metadata: dcterms:identifier ECHO:SH99QARK.xml dcterms:creator (GND:122095553) Waring, Edward dcterms:title (la) Meditationes analyticae dcterms:date 1785 dcterms:language lat text (la) free http://echo.mpiwg-berlin.mpg.de/ECHOdocuView?mode=imagepath&url=/mpiwg/online/permanent/library/SH99QARK/pageimg&viewMode=images log: pbsync ok, enthält math replacements: parameters: [0001] [0002] [0003] [0004] [0005] [0006] [0007] MEDITATIONES ANALYTICÆ, A B EDVARDO WARING, REGIÆ SOCIETATIS ET ACADEMIÆ BONONIENSIS INSTITUTI SOCIO, ET MATHESEOS APUD CANTAB. PROFESSORE LUCASIANO. PRIMA EDITIO IMPRIMEBATUR ANNIS 1773, 4 & 5: SECUNDA CUM NONNULLIS ADDITIONIBUS ANNIS 1783, 4 & 5, ET EDITA JUN. 4, 1785. CANTABRIGIÆ, TYPIS ACADEMICIS EXCUDEBAT J. ARCHDEACON; Veneunt apud J. NICHOLSON, Cantabrigiæ J. RIVINGTON & Filios, Londiai; et J. & J. FLETCHER, et D. PRINCE & Co. Oxon. MDCCLXXXV. [0008] [0009] TO SIR JOSEPH BANKS, BART. PRESIDENT OF THE Royal SOCIETY;

Who by his Voyages has greatly contributed to the Increa$e of botanical and natural Knowledge; and on all Occa$ions has proved him$elf a zealous Patron and active Promoter of every Science.

TO THE REV. NEVIL MASKELYNE, D.D.F.R.S. AND ASTRONOMER ROYAL;

Di$tingui$hed for his Knowledge in Optics and phy$ical A$tronomy; who after proving by his Ob$ervations in two Voyages the Certainty of the lunar Method in finding the Lon- gitude at Sea, recommended it to the Board of Longitude; and $trenuou$ly affi$ted them in bringing it into Practice.

AND TO JOHN WILSON, Esq. F.R.S. AND KING'S COUNCIL IN THE LAW;

Who was in early Life my Defender, and during a Period of twenty-five Years has been my Friend and Coun$ellor; from whom in mathematical Enquiries I have received greater Affi$tance than from any other Per$on, and than whom I know no one po$$e$$ed of more Knowledge or Acutene$s in the$e Studies.

THE FOLLOWING WORK IS WITH THE GREATEST ESTEEM INSCRIBED. BY THEIR VERY HUMBLE SERVANT. E. WARING. [0010] [0011] PRÆFATIO

CUM langue$cere jam apud no$trates videantur $tudia mathema- tica, & juventutem academicam ab ii$dem dehortari non ce$$ent plerique, mirum $ane erit me tempus & pecuniam in con$cribendis operibus mathematicis & imprimendis impendere, nec labori illau- dato parcere; argumenta quibus me tuear $ollicite non quæro, hoc con$olans, me officii causâ hæc $crip$i$$e. Munus quod nactus e$$em profe$$orium erat ornandum, & in$tituti ratio po$tulabat, ut mathe- $eos fines pro virili latius proferrem, eju$que partes, quantum in me e$$et, defenderem: rem interea lectori mathematico non ingratam me facturum e$$e arbitror; $i hìc præfationis loco, di$qui$itionum, quæ in hoc libro contineantur, brevem $ubnectam hi$toriam ortûs & pro- gre$sûs.

Parabolæ quadraturam & approximationes ad areas curvarum per polygona curvis in$cripta & circum$cripta invenerunt antiqui, $ed notatione algebraicâ egentes haud multa præclara in hâc mathema- tum parte efficere potuerunt.

_Archimedes_ invenit limites inter quæcunque parallelogramma in- $cripta & circum$cripta curvis, etiamque inter in$criptos & circum- $criptos cylindros $olidis a rotatione curvarum circa axes $uos gene- ratis: rationes horum limitum a _Walli$io_ & _Neutono_ dicuntur ultimæ rationes.

_Keplerus_ fingit curvam ex infinitis punctis con$i$tere, & ejus ordi- natam maximam vel minimam evadere, cum per gradus in$en$ibiles varietur; _Cavallerius_ lineas in indivi$ibiles partes divi$it; & exinde deduxit aream curvæ, cujus æquatio e$t y = a x^n, ubi n e$t integer numerus.

_Carte$ius_ invenit methodum ducendi tangentes ad curvas, circulis ductis, qui curvam tangerent.

_Huddenius_ dedit regulam, ex quâ dici po$$it, utrum duæ radices datæ æquationis $int inter $e æquales, necne; & exinde deduxit me- thodum de maximis & minimis inve$tigandis rationalium quantita- tum algebraicarum.

[0012]PRÆFATIO.

_Walli$ius, Fermatius, Barrovius, Slu$ius,_ aliique invenere proportio- nalia incrementa ab$ci$$æ & ordinatæ ex principiis quæ nunc u$itata $unt in methodo incrementorum vel fluxionum; hæc vero principia ad irrationales quantitates nunquam ab iis applicata fuere, $emper enim ita reducebant æquationem, ut in eâ nulli irrationales termini contineantur: _Walli$ius_ ex interpolatione invenit aream curvæ, cujus æquatio $it y = a x^{n / m}, animadvertit etiam rectangulum ex ordinatâ in fluxionem ab$ci$$æ fluxioni areæ curvæ e$$e æquale.

Inter _Joannem Bernoulli, Keilium, Leibnitzium & Neutonum_ agitata fuit quæ$tio, utrum _Neutonus_ an _Leibnitzius_ primus invenerit fluxio- nem, vel, quod idem e$t, incrementum irrationalis quantitatis ab$que ejus irrationalitatis exterminatione. _Neutonus_ in epi$tolâ ad _Collin-_ _$ium_ datâ Dec. 10, 1672, primum quod $cio, profitetur $e huju$ce pro- blematis $olutionem cognovi$$e; in epi$tolâ ad _Oldenburgum_ cum _Leib-_ _nitzio_ communicandâ idem profitetur, $ed haud con$tat illum ejus me- thodum alicui communica$$e. Ex epi$tolis _Leibnitzii_ dilucide con$tat illum ejus $olutionem prædictis temporibus haud detexi$$e; in epi$tolâ ad _Oldenburgum_ 21 Junii, 1677, $olutionem prædicti problematis pri- mum dedit _Leibnitzius._ Ex his manife$to con$tat _Neutonum_ primum detexi$$e methodum inveniendi fluxionem irrationalis quantitatis; confitendum e$t tamen nullum te$timonium extare, ex quo credibile $it _Leibnitzium_ eandem proprio marte haud detexi$$e; nec aliquid in hoc mirabile videtur; res quidem in eo erant, ut ulterior vix ullus in hâc mathe$eos parte daretur progre$$us $ine huju$ce problematis re$o- lutione; nec fuit inve$tigatio difficilis, quæ huju$modi e$t: $it irratio- nalis quantitas, cujus incrementum requiratur, (a + b x + c x^2 + &c.)^m; $cribatur v pro a + b x + c x^2 + &c., & re$ultat (a + b x + c x^2 + &c.)^m = v^m; $ed incrementum quantitatis v^m prius inventum fuit m v^m-1 ductum in incrementum quantitatis v, at v = a + b x + c x^2 + &c. cujus incrementum prius datum fuit b + 2 c x + &c. in incrementum quantitatis x; in quantitate m v^m-1 × incre. quantitatis v pro v & ejus incremento $cribantur eorundem prædicti valores, & confit problema: nemo pote$t e$$e te$tis in $uas partes, is mihi $em- [0013]PRÆFATIO. per dicendus e$t inventor, qui primus evulgaverit, vel $altem cum amicis communicaverit; vix enim inveniatur aliquis dignus mathe- matici nomine, qui de $uo ingenio multa a prioribus $criptoribus reperta ip$e haud detexerit.

Fluxiones $ecundi, &c. ordinis ex primis per eundem modum ac primas ex earum fluentibus inveniri po$$e docuere _Neutonus,_ alii- que; ille primus dedit fluentem fluxionis (a + b x^n)^m x^θ-1 x^.: deinde _Cragius_ animadvertendo eandem irrationalitatem in fluente & flu- xione contentam e$$e, ex a$$umptis generalibus terminis pro coeffi- cientibus invenit fluentem fluxionis (a + b x^n + c x^2n + &c.)^m x^θ-1 x^.: fluxicnem ad alteram formulam reducendam e$$e, $i modo plures ejus factores $int inter $e æquales primus ob$ervabat _foannes Ber-_ _noulli_; deinde _Neutonus_ inve$tigavit fluentem fluxionis (a + b x^n + c x^2n + &c.)^l × (e + f x^n + g x^2n + &c.)^m x^θ x^.; & animadvertit, $i plures factores datæ fluxionis habeant inter $e communem divi$orem, redu- cendam e$$e datam fluxionem ad diver$am formulam; quod$i ordi- nata $it fractio rationalis irreducibilis cum denominatore ex duobus vel pluribus terminis compo$ito, re$olvendum e$$e denominatorem ad diver$os $uos omnes primos; & $i divi$or $it aliquis, cui nullus alius e$t æqualis, tum fluentem exprimi nequire: in hoc libro ob$ervatur, $i P $it algebraica functio quantitatis x, dimen$iones quantitatis x in P majores e$$e per unitatem quam dimen$iones eju$dem quantitatis in π, ubi P = π x^.; ni dimen$iones quantitatis x in P nihilo $int æquales, in quo ca$u dimen$iones quantitatis x in P majores erunt quam dimen$iones quantitatis x in π per quantitatem majorem quam unitatem; hinc facile $equitur, $i dimen$iones quantitatis x in numeratore π fluxionis {π / ρ} x^. $int minores per unitatem quam ejus di- men$iones in denominatore, fluentem fluxionis {π / ρ} x^. in finitis termi- nis non exprimi po$$e. _Neutonus_ dicit omnem ordinatam duobus modis in $eriem re$olvi po$$e, nam index vel affirmativus e$$e pote$t vel negativus, & tentandus e$t uterque ca$us, & $i $erierum alterutra tandem abrumpitur, habebitur area curvæ in finitis terminis; hìc [0014]PRÆFATIO. animadvertitur, quod, $i una $eries abrumpatur, rebus recte di$po$itis abrumpetur altera; etiamque docetur methodus inveniendi fluentes fluxionum huju$ce formulæ (a + b x^n + &c. + (e + f x^n + &c.)^m)^r × x^θ × (A + B x^n + &c. + (e + f x^n + &c.)^m-1 × (g + &c.)) x^. ex prin- cipiis, iis a _Cragio_ traditis haud multum di$$imilibus; & ob$ervatur, $i fluxio quantitatis a + b x^n + &c. per (e + f x^n + &c.)^m divi$a æqua- lis $it fluxioni quantitatis (e + f x^n + &c.)^m per a + b x^n + &c. di- vi$æ, pro fluente a$$umendam e$$e (a + b x^n + &c. + (e + f x^n + &c.)^m)^n × &c. &c., & non (a + b x^n + &c. + (e + f x^n + &c.)^m)^r+1 × &c.; a$$eritur etiam in fluentibus detegendis ea$dem radices omnis irrationalis quantitatis u$urpandas e$$e; & e $ub$titutione datur me- thodus inve$tigandi plures fluentes eju$dem fluxionis inter diver$os variabilis valores contentas, quæ inter $e $unt æquales.

_Cragius_ primum fluentes quarundam fluxionum fluentes involven- tium methodum inveniendi docuit; nempe fluentem fluxionis P^. $. π x^. e$$e P $. π x^. - $. P π x^.; eandem perfecit _foannes Bernoulli_ per $e- riem $. n z^. = n z - {z^2 n^. / 2z^.} + {z^3 n^.. / 2 · 3 z^. ^2} - {z^4 n^... / 2 · 3 · 4z^. ^3} + &c. ex hâc $erie eruit $. {t^. / 1 + t^2} = t - {1 / 3}t^3 + {1 / 5}t^5 - &c. = {t / 1(1 + t^2)} + {1 · 2 t^3 / 1 · 3 (1 + t^2)^2} +{1 · 2 · 4t^5 / 1 · 3 · 5 (1 + t^2)^3} + &c. & $ic $. {x^. / √(1 - x^2)} = {x^. / 1(1 - x^2)^{1 / 2}} - {1 / 3}{x^3 /(1 - x^2)^{3 / 2}}+ {1 / 5}{x^5 /(1 - x^2){^}5/2} - &c. unde $. {x^. / √ (1 - x^2)} $. {x^. / √ (1 - x^2)} = $. {x x^. / 1 - x^2} -{1 / 3} $. {x^3 x^. / (1 - x^2)^2} + {1 / 5}$. {x^5 x^. / (1 - x^2)^3} - &c. po$tea vero _Neutonus_ tradidit fluentem fluxionis x^. $. x^. $. x^. $. x^. .. $. x^. $. x^. $. y x^., quæ facile e prædictis methodis acquiri pote$t. _Eulerus_ dedit fluentem fluxionis $. x^α x^. $. x^β x^. $. x^γ x^. .. $. {x^. / 1 - x} &c.; in hoc libro continentur nonnulla huju$ce generis exempla. Deduxit _Neutonus_ ex fluentibus (l - 1) datarum fluxionum huju$ce formulæ x^θ±rn-1 x^. (e + f x^n + g x^2n + &c.)^λ±s-1, ubi θ, λ, e, f, g, &c. maneant $emper eædem invariabiles quantitates, r vero & s $int quicunque integri numeri, & e + f x^n + g x^2n + &c. [0015]PRÆFATIO. quantitates (l) nominum, fluentem cuju$cunque fluxionis prædictæ formulæ; $ed hìc ob$ervatur quo$dam ca$us, in quibus λ vel θ $it integer numerus, excipiendos e$$e; etiámque $i modo $it exponentialis quan- titas e^(a+bx^n +cx^2n +&c.)^m (a + b x^n + c x^2n + &c.)^m±r x^θ±πn x^., ubi v & π $int integri numeri & a + b x^n + c x^2n + &c. $it quantitas l nominum, tum e fluentibus l - 1 fluxionum independentium prædictæ formulæ, quæ habent l - 1 diver$os valores quantitatis v erui po$$e fluentes omnium fluxionum eju$dem formulæ: & con$imiles propo$itiones de fluentibus huju$ce generis, quæ in diver$as irrationales quantitate<_>s ducuntur; de fluentialibus fluxionibus; de fluentibus fluxionum hu- ju$ce formulæ (a + b x^n + c x^2n + &c.)^λ±π × x^θ±αn±βm x^. vel (a + b x^n + c x^2n + &c.)^λ±π × x^θ±αn x^. $. (e + f x^n + &c.) ^±ρx^θ′ ±βn x^., ubi π, ρ, α & β $unt integri numeri; in hoc libro traduntur.

In datâ algebraicâ æquatione relationem inter ab$ci$$am & ejus corre$pondentes ordinatas de$ignante pro y $ub$titutit v^s _Neutonus_; & ex hâc $ub$titutione in quibu$dam ca$ibus re$ultant æquationes ad areas, quarum fluxiones arearum per functionem algebraicam v in v denotantur; quod quidem evenit, cum æquatio inter ab$ci$$am x & ejus corre$pondentes ordinatas y $it y^m + a x^n y^r = b x^s. In Actis Phi- lo$oph. Lond. 1764. a me primum docetur v^n + (a + b x + c x^2)v^n-1 + (a′ + b′x .. x^4)v^n-2 + &c. = 0 e$$e æquationem ad aream (v) curvæ, cujus æquatio relationem inter ab$ci$$am & ejus corre$pon- dentes ordinatas $it y^n + (α + β x) y^n-3 + &c. = 0, $i modo ea in finitis terminis exprimi po$$it.

_Jacobus Bernoulli_ invenit fluentem fluxionalis æquationis y^. + P y x^. = X x^., ubi P & X $unt fuctiones quantitatis x.

_Eulerus_ idem principium ad fluxionales æquationes $uperiorum ordinum applicavit, nempe invenit fluentem & ejus (n) multiplica- tores æquationis y^. ^n + a y^. ^n-1 x^. + b y^. ^n-2 x^. ^2 + c y^. ^n-3 x^. ^3 ... + A y x^. ^n = 0, & _D'Alembert_ detexit fluentem fluxionalis æquationis y^. ^n + a y^. ^n-1 x^. + b y^. ^n-1 x^. ^2 ... A y x^. ^n = X x^. ^n; in hoc libro traditur methodus inveniendi, annon fluxionalis æquatio reddi pote$t integrabilis ex ejus multiplicatione in functionem quantitatum x & x^..

_Joannes Bernoulli_ primum invenit fluxionem exponentialis quanti- [0016]PRÆFATIO. tatis x^x; dedit regulam pro inveniendo fractionis {P / Q} valore, cum ejus numerator & denominator $imul evane$cant, erit enim {P^. / Q^.} vel {P^.. / Q^..}, &c.; quæ regula in quibu$dam ca$ibus fallit; in hoc libro tra- ditur regula pro inveniendo prædicto valore, quæ vix aut ne vix unquam fallit; nempe evane$cant & numerator & denomi- nator cum x = a, pro x $cribatur a + v, & reducantur & nume- rator & denominator ad $eriem $ecundum dimen$iones quanti- tatis v progredientem, & facile con$tabit valor fractionis: eadem principia etiam ad inveniendas differentias, &c. inter quantitates, quæ evadunt infinitæ magnæ, hìc applicantur: invenit etiam curvam, quæ n - 1 habet quadrabiles areas; e. g. $it y = z + (a x^n + b x^n-1 + c x^n-2 + &c.)^{r / 1} relationem inter ab$ci$$am x & ejus corre$pondentes ordinatas y exprimens, ubi {r / s} $it fractio ad minimos terminos reducta, & z x^. fluxio, cujus fluens inveniri pote$t; & radices vero α, β, γ, δ, &c. æquationis a x^n + b x^n-1 + &c. = 0 $int po$$ibiles, tum inveniri po$- $unt n - 1 quadrabiles areæ curvæ prædictæ inter valores α & β, β & γ, γ & δ, &c. contentæ: inve$tigavit etiam fluentem fluxionis x^x x^. inter valores 0 & 1 quantitatis x contentam = 1 - {1 / 2^2} + {1 / 3^3} - {1 / 4^4} + &c. docuit methodum detegendi areas curvarum, quarum relationes inter ab$ci$$as & earum corre$pondentes ordinatas per homogeneam vel algebraicam vel fluxionalem æquationem primi ordinis exprimuntur: reduxit fluxionalem æquationem y^m y^.. = x^n y^. ^2-p x^. ^p ad fluxionalem æqua- tionem primi ordinis: invenit etiam curvam omnia puncta contrariæ flexuræ ad fluxionalem æquationem de$ignantem in quibu$dam ca$i- bus e$$e algebraicam.

_Cote$ius_ invenit radices æquationis x^n = 1 = 0, ex quibus detexit fluentem fluxionis {x^{λ / μ}n-1 x^./x^2n ± a x^n + 1}.

[0017]PRÆFATIO.

_Manfredi_ dedit fluentem fluxionalis æquationis primi ordinis, primi vero gradus.

_Riccati_ dedit ca$us, in quibus fluens fluxionis y^. + a y^2 x^. = X x^. in- note$cit.

_Brook Taylor_ transformavit datam fluxionalem æquationem, in quâ x fluit uniformitur, in alteram, in quâ y fluit uniformiter.

_Mac Laurinus_ invenit qua$dam fluxiones, quarum fluentes inveniri po$$unt ope ellipticorum & hyperbolicorum arcuum, de quâ re po$tea $crip$ere _Eulerus, Le Grange_, & alii; at minus utiles $unt hæ inve$ti- gationes, quoniam nullæ dantur tabellæ, quæ exhibeant prædictos arcus.

_Comes Fagnanus_ tradidit fluentes quarundam fluxionalium æquatio- num primi ordinis, in quibus $imiliter involvuntur variabiles x & y, & exinde detexit ellipticos arcus, quorum differentia e$t finita quan- titas, hujus generis plures adjecit _Eulerus._

_Clairaut_ invenit fluxionem p x^. + q y^. fluentem recipere, $i modo ({p^. / x^.}) = ({q^. / x^.}); _Fontaine_ idem perfecit pro fluxionibus p x^. + p y^. + r z^., & invenit A ({B^. / x^.}) - B ({A^. / x^.}) + ({A^. / z^.}) - ({B^. / y^.}) = 0, cum æqua- tio fluxionalis x^. + A y^. + B z^. = 0 $it integrabilis; eadem principia diver$is modis ad fluxionales æquationes primi ordinis applicavere _D' Alembert & Eulerus_; con$imilia principia a _Marchione Condorcet_ & in hoc libro extenduntur ad fluxionales quantitates & æquationes plures variabiles quantitates involventes & majores ordines habentes.

_Eulerus_ invenit fluentes fluxionum (a + b x^n)^m ± r x^pn±vn-1 x^. inter valores o vel infinitum & - {a / b} quantitatis x^n, ubi r & v $unt integri numeri, ex fluente fluxionis (a + b x^n)^m x^pn-1 x^. inter eo$dem valores variabilis x contentâ, quod quidem e prædictâ _Neutoni_ regulâ erui pote$t, nam pro x in fluente per prædictam _Neutoni_ regulam deductâ $cribantur prædicti valores, & quantitatum re$ultantium differentia erit fluens quæ$ita: hinc, cum generalis fluens acquiri po$$it, non [0018]PRÆFATIO. difficile erit fluentem prædictam detegere; ex $ub$titutione enim $e- quitur: inve$tigatio fluentis inter o vel infin. & {a / b} non magis utilis e$t quam inter quo$cunque duos alios variabilis x valores; in non- nullis ca$ibus con$tat ejus magis facilis re$olutio; e. g. _Eulerus_ inve- nit fluentem fluxionis {z^m-1 z^. / 1 + z^n}, inter valores o & infinitum quantitatis z = {π / n × $in. {n / m} π}, ubi π denotat {1 / 2} peripheriam circuli, cujus radius e$t 1, unde facile deduci pote$t fluens fluxionis {z^n+s-1 z^. / z^2n + 2 l k^n z^n + k^2n}: _Mac_ _Laurinus_ detegit, $i modo Q, G & P denotent fluentes fluxionum x^. x^rn-1 (E + F x^n)^l-1 × $. x^. x^sn-1 (e × f x^n)^k & x^. x^rn+sn-1 × (E + F x^n)^l-1 & x^. x^sn-1 (e + f x^n)^k+l inter valores o & - {E / F} = d quantitatis x^n conten- tas, e^l d^sn Q = G × P.

_Simp$on_ dedit legem $eriei, quæ deducit $. x^m±rn-1 x^. (e + f x^n)^λ ± s ex datâ $. x^m-1 (e + f x^n)^λ x^.; ubi r & s $unt integri numeri.

_Le Grange_ invenit variationem incrementi æqualem e$$e incre- mento variationis, $i modo infinite$ima $int; & deduxit _Lexell, Eu-_ _lerus, Le Grange_ fluxionales æquationes, quarum fluentes inveniri po$$unt: in hoc opere animadvertitur, $i incrementum fluxionis x^. æqualis $it fluxioni incrementi, fluxionem incrementi functionis quantitatis x æqualem e$$e incremento fluxionis.

_D'Alembert_ primus dedit exempla de æquationibus relationes ex- primentibus inter quantitates huju$ce formulæ ({P^. / x^.}), ({P^. / y^.}) &c.; ubi hæ quantitates re$pective denotant fluxiones quantitatis P, cum x, y, &c. $olummodo habeantur variabiles: de hâc re plurima $crip- $ere _Eulerus, Le Grange, Condorcet, Le Place_, aliique; at de his per- pauca in hoc libro traduntur: ex datâ re$olutione æquationis prædicti generis ({m^. / y^.}) p + ({p^. / y^.}) m = ({m^. / x^.}) q + ({q^. / x^.}) m $equitur multipli- [0019]PRÆFATIO. cator cuju$cunque fluxionalis æquationis primi ordinis p x^. + q y^. = 0; & con$imilia principia etiam applicari po$$unt ad fluxionales æqua- tiones $uperiorum ordinum. Ex quibu$dam datis formulis multi- plicatorum dedit _Eulerus_ exempla fluxionalium æquationum, quæ redduntur integrabiles per prædictos multiplicatores: ex datâ $ub- $titutione, quæ ita transformat datam fluxionalem æquationem, ut evadat integrabilis, invenit multiplicatorem, qui datam æquationem reddet integrabilem: docuit methodum inve$tigandi in quibu$dam ca$ibus, annon data æquatio $it fluens datæ fluxionalis æquationis: ex datis particularibus fluxionalis æquationis y^.. + P y^. x^.^2 + Q y^2 x^. ^2 = X x^.^2 valoribus, ubi P, Q & X $unt functiones quantitatis x eruit gene- ralem valorem prædictæ æquationis; invenit fluentem fluxionalium æquationum {n y^. (e + f y + g y^2 + &c.) / √ (a y^2 + b y + c)} + {m x^. (e + f x + g x^2 + &c.) / √ (a x^2 + b x + c)}= 0 & {x^. / √ (a + b x^2 + c x^4)} + {y^. / √ (a + b y^2 + c y^4} = 0: dedit etiam plura exempla fluxionalium æquationum, quarum fluentes detegun- tur: & $ub$equentem propo$itionem; $i modo P = a, ubi a $it quæ- cunque invariabilis quantitas, $it generalis fluens datæ fluxionalis æquationis, tum erit quæcunque functio quantitatis P = a generalis fluens: nonnulla adjecit de $ubtangente curvæ, cujus æquatio 1 · 2 · 3 .. x = y ab _Walli$io_ primum tradita fuit. Plura exempla fluentium inter valores 0 & 1 variabilis x contentarum dedit.

In hoc opere 1. ob$ervatur, quod$i plures dimen$iones fluxionum y^. ^n, &c. in datâ fluxionali æquatione contineantur, tum inve$tigatio fluentis exigit re$olutionem æquationis algebraicæ, cujus dimen$iones haud $unt minores quam prædictæ (n). 2. Adjicitur etiam methodus in- veniendi fluxionalem æquationem n ordinis, ex quâ methodo con$tat fluxionalem æquationem n ordinis n recipere diver$as generales fluen- tes primi ordinis, etiamque n diver$os generales multiplicatores; n.{n - 1 / 2} generales fluentes $ecundi ordinis; & $ic deinceps: exhinc de- [0020]PRÆFATIO. duci po$$unt plurimæ fluxionales æquationes, quæ fluentes recipiunt. 3. Animadvertitur, $i generales fluentes fluxionalis æquationis n or- dinis $int P = a, P′ = a′, P″ = a″, &c., ubi a, a′, a″, $unt invaria- biles quantitates, generalem fluentem datæ fluxionalis æquationis e$$e quemcunque functionem quantitatum P, P′, P″, &c. 4. O$ten- ditur quantitatem P = 0 non nece$$ario e$$e fluentem fluxionalis æquationis α P^. + β P q^. = 0, cum $it fluens prioris partis æquationis α P^. = 0, at non fluens po$terioris β P q^. = 0; quæ e$t quantitas β P = 0 ducta in q^.: hìc animadvertendum e$t fluxionalem æqua- tionem primi ordinis p x^. + q y^. = 0 $emper reduci po$$e ad fluxiona- lem æquationem a P^. + b P c^. = 0, ubi p, q, a, b & c $unt functiones quantitatum x & y, & P e$t quæcunque a$$umpta functio quantita- tum x & y: etiamque, $i modo $it y = A × B × C × D × &c. + a, ubi a e$t invariabilis quantitas ad libitum a$$umenda, generalis fluens datæ fluxionalis æquationis; y = A, y = B, y = C, &c. e$$e particula- res fluentes fluxionalis æquationis: vel magis generaliter, $i modo φ:(x & y) × φ′ (x & y) × φ″ (x & y) × &c. + a = 0 $it generalis fluens datæ fluxionalis æquationis, φ (x & y) = 0, φ′ (x & y) = 0, φ″ (x & y) = 0 e$$e particulares fluentes datæ fluxionalis æquationis; hinc pro particulari fluente quærendæ $unt prædictæ quantitates φ (x & y) = 0, &c. vel φ (x & y) × φ′: (x & y) × &c. = 0. Et $ic de fluxio- nalibus æquationibus $uperiorum ordinum. 5. A$$eritur fluentes x^-β $. x^β-α-1 x^. $. x^α P x^. = x^-2 $. x^α-β-1 x^. $. x^β P x^., &c. vel generaliter x^-π $. x^π-β-1 x^. $.^β-s-1 x^. $. x^1-2-1; x^. .. $. x^τ P x^. = x^-γ $. x^γ-β-1 x^. $. x^β-π-1 x^. $. x^π-ε-1 x^. $. &c....$. x^α P x^.; in hi$ce duabus iidem continentur in- dices π, α, β, σ, γ, ε, τ, &c.; & $i præcedens terminus in utri$que $it x^b-λ-1 x^., tum ducitur in $. x^λ-&c.-1 x^. $. &c. 6. Animadvertitur, quod, $i detur algebraica æquatio a y^n + b y^n-1 + c y^n-2 + d y^n-3 + &c. = 0, ubi a, b, c, &c. fint functiones ip$ius x, & curva per prædictam æqua- tionem de$ignata haud $it compo$ita e duabus vel pluribus curvis, & fluens fluxionis {b x^. / a} haud inveniri po$$it finitis terminis, tum curva haud quadrari pote$t: con$imilis propo$itio etiam de fluente cuju$- [0021]PRÆFATIO. cunque algebraicæ functionis quantitatum y & x in x^. ductæ affirmari pote$t; cujus $olutio petenda e$t e meis Mi$cel. Analyt. anno 1762 editis, in quibus primum docetur methodus inveniendi $ummam e $ingulis valoribus cuju$cunque algebraicæ functionis quantitatum x & y & earum fluxionum; deinde Actis Philo$oph. Londin. 1764, ex datâ algebraicâ æquatione relationem inter x & y exprimente a me datur methodus, e quâ inve$tigari po$$it, utrum fluens cuju$cunque fluxionis, quæ $it algebraica functio literarum in datâ algebraicâ æquatione contentarum & earum fluxionum, inveniri pote$t, necne. 7. A$$eritur $ummam fluentium cuju$cunque algebraicæ functionis li- teræ x & y in x^. ductæ ad quemcunque valorem ab$ci$$æ x pertinentium exprimi po$$e per finitos terminos, circulares arcus & logarithmos radicum datæ algebraicæ æquationis. 8. Docetur etiam methodus, ex datâ algebraicâ, fluentiali, exponentiali, &c. quantitate, quæ ex- primit $ummam $eriei $ecundum dimen$iones literæ x progredien- tis, inveniendi $ummam alternorum $eriei terminorum vel denique $eriei terminorum, quorum di$tantiæ a $emet ip$is $it n, ex ii$dem principiis ac iis, quæ cum pluribus aliis ad Regiam Societatem anno 1757 communicata fuerunt. 9. Circa tres axes $ecum quo$cunque angulos facientes gyretur quæcunque curva, cujus ab$ci$$æ & ordi- natæ $int re$pective x & y; transformetur data curva in alteram $ub- $tituendo pro x, az + bv + c; & pro y, pz + qv + r; gyretur hæc curva circa axem $uum; & e datis contentis $olidorum circa tres axes rotatione datæ curvæ generatorum $equitur $olidum generatum a rotatione po$terioris curvæ circa axem $uum.

Vice-comes _Brounker_ eruit $ummas $erierum {1 / 1.2} + {1 / 3.4} + {1 / 5.6}+ &c. {1 / 2.3} + {1 / 4.5} + &c. {1 / 2.3.4} + {1 / 4.5.6} + &c. _Gregory St._ _Vincent_ primum dedit {1 / 1-x} = 1 + x + x^2 + &c. _Mercator_ ope- rando in literis ad eundem modum, quo arithmetici in numeris de- cimalibus dividunt, invenit $.{x^. / 1-x} = x - {1 / 2}x^2 + {1 / 3}x^3 - &c. idem [0022]PRÆFATIO. in extractione radicum perfecit _Neutonus:_ eorum antece$$ores in re algebraicâ divi$iones & extractiones in infinitum haud promovebant, nullum per$picientes u$um, cui per applicationem _Walli$iani_ theore- matis in quadraturis detegendis in$ervire potuerit: _Neutonus_ ex bi- nomiali theoremate reduxit binomiales algebraicas quantitates ad infinitas $eries, & exinde deduxit areas curvarum: quantitates multo magis complexæ ad infinitas $eries adhuc $olummodo per vulgares methodos divi$ionis & radicum extractionis olim traditas reduci po$- $unt: in harum regularum exemplis docuit $eries vulgares, quibus ex arcu corre$pondens $inus vel co$inus detegitur, & e logarithmo numerus: $eriem x - {1 / 2}x^2 + {1 / 3}x^3 - {1 / 4}x^4 + &c. pro logarithmo primus invenit vice comes _Brounker_; $eriem vero t - {1 / 3}t^3 + {1 / 5}t^5 - &c. pro arcu detexit _Jacobus Gregory_; $eries A - {c / 2} × {1 A - x P / 2} - &c. pro arcu ellip$eos, &c. ex novis principiis in hoc opere primum traditur; $ed animadvertendum e$t in quâcunque fluente detegendâ, conver- gentes e$$e debere $eries pro duobus valoribus variabilis datæ $eriei quantitatis.

_Leibnitzius_ a _Neutono_ quæ$ivit ca$us, in quibus $eries exortæ vel ex _Mercatoris_ methodo dividendi, vel ex _Neutonianâ_ radicum extractione in infinitum convergent: quod _Leibnitzius_ quæ$ivit, in hoc libro pri- mum peragitur; nunquam convergent $eries e prædictis methodis deductæ $ecundum dimen$iones quantitatis x a$cendentes, $i x major $it quam minima radix æquationum re$ultantium ex denominatore vel ex radicalibus in infimos terminos depre$$is nihilo æqualibus e$$e a$$umptis; nec de$cendentes, $i x minor $it quam maxima radix præ- dicta. Convergentia pendet ex ratione quam habent radices præ- dictæ ad x; e. g. $eries m + {1 / 2}m^2 + {1 / 3}m^3 + &c. = $.{m / 1-m} $emper converget, cum m minor $it quam 1; $eries autem x - {1 / 2}x^2 + {1 / 3}x^3 - &c. = $.{x^. / 1 + x}, cum x non major $it quam 1: $i m = {x / 1 + x}; tum erit m + {1 / 2}m^2 + {1 / 3}m^3 + &c. = x - {1 / 2}x^2 + {1 / 3}x^3 - &c.; hinc per $e- riem m + {1 / 2}m^2 + {1 / 3}m^3 + &c. $emper acquiri pote$t log. quantitatis [0023]PRÆFATIO. 1 + x, utcunque magna $it quantitas x: $eries autem x - {1 / 2}x^2 + &c. divergit cum x major $it quam 1, ergo ex eâ non deduci pote$t log. quantitatis, quæ major e$t quam 2: quantitatum {a / 10}, {a / 100}, {a / 1000}, &c. (dato logar. numeri 10) logarithmi facile detegi po$$unt ex loga- rithmo quantitatis a, & hinc ex $erie x - {1 / 2}x^2 + &c. detegi pote$t log. quantitatis, cum ea fru$tra $ine tale transformatione quæreretur; & magis convergentes evadent utræque $eries: eadem etiam appli- cari po$$unt; cum quantitas, cujus logar. innote$cit, non $it 10, $ed quicunque alius numerus: in omni ca$u $eries m + {1 / 2}m^2 + {1 / 3}m^3 + &c. magis celeriter converget quam $eries x - {1 / 2}x^2 + {1 / 3}x^3 - &c.: in hoc libro ex transformatione fluxionis $cribendo in eâ z + a & z^. pro x & x^. o$tenditur, quod fluens inter duas proximas radices prædicta- rum æquationum contenta $emper acquiri pote$t; etiamque, $i quæcunque radices prædictæ inter duos valores quantitatis x, inter quos requiritur fluens, con$i$tant, & fluens haud $it infinita; tum nece$$e e$t plures interpolare diver$os valores quantitatis a, a$$umen- dos ita quidem ut quantitas z incipiat ad $ingulas prædictas radices, vel in ii$dem terminet; $in aliter vero omnes $eries re$ultantes haud erunt convergentes: $i vero plurimi interpolentur valores quantitatis a inter duas proxime $ucce$$ivas radices prædictas ita ut maxime cele- riter convergant $eries, tum erunt differentiæ inter valores prædictos in geometricâ progre$$ione; unde ex _Mercatoris & Neutoni_ methodo fluens $olummodo detegi pote$t cum utrique valores variabilis quantitatis $int minores quam minima radix vel negativa vel affirmativa; $ed ex hâc $implici transformatione $emper detegi po$$it, cum prædicti va- lores inter qua$cunque duas proximas radices interponantur, vel magis generaliter cum ea finita $it: utrum quæcunque duæ datæ quantita- tes inter ea$dem duas radices interponantur, necne; plerumque ex earum $ub$titutione in datis æquationibus e mutatione $ignorum da- tarum & re$ultantium æquationum facile con$tabit.

_Taylorus_ dedit $eriem S = y ± {ay^. / x^.} + {a^2 y^.. / 1.2x^.^2} ± &c.

_Eulsrus, Mac Laurinus,_ &c. cum approximationes inventæ lente [0024]PRÆFATIO. convergant, interpolavit alios terminos ad perparvas di$tantias a $e invicem po$itos. _Eulerus_ advertebat, quod, cum ordinatæ fiant infi- nitæ, tum haud convergent approximationes $ic inventæ, & ad in- ve$tigandam aream curvæ inter duas ordinatas po$itam interpolavit plures ordinatas, & deinde ex $erie y = {s^. / n^.} - {s^.. / 2n^.^2} + {s^... / 2.3n^.^3} - &c. inve$tigat ordinatam, & ex ordinatâ per $eriem s = $.yn^. + {y / 2} + {y^. / 12n}+ &c. inve$tigat aream, &c.

_Arabes, Lucas de Burgo, Vieta, Harriottus, Ougbtredus, Girard, De_ _Lagny_, aliique tractarunt de approximationibus ad radices æquatio- num, docuere methodos approximationum ea$dem, quibus nunc uti- mur, cum inveniatur quantitas a radice quæ$itâ haud longe di$tans; _Neutonus, Vietæ_ aliorumque ve$tigiis in$i$tens, eadem magis elucide perfecit, & animadvertebat, quod $i e $it perparva quantitas quæ$ita, & data æquatio $it A + Be + Ce^2 + &c. = 0, tum ex tribus termi- nis A + Be + Ce^2 = 0 nihilo æqualibus e$$e $uppo$itis $equitur ap- proximatio ad valorem quantitatis e, quæ duplum præbet numerum figurarum approximationis ex æquatione A + Be = 0 inventæ; ultimo a me primum o$tenditur veram e$$e hanc propo$itionem, & radices æquationis A + Be + Ce^2 + De^3 = 0 triplum numerum illarum figurarum præbere; & $ic deinceps.

_Eulerus_ in algebraicâ æquatione A = 0 pro x $ub$tituit ejus valo- rem (a) prope, & a$$eruit {Ax^. / A^.} e$$e propiorem valorem; ejus demon- $trationem primum dedit _Courtivron._

_Simp$on_ invenit continuas approximationes ad radices duarum æquationum duas incognitas quantitates habentium.

Hic animadvertendum e$t omnes has methodos $olummodo parti- culares præbere ca$us regulæ vulgariter dictæ fal$i, quæ in hoc libro magis generaliter redditur.

In hoc libro 1. primum o$tenditur approximationem ex hâc methodo inventam $emper eo magis accuratam fore, quo propior fuit quanti- tas pro radice $ub$tituta radici quæ$itæ quam reliquis. E. g. $i quan- [0025]PRÆFATIO. titas data $it ferè intermedia inter duas proxime $ucce$$ivas radices, i. e. $it radix æquationis ad limites, tum nova approximatio inventa erit infinita quantitas; minime refert, utrum permagnam habeat ratio- nem ad radicem quæ$itam, necne. 2. Traditur methodus ex datis ap- proximationibus ad m radices æquationis n dimen$ionum inveniendi approximationes ad $ingulas prædictas radices magis convergentes. 3. Sit æquatio x^n - p x^n-1 + qx^n-2 - &c. = 0, & $i una radix multo major $it quam m, multo vero minor quam n - m - 1, traditur nova methodus inveniendi $eriem radicem prædictam exprimentem. 4. Da- tur etiam theorema quod dico incrementiale theorema, ex quo $i modo dentur incrementa e $ingulis variabilibus in datâ quantitate conten- tis, facile erui po$$unt ejus diver$a incrementa; & ex hoc theoremate quamplurimæ æquationes in algebraicas transformari po$$int, ex qui- bus approximationes ad radices deduci po$$int; etiamque adjicitur nova methodus ex a$$umptis m diver$is valoribus pro radice x, & ab eâ haud longe di$tantibus, inveniendi æquationem m dimen$ionum, cujus radix erit approximatio ad radicem x: omnia præcedentia prin- cipia etiam applicari po$$unt ad plures æquationes plures incognitas quantitates habentes, etiamque ex iis deduci pote$t una in terminis reliquarum.

_Neutonus_ dedit (α^2m + β^2m + γ^2m + &c.)^{1 / 2m}, ubi α, β, γ, &c. $unt ra- dices datæ æquationis, pro maximâ radice.

_Daniel Bernoulli_ invenit maximam radicem datæ æquationis x^n - px^n-1 + qx^n-2 - rx^n-3 + &c. = 0, $i modo ea $it po$$ibilis; in hoc libro ob$ervatur idem perfici po$$e pro omnibus æquationibus irratio- nales vel plures variabiles quantitates involventibus; docetur etiam con$imilis methodus ulterius promota inveniendi radicem, quæ minor $it quam maxima, major vero quam omnes reliquæ; & eadem principia ad detegendas omnes reliquas radices promovere liceat. Omnia ea, quæ prius protuli de convergentiis $erierum ex divi$ione & extractione radicum ortarum, æque ad ha$ce approximationes appli- cari po$$unt; $ed omnes hæ regulæ vel $upponunt omnes radices e$$e po$$ibiles, vel po$$ibiles e$$e majores quam impo$$ibiles; at in æqua- [0026]PRÆFATIO. tionibus $uperiorum dimen$ionum plerumque numerus impo$$ibilium radicum multo major erit quam numerus po$$ibilium, & con$equen- ter probabile erit, ut maxima impo$$ibilis radix major $it quam ma- xima po$$ibilis; ergo regulæ non applicari po$$unt, ni inventum $it po$$ibilem radicem e$$e majorem quam $ingulas impo$$ibiles. Datur methodus facile deducendi infinitas æquationes, quarum radices $unt omnes po$$ibiles.

In hoc libro docetur etiam methodus reducendi quantitates præ- dictas ad $eries $ecundum dimen$iones quantitatis x progredientes, &c. ita ut earum integrales innote$cant.

_Barrovius_ in quibu$dam ca$ibus deduxit ex æquatione relationem inter x & y exprimente approximationem ad quantitatem y in termi- nis quantitatis x; hanc propo$itionem magis generalem reddidit _Neu-_ _tonus_, cujus particularem ca$um dedit in rever$ione $erierum; eadem principia ad fluxionales æquationes applicavit, $ed in hi$ce æquatio- nibus, $i modo re$olutio $it generalis, tot $emper occurrent quantitates ad libitum a$$umendæ, quot $it ordo fluxionalis æquationis, in quibus ca$ibus plerumque occurrent quædam difficultates, quarum nonnullæ in hoc libro traduntur; e.g. in generali fluente detegendâ per $eriem fluxionalis æquationis (n) ordinis $emper occurrent homogeneæ flu- xionales æquationes primi $ecundi, &c. u$que ad n ordinem. _Leib-_ _nitzius_ primum a$$ump$it quantitatem y = a x^n + b x^n+m + cx^n+2m + &c. generales coefficientes habentem. _Eulerus_ recte in$tituit approxima- tiones ad $ingulas quantitates & earum fluxiones, & ex iis per me- thodos prædictas approximationes deduxit. In hoc libro 1. docentur methodi adjudicandi, utrum hæ $eries convergent necne, ferè ex ii$- dem principiis ac prius tradita fuerunt pro algebraicis æquationibus, &c. 2. Prima approximatio ex quâcunque datâ hypothe$i ita deduci pote$t. Sit æquatio y^n - a y^n-1 + b y^n-2 - &c. = 0, ubi a, b, c, &c. $int functiones ip$ius x; deinde rejectis omnibus terminis, qui haud maximi re$ultant ex datâ hypothe$i in prædictis quantitatibus a, b, &c. re$ultet æquatio y^n - α y^n-1 + β y^n-2 - &c. = 0; quæ erit æquatio, cujus radices erunt primæ approximationes ad $ingulas datæ æquationis radices; $i modo quædam ex iis longe di$tent a reliquis, tum ex ob- [0027]PRÆFATIO. $ervatione adjunctâ facile acquiri po$$unt; aliter exoritur re$olutio quadraticæ &c. æquationis: idem etiam perfici po$$it per eundem modum, $i modo quæcunque irrationales quantitates in datâ æqua- tione contineantur: eadem principia applicari po$$unt ad plures æquationes plures incognitas quantitates habentes: _Le Grange_ inve- nit legem, quam ob$ervat rever$io $eriei ex meâ $erie pro $ummis po- te$tatum; eadem $eries paulo aliter in hoc libro deducitur; etiamque deteguntur approximationes ad maximam vel minimam datæ alge- braicæ æquationis radicem; & invenitur y in terminis $ecundum di- men$iones quantitatis x progredientibus, $i modo prius ita transfor- metur data æquatio, ut una radix evadat multo major vel minor quam quæcunque alia datæ æquationis radix.

_Briggius_ vel _Vieta_ & _Pa$cal_, primum quod $cio invenit binomiale theorema: id ad radices extrahendas primus applicavit _Neutonus._

No$tras _Briggius_ reddidit calculum pro logarithmis faciliorem, ex eo quod interpolavit plures quantitates ea methodo quam invenit dif- ferentiarum ultimo inter $e æqualium; & prout primæ, $ecundæ, ter- tiæ, &c. differentiæ exoriantur æquales, diver$as ex methodus habet le- ges: hanc rem ulterius pro$ecuti $unt _Regnaldus & Moutonus,_ & hi omnes invenere n differentias pote$tatis n quantitatum in arithmeticâ progre$- $ione e$$e æquales; deinde ex huju$modi quantitatibus datis, quarum differentiæ $int ultimo æquales, inve$tigavere legem, ex quâ interpolari po$$unt prædictæ quantitates, quæ con$tant ex quantitatibus huju$ce formulæ A x^n - a x^n-1 + b x^n-2 - &c. _Neutonus_ idem problema ma- gis generale reddidit, a$$ump$it enim quantitatem prædictæ formulæ A x^n - a x^n-1 + b x^n-2 - &c. = y, & pro x & y $crip$it qua$cunque quan- titates p, q, r, s, &c. & A, B, C, &c. & ex æquationibus re$ultantibus deduxit quantitatem prædictam; ex hâc methodo duxit curvam alge- braicam per quotcunque data puncta: ex a$$umptis quantitatibus hujus formulæ A + B (x - p) + C · (x - p) · (x - q) + &c. re$o- lutionem magis facilem reddidere _Nicbole, Sterling & Walzius:_ in hoc libro 1. quædam nova traduntur de hâc methodo differentiarum, de ejus convergentiâ, cum termini haud ultimo evadant inter $e æquales, [0028]PRÆFATIO. i.e. haud terminetur $eries. 2. Adjungitur etiam problema ex datâ lege, cui m a$$umptæ quantitates conveniant, n vero haud conveniant, ita corrigere legem, ut n po$teriores etiam ei conveniant. 3. Datur methodus corre$pondentium valorum, i. e. $it y = {x - q · x - r · x - s. &c. / p - q · p - r. p - s. &c.}× A + {x - p · x - r · x - s · &c. / q - p · q - r · q - s · &c.} × B + {x - p · x - q · x - s · &c. / r - p · r - q · r - s · &c.}× C + &c. = y. 4. Datur altera ncva methodus differen- tiarum. 5. Methodus corre$pondentium valorum applicatur ad plu- res ca$us in transformatione æquationum ex Medit. Algehr. de$ump- tos. 6. Eadem etiam applicatur ad datos corre$pondentes valores trium vel plurium incognitarum quantitatum, &c.

_Brook Taylor_ invenit incrementum cuju$cunque algehraicæ integra- lis; idem perficitur pro incremento fluentialis integralis ah _Le Grange,_ _Eulero,_ &c. & in hoc lihro; con$imilia principia etiam applicari po$$unt ad incrementa integralium & fluentialium quantitatum detegenda: integralem incrementi z · z + z. · z + 2z. .. z + (n - 1)z., etiamque incrementi {1 / z · z + z. .. z + nz.} dedit _Taylor: Facohus Stirling_ reduxit omnes quantitates huju$ce formulæ A + B z + C z^2 + D z^3 + &c. ad formulam a + b z + c z · (z + 1) + d z · (z + 1) · (z + 2) + &c. & quantitates huju$ce formulæ A + B z^-1 + C z^-2 + D z^-3 + &c. ad formulam a + {b / z} + {c / z · z + 1} + {d / z · z + 1 · z + 2} + &c. $i vero termini in genere $int x^z+n in {a / z} + {b / z · z + 1} + &c. ubi z $it di$tantia a primo $eriei termino, invenit $ummam {a / (1 - x) · z} +{b - A x / (1 - x) · z · (z + 1)} + &c. & ex quihu$dam æquationihus inter $uc- ce$$ivos terminos & di$tantiam a primo $eriei termino invenit parti- culares valores per vulgarem methodum infinitarum $erierum.

[0029]PRÆFATIO.

_De Moivre_ & _Daniel Bernoulli_ inve$tigavere $ummas recurrentium $erierum, & e $ummâ datâ deduxere relationem inter $ucce$$ivos ter- minos.

_Monmort_ transformavit $eriem A + {B / r} + {C / r^2} + &c. ita con$titutam, ut ultimæ coefficientium differentiæ d, d′, d″, &c. evadant tandem in- ter $e æquales, in $eriem finitam {rA / r - 1} - {rd / (r - 1)^2} + {rd′ / (r - 1)^3} + &c. _Nicholas Bernoulli_ invenit $eriem æqualem $ummæ n terminorum hu- ju$ce $eriei; huju$ce prohlematis altera datur $olutio in hoc opere: _Monmort_ etiam deduxit $ummam $eriei, cujus numeratores con$tituant lineam quamlihet erectam in triangulo arithmetico, denominatores vero lineam quamlihet tran$ver$am.

_Bernoulli, Mac Laurin, Le Grange, Eulerus,_ &c. multa tradidere de i$operimetricis prohlematihus, de quihus haud in hoc opere tractatur.

_Walli$ius_ dedit ex interpolatione arearum curvarum inter valores 0 & 1 ah$ci$$æ x contentarum, quarum ordinatæ $int re$pective (1 - x^2)^0, (1 - x^2)^1, (1 - x^2)^2, &c. terminum intermedium inter primum & $ecundum, viz. aream curvæ, cujus ordinata $it (1 - x^2)^{1 / 2}, i. e. circuli inter prædictos valores ah$ci$$æ x contentam = {2 · 4 · 4 · 6 · 6 · 8 · 8 · &c. / 3 · 3 · 5 · 5 · 7 · 7 · 9 · &c.}; Vice-comes _Brounker_ dedit {2 · 4 · 4 · 6 · 6 · &c. / 3 · 3 · 5 · 5 · 7 · &c.} = {1 / 1 + {1 / 2} + {9 / 2} + {25 / 2} + &c.} de his continuis fractionihus plura & elegantia $crip$ere _Eulerus_ & _Le Grange,_ &c.; e. g. $i continuæ fractionis termini $emper recurrant, tum ejus valor e quadraticâ æquatione facile erui pote$t, & $ic facile transformari pote$t radix quadratica cuju$cunque quantitatis in con- tinuam fractionem: nonnulla de hâc re elegantia dedit _Lamhert:_ in hoc lihro in novâ $pecie continuarum fractionum, in quihus inclu- duntur radices, exprimitur radix cuju$cunque æquationis huju$ce for- mulæ x^m + ax^m-1 + b x + c = 0.

[0030]PRÆFATIO.

_Bernoulli_ & _Eulerus_ invenere plura continua contenta inter $e æqualia; & plura, & multo magis generalia ex novis principiis in hoc lihro continentur. E. g. Datur methodus ex $uh$tituendo α x, β x, γ x, &c. pro x in datâ quantitate, uhi α, β, &c. $unt radices æquationis x^n - 1 = 0 inveniendi continuum contentum datæ quantitati æquale; ex eo quod inveniuntur quantitates, quæ in $eriem datæ quantitati vel fluenti æqualem ductæ, eam reddunt magis convergentem. 2. Et ex a$$umptis æquationihus inter terminos facile con$tant continua contenta datis quantitatihus æqualia.

_Facohus Gregary_ ex datis aliquot ordinatis æquidi$tantihus invenit a$ymptoton hyperholæ generis logarithmici, cujus prohlematis ope qua$dam $eries $ummavit.

_Facohus Bernoulli_ invenit maximum terminum hinomii ad integram pote$tatem evecti, punctum vero ejus inflexûs dedit _De Moivre._

_Facohus Bernoulli_ a$$umit quantitatem A, cujus termini ad infinitam di$tantiam $unt infinite parvi; ex quantitate A $uhtrahit eandem quantitatem per quo$dam terminos diminutam; & re$ultat $eries, cujus $umma e$t prædictorum terminorum $umma; feriem re$ultan- tem $emper convergere, primum quod $cio in hoc lihro demon$tra- tur: hoc prohlema magis generaliter perfecere _Goldhatch_ & _De_ _Moivre_ ex multiplicatione in factores nihilo æquales; & in hoc lihro idem perficitur per additionem $ine multiplicatione. 2. Etiamque hi duo cafus redduntur magis generales per additionem e $ingulis duo- hus, trihus, &c. $ucce$$ivis terminis. 3. A$$umuntur duæ vel plu- res $eries, & ex iis deducuntur $eries, quarum $ummæ innote$- cant, e. g. ex $eriehus {1 / a} + {1 / a + h}x^b + {1 / a + 2h}x^2b + &c., {1 / b} + {1 / b + h}x^b + {1 / b + 2h}x^2b + &c., {1 / c} - {1 / c + h}x^b + {1 / ε + 2 h}x^2b - {1 / c + 3h} x^3b + &c. inveniri pote$t $umma omnis $eriei, cujus generalis terminus e$t {a′z^m + b′ z^m-1 + &c./a + h z · a + h z + h · a + h z + 2 h .. a + h z + n h × b + h z · b + h z + h · b + h z + 2 h .. b + h z + n h × h z + c · h z + {1 / 2} h + c · h z + h + c · h z + [0031]PRÆFATIO. 1{1 / 2}h + c..h z + {n″ / 2}h + c × &c.}, ubi n, n′, n″, &c. & m $unt integri numeri, & z di$tantia a primo $eriei termino. 4. Ex datis $ummis $erierum {1 / a} ± {1 / a + h} x^b + {1 / a + 2h}x^2h ± &c., {1 / a^2} ± {1 / (a + h)^2}x^h + &c.,{1 / a^3} ± {x^h / (a + h)^3} + &c., ... {1 / a^l} ± {1 / (a + h)^l}x^b + &c.; {1 / b} ± {1 / b + h} x^h +{1 / b + 2h} x^2h ± &c., {1 / b^2} ± {1 / (b + h)^2} x^h + &c., ... {1 / b^l′} ± {1 / (b+1)^l′} x^h + &c.; acquiri po$$unt per $implices æquationes $ummæ omnium $erierum, quarum generales termini $unt {a′z^m + b′z^m-1 + &c. / (z + a)^l × (h z + a + h)^l × (h z + a + 2h)^l .. (h z + a + n h)^l × (b + h z)^l′ . (b + h + h z)^l′ .. (b + n′h + hz)^l′ &c.}. 5. Datur facilis methodus generaliter inveniendi ca$us, in quibus $umma $eriei, cujus generalis terminus e$t {1 / a + h z · a + h z + h · a + h z + 2 h · &c. × b + h z · b + h z + h · b + h z + 2 h. &c. × c + h z · c + h z + h. &c. × &c.}, in finitis terminis exprimi pote$t. 6. Animadver- titur, $i in denominatore contineatur factor h z + d, qui non habet $uc- ce$$ivum h z + d + n h, ubi n e$t integer numerus; in finitis terminis non exprimi po$$e $eriei $ummam: Nichole invenit generalem terminum datæ $eriei {a′ z^m + b′ z^m-1 + &c. / a + h z · a + h z + h · a + h z + 2 h .. a + h z + n h} ={e / a + h z + n h} + {f / a + h z + n h. a + h z + (n - 1) h} + &c., in hoc libro prædictus terminus invenitur = {e′ / a + h z · a + h z + h · a + h z + 2 h .. a + z h + n h} + {f′ / a + h z · a + h z + h .. a + h z + (n-1) h} [0032]PRÆFATIO. + &c., ubi m non major e$t quam n; etiamque terminus {a z^m + b z^m-1 + &c. / a + hz. a + hz + h .. a + hz + nh × b + hz. b + hz + h. b + hz + n′h × c + hz. &c.}, re$olvitur in plures $implices, quarum $ummæ innote$cunt. _De Moivre_ _& Bernoulli_ invenit $ummas $erierum ex inveniendo fluentes utriu$que æquationis partis: _Eulerus_ exinde deduxit $ummas $erierum, quarum generales termini $unt {1 / a + hz. b + hz. c + hz. &c.} × e^z, ex fluen- tibus fluxionum {x^a-1 x^. / 1 ± x^h}, {x^b-1 x^. / 1 ± x^h}, &c, cum quantitates a, b, c, &c. $int inæquales, & exinde facile erui po$$unt $erierum $ummæ, cum gene- rales termini $int {a″ z^m + b″ z^m-1 + &c. / a + h z · b + h z. &c.} e^z: in hoc libro ex datâ $ummâ W $eriei, cujus generalis terminus e$t V, & cujus fluxio detegi pote$t, de- ducuntur $ummæ $erierum, quarum generales termini $unt V (a′ z^m + b′ z^m-1 + &c.); & ex $ummis $erierum, quarum generales termini $unt V × {1 / α + hz}, V × {1 / β + hz}, V × {1 / γ + hz}, &c. deducuntur $ummæ $erie- rum, quarum generales termini $unt V × {a′ z^m + b′ z^m-1 + &c. / α + h z · β + h z · γ + h z · &c.}; & $imiliter de pluribus factoribus inter $e inæqualibus in denomina- toribus contentis. 2. Summæ prædictarum $erierum per fluentes flu- xionum W^., x^{a / h} W^., x^{β / h} W^., &c. exprimuntur, &c. 3. Summæ $erierum, quarum generales termini $unt {a′ z^m + b′ z^m-1 + &c. / α + z · β + z · γ + z · δ + z · &c.} × l · {l - 1 / 2} .. {l - nz / nz + 1} × e^nz $emper exprimi po$$unt per finitos terminos, circulares arcus & logarithmos, $i modo α, β, γ, &c. vel $int integri numeri, vel habeant 2 pro $uo denominatore. 4. Dantur $ummæ $e- rierum, quarum generales termini $unt {a′ z^m + b′ z^m-1 + &c./1 · 2 · 3 · n z × α + z · β + z [0033]PRÆFATIO. · γ + z · &c.} × e^z, ex fluentibus fluxionum z^α × x^., ubi {x^. / 1 ± x} = z^., z^β x^., z^γ x^., &c. & $ic de pluribus con$imilibus. 5. Ex dato generali termino invenitur $eriei $umma, $i modo generaliter in finitis termi- nis exprimi po$$it, rejiciendo omnes ultimos factores & a$$umendo pro $ummâ omnes reliquos in rationalem & integralem functionem quantitatis _z_ di$tantiæ a primo $eriei termino cum coefficientibus de- ducendis ductos, & exinde deducendo coefficientes quæ quidem $em- per præbent $ummam, $i modo in finitis terminis exprimi po$$it; $in aliter $eriem in infinitum progredientem. 6. Datur methodus inve- niendi $ummas $erierum, quæ continent irrationales quantitates: no- $tras _Landen_ po$t primam editionem huju$ce operis editam transfor- mavit $eriem x - x^-1 - {x^2 - x^-2 / 2} + &c. = log. x, & quæ $eries, ut a me primum ob$ervatur, $emper divergit, cum x $it po$$ibilis quantitas, in $eriem $ecundum $inus & co$inus progredientem; $eries enim e$t dif- ferentia inter duas vulgares $eries x - {x^2 / 2} + {x^3 / 3} - &c. & x^-1 - {x^-2 / 2} +{x^-3 / 3} - &c., quarum una divergit, cum altera convergat; hæc $eries ea$dem propo$itiones præbet, utrum $it transformatio in $inus, nec- ne; &c. prior methodus calculum magis facilem plerumque reddit, Hìc datur fluens fluxionis s^(q) ^m c^(q) ^n × {x^. / √ (1 - x^2)}.

_Joannes Bernoulli_ invenit $ummas quarundam $erierum 1 ± {1 / 2^λ} +{1 / 3^λ} ± {1 / 4^λ} + &c. ex radicibus æquationis x - A + {A^3 / 2 · 3} - &c. = 0, vel æquationis x - {A^2 / 1 · 2} + {A^4 / 2 · 3 · 4} - &c. = 0; _Eulerus_ invenit $ummas plurium $erierum con$imilis formulæ ex ii$dem principiis & ra- dicibus æquationis e^±x ± e^∓x = (1 ± {x / i})^i ± (1 ± {x / i})^i = &c. = v^i ± w^i = 0; a _Cote$io_ datis; & exinde ex $ub$titutione plures de- [0034]PRÆFATIO. duxit; quarundam $erierum e divi$ione rationalium functionum inte- grorum vel primorum numerorum, & ex comparatione $erierum ex- inde ortarum cum $eriebus e prædictis _Joannis Bernoulli_, &c. deductis $ummas inve$tigavit; invenit etiam $ummam $eriei 1 + {x / 2^2} + {x^2 / 3^2} + &c., cum x = {1 / 2}; _Landen_ eandem invenit, cum x = {1 / 2} & cum $int duo alii valores α & β quantitatis x: in hoc libro exinde deteguntur $um- mæ $erierum, quarum generales termini $unt {(a′z^m + b′z^m-1 + &c.) x^z / (a + n z)^h (b + n z)^h″ (c + n z)^h″ . &c.}, ubi m, h, h′, h″, &c. $unt integri numeri, & x vel = 1 vel {1 / 2} vel α vel β. Cum duo vel plures divi$ores denominatoris ge- neralis termini $int inter $e æquales, tum non deduci pote$t $eriei $um- ma ex $ummis $erierum, quæ non habent totidem divi$ores inter $e æquales. _Landen_ dedit limites ad quos appropinquant ultimo quæ- dam quantitates; in hoc libro adjiciuntur de his quædam nova princi- pia. _Naudei_ problemata ab _Eulero_ in re$olutionem aliorum problema- tum transformantur, at non re$olvuntur; con$imilia quam plurima facile adjici po$$unt, quorum nonnulla in hoc libro traduntur. 2. Da- tur nova methodus inveniendi approximationes ad fluentes fluxionum {x^z x^. / 1 ± x^h}, ubi h:α non habet rationalem rationem. 3. Cum dentur quantitates infinite magnæ, docetur methodus detegendi earum $um- mam, differentiam, &c.

_Jacobus Bernoulli_ primus (quod $cio) edidit $ummam $eriei ^n √ (a + <_>n√ (a + √ (a + &c.))) = x = <_>n√ (x + a); _Joannes Bernoulli_ a$$erit $e primum inveni$$e; dedit etiam $eries x = ^n √ (a ^n √ (a &c.)) = ^n √ (ax), unde x^n-1 = a; ob$ervatur in hoc libro, quod in $ingulis hi$ce for- mulis plures dentur radices quam ex hi$ce $olutionibus deducantur. _Joannes Bernoulli_ dedit regulam pro inveniendâ $ummâ 1^m + 2^m + 3^m + 4^m + &c. ubi m e$t integer numerus; legem, quam ob$ervat hæc $eries, debemus _I$aaco Milner._

[0035]PRÆFATIO.

_Eulerus_ invenit proportionem, quam medius terminus $eriei 1 + n x + &c. = (1 + x + x^2)^n habet ad $ummam $eriei, &c.

Hoc opus moliebatur mecum, & in partes di$tribuebat eruditi$$imus vir, mihique amici$$imus _Joannes Wil$on_ armiger, & laboris quidem totius particeps fui$$et; ni $tudia foren$ia, quibus $e dedit, vetui$$ent; adjutore tali tantoque non $ine magno & meo & rei mathematicæ damno carui; ab illius enim ingenio hæc $cientia incrementa e$$et cap- tura ab aliis vix aut ne vix quidem $peranda.

Jam re$tat ea, quæ in hoc libro continentur, breviter recen$ere.

In primo capite datur regula, quam ob$ervat fluxio cuju$cunque exponentialis. 2. Animadvertitur in quadraturis minime ad rem conducere, quomodo partes generantur, e. g. utrum per motum, nec- ne; $olummodo opus e$t partes corre$pondentibus quantitatis a$- $umptæ partibus convenire.

In $ecundo capite ob$ervatur dimen$iones variabilis quantitatis x in fluxione minores e$$e quam ejus dimen$iones in fluente per unita- tem; ni dimen$iones fluentis $int nihilo æquales, in quo ca$u dimen- $iones in fluxione minores erunt quam ejus dimen$iones in fluente per quantitatem majorem quam unitatem; unde con$tat, $i dimen- $iones quantitatis x in numeratore $int minores per unitatem quam ejus dimen$iones in denominatore, ejus fluentem in finitis terminis haud exprimi po$$e. 2. Animadvertitur; $i modo fluxio, quæ $it functio quantitatis x^n in x^., reducatur ad functionem quantitatis x<_>-n in x^., vel ad functionem cuju$cunque quantitatis, quæ algebraicam habeat relationem ad x<_>n in x^.; & utriu$que fluens per vulgares methodos detega- tur, & $erierum alterutra terminetur, tum (rebus recte di$po$itis) ter- minari alteram. 3. Datur methodus inveniendi fluentem fluxionis (a + b x^n + c x^2n + &c. + (d + e x^n + f x^2n + &c.) (p + q x^n + r x^2n + &c.)^λ)^ν × (A + B x^n + &c. + &c.) x^., $i modo in finitis terminis exprimi po$$it. 4. Sit fluxio (A + B)^m × (a + b x^n + &c. + &c.) x^.; ubi {A^. / B} = {B^. / A} vel magis generaliter $it (A + B + C)^m × &c. x^., ubi {A^. / B} = {B^. / C} = {C^. / A}; & $ic deinceps; tum non a$$umenda e$t quantitas (A + B + C &c.)^m+1 × [0036]PRÆFATIO. &c. $ed (A + B + C &c.)^m x &c. pro fluente. 5. Traditur methodus inveniendi fluentes in finitis terminis ($i modo per eos exprimi po$$int) per infinitas $eries. 6. Traduntur fluentes quarundam fluxionalium quantitatum non prius traditarum. 7. Quædam nova adjiciuntur de correctionibus fluentium. 8. Ob$ervatur in corrigendis fluentibus ea$dem radices $emper u$urpandas e$$e, i. e. nunquam - √ pro + √ $ub$tituendam e$$e. 9. Ex $ub$titutione inveniuntur diver$æ fluentes eju$dem fluxionis inter $e æquales. 10. Animadvertitur qua$dam e$$e exponentiales quantitates, quæ perpetuo mutantur de po$$ibili in impo$$ibilem, & vice versâ de impo$$ibili in po$$ibilem. 11. Docetur methodus inveniendi, annon datæ fluentes inter datos valores variabilis contentæ $int finitæ. 12. Ex datâ fluxione, cujus fluens exprimit $ummam $eriei $ecundum dimen$iones quantitatis x progredientis, deducitur fluxio, cujus fluens exprimit $ummam ter- minorum prædictæ $eriei ad (n) di$tantias a $e$e po$itorum. 13. Nonnullæ fluxiones non prius traditæ, quæ involvunt irrationales functiones variabilis quantitatis x reducuntur ad fluxiones, quæ nul- lam involvunt irrationalem quantitatem variabilis re$ultantis fluxionis. 14. Traditur methodus in genere detegendi, annon fluens datæ fluxi- onis exprimi po$$it per finitos terminos, circulares arcus & logarith- mos. 15. Datâ æquatione $imiliter involvente X & x, unde x = φ:X; & fluxione P x^., ubi P e$t functio quantitatis x; & in fluxione P x^. pro x & x^. $criptis φ: X & φ: X; re$ultet Q X^. = 0; in quâ pro X & X^. $cribantur x & x^., exinde re$ulter Q′ x^.: $int L & l, M & m corre$pon- dentes valores quantitatum X & x; tum erit fluens fluxionis (P + Q) x^. inter valores L & M quantitatis x contenta, eadem ac fluens inter valores l & m eju$dem quantitatis. 16. Sit fluxio (a + b x^n + .. x^m)^m+λ × x^pn+σn-1 x^., ubi λ & σ $unt quicunque integri affirmativi nu- meri; tum ex quibu$cunque r-1 independentibus fluentibus huju$ce formulæ detegi po$$unt omnes aliæ eju$dem formulæ. 17. Per $ub- $titutionem erui po$$unt fluxiones, quarum fluentes per pauciores eju$dem formulæ exprimi po$$unt. 18. Sit x^θ+zn+βm x (a + b x^n + c x^m)^λ+π x^., ubi literæ α, β & π re$pective denotant affirmativos integros numeros; tum ex datis (α + β + π + 1) fluentibus inter $e indepen- [0037]PRÆFATIO. dentibus fluxionum huju$ce formulæ detegi po$$unt fluentes omnium fluxionum eju$dem formulæ, &c. 19. Sit fluxio X^. $. y x^., ubi X^. e$t fluxio, cujus fluens inveniri pote$t; & $it numerus fluentium inter $e independentium in formulis fluxionum Y x^. & X y x^. contentarum re- $pective m & r; tum ex (m + r) fluentibus fluxionum X^. $. y x^. inter $e independentibus detegi po$$unt fluentes omnium fluxionum eju$dem formulæ, &c. 20. Sit exponentialis fluxio e^a + bx^n ..hxμn × x^r ± vn, ubi μ & v $unt integri numeri, tum ex fluentibus (μ) fluxionum prædictæ formulæ independentibus acquiri po$$unt fluentes omnium fluxionum eju$dem formulæ, &c. 21. Traditur nova generalis methodus inve- niendi valorem fractionis, cum ejus numerator & denominator $imul evane$cant. 22. Adjiciuntur quædam de nonnullis fluxionibus in alias reducendis.

In capite tertio 1. ex datâ algebraicâ æquatione datur methodus inveniendi æquationem, cujus radix e$t data fluxionalis quantitas. 2. Si (n) fluxionales æquationes ordinum m, r, s, &c. reducantur ad unam, tum ob$ervatur æquationem re$ultantem non majorem quam m + r + s + &c. ordinem habere; etiamque nonnulla de novis fluxio- nalibus, &c. æquationibus in æquationes re$ultantes per operationem introductis. 3. Datæ fluxionales æquationes α. β. γ. δ. &c. = 0 & π. ρ. σ. τ. &c. = 0 di$tingui po$$unt in $ub$equentes α = 0 & π = 0; α = 0 & ρ = 0; &c.; β = 0 & π = 0; β = 0 & ρ = 0; &c. 4. Ex datis duabus vel pluribus fluxionalibus æquationibus deducuntur duæ vel plures aliæ, quarum variabiles quantitates $unt eædem. 5. Data æquatio fluentes involvens reducitur ad fluxionalem, in quâ nulla continetur fluens. 6. Datâ algebraicâ æquatione relationem inter x & y exprimente; inveniuntur quidam novi ca$us, in quibus x & y fa- cile exprimi po$$unt in terminis tertiæ z. 7. Datâ algebraicâ æqua- tione relationem inter x & y exprimente; invenitur, annon fluens (v) fluxionis, quæ e$t algebraica functio quantitatum x & y & earum flu- xionum, in finitis terminis exprimi pote$t, viz. ex a$$umendo æquati- onem algebraicam, quæ nece$$ario exprimit relationem inter v & x vel y; idem per infinitas $eries perficitur. 8. Hinc datur methodus inveniendi quam plurimas æquationes ad curvas, quarum areæ, &c. in [0038]PRÆFATIO. finitis terminis exprimi po$$unt. 9. Traditur nota, ex quâ $æpe dici pote$t aream curvæ in finitis terminis non exprimi po$$e. 10. Summa e $ingulis valoribus areæ curvæ, cujus æquatio relationem inter ab$ci$$am x & ordinatam y de$ignans $it algebraica, in finitis terminis exprimi po- te$t. 11. Sit data algebraica æquatio, cujus fluxio ducatur in quanti- tates æquales ex datâ æquatione deductas, tum fluens generalis æqua- tionis re$ultantis non erit data æquatio; & vice versâ eadem æqua- tio præbeat plures fluxionales æquationes. 12. Nonnulla adjiciuntur de correctione fluentium fluxionalium æquationum. 13. Datur me- thodus detegendi, annon data æquatio $it generalis fluens datæ fluxi- onalis æquationis. 14. Traduntur quædam de methodis inveniendi, annon fluxionales æquationes $int integrabiles. 15. Datis n.{n - 1 / 2} diver$is, i. e. independentibus æquationibus huju$ce generis a $. y x^. + b $. y^2 x^. + c $. y x x^. + &c., exinde deduci pote$t valor cuju$cunque quantitatis huju$ce generis p $. v z^. + q $. v^2 z^. + r $. v z z^. + &c., ubi n e$t maxima dimen$io ad quam a$cendunt variabiles quantitates; a, b, c, &c., p, q, r, &c. $unt invariabiles quantitates, & a′ x + b′ y + c′ = z & p′ x + q′ y + r′ = v. 16. Datis generaliter contentis $olidorum a rotatione curvæ circa tres axes generatorum, dabuntur contenta $oli- dorum a rotatione eju$dem curvæ circa quo$cunque alios axes gene- ratorum, &c. 17. Sit data fluxio (a y + b x + c) x^. + (A y + B x + C) y^. = 0, ex datâ fluente fluxionis y x^. (quæ plerumque acquiri pote$t e datâ æquatione) erui pote$t fluens omnis fluxionis formulæ (h y^m + (k + l x)y^m-1 + &c.) x^.; &c. 18. Datâ algebraicâ vel fluxionali æqua- tione α = 0 & fluxionali quantitate π, in quibu$dam ca$ibus inveni- tur ejus fluens ope datarum. 19. Datâ fluxionali vel fluxionalibus æquationibus, inveniuntur functiones variabilium in iis contentarum & earum fluxionum, quarum fluentes innote$cunt. 20. Si M $it particularis valor fluxionalis æquationis, tum erit quæcunque functio quantitatis _M_ valor fluxionalis æquationis. 21. Sint α = 0 & π = 0 duæ fluxionales æquationes m & r ordinum, quorum m minor e$t quam r; & $it Kα + Lπ=V^., ubi V e$t fluxionalis quantitas ordi- nis (r - 1); duæ datæ fluxionales reducuntur ad duas fluxionales [0039]PRÆFATIO. V = con$t. & α = 0. 22. Datâ fluente n ordinis, docetur metho- dus ejus fluxionalem æquationem inveniendi. 23. Sunt n diver$æ fluentes α = 0, β = 0, γ = 0, &c. primi ordinis; n. {n - 1 / 2} fluentes $ecundi ordinis; &c.; (n) vero diver$i multiplicatores, qui reddunt fluxionalem æquationem (n) ordinis integrabilem. 24. Generalis fluens prædictæ fluxionalis æquationis erit φ: (α, β, γ, δ, &c.) 25. Datis duabus quantitatibus p & q, quæ $unt functiones vel algebraicæ vel fluxionales quantitatum x & y, traditur methodus detegendi, an- non p $it functio quantitatis x. 26. Cum dimen$iones fluxionis ordi- nis maxime $uperioris in datâ æquatione $int majores quam 1; tum reducendæ $unt per extractionem ad unam dimen$ionem. 27. Non- nulla adjiciuntur de methodis inveniendi fluentes fluxionalium æqua- tionum $uperiorum ordinum. 28. Per infinitas $eries inveniuntur multiplicatores datarum fluxionalium æquationum. 29. Dantur ca$us, in quibus fluxionales æquationes, qui habent terminos variabilium (m & m-1) vel (m, m-1, m-2), &c. dimen$ionum, integrari po$$unt. 30. Fluxionalis æquatio (n) ordinis, quæ $it homogenea, reducitur ad fluxionalem æquationem (n - 1) ordinis. 31. Sint duæ vel tres vel m homogeneæ fluxionales æquationes ordinis (n), tres vel quatuor (m + 1) variabiles quantitates (x, y, z, &c.) involventes; eæ reduci po$$unt ad fluxionalem æquationem, cujus ordo non major e$t quam n m - 1. 32. In $ub$titutionibus minime pro x & y $ub$tituantur homogeneæ functiones nullarum dimen$ionum quantitatum z & v, nam hæ quantitates reduci po$$unt ad functiones eju$dem quantita- tis. 33. Detur æquatio algebraica, in quâ $imiliter involvuntur x & y; inveniatur ejus fluxio φ x^. + φ′ y^. = 0; in hâc æquatione pro y in φ & pro x in φ′ $cribantur earum valores ex datâ æquatione deducti; & æquationis re$ultantis generalis fluens for$an non erit data æquatio. 34. Detur fluxionalis æquatio p x^. + q y^., & $it p^. = α x^. + β y^. & q^. = π x^. + ρ y^.; tum, $i {β - p / 2} $it functio quantitatis x, data æquatio red- ditur integrabilis per multiplicatorem, qui e$t functio quantitatis x; ex con$imilibus principiis per fluxionalem æquationem inferioris or- [0040]PRÆFATIO. dinis invenitur, annon fluxionalis æquatio $uperioris ordinis recipiat multiplicatorem, qui e$t functio quantitatum x & x^.. 35. Eadem prin- cipia extenduntur ad detegendam fluentem fluxionalis æquationis p y^. ^n + q y^. ^n-1 ... t y^. ^n-m = 0, ubi 2 m minor e$t quam n; & p e$t functio quan- titatum x, x^., y, y^., .. y^. ^n-2m-1, &c. 36. Per methodum in cor. 4. prob. 53. traditam detegi pote$t; annon data fluxionalis æquatio, quæ e$t functio quantitatum x, x^., y, y^., y^.., &c. evadere po$$it integrabilis per multiplicatorem, in quâ dantur omnes functiones quantitatum y, y^., y^.., &c.; & in eâ continentur variabiles quantitates, quæ denotant functiones quantitatum x & x^. deducendas. 37. Sint m æquationes (m + 1) variabiles quantitates involventes, quarum formulæ $int a x^. ^n + b y^. ^n + &c. + a′ x^. t^. ^n-1 + b′ y^. t^. ^n-1 + ..a′ x t^.^n ^n + &c. + T t^.^n = 0, &c., tum earum fluentes deducuntur. 38. Traditur methodus inveniendi (l) fluxionales æquationes (l + 1) variabiles quantitates habentes, qua- rum fluentes innote$cunt. 39. Generalis fluens fluxionalis æquatio- nis deductæ ex transformando datam fluxionalem æquationem, in quâ x fluit uniformiter in alteram, in quâ y fluit uniformiter, eadem erit ac generalis fluens datæ fluxionalis æquationis. 40. Per infini- tas $eries datur methodus inveniendi, annon fluens fluxionalis æqua- tionis in finitis terminis exprimi po$$it. 41. Ex a$$umptis pro x & y functionibus vel algebraicis vel fluentialibus quantitatis z deduci po$- $unt fluxionales æquationes, quarum nec x per y, nec y per x, quam- vis utraque per tertiam z, exprimi pote$t. 42. Inveniuntur quædam functiones duarum diver$arum fluentialium quantitatum ex datâ fluxionali æquatione deductarum, quæ erunt inter $e æquales. 43. Sint n fluxionales æquationes a = 0, &c., quarum ordo $it l, (n + 1) variabiles quantitates (x, y, z, &c.) involventes; tum $int m, m′, &c. functiones quantitatum (x, y, z, &c.) & earum fluxionum, quarum ordines minores $unt quam l; & ita a$$umi po$$unt multiplicatores m, m′, &c., ut exoriantur n diver$æ & independentes fluxionales æqua- tiones, quæ integrari po$$unt.

In libro $ecundo 1. traduntur nonnulla nova de inveniendis incre- [0041]PRÆFATIO. mentis fluentialium quantitatum. 2. Sit quantitas P functio quan- tatis x, cujus incrementum $it Q; tum erit Q^. æqualis incremento fluxionis P^., $i modo fluxio (0^.) incrementi (0) quantitatis x æqualis $it incremento fluxionis x^.. 3. Incrementum {a x^n + b x^n-1 + &c. / x(x + x)...(x + (n - 1)x^.)} in primâ editione huju$ce operis reducitur ad incrementa huju$ce ge- neris α + {β / x} + {γ / x(x + x)} + &c.; & ob$ervatur, $i β = b - n · {n - 1 / 2}a x. non $it = 0, integralem in finitis terminis non exprimi po$$e. 4. Sit incrementum fractio {a x^m + b x^m-1 + &c. / x(x + x.) · (x + (n - 1)x.) × (x + p) .. (x + p + (m - 1) x. × &c.}; ea reducitur ad integrabiles formulas, cum formu- lis {β / x}, {β′ / x + p}, &c. adjunctis. 5. Si numerus literarum o, p, &c. $it λ, tum ex λ independentibus integralibus huju$ce formulæ deduci po$- $unt omnes eju$dem formulæ: & $i dimen$iones quantitatis x in nume- ratore $int minores quam ejus dimen$iones in denominatore per duas vel plures, tum β + β′ + &c. = 0, &c. 6. Dimen$iones quantitatis x in incremento $emper erunt minores quam dimen$iones eju$dem quantitatis in integrali per unitatem; ni dimen$iones quantitatis in numeratore integralis æquales $int ejus dimen$ionibus in denomina- tore, in quo ca$u minores erunt per quantitatem majorem quam unitatem: hinc, $i dimen$iones in integrali minores $int per unitatem quam ejus dimen$iones in incremento, tum ejus integralis in finitis terminis non exprimi pote$t. 7. Si quicunque divi$or in denomi- natore contineatur, qui non habeat alterum a $e di$tantem per r x, ubi r e$t integer numerus; tum integralis in finitis terminis non ex- primi pote$t. 8. Traditur methodus in genere inveniendi integralem dati incrementi, $i modo finitis terminis exprimi po$$it, rejiciendo fingulos ultimos terminos in denominatore contentos, &c. 9. Datur methodus inveniendi integrales incrementorum, quæ duas vel plures variabiles quantitates & earum incrementa involvunt. 10. Si inve- [0042]PRÆFATIO. niatur incrementum quantitatis V ordinis m ex hypothe$i quod x $olummodo $it variabilis, & re$ultet quantitas W, deinde inveniatur incrementum quantitatis W ordinis n ex hypothe$i, quod y $olum- modo $it variabilis; eadem re$ultabit quantitas ac $i modo inveniatur primo incrementum quantitatis V ordinis n ex hypothe$i quod y $o- lummodo $it variabilis, & re$ultet quantitas u, deinde inveniatur in- crementum m ordinis quantitatis u ex hypothe$i quod x $olummodo $it variabilis; &c. 11. Si A $it integralis, quæ e$t functio quantitatis z & ejus incrementorum; & a$$umatur æquatio, in quâ x & z $imili- ter involvuntur, deinde inveniantur quantitas z & ejus incrementa in terminis quantitatis x & ejus incrementorum; $cribantur hæ quanti- tates pro $uis valoribus in A, & re$ultet B; in B pro x $cribatur z & re$ultet C: $int π & ρ, α & β corre$pondentes valores quantitatum x & z, tum integralis inter valores α & β variabilis z quantitatis A + C contenta eadem erit ac integralis eju$dem quantitatis A + C inter valo- res π & ρ eju$dem quantitatis z. 12. Traditur methodus inveniendi, an- non integralis logarith. {A / B} inveniri po$$it ope logarithmorum, ubi A & B $unt functiones variabilis x. 13. Datâ æquatione algebraicâ y^n + (a + b x) y^n-1 + &c, = 0; traditur methodus inveniendi æqua- tionem, cujus radix e$t quæcunque algebraica functio quantitatum x & y & earum incrementorum. 14. Adjicitur nota, e quâ $æpe dici pote$t prædictam æquationem in finitis terminis non exprimi po$$e. 15. Sit integralis æquatio a x^r + b x^s y^t = c y^n; & exinde con$tant quantitates x & y in terminis quantitatis z, & con$equenter quæcun- que algebraica functio quantitatum x & y & earum incrementorum in algebraicis terminis quantitatis z & ejus incrementorum; & exinde annon ejus integralis inveniri po$$it. 16. Datur methodus extermi- nandi integrales quantitates ex datâ æquatione. 17. Nonnulla dantur de correctione integralium incrementorum. 18. Ob$ervatur n e$$e integrales primi ordinis incrementialis æquationis (n) ordinis; n .{n - 1 / 2} diver$as integrales $ecundi ordinis; &c. 19. Prædicta æquatio n habet multiplicatores. 20. Generalis integralis incrementialis æqua- [0043]PRÆFATIO tionis (n) ordinis erit quæcunque functio e $ingulis (n) generalibus integralibus prædictæ æquationis; quæcunque functio ex $ingulis (n · {n - 1 / 2}) generalibus integralibus $ecundi ordinis prædictæ fluxi- onalis æquationis; & $ic deinceps. 21. Sit æquatio yn′ + a yn′ - 1 + b yn′ - 2 .. + d y + f y = 0, & erit ejus generalis integralis A e^αx + B e^βx + &c. = y, ubi e^αx. = π, e^βx. = ρ, &c., & π, ρ, σ, &c. $unt radices æqua- tionis v^n + a v^n-1 + &c. = 0. Plura in hoc libro adjiciuntur de in- tegralibus & incrementis, & incrementialibus æquationibus con$imilia iis, quæ in priori libro de fluxionibus & fluxionalibus æquationibus traduntur.

In libro tertio 1. datur ratio, quam habeant inter $e vera & appa- rens convergentia. 2. Datâ lege, quam ob$ervant termini $eriei in infinitum progredientis; traditur methodus digno$cendi, annon $eries fit finita. 3. Dantur $eries, quæ $emper convergant ad omnes valores earum incognitarum quantitatum; aliæ $eries, quæ $emper divergant. 4. Sit infinita æquatio A = a x^r + b x^r+1 + &c.; & $i coefficientes haud cre$cant in majori quam quâcunque geometricâ ratione & fint omnes affirmativæ tum datur una affirmativa radix & non plures; &c. 5. Traditur æquatio, quæ habet infinitas & incognitas radices, &c. 6. Docetur methodus reducendi duas vel plures æquationes in- finitas in unam, ita ut incognitæ quantitates exterminentur. 7. Tra- ditur methodus detegendi, annon data quantitas $it radix datæ infi- nitæ æquationis. 8. Æquatio 1 - x + x^2 - x^3 + &c. = 0 habet radicem x = 1. &c. 9. Sit æquatio 0 = a - b x + c x^2 - d x^3 + &c.; ubi {b / a} multo major $it quam {c / b}, & {c / b} quam {d / c}, {d / c} quam {f / e}, &c.; tum erunt omnes radices datæ æquationis po$$ibiles: & {a / b} erit approxima- tio ad minimam radicem; {b / c} approximatio ad $ecundam; &c. 10. Sint m radices multo majores vel minores quam reliquæ; tum ex (m + 1) [0044]PRÆFATIO primis vel ultimis terminis deduci po$$unt approximationes ad illas radices; $i autem una radix multo major $it quam m radices, multo autem minor quam reliquæ, tum datur ejus approximatio; & $ic de pluribus. 11. Docetur methodus inveniendi maximam radicem datæ æquationis, $i modo omnes $int po$$ibiles; & exinde rever$ionem $e- riei y = b x + c x^2 + &c. 12. Traditur methodus inveniendi ap- proximationes ad radicem datæ æquationis quæ multo major $it quam m radices & multo minor quam reliquæ. 13. Si una radix multo major vel minor $it quam quæcunque alia & vera ad r figuras; tum ex m + 1 primis vel ultimis terminis erui pote$t approximatio vera ad m × r figuras prope. 14. Animadvertitur in æquationibus $upe- riorum ordinum (ut maxime probabile e$t) numerum impoffibilium radicum majorem e$$e quam numerum po$$ibilium, & con$equenter maximum impo$$ibilem radicem majorem e$$e quam maximum po$$ibilem, & methodum inveniendi approximationes per extracti- onem radicum pote$tatum e $ingulis radicibus, &c. perraro in æquationibus $uperiorum dimen$ionum u$ui in$ervire. 15. Erit n{n - 1 / 2} · {n - r / r + 1} - n · n · {n - 1 / 2} .. {n - r + 1 / r} + n · {n - 1 / 2} · n · {n - 1 / 2} ..{n - r + 2 / r - 1} - &c. = 0 vel ± n · {n - 1 / 2} · {n - {r - 1 / 2}/{r + 1 / 2}}. 16. Sit æquatio 1 - (α + β + γ + &c.) {1 / x} + (α β + αγ + βγ + &c,) {1 / x^2} - (α β γ + α β δ + &c.) {1 / x^3} + &c. = A = 0; datur lex $eriei, quæ $it A^n. 17. Ex terminis $eriei re$ultantis per divi$ionem numeratoris 1, &c. per da- tam æquationem deducuntur approximationes ad maximam radicem $ecundam, &c.; $i modo radices $int omnes po$$ibiles. 18. Approxi- matio ad radicem inventa pendet ex hoc, nempe quo propius quan- titas a$$umpta pro radice $it ad unam radicem quam ad reliquas. 19. [0045]PRÆFATIO Approximationes $ic inventæ ultimo convergent in majori quam quâvis geometricâ progre$$ione. 20. Docentur ca$us, in quibus ap- proximationes inventæ convergunt. 21. Si terminorum datæ æqua- tionis $igna $emel $olummodo vel progrediantur de + in +, vel - in -; vel mutentur de + in -, vel - in +; tum a$$umatur quæcunque negativa quantitas in uno ca$u, affirmativa vero in al- tero, pro approximatione ad radicem prædictam, & $emper conver- gent approximationes per prædictam methodum inventæ. 22. Datis approximationibus ad r radices datæ æquationis, inveniuntur appro- ximationes magis appropinquantes. 23. Detur æquatio A = 0, ubi A $it functio quantitatis x; fingatur x variabilis, & $it a valor quan- titatis x prope; pro x $cribatur a - e & re$ultet æquatio P - Q e +{1 / 2} R e^2 - {1 / 6} S e^3 + &c. = 0; & ex terminis huju$ce æquationis deduci po$$unt continuæ approximationes ad radices datæ æquationis. 24. Ex datâ æquatione n invariabiles & incognitas quantitates involvente & datis ad eas approximationibus, per n $ub$titutiones erui po$$unt quantitates ad earum valores magis approximantes. 25. Datis in finitis æquationibus duas vel plures incognitas quantitates habenti- bus, invenitur una in terminis reliquarum. 26. Sit y $umma $eriei $ecundum dimen$iones quantitatis x, v vero $umma $eriei $ecundum dimen$iones quantitatis z; & detur $eries w $ecundum dimen$iones quantitatum z & x progrediens; traditur methodus inveniendi w in terminis quantitatum y & v. 27. Invenitur formula $eriei p + a q x + &c. = A, cujus pote$tates A^n vel radices A^{n / m} $emper eandem ob$er- vant legem. 28. Docetur methodus inveniendi approximationes ad fluentes fluxionum reducendo datam fluxionem ad $eriem $ecun- dum dimen$iones perparvarum quantitatum, vel variabilium, vel unius vel plurium progredientem. 29. Generalis fluens fluxionis y^. ^2 = y z^.^2 erit y = E x + F x′, ubi x = z + {z^3 / 2 · 3} + {z^5 / 2 · 3 · 4 · 5} + &c., x′ = 1 + {z^2 / 1 · 2} + {z^4 / 1 · 2 · 3 · 4} + &c., & z = log. (x + √ (1 + x^2)) = [0046]PRÆFATIO. log. (x′ - √ (x′<_>2 - 1)), & E & F $unt invariabiles quantitates ad li- bitum a$$umendæ. 30. Datur $eries pro inveniendâ $. {√(1 - cx^2)x^. / √(1 - x^2)}, ubi c e$t perparva quantitas; i.e. peripheriâ ellip$eos, quæ haud multum differt a circulo. 31. Traduntur ca$us, in quibus $eries a^m ± m a^m-1 x + &c. = (a ± x)^m, &c. convergit. 32. Docetur methodus inveniendi, annon $eries exorta ex reducendo algebraicam functionem quantita- tis x ad $eriem (P) $ecundum ejus dimen$iones progredientem con- vergat; etiamque annon $eries, quæ exprimit $. P x^., convergat. 33. In fluentibus, &c. inve$tigandis; docetur methodus interpolandi, ita ut $e- ries maxime celeriter convergant. 34. Si transformetur fluxio, cujus variabilis e$t x, in alteram cujus variabilis e$t z, quæ datam habeat relationem ad x; & reducantur duæ fluxiones ad $eries $ecundum dimen$iones quantitatum x & z re$pective progredientes; dantur con- vergentiæ, quas habent inter $e duæ $eries. 35. Transformantur datæ algebraicæ quantitates in terminos $ecundum dimen$iones quan- titatis x progredientes, quarum formulæ $unt integrabiles. 36. {a / z - α}= {a / z} + {a α / z (z + 1)} + {a α (α + 1) / z · z + 1 · z + 2} + {a α (α + 1) (α + 2) / z · z + 1 · z + 2 · z + 3} + &c. 37. Vera & apparens convergentia geometricæ $eriei e$t unifor- mis. 38. Contineantur tres incognitæ quantitates (x, y & z) in datâ æquatione, datur methodus inveniendi unam in terminis dua- rum reliquarum. 39. Datâ æquatione involvente duas incognitas quantitates x & y, datur $ub$equens methodus inveniendi y in termi- nis quantitatis x; a$$umatur y = A x^m + B x^n+m + C x^2n+m + &c.; de- inde 1^mo. inveniatur approximatio ad coefficientem A; & exinde ap- proximatio ad coefficientem B, & propior ad coefficientem A; & $ic deinceps; &c. 40. Sit fluxionalis æquatio (n) ordinis, duas varia- biles quantitates x, y & earum fluxiones involvens; ex eâ deducatur $eries, quæ exprimat y in terminis quantitatis x; & $i modo ab initio $eriei incipiat, $emper occurrent in eâ (n) invariabiles quantitates ad libitum a$$umendæ. 41. In prædictâ re$olutione for$an occurrent re- [0047]PRÆFATIO. $olutiones homogenearum fluxionalium æquationum ordinem (n) non $uperantium. 42. Datâ fluxionali æquatione relationem inter ab$ci$$am, ejus corre$pondentes ordinatas & earum fluxiones expri- mente, invenitur fluxionalis æquatio relationem inter ab$ci$$am & ejus corre$pondentes ordinatas ad a$ymptotos de$ignans. 43. Ex da- tis relationibus inter valores x & z incognitæ quantitatis x, & inter $ummas duarum $erierum exinde re$ultantium; traditur methodus in- veniendi coefficientes ip$ius $eriei. 44. Promovetur regula vulgariter dicta fal$i: viz. cum datæ approximationes ad duas vel plures radices maxime accedant, vel cum dentur plures $ub$titutiones pro incognitâ quantitate in datâ æquatione: & eadem perficiuntur in pluribus æquationibus plures incognitas quantitates habentibus. 45. Erit x = ^m √ (a + {b / ^m √ (a + &c.)}), re$olutio æquationis x^m+1 - a x = b; &c.; x = ^n √ (a + ^n √ (a + &c.)) radix æquationis (x^n - a)^n - x^n &c. = 0. &c.

In libro quarto 1. ad particularem ca$um, ubi z. incrementum quantitatis z di$tantiæ a primo $eriei termino e$t 1, applicantur ea, quæ prius traduntur de fluxionalibus & incrementialibus æquationi- bus. 2. Datur methodus transformandi æquationem inter $ummas & terminos in incrementialem æquationem. 3. Summa nullius $e- riei exprimi pote$t per algebraicam æquationem inter prædictam $ummam & quantitatem x, $ecundum cujus dimen$iones progrediatur $eries, relationem de$ignantem; ni dimen$iones quantitatis x vel ea- rum differentiæ denotari po$$int per arithmeticas $eries; & differentiæ inter dimen$iones quantitatis z di$tantiæ a primo $eriei termino in numeratore & denominatore eædem $int: & non exprimi pote$t per fluxionalem æquationem; ni prædictæ differentiæ $int eædem, vel uni- formiter cre$cant vel decre$cant. 4. Sit $eries a + b x + c x^2 + &c. $ecundum dimen$iones quantitatis x progrediens, cujus coefficientes terminorum proxime $ub$equentium ad infinitam di$tantiam :: r:1; [0048]PRÆFATIO. ducatur hæc $eries in functionem ip$ius x = 0, cum x = α; tum $i x major $it quam r, $eries diverget; $in minor, converget. 5. Tran$- formatur data $eries in alteram, cujus termini $int $ummæ e $ingu- lis (n) $ucce$$ivis terminis. 6. Nova methodus adjicitur dividendi al- teram quantitatem per alteram; & exinde detegendi $eries, quarum $ummæ innote$cant. 7. Sit $eries {1 / α · β · γ · δ · &c.} + {1 / α + 1 · β + 1 · γ + 1 · δ + 1 · &c.} x^b + {1 / α + 2 · β + 2 · γ + 2. δ + 2 · &c.} x^2b + &c., & $i omnes reliquæ quantitates γ, δ, &c. di$tent a duabus α & β per integros numeros; tum $ummæ $erierum inveniri po$$unt a fluentibus fluxionum {x^bα-1 x^. / 1 ± x^b} & {x^bβ-1 x^. / 1 ± x^b}. 8. Inveniuntur $eries, quæ $unt gene- rales vel particulares fluentes fluxionalis æquationis. 9. Ex datis convergentibus $eriebus inveniuntur aliæ. 10. Deteguntur $ummæ $erierum, quarum $inguli termini dantur ex infinitis $eriebus. 11. Conce$sâ methodo detegendi generaliter annon una data $eries vel quantitas $it algebraica functio aliarum, traditur methodus inveniendi, annon detur algebraica vel fluxionalis relatio inter $ummam & ter- minos datæ $eriei. 12. Generalis fluens æquationis y^. ^n = y x^. ^n erit a (1 + {x^n / 1 · 2 .. n} + {x^2n / 1 · 2 .. 2n} + &c.) + b x (1 + {x^n / 2 · 3 .. n + 1} + &c.) + &c. 13. Invenitur quantitas, quæ in $eriem ducta, præbeat $eriem magis convergentem. 14. Inveniuntur ca$us, in quibus differentiæ $ucce$$ivæ celeriter convergant, &c. 15. In detegendâ $ummâ $eriei, cujus generalis terminus $it {a z^m + b z^m-1 + &c. / z^n + p z^n-1 + &c.} vel quæcunque alia determinata functio quantitatis x, primum invenienda e$t $umma ter- minorum, u$que donec terminus z evadat major quam maxima radix æquationum a z^m + b z^m+1 + &c. = 0 & z^n + p z^n-1 + &c. = 0, &c. 16. Transformatur æquatio relationem inter $ucce$$ivas $ummas & [0049]PRÆFATIO. terminos de$ignans in infinitam fluxionalem æquationem relatio- nem inter $ummam S vel terminum t, ejus fluxiones, & z di$tantiam a primo $eriei termino & z^. exprimentem; & nonnuliæ $eries tradun- tur. 17. Ex $ummis $erierum primi ordinis deducuntur $ummæ om- nium $erierum $uperiorum ordinum. 18. Inveniuntur $ummæ $erie- rum, quarum termini $unt irrationales. 19. Datur convergentia inter- polationum $erierum. 20. Traditur methodus interpolationis $erie- rum, cum numerus factorum in terminis contentorum non $it idem. 21. Dantur $eries interpolabiles. 22. Etiamque $ummæ $erierum {1 / 1 · 2 .. m} ± {x^n / 1 · 2 .. n + m} + {x^2n / 1 · 2 .. 2n + m} ± &c. 23. Ex datis fluentibus fluxionum $. {x^. / 1 + a x^n}, $. {x^. / x} $. {x^. / 1 + a x^n}, $. {x^. / x} $. {x^. / x} $. {x^. / 1 + a x^n}, &c. ad h - 1, &c.; terminos datur $eries pro inveniendâ $ummâ $eriei, cu- jus generalis terminus e$t {± a^z / nz + l. (nz + 1)^h-1}&c. 24. Traduntur nonnulla problemata _Naudeanis_ haud multum di$$imilia. 25. Adjicitur methodus inveniendi continuum contentum datæ quantitati æquale. 26. Dan- tur diver$æ $eries pro inveniendis $inubus & co$inubus arcuum qui inter $e $unt :: n:m; & methodus inveniendi approximationes ad ra- dices æquationis per $inus & co$inus. 27. Invenitur aggregatum plu- rium fractionum, quæ $int infinitæ. 28. Adjungitur nova methodus in- veniendi approximationem ad fluentem fluxionis {x^α x^. / 1 ± x^b}, cum b:α non habeat rationalem rationem; quæ ad omnes fluxiones applicari pote$t. 29. Datur facilis methodus detegendi; annon $umma $eriei, cujus ge- neralis terminus e$t {a′ / α + z · β + z · γ + z · &c.}, in finitis terminis ex- primi po$$it: methodus generaliter detegendi, annon $umma omnis $eriei, cujus generalis terminus $it data functio quantitatis x, in finitis terminis exprimi po$$it, in methodo incrementorum traditur. 30. Per $implices æquationes deducitur $umma $eriei, cujus generalis ter- [0050]PRÆFATIO. minus e$t {a′ z^m + b′ z^m-1 + &c. / (α + z)^b (β + z)^b′ (γ + z)^b″ &c.}, ex $ummis $erierum qua- rum generales termini re$pective $unt {1 / α + z}, {1 / (α + z)^2}, {1 / (α + z)^3} ..{1 / (α + z)^b}; {1 / β + z}, {1 / (β + z)^2} .. {1 / (β + z)^b}, &c. 31. Invenitur $umma $eriei, cujus generalis terminus e$t {a′ z^m + b′ z^m-1 + &c. / 1 · 2 · 3 .. n z × m′ + z · m″ + z · &c.}, ubi m′ & m″, &c. $unt inæquales quantitates, per circulares vel logarith- mos, &c. 32. Ducantur $ucce$$ivi termini in qua$cunque m arith meticas independentes $eries, & ex $ummis (m + 1) $erierum re$ultantium erui po$$unt per $implices æquationes omnium huju$ce generis $um- mæ. 33. Sit P = A + B x^n + C x^2n + &c.; tum ex datis P, $. x^α P^., $. x^β P^., &c. erui pote$t $umma $eriei, cujus generalis terminus e$t {φ (a′z^m + b′z^m-1 + &c.) / α + z · β + z · γ + z · &c.}; $i modo φ $it generalis terminus datæ $e- riei {P^. / x^.}. 34. Erit {1 / α} · {1 / β - α} · {1 / γ - α} · &c. + {1 / β} · {1 / α - β} · {1 / γ - β} · &c. +{1 / γ} · {1 / α - γ} · {1 / β - γ}.&c. + &c. = {1 / α β γ &c.}. 35. Sit (a + b x^n + c x^2n + ..x′^n)^k x^θ = x (A + B x^n + C x^2n + &c.); tum ex (l - 1) fluentibus independentibus fluxionum formulæ (a + b x^n + c x^2n + &c.)^k ± i x^θ±hn x^., ubi b & i $unt integri numeri, deduci po$$unt $ummæ omnium $erie- rum, quarum generales termini $unt {φ (a′ z^m + b′ z^m-1 + &c.) / θ ± (r + zn) · θ ± (s + zn) · θ ± (t + z n · &c.)}, ubi r, s, t, &c. $unt diver$i integri numeri, & φ e$t generalis terminus $eriei A + B x^n + &c.. &c. 36. Sit (a + b x^n)^m = a^m + m a^m-1 b x^n + &c.; tum per conicas $ectiones inveniri pote$t $umma $eriei, cujus generalis terminus e$t m · {m - 1 / 2}...{m - z + 1 / z}× {a′ z^m′ + b′ z^m′-1 + &c. / n z + r n · n z + s n · n z + t n · &c.}; $i modo r, s, t, &c. $int in- [0051]PRÆFATIO æquales fractiones, quarum denominatores vel $unt 1 vel 2: inveniri pote$t per arcus conicarum $ectionum, $i denominatores non $int majores quam 1, 2, 3 vel 4: & $ic e fluentibus in capite 2. libri 1. traditis, erui po$$unt plures huju$modi $eries. 37. Erunt x^-β $. x^β-α-1 x^. $. x^α-1 x^. P = x^-α $. x^^α-β-1 x^. $. x^β-1 x^. P, &c. 38. Dantur methodi inve- niendi $ummabiles $eries, quæ $unt inter $e æquales. 39. Traditur fluens fluxionis s^(q) ^m · c^(q) ^n × {q x^. / √(1 - x^2)}, ubi s^(q) & c^(q) $unt $inus & co$i- nus arcûs qA; & A e$t arcus, cujus co$inus e$t x. 40. Datur nova me- thodus differentiarum, in quâ ex terminis ad di$tantias n-1, n-2, n-3, &c., a primo, qui $int S^n-1, S^n-2, S^n-3, &c. acquiri pote$t termi- nus S^n+m ad di$tantiam n+m a primo; erit enim S^m+n = (m + n)S^n-1 -(m + n) · {m + n-1 / 2} S^n-2 + &c.; datis etiam S^n, S^-n, S^n-1, S^-n+1, S^n-2, S^-n+2, &c. traditur lex pro S^m. 41. Adjicitur methodus corre$pon- dentium valorum, i. e, $int S^α & α, S^β & β, S^γ & γ &c., corre$pon- dentes valores quantitatum x & y, invenitur y = {x-α · x-β · &c. / α-β · α-γ}S^α + {x-a · x-γ · &c. / β-α · β-γ · &c.} × S^β + &c. in omnibus his methodis cor- re$pondentium valorum, $i modo inventæ quantitates fingantur nihilo æquales, re$ultant æquationes, quæ præbebunt approximationes per regulas fal$i datas. 42. Si modo detur formula functionis quantita- tum x, y, z, &c., quarum tot corre$pondentes valores dentur, quot incognitæ quantitates in datâ functione contineantur; tum ex iis de- duci pote$t functio quæ$ita. 43. Dentur corre$pondentes valores trium vel plurium quantitatum x, y, z, &c. inveniuntur quantitates, quæ habeant prædictos corre$pondentes valores. 44. Datur correctio datæ quantitatis, quæ invenit veros corre$pondentes valores in n ca$i- bus, fallit vero in m. 45. A$$eritur $ummam omnium fractionum {A / α-β · α-γ · α-δ · &c.} + {B / β-α · β-γ · β-δ} + &c., ubi A e$t eadem rationalis & integralis functio quantitatis α ac β e$t quantita- [0052]PRÆFATIO. tis β; & in A $imiliter involvuntur quantitates β, γ, δ, &c.; & $imi- liter etiam ac quantitates α, γ, δ, &c. in B; &c. e$$e rationalem & in- tegralem functionem quantitatum α, β, γ, &c. in quâ $imiliter invol- vuntur prædictæ quantitates α, β, γ, &c., quæ habeat tot dimen$iones prædictarum quantitatum, quot $it differentia inter dimen$iones quan- titatum A & α-β. α-γ · α-δ. &c.; $i differentia $it 0, tum erit data quantitas; $i negativa $it, tum erit prædicta $umma = 0. 46. Ad finem adjungitur methodus deductionis & reductionis; cujus po- tius mentionem feci, quam aliquid particulariter adjecerim, ut via in hâc maxime generali $cientiâ aliis $ternatur; ad quod maxime con- feret tractatus de generalibus functionibus.

Quædam etiam alia adjiciuntur nova non alibi petenda; queri li- ceat opera mathematica exterarum gentium in hanc academiam per- raro migra$$e; unde evenit me nunquam vidi$$e opera multorum præ- clarorum mathematicorum.

Pag. 147. dele Fig. 1. p. 95; pag, 467. 1. 17. pro _n_-1, lege _n_; l. antepen. pro _n_, lege _n_ + 1.

[0053] MEDITATIONES ANALYTICÆ CAPUT I. _De Fluxionibus fluentium inveniendis._ PROB. I.

DATA metbodo inveniendi $ucce$$ivos terminos convergentis $eriei a + b + c + d + e + f + &c. in infinitum progredientis, $ummam ejus invenire.

Addatur primus terminus (a) ad $ecundum (b), & eorum $umma (a + b) ad tertium (c), trium terminorum $umma (a + b + c) ad quartum d, & $ic deinceps; & quoniam $eries e$t convergens, hæ $uc- ce$$ivæ $ummæ ad $ummam totius $eriei vergunt, & ultimo propius accedunt ad eam quam pro quâvis datâ differentiâ: quæret vero ali- quis, & recte quidem, quomodo cogno$ci pote$t has $ummas ad $um- mam totius $eriei perpetuo vergere, & ultimo propius ad $e invicem accedere quam pro datâ quâvis differentiâ: cui re$pondendum e$t, hanc e$$e methodum: continuo inveniantur duæ quantitates, quarum una major e$t quam quæ$ita $umma, altera vero minor, i. e. limites inter quos interponitur $umma quæ$ita, & $i hi limites continuo ad $e invicem vergant, & denique $i hi limites ultimo probari po$$int propius ad $e invicem accedere quam pro quâvis datâ differentiâ, tum hæ $ummæ propius ad $e invicem convergunt, & ultimo pro- pius accedunt quam pro datâ quâvis differentiâ.

FIG. 1. Ex. Sit curva AbcdBA rectâ lineâ AB & curvâ AcB com- prehen$a; & ductis tangentibus ad puncta curvæ A & B, $int interni anguli BAC & ABC $imul a$$umpti haud majores quam duo recti: ducatur linea f c i parallela lineæ A B, & tangens curvam in puncto [0054]DEFLUXIONIBUS c, & agantur lineæ A c, c B; erit in$criptum triangulum vel æquale vel majus quam dimidium trapezii A B i f A, & con$equenter majus quam dimidium areæ curvilineæ: & $ic ducantur lineæ e g & h k cur- vam tangentes in punctis b & d, parallelæ autem lineis A c & B c, & erunt triangula A b c & c d B re$pective majora quam dimidia trape- ziorum A e g c & c h k B, ergo majora erunt quam dimidia curvilinea- rum arearum A b c A & c d B c; & $ic continuo in$cribantur triangula, quorum ba$es re$pective parallelæ $unt lineis tangentibus curvam in eorum verticibus, & eodem modo probari pote$t hæc triangula in- $cripta majora e$$e quam dimidia reliquarum curvilinearum arearum, & exinde e curvilineâ areâ continuo aufertur quantitas major quam dimidium reliquæ, &c. & con$equenter ultimo re$iduum erit minus quam quæcunque data quantitas. Sit $eries, cujus primus terminus a $it triangulum A c B, $ecundus vero b æqualis $it $ummæ duorum triangulorum A b c & c d B, tertius vero terminus æqualis $it $ummæ quatuor triangulorum $imiliter in$criptorum, &c.; hæc $eries erit con- vergens, $ummæ enim $ucce$$ivæ (a, a + b, a + b + c, &c.) perpetuo ad $ummam $eriei, i. e. ad aream curvæ A b c d B A vergunt, & ultimo propius ad eam accedunt quam pro datâ quâvis differentiâ.

Cor. 1. Omnis quantitas, quæ continuo inter limites convergentis $eriei ponitur, æqualis erit datæ $eriei $ummæ. Si non $it æqualis datæ $eriei $ummæ, $it differentia d, & inveniantur limites a b & a c,{a b c / e f g} inter quos ponitur $eriei $umma & prædicta quantitas, & qui propius ad $e invicem accedunt, quam pro differen- tiâ d. Sint e f & e g re$pective $eriei $umma & prædicta quantitas, & e f & e g majores erunt quam a b, minores vero quam a c; per hypo- the$in vero differentia f g=d major e$t quam b c, ergo $umma ef + fg=eg major erit quam a c, quod hypothe$i contradicit; unde e f haud major vel minor erit quam e g. Q.E.D.

Hoc modo demon$travit Archimedes aream circuli æqualem e$$e triangulo, cujus ba$is e$t ejus peripheria & perpendiculum radius.

[0055]FLUENTIUM INVENIENDIS.

Cor. 2. Sint duæ convergentes $eries, & $i $ingulus terminus unius $eriei $it in datâ ratione ad $ingulum alterius terminum, tum prioris $eriei $umma erit ad $ummam po$terioris $eriei in eâdem ratione.

Hujus corollarii demon$tratio eadem erit ac ea in prob. 2. lib. xii. Eucl. elem. quam con$ulas.

PROB. II. Datis $ucce$$ivis $eriei $ummis, invenire terminos $ucce$$ivos.

Sint S, S′, S″, S′″, S^4, &c. $ucce$$ivæ $ummæ, & $eries vel finita, vel in infinitum progrediens a + b + c + d + e + &c. i. e. $it S = a + b + c + d + e + &c. S′= # b + c + d + e + &c. S″= # c + d + e + &c. S′″= # d + e + &c. &c. # &c. # &c. # tum a=S-S′, b=S^1 -S^2, c=S^2 -S^3, d=S^3 -S^4, & $ic deinceps.

Ex. Sit di$tantia (x) termini quæ$iti a primo, & $int duæ $ucce$$ivæ $ummæ x × x - e × x - 2e × x - 3e...x-

    n-2
e × x-
    n-1
e
, & x + e × x × x-e × x - 2e...x-
    n-2
e. Subtrahatur prior $umma e po$teriori, i. e. de $ummâ x + e × x × x-e × x - 2e....x-
    n-2
e auferatur $umma x-
    n-1
e × x × x-e × x-2e......x-
    n-2
e
& re$iduum erit ne × x × x-e × x-2e.....x-n-2e terminus quæ$itus.

FIG.2. Cor.1. Sit figura a b c d e I A a rectis A a & A I & curvâ a b c I comprehen$a; in$cribantur & circum$cribantur parallelogramma $ub ba$ibus A B, B C, C D, &c. æqualibus, quæ dicantur e; & lateribus A a, B b, C c, D d, &c. figuræ lateri A a parallelis, contenta; & complean- tur circum$cripta & in$cripta parallelogramma; & $it x = AI, & [0056]DEFLUXIONIBUS $umma in$criptorum parallelogrammorum A b + B c + C d + &c. continuo $it x × x - e × x - 2e .. × x -

    n - 2e
× x -
    n - 1e
; tum $umma circum$criptorum parallelogrammorum erit proxima $umma, viz. x + e × x × x - e × x - 2e .... x -
    n - 2
e: circum$criptorum & in$criptorum parellalogrammorum differentia per exemplum erit n e × x × x - e × x - 2e ... x -
    n - 2
e. Sed hæc differentia æqualis e$t parallelogrammo Ab, cujus ba$is e$t e; & con$equenter latus Aa, $i parallelogrammum $it rectangulum, erit æquale; $in aliter propor- tionale contento {n e × x × x - e × x - 2e .. x -
    n - 2
e / e} = n x × x - e × x - 2e .. x -
    n - 2
e
. Area vero curvæ inter duas prædictas $ummas x × x - e .. x -
    n - 1
e & x + e × x × x - e .. x -
    n - 2
e
, viz. $ummas circum$criptorum & in$criptorum parallelogrammorum $emper poni- tur: $it e = 0, & hæ duæ $ummæ x × x - e × x - 2e .. x -
    n - 1
e & x + e × x × x - e × x - 2e ... x -
    n - 2
e
fient x × x × x × &c. = x^n inter $e & quantitati x^n æquales: $ed curvæ area inter has duas quan- titates continuo ponitur, ergo area curvæ in hoc ca$u erit x^n: ordi- nata Aa fuit n × x × x - e × x - 2e ... x -
    n - 2
e; quod, cum e = 0, fit n × x × x × x × &c. = n x^n-1; ergo, $i area curvæ continuo $it x^n, ejus ordinata corre$pondens erit n x^n-1.

Cor. 2. Sint ordinatæ n × x × x - e × x - 2e ... x -

    n - 2
e, & $umma prædictorum in$criptorum parallelogrammorum erit x + e × x × x - e × x - 2e ... x -
    n - 2
e; & con$equenter, $i ordinata curvæ $it n x^n-1, ejus area erit x^n.

Et $ic ratiocinari liceat de pluribus huju$cemodi quantitatibus.

[0057]FLUENTIUM INVENIENDIS. THEOR. I.

FIG. 3. Fluxio vel velocitas quantitatis (x = A p) per x^. $emper de- $ignetur, tum fiuxio ejus pote$tatis (x^n = A P) erit n x^n-1 x^.; fluat enim uniformiter x, & $int tres $ucce$$ivi valores quantitatis x re$pective, x - 0, x, x + 0; tum tres $ucce$$ivi valores quantitatis x^n erunt re$pective x - 0 = x^n - n x^n-1 0 + n · {n - 1 / 2} x^n-1 0^2 - &c. x^n = x^n · x + 0 = x<_>n + n x<_>n-1 0 + n · {n - 1 / 2} x<_>n-z 0<_>2 + &c. $ubtrahantur hi tres $ucce$$ivi valores quantitatis (x^n) a $e in- vicem, & re$ultant duæ $ucce$$ivæ differentiæ n x^n-1 0 - n · {n - 1 / 2} x^n-1 0^2 + &c. & n x^n-1 0 + n · {n - 1 / 2} x^n-2 0^2 + &c. quæ continuo cre$cunt; unde, $i x fluat uniformiter, quantitatis (x^n) motus erit acceleratus: $i vero $it motus acceleratus, tum $patium n x^n-1 0 - n. {n - 1 / 2} x^n-2 0^2 + &c. minus, & n x^n-1 0 + n. {n - 1 / 2} x^n-2 0^2 + &c. majus erit quam $pa- tium, quod corpus velocitate ad punctum P eodem tempore de$cri- beret; ergo velocitas quantitatis (x) erit ad velocitatem quantitatis (x^n) in minori ratione quam 0: n x^n-1 0 - n. {n - 1 / 2} x^n-1 0^2 + &c: in majori autem ratione quam 0: n x^n-1 0 + n. {n - 1 / 2} x^n-1 0^2 + &c. i. e. in minore ratione quam x^.: n x^n-1 x^. - n. {n - 1 / 2} x^n-2 0 x^. + &c. & in majori quam x^.: n x^n-1 x^. + n. {n - 1 / 2} x^n-2 0 x^. + &c. ergo, $i velocitas quantitatis (x) per x^. de$ignetur, velocitas quantitatis x^n inter duas [0058]DEFLUXIONIBUS quantitates n x^n-1 x^. - n · {n - 1 / 2} x^n-2 0 x^. + &c. & n x^n-1 x^. + n × {n - 1 / 2}x^n-2 0 x^. + &c. $emper ponetur, quicunque $it valor quantitatis (0). Supponatur 0 nihilo æqualis, & duæ prædictæ quantitates fiunt n x^n-1 x^. & inter $e æquales; unde velocitas quantitatis x^n, quæ inter eas po- nitur, erit etiam n x^n-1 x^..

Cor. I. Sit quantitas x^{n / m}, cujus fluxio requiritur; fingatur x^{n / m} = y, & con$equenter x^n = y^m, unde n x^n-1 x^. = m y^m-1 y^., & per reductionem y^. = {n x^n-1 x^. / m y^m-1} = {n / m}x<_>{n / m}-1 x^..

Cor. 2. Sit quantitas a x - b y + c z + d v, &c. & $int x^., y^., z^., v^., &c. re$pective fluxiones quantitatum (x, y, z, v, &c.) i. e. earum $pa- tia dato tempore uniformi motu de$cripta; & erit fluxio datæ quan- titatis a x^. - b y^. + c z^. + d v^. &c. Velocitates vel fluxiones enim erunt in eâdem ratione ac $patia uni$ormi motu dato tempore de$cripta; hæc vero $patia $unt a x^. - b y^. + c z^. + d v^., &c. unde con$tat cor.

Cor. 3. Fluxio rectanguli x y erit x y^. + y x^.. Fluxio enim quadrati x + y = (x^2 + y^2 + 2 x y) = 2 × x + y × x^. + y^. = 2 x x^. + 2 y y^. + 2 y x^. + 2 x y^.; $ed fluxio quantitatis x^2 + y^2 e$t 2 x x^. + 2 y y^., quæ $ubtra- hatur e priori, re$ultat fluxio quantitatis (2 x y) = 2 x y^. + 2 y x^., unde fluxio rectanguli (x y) = x y^. + y x^..

Cor. 4. Sit fractio {x / y}, cujus fluxio requiritur; fingatur {x / y} = z, & exinde x = y z, & con$equenter x^. = y z^. + z y^.; unde z^. = {x^. - z y^. / y} ={x^. - {x / y} y^. /y} = {y x^. - x y^. / y^2}.

Cor. 5. Fluxio contenti x y z erit x y × z^. + z × {. / x y}, $ed {. / x y} = x y^. + y x^.; ergo fluxio contenti x y z erit x y z^. + x z y^. + z y x^.; & $ic fluxio contenti x y z v w invenietur x y z v w^. + x y z w v^. + x y v w z^. [0059]FLUENTIUM INVENIENDIS. + x v w z y^. + y v w z x^.: & fluxio contenti x^n y^m z^r v^s erit n x^n-1 y^m z^r v^s x^. + m y^m-1 x^n z^r v^s y^. + r z^r-1 x^n y^m v^s z^. + s v^s-1 x^n y^m z^r v^.; & $ic deinceps.

Cor. 6. Sit quantitas data quæcunque algebraica functio fluentium quantitatum; $cribendo y, z, v, &c. pro quantitatibus in his functio- nibus contentis inveniri pote$t ejus fluxio.

Ex. 1. Sit fluens a + b x^n + c x^2n + d x^3n + &c. cujus fluxio requi- ritur: $cribatur y = a + b x^n + c x^2n + d x^3n + &c. & exinde y^. = n b x^n-1 x^. + 2 n c x^2n-1 x^. + 3 n d x^3n-1 x^.; & y^m = a + b x^n + c x^2n + d x^3n + &c. $ed fluxio quantitatis y^m e$t m y^m-1 y^. = m × a + b x^n + c x^2n + &c. × n b x^n-1 x^. + 2 n c x^2n-1 x^. + &c. $i modo pro y & y^. $cribantur earum valores a + b x^n + c x^2n + &c. & n b x^n-1 x^. + 2 n c x^2n-1 x^. + &c.

Ex. 2. Sit fluens a + b x^n + c x^2n + &c. × e + f x^n + g x^2n + &c. × k + l x^n + m x^2n + &c. × p + q x^n + r x^2n + &c. × &c. & ejus fluxio e prædictis principiis invenietur n x^. × e + f x^n + g x^2n + &c. × k + l x^n + m x^2n + &c. × p + q x^n + r x^2n + &c. × b e k p + λ f a k p + μ l a e p + v q a e k × x^n-1 + 2 c e k p + 2 λ g a k p + 2 μ m a e p + 2 v r a e k + b × e k q + e p l + k p f + λ f × a k q + a p l + b k p + μ l × a e q + a p f + p e b + v q × a e l + a k f + k e b × x^2n-1 + &c.

DEF. Logarithmi dicuntur quantitates, quæ $unt proportionales exponentibus pote$tatum vel radicum datæ quantitatis; e. g. $it (A) logarithmus quantitatis x, tum {n / m} A erit logarithmus quantitatis x^{n / m}.

Hæ autem exponentes $unt men$uræ rationum quantitatum, ergo logarithmi etiam erunt men$uræ earum rationum.

Cor. I. Hinc facile colligitur, $i modo logarithmi quantitatum a & b dicantur re$pective A & B, logarithmum producti a × b e$$e A + B.

Cor. Hinc, $i quantitas (x) cre$cat proportionaliter, ejus logarith- mus fluit uniformiter, i. e. $i quantitas (x) fluat eâdem ratione ac quantitas ip$a, tum ejus logarithmus fluit uniformiter; & con$equen- [0060]DEFLUXIONIBUS ter quantitas x erit ad datam quantitatem M:: x^. ad fluxionem ejus logarithmi {M x^. / x}; hinc fluxio logarithmi quantitatis (x) erit propor- tionalis fluxioni {x^. / x}. Si vero pro x & x^. $cribantur x + a & x^., re$ultat ({M x^. / x + a}) fluxio logarithmi quantitatis (x + a).

PROB. III.

1. Sit exponentialis quantitas x^y, invenire ejus fluxionem: fingatur x^y = X, unde y × log. x = log. X; hujus æquationis inveniatur fluxio, & re$ultat log. x × y^. + y × {x^. / x} = {X^. / X}, unde X × log. x, × y^. + X y{x^. / x} = X^.; pro X $cribatur x^y, re$ultat fluxio quæ$ita X^. = x^y × log. x × y^. + y x^y-1 x^..

2. Sit data exponentialis quantitas x^y × v, & per præcedentem methodum inveniri pote$t ejus fluxio x^y v^. + v y x^y-1 x^. + v × x^y × log. x × y^..

3. Sit exponentialis quantitas x^y^x^v^w^&c., & ejus fluxio erit y^x^v^w^&c. × x^y^x^v^w^&c. ^-1 x^. + x^y^z^v^w^&c. × z^v^w^&c. × y^z^v^w^&c. ^-1 × log. x × y^. + x^y^z^v^w^&c × y^z^v^w^&c. × v^w^&c. × z^v^w^&c. ^-1 × log. x × log. y × z^. + x^y^z^v^w^&c. × y^z^v^w^&c × z^v^w^&c. × w^&c. × v^w^&c ^-1 × log. x × log. y × log. z × v^. + x^y^z^v^w^&c. × y^z^v^w^&c × z^v^w^&c × v^w^&c × &c. w^&c.-1 × log. x × log. y × log. z × log. v × w^. + &c. unde facile con$tabit lex, quam ob$ervat hæc $eries.

[0061]FLUENTIUM INVENIENDIS.

4. Fluxio exponentialis x^y^z^v^w^&c. × V erit V × fluxion. exponent. (x^y^z^v^w^&c.) + x^y^z^v^w^&c. × V^.; hæc vero fluxio $ic exprimi pote$t x^y^z^v^w^&c. × V^. +{V × y^z^v^w^&c. × A / x V^.} x^. + {z^v^w^&c. × B × x × log. x / y x^.} y^. + {v^w^&c. × C × y × log. y / z. y^.} z^. +{w^&c. × D × z × log. z / v z^.} v^. + {&c. × E × v × log. v / w v^.} w^. + &c. ubi literæ A, B, C, & præcedentes terminos re$pective denotant.

Sit V exponentialis quantitas, & facile con$tabit fluxio quæ$ita.

Et $ic inveniri pote$t fluxio contenti $ub pluribus exponentialibus quantitatibus.

Cor. Si vero x, y, z, &c. $int quæcunque functiones quarumlibet incognitarum quantitatum; & pro x, y, z, &c. & earum fluxionibus in $erie prius traditâ $cribantur hæ functiones & earum fluxiones re- $pective; invenietur fluxio quæ$ita.

5. Secundæ fluxiones inveniuntur e primis, tertiæ e $ecundis, &c. eodem modo, quo primæ inveniuntur e fluentibus; ergo datæ fluxio- nes pro fluentibus habeantur, & facile inveniri po$$unt earum flu- xiones.

Ex. Sint x^., x^.., x^..., &c. re$pective prima, $ecunda, tertia, &c. fluxio- nes quantitatis (x); & $ic y^., y^.., y^..., &c. prima, $ecunda, tertia, &c. flux- iones quantitatis (y), &c. invenire $ecundam, tertiam, &c. fluxionem quantitatis x^m y^n: prima vero fluxio datæ quantitatis invenietur m x^m-1 y^n x^. + n y^n-1 x^m y^.; ejus vero fluxio, quæ erit $ecunda fluxio quantitatis (x^m y^n), erit m × m - 1 x^m-2 y^n x^.^2 + 2 m n x^m-1 y^n-1 y^. x^. + m x^m-1 y^n x^.. + n × n - 1 y^n-2 x^m y^. ^2 + n y^n-1 x^m y^..; & eodem modo inveniri pote$t ejus (x^m y^n) tertia fluxio, &c.

[0062]DE FLUXIONIBUS, &c.

Cor. Hinc fluxio n ordinis rectanguli x y erit x^. ^n y + n x^. ^n-1 y^. + n ×{n - 1 / 2} x^. ^n-2 y^. ^2 + n · {n - 1 / 2} · {n - 2 / 3} x^. ^n-3 y^. ^3 .. n x^. y^. ^n-1 + x y^. ^n.

SCHOLIUM.

Duæ $unt methodi inveniendi areas curvarum, vel quod ad idem redit, inveniendi $ummas quantitatum, quarum datur infinitus nu- merus; altera e repetitis additionibus continuo vergit ad $ummam quæ$itam, & ultimo propius ad eam accedit quam pro datâ quâvis differentiâ, quod cogno$ci pote$t e limitibus $ucce$$ive deductis inter quos con$i$tit quæ$ita $umma: hæc fuit methodus veterum. Altera vero a$$umit $ummam tanquam quantitatem generaliter cognitam, & ejus partes exinde deducit; & quantitatibus, quarum datur infinitus numerus, fiunt prædictæ partes vel æquales vel propiores ad rationem æqualitatis quam pro datâ quâvis differentiâ; & exinde concludit $um- mam quantitatum, quarum datur infinitus numerus, e$$e a$$umptam quantitatem: hæc fuit methodus recentiorum: in hâc vero methodo minime refert, quo modo generantur partes ip$æ; $olummodo re$ert, utrum partes quantitatis a$$umptæ quantitatibus, quarum datur in- finitus numerus, conveniant, necne: $i vero partes con$iderentur tan- quam motu generatæ, tum dicitur methodus fluxionum vel incre- mentorum; $in aliter dici pote$t methodus integrationis.

[0063] CAP. II. De inveniendis Fluxionum fluentibus. PROB. IV.

DATA quâcunque fluxione, quæ $it algebraica functio literæ x in x^. ducta; invenire utrum ejus fluens exprimi pote$t terminis incognitæ quantitatis x, necne.

Ca$. 1. Sit fluxio a x^m x^., & ejus fluens erit {a x^m+1 / m + 1}.

1. Ca$. 2. Sit fluxio x^θ-1 × e + f x^n + g x^2n + k x^3n + &c. × a + b x<_>n + c x<_>2n + d x<_>3n + &c. × x^.; a$$umatur pro ejus fluente x^θ × e + f x<_>n + g x<_>2n + k x<_>3n + &c. × A + B x<_>n + C x<_>2n + &c. tum per cor. 6. theor. 1. ejus fluxio invenietur θ e A + θ + λ n f A + θ + n e B x^n + θ + 2 λ n g A + θ + n + λ n f B + θ + 2 n e C x<_>2n + &c. × x<_>θ-1 × e + f x<_>n + g x<_>2n + &c. x^.; & ex æquatis inter $e corre$pondentibus terminis re$ultabunt θ e A = a, θ + λ n f A + θ + n e B = b, θ + 2 λ n × g A + θ + n + λ n × f B + θ + 2 n e C = c, &c. & exinde A = {a / θ e}, B = {b - θ + λ n f A / θ + n e}, C = {c - θ + 2 λ n g A - θ + n + λ n f B / (θ + 2 n) e}, &c.

Ca$. 3. Sit fluxio x^θ-1 × e + f x^n + g x^2n + h x^3n + &c. × k + l x<_>n + m x<_>2 n + &c. × a + b x<_>n + c x<_>2n + d x<_>3n + &c. × x^.; & ad mo- dum præcedentem pro ejus fluente a$$umatur quantitas x^θ × (e + f x^n + g x^2n + &c.)^λ × (k + l x^n + m x^2n + &c.)^μ × (α + β x^n + γ x^2n + &c.); cujus inveniatur fluxio, & ex æquatis corre$pondentibus datæ & re- [0064]DE INVENIENDIS $ultantis fluxionis terminis inveniri pote$t prædicta fluens x^θ × e + f x<_>n + g x<_>2n + &c. × k + l x<_>n + m x<_>2n + &c. × {a / θ e k} (A) + b -

    θ + λ n
f k +
    θ + μ n
e l A/θ + n e k × x<_>n + &c. Et $ic deinceps.

Ca$. 4. Pro quantitatibus a + b x^n + c x^2n + &c., d + e x^n + f x^2n + &c., g + h x^n + k x^2n + &c., &c. $cribantur re$pective R, S, T, &c. & $it data fluxio (A + B x^n + C x^2n + &c.) x^θ-1 × R^λ-1 S^μ-1 T^ν-1 × &c. x^., $i vero communem habeant divi$orem nonnullæ $ub$equentes quan- titates R, S, T, &c. & A + B x^n + C x^2n + &c. tum ita reducatur data fluxio, ut quantitates prædictæ nullum habeant communem di- vi$orem, i. e. $imul colligantur $ub eodem vinculo omnes iidem divi- $ores, qui in datâ fluxione continentur; e. g. $it α + β x^n communis divi$or quantitatum a + b x^n + c x^2n + &c. = R, d + e x^n + f x^2n + &c. = S, & g + h x^n + k x^2n + &c. = T; i. e. α + β x^n × l + m x^n + o x^2n + &c. = a + b x^n + c x^2n + &c. = R, α + β x^n × p + q x^n + r x^2n + &c. = d + e x^n + f x^2n + &c. = S, & α + β x^n × s + t x^n + &c. = g + h x^n + k x^2n + &c. = T; & reducatur data fluxio in hanc formulam x^θ-1 × A + B x^n + C x^2n + &c. × α + β x^n × l + m x^n + o x^2n + &c. (R^λ-1) × α + β x^n × p + q x^n + r x^2n + &c. (S^μ-1) × α + β x^n × s + t x^n + &c. (T^ν-1) = α + β x^n × l + m x^n + o x^2n + &c. × p + q x^n + r x^2n + &c. × s + t x^n + &c. × x^θ-1 × A + B x^n + &c. a$$umatur pro ejus fluente quantitas x^θ × α + β x^n × l + m x^n + o x^2n + &c. × p + q x^n + r x^2n + &c. × s + t x^n + &c. × π + ξ x^n + σ x^2n + &c. per caput præcedens inveniatur ejus fluxio, & $upponantur datæ & re$ultantis fluxionis termini corre$pondentes inter $e æquales; & ex- inde inve$tigari po$$unt coefficientes π, ξ, σ, &c. quæ$itæ.

Ca$. 5. Sit data fluxio eadem ac in præcedente ca$u, & quantitatis $ub eodem vinculo contentæ $int plures divi$ores inter $e æquales, [0065]FLUXIONUM FLUENTIBUS. viz. divi$ores huju$ce formulæ α + β x^n vel α + β x^n, ubi litera m vel binarium vel majorem numerum denotat; & ita reducatur data fluxio, ut quantitatum $ub vinculis nulli inveniantur communes divi$ores, vel in eâdem quantitate nulli inter $e æquales; deinde ex methodo in præcedente ca$u traditâ inve$tigari pote$t fluens quæ$ita.

Ex. 1. Sit α + β x^n × l + m x^n + o x^2n + &c. = a + b x^n + c x^2n + &c. a$$umatur pro fluente quantitas x^θ × α + β x^n × l + m x^n + o x^2n + &c. × S^μ × T^ν × (π + ξ x^n + σ x^2n + &c.); & inveniatur ejus fluxio, quæ fiat æqualis datæ fluxioni, & exinde detegi pote$t fluens quæ$ita.

Ex. 2. Sint α + β x^n × γ + δ x^n × l + m x^n + o x^2n + &c. = a + b x^n + c x^2n + &c. = R, & α + β x^n × ε + ξ x^n × p + q x^n + r x^2n + &c. = d + e x^n + f x^2n + &c. = s, & pro fluente fluxionis prædictæ A + B x^n + C x^2n + &c. × x^θ-1 × R^λ-1 × S^μ-1 × T^ν-1 × &c. × x^. a$$umenda e$t quantitas x^θ × α + β x^n × ε + ξ x<_>n × λ + δ x<_>n × l + m x<_>n + o x<_>2n + &c. × p + q x<_>n + r x<_>2n + &c. × T<_>ν × &c. & exinde per methodum prius traditam deduci pote$t fluens quæ$ita.

Cor. 1. Si fluxio $it fractio rationalis irreducibilis cum denomina- tore ex duobus vel pluribus terminis compo$ito, re$olvendus e$t de- nominator in divi$ores $uos omnes primos: & $i divi$or $it aliquis, cui nullus alius e$t æqualis, curva quadrari nequit: $in duo vel plures λ $int divi$ores æquales, viz. α + β x^n + γ x^2n + &c. = R^λ, & $i adhuc alii duo vel plures μ $int $ibi mutuo æquales & prioribus in- æquales viz. π + ξ x^n + σ x^2n + &c. = T^μ, tum pro fluente quæ$itâ fluxionis x^θ-1 × R^-λ × T^-μ × (a + b x^n + &c.) × x^. a$$umenda e$t quan- titas R^-λ+1 × T^-μ+1 × x^θ × &c. × (A + B x^n + C x^2n + &c.) & ex me- thodo prius traditâ deduci po$$unt valores incognitarum coefficien- tium A, B, C, &c. in hoc ca$u λ & μ $unt integri numeri.

Cor. 2. Si fluxio $it fractio irreducibilis, & ejus denominator con- Newt, Quadr, Curv. p. 54. [0066]DE INVENIENDIS tentum $it $ub factore rationali Q & factore $urdo irreducibili R^π; inveniendi $unt lateris _R_ divi$ores omnes primi, & $i duo vel plures λ divi$ores $int inter $e æquales, viz. α + βx^n + γx^2n + &c. & $i adhuc alii duo vel plures _μ_ $int $ibi mutuo æquales & prioribus inæquales, viz. ρ + σx^n + τx^2n + &c., &c. & $i rationalis factor Q $it = α + βx<_>n + γx<_>2π + &c. × ρ + σx<_>n + τx<_>2n + &c. × δ + εx<_>n + ζx<_>2n + &c. × &c. tum pro fluente quæ$itâ fluxionis x^θ-1 × Q^-1 × R^-θ × (a + bx^n + cx^2n + &c.) × x^. a$$umenda e$t quantitas α + βx^n + γx^2n + &c. × ρ + σx^n + τ x^2n + &c. × δ + εx^n + ζx^2n + &c. × &c. × S^1-π × (A + Bx^n + Cx^2n + &c.), ubi R^π = S^π × α + β x^n + γ x^2n + &c. × ρ + σx<_>n + τx<_>2n + &c. × &c. & per methodum in hoc problemate traditam deduci po$$unt valores incognitarum coefficientium A, B, C, &c.

Ca$. 6. Sit fluens quæcunque algebraica functio literæ x; tum, $i inveniatur ejus fluxio, ea minores habebit dimen$iones quantitatis x quam fluens per unitatem; ni dimen$iones quantitatis x in prædictâ algebraicâ functione nihilo $int æquales, i.e. maximæ dimen$iones quantitatis x in numeratore æquales $int ejus maximis dimen$ionibus in denominatore; in quo ca$u maximæ dimen$iones quantitatis x in fluente majores erunt quam maximæ dimen$iones eju$dem quantitatis in fluxione per quantitatem majorem quam unitatem. Maximæ di- men$iones quantitatis (x) in irrationalibus quantitatibus per metho- dum, quæ docetur in prob. 26. no$t. meditat. algebr. acquirendæ $unt; unde e contra, datâ fluxione, quæ e$t functio algebraica quantitatis x in fluxionem x^. ducta; & con$equenter datâ maximâ dimen$ione quan- titatis x in eâ contentâ, datur etiam maxima dimen$io quantitatis x in fluente contenta; exinde facile con$tant dimen$iones quantitatis x, ad quas & haud plures a$$urgent $eriei termini, $i modo haud in infinitum progrediatur. e. g. Sit fluxio (A + Bx^n + Cx^2n ... + Mx^xn) [0067]FLUXIONUM FLUENTIBUS. x^θ-1 × R^λ-1 × S^μ-1 × T^γ-1 × &c. × x^., ubi R = a + bx^n + cx^2n ...x^πn, S = d + e x^n + fx^2n ...x^pn, T = l + bx^n + kx^2n ... x^σn, &c.; a$$uma- tur pro fluente quæ$itâ quantitas (α + β x^n + γx^2n + &c.) × x^θ × R^λ × S^μ × T′ × &c. deinde per methodum prius traditam inveniatur quan- titas α + β x^n + γx^2n + ... λ^kn-(π+ρ+σ+&c.)n; i. e. $eries α + βx^n + γx^2n + &c. non ultra terminum x^k (π+ρ+σ+&c.)n, ni in infinitum pro- grediatur; & con$equenter non habet plures quam κ - π - ρ - σ - &c. + 1 terminos.

Ca$. 7. Si requiratur fluens prædictæ fluxionis (A + Bx^n ... Mx^κn) × x^θ-1 × R^λ-1 × S^μ-1 × T^γ-1 × x^. in $erie $ecundum dimen$iones quan- titatis x^n de$cendente; quæ in pluribus ca$ibus converget, quam præ- cedens $eries: a$$umatur (αx^φn + βx^(φ-1)n + γx^(φ-2)n + &c.) × x^θ × R^λ × S^μ × T′ × &c. pro fluente, ubi φ = κ - π - ρ - σ - &c.; & deinde inveniatur fluxio fluentis a$$umptæ, & æquentur corre$pondentes datæ & re$ultantis fluxionis termini, & exinde deduci po$$unt coefficientes α, β, γ, &c.

Hæc $eries $emper terminat, cum $eries ex priori methodo deducta terminat.

Hic excipienda $unt exempla nonnullarum fluxionum, quarum fluentium termini progrediuntur, u$que donec dimen$iones quanti- tatis (x) evadunt nihilo æquales.

Ca$. 8. Sit fluxio rationalis functio literæ x in fluxionem x^. ducta, & maximæ dimen$iones quantitatis x in denominatore $uperent maxi- mas dimen$iones quantitatis x in numeratore per unitatem, tum ejus fluens haud inveniri pote$t in finitis algebraicis terminis literæ x. e.g. Sit fluxio {a + bx + c + dx^3/e + fx + g + hx^5 × x^.}; maximæ dimen$iones quan- titatis x in numeratore datæ fluxionis $unt 3 × {1 / 2} = 1{2 / 1}; maximæ au- tem dimen$iones eju$dem quantitatis (x) in denominatore $unt 5 × {1 / 2} = 2{2 / 1}; & exinde dimen$iones quantitatis (x) in denominatore majores $unt quam dimen$iones eju$dem quantitatis in numeratore per uni- [0068]DEINVENIENDIS tatem; & con$equenter fluens fluxionis in finitis algebraicis terminis non exprimi pote$t.

Ca$. 9. Omnis fluxio duobus modis in $eriem re$olvi pote$t; nam index n quantitatis x vel affirmativus e$$e pote$t vel negativus. Pro- ponatur fluxio {3k - lxxx^. / x^2 √ (k x - l x^3 + m x^4)}, in quâ n = 1: hæc vel $ic $cribi pote$t x^-{5 / 2} × 3^k - l x^2 × k - l x^2 + m x^3 x^.; vel $ic x^-2 × - l + 3 k x^-2 × m - lx<_>-1 + k x<_>-3 x^.. Tentandus e$t ca$us uterque per præcedentes methodos, & $i $erierum alterutra ob terminos tandem deficientes abrumpitur ac terminatur, habebitur area curvæ in finitis terminis.

Si vero una $eries terminet; tum nece$$ario, rebus recte di$po$itis, terminat altera. e. g. Sit fluxio {α x^(λ-1)n-1 x^. / (α + βx^n)^λ}, cujus fluens e$t {a / n(λ - 1) α} × {x^(λ-1)n / (α + βx^n)^λ-1}; transformetur hæe fluxio in formulam {a x^n-1 x^. / (αx^-n + β)^λ}, cujus fluens e$t {a / n × (λ - 1)α} × {1 / (αx^-n + β)^λ-1}: hæ autem duæ fluentes $unt eædem & eâdem facilitate fere per methodum hic traditam deducuntur.

Omnia hæc etiam applicari po$$unt ad $ub$equentem ca$um.

Ca$. 10. Datâ fluxione A + B x^n + C x^2n + &c. + D + E x^n + F x^2n + &c. × p + q x^n + r x^2n + &c. (α) + G + H x^n + I x^2n + &c. × s + t x^n + &c. (β) + K + L x^n + &c. × αβ × a + b x^n + c x^2n + &c. +

    d + e x^n + f x^2n + &c.
×
    p + q x<_>n + r x<_>2n + &c.
^λ × g + b x<_>n + &c. +
    k + l x<_>n + m x<_>2n + &c.
×
    s + t x<_>n + &c.
, invenire, utrum ejus fluens exprimi pote$t in finitis algebraicis terminis quantitatis x^n, necne.

A$$umatur pro ejus fluente quantitas

    a + b x^n + c x^2n + &c. +
[0069]FLUXIONUM FLUENTIBUS.
      d + e x<_>n + f x<_>2n + &c.
    ×
      p + q x<_>n + r x<_>2n + &c.
^γ+1 × g + b x<_>n + &c. +
    k + l x<_>n + m x<_>2n + &c.
×
    s + t x<_>n + &c.
× α′ + β′ x<_>n + γ′ x<_>2n + &c. hujus quantitatis inveniatur fluxio, quæ fiat æqualis datæ fluxioni, & exinde deduci po$$unt coefficientes α′, β′, γ′, &c. quæ$itæ.

Sit fluens (a + b x^n + c x^2n + &c.) x^θ × R^λ S^μ T^γ × &c. ubi in quanti- tatibus R, S, T, &c. contineantur irrationales functiones quantitatis x^n, viz. α, β, γ, &c. & fluentis fluxio $it R^λ-1 S^μ-1 T^μ-1 × &c. × x^θ-1 × Q; tum in quantitate Q involvuntur irrationales quantitates α, β, λ, &c.; & rectangula $ub quibu$que duabus αβ, αγ, βγ, &c.; contenta $ub quibu$que tribus, quatuor, &c.; αβγ, &c.; &c.

Ea, quæ dicta fuerunt in præcedentibus ca$ibus de fluxionibus prius datis ad omnes algebraicas fluxiones applicari po$$unt. Quibus etiam adjici pote$t $ub$equens.

Ca$. 11. Sit data fluxio A + B x^n + C x^2n + &c. +

    d + e x^n + f x^2n + &c.
×
    p + q x^n + r x^2n + &c.
^λ × a + b x^n + c x^2n + &c. +
    b + k x^n + &c.
×
    p + q x^n + r x^2n + &c.
^λ-1
× x^.; & $i fluxio quantitatis A + B x^n + C x^2n + &c. (P) divi$a per quantitatem d + e x^n + f x^2n + &c. × p + q x<_>n + r x<_>2n + &c. (Q) æqualis $it fluxioni Q^. per quantitatem (P)A + B x^n + C x^2n + &c. divi$æ, i.e. $i fluxio prioris partis per po$te- riorem divi$a æqualis $it fluxioni po$terioris partis per priorem divi$æ; tum haud a$$umi debet quantitas A + B x^n + C x^2n + &c. +
    d + e x^n + f x^2n + &c.
×
    p + q x^n + r x^2n + &c.
^λ × α′ + β′ x^n + &c. $ed quantitas A + B x^n + C x^2n + &c. +
    d + ex^n + f x^2n + &c.
×
    p + q x^n + r x^2n + &c.
[0070]DE INVENIENDIS × α′ + β′ x^n + &c.γ′ ×
    d + e x^n + &c.
×
    p + q x^n + &c.

Ex. Sit data fluxio x + √ (x^2 + a^2) x^., cujus fluens requiritur: quantitatis (x + √ (x^2 + a^2)) fluxio e$t x^. + {x x^. / √ (x^2 + a^2)}: fluxio (x^.) vero quantitatis x per quantitatem (√(x^2 + a^2)) divi$a æqualis e$t fluxioni ({xx^. / √ (x^2 + a^2)}) quantitatis √(x^2 + a^2) per x divi$æ, viz. {x^. / √ (x^2 + a^2)} = {x x^. / √ (x^2 + a^2) × x}; unde a$$umatur pro fluente quæ$itâ quantitas {x + √ (x^2 + a^2) × α′√(x^2 + a^2) + β′x: & ejus fluxio in- venietur x + √(x^2 + a^2) × (nα′ + {n β x / √(x^2 + a^2} + {α′ x / √(x^2 + a^2)} + β′) × x^.}.

Fiat igitur nα′ + {n β′ x / √ (x^2 + a^2)} + {α′ x / √ (x^2 + a^2)} + β′ = 1; re$ultant nβ′ + α′ = 0, & nα′ + β′ = 1; unde β′ - n^2 β′ = 1; & con$equenter β = {1 / 1 - n^2} & α = {n / n^2 - 1}; & fluens quæ$ita =(x + √(x^2 + a^2))^n × ({- n / n^2 - 1} √ (x^2 + a^2) + {1 / n^2 - 1}).

Con$imilia etiam affirmari po$$unt de trinomialibus P + Q + R, &c. quantitatibus.

Hinc e præcedentibus principiis inveniri pote$t fluens cuju$cunque datæ algebraicæ fluxionis, $i modo exprimi po$$it in $initis algebraicis terminis literæ x.

Sæpe vero facilius inve$tigari pote$t fluens prædicta, $i abjiciantur irrationales quantitates $ub vinculis contentæ; & fluxionis re$ultantis inveniatur fluens; e quâ etiam $æpe erui pote$t fluens quæ$ita.

Et $ic de pluribus huju$cemodi quantitatibus.

Ca$. 12. In re$olutione ca$uum prius traditorum nonnunquam [0071]FLUXIONUM FLUENTIBUS. denominator termini deducti nihilo evadat æqualis, in quo ca$u fluens fluxionis quæ$itæ in finitis terminis non exprimi pote$t.

Ca$. 13. Fluentes quarumcunquc algebraicarum fluxionum etiam per infinitas $eries terminorum $ecundum dimen$iones quantitatis (x) progredientium deduci po$$unt.

1. Ex irrationalibus quantitatibus facile con$tat numerus valcrum, quos habet quæ$ita fluens; per infinitas $eries inveniantur $inguli valores (P, Q, R, S, T, &c.) quæ$itæ fluentis, & exinde $umma $in- gulorum valorum quæ$itæ fluentis; & $ic $umma rectangulorum $ub $ingulis duobus; contentorum $ub $ingulis tribus; &c.: per medit. algebr. inveniri pote$t, utrum hæ $ummæ per rationalem $unctionem incognitæ quantitatis x, & exinde utrum fluens quæ$ita per prædictam functionem exprimi pote$t.

Hæc methodus invenit $luentes, $i modo nulli valores fluentium correctionem exigant.

2. Si vero correctionem exigant, tum corrigendi $unt $inguli (n) valores (P, Q, R, S, &c.) addendo ad $ingulos P, Q, R, S, &c. inva- riabiles quantitates generaliter a$$umptas A, B, C, D, &c.; & deinde inveniendo $ummam (α) e $ingulis valoribus re$ultantibus P + A, Q + B, R + C, &c.; & (β) $ummam eorum rectangulorum $ub qui- bu$que duobus, (γ) contentorum $ub quibu$que tribus, (δ) $ub qui- bu$que quatuor; &c. deinde per meditat. algebr. i. e. per methodum communes divi$ores detegendi inveniatur, annon ita a$$umi po$$unt quantitates A, B, C, &c. ut prædictæ $ummæ evadant $initæ ratio- nales functiones incognitæ quantitatis x; $i hoc fieri po$$it, tum in- venietur æquatio v^n - αv^n-1 + βv^n-2 - γv^n-3 + &c. = 0, cujus (n) radices erunt (n) diver$i valores fluentis quæ$itæ.

Ex. Sit fluxio √(a^2 - x^2)xx^.; con$tat duos e$$e valores irrationalis quantitatis √(a^2 - x^2), & con$equenter duos e$$e valores fluentis (y); reducatur hæc fluxio in infinitas $eries, & re$ultant duo valores a x x^. - {1 / 2}{x^3 x^. / a} - {1 / 8}{x^5 x^. / a^3} + &c. - a x x^. + {x^3 x^. / 2a} + {x^5 x^. / 8a^3} - &c. quo- [0072]DE INVENIENDIS rum fluentes erunt re$pective {ax^2 / 2} - {x^4 / 8a} - {x^6 / 48 a^3} + &c. & - {ax^2 / 2}+ {x^4 / 8a} + {x^6 / 48a^3} - &c. corrigantur hæ fluentes addendo quamcunque quantitatem A - {a^3 / 3} ad unum valorem, & A + {a^3 / 3} ad alterum; & re- $ultant duo valores A - {a^3 / 3} + {a x^2 / 2} - {x^4 / 8a} - {x^6 / 48a^3} + &c., & A + {a^3 / 3} -{ax^2 / 2} + {x^4 / 8a} + {x^6 / 48a^3} - &c., quorum $umma e$t 2A, & rectangulum $ub duobus valoribus erit A^2 - {1 / 9}a^6 + {a^4 x^2 / 3} - {a^2 x^4 / 3} + {x^6 / 9}; &c.

Cor. 1. Si modo $int (n) valores prædicti, & corrigatur unus valor addendo quantitatem A; tum ex quantitate A & datâ fluxione de- duci po$$unt correctiones $ingulorum (n - 1) reliquorum.

Cor. 2. Si $it fluxio $ecundi vel m ordinis, cujus fluens requiritur; tum in correctione prædictorum (n) valorum a$$umi po$$unt (m) quantitates ad libitum.

PROB. V.

_Datâ fluxione, quæ in $e continet fluentem_ (v), _quæ baud exprimi po-_ _te$t in finitis algebraicis terminis variabilis quantitatis_ (x); _invenire utrum_ _fluens datæ fluxionis $it finita algebraica functio quantitatis_ (x) _& præ-_ _dictæ fluentis_ (v).

1. Collocentur termini $ecundum dimen$iones fluentis v, ita ut illi primum locum occupent, in quibus maxima invenitur dimen$io fluentialis quantitatis v; & $ic deinceps.

Terminus, in quo maximæ inveniuntur dimen$iones fluentialis quantitatis (v), $it rectangulum quantitatis (W), quæ $it functio li- teræ v, in quantitatem B x^. ductæ, in quâ haud continetur litera v: [0073]FLUXIONUM FLUENTIBUS. inveniatur fluens fluxionis B x^., quæ dicatur X; deinde inveniatur fluxio rectanguli X × W, & erit W X^. (W B x^. prædictus terminus) + X W^.: in hâc vero po$teriori parte X W^. $æpe quantitas v haud tam multas habet dimen$iones quam prædictus terminus W; & $ic his operationibus repetitis $æpe continuo deprimi po$$unt dimen$iones quantitatis v, ita ut tandem evane$cet, & exinde inveniri pote$t fluens fluxionis quæ$ita.

Ex. 1. Sit v = fluen. flux. {x^. / 1 - x}, invenire fluentem fluxionis v × x^n x^.; ubi n e$t integer numerus. Hìc v e$t unica dimen$io fluentialis quantitatis v, quæ dicatur W; & erit x^n x^. = Bx^., cujus fluens e$t {x^n+1 / n + 1} = X; unde fluctio rectanguli X × W = {v × x^n+1 / n + 1} erit v x^n x^. (data fluxio) + {x^n+1 / n + 1} × {x^. / 1 - x} (v^.); $ed fluens fluxionis - {x^n+1 / (n + 1)} ×{x^. / (1 - x)} = {x^n+1 / (n + 1)^2} + {x^n / (n + 1) × n} + {x^n-1 / (n + 1) × (n - 1)} ... {x / n + 1} -{v / n + 1}, & con$equenter fluens quæ$ita erit {vx^n+1 / n + 1} + {x^n+1 / (n + 1)^2} + {x^n / (n + 1).n}+ {x^n-1 / (n + 1)(n - 1)} ... {x / n + 1} - {v / (n + 1)}: $it n negativus numerus; & erit fluens quæ$ita {vx^n+1 / n + 1} - {1 / n + 1}({x^n+2 / n + 2} + {x^n+3 / n + 3} ... {x^-1 / -1} + $.{x^. / x} + v).

Ex. 2. Sit z^. = {x^. / 1 + x^2}, & erit fluens fluxionis zx^n x^. per præceden- tem methodum inventa {1 / n + 1} × x^n+1 z - {x^n / n} + {x^n-2 / n - 2} - {x^n-4 / n - 4} +{x^n-6 / n - 6} &c. ∓ z; $i $uerit {n + 1 / 2} par numerus, erit - z; $in impar, + z: etiamque 2<_>do. $i {n / 2} fuerit par numerus, pro ∓ z $cribatur - {1 / 2} log. (1 + x^2); $in impar, $cribatur + {1 / 2} log. (1 + x^2). Si n $it nega- [0074]DE INVENIENDIS tivus numerus, tum fluens fluxionis zx^n x^. = {1 / n + 1} (x^n+1 z - {x^n+2 / n + 2} + + {x^n+4 / n + 4} - &c..{x^-1 / - 1} vel ({x^-2 / - 2}) ± z); 1^mo. erit + z, $i {n + 1 / 2} $it im- par negativus numerus; $in par, - z: 2^do. $i autem {n / 2} $it par negati- vus numerus, tum pro ± z $cribatur $.{x^. / x} - {1 / 2} log. (1 + x^2); $in impar, + {1 / 2} log. (1 + x^2) - $.{x^. / x}(log. x).

Et $ic ratiocinari liceat de fluentibus fluxionis z x^n x^., ubi z^. = {x^. / 1-x^2}.

Ex. 3. Sit v^. = {x^. / x}, & data fluxio v^m x^n x^., cujus fluens requiritur; tum v^m = W & x^n x^. = Bx^., unde X = {x^n+1 / n + 1}, & X × W = v^m × {x^n+1 / n + 1}, cujus fluxio erit v^m x^n x^. (data fluxio) + {m / n + 1} v^m-1 × x^n x^.; a$$umatur {m / n + 1} v^m-1 x^n x^. tanquam data fluxio, & repetatur operatio, & erit {m / n + 1}v^m-1 = W′ & x^n x^. = B′x^., cujus fluens e$t {x^n+1 / n + 1} = X′, unde X′ × W′ ={mv^m-1 × x^n+1 / (n + 1) × (n + 1)}, cujus fluxio erit mv^m-1 × {x^n x^. / n + 1} (data fluxio) + {m / (n + 1)^2} × (m - 1) v^m-2 x^. × x^n; & $ic deinceps e repetitis operationibus invenietur fluens quæ$ita v^m × {x^n+1 / n + 1} - m{v^m-1 × x^n+1 / (n + 1)^2} + m · (m - 1) × v^m-2 × {x^n+1 / (n + 1)^3} - m · (m - 1) · (m - 2) × v^m-3 × {x^n+1 / (n + 1)^4} + &c. quæ terminat, cum m $it integer po$itivus numerus.

Ex. 4. Sit z^. = {ay^. / √ (1 = y^2)}; $cribatur u = √ (1 = y^2); & erit fluens [0075]FLUXIONUM FLUENTIBUS. fluxionis z^n y^. = yz^n ± nauz^n-1 ∓ n · (n - 1)a^2 yz^n-2 ∓ n · (n - 1) × (n - 2)a^3 uz^n-3. Per problema enim a$$umatur pro fluente y z^n, cu- jus fluxio e$t z^n y^. + nz^n-1 × {ay^. / √ (1 ∓ y^2)} × y; deinde pro fluente quan- titatis + nz^n-1 × {ayy^. / √ (1 ∓ y^2)} a$$umenda e$t quantitas ∓ naz^n-1 √ (1 ∓ y^2), cujus fluxio erit naz^n-1 × {yy^. / √ (1 ∓ y^2)} ∓ n × (n - 1)az^n-2 ay^., & $ic deinceps; unde erit $luens $luxionis (z^n y^.) = yz^n ± nauz^n-1 ∓ n · (n - 1)a^2 z^n-2 y ∓ &c.

Ex. 5. Sint z^. = {ay^. / √ (1 - y^2)} & u = √ (1 - y^2), invenire fluentem fluxionis z^n u^r y^m y^.: per problema W = z^n & Bx^. = u^r y^m y^., cujus fluens dicatur V; & erit fluxio rectanguli (VW) = WV^. (z^n u^r y^m y^.) data fluxio) + nz^n-1 × V × {ay^. / u}, &c. Scribantur pro fluentibus fluxionum u^r y^m y^.,{Ay^. / u}, {B′y^. / u}, {Cy^. / u}, &c. re$pective A, B′, C, D, &c. Et fluens quæ$ita per problema invenietur Az^n - naB′z^n-1 + n · (n - 1)a^2 Cz^n-2 - n · (n - 1) · (n - 2)a^3 Dz^n-3 + &c. Aliter, $i fluens fluxionis Bx^. non detegi po$$it, a$$umatur pro fluente quæ$itâ {1 / (n + 1)a} × z^n+1 u^r+1 y^m - x, cujus fluxio e$t z^n u^r y^m y^. (data fluxio) - {1 / (n + 1)a}z^n+1 u^r-1 y^m-1 (r + 1y^2 - mu^2)y^. - x^., unde x^. = - {1 / (n + 1)a}z^n+1 u^r-1 y^m-1 (r + 1y^2 - mu^2)y^. = - {1 / (n + 1)a}z^n+1 u^r-1 y^m-1 (r + 1 + my^2 - m)y^.; & $ic deinceps, &c. hìc autem animadvertendum e$t in omnibus fluentibus inve$tigandis, $i $. By^., $. B′y^., &c. inveniri po$$it, tum prior; $in non, tum po$terior methodus adhibenda e$t.

[0076]DE INVENIENDIS

Ex. 6. Sit z^. = b + c y^n y^.; tum erit fluens fluxionis (a z^2 y^n-2 y^.) = {a / n-1} z^2 y^n-1 - {2a / n-1} × {1 / (m + 1). nc} b + c y^n z + {2a / n-1} × {1 / (m + 1). nc}× $. b + c y^n y^..

Et $ic de plurimis huju$cemodi exemplis.

Ex. 7. Sint x A^. = P, P A^. = Q^., Q A^. = R^., R A^. = S^., &c. & fluens fluxionis A^n x^. invenietur x A^n - n A^n-1 P + n × (n - 1) A^n-2 Q - n × (n - 1) × (n - 2) A^n-3 R + &c.

Ex. 8. Datis fluentibus fluxionum y x^., y x x^., y x^2 x^., y x^3 x^., .. y x^n-1 x^.: $int y x^. = A^., A x^. = B^., B x^. = C^., C x^. = D^., &c. ... L x^. = M^., M x^. = N^., N x^. = O^., O x^. = P^., P x^. = Q^., Q x^. = R^., R x^. = S^., S x^. = T^., quarum æquationum numerus $it n; invenire fluentem fluxionis S x^. = T^.; datâ fluxionali æquatione S x^. = T^., a$$umenda e$t S x - α = T pro fluente, cujus fluxio e$t S x^. + x S^. - α^. = T^., unde x S^. = R x x^. = α^.: in fluxionali æquatione R x x^. = α^. a$$umenda e$t æquatio {R x^2 / 2} - β = α pro fluente, cujus fluxio R x x^. + {x^2 / 2} R^. - β^. = α^., unde β^. = {x^2 / 2} R^. = {x^2 / 2} Q x^.; & $ic continuo repetitis operationibus in- venietur T = S x - R × {x^2 / 2} + Q × {x^3 / 2 · 3} - P {x^4 / 2 · 3 · 4} + &c. ... ±{1 / 2 · 3 · 4 ... (n - 1)} × (x^n-1 A - $. x^n-1 y x^.).

Ex. 9. Datis fluentibus fluxionum y x^., y^2 x^., y^3 x^., y^4 x^., &c. quæ dican- tur re$pective A, B, C, D, &c. $int A y^. = K^., K y^. = L^., L y^. = M^., &c. & $ic B y^. = k^., k y^. = l^., l y^. = m^., &c. etiamque C y^. = p^., p y^. = q^., q y^. = r^., &c. & D y^. = P^., P y^. = Q^., Q y^. = R^., &c. &c. tum erit K = A y - $. y A^. (y^2 x^. = B^.): L = K y - $. y K^. (y A y^.); $ed fluens fluxionis (A y y^.) = {A y^2 / 2} - $. {y^2 / 2} A^. ({y^3 x^. / 2} = {C^. / 2}); unde L = K y - [0077]FLUXIONUM FLUENTIBUS. {A y^2 / 2} + {C^. / 2} = {A y^2 - 2 B y + C / 2}: & M = L y - $. y L^. (y K y^.); $ed fluens $. y K y^. = {y^2 / 2} × K - $. {y^2 / 2} × K^. ({y^2 / 2} × A y^.); & $luens $.{y^2 / 2} A y^. = {y^3 A - D / 2 · 3}; fluens igitur fluxionis y K y^. = {y^2 / 2} K - {y^3 A - D / 2 · 3}, & fluens quæ$ita M = L y - {y^2 / 2} K + {y^3 A - D / 2 · 3}; $cribantur pro K & L earum re$pectivi valores, & re$ultat M = {A y^3 - 2 B y^2 + C y / 2}(L y) - {A y^3 - B y^2 / 2} ({y^2 K / 2}) + {y^3 A - D / 2 · 3} = {y^3 A - 3 y^2 B + 3 C y - D / 2 · 3}: &c. & in genere terminus H, cujus di$tantia a primo $it r, erit {y^r A - r y^r-1 B + r. {r - 1 / 2} y^r-2 C - &c./1 · 2 · 3 ... r} = H.

Eodem modo a$$umenda e$t pro fluente fluxionis (k^. = B y^.) quan- titas B y - λ, & exinde deduci pote$t λ^. = y B^. = C^., unde k = B y - C; & $ic l = {y^2 B - 2 y C + D / 2}, m = {y^3 B - 3 y^2 C + 3 y D - E / 2 · 3}, &c.: per eandem methodum detegi po$$unt p = C y - D, q ={y^2 C - 2 y D + E / 2}, r = {y^3 C - 3 y^2 D + 3 y E - F / 2 · 3}, &c.; etiamque P = D y - E, Q = {y^2 D - 2 y E + F / 2}, &c.; & $ic deinceps.

2. Ii$dem literis ea$dem quantitates denotantibus; $it z^. = (a - y)^r × A^. = a^r A^. - r a^r-1 y A^. + r. {r-1 / 2} a^r-2 y^2 A^. - r. {r-1 / 2} · {r-2 / 3}a^r-3 y^3 A^. + &c. unde z = a^r A - r a^r-1 B + r. {r-1 / 2} a^r-2 C - &c.

[0078]DE INVENIENDIS

Cor. Ex præcedentibus duobus ca$ibus con$tat, quod$i y = a, H = {z / 1 · 2 · 3 ... r}.

Ex. 10. Sint T^. = S α^.. S^. = R β^., R^. = Q γ^., Q^. = P δ^., P^. = O ε^., &c.

Sint etiam α^. = p^., p β^. = q^., q γ^. = r^., r δ^. = s^., s ε^. = t^., &c. & erit per prob. T = S p - R q + Q r - P s + O t - &c. ad finem termi- norum.

Et $ic $int β^. = p^. , p γ^. = q^. , q δ^. = r^. , r ε^. = s^. , &c. & erit S = R p - Q q + P r - O s + &c.

Etiamque $int γ^. = p^. , p δ^. = q^. , q ε^. = r^. , &c. & erit R = Q p - P q + O r - &c. unde e datis quantitatibus p, q, r, s, t, &c. p, q, r, s, &c. p, q, r, s, &c. facile deduci po$$unt fluentes T, S, R, Q, P, &c.

2. Sint A^. = y α^., B^. = A β^., C^. = B γ^., D^. = C δ^., E^. = D ε^., &c. etiamque y β α^. = P^., erit B = A β - P; $int γ β^. = p^., p y α^. = Q^., & erit C = B γ - p A + Q = A β γ - P γ - p A + Q; $int etiam δ γ^. = p^. , p β^. = q^. , y q α^. = R^., & erit D = C δ - p B + q A - R; $int etiam ε δ^. = p^. , p γ^. = q^. , q β^. = r^. , y r α^. = S^., & erit E = Dε - C p + B q - A r + S; & $ic deinceps.

Cor. Sint α = β = γ = δ = ε = &c. & erunt p^. = p^. = p^. = &c. = α α^., unde p = p = p = &c. = {α^2 / 2}, & $ic inveniri pote$t q = q = q = &c. = {α^3 / 2 · 3}, r = r = r = &c. = {α^4 / 2 · 3 · 4}, & $ic deinceps; & erunt A^. = y α^., P = y α α^., Q^. = y {α^2 / 2} α^., R^. = {y α^3 / 6} α^., S^. = {y α^4 / 2 · 3 · 4} α^., T^. ={y α^5 / 2 · 3 · 4 · 5} α^., &c. & B^. = A α^., C^. = B α^., D^. = C α^., &c. & per exem- plum erunt B = A α - P, C = B α - {α^2 / 2} A + Q = {α^2 / 2} A - P α + Q, [0079]FLUXIONUM FLUENTIBUS. D = C α - {α^2 / 2} B + {α^3 / 1 · 2 · 3} A - R = {α^3 / 1 · 2 · 3} A - {α^2 / 1 · 2} P + α Q - R, E = D α - {α^2 / 2} C + {α^3 / 1 · 2 · 3} B - {α^4 / 1 · 2 · 3 · 4} A + S = {α^4 A / 1 · 2 · 3 · 4} -{α^3 / 1 · 2 · 3} P + {α^2 / 1 · 2} Q - α R + S, & $ic invenitur F = {α^5 / 1 · 2 · 3 · 4 · 5}A - {α^4 / 1 · 2 · 3 · 4} P + {α^3 / 1 · 2 · 3} Q - {α^2 / 1 · 2} R + α S - T; & $ic deinceps.

Ex. 11. Fluens fluxionis ({x^bβ-1 / x^bx} x^. $. {x^bα-1 / 1±x^b} x^.) = - {1 / b} ({1 / α-β}x^b(β-α) $. {x^bα-1 / 1±x^b} x^. + ({1 / β-α} $. {x^bβ-1 / 1±x^b} x^.)) = A: fluens fluxionis ({x^bγ-1 / x^bβ}× A x^.) = {1 / b^2} ({1 / (α-β) × (α-γ)} x^b(γ-α) $. {x^bα-1 / 1±x^b} x^. + {1 / (β - α) × (β - γ)}x^b(γ-β) $. {x^bβ-1 / 1±x^b} x^. + ({1 / (γ-α) × (γ-β)} $. {x^bγ-1 / 1±x^b} x^.)) = B; fluens flu- xionis ({x^bδ-1 / x^bγ} x^. × B) = - {1 / b^3}({1 / (α-β) (α-γ) (α-δ)} x^b(δ-α) $. {x^bα-1 / 1∓x^b} x^. + {1 / (β-α) (β-γ) (β-δ)} x^b(δ-β) $. {{x^bβ-1 / 1±x^b} x^. + {1 / (γ-α) (γ-β) (γ-δ)}x^h(δ-γ) $. {x^bγ-1 / 1±x^b} + ({1 / (δ-α) × (δ-β) × (δ-γ)} $. {x^bδ-1 / 1±x^b} x^.)) = C} & in genere $int $. {x^bβ-1 / x^bα} x^. $. {x^bα-1 x^. / 1±x^b} = A, $. {x^bγ-1 / x^bβ} x^. × A = B, $. {x^bδ-1 x^. / x^bγ}B = C, $. {x^bε-1 x^. / x^bδ} × C = D, $. {x^bζ-1 x^. / x^bε} × D = E, & $ic deinceps, u$que ad terminos $. {x^bλ-1 x^. / x^bκ} × P = Q, $. {x^bμ-1 x^. / x^bλ} × Q = R; etiamque $.{x^bα-1 x^. / 1±x^b} = A′, $. {x^bβ-1 x^. / 1±x^b} = B′, $. {x^bγ-1 x^. / 1±x^b} = C′, $. {x^bδ-1 x^. / 1±x^b} = D′, &c. u$- [0080]DE INVENIENDIS que ad $. {x^bλ-1 x^. / 1±x^b} = L′, $. {x^bμ-1 x^. / 1±x^b} = M′; & $it (n) numerus literarum (α, β, γ, δ, ε, &c. κ, λ & μ); tum erit R = ± {1 / b^n-1} ({x^b(μ-α) A′ / (α-β) (α-γ) (α-δ) .. (α-λ) (α-μ)}+ {x^l(μ-β) B′ / (β-α) (β-γ) (β-δ) ... (β-λ) (β-μ)} +{x^b(μ-γ) C′ / (γ-α) · (γ-β) · (γ-δ) ... (γ-μ)} + {x^b(μ-δ) D′ / (δ-α) × (δ-β) × (δ-γ) .. (δ-μ)}.... + {x^b(μ-λ) L′ / (λ-α) (λ-β) (λ-γ) .. (λ-μ)} + {M′ / (μ-α) (μ-β) (μ-γ) .. (μ-λ)}). Signum erit + vel -, prout n $it impar vel par numerus.

Hoc facile con$tat ex eo quod aggregatum $ingulorum contento- rum, viz. (β-γ) × (β-δ) × (γ-δ) × (β-ε) × (γ-ε) × (δ-ε) × (β-ζ) × (γ-ζ) × (δ-ζ) × &c. - (α-γ) × (α-δ) × (γ-δ) × (α-ε) × (γ-ε) × (δ-ε) × (α-ζ) × (γ-ζ) × (δ-ζ) × (ε-ζ) × &c. + (α-β) × (α-δ) × (β-δ) × (α-ε) × (β-ε) × (δ-ε) × (α-ζ) × (β-ζ) × (δ-ζ) × &c. - (α-β) × (α-γ) × (β-γ) × (α-ε) × (β-ε) × (γ-ε) × (α-ζ) × (β-ζ) × (γ-ζ) &c. + &c. nihilo erit æquale. In primo contento non con- tinetur litera α, in $ecundo non continetur litera β, in tertio non continetur litera γ; & $ic deinceps.

1.2. Eadem methodus etiam deteget fluentes fluxionum, quæ duas vel plures diver$as fluentes involvunt. e.g. Sint A, B, C, &c. $luen- tes datarum fluxionum; & data fluxio, cujus fluens requiritur, $it A B C &c. × v^.; tum per prob. pro fluente quæ$itâ a$$umenda e$t quan- titas A B C &c. × v - α, cujus fluxio e$t A B C &c. × v^. (data fluxio) + v B C &c. A^. + v A C &c. B^. + v A B &c. C^. + &c. - α^.: deinde per eandem methodum inveniantur fluentes fluxionum v B C &c. A^., v A C &c. B^., v A B &c. C^., &c. & tandem invenietur fluens datæ fluxionis quæ$ita.

2. Sit fluxio z^m v^., ubi z denotat fluentem datæ fluxionis; ejus fluens nonnunquam etiam deduci pote$t e $ub$equentibus prin- cipiis.

[0081]FLUXIONUM FLUENTIBUS

A$$umatur pro fluente quantitas z^m A + z^m-1 B + z^m-2 C + z^m-3 D + &c. Hujus quantitatis inveniatur fluxio, & datæ fluxioni fiat æqualis, & exinde inveniri po$$unt quantitates a$$umptæ A, B, C, &c..

3. Sit data fluxio W B x^., ubi B $it data functio quantitatis x; & W functio quantitatis v, cujus v fluxio $it C x^., ubi C denotat functionem quantitatis x; & vel per præcedentem methodum a$$umatur quanti- tas W $. B x^. - α pro fluente, & $ic per prædictam methodum pro- gredi liceat: vel data fluxio W B x^. ita $cribi pote$t W × {B / C} × C x^. = W × {B / C} v^.; & exinde $i modo pro fluente fluxionis (W v^.) $cribatur r, per methodum in problemate contentam a$$umatur quantitas r × {B / C} - α pro fluente quæ$itâ, cujus fluxio e$t W × {B / C} v^. (data fluxio) + r × {B^. / C}- α^., unde α^. = r × {B^. / C} = r × {B^. C - C^. B / C^2} = r Z^. = r × {Z^. / C x^.} × C x^. = r × {Z^. / C x^.} v^.; & eodem modo pro fluente fluxionis (r × {Z^. / C x^.} × v^.) a$$umatur {Z^. / C x^.} $. (r v^.) - β, cujus fluxio erit r × {Z^. / C x^.} v^. (data fluxio) +{Z^. ^. / C x^.} × $. (r v^.) - β^., unde pro fluente β a$$umatur quantitas {Z^. ^. / C x^.} ×{1 / C x^.} × $. v^. ($. (r v^.) - γ; & $ic deinceps.

Ex. 1. Sit fluxio {X x^. / (l x)^n}, ubi X $it functio quantitatis x, & l x = v hyper. log. quantitatis x; hæc vero quantitas hoc modo $cribi pote$t X x{x^. / x (l x)^n} = X x {v^. / v^n}; a$$umatur quantitas - X x × {1 / (n - 1) v^n-1} - α pro [0082]DE INVENIENDIS ejus fluente, cujus fluxio erit X x {v^. / v^n} (data fluxio) - (X^. x) × {1 / (n - 1) v^n-1}- α^., unde α^. = - (X^. x) × {1 / (n-1) v^n-1} = - (X^. x) × {x / x^.} × {x^. / (n-1) x v^n-1}= - (X^. x) {x / x^.} × {v^. / (n-1) v^n-1}; deinde a$$umatur pro fluente fluxionis α^. quantitas (X^. x) {x / x^.} × {1 / (n - 1) (n - 2) v^n-2} - γ, & $ic deinceps: unde $i modo $cribantur (X^. x) = P x^., (P^. x) = Q x^., (Q^. x) = R x^., &c. V x^., erit $. ({X x^. / (l x)^n}) = {- X x / (n - 1) (l x)^n-1} - {P x / (n - 1) (n - 2) (l x)^n-2} -{Q x / (n - 1) (n - 2) (n - 3) (l x)^n-3} - .... {1 / (n - 1) (n - 2) ... 1} $. ({V x^. / l x}).

E. g. Sit X = x^m, & erit $. ({x^m x^. / (l x)^n}) = {- x^m+1 / (n - 1) (l x)^n-1} -{m + 1 x^m+1 / (n - 1) (n - 2) (l x)^n-2} - {m + 1 x^m+1 / (n - 1) (n - 2) (n - 3) (l x)^n-3} ...{m + 1 / (n - 1) · (n - 2) .. 1} × $. {x^m x^. / l x}, &c.

Ex. 2. Sit data fluxio a^x X x^., cujus fluens $. a^x X x^. = {1 / l a} × a^x X -{1 / l a} $. a^x X^.: $cribatur X^. = P x^., P^. = Q x^., Q^. = R x^., &c.; tum e præce- dente methodo deduci pote$t $. a^x X x^. = m a^x X - m^2 a^x P + m^3 a^x Q - &c. ubi m = {1 / la} & la = log. a: aliter hoc problema re$olvi pote$t e principiis prius traditis, $int enim X x^. = P^., P x^. = Q^., Q x^. = R^., &c. & erit $. a^x X x^. = a^x P - (l a) a^x Q + (l a)^2 a^x R - &c.

4. Sit βx^. × φ $. W x^. × π $. V x^. × F $. y x^., vel βx^. φ $. W x^. π $. V x^. F $. y x^. &c. &c., ubi in priore fluxione per φ $. W x^., π $. V x^., F $. y x^., [0083]FLUXIONUM FLUENTIBUS. &c. de$igno datas functiones fluentium $. W x^., $. V x^., $. y x^., &c. in po$teriori ca$u per F $. y x^. intelligo datam functionem fluentis $. y x^.; per π $. V x^. F $. y x^. intelligo datam functionem fluentis $. V x^. F $. y x^.; & $ic deinceps. Si fluentes $. W x^. & $. V x^. & $. y x^., &c., & $. V x^. F $. y x^., &c. inveniri po$$int vel in finitis terminis quantitatis (x), vel in ter- minis reliquarum fluentium, &c. cum finitis terminis; tum primo in- veniantur prædictæ fluentes in terminis reliquarum fluentium, &c.; & in datâ fluxione ex iis exprimantur: deinde fluentes prædictarum fluxionum per methodos in hoc & præced. problem. traditas deduci po$$unt; e. g. fluentiales plerumque per eundum modum ac irratio- nales quantitates tractandæ $unt, i. e. $it Q × R^γ-1 × S^μ-1 × &c. × x^θ-1 x^. data fluxio, ubi literæ Q, R, S, &c. denotant fluentes fluxionum, quæ $unt functiones quantitatis x in x^. ductæ tum a$$umenda e$t pro flu- ente datæ fluxionis quantitas P × R^λ × S^μ × &c.; deinde inveniatur ejus fluxio, & fiant corre$pondentes termini datæ & re$ultantis æqua- tionis inter $e æquales, & ex æquationibus re$ultantibus deduci pote$t fluens quæ$ita, $i modo ea in prædictis terminis exprimi po$$it; &c. Horum ca$uum facile infinita dari po$$unt exempla.

Ex ii$dem principiis deduci po$$unt fluentes omnium huju$ce gene- ris fluxionum.

PROB. VI. Datâ exponentiali fluxione, invenire utrum ejus fluens exprimi pote$t in finitis algebraicis & exponentialibus terminis, necne.

Ob$ervatâ lege fluxionis exponentialis in prob. 3. traditâ, facile re$olvi pote$t hoc problema. Nullæ aliæ enim in fluente continentur exponentiales quantitates præter eas, quæ in datâ fluxione dantur. Exponentialibus vero quantitatibus datis & earum fluxionibus inven- tis, facile per $ub$titutiones in præcedentibus problematibus tradi- tas erui po$$unt algebraicæ quantitates: $i fluxio contineat expo- [0084]DE INVENIENDIS nentiales $uperiorum ordinum quantitates, tum ejus fluens, terminis ip$is inter $e comparatis, facile deduci pote$t: $i vero $it exponentialis primi ordinis, tum vel e terminis ip$is inter $e comparatis; vel $i hoc non valeat in quibu$dam ca$ibus, ex continuis approximationibus deduci pote$t fluens quæ$ita.

E principiis pro detegendis irrationalium & fluentialium fluxionum fluentibus, datis; $emper inveniri pote$t fluens cuju$cunque fluxionis, quæ continet irrationales, fluentiales & exponentiales quantitates.

Ex. 1. Sit data fluxio (y + n - 1) × y - 1 y^y y^. + log. y × y^y × (y^n - n y^n-1 + n. {n-1 / 2} y^n-2 - n. {n-1 / 2} · {n-2 / 3} y^n-3 + &c.) × y^..

In hâc fluxione unica exponentialis invenitur, viz. y^y; ergo nulla alia continetur in quæ$itâ fluente: $ed log. y × y^y y^. ducitur in y^n - n y^n-1 + n · {n-1 / 2} y^n-2 - &c. = y-1; ergo per problema fluens, $i modo exprimi po$$it finitis terminis, erit y^y × y-1.

Ex. 2. Sit data fluxio Q^x x^n x^.; fluxio vero quantitatis Q^x e$t log. Q (m) Q^x x^.; ergo pro fluente quæ$itâ a$$umatur N Q^x × x^n - α, cujus fluxio erit N m Q^x x^n x^. (data fluxio, $i modo N = {1 / m}) + n N Q^x x^n-1 x^. - α^., unde α^. = n N Q^x x^n-1 x^.; & $ic iteratâ operatione a$$umatur pro α quantitas {n / m^2} Q^x x^n-1 - β; & $ic deinceps; & tandem re$ultabit fluens quæ$ita {Q^x / m} × (x^n - {n x^n-1 / m} + {n × (n-1) / m^2} x^n-2 - {n. (n-1). (n-2) / m^3} x^n-3 + &c.) quæ $eries terminat, $i n $it integer po$itivus numerus: aliter pro flu- ente fluxionis Q^x x^n x^. a$$umatur $umma Q^x {x^n+1 / n+1} - α, cujus $ummæ inveniatur fluxio, & re$ultat Q^x x^n x^. (data fluxio) + m Q^x {x^n+1 / n+1}x^. - α^., unde α^. = {m / n + 1} Q^x x^n+1 x^.; & $ic iteratis operationibus invenietur $eries [0085]FLUXIONUM FLUENTIBUS. Q^x × ({x^n+1 / n+1} - {m x^n+2 / (n + 1) · (n + 2)} + {m^2 x^n+3 / (n + 1) · (n + 2) · (n + 3)} - &c.) quæ $emper in infinitum progreditur.

Sub$equenti modo hoc exemplum aliter re$olvi pote$t: a$$umatur pro quæ$itâ fluente quantitas Q^x × (A x^n + B x^n-1 + C x^n-2 + &c.) & $i æquetur ejus fluxio datæ, exinde re$ultabunt coe$$icientes quæ$itæ A, B, C, &c.

Ex. 3. Sit fluxio a + b x^f+g x × c + d x + e x^2 × b + k x × (m f + g x × g × log. a + b x + f + g x × {b / a + b x} + m + 2 n x × log. c + d x + e x^2 + l + m x + n x^2 × {d + 2 e x / c + d x + e x^2} + {s k / h + k x}) x^. + &c.: pro ejus fluente a$$umenda e$t quantitas Aa + b x^f+g x × ^1+mx+nx^2 c + d x + e x<_>2 × b + k x + &c.; & ex æquatâ ejus fluxione datæ, erui pote$t fluens fluxionis datæ.

Cor. Sit data fluxio X x^., ubi X e$t functio quantitatis x; in eâ pro x $cribatur quæcunque fluentialis & exponentialis quantitas, & ejus fluxio pro x^.; & re$ultat fluxio, quæ reduci pote$t ad priorem X x^..

THEOR. II.

1. Datâ quantitate A, in quâ continentur duæ variabiles quanti- tates x & y; $it ejus fluxio A^. = a x^. + b y^.; inveniantur fluxiones quantitatum a & b, quæ $int re$pective a^. = αx^. + βy^., b^. = πx^. + ξy^., ubi a, b, α, β, π, ξ $unt functiones literarum x & y; tum erit π = β, i.e. π erit eadem quantitas ac β.

Cor. Hinc, datâ fluxione (A^. = a x^. + b y^.) duas variabiles quanti- tates x & y involvente, inveniri pote$t; utrum ejus fluens exprimi pote$t, necne.

Inveniantur enim fluxiones quantitatum a & b, & $i a^. = αx^. + βy^., [0086]DE INVENIENDIS & b^. = π x^. + ξ y^., & π = β, tum exprimi pote$t fluens; $in aliter vero non.

2. Sint tres vel plures variabiles quantitates (x, y, z, &c.) in datâ quantitate (A) contentæ, & $it A^. = a x^. + b y^. + c z^. + &c. & a^. = α x^. + β y^. + γ z^. + &c. b^. = λ x^. + μ y^. + v z^. + &c. c^. = π x^. + ξ y^. + σ z^. + &c. tum erit per præcedentem ca$um β = λ, γ = π, ν = ξ, &c;.

Cor. Datâ fluxione A^. = a x^. + b y^. + c z^. + &c. tres, &c. variabiles quantitates involvente, inveniantur fluxiones quantitatum a, b, c, &c. quæ $int re$pective a^. = α x^. + β y^. + γ z^. + &c. b^. = λ x^. + μ y^. + ν z^. + &c. c^. = π x^. + ξ y^. + σ z^. + &c. & $i β = λ, γ = π, ν = ξ, &c. etiamque $i fluxiones quantitatis A inveniantur per hanc methodum, viz. 1<_>mo. una quantitas vel x vel y vel z &c. in quantitate A contenta $olummodo $upponatur variabilis; & A^. evadat B; deinde in quantitate B tantummodo $upponatur quæcunque reliqua vel y vel z vel x &c. variabilis, & B^. evadat quantitas C; tertio quæcunque adhuc reliqua quantitas, i. e. quæ non prius $uppo$ita fuit variabilis, & evadat C^. quantitas D; & $ic deinceps: & $i ultima quantitas $emper evadat eadem; annon hæc vel illa vel quæcunque alia 1<_>mo. $upponitur e$$e invariabilis, & $ic deinccps; i. e. $i non refert, quo ordine quantitates $upponuntur variabiles; ultima enim quantitas $emper eadem re$ul- tat; tum ejus fluens exprimi pote$t: $in aliter vero non.

3. 1. Sit fluxio A^. ^n ordinis (n) duas vel tres vel plures variabiles quantitates (x, y, z, &c.) & earum fluxiones n ordinis continens, i. e. $it A^. ^n = a x^. ^n + b x^. x^. ^n-1 + c x^. ^2 x^. ^n-2 + d x^. ^3 x^. ^n-3 + &c. + B x^.. x^. ^n-2 + C x^.. x^. x^. ^n-3 + &c. + D x^... x^. ^n-3 + &c. (P^. ^n) + p x^. ^n-1 y^. + q x^. ^n-2 y^. ^2 + &c. &c. + α y^. ^n + β y^. y^. ^n-1 + γ y^. ^2 y^. ^n-2 + &c. + Γ y^.. y^.. ^n-2 + &c. (Q^. ^n) + π y^. ^n-1 x^. + ξ y^. ^n-2 x^. ^2 + &c. &c. &c. &c.

[0087]FLUXIONUM FLUENTIBUS.

Supponantur omnes quantitates præter x e$$e invariabiles & erit P^. ^n = fluxi. n - 1 ordinis quantitatis. a x^.; deinde $upponantur omnes quantitates præter y e$$e invariabiles, & erit Q^. ^n = flux. n - 1 ordinis quantitatis α y^.; & $ic de reliquis variabilibus quantitatibus.

3. 2. Sit a^. = δ x^. + ε y^. + &c. & α^. = λ x^. + μ y^. + &c. & erit coeffi- ciens p termini (x^. ^n-1 y^.) = n - 1 ε + λ, & $ic invenitur π coefficiens termini (y^. ^n-1 x^.) = n - 1 λ + ε; $ed e theor. con$tat λ = ε, ergo p = π = n λ; & $ic e methodo inveniendi fluxiones datarum fluentium fa- cile con$tant reliqui termini; & vice versâ e datis terminis inveniri pote$t, utrum fluens datæ fluxionis $it integrabilis, necne.

3. 3. Inveniatur fluxio (n - 1) ordinis fluxionis a x^. + α y^. + &c.; & $i haud eadem evadat ac data fluxio (n) ordinis; tum fluens datæ fluxionis non integrari pote$t: $i vero eadem $it, tum per præcedentem ca$um inveniatur, annon fluens fluxionis a x^. + α y^. + &c. integrari pote$t; $i integrari po$$it, tum fluens datæ fluxionis etiam integrari pote$t; $in aliter non.

4. Datâ quantitate (A) continente duas variabiles quantitates x & y:1^mo. a$$umatur x tanquam invariabilis quantitas, & inveniatur (α) fluxio ordinis m quantitatis (A); deinde in fluxione (α) ordinis m re$ultante a$lumantur y, y^., y^.., .... & y^. ^m tanquam invariabiles quanti- tates, & inveniatur fluxio ordinis r fluxionis (α): fluxio re$ultans eadem erit ac fluxio inventa e $ub$equenti methodo, viz. a$$umatur y tanquam invariabilis quantitas, & inveniatur fluxio (β) ordinis r quantitatis A; deinde in fluxione (β) ordinis (r) re$ultante a$$uman- tur x, x^., x^.., &c. tanquam invariabiles quantitates, & inveniatur fluxio ordinis m fluxionis (β).

Idem etiam verum e$t, i. e. fluxiones re$ultantes erunt inter $e æqua- les, $i modo fluxiones ordinis (m + r) quantitatis (A) inveniantur, i. e. inveniantur re$pective (m + r) fluxiones A^., A^.., A^..., ... A^. ^m+r, quarum quæcunque r fluxiones inveniantur ex hypothe$i quod y, y^., y^.., &c. [0088]DE INVENIENDIS $int invariabiles quantitates; (m) vero reliquæ, quod x, x^., x^.., &c. $int invariabiles quantitates. Minime refert, quo ordine inveniuntur fluxiones prædictæ.

5. Eadem etiam affirmari po$$unt de fluxionibus quantitatis A tres vel plures variabiles quantitates habentis.

5. 2. Con$imilia etiam prædicari po$$unt de fluxionibus quantitatis A, in quâ continentur fluxiones $uperiorum (m) ordinum quantita- tum variabilium (x, y, z, &c.). Minime enim refert ordo, in quo de- teguntur fluxiones; ex hypothe$i quod x vel y vel z &c. $it invariabilis.

6. Invenire generaliter, annon data fluxio cuju$cunque ordinis m $it integrabilis; 1<_>mo. a$$umatur quantitas (A) tanquam generalis fun- ctio quantitatum (x, y, z, v, &c.); deinde inveniatur fluxio ordinis (m) quantitatis A; & æquentur corre$pondentes datæ & inventæ flu- xionis termini: $i hoc non fieri po$$it, tum fluxio data non erit in- tegrabilis.

Hic animadvertendum e$t, quod$i M × x^. ^π^b × x^. ^π′^b′ × &c. × y^. ^ρ^k × y^. ^ρ′^k′ × &c. × z^. ^σ^ι × z^. ^σ′^ι′ × &c. = Γ & N × x^. ^e^ε × x^. ^e′^ε′ × &c. × y^. ^f^ζ × y^. ^f′^ζ′ × &c. × z^. ^g^θ × z^. ^g′^θ′ × &c. = Δ $int duo termini re$ultantis fluxionis ordinis (m); & utri- u$que (Γ & Δ) inveniantur fluxiones ex hypothe$i aliquando ut x $o- lummodo $it variabilis, & aliquando ut x^. vel x^.., vel x^..., vel &c., vel y vel y^. vel y^.. vel &c., vel z vel z^. vel z^.. vel &c. $olummodo $it variabilis, ita ut duæ re$ultantes fluxiones contineant eundem fluxionalem ter- minum x^. ^λ^θ × x^. ^λ′^θ′ × &c. × y^. ^μ^χ × y^. ^μ′^χ′ × &c. × z^. ^ν^i × z^. ^ν′^i′ × &c. = H, & $int flu- xiones re$ultantes R × H & S × H, ubi R & S $unt algebraicæ functi- ones quantitatum (x, y, z, &c.); tum erit R:S in datâ ratione, quæ ratio facile deduci pote$t: $i hanc $emper ob$ervent rationem con$i- miles quantitates ex iis in datâ fluxione contentis deductæ; tum flu- xio integrabilis erit; $in aliter vero non.

Si x^. ^π^b, x^. ^ρ^ε, &c.; y^. ^ρ^k, &c. habeant maximas dimen$iones prædictarum flu- xionum x^. ^π, x^. ^ρ, &c.; y^. ^ρ, &c. in duobus terminis Γ & Δ; tum in fluxionali [0089]FLUXIONUM FLUENTIBUS. termino H haud nece$$e e$t, ut fluxiones x^. ^π, x^. ^ρ, &c.; y^. ^ρ, &c. ad majo- res dimen$iones a$cendant.

PROB. VII. 1. _Datâ fluxione duas variabiles_ (x & y) _quantitates involvente, in-_ _venire ejus fluentem_.

A$$umatur x tanquam invariabilis quantitas, & inveniatur fluens quantitatis re$ultantis; deinde a$$umatur y tanquam invariabilis quan- titas, & inveniatur fluens quantitatis exinde re$ultantis; & $i hæ duæ fluentes omnes functiones, in quibus continentur duæ incognitæ quantitates (x & y), ea$dem habent; tum fluens ejus invenitur; aliter vero haud inveniri pote$t.

Ex. 1. Sit fluxio (6 y^5 + 6 y √(a^2 + x^2)) × y^. + 3 x^2 + {3 y^2 / √(a^2 + x^2} × x^., invenire ejus fluentem.

1<_>mo. Supponatur x e$$e invariabilis; tum transformatur data fluxio in fluxionem 6 y^5 + 6 y √(a^2 + x^2) y^., cujus fluens erit y^6 + 3 y^2 √(a^2 + x^2): 2^do. vero $upponatur y e$$e invariabilis, & fluxio re$ul- tans erit 3 x^2 + {3 y^2 / √(a^2 + x^2)} x^., cujus fluens invenitur x^3 + 3 y^2 √ (a^2 + x^2); $ed functio 3 y^2 √(a^2 + x^2), in quâ continentur duæ incognitæ quantitates x & y in utri$que fluentibus eadem e$t; ergo fluens inveniri pote$t, & erit 3 y^2 √(a^2 + x^2) + y^6 + x^3.

Ex. 2. Sit data fluxio 9 x^2 y^3 x^. + 16 x^3 y^3 y^.; $upponatur y e$$e in- variabilis, & re$ultat fluxio 9 x^2 y^3 x^., cujus fluens e$t 3 x^3 y^3; deinde $upponatur x e$$e invariabilis, & re$ultat fluxio 16 y^3 x^3 y^., cujus fluens e$t 4 x^3 y^4; $ed 3 x^3 y^3 e$t functio in quâ continentur literæ x & y in unâ fluxione, & 4 x^3 y^4 in alterâ: hæ autem duæ functiones haud $unt eædem, ergo fluens datæ quantitatis haud inveniri pote$t.

2. Datâ fluxione tres vel plures variabiles quantitates (x, y, z, v, &c.) habente, cogno$ci pote$t e præcedente methodo, utrum ejus fluens [0090]DE INVENIENDIS inveniri pote$t, necne: a$$umantur omnes variabiles quantitates præ- ter unam tanquam invariabiles, & quantitatis re$ultantis inveniatur fluens, & $ic de reliquis; & $i hæ fluentes re$ultantes ea$dem habe- ant functiones duarum vel plurium variabilium quantitatum (x, y, z, &c.) tum ejus fluens inveniri pote$t, $in aliter vero non.

Ex. 1. Sit fluxio 2 x^4 y^3 z z^. + 3 x^4 z^2 y^2 + 2 a x^2 y + {2 y / √(x^2 + y^2)} + 2 b y y^. + 4 x^3 y^3 z^2 + 2 a y^2 x + {2 x / √(x^2 + y^2)} + 3 e x^2 + 2 f x × x^..

Primo $upponantur omnes quantitates (x, y, &c.) præter z e$$e invariabiles, & re$ultat fluxio 2 x^4 y^3 z z^., cujus fluens e$t x^4 y^3 z^2; deinde $upponantur omnes præter y invariabiles e$$e, & re$ultat fluxio 3 x^4 z^2 y^2 + 2 a x^2 y + {2 y / √(x^2 + y^2)} + 2 b y y^., cujus fluens e$t x^4 z^2 y^3 + a x^2 y^2 + 2 √(x^2 + y^2) + b y^2; tertio $upponatur x $olummodo e$$e va- riabilis, & re$ultat fluxio 4 x^3 y^3 z^2 + 2 a y^2 x + {2 x / √(x^2 + y^2)} + 3 e x^2 + 2 f x x^., cujus fluens e$t x^4 y^3 z^2 + a y^2 x^2 + 2 √(x^2 + y^2) + e x^3 + f x^2: in his tribus fluentibus terminus (in quo continentur omnes literæ z, y, x) idem e$t, viz. x^4 y^3 z^2: in duabus po$terioribus fluentibus termini, in quibus continentur duæ literæ x & y, iidem $unt; viz. a y^2 x^2 & 2 √(x^2 + y^2); unde fluens datæ fluxionis invenitur x^4 y^3 z^2 + a x^2 y^2 + 2√(x^2 + y^2) + b y^2 + e x^3 + f x^2 + A, ubi litera A denotat quantita- tem ad libitum a$$umendam.

Cor. Hæc methodus haud $olummodo deteget, annon fluentes exprimi po$$unt; $ed etiam fluentes ip$as; exhinc etiam facilius in- veniri po$$unt fluentes fluxionum $uperiorum ordinum, maxime vero ex iis ob$ervatis, quæ in theor. 2. tradita fuere.

3. Si vero, cum a$$umantur omnes quantitates præter unam tan- quam invariabiles, fluentes re$ultantium fluxionum haud per vulgares methodos cogno$ci po$$int; $ingula re$ultans fluxio in in$initas $eries [0091]FLUXIONUM FLUENTIBUS. reducatur, quarum termini progrediuntur $ecundum dimen$iones eju$dem literæ, & ex hoc problemate inveniantur fluentes terminorum $erierum re$ultantium; & id, quod requiritur, peractum erit.

Ex. Sit {x^. + y^. / x + y}; a$$umatur x invariabilis, & re$ultat {y^. / x + y} = {y^. / x} - {yy^. / x^2}+ {y^2 y^. / x^3} - &c. cujus fluens erit {y / x} - {y^2 / 2x^2} + {y^3 / 3x^3} - &c. deinde a$$u- matur y invariabilis, & re$ultat fluxio {x^. / x + y} = {x^. / x} - {yx^. / x^2} + {y^2 x^. / x^3} - {y^3 x^. / x^4}+ &c. cujus fluens e$t log. ax + {y / x} - {y^2 / 2x^2} + {y^3 / 2x^3} - &c. termini vero utriu$que $eriei, in quibus continentur literæ (x & y), iidem $unt; ergo fluens datæ fluxionis inveniri pote$t.

Et $ic de fluxionibus tres vel plures variabiles quantitates invol- ventibus. Hæc principia etiam ad detegendum, annon fluentes fluxi- onum $uperiorum ordinum exprimi po$$unt, facile applicari po$$unt.

PROB. VIII. _I._ Datis corre$pondentibus valoribus datæ fluentis & $ingularum varia- bilium quantitatum in eâ contentarum, eam corrigere.

Scribantur dati valores $ingularum variabilium quantitatum pro $uis valoribus in datâ fluente; & quantitas re$ultans $it B; $it vero corre$pondens valor fluentis A; & addatur differentia A - B ad da- tam fluentem, & $umma erit correcta fluens.

Ex. 1. Sit fluxio ax^n x^., cujus fluens e$t {ax^n+1 / n + 1}; cum vero x fiat ni- hilo æqualis, fiat prædicta fluens A: $cribatur pro x ejus valor o in datâ fluente {ax^n+1 / n + 1}, & re$ultat B = 0; & exinde fluens correcta erit {ax^n+1 / n + 1} + A.

[0092]DE INVENIENDIS

Ex. 2. Sit fluxio 3√(x^2 + y^2)xx^. + yy^., cujus fluens e$t x^2 + y^2. Sint corre$pondentes valores quantitatum x & y, & datæ fluentis re- $pective α, β & A; $cribantur in datâ fluente pro incognitis quanti- tatibus x & y re$pective α & β, & re$ultat α^2 + β^2 = B; & con$e- quenter fluens erit x^2 + y^2 + A - B.

Ex. 3. Sit fluxio sby^s-1 y^.. + s · s - 1 by^s-2 y^. ^2 + r · r - 1 ax^r-2 x^. ^2, ejus fluens erit sby^s-1 y^. + rax^r-1 x^., $i modo fluat uniformiter x; prædictâ methodo $cribantur pro x, y, x^., y^. earum corre$pondentes valores, & quantitas re$ultans $it B; $it A corre$pondens valor datæ fluentis, & erit correcta fluens sby^s-1 y^. + rax^r-1 x^. + A - B (Cx^.) quoniam x^. e$t data quantitas. Fluxionis vero sby^s-1 y^. + rax^r-1 x^. + Cx^. fluens erit by^s + ax^r + Cx, corrigatur hæc fluens; & erit correcta fluens by^s + ax^r + Cx + D, ubi D invariabilem quantitatem præ- dictâ methodo acqui$itam denotat. Et $ic in genere de correctionibus fluentium huju$ce generis.

