general, use the
Named Entities Editor [263] to modify named entity definitions, create new named entity types, and
extend the set of languages that are analyzed for named entities.

• RLP Demo automatically reruns REX after you make an addition while using the REX.

Rosette Language Boundary Locator . Uses the Rosette Language Boundary Locator (RLBL)
to identify language regions and their size. This option is available if you have selected Enable
MultiLingual Document Analysis from the Demo menu.

Universal Base Linguistics. Use this process to tokenize text in any language.

Rosette Chinese Script Converter. Converts text in Simplified Chinese script to Traditional Chinese
script and vice versa.

F.3.5. View the analysis results

See Layout of the Demo Display [259] for details.

F.3.6. Save the analysis results (optional)

Save the list of tokens and their analysis as an XML file or a Comma-Separated Values (CSV) file with
File → Save Item List As. For more information, see Saving Analysis Results [261] .

Send the list of tokens and their analysis to an Excel worksheet with File → Send Item List to Excel. For
more information, see Sending Analysis Results to Excel [261] .

You can also save the input text [262] to a file to process again later.

F.4. Layout of the Demo Display
Here is an image of the display after Base Linguistics has been applied to some Arabic text.

View the analysis results

259

The display is divided into four panes. You can use the mouse to drag the horizontal and vertical divider
bars between the panes. See Customizing the Display [262] .

Text Window Pane. Displays the input text. Select to switch between Edit mode and Read-Only
mode. In Edit mode (the background is white), you can edit the text. In Read-Only mode (the background
is grey), RLP has loaded the text, converting it to Unicode UTF-16. After you select a Demo process (from
the Demo menu), words or phrases may be highlighted in color. See Using the Text Window [261]

Language Pane. Reports the language or languages of the input text. The Language Pane should display
this information before you select a process to run.

When you are viewing multilingual text, click one of the language names to display the annotations for the
text in that language.

Legend Pane. Shows the Demo process applied and, for some processes, displays the key to the color-
coded parts of speech or named entity types in the input text. Click a part-of-speech (POS) tag, a named
entity type, or a language region in the Legend, to highlight all corresponding elements in the Text
Window.

When viewing multilingual text, click a language region to specify the text for which you want to see the
annotations.

List View Pane. Displays the processed results. The first column numbers each token. The other columns
shown depend on the process you have applied and the input language. See Using the List View [260]
for details.

F.5. Using the List View
The List View displays the processed results in a table.

Using the List View

260

The first column numbers each token. The other columns vary depending upon the process applied and the
input language.

Navigation and Selection. Click on the List View and you can use the arrow keys to navigate up and
down between rows. When you select a row, the Text Window highlights the corresponding tokens in a
contrasting color.

Copying a Token. To copy the token associated with the selected row to the clipboard, select Edit →
Copy (Ctrl-C).

Saving Analysis Results. To save the entire contents of the List View as a UTF-8 encoded XML or
CSV (comma-separated values) file, select File → Save Item List As. You are prompted to name the file
and select a file format from a dropdown menu.

In the XML file, 3 field names are the List View column headers in lower case with spaces removed. In
the CSV file the column names are upper cased. The # column is named <index> or INDEX.

Sending Analysis Results to Excel. To send the entire contents of the List View to an Excel worksheet,
select File → Send Item List to Excel.

The item list appears in a new Excel worksheet. AutoFilter is turned on. You can use the Autofilter arrows
that appear to the right of each column label to sort the display and to filter the display by selection. To
turn AutoFilter off (or back on), select Data → Filter → AutoFilter.

F.5.1. Column order, size, sorting

To resize the columns, use the mouse to drag the dividing lines. Default column widths are restored each
time you launch a process.

To reorder columns, drag and drop column headers, or bring up the Select Columns dialog box by right
clicking any column header or using View → Select Columns. The dialog also lets you hide any column
except the # column.

To sort rows by a column's values, click the column header. Click again to reverse the sort order.

The column settings are specific to the current combination of input language and Demo process. See
Customizing and Saving Display Settings [262] to save these settings.

F.5.2. Font Selection

To change the List View font, select View → Set View Font → List View. This font change applies only
to the current session and only to the specific language of the current input text. See Customizing and
Saving Display Settings [262] to save these settings.

F.6. Using the Text Window
Navigation. Click on the Text Window and you can Tab through token by token (or go backwards
using Shift-Tab).

Token highlighting. Navigating or clicking a highlighted token colors the corresponding item in the
List View [260] . Toggle the highlighting on/off by selecting View → Mark Entities or .

3Note that the XML format is not REXML, RLP's native XML format. To generate REXML, you must include the REXML processor in the context
configuration file [267] .

Column order, size, sorting

261

Font. To change the Text Window font, select View → Set View Font → Full Text View. This font
change only applies to text in the language of the current document (shown in Text Profile) for the current
session. See Customizing and Saving Display Settings [262] to save the font selected.

Copying Input Text. Highlight the text to copy using the mouse or Shift and the arrow keys. Then
select Edit → Copy (Ctrl-C) and paste the text into other applications. You cannot drag and drop text
from the Text Window.

Saving Input Text. Save the contents of the Text Window to a file with File → Save Text As (Ctrl-
S) or . You can save the text in any encoding supported by the Rosette Core Library for Unicode (RCLU).

F.7. Customizing and Saving Display Settings
You can save the following visual settings to an XML configuration file:

• Size and position of the overall Demo window
• Position of horizontal and vertical divider bars between the four panes [259]
• Layout of the List View columns [261] for each combination of Demo process and input language.
• List View font [261] and Text Window font [262] for each input language.

You can also edit .htm files that control some Legend display features [262] .

F.7.1. Saving and Loading Settings

Setting changes you have made are not automatically saved when the application is closed.

To save your settings, select File → Save Configuration.

To make these settings the default, save the file as RLPDemoAppConfig.xml, the default filename, in the
Basis Technology subfolder of your Local Settings/Application Data profile. Otherwise, save the file to
a different name and manually choose the file when you launch the Demo by selecting File → Load
Configuration.

Alternatively, load the settings when you launch the demo with the /config switch from the command
line.

btrlpdemo.exe /config my-customizations.xml

loads the previously saved customization file named my-customization.xml in the Basis Technology
subfolder of your Local Settings/Application Data profile.

Use the /config switch with no argument to load the default configuration file,
RLPDemoAppConfig.xml.

btrlpdemo.exe /config

F.7.2. Customizing the Legend

You can alter a limited subset of Legend display features by editing the demo-xxx-legend.htm files in
rlp\samples\w32demo. See each file's comments for details.

For the Named Entities legend, text and coloring is automatic.

For the Part of Speech (POS) legends, the text is supplied in demo-pos-legend.xml and the coloring is
automatic.

