
The Arboreal Docspecs System
Version 1.1

Malcolm D. Hyman

July 8, 2003

1 Introduction

This manual describes the docspecs system, as implemented in Arboreal 4.0.

The docspecs system allows Arboreal to be extended to support new XML document types.
A special XML file, called a docspecs file, contains information about XML document types.
This information specifies how Arboreal handles containers, word tagging, metadata ex-
traction, and tag rendering. Arboreal comes with a built-in docspecs file, which provides
support for the Archimedes, CDLI, termlist, and Rome (the Arboreal outline format) doc-
uments. Minimal support is also provided for XHTML. The built-in docspecs can be ac-
cessed from within Arboreal via the “magic” URL:

arboreal:skeletons/docspecs.xml

Arboreal will also read a docspecs file that is supplied by the user. This file must be called
docspecs.xml and placed in the user’s arboreal directory.1 Information about all new
document types should be put into this single file. Document types defined in the user-
supplied docspecs will override those in the default docspecs.

1The arboreal directory is located in the user’s home directory and will be created automatically by
Arboreal if it does not already exist. On single-user versions of Windows, C: \WINDOWSis considered the
home directory. The arboreal directory may be renamed .arboreal , if the user desires.

1

2 Gross Structure of a Docspecs File

The root element of the docspecs file is <docspecs> . Any number of <doctype> ele-
ments may appear as children of <docspecs> . Each defines a single document type. The
<doctype> element must have either a nameattribute or both a nameand an ns attribute.
The values of these attributes allow Arboreal to select the appropriate doctype for a par-
ticular document when it is loaded. The name attribute is used to match the document’s
XML doctype, and the ns attribute is used to match a namespace URI. If the ns attribute is
not given, then the namespace is not tested. If name is set to the null string, then any doc-
ument whose default namespace is the same as the value of the ns attribute is matched.
If name is set to the null string and ns is not defined, then any document is matched. If
a document matches a doctype with a non-null name, then Arboreal uses that doctype.
Null-named doctypes serve as defaults. The default docspecs file for Arboreal defines the
default doctype as the Archimedes doctype.

Example 1: <doctype name="foo"> matches any document with the doctype foo.

Example 2: <doctype name="" ns="http://foo.bar.edu/1"> will match any doc-
ument in the specified namespace.

Example 3: <doctype name=""> matches any document not matched by a more specific
doctype.

If the doctype is not specified at the start of an XML document, then Arboreal tests the
name of the root element against <name> instead.

The <doctype> element contains the following children:

• <containers>

• <subcontainers>

• <word-separators>

• <grapheme-separators>

• <langspec>

• <metadata>

• <page-image>

• <defs>

2

• <tree-view>

• <content-view>

All these elements are required, and they must appear in order given above. Each element
is dealt with in a subsequent section of this document.

3 <containers>

The <containers> section is used to define all the elements in the target doctype that
should be considered as containers. All the text nodes under a container will form a single
amalgamation in Arboreal. A container is restricted to a single language; the subcontainer
mechanism allows for language embedding.

Under <containers> , any number of <element> nodes are allowed. An <element>
node is empty and has the single required attribute name.

Example 1: To define the element <s> as a container, use:

<containers><element name="s"/></containers>

4 <subcontainers>

Subcontainers allow text in a different language to be embedded within a container. The
<subcontainers> element has the same content model as <containers> . In the Archi-
medes doctype, <foreign> is defined as a subcontainer.

5 <word-separators>

If one or more tags are used to mark words in the target doctype, these tags should be
enumerated under <word-separators> . If words are delimited by orthographic means
such as whitespace, then this section should be left empty. The <word-separators>
element has the same content model as <containers> . In the CDLI doctype, <w> is
defined as a word-separator.

3

6 <grapheme-separators>

If one or more tags are used in the target doctype to enclose arbitrary content that is treated
as a single character, the tags should be enumerated under <grapheme-separators> .
The <grapheme-separators> element has the same content model as <containers> .
In the CDLI doctype, <g> is defined as a grapheme-separator.