Cor. 1. Sit m minor quam n; & data fluxio n ordinis, cujus fluens (π) ordinis (m) erit fluxio ordinis (n - m): $it v quantitas, quæ fluit uniformiter; & literæ A, B, C, D,.. P, Q invariabiles re$pective de- notent quantitates; & erit correcta fluens (m) ordinis = π + (Av^m-1 + Bv^m-2 + Cv^m-3 .. Pv + Q) × v^. ^n-m.

Ex. Sit fluxio n × (n - 1) × (n - 2)..(n - m + 1) Lx^n-m x^. ^m, ubi x fluit uniformiter, cujus fluens erit x^n; fluens vero correcta erit x^n + Ax^m-1 + Bx^m-2 + Cx^m-3 .. Px + Q.

2. Erit generalis fluens fluxionis (yz^.) = $.yz^. + A; & generalis fluens fluxionis (x^. $.yz^.) = $.x^. $.yz^. + Ax + B; erit generalis flu- ens fluxionis (w^. $.x^. $.yz^.) = $.w^. $.x^. $.yz^. + A$.xw^. + Bw + C, & fluens fluxionis (v^. $.w^. $.x^. $.yz^.) = $.v^. $.w^. $.x^. $.yz^. + A$.v^. $.xw^. + B$.wv^. + Cv + D, & fluens fluxionis (u^. $.v^. $.w^. $.x^. $.yz^.) = $.u^. $.v^. $.w^. $.x^. $.yz^. + A$.u^. $.v^. $.xw^. + B$.u^. $.wv^. + C$.vu^. + Du + E, [0093]FLUXIONUM FLUENTIBUS. & $ic deinceps: hìc literæ A, B, C, D, E, &c. re$pective denotant invariabiles coefficientes ad libitum a$$umendas.

PROB. IX.

Datis m valoribus datæ fluentis (π) & corre$pondentibus valoribus $ingularum variabilium (y, z, &c.) quantitatum in eâ contentarum, inve- nire ejus fluentis m ordinis correctionem.

Scribantur dati m corre$pondentes valores $ingularum variabilium quantitatum in datâ fluente pro quantitatibus ip$is, & $int quanti- tates re$ultantes re$pective ξ, σ, τ, υ, &c. Sint vero m dati valores datæ fluentis re$pective a, b, c, d, &c. & a$$umatur pro correctâ fluente ($i modo x fluat uniformiter) quantitas π + Ax^m-1 + Bx^m-2 + Cx^m-3 .. Px + Q; ubi literæ A, B, C, &c. incognitas & invariabiles deno- tant quantitates.

Sint m valores quantitatis x, qui corre$pondent (m) datis valoribus (a, b, c, &c.) datæ fluentis (π) re$pective α, β, γ, δ, &c. & re$ultant (m $implices æquationes Aα^m-1 + Bα^m-2 + Cα^m-3 + &c. = a - ξ; Aβ^m-1 Bβ^m-2 + Cβ^m-3 + &c. = b - σ; Aγ^m-1 + Bγ^m-2 + Cγ^m-3 + &c. = c - τ, &c. totidem (m) incognitas quantitates (A, B, C, &c.) haben- tes; quæ ita reduci po$$unt, ut inveniantur valores incognitarum quantitatum (A, B, C, &c.); & conficitur problema.

THEOR. III.

In corrigendis fluentibus fluxionum Xx^. eædem radices $emper ad- hibendæ $unt; e. g. $i + √(A) (ubi A e$t functio variabilis quan- titatis x) in fluxione occurrat; tum in fluentibus correctis etiam adhi- benda e$t, $ed in ejus locum minime $ub$tituenda e$t radix - √ (A); in calculo enim fluentium non datur $altus, nempe nulla datur mu- tatio in radicibus.

In corrigendis fluentibus, i. e. cum $ub$tituantur a & b, &c. pro variabili x in generali fluente, in quantitatibus re$ultantibus eædem radices $emper corre$pondenter u$urpandæ $unt.

[0094]DE INVENIENDIS

Ex. Requiratur fluens datæ fluxionis (3 + 3 x √(1 - x^2))(e + 3 x - (1 - x^2)^1{1 / 2})^{1 / m} × x^. inter duos valores (a & b) quantitatis x contenta: ejus fluens generalis erit {m / m + 1} × (e + 3x - (1 - x^2)^1{1 / 2})^{m+1 / m} (P) + E, ubi E $it invariabilis ad libitum a$$umenda; fluens correcta quæ$ita erit {m / m + 1}((e + 3 a - (1 - a^2)^1{1 / 2})^{m+1 / m} - (e + 3 b - (1 - b^2)^1{1 / 2})^{m+1 / m}); vel {m / m + 1}((e + 3 a + (1 - a^2)^1{1 / 2})^{m+1 / m} - (e + 3 b + (1 - b^2)^1{1 / 2})^{m+1 / m}); vel {m / m + 1}(α (e + 3 a + (1 - a^2)^1{1 / 2})^{m+1 / m} - α (e + 3 b + (1 - b^2)^1{1 / 2})^{m+1 / m}); &c.; minime autem {m / m + 1}(e + 3 a + (1 - a^2)^1{1 / 2})^{m+1 / m} - (e + 3 b - (1 - b^2)^1{1 / 2})^{m+1 / m}); vel {m / m + 1}(α (e + 3a + (1 - a^2)^1{1 / 2})^{m+1 / m} - β(e + 3 b + (1 - b^2)^1{1 / 2})^{m+1 / m}); vel &c.; ubi 1, α, β, &c. $unt diver$æ radices æquationis y^m - 1 = 0; & + 1 & - 1 duæ radices æquationis z^2 - 1 = 0; & in priori ca$u iidem valores $emper earundem radicum (y & z), in po$teriori haud $emper iidem valores prædicti in corre$ponden- tibus terminis eju$dem correctæ fluentis continentur.

Et $ic de fluxionibus, in quibus plures continentur variabiles quan- titates & earum fluxiones.

THEOR. IV.

Datâ fluxione (Ax^.), quæ e$t functio quantitatis x in x^.; $cribatur data functio quantitatis z pro x, & ejus fluxio pro x^.; & re$ultet fluxio (Bz^.); inveniantur valores quantitatis z, cum x evadat vel = a, vel = b, qui $int re$pective α, β, γ, δ, &c.; & π, ξ, σ, τ, &c.; inveniantur etiam valores fluentis datæ fluxionis inter duos valores a & b quanti- tatis (x) po$iti; ii$dem radicibus, ut in præcedente regulâ docetur, in [0095]FLUXIONUM FLUENTIBUS. utroque ca$u $emper adhibitis: $int α & π duo valores prædicti quan- titatis z, in quibus eædem $emper adhibentur radices, eædemque etiam ac eæ in prædictis duobus ca$ibus u$urpatæ, cum x evadat vel = a, vel = b; tum erit fluens fluxionis (Ax^.) inter valores a & b quantitatis x contenta, eadem ac fluens fluxionis (Bz^.) inter valores α & π quantitatis z^. contenta.

Ex. Sit fluxio (2x + 3x √(20^2 - x^2))x^. = Ax^., cujus fluens e$t x^2 - (20^2 - x^2)^1{1 / 2} + E quantitas invariabilis; $it z^2 - 5z = x, unde (2z^2 - 10z + 3 × (z^2 - 5z)(20^2 - z^2 - 5z)^{1 / 2})(2z - 5) × z^. = Bz^.: $int 6 & 14 valores quantitatis x, inter quos fluens datæ fluxionis ponitur; tum erit fluens datæ fluxionis inter valores 14 & 6 quantitatis x re$pective 14^2 + (20^2 - 14^2)^1{1 / 2} - (6^2 + (20^2 - 6^2)^1{1 / 2}) = P, & 14^2 - (20^2 - 14^2)^1{1 / 2} - (6^2 - (20^2 - 6^2)^1{1 / 2}) = Q: cum $ub- $tituantur 14 & 6 pro x in quantitate P adhibentur + (20^2 - 14^2)^1{1 / 2} & + (20^2 - 6^2)^1{1 / 2} pro - (20^2 - x^2)^1{1 / 2}, & in po$teriori quantitate Q u$urpantur - (20^2 - 14^2)^1{1 / 2} & - (20^2 - 6^2)^1{1 / 2} pro eâdem quantitate - (20^2 - x^2)^1{1 / 2}; i. e. in priori ca$u $emper applicatur radix √(1) = - 1; in po$teriori vero ca$u √(1) = + 1: deinde inveniantur valores quantitatis z, cum evadat x = 14 vel = 6; i. e. radices æquationum z^2 - 5z = 14 & z^2 - 5z = 6; radices prioris æquationis erunt ± √({25 / 4} + 14) + {5 / 2} = 7, cum adhibeatur $ignum +; & = - 2, $i modo adhibeatur $ignum -: & $imiliter radices æquationis z^2 - 5 z = 6 erunt ± √({25 / 4} + 6) + {5 / 2} = 6 cum adhibeatur $ignum +; & = - 1, $i modo u$urpetur $ignum -: unde inter valores 7 & 6 quantitatis z duo valores fluentis fluxionis (B z^.) viz. P & Q; etiam- que inter valores - 2 & - 1 quantitatis z continentur duo valores prædictis (P & Q) æquales fluentis fluxionis (B z^.).

[0096]DE INVENIENDIS

Cor. Hinc, $i modo A x^. $it fluxio, cujus fluens vel in finitis termi- nis exprimi pote$t, vel non; vel etiam $it fluentialis vel exponentialis, &c. fluxio; & deducatur fluxio B z^., cujus variabilis quantitas e$t z, ubi z e$t functio quantitatis x; tum ex hoc theoremate deduci po$- $unt valores quamplurimi fluentis fluxionis (B z^.) inter α & π, β & ξ, γ & σ, &c: valores quantitatis z contenti, qui erunt inter $e æqua- les, $i modo corre$pondentes radices in α & π, β & ξ, γ & σ, &c. ir- rationalium quantitatum in fluente $. B z^. contentæ, re$pective, ut prius docetur, $int eædem.

Cor. 2. Con$imilia etiam applicari po$$unt ad ca$us, in quibus x e$t functio quantitatis z e datâ æquatione relationem inter x & z ex- primente deducenda; etiamque ad ca$us in quibus plures variabiles quantitates & earum fluxiones primi, $ecundi, &c. ordinum in datâ fluxione continentur.

PROB. X.

Invenire fluentem (W) datæ fluxionis (X x^. = y x^.), quæ $it functio quantitatis x in x^. inter valores a & b quantitatis x contentam; cum inter valores a & b contineatur valor vel valores (α, β, γ, δ, &c.) quanti- tatis x, in quibus evadat X = 0; vel valores (π, ξ, σ, τ, &c.), in quibus X evadat infinita quantitas, & con$equenter {1 / X} = 0: ubi in X = 0 &{1 / X} = 0 $emper eædem adhibentur radices (e. g. quadraticæ + √ vel - √, &c.), eædemque etiam ac eæ in quantitatibus ex $ub$titutione quantitatum a & b pro x in prædictâ quantitate X exortis; ut in theor. 3, & 4. docetur.

Primo inveniantur radices æquationum X = 0 & {1 / X} = 0, quæ $int re$pective α, β, γ, δ, &c.; & π, ξ, σ, τ, &c.; in quibus eædem prædictæ radices adhibentur; & $int γ, ξ, σ, δ, &c. $ucce$$ivæ radices inter a & b inventæ, & con$equenter α, γ, ξ, σ, δ, &c. b $ucce$$ivæ quantitates.

[0097]FLUXIONUM FLUENTIBUS.

1<_>mo. 1. Si fluens vel quantitas W continua, i.e. quæ in eâ ea$dem radices involvit, ex valore (a) quantitatis x ad valorem b, $emper $it finita & po$$ibilis; $cribantur α, γ, ξ, σ, &c., b $ucce$$ive pro x in flu- ente W, & re$ultent quantitates A, P, R, S, T, &c., B; inveniantur differentiæ A - P = λ, P - R = μ, R - S = ν, S - T = π, &c.: $umma omnium quantitatum λ μ, ν, &c. affirmative $umptarum $it Σ; tum erit Σ fluens quæ$ita.

2<_>do. Scribantur v + γ, v + δ, &c.; v + ξ, v + σ, &c.; pro x in datâ quantitate W, & re$ultent quantitates Γ, Δ, &c.; P, Σ, &c.; reducan- tur hæ quantitates in convergentes $eries $ecundum dimen$iones quantitatis v progredientes, viz. C v^{m / n} + &c., D v^{m′ / n′} + &c., + &c.; R v^{r / s} + &c., S v^{r′ / s′} + &c. + &c.; ubi {m / n}, {m′ / n′}, &c.; {r / s}, {r′ / s′}, &c.. $unt fractiones ad minimos terminos reductæ: in his $eriebus & quantitatibus ut in theor. 3, & 4. docetur, $emper adhibendæ $unt eædem radices: 1. $i omnes numeratores m, m′, m″, m′″, &c., r, r′, &c. $int pares, & con- $equenter denominatores impares; tum in fluente W pro x $criban- tur a & b; & differentia inter quantitates re$ultantes A & B erit fluens quæ$ita.

2. Si omnes numeratores m′^b′ vel r′^l, m′^b+1 r′^l+1, m′^b+2, ... m′^b+s vel r′^l+τ, prædictarum fractionum inter m′^b vel r′^l, & m′^b+s vel r′^l+τ po$itarum, $int pares; quorum corre$pondentes valores quantitatis x $int re$pec- tive e, f, g, ... k: tum in fluente W pro x $cribantur e & k; & differ- entia E - K inter quantitates re$ultantes E & K erit fluens quæ$ita. Si denominator $it par, tum evadit fluens impo$$ibilis.

Si numerator & denominator $it impar; tum inveniendæ $unt flu- entes utrinque, quæ incipiunt ab eodem puncto.

FIG. α. 3. Sit fractio 1 + {r / s} vel 1 + {r′ / s′}, &c. vel = 0, vel affirmativa quantitas; tum erit fluens inter a & b contenta, infinita: duæ autem huju$modi fluentes $emel, vel bis vel ter, &c. occurrent, quarum dif- erentia non erit in$inita. e. g. Sit curva b a f g b l, cujus crura in [0098]DE INVENIENDIS infinitum pergentia b a f & g b l, $int continua; & con$equenter in fun- ctione ab$ci$$æ, quæ de$ignat ordinatas a m & b n ad prædicta crura, eædem radices involvuntur; tum erit differentia inter duas areas f a m o k & g b n o k $emper finita quantitas.

4. Si vero continuus valor quantitatis X; i. e. quæ ea$dem radices $emper involvit, inter valores a & b variabilis quantitatis vel ab$ci$$æ x evadat impo$$ibilis; tum inter valores a & b non continetur po$$i- bilis fluens vel area.

FIG. β. 5. Quamvis curva a π ξ b continue progreditur a puncto a ad punctum b; tamen nec ordinata a m; nec area a m α μ, a m β v, &c. proprie dici pote$t continuari a linea a m ad lineam b n.

6. In inve$tigandis diver$is ordinatis α μ, α μ′ & α μ″ vel βν, βν′, βν″, &c. ad eandem ab$ci$$am $emper u$urpantur diver$æ radices in functione ab$ci$$æ, quæ exprimit ordinatam: ab ordinata a m ad ordinatam π h′ eædem radices $emper u$urpandæ $unt in functione ab$ci$$æ, quæ ex- primit ordinatas; & in functione ab$ci$$æ, quæ exprimit areas curvæ: in functionibus ab$ci$$æ, quæ exprimunt ordinatas & areas curvæ ab ordinatâ ξ h ad ordinatam π h′ eædem $emper continentur radices, at non omnes eædem cum iis, quæ u$urpantur in ii$dem functionibus ab ordinatâ a m ad ordinatam π h′: ordinatâ π h′ evadet eadem, utrum hæ vel illæ radices u$urpantur: ab ordinatâ ξ′ h ad ordinatam b n eædem radices, $ed non omnes eædem cum iis, quæ in hoc vel illo præce- dente ca$u, i. e. in prædictis functionibus u$urpantur.

Eadem, quæ a$$erimus de areis & ordinatis, æque ad fluxiones & fluentes applicari po$$unt.

FIG. γ. Ad has res magis illu$trandas: $it curva continua, quæ tria habet continua crura; nempe m b c d e f g h k l p q r n & α β γ & π ξ σ; requiratur area inter ordinatam a m & ordinatam b n contenta. 1<_>mo. Inveniatur area a m b a, deinde b c d b, tum area d e f d & f g h f; de- inde area inter a$ymptoton o i crus h k & ab$ci$$am h o contenta; etiam- que area inter a$ymptoton eandem o i, crus l p & ab$ci$$am o p; $i hæ duæ areæ $int infinitæ, tum $umma areæ inter a m & b n erit infinita: differentia autem inter has duas areas i o h k & l p o i $emper erit finita; [0099]FLUXIONUM FLUENTIBUS. ultimo inveniantur areæ p q r & r n b; $umma harum arearum erit $umma quæ$ita.

7. Si fluens inveniri po$$it aliarum fluentium & finitorum termino- rum ope; & dentur cafus, in quibus finiti termini & quædam præ- dictæ fluentes evane$cunt; tum in iis ca$ibus detegi pote$t fluens ope reliquarum fluentium.

8. Si diver$æ radices eju$dem irrationalis quantitatis $imiliter invol- vantur in fluente, tum $imiliter etiam involventur in fluxione; & vice versâ $i $imiliter involvantur in fluxione, tum $imiliter etiam invol- ventur in generali fluente.

9. Si unum crus vel valor fluxionis, quæ e$t functio quantitatis x in x^., habeat dimen$iones quantitatis (x) in denominatore majores per unitatem quam dimen$iones eju$dem quantitatis (x) in numeratore, tum area prædicti cruris vel fluens prædictæ fluxionis non exprimi pote$t in finitis algebraicis terminis quantitatis (x).

PROB. XI. Invenire, quando fluens datæ fluxionis X x^.; vel area curvæ, cujus ordinata e$t X, evadat impo$$ibilis.

Inveniatur, quando ordinata X evadat impo$$ibilis; in quibus ca$ibus fluxio evadit impo$$ibilis, in ii$dem ca$ibus fluens etiam eva- dit impo$$ibilis; $i quantitas X (ii$dem radicibus $emper adhibitis) perpetuo maneat po$$ibilis inter duos valores a & b quantitatis x; tum fluens corre$pondens inter eo$dem valores a & b quantitatis x, etiam $emper po$$ibilis evadet.

Eædem radices irrationalium quantitatum in ordinata X $emper u$urpandæ $unt.

2. Nonnullæ exponentiales, &c. quantitates (X), etiamque fluentes earundem quantitatum X in x^. ductarum, &c. continuo evadunt po$$i- biles & impo$$ibiles. e. g. $it e^x = - a, ubi e e$t negativa quantitas: hæc quantitas continuo mutatur de po$$ibili in impo$$ibilem, & vice [0100]DE INVENIENDIS versâ de impo$$ibili in po$$ibilem quantitatem: fluxionis log. (- a) × - a x^. fluens erit - a, quæ etiam continuo mutatur de po$$ibili in impo$$ibilem, & de impo$$ibili in po$$ibilem quantitatem.

PROB. XII.

Invenire, utrum fluens fluxionis (X x^.), ubi X e$t functio quantitatis x inter datam & infinitam di$tantiam contenta; i. e. inter valores finitos & in$inite magnos quantitatis variabilis (x); $it finita, necne.

Si maximæ dimen$iones variabilis (x) in numeratore quantitatis X $int minores (per quantitatem majorem quam unitatem) quam di- men$iones eju$dem quantitatis (x) in denominatore; tum fluens præ- dicta erit finita, $in aliter non.

2. Si corre$pondentes exponentiales vel quantitates cuju$cunque generis ad infinitam di$tantiam habeant rationem, i. e. $ingula præce- dens ad ejus $ub$equentem, quæ major e$t quam ratio $ucce$$ivarum quantitatum ad ea$dem di$tantias, cum dimen$iones variabilis quan- titatis x in numeratore $int minores per unitatem quam dimen$iones eju$dem quantitatis in denominatore; tum area erit finita; $in aliter vero non. e. g. Sit data fluxio e^-x x^. = X x^., etiamque duo $ucce$$ivi valores quantitatis X re$pective e^-x & e^-x-1: corre$pondentes autem valores fractionum ad ea$dem di$tantias x & x + 1, cum dimen$iones quantitatis x in numeratore $int minores per unitatem quam dimen- $iones eju$dem quantitatis in denominatore erunt ad infinitam di$tan- tiam {1 / x} & {1 / x + 1}; $ed e^-x:e^-x-1:: e:1: $i e major $it quam 1; tum e^-x habet majorem rationem ad e^-x-1, cum x $it infinita quantitas, quam ::{1 / x}:{1 / x + 1}; ergo fluens contenta inter finitos & infinite mag- nos valores quantitatis x in fluxione e^-x x^. erit finita; cum e $it major quam 1, & x $it affirmativus numerus: etiamque ex ii$dem principiis [0101]FLUXIONUM FLUENTIBUS. con$tat prædictam fluentem e$$e finitam, cum e minor $it quam 1, & x $it negativa quantitas, i. e. X $it e^x: $in aliter non.

3. Invenire, utrum area vel fluens datæ fluxionis Xx^. inter duas finitas di$tantias vel valores (a & b) ab$ci$$æ (x) $it finita, necne.

Primo inveniatur, annon inter duos prædictos valores a & b infi- nita evadat ordinata X; $i non evadat infinita inter prædictos valores, tum area non erit infinita: $i vero evadat infinita, cum x = α, tum x - α erit radix denominatoris fractionis X, quæ exprimit ordina- tam; pro x in datâ fractione X $cribatur z + α, & $i minimæ dimen- $iones quantitatis (z) in numeratore contentæ $int minores per quan- titatem minorem quam unitatem quam minimæ dimen$iones eju$dem quantitatis (z) in denominatore; tum area quoad hoc crus in in- finitum pergens erit finita; $in aliter vero non.

Et $ic de pluribus cruribus in infinitum pergentibus.

4. Si exponentiales, &c. quantitates exprimentes ordinatas X, cum evadant infinitæ, ad corre$pondentes di$tantias ab$ci$$æ (z) evadant minores quam omnes quantitates {d / z}, ubi d e$t data quantitas & z fere = 0; tum area vel fluens $. Xx^. e$t finita quoad hoc crus, $in aliter vero non.

5. In omnibus his ca$ibus a valore a ad valorem b $emper u$ur- pandæ $unt eædem radices irrationalium quantitatum in ordinatâ X contentarum.

Ex. Sit fluxio {x^n x^. / (ax^m + bx^r + (a^2 x^2m + dx^s)^{1 / 2})^{1 / 2}}; hæc fluxio di$tingui pote$t in quatuor fluxiones, quarum prima {x^n x^. / (ax^m + bx^r + (a^2 x^2m + dx^s)^{1 / 2})^{1 / 2}}={x^n x^. / (ax^m + bx^r + (ax^m + {d / 2a}x^s-m + &c.))^{1 / 2}} = {x^n x^. / (2ax^m + bx^r + {1 / 2}{d / a}x^s-m) + &c.)^{1 / 2}} [0102]DE INVENIENDIS = {x^n x^. / √(2a)x^{m / 2} + {bx^r + {1 / 2}{d / a}x^s-m /2√(2a)x^{m / 2}} + &c.}; in his fluxionibus (m) $uppo- nitur major quam r vel s; tum, $i n minor $it quam {m / 2} per quan- titatem majorem quam unitatem, fluens inter finitum & infini- tum valorem quantitatis x contenta, erit finita; $in aliter non: 2^da. fluxio {x^n x^. / (ax^m + bx^r - (a^2 x^2m + dx^s)^{1 / 2})^{1 / 2}} = {x^n x^. / (ax^m + bx^r - ax^m - {d / 2a}x^s-m + &c.)^{1 / 2}} ={x^n x^. / b^{1 / 2} x^{r / 2} ± &c., vel √(-{d / 2a})x^{s-m / 2} ± &c., vel √(b-{d / 2a})x^{s-m=r / 2} ± &c.}: $i n minor $it per quantitatem majorem quam unitatem quam major quantitas vel {r / 2} vel {s-m / 2}; tum fluens inter prædictos va- lores contenta erit finita, $in aliter non. Et $imiliter ratiocinari liceat de duobus reliquis fluxionibus {x^n x^. / -(ax^m + bx^r + (a^2 x^2m + dx^s)^{1 / 2})^{1 / 2}}&{x^n x^. / -(ax^m + bx^r - (a^2 x^2m + dx^s)^{1 / 2})^{1 / 2}}

THEOR. V.

Datâ fluxione, quæ e$t algebraica functio literæ x in x^. ducta, & quæ nullos in $e habet tran$cendentales terminos; $umma ejus fluen- tis valorum $emper exprimi pote$t per finitos terminos, circulares arcus & logarithmos.

Summa enim e $ingulis valoribus cuju$cunque irrationalis quanti- tatis (P) nihilo $emper erit æqualis, & exinde $umma e $ingulis va- loribus fluentis (Px^.): $ummam vero e $ingulis valoribus fluentis [0103]FLUXIONUM FLUENTIBUS. (Qx^.), quæ e$t rationalis functio quantitatis x in x^. ducta, $emper in- veniri po$$e finitorum terminorum, circularium arcuum & logarith- morum ope, e $ub$equentibus con$tabit; ergo con$tat theorema.

E capite primo medit. algebr. con$tat $ummam $ingulorum valo- rum cuju$cunque algebraicæ quantitatis haud tran$cendentalis e$$e rationalem quantitatem.

PROB. XIII.

Datâ quantitate vel algebraicâ vel fluentiali, quœ exprimit $ummam $eriei $ecundum dimen$iones literœ x progredientis; invenire quantitatem alternis $eriei terminis æqualem; vel denique $eriei terminis, quorum di- $tantia a $emetip$is $it n.

1. Si modo $eries requiratur alternis $eriei terminis æqualis; pro x, x^., x^.., &c. in datâ quantitate $cribantur re$pective x, x^., x^.., &c. & - x, -x^., -x^.., &c. emergent duæ quantitates, quarum $emi$umma & $e- midifferentia erunt quantitates de$ideratæ.

2. Si requiratur $umma terminorum, quorum di$tantia a $e invicem $it n. Sint α, β, γ, δ, ε, &c. re$pectivæ radices æquationis π^η - 1 = 0; in datâ quantitate pro x, x^., x^.., &c. $cribantur re$pective αx, αx^., αx^.., &c. βx, βx^., βx^.., &c. γx, γx^., γx^.., &c. &c. & re$ultant n quantitates: $umma harum n quantitatum re$ultantium per n divi$a erit $umma quæ$ita, i.e. erit fumma primi, n + 1, 2n + 1, 3n + 1, &c. termino- rum. Et $ic e principiis in prob. 27. tertiæ edit. & in præfatione no$t. medit. algebr. traditis inveniri po$$unt $umma $ecundi, n + 2, 2n + 2, 3n + 2, &c. terminorum; $umma tertii, n + 3, 2n + 3, 3n + 3, &c. terminorum; & $ic deinceps: methodus enim, quæ invenit $ummam prædictorum terminorum $eriei ab expan$ione irrationalium vel fra- ctionalium quantitatum in terminos $ecundum dimen$iones quanti- tatis x progredientes, etiam deteget $ummam con$imilium termino- rum $eriei progredientis $ecundum dimen$iones quantitatis x, quæ e$t fluens $eriei ex expan$ione irrationalium vel fractionalium quantita- tum in terminos $ecundum dimen$iones quantitatis x progredientes in x^. ductæ, &c.

[0104]DE INVENIENDIS

Con$imilia etiam applicari po$$unt ad $eries, quæ ex expan$ione irrationalium, &c. quantitatum in terminos $ecundum dimen$iones quantitatum x, y, z, &c. progredientes, exoriuntur; etiamque ad $e- ries, quæ $unt fluentes præcedentium $erierum in x^., y^., &c. ductarum.

PROB. XIV.

Datam fluxionem, quæ $it functio variabilium quantitatum (x, y, z, &c.) & earum fluxionum, in alteram transformare; quœ $it functio variabilium quantitatum (v, w, u, &c.) & earum flux’ionum, & cujus variabiles quan- titates datam habeant relationem ad variabiles datœ fluxionis quantitates.

Supponatur data fluxio = X^., & re$ultans æquatio & datæ æqua- tiones inter variabiles quantitates datæ (x, y, &c.) & quæ$itæ (v, w, &c.) æquationis relationem exprimentes ita transformentur ut re$ul- tet æquatio relationem inter fluxionem X^. & variabiles quantitates v, w, &c. & earum fluxiones exprimens; ex hâc æquatione, $i modo fieri po$$it, inveniatur quantitas X^. terminis vero variabilium quanti- tatum v, w, &c. & earum fluxionum, & confit problema.

Ex hâc methodo $æpe reduci pote$t data fluxio in magis $implicem.

Ex. 1. Sit data fluxio {-x^-n x^. / a + 2bx + cx^2} = X^.; & x = {1 / v}; transfor- mabitur data fluxio in fluxionem {v^n v^. / av^2 + 2bv + c} = X^..

Ex. 2. Sit data fluxio {x^{m / r} x^. /e + fx^n} = X^., & v^r = x, & transformari pote$t data fluxio in fluxionem {rv^m+r-1 v^. / e + fv^rn} = X^..

Hinc con$tat, $i modo numerus dimen$ionum variabilis quantitatis in datâ fluxione (e.g. $it data fluxio {Ax^r+{l / s}n-1 x^. /e + fx^n + gx^2n + &c. × P}) $ine vinculo $it aliquota pars vel partes ({l / s}) dimen$ionum (n) eju$dem [0105]FLUXIONUM FLUENTIBUS. quantitatis $ub vinculo, transformari po$$e fluxionem in meliorem formulam, $i modo pro x^{n / s} $cribatur v, &c. Si hâc methodo haud bene proce$$it transformatio, nonnunquam transformari pote$t data fluxio in præ$tantiorem formulam, $cribendo v = x^{1 / sn}, & reducendo datam fluxionem in alteram, cujus variabilis quantitas e$t v.

Ex. 3. Sit data fluxio a + bx^n x^rn-1 x^., ubi litera r integrum deno- tat numerum; $cribatur a + bx^n = v, & erit x^n = {v - a / b}; unde fluxio data a + bx^n x^rn-1 x^. = {1 / n}v^m × ({v - a / b})^r-1 × {v^. / b}, & quoniam r - 1 e$t integer numerus, facile reduci pote$t (v - a)^r-1 per binomiale theo- rema in $implices terminos, & exinde fluens datæ fluxionis inveniri pote$t.

Si r haud $it integer numerus, $ed - r - m - 1. $it integer nume- rus; & data fluxio a + bx^nx^rn-1 x^. = {a / x^n} + b × x^rn+nm-1 x^.; $cribatur {a / x^n} + b = v, & re$ultat {a / v - b} = x^n; unde {a / x^n} + b × x^nr+nm-1 x^. = - v^m × {1 / n}(v - b)^-m-r-1 × a^r+m v^..

Cor. Facile exhinc fingi po$$unt fluxiones, quæ reduci po$$unt in magis $implices: a$$umatur enim $implex fluxio, & pro variabilibus quantitatibus & earum fluxionibus in eâ contentis $cribantur quan- titates magis compo$itæ & earum fluxiones; re$ultat fluxio, quæ fa- cile reduci pote$t in prædictam $implicem.

Ex. 1. Sit data fluxio x^9 × a + bx^s x^.; a$$umatur x = ev^v + fv^r+n + gv^r+2n + &c.; $ub$tituatur hic valor & ejus fluxio pro quantitate x & ejus fluxione in datâ fluxione, & re$ultat fluxio magis compo$ita [0106]DE INVENIENDIS a + b

    e v^ν + f v^ν+n + g v^ν+2n + &c.
^πs × e + f v^n + g v^2n + &c. × π v^(θ+1)πν-1 × (ν e + (n + ν) f v^n + &c.) × v^., quæ facile reduci pote$t ad prædictam $implicem fluxionem.

Ex. 2. Sit data eadem fluxio x^θ × a + b x^5 × x^.; a$$umatur e v^ν + f v^ν+n + g v^ν+2n + &c. × h + k v^n + l v^2n + &c. = x, $cribatur hic valor & ejus fluxio pro x & x^. in datâ fluxione, & re$ultat fluxio ma- gis compo$ita.

Sit fluxio X x^., & $int dimen$iones quantitatis x in numeratore quantitatis X minores per unitatem quam ejus dimen$iones in deno- minatore; transformetur hæc fluxio in alteram V v^., ubi v e$t quæ- cunque algebraica functio quantitatis (x), & V con$imilis functio quantitatis v; tum erunt dimen$iones quantitatis v in numeratore fra- ctionis V minores per unitatem quam ejus dimen$iones in denomina- tore prædictæ fractionis.

PROB. XV.

Datam fluxionem irrationales quantitates babentem in alteram $œpe transformare; $i modo fieri po$$it, quœ nullas babet irrationales quanti- tates.

Per caput 5. medit. algebr. inveniatur, annon $ingula irrationalis, &c. quantitas in datâ fluxione contenta exprimi pote$t in rationalibus functionibus eju$dem literæ v; $i vero huju$ce generis inveniantur rationales functiones, $ub$tituantur hæ rationales functiones, &c. pro $uis valoribus in datâ fluxione, & re$ultat fluxio quæ$ita.

Ex. 1. Sit prædicta fluxio rationalis functio quantitatum x^n & (a + bx^n)^{1 / 5} (ubi litera s integrum denotat numerum) in fluxionem x^n-1 x^. ducta; eam transformare in alteram, quæ nullas habet irrationales quantitates. Scribatur (a + b x^n)^{1 / 5} = v, unde {v^5 - a / b} = x^n, quibus [0107]FLUXIONUM FLUENTIBUS. quantitatibus pro $uis valoribus in datâ fluxione re$pective $ub$titutis, & {s v^5-1 v^. / n b} pro x^n-1 x^.; re$ultat fluxio quæ$ita.

Ex. 2. Sit prædicta fluxio rationalis functio quantitatum x^n & ({a + b x^n / c + d x^n})^{1 / 5}, in fluxionem x^n-1 x^. ducta; $cribatur ({a + b x^n / c + d x^n})^{1 / 5} = v, & exinde v^5 = {a + b x^n / c + d x^n}, etiamque c v^5 - a/b - d v^5 = x^n, & x^n-1 x^. ={s c v^5-1 × (b - d v^5) + s d v^5-1 × (c v^5 - a) / n (b - d v^5)^2} × v^.; quibus quantitatibus pro $uis valoribus in datâ fluxione $ub$titutis, re$ultat fluxio quæ$ita.

Cor. Sit fluxio rationalis functio quantitatum x^n & (a + b x^n)^{1 / 5} × (c + d x^n)^{5-1 / 5}; pro (a + b x^n)^{1 / 5} × (c + d x^n)^{5-1 / 5} $cribatur ejus valor (c + d x^n) × ({a + b x / c + d x^n})^{1 / 5}, & reducitur fluxio in fluxionem præcedentis formulæ.

Ex. 3. Sit data fluxio rationalis functio quantitatum x^n & ^2 √(a^2 + b x^n + c x^2n) in x^n-1 x^. ducta: $cribatur (a^2 + b x^n + c x^2n)^{1 / 2} = a + p x^n v, & exinde b x^n + c x^2n = 2 a p x^n v + p^2 x^2n v^2, unde x^n = {b - 2 a p v / p^2 v^2 - c}, & (a^2 + b x^n + c x^2n)^{1 / 2} = a + p x^n v = {p b v - p^2 a v^2 - c a / p^2 v^2 - c}; quibus quantitatibus pro $uis valoribus in datâ fluxione $ub$titutis, & fluxione {2 p^3 a v^2 - 2 p^2 b v + 2 a p c / (p^2 v^2 - c)^2} v^. pro n x^n-1 x^.; re$ultat fluxio quæ$ita.

Sit data fluxio functio rationalis quantitatum x^n & (a + b x^n + c x^2n)^{1 / 2} in x^n-1 x^.; $cribatur (a + b x^n + c x^2n)^{1 / 2} = √ (c) x^n + v, & re$ultat c x^2n + 2 √ (c) v x^n + v^2 = a + b x^n + c x^2n; unde x^n = {v^2 - a / b - 2 √ (c) v} & [0108]DE INVENIENDIS (a + b x^n + c x^2n)^{1 / 2} = √ (c)x^n + v = {√ (c)bv - cv^2 - ca / b √ (c) - 2 c v}; & fluxio x^n-1 x^. = {1 / n} × {2 b v - 2 a √ (c) - 2 √ (c) v^2 / (b - 2 √ (c) × v)^2} × v^.; quibus quantitatibus pro $uis valoribus in datâ fluxione $ub$titutis, re$ultat fluxio quæ$ita.

Et $imiliter $cribatur (a + b x^n + c x^2n)^{1 / 2} = √ (a) + √ (c) x^n + v, vel (a + b x^n + c x^2n)^{1 / 2} = c^{1 / 2} (x^n + α)^{1 / 2} (x^n + β)^{1 / 2} = v (x^n + α) = (b^2 x^2n + l (x^n + γ) (x^n + δ))^{1 / 2} = bx^n + v (x^n + γ) = (k^2 + t (x^n + ε) (x^n + ζ))^{1 / 2} = k + v (x^n + ε), &c. & facile transformari pote$t data in fluxionem, cujus variabilis quantitas e$t v.

Eædem $ub$titutiones etiam transformant multas alias formulas in magis $implices.

Ex. 3. Sit data fluxio x^rn-1 x^. (a + (e + f x^n)^{1 / m})^{1 / 5} in rationalem fun- ctionem quantitatum x^n & (e + f x^n)^{1 / m}; ubi r & m $unt integri nu- meri; $cribatur (e + f x^n)^{1 / m} = v, & erit x^n = {v^m - e / f}, & data fluxio transformatur in alteram ({v^m - e / f})^r-1 × {m / n f} v^m-1 v^. × ^5 √ (a + v) × rationalem functionem quantitatum (v) & v^m - e; cujus fluens facile inveniri pote$t.

Ex. 4. Sit fluxio x^rn-1 x^. × P, ubi P $it rationalis functio quantitatum (a + (e + f x^n)^{1 / m})^{1 / 5}, (e + f x^n)^{1 / m} & x^n; & r, m & s integri $int numeri; $cribantur v^5, v^5 - a, & {(v^5 - a)^m - e / f}: & fluxione {m s v^5-1 × (v^5 - a)^m-1 / f}v^. pro a + (e + f x^n)^{1 / m}, (e + f x^n)^{1 / m}, x^n, & n x^n-1 x^. in datâ fluxione; & re$ultat fluxio quæ$ita.

[0109]FLUXIONUM FLUENTIBUS.

Ex. 5. Sit data fluxio x^rn-1 x^. × (a + b x^n + (e + f x^n)^{1 / m})^{1 / 5}, ubi literæ m & r integros denotant numeros; $cribatur e + f x^n = v^m, unde x^n ={v^m - e / f}; & transformari pote$t data fluxio in fluxionem ({v^m - e / f})^r-1 × {m v^m-1 v^. / n f} × (a + b × {v^m - e / f} + v)^{1 / 5}.

Ex. 6. Sint literæ m & r integri numeri, & fluxio data n x^rn-1 x^. (a + ({e + f x^n / g + b x^n})^{1 / m})^{1 / 5} × in rationalem functionem quantitatum x^n & ({e + f x^n / g + b x^n})^{1 / m}; $cribatur {e + f x^n / g + b x^n} = v^m, unde {g v^m - e / f - b v^m} = x^n, & tran$- formari pote$t data fluxio in fluxionem ({g v^m - e / f - b v^m})^r-1 × (a + v)^{1 / 5} × in flux. quantitatis ({g v^m - e / f - b v^m}) × functionem quantitatum v &{g v^m - e / f - b v^m}.

Ex. 7. Sit data fluxio (a + (e^2 + f x^n + g x^2n)^{1 / 2})^{1 / 2} x^rn-1 x^. × quamcun- que rationalem functionem quantitatum x^n & (e^2 + f x^n + g x^2n)^{1 / 2}, ubi r $it integer numerus; $cribatur e^2 + 2 e v x^n + v^2 x^2n = e^2 + f x^n + g x^2n, unde x^2 = {2 e v - f / g - v^2}; & data fluxio facile transformatur in alteram (a + e + {2 e v^2 - f v / g - v^2})^{1 / 5} × {1 / n} × ({2 e v - f / g - v^2})^r-1 × in flux. quan- [0110]DE INVENIENDIS titatis {2 e v - f / g - v^2} × rationalem functionem quantitatum v & e +{2 e v^2 - f v / g - v^2}.

Ex. 8. Si vero $it data fluxio x^. x^rn-1 × (e + f z + g z^2 + &c.)^{1 / 5} × P, ubi z vel = (e + f x^n)^{1 / 5} vel ({e + f x^n / b + k x^n})^{1 / 5} &c. & P $it rationalis functio quantitatis x^n; tum facile transformari pote$t data fluxio in alteram magis $implicem $cribendo pro (e + f x^n)^{1 / 5} vel ({e + f x^n / b + k x^n})^{1 / 5} ejus valo- rem (v); & pro x^n in priori ca$u {v^5 - e / f}, in po$teriori vero {b v^5 - e / f - k v^5}; & earum fluxiones re$pective pro n x^n-1 x^., in datâ fluxione; &c.

Ex. 9. Sit data fluxio x^n-1 x^. × in rationalem functionem quan- titatum ^m √ (a + b ^r √ (c + d ^5 √ (e + &c. + ({g + f x^n / b + k x^n})^{1 / t}))) = P, <_>r√ (c + d <_>5√ (e + &c. + ({g + f x<_>n / b + k x<_>n})<_>{1 / t})) = Q, <_>5√ (e + &c. + ({g + f x<_>n / b + k x<_>n})<_>{1 / t}) = R, &c., ({g + f x<_>n / b + k x<_>n})<_>{1 / t} = U, & x<_>n; a$$umantur v = P, {v^m - a / b} = Q,{({v^m - a / b})^r - c/d} = R, &c., ({((v^m - a / b})^r - c)^5 /d - e, &c.)^t = U, {b U^t - g / f - k U^t} = x^n, & ejus fluxio pro n x^n-1 x^.; $cribantur hæ quantitates pro $uis valoribus; & transformatur data fluxio in alteram, quæ erit rationalis functio quantitatis v in v^..

Ex. 10. Sit data fluxio rationalis functio quantitatum (x^n + [0111]FLUXIONUM FLUENTIBUS. √ (1 + x<_>2n))<_>{1 / m} & √(1 + x<_>2n) & x<_>n in x^n-1 x^., ubi m $it integer numerus; $cribatur x^n + √ (1 + x^2n) = y^m, & re$ultat x^n = {y^2m - 1 / 2y^m} & √(1 + x^2n) = y^m - x^n; unde facile reduci pote$t data fluxio in rationalem fun- ctionem quantitatis y in y^..

Et $ic de quamplurimis huju$cemodi exemplis; facile enim deduci po$$unt infinitæ con$imiles $ub$titutiones, quæ transformant fluxio- nem irrationales quantitates involventem in fluxionem rationales vel minus irrationales quantitates $olummodo habentem; e contra inveniri po$$unt infinitæ huju$modi irrationales fluxiones, quæ in rationales transformari po$$unt; a$$umatur enim quæcunque rationalis fluxio, & pro x^n vel quâcunque aliâ quantitate $cribatur irrationalis quantitas, & pro ejus fluxione fluxio prædictæ quantitatis, &c. & exterminetur quantitas x & ejus fluxio; frequenter re$ultabit irrationalis fluxio, quæ facile reduci pote$t in a$$umptam rationalem.

Con$tat nullam a$$ignari po$$e fluxionem, cujus fluens finitis ter- minis algebraicis inveniri pote$t, vel finitis $olummodo terminis loga- rithmorum exprimi pote$t, &c. quæ haud transformari pote$t per al- gebraicarum quantitatum $ub$titutiones in rationalem fluxionem; $ed dantur fluxiones, quarum fluentes exprimuntur algebraicis & loga- rithmicis terminis finitis conjunctim, quæ haud reduci po$$unt per prædictas $ub$titutiones in rationales fluxiones: $ed de his $atis.

LEMMA.

1. Sit n integer numerus, & æquatio x^n - p x^n-1 + q x^n-2 - rx^n-3 + &c. = 0, &c. $int etiam a, b, c, d, &c. producta differentiarum uni- cuique radicum & radicibus reliquis interjacentium, hoc e$t, $it a = (α - β) × (α - γ) × (α - δ) × &c. = n α^n-1 - (n - 1) pα^n-2 + (n - 2) qα^n-3 - &c. & b = (β - α) × (β - γ) × (β - δ) × &c. = nβ^n-1 - (n - 1) pβ^n-2 + (n - 2)qβ^n-3 - &c. & c = (γ - α) × (γ - β) × (γ - δ) × &c. [0112]DE INVENIENDIS = nγ^n-1 - (n - 1)pγ^n-2 + (n - 2) qγ^n-3 - &c. & d = (δ - α) × (δ - β) × (δ - γ) × &c. = n δ^n-1 - (n - 1) pδ^n-2 + (n - 2) q δ^n-3 - &c.&c. & erit fractio {1 / x^n - p x^n-1 + q x^n-2 - &c.} = {{1 / a}/x - α} + {{1 / b}/x - β} + {{1 / c}/x - γ} +{{1 / d}/x - δ} + &c.

2. Sit {x^s / x^n - px^n-1 + qx^n-2 - &c.} = {a / x - α} + {b / x - β} + {c / x - γ} + {d / x - δ}+ &c. ubi exponens s denotat integrum po$itivum numerum, mino- rem vero quam n; tum erit a = {a^s / (α - β) × (α - γ) × (α - δ) × &c.} ={a^s / nα^n-1 - (n - 1)pα^n-2 + (n - 2)qα^n-3 - &c.}, b = {β^s / (β - α) × (β - γ) × (β - δ) × &c.}, c = {γ^s / (γ - α) × (γ - β) × (γ - δ) × &c.}, &c.

Cor. Sint α & β radices duæ quadraticæ ex eâdem quadraticâ ortæ, quas ideo radices cognatas appellare licet, addanturque in unam fractiones {a / x - α} & {b / x - β}; nunc quicquid imaginarii e$t in utrâque fractione $eor$im $umptâ $emper ex earum $ummâ {(a + b)x - bα - αβ / (x - α) × (x - β)} evane$cet.

3. Sit {1 / (x + α)^m × (x + β)^n} = {a / (x + α)^m} + {b / (x + α)^m-1} + {c / (x + α)^m-2}.....{A / (x + β)^n} + {B / (x + β)^n-1} + {C / (x + β)^n-2} + &c. & erit a = {1 / (β - α)^n}, b ={- n / (β - α)^n+1}, c = {n × {n + 1 / 2}/(β - α)^n+2}, &c. A = {1 / (α - β)^m}, B = {- m / (α - β)^m-2}, C = [0113]FLUXIONUM FLUENTIBUS. {m × {m + 1 / 2}/(α - β)^m-2}, &c. eodem modo $upponatur {1 / (x + α)^n × (x + β)^m × (x + γ)^r}= {a / (x + α)^n} + {b / (x + α)^n-1} + {c / (x + α)^n-2}....{A / (x + β)^m} + {B / (x + β)^m-1} +{C / (x + β)^m-2}....{P / (x + γ)^r} + {Q / (x + γ)^r-1} + {R / (x + γ)^r-2} + &c. & exinde deduci po$$unt coefficientes a, b, c, &c. A, B, C, &c. P, Q, R, &c. ex reductione harum fractionum in communem denominatorem.

4. Literæ α, β, γ, &c. a, b, c, &c. ea$dem quantitates ac in ca$u 1. de- notent: & erit quantitas {Q / (x^n - px^n-1 + &c.) × R} = {Q / a × (x - α) × R} +{Q / b × (x - β) × R} + {Q / c × (x - γ) × R} + &c. ubi literæ Q & R qua$cun- que quantitates variabiles vel invariabiles de$ignare po$$unt.

5. Datâ fluxione, cujus denominator continetur $ub divi$oribus a, b, c, d, &c. i. e. $it data fluxio {Ax^. / P}, ubi P = a × b × c × d × &c. ea in alias transformari pote$t huju$ce formulæ {lx^. / a} + {mx^. / b} + {nx^. / c}+ &c. = {Ax^. / P}; reducantur hæ fractiones in communem denomina- torem, & re$ultat {lbc &c. / abc &c.} + {mac &c. / abc &c.} + {nab &c. / abc &c.} + &c. = {A / P}: ita vero $æpe a$$umi po$$unt coefficientes l, m, n, &c. ut evane$cant quidam irrationales termini.

6. Sit data fluxio {ax^m + bx^m±1 + cx^m±2 + &c. / px^n + qx^n±1 + rx^n±2 + &c.} × x^., ubi m major e$t quam n; tum reduci pote$t in alteram, ubi maximus index quan- titatis x in numeratore minor e$t quam ejus maximus index (n) in [0114]DE INVENIENDIS denominatore. Dividatur numerator per denominatorem, viz. px^n + qx^n±1 + rx^n±2 + &c. (ax^m + bx^m±1 + cx^m±2 + &c.) {a / p}x^m-n +{bp - aq / p^2}x^m-n±1 + &c. = Q; u$que donec maximus index re$idui (R) minor $it quam index n, & id, quod requiritur, perficietur; erit enim data fluxio = Qx^. + {Rx^. / px^n + qx^n±1 + &c.}.

7. Erit fluxio {ax<_>n-1 + bx<_>n-2 + cx<_>n-3 + &c. / px<_>n + qx<_>n-1 + rx<_>n-2 + &c.} × x^. = {a / np} ×{npx<_>n-1 + (n - 1)qx<_>n-2 + (n - 2) r x<_>n-3 + &c. / px<_>n + qx<_>n-1 + rx<_>n-2 + &c.} x^. (fluxio, cujus fluens e$t {a / np} × log. (px^n + qx^n-1 + rx^n-2 + &c.) +{b - (n-1){aq / np})x^n-2 + (c-(n-2){ar / np})x^n-3 + &c./px^n + qx^n-1 + rx^n-2 + &c.}x^..

LEMMA.

1. Sit æquatio x^2n - 2px^n + 1 = 0, & p minor quam 1.

FIG. Sit circulus ABEF &c. P, cujus centrum $it C, & radius unitas. E tabulis $inuum inveniatur arcus A G, cujus $inus $it p. E prædictis tabulis inveniantur $inus arcuum {(n - 1) × 90° + AG / n}, {(n - 5) × 90° + AG / n},{(n - 9) × 90° + AG / n}, {(n - 13) × 90° + AG / n}.... {- 3 × (n - 1)90° + AG / n}; qui $int re$pective α, β, γ, δ, ε, &c. tum x^2 - 2αx + 1, x^2 - 2βx + 1, x^2 - 2γx + 1, x^2 - 2δx + 1, &c. erunt quadratici divi$ores quanti- tatis x^2n - 2px^n + 1.

[0115]FLUXIONUM FLUENTIBUS.

2. Sit data quantitas x^n - 1, cujus quadratum x^2n - 2x^n + 1 erit quantitas præcedentis formulæ. In hoc ca$u p = 1 $inus arcûs (AG = 90°): inveniantur igitur $inus α, β, γ, &c. arcuum 90°, {(n - 4) × 90° / n},{(n - 8) × 90° / n}, {(n - 12) × 90° / n}.... - {(3n - 4)90° / n}; tum x^2 - 2αx + 1, x^2 - 2βx + 1, x^2 - 2γx + 1, &c. erunt quadratici divi$ores qua- drati x^2n - 2x^n + 1; & x - 1 $implex divi$or datæ quantitatis x^n - 1, cum n $it impar numerus; etiamque x - 1 & x + 1 erunt $implices divi$ores datæ quantitatis x^n - 1, cum n $it par numerus: $i vero n = 4m $it numerus pariter par, tum data quantitas recipiet $implices divi$ores x + 1 & x - 1 & quadraticum x^2 + 1.

3. Sit data quantitas x^n + 1 = 0, cujus quadratum x^2n + 2x^n + 1 erit quantitas præcedentis formulæ; in hoc ca$u p = - 1 $inus arcûs (AG = - 90°); inveniantur igitur $inus arcuum {(n - 2) × 90° / n},{(n - 6) × 90° / n}, {(n - 10) × 90° / n}....{- (3n - 2) × 90° / n}: $i vero n = 4m + 2 $it impariter par, tum unus $inus arcûs erit 0: $int $inus inventi, cum n vel = 2m + 1, vel = 4m, vel 4m + 2 re$pective, in primo ca$u - 1, α, β, γ, δ, &c. in $ecundo α, β, γ, δ, &c. in tertio 0, α, β, γ, δ, &c. tum data quantitas con$tat in primo ca$u e quadraticis divi$ori- bus x^2 - 2αx + 1, x^2 - 2βx + 1, x^2 - 2γx + 1, &c. & e $implici divi$ore x + 1; etiamque e prædictis & quadratico divi$ore x^2 + 1 in po$tremo ca$u; &c.

4. Sit n impar numerus, & x^n - 1 = (x - 1) × (x^2 - 2αx + 1) × (x^2 - 2βx + 1) × &c. & erit {1 / x^n - 1} = {{1 / n}/x - 1} + {{2 / n}αx - {2 / n}/x^2 - 2αx + 1} +{{2 / n}βx - {2 / n}/x^2 - 2βx + 1} + &c.

Sit n vero par numerus, & x^n - 1 = (x - 1) × (x + 1) × (x^2 - 2αx + 1) [0116]DE INVENIENDIS × (x<_>2 - 2βx + 1) × &c. & erit {{1 / n}/x - 1} - {{1 / n}/x + 1} + {{2 / n}αx - {2 / n}/x^2 - 2αx + 1} + &c. = {1 / x^n - 1} ·

Sit n pariter par numerus, & erit x^n - 1 = (x - 1) × (x + 1) × (x^2 + 1) × (x^2 - 2αx + 1) × &c. & {1 / x^n - 1} = {{1 / n}/x - 1} - {{1 / n}/x + 1} -{{2 / n}/x^2 + 1} + {{2 / n}αx - {2 / n}/x^2 - 2αx + 1} + &c.

Sit n impar numerus & x^n + 1 = (x + 1) × (x^2 - 2αx + 1) × (x^2 - 2βx + 1) × &c. & erit {- 1 / x^n + 1} = {- {1 / n}/x + 1} + {{2 / n}αx - {2 / n}/x^2 - 2αx + 1) × &c.}

Sit n par numerus, & x^n + 1 = (x^2 + 1) × (x^2 - 2αx + 1) × (x^2 - 2 β x + 1) × &c. & erit {- 1 / x^n + 1} = {- {2 / n}/x^2 + 1} + {{2 / n}αx - {2 / n}/x^2 - 2 α x + 1} +{{2 / n}β x - {2 / n}/x^n - 2 β x + 1} + &c. Hæc facile deduci po$$unte lemmate præced.

5. Sit x^2n ± 2 p x^n + 1, ubi p minor $it quam 1; & x^2n ± 2 p x^n + 1 = (x^2 - 2 α x + 1) × (x^2 - 2 β x + 1) × (x^2 - 2 γ x + 1) × &c. i. e. $int α, β, γ, &c. co$inus arcuum {A / n}, {360° - A / n}, {360° + A / n},{2 × 360° - A / n}, {2 × 360° + A / n}, {3 × 360° - A / n}, &c. ubi A $it arcus, cujus co$inus $it ± P, itemque $int e, f, g, h, &c. co$inus arcuum, quorum unu$qui$que ad unumquemque arcum antecedentem eo- dem ordine $umptum eam rationem habeat, quæ e$t numeri n - 1 ad 1. Et erit {1 / x^2n ± 2 p x^n + 1} = - {{α ± p e / n - n p^2}x - {1 / n}/x^2 - αx + 1} - {{β ± pf / n - p^2 n}x - {1 / n}/x^2 - βx + 1} -{{γ ± pg / n - np^2}x - {1 / n}/x^2 - γx + 1} - &c. ubi affirmativum $ignum affixum e$t quantitati p e, &c.; $i modo $it + p, $in aliter negativum.

[0117]FLUXIONUM FLUENTIBUS.

6. Sit (x^n - α) × (x^n - β) = x^2n ± 2 p x^n + 1; ubi p major e$t quam 1; $cribatur z = x^n √(α) & y = x^n √(β), & erit {1 / x^2n - 2px^n + 1}= {α / β - α} × {1 / z^n - 1} + {β / α - β} × {1 / y^n - 1}; & {1 / x^2n + 2px^n + 1} = {α / α - β} × {1 / 1 + z^n}+ {β / β - α} × {1 / 1 + y^n}.

7. Sit {ex^. / e + fx^n + gx^2n}; $cribatur x^n = v^n √({e / g}), & f = 2 p √ (ge); & erit {ex^. / e + f x^n + g x^2n} = {^2n √({e / g})v^./v^2n + 2pv^n + 1}.

8. Sit {z^m-1 z^. / (1 + z)^n ± (1 - z)^n}; pro z $cribatur {x - a / x + a}, & re$ultat {z^m-1 z^. / (1 + z)^n ± (1 - z)^n} = {2ax^. × (x - a)^m-1 / (x + a)^m+1} × {{1 / (2x)^n ± (2a)^n}/(x + a)^n} ={2ax^. × (x - a)^m-1 / (x + a)^m-n+1 × ((2x)^n ± (2a)^n)}.

Plura autem de divi$oribus inveniendis adjiciuntur, quam ratio no$tri in$tituti exigit.

PROB. XVI. Invenire quantitatem, quæ in datam irrationalem quantitatem ducta, rationale productum facit.

Datæ irrationalis quantitatis inveniantur $inguli diver$i valores, quibus in $e$e continuo ductis, contentum erit rationalis quantitas; dividatur hoc contentum per datam quantitatem, & quotiens erit quantitas quæ$ita. Vid. pag. 152. Medit. Algebr.

Cor. Hinc transferri po$$unt e numeratore in denominatorem, & vice versâ e denominatore in numeratorem, quæcunque irrationales [0118]DE INVENIENDIS quantitates (A, &c.); inveniatur rationalis quantitas B, cujus data irrationalis A e$t divi$or; $it vero C = {B / A}, pro A $ub$tituatur {B / C} & confit corollarium.

Ex. 1. Sit fluxio {Q x^. / + R^2 √(a) + S^2 √(b)}; ubi literæ Q, R, S, a, b re- $pective denotent qua$cunque rationales functiones literæ x; ducan- tur & numerator & denominator in quantitatem + R√(a) - S√(b); & re$ultat fluxio {+ R Q√(a) - S Q√(b) / R^2 a - S^2 b}x^..

Ex. 2. Sit fluxio {Q v^. / P + R √ (a) + S √ (b)}; ducantur & numerator & denominator in quantitatem (P + R √ (a) - S √ (b)) × (P - R√(a) + S√(b)) × (P - R √ (a) - S √ (b)); & re$ultat quantitas quæ$ita.

Fluens fluxionis a^2 x^./a^2 + x^2 = z^. erit circularis arcus, cujus radius e$t α & tangens x; hæc vero fluens erit rectangulum impo$$ibilis quantitatis {√(- a^2) / 2} × in hyperb. logarith. quantitatis impo$$ibilis {x + √(-a^2) / x - √(-a^2)}, i. e. erit logarith. impo$$ibilis quantitatis ({x + √(-a^2) / x - √(-a^2)})^{√(-a^2) / 2} = ({γ + √(^2 √- a^2) / γ - √(γ^2 - a^2)})^{√(-a^2) / 2}, ubi y e$t $inus eju$dem arcûs.

Ex hac æquatione deduci pote$t y = a × {e{z√(- 1) / a} + e{-z√(- 1) / a}/2} & √ (a^2 - y ^2) = a × {e{z√(- 1) / a} - e{-z√(- 1) / a}/2√(- 1)}.

[0119]FLUXIONUM FLUENTIBUS.

Logarithmus autem quantitatis ({x + √(-a^2) / x - √(-a^2)} = {(x + √(-a^2))^2 / x^2 + a^2}) = 2 logar. (x + √(- a^2)) - log. (x^2 + a^2) = {2 / √(-a^2)} × in cir- cularem arcum prædictum; unde log. quantitatis impo$$ibilis x + √(- a^2) = {1 / √(- a^2) × circularem arcum prædictum + {1 / 2}} log. quan- titatis (x^2 + a^2). Logarithmus autem quantitatis x - √(- a^2) ={1 / 2} log. quantitatis (x^2 + a^2) - {1 / √(-a^2)} × circularem arcum præ- dictum.

PROB. XVII.

Invenire fluentem cuju$cunque fluxionis, quæ e$t algebraica functio literæ x in fluxionem x ducta; $i modo ea fluens per finitos terminos literæ x, ejus circulares arcus & logarithmos exprimi po$$it.

1. Sit fluxio {x^s x^. / x^n - p x^n-1 + &c.}; ubi literæ p, q, r, &c. cognitas & invariabiles coefficientes re$pective denotant; per lemma con$tat {x^s x^. / x^n - px^n-1 + &c.} = {ax^.x^s / x - α} + {bx^.x^s / x - β} + {cx^.x^s / x - γ} + &c. ubi literæ α, β, γ, &c. $unt radices datæ æquationis x^n - px^n-1 + qx^n-2 - &c. = 0; quantitas vero {ax^s x^. / x - α} reduci pote$t in $ub$equentem ax^s-1 x^. + aαx^s-2 x^. aα^2 x^s-3 x^.... + aα^s-1 x^. + {aα^s x^. / x - α}; fluentes autem harum fluxionum erunt {ax^s / s} + {aαx^s-1 / s - 1} + {aα^2 x^s-2 / s - 2} ... + α a^s-1 x + aα^s × log. (x - α). Et $ic de reliquis terminis {bx^s x^. / x - β}, {cx^s x^. / x - γ}, &c. Si vero aliquid imagi- [0120]DE INVENIENDIS narii in duabus corre$pondentibus fractionibus {bx^s x^. / x - α} & {cx^s x^. / x - β} $eor$im $umptis contineatur, addantur in unam hæ duæ fractiones, & re$ultat fractio {(b + c)x^s+1 - (bβ + cα)x^s / (x - α) × (x - β)}x^. ex impo$$ibilitate libera: divida- tur numerator per denominatorem u$que donec $olummodo re$tat (Ax + B)x^.; quotientis terminorum inveniantur fluentes; fluens vero re$idui {(Ax + B) × x^. / (x - α) × (x - β)} erit {1 / 2}A × log. (x - α) × (x - β) -{B + (α + β) × {1 / 2}A/{1 / 4}(α - β)^2} × arc. circul. cujus radius $it {1 / 2} × (α - β) × √(-1), & cujus tangens $it x - {1 / 2}α - {1 / 2}β; ubi {1 / 2}(α - β)√(-1) e$t affirma- tiva po$$ibilis quantitas.

Cor. 1. Sit data fluxio {a x^s + b x^s-1 + &c. / x^n - p x^n-1 + q x^n-2 - &c.}x^., e prædictis con$tat fluentem $ingularium fluxionum {a x^s x^. / x^n - p x^n-1 + &c.} inveniri po$$e circularium arcuum, logarithmorum & finitorum terminorum ope; ergo fluens ex omnibus conjunctim; acqui$itis prædictis radici- bus α, β, γ, &c. facile acquiri pote$t fluens quæ$ita.

Hinc fluens omnis fluxionis, quæ e$t rationalis algebraica functio literæ x in fluxionem x^. ducta, inveniri pote$t circularium arcuum, logarithmorum & finitorum terminorum ope.

2. Sit data fluxio quæcunque rationalis functio quantitatum x^n & (a + b x^n)^{1 / m}, ducta in x^n-1 x^.; tum ejus fluens $emper inveniri pote$t ope finitorum terminorum, circularium arcuum & logarithmorum.

Data fluxio enim transformari pote$t in rationalem fluxionem per methodum in ex. 1. prob. 15. traditam; unde per prob. ejus fluens prædictâ methodo inveniri pote$t.

[0121]FLUXIONUM FLUENTIBUS.

Ex. Sit data fluxio {ax^n + bx^2n + &c. + A(α + βx^n)^{1 / m} + B × (α + βx^n)^{2 / m} + &c./p + qx^n + rx^2n + &c + P × (α + βx^n)^{1 / m} + Q(α + βx^n)^{2 / m} + &c}x^n-1 x^.: per prædictum exemplum $cribatur (α + βx^n)^{1 / m} = v, & erit {v^m - α / β} = x^n, & exinde x^n-1 x^. = {mv^m-1 v^. / nβ}; unde data fluxio erit ra- tionalis, viz. {a × {v^m - α / β} + b × {(v^m - α)^2 / β^2} + A × v + B v^2 + &c./p + q × {v^m - α / β} + r × {(v^m - α)^2 / β^2} + Pv + Qv^2 + &c.} ×{m v^m-1 v^. / nβ}; & exinde per prob. ejus fluens inveniri pote$t ope finitorum terminorum, circularium arcuum & logarithmorum.

3. Sit data fluxio quæcunque rationalis functio quantitatis x^n & irrationalis quantitatis ({a + bx^n / c + dx^n})^{1 / m} = v in x^n-1 x^. ducta; & per ex- emp. 2. prob.15. transformari pote$t in rationalem functionem literæ v in fluxionem v^. ductam; unde con$tat ejus fluentem inveniri po$$e ope finitorum terminorum, circularium arcuum & logarithmorum.

4. Sit data fluxio rationalis functio quantitatum x^n & (a + bx^n)^{1 / s} × (c + dx^n)^{s-1 / s} in x^n-1 x^. ducta. Pro (a + bx^n)^{1 / s} × (c + dx^n)^{s-1 / s} $cribatur ejus valor (c + dx^n) × ({a + bx^n / c + d x^n})^{1 / s}, & reducitur data fluxio in fluxio- nem præcedentis formulæ; unde ejus fluens ope prædictarum quan- titatum inveniri pote$t.

5. 1. Sit data fluxio rationalis functio quantitatum x^n & (e + f x^n + g x^2n)^{1 / 2} in x^n-1 x^. ducta; & g x^2n + f x^n + e = g × (x^n - α) × (x^n - β); unde g x^2n + f x^n + e = g × {(x^n - α) × (x^n - β)^2 / x^n - β}, & exinde (g x^2n + [0122]DE INVENIENDIS f x^n + e)^{1 / 2} = g{1 / 2} × ({x^n - α / x^n - β})^{1 / 2} × (x^n - β). Supponatur ({x^n - α / x^n - β})^{1 / 2} = v, & exinde {βv^2 - α / v^2 - 1} = x^n; quo valore pro x^n & ejus fluxione pro n x^n-1 x^. in datâ fluxione $ub$tituto; re$ultabit fluxio, quæ erit ratio- nalis functio literæ v in fluxionem v^. ducta.

2. Si vero radices æquationis x^2n + {f / g} x^n + {e / g} = 0 $int impo$$ibiles, & con$equenter prædictæ quantitates $ub$titutæ impo$$ibiles; tum impo$$ibiles quantitates evitandi gratiâ ad $ub$titutiones $ub$equentes recurrere præ$tat. Supponatur (g x^2n + fx^n + e(b^2))^{1 / 2} = b + px^n v, & exinde gx^2n + fx^n + h^2 = h^2 + 2pbx^n v + p^2 v^2 x^2n; unde x^n ={f - 2bpv / p^2 v^2 - g}, & (h^2 + fx^n + g x^2n)^{1 / 2} = b + px^n v = {pfv - hp^2 v^2 - gb / p^2 v^2 - g}; quibus quantitatibus pro $uis valoribus in datâ fluxione $ub$titutis, & fluxione {2p^3 bv^2 - 2p^2 fv + 2bpg / n(p^2 v^2 - g)^2}v^. pro x^n-1 x^.; transformatur data fluxio in rationalem fluxionem.

6. Sit data fluxio rationalis functio quantitatum x^n, & ^m √(a + b <_>r√(c + d<_>s√(e + &c. + (f + gx<_>n)<_>{1 / t}))) = P, <_>r√(c + d<_>s√(e + &c. + (f + gx<_>n)<_>{1 / t})) = Q, <_>s√(e + &c. + (f + gx<_>n)<_>{1 / t}) = R, (f + gx<_>n)<_>{1 / t} = V; ubi literæ r, s, &c.; t $unt integri numeri; pro P, Q, R, &c. &c. & V & gx^n $cribantur re$pective v = P, {v^m - a / b} = Q, {({v^m - a / b})^r - c/d} = R, &c.; ({({v^m - a / b})^r - c/d})^s - e, &c. = (f + gx^n)^{1 / t}, & (({({v^m - a / b})^r - c/d})^s &c.)^t - f = gx^n; & pro x^n-1 x^. ejus valor exinde deductus; unde facile [0123]FLUXIONUM FLUENTIBUS. quæcunque rationalis functio quantitatum P, Q, R, &c., V & x^.^n in x^n-1 x^. ducta transformari pote$t in rationalem functionem quantita- tum v^m & v in v^..

7. Sit data fluxio rationalis functio quantitatum x^n, ^m √(a + b <_>r√(c + d<_>s√(e + &c. + ({f + gx<_>n / b + kx<_>n})<_>{1 / t}))) = P, <_>r√(c + d<_>s√(e + &c. + ({f + gx<_>n / h + kx<_>n})<_>1/t)) = Q, <_>s√(e + &c. + ({f + gx<_>n / h + kx<_>n})<_>{1 / t}) = R, &c., ({f + gx<_>n / h + kx<_>n})<_>{1 / t} = V in x^n-1 x^. multiplicata; ubi r, s, &c., t $unt integri nu- meri; pro P, Q, R, &c., V, & x^n, & x^n-1 x^. $cribantur re$pective v = P,{v^m - a / b} = Q, {({v^m - a / b})^r - c/d} = R, &c., ({({v^m - a / b})^r &c./d &c.}&c.) = V, & {f - bV^t / kV^t - g} = x^n, & {thg - tkf / n(kV^t - g)^2}V^t-1 V^.; & exinde facile transformari pote$t rationalis functio quantitatum P, Q, R, &c., V & x^n, in x^n-1 x^. ducta, in rationalem functionem quantitatum v^m & v in v^.; & con$e- quenter e methodis prius traditis con$tat ejus fluentem inveniri po$$e ope finitorum terminorum, circularium arcuum & logarithmorum.

8. Sit data fluxio rationalis functio quantitatum x^n & (a + bx^n + (e + fx^n)^{1 / 2})^{1 / 2}, & (e + fx^n)^{1 / 2} in x^n-1 x^. ducta: $cribatur e + fx^n = v^2 & exinde (a + bx^n + (e + fx^n)^{1 / 2})^{1 / 2} = (a + b × {v^2 - e / f} + v)^{1 / 2}, & {v^2 - e / f}= x^n; quibus quantitatibus pro $uis valoribus $ub$titutis, & {2vv^. / nf} pro x^n-1 x^. in datâ fluxione; re$ultat fluxio, quæ erit rationalis functio [0124]DE INVENIENDIS quantitatum v & (a + b × {v^2 - e / f} + v)^{1 / 2}, cujus fluens etiam inve- niri pote$t ope finitorum terminorum, circularium arcuum & loga- rithmorum.

9. Sit data fluxio rationalis functio quantitatum x^n & ({e + fx^n / h + kx^n})^{1 / 2} = v, & (p + qv + rv^2)^{1 / 2} in x^n-1 x^. ducta: $cribantur in datâ fluxione pro ({e + fx^n / h + kx^n})^{1 / 2} & (p + qv + rv^2)^{1 / 2}, & pro x^n & x^n-1 x^.; re$pective v, (p+qv + rv^2)^{1 / 2}, {hv^2 - e / f - kv^2} & {2bvv^. / n(f - kv^2)} + {2kvv^. × (bv^2 - e) / n(f - kv^2)^2}; & re$ultat fluxio, quæ e$t rationalis functio quantitatum v & (p + q v + rv^2)^{1 / 2} in v^., cujus fluens e methodis prius traditis innote$cit.

10. Sit data fluxio rationalis functio quantitatum x^n &{(a + l({e + fx^n / h + kx^n})^{1 / s})^{1 / m} /(b + c({e + fx^n / h + kx^n})^{1 / s})^{1 / m}}(P) & ({e + fx^n / h + kx^n})^{1 / s} in x^n-1 x^., ubi s e$t integer numerus: $cribatur P = v, & erit z = ({bv^m - a / l - cv^m})^s = {e + fx^n / h + kx^n}, unde {bz - e / f - kz} = x^n; quibus quantitatibus pro P, ({e + fx^n / h + kx^n}), x^n, & ejus ({bz - e / f - kz}) fluxione pro n x^n-1 x^., in datâ fluxione $ub$titutis; re$ultat fluxio, quæ erit rationalis functio quantitatis v^m & v in v^., cujus fluens e prædictis methodis innote$cet.

Et $ic de fluentibus plurium huju$ce generis fluxionum invenien- [0125]FLUXIONUM FLUENTIBUS. dis: e. g. cum data fluxio $it rationalis functio quantitatum x^n & x^n + √(1 + x^2n) = v & √ (1 + x^2n) in x^n-1 x^.; &c.

10. Reducere datas fluxiones in alias, quarum fluentes innote$cunt e multiplicatione earum numeratorum & denominatorum in a$$ump- tas quantitates.

Ca$. 1. Datâ fluxione {P x^n-1 x^. / Q^2 √(e + fx^n + gx^2n) + R^2 √(h + kx^n + lx^2n); ubi literæ P, Q, & R re$pective denotant rationales functiones quan- titatis x^n; ducantur & numerator & denominator huju$ce fluxionis in quantitatem Q √(e + fx^n + gx^2n) - R√(b + kx^n + lx^2n), & re$ultat fluxio {PQ√(e + fx^n + gx^2n) - PR √(h + kx^n + lx^2n) / Q^2 × (e + fx^n + gx^2n) - R^2 × (h + kx^n + lx^2n)} × x^n-1 x^.}, cujus fluens e regulis prius traditis innote$cit.

2. Sit data fluxio {Px^n-1 x^. / Q × (R^m-1 (a + bx^n)^{m-1 / m} + R^m-2 S(a + bx^n)^{m-2 / m} × (d + ex^n)^{1 / m} + R^m-2 S^2 (a + bx^n)^{m-3 / m} × (d + ex^n)^{2 / m} ...S^m-1 × (d + ex^n)^{m-1 / m})}; ubi P, Q, R, & S denotant rationales functiones quantitatis x^n, & m e$t integer numerus; ducatur hæc fluxio in R × (a + bx^n)^{1 / m} - S(d + ex^n)^{1 / m}; & re$ultat fluxio {P x^n-1 x^. / Q × R^m (a + bx^n) = S^m (d + ex^n)} × (R(a + bx^n)^{1 / m} - S × (d + ex^n)^{1 / m}); cujus fluens in formulis prius traditis continetur.

3. Datâ fluxione {Px^n-1 x^. / Q√(e + fx^n) + R√(g + bx^n) + S√(l + mx^n)} ubi literæ P, Q, R & S qua$cunque rationales functiones quantitatis x^n re$pective denotant: ducantur & numerator & denominator datæ flu- xionis in quantitatem (Q√(e + fx^n) - R√(g + hx^n) + S√(l + mx^n)) × (Q√(e + fx^n) - R√(g + hx^n) - S√(l + mx^n)) × (Q√(e + fx^n) + R√(g + hx^n) - S√(l + mx^n)); & re$ultat fluxio, cujus fluens in- [0126]DE INVENIENDIS veniri pote$t, $i modo fluens fluxionis {A x^n-1 x^. / B} × (e + f x^n)^{1 / 2} × (g + h x^n)^{1 / 2} × (l + m x^n)^{1 / 2} detegi po$$it, ubi literæ A & B denotant rationales functiones quantitatis x^n.

4. Sit data fluxio A^., cujus numerator $it x^. in quamcunque rationa- lem functionem irrationalium algebraicarum functionum α, β, γ, δ, &c. quantitatis x ducta, quæ functiones α, β, γ, δ, &c. haud in $e$e multiplicantur; & cujus denominator $it quæcunque rationalis fun- ctio irrationalium functionum algebraicarum π, ξ, σ, τ, &c. quantita- tis (x): tum e datis fluentibus fluxionum, quæ exoriuntur ex quan- titatibus π α, π β, π γ, &c.; ξ α, ξ β, ξ γ, &c.; σ α, σ β, σ γ, &c.; &c.; π ξ α, π ξ β, π ξ γ, &c.; π σ α, π σ β, &c.; ξ σ α, &c.; &c.; π ξ σ α, &c.; &c.; (quæ $unt quantitates π, ξ, σ, &c. in quantitates α, β, γ, δ, &c. re- $pective ductæ; rectangula $ub quibu$que duabus prædictis (π ξ, π σ, ξ σ, &c.) in quantitates α, β, γ, δ, &c. re$pective ductis; etiamque con- tenta $ub quibu$que tribus, quatuor, &c. quantitatibus (π, ξ, σ, τ, &c.) re$pective ductis in prædictas quantitates (α, β, γ, δ, &c.)) ductis in qua$cunque vel ea$dem vel diver$as rationales functiones quanti- tatis x in x^.; $emper detegi pote$t fluens fluxionis (A^.).

Con$tat ex ducendo numeratorem & denominatorem datæ fluxio- nis in quantitatem acqui$itam per methodum in prob. 26. medit. al- gebr. traditam, ita ut denominator evadat rationalis quantitas.

4. Datâ fluxione {P x^n-1 x^. / Q × α}, ubi literæ P, Q, & A, B, C, D, &c. ra- tionales functiones quantitatis x^n re$pective denotant, & litera α de- notat quantitatem, quæ in A √ (e + f x^n + g x^2n) + B √ (h + k x^n + l x^2n) + C √ (m + n′x^n + 0 x^2n) + D √ (p + q x^n + r x^2n) + &c. (T) ducta, creat rationalem functionem quantitatis x^n; ducantur numerator & denominator datæ fluxionis in quantitatem T; & re$ultat fluxion, cu- jus fluens e prædictis methodis inveniri pote$t; &c.

[0127]FLUXIONUM FLUENTIBUS. THEOR. VI.

Rationalis functio cuju$cunque literæ x $emper dividi pote$t in $im- plices divi$ores x + a, &c.: hinc etiam multæ fluxiones, quæ apparent tanquam irrationales, transformari po$$unt in rationales fluxiones.

Ex. 1. Sit data fluxio quæcunque algebraica & rationalis functio quantitatum ^m √ (a + b x^n) & x^n in x^n-1 x^.; & facile con$tat methodus transformandi datam fluxionem in rationalem functionem quantitatis ^m √ (a + b x^n), &c.; & exinde con$tat denominatorem dividi po$$e in $uos $implices divi$ores huju$ce generis ^m √ (a + b x^n) + p, ^m √ (a + b x^n) + q, &c. ubi literæ p & q invariabiles quantitates re$pective denotant.

Ex. 2. Sit data fluxio quæcunque algebraica functio & rationalis quantitatum {^m √ (a + b x^n) / ^m √ (d + e x^n)} & x^n in x^n-1 x^. ducta; & erit data fluxio rationalis functio quantitatis {^m √ (a + b x^n) / ^m √ (c + d x^n)}; & con$equenter ejus de- nominator dividi pote$t in $implices divi$ores huju$ce formulæ ^m √ ({a + b x^n / c + d x^n}) + p, &c. & $ic de reliquis exemplis prius traditis; &c.

PROB. XVIII.

Datâ fluxione, quæ $it algebraica functio quantitatis x^n; invenire, an- non ejus fluens inve$tigari pote$t logarithmorum po$$ibilium vel impo$$ibilium quantitatum, i. e. circularium arcuum & finitorum terminorum ope.

1. Inveniantur omnes divi$ores denominatoris datæ fluxionis ma- xime $implices, qui haud minores recipiunt dimen$iones incognitæ quantitatis x; quam eas, quas habet data fluxio; & $int hi divi$ores [0128]DE INVENIENDIS re$pective A, B, C, D, E, &c. i. e. $it A × B × C × D × E × &c. = datæ fluxionis denominatori, ubi nullus datur divi$or huju$ce formulæ (a + b x^n + c x^2n + &c.)^{r / s}, & litera s haud divi$or e$t literæ r; tum fluens datæ fluxionis for$an erit aggregatum α × log. A + β × log. B + γ × log. C + δ × log. D + &c. ubi α, β, γ, δ, &c. invariabiles quantitates re$pective denotant.

2. Sint vero duo divi$ores A & B impo$$ibiles & corre$pondentes, i. e. $int p + √ (- q^2) & p - √ (- q^2); tum α log. A + β log. β de- notat aream circuli, ut prius docetur.

3. Denominator, &c. finitorum terminorum deducendus e$t e de- nominatore dato, &c. per methodum in prob. 4. traditam; & con$e- quenter $ummæ fluxionum finitorum terminorum per prædictam methodum deductorum, & fluxionum logarithmorum & circularium arcuum prius inventorum æquentur datæ fluxioni, $i modo po$$ibile $it; & exinde deduci pote$t fluens quæ$ita.

Ex. Sit data fluxio {b x^n-1 + {2 / 5} × (e + f x^n)^-{3 / 5} × f x^n-1 + (a + b x^n + (e + f x^n)^{2 / 5} + 1)({4 / 3} d x^n-1 × (g + h x^n) + h x^n-1 × (c + d x^n)) × (c + d x^n)^{1 / 3} /(a + b x^n + (e + f x^n)^{2 / 5} + 1)}× x^.. Primo animadvertendum e$t denominatorem habere $implicem divi$orem (a + b x^n + (e + f x^n)^{2 / 5} + 1) = H, qui in $impliciores divi- $ores haud re$olvi pote$t; & con$equenter $i fluens datæ fluxionis inveniri po$$it finitorum terminorum, logarithmorum, & circula- rium arcuum ope; tum quædam pars fluentis erit α × log. H + β × log. (c + d x^n) + γ log. (e + f x^n); ubi literæ α, β, & γ con$tantes quantitates inveniendas denotant; & (c + d x^n)^{1 / 3} & (e + f x^n)^{1 / 5}, &c. $unt irrationales quantitates in prædicto $implici divi$ore (H) con- tentæ: & $ic de pluribus $implicibus divi$oribus in denominatore datæ [0129]FLUXIONUM FLUENTIBUS. fluxionis contentis argumentari liceat: 2^do. pro $ingulis irrationali- bus quantitatibus (k + l x^n)^{1 / 5} in datâ fluxione $ub$tituere liceat a × log. (A + B (k + l x^n)^{1 / 5} + C (k + l x^n)^{2 / 5} + D (k + l x^n)^{3 / 5} ... + (k + l x^n)^{5 / 5-1}), ubi litera s integrum denotat numerum, & A, B, C, D; &c. $unt rationales functiones quantitatis x^n; pro parte fluentis quæ$itâ: 3<_>tio. $i vero $it H^t, ubi t $it integer numerus, eædem quantitates pro loga- lithmicis partibus fluentis a$$umendæ $unt.

Hactenus de logarithmicis partibus fluentis; quarum, $i aliquis evadat impo$$ibilis, ea ad circulares arcus reducenda e$t.

Nunc quoad partes fluentis, quæ finitos terminos recipiunt; 1^mo. ob$ervandum e$t in iis haud contineri $implicem divi$orem datæ flu- xionis denominatoris, qui non habet alterum $ibi ip$i æqualem; ergo, $i talis divi$or in denominatore contineatur, numerator partis fluxionis, quæ per finitos terminos detegi pote$t, per eum divi$orem dividi queat: quoad reliquos denominatoris terminos, & irrationales datæ fluxionis numeratoris terminos, fluentes a$$umendæ $unt per methodos in prob. 4. traditas; e. g. $int quantitates in denominatore (a′ + b′ x^n + &c.)^π, &c. & in numeratore (c′ + d′ x^n + &c.)^ρ, &c. tum pro parte fluentis quæ$itâ ad eas refertâ, & per finitos terminos inve- $tigandâ, a$$umatur (a′ + b′ x^n + &c.)^1-π × (c′ + d′ x^n + &c.)^1+ρ × (λ + μ x^n + ν x^2n + &c.); ubi λ, μ, ν, &c. $unt con$tantes quantitates inve- $tigandæ: & $ic de pluribus quantitatibus huju$ce generis.

Inveniantur fluxiones $ingularum prædictarum fluentium, deinde fiat earum $lumma datæ fluxioni æqualis; & ex æquatis corre$pon- dentibus datæ fluxionis & prædictæ $ummæ terminis deduci pote$t ejus fluens; (quæ in hoc ex. erit {1 / n} log. (a + b x^n + (e + f x^n)^{2 / 5} + 1) + {1 / n} (c + d x^n)^{4 / 3} × (g + h x^n)); $i modo per finitos terminos quantitatis x^n, logarithmos & circulares arcus algebraicarum functionum præ- dictæ quantitatis x^n exprimi po$$it.

[0130]DE INVENIENDIS

In pleri$que ca$ibus præ$tat, ut negativi indices ex denominatore & numeratore exterminentur.

Sit {P x^. / Q} fluxio logarithmi fractionis {α / β}; ubi P & Q, α & β $unt al- gebraicæ functiones quantitatis x; tum erunt dimen$iones quantita- tis x in denominatore Q majores quam ejus dimen$iones in numera- tore P per unitatem; ni dimen$iones quantitatis x in numeratore α æquales $int ejus dimen$ionibus in β, in quo ca$u dimen$iones deno- minatoris Q $uperant dimen$iones numeratoris per quantitatem ma- jorem quam unitatem.

THEOR. VII.

1. Sit {x^. / x} = {y^. / y}; erit x = a y, ubi a $it invariabilis coefficiens ad li- bitum a$$umenda.

Cor. Hinc fluxio (x^.) nullius quantitatis per $uam quantitatem (x) divi$a eandem habet quotientem, ac fluxio (y^.) alterius quantitatis per $uam quantitatem y divi$a; ni x = a y.

2. Sint duæ prædictæ variabiles quantitates x & y, & $it {x^. / y} = {y^. / x}; & erit x x^. = y y^., & exinde x^2 = y^2 + a.

Ex. Sit {y^. / √ (y^2 + a)}, ejus fluens inveniri pote$t ope logarithmorum: a$$umatur enim x^2 = y^2 + a, & erit {x^. / y} = {y^. / x} i. e. {x^. / y} = {y y^. / y √ (y^2 + a)} ={y^. / √ (y^2 + a)}; ergo, $i a$$umatur pro fluente y + x = y + √ (y^2 + a), erit {y^. + x^. / x + y} = {y^. / x} = {x^. / y} = {y^. + {y y^. / √ (y^2 + a)}/√ (y^2 + a) + y} = {y^. / √ (y^2 + a)}.

Cor. Hinc fluxio (x^.) nullius quantitatis (x) per alteram quantita- [0131]FLUXIONUM FLUENTIBUS. tem (y) divi$a eandem dabit quotientem, ac fluxio (y^.) alterius quan- titatis per priorem quantitatem (x) divi$a; ni x^2 = y^2 + a.

3. Sint tres variabiles quantitates x, y & z; & $it {x^. / z} = {y^. / x} = {z^. / y}; & per reductionem, viz. e primâ æquatione {x^. / z} = {y^. / x}, re$ultat x x^. = z y^.: inveniatur ejus fluxio x x^.. + x^.^2 = z^.y^., & con$equenter z^. = {x x^.. + x^.^2 / y^.}, & exinde ob ({y^. / x} = {z^. / y}) invenitur fluxionalis æquatio y y^.^2 = x^2 x^.. + x x^.^2, $i modo y fluat uniformiter.

4. Sit {x^. / v} = {y^. / x} = {z^. / y} = {v^. / z}; & per reductionem invenitur fluxionalis æquatio x^3 x^... + 4 x^2 x^. x^.. + x x^.^3 = y y^.^3; & in genere $int n variabiles quantitates, & n - 1 æquationes prædicti generis, & $it fluxionalis æquatio relationem inter x & y exprimens prædicti generis A = y y^.^n-1; tum $int n + 1 variabiles quantitates & n æquationes prædicti generis, & erit æquatio inter x & y & earum fluxiones re$ultans x A^. = y y^.^n, $i modo y fluat uniformiter.

Ex re$olutione fluxionalium æquationum quærendæ $unt fluentes prædictarum æquationum.

5. E divi$oribus denominatoris femper detegi pote$t, annon fluens datæ fluxionis inveniri pote$t ope finitorum terminorum, circula- rium arcuum, & logarithmorum; con$tat enim e prob. 4. $ub$titutio, quæ nece$$ario continet finitos terminos; & e divi$oribus denomina- toris, &c. $emper con$tabunt termini, qui involvunt logarithmos & circulares arcus, ni in ca$ibus hoc theorem. datis, i. e. ubi α + β $it divi$or quæ$itus & {α^. / β} = {β^. / α}, & con$equenter β = √ (α^2 + a), ubi a denotat invariabilem quantitatem; & $ic ubi α + β + γ $it divi$or quæ$itus & {α^. / β} = {β^. / γ} = {γ^. / α}; & $ic deinceps.

[0132]DE INVENIENDIS

In hoc ca$u facile con$tat ($i modo α $it rationalis algebraica fun- ctio, & β & γ finitæ algebraicæ functiones literæ x) β & γ e$$e re- $pective p P {1 / 3} & q P {2 / 3}; ubi literæ p, q & P denotant re$pective rationa- les functiones literæ x: &c.

In detegendis prædictis divi$oribus denominatoris: $æpe e denomi- natore in numeratorem; & vice versâ e numeratore in denominato- rem, transformari debent irrationales quantitates.

Ni igitur re$olutioni ob$tet vulgaris algebra; $emper inveniri pote$t, utrum fluens cuju$cunque datæ fluxionis inve$tigari pote$t ope finito- rum terminorum, circularium arcuum & logarithmorum; necne.

PROB. XIX.

_1._ Invenire, annon data fluxio, quæ e$t functio quantitatis x in x^.; $it rationalis functio quantitatis (z), quæ e$t data functio quantitatis x, in z.

A$$umatur rationalis functio {a + b z + c z^2 + d z^3 + &c. / A + B z + C z^2 + D z^3 + &c.} × z^.: in hâc functione pro z & z^. $cribatur data functio quantitatis x & ejus fluxio; & ex æquatis corre$pondentibus terminis datæ & re$ultantis fluxionis detegi pote$t, annon data fluxio $it rationalis functio quan- titatis z in z^..

_2._ Invenire, utrum prædicta fluxio, quæ e$t functio quantitatis x in x^.; $it rationalis functio quantitatum z, v, w, &c.; in fluxione rationalis functionis quantitatum x, v, w, &c.; ubi literæ z, v, w, &c. re$pective de- notant datas functiones quantitatis x; necne.

A$$umantur duæ rationales functiones {a + b z + c v + d w + &c. + e z^2 + f v^2 + &c. + g z v + h z w + &c. + k z^3 + &c. / A + B z + C v + D w + &c. + E z^2 + F v^2 + G z v + &c.} = P, & {a′ + b′ z + c′ v + d′ w + &c. + e′ z^2 + &c. / A′ + B′ z + C′ v + D′ w + &c. + E′ z^2 + &c.} = Q; in fluxione P × Q^. pro z, v, w, &c.; & earum fluxionibus $cribantur re$pective earum [0133]FLUXIONUM FLUENTIBUS. valores in datis functionibus quantitatis x & ejus fluxionis; & ex æquatis corre$pondentibus terminis datæ & re$ultantis fluxionis de- tegi pote$t, annon data fluxio $it rationalis functio prædicta.

PROB. XX. Datis fluentibus fluxionum datæ formulæ; invenire alias fluxiones, qua- rum fluentes e datis deduci po$$unt.

In fluxionibus, quarum fluentes dantur, pro variabili & ejus flu- xione $cribantur quæcunque functio novæ variabilis & ejus fluxio; tum $equitur fluxio, cujus fluens e datis innote$cit.

Ex. 1. Sit data fluxio (A) y^r y^. × y^-{1 / 2} × (c y^2 + b y + a)^-{1 / 2}, ubi r e$t integer numerus po$itivus vel negativus; tum ex duabus independen- tibus fluentibus huju$ce formulæ deduci po$$unt fluentes omnium fluxionum eju$dem formulæ, i. e. utcunque variatur litera r, $i modo invariabiles maneant coefficientes a, b, & c; pro y & y^. $cribantur in datâ fluxione x + p & x^.; & ita a$$umantur coefficientes a, b, c & p ut evadat fluxio (B) {b′ (x^b + &c.) x^. / √ (x^3 + a′)}, ubi litera b denotat integrum nu- merum: unde, $i fluentes omnium fluxionum formulæ y^r y^. × y^-{1 / 2} x (c y^2 + b y + a)^-{1 / 2} detegi po$$int, fluentes omnium fluxionum for- mulæ {x^b x^. / √(x^3 + a′)} detegi po$$unt: 2. in fluxione {x^b x^. / √(x^3 + a′)} pro √ (x^3 + a′) $cribatur z, &c. & re$ultat fluxio formulæ (z^2 - a′)^{b+1 / 3} × z^.; unde (C) z^1 × (z^2 - a)^± {1 / 3} vel ± {2 / 3} z^., ubi l e$t integer numerus: deinde pro y, x & z in prædictis fluxionibus A, B, & C $cribatur {e + f v / l′ + m v}; & re$ultant fluxiones formulæ v^b × (l + m v)^±{1 / 2} × (p + q v + r′ v^2 + s v^3)^±{1 / 2} v^., &c.: & $imiliter ex $cribendo in his fluxionibus pro v quan- titatem {e′ + f′ w / l″ + m′ w}, vel pro quâcunque irrationali quantitate in præ- [0134]DE INVENIENDIS dictis fluxionibus contentâ $cribendo con$imilem quantitatem {e′ + f′ w / l′ + m′ w}; re$ultabunt formulæ fluxionum, quarum fluentes e prædictis deduci po$$unt; & $ic deinceps.

Ex. 2. Sit fluxio {y^. × A / √ (f ± √ (g + y^2))}, ubi A e$t rationalis functio quantitatis √ (g + y^2); pro √ (g + y^2) $cribatur x, & re$ultat æquatio $ormulæ {x x^. × A′ / √ (x^2 - g) × √ (f ± x)}, ubi A′ e$t functio quan- titatis x.

PROB. XXI. Invenire, annon fluens datæ fluxionis ex fluentibus quarundam datarum deduci pote$t.

1. Ex formulâ irrationalitatis datæ fluxionis $æpe deduci po$$unt formulæ quantitatum, quæ transformabunt prædictas fluxiones in alias eju$dem irrationalitatis, quam habet data fluxio; deinde tran$- formentur generaliter hæ fluxiones in alias, quæ eandem habent ir- rationalitatem ac data fluxio, tum ducantur fluxiones re$ultantes in invariabiles coefficientes, & $imul addantur; deinde fiat aggregatum re$ultans datæ fluxioni æquale, $i modo po$$ibile $it; & perficitur pro- blema.

Ex. 1. Transformare quantitatem irrationalitatem ^3 √ (a + z) habentem, ita ut eandem irrationalitatem habeat ac quantitas ^2 √ (c + d x^2). Supponatur ^3 √ (a + z) = ^2 √ (c + d x^2), & exinde (a + z)^2 = (c + d x^2)^3, unde z = (c + d x^2)^{3 / 2} - a; $cribatur hæc quantitas pro z in quantitate ^3 √ (a + z), & ea transformabitur in quantitatem ^2 √ (c + d x^2). Aliter magis generaliter $upponatur [0135]FLUXIONUM FLUENTIBUS. {e + f z + g z^2 + &c. / e′ + f′ z + g′ z^2 + &c.} + {h + k z + l z^2 + &c. / h′ + k′ z + l′ z^2 + &c.} × ^3 √ (a + z) + &c. ={α + β x + γ x^2 + &c. / α′ + β′ x + γ′ x^2 + &c.} + {λ + μ x + v x^2 + &c. / λ′ + μ′ x + v′ x^2 + &c.} × √ (c + d x^2); deind inveniatur z in terminis quantitatis x, & $ub$tituatur hæc quantitas pro z in datâ fluxione; & perficietur exemplum.

Ex. 2. Transformare quantitates x & √ (a + b x + c x^2) in ratio- nales functiones quantitatis z: a$$umatur rationalis functio {d + e z / D + E z} quantitatis z pro x; $cribatur hæc functio pro x in quantitate √ (a + b x + c x^2); & re$ultat a + b × {d + e z / D + E z} + c ({d + e z / D + E z})^2 ={H z^2 + I z + K / (D + E z)^2}; fiat 4 H K = I^2, & exinde deduci po$$unt diver$i valores quantitatum D, E, d, &c. & con$equenter functiones quæ- $itæ.

Ex. 3. Invenire; annon fluens datæ fluxionis, quæ e$t functio quan- titatis V in V^. algebraice inveniri pote$t ope fluxionum x^., {y^. / y}, {z^. / a^2 + z^2}, ({a^2 - b^2 v^2 / t^2 - c^2 v^2})^{1 / 2} v^., ({a^2 + b^2 w^2 / t^2 + c^2 w^2})^{1 / 2} w^., &c. i.e. finitorum terminorum, logarithmorum, circularium, ellipticorum & hyperbolicorum arcuum, &c. pro x, y, z, v, w, &c. in prædictis fluxionibus x^., {y^. / y}, &c. $ub$titu- antur tales functiones quantitatis V; & pro x^., y^., z^., v^., w^., &c. barum functionum fluxiones; quales eandem præbebunt irrationalitatem in re$ultantibus ac in datâ fluxione: tum ex his fluxionibus generaliter a$$umptis & $imul adjunctis detegi pote$t; annon ita a$$umi po$$unt coefficientes fluxionum a$$umptarum, ut $umma evadat data fluxio.

Facile con$tat arcum hyperbolæ de$ignari po$$e per arcum impo$$i- bilem ellip$eos; $cribatur enim √ (-1) w pro v in fluxione [0136]DEINVENIENDIS ({a^2 - b^2 v^2 / t^2 - c^2 v^2})^{1 / 2} v^., & re$ultat ({a^2 + b^2 w^2 / t^2 + c^2 w^2})^{1 / 2} × √ (- 1) w^. = √ (- 1) x fluxionem arcus prædicti hyperbolici.

Ex. 4. Sint tres fluxiones ({(a - b)^2 - x^2 / (a + b)^2 - x^2})^{1 / 2} x^. = P^., ({(a′ + b′)^2 - z^2 / (a′ - b′)^2 - z^2})^{1 / 2} z^. = Q^., & ({e^2 - c y^2 / e^2 - y^2})^{1 / 2} y^. = R^.; invenire, annon ita a$$umi po$$unt co- efficientes, &c., ut fluens fluxionis m P^. + n Q^. + r R^.; ubi m, n & r $unt invariabiles quantitates, in finitis terminis exprimi po$$it; $i modo a$$umatur a = a′, b = b′, & z = x; & R^.′ = 2 x^. + ({(a - b)^2 - x^2 / (a + b)^2 - x^2})^{1 / 2} x^. + ({(a + b)^2 - x^2 / (a - b)^2 - x^2})^{1 / 2} x^. = 2 x^. + {2 (a^2 + b^2) x^. - 2x^2 x^. / √ ((a - b)^2 - x^2) × √ ((a + b)^2 - x^2)}= T^.: in hâc fluxione (T^.) pro x $cribatur {a^2 - b^2 / a^2} × y ×{(a^2 - y^2)^{1 / 2} /(a^2 - {(a^2 - b^2) / a^2}y^2)^{1 / 2}} & re$ultat fluxio T^. = 4 × ({a^2 - {a^2 - b^2 / a^2}y^2 /a^2 - y^2})^{1 / 2} y^. formulam datam habens.

THEOR. VIII.

Sit data fluxio X x^.; ita transformetur data fluxio, ut evadet Z z^., ubi X & Z $unt functiones quantitatum x & z; cum vero x evadat α & β, & z re$pective π & ξ; tum fluens $. X x^. inter valores α & β quantita- tis x contenta æqualis erit fluenti $. Z z^. inter valores π & ξ quantita- tis z.

Ex. I. Sit {x^m-1 x^. / (1 - x^n)^{n-k / n}}; & $tatuatur I - x^n = z^n, ut prodeat - $.{z^k-1 z^. / (1-z^n)^{n-m / n}}, & erit $. {x^m-1 x^. / (1 - x^n)^{n-k / n}} = $. {- z^k-1 z^. / (1 - z^n)^{n-m / n}}, quarum utræque [0137]FLUXIONUM FLUENTIBUS. inter valores 0 & 1 quantitatum x & z continentur; cum enim x fiat 0, z evadet I; & vice versâ cum x fiat I, z evadet 0.

Ex. 2. Sit {x^k-1 x^. / 1 + x^n}; $tatuatur z = {1 / x}, & evadet {- z^n-k-1 z^. / 1 + z^n}; & erit $.{x^k-1 x^. / 1 + x^n} = - $. {z^n-k-1 z^. / 1 + z^n}, quarum utræque fluentes inter valores 0 & infinitum quantitatum x & z continentur: cum enim x fiat infi- nita, z evadet 0; &c.

Ex. 3. 1. Sit x^m-1 x^. (1 - x^n)^k; $cribatur x = {y / (1 + y^n)^{1 / n}}, & erit 1 - x^n ={1 / 1 + y^n}, & x^m = {y^m / (1 + y^n)^{m / n}}; & exinde x^m-1 x^. (1 - x^n)^k = {y^m-1 y^. / (1 + y^n)^k+1+{m / n}}; cujus fluens $. x^m-1 x^. (1 - x^n)^k inter valores 0 & 1 quantitatis x contenta æqualis erit fluenti $. {y^m-1 y^. / (1 + y^m)^k+1+{m / n}} inter valores 0 & infinitum quan- titatis y po$itæ.

2. Ponatur x = (1 - z^n)^{1 / n}, & exinde re$ultat $. x^m-1 x^. (1 - x^n)^k = - $. (1 - z^n)^{m-n / n} × z^kn+n-1 z^.; unde hæ fluentes inter valores 0 & 1 quan- titatum x & z po$itæ, evadunt æquales.

Pro x vel y, &c. in his & $ub$equentibus fluxionibus $cribatur v; & erui po$$unt fluxiones, quarum fluentes inter prædictos valores in- note$cunt.

THEOR. IX.

1. Sint fluxiones A^., B^., C^., &c.; quarum variabilis quantitas $it x; in iis pro x $ub$tituantur quæcunque functiones literæ (x), & re$ultent fluxiones A^.′, A^.″, &c.; B^.′, B^.″, &c.; C^.′, &c.; &c.: ducantur hæ fluxi- ones in invariabiles quantitates m, m′, &c.; n, n′, &c.; r, r′, &c.; &c.; [0138]DE INVENIENDIS & $i earum $ummæ m A^.′ + m′ A″ + &c. + n B^.′ + n′ B^.″ + &c. + rC′ + &c. fluens detegi po$$it per qua$cunque datas fluentes; tum ex iis fluentibus detegi pote$t fluens functionis fluxionum A^., B^., C^., &c.

In his functionibus acquirendis $æpe præ$tat; ut tales functiones literæ x pro x in diver$is fluxionibus a$$umantur, quales prebent fluxiones re$ultantes con$imiles irrationales quantitates involventes.

2. Sit X talis functio quantitatis x; qualis, $i modo in eâ (X) pro x $cribatur etiam prædicta functio X, præbet quantitatem (x): tum in data fluxione P x^., ubi P e$t functio quantitatis x, pro x $ub$titua- tur X, & pro x^. $cribatur X^.; & re$ultet fluxio Q x^.; tum, $i in fluxione P x^. + Q x^. pro x & ejus fluxione vel $cribatur x & ejus fluxio, vel X & ejus fluxio; in utroque ca$u eadem re$ultabit fluxio: & con$equenter, $i duo valores quantitatis x $int l & m, & iis corre$pondentes valores quantitatis X $int re$pective L & M; tum (corre$pondentibus radici- bus adhibitis) fluens fluxionis P x^. + Q x^. inter valores l & m quanti- tatis x, eadem erit ac fluens eju$dem fluxionis P x^. + Q x^. inter va- lores L & M eju$dem quantitatis (x) contenta.

Hæ quantitates x & X hoc modo $emper reciprocant; $i modo in æquatione relationem inter quantitates X & x de$ignante, $imiliter involvantur prædictæ quantitates X & x.

Ex. I. Sit a (x + X) + b X x - a b = 0 æquatio relationem inter X & x exprimens, unde x = {(b - X) a / a + b X}; & fluxio P x^. ={b{1 / 2} x^. x{1 / 2}/(a + {b^2 - a / b} x - x^2)^{1 / 2}}; in eâ pro x $cribatur a × {b-x / a+bx}(ob (b - x) × ({a / b} + x) = a + {b^2 - a / b} x - x^2), & re$ultat fluxio Q x^. = -{b a × (b - x)^{1 / 2} /x^{1 / 2} (a + bx)^1{1 / 2}} x^. ea$dem irrationales quantitates (b - x)^1 & (x + {a / b})^{1 / 2} [0139]FLUXIONUM FLUENTIBUS. tantummodo continens: fluens $ummæ fluxionum {1 / 2} P x^. + {1 / 2} Q x^. ={{1 / 2} b^{1 / 2} x^{1 / 2} x^. /(a + {b^2 - a / b} x - x^2)^{1 / 2}} - {^{1 / 2} b a (b - x)^{1 / 2} x^./x^{1 / 2} (a + bx)^1{1 / 2}} erit - b × {(b - x)^{1 / 2} × x^{1 / 2} /(a + b x)^{1 / 2}}= L.

Fluens fluxionis (P + Q) x^. inter valores α & β quantitatis x eadem erit ac fluens eju$dem fluxionis inter valores a × {b - α / a + b α} & a × {b - β / a + bβ} quantitatis x contenta.

Cor. Si in fluxione {x - ^{1 / 2} x^. /(a + {b^2 - a / b} x - x^2)^{1 / 2}} = R^. pro x $cribatur a ×{b - x / a + b x} = z, re$ultabit - R^.; deinde $umma P x^. + {a / b^{1 / 2}} R^. = +{b{1 / 2} x{1 / 2} x^. /(a + {b^2 - a / b}x - x^2)^{1 / 2}} + {a b-^{1 / 2} x - ^{1 / 2} x^. /(a + ({b^2 - a / b}) x - x^2)^{1 / 2}} = {(b x + a) × x - ^{1 / 2} x^./b^{1 / 2} × (a + {b^2 - a / b}x - x^2)^{1 / 2}}= b^{1 / 2} x - ^{1 / 2} x^. × ({x + {a / b}/b - x})^{1 / 2}; tum in $ummâ P x^. + {a / b^{1 / 2}} R^. = b^{1 / 2} x - ^{1 / 2} x^. × ({x + {a / b}/b - x})^{1 / 2} pro x $cribatur a × {b - x / a + b x} = z, & re$ultabit quantitas Q x^. - {a / b^{1 / 2}} R^. = b^{1 / 2} z - ^{1 / 2} z^. × ({z + {a / b}/b-z})^{1 / 2}; unde b^{1 / 2} x - ^{1 / 2} x^. × ({x + {a / b}/b-x})^{1 / 2} + b^{1 / 2} z - ^{1 / 2} z^. × ({z + {a / b}/b - z})^{1 / 2} = P x^. + {a / b^{1 / 2}} R^. + Q x^. - {a / b^{1 / 2}} R^. = P x^. + Q x^. = fluxioni, cujus fluens e$t 2L.

[0140]DE INVENIENDIS

Ex. 2. Sit fluxio {x^m-2 x^. / (a - x^m)^{1 / m}}; a$$umatur æquatio x^m + z^m = a, in quâ literæ x & z $imiliter involvuntur; unde re$ultabit con$imilis fluxio {- z^m-2 z^. / (a - z^m)^{1 / m}}; & con$equenter fluens prædictæ fluxionis inter duos va- lores k & l quantitatis x, æqualis erit fluenti eju$dem fluxionis inter valores (a - k^m)^{1 / m} & (a - l^m)^{1 / m} quantitatis (x) contenta.

PROB. XXII. Datis fluxionibus, quarum fluentes cogno$cuntur; invenire utrum datœ fluxionis fluens earum ope inveniri pote$t, necne.

Ducantur $ingulæ datæ fluxiones in incognitas & invariabiles co- efficientes, & fluxiones re$ultantes addantur vel detrahantur de datâ fluxione; re$ultantis fluxionis inveniatur per prob. 4. fluens, i.e. per prob. 4. con$tant dimen$iones ultimi quæ$itæ fluentis termini; a$$u- matur igitur pro fluente quæ$itâ quantitas, quæ nece$$ario continet fluentem re$ultantis fluxionis, $i modo ea in finitis algebraicis termi- nis exprimi po$$it; a$$umptæ quantitatis inveniatur fluxio, quæ fiat æqualis prædictæ re$ultanti fluxioni, $i modo fieri po$$it; & confit problema.

Ex. 1. Datâ fluente fluxionis (a + b x^n)^m x^.; invenire fluentem flu- xionis (a + b x^n)^m x^n x^.: ducatur data fluxio (a + b x^n)^m x^. in coefficien- tem incognitam & invariabilem A, & re$ultat A × (a + b x^n)^m x^.; ad- datur hæc re$ultans fluxio ad fluxionem, cujus fluens requiritur, & fit (A + x^n) × (a + b x^n)^m x^.; $ed per prob. 4. fluens huju$ce fluxionis hanc habet formulam B × x × (a + b x^n)^m+1; a$$umatur igitur hæc quantitas pro quæ$itâ fluente, & ejus fluxio e$t (B a + (b B + (m + 1) n B b) x^n) × (a + b x^n)^m x^.; fiat hæc fluxio eadem ac prædicta fluxio, i.e. B a = A, & (b B + (m + 1)n B b) x^n = x^n; unde B = [0141]FLUXIONUM FLUENTIBUS. {1 / b + (m + 1) n b}, & A = {a / b + (m + 1) n b}; & fluens quæ$ita erit B x × (a + b x^n)^m+1 - A × fluen. flux. (a + b x^n)^m x^.. Cum 1 + (m + 1) × n = 0; tum ex datâ fluente haud deduci pote$t fluens quæ$ita.

Ex. 2. Sit fluxio (a + b x^n)^m x^pn-1 x^., cujus fluens V datur; & fluens fluxionis (a + b x^n)^m × x^p n+n-1 x^. invenietur {(a + b x^n)^m+1 × x^pn / (m + p + 1) × n b} -{p a V / (m + p + 1) × b}. Cum m + p + 1 = 0, tum etiam ex datâ fluente haud acquiri pote$t quæ$ita.

In hoc & $ub$equentibus exemplis litera (p) denotat vel integrum numerum vel fractionem vel denique quamcunque invariabilem quantitatem.

Ex. 3. Datâ fluente fluxionis (a + b x^n)^m × x^pn-1 x^.; invenire fluentem fluxionis (a + b x^n)^m × x^pn+vn-1 x^.; per prob. ducatur fluxio (a + b x^n)^m x^pn-1 x^. in incognitam coefficientem h, & $ubducatur quantitas re$ul- tans de datâ fluxione (a + b x^n)^m x^pn+vn-1 x^., cujus fluens requiritur; & exinde inveniatur fluens differentiæ (a + b x^n)^m × (x^(p+v)n-1 - h x^pn-1) × x^., ubi h e$t quantitas a$$umenda, ita ut $eries terminet: pro fluente quæ$itâ a$$umatur quantitas (a + b x^n)^m+1 × (A × x^(p+v-1)n + B x^(p+v-z)n + C x^(p+v-3)n + &c. L x^pn), cujus fluxio invenietur (a + b x^n)^m × ((p + v + m) × n b A x^(p+v)n-1 + ((p + v + m - 1) × n B b + (p + v - 1) n A a) x^(p+v-1)n-1 + ((p + v + m - 2) n C b + (p + v - 2) n B a) x^(p+v-2)n-1 + &c.) × x^.; fiat hæc fluxio æqualis fluxioni (a + b x^n)^m × (x^(p+v)n-1 - h x^pn-1) x^.: i. e. (p + v + m) × n b A = 1, & (p + v + m - 1) × n B b + (p + v - 1) n A a = 0, &c. unde A = {1 / (p + v + m) × n b}, B = - {(p + v - 1) × n a A / (p + v + m - 1) × n b} = {-(p + v - 1) a / (p + v + m) × (p + v + m - 1) n b^2}, & $ic deinceps: lex progre$$ionis hujus $eriei, $i modo $cribantur p + v = q & q + m = r, erit (a + b x^n)^m+1 × ({1 / r × n b} x^(q-1)n - {(q - 1) a A / (r - 1) b} [0142]DE INVENIENDIS x^(q-2)n + {(q - 2) a B / (r - 2) b} x^(q-3)n - {(q - 3) a C / (r - 3) b} x^(q-4)n + &c. ad v terminos) ± {p / p + m + 1} × {p + 1 / p + m + 2} × {p + 2 / p + m + 3}...{p + v - 1 / p + m + v} × {a^v / b^v} × fluen. flux. (a + b x^n)^m x^pn-1 x^.: $ignum affixum erit -, $i v $it impar; $in aliter +. Cum p + m + l = 0, ubi l e$t quicunque integer numerus haud major quam v; tum ex datâ fluente non acquiri pote$t quæ- $ita.

Ex. 4. Datâ prædictâ fluxione (a + b x^n)^m x^pn-1 x^., invenire fluentem fluxionis (a + b x^n)^m × x^pn-vn-1 x^.: a$$umatur (a + b x^n)^m+1 × (A x^(p-v)n + B x^(p-v+1)n + C x^(p-v+2)n + &c.) pro fluente quæ$itâ; $cribantur q = p - v - 1, s = m + q, t = p + m + 1; fluens quæ$ita per me- thodum prius traditam invenietur (a + b x^n)^m+1 × ({1 / (q + 1) × n a} x^(p-v)n - {(s + 2) b A / (q + 2) a} × x^(p-v+1)n + {(s + 3) b B / (q + 3) a} x^(p-v+2)n - {(s + 4) b C / (q + 4) a} x^(p-v+3)n + &c. ad v terminos) = {t - 1 / p - 1} × {t - 2 / p - 2} × {t - 3 / p - 3}..{t - v / p -v} × {b^v / a^v} × fluen. flux. (a + b x^n)^m x^pn-1 x^.: $ignum affixum erit +, $i v $it par, $in aliter -. Cum p - v + l = 0, ubi l e$t quicunque integer nume- rus haud major quam v - 1; tum ex datâ fluente haud detegi pote$t quæ$ita.

Ex. 5. Datâ fluente fluxionis (a + b x^n)^m × x^pn-1 x^.; invenire fluentem fluxionis (a + b x^n)^m+r × x^pn-1 x^., ubi r e$t integer po$itivus numerus: $cribatur a + b x^n = Q; fluens quæ$ita erit Q^m+1 × x^pn × ({Q^r-1 / (p + m + r) × n}+ {(m + r) a Q^r-2 / (p + m + r) × (p + m + r - 1) n} + {(m + r) × (m + r - 1) a^2 Q^r-3 / (p + m + r) × (p + m + r - 1) × (p + m + r - 2)n} + &c. ad r terminos) + {m + 1 / p + m + 1} × {m + 2 / p + m + 2} ×{m + 3 / p + m + 3} ... {m + r / p + m + r} a^r × fluent. fluxionis (a + b x^n)^m x^pn-1 x^..

[0143]FLUXIONUM FLUENTIBUS.

Ex. 6. Ex ii$dem principiis e prædictâ fluente datâ inveniri pote$t fluens fluxionis (a + b x^n)^m-r × x^pn-1 x^. e$$e Q^m+1 × x^pn × ({-Q^-r / (m + r + 1) × n a}- {(p + m - r + 1) Q^1-r / (m - r + 1) × (m - r + 2) n a^2} - {(p + m - r + 1) × (p + m - r + 2) Q^2-r / (m - r + 1) × (m - r + 2) × (m - r + 3) n a^3}- &c. ad r terminos) + {p + m / m} × {p + m - 1 / m - 1} × {p + m - 2 / m - 3} ... {p + m - r + 1 / m - r + 1}× {1 / a^r} × fluent. flux. (a + b x^n)^m × x^pn-1 x^.. Cum m $it integer numerus, & minor quam r; tum ex datâ fluente non detegi pote$t quæ$ita.

Et in genere in omnibus $ub$equentibus ca$ibus ex datâ fluente non detegi pote$t quæ$ita, cum ullus factor in denominatore nihilo evadat æqualis.

Ex hi$ce $eriebus conjunctim deducendis con$equitur fluentem fluxionis (a + b x^n)^m+r × x^pn+vn-1 x^. e$$e {Q^m+r × x^(p+v)n / (p + m + v + r) × n} +{(m + r) × a A / (p + m + v + r - 1) × Q} + {(m + r - 1) × a B / (p + m + v + r - 2) × Q} + {(m + r - 2) a C / (p + m + v + r - 3)Q} ad r terminos + {m + 1 / m + p + v} × {a H / b x^n} - {p + v - 1 / m + p + v - 1} × {a I / b x^n} - {p + v - 2 / m + p + v - 2}× {a K / b x^n} ad v terminos ± {(m + 1) × (m + 2) × (m + 3) .. (m + r) × p × (p + 1) × (p + 2) .. (p + v - 1) / (p + v + m + 1) · (p + v + m + 2) ... (p + v + m + r) × (p + m + 1) · (p + m + 2) .. (p + m + v)} × {a^v+r / b^v} × fluen. flux. (a + bx^n)^m x^pn-1 x^.: ubi literæ A, B, C, &c. H, I, K, &c. re$pective denotant præ- cedentes terminos.

2. Eodem modo deduci pote$t fluens fluxionis (a + bx^n)^m-r × x^pn+vn-1 x^. = -{Q^m-r+1 x^(p+v)n / (m - r + 1) na} + {(p + m + v - r + 1) × Q A / (m - r + 2) × a} + {(p + m + v - r + 2) × Q B / (m - r + 3) × a ad r terminos - {QH / bx^n} - {p + v - 1 / m + p + v - 1} × {a I / bx^n} - {p + v - 2 / m + p + v - 2} × {a K / b x^n} ad [0144]DE INVENIENDIS v terminos + {m + p + v / m} × {m + p + v - 1 / m - 1} ... {m + p + v - r + 1 / m - r + 1} ×{p / p + m + 1} × {p + 1 / p + m + 2} × {p + 2 / p + m + 3} .. {p + v - 1 / p + m + v} × {a^v-r / (-b)^v} × fluen. flux. (a + b x^n)^m x^pn-1 x^., ubi literæ A, B, C, D, &c. H, I, K, &c. etiam præ- cedentes terminos re$pective denotant.

3. Fluens fluxionis (a + bx^n)^m+r × x^(p-v)xn-1 x^. invenietur Q^m+r+1 × x^(p-v)n /(p - v) n a}- {m + p - v + r + 1 / (p - v + 1)} × {A b x^n / a} - {m + r + p - v + 2 / p - v + 2} × {B b x^n / a} ad v terminos - {H b x^n / Q} + {m + r / p + m + r - 1} × {aI / Q} + {m + r - 1 / p + m + r - 2} × {a K / Q} + &c. ad r terminos + {m + r + p - v + 1 / p - v} × {m + r + p - v + 2 / p - v + 1} ...{m + r + p / p - 1} × {m + 1 / m + p + 1} × {m + 2 / m + p + 2} ... {m + r / m + p + r} × {(- b)^v / a^v-r} × fluent. fluxionis (a + b x^n)^m x^pn-1 x^.: literis A, B, C, &c. H, I, K, &c. præce- dentes terminos re$pective denotantibus.

4. Fluens fluxionis (a + b x^n)^m-r × x^(p-v)n-1 x^. invenietur = -{Q^m-r+1 x^(p-v)n / (m - r + 1) n a} + {m + p - r - v + 1 / m - r + 2} × {Q A / a} + {m + p - r - v + 2 / m - r + 3} ×{Q B / a} ad r terminos - {m + p - v / p - v} × {Q H / a} - {m + p - v + 1 / p - v + 1} × {I b x^n / a}- {m + p - v + 2 / p - v + 2} × {K b x^n / a} ad v terminos + {(p + m).(p + m - 1) / m × (m - 1) × (m - 2)..}{(p + m - 2)..(p + m - r - v + 1) / (m - r + 1) × (p - 1) × (p - 2)..(p - v)} × {(-b)^v / a^r+v} × fluent. flux. (a + b x^n)^m x^pn-1 x^., literis A, B, C, &c. H, I, K, &c. præcedentes terminos re$pe- ctive denotantibus.

Et $ic ad trinomiales, &c. terminos progredi liceat.

Ca$. 2. Datis fluentibus fluxionum (a + b x^n + c x^2n + d x^3n + &c.)^m [0145]FLUXIONUM FLUENTIBUS. × x^pn-1 x^., (a + b x^n + c x^2n + d x^3n + &c.)^m × x^pn+n-1 x^., (a + b x^n + c x^2n + d x^3n + &c.)^m × x^pn+2n-1 x^., quarum numerus e$t r, $i modo r $it numerus terminorum in quantitate a + b x^n + c x^2n + &c. conten- torum: $cribantur literæ A, B, C, D, &c. pro prædictis fluentibus, & erit (a + b x^n + c x^2n + d x^3n + &c.)^m+1 × x^pn = p n a A + (p + m + 1) n b B + (p + 2m + 2)ncC + (p + 3m + 3) n d D + &c. Hoc fa- cile demon$trari pote$t, ex inveniendo utriu$que æquationis partis fluxiones; hæ fluxiones enim evadunt eædem.

Si igitur dentur quæcunque r - 1 prædictæ fluentes, ex hâc æqua- tione $equitur reliqua.

Sit terminus in prædictâ $erie (p + l m + l) × F, ubi l e$t integer numerus, & p + l m + l = 0; cujus fluens F e$t reliqua; tum ex præ- dictis (r - 1) fluentibus non deduci pote$t reliqua (F).

Ca$. 2. Ii$dem datis; $cribatur Q pro fluente fluxionis (a + b x^n + c x^2n + d x^3n + &c.)^m+1 x^pn-1 x^., & erit (a + bx^n + c x^2n + d x^3n + &c.)^m+1 x^pn = (m + 1) × (n b B + 2 n c C + 3 n d D + &c.) + p n Q; unde $i modo dentur r - 1 fluentes B, C, D, &c. dabitur etiam fluens Q.

Cor. Si fluxio con$tet ex r nominibus vel terminis in vinculo radicali, & dentur r - 1 fluentes prædicti generis; dabuntur etiam omnes fluentes fluxionum, quæ addendo vel $ubducendo quantitates n, 2 n, 3 n, 4 n, &c. de indice p n - 1; vel unitatem, duo, tres, qua- tuor, &c.; de indice m; generari po$$unt.

Excipiendi $unt nonnulli ca$us, ut e $ub$equentibus con$tabit.

Ca$. 3. Si pro e + f x^n + g x^2n + &c. · x^αn, & b + k x^n + l x^2n + &c.. x^βn, q + r x^n + s x^2n + &c..x^2n, &c. $cribantur R, S, T, &c. & in flu- xione x^p n±σ n-1 x^. R^m±λ S^0±μ T^t±ν × &c. maneant quantitates datæ p n - 1, n, m, o, t, e, f, g, h, k, l, q, r, s, &c. & pro σ, λ, μ, ν, &c. $cri- bantur in datâ fluxione $ucce$$ive quicunque integri numeri; & $i dentur α + β + γ + &c. fluentes independentes re$ultantium fluxio- num, ubi literæ α + 1, β + 1, γ + 1, &c. re$pective denotant nume- rum terminorum in quantitatibus R, S, T, &c. contentorum; tum dabuntur fluentes omnium prædictarum fluxionum re$ultantium.

Con$tat ex principiis in priori exemplo traditis:

[0146]DE INVENIENDIS

Ca$. 4. Datis $ingulis fluentibus fluxionum a + b x^n + c x^2n + &c. +

    e + f x<_>n + g x<_>2n + &c.
^ m × x<_>θ±rn-1 x^., ubi r integrum denotat nume- rum; datis etiam fluentibus (s - 1) fluxionum huju$ce formulæ a + b x^n + c x^2n + &c. +
    e + f x^n + g x^2n + &c.
^m × e + f x^n + g x^2n + &c. × x^θ±vn-1 x^., ubi s $it numerus terminorum in quantitate e + f x^n + g x^2n + &c. contentorum, & t & v integros denotent numeros; exinde inveniri po$$unt fluentes $ingularum fluxionum huju$ce formulæ

Eadem etiam principia facile applicari po$$unt ad omnes algebrai- cas fluxiones utcunque compo$itas.

5. 1. Sint a + b x^n + c x^2n + &c. = R, d + e x^n + f x^2n + &c. = S, i + b x^n + k x^2n + &c. = T, &c. tum per methodos in prob. 4. tra- ditas ita reducatur data fluxio (A + B x^n + C x^2n + &c.) × R^λ-1 × S^μ-1 × T^γ-1 × &c., ut in eâ quantitates prædictæ (R, S, T, &c.) nullum habeant communem divi$orem, & in nullâ quantitate contineantur plures divi$ores inter $e æquales; aliter generalis fluens prædictæ flu- xionis ex paucioribus fluentibus independentium fluxionum, quam ex numero hâc regulâ dato, detegi pote$t. e. g. Sit R = a + b x^n + c x^2n + ... x^pn = (α + β x^n)^l × (a′ + b′ x^n + &c.); S = d + e x^n + f x^2n + &c. ... x^qn = (α + β x^n)^b × (γ + δ x^n)^k × (d′ + e′ x^n + &c.); &c.: & data fluxio R^λ × S^μ × x^θ x^. = (α + β x^n)^λl+μb × (γ + δ x^n)^μk × (a′ + b′ x^n .. x^(p-ηn)^λ × (d′ + e′ x^n .. x^(q-b-k)n)^μ × x^θ x^.; per regulam datam ex (p + q) fluentibus formulæ R^λ±π × S^μ±ρ × x^θ±σ × x^. inter $e independentibus ubi literæ π, ς & σ quo$cunque integros denotant numeros, deduci po$$unt omnes aliæ eju$dem formulæ at quoniam R^λ ± π × S^μ±ρ × x^ς±σ × x^. = (α + β x^n)^(λ±π)l+(μ±ρ)h × (γ + δ x^n)^(μ±ρ)k × (a′ + b′ x^n .. x^(p-1)n)^λ±π × (d′ + e′ x^n .. x^(q-b-k)n)^μ±ρ × x^θ±σ x^., exinde con$tat omnes fluentes præ- dictæ formulæ deduci po$$e ex (p + q - l - b - k + 2) fluentibus eju$dem formulæ inter $e independentibus.

2. Sit R^m × S^σ × T^t × x^p n-1 quantitas ita reducta, ut quantitates R = e + f x^n .. + x^αn, S = b + k x^n .. + x^βn, T = q + r x^n + s x^2n .. + x^λn, [0147]FLUXIONUM FLUENTIBUS. &c., & x^p n-1 nullum habeant inter $e communem divi$orem; etiam- que $ingulæ nullum habeant divi$orem, qui e$t quadratus (x + a)^2, vel cubus (x + a)^3, &c.: tum raro ex paucioribus quam (α + β + γ + &c.) fluentibus fluxionum inter $e independentibus, formulæ R^m±λ × S^ο±μ × T^t±γ × x p^n±σ n-1 × x^. × (a + b x^n + c x^2n + &c.), ubi literæ λ, μ, ν, &c., & σ integros denotant numeros, $emper deduci po$$unt fluentes omnium fluxionum eju$dem $ormulæ.

Huc etiam applicari po$$unt con$imilia iis, quæ in theor. præce- dentibus traduntur.

6. Sint (a + b x^n + c x^2n + &c .. x^rn)^m+λ × x^p n±σ n-1 x^., ubi σ e$t qui- cunque integer, & m & λ quicunque integri affirmativi numeri; tum ejus fluens $emper vel inveniri pote$t, vel $olummodo exigit fluentem fluxionis {x^. / x}.

Con$tat ex reducendo fluxionem datam in $eriem $ecundum di- men$iones quantitatis x progredientem.

7. Si vero m affirmativa quantitas haud $it integer numerus; at p, λ & σ $int integri affirmativi numeri; & tum ex (r - 1) fluentibus fluxionum formulæ (a + b x^n + c x^2n + .. + x^rn)^m+λ × x^p n+σ n-1 x^. datis, deduci dictis (r - 1) fluentibus non deduci po$$unt omnes fluentes formulæ (a + b x^n + c x^2n + .. + x^rn)^m±λ × x^p n±σ n-1 x^.; $ed ex (r) fluentibus in- ter $e independentibus, i. e. quæ nec in finitis terminis, nec a $e in- vicem exprimi po$$unt, formulæ (a + b x^n + c x^2n + .. + λ^rn)^m±λ × x^pn±σ n-1 x^. deduci po$$unt omnes fluentes eju$dem formulæ: etiam- que ex omnibus, i.e. infinitis fluentibus fluxionum formulæ (a + b x^n + c x^2n ... + x^rn)^m+λ × x^pn+σ n-1 x^. non deduci po$$unt fluentes omnium fluxionum formulæ (a + b x^n + c x^2 n ... + x^r n)^m±r × x^p n±σ n-1 x^..

Literis R, S, T, &c. ea$dem quantitates ac in ca$. 5. 2. denotanti- bus; $int m, &c. integri affirmativi numeri; & o, t, &c., non integri numeri; tum fluens omnis fluxionis formulæ x^pn±σ n-1 x^. × R^m+λ × S^σ±μ × T^t±r × &c., ubi λ e$t affirmativus numerus, colligi pote$t ex [0148]DE INVENIENDIS (β + γ + &c.) diver$is fluentibus prædictæ formulæ inter $e indepen- dentibus: 2. etiamque ex $ingulis, viz. infinitis fluentibus formulæ R^m+λ × S^ο±μ × T^t±r × &c. × x^pn±σ n-1 x^. non colligi pote$t fluens omnis fluxionis formulæ R^m-λ × S^ο±μ × T^t±r × &c. × x^pn±σ n-1 x^..

8. Sit p integer affirmativus numerus, tum ex (α + β + γ + &c. - 1) fluentibus inter $e independentibus formulæ x^pn+σ n-1 × R^m+λ × S^ο+μ × T^t+r × &c. × x^.; ubi literæ σ, λ, μ, ν, &c. $unt affirmativi numeri, & m, o, t, &c. affirmativæ quantitates, deduci po$$unt fluentes omnium fluxionum eju$dem formulæ; at ex fluentibus omnium fluxionum huju$ce formulæ non deduci po$$unt fluentes omnium fluxionum for- mularum, in quibus prædicti numeri σ, λ, μ, ν, &c. $unt negativi.

THEOR. X.

Sæpe per $ub$titutionem acquiri po$$unt particulares formulæ ge- neralis fluxionis, quarum fluentes e paucioribus inter $e independen- tibus quam per regulam a$$ignatis, deduci po$$unt; e. g. $it fluxio (a + b x^n)^λ±α x^(θ±β)n x^n-1 x^., quæ ex unâ datâ fluente huju$ce formulæ acquiri pote$t, ubi literæ α & β integros denotant numeros: in eâ pro x^n $cribatur c + d z^n + e z^2n, & re$ultat fluxio (a + b c + b d z^n + b e z^2n)^λ±α × (c + d z^n + e z^2n)^θ±β x^. (d z^n-1 + 2 e z^2n-1)z^.: unde fluentes omnium fluxionum huju$ce po$terioris formulæ erui po$$unt ex fluente unius datæ fluxionis eju$dem formulæ

THEOR. XI

1. Sit x^θ+αn+βm × (a + b x^n + c x^m)^λ+π x^.; ubi literæ α, β & π re$pe- ctive denotant affirmativos integros numeros: tum ex datis fluentibus (N + 1) inter $e independentibus fluxionum huju$ce formulæ, ubi $umma α + β + π nunquam major e$t quam N; detegi po$$unt flu- entes omnium fluxionum prædictæ formulæ.

Hoc theorema ex ii$dem principiis; ac ea, quæ in prob. 22. traduntur; deduci pote$t: e. g. $int x^θ (a + b x^n + c x^m)^λ x^. = x^θ A^λ x^. [0149]FLUXIONUM FLUENTIBUS. = P^., x^θ+n × A^λ x^. = Q^.; tum erit $. x^θ+m A^λ x^. = {1 / (θ + 1) c + (λ + 1) mc}(x^θ+1 × A^λ+1 - (θ + 1) a P - ((λ + 1)n b + (θ + 1)b)Q); & $ic de- inceps.

2. Sint n & m integri numeri, & N eorum maximus communis di- vi$or; etiamque $it v major numerus {n / N} vel {m / N}; tum ex v independen- tibus fluentibus fluxionum formulæ x^θ±α n±β m (a + b x^n + c x^m)^λ±π x^. datis $emper acquiri po$$unt fluentes omnium fluxionum eju$dem for- mulæ viz. x^θ±α n±β m (a + b x^n + c x^m)^λ±π x^..

2. 2. Si vero n & m $int fractiones, &c.; reducendæ $unt ad mini- mum communem denominatorem (σ), & evadant {μ / σ} & {μ′ / σ}; inveniatur (N) maximus communis divi$or numeratorum μ & μ′, & $it v major numerus {μ / N} vel {μ′ / N}; tum ex v independentibus fluentibus fluxionum prædictæ formulæ $emper deduci po$$unt fluentes omnium fluxionum eju$dem formulæ

3. Sit fluxio x^θ+α m+β n+λ r+δ s+&c. × (a + b x^m + c x^n + d x^r + e x^s + &c.)^λ+π x^., in quâ α, β, γ, δ, &c. & π reperiuntur integri affirmativi nu- meri: $it α + β + λ + &c. + π numerus non major quam b; tum fluentes omnium fluxionum huju$ce formulæ inveniri po$$unt ex s ×{s + 1 / 2} × {s + 2 / 3} × {s + 3 / 4} .. {s + b - 1 / b} inter $e independentibus fluenti- bus fluxionum eju$dem formulæ: ubi s e$t numerus indicum m, n, r, s, &c.

Con$imiles propo$itiones de fluentibus fluxionum formulæ x^θ+α n+β m+&c. (a + b x^n + c x^2n + .. + e x^δ n + k x^m + l x^2m + .. + x^rm + p x^n+m + q x^n+2m + r x^m+2n + &c.)^λ+π x^., ubi literæ α, β, &c., δ, ν, &c.; & π re$pective integros denotant affirmativos numeros; facile deduci po$$unt.

[0150]DE INVENIENDIS THEOR. XII.

1. Sit fluxio X $. γ x^., ubi X^. e$t fluxio, cujus fluens $emper inveniri pote$t; & $it numerus fluentium inter $e independentium in formulis fluxionum γ x^. & X γ x^. contentarum, re$pective m & r; e quibus detegi po$$unt omnes reliquæ earundem for mularum; tum ex (m + r) flu- entibus fluxionum X^. $. γ x^. inter $e independentibus detegi po$$unt omnes fluentes eju$dem formulæ

Con$tat ex eo, quod fluens datæ fluxionis = X $. γ x^. - $. X y x^.; & $i modo dentur m independentes fluentes fluxionis γ x^., per hypothe$in dabuntur omnes; & $imiliter $i modo dentur (r) fluentes indepen- dentes fluxionis X y x^., dabuntur omnes ejus formulæ

Ex. Sit fluxio (A + B x^n + C x^2n + &c.) × x^θ±σ n-1 x^. × $. R^m±λ × S^ο±μ × T^t±τ × &c. × x^x±τ π-1 x^., ubi literæ σ, λ, μ, ν, &c. & τ quo$cun- que integros denotant numeros; & $umma θ ± σ n, vel θ ± σ n + n, vel θ ± σ n + 2 n, vel θ ± σ n + 3 n, &c., non evadat nihilo æqualis; etiamque R = a + b x^n + c x^2n + .. x^αn, S = b + k x^n + l x^2n + .. x^β n, T = q + r x^n + s x^2n + .. + x^γ n, &c.; tum erit X = {1 / θ ± σ n} A x^θ±σ n + {1 / θ ± σ n + n} B x^θ±σ n+n + {1 / θ ± σ n + 2n} C x^θ±σ n+2n + &c.; & γ = R^m±λ × S^ο±μ × T^t±r × &c. × x^x±τ n-1: numeri independentium fluen- tium in formulis fluxionum γ x^. & X γ x^. contentarum erunt re$pective α + β + γ + &c., & α + β + γ + &c.; ergo numerus fluentium inter $e independentium, quarum fluxiones datam habent formulam, non pote$t e$$e major quam 2(α + β + γ + &c.).

Si x = θ ± l n, ubi l e$t integer numerus; tum prædictus nume- rus non pote$t e$$e major quam α + β + γ + &c.

2. Sit fluxio r x^. = s^., ubi s = (a + b x^n + c x^2n ... b x^αn)^± π × (p + q x^n + r x^2n ... t x^β n)^m±p × x^k±a x^.; a$$umatur y = (A + B x^n + C x^2n ... H x^δ n)^L±τ × (P + Q x^n + R x^2 n ... T x^ε n)^m′±v × x^k′±ξ; ubi π, ς, σ, τ, ν, ξ $unt quicunque integri numeri; tum ex datis fluentibus δ + ε + &c. fluxionum formulæ y x^. haud a $e invicem pendentibus, in quibus [0151]FLUXIONUM FLUENTIBUS. τ, υ, &c. & Ξ haud eo$dem habent valores, erui po$$unt fluentes $in- gularum fluxionum formulæ prædictæ y x^.; deinde ex $ingulis fluen- tibus fluxionis y x^. datis & ex fluentibus α + β + &c. + δ + ε + &c. fluxionum formulæ r x^. $. y x^. haud a $e invicem pendentibus, in qui- bus π, ξ, &c. & σ; τ, υ, &c. haud eo$dem habent valores, erui po$$unt fluentes $ingularum fluxionum formulæ r x^. $. y x^..

3. Con$imiles propo$itiones etiam deduci po$$unt de fluentibus $u- periorum ordinum; $æpe enim reduci po$$unt in fluentes primi or- dinis. e. g. Sit fluxio X^. × $. R x^. × $. Z x^.; & X^., X R x^. & X Z x^. flu- xiones, quarum fluentes detegi po$$unt, i. e. $int $. X^. = X, $. X R x^. = α, $. X Z x^. = β; tum erit $. X^. × $. R x^. × $. Z x^. = X × $. R x^. × $. Z x^. - (α × $. Z x^. + β × $. R x^.) + ($. α Z x^. + $. β R x^.). Inveniantur numeri fluentium inter $e independentium, ex quibus detegi po$$unt omnes valores fluentium $. R x^., $. Z x^., $. α Z x^. & $. β R x^.; qui $int re$pective π, ξ, σ & τ; tum ad plurimum ex (π + ξ + σ + τ) fluentibus inter $e independentibus datæ fluxionis detegi po$$unt omnes fluentes eju$- dem formulæ.

4. Sit data fluxio X^. $. R x^. $. Z x^.; cujus fluens X $. r x^. $. Z x^. - $. X r x^. $. Z x^.: $int X, r x^. & X r x^. fluxiones, quarum fluentes detegi po$$unt, i. e. $int re$pective X, α & β. Inveniatur numerus fluentium inter $e independentium, ex quibus detegi po$$unt omnes valores fluentium Z x^., α Z x^. & β Z x^.; qui fint re$pective π, ξ & σ; tum ex (π + ξ + σ) ad plurimum fluentibus datæ fluxionis inter $e independentibus $em- per detegi po$$unt fluentes omnium fluxionum eju$dem formulæ.

Cor. 1. Sit fluxio A x^. $. B x^. $. C x^. $. D x^. .... $. P x^. $. Q x^. $. R x^. $. R x^. = p x^. in quâ $it A x^. $. B x^. $. C x^. $. D x^. .... $. P x^. $. Q x^. $. R x^. = X^.; ubi per X & R denotentur eædem ac prius quantitates; tum quod prius traditum fuit de fluentibus fluxionum X^. $. R x^., etiam ad fluen- tes fluxionis p x^. applicari pote$t.

Facile con$tant ca$us horum theorematum, in quibus e minore numero independentium fluentium quam per has regulas a$$ignato deduci po$$unt omnes fluentes datam formulam habentes.

[0152]DE INVENIENDIS THEOR. XIII.

1. Pro a + b x^n + c x^2n + d x^3n ... b x^(μ-1)n + k x^μn $cribatur p, & pro fluentibus fluxionum e^p x^2-1 x^., e^p x^α+n-1 x^., e^p x^α+2n-1 x^., e^p x^α+3n-1 x^., .... e^p x^α+(μ-1)n-1 x^., e^p x^α+μn-1 x^. $ub$tituantur re$pective A, B, C, D, E, ... H, K; tum, quoniam fluxio quantitatis e^p x^α erit (α x^α-1 + n b x^α+n-1 l + 2 n c x^α+2n-1 l + 3 n d x^α+3n-1 l ... (μ - 1) n h x^α+(μ-1)n-1 l + μ n k x^α+μn-1 l) x^. × e^p, con$equitur fluens (K) fluxionis e^p x^α+μn-1 x^. = {1 / μ n k l}(x^α - α A - n b B l - 2 n c C l - 3 n d D l ... - (μ - 1) n b H l) e^p.

Hìc logarithmus hyper. quantitatis e $upponitur l.

2. Sit exponentialis fluxio e^a + b x^n + c x^2n ... b x^μn × x^r±νn x^., ubi μ & υ funt integri numeri; tum ex fluentibus (μ) fluxionum prædictæ for- mulæ independentibus, i. e. quæ habent μ diver$os valores quan- titatis ν, datis; acquiri po$$unt fluentes omnium fluxionum eju$dem formulæ.

3. Sit exponentialis fluxio x^. e^a + b x^n + c x^2n ... b x^μn (α + β x^n + γ x^2n ... ε x^ρn)^k=σ × (A + B x^n + C x^2n ... E x^Ξn)^l=τ × x^r±υn; ubi σ & υ $unt qui- cunque integri numeri; tum e fluentibus μ + ξ + Ξ fluxionum $u- pradictæ formulæ independentibus erui po$$unt fluentes omnium fluxionum eju$dem formulæ.

4. Sit exponentialis fluxio e^(a + b x^n + c x^2n ... h x^πn)^m × (α + βx^n + γx^2n ... ε x^ρn)^k±σ × (A + B x^n + C x^2n ... E x^Ξn)^l±τ × x^r∓υn x^. = P x^.; ubi σ, τ, υ, &c. $unt quicunque integri numeri; tum ex omnibus fluentibus formulæ P x^. datis; & ex (π + ξ + Ξ) independentibus fluentibus flu- xionum formulæ (a + b x^n + c x^2n .. + b x^πn)^m±r × P x^., ubi r eft etiam quicunque integer numerus; acquiri po$$unt fluentes omnium fluxi- onum eju$dem formulæ.

Facile con$tant hæ propo$itiones.

Cor. 1. Sit exponentialis fluxio e^x x^a x^., cujus fluens (P) detur; tum fluens fluxionis e^x x^a+π x^. erit {1 / l} e^x (x^a+π - {1 / l} (a + π) x^a+π-1 + {1 / l2} (a + π) [0153]FLUXIONUM FLUENTIBUS. · (a + π - 1) x^a+π-2 - {1 / l3} (a + π). (a + π - 1). (a + π - 2) x^a+π-3 .....{1 / l^π-1} (a + π) · (a + π - 1) · (a + π - 2) ... (a + 2) · x^a+1) ± {1 / l^π} (a + π). (a + π - 1) · (a + π - 2) ... (a + 1) × P, $i π $it integer affirmativus numerus: $ignum ± erit +, $i π $it par; $in aliter -.

2. Sit π negativus numerus, & erit $. x^a-π e^x x^. = ({1 / a - π + 1} × x^a-π+1 - {l / a - π + 1} × {1 / a - π + 2} x^a-π+2 + {l / a - π + 1} · {l / a - π + 2} ·{1 / a - π + 3}x^a-π+3 .... {l / a - π + 1} · {l / a - π + 2} · {l / a - π + 3} ... {1 / a}x^a) e^x ={l / a - π + 1} · {l / a - π + 2} · {l / a - π + 3} ... {l / a} × P: $ignum ± in hoc ca$u etiam erit +, $i π $it par; $in aliter -.

Ea, quæ prius tradita fuere de algebraicis fluxionibus, æque ad fluentiales applicari po$$unt.

PROB. XXIII.

1. Sit fluxio (a + b x^n)^m × x^pn+υn-1 x^., invenire fluentem inter duos valores (0 & - {a / b}) quantitatis x^n contentam.

In fluente ex. 3. prob. 22. inventâ pro x^n $cribantur re$pective 0 & - {a / b}; & erit re$ultantium differentia {p / p + m + 1} · {p + 1 / p + m + 2} · {p + 2 / p + m + 3}... {p + v - 1 / p + m + v} × {a^v / b^v} × fluen. flux. (a + b x^n)^m × x^pn-1 x^. inter duos valores 0 & - {a / b} quantitatis x^n contentam, quæ erit fluens quæ$ita.

2. Sit data fluxio (a + b x^n)^m × x^pn-vn-1 x^.; & erit ejus fluens inter duos valores 0 & - {a / b} quantitatis x^n contenta = {p + m / p - 1} × {p + m - 1 / p - 2} [0154]DE INVENIENDIS × .. {p + m - v + 1 / p - v} × {b^v / a^v} × fluen. flux. (a + b x^n)^m × x^pn-1 x^. (A) inter duos prædictos valores quantitatis x^n contentam. Hoc con$tat ab ex. 4. prob. 22.

3. Sit data fluxio (a + b x^n)^m+r x^pn-1 x^.; & ejus fluens inter duos va- lores 0 & - {a / b} quantitatis x^n contenta, erit = {m + 1 / p + m + 1} × {m + 2 / p + m + 2}× {m + 3 / p + m + 3} ... {m + r / p + m + r} × a^r × A fluent. prædictam.

4. Sit data fluxio (a + b x^n)^m-r × x^pn-1 x^.; & ejus fluens inter duos valores 0 & - {a / b} quantitatis x contenta, erit = {p + m / m} × {p + m - 1 / m - 1} ×{p + m - 2 / m - 2} ... {p + m - r + 1 / m - r + 1} × {A / a^r}.

5. Sit data fluxio (a + b x^n)^m+r × x^pn+vn-1 x^.; & ejus fluens inter duos valores 0 & - {a / b} quantitatis x^n contenta, erit = {(m + 1) × (m + 2) × (m + 3) .. (m + r) × p × (p + 1) × (p + 2) .. (p + v - 1) / (p + m + 1) · (p + m + 2) · (p + m + 3) .. (p + m + v) · (p + m + v + 1) ... (p + v + m + r)} × {a^v+r / b^v}× fluent. flux. (a + b x^n)^m × x^pn-1 x^. (A).

6. Fluens fluxionis (a + b x^n)^m-r x^pn+vn-1 x^., inter duos prædictos valores 0 & - {a / b} quantitatis x^n contenta, erit = {m + p + v / m} ×{m + p + v - 1 / m - 1} × ... {m + p + v - r + 1 / m - r + 1} × {p / p + m + 1} × {p + 1 / p + m + 2} × {p + 2 / p + m + 3}... {p + v - 1 / p + m + v} × {a^v-r / (-b)^v} × fluent. flux. (a + b x^n)^m x^pn-1 x^. (A).

7. Fluens fluxionis (a + b x^n)^m+r x^pn-vn-1 x^. inter valores 0 & - {a / b} quantitatis x^n contenta, erit = {m + r + p - v + 1 / p - v} × {m + r + p - v + 2 / p - v + 1} [0155]FLUXIONUM FLUENTIBUS. ... {m + r + p / p - 1} × {m + 1 / m + p + 1} × {m + 2 / m + p + 2} .. {m + r / m + p + r} × {(- b)^v / a^v-r} × fluentem prædictam A.

8. Fluens fluxionis (a + b x^n)^m-r x^pn-vn-1 x^., inter valores 0 & - {b / a} quantitatis x^n contenta, erit = {(p + m) × (p + m - 1) ×(p + m - 2) .. (p + m - r - v + 1) / m × (m - 1) × (m - 2) ... (m - r + 1) × (p - 1) × (p - 2) ... (p - v)} × {-b^v / a^r+v} × fluentem A.

Hæc facile con$tant e prob. 22. & con$imilia de trinomialibus (a + b x^n + c x^2n)^m × x^pn-1 x^., &c. fluxionibus facile detegi po$$unt. e. g. fluens fluxionis (a + b x^n + c x^2n)^m±u × x^pn=vn-1 x^. erit P × (a + b x^n + c x^2n)^m=u × x^pn±v′n-1 - Q × $. (a + b x^n + c x^2n)^m=a × x^pn±βn-1 x^. - R × $ (a + b x^n + c x^2n)^m±α′ × x^pn±β′n-1 x^.; ubi α, β; α′ & β′, u & v $unt dati integri numeri; & fluentes duarum fluxionum (a + b x^n + c x^2n)^m=a × x^pn±βn-1 x^. & (a + b x^n + c x^2n)^m±a′ × x^pn±β′n-1 x^. dantur, attamen nec exprimi in finitis terminis, nec terminis finitis a $e invicem de- duci po$$unt; & P, Q & R $unt rationales functiones quantita- tis x^n.

9. 1. Si plures $int huju$ce generis (a + b x^n)^m=r x^(p±v)n-1 fluxiones, quarum aggregatum fluentium inter valores 0 & - {a / b} quantitatis (x) contentarum requiritur: inveniatur per problema $ingula fluens, & exinde deduci pote$t earum $umma.

2. Si vero plures prædictæ quantitates per quantitates irrationales denotentur; transformandæ $unt irrationales quantitates in terminos- $ecundum dimen$iones quantitatis x progredientes; vel in tales ter- minos, quorum fluentes per methodos prius traditas deduci po$$unt; deinde inveniantur fluentes $ingularum fluxionum re$ultantium, & exinde aggregatum quæ$itum.

Ex. 1. Invenire fluentem fluxionis {(a + b x^n)^m / (b + k x^n)^β} x^pn-1 x^. inter duos va- [0156]DE INVENIENDIS lores 0 & - {a / b} quantitatis x^n contentam, ubi A $it fluens fluxio- nis (a + b x^n)^m × x^pn-1 x^. inter duos prædictos valores quantitatis x^n contenta.

Per binomiale theorema (h + k x^n)^-β = h^-β × (1 - {β k / h} x^n +{β × (β + 1) × k^2 / 1 · 2 h^2} x^2n - {β × (β + 1) × (β + 2) × k^3 / 1 · 2 · 3^h3} x^3n + &c.); ducatur hæc quantitas in (a + b x^n)^m x^pn-1 x^., & fluxionum re$ultantium inter valores 0 & - {a / b} quantitatis x inveniantur fluentes; & erunt re$pe- ctive {A / h^β} × (1 + {p / p + m + 1} × {a / b} × {β k / h} + {p × (p + 1) / (p + m + 1) × (p + m + 2)}× {a^2 / b^2} × {β × (β + 1) k^2 / 2h^2} + {p × (p + 1) × (p + 2) / (p + m + 1) × (p + m + 2) × (p + m + 3)} ×{a^3 / b^3} × {β × (β + 1) × (β + 2) × k^3 / 1 · 2 · 3^h3} + &c.)

Ex. 2. Erit fluens fluxionis x^. x^pn-1 × (a + b x^n)^m-1 $. (h + k x^n)^β × x^qn-1 x^. = $. {1 / h^m d^qn} × x^. × x^(p+q)n-1 × (a + b x^n)^m-1 × $. x^qn-1 × (h + k x^n)^m+β x^. inter duos valores (0 & - {a / b} = d) quantitatis x^n contenta, cum p + q + m + β = 0.

Per binomiale theorema erit y^. = (h + k x^n)^β × x^qn-1 x^. = x^. x^qn-1 (h^β + βh^β-1 k x^n + β · {β - 1 / 2} h^β-2 k^2 x^2n + &c.), cujus fluens erit x^qn ({h^β / qn} + {β h^β-1 / (q + 1) × n} k x^n + β × {(β - 1) / 2} × {h^β-2 / (q + 2)n} k^2 x^2n + & c.); du- catur hæc fluens in z^. = x^. x^pn-1 × (a + b x^n)^m-1, re$ultat fluxio x^. × (a + b x^n)^m-1 × x^(p+q)^n-1 ({h^β / qn} + {β h^β-1 / (q + 1) n} k x^n + β × {β - 1 / 2} × {h^β-2 / (q + 2)n} [0157]FLUXIONUM FLUENTIBUS. k^2 x^2n + &c.); per methodos prius traditas fluens huju$ce fluxionis inter valores 0 & - {a / b} quantitatis x^n contenta, invenitur = {h^β / qn} × G × (1 + {p + q / p + q + m} × {q / q + 1} × {β k / h} × d^n + {p + q / p + q + m} × {p + q + 1 / p + q + m + 1} × {q / q + 2} × β × {β - 1 / 2} × {k^2 / h^2} × d^2n + &c.), ubi G = fluen. flux. x^(p+q)n-1 x^. × (a + b x^n)^m-1 inter valores 0 & - {a / b} quantitatis x contentæ. In hâc $erie pro p + q + m $cribatur ejus valor - β, & pro p + q ejus valor - β - m; & evadet = {h^β / qn} × G × (1 + {β + m / 1} × {q / q + 1} × {k / h} d^n + (β + m) ×{β + m - 1 / 2} × {q / q + 2} × {k^2 / h^2} d^2n + &c.): per prædictum theorema erit x^qn-1 × (h + k x^n)^m+β × x^. = h^m+β × x^qn-1 x^. + (m + β) h^m+β-1 x^(q+1)n-1 k x^. + (m + β) × {m + β - 1 / 2} × h^m+β-2 x^(q+2)n-2 k^2 x^. + &c., cujus fluens erit (P){h^m+β / q n} x^qn + {(β + m) / q + 1} × {h^m+β-1 / n} k x^(q+1)n + (β + m) × {β + m - 1 / 2 n × (q + 2)} h^β+m-2 × k^2 × x^q+2n + &c.; ducatur hæc quantitas in {q n / h^β+m x^qn}, & pro x^n $criba- tur d^n, & re$ultabit $eries prius inventa {q n / h^β+m d^qn} × P = 1 + {β + m / 1} ×{q / q + 1} × {k / h} d^n + (β + m) × {β + m - 1 / 2} × {q / q + 2} × {k^2 / h^2} d^2n + &c.; ducatur hæc quantitas {q n / h ^β+m d^qn} × P in {h^β / qn} × G; & re$ultat quantitas prius tradita {1 / h^m d^qn} × P × G = {h^β / qn} × G × (1 + {β + m / 1} × {q / q + 1} × {k / h} d^n + &c.) = fluen. fluxionis x^pn-1 x^. × (a + b x^n)^m-1 × $. (h + k x^n)^β x^qn-1 x^. = $. y z^.. Q. E. D.

Cor. 1. Si vero q + p + m + β haud nihilo $it æqualis, $ed p augeatur [0158]DE INVENIENDIS vel diminuatur per quemcunque integrum numerum, ex hoc exemplo detegi pote$t fluens fluxionis y z^., inter duos valores 0 & - {a / b} quanti- tatis x^n contenta; e. g. $it Q^. = z^. × fluen. flux. y^. x^n, $ed y^. = (h + k x^n)^β × x^qn-1 x^., & exinde x^n y^. erit = (h + k x^n)^β x^(q+1)n-1 x^.; ergo fluens flux. x^n y^. erit = {(h + k x^n)^β+1 × x^qn / n k × (β + 1 + q)} - fluent. flux. {(h + k x^n)^β × x^qn-1 x^. × q h / k × (β + 1 + q)}{(q h y^. / k × (β + 1 + q)}), unde Q^. = {(h + k x^n)^β+1 x^qn / n k × (β + 1 + q)} z^. - {q h y z^. / k × (β + 1 + q)}.

Cor. 2. Ii$dem literis ea$dem quantitates denotantibus, $int Y, Z & V re$pective fluentes fluxionum y^., z^. & z y^. cum h + k x^n = 0, i. e. inter valores 0 & - {h / k} (D) quantitatis x^n contentæ; $int etiam γ & π $imultanea incrementa fluentium fluxionum x^(p+q)n-1 x^. × (h + k x^n)^β x^., & x^. x^pn-1 × (a + b x^n)^m+β, & p + q + m + β = 0; tum ex hoc exemplo con$tat V = {γπ / a^β+1 D^pn}, & con$equenter fluens fluxionis y z^. = Y Z - V ({γ π / a^β+1 D^pn}).

Cor. 3. Sit z^. = - x^. x^n-r-2 × (a + b x^n)^m-1, & y^. = - x^. x^r × (h + k x^n)^β; pro x in hi$ce duabus fluxionibus $cribatur {1 / v}, & re$ultant fluxiones z^. = {v^. / v^2} × {1 / v^mn-r-2} × (a v^n + b)^m-1 = (a v^n + b)^m-1 × v^r-mn v^., & y^. = {v^. / v^2} ×{1 / v^r+βn} × (h v^n + k)^β = (h v^n + k)^β × v^-r-nβ-2 v^.; unde, $i {r - m n + 1 / n} -{r + β n + 1 / n} + β + m = 0, fluens fluxionis y z^. inter duos valores 0 & - {b / a} (d) quantitatis v^n contenta erit per exemplum {G P / k^m d^-(r+βn+1)}, ubi literæ P & G re$pective denotant fluentes (inter duos prædictos va- [0159]FLUXIONUM FLUENTIBUS. lores 0 & - {b / a} quantitatis v^n contentas) fluxionum v^. v^-r-βn-2 × (h v^n + k)^β+m & v^. × v^-(β+m)n-1 × (a v^n + b)^m-1; cum autem fluens fluxionis v z^. inter duos valores (0 & - {b / a}) quantitatis v^n contineatur, fluens fluxionis y z^. inter duos valores ({1 / 0} & - {a / b}) quantitatis x^n con- tinebitur, quoniam x = {1 / v}; ergo fluens fluxionis y z^. inter - {a / b} & in- finitum erit {G P / k^m d^-(r+βn+1)}.

Et $ic e præcedente coroll. invenietur fluens fluxionis y z^. inter duos valores (- {h / k} (D) & infinitum) quantitatis x^n contenta = Y Z - γ π × {D^r+1-nm / b^β+1}, ubi literæ Y, Z, γ, π re$pective denotant $imultaneas flu- entes fluxionum - x^. x^r (kx^n + h)^β, - x^. x^n-r-2 × (bx^n + a)^m-1, v^. v^-(m+β)n-1 × (hv^n + k)^β & v^. v^r-mn × (b + a v^n)^m+β.

Ex ii$dem principiis con$imilia proferre liceat de trinomialibus, &c. quantitatibus; etiamque ex aliis transformationibus; $ed de his $atis.

PROB. XXIV.

_In inve$tigandis fluxionum fluentibus nonnunquam occurrunt ca$us, in_ _quibus numerator & denominator datæ fractionis_ ({P / Q}) _nihilo evadunt re-_ _$pective æquales; invenire ejus valorem._

1. Reducatur data fractio ad minimos terminos; i. e. dividatur & numerator & denominator per maximum eorum communem divi$o- rem, & $it quotiens re$ultans {p / q}; tum erit {p / q} valor fractionis quæ$itæ: $i numerator & denominator p & q $imul nihilo evadant æquales, [0160]DE INVENIENDIS tum {p^. / q^.} erit valor fractionis quæ$itæ: $i p^. & q^. etiam nihilo evadant æquales, tum erit prædictus valor = {p^... / q^...}: $i vero p^.. & q^.. nihilo fiant æquales, tum prædictus valor = {p^... / q...;}; & $ic deinceps: quod$i nihilo $emper evadant æquales & numeratores & denominatores ex hâc me- thodo inventi; tum reducenda e$t data fractio in alteram, ita ut om- nes æquales divi$ores in unam $ummam colligantur, eodem modo, qui prius docetur in prob. 4. & exinde per hanc methodum inveniri pote$t valor fractionis {P / Q} quæ$itus.

Sub$equentia in nonnullis ca$ibus u$ui in$ervire poterunt.

2. Sint P & Q algebraicæ quantitates; & nihilo evadant æquales, cum x = a; etiamque prædictæ quantitates P & Q habeant divi$ores (x - a)^m & (x - a)^n, ubi literæ m & n denotant maximas pote$tates quantitatis x - a, per quas dividi po$$unt quantitates P & Q re$pe- ctive; tum, $i m major $it quam n, erit fractio {P / Q} = 0; $i m minor $it quam n, erit {P / Q} infinita quantitas: $i m = n, erit {P / Q} finita quantitas.

3. Sit fractio {Ax^b + Bx^b′ + Cx^b″ + &c. / A′x^k + B′x^k′ + C″x^k″ + &c.} = {P / Q} quæcunque rationa- lis functio quantitatis x, quæ nihilo evadat æqualis, cum x = a; $it (x - a)^m communis divi$or quantitatum P & Q, etiamque maxima pote$tas quantitatis x - a, per quam dividi pote$t vel P vel Q: $it {P / Q}= {(x - a)^m / (x - a)^m} × {α / β}; tum erit {P / Q} = {α / β}.

Cor. 1. Per hanc methodum $emper detegi pote$t valor fractionis {P / Q}; [0161]FLUXIONUM FLUENTIBUS. cum P & Q $int rationales functiones quantitatis x; idem etiam per- fici pote$t per methodum prius traditam inveniendi fluxionem (m or- dinis) quantitatum P & Q; i. e. {P^. ^m / Q^. ^m}; evadet enim {P^. ^m / Q^. ^m} = {(x - a)^m-m × α / (x - a)^m-m × β}= {α / β}; & $imiliter erit {P^. ^r / Q^. ^r} = {(x - a)^m-r / (x - a)^m-r} × {α / β} = {α / β}, $i modo r minor $it quam m; & x = a.

Cor. 2. Con$tat methodum prius traditam inveniendi {P^. ^m / Q^. ^m} detegere valorem fractionis {P / Q}, cum m $it integer numerus; $in aliter non.

4. Sit {P / Q} = {p / q} × {α / β}; ubi P = o & Q = 0, & α & β $int finitæ quan- titates; tum inveniatur valor fractionis {p / q} = r, & erit {P / Q} = {p / q} × {α / β}= γ × {α / β}.

5. Si (x - a)^m $it divi$or quantitatis A; tum (x - a)^m-1 erit divi$or quantitatis {A^. / x^.}; & $ic deinceps.

6. Hoc problema generaliter re$olvi pote$t algebraice ex $ub$e- quente propo$itione.

Pro x in datâ quantitate (P) $cribatur v + a, & reducatur quan- titas (P) in alteram (B), quæ e$t functio quantitatis (v); deinde reducatur quantitas (B) in $eriem A v^l + B v^l′ + &c. $ecundum di- men$iones quantitatis v a$cendentem; tum erunt (l), viz. dimen$io- nes quantitatis (v) in primo termino, numerus divi$orum, qui $unt (x - a), in quantitate P contentorum.

Et $imiliter pro x $cribatur v + a in quantitate Q, & reducatur ea [0162]DEINVENIENDIS in $eriem $ecundum dimen$iones quantitatis v a$cendentem A′ v^λ + B′ v^λ′ + &c.: tum primo, $i l major $it quam λ, erit {P / Q} = 0; 2<_>do. $i l = λ, tum erit {P / Q} = {A / A′}; & denique, $i l minor $it quam γ, erit {P / Q} infinita quantitas.

Ex. Sit fractio {x - 1 - ^3 √(3x^2 - 3x - 9) / 5x - ^2 √(25x^2 + 7x - 28)}, cujus numerator & denominator nihilo evadunt re$pective æquales, cum x = 4; invenire valorem fractionis, cum x = 4.

Pro x in numeratore & denominatore datæ fractionis $cribatur re- $pective v + 4; & re$ultant v + 3 - ^3 √(3v^2 + 21 v + 27) = P, & 5 v + 20 - √(25 v^2 + 207 v + 400) = Q; reducantur irrationales quantitates in $eriem $ecundum dimen$iones quantitatis x a$cenden- tem, i.e. erunt α = (27 + 21 v + 3 v^2)^{1 / 3} = 3 + {1 / 3} × {21 v / 9}({7 / 9}v) + &c., & β = (400 + 207 v + 25 v^2)^{1 / 2} = 20 + {207 / 40}v + &c.; & con$equen- ter P = v + 3 - α = v + 3 - 3 - {7 / 9}v - &c. = {2 / 9}v - &c., &c Q = 5 v + 20 - 20 - {207 / 40}v - &c. = {- 7 / 40}v - &c.; unde {{2 / 9}v/-{7 / 40}v} = {-80 / 63}.

7. Sint A & B quæcunque functiones quantitatis x, tum {A - A / B -B} non cuicunque quantitati dici pote$t æqualis.

Eadem principia etiam ad exponentiales, integrales, &c. quantitates applicari po$$unt; nam reduci po$$unt omnes hæ quantitates in $eries $ecundum dimen$iones quantitatis v progredientes.

[0163]FLUXIONUM FLUENTIBUS. SCHOLIUM.

Datis fluentibus n datarum fluxionum; invenire, utrum fluens cu- ju$cunque datæ fluxionis, earum & finitorum terminorum ope inve- $tigari pote$t, necne.

1<_>mo. Quærendæ $unt $ub$titutiones, quæ nece$$ario continent $in- gulas fluxiones, quarum fluentes dantur; quod plerumque e doctrinâ irrationalium quantitatum prius datâ, facile innote$cit; etiamque in- note$cit $ub$titutio, quæ nece$$ario continet finitos terminos; quibus quantitatibus pro $uis valoribus $ub$titutis, & quantitatum re$ultan- tium aggregato datæ fluxioni æquale e$$e $uppo$ito, $i modo po$$ibile $it; exinde deduci pote$t problematis re$olutio.

2<_>do. Sæpe vero in detegendâ datæ fluxionis fluente, $i transformetur data fluxio in alteram, cujus variabilis quantitas quandam habet re- lationem ad variabilem datæ fluxionis quantitatem; re$ultabit fluxio, cujus fluens per notas regulas inve$tigari pote$t.

3<_>tio. Si transformentur etiam irrationales quantitates e denomina- tore fluxionis in numeratorem, & vice versâ e numeratore in denomi- natorem; $æpe re$ultabunt fluxiones, quarum fluentes innote$cunt.

E. g. Literæ π, ξ σ τ, &c. integros denotent numeros vel affirmativos vel negativos, & a, b, c, d, e, &c. b; p, q, r, s, t, &c. A, B, C, D, E, &c. P, Q, R, S, T, &c. α, β, γ, δ, η, &c. κ, λ, μ, ν, &c. qua$cunque invaria- biles quantitates; & x, y, z, v, &c. variabiles quantitates; & dentur flu- entes omnium fluxionum huju$ce formulæ {x^π x^. / √(a + bx + cx^2 + dx^3 + ex^4)}' ubi π vel = 0 vel $it affirmativus vel negativus integer nume- rus; pro x $cribatur z - α, & con$tat inveniri po$$e fluentes omnium fluxionum formulæ {(z - α)^π z^. / √(p + q z + r z^2 + s z^3 + t z^4)}; $it π = - 1 & fit fluxio formulæ {z^. / (z - a) × √(p + q z + r z^2 + s z^3 + t z^4)}; etiamque e pluribus fluxionibus prædictæ formulæ in unam $um- [0164]DEINVENIENDIS mam collectis con$tabunt fluentes omnium fluxionum formulæ (A){z^. / (bz - α) × √(p + q z + r z^2 + s z^3 + t z^4)}; & exinde deduci po$$unt fluentes omnium fluxionum formulæ {x^π x^. / (x^n + p x^n-1 + q x^n-2 + &c.) × √(a + b x + c x^2 + d x^3 + e x^4)} (B): $it enim x^n + p x^n-1 + &c. = (x - α) × (x - β) × (x - γ) × &c. per lem. 1. dividi pote$t hæc fluxio in plures fluxiones formulæ A; $it x^n + p x^n-1 + q x^n-2 + &c. = (x - α)^π × (x - β)^ρ × (x - γ)^σ × &c. & per idem lem. reduci pote$t hæc fluxio in plures prædictæ formulæ pro x in fluxione (B) $cribatur z^m, & pro x^., m z^m-1 z^.; & re$ultat fluxio formulæ {z^(π+1)m-1 z^. / (z^nm + p z^(n-1)m + &c.) √(a + b z^m + c z^2m + d z^3m + e z^4m)}, cujus fluens per datas formulas inno- te$cet.

2. In fluxione {(P x^πm + Q x^(π-1)m + R x^(π-2)m + &c.) x^m-1 x^. / (x^nm + p x^nm-m + q x^nm-2m + &c.) × √(a + b x^m + c x^2m + d x^3m + ex^4m)} (C), cujus fluens per prædictas fluentes acquiri pote$t, $it a + b x^m + c x^2m + d x^3m + e x^4m = (e x^2m - αx^m + β) × (x^2m - γ x^m + δ) = (e x^m - ε) × (x^3m - ι x^2m + η x^m - θ); & in fluxione C pro √(a + b x^m + c x^2m + d x^3m + e x^4m) $cribatur ejus valor, vel {a + b x^m + c x^2m + d x^3m + e x^4m / √(a + b x^m + c x^2m + d x^3m + e x^4m)}, vel {(e x^2m - α x^m + β) × √(x^2m - γ x^m + δ) / √(e x^2m - αx^m + β)}, vel {e x^m - ε) × √(x^3m - ι x^2m + η x^m - θ) / √(e x^m - ε)}, vel {(x^3m - ι x^2m + ηx^m - θ) × √(e x^m - ε) / √(x^3m - ι x^2m + η x^m - θ)} & re$ultant fluxiones $ub$equentium formularum {(P x^πm + Q x^(π-1)m + R x^(π-2)m + &c.) / (x^nm + p x^nm-m + q x^nm-2m + &c.)} × x^m-1 x^. × √(a + b x^m + c x^2m + [0165]FLUXIONUM FLUENTIBUS. d x^3m + e x^4m); vel {P x^πm + Q x^(π-1)m + R x^(π-2)m + &c.) / x^nm + p x^(n-1)m + q x^(n-2)m + &c.} × (x^2m - γ x^m + δ) × √({e x^2m - α x^m + β / x^2m - γ x^m + δ})x^m-1 x^.; vel {(P x^πm + Q x^(π-1)m + R x^(π-2)m + &c.) / (x^nm + p x^(n-1)m + q x^(n-2)m + &c.)}× (x^3m - ι x^2m + nx^m - θ) × √{(ex^m - ε) × x^. x^m-1 / x^3m - ι x^2m + n x^m - θ}; vel {P x^πm + Q x^(π-1)m + R x^(π-2)m + &c.) / x^nm + px^(n-1)m + q x^(n-2)m + &c.} × (ε x^m - ε) × √({x^3m - ι x^2m + n x^m - θ / e x^m - ε}) × x^m-1 x^.; unde omnes fluentes harum formularum per prædictas fluentes inve- niri po$$unt.

3. Sit data fluxio hujus formulæ {P x^πm + Q x^(π-1)m + &c.) × x^m-1 x^. / x^nm + p x^(n-1)m + q x^(n-2)m + &c.} × ^4 √(a x^2m + b x^m + c); $cribatur √(a x^2m + b x^m + c) = v x^m + √(c) (d); & exinde a x^2m + b x^m + c = v^2 x^2m + 2 d v x^m + c, & con$equenter x^m = {2 d v - b / a - v^2}, & ^4 √(a x^2m + b x^m + c) = √(v x^m + √(c)) = √({2 d v^2 - b v / a - v^2} + d); quibus valoribus pro x^m & ^4 √(a x^2m + b x^m + c) in datâ fluxione $ub$titutis, & fluxione quantitatis {2 d v - b / a - v^2} pro mx^m-1 x^.; re$ultat fluxio formulæ prius traditæ: $i vero a & c $int negativæ quantitates, & $int duæ radices æquationis a w^2 + b w + c = 0 po$$i- biles; viz. √({b^2 - 4 a c / 4 a^2}) (λ) $it po$$ibilis quantitas, & μ quæcun- que invariabilis quantitas inter duas radices prædictas {- b / 2 a} + λ & {- b / 2 a} - λ po$ita; $cribatur z + μ pro x in datâ fluxione, & z^. pro x^.; & re$ultat fluxio huju$ce formulæ Γ ^4 √(a z^2m + k z^m + l^2) z^m-1 z^., ubi Γ $it rationalis functio quantitatis z^m, quæ fluxio reduci pote$t per præcedentem $ub$titutionem: $i vero c $it negativa quantitas [0166]DEINVENIENDIS & radices æquationis a w^2 + b w + c = 0 impo$$ibiles; tum fluxio $emper erit impo$$ibilis quantitas, & con$equenter ejus fluens impo$$i- bilis quantitas. Sit data fluxio Γ × {x^m-1 x^. / ^4 √(a x^2m + b x^m + c)}, ubi Γ in hâc fluxione & $ub$equentibus e$t rationalis functio quantitatis x^m; eadem $ub$titutio hanc fluxionem in fluxionem formularum prius traditarum $emper transformabit: $it fluxio Γ × ^4 √({a + b x^m / c + d x^m}) × x^m-1 x^., $cribatur ^4 √({a + b x^m / c + d x^m}) = v; & transformari pote$t hæc fluxio in fluxi- onem, cujus variabilis quantitas $it v, præcedentis formulæ. Sint for- mulæ Γ × (a + b x^m)^{1 / 4} × (c + d x^m)^{3 / 4} x^m-1 x^., Γ × (a + b x^m)^{3 / 4} × (c + d x^m)^{3 / 4}x^m-1 x^., Γ × {x^m-1 x^. / (a + b x^m)^{3 / 4} × (c + d x^m)^{1 / 4}}, Γ × {x^m-1 x^. / (a + b x^m)^{3 / 4} × (c + d x^m)^{3 / 4}}, Γ × {x^m-1 x^. × (a + b x^m)^{3 / 4} /(c + d x^m)^{3 / 4}}, Γ × {x^m-1 × x^. × (a + b x^m)^{1 / 4} /(c + d x^m)^{3 / 4}}, Γ × {x^m-1 x^. × (a + b x^m)^{3 / 4} /(c + d x^m)^{1 / 4}}. In his formulis pro (a + b x^m)^{3 / 4} & (c + d x^m)^{3 / 4} $cribantur re$pective {a + b x^m / (a + b x^m)^{1 / 4}} & {c + d x^m / (c + d x^m)^{1 / 4}}, & evadunt fluxiones formularum prius de- ductarum.

4. Sit data fluxio Γ × ^4 √(a + b x^m) × ^2 √(c + d x^m) × x^m-1 x^., $cribatur (a + b x^m)^{1 / 4} = v, & exinde {v^4 - a / b} = x^m, & ^2 √(c + d x^m) = √(c + {dv^4 - da / b}) & transformari pote$t data fluxio in fluxionem Δ v^. × ^2 √({dv^4 + bc - da / b}), ubi Δ denotat rationalem functionem literæ v: $int Γ × {(a + b x^m)^{1 / 4} /(c + d x^m)^{1 / 2}}× x^m-1 x^., vel Γ × {(c + d x^m)^{1 / 2} /(a + b x^m)^{1 / 4}} × x^m-1 x^., vel Γ × {x^m-1 x^. / (a + b x^m)^{1 / 4} × (c + d x^m)^{1 / 2}}, & eodem modo pro (a + b x^m)^{1 / 4} $cribatur v, & transformentur hæ [0167]FLUXIONUM FLUENTIBUS. fluxiones in fluxiones, quarum variabilis quantitas e$t v, & re$ultant fluxiones formularum prius traditarum. Sint fluxiones Γ × (a + b x^m)^{3 / 4}× (c + d x^m)^{1 / 2} x^m-1 x^., vel Γ × {(a + b x^m)^{3 / 4} /(c + d x^m)^{1 / 2}} × x^m-1 x^., vel Γ × {(c + d x^m)^{1 / 2} /(a + b x^m)^{3 / 4}} × x^m-1 x^., vel {Γx^m-1 x^. / (a + b x^m)^{3 / 4} × (c + d x^m)^{1 / 2}}; in his fluxionibus pro (a + b x^m)^{3 / 4} $cribatur {a + b x^m / (a + b x^m)^{1 / 4}}, & transformantur hæ fluxiones in fluxiones præcedentium formularum.

5. Sit data fluxio Γ × ^3 √(a + b x^m) × ^2 √(c + d x^m) × x^m-1 x^.; $criba- tur v = ^3 √(a + b x^m), & re$ultat x^m = {v^3 - a / b}, & exinde √(c + d x^m) ^2 √(c + d × {v^3 - a / b}), & data fluxio transformatur in fluxionem Δ × ^4 √({d v^3 / b} + {b c - d a / b}) × v^., (ubi Δ erit rationalis functio literæ v), quæ e$t fluxio formulæ prius traditæ.

Sint fluxiones Γ × {^3 √(a + b x^m) / √(c + d x^m)} × x^m-1 x^., & Γ × {√(c + d x^m) × x^m-1 x^. / ^3 √(a + b x^m)} vel Γ × {x^m-1 x^. / ^3 √(a + b x^m) × √(c + d x^m)}, & per $ub$titutionem prius tra- ditam hæ fluxiones reduci po$$unt in fluxiones formularum præce- dentium.

6. Sit fluxio {Δ / Θ} × √(a x^2m + b) × √(c x^2m + d) × √(e x^2m + f) × x^m-1 x^., ubi Δ $it quæcunque rationalis functio quantitatis x^m $ine denomina- tore, & Θ quæcunque rationalis functio ejus quadrati x^2m. Scriba- tur in datâ fluxione pro x^2m, v; & transformetur data fluxio in alte- ram, cujus variabilis quantitas e$t v; & re$ultat fluxio Φ × v^. × ^2 √(av+b) [0168]DE INVENIENDIS × ^2 √(c v + d) × ^2 √(e v + f) + x v^. √(v) × √(a v + b) × √(c v + d) × √(ev + f), ubi Φ & Χ re$pective denotant rationales functiones quantita- tis v; re$ultans fluxio habet formulam prius traditam: $int fluxiones {Δ / Θ}× √(a x^2m + b) × {√(c x^2m + d) / √(e x^2m + f)} × x^m-1 x^., vel {Δ / 9} × {√(a x^2m + b) × x^m-1 x^. / √(c x^2m + d) × √(e x^2m + f)}, vel {Δ / Θ} × {x^m-1 x^. / √(a x^2m + b) × √(c x^2m + b) × √(e x^2m + f)}; & per eandem $ub$titutionem viz. v = x^2m, reduci pote$t data fluxio in formulas prius traditas.

7. Sit fluxio {Γ × x^m-1 x^. / Θ + Δ √(a x^m + b) + Φ √(e x^m + f) + Χ √(g x^m + b) + Ψ √(k x^m + l)}, ubi Γ, Θ, Δ, Φ, Χ, Ψ re$pective denotant rationales functiones quantitatis x^m; inveniatur per prob. 16. quantitas, quæ in denominatorem ducta rationale productum facit, ducatur ea in datam fluxionem, & re$ultant fluxiones prædictarum formularum.

Sint fluxiones {Γ × x^m-1 x^. / Θ + Δ√(a x^m + b) + Φ√(e x^m + d) + Χ√(e x^2m + f x^m + g)},{Γ x^m-1 x^. / Θ + Δ √(a x^m + b) + Φ √(c x^3m + d x^2m + e x^m + f)},{Γ x^m-1 x^. / Θ + Δ √(a x^2m + b x^m + c) + Φ √(d x^2m + e x^m + f)},{Γ x^m-1 x^. × √(a x^m + b) / Θ + Φ √(c x^m + d) + Χ √(e x^m + f) + Ψ √(g x^m + k)},{Γ x^m-1 x^. √(a + b x^m) / Θ + Φ√(c x^2m + d x^m + e) + Ψ√(g x^m + k)}, {Γ x^m-1 x^.√(a + b x^m) / Θ + Φ√(c x^3m + d x^2m + e x^m + f)},{Γ × x^m-1 x^. √(a x^2m + b x^m + c) / Θ + Δ √(d x^m + e) + Φ √(g x^m + k)}, {Γ × x^m-1 x^.√(a x^2m + b x^m + c) / Θ + Δ √(d x^2m + e x^m + f)},{Γ x^m-1 x^.√(a x^3m + b x^2m + c x^m + d) / Θ + Δ √(e x^m + f)}, &c. vel {Γ x^m-1 x^. / Θ + Δ^3vel{3 / 2} √(a x^2m + b) + √(d x^m + e)}, [0169]FLUXIONUM FLUENTIBUS. {Γ x^m-1 x^. × (a x^m + b)^{1 / 3} vel {2 / 3} /Θ + √(d x^m + e)}, {Γ x^m-1 x^. ^2 √(a x^m + b) / Θ + ^3 √(d x^m + e)}; {Γ x^m-1 x^. √(a x^m + b) / Θ + ^3 √((d x^m + e)^2)}, &c. vel {Γ × x^m-1 x^. / Θ + Δ ^4 √(a x^m + b) + Φ ^4 √(c x^m + d)}, {Γ x^m-1 x^. ^4 √(a x^m + b) / Θ + Φ ^4 √(c x^m + d)},{Γ x^m-1 x^. / Θ + Δ ^2 √(a x^m + b) + Φ ^4 √(c x^m + d)}, {Γ x^m-1 x^. ^2 √(a x^m + b) / Θ + Φ ^4 √(a x^m + d)},{Γ x^m-1 x^. ^4 √(a x^m + b) / Θ + Φ ^2 √(c x^m + d)}, &c. ducantur hæ fluxiones in irrationalem quan- titatem deductam, ita ut denominator fiat rationalis quantitas; & re- $ultant fluxiones formularum prædictarum.

8. Sit data fluxio {Γ x^m-1 x^. / Θ + Φ ^2 √(a + ^2 √(b x^m + c)) + X√(d + √(b x^m + c)) + Ψ √(e + √(b x^m + c)) + Δ √(f + √(b x^m + c))}, ducatur denomi- nator in quantitatem acqui$itam, quæ creat denominatorem rationa- lem; & re$ultat fluxio, quæ ($cribendo √(b x^m + c) = v) erit formulæ prius traditæ. Et $ic quamplurimæ huju$ce generis inveniri po$$unt fluxiones, quæ transformari po$$unt in fluxiones formularum præce- dentium. 1<_>mo. A$$umatur fluxio præcedentis formulæ, in cujus de- nominatore nulli contineantur irrationales termini; deinde per prob. 16. inveniatur quantitas (H) quæ ducta in numeratorem (N) creat rationale productum (M). In datâ fluxione pro N $cribatur {M / H}; & invenitur fluxio, quæ facile reduci pote$t in alteram præcedentis for- mulæ: nonnullæ vero fluxiones in has formulas reduci po$$unt e $ub- $titutionibus in prob. 17, &c. prolatis.

In datâ formulâ {x^πm-1 x^. / √(a x^4m + b x^3m + c x^2m + d x^m + e)} $cribatur v^2 = [0170]DE INVENIENDIS, &c. a x^4m + b x^3m + c x^2m + d x^m + e, & transformetur data fluxio in fluxi- onem, cujus variabilis quantitas e$t v; & invenitur nova formula, quæ reduci pote$t in datam. Et $ic deinceps. Si vero omnes radi- ces æquationis a x^4m + b x^3m + c x^2m + d x^m + e = 0 $int impo$$ibiles, & a $it negativa quantitas; tum haud datur po$$ibilis fluens.

Methodis haud diffimilibus inveniri po$$unt quamplurimæ fluxiones, quæ reduci po$$unt in fluxiones formularum {Γ x^m-1 x^. / √(a x^5m + b x^4m + c x^3m + d x^2m + e x^m + f)} & {Γ x^m-1 x^. / √(a x^6m + b x^5m + c x^4m + d x^3m + e x^2m + f x^m + g)}, &c.

[0171] CAP. III. _De Fluxionalibus œquationibus._ PROB. XXV.

_DATA algebraicâ œquatione relationem inter ab$ci$$am_ (x) _& ejus_ _ordinatas_ (y) _exprimente, & datâ fluxionali quantitate quœ e$t alge-_ _braica functio ab$ci$$œ_ (x) _& ordinatœ_ (y) _& earum fluxionum; invenire_ _$ummam $ingulorum bujus functionis valorum; etiamque œquationem, cujus_ _radix e$t data fluxionalis quantitas._

E datâ æquatione inveniantur prima fluxio ordinatæ _(y)_, & $ic $ecunda, tertia, &c. fluxiones ordinatæ quibus valoribus in datâ fluxionali quantitate $ub$titutis, re$ultat algebraica quantitas, cujus $umma $ingulorum valorum erui pote$t e primo capite medit. alge- braic. Et $ic e prædicto capite inveniri po$$unt aggregata rectangu- lorum e quibu$que duobus valoribus datæ functionis, contentorum e quibu$que tribus, quatuor, &c. valoribus datæ functionis, i. e. inve- niri po$$unt diver$æ quæ$itæ æquationis coefficientes, & con$equenter æquatio ip$a.

Ex. 1. Datâ æquatione y^2 - Ay + B = 0, in quâ A & B $unt quæcunquæ ab$ci$$æ (_x_) functiones; invenire æquationem, cujus ra- dices $unt {y^. / x^.}. Sint duæ ordinatæ _(y)_ radices re$pective α & β; & $umma quæ$itæ æquationis radicum erit {α^. + β^. / x^.} = {A^. / x^.}, quoniam A = α + β: & ob 2 yy^. - Ay^. - A^. y + B^. = 0, & exinde y^. = {A^. y - B^. / 2y - A}, & [0172]DE FLUXIONALIBUS con$equenter duo valores fluxionis y^. e $cribendo α & β re$pective pro y, & α^. & β^. re$pective pro y^., evadent {Aα - B^. / 2α - A}&{A^. β - B^. / 2β - A}; unde rectangu- lum $ub binis valoribus quæ$itæ æquationis radicum erit {α^. β^. / x^. ^2} = {A^. α - B^. / 2α - A} ×{A^. β - B^. / (2β - A)x^. ^2}, cujus denominator e$t (4 α β - 2A(α + β) + A^2)x^. ^2 = (4B - A^2)x^. ^2; numerator vero A^. ^2 α β - A^. B^. (α + β) + B^. ^2 = B A^. ^2 - A A^. B^. + B^. ^2: & con$equenter, $i modo v ejus radicem de- notet, æquatio quæ$ita erit v^2 - {A^. / x^.}v + {BA^. ^2 - AA^. B^. + B^. ^2 / (4B - A^2)x^. ^2}.

Ex. 2. Datâ æquatione y^3 + By - C = 0, in quâ B & C $unt quæcunque functiones ab$cif$æ _x_; invenire æquationem, cujus radices $unt {y^. / x^.}.

Sint tres radices ordinatæ (α, β, γ); tum $umma earum fluxionum per x^. divi$arum erit {α^. + β^. + γ^. / x^.} = 0, quoniam α + β + γ = 0: &{α^. β′ + α^. γ^. + β^. γ^. / x^. ^2} = {C^.- B^.α / (3α^2 + B)x^.} × {C^.- B^.β / (3β^2 + B)x^.} + {C^.- B^.α / (3α^2 + B)x^.} × {C^.- B^.γ / (3γ^2 + B)x^.}+ {C^.- B^.β / (3β^2 + B)x^.} × {C^. -B^.γ / (3γ^2 + B)x^.}; reducantur hæ fractiones in commu- nem denominatorem, & re$ultat denominator (3α^2 + B)(3β^2 + B) (3γ^2 + B)x^. ^3 = (27C^2 + 4B^3)x^. ^3, numerator vero (3 γ^2 + B) (C^.- B^.α) (C^. - B^.β) + (3β^2 + B)(C^.- B^.α)(C^.- B^.γ) + (3α^2 + B)(C^.- B^. β)(C^.- B^. γ); ergo $umma rectangulorum e quibu$que binis in $e$e ductis erit {B^. ^2 B^2 - 3C^. ^2 B + 9CB^. C^. / (27C^2 + 4B^3)x^. ^2}; & contentum $ub tribus radicibus in $e$e ductis ({α^. β^. γ^. / x^. ^3}) erit {C^. ^3 - B^. ^3 C + B^. ^2 C^. B / (27C^2 + 4B^3)x^. ^3}; unde $i modo radix quæ$itæ [0173]ÆQUATIONIBUS. æquationis $it v, æquatio quæ$ita erit v^3 + {B^2 B^. ^2 - 3C^. ^2 B + 9CB^. G^. / (27G^2 + 4B^3)x^. ^2}v - {C^. ^3 - B^. ^3 C + B^. ^2 C^. B / (27C^2 + 4B^3)x^. ^3} = 0.

Ex. 3. Datâ eâdem æquatione y^3 + By - C = 0, ac in præcedenti exemplo; invenire $ummam $ingularum quantitatum huju$ce generis {y x^. / y^.}. Sint α, β, γ tres incognitæ quantitatis y radices; & tres quantita- tes, quarum $umma quæritur, erunt re$pective {3α^3 + Bα / C^. -B^.α}x^., {3β^3 + Bβ / C^. -B^. β}x^.,{3γ^3 + Bγ / C^. -B^. γ}x^.; quibus fractionibus ad communem denominatorem re- ductis, fit denominator - B^. ^3 × αβγ + B^. ^2 C^.(αβ + αγ + βγ) - B^. C^. ^2 (α + β + γ) + C^. ^3 = C^. ^3 - B^. ^3 C + B^. ^2 BC^.; & eodem modo invenitur numerator (4B^2 C^. B^. - 3BCB^. ^2 + 9CC^. ^2)x^.; unde $umma quæ$ita {αx^. / a^.}+ {βx^. / β^.} + {γx^. / γ^.} = {4B^. C^. B^2 + 9C^. ^2 C-3B^. ^2 CB / C^. ^3 -B^. ^3 C + B^. ^2 C^. B}x^..

Eodem fere modo inveniri po$$unt æ quationes, quarum radices $unt quæcunque fluxionales functiones datæ algebraicæ vel datarum alge- braicarum æquationum radicum.

PROB. XXVI. _Transformare duas œquationes in unam; ita ut variabilis quantitas_ y, _&_ _ejus fluxiones exterminentur._

1. Sit altera æquatio algebraica y^n - py^n-1 + qy^n-2 - ry^n-3 + &c. = 0; in quâ p, q, r, &c. re$pective denotant functiones variabilium quantitatum (z, x, &c.) altera vero quæcunque fluxionalis æquatio A y^π y^. ^ρ y^.. ^σ y^... ^τ + &c. = 0, in quâ continentur variabiles quantitates (x, y, z, &c.), &c.; eas in unam fluxionalem æquationem ita transfor- mare, ut variabilis quantitas y & ejus fluxiones exterminentur.

[0174]DE FLUXIONALIBUS

Supponantur α, β, γ, δ, &c. diver$i valores variabilis quantitatis y in datâ algebraicâ æquatione; quibus $ub$titutis in fluxionali, & eorum fluxionibus pro incognitâ quantitate y & ejus fluxionibus; re$ultant quantitates A α^π α^. ^ρ α^.. ^σ &c. + &c. A β^π β^. ^ρ β″^σ &c. + &c. A γ^π γ^. ^ρ γ^.. ^σ &c. + &c. &c. ducantur hæ quantitates continuo in $e$e, & contenti prob. 25. ope inveniatur aggregatum, quod nihilo fiat æquale, & re$ultat æquatio quæ$ita.

2. 1. Duas fluxionales æquationes A = 0 & B = 0 in unam tran$- formare, ita ut variabilis quantitas y & ejus fluxiones exterminentur.

Sit y^. ^π fluxio variabilis quantitatis y, cujus ordo π e$t maximus eorum, qui in datis æquationibus continentur; & $int duæ æquationes Ay^. ^π ^m + By^. ^π ^m-1 + Cy^. ^π ^m-2 + &c. = 0, & ay^. ^π ^n + by^. ^π ^n-1 + &c. = 0, ubi A, B, C, &c. a, b, c, &c. $unt quæcunque functiones variabilium (x, z, &c.) & earum fluxionum, & quantitatum y, y^, y^.., &c. u$que ad y^. ^π-1; per methodum in algebraicis æquationibus traditam ita reducantur hæ duæ æqua- tiones in unam, ut exterminetur fluxio y^. ^π; & re$ultat æquatio fluxio- nem y^. ^π haud involvens; deinde inveniatur fluxio æquationis re$ultan- tis, quæ contineat in $e fluxionem y^. ^π; hujus æquationis ope & alte- rius, quæ continet in $e $implicem pote$tatem fluxionis y^. ^π, exterminetur fluxio y^. ^π; & re$ultant duæ æquationes folummodo involventes fluxio- nes y^., y^.., &c. y^. ^π - 1, &c. in quibus haud continetur fluxio y^. ^π: deinde eo- dem modo exterminentur fluxiones (y^. ^π - 1, y^. ^π - 2, &c.) & tandem extermi- nabuntur quantitas y & ejus fluxiones.

2. 2. Sint y^. ^π & y^. ^ρ fluxiones maximi ordinis quantitatis y prædicta- rum æquationum A = 0 & B = 0 re$pective, & $it ξ minor quam π; inveniatur fluxio ordinis π - ξ æquationis B = 0; & re$ultet fluxio- [0175]ÆQUATIONIBUS. nalis æquatio C = 0 in quâ continetur prædicta fluxio y^. ^π ordinis π; reducantur duæ æquationes A = 0 & C = 0 in unam, ita ut exter- minetur fluxio y^. ^π; & re$ultat æquatio D = 0 haud involvens y^. ^π; cu- jus $it fluxio y^. ^π′ maxime $uperioris ordinis: $i π′ major $it quam ξ, tum inveniatur fluxio ordinis π′ - ξ æquationis B = 0, & re$ultet æquatio C′ = 0; deinde reducantur duæ æquationes D = 0 & C′ = 0 in unam, ita ut exterminetur fluxio y^. ^π′ & $ic deinceps: unde per hanc & præcedentem methodum tandem exterminabuntur variabilis quan- titas y & ejus fluxiones.

Cor. Sint duæ fluxionales æquationes A = 0 & B = 0, in quibus fluxiones maximi ordinis quantitatis y $unt re$pective y^. ^π & y^. ^ρ; deinde reducantur hæ duæ æquationes in unam, ita ut exterminentur quan- titas y & ejus fluxiones, & re$ultet æquatio C = 0; tum in æquatione C = 0 haud continentur fluxiones $uperioris ordinis quam fluxio (π) ordinis quantitatum & fluxionum in æquatione B = 0 contentarum, & fluxio (ξ) ordinis quantitatum & fluxionum in æquatione A = 0 contentarum.

2. Con$imilia etiam prædicari po$$unt de ordinibus fluxionum in (n - 1) æquationibus re$ultantibus ex reductione (n) æquationum, ita ut exterminentur variabilis quantitas y & ejus fluxiones.

3. Et $ic de n æquationibus in unam transformandis, ita ut (n - 1) variabiles quantitates & earum fluxiones exterminentur.

4. Sint n fluxionales æquationes a = 0, b = 0, c = 0, &c.; m, r, s, &c. ordinum re$pective; reducantur hæ fluxionales æquationes in unam, ita ut exterminentur (n - 1) variabiles quantitates & earum fluxiones, & non nece$$ario re$ultabit fluxionalis æquatio $uperioris quam m + r + s + &c. ordinis.

Cor. Ex hâc methodo transformandi æquationes, ita ut variabiles quantitates exterminentur, irrepunt in transformatas æquationes va- lores, qui in datis æquationibus haud inveniuntur; eodem modo, quo [0176]DE FLUXIONALIBUS in algebraicas æquationes per con$imilem methodum transfor- matas irrepunt valores, qui in datis haud inveniuntur, ut con$tat e prob. 31. medit. algebraic. e. g. Sint duæ fluxionales æquationes (x^m + z^r) y^. + z^. = 0, & (x^b + y^k) × z^. + x^. = 0; ita transformare has duas fluxionales æquationes in unam, ut exterminetur z & z^.: in unâ æquatione z^. ducitur in 1, in alterâ in x^b + y^k; ducatur re$pective $ingula æquatio in coefficientem fluxionis z^., quæ invenitur in alterâ; & re$ultant (x^m + z^r) × (x^b + y^k) y^. + (x^b + y^k) × z^. = 0, & (x^b + y^k) × z^. + x^. = 0, $ubducatur po$terior æquatio de priori, & re$iduum erit (x^m + z^r) × (x^b + y^k) × y^. - x^. = 0, in quibus duabus æquationibus (x^m + z^r) × (x^b + y^k) × y^. - x^. = 0, & (x^b + y^k) × z^. + x^. = 0 inveniun- tur valores, qui in datis haud continentur, viz. in his re$ultantibus æquationibus inveniuntur omnes valores, qui in datis continentur; etiamque valores, qui in æquationibus x^b + y^k = 0 & (x^b + y^k) × z^. + x^. = 0 inveniuntur. Et $ic inveniatur fluxio æquationis (x^m + z^r) × (x^b + y^k) × y^. - x^. = 0, & re$ultat (x^m + z^r) × (x^b + y^k) × y^.. + (m x^m-1 x^. + r z^r-1 z^.) × (x^b + y^k) y^. + (h x^b-1 x^. + k y^k-1 y^.) (x^m + z^r) y^. - x^.. = 0; hæc vero & datæ æquationes (x^b + y^k) z^. + x^. = 0 habent omnes valores, quos habent æqua- tiones (x^m + z^r) × (x^b + y^k) y^. - x^. + A v^. = 0 & (x^b + y^k) z^. + x^. = 0, ubi litera A denotat invariabilem quantitatem ad libitum a$$umen- dam; & v quantitatem, quæ fluit uniformiter: e re$ultante & datâ æquatione inveniatur æquatio, in quâ haud continetur fluxio z^.; & e præcedente methodo inveniri po$$unt valores in duabus re$ultantibus æquationibus, in quibus haud invenitur z^., qui in datis haud inveni- untur; & $ic repetitis operationibus tandem ita transformabuntur æquationes, ut exterminetur z; & eâdem methodo argumentandi continuo repetitâ, tandem deduci po$$unt valores, qui in re$ultante æquatione inveniuntur, haud vero in datis æquationibus.

Et $ic de pluribus æquationibus in unam transformandis, ita ut exterminentur duæ vel plures incognitæ quantitates.

Hoc problema aliter $æpe re$olvi pote$t e multiplicatione datarum æquationum in a$$umptas quantitates, quæ reddunt quantitates eva- ne$centes, quas exigat problema. Sed de his nimis.

[0177]ÆQUATIONIBUS. THEOR. XIV.

1. Datâ fluxionali æquatione α × β × γ × δ × &c. = 0; ubi α, β, γ, δ, &c. qua$cunque fluxionales quantitates re$pective denotant; ea de- primi pote$t in diver$as æquationes α = 0, β = 0, γ = 0, δ = 0. Facile con$tat.

2. Datis duabus fluxionalibus æquationibus vel algebraicâ & flu- xionali æquatione α × β × γ × δ × &c. = 0 & π × ξ × σ × &c. = 0, quæ recipiunt divi$ores α, β, γ, &c. & π, ξ, σ, &c. hæ æquationes di$tingui po$$unt in $ub$equentes α = 0 & π = 0; α = 0 & ξ = 0; α = 0 & σ = 0; &c. β = 0 & π = 0; β = 0 & ξ = 0; β = 0 & σ = 0; &c. γ = 0 & π = 0; γ = 0 & ξ = 0; &c.

Et $ic de pluribus æquationibus plures divi$ores habentibus.

PROB. XXVII. Datâ fluxionali œquatione; invenire utrum ea reduci pote$t in duas vel plures alias, necne.

Inveniatur per meditat. algebr. annon duos vel plures divi$ores re- cipiat data æquatio, & con$tat problema.

Ex. Sit data æquatio (x y^.. + x^.^2 + y^. x^.) × (y x^. + {1 / n} x y^. + a x^m x^.) = 0; ubi x fluit uniformiter. Hæc fluxionalis æquatio continet duos divi- $ores x y^.. + x^.^2 + y^. x^., & y x^. + {1 / n} x y^. + a x^m x^.; unde data æquatio dividi pote$t in duas alias x y^.. + x^.^2 + y^. x^. = 0 & y x^. + {1 / n} x y^. + a x^m x^. = 0: fluens prioris fluxionalis æquationis erit x y^. + x x^. = 0, quæ correcta fit x y^. + x x^. + b x^. = 0, ubi litera b quamlibet invariabilem quanti- tem denotat: fluens vero hujus æquationis erit y + x + b × log. x = 0; quæ correcta $it y + x + b × log. x + c = 0, ubi c denotat quamlibet invariabilem quantitatem: fluens vero po$terioris æqua- tionis (y x^. + {1 / n} x y^. + a x^m x^. = 0) e$t {1 / n} y x^n + {a x^m+n / m + n} + A = 0, ubi A quamcunque invariabilem quantitatem denotat; unde data fluxiona- [0178]DE FLUXIONALIBUS lis æquatio duas independentes recipit $olutiones, viz. y + x + b × log. x + c = 0, vel {1 / n} y x^n + {a x^m+n / m + n} + A = 0: hæc fluxionalis æquatio ad re$olutionem duorum diver$orum problematum re$picit: in mul- tis ca$ibus, $i fluxionales æquationes diver$os habeant ordines, fluxio- nales æquationes $uperioris ordinis $olummodo pro re$olutione pro- blematis habendæ $unt.

Si fluxio y^. maximi ordinis in datâ fluxionali æquatione plures (n) habeat radices: inveniantur $inguli (n) valores prædictæ fluxionis y^., & re$ultant (n) diver$æ fluxionales æquationes, quarum fluentes re- quirantur.

Cor. 1. Hinc facile deduci po$$unt infinitæ fluxionales æquationes, quæ dividi po$$unt in alias: a$$umantur enim fluxionales æquationes, quibus in $e$e ductis, exorietur fluxionalis æquatio, quæ facile reduci pote$t in a$$umptas.

Cor. 2. Datâ fluxionali æquatione involvente variabiles quantitates x & y & earum fluxiones; datâ etiam aliâ fluxionali æquatione ha- bente duas variabiles quantitates z & v & earum fluxiones; invenire annon z eadem e$t functio vel algebraica vel fluxionalis quantitatis v, ac litera x e$t quantitatis y: pro z & v & earum fluxionibus $cri- bantur x & y & earum fluxiones re$pective; deinde inveniatur, utrum hæ æquationes re$ultantes communem habeant divi$orem, necne; & confit coroll.

THEOR. XV.

Datis duabus fluxionalibus æquationibus relationem inter z, y, x & earum fluxiones exprimentibus; ex iis deduci po$$unt duæ aliæ in- finitis modis, quarum variabiles quantitates eædem $unt.

Ducantur datæ æquationes in qua$cunque quantitates, deinde addantur vel $ubducantur a $e invicem, & re$ultabunt æquationes quæ$itæ.

[0179]ÆQUATIONIBUS. PROB. XXVIII. Datam æquationem fluentem involventem in fluxionalem reducere, in quâ nulla continetur fluens.

1. Si fluens ducatur in variabilem quantitatem, dividatur æquatio per illam quantitatem, & inveniatur fluxio quantitatis re$ultantis, & exterminabitur ea fluens.

1. 2. Si autem majores $int dimen$iones (n) fluentialis quantitatis exterminandæ, vel altior $it ordo (m) ejus fluentis; tum opus e$t toties (n) vel (m) ordinis inveniendi fluxionem datæ æquationis.

Ex. 1. Sit data æquatio x x^. + y y^. + (x + a)x^. flu. √(a^2 + x^2)x^. = 0; requiratur hanc æquationem ita reducere, ut exterminetur fluens $. √(x^2 + a^2) · x^..

Hæc fluens ducitur in variabilem quantitatem (x + a) · x^., divida- tur data æquatio per hanc quantitatem, & re$ultat æquatio {x x^. + y y^. / (x + a) · x^.}+ fl. √(a^2 + x^2)x^. = 0. Inveniatur fluxio æquationis re$ultantis, & exterminabitur fluens prædicta.