Customizing and Saving Display Settings

262

F.8. The Named Entities Editor
RLP uses statistical analysis (the Named Entity Extractor), regular expressions, and gazetteers to identify
named entities. A number of entity types are pre-defined builtin types. You may add your own named
entities as well as entity types and subtypes.

For a more detailed explanation about customizing named entities in RLP, consult Customizing Named
Entities [52] .

The Named Entities Editor lets you:

• Create user-defined entity types and subtypes.
• Specify weights the Named Entity Redactor uses to determine which source to favor (gazetteers, regular

expressions, or statistical analysis) when more than one source finds a named entity in the same or
overlapping text.

• Edit and add gazetteers.
• Edit and add regular expressions.
• Set the normalization options used with gazetteers.

If you are viewing the results of the Named Entities Extraction process, RLP Demo automatically reruns
the process after you make edits and close the editor.

F.8.1. Files the Named Entities Editor Modifies

The Named Entities Editor edits the following files which are also used by both the demo and the RLP
SDK.

• rlp\etc\ne-types.xml Specifies types, subtypes, and weights.
• rlp\etc\regex-config.xml Defines the regular expressions. Each regular expression is associated with

a type and, optionally, with a subtype and a language.
• rlp\etc\gazetteer-options.xml Specifies the gazetteers to use and normalization settings.
• Gazetteers. Each gazetteer is associated with a type and, optionally with a subtype and a language.

Note: To view or edit any XML file with the Named Entities Editor, the corresponding DTD file must be
in the folder with the XML file. For known file locations, RLP Demo copies the required DTD file from
the rlp/config/DTDs. Make sure that the XML files and the folders containing the XML files you want to
edit are not write protected.

F.8.2. Opening the Named Entitities Editor

Select Edit → Named Entities or to open the editor. The Edit Named Entities dialog displays Gazetteer
Options and a list of entity types.

The Named Entities Editor

263

In the Editor list display, you can edit the names for user-defined types and subtypes, and the weights
associated with the three sources for each entity type.

F.8.3. Adding Named Entities with Gazetteers

In the Editor list, double click the type/subtype for which you want to define new entities by listing them
(in a gazetteer) or defining a pattern as a regular expression.

Double click [Double Click to Add...] to add an entry to the gazetteer or double click an entry to edit it.

Adding Named Entities with Gazetteers

264

In the example above, the user has created a gazetteer for the CLOTHING type, and is adding another
entry.

Click Load to open a gazetteer you have already created for this type.

Click New to flush the contents of the list and start a new gazetteer.

F.8.4. Gazetteer Options

At the Edit Named Entities dialog, check the types of normalization to apply when matching input to
gazetteer entires.

Normalize space. Normalize consecutive whitespaces to a single space.

Normalize case. Normalize text to lower case.

Normalize Kana. Convert Japanese Hiragana characters to Katakana.

Normalize Width. Normalize half-width and full-width characters to generic-width.

Normalize Diacritics. Strip diacritics and accent marks.

F.8.5. Adding Named Entities with Regular Expressions

Add or edit regular expressions for any entity type by double clicking on a type/subtype.

Gazetteer Options

265

RLP supports Tcl regular expressions. See TclRegular Expression Syntax [239] .

With the Named Entities Editor, you cannot view or edit any of the define elements, such as $
{time_ampm} specified in regex-config.xml and used in regular expressions.

Optionally, enter a note to track the details of a given regular expression. Notes are saved in regex-
config.xml.

To indicate that a regular expression is language-specific, enter the ISO639 language tag:

Language Tag

Arabic ar

Chinese - Simplified zh_sc

Chinese - Traditional zh_tc

Czech cs

Dutch nl

English en

Upper-Case Englisha en_uc

Farsi (Persian) fa

French fr

Adding Named Entities with Regular Expressions

266

Language Tag

German de

Greek el

Hungarian hu

Italian it

Japanese ja

Korean ko

Polish pl

Portuguese pt

Russian ru

Spanish es

Urdu ur
aFor more accurate processing of English text that is entirely upper case, use the en_uc language tag.

F.8.6. Adding New Named Entity Types

To define a new type, double click the first entry in the Edit Named Entities dialog's list: [Double click
to Add...] and then specify type (and subtype), and create a gazetteer or add regular expressions.

F.8.7. Deleting a User-Defined Named Entity Type

To delete a user-defined type, right click its entry in the list, and select Delete from the menu. Note: Builtin
types (indicated by a check in the Builtin column) cannot be deleted or renamed.

F.9. Troubleshooting: the RLP Log
RLP maintains a trace log of significant events and diagnostics. To view the RLP log, select View →
Log. The log may help you find and fix any problems you experience.

You can also contact Basis Technology for help.

F.10. Process Context Files
Each Demo process is defined by an RLP context file in rlp\samples\w32demo. A context file contains a
list of RLP processors in the order in which they are to be applied to the input text. It may also include
property settings.

Process Context File

Loading the input text demo-minimal-context.xml

Rosette Base Linguistics demo-bl-context.xml

Base Noun Phrases demo-bnp-context.xml

Adding New Named Entity Types

267

Process Context File

Rosette Entity Extractor demo-ne-context.xml

Rosette Chinese Script Converter (Simplified to
Standard)

demo-csc-s2t-context.xml

Rosette Chinese Script Converter (Standard to
Simplified)

demo-csc-t2s-context.xml

These files can be modified. See Defining an RLP Context [18] .

Process Context Files

268

Glossary
In the glossary below, terms that have a specific meaning for RLP are capitalized, e.g., "Context." Non-capitalized
terms are general linguistic or computing terms.

A
abbreviation An abbreviation is a shortened way to write a long word or phrase. For example,

the word "miscellaneous" is frequently replaced with the abbreviation "misc."

adjectival An adjective that describes a word functioning as an adjective.

adjectival noun An adjective functioning as a nominal.
See Also nominal.

adjective An adjective is a word that modifies a noun to denote quantity, extent, quality, or
to specify the noun as distinct from something else. Consider the sentence, "The
smart woman has a great job." The words "smart" and "great" are adjectives, which
describe "the woman" and the "job," respectively.

adverb An adverb is a word that modifies a verb to describe how the verb was performed.
Consider the sentence, "The racer drove quickly." The word "quickly" is an adverb
that describes the driving of the racer. Adverbs may also modify whole sentences.
Consider the sentence, "Frankly, I don't care." The word "frankly" is an adverb
that describes the rest of the sentence.

affix One or more sounds or characters attached to the beginning, middle, or end of a
word or base to create a derived word or inflectional form.

alternative readings Alternative readings are returned in Japanese when the recognized word has more
than one valid pronunciation.

auxiliary verb A verb that is used in forming certain tenses, aspects and moods of other verbs.
Consider the sentence, "The man is running." The verb "is" is an auxiliary verb to
the main verb "run." The main difference in English between "runs" and "is
running" is aspectual (habitual vs. progressive). Also, the difference between
"saw" and "was seen," with the auxiliary verb "was," is mood (active vs. passive).