7 <langspec>

The <langspec> element provides Arboreal with the information needed to determine
the language of the amalgamated text within a container or subcontainer. This element has
a single child, <attribute> ; the name attribute of <attribute> defines the attribute
used to encode language in the target doctype. Values for the specified attribute must be
ISO 639 language codes. A node in the target document inherits the language property of
its parent node, unless the language attribute is present. If the language of the root element
of the target document is not specified by a language attribute, the language of the root
element is considered to be the default document language specified under <metadata>
(q. v.). Many XML documents will use the standard lang attribute in the xml namespace
for this purpose. If attributes are not used to encode language in the target doctype, supply
the null string as the value of name.

Example 1: To define the standard XML language attribute, use:

<langspec><attribute name="xml:lang"/></langspec>

8 <metadata>

The <metadata> element has an info attribute, which defines the name of an element
that contains metadata for the target document. Text within the specified element is not
considered to be in the default language of the target document, but rather in the default
language specified in the Arboreal properties.xml file. If a doctype lacks a metadata
section, the value of the name attribute should be the null string.

The <metadata> element contains four required children, which must appear in the spec-
ified order:

• <author>

4

• <title>

• <locator>

• <language>

The contents of these elements are XPath queries that return the specified document meta-
data properties. If a metadata item is not defined for the target doctype, the corresponding
element may be left empty. If queries are not defined for the metadata properties, they
assume the following default values:

author null
title the filename of the document
locator the filename of the document
language the default language specified in properties.xml

Example 1: Here is the <metadata> specification for the Archimedes doctype:

<metadata name="info">
<author>/archimedes/info/author/text()</author>
<title>/archimedes/info/title/text()</title>
<locator>/archimedes/info/locator/text()</locator>
<language>/archimedes/info/lang/text()</language>
</metadata>

9 <page-image>

Under <page-image> , an element may be defined which links to the page images dis-
played when Show page image is selected from the context menu in Arboreal. The <page-
image> element has the same content model as <containers> . In the Archimedes doc-
type, <pb> is defined as the page-image element.

10 <defs>

The <defs> section permits pseudoelements to be defined. The pseudoelement facility
allows an element with name x and attribute/value pair a = b to be considered as if it

5

were an element y. The <defs> section may contain any number of <pseudoelement>
definitions. The syntax of a <pseudoelement> definition is:

<pseudoelement name=" y">
<element name=" x"/>
<attr-value name=" a" value=" b"/>
</pseudoelement>

Pseudoelements are very useful in defining rendering rules for the <content-view> and
<tree-view> sections.

11 <content-view>

The <content-view> section allows rules to be defined for the rendering of elements in
Arboreal’s “rendered content” mode (i.e., when “Content XML view” is toggled off).2 The
rule language provides some of the functionality of CSS and XSLT. Rules allow for text to
be rendered before and after the content of an element, for text content to be filtered, and
for text context to be rendered in a particular style. Several types of conditions may be
specified for the execution of any of these actions.

The <content-view> section may contain any number of rules. The ordering of rules is
generally significant.

11.1 <self> and <parent>

The top-level element of a rule specifies the axis along which the primary tests for an
action will be applied. Two axes are available: the self axis and the parent axis, specified
respectively by the <self> and <parent> elements. The content model of these elements
is indicated below. All children are optional and may occur only once, unless otherwise
specified. Elements must occur in the order indicated:

• <element> (required)

• <if> (only available for <self> ; may occur any number of times)

• <ignore-before>

2In an earlier version of the docspecs format, this section was named <tags-off> .

6

• <ignore-after>

• <ignore-in-parent>

• <render-before>

• <render-after>

• <apply-filter>

• <style>

• <style-extra>

The <element> tag tests the node on either the self or parent axis. Actions are only per-
formed for the specified element or pseudoelement. Additional tests may be specified
with <ignore-before> , <ignore-after> , and <ignore-in-parent> . Actions may
be specified with <render-before> , <render-after> , <apply-filter> , <style> ,
and <style-extra> . The <if> element, which may only occur under <self> , and
which may be repeated any number of times, allows for another method of specifying
conditional actions.

11.2 Actions

11.2.1 <render-before> and <render-after>

These elements contain text that is rendered before and after the contents of an element
in the target document. If we have <x>bar</x> in the target document, and the doctype
contains the rule

<self>
<element name="x"/>
<render-before>foo</render-before>
</self>

Arboreal will display foobar in the “rendered content” mode.

In addition to text content, two elements are permitted within <render-before> and
<render-after> . The empty <nl> element is a convenient way of rendering a newline
(line break). The <attribute> element allows for the value of a named attribute to be
rendered.