Ex. 2. Sit data æquatio x x^. + y y^. + (x + a) x^. $. √ (a^2 + x^2) · x^.^n, dividatur hæc æquatio per (x + a) × x^., & re$ultat æquatio {x x^. + y y^. / (x + a) · x^.}+ $. √ (x^2 + x^2) · x^.^n ; hujus æquationis inveniatur fluxio (n) ordinis, & re$ultat æquatio a fluentibus libera.

Ex. 3. Sit data æquatio x^2 + y^2 + (c + d x) × $. √(a^2 + x^2) x^. + (fluen. x^. √(a^2 + x^2))^2 = 0; maximæ dimen$iones fluentis √(a^2 + x^2)x^. inveniuntur duæ, viz (fluen. x^. √(a^2 + x^2))^2, $ed hæ maximæ dimen- $iones in nullam variabilem quantitatem ducuntur, ergo inveniatur fluxio datæ æquationis, quæ erit 2 x x^. + 2 y y^. + (c + d x) × √(a^2 + x^2) x^. + d x^. fluen. √(a^2 + x^2) x^. + 2 fluen, x^. √(a^2 + x^2) × (a^2 + x^2) x^. [0180]DE FLUXIONALIBUS = 0. In hâc æquatione $. √(a^2 + x^2) x^. ducitur in variabilem quan- titatem (2 a^2 + 2 x^2 + d) × x^.; dividatur inventa æquatio per hanc quantitatem, & re$ultat {2 x x^. + 2 y y^. + (c + d x) √(a^2 + x^2) x^. / (2 a^2 + 2 x^2 + d) x^.} + $. x^. √(a^2 + x^2) = 0; hujus æquationis inveniatur fluxio, & re$ultat fluxionalis æquatio a fluentibus libera.

Cor. 1. Et $ic iteratis operationibus de pluribus fluentibus exter- minandis.

Cor. 2. Facile con$tabit ordo, ad quem a$$urget æquatio a fluen- tialibus quantitatibus libera.

Cor. 3. Si quantitates irrationales utcunque ex his fluentibus com- po$itæ in datâ æquatione contineantur, tum per meditationes alge- braicas ab irrationalitate $uâ liberari pote$t æquatio re$ultans.

2. Hæc methodus autem transformandi æquationem, in quâ plures inveniuntur dimen$iones (n) fluentialis quantitatis exterminandæ, invenit fluxionalem æquationem $uperioris ordinis, quam nece$$ario exigat problema; $ub$equenti igitur methodo uti oportet; $it fluens fluxionis Q, quæ dicatur V, quantitas exterminanda; & $it data fluentialis æquatio A V^n + B V^n-1 + C V^n-2 + &c. = P, cujus fluxio e$t A V^n + n V^n-1 A V^. + (n - 1) B V^n-2 V^. + V^n-1 B^. + &c. = P^.; per methodum in medit. algeb. traditam ita reducantur hæ duæ æquati- ones A V^n + B V^n-1 + C V^n-2 + &c. = P & A^. V^n + n V^n-1 A V^. + (n - 1) B V^n-2 V^. + &c. = P^. in unam, ut exterminetur fluentialis quantitas V, & con$tat problema; i. e. generaliter $it æquatio q = 0 reducantur duæ æquationes q = 0 & q^. = 0, ita ut exterminetur fluens V, & confit prob. Eâdem operatione $æpius repetitâ tolli po$$unt duæ vel plures fluentiales quantitates e datâ æquatione; etiamque fluen- tiales quantitates $uperiorum ordinum.

Si vero irrationales functiones fluentis V contineantur in datâ æquatione A = 0, tum e methodo in med. algeb. traditâ ita reducan- tur duæ æquationes A = 0 & A^. = 0, ut ex eâ exterminetur incog- nita quantitas V.

[0181]ÆQUATIONIBUS.

Et $ic tolli po$$unt fluentiales quantitates e duabus vel pluribus æquationibus plures variabiles quantitates habentibus.

PROB. XXIX.

Datâ fluxionali œquatione duas incognitas quantitates x & y & earum fluxiones involvente, in quâ x fluit uniformiter; eam ita transformare, ut ex eâ exterminentur incognita quantitas x & ejus fluxio.

Inveniatur fluxio datæ fluxionalis æquationis, & æquatio data & re$ultans ita reducantur, ut exterminetur fluxio x^.; æquationis re$ul- tantis, in quâ $olummodo continetur quantitas x $ine ejus fluxioni- bus, & quantitas y & ejus fluxiones, inveniatur fluxio; & data & po- $terior re$ultans æquatio ita reducantur in unam, ut exterminetur fluxio x^.; unde duæ inveniuntur æquationes, quæ $olummodo conti- nent algebraicas functiones quantitatis x & nullas ejus fluxiones; ita reducantur hæ duæ æquationes in unam, ut exterminetur incognita quantitas x; & re$ultat æquatio, in quâ $olummodo continentur quan- titas y & ejus fluxiones.

Cor. Datâ fluxionali æquatione m + 2 ordinis unam $olummodo variabilem quantitatem (y) & ejus fluxiones involvente; eam tran$- formare in alteram, terminos variabilis quantitatis y & alterius x, quæ fluit uniformiter; vel cujus fluxio r ordinis fluit uniformiter, ubi r minor $it quam m + 2; involventem.

Inveniatur fluentialis æquatio datæ fluxionalis; fluentiali æqua- tioni adjiciatur quantitas vel fluxio generalis, cujus fluens fluit uni- formiter, i. e. quæ erit functio fluxionalis quantitatis, cujus fluens fluit uniformiter; & perficitur corollarium.

PROB. XXX.

Datâ œquatione relationem inter duas quantitates x & y & earum fluxiones exprimente; invenire œquationem relationem inter duas alias quantitates z & v exprimentem, ubi literœ x & y exprimi po$$unt in ter- minis quantitatum z & v.

[0182]DE FLUXIONALIBUS

1. Sub$tituantur pro x & y, x^. & y^., &c. in datâ æquatione quæcun- que algebraicæ functiones literarum z & v, & earum fluxionum; & re$ultant æquationes quæ$itæ.

Ex. 1. Datâ æquatione relationem inter prædictas quantitates x & y & earum fluxiones exprimente, pro literis x & y in datâ æquati- one $cribantur re$pective a z + b v + c & p z + q v + r; & pro fluxionibus x^. & y^. re$pective a z^. + b v^. & p z^. + q v^.; & $ic deinceps; & re$ultat æquatio relationem inter z & v exprimens, quæ algebraicè e data relatione inter x & y petenda e$t.

1. 2. Si relationes inter quantitates v & z, x & y exprimantur per algebraicas æquationes; tum e reductione plurium æquationum in unam, ita ut exterminentur omnes incognitæ quantitates præter z & v, petenda e$t relatio inter quantitates z & v.

PROB. XXXI.

Datis algebraicis & fluxionalibus œquationibus; invenire œquationem, cujus radices quamcunque habeant a$$ignabilem relationem ad radices data- rum œquationum.

Si relatio vel exprimatur per algebraicam vel fluxionalem quanti- tatem, quæ $upponatur (w); vel per algebraicas vel fluxionales æqua- tiones; tum perfici pote$t problema e reductione plurium (n) æqua- tionum in pauciores (n - m) ita ut exterminentur (m) incognitæ quantitates & earum fluxiones.

2. Si vero ver$etur relatio inter diver$os eju$dem incognitæ quan- titatis (v) valores & eorum fluxiones.

Inveniantur æquationes, quarum radices $unt re$pective v, v^2, v^3 .. v^n ($i modo n $it maxima dimen$io ad quam a$cendat v in datâ re- latione); etiamque æquationes, quarum radices $unt v^., v^.^2, v^.^3, v^.^4 .. v^.^m ($i modo m $it maxima dimen$io, ad quam a$cendat v^. in datâ rela- tione); & $ic de fluxionibus $uperiorum ordinum: e re$ultantibus æquationibus inveniri po$$unt (per medit. algebr.) æquationes, qua- [0183]ÆQUATIONIBUS. rum radices algebraicam vel fluxionalem relationem quæ$itam ha- bent.

Cor. Con$tat æquationes hâc methodo derivatas multo plures ha- bere radices, quam nece$$ario exigat problema: $æpe autem reduci po$$unt per methodum divi$ores inveniendi.

3. Hoc problema $æpe recipere pote$t re$olutionem e $ub$titutione datæ vel datarum æquationum; etiamque $ingulos ex deducendo va- lores per infinitas $eries, & exinde quæ$itas radices inve$tigando.

PROB. XXXII.

Datâ œquatione algebraicâ relationem inter ab$ci$$am x & ejus ordina- tas y exprimente; invenire quo$dam ca$us, in quibus literœ x & y per fun- ctionem tertiœ z exprimi po$$unt.

1. 1. Sit data æquat io A y^n + (a + b x) y^n-1 + (d x + e x^2) y^n-2 + &c. = 0, in quâ continentur $olummodo termini (n & n - 1) dimen- $ionum quantitatum (x & y): $cribatur pro x rectangulum z y, & re$ultat æquatio (A + b z + e z^2 + &c.)y^n + (a + d z + &c.)y^n-1 = 0, unde y = - {a + d z + &c. / A + b z + e z^2 + &c.}.

Cor. Area curvæ, cujus æquatio $it prædictæ formulæ; vel $olidum ex ejus rotatione circa axim $uum tanquam ba$im generatum; vel fluens fluxionis, quæ e$t rationalis functio quantitatum x & y in x^. vel y^., &c. ducta; exprimi po$$unt ope finitorum terminorum ab$ci$$æ & ordinatæ, & earum circularium arcuum & logarithmorum.

Et $ic progredi liceat ad æquationes, in quibus $olummodo conti- nentur termini (n, n - 1 & n - 2) dimen$ionum; & $ic deinceps.

1. 2. Sit data æquatio a y^n + b y^n-1 x + c y^n-2 x^2 + &c. + a y^m + β y^m-1 x + γ y^m^.-2 x^2 + &c. = 0, in quâ $olummodo continentur ter- mini (n & m) dimen$ionum. Scribatur y = x z, quâ quantitate pro ejus valore y in datâ æquatione $ub$titutâ, re$ultat a z^n + b z^n-1 [0184]DE FLUXIONALIBUS + c z^n-2 + &c.) x^n + (α z^m + β z^m-1 + &c.) x^m = 0; unde x = (-{α z^m + β z^m-1 + &c. / a z^n + b z^n-1 + &c.})^{1 / n-m}, & y = x z.

Cor. Si in æquatione relationem inter variabiles x & y exprimente tres dimen$iones (n, n - m, n - 2 m) occurrant, quarum $umma tan- tum $uperat mediam, quantum hæc media infimam; tum ope qua- draticæ æquationis re$olutionis variabiles y & x per novam z exprimi poterunt. Et $ic deinceps.

2. 1. Sit Δ (x, y) = φ (x, y); ubi Δ (x, y) & φ (x, y) re$pective de- notant homogeneas functiones literarum x & y: dimen$iones vero (n) functionis φ (x, y) $uperent dimen$iones (n - 1) functionis Δ (x, y) per unitatem: & $i in prædictis functionibus duæ $olummodo con- tineantur radicales, viz. √(α x + β y) & √(ε x + δ y): vel una $o- lummodo √(α x^2 + β x y + γ y^2) vel (α x + β y)^{1 / m}; vel ({α x + β y / ε x + δ x})^{p / m} = P; vel ^m √(a + b ^r √(c + &c. ^s √({e + f x / h + k x}))) = Q, &c.; tum per prob. 15. fluens cuju$cunque rationalis functionis literarum x & y in x^. vel y^. ductæ reduci pote$t ad fluentem fluxionis, quæ e$t rationa- lis fractio variabilis quantitatis (u) in fluxionem u^. ductæ: $cribatur enim z y pro x in datâ æquatione, & inveniatur valor quantitatis (y) in terminis quantitatis (z); in hoc valore $olummodo continentur radicales quantitates √(α z + β) & √(ε z + δ); vel √(α z^2 + β z + γ), &c.; & nullæ aliæ; unde con$tat fluxiones x^. & y^. $olummodo invol- vere ea$dem radicales quantitates; & exinde rationalem functionem literarum x vel y in x^. vel y^. ductam ea$dem $olummodo involvere ir- rationales quantitates, & con$equenter eam per prob. 15. reduci po$$e ad rationalem functionem variabilis quantitatis (u) in ejus fluxionem (u^.) ductam.

2. 2. Sit Δ (x, y) = φ (x, y); ubi Δ (x, y) & φ(x, y) re$pective de- notant homogeneas functiones quantitatum (x & y) ab$que denomi- [0185]ÆQUATIOXIBUS. natore, quarum dimen$iones re$pective $unt n - 1 & n; functio au- tem Δ (x, y) nullas in $e involvat radicales præter eas, quæ formulam √(α x + β y) habeant; quarum etiam haud duæ vel plures in $e$e ducantur: functio vero φ (x, y) contineat nullas radicales quantita- tes; tum fluens fluxionis y x^. vel x y^. detegi pote$t ex fluentibus fluxi- onum, quæ con$tant ex rationalibus functionibus quantitatis u in u^., & quantitatis v in v^., &c.

Et $ic æquationes facile deduci po$$unt, quarum fluentes inveniri po$$unt ope fluentium in $cholio præcedentis capitis traditarum.

Omnia hæc facile con$tant e $ub$titutione rectanguli z y pro x in datâ æquatione.

3. 1. Si vero dimen$iones functionis φ (x, y) in datâ æquatione φ (x, y) = Δ (x, y) majores $int quam dimen$iones functionis Δ (x, y) per duas; tum fluens fluxionis y x^. in æquationibus, quæ ea$dem in- volvunt radicales quantitates, ac eæ, quæ in tribus præcedentibus ca- $ibus traduntur, inveniri pote$t ope rationalis fractionis: $cribatur enim z x pro y in datâ æquatione Δ (x, y) = φ (x, y) & re$ultat A x^2 = B; ubi literæ A & B denotant functiones quantitatis z, in quibus nullæ aliæ inveniuntur radicales quantitates præter eas, quæ radicali- bus in datâ æquatione contentis corre$pondent. e. g. $it radicalis in datâ æquatione contenta √(α x + β y), & ejus corre$pondens radi- calis in re$ultante æquatione erit √(α + β z); $it etiam radicalis quantitas in datâ æquatione √(α x^2 + β x y + γ y^2), & ejus corre$pon- dens radicalis in re$ultante æquatione erit √(α + β z + γ z^2), &c. $ed ex æquatione prius tradita A x^2 = B $equitur x = {B{1 / 2}/A{1 / 2}}, cujus flu- xio x^. = {1 / 2}{B - {1 / 2}/A - {1 / 2}} × {A B^. - B A^. / A^2}; $ed per $ub$titutionem prius traditam y = z x = {z B{1 / 2}/A{1 / 2}}, & con$equenter y x^. = {1 / 2} z × {A B^. - B A^. / A^2}, quæ con- tinebit nullas radicales quantitates, præter eas, quæ corre$pondent irrationalibus datâ æquatione contentis: vel magis generaliter, $it V [0186]DE FLUXIONALIBUS homogenea & rationalis functio quantitatum x & y, cujus numerus dimen$ionum $it impar, tum fluxio V x^. vel V y^. etiam continebit nul- las radicales quantitates præter eas, quæ corre$pondent irrationalibus datâ æquatione contentis.

3. 2. In genere $int φ (x, y) & Δ (x, y) homogeneæ functiones n & m dimen$ionum, quarum n major $it quam m; & fluens omnis fluxi- onis A x^. + B y^. ubi literæ A & B denotant homogeneas functiones literarum x & y dimen$iones (r) habentes de$ignari pote$t per flu- entem functionis variabilis quantitatis (z) ductæ in fluxionem z^. quæ continebit nullas radicales quantitates præter eas, quæ corre- $pondent irrationalibus datâ æquatione contentis: $i modo literæ A & B nullas involvant radicales quantitates præter eas, quæ in datâ æquatione continentur, & {r + 1 / n - m} $it integer numerus vel affirmativus vel negativus.

Con$tat e $ub$titutione prædictâ z y pro x.

Eadem principia etiam applicari po$$unt ad fluentes fluxionalium quantitatum $uperiorum ordinum. e. g. Sit s ordo fluxionalium quantitatum & r dimen$io homogenearum functionum (P, Q, R, &c.) quantitatum (x & y), quæ in fluxiones re$pective ducantur; deinde pro y $cribatur z x, & pro y^. ejus fluxio; & $ic deinceps; tum in flu- xione re$ultante nulla involvetur radicalis quantitas; quæ non cor- re$pondet iis, quæ vel in datâ æquatione vel in quantitatibus (P, Q, R, &c.) inveniuntur; $i modo {r + s / n - m} $it integer numerus vel affirma- tivus vel negativus.

Et $ic facile deduci po$$unt con$imiles æquationes, quarum quædam fluxiones a$$ignari po$$unt, & quarum fluentes exprimi po$$unt ope fluentium in $cholio præcedentis capitis traditarum.

Hæc principia etiam ad plures æquationes plures incognitas quan- titates habentes applicari po$$unt.

[0187]ÆQUATIONIBUS.

4. Sit æquatio x^α (e + f x^n y^p + g x^2n y^2p + &c.)^λ + H x^β (l + m x^n y^p + o x^2n y^2p + &c.)^μ = K x^π (q + r x^n y^p + s x^2n y^2p + &c.)^γ + &c. $cribatur v^n = x^n y^p, & re$ultat æquatio v^2 y^-{pα / n} (e + f v^n + g v^2n + &c.)^λ + H v^β y^-{pβ / n} (l + m v^n + o v^2n + &c.)^μ = K v^π y^-{pπ / n} (q + r v^n + s v^2n + &c.)^γ + &c.

Ex. Sit æquatio x^α + a x^n+α y^p = b y^β, i.e. x^α (1 + α x^n y^p) = b y^β; $cribatur v^n = x^n y^p, & re$ultat æquatio v^α y^-{pα / n} (1 + a v^n) = b y^β, unde b y^{βn+pα / n} = v^α (1 + a v^n) & y = b{-n / βn + pα} ((v^α) (1 + α v^n)){n / βn + pα}, & exinde x = v × b^{p / βn+pα} ((v^α) (1 + a v^n))^{-p / βn+pα}, &c.

5. Ducatur data æquatio in a$$umptas quantitates, & nonnunquam deduci pote$t æquatio, cujus incognitæ quantitates x & y exprimi po$$unt ope tertiæ z.

Ex. 1. Sit data æquatio y^n + a x^m y^r = b x^s, ducatur data æquatio in x^α, & re$ultat y^n x^α + a y^r x^m+z = b x^s+α; $it n:α::r:m + α; unde α = {n m / r - n}; $cribatur y^n x^α = v^n, & re$ultat æquatio v^n + a v{r / n} = b x^s+α, & y^n = {v^n / x^α}.

Cor. Si n vel m vel s = o; vel r = n, vel m = s; tum ad invenien- dos valores quantitatum x & y per novam quantitatem v haud nece$- $ario ducenda e$t data æquatio in quantitatem x^α.

Ex. 2. Sit data æquatio y^n + a x^m y^r + b x^p y^s = c x^q ducatur hæc æquatio in x^α, & re$ultat y^n x^α + a x^m+α y^r + b x^p+α y^s = c x^q+α.

Si omnes pote$tates quantitatum y vel x in datâ æquatione con- tentæ $int inter $e æquales; vel duæ $int diver$æ pote$tates, quarum una dimidium e$t alterius, &c. vel $i in æquationem horum generum reduci po$$it data æquatio ex ejus multiplicatione in x^α vel y^α, ubi α $it index ad libitum a$$umendus; vel $i modo ducatur data æquatio in x^α; & vel pro y^n x^α, vel pro y^r x^α+m, vel pro y^s x^p+α $cribatur v, & æquatio data reducatur in terminos quantitatum v & x; & $i æqua- [0188]DE FLUXIONALIBUS tiones re$ultantes $int prædictorum generum, &c. tum facile exprimi po$$unt quantitates x & y per novam quantitatem v.

Et $ic de transformandis pluribus æquationibus, ita ut earum in- cognitæ quantitates exprimantur per novam quantitatem v.

6. 1. Nonnunquam ita transformari po$$unt e $ub$titutione æqua- tiones, ut earum incognitæ quantitates (x, y, &c.) exprimi po$$int in terminis novæ a$$umptæ v; e.g. datâ algebraicâ æquatione duas in- cognitas quantitates x & y involvente; invenire utrum $ingula quan- titas ex iis $it rationalis functio tertiæ z, necne; a$$umantur rationales functiones a + b v + c v^2 + &c. = x, vel {a + b v + c v^2 + &c. / p + q v + r v^2 + &c.} = x & a′ + b′v + c′v^2 + &c. = y vel {a′ + b′v + c′v^2 + &c. / p′ + q′v + r′v^2 + &c.} = y; $ub$ti- tuantur hæ quantitates pro $uis valoribus in datâ æquatione, & $up- ponantur corre$pondentes termini re$ultantis æquationis nihilo æqua- les; & ex æquationibus re$ultantibus deduci po$$unt incognitarum quantitatum valores, $i modo ulli dentur.

2. Et $ic inveniri pote$t, utrum $ingula variabilis quantitas (x, y, &c.) in datâ vel datis æquationibus contenta $it rationalis functio vel irrationalis datæ formulæ variabilis v, necne; a$$umantur in genere irrationales functiones datæ formulæ pro incognitis quantitatibus (x, y, &c.); quibus pro $uis valoribus in datâ vel datis æquationibus $ub- $titutis, & terminis re$ultantium æquationum corre$pondentibus ni- hilo æqualibus e$$e $uppo$itis; ex æquationibus re$ultantibus erui po$$unt incognitarum quantitatum valores, $i modo tales recipiant.

3. E prob. 54. medit. algebr. deduci po$$unt æquationes, qua- rum incognitæ quantitates x & y exprimi po$$unt ope tertiæ v a$$u- mendæ: 1. a$$umatur quæcunque functio literæ v pro y, deinde a$$u- matur quæcunque functio literarum v & y pro x; ita transformentur hæ duæ æquationes in unam, ut exterminetur litera v; & re$ultat æqua- tio relationem inter literas x & y exprimens, ubi literæ x & y $unt [0189]ÆQUATIONIBUS. datæ functiones tertiæ v. Ex. g. a$$umatur y = {a + b v + c v^2 + &c. / p + q v + r v^2 + &c.}& x y = v vel {x / y} = v, quibus quantitatibus pro $uo valore v in primâ æquatione $ub$titutis, re$ultant æquationes quæ$itæ.

4. A$$umantur quæcunque functiones quantitatis v pro x & y, deinde a$$umatur æquatio relationem inter x & y exprimens formulæ, quæ recipere pote$t prædictas functiones quantitatis v pro valoribus corre$pondentibus quantitatum x & y; $ub$tituantur a$$umptæ fun- ctiones quantitatis v pro $uis valoribus x & y in a$$umptâ æquatione; & fiant corre$pondentes termini æquationis re$ultantis inter $e æqua- les; & ex æquationibus re$ultantibus detegi pote$t æquatio quæ$ita.

Omnia hæc etiam ad fluxionales æquationes applicari po$$unt.

7. Sit æquatio a(y^n + z^n) + b(y^n-1 z + z^n-1 y) + c(y^n-2 z^2 + z^n-2 y^2) + &c. + p(y^n-1 + z^n-1) + q(y^n-1 z + z^n-1 y) + &c. = 0, in quâ $i- militer involvuntur quantitates z & y; pro y + z $cribatur w, & pro z y $cribatur v; & æquatio re$ultans erit a w^n + (b - na) w^n-2 v + (c - (n - 2)b + n. {n-3 / 2} a)w^n-4 v^2 + (d - (n-4) c + (n-2) ×{n-5 / 2}b - n.{n-4 / 2}.{n-5 / 3} a)w^n-6 v^3 + (e - (n-6)d + (n-4) × {n-7 / 2}c - (n-2) × {n-6 / 2} × {n-7 / 3}b + n × {n-5 / 2} × {n-6 / 3} × {n-7 / 4}a)w^n-8 v^4 + &c. + pw^n-1 + (q - (n-1)p)w^n-3 v + (r - (n-3)q + (n-1) × {n-4 / 2}p) w^n-5 v^2 + &c. = 0. Lex coefficientium huju$ce $eriei facile con$tabit ex ob$ervat. leg. $eriei in theor. 38. medit. algeb. contentæ.

Quantitas v nunquam a$$urgit ad majores quam {n / 2} dimen$iones, $i n $it par numerus; vel majores quam {n-1 / 2}, $i n $it impar: $i vero detur quantitas v e terminis quantitatis w, tum re$olutione quadra- ticæ æquationis dantur z & y in terminis quantitatis w.

[0190]DE FLUXIONALIBUS

Cor. Sit n = 2 vel 3, & v haud a$$urgit ad majores quam unam; $it n = 4 vel 5, & v haud a$$urgit ad majores quam 2; $it n = 8 vel 9, & haud a$$urget v ad majores quam 4 dimen$iones; & quoniam extractio biquadraticæ æquationis cogno$citur; ergo fluens cuju$cun- que fluxionis, quæ e$t functio quantitatum x & y in x^. vel y^. ducta, per methodos prius traditas deduci pote$t; $i modo dimen$iones datæ æquationis relationem inter variabiles x & y exprimentis, in quâ x & y $imiliter involvuntur, haud $uperent novem dimen$iones.

7. 2. Sit æquatio relationem inter variabiles z & w exprimens eju$- modi, ut quantitas (z) $it cognita functio quantitatis w; vel utræque (z & w) $int cognitæ functiones novæ quantitatis (v); deinde a$$u- mantur duæ æquationes relationes inter z, w, x & y exprimentes, ita ut ex datis valoribus quantitatum z & w $emper acquiri po$$unt cor- re$pondentes valores incognitarum quantitatum x & y; deinde redu- cantur hæ æquationes in unam, ita ut exterminentur incognitæ quantitates z & w, & re$ultat æquatio relationem inter x & y expri- mens, cujus utræque x & y facile de$ignari po$$unt ope tertiæ quanti- tatis a$$umptæ: & con$equenter fluxio, quæ e$t functio quantitatum x & y & earum fluxionum, ope prædictæ tertiæ quantitatis & ejus fluxionum exprimi pote$t.

Con$imilia etiam ad tres vel plures æquationes applicari po$$unt.

Si vero plures dentur æquationes plures variabiles quantitates ha- bentes, nonnunquam detegi po$$unt re$olutiones ex his vel ex aliis principiis in medit. algeb. traditis.

8. Datis methodis inveniendi continuas approximationes ad flu- entes datarum fluxionum, ex iis haud nunquam con$tant fluentes ip$æ, i.e. haud nunquam terminatur $eries ip$a.

Con$tant ex infinitis $eriebus infinitæ formulæ harum æquationum.

Ex. Sit data æquatio y^m + a x^n = b y^e x^r; $eries, quæ exprimit flu- entem fluxionis y x^., pote$t e$$e huju$ce formulæ A x y + B y^e+1 x^c+1 + C y^2e+1 x^2c+1 + D y^3e+1 x^3c+1 + &c. ubi c = r - n: inveniatur fluxio hu- ju$ce $eriei & re$ultat æquatio (P) y x^. = (A x + (e+1) B y^e x^c+1 + (2e + 1) Cy^2e x^2c+1 + &c.)y^. + (A y + (c+1) B y^e+1 x^c + (2c+1) [0191]ÆQUATIONIBUS. C y^2e+1 x^2c + &c.)x^.: fluxio autem datæ æquationis erit (m y^m-1 - e b y^e-1 x^r) y^. = (r b y^e x^r-1 - n a x^n-1)x^., in æquatione (P) pro y^. $cri- batur ejus valor {r b y^e x^r-1 - n a x^n-1 / m y^m-1 - e b y^e-1 x^r}x^. e po$teriori æquatione flu- xionali deductus, & re$ultat y x^. = (Ax + (e+1) B y^e x^c+1 + (2e + 1) Cy^2e x^2c+1 + &c.) ({r b y^e x^r-1 - n a x^n-1 / m y^m-1 - e b y^e-1 x^r})x^. + (A y + (c+1) B y^e+1 x^e + (2c+1) C y^2e+1 x^2c + &c.)x^.; quâ reductâ, fit (Q) n a A x^n \\ - (mA - m) y^m # - e b y^e x^r \\ + e b A y^e x^r \\ - r b A y^e x^r \\ + n a (e + 1) B y^e x^c+n(r) \\ - m (c + 1) B y^e+m x^c # + &c. = 0.

In terminis (mA - m) y^m & m (c + 1) B y^e+m x^c pro y^m $cribatur ejus valor - a x^n + b y^e x^r e datâ æquatione deductus, & re$ul- tant re$pective - (m A - m) a x^n + (m A - m) b y^e x^r & - m (c + 1) B a y^e x^n+c(r) + m (c+1) B y^2e x^r+c(n+2c); quibus quantitatibus pro $uis valoribus in æquatione Q $ub$titutis, re$ultat (Q)= n A a \\ + m a(A - 1) # x^n -e b \\ x^n + e b A \\ - r b A \\ + n a (e + 1) B \\ + m (c + 1)a B \\ - (m A - m) b # y^e x^r + &c. = 0

Fiant corre$pondentes termini re$ultantis æquationis nihilo re$pe- ctive æquales, & habebimus nA + mA - m = 0, (unde A = {m / m + n}); & (n (e + 1) + m (c + 1)) aB - (e - e A + r A + m A - m) b = 0; pro A & r in hâc æquatione $cribantur earum valores {m / m + n} & n + c re$pective, & invenietur B = {n e + m c / (n (e + 1) + m(c + 1))(m + n)}×{b / a}, & [0192]DE FLUXIONALIBUS $ic deinceps: $eries, quæ exprimit $. y x^. erit = {m / m + n} x y +{m c + n e / (m (c+1) + n(e+1))(m+n)}×{b / a} y^e+1 x^c+1 + {(m-e)(c+1) + r(e+1) / m×(2c+1) + n×(2e+1)}× {b B / a} y^2e+1 x^2c+1 + {(m-e)(2c+1) + r (2e+1) / m(3c+1) + n (3e+1)} × {bC / a} y^3e+1 x^3c+1 +{(m-e)(3c+1) + r (3e+1) / m (4c+1) + n (4e+1)} × {bD / a} y^4e+1 x^4c+1 + &c.

Cor. 1. Si (m-e)(lc+1) + r(le+1) = 0, cum l $it integer af- firmativus numerus, tum terminatur $eries; aliter vero non.

Cor. 2. Si e = 0, tum hæc $eries facile transformari pote$t in bi- nomiale theorema.

Ex. 2. Sit data æquatio y^m = a x^n + b y^e x^c + n + d y^2e x^2c+n + f y^3e x^3c+n + &c. & $eries, quæ exprimit aream pote$t e$$e huju$ce formulæ $. y x^. = A x y + B y^e+1 x^c+1 + C y^2e+1 x^2c+1 + D y^3e+1 x^3c+1 + &c. Ex calculo facile deduci po$$unt coefficientes A, B, C, &c.

Ex. 3. Sit fluxionalis æquatio y^m y^. = a x^n-1 x^. + (b y^e-1 x^c+n + d y^2e-1 x^2c+n + f y^3e-1 x^3c+n + &c.) y^. + (p y^e x^c+n-1 + q y^2e x^2c+n-1 + r y^3e x^3c+n-1 + &c.) x^.; & $eries quæ exprimit $. y x^. pote$t e$$e huju$ce formulæ A x y B y^e+1 x^c+1 + C y^2e+1 x^2c+1 + &c.

Facile infinitæ formulæ $erierum fingi po$$unt, quæ exprimunt fluentes quarumcunque fluxionum, quæ $unt datæ functiones varia- bilium quantitatum in datis algebraicis vel fluxionalibus æquationi- bus contentarum; $ed de his po$tea in capite de infinitis $eriebus.

PROB. XXXIII.

1. _Datâ algebraicâ æquatione_ n _dimen$ionum_ y^n + (a + b x) y^n-1 + (c + d x + e x^2) y^n-2 + &c. = 0 _relationem inter ab$ci$$am_ x _& ejus_ _corre$pondentes ordinatas_ y _exprimente; invenire æquationem relationem_ _inter ab$ci$$am_ x _& ejus aream_ v _de$ignantem, $i modo curva generaliter_ _quadrari po$$it._

[0193]ÆQUATIONIBUS.

Datâ ab$ci$sâ x, n $unt diver$i valores ordinatæ y, qui datæ abfci$$æ corre$pondent, & con$equenter n $unt diver$i areæ valores ei corre- $pondentes; æquatio relationem inter ab$ci$$am x & aream v erit huju$ce formulæ v^n + (A + B x + C x^2) v^n-1 + (D + E x + F x^2 + G x^3 + H x^4) v^n-2 + (K + L x + M x^2 + .. P x^6) v^n-3 &c. = 0; a$$umatur hæc æquatio pro æquatione quæ$itâ, & per problema 25. inveniatur æquatio, cujus radix e$t ordinata y={v^. / x^.}; $ingulis re$ultantis & datæ æquationis terminis re$pective inter $e æquatis, re$ultant æquationes, quarum incognitæ quantitates erunt re$pective A, B, C, D, &c. & quarum valores per methodum communes divi$o- res inveniendi facile erui po$$unt; $i vero curva haud quadraturam admittat, tum nulli dantur prædicti communes divi$ores.

Ex. 1. Sit data æquatio y^2 + x^2 - 1 = 0, & $upponatur æquatio ad aream v^2 + (A + B x + C x^2) v + D + E x + F x^2 + G x^3 + H x^4 = 0; per prædictum problema inveniatur æquatio, cujus radix e$t {v^. / x^. = y}; & $i modo evane$cat diver$orum areæ valorum $umma, cum evane$cat ab$ci$$a x, i.e. $it A = 0; erunt B & C etiam nihilo æquales; & per problema 25. {(E + 2 F x + 3 G x^2 + 4 H x^3)^2 / 4(D + E x + F x^2 + G x^3 + H x^4)} = x^2 - 1, & con$equenter 4 H = 16 H^2, 4 G = 24 H G, 4 F - 4 H = 16 H F + 9 G^2, 4 E - 4 G = 8 H E + 12 F G, 4 D - 4 F = 6 G E + 4 F^2, - 4 E = 4 E F, - 4 D = E^2; $ed e methodo communes divi$ores inve- niendi, &c. con$tat has æquationes inter $e contradictorias e$$e, & con$equenter curvam haud generaliter e$$e quadrabilem.

Ex. 2. 1. Sit æquatio y^2 + (4 + 2 x)y + x^2 + 3 x + 1 = 0; a$$umatur æquatio v^2 + (A + B x + C x^2)v + D x^4 + E x^3 + F x^2 + G x + H = 0; tum erunt B = 4, C = 1 & A = 0, $i modo evane$cat arearum $umma, cum evane$cat ab$ci$$a; per exemplum primum problema- tis 25. invenietur {(D x^4 + E x^3 + F x^2 + G x + H)(2 x + 4)^2 - (x^2 + 4 x)(2 x + 4)(4 D x^3 +3 E x^2 + 2 F x + G) + (4 D x^3 + 3 E x^2 + 2 F x + G)^2 / 4Dx^4 + 4Ex^3 + [0194]DE FLUXIONALIBUS 4Fx^2 + 4Gx + 4H - (4x + x^2)^2} = x^2 + 3 x + 1, reducatur hæc æquatio, & corre$pondentes termini in- ter $e æquales e$$e $upponantur; re$ultat 16 D^2 - 8 D = -1, unde D = {1 / 4} quo valore in reliquis re$ultantibus terminis $ub$tituto, exo- riuntur æquationes 0 = 0; & 9 E^2 - 32 E + 28 = 0, unde E erit vel {14 / 9} vel 2; $ub$tituatur {14 / 9} pro E in reliquis æquationibus, & inveniuntur F = 0, G = - 12, & H = - 12; & con$equenter æquatio quæ$ita erit v^2 + (4 x + x^2)v + {1 / 4} x^4 + {14 / 9} x^3 - 12 x - 12 = 0.

2. Sit A quæcunque quantitas, & con$equenter non evane$cat are- arum $umma, cum evane$cat ab$ci$$a; tum erit æquatio ad aream v^2 + (A + 4 x + x^2) v + {1 / 4} x^4 + {14 / 9} x^3 + {1 / 2} A x^2 + (2 A - 12) x +{1 / 4} A^2 - 12 = 0.

Hæc æquatio facile deduci pote$t e priore, $cribendo pro v ejus valo- rem v + {A / 2}: nam per hanc $ub$titutionem transformatur prior æqua- tio ad aream, i.e. cujus diver$orum valorum $umma evane$cit, cum ab$ci$$a evadat nihilo æqualis; in æquationem ad aream, cujus $umma valorum erit A, cum ab$ci$$a = 0.

2. 2. Eodem modo $it æquatio ad aream (v) v^n + (B x + Cx^2) v^n-1 + (D x^4 + E x^3 + &c.)v^n-2 + &c. = 0, cujus valorum $umma evane$cit, cum ab$ci$$a = 0: in hâc æquatione pro v $cribatur v + {A / n}, & æquatio re$ultans erit æquatio ad aream eju$dem curvæ, cujus $umma valo- rum erit A, cum evane$cat ab$ci$$a x.

3. Paulo aliter progredi licet in hoc & multis aliis ca$ibus; e.g. eâdem æquatione datâ, & ii$dem literis ea$dem quantitates denotan- tibus; a$$umatur etiam æquatio ad aream v^n + (A + B x + C x^2) [0195]ÆQUATIONIBUS. v^n-1 + (D + E x + F x^2 + G x^3 + H x^4) v^n-2 + &c. = 0, & con$e- quenter pro {v^. / x^.} $cribendo y, erit n y v^n-1 + (n - 1)(A + B x + C x^2) v^n-2 y + (n - 2)(D + E x + F x^2 + &c.)v^n-3 y + &c. + (B + 2 C x) v^n-1 + (E + 2F x + 3 G x^2 + 4 H x^3)v^n-3 + &c. = 0; e quibus æqua- tionibus, $i methodis notis exterminetur v, habebimus æquationem, quæ exprimit relationem inter x & y; hujus autem æquationis coef- ficientes æquari debent coefficientibus datæ æquationis y^n + (a + b x) y^n-1 + (c + d x + e x^2) y^n-2 + &c. = 0. & $i quantitates A, B, C, &c. exinde determinari po$$int, curva quadratur; aliter autem quadrari non pote$t.

4. Datâ præcedente algebraicâ æquatione y^n + (a + b x) y^n-1 + (c + d x + e x^2)y^n-2 + &c. = 0; invenire utrum fluens v fluxionis ((α + βx + γx^2 + &c. + x^3)y^m + (p + q x + r x^2 + &c. + x^s-1)y^m+1 + (&c.))x^. = Δx^. inveniri pote$t, necne; ubi literæ s, m, &c. integros denotant numeros. Per medit. algeb. inveniatur æquatio, cujus ra- dix $it Δ: a$$umatur æquatio ad fluentem v^n + (A + B x + C x^2 ... P x^m+s+1)v^n-1 + (D + E x^. + F x^2 + &c. + Q x^2m+2s+2)v^n-2 + &c. = 0, deinde inveniatur æquatio cujus radix $it {v^. / x^.}; re$ultantis & inventæ æquationis, cujus radix $it Δ, fiant termini inter $e æquales, & e re- $ultantibus exinde æquationibus per methodum communes divi$ores inveniendi erui po$$unt valores quantitatum A, B, C, &c. P; D, E, F, &c. Q; &c. $i vero nulli dentur corre$pondentes valores harum quan- titatum, i.e. æquationes re$ultantes inter $e contradictoriæ $int; tum finitis terminis haud exprimi pote$t fluens.

Cor. 1. Si pro x^. $cribatur x^. ^r, & requiratur fluens (r) ordinis: pro x^m+s+1 $cribe x^m+s+r; pro x^2m+2s+2 $cribe x^2m+2s+2r, &c. & eodem modo quo prius deduci pote$t re$olutio.

5. Datâ algebraicâ æquatione A y^n + B y^n-1 + C y^n-2 + &c. = 0, (ubi literæ A, B, C, &c. qua$cunque rationales functiones literæ x re- $pective denotant) relationem inter duas incognitas quantitates x & y [0196]DE FLUXIONALIBUS exprimente; datâ etiam quantitate, quæ e$t fluxionalis functio (v^.) incognitarum datæ æquationis quantitatum (x & y); invenire utrum fluens (v) prædictæ fluxionalis functionis inveniri pote$t, necne; i. e. relatio inter incognitas quantitates x & y & v per algebraicam æqua- tionem exprimi pote$t, necne.

Ex datâ algebraicâ æquatione inveniatur æquatio, cujus radix e$t data fluxionalis functio variabilium datæ æquationis quantitatum (x & y).

A$$umatur æquatio, cujus radix e$t fluens quæ$ita (v); & formula, quæ nece$$ario continet radices quæ$itæ fluentis v, $i modo illæ radi- ces finitis algebraicis terminis quantitatum x & y exprimi po$$int, viz. v^m + (A + B x + &c.) v^m-1 + (D + E x + &c.)v^m-2 + &c. = 0, vel (α + β x + &c.)v^m + (A + B x + &c.)v^m-1 + &c. = 0.

Hujus æquationis formula plerumque e datâ æquatione & fluxio- nali quantitate facile erui pote$t: e numero enim radicum, quas præbent data æquatio & fluxionalis quantitas, con$tat numerus di- men$ionum quantitatis v in quæ$itâ æquatione contentarum; & $ic de numero dimen$ionum, &c. quantitatum x vel y in quæ$itâ æquati- one contentarum.

Ex a$$umptâ æquatione inveniatur altera, cujus radix e$t v^.; re$ul- tantis æquationis, etiamque æquationis, cujus radix e$t fluxionalis quantitas, terminis corre$pondentibus inter $e æqualibus e$$e $uppo- $itis; re$ultant æquationes, e quibus methodo communes divi$ores inveniendi erui po$$unt incognitæ coefficientes a$$umptæ æquationis; $i vero hæ æquationes inter $e contradictoriæ $unt, tum fluens quæ- $ita haud inveniri pote$t.

Et $ic de duabus vel pluribus æquationibus tres vel plures varia- biles quantitates habentibus.

Cor. 1. Hinc inveniri po$$unt quamplurimæ algebraicæ curvæ, quarum relationes inter earum areas & ab$ci$$as (x) exprimi po$$unt per algebraicas æquationes: a$$umantur enim quæcunque datæ æqua- tiones Av^n + Bv^n-1 + Cv^n-2 + &c. = 0, ubi A, B, C, &c. qua$cun- [0197]Æ QUATIONIBUS. que functiones ab$ci$$æ x re$pective denotant; & per prob. 25. inve- niatur æquatio, cujus radix $it {v^. / x^.} = y; & invenitur æquatio relatio- nem inter ab$ci$$am x & ejus ordinatas y exprimens; & cujus æqua- tio, quæ exprimit relationem inter aream v prædictæ curvæ & ejus ab$ci$$am x, e$t A v^n + B v^n-1 + &c. = 0.

Facile con$tat, $i modo æquatio A v^n + B v^n-1 + &c. = 0 dividi po$$it in duas alias, æquationem relationem inter ab$ci$$am x & ejus ordinatas y exprimentem etiam dividi po$$e in duas alias; $in aliter vero non.

Cor. 2. Hinc eâdem methodo etiam inveniri po$$unt quamplurimæ algebraicæ curvæ, quarum relationes inter ab$ci$$as x & fluentem v cu- ju$cunque algebraicæ functionis (P) ab$ci$$æ x & ordinatæ y in x^. ductæ per algebraicam æquationem de$ignari po$$unt: a$$umatur enim æquatio relationem inter v & x exprimens, cujus radix v e$t fluens fluxionalis functionis; deinde inveniatur æquatio, cujus radix e$t {v^. / x^.} = P, pro P $cribatur prædicta functio quantitatum x & y; & re$ultat æquatio quæ$ita relationem inter x & y exprimens.

Et $ic de con$imilibus ad fluentes $uperiorum ordinum prædicta- rum fluxionalium functionum quantitatum x & y & earum fluxio- num applicandis.

6. Hi quinque ca$us etiam re$olutionem accipere po$$unt e methodo convergentes $eries inveniendi: e. g. datâ algebraicâ æquatione y^n + (a + b x) y^n-1 + &c. = 0; invenire, annon ejus area exprimi pote$t in algebraicis terminis ab$ci$$æ x.

Per convergentes $eries inveniantur n valores ordinatæ y, qui $int re$pective y, y′, y″, &c. & re$ultabunt y = α x + β + {γ / x} + {δ / x^2} + &c. y′ = α′ x + β′ + {γ′ / x} + {δ′ / x^2} + &c. y″ = α″ x + β″ + &c. ubi γ, γ′, γ″, &c. nihilo debent e$$e æquales, aliter area haud inveniri pote$t. Sit v area, [0198]DE FLUXIONALIBUS & ejus diver$i valores v, v′, v″, &c. erunt v = {α x^2 / 2} + β x + A - {δ / x}- &c. v′ = {α′x^2 / 2} + β′x + A′ - {δ′ / x} - &c. v″ = α″x^2 + β″x + A″ -{δ″ / x} - &c. &c. = &c.

Ducantur hæ æquationes in $e$e, & re$ultat æquatio v^n + (π x^2 + ξ x + σ) v^n-1 + &c. quæ erit æquatio ad aream, $i modo ea in alge- braicis terminis inveniri po$$it; quod con$tabit e terminis re$ultantis æquationis haud in infinitum progredientibus, i. e. haud in negati- vas dimen$iones quantitatis v de$cendentibus.

2. Datâ algebraicâ æquatione A y^n + B y^n-1 + &c. = 0, ubi A, B, C, &c. $unt algebraicæ functiones quantitatis x, & fluxionali quanti- tate; per cap.1. medit. algebr. inveniri pote$t, utrum ejus fluens ex- primi pote$t finitis algebraicis terminis ab$ci$$æ x, necne.

THEOR. XVI.

Si fluens cuju$cunque fluxionis e datâ æquatione deductæ genera- liter exprimi po$$it finitis terminis ejus variabilium quantitatum x & y; tum $umma e $ingulis valoribus prædictæ fluxionis exprimi pote$t finitis terminis prædictarum variabilium quantitatum x & y; $i igitur ita transformentur variabiles quantitates x & y, ut con$tet $ummam prædictam haud exprimi po$$e generaliter finitis terminis prædictarum quantitatum x & y, concludere licet fluentem ip$am haud exprimi po$$e finitis terminis quantitatum x & y.

Ex. Datâ algebraicâ æquatione haud divi$orem recipiente Ay^n + (a + b x) y^n-1 + (c + d x + e x^2) y^n-2 + &c. = 0, & relationem inter ab$ci$$am x & ejus corre$pondentes ordinatas y exprimente. In datâ æquatione pro literis x & y $cribantur re$pective l v + m z + n′ & p v + q z + r, & ($i modo po$$ibile $it) re$ultet æquatio (Pz + Q) v^n-1 + (R z^2 + S z + T) v^n-2 + &c. = 0, cujus primus terminus v^n dee$t; & $i P z + Q haud $it divi$or quantitatis R z^2 + S z + T, tum curva quadraturam haud recipiet finitis terminis.

[0199]Æ QUATIONIBUS.

Sit vero æquatio re$ultans in genere (P z^m + Q z^m-1 + &c.) v^n-m + (R z^m+1 + S z^m + T z^m-1 + &c.) v^n-m-1 + &c. = 0, & $i fluens fluxionis {R z^m+1 + S z^m + T z^m-1 + &c. / P z^m + Q z^m-1 + &c.} z^. finitis terminis haud exprimi po$$it, tum curva haud finitis terminis quadraturam recipiet.

Eadem principia etiam applicari po$$unt ad contenta $olidorum, ad fluentes quarumcunque fluxionum, &c.

THEOR. XVII.

1. Datâ algebraicâ æquatione A y^n + (a + b x) y^n-1 + &c. = 0, relationem inter ab$ci$$am x & ejus corre$pondentes ordinatas y expri- mente; $umma e $ingulis valoribus cuju$cunque algebraicæ functionis literarum x & y & earum fluxionum $emper exprimi pote$t in finitis terminis ab$ci$$æ & ordinatæ, earum circularium arcuum & logarith- morum: $umma enim e $ingulis valoribus irrationalis partis nihilo erit æqualis, & $umma e $ingulis valoribus rationalis functionis $em- per inveniri pote$t ope finitorum terminorum, circularium arcuum & logarithmorum.

2. Datâ fluxionali æquatione, & fluxionali quantitate continente rationalem & irrationalem algebraicam quantitatem, cujus rationalis quantitatis fluens inveniri pote$t; tum $umma e $ingulis valoribus fluxionalis quantitatis inveniri pote$t; $umma enim e $ingulis valori- bus irrationalis quantitatis erit nihilo æqualis.

PROB. XXXIV.

1. _Ita transformare œquationem fluxionalem, in quâ $olummodo conti-_ _nentur duœ variabiles quantitates_ (x & y), _quarum_ x _fluit uniformiter, ut_ _fluat uniformiter_ y.

FIG. 1. pag. 95. Sit quæcunque curva (_MRS_), cujus ab$ci$$a (x = A P) fluit uniformiter; $it ejus fluxio (P p), & fluxio ordinatæ (y = P M) M b; $ecunda vero fluxio 2 m f; nunc fluat ordinata (PM) unifor- [0200]DE FLUXIONALIBUS miter, $it ejus fluxio M h, tum prima ab$ci$$æ (A P) fluxio erit b e, & $ecunda ejus fluxio 2 m e: $ed duo triangula M b e, f m e $unt $imilia, ergo e h (x^.):h M (y^.)::2 m e (x^..) $ecunda ab$ci$$æ fluxio, cum fluat uniformiter y:2 m f (-y^..) $ecunda ordinatæ fluxio, cum fluat uni- formiter x; & con$equenter y^.. = - {y^. x^.. / x^.}, quo valore pro y^.. in datâ flu- xionali æquatione $ub$tituto, & $ic deinceps; & ita transformabitur æquatio, ut fluat uniformiter y. Aliter.

2. Sit y = A x^n + B x^n-r + C x^n-2r + &c. & erit y^. = n A x^n-1 x^. + (n - r) B x^n-r-1 x^. + (n - 2 r) C x^n-2r-1 x^. + &c. & y^.. = n × (n - 1) A x^n-2 x^.^2 + (n - r)(n - r - 1) B x^n-r-2 x^.^2 + (n - 2 r)(n - 2 r - 1) C x^n-2r-2 x^.^2 + nAx^n-1 x^.. + (n-r) Bx^n-r-1 x^.. + (n-2r) Cx^n-2r-1 x^.. + &c. + &c. = Qx^.^2 + Px^..; fluat uniformiter x, & con$equenter eva- ne$cet x^.., & erit y^.. = Q x^.^2; deinde fluat uniformiter y, & erit y^.. = 0 = Q x^.^2 (y^.. cum x fluat uniformiter) + P x^.. {y^. x^.. / x^.}, quoniam P ={y^. / x^.}; utræque enim hæ quantitates P & {y^. / x^.} $unt n A x^n-1 + (n - r) B x^n-r-1 + &c. unde Q x^.^2 + {y^. x^.. / x^.} = y^.. + {y^. x^.. / x^.} = 0, & con$equenter y^.. = - {y^. x^.. / x^.}, &c.

3. Sit y^. = P x^., & 1^mo. fluat uniformiter x^.; tum erunt y^.. = P^. x^., y^.. = P^.. x^., y^.... = P^... x^., y^.. ^... = P^.... x^., &c.; unde P = {y^. / x^.}, P^. = {y^.. / x^.}, P^.. = {y^... / x^.}, P^... = {y^.... / x^.}, &c.: deinde 2<_>do. fluat uniformiter y, tum erunt P = {y^. / x^.}, P^. = - {y^. x^.. / x^.^2}, P^.. = - {y^. x^. x^... - 2 x^.. ^2 y^. / x^.^3}, P^... = - {y^. x^.^2 x^.... - 6y^. x^. x^.. x^... + 6 y^. x^.. ^3 / x^.^4}, &c.: & ex æquatis duobus diver$is valoribus quantitatum P^., P^.., P^..., &c.; re$ultabunt P^. [0201]ÆQUATIONIBUS. = {y^.. / x^.} = - {y^. x^.. / x^. <_>2}, unde y^.. = - {y^. x^.. / x^.}; deinde P^.. = {y^... / x^.} = - {y^. x^. x^... - 2 x^.. ^2 y^. / x^. ^3}, & exinde y^... = - {y^. x^. x^... - 2 x^.. ^2 y^. / x^. ^2}; tum P^... = {y^.... / x^.} = - {y^. x^. ^2 x^.... - 6 y^. x^. x^.. x^... + 6 y^. x^.. ^3 / x^. ^4}; &c.: $cribantur valores exinde deducti - {y^. x^.. / x^.}, - {y^. x^. x^... - 2 x^.. ^2 y^. / x^. ^2}, - {y^. x^. ^2 x^.... - 6 y^. x^. x^.. x^... + 6 y^. x^.. ^3 / x^. ^3}, &c., pro y^.., y^..., y^...., &c. in datâ fluxionali æqua- tione; & re$ultat fluxionalis æquatio quæfita.

2. Datam æquationem involventem x & y & earum fluxiones, in quâ x fluat uniformiter, ita transformare, ut nec x nec y fluat uni- formiter: affumatur y^. = p x^., & exinde y^.. = p^. x^. + p x^.. = p^. x^. cum x fluat uniformiter; $ed p = {y^. / x^.} & p^. = {y^.. x^. - x^.. y^. / x^. ^2}, $cribatur hæc quan- titas pro fuo valore p^. in æquatione y^.. = p^. x^., & re$ultat æquatio y^.. ={x^. y^.. - y^. x^.. / x^.}; eodem modo y^... = p^.. x^. + 2 p^. x^.. + p x^... = p^.. x^. cum x fluat uni- formiter; in hâc expre$$ione fcribantur {y^. / x^.} & {y^.. x^. - x^.. y^. / x^. ^2} pro p & p^.; & re$ultat y^... = p^.. x^. + 2({y^.. x^. - x^.. y^. / x^. ^2}) x^.. + {y^. / x^.} × x^..., & con$equenter p^.. ={y^... x^. ^2 - 2 y^.. x^. x^.. + 2 x^.. ^2 y^. - y^. x^. x^... / x^. ^3} = {y^... / x^.}; &c.: in datâ fluxionali æquatione $cribendi $unt igitur valores {x^. y^.. - y^. x^.. / x^.} & {y^... x^. ^2 - 2 y^.. x^. x^.. + 2 x^.. ^2 y^. - y^. x^. x^... / x^. ^2} pro y^.. & y^...; & $ic deinceps: & re$ultat æquatio quæfita.

3. In genere $it y^. = p m x^., & m x^. con$tans quantitas; & erit y^.. = m p^. x^., $ed p = {y^. / m x^.} & exinde p^. = {y^.. m x^. - m^. x^. y^. - m x^.. y^. / m^2 x^. ^2}; $ub$tituatur hic valor pro p^. in æquatione y^.. = m x^. p^., & habebimus æquationem y^.. = {m x^. y^.. - m^. x^. y^. - m y^. x^.. / m x^.}; per eundem modum inveniri po$$unt [0202]DE FLUXIONALIBUS y^..., y^...., &c.; $cribantur hi valores pro y^.., y^..., y^...., &c. in datâ æquatione, & re$ultat quæfita.

Si vero requiratur, ut q x^. + r y^. fluat uniformiter, eodem pror$us modo progrediendum e$t.

4. Datam fluxionalem æquationem a = 0 relationem inter x & y & earum fluxiones exprimentem, in quâ p = φ (x & y) data functio quantitatum x & y fluit uniformiter, ita transformare, ut re$ultet æquatio relationem inter x & p & earum fluxiones exprimens.

Reducantur duæ æquationes α = 0 & p = φ (x & y, &c.), ita ut ex- terminetur quantitas y & ejus fluxiones, & re$ultat æquatio quæfita.

PROB. XXXV.

_Duas vel plures_ (n) _fluxionales æquationes_ (n + 1) _vel plures variabiles_ _quantitates habentes, in quibus una_ x _fluit uniformiter, ita transformare,_ _ut fluat uniformiter_ y.

Pro y^.. $cribatur in datis æquationibus ejus valor - {y^. x^.. / x^.}, & pro y^... fluxio prius inventa, & $ic deinceps; & ita transformabuntur æqua- tiones ut fluat uniformiter y.

Et $ic transformari po$$unt duæ vel plures (n) æquationes (n + 1) variabiles quantitates habentes; in quibus fluit uniformiter m x^., ita ut fluat uniformiter p x^. vel p x^. + q y^., &c.

THEOR. XVIII.

1. Sit algebraica æquatio P = Q, e quâ deducatur fluxionalis P^. = Q^.: fi modo utri$que huju$ce æquationis partibus addantur vel $ubducantur eædem quantitates; vel utræque partes fluxionalis æquationis in ea$dem quantitates ductæ tum eadem manet fluxionalis æquatio, (for$an vero etiam adjiciantur novæ), cujus fluens erit P = Q + a, ubi a denotat invariabilem quantitatem ad [0203]ÆQUATIONIBUS. libitum a$$umendam: $i vero hæ duæ partes æquationis haud ducan- tur in ea$dem $ed in æquales quantitates utcunque e datâ algebraicâ (P = Q) æquatione deductas, tum particularis fluentialis æquatio deducta e fluxionali æquatione re$ultante etiam erit P = Q; quod$i generaliter corrigatur, i. e. in genere inveniatur æquatio fluentialis ad fluxionalem æquationem re$ultantem, haud erit P = Q + a. e. g. ducatur utraque pars fluxionalis æquationis re$ultantis in P & Q, & re$ultat P P^. = Q Q^., cujus fluentialis æquatio erit in genere P^2 = Q^2 + a, haud P = Q + a; dividatur autem utraque pars fluxionalis æquationis (P^. = Q^.) per P & Q re$pective, & re$ultat {P^. / P} = {Q^. / Q}, cujus fluentialis æquatio in genere erit P = a Q, & haud P = Q + a.

Cor. 1. Hinc, $i modo detur æquatio, cujus inveniatur fluxio; & in fluxionali æquatione re$ultante $ub$tituantur quæcunque quantitates e datâ æquatione deductæ pro fuis valoribus; re$ultabunt diver$æ flu- xionales æquationes, quarum eædem dantur particulares fluentiales, quamvis for$an hæ generaliter correctæ haud erunt eædem.

Cor. 2. Eadem etiam affirmari poffunt de fluxionalibus æquationi- bus $uperiorum ordinum, & de pluribus æquationibus plures varia- biles quantitates habentibus.

2. E contra æquationes fluxionales diver$æ generaliter ea$dem præ- beant fluentiales æquationes: a$$umatur enim fluentialis æquatio, in quâ unus terminus $it invariabilis & ad libitum a$$umendus: ita transformetur hæc æquatio, ut fiat alter terminus invariabilis & ad libitum a$$umendus: harum duarum æquationum inveniantur fluxi- ones, & duarum fluxionalium æquationum re$ultantium fluentes in- venientur eædem æquationes.

Ex. Sit æquatio algebraica a$$umpta a y^n + b x^r y^s + c x^t + d = 0, ubi termini d & a $unt invariabiles quantitates ad libitum a$$umendæ: dividatur data æquatio per y^n, & re$ultat a + b x^r y^s-n + c x^t y^-n + d y^- n = 0; inveniantur fluxiones ex utri$que his æquationibus, & re- $ultant duæ fluxionales æquationes diver$æ, viz. n a y^n-1 y^. + s b x^r y^s-1 y^. [0204]DE FLUXIONALIBUS + r b y^s y^s x^r-1 x^. + t e x^t-1 x^. = 0 & r b x^r-1 y^s-n x^. + (s - n) b x y^s-n-1 y^. + t c x^t-1 y^-n x^. - n c x^t y^-n-1 y^. - n d y^- n-1 y^. = 0; quæ duæ fluxionales æqua- tiones ea$dem præbent fluentiales.

In hâc æquatione duæ vel plures $unt invariabiles quantitates ad libitum a$$umendæ.

Et $ic de fluxionalibus æquationibus $uperiorum ordinum, & plu- ribus æquationibus.

PROB. XXXVI. _Corrigere fluentes in genere._

1. Datis quibu$cunque fluxionalibus æquationibus; & quantitate, quæ e$t fluxionalis functio literarum in datis fluxionalibus æquatio- nibus contentarum; datam quantitatem generaliter corrigere.

Sit data quantitas fluxio (n) ordinis; & v^. ^n-1 fluxio n - 1 ordinis, quæ fluit uniformiter; tum correctio primæ fluentis erit a × v^. ^n-1, ubi litera a invariabilem quantitatem denotat; fi vero V $it prima fluens datæ quantitatis, tum erit prima fluens correcta V + a v^. ^n-1: fit w^. ^n-2 fluxio n - 2 ordinis, quæ fluit uniformiter, & correctio $ecundæ fluentis erit f. a v^. ^n-1 + b w^. ^n-2, ubi b denotat invariabilem coefficientem; $it W fluens flu- xionis (V + a v^. ^n-1); & $ecunda fluens correcta erit W + b w^. ^n-2; & $ic deinceps.

2. Fluentialem æquationem in genere corrigere; 1^mo. ducatur utra- que datæ æquationis pars in eandem quantitatem; inveniatur fluens æquationis re$ultantis ($i modo fieri po$$it), quæ fit fluxionalis æqua- tio (n - 1) ordinis; alteri parti æquationis fluentis inventæ addatur vel $ubtrahatur quantitas a v^. ^n-1, ubi a denotat invariabilem quantita- tem, & v^. ^n-1 denotat fluxionem n - 1 ordinis, quæ fluit uniformiter; & vere corrigitur prædicta æquatio, & vera etiam e$t fluentialis æquatio, [0205]ÆQUATIONIBUS. quam de$ignat data fluxionalis: eodem modo inveniri pote$t correctio æquationis re$ultantis; & $ic deinceps.

Ex. 1. Sit data fluxio 2 y y^. = 3 x^2 x^., cujus fluens e$t y^2 = x^3; al- teri æquationis parti addatur vel $ubtrahatur invariabilis quantitas a ad libitum a$$umenda, & erit fluens correcta y^2 = x^3 + a, quæ e$t fluentialis æquatio prædictæ fluxionalis.

Cave vero, ne ita ratiocineris, quoniam y^2 = x^3, erit y = x^{3 / 2}, & exinde correcta fluens y = x^{3 / 2} + a: hæc æquatio minime erit gene- raliter fluentialis æquatio datæ fluxionalis 2 y y^. = 3 x^2 x^.; $ub$ti- tuatur enim pro y in datâ fluxionali æquatione ejus valor a$$ump- tus x^{3 / 2} + a, & haud re$ultant utræque æquationis partes inter $e æquales.

Ex. 2. Sit data fluxionalis æquatio {x^. / x} = {2 y^. / y}; & erit æquatio, cujus fluxio e$t prædicta æquatio log. x = log. y^2; addatur invariabilis quantitas ad alteram huju$ce æquationis partem, & re$ultat æquatio vere correcta log. x = 2 log. y + a, unde x = a y^2 e$t æquatio vere correcta, $ed non x = y^2 + a.

Cor. 1. Hinc cavendum e$t in re$olutionibus problematum vel arithmeticorum vel geometricorum, ne in corrigendis fluentibus erro- res in $olutiones irrepant, & re$ultans fluentialis æquatio haud fit æquatio, quam de$ignat problema: data quantitas ad libitum a$$u- menda fluenti datæ fluxionalis æquationis femper adjungenda e$t, vel fluenti æquationis e datâ (ducendo utra$que æquationis partes in eandem & haud diver$as quantitates) deductæ; & haud quantitati e prædictâ fluente quocunque modo deductæ.

3. Si data fluxionalis æquatio P = 0 plures recipiat divi$ores A, B, C, &c. i. e. P = A × B × C × &c. = 0; & inveniantur quantitates α, β, γ, &c. quæ in datas A, B, C, &c. ductæ præbent quantitates, quarum fluentes detegi poffunt, & quæ fint re$pective W, X, Y, &c. tum erunt diver$i valores datæ fluxionalis æquationis W + a = 0, X + b = 0, Y + c = 0, &c. ubi literæ a, b, c, &c. denotant invariabiles quanti- tates ad libitum a$$umendas.

[0206]DE FLUXIONALIBUS

Cor. 3. Eadem etiam applicari po$$unt ad plures fluxionales æqua- tiones plures variabiles quantitates involventes; $ingula enim fluxio- nalis æquatio corrigenda e$t prædictâ methodo. Et $ic de æquatio- nibus, in quibus continentur fluxiones $uperiorum ordinum.

4. Cum nulla inveniatur quantitas; quæ in datam fluxionalem æquationem ducta, creat fluxionalem, cujus fluens inveniri pote$t, tum e datâ fluxionali æquatione exprimente relationem inter quanti- tates x & y & earum fluxiones inveniatur particularis valor (Y) quan- titatis y terminis vero variabilis quantitatis x; ut corrigatur valor quantitatis y inventus, $cribatur pro y ejus valor Y + X (correc. quæ- $it.); & e datâ & re$ultante æquationibus inveniatur X terminis quan- titatis x, & erit correctio quæ$ita.

Cor. In generali correctione fluxionalis æquationis primi ordinis continetur invariabilis quantitas ad libitum a$$umenda, $ecundi vero ordinis duæ continentur invariabiles quantitates ad libitum a$$umen- dæ, & $ic deinceps.

Eadem etiam applicari po$$unt ad plures (n) æquationes fluxiona- les plures (n + 1) variabiles quantitates quorumcunque ordinum in- volventes.

5. Si vero generalis fluens haud inveniri po$$it finitis terminis, con- fugiendum e$t ad infinitas $eries, e. g. datâ fluxionali æquatione n ordinis duas involvente variabiles quantitates x & y & earum fluxio- nes; e methodo inveniendi $eries progredientes $ecundum dimen$io- nes cuju$cunque literæ x inveniatur $eries, in quâ continentur (n) li- teræ invariabiles ad libitum a$$umendæ, & erit $eries vere correcta.

THEOR. XIX.

1. Datâ generali fluente fluxionalis æquationis (m) ordinis, quæ continet (m) invariabiles quantitates (A, B, C, D, &c.) ad libitum a$$umendas, etiamque (r) variabiles quantitates (x, y, z, &c.): datis etiam (m) diver$is valoribus e $ingulis (r) variabilibus quantitatibus (x, y, z, &c.); qui $int re$pective a, a′, a″, &c.; b, b′, b″, &c.; c, c′, c″, &c.; [0207]Æ QUATIONIBUS. &c.; $cribantur hi valores a, b, c, &c.; a′, b′, c′, &c.; a″, b″, c″, &c.; &c.; re$pective pro $uis valoribus in datâ generali fluente, & re$ultabunt (m) æquationes totidem (m) incognitas quantitates habentes (A, B, C, D, &c) e quibus deduci po$$unt quantitates A, B, C, D, &c.; quæ præbent correctiones datæ fluentis datis (m) valoribus e $ingulis va- riabilibus re$pondentes.

2. Sint duæ vel plures (n) fluxionales æquationes (m, r, s, &c.) or- dinum re$pective, tres vel plures (n + 1) variabiles quantitates x, y, w, &c. & earum fluxiones habentes, in quibus x^. e$t con$tans; inve- niantur generales fluentes variabilium y, w, &c.; quæ $int y = φ:(x), w = φ′:(x), &c. vel quantitates quâcunque aliâ methodo de$ignatæ: & $i modo $int m + r + s + &c. invariabiles quantitates ad libitum a$$umendæ in hi$ce functionibus φ, φ′, &c. tum ex m + r + s + &c. in- variabilibus quantitatibus ad libitum a$$umendis in unâ functione φ, deduci po$$unt m + r + s + &c. invariabiles quantitates ad libitum a$$umendæ in $ingulis reliquis; vel quod idem e$t, prædictæ invaria- biles quantitates in $ingulis diver$is functionibus erunt eædem.

PROB. XXXVII.

Datâ æquatione vel algebraicâ vel fluxionali, cujus radix y exprimit $ummam $eriei a x^h + b x^h±m + c x^h±1 + &c. $ecundum dimen$iones literæ x progredientis; invenire quantitatem alternis $eriei terminis æqualem; & denιque $eriei terminis, quorum di$tantia a $emetip$is $it n + 1.

Si modo $eries requiratur alternis $eriei terminis æqualis; pro x, x^., x^.., &c. in datâ æquatione $cribantur re$pective x, x^., x^.., &c. & - x, - x^., - x^.., &c. & exoriuntur duæ æquationes, quarum radices $int y & y′; & erit $umma quæ$ita {y + y′ / 2}: $i vero requiratur $umma $e- cundi, quarti, $exti, &c. terminorum, erit {y - y′ / 2} $umma quæ$ita. Si requiratur $umma terminorum, quorum di$tantia a $e invicem $it n + 1; $int α, β, γ, δ, &c. re$pective radices æquationis x^n+1 - 1 = 0, & in [0208]DE FLUXIONALIBUS datâ æquatione pro x, x^., x^.., &c. $cribatur re$pective αx, αx^., αx^.., &c. βx, βx^., βx^.., &c. γx, γx^., γx^.., &c. &c. & re$ultant n + 1 æquationes, quarum corre$pondentes radices $int y, y′, y″, &c. & erit $umma quæ- $ita{y + y′ + y″ + &c. / n + 1}: & $ic e medit. algebr. inveniri po$$unt $umma e $ecundo, n + 3, 2 n + 4, 3 n + 5, &c. terminis; $umma e tertio, n + 4, 2 n + 5, 3 n + 6, &c. terminis; & $ic deinceps.

Cor. Si requiratur æquatio, cujus radix (z) e$t $umma alternorum $eriei terminorum, cujus $umma e$t y: per prob 25. inveniantur æqua- tiones, quarum radices $unt y & y′: ergo e duabus re$ultantibus æqua- tionibus & tertiâ {y + y′ / 2} = z inveniatur æquatio, cujus radix e$t z; & con$it coroll.

Et $ic inveniri pote$t æquatio, cujus radix e$t {y + y′ + y″ + &c. / n + 1}.

Cor. Eodem modo ratiocinari liceat de pluribus æquationibus plures incognitas quantitates habentibus: $ed haud tam facilis vel elegans dici pote$t huju$ce problematis $olutio in æquationibus ac in quantitatibus datis: in æquationibus enim plurimæ dantur radices, quæ minime ad problema re$olvendum attinent.

PROB. XXXVIII.

Invenire, annon data æquatio W = 0 $it generalis fluens datæ fluxio- nalis æquationis (α = 0) primi ordinis.

1. Sit a quantitas invariabilis ad libitum a$$umenda, quæ in datâ fluxionali æquatione haud invenitur, tum ex æquatione W = 0 inve- niatur a = V, ubi V e$t quantitas in quâ non continetur litera (a); tum, $i {α / V^.} ad minimos terminos reducta $it quantitas, quæ nullas continet fluxiones, erit W = 0 fluens generalis datæ fluxionalis æqua- tionis; $in aliter non.

[0209]Æ QUATIONIBUS.

2. Si non deduci po$$it a = V; reducantur duæ æquationes W = 0 & W^. = 0 in unam, ita ut exterminetur quantitas a, & re$ultet æqua- tio fluxionalis (β = 0); tum, $i quotiens ({α / β}) ad minimos terminos reducta nullas contineat fluxiones, W = 0 erit fluens prædicta.

2. 2. Si quotiens {α / β} vel {α / V^.} contineat fluxiones, reducantur utræque fluxionales æquationes (α = 0 & β = 0), ita ut fluxiones (x^., y^., &c.) in iis contentæ $olummodo habeant unam dimen$ionem, & re$ultent quantitates π = 0 & ξ=0, &c.; tum $i quotiens {(π / ξ)} ad minimos terminos reducta nullas contineat fluxiones, fluens quæ$ita erit W = 0. Si au- tem non ita reduci po$$int prædictæ fluxionales æquationes α = 0 & β = 0, ut $olummodo habeant unam dimen$ionem fluxiones contentæ; tum per medit. algebr. exterminentur irrationales functiones fluxio- num (x^., y^., &c.) ex prædictis æquationibus α = 0 & β = 0, & re$ult- ent æquationes γ = 0 & δ = 0; deinde inve$tigetur, annon æquationes γ = 0 & δ = 0 communem habeant divi$orem, qui involvit fluxiones x^. & y^.; $i communem habeant divi$orem, tum W = 0 erit generalis fluens fluxionalis æquationis α = 0; vel in æquatione W = 0 conti- netur divifor, qui erit fluens fluxionalis æquationis α = 0.

3. Si W = 0 $it generalis fluens fluxionalis æquationis (α = 0) or- dinis (n), & in eâ (W = 0) contineantur (n) invariabiles quantitates (a, b, c, &c.) ad libitum a$$umendæ tum ex æquatione W = 0 inve- niatur æquatio a = V, cujus fluxio V^. = 0 haud involvat quantitatem a, deinde ex æquatione V^. = 0 inveniatur b = V′, cujus fluxio V^.′ haud continet vel quantitatem a vel b, & $ic deinceps; u$que donec exter- minantur omnes prædictæ (n) invariabiles quantitates ad libitum a$- $umendæ, quæ in datâ fluxionali æquatione non continentur; & re$ultet fluxionalis æquatio (ξ = 0) ordinis (n); tum, $i fractio {α / ξ} ad minimos terminos reducta, nullas contineat fluxiones ordinis (n), erit W = 0 generalis fluens fluxionalis æquationis α = 0.

[0210]DE FLUXIONALIBUS

4. Si non deduci po$$it a = V, &c.; tum reducantur duæ æquatio- nes W = 0 & W^. = 0 in unam, ita ut exterminetur incognita quan- itas a, & $ic de reliquis b = V′, &c.; & po$t $ingulas has reductiones4 re$ulter fluxionalis æquatio ξ′ = 0 ordinis (n), in quâ nec continetur litera a, nec b, nec c, &c.: tum, $i fractio {α / ξ′} ad minimos terminos reducta nullas contineat fluxiones ordinis (n), erit W = 0 generalis fluens fluxionalis æquationis α = 0.

4. 2. Si quotientes {α / ξ} vel {α / ξ′} contineant fluxiones ordinis (n), redu- cantur utræque fluxionales æquationes α = 0 & ξ′ = 0, ita ut in iis fluxio ordinis (n) variabilis quantitatis unam $olummodo habeat di- men$ionem, & re$ultent æquationes σ = 0 & γ = 0; tum, $i fractiones {σ / ξ} vel {σ / γ} ad minimos terminos reductæ contineant nullas fluxiones or- dinis (n), erit W = 0 generalis fluens datæ fluxionalis æquationis α = 0, $in aliter non.

4. 3. Si vero non ita reduci po$$int prædictæ æquationes, ut fluxio or- dinis (n) variabilis quantitatis $olummodo habeat unam dimen$ionem; tum per medit. algeb. ita reducantur duæ æquationes α = 0 & ξ′ = 0, ut exterminentur irrationales functiones fluxionum in iis contentarum, & re$ultent æquationes β′ = 0 & σ′ = 0; tum, $i β′ = 0 & σ′ = 0 ha- beant communem divi$orem, qui in $e continet fluxionem ordinis (n) prædictæ variabilis quantitatis, fluentialis æquatio W = 0 conti- net in $e generalem fluentem fluxionalis æquationis in datâ fluxio- nali æquatione α = 0 contentæ.

5. Si vero dentur plures æquationes fluxionales α = 0, β = 0, γ = 0, &c.; & fluentiales plures variabiles quantitates habentes; tum per eandem methodum ita reducantur fluentiales æquationes, ut ex- terminentur (n) invariabiles quantitates generaliter a$$umptæ, quæ in datis fluxionalibus æquationibus (α = 0, β = 0, &c.) non continen- [0211]ÆQUATIONIBUS. tur, & refultent fluxionales æquationes λ = 0, μ = 0, ν = 0, &c.; deinde inveniatur, annon datæ fluxionales æquationes α = 0, β = 0, γ = 0, &c. & refultantes λ = 0, μ = 0, ν = 0, &c. habeant commu- nem divi$orem, qui continet fluxionem (n) ordinis, quod per medit. algebr. perfici pote$t ex reducendo fluxionales æquationes, ita ut ex- terminentur irrationales functiones fluxionum maximi ordinis in fingulis æquationibus contentæ, & exinde per methodum communes divi$ores inveniendi divi$ores quæfiti deduci po$$unt, $i modo qui- dam fint.

5. Hoc problema nonnunquam re$olutionem recipere pote$t ex $ub$titutione valorum nonnullarum incognitarum quantitatum & ea- rum fluxionum ex datis fluentialibus æquationibus deductarum pro fuis valoribus in fluxionalibus æquationibus, & $i nihilo evadant æquales prædictæ fluxionales æquationes; tum fluentiales erunt refo- lutiones fluxionalium æquationum, fin aliter non.

Quamvis quantitates ex datâ fluentiali æquatione acquifitæ, & in datâ fluxionali $ubftitutæ, eam reddent nihilo æqualem; attamen non- nunquam data fluentialis æquatio non vere dici pote$t fluens datæ fluxionalis, ex eo quod in generali fluente non continetur; & quam- vis nonnunquam etiam in generali fluente continetur, attamen varia- biles quantitates ex affumptis evadant invariabiles, tum non proprie dici pote$t fluens datæ fluxionalis æquationis, nam omnino contradicit hypothe$i fluxionalis æquationis; hoc femper evadet, ex eo quod ali- qua quantitas in re$olutione affumitur invariabilis vel nihilo æqualis vel penitus ex æquatione ejicitur, quæ in æquatione variabilis fuppo- nitur. e.g. Sit data fluxionalis æquatio α P^. + β P q^. = 0; tum P = 0 erit fluens fluxionalis æquationis α P^. = 0, & non fluens fluxionalis æquationis β P q^. = 0, ni P fit functio quantitatis q, & confequenter non fluens datæ fluxionalis æquationis; attamen, $i modo $cribantur P = 0 & P^. = 0 pro earum valoribus in datâ fluxionali æquatione α P^. + β P q^. = 0, tum proprie evane$cet terminus α P^. = 0, ex eo quod P^. = 0; etiamque evane$cet terminus β P q^., ex eo quod P = 0, at non proprie; nam in datâ fluxionali æquatione q fupponitur variabilis; [0212]DE FLUXIONALIBUS fed in affumptâ æquatione pro particulari valore penitus ex æquati- one ejicitur q. e. 2. Sit x x^. + y y^. = y^. √(x^2 + y^2 - a^2); a$$umatur √(x^2 + y^2 - a^2) = 0 pro particulari fluente datæ fluxionalis æqua- tionis; $i x^2 + y^2 - a^2 = 0; tum x x^. + y y^. = 0, etiamque y^. √(x^2 + y^2 - a^2) = 0 & con$equenter x x^. + y y^. = y^. √(x^2 + y^2 - a^2); fed non recte y^. √(x^2 + y^2 - a^2) = 0, nam x^2 + y^2 - a^2 non e$t functio fluentis (y) fluxionis (y^.), & con$equenter non recte x x^. + y y^. = y^. √(x^2 + y^2 - a^2): etiamque hæc particularis fluens in generali non continetur, nam generalis fluens fluxionalis æquationis x x^. + y y^. = y^. √(x^2 + y^2 - a^2)(unde y^. = {x x^. + y y^. / √(x^2 + y^2 - a^2)}) erit y = √(x^2 + y^2 - a^2) + A, ubi A e$t quæcunque invariabilis quantitas; & non ita affumi pote$t A, ut præcedens x^2 + y^2 - a^2 = 0 in hâc y = √(x^2 + y^2 - a^2) + A contineatur: hæc autem fluens x^2 + y^2 - a^2 = 0 potius dici pote$t re$olutio fluxionalis æquationis x x^. + y y^. = 0 & algebraicæ √(x^2 + y^2 - a^2) = 0.

Cor. Hinc etiam in fluxionalibus æquationibus $uperiorum ordinum, $i quæcunque æquatio $it vere fluens prioris partis fluxionalis æqua- tionis; fed non vere fluens reliquæ æquationis partis, attamen divifor vel fluens fluxionalis quantitatis inferioris ordinis (m), quæ e$t divi- for reliquæ æquationis partis, cujus partis fluxionum in eâ contenta- rum ordo e$t major quam m; tum æquatio prædicta non vere erit fluens datæ fluxionalis æquationis.

6. Datâ fluxionali æquatione α = 0 vel α P^. + β P q^. = 0; invenire, annon data æquatio π = 0 vel P = 0 fit fluens datæ fluxionalis æqua- tionis: in datis æquationibus α = 0 & π = 0 pro variabili y in iis contentâ, ejus fluxione y^., &c. $cribantur v - 0, v^. - 0^., &c. ubi 0 e$t quam minima quantitas; tum ita reducantur duæ re$ultantes æqua- tiones, ut exterminentur variabilis v & ejus fluxiones, & refultet æquatio ξ = 0 relationem inter x & 0 & earum fluxiones exprimens: & fit 0^λ minima pote$tas quantitatis 0 in æquatione refultante ξ = 0, unde, $i modo fit fluxionalis æquatio primi ordinis, erit {0^. / 0^λ} = $. X x^., [0213]ÆQUATIONIBUS. ubi X e$t functio quantitatis x, & exinde {- 1 / (λ - 1)0^λ-1} = $. X x^. + A, ubi A e$t quæcunque invariabilis quantitas; unde (1 - λ) × 0^λ-1 ={1 / $. X x^. + A}; quod$i y in prædictâ æquatione α = 0 $it vere fluens, tum $altem y ± 0, ubi o e$t quam minima quantitas, erit etiam fluens; ut vero {1 / $. X x^. + A} fiat nihilo æqualis, nece$$e e$t ut A evadat infinita quantitas, & con$equenter λ - 1 fit affirmativa quantitas.

Si λ = 1, tum erit log. 0 = $. X x^. + log. A, unde 0 = A × e^$. X x^., & $i A, tum etiam o evadet nihil.

PROB. XXXIX. Invenire, annon data algebraica æquatio $it particularis vel generalis fluens datæ fluxionalis æquationis n ordinis.

I<_>mo. Reducantur data algebraica & fluxionalis æquatio ad minimos terminos; i. e. auferatur fingula quantitas, quæ ducitur in totam æquationem vel fluxionalem vel algebraicam; etiamque reducantur omnes fractiones ad minimos terminos ex dividendo earum numera- tores & denominatores per maximos eorum communes divi$ores.

Datæ algebraicæ æquationis inveniantur fluxiones primi, fecundi, &c. n ordinis; & exinde prima, fecunda, tertia, &c. fluxiones alte- rius variabilis quantitatis y in datâ fluxionali & algebraicâ æquatione contentæ quibus fluxionibus pro fuis valoribus in datâ fluxionali æquatione $ub$titutis; æquatio re$ultans vel nihilo æqualis erit, vel re$ultans & data algebraica æquatio communem habent divi$orem, $i modo $it fluens: aliter; reducantur datæ algebraicæ & fluxionales æquationes in unam, ita ut exterminentur omnes præter unam varia- biles quantitates & earum fluxiones; & ex æquatione re$ultante & principiis prius traditis facile con$tabit; annon data algebraica æqua- tio fit fluens datæ fluxionalis.

[0214]DE FLUXIONALIBUS

Ex. 1. Sit α P^. = 0 data fluxionalis æquatio, & P × Q = 0 data al- gebraica; fint P^. = p x^. + p′ y^. & Q^. = q x^. + q′ y^.; tum fluxio algebraicæ æquationis (P Q = 0) erit Q p x^. + Q p′ y^. + P q x^. + P q′ y^. = (Q p + P q) x^. + (Q p′ + P q′) y^. = 0; in datâ fluxionali æquatione α P^. = α p x^. + α p′ y^. = 0 pro x^. $cribatur ejus valor -{(Q p′ + P q′) / Q p + P q} × y^. ex præcedente æquatione deductus, & re$ultat α p × {Q p′ + P q′ / Q p + P q} - αp′ = P × a ×{p q′ - q p′ / Q p + P q} = 0; fed P erit communis divi$or æquationum Q × P = 0 & re$ultantis æquationis P × α × {p q′ - q p′ / Q p + P q} = 0, & con$equenter P = 0 erit fluens.

Ex. 2. Invenire, annon data æquatio (A) y^m + x^n + y^r x^s = 0 fit fluens fluxionalis æquationis (B)m × (m - 1)y^m-2 y^.^2 + m y^m-1 y^.. + n × (n - 1)x^n-2 x^.^2 + γ × (r - 1)y^r-2 x^s y^.^2 + r y^r-1 x^s y^.. + 2 r s y^r-1 x^s-1 y^. x^. + s(s - 1)y^r x^s-2 x^.^2 + m a y^m y^. x^. + n a x^n-1 y x^.^2 + r a y^r x^s y^. x^. + s a y^r+1 x^s-1 x^.^2 + b(y^m + x^n + y^r x^s)y^.^2 = 0; datæ æquationis A inveniatur fe- cunda fluxio, &c. & pro y^.. in æquatione B $cribatur ejus valor e $e- cundâ fluxione æquationis A deductus; in æquatione exinde reful- tante $cribatur pro y^. ejus valor e primâ fluxione prædictæ æquationis A deductus, & data æquatio erit divifor æquationis re$ultantis; e principiis prius traditis con$tat datam algebraicam æquationem non proprie pro fluente fluxionalis æquationis habendam effe.

2. Ex ii$dem principiis etiam inveniri poteft, utrum data flu- xionalis æquatio fit fluens alterius datæ fluxionalis æquationis, necne.

Si in datâ æquatione π = 0, quæ e$t fluens (r) ordinis datæ fluxi- onalis æquationis α = 0, contineantur (r) invariabiles quantitates a, b, c, &c. ad libitum affumendæ, quæ in datâ fluxionali æquatione haud continentur; & quæ in diver$as functiones variabilium quantitatum in datâ æquatione contentarum ducuntur; i. e. quæ inter $e $unt inde- [0215]ÆQUATIONIBUS. pendentes: tum, $i data æquatio π = 0 $it fluens datæ fluxionalis æquationis, i.e. $i in æquatione α = 0 $cribantur quæcunque quan- titates pro $uis valoribus ex æquatione π = 0 deductis; & evane$cat æquatio re$ultans, erit π = 0 generalis fluens (r) ordinis fluxionalis æquationis α = 0: $in autem non contineantur (r) prædicti generis invariabiles quantitates, exceptis excipiendis erit particularis fluens: particularis $emper continetur in fluente generali.

3. Sint α = 0, β = 0, γ = 0, &c. fluxionales æquationes ordinum (n, m, r, &c.) re$pective; & λ = 0, μ = 0, ν = 0, &c. fluentiales æqua- tiones, in quibus continentur (n + m + r + &c.) invariabiles & in- dependentes ad libitum a$$umendæ quantitates, quæ in datis æqua- tionibus non inveniuntur: in æquationibus α = 0, β = 0, γ = 0, &c. $cribantur quæcunque quantitates pro $uis valoribus ex æquationibus λ = 0, μ = 0, ν = 0, &c. deductis; & $i evane$cant æquationes re$ul- tantes; tum erunt λ = 0, μ = 0, ν = 0, &c. generalis fluens datarum fluxionalium æquationum α = 0, β = 0, γ = 0, &c.

Cor. Sit π = 0 æquatio, quæ continet (m) invariabiles quantitates a, b, c, d, &c. ad libitum a$$umendas & inter $e independentes, quæ in æquatione ξ = 0 non inveniuntur: in æquatione ξ = 0 $cribantur quæcunque quantitates ex æquationibus π = 0, π^. = 0, π^.. = 0, π^... = 0, ... π^. ^r = 0 utcunque deductæ pro $uis valoribus; & in æquatione re- $ultante non plures quam (r) e prædictis invariabilibus quantitatibus (a, b, c, d, &c.) evane$cent.

THEOR. XX.

Sit fluxionalis æquatio r ordinis; & $i modo ejus fluens (r ordinis) inveniri po$$it, tum a fortiori ejus fluentes r - 1, r - 2, &c. ordinum detegi po$$unt. Inveniatur enim ejus fluens (r ordinis), cujus prima fluxio erit fluxionalis æquatio primi ordinis, & fluens r - 1 ordinis datæ fluxionalis æquationis; & fic deinceps; unde con$tat theor.

[0216]DE FLUXIONALIBUS PROB. XL.

Datâ fluλionali æquatione tres (x, y, z,) variabiles quantitates & ea- rum fluxiones habente; invenire utrum una (x) ex iis exprimi pote$t in ter- minis duarum reliquarum (y, z), necne.

1. A$$umatur x tanquam invariabilis quantitas, deinde inveniatur quantitas (p), quæ in re$ultantem æquationem ducta, creat æquatio- nem, cujus fluens (P) inveniri pote$t; deinde a$$umatur y tanquam invariabilis, & inveniatur corre$pondens quantitas q, quæ in æqua- tionem exinde re$ultantem ducta, creat fluxionem, cujus fluens (Q) inveniri pote$t; 3<_>tio. a$$umatur z invariabilis, & inveniatur corre$pon- dens quantitas r, quæ in æquationem re$ultantem ducta præbet fluxi- onem, cujus fluens (R) inveniri pote$t.

Si vero quantitates p & q habeant omnes eo$dem factores, in quibus invenitur z; & quantitates p & r eo$dem involvant factores, in quibus continetur y; & tertio quantitates q & r eo$dem habeant factores, in quibus invenitur x; i. e. $int corre$pondentes; & $i omnes termini, in quibus continentur literæ (x & y & z) iidem $int in tribus fluentibus P, Q & R; & omnes termini, in quibus inveniuntur z, y, x $int iidem in duabus fluentibus P & Q, P & R, Q & R re$pective; tum inveniri pote$t fluens datæ fluxionalis æquationis, $in aliter vero non.

Ex. 1. Datâ fluxionali æquatione ((x^2 y + c)z^. + (x^2 z + d)y^. + 2 x z y x^.) √(z^2 + c x^2) + z z^. + c x x^. = 0, invenire utrum ejus fluens exprimi pote$t in algebraicis terminis quantitatum (x, y, z), necne. Supponatur x e$$e invariabilis quantitas, & re$ultat (x^2 z + d) √(z^2 + c x^2)y^. + ((x^2 y + c)(√(z^2 + c x^2) + z)z^. = 0; ducatur hæc æquatio in {1 / √(z^2 + c x^2)}, & re$ultat (x^2 z + d)y^. + (x^2 y + c +{z / √(z^2 + c x^2)})z^. = 0, cujus fluens (P) erit x^2 z y + d y + c z + √(z^2 + c x^2) + A: ubi A e$t functio quantitatis x: eodem modo $upponatur z invariabilis, & ducatur æquatio re$ultans in prædictam [0217]ÆQUATIONIBUS. quantitatem 1/√(z^2 + c x^2), & invenietur fluens (R) re$ultantis fluxio- nis x^2 y z + d y + √(z^2 + c x^2) + B, ubi B e$t functio quantitatis z: & ultimo $upponatur y invariabilis, & ducatur æquatio re$ultans in {1 / √(z^2 + c x^2)}, & fluxionis re$ultantis invenietur fluens (Q) x^2 y z + c z + √(z^2 + c x^2) + C, ubi C e$t functio quantitatis y: terminus vero x^2 y z, in quo continentur tres variabiles quantitates x, y, z, idem e$t in tribus fluentibus P, Q & R; & termini, in quibus continetur z, iidem $unt in fluentibus P & Q; termini, in quibus habetur y, iidem $unt in fluentibus P & R, &c.; unde fluens datæ fluxionis invenitur x^2 y z + d y + c z + √(z^2 + c x^2) + A′ = 0, ubi A′ denotat inva- riabilem quantitatem ad libitum a$$umendam.

2. 1. Sæpe vero ex hâc methodo haud con$tat re$olutio problema- tis, quoniam haud cogno$cuntur methodi, e quibus deduci po$$unt prædicti cognati multiplicatores; in his ca$ibus confugiendum e$t ad infinitas $eries, i. e. inveniatur variabilis quantitas (x) in terminis progredientibus $ecundum dimen$iones reliquarum (y, z), $i modo fieri po$$it, & confit problema.

2. 2. For$an vero in fluxionalibus æquationibus $uperiorum (n) ordinum haud inveniri pote$t variabilis quantitas (x) in terminis re- liquarum (y, z); $ed for$an inveniri pote$t fluxio (x^. ^m) ordinis m, ubi m minor e$t quam n, in terminis $ecundum dimen$iones reliquarum (y, z) & earum fluxiones ordinum haud majorum quam n - m pro- gredientibus, i. e. reduci pote$t data fluxionalis æquatio in alteram minoris ordinis quam n.

2. 3. Eadem principia etiam applicari po$$unt ad æquationem qua- tuor vel plures variabiles quantitates & earum fluxiones habentem; & $ic ad duas vel plures æquationes tres vel plures variabiles quanti- titates & earum fluxiones involventes.

3. Sit æquatio P x^. + Q y^. + R z^. = 0; & M quantitas, quæ in da- tam æquationem ducta, præbet fluxionem, cujus fluens inveniri po- [0218]DE FLUXIONALIBUS te$t, i. e. $it quantitas M P x^. + M Q y^. + M R z^. integrabilis; & $int M^. = m x^. + m′ y^. + m″ z^., P^. = p x^. + p′ y^. + p″ z^., Q = q x^. + q′ y^. + q″ z^. & R = r x^. + r′ y^. + r″ z^.; tum ex theor. 2. erit M p′ + Pm′ = M q + Q m, M p″ + P m″ = M r + R m & M q′ + Q m″ = M r′ + R m′; ducantur æquationes exinde re$ultantes M p′ + P m′ - M q - Q m = 0, M p″ + P m″ - M r - R m = 0 & M q″ + Q m″ - M r′ - R m′ = 0 re$pective in R, Q & P; & $umma trium quantitatum re$ultan- tium erit M(R × (p′ - q) - Q(p″ - r) + P(q″ - r′) = 0; unde æquatio erit integrabilis, $i modo R(p′ - q) - Q(p″ - r) + P(q″ - r) = 0; $in aliter non.

3. 2. Sit æquatio P x^. + Q y^. + R z^. + S v^. + T w^. + &c. = 0: 1^mo . a$$umantur omnes quantitates præter qua$cunque tres (x, y & z) tanquam invariabiles, & re$ultat æquatio P x^. + Q y^. + R z^. = 0; per præcedentem methodum inveniatur, annon hæc æquatio $it integrabi- lis; $i modo $it integrabilis, tum a$$umantur omnes quantitates præter tres alias (x, y & v) tanquam invariabiles; & inveniatur, annon æquatio ex hâc hypothe$i re$ultans $it integrabilis; $i modo $it inte- grabilis, tum a$$umantur omnes quantitates præter qua$cunque tres alias tanquam invariabiles, & $i omnes æquationes ex huju$modi a$- $umptis re$ultantes, $int integrabiles; tum integrari pote$t re$ultans æquatio; $in aliter vero non.

Fluxiones ({M^.. P / y^. z^.}) = ({M^.. Q / x^. z^.}) = ({M^.. R / x^. y^.}); & ({M^.. P / y^. v^.}) = ({M^.. Q / x^. v^.}) = ({M^.. S / y^. x^.}), &c.; ({M^... P / y^. z^. v^.}) = ({M^... Q / x^. z^. v^.}) = ({M^... R / x^. y^. v^.}) = ({M^... S / x^. y^. z^.}), &c., ubi quantitas ({V^... / x^. y^. z^.}) = Z denotat quantitatem ex hac methodo in- ventam; nempe ex deducendo fluxionem Wx^. quantitatis V ex hypo- the$i quod x $olummodo $it variabilis; deinde fluxionem Y y^. quanti- tatis W, ex hypothe$i quod y $olummodo $it variabilis; & tertio fluxi- onem Z z^. quantitatis Y ex hypothe$i quod z $olummodo $it variabilis.

[0219]Æ QUATIONIBUS.

Cor. Sit æquatio fluxionalis (n) variabiles quantitates & earum fluxiones habens; tum re$ultant n × {n - 1 / 2} × {n - 2 / 3} æquationes, e qui- bus dici pote$t, annon data fluxionalis æquatio $it integrabilis.

3. 3. Si modo fluxiones variabilium $uperiorum (n, n - 1, n - 2, &c.) ordinum in datâ æquatione (α = 0) contineantur: ducatur data æquatio in M, functionem variabilium (x, y, z, &c.) in datâ æquati- one contentarum, & earum fluxionum (n - 1, n - 2, n - 3,. 3, 2, 1) ordinum; a$$umatur N functio incognita prædictarum (x, y, z, &c.) variabilium; deinde inveniatur fluxio (n) ordinis functionis N; & ex æquatis corre$pondentibus terminis re$ultantis & quantitatis M α fluxionis n ordinis deduci pote$t, annon data æquatio $it integrabilis.

PROB. XLI.

Datâ æquatione relationem inter quantitates x & y & earum fluxiones de$ignante; & datâ quantitate, quæ e$t fluxionalis functio (P) literarum x & y; invenire æquationem duas involventem incognitas quantitates z & v, ita ut fluens quantitatis _(_quæ e$t eadem fluxionalis functio (P) lite- rarum z & v, ac prædicta fuit functio literarum x & y_)_ algebraicè e fluente datæ quantitatis, quæ fuit data fluxionalis functio literarum x & y, deduci pote$t.

A$$umantur duæ æquationes, quæ exprimunt algebraicas relatio- nes inter x, y & z, v; ita ut fluens functionis P literarum z & v de- duci pote$t algebraicè e fluente functionis P, i. e. e datâ fluxionali functione literarum x & y; ita reducantur æquationes re$ultantes, ut exterminentur incognitæ quantitates x & y, & re$ultat quæ$ita æquatio relationem inter z & v exprimens.

Ex. Datâ æquatione relationem inter x & y & earum fluxiones ex- primente; $it data quantitas functio (P = y x^.) quantitatum x & y: a$$umantur duæ æquationes x = a z + b v + c & y = p z + q v + r; [0220]DE FLUXIONALIBUS & con$equenter a′ x + b′ y + c′ = z & p′ x + q′ y + r′ = v; fluens functionis P = v z^. inveniri pote$t, $i modo fluens fluxionis y x^. inve- niri po$$it; nam y x^. = (p z + q v + r) × (a z^. + b v^.), cujus fluens $. y x^. = {1 / 2}a p z^2 + r a z + {1 / 2} b q v^2 + r b v + b p z v + $. (a q - b p)v z^.; unde e fluente $. y x^. deduci pote$t $. v z^.; $cribantur hæ quantitates in datâ æquatione pro $uis valoribus, & re$ultat æquatio quæ$ita relatio- nem inter z & v exprimens.

Cor. 1. Datâ fluente fluxionis y x^., ex eâ $emper inveniri pote$t fluens fluxionis vz^. vel zv^.: datis fluentibus trium fluxionum y x^., y^2 x^., y x x^.; & ex iis $emper inveniri po$$unt fluentes fluxionum v z^., v^2 z^., v z z^.; z v^., z^2 v^., z v v^.: datis fluentibus $ex fluxionum y x^., y^2 x^., y x x^., y^3 x^., y^2 x x^., y x^2 x^., & $emper ex iis algebraicè exprimi po$$unt fluentes fluxionum u z^., v^2 z^., v z z^.; v^3 z^., v z^2 z^., &c. z v^., z^2 v^., &c. Datis vero fluentibus (n · {n - 1 / 2}) inter $e independentibus fluxionum huju$ce formulæ y^n-1 x^., y^n-2 x x^., y^n-3 x^2 x^., &c. y^n-2 x^., y^n-3 x x^., y^n-4 x^2 x^., &c. y^n-3 x^., y^n-4 x x^., &c. ... y^2 x^., y x x^.; y x^.; & ex iis $emper deduci po$- $unt fluentes omnium con$imilium quantitatum v^n-1 z^., v^n-2 z z^., v^n-3 z^2 z^., &c. v^n-2 z^., v^n-3 z z^., &c. ... v^2 z^., v z z^.; v z^.; z^2 v^., z v v^., &c...; z^n-1 v^., z^n-2 v v^., &c.

Cor. 2. Datis n · {n - 1 / 2} diver$is, i. e. inter $e independentibus æqua- tionibus huju$ce generis a $. y x^. + b $. y^2 x^. + c $. y x x^. + d $. y^3 x^. + &c. ... k $. y^n-1 x^. = l; ubi literæ a, b, c, d, &c. k denotant datas invaria- biles quantitates; tum $acile con$tabit omnis valor cuju$cunque quantitatis huju$ce generis p $. v z^. + q $. v^2 z^. + r $. v z z^. + &c. t $. v^n-1 z^. + p′ $. z v^. + q′ $. z^2 v^. + &c.; ubi p, q, r, &c.; t, p′, q′, r′, &c. datas etiam denotant invariabiles quantitates.

Et $ic de datis con$imilibus quantitatibus.

[0221]ÆQUATIONIBUS. THEOR. XXI.

1. Si area inter quo$cunque duos valores ab$ci$$æ (x) curvæ $emper detegi po$$it, tum area inter quo$cunque datos valores cuju$cunque ab$ci$$æ (z) eju$dem curvæ $emper detegi pote$t.

Transformetur enim data æquatio relationem inter ab$ci$$am x & ejus ordinatam y exprimens in alteram relationem inter novam ab$ci$- $am z & ejus corre$pondentes ordinatas (v) de$ignantem; per tri- gonometriam cognitum e$t a x + b y + c = z & px + qy + r = v; ubi a, b, c; p, q, & r invariabiles denotant coefficientes inveniendas, unde fluxio datæ curvæ ad novam ab$ci$$am erit ut vz^. = (p x + q y + r) (ax^. + by^.); & con$equenter $. vz^. = $. (px + qy + r)(ax^. + by^.) = pa {x^2 / 2} + {qby^2 / 2} + rax + rby + qa$.yx^. + pbxy - pb$.yx^.; & exinde e fluente $.yx^. datâ $emper acquiri pote$t $.vz^.

2. Datis generaliter centris gravitatis ad duas ab$ci$$as, tum ple- rumque dabuntur centra gravitatis ad omnes ab$ci$$as: detur enim generaliter {$.yxx^. / $.yx^.}, dabuntur plerumque $. y x x^. & $. y x^.: detur etiam centrum gravitatis generaliter ad alteram ab$ci$$am, quod e præce- dente non pendet; tum dabitur etiam generaliter $.y^2 x^.; $ed datis generaliter $. y x x^., $. y x^. & $.y^2 x^. per præcedentem propo$itionem $em- per acquiri po$$unt generaliter $. v^2 z^., $. v z z^. & $.vz^., & con$equenter generaliter centra gravitatis ad omnes ab$ci$$as.

Ex ii$dem principiis, $i dentur generaliter centra percu$$ionum, viz. {$.yx^2 x^. / $.yxx^.} ad quinque ab$ci$$as; tum plerumque ea dabuntur ad om- nes ab$ci$$as.

3. E datis generaliter contentis $olidorum a rotatione curvæ circa tres diver$os axes generatorum, quorum unus $it $.3, 1456 &c. × y^2 x^.; dabuntur contenta $olidorum a rotatione eju$dem curvæ circa quo$cunque alios axes generatorum: viz. e tribus independentibus valoribus generalibus fluentium fluxionum a y^2 x^. + βy x x^. + λyx^. erui pote$t generaliter $.v^2 z^..

[0222]DE FLUXIONALIBUS

4. Circa tres axes $ecum quo$cunque datos angulos facientes gy- retur quæcunque curva, cujus ab$ci$$æ & ordinatæ $unt re$pective x & y; transformetur data curva in alteram $ub$tituendo pro x = a′w + b′u + c′ & pro y = p′ w + q′ u + r′; ubi w & u re$pective denotant ab$ci$$am & ejus corre$pondentes ordinatas novæ curvæ & a′, b′, c′, &c.; p′, q′ & r′ invariabiles coefficientes: gyretur hæc curva re$ultans circa $uum axem, & e datis contentis $olidorum datæ curvæ circa tres axes rotatione generatorum inter $e independentibus deduci pote$t $olidum generatum e rotatione po$terioris curvæ circa $uum axem.

Con$tat e principiis prius traditis.

Ea, quæ prius tradita fuere de areis, centris gravitatis & percu$- $ionum, & contentis $olidorum a rotatione datæ curvæ circa ejus axes; mutatis mutandis, æque ad areas, prædicta centra & $olida cuju$cun- que curvæ ex hâc $ub$titutione exortæ applicari po$$unt.

Cor. 4. Si pro x & y in datâ æquatione $cribantur re$pective av^2 + bzv + cz^2 + dz + ev + A & fv^2 + gvz + bz^2 + lz + mv + B vel quæcunque rationales vel irrationales quantitates; facile deduci po$$unt huju$modi propo$itiones.

Et $ic de fluxionalibus functionibus quantitatum z & v pro datis fluxionalibus functionibus quantitatum x & y in datâ æquatione vel datis æquationibus $criptis; exinde enim con$imilia deduci po$$unt.

THEOR. XXII.

In fluxione yx^. pro x & y $cribantur re$pective az^m + (b + cv) z^m-1 + (d + ev + fv^2)z^m-2 + &c. & Az^r + (B + Cv)z^r-1 + (D + Ev + Fv^2)z^r-2 + &c. ubi a, b, c, d, e, f, &c. A, B, C, D, E, F, &c. $unt quæcunque invariabiles coefficientes, m vero & r integri nu- meri; & ex fluentibus independentibus (m + r - 1).{m + r / 2} fluxio- num ex prædictis $ub$titutionibus re$ultantium datis, per $implices æquationes erui po$$unt fluentes omnium fluxionum exinde re$ultan- tium; etiamque e prædictis fluentibus datis erui po$$unt fluentes [0223]ÆQUATIONIBUS. quarumcunque fluxionum huju$ce formulæ z^z v^β z^., $i modo α + β haud major $it quam m + r - 1, & α & β $int integri numeri.

Totidem (m + r - 1) × {m + r / 2} enim in datâ fluxione y x^. continen- tur diver$æ fluxiones, quarum fluentes $unt independentes, viz. $. v z^., $. v^2 z^., $.vzz^., $.v^2 z^., $.v^2 zz^.,$.vz^2 z^., &c.

Et $ic ratiocinari liceat de aliis $ub$titutionibus in plurimis aliis fluxionibus; viz. exponentialibus, fluentialibus, &c.

THEOR. XXIII.

1. Sit data æquatio (a y + b x + c)x^. + (A y + B x + C)y^. = 0; & ex datâ fluente fluxionis y x^. (quæ plerumque acquiri pote$t e datâ æquatione) erui pote$t fluens cuju$cunque formulæ (by^m + (k + lx) y^m-1 + &c.)x^. + (Hy^m + (K + Lx)y^m-1 + &c.)y^.; ubi literæ b, k, l, &c. H, K, L, &c. qua$cunque invariabiles coefficientes re$pective de- notant; & m e$t integer numerus.

Si enim detur fluens fluxionis y x^. = α, tum dabitur fluens omnium fluxionum formularum y y^., y x^., x y^., xx^., x^., y^.; ducatur data æquatio in x & y re$pective, & re$ultant (ayx + bx^2 + cx)x^. + (Ayx + Bx^2 + Cx)y^. = π = 0 & (ay^2 + bxy + cy)x^. + (Ay^2 + Bxy + Cy)y^. = ζ = 0; $ed per hypothe$in dantur fluentes omnium fluxionum hi$ce æquationibus contentarum præter duas fluentes (P & Q) flu- xionum y x x^. & yxy^.; vel fluxionum x^2 y^. & y^2 x^., quæ ex iis pendent; erunt enim x^2 y - 2P = $.x^2 y^. & y^2 x - 2Q = $.y^2 x^.; $cribantur hæ duæ quantitates pro $uis valoribus in æquationibus π = 0 & ζ = 0 & re$ultant Bx^2 y + (a - 2B)P + {bx^3 / 3} + {cx^2 / 2} + AQ + C(xy - α) + F = 0 & ay^2 x + (B - 2a)Q + bP + cα + {Ay^3 / 3} + {Cy^2 / 2} + G = 0, (ubi F & G $unt invariabiles quantitates) quæ $unt fluentes duarum re$ultantium æquationum π = 0 & ζ = 0; i. e. exoriuntur duæ æqua- tiones, quarum $ingulæ fluentes præter P & Q deduci po$$unt, ergo [0224]DE FLUXIONALIBUS facile acquiri po$$unt fluentes P & Q; & exinde dabitur fluens omnis fluxionis huju$ce formulæ (α′y^2 + βyx + γx^2 + δy + εx + τ)x^. + (π′y^2 + ζ′yx + σx^2 + τy + λx + μ)y^., ubi α′, β, γ, &c. π′, ζ′, σ, &c. $unt invariabiles quantitates; & $ic deinceps.

2. Sit data æquatio (ay^n + (b + cx)y^n-1 + (d + ex + fx^2)y^n-2 + &c.)x^. + (Ay^n + (B + Cx)y^n-1 + &c.)y^. = 0, & dentur fluentes $ingularum quantitatum huju$ce generis (V)(by^m + (k + lx)y^m-1 + &c.)x^. + (Hy^m + (K + Lx)y^m-1 + &c.)y^., ubi literæ b, k, l, &c. H, K, L, &c. qua$cunque invariabiles quantitates re$pective denotant; etiamque dentur (n - 1) fluentes fluxionum huju$ce generis (W) (αy^m+1 + (β + γx)y^m + &c.)x^. + (πy^m+1 + ζy^m x + &c.)y^., (ubi n & m integri $unt numeri affirmativi, & m major quam n; & α, β, γ, &c. π, ζ, &c. $unt invariabiles quantitates) quæ nec a fluentibus quibu$- cunque in V, nec a $e invicem detegi po$$unt; tum ex omnibus flu- entibus generis (V) & prædictis n - 1 fluentibus detegi pote$t quæ- cunque fluens generis W.

Ducatur data æquatio re$pective in (m - n + 2) quantitates y^m-k+1, y^m-n x, y^m-n-1 x^2, y^m-n-2 x^3, y^m-n-3 x^4, &c.; & re$ultant m - n + 2 di- ver$æ æquationes: $ed in æquatione W continentur (m + 1) fluxio- nes, viz. y^m+1 x^., y^m x x^., y^m-1 x^2 x^., &c...yx^m x^.; quarum fluentes for$an nec a $e invicem, nec a fluentibus fluxionum in V contentarum de- duci po$$unt: unde ex (m + 1) - (m - n + 2) = n - 1 indepen- dentibus fluentibus fluxionum formularum y^m+1 x^., y^m xx^., y^m-1 x^2 x^., y^m-2 x^3 x^., &c. & ex omnibus fluentibus generis V acquiri po$$unt fluentes omnium fluxionum generis W.

In quamplurimis ca$ibus fluens W e paucioribus fluentibus quam n - 1 prædictis deduci pote$t.

In nonnullis ca$ibus denominator nihilo evadat æqualis, in quo ca$u fluens quæ$ita e prædictis non detegi pote$t.

Eadem etiam ad algebraicas, fluxionales & incrementiales æqua- tiones; & fluxionales, &c. quantitates applicari po$$unt; in pleri$que ca$ibus facile deduci pote$t numerus datarum $luentium vel inte- gralium, quas exigit data æquatio.

[0225]ÆQUATIONIBUS. PROB. XLII.

Datâ algebraicâ vel fluxionali œquatione α = 0, & fluxionali quanti- tate π; in quibu$dam ca$ibus invenire, annon fluens quantitatis π detegi po- te$t ope datarum fluentium.

Inveniatur, annon data quantitas π $it $umma quarumcunque di- rectarum functionum quantitatis α in finitas quantitates vel variabiles vel invariabiles ductarum; & fluxionum, quarum fluentes detegi po$- $unt ope datarum fluentium.

Hoc vero $æpe perfici pote$t, 1^mo. ex auferendo vel pro nihilo ha- bendo qua$cunque quantitates in quantitate π contentas, quæ e datis fluentibus detegi po$$unt: 2^do. ex ob$ervando & inter $e compa- rando irrationales quantitates, & dimen$iones & rationalium & ir- rationalium quantitatum in α & π contentarum; exinde enim con- $tabunt $unctiones quantitatum in α contentarum; etiamque quanti- tates, in quas ducendæ $unt prædictæ functiones, ita ut præbeant quantitates in π contentas, quæ haud detegi po$$unt ope datarum fluentium: 3^tio . e reducendo per methodum prius traditam datam fluxionalem quantitatem in fluxionalem quantitatem, cujus ordo $it minor quam ordo datæ fluxionalis æquationis; & deinde ex inveni- endo, utrum fluens fluxionalis quantitatis re$ultantis ope datarum fluentium deduci pote$t, necne.

Per hanc methodum, viz. reductionem fluxionalis quantitatis ita ut ejus ordo minor $it quam datæ fluxionalis æquationis ordo, $æpe ex re$ultante fluxione detegi pote$t, utrum fluens datæ fluxionalis quan- titatis $ic exprimi pote$t, necne; cum in eâ plures involvantur varia- biles quantitates & earum fluxiones.

PROB. XLIII.

Data fluxionali œquatione duas variabiles quantitates x & y, & earum fluxiones involvente; invenire functiones prœdictarum quantitatum x & y & earum fluxionum, quarum fluentes dantur.

[0226]DE FLUXIONALIBUS

1. Dividatur data æquatio in duas partes $ibi invicem æquales, ita ut fluens unius partis inveniri pote$t; tum etiam erit fluens alterius partis.

2. Ducatur data æquatio in quamcunque quantitatem, & ita di- vidatur fluxionalis æquatio re$ultans in duas inter $e æquales partes, ut fluens unius partis inveniatur; & erit etiam fluens alterius.

Ex. 1. Sit fluxionalis æquatio yx^. = nax^n-1 y^m x^. + may^m-1 x^m y^. + bx^r x^. + cy^s y^., & erit fluens fluxionis yx^., i. e. area curvæ, cujus relatio inter ab$ci$$am & ejus corre$pondentes ordinatas per datam fluxiona- lem æquationem exprimitur = a x^n y^m + {bx^r+1 / r + 1} + {cy^s+1 / s + 1} + A, ubi A $it invariabilis quantitas.

Ex. 2. Sit y^2 x = P Q^. + Q P^. + A x^. + B y^., ubi A & B $unt quæcunque functiones incognitarum quantitatum x & y re$pective; tum erit fluens fluxionis 3, 1416 y^2 x^. (i.e. contentum $olidi generati a rotatione curvæ, cujus relatio inter ab$ci$$as & ejus corre$ponden- tes ordinatas de$ignatur per datam æquationem) = 3, 1416 (QP + $. Ax^. + $.By^. + a), ubi a e$t invariabilis quantitas.

Ex. 3. Sit æquatio fluxionalis y x^. + n x y^. = by^. √(x^2n + cx^n + d), ducatur data æquatio in quamcunque quantitatem, e. g. y^n-1, & re- $ultat æquatio y^n x^. + n y^n-1 x y^. = by^n-1 y^. √(x^2n + cx^n + d), unde y^n x = b$.y^n-1 y^. √(x^2n + cx^n + d) + a.

3. Si modo e fluentibus prædictâ methodo inve$tigatis deduci po$- fint fluentes plurium fluxionum, tum harum fluxionum con$equentur fluentes.

Ex. Sit fluxionalis æquatio y^2 x^. = a x^r x^. + by^s y^.; & $i modo detur fluens fluxionis y^2 x^. (A) = {a x^r+1 / r+1} + {by^s+1 / s + 1} + c, dabitur etiam fluens fluxionis y x y^. (B^.); nam {y^2 x - A / Q} = B = {y^2 x / Q} - {ax^r+1 / Q(r + 1)} -{bx^s+1 / Q(s + 1)} - {c / 2}.

[0227]ÆQUATIONIBUS.

Et $ic de pluribus fluxionalibus æquationibus datis.

4. Sit æquatio vel algebraica vel fluxionalis P = 0, dentur fluen- tes fluxionum L, M, &c. & $int etiam R, S, T, &c. fluxiones, quarum fluentes e fluentibus datis fluxionum L, M, &c. vel $eparatim vel con- junctim deduci po$$unt: tum fluens cuju$cunque fluxionis αφ: (P) + aR + bS + cT + &c. + σ (ubi a, b, c, &c. $unt invariabiles quantitates; & α quæcunque fluxio vel quantitas, quæ pro ejus deno- minatore haud habet functionem quantitatis P vel ejus divi$orem; & φ: (P) $it quæcunque functio quantitatis P = 0, in quâ nulla continetur pote$tas vel nihilo æqualis vel negativa) e prædictis flu- entibus L, M, &c. deduci pote$t.

Cor. Datâ quâcunque fluxione (Q), facile deduci po$$unt infinitæ fluxionales æquationes, quarum fluens fluxionis (Q) inveniri pote$t. Dividatur fluxio Q in qua$cunque duas partes α & β, i.e. Q = α + β, quarum una (α) inveniri pote$t ope datarum fluentium; tum vel affumatur β = 0, vel quæcunque functio (π) quantitatis β nihilo æqualis, quæ talis $it, ut functio (π) quantitatis β haud in $e po- te$tatem contineat nihilo æqualem vel negativam; & deducitur æqua- tio quæ$ita.

PROB. XLIV.

Datâ fluxionali æquatione P x^. + Q y^. = 0, ubi P & Q $unt functiones quantitatum x & y; invenire fluentem fluxionis W x^. + Ry^., ubi W & R $unt functiones quantitatum x & y..

1<_>mo. Si W^. = αx^. + β y^., & R^. = πx^. + ζy^., & β = π; tum integrari pote$t data fluxio.

2. Sit (A P + W)x^. + (AQ + R)y^., ubi A e$t functio quantita- tum x & y, fluxio integrabilis; tum inveniatur ejus fluens, quæ etiam erit fluens fluxionis W x^. + Ry^..

3. Si modo fluens (α = 0) fluxionalis æquationis P x^. + Q y^. = 0 detegi po$$it, tum in datâ fluxione (W x^. + Ry^.) pro y^. $cribatur - {Px^. / Q}, [0228]DE FLUXIONALIBUS & re$ultat {W Q - RP / Q}x^.; in hâc fluxione pro y $cribatur ejus valor, qui erit functio quantitatis x ex datâ æquation α = 0 deducta, unde re$ultat data fluxio = x^. φ: (x), cujus fluens (M) inveniri pote$t.

Sit H = con$t. fluens fluxionalis æquationis P x^. + Q y^. = 0, tum erit H - con$t. + M fluens datæ fluxionis W x^. + Ry^..

4. Affumatur W x^. + R y^. = V^.; tum ita reducantur duæ æquatio- nes W x^. + R y^. = V^. & Px^. + Qy^. = 0 in unam, ut exterminentur vel y & y^.; vel x & x^., & refultat fluxionalis æquatio, cujus fluens e$t quæ$ita.

Et $ic de pluribus æquationibus plures variabiles quantitates & fluxiones $uperiorum ordinum habentibus.

5. Datâ fluxionali æquatione r ordinis, cujus variabiles quantitates $int x & y, & x^. $it con$tans; datâ etiam fluxionali quantitate, quæ $it functio variabilium x, y & fluxionum x^., y^., y^.., ... y^. ^r + m u$que ad or- dinem r + m; invenire quantitatem fluxionalem, quæ haud implicat fluxiones quantitatis y, quarum ordo $uperior $it ordini r - 1, i. e. $uperior ordini fluxionis y^. ^r - 1, datæ fluxionali quantitati æqualem.

Inveniatur fluxio datæ æquationis ordinis m; ex æquatione re$ul- tante deducatur valor fluxionis y^. ^r+m; $cribatur valor inventus pro y^. ^r+m in datâ fluxionali quantitate, & exterminabitur y^. ^r+m; ex eodem proce$$u repetito exterminari poffunt fluxiones y^. ^r+m-1, y^. ^r+m-2, &c. ad y^. ^r-1; & tandem re$ultabit quantitas quæ$ita.

Eadem principia etiam applicari po$$unt ad plures fluxionales æquationes & fluxionalem quantitatem datam plures variabiles quan- titates & earum fluxiones habentes.

THEOR. XXIV.

Datis fluxionalibus æquationibus involventibus x & y, &c. & ea- rum fluxiones, & datâ functione P quantitatum x & y, &c. & earum [0229]ÆQUATIONIBUS. fluxionum. Scribantur pro x & y, &c. & earum fluxionibus in datis æquationibus & datâ functione P quæcunque functiones literarum z & v, &c. & earum fluxiones; & re$ultabunt æquationes relationem inter z & v, &c. & earum fluxiones exprimentes, & functio Q quan- titatum z & v, &c. & earum fluxionum, cujus fluens e fluente fun- ctionis P con$equitur $cribendo in eâ pro x & y, &c. & earum fluxio- nibus prædictas functiones quantitatum z, v, &c. & earum fluxiones.

PROB. XLV.

1. Invenire, quando duo valores quantitatis y in fluxionali æquatione duas variabiles quantitates x & y & earum fluxiones x^. & y^. babente $int inter $e æquales, i. e. in æquatione αx^. = βy^., ubi α & β $unt quæcunque algebraicæ functiones literarum x & y.

Inveniatur fluens huju$ce æquationis, quæ $it P = Q, ubi P & Q $unt etiam quæcunque functiones literarum x & y, & æquatio vere correcta erit P = Q + a, ubi a e$t invariabilis quantitas ad libitum a$$umenda; $ed duo valores quantitatis y fiunt inter $e æquales, cum βy^. = 0 & exinde α x^. = 0, & β = 0; in quâ æquatione exprimitur relatio inter x & y, & in æquatione correctâ P = Q + a exprimitur relatio inter tres incognitas quantitates x, y & a; unde duæ re$ultant æquationes tres incognitas quantitates x, y & a habentes, & con$e- quenter haud detegi pote$t, quando duæ radices quantitatis y fiant inter $e æquales, ni detur quantitas corrigens a.

Dato autem uno valore (π) quantitatum x vel y, quando fiant duo valores quantitatis y inter $e æquales, exinde deduci po$$unt reli- qui: dato enim valore quantitatis x vel y in æquatione β = 0, exinde $equitur ejus corre$pondens valore quantitatis (y vel x), quibus valo- ribus pro y & x in æquatione P = Q + a $ub$titutis, re$ultat valor quantitatis a, & exinde duæ æquationes β = 0 & P = Q + a, quæ duas incognitas quantitates x & y habent, e quibus deduci po$$unt reliqui valores quantitatum x & y, quando duo valores quantitatis y fiant in- ter $e æquales.

[0230]DE FLUXIONALIBUS

Si vero æquatio P = Q haud exprimi po$$it in finitis terminis, tum confugiendum e$t ad infinitas $eries.

2. Datâ æquatione fluxionali n ordinis, i.e. in quâ continetur fluxio y^. ^n, & x fluit uniformiter; invenire generaliter quando duo va- lores quantitatum (x vel y) fiant inter $e æquales. Nece$$e e$t in hoc ca$u, ut dentur n corre$pondentes valores $ingularum fluxionum in datâ æquatione contentarum, e. g. y^. ^n, y^. ^n-1, &c. x^., etiamque quantita- tum x & y, quando duo valores quantitatum x vel y fiant inter $e æquales; & his datis generaliter deduci pote$t, quando duo valores prædictarum quantitatum fiant inter $e æquales.

Hoc con$tat ex eo, quod n incognitas & invariabiles coefficientes habet æquatio vere correcta.

Eadem etiam applicari po$$unt ad duas vel plures æquationes tres vel plures variabiles quantitates habentes.

Hæc ratiocinandi methodus haud $olummodo ad problemata re$ol- venda, in quibus duo valores quantitatum x vel y inter $e æquales e$$e $upponuntur, $ed etiam in quamplurima alia extendi pote$t.

3. Datâ. fluxionali æquatione duas variabiles quantitates & earum fluxiones habente, invenire coefficientium con$titutionem.

Habeat æquatio n terminos, & con$equenter horum terminorum $unt n coefficientes: $cribantur pro n corre$pondentibus valoribus incognitarum quantitatum (x & y) α, β, γ, δ, &c. π, ζ, σ, τ, &c. pro corre$pondentibus valoribus primarum fluxionum re$pective α^., β^., γ^., δ^., &c. π^., δ^., σ^., τ^., &c. & $ic de de$ignandis $ecundis, tertiis, &c. flu- xionibus incognitarum quantitatum (x & y): $ub$tituantur hæ literæ pro $uis quantitatibus in datâ æquatione, & re$ultant n æquationes totidem incognitas coefficientes habentes, e quibus inveniri poffunt coefficientium conftitutiones.

Multa de impo$$ibilibus radicibus, &c. deduci po$$unt fere ex eâ- dem ratiocinandi methodo in fluxionalibus ac in algebraicis æquati- onibus u$itatâ.

[0231]ÆQUATIONIBUS. PROB. XLVI.

Datis formulis fluxionum; invenire fluxiones prœdictarum formularum, quarum fluentes exprimi po$$unt in finitis terminis, vel in terminis fluen- tium, quarum dantur fluxiones.

J<_>mo. Ex datis formulis fluxionum inveniantur formulæ quantita- tum in prædictis formulis contentarum, ita ut fluentes fluxionum re$ultantium datarum formularum re$pective exprimi po$$unt vel per finitos terminos vel per fluentes prædictas, quarum fluxiones dantur: deinde ex comparandis quantitatibus prædictarum formularum inter $e $æpe inveniri pote$t formula quantitatis, quæ $atisfacit omnibus conditionibus quæ$tionis prædictæ.

Ex. 1. Sit data fluxio = P x^., cujus fluens acquiri pote$t, ubi P e$t functio variabilium x & y; a$$umatur quæcunque functio (Q) quan- titatis x pro fluente; tum erit {Q^. / x^.} = P, quæ e$t algebraica æquatio exprimens relationem inter x & y, unde ex variabili x detegi pote$t variabilis (y), ita ut fluens datæ fluxionis inveniri pote$t.

Ex. 2. Sint duæ formulæ y x^. & y^2 x^., quarum fluentes requiruntur in finitis terminis: a$$umatur pro fluente fluxionis y x^. quantitas for- mulæ {(a + b x + c x^2 + d x^3 + &c.)^1{1 / 2} × (A + Bx + Cx^2 + D x^3 + &c.)/(h + k x)^{λ / μ}}; cujus fluxio $it P x^.; tum fiat P = y, & P^2 x^. = y^2 x^. (exceptis excipi- endis) etiam erit fluxio, cujus fluens in finitis terminis exprimi po- te$t: & $ic detegi po$$unt plures huju$modi formulæ.

Ex. 3. Sint duæ fluxiones y x^. & √ (x^.^2 + y^.^2); pro y^. $cribatur z x^., & evadent $. y x^. = y x - $. x y^. = y x - $. z x x^. & √(1 + z^2) x^. = √ (x^.^2 + y^.^2); invenire (z) functionem quantitatis x, quæ reddit fluxiones z x x^. & √ (1 + z^2) x^. formularum, quarum fluentes exprimi po$$unt in finitis terminis quantitatis (x): 1<_>mo. a$$umatur x = z^λ, & evadent [0232]DE FLUXIONALIBUS duæ fluxiones z x x^. = λ z^2λ z^. & √ (1 + z^2) x^. = λ (1 + z^2)^{1 / 2} × z^λ-1 z^.; unde, $i λ $it par numerus, fluentes duarum prædictarum fluxionum $emper inveniri po$$unt.

Ex. 4. A$$umatur x = {(1 - R^2)^{3 / 2} P^./- R^.}, y = {P R^. - R P^. (1 - R^2) / R^.}, ubi R fluat uniformiter; tum erit √ (x^.^2 + y^.^2) = √ ({(1 - R^2)^3 P^.. ^2 - 6 R (1 - R^2)2 R R^. P^. P^.. + 9 R^2 R^.^2 P^.^2 × (1 - R^2) / R^.^2} + {R^2 (1 - R^2)^2 P^.. ^2 - 6 R^3 (1 - R^2) R^. P^. P^.. + 9 R^4 R^.^2 P^.^2 / R^.^2}) = {(1 - R^2) P^.. - 3 R R^. P^. / R^.}, cujus fluens e$t - $. R P^. + {(1 - R^2) P^. / R^.}.

Cor. Hæc methodus in detegendis curvis algebraicis, quæ rectifi- cari po$$unt, haud multum u$ui in$ervit.

THEOR. XXV.

Sit quæcunque fluxionalis æquatio duas involvens incognitas quantitates x & y & earum fluxiones, in quâ x fluit uniformiter; $emper erit quantitas, quæ in datam æquationem ducta, creat fluxio- nem, cujus fluens inveniri pote$t.

Ex. g. Sit data fluxio A^. = a x^. + b y^. = 0, $int etiam a^. = α x^. + β y^., b^. = π x^. + ξ y^., & π = β; tum ip$ius æquationis fluens per theor. 2. inveniri pote$t.

Si vero fluens haud inveniri po$$it; $emper datur quantitas L, quæ in datam æquationem a x^. + b y^. = 0 ducta, creat fluxionem L a x^. + L b y^., cujus fluens inveniri pote$t; $it L^. = r x^. + s y^., & per prædictum theorema erit a s + L β = L π + b r.

Con$imiles propo$itiones etiam de fluxionalibus æquationibus $u- periorum ordinum e theor. 2. facile deduci po$$unt.

[0233]ÆQUATIONIBUS.

Cor. 1. Datâ unâ quantitate L, quæ in datam fluxionalem æquatio- nem ducta, præbet fluxionem, cujus fluens inveniri pote$t; ex eâ L facile deduci po$$unt infinitæ aliæ: $it enim data æquatio a x^. + b y^. = 0, quæ ducta in L dat fluxionem L a x^. + L b y^., cujus fluens in- veniri pote$t, quæ $it z: i. e. $it z^. = L a x^. + L b y^.: $it Z quæcunque functio quantitatis z, & fluens fluxionis Z z^. = Z L a x^. + Z L b y^. $em- per deduci pote$t; i. e. fluxio e$t integrabilis: & con$equenter plures deducuntur quantitates Z L, quæ in datam fluxionem a x^. + b y^. ductæ, præbent fluxiones integrabiles.

Cor. 2. Inveniantur duæ quantitates P & R, quæ in a x^. + b y^. ductæ dabunt fluxiones integrabiles P a x^. + P b y^. = V^.; R a x^. + R b y^. = W^., tum V & {P / R} erunt functiones quantitatis W.

Cor. 3. Sit M particularis valor fluxionalis æquationis vel fluxiona- lium æquationum; tum erit quæcunque functio quantitatis M, etiam particularis valor prædictæ fluxionalis æquationis, &c. nam particu- laris $emper in generali continetur.

Cor. 4. Sit æquatio P x^. + Q y^. = 0; ducatur hæc æquatio in M = H × L & re$ultat M (P x^. + Q y^.) = 0, quæ $it integrabilis æquatio, i. e. $it M P x^. + M Q y^. fluxio, cujus fluens inveniri pote$t: $i vero & P & Q nullum habeat divi$orem, qui reciprocat cum quantitate H; tum per prob. 4. & 5, &c. H erit divi$or particularis fluentis fluxionis M (P x^. + Q y^.), & con$equenter H = 0 erit quodam modo particula- ris fluens fluxionalis æquationis P x^. + Q y^. = 0.

Ducatur data æquatio in {1 / M} = {1 / H × L}, & re$ultat {1 / M} (P x^. + Q y^.); $i vero & P & Q nullum habeat divi$orem H, tum per prædicta pro- blemata H erit divi$or vel numeratoris vel denominatoris fluentis fluxionis M (P x^. + Q y^.), & con$equenter H = 0 vel {1 / H} = 0 dici po- te$t quodammodo particularis valor fluxionalis æquationis P x^. + Q y^. = 0.

[0234]DE FLUXIONALIBUS

Et $ic de fluxionalibus æquationibus $uperiorum ordinum: multi- plicator autem $uperioris ordinis pote$t e$$e quæcunque fluxio cuju$- cunque in$erioris ordinis.

THEOR. XXVI.

1. Sit quæcunque fluxionalis æquatio P x^. + Q y^. = 0, ducatur hæc æquatio in q, & $it fluens fluxionis re$ultantis generalis = S; i. e. S^. = q P x^. + q Q y^.; tum fluens datæ æquationis erit univer$aliter quæcunque functio fluentis S.

Sit enim quæcunque functio quantitatis (S) = φ: (S) = 0 fluens quæ$ita, cujus fluxio erit Δ: (S) × S^. = 0, ubi Δ: (S) de$ignat fun- ctionem quantitatis S; dividatur hæc æquatio per Δ: S vel Δ: (S) × q, & re$ultat S^. = 0 vel {S^. / q} = P x^. + Q y^. = 0, quæ e$t data æquatio; ergo quæcunque functio quantitatis S erit re$olutio datæ æquationis.

Hic animadvertendum e$t, quamvis φ: S = 0 e$t fluens datæ flu- xionalis æquationis; attamen V × φ: S = 0, ubi V non e$t functio quantitatis S, non proprie dici pote$t fluens prædictæ fluxionalis æquationis, quamvis in eâ fluentem continet.

2. Sit æquatio A x^. + B y^. = 0, ducatur hæc æquatio in q, ita ut fluens quantitatis q A x^. + q B y^. inveniri po$$it, quæ $it P; pro P vel quâvis functione quantitatis P $cribatur z, & erit z^. = 0.

Et $ic de æquationibus fluxionalibus $uperiorum ordinum.

3. Sit æquatio Q z^. = 0, & erit ejus fluens z = a vel quæcunque functio quantitatis (z) = 0; minime vero Q = 0 proprie dici pote$t re$olutio datæ æquationis; quamvis in ca$ibus pro hâc re de$ignatis ejus fluens erit valor datæ æquationis.

THEOR. XXVII.

1. Sint α = 0 & π = 0 duæ fluxionales æquationes m & r ordinum re$pective, quorum m minor e$t quam r, & K & L duo multiplicatores [0235]ÆQUATIONIBUS. ita con$tituti ut K α + L π = V^., ubi V e$t fluxionalis quantitas or- dinis (r - 1); duæ datæ fluxionales æquationes reducuntur in duas fluxionales V = con$t. & α = 0: & $imiliter deprimi po$$unt æqua- tiones reductæ, &c.

Et $ic de pluribus fluxionalibus æquationibus plures variabiles quantitates habentibus.

2. Sint datæ fluxionales æquationes a = 0, b = 0, c = 0, &c.; & $int α = 0, β = 0, &c. generales fluentes quorumcunque ordinum fluxionalium æquationum a = 0, b = 0, &c.; tum erit generalis fluens fluxionalium æquationum α = 0, β = 0, &c., c = 0, &c. eadem ac generalis fluens fluxionalium æquationum datarum a = 0, b = 0, c = 0, &c.

THEOR. XXVIII.

Si detur fluens generalis (W = 0) fluxionalis æquationis (P = 0), facile exinde deduci pote$t multiplicator M, qui in datam æquatio- nem ductus, reddit eam integrabilem.

In datâ generali fluente $it C quæcunque invariabilis quantitas ge- neralis in datâ fluxionali æquatione haud contenta, & ita reducatur per vulgarem algebram æquatio W, ut fiat C × V = Z, ubi V & Z $unt quantitates in quibus haud continetur C; erit {Z^. V - ZV^. / V^2 P} = M multiplicator quæ$itus.

Et $ic de fluxionalibus æquationibus $uperiorum ordinum.

E. g. Detur generalis fluens W = 0 fluxionalis æquationis, quæ continet duas C & D invariabiles coefficientes ad libitum a$$umendas; ex æquatione W = 0 inveniatur vel C = α vel D = β, in quibus (α & β) haud continentur re$pective C & D, quarum fluxiones erunt α^. = 0 & β^. = 0; deinde ex æquationibus α^. = 0 & β^. = 0 re$pective de- ducantur D = π & C = ξ, & evadunt duæ æquationes π^. = 0 & ξ^. = 0 [0236]DE FLUXIONALIBUS eadem æquatio, cujus generalis fluens $ecundi ordinis e$t data æqua- tio; duo vero inveniuntur ejus primi multiplicatores vel {α^. / π^..} vel {β^. / ξ^.}.

Et $ic deinceps.

THEOR. XXIX.

1. Sit quæcunque fluxionalis æquatio n ordinis P = 0, cujus ge- neralis fluens $it W = 0, quæ continet qua$cunque n diver$as invari- abiles quantitates a, b, c, d, e, &c. ad libitum a$$umendas & in datâ fluxionali æquatione non contentas; ex æquatione W = 0 inveniantur a = α, b = β, c = γ, d = δ, &c. tum erunt α^. = 0, β^. = 0, γ^. = 0, δ^. = 0, &c. (n) diver$æ æquationes, quæ $unt fluentes (n - 1) ordinis datæ æquationis P = 0, in quibus continentur $olummodo n - 1 in- variabiles quantitates prædicti generis; deinde ex æquatione α^. = 0 inveniatur vel b = β′ vel c = γ′, &c. & $ic ex æquationibus β^. = 0, γ^. = 0, δ^. = 0, &c. inveniantur a = α″, c = γ″, &c. a = α′″, b = β′″, &c. &c. re$pective, tum erunt β^.′ = 0, γ^.′ = 0, &c. α^.″ = 0, γ^.″ = 0, &c. α^.′″ = 0, &c. &c. (n × {n - 1 / 2}) diver$æ fluxionales æquationes, quæ $unt fluentes (n - 2) ordinis datæ æquationis P = 0; & $ic inveniri po$$unt n · {n - 1 / 2} · {n - 2 / 3} ... {n - m + 1 / m} diver$æ fluxionales æquatio- nes, quæ $unt fluentes m ordinis fluxionalis æquationis P = 0; & quæ continent (m) diver$as invariabiles quantitates ad libitum a$$u- mendas, quæ in datâ æquatione haud continentur; $i m = n, tum ex $ingulis hi$ce $ub$titutionibus eadem re$ultabit æquatio.

Cor. Sit quæcunque algebraica (π = 0) æquatio, cujus variabiles $int x, y, z, &c.; & n invariabiles (a, b, c, d, e, &c.) tum ex eâ inve- niantur (n) fluxionales æquationes α = 0, β = 0, γ = 0, &c.; ex qui- bus exterminatur una invariabilis quantitas, viz. a, b, c, &c. re$pective; deinde detegantur n · {n - 1 / 2} fluxionales æquationes $ecundi ordinis, [0237]ÆQUATIONIBUS. viz. α′ = 0, β′ = 0, γ′ = 0, &c. ex quibus $ingulis exterminantur quæ- cunque duæ invariabiles a & b, a & c, b & c, &c. re$pective; & $ic inveniantur n · {n - 1 / 2} · {n - 2 / 3} fluxionales æquationes tertii ordinis, ex quibus exterminantur quæcunque tres invariabiles quantitates re- $pective; & tandem invenientur fluxionales æquationes n ordinis, ex quibus exterminantur (n) invariabiles quantitates; & omnes hæ flu- xionales æquationes re$ultantes erunt eædem.

2. Si vero haud ita reduci po$$int prædictæ æquationes, ut inve- niantur a = α, b = β, c = γ, &c.; tum ita reducantur duæ æquati- ones W = 0 & W = 0 in unam; ut exterminetur vel a vel b vel c, &c.: & re$ultabunt prædictæ æquationes b α^. = 0, k β^. = 0, l γ^. = 0, &c. ubi b, k & l $unt quæcunque algebraicæ quantitates; deinde eodem modo reducantur duæ æquationes b α^. = 0 & b α^.. + b^. α^. = 0; k β^. = 0 & k β^.. + k β^. = 0; l γ^. = 0 & l γ^.. + l^. γ^. = 0; &c. re$pective in unam, ita ut exterminetur $ecunda invariabilis quantitas vel b vel c, &c.; & re$ultant n · {n - 1 / 2} diver$æ fluxionales æquationes b′ β^.′ = 0, k′ γ^.′ = 0, &c., b″ α^.″ = 0, &c.; ubi b′, k′, &c.; b″, &c. re$pective deno- tant functiones algebraicarum quantitatum & fluxionum primi ordi- nis; & $ic deinceps.

Cor. 3. Ex datâ generali fluente datæ æquationis methodo prius traditâ deduci pote$t multiplicator, qui eam reddit integrabilem; $ed con$tat e problemate, quod in æquatione fluxionali n ordinis (n) dantur diver$æ fluxionales æquationes (n - 1) ordinis, quæ $unt flu- entes generales datæ æquationis; & con$equenter (n) $unt proprii multiplicatores diver$orum generum, qui ducti in datam æquationem præbent fluxiones, quarum fluentes primi ordinis inveniri po$$unt; & $ic de fluxionalibus æquationibus n - 2, n - 3, n - 4, &c. ordinum inveniendis.

Hic autem ob$ervandum e$t, quod $i æquatio fluxionalis $it P = 0 & M. $it multiplicator eam reddens integrabilem, i. e. M P $it fluxio, [0238]DE FLUXIONALIBUS cujus fluens inveniri pote$t; per M φ: ($. M P) volo multiplicatorem eju$dem haud vero diver$i generis.

THEOR. XXX.

Sint A = 0, B = 0, C = 0, D = 0, &c. (n) generales fluentes primi ordinis fluxionalis æquationis α = 0, &c.; $it α = 0 fluxionalis æqua- tio n ordinis, variabiles quantitates x, y, & earum fluxiones x^., y^., y^.., y^..., ... y^. ^n involvens, & x^. $it con$tans; & in A = 0 continetur a invaria- bilis quantitas ad libitum a$$umenda, quæ in fluxionali æquatione α = 0 non continetur; & $imiliter in B = 0 continetur invariabilis b, quæ in prædictâ æquatione α = 0 non invenitur; deinde in C = 0, D = 0, &c. continentur re$pective invariabiles quantitates c & d, &c. independentes & ad libitum a$$umendæ, quæ in α = 0 non inveniuntur, & in $ingulis his æquationibus A = 0, B = 0, &c. haud continetur y^. ^n; tum ita reducantur æquationes A = 0, B = 0, C = 0, D = 0, &c. ut exterminetur fluxio y^. ^n-1 & re$ultant n · {n - 1 / 2} æquatio- nes, quæ erunt fluentes $ecundi ordinis datæ fluxionalis æquationis α = 0; & $ic deinceps; ita reducantur hæ æquationes A = 0, B = 0, C = 0, &c. in unam, ut exterminentur fluxiones y^. ^n-1, y^. ^n-2, y^. ^n-3, &c. & tan- dem re$ultabit æquatio, quæ nullas implicat fluxiones, & quæ gene- ralis erit fluens datæ fluxionalis æquationis.

Cor. 1. Fluens generalis n - 1 ordinis e $ingulis (n) æquationibus A = 0, B = 0, C = 0, D = 0, &c. eadem evadet.

PROB. XLVII.

Sint x, y, w tres variabiles quantitates, & $int φ = 0 & φ′ = 0 duæ fun- ctiones quantitatum x, y & z, in quibus functionibus contincantur m + r invariabiles quantitates (a, b, c, d, e, &c.) ad libitum a$$umendæ; inve- [0239]ÆQUATIONIBUS. nire duas æquationes fluxionales m & r ordinum, quarum generales fluentes $unt φ = 0 & φ′ = 0.

1. Ex utri$que æquationibus φ = 0 & φ′ = 0 inveniantur a = π, & a = β re$pective, unde β = π, π^. = 0, & β^. = 0 tres æquatio- nes, quarum una e$t algebraica, duæ vero reliquæ fluxionales primi ordinis, in quibus haud continetur a; deinde ex æquatione π = β inveniatur b = π′, etiamque ex æquationibus π^. = 0, & β^. = 0, inve- niantur re$pective b = ξ & b = γ, unde re$ultant duæ fluxionales primi ordinis æquationes π^.′ = 0, & ξ = γ, in quibus nec contine- tur a nec b; tum ex æquationibus π^.′ = 0, & ξ = γ, inveniantur c = σ, & c = δ, & exinde re$ultant duæ fluxionales æquationes σ = δ, & σ^. = 0, quarum prior erit fluxionalis æquatio primi ordinis, po$te- rior vero $ecundi ordinis, in quibus continetur nec a nec b nec c: & $ic ex hâc methodo ratiocinandi continuo repetitâ, erui po$$unt duæ æquationes quæ$itæ.

2. Si vero ex datâ æquatione λ = 0 non inveniri po$$it a = λ′, & con- $equenter λ^.′ = 0 æquatio, quæ non involvit quantitatem a; tum re- ducantur duæ æquationes λ = 0 & λ^. = 0 in unam, ita ut extermine- tur quantitas (a), & re$ultabit æquatio prædicta λ^.′ = 0; &c. aliter: reducantur duæ æquationes φ = 0 & φ′ = 0 in unam, ita ut exter- minetur (a), & re$ultet æquatio α = 0; deinde inveniantur duæ æquationes φ^. = 0 & φ^.′ = 0, & ita reducantur hæ duæ æquationes in unam, ut exterminetur a; & re$ultet æquatio π = 0; unde re$ul- tant duæ æquationes, una algebraica α = 0, altera vero fluxionalis primi ordinis π = 0, in quibus non continetur invariabilis (a;) de- inde ita reducantur tres æquationes α = 0, α^. = 0 & π = 0 in duas fluxionales æquationes (μ = 0 & ν = 0) primi ordinis, ita ut ex- terminentur invariabiles quantitates (a & b): tum ita reducantur æquationes φ = 0 & φ′ = 0, ut exterminetur invariabilis quantitas b, & re$ultet æquatio α′ = 0; & ita reducantur æquationes φ^. = 0 & φ^.′ = 0 in unam, ut exterminetur quantitas b, & re$ultet æquatio [0240]DE FLUXIONALIBUS π′ = 0; unde re$ultant duæ æquationes, una algebraica α′ = 0, altera vero fluxionalis primi ordinis π′ = 0, in quibus non continetur inva- riabilis b; deinde ita reducantur tres æquationes α′ = 0, α^.′ = 0 & π′ = 0 in duas fluxionales æquationes (μ′ = 0 & ν′ = 0) primi ordinis, ita ut exterminentur invariabiles quantitates a & b; tum inveniantur fluxionales æquationes $ecundi ordinis μ^. = 0, ν^. = 0; μ^.′ = 0, & ν^.′ = 0, in quibus non inveniuntur variabiles quantitates a & b: ita reducan- tur prædictæ æquationes, ut exterminentur fluxiones x^., y^., z^., &c.; a & b; & re$ultabit algebraica æquatio, in quâ non inveniuntur invaria- biles a & b; unde re$ultant duæ æquationes una algebraica, & altera fluxionalis $ecundi ordinis, in quibus non inveniuntur a & b; & $ic deinceps ad exterminationem quantitatum (a, b, &c. &c.) progredi liceat.

Con$imilia etiam applicari po$$unt ad tres vel plures datas æqua- tiones quatuor vel plures variabiles quantitates & b invariabiles in- volventes.

Ea, quæ in hoc prob. tradita fuere, $imiliter applicari po$$unt ad plures (n) fluxionales æquationes m, r, r, s, &c. ordinum detegendas, quarum variabilium quantitatum dantur n algebraicæ æquationes generales relationes exprimentes.

THEOR. XXXI.

1. Sit fluxionalis æquatio λ = 0 ordinis (n), cujus (n) generales fluentes $int α = 0, β = 0, γ = 0, δ = 0, &c.; & cujus (n) generales multiplicatores $int π = 0, ξ = 0, σ = 0, τ = 0, &c.; erunt α^. = π λ, β^. = ξ λ, γ^. = σ λ, &c.; & {α^. / β^.} = {π / ξ}, {α^. / γ^.} = {π / σ}, {β^. / γ^.} = {ξ / σ}, &c.: hic α, β, γ, δ, &c.; π, ξ, σ, τ, &c. $unt algebraicæ vel fluxionales quantitates mi- norum ordinum quam (n).

2. Generalis fluens fluxionalis æquationis erit quæcunque functio fluentium α, β, γ, δ, &c. i. e. erit φ: (α, β, γ, δ, &c.): inveniatur enim ejus fluxio, & re$ultat φ′: (α, β, γ, δ, &c.) × α^. + φ″:(α, β, γ, δ, &c.) β^. [0241]ÆQUATIONIBUS. + φ′″:(α, β, γ, δ, &c.) × γ^. + &c. = (φ′:(α, β, γ, δ, &c.) + φ″:(α, β, γ, δ, &c.) {ξ / π} + φ′″:(α, β, γ, δ, &c.) {σ / π} + &c.) × α^. = (φ′:(α, β, γ, δ, &c.) π + φ″:(α, β, γ, δ, &c.) ς + φ′″:(α, β, γ, δ, &c.) × σ + &c.) × λ = 0.

THEOR. XXXII.

Datâ fluxionali æquatione P - p = 0, ubi P $it quæcunque fun- ctio literarum x & y & earum fluxionum, p functio literæ x & ejus primarum fluxionum, formulæ vero ita ut multiplicator (M) $it fun- ctio quantitatis x, qui ductus in P præbet fluxionem, cujus fluens, i. e. $. M P inveniri pote$t; tum etiam erit $. M (P - p) fluxio, cu- jus fluens innote$cet; $ed datâ generali fluente æquationis P = 0 in- veniri po$$unt omnes ejus multiplicatores, & con$equenter inveniri po$$unt omnes multiplicatores æquationis P - p = 0, iidem enim invenientur; & exinde deduci pote$t fluens æquationis prædictæ P - p = 0.

E. g. Sit æquatio A y^. ^n + B y^. ^n-1 ... P y x^.^n + Q x^.^n = 0, ubi A, B .. P, Q $unt functiones quantitatis x; tum, $i modo detur generalis valor quantitatis y in æquatione A y^. ^n + B y^. ^n-1 .. P y x^.^n = 0, in quâ deficit ul- timus terminus, & con$equenter omnes multiplicatores eam reddentes integrabilem, qui vero multiplicatores erunt functiones quantitatis x; con$equenter dabuntur etiam multiplicatores, qui reddunt æqua- tionem A y^. ^n + B y^. ^n-1 .. P y x^.^n + Q x^.^n = 0 integrabilem.

Ex. 2. Fluens fluxionalis æquationis x^2 y^.. + (m + n + 1) x x^. y^. + m n y x^.^2 = 0 erit vel x^m+1 y^. + n y x^m x^. = a x^., vel x^n+1 y^. + m y x^n x^. = a′x^.; ubi x fluit uniformiter:fluentes autem harum duarum fluxionalium æquationum erunt x^n y = {a x^n-m / n-m} + b vel x^m y = {a′ x^m-n / m-n} + b′; ubi a, b, a′ & b′ $unt invariabiles quantitates ad libitum a$$umendæ.

[0242]DE FLUXIONALIBUS

Si vero a$$umantur {a / n-m} = b′ & b = {-a′ / n-m}; tum hæ duæ fluen- tes erunt eædem.

PROB. XLVIII.

Invenire fluxionalem æquationem, cujus particularis valor $it data æqua- tio, viz. y = φ:(x), vel quæcunque æquatio (π = 0) relationem inter x & y exprimens.

A$$umatur quæcunque fluxionalis quantitas P x^. + Q y^., ubi P & Q $unt $unctiones quantitatum x & y: in hâc quantitate nonnunquam pro y $cribatur φ:x vel pro quibu$dam quantitatibus $cribantur ea- rum valores ex æquatione π = 0 deducti; & pro y^. $cribatur ejus va- lor ex æquatione y = φ:(x) vel ex æquatione π = 0 deductus; & re$ultabit fluxionalis æquatio, cujus particularis fluens erit y = φ: (x) vel π =0.

2. Invenire æquationem fluxionalem, cujus particulares valores $unt quæcunque datæ quantitates α = 0, β = 0, γ = 0, &c.

Inveniatur fluxionalis æquatio, cujus partiularis fluens erit φ:(α) × φ:(β) × φ:(γ) × &c. = 0:vel inveniatur æquatio, cujus particu- laris fluens erit p + a π + b ς + c σ + &c. = 0, ubi p + a π = α, p + b ς = β, p + c σ = γ, &c. & a, b, c, &c. $unt coefficientes ad li- bitum a$$umendæ; & perficitur problema.

Infinitis modis facile deduci pote$t huju$ce problematis re$olutio.

PROB. XLIX.

Datis duabus quantitatibus p & q, quæ $unt functiones vel algebraicæ vel fluxionales quantitatum x & y; invenire utrum p $it functio quanti- tatis q, necne.

Sint P & Q functiones quantitatum x & y, quibus æquales funt p & q re$pective, i. e. $int P = p, Q = q; ita reducantur hæ duæ æquatio- [0243]ÆQUATIONIBUS. nes in unam, ut exterminentur x & ejus fluxiones, & $i etiam eva- ne$cat quantitas y & ejus fluxiones, tum p erit functio quantitatis q.

Et $ic de pluribus æquationibus plures variabiles quantitates ha- bentibus.

Cor. Datâ fluente (p) fluxionalis æquationis, & p & q functionibus quantitatum (x & y): per hoc problema detegi pote$t, annon q e$t etiam fluens datæ æquationis.

PROB. L.

_1._ Invenire fluxionales æquationes, quarum fluentiales innote$cunt. A$$u- matur quæcunque æquatio pro fluentiali, inveniatur ejus fluxio, & divida- tur per quamcunque quantitatem N; tum erit re$ultans æquatio fluxionalis, cujus fluentialis innote$cit.

2. _Ex ii$dem principiis deduci po$$unt duæ vel tres vel plures_ (n) _flu-_ _xionales æquationes, tres vel quatuor & denique quemlibet numerum varia-_ _bilium & earum fluxionum involventes, quarum fluentiales innote$cunt._

A$$umantur quæcunque (n) æquationes involventes (n + 1 vel plu- res) variabiles quantitates & earum fluxiones, &c. pro fluentialibus; inveniantur fluxiones cuju$cunque ordinis prædictarum (n) a$$umpta- rum æquationum, & ducantur æquationes re$ultantes in qua$cunque invariabiles quantitates; addantur $imul hæc producta, ita ut evadant (n) diver$æ independentes æquationes; tum dividantur hæ (n) æqua- tiones per qua$libet quantitates; & re$ultant (n) fluxionales æqua- tiones, quarum (n) fluentiales innote$cunt.

A$$umendæ $unt æquationes pro fluentialibus huju$ce formulæ P + α = 0, &c. ubi P e$t quælibet functio variabilium & earum flu- xionum, & α e$t quæcunque invariabilis quantitas ad libitum a$$u- menda.

[0244]DE FLUXIONALIBUS THEOR. XXXIII.

De methodis inveniendi fluentes fluxionalium æquationum.

1. Sit æquatio, in quâ continentur variabiles quantitates x & y & earum fluxiones r ordinum, & in quâ nulla quantitas fluit unifor- miter; & $i $upponantur omnes termini, in quibus haud continentur x^. ^r vel y^. ^r nihilo æquales, & $it æquatio re$ultans P x^. ^r + Q y^. ^r = 0, & a$$u- matur æquatio P x^. + Q y^. = 0, & ducatur ea in quantitatem q, ita ut fiat integrabilis, & inveniatur fluens æquationis re$ultantis q P x^. + q Q y^. = 0, quæ dicatur t; fluens datæ æquationis erit functio quantitatis t, quâ inventâ plerumque e principiis in theor. 2. datis deduci pote$t fluens quæfita.

Demon$trari pote$t hoc theorema e methodo inveniendi fluxiones fluentium.

Et $ic inveniri pote$t fluens m ordinis datæ æquationis, $i modo fluentem recipiat data æquatio.

2. Si y^. ^r^s $it maxima dimen$io fluxionis y^. ^r, cujus ordo e$t maximus datâ æquatione contentus; tum 1<_>mo. ita reducenda e$t data æquatio, ut haud plures quam una dimen$io quantitatis y^. ^r in eâ contineantur: & re$ultabunt plures fluxionales æquationes P = 0, Q = 0, R = 0, &c., quarum diver$æ $unt refolutiones, diver$ique etiam multiplicatores; e. g. $it fluxionalis æquatio y^. ^r^2 - (A + B) y^. ^r + A B = 0, ubi literæ A & B re$pective denotant functiones quantitatum y, y^., y^.., y^..., .. y^. ^r-1; reli- quarum variabilium & earum fluxionum; tum reduci pote$t data fluxionalis æquatio ad duas alias y^.^r - A = 0 & y^.^r - B = 0, quarum fluentes & multiplicatores po$$unt e$$e diver$i.

In re$olvendis fluxionalibus æquationibus, in quibus involvuntur $olummodo x & y, x^. & y^.: 1^mo. ita reducendæ $unt datæ æquationes, ut haud plures quam una dimen$io fluxionum x^. & y^. in datis æquatio- nibus contineantur.

[0245]ÆQUATIONIBUS.

Ex. g. Sit æquatio fluxionalis x^2 x^.^2 + x y x^. y^. = a^2 y^.^2, erit x^2 x^.^2 + x y x^. y^. + {1 / 4}y^2 y^.^2 = (a^2 + {1 / 4} y^2) y^.^2, unde x x^. + {1 / 2}y y^. = ± √ (a^2 + {1 / 4}y^2) y^.

3. Transformetur data fluxionalis æquatio in eandem æquationis partem, i. e. nihilo fiat æqualis; & quantitatis re$ultantis inveniatur per methodos in præcedente capite traditas fluens, $i modo fieri po$- $it, & invenitur fluens quæ$ita.

4. Si fluens haud præcedente methodo deduci po$$it; inve$tiganda e$t quantitas, quæ in datam æquationem ducta, creat æquationem, cujus fluens inveniri pote$t.

In hi$ce quantitatibus deducendis, quæ in datam æquationem ductæ, præbent æquationes, quarum fluentes inveniri po$$unt; haud inutiles for$an erunt $ub$equentes ob$ervationes.

1<_>ma. Nullam compo$itam irrationalem quantitatem, i. e. irrationa- lem quantitatem duobus vel pluribus terminis con$tantem involvi nece$$e e$t plerumque in quæ$itâ re$ultante æquatione, quæ in datâ haud invenitur, ni exponentiales in quæ$itâ fluente contineantur quantitates; e. g. $it data fluxionalis æquatio x x^. + 2 a (x x^. + y y^.) (a^2 + x^2)^{1 / 2} (x^2 + y^2)^{1 / 2} = y y^. (a^2 + x^2)^{1 / 2}; in hâc æquatione duæ conti- nentur irrationales compo$itæ quantitates, viz. (a^2 + x^2)^{1 / 2} & (x^2 + y^2)^{1 / 2}, ergo haud improbabile erit finitam æquationem, quæ exprimit fluen- tem (a^2 + x^2)^{1 / 2} + {2a / 3} (x^2 + y^2)^1{1 / 2} = {1 / 2} y^2 + b, nullas alias compo$itas irrationales quantitates involvere, ni in eâ contineantur exponentiales vel fluentiales quantitates: in genere igitur a$$umatur quantitas præ- dicti generis, quæ e$t generalis rationalis functio quantitatum x^n & irrationalium quantitatum in datâ æquatione contentarum, ad pote- $tatem vel radicem (m) evecta; (hìc for$an haud indignum e$t ob$er- vatu generalem rationalem functionem quantitatum x^n & v^m e$$e fra- ctionem {(a x^r n + b x^(r+s)n + c x^(r+2s)n + &c.) v^em + (a′ x^r′ n + b x^(r′+s′)n + &c.) v^(e+b)m + &c. / (A x^α n + B x^(α+β)n + C x^(α+2β)n + &c.) v^rm + (A′ x^α′ n + B′ x^(α′+β′)n + &c.) v^(r′+h′)m + &c.)}; & exinde deduci pote$t fluens, ni in eâ con- tineantur exponentiales vel fluentiales quantitates.

[0246]DE FLUXIONALIBUS

2<_>da. In datis diver$is terminis datæ æquationis contineantur diver$æ irrationales quantitates; $upponantur omnes termini, in quibus continentur eædem irrationales quantitates, vel eædem duæ vel tres diver$æ irrationales vel rationales quantitates nihilo æquales; tum ex æquatione re$ultante $æpe detegi pote$t quantitas, quæ in da- tam æquationem ducta, facit æquationem, cujus fluens inveniri pote$t.

3<_>tia. Dimen$iones quantitatis y in fluxionem x^. ductæ debent e$$e majores per unitatem, quam dimen$iones eju$dem quantitatis in y ductæ, in termino, in quo involvuntur $imul literæ x & y; & $ic de líterâ x.

Ex. Sit æquatio p y^. + q y x^. = r x^., ubi literæ p, q & r re$pective denotant qua$cunque functiones literæ x; ducatur data æquatio in P functionem quantitatis x, & re$ultat P p y^. + P q y x^. = P r x^.; $uppo- natur + P p y fluens fluxionis P p y^. + P q y x^., & con$equenter P p y^. + y (P p^. + P^. p) = P p y^. + P q y x^., unde P p^. + p P^. = P q x^., & P (q x^. - p^.) = p P^., & exinde {q x^. - p^. / p} = {P^. / P}, & $.{q x^. / p} = log. P p, & P = e^$. {q x^. - p^. / p}, & P p y = e^$. {q x^. / p} y = e $.{q x^. - p^. / p} × r x^..

Cor. 1. Si $. {q x^. / q} $it logarithmus quantitatis Q, tum erit P = {Q / p}.

Cor. 2. Sit æquatio p v^n-1 v^. + q v^n x^. = r x^.; in eâ pro v^n & v^n-1 v^. $cribantur re$pective y & {y^. / n}, re$ultat æquatio præcedentis formulæ {p / n} y^. + q y x^. = r x^..

Cor. 3. Sit p v^. + v x^. = r v^- n+1 x^.; ducatur hæc æquatio in v^n-1, & re$ultat æquatio p v^n-1 v^. + q v^n x^. = r x^. præcedentis formulæ.

5. Sit fluxio A x^. + B y^. + C x^. + D y^. = 0, (ubi literæ A & B de- notant functiones quantitatum x & y re$pective, & C & D funt quæ- cunque functiones quantitatum x & y conjunctim) cujus inveniri pote$t fluens: $int vero dimen$iones quantitatis y in functione B [0247]Æ QUATIONIBUS. majores quam dimen$iones eju$dem quantitatis y in functione D; dividatur æquatio A x^. + B y^. + C x^. + D y^. = 0 per functionem P quantitatis x, & re$ultat æquatio in quâ dimen$iones quantitatis y in fluxionem x^. ductæ minores erunt quam dimen$iones eju$dem quan- titatis y in termino {B / P} (in quo continentur literæ x & y conjunctim) in y^. ductæ per quantitatem majorem quam unitatem; $ed facile re- duci pote$t æquatio {A + C / P}x^. + {B + D / P}y^. = 0 ad æquationem integra- bilem A x^. + B y^. + C x^. + D y^. = 0 ex ejus multiplicatione in P: omnes igitur datæ fluxionales æquationes, (ubi dimen$iones quantitatis y in fluxionem x^. ductæ haud $uperant dimen$iones eju$dem quantitatis y in termino, in quo involvuntur quantitates x & y conjunctim in y^. ductæ per unitatem) reducendæ $unt ad fluxionales æquationes for- mulæ prædictæ; quod $æpe perficietur, $i modo auferantur quanti- tates in quibus continetur x e terminis, in quibus dimen$iones quan- titatis y $unt nimis magnæ.

Et $ic de reducendis terminis, in quibus dimen$iones quantitatis x $unt nimis magnæ.

Ex. Sit fluxionalis æquatio 8 y^7 x^-6 y^. + 7 a y^5 x^. + 5 a x y^4 y^. + 6 b x^-1 x^. = 0: in hac æquatione dimen$iones (5) quantitatis y in x^. ductæ haud $uperant prædictas dimen$iones (7) eju$dem quantitatis y in y^. ductas per unitatem; ergo auferatur quantitas (x^-6), in quâ con- tinetur x, e termino prædicto (8 y 7 x^-6 y^.), i. e. ducatur data æquatio in x^6; & re$ultat æquatio quæ$ita 8 y^7 y^. + 7 a y^5 x^6 x^. + 5 a x^7 y^4 y^. + 6 b x^5 x^. = 0, cujus fluens erit y^8 + a y^5 x^7 + b x^6 = con$t.

6. Si vero multiplicator con$tet e pluribus terminis; a$$umatur pro multiplicatore primus terminus e prædicta methodo inventus + p, & e methodo prius traditâ inveniatur proximus valor quantitatis p, qui erit $ecundus terminus quæ$itus; & $ic deinceps. Hìc vero animadvertendum e$t, multiplicatorem con$tare po$$e e terminis & in numeratore & denominatore contentis; etiamque, quod$i nulla exponentialis & fluentialis quantitas in datâ æquatione contineatur, [0248]DE FLUXIONALIBUS nullam exponentialem ni$i formulæ (e^v) vel in multiplicatore vel in fluente nece$$ario contineri; & generaliter $i modo $int π, ξ, σ, & c. exponentiales quantitates in datâ fluxionali æquatione contentæ, nullas e$$e exponentiales quantitates in ejus multiplicatore vel fluente nece$$ario contentas, ni$i formularum π, ξ, σ, & c. e^v, e^π, e^p, e^σ, & c. exponentiales.

7. Eadem etiam principia applicari po$$unt ad detegendas fluentes fluxionum, in quibus continentur fluxiones $uperiorum ordinum; $ed a$$umi debent indices, & c. in terminis magis generalibus quam in fluentibus fluxionum primi ordinis detegendis.

In hoc loco animadvertendum e$t.

1. Sit data æquatio, in quâ continentur quæcunque functiones quantitatum x & y in x^. & y^. ductarum; æquationis multiplicator, qui eam integrabilem reddit, quantitas erit algebraica, itemque fun- ctio quantitatum x & y.

2. Si in datâ æquatione contineantur functiones quantitatum x, y, x^., y^., x^.. & y^..; tum pote$t e$$e ejus multiplicator quæcunque functio quantitatum x, y, x^. & y^..

3. Si in datâ æquatione contineantur functiones quantitatum x, y, x^., y^., x^.., y^.., x^... & y^...; tum pote$t e$$e ejus multiplicator quæcunque functio quantitatum x, y, x^., y^., x^.. & y^..: & $ic deinceps.

Ex. 1. Sit 2 a y y^.. - 4 a y^.^2 - y^n+5 x^.^2 (1 + x^2)^{n-1 / 2} = 0; ducatur hæc æquatio in {x x^. / y^4} + {(1 + x^2)y^. / y^5}, & re$ultat {2 a x x^. y^.. / y^3} + {2 a (1 + x^2)y^.. y^.. / y^4} -{4 a x x^. y^.^2 / y^4} - {4 a (1 + x^2) y^. ^3 / y^5} - (y^n+1 x^.^3 x + (1 + x^2) y^n x^.^2 y^.) (1 + x^2)^{n-2 / 2} = 0, cujus fluens reperietur {a x^.^2 / y^2} + {2 a x x^. y^. / y^3} + {a (1 + x^2) y^.^2 / y^4} ={1 / n + 1}y^n+1 x^.^2 (1 + x^2)^{n+1 / 2} + C x^.^2, ubi C & x^. $unt invariabiles quan- titates.

[0249]Æ QUATIONIBUS.

Ex. 2. Sit b y x^. y^. + b s x y^.^2 + b x y y^.. + {c y^.^t-1 y^.. / y^s-1 (a x^. + b x y^s y^.)^t-1} = 0, ducatur hæc æquatio in multiplicatorem t y^s-1 (a x^. + b x y^s y^.)^t-1; & re- $ultat æquatio, cujus fluens erit (a x^. + b x y^s y^.)^t + c y^.^t = con$t.

Ex. 3. Sit z^m+1 x^.^m x^.. + y^.^m+1 {z^. / z} = y^.^m y^..; dividatur hæc æquatio per z^m+1, & re$ultat x^.^m x^.. + y^.^m+1 {z^. / z^m+2} = {y^.^m y^.. / z^m+1}, cujus fluens erit x^.^m+1 ={y^.^m+1 / z^m+1} + C v^.^m+1, ubi v e$t quantitas, quæ fluit uniformiter.

Ex. 4. Sit y^.. = 4 x^3 y^.. + 6 x^2 x^. y^. - 2 x y x^.^2; ducatur hæc æquatio in 2 x y^. - y x^., & æquationis re$ultantis fluens erit x y^.^2 - y x^. y^. = 4 x^4 y^.^2 - 4 x^3 y y^. x^. + x^2 y^2 x^.^2 + C x^.^2, ubi C = con$t.

8. Sæpe e quibu$dam datæ fluxionalis æquationis terminis nihilo æqualibus e$$e $uppo$itis detegi pote$t multiplicator, qui in datam fluxionalem æquationem multiplicatus, præbet fluxionem integrabi- lem. Inveniantur enim multiplicatores, qui in hos & reliquos ter- minos multiplicati, præbent fluxiones integrabiles; ex his vero $æpe con$tabit multiplicator quæ$itus.

1. Sit fluxionalis æquatio A + B = 0; inveniatur quantitas (a), quæ in A ducta, reddit fluxionem a A integrabilem, cujus fluens $it A′; etiamque inveniatur quantitas b, quæ in B ducta, præbet fluxio- nem b B integrabilem, cujus fluens $it B′; inveniantur tales functiones quantitatum A′ & B′, viz. φ A′ & Δ B′, ut $it φ A′:Δ B′::b:a; & quan- titas a φ A′ in datam æquationem A + B = 0 ducta, eam reddit in- tegrabilem.

2. Sit æquatio A + B + C + D + & c. = 0, & $int fluentes fluxio- num a A, b B, c C, d D, &c. re$pective A′, B′, C′, D′, &c.: deinde $it a φ:A′ = b φ′:B′ = c φ″:C′ = d φ″′:D; & ex his æquationibus in- veniri pote$t valor quantitatis a φ A, qui ductus in datam fluxionalem æquationem, eam reddit integrabilem.

[0250]DE FLUXIONALIBUS

Cor. Hinc, $i detegi po$$it generaliter re$olutio prædictæ algebraicæ æquationis a φ:A′ = b φ′:B′, detegi po$$unt generaliter multiplica- tores; nam, $i generaliter detegi po$$int re$olutiones æquationum a φ:A′ = b φ′:B′, quæ $it Δ:α; detegi pote$t generaliter re$olutio æquationis Δ:α = c φ″:C′; & $ic deinceps.

Cor. 2. Hinc inveniri po$$unt fluxionales æquationes, quarum flu- entes dantur:inveniantur enim duæ diver$æ fluxiones A & B, quæ in datam quantitatem vel fluxionem ductæ, præbent fluxiones, qua- rum fluentes cogno$cuntur; & erit A + B = 0 fluxionalis æquatio, cujus fluens inveniri pote$t.

Ex. 1. y^.. - {m y^.^2 / y}, & y^n x^.^2 (α + 2 β x + γ x^2)^{n-4m+3 / 2m-2} $unt fluxiones, quæ in (P) factorem {(β + γ x)x^. / (m - 1) y^2m-1} + {(α + 2 β x + γ x^2)y^. / y^2m} ductæ, præbent fluxiones, quarum fluentes $unt re$pective {(β + γ x)x^. y^. / (m - 1)y^2m-1} +{(α + 2 β x + γ x^2)y^.^2 / 2y^2m} + {γ x^.^2 / 2(m - 1)^2 y^2m-23} & {1 / n - 2m + 1}y^n-2m+1 x^.^2 (α + 2 β x + γ x^2)^{n-2m+1 / 2m-2}; & con$equenter fluens fluxionalis æquationis y^.. = {my^.^2 / y} + y^n x^.^2 (α + 2 β x + γ x^n)^{n-4m+3 / 2m-2} = 0 acquiri pote$t.

Cor. 1. In æquatione y^.. - {m y^.^2 / y} + y^n x^.^2 (α + 2β x + γ x^2)^{n-4m+3 / 2m-2}= 0 $cribatur pro y ejus valor a$$umptus z^{1 / 1-m}, & re$ultat {z^.. / 1 - m} + z{n - m / ^1-m} x^.^2 (α + 2β x + γ x^2)^{n-4m+3 / 2m-2} = 0.

Ex. 2. Sint y^.. & {a y^n+1 x^.^2 / (α + 2 β x + γ x^2 + c y^2)^{n+4 / 2}} quantitates, quæ in eandem fluxionem y^. (α + 2β x + γ x^2) - y x^.(β + γ x) ductæ, præ- bent fluxiones integrabiles, quarum fluentes $unt {1 / 2}y^. ^2 (α + 2 β x + γ x^2) [0251]ÆQUATIONIBUS. - y x^. y^. (β + γ x) + {1 / 2} γ x^. ^2 y^2, & {a y^n+2 x^. ^2 / (n + 2) (α + 2 β x + γ x^2 + c y^2)^{n+23 / 2}} unde fluens fluxionalis æquationis y^.. + {a y^n+1 x^. ^2 / (α + 2 β x + γ x^2 + c y^2)^{n+4 / 2}}= 0 detegi pote$t.

Cor. Sit æquatio y^.. + {a y^n+1 x^. ^2 / (x^2 + y^2)^{n+4 / 2}} = 0, cujus fluens erit {1 / 2}(y x^. - x y^.)^2 + {a y^n+2 x^. ^2 / (n + 2) (x^2 + y^2)^{n+2 / 2}} = C x^.: in hâc æquatione $cribatur u x pro y, & erit - x^2 u^. = y x^. - x y^.. & fluens {1 / 2}(y x^. - x y^.)^2 +{a y^n+2 x^. ^2 / (n + 2) (x^2 + y^2)^{n+2 / 2}} = {1 / 2} x^4 u^. ^2 + {a u^n+2 x^. ^2 / (n + 2) (1 + u^2)^{n+2 / 2}} = C x^., cujus fluxionis fluens inveniri pote$t.

Ex. 3. Propo$itâ æquatione fluxionali α y x^. + β x y^. = x^m y^n (γ y x^. + δ x y^.); omnes vero multiplicatores, qui ducti in α y x^. + β x y^. præbent fluxiones, quarum fluentes detegi po$$unt, erunt functiones quantitatis x^α y^β in fractionem {1 / x y} ductæ: eodem modo omnes mul- tiplicatores, qui ducti in x^m y^n (γ y x^. + δ x y^.) præbent fluxiones, qua- rum fluentes detegi po$$unt, erunt functiones quantitatis x^γ y^δ in fra- ctionem {1 / x^m+1 y^n+1} ductæ; $ed hi multiplicatores po$$unt e$$e huju$modi x^μα-1 y^μβ-1 & x^υγ-m-1 y^υδ-n-1; unde, $i modo μ α - 1 = υ γ - m - 1, & μ β - 1 = υ δ - n - 1, tum multiplicator inventus in propo$itam æquationem ductus eam reddit integrabilem; $ed in hoc ca$u μ ={γ n - δ m / α δ - β γ} & υ = {α n - βm / α δ - β γ}.

Cor. Si α δ - β γ = 0, tum propo$ita æquatio evadet α y x^. + β x y^. [0252]DE FLUXIONALIBUS = {γ / α} x^m y^n (α y x^. + β x y^.), unde erit (α y x^. + β x y^.) (1 - {γ / α} x^m y^n) = 0, & exinde α y x^. + β x y^. = 0.

Multiplicator nonnunquam e$t algebraica functio variabilium quantitatum & earum fluxionum in datâ æquatione contentarum; nonnunquam e$t etiam algebraica, fluentialis & exponentialis functio prædictarum quantitatum; & nonnunquam per infinitas $eries præ- dictarum quantitatum $olummodo exprimi pote$t.

PROB. LI.

Datâ formulâ æquationis fluxionalis, & quantitatis in prædictam æqua- tionem ducendæ; invenire ca$us, in quibus quantitas re$ultans evadit inte- grabilis.

A$$umantur generaliter datæ formulæ fluxionalis æquatio & ejus multiplicator; ducantur hæ duæ quantitates in $e$e, & inveniantur per methodos in præcedente capite traditas ca$us, in quibus datur fluens æquationis re$ultantis; & perficitur problema.

Si innote$cant formulæ multiplicatorum, tum etiam innote$cent formulæ fluentium, & con$equenter cum detur fluens ex a$$umptis multiplicatoribus, tum etiam dabitur fluens ex a$$umptis fluentibus: a$$umatur enim generaliter fluens datæ formulæ, cujus inveniatur fluxio, dividatur hæc fluxio per datam fluxionalem æquationem, & $i quotiens $it quantitas vel algebraica vel fluxionalis minoris quam ordinis datæ fluxionalis æquationis; tum a$$umpta erit fluens datæ fluxionalis, $in aliter non.

Hic for$an haud indignum e$t ob$ervatu; cum in datâ fluxio- nali æquatione dimen$iones quantitatis y in x non $uperent ejus di- men$iones in y^. ductas per unitatem; tum pro ejus multiplicatore vel fluente a$$umenda e$t quantitas, quæ continet pote$tatem vel radicem quantitatis y, quæ in nullam functionem quantitatis x ducitur. e. g. Sit quantitas y y^. + P y x^. + Q x^. = 0, ubi P & Q $unt [0253]ÆQUATIONIBUS. functiones ip$ius x; tum multiplicatores po$$unt e$$e (y + M)^n × (y + N)^m × &c.: vel etiam ex datis fluxionibus re$ultantibus a datâ fluxione in multiplicatorem ductâ erui pote$t formula fluentis; vel facile a$$umi pote$t formula fluentis, & exinde erui po$$unt ca$us, in quibus fluens datæ fluxionis habet formulam a$$umptam.

Ex. Sit data æquatio y y^. + P y x^. + Q x^. = 0, ducatur hæc æqua- tio in (y + M)^n, ubi P, Q & M $unt functiones ip$ius x, & re$ultat (y + M)^n y y^. + P (y + M)^n y x^. + Q (y + M)^n x^. = 0; $ed per præce- dens caput $. (y + M)^n y y^. = {(y + M)^n+2 / n + 2} - {M (y + M)^n+1 / n + 1}, $i modo M $it invariabilis; nunc autem $it M variabilis, & fluxio quantitatis {(y + M)^n+2 / n + 2} - {M (y + M)^n+1 / n + 1} erit (y + M)^n+1 (y^. + M^.) - M (y + M)^n (y^. + M^.) - {M^. (y + M)^n+1 / n + 1}; unde (y + M)^n+1 (y^. + M^.) - M (y + M)^n (y^. + M^.) - {M^. (y + M)^n+1 / n + 1} = (y + M)^n y y^. + P (y + M)^n y x^. + Q (y + M)^n x^., & exinde ({n M^. / n + 1} - P x^.) y - ({M M^. / n + 1} + Q x^.) = 0; fin- gantur {n M^. / n + 1} - P x^. = 0 & {M M^. / n + 1} = - Q x^., & con$equenter erunt {n M^. / (n + 1) x^.} = P, & - {M M^. / (n + 1) x^.} = Q, & data æquatio y y^. + {n M^. / (n + 1)}y - {M M^. / (n + 1)} = 0.

2. Hoc problema etiam e principiis in theor. 2. traditis re$olvi pote$t. E. g. Sit fluxio α x^. + β y^., cujus fluens inveniri pote$t; tum erit ({α^. / y^.}) = ({β^. / x^.}).

Ex. 1. Sit æquatio P y x^. + (y + Q) y^. = 0 & multiplicator {1 / y^3 + M y^2 + N y}; ubi P, Q, M & N $unt functiones quantitatis x: [0254]DE FLUXIONALIBUS ducatur æquatio in multiplicatorem, & re$ulta {P y x^. / y^3 + M y^2 + N y} +{(y + Q)y^. / y^3 + M y^2 + N y} = 0; ut vero fluens huju$ce fluxionis inveniatur, nece$$e e$t fluxionem factoris {P y / y^3 + M y^2 + N y}, in quo y $olummodo $umitur variabilis, per y^. divi$am, æqualem e$$e fluxioni quantitatis {y + Q / y^3 + M y^2 + N y}, in quâ $olummodo $umitur x variabilis, per x^. divi$æ; i.e. - 2 P y^3 - P M y^2 = (y^3 + M y^2 + N y) {Q^. / x^.} - (y + 2){(y^2 M^. + y N^.) / x^.}, quæ reducta ad terminos $ecundum pote$tates quantitatis y progredi- entes, evadet 0 = (2 P x^. + Q^. - M^.)y^3 + (P M x^. + M Q^. - N^. - Q M^.) y^2 + (N Q^. - Q N^.) y; unde $ingulis pote$tatibus $eor$im ad nihilum productis, exorietur N Q^. - Q N^. = 0, & con$equenter N = a Q, ubi a erit con$tans quantitas; quo valore pro N in duabus reliquis quan- titatibus $ub$tituto, re$ultant 2 P x^. + Q^. - M^. = 0 & P M x^. + M Q^. - a Q^. - Q M^. = 0; ita reducantur hæ æquationes, ut exterminetur x^., & re$ultat æquatio - M Q^. - M M^. + 2 a Q^. + 2 Q M^. = 0, quâ multi- plicatâ in {1 / (2 a - M)^3}; fluxionis re$ultantis fluens inventa dat {Q / (2 a - M)^2} = $. {M M^. / (2 a - M)^3} = {- 1 / 2 a - M} + {a / (2 a - M)^2} + b. Sed erit 2 P x^. = M^. - Q^., unde pro M a$$umatur quæcunque functio quantitatis variabilis x, & exinde deduci po$$unt reliquæ quantitates Q, P & N.

Ex. 2. Sit præcedens æquatio P y x^. + (y + Q) y^. = 0, & multiplica- tor {y^n-1 / y^2 + M y + N}: ducatur æquatio in prædictum multiplicatorem & re$ultat {P y^n x^. + y^n-1 (y + Q) y^. / y^2 + M y + N} = 0; ut vero fluens huju$ce fluxio- [0255]ÆQUATIONIBUS. nis inveniatur, nece$$e e$t fluxionem factoris {P y^n / y^2 + M y + N}, in quo y $olummodo $umitur variabilis, per y^. divi$am, æqualem e$$e fluxioni quantitatis {(y + Q) y^n-1 / y^2 + M y + N}, in quâ $olummodo $umitur x variabilis, per x^. divi$æ; unde re$ultans æquatio ad terminos $ecundum pote$ta- tes quantitatis y progredientes reducta, evadet ((n - 2) P x^. - Q^. + M^.) y^n+1 + ((n - 1) P M x^. - M Q^. + N^. + Q M^.)y^n + (n P N x^. - N Q^. + Q N^.)y^n-1 = 0; & e $ingulis pote$tatibus $eor$im nihil evadere $up- po$itis, re$ultabunt æquationes (n - 2) P x^. = Q^. - M^.; (n - 1) M P x^. = M Q^. - Q M^. - N^.; & n N P x^. = N Q^. - Q N^.; ex his æquationibus inveniri po$$unt in quibu$dam ca$ibus corre$pondentes valores quan- titatum P, Q, M & N.

Ex. 3. Sit data æquatio y P x^. + (Q y + R) y^. = 0, in quâ P, Q & R $int functiones ip$ius x, & multiplicator {y^m / (1 + S y)^n}, ubi S e$t etiam $unctio ip$ius x; ex hâc methodo inveniri po$$unt corre$pondentes valores quantitatum P, Q, R & S, quando data æquatio in multipli- catorem ducta, fiat integrabilis; etiamque corre$pondentes valores earundem quantitatum, cum multiplicator $it {y^m / (1 + S y + T y^2)^n}; &c. & $ic inveniri po$$unt ca$us, in quibus æquatio (P y + Q) x^. + y y^. = 0 redditur integrabilis per multiplicatorem (y + R)^m × (y + S)^n, ubi P, Q, R & S $unt etiam functiones quantitatis x; & $imiliter detegi po$$unt ca$us, in quibus æquatio y^. + y^2 x^. + X x^. = 0 redditur inte- grabilis per multiplicatorem {1 / P y^2 + Q y + R}, &c.

3. 1. Sit æquatio (P x^m + Q x^m-1 + R x^m-2 + ... +T x^m-b) v^. + (p x^m-1 + q x^m-2 + r x^m-3 + ... + t x^m-b-1) x^. = 0; ducatur data æquatio in quantitatem a x^n + b x^n-1 + c x^n-2 + ... + e x^n-k, & re- $ultat (a P x^m+n + (a Q + b P)x^m+n-1 + (a R + b Q + c P) x^m+n-2 + &c.) [0256]DE FLUXIONALIBUS v^. + (a p x^m+n-1 + (a q + b p) x^m+n-2 + (ar + bq + cp) x^m+n-3 + &c.) x^. = 0; & $i modo re$ultans quantitas $it integrabilis, tum fluxio quantitatis a p, quæ e$t a p^. + p a^. = (m + n) a P v^., & $imiliter fluxio quantitatis a q + b p, quæ erit a q^. + q a^. + b p^. + pb^. = (m + n - 1) (a2 + bP) v^., etiamque ar^. + ra^. + bq^. + qb^. + cp^. + pc^. = (m + n - 2) (aR + b2 + cP) v^.; & $ic deinceps: unde re$ultant (k + b + 1) æquationes involventes (k + 2b + 3) variabiles quantitates; deinde ita a$$umantur hæ (k + 2b + 3) variabiles, ut $atisfaciant prædictis (k + b + 1) fluxionalibus æquationibus, & con$equenter a$$umi po$$unt ad libitum b + 1 variabiles quantitates; at in pleri$- que ca$ibus relationes inter variabiles quantitates a$$umere præ$tat, ita ut $olutio magis facilis evadat; & $equitur fluens deductæ fluxio- nalis æquationis.

2. Et $imiliter ducatur data æquatio in fractionalem quantitatem {a x^n + b x^n-1 + cx^n-2 + &c. / a′x^n′ + b′ x^n′-1 + c′ x^n′-2 + &c.}; vel in {(a x^n + b x^n-1 + cx^n-2 + &c.)^π / (a′x^n′ + b′ x^n-1 + c′ x^n-2 + &c.)^ρ}; vel in {(a x^n + bx^n±{1 / l} + c x^n±{2 / l} + d x^n±{3 / l} ...x^n-3 + d x^n-1±{7 / l} + &c.)^π × (A x^i + B x^i±k′ + &c.)/(e x^n′ + f x^n′±1/l′ + g x^n′±2/l′ + &c.)^ρ × (A′ x^i′ + B′ x^i′±k″ + &c.)}; vel denique in quamcunque functionem quantitatis x & aliarum quantitatum, quæ $unt functiones variabilis v, ita vero a$$umendarum, ut quantitas re$ultans evadat integrabilis.

Quantitates P, Q, R, &c.; p, q, r, &c.; a, b, c, &c.; a′, b′, c′, &c.; e, f, g, &c.; A, B, &c.; A′, B′, &c.; denotant functiones quantitatis (v); & m, n, n′, i, i′, k′ & k″, π & ξ $unt invariabiles; & b, k, l & l′ $unt integri numeri.

4. Sit æquatio (a x^m + b x^m+b + cx^m+2b .... + M x^n-b-1 + P x^n-1 + Qx^n+b-1 + R x^n+2b-1 + &c.) x^. + (px^n + qx^n+b + r x^n+2b + &c.) v^. = 0; ducatur ea in quantitatem A x^l + B x^l+b + C x^l+2b ... D x^l+n-m-b-1 + Ex^l+n-m-1 + Fx^l+n-m+b-1 + &c.; & exorietur (a A x^m+l + (aB + bA) [0257]ÆQUATIONIBUS. x^m+l+b + .... + (AM + ... + aD) x^l+n-b-1)x^. + (A p x^l+n + &c.) v^. = 0; tum a$$umantur a A = α, a B + bA = β, &c., u$que ad æqua- tionem a D + ... + AM = θ; deinde hoc modo a$$umantur reliquæ A P^. + P A^. + .... + E a^. + a E^. = (l + n) A p v^., A Q^. + 2A^. + .... + aF^. + Fa^. = (l + n + b)(Aq + Bp) v^., & $ic deinceps. In hoc ca$u literæ a, b, c, &c., M, P, 2, R, &c.; p, q, r, &c.; A, B, C, &c., E, F, &c. functiones literæ v denotent, & α, β, &c. θ $unt invariabiles quanti- tates; deinde ita deducendæ $unt prædictæ quantitates, ut $atisfaciant æquationibus a$$umptis, & inve$tigantur fluxionales æquationes, qua- rum fluentes innote$cunt.

2. Et $imiliter ducatur data æquatio in quantitatem {(Ax^l + B x^l+b + &c.)^π × (H x^σ + 1 x^σ+h + &c.) / (A′ x^l′ + B′ x^l′+b + &c.)^ρ × (H′ x^σ′ + 1′ x^σ+h + &c.)}; ubi A, B, &c.; A′, B′, &c.; H, I, &c.; H′, I′, &c.; $unt functiones quantitatis v, & π, ξ σ, &c. $unt invaria- biles quantitates: vel in quamcunque functionem literarum x & v, ita a$$umendam, ut quantitas re$ultans evadat integrabilis.

3. Sit æquatio (ax^m + bx^m+b + cx^m+2b + .... + k x^n-b + p x^n + q x^n+b + &c.) v^. + (P x^n-1 + Q x^n+b-1 + &c.)x^. = 0; ducatur data æquatio in Ax^-m + B x^-m+b + C x^-m+2b + &c. ... Dx^n-2m-b + Ex^n-2m + Fx^n-2m+b + &c.; & a$$umantur Ab + Ba = 0, Ac + Bb + Ca = 0, &c. u$que ad terminum A k + &c. = 0, deinde hoc modo invenian- tur reliqui A P^. + P A^. = (n - m) × (Ap + ... + a E) v^., &c.: vel ejus multiplicator pote$t effe functio variabilis x & quantitatum, quæ funt functiones variabilis v; $i modo $upponantur evane$centes termini æquationis re$ultantis, in quibus dimen$iones quantitatis x in v^. ductæ majores $int quam dimen$iones quorumcunque termi- norum quantitatis x in x^. ductorum per quantitatem majorem quam unitatem: hìc a, b, &c.; P, Q, &c.; A, B, &c. $unt functiones quan- titatis v^..

Ex his methodis inveniri pote$t infinita $eries, quæ reddit datam æquationem integrabilem.

[0258]DE FLUXIONALIBUS

Eadem principia etiam ad omnes fluxionales æquationes quorum- cunque ordinum applicari po$$unt.

PROB. LII. Datâ fluxionali æquatione $uperioris ordinis; invenire quantitatem, qua in datam æquationem ducta, eandem baud raro reddet integrabilem.

I. A$$umatur multiplicator (P) primi generis, qui ducatur in da- tam æquationem, & in multis ca$ibus per notas regulas fluentes in- veniendi ita a$$umi pote$t P, ut inveniatur fluens æquationis re$ul- tantis: $æpe quoque e præcedentibus principiis con$tabit $ormula multiplicatoris P, & exinde hoc problema in præcedens tran$ibit.

2. Si vero in fluxionalibus æquationibus $uperiorum ordinum haud inveniatur multiplicator primi generis P, affumatur multipli- cator $ecundi generis P x^. + 2 y^., &c. & per prædictas regulas in multis ca$ibus inveniri pote$t fluens fluxionalis æquationis; & fic deinceps.

3. Invenire fluentem fluxionis P y^. ^r + Q y^. ^r-1 + R y^. ^r-2 + &c. + T; ubi P e$t functio quantitatum y^. ^r-1, y^. ^r-2, y^. ^r-3, .. y^. ^2 y^., & x^., y & x; Q vero functio quantitatum y^. ^r-2, y^. ^r-3, ... y^. ^2, y^. & x^., y & x; R autem functio quantitatum y^. ^r-3, y^. ^r-4, ... y^. ^2, y^. & x^., y & x, &c.; T functio vel rationalis vel irrationalis nonnullarum prædictarum fluxionum & quantitatum: in fluxione P y^. ^r, a$$umantur omnes quantitates præter y^. ^r-1 tanquam invariabiles, & ex hâc hypothe$i inveniatur fluens fluxionis P y^. ^r, quæ $it π; deinde inveniatur π^. ex hypothe$i quod y^. ^r-1, y^. ^r-2, y^. ^r-3, ... y^.., y^., y, x^. & x $int varia- biles, quæ $it P y^. ^r + H y^. ^r-1 + by^. ^r-2 + &c.: tum inveniatur fluens fluxio- nis (Q - H)y^. ^r-1, ex hypothe$i quod omnes quantitates præter y^. ^r-2 $int [0259]ÆQUATIONIBUS. invariabiles; quæ $it ξ; deinde inveniatur ξ^.. ex hypothe$i quod y^. ^r-2, y^. ^r-3,...y^.., y^., y & x $int variabiles, quæ $it (Q - H) y^. ^r-1 + Iy^. ^r-2 + &c.; tum inveniatur fluens fluxionis (R - b - I)y^. ^r-2 ex hypothe$i quod om- nes quantitates præter y^. ^r-3 $int variabiles; & $ic deinceps: & ultimo perveniendum e$t ad functionem quantitatis x in x^. ^n ductam, cujus inveniatur fluens, & generaliter corrigatur; & fluens datæ fluxionis, $i modo $it integrabilis, reperietur.

3. 2. Sit fluxionalis quantitas (A) P y^. ^n + 2z^. ^n + R v^. ^n + &c. + F + &c., in quâ plures continentur variabiles quantitates (y, z, v, &c.) & ea- rum fluxiones; tum primo a$$umantur una (y) & ejus fluxiones $o- lummodo variabiles, & ex hâc hypothe$i inveniatur fluens (π), cujus (π) inveniatur fluxio ex hypothe$i quod omnes prædictæ quantitates (y, z, v, &c.) & earum fluxiones $int variabiles, quæ $upponatur α; $ubtrahatur hæc fluxio de datâ, & re$ultabit fluxio A - α = B, in quâ nec continetur variabilis y, nec ejus fluxiones, $i modo fluens datæ fluxionis exprimi po$$it: $i evane$cant prædictæ quantitates, tum per eundem modum in quantitate B a$$umantur (z) & ejus flu- xiones $olummodo variabiles, & ex hâc hypothe$i inveniatur fluens, quæ $it ξ, cujus (ξ) inveniatur fluxio ex hypothe$i quod prædictæ quantitates (z, v, &c.) & earum fluxiones $int variabiles, quæ $up- ponatur β; $ubtrahatur hæc fluxio de B, & re$ultabit fluxio B - β, in quâ nec continetur variabilis z, nec ejus fluxiones, $i modo fluens datæ fluxionis exprimi po$$it: & $ic de reliquis variabilibus quanti- tatibus.

Ex. 1. Sit y^.. = y^n X x^. ^2, ubi X $it functio quantitatis x; a$$umatur P multiplicator primi generis, ducatur data æquatio in P, & re$ultat P y^.. = P y^n X x^. ^2; per regulam hìc traditam pro fluente affumenda e$t P y^. - A^. = $. (P y^.. - P y^n X x^. ^2), $ed huju$ce æquationis fluxio erit P y^.. + y^. P^. - A^.. = Py^.. - P y^n X x^., unde y^. P^. - A^.. = - P y^n X x^., cujus pro fluente per eandem regulam a$$umenda e$t y P^. + B^. = $. (y^. P^. - A^.. + [0260]DE FLUXIONALIBUS P y^n X x^. ^2), cujus fluxio erit y^. P^. + y P^.. + B^.. = y^. P^. - A^.. + Py^n X x^.^2, unde y P^.. + B^.. = - A^.. + P y^n X x^. ^2; $ed ut corre$pondentes termini huju$ce æquationis inter $e conveniant, nece$$e e$t, ut B^.. = - A^.. & y P^.. = P y^n X x^. ^2, & exinde y^n = y & n = 1 & {P^.. / Px^. ^2} = X.

Cor. Sit data æquatio X x^. ^2 = m v^μ v^. ^2 + n v^μ+1 v^.., $cribatur v = y^{n / m+n} & re$ultant v^. = {n / m + n} y^{-m / m+n} y^. & v^.. = -{mn / (m + n)^2} y^{-2m-n / m+n} y^. ^2 + {n / m + n}y^{-m / m+n} y^..; & exinde m v^μ v^. ^2 + n v^μ+1 v^.. = {n^2 / m + n} y {μn-m+n / m+n} y^.. = X x^. ^2, hæc au- tem æquatio e$t eju$dem formulæ ac æquatio y^n X x^. ^2 = y^...

Ex. 2. Sit y^.. + {A y^n x^. ^2 / (α + 2 βx + γ x^2)^{n+3 / 2}} = 0, ducatur hæc æquatio in px^. + qy^. & re$ultat p x^. y^.. + q y^. y^.. + {p Ay^n x^. ^3 + q A y^n y^. x^. ^2 / (α + 2βx + γ x^2)^{n+3 / 2}} = 0; per prædictam regulam pro fluente fluxionis p x^. y^.. + q y^. y^..(π^.) a$$umenda e$t p x^. y^. + {q y^. ^2 / 2} + Lx^. ^2, cujus fluxio erit p x^. y^.. + q y^. y^.. (π^.) + p^. x^. y^. +{q^. y^. ^2 / 2} + L^.x^. ^2; $it igitur p = P y & erit p^. = P^. y + Py^., unde p^. x^. y^. = P x^. y^. ^2 + y P^. x^. y^.; fingatur P x^. y^. ^2 = - {q^.y^. ^2 / 2}, & exinde P x^. = -{q^. / 2}, & multiplicator p x^. + q y^. erit -{q^. / 2} y + qy^.; ducatur data æquatio y^.. +{A y^n x^. ^2 / (α + 2β x + γ x^2)^{n+3 / 2}} = 0 in - q^. y + 2 q y^. & re$ultat æquatio - q^. y y^.. + 2 q y^. y^.. - {A y^n+1 q^. x^. ^2 - 2 q A y^n y^. x^. ^2 / (α + 2 β x + γ x^2)^{n+3 / 2}}, cujus fluens erit - y q^. y^. + q y^.^2 + $.y y^. q^.. - $.{A y^n+1 q^. x^. ^2 - 2 q A y^n y^. x^. ^2 /(α + 2β x + γ x^2)^{n+3 / 2}} (H); $i vero fluens H inveniri [0261]Æ QUATIONIBUS. po$$it, erit {- 2q A y^{n+1} x^. ^2 /(n + 1)(α + 2βx + γx^2)^{n+3 / 2}}, cujus fluxio erit {- 2qAy^n x^. ^2 y^. / (α + 2βx + γx^2)^{n+3 / 2}}+ {(- 2q^. (α + 2β x + γ x^2) + 2 (n + 3)q(β + γ x)x^.)Ay^n+1 x^. ^2 /(n + 1)(α + 2βx + γx^2)^{n+5 / 2}}, unde A y^n+1 x^. ^2 q^. = - Ay^n+1 x^. ^2 {(2 q^. (α + 2β x + γ x^2) - 2(n + 3)q(β + γ x)x^.) / (n + 1)(α + 2β x + γ x^2)}, & exinde (n + 1) (α + 2 β x + γ x^2)q^. = - 2(α + 2 β x + γ x^2)q^. + 2 x^. (n + 3) q (β + γ x), & con$equenter (n + 3) (α + 2 β x + γ x^2)q^. = 2 (n + 3) q (β + γ x)x^., unde {q^. / q} = {2 (β + γ x)x^. / α + 2 β x + γ x^2}, & q = α + 2 β x + γ x^2: multiplicator igitur quæ$itus erit - 2 (β + γ x) y x^. + 2 y^. (α + 2 β x + γ x^2), qui ductus in datam æquationem y^.. +{A y^n x^. ^2 / (α + 2 β x + γ x^2)^{n+3 / 2}} = 0, præbet fluxionem, cujus fluens erit - 2 y x^. y^. (β + γ x) + y^. ^2 (α + 2 β x + γ x^2) + {2 / n + 1}{A y^n+1 x^. ^2 / (α + 2 β x + γ x^2)^{n+1 / 2}}+ γ y^2 x^. ^2 = C x^. ^2, ubi C $it invariabilis quantitas ad libitum a$$u- menda.

Ex. 3. Sit y^.. + y X x^. ^2 = 0, ubi X $it functio quantitatis x: ejus multiplicator erit - y q^.. + 2 q y^..

Ex. 4. Sit y^.. + {A y^2 x^. ^2 /x{15 / 7}} = 0, & ejus fluens invenietur {24 x^. y^. / 243 A} - {6 y x^. y^. / 7 x{1 / 7}}+ x{6 / 7}y^. ^2 + {2 A y^3 x^. ^2 / 3^x{9 / 7}} - {3 y^2 x^. ^2 / 49^x{8 / 7}} = C x^.^2.

Ex. 5. Sit y^.. + y^- {5 / 3} x^. ^2 (α + 2 β x + γ x^2) = 0, multiplicetur in quan- titatem 36 y^{1 / 3} (β + γ x) x^. ^3 - 12 y^-{2 / 3} (α + 2 β x + γ x^2) x^. ^2 y^. + 4 y^.^3 formulæ P x^. ^3 + 2 Q x^. ^2 y^. + 3 R x^. y^. ^2 + 4 S y^. ^3; & re$ultat æquatio, cujus fluens erit 36 y^{1 / 3} (β + γ x) x^. ^3 y^. - 6 y^-{2 / 3} (α + 2 β x + γ x^2) x^. ^2 y^. ^2 + y^.^4 + 9 y^-{4 / 3} (α + 2 β x + γ x^2)^2 x^. ^4 - 27 γ y^{4 / 3} x^. ^4 = Cx^.^4.

[0262]DE FLUXIONALIBUS

Cor. In his æquationibus, quarum multiplicatores inveniuntur, pro y & ejus fluxionibus y^., y^.., &c. $cribantur f z^n, vel quæcunque alia quantitas, & ejus fluxiones; & re$ultant æquationes, quarum dabun- tur etiam multiplicatores.

Ex. 6. Sit y^2 y^.. + y y^. ^2 + A x x^. ^2 = 0, ducatur ea in multiplicatorem formulæ 3 L y^. ^2 + 2 M x^. y^. + N x^. ^2, ubi A $it con$tans, & L, M & N functiones quantitatis x; & æquationis re$ultantis inveniatur fluens per notas regulas; invenietur multiplicator 3 y y^. ^2 + 3 A x x^. ^2, qui ductus in datam æquationem, dat fluxionem, cujus fluens erit y^3 y^. ^3 + 3 A x y^2 x^. ^2 y^. - A y^3 x^. ^3 + A^2 x^3 x^. ^3 = C x^.^3.

Cor. Sit y = u x & y^. = p x^., unde {x^. / x} = {u^. / p - u}; ita reducatur data æquatio, ut exprimat relationem inter p & u, quæ evadit Au^. + u p^2 u^. + p u^2 p^. - u^3 p^. = 0; pro p & p^. $cribantur {q / u} & {q^. u - u^. q / u^2}, & re- $ultat A u^. + q q^. + q u q^. - u^2 q^. = 0.

7. Sit æquatio y^2 y^.. - {1 / 2} y y^. ^2 = a x x^. ^2 vel y^.. - {1 / 2}{y^. ^2 / y} = {a x x^. ^2 / y^2}, ducatur hæc æquatio in - 2 x^. ^2 + {2 x x^. y^. / y}, & fluens quæ$ita erit - 2 x^. ^2 y^. +{x x^. y^. ^2 / y} + {a x^2 x^. ^3 / y^2} = C x^.^3.

8. Sit y^.. - {2 y^. ^2 / 5 y} - {a x x^. ^2 / y^2} = 0, ducatur hæc æquatio in - {10 / 3}x y^{1 / 5} x^.^2 + 2 x^2 y - {4 / 5} x^. y^., & fluxionis re$ultantis fluens erit - {10 / 3}x y^{1 / 5} x^. ^2 y^. + x^2 y^- {4 / 5} x^. y^. ^2 + {10 / 9} a x^3 y^-{9 / 5} x^. ^3 + {25 / 9} y^{6 / 5} x^. ^3 = C x^.^3.

9. Sit y^.. + {2 y^. ^2 / y} - {a x x^. ^2 / y^2} = 0, ducatur ea in y^2 x^. ^2, & fluens fluxio- nis re$ultantis erit y^2 x^. ^2 y^. - {1 / 2} a x^2 x^. ^3 = C x^.^3.

10. Sit æquatio y^.. + {y^. ^2 / y} - {a x x^. ^2 / y^2} = 0; multiplicetur ea per 3 y^3 y^.^2 [0263]ÆQUATIONIBUS. - 3 a y^2 x x^. ^2, & re$ultat fluxio, cujus fluens erit y^3 y^. ^3 - 3 a x y^2 x^. ^2 y^. + a y^3 x^. ^3 + a^2 x^3 x^. ^3 = C x^.^3.