B
bopomofo A method for transcribing Chinese text using Chinese character elements for their

reading value. For more information, see Ken Lunde’s CJKV Information
Processing, O’Reilly 1999.

Also called zhuyin fuhao.

broken plurals Refer to a class of nouns whose plural is formed in an irregular way. Use is specific
to Semitic languages such as Arabic.

bound morpheme A bound morpheme is a morpheme that cannot stand alone and must be combined
with some other morpheme. An affix is an example of a bound morpheme.
See Also morpheme.

269

BT_BUILD BT_BUILD designates the platform on which RLP runs. It is embedded in the
name of the RLP SDK package that you use to install RLP, and it is used to name
platform-specific subdirectories, such as BT_ROOT/rlp/bin and BT_ROOT/rlp/
lib. See Supported Platforms and BT_BUILD Values [13] .

BT_ROOT BT_ROOT designates the Basis root directory, the directory where the RLP
SDK is installed. During initialization, an RLP application must set the path to
BT_ROOT.

C
choseong Leading consonants or syllabic initial jamo in written Korean.

compound analysis Dissects a compound word (a word composed of many words combined) into its
constituent pieces. For example, in German, the word
'"Bibliothekskatalogen" (library catalog) can be decompounded into "Bibliothek"
and "Katalog".

conjunction A conjunction is word that links two phrases, such as the words "and" and "or" in
English.

consonant-stem verb (五段動
詞)

A category of Japanese verbs whose stems end in consonants. Some examples of
these verbs are hakob(u) 運ぶ, kak(u) 書く, and shir(u) 知る. An easy way to tell
if a Japanese verb is a consonant-stem is to look at the Romanization of the direct-
style negative form of the verb. If the letter preceding the suffix -anai is a
consonant, it is a consonant-stem verb.

Lemma Negative Direct-Style Stem

hakob(u) 運ぶ "carry" hakob(anai) 運ばない "don't carry" hakob-

kak(u) 書ό "write" kak(anai) 書かない "don't write" kak-

shir(u) 知る "know" shir(anai) 知らない "don't know" shir-

Context RLP context is an XML document that defines a sequence of language processors
to apply to the input text. It may include property settings to customize the
processing.

copula verb A copula is a form of the verb "to be" used for equating two phrases. In Japanese,
copula refers to the word da and its various forms, which is used with some
Japanese nouns and adjectives.

count noun A count noun is a noun that has a plural form. Most nouns in English are count
nouns.
See Also unit noun, mass noun.

D
decomposing Decomposing refers to taking tokens and further breaking them down into smaller

constituent parts where possible.
See Also segmentation.

decompounding See decomposing.

270

determiner A determiner is a word which specifies a particular noun phrase. For example, in
English, an article such as "the" ("the book").

direct-style Refers to a politeness level in Japanese, which shows intimacy between the speaker
and listener. Direct-style is the opposite of distal style.
See Also distal-style.

distal-style Refers to a politeness level in Japanese, which shows distance (and thus politeness
and deference to the listener) between the speaker and listener. The distal-style is
marked by verb endings containing -mas-, and use of the copula desu instead of
da. Distal-style is the opposite of direct-style.
See Also direct-style.

E
Environment The RLP environment is an XML document that represents the global state of RLP.

The environment is responsible for loading and maintaining the various language
processors authorized by the software license.

eojeol Eojeol are written syllables in Korean composed of jamo.

eumjeol Eumjeol are a space delimited sequence of eojeol in Korean Hangul writing.
See Also Hangul, eojeol.

F
FACILITY A Named Entity type. See Named Entity Definitions [49] .

full-width When describing a character, "full-width" refers to characters in the ASCII
character set which appear "wider" than their ASCII versions. The ASCII versions
are often called half-width. The table below shows a few full-width and half-width
characters for comparison.

half-width ABC 123 %&*

full-width ＡＢＣ　１２３　％＆＊

In Japanese, there are full-width (zenkaku) and half-width (hankaku) characters in
Katakana. However, full-width Katakana is considered "normal" whereas full-
width ASCII is "not-normal." The table below shows a few zenkaku and hankaku
characters for comparison.

zenkaku Katakana インターネット

hankaku Katakana ｲﾝﾀｰﾈｯﾄ

fully-productive derivational
suffix

Fully-productive means that one need not remember which words can be used with
the suffix — anyplace the suffix is used is considered valid. The best example of
a fully-productive derivation suffix in English is -ness, which can be used with any
noun.

furigana In Japanese, furigana refers to the Katakana or Hiragana characters used to show
the pronunciation of a Japanese word containing Kanji. Also known as
yomigana or rubi.

271

See Also Kanji.

G
Gazetteer A list of words or phrases that share a certain property. Gazetteers are used to

extend support for named entities. For example, a gazetteer could contain a list of
companies that provide a particular service. See Gazetteer [144] language
processor and Gazetteer source files [53] .

glyph A glyph is a graphical representation of a character. In a language such as Arabic,
a character's appearance varies depending on whether it is shown alone (isolated)
or in a given position within a word (initial, middle or final). Thus multiple glyphs
are mapped to the codepoint for any given Arabic character.

GPE. Geo-Political Entity. A Named Entity type. See Named Entity Definitions [49] .

H
half-width Half-width refers to characters which would appear as they do in the ASCII

encoding. The opposite of "half-width" is "full-width."
See Also full-width.

Han characters Han characters refers generally to the Chinese ideographic characters which are
used in Chinese, Japanese, and Korean. όό is an example of two Han characters.

Hangul Hangul is the natively created phonetic Korean script.

hanja Hanja is the Korean word referring to Chinese ideographic characters used in
Korean.

hankaku See half-width.

hanyu pinyin This system of pinyin uses Roman letters to express the pronunciation of Chinese
words. This system is used widely in Mainland China.
See Also pinyin.

Hanzi Hanzi is the Chinese word referring to Chinese ideographic characters used in
Chinese.

harakat Vowel markers in Arabic script.

Hiragana The Japanese phonetic alphabet used to write native Japanese words (as opposed
to Katakana, the alphabet used for borrowed foreign words).

honorific prefix A set of characters or sounds added to the beginning of a word to make it into an
honorific word. For example, in Japanese, the prefix o-/go- ό is added to the
beginning of some nouns to make them honorific.

honorific suffix A set of characters or sounds added to the end of a word make the word honorific.
For example, in Japanese, the suffix -sama ό is added to the personal name when
addressing a person.