7

Example 1: The following rule renders a line break and the value of the n attribute, fol-
lowed by a period and space, before the contents of an <l n=" x"> element in the target
document:

<self>
<element name="l"/>
<render-before><nl/><attribute name="n"/>. </render-before>
</self>

11.2.2 <apply-filter>

The <apply-filter> action allows all the text content beneath an element to be run
through a filter. The filter is specified in Perl5 substitute syntax as the value of the rule
attribute.

Example 1: The following rule uppercases every word in the text content beneath an <s>
element in the target document:

<self>
<element name="s"/>
<apply-filter rule="s/(\w+)/ \u$1/g"/>
</self>

11.2.3 <style> and <style-extra>

The <style> and <style-extra> actions allow text to be rendered in a particular style.
<style> applies to the text content beneath an element, while <style-extra> applies
to the text rendered by <render-before> and <render-after> , as well as any text
rendered as the result of <if> conditions.

<style> and <style-extra> have the same content model. They allow any of the fol-
lowing children, in any order:

• <alignment>

• <bold>

• <foreground>

8

• <italic>

• <left-indent>

• <right-indent>

• <subscript>

• <superscript>

• <underline>

All these are empty elements. The attributes for each are detailed in the following table:

<alignment> value : left , right , centered , or justified
<bold> no attributes
<foreground> value : # + xxxxxx (a 6-digit hexadecimal number)
<italic> no attributes
<left-indent> value : indent in points
<right-indent> value : indent in points
<subscript> no attributes
<superscript> no attributes
<underline> no attributes

Example 1: This rule will display the contents of <i> in italics:

<self>
<element name="i"/>
<style><italic/></style>
</self>

Example 2: This rule will indent text within <blockquote> on both sides:

<self>
<element name="blockquote"/>
<style>
<left-indent value="144"/>
<right-indent value="144"/>
</style>
</self>

9

11.3 Conditions

11.3.1 <ignore-before> and <ignore-after>

With these elements, it is possible to specify conditional rendering rules. Any number
of <element> nodes are allowed as children. A dist attribute determines whether the
immediately preceding or following element is tested (dist="1"), or the element to the
left or right of the predecessor or successor (dist="2"). The value either tests both
contexts. The default value for dist is 1.

Example 1: This rule renders a hyphen before each <g> tag, except when a <w> tag appears
immediately to the left:

<self>
<element name="g"/>
<ignore-after><element name="w"/></ignore-after>
<render-before> -</render-before>
</self>

11.3.2 <ignore-in-parent>

This element tests the parent of the context node. It has the same content model as the
other ignore conditions. There are no attributes.

11.4 Testing Attribute Values with <if>

Further conditional rendering rules can be written with the <if> syntax. It is possible
to test multiple attribute values and to render prefix and suffix strings. These strings are
nested within the text generated by <render-before> and <render-after> . <if>
conditions may only occur beneath <self> , and any number of occurrences are allowed.
Each <if> has exactly two children: an <attr-value> node and either a <prefix> or
a <suffix> sub-action node. The content of <prefix> or <suffix> is the text to be
rendered.

Example 1: This rule renders the contents of the <sic> tag in square brackets. If the
exclam attribute has the value "yes" , an exclamation mark is rendered before the right
bracket.

10

<self>
<element name="sic"/>
<if>
<attr-value name="exclam" value="yes"/>
<suffix> !</suffix>
</if>
<render-before> [</render-before>
<render-after>]</render-after>
</self>

12 <tree-view>

The <tree-view> section allows rules to be defined for the rendering of elements in
Arboreal’s “rendered tree” mode (i.e., when “Tree XML view” is toggled off). Rules are of
the same sort as those in <content-view> .

Optionally, a <default-node> element may appear first within the <tree-view> sec-
tion. This element specifies the default rendering format for a node in the tree; it is only
used if it is not overridden by a more explicit rule. The content of <default-node> may
include any combination of:

• character data

• the <node-name> element (which will be replaced with the name of the current
node)

• the <attribute> element (which allows for substituting in an attribute value; e.g.
<attribute name="type"> will print the value of the type attribute)

The remainder of the <tree-view> section consists of <self> and <parent> rules, as
described above for <content-view> . Note, however, that the tree may not contain
styled text (thus any <style> and <style-extra> actions are simply ignored).

11