11. Sit y^.. + y^2 X x^. ^2 = 0, ubi X = - {24β^3 /343 (α + βx)^{20 / 7}}; & invenietur ejus multiplicator (α + β x - {8 / 7}β y (α + β x)^{1 / 7}) x^. + 2 (α + β x)^{8 / 7} y^., qui ductus in datam æquationem præbet fluxionem, cujus fluens inve- nietur (α + β x - {8 / 7}β y (α + βx)^{1 / 7})x^.y^. + (α + βx)^{8 / 7} y^. ^2 - {16 β^3 y^3 x^. ^2 / 343 (α + β x)^{12 / 7}}- β y x^. ^2 + {4 β^2 y^2 x^. ^2 / 49 (α + β x)^{6 / 7}} = C x^.^2.

12. Sit y^.. + {A y^2 x^. ^2 /x{15 / 7}} = 0, ducatur hæc æquatio in {24 x^. / 343 A} - {6 y x^. / 7x^{1 / 7}}+ 2 x{6 / 7}y^., & re$ultat fluxio, cujus fluens erit {24 x^. y^. / 343 A} - {6 y x^. y^. / 7 x^{1 / 7}} + x{6 / 7} y^. ^2 + {2 A y^3 x^. ^2 /3 x^{9 / 7}} - {3 y^2 x^. ^2 /49 x^{8 / 7}} = C x^.^2.

13. Sit 2 y^3 y^.. + y^2 y^. ^2 + X x^. ^2 = 0, ubi X = α + β x + γ x^2; ducatur ea in {2 y^. ^3 / y} - {2 (α + β x + γ x^2) x^. ^2 y^. / y^3} + {2 x^. ^3 (β + 2 γ x) / y^2}, & re$ultat fluxio, cujus fluens erit (y^2 y^. ^2 - (α + β x + γ x^2) x^. ^2)^2 + 4 y^3 x^. ^3 y^. (β + 2 γ x) - 4 γ y^4 x^. ^4 = C y^2 x^.^4.

14. Si in æquatione y^2 y^.. + y y^. ^2 + X x^. ^2 = 0 $cribatur y y^. = {1 / 2} z^. $eu y^2 = z; re$ultat {1 / 2}z^.. √(z) + X x^. ^2 = 0, quæ ope multiplicatoris {3 z^. ^2 / 4√(z)} + 3 X x^. ^2 redditur integrabilis, $i modo X = Ax vel α + β x: eodem modo $it æquatio y^2 (2 y y^.. + y^. ^2) + X x^. ^2 = 0, ubi X = α + β x + γ x^2; ponatur y = z{2 / 3} & prodit æquatio {4 / 3}z{5 / 3}z^.. + X x^. ^2 = 0, per eundem modum integrabilis.

15. Sit y^.. + {A y x^. ^2 / (B y^2 + C + 2 D x + E x^2)^2} = 0; ubi A, B, C, D, E [0264]DE FLUXIONALIBUS $unt con$tantes, & ejus multiplicator invenietur 2 y^. (C + 2 D x + E x^2) - 2 y x^. (D + Ex), cujus producti fluens erit {y^.^2 / x^. ^2} (C + 2 D x + E x^2) - {2 y y^. / x^.} (D + Ex) + {A y^2 / B y^2 + C + 2 D x + E x^2} + E y^2 = con$t.

16. Sit æquatio y^.. + {X^. / 2 X} y^. + {Y / X}x^. ^2 = 0; ubi Y & X $unt functio- nes quantitatum y & x re$pective; ducatur hæc æquatio in X y^., & re$ultat X y^. y^.. + {1 / 2} Xy^. ^2 + Y y^. x^. ^2 = 0, cujus fluens erit {1 / 2} X y^. ^2 = - x^.^2 $. Y y^..

PROB. LIII.

_1._ Sit p x^. + q y^. = 0, ducatur hæc æquatio in P, ubi P, $it functio quantitatis x; invenire, annon ita a$$umi pote$t P, ut fluens fluxionis P p x + P q y^. inveniri pote$t.

Sint p^. = α x^. + β q^. = π x^. + ξy^., tum erit P β = P π + {P^. / x^.} × q; unde {β - π / q} × x^. = {P^. / P}; & exinde, $i differentia β - π per q divi$a $it functio quantitatis x, ita a$$umi pote$t P = e^$. {β-π / q} x^., ut fluens flu- xionis P p x^. + P q x^. inveniri pote$t; $in aliter vero non.

1.2. Fluens terminorum datæ æquationis, in quibus continetur y, erit P $. q y^.; ubi per $. q y^. intelligo fluentem (V) fluxionis q y^., cum x fin- gatur invariabilis; & fluens fluxionalis æquationis erit P V + $. Q x^. = A = 0, ubi Q x^. = (P p - W) x^., & W x^. e$t fluxio rectanguli P × V ex hypothe$i quod x $olummodo $it variabilis.

Aliter: inveniatur fluens fluxionis (q y^.) ex hypothe$i quod x $it in- variabilis quantitas, quæ $it V; tum fiat V P + P V = P Q′x^., ubi Q′ e$t ea pars quantitatis p, in quâ continetur y vel ejus functio & non $olummodo quantitas x & ejus functiones; tum ex hypothe$i quod in [0265]ÆQUATIONIBUS. quantitatibus (V & Q′) $olummodo habetur variabilis x, quæratur multiplicator P ex fluxionali æquatione P V^. + V P = P Q′x^., unde {P^. / P} = {Q′x^. - V^. / V}; ergo, $i {Q x^. - V^. / V} $it functio unica quantitatis x in x^., P erit etiam functio quantitatis x.

2. Sit æquatio P y^. ^n - Q y^. ^n-1 x^. + R y^. ^n-2 x^. ^2 - S y^. ^n-3 x^. ^3 + &c. + π y^... x^. ^n-3 + ξ y^. x^. ^n-2 + σ^.y^.x^. ^n-1 + τ y x^. ^n = X x^. ^n, ubi x fluit uniformiter; & P, Q, R, S, &c. X $unt functiones quantitatis x; tum ejus (n) multiplica- tores (M) erunt functiones quantitatis x, quæ erunt (n) fluentes fluxio- nalis æquationis (M^.^n P) + (M^.^n-1 Q)x^. + (M^.^n-2 R)x^. ^2 + (M^.^n-3 S)x^. ^3 + ... ± τ x^. ^n = M^. ^n P + (n P^. + Q x^.) M^. ^n-1 + (n · {n - 1 / 2} P^.. + (n - 1) Q^.x^. + R x^. ^2) M^. ^n-2 + (n · {n - 1 / 2} · {n - 2 / 3} P^... + (n - 1). {n - 2 / 2} Q^.. x^. + (n - 2) R^.x^. ^2 + S x^. ^3) × M^. ^n-3 + &c. = 0.

Ejus fluens erit M P y^. ^n-1 - (M^. P + MP^. + MQx^.) y^. ^n-2 + (M^.. P + (2P^. + Qx^.) M^. + (P^.. + Q^.x^. + Rx^. ^2) M) y^. ^n-3 + (M^... P + (3 P^. + Qx^.) M^.. + (3 P^.. + 2 Q^.x^. + R x^. ^2) M^. + (P^... + Q^..x^. + R^.x^. ^2 + S x^. ^3) M) y^. ^n-4 &c. = α = x^. ^n-1 $. M X x^., &c.

Cor. Sit data prædicta æquatio Py^. ^n - Qy^. ^n-1 x^. + R y^. ^n-2 x^. ^2 ... + π y∴ x^. ^n-3 + ξ y^.. x^. ^n-2 + σ y^. x^. ^n-1 + τ y x^. ^n = X x^. ^n; & $it τ x^. ^n = {1 / M}((σM^. + Mσ^.)x^. ^n-1 - (ξ^.. M + 2 ξ^. M^. + ξ M^..)x^. ^n-2 + &c.); tum $emper detegi pote$t fluens; vel, $i σx^. ^n-1 ={1 / M} $. (τMx^. ^n + (ξ^.. M + 2 ξ^. M^. + ξ M^..) x^. ^n-2 - (π^... M + 3 π^.. M^. + 3 π^.M^.. + π M^...) x^.^n-3 + &c.); vel ξx^. ^n-2 = {- 1 / M} $. $. (τ M^. x^. ^n - (σ M^. + M σ^.) x^. ^n-1 - (π^... M + 3 π^.. M^. [0266]DE FLUXIONALIBUS + 3 π^. M^.. + πM^...)x^.<_>n-3 + &c.), &c.; tum fluens datæ fluxionalis æqua- tionis $emper detegi pote$t.

Cor. Sit fluens datæ fluxionis (P y^. ^n - Qy^. ^n-1 + &c.) = Γ = 0; tum, ut e præcedentibus con$tat, erit multiplicator Mφ:Γ.

3. Sit fluxionalis æquatio ordinis (n), viz. P y^. ^n + Qy^. ^n-1x^. + Ry^. ^n-2x^.^2 + &c. = 0; ubi P, Q, R, &c. $unt functiones quantitatum x & y & earum fluxionum ordinum haud majorum quam n - 1, n - 2, n - 3, &c.; & x fluit uniformiter: $it multiplicator (M), qui reddit æqua- tionem integrabilem, functio quantitatis x; tum inveniatur fluens quantitatis Py^. ^n ex hypothe$i, quod y^. ^n-1 $olummodo $it variabilis; quæ $it α; & exinde inveniatur fluxio quantitatis α M, viz. αM^. + Mα^., in quâ $olummodo $upponitur (x^.) invariabilis; deinde inveniatur fluens fluxionis MQy^. ^n-1 x^. - αM^. - Mα^. + MPy^. ^n ex hypothe$i, quod y^. ^n-2 $o- lummodo $it variabilis, quæ $it -M^. $. α + M $. (Qy^. ^n-1 x^. - α^. + Py^. ^n) = - M^.β′ + Mβ: tum inveniatur fluxio quantitatis β M - β′M^. ex hypothe$i quod x^. $olummodo $it invariabilis, quæ $it Mγ + M^. γ′ + M^.. γ″: deinde inveniatur fluens fluxionis MRy^. ^n-2x^.^2 - Mγ - M^.γ′ - M^.. γ″ - Mα^. - αM^. + MPy^. ^n + MQy^. ^n-1 x^. ex hypothe$i quod y^. ^n-3 $olummodo $it variabilis; quæ $it Mδ + M^. δ′ + M^.. δ″; cujus in- veniatur fluxio ex hypothe$i quod x^. $olummodo $it invariabilis; & $ic deinceps: & $i ultimo evane$cant quantitas y & ejus fluxiones; tum integrari pote$t data æquatio per multiplicatorem, quæ e$t fun- ctio quantitatis x; $in aliter vero non.

Cor. Si ex affumptis valoribus prædictarum quantitatum ultimo evane$cant quantitas y & ejus fluxiones, tum dabuntur fluxionales æquationes, quarum fluentes innote$cunt.

4. Datâ fluxionali æquatione n ordinis (A = 0), quæ $it data fun- ctio quantitatis y, ejus fluxionum; x & x^.; ubi x^. e$t invariabilis; & [0267]ÆQUATIONIBUS. multiplicator eandem habeat formulam ac data æquatio, i. e. in eo in- volvantur datæ functiones quantitatis y & ejus fluxionum y^., y^.., y^..., &c. ad y^. ^n-1; per quamcunque datam methodum cum incognitis & cognitis functionibus quantitatum x & x^.; invenire ejus fluentem, $i modo data æquatio $it integrabilis.

1<_>mo. Reducenda e$t data fluxionalis æquatio, ita ut fluxio maximi ordinis in eâ contenta unam $olummodo habeat dimen$ionem, i. e. $it Py^. ^n + &c. = A = 0; deinde ducatur data æquatio in multiplicatorem M, & inveniatur fluens fluxionis MPy^. ^n ex hypothe$i quod y^. ^n-1 $olum- modo $it variabilis, quæ $it α; & exinde inveniatur fluxio quantitatis α ex hypothe$i, quod quantitates y, y^., y^.., ... y^. ^n-1 & x; $int variabiles, & re$ultet fluxionalis quantitas B; tum inveniatur fluens fluxionalis quantitatis MA - B ex hypothe$i quod y^. ^n-2 $olummodo $it variabilis, $i y^. ^n-1 in quantitate MA-B unam $olummodo habeat dimen$ionem, quæ $it γ; $i autem in quibu$dam terminis quantitatis MA - B in- veniantur aliæ dimen$iones præter unam fluxionis y^. ^n-1; tum ita a$$u- mantur functiones F, G, H, &c., ut evane$cant illæ dimen$iones flu- xionis y^. ^n-1; deinde inveniatur fluxio quantitatis γ ex hypothe$i quod y, y^., y^.., ..., y^. ^n-2 & x & prædictæ incognitæ functiones (F, G, &c.) & earum fluxiones $int variabiles, & re$ultet Fluxionalis quantitas C: tum inveniatur fluens fluxionalis quantitatis MA - B - C ex hypo- the$i quod y^. ^n-3 $olummodo $it variabilis, $i y^. ^n-2 $olummodo habeat unam dimen$ionem in quantitate MA - B - C, quæ $it δ; $i autem in qui- bu$dam terminis quantitatis prædictæ MA - B - C inveniantur aliæ dimen$iones præter unam fluxionis y^. ^n-2, tum ita a$$umantur quanti- tates & earum fluxiones ut evane$cant illæ dimen$iones fluxionis y^. ^n-2: [0268]DE FLUXIONALIBUS deinde inveniatur fluxio quantitatis δ ex hypothe$i quod y, y^., y^.., ..., y^. ^n-3 & x & prædictæ quantitates (F, G, &c. &c.) & earum fluxiones $int variabiles, & re$ultet quantitas D; tum inveniatur fluens quantitatis MA - B - C - D ex hypothe$i quod y^. ^n-4 $olummodo $it variabilis, & $ic deinceps; u$que donec evane$cant quantitas y & ejus fluxio- nes ex fluxione deductâ: & $i ex hâc reductione re$ultent (l) inde- pendentes æquationes totidem incognitas functiones quantitatum x & x^. &c. involventes; tum ex fluentibus prædictarum fluxionalium æquationum detegi pote$t data fluxionalis æquatio & ejus multipli- cator: $i plures (m) $int incognitæ functiones prædictæ quam æqua- tiones, tum for$an pro m-l functionibus a$$umi po$$unt quæcun- que functiones quantitatis x & ejus fluxionum, &c.

Cor. Datâ æquatione py^. ^n + qy^. ^n-1 + ry^. ^n-2 + sy^. ^n-3 ... ty^. ^n-m = 0; ubi 2 m minor e$t quam n, & p e$t data functio quantitatum x, x^., y, y^., y^.., u$que ad y^. ^n-2m-1; & q data functio quantitatum x, x^., y, y^., y^.., &c. u$que ad y^. ^n-2m; & r e$t functio quantitatum x, x^., y, y^., y^.., ... y^. ^n-2m+1; & s fun- ctio quantitatum x, x^., y, y^.,... y^. ^n-2m+1; & $ic deinceps: tum erit fluens primi ordinis datæ æquationis Ppy^. ^n-1 + (Pq - Pp^. - pP^.)y^. ^n-2 + (P.r - Pq^. - qP^. + Pp^.. + 2P^. p^. + pP^..)y^. ^n-3 + (Pv - {. / Pr} + {.. / Pq} - {... / Pp})y^. ^n-4 + &c.. y^. ^n-m+1 = 0(A) = Cx^.^n-1, ubi C e$t invariabilis; $i modo {m. / Pp} -{m-1. / Pq} + {m-2. / Pr} - {m-3. / Ps} + &c. = 0, tum fluens datæ fluxionis (n ordinis) detegi pote$t e fluente fluxionalis æquationis (B) {m. / Pp} - {m-1. / Pq} + {m-2. / Pr} - &c. = 0: $i P $it fluxionalis quantitas π ordinis; & p, q, r, s, &c. fluxionales quantitates α, β, γ, δ, ε, &c. ordinum re$pective; tum erit prædicta (B) fluxionalis æquatio ordinis, qui inventus fuerit maxi- [0269]ÆQUATIONIBUS. mus inter numeros α + m, β + m - 1, γ + m - 2, δ + m - 3, &c.

Æquatio re$ultans per con$imilem methodum reduci pote$t, $i 2 m minor $it quam n - 1; & $ic deinceps.

THEOR. XXXIV.

1. Sit fluxionalis æquatio α = 0, quæ continet fluxionalem quantita- tem y^. ^n ordinis n; & $i ducatur æquatio α = 0 in P fluxionalem quantitatem y^. ^m ordinis m, ita ut æquatio re$ultans evadat integrabilis; tum plures erunt fluxionales æquationes ordinis (m), quæ $unt fluen- tiales æquationes ordinis (n - m) datæ æquationis α = 0, i. e. in fluentiali æquatione ordinis (n - m) datæ æquationis fluxio y^. ^m a$cen- det ad majores quam unam dimen$iones.

2. Si vero dentur (n) algebraici multiplicatores, viz. a, b, c, d, &c; tum una $olummodo datur generalis fluens, viz. $. a$. b. $. c $. d &c. × α = 0; &, $i una $olummodo detur generalis fluens, tum dantur (n) alge- braici multiplicatores; etiamque (n) diver$i algebraici multiplica- tores, qui reddent datam æquationem integrabilem.

3. Sit fluxio Mx^.^n + Nx^.^n-1 y^. + Px^.^n-2 y^.. + Qx^.^n-3 y^... + Rx^.^n-4 y^.... + &c.; & π^. = Mx^. + M′y^.; tum erit ejus fluens, ($i modo exprimi po$$it), = πx^.^n-1 + ζx^.^n-2 y^. + σx^.^n-3 y^.. + τx^.^n-4 y^... + &c. = A; ubi ζ, σ, τ, &c. $unt functiones quantitatis x; & exinde N = M′ + φ:(x); & P, Q, R, &c. $unt etiam functiones quantitatis x.

Fluens fluxionis A, (i. e. fluens $ecundi ordinis datæ fluxionis), $i modo integrabilis $it, erit π′x^.^n-2 + ζ′x^.^n-3 y^. + σ′x^.^n-4 y^.. + τ′x^.^n-5 y^... + &c.; ubi π′ e$t functio quantitatis x in ay + b; & ζ′, σ′, τ′, &c. $unt fun- ctiones quantitatis x: & fluens omnis $uperioris ordinis (m + 1) datæ fluxionis erit π′^m x^.^n-m + ζ′^m x^.^n-m-1 y^. + σ′^m x^.^n-m-2 y^.. + τ′^m x^.^n-m-3 y^... + &c.; ubi π′^m fuerit functio quantitatis x in a′y + b′; & ζ′^m, σ′^m, τ′^m, &c. functiones quantitatis x.

[0270]DE FLUXIONALIBUS

4. Sit fluxio Mx^.^n + Nx^.^n-1 y^. + Px^.^n-2 y^.. + Qx^.^n-3 y^... + Rx^.^n-4 y^.... + + P′x^.^n-2 y^.^2 &c.; ejus fluens erit ($i modo integrari po$$it,) πx^.^n-1 + ζx^.^n-2 y^. + σx^.^n-3 y^.. + τx^.^n-4 y^... + &c.; ubi M, N, P & P′, π & ζ $unt functiones quantitatum x & y; & Q, R, &c. σ, τ, &c. $unt functiones quantitatis x; hæc fluxio eandem habet formulam ac fluxio in priori ca$u data.

5. Sit fluxio Mx^.^n + Nx^.^n-1 y^. + Px^.^n-2 y^.. + Qx^.^n-3 y^... + Rx^.^n-4 y^.... + &c. + P′x^.^n-2 y^.^2 + Q′x^.^n-3 y^.y^.. + Q′x^.^n-3 y^.^3 ejus fluens erit ($i modo integrari po$$it) πx^.^n-1 + ζx^.^n-2 y^. + σx^.^n-3 y^.. + + σ′x^.^n-3 y^.^2 τx^.^n-4 y^... + &c.; ubi literæ M, N, P, P′, Q, Q′, Q″; π, ζ, σ, & σ′ $unt functiones quantitatum x & y; & R, &c., τ, &c. $unt functiones quantitatis x; hæc fluxio eandem habet formulam ac data fluxio in præcedente ca$u; & $ic deinceps: unde, $i modo datæ fluxiones hu- ju$ce generis integrari po$$int, continuo ex inveniendis earum fluen- tibus deprimentur datæ fluxiones in alias, quarum formula e$t ma- gis $implex.

PROB. LIV. Per infinitas $eries invenire multiplicatores datarum fluxionalium æqua- tionum.

1. Ex datis fluxionalibus æquationibus (α = 0) inveniatur $eries, quæ exprimit valorem unius variabilis in terminis reliquarum & earum fluxionum; & $i data fluxionalis æquatio $it primi ordinis, tum in $e- rie generali continetur una $olummodo invariabilis quantitas (A) ad libitum a$$umenda; ex hâc $erie per methodum infinitarum $erierum po$tea traditam inveniatur quantitas A = P; tum A = P erit ge- neralis fluens æquationis α = 0 & {P^. / α} multiplicator quæ$itus.

2. Si data $it fluxionalis æquatio $uperioris (m) ordinis; tum in $erie generali prædictâ inventâ continebuntur (m) invariabiles & inter $e [0271]ÆQUATIONIBUS. non dependentes (A, B, C, D, &c.): ex hâc $erie inveniatur quæcun- que prædicta invariabilis quantitas, e. g. A = P; tum erit A = P generalis fluens & {P^. / α} multiplicator quæ$itus.

THEOR. XXXV.

1. Sit æquatio fluxionalis α = 0, quæ ducta in P fiat fluxio, cujus fluens n ordinis inveniri pote$t: $it β fluens n ordinis fluxionalis æquationis α = 0, tum {β^. ^n-1 / α} erit quantitas, quæ ducta in α creat fluxio- nem, cujus fluens (n - 1) ordinis inveniri pote$t; & $ic {β^.^n-2 / α}, {β^.^n-3 / α}, &c. erunt multiplicatores, qui ducti in datam fluxionalem æquationem, creant fluxiones, quarum fluentes n - 2, n - 3, &c. ordinum inveniri po$$unt.

2. Et $ic $it α = 0 data æquatio, & P α = β^. & Q β = γ^., R γ = δ^., S δ = ε^., &c. tum erunt Q $. P α = γ^., R $. Q $. P α = δ^., & $ic S $. R $. Q $. P α = ε^., &c. & multiplicatores, qui ducti in datam æquatio- nem α = 0 præbent æquationes fluxionales, quarum fluentes primi, $ecundi, tertii, &c. ordinis inveniri po$$unt, erunt re$pective P, {Q $. P α / α},{R $. Q $. P α / α}, {S $. R $. Q $. P α / α}, &c.

THEOR. XXXVI.

1. Sæpe e $ub$titutione $eparari po$$unt variabiles quantitates: e methodis prius traditis deleri po$$unt quædam irrationales quantita- tes, e quibus nonnunquam re$ultabit $eparatio; vel $æpe $ub$titutio ex æquatione datâ $atis manife$ta erit, quæ $eparationem variabilium quantitatum inducet; $æpe etiam di$tingui pote$t data æquatio in [0272]DE FLUXIONALIBUS diver$as partes, quarum $ingula e$t functio fluentis in ejus fluxionem, quod e $ub$equentibus exemplis con$tabit.

Ex. 1. Sit (x y^. + y x^.) √(a^4 - x^2 y^2) = {x x^. + yy ^./(x^2 + y^2)^{3 / 4}}; facilis e$t ob$er- vatio, ut $. (x y^. + y x^.) = x y, cujus quadratum x^2 y^2 $olummodo con- tinetur in quantitate a^4 - x^2 y^2; fluens vero fluxionis x x^. + y y^. erit {1 / 2}(x^2 + y^2); $ed quantitas x^2 + y^2 $olummodo continetur in quan- titate (x^2 + y^2)^{3 / 4}: $cribantur igitur x y = z & x^2 + y^2 = v; & exinde re$ultabit æquatio z^. √(a^4 - z^2) = {v^. / 2 v{3 / 4}}, in quâ variabiles z & v $e- parantur.

Ex. 2. Sit a x^. = (x + y)^n × y^., $cribatur x + y = z, & erit x^. + y^. = z^., unde exorietur ($i modo exterminentur x & x^.) æquatio a z^. - a y^. = z^n y^., & con$equenter y^. = {a z^. / a + z^n}.

Ex. 3. Sit fiuxio {2x^2 x^. + x y y^. + y^2 x^. / x^4 + x^2 y^2 + a^4} = {x x^. + y y^. / √(x^2 + y^2)}, nunc $up- ponatur irrationalis quantitas √(x^2 + y^2) = z, quâ quantitate & ejus fluxionibus pro $uis valoribus in datâ æquatione $ub$titutis re- $ultat {z / x^2 z^2 + a^4} × (x z^. + z x^.) = z^.; $cribatur x z = p, & ex hoc a$- $umpto valore deduci pote$t {p^. / p^2 + a^4} = {z^. / z}.

Ex. 4. Sit æquatio y^m (x x^. + y y^.) = x^n (y x^. - x y^.), quæ hoc modo $cribi pote$t {y^m-2 / x^n} (x x^. + y y^.) = {y x^. - x y^. / y^2}; a$$umatur {y x^. - x y^. / y^2} = p^. & x x^. + y y^. = q q̈, unde {x / y} = p, & x^2 + y^2 = q^2; his po$itis, deduci pote$t æquatio q^m-n-1 × q̈ = p^n × (p^2 + 1)^{m-n-z / 2} p^..

Ex. 5. Sit æquatio {x^mt-1 y x^. / (b x^t + a y^n x^r)^m} = y^., $upponatur (b x^t + a y^n x^r)^m [0273]ÆQUATIONIBUS. = z x^mt; e datâ æquatione extermincntur y & ejus fluxio, & re$ultat {z^{1 / m} z^./m n z^{1 / m} + (r - t) mz^{1 / m}+1 - (m r - m t)(b z) - m n b} = {x^. / x}.

Ex. 6. Sit {y^u x^. / (b x^t + a y^n x^r)^m} = c x^{ut-mnt-t+r+n-ur / n} y^., & per præcedentem methodum $eparari po$$unt indeterminatæ. Et $ic ex eâdem $ub- $titutione $eparari po$$unt variabiles quantitates in æquationibus {y^u y^. / (b x^t + a y^n x^r)^m} = c x^{tu-n-tmn-ru+t-r / n} x^. & {(b x^t + f y^n x^r)^v y^u y^. / (b x^t + a y^n x^r)^m} = c x^{ut-n-tmn-ru+t-r+ntv / n} x^..

Ex. 7. Sit æquatio {y^n-1 y^. / (a x^t + b x^r + c y^n x^r)^m} = f x^t-r-1-mt x^.; vel {(g x^t + h x^r + k y^n x^r)^e y^n-1 y^. / (a x^t + b x^r + c y^n x^r)^m} = x^t-r-1+te-mt x^., cum c h = b k; ex $ub$ti- tutione a x^t + b x^r + c y^n x^r = x^t z^{1 / m} facile con$tat re$olutio, &c.

Ex. 8. Sit æquatio {a y^. / b + (c y^n + f x)^u} = g y^1-n x^. & {a y^n-1 y^. / b + (c y^n + f x^m)^u}= g x^m-1 x^.; $cribatur pro priori (c y^n + f x)^u = z, & pro $ecundâ (cy^n + fx^m)^u = x, & re$ultabunt duæ æquationes {a z^{1-u / u} z^./n u b c g + n u c g z + a u f}= x^., & x^m-1 x^. = {a z^{1-u / u} z^./b c g n u + c g n u z + m a f u}.

Ex. 9. Sit {a y^n-1 y^. / b + (c y^n + p)^u} = g q x^., ubi p & q $unt algebraicæ functiones literæ x; $i q = {p^. / x^.}, tum $eparari po$$unt indeterminatæ a $cribendo (c y^n + p)^u = z, re$ultat enim æquatio {a z^{1-u / u} z^./n b c g u + n c g u z + a u}= q x^. = p^..

Ex. 10. Sit æquatio a^2 y^. - x^2 y^. + x y x^. = a x^. √ (x^2 + y^2 - a^2) [0274]DE FLUXIONALIBUS $cribe y = u √ (a^2 - x^2), & re$ultat {u^. / √(u^2 - 1)} = {a x^. / a^2 - x^2}, unde u + √(u^2 - 1) = n√({a + x / a - x}); ubi n $it quæcunque con$tans quan- titas.

11. Sit x^m x^. + (b y + y^2){c x^. / x} = y y^., quæ ita $cribi pote$t x^m x^. +{b c y x^. / x} = y^2 × ({y^. / y} - {c x^. / x^.}); fingatur {y^. / y} - {c x^. / x} = {p^. / p}, unde y = p x^c, quâ quantitate pro $uo valore y in datâ æquatione $ub$titutâ re$ultat x^m x^. + b c p x^c-1 x^. = p p^. x^2c; dividatur ea per x^2c, & erit re$ultans æquatio x^m-2c x^. + b c p x^-c-1 x^. = p p^., fiat m - 2c = - c - 1, & $eparantur invariabiles.

Hæc methodus etiam nonnunquam applicari pote$t ad $ub$equentes æquationes x^m x^. + {a y^n x^. / x} + {b y^s x^. / x} = y^t y^.; po$itis enim n - 1 vel s - 1 = t; abbreviationem recipiet formula.

2. Sit æquatio a′ x^m x^. + b y^q x^. = y^.; $cribatur y = z^{1 / 1-q}, & re$ultat æqua- tio a x^m x^. + b z^{q / 1-q} x^. = {1 / 1 - q}z^{q / 1-q} z^.; unde, $i vel m = 0 vel = {q / 1 - q}, re- $ultantis æquationis fluens inveniri pote$t.

3. Sit x y^. + g y x^. + a x^n x^. + b y^n y^. = 0; $cribatur x = y^r u, & exinde deduci pote$t æquatio y^r u y^. + g y(r y^r-1 u y^. + y^r u^.) + a y^rn u^n (r y^r-1 u y^. + y^r u^.) + b y^n y^. = 0, cujus fluens inveniri pote$t, $i modo g r + 1 = 0 & r n + r - 1 = n.

Ex. 12. Sit α y x^. + β x y^. + x^m y^n (γ y x^. + δ x y^.) = 0, dividatur hæc æquatio per xy, & re$ultat {α x^. / x} + {β y^. / y} + x^m y^n ({γ x^. / x} + {δ y^. / y}) = 0; fin- gantur x^α y^β = t & x^γ y^δ = u, & inveniatur fluxionalis æquatio, cu- jus variabiles quantitates $unt t & u, & evadit t^{γ^n-δm / αδ-βγ}-1 t^. + u^{αn-βm / αδ-βγ}-1 u^. = 0.

[0275]ÆQUATIONIBUS.

Ex. 13. Sit y^. y + y^. (a + b x + n x^2) = y x^.(c + n x); $ub$tituatur {y(c + n x) / y + a + b x + n x^2} = u; & inveniatur fluxionalis æquatio, cujus variabiles quantitates $unt x & u, quæ erit {x^. / (a + b x + n x^2)(c + n x)}= {u^. / u(n a + c^2 - b c + (b - 2 c)u + u^2)}.

Ex. 14. Sit (y - x)y^. = {n x^. (1 + y^2)^{3 / 2} /√(1 + x^2)}, $cribatur y = {x - u / 1 + x u}, de- inde inveniatur fluxionalis æquatio, cujus variabiles quantitates $unt x & u, & re$ultabit {x^. / 1 + x^2} = {u u^. / (1 + u^2)(n√(1 + u^2) + u)}.

Ex. 15. Sit (x^n x^. + a y^{-n-1-c / c} y^.)p = (x y^. + b y x^.)q, $ub$tituantur y = t^s z^{r / n+1} & x = t^-{s / c} (a ± a b z^-{r / c})^{1 / n+1}, ubi literæ s & r quantitates invariabiles re$pective denotant; & p & q $unt algebraicæ functiones literarum x & y, tales vero ut in $ingulis terminis in functione p vel q contentis exponens quantitatis y in c ducta $emper $uperet exponen- tem quantitatis x per datam quantitatem; e. g. $it terminus e x^m y^n in functione p, & nece$$e e$t ut c n - m $emper in omnibus terminis functione p contentis eandem præbeat $ummam, & re$ultat æquatio -{s / c} t^{-su-c-cs / c} t^. = {r z^{r-n-1 / n+1} z^. × {q / p}/(n + 1)(a ± a b z^-{r / c})^{n / n+1}}; in quâ $eparantur varia- biles t & z.

Ex. 16. Sit æquatio (x^n x^. = a y^{-nf-c-f / c} y^.)p = (f x y^. + c y x^.)q: $cri- bantur y = t^{s / f} z^{r / f(n+1)} & x = t^-{s / c} (a ± {a c z^-{r / c} /f})^{2 / n+1}, ubi exponens quantitatis y ducta in c $uperat exponentem quantitatis x ductam in f in $ingulis terminis quantitatum p vel q per eandem quantitatem, [0276]DE FLUXIONALIBUS & exorietur {s / c} t {- f c - f s n - s c / c f}t^. = {{r / n + 1}z^{r-n f-f / f n+f} × z^. × {q / p}/(a ± {a c / f}z^{-r / c}))^{n / n+c}}, in quâ $eparantur variabiles t & z.

Ex. 17. Sit y^. + P y x^. = Q x^., $cribatur y = X u, & oritur X u^. + u X^. = Q x^. - P X u x^.; ut fiat æquatio, cujus fluens detegi pote$t, fingatur X^. + P X x^. = 0, unde {X^. / X} = - P x^. & log. X = - $. P x^. & X = e^- $. P x^.; æquatio vero transformata erit X u^. = Q x^. & u = $.{Q x^. / X} = $.e^$. P x^. Q x^. = {y / X}, unde y = e^-$ · P x $. e^$. P x^. Q x^.; & quanti- tates y & x $eparabiles $unt, $i modo P & Q $int functiones quanti- tatis x.

Ex. 18. Sit x = {y x^. / y^.} + {a y^2 x^.^2 / y^.^2} + {b y^3 x^.^3 / y^.^3} + &c., $cribatur t y^. = x^., & æquatio re$ultans erit x = y t + a y^2 t^2 + b y^3 t^3 + &c.; in hâc æqua- tione pro t y $cribatur z, & transformetur re$ultans æquatio in alteram exprimentem relationem inter x & z, & evadet x = z + a z^2 + b z^3 + &c., unde x^. = t y^. = {z y^. / y} = z^. + 2 a z z^. + 3 b z^2 z^. + &c.; & ex- inde log. y = log. z + 2 a z + {3 b z^2 / 2} + &c. + con$t.

Cor. 1. Hinc con$tat in nonnullis ca$ibus quantitates y & x in datâ fluxionali æquatione contentas po$$e exprimi per tertiam a$$umptam z, at minime per $e ip$as.

2. Sit y^.^n maxima dimen$io fluxionis (y^.) in datâ æquatione contenta, tum ea reduci pote$t in (n) diver$as fluxionales æquationes, quarum $ingulis fluentibus corre$pondent prædicti valores quantitatum x & y.

Ex. 19. Datâ fluxionali æquatione P x^. = Q y^., quæ $it homogenea, i.e. ubi P & Q $int homogeneæ functiones eju$dem dimen$ionum nu- meri ip$arum x & y, invenire ejus fluentem.

[0277]ÆQUATIONIBUS.

In æquatione {P x^. / Q} = y^. pro y $cribatur u x, & quoniam P & Q $unt quantitates quæ eundem habet numerum dimen$ionum, erit {P / Q} functio quantitatis u, quæ dicatur U; ergo U x^. = y^. = u x^. + x u^., unde {x^. / x} = {u^. / U - u} & log. x = $.{u^. / U - u}.

Cor. 1. Quod $i $.{u^. / U - u} per logarithmos exprimi po$$it, habebitur algebraica æquatio inter x & u, & exinde inter u & y, etiamque inter x & y.

Cor. 2. Si in æquatione P x^. = Q y^., ubi in literis P & Q haud $o- lummodo continentur homogeneæ functiones eju$dem dimen$ionum numeri, $ed in$int etiam quantitates huju$modi formulæ; log. {√(x^2 +y^2) / x}; e^y:x; ang. $in. {x / √(x^2 + y^2)}; co$. {n x / y}; &c. in quibus tran$cendentes functiones afficiant functiones nullius dimen$ionis ip$arum (x & y); pro y $cribatur ux, & re$ultabit æquatio huju$ce formulæ U x^. = y^., ubi U erit functio quantitatis u, unde U x^. = u x^. + x u^.&{x^. / x} = {u^. / U - u} & log. x = $.{u^. / U - u}.

Cor. 3. Sit p x^. + q y^. = 0, ubi literæ p & q re$pective denotant homogeneas functiones literarum x & y, quarum dimen$iones $unt m; $it quantitas L, quæ in datam æquationem ducta, creat fluxio- nem, cujus fluens inveniri pote$t; & erit L p x^. + L q y^. = P x^. + Q y^. = V^., ubi P & Q $unt homogeneæ n dimen$ionum functiones litera- rum x & y, & nV = P x + Q y: $cribatur enim y = x z, & erit V = x^n Z, ubi Z functio e$t quantitatis z, unde V^. = n x^n-1 Z x^. + x^n Z^.; at quoniam V^. = P x^. + Q y^. & y^. = x z^. + z x^., erit V^. = (P + Q z)x^. + Q x z^. = n x^n-1 Z x^. + x^n Z^., & exinde P + Q z = n x^n-1 Z; du- [0278]DE FLUXIONALIBUS catur hæc æquatio in x, & re$ultat P x + Q z x = P x + Q y = n x^n Z = n V.

Hinc etiam erit ({V^. / x^.}) = P = {(P x^. + Q y^.)y - (P x + Q y)y^. / y x^. - x y^.} ={y V^. - n V y^. / y x^. - x y^.}, $i modo x $olummodo fluat in quantitate ({V^. / x^.}); &c.

Eodem modo quoniam p & q $unt homogeneæ functiones quanti- tatum x & y, erunt etiam ({p^. / y^.}) = {n p x^. - x p^. / y x^. - x y^.} & ({q^. / x^.}) = {y q^. - n q y^. / y x^. - x y^.}; &c.

Cor. 4. Sit L^. = a x^. + b y^.; e præcedentibus principiis invenientur a = {y L^. - m L y^. / y x^. - x y^.}, & b = {m L x^. - x L^. / y x^. - x y^.}; L enim erit homogenea fun- ctio quantitatum x & y.

Quoniam V^. = L p x^. + L q y^., & V = n(L p x + L q y), erit {V^. / V}= {p x^. + q y^. / n(p x + q y)}, unde fluens V datæ æquationis p x^. + q y^. = 0, facile deduci pote$t; & con$tat unum valorem quantitatis L e$$e {1 / p x + q y}.

Aliter: $it p x^. + q y^. = 0 æquatio, in quâ literæ p & q denotant homogeneas n dimen$ionum functiones literarum x & y; $cribatur y = u x, & evadent p = x^n U & q = x^n W, ubi literæ U & W deno- tant functiones literæ u; & con$equenter x^n U x^. + x^n W y^. = p x^. + q y^. = 0; dividatur hæc æquatio per x^n, & re$ultat U x^. + W y^. = 0; pro y^. $cribatur ejus valor u x^. + x u^., & re$ultat æquatio (U + W u)x^. + W x u^. = 0; dividatur hæc æquatio per x (U + W u), & fit {x^. / x} +{W u^. / U + W u} = 0 integrabilis æquatio.

Ex. 20. Sit a x^n x^. + b y^n y^. + (x y^. - y x^.)({p / q} + {π / w}) = 0, ubi p & q [0279]ÆQUATIONIBUS. $unt homogeneæ functiones quantitatum x & y, π & w $unt homoge- neæ functiones earundem quantitatum, dimen$ionum, quarum dif- ferentia e$t n - 1; $cribatur x = yz & deduci pote$t æquatio a y^n z^n (y z^. + z y^.) + b y^n y^. - y^2 z^. (y^k φ: (z) + y^n-1 φ: (z)) = 0.

Ex. 21. Sit fluxionalis æquatio a x^. + b y^. = 0, cujus $inguli termini quantitatum a & b habeant m vel m - 1 dimen$iones; in hâc æqua- tione pro y & y^. $cribantur x v & x v^. + v x^. re$pective, & re$ultat æquatio formulæ (P x^2 + Q x)v^. + (R x + S)x^. = 0; ubi P, Q, R & S $unt functiones quantitatis v; unde, $i modo {Q v^. - S^. / S} = {2 P v^. - R^. / R}, tum $emper fluens æquationis re$ultantis detegi pote$t: ducatur enim re$ultans æquatio in e^$.{(Q v^.-s^.) / S}, & exorietur æquatio, cujus fluens erit e^$.({Q v^.-s^.) / S} ({R x^2 + 2S x / 2}) = con$t.

2. Scribantur in æquatione (P x^2 + Q x)v^. + (R x + S)x^. = 0, z^-n & - n z^-n-1 z^. pro x & x^., & re$ultat æquatio (P z + Q z^n+1) v^. - (n R + n S z^n)z^. =0; & exinde con$tabit fluentem prædictæ æqua- tionis inveniri po$$e, $i {P v^. + n R^. / R} = {(n+1) Q v^. + n S^. / S}; erit enim e^$. -{P v^. + n R^. / n R}(n R z + {n S / n + 1} z^n+1 ) = con$t.

3. Si vero termini $inguli quantitatum a & b habeant n, n - 1 & n - 2 dimen$iones, tum e $ub$titutione prius traditâ re$ultabit æquatio formulæ (P x^3 + Q x^2 + R x)v^. + (p x^2 + q x + r)x^. = 0; & $ic de- inceps; ubi P, Q, R, p, q & r $unt functiones quantitatis v; cujus fluens inveniri pote$t, $i vel{3 P v^. - p^. / p} = {2 Q v^. - q^. / q} = {R v^. - r^. / r}; vel {P v^. + n p^. / p} = {(n + 1)Q v^. + n q^. / q} = {(2 n + 1)R v^. + n r^. / r}; fluens enim ejus in priori ca$u erit e^$.{R v^.-r^. / r} ({p x^3 / 3} + {q x^2 / 2} + r x) = con$t.; in po- [0280]DE FLUXIONALIBUS $teriori vero invenietur e^$.-{P v^.+n p^. / np} (n p z + {n q / n + 1} z^n+1 + {n r / 2n + 1}z^2n+1) = con$t. $i z = x^-n.

4. Si vero terminos n, n - 1, n - 2 ... n - m dimen$ionum habeant quantitates a & b in fluxionali æquatione a x^. + b y^. = 0, $cribantur x v & x v^. + v x^. pro y & y^. in datâ æquatione, & re$ultat æquatio for- mulæ (P x^m+1 + Q x^m + R x^m-1 + S x^m-2 + &c.)v^. + (p x^m + q x^m-1 + r x^m-2 + &c.)x^. = 0, ubi P, Q, R, &c. p, q, r, &c. $unt functiones ip$ius v; cujus fluens inveniri pote$t, $i modo vel{(m + 1) Pv^. - p^. / p} ={m Q v^. - q^. / q} = {(m-1) R v^. - r^. / r} = {(m-2) S v^. - s^. / s} = &c. vel {P v^. + n p^. / p}= {(n + 1) Q v^. + n q^. / q}={(2n + 1) R v^. + n r^. / r} = {(3n + 1) S v^. + n s^. / s} = &c. fluens enim in priori ca$u erit e^$.{(m+1) P v^.-p^. / p} ({p x^m+1 / m + 1} + {q x^m / m} +{r x^m-1 / m - 1} + &c.) = con$t.; in po$teriori vero erit e^$.-{P v^.+n p^. / n p} (n p z+{n q z^n+1 / n + 1}+ {n r z^2n+1 / 2n + 1} +&c. = con$t. $i z = x^-n.

Ex. 22. Sit data algebraica æquatio homogenea relationem inter x, y & z exprimens; ubi z^. = P x^. + Q y^., in quâ literæ P & Q re$pective denotant homogeneas functiones quantitatum x & y.

In datâ algebraicâ æquatione pro y & z $cribantur re$pective v x & w x; & re$ultat algebraica æquatio relationem inter v & w exprimens; in po$teriori æquatione pro y & z $ub$tituantur prædicti valores, & re$ultat w x^. + x w^. = x^m × (P′ x^. + Q′ (v x^. + x v^.)), ubi P′ & Q′ $unt functiones quantitatum v & w: ex priori æquatione deduci pote$t quantitas v in terminis quantitatis w, i. e. v = φ:(w): $ub$tituatur φ:(w) & ejus fluxio pro v & v^. in $ecunda æquatione, & re$ultat æquatio w x^. + x w^. = x^m (P″ x^. + Q″ (φ:(w) × x^. + x × φ^.:(w)).

[0281]ÆQUATIONIBUS.

Huju$ce æquationis fluens facile detegi pote$t, cum m = 0; & in multis aliis ca$ibus.

Et $ic progredi liceat ad fluxionales æquationes $uperiorum ordi- num; etiamque ad inve$tigandos plures ca$us prædictarum fluxiona- lium æquationum, quarum fluentes inveniri po$$unt.

Hinc facile deduci po$$unt infinitæ æquationes formularum prædi- ctarum, quarum fluentes inveniri po$$unt.

Cor. Deducere quam plurimas fluxionales æquationes, quæ reduci po$$unt in alias, quarum fluentes deduci po$$unt, vel quarum varia- biles $eparantur.

A$$umantur æquationes fluxionales, in quibus $eparantur variabi- les, vel quarum fluentes innote$cunt; pro variabilibus (x & y) & ea- rum fluxionibus in his æquationibus $cribantur functiones quantita- tum (z & v) & earum fluxionum; & re$ultant æquationes, quæ re- duci po$$unt ad a$$umptas.

THEOR. XXXVII.

Fluxionalis æquatio, cujus termini haud videntur ea$dem habere dimen$iones, $æpe transformari pote$t in alteram homogeneam, i. e. cujus termini ea$dem habent dimen$iones. Hoc plerumque perfici pote$t, $i modo ita transformetur æquatio, ut ii termini, qui haud ea$- dem habent dimen$iones in datâ ea$dem præbeant in re$ultanti æqua- tione: vel ut diruat transformatio omnes re$ultantis æquationis ter- minos, in quibus haud eædem inveniuntur dimen$iones.

Ex. 1. Sit æquatio x^. √(a x^2 + b z^3) = z^2 z^.; $upponantur quanti- tates z^3 & x^2 ea$dem habere dimen$iones, i. e. $it z^3 = y^2 quantitati a$$umptæ, quæ ea$dem habet dimen$iones ac x^2; & exinde z^2 z^. = {2 / 3} yy^.; $ub$tituantur pro z^3 & z^2 z^. in datâ æquatione x^. √(a x^2 + b z^3) = z^2 z^. earum valores y^2 & {2 / 3} y y^., & re$ultabit æquatio x^. √(a x^2 + b y^2) = {2 / 3} y y^., cujus termini manife$to ea$dem habent dimen$iones.

Ex. 2. Sit æquatio x^3 x^. + {x^2 y^. / √(a + y)} = y^.; ut liberetur data æqua- [0282]DE FLUXIONALIBUS tio a termino, cujus dimen$iones haud $unt æquales, fingatur √(a + y) = v, & re$ultat v^2 - a = y, & exinde 2 v v^. = y^., unde deducitur æquatio x^3 x^. + 2 x^2 v^. = 2 v v^.; nunc $upponantur x^3 x^. & 2 x^2 v^. ea$- dem habere dimen$iones, & con$equenter v duplas habere dimen$io- nes quantitatis x; a$$umatur igitur pro v quantitas u^2 duarum di- men$ionum, quâ $ub$titutâ pro v in datâ æquatione, re$ultabit homo- genea æquatio x^3 x^. + 4 x^2 u u^. = 8 u^3 u^..

Ex. 3. Sit æquatio a y^n x^m x^. + b y^q x^p x^. + e x^r y^s y^. = 0, $i haud $int n + m = q + p = r + s; $cribatur y = z^t, unde re$ultabit a z^nt x^m x^. + b z^q t x^p x^. + t e z^(s+1)t-1 x^r z^. = 0; fingatur, $i modo po$$ibile $it, n t + m = q t + p = (s + 1) t + r - 1, & re$ultabit homogenea æquatio.

Ex. 4. Sit data æquatio a y y^. + b y x^. + c x y^. + d x x^. + e y^. + f x^. = 0; $i vero b = c, tum fluens datæ æquationis erit {a y^2 / 2} + c y x +{d x^2 / 2} + e y + f x = A con$t. quant. Si vero b haud $it = c; $criban- tur v + h & z + k re$pective pro y & x, & earum fluxiones v^. & z^. pro y^. & x^. in datâ æquatione; & re$ultat a v v^. + b v z^. + c z v^. + d z z^. + (a b + c k + e) v^. + (b b + d k + f) z^. = 0; fiant coefficientes a b + c k + e & b b + d k + f terminorum (v^. & z^.) nihilo re$pective æquales, & re$ultant a b + c k + e = 0 & b h + d k + f = 0, unde b = {d e - c f / c b - d a} & k = {f a - b e / c b - d a}, & æquatio re$ultans a v v^. + b v z^. + c z v^. + d z z^. = 0 erit homogenea.

Si vero c b - d a = 0, tum per hanc methodum haud reduci pote$t data æquatio in homogeneam; in hoc ca$u erit f x^. + (b y + d x) x^. + n (b y + d x) y^. + e y^. = 0, ponatur b y + d x = z, & erunt {y^. / x^.} = -{f + z / e + n z} & y^. = {z^. - d x^. / b}, unde x^. = {z^. (e + n z) / - b f + e d + (- b + n d) z}.

Ex. 5. Sit (a + b x y + c x^2 y^2 + d x^3 y^3 + &c.) x^. + x^2 (l + m x y + n x^2 y^2 + &c.)y^. = 0, vel (a y + b x y^2 + c x^2 y^3 + &c.)x^. + (l x + [0283]ÆQUATIONIBUS. m x^2 y + n x^3 y^2 + &c.)y^. = 0; $cribatur z^-1 in his æquationibus pro y, & exponentes omnium terminorum evadent eædem.

Si vero generaliter (a x^π + b x^π-1 y^τ + c x^π-2 y^2τ + &c.) x^. + (l′ x^π y^τ-1 + mx^π-1 y^2τ-1 + n x^π-2 y^3τ-1 + &c.) y^. = 0; $cribatur z pro y^τ, & re- $ultat æquatio homogenea.

Ex. 6. Sit y^. + y^2 x^. = {a x^. / x^2}, $cribatur {1 / z} pro y in data æquatione, & re$ultat æquatio homogenea x^2 z^. = x^. (x z - a z^2).

Ex. 7. Sit æquatio (a x - b c y + b y^2) x^. + (d c x - 2 d x y + c^2 y - 3 c y^2 + 2 y^3) y^. = 0; $ub$tituatur pro y ejus valor a$$umptus {c ± √(c^2 + a z) / 2}, & re$ultabit æquatio homogenea huju$ce formulæ α x x^. + β z x^. + γ x z^. + δ z z^. = 0.

Et $imiliter progredi liceat in reductione datarum æquationum in alias, quarum $inguli termini vel $int quantitates n, n-1, n-2, &c. dimen$ionum.

Si tres vel plures (x, y, z, &c.) variabiles quantitates in datâ ho- mogeneâ æquatione contineantur; pro literis y, z, &c. $cribantur re- $pective p x, q x, &c. deinde per methodum, quæ de æquationibus duas variabiles quantitates habentibus fuit tradita, progrediendum e$t.

PROB. LV. Invenire æquationes, quas reducere liceat ad homogeneas æquationes.

A$$umantur æquationes homogeneæ, $ub$tituantur quæcunque functiones novarum quantitatum pro variabilibus quantitatibus in a$$umptis æquationibus contentis; & re$ultant æquationes, quæ reduci po$$unt ad homogeneas æquationes.

Cor. Datâ homogeneâ æquatione duas variabiles quantitates x & y & earum fluxiones habente; pro x vel y $cribatur {r / z^s} in datâ æqua- tione, & re$ultat æquatio; quæ facile reduci pote$t in priorem ex [0284]DE FLUXIONALIBUS æquatis terminis re$ultantis æquationis, quorum dimen$iones haud videntur e$$e eædem.

Et $ic de infinitis aliis huju$cemodi æquationibus deducendis, quæ vel in homogeneas æquationes vel in alias cuju$cunque datæ formulæ reduci po$$unt.

2. Sit data fluxionalis homogenea æquatio (n) ordinis, quantitates x & y, & earum fluxiones x^., y^., ÿ, y^..., ..., y^. ^n-1 & y^. ^n involvens, ubi x fluit uniformiter: in eâ pro y, y^., ÿ, ..., y^. ^n-1 & y^. ^n $cribantur re$pective v x, v′ x^., {v″ x^.^2 / x}, {v′″ x^.^3 / x^2}, {v″″ x^.^4 / x^3}, ..., {v′^n-1 x^.^n-1 / x^n-2} & {v′^n x^.^n / x^n-1}, & re$ultat æquatio algebraica (A = 0) relationem inter quantitates v, v′, v″, v′″, ... v′^n-1 & v′^n ex- primens: deinde, ob y = v x, erit v x^. + x v^. = y^. = v′ x^., & exinde {x^. / x}= {v^. / v′ - v}; & $imiliter ob y^. = v′ x^., erit y^..; = v^.′ x^. = {v″ x^.^2 / x}, unde {x^. / x} ={v^.′ / v″}; & denique {x^. / x} = {v^. / v′ - v} = {v^.′ / v″} = {v^.″ / v′″ + v″} = {v^.′″ / v″″ + 2 v′″} = {v^..″″ / v″′″ + 3 v″″}= &c. = {v^.′^n-1 / v′^n + (n-2)v′^n-1}: hæ autem $unt (n-1) diver$æ æquationes, viz. {v^. / v′ - v} = {v^.′ / v″} = &c., in quibus nec continetur x nec x^.: continentur autem $olummodo v, v′, v″, v′″, ..., v′^n-1 & v′^n; & fluxiones v^., v^.′, v^.″, ... v^.′^n-2 & v^.′^n-1; deinde ex datâ algebraicâ æquatione A = 0 inveniatur v′^n in terminis reliquarum v, v′, v″, v′″, v′^n-2 & v′^n-1; & $ub$tituatur hæc quan- titas in ultimâ æquatione {v^.′^n-2 / v′^n-1 + (n-3)v′^n-2} = {v^.′^n-1 / v′^n + (n-2)v′^n-2} pro ejus valore v′^n; & re$ultant (n-1) fluxionales æquationes primi ordinis [0285]ÆQUATIONIBUS. involventes (n) quantitates v, v′, v″, ..., v′^n-1 & earum fluxiones primi ordinis: & exinde, $i modo reducantur hæ (n-1) æquationes in unam, ita ut exterminentur omnes præter qua$cunque duas variabiles & earum fluxiones, per prob. 26. re$ultabit fluxionalis æquatio invol- vens duas prædictas variabiles quantitates & earum fluxiones ordinis, qui non major e$t quam (n-1).

3. Sint duæ homogeneæ fluxionales æquationes primi ordinis invol- ventes variabiles (x, y&z) & earum primas fluxiones: in his duabus æqua- tionibus pro y & z $cribantur re$pective v x & w x, & pro y^. & z^. $ub$titu- antur v′x^. & w′x^., & re$ultabunt duæ algebraicæ æquationes A = 0 & B = 0 quatuor variabiles v & w, v′ & w′ involventes: ex præcedente methodo deduci pote$t {x^. / x} = {v^. / v′ - v} = {w^. / w′ - w}; deinde in æquatione {v^. / v′ - v} ={w^. / w′ - w} pro v′ & w′ $cribantur re$pective functiones quantitatum v & w ex æquationibus A = 0 & B = 0 petitæ; & re$ultabit fluxionalis æquatio primi ordinis relationem inter v & w & earum fluxiones ex- primens.

4. Sint duæ, tres vel m homogeneæ fluxionales æquationes ordinis (n), tres vel quatuor vel (m+1) variabiles quantitates (x, y, z, &c.) involventes; pro y, y^., ÿ, ..., y^.^n-1 & y^.^n $cribantur v x, v′ x^., {v″ x^.^2 / x}, ... {v′^n-1 x^.^n-1 / x^n-2}& {v′^n x^.^n / x^n-1}; & pro z, z^., z^.., ..., z^.^n $ub$tituantur w x, w′ x^., {w″ x^.^2 / x}, ... {w′^n x^.^n / x^n-1}; &c. &c. & re$ultabunt (m) algebraicæ æquationes (m) (n+1) va- riabiles quantitates habentes; & per methodum prius traditam de- duei po$$unt æquationes {x^. / x} = {v^. / v′ - v} = {v^.′ / v″} = {v^.″ / v′″ + v″} = &c. = [0286]DE FLUXIONALIBUS {v^.′<_>n-1 / v′<_>n + (n - 2)v′<_>n-1} = {w^. / w′ - w} = {w^.′ / w″} = {w^. ″ / w′″ + w″} = &c. = {w^. ′<_>n-1 / w′<_>n + (n - 2)w′<_>n-1} = &c.: in his æquationibus pro v′^n, w′^n, &c. $cribantur earum valo- res; & re$ultabunt m × n - 1 diver$æ fluxionales æquationes primi or- dinis involventes m × n variabiles quantitates; $i hæ æquationes in unam reducantur, ut exterminentur omnes præter duas variabiles quantitates & earum fluxiones; tum re$ultabit fluxionalis æquatio, cujus ordo non major e$t quam m n - 1.

5. Ex ii$dem principiis & reductione æquationum facile con$tat ($i modo dentur (m) homogeneæ fluxionales æquationes ordinum (r, s, t, &c.); & reducantur per methodum prius traditam æquationes deductæ in unam, ita ut exterminentur (m - 1) variabiles quantitates & earum fluxiones) æquationem re$ultantem habere ordinem, qui non major e$t quam r + s + t + &c. - 1.

THEOR. XXXVIII.

Defin. Æquatio relationem inter x & y & earum fluxiones expri- mens dicitur homogenea, $i non $olum variabilibus x & y, $ed etiam $ingulis earum fluxionibus x^. & y^., itemque y^.., y^... &c. unam dimen$ionem obtinentibus, omnes æquationis termini eundem dimen$ionum nu- merum contineant.

Hinc; $i y^. = p x^. & {p^. / x^.} = q, litera p nullam habet dimen$ionem, litera q unam habet dimen$ionem negativam, &c.

Ex ii$dem principiis, viz. $ub$titutionibus, fluxionales æquationes $uperiorum ordinum reduci po$$unt ad fluxionales inferiorum ordi- num æquationes.

Ex. 1. Datam æquationem fluxionalem $ecundi ordinis, quæ $it homogenea, ad æquationem fluxionalem primi ordinis reducere.

Sint y^. = p x^. & p^. = q x^., & habeatur æquatio inter quatuor quan- [0287]ÆQUATIONIBUS. titates x, y, p & q relationem exprimens: fingatur y = u x & q = {v / x}, quibus valoribus pro y & q in datâ æquatione $ub$titutis, re$ultat æquatio relationem inter u, v & p exprimens, ex quâ unam per duas reliquas definire liceat: cum autem $it y^. = p x^., erit u x^. + x u^. = p x^. & {x^. / x} = {u^. / p - u}; deinde p^. = q x^. = {v x^. / x}, erit {x^. / x} = {p^. / v}, unde {p^. / v} = {u^. / p - u}& p p^. - u p^. = v u^.: $ed e præcedente æquatione inveniatur v in ter- minis quantitatum p & u, $ub$tituatur valor inventus pro v in præ- dictâ æquatione p p^. - u p^. = v u^., & re$ultabit æquatio relationem inter variabiles p & u & earum primas fluxiones exprimens.

Ex. 2. Si æquatio fluxionalis evadat homogenea, cum alteri varia- bili y tribuantur n dimen$iones, tum ejus re$olutio eadem erit ac æqua- tionis in ex. præced. contentæ; $cribatur enim w^n pro y & re$ultabit æquatio homogenea; vel quod ad idem redit, fingantur y = x^n u, y^. = x^n-1 t x^. & y^.. = x^n-2 v x^.^2; & ob y^. = p x^. & p^. = q x^., erit x u^. + n u x^. = t x^., & x t^. + (n - 1) t x^. = v x^., unde {x^. / x} = {u^. / t - n u} = {t^. / v - (n - 1) t}: $ub- $tituantur etiam in datâ æquatione pro y, p & q prædicti valores, & re$ultabit æquatio relationem exprimens inter u, t & v; ex quâ inve- niri pote$t v in terminis quantitatum t & u; $cribatur hic valor in- ventus pro v in æquatione {u^. / t - n u} = {t^. / v - (n - 1) t}, & re$ultabit æ- quatio quæ$ita.

Sit n = 0, i. e. $i quantitati y & ejus fluxionibus nullæ tribuantur dimen$iones, data æquatio evadet homogenea; hoc $cilicet ca$u vari- abilis x cum $uis fluxionibus in $ingulis terminis ea$dem con$tituunt dimen$iones.

Sit n infinitus, & dimen$iones e variabili y & ejus fluxionibus in $in- gulis terminis evadent eædem.

Ex. gr. Sit y^.. = c x^α y^β x^.^2-γ y^.^γ, ejus fluentem invenire.

Quoniam y^. = p x^., & y^.. = q x^.^2, erit y^.. = c x^α y^β p^γ x^.^2; fingantur y = x^n u, [0288]DE FLUXIONALIBUS y^. = x^n-1 t x^. & y^.. = x^n-2 v x^.^2, & evadet x^n-2 v = c x^α+nβ+γn-γ u^β t^γ, unde n = {γ - α - 2 / β + γ - 1}, & exinde v = c u^β t^γ; & {u^. / t - n u} = {t^. / c u^β t^γ - (n - 1) t} æquat. quæ$it. primi ordinis.

Si n $it infinitus, $cribatur y^. = p x^. & y^.. = q x^.^2, & æquatio ita erit comparata, ut in eâ tres variabiles y, p & q ubique eundem dimen- $ionum numerum obtineant: $tatuantur p = u y & q = v y, quibus quantitatibus pro $uis valoribus in datâ æquatione $ub$titutis, re$ul- tabit æquatio relationem inter variabiles x, u & v exprimens, ex quâ inveniatur v in terminis duarum reliquarum u & x: $ed quoniam p = u y erit y^. = p x^. = u y x^., & quoniam y^.. = q x^.^2, erit y^.. = v y x^.^2 = x^.(u y^. + y u^.); ex his æquationibus $equitur {y^. / y} = u x^. = {v x^. - u^. / u}, unde u^2 x^. + u^. = v x^., $ed invenitur valor quantitatis v in terminis quanti- tatum u & x, $cribatur hic valor pro v in æquatione u^2 x^. + u^. = v x^., & re$ultat æquatio quæ$ita.

Si in æquatione u^2 x^. + u^. = v x^. $ub$tituantur {y^. / y x^.} & {y^.. / y x^.} - {y^.^2 / y^2 x^.} (ubi x^. $it con$tans) pro $uis valoribus u & u^., re$ultabit æquatio {y^.. / y x^.} = v x^..

Facile con$tant ca$us, in quibus fluens fluxionalis æquationis inve- niri pote$t ex æquatione re$ultante, &c.

Ex. 3. Si in datâ æquatione relationem inter x & y & earum flu- xiones de$ignante, in quâ fluit uniformiter x, de$it altera incognita quantitas y; $cribatur in datâ æquatione pro y^. ejus valor a$$umptus p x^., & pro fluxione y^.. = p^. x^., pro y^... = p^.. x^. & $ic deinceps; & re$ultabit æquatio, in quâ ordo fluxionum minor unitate quam in datâ, i. e. $i data contineat $ecundas fluxiones, tum re$ultans continebit $olum- modo primas; &c.

In genere $i A $it quantitas, quæ fluit uniformiter, $upponatur x^. = p A^., unde x^.. = p^. A^., x^... = p^.. A^. & $ic deinceps; quibus quantitatibus pro [0289]ÆQUATIONIBUS. $uis valoribus in datâ æquatione $ub$titutis re$ultabit æquatio, in quâ ordo fluxionis quantitatis p minor erit unitate quam ordo quantita- tis x in datâ æquatione inventus. Si nullus terminus in datâ æqua- tione a$$umatur tanquam con$tans, tum a$$umi pote$t quæcunque quantitas, cujus fluxio $it con$tans; $ed præ$tat a$$umere talem quan- titatem fluentem uniformiter, quâ $cilicet a$$umptâ deleantur plurimæ quantitates e datâ æquatione; vel ita transformentur quantitates, ut exinde ejus fluens inve$tigari po$$it; vel reducatur æquatio in formu- las prædictas, quarum re$olutiones docentur.

Æquationes, quæ haud apparent $ub hâc formulâ, e $ub$titutione nonnunquam in eam reduci po$$unt, e.g. $it æquatio x^m x^.. = y y^.. + y^. ^2 + y^. ^2 y^2, $cribatur y y^. = z^., & re$ultat x^m x^.. = z^.. + z^. ^2.

Ex. 4. Si duæ variabiles (x & y) quantitates in datâ æquatione contentæ $imul cum earum fluxionibus $emper in $ingulis terminis ea$dem conficiant dimen$iones; & x^. $it con$tans quantitas; a$$uman- tur x = e^u & y = e^u t, ubi e = num. cujus log. e$t 1; tum x^. = e^u u^. & x^.. = e^u (u^. ^2 + u^..) = 0, quoniam x^. e$t con$tans, erit u^.. = - u^. ^2; y^. = e^u (t u^. + t^.), & y^.. = e^u (t^.. + 2 u^. t^. + t u^.. + t u^. ^2) = e^u (t^... + 2 u^. t^.), quibus quantitatibus pro $uis valoribus in datâ æquatione $ub$titutis re$ultabit æquatio, in quâ haud invenitur u.

Hoc in loco ob$ervandum e$t, nec quantitatem t nec u in æquatione re$ultante fluere uniformiter, $ed e^u.

Ex. 5. Si variabilis y cum $uis fluxionibus y^. & y^.. ubique eundem di- men$ionum numerum adimpleat in datâ fluxionali æquatione, eam in fluxionalem æquationem primi ordinis reducere.

Sint y^. = p x^. & p^. = q x^., unde variabiles y, p & q ubique eundem dimen$ionum numerum obtineant: $tatuantur p = u y & q = v y & $ub$tituantur hæ quantitates in datâ æquatione pro $uis valoribus, & re$ultabit æquatio relationem inter x, u & v exprimens, e quâ invenia- tur v functio quantitatum x & u, ob p = u y, erit y^. = u y x^., & exinde u x^. = {y^. / y} = {v x^. - u^. / u}, unde u^. + u^2 x^. = v x^. æquatio quæ$ita.

[0290]DE FLUXIONALIBUS

Cor. · Ex formulis integralium æquationum prius traditis con$tant formulæ huju$ce generis integrabiles.

Ex. 6. Si variabilis y cum $uis fluxionibus y^., y^.., &c. y^. ^n ubique eundem dimen$ionum numerum adimpleat in datâ æquatione, eam in fluxio- nalem æquationem (n - 1) ordinis reducere. Sub$tituantur pro, y, y^., y^.., y^..., &c. in datâ æquatione re$pective e^$. u x^., u x^. e^$. u x^., (u^2 x^. ^2 + u^. x^.) e^$. u x^., (u^3 x^.^3 + 3 u u^. x^.^2 + u^.. x^.) e^$. u x^., &c. ubi x^. e$t con$tans, & re$ulta- bit fluxionalis æquatio (n - 1) ordinis. Hoc etiam perfici pote$t e præcedentibus principiis, quæ omnino eadem $unt ac ea hoc in loco data.

E. g. Sit æquatio y^.. + P x^. y^. + Q y x^. ^2 = 0, $cribatur y = e^$. u x^., unde y^. = e^$. u x^. u x^. & y^.. = e^$. u x^. (u^. x^. + u^2 x^. ^2); $ub$tituantur hæ quantitates pro $uis valoribus in datâ æquatione, & re$ultabit u^. + u^2 x^. + P u x^. + Q x^. = 0.

Cor. 1. Scribatur in æquatione (u^. + u^2 x^. + P u x^. + Q x^. = 0) M z pro u & re$ultabit æquatio M z^. + z (M^. + P M x^.) + M^2 z^2 x^. + Q x^. = 0, a$$umatur M^. + P M x^. = 0, & exinde M = a e^-$. P x^., ubi a e$t con$tans quantitas; & æquatio re$ultans a e^- $. P x^. z^. + a^2 e^- 2 $. P x^. z^2 x^. + Q x^. = 0.

Eodem modo $cribantur pro u; vel {M / z}, vel K + M z, vel {K + M z / L + N z}, &e. in datâ æquatione, & re$ultantis æquationis fiant quicunque ter- mini nihilo æquales, ita vero ut æquatio exinde re$ultans evadat ma- xime $imples; &c.

Paulo aliter in quibu$dam ca$ibus progredi licet: e. g. $it æquatio y^.. - {n y^. x^. / x} + A x^n y^. x^. + B x^2n y x^.^2 = 0; ponatur y^. = x^n y u x^., $cribatur e^$. x^n u x^. pro y, & ejus fluxio pro y^., & $ic deinceps in datâ æquatione; & re$ultabit u^. + x^n u^2 x^. + A x^n u x^. + B x^n x^. = 0, unde x^n x^. = {- u^. / u^2 + A u + B}; $int radices æquationis u^2 + A u + B = 0 re$pective α & β, tum erit [0291]ÆQUATIONIBUS. y = a e^α $. x^n x^. + b e^β $. x^n x^., ubi a & b $unt quæcunque invariabiles quantitates. Con$tat e $ub$titutione.

Facile deduci po$$unt formulæ æquationum, quarum ex his $ub$ti- tutionibus y = e^$. u x^., vel y = e^u t & x = e^r u, &c. fluentes deduci po$- $unt: a$$umantur enim formulæ æquationum, quarum fluentes den- tur, & exinde inve$tigentur æquationes, quæ prædictis $ub$titutio- nibus præbent æquationes formularum a$$umptarum: e. g. fluentes fluxionalium æquationum primi ordinis, in quibus dee$t una variabilis quantitas, vel quæ in hanc formulam reducantur, inveniri po$$unt; &c. & e priori $ub$titutione patet omnem æquationem, cujus $inguli ter- mini habeant formulam A y^n y^. ^m y^.. ^p x^. ^q (ubi in $ingulis A, n, m, & p $unt invariabiles & n + m + p eadem quantitas) tran$ire in æquationem fluxionalem primi ordinis, in quâ dee$t x: deinde e $ub$titutione po- $teriori con$tat omnem æquationem, cujus primus terminus $it y^.., cæ- teri vero habeant formulam A y^n y^. ^m x^. ^2-m, in quâ A, n & m $unt inva- riabiles, & n + m + r (2 - m) = 1, (ubi r & 2 - m in $ingulis terminis eadem manet), tran$ire in fluxionalem æquationem $ecundi ordinis, in cujus $ingulis terminis variabilis t cum ejus fluxionibus ea$dem con- ficit dimen$iones, & dee$t variabilis u.

Idem etiam affirmari pote$t, $i modo pro x^. in $ingulis terminis prædictis $cribatur {z^. / z}, vel fluxio cuju$cunque functionis quantitatis x. Et $ic de inveniendis æquationibus, quæ $ub$titutionibus prædictis reduci po$$int ad homogeneas æquationes primi ordinis, cætera$ve æquationes, quarum fluentes dentur.

Ex. 7. Sit a x^m x^. ^p = y^n y^. ^p-2 y^.., ubi x^. e$t invariabilis quantitas; finga- tur x = e^bu & y = e^u t, ubi e $it numerus, cujus logarith. = 1; tum x^. = h e^bu u^., y^. = e^u t^. + e^u t u^., y^.. = e^u (t^.. + 2 u^. t^. + t u^. ^2 + t u^..); quibus valoribus pro x, x^., y^. & y^.. in datâ æquatione $ub$titutis, re$ultat e^bu(m+p) h^p u^. ^p = e^u(n+p-1) t^n (t^. + t u^.)^p-2 (t^.. + 2 t^. u^. + t u^.. + t u^. ^2); ut vero de$truatur exponentialis e^u, $cribatur h u (m + p) = u (n + p - 1), unde b = [0292]DE FLUXIONALIBUS {n + p - 1 / m + p}; quo valore $ub$tituto re$ultat æquatio, in quâ nec conti- netur quantitas u, nec ejus functiones, viz. h^p u^. ^p = t^n (t^. + t u^.)^p-2 (t^.. + 2 t^. u^. + t u^.. + t u^. ^2): $ed quoniam per hypothe$in x^.. = 0, erit u^.. = - h u^. ^2 = - {n + p - 1 / m + p} u^. ^2, quâ quantitate pro $uo valore $ub$titutâ, re$ultat ({n + p - 1 / m + p})^p u^. ^p = t^n (t^. + t u^.)^p-2 (t^.. + 2 t^. u^. + {m - n + 1 / m + p}t u^. ^2) = 0.

E. g. Sit æquatio a x^-1 x^. = y^. ^-1 y^.., ejus fluens haud inveniri pote$t e præcedente exemplo, nam m = - 1 & p = 1, unde m + p = 0, & ({n + p - 1 / m + p})^p hâc methodo haud innote$cit.

In hoc exemplo animadvertendum e$t nec t nec u fluere uniformi- ter, $ed e^bu; unde re$ultans æquatio hâc methodo haud generalem re$olutionem recipiet.

Ex. 8. Sit æquatio P y^.. + Q y^. x^. + R x^. ^2 = 0; ubi P, Q & R $unt homogeneæ functiones n, n - 1 & n - 1 dimen$ionum literarum x & y re$pective; $cribatur y = x z, & re$ultabunt y^. = x z^. + z x^. & y^.. = x z^.. + 2 z^. x^., $i modo x fluat uniformiter; quibus quantitatibus pro $uis valoribus in datâ æquatione $ub$titutis, re$ultat æquatio p x^2 z^.. + q x z^. x^. + r x^. ^2 = 0, ubi literæ p, q & r re$pective denotant functio- nes literæ z.

9. Sit æquatio P y^. ^n + Q y^. ^n-1 + R y^. ^n-2 + &c. = 0, ubi literæ P, Q, R, &c. $unt homogeneæ functiones m, m - 1, m - 2, .... m - n + 1, dimen$ionum literarum x & y re$pective; fingatur y = x z, & exinde y^. = x z^. + z x^. & y^.. = x z^.. + 2 z^. x^., y^... = x z^... + 3 x^. z^.., & $ic deinceps; quibus quantitatibus pro $uis valoribus in datâ æquatione $ub$titutis, re$ultat æquatio p x^n z^. ^n + q x^n-1 z^. ^n-1 x^. + r x^n-2 z^. ^n-2 x^. ^2 + &c. = 0, ubi li- teræ p, q, r, &c. re$pective $unt functiones literæ z, &c.

Sint x & y variabiles quantitates in datâ æquatione contentæ; [0293]ÆQUATIONIBUS. cavendum e$t, ne in $ub$titutionibus pro x & y $cribantur tales $un- ctiones quantitatum a$$umptarum z & v, quales reddant quantitatem x exinde deductam, pendentem e quantitate y; aliter in errores ut nos inducamur probabile e$t: e. g. a$$umantur pro x & y quæcun- que homogeneæ diver$æ functiones nullius dimen$ionis quantitatum a$$umptarum z & v, $cribantur hæ functiones pro $uis valoribus in datâ æquatione, & re$ultat homogenea æquatio, unde reducitur omnis æquatio ad homogeneam; $ed in hoc ob$ervandum e$t, quod a$$ump- tio duarum diver$arum homogenearum functionum nullius dimen- $ionis præ$upponit quandam relationem inter quantitates x & y ex- i$tentem.

PROB. LVI.

Propo$itâ æquatione fluxionali, cujus fluens ex introductione novarum variabilium pro iis in datâ æquatione contentis detegi pote$t; invenire multiplicatorem, qui ductus in propo$itam æquationem, præbeat fluxionem, cujus fluens inveniri pote$t.

Sit P x^. + Q y^. = 0 propo$ita æquatio, quæ per $ub$titutionem re- ducatur ad æquationem P x^. + Q y^. = R t^. + S u^., ubi duæ variabiles t & u introducuntur loco ip$arum x & y; dividatur æquatio R t^. + S u^. = 0 per V, cum igitur fluens fluxionis {R t^. + S u^. / V} inveniri po$$it, tum etiam fluens fluxionis {P x^. + Q y^. / V} = {R t^. + S u^. / V} inveniri pote$t, unde {1 / V} erit multiplicator, qui in datam æquationem ductus præbet fluxio- nem, cujus fluens inveniri pote$t: in multiplicatore {1 / V} pro variabili- bus u & t re$tituantur variabiles x & y, & re$ultat multiplicator quæ- $itus.

Cor. Hinc multæ æquationes inveniri po$$unt, quarum multipli- [0294]DE FLUXIONALIBUS catores innote$cunt; in æquationibus, quarum multiplicatores dantur, pro variabilibus, &c. $cribantur quæcunque functiones aliarum varia- bilium quantitatum & earum fluxiones re$pective; & exinde deduci po$$unt fluxionales æquationes, quarum multiplicatores detegi po$$unt.

THEOR. XXXIX.

A$$umptâ generali relatione inter variabiles datarum æquationum quantitates & novas; & his novis, pro earum valoribus in datis æqua- tionibus generaliter expre$$is, fub$titutis; $æpe ita a$$umi po$$unt co- efficientes vel indices in generali relatione vel æquationibus, ut eva- ne$cant quidam termini, & exinde re$ultet æquatio, cujus integratio datur.

Ex. 1. Sit x^. = a x^m y^n y^. + b x^e y^b y^. + c x^g y^l y^. + &c. fingatur u = y^z x^β; ubi α & β $unt indeterminatæ quantitates; & erit integrabilis data æquatio, cum - {α / β} - 1 = {- m α / β} + n = {- e α / β} + h = {- g α / β}+ l, &c. vel {n + 1 / m - 1} = {h + 1 / e - 1} = {l + 1 / g - 1}, &c. &c.

Ex. 2. Sit æquatio a y^l x^β x^. + b y^n x^γ x^. = y^.; $cribatur y = e x^π & re$ultat a e^l x^π 1+β x^. + b e^n x^π n+γ x^. = π e x^π-1 x^.; ut hi termini $e$e mu- tuo de$truant, nece$$e e$t $upponere π l + β = π n + γ = π - 1, e quibus æquationibus con$tabit π = {γ - β / l - n} = {γ + 1 / 1 - n}, & exinde β ={l γ + l - n - γ / n - 1}; & a e^l-1 + b e^n-1 = {γ - β / l - n}; & $i igitur β ={l γ + l - n - γ / n - 1}, & a e^l-1 + b e^n-1 = {γ - β / l - n} in datâ æquatione, erit etiam y = e x^{γ+1 / 1-n}, $ed non erit ejus y generalis valor.

Ex. 3. Æquationem a x^r x^. + b x^s y^2 x^. = y^. in æquationem formulæ [0295]ÆQUATIONIBUS. a x^m x^. + b y^2 x^. = y^. reducere; $cribatur x^s+1 = z, & exinde x = 1/z^{1 / s+1}; qui valor in datâ æquatione $ub$tituatur, & re$ultat {a / s + 1} z^{r+1 / s+1}-1 z^. +{b / s + 1} y^2 z^. = y^. æquatio formulæ quæ$itæ.

Si s + 1 = 0, fallit hæc methodus; in quo ca$u pro x $cribatur e^z, & re$ultat æquatio prædictæ formulæ.

Ex. 4. Sit data æquatio (P), (a + b x^n) x^2 z^. + (c + f x^n) x z x^. + (a + b x^n) x^2 z^2 x^. + (g + h x^n) x^. = 0; $cribantur T y + S & T y^. + y T^. + S^. pro z & z^. re$pective in datâ æquatione, & re$ultat (a + b x^n) x^2 T y^. + (a + b x^n) x^2 y T^. + (a + b x^n) x^2 S^. + (c + f x^n) x T y x^. + (c + f x^n) x S x^. + (a + b x^n) (T y + S)^2 x^2 x^. + (g + h x^n) z^. = 0, (R); $upponatur omnium terminorum $umma, in quibus continetur y, nihilo æqualis, i. e. (a + b x^n) x T^. + 2 (a + b x^n) x T S x^. + (c + f x^n) T x^. = 0, unde {T^. / T} + 2 S x^. + {(c + f x^n) x^. / (a + b x^n) x} = 0: fingatur T = x^p, & exinde $equitur {p x^. / x} + 2 S x^. + {(c + f x^n) x^. / (a + b x^n) x} = 0; ex hâc æquatione con$tat S ={- p a - p b x^n - c - f x^n / 2 x (a + b x^n)}; $cribantur hæc quantitas & ejus fluxio pro $uis valoribus S & S^. in æquatione R, & re$ultat fluxionalis æqua- tio, cujus con$tant ca$us, qui integrationem admittunt, e ca$ibus æqua- tionis P, qui integrationem recipiunt.

Cor. Ex his generalibus fluxionalibus æquationibus facile deduci po$$unt æquationes magis particulares, quæ majorem habeant concin- nitatem.

E. g. Sit æquatio (P), (a + b x^n) x^2 z^. + (a + b x^n) x^2 z^2 x^. + (c + f x^n) x z x^. + (g + h x^n) x^. = 0, in eâ pro z & z^. $cribantur re$pective T y & T y^. + y T^., ubi T $it incognita functio quantitatis x; & re$ultat æquatio (Q) (a + b x^n) x^2 T y^. + (a + b x^n) y x^2 T^. + (a + b x^n) x^2 T^2 y^2 x^. + (c + f x^n) x T y x^. + (g + h x^n) x^. = 0; $upponantur termini, in [0296]DE FLUXIONALIBUS quibus invenitur y, nihilo æquales, i.e. (a + b x^n) y x^2 T + (c + f x^n) x T y x^. = 0, & con$equenter {T^. / T} = - {c + f x^n / (a + b x^n) x}x^., cujus fluens erit log. T + {c / a} log. x + {f a - b c / n b a} log. (a + b x^n) = A invariabili quantitati ad libitum a$$umendæ, unde T = {(a + b x^n)^{b c-a f / n b a} /x^{c / a}} × A; $cribatur {(a + b x^n)^{b c-a f / n b a} /x^{c / a}} pro T in re$ultante æquatione, & transfor- matur re$ultans æquatio in $ub$equentem y^. + {(a + b x^n)^{b c-a f / n b a} /x^{c / a}} Ay^2 x^. +{(g + b x^n) x^{c / a}-2 x^./A(a + b x^n)^{b c-a f / n b a}+1} = 0, (Q).

Cor. · Hujus æquationis facile con$tant ca$us, in quibus detegi pote$t ejus fluens: inveniantur enim ca$us in quibus integrari pote$t altera æquatio vel P vel Q, & exinde con$tant ca$us alterius æquatio- nis Q vel P, qui integrationem admittunt.

Ex. 1. Sit b c = a f, & A = 1, & re$ultans æquatio erit y^. + x^-{c / a} y^2 x^. +{(g + b x^n)x^{c / a}-2 x^./a + b x^n} = 0; pro x & ejus fluxione $cribatur t^{a / a-c} & {a / a - c}t^{c / a-c} t^., & exorietur y^. + {a y^2 t^. / a - c} + {a (g + b t^{n a / a-c}) × t^-2 t^./(a - c)(a + b t^{n a / a-c})} = 0.

[0297]ÆQUATIONIBUS. PROB. LVII. Invenire fluentem datæ fluxionalis æquationis ex a$$umptâ æquationis formulâ, quæ continet flucntem ip$am.

Inveniatur fluxio æquationis pro fluente a$$umptâ, &c. & ita re- ducatur æquatio re$ultans, ut evadant termini datæ & re$ultantis æquationis inter $e æquales; & id quod requiritur, fit.

Ex. 1. A$$umantur quantitates {a x^n y^r + b x^m y^s / (a′ x^n′ y^r′ + b′ x^m′ y^s′)^p} = A, vel {a x^n y^r + b x^m y^s + c y^t + d y^l + &c. / (a′x^ n′ y^r′ + b′ x^m′ y^s′ + c′ y^t′ + d′ y^l′ + &c.)^b} = A, &c. pro fluente; & in- veniatur ejus fluxio; rejiciantur earum denominatores; & re$ultant fluxionales æquationes, quarum fluentes innote$cunt.

Ex. 2. Sit æquatio (a x^2m-1 + b x^2m-2 y + c x^2m-3 y^2 + &c. + d x^2m-2 + e x^2m-3 y + &c. + f x^2m-3 + g x^2m-4 y + &c. + &c. k x + l y + m′) y^. = (A x^2m-1 + B x^2m-2 y + &c. + D x^2m-2 + E x^2m-3 y + &c.)x^..

Fingatur (P x^m + Q x^m-1 y + R x^m-2 y^2 + &c. + S x^m-1 + T x^m-2 y + &c.)^α-β = M (p x^m + q x^m-1 y + r x^m-2 y^2 + &c. + s λ^m-1 + t x^m-2 y + &c.)^α+β, cujus fluxio per fluentem ip$am dividatur, & æquationis re$ultantis terminis corre$pondentibus inter $e æqualibus e$$e $uppo- $itis, nonnunquam $equitur fluens particularis datæ æquationis.

Ex. 2. Æquatio (a x + b + c y) y^. = (f x + g x + b y) x^. $emper reduci pote$t in homogeneam, cum ab haud æquat f c, $cribendo in datâ æquatione pro x & y earum a$$umptos valores z + α & v + β; & in æquatione re$ultante (a z + (a α + b + c β) + c v)v^. = (f z + (f α + g + b β) + b v) z^. $upponendo terminos a α + b + c β = 0 & f α + g + b β = 0, unde β = {b f - a g / a b - c f} & α = {c g - h b / a b - c f}, & data æquatio transformatur in homogeneam (a z + c v) v^. = (f z + b v) z^..

[0298]DE FLUXIONALIBUS

Sit a b = f c, & con$equenter (b + (a x + c y)) y^. = (g + l (a x + c y)) x^.; $cribe y^. = {z^. - a x^. / c}, unde (b + z) × {z^. - a x^. / c} = (g + l z)x^., & con$equenter {(b + z)z^. / g c + b a + a z + c l z} = x^., cujus fluens innote$cit.

Ex. 3. Sit æquatio a x^m x^. + b y^2 x^. = y^.: 1^mo. fingatur y = c x^n + d x^p v, $cribatur hæc quantitas pro ejus valore in datâ æquatione, & re$ultat (a x^m + b c^2 x^2n + 2 b c d x^n+p v + b d^2 x^2p v^2)x^. = n c x^n-1 x^. + p d x^p-1 v x^. + d x^p v^.: fiant termini huju$ce æquationis 2 b c d x^n+p v x^. = p d x^p-1 v x^., & b c^2 x^2n x^. = n c x^n-1 x^.: colligi po$$unt e priori re$ultante æquatione n + p = p - 1, unde n = - 1; & 2 b c d = p d & exinde 2 b c = p:e po$teriori vero b c^2 = n c, unde b c = - 1 & c = -{1 / b}, & p = 2 b c = - 2; & exinde y = - {1 / b} x^-1 + x^-2 v: æquatio vero ex hâc $ub$titutione re$ultans erit (a x^m + d^2 b x^-4 v^2) x^. = d x^-2 v^., & con$equenter {a / d}x^m+2 x^. + d b x^-2 v^2 x^. = v^.; pro x $cribatur - {1 / z} in hâc æquatione & re$ultat - {a / d}z^- m-4 z^. - d b v^2 z^. = v^..

Sint m = - 2, & 2 b c = p; & fingatur a + b c^2 = n c = - c, & con$equenter c = {√(1 - 4 a b) - 1 / 2 b}, & re$ultabit æquatio transfor- mata d^2 bx^4bc v^2 x^. = dx^2bc v^..

2<_>do. Fingatur y = c x^n + d x^p v^-1, $cribatur hæc quantitas pro ejus valore in æquatione datâ a x^m + b y^2 x^. = y^., & re$ultat (a x^m + b c^2 x^2n + 2 b c d x^p+n v^-1 + b d^2 v^2p v^-2)x^. = n c x^n-1 x^. + p d x^p-1 v^-1 x^. - d x^p v^-2 v^.: fiant 2 b c d x^p+n v^-1 x^. = p d x^p-1 v^-1 x^. & n c x^n-1 = b c^2 x^2n, unde p + n = p - 1 & n = - 1, 2 b c d = p d & 2 b c = p, n c = - c = b c^2 & b c = - 1; & exinde p = 2 b c = - 2: & æquatio re$ultans erit a x^m x^. + b d^2 x^-4 v^-2 x^. = - d x^-2 v^-2 v^., & con$equenter a x^m+2 v^2 x^. [0299]ÆQUATIONIBUS. + b d^2 x^-2 x^. = - d v^.; $cribatur {x^m+3 / m + 3} = z in hâc æquatione, & in- venietur a v^2 z^. + b d^2 (m + 3)^-{m+4 / m+3} z^-{m+4 / m+3} z^. = - d v^.; & con$equenter $i indeterminatæ quantitates x & y in datâ æquatione a x^m x^. + b y^2 x^. = y^. $eparationem admittant, tum etiam indeterminatæ in æquatione huju$ce formulæ α z^{-m-4 / m+3} x^. + β v^2 z^. = v^. $emper $eparari po$$unt.

Cor. 1. Sit m = 0, & data æquatio fit a x^. + b y^2 x^. = y^., unde x^. ={y^. / a + b y^2}, in quâ $eparantur variabiles quantitates; & con$equenter indeterminatæ in æquatione α x^{-m-4 / m+3} = {-4 / 3} + β y^2 x^. = y $eparari po$$unt, reduci enim pote$t hæc æquatio in præcedentem: $it m = {-4 / 3} & con- $equenter {- m - 4 / m + 3} = {- 8 / 5}, unde æquatio α x^-{8 / 5} + β y^2 x^. = y^. $emper reduci pote$t in æquationem datam; & exinde in genere $i m ={- 4 n / 2 n + 1}, ubi n $it integer numerus, $emper reduci pote$t æquatio α x^m + β y^2 x^. = y^. in æquationem datæ formulæ a x^. + b y^2 x^. = y^..

Cor. 2. Fluens vero huju$ce æquationis a x^. + b y^2 x^. = y^., i. e. x^. ={y^. / a + b y^2} generaliter inveniri pote$t circularium arcuum & logarith- morum ope, ergo fluens æquationis α x^{-4n / 2n+1} x^. + β y^2 x^. = y^. $emper de- tegi pote$t ope finitorum terminorum, circularium arcuum & loga- rithmorum.

Aliter: Sit data æquatio (P) y^. + a y^2 x^. = b x^m x^.; a$$umatur y = c x^n-1 + {z^. / a z x^.}, ubi x^. $it con$tans quantitas; tum erit y^. = (n - 1) c x^n-2 x^. + {z^.. / a z x^.} - {z^. ^2 / a x^. z^2}, quibus quantitatibus pro $uis valoribus in [0300]DE FLUXIONALIBUS datâ æquatione (P) $ub$titutis, re$ultat (P′) {z^.. / a z x^.} + (n - 1) c x^n-2 x^. + a c^2 x^2n-2 x^. + {2 c x^n-1 z^. / z} = b x^m x^.: $cribantur m = 2 n - 2 & b = a c^2, & fit re$ultans æquatio (Q) z^.. + (n - 1) a c x^n-2 z x^. ^2 + 2 a c x^n-1 x^. z^. = 0; fingatur z = A x^{-n+1 / 2} + B x^{-3n+1 / 2} + C x^{-5n+1 / 2} + &c. unde {z^. / x^.} = - ({n - 1 / 2}) A x^{-n-1 / 2} - ({3 n - 1 / 2}) B x^{-3n-1 / 2} - ({5 n - 1 / 2}) C x^{-5n-1 / 2} - &c. & {z^.. / x^. ^2} = ({n - 1 / 2} × {n + 1 / 2}) A x^{-n-3 / 2} + ({3 n - 1 / 2} × {3 n + 1 / 2}) B x^{-3n-3 / 2} + ({5 n - 1 / 2} × {5 n + 1 / 2}) C x^{-5n-3 / 2} + &c. = {n^2 - 1 / 4} A x^{-n-3 / 2} + {9 n^2 - 1 / 4} B x^{-3n-3 / 2} + &c. quibus quantitatibus pro $uis valoribus in æquatione z^.. + (n - 1) a c x^n-2 z x^. ^2 + 2 a c x^n-1 x^. z^. = 0 $ub$ti- tutis, re$ultat z^.. = + ({n^2 - 1 / 4} A x^{-n-3 / 2} + {9 n^2 - 1 / 4} B x^{-3n-3 / 2} + &c.)x^. ^2 + (n-1)acx^n-2 zx^. ^2 = + ((n-1)acAx^{n-3 / 2} + (n-1)acBx^{-n-3 / 2} + (n-1)acCx^{-3n-3 / 2} + &c.)x^. ^2 + 2acx^n-1 x^. z^. = (-ac(n-1)Ax^{n-3 / 2} -(3n-1)acBx^{-n-3 / 2} -(5n-1)acCx^{-3n-3 / 2} -&c.)x^. ^2 0 = 0.

Fiant corre$pondentes termini re$ultantis æquationis nihilo re- $pective æquales, & re$ultant z = A x^{-n+1 / 2} + {n^2 - 1 / 8 n a c} A x^{-3n+1 / 2} +{n^2 - 1 / 8} × {9 n^2 - 1 / 16n^2 a^2 c^2} A x^{-5n+1 / 2} + {n^2 - 1 / 4 × 2} × {9 n^2 - 1 / 4 × 4} × {25 n^2 - 1 / 4 × 6} × {A / n^3 a^3 c^3}x^{-7n+1 / 2} + &c. & {z^. / x^.} = {1 - n / 2} A x^{-n-1 / 2} + ({n^2 - 1 / 8 n a c})({1 - 3^n / 2}) A x^{-3n-1 / 2} + &c. & exinde y = c x^n-1 + {z^. / a z x^.} = [0301]ÆQUATIONIBUS. c x<_>n-1 - {1 / a} # {{n - 1 / 2} A x<_>{-n-1 / 2} + ({3 n-1 / 2})({n<_>2 - 1 / 8}){A / n a c} x<_>{-3n-1 / 2} + &c./Ax<_>{-n+1 / 2} + {n<_>2 - 1 / 8}{A / n a c} x<_>{-3n+1 / 2} + &c.} = c x<_>n-1 - {1 / a x} # {{n - 1 / 2} + (3 n - 1)(n<_>2 - 1){x<_>-n / 16 n a c} + &c./1 + {n<_>2 - 1 / 8}{x<_>-n / n a c} + {n<_>2 - 1 / 8} × {9n<_>2 - 1 / 16}{x<_>-2n / n<_>2 a<_>2 c<_>2} + &c.}.

Cor.. Hæc expre$$io erit finita, $i (2 i + 1)^2 n^2 - 1 = 0, ubi i $it integer numerus, & m = 2 n - 2 = {- 4 i - 2 ∓ 2 / 2 i + 1}: data æquatio in hoc ca$u erit y^. + a y^2 x^. = a c^2 x^{-4i-2±2 / 2i+1} x^..

Sit m = {- 4 i / 2 i + 1}, & con$equenter y^. + a y^2 x^. = a c^2 x^{-4i / 2i+1} x^.; & erit a y x = a c x^n - {{n - 1 / 2} + ({3 n - 1 / 2})({n^2 - 1 / 8}) {x^-n / n a c} + &c./1 + {n^2 - 1 / 8}{x^-n / n a c} + {n^2 - 1 / 8} × {9 n^2 - 1 / 16}{x^-2n / n^2 a^2 c^2} + &c.} = a c x^n + {{i / 2 i + 1} - {i (i^2 - 1) x^-{-1 / 2i+1} /2 (2i + 1)^2 a c} + &c./1 - {i (i + 1) / 2 (2 i + 1)}{x^{-1 / 2i+1} /a c} + &c.} + &c.

Cor. 2. Hæc re$olutio fluxionalis æquationis a x^m x^. + b y^2 x^. = y^., non erit generalis, nam in eâ haud continetur invariabilis quantitas, quæ in fluxionali æquatione non invenitur.

3. Sit æquatio y^. + (a x^b + b x^b-m + c x^b-2m + &c.) y^b x^. = (A x^i + B x^i′) x^.; & a$$umatur y = {a x^n + b x^n-m + c x^n-2m + &c. / A x^r + B x^r-m + C x^r-2m + &c.}, $ub$tituatur [0302]DE FLUXIONALIBUS hæc quantitas pro y & ejus fluxio pro y^. in datâ æquatione; & ex æquatis corre$pondentibus terminis re$ultantis æquationis erui po$- $unt ca$us, in quibus terminat $eries, i. e. fractio a$$umpta.

Eadem principia, i. e. methodus inveniendi valorem quantitatis y in fractionibus, quarum numeratorum & denominatorum termini $ecundum dimen$iones quantitatis (x) progrediuntur, ad quampluri- mos ca$us applicari po$$unt.

Cor. Si modo pro variabilibus quantitatibus in quâcunque datâ æquatione contentis $cribantur quæcunque functiones novarum va- riabilium a$$umptarum, re$ultabunt æquationes, quæ facile reduci po$$unt ad datam.

Ex. 1. Sit æquatio a x^r x^. + b y x^-1 x^. + c y^2 x^. = y^., $cribantur in datâ fluxionali æquatione z^{b / b+1} u & z^{b / b+1} pro y & x, & nonnunquam re$ultat æquatio formulæ α x^m x^. + β y^2 x^. = y^..

Ex. 2. Sit æquatio a x^m x^. + b y x^p x^. + c y^2 x^. = y^., $cribatur pro y ejus valor a$$umptus {a / p} x^p + u, ubi p = m + 1, & re$ultat æquatio {(a b p + a^2 c) / p^2} x^2p x^. + {(2 a c + b p) x^p / p} u x^. + c u^2 x^. = u^., quæ facile re- duci pote$t in priorem.

Ex. 3. Sit a x^m x^. + b y x^p x^. + c y^2 x^. = y^., $cribatur in eâ pro y, u^-1; & pro x, z^{1 / m+1}; & re$ultat {-c / m + 1} z^{-m / m+1} z^. - {b u / m + 1} z^{p-m / m+1} z^. - {a / m + 1} u^2 z^. = u^..

Et $ic in genere $cribantur in datâ æquatione a x^m x^. + b y^2 x^. = y^. pro x & y re$pective α z^e u^b + β z^f u^k + γ z^g u^l + &c. & π z^n u^s + ξ x^o u^t + &c. & re$ultant æquationes, quæ facile reduci po$$unt ad datam.

4. Si u fluat uniformiter, pro u^. $cribatur in quibu$dam locis datæ æquationis data quantitas, & exinde e principiis prius traditis $æpe deduci pote$t ejus fluens.

[0303]ÆQUATIONIBUS.

Ex. 1. Sit √(x^.^2 + y^.^2) = u^. con$tans quantitas, & data æquatio b y^m = {2 a y x^.. + a x^. y^. / u^. y^.}; ducatur hæc æquatio in {u^. y^. / 2√(y)} & re$ultat {b y^m y^. u^. / 2√(y)} = {2 a y x^.. + a x^. y^. / 2√(y)}, cujus fluens e$t {b y^m+{1 / 2} /2 (m + {1 / 2})} = a x^.√(y) + C √(x^.^2 + y^.^2), ubi C e$t quantitas invariabilis.

2. Sit æquatio f = {x^.^2 -y y^.. / y^3 x^.^2}, ubi y x^. e$t con$tans; ducatur hæc æquatio in 2 y^., & fiet 2 f y^. = {2 x^.^2 y^. - 2 y y^. y^.. / y^3 x^.^2} = {2 y^. / y^3} - {2 y^. y^.. / x^.^2 y^2}, $ed quo- niam y x^. e$t con$tans, erit fluens $. 2 f y^. = -{1 / y^2} - {y^.^2 / y^2 x^.^2} + C.

_PROB. LVIII._ Invenire fluxionales æquationes, quarum dantur quædam particulares re$olutiones.

A$$umatur quæcunque functio variabilium quantitatum x & y & earum fluxionum pro uno datæ æquationis latere: $cribatur etiam quæcunque functio variabilis quantitatis x pro variabili quantitate y, & ejus fluxio pro y^., & $ic deinceps, in functione a$$umptâ; & fiat quantitas re$ultans, alterum æquationis latus; & re$ultat æquatio, cu- jus re$olutio datur.

Ex. 1. A$$umatur functio (y^n+1 + a y^n-1 + b y^n-3 ...P y + Q) y^.; pro quantitatibus y & y^. $cribantur (A + √(p^n))^{1 / n} + (A - √(p^n))^{1 / n} & ejus fluxio re$pective, & re$ultare pote$t (y^n+1 + a y^n-1 + b y^n-3 + &c.) y^. - (2 A y + (n(A^2 - p^n)^{1 / n} + a) y^n-1 - (n · {n - 3 / 2}(A^2 - p^n)^{2 / n} - b) y^n-3 + (n · [0304]DE FLUXIONALIBUS {n - 4 / 2} · {n - 5 / 3} (A^2 - p^n)^{3 / n} + c) y^n-5 + &c.) ({{1 / n} A^. + {1 / 2} p^{1 / 2} n-1 p^./(A + √(A^2 - p^n))^{n-1 / n}} +{{1 / n} A^. - {1 / 2} p^{1 / 2}n-1 p^./(A - √(A^2 - p^n))^{n-1 / n}}), ubi literæ a, b, c, &c. A & p $unt quæcun- que functiones quantitatis x, tum erit particularis valor quantitatis y = (A + √(p^n))^{1 / n} + (A - √(p^n))^{1 / n}.

Aliter: Invenire fluxionales æquationes, quarum fluentes particu- lares dantur.

A$$umatur fluentialis æquatio, & exinde deducatur fluxionalis; vel inveniatur fluxio a$$umptæ æquationis, & in æquatione fluxionali re$ultante pro quibu$cunque quantitatibus $ub$tituantur earum va- lores e datâ æquatione acqui$iti, e. g. $it V = 0 fluentialis æquatio a$$umpta, inveniatur V^. = p x^. + q y^. = 0; e datâ æquatione inveni- antur y = w functio quantitatis x, & x = u functio quantitatis y; quibus quantitatibus pro $uis valoribus in quantitatibus q & p $ub- $titutis, re$ultat æquatio Y x^. + X y^. = 0, ubi literæ Y & X denotant functiones quantitatum y & x re$pective; & con$equenter relatio particularis inter x & y variabiles quantitates æquationis {x^. / X} + {y^. / Y} = 0 detegi pote$t. Ex hoc principio in $ub$equentibus exemplis detegi po$$unt generales fluentes; plures enim continentur invariabiles quantitates ad libitum a$$umendæ in fluentiali quam in fluxionali æquatione.

Cor.. Sit V functio quantitatum x & y, in quibus $imiliter invol- vuntur variabiles quantitates x & y, & erit X eadem functio quanti- tatis x ac Y quantitatis y.

[0305]ÆQUATIONIBUS. THEOR. XL.

1. Sit fluxionalis æquatio α = 0, cujus fluens e$t a log. A + b log. B + c log. C + &c. = con$t.; tum erit fluens etiam A^a × B^b × C^c × &c. = con$t.

Ex. Sit fluxionalis æquatio {(a′ y^r + b′ y^r-1 + c′ y^r-2 + &c.) y^. / a y^n + b y^n-1 + c y^n-2 + &c.} +{(A′ x^s + B′ x^s-1 + C′ x^s-2 + &c.) x^. / A x^m + B x^m-1 + C x^m-2 + &c.} = 0, ubi r & s $unt re$pective mi- nores quam n & m, & $int {(a′ y^r + b′ y^r-1 + &c.) / a y^n-1 + b y^n-1 + &c.} = {a′ / a}({α′ / y - α} + {β′ / y - β}{γ′ / y - γ} + &c.) & {(A′ x^s + B′ x^s-1 + &c.) / A x^m + B x^m-1 + &c.} = {A′ / A}({π′ / x - π} + {ξ′ / x - ξ} +{σ′ / x - σ} + &c.); tum erit æquatio relationem inter x & y exprimens ((y - α)^α′ × (y - β)^β′ × (y - γ)^γ′ × &c.))^{a′ / a} × ((x - π)^π′ × (x - ξ)^ρ′ × (x - σ)^σ′ × &c.)^{A′ / A} = E invariabili quantitati.

Sit fluxionalis æquatio, in quâ $imiliter involvuntur quantitates x, y & earum fluxiones x^., y^., &c. tum in ejus generali fluente & mul- tiplicatore $imiliter etiam involventur quantitates x, y, &c.

2. Idem etiam affirmari pote$t de pluribus fluxionalibus æquationi- bus plures variabiles quantitates involventibus.

Ex. 1. Sit data æquatio a + b (x + y) + c x y = 0, cujus fluxio erit (b + c x) y^. + (b + c y) x^. = 0; in hâc fluxione pro x & y $criban- tur re$pective - {a + b y / b + c y} = x & - {a + b x / b + c x} = y earum valores ex datâ æquatione deducti; tum re$ultabit fluxionalis æquatio {b^2 - c a / b + c y} y^. + [0306]DE FLUXIONALIBUS {b<_>2 - c a / b + c x} x^. = 0, cujus generalis fluens erit {b^2 - c a / c} × (log. (b + c y) + log. (b + c x)) = {b^2 - a / c} log. ((b + c y) × (b + c x)) = A, ubi A e$t quantitas ad libitum a$$umenda; $ed (b + c y) × (b + c x) = b^2 + c b (y + x) + c^2 y x, & exinde b (y + x) + c y x equat invaria- bilem quantitatem.

Ex. 2. Sit æquatio a + 2 b (x + y) + c (x^2 + y^2) + 2 d x y = 0, cujus fluxio e$t (2 b + 2 c x + 2 d y) x^. + (2 b + 2 c y + 2 d x) y^. = 0, in hâc fluxione pro x & y $cribantur - {b + d y ∓ √(b^2 - a c + (2 b d - 2 b c) y + (d^2 - c^2)y^2) / c} (P) & - {b + d x ∓ √(b^2 - a c + (2 b d - 2 b c) x + (d^2 - c^2) x^2) / c} (Q); & re$ultant duæ fluxionales æquationes {y^. / (b^2 - a c + (2 b d - 2 b c) y + (d^2 - c^2)y^2)^{1 / 2}} + {x^. / (b^2 - a c + (2 b d - 2 b c) x + (d^2 - c^2)x^2)^{1 / 2}} = 0, & (b + c x + + d Q) x^. + (b + c y + d P)y^. = 0.

Sit b = 0 & {a c / c^2 - d^2} = n; tum re$ultat æquatio {x^. / √(x^2 + n)} +{y^. / √(y^2 + n)} = 0.

3. Sit æquatio {x^. / √(x^2 + n)} + {y^. / √(y^2 + n)} = 0, cujus fluens e$t log. (x + √(x^2 + n)) + log. (y + √(y^2 + n)) = log. ((x + √(x^2 + n)) × (y + √(y^2 + n)) = invariabili quantitati; unde æquatio (x + √(x^2 + n)) × (y + √(y^2 + n)) = x y + x √(y^2 + n) + y √(x^2 + n) + √(x^2 + n) × √(y^2 + n) = E variabili quantitati; $cribatur enim [0307]ÆQUATIONIBUS. ob (x + √(x^2 + n)) (y + √(y^2 + n)) = E, pro {x^. / y^.} ejus valor - {1 / E}(x + √(x^2 + n)) × (y + √(y^2 + n)) {√(x^2 + n) / √(y^2 + n)} = - {E / E} × {√(x^2 + n) / √(y^2 + n)}, unde {x^. / √(x^2 + n)} = - {y^. / √(y^2 + n)}.

Reducatur æquatio (x + √(x^2 + n)) × (y + √(y^2 + n)) = E, ita ut exterminentur irrationales quantitates; per no$tr. medit. algeb. erit ((x + √(x^2 + n)) (y + √(y^2 + n)) - E) × ((x - √(x^2 + n)) (y - √(y^2 + n)) - E) = n^2 + E^2 - 2 E x y - 2 E √(x^2 + n) × √(y^2 + n); ducatur hæc quantitas in n^2 + E^2 - 2 E x y + 2 E √(x^2 + n) × √(y^2 + n), & re$ultat æquatio quæ$ita (n^2 + E^2)^2 - 4 E (n^2 + E^2) x y - 4 E^2 ((x^2 + y^2) + n) n = L = 0 ab irrationalibus libera.

In æquatione {y^. / √(y^2 + n)} + {x^. / √(x^2 + n)} = 0 pro y $cribatur √(A) v + {B / 2 A^{1 / 2}}, & √(A) z + {B / 2 A^{1 / 2}} pro x; & $i modo $it {B^2 / 4A} (f^2) + n = C, tum evadet æquatio {v^. / √(A v^2 + B v + C)} + {z^. / √(A z^2 + B z + C)} = 0: deinde in æquatione L = 0, pro x, y & n $criban- tur re$pective √(A) z + {B / 2 A^{1 / 2}}, √(A) v + {B / 2 A^{1 / 2}} & C - f^2; & re- $ultat æquatio, quæ e$t generalis fluens æquationis {v^. / √(A v^2 + B v + C)}+ {z^. / √(A v^2 + B v + C)} = 0: aliter generalis fluens fluxionalis æqua- tionis {v^. / √(A v^2 + B v + C)} + {z^. / √(A v^2 + B v + C)} = {1 / √(A)}({v^. / √(v^2 + {B / A} v + {C / A})} + {z^. / √(z^2 + {B / A} z + {C / A})}) = 0 erit {1 / √(A)} (log. (v [0308]DE FLUXIONALIBUS + {1 / 2}{B / A} + √(v^2 + {B / A}v + {C / A})) + log. (z + {1 / 2}{B / A} + √(z^2 + {B / A}z + {C / A}))) = {1 / √(A)} (log. (v + {1 / 2}{B / A} + √(v^2 + {B / A}v + {C / A})) (z + {1 / 2}{B / A} + √(z^2 +{B / A}z + {C / A})) = A′ cuicunque invariabili quantitati; con$equenter (v + {1 / 2}{B / A} + √(v^2 + {B / A}v + {C / A})) (z + {1 / 2}{B / A} + √(z^2 + {B / A}z + {C / A})) = E invariabili quantitati erit etiam fluens æquationis prædictæ.

Per eundem modum inveniri pote$t (v + {2 / 1}{B / A} + √(v^2 + {B / A}v + {C / A}))^m × (z + {1 / 2}{B / A} + √(z^2 + {B / A}z + {C / A}))^r = E generalis fluens fluxionalis æquationis {m v^. / √(v^2 + {B / A}v + {C / A})} + {r z^. / √(z^2 + {B / A}z + {C / A})}= 0.

Ex. 2. Sit æquatio a + 2 b (x + y) + c (x^2 + y^2) + 2 d x y + 2 e x y (x + y) + f x^2 y^2 = A = 0, cujus fluxio (b + c x + d y + 2 e y x + e y^2 + f y^2 x) x^. + (b + c y + d x + 2 e y x + e x^2 + f x^2 y) y^. = 0, in quantitate b + c x + d y + 2 e y x + e y^2 + f y^2 x pro x $cribatur -{b + d y + e y^2 / c + 2 e y + f y^2} + √({(b + d y + e y^2)^2 - (c + 2 e y + f y^2) (a + 2 b y + c y^2) / (c + 2 e y + f y^2)^2}); & in quantitate b + c y + d x + 2 e y x + e x^2 + f x^2 y pro y $cribatur -{b + d x + e x^2 / c + 2 e x + f x^2} + √({(b + d x + e x^2)^2 - (c + 2 e x + f x^2) (a + 2 b x + c x^2) / (c + 2 e x + f x^2)^2}); & re$ultabunt re$pective √((e^2 - c f) y^4 + (2 e d - 2 c e - 2 b f) y^3 + (2 e b + d^2 - c^2 - a f - 4 b e) y^2 + (2 b d - 2 e a - 2 b c) y + b^2 - c a) = √(A y^4 + B y^3 + C y^2 + D y + E), & √((e^2 - c f) x^4 + (2 e d - 2 c e - 2 b f) x^3 + (2 e b + d^2 - c^2 - a f - 4 b e) x^2 + (2 b d - 2 e a - 2 b c) x + b^2 - c a) = √(A x^4 + B x^3 + C x^2 + D x + E), & exinde re$ultat fluxionalis æquatio {x^. / √(A x^4 + B x^3 + C x^2 + D x + E)} [0309]ÆQUATIONIBUS. + {y^. / √(A y^4 + B y^3 + C y^2 + D y + E)} = 0, cujus data æquatio A′ = 0 erit fluens.

Ex datis coefficientibus A, B, C, D & E, & $uppo$itis quantitati- bus e^2 - c f = A m, 2 e d - 2 c e - 2 b f = B m, 2 e b + d^2 - c^2 - a f - 4 b e = C m, 2 b d - 2 e a - 2 b c = D m & b^2 - c a = E m; re$ul- tant quinque æquationes, e quibus deduci po$$unt incognitæ quanti- tates a, b, c, d, e, f & m; & con$equenter æquatio, quæ e$t fluens præ- dictæ fluxionalis æquationis, a′ + 2 b′ (x + y) + c′ (x^2 + y^2) + 2 d′ x y + 2 e′ x y (x + y) + f′ x^2 y^2 = 0.

2. Sint b = 0 & e = 0 & re$ultat æquatio a + c (x^2 + y^2) + 2 d x y + f x^2 y^2 = 0, unde fluxionalis æquatio {x^. / √(- c f x^4 + (d^2 - c^2 - a f) x^2 - c a)}+ {y^. / √(- c f y^4 + (d^2 - c^2 - a f) y^2 - c a)} = {x^. / √(A x^4 + C x^2 + E)}+ {y^. / √(A y^4 + C y^2 + E)} = 0, cujus fluens erit - A + l (x^2 + y^2) + 2 x y √(l^2 + l C + A E) - E x^2 y^2 = 0, ubi l e$t invariabilis quanti- tas ad libitum a$$umenda.

Ex. 3. Sit æquatio ± {q̈ / √(a + bp^2 + cp^4 + dp^6)} ± {q̈ / √(a + bq^2 + cq^4 + dq^6)}; fingatur x = p^2 & y = q^2, & exinde deduci pote$t æquatio ±{x^. / √(a x + b x^2 + c x^3 + d x^4} ± {y^. / √(a y + b y^2 + c y^3 + d y^4)} = 0.

In fluxione {x^. / √(a + b x + c x^2 + d x^3 + e x^4)} pro x & x^. $cribantur {α + β z / γ + δ z} & ejus fluxio; & ita a$$umi po$$unt coefficientes, ut re$ultet fluxio formulæ {z^. / √(A + B z^2 + C z^4)}.

[0310]DE FLUXIONALIBUS THEOR. XLI.

Sit X eadem functio quantitatis x, ac Y $it quantitatis y, & X x^. + Y y^. = 0; & detur generalis fluens α = 0 huju$ce æquationis; ex æqua- tione X x^. + Y y^. = 0 con$tat φ:(x) + φ:(y) = con$t. = φ:(c), unde c erit con$imilis functio quantitatum x & y; i. e. c = π:(x & y): in æquationibus π:(x & y) = c & φ:(x) + φ:(y) = φ:c, pro x & y $cribantur a & b & re$ultabit c = π:(a & b) & φ:(a) + φ:(b) = φ: (c); deinde in duabus æquationibus φ:(a) + φ:(b) = φ:(c) & c = π :a & b) pro b $cribatur a, & re$ultabit φ:(a) + φ:(b) = 2 φ:(a) = φ:(c), & c = π:(a & b) = π′:(a): nunc a$$umatur æquatio 2 X x^. + Y y^. = 0, unde 2 φ:(x) + φ:(y) = con$t. = φ:(d): in hâc æquatione d = π:(x & y) pro x $cribatur π′:(x), & re$ultat æquatio d = π:(π′:(x) & y), quæ erit generalis fluens æquationis fluxionalis 2 X x^. + Y y^. = 0. In æquationibus 2 φ:(x) + φ:(y) = φ:(d) & d = π:(π′ (x) & y) pro x & y $cribantur a & b & re$ultant æquationes 2 φ:(a) + φ:(b) = φ:(d) & d = π:(π′:(a) & a) = π″:(a):3^tia. a$$umatur æquatio 3 X x^. + Y y^. = 0, unde 3 φ:(x) + φ:(y) = φ:(e): in æquatione π:(x & y) = e pro x $cribatur π″:(x), & re$ultat e = π:(π″:(x) & y); quæ erit generalis fluens prædictæ fluxionis 3 X x^. + Y y^. = 0: nunc fingatur x = a & y = b, & denique a = b, tum re$ultabunt 2:φ:(a) + φ:(b) = 3 φ:(a) = φ:(e) & e = π:(π″ :(a) & a) = π″′:(a), & $ic deinceps: ex hâc methodo deduci pote$t fluens generalis fluxionalis æquationis n X x^. + m Y y^. = 0, ubi literæ n & m integros denotant numeros.

THEOR. XLII.

Sit æquatio A y^. ^n + B y^. ^n-1 x^. + C y^. ^n-2 x^. ^2 + D y^. ^n-3 x^. ^3 .. + L y^.. x^. ^n-2 + M y^. x^. ^n-3 + N y x^. ^n = X x^. ^n, ubi A, B, C, .. M & N invariabiles denotant coeffi- cientes, & X e$t functio quantitatis x.

Ducatur hæc æquatio in e^λx, & re$ultat æquatio, cujus generalis [0311]ÆQUATIONIBUS. fluens e$t e^λ x (A y^. ^n-1 + (B - λA) y^. ^n-2 x^. + (C - λ B + λ^2 A) y^. ^n-3 x^. ^2 + (D - λ C + λ^2 B - λ^3 A) y^. ^n-4 x^. ^3 + ... + (M - λ L + λ^2 K - ... ± λ^n-3 C ∓ λ^n-2 B ± λ^n-1 A) y = x^. ^n-1 $. e^λ x X x^. + a x^. ^n-1, $i modo N - λ M + λ^2 L - λ^3 K + ... ± λ^n-1 B ± λ^n A = 0, & con$equenter A λ^n - B λ^n-1 + C λ^n-2 - D λ^n-3 + &c. = 0; at (n) $unt diver$i valores quantitatis λ in æquatione A λ^n - B λ^n-1 + C λ^n-2 - &c. = 0, qui $int re$pective λ, μ, ν, ξ, &c.; unde ex (n) valoribus quantitatis λ exoriuntur totidem (n) multiplicatores, viz. e^λ x, e^μ x, e^γ x, &c.

Ducatur prædicta generalis fluens in e^(μ-λ)x, & detegi pote$t fluens re$ultantis æquationis e^μ x (A y^. ^n-2 + (B - (λ + μ) A) y^. ^n-3 x^. + (C - (λ + μ) B + (λ^2 + μ λ + μ^2) A) y^. ^n-4 x^. ^2 + (D - (λ + μ) C + (λ^2 + λ μ + μ^2) B - (λ^3 + λ^2 μ + λ μ^2 + λ^3) A) y^. ^n-5 x^. ^3 + &c. = x^. ^n-2 $. e^(μ-λ)x x^. $. e^λx X x^. + {a / μ - λ} e^(μ-λ)x x^. ^n-2 + b x^. ^n-2 = -x^. ^n-2 ({1 / λ - μ} e^(μ-λ)x $. e^λx X x^. + {1 / μ - λ} $. e^μx X x^. - {a / μ - λ} e^(μ-λ)x - b) = x^. ^n-2 ({1 / μ - λ} e^(μ-λ)x $. e^λx X x^. + {1 / λ - μ} $. e^μx X x^. + a′ e^(μ-λ)x + b).

Hìc animadvertendum e$t M - (λ + μ) L + (λ^2 + λ μ + μ^2) K - (λ^3 + λ^2 μ + λ μ^2 + μ^3) 1 - .... ± (λ^n-1 + λ^n-2 μ + λ^n-3 μ^2 + λ^n-4 μ^3 + .... μ^n-1) A = 0.

Ducatur fluens re$ultantis æquationis in e^(ν-μ)x, & fluens æquatio- nis exinde re$ultantis erit e^νx (A y^. ^n-3 + (B - (λ + μ + ν) A) y^. ^n-4 x^. ^2 + (C - (λ + μ + ν) B + (λ^2 + μ^2 + ν^2 + λ μ + λ ν + μ ν) A) y^. ^n-5 x^. ^2 + (D - (λ + μ + ν) C + (λ^2 + μ^2 + ν^2 + λ μ + λ ν + μ ν) B + (λ^3 + μ^3 + ν^3 + λ μ^2 + λ ν^2 + μ λ^2 + μ ν^2 + ν λ^2 + ν μ^2 + λ μ ν) A) y^. ^n-6 x^. ^3 + &c. = x^. ^n-3 ({1 / λ - μ} × {1 / λ - ν} e^(ν-λ)x $. e^λ x X x^. + {1 / μ - λ} × {1 / μ - ν} e^(ν-μ)x [0312]DE FLUXIONALIBUS $. e^μ x X x^. + {1 / ν - μ} × {1 / ν - λ} $. e^ν x X x^. + (a″ e^(ν-λ) x + b′ e^(ν-μ) x + c) = 0, & $ic deinceps; ultimo erit y = ± (({1 / λ - μ} × {1 / λ - ν} × {1 / λ - ξ} × {1 / λ - 0} × &c.) × e^-λx $. e^λ x X x^. + {1 / μ - λ} × {1 / μ - ν} × {1 / μ - ξ} × {1 / μ - 0} × &c. × e^-μ x $. e^μ x X x^. + {1 / ν - λ} × {1 / ν - μ} × {1 / ν - ξ} × {1 / ν - 0} × &c. × e^-ν x $. e^νx X x^. + &c. + A′e^-λx + B′e^-μx + C′e^-νx + D′e^-ξx + &c., ubi literæ A′, B′, C′, D′, &c. re$pe- ctive denotant invariabiles coefficientes ad libitum a$$umendas; & $ic deinceps.

Erit (λ - μ) × (λ - ν) × (λ - ξ) × (λ - 0) × &c. = n A λ^n-1 + (n - 1) B λ^n-2 + (n - 2) C λ^n-3 + (n - 3) D λ^n-4 + &c. & $ic de re- liquis radicibus μ, ν, ξ, &c.

2. Hoc theorema ex $ub$equentibus con$tabit: $it æquatio N + M x + L x^2 + K x^3 + I x^4 + H x^5 + ... + D x^n-3 + C x^n-2 + B x^n-1 + A x^n = 0, cujus radices $int λ, μ, ν, ξ 0′, &c.; tum erit N + M λ + L λ^2 + K λ^3 + I λ^4 + &c. = 0, & M + {λ^2 - μ^2 / λ - μ} L + {λ^3 - μ^3 / λ - μ} K +{λ^4 - μ^4 / λ - μ} I + &c. = M + (λ + μ) L + (λ^2 + μ^2 + μ λ) K + (λ^3 + μ^3 + λ^2 μ + μ^2 λ) I + &c. = 0, & $imiliter L + (λ + μ + ν) K + (λ^2 + μ^2 + ν^2 + λ μ + λ ν + μ ν) I + (λ^3 + μ^3 + ν^3 + λ^2 μ + λ^2 ν + μ^2 λ + μ^2 ν + ν^2 λ + ν^2 μ + λ μ ν) H + &c. = 0, & K + (λ + μ + ν + ξ) + K + (λ^2 + μ^2 + ν^2 + ξ^2 + λ μ + λ ν + μ ν + λ ξ + μ ξ + ν ξ) I + (λ^3 + μ^3 + ν^3 + ξ^3 + λ^2 μ + μ^2 λ + λ^2 ν + μ^2 ν + ν^2 λ + &c.) H + &c. = 0; &c.: in primâ æquatione deductâ una $olummodo conti- netur radix λ vel μ vel ν, &c,; in $ecundâ duæ; in tertiâ tres; & $ic deinceps: prima prædicta æquatio incipit ab primâ datæ æquationis coefficiente, $ecunda a $ecundâ, tertia a tertiâ, & $ic deinceps.

Coefficiens primi termini prædictarum æquationum erit 1; $e- cundi termini erit $umma omnium radicum in iis re$pective conten- [0313]ÆQUATIONIBUS. tarum; tertii termini erit $umma omnium rationalium & non fractio- nalium functionum radicum, quarum dimen$iones $unt duæ, i. e. erit $umma quadratorum e $ingulis radicibus & rectangulorum $ub quibu$que duabus in iis contentis; quarti termini coefficiens erit $umma omnium con$imilium functionum radicum, quarum dimen- $iones $unt tres, i. e. erit $umma cuborum e $ingulis radicibus, & $in- gulorum valorum ex quadrato alterius radicis in alteram ducto, viz. cujus $ormula eadem e$t ac α^2 β; & contentorum $ub quibu$que tribus radicibus; & $ic deinceps: coefficientes omnium quantitatum in datis æquationibus contentæ erunt 1.

Cor. 1. Po$itis y^. = p x^., p^. = q x^., q^. = r x^., &c. $cribantur hæ quan- titates pro $uis valoribus in datâ fluxionali æquatione, & re$ultat N y + M p + L q + K r + &c. = X.

Cor. 2. In datâ prædictâ fluxionali æquatione pro y, y^., y^.., & $cri- bantur e ^$. u x^., u x^. e^$. u x^., (u^. x^. + u^2 x^. ^2) e ^$. u x^., &c.; & re$ultat fluxionalis æquatio (n - 1) ordinis, cujus generalis fluens facile innote$cit; nam erit {y^. / y x^.} = u, quoniam e ^$. u x^. = y; & exinde e generali valore quanti- tatis y prius dato facile con$tat generalis valor quantitatis u.

In re$ultante æquatione pro x^. $cribatur {u^. / t}, deinde pro t + u^2 $cri- batur z; & $imiliter ex in$initis $ub$titutionibus facile deduci po$$unt fluxionales æquationes, quarum fluentes innote$cunt.

3. Sit fluxionalis æquatio H y^. ^n + G y^. ^n-2 x^. ^2 + F y^. ^n-4 x^. ^4 + ... + C y^.... x^. ^n-4 + B y^.. x^. ^n-2 + A y x^. ^n = 0; ubi n e$t par numerus; ducatur hæc æqua- tio in y^., & re$ultat æquatio, cujus fluens e$t H (y^. ^n-1 y^. - y^. ^n-2 y^.. + y^. ^n-3 y^... ....{1 / 2} y^. ^2 ^{1 / 2}n + G (y^. ^n-3 y^. - y^. ^n-4 y^.. + y^. ^n-5 y^... ... {1 / 2} y^. ^2 ^{1 / 2}n-1) x^. ^2 + &c. + C (y^... y^. - {1 / 2} y^.. ^2) x^. ^n-4 + B ({1 / 2} y^. ^2) x^. ^n-2 + {1 / 2} A y^2 x^. ^n + A′ x^. ^n = 0, ubi A′ e$t invariabilis quantitas ad libitum a$$umenda.

Si in hâc æquatione pro y^. $cribatur e $. v x^., &c., vel y^. = u x^., &c.; [0314]DE FLUXIONALIBUS & exinde deduci po$$unt æquationes fluxionales, quarum fluentes in- note$cunt.

4. Sit fluxionalis æquatio a y^. ^n + b y^. ^n-1 x^. + c y^. ^n-2 x^. ^2 + d y^. ^n-3 x^. ^3 + ... f y^. ^n-m x^. ^m ... + b y^... x^. ^n-3 + i y^.. x^. ^n-2 + k y^. x^. ^n-1 + l y x^. ^n = X x^. ^n; ducatur hæc æqua- tio in datam quantitatem p, & $cribantur a p = A, b p = B, c p = C, d p = D, &c., f p = F, &c., b p = H, i p = I, k p = K & l p = L; ubi literæ a, b, c, d, &c, h, i, k, l & p functiones quantitatis x deno- tant; tum integrari pote$t fluxionalis quantitas p a y^. ^n + p b y^. ^n-1 x^. + p c y^. ^n-2 x^. ^2 + &c., $i modo A^. ^n - B^. ^n-1 + C^. ^n-2 - D^. ^n-3 + ... ± H^... ∓ I^.. ± K^. = L = 0: $i evane$cant termini l, k, i, b, &c. u$que ad f; tum erit A^. ^n-m - B^. ^n-m-1 + C^. ^n-m-2 - &c. = 0, cum quantitas prædicta integrari po$$it; fluens enim erit A y^. ^n-1 + (B - A^.) y^. ^n-2 x^. + (C - B^. + A^..) y^. ^n-3 x^. ^2 + &c. = x^. ^n-1 $. p X x^. = con$t.

Cor. Si dentur omnes præter unam vel l vel k vel i vel b, &c. quanti- tates prædictæ l, k, i, b, &c ... c, b, a & p; tum facile ex æquatione fluxio- nali A^. ^n - B^. ^n-1 + C^. ^n-2 - &c. = 0 acquiri pote$t quantitas vel L vel K vel I vel H, &c. ei corre$pondens, & exinde vel l = {L / p}, vel b = {H / p}, vel i ={I / p}, &c.

Cor. 2. Sint a = a′ x^n, b = b′ x^n-1, c = c′ x^n-2, &c., b = b′ x^3, i = i′ x^2, k = k′ x; ubi literæ a′, b′, c′, d′, &c., b′, i′, k′ & l′ invariabiles denotant quantitates; ducatur data æquatio a′ x^n y^. ^n + b′ x^n-1 y^. ^n-1 x^. + c′ x^n-2 y^. ^n-2 x^. ^2 + &c. + b′ x^3 y^... x^. ^n-3 + i′ x^2 y^.. x^. ^n-2 + k′ x y^. x^. ^n-1 + l′ y x^. ^n = X x^. ^n in x^λ; & re$ultat æquatio, cujus fluens e$t a′ x^n+λ y^. ^n-1 + (b′ - (n + λ) a′) x^n+λ-1 y^. ^n-2 x^. + (c′ - (n + λ - 1) b′ + (n + λ) × (n + λ - 1) a′) x^n+λ-2 [0315]Æ QUATIONIBUS. y^. ^n-3 x^. ^2 + (d′ - (n + λ - 2) c′ + (n + λ - 1) × (n + λ - 2) b′ - (n + λ) × (n + λ - 1) × (n + λ - 2) a′) x^n+λ-3 y^. ^n-4 x^. ^3 + &c. (cujus ul- timi termini coefficiens l′ - (λ + 1) k′ + (λ + 1) × (λ + 2) i′ - (λ + 1) (λ + 2) (λ + 3)b′ + .... ± (λ + 1) × (λ + 2) × (λ + 3) × .... × (λ + n) a′ = 0) = x^. ^n-1 $. x^λ X x^. + con$t. x^. ^n-1.

Eadem fluens $ic exprimi pote$t, viz. x^. ^n-1 $. x^λ X x^. + con$t. x^. ^n-1 = {l′ / λ + 1}x^λ+1 y x^. ^n-1 + ({k′ - π / λ + 2}) x^λ+2 y^. x^. ^n-2 + ({i′ - ξ / λ + 3}) x^λ+3 y^.. x^. ^n-3 + ({b′ - σ / λ + 4}) x^λ+4 y^... x^. ^n-4 + &c., ubi literæ π, ξ, σ, &c. præcedentes coefficientes re- $pective denotant.

Cor. 3. Sit l′ - (λ + 1) k′ + (λ + 1) (λ + 2) i′ - (λ + 1) (λ + 2) (λ + 3) h′ + .... ± (λ + 1) (λ + 2) (λ + 3) .... (λ + n) a′ = a′ (λ - α) (λ - β) (λ - γ) (λ - δ) × &c.; unde λ vel = α, vel = β, vel = γ, &c.: & exinde, $i modo ducatur data æquatio in x^α, &c. re$ul- tabit æquatio, cujus fluens e$t datæ $imilis, ordinis vero inferioris (n - 1); & $ic deprimi pote$t re$ultans æquatio in fluxionalem æqua- tionem (n - 2) ordinis, $i modo ea ducatur in x^β; & $ic eâdem operatione (n) vicibus repetitâ, i. e. ductis re$ultantibus æquationibus in x^γ, x^δ, &c. $ucce$$ive, & inventis fluxionum re$ultantium fluenti- bus, tandem invenietur fluens quæ$ita.

5. Sit y = a^n × e^-ax $. x^. $. x^. $. x^. ad n - 1 numerum × $. e^a x X x^.; re- ducatur hæc æquatio, ita ut exterminentur fluentiales quantitates, & re$ultat y + {n y^. / a x^.} + {n (n - 1) y^.. / 2 a^2 x^. ^2} + {n (n - 1) (n - 2) y^... / 2. 3 a^3 x^. ^3} + {n (n - 1) (n - 2) (n - 3) y^.... / 2 · 3 · 4 a^4 x^. ^4}+ &c. = X.

Hoc $equitur etiam ex problemate; nulli in hoc ca$u requiruntur multiplicatores, ni x^..

6. Sit æquatio X = a^n y^. + b^n-1 y^. x^. + c^n-2 y^. x^. ^2 + &c., $ub$tituatur y = v + Z, ubi Z e$t functio quantitatis x, quæ e$t particularis valor [0316]DE FLUXIONALIBUS quantitatis y, & re$ultabit fluxionalis æquatio A v x^. ^n + B v^. x^. ^n-1 + C v^.. x^. ^n-2 + &c. = 0, ubi a, b, c, &c., A, B, C, &c. $unt functiones quantitatis x.

7. Sit æquatio X = a y + {b y^. / x^.} + {c y^.. / x^. ^2} + {d y^... / x^. ^3} + &c.; $tatuatur x = log. v, unde x^. = {v^. / v}, & erit X = φ: (v); deinde inveniatur æquatio relatio- nem inter v & y & earum fluxiones exprimens, quæ habet formulam V = a y + {b v y^. / v^.} + {c v^2 y^.. / v^. ^2} + {d v^3 y^... / v^. ^3} + &c.: & $imiliter $it æquatio V = a y + {b v y^. / v^.} + {c v^2 y^.. / v^. ^2} + &c.; $tatuatur v = e^x, & reducitur data æqua- tio ad æquationem formulæ X = a y + {b y^. / x^.} + {c y^.. / x^. ^2} + &c.

8. Sint X = A y + B{ν^. / x^.} + C{y^.. / x^. ^2} ... {N^m+n y^. / x^. ^m+n} & P = A + B z + C z^2 ... N z^m+n = Q R, ubi Q = a + b z + c z^2 ... l z^m & R = α + β z + γ z^2 .. ν z^n: fingatur X = a v + b{v^. / x^.} + c{v^.. / x^. ^2} ... l {v^. ^m / x^. ^m}, & erit v = α y + β{y^. / x^.} + γ{y^.. / x^. ^2} ... + ν {y^. ^n / x^. ^n}.

9. Sint n diver$i valores variabilis y in fluxionale æquatione y^. ^n + p y^. ^n-1 x^. + q y^. ^n-2 x^. ^2 .. + S y x^. ^n = 0 (ubi p, q, &c. S datas functiones quantitatis x denotant) re$pective π, ξ, σ, τ, &c. & erit generalis valor ip$ius y in prædicta æquatione = a π + b ξ + c σ + d τ + &c. ubi a, b, c, &c. invariabiles quantitates ad libitum a$$umendas re$pective de$ignant.

Cor. 4. Sit ζ valor variabilis y in fluxionale æquatione (A) y^. ^n + p y^. ^n-1 x^. + q y^. ^n-2 x^. ^2 ... S y x^. ^n + X x^. ^n = 0, (n) vero diver$i valores quanti- tatis y in æquatione y^. ^n + p y^. ^n-1 x^. + q y^. ^n-2 x^. ^2 ... S y x^. ^n = 0 re$pective π, ζ, [0317]Æ QUATIONIBUS. σ, τ, &c. tum erit generalis valor ip$ius y in fluxionali æquatione (A) = a π + b ρ + c σ + d τ + &c. + Θ,, ubi a, b, c, d, &c. $unt quæcun- que invariabiles quantitates ad libitum a$$umendæ.

Cor. 2. Sint h valores variabilis y fluxionalis æquationis (B) y^. ^n + p y^. ^n-1 x^. + q y^. ^n-2 x^. ^2 ... S y x^. ^n = X x^. ^n (ubi p, q ... S & X $unt functiones ip$ius x) α, β, γ δ, &c. tum h - 1 diver$i valores variabilis y in æquatione (A), cum X = 0; erunt re$pective α - β, α - γ, α - δ, &c. $int l valores variabilis y in fluxionali æquatione y^. ^n + p y^. ^n-1 x^. + q y^. ^n-2 x^. ^2 ... S y x^. ^n = 7 x^. ^n, ubi τ etiam e$t functio ip$ius x, haud vero eadem ac X, re$pective π, ρ, σ, τ, &c. & erunt π - ρ, π - σ, π - τ, &c. re$pective l - 1 diver$i valores ip$ius y in æquatione (A), ubi τ = 0: & ex n diver$is valori- bus ip$ius y in æquatione (A), & uno valore variabilis y in æquatione (B); facile erui pote$t generalis valor ip$ius y in fluxionali æquatione B: &c. Omnia hæc con$tant e $cribendo pro y & ejus fluxionibus in datâ fluxionali æquatione earum valores prius a$$ignatos.

10. Sit fluxionalis æquatio n ordinis X x^. ^n = P y x^. ^n + Q y^.x^. ^n-1 + Ry^..x^. ^n-2 + S y^... x^. ^n-3 + T y^.... x^. ^n-4 + V y^. ^5 x^. ^n-5 + ... A y^. ^n, & $i P x^. ^m - m Q^.x^. ^m-1 + m.{m + 1 / 2} R^.. x^. ^m-2 - m · {m + 1 / 2}.{m + 2 / 3} S^... x^. ^m-3 + m · {m + 1 / 2} · {m + 2 / 3} · {m + 3 / 4}T^.... x^. ^m-4 - &c. = 0, cum m vel 1 vel 2 vel 3, &c. ad numerum m; tum reduci pote$t data æquatio ad fluxionalem æquationem n - m ordinis ex m repetitis ii$dem multiplicatoribus (x^.).

11. Sit fluxionalis æquatio p y^. ^n + q y^. ^n-1 x^. + r y^. ^n-2 x^. ^2 + s y^. ^n-3 x^. ^3 + t y^. ^n-4 x^. ^4 ... + P y^. ^n-m x^. ^m = X x^. ^n, ubi omnes termini po$t terminum P y^. ^n-m ad termi- num X x^. ^n de$unt; ejus fluens deduci pote$t ex m repetitis multipli- catoribus, quorum primus inveniri pote$t e fluxionali æquatione [0318]DE FLUXIONALIBUS p M^. ^m + m p^.. M^. ^m-1 + m · {m - 1 / 2}p^.. M^. ^m-2 + m.{m - 1 / 2} × {m - 2 / 3}p^... M^. ^m-3 + m.{m - 1 / 2}.{m - 2 / 3}.{m - 3 / 4}p^.... M^. ^m-4 + &c. - q - (m - 1)q^. - (m - 1) × {m - 2 / 2}q^.. - (m - 1) × {m - 2 / 2} × {m - 3 / 3} q^... -&c. + # r # + (m - 2)r^. # + (m - 2) × {m - 3 / 2}r^.. - # s - # (m - 3) + (m) ordinis; $ecundus, tertius, &c. e fluxionali æquatione (m - 1, m - 2, &c.) ordinis deduci pote$t.

THEOR. XLIII.

Sit π = 0 fluxionalis æquatio, in quâ continentur variabiles x & y & earum fluxiones x, y^., y^.., y^..., ...y^. ^n; reducatur data æquatio, ita ut in eâ contineatur tantummodo una dimen$io fluxionis maximi ordinis y^. ^n & re$ultet α = 0, cujus multiplicator $it M; i.e. $it M α = ρ^. = 0; deinde ita reducatur ρ = 0, ut $olummodo $implex dimen$io fluxionis y^. ^n-1 in eâ contineatur; & $ic deinceps redintegratâ operatione, u$que donec inveniatur fluens quæ$ita. Hìc animadvertendum e$t, quod $ingula extractio radicum tot diver$as fluentes præbet, quot diver$æ radices exinde re$ultant.

Ex. 1. Sit fluxionalis æquatio y^.. + ({α / x + a} + {β / x + b})y^.x^. + ({α β / (x + a) (x + b)} - {α / (x + a)^2})y x^. ^2 = X x^. ^2; tum erit y = {1 / (x + a)^α} $. {(x + a)^α / (x + b)^β} x^. $.(x + b)^β X x^..

2. Sit fluxionalis æquatio y^... + ({α / x + a} + {β / x + b} + {γ / x + c})y^.. x^. + [0319]ÆQUATIONIBUS. ({αβ / (x + α)(x + β)} + {αγ / (x + a)(x + c)} + {βγ / (x + b)(x + c)} - {2α / (x + a)^2} -{β / (x + b)^2})y^. x^. + ({αβγ / (x + a)(x + b)(x + c)} - {αβ / (x + a)^2 (x + b)} -{αβ / (x + a)(x + b)^2} - {αγ / (x + a)^2 × (x + c)} + {1 · 2 α / (x + a)^3})y x^. ^3 = X x^. ^3; tum erit y = {1 / (x + a)^α} × $. {(x + a)^α / (x + b)^β} x^. $. {(x + b)^β / (x + c)^γ} x^. $. (x + c)^γ X x^..

3. Sit fluxionalis æquatio y^. ^n + ({α / x + a} + {β / x + b} + {γ / x + γ} + {δ / x + δ}+ &c.)y^. ^n-1 x^. + ({αβ / (x + a)(x + b)} + {αγ / (x + a)(x + c)} + {αδ / (x + a)(x + d)}+ {βγ / (x + b)(x + c)} + {βδ / (x + b)(x + d)} + {γδ / (x + c)(x + d)} + &c. -{(n - 1)α / (x + a)^2} - {(n - 2)β / (x + b)^2} - {(n - 3)γ / (x + c)^2} - &c.)y^. ^n-2 x^. ^2 + ({αβγ / (x + a) (x + b) (x + c)}+ {αβδ / (x + a)(x + b)(x + d)} + {αγδ / (x + a)(x + c)(x + d)} +{βγδ / (x + b)(x + c)(x + d)} + &c. - {(n - 2)αβ / (x + a)^2 × (x + b)} - {(n - 2)αβ / (x + a)(x + b)^2}- {(n - 2)αγ / (x + a)^2 (x + c)} - {(n - 3)αγ / (x + a)(x + c)^2} - {(n - 3)βγ / (x + b)^2 (x + c)} -{(n - 3)βγ / (x + b)(x + c)^2} - {(n - 3)αδ / (x + a)^2 (x + d)} - {(n - 3)αδ / (x + a) (x + d)^2} - &c. +{(n - 1) · (n - 2)α / (x + a)^3} + {(n - 2).(n - 3)β / (x + b)^3} + {(n - 3) · (n - 4)γ / (x + c)^3} + &c.) y^. ^n-3 x^. ^3 &c. = X x^. ^n; tum erit y = {1 / (x + a)^z} × $. {(x + a)^α / (x + b)^β} x^. $. {(x + b)^β / (x + c)^γ} x^. $. {(x + c)^γ / (x + d)^δ} x^. × $. &c. × X x^..

[0320]DE FLUXIONALIBUS THEOR. XLIV.

Sit quæcunque fluxionalis æquatio a y^. ^n + b = 0, ubi a & b funt functiones quantitatis x, ejus incrementi x^.; y, y^., y^.., &c. ad y^. ^n-1, in quâ nullæ continentur fluentes; ducatur hæc æquatio in fun- ctionem p quantitatum x & x^., & $i re$ultans æquatio p a y^. ^n + p b = 0 $it integrabilis, tum reduci pote$t data fluxionalis æquatio ad fluxio- nalem æquationem n - 1 ordinis ope multiplicatoris p, qui ctiam de- duci pote$t ope fluxionalis æquationis n - 1 ordinis.

Inveniatur enim fluens fluxionis p a y^. ^n ex hypothe$i quod omnes quantitates x, x^., y^., ... y^. ^n-2 præter y^. ^n-1 $int con$tantes, quæ $it A; deinde fupponantur omnes quantitates x, y, y^., ... y^. ^n-2 præter y^. ^n-1 & x^. in quan- titate A variabiles, & ex hâc hypothe$i inveniatur fluxio B quantitatis A, quæ auferatur de p b; & deinde ex eodem proce$$u repetito, i.e. ex $upponendo omnes quantitates x, x^., y, y^., ... y^. ^n-3 præter y^. ^n-2 con$tantes, inveniatur fluens quantitatis p b - B, & $ic deinceps u$que donec $o- lummodo contineantur in inventâ fluente A′ variabiles y, x & x^.: in- veniatur ejus fluxio H ex hypothe$i quod x $olummodo $it variabilis; fiant corre$pondentes termini, i.e. termini, in quibus eædem inveni- untur dimen$iones quantitatis y, &c. inter $e æquales, &c. & re$ultant fluxionales æquationes haud majoris quam n ordinis, quarum varia- biles quantitates $unt p & x; pro p in his æquationibus $cribatur e^$. v x^., &c. & æquatio re$ultans relationem inter x, x^., v & ejus fluxio- nes de$ignans haud majoris erit quam n - 1 ordinis.

Ex. · Sit fluxionalis æquatio α y^. + β x^. = 0, ducatur hæc æquatio in p, quæ $it functio quantitatis x, & re$ultat p α y^. + p β y^. = 0; in- veniatur fluens fluxionis α y^. ex hypothe$i quod y $olummodo $it va- riabilis, quæ $it π; deinde inveniatur fluxio rectanguli p × π ex hy- [0321]ÆQUATIONIBUS. pothe$i, quod x $olummodo $it variabilis, quæ erit p x^.({π^. / x^.}) + π p^. = p β x^.; in hâc æquatione pro p $cribatur e^$.v x^. & re$ultat ({π^. / x^.}) + π v = β, in quâ nullæ continentur fluxiones, unde con$equitur valor quantitatis v.

Cor. · Si duæ vel plures re$ultent æquationes ex corre$pondenti- bus terminis inter $e æqualibus e$$e $uppo$itis, tum plerumque e me- thodo prius traditâ reducendi plures æquationes in unam, ita ut va- riabiles & earum fluxiones exterminentur, vel erui pote$t quantitas p, vel faltem erui pote$t fluxionalis æquatio inferioris ordinis.

THEOR. XLV.

1. Si in datâ æquatione algebraicâ vel fluxionali contineatur ge- neralis functio quantitatis (π), quæ $it functio quantitatum x & y, & earum fluxionum; tum in multis ca$ibus, $i modo $cribatur v = π, & ita reducantur duæ æquationes, ut exterminentur altera variabilis x vel y & ejus fluxiones; re$ultabit æquatio, cujus fluens innote$cit.

2. Si vero fluens æquationis re$ultantis vel ex hâc $ub$titutione vel ex quâcunque aliâ haud generaliter inveniri po$$it; in multis ca- $ibus ita a$$umi po$$unt coefficientes, exponentes, &c. ut con$tabunt ca$us particulares, in quibus fit re$ultans æquatio formulæ, cujus fluens innote$cit.

3. 1. Dividatur data fluxionalis æquatio in duas partes, & $i fluens (P) ex unâ parte exprimi po$$it, ducatur data æquatio in functionem fluentis P, & inveniantur ca$us, in quibus fluens ex alterâ parte etiam exprimi pote$t; tum con$equuntur æquationes, quarum fluentes generales deduci po$$unt.

2<_>do. Ducatur prior pars (P^.) datæ æquationis in functionem quan- titatis P; $ecunda vero in quamcunque quantitatem quantitati P æqualem $ed haud eandem, & inveniantur ca$us in quibus fluens [0322]DE FLUXIONALIBUS producti inveniri pote$t; & con$equuntur æquationes, quarum parti- culares fluentes deduci po$$unt.

_PROB. LIX._ Datâ æquatione fluxionali; invenire alias, quarum fluentes e datâ flu- xionali æquatione deduci po$$unt.

A$$umantur æquationes relationem inter variabiles datæ & quæ$itæ æquationis exprimentes, ita quidem ut relatio inter variabiles quæ$itæ e relatione inter variabiles datæ æquationis a$$ignari pote$t; & exinde deducatur æquatio relationem inter variabiles quæ$itæ æquationis quantitates de$ignans, re$ultabit æquatio quæ$ita.

Ex. Sit data æquatio y^. + a y^2 x^. = b x^m x^., in hâc æquatione $cri- batur x^n z = y; tum exorietur æquatio z^. + {n z x^. / x} + a x^n z^2 x^. = b x^m x^.: & facile patebit, $i modo detur fluens æquationis y^. + a y^2 x^. = b x^m x^., exinde deduci po$$e fluentem æquationis z^. + {n z x^. / x} + a x^n z^2 x^. = b x^m x^.; etiamque $i modo cogno$cantur ca$us in quibus deduci pote$t fluens prioris, facile etiam con$tari ca$us, in quibus deduci pote$t fluens po- $terioris æquationis.

PROB. LX.

Dato valore M variabilis quantitatis y in fluxionali æquatione contentæ, i. e. $it M data functio alterius variabilis quantitatis x; in nonnullis ca- $ibus per $ub$equentes methodos deducere generalem datæ æquationis fluentis valorem, i. e. in genere corrigere datam æquationem.

Scribatur pro y ejus valor a$$umptus M + z vel M z, &c. in datâ fluxionali æquatione; & re$ultantis æquationis nonnunquam detegi pote$t generalis fluens.

[0323]ÆQUATIONIBUS.

Ex. 1. Sit y^. + P y x^. + Q y^2 x^. + R x^. = 0, ubi literæ P, Q & R $int functiones quantitatis x; $ed per hypothe$in M e$t valor quanti- tatis y, & con$equenter M^. + P M x^. + Q M^2 x^. + R x^. = 0; $cribatur M + z pro y in datâ æquatione, & re$ultat z^. + P z x^. + 2 Q M z x^. + Q z^2 x^. = 0; deinde $cribatur {1 / v} pro z, & proveniet - {v^. / v^2} + {P x^. / v} +{2 Q M x^. / v} + {Q x^. / v^2} = 0, quâ ductâ in v^2, re$ultat - v^. + (P + 2 Q M) v x^. + Q x^. = 0, quæ e$t æquatio formulæ prius traditæ; ducatur hæc æquatio in S = e^-$.(P+2QM)x^., & exorietur æquatio, cujus fluens erit ve^-$.(P+2QM)x^. - $. Q S x^. = con$t. $ed v = {1 / y - M}; & con$equenter ducatur data æquatio in v^2 e^-$.(P+2QM)x^. = {1 / (y - M)^2} e^-$.(P+2QM)x^. ={S / (y - M)^2}; & re$ultat æquatio integralis S v - $. Q S x^. = con$t.

Cor. 1. Omnes quantitates quæ in datam æquationem ductæ, eam reddunt integrabilem, in hâc formulâ {S / (y - M)^2} × in functionem quam- cunque quantitatis ({S / y - M} - $. Q S x^.), ubi M e$t cognita functio quantitatis x, & S = e^-$.(P+2QM)x^., continentur.

Cor. 2. Exhinc deduci pote$t generalis fluens æquationis z^.. + S z^. x^. + T z x^.^2 = {E x^.^2 / z^3} e^-2 $. S x^.; inveniatur fluens v æquationis v^. + v^2 x^. + S v x^. + T x^. = 0, fingatur V = $. e^-2 $. v x^.-$. S x^. x^., eritque z = e^$. v x^. √(A + B V + C V^2), ubi literæ A, B, C, &c. $unt invariabiles quan- titates, & A C - {1 / 4} B^2 = E.

Cor. 3. Sit æquatio fluxionalis P = q, ubi P $it functio variabilium quantitatum y & x & earum fluxionum, q vero functio quantitatum x & x^.; $cribantur in datâ æquatione P = q pro y, y^., y^.., &c. re$pective z + E, z^. + E^., z^.. + E^.., &c. ubi E $it particularis valor quantitatis y, [0324]DE FLUXIONALIBUS tum re$ultabit æquatio, in quâ deficit terminus, qui fuit functio $olummodo quantitatum x & x^..

Ex. g. Sit P y^.. + Q x^. y^. + R y x^.^2 = 0, ubi literæ P, Q & R re$pec- tive denotant functiones quantitatis x: $it X functio quantitatis x quæ $it particularis valor quantitatis y in datâ æquatione integrali; pro y^., y^. & y^.. in datâ æquatione $cribantur re$pective X z, X z^. + z X^., z X^.. + 2 z^. X^. + X z^.., & re$ultat (P z X^.. + Q z X^. x^. + R z X x^.^2) + 2 P X^. z^. + Q X x^. z^. + P X z^.. = 0, $ed quoniam X e$t valor quantitatis y in datâ æquatione, erit P z X^.. + Q z X^. x^. + R z X x^.^2 = 0, unde 2 P X^. z^. + 2 X x^. z^. + P X z^.. = 0.

PROB. LXI.

Sint duæ vel plures n æquationes tres vel plures (n + 1) variabiles quantitates & earum fluxiones habentes; ita reducere has æquationes in unam, ut exterminentur omnes præter duas variabiles quantitates & earum fluxiones, & haud nunquam vel re$ultent æquationes, quarum fluentes inno- te$cunt; vel ita a$$umi po$$int coefficientes, ut evadant æquationes, quarum fluentes dantur: exemplis docebitur prob. re$olutio.

1. Sint x^. + (C x + D y) t^. = 0 & y^. + (K x + L y)t^. = 0, unde - t^. = {x^. / C x + D y} = {y^. / K x + L y} homogenea æquatio, cujus fluens innote$cit.

2. Sub$tituantur pro quibu$dam functionibus quantitatum in datis æquationibus contentarum quædam functiones novarum variabilium a$$umptarum; & exinde nonnunquam deduci po$$unt æquationes, quarum fluentes dantur.

Ex. 1. Sint æquationes T′ x^. + T″ t^.(C x + D y) + θ t^. = 0 & T′ y^. + T″ t^.(K x + L y) + θ′ t^. = 0; ubi T′, T″, θ, θ′ $unt functiones quantita- tis t; ducatur po$terior æquatio in v, & ad productum re$ultans adda- tur prior, & exorietur T′ x^. + v T′ y^. + t^. (T″ (C x + D y) + v T″ (K x + L y) + θ + v θ′) = 0: $it (C + K v) x + (D + L v) y = n (x + [0325]ÆQUATIONIBUS. v y), unde C + K v:D + L v::1:v, & exinde acquiri pote$t quan- titas v; pro x + v y in æquatione exortâ $cribatur u, & re$ultat T′ u^. + T″ n u t^. + (θ + v θ′) t^. = 0, cujus fluens innote$cit.

Ex. 2. Sint x^. + (a x + b y + c z) t^. = 0, y^. + (e x + f y + g z) t^. = 0 & z^. + (h x + m y + n z) t^. = 0; ducantur $ecunda & tertia æquatio- nes in coefficientes invariabiles deducendas v & μ, & ad $ummam pro- ductorum re$ultantium addatur prima æquatio; deinde $upponatur a + e ν + h μ = {b + f ν + m μ / ν} = {c + g ν + n μ / μ}, & fingatur x + ν y + μ z = u; & re$ultabit æquatio u^. + (a + e ν + h μ) u t^. = 0 cujus fluens inveniri pote$t. Hic ν & μ tres habent valores, in præcedente exemplo v duos habet valores.

Ex. 3. Sint n fluxionales æquationes T (a x^. + b y^. + c z^. + d v^. + &c.) + T′ (e x + f y + g z + b v + &c.)t^. + θ t^. = 0, T(a′ x^. + b′ y^. + c′ z^. + d′ v^. + &c.) + T′(e′ x + f′ y + g′ z + h′ v + &c.) t^. + θ′ t^. = 0, T (a″ x^. + b″ y^. + c″ z^. + d″ v^. + &c.) + T′ (e″ x + f″ y + g″ z + h″ v + &c.) t^. + θ ″t^. = 0, &c.; ducantur hæ æquationes re$pective in 1, λ, μ, ν, &c.; & pro a + λ a′ + μ a″ + ν a′″ + &c., b + λ b′ + μ b″ + ν b′″ + &c., c + λ c′ + μ c″ + ν c′″ + &c., &c. $cribantur re$pective α, β, γ, δ, &c.; deinde a$$umatur {e + λ e′ + μ e″ + ν e′″ + &c. / α} = {f + λ f′ + μ f″ + ν f′″ + &c. / β} ={g + λ g′ + μ g″ + ν g′″ + &c. / γ} = &c.: ex hi$ce æquationibus inve- niantur valores quantitatum λ, μ, ν, &c.; & exinde quantitates α, β, γ, &c.; quibus inventis, re$ultat æquatio T u^. + {1 / α} (e + λ e′ + μ e″ + ν e′″ + &c.) T′ u t^. + (θ + λ θ′ + μ θ″ + &c.) t^. = 0, cujus fluens innote$cit, ubi u = (a + λ a′ + μ a″ + &c.) x + (b + λ b′ + μ b″ + &c.) y + (c + λc ′ + μc ″ + &c.) z + &c.

Per quantitates T′, T′, θ, θ′, θ″, &c. de$ignantur datæ functiones quantitatis t.

Ex. 4. Sint n fluxionales æquationes $uperiorum (m) ordinum, viz. T k v^. ^m + T′ l v^.^m-1 + T″ n v^.^m-2 + ... + T′^m (e x + f y + g z + &c.) t^. + [0326]DE FLUXIONALIBUS θ t^. = 0, T k′ v^. ^m + T′ l′ v^. ^m-1 + T″ n′ v^. ^m-2 + &c. + ... + T′<_>m (e′ x + f′ y + g′ z + &c.) t^. + θ t^. = 0, T k″ v^. ^m + T′ l″ v^. ^m-1 + T″ n″ v^. ^m-2 + ... + T′<_>m (e″ x + f″ y + g″ z + &c.) t^. + θ″ t^. = 0, ubi v = a x + b y + c z + d v + &c.; ducantur hæ æquationes re$pective in 1, λ, μ, ν, &c.; & a$$u- matur {e + λ e′ + μ e″ + &c. / a} = {f + λ f′ + μ f″ + &c. / b} = {g + λ g′ + μ g″ + &c. / c}= &c. & exinde per $implices æquationes inveniantur quantitates λ, μ, ν, &c.; quibus inventis re$ultat fluxionalis æquatio T (k + λ k′ + μ k″ + &c.) v^. ^m + T′ (l + λ l′ + μ l″ + &c.) v^. ^m-1 + T″ (n + λ n′ + μ n″ + &c.) v^. ^m-2 + &c. + T′^m × ({e + λ e′ + μ e″ + &c. / a}) v t^. + (θ + λ θ′ + μ θ″ + &c.) t^. = 0.

Ex. 5. Sint m æquationes (m + 1) variabiles quantitates (x, y, z, &c. & t) involventes, & $i in $ingulis terminis datæ æquationis $olum- modo contineatur vel una dimen$io quantitatum (x, y, z, v, &c.), vel earum fluxionum quorumcunque ordinum; vel nulla; & contineatur unus terminus in $ingulis æquationibus, qui e$t functio quantitatis t in t^.^n, ubi t e$t quantitas, quæ fluit uniformiter; i.e. $int æquationes huju$ce formulæ T x^. ^n + t y^. ^n + τ z^. ^n + &c. + T′ x^. ^n-1 t^. + t′ y^. ^n-1 t^. + τ′ z^. ^n-1 t^. + &c. + &c. + .... + T′^n-1 x^. t^.^n-1 + t′^n-1 y^. t^.^n-1 + τ′^n-1 z^. t^.^n-1 + &c. + T′^n x t^.^n + t′^n y t^.^n + τ′^n z t^.^n + &c. + θ t^.^n = 0, ubi T, T′, T″, &c., t, t′, t″, &c., τ, τ′, τ″, &c. θ $unt functiones quantitatis t; reducantur hæ æquatio- nes per prob. 26. in unam, ita ut exterminentur omnes quantitates y, z, v, &c., & earum fluxiones præter unam x & ejus fluxiones & t & t^., tum re$ultabit æquatio huju$ce formulæ P x^. ^α + Q x^. ^α-1 t^. + R x^. ^α-2 t^.^2 + S x^. ^α-3 t^.^3 + &c. = L t^.^α, ubi P, Q, R, S, &c. & L denotant functiones quantitatis t, quæ facile deduci po$$unt.

Et $imiliter erui po$$unt formulæ æquationum re$ultantium ex datis æquationibus, quarum formulæ haud $unt multo magis com- po$itæ quam præcedentes.

[0327]ÆQUATIONIBUS.

Cor. Sint m æquationes (m + 1) variabiles quantitates (x, y, z, v, &c., & t) involventes, quarum formulæ $int a x^. ^n + b y^. ^n + c z^. ^n + &c. + a′ x^. ^n-1 t^. + b′ y^. ^n-1 t^. + c′ y^. ^n-1 t^. + &c. + a″ x^. ^n-2 t^.^2 + b″ y^. ^n-2 t^.^2 + c″ y^. ^n-2 t^.^2 + &c. + ... + a′^n-1 x^. t^.^n-1 + b′^n-1 y^. t^.^n-1 + c′^n-1 z^. t^.^n-1 + &c. + a′^n x t^.^n + b′^n y t^.^n + c′^n z t^.^n + &c. + T t^.^n = 0, ubi literæ a, a′, a″, ... a′^n; b, b′, b″, &c., ... b′^n; c, c′, c″, &c., ... c′^n; qua$cunque invariabiles quantitates re$pe- ctive denotant, & T e$t quæcunque functio quantitatis t; reducantur hæ m æquationes per prob. 26. in unam, ita ut exterminentur omnes variabiles & earum fluxiones præter duas, viz. x & ejus fluxiones, & t & t^.; tum re$ultabit æquatio formulæ A x^. ^α + B x^. ^α-1 t^. + C x^. ^α-2 t^.^2 + D x^. ^α-3 t^.^3 + ... + H x^. t^.^α-1 + I x t^.^α = T′ t^.^α; literis A, B, C, D, &c., H & I in- variabiles quantitates denotantibus, & T denotante functionem quan- titatis t: huju$ce æquationis fluens in theor. 42. tradita fuit.

3. Re$olvi etiam po$$unt duæ vel plures n æquationes tres vel plu- res (n + 1) variabiles quantitates habentes, a$$umendo generales quantitates, quæ in $e continent re$olutiones quantitatum quæ$itas; & eas pro valoribus e $ingulis variabilibus quantitatibus in datis æquationibus contentis $cribendo, & corre$pondentes terminos re$ul- tantes æquando.

Ex. 1. Sint x^. + (a x + b y + c z) t^. = 0, y^. + (e′ x + f y + g z) t^. = 0, z^. + (h x + m y + n z) t^. = 0; a$$umantur x = A e^f t + B e^g t + H e^b t; y = A′ e^f t + B′ e^g t + C′ e^b t; & z = A″ e^f t + B″ e^g t + C″ e^b t, ubi A, B, C, &c.; A′, B′, C′, &c.; A″, B″, &c. $unt invariabiles quanti- tates; $eribantur hæ quantitates pro $uis valoribus in datis æquationi- bus, & e re$ultantibus æquationibus inve$tigari pote$t fluens quæ$ita.

Ex. 2. Sint x^. + a y^. + T (c x + a y) t^. + θ t^. = 0, & y^. + b x^. + T (f x + g y) t^. + ε t^. = 0; $upponatur x = A e^f $. T t^. + B e^g $. T t^. + e^f $. T i $. e^-$ $. T i (E θ + H ε) t^. + e^g $. T t^. $. e^-g $. T t^. (L θ + M ε) t^.; y = A′ e^f f. T t^. + B′ e^g $. T t^. + e^f f. T t^. $. e^- f $. T t^. (E′ θ + H′ ε) t^. + e^g $. T t^. $. e^-g $. T t^. (L′ θ + M′ ε) t^., ubi A, A′, B, B′, E, H, E′, H′, L, M, L′, M′, $unt inva- riabiles; & T, θ & ε $unt functiones quantitatis t; & deinde $cribantur [0328]DE FLUXIONALIBUS hæ quantitates, &c. pro $uis valoribus x, y, x^., y^., in datis æquationi- bus, & exinde inveniri pote$t fluens quæ$ita.

Facile deduci po$$unt infinitæ æquationes huju$modi, quarum fluentes innote$cunt; a$$umantur enim æquationes pro fluentibus quæ$itis, quarum inveniantur fluxiones, & methodis prius traditis con$equuntur infinitæ æquationes fluxionales, quarum fluentes ac- quiri po$$unt. Aliter: a$$umantur quæcunque æquationes relationem inter variabiles quantitates, &c. exprimentes pro fluentibus ip$is; deinde a$$umantur quæcunque fluxionales quantitates l, m, n, &c. & ex a$$umptis æquationibus & earum fluxionibus, &c. inveniantur quan- titates (P, Q, R, &c.) quæ æquant a$$umptas quantitates l, m, n, &c. re$pective, tum l = P, m = Q, n = R, &c. erunt æquationes, qua- rum fluens particularis erit a$$umptæ æquationes prædictæ.

THEOR. XLVI.

Sit æquatio fluxionalis A = 0 ordinis (n), in quâ fluit uniformiter x, cujus fluens $it B = 0; deinde transformentur utræque æquationes A = 0 & B = 0 re$pective in duas alias C = 0 & D = 0, $cribendo pro y^.., - {y^.. x^.. / x^.}; & $ic deinceps, ut docetur in prob. 34; tum D = 0 erit fluens fluxionalis æquationis C = 0.

Ex. Sit æquatio y^. x^. - x y^.. - a y^.. - {x y^.^2 / b} = 0, in quâ fluit unifor- miter x; $cribatur pro y^.. ejus valor e prob. 34. deductus - {y^. x^.. / x^.}, & re$ultat x^. y^. + {x y^. x^.. / x^.} + {a y^. x^.. / x^.} - {x y^.^2 / b} = 0; ducatur hæc æquatio in x^. & re$ultat x^.^2 y^. + x y^. x^.. + a y^. x^.. - {x x^. y^.^2 / b} = 0, cujus fluens e$t x x^. y^. + a y^. x^. - {x^2 y^.^2 / 2 b} = 0; quæ $i modo generaliter corrigatur, evadet x x^. y^. + a y^. x^. - {x^2 y^.^2 / 2 b} + A y^.^2 = 0, ubi A denotat quantitatem invariabilem [0329]ÆQUATIONIBUS. ad libitum a$$umendam: aliter ducatur data æquatio in {x^. / y^.^2}, & re$ul- tat {x^.^2 y^. - x x^. y^.. / y^.^2} - {a x^. y^.. / y^.^2} - {x x^. / b} = 0, cujus fluens generalis erit {x x^. / y^.}+ {a x^. / y^.} - {x^2 / 2 b} = A con$tant. quant. quæ æquatio eadem e$t ac præ- cedens.

Cor.. Sit æquatio p x^. + q y^. = 0, inveniatur ejus fluxio ex hypo- the$i quod x^. $it con$tans, & re$ultat p^. x^. + q^. y^. + q y^.. = 0, cujus generalis fluens erit p x^. + q y^. = C x^.; deinde inveniatur ejus fluxio ex hypothe$i quod y^. $it con$tans & re$ultat p^. x^. + q^. y^. + p^. x^.. = 0, cujus fluens erit p x^. + q y^. = C y^.; quæ fluentes minime eædem $unt: in æquatione p^. x^. + q^. y^. + q y^.. = 0 pro y^.. $cribatur ejus valor præ- dictus - {x^.. y^. / x^.}, & re$ultat p^. x^. + q^. y^. - {q x^.. y^. / x^.} = 0, ducatur hæc æquatio in {1 / x^.}, & re$ultat fluxio, cujus fluens e$t p + {q y^. / x^.} = C; vel quod idem e$t p x^. + q y^. = C x^.; quæ eadem e$t ac fluens æquationis p x^. + q y^. + q y^.. = 0.

Idem etiam affirmari pote$t de fluentibus quarumcunque fluxionum hoc modo transformatarum: & e principiis prius traditis & datis multiplicatoribus datarum fluxionalium æquationum facile erui po$- $unt multiplicatores ex con$imili $ub$titutione fluxionalium æquatio- num hoc modo transformatarum.

PROB. LXII.

Datâ fluxionali æquatione duas variabiles quantitates x & y & earum fluxiones habente, invenire utrum altera (y) exprimi pote$t in algebraicis & haud exponentialibus terminis alterius (x), necne.

Inveniantur $inguli valores (A, B, C, &c.) quantitatis y (eâdem cor- rectione adhibitâ) in terminis progredientibus $ecundum dimen$iones [0330]DE FLUXIONALIBUS alterius x; deinde per Med. Algeb. inveniatur annon $umma e $in- gulis hi$ce valoribus $it algebraica & rationalis functio literæ x.

Ducantur quique duo e $ingulis prædictis valoribus in $e$e, deinde inveniatur utrum aggregatum e $ingulis prædictis rectangulis $it al- gebraica & rationalis functio prædictæ literæ x, necne.

Et $ic ducantur quique tres, quatuor, &c. prædicti valores in $e$e, & inveniatur, utrum aggregata e $ingulis hi$ce contentis $int ratio- nales & algebraicæ functiones literæ x, necne; $i vero detegantur prædictæ rationales functiones, tum datur æquatio algebraica, quæ exprimit relationem inter x & y; $in haud exprimi po$$int prædicta aggregata per illas rationales functiones, tum nulla a$$ignari pote$t æquatio algebraica, quæ exprimit relationem inter x & y.

Et $ic de inveniendis algebraicis æquationibus exprimentibus rela- tiones inter qua$cunque functiones literarum x & y.

Omnia hæc etiam ad plures fluxionales æquationes applicari po$$unt.

_PROB. LXIII._ Datâ fluxionali æquatione exponentiales quantitates involvente; invenire fluentem datæ æquationis, $i modo finitis terminis exprimi po$$it.

Per prob. 3. inveniri pote$t quantitas, quæ in datam exponentialem datæ æquationis quantitatem ducta, exponentialem fluxionem dat, cujus fluens inveniri pote$t; ducatur data æquatio in quantitatem inventam, & re$ultantis æquationis inveniatur fluens; & confit problema.

Sæpe vero exigit problema, ut prius transferantur exponentiales quantitates e terminis datæ æquationis, in quibus continentur, in reliquos; deinde per præcedentem methodum progrediendum e$t.

Ex. 1. Sit exponentialis æquatio fluxionalis y^2 x^. + y x log. x × y^. + x y^. = {p x^. + q y^. / x^y-1}, ubi p & q $unt functiones literarum x & y, & $it fluxio p x^. + q y^. integrabilis; ducatur data æquatio in x^y-1, & re$ultat æquatio, [0331]ÆQUATIONIBUS. cujus fluens invenietur x^y × y = $. (p x^. + q y^.) + a, ubi a denotat invariabilem quantitatem ad libitum a$$umendam.

_PROB. LXIV._ Datâ fluxionali æquatione, in quâ fluentes continentur; invenire ejus fluentialem æquationem.

Hoc $æpe perfici pote$t ex ii$dem principiis, ac ea; quæ in præ- cedente problemate de exponentialibus & fluxionalibus æquationibus tradita fuere.

Ex. · Sit æquatio fluxionalis r x^. $. x^m y^. + x^m+1 y^. = p x^. × x^-r+1; ducatur hæc æquatio in x^r-1 & re$ultat r x^r-1 x^. $. x^m y^. + x^m+r y^. = p x^., cujus fluens e$t x^r $. x^m y^. = $. p x^. + a.

Æquationes in quibus fluentiales quantitates involvuntur, facile reduci po$$unt, ita ut fluentiales quantitates exterminentur.

Eadem etiam applicari po$$unt ad plures fluxionales æquationes fluentiales & exponentiales quantitates involventes.

PROB. LXV.

Datâ fluxionali æquatione duas variabiles quantitates x & y & earum fluxiones involvente; invenire utrum x & y $int algebraicæ, exponentiales vel fluentiales functiones novæ a$$umptæ quantitatis z.

A$$umantur pro variabilibus x & y functiones quantitatis z gene- ralibus terminis expre$$æ, quæ nece$$ario exprimunt valores quantita- tum x & y; $cribantur hæ functiones pro $uis valoribus x & y in datâ æquatione, & ex æquatis terminis re$ultantis æquationis corre$pon- dentibus inveniantur functiones quantitatis z quæ$itæ, $i modo tales recipiat data æquatio; & perficitur problema.

Cor. · Hinc inveniri po$$unt infinitæ æquationes fluxionales rela- tionem inter duas variabiles quantitates x, y & earum fluxiones ex- primentes, quarum variabiles (x & y) majori facilitate exprimi po$$unt [0332]DE FLUXIONALIBUS in terminis a$$umptæ variabilis z; quam variabilis x exprimi pote$t in terminis quantitatis y, vel y in terminis quantitatis x.

A$$umantur valores variabilium x & y in terminis novæ a$$umptæ quantitatis z inter $e re$pective re$pondentes; reducantur hæ duæ a$$umptæ æquationes in unam, ita ut exterminetur variabilis quan- titas z, & re$ultat quæ$ita æquatio relationem inter x & y & earum fluxiones exprimens, cujus fluens datur in terminis a$$umptæ quan- titatis z.

Ex. 1. A$$umantur log. z + a z = y, & log. z + f z = x, unde (a - f)z = y - x, & z = {y - x / a - f}; $ed e primâ æquatione $equitur {z^. / z} + a z^. = y^.; $cribantur igitur {y - x / a - f} & {y^. - x^. / a - f} pro z & z^. in hâc æquatione & re$ultat æquatio quæ$ita {y^. - x^. / y - x} + {a y^. - a x^. / a - f} = y^..

Ex. 2. A$$umantur (log. z)^2 + a z = y, & log. z + f z = x; unde 2 f z log. z + f^2 z^2 - a z = x^2 - y, & exinde f^2 z^2 + a z = - x^2 + 2 f x z + y, & con$equenter z = {2 f x - a / 2 f^2} ∓ √({(2 f x - a)^2 / 4 f^4} - x^2 + y); $cribatur hæc quantitas pro z, & ejus fluxio pro z^. in æquatione {z^. / z} + f z^. = x^.; & re$ultat æquatio quæ$ita.

Ex. 3. A$$umantur æquationes $. (e + f z^n)^m z^. + a x^n = y & $. {z^. / z} + f z = x, unde {z^. / z} + f z^. = x^. & z^. = {z x^. / 1 + f z}; $cribatur valor {(1 + f z) z^. / z}, &c. pro x^., &c. in æquatione (e + f z^n)^m z^. + n a x^n-1 x^. = y^.; deinde per prob.26. ita reducantur æquationes re$ultantes, ut exterminetur z; & re$ultat æquatio quæ$ita.

Et $ic inveniri po$$unt plures (n) æquationes (n + 1) variabiles quantitates & earum fluxiones involventes, quarum variabiles quan- [0333]ÆQUATIONIBUS. titates exprimuntur per datas functiones a$$umptarum variabilium quantitatum.

Hic animadvertendum e$t has re$olutiones non e$$e generales re$o- lutiones æquationis re$ultantis: $i vero in a$$umptis re$olutionibus, i. e. duabus æquationibus involventibus quantitates x, y, & z conti- neatur quantitas ad libitum a$$umenda; & ea quantitas ex re$ultante æquatione evane$cat, cum evane$cat quantitas z, tum a$$umptæ erunt generales re$olutiones re$ultantis æquationis relationem inter x & y exprimentis; $i modo $it fluxionalis æquatio primi ordinis: $i autem duæ vel tres, &c. independentes & invariabiles quantitates in a$$umptis re$olutionibus contineantur, tum $i modo reducantur a$$umptæ æqua- tiones relationes inter x, y, z, &c. exprimentes in unam, ita ut ex- terminentur omnes præter x & y, &c.; & $i modo evane$cant (m) in- variabiles quantitates ex fluxionali æquatione (m) ordinis, tum erunt a$$umptæ æquationes generales re$olutiones æquationis re$ultantis (m) ordinis.

Sint duæ datæ æquationes (A = 0 & B = 0) exprimentes relationes inter variabiles x, y & z; in quibus continetur invariabilis quantitas ad libitum a$$umenda (a); tum ita reducantur tres æquationes A = 0, B = 0 & A^. = 0, ut exterminentur duæ quantitates (z & a), & re$ul- tat æquatio relationem inter x & y exprimens, cujus duæ datæ æqua- tiones erunt generalis re$olutio.

Sint tres vel quatuor vel plures (n) æquationes (A = 0, B = 0, C = 0, &c.) exprimentes relationes inter (h + 1) variabiles (x, y, u, v, &c.), & (n - h) variabiles (z, w, Z, &c.), & duas vel tres vel plures (n - h) invariabiles quantitates (a, b, c, &c.) ad libitum a$$umendas: ita reducantur æquationes A = 0, A^. = 0, B = 0, B^. = 0, C = 0, C^. = 0, &c. in (b) æquationes, ut exterminentur quantitates variabiles (z, w, Z, &c.) & invariabiles a, b, c, &c.; tum re$ultant (h) æquationes, quarum datæ erunt re$olutio.

Et $ic de æquationibus a$$umptis, in quibus variabiles habent flu- xiones $uperiorum ordinum.

[0334]DE FLUXIONALIBUS THEOR. XLVII.

In detegendâ fluxione n ordinis contenti a × b × c × d × e × &c. f × g × h × &c. coefficientes cuju$cunque contenti a^. ^m b^. ^r c^. ^s d^. ^t, &c. f g h, &c. erit æqualis fractioni, cujus numerator e$t n (n - 1) (n - 2) (n - 3) ..... (n - m - r - s - t - &c. + 1), denominator vero 1 · 2 · 3 .. m × 1 · 2 · 3 ... r × 1 · 2 · 3 ... s × &c. ubi n = m + r + s + t + &c.

Cor. · Hinc $i fluxio reduci po$$it in prædictam formulam = 0, ejus fluens erit a × b × c × d × &c. = A x^n+1 + B x^n + C x^n-1 + &c. ubi A, B, C, &c. $unt quæcunque invariabiles quantitates, & x quan- titas quæ fluit uniformiter.

THEOR. XLVIII.

Sit fluxionalis æquatio, &c^.. (d^. × (c^. × (b^. a^.))) = a^. ^n b c d &c. + ((n - 1) b^. + (n - 2) c^. + (n - 3) d^. + &c.) a^.^n-1 + &c. = 0, & erit ejus generalis fluens A + $ · {B / b} + $ · {$ · {C / c}/b} + $ · {$ · {D / d} $ · { / c}/b} + &c. = 0, ubi A, B, C, D, &c. $unt con$tantes quantitates ad libitum a$$umendæ nul- lius, primi, $ecundi, tertii, &c. fluxionalis ordinis.

Cor. · Si vero b, c, d, e, &c. $int functiones quantitatis, quæ fluit uniformiter, tum ejus fluens facile inveniri pote$t.

THEOR. XLIX.

1. Sint x & y re$pective quæcunque algebraicæ functiones quanti- tatum t & u & earum fluxionum, & $i modo detur relatio algebraica inter quantitates t & u; tum dabitur algebraica relatio inter quanti- tates x & y.

Facile con$tat.

[0335]ÆQUATIONIBUS.

Cor. · Hinc facile deduci po$$unt quantitates x & y, quæ erunt algebraicæ functiones ex $e ip$is, $i modo duæ aliæ (t & u) etiam $int algebraicæ functiones ex $e ip$is: a$$umantur enim functiones quantitatum t, u, & earum fluxionum, quæ $int x, & y; deinde in- veniantur t, & u in terminis quantitatum x & y, & re$olvi pote$t problema.

Ex. · Sint y = {u √(t^.^2 - u^.^2) / t^.}, & x = t - {u u^. / t^.}; ita reducantur hæ æquationes ut inveniantur (u & t) termini quantitatum x & y, & re$ultant u = {y √(y^.^2 + x^.^2) / x^.} & t = x + {y y^. / x^.}; & con$tat $i t $it alge- braica functio quantitatis u, tum erit x algebraica functio quan- titatis y.

2. Sit æquatio {y^.. / φ:(x^. & y^.)} = {1 / a x + b y}; ubi per φ:(x^. & y^.) denotatur functio fluxionum x^. & y^. duarum dimen$ionum, & x fluit uniformi- ter; in eâ pro y^. $cribatur z x^., & re$ultat (a x + b $. (z x^.)) × z^. = φ′: (z) × x^., & con$equenter b $. z x^. = {φ′:(z) x^. / z^.} - a x, & exinde b z = φ″: (z) - {φ′:(z) z^.. / z^.^2} - a, & {z^.. / z^.} = (φ″:(z) - b z - a) z^., unde log. {z^. / x^.} = $. (φ″:(z) - b z - a) z^. + A = V + A, & con$equenter z^. = e^V + ^.^A x^., unde z^. e^-V-A = x^., cujus fluens x = $. z^. e^-V-A & y = $. z x^. = $. z z^. e^-V-A.

Ex. 1. Sit æquatio {- y^.. / x^.^2 + y^.^2} = {1 / y}, pro y^. $cribatur z x^., & re$ultat æquatio - y y^.. = z^. x^. × - $. z^. x^. = (1 + z^2) x^.^2, unde - $. z^. x^. ={(1 + z^2) x^. / z^.}, & exinde - z x^. = 2 z x^. - {(1 + z^2) z^.. / z^.^2} x^., & {z^.. / z^.} = {3 z z^. / 1 + z^2}, & log. {z^. / x^.} = {3 / 2} log. (1 + z^2), unde z^. = a (1 + z^2)^{3 / 2} x^.; & exinde a x^. [0336]DE FLUXIONALIBUS = {z^. / (1 + z<_>2)<_>{3 / 2}}, & y^. = z x^. = {z z^. / a (1 + z<_>2)<_>{3 / 2}}, & con$equenter x = {a z / √(1 + z^2)}+ c & y = - {1 / a} (1 + z^2)^- {1 / 2} + b. Aliter: ob y y^.. + y^.^2 = - x^.^2 erit y y^. = - x x^. + a x^., & con$equenter y^2 = - x^2 + 2 a x + b.

Ex. 2. Sit {y^.. / x^.^2 + y^.^2} = {1 / y}, pro y^. $cribatur z x^., & re$ultat æquatio y y^.. = z^. x^. $. z x^. = (1 + z^2) x^.^2, unde $. z x^. = {(1 + z^2) x^. / z^.}, & exinde {z^.. / z^.} ={z z^. / 1 + z^2}, & log. {z^. / a x^.} = {1 / 2} log. (1 + z^2), unde {z^. / a (1 + z^2)^{1 / 2}} = x^., & a x ={1 / 2} × log. b × (z + √(1 + z^2)), & y^. = z x^. = {1 / a}{z z^. / (1 + z^2)^{1 / 2}}, cujus fluens e$t y = {1 / a} × (1 + z^2)^{1 / 2} + c. Eadem principia ulterius promovere liceat.

3. Sit fluxionalis æquatio A = 0 ordinis (m), in quâ continentur (r) diver$æ invariabiles quantitates ad libitum a$$umendæ, quæ in datâ B = 0 æquatione (m + r) ordinis ea$dem variabiles quantitates & earum fluxiones involvente non inveniuntur: $cribantur quantitates & earum fluxiones ex æquatione A = 0 acqui$itæ pro $uis valoribus in æquatione B = 0, & $i ex nonnullis radicibus æquationis A = 0 pro $uis valoribus in æquatione B = 0 $ub$titutis evane$cant prædictæ (r) invariabiles quantitates, ex nonnullis vero non; tum æquatio A = 0 re$olvi pote$t in plures, quarum nonnullæ $unt generales fluentes datæ fluxionalis æquationis B = 0, nonnullæ vero non.

4. Sit V = 0 fluens fluxionalis æquationis W = 0; tum, ut prius probatur, omnis functio quantitatis V erit etiam fluens æquationis B = 0; unde fluens cuju$cunque fluxionalis æquationis contineat in $e quemlibet numerum invariabilium & quodammodo variabilium quantitatum ad libitum a$$umendarum. Si æquationis V = 0 divi$or (P = 0) maxime $implex $it fluens (m) ordinis fluxionalis æquationis [0337]ÆQUATIONIBUS. W = 0, & in $e contineat (m) invariabiles quantitates ad libitum a$- $umendas, quæ in æquatione W = 0 haud inveniuntur, tum P = 0 erit generalis fluens prædictæ æquationis W = 0, $in aliter particu- laris.

THEOR. L.

1. Sit V^. = p x^. + q y^. = ({V^. / x^.}) x^. + ({V^. / y^.}) y^. = D; & detur æquatio relationem inter p, q, x & y exprimens; tum ex eâ non datur valor quantitatis (V).

2. Sint duæ æquationes relationes inter prædictas quantitates ex- primentes; tum ex iis deduci po$$unt valores quantitatum p & q re- $pective in terminis quantitatum x & y; & con$equenter facile con- $tabit, annon fluxio p x^. + q y^. $it integrabilis, necne.

Sint p & q datæ functiones quantitatum x & y; ita reducantur hæ functiones, ut exterminetur una incognita quantitas vel p vel q vel x vel y; & re$ultabit æquatio relationem inter tres reliquas expri- mens, unde inveniri pote$t quantitas p in terminis quantitatum x & y; & exinde inveniri pote$t quantitas q in terminis quantitatum x & y, & tum ex re$ultante æquatione a$$ignari pote$t valor quantitatis (V).

Si detur relatio inter p & x vel y vel q, tum ex eâ non deduci pote$t valor quantitatis V.

3. Et $imiliter cum dentur relationes inter has quantitates ({V^. / x^.}) = p, ({V^. / y^.}) = q, ({V^. / z^.}) = r, ({V^.. / x^.^2}) = α, ({V^.. / x^. y^.}) = β, &c.; tum $i duæ $olummodo $int variabiles quantitates x & y & deduci poffint duæ ex his quantitatibus in terminis quantitatum x & y & earum fluxionum, exprimi pote$t V in terminis quantitatum x & y & earum fluxio- num: $i vero tres invariabiles quantitates in datis æquationibus con- tineantur; tum, $i tres prædictæ quantitates exprimi po$$int in ter- minis quantitatum x, y & z; V exprimi pote$t in terminis quan- [0338]DE FLUXIONALIBUS titatum x, y & z & earum fluxionum, $in aliter vero non: & $ic deinceps.

Omnes æquationes huju$ce generis reduci po$$unt ad fluxionales æquationes; $cribantur enim in iis earum valores e fluxionalibus æquationibus deducti, & re$ultant fluxionales æquationes quæ$itæ.

PROB. LXVI.

Datis quibu$dam fluxionibus (V^.), in quibus continentur duæ vel plures variabiles quantitates; invenire ca$us, in quibus earum fluentes (V) ex- primi po$$unt: $i data fluxio dividi po$$it in fluxiones integrabiles huju$ce generis P x^., tum erit P functio quantitatis x^.; & $i vero reduci po$$it in formulam p x^. + q y^. + r z^. + s v^. + &c. tum erunt p, q, r, s, &c. functi- ones quantitatum x, y, z, v, &c. Con$imiles etiam propo$itiones etiam ad fluxionales æquationes $uperiorum ordinum applicari po$$unt.

1. Sit z^. = P x^., & erit P functio quantitatis x; & $ic $ic z^. = p (x^. + a y^.), & erit p functio quantitatis x + a y; vel $imiliter $it z^. = p x ({x^. / x} + {y^. / a}) & erit p x = φ: (log. x + {y / a}).

2. Sit z^. = w^. + P x^., & erit P functio quantitatis x; unde $it z^. = p x^. + {γ + α p / β} y^. = {γ / β} y^. + p (x^. + {α / β} y^.), & erit p = φ: (x + {α / β} y).

3. Sit z^. = p x^. - p y^. + {z y^. / a}, & erit {p / z} (x^. - y^.) = {z^. / z} - {y^. / a} & con$e- quenter {p / z} = φ: (x - y).

4. Sit z^. = p x^. + q y^., tum fingatur y con$tans, & inveniatur $. p x^. = α; & erit z = α + φ: (y). Et $ic de pluribus variabilibus quan- titatibus in data æquatione contentis.

5. Sit z^. = p x^. + q y^.; & erit z = p x + q y - $. (x p^. + y q^.).

6. Sit p x^. + q y^. = r v^. + s z^. + t w^., ubi p & q $unt functiones quantitatum x & y; & r, s & t $unt functiones quantitatum v, z & w: [0339]ÆQUATIONIBUS. $int S^. = {M / h} × (p x^. + q y^.) & R^. = {L / k} (r v^. + s z^. + t w^.); tum erit R^. ={h L S^. / k M}, & con$equenter R & {h L / k M} erunt functiones quantitatis S: & exinde S & R erunt functiones quantitatis {k L / h M}.

7. Sit z^. = p x^. + q y^., ubi p e$t functio quantitatis q; tum erit p^. = Q q^., ubi Q e$t functio quantitatis q; unde z = p x + q y - $. (x p^. + y q^. = x Q q^. + y q^. = (x Q + y) q^.); & con$equenter x Q + y & x erunt functiones quantitatis q.

Sit z^. = p x^. + {p x / a} y^. = p x ({x^. / x} + {y^. / a}) = p x^. + x p^. - x p ({p^. / p} - {y^. / a}); unde x p & z erunt functiones quantitatum {y / a} + log. x & log. p - {y / a}, cum q = {p x / a}.

8. Sæpe e $ub$titutione deduci po$$unt huju$ce generis problema- tum re$olutiones. E. g. $it z^. = p x^. + (p X + T) y^., ubi X & T $unt functiones quantitatis x; $tatuatur p = r - {T / X}, & prodit z^. = r x^. -{T / X}x^. + r X y^. = {- T x^. / X} + r X ({x^. / X} + y^.), unde r X erit functio quan- titatis $. {x^. / X} + y: E. 2. Sit V^. = p x^. + P x y^. + Π y^., ubi P & Π $unt functiones ip$ius p, unde V = p x + $. (P x y^. + Π y^. - x p^.); $tatuatur P x + Π = v, & re$ultat V = p x + $. (v y^. - {v p^. / P} + {Π p^. / P}) = p x + $. {Π p^. / P} + $. v (y^. - {p^. / P}), & con$equenter v = φ: (y - $. {p^. / P}).

9. Nonnunquam in his re$olutionibus e dato particulari valore erui pote$t ejus generalis valor. E. g. Sit z^. = p x^. + q y^., ubi z = M p + N q (exi$tentibus M & N functionibus quibu$ve variabilium [0340]DE FLUXIONALIBUS x & y), & $it V particularis valor quantitatis (z); $tatuantur z = V v, & v^. = r x^. + s y^., & erunt p = P v + V r & q = Q v + V s, ubi V^. = p x^. + q y^. = in hoc ca$u P x^. + Q y^., ideoque z = M p + N q = (M P + N Q) v + V (M r + N s) = V v; at V = M P + N Q, ergo M r + N s = 0, unde v^. = r (x^. - {M y^. / N}) = {r / N} (N x^. - M y^.); invenia- tur multiplicator R, ita ut R (N x^. - M y^.) = T^., & erit v^. = {r T^. / N R}, & exinde {r / N R} = φ: (T).

10. Nonnunquam e notis methodis deduci pote$t formula particu- laris valoris. E. g. Sit z^. = p x^. + q y^. & z = p (α x + β y) + q (γ x + δ y), $tatuatur u = {y / x} functio nullius dimen$ionis, & z = φ: (u), unde z^. = u^. φ′: u = ({y^. / x} - {y x^. / x^2} = {y^. / x} - {u x^. / x}) φ′: (u); & exinde p = -{u / x} φ′: (u) = - {u z^. / x u^.} & q = {1 / x} φ′: (u) = {z^. / x u^.}; $cribantur hæ quantitates pro $uis valoribus in æquatione z = p (a x + β y) + q (γ x + δ y), & re$ultabit {z^. / z} = {u^. / γ + (δ - α) u - β u^2} = flux. log. V; eritque V parti- cularis valor quantitatis z.

Hoc particulare valore dato, generalis facile per præcedentem me- thodum inveniri pote$t.

11. Sit z^. = p x^. + q y^., ubi p & q denotant functiones quantitatum x, y & z; deinde ex æquatione ({p^. / y^.}) = ({q^. / x^.}) inveniatur z in terminis quantitatum x & y; & exinde p & q in terminis earundem quantita- tum x & y, quæ $int P & Q: tum detegatur multiplicator M, qui in P x^. + Q x^. ductus, eam reddit integrabilem; unde M P x^. + M Q y^. = M z^. = S^.; & con$equenter M erit functio quantitatis z.

Infinitæ con$imiles deduci po$$unt propo$itiones: primo enim a$$u- [0341]ÆQUATIONIBUS. mantur æquationes, quarum re$olutiones huju$ce formulæ dantur; deinde ex $ub$titutione, &c. reducantur hæ æquationes ad alias, qua- rum re$olutiones non apparent; tum facile reduci po$$unt po$teriores æquationes ad priores.

Eadem principia etiam ad fluxionales æquationes $uperiorum or- dinum extendi po$$unt.

THEOR. LI.

Si S $it functio quantitatum x, y, z, v, w, &c.; quæ evane$cat; cum z = a, v = b, w = c, &c.; tum inveniatur fluxio S^. ex hypothe$i quod z, v, w, &c. $int invariabiles & z = a, v = b, w = c, &c. & reliquæ x, y, &c. variabiles; & erit S^. = 0; $i enim fluens S = 0, tum ejus fluxio a fortiori S^. nihilo erit æqualis.

PROB. LXVII. Zua$cunque fluxionales quantitates per quantitates diver$œ formulœ denotare.

Sit V functio quantitatum x, y, v, &c. tum erit V^. = p x^. + q y^. + r z^. + &c. = x^. ({V^. / x^.}) + y^. ({V^. / y^.}) + z^. ({V^. / z^.}) + &c. & V^.. = p x^.. + q y^.. + rz^.. + p^.x^. + q^.y^. + r^.z^. + &c. Sint vero p^. = αx^. + βy^. + γz^. + &c. q^. = δ x^. + ε y^. + 7 z^. + &c. r^. = λ x^. + μ y^. + v z^. + &c. unde per theor. 2. erunt β = δ, γ = λ, 7 = μ, &c. & con$equenter V^.. = p x^.. + q y^.. + r z^.. + p^. x^. + q^. y^. + r^. z^. + &c. = p x^.. + q y^.. + r z^.. + α x^. ^2 + ε y^. ^2 + v z^. ^2 + 2 β y^. x^. + 2 γ z^. x^. + 2 μ z^. y^. + &c. = (per præcedent. no- tat.) x^.. ({V^. / x^.}) + y^.. ({V^. / y^.}) + z^.. ({V^. / z^.}) + x^. ^2 ({V^.. / x^. ^2}) + y^. ^2 ({V^.. / y^. ^2}) + z^. ^2 ({V^.. / z^. ^2}) + 2y^. x^. ({V^.. / y^. x^.}) + 2 z^. x^. ({V^.. / x^. z^.}) + 2 y^. z^. ({V^.. / y^. z^.}) + &c. ubi per ({V^.. / x^. y^.}) denotatur $ecunda fluxio quantitatis V per x^. y^. divi$a, in quâ inve- niendâ primum $olum modo habetur x variabilis, deinde $olummodo [0342]DE FLUXIONALIBUS habetur y variabilis: & $ic de omnibus quantitatibus hoc modo denotatis: eâ dem vero methodo inveniri po$$unt valores fluxionum V^..., V^...., &c. $ed hic animadvertendum e$t, $i modo $it quantitas π x^. ^n x^.. ^m x^...^r × &c. × y^. ^s y^.. ^t × &c. × z^. ^k z^.. ^l × &c. tum per præcedentem notationem $ic denotari debet, viz. x^. ^n x^.. ^m x^...^r × &c. × y^. ^s × y^.. ^t × &c. × z^. ^k × z^.. ^l × &c. × ({V^. ^n + m + r + &c. + s + t + &c. + k + l + &c. / x^. ^n+m+r+&c. y^. ^s+t+&c. z^. ^k+l+&c. &c.}).

Hinc transformari pote$t quæcunque quantitas V & ejus fluxionum functio in functiones eju$dem quantitatis V & ejus fluxionum ex hypothe$i quod, 1<_>mo. una quantitas fluat uniformiter, deinde altera; & $ic deinceps.

PROB. LXVIII. _Si vero detur quantitas, quœ $it fluens_ $. P x^. _fluxionis_ P x^., _duas vel plu-_ _res quantitates_ (x,y,z,&c.) _involvens, ex hypotbe$i quod una_ x _$olummodo_ _fit variabilis; invenire fluxionem fluentis_ $. P x^. _ex bypotbe$i, quod_ x, y, z, &c. _$int variabiles._

Inveniatur P^. = Q x^. + R y^. + S z^. + &c. tum erit fluxio quæ$ita = P x^. + y^. $. R x^. + z^. $. S x^. + &c. ubi $. R x^. & $. S x^., &c. inveniri debent ex hypothe$i, ut x $olummodo $it variabilis, quod facile con$tat e theor. 2. $it enim V = $. P x^., & exinde V = P x^. + q y^. + &c. unde P^. = α x^. + β y^. + &c. & q^. = β x^. + γ y^. + &c. & con$e- quenter fluxio quantitatis P ex hypothe$i, quod y $olummodo $it vari- abilis, erit β y^.; ergo R y^. = β y^.; $ed q^. = β x^. = R x^., $i modo x tantum $it variabilis; & con$equenter q = $. R x^., & V^. = P x^. + y^. $. R x^. + &c. = ({V^. / x^.}) x^. + ({V^. / y^.}) y^. + &c.

Cor. 1. Sit quantitas V = H $. P x^., & erit V^. = H $. P x^. + H P^. x^. + H y^. $. R x^. + H z^. $. S x^. + &c. ubi P^. = Q x^. + R y^. + S z^. + &c.

Cor. 2. Sit V functio quantitatum x & u, & y = $. V x^.; tum erit y^. = u^. $. x^.({V^. / u^.}), $i modo x habeatur invariabilis: $upponatur enim [0343]ÆQUATIONIBUS. y^. = p x^. + q u^., tum p^. = α x^. + β u^. = V^., unde ({V^. / u^.}) = β, $ed q^. = β x^. + γ u^.; $i vero x $olummodo habeatur variabilis, erit q^. = β x^. = ({V^. / u^.})x^., & exinde q = $. x^.({V^. / u^.}); unde q u^. = u^. $. x^.({V^. / u^.}) = y^. $i modo x $it invariabilis; & $ic inveniri pote$t y^.. = u^. ^2 $. x^.({V^.. / u^. ^2}).

Cor. 3. Sit quantitas V = $. π x^. $. P x^., ubi x $olummodo habetur variabilis; a$$umantur π^. = α x^. + β y^. + γ z^. + &c. & P^. = λ x^. + μ y^. + v z^. + &c. tum erit fluxio quantitatis (π $. P x^.) = (α x^. + β y^. + γ z^. + &c.)$. P x^. + π P x^. + π y^. $. μ x^. + π z^. $. v x^. + &c. exinde V^. = π x^. $. P x^. + y^. $. x^. (β $. P x^. + π $. μ x^.) + z^. $. x^. (γ $. P x^. + π $. v x^.) + &c. ubi in fluxionibus x^.(β $. P x^. + π $. μ x^.) & x^.(γ $. P x^. + π $. v x^.), &c. $olummodo habetur x variabilis.

Et $ic inveniri po$$unt fluxiones cuju$cunque ordinis quantitatis V, quæ continet in $e fluentem cuju$cunque ordinis.

THEOR. LII.

Sit V functio quantitatum x, y, &c.; tum erit V^. = p x^. + q y^. + &c.; $int etiam y, x, &c. functiones quantitatum t, u, &c. unde x^. = a t^. + b u^. + &c., & y^. = a′ t^. + b′ u^. + &c.; pro x^. & y^. in prædictâ æquatione V^. = p x^. + q y^. + &c. $cribantur earum valores, & re$ultat V^. = (p a + q a′ + &c.)t^. + (p b + q b′ + &c.)u^. + &c.: in hâc æquatione pro p, q, &c., a′, b′, &c. $cribantur earum valores ({V^. / x^.}), ({V^. / y^.}), &c.; ({y^. / t^.}), ({y^. / u^.}), &c.; & transformabitur data æquatio in aliam V^. = t^. ({V^. / x^.})({x^. / t^.}) + t^. ({V^. / y^.}) ({y^. / t^.}) + u^. ({V^. / x^.})({x^. / u^.}) + u^. ({V^. / y^.})({y^. / u^.}) + &c.

Et $ic facile transformari pote$t hæc æquatio in aliam, in quâ in- volvuntur quantitates t′, u′, &c. ubi t, u, &c. $unt functiones quanti- [0344]DE FLUXIONALIBUS tatum t′, u′, &c.; & $ic deinceps: vel transformari pote$t data æquatio V^.. = p x^.. + q y^.. + r x^. y^. + &c. in aliam præcedentis formulæ, in quâ etiam involvuntur t, u, &c.; vel etiam t′, u′, &c.; & earum fluxiones: $it enim x^. = a t^. + b u^. + &c., & y^. = a′ t^. + b′u^. + &c., unde x^.. = a t^.. + t^. a^. + b u^.. + b^. u^. + &c., &c. $int a^. = c t^. + d u^. + &c., & b^. = c′ t^. + d′ u^. + &c.: $cribantur hi valores pro a^. & b^. in præcedente æqua- tione & re$ultat x^.. = a t^.. + b u^.. + c t^. ^2 + (d + c′)t^. u^. + d′ u^. ^2, &c.; & $i- militer detegi pote$t y^.. = a′ t^.. + b′ u^.. + e t^. ^2 + (f + e′)t^. u^. + f′ u^. ^2, ubi y^.. = a′ t^.. + t^. a^.′ + b′ u^.. + b′ u^. + &c., & a^.′ = e t^. + f u^. + &c., & b^. ′ = e′ t^. + f′ u^. + &c.: $ub$tituantur hi valores, & a t^.. + b u^. + &c., & a′ t^. + b′ u^. + &c. pro $uis valoribus x^.., y^.., x^. & y^., in datâ æquatione; & re$ul- tat æquatio in quâ $olummodo continentur fluxiones quantitatum t & u.

Hæc fluxio facile transformari pote$t in terminos præcedentis for- mulæ $eribendo pro p, q, r, &c. re$pective ({V^. / x^.}), ({V^. / y^.}), ({V^.. / x^. y^.}), &c; & pro a, b, &c.; a′,b′, &c.; $ub$tituendo ({x^. / t^.}), ({x^. / u^.}), &c., ({y^. / t^.}), ({y^. / u^.}), &c.; deinde pro c, d, &c.; c′, d′, &c.; e, f, &c.; e′, f′, &c.; $cribendo ({x^.. / t^. ^2}) = ({a^. / t^.}) ob a = ({x^. / t^.}), ({x^.. / t^. u^.}) = ({a^. / u^.}), &c.; ({x^.. / u^. t^.}) = ({b^. / t^.}) ob b = ({x^. / u^.}), ({x^.. / u^. ^2}) = ({b^. / u^.}), &c.; ({y^.. / t^. ^2}) = ({a^.′ / t^.}) ob a^.′ = ({y^. / t^.}), ({y^.. / t^. u^.}) = ({a^.′ / u^.}), &c.; ({y^.. / u^. t^.}) = ({b^.′ / t^.}) ob b = ({y^. / u^.}), ({y^.. / u^. ^2}) = ({b^.′ / u^.}), &c.; &c.; in re$ultante æquatione.

Con$imiles etiam æquationes ex ii$dem principiis deduci po$$unt, cum t, u, &c. $int functiones quantitatum x, y, & c. i. e. t^. = b x^. + k y^., & u^. = b′ x^. + k′ y^., &c.; facile enim deduci po$$unt fluxiones x^., y^., &c. ex fluxionibus t^., u^., &c.; quibus pro $uis valoribus in datâ æqua- tione $ub$titutis, re$ultat æquatio, quæ per methodum prius traditam reduci pote$t ad alteram præcedentis formulæ.