272

I
IDENTIFIER:UTM Univeral Transverse Mercator. A Named Entity type. See Named Entity

Definitions [49] .

interjection An interjection is an exclamation usually expressing an emotion. The English
interjection "Ow!" may express pain.

irregular verb An irregular verb is one which does not follow the regular conjugation patterns of
the other verbs in the language.

Iterator Used to access the results generated by the processors in the context.

J
jamo Jamo are the basic phonetic building blocks for writing Korean in Hangul. Jamo

consists of 10 basic vowels and 14 consonants. The combination of jamo forms a
syllable called an eojeol.
See Also eojeol.

jongseong Trailing consonants or syllabic final jamo in written Korean.

jungseong Vowels or "syllabic peak" jamo in written Korean.

K
kana Kana refers to the Japanese alphabets Hiragana and Katakana collectively.

See Also Hiragana, Katakana.

Kanji Chinese ideographs used in the Japanese language are called Kanji. An example
of Kanji: 日本語.

kashida A kashida is a typographical embellishment in Arabic used to justify text by
elongating certain characters at specified points. Also called "tatweel."

Katakana The Japanese phonetic alphabet used to write borrowed foreign words.
See Also Hiragana.

L
Language Processor Processes input text given to RLP and generates analytical results for use by other

language processors and the RLP application.

lemma A lemma is the form of the word a person would look for when looking it up in a
dictionary, i.e., the "dictionary form" of a word. In English, it is the singular of
nouns ("book," not "books") and the "base form" of verbs ("define," not "defines,"
"defining," or "defined"). Other languages have somewhat different notions of
what the "dictionary form" or the "base form" is, but whatever form it takes, it is
the lemma.

lemmatization The act of finding the lemma of a word.

273

lexeme A lexeme is an item in the vocabulary of a language, frequently called a word.

lexicalized A word that has entered the language as a single word, where the meaning of the
whole word no longer relates to the meaning of the constituent parts of the word,
is said to be lexicalized.

lexicon A listing of all the words in a language with information about its form, meaning,
and part of speech.

LOCATION A Named Entity type. See Named Entity Definitions [49] .

M
Main Dictionary The primary lexicon shipped with a language analyzer.

mass noun A mass noun is a type of noun that does not have a plural form. In English, "water"
is a typical mass noun; instead of making it plural, one must use a measure word
(e.g. "two glasses of water"). In Japanese and Chinese, every noun is a mass noun.
See Also unit noun, count noun.

measure A measure is a word expressing a unit of measurement, such as "meters" or
"kilograms."

morpheme A morpheme is the smallest unit for building words (composed of characters or
sounds). That is, morphemes cannot be broken down any further into meaningful
parts. Note: All morphemes are lexemes, but not all lexemes are morphemes. E.g.,
book + s = books. "book" and "s" are morphemes.
See Also lexeme, bound morpheme.

Multilingual Language
Identifier

See Rosette Language Boundary Locator.

N
named entities The names of persons, places, times or things: "Bill Gates", "New York City",

"11/22/63" and "Harvard University" are all named entities.

named entity extraction Named entity extraction is the act of extracting known types of entities such as
personal names, organization corporate names, and geographical names from a
stream of text.

NATIONALITY A Named Entity type. See Named Entity Definitions [49] .

nominal A word in Japanese that functions as a noun.

normalization The act of removing variations from words due to spelling or writing conventions
that are not significant from the point of view of information retrieval.

noun A noun is a word expressing a person, place or thing.
See Also adjectival noun, temporal noun, unit noun, verbal noun (サ変動詞).

numeric Numeric describes a token or word containing a number either in Arabic numerals
(0, 1, 2, 3, ...), Arabic-Indic numerals (used in Arabic script), or characters that
represent numbers.

274

O
onomatope A word that expresses a sound. For example, in English "glug, glug" is the

onomatope for the sound of someone drinking.

ordinal numeric An ordinal numeric is a number that designates a place in a sequence, such as
"first," "second," etc.

ORGANIZATION A Named Entity type. See Named Entity Definitions [49] .

P
part-of-speech Each language has several dozen parts of speech; each part of speech (POS)

describes how a word can combine with other words in that language. A part of
speech tag (POS tag) can be assigned to each token.

particle A particle is a word that indicates the role of a preceding or following word in a
sentence. For example, in Japanese, the particle wa (ό) appears after the subject of
a sentence.

PERSON A Named Entity type. See Named Entity Definitions [49] .

pinyin Pinyin is a system that uses the Roman alphabet used to show the pronunciation
of Chinese words. There are several types of pinyin.
See Also hanyu pinyin.

prefix A bound morpheme that attaches to the beginning of a word or base to create a
derivational word or inflectional form.
See Also bound morpheme, morpheme.

preposition A preposition is a word that appears before a noun phrase and combines to form a
phrase. It expresses the relation that the noun phrase has with the rest of the
sentence. For example, the phrase "under the boardwalk" contains the preposition
"under".

postposition A postposition is the same as a preposition, except that it appears after a noun
phrase instead of before it.

pronoun A pronoun is a word that refers to a noun. Some English pronouns are "he," "she,"
and "it."

proper noun A proper noun is the name of a person, place, or entity. For example, "London",
"Elizabeth", and "Basis Technology" are proper nouns. In English, proper nouns
are always capitalized.

R
regular expression A way of writing a pattern that a string can match or not. Regular expressions are

written in Tcl syntax, which is based on the 1003.2 spec and some (not all) of the
Perl5 extensions. For example, "ab*a" matches a string that starts and ends with
an "a", with zero or more occurrences of "b" in the middle. For the details, see Tcl
Regular Expression Syntax [239] .

275

RELIGION A Named Entity type. See Named Entity Definitions [49] .

Romanization Transcription or transliteration of text from another alphabet or writing script to
the Latin alphabet.
See Also transcription, transliteration.

Rosette Language Boundary
Locator

Formerly known as the Multilingual Language identifier (MLI), RLBL detects
boundaries between areas of different languages in text containing multiple
languages and between areas of different scripts.

S
script A script is a system of writing that is associated with a language. Hiragana,

Katakana, and Kanji are examples of written scripts used in the Japanese language,
but which are not, by themselves, languages.

segmentation The act of dividing a stream of text into segments or tokens. Broadly speaking,
RLP uses a "longest match" principle to segment text.
See Also decomposing, token.

sentence boundary detection Uses the language-based rules of punctuation ito determine the end of sentences.
In many languages (such as Chinese and Japanese), end-of-sentence punctuation
is largely unambiguous, and so sentence boundary detection is relatively easy. In
other languages, such as English and most European languages, sentence-ending
punctuation can also be used for other purposes. For example, periods can be used
in English to end sentence, to mark abbreviations, or in some cases do both at the
same time. A sentence boundary detector for English, then, has to distinguish
among all the uses of sentence-ending punctuation and decide when it is actually
ending a sentence.

stem A stem is the hypothetical form from which all the forms of a word are created.
Frequently, the stem is not an independent word that can stand alone. For example,
the English verb "decode" has the following observed forms: "decode,"
"decoding," "decodes," and "decoded." The stem is "decod"; it clearly is a string
from which the observed words are built, but the stem itself is never seen as a real
word.

stemming The process of removing prefixes and suffixes from a word until only a "stem"
remains. Note that a stem is not necessarily the same as the lemma (dictionary
form) of the word.
See Also lemma, stem.

stopword In the context of information retrieval, a stopword is a word that appears so
frequently in a language that it is statistically insignificant when performing a
search. For example, in English, the words "a" and "the" would appear in virtually
any document, and thus generally speaking would not aid in finding a specific
category of documents. Some information retrieval systems will choose to ignore
stopwords when performing a search.

suffix A bound morpheme that attaches to the beginning of a word or base to create a
derived word or inflectional form.
See Also fully-productive derivational suffix.

suru-verb (サ変動詞) A suru-verb is a Japanese verb that is formed of a one character plus the verb
suru (する) or other related forms such as siru (しる), which means "to do." Usually

276

the first character does not stand alone as a word, although it may in some cases.
For example, ai(suru) (愛する), kan(suru) (関する), and syou(jiru) (生じる) are
suru-verbs.

T
tatweel See kashida.

temporal noun A noun expressing a time, such as "February."

token A string (i.e., a sequence of characters) that corresponds to an irreducible lexical
or typographical element in a language.

Tokenizer Language processor that parses a document and generates a sequence of tokens.

transcription The representation of the sound of the words in a language using another alphabet
or set of symbols created for that purpose. Transcription is not concerned with
representing characters; it strives to give a phonetically (or phonologically)
accurate representation of the word. This may differ, depending on the language
or set of symbols into which the word is being transcribed.

transliteration The spelling of the words in one language and writing script with characters from
another writing script. Ideally, transliteration is a character-for-character
replacement so the reverse transliteration into the original script is possible.
Transliteration is not concerned with representing the phonetics of the original; it
only strives to accurately represent the characters.

U
unit noun A unit noun is what is also called sometimes called a "counter," "classifier," or

"measure word." In some languages, objects cannot be counted directly in the way
English never counts bread except by a unit (e.g., a loaf). In English, one would
never say "two breads" but rather "two loaves of bread." In that case, "loaf/loaves"
is a unit noun.
See Also mass noun.

User Dictionary A language dictionary created and maintained by the user for use by a language
analyzer in conjunction with the standard dictionary or dictionaries that RLP
provides for that language. Depending on the language analyzer, the dictionary
may provide segmentation or morphological information. Currently supported for
Chinese [133] , Japanese [147] , Korean [151] , and Base Linguistics
Analyzer [129] (European languages).

See Creating User Dictionaries [193] .

V
verbal noun (サ変動詞) A verbal noun is a verb composed of a noun with two or more characters and the

verb suru (する) ("to do"). For example, benkyou suru (勉強する) means "to
study" and is composed of the word for "study" with the verb suru. Because the
noun can stand alone, it may be segmented from the verb suru.
See Also suru-verb (サ変動詞).

277

vowel-stem verb (一段動詞) This is a category of Japanese nouns whose stems end in a vowel. Some examples
of these are tabe(ru) (όόό), i(ru) (όό), and age(ru) (όόό). An easy way to tell if a Japanese
verb is a vowel-stem, is to look at the romanization of the direct-style negative
form of the verb. If the letter preceding the suffix -nai is a vowel, then it is a vowel-
stem verb.

Lemma Negative Direct-Style Stem

tabe(ru) 食べる "eat" tabe(nai) 食べない "don't eat" tabe-

i(ru) 居る "be (animate being)" i(nai) 居ない "don't be" i-

age(ru) 上げる "give" age(nai) 上げない "don't give" age-

Y
yomigana See furigana.

Z
zenkaku See half-width.

zhuyin fuhao See bopomofo.

278

Index
A
ALTERNATIVE_LEMMAS, 83
ALTERNATIVE_NORM, 83
ALTERNATIVE_PARTS_OF_SPEECH, 83
ALTERNATIVE_ROOTS, 84
ALTERNATIVE_STEMS, 84
applications

building, 40
Arabic

language processor, 127
arbl, 126

B
BASE_NOUN_PHRASE, 84
BaseNounPhrase, 132
Base Noun Phrase Detector, 132
BL1, 129
BOM, 78
BT_BUILD, 13
BT_RLP_LOG_LEVEL, 23
BT_ROOT, 6

C
Chinese

language processor, 134
POS tags, 210
user dictionaries, 196

CLA, 133
command-line utility

RLP, 6
COMPOUND, 84
compound noun dictionary

Korean, 202
context

configuration, 19
minimal, 106

properties, 19
CSC, 139
Czech

language processor, 129
POS tags, 211
user dictionaries, 193

D
DETECTED_ENCODING, 84
DETECTED_LANGUAGE, 84
DETECTED_SCRIPT, 85
dictionaries

user, 193
Dutch

language processor, 129
morphological tags, 236
POS tags, 212
special tags, 236
user dictionaries, 193

E
English

language processor, 129
morphological tags, 234
POS tags, 214
special tags, 234
user dictionaries, 193

environment
configuration, 17

error codes, 249
European

language processor, 129
user dictionaries, 193

F
fabl, 123
Farsi (Persian)

language processor, 141
FragmentBoundaryDetector, 143
French

language processor, 129
morphological tags, 235
POS tags, 216
special tags, 235
user dictionaries, 193

G
Gazetteer, 145

examples, 53
options file, 146
source file, 53 , 145

XML, 55
German

language processor, 129
POS tags, 217
user dictionaries, 193

Greek
language processor, 129
POS tags, 219
user dictionaries, 193

H
Hangul dictionary, 202
HTML input, 79
HTML Stripper, 146

language processor, 146
Hungarian

279

language processor, 129
POS tags, 220
special tags, 235
user dictionaries, 193

I
iFilter, 79 , 147

processor, 147
input file size, 81
installation

package contents, 5
ISO639

language codes, 11
Italian

language processor, 129
morphological tags, 235
POS tags, 222
special tags, 236
user dictionaries, 193

J
Japanese

language processor, 148
POS tags, 224
user dictionaries, 199

JLA, 147
jla-options.xml, 148

K
KLA, 151
kla-options.xml, 151
Korean

compound noun dictionary, 202
Hangul dictionary, 202
language processor, 151
POS tags, 225
user dictionaries, 202