[0345]ÆQUATIONIBUS. PROB. LXIX.

1. Sit æquatio relationem inter quantitates ({V^. / x^.}), ({V^. / y^.}), ({V^. / z^.}), &c. ({V^.. / y^. ^2}), ({V^.. / x^. z^.}), &c. ({V^... / y^. ^3}), &c. de$ignans, i. e. $int V^. = p x^. + q y^. + r z^. + &c. & p^. = α x^. + β y^. + γ z^. + &c. q^. = δ x^. + ε y^. + 7z^. + &c. r^. = λ x^. + μ y^. + σ z^. + &c. & etiamque α^. = a x^. + b y^. + &c. β^. = d x^. + e y^. + &c. &c. δ^. = f x^. + g y^. + &c. &c. &c. & $it data æquatio relationem inter qua$cunque quantitates p, q, r, &c. α, β, γ; δ, ε, 7; λ, μ, ν; a, b; d, e; f, g, &c. de$ignans; invenire utrum ea transformari pote$t in æquationem relationem inter V, x, y, z, &c. & earum fluxiones exprimentem: a$$umantur omnes quantitates præter V & alteram x tanquam invariabiles, & æquationis re$ultantis abji- ciantur parenthe$es, & fluxionalis æquationis exinde re$ultantis inve- niatur fluens; & $ic de $ingulis reliquis (y, z, &c.) variabilibus quan- titatibus; & ex fluxionibus fluentium $ic inventarum ad prædictas formulas reductarum con$tabit, utrum data æquatio reduci pote$t in fluxionalem, necne. E. g.

Si data æquatio relationem inter quantitates huju$ce generis ({V^. / x^.}), ({V^. / y^.}), ({V^.. / x^. ^2}), ({V^.. / x^. y^.}), ({V^... / y^. ^2}), ({V^... / x^. ^3}), &c. V, x, y, &c. & earum fluxiones de$ignet: a$$umantur omnes quantitates præter duas (V & x vel y, &c.) tanquam con$tantes, & in æquatione re$ultante pro ({V^. / x^.}) $cribatur {V^. / x^.}, & pro ({V^.. / x^. ^2}) $cribatur {V^.. / x^. ^2}, & $ic deinceps; fluxionalis æquationis re$ultantis inveniatur fluens; vel ducatur ea in multiplicatorem M, ita ut ejus fluens inveniri po$$it, quæ dicatur V; nunc $upponantur omnes prædictæ quantitates iterum variabiles, & inveniatur V^., $ub- [0346]DE FLUXIONALIBUS ducatur hæc fluxio de datâ æquatione in fluxionales terminos mutatâ & in multiplicatorem M ductâ & $i modo re$ultet fluxio, cujus fluens inveniri pote$t, quæ $it W; tum V ± W = 0 exprimet relationem quæ$itam, $i modo per fluxionales æquationes exprimi po$$it, quam etiam de$ignat data æquatio.

2. Eadem principia, quæ prius edita fuerunt de fluxionalibus æquationibus tres vel plures variabiles quantitates & earum fluxiones habentibus, etiam applicari po$$unt ad inveniendas con$imiles propo- $itiones de æquationibus huju$ce generis. E. g. Omnis æquatio, quæ e$t generalis re$olutio datæ æquationis prædictæ formulæ habet tot vel plures invariabiles quantitates ad libitum a$$umendas, quot $it maximus ordo fluxionis in datâ æquatione contentus.

3. Duæ æquationes exprimentes relationes inter quantitates huju$ce generis ({z^. / x^.}), ({z^. / y^.}), &c. reduci po$$unt ad unam, ita ut una variabilis quantitas & ejus fluxiones exterminentur ex eâdem methodo, &c. quæ prius tradita fuit de duabus æquationibus fluxionalibus in unam reducendis, ita ut exterminentur variabilis quantitas & ejus fluxio- nes, &c.

4. Fere omnia etiam proferre liceat de his, quæ in priori hujus ca- pitis parte de fluxionalibus æquationibus con$cripta fuere.

E. g. Datâ generali re$olutione detegi pote$t æquatio, cujus fluens datur per methodum in fluxionalibus æquationibus traditam; & per con$imiles methodos deduci po$$unt quotcunque æquationes hu- ju$modi, quarum particulares valores fluentium dantur: e. 2. a$$u- matur quæcunque functio (π) quantitatum x, y, z, &c. pro V; etiam- que quantitas W, quæ e$t data functio quantitatum y, x, z, & V, & earum fluxionum; vel quantitatum formularum prædictarum ({V^. / x^.}), ({V^. / y^.}), ({V^.. / x^. ^2}), &c.: in hâc quantitate W pro V, V^., V^.., &c.; ({V^. / x^.}), ({V^. / y^.}), &c. $cribantur earum valores ex dato valore π quantitatis V [0347]ÆQUATIONIBUS. deducti; & re$ultet quantitas H, quæ e$t functio quantitatum x & y, & earum fluxionum; tum plerumque erit V = π particularis valor æquationis W = H.

5. Si hæc vel quæcunque alia æquatio, cujus fluens innote$cit, tran$- formetur in aliam per datas $ub$titutiones novarum pro variabilibus in datâ æquatione contentis; ex re$olutione datæ æquationis facile erui pote$t re$olutio re$ultantis æquationis.

6. Ex a$$umptis multiplicatoribus vel $ub$titutionibus deduci po$$unt æquationes datæ formulæ, quarum fluentes exprimi po$$unt;; & ge- neraliter omnia quæ tradita fuere de fluxionalibus æquationibus mu- tatis mutandis ad æquationes huju$ce formulæ applicari po$$unt.

7. Principia in fluxionalibus æquationibus re$olvendis u$itata, ut prius a$$eritur, etiam applicari po$$unt ad fluentes quantitatum hu- ju$ce generis inveniendas.

Ex. Sit p({V^. / x^.}) + q({V^. / y^.}) = 0, tum erit fluens huju$ce æquationis eadem ac fluens æquationis {1 / p}x^. - {1 / q}y^. = 0.

2. Nonnunquam $ub$tituendo V^. pro x^. ({V^. / x^.}) + y^.({V^. / y^.}) + z^. ({V^. / z^.}) + &c. in data æquatione; $i modo x, y, z, &c. $int variabiles; vel V^.. pro x^..({V^. / x^.}) + y^..({V^. / y^.}) + ax^.y^.({V^.. / x^.y^.}) + &c.; transformari po- te$t data æquatio in fluxionalem, vel in aliam $implicioris formulæ e. g. $it data æquatio Mx^.({V^. / x^.}) + My^.({V^. / y^.}) = Wx^. + Zy^., $cribatur V^. pro x^.({V^. / x^.}) + y^.({V^. / y^.}), & re$ultat fluxionalis æquatio MV^. = Wx^. + Zy^..

3. Si V $it functio unius $olummodo quantitatis x, & in datâ æquatione tantummodo fluxiones quantitatum x & V contineantur; [0348]DE FLUXIONALIBUS tum rejiciendo parenthe$es reduci pote$t data ad fluxionalem æqua- tionem.

4. Si vero fluxiones plurium quam duarum variabilium (V, x, y, z, &c.) in datâ æquatione contineantur, & con$equenter plures quam duæ in datâ æquatione habeantur variabiles; tum, $i $emper occur- rant quæcunque quantitates huju$ce formulæ M({V^. ^n + m + r + &c. / x^. ^n y^. ^m z^. ^r &c.}); & nulla alia; in quâ continentur V, vel ejus fluxiones; ubi M e$t functio quantitatum (x, y, z, &c.) & earum fluxionum; & n′, m′, r′, &c. $unt minimi indices fluxionum (x^., y^., z^., &c.) in denominatoribus fractio- num ({V^. ^n+m+r+&c. / x^. ^n y^. ^m z^. ^r &c.}); reduci pote$t data æquatio ad alteram, in quâ ordo fluxionis quantitatis V minor e$t per n′ + m′ + r′ + &c. quam ordo fluxionis eju$dem quantitatis V in æquatione; $ub$tituantur enim v = ({V^. / x^.}), v′ = ({v^. / x^.}), v″ = ({v^. ′ / x^.}), ..., v′^n-1 = ({v^. ′^n-2 / x^.}); deinde w = ({v^. ′^n-1 / y^.}), w′ = ({w^. / y^.}), w″ = ({w^.′ / y^.}),..., w′^m-1 = ({w^. ′^m-2 / y^.}); tum u = ({w^. ′^m-1 / z^.}), u″ = ({u^. / z^.}), u″ = ({u^. ′ / z^.}),..., u′^r-1 = ({u^. ′^r-2 / z^.}), &c.: æquatio in quâ introducuntur variabilis u′^r-1 & ejus fluxiones loco variabilis V & ejus fluxionum non involvit fluxionem quantitatis u′^r-1 majoris or- dinis quam maximus ordo fluxionis quantitatis V in datâ æquatione per n′ + m′ + r′ diminutus.

Hoc facilius perfici pote$t, $i modo pro ({V^. ^n′ / x^. ^n′}) $cribatur U; deinde in æquatione re$ultante pro ({U^. ^m′ / y^. ^m′}) $cribatur W; tum pro ({W^. ^r′ / z^. ^r}) $cri- batur T; & $ic deinceps.

[0349]ÆQUATIONIBUS.

E. g. Sit ({V^... / x^. ^2 y^.}) = P, & erit ({V^.. / x^. y^.}) = $. P x^. + φ:y, ubi y a$$u- mitur con$tans; deinde ({V^. / y^.}) = $.$.P x^. + xφ:y + φ′:y, ubi y ite- rum a$$umitur con$tans; ultimo z = $.^3 (Px^.) + x$. y^.φ:y + $. y^. φ′:y + φ″:(x) ubi x a$$umitur con$tans; & $ic de fluxionalibus æqua- tionibus $uperiorum ordinum.

Ex. 2. Sit ({z^.. / x^. ^2}) = P({z^. / x^.}) + Q; ponatur ({z^. / x^.}) = v, unde ({z^.. / x^. ^2}) = ({v^. / x^.}) & data æquatio fit v^. = Pvx^. + Qx^., ubi x $umitur con$tans; eodem modo $it ({z^.. / x^.y^.}) = P({z^. / x^.}) + Q, $cribatur ({z^. / x^.}) = v, & data æquatio fit ({v^. / y^.}) = P v + Q, in quo ca$u habetur x tanquam inva- riabilis, & re$ultat æquatio v^. + P v y^. + Q y^. = 0, cujus e methodo prius traditâ inveniri pote$t fluens.

5. Nonnunquam facile con$tat formula quantitatis, in quâ conti- netur fluens vel re$olutio datæ æquationis.

Ex. 1. Sit fluxionalis homogenea æquatio prædictæ formulæ A({V^. ^n / x^. ^n}) + B({V^. ^n / x^. ^n-1 y^.}) + C({V^. ^n / x^. ^n-2 y^. ^2}) + D({V^. ^n / x^. ^n-3 y^. ^3}) + &c. = 0: ubi A, B, C, D, &c. $unt invariabiles quantitates; haud difficilis e$t ob$ervatio ut particularis fluens huju$ce æquationis contineatur in formulâ φ:(ax + by) = V; $ub$tituatur hæc functio pro V, & valores quantatitum ({V^. / x^. ^r y^. ^s}), &c. exinde deducti pro $uis valoribus in datâ æquatione; & re$ultat æquatio (Aa^n + Ba^n-1 b + Ca^n-2 b^2 + Da^n-3 b^3 + &c.) × φ′: (ax + by) = 0, unde a^n A + a^n-1 b B + a^n-2 b^2 C + a^n-3 b^3 D + &c. = 0; $int α, β, γ, δ, &c. radices æquationis Ax^n + Bx^n-1 + Cx^n-2 + [0350]DE FLUXIONALIBUS Dx^n-3 + &c. = 0, tum erunt φ: (αx - y), φ′: (βx - y), φ″: (γx - y), &c. re$olutiones datæ æquationis; & magis generaliter V = φ: (αx - y) + φ′: (βx - y) + φ″: (γx - y) + &c. erit re$olutio datæ æquationis.

Sub$equens e$t elegans re$olutio particularis ca$us huju$ce exempli, quem primus re$olvere docuit Clar. D'Alembert: $it æquatio ({V^.. / y^. ^2}) = a^2 ({V^.. / x^. ^2}), tum V^. = px^. + qy^., p^. = rx^. + sy^., q^. = sx^. + ty^.; & per æquationem erit t = a^2 r; unde ex his æquationibus deduci pote$t a p^. + q^. = (a r + s)(x^. + a y^.), & exinde ar + s = φ:(x + a y); & quoniam a vel affirmative vel negative accipi pote$t, erit q + a p = 2 a φ′: (x + a y), & q - a p = 2 a φ′: (x - a y); unde q = a φ: (x + a y) + a φ′: (x - a y), & p = φ: (x + a y) - φ′: (x - a y), & ex- inde V = π: (x + a y) + π′: (x - a y).

Ex. 2. Sit homogenea æquatio A({V^. ^n / x^. ^n}) + B({V^. ^n / x^. ^n-1 y^.}) + C({V^. ^n / x^. ^n-1 z^.}) + D({V^. ^n / x^. ^n-1 v^.}) + E({V^. ^n / x^. ^n-2 y^. ^2}) + F({V^. ^n / x^. ^n-2 y^.z^.}) + &c. = 0, in quâ plu- res variabiles x, y, z, v, &c. continentur, tum a$$umatur V = φ: (ax + b y + c z + d v + &c.), $cribatur hæc functio pro V, & pro ter- minis ({V^. ^n / x^. ^r y^. ^s z^. ^t &c.}), &c. eorum valores exinde deducti; re$ultans æquatio A a^n + B a^n-1 b + C a^n-1 c + D a^n-1 d + E a^n-2 b^2 + F a^n-2 b c + &c. = H = 0: $i H = (f a + g b + b c + &c.) × (f′ a + g′ b + b′ c + &c.) × (f″ a + g″ b + b″ c + & c.) × &c.; tum ex hâc methodo con$tat datæ æquationis re$olutio; vel $i H = (f a + g b + b c + &c.) (f′ a^2 + g′ b^2 b′ c^2 + l′ a b + m′a c + n′ b c + &c.) (&c.); & $ic deinceps; i. e. $i modo algebraica expre$$io H haud in $implices divi$ores re$olvi po$$it, $ed in $implices, quadraticos, cubicos, &c. etiam con$tat re$olutio.

Si hæ algebraicæ expre$$iones e fluxionalibus æquationibus $uperio- [0351]ÆQUATIONIBUS. rum ordinum deductæ haud recipiant $implices divi$ores; $ed qua- draticos, cubicos, &c.; tum $emper reduci pote$t data æquatio ad flu- xionales $ecundi, tertii, &c. ordinum æquationes.

Ex. 3. Sit ({z^.. / x^. y^.}) = a z, & $tatuatur z = e^p q, ut quantitas expo- nentialis e^p e calculo evane$cat, quoniam quantitas z unam ubique tenet dimen$ionem; ponatur z = e^xx γ, unde ({z^.. / x^. y^.}) = α e^αx {γ^. / y^.} = a e^αx γ′, & $i γ′ = γ, exinde {α γ^. / γ} = a y^. & γ = e^{a y / α}, unde particularis valor ip$ius z = A e^αx+{ay / α}; & $ic generaliter z = A e^αx+{a / α}y + B e^βx+{b / β}y + C e^γx+{c / γ}y + &c. ubi literæ A, B, C, &c. α, β, γ, &c. &c. omnes recipere po$$unt po$$ibiles valores.

Ex. 4. Sit æquatio P ({V^. ^n / x^. ^n}) + Q ({V^. ^n / x^. ^n-1 y^.}) + R ({V^. ^n / x^. ^n-2 y^. ^2}) + &c. + P′ ({V^. ^n-1 / x^. ^n-1}) + Q′ ({V^. ^n-1 / x^. ^n-2 y^.}) + R ({V^. ^n-1 / x^. y^. ^n-2}) + &c. + P″ ({V^. / x^. ^n-2}) + &c. + L V = 0; ubi in $ingulis terminis V vel ejus fluxio unam $olummodo habet dimen$ionem; in hâc æquatione pro V & ejus fluxionibus $cri- bantur e^v × u & ejus corre$pondentes fluxiones, ubi v & u $unt functiones quantitatum x & y: functiones v & u pendent e functionibus P, Q, R, &c., P′, Q′, &c., P″, &c. quo magis $implices $unt priores functiones, eo magis plerumque $implices erunt po$teriores: $i P, Q, R, &c., P′, &c. $int invariabiles; tum a$$umatur V = e^x (φ:(a x + b y) + x φ′:(y) + φ″:y) = e^x H; vel e^a/x+b′y H; vel prior vel po$terior evadat quantitas magis compo$ita; $ub$tituantur hæ quantitates pro $uis valoribus in datâ æquatione, & ex terminis inter $e & nihilo re$pective æquatis for$an deduci pote$t æquatio, cujus particularis re$olutio innote$cit.

6. In pleri$que ca$ibus haud nece$$e e$t, ut introducatur exponentialis quantitas: in quibu$dam ca$ibus $implex algebraica expre$$io parti- cularem datæ æquationis relationem præbebit. E. g. Sit (x + y)^2 [0352]DE FLUXIONALIBUS ({V^.. / x^. y^.}) + m (x + y) ({V^. / x^.}) + m (x + y) ({V^. / y^.}) + n z = 0: huju$ce æquationis re$olutio erit V = A (x + y)^λ φ:(x) + B (x + y)^λ+1 φ′: (x) + C (x + y)^λ+2 φ″:(x) + &c.; $ub$tituatur enim hæc quantitas pro ejus valore in datâ æquatione, & ex æquatis corre$pondentibus terminis re$ultant n + 2 m λ + λ^2 - λ = 0, (n + 2 m λ + 2 m + λ^2 + λ) B + (m + λ) A = 0, &c., unde B = - {(m + λ) / 2 (m + λ)} A, C = -{(m + λ + 1) / 2 (2 m + 2 λ + 1)} B, D = - {(m + λ + 2) / 3 (2 m + 2 λ + 2)} C, &c.; hæc $eries ter- minat, quoties m + λ + i = 0, ubi i $it integer po$itivus numerus.

Cor. E datis valoribus quantitatum n & m duo exoriuntur valores quantitatis λ, & exinde duæ $eries, quæ ad eandem reduci po$$unt.

Con$imilis æquationis (n) ordinis re$olutio erit con$imilis.

7. Si in datâ æquatione fluxionali huju$ce formulæ quantitates x & y $imiliter involvantur; tum in ejus fluente vel re$olutione $imiliter etiam involventur.

8. Nonnunquam a$$umatur quantitas compo$ita ex exponentialibus, algebraicis, &c. E. g. Sit æquatio ({V^.. / y^. ^2}) = x^2 ({V^.. / x^. ^2}), fingatur V = x^λ e^μ y (m × log. x + n y) & $ub$tituantur pro ({V^.. / y^. ^2}) & ({V^.. / x^. ^2}) earum valores in datâ æquatione; & ex æquatis corre$pondentibus terminis re$ultantis æquationis deduci pote$t fluens vel re$olutio quæ$ita.

9. Aliquando ex a$$umptâ relatione inter variabiles datæ & quæ$itæ æquationum reduci pote$t data æquatio ad alteram, cujus re$olutio innote$cit. E. g. Sit æquatio ({V^.. / y^. x^.}) + P ({V^. / x^.}) + Q ({V^. / y^.}) + R z + S = 0; ponatur V = e^u v, ubi u = φ:(x & y); $ub$tituatur hæc quan- titas pro ejus valore V in datâ æquatione, &c.; & ita a$$umantur ter- mini re$ultantis æquationis, ut evadat ({v^.. / x^. y^.}) + T ({v^. / x^.}) + e^- u S = 0, cujus fluens innote$cit.

[0353]ÆQUATIONIBUS.

Ex. 2. Sit ({V^.. / y^. ^2}) = P^2 ({V^.. / x^. ^2}): introducantur binæ variabiles t & u, quæ $unt $unctiones quantitatum x & u; & æquationis re$ultantis ter- mini inter $e ita æquentur, ut evadat æquatio, cujus fluens innote$cit.

Per eundem modum introducendo variabiles t & u & æquando terminos re$ultantis æquationis inveniri po$$unt ca$us quantitatum P, Q, R, &c. in æquatione ({V^.. / y^. ^2}) + P ({V^.. / x^. ^2}) + Q ({V^. / y^.}) + R ({V^. / x^.}) + S V + T = 0 contentarum, in quibus fluens ope reductionis hìc dictæ deduci pote$t.

10. Methodus hìc tradita in hoc con$i$tit, ut huju$modi æquationes ope introductionis binarum novarum variabilium t & u ad hanc for- mulam ({V^.. / t^. u^.}) + P ({V^. / t^.}) + Q ({V^. / u^.}) + R V + S = 0, vel ad quam- cunque aliam formulam, cujus re$olutio innote$cit, reducantur.

Ex con$imili methodo reduci pote$t data fluxionalis æquatio hu- ju$ce formulæ ad alteram; æquationis, cujus ordo minor e$t quam ordo datæ fluxionalis æquationis, ope. E. g. Data æquatio ({V^.. / y^. ^2}) + P ({V^.. / x^. ^2}) + Q ({V^. / x^.}) + Rv = 0 in æquationem ({V^.. / y^. ^2}) + F ({v^.. / x^. ^2}) + G ({v^. / x^.}) + H v = 0 transformari pote$t, æquationis V = M ({v^. / x^.}) + N v ope, ubi literæ P, Q, R, F, G, H, M & N $unt $unctiones quanti- titatis x.

Hoc conficitur reducendo duas vel plures æquationes in unam, ita ut quædam variabiles & earum fluxiones exterminentur; & æquando terminos re$ultantis æquationis, ita ut evadat æquatio, cu- jus re$olutio innote$cit.

In æquationibus huju$ce generis minime adhuc datur methodus inveniendi; annon data æquatio $it generalis re$olutio datæ fluxio- nalis æquationis.

[0354]DE FLUXIONALIBUS

Æquatio fluxionalis a × b × c × &c. = 0 huju$ce formulæ dividi pote$t in æquationes a = 0, b = 0, c = 0, &c.

THEOR. LIII.

Sit π particularis fluens fluxionis p x^., tum erit ejus generalis fluens = π + a.

Sit σ particularis fluens fluxionis p x^. $. q x^., tum erit ejus generalis fluens = ς + a′ π + b.

Sit σ particularis fluens fluxionis p x^. $. q x^. $. r x^., & erit ejus generalis fluens σ + a″ ς + b′ π + c.

Sit τ particularis fluens fluxionis p x^. $. q x^. $. r x^. $. s x^., & erit ejus generalis fluens τ + a′″ σ + b″ ς + c′ π + d, & $ic deinceps; ubi literæ a, b, c, d, &c; a′, b′, c′, &c.; a″, b″, &c.; a′″, &c. invariabiles quantitates ad libitum a$$umendas re$pective denotant.

Et $ic de generalibus fluentibus $uperiorum ordinum deducendis.

PROB. LXX.

Sit fluxionalis æquatio {α^. / l} = 0, cujus fluens $it α = C (con$t.), deducere quamcunque œquationem, in quâ variabiles $eparantur: a$$umatur Z + v = α, & fingantur z & v quœcunque algebraicæ functiones quantitatum π & ς re$pective; e datâ æquatione {α^. / l} = 0 inveniatur œquatio relationem inter duas variabiles quantitates π & ς exprimens, & re$ultat æquatio, in quâ $eparantur variabiles π & ς & earum fluxiones.

Et ex eâdem methodo progredi liceat ad $ub$titutiones pro redu- cendis fluxionalibus æquationibus $uperiorum (n) ordinum ad fluxio- nales æquationes inferiorum m ordinum, in quibus $eparantur varia- biles: $ed plerumque reductio fluxionalis æquationis n ordinis ad ordinem inferiorem n - 1, in quâ $eparantur variabiles, &c. exigit unam $ub$titutionem, ad ordinem inferiorem n - 2 exigit duplicem $ub$titutionem, & $ic deinceps.

[0355]ÆQUATIONIBUS. THEOR. LIV.

Sit algebraica æquatio A = 0, in quâ x & z $imiliter involvuntur; & fluxionalis æquatio p x^. + q y^. = 0, ubi p & q $unt functiones quan- titatum x & y; reducantur hæ duæ æquationes A = 0 & p x^. + q y^. = 0 in unam, ita ut exterminentur x & x^., & re$ultet æquatio P z^. + Q y^. = 0; in æquatione A = 0 pro x $cribantur α & β, quarum corre$pon- dentes valores quantitatis (z) $int π & ς: $it y = φ:(x), etiamque y = φ′: (z): tum, $i modo $cribantur α, β, π & ς pro x in quanti- tate φ:(x) + φ′: (x), & $int quantitates re$ultantes A, B, C & D, erit A - B = C - D; modo corre$pondentes fluentes fluxionalium æquationum p x^. + q y^. = 0 & P x^. + Q y^. = 0 a$$umantur.

A$$ignari po$$unt fluentiales æquationes, quæ $unt fluentes data- rum fluxionalium; at revera nulli u$ui in$erviunt: e. g. $i in datâ fluentiali æquatione contineantur fluentiales quantitates, quarum fluxiones $unt functiones quantitatum x, y & earum fluxionum non integrabiles, tum vix ulli u$ui in$ervit integratio huju$modi; e. g. $it fluentialis æquatio y = $. {x^. / y} $. {x^. / y}, cujus fluxionalis erit y^2 y^.. + y y^. ^2 = x^. ^2; 2. $it y = $. {x^. / y} $. {x^. / y} $. {x^. / y}, cujus fluxionalis erit y^3 y^... + 4 y^2 y^. y^.. + y y^. ^3 = x^. ^3, &c. hæ fluentiales æquationes non pro fluentibus datarum fluxionalium æquationum de$iderandis habendæ $unt.

SCHOLIUM.

1. In detegendis fluentibus fluxionalium æquationum plerumque generales functiones variabilium tanquam independentes variabiles tractandæ $unt; & exinde per regulas prius traditas de iis ratiocinari liceat.

2. Prius docetur methodus inveniendi fluentes omnium fluxiona- nalium æquationum per a$$umptiones rationalium functionum, & [0356]DE FLUXIONALIBUS rationalium & irrationalium quantitatum, vel earum radicum in da- tis æquationibus contentarum, ni fa$tigium calculi prohibeat.

Con$imilia principia etiam applicari po$$unt ad fluentes fluxiona- lium æquationum detegendas algebraicarum quantitatum, circula- rium arcuum & logarithmorum ope.

3. Facile demon$trari pote$t, quod fluentes fere omnium fluxionum (comparative loquendo) nec exprimi po$$int per finitos terminos, lo- garithmos, circulares, nec per ellipticos nec hyperbolicos arcus; &c.: hinc, $i $eparari po$$int variabiles quantitates in datâ fluxionali æqua- tione, plerumque non inveniri po$$unt per prædictas methodos flu- entes: $ed per $ub$titutiones algebraicarum functionum, &c. nova- rum variabilium pro variabilibus in datâ æquatione contentis per- raro $eparari po$$unt variabiles quantitates; ergo in pleri$que ca$ibus ad infinitas $eries confugiendum e$t.

4. In æquationibus quantitates formularum ({V^. ^n / x^. ^m y^. ^r &c.}) involven- tibus non adhuc datur generalis nota; ex quâ dici pote$t, annon data $it generalis datarum æquationum re$olutio.

5. In detegendis fluentibus fluxionum, cum variabilis (x) evadat infinita: $i fluens exprimatur per algebraicam functionem variabilis (x); tum ex $ub$titutione infinitæ & finitæ (a) quantitatis pro x fa- cile con$tat fluens inter prædictos valores (a) & infinitum po$ita; $i $olummodo in $ingulis quantitatibus addendis vel $ubtrahendis reji- ciantur omnes quantitates, quæ $unt infinite minores quam quæcunque aliæ in eâdem $ummâ vel differentiâ contentæ; & $i modo numera- tores & denominatores nonnullarum fractionum nihilo evadant æquales, tum earum valores per methodum prius traditam inve$ti- gandi $unt.

6. Si fluens exprimi po$$it per circulares arcus, &c. variabilis, vel $it tangens vel $ecans, &c.; tum facile per circularem arcum acquiri po- te$t fluens, cum x evadat infinita.

7. Si vero fluens exprimi po$$it per plures logarithmos; viz. a × log. [0357]ÆQUATIONIBUS. α + b × log. β + c × log. γ + &c.; cujus nonnulli; e. g. log. α, log. β, log. γ, &c. evadunt infiniti; reducantur omnes hi logarithmi in lo- garithmum unius $ummæ, viz. α × log · α + b × log. β + c × log. γ + &c. = log · α^a × β^b × γ^c &c. = z; & $i z $it finita quantitas, tum log. prædictæ $ummæ erit finita; $in aliter non: inveniatur valor algebraicæ quan- titatis z, & exinde acquiri pote$t ejus log.: $i fluens $it quæcunque algebraica functio quantitatis x, & circularium arcuum & logarith- morum ejus functionum; tum per principia prius tradita erui pote$t ejus valor, cum x evadat infinita.

Si autem fluens exprimatur per datas alias fluentes; tum ex datis curvis, $olidis, &c., per quæ innote$cunt datæ fluentes, erui pote$t ejus valor inter quo$cunque valores variabilis in eâ contentæ.

Et $ic rationari liceat de fluxionalibus, æquationibus, &c.

8. Sint n fluxionales æquationes a = 0, a′ = 0, a″ = 0, &c. qua- rum ordo $it l, (n + 1) variabiles quantitates (x, y, z, &c.) invol- ventes; tum $int m, m′, m″, &c. functiones quantitatum (x, y, z, &c.) & earum fluxionum, quarum ordines minores $unt quam l; & ita a$$umi po$$unt multiplicatores m, m′, m″, &c., ut exoriantur (n) diver$æ & independentes fluxionales æquationes m a + m′ a′ + m″ a″ + &c. = 0, quæ integrari po$$unt.

9. Generalis fluens fluxionalis æquationis (n) ordinis partiales fluxiones involvens (n) arbitrarias functiones detegendas continet.

[0358] DE METHODO INCREMENTORUM. LIBER. I.

DFF. I. DENOTENT quantitates x., y., z., &c. prima incrementa quantitatum x, y, &c. re$pective; eodem modo de$ignent quantitates ita $criptæ x.., y.., z.., &c. $ecunda incrementa quantitatum x, y, z, &c. vel prima incrementa quantitatum x., y., z., &c. & $ic de- inceps.

DEF. 2. Denotent quantitates x, y, &c. integrales quantitatum x, y, &c. & $ic x, y, &c. $ecundas integrales quantitatum x, y, &c. & primas integrales quantitatum x, y, &c.

PROB. I.

_Datâ quantitate_ P _vel algebraicâ vel fluxionali, quæ $it functio quan-_ _titatum_ x, y, z, &c. _quarum incrementa $int_ x, y, z, &c. _ejus incrementum_ _inve$tigare._ 1. _Scribantur_ x + x, y + y, z + z, &c. _pro literis_ x, y, z, &c. _re$pective, &_ x + x, y + y, &c. _pro_ x & y, &c. _in datâ æquatione,_ _& $it quantitas re$ultans_ Q; _tum erit_ Q - P _incrementum quæ$itum, i. e._ _differentia inter duos proxime $ucce$$ivos valores integralis dicitur incre-_ _mentum._

Secunda incrementa e primis eodem modo ac prima ex integrali- bus deduci po$$unt; & $ic deinceps.

Ex. 1. Incrementum rectanguli x y erit (x + x.)(y + y.) - x y = x y. + y x. + x. y..

[0359]DE METHODO, &c.

Ex. 2. Incrementum logarithmi quantitatis (x), cujus fluxio e$t {x^. / x}, erit log. (x + x.) - log. (x) = log · {x + x. / x}, cujus fluxio erit - {x.x^. / x(x + x.)}= {x^. / x + x.} - {x^. / x}, $i modo x. $it con$tans.

Ex. 3. Incrementum circularis arcus $. {x^. / 1 + x^2}, cujus radius e$t 1, & tangens x, erit differentia inter duos circulares arcus, quorum radius e$t 1, & tangentes re$pective x & x + x., i. e. $. ({x^. / 1 + (x + x^.)^2 -{x^. / 1 + x^2}) = $. - {2xx. + x.^2 / (1 + x^2)(1 + (x + x.)^2)} × x^..

Ex. 4. Sit integralis a xn × xn + 1 &c. × xn + m ejus vero incrementum erit, $i modo x cre$cat uniformiter, a × (xn+1 × xn + 2 & .. xn + m + 1 - xn × xn + 1 &c. × xn + m) = (m + 1)ax. (xn + 1 × xn + 2 ... xn + m); & ex eâdem methodo con$tat incrementum integralis {a / xn × xn + 1 × &c. .. xn + m} e$$e {a / xn + 1 × xn + 2 × &c. xn + m + 1} - {a / xn × xn + 1 .. xn + m} = {- (m + 1)a x. / xn × xn + 1 ... xn + m + 1}, $i modo x fluat uniformiter.

Cor. 1. Sint S, S′, S″, S′″, &c. (n) $ucce$$ivi valores integralis, tum erit incrementum n ordinis = S - n S′ + n · {n - 1 / 2} S″ - n · {n - 1 / 2} ·{n - 2 / 3} S′″ + &c. incrementa enim primi ordinis $unt re$pective S - S, S′ - S″, S″ - S′″, &c. $ecundi vero S - S′ - (S′ - S″) = S - 2 S′ + S″, &c.

[0360]DE METHODO

Cor. 2. Hinc deduci pote$t integralis primi $ub$equentis ordinis quantitatis (z) = z + z., $ecundi vero $ub$equentis ordinis = z + z. + (z. + z..) = z + 2 z. + z.., & exinde integralis $ub$equentis n ordi- nis erit z + n z. + n · {n - 1 / 2}z.. + n · {n - 1 / 2} · {n - 2 / 3}z.. + &c.

Ex hoc corollario $equitur incrementum contenti (z × z × z ... zn) = z × z .. zn + 1 - z × z × z .. zn = z × z ... z · (z + (n + 1)z. + (n + 1).{n / 2}z.. + &c. - z); etiamque incrementum fractionis ({1 / z · z · z ... zn}) e$$e {1 / z × z .. zn + 1} - {1 / z × z′ ... zn} = {z - zn + 1 / z × z × z .. zn + 1} = - {z + (n + 1) × z. + (n + 1) · {n / 2}z.. + &c. - z/z × z ... zn + 1}.

Cor. 2. Et $ic inveniri pote$t {1 / zm} = {1 / z} - {m z. / z z} + {m × (m - 1)z.^2 / zzz} -{m × (m - 1) × (m - 2)z.^3 / zzzz} + &c. $i modo z fluat uniformiter; $uppo- natur enim {1 / zm - 1} = {1 / z} - {(m - 1)z. / zz} + {(m - 1) · (m - 2)z.^2 / zzz} - &c.} & proximum incrementum $uper$criptarum quantitatum erit - {z. / z z} +{2(m - 1)z.^2 / z zz} - &c. harum $umma erit {1 / zm} = {1 / z} - {m z. / z z} + {m (m - 1)z.^2 / zzz}- &c. $i igitur vere a$$ignetur inferior fluentialis quantitas xm - 1, vere etiam a$$ignatur $uperior xm.

[0361]INCREMENTORUM.

Et generaliter erit {1 / zm} = {1 / z} - {mz. / zz} + m · {m - 1 / 2}{2z.^2 - zz.. + z.z.. / z · z · z} - &c.

Ex. 3. Sit integralis 1 · 2 · 3 · 4 ... z, & ejus incrementum erit 1 · 2 · 3 · 4 .. z · (1 - z)^2 = 1 · 2 · 3 · 4 .. z · (z + 1) - 1 · 2 · 3 · 4 .. z, $i modo incrementum quantitatis z $it 1.

Ex. 4. Sit integralis {1 / 1 · 2 · 3 · 4 ... z}, & ejus incrementum erit -{1 / 1 · 2 · 3 .. z - 1 · z + 1} = {1 / 1 · 2 · 3 .. z + 1} - {1 / 1 · 2 · 3 .. z}.

Et $ic ex incrementis inveniri po$$unt integrales.

2. Sit α functio quantitatum x, y, z, &c.; inveniantur α^., α^.., α^∴, α^n, &c.; ex hypothe$i; quod x, y, z, &c. fluunt uniformiter; & con$e- quenter earum $ecundæ, tertiæ, &c. fluxiones nihilo $unt æquales; in his quantitatibus (α^., α^.., α^∴, &c.) pro x^., y^., z^., &c. $cribantur re- $pective x, y, z, &c.; & re$ultent quantitates α., α.., α, &c.; tum erit primum incrementum quantitatis (α) = α. + {1 / 1 · 2}α.. + {1 / 1 · 2 · 3}α +{1 / 1 · 2 · 3 · 4} α.... + &c. Ex hoc primo incremento per eandem metho- dum detegi pote$t $ecundum, $i modo $upponantur x^.., y^.., z^.., &c. inva- riabiles, & pro iis $cribantur re$pective x.., y.., z.., &c. &c.

PROB. II.

_Invenire incrementa fluentium, quarum fluxiones $unt algebraicæ fun-_ _ctions quantitatis_ x _in_ x^. _ductæ: inveniri po$$unt e reductione fluxionum_ _in $eriem, cujus termini $ecundum dimen$iones quantitatis_ x _progrediuntur:_ _buju$ce $eriei inveniatur fluens, & deinde buju$ce fluentis detegatur incre-_ _mentum quæ$itum._

Ex. · Invenire incrementum fluentis $. {x^. / 1 - x}: erit $. {x^. / 1 - x} = [0362]DE METHODO x + {1 / 2} x^2 + {1 / 3} x^3 + {1 / 4} x^4 + &c. cujus incrementum quæ$itum erit (1 + x + x^2 + &c.) x^. + {1 / 2}(1 + 2 x + 3 x^2 + &c.)x^. ^2 + {1 / 3}(1 + 3 x + 6 x^2 + &c.) x.^3 + {1 / 4}(1 + 4 x + &c.) x.^4 + &c. = {x. / 1 - x} +{{1 / 2} x.^2 /(1 - x)^2} + {{1 / 3} x.^3 /(1 - x)^3} + {{1 / 4} x.^4 /(1 - x)^4} + &c. $i modo incrementum x. $it con$tans, fingatur z = 1 - x & re$ultat incrementum fluentis $. {z^. / z} = {z. / z} - {z.^2 / 2z^2} + {z.^3 / 3z^3} + &c.

Et $ic de incrementis deducendis duplicatarum, &c. fluentium, vel quarumcunque aliarum quantitatum, quæ $int functio finita vel infi- nita algebraicarum vel exponentialium, &c. quantitatum. Aliter: Earum incrementa detegi po$$unt e methodo in ca$u $ecundo præce- dentis problematis traditâ.

2. Si vero e dato incremento fluentis (v) requiratur incrementum quantitatis x; inveniatur per infinitas $eries quantitas x in terminis $ecundum dimen$iones quantitatis v progredientibus, huju$ce quan- titatis incrementum erit quæ$itum.

E. g. Sit v = $.{x^. / 1 + x}, & erit x = v + {v^2 / 1 · 2} + {v^3 / 1 · 2 · 3} + &c. cujus incrementum x. = v.(1 + v + {1 / 2}v^2 + {1 / 1 · 2 · 3}v^3 + &c.) + {1 / 2}v.^2 (1 + v + {1 / 1 · 2}v^2 + {1 / 1 · 2 · 3}v^3 + &c.) + {1 / 1 · 2 · 3}v.^3 (1 + v + {1 / 2}v^2 +{1 / 2 · 3}v^3 + &c.) + &c. = (1 + x)(v. + {1 / 1 · 2}v.^2 + {1 / 1 · 2 · 3}v.^3 + {1 / 1 · 2 · 3 · 4}v.^4 + &c.). $i modo v. $it con$tans.

THEOR. I.

Sit quantitas P functio quantitatis x, cujus incrementum $it Q; tum erit fluxio Q^. quantitatis (Q) æqualis incremento fluxionis P^., $i modo fluxio (o^.) incrementi (o) quantitatis x æqualis $it incremento fluxionis x^..

[0363]INCREMENTORUM.

Scribatur in quantitate P pro x valor a$$umptus x + x^. + o + o^., & collocentur termini quantitatis re$ultantis $ecundum dimen$iones fluxionum x^. & o^., quæ re$pective denotant fluxiones quantitatum x & o, i. e. quantitas re$ultans $it huju$ce formulæ l + m(x^. + o^.) + (px^. ^2 + qx^. o^. + po^. ^2) + &c.; deinde in quantitate P pro x $criba- tur x + o & con$equitur ejus incrementum (α) ipsâ quantitate P au- ctum, hujus incrementi α inveniatur fluxio quæ erit m(x^. + o^.) - P^., $icut e $ub$titutione prædictâ facile con$tat; tertio inveniatur fluxio quan- titatis P, vel quod ad idem redit in datâ quantitate P pro x $cribatur x + x^., & collocentur termimi quantitatis re$ultantis $ecundum di- men$iones fluxionis x^., i. e. $int a + bx^. + cx^. ^2 + &c. tum erit bx^. fluxio quantitatis P; in hâc fluxione pro x $cribatur x + o & pro x^. ejus valor x^. + o^., & e $ub$titutione facile con$tat e$$e m(x^. + o^.), & exinde pote$t theor.

Idem vero mutatis mutandis affirmari pote$t, $i P $it functio quarumcunque quantitatum x, y, z, &c. mutatis etiam mutandis erit incrementum n ordinis fluxionis m ordinis quantitatis P æquale flu- xioni m ordinis incrementi n ordinis eju$dem quantitatis P.

PROB. III.

1. _Invenire incrementum cuju$cunque fluentialis qua titatis_ $. W.

Sit $. W = u, & incrementum quantitatis $. W = $.(W + W.) - $. W = $.W. = u.

Sit W functio quantitatis x in x^., & in eâ pro x $cribatur x + x^. & re$ultet quantitas W′, tum erit incrementum quæ$itum $.W′ - $.W.

Ex. · Sit fluentialis quantitas $. Vx^., cujus incrementum requiritur; inveniatur incrementum quantitatis Vx^., quæ erit x^.V. + V(x^. .) + V(x^. .), & exinde incrementum fluentis $. Vx^. = $. x^. V. + $.V(x^. .) + $.V(x^. .); at $.Vx^. . = Vx. - $.x.V, unde {$.Vx^. / .} = $.x^.V. + Vx. - $.x.V^. + $.V^.(x^. .).

2. Si requiratur incrementum duplicis fluentialis formulæ $.$.W, tum erit ($.$.W) = $.($.W) = $.$.W, & $ic deinceps.

[0364]DE METHODO

3. Sint incrementa evane$centia, & ponantur y^. = px^., p^. = qx^., q^. = r x^., &c.; cum fuerit V functio quæcunque quantitatum x, y, p, q, r. s, &c.; tum erit V^. = M x^. + N y^. + P p^. + Q q^. + &c., & $imili modo erit V. = M x. + N y. + P p. + Q q. + &c.

Ex inveniendis incrementis quantitatum $. Vx^., &c. detegi po$$unt maxima & minima, $i modo in incrementis re$ultantibus nihilo fiant æqualia incrementa, & exinde fluentiales quantitates etiam ni- hilo evadant æquales; $ed hic non de maximis & minimis, nec de evane$centibus incrementis agitur.

PROB. IV.

_Transformare datum incrementum in alterum, cujus variabiles quanti-_ _tates_ (z, v, &c.) _datam babeant relationem ad variabiles_ (x, y, &c.) _in_ _dato incremento contentas. Sub$tituantur valores quantitatum_ (x, y, &c.) _in terminis quantitatum_ (z & v, &c.) _expre$$i pro quantitatibus ip$is_ (x, y, &c.) _in dato incremento, & eorum incrementa pro re$pectivis incrementis_ _quantitatum_ (x, y. &c.) _& re$ultat incrementum quæ$itum._

PROB. V. Datum incrementum in alterum datæ formulæ, $i modo $ieri po$$it, reducere.

A$$umantur generaliter incrementa datæ formulæ, $upponatur eo- rum $umma dato incremento æqualis, & exinde erui po$$unt coef- ficientes, &c. incrementorum a$$umptorum.

Ex. 1. Sit x^. con$tans; reducere quantitates x^n ad incrementa for- mulæ x × (x - x.) × (x - 2x^.) .. (x - mx.).

A$$umantur x^n = x × (x - x.) × (x - 2x.) .. (x - (n - 1)x.) + bx.x × (x - x.) · (x - 2x.) .. (x - (n - 2)x.) + cx.^2 x × (x - x.) ... (x - (n - 3)x.) + &c. e reductione facile con$tat b = n · {n - 1 / 2}, c = {5n^3 - 42n^2 + 127n - 135 / 3}, &c.

[0365]INCREMENTORUM

Ex. 2. Sit x. con$tans, & inveniri pote$t {1 / x^2} = {1 / x × (x + x.)} +{x. / x × (x + x.) × (x + 2 x.)} + {2 x.^2 / x(x + x.)(x + 2 x.)(x + 3 x.)} + {6 x.^3 / x(x + x.)...(x + 4 x.)}+ {24&c. / &c.} · &{1 / x^n} = {1 / x(x + x.)...(x + (n - 1)x.)} +{n · {n - 1 / 2}x./x(x + x.)...(x + nx.)} + &c.

PROB. VI. 1. _Sit_ x. _incrementum quantitatis x con$tans, invenire integralem quan-_ _titatis_ Ax × (x - x.) · (x - 2 x.) ... (x - n x.).

Integralis erit {A / (n + 2)x.}(x + x.) × x × (x - x.) .. (x - nx.); inve- niantur enim duæ $ucce$$ivæ integrales {A / (n + 2)x.} × (x + x.) × x. (x - x.) .. (x - nx.) & {A / (n + 2)x.}x · (x - x.) · (x - 2x.) .. (x - nx.) × (n - nx. - x.), & earum differentia erit quantitas data.

Co. · Dato incremento x.; omnis quantitas huju$ce formulæ Ax^n + Bx^n-1 + Cx^n-2 + Dx^n-3 + &c. ubi n e$t integer affirmativus numerus, & A, B, C, D, &c. invariabiles denotant quantitates, tran$- formari pote$t in quantitates prædictæ formulæ ax × (x - x.) × (x - 2 x.) ... (x - (n - 1) x.) + bx × (x - x.) .. (x - (n - 2) x.) + cx × (x - x.) .. (x - (n - 3) x.) + d × &c. æquatis autem terminis corre$pondentibus huju$ce & datæ æquationis, i. e. $int a = A, (n - 1) × {n / 2}ax. + b = B, &c. inveniri po$$unt coefficientes a, b, &c. & con- $equenter reduci pote$t data quantitas ad incrementa formularum, quarum innote$cunt integrales.

[0366]DE METHODO

Aliter: Invenire integralem prædictæ incrementialis quantitatis A x^n + B x^n-1 + C x^n-2 + &c. a$$umatur quantitas a x^n+1 + b x^n + c x^n-1 + d x^n-2 + &c. pro integrali deducendâ, cujus inveniatur proxime $ucce$$ivus valor, qui erit a (x + x.)^n+1 + b (x + x.)^n + c (x + x.)^n-1 + &c. unde differentia inter duos $ucce$$ivos valores erit a ((x + x.)^n+1 - x^n+1) + b ((x + x.)^n - x^n) + c ((x + x.)^n-1 - x^n-1) + &c. = (n + 1)a x^n x. + (n + 1) · {n / 2} a x.^2 \\ + n b x. # x^n-1 + (n + 1) · {n / 2} · {n - 1 / 3} a x.^3 \\ + n · {n - 1 / 2} b x.^2 \\ + (n - 1) c x. # x^n-2 + &c. æquatis autem terminis hujus & datæ æquationis, re$ultant (n + 1) æquationes a x. = A, (n + 1) · {n / 2} a x.^2 + n b x. = B, &c. unde facile con- $tant coe$$icientes a, b, c, &c. & exinde integralis datæ quantitatis.

Aliter: A$$umatur quantitas a x^n+1 + p pro integrali quæ$itâ, cujus incrementum erit (n + 1) a x.x^n + (n + 1) × {n / 2} a x.^2 x^n-1 + &c. + p = A x^n + B x^n-1 + C x^n-2 + &c. & exinde (n + 1) a x. = A, & p. = (B - (n + 1) · {n / 2} a x.^2)x^n-1 + &c. & con$equenter n x. p = (B - (n + 1) × {n / 2} a x.^2) x^n prope; $cribatur igitur in præcedente æquatione (B - (n + 1) ×{n / 2} a x.^2) x^n + q pro p, & ejus incrementum pro p., & exinde deduci pote$t propinquus valor quantitatis q; & $ic deinceps u$que donec inveniatur integralis quæ$ita.

2. Sit x. incrementum quantitatis x con$tans, & incrementialis quantitatis {x. / x × (x - x.) × (x - 2 x.) ... (x - n x.)} integralis invenietur {x. / n x. × (x - x.) × (x - 2 x.) ... (x - n x.)} = {1 / n × (x - x.) ... (x - n x.)}.

[0367]INCREMENTORUM.

Facile con$tat hic ca$us ex differentiâ inter duos $ucce$$ivos valores integralis prædictæ.

3. Sit incrementum {a x^m + b x^m-1 + c x^m-2 + d x^m-3 + e x^m-4 + &c. / x × (x + x.) × (x + 2x.) × (x + 3x.) .... (x + (n - 1) x.)} rationalis functio quantitatum x & x. ad minimos terminos reducta; ubi m e$t integer numerus, & æqualis vel minor quam n, & x. e$t con$tans; invenire annon integralis incrementi prædicti exprimi po- te$t in finitis terminis.

Reducatur datum incrementum ad incrementa huju$ce generis α + ({β / x}) + {γ / x · (x + x.)} + {δ / x · (x + x.)(x + 2 x.)} + {ε / x (x + x.)(x + 2x.)(x + 3x.)}+ .... {θ / x (x + x.) (x + 2 x.) ... (x + (n - 1) x.)}; $i m = n, tum α = a, β = b - α A, γ = c - β A′ - α B, δ = d - γ A″ - β B′ - α C, ε = e - δ A′″ - γ B″ - β C′ - α D, &c.; ubi x (x + x.) (x + 2 x.) ... (x + (n - 1) x.) = x^n + A x^n-1 + B x^n-2 + C x^n-3 + D x^n-4 + &c.; (x + x.) (x + 2 x.) .. (x + (n - 1) x.) = x^n-1 + A′ x^n-2 + B′ x^n-3 + C′ x^n-4 + &c., (x + 2 x.) (x + 3 x.) ... (x + (n - 1) x.) = x^n-2 + A″ x^n-3 + B″ x^n-4 + D″ x^n-5 + &c., (x + 3 x.) (x + 4 x.) ... (x + (n - 1) x.) = x^n-3 + A′″ x^n-4 + B′″ x^n-5 + C′″ x^n-6 + &c., &c.

Si β = b - n · {n - 1 / 2} a x. haud $it nihilo æqualis, tum integralis non exprimi pote$t, ni detur integralis incrementi {β / x}; in reliquis ca$ibus per hanc methodum $emper inveniri pote$t integralis; erit enim α {x / x.} + {γ / x. x}+ {δ / 2 x. x (x + x.)} + {ε / 3 x. x (x + x.) (x + 2 x.)} + ... + {θ / (n - 1) x. x (x + x.) (x + 2 x.) .. (x + (n - 2) x.)}, ubi α, β, γ, δ, &c. $unt invariabiles quantitates.

[0368]DE METHODO

Si m = n - 1; tum integralis non exprimi pote$t, ni detur inte- gralis incrementi ({β / x}): $i autem m minor $it quam n - 1, tum $em- per per hanc regulam inveniri pote$t integralis.

Si vero m major $it quam n, tum reducenda e$t data fractio ad pro- priam, ita ut maxima pote$tas quantitatis x in denominatore major $it quam maxima pote$tas in numeratore.

4. Sit incrementum fractio {a x^m′ + b x^m′+1 + c x^m′+2 + &c. / x · (x + x.)(x + 2 x.) ... (x + (n - 1) x.) × (x + p)(x + p + x.)(x + p + 2 x.) ... (x + p + (m - 1) x.) × (x + q) × (x + q + x.)(x + q + 2 x.) ... (x + q + (r - 1) x.) × &c.}.

Semper reduci pote$t hæc fractio ad terminos progredientes $ecun- dum formulas $ub$equentes α + ({β / x}) + {γ / x · (x + x.)} + {δ / x (x + x.)(x + 2 x.)}+ {ε / x (x + x.)(x + 2 x.)(x + 3 x.)} + ... + {θ / x (x + x.)(x + 2 x.) .. (x + (n - 1) x.)}+ ({β′ / x + p}) + {γ′ / (x + p)(x + p + x.)} + {δ′ / (x + p)(x + p + x.)(x + p + 2 x.)}+ ... + {θ′ / (x + p)(x + p + x.)(x + p + 2 x.) .... (x + p + (m - 1) x.)}+ ({β″ / x + q}) + {γ″ / (x + q)(x + q + x.)} + {δ″ / (x + q)(x + q + x.)(x + q + 2 x.)}+ ... + {θ″ / (x + q)(x + q + x.)(x + q + 2 x.) .... (x + q + (r - 1) x.)}+ &c., ubi α, β, γ, .. θ; β′, γ′, &c.; β″, γ″, &c.; p, q, &c; $unt in- variabiles quantitates.

Con$tat ex eo quod continentur n + m + r + &c. + 1 invariabiles, independentes & incognitæ coefficientes α, β, γ, δ, &c.; β′, γ′, &c.; β″, γ″, &c.; in quantitate a$$umptâ.

[0369]INCREMENTORUM.

Si β, β′, β″, &c. nihilo $int re$pective æquales, vel integralis incre- menti {β / x} + {β′ / x + p} + {β″ / x + q} + &c. finitis terminis exprimi po$$it, tum integralis dati incrementi $emper ii$dem exprimi pote$t; $in aliter non.

Hinc, $i modo numerus literarum o, p, q, &c. $it λ; ex λ indepen- dentibus integralibus huju$ce formulæ datis deduci po$$unt omnes eju$dem formulæ.

Si m′ = n + m + r + &c. - 1, tum nunquam exprimi pote$t in- tegralis; $i m′ major $it quam n + m + r + &c.; tum reducenda e$t data ad propriam fractionem: $i m′ = n + m + r + &c. - 2 vel mi- nor; tum $emper β + β′ + β″ + &c. = 0.

5. Sit incrementum {a x^m + b x^m-1 + c x^m-2 + &c. / x^π (x + x.)^π (x + 2 x.)^π ... (x + (n - 1) x.)^π × (x^π′ (x + p + x.)^π′ × (x + p + 2 x.)^π′ ... (x + p + (r - 1) x.)^π′ × &c.}; hoc incre- mentum reduci pote$t ad terminos progredientes $ecundum $ub$e- quentes formulas α + ({β / x} + {γ / x^2} + {δ / x^3} + ... + {λ / x^π}) + ({β′ / x + p} +{γ′ / (x + p)^2} + {δ′ / (x + p)^3} ... + {λ′ / (x + p)^π}) + ({ε / x (x + x.)} + {ε′ / x (x + x.)(x + 2 x.)}+ .... + {ε′^n-2 / x(x + x.) ... (x + (n - 1) x.)}) + ({ξ / (x + p)(x + p + x.)} +{ξ′ / (x + p)(x + p + x.)(x + p + 2 x.)} + ... + {ξ′^r-2 / x(x + p + x.) .. (x + p + (r - 1) x.)}) + {a′ ((x + x.)^2 - x^2) / x^2 × (x + x.)^2} + {a″ ((x + x.)^3 - x^3) / x^3 (x + x.)^3} + .. + {a′^n-2 ((x + (n - 1) x.)^π - x^π) / x^π × (x + x.)^π}+ {b′ (x + p + x.)^2 - (x + p)^2 / (x + p)^2 (x + p + x.)^2} + {b″ (x + p + x.)^3 - (x + p)^3 / (x + p)^3 (x + p + x.)^3} + .... + [0370]DE METHODO {b′^n′-3 (x + p + x.)^π′ - (x + p)^π′ / (x + p)^π′ (x + p + x.)^π′} + &c. .... {d′ (x + 2x.)^2 - x^2 / x^2 × (x + x.)^2 × (x + 2 x.)^2} +{d″ (x + 2 x.)^3 - x^3 / x^3 (x + x.)^3 (x + 2 x.)^3} + .... + {d′^π-3 (x + 2 x.)^π - x^π / x^π × (x + x.)^π × (x + 2 x.)^π} +{e × (x + p + 2 x.)^2 - (x + p)^2 / (x + p)^2 × (x + p + x.)^2 × (x + p + 2 x.)^2} + {e′(x + p + 2 x.)^3 - (x + p)^3 / (x + p)^3 × (x + p + x.)^3 × (x + p + 2 x.)^3}+ .... + {e′^π-3 (x + p + 2 x.)^π′ - (x + p)^π′ / (x + p)^π × (x + p + x.)^π′ × (x + p + 2 x.)^π′} +{f (x + 3 x.)^2 - x^2 / x^2 (x + x.)^2 × (x + 2 x.)^2 × (x + 3 x.)^2}+ &c. + {g (x + p + 3 x.)^2 - (x + p)^2 / (x + p)^2 × (x + p + x.)^2 × (x + p + 2 x.)^2 × (x + p + 3 x.)^2} + &c. + {l (x + (n - 1) x.)^2 - x^2 / (x^2)(x + x.)^2 (x + 2 x.)^2 (x + 3 x.)^2 ... (x + (n - 1) x.)^2} + .... + {l′^π (x + (n - 1) x.)^π - x^π / x^π (x + x.)^π (x + 2 x.)^π ... (x + (n - 1) x^.)^π}+ {l″^π (x + p + (r - 1) x.)^2 - x.^2 / (x + p)^2 (x + p + x.)^2 (x + p + 2 x.)^2 (x + p + 3 x.)^2 ... (x + p + (r - 1) x.)^2}+ .... + {l′^π′ (x + p + (r - 1) x.)^π′ - x^π′ / (x + p)^π′ (x + p + x.)^π′ ... (x + p + (r - 1) x.)^π′}, &c.; quorum $ingulorum integrales detegi po$$unt, $i integralis quantitatis {β / x} + {γ / x^2}+ {δ / x^3} + &c. + {β′ / x + p} + {γ′ / (x + p)^2} + {δ / (x + p)^3} + &c. deduci po$$it.

Si data fractio $it impropria, tum reducatur ea ad propriam fracti- onem.

Hæc principia etiam ad inveniendas integrales omnium rationalium functionum variabilis (x) applicari po$$unt.

Si vero in denominatore contineantur duo factores x + l x. & x + [0371]INCREMENTORUM. (l + r)x., vel quicunque factores inter hos po$iti, ubi r $it integer numerus: tum reducenda e$t data fractio ad con$imiles terminos, i.e. eo$dem denominatores habentes ac ii, in quibus habetur conten- tum (x + l x.) (x + (l + 1)x.) (x + (l + 2)x.) (x + (l + 3)x.) ... (x + (l + r)x.). Et $ic de pluribus contentis huju$ce generis & eorum pote$tatilus.

7. Dimen$iones quantitatis x in incremento $emper erunt minores quam dimen$iones eju$dem quantitatis in integrali per unitatem, ni dimen$iones quantitatis x in numeratore integralis æquales $int ejus dimen$ionibus in ejus denominatore, in quo ca$u dimen$iones quan- titatis x in numeratore incrementi minores erunt per quantita- tem majorem quam unitatem quam dimen$iones quantitatis x in de- nominatore.

Cor. Si dimen$iones quantitatis x in numeratore incrementi $int minores quam dimen$iones quantitatis x in denominatore per uni- tatem, tum ejus integralis non deduci pote$t.

Et $ic de fractionibus reducendis, &c. in qua$cunque formulas, quarum integrales innote$cunt.

8. Inveniantur $inguli divi$ores denominatoris fractionis A x^n + B x^n-1 + &c. qui $int α, β, γ, δ, &c. & $i quicunque divi$or invenia- tur in denominatore, qui non habet alterum a $e di$tantem per in- tegrum numerum r in x. ductum, tum integralis dati incrementi finitis terminis haud exprimi pote$t. E.g. Sit denominator (x + {1 / 2} x.) × (x - 4x.) × (x - 5x.), nunc divi$or x + {1 / 2}x. non habet alterum in denominatore a fe di$tantem per integrum numerum in x., ergo in- tegralis dati incrementi finitis terminis haud exprimi pote$t.

Eadem principia etiam ad irrationales quantitates applicari po$$unt.

1. Contineantur $olummodo in dato incrementi {a′ x^m + b′x^m-1 + &c. / A x^n + B x^n-1 + &c.} denominatore duo $implices divi$ores x + l x. & x + (l + r) x.; vel hi duo & quicunque alii quorum numerus $it τ inter eos po$iti, ubi r [0372]DE METHODO $it integer numerus; tum a$$umenda e$t quantitas ((x + l x.) × (x + (l + 1) x.) × (x + (l + 2) x.) ... (x + (l + r - 1) x.))^-1 × (α x^m+r+1-n + β x^m+r-n + &c.) ubi α, β, &c. $unt invariabiles coefficientes inve$ti- gandæ, pro integrali quæ$itâ; inveniatur ejus incrementum, quod dato incremento fiat æquale, & ex æquatis eorum corre$pondentibus terminis deduci po$$unt invariables coefficientes α, β, γ, &c.

2. Sit denominator P = (x + a x.)(x + (a + b) x.)(x + (a + b + c) x.) (x + e x.)(x + (e + f)x.)(x + (e + f + g) x.)(x + k x.)(x + (k + l) x.) &c.) ubi b, c; f, g; l, &c. re$pective denotant integros numeros; tum a$$umenda e$t quantitas ((x + a x.)(x + (a + 1) x.)(x + (a + 2) x.) ... (x + (a + b + c - 1) x.)(x + e x.)(x + (e + 1) x.)(x + (e + 2) x.) ... (x^. + e + f + g - 1) x.)(x + k x.)(x + (k + 1) x.) ... (x + (k + l - 1) x.) × &c.)^-1 × (α x^π + β x^π-1 + &c.) ubi π = m - n + 1 + b + c + f + g + l + &c. pro integrali quæ$ita, cujus inveniatur incremen- tum, & ex æquatis inter $e incrementi dati & inventi corre$ponden- tibus terminis, inve$tigari po$$unt coefficientes α, β, γ, &c.

Cor. 2. Si modo numerus quantitatum a, e, l, &c. fit π, & dentur π - 1 diver$æ independentes integrales incrementorum; tum ex iis deduci po$$unt integrales e quibu$cunque incrementis prædicti ge- neris.

3. Sit quantitas {α′ x^m + b′x^m-1 + &c. / (x + α x.)^n × (x + (α + r) x.)^n}, ubi m, n & r $unt integri numeri: a$$umatur ((x + α x.)(x + (α + 1) x.)(x + (α + 2) x.) ... (x + (α + r - 1) x.))^-n × (α x^m+(r-2)n+1 + β x^m+(r-2)n + &c.) pro inte- grali quæ$itâ, cujus inveniatur incrementum; & ex æquatis dati & in- venti incrementi corre$pondentibus terminis deduci po$$unt coeffi- cientes α, β, &c.

Con$imilis erit $ub$titutio, $i modo inter (x + a x.)^n & (x + (α + r) x.)^n interponantur quidam termini formulæ (x + (α + s) x.)^n, ubi s e$t integer numerus minor vero quam r.

Si vero plures horum generum, &c. quantitates in denominatore contineantur. E.g. Sint (x + α x.)^n & (x + (α + r) x.)^n, (x + β x.)^p [0373]INCREMENTORUM. & (x + (β + s) x.)^p, &c. in denominatore contentæ, tum a$$umatur pro denominatore integralis ((x + α x.)(x + (α + 1) x.) .. (x + (α + r - 1) x.))^-n × ((x + β x.)(x + (β + 1) x.) ... (x + (β + s - 1) x.))^-p × &c. & per principia prius tradita deduci pote$t integralis incre- menti dati, $i modo in finitis terminis exprimi po$$it.

Cor. 3. Hinc facile con$tat numerus diver$arum independentium incrementorum prædicti generis integralium, e quibus deduci po$$unt integrales $ingulorum eju$dem generis incrementorum.

4. Dato irrationali incremento; primo inveniendum e$t, annon quædam irrationales quantitates $int $ucce$$ivi valores aliarum, & ex- inde con$tabit $ub$titutio, quam integralis dati incrementi exigit; i.e. abjiciantur ultimi $ucce$$ivi valores $ingulorum factorum in denomi- natore, etiamque $ingulorum irrationalium in numeratore contento- rum: horum factorum deducatur primus; tum a$$umantur pro inte- grali prædicti factores (ultimis abjectis) in $e$e & in factores deducen- dos ducti; & exinde erui pote$t integralis quæ$ita.

Ex. Sit incrementum, cujus numerator fit (e + 2f + 4g)^l (e + 3f + 9g)^l (e + 4f + 16 g)^l ... (e + (z + 1) f + (z + 1)^2 g)^l × (a × (z + 1) + β) - ((a + (z^2 + 1) b)^m (a + (z^2 + 2) b)^m (a + (z^2 + 3) b)^m ... (a + (z + 1)^2 b)^m × (e + f + g)^l ... (e + zf + z^2 g)^l × (a z + β) & denominator a^m (a + b)^m (a + 2b)^m (a + 3b)^m .. (a + (z + 1)^2 b)^m; pro denominatore integralis a$$umenda e$t quantitas a^m (a + b)^m (a + 2b)^m ... (a + z^2 b)^m; ubi ultimi factores, qui ex denominatore eva- ne$cunt, cum z evadat minor per ejus incrementum; viz. (a + (z^2 + 1) b)^m (a + (z^2 + 2) b)^m .. (a + (z + 1)^2 b)^m rejiciuntur; & pro numeratore ± (e + 2f + 4g)^l (e + 3f + 9g)^l ... (e + zf + z^2 g)^l × in terminum præcedentem huju$ce $eriei, qui facile cernitur, viz. (e + f + g) × (k + h z), ubi k & h $unt invariabiles coefficientes inve$ti- gandæ huju$ce integralis inveniatur incrementum, & fiat dato in- cremento æquale, & invenientur h = α & k = β: ob$ervandum e$t, $i $int quædam irrationales quantitates in denominatore dati incrementi contentæ, quæ non habent etiam in eo earum $ucce$$ivos valores, tum minime exprimi pote$t in finitis terminis integralis dati incrementi.

[0374]DE METHODO

Per fucce$$ivos valores quantitatis A, intelligo valores re$ultantes e $ub$titutione quantitatum x + x., x + 2 x., &c. pro x in quantitate A. Sit incrementum B - A, & $i B fit $ucce$$ivus valor quantitatis A; tum erit A integralis quæ$ita.

Hæc methodus, cum $eries non terminet, $emper dabit $eriem ter- minorum $ecundum reciprocas dimen$iones quantitatis x progredi- entium.

5. Hæ vero irrationales quantitates reduci po$$unt ad plures infinitas $eries $ecundum dimen$iones quantitatis x progredientes vel in $eries formulæ a + b x + c × x × (x - x.) + d x × (x - x.) × (x - 2 x.) + &c. vel formulæ a + {b / x} + {c / x × (x + x.)} + {d / x × (x + x.) × (x + 2x.)} + &c. &c. vel a x. + 2 b x x. + (4 c + 2 d x.^2) x^3 x. + &c. vel formulæ a + b x^s + c x^s × (x - x.)^s + d x^s × (x - x.)^s × (x - 2 x.)^s + &c. vel formulæ a + {b / x^s} + {c / x^s × (x - x.)^s} + &c. in quibus $ingulis eædem ad- hibentur radices; tum inveniatur aggregatum (P) ex integralibus $ingularum $erierum; ducantur $ingulæ duæ prædictæ infinitæ inte- grales in $e$e, & inveniatur aggregatum e $ingulis productis; ducan- tur quæque tres, quatuor, &c. prædictæ integrales in $e$e, & inve- niantur aggregata $ingularum quantitatum re$ultantium, quæ dican- tur re$pective Q, R, S, T, &c.; tum erit 1 - {P / v} + {Q / v^2} - {R / v^3} + &c. = 0 æquatio, cujus radix v e$t integralis quæ$ita.

6. Si vero in incremento dato contineantur incrementa duorum vel plurium ordinum quantitatis x; tum abjiciantur omnes termini, in quibus inveniuntur incrementa $uperiorum ordinum; & e terminis, in quibus $olummodo contineatur incrementum primi ordinis, inve- niatur integralis; inter incrementum inventæ integralis & datum $umatur differentia, cujus integralis e præcedente methodo detegatur, & $ic deinceps; & tandem detegetur integralis dati incrementi.

[0375]INCREMENTORUM. THEOR. II.

Sit incrementum (V.n) n ordinis & x. con$tans; tum erit ejus inte- gralis generaliter correcta V + a x^n-1 + b x^n-2 + c x^n-3 ... k x + l, ubi a, b, c; k, l denotant qua$cunque invariabiles coefficientes ad li- bitum a$$umendas. Hinc ad integrales quantitates applicari po$$unt ea, quæ edita fuere de fluentibus fluxionum in prob. 8, & 9. libri præ- cedentis.

THEOR. III.

1. Sint duæ vel plures variabiles quantitates (x, y, z, &c.) in datâ incrementiali quantitate contentæ, a$$umantur omnes variabiles quantitates præter quamcunque unam tanquam invariables & inve- niatur integralis quantitatis re$ultantis; & $ic de $ingulis reliquis va- riabilibus quantitatibus; & $i omnes termini integralium inventarum ex a$$umendo omnes variabiles præter unam tanquam invariabiles, in quibus inveniuntur plures quam una variabiles quantitates (x, y, z, &c.) haud $int iidem, tum haud admittet integralem datum incre- mentum: $i $int iidem, tum inveniantur eorum incrementa, & inve- nietur, utrum integralis datæ quantitatis inveniri pote$t, necne.

2. Si incrementum unius variabilis quantitatis $it invariabilis, tum incrementa cæterarum haud po$$unt e$$e dati numeri, nec exprimi po$$unt, ni$i per literas de$ignantes earum incrementa; $i enim dentur relationes inter incrementa unius variabilis quantitatis & alterius, tum etiam deduci pote$t relatio inter earum integrales.

Ex. 1. Sit incrementum x y z. + x z y. + y z x. + y x. z. + x y. z. + z x. y. + x. y. z. + a x. + b y. + c z.; $upponantur omnes termini præter eos, in quibus inveniuntur minimæ dimen$iones incrementorum quantitatum x, y, z, &c. nihilo æquales, & re$ultat quantitas incre- mentialis x y z. + x z y. + z y x. + a x. + b y. + c z.: nunc $upponantur omnes præter x invariabiles, & re$ultat quantitas y z x. + a x., cujus integralis e$t y z x + a x; & $ic $upponantur omnes quantitates præ- [0376]DE METHODO ter y invariabiles, & re$ultat incrementum z x y. + b y., cujus inte- gralis inveniatur x z y + b y, & $ic $upponantur omnes præter tertiam z invariabiles, & re$ultat incrementum x y z. + c z., cujus integralis erit x y z + c z: hinc a$$umenda e$t quantitas x y z + a x + b y + c z pro integrali; cujus incrementum erit datum.

Ex. 2. Sit incrementum datum x y. + y x. + 2 y. x.; a$$umantur x & y invariabiles alternatim, & re$ultabit integralis x y, cujus incrementum erit x y. + y x. + x. y.; $ubtrahatur hoc incrementum de dato, & re$ul- tat differentia x. y., cujus integralis haud deduci pote$t, ni vel x. vel y. $it con$tans.

3. Si vero incrementum quantitatis variabilis x $it datus numerus, & con$equenter haud exprimatur in dato incremento; tum $upponantur omnes præter unam e reliquis variabilibus invariabiles, & incrementi re$ultantis inveniatur integralis, cujus deinde inveniatur incremen- tum ex hypothe$i quod omnes mox a$$umptæ invariabiles $int varia- biles: $ubducatur hoc incrementum de dato, & con$imili methodo inueniatur integralis differentiæ re$ultantis; & tandem inveniri po- te$t, utrum integralis dati incrementi exprimi pote$t, necne.

4. Et $ic inveniri pote$t, utrum integralis cuju$cunque quantitatis duas vel plures variabiles quantitates, & earum incrementa quorum- cunque ordinum involventis exprimi pote$t, necne.

5. Si una $olummodo contineantur variabilis quantitas x & ejus in- crementa in dato incremento, tum e principiis prius traditis detegi pote$t, utrum ejus integralis exprimi pote$t, necne: e. g. $it datum incrementum P x. + Q x.^2 + R x.^3 + &c. ubi P, Q, R, &c. $unt fun- ctiones quantitatis x; nunc $upponantur omnes termini præter P x. nihilo æquales, & inveniatur fluens π fluxionis P x^., quæ erit integralis incrementi dati, $i in eo haud contineantur incrementa quantitatis x.; inveniatur incrementum quantitatis π, quæ erit P x. + Q x.^2 + R x.^3 + &c. = {π^. x. / x^.} + {1 / 2}{π^.. x.^2 / x^. ^2} + {1 / 6}{π^... x.^3 / x^. ^3} + &c. $i modo x^. & x. $int invariabiles.

Si vero contineantur incrementa $uperiorum ordinum quantitatis x in dato incremento, ex præcedentibus principiis etiam deduci po- [0377]INCREMENTORUM. te$t ejus integralis, $i modo integrari po$$it. E principiis in prob. 4. I. 1. mutatis mutandis, & iis quæ $upra tradita fuere, inve$tigari po- te$t, annon integralis cuju$cunque dati incrementi exprimi pote$t.

Ea, quæ de fluxionibus in theor. 2. tradita fuere mutatis mutandis ad incrementa applicari po$$unt, e. g. inveniatur incrementum quan- titatis V ordinis m ex hypothe$i, quod x $olummodo $it variabilis, & re$ultet quantitas W; deinde inveniatur incrementum quantitatis W ordinis n ex hypothe$i quod y $olummodo $it variabilis; & eadem re- $ultabit quantitas, ac $i modo inveniatur 1<_>mo. incrementum quanti- tatis V ordinis n ex hypothe$i quod y $olummodo $it variabilis, & re- $ultet quantitas u, & deinde inveniatur incrementum m ordinis quan- titatis u ex hypothe$i quod x $olummodo $it variabilis.

Hinc e principiis in prædicto theor. 2. deduci pote$t, annon datum incrementum duas vel plures variabiles quantitates & earum incre- menta involvens, integrari pote$t.

In inve$tigandis integralibus incrementorum eædem radices in in- tegrali & incremento $emper adhibendæ $unt, ut prius docetur de fluentibus.

Si variabilis quantitas in denominatore a$cendat ad dimen$iones majores per quantitatem majorem quam unitatem quam ejus dimen- $iones in numeratore; tum integralis inter finitam & infinitam di$tan- tiam erit finita; $in aliter non; &c. ut de fluentibus prius docetur.

PROB. VII. Transformare data incrementa in alia, quorum variabiles datas habent relationes ad variabiles datarum quantitatum.

Ex datis relationibus inter variabiles datarum & quæ$itarum quan- titatum $ub$tituantur illarum valores in terminis variabilium quæ$ita- rum quantitatum, & exinde illarum incrementa pro incrementis va- riabilium datarum quantitatum, & re$ultant quæ$ita incrementa.

Ex pleri$que $ub$titutionibus in prob. 14. I. 1. datis transformari po$$unt irrationalia incrementa in rationalia.

[0378]DE METHODO

Ex. Sit relatio inter variabiles z & x datæ & quæ$itæ quantitatìs x = √ (z^2 + a^2), unde x. = √ ((z + z.)^2 + a^2) - √ (z^2 + a^2); & z = √ (x^2 - a^2) & z. = √ ((x. + x)^2 - a^2) - √ (x^2 - a^2); & $ic inveniri po$$unt incrementa z.., z..., &c.: in quantitate A, quæ e$t fun- ctio quantitatis z & ejus incrementorum, pro z & ejus incrementis $cribantur eorum prædicti valores, & transformatur data quantitas in alteram B, quæ e$t functio quantitatis x & ejus incrementorum.

Cor. 1. Sint α & π, etiamque β & ξ corre$pondentes valores prædi- ctarum variabilium; tum integralis quantitatis A inter α & β contenta eadem erit ac corre$pondens integralis quantitatis B inter π & ξ.

Cor. 2. Sit A data integralis, quæ e$t functio quantitatis z & ejus incrementorum, & a$$umatur æquatio in quâ x & z $imiliter invol- vuntur; deinde inveniantur quantitas z & ejus incrementa in terminis quantitatis x & ejus incrementorum, quæ $it B; in quantitate B pro x $cribatur z & re$ultet C; $int π & ξ valores quantitatis x, qui cor- re$pondent valoribus α & β quantitatis z; tum integralis inter valo- res α & β variabilis x quantitatis A + C contenta eadem erit ac inte- gralis eju$dem quantitatis A + C inter valores π & ξ eju$dem quan- titatis (x) contenta.

Principia e quibus detegi pote$t, utrum fluens fluxionalis æquatio- nis tres vel plures variabiles quantitates involventis, exprimi pote$t, necne; etiam ad incrementiales æquationes applicari po$$unt.

THEOR. IV.

1. Sit incrementum {P x^m + Q x^m-1 + R x^m-2 + &c. / A × (x + αx.) × (x + (α + 1)x.) .. (x + (α + a) x.} ubi a & m $int integri numeri, & ejus integralis inveniri pote$t vel e finitis terminis, vel e finitis terminis & integrali formulæ {1 / x + a x.}, vel formulæ {1 / x}, quæ revera eadem haberi pote$t.

2. Et $ic $it denominator (x + αx.) × (x + (α + 1) x.) .. (x + (α + a) x.) [0379]ÆQUATIONIBUS. × (x + β x.) × (x + (β + 1) x.) .. (x + (β + b) x.) × (x + γ) × (x + (γ + 1) x.) × (x + (γ + 2) x.) ... (x + (γ + c) x.) × &c. ubi a, b, c, &c. $unt integri numeri; tum integralis cuju$cunque rationalis incre- menti denominatorem prædictum habentis $emper detegi pote$t vel e finitis terminis, vel e finitis terminis & integralibus incrementorum huju$ce formulæ {1 / x}.

3. Sit denominator (A x^n + B x^n-1 + &c.) × (x + γ)^m × &c. (x + δ)^r × &c. ubi r major e$t quam m, &c. & quantitates n, m & r, &c. integri $unt numeri, tum integralis cuju$cunque rationalis incrementi denomina- torem prædictum habentis $emper detegi pote$t vel e finitis terminis, vel e finitis terminis & integralibus incrementorum harum formula- rum {1 / x}, {1 / x^2}, {1 / x^3}, {1 / x^4} ... {1 / x^r}.

Et in genere integralis cuju$cunque rationalis incrementi prædicti generis $emper detegi pote$t vel e finitis terminis, vel e finitis terminis & integralibus incrementorum formularum {1 / x^2 + a x + b}, {1 / x^2 + a x + b)^2},{1 / (x^2 + a x + b)^3} ... {1 / (x^2 + a x + b)^t}, & {1 / x}, {1 / x^2} ... {1 / x^s}, ubi s $it maxi- mus numerus æqualium divi$orum in denominatore contentorum, & t vel = {s / 2} vel {s - 1 / 2}.

Omnia hæc facile e prob. 6. deduci po$$unt; facile enim e prædicto problemate reduci pote$t quodcunque rationale incrementum ad ejus magis $implices divi$ores.

Idem etiam vere affirmari pote$t de quocunque incremento, quod ad prædictum rationale reduci pote$t.

PROB. VIII.

Invenire, annon datæ incrementialis quantitatis integralis ope aliarum (L, M, N, &c.) detegi pote$t: ducantur incrementiales (L, M, N, &c.) [0380]DE METHODO quantitates in invariabiles (α, β, γ, &c.) coefficientes generaliter $umptas, & quantitatum re$ultantium $umma e datâ incrementiali $ubtrahatur; & in quantitate re$ultante ita a$$umantur coefficientes α, β, γ, &c. ut inveniatur ejus integralis, $i modo fieri po$$it; & id quod requiritur, confit.

Eadem principia, quæ generaliter inveniunt, annon fluens datæ fluxionis inveniri pote$t ope datarum fluxionum fluentium; etiam detegent utrum integralis cuju$cunque incrementi detegi pote$t ope integralium datorum incrementorum, necne.

PROB. IX.

Dato incremento, quæ in $e continet integralem v, quæ haud exprimi pote$t in finitis algebraicis terminis variabilis x, &c. invenire utrum in- tegralis dati incrementi $it finita algebraica functio quantitatis x & præ- dictæ integralis & earum incrementorum, necne.

Sit incrementum v × π. cujus integralis requiritur; a$$umatur pro integrali v π, cujus incrementum erit v π. (datum) + π v. + π. v.; ergo - integ. increm. (π v. + π. v.) erit integralis quæ$ita.

Si vero in dato incremento vel contineantur plures dimen$iones integralis v, vel quæcunque aliæ integrales quantitates; tum per methodum (mutatis mutandis) in prob. 5. libri primi traditam pro fluentibus con$imilium fluxionum progrediendum e$t.

Et fere eadem erit methodus detegendi integrales exponentialium incrementorum, ac ea quæ prius tradita fuit ad inve$tigandas inte- grales incrementorum præcedentium. Ex. g. Sit incrementum e^z, & ejus integralis erit {e^z / e^z. - 1}, $i modo z. $it con$tans.

Ex. Sit z = - x, & erit incrementi e^-x integralis {e^-x / e^-x. - 1}.

Facile acquiri po$$unt infinita huju$modi incrementa, quorum in- tegrales innote$cunt; a$$umantur enim integrales, & deducantur ea- rum incrementa, quorum igitur integrales dantur.

[0381]INCREMENTORUM.

2. Datis incrementis, quæ in $e involvunt irrationales quantitates in prob. 15, &c. libri præcedentis traditas, facile e $ub$titutionibus in problemate prædicto contentis reduci po$$unt ad incrementa, quæ nullas irrationales quantitates continent.

E $ub$titutione duorum valorum (α & β) variabilis quantitatis x pro ipsâ x in datâ integrali re$ultabit valor integralis inter duos præ- dictos valores variabilis x contentæ.

In his integralibus æque ac in fluentibus deducendis eædem ra- dices $emper u$urpandæ $unt.

PROB. X. Invenire integralem incrementi v r^z z., ubi z. $it invariabilis quantitas.

A$$umatur pro integrali {v r^z z. / r^z. - 1 (R)} - P, cujus incrementum e$t v r^z z. + v. r^z z. + v. {r^z z. / R} - P.; unde P. = v. {r^z z. / R} + v. r^z z. = v. {r^z r^z. z. / R}, cujus integralis $it v. {r^z z. / R^2} - Q, & ex ii$dem principiis invenietur Q ={r^2 z. × r^z / R^3} - S, & $ic deinceps; unde integralis quæ$ita e$t {v r^z z. / R} +{r^z . × r^z z. / R^2} v. + {r^2 z. × r^z z. / R^3} v.. + &c.

Eadem methodus, quæ generaliter detegit vel fluentem fluxionis vel integralem incrementi in finitis terminis, cum ita exprimi po$$it, $emper eam exprimet per infinitam $eriem, $i finitis terminis exprimi nequeat.

2. Data incrementiali quantitate, cujus integralis per $eriem A + B x^m + C x^2m + &c. exprimatur, & per methodum in Medit. Algebr. traditam $cribantur pro x & ejus incrementis quantitates α x, β x, γx, &c. & earum incrementa; ubi α, β, γ, &c. $int re$pective radices æquationis x^n - 1 = 0, & e quantitatibus re$ultantibus per Medit. [0382]DE METHODO Algeb. facile deduci pote$t quantitas æqualis $ummæ e $ingulis termi- nis prædictæ $eriei, quorum di$tantiæ a $e invicem $int n, 2 n, 3 n, &c.

Eadem etiam applicari po$$unt ad fluentiales & integrales æquati- ones.

Per methodum in fluxionibus vel algebraicis æquationibus prius traditam irrationales ex numeratore in denominatorem & vice versâ ex denominatore in numeratorem trans$ormari po$$unt: & exinde nonnunquam facilius deduci po$$unt integrales.

PROB. XI. Invenire, utrum integralis logaritb. {A / B} detegi pote$t ope logaritbmorum, necne; ubi A & B $unt functiones quantitatis x.

Inveniantur $implices divi$ores numeratoris A & denominatoris B; qui $int re$pective α, β, γ, δ, &c.; π, ς, σ, τ, &c.; & $i in numeratore vel denominatore inveniatur divi$or, qui non habet alterum ei cor- re$pondentem in denominatore vel numeratore, tum non inveniri pote$t integralis per logarithmos; $in aliter $emper exprimi pote$t.

Sint a & b corre$pondentes divi$ores; tum, $i in a pro x $cribatur x + r x., re$ultabit b; ubi r e$t integer numerus.

Si in divi$oribus α, β, &c. numeratoris pro x $cribantur x + r x., x + r′ x., &c., re$ultant π, ς, &c. divi$ores denominatoris; & vice versâ, $i in reliquis σ, τ, &c. divi$oribus denominatoris $cribantur x + s x., x + s′ x., &c. pro x, re$ultant reliqui divi$ores numeratoris; tum integralis dati incrementi log. {A / B} erit log. {σ × σ′ × σ″ × σ′″ ... σ′^s-1 × τ × τ′ × τ″ × ... τ′^3′-1 × &c. / α × α′ × α″ ... α′^r-3 × β × β′ × β″ × ... β′^r′-1 × &c.}: ubi, $i modo pro x in terminis σ, σ′, σ″, σ′″, &c. $cribatur x + x., re$ultabunt quantitates σ′, σ″, σ′″, σ″″, &c.; & $ic de reliquis τ, τ′, τ″, &c.; α, α′, α″, &c.; β, β′, β″, &c., &c.

[0383]INCREMENTORUM.

Ex. Sit incrementum log. {x × (x + p + 3 x.) / (x + 4 x.) (x + p)}; tum per hoc prob. erit integralis log. {(x + p) (x + p + x.) (x + p + 2 x.) / x (x + x.) (x. + 2 x.) (x + 3 x.)}: erit enim ejus incrementum log. {(x + p + x.) (x + p + 2 x.) (x + p + 3 x.) / (x + x.) (x + 2 x.) (x + 3 x.) (x + 4 x.)} - log.{(x + p) (x + p + x.) (x + p + 2 x.) / x (x + x.) (x + 2 x.) (x + 3 x.)} = log. {x × (x + p + 3 x.) / (x + 4 x.) (x + p)}.

Eadem principia etiam ad circulares arcus, qui ex impo$$ibilibus logarithmis deduci po$$unt; ad ellipticos, hyperbolicos, &c. arcus ap- plicari po$$unt.

PROB. XII.

Datâ æquatione relationem inter x & y exprimente, & conce$sâ radicum extractione; invenire aggregatum e $ingulis valoribus cuju$cunque alge- braicæ functionis quantitatum x & y, earum incrementorum & fluxionum.

Inveniatur e prædictis conce$$is primum incrementum quantitatis y, & $ic $ecundum, tertium, &c. etiamque ejus fluxiones; quibus va- loribus in datâ incrementiali quantitate $ub$titutis, re$ultat algebraica quantitas, cujus $umma e $ingulis valoribus erui pote$t per Medit. Al- gebr. Et $ic aggregatum rectangulorum e quibu$que duobus valori- bus datæ functionis; contenta e quibu$que tribus, quatuor, &c. valo- ribus datæ functionis deduci po$$unt; unde detegetur æquatio ip$a, cujus radix e$t prædicta functio.

2. Sit æquatio A y^n + (a + b x) y^n-1 + (c + d x + e x^2) y^n-2 + &c. = 0, & fluat x uniformiter, cujus incrementum $it x.; tum pro $ingulis datis corre$pondentibus valoribus quantitatum x, y & x., re$ultare po$- $unt n diver$i corre$pondentes valores incrementi y., quorum $umma erit - {a + b x + b x. / A} - n y.

[0384]DE METHODO

3. Datâ quantitate x & ejus incremento x., & numerus valorum in- crementorum y. pote$t e$$e n × n, ut facile con$tat e Medit. Algeb.

4. Datâ quantitate x & ejus incremento x., & $umma n valorum incre- menti y x. = - {a + b x / A} x., cujus integralis erit - ({a / A} x + {b / A} × int. x x.) = ({a / A} x + {b / A} x × {x - x. / 2} + {b / A} x + c).

Et $ic de $ummis integralium incrementialium y^2 x., y^3 x., &c.

5. Sit æquatio (A + B x) y^n-1 + (C + D x + E x^2) y^n-2 + &c. = 0, & $i A + B x haud $it divi$or quantitatis C + D x + E x^2, tum $umma e $ingulis integralibus quantitatis incrementialis y x. haud exprimi pote$t per finitos terminos qauntitatum x & y.

PROB. XIII.

Datâ æquatione algebraicâ (n) dimen$ionum y^n + (a + b x) y^n-1 + &c. = 0, invenire æquationem cujus radix (z) $it integralis quantitatis y x., $i modo ea inveniri po$$it.

A$$umatur æquatio, in quâ dimen$iones quantitatis z inveniuntur n, quoniam omni valori quantitatis x corre$pondent n diver$i valores quantitatis z; viz. z^n + (a x + {b / 2} x^2 - {b / 2} x x. + c) z^n-1 + &c. = 0, ubi c e$t invariabilis quantitas ad libitum a$$umenda, & x. con$tans; exinde inveniatur æquatio cujus radix erit {z. / x.}, & fiant coefficientes re- $ultantis & datæ æquationis inter $e æquales, & exinde deduci po$$unt coefficientes, $i modo integralis exprimi po$$it in finitis terminis.

Aliter: reduci pote$t data æquatio, ita ut inveniantur n valores quantitatis y progredientes $ecundum dimen$iones qnantitatis x; de- inde inveniatur per prædictas methodos integrales e $ingulis hi$ce $eriebus, quarum $umma erit $umma radicum quæ$itæ æquationis; ducantur quæque duæ, tres, &c. ex his integralibus in $e$e & inveni- [0385]INCREMENTORUM. antur aggregata e $ingulis hi$ce re$ultantibus $eriebus, & erunt re- $pective coefficientes tertii, quarti, &c. terminorum quæ$itæ æquatio- nis, & $ic deinceps; & exinde con$tabit æquatio quæ$ita.

Cor. In omnibus hi$ce re$olutionibus irrepit in terminos æquatio- num quantitas ad libitum a$$umenda, quæ quantitas denotat corre- ctionem quantitatis vel æquationis quæ$itæ.

2. Eædem etiam methodi applicari po$$unt ad inveniendas æquatio- nes, quarum radices $unt quæcunque algebraicæ functiones quantita- tum x & y incognitarum in datâ æquatione contentarum, & earum incrementorum.

3. Et $ic de pluribus m æquationibus plures (m + 1) incognitas quantitates habentibus, $ed ob$ervandum e$t in omnibus hi$ce æqua- tionibus ac in æquationibus exprimentibus fluentes fluxionum, $i modo $olummodo $it fluxio vel incrementum primi ordinis in quan- titate, cujus æquatio exprimens ejus fluentem vel integralem requiri- tur; tum una $olummodo quantitas in æquatione re$ultanti a$$umi pote$t ad libitum; $i vero fluxiones vel incrementa $ecundi, tertii, &c. ordinis in prædictâ quantitate contineantur, tum duæ, tres, &c. quantitates ad libitum a$$umi po$$unt.

THEOR. V.

1. Sit æquatio integralis a x^r + b x^s × y^t = c y^n, e prob. 32. 1. 1. con$tant quantitates x & y in terminis tertiæ z, & exinde earum in- crementa in terminis tertiæ z & ejus incrementorum; unde deduci pote$t quæcunque functio quantitatum x & y, & earum incremento- rum in terminis quantitatis z & ejus incrementorum.

2. Sit algebraica æquatio homogenea, i. e. ejus $inguli termini ea$dem conficiant dimen$iones, & inveniri pote$t quæcunque functio ejus variabilium x & y, & earum incrementorum in terminis novæ variabilis z, & ejus incrementorum.

Omnia, quæ de algebraicis æquationibus & fluxionalibus quanti- tatibus in prob. 32, & 33. l. 1. tradita fuere, ad algebraicas æquationes [0386]DE METHODO & incrementiales quantitates (mutatis mutandis) applicari po$$unt; & eadem principia quæ tradita fuere in fluxionalibus æquationi- bus de detegendis rationalibus functionibus tertiæ z, quæ re$pective æquant variabiles x & y, ad incrementiales æque applicari po$$unt.

PROB. XIV. Datam æquationem, in quâ integralis continetur quantitas; in incremen- tialem reducere, ita ut exterminetur integralis quantitas.

Si integralis ducatur in variabilem quantitatem; dividatur æquatio per eam quantitatem, & inveniatur incrementum quantitatis re$ul- tantis, & exterminabitur integralis.

Si autem majores $int dimen$iones (r) integralis quantitatis exter- minandæ, vel altior $it ordo (n) ejus integralis; in po$teriori ca$u nece$$e e$t invenire incrementum (n) ordinis datæ æquationis, in priori vero ca$u con$tabit reductio e prob. 28. 1. I. i. e. integrales ex æquationibus exterminabuntur omnino per eandem methodum ac fluentes e datis æquationibus.

Ex.. Sit data æquatio (x + y) × integ. {x x. + y x^2 y / √(x^2 + y^2)} = √(b^2 + y^2) - c x^2; dividatur æquatio per x + y, & re$ultat integ. {x x. + y x^2 y / √(x^2 + y^2)}= {√(b^2 + y^2) - c x^2 / x + y}; inveniatur incrementum re$ultantis æquatio- nis, & re$ultat {x x. + y x^2 y / √(x^2 + y^2)} = increm.{√(b^2 + y^2) - c x^2 / x + y}.

PROB. XV. _Reducere duas incrementiales æquationes_ A = 0 _&_ B = 0 _in unam, ita_ _ut exterminentur variabilis quantitas z & ejus incrementa._

Sit infima incrementialis quantitas literæ z in unâ æquatione z.n, in alterâ vero z.n+p; inveniatur p incrementum e $ingulis terminis [0387]INCREMENTORUM. prioris æquationis, & re$ultat infima incrementialis quantitas literæ z in æquatione re$ultante z.n+p deinde e (p - 1) incremento e $ingulis terminis prioris æquationis exterminetur incrementialis quantitas x.n+p-1; & $ic reduci pote$t po$terior æquatio ad incrementialem æqua- tionem, in quâ infimum incrementum quantitatis z $it z.n; unde duæ dantur æquationes, in quibus infima incrementialis quantitas literæ z erit z.n; ex his duabus æquationibus deduci pote$t æquatio, cujus infima incrementialis quantitas literæ z erit z.n-1, & ex hâc & priori datâ æquatione deduci pote$t altera æquatio, cujus infima incremen- tialis quantitas literæ z e$t z.n-1, & ex his duabus æquationibus con$e- quitur incrementialis æquatio, in quâ infimum incrementum quan- titatis z e$t z.n-2; & $ic deinceps; & tandem ita reducetur æquatio, ut exterminentur quantitas z, & ejus incrementa.

Cor.. In reducenda infimâ incrementiali quantitate z.r in utri$que æquationibus ad unam $uperiorem z.F-1 $emper inveniendum e$t pri- mum incrementum quantitatum in utri$que æquationibus contenta- rum; unde $i in duabus prædictis æquationibus A = 0 & B = 0, in quibus z.n & z.n+p re$pective $int infima incrementa quantitatis z, etiam- que fint y.α & y.β infima incrementa quantitatis y; & infimum incremen- tum quantitatis y in æquatione re$ultante, in quâ haud inveniuntur quantitas z vel ejus incrementa, haud pote$t e$$e majus quam α + n + p vel β + n.

Sed e prob. 36.1.1. con$tat, $i æquatio re$ultans $it incrementialis cuju$cunque ordinis α + n + p vel β + n, &c. tot a$$umi po$$e cor- re$pondentes valores variabilium x & y in eâ contentarum, & incre- mentorum variabilis y diverforum, quot $it ordo datæ æquationis, $i x. $it con$tans.

2. Et $ic de pluribus (m) incrementialibus vel fluxionalibus æqua- [0388]DE METHODO tionibus in unam reducendis; hinc enim fluxionalis vel incrementia- lis æquationis re$ultantis deduci pote$t ordo.

3. Æquationes incrementiales vel fluxionales po$$unt e$$e inter $e con- tradictoriæ; hoc autem $emper con$tabit ex earum reductione in unam, ita ut variabiles, &c. quantitates exterminentur, & $i hæc una re$ultans æquatio aliquid ab$urdi in $e contineat, vel for$an ejus divi$ores; tum aliquid contradictorium continent in $e æquationes incrementiales.

4. Ex hâc methodo transformandi æquationes, ita ut variabiles quan- titates & earum incrementa exterminentur, irrepunt in æquationes re$ultantes radices, quæ in datis haud inveniuntur; quomodo hæ radices irrepant in re$ultantes æquationes, & radices ip$æ, e princi- piis in medit. algebr. traditis, erui po$$unt.

THEOR. VI.

1. Sit incrementialis æquatio A × B × C × &c. = 0, quæ admittat divi$ores A, B, C, &c. hæc incrementialis æquatio dividi pote$t in plures incrementiales æquationes A = 0, B = 0, C = 0, &c.

2. Sint duæ incrementiales æquationes A × B × C × &c. = 0, & a × b × c × &c. = 0; tum hæ duæ incrementiales æquationes reduci po$$unt ad alias, viz. A = 0 & a = 0; A = 0 & b = 0; A = 0 & c = 0, &c. B = 0 & a = 0; B = 0 & b = 0, &c. &c.

THEOR. VII.

E duabus datis incrementialibus æquationibus facile formari po$- $unt infinitæ aliæ, quarum variabiles quantitates eandem habent in- ter $e rationem. Ducantur duæ æquationes in invariabiles quan- titates, & addantur vel $ubducantur æquationes re$ultantes de $e ip- $is; & re$ultant novæ æquationes quæ$itæ.

THEOR. VIII.

Datâ incrementiali æquatione relationem inter x & y & earum in- crementa n ordinum exprimente, $i modo ex eâ inveniatur æquatio, [0389]INCREMENTORUM. quæ haud continet incrementa majorum quam n - 1 ordinum, tum a$$umi pote$t una quantitas invariabilis ad libitum a$$umenda, & $ic deinceps; unde in æquatione ex incrementis liberâ erunt n invaria- biles quantitates ad libitum a$$umendæ.

Sit quantitas ip$a, vel ea ducta in quamcunque incrementialem quantitatem inferioris ordinis, perfectum incrementum, cujus inte- gralis dicatur V; & erit V + C = 0 æquatio vere correcta, ubi C denotat invariabilem quantitatem: $i modo $it incrementialis æquatio ordinis n, & x.m $it incrementum ordinis m, qui minor $it quam n; etiamque $it x.m con$tans; tum erit æquatio vere correcta V + A(x.m)^{n-1 / m} ubi A e$t invariabilis quantitas.

Et $ic progredi liceat ad æquationes integrales $uperiorum ordi- num.

Quot invariabiles quantitates ad libitum a$$umi po$$unt, tot cor- re$pondentes valores e $ingulis variabilibus quantitatibus, & e diver$is incrementis variabilis quantitatis, quæ haud cre$cit uniformiter, a$- $umi po$$unt.

PROB. XVI.

_Datâ æquatione relationem inter_ x _&_ y _& earum incrementa exprimente;_ _invenire æquationem, cujus radix e$t correctio ip$a: $cribatur_ v + z _pro_ y _in datâ æquatione, ubi_ v _denotat particularem valorem quantitatis_ y; _ex_ _æquationibus re$ultantibus con$tat æquatio, cujus radix e$t_ z _correctio quæ-_ _$ita: vel $i modo per infinitas $eries convergentes inveniatur generalis valor_ _quantitatis_ y _in terminis quantitatis_ x, _con$equetur correctio quæ$ita._

Omnis mothodus, quæ detegit generalem correctionem datæ æqua- tionis, etiam deducet generalem ejus integralem.

Et $ic de pluribus (m) æquationibus plures (m + 1) variabiles quantitates & earum incrementa habentibus.

[0390]DE METHODO PROB. XVII. Invenire quamplurimas incrementiales æquationes, quarum integrales cogno$cuntur.

1. A$$umantur integrales æquationes, & ex iis deducantur incre- mentiales.

2. Deducantur æquationes, quarum radices quamcunque habeant relationem ad radices a$$umptarum vel inventarum æquationum, & e radicibus a$$umptarum deduci po$$unt radices deductarum æquati- onum.

3. A$$umatur a pro y, quæ $it quæcunque $unctio quantitatis x, deinde $cribantur hæc quantitas & ejus incrementa pro $uis valoribus in quantitate π, quæ $it functio variabilium x, y & earum incremen- torum, & $it quantitas exinde re$ultans ξ; tum erit α particularis valor incrementialis æquationis π = ξ.

4. Datâ incrementiali æquatione, e quâ deduci pote$t F integralis incrementi (P); pro variabilibus & earum incrementis in datâ æqua- tione & datâ quantitate P $cribantur quæcunque functiones novarum variabilium, & earum incrementa; & re$ultant æquatio inter has novas variabiles & earum incrementa relationem exprimens, & nova quantitas π, cujus integralis deduci pote$t ex integrali quantitatis P.

5. Sit quæcunque incrementialis æquatio, dividatur ea in duas æquales partes, ita ut integralis alterius partis inveniri pote$t, ea erit etiam integralis alterius.

PROB. XVIII. _1._ Datâ integrali (P = 0) generali primi ordinis incrementialis æquationis, invenire æquationem ip$am.

Sit a quantitas invariabilis in datâ integrali P = 0 ad libitum a$$umenda, & ex eâ deducatur α = π, & erit π = 0 incrementialis æquatio quæ$ita.

[0391]INCREMENTORUM.

Ex. Sit integralis y = {z - z. / z. + n}y. + a, ubi z. e$t con$tans & a inva- riabilis quantitas ad libitum a$$umenda; hujus æquationis invenia- tur incrementum, & evadet y. = {z - z. / z. + n}y. + {z. / z. + n}(y. + y..), quod re- ductum fit {z. + n - z / z. + n}y. = {z / z. + n}y, unde (z. + n - z)y. = zy.. æqua- tio, cujus integralis generalis e$t data.

2. Datâ integrali (P = 0) generali n ordinis incrementialis æqua- tionis (a = 0); ex æquatione P = 0, quæ continet n invariabiles quan- titates (a, b, c, &c.) ad libitum a$$umendas, inveniantur n æquationes a = π, b = ξ, c = σ, &c. tum erunt π. = 0, ξ. = 0, σ. = 0, &c. (n) di- verfæ æquationes, quæ $unt integrales n - 1 ordinis incrementialis æquationis a = 0; ex his æquationibus inveniri po$$unt n. {n - 1 / 2} aliæ, quæ $unt integrales n - 2 ordinis æquationis a = 0; & $ic de- inceps u$que ad n æquationes detegendas, quæ $unt integrales primi ordinis æquationis a = 0.

Si non inveniri po$$int a = π, tum reducantur duæ æquationes P = 0 & P^. = 0 in unam, ita ut exterminetur invariabilis quantitas; & $ic deinceps.

Cor. Sunt n multiplicatores, qui ducti in datam æquationem a = 0 prebent incrementa, quorum integrales cogno$cuntur; & $ic deinceps, ut con$tat e theor. 29. libri præcedentis.

Sint m, m′, m″, &c. re$pectivi multiplicatores, qui ducti in æquatio- nem incrementialem (a = 0) prebent (n) æquationes, quarum inte- grales re$pective $unt λ, λ′, λ″, λ′″, &c.; tum erit generalis integralis quæcunque functio (n) quantitatum λ, λ′, λ″, λ′″, &c. Et $ic de par- ticularibus integralibus.

Facile etiam deduci po$$unt con$imiles propo$itiones de hâc re, quæ prius de fluentialibus æquationibus tradita fuere.

[0392]DE METHODO

Hæc etiam applicari po$$unt ad fluentes vel integrales æquationum fluxiones, & incrementa $imul involventium.

Sint duæ incrementiales æquationes π = 0 & ξ = 0, quarum com- munis $it multiplicator; tum ex integrali alterius æquationis datâ facile acquiri pote$t integralis alterius.

THEOR. IX.

1. Sit incrementialis æquatio P z. = 0; quæ haud continet z vel z., &c. tum erit ejus integralis z = con$t. haud vero P = 0; $i vero $it y. = P x. & fit P = 0 functio quantitatis y = con$t. tum erit y = con$t. particularis valor incrementialis æquationis y. = P x., & $ic de pluribus huju$cemodi æquationibus.

2. Sit incrementialis æquatio π = 0; & M quantitas, cujus in- tegralis deduci pote$t; tum $emper detegi pote$t integralis quantitatis φ: (π) + M ubi φ: (π) $it functio quantitatis π, in quâ haud in- venitur terminus, cujus dimen$io quantitatis π vel nulla e$t vel ne- gativa.

3. Eadem etiam applicari po$$unt ad duas vel plures incrementia- les æquationes π = 0, ξ = 0, &c. $emper enim detegi pote$t integralis quantitatis φ: (π & ξ, &c.) + M, ubi φ: (π, ξ, &c.) de$ignat functio- nem quantitatum π, ξ, &c. in quâ haud invenitur terminus, in quo nulla continetur dimen$io e $ingulis quantitatibus π, ξ, &c. vel ne- gativa.

4. Cuju$cunque incrementialis æquationis (π = 0) n ordinis, in quâ continentur duæ variabiles x & y & earum incrementa, ubi al- terius (x) primum incrementum e$t con$tans, $emper datur (L) fun- ctio variabilium x, y, & earum incrementorum primi, $ecundi, &c. (n - 1) ordinis, quæ ducta in datam æquationem præbet quantita- tem, cujus integralis (α) datur.

5. Sit α generalis integralis æquationis π = 0, tum quæcunque functio quantitatis α etiam erit integralis datæ æquationis π = 0; & idem etiam valet, cum α $it particularis integralis.

[0393]ÆQUATIONIBUS.

6. Sit quæcunque integrabilis æquatio π = ξ, cujus incrementum $it π = ξ, huju$ce æquationis ducatur alterum latus in π, alterum vero in ξ, & evadit ππ = ξξ.: generalis integralis huju$ce æquatio- nis haud erit π = ξ; hoc & con$imilia con$equuntur e libro præced.

7. Sint π, ξ, σ, &c. incrementa, quæ ducta in eundem multiplica- torem L, præbent incrementa, quorum integrales innote$cunt; tum erit L (aπ + bξ + cσ + &c.) incrementum, cujus integralis etiam inveniri pote$t, $i modo a, b, c, &c. $int quæcunque invariabiles quan- titates.

8. Datis formulis æquationis fluxionalis & ejus multiplicatoris, inve$tigari po$$unt ca$us, in quibus ejus integralis deduci pote$t.

Ducatur æquatio datæ formulæ in multiplicatorem prædictum, & quantitatis re$ultantis per methodos prius traditas inveniatur inte- gralis, $i modo integralem recipiat quantitas re$ultans; vel e notis integrabilitatis con$tare pote$t, annon quantitas re$ultans integratio- nem admittit; vel aliter ex datâ incrementiali æquatione & formulâ ejus multiplicatoris datâ facile con$tat formula ejus integralis, cujus inveniatur incrementum, dividatur hoc incrementum per datum; & exinde deduci po$$unt incognitæ quantitates in a$$umptâ integrali, $i modo ea recipere po$$it formulam prædictam.

9. E $ub$titutionibus $æpe reduci po$$unt datæ incrementiales æqua- tiones ad alias, quarum integrales innote$cunt; unde ex a$$umptis æquationibus incrementialibus, quarum innote$cunt integrales, facile e $ub$titutionibus deduci po$$unt aliæ, quarum integrales e prædictis deduci po$$unt.

10. Sit æquatio incrementialis P + Q = 0; e $ub$titutione redu- catur hæc æquatio ad $ub$equentem R + S = 0, unde P + Q = R + S: hinc $i vero {R + S / V} $it incrementum, cujus integralis innote$- cit, tum etiam {P + Q / V} erit incrementum cujus integralis etiam inno- [0394]DEMETHODO te$cit; & {1 / V} erit multiplicator, qui in datam æquationem ductus, præbet quantitatem, quæ integrari pote$t.

11. Ex irrationalibus quantitatibus in datâ incrementiali æqua- tione contentis con$tabunt irrationales quantitates in multiplicatore M, qui ductus in datam æquationem, eam reddit integrabilem; hæ irrationales quantitates enim deduci po$$unt ex ii$dem principiis, quæ prius tradita fuere de inveniendis irrationalibus quantitatibus in multiplicatore datæ fluxionalis æquationis contentis.

12. Ex formulis etiam fluxionalium æquationum, quarum fluentes innote$cunt, con$tabunt formulæ incrementialium æquationum, qua- rum integrales corre$pondent fluentibus prædictis.

13. Et $ic in quibu$dam ca$ibus deduci po$$unt integrales generales incrementialium æquationum ex earum particularibus valoribus.

14. Si modo datæ quantitatis incrementum $it con$tans; $criban- tur in datâ æquatione quæcunque quantitates pro $uis valoribus ex con$tante incremento, & earum incrementis diver$orum ordinum de- ductæ; & haud nunquam exinde con$equitur incrementialis æquatio, cujus integralis innote$cit.

15. A$$umatur integralis æquatio duas variabiles x & y involvens; quarum incrementa re$pective $int x. & y; datæ æquationis invenia- tur incrementum, in hoc vero incremento $cribantur quæcunque quantitates pro $uis valoribus ex a$$umptâ integrali æquatione de- ductæ, & re$ultat æquatio, cujus particularis integralis erit a$$umpta æquatio.

16. Si vero detur incrementialis æquatio, in quâ $imiliter involvun- tur variabiles x & y, & earum incrementa; tum in generali integrale $imiliter etiam involventur variabiles quantitates x, y, &c. & $i α fit valor quantitatis y, cum x = β; tum erit β valor quantitatis y, cum x = α.

17. In quibu$dam ca$ibus deduci po$$unt integrales duarum vel plu- rium (n) æquationum incrementialium tres vel plures variabiles quan- [0395]INCREMENTORUM. titates, & earum incrementa involventium: vel e reductione harum (n) æquationum in unam, &c. ita ut exterminentur variabiles quan- titates & earum fluxiones: vel ex a$$umptis generalibus quantitatibus pro corre$pondentibus valoribus e $ingulis variabilibus quantitatibus, quibus pro $uis valoribus in datis æquationibus incrementialibus $ub- $titutis; e re$ultantibus æquationibus deduci po$$unt valores genera- lium quantitatum a$$umptarum.

2. Facile deduci po$$unt (n) incrementiales æquationes n + 1 va- riabiles quantitates & earum incrementa involventes; quarum par- ticulares valores fingularum variabilium in prædictis æquationibus contentarum, innote$cunt: a$$umantur enim quæcunque (n) functi- ones unius variabilis quantitatis & ejus incrementorum pro n reli- quis, $cribantur hæ quantitates & earum incrementa pro $uis valori- bus in quibu$cunque n diver$is quantitatibus a, b, c, d, &c. quæ $int functiones (n + 1) variabilium prædictarum & earum incremento- rum, & $int quantitates re$ultantes P, Q, R, S, &c. re$pective; tum erunt a = P, b = Q, c = R, d = S, &c. n diver$æ æquationes, qua- rum particulares valores erunt quantitates a$$umptæ.

18. Datâ incrementiali æquatione duas variabiles x & y & earum incrementa involvente, ex principiis prius traditis, i. e. ex infinitis $eriebus deduci pote$t, annon una x exprimi pote$t in algebraicis ter- minis alterius y.

19. Per infinitas $eries detegi pote$t ex datâ incrementiali æqua- tione (a = 0) duas variabiles quantitates x & y & earum incrementa involvente generalis valor quantitatis y in terminis quantitatis x, qui continet invariabilem quantitatem a ad libitum a$$umendam; etiam- que $i modo data incrementialis æquatio $it majoris ordinis (n), tum in prædicto valore continebuntur (n) invariabiles quantitates a, b, c, &c. ad libitum a$$umendæ; deinde ex infinitâ $erie, quæ exprimit valo- rem quantitatis y in terminis quantitatis x, inveniantur a = π, b = ξ, c = γ, &c.; & exinde facile deduci po$$unt n multiplicatores, qui reddunt datam æquationem α = 0 integrabilem.

20. Sit V. = P x., tum P erit functio quantitatum x & x..

[0396]DE METHODO, &c.

Et $ic, mutatis mutandis, applicari licet reliqua principia de fluxio- nalibus æquationibus tradita ad æquationes incrementiales, vel con- junctim fluxionales & incrementiales.

THEOR. X.

Sit æquatio y1n + a y1n-1 + b y1n-2 ... d y + f y = 0, ubi y, y, &c. $unt præ- cedentes integrales quantitatis y; fingatur y = A e^αx, ubi x. $it con$tans; tum erit A e^αx+nxx. = y1n, & A e^αx+nαx. + a A e^αx+(n-1)αx. .... d A e^αx+αx + f A e^αx = 0, dividatur hæc æquatio per A e^αx, & in æquatione re$ul- tante pro e^αx. $cribatur v & re$ultat æquatio v^n + a v^n-1 + b v^n-2 + &c. = 0, cujus radices $int π, ξ, σ, τ, &c. inveniantur α, β, γ δ, &c., ita ut e^αx. = π, e^βx. = ξ, e^γx. = σ, e^δx. = τ, &c. tum erit A e^αx + B e^βx + C e^γx + D e^δx + &c. = y, (ubi A, B, C, &c. $unt quæcunque invaria- biles quantitates ad libitum a$$umendæ) integralis datæ æquationis.

Et $ic de infinitis con$imilibus æquationibus.

Sit æquatio a y1n + b y1n-1 + ... + d y1 + f y = X, vel a y.n + b y.n-1 + ... + d y. + f = X; ubi a, b, &c., d, f & X $unt functiones quantitatum x & x.; & x. e$t con$tans; tum multiplicatores harum æquationum $unt functiones quantitatum x & x..

SCHOLIUM.

Facilies e$t ob$ervatu, ut haud po$$ibile $it ulterius promovere generale problema, quam ejus particulare; methodum generalium incremento- rum, quam methodum fluxionum: haud difficile etiam erit pleraque in methodo fluxionum contenta reddere magis generalia & ad methodum incrementorum applicare; quæ præcipue in hoc libro perficiuntur: $æpe etiam in primis incrementi terminis $i mutetur incrementum in fluxionem, & inveniatur fluens fluxionis re$ultantis, exinde deduci pote$t integralis dati incrementi.

Omnia in hoc libro (mutatis mutandis) etiam applicari po$$unt ad æquationes, in quibus incrementa & fluxiones $imul continentur.

[0397] DE INFINITIS SERIEBUS. LIBER III.

Def. SIT data infinita $eries a + b + c + d + e + f + g + b + &c. & $i $ucce$$ivæ $ummæ a, a + b, a + b + c, a + b + c + d, &c. continuo ad $ummam $eriei vergant, & ultimo proprius accedant, quam data quævis differentia; tum hæc $eries dici pote$t convergens.

Cor. Invenire, utrum data $eries $it convergens, necne: continuo inveniantur limites, inter quos con$i$tit quæ$itæ $eriei $umma; & $i hi limites continuo ad $e vergant, & ultimo propius ad $e invicem accedant, quam quævis data differentia; tum hæc $eries dici pote$t convergens.

2. Convergentia termini (d) revera erit in eâdem ratione, quam habet terminus ip$e _d_ ad $ummam termini ip$ius & reliquorum $eriei terminorum d + e + f + g + b + &c.

3. Sint A & P quantitates inventæ, inter quas con$i$tit $umma terminorum c + d + e + f + g + &c. i.e. $it A major quam præ- dicta $umma & P minor, & B & Q, quantitates inventæ inter quas con$i$tit $umma d + e + f + g + &c. apparens convergentia ter- mini (d) $emper erit in eâdem ratione, quam habet (A - P) - (B - Q):A - P, i.e. {(A - P) - (B - Q) / A - P}:1.

[0398]DE INFINITIS

4. Convergentia totius $eriei proportionalis erit ultimæ termino- rum convergentiæ, i.e. terminorum ad infinitam di$tantiam; ea enim $eries magis celeriter convergere dici pote$t, cujus termini ultimo celerius convergunt ad $ummam $eriei quæ$itam.

5. In $erierum convergentiâ dijudicandâ, nece$$e e$t ut continuo inveniantur quantitates, inter quas ponitur $eriei $umma: in $erie- bus convergentibus, quarum termini alternatim $unt negativi & affirmativi, plerumque continuo con$equuntur quantitates, quæ al- ternatim $unt majores & minores quam $umma quæ$ita; hæ vero $eries facile mutari po$$unt in $eries affirmativas, $i modo continuo $uman- tur differentiæ inter affirmativos terminos & negativos proxime $ub- $equentes pro terminis novæ $eriei quæ$itis. E.g. Sit $eries 1 - {1 / 2} +{1 / 3} - {1 / 4} + {1 / 5} - {1 / 6} + &c. mutari pote$t hæc $eries in $ub$equentem affir- mativam (ex $umendo differentiam continuo inter duos $ucce$$ivos terminos) viz. {1 / 1 · 2} + {1 / 3 · 4} + {1 / 5 · 6} + &c. Series vero affirmativæ haud eâdem facilitate in $eries regulariter alternatim affirmativas & negativas mutari po$$unt, i.e. ita quidem ut omnes $ucce$$ivi termini ultimo continuo fiant minores, & denique minores evadant quam quæ- vis datæ quantitates; hoc vero in multis ca$ibus facile perfici pote$t: E. g. $it $eries S = {1 / m × (m + n)} + {1 / (m + 1) × (m + n + 1)} +{1 / (m + 2) · (m + n + 2)} + &c. facile $e$e dividet in $eries {1 / n} × ({1 / m} -{1 / m + n} + {1 / m + 1} - {1 / m + n + 1} + {1 / m + 2} - {1 / m + n + 2} + &c.); unde terminis $eriei recte di$po$itis re$ultat S = {1 / n}({1 / m} + {1 / m + 1} + {1 / m + 2} .. +{1 / m + n} - {1 / m + n} + {1 / m + n + 1} - {1 / m + n + 1} + {1 / m + n + 2} - {1 / m + n + 2}+ &c.) = {1 / n}({1 / m} + {1 / m + 1} + {1 / m + 2} ... + {1 / m + n - 1}), $i n $it inte- ger affirmativus numerus.

[0399]SERIEBUS.

6. Seriem affirmativam t + t′ + t″ + &c. cujus terminus generalis $it T quæcunque data functio quantitatis z di$tantiæ a primo $eriei termino, in regularem alteram alternatim affirmativam & negativam transformare.

Fingatur T incrementum functionis quantitatis z, cujus incremen- tum $upponitur 1; a$$umatur φ: (z) - φ:(z + 1) = T, ubi φ: (z) denotat eandem functionem quantitatis z, ac φ: (z + 1) e$t functio quantitatis z + 1; ex hâc æquatione inveniatur φ:(z), & perficitur problema.

Et $ic interponere liceat n terminos inter duos $ucce$$ivos datæ $e- riei terminos.

7. Sæpe vero ex aliis methodis inve$tigari po$$unt quantitates, quæ ex$uperant datæ $eriei $ummam; $i enim $ummam $eriei vel $erierum novimus, quarum termini ex$uperant terminos datæ $eriei, tum $um- ma data ex$uperat $ummam $eriei datæ: & $ic $æpe inveniri po$$unt limites inter quos con$i$tit $umma $eriei quæ$ita.

Ex.1. Sit $eries {1 / 1 · 2 · 3} + {1 / 4 · 5 · 6} + {1 / 7 · 8 · 9} + {1 / 10 · 11 · 12} + &c. & $it {1 / 1 · 2} + {1 / 4 · 5} + {1 / 7 · 8} + &c. = S, tum erit {1 / 3}S major quam datæ $eriei $umma, quod facile con$tat ex hoc, nempe $inguli ejus ({1 / 3} S) termini majores $unt quam datæ $eriei corre$pondentes termini: & $ic $umma {1 / 4 · 5} + {1 / 7 · 8} + &c. ducta in {1 / 6} major erit quam $umma {1 / 4 · 5 · 6} + {1 / 7 · 8 · 9} + &c. & $ic deinceps.

Ex. 2. Summa $eriei 1 + {1 / 2} + {1 / 1 · 2 · 3} + {1 / 1 · 2 · 3 · 4} + &c. minor erit quam 1 + {1 / 2} + {1 / 4} + {1 / 8} + &c. & $umma {1 / 1 · 2} + {1 / 1 · 2 · 3} +{1 / 1 · 2 · 3 · 4} + &c. minor erit quam {1 / 2}(1 + {1 / 3} + {1 / 9} + {1 / 27} + &c.); &c.

[0400]DE INFINITIS PROB. 1. FIG. 4. _Conce$$is curvilinearum quadraturis; invenire limites, inter_ _quos con$i$tit $eriei $umma._

E terminis generaliter expre$$is inveniatur curva, cujus in$cripta & circum$cripta pologona $int re$pectivi datæ $eriei termini, & area curvæ minor erit quam $umma totius $eriei, major vero quam $umma totius $eriei a primo termino diminutæ: $i modo curva inter initium & $inem ab$ci$$æ non habeat punctum contrariæ flexuræ vel ordi- natam maximam vel minimam.

Ex. · Sit $eries data {1 / 2^{3 / 2}} + {1 / 3^{3 / 2}} + {1 / 4^{3 / 2}} ... {1 / z^{3 / 2}}, ubi z - 2 $it di$tantia termini {1 / z^{3 / 2}} a primo: a$$umatur curva _FAPQRS_, &c. $it A L = A B = B C = C D = D E = &c. in infinitum = 1, & A P = {1 / 2^{3 / 2}} ={1 / O A^{3 / 2}}, BQ = {1 / 3^{3 / 2}} = {1 / O B^{3 / 2}}, C R = {1 / 4^{3 / 2}} = {1 / OC^{3 / 2}}, &c. ergo $umma datæ $eriei {1 / 2^{3 / 2}} + {1 / 3^{3 / 2}} + {1 / 4^{3 / 2}} + &c. = $ummæ arearum circum$criptorum parallelogrammorum P B + C Q + D R + E S + &c. = $ummæ arearum in$criptorum parallelogrammorum L P + A Q + B R + C S + &c. $ed curvilinea area _LNPQRS_, &c. major e$t quam prædicta $umma circum$criptorum vel in$criptorum parallelogrammorum, & curvilinea area A P Q R S, &c. minor: hæ vero curvilineæ areæ erunt re$pective {2 / O L^{1 / 2}} & {2 / O A^{1 / 2}} (2 & {2 / 2^{1 / 2}}); ergo $umma datæ $eriei {1 / 2^1{1 / 2}} + {1 / 3^1{1 / 2}}+ &c. in infinitum inter duas quantitates 2 & {1 / 2^{1 / 2}} ponitur.

Et $ic $umma $eriei {1 / 3^1{1 / 2}} + {1 / 4^1{1 / 2}} + &c. quæ e$t data $eries ab primo [0401]SERIEBUS. termino diminuta inter quantitates {2 / 2^{1 / 2}} & {2 / 3^{1 / 2}} continetur; & in genere $umma $eriei {1 / z^1{1 / 2}} + {1 / (z + 1)^1{1 / 2}} + {1 / (z + 2)^1{1 / 2}} + &c. in in$initum inter quantitates {2 / (z - 1)^{1 / 2}} & {2 / z^{1 / 2}} continetur; & $ic $umma (z - 2) ter- minorum {1 / 2^1{1 / 2}} + {1 / 3^1{1 / 2}} + {1 / 4^1{1 / 2}} ... {1 / (z - 1)^1{1 / 2}} inter quantitates 2 -{2 / (z - 1)^{1 / 2}} & {2 / 2^{1 / 2}} - {2 / z^{1 / 2}} ponitur.

Et $ic inveniri po$$unt limites, inter quos cuju$cunque con$imilis $eriei con$i$tit $umma; &c.

Cor. 1. Sit $eries {1 / 2^n} + {1 / 3^n} + {1 / 4^n} + &c. in infinitum; & curvilineæ areæ, inter quas con$i$tit $umma hujus $eriei, erunt infinitæ magnæ, necne; prout n vel $it unitas vel minor $it quam unitas, necne.

Cor. 2. Si hæ curvæ habeant ordinatas maximas vel minimas, vel puncta contrariæ flexuræ; tum ad $ingulam maximam vel minimam, &c. corirgenda e$t area inventa.

PROB. II. Datâ lege, quam ob$ervant termini $eriei in infinitum progredientis; invenire utrum ea $it finita vel infinite magna.

E datâ lege con$tant termini ad infinitam di$tantiam; $i vero ter- minus (A) ad infinitam di$tantiam con$titutus $it minor quam quæ- cunque quantitas huju$ce formulæ {1 / n z}, ubi n $it finita quantitas, & z di$tantia termini a primo $eriei termino; tum $umma $eriei erit finita quantitas, $in aliter vero non.

Con$tat e cor. 1. prob. præced.

2. Sit z di$tantia cuju$cunque termini a primo $eriei termino, etiam- [0402]DE INFINITIS que T & T′ duo $ucce$$ivi termini datæ $eriei; & $it data æquatio rela- tionem inter T & T′ exprimens, viz. T′ = T × (a z^r + {b / z^s} + {c / z^t} + &c.) ubi a z^r + {b / z^s} + {c / z^t} + &c. $it $eries $ecundum dimen$iones quantitatis z de$cendens; tum, $i 1: - z + a z^r+1 + {b / z^r-1} + &c. ubi z $upponitur infinita quantitas, habet affirmativam & minorem quam rationem æqualitatis per finitam rationem, tum $umma $eriei prædictæ erit finita quantitas; $in aliter non.

Nam per coroll. prædict: $eries erit finita, $i modo duo $ucce$$ivi termini (T & T′) $int re$pective {1 / z^n} & {1 / (z + 1)^n}; unde {T / z^n} = {T′ / (z + 1)^n}; & exinde T′ = (1 + {n / z} + n · {n - 1 / 2 z^2} + &c.) T; cum n major $it quam 1, & affirmativa; $in aliter infinita; ducatur quantitas 1 + {n / z} + n · {n - 1 / 2 z^2}+ &c. in z & re$ultat z + n + n · {n - 1 / 2 z} + &c.; ad hanc quanti- tatem addatur quantitas - z; & $umma erit n + n · {n - 1 / 2 z} + &c.; at $eries erit finita, cum n major $it quam unitas, &c. ergo con$tat propo$itio.

3. Sint T & T^m $ucce$$ivi termini, quorum di$tantia a $e invicem $it m, & T^m = T (a z^r + {b / z^s} + {c / z^t} + &c.) quæ $it $eries $ecundum dimen$iones quantitatis z de$cendens; tum, $i 1: - z + a z^r+1 +{b / z^s-1} + &c. ubi z $upponitur infinita quantitas, habet affirmativam & minorem rationem quam 1:m per finitam rationem, $umma $eriei prædictæ erit finita quantitas; $in aliter non.

4. Datâ æquatione inter $ucce$$ivos datæ $eriei terminos relationem [0403]SERIEBUS. exprimente, facile e terminis datæ æquationis qui maximi $unt ad infinitam di$tantiam & principiis in hoc problemate traditis erui po- te$t, annon $eriei $umma $it finita quantitas.

Inveniatur enim ratio, quam habent termini $ucce$$ivi ad infinitam di$tantiam po$iti; i. e. cum z evadat infinita quantitas, & per metho- dos prius traditas detegi pote$t, annon $eries $it finita.

5. Si ad infinitam di$tantiam T:T′ habeat rationem majorem per finitam quam æqualitatis, tum $eries erit finita: $i termini $eriei $int alternatim affirmativi & negativi, reducendi $unt ad $eriem affirmati- vorum terminorum ex inveniendo differentias inter affirmativos & negativos terminos $ucce$$ive.

Ex. 1. Sit t′ = a t^n, ubi t^n e$t (n) pote$tas quantitatis t & a inva- riabilis quantitas; tum, $i a t^n-1 minor $it quam 1, $eries converget; $in major non.

Ex. 2. Sit terminus ad infinitam di$tantiam (i. e. cum z evadat infinitus numerus) = {z^n / e^mz}; ubi literæ e, n & m denotant invariabiles quantitates, quarum una m $altem e$t affirmativa; tum $eries $emper erit finita, $i e major $it quam 1; $in aliter non; nam ad infinitam di$tantiam erit {T′ / T} = {z^n / e^mz}^-1 × {(z + 1)^n / e^mz+m} = {1 / e^m} (1 + {n / z} + n · {n - 1 / 2 z^2} + n · {n - 1 / 2 z} · {n - 2 / 3 z^2} + &c.) = (ob z infinitum numerum) {1 / e^m}, unde con$tat exemp.

Hinc, $i z $it infinitus numerus, con$tat e^mz majorem e$$e quam z^n, cum e major $it quam 1.

Ex. 3. Sit terminus ad infinitam di$tantiam {z^{1 / z} /z^z}, tum, ob z^{1 / z} (cum z evadat infinitus numerus) = 1; duo $ucce$$ivi termini T & T′ erunt {1 / z^z} & {1 / (z + 1)^z+1} prope, unde T′:T::1:(1 + 1 + {1 / 1 · 2} + {1 / 1 · 2 · 3} + [0404]DE INFINITIS {1 / 1 · 2 · 3 · 4} + &c.) z = (1 + n) z, ubi 1 + n e$t numerus, cujus hy- per. log. e$t 1; & con$tat $eriem e$$e finitam.

In omnibus his excipiendus e$t ca$us, cum terminus ad finitam di$tantiam evadat infinitus.

Idem etiam deduci pote$t ex æquatione datâ inter $ucce$$ivas $um- mas relationem de$ignante; facile enim reduci pote$t hæc æquatio ad æquationem relationem inter $ucce$$ivos terminos exprimentem: & de æquatione relationem inter $ucce$$ivas $ummas & terminos expri- mente.

THEOR. I.

1. Sit $eries A + {b x^p / a^p} + {c x^2p / a^2p} + {d x^3p / a^3p} + &c. = y, & 1^mo in ter- minis (A, b, c, d, &c.) continuo augeantur differentiæ inter dimen- $iones quantitatis z di$tantiæ a primo $eriei termino per quantitatem, quæ in terminis ad infinitam di$tantiam evadit infinite magna; tum $i dimen$iones numeratoris $uperent dimen$iones denominatoris, $e- ries erit divergens, $in aliter erit convergens, e. g. $eries 1 + α x^p + α · (α + 1)x^2p + α · (α + 1) · (α + 2)x^3p + &c. $emper diverget; $eries vero 1 + {1 / α}{x^p / a^p} + {1 / α · (α + 1)}{x^2p / a^2p} + {1 / α · (α + 1) · (α + 2)}{x^3p / a^3p} + &c. $em- per converget, quicunque $it valor quantitatis {x^p / a^p}.

2. Sit p affirmativa quantitas, & differentiæ inter dimen$iones quantitatis z in denominatore quantitatum (A, b, c, d, &c.) & earum numeratore contentas ad infinitam di$tantiam continuo eædem ma- neant, i. e. $it finita; tum $eries $emper converget, $i x inter + a & - a ponatur; $in aliter diverget; ni x = a, in qno ca$u $eries con- verget vel diverget prout dimen$iones quantitatis z ad infinitam di- $tantiam in denominatore $uperant ejus dimen$iones in numeratore [0405]SERIEBUS. per quantitatem majorem quam unitatem, necne. Sit p negativa & $eries $emper converget, cum x major $it quam a vel - a; &c.

3. In fluentibus fluxionalium æquationum detegendis, nece$$e e$t ut convergens $it $eries inter duos valores (α & β) quantitatis x con- tenta, i. e. A + b (α ± β) + c(α^2 ± β^2) + d(α^3 ± β^3) + &c. $it convergens $eries; quod in $eriebus præcedentibus haud fieri pote$t, ni utræque $eries A + b α + c α^2 + d α^3 + &c. & A + b β + c β^2 + d β^3 + &c. $int convergentes.

Facile ex principiis hic traditis, $i modo $cribatur v + α pro x in datâ $erie A + b x + c x^2 + d x^3 + &c. erui pote$t, annon $eries ex- inde re$ultans (A + b α + c α^2 + &c.) + (b + 2 c α + 3 d α^2 + &c.) v + (c + 3 d α + &c.)v^2 + &c. $it convergens.

Et ex ii$dem principiis erui pote$t; annon $eries, quæ $it quæcun- que functio datæ $eriei, $it convergens.

Cor. 1. Series, cujus termini generaliter exprimuntur per algebrai- cam & determinatam functionem haud vero exponentialem literæ z di$tantiæ a primo $eriei termino, nunquam tam celeriter convergit; quam $eries, cujus termini exprimuntur etiam per algebraicam & de- terminatam functionem quantitatis z in x^nz; ubi x $it data quantitas, minor vero quam unitas, & n quæcunque affirmativa quantitas; vel x major quam unitas & n negativa quantitas.

In priori enim $erie termini T & T′ $ucce$$ivi ad infinitam di$tan- tiam haud habent inter $e rationem majorem vel minorem quam æqualitatis per finitam rationem; in po$teriori vero erit ultimo T:T′::1:x^n.

Cor. 2. Po$terior vero $eries nunquam converget tam celeriter, quam $eries formulæ huju$ce generis x + {x^2 / 1 · 2} + {x^3 / 1 · 2 · 3} + {x^4 / 1 · 2 · 3 · 4} + ...{x^z / 1 · 2 · 3 · 4 ... z}. Erit enim in hâc $erie ad infinitam di$tantiam T:T′::z:x; i. e. in eadem ratione quam habet infinita quantitas ad finitam.

[0406]DE INFINITIS

Hæc $eries vel $eries x ± {x^2 / 2^2} + {x^3 / 3^3} + {x^4 / 4^4} + &c. $emper convergit, quicunque $it valor quantitatis x; & $eries x + 1 · 2 x^2 + 1 · 2 · 3 x^3 + &c. vel x + 4 x^2 + 27 x^3 + 256 x^4 + &c. $emper diverget, qui- cunque $it valor quantitatis x.

Et $ic e convergentiâ $eriei terminorum ad in$initam di$tantiam dijudicari pote$t convergentia ip$ius $eriei.

THEOR. II.

Datâ quantitate A, quæ e$t functio quantitatis x, cujus termini expan$i per $eriem a x^r + b x^r+s + c x^r+2s + &c. progrediuntur, tum erit {A^. / x^.} = r a x^r-1 + (r + s) b x^r+s-1 + &c. & $ic erit $. A x^. = {1 / r + 1}a x^r+1 + {1 / r + s + 1} b x^r+s+1 + &c. $eries vero {1 / r + 1} a x^r+1 + {1 / r + s + 1}b x^r+s+1 + &c. converget, $i $eries a x^r + b x^r+s + &c. convergat; ple- rumque etiam $eries r a x^r-1 + (r + s) b x^r+s-1 + &c. converget, $i convergens $it prædicta $eries, $ed non $emper; quæ facile con$tabunt e principiis prius traditis; & $ic deinceps.

THEOR. III.

1. Quamvis in$inita $eries data (A) haud convergat, tamen $i detur finita quantitas p, quæ in $eriem convergentem B ducta præbet datam quantitatem (A), i. e. p B = A; tum $umma datæ $eriei A quodam- modo dici pote$t æqualis producto p × B: vel magis generaliter, $i data $eries (A) $it functio quantitatis x ad $eriem $ecundum ejus di- men$iones progredientem reducta, tum $eries A quodammodo dici pote$t æqualis prædictæ functioni quantitatis x.

2. In ca$ibus, cum $eries A nec convergat nec divergat, & a $it valor quantitatis x; tum plerumque inveniri pote$t $umma $eriei (A), cum valor ejus incognitæ quantitatis x quam minime differt a dato valore (α), i. e. $eries erunt convergentes; & exinde deduci pote$t va- lor $ummæ quæ$itæ, cum x = α.

[0407]SERIEBUS.

E. g. Series 1 - x + x^2 - x^3 + x^4 - x^5 + &c. $i x = 1, haud convergit; facile etiamque con$tat, ut {1 / 1 + x} × 1 erit 1 - x + x^2 - &c. ergo quodammodo erit 1 - 1 + 1 - 1 + &c. in infinitum ={1 / 1 + 1} = {1 / 1 + 1 + 1} = {1 / 1 + 1 + 1 + 1} = &c. = vel {1 / 2} vel {1 / 3} vel {1 / 4}, &c.

Erit {1 / 2}, $i e $erie {1 / 1 + x} = 1 - x + x^2 - &c. exoriatur; erit {1 / 3}, $i e $erie {1 / 1 + x + x^2} = 1 - x + x^3 - x^4 + x^6 - x^7 + x^9 - x^10 + x^12 - &c.; & genera- liter erit {1 / n + 1}, $i e $erie 1 - x + x^n+1 - x^n+2 + x^2n+2 - x^2n+3 + x^3n+3 - x^3n+4 + x^4n+4 - &c. exoriatur.

Cor.. Hinc $ummæ $erierum, quæ tanquamd ivergentes apparent, $æpe deduci po$$unt: revera for$an hi$ce $eriebus haud a$$ignari po$$unt $ummæ.

3. Ex divi$ione alterius quantitatis per alteram deduci pote$t quæ- cunque $eries; at animadvertendum e$t, ut hæc $eries non reverâ dici po$$it quotiens, ni re$iduum nihilo $it æquale; $i re$iduum augeatur, tum $eries divergit; quamvis quotientes $unt eædem, attamen fracti- ones non $int æquales, nam re$idua po$$unt e$$e diver$a: e. g. $int 1 + 1) 1 (1 - 1 + 1 - 1 + 1 - 1 + &c. = 1 + 1 + 1) 1 (1 - 1 + 1 - 1 + 1 - &c. 1 + 1 # 1 + 1 + 1 - 1 # - 1 - 1 - 1 - 1 # - 1 - 1 - 1 + 1 # + 1 &c. # &c. = 1 + 1 + 1 (n $it numerus) (1) 1 - 1 + 1 - 1 + 1 - &c. in primo ca$u re$idua $unt + 1 & - 1, & con$equenter quotientes inventæ di$tant a verâ per quantitates {1 / 2} & - {1 / 2}: in ultimo ca$u re$idua $unt - n + 1 & 1, & con$equenter quotientes inventæ di$tant a verâ per quantita- tes - {n - 1 / n} & {1 / n}. Si $eries $int reciprocæ, viz. a + b + c + &c. - [0408]DE INFINITIS a - b - c - &c. + a + b + c + &c. - a - b - c - &c. + &c., tum $eries non convergit; & quamvis quotientes $int eædem, attamen, $i re$idua per divi$ores divi$a non $int eadem, valores non iidem erunt.

THEOR. IV.

1. Convergentes $eries, cujus termini $unt in geometricâ progre$- $ione, uniformiter convergunt; omnis enim terminus eandem habet rationem ad reliquam $eriei $ummam.

2. Sit $eries a - b + c - d + &c.; $i a minor $it quam b, b quam c, c quam d, &c,; tum $eries quodammodo dici pote$t e$$e divergens; u$que donec $ub$equens terminus minor $it quam præcedens; etiam- que quodammodo at plerumque non revera convergentia termini $eriei dici pote$t e$$e in ratione quam habet datus terminus ad ejus $ub$equentem.

3. Sint R, S, T tres $ucce$$ivi termini datæ $eriei generaliter ex- pre$$i; & mutetur $eries de prædictâ divergentiâ in convergentiam cum R = S, &c. & in $tatum prædictæ celerrimæ convergentiæ cum {S / R} = {T / S}, vel cum $luxio fractionis {S / R} $it nihilo æqualis, &c. Plures vero po$$unt e$$e $tatus celerioris convergentiæ prædicti generis, &c. facile con$tabit numerus punctorum celerioris convergentiæ, &c. e prædictis æquationibus, &c.

PROB. III.

Invenire convergentes $eries, quœ dividi po$$unt in alias convergentes.

1. A$$umantur duæ $eries convergentes, ducantur hæ $eries in $e$e; & inveniatur lex, quam ob$ervant termini $eriei re$ultantis; & facile reduci pote$t hæc $eries ad duas alias.

2. Et $ic inveniri po$$unt e datis $eriebus convergentibus quam plu- rimæ æquationes convergentes; inveniantur enim $unctiones datarum $erierum, quæ $int convergentes: e principiis prius traditis facile con$equuntur in$initæ $unctiones convergentium $erierum, quæ con- vergentes $eries præbent: exhinc deduci po$$unt quædam $eries, quæ methodis prius traditis haud erui po$$unt.

[0409]SERIEBUS. REGULA.

1. Sit x incognita quantitas, & detur algebraica functio quanti- tatis x, reducenda e$t data functio ad terminos $ecundum dimen$iones quantitatis x progredientes. Hoc fit operando in literis ad eundem modum, quo arithmetici in numeris decimalibus dividunt, radices extrahunt vel a$$ectas æquationes $olvunt.

Ex. 1. Sit functio data (a + b x^r + c x^2r + &c.)^m, & per multino- miale theorema evadet a^m + m a^m-1 b x^r + m a^m-1 c \\ + m. {m - 1 / 2} a^m-2 b^2 # x^2r + &c. quanti- tas quæ$ita.

Ex. 2. Sit quantitas (a + b x^r + c x^2r + &c.)^n (h + k x^r + l x^2r + &c.)^m, per prædictum theorema inveniantur (a + b x^r + c x^2r + &c.)^n = a^n + n a^n-1 b x^r + &c. (b + k x^r + l x^2r + &c.)^m = h^m + m h^m-1 k x^r + &c. ducantur hæ $eries in $e$e & re$ultat h^m a^n + (n b h + m k a) a^n-1 h^m-1 x^r + &c. quantitas quæ$ita.

Ex. 3. Sit quantitas (a + b x^r + c x^2r + &c. + ((A + B x^r + C x^2r + &c.) (α + β x^r + γ x^2r + &c.)^n)^m + (π + ξ x^r + σ x^2r + &c.)^b)^k; re- ducatur ea ad $implices terminos $ecundum dimen$iones quantitatis x progredientes, tum evadet ((a + (A α^n)^m + π^b)^k (= P^k) + k P^k-1 (b + m (A α^n)^m-1 (α^n B + n A α^n-1 β) + b π^b-1 ξ) x^r (k P^k-1 Q) + k × {k - 1 / 2} P^k-2 Q^2 + \\ + k^. P^k-1 R + &c. Series facile con$tat ex reducendo quantitatem ad pote$tatem k elevandam in in$initonomialem quantitatem $ecundum dimen$iones quantitatis x^r progredientem, & deinde in$initonomialem quantitatem ad k pote$tatem elevando; & $ic de omnibus algebraicis quantitatibus ad $eries $ecundum dimen$iones quantitatis x progredientes redu- cendis.

2. Facile etiam transformari po$$unt hæ quantitates, ut progre- diantur $ecundum dimen$iones reciprocas quantitatis x. E. g. Sit [0410]DE INFINITIS quantitas (b x^r + a)^m, & erit (b x^r + a)^m = b^m x^m + m b^m-1 a x^(r-1)m + m. {m - 1 / 2} b^m-2 a^2 x^(r-2)m + &c.; & $ic deinceps.

Sæpe $eries, quæ progrediuntur $ecundum dimen$iones directas quantitatis x convergunt; $æpe vero $eries, quæ progrediuntur $ecun- dum ejus reciprocas convergunt; $æpe autem nec hæ, nec illæ con- vergunt, quæ $atis manife$to con$tabunt e propo$. po$tea traditis.

THEOR. V.

Sit data $eries a + b x + c x^2 + d x^3 + &c. quæ in$inita evadit, cum x = p, vel x = q, &c. tum a$$umatur {1 / (p - x)^m × (q - x)^r} × &c. × (A + B x + C x^2 + &c.) = a + b x + c x^2 + &c. & e reductione quantitatum (p - x)^-m & (q - x)^-r, &c. in $implices terminos $ecundum dimen$iones quantitatis x progredientes, & ex æquatis corre$ponden- tibus terminis utriu$que æquationis partis con$equentur coefficientes A, B, C, &c. & in quibu$dam ca$ibus ita a$$umi po$$unt indices (m, r, &c.) ut æquatio deducta magis celeriter convergat; vel aliæ functio- nes quantitatis x, quæ evadunt infinitæ, cum x = p vel x = q, &c.

Eadem principia ad plurimas con$imiles $eries applicari po$$unt.

THEOR. VI.

1. Sit æquatio o = p - q x + r x^2 - s x^3 + &c. in in$initum, cujus in$initæ radices $unt α, β, γ, δ, &c. tum erunt {q / p} = {1 / α} + {1 / β} + {1 / γ} + {1 / δ}+ &c. $umma e $ingulis reciprocis radicibus; {r / p} = {1 / αβ} + {1 / αγ} + {1 / βγ}+ {1 / αδ} + &c. $umma e quibu$que duabus reciprocis radicibus in $e$e ductis; & $ic deinceps.

[0411]SERIEBUS.

Cor. Hinc e prob. 1. & 3. medit. algebraic. deduci pote$t aggrega- tum e $ingulis valoribus quantitatum reciprocarum {1 / α^m} + {1 / β^m} + {1 / γ^m}+ {1 / δ^m} + &c. vel e $ingulis valoribus reciprocarum quantitatum hu- ju$ce generis {1 / α^m β^n γ^r &c.} + {1 / α^n β^m γ^r &c.} + {1 / α^r β^m γ^n &c.} + &c. & $ic de- inceps; ubi m, n, r, &c. $unt a$$irmativæ quantitates.

Et $ic transformari pote$t data æquatio in alteram, cujus radices $unt {1 / α^m β^n γ^r &c.} + &c.

2. Sit æquatio o = p - {q / x} + {r / x^2} - {s / x^3} + &c. in in$initum, cujus in$initæ radices $int α, β, γ, δ, &c. tum erunt {q / p} = α + β + γ + δ + &c. {r / p} = α β + α γ + β γ + α δ + β δ + γ δ + &c. {s / p} = α β γ + α β δ + α γ δ + β γ δ + &c. &c.

Cor. · Hinc e prædict. prob. medit. algebr. deduci pote$t aggre- gatum e $ingulis valoribus contentorum α^m β^n γ^r &c. + α^n β^m γ^r &c. + α^r β^m γ^n &c. ubi m, n, r, &c. $unt affirmativæ quantitates.

Et $ic transformari pote$t data æquatio in alteram, cujus radices $unt α^m β^n γ^r &c. + &c.

3. Sint duæ in$initæ æquationes, unam $olummodo incognitam quantitatem x & y re$pective habentes; & quarum radices ex unâ $unt α, β, γ, δ, &c. ex alterâ vero π, ξ, σ, τ, &c. & $i modo ex unâ æquatione deduci po$$it aggregatum (P) e $ingulis quantitatibus huju$ce for- mulæ α^m β^n γ^r &c. ex alterâ vero æquatione aggregatum (Q) e $ingulis quantitatibus huju$ce formulæ π^a ξ^b σ^c &c. ubi omnes literæ m, n, r, &c. vel $imul denotant affirmativas quantitates vel negativas, & $ic omnes literæ a, b, c, &c. $imul $unt affirmativæ vel $imul negativæ: [0412]DE INFINITIS tum erit aggregatum e $ingulis quantitatibus huju$ce formulæ (α^m β^n γ^r &c. π^a ξ^b σ^c &c.) = P × Q.

4. Ducatur vel æquatio o = p - q x + r x^2 - s x^3 + t x^4 - &c. vel æquatio o = p - {q / x} + {r / x^2} - {s / x^3} + &c. in arithmeticam $eriem 0, 1, 2, 3, 4, &c. & re$ultant æquationes, quarum radices $unt limites inter datarum æquationum radices, &c.

5. E principiis in medit. algebr. traditis $æpe con$equuntur notæ radicum impo$$ibilium, a$$irmativarum & negativarum in datis æqua- tionibus contentarum. E. g. Sub primo termino $cribatur +; $ub $ecundo $cribatur + vel - prout {1 / 2} q^2 major $it quam p r vel non; $ub tertio $cribatur + vel - prout {1 / 3} r^2 major $it quam q s, necne; & $ub quarto $cribatur + vel - prout {1 / 4} s^2 major $it quam r t; & $ic dein- ceps; & tot $altem erunt impo$$ibiles radices, quot $unt mutationes $ignorum de + in - & - in +.

6. E medit. algebr. con$tat, quod $i modo quædam n radices æqua- tionis p - q x + r x^2 - &c. = 0 vel p - {q / x} + {r / x^2} - &c. = 0 $int po$- $ibiles, tum etiam reperientur n - 1 radices po$$ibiles æquationum re$ultantium e multiplicatione ejus terminorum $ucce$$ivorum in prædictæ arithmeticæ $eriei terminos.

7. Hinc facile formari pote$t in$inita æquatio, cujus radices haud dantur; & tamen affirmari pote$t, ut nullas habeat po$$ibiles ra- dices.

A$$umantur enim coefficientes, ita ut per prædictas regulas omnes radices notas habeant impo$$ibilitatis; & id, quod requiritur, fit.

8. Si modo in datâ infinitâ æquatione pro x $cribantur quæcunque duæ quantitates α & β, & quantitates re$ultantes mutentur de + in - vel - in +, tum impar numerus radicum datæ æquationis inter quantitates α & β interponitur; $in aliter nulla radix vel par nume- rus radicum inter α & β invenietur; ni e $cribendo γ valorem inter α & β contentum pro x $eries evadat divergens.

[0413]SERIEBUS.

1. Sit infinita æquatio A = a x^r + b x^r+s + c x^r+2s + &c... + P x^l + Q x^l+s + &c.; & $i coefficientes haud cre$cant in majori quam quâcunque geometricâ ratione a$$ignabili, & $int omnes affirmativæ; tum $emper datur una affirmativa radix & non plures, quæ quidem erit minor quam quæcunque negativa in datâ æquatione contenta.

2. In affirmativâ $erie a x^r + b x^r+s + c x^r+2s + &c. fingantur duo $ucce$$ivi termini ad infinitam di$tantiam (l) po$iti inter $e æquales, i. e. P x^l = Qx^l+s, & con$equenter x = {P / Q}^{1 / s} = α; & exinde omnis quantitas minor quam α vel - α pro x in prædictâ $erie con$tituta $emper præbebit finitam $ummam; $in major $it quam α, tum $emper præbebit infinitam.

2. 2. Si $eries $it negativa, tum ex pluribus terminis ad infinitam di$tantiam po$itis inter $e æqualibus e$$e $uppo$itis acquiri po$$unt li- mites quantitatum, quæ in datâ $erie pro x $ub$titutæ $emper præ- bent finitas vel infinitas quantitates.

PROB. IV. Invenire æquationem, quæ infinitas babet cognitas radices.

Sint cognitæ radices α, β, γ, δ, ε, &c. & ducantur factores (x - α) × (x - β) × (x - γ) × (x - δ) × &c. in $e$e, & contentum nihilo $iat æquale; erit æquatio de$iderata.

Ex. · Sint radices α, α^2, α^3, α^4, &c. in infinitum; æquatio quæ$ita erit 1 - {α / 1 - α} × {1 / x} + {α^3 / (1 - α) · (1 - α^2)} × {1 / x^2} - {α^6 / (1 - α) · (1 - α^2) · (1 - α^3)}{1 / x^3} + {α^10 / (1 - α) · (1 - α^2) · (1 - α^3) · (1 - α^4)} × {1 / x^4} - {α^15 / (1 - α) · (1 - α^2)}.{ / (1 - α^3) · (1 - α^4) · (1 - α^5)} × {1 / x^5} + &c. = 0. Summa radicum e$t [0414]DE INFINITIS {α / 1 - α}, $umma rectangulorum $ub $ingulis binis {α^3 / (1 - α) × (1 - α^2)}, & $ic deinceps.

Cor. Inveniatur æquatio, cujus radices $int quæcunque algebraica functio huju$ce æquationis radicum; re$ultat æquatio, quæ etiam habet infinitas radices.

Ex. 1. Ducatur hæc æquatio 1 - {α / 1 - α} × {1 / x} + {α^3 / (1 - α) · (1 - α^2)}× {1 / x^2} - &c. = 0 in alteram æquationem 1 - {β / 1 - β} × {1 / x} + {β^3 / (1 - β) × (1 - β^2)} × {1 / x^2} - &c. = 0, & re$ultat æquatio 1 - {α + β - 2 α β / (1 - α) × (1 - β)}× {1 / x} + &c. = 0, cujus radices erunt α, α^2, α^3, &c. in infinitum & β, β^2, β^3, &c. in infinitum; & $ic deinceps.

PROB. V.

Datis duabus infinitis æquationibus duas vel plures incognitas quanti- tates (x & y) babentibus; eas in unam reducere, ita ut incognita quantitas (y) exterminetur.

1<_>mo. Collocentur termini utriu$que æquationis, ita ut illi termini primum locum occupent, qui maximi $unt; ii vero proximum locum, qui proxime majores $unt, & $ic deinceps. i. e. Sint termini in unâ æquatione re$ultantes re$pective a + b + c + d + e + &c. = 0, in alterâ vero p + q + r + s + &c. = 0. 1<_>mo. Supponantur a = 0 & p = 0, & ita reducantur hæ duæ æquationes, ut exterminetur incog- nita quantitas (y); deinde $upponantur pro propriori valore æquatio- nis quæ$ito a + b = 0 & p + q = 0, & reducantur hæ duæ æquatio- nes, ita ut exterminetur incognita quantitas y; & $ic deinceps; & con- tinuo ad æquationem quæ$itam propius accedamus.

2. Datam æquationem unam (x) $olummodo incognitam quanti- [0415]SERIEBUS. tatem habentem in duas vel plures alias habentes duas vel plures in- cognitas quantitates dividere.

A$$umatur æquatio duas vel plures incognitas quantitates (x, y, &c.) habens; deinde addatur, $ubtrahatur, &c. a$$umpta æquatio e datâ; & exoriuntur duæ æquationes duas vel plures incognitas quantitates habentes, quæ facile reduci po$$unt ad datam. Et $ic de pluribus æquationibus.

THEOR. VIII.

Sint duæ vel plures infinitæ æquationes duas vel plures incognitas quantitates habentes, quarum $it una integer numerus vel fractio; tum altera etiam erit integer numerus vel fractio, ni duo vel tres vel plures valores reliquarum incognitarum quantitatum $int inter $e æquales.

Multarum infinitarum æquationum inveniri po$$unt radices inte- gri numeri ex principiis, quæ tradita fuere pro inveniendis radicibus, qui $unt integri numeri, in finitis algebraicis æquationibus.

PROB. VII.

Sint duæ infinitæ $eries, quarum termini $ecundum dimen$iones quanti- tatis x collocantur; invenire nonnunquam infinitas $eries, quæ $int earum communes divi$ores.

Dividantur hæ æquationes juxta methodum, per quam inveniuntur communes divi$ores in algebraicis finitis æquationibus, & nonnun- quam re$ultant communes divi$ores. E. g. Sint duæ infinitæ $eries 1 - {5 / 3 · 2} x + {5 / 3 · 4} x^2 - {5 / 3 · 8} x^3 + &c. & 1 - {3 / 4} x + {3 / 8} x^2 - {3 / 16} x^3 + &c. dividantur hæ quantitates $ecundum methodum inveniendi com- munes divi$ores, & operatio erit huju$modi 1 - {5 / 6}x + {5 / 12}x^2 - {5 / 24}x^3 + &c.) 1 - {3 / 4}x + {3 / 8}x^2 - {3 / 16}x^3 + &c.) 1 # {1 - {5 / 6}x + {5 / 12}x^2 - {5 / 24}x^3 + &c. / {1 / 12}x - {1 / 24}x^2 + {1 / 48}x^3 - &c.} ducatur [0416]DE INFINITIS hoc re$iduum, fractionem evitandi gratiâ, in {12 / x}, & re$ulatat $eries 1 - {1 / 2}x + {1 / 4}x^2 - {1 / 8}x^3 + &c. dividatur prior divi$or per re$iduum, & operatio erit 1 - {1 / 2}x + {1 / 4}x^2 - &c.) 1 - {5 / 6}x + {5 / 12}x^2 - {5 / 24}x^3 + &c.) 1 - {1 / 3}x \\ 1 - {1 / 2}x + {1 / 4}x^2 - {1 / 8}x^3 + &c. \\

    - {1 / 3}x + {1 / 6}x^2 - {1 / 12}x^3 + {1 / 24}x^4 - &c.
\\ - {1 / 3}x + {1 / 6}x^2 - {1 / 12}x^3 + {1 / 24}x^4 - &c. \\
    .........
unde con$tat has duas infinitas $eries eandem præbere $eriem 1 - {1 / 2}x + {1 / 4}x^2 - &c. ductam re$pective in 1 - {1 / 3}x & 1 - {1 / 4}x.

THEOR. IX.

1. Sint α & β duæ radices æquationis infinitæ 0 = a + b x + c x^2 + d x^3 + &c. = A, $cribatur in hâc æquatione pro x ejus valor a$- $umptus π, qui inter duas proximas radices α & β ponitur; tum ple- rumque erit quantitas re$ultans finita quantitas; $i A evadat infinita quantitas, cum x = λ inter valores α & β po$ita; tum evadet iterum finita quantitas, cum x = μ quantitas etiam inter α & β po$ita: & plures po$$unt e$$e progre$$us huju$ce generis de finito ad infinitum, &c. inter valores α & β quantitatis x.

2. Si modo $int α, β, γ, &c. $ucce$$ivæ radices datæ infinitæ æqua- tionis; & π quantitas inter α & β, & ς inter β & γ: $cribantur π & ς pro x in datâ infinitâ æquantione; & quantitatum exinde re$ultantium mutabuntur $igna de + in - & - in +, ni detur quantitas inter π & ς contenta, quæ $ub$tituta pro x præbet divergentem $eriem.

3. Si duæ æquationes A + b x + c x^2 + d x^3 + &c. = 0 & A′ + b x + c x^2 + d x^3 + &c. = 0 habeant po$$ibilem radicem (α & β) re- $pective; & A″ $it quantitas inter A & A′ contenta, tum æquatio A″ + b x + c x^2 + d x^3 + &c. = 0 habet po$$ibilem radicem; ni inter valores α & β quantitatis x $eries evadat divergens.

4. Divergens $eries in quantitatem nihilo æqualem ducta aliquando [0417]SERIEBUS. fiet convergens; in finitam quantitatem ducta nunquam producet $eriem, quæ proprie dici pote$t convergens.

5. Inveniantur termini $eriei ad infinitam di$tantiam po$iti, quæ e$t productum divergentis $eriei in quantitatem nihilo æqualem ductæ; & ex iis per principia prius tradita $emper detegi pote$t, annon $eries re$ultans $it convergens.

6. In $eriebus cuju$cunque generis fluens convergit magis celeriter quam ejus fluxio; & $ic de con$imilibus.

PROB. VII. Datâ re$olutione æquationis, quæ $it infinita $eries irrationalium quantita- tum; invenire æquationem ip$am.

Ita reducatur per prob. 26. medit. algebr. data re$olutio, ut exter- minentur irrationales quantitates, & re$ultat æquatio quæ$ita.

PROB. VIII.

Invenire, utrum data quantitas $it radix datæ infinitæ æquationis, necne: $cribatur data radix pro ejus valore in datâ æquatione, & $i e quibu$cunque principiis con$tet quantitatem re$ultantem ultimo ad nibil vergere, tum con$tat quantitatem datam e$$e radicem datæ infinitæ æquationis.

E. g. Sit æquatio 0 = 1 - x - x^2 - x^3 - &c. invenire, annon {1 / 2} $it radix prædictæ æquationis: $cribantur {1 / 2}, {1 / 4}, {1 / 8}, &c. pro x, x^2, x^3; &c. in datâ æquatione, & re$ultant $ucce$$iva re$idua {1 / 2}, {1 / 4}, {1 / 8}, {1 / 16}, {1 / 32}, &c. in in- finitum, unde ultimo vergit ad nihil, & con$equenter x = {1 / 2} erit radix datæ æquationis. Dividatur data æquatio per {1 / 2} - x, & quotiens in- venietur 0 = 2 + 2 x + 2 x^2 + 2 x^3 + &c., cujus omnes radices $unt impo$$ibiles.

Cor. Series 1 - x - x^2 - x^3 - &c. = {1 - 2 x / 1 - x}; huju$ce $eriei nu- merator 1 - 2 x = 0, cum x = {1 / 2}: etiamque $eries 1 + x + x^2 + x^3 [0418]DE INFINITIS + &c. = {1 / 1 - x} erit convergens, cum x = {1 / 2} ergo; x = {1 / 2} erit radis datæ æquationis {1 - 2 x / 1 - x} = 1 - x - x^2 - &c. = 0. Et $ic genera- liter ratiocinari liceat; i.e. $i numerator = 0, & denominator ad $eriem $ecundum dimen$iones quantitatis x progredientem reductus præbeat convergentem $eriem, cum x = α; tum α erit radix $eriei, quæ oritur ab expan$ione datæ fractionis in terminos $ecundum dimen$iones quantitatis x progredientes.

2. Æquatio 0 = 1 + x + x^2 + x^3 + &c. = {1 / 1 - x} habet unam ra- dicem x = - 1; & æquatio 0 = 1 - x + x^2 - x^3 + &c. = {1 / 1 + x} habet radicem x = 1; nam $i pro x in utri$que æquationibus $criba- tur quantitas inter 1 & - 1 po$ita, tum $emper evadent finitæ quan- titates ad 0 magis appropinquantes, quo minus di$tet (x) ab - 1 in priori & ab + 1 in po$teriori æquatione.

THEOR. X.

Sit $eries A = 0, quæ $it finita functio (P) algebraicæ quantitatis x; tum radices æquationis A = p erunt etiam radices æquationis P = p; & vice versâ radices æquationis P = p erunt radices æqua- tionis A = p.

Ex.. Sit $eries 1 + x + x^2 + x^3 + &c. = a + √(- b), $ed e$t {1 / 1 - x}= 1 + x + x^2 + &c. = a + √(- b), ergo nullæ radices inveniun- tur in æquatione 1 + x + x^2 + &c. = a + √(- b), quæ in æqua- tione {1 / 1 - x} = a + √(- b) haud inveniuntur.

Scribatur enim in $erie 1 + x + x^2 + x^3 + &c. pro (x) valor a$- $umptus c + √(- d), & re$ultat 1 + c + c^2 + c^3 + &c. - d (1 + [0419]SERIEBUS. 3c + 6c^2 + &c.) + d^2 (1 + 5c + 15c^2 + &c.) - d^3 (1 + 7c + 28c^2 + &c.) + &c. (= {1 / 1 - c} - {d / (1 - c)^3} + {d^2 / (1 - c)^5} - &c.) + √(- d) (1 + 2c + 3c^2 + &c. - d(1 + 4c + 10c^2 + &c.) + d^2 (1 + 6c + 21c^2 + &c.) - &c.)(= √(- d)({1 / (1 - c)^2} - {d / (1 - c)^4} + {d^2 / (1 - c)^6}- &c.) + &c.); unde {1 / 1 - c} - {d / (1 - c)^3} + {d^2 / (1 - c)^5} - &c. = a & √(- d)({1 / (1 - c)^2} - {d / (1 - c)^4} + {d^2 / (1 - c)^6} - &c.) = √(- b), & exinde {1 - c / (1 - c)^2 + d} = a & {1 / (1 - c)^2 + d} = √({b / d}); & ex his dua- bus æquationibus deduci po$$unt iidem & nulli alii valores quantita- tum c & d, præter eos, qui ex æquatione {1 / 1 - x} = a + √(- b), i.e. x = {a - 1 + √(- b) / a + √(- b)}, re$ultant.

THEOR. XI.

Sit infinita æquatio 0 = a - bx + cx^2 - dx^3 + ex^4 - &c.; ubi {b / a} multo major $it quam {c / b}; & {c / b} multo major quam {d / c}; & {d / c} multo major quam {e / d}; & {e / d} multo major quam {f / e}, & $ic deinceps in infini- tum: tum erunt omnes radices datæ æquationis po$$ibiles; & ap- proximatio (α) ad minimam radicem erit {a / b}; & approximatio ad radi- cem (β), quæ e$t minor quam omnes præter α erit {b / c}; vel radices æquationis quadraticæ a - bx + cx^2 = 0 erunt propriores approxi- mationes ad α & β; & $imiliter {c / d} erit approximatio ad tertiam radi- [0420]DE INFINITIS cem (γ) datæ æquationis, quæ e$t minor quam omnes radices datæ æquationis præter α & β; vel radices cubicæ æquationis a - bx + cx^2 - dx^3 = 0 erunt propriores approximationes ad radices α, β & γ datæ æquationis; & $imiliter approximatio ad quartam minimam ra- dicem erit {d / e}, & quatuor radices datæ æquationis a - bx + cx^2 - dx^3 + ex^4 = 0 erunt propriores approximationes ad quatuor mini- mas radices (α, β, γ & δ) datæ æquationis; & $ic deinceps.

THEOR. XII.

Sit æquatio y^n + a y^n-1 + b y^n-2 + c y^n-3 ... f y^n-m + g y^n-m-1 + b y^n-m-2 ... + k y^n-m-r + l y^n-m-r-1 ... + p y^s+1 + q y^s + &c. = 0, cu- jus m radices $int multo majores quam reliquæ, tum ex $ummâ m + 1 primorum terminorum nihilo æquali e$$e $uppo$itâ, viz. y^m + a y^m-1 + b y^m-2 + c y^m-3 ... + f = 0 re$ultat æquatio, cujus radices $unt præ- dictæ m radices prope: $i vero r radices datæ æquationis $int multo minores quam prædictæ m radices, multo vero majores quam reliquæ; tum ex $ummâ r + 1 terminorum, quorum primus $it ultimus æqua- tionis prius traditæ terminus f y^n-m, cæteri vero r $ub$equentes, viz. f y^r + g y^r-1 + b y^r-2 ... + k = 0, nihilo æquali e$$e $uppo$itâ re$ultat æquatio, cujus radices $unt r prædictæ radices prope; & $ic deinceps; & denique $i s radices datæ æquationis $int multo minores quam re- liquæ, tum ex $ummâ s + 1 ultimorum terminorum nihilo æquali e$$e $uppo$itâ re$ultat æquatio, cujus radices $unt s radices prædictæ.

Cor.. Sint α, β, γ, δ, &c. radices datæ æquationis y^n - p y^n-1 + q y^n-2 - r y^n-3 + &c. = 0, quarum α multo major $it quam β, β quam γ, γ quam δ, & $ic deinceps; tum erit α = p prope, β = {q / p} prope, γ = {r / q} prope, & $ic deinceps.

[0421]SERIEBUS. THEOR. XIII.

1. Sit æquatio y^n + a y^n-1 + b y^n-2 + c y^n-3 + &c. = 0, ubi a, b, c, &c. $unt functiones ip$ius x, nunc ex hypothe$i quod x $it perparva vel permagna quantitas vel ex quâcunque aliâ hypothe$i $int α, β, γ, &c. proximi valores quantitatum a, b, c, d, &c. tum a$$umatur æqua- tio ν^n + α ν^n-1 + β ν^n-2 + γ ν^n-3 + δ ν^n-4 + &c. = 0, & n radices hu- ju$ce æquationis erunt primæ approximationes ad n diver$as datæ æquationis radices.

2. Si vero quæcunque una radix multo minor $it quam quædam m radices in datâ æquatione y^n + a y^n-1 + b y^n-2 + ... f y^n-m + g y^n-m-1 + b y^n-m-2 + &c. = 0 contentæ, multo vero major quam $ingulæ reli- quæ (n - m - 1); tum erit -{g / f} prima approximatio ad prædictam radicem; $i vero duæ radices ε & τ $int multo minores quam m radi- ces prædictæ, multo vero majores quam n - m - 2 reliquæ radices, erunt radices æquationis f y^n-m + g y^n-m-1 + b y^n-m-2 = 0 primæ ap- proximationes ad duas radices prædictas; & $ic de pluribus.

3. Datis primis approximationibus π, ξ, σ, &c. ad qua$cunque (m) radices datæ æquationis; alias π′, ξ′, σ′, &c. adhuc magis appropin- quantes detegere: $cribatur (y - π - π′) · (y - ξ - ξ′) · (y - σ - σ′) · &c. × (y^n-m + p y^n-m-1 + q y^n-m-2 + &c.) = y^n + a y^n-1 + b y^n-2 + &c. = 0, & ex æquatis corre$pondentibus terminis re$ultantis æquationis exorientur n æquationes totidem n incognitas quantitates π′, ξ′, σ′, &c. p, q, r, &c. habentes; nunc abjectis omnibus terminis tanquam prope nihilo æqualibus, in quibus plures quam una dimen$io quantitatum π′, ξ′, σ′, &c. inveniuntur, & re$ultantes n æquationes in m alias redu- cantur, ita ut exterminentur incognitæ quantitates p, q, r, s, &c. & exorientur m æquationes totidem incognitas quantitates π′, ξ′, σ′, &c. habentes; quibus in unam reductis, ita ut exterminentur omnes præ- ter unam incognitæ quantitates, re$ultant valores approximationum quæ$itarum π′, ξ′, σ′, &c. quæ invenientur re$pective π′ = - [0422]DE INFINITIS {π^n + a π^n-1 + b π^n-2 + c π^n-3 + &c. / n π^n-1 + (n - 1) a π^n-2 + (n - 2) b π^n-3 + &c.} prope, ξ′ = -{ξ^n + a ξ^n-1 + b ξ^n-2 + c ξ^n-3 + &c. / n ξ^n-1 + (n - 1) a ξ^n-2 + (n - 2) b ξ^n-3 + &c.} prope, σ′ = -{σ^n + a σ^n-1 + b σ^n-2 + &c. / n σ^n-1 + (n - 1) a σ^n-2 + (n - 2) b σ^n-3 + &c.} prope, &c.

In denominatoribus & numeratoribus harum fractionum rejician- tur omnes termini tanquam nihilo æquales, qui ex hypothe$i a$$umptâ multo minores evadunt quam reliqui; & e comparandis re$ultantis æquationis ν^n + α ν^n-1 + β ν^n-2 + &c. = 0 terminis, $æpe inveniri po$$unt ejus radices. E. g. E comparandis quibu$que duobus proxime $ucce$$ivis erui pote$t radix prope, $i modo longe di$tet a reliquis; & $ic detegi pote$t quadratica æquatio, quæ continet duas radices prope a reliquis longe di$tantes; & $ic deinceps.

Eadem fere principia ad fluxionales & incrementiales æquationes applicari po$$unt.

Si plures dentur æquationes plures habentes incognitas quantita- tes; tum ex ii$dem principiis erui po$$unt plures æquationes, quarum radices $unt primæ approximationes ad radices datarum æquatio- num.

4. Eadem principia etiam applicari po$$unt ad æquationes, in quibus quæcunque irrationales continentur quantitates; rejectis enim omnibus quantitatibus in irrationalibus terminis contentis, qui haud maximi evadant ex a$$umptâ hypothe$i, e reliquis erui po$$unt ap- proximationes ad $ingulas datæ æquationis radices, & ex iis primæ ap- proximationes ad quantitatem vel quantitates quæ$itas; & ex primis approximationibus deduci po$$unt $ecundæ approximationes e princi- piis prius traditis: vel rejectis omnibus, quæ haud maximæ vel pro- ximæ evadant ex a$$umptâ hypothe$i, e terminis re$ultantibus inve- niri po$$unt approximationes ad radices quæ$itas vergentes; & $ic de- inceps. Facile etiam con$tat numerus terminorum, qui vere obtineri po$$unt ex rejectis quibu$dam datæ æquationis terminis.

[0423]SERIEBUS.

Si vero duo vel plures (n) valores quantitatis quæ$itæ $int prope = e & inter $e æquales; tum inveniendi $unt termini datarum æqua- tionum, qui nullam, unam, duas, vel denique (n) habent dimen$iones; qui $int re$pective A, B e, C e^2, D e^3, ... H e^n; tum radices æquatio- num A + B e + C e^2 = 0 vel A + B e + C e^2 + D e^3 + .. H e^n = 0 erunt approximationes ad duas vel denique n radices æquationum, quæ $unt prope inter $e æquales.

THEOR. XIV.

1. Datâ æquatione algebraicâ x^n - p x^n-1 + q x^n-2 - r x^n-3 + s x^n-4 - &c. = 0, cujus una radix α multo major $it quam quæcunque alia, & erit ea radix p - p^-1 q + p^-2 r - s \\ - q^2 # p^-3 + &c. cujus $eriei lex eadem erit ac ea, quæ traditur pro inveniendâ $ummâ α^m + β^m + γ^m + δ^m + &c. ubi α, β, γ, δ, &c. $unt radices datæ æquationis vel in meis mi$cell. analyt. vel po$tea in medit. algeb. $i modo pro m $cribatur 1, & termini in infinitum progrediantur; i.e. coefficiens generalis ter- mini p^m-1 q^α r^β s^γ &c. ubi l = 2 α + 3 β + 4 γ + &c. erit = m.{m - l + 1. m - 1 + 2 · m - l + 3 · m - l + 4 ... m - l + α + β + γ + &c. -1 / 1 · 2 · 3 .. α × 1 · 2 · 3 .. β × 1 · 2 · 3 .. γ × & c.}; $ignum affixum erit + vel -, $i l $it impar numerus, prout α + β + γ + &c. $it impar vel par numerus, &c.; $ed in hoc ca$u m = 1, ergo erit prædicta coefficiens ± {(2 - l) · (3 - l) ... (α + β + γ + &c. - l) / 1 · 2 · 3 .. α × 1 · 2 · 3 .. β × 1 · 2 · 3 .. γ × &c.}

2. Sit æquatio P - Q x + R x^2 - S x^3 + T x^4 - &c. = 0, cujus una radix π $it multo minor quam quæcunque alia: $cribantur {1 / x}= v, {Q / P} = p, {R / P} = q, {S / P} = r, {T / P} = s, &c. & re$ultat æquatio ν^n - p ν^n-1 + q ν^n-2 - k ν^n-3 + &c. = 0, cujus maxima radix {1 / π} erit p - [0424]DE INFINITIS p^-1 q + p^-2 r - p^-3 s \\ - q^2 # + &c. ut antea; ejus vero reciproca, i.e. radix quæ$ita (π) erit p^-1 + p^-3 q - p^-4 r + s \\ + 2q^2 # p^-5 - &c. $eries prius tra- dita eadem evadet ac hæc, $i modo in eâ pro m $cribatur - 1 & termini in infinitum progrediantur: hic animadvertendum e$t ulti- mo duos primos terminos recte o$tendere duplum figurarum nume- rum, tres vero primos terminos triplum figurarum numerum præ- bere, &c.

2. 1. Sit æquatio x^n - p x^n-1 + q x^n-2 + &c. = 0, cujus radix α multo major $it quam quæcunque alia, tum erit α^λ = p^λ - λ p^λ-2 q + λ p^λ-3 r - λ p^λ-4 s \\ + λ. {λ - 3 / 2} p^λ-4 q^2 # + &c. $i in prædictâ $erie pro m $cribatur λ, & termini in infinitum progrediantur, tum eadem evadet ac $eries prius tradita.

2. Sit æquatio P - Q x + R x^2 - &c. = 0, cujus radix π multo minor $it quam quæcunque alia in eâ contenta, transformetur hæc æquatio in alteram ν^n - p ν^n-1 + q ν^n-2 - &c. = 0 cujus radix ν = {1 / x}; & erit {1 / π^λ} = p^λ - λ p^λ-2 + &c. ut antea, & π^λ = p^-λ + λ p^-λ-2 q - λ p^-λ-3 r + λ p^-λ-4 s \\ - λ. - {λ + 3 / 2} p^-λ-4 q^2 # - &c. quæ $eries eadem erit ac $eries re$ul- tans e $cribendo - λ pro m in $erie generali prius traditâ.

Cor.1. Termini omnium $erierum prædictarum, in quibus $olum- modo continentur coefficientes p & q, erunt æquales quantitati ({p + √(p^2 - 4 q) / 2})^±λ; termini vero in quibus continentur coeffi- cientes p, q & r erunt æquales quantitati H^±λ, $i modo H $it ma- xima radix cubicæ æquationis x^3 - p x^2 + q x - r = 0; & $ic de- inceps.

[0425]SERIEBUS.

Cor.2. Sint {p^n - p · p^n-1 + q p^n-2 - r p^n-3 + &c. / n p^n-1 - (n - 1) p · p^n-2 + (n - 2) q p^n-3 - &c.} = α,{π^n - n p π^n-1 + (n - 1) q π^n-2 - (n - 2) r π^n-3 + &c. / n π^n-1 - (n - 1) q π^n-2 + (n - 2) q π^n-3 - &c.}=β,{ξ^n - n p ξ^n-1 + (n - 1) q ξ^n-2 - (n - 2) r ξ^n-3 + &c. / n ξ^n-1 - (n - 1) p ξ^n-2 + (n - 2) q ξ^n-3 - &c.}=γ,{σ^n - n p σ^n-1 + (n - 1) q σ^n-2 - (n - 2) r σ^n-3 + &c. / n σ^n-1 - (n - 1) p σ^n-2 + (n - 2) q σ^n-3 - &c.}=δ,&c. in infinitum, ubi p - α = π, p - α - β = ξ, p - α - β - γ = σ, &c. tum quantitas ultimo re$ultans, i.e. ad infinitam di$tantiam po$ita, $i modo reducatur in terminos $ecundum dimen$iones quantitatum p, q, r, s, &c. progredientes, evadet p - p^-1 q + p^-2 r - p^-3 s \\ - q^2 # + &c. $eries prius tradita.

Ex principiis in medit. algebr. ulterius promotis invenire liceat radicem, quæ multo minor $it quam maxima radix; at multo major quam quæcunque alia; & $ic deinceps; $ed omnia hæc e principiis $ub$equentibus per $e per$picuis re$olutionem recipiant.

PROB. IX.

1. Sit œquatio x^n - p x^n-1 + q x^n-2 - r x^n-3 ... ± g x^n-m+1 ∓ h x^n-m ± i x^n-m-1 ∓ k x^n-m-2 ± &c. = 0, cujus radix α $it multo major quam quœcunque alia (β, γ, δ, &c.) in datâ œquatione contenta, invenire radi- cem α.

Per vulgarem algebram innote$cunt p = α + (β + γ + δ + &c.), q = α(β + γ + δ + &c.) + (β γ + β δ + γ δ + &c.), r = α(β γ + β δ + γ δ + &c.) + (β γ δ + β γ ε + δ β ε + &c.), s = α(β γ δ + &c.) + (β γ δ ε + &c.) &c. unde erit α = p - (β + γ + δ + &c.), $ed β + γ + δ + &c. = {q / p} + {(β γ + β δ + γ δ + &c.) + (β^2 + γ^2 + δ^2 + &c.) / p}, at (β^2 + γ^2 + δ^2 + &c.) + 2 (β γ + β δ + γ δ + &c.) =[0426]DE INFINITIS {q<_>2 + 2α(S<_>3 + 2S<_>2S<_>1 + 3S<_>1S<_>1S<_>1) + S<_>4 + 4S<_>3S<_>1 + 5S<_>2S<_>2 + 10S<_>2S<_>1S<_>1 + 18S<_>1S<_>1S<_>1 / p<_>2}, (ubi de$igno S^3 = β^3 + γ^3 + δ^3 + &c. S^4 = β^4 + γ^4 + δ^4 + &c. S^2 S^1 = β^2 γ + β^2 δ + γ^2 δ + &c. S^1 S^1 S^1 = β γ δ + β γ ε + β δ ε + &c. S^3 S^1 = β^3 γ + β^3 δ + γ^3 β γ^3 δ + &c. S^2 S^2 = β^2 γ^2 + β^2 δ^2 + γ^2 δ^2 + &c. S^2 S^1 S^1 = β^2 γδ + γ^2 βδ + δ^2 βγ + &c. quæ fere eadem e$t notatio, quâ u$us fui in mi$cell. analyt. anno 1762 edit.) & β γ + β δ + γ δ + &c. = {r + S^2 S^1 + 2S^1 S^1 S^1 / p}; & $ic deinceps; unde con- $tat α = p - {q / p} - {q^2 / p^3} + {r / p^2} - &c. eædem $eriei, quæ prius inventa fuit.

2. Sit δ radix prædictæ æquationis, quæ multo minor $it quam m radices datæ æquationis, multo vero major quam reliquæ n - m - 1; tum ex principiis hic traditis deduci pote$t δ = {i / b} - ({k / i} - {g i^2 / b^3}) + &c. termini, in quibus $olummodo continentur coefficientes termino- rum (x^n-1, x^n-2, x^n-3, .... x^n-m-1) ob$ervant legem in ca$. 1. prob. præced. traditam, cæterique legem haud multum diver$am habent, mutatis indicibus de affirmativis in negativos, & mutato denomina- tore de b & ejus pote$tatibus in i & ejus pote$tates.

Ex ii$dem principiis etiam detegi po$$unt approximationes ad duas vel plures radices datæ æquationis, quæ fere $unt inter $e æquales; etiamque eadem applicari po$$unt principia ad æquationes duas in- cognitas quantitates habentes, ita ut una exprimatur in terminis al- terius; etiamque ad qua$cunque æquationes, quæ reduci po$$unt ad infinitas algebraicas æquationes.

Exhinc etiam con$tabunt leges, quas ob$ervant infinitæ $eries radi- ces æquationum algebraicarum exprimentes.

[0427]SERIEBUS. PROB. X. _Datâ algebraicâ æquatione_ x^n - p x^n-1 + q x^n-2 - r x^n-3 + &c. = 0, _cujus radix e$t_ x, _invenire valorem quantitatis_ x.

1<_>mo. Sint omnes radices α, β, γ, δ, ε, &c. datæ æquationis po$$ibiles; $int vero α multo major quam β, β quam γ, γ quam δ, &c. & inve- niatur per algebr. meditat. $umma α^2m + β^2m + γ^2m + δ^2m + &c. = A^2m; & α erit ad A in æquali vel majore ratione quam habet 1:^2m √(n). Facile con$tat ex $upponendo omnes radices inter $e e$$e æquales.

2<_>do. Inveniatur $umma rectangulorum α^2m β^2m + α^2m γ^2m + β^2m γ^2m + α^2m δ^2m + β^2m δ^2m + γ^2m δ^2m + α^2m ε^2m + &c. = A′^2m per prædictas medi- tationes; & αβ erit ad A′ in æquali vel majore ratione quam 1: ^2m √(n · {n - 1 / 2}).

3<_>tio. Ex quam plurimis directis functionibus $ingularum radicum inveniri pote$t maxima radix (α); & ex iis & quam plurimis directis functionibus productorum $ub quibu$que duabus radicibus in dire- ctam functionem $ingularum radicum erui pote$t radix β, quæ major e$t quam omnes radices præter α; & $ic progredi licet ad invenienda contenta α β γ, α β γ δ, &c. etiamque qua$cunque algebraicas earundem radicum functiones.

Cor. 1. Ii$dem po$itis, ^2n √(α^2n + β^2n + γ^2n + δ^2n + &c.) nunquam differt a maxima radice α per quintam ejus partem; ni $it n = 3, in quo ca$u vix differt per majorem partem: & ^4n √(α^4n + β^4n + γ^4n + &c.) nunquam differt a maximâ radice α per decuplam ejus partem, &c. hic haud $upponitur n = 2.

Cor. 2. Limites, inter quos con$i$tit vera radix, inveniri po$$unt $upponendo 1<_>mo omnes vel qua$dam radices e$$e æquales, & 2<_>do om- nes præter quemdam numerum radicum evane$cere.

Cor. 3. Sit æquatio x^n - p x^n-1 + q x^n-2 - &c. = 0, cujus omnes radices α, β, γ, δ, &c. $int po$$ibiles, quarum α major $it quam β, β [0428]DE INFINITIS quam γ, γ quam δ, &c.; invenire quantitatem, quæ habet ad radicem α minorem quam datam rationem, viz. r:1, ubi r major e$t quam 1: inveniantur logarithmi quantitatum n & r, qui dicantur ν & ξ, & par numerus major quam {ν / ξ} dicatur σ; tum erit (α^σ + β^σ + γ^σ + δ^σ + &c.)^{1 / σ} quantitas quæ$ita. Hæc principia etiam applicari po$$unt ad inve- niendas approximationes intra datos limites con$titutas ad radices β, γ, &c., vel ad minimam radicem.

Cor. 4. Hinc e prob. primo meditat. algebr. con$equitur lex, quam ob$ervat rever$io $eriei x = a y - b y^2 + c y^3 - d y^4 ... y^m, i. e. $eries exinde deducta y = A x + B x^2 + C x^3 + D x^4 + &c. Inve- niatur enim æquatio, cujus radices $unt reciprocæ datæ æquationis radicum, quæ erit v^m - {a / x} v^m-1 + {b / x} v^m-2 - {c / x} v^m-3 + {d / x} v^m-4 - &c. = 0 ubi v = {1 / y}; $int α, β, γ, δ, ... π radices huju$ce æquationis, ubi α $it maxima radix & π minima, maximus igitur erit valor radicis y ={1 / π}; tum ^2n √(α^2n + β^2n + γ^2n + &c.) erit maxima radix α, $i modo n $it infinitus affirmativus numerus, etiamque ^2n √(α^-1n + β^-2n + γ^-2n + &c.) erit minima radix π, & con$equenter maxima radix quantitatis y = {1 / π}; $ed quoniam radices, ut con$tat ex ob$ervatione ad problema prædi- ctum annexâ, eandem pror$us ob$ervant legem ac earum pote$tates; $eries, quæ exprimit radicem π = ^2n √(α^-2n + β^-2n + γ^-2n + &c.) ean- dem pror$us ob$ervat legem ac $eries pro $umma (α^-1 + β^-1 + γ^-1 + &c.) cum radix $it {-2n / 2n} = -1, & con$equenter $eries erit per prob. prædict. p^-1 + p^-1-2 q - p^-1-3 r + p^-1-4 s \\ + 2 p^-1-4 q^2 - &c. $i modo æquatio $it z^m - p z^m-1 + q z^m-2 - &c. = 0; hoc autem in loco erunt [0429]SERIEBUS. re$pective p = {a / x}, q = {b / x}, r = {c / x}, &c. in ca$u propo$ito requiratur, ut termini progrediantur $ecundum dimen$iones quantitatis x, unde in terminis p^-1-μ q^α r^β s^γ × &c. infra $e po$itis, qui in eandem pote$tatem quantitatis x ducuntur, quantitas - 1 - μ + α + β + γ + &c. = - 1 - α - 2β - 3γ - &c. eandem conficiet $ummam, quæ erit $ucce$$ive -1, -2, -3, -4, -5, &c. ubi μ = 2 α + 3 β + 4 γ + &c. & con$equenter $eries per prædictum problema invenietur y = {x / a} + {b x^2 / a^3} + {2 b^2 - c a / a^5} x^3 + &c. unde e prædicto problemate con- $tat lex, quam ob$ervat hæc $eries; exinde enim con$tat coefficientem termini p^-1-μ q^α r^β s^γ, &c. e$$e ± {μ × (μ - 1)(μ - 2)(μ - 3) ... (μ - α - β - γ - &c. + 2) / 1 · 2 · 3 .. α × 1 · 2 · 3 .. β × 1 · 2 · 3 .. γ × &c.}: $ignum affixum erit + vel - prout 2 α + 3 β + 4 γ + &c. $it par vel impar numerus; $i α + β + γ + &c. = 1, i. e. una litera α vel β vel γ, &c. $it 1, cæteræ vero 0; tum coefficiens prædicta erit 1.

Et $ic, $i modo deficiant quidam datæ $eriei termini vel a y vel b y^2, &c. facile deduci pote$t lex, quam ob$ervat $eries valorem radicis π exprimens.

3. Summa α^4m + β^4m + γ^4m + &c. per $ummam α^2m + β^2m + γ^2m + &c. divi$a erit approximatio ad α^2m. Et $ic de $ummis quantitatum rationalium & irrationalium; reducantur rationales vel irrationa- les quantitates in $eries, quarum primi termini $int maximi, & ex- inde $umma e $ingulis valoribus rationalium vel irrationalium quan- titatum prope æqualis erit prædictis terminis; &c.

4. Habeat prædicta æquatio radices impo$$ibiles, & e præcedente methodo haud generaliter inve$tigari pote$t maxima radix: pendet enim ex hoc, utrum impo$$ibilis radix major $it quam reliquæ radi- ces, necne; i. e. impo$$ibilis vel po$$ibilis pars radicis impo$$ibilis multo major $it quam reliquæ radices, necne; quâ inventâ, i. e. datâ [0430]DE INFINITIS approximatione ad impo$$ibilem vel po$$ibilem partem radicis deduci pote$t approximatio ad alteram partem.

In quibu$cunque datis æquationibus $uperiorum dimen$ionum, qua- rum radices haud dantur, maxime probabile e$t multo majorem e$$e numerum impo$$ibilium quam po$$ibilium radicum, & con$equenter ca$us non detegendi po$$ibilem radicem per hanc regulam multo ma- jorem e$$e quam ca$us detegendi. Transformetur data æquatio in al- teram, cujus radices $int reciprocæ radicum datâ æquatione conten- tarum, & minima radix datæ æquationis vel negativa vel affirmativa præbet maximam re$ultantis æquationis radicem; de eâ con$imiliter ratiocinari liceat.

5. Sæpe approximationes ad valores radicum inve$tigari po$$unt e comparandis diver$is æquationis terminis inter $e, cum quidam ter- mini æquationis multo majores e$$e $upponantur quam reliqui.

Et con$imili methodo inve$tigari po$$unt approximationes ad qua$- cunque algebraicas functiones datæ æquationis radicum: per meditat. algebr. enim inveniri pote$t aggregatum e $ingulis valoribus datæ functionis, ex $ingulis eorum quadratis, cubis, quadratoquadratis, quadratis ex uno quocunque valore in quadrata e $ingulis reliquis ductis, &c. unde per hoc problema inveniri pote$t approximatio ad valorem vel diver$os valores datæ functionis; vel quod idem e$t, $em- per deduci pote$t approximatio prædicta ex transformatione datæ æquationis in alteram, cujus radices $unt data functio datæ æquatio- nis radicum.

PROB. XI. _Conce$sâ methodo detegendi radices_ ^2n √(-1), _invenire radices_ n _pote$tatis_ _impo$$ibilis quantitatis_ a + b √(-1).

1. Sit a multo major quam b, tum ex vulgari extractione radicis n po- te$tatis $emper inveniri pote$t radix quæ$ita; $i vero a $it negativa quan- titas, ducatur data quantitas - a + b √(-1) in -1, & re$ultat (a - b √(-1)); per prædictam & conce$$am methodos inveniantur radices [0431]SERIEBUS. ^n √(a - b √(- 1)) & ^n √(- 1), & e dividendo has radices per $e$e con$equitur radix quæ$ita.

2. Sit b multo major quam a, ducatur data quantitas in - √(-1), & re$ultat (b - a √(- 1)); $ed radices ^n √(b - a √(- 1)) & ^n √(- √(-1)) = ^2n √(-1) e prædictis methodis erui po$$unt, ergo radix quæ$ita.

3. Si vero a & b $int prope inter $e æquales, tum for$an ab extra- ctione 2 n radicis ejus quadrati a^2 - b^2 + 2 a b√(-1) in -√(-1) = 2ab + (b^2 - a^2) √(-1); vel ab extractione radicum ex aliis pote$tatibus erui pote$t radix quæ$ita; aliter vero in hoc ca$u $inga- tur α × (1 ± √(-1)) radix quæ$ita, & con$equenter erit (1 - n .{n - 1 / 2} + n · {n - 1 / 2} · {n - 2 / 3} · {n - 3 / 4} - n · {n - 1 / 2} · {n - 2 / 3} · {n - 3 / 4} · {n - 4 / 5}. {n - 5 / 6} + &c.) α^n = M α^n = a′, & erit α = ({a′ / M})^{1 / n} = β prope; $cri- batur in æquatione x^n - a - b √(-1) = 0 pro radice quæ$itâ β + π + (β′ + δ) √(-1), ubi β′ quantitas a$$umpta paululum differt a quantitate β; & ex maximis re$ultantis æquationis terminis, in quibus invenitur √(-1), necne, $eor$im nihilo æqualibus e$$e $uppo$itis; re$ultant duæ æquationes, e quibus deduci po$$unt π & ξ; & $ic de- inceps.

Hoc in loco vi$um e$t $ub$equentia $ubjicere hanc rem de impo$$i- bilibus radicibus leviter per$tringentia, viz. 1. erit (a + √(-a^2))^4n + (a - √(-a^2))^4n = 2 × (-4)^n a^4n, (a + √(-a^2))^4n+2 + (a - √(-a^2))^4n+2 = 0, & (a + √(-a^2))^2n+1 + (a - √(-a^2))^2n+1 = ± 2^n+1 a^2n+1, ubi litera n integrum denotat numerum; & $ignum quantitati 2^n+1 a^2n+1 affixum e$t affirmativum necne, prout 2n + 1 vel æquat 8 m + 1, vel 8 m + 7; necne; ubi m e$t integer numerus.

2. Quantitas n · {n - 1 / 2} ... {n - r / r + 1} - n · n · {n - 1 / 2} · {n - 2 / 3} ... {n - r + 1 / r}+ n · {n - 1 / 2} · n · {n - 1 / 2} · {n - r + 2 / r - 1} - .... ± n · {n - 1 / 2} · {n - 2 / 3} .. {n - r / r + 1} [0432]DE INFINITIS æquat ± n · {n - 1 / 2} · {n - 2 / 3} ... {n - {r - 1 / 2}/{r + 1 / 2}}, vel o; erit = 0, cum r $it par numerus: $ignum affirmativum erit affixum, cum r = 4s + 3; $in aliter negativum; ubi s e$t integer numerus.

PROB. XII.

Datâ algebraicâ æquatione relationem inter x & y exprimente; invenire legem, quam ob$ervat $eries de$ignans quantitatem y in $implicibus terminis quantitatis x; $i modo dentur leges, quam ob$ervant quantitates buju$ce ge- neris ad qua$cunque pote$tates elevatæ vel in $e$e ductæ.

Ita reducatur data algebraica æquatio relationem inter x & y ex- primens, ut π functio quantitatis x multo magis appropinquet ad unam quam ad ullam aliam radicem vel valorem quantitatis y; $cribatur v - π pro y in datâ æquatione & $it æquatio re$ultans α - β v + γ v^2 - d v^3 + &c. = 0; deinde fingatur w = {1 / v}, & erit α w^n - β w^n-1 + γ w^n-2 - δ w^n-3 + &c. = 0, tum erit {β / α} approximatio ad ra- dicem w, nunc per prob. 1. meditationum algebraicarum infinita $e- ries, quæ erit $umma pote$tatis vel potius radix ({1 / n}) in$initæ pote- $tatis (n) e $ingulis radicibus, i.e. pro m $cribatur 1; & pro {β / α}, {γ / α}, {δ / α}, &c. $cribantur re$pective p, q, r, s, &c. erit p - p^1-2 q + p^1-3 γ - p^1-4 s + &c.; coefficiens termini p^1-μ q^α γ^β s^γ, &c. erit ±{(μ - 2) × (μ - 3) × (μ - 4) .. (μ - α - β - γ - &c.) / 1 · 2 · 3 ... α × 1 · 2 .. β × 1 · 2 .. γ × &c.}, $ignum affi- xum erit + vel -, prout μ + α + β + γ + &c. $it par vel impar numerus; & re$ultantis infinitæ $eriei collocentur termini $ecundum dimen$iones quantitatis x, vel potius $ecundum dimen$iones per- parvæ quantitatis, & erit $eries quæ exprimit unam radicem vel valo- rem quantitatis y.

[0433]SERIEBUS.

Cor. 1. Ex primo, binis, ternis vel $altem ex n, qui $it numerus di- men$ionum datæ æquationis, maximis terminis, pro approximatione ad valorem quantitatis y inventis $emper acquiri pote$t quantitas π prædicta.

Cor. 2. Si requiratur radix prædicta in terminis $ecundum legem ax^r × (x ± x.)^r + b x^r+1 × (x ± x.)^r+1 + &c. + a′x^r+s × (x ± x.)^r+s + b′x^r+s+1 × (x ± x.)^r+s+1 + &c. progredientibus; reducatur $eries, quæ exprimit radicem in terminis eju$dem formulæ, & exinde facile de- duci pote$t per hoc problema $eries quæ$ita; & $ic inveniri pote$t ra- dix prædicta in terminis progredientibus $ecundum alias leges in hoc libro traditas; aliter e terminis maximis continuo deduci po$$unt ap- proximationes quæ$itæ.

THEOR. XV.

Sit æquatio 1 - (α + β + γ + δ + &c.){1 / x} + (αβ + αγ + βγ + &c.){1 / x^2} - (αβγ + αβδ + αγδ + βγδ + &c.){1 / x^3} + (αβγδ + αβγε + &c.){1 / x^4} - &c. = A, i. e. $it A = 0 æquatio, cujus radices $int α, β, γ, δ, ε, &c.; tum erit A^n = 1 - n (α + β + γ + δ + &c.){1 / x} + (n .{n - 1 / 2} (α^2 β^2 + γ^2 + δ^2 + &c.) + n × n (α β + α γ + β γ + α δ + &c.)){1 / x^2} - ((n · {n - 1 / 2} · {n - 2 / 3} (α^3 + β^3 + γ^3 + δ^3 + &c.) + n · n · + α^2 γ + β^2 α + β^2 γ + &c.) + n · n · n (α β γ + α β δ +{n - 1 / 2} (α^2 β + α^2 γ + β^2 α + β^2 γ + &c.) + n · n · n (α β γ + α β δ + αγδ + βγδ + &c.)){1 / x^3} + &c.: in genere $it α^m β^r γ^s δ^t, &c. quodcun- que productum in coefficiente ad terminum (x^-b) huju$e $eriei annexâ, [0434]DE INFINITIS tum erit m + r + s + t + &c. = b; cuncta etiam producta, in qui- bus m + r + s + t + &c. = b $emper prædicto termino x^-n $unt ad- jungenda; coefficiens prædicti termini α^m β^r γ^s δ^t, &c. erit n · {n - 1 / 2} .{n - 2 / 3} ... {n - m + 1 / m} × n · {n - 1 / 2} · {n - 2 / 3} ... {n - r + 1 / r} × n · {n - 1 / 2} .{n - s + 1 / s} × n · {n - 1 / 2} · {n - 2 / 3} · {n - t + 1 / t} × &c.

Cor. 1. Sit n = 1, & omnes prædictæ coefficientes erunt 1, i. e. di- vidatur unitas per A, & coefficientes e $ingulis productis (α^m β^r γ^s δ^t, &c.) in terminis re$ultantibus erunt 1.

Cor. 2. Sit α maxima radix, β multo major quam quæcunque alia, & $ic de reliquis (γ, δ, &c.), tum ita reducantur hæ coefficientes, ut exterminentur omnes termini, in quibus invenitur α $olummodo; & re$ultent termini, e quibus deduci pote$t propinquus valor quan- titatis β; deinde exterminentur omnes termini in quibus $olummodo inveniuntur α & β, vel termini maximi in quibus inveniuntur α & β, & erui pote$t propinquus valor quantitatis γ; & $ic deinceps: e com- parandis terminis re$ultantibus quam plurimarum functionum datæ æquationis erui po$$unt quam preximi valores radicum datæ æqua- tionis.

Cor. 3. Eadem principia etiam applicari po$$unt ad æquationes ir- rationales quantitates involventes.

THEOR. XVI.

1. Sit æquatio x^n - p x^n-1 + q x^n-2 - r x^n-3 + &c. = 0, $tatuatur {1 / x^n - p x^n-1 + &c.} = x^-n + p x^-n-1 ... a x^m + b x^m-1 + c x^m-2 + d x^m-3 + e x^m-4 + f x^m-s + &c. tum, $i modo omnes radices (α, β, γ, δ, &c.) datæ æquationis $int po$$ibiles, & m $it permagna quantitas, erit {b / a} = (α) [0435]SERIEBUS. maximæ radici datæ æquationis quam proxime: maximam radicem volo vel affirmativam vel negativam.

2. Et {b d - c^2 / a d - b c} erit quam proxime (β) maxima radix ex omnibus reliquis præter prædictam α.

3. Si vero numerator haud $it unitas, $ed quantitas b x^μ + k x^μ-1 + l x^μ-2 + &c. i.e. $tatuatur {b x^μ + k x^μ-1 + &c. / x^n - p x^n-1 + &c.} = b x^μ-n + (k + b p) x^μ-n-1 ... a x^m + b x^m-1 + c x^m-2 + &c. & ex eâdem pror$us methodo inveniri po$$unt proximi valores radicum α & β, &c.

4. Si vero maxima affirmativa & negativa radix $int quam proxime inter $e æquales; in quo ca$u $it n - m par numerus, & erit √({c / a}) vel √({d / b}) maxima radix (α) datæ æquationis prope; & ({d / c}) ma- xima ex omnibus reliquis prope.

5. Sit (x^n - p x^n-1 + q x^n-2 - &c.)^-1 = x^-n + p x^-n-1 ... + a x^-n-m + b x^-n-m-1 ... + d x^-n-r + e x^-n-r-1 ... + g x^-n-s + b x^-n-s-1 .... + k x^-n-t + l x^-n-t-1 .... + &c.; tum erit {d / a}^{1 / r-m} = α maxima radix præ- dicta datæ æquationis; $i modo m & r $int permagnæ quantitates, & omnes radices $int po$$ibiles.

Et ex ii$dem principiis ulterius promotis quam plurimæ aliæ regulæ pro his inveniendis, etiamque con$imiles regulæ pro reliquis radici- bus inveniendis deduci po$$unt.

6. Sit fractio {A / B × C} ad minimos terminos reducta, ubi B $it ratio- nalis $unctio quantitatis x, C vero irrationalis nullum habens ratio- nalem factorem; reducatur fractio {A / BC} in $implices terminos $ecun- dum dimen$iones quantitatis x progredientes, viz. α x^π + β x^π+β + [0436]DE INFINITIS γ x^π+2ρ .... a x^τ + b x^τ+ρ + c x^τ+2ρ + &c., & erit ^ρ √ ({a / b}) vel ^ρ √ ({b / a}) maxima radix æquationis B × C = 0 prope: $ecunda radix, quæ mi- nor erit quam prædicta, major vero quam $ingulæ reliquæ, erit ^ρ √ ({b d - c^2 / a d - b c}), &c. prope; vel per $ingulas regulas prius traditas de- duci pote$t.

Et $ic de reliquis radicibus detegendis.

Hæc principia ulterius etiam promovere liceat.

Si vero impo$$ibiles radices π + √ (- ξ^2) in datâ æquatione con- tineantur, hæ regulæ $emper detegent radicem quæ$itam α vel β, cum radix quæ$ita major $it quam π + ξ vel π - ξ.

Ex hâc methodo $æpe con$tabit approximatio ad maximam impo$- $ibilem radicem; & ex his regulis plerumque deduci po$$unt approxi- mationes vel ad maximas po$$ibiles vel impo$$ibiles radices.

PROB. XIII. Datâ algebraicâ æquatione x^n - p x^n-1 + q x^n-2 - r x^n-3 + &c. = 0, invenire ejus radicis (α)) valorem.