L
LANGUAGE_REGION, 85 , 153
language analyzers, 19
Language Boundary, 152
language codes, 11
language processors, 124

Arabic, 127
Base Noun Phrase Detector, 132
Chinese Language Analyzer, 134
Core Library for Unicode, 168
European languages, 129
Farsi (Persian), 141
Gazetteer, 145
HTML Stripper, 146
iFilter, 147

Japanese Language Analyzer, 148
Korean Language Analyzer, 151
Language Boundary Detector, 153
Language Identification, 178
ManyToOneNormalizer, 154
mime_detector, 155
Named Entity Extractor, 156
Named Entity Redactor, 162 , 163
RegExpLP, 164 , 165
REXML, 166
Script Boundary Detector, 184
Stopwords, 185
Tokenizer, 187
Urdu, 188

LEMMA, 85
license file, 5
logging, 21

M
MANY_TO_ONE_NORMALIZED_TOKEN, 85
ManyToOneNormalizer, 153
MAP_OFFSETS, 85
marked-up text, 79
Microsoft Office input, 79
mime_detector, 155

language processor, 155
MIME_TYPE, 86
morphological tags, 233
multilingual text

processing, 73

N
NAMED_ENTITY, 86 , 156
NamedEntityExtractor, 156
Named Entity Extractor, 156
Named Entity Redactor, 160 , 163

language processor, 162
NORMALIZED_TOKEN, 86
normalizing text, 81

P
PART_OF_SPEECH, 86
PDF input, 79
plain text, 77
platforms

OS, CPU, compiler, 13
Polish

language processor, 129
POS tags, 209
user dictionaries, 193

Portuguese
language processor, 129
POS tags, 227

280

special tags, 237
user dictionaries, 193

POS Tags
Chinese, 210
Czech, 211
Dutch, 212
English, 214
French, 216
German, 217
Greek, 219
Hungarian, 220
Italian, 222
Japanese, 224
Korean, 225
Polish, 209
Portuguese, 227
Russian, 229
Spanish, 230

Private Use Area (PUA) characters, 205

Q
query

processing a, 125

R
RAW_TEXT, 87
RCLU, 168
READING, 87
reading dictionary

Chinese, 134
Japanese, 148

redistribution, 105
RegExpLP, 163

language processor, 165
regular expression, 164
regular expressions

creating, 56
syntax, 239

result data
accessing in C++, 89
accessing in Java, 98

result iterator (C++), 92
result type

ALTERNATIVE_LEMMAS, 83
ALTERNATIVE_NORM, 83
ALTERNATIVE_PARTS_OF_SPEECH, 83
ALTERNATIVE_ROOTS, 84
ALTERNATIVE_STEMS, 84
BASE_NOUN_PHRASE, 84
COMPOUND, 84
DETECTED_ENCODING, 84
DETECTED_LANGUAGE, 84
DETECTED_SCRIPT, 85

LANGUAGE_REGION, 85 , 153
LEMMA, 85
MANY_TO_ONE_NORMALIZED_TOKEN, 85
MAP_OFFSETS, 85
MIME_TYPE, 86
NAMED_ENTITY, 86
NORMALIZED_TOKEN, 86
PART_OF_SPEECH, 86
RAW_TEXT, 87
READING, 87
ROOTS, 87
SCRIPT_REGION, 87
SENTENCE_BOUNDARY, 87
STEM, 87
STOPWORD, 88
TEXT_BOUNDARIES, 88
TOKEN, 88
TOKEN_OFFSET, 88
TOKEN_SOURCE_ID, 88
TOKEN_SOURCE_NAME, 89
TOKEN_VARIATIONS, 89

REXML, 165
Rich Text Format input, 79
RLI, 178
RLP command-line utility, 6
ROOTS, 87
Rosette Language Boundary Locator, 73
runtime configuration, 105
Russian

language processor, 129
POS tags, 229
user dictionaries, 193

S
sample applications, 40

C
ar-rlp_sample_alternatives_c, 65
examine_license_c, 67
rlp_sample_c, 59

C#
RLPSample, 69

C++
examine_license, 40
rlbl_sample, 40
rlp_sample, 28 , 40

Java
ExamineLicense, 41
MultiLangRLP, 41
RLPSample, 34 , 41

SCRIPT_REGION, 87 , 184
search terms, 125
SENTENCE_BOUNDARY, 87
SentenceBoundaryDetector, 183

281

Spanish
language processor, 129
morphological tags, 234
POS tags, 230
special tags, 235
user dictionaries, 193

special tags, 233
STEM, 87
stopconfig.dtd, 185 , 192
STOPWORD, 88
Stopwords, 185

configuration, 192
dictionaries, 191
examples, 191

T
TEXT_BOUNDARIES, 88 , 186
Text Boundary, 186
TOKEN, 88
TOKEN_OFFSET, 88
TOKEN_SOURCE_ID, 88
TOKEN_SOURCE_NAME, 89
TOKEN_VARIATIONS, 89
token iterator (C++), 89
Tokenizer, 187

U
Unicode Converter, 187
urbl, 188
Urdu

language processor, 188
user-defined data, 191
user dictionaries, 19 , 193

Chinese, 196
Czech, 193
Dutch, 193
English, 193
European, 193
French, 193
German, 193
Greek, 193
Hungarian, 193
Italian, 193
Japanese, 199
Korean, 202
Polish, 193
Portuguese, 193
Russian, 193
Spanish, 193

UTF-16
Unicode Converter, 188

UTF-16LE/BE text, 78
UTF-32

Unicode Converter, 188
UTF-8

Unicode Converter, 188

X
XML input, 79 , 80

282

	Application Developer's Guide
	Table of Contents
	Preface
	1. In this Guide
	2. Other Documentation
	3. What's New

	Chapter 1. Introduction to the Rosette Linguistics Platform
	1.1. Key Features
	1.2. Architecture Overview
	1.2.1. RLP Language Processors
	1.2.2. RLP Environments and Contexts
	1.2.3. RLP Configuration
	1.2.4. RLP Result Data
	1.2.5. Core of an RLP Application

	Chapter 2. RLP Getting Started
	2.1. Downloading RLP
	2.2. Installing the RLP SDK
	2.3. Installing the RLP Documentation
	2.4. Running the RLP Command-line Utility
	2.4.1. Using the go Script
	2.4.2. What Takes Place When You Run the go Script
	2.4.3. Using the RLP Command-Line Utility to Process Your Own Text
	2.4.3.1. Other Uses

	2.5. Using the Windows Demo
	2.6. Supported Platforms and BT_BUILD Values
	2.6.1. SDK Package File Name
	2.6.2. Documentation Package File Name

	Chapter 3. Creating an RLP Application
	3.1. Overview
	3.2. Defining the Objectives
	3.3. Defining an RLP Environment
	3.4. Defining an RLP Context
	3.4.1. Preparing the Input
	3.4.2. Language Processors
	3.4.3. Language Analyzer User Dictionaries
	3.4.4. Context Properties
	3.4.5. Sample Context Configurations
	3.4.5.1. General Purpose: Language and Encoding Not Known
	3.4.5.2. Unicode Input and Base Linguistic Analysis for One Language
	3.4.5.3. Other

	3.5. Coding the Application
	3.6. Setting Up the RLP Environment
	3.6.1. Setting the Basis Root Directory
	3.6.2. Capturing Log Output
	3.6.2.1. Log Channels and Levels
	3.6.2.2. Capturing Log Output in C++
	3.6.2.3. Capturing Log Output in Java
	3.6.2.4. Alternative

	3.6.3. Initializing the Environment

	3.7. Getting License Information
	3.7.1. C++: BT_RLP_Environment License Methods
	3.7.2. Java: RLPEnvironment License Methods

	3.8. Setting Up the Context
	3.8.1. Instantiating a Context in C++
	3.8.2. Instantiating a Context in Java
	3.8.3. Setting Context Properties

	3.9. Processing Input
	3.9.1. Input Is a File
	3.9.2. Input Is Not a File
	3.9.2.1. Encoding Does Not Match RLP Requirements
	3.9.2.2. Input is UTF-16 with Platform Byte Order

	3.10. Introduction to Our Sample Applications
	3.11. Sample C++ Application
	3.12. Sample Java Application
	3.13. Building and Running the Applications
	3.13.1. Building and Running the Sample C++ Applications
	3.13.1.1. Building the C++ Sample Programs
	3.13.1.2. Running the C++ Samples

	3.13.2. Building and Running the Sample Java Applications
	3.13.2.1. Using the Ant Script
	3.13.2.2. Running the Java Samples from the Command Line

	Chapter 4. Working with Named Entities
	4.1. Introduction
	4.2. Identifying Named Entities
	4.3. Setting Up an RLP Application to Return Named Entities
	4.4. Accessing the Named Entities that RLP has Found
	4.5. The Standard Set of Named Entities
	4.6. Joining Adjacent Named Entities
	4.7. Consistency Returning Named Entities
	4.8. Blacklisting Named Entities
	4.8.1. Creating a Blacklist Dictionary Source File
	4.8.2. Compiling the Blacklist Dictionary
	4.8.3. Where to Put the Blacklist Dictionary
	4.8.4. Updating the Named Entity Redactor Configuration File

	4.9. Extending the Coverage of Named Entities
	4.9.1. Customizing Gazetteer
	4.9.1.1. The Gazetteer Source File
	4.9.1.2. Using Multiple Gazetteer Source Files
	4.9.1.3. Gazetteer Source Files in XML

	4.9.2. Creating Regular Expressions
	4.9.2.1. Character Classes

	Chapter 5. Using the RLP C API
	5.1. Introduction
	5.2. Sample C Application
	5.3. Sample C Application For Handling Arabic Alternative Analyses
	5.4. Sample C Application for Examining the RLP License
	5.5. Building and Running the Sample C Applications
	5.5.1. Building the C Sample Applications
	5.5.2. Running the C Samples

	Chapter 6. Using the .NET API
	6.1. Introduction
	6.2. Sample C# Application
	6.3. Building and Running the Sample C# Application
	6.3.1. Building the Sample C# Application
	6.3.2. Running the Sample C# Application

	Chapter 7. Processing Multilingual Text
	7.1. Strategy for Handling Multilingual Text
	7.2. RLBL
	7.2.1. RLBL Context

	7.3. Processing Language Regions
	7.3.1. Single-Language Context

	7.4. From the Coding Perspective
	7.4.1. Code examples
	7.4.2. C++ Fragment
	7.4.3. Java Fragment

	Chapter 8. Preparing Your Data for Processing
	8.1. Preparing Plain Text
	8.1.1. Plain Text in Any Encoding
	8.1.2. Plain Text in UTF-16LE/BE

	8.2. Preparing Marked-Up or Binary Input
	8.2.1. Using iFilter
	8.2.2. HTML Stripper
	8.2.3. Handling XML Without iFilter

	8.3. Other Considerations
	8.3.1. Normalizing Text
	8.3.2. File Size

	Chapter 9. Accessing RLP Result Data
	9.1. Result Types
	9.2. Handling RLP Results in C++
	9.2.1. Using a Token Iterator
	9.2.2. Using a Result Iterator
	9.2.2.1. Result Data Structures
	9.2.2.2. Null-terminated UTF-16 String
	9.2.2.3. Non-Null-Terminated UTF-16 String and String Length
	9.2.2.4. Null-Terminated String of 8-Bit Characters
	9.2.2.5. Integer
	9.2.2.6. Integer and Vector of UTF-16 Strings
	9.2.2.7. Integer and Vector of ASCII Strings
	9.2.2.8. Integer Pair
	9.2.2.9. Integer Triple
	9.2.2.10. Integer Vector

	9.2.3. Using the Named Entity Iterator
	9.2.4. Getting Results from the Context Object

	9.3. Handling RLP Results in Java
	9.3.1. Using RLPResultAccess
	9.3.1.1. RLP Result Types and RLPResultAccess Methods
	9.3.1.2. RLPResultAccess getListResult() Method
	9.3.1.3. RLPResultAccess getMapResult() Method
	9.3.1.4. RLPResultAccess getIntegerResult() Method
	9.3.1.5. RLPResultAccess getStringResult() Method

	9.3.2. RLPResultRandomAccess
	9.3.2.1. getNamedEntityData

	Chapter 10. RLP Runtime Configuration
	10.1. Redistribution
	10.2. Environment Configuration
	10.3. Reducing Your Processors
	10.3.1. Individual Processor Configuration

	10.4. Testing the Redistribution
	10.5. Minimal Configuration
	10.5.1. Arabic Minimal Configuration
	10.5.1.1. Context Configuration

	10.5.2. Chinese Minimal Configuration
	10.5.2.1. Context Configuration

	10.5.3. European (BL1) Languages Minimal Configuration
	10.5.3.1. Context Configuration

	10.5.4. Japanese Minimal Configuration
	10.5.4.1. Context Configuration

	10.5.5. Korean Minimal Configuration
	10.5.5.1. Context Configuration

	10.5.6. Farsi (Persian) Minimal Configuration
	10.5.6.1. Context Configuration

	10.5.7. Urdu Minimal Configuration
	10.5.7.1. Context Configuration

	10.6. Language Processor Resources
	10.7. Managing RLP Configuration Files
	10.7.1. The Configuration Files
	10.7.2. Editing Configuration Files
	10.7.2.1. Editing the Environment Configuration File
	10.7.2.2. Editing the Language Processor Option Files