A$$umatur a quantitas ab radice α datæ æquationis parum di$cre- pans; pro radice x datæ æquationis $cribatur a + b, & re$ultat æqua- tio x^n - p x^n-1 + q x^n-2 - &c. = 0 = (a^n - p a^n-1 + q a^n-2 - &c.) + (n a^n-1 - (n - 1) p a^n-2 + (n - 2) q a^a-3 - &c.) b + (n. {n - 1 / 2} a^n-2 - (n - 1) × {n - 2 / 2} p a^n-3 + (n - 2) × {n - 3 / 2} q a^n-4 - &c.) b^2 + &c. fin- gatur quantitas b multo minor quam quantitas a, & neglectis quan- titatibus in quibus inveniuntur ullæ dimen$iones quantitatis b, ($im- plice exceptâ) ob earum parvitatem re$ultat $implex æquatio a^n - p a^n-1 + q a^n-2 - &c. + (n a^n-1 - (n - 1) p a^n-2 + (n - 2) q a^n-3 - &c.) b = 0, unde b erit prope = - {a^n - p a^n-1 + q a^n-2 - &c. / n a^n-1 - (n - 1) q a^n-2 + (n - 2) q a^n-3 - &c. [0437]SERIEBUS. = π}; in re$ultante æquatione pro quantitate b $cribatur π + c, & per eandem methodum repetitam inveniatur valor quantitatis c prope; & $ic deinceps.

2. Eædem omnino erunt approximationes inventæ, $i modo in datâ æquatione 1<_>mo ut in præcedente ca$u $cribatur a + b pro x, deinde per prædictam methodum inveniatur π valor quantitatis b prope; tum in datâ æquatione pro x $cribatur a + π + c, & per methodum prius traditam inveniatur ρ valor quantitatis c prope; deinde $cribatur in datâ æquatione pro x quantitas a + π + ρ + d & per prædictam methodum inveniatur σ valor quantitatis d prope; & $ic deinceps. Hinc valor incognitæ quantitatis x per hanc methodum inventus erit a - {a^n - p a^n-1 + q a^n-2 - &c. / n a^n-1 - (n - 1) p a^n-2 + &c.} - {(a + π)^n - p (a + π)^n-1 + q (a + π)^n-2 - &c. / n (a + π)^n-1 - (n - 1) p (a + π)^n-2 + (n - 2) q (a + π)^n-3 - &c.} - {(a + π + ρ)^n - p (a + π + ρ)^n-1 + q (a + π + ρ)^n-2 - &c. / n (a + π + ρ)^n-1 - (n - 1) p (a + π + ρ)^n-2 + (n - 2) q (a + π + ρ)^n-3 - &c.} + &c. ubi litera a denotat proximum valorem quantitatis x datum, literæ vero π, ρ, σ, &c. re$pectivos valores præcedentium fractio- num.

Valores quantitatum π, ρ, σ, τ, &c. per præcedentem methodum, i. e. per continuas $ub$titutiones in re$ultantibus haud in datis æqua- tionibus, inventi, erunt iidem ac ii ex hâc methodo deducti.

3. Datâ æquatione x^n - p x^n-1 + q x^n-2 - r x^n-3 + &c. = 0, $up- ponatur x = a + e, ubi e parvam habet rationem ad a; & $cribatur in datâ æquatione pro x ejus valor a + e, & re$ultat æquatio a^n - p a^n-1 + q a^n-2 - &c. + (n a^n-1 - (n - 1) p a^n-2 + (n - 2) q a^n-3 - &c.) e + (n · {n - 1 / 2} a^n-2 - (n - 1) × {n - 2 / 2} p a^n-3 + &c.) e^2 + &c. = P + Q e + R e^2 + S e^3 + &c. = 0, unde $it P + Q e prope = 0, & exinde e prope = - {P / Q}, $ed erit e = - {P / Q + R e + S e^2 + &c.} prope = - [0438]DE INFINITIS {P / Q - {R P / Q} + {S P^2 / Q^2} - &c.} = - {P Q^n-1 / Q^n - Q^n-2 R P + Q^n-3 S P^2 - &c.} prope = - {P Q / Q^2 - R P}.

4. Sit re$ultans æquatio eadem ac in præcedente exemplo P + Q e + R e^2 + S e^3 + T e^4 + &c. = 0, abjiciantur omnes termini ob par- vitatem eorum, in quibus inveniuntur plures quam duæ dimen$iones quantitatis e, & re$ultat æquatio P + Q e + R e^2 = 0, unde e = √ ({Q^2 - 4 R P / 4 R^2}) - {Q / 2 R} prope.

Et $imiliter abjiciantur omnes præter terminos, in quibus inveni- untur plures quam tres vel quatuor dimen$iones, &c. ex æquatione re- $ultante inveniatur valor quantitatis e, & invenitur plerumque pro- pior approximatio ad valorem quantitatis e.

Cor.. Datâ algebraicâ æquatione x^n - p x^n-1 + q x^n-2 - &c. = 0, cujus radices $int re$pective α, β, γ, δ, &c. $it α minor quam β, β quam γ, &c. $int etiam radices æquationis n x^n-1 - (n - 1) p x^n-2 + (n - 2) q x^n-3 - &c. = 0 re$pective π, ρ, σ, τ, &c. tum cognitum e$t π, ρ, σ, τ, &c. limites e$$e, inter quos con$i$tunt datæ æquationis radi- ces β, γ, δ, &c.

A$$umantur vel π vel ρ vel σ vel τ, &c. tanquam approximatio ad datæ æquationis radicem x, $cribatur in datâ æquatione pro x ejus va- lor a$$umptus π + z, & per methodum prius traditam invenietur ejus approximatio - {π^n - p π^n-1 + q π^n-2 - &c. / n π^n-1 - (n - 1) p π^n-2 + (n - 2) q π^n-2 - &c.}; $ed quoniam π e$t radix æquationis n π^n-1 - (n - 1) p π^n-2 + &c. = 0, erit approximatio inventa quantitas infinita, & con$equenter $eries ex hâc methodo re$ultans infinite divergit; ergo convergentia $eriei prædictæ haud pendet e ratione, quam habet quantitas a$$umpta pro radice α ad radicem ip$am; $ed ex hoc, quod quantitas a$$umpta pro radice multo propior $it ad radicem quæ$itam, quam ad ullam aliam datæ æquationis radicem.

[0439]SERIEBUS. THEOR. XVII.

Sit æquatio x^n - p x^n-1 + q x^n-2 - &c. = 0, cujus radices $int α, β, γ, δ, &c. a$$umatur quantitas a pro radice α, & transformetur data æquatio in alteram, cujus radices $unt minores vel majores quam radices datæ æquationis per quantitatem a, i. e. $int α - a, β - a, γ - a, &c. $int a:α::1:1 + b, a:β::1:1 + k, a:γ::1:1 + l, a:δ::1:1 + m, &c. & $i a multo propior $it ad radicem α quam ad β vel γ vel δ, &c. tum b multo minor erit quam k vel l vel m, &c. & radices æquationis transformatæ erunt re$pective b a, k a, l a, m a, &c. ergo b × k × l × m × n′ × &c. a^n = ± (a^n - p a^n-1 + q a^n-2 - &c.) = Q a^n contentum $ub $ingulis transformatæ æquationis radicibus; & (k l m n′ &c. + b k l m &c. + b k m n′ &c. + b l m n′ &c. + &c.)a^n-1 = ± (n a^n-1 - (n - 1)p a^n-2 + (n - 2)q a^n-3 - &c.) = P a^n-1 aggregatum e $ingulis con- tentis $ub n - 1 radicibus transformatæ æquationis; ergo approximatio per vulgares regulas inventa - {a^n - p a^n-1 + q a^n-2 - &c. / n a^n-1 - (n - 1) p a^n-2 + (n - 2) q a^n-3 - &c.} = {(a - α) × (a - β) × (a - γ) × (a - δ) × &c. / (a - α) × (a - β) × &c. + (a - β) × (a - γ) × &c. + (a - γ) × (a - δ) × &c. + &c.}: ad quantitatem quæ$itam α - a = b a::k l m n′ &c. ({2 / b}):k l m n′ &c. + b k l m &c. + b l m n′ &c. + &c. (P).

2. Si vero quantitas a$$umpta multo propior $it ad duas radices α & β datæ æquationis quam ad reliquas, i. e. $i duæ radices transformatæ æquationis, quæ $it v^n ... T v^4 - S v^3 + R v^2 - Q v + P = 0, $int multo minores quam reliquæ tum radices æquationis v^2 - {Q / R} v + {P / R} = 0 erunt quam proxime illæ radices quæ$itæ $i vero tres, tum radices æquationis v^3 - {R / S} v^2 + {Q / S} v - {P / S} = 0 erunt quam proxime [0440]DE INFINITIS radices quæ$itæ; & $ic deinceps. Et facile methodo con$imili, i. e. pro coefficientibus P, Q, R, S, &c. $cribendo earum valores in termi- nis radicum α, β, γ, &c. inveniri po$$unt rationes, quas habent radices inventæ per has regulas ad veras radices quæ$itas.

Ab extractione radicum con$tare po$$unt limites quantitatis a$$u- mendæ pro primâ approximatione, ita ut $eries convergat; $ed æque has approximationes ac datæ æquationis radices inve$tigare diffi- cile e$t.

FIG. 1. 3. Aliter: $it æquatio x^n - p x^n-1 + q x^n-2 - &c. = 0, a$$u- matur x^n - p x^n-1 + q x^n-2 - &c. = y, ubi x $it ab$ci$$a datæ curvæ, y vero ordinata: curvam vero $ecet ab$ci$$a A p in tot (n) punctis, (b, k, l, m, n, 0, &c.) quot dimen$iones ab$ci$$æ x inveniuntur in datâ æquatione, & $int f p, e q, d r, c s, b t, &c. ejus (n) ordinatæ, quæ re$pective $int maximæ; tum A b, A k, A l, A m, A n, A o, &c. erunt re$pectivæ radices datæ æquationis x^n - p x^n-1 + q x^n-2 - &c. = 0; & A t, A s, A r, A q, A p, &c. erunt re$pectivæ radices æquationis n x^n-1 - (n - 1) p x^n-2 + (n - 2) q x^n-3 - &c. = 0; $i vero requira- tur radix A m datæ æquationis x^n - p x^n-1 + q x^n-2 - &c. = 0, a$$umatur quantitas A a = a pro quantitate approximante ad radicem A m, $cribatur a + π pro radice x in datâ æquatione, & per regulam prius traditam invenietur approximatio π prope = - {a^n - p a^n-1 + q a^n-2 - &c. / n a^n-1 - (n - 1) p a^n-2 + (n - 2) q a^n-3 - &c.} = a m × {a b × a k × a l × a n × a o × &c. / n × a r × a s × a t × a q × a p × &c.}; unde approximatio inventa erit ad radicem quæ$itam ::± a b × a k × a l × &c.:n × a r × a s × a t × &c.

Cor.. Hinc approximatio per hanc methodum inventa erit ad veram radicem quæ$itam ultimo in ratione m b × m k × m l × m n × m o × &c.:n × m t × m s × m r × m q × m p × &c. ... i. e. in ratione com- po$itâ e rationibus m b:m t, m k:m s, m l:m r, &c. & 1:n; $it vero hæc ratio, quæ erit data A:B, & α radix quæ$ita; erit appro- ximatio {A α / B}, & differentia inter eam & veram radicem erit {B - A / B} α; [0441]SERIEBUS. ergo ultimo diver$æ approximationes per hanc methodum inventæ, videntur e$$e prope {A α / B}, {A / B} × {B - A / B} α, {A / B} × {(B - A)^2 / B^2} α, {A / B} × {(B - A)^3 / B^3} α, &c. i. e. prope quantitates in geometricâ progre$$ione, quamvis non revera $unt; nam prædicta ratio A:B ultimo erit ratio æqualitatis.

Sint vero duo $ucce$$ivi termini $eriei re$pective r & s, & erit $um- ma $eriei geometricæ {r^2 / r - s}; hæc vero methodus haud in ultimâ ap- proximatione tam celeriter converget, quam præcedens: $i a$$umatur $eries terminorum, quorum denominatores $ecundum pote$tates quantitatis r - s progrediuntur, re$ultabit $eries in quibu$dam ca$i- bus celeriter convergens.

Si vero impo$$ibiles radices in datâ æquatione contineantur, tum $æpe regula $upra tradita approximationes magis convergentes de- ducet.

4. Datâ æquatione x^n - p x^n-1 + q x^n-2 - &c. = 0, cujus radices $int re$pective α, β, γ, δ, &c. i. e. $int α major quam β, β quam γ, &c. pro x $cribatur a + π, ubi a major e$t quam maxima radix α, tum invenietur π prope = - {a^n - p a^n-1 + q a^n-2 - &c. / n a^n-1 - (n - 1) p a^n-2 + &c.} = - {(a - α) × (a - β) × (a - γ) × (a - δ) × &c. / (a - α) × (a - β) × (a - γ) × &c. + (a - β) × (a - γ) × (a - δ) × &c. + &c.}, quicunque autem $it valor quantitatis a, $emper approximabit valor ad $ingulas datæ æquationis radices, i. e. α + π propior erit ad $ingulas datæ æquationis radices quam α; & $ic deinceps; approxi- matio inventa erit ad radicem quæ$itam vel in ratione 1:n vel in majore ratione. Eadem etiam affirmari po$$unt de quantitate a, quæ minor e$t quam minima radix.

Si vero impo$$ibiles radices in datâ æquatione contineantur, tum haud dici pote$t, annon ulla quantitas a$$umpta major quam maxima vel minor quam minima radix, $emper ad radicem maximam vel mi- nimam appropinquabit.

[0442]DE INFINITIS

1. Sit æquatio (x - p)^n = 0, cujus omnes radices $int æquales; a$$umatur a pro primâ approximatione, $cribatur a + π pro x in datâ æquatione, & erit prima approximatio π prope = - {(a - p)^n / n (a - p)^n-1} = - {a - p / n}; ergo, $i modo λ $it vera di$tantia quantitatis a a$$umptæ a radice quæ$itâ, erunt {n - 1 / n} λ di$tantia $ecundæ approximationis a vera radice, {(n - 1)^2 / n^2} λ di$tantia tertiæ a vera radice, {(n - 1)^3 / n^3} λ di- ftantia quartæ, & $ic deinceps.

2. In quâcunque æquatione algebraicâ x^n - p x^n-1 + &c. = 0 $int m radices prope inter $e & quantitati a æquales; & e $ub$ti- tutione a + π pro incognitâ quantitate x in datâ algebraicâ æqua- tione, ubi a $it α prope, re$ultabit æquatio P + Q π + R π^2 + S π^3 + &c. = 0; $i vero a$$umatur m + 1 primorum huju$ce æquationis terminorum $umma nihilo æqualis, i. e. P + Q π + R π^2 ... H π^m = 0, tum m radices æquationis erunt prope m radices æquationis P + Q π + R π^2 + &c. = 0, quæ $upponuntur inter $e prope æquales.

In hoc ca$u plerumque haud detegi pote$t approximatio e $uppo- nendo $ummam duarum vel trium vel quatuor, &c. ... vel m termi- norum nihilo æqualem, i. e. vel P + Q π = 0 vel P + Q π + R π^2 = 0, &c. ad m terminos.

5. Sit æquatio P - Q e + R e^2 - &c. = 0, cujus radices $int α, β, γ, &c. & cujus una radix (α) perparvam habeat rationem ad quamcun- que aliam; tum erunt P = α β γ δ &c. Q = α β γ &c. + α β δ &c. + α γ δ &c. + &c. + β γ δ &c. R = α β &c. + α γ &c. + α δ &c. + &c. + β γ &c. + β δ &c. + γ δ &c. + &c. i. e. Q erit prope = β γ δ + &c. R = β γ &c. + β δ &c. + γ δ &c. + &c. &c. $i vero $tatuatur P - Q e prope = α × β γ δ × &c. - β γ δ &c. × e = 0, erit e = {P / Q} prope [0443]SERIEBUS. = {α β γ δ &c. / β γ δ &c.} + &c. = α prope: vel adhuc propior erit ejus valor α - α^2 × ({1 / β} + {1 / γ} + {1 / δ} + &c.) + α^3 ({1 / β^2} + {1 / γ^2} + {1 / δ^2} + &c. + {1 / β γ} + {1 / β δ} + {1 / γ δ} + &c.) - &c.; & $ic deinceps.

2. Nunc $tatuatur P - Q e + R e^2 prope = (β γ &c. + β δ &c. + γ δ &c.) e^2 - β γ δ &c. e + α β γ δ &c. = 0, tum ab re$olutione æqua- tionis con$equetur radix = α + α^3 ({1 / β γ} + {1 / β δ} + {1 / γ δ} + &c.) &c. & generaliter $tatuantur m termini prædictæ æquationis P + Q e + R e^2 + S e^3 + &c... e^m-1 = 0, & inveniri pote$t ejus radix = α ± α^m ({1 / β γ δ &c.} + {1 / β δ ε &c.} + {1 / γ δ ε &c.} + &c.) ubi in $ingulis factoribus {1 / β γ δ &c.}, {1 / β δ ε &c.}, &c. tot contineantur diver$æ literæ β, γ, δ, &c. quot unitates in m - 1; & per {1 / β γ δ &c.} + {1 / β δ ε &c.} + &c. de$igno aggre- gatum e $ingulis quantitatibus prædicti generis. Signum affixum ± erit affirmativum vel negativum, prout m - 1 e$t par vel impar nu- merus.

6. Sit æquatio 0 = t - s z + r z^2 - q z^3 + p z^4 ... l z^m ± k z^m+1 ± h z^m+2 ± &c., in quâ una radix α $it perparva re$pectu habito ad re- liquas; & con$tat, quod$i æquatio 0 = t - s z, i. e. z = {t / s} præbeat va- lorem quantitatis α ad numerum π figurarum verum; tum ultimo re$olutio æquationis 0 = t - s z + r z^2 - q z^3 ... l z^m præbebit va- lorem prædictæ radicis α u$que ad numerum m × π figurarum verum.

7. Sit æquatio 0 = t - s z + r z^2 - q z^3 ... l z^m - k z^m+1 + &c., ducatur hæc æquatio in 0 = a - b z + c z^2 - d z^3 ... f z^m - g z^m+1 + &c., ita ut 1<_>mo evadat æquatio huju$ce formulæ 0 = T - S z ... K z^m+1 + &c. in quâ deficiunt termini z^2, z^3, ... z^m; tum ple- [0444]DE INFINITIS rumque, $i {t / s} $it valor quantitatis z ad π figuras verus, ultimo erit {T / S} valor prædictæ quantitatis z u$que ad m × π $iguras verus; 2<_>do eva- dat æquatio formulæ 0 = T - S z + R z^2 - Q z^3 ... L z^m - K z^m+1 + &c. ita vero con$tituta, ut innote$cant radices æquationis re$ul- tantis ex hypothe$i quod (m + 1) primi termini prædictæ æquationis nihilo fiant æquales, i. e. 0 = T - S z + R z^2 - Q z^3 ... L z^m; tum, $i {t / s} $it valor quantitatis z ad π figuras verus, erit ultimo radix hu- ju$ce æquationis valor prædictæ radicis ad m × π figuras verus.

Eadem principia etiam ad æquationes, in quibus duæ vel plures continentur incognitæ quantitates, applicari po$$unt.

7. Sit æquatio y^n - p y^n-1 + q y^n-2 - r y^n-3 + &c. = 0, cujus una ra- dix α multo major $it quam quæcunque alia; & $i requiratur $eries, quæ $ecundum quantitates e, f, g, &c. reciproce progrediatur; $criba- tur p + {1 / e} vel a + {1 / e} pro y in datâ æquatione, ubi a e$t α prope, & re$ultet æquatio e^n - P e^n-1 + Q e^n-2 - &c. = 0; in hac æquatione pro e $cribatur P + {1 / f}, & re$ultat æquatio f^n - P′ f^n-1 + &c. = 0; deinde in hâc æquatione pro f $cribatur P′ + {1 / g}, & $ic deinceps; unde y = p + {1 / e} = p + {f / P f + 1} = p + {P′ g + 1 / P P′ g + P + g} = {b P″ P′ + P′ + b / b P″ P′ P + P P′ + b P + b P″ + 1} = &c. Lex huju$ce $eriei e lege $eriei in theor. 45. medit. algebr. traditâ facile con$tabit.

Cor. 1. Approximationes ex hâc methodo inventæ mutatis mutan- dis eædem erunt ac approximationes prius deductæ.

Cor. 2. Si vero duæ radices $int re$pective multo majores quam reliquæ, tum e tribus primis terminis nihilo æqualibus e$$e $uppo$i- tis, viz, æquatione y^2 - p y + q = 0 con$tabit approximatio ad utram- [0445]SERIEBUS. que radicem. Et $ic de continuis approximationibus ad plures ma- jores radices inveniendis.

Ex approximationibus ad duas vel plures majores radices datis, & princip. $ub$. facile deduci po$$unt aliæ ad prædictas radices magis appropinquantes.

8. Hæc principia etiam ad æquationem duas vel plures variabiles quantitates habentem, vel ad plures æquationes applicari po$$unt.

Sit æquatio x^n - p x^n-1 + q x^n-2 - &c. = 0, & $i - {α^n - p α^n-1 + q α^n-2 - &c. / n α^n-1 - (n - 1) p α^n-2 + (n - 2) q α^n-3 - &c.} = β, & {(α + β)^n - p (α + β)^n-1 + q (α + β)^n-2 - &c. / n (α + β)^n-1 - (n - 1) p (α + β)^n-2 + &c.} = - β; vel $i prior fractio $it l, & proximæ ap- proximationes per eandem methodum inventæ $int re$pective m, n, o, &c. & tandem inveniatur approximatio = - l - m - n - o - &c. tum $eries con$tans e diver$is approximationibus nec convergens nec divergens dici pote$t.

Et con$imilia etiam ad æquationes diver$i generis, & plures æqua- tiones plures incognitas quantitates habentes applicari po$$unt.

9. Sit data æquatio x^n - p x^n-1 + q x^n-2 ... t x^n-m + &c. = 0, a$$uma- tur a pro approximatione ad minimam radicem, $cribatur a ∓ v pro x in datâ æquatione & re$ultet æquatio v^n - P v^n-1 + Q v^n-2 .. T v^n-m + &c. = 0 ubi T diver$um habeat $ignum a quantitate t, & n haud = m; tum plerumque quantitates inventæ haud accedent ad mini- mam radicem.

10. Si terminorum datæ æquationis $igna $emel $olummodo vel pro- grediantur de + in +, vel - in -; vel mutabuntur de + in -, vel - in +; tum a$$umatur quæcunque negativa quantitas in uno ca$u, affirmativa vero in altero, major vero quam negativa vel affir- mativa radix, pro approximatione ad radicem prædictam, & $emper convergent approximationes per prædictam methodum inventæ.

[0446]DE INFINITIS THEOR. XVIII.

Sit quadratica æquatio x^2 - (a + s) x + a s = 0, cujus radices $unt a & s, & prima approximatio per methodum hic traditam inventa erit {as / a + s} = s - {s^2 / a} + {s^3 / a^2} - {s^4 / a^3} + &c. per eandem methodum in- veniantur $ucce$$ivæ approximationes, & approximatio ad n - 1 di- $tantiam a primâ erit {s^b / a^b-1} - {s^b+1 / a^b} + {s^3b / a^3b-1} - {s^3b+1 / a^3b} + {s^5b / s^3b+1} - {s^5b+1 / a^5b} + {s^7b / a^7b-1} - {s^7b+1 / a^7b} + &c. ubi b = 2^n-1.

Cor. 1. Hinc con$tat, quod hæ approximationes ultimo convergent in rationibus fractionis ({s^b / a^b-1}) inter $e, & con$equenter approxima- tiones $ic inventæ ultimo vergent in ratione majori quam quâvis geometricâ progre$$ione; idem etiam de approximationibus æquatio- num $uperiorum ordinum vel quorumcunque diver$orum generum vel plurium æquationum, &c. $ic inventis affirmari pote$t.

Cor. 2. Sit æquatio x^n - p x^n-1 + q x^n-2 - r x^n-3 + &c. = 0, cujus radices $int α, β, γ, δ, &c. σ; ubi σ e$t radix quæ$ita, fingantur {1 / α} + {1 / β} + {1 / γ} + {1 / δ} + &c. = P, {1 / α β} + {1 / α γ} + {1 / β γ} + {1 / α δ} + &c. = Q, {1 / α β γ} + {1 / α β δ} + &c. = R, {1 / α β γ δ} + &c. = S, &c. in quibus quantitatibus haud continetur radix σ; & prima approximatio per prædictam methodum inventa erit {σ / 1 + P σ} = σ - P σ^2 + P^2 σ^3 - &c. $ecunda vero erit fractio, cujus numerator erit {P σ^2 / (1 + P σ)^2} + {P Q σ^4 / (1 + P σ)^3} - [0447]SERIEBUS. {P R σ^5 / (1 + P σ)^4} + {P S σ^6 / (1 + P σ)^5} - &c. denominator vero {1 + P^2 σ^2 / 1 + P σ} - {2 P Q σ^3 - Q σ^2 / (1 + P σ)^2} + {3 P R σ^4 - R σ^3 / (1 + P σ)^3} - {4 P S σ^5 - S σ^4 / (1 + P σ)^4} + &c.

PROB. XIV.

Sit data æquatio x^n - m x^n-1 + 1 x^n-2 - k x^n-3 .... d x^3 - c x^2 + b x - a = 0, & datis propinquis valoribus ad unam vel duas vel plures ejus radices, invenire valores ad prædictas radices magis appropinquantes.

1. Sit β quantitas ab unâ $olummodo radice haud longe di$tans, & $cribatur (x^n-1 - P x^n-2 + Q x^n-3 ... S x^3 - T x^2 + V x + W) (x - β - e) = x^n - m x^n-1 + l x^n-2 + &c. .. + d x^3 - c x^2 + b x - a = 0; inde re$ultant æquationes P = m - β - e, Q = 1 - (β + e) P = l - m (β + e) + (β + e)^2, & $ic R = k - (β + e) l + (β + e)^2 m - (β + e)^3, & ultimo re$ultat æquatio (β + e)^n - m (β + e)^n-1 + l (β + e)^n-2 - k (β + e)^n-3 + &c. = 0, $ed per hypothe$in e e$t perparva re$pectu habito ad β, ergo ultimo erit β^n - m β^n-1 + l β^n-2 - &c. = - (n β^n-1 - (n - 1) m β^n-2 + (n - 2) l β^n-3 - &c.) e, & exinde con- $tat approximatio e: aliter vero ab ultimis terminis incipiendum e$t, & facile ad eandem conclu$ionem pervenire liceat.

2. Sint a, b, c, d, &c. approximationes ad r radices datæ æquatio- nis x^n - m x^n-1 + l x^n-2 - &c. = 0, invenire alias ad r radices magis appropinquantes. Supponantur α, β, γ, δ, ε, &c. perparvæ quanti- tates, quæ $int approximationes quæ$itæ; a$$umatur æquatio (x^n-r - P x^n-r-1 + Q x^n-r-2 - R x^n-r-3 + &c.) ((x - a - α) × (x - b - β) × (x - c - γ) × (x - d - δ) × &c.) = x^n - m x^n-1 + l x^n-2 - k x^n-3 + &c; = o, huju$ce æquationis fiant corre$pondentes termini inter $e æquales (omnibus quantitatibus $emper neglectis, vel pro nihilo ha- bitis, in quibus plures quam una dimen$io quantitatum α, β, γ, δ, &c. continentur), & ita reducantur æquationes re$ultantes, ut extermi- nentur incognitæ quantitates P, Q, R, S, &c. & exorientur r $implices [0448]DE INFINITIS æquationes totidem incognitas quantitates α, β, γ, δ, &c. habentes, e quibus inveniri po$$unt prædictæ quantitates.

1. 2. Sit æquatio x^n - p x^n-1 + q x^n-2 - r x^n-3 + s x^n-4 - t x^n-5 + &c. = 0, cujus $int a, b, c, d, &c. approximationes ad n radices α, β, γ, δ, &c. nunc fingantur diver$æ radices re$pective a + π, b + ρ, c + σ, d + τ, &c. ducantur hæ quantitates in $e$e, & erit contentum (x - a - π) × (x - b - ρ) × (x - c - σ) × &c. = x^n - ((a + b + c + &c.) + (π + ρ + σ + τ + &c.)) x^n-1 + ((a b + a c + b c + &c.) + (b + c + d + &c.) π + (a + c + d + &c.) ρ + (a + b + d + &c.) σ + &c.) x^n-2 - ((a b c + a b d + b c d + &c.) + (b c + b d + c d + &c.) π + &c.) x^n-3 + &c. = 0, dicantur $umma e $ingulis quantitatibus (a + b + c + d, &c.) productorum e $ingulis binis in $e ductis (a b + a c + b c + &c.), contentorum e $ingulis ternis, quatuor, &c. re- $pective P, Q, R, S, T, &c. deinde $upponantur π + ρ + σ + τ + &c. = p - P = α, a π + b ρ + c σ + d τ + &c. = (p - P) × P - q + Q = P α - q + Q = β, a^2 π + b^2 ρ + c^2 σ + &c. = P β - Q α + r - R = γ, a^3 π + b^3 ρ + c^3 σ + &c. = P γ - Q β + R α - s + S = δ, a^4 π + b^4 ρ + c^4 σ + &c. = P δ - Q γ + R β - S α + t - T, & $ic deinceps (unde cuidam in$picienti facile con$tat lex, quam ob- $ervant termini α, β, γ, δ, &c.); inveniantur n $implices æquationes huju$ce generis, & ex quibu$cunque n earum $implicibus æquationi- bus erui po$$unt approximationes ad $ingulas radices quæ$itæ π, ρ, σ, τ, &c.

Cor. 1. E principiis prius traditis con$tabit, ut quantitates hâc methodo inventæ eo magis approximent, quo minus di$tant appro- ximationes datæ ab unâ radice quam ab reliquis; $i vero una appro- ximatio data minus di$tet a duabus radicibus quam a reliquis, tum ad inve$tigandam quantitatem magis adhuc appropinquantem utendum e$t quadraticâ æquatione; & $ic deinceps.

Cor. 2. Rationes, quibu$cum vergunt ad radices quæ$itas approxi- mationes inventæ, facile deduci po$$unt $cribendo pro $ingulis quan- titatibus in approximationibus prædictis contentis earum functiones datæ æquationis radicum.

[0449]SERIEBUS

Omnia hæc etiam ad æquationes, quæ haud $unt algebraicæ, ap- plicari po$$unt.

PROB. XIX.

Sit quæcunque æquatio A = 0, ubi litera A de$ignat quamcunque functionem quantitatis x; $ingatur x variabilis, x^. vero con$tans, & inveniatur {A^. / x^.} = p, {A^.. / x^. ^2} = q, {A^... / x^. ^3} = r, &c. detur propinquus valor quantitatis x in datâ æquatione, qui dicatur a; $cribatur a pro x in quantitatibus A, p, q, r, s, &c. & pro quantitatibus re$ultantibus $cribantur P, Q, R, S, T, &c. re$pective; deinde a$$umatur æquatio P - Q e + {1 / 2} R e^2 - {1 / 2 · 3} S e^3 + {1 / 2 · 3 · 4} T e^4 - &c. in infinitum = 0, $cribatur etiam a - e pro x in datâ æquatione A = 0, & re$ultet æquatio A′ = 0, cujus radix e eadem erit ac ea in æquatione P - Q e + {1 / 2} R e^2 - &c. = 0 contenta; nunc fingatur P - Q e = 0, & $it α radix æquationis A′ = 0, quæ $it perparva, & æquationis P - Q e = 0 radix exprimetur per $eriem $ub$equentis formulæ, i. e. e = {P / Q} = α + m α^2 + &c. nunc a$$umatur P - Q e + {1 / 2} R e^2 = 0, & $ic exprime- tur valor ejus radicis e = α + m α^3 + &c. & univer$aliter a$$umatur aggregatum m terminorum præcedentis æquationis P - Q e + {1 / 2} R e^2 - {1 / 6} S e^3 + &c. ... e^m-1 = 0, & per $eriem huju$ce formulæ e = α + m′ α^m + &c. exprimetur radix æquationis prædictæ P - Q e + {1 / 2} R e^2 - {1 / 6} S e^3 + &c... = 0.

Ex. Sit quantitas exponentialis x^x & augeatur x per e, tum evadet (x^x) = (x + e)^x+e = x^x + x^x (log. x + 1) e + {1 / 2} x^x (log. x^2 + 2 log. x + x^x + x^x-1) e^2 + &c. x^x nunquam evadit = 0.

Cor.. Si duæ datæ æquationis radices $int prope inter $e & quan- titati a æquales, tum a$$umatur P - Q e + {1 / 2} R e^2 = 0, & inveniatur propior valor quantitatis e, & $ic ex aggregato m terminorum P - Q e + {1 / 2} R e^2 - &c. = 0 nihilo æquali a$$umpto, deduci pote$t propior [0450]DE INFINITIS valor quantitatis e, cum m radices datæ æquationis $int prope inter $e & datæ quantitati a æquales.

THEOR. XX.

Datis duabus æquationibus H y^n + (a + b x) y^n-1 + &c. = 0 & K y^m + (A + B x) y^m-1 + &c. = 0 duas incognitas quantitates x & y habentibus, $int corre$pondentes radices incognitarum quantitatum (x & y) re$pective α, β, γ, δ, &c. & π, ρ, σ, τ, &c. invenire ex approxi- matione corre$pondentes valores (α & π) incognitarum quantitatum (x & y).

Nece$$e e$t, ut prius dentur k & l ad prædictos corre$pondentes valores (α & π) multo magis appropinquantes, quam ad ullam aliam e corre$pondentibus incognitarum quantitatum (x & y) radicibus (β, γ, δ, &c. & ρ, σ, τ, &c.) In datis æquationibus pro quantitatibus (x & y) $cribantur re$pective z - k & v - l, & $int æquationes re$ul- tantes Γ + (Δ z + E v) + (ξ z^2 + H z v + Θ v^2) + &c. = 0 & (Π + P z + Σ v) + (T z^2 + Ψ z v + Φ v^2) + &c. = 0; & e con$titutione coefficientium colligi po$$unt Γ + Δ z + E v prope = 0, & Π + P z + Σ v prope = 0, & exinde approximatio ad z erit {E Π - Σ Γ / Σ Δ - E P}, & approximatio ad v erit {Δ Π - P Γ / P E - Δ Σ}.

2. Si vero $umantur plures termini vel ex unâ vel $ingulis duabus æquationibus, quorum aggregatum nihilo fiat æquale, i. e. Γ + (Δ z + E v) prope = 0 & + Π + (P z + Σ v) + (T z^2 + Ψ z v + Φ v^2) pro- pe = 0; vel Π + P z + Σ v = 0 & Γ + (Δ z + E v) + ζ z^2 + H z v + θ v^2 = 0; vel Γ + (Δ z + E v) + (Ζ z^2 + H z v + Θ v^2) = 0 & Π + (P z + Σ v) + (T z^2 + Ψ z v + Φ v^2) = 0; &c. ita vero ut omnes termini vel nullius & unius; vel nullius, unius & duarum; &c. dimen$ionum contineantur in $ingulis duobus aggregatis, quæ nihilo fiant æqualia, & de convergentiâ approximationum ad quan-[0451]SERIEBUS. titates z & v ex his æquationibus inventarum dijudicare liceat e theor. præced. & medit. algebr.

3. Si vero k & l multo magis approximent ad duas corre$pondentes radices incognitarum quantitatum (x & y) re$pective quam ad ullas alias, & pro x & y $ub$tituantur re$pective z - k & v - l in datis æquationibus, & e con$titutione coefficientium colligi po$$unt vel Γ + Δ z + E v prope = 0 & II + (P z + Σ v) + (T z^2 + Ψ z v + Φ v^2) prope = 0; vel II + P z + Σ v prope = 0, & Γ + (Δ z + E v) + (ζ z^2 + H z v + Θ v^2) prope = 0; e quibus æquationibus inveniri po$$unt approximationes ad z & v: & $ic progredi licet, cum k & l ad tres vel plures corre$pondentes incognitarum quantitatum radices multo ma- gis approximent quam ad reliquas.

4. Sint duæ æquationes duas incognitas quantitates x & y habentes; pro x & y in datis æquationibus $cribantur re$pective h + e & m + 0′, & re$ultent æquationes A + B e + C 0′ + D = 0 & P + Q e + R 0′ + S = 0, ubi literæ D & S in $ingulis terminis plures habent dimen- $iones perparvarum quantitatum e & 0′ quam unam; & P, Q, R; A, B & C, habent vero nullas; tum approximationes ad quantitates e & 0′ per methodum hic traditam inventæ erunt re$pective e = {RA - CP / CQ - RB}, & 0′ = {QA - BP / RB - QC}; $i vero CQ = RB, tum approxima- tiones $ic inventæ erunt infinitæ.

Hinc $int duæ datæ æquationes α = 0 & π = 0, ubi α & π $unt functiones quantitatum x & y; inveniantur earum fluxiones, viz. α^. = a x^. + b y^. & π^. = p x^. + q y^.; a$$umantur duæ æquationes a h + b m = 0 & p h + q m = 0, & ex iis inveniantur quantitatum x & y valores (h & m) qui erunt limites inter valores quantitatum x & y in datis æquationibus contenti, $cribantur h + e & m + 0′ re$pective pro x & y in datis æquationibus, & approximationes per methodum prius tra- ditam inventæ erunt valde magnæ; ni duo valores quantitatum x & y in datis æquationibus contenti $int re$pective h & m prope.

Et $ic de limitibus inventis ex fingendo a = 0 & p = 0, &c.

[0452]DE INFINITIS THEOR. XXI.

Sint duæ vel plures n invariabiles quantitates (x, y, z, &c.) in datâ æquatione contentæ, quarum $int a, b, c, &c. re$pectivi valores prope; $cribantur a + α, b + β, c + γ, &c. pro earum re$pectivis valoribus in datâ æquatione; & re$ultet æquatio A + B α + C β + D γ + &c. + K = 0, ubi A, B, C, D, &c. denotant quantitates in re$ultante æquatione contentas, in quibus haud continetur α vel β vel γ vel &c. K, K′, K″, &c. vero $int quantitates, in quarum $ingulis terminis con- tinentur plures quam una dimen$iones quantitatum α vel β vel γ &c.

Et $ic $cribantur a + α′, b + β′, c + γ′, &c. pro earum re$pectivis valoribus (x, y, z, &c.) in datâ æquatione & re$ultet æquatio A + B α′ + C β′ + D γ′ + &c. + K′ = 0; & $ic $cribantur a + α″, b + β″, c + γ″, &c. pro earum re$pectivis valoribus (x, y, z, &c.) in datâ æquatione, & re$ultet A + B α″ + C β″ + D γ″ + &c. + K″ = 0; & $ic deinceps: unde ex n $ub$titutionibus prædicti generis $i modo re- jiciantur quantitates K, K′, K″, &c. re$ultabunt n $implices æquatio- nes A + B α + C β + D γ + &c. = 0, A′ + B α′ + C β′ + D γ′ + &c. = 0, A″ + B α″ + C β″ + D γ″ + &c. = 0 totidem incognitas quantitates B, C, D, &c. habentes, e quibus detegi po$$unt quantitates ip$æ B, C, D, &c.

2. Si vero duo $int valores quantitatis x prope inter $e & valori a æquales, qui corre$pondent uni valori (b, c, d, &c.) e $ingulis reliquis variabilibus quantitatibus; tum hæc erit formula æquationis quæ- fitæ, viz. P π^2 + q π + r ρ + s σ + t τ + &c. + q′ π ρ + r′ π σ + &c. + A = 0′, ubi a + π, b + ρ, θ + σ, d + τ, &c. $unt corre$pondentes valores e $ingulis variabilibus x, y, z, &c. in datâ æquatione contentis; P, P′, P″, q, r, s, t, &c. q′, r′, &c. A $unt coefficientes quæ$itæ: $i vero duo $int valores quantitatum x & y prope inter $e & quantitatibus a & b re$pective æquales, qui corre$pondent uni valori (c, d, &c.) e fingulis reliquis (z, v, &c.) tum erit formula æquationis quæ$itæ P π^2 + P′ π ρ + P″ ρ^2 + q π + r ρ + s σ + t τ + &c. + s′ π σ + s″ ρ σ + &c.

[0453]SERIEBUS.

Exhinc con$tat formula æquationis, in quâ plures valores plurium variabilium quantitatum $int prope inter $e æquales.

Ea, quæ hic tradita fuerunt, facile ad plures æquationes plures variabiles quantitates habentes applicari po$$unt.

Convergentiæ harum æquationum ex principiis prius traditis diju- dicandæ $unt.

PROB. XV. Datis infinitis æquationibus duas vel plures incognitas quantitates haben- tibus, invenire unam ex iis in terminis reliquarum.

Primo ita transformetur data æquatio, ut incognitæ quantitates in eâ contentæ evadant perparvæ; $i requiratur $eries $ecundum dimen- $iones prædictarum quantitatum a$cendens: $in requiratur de$cendens $ecundum dimen$iones quarundam quantitatum; tum ita transfor- metur data æquatio, ut evadant quantitates permagnæ; & perfici pote$t hoc problema ex ii$dem principiis, quæ tradita fuere de finitis æquationibus.

Si prima approximatio incognitæ quantitatis y, cujus infiniti in datâ æquatione continentur termini, involvat quantitatem, quæ haud in $e continet ullas incognitas quantitates; tum plerumque re$olu- tionem infinitæ æquationis vel $ummationem infinitæ $eriei exiget $ingulus terminus quæ$itus. E. g. Sit æquatio 1 + a - {a^3 / 1 · 3} + {a^5 / 1 · 3 · 1 · 5} - &c. = l + {l^2 / 1 · 2} + {l^3 / 1 · 2 · 3} + {l^4 / 1 · 2 · 1 · 4} + &c. inve- nire l in terminis quantitatis a; a$$umatur l = e prope & a perparva quantitas, $cribatur e + p pro l, & re$ultat 1 = e + {e^2 / 2} + {e^3 / 1 · 3} + {e^4 / 1 · 3 · 4} + &c. & exinde e = log. 2; etiamque (1 + e + {e^2 / 2} + {e^3 / 1 · 3} [0454]DE INFINITIS + &c.) p = 2p = a prope; $cribatur e + {a / 2} + q pro l in datâ æqua- tione & invenietur valor quantitatis q = - {a^2 / 8} prope; & $ic deinceps, unde valor quantitatis l = log. 2 + {a / 2} - {a^2 / 8} - {a^3 / 24}, &c.

Cor.. Omnis infinita $eries exorta ex hâc re$olutione erit e + {e^2 / 2} + {e^3 / 1 · 2 · 3} + &c. & haud difficilis erit inve$tigatio ex datâ vel datis infinitis æquationibus, an finitus vel infinitus numerus infinitarum $erierum in re$olutione prædictâ exorietur.

PROB. XVI.

1. Sit y $umma datæ $eriei $ecundum dimen$iones quantitatis x progre- dientis, v vero $umma $eriei $ecundum dimen$iones quantitatis z progredien- tis, & detur $eries $ecundum dimen$iones quantitatum z & x progrediens, cujus $umma $it w; invenire quantitatem w in $erie $ecundum dimen$iones quantitatum y & v progrediente. Primo ita reducantur omnes hæ quan- titates per methodos prius traditas, ut evadant perparvæ quantitates, qua- rum dimen$iones in $erie quæ$itâ a$cendunt: vel permagnæ, quarum dimen- $iones in prædictâ $erie de$cendunt; tum pro x & z & earum functionibus in $erie w $cribantur earum valores e functionibus y & v deducti, & per- ficitur problema.

Ex. 1. Datis logarithmis y & v duarum quantitatum 1 + x & 1 + z, invenire logarithmum quantitatis 1 + x + z: erunt y = x - {1 / 2}x^2 + {1 / 3}x^3 - &c. v = z - {1 / 2}z^2 + {1 / 3}z^3 - &c. w = (x + z) - {1 / 2}(x + z)^2 + {1 / 3}(x + z)^3 - &c. reducantur hæ æquationes ita ut inveniatur w in terminis $ecundum dimen$iones quantitatis y & v [0455]SERIEBUS. progredientibus, & re$ultabit w = y + v - y v + y ({1 / 2}v^2 - {1 / 1 · 3}v^3 + + v({1 / 2}y^2 - {1 / 1 · 3}y^3 + {1 / 1 · 3 · 4}v^4 - &c.) - {3 / 4}y^2 v^2 + y^2 ({7 / 12}v^3 - &c.) - &c. {1 / 1 · 3 · 4}v^4 - &c.) + v^2 ({7 / 12}y^3 - &c.)

Ex. 2. Sit y = t - {t^3 / 3} + {t^5 / 5} - &c., v = T - {T^3 / 3} + {T^5 / 5} - &c., & w = T + t - {(T + t)^3 / 3} + {(T + t)^5 / 5} - &c.; tum erit w = y + v - y v (y + v) + {1 / 3}v y (5 (v^3 + y^3) + 7(v y^2 + y v^2)) - &c., quæ $eries facile deduci pote$t ex a$$umendo $eriem w = a (y + v) + b (y^2 v + v^2 y) + (c (y^4 v + v^4 y) + d (y^3 v^2 + v^3 y^2)) + (e (y^6 v + v^6 y) + f (y^5 v^2 + v^5 y^2) + g (v^4 y^3 + y^4 v^3)) + &c.; & in hâc $erie $cribendo pro v & y earum datos valores; deinde ex æquando re$ultantem $eriem datæ $eriei T + t - {(T + t)^3 / 3} + &c. erui po$$unt coefficientes a, b, c, d, &c.

PROB. XVII.

Sit p con$tans quantitas, invenire formulam $eriei (A) p + a q x + (b r + c q^2)x^2 + (d s + e q r)x^3 + &c. in infinitum progredientis, ita ut ejus $ingulæ pote$tates m & n, & con$equenter radices eandem pror$us ob$ervent legem, i. e. $i in $erie, quæ exprimit m pote$tatem $eriei A, pro m $cribatur n, re$ultet $eries, quæ exprimet n pote$tatem $eriei A.

A$$umantur duæ $eries n & m pote$tates exprimentes, quæ eandem pror$us ob$ervant legem, & con$equenter erunt huju$ce formulæ p^m + m p^m-1 q x + m r p^m-2 \\ + (a′ m^2 + b m) q^2 p^m-2 # x^2 + m. s p^m-3 \\ + (a′ m^2 + b m) q r p^m-3 # x^3 + &c.&c. \\ + &c.[0456]DE INFINITIS $cribatur n pro m in hâc $erie & re$ultat p^n + n p^n-1 q x + n r p^n-2 \\ + (a′ n^2 + b n) q^2 p^n-2 # x^2 + n s p^n-3 \\ + (a′ n^2 + b n) q r p^n-3 # x^3 + &c. Ducantur hæ duæ $eries in $e$e & $eriem re$ultare oportet p^n+m + (n + m) p^n+m-1 q x + (n + m) r p^n+m-2 \\ + (a′ (n + m)^2 + b (n + m) q^2) p^n+m-2 # x^2 + &c. \\ + &c. ut vero hæc $eries eadem fiat ac re$ultans, coefficiens omnis termini, in quo continentur duæ literæ q & r, q & s, &c. vel r & s, &c. & generaliter Q & R, erit ((A m^2 + B m) + (A n^2 + B n) + 2 m n) Q R = A (m + n)^2 + B (m + n), unde A = 1, & B quæcunque quantitas ad libitum a$$umenda; $it R idem ac Q, tum erit A = {1 / 2}.

Coefficiens omnis termini, in quo continentur tres literæ Q × R × S, erit (A m^3 + H m^2 + C m); unde e præcedenti multiplicatione re$ul- tabit A (m^3 + n^3) + H (m^2 + n^2) + C (m + n) + (m^2 + b m) n + (n^2 + b n) m + (m^2 + b′m) n + (n^2 + b′n) m + (m^2 + b″ m) n + (n^2 + b″ n) m = A (m + n)^3 + H (m + n)^2 + C (m + n) unde A = 1, H = b + b′ + b″, C vero quæcunque quantitas ad libitum a$$umen- da: in hoc ca$u per m^2 + b m, m^2 + b′m, & m^2 + b″m volo coefficientes quantitatum Q R, Q S & R S in pote$tate m re$pective; coefficiens vero omnis termini, in quo continentur quatuor literæ Q, R, S, T erit (m^4 + K m^3 + L m^2 + M m), ubi 3 K = H + H′ + H″ + H′″ + b + c + d + e + f + g, L = b c + d e + f g + C + C′ + C″ + C′″, exi$tentibus m^3 + H m^2 + C m, m^3 + H′ m^2 + C′ m; m^3 + H″ m^2 + C″ m, m^3 + H′″ m^2 + C′″ m; & m^2 + b m, m^2 + c m, m^2 + d m, m^2 + e m, m^2 + f m, m^2 + g m re$pective coefficientibus quantitatum Q R S, Q R T, Q S T, R S T; & Q R, S T; Q S, R T; Q T, R S; M vero erit quæcun- que quantitas ad libitum a$$umenda: & $ic inveniri po$$unt coeffici- entes quantitatum, in quibus plures continentur literæ; etiamque inveniri po$$unt innumeræ $eries diver$i generis, quarum pote$tates vel functiones vel eandem ob$ervant legem, vel quamcunque aliam legem.

[0457]SERIEBUS.

In theoremate $equente per ({P^. ^n + m + r + &c. / x^. ^n y^. ^m z^. ^r &c.}) eadem, quæ in prob. 67. libri primi, de$ignetur quantitas.

THEOR. XXII.

1. Sit quantitas P, quæ duas variabiles quantitates x & y continet, quarum incrementa $int e & 0: novus valor quantitatis (P) = P + (({P^. / x^.}) e + ({P^. / y^.}) 0) + ({1 / 2} ({P^.. / x^. ^2}) e^2 + {1 / 2} ({P^.. / y^. ^2}) 0^2 + ({P^.. / x^. y^.}) e o) + ({1 / 6} ({P^... / x^. ^3}) e^3 + {1 / 2} ({P^... / x^. ^2 y^.}) e^2 o + {1 / 2} ({P^... / x^. y^. ^2}) e o^2 + {1 / 6} ({P^... / y^. ^3}) o^3) + &c. in infinitum, ubi coefficiens termini {P^. ^n+m / x^. ^n y^. ^m}) e^n 0^m $emper erit {1 / 1 · 2 · 3 .. n} × {1 / 1 · 2 · 3 .. m}.

2. Si vero dentur tres (x, y, z) variabiles quantitates in quantitate P, quarum incrementa $int e, 0 & i; evadet novus valor quantitatis (P) = P + ({P^. / x^.}) e + ({P^. / y^.}) 0 + ({P^. / z^.}) i + &c.; tum erit coefficiens termini (({P^. ^n+m+r / x^. ^n y^. ^m z^. ^r}) e^n o^m i^r) = {1 / 1 · 2 · 3 .. n} × {1 / 1 · 2 · 3 .. m} × {1 / 1 · 2 · 3 .. r}.

3. Si dentur quatuor vel plures (x, y, z, v, &c.) variabiles quanti- tates in quantitate, quarum incrementa $int e, o, i, k, &c, tum coeffi- ciens termini ({P^. ^n + m + r + s + &c. / x^. ^n y^. ^m z^. ^r v^. ^s &c.}) e^n 0^m i^r k^s &c. in novo valore erit = {1 / 1 · 2 · 3 .. n} × {1 / 1 · 2 · 3 .. m} × {1 / 1 · 2 · 3 .. r} × {1 / 1 · 2 · 3 .. s}, &c.: in hoc novo valore cunctæ in$uper adjungendæ $unt quantitates prædicti ge- neris, ubi indices n, m, r & s integros re$pective denotant numeros.

Et $ic deinceps.

[0458]DE INFINITIS

Cor. 1. Sint duæ æquationes A = 0 & B = 0, quæ $int re$pective functiones quantitatum x & y; inveniantur fluxiones quantitatum A & B ex hypothe$i quod x $olummodo $it variabilis & x^. $it con$tans, quæ $int re$pective ({A^. / x^.}) = p, ({A^.. / x^. ^2}) = p′, ({A^... / x^. ^3}) = p″, &c. ({B^. / x^.}) = q, ({B^.. / x^. ^2}) = q′, ({B^... / x^. ^3}) = q″, &c. deinde inveniantur fluxiones quan- titatum A & B ex hypothe$i, quod y $olummodo $it variabilis & y^. con$tans, & $int re$pective ({A^. / y^.}) = r, ({A^.. / y^. ^2}) = r′, ({A^... / y^. ^3}) = r″, &c. ({B^. / y^.}) = s, ({B^.. / y^. ^2}) = s′, ({B^... / y^. ^3}) = s″, &c. ultimo $upponantur quanti- tates x & y variabiles, x^. vero & y^. con$tantes, & $int ({A^.. / x^. y^.}) = n, &c. ({B^.. / x^. y^.}) = m, &c. a$$umantur k & l proximi valores quantitatum x & y re$pective, $cribantur hi valores pro x & y re$pective in quantitatibus A, B; p, p′, p″, &c. q, q′, q″, &c. r, r′, r″, &c. s, s′, s″, &c. n, m, &c. & $int quantitates re$ultantes a, b; P, P′, P″, &c. Q, Q′, Q″, &c. R, R′, R″, &c. S, S′, S″, &c. N, M, &c. tum a$$umantur æquationes o = a + p e + r o′ + {1 / 2} p′ e^2 + n o′ e + {1 / 2} r′ o′^2 + &c. & o = b + q e + s o′ + {1 / 2} q′ e^2 + m o′ e + {1 / 2} s′ o′^2 + &c. $cribantur k + e & l + o′ re$pective pro x & y in datis æquationibus A = o & B = o, & re$ultent æqua- tiones A′ = o & B′ = o, quarum radices e & o′ erunt eædem ac radices e & o′ ex a$$umptis æquationibus deductæ. Nunc $upponantur o = a + p e + r o′ & o = b + q e + s o′, & ex his æquationibus con$e- quuntur e = {s a - r b / r q - s p} & o′ = {q a - p b / p s - q r}: hinc con$tat, quod in om- nibus ca$ibus approximationes ex hâc methodo deductæ pendent ex hoc, utrum quantitates k & l a$$umptæ pro radicibus ip$is $int multo [0459]SERIEBUS. propiores ad radices quæ$itas, quam ad reliquas incognitarum (x & y) radices, necne.

Cor. 2. Si vel duæ vel plures radices quæ$itæ datarum æquationum $int prope inter $e æquales, tum plures termini ex æquationibus a$$umptis retineantur: quod etiam, cum radices quæ$itæ haud $int prope æquales, propiorem approximationem deducet.

Eadem principia etiam applicari po$$unt ad plures (m) æquationes plures m incognitas quantitates habentes.

Cor. 3. Sint duæ prædictæ æquationes α = 0 & π = 0, pro x & y in his æquationibus $cribantur re$pective h + k √ (-1) + a √ (-1) + e & m + n √ (-1) + o + u √ (-1), ubi h + k √ (-1) & m + n √ (-1) $unt quantitates multo propiores ad unum valorem quantitatum x & y quam ad reliquos; $cribantur hi valores pro x & y in datis æquationibus, & re$ultent A + B e + C o′ + D + √ (-1) (L a + M u + N) prope = o, P + Q e + R o′ + S + √ (-1) (T a + H u + K) prope = o, ubi P, Q, R, S, T, H, K; A, B, C, D, L, M & N $unt cognitæ quantitates; D vero & S in $ingulis terminis plu- res habent dimen$iones quantitatum e, o, a & u quam unam; reli- quæ vero habeant nullas: fingantur A + B e + C o′ = o, P + Q e + R o′ = o, L a + M u + N = o & T a + H u + K = o, ex hi$ce æquationibus inveniri po$$unt approximationes ad valores quantita- tum perparvarum a, e, o′ & u.

Si duo vel plures valores re$ultantium quantitatum a, e, o′, u, &c. $int inter $e æquales, tum e principiis prius traditis erui po$$unt novæ approximationes.

Ea, quæ prius tradita fuere de convergentia po$$ibilium radicum, ad convergentiam impo$$ibilium radicum æque applicari po$$unt.

Ex. 1. Ex datâ fluente fluxionis (1 - a x^2)^-{1 / 2} x^. invenire fluentem fluxionis (1 - (a + b) x^2)^-{1 / 2} x^., $i modo b $it perparva quantitas. Inveniatur incrementum quantitatis (1 - (a + b) x^2)^-{1 / 2} ex hy- pothe$i quod a $olummodo $it variabilis & b $it ejus incrementum, quod erit (1 - a x^2)^-{1 / 2} + {b x^2 / 2 (1 - a x^2)^{3 / 2}} + {1 · 3 b^2 x^4 / 2^2 · 2 (1 - a x^2)^{5 / 2}} + [0460]DE INFINITIS {1 · 3 · 5 b^3 x^6 / 2^3 · 2 · 3 · (1 - a x^2)^{7 / 2}} + &c. ducatur hæc $eries in x^. & inveniantur fluxionum re$ultantium fluentes, & perficitur exemplum.

Ex. 2. Sit fluxio (a + b x^n + c x^2n ... b x^ln)^m x^., augeantur coeffici- entes a, b, c, d, &c. per perparva incrementa α, β, γ, δ, &c. & re$ultat fluxio (a + b x^n + c x^2n ... b x^ln)^m x^. + m (α + β x^n + γ x^2n + &c.) × (a + b x^n + c x^2n + &c.)^m-1 x^. + {1 / 2}m · (m-1) (α + b x^n + γ x^2n + &c.)^2 × (a + b x^n + c x^2n + &c.)^m-2 x^. + &c. $ed ex datis independen- tibus fluentibus l fluxionum formulæ (a + b x^n + c x^2n ... b x^ln)^m±π x^ρn x^., ubi π & ρ $unt integri numeri, acquiri po$$unt omnium eju$dem for- mulæ fluxionum fluentes, & con$equenter fluentes e $ingulis terminis prædictæ fluxionis.

Ex. 3. Sit fluxio (a + b x + c x^2 + d x^3)^m x^. = (a + b x)^m x^. + m (a + b x)^m-1 × (c x^2 + d x^3) x^. + m × {m - 1 / 2} (a + b x)^m-2 × (c x^2 + d x^3)^2 x^. + &c., ubi c & d $unt parvæ quantitates; tum erit $eries exprimens fluentem datæ fluxionis {1 / (m + 1) b} (a + b x)^m+1 + ({m / b^3} × ({(a + b x)^m+2 / m + 2} - {2 a (a + b x)^m+1 / m + 1} + {a^2 (a + b x)^m / m}) × c) + ({m / b^4} ({(a + b x)^m+3 / m + 3} - {3 a(a + b x)^m+2 / m + 2} + {3 a^2 (a + b x)^m+1 / m + 1} + {a^3 (a + b x)^m / m}) × d) + (m · {m - 1 / 2} {1 / b^5} × ({(a + b x)^m+4 / m + 4} - {4 a (a + b x)^m+3 / m + 3} + {6 a^2 (a + b x)^m+2 / m + 2} - {4 a^3 (a + b x)^m+1 / m + 1} + {a^4 (a + b x)^m / m}) c^2) + &c.

Ex. 4. Sit fluxio (a + b x + c x^2 + d x^3 + e x^4)^m x^. = (a + b x + c x^2)^m x^. + m (a + b x + c x^2)^m-1 (d x^3 + e x^4) x^. + m.{m-1 / 2} (a + b x + c x^2)^m-2 (d x^3 + e x^4)^2 x^. + &c.; ubi d & e $unt parvæ quantitates: inveniantur fluentes harum fluxionum $ucce$$ive, & re$ultat $eries quæ$ita.

[0461]SERIEBUS.

Ex. 5. Sit fluxio (a^3 + a′ + (3 a^2 b + b′) x + (3 a b^2 + c′) x^2 + (b^3 + d′) x^3)^m x^.; ubi a′, b′, c′, &c. $unt parvæ quantitates; tum erit fluxio (a + b x)^3m x^. + m (a + b x)^3x(m-1) (a′ + b′ x + c′ x^2 + d′ x^3) x^. + m · {m-1 / 2} (a + b x)^3x(m-2) (a′ + b′ x + c′ x^2 + d′ x^3)^2 x^. + &c., cujus fluens erit {1 / (3 m + 1) b}(a + b x)^3m+1 + &c. &c.

Ex. 6. Erit $. {x^. / x + e} = log. (x + e) = log. x + {e / x} - {e^2 / 2 x^2} + {e^3 / 3 x^3} - &c., & $. {x^. / x - e} = log. (x - e) = log. x - {e / x} - {e^2 / 2 x^2} - {e^3 / 3 x^3} - {e^4 / 4 x^4} - &c., & erit $. {x^. / a^2 - (x + e)^2} = $. {x^. / a^2 - x^2} + {e / a^2 - x^2} + &c.

Ex. 7. Sit N numerus, cujus log. e$t v; tum erit numerus, cujus log. e$t (v ± e) = N ± Ne + {N e^2 / 2} ± {N e^3 / 2 · 3} + {N e^4 / 2 · 3 · 4} + {N e^5 / 2 · 3 · 4 · 5} + &c.

Ex. 8. Sit radius = 1 & A arcus, cujus $inus $it S & co$inus C, & A ± e arcus qui multum haud differt ab arcu A, i. e. $it e per- parva quantitas; tum erit $inus arcus (A ± e) = S ± C e - {1 / 2} S e^2 ∓ {1 / 2 · 3} C e^3 + {1 / 2 · 3 · 4} S e^4 ± &c. in infinitum = S (1 - {1 / 2} e^2 + {1 / 2 · 3 · 4} e^4 - &c.) ± C (e - {1 / 2 · 3} e ^3 + {1 / 2 · 3 · 4 · 5} e 5 - &c.) = S × co$. arc. e ± C × $in. arc. e: & co$inus prædicti arcus (A ± e) = C ± Se - {1 / 2 · 3} C e^2 ∓ {1 / 1 · 2 · 3 · 4 · 5} S e^3 + {1 / 2 · 3 · 4 · 5 · 6 · 7} C e^4 ± &c. in infini- tum = C (1 - {1 / 1 · 2} e^2 + {1 / 2 · 3 · 4} e^4 - &c.) ± S (e - {1 / 2 · 3} e^3 + {1 / 2 · 3 · 4 · 5} e^5 + &c.) = ± S × $in. arc. e + C × co$. arc. e.

[0462]DE INFINITIS

Cor. 1. Sit æquatio y = A - {A^3 / 2 · 3} + {A^5 / 2 · 3 · 4 · 5} - &c. vel y = 1 - {A^2 / 2} + {A^4 / 1 · 2 · 3 · 4} - &c., vel magis generaliter y = E(A - {A^3 / 2 · 3} + &c.) + F(1 - {A^2 / 2} + {A^4 / 2 · 3 · 4} - &c.), ubi E & F $unt quantitates ad libitum a$$umendæ; tum erit fluens generalis fluxionalis æquatio- nis y^.. + y z^. ^2 = 0, ubi z = A; unde generalis fluens huju$ce fluxio- nalis æquationis erit y = E × $in. arc. z + F × co$. eju$dem arc. z.

Cor. 2. Erit 2 S × C = $in. dupli arcus A, ergo 2 S C = 2 (A - {A^3 / 2 · 3} + {A^5 / 2 · 3 · 4 · 5} - &c.) × (1 - {A^2 / 2} + {A^4 / 1 · 2 · 3 · 4} - &c.) = 2A - {8 A^3 / 2 · 3} + {32 A^5 / 2 · 3 · 4 · 5} - {128 A^7 / 2 · 3 · 4 · 5 · 6 · 7} + &c. - &c. Et $ic ex vulgari trigonometriâ detegi po$$unt multæ con$imiles propo$itiones.

1.2. Et $imiliter $it z log. quantitatis x + √(1 + x^2), tum erit x = z + {z^3 / 2 · 3} + {z^5 / 2 · 3 · 4 · 5} + &c. $it z log. quantitatis x′ + √ (x′^2 - 1), tum erit x′ = 1 + {z^2 / 2} + {z^4 / 2 · 3 · 4} + {z^6 / 2 · 3 · 4 · 5 · 6} + &c.

Cor. Augeatur z per e, tum evadet v = z + e + {(z + e)^3 / 2 · 3} + {(z + e)^5 / 2 · 3 · 4 · 5} + &c. = x + e x′ + {1 / 2} e^2 x + {1 / 2 · 3} e^3 x′ + {1 / 2 · 3 · 4} e^4 x + &c. = x (1 + {1 / 1 · 2} e^2 + {1 / 2 · 3 · 4} e^4 + {1 / 2 · 3 · 4 · 5 · 6} e^6 + &c.) + x′ (e + {1 / 2 · 3} e^3 + {1 / 2 · 3 · 4 · 5} e^5 + &c.) = x × valorem quantitatis x′ cum z = e + x′ × valorem quantitatis x cum z = e.

Ad eundem modum inveniri pote$t v′ = 1 + {(z + e)^2 / 1 · 2} + {(z + e)^4 / 1 · 2 · 3 · 4} [0463]SERIEBUS. + {(z + e^6 / 1 · 2 · 3 · 4 · 5 · 6} + &c. = x′ + e × x + {e^2 / 1 · 2} x′ + {e^3 / 1 · 2 · 3} x + &c. = x′ (1 + {e^2 / 2} + {e^4 / 2 · 3 · 4} + {e^6 / 2 · 3 · 4 · 5 · 6} + &c.) + x (e + {e^3 / 1 · 2 · 3} + {e^5 / 1 · 2 · 3 · 4 · 5} + &c.) = x′ × valorem quantitatis x′ cum z = e + x × valorem quantitatis x cum z = e; &c.

Cor. 1. Hinc generalis fluens fluxionalis æquationis y^.. = y z^. ^2 erit E x + F x′ = y, ubi z = log. x + √ (x^2 + 1) = log. x′ + √ (x′^2 - 1).

Cor. 2. Erit 2 (z + {z^3 / 2 · 3} + {z^5 / 2 · 3 · 4 · 5} + &c.) × (1 + {z^2 / 2} + {z^4 / 2 · 3 · 4} + &c.) = 2z + {2^3 z^3 / 2 · 3} + {25 z^5 / 2 · 3 · 4 · 5} + &c. Et $ic de omnibus pro- po$itionibus iis con$imilibus ex vulgari trigonometriâ deductis.

Ex. 9. Sit x tangens arcus A; tum erit arcus, cujus tangens e$t (x ± e) = A ± {e / 1 + x^2} ± &c.

Ex. 10. Sit y $inus, & erit corre$pondens arcus = $. {y^. / √ (1 - y^2)}; & arcus, cujus $inus e$t y + e, erit $. {y^. / √ (1 - (y + e)^2)} = $. {y^. / √ (1 - y^2)} + {e / √ (1 - y^2)} + &c.

Ex. 11. Fluxio hyperbolici arcus (A) pote$t e$$e ({a^2 + x^4 / x^4})^{1 / 2} x^., ubi x y = a, & x e$t ab$ci$$a & y ordinata hyperbolæ; $it etiam x y = a + e, tum erit fluxio ejus hyperbolici arcus = ({x^4 + (a + e)^2 / x^4})^{1 / 2} x^. = ({x^4 + a^2 / x^4})^{1 / 2} x^. + {e × (x^4 + a^2) - {1 / 2} × a / x^2} × x^. + ({1 / 2} {(x^4 + a^2) - {1 / 2} / x^2} - {1 / 2} {(x^4 + a^2) - 1 {1 / 2} / x^2} a^2) e^2 x^. + &c., cujus fluens erit A + e × &c. + &c.

[0464]DE INFINITIS

Ex. 12. Sit fluxio arcus elliptici vel hyperbolici = {√ (t^4 + (c^2 ± t^2) x^2) / t √ (t^2 ± x^2)} x^. = A^., ubi c & t $unt conjugatæ diametri & x ab$ci$$a: augeantur diametri t & c per perparvas quantitates a & e, & evadet fluxio A^. = {√ ((t + a)^4 + ((c + e)^2 ± (t + a)^2) x^2) / (t + a) √ ((t + a)^2 ± x^2)} × x^. = {√ (t^4 + (c^2 ± t^2) x^2) / t √ (t^2 ± x^2)} x^. (A^.) + {(2 t^3 a + (c e ± t a) x^2) t × (t^2 ± x^2) - (2t^2 ± x^2) a + (t^4 + (c^2 ± t^3) x^2) / (t^4 + (c^2 ± t^2))^{1 / 2} × t^2 × (t^2 ± x^2)^1{1 / 2}} + &c., cujus fluens erit arcus hyperbolæ vel ellip$eos.

Ex. 13. Sit fluxio {√ (1 - c x^2) x^. / √ (1 - x^2)}, ubi c $it perparva quantitas; tum erit data fluxio ($i modo pro √ (1 - x^3) $cribatur (P)) = {x^. / P} - {c x^2 x^. / 2 P} - {c^2 x^4 x^. / 8 P} - {c^3 x^6 x^. / 16 P} - &c. cujus fluentes reperiantur A - {c / 2} × {1 · A - x P / 2} - {c^2 / 8} × {3 B - x^3 P / 4} - {c^3 / 16} × {5 C - x^5 P / 6} - {5 c^4 / 128} × {7 D - x^7 P / 8} - &c., ubi A = $ · {x^. / P}, B = {1 · A - x P / 2}, C = {3 B - x^3 P / 3}, &c.

Hinc facile deduci pote$t peripheria ellip$eos, quæ haud multum differt a circulo.

Hinc e principiis prius traditis, $i duæ fluxiones haud multum vel in variabilibus vel in invariabilibus quantitatibus iis contentis inter $e differant, & fluente alterius fluxionis datâ, inveniri pote$t approxi- matio ad alteram.

Si inter fluxiones, quarum fluentes quæruntur, nulli dentur ter- mini, qui vel nihil vel infiniti evadant; tum plerumque $eries re$ul- tantes convergent; $in aliter vero non.

Eadem principia cum aliis prius traditis applicari po$$unt ad æqua- [0465]SERIEBUS. tiones, in quibus quantitates vel variabiles vel invariabiles paululum di$tent a quantitatibus corre$pondentibus in datis æquationibus; datæ enim æquationes præbent primas approximationes; in æquatio- nibus $upra dictis ex primis vero approximationibus inventis facile per principia prius tradita erui po$$unt approximationes propiores; & $ic deinceps.

THEOR. XXIII.

Datâ æquatione 0 = p - q x + r x^2 - s x^3 + &c. ubi p, q, r, s, &c. $unt invariabiles quantitates; $it x = α prope, $cribatur α × π pro x in datâ æquatione & invenietur π = {p - r a^2 + 2 s α^3 - 3 t α^4 + &c. / q α - 2 r α^2 + 3 s α^3 - 4 t α^4 + &c.} prope; & $ic deinceps: $int vero α, β, γ, δ, ε, &c. $ucce$$ivæ approxi- mationes e prob. 13. deductæ, i. e. $it y = α + β + γ + δ + ε + &c. tum per præcedentem methodum invenietur y = α × {α + β / α} × {α + β + γ / α + β} × {α + β + γ + δ / α + β + γ} × &c. quæ re$olutio etiam ad algebraicas plures va- riabiles quantitates habentes, ad fluxionales, incrementiales, &c. æquationes applicari pote$t.

PROB. XVIII. Datâ quantitate π, in quâ continentur quæcunque invariabiles quantitates a, b, c, d, &c.; invenire ejus valorem, cum a nibilo evadat æqualis.

Ita reducatur data quantitas π, ut nec denominator nec numerator habeat denominatorem, & con$equenter in quantitate re$ultante ρ haud contineatur negativa pote$tas vel radix: in quantitate ρ pro a $cribatur a + 0; & reducantur & numerator & denominator in duas $eries $ecundum dimen$iones quantitatis x progredientes, quæ $int re$pective f o^λ + k o^μ + &c. & f′ o^λ′ + k′ o^μ′ + &c.; tum $i λ major $it quam λ′, erit π = o; $i λ = λ′, erit π = {f / f′}; $i autem λ minor $it quam λ′, tum erit π infinita quantitas. Aliter:

[0466]DE INFINITIS

Ex datâ æquatione y = π, ubi y e$t quantitats a$$umpta haud in quantitate π contenta; inveniatur valor quantitatis a = σ; deinde ex æquatione σ = 0 inveniatur valor quantitatis y = τ, & τ erit quanti- tas quæ$ita.

Et $ic inveniri pote$t valor quantitatis π, cum plures quantitates a, b, c, &c. fiant nihilo æquales.

THEOR. XXIV.

1. Summa vel differentia quarumcunque duarum vel plurium in- finitarum $erierum convergentium, vel earum functio rationalis & in- tegralis, erit etiam convergens $eries.

2. Sint duæ diver$æ $eries reguraliter divergentes $ub$equentis vero formulæ a + a′ r + a″ r^2 + a′″ r^3 + a″″ r^4 + &c. in infinitum, tum ple- rumque erit earum $umma vel differentia, &c. $eries divergens; facile con$tant e differentiis inter corre$pondentes terminos duarum $erie- rum per principia prius tradita ca$us, in quibus $eries convergit.

3. Summa vel differentia duarum $erierum infinitarum, quarum una e$t divergens, altera vero convergens, $emper erit divergens.

4. Ducantur duæ convergentes $eries in $e$e, & $emper re$ultabit $eries convergens, ut prius a$$eritur.

5. Ducatur divergens $eries in convergentem, & æquatio re$ultans pote$t e$$e vel divergens vel convergens; pote$t e$$e convergens, cum $umma $eriei convergentis in divergentem ductæ nihilo $it æqualis.

6. Ducatur divergens $eries in divergentem, & æquatio re$ultans pote$t e$$e vel divergens vel convergens.

7. Dividatur vel convergens vel divergens $eries per convergentem vel divergentem, & $eries re$ultans pote$t e$$e vel divergens vel con- vergens; dividatur convergens $eries per alteram nihilo æqualem, & $eries re$ultans erit divergens; $in aliter non.

[0467]SERIEBUS. THEOR. XXV.

1. Sit quantitas (a ± x)^m, ubi m haud $it affirmativus numerus, & $eries a^m ± m a^m-1 x + m · {m - 1 / 2} a^m-2 x^2 ± &c. = (a ± x)^m con- verget, cum a major $it quam x, diverget autem cum minor $it.

1.2. Sit quantitas (x ± a)^m, & $eries x^m ± m x^m-1 a + m · {m - 1 / 2} x^m-2 a^2 ± &c. erit convergens, cum x major $it quam a, &c.

Cum x prope = a, tum nec hæc nec illa $eries celeriter converget.

1.3. Sit x = a & m affirmativa quantitas, tum $eries (a - a)^m = a^m × (1 - m + {m - 1 / 2} A - {m - 2 / 3} B + {m - 3 / 4} C ... ± {m - k / k + 1} H ± {k + 1 - m / k + 2} I (1 + {k + 2 - m / k + 3} + {k + 3 - m / k + 4} P + {k + 4 - m / k + 5} Q + &c. in in$initum)) = 0; ubi literæ A, B, C, ... H & I; etiamque P, Q, &c. præcedentes terminos re$pective denotant, & k + 2 major e$t quam m; ultimo convergit.

Sit m negativa quantitas, & $eries ultimo diverget.

1.4. Series (a + x)^m = a^m + m a x^m-1 x + &c. converget, cum m $it affirmativa vel negativa & minor quam 1 & x = a.

2. Sit m vel quantitas affirmativa vel negativa & minor quam 2; tum $eries $. (a + x)^m x^. = a^m x + {m / 2} a^m-1 x^2 + {m. (m-1) / 1 · 3} a^m-2 x^3 + {m (m - 1)(m - 2) / 1 · 3 · 4} a^m-3 x^4 + &c., cum x = a, $emper convergit: $in aliter non.

3. Sit $. (a + x)^m x^. = a^m x + {m / 2} a^m-1 x^2 + {m (m - 1) / 1 · 3} a^m-1 x^3 + &c.; hæc $eries $emper convergit, $i x = - a, & m $it affirmativa vel ne- gativa & minor quam 1.

4. Sit $eries $. (x ± a)^m x^. = {x^m+1 / m + 1} ± a x^m + {m / 2} a^2 x^m-1 ± &c.; hæc $eries converget, cum x major $it quam a.

[0468]DE INFINITIS

1.2. Sit x = a, & $eries $. (x - a)^m x^. = {x^m+1 / m + 1} - a x^m + {m / 2} a^2 x^m-1 - &c. converget, cum m $it affirmativa quantitas, vel negativa & minor quam - 1: $it x = a, & $eries $. (x + a)^m x^. = {x^m+1 / m + 1} + a x^m + {m / 2} a^2 x^m-1 + &c. converget, cum m vel $it affirmativa vel negativa & minor quam 2.

THEOR. XXVI.

Sit quæcunque rationalis fluxio {x^. / x^n - p x^n-1 + q x^n-2 - &c.}; inve- niatur ejus fluens in $erie $ecundum dimen$iones quantitatis x pro- grediente, quæ $it A x + B x^2 + C x^3 + &c. Sint vero α, β, γ, δ, &c. $ucce$$ivæ radices æquationis x^n - p x^n-1 + q x^n-2 - &c. = 0, i. e. α minor $it quam β, β quam γ, &c. per regulas prius traditas inve- niatur {x^. / x^n - p x^n-1 + &c.} = {a x^. / α - x} + {b x^. / β - x} + {c x^. / γ - x} + &c. redu- cantur hæ fluxiones in $eries $ecundum dimen$iones quantitatis x progredientes, quarum inveniantur fluentes & con$tat e præcedenti- bus, quod $eries exinde orta A x + B x^2 + C x^3 + &c. haud conver- get, ni x inter + α & - α, inter β & - β, inter γ & - γ, &c. in- terponatur; vel x = - α, cum plures valores quantitatis x $int ± α, tum in quibu$dam ca$ibus prius traditis converget $eries; ergo nece$$e e$t ut duo valores π & ρ quantitatis x, inter quos requiratur fluens, inter + α & - α, + β & - β, + γ & - γ, &c. interponerentur, vel x = - α in quibu$dam ca$ibus; aliter $eries erit divergens.

Con$tat, quod convergentia $eriei A x + B x^2 + &c. dijudicanda e$t e convergentiâ i$tius $eriei, quæ inter omnes con$imiles $eries fluentes fluxionum {a x^. / α - x}, {b x^. / β - x}, {c x^. / γ - x}, &c. re$pective exprimentes, minime convergit: i. e. ex $erie $. {a x^. / α - x} = {a x / α} + {a x^2 / 2 α^2} + {a x^3 / 3 α^3} + &c.

[0469]SERIEBUS.

2. Nunc transformetur data fluxio, ita ut ejus fluens ab quocunque alio valore c quantitatis x inter γ & δ duas proxime $ucce$$ivas radi- ces po$ito incipiat, i. e. $cribatur z + c pro x in datâ fluxione; & con$tat, quod $i unus valor c quantitatis x inter radices qua$cunque γ & δ interponatur, & $it differentia d inter γ & c minor quam differentia inter c & δ, & $i modo transformetur data fluxio {x^. / x^n - p x^n-1 + &c.}, ita ut fluens incipiat a puncto c, i. e. in datâ fluxione pro x & x^. $cribantur z + c & z^., fluxionis {z^. / z^n - P z^n-1 + Q z^n-2 - &c.} re$ultantis fluentem inter duos valores f & g, qui inter duos valores γ - c & c - γ quantitatis z re$pective continentur per $eriem con- vergentem a z + b z^2 + c z^3 + &c. exprimi po$$e; vel quod idem e$t fluentem fluxionis {x^. / x^n - p x^n-1 + &c.}, quæ inter duos valores c ± f & c ± g quantitatis x continetur, per differentiam inter duas conver- gentes $eries a f + b f^2 + c f^3 + &c. & a g + b g^2 + c g^3 + &c. ex- primi.

3. Si vero c = {γ + δ / 2}, tum quæcunque fluens fluxionis {x^. / x^n - p x^n-1 + &c.}, inter duos valores γ & δ quantitatis x e prædictâ $erie a z + b z^2 + c z^3 + &c. inve$tigari pote$t. Hinc ex eâdem $erie a z + b z^2 + c z^3 + &c. per præcedentem methodum derivatâ haud deduci pote$t fluens fluxionis {x^. / x^n - p x^n-1 + &c.} inter duos valores π & ρ quantitatis x con- tenta, ni π & ρ inter duas $ibi ip$is proximas radices quantitatis x con$tituantur.

4. Sit {P / (α - x)(β - x)(γ - x)&c.} = {a′ / α - x} + {b′ / β - x} + {c′ / γ - x} + &c. = A + Bx + Cx^2 + Dx^3 + &c. & $eries A + B x + C x^2 + D x^3 + &c. convergit; $i α, β, γ, &c. $int majores quam x: $int duo valores a & b quantitatis x inter duos divi$ores vel radices β & α $ibi ip$is [0470]DE INFINITIS proximas po$iti; $oribatur z - π pro x in datâ æquatione {P / (α - x)(β - x)&c.}, & re$ultet {Q / (λ - z)(μ - z)(ν - z)} = H + L z + M z^2 &c. quæ converget, cum z minor $it quam λ & μ & ν, &c. $in major $it quam λ vel μ vel ν, &c.; tum $emper diverget: nunc fingatur π major quam a, minor vero quam b, & quantitates π - a & b - π inter minimam affirmativam radicem λ = α - π & minimam negativam μ = π - β po$itæ, tum hæc $eries H + L z + M z^2 + &c. quæ invenit aream inter duos valores a & b quantitatis x, maxime celeriter converget, cum π = {a + b / 2}, ut prius docetur; & exinde z = π - a & b - π re$pective.

5. Cum vero $eries exprimens fluentem fluxionis {P x^. / (α - x)(β - x)(γ - x) &c.} = (H + L z + M z^2 + &c.) z^. per hanc methodum de- ducta haud $atis celeriter convergat, tum interpolandi $unt plures n termini. Invenire autem tales valores quantitatis z, ut $eries per hanc methodum deductæ maxime celeriter convergant, pro x $criban- tur $ucce$$ive n quantitates z - π, z - ρ, z - σ, z - τ, &c. & dif- ferentiæ quantitatum π, ρ, σ, τ, &c. & radicis α ($i modo hæ differ- entiæ inter α & π, α & ρ, &c. $int re$pective minores quam re$pectivæ differentiæ inter quantitates π, ρ, &c. & β) erunt in geometricâ pro- gre$$ione; $i vero differentiæ inter reliquas quantitates σ, τ, &c. & β $int minores quam differentiæ prædictæ inter α & σ, τ, &c. re$pective, tum differentiæ prædictæ inter β & σ, τ, &c. erunt re$pective in eâdem geometricâ progre$$ione.

6. Convergentiæ duarum $erierum x + {x^2 / 2 a} + {x^3 / 3 a^2} + {x^4 / 4 a^3} + &c. = $. {ax^. / a - x}, & z + {z^2 / 2 b} + {z^3 / 3 b^2} + &c. = $. {b z^. / b - z}, & $imiliter duarum $e-[0471]SERIEBUS. rierum x - {x^2 / 2 a} + {x^3 / 3 a^2} - &c. = $. {a x^. / a + x}, & z - {z^2 / 2 b} + {z^3 / 3 b^2} - &c. = $. {b z^. / b-z}; erunt inter $e æquales, cum {x / a} = {z / b}.

FIG. α. 7. In prædictis $eriebus interpolandis, ut $eries evadant maxime convergentes, nece$$e e$t $eries prædictas $ucce$$ivas æqualiter convergere: $int tres $ucce$$ivæ radices α, β & γ re$pective A α, A β & A γ; & requiratur fluens inter prædictos valores a & b contenta, qui 1<_>mo inter puncta α & β interjaceant: transformetur ab$ci$$a x, quæ in- cipit a puncto A, ita ut incipiat a punctis π, ρ, σ, τ, &c., & invenian- tur fluentes inter puncta a & π, π & c; c & ρ, ρ & d; d & σ, σ & e; &c.; tum ut convergentiæ evadant inter $e æquales, cum puncta a & b multo propius ad punctum β quam ad punctum α accedant, erunt {π a / π β} = {π c / π β} = {ρ c / ρ β} = {ρ d / ρ β} = {σ d / σ β} = {σ e / σ β} = {τ e / τ β} = &c., unde a π = c π, c ρ = ρ d, σ d = σ e, &c.; etiamque β π, β ρ, β σ, &c. erunt quantitates in geometricâ progre$$ione; & $ic deinceps.

Sit h ultimum punctum divi$ionis, i. e. punctum divi$ionis, cum ab$ci$$a incipiat a puncto β; tum erit prædicta quotiens {π a / π β} = &c. = {β b / γ β} vel {β b / α β}, prout γ β minor $it quam α β, necne: in hoc ca$u pun- ctum β inter puncta a & b ponitur.

Si autem π propius $it ad punctum α quam ad punctum β, & ρ propius ad punctum β quam ad punctum α; tum erit {a π / α π} = {π c / α π} = {ρ c / ρ β} = {ρ d / ρ β} = {σ d / σ β} = &c.; cum $eries prædictæ maxime celeriter con- vergant.

8. Si vero fractio {P / (x - α)(x - β)(x - γ)&c.} = {a′ / x - α} + {b′ / x - β} + [0472]DE INFINITIS &c. = A x^-n + B x^-n-1 + &c. reducatur ad terminos $ecundum reci- procas dimen$iones quantitatis x progredientes, tum $eries erit con- vergens, $i modo x $it major quam maxima radix vel affirmativa vel negativa (α, β, γ, δ, &c.); aliter non.

9. Si vero quæcunque radices $int impo$$ibiles, e. g. $it α = c + d √(- 1), tum $i in $erie cujus termini $ecundum reciprocas dimen- $iones quantitatis x progrediuntur, x $emper major $it quam ulla po$$ibilis radix, & quam c + d & c - d; vel magis generaliter $i x<_>n in- finite major $it quam (c + d √ (- 1))^n + (c - d √ (- 1))^n (cum n $it infinita quantitas), & x major quam quæcunque po$$ibilis radix, tum $eries exinde ortæ erunt convergentes: $i vero in $eriebus, quarum termini $ecundum dimen$iones quantitatis x a$cendunt, quantitas x $it minor quam quæcunque po$$ibilis radix etiamque quam c + d & c - d & e + f & e - f, ubi c ± d √ (- 1) & e ± f √(-1), &c. $int impo$$ibiles radices, $eries per methodum prius traditam deduci po$- $unt convergentes; vel magis generaliter $i in a$cendente $erie x<_>n $emper infinite minor $it quam {(c^2 + d^2)^n / (c + d √(- 1))^n + (c - d √(- 1))^n}; cum n $it quantitas infinite magna, &c., & x minor quam quæcun- que po$$ibilis radix, tum $eries re$ultans $emper converget.

10. Si vero quantitas reducenda ad terminos progredientes $ecundum dimen$iones quantitatis x $it quæcunque algebraica irrationalis fra- ctio; fingantur irrationales quantitates re$pective & denominator ni- hilo æquales, & inveniantur radices æquationum exinde re$ultantium, & $i valor quantitatis x major $it quam quæcunque po$$ibilis vel impo$- $ibilis radix æquationum re$ultantium, i. e. quam divi$or cuju$cunque irrationalis quantitatis, &c. tum de$cendens $eries $emper converget; $i vero valores a & b quantitatis x inter duas proximas radices vel di- vi$ores prædictos ponantur, tum per præcedentem transformationem inveniri po$$unt duæ a$cendentes $eries, quæ inveniunt fluentem datæ quantitatis in x^. ductæ inter prædictos valores a & b quantitatis x contentam, & quæ $emper convergent.

[0473]SERIEBUS.

Et $ic per transformationem prius traditam interpolari po$$unt in- ter duos valores a & b quantitatis x quicunque alii, qui præbeant $e- ries magis celeriter convergentes, e quibus con$equitur fluens quæ$ita.

Infinitæ $unt alie transformationes, quæ $eries magis convergentes præbeant.

Con$imilia iis, quæ in hoc loco & in prob. præced. traduntur, ad $eries $ecundum legem in prob. præced. traditam, & infinitas alias facile applicari po$$unt; earum convergentiæ enim ex ii$dem princi- piis dijudicandæ $unt.

11. Series $ecundum reciprocas pote$tates quantitatis x magis fre- quenter convergent, quam $eries $ecundum directas pote$tates progre- dientes, e. g. reciprocæ $eries ex algebraicis quantitatibus prius de- ductæ $emper convergunt, cum x $it major quam maxima affirmativa & negativa radix, i. e. quam ullus divi$or datæ quantitatis, u$que ad ejus infinitam magnitudinem.

12. Hinc ad detegendam finitam fluentem fluxionis {x^. / x^n - p x^n-1 + q x^n-2 - &c.} inter quo$cunque duos valores a & b quantitatis x, inter quos ponuntur diver$æ radices α, β, γ, &c. æquationis x^n - p x^n-1 + q x^n-2 - &c. = 0, per præcedentem methodum $altem requiruntur (2 n) diver$æ $eries, quæ e radicibus (x) æquationis x^n - p x^n-1 + q x^n-2 - &c. = 0 datis facile acquiri po$$unt.

In hoc ca$u ita transformetur data fluxio, ut fluentes a prædictis radicibus α, β, γ, &c. incipiant, vel ab iis terminentur.

13. Sit fluxio {(A x^m + B x^m-1 + C x^m-2 + &c.)x^. / x^n - p x^n-1 + q x^n-2 - &c.}, ubi n $it integer nu- merus, cujus fluens $it $eries a x^r + b x^s + c x^t + &c. terminorum $ecundum dimen$iones quantitatis x progredientium, & $i quantitates A x^m + B x^m-1 + C x^m-2 + &c. & x^n - p x^n-1 + q x^n-2 - &c. nullum habeant communem divi$orem; tum omnia, quæ prius de $erie, fluentem fluxionis {x^. / x^n - p x^n-1 + q x^n-2 - &c.} de$ignante, dicta fue- [0474]DE INFINITIS rint, æque ad $eriem prædictam a x^r + b x^s + c x^t + &c. applicari po$$unt.

14. Sit fluxio (a + b x + c x^2 + d x3.. x^n)^m × (A + B x^r + C x^s + &c.) × x^., ubi m haud $it integer affirmativus numerus, & quantitates a + b x + c x^2 + d x^3 .. x^n = 0, & A + B x^r + C x^s + &c. = 0 nullas ha- beant radices inter $e æquales: $int radices datæ quantitatis a + b x + c x^2 .. x^n = 0 re$pective α, β, γ, δ &c. fluens vero datæ fluxionis per $eriem P x^b + Q x^k + R x^l + &c. $ecundum dimen$iones quanti- tatis x progredientem exprimatur; tum hæc $eries $emper invenietur convergens, cum x minor $it quam α & β & γ, &c. $i vero major $it, quam α vel β vel γ, &c. tum divergit $eries.

15. Si vero $cribantur z + e & z^. pro x & x^. in datâ fluxione, & in- veniatur $eries $ecundum dimen$iones quantitatis z progrediens, viz. P′ z^b′ + Q′z^k′ + &c. quæ $it fluens re$ultantis fluxionis; in hâc $erie pro z $ub$tituantur duo diver$i valores π & ρ quantitatis z, quibus corre$pondent duo valores π + e & ρ + e quantitatis x, & $i hi duo valores π + e & p + e etiamque e inter duas proxime $ucce$$ivas, e. g. γ & δ prædictæ æquationis radices ponantur; & π & ρ minores $unt quam ± (e - γ) vel ± (e - δ), tum convergentes erunt duæ $eries re$ultantes.

16. Hinc etiam ad detegendam finitam fluentem fluxionis (a + b x + c x^2 + &c.)^m × (A + B x^r + &c.)x^. inter duos quo$cunque quan- titatis x valores contentam per præcedentem methodum requiruntur $altem 2 n diver$æ $eries, quæ e radicibus æquationis a + b x + c x^2 + d x^3 + &c... x^n = 0 datis facile deduci po$$unt; n + 2 enim requi- runtur diver$i valores prædictæ quantitatis e.

17. Eodem modo $it fluxio (a + b x + c x^2 + &c.)^m (d + e x + f x^2 + &c.)^n × (h + k x + l x^2 + &c.)^p &c. × (A x^r + B x^s + &c.)x^., ubi quan- titates a + b x + c x^2 + &c. d + e x + f x^2 + &c. h + k x + &c. &c. nullum habeant divi$orem inter $e æqualem vel communem, & $int α, β, γ, &c. λ, μ, ν, &c. π, ρ, σ, &c. &c. re$pective radices æquationum a + b x + c x^2 + &c. = 0, d + e x + f x^2 + &c. = 0, h + k x + l x^2 + &c. = 0, &c. & $ic $cribantur z + e & z^. pro x & x^. in datâ fluxione, [0475]SERIEBUS. & e fluxione re$ultante inveniatur $eries $ecundum dimen$iones quan- titatis z progrediens, quæ $it P z^Γ + Q z^Δ + &c. in hâc $erie pro z $cribantur duo valores τ & v, quibus corre$pondent duo valores τ + e & v + e quantitatis x: $i duo valores τ + e & v + e con$tituantur inter duos proxime $ucce$$ivos valores λ & μ radicum α, β, γ, &c. λ, μ, ν, &c. π, ρ, σ, &c. &c. & τ & v $int minores quam ± (e - λ) vel ± (e - μ), tum convergent $eries re$ultantes ex hâc $ub$titutione.

18. Hinc $i numerus radicum α, β, γ, &c. λ, μ, ν, &c. π, ρ, &c. &c. $it ν, tum ex 2 ν diver$is $eriebus proprie in$titutis prædicti generis datis, quæ incipiunt a re$pectivis radicibus α, β, γ, &c. vel ad eas ter- minantur, acquiri pote$t fluens datæ fluxionis inter quo$cunque duos φ & χ quantitatis x valores contenta, ni fluens prædicta $it infinite magna. Cum T + e vel v + e æqualis $it valori radicum prædicta- rum, tum e principiis prius traditis in omnibus præcedentibus ca$i- bus erui pote$t, utrum $eries re$ultans $it convergens, necne.

Sed hìc animadvertendum e$t quod $i in omnibus præcedentibus ca$ibus valor quantitatis x a$$umptus $uperet maximam radicem præ- dictarum æquationum, tum recurrendum e$t ad $eriem $ecundum reciprocas pote$tates quantitatis x progredientem, & $emper converget $eries.

In pleri$que ca$ibus præ$tat per methodum prius traditam plures $eries a$$umere, quæ corre$pondent pluribus valoribus quantitatis x inter φ & χ po$itis.

19. Si vero impo$$ibiles radices in prædictis æquationibus continean- tur, quæ $int re$pective x + a + √(- b^2) & x + a - √(- b^2), & $i modo dici po$$it cum converget $eries A x^r + B x^s + C x^t + &c. = {1 / x^2 + 2 a x + a^2 + b^2}, quod $emper evadet ut prius dicitur in $eriebus $ecundum dimen$iones quantitatis x progredientibus, cum a - b ma- jor $it quam x; in $eriebus autem $ecundum reciprocas ejus dimen- $iones progredientibus, cum x major $it quam a + b, tum etiam dici[0476]DE INFINITIS pote$t, cum fluentes fiuxionum prius traditarum etiam convergent; & magis generaliter, $i {(a + √(- b^2))^n + (a - √(- b^2))^n / 2}, ubi n $it infinita quantitas, infinite minor $it quam x^n, tum converget reciproca $eries prædicta; $i x^n infinite minor $it quam {(a^2 + b^2)^n / (a + √(- b^2))^n + (a - √(- b^2))^n}, tum a$cendens $eries $emper converget; cum autem ma- jores $int hæ quantitates, tum $emper divergunt $eries prædictæ.

20. Sit fluxio P^-r × Q^-m × R x^., cujus fluens requiritur, ubi literæ P, Q & R de$ignant qua$cunque algebraicas $unctiones literæ x^n nullos di- vi$ores communes habentes, r & m fractiones qua$cunque; a$$umatur P^-r+1 × Q^-m+1 × (A + B x^n + C x^2n + D x^3n + &c.) pro fluente quæ- $itâ, & $i hæc $eries A + B x^n + C x^2n + D x^3n + &c. in infinitum progrediatur, tum hæc $eries $emper converget, cum $eries ad $implices terminos ex divi$ione, extractione radicum, &c. reducta convergat.

21. Sit irrationalis quantitas duplicis formulæ (a + b x + c x^2 + &c. + (e + f x + g x^2 + &c.)^m)^r = P; ubi m & r $unt fractionales vel negativi indices; reducatur hæc $eries ad terminos $ecundum dimen- $iones quantitatis x progredientes, viz. A x^t + B x^t+s + &c.: $int α, β, γ, δ, &c. radices æquationis e + f x + g x^2 + &c. = 0, quarum α minor $it quam β, β quam γ, γ quam δ, &c., deinde inveniantur ra- dices (x) æquationis a + b x + c x^2 + &c. + (e + f x + g x^2 + &c.)^m = 0 (ii$dem valoribus radicis ^{1 / m} √ u$rtatis, qui in datâ $erie u$urpan- tur) quæ $int π, ρ, σ, τ, &c., quarum π minor $it quam ρ, ρ quam σ, σ quam τ, &c.; tum, $i x minor $it quam minima radix α, β, γ, &c.; π, ρ, σ, &c.; $eries a$cendens $emper erit convergens: $i major $it quam maxima α, β, γ, &c.; π, ρ, σ, &c.; $eries reciproca, i. e. de$cendens $em- per erit convergens.

Eadem etiam applicari po$$unt ad qua$cunque algebraicas irratio- nales quantitates.

[0477]SERIEBUS.

Con$imilia etiam vere affirmari po$$unt de convergentiâ harum algebraicarum quantitatum iis, quæ prius tradita fuere de convergen- tiâ $erierum prius traditarum.

Con$imilia etiam affirmari po$$unt (mutatis mutandis) de conver- gentiâ $erierum $ecundum dimen$iones quantitatis x progredientium, quæ exprimunt fluentes omnium algebraicarum quantitatum, e. g. $. P x^., iis, quæ prius tradita fuere de convergentiâ $erierum, quæ $unt fluentes fluxionum prius traditarum.

1.2. Hinc facile deduci po$$unt infinitæ divergentes $eries, quæ quo- dammodo dici po$$unt æquales finitis quantitatibus; $it fluens con- tenta inter valores a & b quantitatis x finita quantitas; vel, $i in datâ functione pro x $cribantur a & b re$pective, re$ultent functiones, quæ $int finitæ quantitates; deinde in datâ fluente vel functione pro x $cri- batur z + e, &c. & fluens vel functio re$ultet, quæ in $eriem $ecundum dimen$iones quantitatis z expan$a præbeat divergentem $eriem, cum z = a - e vel b - e, &c.; tum re$ultans divergens $eries, vel diver$æ re$ultantes $eries, earum $umma, differentia, & rationalis & integralis functio quodammodo dici pote$t æqualis datæ finitæ quantitati ex datâ functione facile deducendæ.

Et $ic de pluribus huju$cemodi functionibus.

Et idem mutatis mutandis affirmari pote$t de incrementialibus quantitatibus $imiliter reductis.

1. 3. Sit quæcunque fluxio A x^., ubi A $it functio quantitatis x; in quantitate A pro x $cribantur re$pective a, a + {1 / n}b, a + {2 / n}b, a + {3 / n} b ... a + {n-1 / n} b, a + b, ubi n e$t integer numerus, & $int quantitates re$ultantes re$pective A, B, C, D,....P, Q, R; tum fluens fluxionis datæ inter valores a & b quantitatis x contenta, inter duas quanti- tates (A + B + C...P + Q)({a - b / n}), & (B + C + D...P + [0478]DE INFINITIS Q + R)({a - b / n}) ver$atur, $i nullus valor quantitatis x in æquatione {A / x^.} = 0 inter duos prædictos valores a & b contineatur.

THEOR. XXVII.

1. Sit data quantitas A functio incognitæ quantitatis x, cujus mi- nima radix in æquationibus per methodum in præcedente proble- mate traditam deductis $it α; deinde transformetur hæc quantitas A in alteram (B), cujus incognita quantitas $it z functio quantitatis x, & inveniatur minima radix æquationum ex quantitate B per præ- dictam methodum re$ultantium, quæ $it β; reducantur quantitates A & B ad $eries $ecundum dimen$iones quantitatum x & z a$cendentes, & $int a & π corre$pondentes valores quantitatum x & z, tum $erie- rum convergentiæ erunt majores vel minores prout rationes α: a & β: π $int majores vel minores: $int α′ & β′ maximæ radices prædicta- rum æquationum, & reducantur quantitates A & B ad $eries $ecun- dum dimen$iones quantitatum x & z de$cendentes, tum convergentiæ $erierum re$ultantium erunt minores vel majores prout rationes α′: a & β′: π $unt majores vel minores.

2. Sit data fluxio Ax^., ubi A e$t prædicta functio quantitatis x; & reducatur quantitas ad $eriem $ecundum dimen$iones quantitatis x vel a$cendentem vel de$cendentem, & inveniatur ejus fluens; transfor- metur data fluxio A x^. in alteram B z^., cujus variabilis z e$t quæcunque functio variabilis x; reducantur duæ fluxiones A x^. & B z^. ad $eries $e- cundum dimen$iones quantitatum x & z re$pective a$cendentes vel de$cendentes, & $int a & b valores quantitatis x, inter quos continetur fluens quæ$ita, etiamque π & ρ eorum corre$pondentes valores quan- titatis z: tum convergentiæ $erierum re$ultantium erunt majores vel minores prout rationes α′: ad minorem quantitatem a vel b, vel β′ ad minorem π vel ρ, in de$cendentibus $eriebus; vel major a vel b: α, vel major π vel ρ: β in a$cendentibus $eriebus, $int minores vel majores.

Facile con$tant e præced. theor.

[0479]SERIEBUS.

Ex. 1. Fluens fluxionis $. {x^. / 1 + x} = 1 - {1 / 2}x + {1 / 3}x^3 - {1 / 4}x^4 + &c. vel = {x / 1 + x} - {x^2 / 2 (1 + x)^2} + {x^3 / 3 (1 + x)^3} - {x^4 / 4 (1 + x)^4} + {x^5 / 5 (1 + x)^5} - &c.; hæc po$terior $eries, quæ progreditur $ecundum dimen$iones quantitatis {x / 1 + x} (modo x $it affirmativa quantitas) $emper celerius con- verget quam prior; nam {x / 1 + x} = v minor erit quam x: $it x = 1, tum $eries erunt 1 - {1 / 2} + {1 / 3} - {1 / 4} + {1 / 5} - &c. & {1 / 2} - {1 / 2 · 4} + {1 / 3 × 8} - {1 / 4 × 16} + {1 / 5 × 32} - {1 / 6 × 64} + &c.; hæc $eries multo celerius converget quam prior, nam in priori $erie $ingulus terminus erit ad ejus $ucce$$ivum prope in ratione æqualitatis, in po$teriori in ratione 2: 1 prope: ali- ter, $it {x / 1 + x} = v & exinde {x^. / 1 + x} = {v^. / 1 - v}; radix æquationis 1 + x = 0 e$t - 1, & radix æquationis 1 - v = 0 e$t 1; cum autem re- quiratur fluens inter duos valores 0 & {1 / 2} quantitatis v, qui valoribus 0 & 1 quantitatis x corre$pondent: minima vel unica radix prioris æquationis 1 + x = 0 erit ad quantitatem x:: ± 1: 1; at unica radix æquationis 1 - v = 0 erit ad quantitatem v (in majore quam præce- dente ratione):: 1: {1 / 2}; ergo $eries 1 - {1 / 2 · 2^2} + {1 / 3 · 2^3} - &c. magis celeriter coverget, quam corre$pondens $eries 1 - {1 / 2} + {1 / 3} - {1 / 4} + &c.

Ex. 2. Sit $eries $. {x^. / 1 + x} = x - {1 / 2}x^2 + {1 / 3}x^3 - &c.; pro x & x^. $cri- bantur {a + b v / c + d v} & {b c - d a / (c + d v)^2} v^. in fluxione {x^. / 1 + x}, & re$ultat {(b c - d a)v^. / (c + d v) (c + a + (d + b)v)}: cujus fluens reducta ad $eriem evadet (b c - d a) ({1 / c · (c + a)} v - {2 c d + c b + a d / c^2 (c + a)^2} × {v^2 / 2} + &c.); huju$ce $eriei qui- [0480]DE INFINITIS cunque terminus ad infinitam di$tantiam erit ad ejus $ucce$$ivum- quam proxime in minore duarum $ub$equentium ratione, viz. c: d v & c + a: (d + b) v: $i requiratur fluens fluxionis inter duos valores α & β quantitatis x contenta, & con$equenter inter duos corre$pon- dentes valores {c α - a / b - d α} & {c β - a / b - d β} quantitatis v; tum convergentia $eriei x - {1 / 2} x^2 + {1 / 3} x^3 - &c. i. e. $erierum α - {1 / 2} α^2 + {1 / 3} α^3 - &c. & β - {1 / 2} β^2 + {1 / 3} β^3 - &c. major vel minor erit, prout minor ratio 1: α vel 1: β major vel minor $it; & convergentia $eriei {1 / c (c + a)} v - {2 c d + c b + a d / c^2 (c + a)^2} × {v^2 / 2} + &c. major vel minor erit prout minor ratio c: {c α - a / b - d α} × d, c: {c β - a / b - d β} × d; a + c: (d + b) × {c α - a / b - d α} vel a + c: (d + b) × {c α - a / b - d α} major vel minor $it: convergentia totius dijudicanda e$t ex minori convergentiâ.

Hoc con$tat ex theoremate præcedente; nam radix denominatoris 1 + x = 0 in priori ca$u e$t - 1; in po$teriori ca$u radices denomi- natoris $unt = - {c / d} & = - {d + b / c + a}; & rationes radicum ad v in po- $teriori ca$u & radicis - 1 ad x in priori erunt præcedentes.

Exhinc facile deduci po$$unt valores quantitatum a, b, c & d; in quibus prædictæ rationes evadunt maximæ, & con$equenter $eries convergunt maxime.

THEOR. XXVIII.

Sit P functio quantitatis x; reducatur in duas $eries, quarum altera a x^r + b x^n+r + c x^2n+r + &c. = A $ecundum dimen$iones quantitatis x^n a$cendit, altera vero a′ x^r′ + b x^r′-n + &c. $ecundum dimen$iones eju$dem quantitatis x^n de$cendit; & $i una $eries A covergat cum x = α, tum altera B $emper divergit cum x = α: ni cum x = β, ubi[0481]SERIEBUS. $eries (A) exinde re$ultans $it ultima $eries convergens, vel prima quæ non convergit; etiamque $it $eries B prima convergens, vel ultima quæ non convergit: & in utroque cafu eadem $it $eries.

Ex. 1. Sit $. {x^. / 1 + x^2} = x - {x^3 / 3} + {x^5 / 5} - {x^7 / 7} + &c. = - {1 / x} + {1 / 3 x^3} - {1 / 5 x^5} + &c.; tum $i una $eries convergit, altera nece$$ario diverget; ni x = 1, in quo ca$u utraque $eries eadem evadit, at una e$t alterius negativa, viz. una e$t 1 - {1 / 3} + {1 / 5} - {1 / 7} + &c., altera vero - 1 + {1 / 3} + {1 / 5} + {1 / 7} - &c.

Cor. Series, quæ e$t $umma duarum prædictarum $erierum A ± B $emper divergit, ni utraque $eries eadem evadat, A = B; i. e. in exemplo $eries x - x^-1 - ({x^3 - x^-3 / 3}) + ({x^5 - x^-5 / 5}) - &c. $em- per divergit, ni x = 1.

THEOR. XXIX.

Reducatur functio data quantitatis x ad minimos terminos, ita uæ quantitates in numeratore & denominatore contentæ nullum habeant denominatorem: fingatur denominator Q = 0, & omnis irrationalis quantitas vel in numeratore vel in denominatore contenta nihilo æqualis, & $it α minima radix affirmativa vel negativa, at non = 0 prædictarum re$ultantium æquationum; deinde reducatur data fun- ctio ad $eriem $ecundum dimen$iones quantitatis x a$cendentem, tum hæc $eries $emper converget, $i quantitas x contineatur inter α & - α, quod$i x major $it quam α, tum prædicta $eries diverget.

Si hæc $eries in x ducatur, tum $eries denotans fluentem inter duos valores a & b quantitatis (x) contentam $emper converget, cum a & b inter α & - α interponantur.

2. Reducatur prædicta functio ad $eriem $ecundum reciprocas di- men$iones quantitatis x de$cendentem, & $it λ maxima radix prædi- ctarum re$ultantium æquationum, & requiratur fluens inter duos valores a & b quantitatis x contenta; $eries $emper converget, cum [0482]DE INFINITIS utræque a & b $int majores quam λ; $i una $it minor quam λ, tum $emper diverget $eries prædicta.

3. Cum x = α in priori ca$u, vel = λ in po$teriori; tum in qui- bu$dam ca$ibus evadet convergens $eries, in quibu$dam non; qui ca$us facile con$tant e principiis prius traditis.

4. Si quædam radices $int impo$$ibiles, e. g. $int a + b √(- 1) & a - b √ (- 1); tum a$cendens $eries $emper converget, cum x^-n infinite major $it quam {2(a^n - n · {n - 1 / 2} a^n-2 b^2 + n · {n - 1 / 2} · {n - 2 / 3} · {n - 3 / 4} a^n-4 b^4 - &c.) / (a^2 + b^2)^n}, ubi n e$t quantitas infinite magna; & de$cendens $eries $emper converget, cum x^n infinite major $it quam 2(a^n - n · {n - 1 / 2} a^n-2 b^2 + n · {n - 1 / 2} · {n - 2 / 3} · {n - 3 / 4}a^n-4 b^4 + &c.).

Ea, quæ prius tradita fuerunt de interpolatione $erierum, hìc etiam applicari po$$unt.

Cor. Exhinc deduci po$$unt infinitæ convergentes $eries, quarum $ummæ innote$cunt; nam a$$umatur quæcunque functio quantitatis x, &c. pro $ummâ, & reducatur ea ad $eriem $ecundum dimen$iones quantitatis x, &c. progredientem; per theorema hìc datum ita a$$u- matur valor quantitatis x, ut $eries evadat convergens; & confit co- roll.

PROB. XIX. Transformare datam algebraicam quantitatem in alteram, cujus termini progrediuntur $ecundum quantitates formulœ a x^r (x ± 1)^r.

Erunt ± x^n = x^n × (x ± 1)^n - n x^n+1 × (x ± 1)^n+1 + n · {n + 3 / 2} x^n+2 × (x ± 1)^n+2 - n · {n + 4 / 2} · {n + 5 / 3}x^n+3 × (x ± 1)^n+3 + n · {n + 5 / 2} · {n + 6 / 3} · [0483]SERIEBUS. {n + 7 / 4}x^n+4 × (x ± 1)^n+4 - &c. & x^-n = x - {1 / 2} n × (x ± 1) - {1 / 2} n ± {n / 2} × x^{-n-1 / 2} × (x ± 1)^{-n-1 / 2} + {n^2 / 8} x^{-n-2 / 2} × (x ± 1)^{-n-2 / 2} ± {n × (n + 1) × (n - 1) / 2 · 4 · 6} x^{-n-3 / 2} × (x ± 1)^{-n-3 / 2} - &c.

Scribantur hæ quantitates pro $uis valoribus in datâ algebraicâ quantitate, & perficitur problema.

Ex vulgaribus vel novis, &c. modis multiplicandi, dividendi & radi- ces extrahendi reduci pote$t algebraica quantitas ad $eriem infinitam $ecundum prædictam legem progredientem.

Ex methodis haud di$$imilibus transformari po$$unt datæ alge- braicæ quantitates in terminos $ecundum dimen$iones quantitatum huju$ce formulæ x^r × (x ± x.)^r × (x ± 2x.)^r ... (x ± n x.)^r, vel $ecun- dum infinitas alias progredientes.

THEOR. XXX.

Incrementum geometricæ $eriei a x + a^2 x^2 + a^3 x^3 + &c. erit = {a (x + x) / 1 - a x - a x^.} - {a x / 1 - a x} = ({a x / (1 - a x)^2} + {a^2 x^2 / (1 - a x)^3} + {a^3 x^3 / (1 - a x)^4} + &c.) = {a x / (1 - a x.)} + ({a / (1 - a x)^2} - a) x + ({a^2 / (1 - a x)^3} - a^2)x^2 + ({a^3 / (1 - a x.)^4} - a^3) x^3 + &c.

THEOR. XXXI.

1. Sit $eries A + B x + C x^3 + D x^5 + E x^7 + &c. in infinitum; pro ejus integrali primi ordinis, cum x cre$cat uniformiter, a$$umi pote$t feries a x + b x × (x - x) + c x^2 (x - x)^2 + d x^3 (x - x)^3 + &c. cu- jus incrementum erit a x. + b x (x + x. - (x - x.)) + c x^2 ((x + x.)^2 - (x - x)^2) + &c. = a x. + 2 b x x. + (4 c + 2 d x.^2)x^3 x. + (6 d + [0484]DE INFINITIS 8 e x.^3) x^5 x. + &c. unde a = {A / x^.}, B = 2 b x., &c. vel $eries a x + b x (x - x.) + c x^3 × (x - x.)^3 + d x^5 · (x - x.)^5 + &c. cujus incremen- tum erit a x. + 2 b x. x + 2 c x.^3 x^3 + (2 d x.^4 + 6 c) x. x^5 + &c. vel $e- ries a x + b x^2 + c x^2 (x - x.)^2 + d x^4 (x - x.)^4 + &c. cujus incre- mentum erit a x. + b x.^2 + 2 b x. x + 4 c x. x^3 + 8 d x.x^5 + &c. & ex æquatis corre$pondentibus harum & datæ $eriei (A + B x + C x^3 + &c.) terminis inve$tigari po$$unt coefficientes a, b, c, d, &c.

2. Sit $eries infinita A + B x + C x^2 + D x^3 + &c. a$$umatur pro ejus integrali primi ordinis, cum x cre$cat uniformiter, $eries a x + b x × (x - x.) · (x - 2x.) + c x^2 × (x - x)^2 × (x - 2x.)^2 + d x^3 · (x - x.)^3 · (x - 2x.)^3 + &c. cujus incrementum erit a x. + 3 b x. × x × (x - x.) - c(3 x.^2 - 6 x x.) x^2 × (x - x.)^2 + &c. = a x. - 3 b x.^2 × x + (3 b x. - 3 c x.^4)x^2 + &c. & ex æquatis huju$ce & datæ $eriei corre$ponden- tibus coefficientibus erui po$$unt quantitates a, b, c, d, &c.

Et $ic infinitæ diver$æ $eries $ecundum dimen$iones quantitatis x progredientes facile deduci po$$unt, quæ datam $eriem de$ignant.

1. 2. Si vero integralis n ordinis prædictæ $eriei A + B x + C x^2 + &c. requiratur: pro integrali quæ$itâ a$$umatur $eries a x + b x × (x ± x.) × (x ± 2x.) ... (x ± nx.) + c x^2 × (x ± x.)^2 × (x ± 2x.)^2 ...(x ± n x.)^2 + d x^3 × (x ± x.)^3 × (x ± 2x.)^3 &c. cujus incrementum n ordinis inveniatur in terminis $ecundum dimen$iones quantitatis x progredientibus, & re$ultantis & datæ $eriei termini corre$pondentes inter $e æquentur; & exinde deduci po$$unt coefficientes a, b, c, d, &c.

3. Seriem infinitam A + B x^-n-1 + C x^-n-2 + D x^-n-3 + &c. in alteram transformare, cujus termini $ecundum reciprocas dimen$iones quantitatis x progrediuntur, & cujus integralis cuju$cunque n ordi- nis exprimi etiam pote$t in terminis $ecundum eandem legem progre- dientibus.

A$$umatur $eries a + {b / x} + {c / x × (x + x.)} + {d / x × (x + x.) × (x + 2 x.)} + {e / x × (x + x.) × (x + 2 x.) × (x + 3 x.)} + &c. & inveniatur incremen- [0485]SERIEBUS. tum n ordinis, & deinde æquentur termini datæ & re$ultantis æqua- tionis corre$pondentes, & ex æquationibus re$ultantibus erui po$$unt coefficientes a, b, c, &c.

4. Sit $eries A x^s + B x^s+t + C x^s+2t + D x^s+3t + &c. cujus inte- gralis requiritur; pro integrali primi ordinis a$$umatur a x^s × (x ± x.)^s + b x^s+1 × (x ± x.)^s+1 + c x^s+2 × (x ± x.)^s+2 + &c. &c. + a′ x^s+t × (x ± x.)^s+t + b′x^s+t+1 × (x ± x.)^s+t+1 + c′ x^s+t+2 × (x ± x.)^s+t+2 + &c. + a″ x^s+2t × (x ± x.)^s+2t + b″x^s+2t+1 × (x ± x.)^s+2t+1 + &c. + &c. invenia- tur ejus incrementum, cujus termini fiant re$pective æquales cor- re$pondentibus datæ $eriei terminis, & exinde erui po$$unt cofficien- tes a, b, c, &c. a′, b′, c′, &c. a″, b″, c″, &c. &c.

Si requiratur integralis n ordinis prædictæ $eriei, a$$umatur pro integrali quæ$itâ quantitas a x^s × (x ± x.)^s × (x ± 2x.)^s .. (x ± n x.)^s + b x^s+1 × (x ± x.)^s+1 × (x ± 2 x.)^s+1 .. (x ± n x.)^s+1 + c x^s+2 × (x ± x.)^s+2 × (x ± 2x.)^s+2 .. (x ± n x.)^s+2 + &c. + a′ x^s+t × (x ± x.)^s+t × (x ± 2x.)^s+t .. (x ± n x.)^s+t + b′x^s+t+1 × (x ± x.)^s+t+1 × (x ± 2x.)^s+t+1 .. (x ± nx.)^s+t+k + &c. + a″x^s+2t × (x ± x.)^s+2t × (x ± 2x.)^s+2t ... (x ± nx.)^s+2t + &c. + &c. inveniatur ejus incrementum n ordinis, deinde ejus & datæ $eriei corre$pondentes termini fiant inter $e æquales, & exinde erui po$$unt cofficientes a, b, c, &c. a′, b′, c′, &c. a″, b″, c″, &c.

5. In a$$umptis quantitatibus huju$ce formulæ a x^r × (x - x.)^r × (x - 2 x.)^r × ... (x - n x.)^r, $i r $it fractio, cujus denominator $it par numerus, & impo$$ibiles quantitates irrepant in $eriem quæ$itam; tum impo$$ibiles quantitates evitandi gratiâ a$$umantur quantitates huju$ce formulæ vel (- x)^r × (x. - x)^r × (2 x. - x.)^r ... (nx. - x)^r vel x^r × (x + x.)^r + (x + 2 x.)^r ... (x + n x.)^r, cujus incrementum e$t af- firmativum.

Hæc methodus u$ui in$ervit, cum duo valores quantitatis, inter quos requiritur integralis, $int perparvæ quantitates.

6. Sit $eries A x^-s + B x^-s-t + C x^-s-2t + &c. cujus integralis re- quiritur in terminis $ecundum reciprocas dimen$iones quantitatis x progredientibus: a$$umatur pro integrali primi ordinis quantitas a x^-{1 / 2}s × (x ± x.)^-{1 / 2}s + b x^-{1 / 2}s-{1 / 2} × (x ± x.)^-{1 / 2}s-{1 / 2} + c x^-{1 / 2}s-1 ×[0486]DE INFINITIS (x ± x.)^-{1 / 2}s-1 + &c. + a′x^-{1 / 2}s-{1 / 2}t × (x ± x.)^-{1 / 2}s-{1 / 2}t + b′x^-{1 / 2}s-{1 / 2}t-{1 / 2} × (x ± x.)^-{1 / 2}s-{1 / 2}t-{1 / 2} + c′x^-{1 / 2}s-{1 / 2}t-1 × (x ± x.)^-{1 / 2}s-{1 / 2}t-1 + &c. + a″x^-{1 / 2}s-t × (x ± x.)^-{1 / 2}s-t + &c. + &c. cujus inveniatur incrementum primi or- dinis, & ex terminis datæ & re$ultantis $eriei corre$pondentibus inter $e æqualibus e$$e $uppo$itis, erui po$$unt coefficientes a, b, c, &c. a′, b′, c′, &c. a″, b″, c″, &c. &c.

1. 2. Si modo requiratur integralis n ordinis $eriei prius traditæ A x^-s + B x^-s-t + C x^-s-2t + &c. & cujus termini $ecundum dimen- $iones quantitatis x progrediuntur: pro integrali quæ$itâ a$$umatur quantitas a x^-{s / n} × (x ± x.)^-{s / n} × (x ± 2 x.)^-{s / n} .. (x ± (n - 1) x.)^-{s / n} + bx^-{s-1 / n} × (x ± x.)^-{s-1 / n} × (x ± 2 x.)^-{s-1 / n} ... (x ± (n - 1) x.)^-{s-1 / n} + c x^-{s-2 / n} × (x ± x.)^-{s-2 / n} ... (x ± (n - 1) x.)^-{s-2 / n} + &c. + a′ x^{-s-t / n} × (x ± x.)^{-s-t / n} × (x ± 2 x.)^{-s-t / n} ... (x ± (n - 1) x.)^{-s-t / n} + b′ x^{-s-t-1 / n} × (x ± x.)^{-s-t-1 / n} × ... (x ± (n - 1) x.)^{-s-t-1 / n} + &c. + a″x^{-s-2t / n} × (x ± x.)^{-s-2t / n} × (x ± 2 x.)^{-s-2t / n} ... (x ± (n - 1) x.)^{-s-2t / n} + &c. cujus inveniatur incrementum, quod reducatur ad terminos $ecundum reciprocas dimen$iones quantitatis x progredientes, deinde e corre$pondentibus datæ & re$ultantis $eriei re$pective inter $e æquatis erui po$$unt coefficientes a, b, c, &c. a′, b′, c′, &c. a″, b″, c″, &c.

7. Sit incrementum P^n × Q^m × &c. × R, cujus integralis requiritur; ubi P, Q, R, &c. $unt functiones quantitatis x, n vero & m quæcunque fractiones; ita reducatur hoc incrementum, ut in eo nulli conti- neantur divi$ores; qui $int $ucce$$ivæ integrales; i. e. ne $it T × T′ divi$or quantitatis P^n × Q^m × &c. ubi T e$t $ucce$$iva integralis quan- titatis T′; reducatur datum incrementum ad hanc formulam T × T′ × T″ × T′″ ... T′^m-1 × T′^m × A^n × B^m × C^s × &c. pro integrali quæ$itâ ($i re- quiratur $eries a$cendens) a$$umatur $eries T × T′ × T″ × T′″ ... × T′′^m-1 × A^n × A′^n × B^m × B′^m × C^s × C′^s × &c. (a + b x^r × (x. ± x.)^r + c x^r+1 (x ± x.)^r+1 + &c. + e x^2r × (x ± x.)^2r + f x^2r+1 (x ± x.)^2r+1 + &c. + [0487]SERIEBUS. l x^3r × (x ± x.)^3r + &c.) cujus inveniatur incrementum, quod fiat æquale dato incremento, & exinde deduci po$$unt coefficientes a, b, c, &c. e, f, &c. l, &c.

Si vero requiratur $eries de$cendens, tum $eriei præcedentis a + b x^r × (x ± x.)^r + c x^r+1 × (x ± x.)^r+1 + &c. &c. loco $ub$tituatur vel a + b x^-{r / 2} × (x ± x.)^-{r / 2} + c x^-{r / 2}-{1 / 2} × (x ± x.)^-{r / 2}-{1 / 2} + &c. + e x^-2r × (x ± x.)^-2r + f x^-2r-{1 / 2} × (x ± x.)^-2r-{1 / 2} + &c. vel infinitæ con$imiles $ub$titutiones.

Facile con$tat, quod infinitæ aliæ $eries huju$modi pro integrali quæ$itâ a$$umi po$$unt.

Ex transformatione harum $erierum in alias, quarum variabiles quantitates quandam habeant relationem ad variabiles quantitates datarum $erierum, deduci po$$unt $eries $ecundum dimen$iones alia- rum quantitatum progredientes.

Hæc principia promovere liceat etiam ad inveniendas $eries $ecun- dum datam legem progredientes, & quarum infinitæ aliæ functiones præter fluentes & integrales $ecundum eandem legem progrediuntur.

Ut $eries huju$ce generis evadant convergentes vel magis celeriter convergentes, præ$tat interpolare plures inter duos datos valores (z + a z. & z + b z.) quantitatis x, i. e. $cribere pro x diver$os valo- res z + e z., z′ + e′ z., &c., ubi e, e′, &c. $unt integri numeri inter duos valores a & b po$iti.

Interpolatio huju$ce generis, & $erierum exinde re$ultantium con- vergentia e principiis in prob. traditis dijudicari po$$unt.

Eadem principia etiam applicari po$$unt ad $eries ex incrementia- libus æquationibus re$ultantes.

PROB. XX.

Transformare datam quantitatem in terminos $ecundum datam legem progredientes: bi termini reducantur ad $implices terminos $ecundum dimen- $iones quantitatis x progredientes, reducatur etiam data quantitas ad ter- minos $implices $ecundum dimenfiones quantitatis x progredientes, & fiant [0488]DE INFINITIS coefficientes $ingulorum terminorum huju$ce progre$$us re$pective œquales coefficientibus corre$pondentium terminorum e priore reductione deductorum.

Ex. 1. Sit quantitas (a + b x)^m; invenire $eriem, cujus lex $it (e + f x)^2 + (g x + h x^2)^2 + (k x^2 + l x^3)^2 + &c. = (a + b x)^m; reducantur data quantitas & termini $eriei prædictæ ad $eries, quarum termini $ecun- dum dimen$iones quantitatis x progrediuntur, & evadunt a^m + m a^m-1 b x + m · {m-1 / 2} a^m-2 b^2 x^2 + &c. & e^2 + 2 e f x + (f^2 + g^2) x^2 + 2 g h x^3 + &c. & ex æquatis corre$pondentibus terminis duarum re$ultan- tium $erierum, viz. a^m = e^2, m a^m-1 b = 2 e f, m · {m - 1 / 2} a^m-2 b^2 = f^2 + g^2, &c. con$equentur e = a^{m / 2}, f = {m a^m-1 b / 2 e}, g = √ (m · {m - 1 / 2} a^m-2 b^2 - f^2), &c.

Ex. 2. Ex eodem modo deduci pote$t {a / z - α} = {a / z} + {a α / z · (z + 1)} + {a × α (α + 1) / z · (z + 1) · (z + 2)} + {a α × (α + 1) × (α + 2) / z · (z + 1) · (z + 2) · (z + 3)} + &c.

Cor. 1. Si α vel æqualis vel major $it quam z, tum hæc $eries haud converget; $in aliter paululum magis celeriter hæc $eries converget quam $eries {a / z} + {a α / z^2} + {a α^2 / z^3} + &c.

Cor. 2. Si vero incrementum quantitatis z $it 1, tum integralis $e- riei ({a / z} + {a α / z · (z + 1)} + {a α × (α + 1) / z · (z + 1) · (z + 2)} + &c.) erit {a / z} + {a α / z} + {a α × (α + 1) / 2 z · (z + 1)} + &c. hæc vero $eries converget, $i z major $it quam α.

Hinc facile con$tat omnia, quæ traduntur de convergentiâ fluen- tium datarum fluxionum æque de convergentiâ integralium con$i- milium incrementorum affirmari po$$e.

[0489]SERIEBUS.

Facile e præcedentibus propo$itionibus deduci po$$unt convergen- tiæ $erierum in hoc problemate traditarum; reducantur enim hæ $e- ries ad alias $ecundum dimen$iones quantitatis x progredientes, & ex convergentiis $erierum re$ultantium plerumque facile erui po$$unt convergentiæ $erierum prædictarum.

PROB. XXI. Datis æquationibus algebraicis, invenire proximos valores unius incog- nitæ quantitatis x terminis vero alterius y.

E comparandis terminis datæ æquationis inter $e $æpe con$tat proximus valor unius incognitæ quantitatis y.

Fere vero præ$tat terminos datarum æquationum, qui maximi $int, ex hypothe$i datâ quod x vel $it perparva vel permagna quantitas, inter $e æquales e$$e $upponere, neglectis omnibus reliquis terminis, qui minores $int, & ex æquationibus re$ultantibus deducere proximos valores incognitæ quantitatis quæ$itæ y.

In datâ æquatione algebraicâ $cribatur (a + p) quantitatis y pro- ximus valor a per incognitam quantitatem p auctus pro y, & e ter- minis re$ultantis æquationis, qui ex hypothe$i datâ maximi re$ultant, inter $e æquales e$$e $uppo$itis, neglectis iis, qui minores $int, deduci pote$t proximus valor (b) quantitatis p; deinde vel in datâ æquatione pro y $cribatur a + b + q, vel quod idem erit in re$ultante æquatione pro p $cribatur p + q, & con$imili methodo inveniatur proximus va- lor quantitatis q; & $ic deinceps; e. g. $it æquatio y^3 + a^2 y - 2 a^3 + a x y - x^3 = 0 ubi x $it perparva quantitas; $upponatur x = 0 & termini igitur qui maximi inveniuntur, erunt y^3 + a^2 y - 2 a^3 = 0, unde y = a prope; $cribatur a + p pro y in datâ æquatione y^3 + a^2 y - 2 a^3 + a x y - x^3 = 0, & re$ultat æquatio p^3 + 3 a p^2 + (4 a^2 + a x) p + a^2 x - x^3 = 0; termini autem, qui maximi $int in hâc æqua- tione, erunt 4 a^2 p + a^2 x = 0, neglectis omnibus, qui minores $int, unde p = - {x / 4} prope; $cribatur igitur pro p in re$ultante æquatione [0490]DE INFINITIS - {x / 4} + q, & inveniri po$$it q = {x^2 / 64 a} prope; & $ic deinceps; unde y = a - {x / 4} + {x^2 / 64 a} - {131 x^3 / 512 a^2} + &c.

2. Sit vero æquatio y^3 + a x y + x^2 y - a^3 - 2 x^3 = 0 data, x vero permagna quantitas; termini maximi, qui ex hâc hypothe$i in eâ con- tinentur, erunt y^3 + x^2 y - 2 x^3 = 0, unde y = x prope; $cribatur igitur x + p pro y in datâ æquatione, & re$ultat æquatio p^3 + 3 x p^2 + (4 x^2 + a x) p + a x^2 - a^3 = 0, in quâ termini, qui maximi e præ- dictâ hypothe$i inveniuntur, erunt 4 x^2 p + a x^2 = 0, unde p = - {a / 4} prope; $cribatur igitur in re$ultante æquatione - {a / 4} + q pro p, & e terminis maximis inveniri pote$t q = {a^2 / 64 x} prope; & $ic deinceps; unde y = x - {a / 4} + {a^2 / 64 x} + {131 a^3 / 512 x^2} + &c.

Cor. 1. Facile con$tat, quod e divi$ione termini, in quem haud in- greditur q vel r, &c. per coefficientem termini, in quo continetur una $olummodo pote$tas quantitatis p vel q vel r, &c. $ucce$$ive, duplo plures termini, uno dempto, valoris quantitatis y in terminis quanti- tatis x detegentur.

Cor. 2. Sit b proximus valor quantitatis y in æquatione P = 0, $cribatur b + p pro y in datâ æquatione P = 0, & re$ultet æquatio a + b p + c p^2 + d p^3 + &c. = 0, ubi a, b, c, d, &c. $unt functiones ip$ius x, tum a$$umantur vel a + b p = 0, vel a + b p + c p^2 = 0, &c. & e po$terioribus a$$umptionibus con$equentur propiores valores quantitatis y, quam e prioribus, ut facile con$tat e theor. 17.

Cor. 3. Convergentia $eriei: 1<_>mo pendet ex hoc, quanto propior $it valor a$$umptus pro quantitate y ad unam radicem y quam ad reli- quas; tum etiam, $i modo æquatio a$$umpta $it a + b p = 0, pendet [0491]SERIEBUS. e ratione, quam habent quantitates a$$umptæ pro {b / a} ad quantitatem ip$am {b / a}, &c.

Cor. 4. Si n $int radices quantitatis y prope inter $e & radici quæ- $itæ æquales, tum a$$umendi $unt (n + 1) termini æquationis 0 = a + b p + c p^2 .. p^n, e quibus detegi pote$t propior valor $ingularum n radicum a quantitate a$$umptâ haud multum di$tantium.

1. 1. Si vero x haud longe di$tet a quantitate b, tum $cribatur quantitas b pro x in datâ æquatione, & ex æquatione re$ultante (P = 0) inveniatur quantitas y, quæ multo magis approximat ad unam radicem quam ad reliquas, quæ $it f: in datâ æquatione pro x $criba- tur b + z; & pro y $cribatur p + f: fiant termini re$ultantis æqua- tionis, qui ex hâc hypothe$i maximi evadant, nihilo æquales; & ex- inde $equitur valor quantitatis p prope; unde $equitur p + f valor quantitatis y prope; & $ic redintegratâ operatione deduci pote$t quantitas ad valorem quantitatis y magis appropinquans; & $ic de- inceps: $i inveniatur radix æquationis P = 0 accurate; tum hæc methodus evadet eadem ac duo præcedentes: & hic (mutatis mutan- dis) applicari po$$unt omnia, quæ ad præcedentes methodos appli- cantur.

Ex. Sit æquatio y^2 - 5 x y + 4 x^2 - x = 0, ubi x = 2 prope; pro x $cribatur 2 + z & re$ultat y^2 - (10 + 5 z) y + 14 + 15 z + 4 z^2 = 0: $i z = 0, tum re$ultat y^2 - 10 y + 14 = 0, unde y = 8 prope: & con$equenter 8 vel 2 $unt quantitates, quæ multo magis approxi- mant ad unam radicem quantitatis y quam ad reliquas; e. g. a$$u- matur 8 quantitas approximans ad radicem quæ$itam: in re$ultante æquatione pro y $cribatur 8 + p, & re$ultat 64 + 16 p + p^2 - 80 - 10 p - 40 z - 5 p z + 14 + 15 z + 4 z^2 = 0; collocentur maximi termini huju$ce æquationis primi, iis vero proximi $ecundi, & $ic de- inceps; i. e. (A = 0) (64 - 80 + 14 - 40 z + 15 z + 16 p - 10 p) + (p^2 - 5 p z + 4 z^2) = (- 2 - 25 z + 6 p) + (p^2 - 5 p z + 4 z^2) = 0: a$$umantur termini, qui $unt maximi nihilo æquales, i. e. - 2 [0492]DE INFINITIS - 25 z + 6 p = 0, & exinde re$ultabit valor quantitatis p = {1 / 3} + 4 {1 / 6} z prope: in æquatione A = 0 pro p $cribatur {1 / 3} + 4 {1 / 6} z + q; & ex terminis æquationis re$ultantis (qui maximi $unt) inveniatur valor quantitatis q prope, viz. a′ + b′z + c′z^2; & $ic deinceps: & exinde re$ultabit $eries quæ exprimit valorem quantitatis y, viz. y = (8 + {1 / 3} + a′ + &c.) + (4{1 / 6} + b′ + &c.) z + (c′ + &c.) z^2 + &c. = (8 + {1 / 3} + a′ + &c.) + (4{1 / 6} + b′ + &c.) (x - a) + (c′ + &c.) (x - a)^2 + &c.

Eadem principia, &c. ad fluxionales, &c. æquationes applicari po$$unt.

1. 2. Ex methodis haud di$$imilibus inveniri pote$t quantitas y per $eriem quantitatum, quæ $unt functiones alterius quantitatis x in datâ æquatione contentæ, $ecundum datam legem progredientium, e. g. $it $eries quantitatum per legem A + B x × (x - 1) + C x^2 × (x - 1)^2 + D x^3 × (x - 1)^3 + &c. progredientium, & per methodos haud di$$imiles deduci po$$unt coefficientes A, B, C, &c. hæ vero coef- ficientes ex $erie, cujus termini $ecundum quamcunque aliam datam legem progrediuntur, etiam inve$tigari po$$unt.

4. Sit æquatio algebraica y^n - p y^n-1 + q y^n-2 - &c. = 0, ubi p, q, &c. $unt functiones quantitatis x, inveniatur y in ejus x terminis, i. e. $it y = a′ x^r + b′ x^r+s + c′ x^r+2s + d′ x^r+3s + &c. & convergentia huju$ce $eriei pendet ex hoc, nempe quanto minus di$tant approximationes $ucce$$ivæ ab unâ radice quam ab reliquis, &c. ut prius docetur: in fluentibus, integralibus, &c. exinde deducendis, nece$$e e$t ut dentur duo, &c. valores a & b quantitatis x, inter quos continentur fluentes, integrales, &c. ut vero hæ $eries convergant, quantitates a & b haud longe di$tent ab eâdem radice vel ex eâdem vel oppo$itis radicis partibus; $i vero una litera a haud multum di$tet ab corre$pondente radice æquationis n y^n-1 - (n - 1) p y^n-2 + (n - 2) q y^n-3 - &c. = 0, vel duæ literæ ex oppo$itis partibus eju$dem radicis ponantur, tum $eries prædictæ haud convergent: in ca$ibus quando $eries prædicta vel non omnino vel non $atis convergat, præ$tet ut transformetur data æquatio in eâ pro x $cribendo z - α, z - β, z - γ, z - δ, &c. re$pective, ubi α, β, γ, δ, &c. λ inter valores a & b ponantur, ita qui- [0493]SERIEBUS. dem ut $eries re$ultans e primâ æquatione, derivatâ a $ub$titutione z - α pro x in datâ æquatione, cum z = α - a vel α - c, conver- get; & $imiliter $int $eries re$ultantes e $ub$titutionibus β - c & β - d pro z in $ecundâ, γ - d & γ - e in tertiâ, & $ic deinceps u$que ad ultimum λ - b, $emper convergentes; tum ex iis erui pote$t fluens vel integralis quæ$ita.

Hìc animadvertendum e$t, quod $i omnes hæ $eries evadant con- vergentes, nece$$ario nonnullæ ab$ci$$æ (z) incipiant a $ingulis radi- cibus (x) inter a & b po$itis, vel ad eas terminentur.

Si a & b ex oppo$itis partibus eju$dem radicis ponantur; tum haud convergent duæ $eries re$ultantes e $cribendo a & b pro x, ni ab$ci$$a incipiat a radice inter a & b po$itâ.

5. Datis unâ duabus vel pluribus (n) æquationibus (n + 1) incogni- tas quantitates habentibus, inveniantur valores quantitatis x, cum y evadat vel infinita vel = 0, quorum $it minimus α & maximus λ; tum $eries a$cendens $emper converget, cum x minor $it quam α; & $eries de$cendens converget, cum x major $it quam λ, &c.

Eadem principia etiam ad fluxionales & incrementiales æquationes applicari po$$unt.

6. Si vero quædam quantitates vel p vel q vel r, &c. $int functiones, quæ habent functionem quantitatis x in denominatore; fiat prædicta functio nihilo æqualis, & haud converget $eries a$cendens y = a′ x^r + b′ x^r+s + c′ x^r+2s + &c. vel $eries exprimens fluentem fluxionis y x^., &c. $i x major $it quam ulla radix prædictæ æquationis; $i vero $it $eries de$cendens, tum haud converget, ni x major $it quam quæcunque radix prædictæ æquationis.

Inveniantur igitur valores (π, ρ, σ &c.) quantitatis x inter a & b po$iti, in quibus y vel evadat infinita vel nihilo æqualis; & prædictæ ab$ci$$æ (z) vel ab valoribus (π, ρ, σ, &c.) incipiant, vel ad eos termi- nentur; præ$tat ut ab iis incipiant.

7. Sit P prædicta functio, & in quibu$dam ca$ibus pro quantitate quæ$itâ y a$$umatur quantitas formulæ P × (f x^r + g x^r+s + h x^r+2s + [0494]DE INFINITIS &c.) $ub$tituatur hæc quantitas reducta ad infinitam $eriem pro y in datâ æquatione, & ex æquatis corre$pondentibus terminis inter $e deduci po$$unt coefficientes f, g, b, &c. In quibu$dam etiam ca$i- bus a$$umatur quantitas prædictæ formulæ cum alterâ $erie a′ x^r + b′ x^r+s + &c. pro y, vel cum pluribus quantitatibus prædictarum for- mularum & $erie a′ x^r + b′ x^r+s + &c. & exinde erui po$$unt $eries magis celeriter convergentes. Irrationales compo$itæ quantitates vel ex divi$ione, extractione radicum, &c. ad $implices terminos reducendæ $unt, quotie$cunque id exigat pro approximatione inveniendâ opus.

8. Cum vero ratio, quam habeat data approximatio ad radicem quæ- $itam haud permultum ex$uperet rationes, quas habet data approxi- matio ad unam, duas vel plures alias radices; tum ope quadraticæ, cubicæ, &c. æquationis quærendæ $unt novæ approximationes ad duas, tres vel plures radices datæ æquationis; unde con$tat ratio, quare in his ca$ibus $i differentiæ indicum & $implicium & compo$i- tarum quantitatum ad $implices reductarum vel $int s vel habeant maximum communem denominatorem s; pro y a$$umenda e$t feries huju$ce formulæ a x^r + b x^r+{1 / 2}s + c x^r+s + d x^r+1{1 / 2}s + e x^r+2s + &c. vel a x^r + b x^r+{1 / 3}s + c x^r+{2 / 3}s + d x^r+s + e x^r+1{1 / 3}s + &c. &c.

9. Si vero dentur quantitates ad duas vel plures huju$ce formulæ radices æquationis maxime appropinquantes; tum e principiis prius traditis erui po$$unt novæ approximationes ad radices prædictas pro- pius accedentes.

PROB. XXII. _1._ Contineantur tres (y, x, z) incognitæ quantitates in datâ æquatione, invenire y in terminis quantitatum x & z.

Primo reducantur duæ quantitates x & z ad alias x′ & z′, ut vel evadant perparvæ vel permagnæ, vel altera perparva & altera vero permagna, prout requiratur $eries a$cendens vel de$cendens $ecundum dimen$iones quantitatum x′ & z′; deinde fingatur altera x′ prope in ratione directâ vel inversâ cuju$dam pote$tatis m quantitatis z′; & ex [0495]SERIEBUS. æquatis terminis inter $e, qui maximi re$ultent ex hâc hypothe$i, in- veniatur (a) valor quantitatis y prope; $cribatur quantitas a + π pro y in datâ æquatione, & ex eâdem methodo erui pote$t valor quan- titatis π prope; & $ic deinceps.

Hoc prob. etiam re$olvi pote$t ex aliis principiis in prob. præced. datis.

2. Si vero contineantur plures quam tres _(_y, x, z) incognitæ quan- titates in datâ æquatione, per proce$$um omnino eundem erui pote$t y in $erie e terminis quantitatum x′, z′, &c. con$tante.

3. Si vero detur fluxionalis vel incrementialis, &c. æquatio; ex principiis in hoc problemate, &c. traditis erui pote$t valor quantitatis y in $erie $ecundum dimen$iones reliquarum progrediente, $i modo y in terminis reliquarum exprimi po$$it.

Si dentur plures n vel algebraicæ vel fluxionales vel incrementiales æquationes, n + 2 vel plures variabiles quantitates habentes; tum ex principiis, quæ in hoc problemate, &c. prius tradita fuere, erui pote$t altera y in $erie $ecundum dimen$iones reliquarum progredi- ente, $i modo y in terminis reliquarum exprimi po$$it.

Hoc problema etiam re$olutionem accipere pote$t ex a$$umptâ $erie progrediente $ecundum dimen$iones reliquarum quantitatum, i. e. prin- cipiis, iis in prob. 21. contentis, analogis; etiamque ex a$$umptis qui- bu$dam reliquarum quantitatum dimen$ionibus inter $e æqualibus.

PROB. XXIII. _1._ Datis duabus vel pluribus (n) algebraicis vel fluxionalibus vel in- crementialibus æquationibus n + 1 variabiles quantitates (y, x, z, &c.) babentibus; invenire unam (y) ex iis in terminis reliquarum (x, z, &c.)

Ita reducantur hæ æquationes, $cribendo in iis pro reliquis x, z, &c. re$pective x′ + a, z′ + b, &c. ut x′ & z′ &c. perparvæ vel per- magnæ evadant, prout requiratur $eries a$cendens vel de$cendens $e- cundum earum dimen$iones; & $imiliter de earum fluxionibus, incre- mentis, &c.: deinde ex æquatis terminis $ingularum æquationum,[0496]DE INFINITIS qui maximi $unt, re$pective inter $e, erui po$$unt α, β, γ, &c. prope va- lores quantitatis y re$pectivi in terminis quantitatum x′, z′, &c. $cri- bantur hi valores inventi per variabiles quantitates incognitas aucti, i. e. x″ + α, z″ + β, &c. pro y, & pro y^., y^.., &c. y., y.., &c. earum valores x^. ″ + α^., z^. ″ + β^., x^.. ″ + α^.., z^. ″ + β^.., &c. x.″ + α., z.″ + β., x..′″ + β.., &c. re$pective in datis æquationibus, & ex æquationibus re$ultantibus fa- cile detegi po$$unt valores prope quantitatum x″, z″, &c. re$pective, & $ic deinceps; vel aliter e principiis prius traditis erui po$$unt formulæ $erierum, quæ exprimunt quantitatem y terminis vero quantitatum x′, z′, &c. quæ $int y = A′ z′^k + B′ z′^k+1 + C′ z′^k+2l + &c. &c. vel pro incrementis primi ordinis y = A x′^r × (x + 1)′^r + &c. &c. &c. $cri- bantur hæ quantitates pro $uis valoribus in datis æquationibus, & ex $ingulis terminis re$ultantis æquationis nihilo æqualibus e$$e $uppo$i- tis erui po$$unt coefficientes A, B, C, &c. A′, B′, C′, &c. &c.

Convergentiæ $erierum e pluribus æquationibus deductarum vel plures variabiles quantitates habentium e principiis prius traditis de convergentiâ $eriei ex unâ æquatione erutæ, facile dijudicari po$$unt.

2. Dentur æquationes involventes variabiles quantitates x, y, &c. & earum fluxiones, incrementa, &c. $int etiam z & v datæ functiones quantitatum x, y, &c. invenire v in terminis $ecundum dimen$iones quantitates z progredientibus: hoc perficitur vel e reductione plu- rium æquationum in pauciores, ita ut exterminentur omnes incog- nitæ quantitates præter z & v; vel ex a$$umptis $eriebus pro $ingulis incognitis quantitatibus $ecundum dimen$iones quantitatis z progre- dientibus, & ex earum $ub$titutionibus in datis æquationibus pro $uis valoribus, & terminorum corre$pondentium coefficientibus nihilo æqualibus e$$e $uppo$itis, erui po$$unt indices & coefficientes $erierum a$$umptarum quæ$itæ.

THEOR. XXXII.

Sit fluxionalis æquatio relationem inter variabiles x & y & earum fluxiones exprimens, ubi x^. $it con$tans; pro y $cribatur A x^n & pro y^., [0497]SERIEBUS. y^.., &c. $cribantur re$pective n A x^n-1 x^., n · (n - 1) A x^n-2 x^. ^2, &c. in datâ æquatione, ubi A & n $unt quæcunque invariabiles quantitates a$$umendæ; & e terminis re$ultantis æquationis, qui inveniuntur maximi ex hypothe$i datâ, quod x $it perparva vel permagna quan- titas, inter $e æquatis, deduci pote$t quantitas A x^n proximus valor quantitatis y; tum in datâ æquatione pro y $cribatur A x^n + p, & pro y^., y^.., &c. re$pective n A x^n-1 x^. + p^., n · (n - 1) A x^n-2 x^. ^2 + p^.., &c. & e terminis maximis re$ultantis æquationis inveniatur proximus valor quantitatis p, qui $it B x^m; in æquatione re$ultante pro p $cribatur ejus valor B x^m + q, & pro p^., p^.., &c. re$pective m B x^m-1 x^. + q^., m · (m - 1) B x^m-2 x^. ^2 + q^.., &c. & con$imili methodo inveniatur proximus valor quantitatis q, & $ic deinceps; unde tandem innote$cet y = A x^n + B x^m + &c. prope.

Si x = a prope, tum $cribatur in datâ æquatione a + z vel a + {1 / z} pro x, & ex methodo hìc traditâ inveniatur y in terminis quantitatis z.

2. Sit r ordo fluxionalis æquationis, & in $erie quæ exprimit va- lorem quantitatis y in terminis quantitatis x, i. e. y = A x^n + B x^m + &c. $emper tot invenientur invariabiles quantitates ad libitum a$$u- mendæ, quot $it ordo prædictus, $i modo $eries ab initio terminorum incipiat, i. e. recte in$tituatur. e. g. Sit æquatio y^. = x^. + y x^. - 3 x x^. + x^2 x^. + y x x^., invenire quantitatem y in $erie $ecundum dimen$iones quan- titatis x progrediente; $i a$$umatur y = x prope pro proximo valore quantitatis y, tum haud incipit ab initio recte in$tituto $eries; finga- tur y = A + b x + p, $cribatur hæc quantitas pro y & b x^. + p^. pro y^. in datâ æquatione, & re$ultat b x^. + p^. = x^. - 3 x x^. + A x^. + b x x^. + p x^. + x^2 x^. + A x x^. + b x^2 x^. + p x x^.; termini autem, qui ex hypothe$i a$cendentis $eriei maximi $int, inveniantur b x^. = x^. + A x^., unde b = 1 + A; & æquatio re$ultans p^. = (A + b - 3) x x^. + (x^2 + p + b x^2 + p x) x^.; hujus re$ultantis æquationis termini maximi erunt p^. = (A + b - 3) x x^., unde p = {1 / 2} (A + b - 3) x^2 prope, & con$equenter y = A + (A + 1) x + (A - 1) x^2 + &c. ubi A e$t quantitas ad libi- tum a$$umenda.

3. Si vero prædicta quantitas in fluente inventâ haud contineatur, [0498]DE INFINITIS tum fluens inventa erit valor particularis, qui nonnunquam in gene- rali fluente fluxionalis æquationis, & $ic integrali, &c. haud contine- tur. Idem etiam verum e$t de algebraicis æquationibus ut con$tat e $ub$equen. exemp.

Sit æquatio y = √ (a^2 + b x + c x^2) = a + {b x / 2 a} + ({c / 2 a} - {b^2 / 8 a^3}) x^2 + &c. In hâc $erie $emper continetur quantitas generalis a; nunc $it a = 0, & re$ultat æquatio particularis y = √ (b x + c x^2) = b^{1 / 2} x^{1 / 2} + {c x^1{1 / 2} / 2 b^{1 / 2}} + &c. quæ $eries particularis in priori generali haud conti- netur; eveniant enim quidam particulares ca$us, in quibus generalis re$olutio fallit; quibus quidem ca$ibus generalis re$olutio præbet di- vergentem $eriem, vel ejus quidam numeratores nihilo evadunt æquales.

II. Datâ incrementiali æquatione relationem inter variabiles x, y & earum incrementa relationem exprimente; invenire ejus integrale, i. e. variabilem y in terminis $ecundum dimen$iones quantitatis x pro- gredientibus.

1<_>mo. Sit x permagna quantitas re$pectu habito ad reliquos æqua- tionis terminos; tum abjectis omnibus terminis, qui haud maximi re$ultant ex hâc $uppo$itione, e terminis exinde re$ultantibus inve- niatur per methodum in fluxionalibus, &c. æquationibus re$olvendis traditam proximus valor quantitatis y terminis vero quantitatis x, qui $it A x^-n, deinde $cribatur {± A / x^{1 / 2}n × (x ± x.)^{1 / 2}n} + p pro y in datâ æquatione, & ex æquatione re$ultante abjectis omnibus terminis qui haud maximi re$ultant e prædictâ hypothe$i inveniatur pro- ximus valor quantitatis p, qui $it A x^-m; tum pro p $cribatur {± A / x^{1 / 2}m × (x ± x.)^{1 / 2}m} + q, & $ic deinceps; unde tandem re$ultabit valor quantitatis y quæ$itus.

2<_>do. Si vero x perparva $it re$pectu habito ad quo$dam æquationis terminos, tum abjectis omnibus terminis, qui haud maximi re$ultant [0499]SERIEBUS. ex hâc hypothe$i, e reliquis deducatur proximus valor quantitatis y, qui $it A x^n; deinde $cribatur pro y in datâ æquatione A x^n × (x ± x.)^n + p, & ex æquatione re$ultante inveniatur per con$imilem metho- dum proximus valor quantitatis p; & $ic repetitâ operatione tandem re$ultabit integralis quæ$ita.

Et $ic e principiis prius traditis erui pote$t integralis ex a$$u- mendo quantitatem formulæ A z^n + &c. + a + {b / z} + {c / z · z + z.} + {d / z · z + z. · z + 2 z.} + &c. pro integrali, $i n $it integer numerus, & $ub$tituendo hanc quantitatem pro ejus valore in datâ æquatione, ex æquatis corre$pondentium terminorum coefficientibus erui po$$unt quantitates A, &c. a, b, c, &c.

III. Aliter: Datâ fluxionali æquatione relationem inter variabiles x, y, & earum fluxiones exprimente, invenire quantitatem y in termi- nis $eriei progredientis $ecundum dimen$iones quantitatis z.

A$$umatur y = A x^n pro primo $eriei termino, quâ quantitate pro ejus valore y in datâ æquatione $ub$titutâ, & ejus fluxionibus n A x^n-1 x^., n · (n - 1) A x^n-2 x^. ^2, &c. pro y^., y^.., &c. fiant omnes termini qui habent maximas vel minimas dimen$iones quantitatis x, prout $eries requiri- tur a$cendens vel de$cendens, inter $e æquales; & ex æquatione re$ul- tante con$tabit primus terminus $eriei quæ$itæ A x^n; & pro reliquis indicibus $cribe quantitatem A x^n & ejus fluxiones pro $uis valoribus in datâ æquatione, $ubtrahe minimum indicem re$ultantis æquatio- nis terminorum in $erie a$cendente vel maximum in $erie de$cendente de $ingulis reliquis, & omnia re$idua $ibi ip$is & omnibus aliis addan- tur, & $ic de reliquis; & e quantitatibus re$ultantibus con$tabunt dif- ferentiæ indicum, i. e. quantitates r, s, t, &c.

Scribatur igitur $eries A x^n + B x^n+r + C x^n+s + D x^n+t + &c. in datâ æquatione pro y, & ejus $ucce$$ivæ fluxiones re$pective pro y^., y^.., &c. & ex æquatis corre$pondentibus terminis re$ultantis æquationis, [0500]DE INFINITIS in quibus eædem inveniuntur dimen$iones quantitatis x, nihilo re- $pective; re$ultabunt coefficientes B, C, D, &c. quæ$itæ.

Si vero duo vel tres vel plures valores quantitates A x^n $int inter $e æquales, dividantur prædictæ differentiæ per duo, tres, &c. & re$ul- tabunt differentiæ quæ$itæ, &c. i. e. $eries erunt huju$modi A x^n + B x^n+{1 / 2}r + C x^n+r + D x^n+{1 / 2}s + &c. vel A x^n + B x^n+{1 / 3}r + C x^n+{2 / 3}r + &c.

Si primus valor quantitatis y inventus $it imaginarius, tum for$an e $cribendo v + a & z + b pro y & x in datâ æquatione re$pective, ita a$$umi po$$unt invariabiles quantitates a & b, ut haud evadat pri- mus valor quantitatis y imaginarius; & ejus approximationes e me- thodis prius traditis deduci po$$unt.

Hic animadvertendum e$t hanc methodum re$olutionis $emper exigere, ut quantitates v & z, vel v vel z, $int perparvæ vel permagnæ, prout requiritur $eries a$cendens vel de$cendens.

Per perparvas vel permagnas quantitates intelligo quantitates $ic deductas; $it $eries deducta a$cendens y = a′ z^λ + b′ z^μ + c′ x^ν + &c. = P; & inveniatur (π) valor quantitatis z, cum P evadat divergens $eries; tum nece$$e e$t, ut z non major $it quam ± π, aliter $eries diverget: $it P $eries de$cendens, & ρ minimus valor quantitatis z, cum evadat divergens, tum nece$$e e$t, ut z non minor $it ± ρ, aliter $eries diverget: aliter per perparvas intelligo quantitates multo ma- gis approximantes ad unam quam ad reliquas radices.

In fluente fluxionalis æquationis n ordinis n continentur invaria- biles quantitates pro conditione problematis a$$umendæ; unde a$$u- mi po$$unt (n) corre$pondentes valores $ingularum quantitatum x, x^., y, y^., y^.., &c. Et $ic de incrementialibus, &c. æquationibus.

PROB. XXIV.

_Datâ fluxionali æquatione_ n _ordinis relationem inter quantitates_ x, y, {y^. / x^.}, {y^.. / x^. ^2}, ... {y^. ^n-1 / x^. ^n-1}, {y^. ^n / x^. ^n} _exprimente, quarum_ a, a′, b, c, d, e, ... A, B, C, D, [0501]SERIEBUS. E, F _$int corre$pondcntes valores, & a quæ$itis valoribus baud longe di-_ _$tantes; invenire quantitates ad quæ$itos valores magis appropinquantes._

1. Reducatur æquatio $cribendo in eâ pro {y^. ^n / x^. ^n} ejus valorem F + a′ (x - a)^λ, & exinde pro {y^. ^n-1 / x^. ^n-1}, ejus valorem vel fluentem E + F (x - a) + {a′ / λ + 1} (x - a)^λ+1, & pro {y^. ^n-2 / x^. ^n-2} ejus fluentem D + E (x - a) + {1 / 2} F (x - a)^2 + {a′ / (λ + 1) (λ + 2)} (x - a)^λ+2, & $ic deinceps; & ex æquatis terminis qui maximi re$ultant ex hypothe$i quod x - a $it perparva quantitas deduci po$$unt valores quantitatum a & λ; & $ic deinceps, u$que donec inveniatur formula æquationis variabilem y in terminis variabilis x exprimentis; & deinde, vel per continuas huju$ce generis approximationes, vel per $ub$titutionem $eriei formulæ præ- dictæ pro y, & ejus fluxionum pro y^., y^.., y^..., &c. & ex corre$pondentibus datæ & re$ultantis æquationis terminis inter $e & nihilo re$pective æquatis, erui pote$t $eries quæ$ita.

Aliter: pro x $cribatur z + a, & pro {y^. ^n / x^. ^n}, {y^. ^n-1 / x^. ^n-1}, {y^. ^n-2 / x^. ^n-2}, {y^. ^n-3 / x^. ^n-3}, &c. $cribantur re$pective F + a′ z^λ, E + F z + {a′ / λ + 1} z^λ+1, D + E z + {1 / 2} F z^2 + {a′ / (λ + 1) (λ + 2)} z^λ+2, &c. & per præcedentem methodum progredien- dum e$t.

Hæc methodus etiam ad incrementiales æquationes applicari pote$t.

Si vero integrales vel fluentiales quantitates in datis incrementiali- bus vel fluentialibus æquationibus contineantur, tum ex principiis hìc datis, & iis de fluentibus, &c. fluentialium fluxionum, &c. inve$tigan- dis prius traditis, erui pote$t $eries valorem quantitatis y exprimens.

2. Summa vel differentia duarum $erierum (A′ & B′), quarum una A exprimit y in terminis $ecundum dimen$iones quantitates x a$cen- [0502]DE INFINITIS dentibus; altera vero y in terminis $ecundum dimen$iones quantitatis x de$cendentibus erit data quantitas; at $i de$cendens $eries conver- gat, tum a$cendens pene in omnibus ca$ibus diverget; & vice versâ $i a$cendens $eries convergat, tum de$cendens $eries in prædictis ca$i- bus etiam diverget.

3. Series, quæ exprimunt vel re$olutiones fluxionalium vel incremen- tialium, &c. æquationum, vel fluentes &c. fluxionum, &c. quæ progre- diuntur $ecundum dimen$iones quantitatis variabilis x, debent e$$e con- vergentes, haud quidem $olummodo cum α $it datus valor quantitatis x, $ed etiam cum x = β; in utri$que autem his ca$ibus ni α prope = β plerumque haud converget $eries, ut facile con$tari pote$t ex iis, quæ prius data fuerunt: $i non convergant utræque $eries, $cribatur z + e pro x in datâ æquatione, & ex re$ultante æquatione inveniatur $eries $ecundum dimen$iones quantitatis (z) x - e progrediens, quæ con- vergit cum z vel = α - e vel = a; in hâc re$ultante æquatione pro z $cribatur z′ + e′, & ex novâ re$ultante æquatione inveniatur $eries, quæ convergit, cum z′ vel = a + e′ vel a′; deinde pro z′ in æquatione ultimo derivatâ $cribatur z″ + e″, & ex æquatione re$ultante invenia- tur $eries quæ convergit cum z″ vel = a′ + e″ vel = a″; & $ic dein- ceps; u$que donec inveniatur $eries, quæ convergit, cum z′^m vel = a′^m + e′^m+1 vel β - α + e + e′ + e″ .. + e′^m+1. Sit vero $umma dua- rum $erierum, quæ prius re$ultabant ex hypothe$i quod z = α - e & a, etiamque cum z′ = a + e′ & a′, tertio cum z″ = a′ + e″ & a″, & $ic deinceps; re$pective π, ρ, σ, τ, &c. tum erit $umma $eriei inter duos valores (α & βz) quantitatis x contenta = π + ρ + σ + &c.

Cor.. Sit æquatio algebraica relationem inter variabiles x & y de- $ignans, inveniatur y vel $. y x^., &c. per $eriem $ecundum dimen$iones quantitatis x progredientem; $cribatur z + e pro x in data æquatione, & ex æquatione re$ultante inveniatur y vel $. y x^., &c. in $erie $ecun- dum dimen$iones quantitatis z progrediente, quæ $it convergens; & $ic inveniantur aliæ $eries convergentes, quæ corre$pondeant diver$is valoribus quantitatis e, qui $int re$pective e, e′, e″, &c. & a$$umi po$- $unt valores e, e′, e″, &c. ita ut e $eriebus re$ultantibus numero finitis [0503]SERIEBUS. deduci pote$t $umma $erierum vel fluentis inter quo$cunque duos va- lores α & β quantitatis x contentæ.

Hìc ob$ervandum e$t, ut quo plures recte a$$umantur diver$i valo- res e, e′, e″, &c. inter duos datos valores α & β quantitatis x, eo magis celeriter convergent $eries re$ultantes; etiamque animadvertendum e$t, $i ullus valor quantitatis y inter valores α & β quantitatis x conten- tus evadat vel infinite magnus vel = 0; utra$que $eries re$ultantes ex $ub$titutione valorum α & β pro x non evadere convergentes: in interpolandis $eriebus nece$$e e$t, ut valores quantitatis (x) vel inci- piant vel terminentur in punctis, in quibus quantitas y evadat vel = 0 vel infinita quantitas.

Ea, quæ de approximationibus fluentium fluxionum in infinitum progredientium, æque ad has fluxionales æquationes applicari po$$unt.

4. Priu$quam vero finis huic parti de infinitis $eriebus, quæ expri- munt valores variabilium (x & y) in datis fluxionalibus, &c. æqua- tionibus contentarum imponatur, quædam animadvertenda $unt de quibu$dam difficultatibus, quibus premitur methodus prius tradita prædictos valores inveniendi: e. g. in æquatione fluxionali primi ordinis, $æpe $i modo a $it proximus valor quantitatis y & $cribatur a + p pro primâ approximatione, in æquationes $ub$equentes vel {q̈ / p} = b x^r x^. vel p^r p^. = b {x^. / x} incidamus: $i modo $cribatur A x^n pro p & n A x^n-1 x^. pro p^. in datâ æquatione tanquam approximatio, tum ma- nife$to apparet, quod fallet hæc methodus; ergo vel $cribendæ $unt in datâ æquatione α + v & v^. pro p & p^. in priori ca$u, & α′ + z & z^. pro x & x^. in po$teriori; & deinde per methodos prius traditas progre- diendum e$t; vel in priori ca$u a$$umenda e$t p = D e^b′ x^r+1 prope ap- proximatio, ubi D e$t quantitas ad libitum a$$umenda: $ub$tituantur hæc quantitas per alteram aucta & ejus fluxio pro p & p^. in datâ æquatione, & exinde per methodos prius traditas progredi liceat; po- $tea enim ullâ urgetur difficultate opus: in po$teriori inveniatur x in terminis quantitatis p, &c.; aliter p = ((r + 1) b × log. x + D)^{1 / r+1} prope; & $ic deinceps.

[0504]DE INFINITIS

5. Hinc con$tat in fluxionali æquatione primi ordinis incidere liceat in fluxionalem homogeneam æquationem primi ordinis; in fluxio- nali $ecundi, tertii, &c. ordinis æquatione in quamcunque homoge- neam fluxionalem æquationem $ecundi, tertii, &c. ordinis.

1. In fluxionali æquatione $ecundi ordinis $int termini maximi a y^.. ^b y^. ^s y^t + &c. = b x^r x^. ^s+2b; ex hâc æquatione inveniatur fluens, & exinde prima approximatio: aliter $cribatur A x^n pro y in datâ æquatione, & re$ultat n^s+b (n - 1)^b a A^t+s+b × x^(t+s+b)n-s-2b x^. ^s+2b + &c. = b x^r x^. ^s+2b, $i vero vel t + s + b = 0 vel r + s + 2b = 0 vel n = 1, tum haud ex prædictâ methodo deduci pote$t re$olutio; in priori enim ca$u A^t+s+b=0 = 1, quicunque $it valor quantitatis A, ergo ad libitum a$$umi po- te$t A; $i autem non $int n^s+b (n - 1)^b a = b & r + s + 2b = 0; tum non a$$umi pote$t A x^n pro approximatione: in $ecundo ca$u n = 0, cum r + s + t haud nihilo $it æqualis, & con$equenter n^s+b = 0, ni s + b = 0; & iterum non a$$umi pote$t A x^n pro approximatione: idem etiam vero e$t, cum n - 1 = 0, nam in eo ca$u (n - 1)^b = 0: in his ca$ibus vel $cribendæ $unt quantitates α + v & β + z & ea- rum fluxiones v^., v^.., &c. & z^. pro y, x, y^., y^.., &c. & x^. in datâ æquatione, & ex æquatione re$ultante deducenda e$t æquatio: vel $ub$titutio in ca$u primo u$urpanda e$t, in quâ ita a$$umi po$$unt coefficientes F, E, D, &c., a′, &c., ut per hanc methodum $emper detegi pote$t $eries; nulla enim po$tea occurrit quantitas, quæ exigit fluentem fluxionis, i. e. $eries incipit a termino, po$t quem nulla quantitas ad libitum a$$umi pote$t: vel in priori ca$u pro y a$$umatur A e^x^n, & exinde pro y^. & y^.. re$pcctive n A x^n-1 x^. e^x^n, & n · (n - 1) · A x^n-2 x^. ^2 e^x^n + n^2 A x^2n-2 x^. ^2 e^x^n; $i vero s = - 2 h, fallet etiam hæc methodus. Cum vero y haud facile erui po$$it e quantitate x, for$an præ$tet transformare datam æqua- tionem, ita ut fluat uniformiter y; deinde invenire x in $erie $ecundum dimen$iones quantitatis y progrediente, tum ex rever$ione $erierum deduci pote$t y in $erie $ecundum dimen$iones quantitatis x progre- diente.

2. Sint maximi termini v^. ^m ^π · v^. ^m-1 ^α · v^. ^m-2 ^β · v^. ^m-3 ^γ × &c. = a x^r x^. ^mπ+(m-1)α+(m-2)β+&c.; [0505]SERIEBUS. deinde inveniantur radices, i. e. quantitas v in terminis quantitatis x æquationis re$ultantis a $upponendo omnes terminos, qui maximi $unt, $imul adjunctos nihilo æquales e$$e pro primis approximationi- bus; $i irrationales quantitates in datâ vel datis æquationibus conti- neantur, tum $emper rejiciendi $unt termini, qui haud maximi $unt, in prædictâ æquatione contenti: vel aliter; $cribatur A x^n pro z in datâ æquatione, & $i vel π + α + β + γ + &c. = 0 vel - r = (π + α + β + γ + &c.) (m) - α - 2β - 3γ - &c. vel n = 1, 2, .. m; &c. fallit hæc methodus: in multis hi$ce ca$ibus erui pote$t appro- ximatio $cribendo a e^x^n pro y, & ejus fluxiones pro y^., y^.., &c. re$pective, & ex æquatis terminis erui pote$t approximatio quæ$ita; &c.: vel hìc applicari po$$unt omnia in præcedente exemplo tradita.

6. Si hæc po$terior methodus fallat, tum ita transformetur æquatio ut fluat uniformiter y, & inveniatur x in $erie $ecundum dimen$iones quantitatis y progrediente; & denique $i hæc methodus fallat, tum per methodum prius traditum $cribantur v + α & z + β & earum fluxiones pro x & y & earum fluxionibus re$pective in datâ æqua- tione, ubi v & z $unt perparvæ quantitates; vel diver$is aliis modis transformentur variabiles datæ æquationis quantitates in alias, quæ a$$ignabilem habent relationem ad variabiles datæ æquationis quan- titates, &c.

In quibu$dam ca$ibus, cum utræque prædictæ quantitates nihilo evadant æquales, ex earum coefficientibus nihilo æqualibus e$$e $up- po$itis re$ultabunt indices quæ$iti.

Omnia hæc æque ad incrementiales æquationes applicari po$$unt.

7. In huju$modi re$olutionibus omnium algebraicarum, fluxiona- lium, incrementialium, &c. æquationum primo reducendæ $unt æqua- tiones, ita ut earum variabiles quantitates evadant perparvæ vel per- magnæ, prout in $erie quæ$itâ earum dimen$iones a$cendunt vel de- $cendunt.

8. Pleraque ex iis, quæ hìc traduntur de $eriebus ex algebraicis, flu- xionalibus & incrementialibus æquationibus deductis æque ad $eries ex infinitis aliis æquationibus derivatas applicari po$$unt.

[0506]DE INFINITIS

9. Si vero incrementialis $it æquatio, tum formula $eriei a$$umendæ $it y = A x^s (x ± x.)^s + B x^t (x ± x.)^t + &c. $i $it incrementialis æqua- tio primi ordinis; vel y = A x^s × (x ± x.)^s × (x ± 2 x.)^s + B x^t × (x ± x.)^t × (x ± 2 x.)^t + &c. $i modo $it incrementialis æquatio $e- cundi ordinis; & $ic deinceps: vel y = A x^s × (x ± x.)^s × (x ± b) + B x^t × (x ± x^.)^t × (x ± c) pro integrali incrementialis æquationis primi ordinis a$$umi pote$t, & $ic de infinitis aliis.

Hic autem animadvertendum e$t, quod tot erunt quantitates in- variabiles ad libitum a$$umendæ in $erie re$ultante ab initio, quot $it ordo incrementialis æquationis, ut con$tat e præcedentibus.

hæc methodus etiam extendi pote$t ad duas vel plures algebraicas, fluxionales, incrementiales, &c. æquationes tres vel plures variabiles quantitates involventes.

10. Hæ methodi etiam applicari po$$unt ad æquationes ex infinitis terminis, & earum fluxionibus, &c. con$tantes. E. g. Sit æquatio al- gebraica x = a y + b y^2 + c y^3 + d y^4 + &c. & inveniri pote$t y = {x / a} - {b / a^3} x^2 + {2 b^2 - a c / a^5} x^3 + &c. & $ic $it x^. = a y + b y^3 + c y^5 + &c. & inveniri pote$t y = {x / a} - {b / a^4} x^3 + {3 b^2 - a c / a^7} x^5 + &c.

2. Sit a y + b y^2 + c y^3 + &c. = α x + β x^2 + γ x^3 + &c. a$$umatur y = {α / a} x + l x^2 + m x^3 + n x^4 + &c. quæ erit $eries formulæ quæ$itæ, $cribatur hæc quantitas pro y in datâ æquatione & re$ultat α x + (a l + b {a^2 / α^2}) x^2 + ({c α^3 / a^3} + {2 l α b / a} + a m) x^3 + &c. = α x + β x^2 + γ x^3 + &c. unde a l + {b α^2 / a^2} = β & con$equenter l = {β a^2 - b α^2 / a^3}, & {c α^3 / a^3} + {2 l α b / a} + a m = γ, &c.

Si vero dentur æquationes relationes inter quantitates huju$ce for- mulæ 1 × 2 × 3 .. z, earum fluxiones. &c. in quibus numerus facto- [0507]SERIEBUS. rum continuo augetur, de$ignantes; tum e continuis $ub$titutioni- bus, approximationibus, interpolationibus, &c. inveniri pote$t una quantitas in terminis alterius.

Converti po$$unt algebraicæ, fluxionales, &c. æquationes in feries, quarum termini $ecundum prædictas formulas progrediuntur.

THEOR. XXXIII.

Cum y $it infinita quantitas, tum ejus fluxiones _(_y^., y^.., y^..., &c.) quo- rumcunque ordinum erunt infinitæ quantitates, i. e. $it y quæcunque functio quantitatis x, & $i y fiat infinita quantitas, cum x maneat finita, tum $emper y: x; y^.: x^.; y^..: x^. ^2; y^...: x^. ^3; &c. erunt rationes infi- nite magnæ, quarum $ingula $ub$equens infinite major erit quam præcedens.

Idem etiam de incrementis integralium affirmari pote$t.

PROB. XXV.

Datâ fluxionali æquatione P = 0 variabiles quantitates x, y & earum fluxiones babente, ubi x & y $unt ab$ci$$æ & corre$pondentes ordinatæ ad curvam; invenire fluxionalem æquationem ejus a$ymptotos generaliter de- $ignantem.

1<_>mo. Fingatur y infinita quantitas, & ex hâc hypothe$i $int A ter- mini qui maximi re$ultant, B vero termini qui $int maximi ex om- nibus reliquis terminis; 2<_>do. fingatur x infinita quantitas, y vero finita, deinde $int termini, qui ex hâc hypothe$i evadant maximi vel proxime $uperiores, re$pective C & D; tum æquationes A + B = 0 & C + D = 0 de$ignabunt curvas ea$dem habentes a$ymptotos, quas habet data curva.

THEOR. XXXIV.

Datâ præcedente fluxionali æquatione (P = 0) n ordinis, & literis A, B, C & D ea$dem quantitates ac in præcedente problemate deno- [0508]DE INFINITIS tantibus; æquationis A + B = 0 inveniatur generalis fluens K = 0, & $i modo invariabiles quantitates ad libitum a$$umendæ eædem $int in æquatione K = 0 ac in fluente fluxionalis æquationis P = 0, i. e. $i modo a, b, c, d, &c. corre$pondentes dati valores quantitatum x, y, x^., &c. in unâ, $int etiam corre$pondentes valores prædictarum quan- titatum in alterâ K = 0; & exinde deducantur valores quantitatis x, cum y evadat infinita, qui $int α, β, γ, δ, &c. & $i valor π vel ρ quan- titatis x, inter quos requiritur fluens, $it major quam radix α vel β vel γ vel δ, &c. tum plerumque haud converget $eries $ecundum dimen- $iones quantitatis x a$cendens; $i vero minor $it π vel ρ quam ulla radix α vel β vel γ vel δ, &c. tum plerumque haud converget $eries $e- cundum dimen$iones quantitatis x de$cendens.

Si vero ita transformetur data æquatio, ut ab$ci$$a z ab alio puncto incipiat, tum e principiis prius traditis pro algebr. &c. æquationibus facile con$tat, ut haud convergent $eries $ecundum dimen$iones quan- titatis z progredientes, ni π & ρ inter duas proximas radices β & γ quantitatis x con$tituantur.

THEOR. XXXV.

1. Sit prædicta fluxionalis æquatio P = 0, & ex eâ inveniatur æqua- tio, cujus radices $int limites inter radices, &c datæ æquationis, i. e. fingatur y folummodo variabilis, & inveniatur fluxio datæ æquatio- nis, & $i valor quantitatis x pro radice y a$$umptus $it radix inventæ æquationis, tum infinite divergit approximatio deducta; ejus con- vergentia pendet ex hoc, nempe quo magis approximatio inventa ad unam radicem accedat quam ad reliquas.

2. Ut $eries ex æquationibus huju$ce generis re$ultantes celeriter con- vergant, nece$$e e$t plerumque interpolare plures $eries per methodos con$imiles iis pro algebraicis æquationibus prius traditis; $ed caven- dum e$t, ne diver$is correctionibus utamur, i. e. ut corre$pondentes valores variabilium & earum fluxionum $emper conveniant.

Omnia hæc etiam ad incrementiales æquationes applicari po$$unt.

[0509]SERIEBUS.

3. Haud raro in hi$ce æquationibus quantitas y evadet impo$$ibilis quantitas, & in hoc ca$u $eries nunquam converget, ni pro primâ approximatione a$$umatur impo$$ibilis quantitas, cujus po$$ibilis pars ab po$$ibili, impo$$ibilis vero ab impo$$ibili quantitatis parte haud longe di$tet: hoc in ca$u valor quantitatis y nunquam exprimi pote$t per $eriem $ecundum dimen$iones quantitatis x progredientem, ni x $it impo$$ibilis quantitas.

4. Sit y = A, ubi A $it $eries $ecundum dimen$iones quantitatis x progrediens, deinde detegatur $eries y = B, quæ exprimit y in termi- nis novæ quantitatis z, ubi z $it data functio quantitatis x vel functio quantitatum x & y; tum in multis ca$ibus e datâ functione prædictâ & ca$ibus, in quibus convergit $eries A, & principiis hoc in capite traditis erui po$$unt ca$us, in quibus convergit $eries y = B.

PROB. XXVI.

Datis algebraicis, fluxionalibus, vel incrementialibus, &c. æquationibus, quantitates x & y, &c. involventibus; invenire valorem quantitatis y per terminos quo$cunque irrationales quantitatis x $ecundum datam legem pro- gredientes, $i modo is per tales terminos exprimi po$$it.

Primo e terminis, qui maximi $unt, datarum æquationum in- veniatur primus terminus (α) datæ formulæ: $cribatur α + p pro y in datis æquationibus, & e terminis re$ultantium æquationum, qui maximi $unt, inveniatur propinquus valor quantitatis p datæ formulæ, & $ic iteratis operationibus tandem invenietur $eries quæ$ita: vel a$- $umatur $eries generaliter expre$$a in terminis $ecundum datam for- mulam progredientibus, $cribatur hæc $eries pro y in datâ æquatione & ejus fluxiones, &c. pro y^., y^.., &c. & e coefficientibus corre$ponden- tium terminorum re$ultantis æquationis nihilo æqualibus e$$e $uppo- $itis erui pote$t $eries quæ$ita.

Ex. 1. Sit æquatio y^. = (a + b x^m)^μ-1 x^τ x^., invenire quantitatem y per $eriem con$tantem e terminis formulæ (a + b x^m)^μ z^t; a$$u- [0510]DE INFINITIS matur y = (a + b x^m)^μ (A x^s + B x^s+m + C x^s+2m + &c.) $cribatur hic valor pro y & ejus fluxiones pro y^., y^.., &c. in datâ æquatione, & fiant corre$pondentes termini re$ultantis æquationis nihilo re$pective æqua- les, & ex æquationibus exinde deductis con$equentur s = π + 1, A = {1 / a s}, B = - {μ m b A + s b A / (s + m) a}, &c. vel a$$umatur (a + b x^m)^μ × {1 / π + 1 · a} x^m+1 - p pro fluente quæ$itâ, & erit p^. = {μ m + s / π + 1 · a} b x^m+π (a + b x^m)^μ-1 x^., deinde a$$umatur pro p quantitas {μ m + s / (π + 1)(m + π + 1) a^2} b x^m+π+1 (a + b x^m)^μ + q & erit q^. = {(μ m + s) × (μ m + m + s) b^2 / (π + 1)(m + π + 1)} × x^2m+π (a + b x^m)^μ-1 x^., & $ic deinceps; unde facile con$tat lex $eriei re$ul- tantis.

Ex. 2. Sit Z = - log. z, invenire integarlem incrementi v = {z. / z}; nunc fingatur integralis incrementi ({z. / z}) e$$e Z + {a / z} + {b z / z · z + z.} + {c z^2 . / z · z + z. · z + 2 z.} + &c. cujus incrementum invenietur Z. + {a z. / z · z + z.} + {2 b z^2 . / z · z + z. · z + 2 z.} + {3 c z^3 . / z · z + z. · z + 2 z. · z + 3 z.} + &c. = {z. / z}; $ed Z. erit per prob. 2. lib. 2^di . = {z. / z} - {z^2 . / 2 z^2} + {z^3 . / 3 z^3} - {z^4 . / 4 z^4} + &c. = {z. / z} - {z^2 . / 2 z · z + z.} - {z^3 . / 6 z · z + z. · z + 2 z.} - {z^4 . / 4 z · z + z. · z + 2 z. · z + 3 z.} - &c. $cribatur hæc quantitas pro ejus valore in æquatione prædictâ Z. + {a z. / z · z + z.} + &c. = {z. / z}, unde a = {1 / 2}, 2 b = {1 / 6}, 3 c = {1 / 4}, &c. & con- $equenter integralis quæ$ita erit v = Z + {1 / 2 z} + {z. / 12 z · z + z.} +[0511]SERIEBUS. {z.^2 / 12 z · z + z. · z + 2 z.} + {19 z.^3 / 30 z · z + z. · z + 2 z. · z + 3 z.} - &c. In hâc integrali deducendâ $upponitur z. invariabilis quantitas.

Cor. · In detegendis integralibus incrementorum $æpe occurret incrementum {z. / z}, cujus integralis $upra datur.

2. Si vero requiratur quæcunque functio (v) quantitatum y & x, vel fluens (v) cuju$cunque fluxionis e quantitatibus y & x & earum flu- xionibus compo$itæ, &c. per $eriem cujus termini progrediuntur vel $ecundum dimen$iones quantitatis x, vel $ecundum quamcunque aliam legem, cujus termini ad $ummam continuo convergunt; inve- niatur proximus valor quantitatis v, qui $it a, deinde pro v $cribatur a + p, & ex æquationibus re$ultantibus inveniatur proximus valor quantitatis p, & $ic deinceps u$que donec tandem invenietur valor quantitatis v quæ$itus.

Hæ æquationes reduci po$$unt ad unam, quæ exprimit relationem inter variabiles x & v.

3. Sint vero duæ vel plures æquationes tres vel plures variabiles quan- titates (x′, y′, z′, &c.) habentes; 1<_>mo. ita reducendæ $unt datæ æqua- tiones per methodos prius traditas; ut evadant earum variabiles (x, y, z, &c.) perparvæ vel permagnæ, prout requiritur $eries a$cendens vel de$cendens; deinde fiant termini utrarumque æquationum, qui $int ex hypothe$i, quod x vel $it perparva vel permagna quantitas, maximi, inter $e æquales; iis, qui minores $int, abjectis, & exinde deducantur proximi valores quantitatum y, z, &c. in terminis quantitatis x, qui $int re$pective a, α, &c. $cribantur a + p, α + π, &c. in datis æqua- tionibus re$pective pro y, z, &c. & e terminis, qui maximi $int in re- $ultantibus æquationibus, inveniantur proximi valores quantitatum p, π, &c. & $ic deinceps; unde tandem eruentur valores quantitatum y, z, &c. corre$pondentes.

Aliter: Per præcedentem methodum inveniantur proximi valores quantitatum variabilium x′, y′, z′, &c. in datis æquationibus conten- tarum & transformentur datæ æquationes, ita ut earum variabiles x, [0512]DE INFINITIS y, z, &c. evadant perparvæ vel permagnæ, tum $int y = A x^n prope, z = a x^m prope, &c.; $cribantur hi proximi valores A x^n, a x^r, &c. pro y, z, &c. in datis æquationibus, & e differentiâ indicum re$ultantium ex hâc $ub$titutione colligi po$$unt formulæ $erierum y = A x^n + B x^n+m + C x^n+2m + &c. & z = ax^r + bx^r+s + cx^r+2s + &c. &c. $cribantur hæ quantitates pro $uis valoribus in datis æquationibus, & ex æqua- tis corre$pondentibus terminis re$ultantium æquationum con$equun- tur coefficientes A, B, C, &c. a, b, c, &c.

Si vero duo proximi valores quantitatis $int A x^n, tum a$$umenda e$t $eries formulæ Ax^n + Bx^n+{1 / 2}m + Cx^n+m + &c. = y; $i tres, tum $eries formulæ Ax^n + Bx^n+{1 / 3}m + Cx^n+{2 / 3}m + Dx^n+m + &c. a$$umenda e$t; & $ic deinceps.

4. Eadem methodus etiam applicari pote$t ad fluxionales, inte- grales, &c. æquationes. e. g. Sint fluxionales æquationes (l, r, s, &c.) ordinum datæ, & ita transformentur, ut evadant variabiles perparvæ vel permagnæ in iis pro z & y $cribantur αx^m & A x^n, &c. re$pective, & per prædictas methodos progrediendum e$t; tum plerumque in $ingulis re$ultantibus $eriebus continebuntur (l + r + s + &c.) varia- biles quantitates ad libitum a$$umendæ aliter; in prædictis æquatio- nibus pro {y^. ^l / x^. ^l}, {y^. ^l-1 / x^. ^l-1}, {y^. ^l-2 / x^. ^l-2}, &c.; {z^. ^l / x^. ^l}, {z^. ^l-1 / x^. ^l-1}, {z^. ^l-2 / x^. ^l-2}, &c. &c.; ubi l major e$t quam r vel s, &c.; $cribantur re$pective a + b λ^λ, c + ax + {b / λ + 1} x^λ+1, d + c x + {a / 2} x^2 + {b / (λ + 1) (λ + 2)} λ^λ+2, &c; a′ + b′x^μ, c′ + a′ x + {b′ / μ + 1} x′^μ+1, d′ + c′x + {a′ / 2} x^2 + {b′ / (μ + 1) (μ + 2)}x^μ+2, &c. &c. re$pective; & exinde deduci po$$unt quantitates y, z, &c. in terminis quantitatis (x), quæ fluit uniformiter: $ed hìc animadvertendum e$t, quod nunquam plures quam l + r + s + &c. po$$unt e$$e invariabiles quantitates ad libitum a$$umendæ.

[0513]SERIEBUS. THEOR. XXXVI.

Exii$dem æquationibus vel ad $ummas $erierum vel ad fluentes fluxi- onum deduci po$$unt diver$æ incrementiales vel fluxionales, &c. æqua- tiones, ut e $equentibus con$tabit; quæ autem omnes diver$æ æqua- tiones, $i generaliter corrigantur, $emper ea$dem præbent $eries.

Ex. 1. Sit æquatio y^2 = a^2 + bx + {x4 / c^2}, ex hâc æquatione erui po- te$t valor quantitatis y in terminis $ecundum dimen$iones quantitatis x progredientibus y = a + {b x / 2a} - {b^2 x^2 / 8a^3} + {b^3 x^3 / 16a^3} - &c. $it a = 0 & erit $eries inventa y = b^{1 / 2} x^{1 / 2} + {1 / 2} {x^{7 / 2} / b^{1 / 2} c^2} - &c.

Inveniatur fluxio datæ æquationis, & erit 2 y y^. = b x^. + {4x^3 x^. / c^2}, unde y = b^{1 / 2} x^{1 / 2} + {1 / 2}{x^{7 / 2} / b^{1 / 2} c^2}&c. $ed inveniatur hujus æquationis generalis fluens & a$$umenda e$t quantitas y^2 = a^2 prope, pro y $cribatur a + p in æquatione 2 y y^. = b x^. + {4 x^3 x^. / c^2}, & re$ultat 2 (a + p) p^. = b x^. + {4 x^3 x^. / c^2}, & e ter- minis, qui maximi $int, inter $e æqualibus e$$e $uppo$itis invenietur 2 a p^. = b x^. prope, unde p = {bx / 2a} prope, & exinde re$ultat prior $eries y = a + {b x / 2 a} + &c.

Dividatur data æquatio y^2 = a^2 + b x + {x^4 / c^2} per x, & re$ultat {y^2 / x} = {a^2 / x} + b + {x^3 / c^2}, cujus fluxio erit {2 y y^. / x} - {y^2 x^. / x^2} = {3 x^2 x^. / c^2} - {a^2 x^. / x^2}: termini huju$ce æquationis, qui maximi inveniuntur, erunt {y^2 x^. / x^2} = {a^2 x^. / x^2}; unde y^2 = a^2 prope, & y = ± a prope, $cribatur a + p pro y in fluxione [0514]DE INFINITIS {2 y y^. / x} - {y^2 x^. / x^2} = {3 x^2 x^. / c^2} - {a^2 x^. / x^2}, & re$ultat {2 × (a + p)p^. / x} - {(2 a p + p^2) x^. / x^2} = {3 x^2 x^. / c^2}; maximi termini hujus æquationis $unt {2 a p^. / x} - {2 a p x^. / x^2}, fiant nihilo æquales, & re$ultat {p^. / p} = {x^. / x}, unde p = {b x / 2 a} prope, & æquatio fiet eadem ac prior y = a + {b x / 2 a} + &c. Et $ic deinceps.

Cor. 1. A$$umatur fluens A + B = 0, ubi A & B $unt quæcunque functiones literarum x & y, & a invariabilis quantitas generaliter a$$umpta, inveniatur quantitas y ex hâc æquatione in terminis $ecun- dum dimen$iones quantitatis x progredientibus, i. e. $it y = A x^n + B x^n±m + C x^n±2m .... E x^n±rm + &c. ubi E $it terminus in quem primum ingreditur litera a; inveniatur fluxio præcedentis fluentis π^. = 0 in quâ haud continetur a, & ex hâc æquatione per methodos prius datas inveniatur y in terminis quantitatis x, quæ erit y = A x^n B x^n±m + C x^n±2m + &c. u$que ad terminum D x^n±(r-1)m + E x^n±rm + &c. ubi per prædictam methodum $i p $it proxima approximatio vel quod idem e$t $i in datâ æquatione π^. = 0 $cribatur A x^n + B x^n±m + C x^n±2m ..... D x^n±(r-1)m + p pro y, re$ultabit æquatio {p^. / p} = {(n±r m) x^. / x} prope, cujus fluens erit p = l x^n±rm prope, ubi l denotat quamcunque quantitatem ad libitum a$$umendam; unde hæc $eries $emper eadem evadet ac præcedens.

Hinc facile deduci po$$unt infinitæ æquationes, quarum $eries ge- nerales, quæ exprimunt y in terminis quantitatis x, erunt eædem.

Hæc principia facile applicari po$$unt ad fluxionales æquationes $uperiorum ordinum, vel ad fluxionales æquationes plures variabiles quantitates & earum fluxiones habentes.

Cor. 2. Series, quæ exprimunt generalem valorem quantitatis y in terminis vero $ecundum dimen$iones quantitatis x progredientibus, [0515]SERIEBUS. eædem inveniuntur e diver$is æquationibus A^. ^n + B^. ^n = 0, A^. ^n-1 + B^. ^n-1 + a x^. ^n-1 = 0, A^. ^n-2 + B^. ^n-2 + a x x^. ^n-2 + b x^. ^n-2 = 0, &c. u$que ad A^. + B^. + a x^n-1 x^. + b x^n-2 x^. + c x^n-3 x^. + &c. .... l x^. = 0, & A + B + a x^n + b x^n-1 + c x^n-2 ... l′ = 0, ubi literæ a, b, c, ... l & l′ qua$cunque inva- riabiles denotant quantitates.

Duæ $eries, quæ exprimunt prædictum generalem valorem, eædem inveniuntur e duabus æquationibus π = 0 & L × π = 0, ubi π e$t fluxionalis quantitas $uperioris ordinis quam quantitas L.

PROB. XXVII. Ex datis relationibus inter valores x & z incognitæ quantitatis x & inter $ummas duarum $erierum re$ultantium; invenire coefficientes ip$ius $eriei.

Sit $umma $eriei huju$ce formulæ a x^m + b x^m+r + c x^m+2r + &c. = Q; inveniatur valor (R) eju$dem $eriei, cum x evadat (z) quæcunque data functio quantitatis x, i. e. a z^m + b z^m+r + c z^m+2r + &c. = R = A x^m′ + B x^m+r′ + C x^m′+2r′ + &c. + A′ x^b + B′ x^b+s + C′ x^b+2s + &c.; tum ex quantitate Q = a x^m + b x^m+r + &c. & relatione inter $um- mas inveniatur R = a′ x^m′ + b′ x^m′+r′ + c′ x^m′+2r′ + &c.; & ex æquatis corre$pondentibus terminis re$ultant A = a′, B = b′, C = c′, &c., & exinde deduci po$$unt coefficientes a, b, c, &c. quæ$itæ.

Ex. Cum x evadat 2 x = z, tum $eries a x^m + b x^m+r + c x^m+2r + &c. evadat (a x^m + b x^m+r + c x^m+2r + &c.)^2; in datâ $erie pro x $cri- batur 2 x, & re$ultat a 2^m x^m + b × 2^m+r x^m+r + c × 2^m+2r x^m+2r + &c. = (a x^m + b x^m+r + &c.)^2 = a^2 x^2m + 2 a b x^2m+r + (2 a c + b^2) x^2m+2r + &c.; & ex æquatis corre$pondentibus terminis re$ultant a 2^m × x^m = a^2 x^2m, & confequenter m = 2 m; & exinde m = 0 & 2^m a = 2^0 a = a = a^2; unde a = 1; & 2 a b x^2m+r = 2 a b x^r = b × 2^m+r x^r, unde 2^r = 2 & ex- inde r = 1; & c × 2^2r × x^2r = c × 2^2 × x^2 = (2 a c + b^2) x^2r = (2 c + b^2)x^2r, unde 4 c = 2 c + b^2, & exinde c = {b^2 / 2}; & $ic deinceps; & [0516]DE INFINITIS tandem re$ultat $eries a x^m + b x^m+r + c x^m+2r + &c. = 1 + b x + {b^2 / 2} x^2 + {b^3 / 2 · 3} x^3 + {b^4 / 2 · 3 · 4} x^5 + &c.; quæ ex logarithmo invenit nu- merum.

Ex. 2. Sit prædicta $eries a + b x^r + c x^2r + d x^3r + &c.; cum vero x evadat 2 x = z, tum $eries a + b x^r + &c. evadat (a + b x^r + c x^2 + &c.)^s = a^s + s a^s-1 b x^r + s · {s - 1 / 2} a^s-2 b^2 x^2r \\ + s # a^s-1 c x^2r # + &c. = a + b × 2^r x^r + c × 2^2r x^2r + d × 2^3r × x^3r + &c., unde a = a^s & con$equenter a = 1; & 2^r b = s b & exinde 2^r = s & r = {log. s / log. 2}; & s · {s - 1 / 2} a^s-2 b^2 + s a^s-1 c = 2^2r × c & s · {s - 1 / 2} b^2 = (2^2r - s) c = (s^2 - s) c, unde c = {1 / 2} b^2: etiamque s · {s - 1 / 2} · {s - 2 / 3} b^3 + s · (s - 1) b c + s d = 2^3r d = s^3 d & con$equen- ter s · {s - 1 / 2} · {s - 2 / 3} b^3 + s · (s - 1) · b · {b^2 / 2} = (s^3 - s) d & s · {s - 1 / 2}· {s + 1 / 3} b^3 = (s^3 - s) d & d = {b^3 / 1 · 2 · 3}: & $ic e = {b^4 / 1 · 2 · 1 · 4}, &c.; & $e- ries a + b x^r + &c. = 1 + {b / 1}x^r + {b^2 / 1 · 2}x^2r + {b^3 / 1 · 2 · 3} x^3r + {b^4 / 1 · 2 · 3 · 4} x^4r + &c., ubi r = {log. s / log. 2}, quæ erit 1, cum s = 2; & - 1 cum s = {1 / 2}.

Ex. Sit quantitas a x + b x^2 + c x^3 + &c. = l, quæ $it logarith- mus quantitatis 1 + x, at, cum numerus (1 + x) evadat z = (1 + x)^2; tum logar. l evadat duplus; pro x $cribatur igitur 2 x + x^2 in prædictâ $erie a x + b x^2 + c x^3 + &c., & re$ultabit a (2 x + x^2) + b (4 x^2 + 4 x^3 + x^4) + c (2 x + x^2)^3 + &c. = 2 a x + (a + 4 b)x^2 + (4 b + 8 c) x^3 + (b + 12 c + 16 d)x^4 + &c. = 2 l = 2 a x + 2 b x^2 + 2 c x^3 + 2 d x^4 + &c.: ex æquatis corre$pondentibus terminis re- [0517]SERIEBUS. $ultant 2 a = 2 a; 2 b = a + 4 b, unde b = - {a / 2}; & 4 b + 8 c = 2 c, & con$equenter c = - {b / 3}; &c.

Et $ic progredi liceat ad plura & magis generalia exempla; etiam- que ex re$olutionibus inter plures $ucce$$ivos terminos ad $eriem de- ducendam.

2. Sint V & W datæ functiones quantitatis x, i. e. V = X & W = X′ invenire V in terminis quantitatis W.

Reducantur duæ æquationes V = X & W = X′ ad unam, ita ut exterminetur x, & re$ultat æquatio quæ$ita.

Aliter: Sit V = a x^m + b x^m+n + c x^m+2n + &c. & W = a′ x^r + b′x^r+s + c′x^r+2s + &c.; tum erit V = A W^{m / r} + B W^{m / r}+t + C W^{m / r}+2t + &c.; in hâc æquatione pro V & W $cribantur earum valores a x^m + &c., a′x^r + &c.; & æquentur corre$pondentes termini æquationis re$ul- tantis, & exinde facile erui po$$unt coefficientes a, b, c, &c., a′, b′, &c.

Si r = 0, tum pro W - a′ $cribatur W′; & evadet V = A′ W′^{m / s} + &c.

Si exponentiales, fluentiales, &c. quantitates in prædictis æqua- tionibus V = a x^m + &c. & W = a x^r + &c. contineantur; tum ple- rumque ita reducendæ $unt exponentiales, fluentiales, &c. quanti- tates, ut progrediantur $ecundum dimen$iones perparvæ quantitatis 0, & deinde per methodum hìc traditam acquiri pote$t problematis re$olutio.

_PROB. XXVIII._ Reducere datam $eriem ad factores.

Sit $eries a x^m + b x^m+n + c x^m+2n + &c.: a$$umantur factores, qui ad $eries reducti præbent $eries eju$dem formulæ ac data $eries, & qui in $e$e continuo ducti continent tot $altem incognitas & indepen- dentes coefficientes, quot re$ultant termini de$truendi.

[0518]DE INFINITIS

Ex. Sit quantitas a + b x + c x^2 + &c.; & erit æqualis contento e $ingulis factoribus (e + f x)^m × (e′ + f′x)^m′ × (e″ + f″x)^m″ × &c., qui- bus factoribus (e + f x)^m, (e′ + f′ x)^m′, &c. ad $eries e^m + m e^m-1 f x + &c., e′^m′ + m′ e′^m′-1 f′x + &c. eju$dem ac datæ $eriei formulæ reductis; plures continentur incognitæ & independentes coefficientes e, e′, e″, &c.; f, f′, f″, &c., &c., m, m′, m″, &c. quam termini datæ $eriei æquandi; i. e. æquentur corre$pondentes termini & re$ultant æquationes e^m × e′^m′ × e″^m″ × &c. = a, m e^m-1 e′^m e″^m &c. f + m′ e′^m′-1 e^m e″^m″ &c. f′ + &c. = b, & $ic dein- ceps: hìc plures involvuntur incognitæ & independentes coefficientes quam re$ultantes æquationes, & con$equenter facile erui po$$unt co- efficientes, quæ $olutionem problematis præbent.

Cor. Sint factores (e x^r + f x^s + g x^t + &c.) (e′ x^r′ + f′ x^s′ + g′ x^t′ + &c.) (e^n x^r″ + f″ x^s″ + g″ x^t″ + &c.) &c. = a x^m + b x^m+n + &c., ubi r + r′ + r″ + &c. = m, & s - r, &c. = n; e × e′ × e″ × &c. = a, &c.

Eadem principia etiam applicari po$$unt ad quantitates in quibus incognitæ quantitates continentur.

PROB. XXIX.

Datâ æquatione quantitatem v involvente; ubi v $it quæcunque quantitas, quæ e datâ quantitate x deduci pote$t; invenire valorem quantitatis x.

1. Primo inveniatur a proximus valor quantitatis x, $cribatur quan- titas a pro x in datâ æquatione, & $it quantitas re$ultans A; deinde $cribatur a + π (ubi π $it perparva quantitas) pro x in datâ æqua- tione, & $it quantitas re$ultans B; tum erit A - B:A::π:{A π / A - B}, unde a + {A π / A - B} erit propior approximatio ad quantitatem x; & $ic redintegratâ operatione propior adhuc con$tabit valor quantitatis x.

2. Si vero duo valores quantitatis x $int prope quantitati a & in- [0519]SERIEBUS. ter $e æquales; tum $cribendæ $unt pro x in datâ æquatione re$pec- tive a, a + π, a + 2 π; & $int quantitates re$ultantes re$pective A, B, C; erunt duæ radices quadraticæ æquationis {1 / 2}(A - 2 B + C) e^2 - {1 / 2} (C - 4 B + 3 A) π e + A π^2 = 0, quæ $int α & β, propiores ap- proximationes ad duos valores quantitatis x prædictos, i. e. a + α & a + β erunt prope duo valores quantitatis x: $i autem α multo mi- nor $it quam β, tum erit α = {2 A π / C - 4 B + 3 A} prope.

Cor. 1. Sit æquatio x^n - p x^n-1 + q x^n-2 - &c. = 0: in hâc æqua- tione pro x $cribantur re$pective a & a + π, & re$ultant quantitates a^n - p a^n-1 + q a^n-2 - &c. = A, & A + (n a^n-1 - (n - 1) p a^n-2 + (n - 2) q a^n-3 - &c.) π + &c. = B, & con$equenter B - A = (n a^n-1 - (n - 1) p a^n-2 + (n - 2) q a^n-3 - &c.) π prope: a^n - p a^n-1 + q a^n-2 - &c. = A::π:{a^n - p a^n-1 + q a^n-2 - &c. / n a^n-1 - (n - 1) p a^n-1 + (n - 2) q a^n-2 - &c.} = e; & exinde a - e erit propior valor quantitatis x.

Cor. 2. Sint vero n valores quantitatis x prope inter $e & quanti- tati a æquales, $cribantur pro x in datâ æquatione re$pective a, a + π, a + 2π, a + 3 π, ... a + (n - 1) π, & $int quantitates re$ultantes re$pective A, B, C, D, E, &c. & d = A - B, d′ = A - 2 B + C, d″ = A - 3 B + 3 C - D, d′″ = A - 4 B + 6 C - 4 D + E, .... d′^m-1 = A - m B + m. {m - 1 / 2} C - m · {m - 1 / 2} · {m - 2 / 3} D + &c. & $int α, β, γ, δ, &c. n radices (e) æquationis A π^n - d π^n-1 e + {1 / 2} d′ π^n-2 e × (e - π) - {1 / 2 · 3} d″ π^n-3 e × (e - π) × (e - 2 π) + {1 / 2 · 3 · 4} d′″ π^n-4 e × (e - π) × (e - 2π) × (e - 3 π) - &c. = 0, tum erunt a + α, a + β, a + γ, a + δ, &c. re$pective approximationes ad n valores quantitatis x præ- dictos.

Si vero $cribantur pro x in datâ æquatione (n) quantitates a, a + π, a + ρ, a + σ, a + τ, &c.; & $int (n) quantitates re$ultantes A, B, C, D, E, &c.; & $int (n) radices æquationis A - ({A / π} - {B / π})e [0520]DE INFINITIS + ({A / π p} + {B / π (π - ρ)} + {C / ρ (ρ - π)}) e × (e - π) - ({A / π ρ σ} - {B / π (π - ρ) (π - σ)} - {C / ρ (ρ - π) (ρ - σ)} - {D / σ (σ - π) (σ - ρ)}) e × (e - π) × (e - ρ) + ({A / π ρ σ τ} + {B / π (π - ρ)(π - σ)(π - τ)} + {C / ρ (ρ - π)(ρ - σ)(ρ - τ)} + {D / σ (σ - π) (σ - ρ) (σ - τ)} + {E / τ (τ - π) (τ - ρ) (τ - σ)}) e × (e - π) × (e - ρ) × (e - σ) + &c. = 0 re$pective α, β, γ, δ, &c., &c.; tum erunt a + α, a + β, a + γ, a + δ, &c. approximationes ad n radices datæ æquationis, quæ $unt prope inter $e æquales. Aliter: $int (n) radi- ces prædictæ α, β, γ, δ, &c. radices (e) æquationis {(e - π) × (e - ρ) × (e - σ) × (e - τ) &c. / ± π ρ σ τ &c.} × A + {e × (e - ρ) × (e - σ) × (e - τ) × &c. / π × (π - ρ) × (π - σ) × (π - τ) × &c.} × B + {e × (e - π) × (e - σ) × (e - τ) × &c. / ρ × (ρ - π) × (ρ - σ) × (ρ - τ) × &c.} × C + {e× (e - π) × (e - σ) × (e - τ) × &c. / σ × (σ - π) ×(σ - ρ) × (σ - τ) × &c.} × D + {e × (e - π) × (e - ρ) × (e - σ) × &c. / τ × (τ - π) × (τ - ρ) × (τ - σ) × &c.} × E + &c. = 0, tum erunt a + α, a + β, a + γ, a + δ, &c. approximationes ad (n) prædictas radices.

Lex huju$ce $eriei facile con$tat ex ob$ervatis ip$ius terminis.

Si vero a, a + π, a + ρ, a + σ, &c. $int multo propiores ad unam radicem datæ æquationis quam ad reliquas; tum (n) radices prædictæ æquationis, cujus radix e$t e, erunt re$pective f - π, f - ρ, f - σ, f - τ, &c. prope, & radix quæ$ita a + f prope.

Cor. Hinc 1 - {π / π} = 0, 1 - {ρ / π} + {ρ × (ρ - π) / ρ π} = 0, 1 - {σ / π} + {σ × (σ - π) / ρ π} - {σ × (σ - π) × (σ - ρ) / ρ π σ} = 0, 1 - {τ / π} + {τ × (τ - π) / π ρ} - {τ × (τ - π) × (τ - ξ) / π ρ σ} + {τ · (τ - π) · (τ - ρ) · (τ - σ) / π ρ σ τ} = 0, & $ic deinceps; etiamque {ρ / π} +[0521]SERIEBUS. {ρ × (ξ - π) / π (π - ρ)} = 0, {σ / π} + {σ × (σ - π) / π(π - ρ)} + {σ · (σ - π) × (σ - ρ) / π(π - ρ)(π - σ)} = 0, {τ / π} + {τ(τ - π) / π (π - ρ)} + {τ(τ - π)(τ - ρ) / π(π - ρ)(π - σ)} + {τ · (τ - π) · (τ - ρ) · (τ - σ) / π · (π - ρ) · (π - σ) · (π - τ)} = 0, &c. & {σ × (σ - π) / ρ (ρ - π)} + {σ × (σ - π)(σ - ρ) / ρ (ρ - π)(ρ - σ)} = 0, {τ × (τ - π) / ρ (ρ - π)} + {τ × (τ - π)(τ - ρ) / ρ(ρ - π)(ρ - σ)} + {τ (τ - π) (τ - ρ) (τ - σ) / ρ(ρ - π)(ρ - σ)(ρ - τ)} = 0, &c., & {τ(τ - π) (τ - ρ) / σ(σ - π)(σ - ρ)} + {τ(τ - π)(τ - ρ)(τ - σ) / σ(σ - π)(σ - ρ)(σ - τ)} = 0, &c.

Principia hìc tradita applicari po$$unt ad inveniendam $eriem, quæ exprimit quantitatem v terminis vero $ecundum dimen$iones quanti- tatis z progredientibus ex datâ æquatione relationem inter x & y ex- primente, ubi literæ z & v re$pective denotant qua$cunque functiones vel algebraicas vel fluentiales, integrales, &c. literarum x & y.

2. Datis m æquationibus m incognitas quantitates x, y, z, &c. ha- bentibus, $int vero α, β, γ, &c. proximi valores incognitarum quanti- tatum x, y, &c. re$pective inter $e corre$pondentes; a$$umantur n + 1 diver$i valores quantitatis x, viz. α, α + π, α + π′, α + π″, &c. &c. & $ic a$$umantur n + 1 diver$i corre$pondentes valores quantitatis y qui $int re$pective β, β + ρ, β + ρ′, β + ρ″, &c. & $ic de reliquis, ubi π, π′ π″, &c. ρ, ρ′, ρ″, &c. $unt perparvæ quantitates; $cribantur α, β, &c. α + π, β + ρ, &c. α + π′, β + ρ′, &c. &c. pro $uis valoribus x, y, &c. in datis æquationibus, & re$ultent quantitates A, B, C, &c. re- $pective in unâ æquatione; P, Q, R, &c. in $ecundâ &c. & re$ulta- bunt e primâ æquatione n $implices æquationes a π + bρ + &c. = B - A, a π′ + b ρ′ + &c. = C - A, a π″ + b ρ″ + &c. = D - A, &c. e $ecundâ vero æquatione n $implices æquationes b π + k ρ + &c. = Q - P, b π′ + k ρ′ + &c. = R - P, b π′ + kρ″ + &c. = S - P, &c. ex his 2 n, &c. æquationibus inve$tigari po$$unt coefficien- tes a, b, &c. b, k, &c. ultimo a$$umantur m æquationes A + a e + b i + &c. = 0, P + b e + k i + &c. = 0; &c. e quibus deduci po$$unt [0522]DE INFINITIS valores quantitatum e, i &c. & erunt α + e, β + i, &c. propiores valores quantitatum x, y, &c.

E. g. Sit m = 2; e duabus $implicibus æquationibus a π + b ρ + A - B = 0 & a π′ + b ρ′ + A - C = 0 deduci po$$unt coefficientes a & b, & ex datis etiam æquationibus k π + k ρ + P - Q = 0, & b π′ + k ρ′ + P - R = 0 erui po$$unt coefficientes b & k; quibus datis fin- gantur a e + b i + A = 0, b e + k i + P = 0, e quibus eruantur valores quantitatum e & i, & erunt α + e & β + i propiores valores quantitatum x & y.

In his $ub$titutionibus cavendum e$t, ne æquationes re$ultantes a $e invicem $int dependentes.

In his ca$ibus $æpe præ$tat a$$umere α = 0, β = 0, γ = 0, &c. cum x evadat α, tum Γ evadat A; etiamque cum x evadat α + π, tum Γ evadat B; exinde cum x evadat α + ρ, tum Γ evadet A + {B - A / π} ρ prope, $i modo π & ρ $int perparvæ quantitates.

2. Cum n quantitatites x, y, &c. evadant re$pective α, β, &c.; tum Γ evadat A; etiamque cum prædictæ quantitates x, y, &c. evadant α + π, β + ρ, &c., tum Γ evadat B; & $imiliter cum x, y, &c. eva- dant α + π′, α + π″, &c.; β + ρ′, β + ρ″, &c.; tum Γ evadat re$pe- ctive C, D, E, &c.

A$$umantur (n) $implices æquationes a π + b ρ + &c. = B - A, a π′ + b ρ′ + &c. = C - A, aπ″ + b ρ″ + &c. = D - A, a π′″ + b ρ′″ + &c. = E - A, &c.; ex his æquationibus inveniantur (n) in- cognitæ quantitates a, b, c, d, &c.; tum erit Γ - A = a λ + b μ + &c.; cum x, y, &c. evadant re$pective α + λ, β + μ, &c.

1.2. Si vero duo vel plures valores quantitatum x, y, &c. $int α, β, &c. prope; tum e pluribus a$$umptis re$pondentibus valoribus quan- titatum x, y, &c. pro $uis valoribus in datis æquationibus $ub$titu- tis; & ex principiis ii$dem, quæ in hoc prob. & in meditat. algebr. traduntur, facile con$equi po$$unt valores ad veros valores magis ap- propinquantes.

[0523]SERIEBUS.

Et $ic de n æquationibus plures n + m incognitas quantitates ha- bentibus.

Convergentiæ harum $erierum pendent omnino ex ii$dem princi- piis ac convergentiæ $erierum prius traditarum.

Hìc ob$ervandum e$t, $i quantitates re$ultantes prædictæ haud cre$cant vel decre$cant ultimo in eâdem ratione ac i$tæ minimæ dif- ferentiæ quantitatum ip$arum a veris valoribus, tum ex hâc methodo haud deduci pote$t re$olutio; ex hypothe$i ultimarum rationum inter prædictas differentias & quantitates re$ultantes $equitur re$olutio.

THEOR. XXXVII.

Sit y = $. X x^., ubi X e$t functio quantitatis x; & y = b cum x - a; & $i valor quantitatis x parum ex$uperet a, tum per prob. 5. libri primi erit y = X x - {1 / 2} P x^2 + {1 / 6} Q^3 - {1 / 24} R^4 + &c. ubi P x^. = X^., Q x^. = P^., R x^. = Q^., &c. $ed pro x $cribatur z - a, & invenietur y = b + X (z - a) - {1 / 2} P (z - a)^2 + {1 / 6}Q(z - a)^3 - &c.

Cor.. Præ$tabit per intervalla procedere tribuendo ip$i x $ucce$$ive valores a, a′, a″, a′″, &c. & pro $ingulis valores quantitatum X, P, Q, &c. convenientes computando, & exinde aggregatum e $ingulis valo- ribus $eriei X x - {1 / 2} P x^2 + {1 / 6}Q^3 - &c. detegendo, quod erit y fluens quæ$ita.

THEOR. XXXVIII.

Sint a & b $imul valores quantitatum x & y re$pective; & $it y fun- ctio quantitatis x; & 1<_>mo. cum x fiat x - n x.; tum y evaderet y - n y^. + n · {n + 1 / 2} y^.. - {n · (n + 1) · (n + 2) / 2 · 3} y^... + &c. Ponatur x - n x^. = a & erit n = {x - a / x^.} pene infinitus numerus; cum vero x = a per hypothe$in erit y = b, & con$equenter y = b + (x - a){y^. / x^.} - {1 / 2}{y^.. / x^. ^2} (x - [0524]DE INFINITIS a)^2 + {1 / 6}{y^... / x^. ^3} (x - a)^3 - &c. 2<_>do. Fiat vero x jam x + n x^. & y evade- ret y + n y^. + n · {n - 1 / 2} y^.. + &c. $cribatur {x - a / x^.} pro n & fit y = b + {y^. / x^.} (x - a) + {1 / 2}{y^.. / x^. ^2} (x - a)^2 + {1 / 6}{y^... / x^. ^3} (x - a)^3 + &c.

Cor. 1. Si progre$$us ab a ad x in intervalla æqualia $ecundum differentiam a di$pertiantur, & termini in $ingulis $eriebus ultimo præcedentibus notentur per ′X, ′P, ′Q, ′R, &c. ubi y^. = X x^., X^. = P x^., P^. = Qx^., &c. & A, A′, A″, ... ′X, X $int re$pective $ucce$$ivi valores quantitatis X ad $ingula intervalla; & B, B′, B″, .. ′P, P $int re$pective $ucce$$ivi valores quantitatis P ad prædicta intervalla, & $ic deinceps; tum ex $ecundo ca$u re$ultant y = b + α (A + A′ + A″ ... + ′X) + {1 / 2} α^2 (B + B′ + B″ ... + ′P) + {1 / 6} α^3 (C + C′ + C″ ... + ′Q) + {1 / 24} α^4 (D + D′ + D″ ... + ′R) + &c. Si inter limites & valorem priorem y = b + α (A′ + A″ ... X) - {1 / 2} α^2 (B′ + B″ ... + P) + {1 / 6} α^3 (C′ + C″ ... + Q) - &c. $umatur medium arithmeticum prodibit $eries adhuc magis convergens y = b + α (A′ + A″ + A′″ ... + ′X) + {1 / 2}α (A + X) + {1 / 4}α^2 (B - P) + {1 / 6}α^3 (C′ + C″ ... + ′Q) + {1 / 12}α^3 (C + Q) + {1 / 48}α^4 (D - R) + &c.

Convergentiæ harum $erierum e principiis prius traditis dijudicari po$$unt.

Ex principiis prius traditis progredi liceat ad convergentiam $erie- rum harum formularum deducendam, viz. ^m √(a - ^m √(b - ^m √(c - &c.))) vel ^m √(a - ^n√(b - &c.)) vel ^m√(a + b \\ ^m√(c + d) \\

    ^m√(e + &c.)
# ); & $ic de in- finitis diver$orum generum $eriebus & æquationibus.

[0525]SERIEBUS. THEOR. XXXIX.

1. Sit x = ^n √(a + ^n √(a + ^n √(a &c.))); erit x vel radix æquati- onis x^n - a - x = 0, vel (x^n - a)^n - a - x = 0, vel ((x^n - a)^n - a)^n - a - x = 0, & $ic deinceps; omnes enim hæ præcedentes æqua- tiones erunt divi$ores $ub$equentium.

2. Sit x = ^n √(a ^n √(a ^n √(a &c.))); & erit x radix æquationis x^n-1 - a = 0 vel x^n^2 -1 - a^n+1 = 0 vel x^n^3 -1 - a^n^2 +n+1 = 0 & denique x^n^m -1 - a^n^m -1 + n^m-2 + &c. .. + 1 = 0, ubi m e$t integer numerus; omnes enim hæ præcedentes æquationes erunt etiam divi$ores $ub$equentium.

Eadem principia etiam applicari po$$unt ad con$imiles $eries, in quibus duæ vel plures continentur literæ vel radices, quæ eodem ordine recurrunt; etiamque ad $eries $ub$equentes.

THEOR. XL.

1. Sit x = ^n √a + b \\ ^m √a + b \\ ^m √a + &c. # , & erit re$olutio æquationis x^m+1 - ax = b, &c.

2. Sit x = ^m √a + b \\ ^n √c + d \\ ^m √a + b \\ &c. # , & erit re$olutio æquationis (x^m - a)^n × (c x + d) = b^n x; &c.

Cor.. Sit cubica æquatio x^3 - p x^2 + q x - r = 0, a$$umantur m = 2, n & c = 1, & re$ultat æquatio x^3 + d x^2 - (a + b) x - a d [0526]DE INFINITIS = 0, unde a$$umptis d = - p, a = {r / d} = {-r / p}, & b = - (a + q), re$ultat re$olutio cubicæ æquationis.

3. Sit x = ^n√{a / b} \\ + ^n √{a / b} \\ + ^n √{a / b} \\ + &c. # , unde x^n+1 + b x^n = a, &c.

4. Sit x = ^n√a + b \\ c + d \\ ^n √a + b \\ c + d \\ ^n √a + &c. # , & erit æquatio exinde re$ultans c x^n+1 + d x^n - a c x - b x - d a = 0, &c. Infinitæ eju$- modi $olutiones harum æquationum facile dari po$$unt.

Si modo dentur quæcunque quantitates, quæ iterum perpetuo oc- currunt; tum ex iis facile deduci po$$unt æquationes, quarum re$o- lutiones per has methodos dantur.

Huju$ce generis quantitates in $e$e multiplicari vel per $e dividi po$$unt per vulgares methodos, $ed plerumque producta & quotientes re$ultantes erunt quantitates maxime compo$itæ; $ed tædet de his plura adjicere.

Sit z di$tantia a primo $eriei termino, & $int a, b, c, d, &c. functio- nes quantitatis z, tum ex ratione $ucce$$ivorum terminorum ad infi- nitam di$tantiam facile con$tat, annon $eries fit convergens.

SCHOLIUM.

Veteres ad areas curvilinearum $igurarum approximabant, in$cri- bendo in illis vel de$cribendo circa eas rectilineas figuras.

In curvis haud quadrabilibus, ubi etiam ordinata $it data functio ab$ciffæ, methodi recentiorum vix aut ne vix $uperiores cen$endæ [0527]SERIEBUS. $unt; ut vero $eries per has methodos inventæ reddantur celeriter convergentes, plurimæ interpolandæ $unt plerumque intermediæ $e- ries, æque ac in$cribendæ vel de$cribendæ rectilineæ figuræ in curvi- lineis figuris; & in multis ca$ibus rectilineæ figuræ magis conver- gent quam $eries interpolandæ: reductio quantitatum ad terminos $ecundum dimen$iones quantitatis x progredientes ni in fluentibus detegendis perraro u$ui in$ervit; nam quantitates ip$æ plerumque $ine tali reductione majore facilitate deduci po$$unt; & reductio præ- dicta ad integrales a$cendentes, &c. detegendas non applicari pote$t. In fluentibus detegendis ut prædicitur plerumque plurimæ interpo- landæ $unt $eries, aliter haud convergit $eries.

[0528]DE SUMMATIONE LIBER IV. DE SUMMATIONE SERIERUM, &c. THEOR. I.

1. SINT $ummæ, i. e. integrales $ucce$$ivæ s, s′, s″, &c. & erunt earum incrementa, i. e. $ucce$$ivi termini s - s′ = t, s′ - s″ = t′, &c. ubi per z $emper de$ignetur di$tantia termini dicti a primo feriei termino.

Ex. 1. Sint s & s′ re$pective z × (z - 1) · (z - 2) .. (z - n) & (z + 1) · z · (z - 1) ... (z - n + 1); tum erit t = (n + 1) · z · (z - 1) · (z - 2) ...(z - n + 1), & con$equenter $i terminus gene- ralis $eriei $it t = z · (z - 1). (z - 2) ... (z - n + 1), tum erit ejus fumma s = {1 / n + 1}z · (z - 1) ... (z - n) + A, ubi A $it $umma omnium terminorum ab initio $eriei u$que ad terminum z = n.

Cor. Con$tat e prob. 6. lib. 2<_>di. omnem quantitatem huju$ce ge- neris A z^n + B z^n-1 + C z^n-2 + &c. ubi n $it integer numerus, re$olvi po$$e in quantitates $ub$equentis formulæ az · (z - 1) · (z - 2) .. (z - n + 1) + bz · (z - 1) · (z - 2)..(z - n + 2) + c z. (z - 1) ...(z - n + 3) + dz · (z - 1) ..(z - n + 4) + &c. unde A = a, b = B + n · {n -1 / 2}a, &c. & $umma $eriei, cujus termini $unt prædicti generis, detegi pote$t.

Ex. 2. Sint s & s′ re$pective {1 / z · (z + 1) · (z + 2) .. (z + n - 1)} & [0529]SERIERUM, &c. {1 / (z + 1) · (z + 2) .. (z + n)}, tum erit s - s′ = t = {n / z(z + 1) · (z + 2) .. (z + n)}, & con$equenter $i t = {1 / z · (z + 1) · (z + 2) .. (z + n)}, tum erit s = {1 / n z · z + 1 · z + 2 ... z + n - 1} + A, ubi A $it $umma quorumcunque præcedentium terminorum.

Cor. 1. Con$tat e prob. prædictâ omnem quantitatem, quæ expandi pote$t in infinitas $eries huju$ce generis A z^-n + B z^-n-m + C z^-n-2m + &c. ubi n & m $unt integri numeri affirmativi, & A, B, C, &c. in- variabiles coefficientes, etiam ad infinitam $eriem huju$modi {a / z(z + 1) (z + 2) .. (z + (n - 1))} + {b / z(z + 1)(z + 2)(z + 3) ... (z + n)} + {c / z(z + 1)(z + 2)(z + 3)(z + 4) .. (z + n + 1)} + &c. reduci po$$e.

E. g. Series {1 / z} + {1 / z^2} + {1 / z^3} + {1 / z^4} + &c. in infinitum invenietur = {1 / z} + {1 / z. z + 1} + {1 · 2 / z. z + 1. z + 2} + {1 · 2 · 3 / z · z + 1 · z + 2 · z + 3} + {1 · 2 · 1 · 4 / z · z + 1 · z + 2 · z + 3 · z + 4} + &c. in infinitum. Sit z = n, & hæc $eries ultimo convergit prope in eâdem ratione, quam $eries {1 / 1} + {1 / 2^n} + {1 / 3^n} + {1 / 4^n} + &c.; prior {1 / z} + {1 / z^2} + {1 / z^3} + &c. $emper ultimo convergit in majore ratione quam po$terior; ni z haud major $it quam 1, in quo ca$u earum $umma erit infinita.

Cor. 2. Sit terminus generalis $eriei {1 / z + a · z + b · z + c · z + d · &c.}, ubi a, b, c, d, &c. $int integri numeri & inæ quales, tum hic terminus [0530]DE SUMMATIONE $emper re$olvi pote$t in plures, quorum integrales ex hoc exemplo deduci po$$unt.

Et ex dato termino generali erui pote$t $eriei $umma, & e theor. 2. lib. 2<_>di. corrigi pote$t $umma acqui$ita.

2. Ad hunc particularem ca$um, ubi z. incrementum di$tantiæ a primo $eriei termino = 1, applicari po$$unt omnia, quæ prius tradita fuerunt de incrementialibus quantitatibus & æquationibus.

Ex. Sit generalis terminus {α z^m + β z^m-1 + γ z^m-2 + &c. / z^n + a z^n-1 + b z^n-2 + &c.}, ubi z^n + a z^n-1 + b z^n-2 + &c. = z(z + 1)(z + 2)..(z + n - 1); & m nu- merus non major quam n; ($i m major $it quam n, tum terminus facile reduci pote$t e divi$ione numeratoris per denominatorem ad integram quantitatem & propriam fractionem prædicti generis); in- venire $ummam $eriei, cujus generalis terminus e$t prædictus.

Statuatur {α z^m + β z^m-1 + γ z^m-2 + δ z^m-3 + &c. / z(z + 1)(z + 2)(z + 3) ... (z + n - 1)} = p + {q / z} + {r / z. (z + 1)} + {s / z(z + 1)(z + 2)} + {t / z · z + 1 · z + 2 · z + 3} + ... + {l / z · z + 1 · z + 2 .... (z + n - 1)}; $i m = n, tum p = α, q = β - ap, r = γ - p b - a q, s = δ - p c - q b - r a + r, t = ε - p d - q c - a r(b - a + 1) - s(a - 3), &c.; ubi z + 1. z + 2. z + 3 ... z + n - 1 = z^n-1 + a z^n-2 + b z^n-3 + c z^n-4 + d z^n-5 + &c., cu- jus $eriei $umma e$t A + p z + integ. ({q / z}) + {r / z} + {s / 2 z · z + 1} + {t / 3 z · z + 1 · z + 2} + &c.; ubi A e$t quantitas invariabilis pro con- ditione problematis a$$umenda.

Cor. 1. Summa huju$ce $eriei inter quo$cunque duos a′ & b′ valores quantitatis z contenta erit p (a′ - b′) + integ. ({q / z}) + ({r / a′} - {r / b′}) + [0531]SERIERUM, &c. ({s / 2 a′ · a′ + 1} - {s / 2 b′ · b′ + 1}) + &c.; $ed integ. ({q / z}) = {q / a′} + {q / a′ + 1} + {q / a′ + 2} ... {q / b′}: erit infinita, $i b $it infinitus numerus; $umma ter- minorum prædictorum $emper erit finita quantitas, cum a′ $it finita quantitas & m minor quam n - 1; $in aliter non.

Cor. 2. Si q haud $it = 0, tum $umma prædictorum terminorum in infinitum progredientium in finitis terminis non exprimi pote$t, $in aliter $emper exprimi pote$t: hinc, $i m minor $it quam n - 1, tum $eriei prædictæ $umma finitis terminis $emper exprimi pote$t; i. e. $it b′ infinitus numerus & q = 0, $umma $eriei prædictæ = {r / a′} + {s / 2 a′ · a′ + 1} + {t / 3 a′ · a′ + 1 · a′ + 2} + &c.; quæ $emper ter- minat.

2. Sit generalis terminus {α z^m + β z^m-1 + &c. / (z + e) (z + e + 1) (z + e + 2) ... (z + e + n - 1)}; tum eadem affirmari po$$unt de $ummâ $eriei ex- inde re$ultantis, quæ prius affirmabantur de $erie, cujus generalis ter- minus e$t {α z^m + β z^m-1 + &c. / z (z + 1) (z + 2) ... (z + n - 1)}: terminus enim {α z^m + β z^m-1 + &c. / (z + e) (z + e + 1) (z + e + 2) ... (z + e + n - 1)} = p + {q / z + e} {r / z + e · z + e + 1} + {s / z + e · z + e + 1 · z + e + 2} + &c.

3. Sit terminus generalis {α z^m + β z^m-1 + γ z^m-2 + &c. / z + a · z + b · z + c · z + d · &c.}, ubi a - b, a - c, a - d, &c. $unt integri numeri, & m minor quam n per numerum majorem quam unitatem, & n e$t numerus facto- rum z + a, z + b, z + c, &c. tum $eries $emper integrari pote$t, &c.: ducatur enim numerator & denominator dati termini {α z^m + β z^m-1 + γ z^m-2 + &c. / z + a · z + b [0532]DE SUMMATIONE · z + c · z + d · &c.} re$pective in (z + a + 1) (z + a + 2) (z + a + 3) ... (z + b - 1) × (z + b + 1) (z + b + 2) (z + b + 3) ... (z + c - 1) × (z + c + 1) (z + c + 2) (z + c + 3) ... (z + d - 1) × (z + d + 1) (z + d + 2) &c.: & terminus generalis in terminum generalem formulæ prius traditæ tran$it.

Sit generalis terminus {α z^m + β z^m-1 + γ z^m-2 + &c. / z · z + 1 · z + 2 ... (z + n - 1) × z + e · z + e + 1 · z + e + 2 .. z + e + n′ - 1} = a + ({b / z} + {b′ / z + e}) + ({c / z · z + 1} + {c′ / z + e · z + e + 1}) + ({d / z · z + 1 · z + 2} + {d′ / z + e · z + e + 1 · z + e + 2}) + &c., ubi m e$t integer numerus non ma- jor quam n + n′: ejus integralis erit A + a z + integ. increm. ({b / z} + {b′ / z + e}) + {c / z} + {c′ / z + e} + {d / 2 z · z + 1} + {d′ / 2 z + e · z + e + 1} + &c.: exhinc con$tat integralem vel $ummam $eriei cujus generalis ter- minus prius traditur detegi po$$e, $i modo b & b′ nihilo $int re$pective æquales.

Ex ii$dem principiis con$tat integralem generalis termini, vel $um- mam $eriei, cujus terminus e$t {α z^m + β z^m-1 + &c. / z + e · z + e + 1 · z + e + 2 ... (z + e + n - 1) × z + e′ · z + e′ + 1 · z + e′ + 2 ... (z + e′ + n′ - 1) × z + e″ · z + e″ + 1 · z + e″ + 2 ... (z + e″ + n″ - 1) × &c.} = a + ({b / z + e} + {b′ / z + e′} + {b″ / z + e″} + &c.) + ({c / z + e · z + e + 1} + {c′ / z + e′ · z + e′ + 1} + {c″ / z + e″ · z + e″ + 1} + &c.) + ({d / z + e · z + e + 1 · z + e + 2} + [0533]SERIERUM, &c. &c.) + &c., ubi m e$t integer numerus = n + n′ + n″ + &c. ejus integralis vel $umma erit A + a z + integ. increm. ({b / z + e} + {b′ / z + e′} + {b″ / z + e″} + &c.) + ({c / z + e} + {c′ / z + e′} + {c″ / z + e″} + &c.) + ({d / 2 · z + e · z + e + 1} + &c.) + &c.: exhinc con$tat integralem dati generalis termini finitis terminis detegi po$$e, $i modo integralis incrementi ({b / z + e} + {b′ / z + e′} + {b″ / z + e″} + &c.) a$$ignari po$$it; & con$equenter $ummam $eriei, cujus generalis terminus prius tradi- tur; & $ic deinceps.

Sit generalis terminus {α z^m + β z^m-1 + γ z^m-2 + &c. / z + a · z + b · z + c · &c. × z + a′ · z + b′ · z + c′ · z + d′ · &c. × z + a″ · z + b″ · z + c″ · &c.}, ubi b - a, c - a, d - a, &c.; b′ - a′, c′ - a′, d′ - a′, &c.; b″ - a″, c″ - a″, d″ - a″, &c., &c.; $unt integri numeri, at non a′ - a, a″ - a, a′″ - a′, &c., & a minor e$t quam b, b quam c, c quam d, &c.; & a′ quam b′, b′ quam c′, &c.; &c.: ducantur & numerator & denominator dati ter- mini in z + a + 1 · z + a + 2 · z + a + 3 ... z + b - 1 × z + b + 1 · z + b + 2 · z + b + 3 ... z + c - 1 × z + c + 1 · z + c + 2 ... z + d - 1 × z + d + 1 · z + d + 2 ... &c. × z + a′ + 1 · z + a′ + 2 · z + a′ + 3 ... z + b′ - 1 × z + b′ + 1 · z + b′ + 2 · z + b′ + 3 ... z + c′ - 1 × z + c′ + 1 · z + c′ + 2 ... z + d′ - 1 × z + d′ + 1 ... &c. × z + a″ + 1 · z + a″ + 2 · z + a″ + 3 .. z + b″ - 1 × z + b″ + 1 · z + b″ + 2 ... z + c″ - 1 × z + c″ + 1 · z + c″ + 2 ... z + d″ - 1 × z + d″ + 1 · z + d″ + 2 ... &c. × &c. & terminus datus in terminum formulæ prius traditæ tran$it.

Sit (n) numerus quantitatum (a, a′, a″, a′″, &c.); tum ex (n) in- dependentibus integralibus vel $ummis, viz. {l / z + a}, {l′ / z + a′}, {l″ / z + a″}, [0534]DE SUMMATIONE &c., deduci po$$unt integrales vel $ummæ omnium $erierum prædi- ctarum formularum.

4. Sit generalis terminus {α z^m + β z^m-1 + γ z^m-2 + &c. / (z + e)^b (z + e + 1)^b (z + e + 2)^b .... (z + e + n - 1)^b} = {l / z + e} + {l′ / (z + e)^2} + {l″ / (z + e)^3} .. + {l′^b-1 / (z + e)^b} + {k / z + e · z + e + 1} + {(2 z + 2 e + 1) k′ / (z + e)^2 (z + e + 1)^2} + {(3 z^2 + 3 z e + e^2 + 3 z + 3 e + 1) k″ / (z + e)^3 (z + e + 1)^3} + ... {((z + e + 1)^b - (z + e)^b) k′^b-1 / (z + e)^b (z + e + 1)^b} + {i / z + e · z + e + 1 · z + e + 2} + {((z + e + 2)^2 - (z + e)^2) i′ / (z + e)^2 (z + e + 1)^2 (z + e + 2)^2} + {((z + e + 2)^3 - (z + e)^3) i″ / (z + e)^3 (z + e + 1)^3 (z + e + 2)^3} + ... {((z + e + 2)^b - (z + e)^b) i′^b-1 / (z + e)^b (z + e + 1)^b (z + e + 2)^b} + {f / z + e · z + e + 1 · z + e + 2 · z + e + 3} + {((z + e + 3)^2 - (z + e)^2) f′ / (z + e)^2 (z + e + 1)^2 (z + e + 2)^2 (z + e + 3)^2} + &c.; tum ex b independentibus integralibus vel $ummis $erierum harum formularum, e. g. {l / z + e}, {l′ / (z + e)^2}, {l″ / (z + e)^3}, .. {l′^b-1 / (z + e)^b} erui po$$unt $ummæ omnium aliorum incrementorum vel $erierum earun- dem formularum: vel generaliter $it terminus {α z^m + β z^m-1 + γ z^m-2 + &c. / (z + a)^b (z + b)^b′ (z + c)^b″ × &c. × (z + a′)^i (z + b′)^i′ (z + c′)^i″ × &c. × (z + a″)^k (z + b″)^k′ × &c. × &c.}; ubi quantitates a, a′, a″, &c. $unt re$pective minores quam b, c, &c.; b′, c′, &c.; b″, c″, &c.; &c.; & b - a, c - a, &c.; b′ - a′, c′ - a′, &c.; b″ - a″, c″ - a″, &c. $unt integri numeri; at non a′ - a vel a″ -a vel a″ - a′, &c. $eries, cujus prædictus fuit generalis terminus, eadem erit ac $eries, cujus generalis terminus e$t {α′ z^m′ + β′ z^m′-1 + γ′ z^m′-2 + &c. / (z + a)^π (z + a + 1)^π (z + [0535]SERIERUM, &c. a + 2)^π .. (z + b)^π (z + b + 1)^π .. (z + c)^π &c. × (z + a′)^ρ × (z + a′ + 1)^ρ .. (z + b′)^ρ .. (z + c′)^ρ × &c. × (z + a″)^σ (z + a″ + 1)^σ × &c.} = {λ / z + a} + {λ′ / (z + a)^2} + {λ″ / (z + a)^3} ... + {λ′^n-1 / (z + a)^π} + {x / z + a′} + {x′ / (z + a′)^2} + {x″ / (z + a′)^3} ... + {x′^ρ-1 / (z + a′)^ρ} + {θ / z + a″} + {θ′ / (z + a″)^2} + &c. + {ζ / (z + a) (z + a + 1)} + {((z + a + 1)^2 - (z + a)^2)ζ′ / (z + a)^2 (z + a + 1)^2} ... + {((z + a + 1)^π - (z + a)^π^π-1)ξ′ / (z + a)^π (z + a + 1)^π} + &c. + &c.; ubi π, ρ, σ, &c. re$pective $unt maximi inter indices h, b′, h″, &c.; i, i′, i″, &c.; k, k′, k″, &c.; &c.; qui omnes $unt integri numeri: $i enim numerator & denominator dati generalis termini ducantur re$pective in (z + a)^π-h × (z + a + 1)^π × (z + a + 2)^π ... × (z + b - 1)^π × (z + b)^π-h′ × (z + b + 1)^π × (z + b + 2)^π .. (z + c - 1)^π × (z + c)^π-h″ × (z + c + 1)^π × (z + c + 2)^π × &c. × (z + a′)^ρ-i × (z + a′ + 1)^ρ × (z + a′ + 2)^ρ ... (z + b′ - 1)^ρ × (z + b)^ρ-i′ × (z + b′ + 1)^ρ × (z + b′ + 2)^ρ .. (z + c′ - 1)^ρ × (z + c)^ρ-i″ × (z + c + 1)^ρ × &c. × &c.; tum re$ultat po$terior generalis terminus: hinc ex π + ρ + σ + &c. integralibus vel $ummis inter $e independentibus $erierum, quarum generales termini $unt prædicti, viz. ex integrali- bus vel $ummis $erierum, quarum termini $unt {λ / z + a}, {λ′ / (z + a)^2}, .. {λ′^n-1 / (z + a)^π}, {x / z + a′}, {x′ / (z + a′)^2}, ... {x′^ρ-1 / (z + a′)^ρ}; {θ / z + a″}, {θ′ / (z + a″)^2}, ... {θ′^σ-1 / (z + a″)^σ}, &c. deduci po$$unt integrales vel $ummæ omnium $erie- rum, quarum generales termini $unt prædicti.

Hæc magis generaliter per diver$as methodos prius tradita fuere in methodo incrementorum libro $ecundo contentorum.

[0536]DE SUMMATIONE

Cor.. Hinc facile inveniri po$$unt innumeræ $eries, quarum ge- neralis $umma innote$cit. A$$umatur enim quæcunque functio quantitatis z pro $ummâ s, & differentia inter duos ejus $ucce$$ivos valores, i. e. inter s & s′, ubi s′ $it valor, qui re$ultat $cribendo in datâ functione z + 1 pro z, invenietur terminus quæ$itus, i. e. s - s′ = t.

2. Sit generalis terminus x^rz+n in {a / z} + {b / z · z + 1} + {c / z · z + 1 · z + 2} + {d / z · z + 1 · z + 2 · z + 3} + &c. erit $umma æqualis x^rz+n in {a / 1 - x^r · z} + {b - A x^r / 1 - x^r · z · z + 1} + {c - 2 B x^r / 1 - x^r · z · z + 1 · z + 2} + {d - 3 C x^r / 1 - x^r · z · z + 1 · z + 2 · z + 3}, ubi quantitates A, B, C, D, &c. de$ignant coefficientes terminorum præcedentes eos, in quibus repe- riuntur; $cilicet A = {a / 1 - x^r}, B = {b - A x^r / 1 - x^r}, C = {c - 2 B x^r / 1 - x^r}, &c. Fingatur enim S = x^rz+n in {A / z} + {B / z · z + 1} + {C / z · z + 1 · z + 2} + &c. deinde $cribatur S - T pro S & z + 1 pro z, & re$ultat S - T = x^rz+n+r in {A / z + 1} + {B / z + 1 · z + 2} + {C / z + 1 · z + 2 · z + 3} + &c. hoc e$t S - T = x^rz+n in {A x^r / z + 1} + {B x^r / z + 1 · z + 2} + {C x^r / z + 1 · z + 2 · z + 3} + &c. quæ reducta ad formam ip$ius S, evadit S - T = x^rz+n in {A x^r / z} + {B x^r - A x^r / z · z + 1} + {C x^r - 2 B x^r / z · z + 1 · z + 2} + {D x^r - 3 C x^r / z · z + 1 · z + 2 · z + 3} + &c. $ubducito valorem ip$ius S - T a valore ip$ius S, & relin- quetur terminus T = x^rz+n in {A (1 - x^r) / z} + {B (1 - x^r) + A x^r / z. z + 1} + {C (1 - x^r) + 2 B x^r / z · z + 1 · z + 2} + &c. Hic denique valor ip$ius T collatus cum [0537]SERIERUM, &c. illo in propo$itione dat A (1 - x^r) = a, B (1 - x^r) + A x^r = b, C (1 - x^r) + 2 B x^r = c, &c.

Sit r negativa quantitas, & eadem erit lex $eriei progre$$ionis, ac ea cum r $it affirmativa quantitas.

Ex. 2. Erit integralis incrementi ({A / z^n}) = {a / z^n-1} + {b / z^n} + {c / z^n+1} + {d / z^n+2} + &c., ubi z denotat di$tantiam a primo $eriei termino, & a = {A / n - 1}, b = {(n - 1) a / 2}, c = {n b / 2} - {n · n - 1 / 2 · 3} a, d = {n + 1 / 2} c - {(n + 1) · n / 2 · 3} b + {n + 1 · n · n - 1 / 2 · 3 · 4} a, e = {n + 2 / 2} d - {n + 2 · n + 1 / 2} c + {n + 2 · n + 1 · n / 2 · 3 · 4} b - {n + 2 · n + 1 · n · n - 1 / 2 · 3 · 4 · 5} a, &c.

Ex. 3. Sit generalis terminus x^rz+m in {A / z^n}, tum erit ejus integralis x^rz+m × ({a / z^n} + {b / z^n+1} + {c / z^n+2} + {d / z^n+3} + &c.), ubi a = {A / 1 - x^r}, b = - {n x^r / 1 - x^r} a, c = - {1 / 1 - x^r} ((n + 1) b - (n + 1) · {n / 2} a) x^r, d = - {1 / 1 - x^r} ((n + 2) c - (n + 2) · {n + 1 / 2} b + (n + 2) · {n + 1 / 2} · {n / 3} a) x^r, e = - {1 / 1 - x^r} ((n + 3) d - (n + 3) · {n + 2 / 2} c + (n + 3) · {n + 2 / 2}· {n + 1 / 3} b - (n + 3). {n + 2 / 2}· {n + 1 / 3}· {n / 2} a) x^r, &c.

Cor. Sit generalis $eriei terminus {A / z^n} + {B / z^n+1} + {C / z^n+2} + {D / z^n+3} + &c., vel x^rz+m in {A / z^n} + {B / z^n+1} + &c., tum e duobus præcedentibus exemplis erui pote$t ejus integralis in $eriebus $ecundum dimen$iones quantitatis z progredientibus.

[0538]DE SUMMATIONE

Hæc facile demon$trari po$$unt e $cribendo z & z + 1 pro z in in- tegrali a$$umptâ, & duarum quantitatum re$ultantium differentiam inveniendo, quæ erit generalis terminus datus.

In omnibus hi$ce ca$ibus, $i aliquis factor contineatur in denomi- natore, qui non habet alium ab eo per integrum numerum di$tantem, tum non integrari pote$t data $eries.

Et $ic de terminis diver$as exponentiales quantitates involventibus.

PROB. I.

_1._ Datâ æquatione relationem exprimente inter $ucce$$ivas $ummas s, s′, s″, &c. datæ $eriei, ejus $ucce$$ivos terminos t, t′, t″, &c. & quantitatem z di$tantiam a primo $eriei termino, invenire æquationem inter $ummas $ucce$$ivas & z.

Pro terminis t, t′, t″, &c. in datâ æquatione $cribantur eorum va- lores s - s′, s′ - s″, s″ - s′″, &c. & re$ultat æquatio quæ$ita.

2. Datâ prædictâ æquatione, invenire æquationem relationem in- ter t, t′, t″, &c. & z exprimentem: in datâ æquatione pro $ummis s′, s″, s′″, &c. $cribantur s - t, s - t - t′, s - t - t′ - t″, &c. & habe- bitur æquatio A = 0, in quâ $olummodo continetur $umma s; inve- niatur incrementum huju$ce æquationis (A = 0) quod $it æquatio B = 0: aliter in æquatione (A = 0) pro s $cribatur s - t, & pro t, t′, &c. $cribantur t′, t″, &c. & pro z, z + 1, &c.; & re$ultat æquatio (C = 0), in quâ etiam $olummodo continetur $umma s, reducantur duæ æquationes A = 0 & C = 0, vel quod idem e$t A = 0 & B = 0 in unam, ita ut exterminetur s, & re$ultat æquatio quæ$ita.

Cor.. Hinc facile deduci po$$unt infinitæ $eries, quarum $ummæ dantur; a$$umatur enim æquatio ad $ummas, & ex eâ deducatur æqua- tio ad terminos, e quâ erui po$$unt termini, i. e. $eries quæ$ita.

Ex. 1. Sit æquatio (z - n) s = (z - 1) s′ = (z - 1) × (s - t), unde (n - 1) s = (z - 1) t; pro s $cribatur s - t = s′, & t′ pro t, & z + 1 pro z, & re$ultat æquatio (n - 1) s = (n - 1) t + z t′; $ubduc [0539]SERIERUM, &c. hanc æquationem de æquatione prædictâ (n - 1) s = (z - 1) t & re- $ultat æquatio ad terminos (z - n) t = z t′.

3. Datam prædictam æquationem (A = 0) in alteram transfor- mare, in quâ deficit z: inveniatur incrementum A′ = 0 datæ æquatio- nis ex hypothe$i quod z = 1; reducantur hæ duæ æquationes A = 0 & A′ = 0 in unam, ita ut exterminetur z, & evadet æquatio quæ$ita.

4. Ex datis relationibus inter $ucce$$ivos terminos, invenire rela- tiones inter $ucce$$ivos valores functionis quantitatis z di$tantiæ a primo $eriei termino, quæ prædictos terminos denotant.

In datis relationibus pro t, t′, t″, &c. $cribantur re$pective φ: z, φ:z + 1, φ: z + 2, &c., & re$ultant æquationes quæ$itæ.

THEOR. II.

Sint s - s′ = s. = t, s′ - s″ = t′ &c. t - t′ = s.., &c. tum erunt s - 2 s′ + s″ = t - t′ = s.., s - 3 s′ + 3 s″ - s′″ = t - 2 t′ + t″ = s^...;, & in genere s - n s′ + n · {n - 1 / 2} s″ - n · {n - 1 / 2} · {n - 2 / 3} s′″ + &c. = t - (n - 1)t′ + (n - 1) · {n - 2 / 2}t″ - &c. = s.n = t.n-1; etiamque s - n s. + n. {n - 1 / 2} s.. - n. {n - 1 / 2} · {n - 2 / 3}s... + &c. = integ. increm. (t) - n t + n. {n - 1 / 2} t. - n · {n - 1 / 2} · {n - 2 / 3} t.. + &c. = s′^n & t′^n = t - n t. + n · {n - 1 / 2} t.. - n · {n - 1 / 2} · {n - 2 / 3} t... + &c. = s - (n + 1) s. + (n + 1) · {n / 2} s.. - &c.

Cor.. Datam æquationem relationem inter $ucce$$ivos terminos & $ummas exprimentem in incrementialem transformare; pro s, s′, s″, &c. t, t′, t″, &c. $cribantur re$pective earum valores, & transfor- matur data æquatio in incrementialem, cujus integralis vel erit s vel t; & vice versâ data incrementialis æquatio, cujus integralis e$t s, [0540]DE SUMMATIONE transformari pote$t in æquationem relationem inter $ucce$$ivas $um- mas, terminos, &c. de$ignantem, $cribendo in datâ æquatione pro s, s., s.., &c. earum valores in hoc theoremate a$$ignatos.

PROB. II.

Detur æquatio relationem inter $ucce$$ivas $eriei $ummas S, S′, &c. & z di$tantiam a primo $eriei termino exprimens; invenire, utrum $umma S ad infinitam di$tantiam $it finita, necne.

Inveniatur ex datâ æquatione $eries de$cendens, quæ exprimit $ummam S terminis vero quantitatis z, i. e. $it $eries a z^m + &c. + A B z^-r + &c. ubi m $it affirmativa quantitas, - r vero negativa quan- titas, tum $eries ad infinitam di$tantiam erit infinite magna: $it m = 0, & con$equenter $eries A + B z^-r + C z^-s + &c. ubi - r & - s, &c. $unt negativæ quantitates, tum $umma ad infinitam di$tan- tiam erit finita, viz. = A; $i vero $it prædicta $eries B z^-r + C z^-s + &c. tum erit $umma ad infinitam di$tantiam infinite parva.

Et $ic e datâ æquatione inter $ucce$$ivos terminos relationem ex- primente & principiis prius traditis detegi pote$t, utrum $umma $it finita, necne.

THEOR. III.

Sit data æquatio relationem inter $ucce$$ivos $eriei terminos (T, T′, &c.) & $ummas, &c. exprimens α × β × γ × &c. = 0; tum erunt α = 0, β = 0, γ = 0, &c. re$pective diver$æ æquationes, quæ diver$as $eries datæ æquationis denotant. E. g. Sit æquatio data z T^2 + (z^2 + z + 1) T T′ + (z^2 + z) T′^2 = 0, ubi z $it di$tantia a primo $eriei ter- mino; inveniantur datæ æquationis divi$ores z T + (z + 1) T′ = 0 & T + z T′ = 0, qui diver$as $eries datæ æquationis denotant; & $ic deinceps.

[0541]SERIERUM, &c. THEOR. IV.

Sit terminus T′^n vel $umma S′^n+1, cujus ordo n $it maximus; tum in $erie ejus $ummam S exprimente, a$$umi po$$unt quæcunque n + 1 invariabiles quantitates ad libitum a$$umendæ, &c.

Hìc ad $eries applicari po$$unt omnia, quæ prius tradita fuerint de pluribus (n) fluxionalibus vel incrementialibus æquationibus plures (n + 1) variabiles quantitates habentibus, & earum correctionibus, &c.

THEOR. V.

1. Datâ æquatione (A = 0) relationem inter $ucce$$ivas $ummas, (S, S′, &c.) terminos (T, T′, &c.) & quantitatem z de$ignante; in eâ (A = 0) pro S, S′, &c. T, T′, &c. & z $cribantur re$pective S′, S″, &c. T′, T″, &c. & z + 1, & re$ultet æquatio B = 0; tum gene- ralis $eries, quæ $it radix æquationis r A + B = 0, ubi r $it quæcun- que invariabilis quantitas, haud eadem invenietur ac $eries, quæ erit radix æquationis B = 0.

2. Sit prædicta æquatio data A = a, & re$ultans B = b; tum haud eadem erit radix generalis æquationis BA = ba, ac æquationis B = b.

Con$tant e theor. 9. libri $ecundi.

PROB. III.

Datâ æquatione A = 0 relationem exprimente inter terminos (T, T′, T″, &c.) datæ $eriei $ecundum dimen$iones quantitatis x progredientis, in- venire æquationem relationem inter $ucce$$ivos ejus fluxionis terminos (t, t′, &c.) de$ignantem.

1. In æquatione A = 0 pro z di$tantiâ datæ $eriei termini a primo $cribatur z + 1, & pro T & T′ $cribantur re$pective T′ & T″; datæ æqua- tionis A = 0 & re$ultantis B = 0 inveniantur fluxiones α = 0 & π = 0; [0542]DE SUMMATIONE in æquationibus α = 0 & π = 0 pro T^., T^. ′ & T^. ″ $cribantur re$pective t, t′ & t″; reducantur hæ æquationes ad unam, ita ut exterminen- tur quantitates T & T′ & T″, & re$ultat æquatio quæ$ita.

2. Si vero plures termini T, T′, T″, ... T′^n-1 in datâ æquatione con- tineantur, tum inveniantur n - 1 $ucce$$ivi valores datæ æquationis $cribendo in eâ z + 1, z + 2 ... z + n - 1; T′, T″, ... T′^n; T″, T′″, ..T′^n+1; &c. $ucce$$ive pro z, T, T′, &c. & inve$tigentur eorum fluxiones, & exorientur n novæ æquationes; in his æquationibus pro T^., T^. ′, T^. ″, &c. $cribantur re$pective t, t′, t″, &c. & reducantur hæ 2 n æquationes ad unam, ita ut exterminentur quantitates T, T′, T″, &c. & re$ultat æquatio quæ$ita.

Et $ic de inveniendis æquationibus relationem inter $ucce$$ivos ter- minos $erierum exprimentibus, quarum termini algebraicam vel flu- xionalem vel incrementialem habeant relationem ad $ucce$$ivos ter- minos, inter quos dantur æquationes relationes exprimentes.

PROB. IV.

Datis æquationibus relationem de$ignantibus inter $ummas (S, S′, & s, s′) in diver$is $eriebus, & æquationibus ad terminos (T, T′, &c.) in alterutrâ; invenire æquationes ad terminos in alterâ.

Scribantur S - T, S - T - T′, &c. s - t, s - t - t′, &c. pro S′, S″, &c. s′, s″, &c. re$pective in datis æquationibus; deinde in æqua- tionibus re$ultantibus progrediatur e relatione variabilium præce- dente ad $ub$equentem, i. e. $cribatur S - T pro S & s - t pro s; & T′, T″, &c. t′, t″, &c. re$pective pro T, T′, &c. t, t′, &c. &c. & ita re- ducantur per vulgarem algebram datæ & re$ultantes æquationes, ut exterminentur S & s; deinde per methodos prius traditas ita reducan- tur hæ æquationes re$ultantes & æquatio ad terminos in alterutrâ, ut exterminentur T, T′, T″, &c. & re$ultabit æquatio relationem in- ter t, t′, &c. de$ignans.

[0543]SERIERUM, &c.

Et ex ii$dem principiis & datâ vel datis æquationibus relationes inter $ucce$$ivas $ummas & terminos exprimentibus erui po$$unt æquationes relationes inter $ucce$$ivas $ummas vel $ucce$$ivos termi- nos $olummodo exprimentes.

PROB. V.

Datis duabus $eriebus, i. e. methodo inveniendi terminos re$pectivos e datâ eorum di$tantiâ z a primo $eriei termino; invenire relationem inter terminos corre$pondentes duarum $erierum.

Scribantur pro corre$pondentibus duarum $erierum terminis re- $pective T & t; & dentur duæ æquationes relationes inter z & T, & z & t re$pective exprimentes; reducantur hæ duæ æquationes ad unam, ita ut exterminetur z, & re$ultat æquatio relationem inter T & t exprimens.

Ex.. Sint duæ $eries re$pective 0 + 1 + {1 / 4} + {1 / 9} + {1 / 16} + {1 / 25} + &c. & 0 + {1 / 1 · 2} + {1 / 2 · 3} + {1 / 3 · 4} + {1 / 4 · 5} + &c. & con$equenter erunt {1 / z^2} = T & {1 / z × z + 1} = t; reducantur hæ æquationes, ita ut exterminetur z & re$ultat æquatio t T{1 / 2} + Tt = 1.

Cor. · Datâ æquatione relationem exprimente inter di$tantiam a primo $eriei termino (z) & terminum ip$um (T), & datâ æquatione relationem exprimente inter corre$pondentes duarum $erierum ter- minos (T & t); invenire æquationem relationem inter z & t exprimen- tem; reducantur duæ æquationes relationem inter z & T, T & t ex- primentes ad unam, ita ut exterminetur T, & fit corollarium.

Et $ic de relationibus inter terminos, &c. plurium æquationum deducendis.

PROB. VI. Datis duabus $eriebus; invenire, annon earum $ummæ datam habent inter $e generalem relationem. [0544]DE SUMMATIONE

In datâ æquatione exprimente relationem inter S & s duas $ummas quæ$itas, $cribantur pro S & s re$pective earum $ucce$$ivæ corre$pon- dentes $ummæ S - T & s - t, modo T & t $int $ucce$$ivi dati termini utriu$que $eriei re$pective; $cribantur etiam in datis $eriebus pro S, S - T, & pro s, s - t, &c.; & $i eadem adhuc re$ultet relatio inter S & s; &c.; tum datur relatio inter prædictas $ummas; $in aliter vero non.

PROB. VII. Invenire $eriem, cujus $ummæ $ucce$$ivæ (s) quamcunque habeant rela- tionem ad $ummas $ucce$$ivas (S) datæ $eriei.

In datâ æquatione relationem exprimente pro S $cribatur ejus va- lor $ucce$$ivus S - T, $i modo T $it proximus terminus datæ $eriei; ex æquatione re$ultante inveniatur proximus valor $ummæ $eriei quæ$itæ s, & differentia inter duas $ucce$$ivas $ummas erit terminus $eriei quæ$itus.

THEOR. VI.

1. Summa (S) nullius $eriei exprimi pote$t per algebraicam æqua- tionem inter prædictam $ummam S & quantitatem x, $ecundum cu- jus dimen$iones progreditur $eries, relationem de$ignantem; ni di- men$iones quantitatis x vel earum differentiæ denotari po$$int per unam vel duas vel denique n finitum numerum arithmeticarum $e- rierum; etiamque, $i modo z denotet di$tantiam a primo datæ $eriei termino, ni terminorum ip$orum coefficientes exprimi po$$int in ra- tionalibus terminis literis z; etiamque, ni differentia inter dimen$io- nes quantitatis z in eorum numeratore & denominatore contentas, eadem $it; $i vero detur æquatio inter $ucce$$ivos datæ $eriei terminos relationem exprimens, ni differentia prædicta eadem manet.

2. Summa nullius $eriei exprimi pote$t per fluxionalem æquatio- nem relationem inter prædictam $ummam S & quantitatem x, $ecun- dum cujus dimen$iones progreditur $eries, de$ignantem; ni dimen$i- [0545]SERIERUM, &c. ones quantitatis x vel earum differentiæ exprimi po$$int per unum vel duo vel denique n numerum arithmeticarum $erierum; etiamque ni coefficientes exprimi po$$int in rationalibus terminis literæ z, & differentia inter dimen$iones quantitatis z in denominatore & nume- ratore contentas eadem maneat, vel uniformiter augeatur vel minua- tur: eadem etiam affirmari po$$unt de $eriebus, quarum relationes per algebraicas æquationes inter $ucce$$ivos terminos de$ignantur.

Hæc vero principia applicari po$$unt ad deducendam unius $eriei fummam ex alterâ, &c.

THEOR. VII.

In $eriebus ex divi$ione ortis eadem erit relatio inter terminos t, t′, t″, &c. ac inter $ummas s, s′, s″, &c. $ucce$$ivas.

Sit enim æquatio data inter $ummas $ucce$$ivas ps + qs′ + rs″ + &c. = 0, & ex hac æquatione per problema 1. inveniri pote$t æquatio inter terminos $ucce$$ivos, quæ erit pt + qt′ + rt″ + &c. = 0: enim s′ + t = s, s″ + t′ = s′, s″′ + t″ = s″, & $ic deinceps; unde ps + qs′ + rs″ + &c. = p(s′ + t) + q(s″ + t′) + &c. = (ps′ + qs″ + rs″″ + &c. = 0) + pt + qt′ + rt″ + &c. = 0, & exinde pt + qt′ + rt″ + &c. = 0.

THEOR. VIII.

Sit $eries {A / p + qx + rx^2 + sx^3 + &c.} = a + bx + cx^2 + dx^3 · .. T′^α-3 x^n-3 + T′^α-2 x^n-2 + T′^α-1 x^n-1 + T′^α x^n + &c. tum erit $emper ultimo pT′^α + qT′^α-1 + rT′^α-2 + sT′^α-3 + &c. = 0, $i modo A = b + kx + 1x^2 + &c. $it quantitas haud in infinitum pergens; con$tat e ducendo $eriem a + bx + cx^2 + &c. in p + qx + rx^2 + &c. quod produ- ctum exinde ortum erit pa + (pb + qa)x + (pc + qb + ra)x^2 + &c. = A.

[0546]DE SUMMATIONE THEOR. IX.

Sit $eries S = a + b x + c x^2 + d x^3 + &c. in infinitum, cujus rela- tio inter $ucce$$ivos terminos t, t′, t″, &c, de$ignetur per æquationem p t + q t′ + r t″ + σ t′″ + &c. = 0 ubi p, q, r, σ, &c. $unt invariabiles quan- titates; tum erit $umma $eriei S = {a × (q x^n-1 + r x^n-2 + s x^n-3 + τ x^n-4 + &c.) + b × (r x^n-1 + s x^n-2 + τ x^n-3 + &c.) + c × (s x^n-1 + τ + &c.) + d × (τ x^n-1 + &c.) / p x^n + q x^n-1 + + r x^n-2 + s x^n-3 + &c.}, ubi n $it minor per unitatem quam numerus lite. rarum p, q, r, &c.

Cor. 1. Hinc datâ æquatione relationem inter n $ucce$$ivos termi- nos de$ignante; pro (n - 1) terminis a$$umi po$$unt quæcunque datæ quantitates; ergo in hoc ca$u ita a$$umi po$$unt n - 1 primi termini ut numerator $it divi$or denominatoris, & con$equenter $eries prædicta a + b x + c x^2 + &c. = {1 / α + x}; & $ic a$$umi po$$unt (n - 1) primi termini, ut $eries a + b x + c x^2 + &c. (re$ultans ex æquatione p t + q t′ + r t″ + &c. = 0) = {π + ρ x / α′ + β′x + γ′x^2}, & $ic deinceps.

Cor. 2. Fingatur p × (x + α) × (x + β) × (x + γ) × &c. = p x^n + q x^n-1 + r x^n-2 + &c. & erunt {A / x + α}, {B / x + β}, {C / x + γ}, &c., {F x + G / (x + α) × (x + β)}, {H x + 1 / (x + α) × (x + β)}, &c. particulares valores $eriei per æqua- tionem p t + q t′ + r t′ + &c. = 0 denotatæ.

Cor. 3. Ex ultimâ relatione terminorum, quæ $it con$tans, i. e. prædicti generis, $equitur methodus $ummandi $eries quam proxime, in quibus relatio terminorum e$t variabilis: $it æquatio p t (z^2 + a z + b) + q t′ (z^2 + c z + d) = 0, & ultima relatio terminorum erit [0547]SERIERUM, &c. p t z^2 + q t′ z^2 = 0, & exinde per prob. erit $umma quæ$ita prope = {q / q + p} t.

Et $ic $it ultima relatio, i. e. relatio ad infinitam di$tantiam p t + q t′ + r t″ = 0, & erit $umma terminorum longe di$tantium = {(q + r) t + s t′ / p + q + r}, i. e. ubi z di$tantia a primo $it permagnus numerus: & ex ii$dem principiis ulterius promotis corrigere liceat approxima- tionem inventam. Con$tat e $cribendo t & t′ pro a & b, & 1 pro x in huju$ce problematis re$olutione.

PROB. VIII.

Æquationem relationem inter n $ucce$$ivos terminos (t, t′, t″, t′″, &c.) viz. p t + q t′ + r t″ + s t′″ + &c. = 0 exprimentem, cujus $eries $it a + b x + c x^2 + d x^3 + &c. in plures dividere.

Summa $eriei prædictæ erit {a(qx^n-1 + rx^n-2 + sx^n-3 + &c.) + b(rx^n-1 + s x^n-2 + &c.) + c(s x^n-1 + τ x^n-2 + &c.) + &c. / p x^n + q x^n-1 + r x^n-2 + s x^n-3 + &c.}; $ed e lem. cap. 2. lib. 1. dividi pote$t hæc fractio in n $ub$equentes {a / x - α} + {b / x - β} + {c / x - y} + &c. ubi p (x - α) × (x - β) × (x - γ) × &c. = px^n + q x^n-1 + &c. & con$equenter data dividitur æquatio in alias, viz. T - α T′ = 0, T - β T′ = 0, &c. & $eries a + b x + c x^2 + &c. dividitur in n $eries for- mulæ ({a / x - α}) = - {a / α} - {a x / α^2} - {a x^2 / α^3} - &c.

2. Sit ultima relatio terminorum prædicta p t + q t′ + r t″ + &c. = 0; dividi pote$t per præcedentem methodum $eries ejus in n alias, quarum terminorum longe di$tantium $umma æquat terminum $e- riei, cujus relatio datur: vel ob (a + b x)^m = a^m + m{a^m × b x / a + b x} + m. [0548]DE SUMMATIONE {m + 1 / 2}{a^m × b^2 x^2 / (a + bx)^2} + m · {m + 1 / 2} · {m + 2 / 3} · {a^m × b^3 x^3 / (a + b x)^3} + &c. = {a^m+1 / a + b x} + {(m + 1) a^m+1 × b x / (a + b x)^2} + {(m + 1) · (m + 2) a^m+1 b^2 x^2 / 2 # (a + bx)^3} + {(m + 1) × m + 2) × (m + 3) a^m+1 × b^3 x^3 / # 2 · 3 # (a + b x)^4} + &c. = {a^m+n / (a + b x)^n} + {(m + n) a^m+n b x / (a + b x)^n+1} + {(m + n) × (m + n + 1) × a^m+n b^2 x^2 / # 2 # (a + b x)^n+2} + {(m + n) × (m + n + 1) × (m + n + 2) a^m+n+1 b^3 x^3 / # 2 # . # 3 # (a + b x)^n+3} + &c. & quoniam ad infinitam di$tantiam ea- dem invenietur relatio inter $ucce$$ivos terminos $eriei a + b x + c x^2 + d x^3 + &c. = {A + B x + C x^2 + &c. / (px^n + qx^n-1 + rx^n-2 + &c.)^m}, ubi numerator terminat, quicunque $it valor indicis m; exinde dividi pote$t $umma $eriei {a(q x^n-1 + r x^n-2 + s x^n-3 + &c.) + b(r x^n-1 + s x^n-2 + &c.) + c(s x^n-1 + &c.) / p x^n + q x^n-1 + r x^n-2 + &c.} multis modis in plures alias, &c.

Et $ic de pluribus con$imilibus methodis.

3. Convergentiæ $erierum, quarum dantur æquationes relationes inter $ucce$$ivas $ummas & terminos exprimentes, deduci po$$unt ex principiis de convergentiis incrementialium æquationum traditis, vel nonnunquam ex convergentiis terminorum ad infinitam di$tantiam po$itorum.

THEOR. X.

Sit T generalis $eriei functio quantitatis z di$tantiæ a primo $eriei termino, tum ejus $umma per eandem methodum omnino inve$ti- ganda e$t ac integralis incrementi, quod e$t eadem functio quantita- tis z, cujus incrementum e$t 1.

[0549]SERIERUM, &c. THEOR. XI.

Sit æquatio A = 0 ad $ummas, n habens invariabiles quantitates (a, b, c, d, &c.) ad libitum a$$umendas; dantur n diver$æ æquationes relationes inter T & T′, vel T′ & T″, &c. exprimentes; dantur etiam n. {n - 1 / 2} æquationes diver$æ relationes inter T, T′ & T″, &c.; expri- mentes; & $ic deinceps.

Inveniatur $ucce$$ivus valor (B = 0) æquationis (A = 0); $cri- bendo in eâ pro z, z + 1; pro S, S′; & $ic deinceps; ita reducantur duæ æquationes A = 0 & B = 0 ad unam, ut exterminentur quanti- tates a, b, c, d, &c. $ucce$$ive; & re$ultabunt n diver$æ æquationes n - 1 invariabiles quantitates ad libitum a$$umendas habentes; tum ita reducantur hæ re$ultantes æquationes, ut exprimant relationes in- ter $ucce$$ivos terminos T & T′, & invenientur n diver$æ æquationes prædictæ. Et $ic de reliquis.

THEOR. XII.

Datâ æquatione relationem inter $ucce$$ivos terminos exprimente, & e prob. 18. lib. 2<_>di. con$tat $emper dari multiplicatorem, qui in datam æquationem ductus producet æquationem, cujus $ummatio innote$cit.

Cor. 1. Si detur æquatio A = con$t. quæ $it $ummatio generalis æquationis B = 0.

Ex incremento æquationis A = con$t. inveniatur æquatio ad ter- minos C = 0; tum erit {C / B} unus multiplicator, qui reddit æquationem B = 0 $ummabilem.

Cor. 2. Si generalis $ummatio æquationis a T^n + b T^n-1 + c T^n-2 ... f T^2 + g T′ + h T = 0 (ubi T, T′, ... T^n-2, T^n-1, T^n $unt termini $ucce$$ivi, & a, b, c, ... f, g, h $unt functiones ip$ius z di$tantiæ a primo vel quocunque alio $eriei termino) innote$cat; tum innote$- [0550]DE SUMMATIONE cent diver$i multiplicatores, qui eam reddent $ummabilem; $int π, ρ, σ, τ, &c. functiones quantitatis z; tum π, ρ, σ, τ, &c. erunt etiam multiplicatores, qui reddent æquationem a T^n + b T^n-1 + c T^n-2 ... f T^2 + g T′ + b T = Z $ummabilem, ubi Z e$t quæcunque functio ip$ius z.

Hìc applicari po$$unt omnia, quæ prius traduntur de transforma- tione, &c. incrementorum incrementialium æquationum, &c. facile enim mutari pote$t incrementialis æquatio in æquationem inter $uc- ce$$ivos terminos, &c.

PROB. IX. Invenire $eries, quæ $ummationem recipiunt.

1. A$$umatur $eries quælibet unitate determinata (utrum $it accu- rate $ummabilis necne, nihil refert, modo ejus termini ad nihilum perpetuo convergant); e quâ $eriem eandem termino $uo primo, vel terminis duobus primis, vel terminis tribus primis, &c. multatam $ubtrahe; inde illud $it, ut quod relinquitur vel æquale $it termino primo $eriei a$$umptæ, vel terminis ejus duobus primis, vel terminis tribus primis, & $ic in in$initum.

Hanc autem operandi rationem circa $eries hâc $ubtractione com- paratas iterare licet, unde novæ $eries in in$initum exurgent, quæ omnes $ummabiles erunt.

Ex. 1. Sumatur $eries 1 + {1 / 2} + {1 / 3} + {1 / 4} + {1 / 5} + {1 / 6} + &c. e quâ $ubtra- hatur ip$amet demptis n - 1 terminis $uis primis, hoc e$t $ubtrahatur {1 / n} + {1 / n + 1} + {1 / n + 2} + {1 / n + 3} + &c. & relinquitur {n - 1 / n × 1} + {n - 1 / 2 · (n + 1)} + {n - 1 / 3 · n + 2} + {n - 1 / 4 · n + 3} + {n - 1 / 5 · n + 4} + &c. = 1 + {1 / 2} + {1 / 3} + {1 / 4}...{1 / n - 1}: rur$us a $erie quam modo comparavimus, $ubtraha- tur ip$amet demptis m - 1 terminis $uis primis, hoc e$t {n - 1 / m × (n + m - 1)}[0551]SERIERUM, &c. + {n - 1 / (m + 1) · (n + m)} + {n - 1 / (m + 2) · (n + m + 1)} + &c. & relinquitur {(n - 1) × (m(n + m - 1) - n) / n × m × (n + m - 1)} + {(n - 1) × ((m + 1) × (n + m) - 2 × (n + 1)) / (n + 1) × (m + 1) × (n + m)} + {(n - 1) × ((m + 2) · (n + m + 1) - 3 × (n + 2)) / (n + 2) × (m + 2) × (n + m + 1)} + &c. = {n - 1 / 1 · n} + {n - 1 / 2 (n + 1)} + {n - 1 / 3 × (n + 2)}...{n-1 / (m - 1) · (n + m - 2)}; & $ic deinceps.

Cor. 1. Sit data $eries t + t^1 + t^2 + t^3 + t^4 + &c. ubi per t, t^1, t^2, t^3, &c. de$ignentur $ucce$$ivi ejus termini, & erit terminus generalis $eriei ex datâ $erie per hanc methodum deductæ = a t^m + b t^n + c t^t + d t^s + &c.; ubi per t^m, t^n, t^r, t^s, &c. de$ignantur termini ad di$tan- tias m, n, r, s, &c. re$pective a primo vel quocunque alio datæ $eriei termino, & a + b + c + d + &c. = 0; $it m minor quam n, n quam r, r quam s, & m minimus & l maximus index; tum erit $eriei, cujus generalis terminus e$t (a t^m + b t^n + c t^r + d t^s + &c.), $umma = a(t^m + t^m+1 + t^m+2 ... + t^l-1) + b(t^n + t^n+1 + t^n+2 ... + t^l-1) + c(t^r + t^r+1 + t^r+2 ... + t^l-1) + d(t^s + t^s+1 + t^3+2 ... + t^l-1) + &c.: e. g. $it data $eries 1 + {1 / 2} + {1 / 3} + {1 / 4} + &c., tum $umma $eriei, cujus termi- nus e$t a(t^m - t^n) = {a / z + m} - {a / z + n} = {a n - a m / z + m · z + n}, erit = a ({1 / z + m} + {1 / z + m + 1} + {1 / z + m + 2}...{1 / z + n - 1}).

Cor. 2. Hinc facile con$tat $emper eandem evadere $eriem, utrum primum $ubtrahatur e datâ $erie eadem ab m terminis multata, & deinde ex $erie re$ultante B $ubtrahatur eadem B ab n terminis mul- tata; vel primum $ubtrahatur e datâ $erie eadem ab n terminis mul- tata, & deinde ex $erie re$ultante $ubtrahatur eadem ab m terminis multata. Et con$imilia etiam affirmari po$$unt de pluribus con$imi- libus repetitis operationibus.

2. Altera vero methodus erit, ut a$$umptâ quâlibet $erie infinitâ, cujus termini tum ad nihil perpetuo convergant, tum procedant per [0552]DE SUMMATIONE pote$tates indeterminatæ x, $i multiplicetur $eries a$$umpta per bino- mium vel multinomium utcunque conflatum ex quantitatibus datis & indeterminatâ x, deinde ponatur binomium vel multinomium il- lud nihilo æquale, &c. hinc elicietur valor indeterminatæ x, ad quem $i quantitas i$ta re$tringatur, tunc $eries ex hâc multiplicatione genita evadet etiam nihilo æqualis, quapropter $i transferantur termini ejus primi ad alteram æquationis partem, $eries re$idua æqualis erit ter- minis tran$latis.

Ex.1. Sumatur $eries 1 + {1 / 2}x + {1 / 3}x^2 + {1 / 4}x^3 + {1 / 5}x^4 + &c. quæ $i mul- tiplicetur per binomium 1 - a x^m = 0 erit $eries genita 1 + {1 / 2} x + {1 / 3} x^2 ... {1 / m}x^m-1 - {(m + 1) × a - 1 / m + 1}x^m - {(m + 2)a - 2 / (m + 2).2} x^m+1 - {(m + 3) × a - 3 / (m + 3) · 3} × x^m+2 - &c. unde 1 + {1 / 2} x + {1 / 3} x^2 ... {1 / m}x^m-1 = P = {(m + 1) · a - 1 / m + 1} x^m + {(m + 2) a - 2 / (m + 2) · 2} x^m+1 + {(m + 3) a - 3 / (m + 3) · 3} x^m+2 + &c. multiplicetur hæc æquatio re$ultans in 1 - b x^n & re$ultat (1 - b x^n) × P = {(m + 1) × a - 1 / m + 1} x^m + {(m + 2) · a - 2 / (m + 2) · 2} x^m+1 + {(m + 3) · a - 3 / (m + 3) · 3}x^m+2 ... + {(m + n)a - n / (m + n) × n}x^m+n-1 - {((n + 1) × (m + 1) × (m + n + 1) a - (m + n + 1) × (n + 1)) b - (m + 1) × ((m + n + 1) a - (n + 1)) / (m + 1) × (n + 1) × (m + n + 1)} x^m+n + {2(m + n + 2) × (m + 2) a - 2 {(m + 2) × (n + 2) - ((m + 2) × a - 2) × (m + n + 2) × (n + 2)^b / 2 · m + 2 · n + 2 · (m + n + 2)} x^m+n+1 + {3(m + n + 3) · (m + 3) a - 3 (m + 3) · (n + 3) - ((m + 3) × a - 3) × (m + n + 3) · (n + 3)^b / 3 · m + 3 · n + 3 · m + n + 3}× x^m+n+2 + &c. unde (1 - b x^n) × P - {(m + 1) × a - 1 / m + 1}x^m - {(m + 2)a - 2 / (m + 2) · 2}x^m+1 - {(m + 3)a - 3 / (m + 3) · 3} x^m+2 ... - [0553]SERIERUM, &c. {(m + n)a - n / (m + n) · n} x^m+n-1 = {(m + 1) · (m + n + 1) a - (m + 1) · (n + 1)-((m + 1) a - 1) × (m + n + 1) × (n + 1)^b / (m + n + 1) × (n + 1)} × (n + 1) × (m + 1)} + {2(m + 2) · (m + n + 2) a - 2(m + 2) · (n + 2) - ((m + 2)a - 2) × (m + n + 2) × (n + 2)^b / m + n + 2 · n + 2 · m + 2 · 2} + &c.

Et $ic iteratâ operatione novæ exurgent $eries.

Hæ methodi fallunt, cum $eries inventa $it infinita quantitas.

Cor. 1. Secunda methodus eadem $it ac prior, $i modo pro x $cri- batur unitas, & vice versâ prima methodus $emper continetur in $e- cundâ.

Cor. 2. Sit terminus {A / az + b. cz + d · ez + f. g z + b · &c.} = {B / a z + b} + {B′ / cz + d} + {B″ / ez + f} + {B″′ / g z + b} + &c. = {C / a z + b. cz + d} + {C′ / ez + f} + {C″ / gz + b} + &c. = {c / az + b. cz + d} + {c′ / ez + f. gz + b} + &c. = {D / a z + b. c z + d. e z + f} + {D′ / gz + b} + &c. = {d / a z + b. c z + d} + {d′ / gz + b. ez + f} + &c. = &c., ubi in denominatoribus harum fractionum contineantur omnes divi$ores denominatoris datæ fractionis & nulli alii.

Cor 3. Datis $eriebus, ex his methodis $æpe deduci po$$unt earum $ummæ

A$$umatur $eries, ita ut factores in denominatore contenti conti- neantur in duobus vel pluribus diver$is terminis a$$umptæ $eriei, quorum di$tantiæ a $e invicem $int m, n, &c. & deinde per præce- dentes methodos inveniatur $eries, quæ fiat datæ $eriei æqualis, & $it coroll.

[0554]DE SUMMATIONE

Ex. 1. Sit $eries S = {4n + 5 / 2 n + 1 · 2 n + 2 · 2 n + 3 · 2 n + 4} x + {4n + 9 / 2 n + 3 · 2 n + 4 · 2 n + 1 · 2 n + 6} x^2 + {4 n + 13 / 2 n + 5 · 2 n + 6 · 2 n + 7 · 2 n + 8} x^3 + &c. quâpropter a$$umptâ $erie {1 / 2 n + 1 · 2 n + 2} + {1 / 2 n + 3 · 2 n + 4} x + {1 / 2 n + 5 · 2 n + 6} x^2 + &c. = S, quoniam $i 2 n + 1 & 2 n + 2 fint factores in denominatore unius termini, tum 2 n + 3 · 2 n + 4 erit denominator $ub$equentis termini: multiplicetur $eries a$$ump- ta per x - 1, & re$ultat (x - 1) S′ = ({- 1 / 2 n + 1 · 2 n + 2}) + {8n + 10 / 2 n + 1 · 2 n + 2 · 2 n + 3 · 2 n + 4} x + &c. = - {1 / 2 n + 1 · 2 n + 2} + 2S, pone x - 1 = 0 & evadet datæ $eriei $umma S = {1 / 2 n + 1 · 2 n + 2}.

Cor.. Pone in prædictâ $ummâ S pro n duos diver$os valores l & l + m, ubi m $it integer numerus, & erit duarum quantitatum re$ul- tantium differentia $umma m terminorum, e. g. in hoc exemplo $cribe in $ummâ {1 / 2 n + 1 · 2 n + 2} valores n & n + m pro n, & evadet dif- ferentia {1 / 2 n + 1 · 2 n + 2} - {1 / 2 n + m + 1 · 2 n + m + 2} $umma m primorum terminorum.

Ex. 2. Sit $eries B = {1 / 1 · 2 · 3 · 4 · 5} + {4 / 4 · 5 · 6 · 7 · 8} + {9 / 7 · 8 · 9 · 10 · 11} + {16 / 10 · 11 · 12 · 13 · 14} + &c.

Sit n numerus de$ignans locum termini, tum terminus ip$e erit {{1 / 3}n / 3n - 2 · 3 n - 1 · 3 n + 1 · 3n + 2}; & $eries po$t n terminos erit [0555]SERIERUM, &c. {1 / 3} × {(n + 1) / (3n + 1) · (3n + 2) · (3n + 4) · (3n + 5)} + {{1 / 3}(n + 2) / (3n + 4) · (3n + 5) · (3n + 7) · (3n + 8)} + {{1 / 3}(n + 3) / (3n + 7) × (3n + 8) × (3n + 10) × (3n + 11)} + &c. quoniam denominator quilibet hujus $eriei e $actoribus qua- tuor con$tat, quorum bini quique in termino proxime $equente repe- tuntur, $umatur idcirco $eries {1 / 3 n + 1 · 3 n + 2} + {x / 3 n + 4 · 3 n + 5} + {x^2 / 3 n + 7 · 3 n + 8} + &c. = S, cujus bini factores in $ingulis deno- minatoribus $emel tantummodo occurrunt; deinde, quoniam in $erie datâ denominatoris cuju$libet pars ea quæ iterum occurrit in termino proxime $equente con$picitur: multiplicetur $eries data per x - 1 ($in vero ita accideret ut terminus unus vel duo vel plures terminis repetitis interjaceant, fiat congruens multiplicatio $eriei datæ per x^2 - 1 vel x^3 - 1, &c.) prodibit $eries - {1 / (3n + 1) × (3n + 2)} + {18 n + 18 / 3 n + 1 · 3 n + 2 · 3 n + 4 · 3 n + 5} x + {18 n + 36 / 3 n + 4 · 3 n + 5 · 3 n + 7 · 3 n + 8} {18 n + 54 / 3 n + 7 · 3 n + 8 · 3 n + 10 · 3 n + 11} x^3 &c. = (x - 1) S: ponatur x = 1, deinde fiat tran$latio primi termini ad alteram æquationis partem; tum dividantur omnia per 54, hinc exurget $umma de$iderata {1 / 3} × (n + 1{ / 3 n + 1 · 3 n + 2 · 3 n + 4 · 3 n + 5} + {{1 / 3}(n + 2) / 3n + 1 · 3n + 1 · 3n + 1 · 3n + 8} + &c. = {1 / 54 · 3 n + 1 · 3 n + 2}.

Ex. 3. Proponatur $eries {19 / 1 · 2 · 3} × {1 / 4} + {28 / 2 · 3 · 4} × {1 / 8} + {39 / 3 · 4 · 5} × {1 / 16} + {52 / 4 · 5 · 6} × {1 / 32} + &c. cujus $umma requiritur.

[0556]DE SUMMATIONE

A$$umatur $eries 1 + {1 / 2} x + {1 / 3} x^2 + {1 / 4} x^3 + {1 / 5} x^4 + &c. = S, in quâ inveniuntur omnes factores e quibus conflantur denominatores $eriei propo$itæ: fingantur multiplicatores bini 2 x - 1 & a x - b; prior a$$umatur, quoniam $eries data procedit per pote$tates fractio- nis {1 / 2}; præterea cum ex horum multiplicatorum mutuo ductu gene- retur quantitas 2 a x^2 - 2 b x - a x + b multiplicetur $eries a$$umpta per productum i$tud, quo facto emerget $eries b - {3 b + 2 a / 1 · 2} x + {9 a - 4 b / 1 · 2 · 3} x^2 + {16 a - 10 b / 2 · 3 · 4} x^3 + {25 a - 18 b / 3 · 4 · 5} x^4 + &c. = (2 x - 1) × (a x - b) × S, tran$latione factâ erit {9a - 4 b / 1 · 2 · 3} x^2 + {16 a - 10 b / 2 · 3 · 4} x^3 + {25 a - 18 b / 3 · 4 · 5} x^4 &c. = (2 x - 1) × (a x - b) × S - b + {3 b + 2 a / 1 · 2} x. Comparetur nunc primus terminus hujus æquationis cum termino primo $erie datæ, itemque $ecundus cum $ecundo; hinc erit 9 a - 4 b = 19, & 16 a - 10 b = 28, unde invenietur a = 3, b = 2, & $umma $eriei propo$itæ erit = 1.

Eâdem operâ invenietur ($i ponatur a x - b in 3 x - 2, erit jam x = {2 / 3} {19 / 1 · 2 · 3} × {4 / 9} + {28 / 2 · 3 · 4} × {8 / 27} + {39 / 3 · 4 · 5} × {16 / 81} + {52 / 4 · 5 · 6} × {32 / 243} &c. = 2.

Ex. 4. Sit $eries 1 + {1 / 2} x + {1 / 3} x^2 + {1 / 4} x^3 + {1 / 5} x^4 + &c. = S, multi- plicetur $eries a$$umpta per trinomium a + b x + c x^2, unde erit $e- ries genita {2 a + 3 b + 6 c / 1 · 2 · 3} x ^2 + {6 a + 8 b + 12 c / 2 · 3 · 4} x ^3 + {12 a + 15 b + 20 c / 3 · 4 · 5} x ^4 &c. = (a + b x + c x^2) × S - a - {1 / 2} a x - b x; fiat comparatio terminorum $eriei genitæ cum terminis $eriei propo$itæ, e. g. $it $e- ries {19 x^2 / 1 · 2 · 3} + {28 x^3 / 2 · 3 · 4} + {39 x^4 / 3 · 4 · 5} + &c. hinc orientur tres æquationes 2 a + 3 b + 6 c = 19, 6 a + 8 b + 12 c = 28, 12 a + 15 b + 20 c [0557]SERIERUM, &c. = 39, quarum ope invenientur a = 2, b = - 7, c = 6; erit igitur $umma de$iderata = (2 - 7 x + 6 x^2) × S - a + 6 x: jam $i requi- ratur, ut irrationalitas tollatur, pone 2 - 7 x + 6 x^2 = 0, hinc eli- cietur valor duplex quantitatis x nempe {1 / 2} & {2 / 3}, quapropter $i x re$tin- guatur ad valorem {1 / 2} erit $umma $eriei = 1; $in vero x re$tinguatur ad valorem {2 / 3}, erit $umma $eriei = 2.

3. Exempla hujus multiplicationis etiam ex præcedente additione ulterius promotâ facile erui po$$unt. E. g. Sit $eries p + q x + r x^2 + s x^3 + &c. = S, multiplicetur hæc $eries in a, in b x & in c x^2; & re$ultant a p + a q x + a r x^2 + &c., b p x + b q x^2 + b r x^3 + &c., & c p x^2 + c q x^3 + &c.; quibus ad unam $ummam adjunctis, ea re$ultat a p + (a q + b p) x + (a r + b q + c p) x ^2 + &c. = (a + b x + c x^2) × S: $i a + b x + c x^2 = 0, & termini ad in$initam di$tantiam nihilo evadant æquales; tum $eries re$ultans $emper converget.

Sint enim termini ad infinitam di$tantiam {1 / z^0}, ubi 0 e$t quantitas quam minima, at finita; tum differentia inter duos $ucce$$ivos ter- minos {1 / z^0} & {1 / (z + 1)^0}, ubi z e$t infinita quantitas = {(z + 1)^0 - z^0 / z^0 × (z + 1)^0} = {- O / z^0+1} prope; unde termini ad infinitam di$tantiam decre$cunt in reciprocâ ratione (0 + 1) di$tantiæ a primo $eriei termino, quæ e$t major quam $implex (1); ergo $umma $eriei erit finita.

THEOR. XIII.

Sit $eries a + b x + c x^2 + &c. $ecundum dimen$iones quantitatis x progrediens, cujus coefficientes terminorum proxime $ub$equentium ad infinitam di$tantiam hanc habent inter $e rationem, viz. $ingulus præcedens ad ejus $ub$equentem :: r: 1; ducatur hæc $eries in fun- ctionem ip$ius x nihilo æqualem, cum x = a; tum, $i a major $it quam r, $eries re$ultans $emper diverget; $in minor vero converget.

Facile con$tat huju$ce theorematis demon$tratio.

[0558]DE SUMMATIONE THEOR. XIV.

Sit $eries a + b + c + d + e + &c. = S, cujus termini generaliter exprimantur per datam functionem (φ) quantitatis z di$tantiæ a primo $eriei termino: addantur $imul quique duo $ucce$$ivi termini, e. g. (a + b) + (c + d) + (e + f) + &c. & re$ultat $eries (A) = S a primo termino incipiens; vel $eries (B) = (b + c) + (d + e) + (f + g) + &c. = S - a a $ecundo incipiens; in functione φ pro z $cribatur z + 1 & re$ultet functio φ′; deinde in quantitate φ + φ′ $i termini datæ $eriei $int omnes affirmativi; vel in φ - φ′ $i termini $int alternatim affirmativi vel negativi, pro z $cribatur 2 z′, ubi z′ e$t di- $tantia a primo $eriei termino in $erie A, & re$ultat generalis termi- nus $eriei A: & $imiliter in functione φ pro z $cribantur z + 1 & z + 2, & re$ultent functiones φ′ & φ″, tum in quantitate φ′ + φ″ vel φ′ - φ″ pro z $cribatur 2 z′, & re$ultat generalis terminus $eriei B, ubi z′ denotat di$tantiam a primo $eriei termino.

Ex. 1. Sit $eries 1 + {1 / 2} + {1 / 3} + &c., cujus generalis terminus e$t {1 / z + 1} = φ; tum, $i pro z $cribatur z + 1, re$ultabit φ′ = {1 / z + 2}; in functione φ + φ′ = {1 / z + 1} + {1 / z + 2} = {2 z + 3 / z + 1 · z + 2} pro z $cribatur 2 z′, & re$ultat {4 z′ + 3 / 2 z′ + 1 · 2 z′ + 2} generalis terminus $eriei (1 + {1 / 2}) + ({1 / 3} + {1 / 4}) + ({1 / 5} + {1 / 6}) + &c. = {3 / 2} + {7 / 12} + {11 / 30} + &c., ubi z′ e$t di$tantia a primo $eriei termino.

Ex. 2. Sit $eries 1 - {1 / 2} + {1 / 3} - {1 / 4} + &c., cujus generalis terminus e$t {1 / z + 1}; pro z in functione {1 / z + 1} = φ $cribatur z + 1, & re$ultat φ′ = {1 / z + 2}; & quoniam termini $unt alternatim negativi & affirma- tivi in functione φ - φ′ = {1 / z + 1} - {1 / z + 2} = {1 / z + 1 · z + 2} pro z [0559]SERIERUM, &c. fcribatur 2 z′ & re$ultat {1 / 2 z′ + 1 · 2 z′ + 2} generalis terminus $eriei (1 - {1 / 2}) + ({1 / 3} - {1 / 4}) + ({1 / 5} - {1 / 6}) + &c. = {1 / 1 · 2} + {1 / 3 · 4} + {1 / 5 · 6} + &c.; literâ z′ eandem quantitatem ac prius denotante.

Ex. 3. Sit data $eries 1 + {1 / 2} + {1 / 3} + {1 / 4} + &c., & requiratur generalis terminus $eriei ({1 / 2} + {1 / 3}) + ({1 / 4} + {1 / 5}) + ({1 / 6} + {1 / 7}) + &c. = {5 / 2 · 3} + {9 / 4 · 5} + {13 / 6 · 7} + &c.: in generali termino {1 / z + 1} datæ $eriei pro z $cribatur z + 1 & z + 2; & re$ultant {1 / z + 2} = φ′ & {1 / z + 3} = φ″: in termino φ′ + φ″ = {2 z + 5 / z + 2 · z + 3} pro z $cribatur 2 z′ & re$ultat {2 z′ + 5 / 2 z′ + 2 · 2 z′ + 3} generalis terminus quæ$itus.

2. Si modo addantur $imul quique (n) $ucce$$ivi termini datæ $eriei, cujus generalis terminus e$t φ, a primo, $ecundo, & denique (m + 1) termino incipiens; & re$ultet $eries A, cujus generalis terminus quæri- tur: in termino φ pro z $cribantur (n) quantitates z + m, z + m + 1, z + m + 2, ... z + m + n - 2, z + m + n - 1, & re$ultent quanti- tates φ′, φ″, φ′″, &c.; in $ummâ φ + φ′ + φ″ + φ′″ + &c. pro z $cri- batur n z, & re$ultabit generalis terminus $eriei A quæ$itus.

Ex. Sit data $eries 1 + {1 / h + 1} + {1 / 2h + 1} + &c., cujus generalis terminus e$t {1 / z h + 1}: invenire generalem terminum $eriei, cujus ter- mini $int $umma quorumcunque (3) $ucce$$ivorum terminorum a $e- cundo incipientium. Pro z in generali termino $cribatur z + 1, quoniam terminus a $ecundo incipit & exorietur {1 / (z + 1) h + 1}; in hoc termino pro z $cribantur z, z + 1 & z + 2, & re$ultant {1 / (z + 1) [0560]DE SUMMATIONE h + 1}, {1 / (z + 2) h + 1} & {1 / (z + 3) h + 1}, cujus $umma e$t {h^2 (3 z^2 + 12 z + 11) + h (6 z + 12) + 3 / (z + 1) h + 1 · (z + 2) h + 1 · (z + 3) h + 1}; in hâc $ummâ pro z $cribatur 3 z′ & re$ultabit {h^2 (27 z′^2 + 36 z′ + 11) + h (18 z′ + 12) + 3 / (3 z′ + 1) h + 1 · (3 z′ + 2) h + 1 · (3 z′ + 3) h + 1} ge- neralis terminus $eriei ({1 / h + 1} + {1 / 2 h + 2} + {1 / 3 h + 1}) + ({1 / 4 h + 1} + {1 / 5 h + 1} + {1 / 6 h + 1}) + &c., ubi z′ denotat di$tantiam a primo $e- riei termino.

3. Si datæ $eriei termini $int alternatim negativi & affirmativi, & n numerus terminorum $imul adjunctorum $it impar; tum erit $eriei re$ultantis termini alternatim negativi & affirmativi; $in n $it par numerus, tum omnes termini idem habebunt $ignum.

Cor. Ex $eriebus per hanc methodum transformatis & principiis in prob. præced. traditis facile acquiri po$$unt multæ $eries, quarum $ummæ innote$cunt.

Ex. Sit data $eries 1 + {1 / h + 1} + {1 / 2 h + 1} + {1 / 3 h + 1} + &c., cujus generalis terminus e$t {1 / h z + 1}; $imul addantur tres $ucce$$ivi termini {1 / h z + 1} + {1 / h z + h + 1} + {1 / h z + 2 h + 1} = {3 h^2 z^2 + 6 h^2 z + 6 h z + 2 h^2 + 6 h + 3 / h z + 1 · h z + h + 1 · h z + 2 h + 1} = A; etiamque tres $ucce$$ivi termini {1 / h z + h + 1} + {1 / h z + 2 h + 1} + {1 / h z + 3 h + 1} = {3 h^2 z^2 + 12 h^2 z + 6 h z + 11 h ^2 + 12 h + 3 / h z + h + 1 · h z + 2 h + 1 · h z + 3 h + 1} = B: in quantitatibus A & B per theor. pro z $cri- batur 3 z, & re$ultant quantitates {27 h^2 z^2 + 18 h^2 z + 18 h z + 2 h^2 + 6 h + 3 / 3 h z + 1 · 3 h z + h + 1 · 3 h z + 3 h + 1} [0561]SERIERUM, &c. = β & {27 h^2 z^2 + (36 h^2 + 18 h)z + 11 h^2 + 12 h + 3 / 3 h z + h + 1 · 3 h z + 2 h + 1 · 3 h z + 3 h + 1} = γ: inveniatur dif- ferentia β - γ inter has duas quantitates, quæ erit {27 h^3 z^2 + (27 h^3 + 18 h^2) z + 6 h^3 + 9 h^2 + 3 h / 3 h z + 1 · 3 h z + h + 1 · 3 h z + 2 h + 1 · 3 h z + 3 h + 1} = τ; & con$equenter $umma $eriei, cujus termini τ progrediuntur a valore 0 quantitatis z u$que ad valorem in$i- nitum eju$dem quantitatis, erit 1; i. e. $umma $eriei a valore 0 ad valorem infinitum quantitatis z, cujus generalis terminus e$t {9 h^2 z^2 + (9 h^2 + 6 h) z + 2 h^2 + 3 h / 3 h z + 1 · 3 h z + b + 1 · 3 h z + 2 h + 1 · 3 h z + 3 h + 1}, erit {1 / 3 h}.

Ex. Sit eadem $eries 1 + {1 / h + 1} + {1 / 2 h + 1} + &c.; addantur tres $ucce$$ivi termini {1 / h z + 2 h + 1} + {1 / h z + 3 h + 1} + {1 / h z + 4 h + 1} = {3 h^2 z^2 + (18 h^2 + 6 h) z + 26 h^2 + 18 h + 3 / h z + h + 1 · h z + 2 h + 1 · h z + 3 h + 1} = C: in quantitate C pro z $cribatur 3 z, & re$ultat {27 h^2 z^2 + (54 h^2 + 18 h) z + 26 h^2 + 18 h + 3 / 3 h z + 2 h + 1 · 3 h z + 3 h + 1 · 3 h z + 4 h + 1} = δ; inveniatur differentia inter quantitates γ & δ & re- $ultat {27 h^3 z^2 + (45 h^3 + 18 h^2) z + 18 h^3 + 15 h^2 + 3 h / 3 h z + h + 1 · 3 h z + 2 h + 1 · 3 h z + 3 h + 1 · 3 h z + 4 h + 1} = σ, & con$equenter $umma $eriei, cujus termini σ progrediuntur a valore 0 quantitatis z ad valorem in$initum eju$dem quantitatis erit {1 / h + 1}; unde $umma $eriei, cujus generalis terminus e$t {9 h^2 z^2 + (15 h^2 + 6 h) z + 6 h^2 + 5 h + 1 / 3 h z + h + 1 · 3 h z + 2 h + 1 · 3 h z + 3 h + 1 · 3 h z + 4 h + 1}, a valore (0) quantitatis z ad infinitum erit {1 / 3 h · h + 1}.

[0562]DE SUMMATIONE

Eadem etiam applicari po$$unt ad alias $eries, quarum termini $unt alternatim affirmativi & negativi: in hoc ca$u, cum numerus termi- norum, qui $imul adjunguntur, $it impar; tum termini $eriei re$ul- tantis etiam erunt alternatim affirmativi & negativi, $in aliter non.

Con$imilia etiam prædicari po$$unt de ca$ibus in quibus quicunque n termini $int affirmativi & m negativi, vel quocunque alio modo ter- mini $int affirmativi & negativi.

4. Sint T^m, T^n, T^r, T^s, &c. termini $eriei A, quorum $it T^m quicunque terminus datæ $eriei; & T^n, T^r, T^s, &c. termini prædictæ $eriei, quo- rum di$tantiæ a termino T^m $int re$pective n - m, r - m, s - m, &c.; i. e. in generali termino $eriei A, pro z di$tantiâ a primo $eriei ter- mino $cribantur re$pective z + m, z + n, z + r, z + s, &c.; & re- $ultabunt termini T^m, T^n, T^r, T^s, &c.

Sint T^m′, T^n′, T^r′, T^s′, &c. termini $eriei B, cujus generalis termi- nus, qui e$t functio quantitatis z di$tantiæ a primo $eriei termino, $it φ; & $i in φ pro z $cribantur z + m′, z + n′, z + r′, z + s′, &c., re$ultabunt termini T^m′, T^n′, T^r′, T^s′, &c.

Sint T^m″, T^n″, T^r″, T^s″, &c. termini $eriei C, cujus generalis termi- nus $it φ′ functio quantitatis z di$tantiæ a primo $eriei termino, & $i in termino φ′ pro z $cribantur re$pective z + m″, z + n″, z + r″, z + s″, &c., re$ultabunt termini T^m″, T^n″, T^r″, T^s″, &c.

A$$umatur quantitas a T^m + b T^n + c T^r + d T^s + &c. + a′ T^m′ + b′ T^n′ + c′ T^r′ + d′ T^s′ + &c. + a″ T^m″ + b″ T^n″ + c″ T^r″ + &c. + &c., pro termino $eriei quæ$itæ; tum ex $ummis (S, S′, S″, &c.) datarum $erierum A, B, C, &c. acquiri pote$t $umma $eriei re$ultantis quæ$itæ, erit enim (a + b + c + d + &c.) × S + (a′ + b′ + c′ + d′ + &c.) × S′ + (a″ + b″ + c″ + d″ + &c.) × S″ + &c. - (a + b + c + d + &c.) (T + T′ + T″ + ... T^m-1) - (b + c + d + &c.) (T^m + T^m-1 + T^m-2 ... T^n-1) - (c + d + &c.) (T^n + T^n+1 + &c. ... + T^r-1) - &c. - (a′ + b′ + c′ + d′ + &c.) (T^1′ + T^2′ + T^3′ ... T^m′-1) - (b′ + c′ + d′ + &c.) (T^m′ + T^m′+1 ... T^n′-1) - &c. - &c.

Cor. Sit data $eries {1 / a} + {1 / a + 1} x + {1 / a + 2} x^2 + {1 / a + 3} x^3 + &c. [0563]SERIERUM, &c. = S; ex $ummâ S datâ $emper acquiri pote$t $umma cuju$cunque $eriei, cujus generalis terminus e$t {b z^m + c z^m-1 + &c. / a + z + α · a + z + β · a + z + γ · &c.}x^z; ubi α, β, γ, δ, &c. $unt integri numeri, & m e$t numerus minor quam numerus factorum in denominatore: a$$umatur {A / a + z + α} + {B / a + z + β} + {C / a + z + γ} + &c. = {b z^m + c z^m-1 + &c. / a + z + α · a + z + β · a + z + γ · &c.} & exinde inveniri po$$unt coefficientes A, B, C, &c.; deinde $uman- tur A = a′ x^α, B = b′ x^β, C = c′x^γ, &c.; unde con$tabunt quanti- tates a′, b′, c′, &c. & exinde erui pote$t $umma $eriei quæ$ita = (a′ + b′ + c′ + &c.) × S - a′ ({1 / a} + {1 / a + 1} x + {1 / a + 2}x^2 ... + {1 / α + α - 1} x^z-1) - b′ ({1 / a} + {1 / a + 1} x ... {1 / a + β - 1}x^β-1) - c′ ({1 / a} + {1 / a + 1} x ... + {1 / a + γ - 1} x^γ-1) + &c. = (a′ + b′ + c′ + &c.)(S - ({1 / a} + {1 / a + 1} ... + {1 / a + α - 1}) - (b′ + c′ + &c.)({1 / a + α} + {1 / a + α + 1} ... {1 / a + β - 1}) - (c′ + &c.) ({1 / a + β} + {1 / a + β + 1} + {1 / a + γ - 1}) - &c.

2. Sint duæ datæ $eries {1 / a} + {1 / a + 1} x + {1 / a + 2} x^2 + &c. = S; & {1 / b} + {1 / b + 1} x + {1 / b + 2} x^2 + {1 / b + 3} x^3 + &c. = S′; & {1 / c} + {1 / c + 1} x + {1 / c + 2} x^2 + &c. = S″; &c.; tum facile ex his $ummis datis acquiri pote$t $umma cuju$cunque $eriei {A z^m + B z^m-1 + C z^m-2 + &c. / a + z + α · a + z + β · a + z + γ · &c × b + z + α′ · b + z + β′ · b + z + γ′ · &c. × c + z + α″ · c + z + β″ · &c.. &c.} [0564]DE SUMMATIONE x^z+b, ubi m, α, β, γ, &c.; α′, β′, γ′, &c.; α″, β″, &c. $unt integri nu- meri.

Cor. 2. Sit data $eries {1 / a} - {1 / a + 1} x + {1 / a + 2} x^2 - {1 / a + 3} x^3 + &c.; tum ex eâ acquiri pote$t $umma cuju$cunque $eriei, cujus generalis terminus e$t {a′ z^m + b z^m-1 + c z^m-2 + &c. / 2 z + a · 2 z + a + 1 · 2 z + a + 2 .. 2 z + a + l + 1} x^z, ubi z denotat di$tantiam a primo $eriei termino & m & l $unt integri numeri.

Cor. 3. Ex $ummis $erierum {1 / α} + {1 / α + 1} x + {1 / α + 2} x^2 + &c. = S, {1 / β} + {1 / β + 1} x + {1 / β + 2} x^2 + &c. = S′, {1 / γ} + {1 / γ + 1} x + {1 / γ + 2} x^2 + &c. = S″, &c., etiamque $ummis $erierum {1 / π} - {1 / π + 1} x + {1 / π + 2} x^2 - &c. = Σ, {1 / ρ} - {1 / ρ + 1} x + {1 / ρ + 2} x^2 - &c. = Σ′, {1 / σ} - {1 / σ + 1} x + {1 / σ + 2} x^2 - &c. = Σ″, &c. deduci pote$t $umma cuju$cunque $eriei, quæ habet generalem terminum, cujus numerator e$t a z^m + b z^m-1 + c z^m-2 + &c. in x^bz+a, ubi m e$t integer numerus & z di$tantia a primo $eriei termino, & cujus denominator e$t z + α · z + α + 1 · z + a + 2 · &c. × z + β · z + β + 1 · z + β + 2 · &c. × z + γ · z + γ + 1 · z + γ + 2 · &c. × &c. × 2 z + π · 2 z + π + 1 · 2 z + π + 2 · 2 z + π + 3 · &c. × 2 z + ρ · 2 z + ρ + 1 · 2 z + ρ + 2 · 2 z + ρ + 3 · &c. × 2 z + σ · 2 z + σ + 1 · 2 z + σ + 2 · 2 z + σ + 3 · 2 z + σ + 4 · &c. × &c.

THEOR. XV.

Quam plurimæ $eries deduci po$$unt ex dividendo alteram quanti- tatem per alteram & mutando terminos denominatoris continuo.

[0565]SERIERUM, &c.

Ex. 1. Sit fractio {1 / 1 + 1}; a$$umantur diver$i denominatores 1 + 1 = (1 + {1 / 2}) + {1 / 2} = (1 + {3 / 4}) + {1 / 4} = (1 + {7 / 8}) + {1 / 8} = (1 + {15 / 16}) + {1 / 16} = &c.; & operatio erit 1 + 1 1 1 1 + 1 (1 + {1 / 2}) + {1 / 2} - 1 - {2 / 3} - 1 - {1 / 3} (1 + {3 / 4}) + {1 / 4} + {1 / 3} {+4 / 3 · 7} {1 / 3} + {1 / 3 · 7} (1 + {7 / 8}) + {1 / 8} - {1 / 3 · 7}{- 8 / 3 · 7 · 15} &c.; unde re$ultat {1 / 1 + 1} = {1 / 2} = 1 - {2 / 3} + {4 / 3 · 7} - {8 / 3 · 7 · 15} + {16 / 3 · 7 · 15 · 31} - {32 / 3 · 7 · 15 · 31 · 63} + {64 / 3 · 7 · 15 · 31 · 63 · 127} - &c.

Ex. 2. Sit fractio {m / m + n}, tum m + n {m / m + n} 1 (m + {r / s} n) + {s - r / s} n - n {- s n / s m + r n} - n - {(s - r) × n^2 / s m + r n} (m + ({r / s} + {r × (s - r) / s^2})n) + {(s - r)^2 / s^2}n + {(s - r) × n^2 / s m + r n} \\ &c. {+ (s - r) × s^2 n^2 / (s m r + r n)(s^2 m + 2 r s - r^2) n} \\ &c., unde erit {m / m + n} = 1 - {s n / s m + r n} + {(s - r) × s n A / (s^2 m + 2 r s - r^2) n} - {(s - r) s n B / (s^3 m - (s - r)^3 + s^3)n} + {(s - r) s n C / (s^4 m - (s - r)^4 + s^4)n} ... {s × (s - r) n L / (s^b m - (s - r)^b + s^b)n},[0566]DE SUMMATIONE ubi A, B, C, .. L denotant præcedentes terminos & h de$ignat di$tan- tiam a primo $eriei termino.

Hìc continuo adjicitur ad primum terminum denominatoris pars {r / s} re$idui: in primo exemplo {r / s} = {1 / 2}.

Hæc methodus generaliter reddi pote$t ex a$$umendo diver$os va- lores pro quantitatibus {r / s}, vel diver$as quantitates ad primum termi- num adjungendas ad $ingulas divi$iones: etiamque ex a$$umendo plures terminos continuo & in numeratore & denominatore con- tentos.

Eadem principia etiam ad extractiones radicum applicari po$$unt, & ex hâc complexâ methodo dividendi & radices extrahendi quam- plurimæ in$initæ $eries deduci po$$unt, quarum $ummæ innote$cunt.

PROB. X. Ex datis quibu$dam $eriebus alias invenire, quarum $ummæ innote$cunt.

1. E datis $eriebus inveniatur earum quæcunque functio, quæ $it convergens $eries; & invenitur $eries, cujus $umma e datis $eriebus & datâ functione facile deduci pote$t.

1. 2. E datis $eriebus, quæ haud $unt $ummabiles $æpe deduci po$$unt $eries, quæ $unt $ummabiles: inveniatur enim talis functio e $ingulis $eriebus, ut $int $ummabiles, i. e. evane$cant e $ummis $erie- rum re$ultantium $ummæ $erierum, quæ haud $unt $ummabiles.

Ex. 1. Sit v^. = {x^. / 1 - x}, & con$equenter v = x + {1 / 2} x^2 + {1 / 3} x^3 + {1 / 4} x^4 + &c. ducatur hæc æquatio in x^n x^., & re$ultat æquatio v x^n x^. = x^n+1 x^. + {1 / 2} x^n+2 x^. + {1 / 3} x^n+3 x^. + &c. inveniatur fluens ex utrâque æquationis parte, & re$ultat {v x^n+1 / n + 1} + {x^n+1 / (n + 1) · n + 1} + {x^n / n + 1 · n} ... + {x / n + 1} - [0567]SERIERUM, &c. {v / n + 1} = {x^n+2 / n + 2} + {x^n+3 / 2 × (n + 3)} + {x^n+4 / 3 × (n + 4)} + &c. Fiant ter- mini {v x^n+1 / n + 1} - {v / n + 1} = 0, unde x = 1, & re$ultant $eries $umma- biles {1 / n + 1} × ({1 / n + 1} + {1 / n} + {1 / n - 1} + {1 / n - 2} + &c.) (quæ ad tot terminos continuantur quot $unt unitates in n + 1) = {1 / n + 2} + {1 / 2 · (n + 3)} + {1 / 3 · (n + 4)} + &c.

Sit n impar numerus, tunc ex æquatione {v x^n+1 / n + 1} - {v / n + 1} = 0 po- terit deduci x = - 1, adeoque $eries infinita - {1 / n + 2} + {1 / 2 · (n + 3)} - {1 / 3 × (n + 4)} + {1 / 4 × (n + 5)} - &c. = {1 / n + 1} × ({1 / n + 1} - {1 / n} + &c.) ad tot terminos continuatæ quot $unt unitates in n + 1; quapropter $i n $it numerus impar e $ummâ præcedentium $erierum emerget nova $eries infinita {1 / 2 × (n + 3)} + {1 / 4 × (n + 5)} + {1 / 6 × (n + 7)} + {1 / 8 × (n + 9)} + &c. æqualis $eriei finitæ {1 / n + 1} × ({1 / n + 1} + {1 / n - 1} + {1 / n - 3} + {1 / n - 5} + &c.) ad tot terminos continuatæ quot $unt unitates in {n + 1 / 2}: ex earundem $erierum differentiâ emerget altera $eries infinita {1 / n + 2} + {1 / 3 × (n + 4)} + {1 / 5 × (n + 6)} + {1 / 7 × (n + 8)} + {1 / 9 × (n + 10)} + &c. æqualis $eriei finitæ {1 / n + 1} × ({1 / n} + {1 / n - 2} + {1 / n - 4} + {1 / n - 6} &c.) ad tot terminos continuatæ quot $unt unitates in {n + 1 / 2}.

[0568]DE SUMMATIONE

2. Ducatur prædicta æquatio {v x^n+1 / n + 1} + {x^n+1 / n + 1 · n + 1} + {x^n / n + 1 · n} ... - {v / n + 1} = {x^n+2 / n + 2} + {x^n+3 / 2 × (n + 3)} + {x^n+4 / 3 × (n + 4)} + &c. in x^m x^. & re$ultat {v x^m+n+1 x^. / n + 1} + {x^n+m+1 x^. / n + 1 · n + 1} + {x^n+m x^. / n + 1 · n} ... - {v x^m x^. / n + 1} = {x^n+m+2 x^. / n + 2} + {x^n+m+3 x^. / 2 · n + 3} + {x^n+m+4 x^. / 3 · n + 4} + &c. inveniantur fluentes ex utrâque æquationis parte, & re$ultat {v x^n+m+2 / n + 1 · n + m + 2} + {x^n+m+2 / n + 1 · n + m + 2 · n + m + 2} + {x^n+m+1 / n + 1 · n + m + 2 · n + m + 1} + {x^n+m / n + 1 · n + m + 2 · n + m} ... - {v / n + 1 · n + m + 2} + {x^n+m+2 / (n + 1) · n + 1 · n + m + 2} + {x^n+m+1 / n + 1 · n · n + m + 1} + {x^n+m / n + 1 · n - 1 · n + m} .. + {x^m+2 / n + 1 · m + 2} - {v x^m+1 / n + 1 · m + 1} - {x^m+1 / n + 1 · m + 1 · m + 1} - {x^m / n + 1 · m + 1 · m} - {x^m-1 / n + 1 · m + 1 · m - 1} ... + {v / n + 1 · m + 1} = {x^n+m+3 / n + 2 · n + m + 3} + {x^n+m+4 / 2 · n + 3 · n + m + 4} + {x^n+m+5 / 3 · n + 4 · n + m + 5} + &c. Ut hæc $eries fiat finita nece$$e e$t nihilo evadere æquales tres terminos {v x^n+m+2 / n + 1 · n + m + 2} - {v x^m+1 / n + 1 · m + 1} + {v / m + 1 · n + m + 2} ({- v / n + 1 · n + m + 2} + {v / n + 1 · m + 1}) in quibus invenitur quantitas logarithmica v.

Et $ic ducatur hæc æquatio re$ultans in x^r x^., tum inveniatur fluens ex utrâque æquationis parte; & deinde ducatur æquatio re$ul- tans in x^s x^., & inveniatur fluens ex utrâque æquationis parte; & $ic deinceps; & novæ continuo oriuntur $eries, quarum $ummæ inve- niuntur.

[0569]SERIERUM, &c.

3. Sit z^. = {x^. / 1 + x^2}, & exinde z = x - {1 / 3} x^3 + {1 / 5} x^5 - {1 / 7} x^7 + {1 / 9} x^9 - &c. ducatur hæc æquatio in x^n x^., & inveniatur fluens ex utrâque æquationis parte: 1<_>mo. $it {n + 1 / 2} integer numerus, & erit $umma $eriei finitæ {1 / n + 1} × (x^n+1 z - {x^n / n} + {x^n-2 / n - 2} - {x^n-4 / n - 4} + {x^n-6 / n - 6} &c. = z) æqualis $ummæ infinitæ $eriei {x^n+2 / n + 2} - {x^n+4 / 3 · n + 4} + {x^n+6 / 5 · n + 6} - &c. Jam $i fuerit {n + 1 / 2} numerus par, ultimus terminus z afficietur $igno negativo; $in fuerit {n + 1 / 2} numerus impar, ultimus terminus $igno affirmativo afficietur.

Cor. · Sit {n + 1 / 2} numerus par, & $i modo fiat x^n+1 z - z = 0, i. e. termini, qui haud inveniri po$$unt, nihilo æquales; tum erit x = ± 1 & exinde deduci po$$unt $eries, quæ exprimuntur finitis terminis.

1. 2<_>do. Sit n par numerus, & a$$umantur fluentes, erit {x^n+2 / n + 2} - {x^n+4 / 3 × (n + 4)} + {x^n+6 / 5 × (n + 6)} - {x^n+8 / 7 × (n + 8)} + &c. in infinitum æqua- lis $eriei finitæ {1 / n + 1} × (x^n+1 z - {x^n / n} + {x^n-2 / n - 2} - {x^n-4 / n - 4} &c. ± log. √(1 + x^2)), ubi primus & ultimus terminus $emper $ervatur, & tot intermedii quot unitates in {1 / 2} n.

Eodem proce$$u repetito plurium detegentur $erierum $ummæ, &c. Et $ic deinceps.

4. Sit $eries a$$umpta x + {1 / 3} x^3 + {1 / 5} x^5 + {1 / 7} x^7 + &c. = v, ubi v^. = {x^. / 1 - x^2} ducatur utraque æquationis pars in x^n x^., & æquationis re$ul- [0570]DE SUMMATIONE tantis inveniatur fluens, & exinde re$ultabit finitæ $eriei $umma {v x^n+1 / n + 1} + {x^n / n + 1 · n} + {x^n-2 / n + 1 · n - 2} + {x^n-4 / n + 1 · n - 4} ... + {x^2 / n + 1 · 2} + {1 / 2} log. × (1 - x^2) æqualis $ummæ infinitæ $eriei {x^n+2 / n + 2} + {x^n+4 / 3 · n + 4} + {x^n+6 / 5 · n + 6} + {x^n+8 / 7 · n + 8} + &c. $i n $it par numerus.

Si vero n $it impar numerus, tum erit $umma finitæ $eriei {v x^n+1 / n + 1} + {x^n / n + 1 · n} + {x^n-2 / n + 1 · n - 2} + {x^n-4 / n + 1 · n - 4} ... + {x / n + 1 · 1} - {v / n + 1} = {x^n+2 / n + 2} + {x^n+4 / 3 · n + 4} + &c.

Eodem proce$$u repetito plures detegentur $eries.

5. In genere $it $eries a$$umpta v = x ± {x^n+1 / n + 1} + {x^2n+1 / 2n + 1} ± {x^3n+1 / 3n + 1} + {x^4n+1 / 4n + 1} ± &c. ubi v^. = {x^. / 1 ± x^n}, ducatur utraque æqua- tionis pars in x^m x^., & quoniam {x^. / 1 ± x^n} dividi pote$t per notas regu- las in quantitates huju$ce generis {x^. × (α + π x) / x^2 - 2 a x + 1} + {x^. × (β + ρ x) / x^2 - 2 b x + 1} + {x^. × (γ + σ x) / x^2 - 2 c x + 1} + &c. igitur e præcedentibus ca$ibus facile inveniri pote$t fluens fluxionis v x^m x^. per finitos terminos, &c. ergo invenitur $umma infinitæ $eriei {x^m+2 / m + 2} ± {x^n+m+2 / n + 1 · n + m + 2} + {x^2n+m+2 / 2 n + 1 × 2 n + m + 2} ± {x^3n+m+2 / (3 n + 1) × (3 n + m + 2)} + &c. per finitos terminos, &c.; & $ic continuo repetitâ hâc operatione plures $equuntur $eries $ummabiles.

6. Sit fractio finita {1 / x^n - p x^n-1 + q x^n-2 - &c.} = x^r + P x^r-1 + [0571]SERIERUM, &c. Q x^r-2 + R x^r-3 + &c. in infinitum; $int α, β, γ, δ, &c. radices æqua- tionis x^n - p x^n-1 + q x^n-2 - &c. = 0; & ita transformetur finita fractio, ut fiat {1 / x^n - p x^n-1 + q x^n-2 - &c.} = {a / x - α} + {b / x - β} + {c / x - γ} + {d / x - δ} + &c. ($i vero duæ fractiones {a / x - α} + {b / x - β} in- volvant corre$pondentes impo$$ibiles radices, tum reducendæ $unt ad unam fractionem {(b + a) x - (β a + b α) / (x - α) · (x - β)}, & evane$cent impo$$ibiles quantitates); ducatur æquatio {a / x - α} + {b / x - β} + {c / x - γ} + &c. = x^r + P x^r-1 + &c. in datam finitam quantitatem (A x^m + B x^m-1 + C x^m-2 + &c.) × x^., e duobus præcedentibus ca$ibus con$tat fluentem $eriei finitæ (A x^m + B x^m-1 + C x^m-2 + &c.) × ({a / x - α} + {b / x - β} + {c / x - γ} + &c.) × x^. inveniri po$$e in finitis terminis, circula- ribus arcubus & logarithmis; in his duobus ca$ibus fiant partes, quæ involvunt circulares arcus & logarithmos, nihilo re$pective æquales; & exinde erui po$$unt ca$us, in quibus $eries, $i modo unquam, evadet finita quantitas; ergo $umma inventa finitæ $eriei æqualis erit $ummæ infinitæ $eriei, i. e. fluenti fluxionis x^. × (A x^m + B x^m-1 + C x^m-2 + &c.) × (x^r + P x^r-1 + Q x^r-2 + &c.); & $ic deinceps.

PROB. XI.

Datâ quantitate {A z^m + B z^m-1 + C z^m-2 + &c. / z + α · z + β · z + γ · z + δ · &c.} × x^hz+m, quæ ex- primit $ingulos datæ $eriei terminos, ubi z denotat di$tantiam termini a primo, literæ vero A, B, C, D, &c., α, β, γ, δ, &c. h, datas quantitates, & m integrum numerum, re$pective denotant; invenire $ummam datæ $eriei.

1. Sit v = {1 / 1 ∓ x^b} = 1 ± x^b + x^2b ± x^3b + x^4b ± &c. ducatur data [0572]DE SUMMATIONE æquatio in x^ba-1 x^. & fit {x^ba-1 x^. / 1 ∓ x^b} = x^ba-1 x^. ± x^ba+b-1 x^. + x^ba+2b-1 x^. ± x^ba+3b-1 x^. + &c. Inveniantur fluentes fluxionum ex utrâque æqua- tionis parte, viz. $. {x^hα-1 x^. / 1 ∓ x^b} = W = {x^hα / b α} ± {x^hα+h / b × (α + 1)} + {x^hα+2h / b × (α + 2)} ± &c. ducatur hæc æquatio in {x^hβ-1 x^. / x^hα}, & re$ultat æquatio W x^hβ-hα-1 x^. = {x^hβ-1 x^. / b α} ± {x^hβ+h-1 x^. / b (α + 1)} + {x^hβ+2h-1 x^. / b × (α + 2)} ± &c. inveniantur fluentes fluxionum ex utrâque æquationis parte X, & evadunt $. W x^hβ-hα-1 x^. = X = {x^hβ / b^2 × α β} ± {x^hβ+h / b^2 × (α + 1) × (β + 1)} + {x^hβ+2h / b^2 × (α + 2) × (β + 2)} ± &c. ducatur hæc æquatio in {x^hγ-1 / x^hβ} x^., & re$ultat X x^hγ-hβ-1 x^. = {x^hγ-1 x^. / b^2 α β} ± {x^hγ+h-1 / b^2 × (α + 1) × (β + 1)} x^. + {x^hγ+2h-1 / b^2 × (α + 2) × (β + 2)} ± &c. inveniantur fluentes fluxionum ex utrâque æquationis parte, & erunt $. X x^hγ-hβ-1 = Y = {x^hγ / h^3 × α β γ} ± {x^hγ+h / h^3 × (α + 1) × (β + 1) × (γ + 1)} + {x^hγ+2h / b^3 × (α + 2) × (β + 2) × (γ + 2)} ± &c. ducatur hæc æquatio in {x^hδ-1 / x^hγ} x^., & re$ultat æquatio Y x^hδ-hγ-1 x^. = {x^hδ-1 x^. / b^3 × α β γ} ± {x^hδ+h-1 x^. / b^3 × (α + 1) × (β + 1) × (γ + 1)} + {x^hδ+2h-1 x^. / b^3 × (α + 2) × (β + 2) × (γ + 2)} ± &c. cujus fluens e$t $. r x^hδ-hγ-1 x^. = Z = {x^hδ / h^4 α β γ δ} ± {x^hδ+h / h^4 × (α + 1) × (β + 1) × (γ + 1) × (δ + 1)} + {x^hδ+2h / b^4 × (α + 2) × (β + 2) × (γ + 2) × (δ + 2)} ± &c. & $ic continuo repetitâ operatione, u$que donec includuntur in denominatore omnes divi$ores (z + α) · (z + β) · (z + γ) · (z + δ) &c. quorum ultimo inventus $it z + π & numerus n, & fluens V; [0573]SERIERUM, &c. ergo $umma $eriei cujus termini $emper $int A × {1 / z + α · z + β · z + γ · z + δ &c. z + π} x^bz+m erit b^n A × {x^m / x^hπ} × V.

Per ex. prob. erit X = $. W x^hβ-hα-1 x^. = {1 / b(β - α)} x^h(β-α) $. {x^hα-1 x^. / 1 ± x^b} + {1 / b(α - β)} $. {x^hβ-1 x^. / 1 ± x^b}, & Y = $. X x^hγ-hβ-1 x^. = {1 / b^2 (γ - α)(β - α)} x^h(γ-α) $. {x^hα-1 x^. / 1 ± x^b} + {1 / b (γ - β)(α - β)} × x^h(γ-β) $. {x^hβ-1 x^. / 1 ± x^b} + {1 / (γ - α)(γ - β)} $. {x^hγ-1 x^. / 1 ± x^b}; & $ic deinceps.

Cor. Si omnes differentiæ α - β, α - γ, β - γ; α - δ, β - δ, γ - δ, &c. $int integri numeri, tum fluentes omnium fluxionum {x^hα-1 x^. / 1 ± x^b}, {x^hβ-1 x^. / 1 ± x^b}, {x^hγ-1 x^. / 1 ± x^b}, &c. a $e invicem pendent & deduci po$$unt; & con$equenter $ummæ omnium $erierum, quarum generalis termi- nus e$t {(A z^m + B z^m-1 + &c.) × x^bz+m′ / (z + α)(z + β)(z + γ)(z + δ) &c.}, a fluente fluxionis {x^hα-1 x^. / 1 ± x^b} per divi$ionem, &c. deduci po$$unt.

Cor. 2. Si vero omnes reliqui indices γ, δ, &c. a duobus α & β di- ftent per integros numeros, tum $ummæ $erierum inveniri po$$unt a fluentibus fluxionum {x^hα-1 x^. / 1 ± x^b} & {x^hβ-1 x^. / 1 ± x^b}; & $ic deinceps.

Exhinc facile deduci po$$unt ca$us particulares, in quibus prædictæ $eries æquant finitas quantitates.

Cor. Hinc ex finitis terminis, circularibus arcubus & logarithmis deduci po$$unt $ummæ omnium $erierum, quarum termini $int præ- dicti, ni duo α & β vel tres vel plures valores incognitarum quantita- tum α, β, γ, &c. fint inter $e æquales, nam in i$to ca$u α - β = 0, &c., & con$equenter ejus reciproca evadit infinita: minime refert, annon po$$ibiles vel impo$$ibiles $int prædictæ radices α, β, γ, δ, &c.

[0574]DE SUMMATIONE

2. Nunc data $eries vel dividi pote$t in plures, quorum termini $int re$pective {A z^m x^bz+m′ / z + α · z + β · z + γ &c.}, {B z^m-1 x^bz+m′ / z + α · z + β · z + γ &c.}, {C z^m-2 x^bz+m′ / z + α · z + β · z + γ &c.}, vel quocunque alio modo ita ut $umma e fingularum $erierum terminis æqualis $it datæ quantitati; deinde in- veniatur per $ub$equentem methodum $umma e $ingulis hi$ce $eriebus, quibus ad unam $ummam adjunctis, ea erit $umma $eriei datæ quæ$ita.

2. Sit V = $umma $eriei, cujus termini $int {1 / z + α · z + β · z + γ &c.} x^bz, i. e. {1 / α · β · γ · δ} ± {1 / α + 1 · β + 1 · γ + 1 · δ + 1 · &c.} x^b + {1 / α + 2 · β + 2 · γ + 2 · δ + 2 · &c.} x^2b + &c. Inveniatur fluxio utri- u$que æquationis partis, & re$ultat V^. = {± h / α + 1 · β + 1 · &c.} x^h-1 x^. + {2b / α + 2 · β + 2 · &c.} x^2b-1 x^. ± {3b / α + 3 · β + 3 · &c.} x^3b-1 x^. + &c. du- catur hæc æquatio in {x / x^.}, & re$ultat {V^. x / x^.} = {± h / α + 1 · β + 1 · γ + 1 · &c.} x^b + {2h / α + 2 · β + 2 · γ + 2 · &c.} x^2b ± {3h / α + 3 · β + 3 · γ + 3 · &c.} x^3b + &c. cujus flux. $it flux. quan. {V^. x / x^.} = W^. = {± b^2 / α + 1 · β + 1 · γ + 1 · &c.} x^b-1 x^. + {2 · 2 h^2 / α + 2 · β + 2. &c.} x^2b-1 x^. ± {3 · 3b^2 / α + 3 · β + 3 · &c.} x^3b-1 x^. + &c. ducatur hæc æquatio in {x / x^.}, & re$ultat {x W^. / x^.} = L = {± h^2 / α + 1 · β + 1 · &c.} x^b + {2 · 2h^2 / α + 2 · β + 2 · &c.} x^2b ± {3 · 3h^2 / α + 3 · β + 3 · &c.} x^3b + &c. inve- niatur fluxio hujus æquationis, & re$ultat L^. = {± h^3 / α + 1 · β + 1 · &c.} [0575]SERIERUM, &c. x^b-1 x^. + {2 · 2 · 2 h^3 / α + 2 · β + 2 · &c.} x^2b x^. + {3 · 3 · 3 h^3 / α + 3 · β + 3 · &c.} x^3b x^. + &c. & $ic continuo repetitâ operatone tandem invenietur $umma $eriei; cu- jus terminus e$t {A z^m / z + α · z + β · &c.}; & $ic de reliquis.

Aliter: $it A · (z + π) · (z + ρ) · (z + σ) · (z + τ) · &c. = A z^m + B z^m-1 + C z^m-2 + &c. & $it $umma $eriei, cujus termini in genere $int {x^bz / z + α · z + β · z + γ · &c.}, V, i. e. V = {1 / α · β · γ · δ &c.} + {1 / α + 1 · β + 1 · &c.} x^b + {1 / α + 2 · β + 2 · &c.} x^2b + &c. ducatur hæc æquatio in x^πh, & re$ultat V × x^πh = {x^πh / α β γ δ &c.} + {x^πh+h / α + 1 · β + 1 · γ + 1 · &c.} + {x / α + 2 · β + 2 · γ + 2 · &c.} + &c. inveniatur fluxio hujus æquatio- nis, & erit flux. quan. (V × x^πh) = W^. = {h π x^πh-1 x^. / α β γ δ &c.} + {b × (1 + π) x^hπ+h-1 x^. / α + 1 · β + 1. γ + 1 · &c.} + {b × (2 + π) x^hπ+2h-1 x^. / α + 2 · β + 2 · γ + 2 · &c.}; ducatur hæc æquatio in {x^ρh / x^πh-1 x^.}, & re$ultat {W^. x^ρh / x^πh-1 x^.} = U = {b π x^ρh / α β γ δ &c.} + {b × (1 + π) x^ρh+h / α + 1 · β + 1 · γ + 1 · &c.} + {b × (2 + π) x^ρh+2h / α + 2 · β + 2 · γ + 2 · &c.}, inveniatur fluxio utriu$que partis æqua- tionis, & re$ultat flux. quan. {W^. x^ρh / x^πh-1 x^.} = U^. = {b^2 π ρ x^ρh-1 x^. / α β γ δ &c.} + {b^2 × (1 + π) × (1 + ρ) x^ρh+h-1 x^. / α + 1 · β + 1 · γ + 1 · &c.} + {b^2 · (2 + π) · (2 + ρ) · x^ρh+2h-1 x^. / α + 2 · β + 2 · γ + 2 · &c.} + &c. ducatur hæc æquatio in {x^σh / x^ρh-1 x^.} & re$ultat {U^. × x^σh / x^ρh-1 x^.} = M = {b^2 π ρ x^σh / α β γ δ &c.} + {b^2 × (π + 1) · (ρ + 1) x^σh+h / α + 1 · β + 1 · γ + 1 · &c.} + {b^2 · (π + 2) · (ρ + 2) · x^σh+2h / α + 2 · β + 2 · γ + 2 · δ + 2 · &c.};[0576]DE SUMMATIONE hujus æquationis inveniatur fluxio, & re$ultat M^. = {h^3 π ρ σ x^σh-1 x^. / α β γ δ &c.} + {h^3 · (π + 1) · (ρ + 1) · (σ + 1) x^σh+h-1 x^. / α + 1 · β + 1 · γ + 1 · δ + 1 · &c.} + {h^3 · (π + 2) · (ρ + 2) · (σ + 2) x^σh+2h-1 x^. / α + 2 · β + 2 · γ + 2 · δ + 2 · &c.} unde facile deduci pote$t $umma $eriei, cujus termini $unt prædictæ datæ quantitates.

Si α + z vel β + z vel γ + z, &c. unquam evadant nihilo æqua- les, tum in detegendis fluentibus terminorum prædictorum nece$$e erit invenire fluentes fluxionum huju$ce formulæ x^π x^. $. ({x^. / x})^n, ubi n denotat integrum numerum; hæ fluentes in libri primi capite $e- cundo dantur.

Cor. 1. Hinc facile iterum con$tat, $i modo α, β, γ, δ, &c. $int inæ- quales quantitates, $ummam cuju$cunque $eriei, cujus termini re$pective denotantur per quantitatem {A z^m + B z^m-1 &c. / H · (z + α) · (z + β) · (z + γ) · &c.}, ubi m e$t integer numerus; inveniri po$$e ope finitorum terminorum cir- cularium arcuum & logarithmorum.

Cor. 2. Facile etiam e præcedentibus principiis deduci pote$t $um- ma m terminorum inter quo$cunque datos terminos contenta, & e principiis in medit. algeb. traditis con$equetur $umma terminorum, quorum di$tantiæ a primo $eriei termino $int re$pective n, n + m, n + 2 m, n + 3 m, n + 4 m, &c.

Cor. 3. Sit data $eries A x^e + B x^e+n + Cx^e+2n + Dx^e+3n + &c., cu- jus $umma $it functio quantitatis x, cujus fluxio inveniri pote$t; $it z di$tantia a primo $eriei termino & a$$umatur functio a z^m + b z^m-1 + c z^m-2 + d z^m-3 + &c. = P, ubi m e$t integer numerus; in fun- ctione P pro z $cribantur 0, 1, 2, 3, 4, &c. & re$ultent quantitates α, β, γ, δ, &c.: tum ex datâ $erie $emper acquiri pote$t $umma $eriei α A z^e + β B z^e+n + γ C z^e+2n + &c.

Cor. 4. Ducantur termini prædictæ feriei A x^e + B x^e+n + C x^e+2n + [0577]SERIERUM, &c. &c. re$pective in terminos {β / α}, {β × (β + n) / α · (α + n)}, {β × (β + n)(β + 2n) / α(α + n)(α + 2n)}, &c.; & re$ultat $eries {β / α} A x^e + {β × (β + n) / α (α + n)} B x^e+n + {β (β + n) (β + 2n) / α (α + n) (α + 2n)} C x^e+2n + &c., cujus $umma e $ummâ datæ $eriei $emper deduci pote$t, $i β = α + n × r, & r $it integer numerus; nam in hoc ca$u prædicti termini {β / α}, {β / α} × {β + n / α + n}, &c. evadunt functio {(α + r n + n z)(α + r n + n z - n) (α + r n + n z - 2n) · (α + r n + n z - 3 n) .. (α + n z + n) / α × (α + n) × (α + 2 n)(α + 3 n) · (α + 4 n) ... (α + (r - 1)n)}, ubi z e$t di$tantia a primo $eriei termino.

Cor. 5. Si fluens fluxionis x^. × φ: x detegi po$$it, tum $umma $eriei, quæ e$t fluens fluxionis x^. φ: (x) × (a z^m + b z^m-1 + &c.) etiam expri- mi pote$t.

PROB. XII.

Datâ æquatione relationem inter T, T′, T″, T′^n-1 $ucce$$ivos $eriei ter- minos, & z di$tantiam a primo $eriei termino, $eriem ejus invenire. A$$u- mantur pro n primis $eriei terminis re$pective A, B, C, D, &c. & e datâ æquatione continuo inveniantur $ucce$$ivi termini quæ$itæ $eriei, & exinde invenietur $eries quæ$ita.

PROB. XIII.

Datâ æquatione relationem inter $ucce$$ivos $eriei terminos exprimente; invenire æquationem, $ive ea algebraica $ive fluxionalis $it, ($i modo huju$ce generis detur æquatio), cujus radix erit $eries quæcunque data, quæ de$i- nitur æquatione, in quâ termini $eriei $unt unius tantum dimen$ionis.

1. Invenire æquationem, cujus radix e$t $eries y = A + B x^m + C x^2m + &c. in quâ relatio coefficientium e$t con$tans, $cilicet t D + s C + r B + q A + &c. = 0, ubi A, B, C, D, &c. $ucce$$ivos terminos, & q, r, s, &c. invariabiles quantitates re$pective denotant.

[0578]DE SUMMATIONE

Sit y = A + B x^m + C x^2m + D x^3m + E x^4m + &c. tum erit # t y = t A + t B x^m + t C x^2m + t D x^3m + t E x^4m + &c. & s x^m y = # s A x^m + s B x^2m + s C x^3m + s D x^4m + &c. r x^2m y = # r A x^2m + r B x^3m + r C x^4m + &c. q x^3m y = # q A x^3m + q B x^4m + &c. # &c. # &c. $ed ex hypothe$i t D + s C + r B + q A = 0, t E + s D + r C + q B = 0, & $ic in in$initum; unde evane$cent omnes $ub$equentes termini, adeoque re$ultabit (t + s x^m + r x^2m + q x^3m) y = t A + (t B + s A) x^m + (t C + s B + r A) x^2m.

2. Invenire fluxionalem æquationem exprimentem $eriem (y), cu- jus $eriei æquatio relationem inter $ucce$$ivos (T, T′, T″, &c.) datæ æquationis terminos de$ignans $it (a z^α + b z^α-1 + c z^α-2 + &c.) T x^m + (e z^β + f z^β-1 + g z^β-2 + &c.) T′ x^p±1m + (h z^γ + l z^γ-1 + &c.) T″ x^p±2m + &c. = 0, ubi z denotat di$tantiam a primo $eriei ter- mino, & a, b, c, &c. e, f, g, &c. h, l, &c. con$tantes quantitates; etiam- que α, β, γ, &c. integros numeros re$pective denotant.

Fingatur y = A x^n + B x^n+m + C x^n+2m ... T x^n+rm + T′ x^n+(r+1)m + T″ x^n+(r+2)m + &c. nunc primo per methodum in prob. præced. tradi- tam ex a$$umptâ æquatione y = A x^n + B x^n+m + &c. inveniatur æquatio fluxionalis y^. ^α + &c. = $eriei, cujus generalis terminus $it (a z^z + b z^z-1 + &c.) T; & $ic deducantur fluxionales æquationes, quarum generales termini $erierum $int (e z^β + f z^β-1 + &c.) T′, &c. & $ic deinceps; tum ita reducantur hæ fluxionales æquationes, i. e. ducantur in tales dimen$iones quantitatis x, ut eædem ejus invenian- tur dimen$iones in corre$pondentibus terminis (T, T′, &c.); & exinde con$equentur fluxionales æquationes quæ$itæ.

Ex.. Requiratur fluxionalis æquatio, cujus radix $it 1 - {1 / 4} x^2 - {3 / 64} x^4 - {3 / 256}x^6 - &c. i. e. cujus relatio inter $ucce$$ivos terminos $it (2 z - 1) × (2 z + 1) T x^2 - (2 z + 2)^2 T′ = 0; a$$umatur æquatio y = A + B x^2 + C x^4 + D x^6 + &c. $ed quoniam factor T ductus [0579]SERIERUM, &c. fuit in x^2, con$equitur m = 2; & con$equenter omnes factores in quantitates T, T′, T″, &c. ducti, qui $int l z - α, multiplicentur in {2 / l}, ita ut evadant factores huju$ce generis 2 z - β; factores (2 z - 1, 2 z + 1, 2 z + 2) vero in datâ æquatione contenti hanc habent for- mulam $ine ullâ reductione.

Nunc inveniatur talis fluxionalis functio quantitatum y & x & earum fluxionum, ut æqualis $it $eriei, cujus generalis terminus $it (2 z - 1) × (2 z + 1) × T, ubi T $it generalis terminus $eriei a$- $umptæ: per prob. prædic. ducatur æquatio a$$umpta in x, & re$ul- tat y x = A x + B x^3 + C x^5 + &c. cujus fluxio erit y x^. + x y^. = A x^. + 3 B x^2 x^. + 5 C x^4 x^. + &c. (2 z + 1) T x^2z x^., dividatur hæc æquatio per x & evadet {y x^. / x} + y^. = {A x^. / x} + 3 B x x^. + 5 C x^3 x^. + &c. cujus fluxio erit {y^. x^. / x} - {y x^.^2 / x^2} + y^.. = - {A x^.^2 / x^2} + 3 B x^.^2 + 3 · 5 Cx^2 x^.^2 ... (2 z + 1) × (2 z - 1) T x^2z-2 x^.^2; ducatur hæc æquatio in x^2 & evadet (P) x x^. y^. - y x^.^2 + x^2 y^.. = - A x^.^2 + 3 B x^2 x^.^2 + 3 · 5 C x^4 x^.^2 + &c. & per eandem me- thodum inveniatur (Q) x y^.. + x^. y^. = 4 B x x^.^2 + 16 C x^3 x^.^2 ... 2 z × 2 z T x^2z-1 x^.^2; ducatur æquatio (P) in (x) talem dimen$ionem quanti- tatis x, ut dimen$iones quantitatis x in terminum T æquationis P ductæ inveniantur eædem ac dimen$iones quantitatis x in terminum 4ucce$$ivum T′ æquationis (Q) ductæ unde re$ultat - (x^2 x^. y^. - x y x^.^2 + x^3 y^.. - (x y^.. + x^. y^.)) = (A + 4 B) x x^.^2 + (16 C - 3 B)x^3 x^.^2 ... ((2 z - 1) × (2 z + 1) T - (2 z + 2)^2 T′) x^2z+1 = 0, unde fluxionalis æquatio quæ$ita erit (x^3 - x) y^.. - (1 - x^2) y^. x^. - x y x^.^2 = 0.

Cor.. Ordo fluxionalis æquationis quæ$itæ $emper æquat indicem vel α vel β vel γ, &c. ubi α, β, γ, &c. integri $int numeri, qui inve- nitur maximus, & data $eries erit ejus particularis re$olutio.

Et ex datâ particulari re$olutione deprimi pote$t quæ$ita æquatio ad inferiorem.

3. Si vero numerus factorum functionis quantitatis z in datâ æquatione relationem inter $ucce$$ivos terminos T, T′, &c. exprimente [0580]DE SUMMATIONE continuo augeatur, tum omnino ex ii$dem principiis petenda e$t $olutio.

4. Si vero diver$æ pote$tates $ub$equentium terminorum in datâ æquatione contineantur, tum a$$umendo $eriem pro $ummis & ex eâ deducendo $ingulos datæ æquationis terminos; & corre$pondentes re$ultantis æquationis terminos inter $e æquando deduci pote$t $eries quæ$ita.

PROB. XIV. 1. Datis duabus vel pluribus convergentibus $eriebus S, S′, S″, &c. ex iis deducere $eries, quarum con$equentur $ummæ.

Sint α, β, γ, δ, &c. quicumque $ucce$$ivi termini ex unâ $erie; π, ρ, σ, τ, &c. ex alterâ, &c. tum erit a α + b β + c γ + d δ + &c. k π + l ρ + m σ + n τ + &c. terminus generalis $eriei, cujus $umma facile erui pote$t e $ummis datarum convergentium $erierum, ubi a, b, c, d, &c. k. l, m, &c. $unt quæcumque finitæ quantitates.

2. Si vero quædam e prædictis $eriebus S, S′, &c. haud $int con- vergentes, $ed earum termini continuo ad nihil vergant, & ultimo minores $int quam quævis a$$ignandæ quantitates; S″, S′″, &c. vero $int convergentes $eries; tum erui pote$t $umma $eriei, cujus genera- lis terminus e$t a α + b β + c γ + &c. + k π + l ρ + m σ + &c. + &c. + A p + B q + &c. + D r + E s + &c. ubi α, β, γ, &c. π, ρ, σ, &c. &c. $int termini $ucce$$ivi $erierum datarum haud convergen- tium; $ed p, q, &c. r, s, &c. termini $ucce$$ivi $erierum convergen- tium; etiamque $int a, b, c, &c. k, l, m, &c. &c. A, B, &c. D, E, &c. quæcunque finitæ quantitates, ita vero ut in coefficientibus $erierum, quæ haud convergunt, fingantur a + b + c + &c. = 0, k + l + m + &c. = 0.

Si modo $eries progrediatur $ecundum dimen$iones quantitatis x, tum a, b, c, &c. k, l, m, &c. A, B, C, &c. D, E, &c. $int functiones quæcunque ip$ius x.

Hæc etiam principia applicari po$$unt ad $ummas $erierum, quæ $unt tales functiones datarum convergentium $erierum, quæ nullas in [0581]SERIERUM, &c. $e reciprocas pote$tates involvunt; vel convergentes $eries præbent, Inveniantur enim functiones datarum $erierum & quantitatum, qui- bus hæ $eries æquales $unt, & erunt $ummæ $erierum re$ultantium æquales $ummæ quantitatum re$ultantium e prædictis quantitatibus.

Cor. 1. Ex primis terminis $erierum, quarum termini ad nihil ver- gunt; & ex datis primis terminis, & $ummis convergentium $erie- rum, quæ haud in quantitates $imul $umptas nihilo æquales ducun- tur, facile innote$cet $umma $eriei quæ$itæ.

Cor. 2. Datis $ummis quarumcunque $erierum, facile plerumque detegi pote$t, utrum $umma cuju$cunque $eriei ex iis per methodos prius traditas deduci pote$t, necne: ex ob$ervatis factoribus in deno- minatore prædictæ $eriei & $erierum, quarum dantur $ummæ, con- $equitur $ub$titutio, e quâ erui pote$t in $ummis datarum $erierum $umma $eriei quæ$itæ.

Cor. 3. Ex datâ $erie y = x + {1 / 2} x^2 + {1 / 3} x^3 + {1 / 4} x^4 + &c. erui pote$t $umma cuju$cunque $eriei, cujus generalis terminus e$t ± {A z^b + B z^b-1 + &c. / z × (z + m) × (z + n) × (z + p) × &c.}x^z; ubi b, m, n, p, &c. $unt integri nu- meri: erunt enim {1 / z}, {1 / z + m}, {1 / z + n}, &c. diver$i termini datæ $eriei; & con$equenter {a x^z / z} + {b x^m+z / z + m} + {c x^n+z / z + n} + {d x^p+z / z + p} = a α + b β + c γ + d δ + &c. ubi α, β, γ, δ, &c. $int termini ad di$tantias a primo m - 1, n - 1, p - 1, &c. fiat {a x^z / z} + {b x^z+m / z + m} + {c x^z+n / z + n} + &c. = {A z^b + B z^b-1 + &c. / z · z + m z + n · z + p. &c.} x^z, & inveniantur coe$$icientes a, b, c, &c. & id, quod requiritur, exinde facile erui pote$t.

THEOR. XVI.

1. Ex fluentibus fluxionum, quæ finitis terminis exprimi po$$unt, acquiri po$$unt $eries quantitatum, quarum $ummæ innote$cunt.

[0582]DE SUMMATIONE

Reducantur datæ fluxiones ad infinitas $eries $ecundum terminos, quorum fluentes finitis terminis exprimi po$$unt, progredientes; in- veniantur fluentes terminorum re$ultantium, & re$ultant $eries, qua- rum $ummæ innote$cunt.

Ex. Sit fluxio (a + b x^n)^{b / m} x^rn-1 x^., cujus fluens (exceptis excipien- dis) in finitis terminis exprimi pote$t, cum r $it integer numerus; re- ducatur data fluxio (a + b x^n)^{b / m} x^rn-1 x^. ad $eriem a^{b / m} (x^rn-1 x^. (1 + {b b / m a} x^n + {b / m} × {b - m / 2 m} × {b^2 / a^2} x^2n + &c.) $ecundum dimen$iones quantitatis x^n progredientem, cujus fluens erit a^{b / m} x^rn ({1 / r n} + {1 / (r + 1) n} × {b b / m a}x^n + {1 / (r + 2)n} × {b / m} × {b - m / 2 m} × {b^2 / a^2} x^2n + {1 / (r + 3) n} × {b / m} × {b - m / 2 m} × {b - 2 m / 3 m} × {b^3 / a^3} x^3n + &c.); hæc fluens autem innote$cit, ergo $umma $eriei {1 / r n} + {1 / (r + 1) n} × {b / m} × {b / a} x^n + {1 / (r + 2) n} × {b / m} × {b - m / 2 m} × {b^2 / a^2}x^2n + {1 / (r + 3) n} × {b / m} × {b - m / 2 m} × {b - 2 m / 3 m} × {b^3 / a^3} x^3n + &c. $emper finitis terminis ex- primi pote$t.

1. 2. Si nova $eries incipiat ab (l + 1) termino datæ $eriei, tum evadet {b^l / a^l} x^ln × {b / m} × {b - m / 2 m} · {b - 2 m / 3 m} ... {b - (l - 1) m / l m} ({1 / (r + l) n} + {1 / (r + l + 1)n} × {b - l m / (l + 1) m} × {b / a} x^n + {1 / (r + l + 2) n} × {b - l m / (l + 1)m} · {b - (l + 1)m / (l + 2) m} × {b^2 / a^2} x^2n + &c.), ergo $umma $eriei {1 / (r + l)n} + {1 / (r + l + 1)n} × {b - l m / (l + 1)m} × {b / a}x^n + {1 / (r + l + 2)n} × {b - l m / (l + 1) m} × {h - (l + 1) m / (l + 2) m} × {b^2 / a^2} x^2n + &c. cum r & l $int integri numeri, in $initis terminis exprimi pote$t.

1. 3. Per cap. 3. medit, algebr, erui pote$t in finitis $umma e termini [0583]SERIERUM, &c. prædictæ $eriei ad k di$tantiam a $e po$itis, e. g. {1 / (r + l) n} + {1 / (r + l + k) n} × {h - l m / (l + 1) m} × {h - (l + 1) m / (l + 2) m} · {b - (l + 2) m / (l + 3) m} ... {h - (l + k - 1) m / (l + k) m} × {b^k / a^k} x^kn + {1 / (r + l + 2k)n} × {b - l m / (l + 1) m} · {h - (l + 1) m / (l + 2) m} ... {h - (l + 2 k - 1) m / (l + 2 k) m} × {b^2k / a^2k} x^2kn + &c.

1. 4. Si requiratur ut $eries progrediatur $ecundum dimen$iones quantitatis x^-n, tum evadet b^{b / m} x^(r+{b / m},n ({1 / (r + {h / m}) n} + {1 / (r + {h / m} - 1) n} × {b / m} × {a / b x^n} + {1 / (r + {h / m} - 2)n} × {h / m} · {h - m / 2 m} × {a^2 / b^2 x^2n} + &c.) = $. x^rn-1 x^. (b x^n + a)^{b / m}: & $ic detegi pote$t $umma $eriei, quæ ab (l + 1) termino huju$ce $e- riei incipiat; vel quæ erit $umma $ingulorum ad k di$tantiam a $e in- vicem po$itorum terminorum eju$dem $eriei.

In his $eriebus pro h $cribatur -h, & evadunt termini $eriei alter- natim affirmativi & negativi, & h - m, h - 2 m, &c. fiunt - h - m, - h - 2 m, &c.

1. 5. Si - {h / m} - r $it integer affirmativus numerus, tum ob (a + b x^n)^{b / m} x^rn-1 x^. = (a x^-n + b)^{b / m} x^{b / m}n+rn-1 x^. pro r in $eriebus prius traditis $cribatur + {b / m} + r, & pro a $cribatur b & pro b, a; & pro x^n, x^-n; & re$ultant $eries eju$dem formulæ, quarum $ummæ innote$cunt.

Ex. 2. Fluens fluxionis (a + b x^n)^{b / m} x^rn-1 x^. per in$initam $eriem $ic exprimi pote$t {1 / r n} x^rn × (a + b x^n)^{b / m} × (1 - {h / m} × {1 / (r + 1)} × {b x^n / a + b x^n} + {h / m} · {h - m / m} × {1 / r + 1} · {1 / r + 2} · {b^2 x^2n / (a + b x^n)^2} - {h / m} · {h - m / m} · {h - 2m / m} × {1 / r + 1} [0584]DE SUMMATIONE · {1 / r + 2} · {1 / r + 3} × {b^3 x^3n / (a + b x^n)^3} + &c.); unde $i r $it integer numerus (prædictis exceptis) $umma huju$ce $eriei in finitis terminis ex- primi pote$t.

Et per transformationes prius traditas plures $eries erui po$$unt.

2. Ex fluentibus fluxionum, quæ exprimi po$$unt ex finitis ter- minis, circularibus, hyperbolicis & ellipticis arcubus, logarithmis & fluentibus datarum fluxionum, inveniri po$$unt $eries, quarum $ummæ per prædictas fluentes exprimi po$$unt.

Series inveniri po$$unt ex reducendo datas fluxiones ad infinitas $eries & earum fluentes inveniendo, ut in priori ca$u docetur.

Ex. Sit fluxio (a + b x^n)^±{1 / 2} × x^rn+{1 / 2}n-1 x^., ubi r e$t integer numerus vel affirmativus vel negativus, cujus fluens per $eriem $ic exprimi pote$t x^rn+{1 / 2}n ({2 / (2 r + 1) n} a^±{1 / 2} ± {1 / 2} × {2 / (2 r + 3) n} a^±{1 / 2}-1 b x^n ± {1 / 2} × {± 1 - 2 / 2 · 2} × {2 / (2 r + 5) n} × a^±{1 / 2}-2 b^2 x^2n ± {1 / 2} × {± 1 - 2 / 2 · 2} × {± 1 - 4 / 2 · 3} × {2 / (2 r + 7) n} × a^±{1 / 2}-3 b^3 x^3n ± ... ± {1 / 2} × {± 1 - 2 / 2 × 2} × {± 1 - 4 / 2 · 3} × {± 1 - 6 / 2 · 4} ... {± 1 - 2 z / 2 · z + 1} × {2 / (2 r + 2 z + 3)n} × a^±{1 / 2}-z-1 b^z+1 x^(z+1)n + &c.)

Et $imiliter reducenda e$t fluens ad $eriem $ecundum reciprocas dimen$iones quantitatis x^n progredientem.

Ex. Sit fluxio (a + b x^n)^±{1 / 3} vel {2 / 3} vel {1 / 4} vel {3 / 4} × x^rn-{1 / 3}nvel{1 / 4}nvel{1 / 2}n&c. x^., re- ducatur hæc quantitas ad terminos $ecundum dimen$iones quan- titatis x^n vel ejus reciprocas progredientes; & re$ultabit $eries, cujus $umma per ellipticos, hyperbolicos, arcus, &c. innote$cit.

Eadem principia etiam ad fluentes omnium fluxionum applicari po$$unt.

Ex. A$$umatur fluxio (a + b x^2)^±{1 / 2}+m × x^r x^., ubi literæ m & r in- tegros denotant numeros vel affirmativos vel negativos, cujus fluens per algebraicam functionem circularium arcuum, logarithmorum & [0585]SERIERUM, &c. finitorum terminorum exprimi pote$t; reducatur fluxio ad infinitam $eriem, & inveniatur ejus fluens, quæ erit a^m±{1 / 2} x^r+1 ({1 / r + 1} + (m ± {1 / 2}) × {r + 1 / r + 3} × A × {b / a} x^2 + {m ± {1 / 2} - 1 / 2} × {r + 3 / r + 5} × B × {b^2 / a^2} x^4 + {m ± {1 / 2} - 2 / 3} × {r + 5 / r + 7} × C × {b^3 / a^3} x^6 + {m ± {1 / 2} - 3 / 4} × {r + 7 / r + 9} × D × {b^4 / a^4} x^8 + ... + P × {b^l / a^l} × x^2l ({m ± {1 / 2} - l + 1 / l} × {r + 2 l - 1 / r + 2 l + 1} + {m ± {1 / 2} - l / l + 1} × {r + 2 l + 1 / r + 2 l + 3} × Q {b / a} x^2 + {m ± {1 / 2} - l - 1 / l + 2} × {r + 2 l + 3 / r + 2 l + 5} × R × {b^2 / a^2} x^4 + &c.)), ubi literæ A, B, C, &c.; P, Q, R, &c. denotant coefficientes præcedentium terminorum & l e$t integer affirmativus numerus.

Cor. Hinc innote$cit $umma $eriei {m ± {1 / 2} - l + 1 / l} × {r + 2 l - 1 / r + 2 l + 1} + {m ± {1 / 2} - l / l + 1} × {r + 2 l + 1 / r + 2 l + 3} × Q × {b / a} x^2 + {m ± {1 / 2} - l - 1 / l +2} × {r + 2 l + 3 / r + 2 l + 5} × R × {b^2 / a^2} x^4 + &c., ubi Q, R, &c. prædecentes coefficientes denotant.

Ducantur termini huju$ce $eriei in functionem e + $ z + g z^2 + h z^3 + &c. quantitatis z di$tantiæ a primo $eriei termino, i. e. ducan- tur primus terminus in e, $ecundus in e + f + g + h + &c., tertius in e + 2 f + 4 g + 8 h + &c., quartus in e + 3 f + 9 g + 27 h + &c.; & $ic de- inceps; & re$ultat $eries, cujus $umma innote$cit: vel ducantur termi- ni $ucce$$ivi datæ $eriei in terminos {β / α}, {β / α} × {β + n / α + n}, {β / α} × {β + n / α + n} × {β+ 2 n / α + 2 n^3}, &c., & re$ultat $eries {m ± {1 / 2} - l + 1 / l} × {r + 2 l - 1 / r + 2 l + 1} × {β / α} + {m ± {1 / 2} - l / l + 1} × {r + 2 l + 1 / r + 2 l + 3} × {β / α} × {β + n / α + n} × Q × {b / a} x^2 + &c., cujus $umma innote$- cit; $i β - α = m′ n, ubi m′ e$t integer affirmativus numerus: nam $eries {β / α}, {β / α} · {β + n / α + n}, ... {β · β + n · β + 2 n ... β + z n / α · α + n · α + 2n ... α + z n} =[0586]DE SUMMATIONE {β + z n.β + (z - 1) n.β + (z - 2) n ... β + (z - m′ + 1)n / α · α + n · α + 2 n ... α + (m′ - 1)n} præ- dicta functio quantitatis z.

Ad eundem modum ex reducendo fluxionem (b x^2 ±a)^m±{1 / 2} × x^r ^. ad $eriem b^m±{1 / 2} x^2m±1+r+1 ({1 / 2 m ± 1 + r + 1} + (m ± {1 / 2}) × {2 m ± 1 + r + 1 / 2 m ±1 + r - 1} × A × {a / b x^2} + &c.), ubi _A_, &c. præcedentes coeffi- cientes denotat, & principiis prius traditis erui po$$unt aliæ $eries, quarum $ummæ innote$cunt.

Cor. Sit $eries a + bx^n + cx^2n + dx^3n + &c. = S, cujus fluxio deduci pote$t; tum ex eâ erui pote$t $umma cuju$cunque $eriei a × {α / β} × {α′ / β′} × {α″ / β″} × {α″′ / β″′} × &c. + b × {α + n / β + n} × {α′ + n / β′ + n} × {α″ + n / β″ + n} × {α″′ + n / β″′ + n} × &c. × Ax^n + c × {α + 2n / β + 2n} × {α′ + 2n / β′ + 2n} × {α″ + 2n / β″ + 2n} × {α″′ + 2n / β″′ + 2n} × &c. × Bx^2n + d × {α + 3n / β + 3n} × {α′ + 3n / β′ + 3n} × {α″ + 3n / β″ + 3n} × {α″′ + 3n / β″′ + 3n} × &c. × Cx^3n + &c., ubi β - α,β′ - α′,β″ - α″,β″′ - α″′, &c. per _n_ divi$æ integri $unt affir- mativi numeri & literæ _A,B,C,D,_ &c. præcedentes coefficientes re$pective denotant.

PROB. XV.

_Ex datâ convergente $erie, vel $erie cujus termini ultimo nibilo fiunt æqua-_ _les, & cujus termini $ecundum dimen$iones quantitatis x progrediuntur, viz._ (a x^s + b x^r+s + c x^2r+s + d x^3r+s + &c.) _ita ut ad infinitam di$tan-_ _tiam dimen$iones evadant infinite magnæ vel negativæ vel affirmativæ, &_ _cujus $umma_ (S) _datur, $i modo $eries $it convergens; infinitas alias con$i-_ _miles detegere._

Ducatur data $eries in quotcunque quantitates huju$ce generis x^z x^.; fluxionum re$ultantium inveniantur fluentes, viz. $. S x^α x^.; & $ic ducantur $eries re$ultantes in quantitates huju$ce formulæ x^β x^., [0587]SERIERUM, &c. & inveniantur fluxionum re$ultantium x^β x^. $. S x^z x^. fluentes, & $i $eries data $it convergens, tum a fortiori $eries re$ultans etiam erit convergens; & $ic deinceps: deinde ducatur data $eries in quantitates huju$ce formulæ x^π, & inveniantur fluxiones quantitatum re$ultantium, dividantur hæ fluxiones per x^., & re$ultant novæ $eries, quarum $ummæ erunt ({πx^π-1 Sx^. + x^π S^. / x^.}), $i modo hæ re$ultantes $eries convergant. Hæ re$ultantes $eries in pleri$que ca$ibus conver- gent, $i modo data $eries convergat. Et $ic de fluxionibus novarum $erierum, &c. u$que donec hæ $eries evadant tales, ut termini ad in- finitam di$tantiam haud nihilo fiant æquales, tum ex omnibus his $eriebus per prob. præced. inveniri po$$unt $eries, quarum $ummæ in- note$cunt.

Et $ic e datis quibu$cunque $eriebus prædicti generis, facile deduci po$$unt infinitæ aliæ per methodos in prob. præc. traditas, quarum $ummæ innote$cunt; vel ex multiplicando datas $eries in qua$cunque quantitates, ita ut re$ultent $eries quarum fluxiones vel fluentes vel integrales vel incrementa producant convergentes $eries.

Et vice versâ ex principiis prius traditis inve$tigari pote$t, utrum $umma datæ $eriei e $ummis quarumque $erierum datis inve$tigari po$$it, nence.

Ex. 1. Sit æquatic data S = 1 + {1 / 1 · 2}x + {1 / 1 · 2 · 3}x^2 + {1 / 1 ·2 · 1 · 4} x^3 + &c. ducatur hæc $eries in 1 - x, & re$ultat $eries (1 - x) × S = 1 - {1 / 1 · 2}x - {1 / 1 · 3}x^2 - {1 / 1 · 2 · 4}x^3 - {1 / 1 · 2 · 1 · 5}x^4 - &c. in infi- nitum; $it x = 1, & evadet 1 = {1 / 2} + {1 / 1 × 3} + {1 / 1 · 2 × 4} + {1 / 1 · 2 · 3 × 5} + {1 / 1 · 2 · 1 · 4 × 6} + &c. & $ic de con$imilibus e præcedentibus prin- cipiis deducendis.

Ducatur data æquatio in a + bx + cx^2 + dx^3 + &c. = 0, & re- $ultat $eries a + ({1 / 2}a + b)x + ({1 / 1 · 2 · 3}a + {1 / 1 · 2}b + c)x^2 + &c. = 0.

[0588]DE SUMMATIONE

Ex. 2. Sit $eries (1 - x^2)^-m = 1 + m x^2 + m.{m + 1 / 2}x^4 + m.{m + 1 / 2} · {m + 2 / 3} x^6 + &c. ducatur æquatio in x^., & inveniatur ejus fluens, & re$ultat x + {mx^3 / 3} + {m. m + 1 × x^5 / 1 · 5} + {m. m + 1. m + 2. x^7 / 1 · 3 · 7} + &c. = $.{x^. / (1 - x^2)^m}; $it m = {1 / 2}, & erit $.{x^. / √(1 - x^2)} = x + {x^3 / 1 · 3} + {1 · 3 · 3 · x^5 / 1 · 2 · 3 · 4 · 5} + {1 · 3 · 3 · 5 · 5 x^7 / 1 · 2 · 3 · 4 · 5 · 6 · 7} + {1 · 3 · 3 · 5 · 5 · 7 · 7 x^9 / 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9} + &c. Ducantur $ucce$$ivi termini huju$ce $eriei re$pective in quamcunque algebraicam & integralem functionem quantitatis z di$tantiæ a primo $eriei termino. E. g. Ducantur termini re$pective in terminos {β / α}, {β.(β + n) / α.(α + n)},{β.β + n.β + 2n / α.α + n.α + 2n}, &c., $i {β - α / n} $it integer numerus; tum re$ultabit $eries, cujus $umma e prædictâ fluente deduci pote$t: $i ex termino ad di$tantiam (_l_) a primo incipiat $eries, cujus termini facile exprimi po$$unt per functionem vel algebraicam vel fluxiona- lem vel incrementialem di$tantiæ a primo $eriei termino; e medit. al- gebr. deduci pote$t $umma e $ingulis alternis, & terminis $eriei ad (_k_) di$tantiam a $e po$itis. Ex his facile deduci po$$unt infinitæ aliæ, &c.

PROB. XVI.

Datis $eriebus formularum, quæ haud per algebraicas vel fluxionales vel incrementiales æquationes exprimi po$$unt; invenire, annon earum $ummæ finitis terminis exprimi po$$unt.

Quæratur, annon pote$t e$$e $eries continuo ad nihil vergens & ul- timo ad id accedens, quæ datæ $eriei fiat æqualis; $i modo $eries in- venta ablatis quibu$dam ejus terminis auferatur a $e, & $ic deinceps; vel quod magis generale erit, quæ datæ $eriei per qua$dam quantita- [0589]SERIERUM, &c. tes auctæ vel diminutæ æqualis erit, $i modo $eries prædicti generis ducatur in quantitatem inve$tigandam nihilo æqualem.

Ex. 1. Sit $eries, {2 · 3 ... (n) - 1 / 1.2.3... n} + {3 · 4 ... (n + 1) - 1 / 1 · 2 · 3 ... (n + 1)} + {4 · 5 ... (n + 2) - 1 / 1 · 2 · 3 ... (n + 2)} + &c. cujus generalis terminus erit {(z + 2). / 1 · 2} {(z + 3) ... (z + n) - 1 / · 3 .. (z + n)}.

Facile con$tat e denominatoribus, &c. datæ $eriei ut $eries quæ$ita $it 1 + {1 / 1 · 2} + {1 / 1 · 2 · 3} + {1 / 1 · 2 · 3 · 4} + &c. & con$equenter $umma datæ $eriei quæ$ita erit 1 + {1 / 1 · 2} + {1 / 1 · 2 · 3} ... + {1 / 1 · 2 · 3 ..(n - 1)}.

Ex. 2. Sit $eries {e^2n + n^2 - 1 / e^(1 + n)^2} + {e^4n + n^2 - 1 / e^(2 + n)^2} + {e^6n + n^2 - 1 / e^(3 + n)^2} + &c. & $e- ries quæ$ita erit {1 / e} + {1 / e^4} + {1 / e^9} + {1 / e^16} + &c. & con$equenter $umma $eriei datæ quæ$ita erit {1 / e} + {1 / e^4} + {1 / e^9} + {e / e^16}...{1 / e^n^2}.

Ex ob$ervatâ lege quam habent termini datæ $eriei plerumque fa- cile erui pote$t $eries quæ$ita.

PROB. XVII. 1. Invenire, annon datæ $eriei $umma e pluribus aliis datis & finitis $eriebus inve$tigari pote$t.

Inve$tigetur, annon data $eries $it quæcunque directa functio $erie- rum datarum & finitarum quantitatum, & perficitur problema.

2. Datâ particulari fluente, infinitæ $unt diver$æ fluxionales æqua- tiones, quarum ea e$t re$olutio, & quarum diver$æ $unt generales re- $olutiones; etiamque hoc verum erit in $eriebus, quæ particulares [0590]DE SUMMATIONE fluentes re$pective denotant, quamvis for$an vulgaris methodus unam $olummodo deducat.

Ex. 1. Sit y = z + 1 · 2z^2 + 1 · 2 · 3z^3 + &c. $eries, quæ $emper divergit; tum erit yz = z^2 + 1 · 2z^3 + &c. & exinde {(yz^. + zy^.) / z^.}x z = 1 x 2 z^2 + 1 x 2 · 3z^3 + &c. = y - z, unde y z^. + z y^. = {y - z / z}z^. una æquatio, cujus particularis re$olutio e$t prædicta $eries; huju$ce fluxionalis æquationis innote$cit generalis re$olutio: inveniatur igi- tur generalis re$olutio, & ita corrigatur ut fiat prædicta particularis re$olutio (P = 0), deinde quantitati _P_ addatur quæcunque functio Z quantitatum y & z, quæ nihilo evadat æqualis, cum P = 0, tum erit P + Z = 0 æquatio, cujus particularis re$olutio erit data $e- ries; &c.

Aliter: a$$umatur data æquatio y = z + 1 · 2z^2 + &c. aucta vel diminuta per qua$cunque functiones quantitatum z & y ductas in di- rectas pote$tates novæ invariabilis quantitatis _A_ ad libitum a$$umendæ; deinde inveniatur per methodum prius traditam fluxionalis æquatio, cujus æquatio a$$umpta $it generalis fluens, & erit fluxionalis æqua- tio quæ$ita.

PROB. XVIII. Invenire infinitas $eries, quæ $int generales re$olutiones quæ$itarum fluxionalium æquationum.

A$$umantur quantitates tot invariabiles quantitates ad libitum a$- $umendas involventes, quot $it ordo fluxionalis æquationis quæ$itæ, quæ facile reduci po$$unt ad infinitas $eries; harum quantitatum in- veniantur fluxionales æquationes, quarum generales $int fluentes, & perficitur prob.

[0591]SERIERUM, &c. PROB. XIX.

Invenire, quando termini datœ $eriei fiant maximi. Inveniantur, quando proximi termini datæ $eriei fiant æquales, & exinde con$tabit, quando fiant maximi; unde fiant maximi, cum $eries nec convergat nec divergat; vel quod idem e$t, cum fluxio termini nibilo $it æqualis.

2. Invenire punctum inflexûs in datâ $erie, cujus termini vel re- lationes inter terminos dantur.

A$$umantur tres termini in genere $ucce$$ivi Q, R & S, $upponan- tur Q - R = R - S, & exinde detegentur quantitates Q, R & S, & invenitur punctum inflexûs quam proxime; & idem deduci pote$t e principiis fluxionum prius traditis.

Et $ic de inveniendis punctis vel terminis, in quibus con$i$tat quæ- cunque data relatio: a$$umantur enim in genere termini datam ha- bentes inter $e relationem, & ex æquationibus re$ultantibus facile con$tabit re$olutio.

PROB. XX. Invenire $ummabiles $eries.

A$$umatur quæcunque quantitas pro $ummâ, & reducatur ea ad $eriem, cujus termini $ecundum quamcunque legem progrediuntur, ita autem ut $eries re$ultans converget, & perficitur prob. vel quod ad idem redit: $it quæcunque finita quantitas vel rationalis vel irratio- nalis, cujus inveniatur proximus valor; deinde differentiæ inter hunc valorem & datam quantitatem inveniatur valor prope, & $ic deinceps in infinitum, & re$ultabit convergens $eries.

Ex. 1. Erit {1 / a - b} = {1 / a} + {b / a × (a - b)} = {1 / a} + {b / a × (a + c)} + {b × (b + c) / a × (a + c) × (a - b)} = {1 / a} + {b / a · (a + c)} + {b · (b + c) / a · (a + c) · (a + d)} + {b · (b + c) · (b + d) / a · (a + c) · (a + d) · (a - b)} = {1 / a} + {b / a · (a + c)} + {b · (b + c) / a · (a + c) · (a + d)} [0592]DE SUMMATIONE + {b · (b + c) · (b + d) / a · (a + c) · (a + d) · (a + e)} + {b · (b + c) · (b + d) · (b + e) / a · (a + c) · (a + d) · (a + e) × (a - b)} = &c.

2. Erit etiam {1 / a + b} = {1 / a} - {b / a × (a + b)} = {1 / a} - {b / a × (a - c)} + {b × (b + c) / a · (a - c) × (a + b)} = {1 / a} - {b / a · (a - c)} + {b · (b + c) / a · (a - c) · (a - d)} - {b · (b + c) · (b + d) / a · (a - c) · (a - d) × (a + b)} = &c.

Facile demon$trari po$$int hæc theoremata e reductione fractionum ad communes denominatores.

Cor. · Ex a$$umptis diver$is $eriebus numerorum pro quantitati- bus a, b, c, d, e, f, &c. facile con$equentur $eries, quarum innote$cunt $ummæ.

Ex. 2. Sit $eries 1 + b + b c + b c d + b c d e + b c d e f + &c. cu- jus termini continuo decre$cunt, & ultimo nihilo æquales fiunt, & erit 1 = 1 - b + b × (1 - c) + bc × (1 - d) + bcd × (1 - e) + bcde × (1 - f) + &c.

Hæc $eries non convergit celerius quam data.

Cor. · Sint b = {m / a}, c = {m + p / a + p}, d = {m + q / a + q}, e = {m + r / a + r}, &c. & erit 1 = 1 - b + b × (1 - c) + &c. = 1 - {m / a} + {m / a} · {a - m / a + p} + {m / a} × {m + p / a + p} × {a - m / a + q} + {m / a} × {m + p / a + p} · {m + q / a + q} · {a - m / a + r} + &c. nunc $tatu- antur q = 2p, r = 3p, s = 4p, &c. & evadet hæc $eries {a - m / a} + {m / a} · {a - m / a + p} + {m / a} · {m + p / a + p} · {a - m / a + q} + &c. = {β - p - m / β - p} (1 + {m / β} + {m / β} · {m + p / β + p} + {m · m + p · m + 2p / β · β + p · β + 2p} + &c. ubi β = a + p.

[0593]SERIERUM, &c.

Ex. 3. Sint b - π = β, c - ρ = γ, d - σ = δ, e - τ = ε, &c. tum erit 0 = {α / a} - {α / a} × {β / b} - {α / a} × {π / b} × {γ / c} - {α / a} × {π / b} × {ρ / c} × {δ / d} - &c. $i modo fractiones novæ ultimo $int minores quam unitas, i. e. 0 = 1 - {β - β′ / β} - {β′ / β} × {γ - γ′ / γ} - {β′ / β} × {γ′ / γ} × {δ - δ′ / δ} - {β′ / β} × {γ′ / γ} × {δ′ / δ} × {ε - ε′ / ε} - &c., ubi β′, γ′, δ′, ε′, &c. $unt quantitates minores quam β, γ, δ, ε, &c.

Si modo addantur quantitates, quæ continuo decre$cant in uno termino, & detrahantur in $ucce$$ivis, vel prope; tum re$ultabit $eries, cujus $umma innote$cit; hæc principia continent methodum $eries deducendi, quarum $ummæ innote$cunt.

Hæc principia etiam applicari po$$unt ad inveniendas $eries conver- gentes, quarum $ummæ $int quæcunque irrationales quantitates: $ed perraro u$ui in$erviunt con$imiles transformationes, 1<_>mo. enim nece$$e e$t, ut detur methodus inveniendi quantitates a, b, c, d, &c; α, β, γ, &c. e datis $eriei terminis, aliter non datur $eriei transformatio; i. e. non ex datâ $erie acquiritur $eries convergens.

2. Datâ $erie convergente, inveniatur ejus functio vel algebraica vel fluxionalis vel fluentialis vel incrementialis vel integralis e prin- cipiis prius traditis, quæ evadit convergens, & per$icitur prob.

PROB. XXI. Invenire $ummas ferierum, quarum $inguli termini dantur ex infinitis $eriebus.

1. Si vero dentur termini ex infinitis $eriebus: per infinitas $eries inveniantur vel $ummæ harum infinitarum $erierum, vel approxima- tiones $atis propinquæ ad illas $ummas; quibus in terminis $eriei, cujus $umma requiritur, pro $uis valoribus $ub$titutis, re$ultat $eries, cujus $umma inveniatur prope, & erit $umma quæ$ita prope.

Tum continuo per methodos prius traditas corrigendæ $unt ap- proximationes inventæ, & exinde corrigetur $umma $eriei quæ$ita; & $ic deinceps.

[0594]DE SUMMATIONE

2. Si vero termini e datis æquationibus pendeant, tum e datis æquationibus vel deducantur valores terminorum datæ $eriei vel approximationes ad terminos datæ $eriei $atis appropinquantes, & tum per methodos prædictas continuo corrigatur $umma inventa, & continuo re$ultabunt propiores approximationes ad $ummam quæ$itam.

Ex. Literâ z - 1 denotante di$tantiam termini cuju$cunque e primo, terminus prædictus exprimatur per reciprocam $eriei 1 + {1 / 1 · 2}z^-1 + {1 / 1 · 2 · 3}z^-2 + {1 / 1 · 2 · 3 · 4}z^-3 + &c. ductam in {1 / 2^z}, i. e. $eries $it {{1 / 2} / 1 + {1 / 1 · 2} + {1 / 2 · 3} + &c.} + {{1 / 4} / 1 + {2 / 1 · 2} + {2^2 / 2 · 3} + &c.} + {{1 / 8} / 1 + {3 / 1 · 2} + {3^2 / 1 · 2 · 3} + &c.} + &c. quæ $eries vere convergit; & facile erit di- judicare de numero terminorum in fractione 1 + {z / 1 · 2} + {z^2 / 1 · 3} + &c. ad $ingulas operationes a$$umendorum, &c.: $ingulorum enim terminorum præ$tat, ut inveniantur approximationes, quæ a veris $ummis per quantitates prope æquales di$tant, & $i requiratur $umma $eriei vera ad quendam limitem, tum ita inveniantur approximatio- nes, ut earum aggregatum non produceret errorem limitem prædi- ctum ex$uperantem.

In his æque ac in omnibus aliis $eriebus ex relatione, quam habent termini $ucce$$ivi ad infinitam di$tantiam dijudicari pote$t convergen- tia $eriei.

PROB. XXII.

_Conce$sâ metbodo detegendi generaliter, annon una data quantitas $it al-_ _gebraica functio aliarum datarum quantitatum, & datâ $erie $ecundum di-_ _men$iones incognitæ quantitatis_ x _progrediente, cujus $umma $it y; invenire_ [0595]SERIERUM, &c. _annon a$$ignari pote$t æquatio, $ive algebraica $ive fluxionalis $it, quæ de-_ _$ignat relationem inter quantitates_ x & y, _& earum fluxiones._

1. Sit data $eries a x^n + b x^n+m + c x^n+2m + &c. = y, & e conce$sâ methodo $equitur, utrum data $eries y $it algebraica functio literæ x, i. e. utrum detur algebraica æquatio, quæ exprimit relationem inter quantitates x & y, necne.

2. Inveniantur primæ, $ecundæ, &c. fluxiones datæ $eriei, quæ erunt re$pective y^. = n a x^n-1 x^. + (n + m)b x^n+m-1 x^. + (n + 2m)c x^n+2m-1 x^. + &c. &c. jam vero e conce$sâ methodo detegatur utrum data $eries a x^n + b x^n+m + &c. = y $it algebraica functio datæ quantitatis x, & datarum $erierum n a x^n-1 + (n + m) b x^n+m-1 + &c. = {y^. / x^.}, n · (n - 1) a x^n-2 + (n + m) × (n + m - 1)b x^n+m-2 + &c. = {y^.. / x^. ^2}, &c. necne; & confit problema.

Ex. · Sit data $eries 1 + {x^n / 1 · 2 · 3 .. n} + {x^2n / 1 · 2 · 3 .. 2 n} + {x^3n / 1 · 2 ·3 .. 3n} + &c. = y, cujus fluxio n ordinis erit y^. ^n = (1 + {x^n / 1 · 2 · 3 ... n} + {x^2n / 1 · 2 · 3 .. 2 n} + &c.)x^. ^n; unde y^. ^n = y x^. ^n.

Cor. Generalis fluens æquationis y^. ^n = y x^. ^n erit y = a (1 + {x^n / 1 · 2 · 3 .. n} + {x^2n / 1 · 2 · 3 .. 2 n} + {x^3n / 1 · 2 · 3 .. 3 n} + {x^4n / 1 · 2 · 3 .. 4 n} + &c. in infi- nitum) + b x (1 + {x^n / 2 · 3 .. n + 1} + {x^2n / 2 · 3 .. 2n + 1} + {x^3n / 2 · 3 .. 3 n + 1} + &c.) + {c x^2 / 1 · 2.} (1 + {x^n / 3 · 4 .. n + 2} + {x^2n / 1 · 4..2n + 2}.. + {x^3n / 3 · 4 .. 3 n + 2} + &c.) + {d x^3 / 1 · 2 ·3} (1 + {x^n / 1 · 5 .. n + 3} + {x^2n / 1 · 5..2n + 3} + {x^3n / 4 · 5 .. 3n + 3} [0596]DE SUMMATIONE + &c.) + {e x^4 / 1 · 2 · 3 · 4} (1 + {x^n / 5 · 6 .. n + 4} + &c.) + &c. ... + {b x^n-1 / 1 · 2 · 3 .. n - 1} × (1 + {x^n / n · n + 1 .. 2n - 1} + {x^2n / n(n + 1)(n + 2) .. (3n - 1)} + &c. in infinitum); ubi literæ a, b, c, d, e, &c. & b invariabiles co- efficientes ad libitum a$$umendas re$pective denotant.

3. Si termini $eriei y = P generaliter exprimantur per fractionem huju$ce generis {a z^m + b z^m-1 + c z^m-2 + &c. / A z^n + B z^n-1 + C z^n-2 + &c.} × x^rz+rs, ubi literæ r, s, a, b, c, &c. A, B, C, &c. invariabiles denotant quantitates, & m & n $unt integri numeri, & z di$tantia a primo $eriei termino: tum e prob. præced. deduci pote$t fluxionalis æquatio, cujus radix particu- laris invenitur y = P.

Cor. 1. Ex hinc facile colligi pote$t fluentem generalis fluxionalis æquationis huju$ce formulæ y^. ^n + {a^n-1 / x} y^. x^. + {b / x^2} y^. ^n-2 x^. ^2 + {c^n-3 / x^3} y^. x^. ^3 + &c. = {a′ - b′^z+1 x^z+1 / x^n - b′ x^n+1} e$$e y = A x^-α + B x^-β + C x^-γ + D x^-δ + &c. + {a′ / α · β · γ · δ · &c.} + {a′ b′ x / α + 1 · β + 1 · γ + 1 · δ + 1 · &c.} + ... {a′ b′^z x^z / α + z · β + z · γ + z · δ + z · &c.}, ubi a, b, c, &c. $unt invariabiles coefficientes facile deducendæ ex (n) invariabilibus quantitatibus α, β, γ, δ, &c. datis, & (n) quantitates A, B, C, D, &c. $unt quæcunque invariabiles quantitates ad libitum a$$umendæ, & a′, b′, &c. $unt datæ invariabiles quantitates; & z e$t integer numerus.

4. Sit æquatio (a + a′ x + a″ x^2 + &c.)x^. ^n + (b + b′ x + &c.)y x^. ^n + (c + &c.) y^. x^. ^n-1 + (d + &c.) y^.. x^. ^n-2 ... + (g + &c.) y^. ^n-1 x^. + b y^. ^n = 0, tum $i modo ejus generalis fluens $it y = A + B x + C x^2 ... G x^n-1 + H x^n + I x^n+1 + K x^n+2 + &c., ubi (n) literæ A, B, C, &c. funt invariabiles quantitates ad libitum a$$umendæ, cæteræ vero H, I, &c. invariabiles, erit a + b A + c B + 2 d C + ... + 1 · 1. 3 [0597]SERIERUM, &c. :: (n - 1) g G = - 1 · 2 · 3:: n × b H, b B + 1 · 2 c C + 2 · 3 d D + ... 2 · 3 · 4 .. (n + 1) I b = 0, &c.

PROB. XXIII. 1. _Invenire quantitatem, quæ in $eriem inveniendam magis celeriter_ _convergentem ducta præbet datam $eriem._

Huju$ce problematis re$olutio $olummodo deduci pote$t e terminis ad infinitam di$tantiam po$itis; inveniatur enim quantitas $i modo talis deduci po$$it, quæ vel in unum terminum cuju$cunque formulæ, vel in plures terminos proxime convergentes ducta, præbet datam $eriem, & per$icitur problema.

Ex. 1. Sit $eries infinita (A) 1 + b + b^2 + b^3 + &c. & erit (1 + b) × (1 + b^2 + b^4 + b^6 + &c. = B), & (1 + b)(1 + b^2)(1 + b^4 + b^8 + &c. = C), & $imiliter (1 + b)(1 + b^2)(1 + b^4)(1 + b^8 + b^16 + &c. = D), &c. ubi b $it vel negativa vel affirmativa quantitas, & erit A minus convergens quam B, B quam C, C quam D, &c.

Ex. 2. Sit $eries (P) x - {1 / 2}x^2 + {1 / 3}x^3 - {1 / 4}x^4 + &c. a$$umatur (1 + x)^-1 × (x + Ax^2 + Bx^3 + Cx^4 + &c.) = P, & invenientur A = {1 / 1 · 2}, B = {- 1 / 2 · 3}, C = {1 / 3 · 4}, &c. i. e. $eries erit (Q) x + {1 / 2}x^2 - {1 / 2 · 3} x^3 ... {1 / z · z + 1}x^z+1; a$$umatur 2. (1 + x)^-1 × ({1 / 2}x + ax^2 + b x^3 + &c.) = Q; & invenientur a = + {3 / 4}, b = + {1 / 1 · 2 · 3}, c = - {1 / 2 · 3 · 4}, d = + {1 / 3 · 4 · 5}, &c. i. e. $eries erit (R) {1 / 2}x + {3 / 4}x^2 + {1 / 1 · 2 · 3} x^3 - {1 / 2 · 3 · 4}x^4 ... {1 / z · z + 1 · z + 2}x^z+2, & $ic a$$umatur 3 (1 + x)^-1 ({1 / 6}x + αx^2 + βx^3 + γx^4 + &c.) = R, & invenietur $eries (S) {1 / 6}x + {5 / 12}x^2 + {11 / 36}x^3 + {1 / 1 · 2 · 3 · 4}x^4 - {1 / 2 · 3 · 1 · 5}x^5 ... {1 / z · z + 1 · z + 2 · z + 3} [0598]DE SUMMATIONE x^z+3, & $ic deinceps: unde P = {Q / 1 + x} = {R / 2 · (1 + x) · (1 + x)} = {S / 2 · 3 · (1 + x) · (1 + x)^2} = {T / 2 · 3 · 4 · (1 + x) · (1 + x)^3} = &c.

Cor. Sit x minor quam 1, & omnes $eries P, Q, R, S, & c. evadent convergentes; $it x eadem quantitas in omnibus prædictis $eriebus, & erunt termini $erierum (P, Q, R, S, &c.) ad infinitam di$tantiam re- $pective inter $e ut ± {1 / z}, {1 / z · z - 1}, {1 / z · z - 1 · z - 2}, {1 / z · z - 1 · z - 2 · z - 3}, & $ic deinceps; ubi z denotat di$tantiam a primo $eriei termino; & con$equenter ad infinitam di$tantiam minor erit convergentia $eriei P quam Q, Q quam R, R quam S, &c. termini enim ad prædictam di$tantiam $eriei P infinite majores $unt quam termini $eriei Q, & $ic deinceps: in $eriebus enim per functiones algebraicas quantitatis z de$ignatis, convergentia pendet ex differentiâ inter dimen$iones quantitatis z in numeratore & deneminatore contentas.

2. Ducatur $eries quæcunque (P) in quantitatem α = 0, (e. g. $it 1 - x = 0, & con$equenter α = 1 - x); & $i $eries (P) $it conver- gens, tum $eries re$ultans erit = 0; $i $eries (P) $it divergens, tum $eries re$ultans pote$t e$$e convergens vel divergens.

3. Datâ functione quantitatis z, quæ denotat quemcunque termi- num $eriei (P), cujus di$tantia a primo $it z; reducatur data functio ad $eriem de$cendentem $ecundum dimen$iones quantitatis z; deinde inveniatur quantitas A, ita ut, $i modo reducatur $inita quantitas A ad infinitam $eriem, termini ad infinitam di$tantiam quam proxime iidem evadant ac termini datæ $eriei; inveniatur $eries Q, quæ in quantitatem A ducta, præbet datam $eriem (P), & fere feries Q ma- gis celeriter converget quam feries P.

4. Si vero detur relatio inter $ucce$$ivos terminos $eriei (P) ad in- finitam di$tantiam, inveniatur quantitas A, quæ reducta ad $eriem infinitam, cujus termini $ecundum dimen$iones quantitatis z de$cen- dentes, eandem prope habent relationem inter $ucce$$ivos terminos ac data relatio; tum deducatur $eries Q, ita ut A × Q = P, & fere Q erit $eries magis celeriter convergens.

[0599]SERIERUM, &c.

Facile inve$tigari po$$int infinitæ quantitates A, quarum termini $ucce$$ivi ad infinitam diftantiam vel quam proxime $int iidem, vel habeant inter $e relationem, quam habent datæ $eriei termini.

E convergentiâ totius $eriei, i. e. terminorum ad infinitam di$tan- tiam minime dici pote$t convergentia omnis partis; $ed fere facile inveniri po$$unt termini, cum tran$eat $eries e divergentiâ in conver- gentiam, vel cum fiat maxime convergens; vel convergentiæ incre- mentum evadat maximum, &c.

THEOR. XVII.

Sit y = a - b r^z - cr^2z - d r^3z - e r^4z - &c. ubi r, a, b, c, d, e, &c. $unt quantitates invariabiles; & $int A, B, C, D, E, &c. diver$i dati valores quantitatis y, re$pondentes diver$is valoribus quantitatis z, qui $unt 0, 1, 2, 3, 4, &c. unde A = a - b - c - d - e - &c. B = a - b r - c r^2 - d r^3 - &c. C = a - b r^2 - c r^4 - d r^6 - e r^8 - &c. D = a - b r^3 - c r^6 - d r^9 - e r^12 - &c. &c., ubi tot a$- $umantur æquationes, quot $unt incognitæ quantitates a, b, c, d, e, &c. & pro r a$$umi pote$t quicunque numerus exceptis 1 & -1; ex his $implicibus æquationibus inveniri po$$unt coefficientes a, b, c, d, &c.; & con$equenter æquatio y = a - b r^z - c r^2z - &c.

Cor. 1. Sit z infinita quantitas & r minor quam 1, tum erit y = a.

Cor. 2. Fiat z negativa quantitas, & erit y = a - {b / r^z} - {c / r^2z} - &c. & $it z infinita, & r major quam 1; tum erit y = a.

Cor. 3. Si r = 1 vel - 1, tum a$$umenda e$t $eries y = a + {b / z} + {c / z^2} + {d / z^3} + &c. vel a + bz + cz^2 + &c.

Differentiæ quarumcunque quantitatum ad perparvas di$tantias (o) a $e invicem po$itarum erunt plerumque in ratione di$tantiarum ip$arum; & con$equenter quantitas exprimi pote$t per quantitatem [0600]DE SUMMATIONE huju$ce formulæ A + B o, & magis generaliter per quantitatem A + B o + C o^2 + D o^3 + &c.

Hoc verum e$t haud $olummodo in algebraicis $ed etiam in expo- nentialibus quantitatibus.

Hinc prope corrigi po$$unt errores, qui irrepunt in plera$que ope- rationes ad perparva intervalla in$titutas.

THEOR. XVIII.

Sint A, B, C, D, E, &c. quantitates quæcunque invariabiles, z vero variabilis, tum in expre$$ione A + B z + C z · {z - n / 2} + D z · {z - n / 2}· {z - 2 n / 3}· &c. $cribe numeros quo$vis æquidi$tantes o, n, 2n, 3n, &c. pro z, & quantitates provenientes dicantur re$pective a, b, c, d, e, &c. $ubtrahatur qui$que terminus $eriei a + b + c + d + e + &c. de proxime præcedente, vocenturque termini re$iduorum (a - b, b - c, c - d, &c.) primæ differentiæ; deinde $ubtrahatur differentia quæ- que prima a proxime præcedente, & re$idua re$ultantia vocentur $ecundæ differentiæ; $ubtrahatur etiam quæque $ecunda a pro- xime præcedente, & re$idua re$ultantia dicantur tertiæ differen- tiæ; & $ic deinceps: $it a primus $eriei terminus, d′ prima prima- rum differentiarum, d″ prima $ecundarum, & $ic deinceps; & erit expre$$io a - d′{z / n} + {z / n} · {z - n / 2n} d″ - {z / n} · {z - n / 2n} · {z - 2n / 3n} d^m + &c. = termino, cujus di$tantia a primo $it z.

Cor. 1. Hinc d′ = a - b; d″ = (a - b) - (b - c) = a - 2 b + c; & $ic d′″ = a - 3 b + 3 c - d; & denique d′ = a - n b + n · {n - 1 / 2} c - n · {n - 1 / 2} · {n - 2 / 3} d + &c.

Cor. 1. 1. Sint a, b, c, d, e, &c. ordinatæ ad curvam, quarum com- munis di$tantia a $e invicem $it n, i. e. quarum ab$ci$$æ $unt o, n, 2n, [0601]SERIERUM, &c. &c. & æquatio relationem inter ab$ci$$am z & ejus corre$pondentes ordinatas y de$ignans $it y = A - {B z / n} + {C z / n} · {z - n / 2 n} - D {z / n} · {z - n / 2 n}. · {z - 2 n / 3 n} + &c. tum erunt A = a, B = d′ = a - b, C = d″ = a - 2 b + c, D = d′″ = a - 3 b + 3 c - d, &c.

2. Sint A. n = d′, A.. n^2 = d″, A... n^3 = d′″, &c. tum erit y = A - A. z + A.. z · {z - n / 2} - A... z · {z - n / 2} · {z - 2 n / 3} + &c. fiat n = 0 & eva- dent A., A.., A..., &c. primæ, $ecundæ, tertiæ, &c. fluxiones primæ or- dinaiæ A, & exinde ordinata y = A - {A^. / z^.}z + {1 / 2}{A^.. / z^. ^2} z^2 - {1 / 2 · 3} {A^... / z^. ^3} z^3 + {1 / 2 · 3 · 4} {A^.... / z^. ^4} z^4 - &c. & ejus area = A z - {1 / 2}{A^. / z^.} z^2 + {1 / 6} {A^.. / z^. ^2} z^3 - {1 / 24} {A^... / z^.^3} z^4 + &c. pro A, A^., A^.., &c. $cribantur y, y^., y^.., &c. & fit area = y z - {1 / 2} {y^. / z^.} z^2 + {1 / 6} {y^.. / z^. ^2} z^3 - {1 / 24} {y^... / z^. ^3} z^4 + &c. $int y^., y^..., &c. negativæ quantitates, & fit area = y z + {1 / 2} {y^. / z^.} z^2 + {1 / 6} {y^.. / z^. ^2} z^3 + &c.

In hoc ca$u ab$ci$$a $emper $upponitur incipere a primâ vel ultimâ ordinatâ.

Cor.. Hinc literæ a, b, c, &c. inveniuntur e differentiis a, d′, d″, d′″, &c. fere per eandem legem ac differentiæ d′, d″, d′″, &c. e literis a, b, c, &c. i. e. b = a - d′, c = a - 2d′ + d″, d = a - 3 d′ + 3 d″ - d′″, e = a - 4 d′ + 6 d″ - 4d′″ + d″″, &c.

Ex. 1. Sint termini $ucce$$ivi {1 / z}, {1 / z + 1}, {1 / z + 2}, {1 / z + 3}, &c. & invenientur prædictæ differentiæ {1 / z} - {1 / z + 1} = {1 / z · z + 1} = d′, {1 / z} - {2 / z + 1} + {1 / z + 2} = {1 × 2 / z · z + 1 · z + 2} = d″; & $ic {1 × 2 × 3 / z · z + 1 · z + 2 · z + 3} [0602]DE SUMMATIONE = d′″, & $ic deinceps: & vice versâ $int termini re$pectivi {1 / z}, {1 / z · z + 1}, {1 · 2 / z · z + 1 · z + 2}, {1 · 2 · 3 / z · z + 1 · z + 2 · z + 3}, & erunt differentiæ præ- dictæ d′, d″, d′″, &c. re$pective {1 / z + 1}, {1 / z + 2}, {1 / z + 3}, {1 / z + 4}, &c.

Ex. 2. Sint termini a, a b, a b^2, a b^3, &c. in geometricâ progre$$ione, & erunt differentiæ prædictæ d′, d″, d′″, &c. re$pective a = d, a - a b = a × (1 - b) = d′, a - 2 a b + a b^2 = a × (1 - b)^2 = d″, &c. i. e. differentiæ $ucce$$ivæ a, a(1 - b), a × (1 - b)^2; a × (1 - b)^3, &c. quæ $int a, d′, d″, &c. erunt quantitates in geometricâ progre$$ione, & vice versâ $int prædictæ differentiæ in geometricâ progre$$ione, & erunt quantitates ip$æ in geometricâ progre$$ione.

Ex. 3. Sit $eries terminorum a, b, a + b, a + 2 b, 2 a + 3 b, 3 a + 5 b, 5 a + 8 b, &c. ubi quique $ucce$$ivus terminus e$t $umma duorum præcedentium, tum termini differentiarum n ordinis erunt iidem ac termini datæ $eriei (n primis exceptis); primus terminus differentia- rum n ordinis erit m a - b b, $i m b + b a $it terminus in datâ $erie, cujus di$tantia a primo $it n + 1.

Si termini $int $ummæ (m) præcedentium terminorum in qua$cun- que datas coefficientes ductorum, vel eorum quæcunque functiones; tum exinde erui po$$unt differentiæ.

PROB. XXIV.

Datâ $erie a + b + c + d + e + &c. in infinitum pergente & e ter- minis $ucce$$ivis a, b, c, d, &c. con$tante, & inventis differentiis d′ = a - b, d″ = a - 2 b + c, & c. $it z di$tantia a primo $eriei termino, tum terminus, cujus di$tantia a primo $it z, per theor. præc. erit a - d′ z + z. {z - 1 / 2} d″ - z × {z - 1 / 2} × {z - 2 / 3} d′″ + &c. quæ $eries in infinitum excur- ret, ni bæ differentiæ fiant ultimo nibilo æquales. Invenire igitur, utrum bæc $eries in infinitum progrediens, converget; necne.

[0603]SERIERUM, &c.

1<_>mo. Sit data $eries talis, ut terminus qui$que ultimo $it ad termi- num $ucce$$ivum in permagnâ ratione fere ut infinita quantitas ad finitam, e. g. $it $eries 1 + {1 / 1 · 2} + {1 / 1 · 2 · 3} + {1 / 1 · 2 · 3 · 4}, & denique {1 / 1 · 2 · 3 .. z} + {1 / 1 · 2 · 3 .. z + 1}; $it z infinita quantitas & {1 / 1 · 2 · 3 .. z} erit ad {1 / 1 · 2 · 3 .. z · (z + 1)} ut infinita z + 1 ad 1. In hoc ca$u $e- ries data maxime convergit, $ed $eries re$ultans 1 - d′ (1 - {1 / 2}) z + d″(1 - 2 × {1 / 2} + {1 / 1 · 2 · 3}) z × {z - 1 / 2} - d′″ × z × {z - 1 / 2} · {z - 2 / 3} + &c. minime converget: hoc con$tare pote$t e $ub$equente ratiocinatione; $it primus terminus $eriei a, omnes vero reliqui vel = 0, vel $inguli $ucce$$ivi infinite $int minores præcedentibus; & erit $eries prope a + 0′ + 0″ + 0′″ + &c. & omnes primæ differentiæ primarum, $e- cundarum, &c. differentiarum erunt re$pective a, unde $eries erit a - a z + a z × {z - 1 / 2} - a z × {z - 1 / 2} × {z - 2 / 3} + &c. quæ nunquam celeriter converget, ni z $it integer numerus.

2<_>do. Si ultimus datæ æquationis terminus habeat ad ejus $ucce$$i- vum rationem majorem quam æqualitatis, i. e. ultimi termini datæ $eriei $int in geometricâ progre$$ione, cujus communis ratio e$t 1: r; tum, $i omnes termini $eriei $int in geometricâ progre$$ione, erunt differentiæ d′, d″, d′″, &c. in geometricâ progre$$ione, cujus commu- nis ratio e$t 1, 1 - r: unde con$tat, $i 1 major $it quam 1 - r, tum converget hæc $eries, $in aliter vero non. Eadem etiam affirmari po$$unt de $erie, cujus termini ultimo $unt in geometricâ progre$$ione.

3<_>tio. Si termini ad infinitam di$tantiam propiores accedant ad rationem æqualitatis quam pro quâvis finitâ differentiâ; tum, utrum $eries deducta $it convergens, necne; pendet e ratione, quam habent ultimo $ucce$$ivæ differentiæ d′, d″, d′″, &c. i. e. ex æquatione a - z d′ + z × {z - 1 / 2} d″ - &c. prius traditâ, i. e. ex ratione, quam habent [0604]DE SUMMATIONE inter $e ultimo $ucce$$ivi $eriei termini, con$tabit, utrum $eries re$ul- tans $it convergens, necne.

Hinc con$tat, ut hæc $eries plerumque maxime, cum data $eries minime convergat; $emper autem minime cum maxime convergat data $eries: pendet enim e rationibus, quas habent inter $e $ucce$$ivæ differentiæ d, d′, d″, &c.

THEOR. XIX.

1. Sit convergens $eries a + b + c + d + e + f + &c. quorum terminorum primæ differentiæ $int re$pective a′, b′, c′, d′, e′, &c. $e- cundæ vero a″, b″, c″, d″, &c. & $ic deinceps: differentiæ vero n or- dinis $int re$pective α, β, γ, δ, ε, &c. tum erit a = α + n β + n. {n + 1 / 2}γ + n · {n + 1 / 2} · {n + 2 / 3} δ + n ·{n + 1 / 2} · {n + 2 / 3} · {n + 3 / 4} ε + &c. in infinitum.

Cor. · Si modo $eries data $it convergens; tum omnes $eries, quorum termini $unt differentiæ cuju$cunque ordinis erunt etiam convergentes.

Facile con$tat, $i modo $eries $it affirmativa; $in termini eju$dem $eriei, (i. e. cujus affirmativi & negativi termini eandem pror$us ob- $ervant legem) $int alternatim affirmativi & negativi, tum erunt præ- dictæ differentiæ alternatim affirmativæ & negativæ, & $eries erit convergens.

2. Summa $eriei a + a′ + a″ + a′″ + &c. a′^n = (n + 1) a - n · {n + 1 / 2} b + (n - 1) · {n / 2} · {n + 1 / 3} c - (n - 2) · {n - 1 / 2} · {n / 3} · {n + 1 / 4} d + &c.

THEOR. XX.

1. Sint d′, d″, d′″, d″″, &c. ut antea $ucce$$ivæ primæ differentiæ terminorum $eriei a + b + c + d + e + &c. i. e. cujus termini $int $ucce$$ive a, b, c, d, e, &c. Sit etiam $eries, cujus termini $unt $uc- [0605]SERIERUM, &c. ce$$ive E + a + b + c + d + e + &c., E + b + c + d + e + &c., E + c + d + e + &c., E + d + e + &c., E + e + &c. & $int pri- mæ differentiæ $ucce$$ivæ re$pective D′, D″, D′″, &c. tum erit D′ = a, D″ = d′, D′″ = d″, &c. & $eries, quæ e$t $umma prædictorum termi- norum per theor. præc. A - D′ (z + 1) + D″ (z + 1) × {z / 2} - D′″ × (z + 1) × {z / 2} × {z - 1 / 3} + &c. ubi A $it quantitas ad libitum a$$umenda.

2. Sint $ucce$$ivæ prædictæ $ummæ re$pective S, S′, S″, S′″, &c. ter- mini $ucce$$ivi novæ $eriei; δ′, δ″, δ′″, &c. prædictæ differentiæ; tum erit $umma novæ $eriei B (z + 2) - δ′ × (z + 2) × {z + 1 / 2} + δ″ × (z + 2) × {z + 1 / 2} · {z / 3} + &c. ubi quantitas B ad libitum a$$umenda e$t; & $ic deinceps.

Cor. 1. Hinc tot quantitates in hâc $erie a$$umi ad libitum po$- $unt, quot $ucce$$ivæ $ummæ requiruntur.

3. Sit $eries a + b + c + d + e + &c. addatur unus terminus A, & erit A + a + b + c + d + e + &c. $int $ucce$$ivæ differentiæ prioris $eriei d′, d″, d′″, &c. re$pective, & erunt $ucce$$ivæ differentiæ po$terioris $eriei A - a = D′, d′ = D′ - D″, d″ = D″ - D′″, d′″ = D″′ - D″″ &c. $it $umma prioris $eriei a - z d′ + z × {z - 1 / 2} d″ - &c. & e præced. con$tat etiam $ummam po$terioris e$$e A - (z + 1) D′ + (z + 1) × {z / 2} D″ + &c. $i vero A = 0 tum $umma hujus $eriei eadem erit ac præcedentis $umma.

Cor. 2. Et $ic $i modo ab alio puncto incipiamus: lex enim fere eadem erit, ut con$tat e præced. Et tot a$$umi po$$unt ad libitum incognitæ quantitates, quot $unt illæ differentiæ, quæ ortum $uum ducunt ante primam differentiam $eriei prædictæ a - b.

3. Erit a - z d′ + z · {z - 1 / 2} d″ - z · {z - 1 / 2} · {z - 3 / 3} d′″ + &c. = a[0606]DE SUMMATIONE (1 - z + z · {z - 1 / 2} - z · {z - 1 / 2} · {z - 2 / 3} + z · {z - 1 / 2} · {z - 2 / 3} · {z - 3 / 4} - &c.) + b z (1 - (z - 1) + (z - 1) · {z - 2 / 2} - (z - 1) · {z - 2 / 2} · {z - 3 / 3} + &c.) + c · z · {z - 1 / 2} (1 - (z - 2) + (z - 2) · {z - 3 / 2} - (z - 2) · {z - 3 / 2} · {z - 4 / 3} + &c.) + d × z · {z - 1 / 2} · {z - 2 / 3} (1 - (z - 3) + (z - 3) · {z - 4 / 2} - (z - 3) · {z - 4 / 2} · {z - 5 / 3} + &c.) - e, &c. $i modo data $eries $it a + b + c + d + &c.

THEOR. XXI.