	10.7.3. Initializing the RLP Environment
	10.7.4. Note On the Sample Applications

	Chapter 11. RLP Processors
	11.1. Overview
	11.1.1. Text Being Processed

	11.2. Global Context Properties
	11.3. Arabic Script Normalization
	11.4. Processors
	11.4.1. Arabic Base Linguistics
	11.4.2. Base Linguistics Language Analyzer
	11.4.3. Base Noun Phrase Detector
	11.4.4. Chinese Language Analyzer
	11.4.5. Chinese Script Converter
	11.4.6. Farsi (Persian) Base Linguistics
	11.4.7. FragmentBoundaryDetector
	11.4.8. Gazetteer
	11.4.9. HTML Stripper
	11.4.10. iFilter
	11.4.11. Japanese Language Analyzer
	11.4.12. Korean Language Analyzer
	11.4.13. Language Boundary Detector
	11.4.14. ManyToOneNormalizer
	11.4.15. mime_detector
	11.4.16. Named Entity Extractor
	11.4.16.1. Examples of Extracted Named Entities in Different Languages55. For the named entity types that are extracted for various languages, see the Standard Set of Named Entites []. For the definition of named entity types, see Named Entity Type Definitions [].

	11.4.17. Named Entity Redactor
	11.4.18. Regular Expression
	11.4.19. REXML
	11.4.20. Rosette Core Library for Unicode
	11.4.21. Rosette Language Identifier
	11.4.22. Sentence Boundary Detector
	11.4.23. Script Boundary Detector
	11.4.24. Stopwords
	11.4.25. Text Boundary Detector
	11.4.26. Tokenizer
	11.4.27. Unicode Converter
	11.4.28. Urdu Base Linguistics

	Chapter 12. User-Defined Data
	12.1. Customizing Stopwords
	12.1.1. Creating Stopword Dictionaries (Not for Chinese, Korean, or Japanese)
	12.1.2. Configuring Stopwords
	12.1.3. Editing the Stopwords List for Chinese, Korean, or Japanese

	12.2. Creating User Dictionaries
	12.2.1. European Language User Dictionaries
	12.2.1.1. Creating the Source File
	12.2.1.2. Compiling the User Dictionary
	12.2.1.3. Where to Put the Binary Dictionary
	12.2.1.4. Updating the BL1 Configuration File

	12.2.2. Chinese User Dictionaries
	12.2.2.1. Creating the User Dictionary
	12.2.2.2. Compiling the User Dictionary
	12.2.2.3. Non-Compiled User Dictionaries
	12.2.2.4. Where to Put the User Dictionary
	12.2.2.5. Updating the CLA Configuration File

	12.2.3. Japanese User Dictionaries
	12.2.3.1. Creating the Source File
	12.2.3.2. Compiling the User Dictionary
	12.2.3.3. Non-Compiled User Dictionaries
	12.2.3.4. Where to Put the User Dictionary
	12.2.3.5. Updating the JLA Configuration File

	12.2.4. Korean User Dictionary
	12.2.4.1. Editing the Dictionary Source File
	12.2.4.2. Compiling the User Dictionary
	12.2.4.3. Notes on the Name and Location of the User Dictionary

	12.2.5. Entering Non-Standard Characters in a Japanese User Dictionary
	12.2.6. Creating Normalization Dictionaries
	12.2.6.1. Creating the Normalization Dictionary
	12.2.6.2. Compiling the Source File
	12.2.6.3. Where to Put the Normalization Dictionary
	12.2.6.4. Updating the ManyToOneNormalizer Options File

	Appendix A. Part-of-Speech Tags
	A.1. Arabic POS Tags
	A.2. Chinese POS Tags - Simplified and Traditional
	A.3. Czech POS Tags
	A.4. Dutch POS Tags
	A.5. English POS Tags
	A.6. French POS Tags
	A.7. German POS Tags
	A.8. Greek POS Tags
	A.9. Hungarian POS Tags
	A.10. Italian POS Tags
	A.11. Japanese POS Tags
	A.12. Korean POS Tags
	A.13. Polish POS Tags
	A.14. Portuguese POS Tags
	A.15. Russian POS Tags
	A.16. Spanish POS Tags

	Appendix B. Morphological and Special Tags
	B.1. German Morphological Tags
	B.2. German Special Tags
	B.3. English Morphological Tags
	B.4. English Special Tags
	B.5. Spanish Morphological Tags
	B.6. Spanish Special Tags
	B.7. French Morphological Tags
	B.8. French Special Tag
	B.9. Hungarian Special Tags
	B.10. Italian Morphological Tags
	B.11. Italian Special Tags
	B.12. Dutch Morphological Tags
	B.13. Dutch Special Tags
	B.14. Portuguese Special Tags

	Appendix C. Tcl Regular Expression Syntax
	C.1. Name
	C.2. Description
	C.3. Different Flavors of REs
	C.4. Regular Expression Syntax
	C.5. Bracket Expressions
	C.6. Escapes
	C.7. Metasyntax
	C.8. Matching
	C.9. Limits and Compatibility
	C.10. Basic Regular Expressions
	C.11. Tcl License

	Appendix D. Error Codes
	Appendix E. Guidelines for Reporting Bugs
	E.1. Background Information
	E.1.1. Platform
	E.1.2. Version

	E.2. Reproducing the Bug with the rlp Command-line Utility
	E.3. Reproducing in a Sample Application

	Appendix F. The Rosette Demo
	F.1. Launching the GUI Demo
	F.2. What the Demo Does
	F.3. How to Run the RLP Demo
	F.3.1. Input the text to be analyzed
	F.3.2. Edit or load the text
	F.3.3. Specify the language (optional)
	F.3.4. Apply a Demo Process
	F.3.5. View the analysis results
	F.3.6. Save the analysis results (optional)

	F.4. Layout of the Demo Display
	F.5. Using the List View
	F.5.1. Column order, size, sorting
	F.5.2. Font Selection

	F.6. Using the Text Window
	F.7. Customizing and Saving Display Settings
	F.7.1. Saving and Loading Settings
	F.7.2. Customizing the Legend

	F.8. The Named Entities Editor
	F.8.1. Files the Named Entities Editor Modifies
	F.8.2. Opening the Named Entitities Editor
	F.8.3. Adding Named Entities with Gazetteers
	F.8.4. Gazetteer Options
	F.8.5. Adding Named Entities with Regular Expressions
	F.8.6. Adding New Named Entity Types
	F.8.7. Deleting a User-Defined Named Entity Type

	F.9. Troubleshooting: the RLP Log
	F.10. Process Context Files

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	Y
	Z

	Index