1. Sint $eries quantitatum a^m, (a + b)^m, (a + 2 b)^m, (a + 3 b)^m, &c. quarum radices $unt in arithmeticâ progre$$ione, ubi a & b $unt affir- mativæ quantitates; tum præcedentes differentiæ $ingulorum ordi- num, qui $unt minores quam m, erunt minores quam eju$dem ordi- nis $ub$equentes; e contra erunt majores quam $ub$equentes in ordi- nibus qui proxime majores $unt quam m; & præcedentes differentiæ primi ordinis majores erunt quam $ub$equentes, $i m negativa $it quantitas, vel minor quam unitas.

Sit m integer affirmativus numerus, tum erunt differentiæ ordinis m inter $e æquales.

Hæc principia etiam applicari po$$unt ad plures compo$itas quan- titates.

2. Invenire valorem quantitatis n, cum præcedentes primæ differentiæ evadant minores quam $ub$equentes, i. e. a^m - n (a + b)^m + n · {n - 1 / 2} (a + 2 b)^m - n · {n - 1 / 2} · {n - 2 / 3} (a + 3 b)^m + &c. fiat major vel minor quam a^m - (n + 1) (a + b)^m + (n + 1) · {n / 2} (a + 2 b)^m - &c.; & con- $imiliter invenire valorem prædictum, cum primæ differentiæ evadant [0607]SERIERUM, &c. majores vel minores quam $ecundæ, &c. i. e. a^m - n(a + b)^m + n. {n - 1 / 2} (a + 2 b)^m - &c. evadat major vel minor quam (a + b)^m - n (a + 2 b)^m + (n - 1) · {n / 2}(a + 3 b)^m - &c. inveniatur prope valor quantitatis n, cum prædictæ quantitates evadant æquales; & id, quod requiritur, conficitur: & $imiliter re$olvi pote$t hoc problema, cum dentur quantitates n & m; vel n & ratio, quam habent quantitates a & b inter $e, & requiritur prædicta ratio, vel quantitas m.

Cor. 1. Erit quantitas (A) a^m - l · (a + b)^m + l · {l - 1 / 2} (a + 2 b)^m - l · {l - 1 / 2} · {l - 2 / 3} (a + 3 b)^m + &c. ad finem $eriei nihilo æqualis, $i m minor $it quam l, & m & l $int integri affirmativi numeri; $i vero m = l, erit prædicta quantitas = ± 1 · 2 · 3 · 4 · 5 ... l × b^m: $ignum affixum erit + $i m $it par, $in aliter -.

Hæc enim quantitas erit prima differentia (l) ordinis prædictarum quantitatum in arithmeticâ progre$$ione, quæ $emper erit nihilo æqualis, cum l major $it quam m, & l & m $int integri numeri.

Con$imiles propo$itiones affirmari po$$unt de ca$ibus, in quibus vel a vel b vel utræque $unt negativæ quantitates, in utri$que prioribus ca$ibus quantitates cre$cant u$que ad infinitum, & deinde decre$cant.

PROB. XXV.

Detur $eries ordinatarum intervallis quibu$cunque ad $e invicem di$tan- tium, pergens vero ex unâ tantum parte in infinitum; invenire lineam pa- rabolicam, quœ tran$it per extremitates omnium.

Sint A, A 1, A 2, A 3, A 4, &c. ordinatæ in$i$tentes ab$ci$$æ in angulis rectis, $itque R punctum quodlibet in ab$ci$sâ: & ponatur a = R A, b = R A 1, c = R A 2, d = R A 3, &c. Attamen de$ignet T ordinatam quamvis in genere, cujus di$tantia a puncto R $it z; ponatur etiam [0608]DE SUMMATIONE B = {A 1 - A / b - a}, C = {B 1 - B / c - a}, D = {C 1 - C / d - a}, E = {D 1 - D / e - a}, &c. B 1 = {A 2 - A 1 / c - b}, C 1 = {B 2 - B 1 / d - b}, D 1 = {C 2 - C 1 / e - b}, &c. B 2 = {A 3 - A 2 / d - c} \\ &c. # , C 2 = {B 3 - B 2 / e - c} \\ &c. # , D 2 = {C 3 - C 2 / f - c} \\&c. # , &c. atque erit ordinata T = A + B × (z - a) + C × (z - a) × (z - b) + D × (z - a) × (z - b) × (z - c) + E × (z - a) × (z - b) × (z - c) × (z - d) + &c. facile con$tabit hoc prob. e $cribendo in datâ æquatione pro z in ordinata z = A + B (z - a) + &c. ejus $ucce$$ivos valores a, b, c, &c.

Cor.. Hinc, $i modo $cribantur fluxiones radicum pro differentiis ordinatarum; & pro earum intervallis fluxiones ab$ci$$æ, inve$tigari pote$t radix fluxionalis æquationis.

PROB. XXVI. Detur $eries or dinatarum utrinque excurrens in in$initum, invenire li- neam parabolicam, quœ tran$ibit per extremitates omnium.

1. De$ignet a ordinatam in medio omnium, $intque a 2, a 4, a 6, a 8, &c. eæ ex unâ parte; & 2 a, 4 a, 6 a, 8 a, &c. ex alterâ, pergente progre$$ione utrinque in infinitum. Collige earum differentias pri- mas 7 B, 5 B, 3 B, 1 B, B 1, B 3, B 5, B 7; $ecundas 6 b, 4 b, 2 b, b, b 2, b 4, b 6; tertias 5 C, 3 C, 1 C, C 1, C 3, C 5; quartas 4 c, 2 c, c, c 2, c 4; & $ic in reliquis, auferendo $emper antecedentes de con$equenti- bus ut in prob. præc. Sint jam a, b, c, d, e, &c. ordinata media & mediæ differentiæ in ordinibus alternis re$pective; $intque 1 B & B 1, 1 C & C 1, 1 D & D 1, &c. duæ mediæ differentiæ in reliquis ordinibus, & ponantur B = 1 B + B 1, C = 1 C + C 1, D = 1 D + D 1, E = 1 E + E 1; $itque intervallum inter quamvis ordinatam T & me- diam a ad intervallum commune æquidi$tantium ordinatarum ut z ad unitatem; eritque ordinata T = a + {B z + b z^2 / 1 · 2} + {2 C z + c z^2 / 1 · 2} [0609]SERIERUM, &c. × {z^2 - 1 / 3 · 4} + {3 D z^. + d z^2 / 1 · 2} × {z^2 - 1 / 3 · 4} × {z^2 - 4 / 5 · 6} + {4 E z + e z^2 / 1 · 2} × {z^2 - 1 / 3 · 4} × {z^2 - 4 / 5 · 6} × {z^2 - 9 / 7 · 8} + &c. ubi notandum e$t ab$ci$$am z e$$e negativam, quando ordinata quæ$ita jacet ad contrarias partes ordinatæ mediæ.

2. Sint jam 1 A & A 1 ordinatæ duæ mediæ; A 3, A 5, A 7, A 9, &c. eæ ex unâ parte; & 3 A, 5 A, 7 A, 9 A, &c. ex alterâ. Collige earum differentias primas 8 a, 6 a, 4 a, 2 a, a, a 2, a 4, a 6, a 8, &c. $ecundas 7 B, 3 B, 1 B, B 1, B 3, B 5, B 7; tertias 6 b, 4 b, 2 b, b, b 2, b 4, b 6, &c. & $ic deinceps; $ubducendo ubique priores de po$terio- ribus: excerpe nunc differentias medias a, b, c, d, e, &c. ut & duas medias in aliis ordinibus, $cilicet 1 A & A 1, 1 B & B 1, 1 C & C 1, &c. & ponantur A = 1 A + A 1, B = 1 B + B 1, C = 1 C + C 1, &c. & cuju$vis ordinatæ di$tantia T a medio puncto $it ad intervallum com- mune æquidi$tantium ut z ad binarium; eritque T = {A + a z / 2} + {3 B + b z / 2} × {z^2 - 1 / 4 · 6} + {5 C + c z / 2} × {z^2 - 1 / 4 · 6} × {z^2 - 9 / 8 · 10} + {7 D + d z / 2} × {z^2 - 1 / 4 · 6} × {z^2 - 9 / 8 · 10} × {z^2 - 25 / 12 · 14} + &c.

Uterque ca$us facile demon$trari pote$t, $cribendo in priori ca$u in ordinatâ T = a + &c. pro z, ejus $ucce$$ivos valores 0, 1 & - 1, 2 & - 2, 3 & - 3, &c. & pro a, b, c, d, &c. earum re$pectivos valo- res a, 2 a - 2 × a + a 2, 4 a - 4 × 2 a + 6 × a - 4 × a 2 + a 4, 6 a - 6 × 4 a + 15 × 2 a - 20 × a + 15 × a 2 - 6 × a 3 + a 6, &c. & pro B, C, D, &c. re$pective 2 a - a 2, 4 a - 2 × 2 a + 2 × a 2 - a 4, 6 a - 4 × 4 a + 5 × 2 a - 5 × a 2 + 4 × a 4 - a 6, &c. quæ erunt re$pe- ctive $ummæ quantitatum 2 a - a & a - a 2; 4 a - 3 × 2 a + 3 × a - a 2 & 2 a - 3 × a + 3 × a 2 - a 4; 6 a - 5 × 4 a + 10 × 2 a - 10 × a + 5 × a 2 - a 4 & 4 a - 5 × 2 a + 10 × a - 10 × a 2 + 5 × a 4 - a 6, &c.: in po$teriori vero ca$u pro a, b, c, d, e, &c. $cri- bendo re$pective 1 A - A 1, 3 A - 3 × 1 A + 3 × A 1 - A 3, 5 A - 5 × 3 A + 10 × 1 A - 10 × A 1 + 5 × A 3 - A 5, &c.; & pro A, B, C, D, E, &c.; 1 A + A 1, 3 A - 1 A - A 1 + A 3, &c.; quæ [0610]DE SUMMATIONE erunt re$pective $ummæ quantitatum 1 A & A 1; 3 A - 2 × 1 A + A 1 & 1 A - 2 × A 1 + A 3; 5 A - 4 × 3 A + 6 × 1 A - 4 × A 1 + A 3 & 3 A - 4 × 1 A + 6 × A 1 - 4 × A 3 + A 5; 7 A - 6 × 5 A + 15 × 3 A - 20 × 1 A + 15 × A 1 - 6 × A 3 + A 5 & 5 A - 6 × 3 A + 15 × 1 A - 20 × A 1 + 15 × A 3 - 6 × A 5 + A 7; &c.

Eodem plane modo deduci pote$t inve$tigatio, cum incipiat ab$ci$$a z a quocunque alio puncto, quod inter qua$cunque alias ordinatas jacet. Hi quidem omnes ca$us e prob. præc. facile erui po$$unt.

Hìc vero animadvertendum e$t $eries ex his methodis deductas haud convergere, ni ordinata quæ$ita quam proxime exprimi po$$it per $eriem in terminis ab$ci$$æ x huju$ce formulæ A + B x + C x^2 + D x^3 + &c. de$ignatam.

Ex. Sit formula $eriei Q × (a + b x + c x^2 + d x^3 + e x^4 + &c.) = y, ubi Q $it quæcunque data functio quantitatis x, & n $int incognitæ coefficientes a, b, c, d, e, &c. tum facile e datis n corre$pondentibus valoribus quantitatum x & y per regulas prius traditas, $i modo $cri- batur {y / Q} = v, acquiri po$$unt (n) coefficientes a, b, c, d, &c. Et $ic de infinitis aliis.

In ca$ibus prius traditis præ$tat, fi terminus vel ordinata quæ$ita longe di$tet a terminis vel ordinatis datis, ita transformare datas or- dinatas, ut inveniantur aliæ, quæ haud longe di$tant a quæ$itâ or- dinatâ.

Ex. 2. Sit æquatio a x^n + b x^n-1 + c x^n-2 + &c. ... f x + g + {b / x} + {k / x^2} + {l / x^3} ... + {p / x^m} = y; ducatur hæc æquatio in x^m, & re$ultat a x^n+m + b x^n+m-1 + c x^n+m-2 + &c. ... + p = v x^m, cujus coefficientes a, b, c, d, &c. inveniri po$$unt e datis corre$pondentibus valoribus quanti- tatum x & y, eâdem methodo ac coefficientes æquationis a x^n+m + b x^n+m-1 + c x^n+m-2 .... + p = v; $cribatur enim in priori æquatione pro y x^m ejus valor v, & re$ultat $ecunda.

Ex. 3. Sit æquatio a x^n + b x^n-1 + c x^n-2 .... + f x + g + {b x^s / x + α} [0611]SERIERUM, &c. + {k x^s+1 / (x + α)^2} + &c. + {l x^t / x + β} + &c. = y, ducatur hæc æquatio in (x + α)^2 × (x + β) × &c. & re$ultat æquatio, cujus re$olutio ($i modo dentur α, β, γ, &c.) haud differt a præcedente.

Cor. 3. Hinc per n puncta duci pote$t parabolico hyperbolica curva eâdem facilitate ac parabolica curva per eundem punctorum numerum.

Ex. 4. Sit y = {1 / a x^n + b x^n-1 + c x^n-2 + &c.}, $i modo pro y $criba- tur {1 / v}, re$ultabit præcedens æquatio v = a x^n + b x^n-1 + c x^n-2 + &c. ad parabolicam curvam.

Ex. 5. Sit æquatio a x^n + b x^n-1 + cx^n-2 + &c./A x^m + B x^m-1 + C x^m-2 + &c.} = y, & ejus re- $olutio aliquantulum differt a præcedente.

PROB. XXVII. Invenire $olidum algebraicum, quod per m + n + I data puncta tran$eat.

A$$umatur æquatio a + b x + c x^2 + d x^3 ... + f x^n + B z + C z^2 ... F z^m = y, ubi x & z $unt duæ ab$ci$$æ & y earum corre$pondens ordinata; ex datis m + n + 1 corre$pondentibus valoribus duarum ab$ci$$arum & ordinatæ erui po$$unt coefficientes a, b, c, &c. B, C, &c. Hæc e$t maxime $implex formula, quam for$an recipere pote$t pro- blema.

PROB. XXVIII.

1. Sit P algebraica functio quantitatum x, y, z, &c. dati generis, quœ m incognitas quantitates invariabiles babet, & dentur m corre$pondentes functionis P & quantitatum x, y, z, &c. valores; invenire m incognitas quantitates a, b, c, d, &c.

Scribantur in datâ functione P pro literis x, y, z, &c. earum cor- re$pondentes valores re$pective & pro quantitatibus re$ultantibus (P) [0612]DE SUMMATIONE earum re$pectivi valores, & exorientur m æquationes totidem incog- nitas quantitates a, b, c, d, &c. habentes, e quibus inveniri po$$unt valores prædictarum quantitatum a, b, c, d, &c.

2. Si vero dentur duæ vel plures quantitates P, Q &c. quæ $unt functiones quantitatum x, y, z, &c. & corre$pondentes valores quan- titatum P, Q, &c. x, y, z, &c. pro $uis quantitatibus re$pective $ub- $tituantur, & $i exoriantur tot æquationes quot incognitæ quantitates; tum ex iis deduci po$$unt incognitæ quantitates quæ$itæ.

Cor. 2. Si æquationes exortæ $int $implices, tum e $implicibus æquationibus facile con$tabunt incognitæ quantitates quæ$itæ.

PROB. XXIX.

_1._ Invenire $ummam fractionum, quarum numeratores cre$cunt juxta progre$$ionem $eriei numerorum differentiam con$tantem habentium, vel quarum ultimœ differentiœ eju$dem ordinis fere $unt inter $e in ratione œqualitatis, quarumque denominatores con$tituant progre$$ionem quamlibet geometricam.

Sint 1: 1 - x communis denominatorum ratio, etiamque d′, d″, d′″, &c. differentiæ primæ, $ecundæ, tertiæ, &c. numeratorum datæ $eriei A + B x + C x^2 + D x^3 + &c. & erit per theor. præc. quique terminus, cujus di$tantia e primo $it (p) = (A - p d′ + p · {p-1 / 2} d″ - p · {p - 1 / 1} · {p - 2 / 2} d′″ + &c.)x^p; $ed erit {A / 1 - x} = A(1 + x + x^2 ... x^p + &c.), {d′ / (1 - x)^2} = d′ (1 + 2x + 3x^2 ... p x^p-1 + &c.), {d″ / (1 - x)^3} = d″ (1 + 3x + 6x^2 ... p · {p + 1 / 2}x^p-1 + &c.), {d′″ / (1 - x)^4} = d′″ (1 + 4x + 10 x^2 ... + p.{p + 1 / 2}·{p + 2 / 3}x^p-1 + &c.), &c. unde $umma $eriei erit {A / 1 - x} - {d′x / (1 - x)^2} + {d″x^2 / (1 - x)^3} - {d′″x^3 / (1 - x)^4} + &c.

[0613]SERIERUM, &c.

In hâc $ummâ inventâ ponatur x = {1 / z}, & evadet $eries data A + {B / z} + {C / z^2} + {D / z^3} + &c. & ejus $umma {A z / z - 1} - {d′z / (z - 1)^2} + {d″z / (z - 1)^3} - {d′″z / (z - 1)^4} + &c.

Hæc facile con$tant ex hâc propo$itione, nempe (1 - x)^-p = 1 + p x + p · {p + 1 / 2}x^2 + p. {p + 1 / 2} · {p + 2 / 3}x^3 + &c.

2. Si vero requiratur $umma n primorum terminorum $eriei A + Bx + Cx^2 + Dx^3 + &c. inveniatur $umma $eriei in in- finitum progredientis, viz. {A / 1 - x} - {d′x / (1 - x)^2} + {d″x^2 / (1 - x)^3} - &c. e quâ $ubtrahatur $umma $eriei, cujus di$tantia a primo $it n, in infini- tum progrediens, i. e. $it Q x^n terminus $eriei oriundus po$t n nume- rum terminorum, $it præterea D′ prima primarum differentiarum exurgentium po$t terminum Q x^n, D″ prima $ecundarum, D′″ prima tertiarum, &c. tum erit $eries incipiens a termino Q x^n atque in infinitum pergens = {Q x^n / 1 - x} - {D′x^n+1 / (1 - x)^2} + {D″x^n+2 / (1 - x)^3} - &c. $ed Q = A - nd′ + n · {n - 1 / 2}d″ - n · {n - 1 / 2}·{n - 2 / 4}d′″ + &c. D′ = d′ - nd″ + n · {n - 1 / 2}d′″ - &c. D″ = d″ - n d′″ + &c. unde {Qx^n / 1 - x} -{D′ x^n+1 / (1 - x)^2} + {D″ x^n+2 / (1 - x)^3} - &c. = x^n ({A / 1 - x} - {nd′ / 1 - x} + {n · {n - 1 / 2}d″ / 1 - x} - &c. - {xd′ / (1 - x)^2} + {n x d″ / (1 - x)^2} - &c. + {x^2 d″ / (1 - x)^3} - &c., $cribatur x = {1 / z} & re$ultat [0614]DE SUMMATIONE {1 / z^n-1}({A / z - 1} - {nd′ / z - 1} + {n · {n - 1 / 2}d″ / z - 1} - {n · {n - 1 / 2} · {n - 2 / 3}d′″ / z - 1} + &c. - {d′ / (z - 1)^2} + {n d″ / (z - 1)^2} - {n.{n - 1 / 2}d′″ / (z - 1)^2} + &c. + {d″ / (z - 1)^3 - {nd′″ / (z - 1)^3} + &c. - {d′″ / (z - 1)^4} + &c.})

THEOR. XXII.

Sit convergens $eries a + b x + c x^2 + d x^3 + e x^4 + &c. in infi- nitum, cujus termini lente convergant; $int primæ primarum, $e- cundarum, tertiarum, &c. differentiæ re$pective D, D′, D″, D′″, &c. i. e. a - b = D, a - 2 b + c = D′, a - 3 b + 3 c - d = D″, &c. & erit a + b x + c x^2 + d x^3 + e x^4 + f x^5 + &c. = {a / 1 - x} - {Dx / (1 - x)^2} + {D′x^2 / (1 - x)^3} - {D″ / (1 - x)^4} + &c. = {a / 1 - x} - {(a - b)x / (1 - x)^2} + {(a - 2b + c)x^2 / (1 - x)^3} {(a - 3b + 3c - d)x^3 / (1 - x)^4} + &c. = {a / 1 + x} + {(a + b)x / (1 + x)^2} + {(a + 2b + c)x^2 / (1 + x)^2} + {(a + 3b + 3c + 3d)x^3 / (1 + x)^4} + &c. ubi a, a + b, a + 2b + c, a + 3b + 3c + d, &c. $unt primæ $ucce$$ivæ $ummæ re$pective.

2. Sit convergens $eries a - b x + c x^2 - d x^3 + &c. tum erit a - b x + c x^2 - d x^3 + &c. = {a / 1 + x} + {(a - b)x / (1 + x)^2} + {(a - 2b + c)x^2 / (1 + x)^3} + {(a - 3b + 3c - d)x^3 / (1 + x)^4} + &c. = {a / 1 - x} - {(a + b)x / (1 - x)^2} + {(a + 2b + c)x^2 / (1 - x)^3} - {(a + 3b + 3c + d)x^3 / (1 - x)^4} + &c.

[0615]SERIERUM, &c.

In quibu$dam ca$ibus $eries $ic transformatæ magis celeriter con- vergant, in aliis vero minime. E. g. 1. Si data $eries con$tet e termi- nis in geometricâ progre$$ione, viz. $it $eries a + a^2 x + a^3 x^2 + a^4 x^3 + &c. tum erit $eries hoc modo derivata = {a / 1 - x} - {a - a^2 / (1 - x)^2}x + {a - 2a^2 + a^3 / (1 - x)^3}x^2 - &c. = {a / 1 - x} - {1 - a / 1 - x}P x + {1 - a / 1 - x}Q x - {1 - a / 1 - x} Rx + &c. ubi P, Q, R, &c. præcedentes terminos re$pective deno- tant, unde con$tat $eriem derivatam etiam e$$e geometricam $eriem, cujus communis ratio e$t 1: {1 - a / 1 - x}x. Si hæc ratio major $it quam 1: ax, tum magis celeriter converget $eries re$ultans quam data; $in aliter vero non. 2. Si termini ad infinitam di$tantiam con$tituti magis celeriter convergant quam geometrica $eries, tum $eries derivata nunquam converget in majore ratione quam $eries e terminis in geo- metricâ progre$$ione con$tans; for$an vero in minore ratione, & for- $an etiam diverget. E. g. Si 1 - x major $it quam x, tum $emper $eries prædicta {a / 1 - x} - {Dx / (1 - x)^2}, &c. evadet ultimo in geometrica pro- gre$$ione; $i minor $it, $emper diverget; $i vero 1 - x = x, tum vel diverget vel converget in ratione minori quam quæcunque $eries con- $tans e terminis in geometricâ progre$$ione. 3. Si termini ad infinitam di$tantiam con$tituti evadant prope in ratione æqualitatis; tum, $i 1 - x major $it quam x, $eries vel converget in ratione $eriei, cujus termini $int in geometricâ progre$$ione, vel in majore; $in aliter $eries re$ultantes vel po$$unt e$$e convergentes in ratione prædictâ geome- tricâ, vel in majore, vel in minore, vel divergentes; $ed plerumque $i modo con$tent ex algebraicis functionibus di$tantiæ a primo $eriei ter- mino, & data $eries $it convergens, re$ultans etiam erit convergens.

3. Erit 1 + bx + b^2 x + b^3 x^3 + b^4 x^4 + &c. = {1 / 1 - bx} = {1 / 1 - ax} - {(a - b)x / (1 - ax)^2} + {(a^2 - 2ba + b^2)x^2 / (1 - ax)^3} - {(a^3 - 3ba + 3ba^2 - b^3)x^3 / (1 - ax)^4} + &c.

[0616]DE SUMMATIONE

4. Infinitæ $eries haud nunquam reduci po$$unt ad diver$as geome- tricas $eries, ita ut termini $ucce$$ivi magis celeriter convergant.

E terminis $eriei datæ, qui maximi $int ad in$initam di$tantiam facile erui pote$t prima geometrica $eries; $ubtrahatur hæc $eries de datâ infinitâ $erie, & e terminis re$ultantis $eriei, qui maximi $int ad infinitam di$tantiam, inveniatur $ecunda geometrica $eries; $ubtraha- tur hæc $eries de $erie prius re$ultante, & per methodum præceden- tem continuo repetitam progrediendum e$t.

Si vero $eries per hanc methodum inventæ haud celeriter conver- gant, transformetur ea in $eriem quantitatum huju$ce formulæ {a x^r / x - α} + {b x^r ′ / x^2 - β x - γ} + {c x^r″ / x^3 - δ x^2 + ε x - ι} + &c. vel huju$ce {a x^q + b x^r / c x^s + d x^s}, vel infinitarum aliarum formularum; vel in $eriem e diver$is $eriebus, vel quantitatibus, vel rationalibus, vel irrationalibus utcunque in $e$e ductis, &c. ita vero ut $eries re$ultans maxime cele- riter convergat. E. g.

Sit data $eries A + B x + C x^2 + D x^3 + &c. a$$umatur {a / 1 - p x} + {b x / (1 - p x)^2} + {c x^2 / (1 - p x)^3} + &c. vel {a / 1 - p x} + {b x / 1 - q x} + {c x^2 / 1 - r x} + &c. vel quæcunque alia $eries con$tans e terminis vel rationalibus vel irrationalibus; $i modo hæ $eries fiant æquales datæ $eriei, quicunque $it valor quantitatis x, & convergant.

Sit formula A x + B x^3 + C x^5 + &c. & a$$umi pote$t $eries {A x / 1 + x^2} + {a x^3 / (1 + x^2)^2} + {b x^5 / (1 + x^2)^3} + &c.

Eadem etiam principia applicari po$$unt ad datas $eries exprimen- das cuju$cunque aliæ formulæ vel rationalis vel irrationalis vel a$cen- dentis vel de$cendentis. E. g. Sit $eries data A + {B / x} + {C / x^2} + {D / x^3} + [0617]SERIERUM, &c. &c. a$$umatur $eries {a x / x - p} + {b / (x - p)^2} + {c / (x - p)^3} + {d / (x - p)^4} + &c. reducatur hæc $eries ad alteram $ecundum dimen$iones recipro- cas quantitatis x progredientem, & evadet a + {p a / x} + {(a p^2 + b) / x^2} + {(a p^3 + 2 b p + c) / x^3} + {(a p^4 + 3 b p^2 + 3 c p + d) / x^4} + &c. & ex æqua- tis corre$pondentibus hujus & datæ æquationis terminis re$ultant a = A, p = {B / A}, b = C - a p^2, c = D - a p^3 - 2 b p, & $ic deinceps.

REGULA.

1. In $ummatione $erierum $imul addantur plures primi termini, & ex ultimâ ratione terminorum ad infinitam di$tantiam inveniatur prima approximatio (A) ad $ummam e reliquis terminis; deinde in- veniatur terminus (t), cujus $umma e$t A, etiamque differentia (D) inter hunc terminum & ejus corre$pondentem datæ $eriei terminum; ex ultimâ ratione differentiæ D inveniatur prima approximatio (B) ad $ummam, cujus terminus e$t D, & erit A ± B propior approxi- matio ad $ummam datæ $eriei quæ$itam; & $ic ex operatione continuo repetitâ re$ultabunt novæ approximationes ad $ummam datæ $eriei quæ$itam magis magi$que appropinquantes.

1. 2. Inveniatur e quâcunque methodo quantitas a $ummâ haud longe di$tans; deinde inveniatur differentia inter terminos huju$ce & datæ $eriei; & $eriei, cujus terminus e$t differentia prædicta, inve- niatur proxime $umma; huju$ce quantitatis terminorum & diffe- rentiæ prædictæ inveniatur differentia; deinde inveniatur quantitas haud longe di$tans e $ummâ $eriei, cujus terminus e$t ea differentia; & $ic deinceps; & ultimo ad $ummam $eriei accedere liceat.

Ex. 1. Sit terminus generalis {a z^m + b z^m-1 + c z^m-2 + &c. / z^n + p z^n-1 + q z^n-2 + &c.}, ubi z $it di$tantia a primo $eriei termino, m minor $it quam n per quanti- tatem majorem quam 1; i. e. $eries $it convergens: addantur plurimi [0618]DE SUMMATIONE primi termini, ita quidem ut z multo major fiat quam quæcunque radix vel po$$ibilis vel impo$$ibilis æquationum z^n + p z^n-1 + q z^n-2 + &c. = 0, & a z^m + b z^m-1 + c z^m-1 + &c. = 0; deinde ultima ratio generalis termini ad infinitam di$tantiam erit {a z^m / z^n} = {a / z^n-m}, & con$e- quenter prima approximatio A ad $ummam datæ $eriei erit $ · {a z^. / z^n-m} = {- a / (n - m - 1) z^n-m-1}; terminus vero t (cujus $umma e$t A) erit {- a / n-m-1} × ({1 / z^n-m-1} - {1 / (z + 1)^n-m-1}) = {-a / n - m - 1} × {(n - m - 1) z^n-m-1 + (n - m - 1)({n - m - 2 / 2})z^n-m-1 + &c. / z^2n-2m-2 + (n - m - 1)z^2n-2m-1 + &c.}; diffe- rentia vero (D) inter hunc terminum & terminum {a z^m + b z^m-1 + &c. / z^n + p z^n-1 + &c.} erit {-((n - m - 2)({n - m - 1 / 2})a - (n - m - 1)(b - ap))z^n-m-3 + &c. / (n - m - 1)z^2n-2m-2 + &c.}, & con$equenter erit B = (- (n - m - 2) × {1 / 2}a + (b - a p))(α) $. {z^. / z^n-m+1} = (α) × {-1 / (n - m) z^n-m}, & exinde invenitur propicr approxima- tio A ± B; & $ic deinceps.

Aliter: pro $umma $eriei, cujus generalis terminus e$t {a / z^n-a}, a$$uma- tur approximatio {a′ / z^{n-m-1 / r} × (z + 1)^{n-m-1 / r} × (z + 2)^{n-m-1 / r} .. (z + r - 1)^{n-m-1 / r}}, ubi r e$t quicunque integer numerus, & per methodum prius datam erui po$$unt $ucce$$ivæ approximationes.

2. Et $ic detegi po$$unt approximationes ad $ummam datæ $eriei, cujus lex exprimitur per quamcunque irrationalem functionem quan- [0619]SERIERUM, &c. titatis z; etiamque con$tat numerus terminorum, qui primo $imul addendi $unt: e. g. $it generalis terminus {π / ρ}; tum $umma totidem pri- morum terminorum inveniatur, ut z evadat major quam ulla radix æquationis π = 0 vel ρ = 0; quo magis quantitas (z) ex$uperat om- nes prædictas radices, eo magis converget $eries per hanc methodum re$ultans, quamvis non in eâdem ratione: vel hæc $umma e notis regulis inve$tigari pote$t, irrationalis functio reducatur ad $eriem ter- minorum progredientium $ecundum legem, cujus deduci po$$unt ad re$pectivos terminos continuæ approximationes; & $ic deinceps.

E. g. Datis $ummis $erierum 1 + {1 / 4} + {1 / 9} + {1 / 16} + &c. = A, 1 + {1 / 8} + {1 / 27} + {1 / 64} + &c. = B, 1 + {1 / 16} + {1 / 81} + {1 / 256} + &c. = C, &c. in infinitum, etiamque quantitate, quæ e$t talis functio quantitatis z di$tantiæ a primo datæ $eriei termino, ut reducatur ad $eriem $ub$equentis for- mulæ a z^-2 + b z^-3 + c z^-4 + &c. tum $umma $eriei erit a A + b B + c C + &c.

Ex principiis in hoc problemata traditis erui pote$t lex, quam ob- fervat convergentia datæ $eriei ex hâc methodo derivatæ.

Ex. 2. Sit $eries, cujus termini ultimo $int prope in geometricâ progre$$ione, tum inveniatur $umma i$tius geometricæ $eriei; deinde eruatur terminus geometricæ $eriei, $ubtrahatur hic terminus ab ejus corre$pondente datæ $eriei termino, & deinde per eandem methodum inveniatur approximatio ad $ummam $eriei, cujus terminus e$t re$ul- tans differentia; & $ic continuo repetitâ operatione tandem exorietur $umma quæ$ita.

E. g. Sit infinita $eries a + b + c + d + e + f + g + h + k + &c. $int r^2 a - c = a′, r^4 a - r′^2 a′ + e = a″, r^6 a - r′^4 a′ + r″^2 a″ - g = a′″, &c. etiamque r^2 b - d = b′, r^4 b - r′^2 b′ + f = b″, r^6 b - r′^4 b′ + r″^2 b″ - b = b′″, & $ic deinceps; ubi r = {b / a}, r′ = {b′ / a′}, r″ = {b″ / a″}, &c. tum erit $umma $eriei {a^2 / a - b} - {a′^2 / a′ - b′} + {a″^2 / a″ - b″} - &c. = a + b + c + d + &c.

[0620]DE SUMMATIONE

Sub$tituantur pro a′, b′; a″, b″; &c. earum re$pective valores, & facile con$tat exemplum.

Ex a$$umptis diver$is denominatoribus facile diver$is modis dividi pote$t data infinita $eries in infinitas $eries geometricas.

2. Sit $eries a - b x + c x^2 - d x^3 + &c. & erit $umma quæ$ita {a / 1 + x} + {d′ x / (1 + x)^2} + {d″ x^2 / (1 + x)^3} + &c. = (1 - x) (a + (a - b) x + (a - b + c) x^2 + (a - b + c - d) x^3 + &c.) = (1 - x) ({a / 1 - x} - {b x / (1 - x)^2} + {b + c / (1 - x)^3} x^2 - {b + 2 c + d / (1 - x)^4} x^3 + {b + 3 c + 3 d + c / (1 - x)^5} x^4 - &c.), ubi d′, d″, d′″, &c. re$pective $int a - b, a - 2 b + c, a - 3 b + 3 c - d, &c. i. e. prima primarum, $ecundarum, tertiarum, &c. differen- tiarum.

1. 2. Sit $eries a + b x + c x^2 + d x^3 + &c. & erit $umma {a / 1 - x} - {d′ x / (1 - x)^2} + {d″ x^2 / (1 - x)^3} - &c. = (1 + x) (a - (a - b) x + (a - b + c) x^2 - (a - b + c - d) x^3 + &c.) = (1 + x) ({a / 1 + x} + {b x / (1 + x)^2} + {(c + b) / (1 + x)^3} x^2 + {b + 2 c + d / (1 + x)^4} x^3 + {b + 3 c + 3 d + e / (1 + x)^5} x^4 + {b + r c + 6 d + 4 e + f / (1 + x)^6} x^5 + &c.) cujus $eriei lex cuicunque eam in$picienti facile con$tabit.

Sit x = - 1 in priori $erie a - b x + c x^2 - &c. vel x = 1 in po$teriori a + b x + c x^2 + &c. & ex his methodis nihil plerumque deduci pote$t, quoniam in his ca$ibus $eries evadant in$inite magnæ.

Et $ic multiplicetur vel dividatur data $eries vel per 1 - x vel 1 + x vel per quamcunque aliam quantitatem; & exorientur novæ $eries, quarum $ummæ vel per hanc, vel per alias methodos traditas, for$an innote$cent.

Ex. 4. Sit generalis terminus $eriei, cujus $umma requiritur, = [0621]SERIERUM, &c. {1 / z<_>2}r<_>z, a$$umatur {1 / z^2} × {r^z / 1 - r} pro approximatione ad $ummam $eriei quæ$itam; $i vero hæc $it $umma $eriei, tum ejus terminus erit {1 / z^2} × {r^z / 1 - r} - {1 / (z + 1)^2} × {r^z+1 / 1 - r} = {(1 - r)z^2 + 2z + 1 / z^2 (z + 1)^2} × {r^z / 1 - r}, $ubtra- hatur hic terminus de termino {1 / z^2}r^z, & re$ultat {((z + 1)^2 (1 - r) - (1 - r)z^2 - 2z - 1)r^z / z^2 (z + 1)^2} (1 - r) = {- (2z + 1)r^z+1 / z^2 (z + 1)^2 (1 - r)}; deinde pro $ub$e- quente approximatione a$$umatur {- 2 / z^3} × {r^z+1 / (1 - r)^2}, unde propior ap- proximatio ad $ummam $eriei erit {1 / z^2} × {r^z / 1 - r} - {2 / z^3} × {r^z+1 / (1 - r)^2} &c.; & $ic deinceps.

Cor. · Hinc deduci pote$t $umma cuju$cunque $eriei huju$ce ge- neris, i. e. cujus terminus generalis $it functio algebraica quantitatis z in r^z; reduci enim pote$t algebraica functio ($i haud per alias notas methodos detegi po$$it $umma quæ$ita) ad terminos $ecundum reci- procas dimen$iones quantitatis z progredientes, & deinde per metho- dum hic traditam deduci pote$t $umma $eriei quæ$ita.

Cor. · Approximatio huju$cemodi $eriei $ic inventa pendet e ra- tione prius prolatâ, etiamque e ratione quam habet 1 - r:r.

Et $ic inveniri pote$t aggregatum e pluribus huju$cemodi $eriebus, i. e. pluribus $eriebus, quarum termini ultimo $int in geometricâ progre$$ione.

Hæc principia etiam applicari po$$unt ad $eries, quarum termini in volvunt functionem quantitatis z continuo cre$centem; $ed hæ $e- ries, cum z $it permagna quantitas, $ine ullâ transformatione celer- rime convergunt.

3. Summa $eriei, cujus generalis terminus datur, etiam detegi po- te$t ex reducendo datum terminum ad $eriem $ecundum dimen$iones quantitatis z di$tantiæ a primo termino progredientem; deinde ex [0622]DE SUMMATIONE a$$umendo $eriem formulæ prius traditæ pro ejus integrali, & ejus incrementum deducendo, & $eriei generalem terminum exprimenti æquale reddendo.

Ex. 1. Sit generalis terminus z^n; a$$umatur pro ejus integrali a z^n+1 + b z^n + c z^n-1 + d z^n-2 + e z^n-3 + &c., cujus inveniatur in- crementum a((z + 1)^n+1 - z^n+1) + b((z + 1)^n - z^n) + c((z + 1)^n-1 - z^n-1) + &c. = ((n + 1)a) z^n + (nb + (n + 1) · {n / 2}a) z^n-1 + ((n - 1) c + n · {n - 1 / 2} b + (n + 1) · {n / 2} · {n - 1 / 3}a)z^n-1 + ((n - 2) d + (n - 1) · {n - 2 / 2} c + n · {n - 1 / 2} · {n - 2 / 3} b + (n + 1) · {n / 2} · {n - 1 / 3} · {n - 2 / 4} a)z^n-3 + &c. = z^n; & exinde a = {1 / n + 1}, b = -{1 / 2}, c = {1 / 12}n, d = 0 × n. {n - 1 / 2}, e = - {1 / 120} × n · {n - 1 / 2} · {n - 2 / 3}, &c.

Si n $it negativus numerus, tum pro n $cribatur - n in præce- dente $erie, & re$ultat $eries quæ$ita.

Ex. 2. Invenire $ummam logarithmorum, quorum numeri $unt a, a + n, a + 2n, ... z - n; huju$ce $ummæ decrementum $it log. z - n, quod inveniatur log. z - {n / z} - {n^2 / 2z^2} - {n^3 / 3z^3} - {n^4 / 4z^4} - &c.: pro integrali huju$ce decrementi a$$umatur Az log. z + bz + c - integ. incr {n / 2z} + {d / z} + {e / z^2} + {f / z^3} + &c., cujus decrementum erit A(z log. z - (z - n) log.(z - n)) + bn - {n / 2z} + d({1 / z} - {1 / z-n}) + e({1 / z^2} - {1 / (z-n)^2}) + f({1 / z^3} - {1 / (z - n)^3}) + &c. = A (n log. z + n - {n^2 / 2z} - {n^3 / 2 · 3z^2} - {n^4 / 3 · 4z^3} - {n^5 / 4 · 5 z^5} - &c.) + bn - {n / 2z} - {dn / z. z - n} - {2nz - n^2 / z^2 (z - n)^2} × e - {3 z^2 n - 3 n^2 z + n^3 / z^3 (z - n)^3} × f [0623]SERIERUM, &c. - &c. = An log. z + An + bn - {n / 2z} - {n^2 / 2z} A - ({1 / 2 · 3} An^3 + dn)z^-2 - ({1 / 3 · 4} An^4 + dn^2 + 2ne)z^-3 - ({1 / 4 · 5} An^5 + dn^3 + 3 n^2 e + 3 n f) z^-4 - &c.; fiant corre$pondentes huju$ce & dati incrementi termini inter $e æquales, & re$ultant An = 1, unde A = {1 / n}, An = - bn; & {1 / 2 · 3} A n^3 + d n = ({1 / 2 · 3} n^2 + d n) = {n^2 / 2}, unde d = {n / 3}; & {1 / 3 · 4} An^4 + d n^2 + 2 n e = {n^3 / 3} & exinde {1 / 3 · 4} n^3 + {n^3 / 3} + 2 n e = {n^3 / 3}, & e = {-n^2 / 1 · 12}, &c.; & $eries quæ$ita {1 / n} z log. z - {1 / n}z + c - integ. incr. {n / 2z} + {n / 3z} - {n^2 / 24z^2} - &c.

Cum duo valores α & β quantitatis (z), inter quos requiritur inte- gralis, $int permagni; & inveniatur integralis incrementi {1 / z} inter præ- dictos valores α & β po$ita, converget data $eries: $i vero α & β vel α vel β habeat perparvam rationem ad quantitatem n; tum vel inve- niatur $eries $ecundum dimen$iones quantitatis z a$cendens, vel in- terpolentur plures $eries inter valores α & β quantitatis z prædictos.

Cor. Interpolare quantitates inter $ucce$$ivos terminos contenti 1 · 2 · 3 · 4 .. z; inveniatur ejus log. qui erit l · 1 + l · 2 + l · 3 .. + l · z; huju$ce $eriei inveniatur $umma pro dato valore quantitatis z, & invenitur log. quantitatis quæ$itæ; e dato logarithmo invenia- tur numerus ei corre$pondens, & perficitur problema.

Hæc principia etiam applicari po$$unt ad quam plurima con$imilia contenta.

4. Sit æquatio data relationem inter $ucce$$ivos $eriei datæ termi- nos (t & t′) exprimens, & facile per methodos infinitarum $erierum prius datas deduci pote$t $eries, quæ exprimit $ummam datæ $eriei, i. e. rejiciantur ex datâ vel datis æquationibus omnes termini, qui perparvi $int re$pectu habito ad reliquos, & ex æquatione vel æquatio- [0624]DE SUMMATIONE nibus re$ultantibus inveniatur proximus valor $ummæ quæ$itæ, & $ic deinceps: vel a$$umi po$$unt $eries, quæ continent integrales quæ$itas in terminis quantitatum z & quorundam præcedentium terminorum, quibus in datis æquationibus pro $uis valoribus $ub$titutis, & corre- $pondentibus terminis re$ultantium æquationum inter $e æquatis ex- inde deduci po$$unt $eries quæ$itæ. E. g. Sit $eries (z^θ + a z^θ-1 + b z^θ-z + &c.) t = (z^θ + e z^θ-1 + f z^θ-2 + &c.) t′, & exinde t′ = {z^θ + az^θ-1 + &c. / z^θ + e z^θ-1 + &c.} t = (1 + {a - e / z} + {b - a e + e^2 - f / z^2} + &c.) t; a$$umatur quantitas b z^α pro $ummâ quæ$itâ, & con$equenter duo $ucce$$ivi termini t & t′ erunt re$pective b (z^x - (z + 1)^x) = - b (α z^x-1 + α · {α - 1 / 2} z^x-2 + &c.), & b ((z + 1)^x - (z + 2)^x) = - b (α z^x-1 + 3 α · {α - 1 / 2} z^x-2 + &c.), unde t′ = {-b(αz^α-1 + 3α · {α - 1 / 2} z^α-2 + &c.) / -b(α z^α-1 + α · {α - 1 / 2} z^α-2 + &c.)} t = (1 + {α · (α - 1) / z} + &c.) t, & α · (α - 1) = a - e, & con$equenter α = {1 / 2} ± √ (a - e + {1 / 4}); & $ic ex continuo repetitâ operatione, i. e. $cribendo b z^x + k z^β + &c. pro $ummâ quæ$itâ fa- cile deduci pote$t approximatio propior ad veram $ummam; & $ic de- inceps.

Et $ic de quâcunque datâ relatione huju$modi inter $ucce$$ivos ter- minos t, t′, t″, &c.

Ex. 2. Sit t′ = ({r z^θ + a z^θ-1 + b z^θ-2 + &c. / z^θ + e z^θ-1 + f z^θ-2 + &c.}) t = (r + {a - r e / z} + {b - rf - a e + r e^2 / z^2} + &c.)t; pro $ummâ quæ$itâ $cribatur {z^α r^z-π / 1 - r}; & termini $ucce$$ivi t & t′ erunt ({z^α / 1 - r} - {(z + 1)^α r / 1 - r}) r^z-π = (z^α - {α z^α-1 r / 1 - r} + &c.) r^z-π, & ({(z + 1)^α r - (z + 2)^α r^2 / 1 - r}) [0625]SERIERUM, &c. r^α-π = (r z^a - {(2 r^2 - r) / 1 - r} α z^α-1 + &c.) r^z-π, unde t′ = ({r z^α - {2 r^3 - r / 1 - r} α z^α-1 + &c. / z^α - {α z^α-1 r / 1 - r} + &c.}) t = (r + r · {α / z} + &c.) t; deinde fiat r + {a - r e / z} = r + r · {α / z}, & con$equenter r α = (a - r e); & $ic de- inceps.

Hinc etiam e principiis hìc traditis deduci po$$unt propiores appro- ximationes.

Si vero indices datæ æquationis $int re$pective θ, θ - σ, θ - 2 σ, &c. vel data æquatio $it quæcunque algebraica vel etiam fluxionalis vel incrementialis functio $ucce$$ivorum $eriei quæ$itæ terminorum, & quantitatis z di$tantiæ a primo $eriei termino; ex principiis hic traditis deduci pote$t ejus $umma.

Convergentia $eriei e principiis prius traditis dijudicari pote$t.

Sit æquatio (z^θ + a z^θ-1 + &c.) t = (r z^θ-π - e z^θ-π-σ + &c.) t′ + (s z^θ-π′ + &c.) t″ + &c., ubi π, π′, σ, &c. $unt affirmativæ quantitates; & ultimo erit $eries maxime convergens.

Hæ $eries transformari po$$unt per methodos prius traditas, ita ut haud raro magis celeriter convergant.

Ex. 3. Sit æquatio (z^θ + a z^θ-1 + b z^θ-2 + &c.) t = (r z^θ + s z^θ-1 + t z^θ-2 + &c.)t′; reducatur data æquatio ad æquationem t = (r + {a′ / z} + {b′ / z^2} + &c.)t′; a$$umatur $umma $eriei S = α × {z + m / z + n} t prope; tum erit S′ = α × {z + m + 1 / z + n + 1}t′ prope; & exinde S - S′ = α × ({z + m / z + n} t - {z + m + 1 / z + n + 1} t′) = t, unde t = {- α (z + n) · (z + m + 1) / (1 - α) z + n - α m · z + n + 1} t′ prope; reducatur hæc æquatio ad æquationem t = ({- α / 1 - α} + {β / z} +[0626]DE SUMMATIONE {γ / z^2} + &c.)t′; & ex æquatis corre$pondentibus huju$ce & datæ æqua- tionis terminis re$ultant tres æquationes {- α / 1 - α} = r, β = a′ & γ = b′ e quibus erui po$$unt α = {r / r - 1}, m & n: deinde a$$umatur $umma $eriei S = α × {z + m / z + n} t + π × {z + m′ / z + n′}t′ prope; & exinde per metho- dum prius traditam, i. e. inveniendo differentiam S - S′ = α × ({z + m / z + n}t - {z + m + 1 / z + n + 1} t′) + π ({z + m′ / z + n′} - {z + m′ + 1 / z + n′ + 1})t″ = t; & in hâc æquatione $cribendo pro t″ ejus valorem (r + {a′ / z + 1} + {b′/(z + 1)^2 + &c. = r + {a′ / z} + {b′ - a′ / z^2} + &c.)t′}, & æquando corre$pon- dentes re$ultantis & datæ æquationis terminos deduci po$$unt coeffi- cientes π, m′ & n′ & $ic deinceps: vel a$$umatur $umma S = α × {z^b + m z^b-1 + n z^b-2 + &c. / z^s + m′ z^s-2 + n′z^s-2 + &c.} × t vel S = (α z^b + m z^b-1 + n z^b-2 + &c.)t; pro z in his æquationibus $cribatur z + 1, & re$ultabunt S′ = α × {(z + 1)^b + m × (z + 1)^b-1 + &c. / (z + 1)^s + m′ × (z + 1)^s-1 + &c.} × t′; &c.; & ex æquatione S - S′ = t & æquatione exinde re$ultante t = (a z^k + b z^k-1 + c z^k-2 + &c.)t′, acquiri po$$unt coe$$icientes α, m, n, &c., m′, n′, &c.

5. Datâ æquatione relationem inter diver$os terminos t, t′, t″, ... t″ exprimente; invenire $ummam $eriei, quæ prædictam ha- beat relationem: a$$umatur t = a + {b / z} + {c / z^2} + {d / z^3} + &c., & exinde t′ = a + {b / z + 1} + {c / (z + 1)^2} + &c. = a + {b / z} + {c - b / z^2} + &c., t″ = a + {b / z + 2} + {c / (z + 2)^2} + &c. = a + {b / z} + {c - 2b / z^2} + &c., &c.; [0627]SERIERUM, &c. $cribantur hæ quantitates pro $uis valoribus in datâ æquatione; & ex æquatis inter $e vel nihilo corre$pondentibus æquationum re$ultan- tium terminis erui po$$unt coe$$icientes a, b, c, &c.; & exinde $umma S = a z + integ. increm. ({b / z}) + {c / z} + {d - c / 2z · z + 1} + &c.: vel a$$u- matur t = a + {b / z} + {c / z · z + 1} + {d / z · z + 1 · z + 2} + &c., & exinde t′ = a + {b / z + 1} + {c / z + 1 · z + 2} + &c. = a + {b / z} + {c - b / z · z + 1} + &c., t″ = a + {b / z + 2} + {c / z + 2 · z + 3} + &c. = a + {b / z} + {c - 2b / z · z. + 1} + &c., &c. $cribantur hæ quantitates pro $uis valoribus in datâ æquatione, & ex æquatis corre$pondentibus re$ultantis æquationis terminis erui po$$unt coe$$icientes a, b, c, &c.; unde $umma quæ$ita erit a z + integ. increm. ({b / z}) + {c / z} + {d / 2 z · z + 1} + &c.

Si vero termini haud exprimi po$$int per præcedentes $eries, tum a$$umatur $eries {((z + 1)^s - z^s)a / z^s . (z + 1)^s} + {((z + 1)^s+1 - z^s+1) b / z^s+1 · (z + 1)^s+1} + {((z + 1)^s+2 - z^s+2)c / z^s+2 (z + 1)^s+2} + &c., vel {((z + 1)^s - z^s)a′ / z^s (z + 1)^s} + {((z + 1)^s+1 - z^s+1)b′ / z^s+1 (z + 1)^s+1} + {((z + 1)^s+2 - z^s+2) c′ / z^s+2 (z + 1)^s+2} + &c. + {((z + 1)^s+r - z^s+r)a″ / z^s+r (z + 1)^s+r} + ((z + 1)^s+r+1 - z^s+r+1)b″/z^s+r+1 (z + 1)^s+r+1} + &c. + {((z + 1)^s+2r - z^s+2r)a′″ / z^s+2r (z + 1)^s+2r} + {((z + 1)^s+2r+1 - z^s+2r+1)b′″ / z^s+2r+1 (z + 1)^s+2r+1} + &c. vel {((z + 1)^s - z^s)a / z^s (z + 1)^s} + {((z + 2)^s - z^s)b / z^s (z + 1)^s (z + 2)^s} + {((z + 3)^s - z^s)c / z^s (z + 1)^s ... (z + 3)^s} vel {((z + 1)^s - z^s)a / z^s (z + 1)^s} + {((z + 1)^s+r - z^s+r)b / z^s+r (z + 1)^s+r} + {((z + 1)^s+2r - z^s+2r)c / z^s+2r × (z + 1)^s+2r} + &c., &c., vel a$$umatur $eries a{((z + 1)^r - z^r e^s) / z^r (z + 1)^r} e^ + b {((z + 1)^t - z^t e^l) / z^t (z + 1)^t} × e^lz + &c., &c.; harum $erierum termino- [0628]DE SUMMATIONE rum $ummæ innote$cunt; vel infinitæ $eries haud multum di$$imiles a$$umi po$$unt; reducantur hæ quantitates ad $eries $ecundum dimen- $iones quantitatis z progredientes, & ex æquatis corre$pondentibus re$ultantis & datæ æquationis terminis erui po$$unt coefficientes quæ- $itæ: vel magis generaliter a$$umatur quæcunque $eries $ecundum reciprocas dimen$iones quantitatis z pro $ummâ S, & deinde inveni- atur ejus $ucce$$iva $umma S′, & exinde earum differentia S - S′, cu- jus termini fiant æquales eorum corre$pondentibus terminis in datâ $erie; & exinde erui po$$unt coefficientes quæ$itæ.

6. Eodem modo pro termino quæ$ito a$$umi pote$t quæcunque $eries $ecundum reciprocas dimen$iones quantitatis z progrediens, &c.: vel a$$umi pote$t pro $ummâ S = At + Bt′ + Ct″ + &c., ubi literæ t, t′, t″, &c. $ucce$$ivos terminos; & A, B, C, &c. functiones quantitatis z re$pective denotant: vel quæcunque aliæ functiones terminorum t, t′, t″, &c., & quantitatis z: vel pro S in quibu$dam ca$ibus a$$uman- tur exponentiales quantitates A e^ax^n + bx^n-m + cx^n-2m + &c. + &c.

In datis æquationibus relationem inter $ummas S, S′, &c. & termi- nos t, t′, &c. exprimentibus rejiciantur omnes termini, qui ex datâ hypothe$i evadant multo minores quam reliqui; & ex æquationibus re$ultantibus inveniantur approximationes (π, &c.) ad $ummas vel terminos quæ$itos, &c.; pro $ummis vel terminis prædictis $ub$ti- tuantur π, &c. per incognitas quantitates auctæ, & ex æquationibus re$ultantibus per methodum hìc traditam inveniantur propiores ap- proximationes; & $ic deinceps.

Hæ re$olutiones $æpe $olummodo præbent particularem valorem $eriei, quod quidem evenit, quoniam pro primâ approximatione $u- mitur particularis valor; i. e. haud incipitur a primo $eriei termino: invenire autem generalem valorem perraro u$ui in$erviunt; primo enim præ$tat valores ad valorem quæ$itum maxime appropinquantes a$$u- mere, quod re$tinguit re$olutionem ad particularem, quæ nullâ diffi- cultate urgetur.

7. Si generalis valor per $eriem infinitam quæratur; tum in $erie ex incrementiali deductâ tot erunt invariabiles quantitates ad libitum [0629]SERIERUM, &c. a$$umendæ, quot continentur in generali integrali datæ incrementia- lis æquationis.

Methodus has generales $eries inveniendi ex incrementialibus æqua- tionibus vel æquationibus relationes inter $ucce$$ivas $ummas & ter- minos exprimentibus ii$dem difficultatibus urgetur ac methodus in- veniendi $eries ex fluxionalibus æquationibus datis. Series incre- mentiales in fluxionales infinitas $eries transformari po$$unt.

Ex. 1. Sit æquatio t′ = {z^2 / z^2 + r}t; a$$umatur t = a + {b / z} + {c / z · z + 1} + {d / z · z + 1 · z + 2} + &c. unde t′ = a + {b / z + 1} + {c / z + 1 · z + 2} + &c. = a + {b / z} + {c - b / z · z + 1} + &c. $cribantur hi valores pro t & t′ in datâ æquatione, & re$ultat t = a + {r A / z} + {r + 1 / 2 · z + 1}B + {r + 4 / 3 · z + 2}C + {r + 9 / 4 · z + 3}D + &c.

Si vero requiratur generalis valor radicis t; a$$umatur t = az^n + b z^n-1 + &c. unde t′ = a(z + 1)^n + b(z + 1)^n-1 + &c. $cribantur hæ quantitates pro $uis valoribus in datâ æquatione, & ex æquatis inter $e corre$pondentibus re$ultantis æquationis terminis erui po$$unt coefficientes a, b, &c. quæ$itæ.

Hæc propo$itio haud nunquam magis $acilem recipiet $olutionem, $i modo a$$umatur s = y t, vel t = yt′, vel s = Pyt, &c. ubi P $it fun- ctio quantitatis z, & s $it $umma $eriei quæ$ita, t vero & t′ duo $uc- ce$$ivi termini, &c.; & deinde ita reducantur æquationes ut re$ultet æquatio relationem inter y & z exprimens, e quâ inveniatur y in ter- minis quantitatis z, qui progrediuntur $ecundum formulas in præce- denti libro traditas.

PROB. XXX.

Transformare œquationem inter $ucce$$ivas $ummas & terminos de$ignan- tem in infinitam fluxionalem œquationem relationem inter $ummam S vel [0630]DE SUMMATIONE terminum t, ejus fluxiones, & z di$tantiam a primo $eriei termino & z^. ex- primentem.

In datâ æquatione (cum $olummodo contineantur $ucce$$ivi termini t, t′, t″, t′″, &c., z & z.) pro t′, t″, t′″, t″″, &c. t′^m, $cribantur re$pective t′ = t + {t^. / z^.} × z. + {t^.. / 2z^. ^2} z.^2 + {t^... / 2 · 3 z^. ^3} × z.^3 + {t^.... / 2 · 3 · 4 z^. ^4} × z.^4 + &c., t″ = t + {2t^. / z^.} × z. + {4t^.. / 2z^. ^2} × z.^2 + {8t^... / 1 · 3z^ · ^3} × z.^3 + {t^.... / 2 · 3 · 4z^. ^4} × z.^4 vel de- nique t′^m = t + {mt^. / z^.} × z. + {m^2 t^.. / 2z^. ^2} × z.^2 + {m^3 t^... / 2 · 3 z^. ^3} × z.^3 + {m^4 t^.... / 2 · 3 · 4 z^. ^4} × z.^4 + &c. & re$ultat æquatio relationem exprimens inter t & ejus flu- xiones, z & z^.; ubi z. & z^. $unt invariabiles quantitates.

Si vero s, s′, s″, &c., s′^m; t, t′, t″, &c., t′^n in datâ æquatione continean- tur; pro s′^m $cribatur s + {ms^. / z^.} × z. + {m^2 s^.. / 2z^. ^2} × z.^2 + {m^3 s^... / 2 · 3 z^. ^3} × z.^3 + {m^4 s^.... / 2 · 3 · 4 z^. ^4} × z.^4 + &c.; & pro t′ = S′^r - S′^r+1 = - {s^. / z^.} × z. - {((r + 1)^2 - r^2)s^.. / 2z^. ^2} × z.^2 - {((r + 1)^3 - r^3)s^... / 2 · 3 z^. ^3} × z.^3 - {((r + 1)^4 - r^4)s^.... / 2 · 3 · 4 z^. ^4} × z.^4 - &c.

Si y = t ± {t^. / z^.} × z. + {t^.. / 2z^. ^2} × z.^2 ± {t^... / 2 · 3 z^. ^3} × z.^3 + {t^.... / 2 · 3 · 4 z^. ^4} × z.^4 ± &c.; cum y = t prope, tum erit t = y ∓ {y^. / z^.} × z. + {y^.. / 2z^. ^2} × z.^2 ∓ {y^... / 2 · 3 z^. ^3} × z.^3 + &c.; & $imiliter $i y = t ± {mt^. / z^.} × z. + {m^2 t^.. / 2z^. ^2} z.^2 ± {m^3 t^... / 2 · 3 z^. ^3} × z.^3 + &c.; cum y = t prope, tum erit t = y ∓ {my^. / z^.} × z. + {m^2 y^.. / 1 · 2 z^. ^2} × z.^2 ∓ &c.

Hæc con$tant ex rever$ione $erierum.

Erit s.m = t.m - 1 = {s^. ^m / z^. ^m} × z.^m + α {s^. ^m+1 / z^. ^m+1} × z.^m+1 + β {s^. ^m+2 / z^. ^m+2} × z.^m+2 + γ {s^. ^m+3 / z^. ^m+3} × z. ^m+3 [0631]SERIERUM, &c. + δ &c.; ubi erit coefficiens primi termini = 1 = {∓ 1 / 1 · 2 · 3 · 4 .. m} × (m × 1^m - m · {m - 1 / 2} × 2^m + m · {m - 1 / 2} · {m - 2 / 3} × 3^m - m · {m - 1 / 2} · {m - 2 / 3} · {m - 3 / 4} × 4^m + m · {m - 1 / 2} · {m - 2 / 3} · {m - 3 / 4} · {m - 4 / 5} × 5^m - &c.), unde m × 1^m - m · {m - 1 / 2} × 2^m + m · {m - 1 / 2} · {m - 2 / 3} × 3^m - &c. = ± 1 · 2 · 3 ... m; $ignum affixum erit +, $i m $it impar numerus; $in aliter -: $i m $it negativus numerus vel fractio, tum prædicta infinita $eries erit æqualis termino, cujus di$tantia a primo $it m + 1, $eriei 1 - 1 · 2 + 1 · 2 · 3 - 1 · 2 · 3 · 4 + &c.

Erunt ± 1 · 2 · 3 · 4 .. (m + 1) α = m × 1^m+1 - m · {m - 1 / 2} × 2^m+1 + m · {m - 1 / 2} · {m - 2 / 3} × 3^m+1 - m · {m - 1 / 2} · {m - 2 / 3} · {m - 3 / 4} ×4^m+1 + m · {m - 1 / 2} · {m - 2 / 3} · {m - 3 / 4} · {m - 4 / 5} ×5^m+1 + &c.; 1 · 2 · 3 .. (m + 2) β = m × 1^m+2 - m · {m - 1 / 2} × 2^m+2 + m · {m - 1 / 2} · {m - 2 / 3} × 3^m+2 - m · {m - 1 / 2} · {m - 2 / 3} · {m - 3 / 4} × 4^m+1 + &c.; 1 · 2 · 3 .. (m + 3) γ = m × 1^m+1 - m · {m - 1 / 2} × 2^m+3 + m · {m - 1 / 2} · {m - 2 / 3} × 3^m+3 - m · {m - 1 / 2} · {m - 2 / 3} · {m - 3 / 4} × 4^m+3 + &c.; & $ic deinceps.

Erit m × 1^r - m · {m - 1 / 2} 2^r + m · {m - 1 / 2} · {m - 2 / 3} 3^r - m · {m - 1 / 2} · {m - 2 / 3} 4^r + &c. = 0, $i modo $it r numerus minor quam m.

Sub$tituantur hæ quantitates pro $uis valoribus in datâ æquatione, & re$ultat æquatio quæ$ita.

Ex. Sit t = αz^2 t′; in hâc æquatione pro t & t′ $cribantur re$pective [0632]DE SUMMATIONE s - s′ = {s^. / z^.} × z. - {s^.. / 2z^. ^2} × z^. ^2 + &c., & s′ - s^.. = {s^. / z^.} × z^. - {3 s^.. / 2z^. ^2} × z^. ^2 + &c., quibus $ub$titutis re$ultat fluxionalis æquatio 2 s^. z^. × z^. - s^.. z.^2 &c. = a z^2 (2 s^. z^. z. - 3 s^.. z.^2 &c.), ex quâ inveniri pote$t prima approxi- matio ad $ummam s; & $ic progredi liceat ad inveniendas reliquas. approximationes.

THEOR. XXIII.

1. Datis n $ummis quantitatis (P) {a y^. ^m / y^. ^γ x^. ^n} + {b y^. ^m-1 / y^. ^γ x^. ^n-1} + {c y^. ^m-2 / y^. ^γ x^. ^n-2} + &c. (ubi a, b, c, &c. $unt datæ coefficientes & m = n + r) ad n diver$os valores ab$ci$$æ x, & ordinatæ y; pro relatione inter ab$ci$$am x & ejus corre$pondentes ordinatas y a$$umatur æquatio A + B x + C x^2 + D x^3 ... x^n-1 = y, ex hâc æquatione inveniatur valor quantitatis P; in quantitate re$ultante pro x & y $cribantur earum n corre$pon- dentes valores, & re$ultabunt n $implices æquationes totidem incog- nitas quantitates A, B, C, D, &c. habentes, e quibus con$tabunt co- efficientes A, B, C, D, &c. quæ$itæ.

2. Sint duæ vel tres vel denique n diver$æ quantitates (P) eju$dem generis, i. e. $int datæ coefficientes a, b, c, d, &c. in diver$is $ummis diver$æ tum ex n datis vel eju$dem vel diver$i prædicti generis quan- titatibus ad n diver$os datos valores ab$ci$$æ x & ordinatæ y, per me- thodum hìc traditam erui pote$t æquatio A + B x + C x^2 ... x^n-1 = y, cui corre$pondent n datæ $ummæ.

Cor. · Ex inventis æquationibus A + B x + C x^2 + &c. = y erui po$$unt quæcunque quantitates, quæ ad variabiles x & y habent rela- tionem facile inve$tigandam.

Si vero a$$umatur æquatio a x^r + b x^γ+s + c x^γ+2s + d x^r+35 + &c. = y, $cribatur z = x^3, & re$ultat æquatio prædictæ formulæ a + b z + c z^2 + d z^3 + &c. = {y / x^γ} = v, cujus re$olutio prius datur.

Omnia hæc etiam ad æquationes curvas de$ignantes, quæ habent a$ymptotos, facile applicari po$$unt.

[0633]SERIERUM, &c. THEOR. XXIV.

1. Sit $eries y = a + b x + c x^2 + d x^3 + &c. $upponantur E, E^., E^.., E^..., &c. re$pectivi valores quantitatum y, y^., y^.., y^..., &c. cum x = 0; tum erit integralis y = E + {E^... x / x^.} + {E^.. x^2 / 1 · 2 x^. ^2} + {E^... x^3 / 1 · 2 · 3 x^. ^3} + {E^.... x^4 / 1 · 2 · 3 · 4 x^. ^4} + &c. erunt enim E = a, {E^. / x^.} = b, {E^.. / 1 · 2 x^. ^2} = c, {E^... / 1 · 2 · 3 x^. ^3} = d, & $ic deinceps.

Fluens vero fluxionis $ · y x^. = a x + {b x^2 / 2} + {c x^3 / 3} + {d x^4 / 4} + &c. = Ex + {E^. x^. ^2 / 2 x} + {E^.. x^3 / 1 · 2 · 3 x^. ^2} + {E^... x^4 / 1 · 2 · 3 · 4 x^. ^4} + &c.

FIG. 2. Sit ba$is AP = z & z^. = 1, cujus ordinata P M = y; $it prima ordinata A F = a, A B = 1 & area A B E F = A; $int A, B, C, D, E, &c. $ucce$$ivæ areæ per ordinatas y, y^., y^.., y^..., &c. re$pective gene- ratæ, i. e. fluentes fluxionum y z^., y^. z^., y^.. z^., y^... z, &c. tum erit A F = a = A - {B / 2} + {C / 12} - {E / 720} + {F / 30240} - &c. nam A = a + {a^. / 2} + {a^.. / 2 · 3} + {a^... / 2 · 3 · 4} + &c. & $ic B = a^. + {a^.. / 2} + {a^... / 6} + &c. C = a^.. + {a^... / 2} + &c. D = a^... + {a^.... / 2} + &c. &c. reducantur hæ æquationes ita ut extermi- nentur a^., a^.., a^..., &c. & re$ultat a = A - {B / 2} + {C / 12} - &c. i. e. ex in- tegralibus fluentis & ejus $ucce$$ivarum fluxionum ivenitur primus terminus: lex coefficientium ita dici pote$t; $int k = {1 / 2}, l = {1 / 6}, m = {1 / 24}, n = {1 / 120}, &c. etiamque $int K = k = {1 / 2}, L = K k - l = {1 / 12}, M = k L - l K + m = 0, N = k M - l L + m K - n = - {1 / 720}, &c. & erit a = A - K B + L C - M D + &c.

Cor. 1. Quoniam areæ A, B, C, D, &c. generantur, dum tran$it [0634]DE SUMMATIONE ordinata P M ab A F ad B E, ob z^. = 1, & exinde area B = differ. inter ordinatas B E & A F, C = differen. inter fluxiones prædicta- rum ordinatarum, D = differen. inter earum tertias fluxiones, &c. $cribantur α, β, δ, ε, &c. igitur pro BE - AF, B^. E - A^. F, B^... E - A^... F, B^..... E - A^..... F, &c. & evadet a = A - {α / 2} + {β / 12} - {δ / 720} + &c.

Dividatur ba$is A a in æquales $ucce$$ivas partes AB, BC, CD, &c. = z^., pro $ummâ æquidi$tantium ordinatarum A F + B E + C K + &c. (excipiatur ultima ordinata a f) $ub$tituatur S, & pro areâ A F f a, & differentiis a f - A F, a^. f - A^. F, a^... f - A F^..., &c. $cribantur re$pective A, α, β, δ, ι, &c. tum erit S = {A / z} - {α / 2} + {z β / 12 z^.} - {z 3 δ / 720 z^. ^3} + {z^5 ι / 30240 z^. ^5} - {z7 θ / 1209600z^. ^7} + &c.

2. Po$itis ordinatâ A F = a, & lineis A R & A r ad oppo$ita latera puncti A inter $e æqualibus; lineis R V & r v ordinatis ad R & r, quæ terminant aream R V v r; & quâcunque ordinatâ P M = y; fluat uniformiter ba$is, & denotent literæ A, C, E, &c. areas $uper ba$im R r a re$pectivis ordinatis y, y^.., y^...., &c. generatas: $upponatur A R = z, & erit media ordinata A F = a = {A / 2 z} - {z C / 12 z^. ^2} + {7 z^3 E / 720 z^. ^4} - {31 z^5 G / 30240 z^. ^6} + &c. per theor. enim {R r v V / 2 z} = {A / 2 z} = a + {z^2 a^.. / 2 · 3 z^. ^2} + {z^4 a^.... / 2 · 3 · 4 · 5 z^. ^4} + &c. vel a = {A / 2 z} - {z^2 a^.. / 6 z^. ^2} - {z^4 a^.... / 120 z^. ^4} - &c. & $imiliter a^.. = {C / 2 z} - {z^2 a^.... / 6 z^. ^2} - &c. a^.... = {E / 2 z} - &c. ita reducantur hæ æquationes, ut exterminentur a^.., a^...., &c. & con$tabit. prop.

Lex huju$ce $eriei $ic enuntiari pote$t; $int k = {z^2 / 2 · 3 z^. ^2}, l = {z^2 k / 4 · 5 z^. ^2}, m = {z^2 l / 6 · 7 z^. ^2}, n = {z^2 m / 8 · 9 z^. ^2}, &c. etiamque K = {k / 2 z} = {z / 12 z^. ^2} L = k K [0635]SERIERUM, &c. - {l / 2 z}, M = k L - l K + {m / 2 z}, N = k M - l L + m K - {n / 2 z}, &c. tum erit a = {A / 2 z} - K C + L E - M G + N I - &c. & quoniam areæ C, E, &c. $unt re$pective fluentes fluxionum y^.. z^., y^.... z^., &c. $i re- $pectivæ differentiæ fluxionum primi, tertii, quinti, &c. ordinis ordi- natarum r v & R V exprimantur per β, δ, ι, θ, &c. tum erit a = {A / 2 z} - {z β / 12 z} + {7 z^3 δ / 720 z^. ^3} - {31 z^5 ι / 30240 z^. ^5} + {127 z^7 θ / 1209600 z^. ^7} - &c.

Cor. 1. Sint A F, B E, C K, &c. $eries ordinatarum æquidi$tantium $uper ba$im A a, quarum A F $it prima & a f ultima; A B eorum com- munis differentia $it 2 z, & linea A R a b A retro $umpta = z = {1 / 2} A B & a r $umpta in contrariâ directione {1 / 2} a b = z, & $i area R V r v ab ordinatis R V & r v terminata dicatur A, & differentiæ inter primas, tertias, quintas, &c. fluxiones ordinatarum r v & R V exprimantur per β, δ, ι, θ, &c. & $umma ordinatarum A F + B E + C K ... + a f = S; erit S = {A / 2 z} - {z β / 12 z} + {7 z^3 δ / 720 z^. ^3} - {31 z^5 ι / 30240 z^. ^5} + {127 z^7 θ / 1209600 z^. ^7} - {511 z^9 x / 47900160 z^. ^9} + &c. unde A = 2 z S + {z^2 β / 6 z^.} - &c.

Cor. 1. Hinc inveniri pote$t m^r + (m + e)^r + (m + 2 e)^r ... n^r = {1 / (r + 1) · e} (n^r - m^r) + {n^r - m^r / 2} + {r e / 12} (n^r-1 - m^r-1) - {r · r - 1 · r - 2 / 720} e^3 × (n^r-3 - m^r-3) + &c.

Et $ic (m + e)^r + (m + 3 e)^r + (m + 5 e)^r + .. + (n - e)^r = {1 / (r + 1) · 2 e} × (n^r+1 - m^r+1) - {r e / 12} × (n^r-1 - m^r-1) + {7 r · r - 1 · r - 2 · e^3 / 720} (n^r-3 - m^r-3) - &c.

Si r = - s & $umma {1 / m^s} + {1 / (m + e)^s} + {1 / (m + 2 e)^s} + {1 / (m + 3 e)^s}... {1 / 22^s} (0) = {1 / (s - 1) e m^s-1} + {1 / 2 m^s} + {s e / 12 m^s+1} - {s · s + 1 · s + 2 · e^3 / 720 m^s+3} + &c. [0636]DE SUMMATIONE {s.s + 1.s + 2.s + 3.s + 4.e5 / 30240m^s+s} + &c. & fic colligi pote$t {1 / (m + e)^s} + {1 / (m + 3e)^s} + {1 / (m + 5e)^s} + &c. = {1 / (s - 1)2 e m^s-1} - {se / 12m^s+1} + {7s.s + 1.s + 2.e^3 / 720m^s+3} - &c.

Cor.. Si termini $eriei $int alternatim affirmativi & negativi, in priori ca$u per theor. erit $umma affirmativorum = {A / 2e} - {α / 2} + {2eβ / 12} - {8e^3 δ / 720} + &c. $umma vero negativorum per cor. 1.{A / 2e} - {eβ / 12} +. {7e^3 δ / 720} - &c. ubi 2 e $it communis di$tantia inter ordinatas, & α = af - AF; & β, δ, &c. ut antea; ergo differentia inter has duas inve- nietur {A F - a f / 2} + {eβ / 4} - {e^3 δ / 48} + {e^5 η / 480} - {17e^7 θ / 80640} - &c.

Ex. 2. Sint E A = 2, E a = n, A F = log. 2, a f = log. n; & β, δ, η, &c. denotent fluxiones diver$as ip$ius A F, tum logar. ultimi valoris contenti {2 / 3} × {4 / 5} × {6 / 7} ×... × {n-2 / n-1} × 2√(n) = {l, 2 - l,n / 2} - {β / 4} + {δ / 48} - {η / 480} + &c. + l.2 + {l,n / 2} = {3 / 2} × l.2 - {β / 4} + {δ / 48} - {η / 480} + &c. = (ob {3 / 2} × l.2 = 1 + {β / 12} - {7δ / 720} + {31η / 30240} - &c.) 1 - {2β / 12} + {8δ / 720} - &c. = (ob β = {1 / 2}, δ = {2 / 8}, η = {24 / 32}, &c.)1 - {1 / 12} + {1 / 360} - {1 / 1260} + {1 / 1680} - &c. $ed quoniam circumferentia circuli (c) cujus radius e$t unitas, $it c = 8.{8 / 9}·{24 / 25}·{48 / 49}·{80 / 81}·&c. quæ $eries ita $eribi pote$t c = 4 × {4 / 9} · {16 / 25} {36 / 49} · {64 / 81}·. {(n - 2)^2 / (n - 1)^2} × n, unde √(c) = {2 / 3} × {4 / 5} × {6 / 7} × {8 / 9} × &c. in infinitum × 2√(n), & ejus log. = {l,c / 2} = 1 - {1 / 12} + {1 / 360} - {1 / 1260} + {1 / 1680} - &c.

[0637]SERIERUM, &c.

Hæc applicari poffunt ad inveniendas $ummas logarithmorum quantitatum in arithmeticâ progreffione.

1. Sit 3 × {21 / 25} × {77 / 81} × {165 / 169} × {285 / 289} × &c. cujus ultimus valor $it p, & erit √(p) ultimus valor contenti {3 / 5} × {7 / 9} × {11 / 13} × {15 / 17} .... {n - 4 / n - 2}√(n); $it r_ quicunque numerus in progreffione 3, 7, 11, 15, &c. & N nume- rus, cujus logarithmus e$t {1 / 2r} - {1 / 3r^3} + {8 / 5r^5} - &c. tum erit √(p) = {√ r / N} × {3 / 5} × {7 / 9} × {11 / 13} × {15 / 17}... {r - 4 / n - 2}.

2. Et ex his principiis deduci pote$t unicam medii termini ad $um- mam unicarum binomii e$$e ut::1: {√(c × (n + 1)) / 2N} prope, ubi N $it numerus, cujus log. e$t {1 / 4 ×(r + 1)} - {1 / 24 × (r + 1)^2} + {1 / 20 × (r + 1)^5} - &c. & r $it pote$tas binomii cum $it par; vel r + 1 $it pote$tas, cum $it impar.

3. Supponatur ba$is A a dividi in æquales partes, & $it area A F f a = Q, $umma extremarum ordinatarum A F + a f = A, & $umma om- nium intermediarum B E + C K + &c. = B, ba$is Aa = R, & eædem quantitates ut antea per β, δ, η, &c. denotentur; tum erit area A F f a = Q = ({A / 2 n + 2} + {nB / n^2 - 1}) R - {R^4 δ / 720n^2} + {R^6 η / 30240} × {n^2 + 1 / n^4} - &c. nam $upponâtur e = {R / n}, S + {af - af / 2} = B + {A / 2} = {nQ / R} + {Rβ / 12n} - {R^3 δ / 720n^3} + &c. deinde {A F + a f / 2} = {A / 2} = {Q / R} + {Rβ / 12} - {R^3 δ / 720} + &c. ex- terminetur β ex his duabus æquationibus, & re$ultat area præ- dicta.

Rejiciantur δ, η, θ; &c. & erit area A F f a = {AR / 2n + 2} + {nBR / n^2 - 1}; $upponatur n = 2, unde tres $olummodo erunt ordinatæ & B media [0638]DE SUMMATIONE ordinata, & erit area A F f a = {A + 4B / 6}R - {R^4 δ / 1.720} + {5R^6 η / 11.30240} - &c. $it n = 3 & quatuor $olummodo $unt ordinatæ, & erit B = $ummæ primæ & $ecundæ ordinatarum; & area A F f a = {A + 3 B / 8} × R - {R^4 δ / 1.720} + {R^6 η / 81.3024} - &c. $i vero rejiciantur δ, η, &c. tum erit area A F f a = {A + 3B / 8} × R.

Sint quinque ordinatæ, A $umma primæ & ultimæ, B $umma $ecundæ & quartæ, C vero media ordinata; erit area A F f a = {7A + 32B + 12C / 90} × R - {31R^6 η / 6 × 16 × 16 × 30240} + &c. nam per regulam pro tribus ordinatis erit {Q / R} = {A + 4C / 6} × R - {R^3 δ / 4 × 720} + {5R^5 η / 11.30240} - &c. dividatur $ingula ba$is in duas æquales partes, & inveniatur per eandem regulam area e $ingulâ parte, addantur hæ duæ partes in unam & re$ultat {2Q / R} = {A + 4B + 2C / 6} - {R^3 δ / 31.720} + {5R^5 η / 2 × 16 × 16 × 30240} - &c. ex his duabus æquationibus extermine- tur δ, & con$tabit area quæ$ita.

3. Ex his principiis etiam interpolari poffunt $eries. Sint F N z figura, cujus $ucceffivæ ordinatæ ad puncta A, B, C, D,&c. $emper $int æquales $ucceffivis $ummis ordinatarum figuræ FMf, i. e. A F = A F, Bε = A F + B E, Cx = B ε + C K, D λ = C x + D L, &c. & requiratur quæcunque intermedia ordinata PN figuræ F N z; occurrat ordinata P N curvæ F M f in M; $int A F = a, P M = y, & communis diftantia ordinatarum AB = e, & area A F M P = Q, y^. - a^. = β, y^... - a^... = δ, &c. & P N = {Q / e} + {a + y / 2} + {eβ / 12} - {e^3 δ / 720} + {e^5 η / 30240} - &c. quod demon$trari pote$t $upponendo PN $uc- [0639]SERIERUM, &c. ceffive in locos ordinatarum figuræ F N z ad puncta A, B, C, D, &c. movere, & exinde ejus $ucceffivos valores per theor. inveniri: $i vero exterminanda e$t area Q, $upponatur A P = m, & quoniam {a + y / 2} = {Q / m} + {mβ / 12} - {m^3 δ / 720} + {m^5 η / 30240} - &c. $equitur PN = {a + y / 2} × {e + m / e} + {e^2 - m^2 / 12 e} × β - {e^4 - m^4 / 720 e} × δ + &c.

Sumantur A R & P r in oppo$itis directionibus re$pective = {1 / 2} AB, R V & r v occurrant F M f in V & v; $it Q area R V v r; & β, δ, η, &c. differentiæ; quibus prima, tertia, quinta, &c. fluxiones ordinatæ r v $uperant re$pectivas fluxiones quantitatis R V, & AB = e ut prius; tum erit ordinata P N = {Q / e} - {e β / 1.12} + {7e^3 δ / 1.720} - {31e^5 η / 31.30240} - &c.

Ordinatæ ad puncta A, B, C, D, &c. dicuntur primariæ ordinatæ figuræ F N z vel F M f. Si P p = A B, & p n occurrat F N z in n & F M f in m, tum p n = P N + p m vel P N - p m, prout P p in hâc vel illâ directione ab P $umatur; & hinc ex quâcunque (PN) intermediâ ordinatâ datâ omnes aliæ ordinatæ figuræ F N z, quarum di$tantiæ ab eâ (P N) $it n × AB, ubi n e$t integer numerus, facile deduci poffunt vel addendo vel $ubtrahendo intermedias ordinatas figuræ F M f.

Cor. 1. Sint T′ X & T′ X′ primariæ ordinatæ figuræ F M f adjacentes ad ordinatam intermediam P N; bi$eca T T′ in x, & occurrat ordinata x y curvæ F M f in y; area x y v r = q, ordinata T η ad T curvæ F N z $it s, x y = y, r v = u; tum P N = s + {q / e} - {e / 1.12} × (u^. - y^.) + {7 e^3 / 1.720}(u^... - y^...) - &c. nam $i R v = a & area R V v r = Q, tum R V y x = Q - q & P N = {Q / e} - {e / 1.12} × (u^. - a^.) + {7e^3 / 1.720} × (u^... - a^...) - &c. per præced. & T η = s = {Q - q / e} - {e / 1.12} × (y^. - a^.) + {7e^3 / 1.720} × (y^... - a^...) - &c. unde P N - s = {q / e} - {e / 24}(u^. - y^.) + {7e^3 / 1.720} × (u^... - y^...), & P N = s + {q / e} - {e / 24} × (u^. - y^.) + &c.

[0640]DE SUMMATIONE

Cor. 2. Ii$dem figuris F n z & F M f manentibus, $it ba$is F f a$ymptos po$terioris figuræ; & $it A π præcedens primum terminum A F, minor quam A B, & $umantur A π = b B = c C = D d = &c. P N ultimo in hoc ca$u erit = T η; i.e. $upponendo (PT′ = π A), π n + b e + c k + d l + &c. ultimo = A F + B E + C K + &c. unde π n = A F - b e + B E - c k + C K - d l + &c.

Ex. 1. Sint A F = 1, B E = {1 / 2}, C K = {1 / 3}, D L = {1 / 4}, &c. tum erunt primariæ ordinatæ figuræ F N z re$pective 1, {3 / 2}, {11 / 6}, {25 / 12}, {147 / 60}, &c. $it A π = {1 / 2} A B, & quoniam intermediæ differentiæ b e = {2 / 3}, c k = {2 / 5}, d l = {2 / 7}, &c. erit π n = 1 - {2 / 3} + {1 / 2} - {2 / 5} + {1 / 3} - {2 / 7} + {1 / 5} - {2 / 9} &c. = 2 × (1 - log. 2).

Ex. 2. Sit A F = 1, B E = {1 / 4}, C K = {1 / 9}, D L = {1 / 16}, &c. & $it A π = - {1 / 2} A B, tum erunt intermediæ differentiæ b e, c k, d l, &c. re$pective {4 / 9}, {4 / 25}, {4 / 49}, &c. & ordinatæ A F, B ε, C x, D λ, &c. erunt 1, 1 + {1 / 4}, 1 + {1 / 4} + {1 / 9}, &c. & π n = 1 - {4 / 9} + {1 / 4} - {4 / 25} + {1 / 9} - {4 / 49} + &c.

Ex. 3. Sit A F = 1, B E = {1 / 5}, C K = {1 / 9}, D L = {1 / 13}, &c. & A π = {1 / 2} A B, tum erit π n = 1 - {1 / 3} + {1 / 5} - {1 / 7} + {1 / 9} - &c. = octuplæ parti circumfe- rentiæ circuli, cujus radius e$t 1,

Cor.. Cum termini progrediantur $ine $ine, & eorum $ecundæ dif- ferentiæ decre$cant, ita ut ultimo evane$cant; $it K ultimus valor pri- marum differentiarum terminorum, & erit π n = {A B - A π / A B} × K + A F + B E + C K + &c. - b e - c k - d l - &c. quoniam in hoc ca$u fluxiones quantitatum r v & x y ultimo evane$cunt, P N erit ul- timo = s + {q / e}, q = K × r x = K × (A B - A π); & con$equenter π n = {AB - Aπ / A B} × K + A F - b e + B E - c k + &c.

Con$imile etiam deduci pote$t theorema, cum $ecundæ differentiæ terminorum ad limitem appropinquent.

Sit $eries 1, 1 × 1, 1 × 2, 1 × 2 × 3, 1 × 2 × 3 × 4, &c. propo$ita, invenire terminum, qui intermedius $it inter duos primos terminos: logarithmus termini quæ$iti erit {K / 2} + log. 1 - log. {3 / 2} + log. 2 - log. {5 / 2} + log. 3 - log. {7 / 2} + log. 4 - &c. = logar. ultimi valoris con-[0641]SERIERUM, &c. tenti {2 / 3} × {4 / 5} × {6 / 7} × {8 / 9} × ... {n / n - 1} √ (n + 1) = log. {√ (c) / 2}, & con$equenter terminus ip$e æqualis erit dimidio radicis, quæ pote$t quadratum $emicircumferentiæ circuli, cujus radius e$t 1.

Hic ultimo pauca adjicienda $unt de convergentiâ $erierum in hâc methodo æque ac præcedentibus deductarum.

1. Si ordinata curvæ, cujus fluens requiritur, in infinitum progre- diatur, for$an ejus area $it finita; i. e. fluens $it finita, quamvis ejus fluxio $it infinita; tum nunquam $eries pro areâ, in quâ continetur prædicta infinita ordinata, converget; ni area, i. e. fluens terminet ad ordinatam vel fluxionem, quæ e$t infinita.

1. Si ordinata haud $it infinita, $ed ejus fluxio cuju$cunque ordinis $it infinita; tum hæc $eries haud ultimo converget, ni ab ordinatâ, cujus fluxio e$t infinita, terminetur.

3. Si fluxio areæ vel fluentis cuju$cunque ordinis evadat nihilo æqualis; tum hæc $eries pro areâ, in quâ continetur prædicta fluxio nihilo æqualis, nunquam converget; ni area terminetur ad ordina- tam, in quâ invenitur prædicta fluxio nihilo æqualis. Con$tant e præceden.

4. Eo magis ceteris paribus converget $eries re$ultans, quo magis di$tant termini datæ $eriei a prædictis punctis; & quo plures proprie interponantur termini, eo magis $altem in ratione numeri termino- rum interpolandorum converget $eries.

5. Si valores quantitatis x longe di$tent ab omni radice æquatio- num re$ultantium ex $upponendo generales terminos, &c. = 0; tum $eries y proprie per $eriem huju$ce formulæ a + b x + c x^2 + &c. ex- hiberi pote$t, $in aliter non: $unt ca$us, cum x $it perparva, in qui- bus y per $eriem a + b x^r + c x^2r + &c. vel a x^s + b x^s+r + c x^s+2r + &c., &c., de$ignari pote$t; cum autem x $it permagna quantitas, $unt ca- $us, in quibus y per $eriem a + b x^-1 + c x^-2 + d x^-3 + &c., vel per a + b x^-r + c x^-2r + &c., vel per a x^-s + b x^-s-r + c x^-s-2r + &c.; &c.; de$ignari pote$t; & ad hos ca$us con$imilia iis, quæ in hoc pro- blemate ad $eriem a + b x + c x^2 + &c. dantur, etiam applicari po$$unt.

[0642]DE SUMMATIONE THEOR. XXIV.

Sit t = v, & erit t′ = t + t. = v + v^. + {1 / 2} v^.. + {1 / 6} v^... + {1 / 24} v^.... + &c. & exinde t. = v^. + {1 / 2} v^.. + {1 / 6} v^... + {1 / 24} v^.... + &c. unde t. + t.. = v^. + ({1 / 2} + 1) v^.. + ({1 / 6} + {1 / 2} + {1 / 2}) v^... + &c. & con$equenter t.. = v^.. + v^... + {7 / 12} v^.... + {1 / 4} v^..... + &c. & ex ii$dem operationibus repetitis erui po$$unt t... = v^... + 1 {1 / 2} v^.... + {5 / 4} v^..... + &c. t.... = v^.... + 2 v^..... + &c. &c. lex, quam ob$ervat hæc $eries, $ic enuntiari pote$t, $it t.n-1 = v^. ^n-1 + α v^. ^n + β v^. ^n+1 + γ v^. ^n+2 + &c. & erit t.n = v^. ^n + ({1 / 1 · 2} + α) v^. ^n+1 + ({1 / 1 · 2 · 3} + {1 / 1 · 2} α + β) v^. ^n+2 + ({1 / 1 · 2 · 3 · 4} + {1 / 1 · 2 · 3} α + {1 / 1 · 2} β + γ) v^. ^n+3 + &c. unde facile con$tabit lex $eriei quæ$ita.

Cor. · Hinc ex datâ incrementiali æquatione relationem inter t, t., t.., &c. z & z^. exprimente deduci pote$t infinita fluxionalis æquatio: $cribantur enim pro t, t., t.., &c. in datâ æquatione earum valores, & re$ultat æquatio quæ$ita.

THEOR. XXVI.

Ex rever$ione prædictarum $erierum inveniri po$$unt v^. = t. - {1 / 2} t.. + {1 / 3} t... - {1 / 4} t.... + {1 / 5} t..... - &c. v^.. = t.. - t... + {11 / 12} t.... - {10 / 12} t...... + &c. v^... = t... - 1 {1 / 2} t + {7 / 4} t...... - &c. v^.... = t.... - 2 t...... + &c. &c.

Cor. · Scribantur hæ quantitates in datâ fluxionali æquatione pro $uis valoribus v, v^.., v^..., &c. & re$ultat infinita incrementialis æquatio.

Series di$tingui po$$unt in diver$os ordines; prout quantitates, quæ exprimunt earum terminos, continent unam, duas, tres vel plures independentes & variabiles quantitates x, y, z, v, &c. E. g. Ea $eries, cujus termini exprimi po$$unt per quantitatem, in quâ $olummodo continetur una variabilis quantitas, dici pote$t $eries primi ordinis; ea, quæ continet duas variabiles quantitates, dici pote$t $eries $ecundi ordinis; & $ic deinceps.

[0643]SERIERUM, &c. PROB. XXXI.

1. Conce$sâ omnium $erierum primi ordinis $ummas generaliter inve- niendi methodo; invenire $ummam cuju$cunque $eriei (A) $ecundi, tertii, &c. ordinis.

A$$umantur omnes variabiles quantitates (y, z, v, &c.) præter unam x in datâ quantitate, quæ exprimit $eriei terminos tanquam in- variabiles; & exinde e conce$sâ methodo inveniatur $eriei re$ultantis $umma; deinde in $ummâ re$ultante a$$umantur quantitas x & om- nes reliquæ præter y tanquam invariabiles, & e prædictâ conce$sâ methodo inveniatur $eriei re$ultantis $umma; & $ic progrediendum e$t u$que donec omnes invariabiles & independentes quantitates (x, y, z, &c.) $ejunctim tanquam variabiles a$$umptæ fuerint, i. e. toties inveniantur $ummæ re$ultantium $erierum, quot variabiles & inde- pondentes quantitates (x, y, z, v, &c.) in datâ $erie A contineantur; ultima $umma re$ultans vere correcta erit $umma quæ$ita.

Ex. 1. Sint z & v quicunque integri numeri 1, 2, 3, 4, 5, &c. & $it data quantitas A, in cujus formulâ continentur omnes termini $e- riei, cujus $umma requiritur, {1 / 2 z + v} × {1 / 2 z + v + 1} × {1 / 2 z + v + 2}, i. e. $it $eries data + {1 / 3 · 4 · 5} + {1 / 4 · 5 · 6} + {1 / 5 · 6 · 7} + &c. ubi z = 1 & v = 1, 2, 3, &c. + {1 / 5 · 6 · 7} + {1 / 6 · 7 · 8} + {1 / 8 · 9 · 10} + &c. ubi z = 2 & v = 1, 2, 3, &c. + {1 / 7 · 8 · 9} + {1 / 8 · 9 · 10} + {1 / 9 · 10 · 11} + &c. ubi z = 3 & v = 1, 2, 3, &c. &c. &c. &c. ubi z & v cre$cunt per unitatem.

A$$umo z tanquam invariabilem quantitatem, pro quâ $cribatur α; & $eriei, cujus termini exprimuntur per quantitatem re$ultantem {1 / 2 α + v} × {1 / 2 α + v + 1} × {1 / 2 α + v + 2} inveniatur $umma, quæ erit [0644]DE SUMMATIONE (B) {1 / 2 α + v} × {1 / 2(2α + v + 1)}; in hâc $ummâ pro α $cribatur ejus prior valor z, & re$ultat $umma {1 / 2 z + v} × {1 / 2 (2 z + v + 1)}: nunc a$$umo v invariabilem, pro quâ $cribatur β z vero variabilem, & evadet $umma (B) {1 / 2 z + β} × {1 / 2 (2 z + β + 1)}; inveniatur $umma $eriei, cujus termini exprimuntur per quantitatem {1 / 2 (2 z + β) (2 z + β + 1)}, quæ erit (C) {1 / 2 (2 z + β)}, pro β in hâc $ummâ (C) $cribatur iterum v, & re$ultat $umma quæ$ita {1 / 2 (2 z + v)}.

2. Ex hinc facile con$tant $ummæ quæ$itæ inter quo$cunque valores, vel negativos vel affirmativos quantitatum x, y, z, v, &c. contentæ.

A$$umantur omnes quantitates (y, v, z, &c.) præter unam (x) in prædictâ quantitate (P) tanquam invariabiles; & exinde e conce$sâ methodo inveniatur $eriei re$ultantis $umma, quæ $it B; in hâc $um- mâ pro x $cribantur α & a; ubi a & α $int quantitates, inter quas continentur valores quantitatis x; & $int quantitates re$ultantes A & A′; & $umma $eriei inter valores a & α quantitatis x erit A′ - A = Q: deinde in quantitate Q ita a$$umantur omnes quantitates a, α, v, z, &c. præter unam y tanquam invariabiles, & exinde e conce$sâ methodo inveniatur $umma $eriei, cujus termini $unt Q, in quâ va- lores quantitatis y inter b & β ponuntur; & $ic de reliquis; ultima $umma $ic inventa erit quæ$ita.

Ex. Invenire $ummam $eriei, cujus terminus e$t {1 / 2 z + v} × {1 / 2 z + v + 1} × {1 / 2 z + v + 2}; in quo incrementum quantitatis v e$t 1 & quanti- tatis z e$t {1 / 2}; & valores termini (v) inter 1 & 4 ponuntur; valores autem termini (z) inter 1 & 3 ponuntur.

[0645]SERIERUM, &c.

Primo $uppono z e$$e invariabilem quantitatem, & invenio $um- mam $eriei exinde re$ultantis, quæ erit {1 / 2 z + v} × {1 / 2 (2 z + v + 1)} (B); at quoniam valores quantitatis (z) $upponuntur inter 1 & 4 con- $i$tere; per prob. in hâc quantitate (B) pro v $cribantur re$pective 1 & 4 + 1 = 5, unde re$ultat $umma {1 / 2 z + 1} × {1 / 2 (2 z + 2)} & {1 / (2 z + 5)} × {1 / 2 (2 z + 6)}, & $umma inter valores prædictos contenta erit {1 / 2 z + 1} × {1 / 2 (2 z + 2)} - {1 / 2 z + 5} × {1 / 2 × (2 z + 6)}: 2^do. $umma $eriei, cujus terminus e$t {1 / 2 z + 1} × {1 / 2 (2 z + 2)} - {1 / 2 z + 5} × {1 / 2 (2 z + 6)}, erit {{1 / 2} / 2 z + 1} - {{1 / 2} / 2 z + 5}; at, quoniam valores quantitatis z inter 1 & 3 continentur, in hâc $ummâ pro z $cribantur re$pective 1 & 3 + z, = 3 + {1 / 2} = {7 / 2}, & re$ultant re$pective {{1 / 2} / 2 + 1} - {{1 / 2} / 2 + 5} = {2 / 21} & {{1 / 2} / 7 + 1} - {{1 / 2} / 7 + 5} = {1 / 48}; unde $umma quæ$ita erit {2 / 21} - {1 / 48} = {25 / 336}.

Cor. In his ca$ibus haud refert, an prius a$$umatur (z) tanquam invariabilis quantitas, an v; & $ic de reliquis variabilibus quantita- tibus; nam ex $ingulis hi$ce diver$is modis eadem re$ultabit $umma quæ$ita.

PROB. XXXII. Invenire generales terminos $erierum huju$ce generis, quarum $ummæ innote$cunt.

A$$umatur quæcunque functio quantitatum (x, y, z, v, &c.) pro $ummâ quæ$itâ deinde (datis incrementis quantitatum x, y, z, v, &c.) inveniatur generalis terminus $eriei, cujus $umma e$t data functio, ex hypothe$i quod (x) $olummodo e$t variabilis; & $it quan- titas re$ultans P: deinde a$$umatur (P) pro $ummâ, & ex hypothe$i [0646]DE SUMMATIONE quod y $olummodo $it variabilis inveniatur generalis terminus $eriei, cujus $umma e$t P; & $ic deinceps, de $ingulis reliquis incognitis quantitatibus: terminus ultimo re$ultans erit quæ$itus.

Ex. Sit {1 / 2z + v} functio quantitatum z & v pro $ummâ a$$umptâ: z, & v, incrementa quantitatum z & v: a$$umatur (v) tanquam inva- riabilis quantitas, & incrementum datæ functionis erit P = {1 / 2z + v} - {1 / 2 z + v + 2z} = {2 z / (2 z + v) (2 z + v + 2 z)}; deinde in hoc primo incremento a$$umantur z & z tanquam invariabiles quantitates, & in- veniatur incrementum quantitatis P, quod erit {2 z / (2 z + v) (2 z + v + 2 z)} - {2 z/(2 z + v + v) (2 z + 2 z + v + v)} = Q; ergo Q erit quantitas, vel terminus, cujus $umma pote$t e$$e data functio.

Cor. Quamvis unica $olummodo datur formula termini, quæ cor- re$pondet datæ $ummæ; attamen dantur infinitæ diver$æ $ummæ, quæ corre$pondent eidem termino: e. g. $it π functio (n) quantita- tum (x, y, z, v, w, &c.), cujus terminus $it R; tum erit generaliter π + φ (y, z, v, w, &c.) + φ′ (x, z, v, w, &c.) + φ″ (x, y, v, w, &c.) + φ′″ (x, y, z, w, &c.) + &c.; ubi φ (y, z, v, w, &c.) denotat functio- nem quamcunque omnium quantitatum y, z, v, w, &c. præter unam x; & φ′ (x, z, v, w, &c.) denotat quamcunque functionem quantita- tum (x, z, v, w, &c.) præter unam y; & $ic deinceps; $umma, cujus terminus e$t R.

Cor. 2. Sit π functio quantitatum (x, y, z, v, w, &c.), & $int α, β, γ, δ, ε, &c. re$pective incrementa quantitatum x, y, z, v, w, &c.: in functione π pro x, y, z, v, w, &c. $cribantur re$pective x + α, y + β, z + γ, v + δ, w + ε, &c., & $int quantitates re$ultantes re$pective A, B, C, D, E, &c.; $imiliter in prædicta functione pro x & y; x & z, y & z, z & v, &c. $cribantur re$pective x + α & y + β, x + α & z + γ, y + β & z + γ, x + α & v + δ, &c. & $int quantitates re$ultantes re$pe- ctive A B, A C, B C, A D, &c.; deinde in π pro x & y & z, x & y & v, [0647]SERIERUM, &c. x & z & v, y & z & v, x & y & w, &c. $cribantur re$pective x + α & y + β & z + γ, x + α & y + β & v + δ, x + α & z + γ & v + δ, y + β & z + γ & v + δ, &c. & $int quantitates re$ultantes A B C, A B D, A C D, B C D, &c.: & $ic pro x & y & z & v, &c. $cribantur in functione π re$pective x + α & y + β & z + γ & v + δ, &c., & re$ultet quantitas A B C D, &c.; & $ic deinceps; tum erit terminus (cujus $umma e$t π) = π - (A + B + C + D + &c.) + (A B + A C + B C + A D + B D + C D + &c.) - (A B C + A B D + A C D + A B E + &c.) + (A B C D + A B C E + A B D E + A C D E + B C D E + &c.) - (A B C D E + &c.) + (A B C D E F + &c.) - &c.

PROB. XXXIII.

Ii$dem conce$$is; invenire $ummam $eriei, cujus termini exprimuntur per datam quantitatem, in quâ continentur variabiles quantitates (x, y, z, v, &c.) ubi literæ x, y, z, &c. diver$os denotent numeros vel quantitates, i. e. in dato termino $it x nec idem uumerus ac y vel z, &c. nec idem numerus $it y ac z, &c. &c.

Dicatur $umma per prædictam methodum inventa A.

Pro duabus literis x & y, quæ nece$$ario diver$æ $upponuntur, $cri- batur eadem litera α, & inveniatur per prædictam methodum $umma (a) $eriei, cujus termini exprimuntur per quantitatem re$ultantem; $cribatur etiam in datâ quantitate pro x & z (quæ $upponuntur $em- per diver$æ) eadem litera β; & $ic pro y & z $cribatur eadem litera γ, &c. & per methodum præcedentem inveniantur $ummæ (b, c; &c.) $erierum, quarum termini exprimuntur per re$ultantes quantitates: aggregatum $ummarum (a + b + c + &c.) e $ingulis huju$modi $e- riebus dicatur B.

Pro tribus literis x, y & z quæ $upponuntur inter $e diver$æ, in datâ quantitate $cribatur eadem litera ε, & per præcedentem metho- dum inveniatur $umma (e) $eriei, cujus termini exprimuntur per $eriem re$ultantem; & $i pro $ingulis tribus literis diver$os numeros e$$e $uppo$itis $cribantur in datâ quantitate eædem literæ re$pective, & per prædictam methodum inveniantur $ummæ (f, g, &c.) $erierum, [0648]DE SUMMATIONE quarum termini exprimuntur per re$ultantes quantitates re$pective; & aggregatum (e + f + g + &c.) e $ingulis $ummis dicatur C.

Pro quatuor literis (x, y, z, v), quæ $upponuntur e$$e diver$æ, $cri- batur in datâ quantitate eadem litera, & inveniatur $umma (l) $eriei, cujus termini exprimuntur per quantitatem re$ultantem; & $ic $cri- bantur pro $ingulis quatuor literis diver$os numeros e$$e $uppo$itis eædem literæ, & inveniantur $ummæ $erierum, quarum termini ex- primuntur per literas re$ultantes; & aggregatum ex his $ummis dicatur D.

Pro literis x & y, quæ diver$æ $upponuntur, $cribatur in datâ quantitate eadem litera; etiamque pro z & v, quæ diver$æ $unt, $cri- batur eadem litera, $ed e priori diver$a; & inveniatur $umma $eriei, cujus termini exprimuntur per quantitatem re$ultantem; & $ic inve- niantur $ummæ $erierum, quarum termini exprimuntur per quanti- tates ex con$imilibus $ub$titutionibus deductas: aggregatum ex his $ummis dicatur B B; &c.

Summa quæ$ita erit A - 1 · B + 1 · 2C - 1 · 2 · 3 D + &c. + 1 · 1 B B - &c.

Hujus $eriei lex e prob. 3. medit. algebraic. colligi pote$t.

Ex. 1. Sit quantitas, quæ denotat re$pectivos terminos datæ $eriei, cujus $umma requiritur, {1 / x^4 + y^3}, ubi x & y integros quo$cunque nu- meros 1, 2, 3, &c. a $e invicem diver$os re$pective denotant.

A$$umatur x tanquam invariabilis quantitas (a), & inveniatur $umma $eriei, cujus termini erunt {1 / a^4 + y^3}; deinde in $ummâ inventâ pro a $cribatur x, & a$$umatur y tanquam invariabilis quantitas, & inveniatur $umma $eriei re$ultantis, quæ dicatur A.

Deinde pro x & y in datâ quantitate {1 / x^4 + y^3} $cribatur eadem litera x, & inveniatur $umma $eriei, cujus termini exprimuntur per quan- titatem re$ultantem {1 / x^4 + x^3}, quæ dicatur B; tum $umma quæ$ita erit A - B.

[0649]SERIERUM, &c.

Si vero in datâ quantitate contineantur quæcunque irrationales quantitates, eadem erit methodus problema re$olvendi ac præcedens.

Cor. 1. Si vero inter datas quantitates contineantur valores quan- titatum variabilium (x, y, z, &c.); tum $umma acqui$ita corrigi pote$t e $ub$titutione prædictarum quantitatum pro $uis valoribus; &c.

Cor. 2. Haud nece$$ario $emper denotant integros numeros literæ (x, y, z, v, &c.) $ed quantitates cuju$cunque generis, & ex ii$dem principiis con$tabit problematis re$olutio.

Cor. 3. Si quantitas A inveniri po$$it, tum $emper inveniri po$$unt quantitates B, C, D, BB, E, BC, &c. i. e. datâ quantitate, quæ ex- primit $ingulos $eriei terminos duas vel plures variabiles quantitates (x, y, z, &c.) involventis; $i modo $umma huju$ce $eriei inveniri po$- $it; tum $umma omnis $eriei, cujus termini exprimuntur per quanti- tatem re$ultantem e $ub$titutione invariabilium quantitatum pro qui- bu$libet literis x, y, z, &c. vel x pro y, &c. $emper inveniri pote$t.

Cor. 4. A$$umatur quæcunque quantitas, quæ duas vel plures va- riabiles quantitates (x, y, z, v, &c.) involvat pro $ummâ $eriei; & e differentiâ inter hanc quantitatem a$$umptam & ejus $ucce$$ivam $ummam, & $ic deinceps; deduci pote$t quantitas, quæ exprimit $in- gulos prædictæ $eriei terminos.

Cor. 5. Si vero maximæ dimen$iones variabilium quantitatum (x, y, z, &c.) in denominatore haud $uperent maximas dimen$iones prædictarum quantitatum in numeratore contentas per quantitatem majorem quam numerum diver$arum variabilium quantitatum (x, y, z, v, &c.) in datâ quantitate contentarum; tum $eries in infinitum progrediens nece$$ario evadet in$inita.

Summa vero huju$modi $eriei, $i haud in finitis terminis, $emper per infinitas $eries exprimi pote$t; per hoc problema enim reduci pote$t ad re$olutionem $erierum, in quibus una $olummodo conti- netur variabilis quantitas; vel ex a$$umptâ $erie formulæ e formulâ dati termini facile acquirendæ, cujus terminus deducatur, & ex æqua- tis corre$pondentibus datæ & re$ultantis $eriei terminis erui pote$t prædicta re$olutio.

Convergentiæ harum $erierum ex ii$dem principiis ac convergen- [0650]DE SUMMATIONE tiæ $erierum unam variabilem quantitatem $olummodo habentium dijudicari po$$unt.

THEOR. XXVI.

Series (n) ordinis dividi po$$unt in infinitas $eries (n - 1) ordinis; ita quidem $æpe ut $ummæ ex $ingulis prædictis infinitis $eriebus in- note$cant; & hæ $ummæ præbeant convergentem $eriem.

Ex. Sit $eries $ecundi ordinis, cum terminus generalis e$t {1 / 2z + 1 · 2v + 1}, ubi literæ z & v quo$cunque integros numeros denotant; $it vero ter- minus negativus, cum {v - z / 4} $it integer numerus, $in aliter affirmati- vus: dividatur hæc $eries $ecundi generis in infinitam $eriem $erierum primi generis, quarum $ummæ detegi po$$unt, & exorientur novæ in- finitæ $eries: ex. g. dividatur data $eries in alias {1 / 1 · 3} + {1 / 3 · 5} + {1 / 5 · 7} + &c. (ubi differentia inter v & z $emper e$t 2), {1 / 1 · 5} + {1 / 3 · 7} + {1 / 5 · 9} + &c. (ubi prædicta differentia e$t 4), {1 / 1 · 7} + {1 / 3 · 9} + {1 / 5 · 11} + &c. &c. tum innote$cunt $ummæ harum $erierum re$ultantium, viz. {1 / 2} × 1, {1 / 4} (1 + {1 / 3}) = {1 / 3}, {1 / 6} (1 + {1 / 3} + {1 / 5}) = {23 / 90}, &c. tum erit $umma datæ $eriei quæ$ita = {1 / 1 · 2} - {1 / 1 · 3} + {23 / 2 · 3 × 1 · 3 · 5} - {176 / 2 · 1 · 1 · 3 · 5 · 7} + {1689 / 2 · 5 · 1 · 3 · 5 · 7 · 9} - &c.

Et $ic de pluribus huju$cemodi $eriebus ad novam $eriem reducendis.

Si vero contineantur plures (n) variabiles quantitates in dato ter- mino; tum reducenda e$t data $eries ad infinitas alias, quæ continent n - 1 variabiles quantitates, & quarum $ummæ innote$cunt; & ex- inde $equuntur novæ infinitæ $eries, &c.

[0651]SERIERUM, &c. PROB. XXXIV. Datâ $erie ex irrationalibus terminis con$tante, invenire ejus $ummam.

Primo dentur $olummodo n irrationales quantitates; &, $i modo po$$ibile $it, ita dividatur $eries in plures, ut unica, &c. $olummodo contineatur irrationalis quantitas in $ingulis, & per methodos præce- dentes inveniatur $umma e $ingulis hi$ce $eriebus.

2^do. Si modo infinitæ dentur irrationales quantitates in datâ $erie, nonnunquam ita transformari po$$unt irrationales quantitates e nu- meratore in denominatorem; & vice versâ, e denominatore in nu- meratorem per medit. algebraic. &c. ut evane$cant e $erie omnes irra- tionales quantitates.

Ex. 1. Sit data $eries {1 / 2 . 3 . (√ ({1 / 2}) + √ ({1 / 3}))} + {1 / 3 . 4 . (√ ({1 / 3}) + √ ({1 / 4}))} + {1 / 4 . 5 . (√ ({1 / 4}) + √ ({1 / 5}))} + {1 / 5 . 6 . (√ ({1 / 5}) + √ ({1 / 6}))} + &c. transformen- tur irrationales quantitates e denominatore in numeratorem; & quoniam (√ ({1 / 2}) + √ ({1 / 3})) × (√ ({1 / 2}) - √ ({1 / 3})) = {1 / 2} - {1 / 3} = {1 / 6}; erit {1 / 2 . 3 . (√ ({1 / 2}) + √ ({1 / 3}))} = √ ({1 / 2}) - √ ({1 / 3}), & $ic {1 / 3 . 4 . (√ ({1 / 3}) + √ ({1 / 4}))} = √ ({1 / 3}) - √ ({1 / 4}), & $ic {1 / 4 . 5 . (√ ({1 / 4}) + √ ({1 / 5}))} = √ ({1 / 4}) - √ ({1 / 5}); unde $eries erit in genere √ ({1 / 2}) - √ ({1 / 3}) + √ ({1 / 3}) - √ ({1 / 4}) + √ ({1 / 4}) - &c. in infinitum; & $um- ma erit √ ({1 / 2}).

Cor. 1. Series con$tantes ex irrationalibus terminis, quarum $um- mæ dantur, facile deduci po$$unt ex principiis prius traditis, quæ deducunt $eries $ummabiles, quæ haud involvunt irrationales quan- titates.

Ex. 1. A$$umatur $eries, haud re$ert utrum $ummabilis $it, necne; modo ejus termini ad nihil continuo vergant, & denique propiores ad id accedant, quam ulla quævis differentia; & $ubtrahatur ip$amet a $eipsâ demptis r primis terminis; deinde transformentur termini [0652]DE SUMMATIONE re$ultantes e numeratore in denominatorem per medit. algeb. vel in alios diver$æ formulæ mutentur, & invenitur $eries quæ$ita. E. g. Sit $eries a$$umpta 1 + ({1 / 2})^{1 / n} + ({1 / 3})^{1 / n} + ({1 / 4})^{1 / n} + ({1 / 5})^{1 / n} + &c. $ub- trahatur ip$amet a $e ipsâ demptis r primis terminis, i. e. ({1 / r})^{1 / n} + ({1 / r + 1})^{1 / n} + &c. & re$iduum erit 1 - ({1 / r})^{1 / n} + ({1 / 2})^{1 / n} - ({1 / r + 1})^{1 / n} + ({1 / 3})^{1 / n} - ({1 / r + 2})^{1 / n} + &c. = 1 + ({1 / 2})^{1 / n} + ({1 / 3})^{1 / n} ... ({1 / r - 1})^{1 / n}: transformentur hæ irrationales quantitates e numeratore in denomi- natorem, & re$ultabunt 1 - ({1 / r}^{1 / n} = {r - 1 / r × (1 + ({1 / r})^{1 / n} + ({1 / r})^{2 / n} ... ({1 / r})^{n-1 / n})} & ({1 / 2})^{1 / n} - ({1 / r + 1})^{1 / n} = {r - 1 / 2 × (r + 1) × ({1 / 2}^{n-1 / n} + {1 / 2}^{n-2 / n} ({1 / r + 1})^{1 / n} + {1 / 2}^{n-3 / n} ({1 / r + 1})^{2 / n} + .. ({1 / r + 1})^{n-1 / n)}}, & $ic deinceps; & erit $umma 1 + ({1 / 2})^{1 / n} + ({1 / 3})^{1 / n} + ({1 / 4})^{1 / n} ... ({1 / r - 1})^{1 / n} = {r - 1 / 1 × r × (1 + ({1 / r})^{1 / n} + ({1 / r})^{2 / n} + &c. ({1 / r})^{n-1 / n})} + {r - 1 / 2 × (r + 1) × ({1 / 2}^{n-1 / n} + &c.)} + &c.

Ex. 2. Sit $eries a$$umpta √ ({1 / 1 . 2}) - √ ({1 / 2 . 3}) x + √ ({1 / 3 . 4}) x^2 - &c. ducatur hæc $eries in quamcunque quantitatem. E. g. 1 + x & re$ultat quantitas √ ({1 / 1 . 2}) + (√ ({1 / 1 . 2}) - √ ({1 / 2 . 3}) = ({2 / 1 . 2 . 3 . (√ ({1 / 1 . 2}) + √ ({1 / 2 . 3}))}) x - (√ ({1 / 2 . 3}) - [0653]SERIERUM, &c. √ ({1 / 3 . 4}) = {2 / 2 . 3 . 4 . (√ ({1 / 2 . 3}) + √ ({1 / 3 . 4}))} x^2 + &c.

3. Ducantur $eries huju$modi in qua$cunque alias quantitates, & facile inveniri po$$unt $eries irrationales $ummabiles omnino per eun- dem modum ac $eries rationales: & $ic de reliquis methodis inve- niendi rationales $ummabiles $eries applicandis ad irrationales $eries $ummabiles inveniendas; etiamque irrationales $eries ope aliarum $erierum deducendas.

Ex. 3. Sit $eries a$$umpta {1 / √ (2)} + {1 / √ (3)} x + {1 / √ (4)} x^2 + &c. du- catur hæc $eries in quantitatem 1 - 2x, & re$ultat {1 / √ (2)} + {1 / √ (3)} x + {1 / √ (4)} x^2 + &c. - {2 / √ (2)} x - {2 / √ (3)} x^2 - {2 / √ (4)} x^3 - &c. = {1 / √ (2)} - {2√ (3) - √ (2) / √ (2 . 3)} x - {2√ (4) - √ (3) / √ (3 . 4)} x^2 - {2√ (5) - √ (4) / √ (4 . 5)} x^3 - &c. Fingatur 2 x - 1 = 0, & re$ultat x = {1 / 2} & $umma $eriei re$ultantis {2√ (3) - √ (2) / √ (6}) × {1 / 2} + {2√ (4) - √ (3) / √ (12)} × {1 / 4} + &c. = {1 / √ (2)}.

Omnia, quæ prius de rationalibus $eriebus quoad earum conver- gentiam, &c. tradita $unt, etiam ad has irrationales applicari po$$unt.

THEOR. XXVII.

In $eriebus interpolandis, juxta ac in iis $ummandis, nece$$e e$t ut inveniantur limites, inter quos con$i$tant termini quæ$iti, aliter de iis nihil affirmandum e$t: e quibu$cunque finitis datis ordinatis ad qua$cunque datas di$tantias a $e invicem po$itis minime ullas alias interponere po$$umus, ni detur lex, quam ob$ervant termini in genere, haud enim $unt data, e quibus deduci po$$unt quæ$ita: $i vero detur lex, tum exinde deduci pote$t $ub$titutio, ex quâ interpolari po$$unt.

[0654]DE SUMMATIONE

Facile con$tat, quod haud interpolari po$$unt $eries per methodum differentiarum, ni ultimæ differentiæ eju$dem ordinis $int prope in ratione æqualitatis.

THEOR. XXVIII.

1. Sit curva parabolica Q a b β c γ, &c. invenire ordinatam P M (y) ad ab$ci$$am A P; a$$umatur alia parabolica curva R π b ρ c σ &c. quæ habet ordinatas (v) præcedenti curvæ communes b l, c m, d n, e o, &c. quarum una ab$ci$$a A n $it z; pro radicibus A α, A β, A γ, A δ, &c. prioris curvæ $cribantur α, β, γ, δ, &c. re$pective; & pro radicibus po$terioris curvæ, quæ dicatur approximans curva, $ub$tituantur π, ρ, σ, τ, &c. & pro A P, x; tum erit approximatio inventa ex hâc methodo interpolandi, i. e. corre$pondens ordinata L P (v) in curvâ a$$umptâ ad ordinatam P M (y) quæ$itam::{(x - π) × (x - ρ) × (x - σ) × &c. / (z - π) × (z - ρ) × (z - σ) × &c.}: {(x - α) × (x - β) × (x - γ) × &c. / (z - α) × (z - β) × (z - γ) × &c.} prope, ob y = H × (x - α) . (x - β) . (x - γ) . &c., & v = K × (x - π) . (x - ρ) . (x - σ) . &c.

2. Si vero curva data habeat crura ad finitas ab$ci$$as (a, b, c, &c.) in infinitum pergentia; tum radices x - a, x - b, x - c, &c. z - a, z - b, z - c, &c. quæ per prædictas ab$ci$$as denotantur, in deno- minatore continentur; & $ic de ab$ci$$is ad a$ymptotos in curvâ a$- $umptâ; & exinde $equitur ratio, quam habet ordinata in curvâ a$- $umptâ ad ordinatam quæ$itam.

3. Si vero impo$$ibiles evadant quædam radices prædictæ, tum ex quibu$que duabus corre$pondentibus impo$$ibilibus radicibus con$e- quetur quadratica quantitas po$$ibilis, quæ & in curvâ datâ & a$$umptâ pro multiplicatione duarum radicum in $e$e a$$umenda e$t.

Cor. . Hinc approximatio plerumque maxime pendet e radicibus quæ finitimæ $unt ordinatæ quæ$itæ; & in hâc æque ac in omnibus aliis curvis pendet e rationibus, quas habent differentiæ inter ab$ci$- $am A P & eas, quæ habent communes ordinatas; ad di$tantias earum a punctis, in quibus ordinatæ vel po$$ibiles vel impo$$ibiles evadant nihil vel infinite magnæ.

[0655]SERIERUM, &c.

Eadem principia etiam applicari po$$unt ad inveniendam conver- gentiam $erierum huju$ce generis a x^s + b x^s+t + c x^s+2t + &c. ubi per s & t quæcunque fractiones denotentur, vel irrationales cuju$cunque generis quantitates.

THEOR. XXIX.

Omnis $eries e$t interpolabilis, cujus termini $unt interpolabiles. Interpolentur enim diver$i termini & interpolatur data $eries.

THEOR. XXX.

Erit {r . r + 1 . r + 2 . r + 3 ... q / p . p + 1 . p + 2 . p + 3 ... p + q - r} = {r . r + 1 . r + 2 ... p - 1 / q + 1 . q + 2 ... p + q - r} reducantur enim hæ fractiones ad communem denominatorem, & con$tat theor.

Ex. 1. Sit $eries {2 × 4 × 6 × 8 ... &c / 1 × 3 × 5 × 7 ... &c.}; $ed quoniam factorum incre- mentum e$t binarius, divide numeratores & denominatores per bina- rium, & evadet $eries {1 × 2 × 3 × 4 × &c. / {1 / 2} × 1{1 / 2} × 2{1 / 2} × &c.} = {r × (r + 1) × (r + 2) × &c. / p × (p + 1) × (p + 2) × &c.} & con$equenter erunt r = 1 & p = {1 / 2}; nunc $it m di$tantia inter pri- mum $eriei terminum & quemvis alium q, tum erit q = m + 1, & $eries {r . r + 1 . r + 2 .. p - 1 / q + 1 ... p + q - r} evadet = {1 . 2 . 3 .. p - 1 / m + 2 . m + 3 . . p + m}; ergo terminus $eriei ({1 × 2 × 3 .. m + 1 / {1 / 2} × 1{1 / 2} × 2{1 / 2} ... m + {1 / 2}}), cujus di$tantia a primo $it m, æquat terminum $eriei ({1 × 2 × 3 ... p - 1 / m + 2 . m + 3 ... m + {1 / 2}}), cujus di- $tantia a primo $it p - 2 = {1 / 2} - 2 = - 1{1 / 2}.

Cor. . Hinc $eries huju$ce generis $emper interpolari pote$t, viz. {r . r + 1 . r + 2 .. p - 1 / q + 1 . q + 2 . . p + q - r}, ubi q $uperat r per integrum numerum; requiratur enim terminus, cujus di$tantia a primo $it m: a$$umatur [0656]DE SUMMATIONE p = r + m + 1, & erit terminus quæ$itus {r · r + 1 · r + 2 .. q / p · p + 1 · p + 2. · p + q - r}.

THEOR. XXXI.

1. In interpolandis quantitatibus, quæ $unt functiones numeri z, quarum continuo augetur $actorum numerus, ubi z denotat $ucce$$ive numeros 1, 2, 3, 4, &c. $æpe ex interpolatione indicum con$tabit formula $eriei, quæ terminum quæ$itum exprimet, ex quâ per $ub- $titutionem acquiri pote$t $eries ip$a, i. e. terminus quæ$itus.

Ex. 1. Sint quantitates huju$ce generis 1, 1.2, 1.2.3, 1.2.1.4, & in genere 1. 2. 3... z, vel quod idem e$t z. z - 1. z - 2 ... 1, z + 1. z. z - 1. z - 2 ... 1, invenire terminum intermedium in- ter (T′) z. z - 1. z - 2.. 1 & (T′) z + 1. z. z - 1. z - 2.. 1: dimen$iones quantitatis z in his duobus terminis datis contentæ per unitatem differunt, ergo termini intermedii dimen$iones different a dimen$ionibus quantitatis z in duobus prædictis terminis per {1 / 2}: a$$u- matur igitur $eries T (a z^{1 / 2} + b z^-{1 / 2} + c z^-1{1 / 2} + &c.) pro termino in- termedio quæ$ito, in $erie (S) a z^{1 / 2} + b z^-{1 / 2} + c z^-1{1 / 2} + &c. pro z $cribatur z + {1 / 2}, & re$ultat (S′) a z^{1 / 2} + (b + {1 / 4}a) z^-{1 / 2} + (c - {1 / 4} b - {1 / 8} × {1 / 4}a) z^-1{1 / 2} + &c. ducantur hæ duæ $eries S & S′ in $e$e; & productum fiat æquale factori z + 1; & ex æquatis corre$pondentibus terminis $equitur $eries (S) z{1 / 2} + {3 / 8}z^-{1 / 2} - {7 / 128}z^-{3 / 2} + {9 / 1024}z^-{5 / 2} - &c. & con$e- quenter terminus quæ$itus erit T × S.

2. Ex ii$dem principiis ulterius promotis inveniri pote$t terminus ad quamcunque di$tantiam a dato termino: $ed major erit calculi labor.

3. Sint quantitates x, x. x + n, x. x + n. x + n^2, x. x + n. x + n^2 . x + n^3, &c. ubi n multo minor e$t quam x & unitas, tum $e- ries e multiplicatione deducta pro generali termino converget. E. g. Series erit x^z+1 + {n - n^z+1 / 1 - n} x^z + {1 / 2}(({n - n^z+1 / 1 - n})^2 - {n^2 - n^2z+2 / 1 - n^2}) x^z-1 + &c.

[0657]SERIERUM, &c.

In hâc $erie $cribatur pro z ejus valor a$$ignatus, & con$tat termi- nus, cujus di$tantia e primo $it z.

Lex huju$ce $eriei con$tat e no$tris medit. algebr.

4. Datâ quâcunque $erie, & æquatione relationem inter terminos datæ & novæ $eriei exprimente, ita ut e datæ $eriei terminis con$tent novæ æquationis corre$pondentes termini, & $i termini datæ $eriei, tum etiam termini novæ $eriei, interpolari po$$unt.

Indices interpolari po$$unt per eandem methodum ac aliæ alge- braicæ quantitates.

THEOR. XXXII.

1. Si $ucce$$ivi termini continuo exoriantur e majori numero fa- ctorum, qui $unt functiones quantitatis z, in $e$e ductorum; tum inveniantur logarithmi terminorum $ucce$$ivorum, & deduci pote$t e differentiis logarithmorum, &c. $eries exprimens logarithmum $um- mæ, quæ for$an progreditur $ecundum vulgares leges. Si vero nu- merus factorum in $erie deductâ de$ignetur etiam per functionem quantitatis z con$tantem continuo e majori numero factorum, tum inveniantur logarithmi prædictorum logarithmorum, & $ic deinceps; & tandem re$ultabit $eries exprimens logarithmum logarithmi, &c. cujus termini prope etiam per vulgares leges exprimi po$$unt, ni nu- merus factorum continuo exprimatur per functionem quantitatis z; quæ continuo con$tat e majori numero factorum. E. g. Sit $eries 1, 1 × 2 × 3, 1 × 2 × 3 × 4 × 5 × 6, &c. ubi n numerus factorum conti- nuo $it = z. {z + 1 / 2}; inveniantur logarithmi e $ingulis terminis, & erunt eorum $ucce$$ivæ differentiæ l 2 + l 3, l 4 + l 5 + l 6, l 7 + l 8 + l 9 + l 10, &c. & deinde inveniantur $ecundæ differen- tiæ, &c.

Hæ vero differentiæ exprimi po$$unt per notas methodos, ergo $e- ries ip$a.

2. Sit $eries a + b + c + d + e + &c. = S, tum continuo inve- niantur l a; l (a + b) - l a; l (a + b + c) - l (a + b), l (a + b + [0658]DE SUMMATIONE c + d) - l (a + b + c), &c. & tandem invenietur $eries, cujus $um- ma e$t l S.

3. Hæ transformationes $æpe u$ui in$ervire po$$unt in interpola- tione $erierum huju$modi, quæ aliter interpolationem vix aut ne vix recipiant: facile enim e$t interpolare $eriem re$ultantem, eâ vero in- terpolatâ, inve$tigari pote$t interpolatio $eriei, ex quâ deducta fuit.

4. Si vero $eries exprimatur per terminos, quorum indices per prædictas functiones progrediuntur; tum e præcedente methodo in- veniantur logarithmi $eriei, & $æpe deduci pote$t logarithmus $eriei $ummæ in terminis $ecundum vulgares leges progredientibus.

Cor. · Fluxiones, vel incrementa, &c. quantitatum 1. 2. 3... z vel 1. 2. 3.. z^z, vel infinitarum aliarum, facile deduci po$$unt e prin- cipiis prius traditis pro interpolationibus con$imilium quantitatum.

Numerus factorum vel dimen$iones quantitatum, quæ ex hâc me- thodo interpolantur, deduci po$$unt.

PROB. XXXV.

Invenire fluentes & exinde $eries per datam fluentem interpolabiles.

A$$umantur quæcunque quantitates in datâ fluente tanquam con- $tantes; vel eædem in datâ & quæ$itâ quantitate variabiles, quæcunque vero aliæ variabiles, i. e. diver$æ relationem a$$ignabilem inter $e ha- bentes; reducantur quantitates re$ultantes ad infinitas $eries, & re- $ultant $eries, quæ per datam fluentem interpolabiles erunt.

Ex. 1. Sit data fluens $. (a^2 - x^2){1 / 2} x^., a$$umatur index {1 / 2} variabilis, i. e. pro indice {1 / 2} $cribantur re$pective 0, 1, 2, 3, 4, 5, &c. denique l; quæ $eries per {1 / 2} interpolabilis e$t, & re$ultant $. (a^2 - x^2)^0 x^., $. (a^2 - x^2)^1 x^., $. (a^2 - x^2)^2 x^., $. (a^2 - x^2)^3 x^., &c. & con$equenter $eries in- termedia inter has fluentes inter eo$dem valores quantitatis x con- tentas, erit $. (a^2 - x^2){1 / 2} x^., quæ per aream circuli exprimi pote$t, unde intermedius terminus inter primum & $ecundum $eriei {1 / 1}, {1 / 1} - {1 / 3}, {1 / 1} - {2 / 3} + {1 / 5}, {1 / 1} - {3 / 3} + {3 / 5} - {1 / 7}, {1 / 1} - {4 / 3} + {6 / 5} - {4 / 7} + {1 / 9}, &c. erit {1 / 8} peripheriæ circuli, cujus radius e$t 1.

2. A$$umatur index 2 variabilis, & erit prædicta fluens intermedia inter fluentes fluxionum (a^2 - x^0){1 / 2} x^., (a^2 - x^4){1 / 2} x^., (a^2 - x^8){1 / 2} x^., &c.

[0659]SERIERUM, &c.

3. Et $ic a$$umi po$$unt indices 2 & {1 / 2} invariabiles, & quantitas a variabilis, ita vero ut $imul $int interpolabiles omnes prædictæ varia- biles per datam fluentem. Inveniantur per infinitas $eries fluentes prædictarum fluxionum, & re$ultant $eries, quæ per datam fluentem interpolabiles erunt.

Ex. 2. Sit $. x^. √ (x^2 + 1) data fluens, & erunt fluentes fluxionum x^. × (x^2 + 1)^0, x^. (x^2 + 1)^1, x^. (x^2 + 2)^2, &c, per eam interpolabiles.

Cor.. Fluentes fluxionum x^. (1 ± x^2){1 / 3}, x^. × (1 ± x^2){1 / 4}, x^. (1 ± x^2){2 / 3}, x^. × (1 ± x^2){3 / 4} (& con$equenter arcus elliptici vel hyperbolici), & gene- raliter x^. (1 ± x^2)^{n / m} & x^. (1 ± x^2)^-{n / m} deduci po$$unt ex interpolatione $erierum, quæ oriuntur e fluentibus fluxionum (1 ± x^2)^0 x^., (1 ± x^2)^1 x^., (1 ± x^2)^2 x^., &c.

Ex. 3. Sit $. {x^. / x^2} √(1 + x^4) data fluens, quæ exprimit hyperbolicum arcum, ergo hyperbolicus arcus erit intermedius terminus inter pri- mum & $ecundum $eriei expre$$æ per fluentes fluxionum {x^. / x^2} (1 + x^2)^0, {x^. / x^2} × (1 + x^4)^1, {x^. / x^2} × (1 + x^4)^2, &c. terminum.

Cor.. Arcus hyperbolicus exprimi pote$t per $eriem - {1 / x} + {1 / 2 × 3} x^3 - {1 / 2^2 . 2 × 7} x^7 + {1.3 / 2^3 × 1.3 × 11} x^11 - {1 · 3 · 5 / 21 · 2 · 1 · 4 × 15} x^15 + {1 · 3 · 1 · 7 / 2^5 · 1 · 3 · 1 · 5 × 19} x^19 - &c. ubi x denotat ab$ci$$am ad a$ymptoton.

Si vero requiratur de$cendens $eries, tum erit x - {1 / 2 × 3} x^-3 + {1 / 2^2 . 2 × 7} x^-7 - {1 · 3 / 2^3 · 1 · 3 · 11} x^-11 + &c. quæ quoad coefficientes attinet, pror$us eandem ob$ervat legem ac præcedens.

Ex. 4. Sin; fluentes fluxionum {x^. / (1 + x)^0}, {x^. / (1 + x)^2}, {x^. / (1 + x)^4}, {x^. / (1 + x)^6}, &c.... {x^. / (1 + x)^2n}, quæ erunt x, {- 1 / 1 + x}, {- 1 / 3 (1 + x)^3}, {- 1 / 5 (1 + x)^5}, &c. [0660]DE SUMMATIONE hæ vero fluentes inter valores 0 & 1 quantitatis x contentæ erunt re- $pective 1, {1 / 2}, {7 / 24}, {31 / 5 × 32}, ... {2^2n-1 - 1 / (2n - 1). 2^2n-1}; & medius terminus in- ter duos primos erit hyp. log. 2.

Omnia hæc etiam ad incrementiales & integrales quantitates ap- plicari po$$unt. Facile con$imili methodo inveniri po$$unt in$initæ interpolationes incrementialium quantitatum.

THEOR. XXXIII.

Si numerus factorum in $ucce$$ivis terminis contentorum per arith- meticam $eriem de$ignetur, tum for$an relatio inter $ucce$$ivos ter- minos $it con$tans, i. e. numerus factorum in eâ contentus idem $emper maneat. E. g. Sint $ucce$$ivi termini 1, 1 × 2, 1 × 2 × 3, 1 × 2 × 3 × 4, &c. quorum numerus factorum $emper augetur per unita- tem, i. e. $unt 1, 2, 3, 4, &c. $int t & t′ duo $ucce$$ivi $eriei termini, z vero di$tantia termini t a primo $eriei termino, tum erit (z + 2) × t = t′ con$tans relatio. Cum vero relatio detur con$tans inter $ucce$- $ivos terminos, tum ex quibu$dam datis primis terminis erui po$$unt reliqui; & con$equenter $i interpoletur quantitas (π) inter primum & $ecundum terminum, cujus di$tantia ex primo termino $it {n / m}, e termino vero $ecundo $it {m - n / m}; tum ex prædictâ con$tante relatione erui pote$t quicunque terminus, cujus di$tantia a termino t^r $it {n / m}, ubi r e$t in- teger numerus; a termino vero proxime $ub$equente $it {m - n / m}; nam erit π × ({n / m} + 2) ({n / m} + 3) ({n / m} + 4).... ({n / m} + r + 1). E. 2. Sit φ: (z) × t = t′, & φ: (z + 1) × t′ = t″, tum erit φ: (z + r - 1)t′^r-1 = t′, φ: (z + r)t′^r = t^r+1, &c.: & $ic ratiocinari liceat, cum detur quæcunque relatio inter $ucce$$ivos terminos.

[0661]SERIERUM, &c.

Con$imilia etiam applicari po$$unt ad $eries, quarum primæ, $e- cundæ, tertiæ, &c. differentiæ numerorum terminorum erunt in arith- meticâ progreffione; hæ $eries, ut prius o$tenditur, interpolari po$- $unt e $ucce$$ivis logarithmis eju$dem ordinis ac differentiæ numero- rum, quæ con$tantes evadunt.

Si quantitates interpolandæ vel con$tent ex interpolabilibus facto- ribus; vel $int quæcunque con$tantes functiones quantitatum, qua- rum interpolationes dantur; tum dantur etiam earum interpolationes.

Cor. · Facile deduci po$$unt infinitæ quantitates, quæ ex interpo- latione datarum quantitatum interpolari po$$unt.

Inveniatur quæcunque con$tans functio datarum quantitatum, & perficitur coroll.

Et vice versâ ex animadvertendo $eriem datam e$$e prædictam fun- ctionem quantitatum, quarum interpolationes innote$cunt, con$eque- tur ejus interpolatio. E. g. Ex conce$sâ interpolatione terminorum 1, 1 × 2, 1 × 2 × 3, 1 × 2 × 3 × 4, &c. termini binomialis theorematis {n / m}, {{n / m} + 1 / 2} A, {{n / m} + 2 / 3} B, {{n / m} + 3 / 4} C, &c. ubi A, B, C, &c. præcedentes ter- minos re$pective denotant, interpolari po$$unt: terminus enim in datâ $erie 1, 1 · 2, 1 · 2 · 3, 1 · 2 · 3 · 4, &c. ad ({n / m} - 2) di$tantiam a primo $it π, & quoniam terminus ad di$tantiam z a primo in $erie 1, 1 · 2, 1 · 2 · 3, &c. ductus in z + 2 $ub$equentem præbet terminum; ergo terminus π ad di$tantiam (z = {n / m} - 2) a primo in z + 2 = {n / m} ductus præbet terminum ad di$tantiam z + 1 = {n / m} - 1 a primo in eadem $erie; & $imiliter termini ad di$tantias {n / m} - 1, {n / m}, {n / m} + 1, {n / m} + 2, &c., etiam- que ad di$tantias {n / m} - 2, {n / m} - 3, {n / m} - 4, &c. po$iti evadent {n / m} × π, [0662]DE SUMMATIONE {n / m} × ({n / m} + 1) π, {n / m} ({n / m} + 1) ({n / m} + 2) π, {n / m} ({n / m} + 1) ({n / m} + 2) ({n / m} + 3) π, &c., etiamque π, ({1 / {n / m} - 1}) π, ({1 / {n / m} - 1}) ({1 / {n / m} - 2}) π, &c. hinc terminus ad di$tantiam r a primo in $erie 1, 1 · 2, 1 · 2 · 3, &c. æqualis erit termino ad di$tantiam r - {n / m} + 2 a primo in $erie 1, {n / m}, {n / m} × ({n / m} + 1), &c. in π ducto.

THEOR. XXXIV.

1. Sint termini π, ρ, & σ; quorum di$tantiæ a primo in $erie 1, 1 × 2, 1 × 2 × 3, 1 × 2 × 3 × 4, &c. $int re$pective {n / m} - 2, {n / m} + r - 1 & r; tum terminus in $erie {n / m}, {n / m} × {{n / m} + 1 / 2}, {n / m} × {{n / m} + 1 / 2} × {{n / m} + 2 / 3}, &c. cujus di- $tantia e primo $it r erit {ρ / π σ}.

2. Datis terminis $eriei (P) 1, 1 × 2, 1 × 2 × 3, 1 × 2 × 3 × 4, &c. ad qua$libet di$tantias a primo po$itis, invenire terminum $eriei (Q) {m / r}, {m / r}. {m + n / r + s}, · .., {m / r} · {m + n / r + s} · {m + 2 n / r + 2 s} · .. {m + z n / r + z s} ad α di$tantiam a primo con$titutum. Sint termini ad {m / n} - 2 & {r / s} - 2 di$tantias a primo $eriei (P) termino re$pective π & ρ; termini vero ad di$tantias {n / m} + α - 1 & {r / s} + a - 1 a primo in eâdem $erie re$pective σ & τ; tum erit terminus quæ$itus {σ / π} × {ρ / τ} × {n^z+1 / s^z+1}.

Hæ po$teriores $eries in priori P continentur.

[0663]SERIERUM, &c.

Cor. · Si detur $eries (R) terminorum, qui $int quæcunque alge- braica finita functio prædictæ $eriei Q; facile ex ii$dem datis inveniri pote$t terminus in prædictâ $erie R ad quamcunque di$tantiam a pri- mo po$itus.

Eâdem methodo ratiocinari liceat ex interpolationibus $eriei (P) vel plurium $erierum (P), (Q), &c. conce$$is ad interpolationes $erierum, quæ $int quæcunque finitæ functiones quantitatum e præ- dictis $eriebus deductarum.

Hic animadvertendum e$t, quod$i detur $eries huju$modi alterna- tim affirmativa & negativa, i. e. $eries $it - a + a b - a b c + a b c d - &c. quæ conficitur e factoribus - a, - b, - c, &c. in $e$e ductis, minime ejus interpolatio eadem erit ac interpolatio factorum affirma- tivorum a, a × b, a × b × c, &c. in priori ca$u enim inter $ingulos duos fucce$$ivos terminos nihilo evadet terminus interpolandus, &c.

Series duas vel plures variabiles quantitates involventes vel $um- mationem vel interpolationem recipiant ex eâdem methodo, ac $eries unam $olummodo variabilem quantitatem habentes.

THEOR. XXXV.

1. Erit e^±x = 1 ± x + {x^2 / 1 · 2} ± {x^3 / 1 · 2 · 3} + {x^4 / 1 · 2 · 3 · 4} ± &c. = (1 ± {x / i})^i, ubi i e$t in$inita quantitas; erit etiam {e^+x +e^-x / 2} = 1 + {x^2 / 1 · 2} + {x^4 / 1 · 2 · 3 · 4} + &c. = {(1 + {x / i})^i + (1 - {x / i})^i / 2}; & $ic erunt {e^+x - e^-x / 2} = x + {x^3 / 1 · 2 · 3} + &c. & {e^x√(-1) - e^-x√(-1) / 2} × - √ (- 1) = x - {x^3 / 1 · 2 · 3} + &c. = $in. arcus x, & {e^x√(-1) + e^-x√(-1) / 2} = 1 - {x^2 / 1 · 2} + {x^4 / 1 · 2 · 3 · 4} - &c. = co$in. arcus x. Erit etiam e^x √ (- 1) = 1 - [0664]DE SUMMATIONE {x^2 / 2} + {x^4 / 2 · 3 · 4} - {x^6 / 2 · 3 · 4 ·5 · 6} + &c. + (x - {x^3 / 1 · 2 · 3} + &c.) × √ (- 1) = co$. x + √ (- 1) $in. x; & $imiliter e^-x√(-1) = 1 - {x^2 / 1 · 2} + {x^4 / 1 · 2 · 3 · 4} - &c. - √ (- 1)(x - {x^3 / 1 · 2 ·3} + {x^5 / 1 · 2 · 3 · 4 ·5} - &c.) = co$in. x - √ (- 1) $in. x, hic radius e$t 1.

For$an haud indignum e$t ob$ervatu, quod 1 ± √ (- n) = 1.

2. Sint α, β, γ, δ, ε, &c. (n) radices æquationis x^n - 1 = 0, & erit {e^zx + e^βx + e^γx + &c. / n} = 1 + {x^n / 1 · 2 · 3 .. n} + {x^2n / 1 · 2 · 3 .. 2n} + &c. & {α^n-m e^αx + β^n-m e^βx + γ^n-m e^γx + &c. / n} = {x^m / 1 · 2 · 3 .. m} + {x^n+m / 1 · 2 · 3 .. n + m} + {x^n+2m / 1 · 2 · 3 .. n + 2 m} + &c. ubi m minor e$t quam n; & $ic $it quæcun- que exponentialis quantitas, quæ reducatur in $eriem (P) $ecundum dimen$iones quantitatis x progredientem, viz. A x^a + B x^a+b + C x^a+20 + &c. & $i in datâ exponentiali $cribantur α x, β x, γ x, &c. re$pe- ctive pro x, & $unt quantitates re$ultantes re$pective A, B, C, D, &c. tum erit {A + B + C + D + &c. / n} = $ummæ $eriei, cujus termini $int A x^a + σx^a+nb + &c. $i vero requiratur ut primus terminus ad m - 1 di$tantiam a primo ponatur, viz. $it $eries π x^a+mb + ρ x^a+(m+n)b + &c. tum erit ejus $umma {α^n-m A + β^n-m B + γ^n-m C + &c. / n}.

Idem etiam de $eriebus ab exponentialibus fluentibus exortis affir- mari pote$t.

Cor. 1. Hinc inveniri po$$unt $ummæ $erierum prædictarum a (t + t^n + t^2n + &c.) + b (t^′ + t^n+1 + t^2n+1 + &c.) + c (t^2 + t^n+2 + t^2n+2 + &c.), ubi t^n, &c. denotat terminum prædictæ $eriei, cujus di- $tantia a primo $it n, &c. & a, b, c, &c. de$ignant qua$cunque invaria- biles quantitates.

[0665]SERIERUM, &c. THEOR. XXXVI.

1. Erit (1 ± {x / i})^i = 1 ± x + {x^2 / 1 · 2} ± {x^3 / 1 · 2 · 3} + &c. & exinde (1 ± {x / i})^i - 1 = ± x + {x^2 / 1 · 2} ± {x^3 / 1 · 2 · 3} + &c. quantitatis (1 ± {x / i})^i - 1 = v^i - 1 inveniantur quadratici divi$ores, qui erunt (1 ± {x / i})^2 - 2 α (1 ± {x / i}) + 1, ubi α denotat re$pective co$inus arcuum 0°, {4 × 90° / i}, {8 × 90° / i}, {12 × 90° / i}, &c. i. e. co$. arcuum (0 π, {2 π / i}, {4 π / i}, {6 π / i}, {8 π / i}, &c.); vel $ub formulâ (1 ± {x / i})^2 - 2 (1 ± {x / i}) co$in. {2kπ / i} + 1, ubi k $ucceffive denotat integros numeros 0, 1, 2, 3, 4, &c. continean- tur. In hâc formulâ pro co$. {2 k π / i} $cribatur ejus valor 1 - {2 k^2 π^2 / i^2} prope, & re$ultat {x^2 / i^2} + {4 k^2 π^2 / i^2} ± {4 k^2 π^2 / i^3} x = (1 ± {x / i})^2 - 2 (1 ± {x / i}) co$. {2 k · π / i} + 1, ducatur hæc quantitas in {i^2 / 4 k^2 π^2} & re$ultat {x^2 / 4 k^2 π^2} ± {x / i} + 1; quare expre$$io e^x - 1 = x (1 + {x^2 / 1 · 2} + {x^3 / 1 · 2 · 3} + &c.) habebit divi$ores x, (1 + {x / i} + {x^2 / 4 π^2}), (1 + {x / i} + {x^2 / 16 π^2}), (1 + {x / i} + {x^2 / 36 π^2}), &c.

2. Erit e^x - e^-x = (1 + {x / i})^i - (1 - {x / i})^i = 2 (x + {x^3 / 1 · 2 · 3} + {x^5 / 1 · 2 · 3 · 4 · 5} + &c.) = v^i - z^i, $i modo pro 1 + {x / i} & 1 - {x / i} $cri-[0666]DE SUMMATIONE bantur re$pective v & z; $ed inveniri po$$unt ejus divi$ores v^2 - 2 v z co$. {2 k π / i} + z^2 = {4 x^2 / i^2} + {4 k^2 π^2 / i^2} - {4 k^2 π^2 x^2 / i^4} (ob co$in. {2 k π / i} = 1 - {2 k^2 π^2 / i^2}); ducatur hæc quantitas in {i^2 / 4 k^2 π^2} & re$ultat for- mula ejus divi$oris {x^2 / k^2 π^2} - {x^2 / i^2} + 1 = {x^2 / k^2 π^2} + 1, unde prædicta æquatio habebit divi$ores 1 + {x^2 / π^2}, 1 + {x^2 / 4 π^2}, 1 + {x^2 / 9 π^2}, &c.

3. Erit {e^x + e^-x / 2} = 1 + {x^2 / 2} + {x^4 / 1 · 2 · 1 · 4} + &c. = {(1 + {x / i})^i + (1 - {x / i})^i / 2} {v^i + z^i / 2}, $i modo pro 1 + {x / i} & 1 - {x / i} $cribantur re$pective v & z; tum inveniri po$$unt ejus divi$ores formulæ 1 + {4 x^2 / (2 k + 1)^2 π^2} & con$equenter erunt 1 + {4 x^2 / π^2}, 1 + {4 x^2 / 9 π^2}, 1 + {4 x^2 / 25 π^2}, &c.

Et $ic inveuiri po$$int x, 1 - {x^2 / π^2}, 1 - {x^2 / 4 π^2}, 1 - {x^2 / 9 π^2}, &c. divi$ores $eriei x - {x^3 / 1 · 2 · 3} + {x^5 / 1 · 2 · 1 · 4 · 5} - &c. etiamque 1 - {4 x^2 / π^2}, 1 - {4 x^2 / 9 π^2}, 1 - {4 x^2 / 25 π^2}, &c. divi$ores $eriei 1 - {x^2 / 1 · 2} + {x^4 / 1 · 2 · 1 · 4} - &c.

4. Erit e^x - 2 co$. g + e^-x = 2 (1 - co$. g + {x^2 / 1 · 2} + {x^4 / 1 · 2 · 1 · 4} + &c.) = (1 + {x / i})^i - 2 co$. g + (1 - {x / i})^i = v^i - 2 co$. g + z^i, unde con$tabit ejus divi$orum formula, viz. v^2 - 2 v z co$. {2 k π ± g / i} + z^2 = 2 + {2 x^2 / i^2} - 2 (1 - {x^2 / i^2}^i co$. {2 (2 k π ± g) / i} = [0667]SERIERUM, &c. {4 x^2 / i^2} + {4 (2 k π ± g)^2 / i^2}; ob i infinitum, co$in. {2 (2 k π ± g) / i} = 1 - {2 (2 k π ± g)^2 / i^2}.

5. Erit e^b+x ± e^c-x = (1 + {b + x / i})^i ± (1 + {c - x / i})^i = v^i ± z^i, cujus factores habent formulam v^2 - 2 v z^. co$. {m π / i} + z^2 ubi m denotat imparem numerum $i $ignum affixum $it +, $in vero $it -, tum parem denotat numerum; $ed ob i numerum infinite magnum erit co$. {m π / i} = 1 - {m^2 π^2 / 2 i^2}, unde formula factorum prædicta evadet (v - z)^2 + {m^2 π^2 / i^2} v z, in hâc formulâ pro v & z $cribantur earum valores 1 + {b + x / i} & 1 + {c - x / i}, & ducatur quantitas exinde de- ducta in i^2, & re$ultabit (b - c)^2 + m^2 π^2 + 4 (b - c) x + 4 x^2, dividatur ea per (b - c)^2 + m^2 π^2 & re$ultat formula quæ$ita 1 + {4 (b - c) x + 4 x^2 / (b - c)^2 + m^2 π^2}.

Cor. 2. Ut unitas evadat primus terminus $eriei; dividatur quantitas e^b+x ± e^c-x per e^b ± e^c, & re$ultat {e^b+x ± e^c-x / e^b ± e^c} = (1 + {4 (b - c) x + 4 x^2 / π^2 + (b - c)^2}) (1 + {4 (b - c)x + 4 x^2 / 9 π^2 + (b - c)^2}) &c. $i m $it impar, vel = (1 + {2 x / b - c}) (1 + {4 (b - c)x + 4 x^2 / 4 π^2 + (b - c)^2}) (1 + {4 (b - c)x + 4 x^2 / 16 π^2 + (b - c)^2}), &c. $i m $it impar.

Et $imiliter inveniri pote$t $ormula divi$orum quantita- tis e^a+bx ± e^c+dx = (1 + {a + b x / i})^i ± (1 + {c + d x / i})^i = v^i ± z^i, &c.

[0668]DE SUMMATIONE

Plures huju$modi quantitates in $e$e ducantur, vel per $e dividan- tur; & exinde oriri po$$unt $eries, quæ recipiant formulas diver$orum generum pro earum divi$oribus.

Si vero a vel b vel c vel d $int impo$$ibiles quantitates, viz. p √ (- 1) & exponentialium $umma vel differentia e p √ (- 1) ± e - p√(- 1) deno- tat $inum arcus circuli, qui pro ejus valore in æquationibus prius traditis $ub$titutus, æquationes $pecie diver$as reddent.

Cor. 4. Hinc inveniri po$$unt $ummæ plurium $erierum; e factori- bus quidem datis innote$cunt radices ip$æ, & e terminis datæ æqua- tionis innote$cunt $ummæ prædictarum radicum, earum quadrato- rum, cuborum, &c. & denique aggregatum ex quâcunque algebraicâ functione $ingularum radicum, cujus functionis $inguli termini con- $tituant terminos $eriei datæ.

Cor. 4. Sit z = datæ $eriei = α × β × γ × δ × &c. tum erit {z^. / z x^.} = {α^. / α x^.} + {β^. / β x^.} + {γ^. / γ x^.} + &c. $i modo x $it variabilis quantitas. E. g. Sit z = 1 + {x / 1 · 2} + {x^2 / 1 · 2 · 3} + &c. = (1 + {x / i} + {x^2 / 4 π^2}) (1 + {x / i} + {x^2 / 16 π^2}), &c. ubi i e$t infinita quantitas, tum erit {z^. / z x^.} = {1 / 1 · 2} + {x / 1 2} + &c. = {{1 / i} + {2 x / 4 π^2} / 1 + {x / i} + {x^2 / 4 π^2}} + {{1 / i} + {2 x / 16 π^2} / 1 + {x / i} + {x^2 / 16 π^2}} + &c. & $ic de reliquis.

THEOR. XXXVII.

1. Sit x = A - {A^3 / 1 · 2 · 3} + {A^5 / 1 · 2 · 1 · 4 · 5} - {A^7 / 1 · 2 · 1 · 4 · 1 · 6 · 7} + &c. tum erit x $inus arcus (A) circuli, cujus radius e$t unitas, & cujus peripheria e$t 2 π.

Si vero detur $inus (x) arcus circuli, tum ejus corre$pondentes [0669]SERIERUM, &c. arcus circuli, quorum $inus e$t x, erunt re$pective {m π / n}, {n - m / n} π, {2 n + m / n} π, {3 n - m / n} π, &c. - {n + m / n} π, - {2 n - m / n} π, - {3 n + m / n} π, &c. quæ erunt radices (A) æquationis x - A + {A^3 / 1 · 2 · 3} - {A^5 / 1 · 2 · 1 · 4 · 5} + &c. = 0, & exinde reciprocæ radices erunt re$pective {n / m π}, {n / (n - m) · π}, {n / (2 n + m) · π}, &c. - {n / (n + m) · π}, - {n / (2 n - m) · π}, &c. & con$equen- ter per vulgarem algebram erit (1 - {n A / m π}) (1 + {nA / (n + m) π}) (1 - {n A / (n - m) π}) (1 + {n A / (2 n - m) π}) &c. = 1 - {A / x} + {A^3 / 1 · 2 · 3 x} - {A^5 / 1 · 2 · 1 · 4 · 5 x} + &c. unde $umma e $ingulis quantitatibus {1 / m}, - {1 / n + m}, {1 / n - m}, {- 1 / 2 n - m}, {1 / 2 n + m}, &c. &c. erit {π / n x}; $umma pro- ductorum e $ingulis duabus erit o; $ummæ contentorum e $ingulis tribus, quatuor, quinque, &c. erunt re$pective {- π^3 / 1 · 2 · 3 x n^3}, 0, {π^5 / 1 · 2 · 1 · 4 · 5 x n^5}, 0, {- π^7 / 1 · 2 · 1 · 4 · 1 · 6 · 7 x n^7}, 0, &c.

Pro {n / m π} $cribatur a, & erunt reciprocæ radices prædictæ {1 / a}, {1 / π - a}, {1 / 2 π + a}, {1 / 3 π - a}, {1 / 4 π + a}, &c., - {1 / π + a}, - {1 / 2 π - a}, - {1 / 3 π + a}, - {1 / 4 π - a}, &c. quarum $umma erit {1 / a} + {2 a / π^2 - a^2} - {2 a / 4 π^2 - a^2} + {2 a / 9 π^2 - a^2} - {2 a / 16 π^2 - a^2} + &c.

[0670]DE SUMMATIONE

2. Sit æquatio y = 1 - {A^2 / 1 · 2} + {A^4 / 1 · 2 · 1 · 4} - {A^6 / 1 · 2 · 1 · 4 · 1 · 6} + &c. & erit y co$inus arcus (A) circuli, cujus radius e$t 1, & peri- pheria dicatur 2 π.

Si vero detur y co$inus arcus A = {r π / n}, tum erunt corre$pon- dentes arcus circuli, qui $int radices æquationis y = 1 - {A^2 / 1 · 2} + {A^4 / 1 · 2 · 1 · 4} - &c. re$pective {r π / n}, - {r π / n}, {(2 n - r) · π / n}, - {(2 n - r) · π / n}, {(4 n - r) π / n}, - {(4 n - r) · π / n}, {(6 n - r) · π / n}, &c. cujus reciprocæ radices erunt {n / r π}, - {n / r π}, {n / (2 n - r) · π}, - {n / (2 n - r) π}, {n / (4 n - r) π}, - {n / (4 n - r)} π, &c. per vulgarem algebram erit 1 - {A^2 / 1 · 2 (1 - y)} + {A^4 / 1 · 2 · 1 · 4 (1 - y)} - {A^6 / 1 · 2 · 1 · 4 · 1 · 6 (1 - y)} + &c. = (1 - {n A / r π}) (1 + {n A / r π}) (1 - {n A / (2 n - r) π}) (1 + {n A / (2 n - r) π}) (1 - {n A / (4 n - r) π}) (1 + {n A / (4 n - r) π}) &c. & con$equenter $umma e $ingulis quantitati- bus {n / r π}, - {n / r π}, {n / (2 n - r) π}, {- n / (2 n - r) π}, {n / (2 n + r) π}, {- n / (2 n + r) π}, {n / (4 n + r) π}, &c. nihilo æqualis erit; $umma vero productorum e $ingulis duabus prædictis quantitatibus erit {- 1 / 1 · 2 (1 - y)}; aggregata vero contentorum e $ingulis tribus, quatuor, quinque, $ex, &c. erunt re$pective 0, {1 / 1 · 2 · 1 · 4 (1 - y)}, 0, {- 1 / 1 · 2 · 1 · 4 · 1 · 6 (1 - y)}, 0, &c.

[0671]SERIERUM, &c.

Sit {γ π / n} = a, tum erunt reciprocæ radices prædictæ {1 / a}, {1 / 2 π - a}, {1 / 2 π + a}, {1 / 4 π - a}, {1 / 4 π + a}, &c., - {1 / a}, - {1 / 2 π - a}, - {1 / 2 π + a}, - {1 / 4 π - a}, - {1 / 4 π + a}, &c.

Cor.. Hinc e capite 1<_>mo. medit. algeb. facile colligi po$$unt aggre- gata e quicu$cunque rationalibus, & haud reciprocis functionibus ra- dicum vel æquationis infinitæ (A) 1 - {A^2 / 1 · 2 (1 - y)} + {A^4 / 1 · 2 · 3 · 4 (1 - y)} - &c. = 0, vel etiam æquationis (B) 1 - {A / x} + {A^3 / 1 · 2 · 3 x} - {A^5 / 1 · 2 · 3 · 4 · 5 x} + &c. = 0, vel earum in $e$e ductarum.

Ex.. In æquatione (A) detur y co$inus arcus nihilo æqualis, tum erit n:r::2:1; $cribantur igitur 2 & 1 re$pective pro n & r in ejus radicibus prius traditis, & re$ultant radices {2 / π}, - {2 / π}, {2 / 3 π}, - {2 / 3 π}, {2 / 5 π}, - {2 / 5 π}, {2 / 7 π}, &c. quarum quadrata erunt {4 / π^2}, {4 / π^2}, {4 / 9 π^2}, {4 / 9 π^2}, {4 / 25 π^2}, {4 / 25 π^2}, &c. $ed per algebram erit $umma quadratorum 1 = 8 ({1 / π^2} + {1 / 9 π^2} + {1 / 25 π^2} + &c.) & exinde {π^2 / 8} = 1 + {1 / 9} + {1 / 25} + {1 / 49} + &c. = S; $i vero s = 1 + {1 / 4} + {1 / 9} + {1 / 16} + {1 / 25} + {1 / 36} + &c. tum erit S + {1 / 4} s = s, unde s = 1 + {1 / 4} + {1 / 9} + {1 / 16} + &c. = {4^S / 3} = {π^2 / 2 · 3}.

Et $ic inveniatur $umma quadrato-quadratorum e $ingulis prædictis quantitatibus, quæ evadet 32 × ({1 / π^4} + {1 / 81 π^4} + {1 / 625 π^4} + &c.) = {1 / 3}, & exinde S = 1 + {1 / 3^4} + {1 / 5^4} + {1 / 7^4} + &c. = {π^4 / 32 · 3}; $ed a$$umatur [0672]DE SUMMATIONE s = 1 + {1 / 2^4} + {1 / 3^4} + {1 / 4^4} + &c. dividatur hæc æquatio per 2<_>4, & re$ul- tat {s / 2^4} = {1 / 2^4} + {1 / 4^4} + {1 / 6^4} + {1 / 8^4} + &c. unde S = s - {s / 2^4}, & con$equen- ter {16 S / 15} = {π^4 / 3 · 2 · 3 · 5} = s = 1 + {1 / 2^4} + {1 / 3^4} + {1 / 4^4} + {1 / 5^4} + &c.

Et in genere $it R $umma 2 λ pote$tatum e $ingulis radicibus præ- dictis, per prob. 1. medit. algebr. invenienda; tum erit 1 + {1 / 3^2λ} + {1 / 5^2λ} + {1 / 7^2λ} + &c. = {R π^2 / 2^2λ+1} = S′, & s = {2^2λ / 2^2λ-1} S = 1 + {1 / 2^2λ} + {1 / 3^2λ} + {1 / 5^2λ} + {1 / 7^2λ} + &c.

Ex. 2. Reciprocæ radices æquationis (B) 1 - {A / x} + {A^3 / 1 · 2 · 3 · x} - &c. = 0 inventæ fuerunt {n / m π}; {n / (n - m) π}, - {n / (n + m) π}; {n / (2 n + m) π}, - {n / (2 n - m) π}; &c. quarum $umma e$t {1 / x}; ergo erit {1 / 2 m^2} + {1 / n^2 - m^2} + {1 / 4 n^2 - m^2} + {1 / 9 n^2 - m^2} + {1 / 16 n^2 - m^2} + &c. = {π / 2 m n x}.

Sit n = 2 m, unde $inus x = 1, & con$equenter radices prædictæ fient {2 / π}, {2 / π}, - {2 / 3 π}, - {2 / 3 π}, {2 / 5 π}, {2 / 5 π}, - {2 / 7 π}, - {2 / 7 π}, &c.

Et con$equenter erit 1 - {1 / 3} + {1 / 5} - {1 / 7} + {1 / 9} - &c. = {π / 4}; & $ic 1 - {1 / 3^3} + {1 / 5^3} - {1 / 7^3} + &c. = {1 / 32} π^3, & generaliter erit 1 - {1 / 3^2λ+1} + {1 / 5^2λ+1} - {1 / 7^2λ+1} + &c. = {N π^2λ+1 / 2^2λ+2}, ubi N æqualis erit aggregato 2 λ + 1 pote$ta- tis e $ingulis prædictis radicibus, quod facile e prob. 1. medit. algebr. deduci pote$t.

[0673]SERIERUM, &c.

Sit x = 0, & con$equenter m = 0, & æquatio re$ultat A (1 - {A^2 / 2 · 3} + {A^4 / 2 · 3 · 4 · 5} - &c.) = 0, & exinde 1 - {A^2 / 2 · 3} + {A^4 / 2 · 3 · 4 · 5} - &c. = (1 - {A / π}) (1 + {A / π}) (1 + {A / 2 π}) (1 - {A / 2 π}) (1 + {A / 3 π}) (1 - {A / 3 π}) (&c.) = (1 - {A^2 / π^2}) (1 - {A^2 / 4 π^2}) (1 - {A^2 / 9 π^2}) &c.

Sit y = 0 & $imiliter colligi pote$t (1 - {A^2 / 1 · 2} + {A^4 / 1 · 2 · 3 · 4} - &c.) = (1 - {A^2 / π^2}) (1 - {A^2 / 9 π^2}) (1 - {A^2 / 25 π^2}) &c.

3. Sit æquatio z = A - {A^3 / 1 · 2} + {A^5 / 1 · 2 · 3 · 4} - &c. In hâc æqua- tione pro A $cribatur √(- 1) a, & re$ultat æquatio {z / √(- 1)} = a + {a^3 / 2 · 3} + {a^5 / 2 · 3 · 4 · 5} + &c. A$$umatur z = 0, & dividatur æquatio re$ultans per a, & re$ultat æquatio 0 = 1 + {a^2 / 2 · 3} + {a^4 / 2 · 3 · 4 · 5} + &c. = (1 + {a^2 / π^2}) (1 + {a^2 / 4 π^2}) (1 + {a^2 / 9 π^2}) &c.

4. Ob $in. x = x (1 - {x^2 / π^2}) (1 - {x^2 / 4 π^2}) (1 - {x^2 / 9 π^2}) &c. & co$. x = (1 - {4 x^2 / π^2}) (1 - {4 x^2 / 9 π^2}) &c. & pro x $cribatur {m π / n} & duæ re$ultant æquationes, viz. $in. {m π / n} = {m π / n} ({n^2 - m^2 / n^2}) ({4 n^2 - m^2 / 4 n^2}) ({9 n^2 - m^2 / 9 n^2}) &c. & co$. {m π / n} = ({n^2 - m^2 / n^2}) ({9 n^2 - m^2 / 9 n^2}) ({25 n^2 - m^2 / 25 n^2}) &c. e priori æquatione $equitur π = {n / m} $in. {m π / n} × ({n^2 / n^2 - m^2}) ({4 n^2 / 4 n^2 - m^2}) [0674]DE SUMMATIONE ({9 n^2 / 9 n^2 - m^2}) &c. Sit n = 2 m, & re$ultat {π / 2} = {2 · 2 / 1 · 3} · {4 · 4 / 3 · 5} · {6 · 6 / 5 · 7} · {8 · 8 / 7 · 9} · &c. $it n = 4 m & erit $in. {m π / n} = $in. 45° = √(2), & exinde {π / 4 √(2)} = {4 · 4 / 3 · 5} · {8 · 8 / 7 · 9} · {12 · 12 / 11 · 13} · &c. dividatur prior re$ultans æqua- tio per po$teriorem, & habebitur 2 √(2) = {2 · 2 / 1 · 3} · {6 · 6 / 5 · 7} · {10 · 10 / 9 · 11} · &c.

Et $ic de pluribus huju$cemodi æquationibus deducendis.

Cor. · Ob $inum & co$inum per $eries datos facile erui po$$unt tangens, cotangens, $ecans, co$ecans, &c. prædicti arcus {m π / n}.

Cor. · Hinc etiam multiplicari, dividi, &c. po$$unt $inus, co$inus, &c. duorum vel plurium diver$orum arcuum. E. g. {$in. ar. {m π / n} / $in. ar. {k π / n}} = {m / k} ({n^2 - m^2 / n^2 - k^2}) ({4 n^2 - m^2 / 4 n^2 - k^2}) ({9 n^2 - m^2 / 9 n^2 - k^2}) &c.

5. Datâ præcedente æquatione 1 - {A / x} + {A^3 / 2 · 3 x} - {A^5 / 2 · 3 · 4 · 5 x} + &c. = 0, cujus reciprocæ radices $int α, β, γ, δ, &c. Fingatur Z = 1 - {A / x} + {A^3 / 2 · 3 x} - &c. unde con$tat {Z^. / Z A^.} = (α + β + γ + δ + &c.) + (α^2 + β^2 + γ^2 + δ^2 + &c.) A + (α^3 + β^3 + γ^3 + δ^3 + &c.) A^2 + &c. = a + b A + c A^2 + &c. $ed Z = 1 - {A / x} + {A^3 / 2 · 3 x} - &c. = 1 - {1 / x} $in. arc. A, & con$equenter {Z^. / Z A^.} = {co$. arc. A / x - $in. arc. A}.

Scribatur {p π / n} P pro A in datâ æquatione, & quoniam {m π / n}, {n - m / n} π, &c. $unt radices datæ æquationis, erunt {p / m}, {p / n - m}, - {p / n + m}, - [0675]SERIERUM, &c. {p / 2 n - m}, {p / 2 n + m}, &c. reciprocæ radices æquationis re$ultantis 1 - {p π P / n x} + {p^3 π^3 P^3 / 2 · 3 n^3 x} - &c. = 0: $tatuantur K = {p / m} + {p / n - m} - {p / n + m} - {p / 2 n - m} + &c. L = {p^2 / m^2} + {p^2 / (n - m)^2} + {p^2 / (n + m)^2} + &c. M = {p^3 / m^3} + {p^3 / (n - m)^3} - {p^3 / (n + m)^3} - &c. &c. &c. &c. & exinde con$tat K + L + M + &c. = {p / m - p} + {p / n - m - p} - {p / n + m + p} - {p / 2 n - m + p} + &c. = {p π co$. arc. {p π / n} / n x - n $in. arc. {p π / n}}, ubi x = $in. arc. {m π / n}: in hâc $erie $cribatur m = {k + l / 2} & p = {l - k / 2}, & re$ultat $eries {1 / k} + {1 / n - l} - {1 / n + 1} - {1 / 2 n - k} + {1 / 2 n + k} + &c. $eu {1 / k} + {2 l / n^2 - l^2} - {2 k / 4 n^2 - k^2} + &c. = {π co$. arc. {l - k / 2 n} / n $in. arc. {k + l / 2 n} π - n $in. arc. {(l - k) π / 2 n}}.

Inveniri po$$unt etiam e præcedentibus principiis {1 / 1 + b} - {1 / 4 + b} + {1 / 9 + b} - {1 / 16 + b} + &c. = {1 / 2 b} - {π √(b) / (e^π√(b) - e^-π√(b))b} & {1 / 1 + b} + {1 / 4 + b} + {1 / 9 + b} + &c. = {(e^π√(b) + e^-π√(b)) π √(b) / 2 b (e^π√(b) - e^-π√(b))} - {1 / 2 b}.

[0676]DE SUMMATIONE

Erit {πlog · 2 / 2} = 1 + {1 / 2 · 3^2} + {1 · 3 / 2 · 4 · 5^2} + {1 · 3 · 5 / 2 · 4 · 6 · 7^2} + &c.

Et $ic e meditat. algebraicis colligi po$$unt plurimæ con$imiles $e- ries, i. e. $umma cuju$cunque functionis, in quâ haud reciproca vel nulla dimen$io prædictarum radicum continetur: progredi etiam liceat ad radices æquationis quæ e$t fluxio datæ æquationis; & $ic deinceps. For$an vero quærat aliquis, quare ratiocinatio, quæ prius tradita fuit de $eriebus $inum circuli ex ejus arcu exprimentibus haud applicari pote$t ad $eries quæ detegunt $inum, i. e. ordinatam vel ellip$eos vel plurimarum etiam ovalium con$imilium ex earum arcubus: cui re- $pondendum e$t, ut $eries prædictæ haud omnes for$an habent ra- dices po$$ibiles, vel omnes radices datæ infinitæ æquationis non in prædictâ $erie continentur.

Si modo igitur dentur termini infinitæ $eriei, cujus omnes radices innote$cunt; tum facile erui po$$unt e præcedente methodo infinitæ $eries, quarum $ummæ innote$cunt, i. e. e $ummis $ingulorum valo- rum quarumcunque algebraicarum functionum prædictarum radicum medit. algeb. capit. primo inve$tigatis.

Hæ $eries, quarum $ummæ innote$cunt, haud nunquam u$ui in$er- vire po$$unt in datis $eriebus $ummandis; reducantur enim datæ $eries ad plures, $i ita reduci po$$int, quarum re$ultantes termini qui len- ti$$ime convergant, $int $eries, quarum $ummæ innote$cunt; pro his terminis $cribantur prædictæ $ummæ, & re$ultant $eries magis con- vergentes.

THEOR. XXXVIII.

Ex. Datis fluentibus fluxionum {x^. / 1 + ax^n}, {x^. / x} $.{x^. / 1 + ax^n}, {x^. / x} $.{x^. / x} $.{x^. / 1 + ax^n}, {x^. / x} $.{x^. / x} $.{x^. / x} $.{1 / 1 + ax^n}, &c. quæ erunt x - {ax^n+1 / n + 1} + {a^2 x^τn+1 / 2n + 1} - {a^3 x^3n+1 / 3n + 1} + {a^4 x^4n+1 / 4n + 1} - &c., x - {ax^n+1 / (n + 1)^2} + {a^2 x^2n+1 / (2n + 1)^2} - {a^3 x^3n+1 / (3n + 1)^2} + &c., [0677]SERIERUM, &c. x - {ax^n+1 / (n + 1)^3} + {a^2 x^2n+1 / (2n + 1)^3} - {a^3 x^3n+1 / (3n + 1)^3} + &c.,..., x - {ax^n+1 / (n + 1)^4} + {a^2 x^2n+1 / (2n + 1)^4} - {a^3 x^3n+1 / (3n + 1)^4} + &c.&c. & fluentibus fluxionum {x^z x^. / 1 + ax^n}, erui po$$unt $ummæ quarumcunque $erierum, quarum generalis ter- minus e$t ± {nz + m · nz + m′ · nz + m″ · nz + m′″. &c. × a^z × x^nz+1 / nz + l · nz + l′ · nz + l″. &c. × (zn + 1)^b-1}; ubi l, l′, l″, &c., $int inter $e diver$æ quantitates, & z e$t di$tantia a primo $eriei termino.

Pro $.{x^. / 1 + ax^n}, $.{x^. / x} × $.{x^. / 1 + ax^n}, $.{x^. / x} $.{x^. / x} $.{x^. / 1 + ax^n}, $.{x^. / x} $.{x^. / x} $.{x^. / x} $.{x^. / 1 + ax^n}, &c. $cribantur re$pective A, B, C, D,... P, Q, R & S & T; ducatur ultima fluens in x^1-2 x^., & inveniatur fluens fluxionis re$ul- tantis, quæ erit V = {1 / l - 1} x^l-1 × (T - {1 / (l - 1)}S + {1 / (l - 1)^2} R - {1 / (l - 1)^3}Q + ... ± {1 / (l - 1)^b-4} C ∓ {1 / (l - 1)^b-3} B ± {1 / (l - 1)^b-2}A) ∓ {1 / (l - 1)^b-1} × $.{x^l-1 x^. / 1 + a x^n}, ubi b de$ignat numerum literarum A,B,C,... R, S & T per unitatem auctum: hæc autem fluens proprie correcta æquat $ummam $eriei, cujus generalis terminus e$t {±1 / nz + l. (nz + 1)^b-1} × a^z × x^nz+1; ducatur prædicta fluens V in x^l′-l-1 x^. & inveniatur per præcedentem methodum fluens fluxionis x^l′-l-1 x^. × V, & ea de$ignat $ummam $eriei, cujus generalis terminus e$t {± a^z / nz + l. nz + l′ × (zn + 1)^b-1} × x^nz+l′, & $imiliter introducantur reliqui factores in denominatorem: $it nz + X ultimus factor qui in denominatorem introducitur; tum ducatur fluens prius re$ultans W in x^m-x, & invenjatur fluxio (m - x) x^m-x-1 x^. W + x^m-x W^.; & con$equenter quantitas ♈ = (m - X) x^m-x-1 W + x^m-x × {W^. / x^.}, quæ æquat $ummam $eriei, cujus generalis terminus [0678]DE SUMMATIONE e$t {±(nz + m) · a^z × x^nz+m-1 / nz + l · nz + l′.. nz + X × (nz + 1)^b-1}; tum ducatur quantitas in x^m′-m+1 & re$ultat quantitas cujus fluxio per x^. divi$a præbet $um- mam $eriei, cujus generalis terminus e$t ± {nz + m · nz + m′ · a^z · x^nz+m′-1 / nz + l · nz + l′ · &c. × (nz + 1)^b-1}; & $ic introduci po$$unt quicunque factores in numeratorem; ergo con$tat theorema.

Hæc methodus fallit vel cum l - 1 = 0 vel l′ - 1 = 0 vel l″ - 1 = 0, &c.

Si unquam occurrat in denominatore vel denominatoribus termi- norum $eriei, cujus $umma quæritur, factor nz + l = 0 vel nz + l′ = 0 vel nz + l″ = 0, &c.; tum, ut prius a$$eritur $emper termi- nus erui pote$t e fluente fluxionis x^π x^.$.({x^. / x})^n, ubi n e$t integer nu- merus, cujus fluens prius traditur.

2. Sit $eries, cujus generalis terminus e$t {± a^z x^nz / (nz + l′)^b′ × (nz + l)^b}, & dentur fluentes A, B, C,... Q, R, S & T fluxionum {x^l-1 x^. / 1 + ax^n}, {x^. / x}$. {x^l-1 x^. / 1 + ax^n}, {x^. / x} $.{x^. / x} $.{x^l-1 x^. / 1 + ax^n}, {x^. / x}$.{x^. / x}$.{x^. / x}$.{x^l-1 x^. / 1 + ax^n}, &c. quarum numerus e$t h; etiamque dentur fluentes A′, B′, C′,... Q′, R′, S′, & T′ fluxionum {x^l′-1 x^. / 1 + ax^n}, {x^. / x} $.{x^l′-1 x^. / 1 + ax^n}, {x^. / x} $.{x^. / x} $.{x^l′-1 x^. / 1 + ax^n}, &c. quarum numerus e$t b′; tum erit quantitas {1 / (l′ - l)^b′}x^-1 (T - {b′ / l′ - l}S + {b′ · {b′ + 1 / 2} / (l′ - l)^2} × R - {b′ ×{b′ + 1 / 2} × {b′ + 2 / 3} / (l′ - l)^3}Q... ± &c. × A) + {1 / (l - l′)^b} × x^-l′ (T′ - {1 / l-l′} S′ + {b · {b + 1 / 2} / (l - l′)^2}R′ - {b · {b + 1 / 2} · {b + 2 / 3} / (l - l′)^3} Q′ + ... ± &c. A′) $umma $e- riei quæ$ita.

[0679]SERIERUM, &c.

Ad eundem modum $umma $eriei, cujus generalis terminus e$t {(az^m + bz^m-1 + cz^m-2 + &c.)a^z x^nz / (nz + l)^b × (nz + l′)^b′ × (nz + l″)^b″ × &c.} ex (b) fluentibus fluxio- num {x^l-1 x^. / 1 + ax^n}, {x^. / x} $.{x^l-1 x^. / 1 + ax^n}, {x^. / x} $.{x^. / x} $.{x^l-1 x^. / 1 + ax^n}, &c.; & (b′) flu- entibus fluxionum {x^l′-1 x^. / 1 + ax^n}, {x^. / x} $.{x^l′-1 x^. / 1 + ax^n}, {x^. / x} $.{x^. / x} $.{x^l′-1 x^. / 1 + ax^n}, &c. & (b″) fluentibus fluxionum {x^l′-1 x^. / 1 + ax^n}, {x^. / x} $.{x^l′-1 x^. / 1 + ax^n}, {x^. / x} $.{x^. / x} $.{x^. / x}$. {x^l′-1 x^. / 1 + ax^n}, &c.; &c.; $i modo b, b′, b″, &c. & m $int integri numeri, ac- quiri pote$t.

Hìc ob$ervandum e$t omnes fluentes prædictas inter valores o & x quantitatis x contentas e$$e, $i $eries Ax^r + Bx^s + &c. a$cendat $e- cundum dimen$iones quantitatis x; vel inter infinitum & x $i $e- ries de$cendat $ecundum dimen$iones quantitatis x: $i vero $eries Ax^r + Bx^s + &c. nonnullos affirmativos & nonnullos negativos in- dices quantitatis x contineat; tum in $erie a$cendente pro x $cribatur 0, vel in $erie de$cendente pro x $cribatur infinita quantitas, & re$ul- tet quantitas A′; & pro fluente prædictæ fluxionis a$$umatur fluens inter valores 0 & x quantitatis x + A′.

THEOR. XXXIX.

1. Erit (1 ± {a / x}) (1 ± {b / x}) (1 ± {c / x}) (1 ± {d / x}) (1 ± {e / x}) &c. = 1 ± (a + b + c + d + e + &c.) × {1 / x} + (ab + ac + bc + ad + bd + &c.) × {1 / x^2} ± (abc + abd + acd + bcd + &c.) × {1 / x^3} + (abcd + &c.) × {1 / x^4} + &c.

[0680]DE SUMMATIONE

Cor. 1. Sint a = {1 / 2^n}, b = {1 / 3^n}, c = {1 / 5^n}, d = {1 / 7^n}, &c. & x = τ tum erit {1 / M} = (1 - {1 / 2^n}) (1 - {1 / 3^n}) (1 - {1 / 5^n}) (1 - {1 / 7^n})&c. = 1 - {1 / 2^n} - {1 / 3^n} - {1 / 5^n} + {1 / 6^n} - {1 / 7^n} + &c.

Cor. 2. Sit a = {1 / 2^2n}, b = {1 / 3^2n}, c = {1 / 5^2n}, d = {1 / 7^2n}, &c., & x = 1; tum erit {1 / N} = (1 - {1 / 2^2n})(1 - {1 / 3^2n})(1 - {1 / 5^2n})(1 - {1 / 7^2n})&c. = 1 - {1 / 2^2n} - {1 / 3^2n} - {1 / 5^2n} + {1 / 6^2n} - {1 / 7^2n} + &c.

In his duobus ca$ibus $igna affixa erunt + vel -, prout par vel impar $it numerus divi$orum primorum numerorum 2, 3, 5, 7, &c. pro denominatore in $e$e ductorum.

Cor. 3. Erit (1 + {1 / 2^n}) (1 + {1 / 3^n}) (1 + {1 / 5^n}) &c. = 1 + {1 / 2^n} + {1 / 3^n} + {1 / 5^n} + {1 / 6^n} + {1 / 7^n} + {1 / 10^n} + &c.; in quâ continentur omnes naturales numeri, qui non habent quadratum numerum pro divi$ore. Et $i- militer (1 + {1 / 2^2n}) (1 + {1 / 3^2n}) (1 + {1 / 5^2n})&c. = 1 + {1 / 2^2n} + {1 / 3^2n} + {1 / 5^2n} + {1 / 6^2n} + &c.

Cor. 4. Sint 2, 3, 5, 7, 11, &c. primi numeri, & erit contentum (1 + 2) (1 + 3) (1 + 5) (1 + 7) &c. = 1 + (2 + 3 + 5 + 7 + &c.) + 2 (3 + 5 + 7 + &c.) + 3(5 + 7 + &c.) + &c. quantitas, in quâ occurrunt omnes naturales numeri præter eos, qui plures di- vi$ores æquales accipiant.

2. Erit {1 / (1 ± {a / x}) (1 ± {b / x}) (1 ± {c / x}) (1 ± {d / x}) &c.} = 1 = (a + b[0681]SERIERUM, &c. + c + d + &c.) × {1 / x} + (a^2 + b^2 + c^2 + &c. + ab + ac + bc + ad + &c.) × {1 / x^2} = (a^3 + b^3 + c^3 + &c. + a^2 b + a^2 c + b^2 c + &c. + abc + abd + acd + &c.) × {1 / x^3} + (a^4 + b^4 + &c. + a^3 b + &c. + a^2 b^2 + &c. + a^2 bc + &c. + abcd + &c.) × {1 / x^4} = &c.

Cor. 1. Sint a = {1 / 2^n}, b = {1 / 3^n}, c = {1 / 5^n}, &c., & x = 1; tum erit M = {1 / (1 - {1 / 2^n}) (1 - {1 / 3^n}) (1 - {1 / 5^n}) (1 - {1 / 7^n}) &c.} = 1 + {1 / 2^n} + {1 / 3^n} + {1 / 4^n} + {1 / 5^n} + {1 / 6^n} + {1 / 7^n} + {1 / 8^n} + &c.

Cor. 2. Sint a = {1 / 2^2n}, b = {1 / 3^2n}, c = {1 / 5^2n}, &c.; tum erit N = {1 / (1 - {1 / 2^2n}) (1 - {1 / 3^2n}) (1 - {1 / 5^2n}) &c.} = 1 + {1 / 2^2n} + {1 / 3^2n} + {1 / 4^2n} + {1 / 5^2n} + {1 / 6^2n} + &c.

Cor. 3. Erit {1 / (1 + {1 / 2^n}) (1 + {1 / 3^n}) (1 + {1 / 5^n}) &c.} = 1 - {1 / 2^n} - {1 / 3^n} + {1 / 4^n} - {1 / 5^n} + {1 / 6^n} - {1 / 7^n} - {1 / 8^n} + {1 / 9^n} - &c., &c.; $igna affixa erunt af- firmativa vel negativa, prout numerus divi$orum, qui $unt primi nu- meri, $it par vel impar.

Cor. 4. Sit n = 1, & erit N = 1 + {1 / 4} + {1 / 9} + {1 / 16} + {1 / 25} + &c. = {π^2 / 6}, [0682]DE SUMMATIONE & {1 / M} = 1 - {1 / 2} - {1 / 3} - {1 / 5} + {1 / 6} - {1 / 7} - &c. = 0, & {1 / N} = 1 - {1 / 2^2} - {1 / 3^2} - {1 / 5^2} + {1 / 6^2} &c. = {6 / π^2}.

3. Erit L = (1 ± {a / x})^±m × (1 ± {b / x})^±m × (1 ± {c / x})^±m × (1 ± {d / x})^±m × &c. = 1 ± m (a + b + c + d + &c.) × {1 / x} ± m × {± m - 1 / 2} (a^2 + b^2 + c^2 + &c.) {1 / x^2} + m^2 (ab + ac + bc + ad + &c.) {1 / x^2} ± m × {± m - 1 / 2} × {± m - 2 / 3} (a^3 + b^3 + &c.) {1 / x^3} ± m^3 (abc + abd + acd + bcd + &c.) {1 / x^3} ± &c.

Cor. 1. Sint a = {1 / 2^n}, b = {1 / 3^n}, c = {1 / 5^n}, d = {1 / 7^n}, &c. & x = 1, tum erit (1 ± {1 / 2^n})^m (1 ± {1 / 3^n})^m (1 ± {1 / 5^n})^m (1 ± {1 / 7^n})^m &c. = 1 ± m ({1 / 2^n} + {1 / 3^n} + {1 / 5^n} + {1 / 7^n} + &c.) + m · {m - 1 / 2}({1 / 2^2n} + {1 / 3^2n} + &c.) + m^2 ({1 / 2^n · 3^n} + {1 / 2^n · 5^n} + {1 / 3^n · 5^n} + {1 / 2^n · 7^n} + {1 / 3^n · 7^n} + &c.) ± m · {m - 1 / 2} · {m - 2 / 3} ({1 / 2^3n} + {1 / 3^3n} + {1 / 5^3n} + &c.) ± m^3 ({1 / 2^n · 3^n · 5^n} + {1 / 2^n · 3^n · 7^n} + {1 / 3^n · 5^n · 7^n} + &c.) ± &c.; etiamque erit (1 ± {1 / 2^n})^-m × (1 ± {1 / 3^n})^-m × (1 ± {1 / 5^n})^-m × (1 ± {1 / 7^n})^-m &c. = 1 ∓ m ({1 / 2^n} + {1 / 3^n} + {1 / 5^n} + {1 / 7^n} + &c.) - m × {- m - 1 / 2} × ({1 / 2^2n} + {1 / 3^2n} + &c.) + m^2 × ({1 / 2^n · 3^n} + {1 / 2^n · 5^n} + {1 / 3^n · 5^n} + {1 / 2^n · 7^n} + {1 / 3^n · 7^n} + {1 / 5^n · 7^n} + &c.) ∓ m^3 · ({1 / 2^n · 3^n · 5^n} + {1 / 2^n · 3^n · 7^n} + [0683]SERIERUM, &c. {1 / 2^n · 5^n · 7^n} + {1 / 3^n · 5^n · 7^n} + {1 / 2^n · 3^n · 11^n} + &c.) - &c., in hoc ca$u omnes na- turales numeri integri, qui primi $unt, reciproce in primâ $ummâ con- tinentur & in m ducuntur; & in $ub$equentibus aggregata e $ingulis con- tentis huju$ce generis π^-rn × ρ^-sn × σ^-tn &c., ubi π, ρ, σ, &c. $unt quicun- que diver$i primi, & r, s, t, &c. integri numeri, in $erie continentur; & hæc aggregata ducuntur in coefficientes m · {m - 1 / 2} .. {m - r + 1 / r} × m. {m - 1 / 2} .. {m - s + 1 / s} × m · {m - 1 / 2} .. {m - t + 1 / t} × &c.

Et $ic deduci po$$unt infinitæ con$imiles propo$itiones ex a$$umptis quibu$cunque factoribus, & reductis a$$umptis quantitatibus per me- thodos divi$ionis, radicum extractionis, &c. ad infinitas $eries, quæ evadunt convergentes.

5. Erit M = {1 / (1 - {1 / 2^n}) (1 - {1 / 3^n}) (1 - {1 / 5^n}) (1 - {1 / 7^n}) &c.} = {2^n / 2^n - 1} × {3^n / 3^n - 1} × {5^n / 5^n - 1} · &c. = 1 + {1 / 2^n} + {1 / 3^n} + {1 / 4^n} + &c.; & $imiliter N = {1 / (1 - {1 / 2^2n}) (1 - {1 / 3^2n}) (1 - {1 / 5^2n}) (1 - {1 / 7^2n}) &c.} = {2^2n / 2^2n - 1} × {3^2n / 3^2n - 1} × {5^2n / 5^2n - 1} × &c. = 1 + {1 / 2^2n} + {1 / 3^2n} + {1 / 4^2n} + {1 / 5^2n} + &c.; unde {M / N} = (1 + {1 / 2^n}) (1 + {1 / 3^n}) (1 + {1 / 5^n}) (1 + {1 / 7^n}) &c., & {MM / N} = {2^n + 1 / 2^n - 1} × {3^n + 1 / 3^n - 1} × {5^n + 1 / 5^n - 1} × {7^n + 1 / 7^n - 1} × &c.

6. Erit log. M = log. (1 + {1 / 2^n} + {1 / 3^n} + &c.) = - log. (1 - {1 / 2^n}) - log. (1 - {1 / 3^n}) - log. (1 - {1 / 5^n}) - &c. = 1 ({1 / 2^n} + {1 / 3^n} + {1 / 5^n} + &c.) + [0684]DE SUMMATIONE {1 / 2} ({1 / 2^2n} + {1 / 3^2n} + {1 / 5^2n} + &c.) + {1 / 3}({1 / 2^3n} + {1 / 3^3n} + {1 / 5^3n} + &c.) + {1 / 4}({1 / 2^4n} + &c.)

Cor. · Quoniam prius inve$tigatæ fuerunt $ummæ $erierum 1 + {1 / 2^2} + {1 / 3^2} + {1 / 4^2} + {1 / 5^2} + &c. = {π^2 / 6}, & 1 + {1 / 2^2n} + {1 / 3^2n} + {1 / 4^2n} + &c. = {1 / a}π^2n; ubi n e$t integer numerus; & con$equenter invenitur valor fra- ctionis {1 / (1 - {1 / 2^2n})} (1 - {1 / 3^2n}) (1 - {1 / 5^2n}) &c. huic $eriei æqualis; unde con$tat 2 n log · π - log · a = - log · (1 - {1 / 2^2n}) - log. (1 - {1 / 3^2n}) - &c. = 1 ({1 / 2^2n} + {1 / 3^2n} + {1 / 4^2n} + &c.) + {1 / 2}({1 / 2^4n} + {1 / 3^4n} + &c.) + {1 / 3}({1 / 2^6n} + {1 / 3^6n} + &c.) + &c.

Inveniantur valores e pluribus huju$modi $eriebus, i. e. cum 2 n æquat re$pective α, β, γ, &c. qui $int {π^α / b}, {π^β / c}, {π^γ / d}, &c. unde eorum logarithmi erunt re$pective α log. π - log. b; β log · π - log. c; γ log. π - log. d; &c. inveniantur $eries, quæ his logarithmis re$pe- ctive $unt æquales. Ducantur hæ $eries re$pective in quantitates k, l, m, &c. & erit $erierum re$ultantium aggregatum = (k α + l β + m γ + &c.) log. π - log. b^k c^l d^m, &c.

Fiat k α + l β + m γ + &c. = 0, & re$ultant $eries, quæ cognitæ quantitatis logarithmo æquales $unt.

THEOR. XL.

1. Sit A = 1 + {1 / 2^n} + {1 / 3^n} + {1 / 4^n} + &c. ducatur hæc æquatio in 1 - {1 / 2^n} & re$ultat (1 - {1 / 2^n}) A = B = 1 + {1 / 3^n} + {1 / 5^n} + {1 / 7^n} + &c. [0685]SERIERUM, &c. ducatur hæc æquatio in (1 - {1 / 3^n}) & re$ultat (1 - {1 / 3^n}) B = C = 1 + {1 / 5^n} + {1 / 7^n} + {1 / 11^n} + &c. ducatur hæc æquatio in 1 - {1 / 5^n}, & re- $ultat (1 - {1 / 5^n}) C = D = 1 + {1 / 7^n} + {1 / 11^n} + &c. &c. unde A = (1 - {1 / 2^n}) (1 - {1 / 3^n}) (1 - {1 / 5^n}) (1 - {1 / 7^n}) (1 - {1 / 11^n}) &c. = {2^n - 1 / 2^n}. {3^n - 1 / 3^n} · {5^n - 1 / 5^n} · &c.

2. Sit A′ = 1 - {1 / 3^n} + {1 / 5^n} - {1 / 7^n} + {1 / 9^n} - {1 / 11^n} + &c. ducatur hæc æquatio in 1 + {1 / 3^n}, & re$ultat (1 + {1 / 3^n}) A′ = B′ = 1 + {1 / 5^n} - {1 / 7^n} + &c. ducatur re$ultans æquatio in 1 - {1 / 5^n}, & re$ultat (1 - {1 / 5^n}) B′ = C′ = 1 - {1 / 7^n} - {1 / 11^n} + &c. unde A′^-1 = (1 + {1 / 3^n}) (1 - {1 / 5^n}) (1 + {1 / 7^n}) (1 + {1 / 11^n}) &c. = {3^n + 1 / 3^n} · {5^n - 1 / 5^n} · {7^n + 1 / 7^n} · &c.

Hìc 1, 3, 5, 7, &c. omnes primos numeros denotant, & $ignum affixum erit + vel -, prout primus numerus $it 4 m - 1 vel 4 m - 3, ubi m e$t integer numerus.

3. Ex principiis prius traditis inveniri pote$t valor quantitatis A, cum n $it quicunque integer numerus; & exinde e Walli$ii formulâ {π / 2} = {2 · 2 · 4 · 4 · 6 · 6 · 8 · 8 · &c. / 1 · 3 · 3 · 5 · 5 · 7 · 7 · &c.}, vel formulis prius datis deduci po$- $unt per multiplicationem vel divi$ionem vel radicum extractionem harum & prædictarum formularum plurimæ quantitates, quarum contenta innote$cunt vel per pote$tates quantitatis π, vel per datas al- gebraicas quantitates.

[0686]DE SUMMATIONE

Ex. g. Sit n = 1, & erit A = {π / 4} = {3 / 4} · {5 / 4} · {7 / 8} · {11 / 12}· &c. at primo inventum fuit {π^2 / 6} = {4 / 3} · {3^2 / 2 · 4} · {5^2 / 4 · 6} · {7^2 / 6 · 8}· &c. dividatur $ecunda per primam, & exorietur {2π / 4} = {3 / 2} · {5 / 6} · {7 / 6} · {11 / 10} · {13 / 14} · {17 / 18} · &c. denuo divi- datur hæc æquatio per primam, & re$ultat {4 / 2} · {4 / 6} · {8 / 6} · {12 / 10} · {12 / 14}· &c. = 2 = {2 / 1} · {2 / 3} · {4 / 3} · {6 / 5} · {6 / 7}· &c. dividatur Walli$ii æquatio {π / 2} = {2 · 2 · 4 · 4 · 6 · 1 · 8 / 1 · 3 · 3 · 5 · 5 · 7 · 7} &c. $eu {4 / π} = {3 · 3 / 2 · 4} · {5 · 5 / 4 · 6} · {7 · 7 / 6 · 8}· &c. per {π^2 / 8} = {3 · 3 / 2 · 4} · {5, 5 / 4 · 6} · {7 · 7 / 6 · 8}· &c. & re$ultat {3^2 / π^3} = {9 · 9 / 8 · 10} · {15 · 15 / 14 · 16} · {21 · 21 / 20 · 22}· &c. ubi in numeratoribus occurrunt omnes numeri impares non primi.

Et $ic $it n = 3 & inveniri pote$t A = {π^3 / 3^2} = {3^3 / 3^3 + 1} · {5^3 / 5^3 - 1} · {7^3 / 7^3 + 1} · {11^3 / 11^3 + 1} · {13^3 / 13^3 - 1}· &c. & quoniam {π^6 / 945} = 1 + {1 / 2^6} + {1 / 3^6} + {1 / 4^6} + &c. = {2^6 / 2^6 - 1} · {3^6 / 3^6 - 1} · {5^6 / 5^6 - 1}· &c. con$equitur {π^3 / 30} = {3^3 / 3^3 - 1} · {5^3 / 5^3 - 1} · {7^3 / 7^3 - 1} · &c. ex divi$ione po$terioris æquationis per primam habebitur {16 / 15} = {3^3 + 1 / 3^3 - 1} · {5^3 - 1 / 5^3 + 1} · &c.

3. Sit A = 1 - {1 / 2^n} + {1 / 4^n} - {1 / 5^n} + {1 / 7^n} - {1 / 8^n} + {1 / 10^n} - {1 / 11^n} + &c. & n impar numerus; & erit (1 + {1 / 2^n}) A = B = 1 - {1 / 5^n} + {1 / 7^n} - {1 / 11^n} + &c. & $imiliter (1 + {1 / 5^n}) B = C = 1 + {1 / 7^n} - {1 / 11^n} + {1 / 13^n} &c. & $ic deinceps: ex his tandem fiet A(1 + {1 / 2^n})(1 + {1 / 5^n})(1 - {1 / 7^n}) &c. = 1, [0687]SERIERUM, &c. ubi numeri primi unitate excedentes multipla $enarii habent $ignum -; deficientes +: $it n = 1 & erit A = {π / 3√(3)} = {2 / 3} · {5 / 6} · {7 / 6}· &c. ubi denominatores $unt omnes præter primum per 6 divi$ibiles, per hanc expre$$ionem dividatur æquatio {π^2 / 6} = {4 / 3} · {3 · 3 / 2 · 4} · {5 · 5 / 4 · 6} · {7 · 7 / 6 · 8} · {11 · 11 / 10 · 12} · &c. & re$ultat {π√(3) / 2} = {9 / 4} · {5 / 4} · {7 / 8} · {11 / 10}· &c. hæc vero per illam divi$a, dabit {4 / 3} = {6 / 4} · {6 / 8} · {12 / 14} · {18 / 16} · {18 / 20}· &c. Et $ic ex ii$dem principiis deduci po$- $unt aliæ con$imiles æquationes.

Sit A = 1 + {1 / 3} - {1 / 5} - {1 / 7} + {1 / 11} - {1 / 13} - &c. = {π / 2√(2)}, & exinde (A), i. e. {π / 2√(2)}(1 - {1 / 3})(1 + {1 / 5})(1 + {1 / 7})(1 - {1 / 11})(1 + {1 / 13}) &c. = 1, ubi primorum numerorum formularum 8 m + 1 vel 8 m + 3 $igna erunt -, formularum 8 m + 5 vel 8 m + 7 $igna erunt +; unde {π / 2√(2)} = {3 / 2} · {5 / 6} · {7 / 8} · {11 / 10} · {13 / 14} · {17 / 16} · {19 / 18} &c. Et ex hâc & prius traditis æquationibus per hanc methodum erui po$$unt plurimæ con$imiles æquationes.

E divi$ione factorum in numeratore per eorum corre$pondentes in denominatore erui po$$unt diver$æ $eries, quæ in $e$e ductæ præbent $eriem æqualem contento factorum in $e$e continuo ductorum: in re$olutione huju$ce problematis plerumque u$ui in$ervire po$$int ea, quæ in tradita fuere.

THEOR. XLI.

Cum detur valor contenti, quod erit fractio, cujus denominator con$tat e pluribus factoribus; reducatur hæc fractio ad infinitam $e- riem terminorum, & con$tat valor infinitæ $eriei; vel ducatur prædicta fractio in qua$cunque cognitas quantitates, quæ vel diruat quo$dam factores datæ fractionis vel novos adjiciat, & reducatur re$ultans fra- ctio ad infinitam $eriem terminorum, cujus $umma etiam innote$cit.

[0688]DE SUMMATIONE

Ex.1. Detur {π / 4} = {3 / 3 + 1} · {5 / 5 - 1} · {7 / 7 + 1} · &c. = {3 · 5 · 7 / 4 · 4 · 8} &c. = {1 / (1 + {1 / 3}) (1 - {1 / 5}) (1 + {1 / 7}) &c.}; unde {π / 4} × {1 / 1 + {1 / 2}} = {π / 6} = {1 / (1 + {1 / 2})(1 + {1 / 3})(1 - {1 / 5})(1 + {1 / 7})&c.}; reducatur hæc fractio ad infini- tam $eriem, & re$ultat {π / 6} = 1 - {1 / 2} - {1 / 3} + {1 / 4} + {1 / 5} + {1 / 6} - {1 / 7} &c. ubi primi numeri 4m - 1 habent $ignum -, & 4 m + 1 $ignum +; $i m $it integer numerus.

Fuit {π / 2} = {1 / (1 - {1 / 3}) (1 + {1 / 5})(1 - {1 / 7})(1 - {1 / 11}) &c.} = 1 + {1 / 3} - {1 / 5} + {1 / 7} + {1 / 9} + {1 / 11} - &c. ubi impares numeri $olummodo occurrunt, & primi numeri formulæ 4m + 1 habent $ignum -, formulæ vero 4m - 1 habent $ignum +; & $igna compo$itorum numerorum e primis eorum divi$oribus deduci po$$unt: ducatur hæc æquatio in {1 / 1 - {1 / 2}} & re$ultat π = {1 / (1 - {1 / 2})(1 - {1 / 3})(1 + {1 / 5}) &c.} = 1 + {1 / 2} + {1 / 3} + &c. duca- tur eadem æquatio in {1 / 1 + {1 / 2}} & re$ultat {π / 3} = {1 / (1 + {1 / 2}) (1 - {1 / 3}) &c.} = 1 - {1 / 2} + {1 / 3} + {1 / 4} - &c.

Ducatur æquatio {π / 2} = {1 / (1 - {1 / 2})(1 - {1 / 3})(1 - {1 / 5}) (1 - {1 / 7} &c.} in 1 + {1 / 3}/1 - {1 / 3} × 2, & re$ultat π = {1 / (1 - {1 / 2}) (1 - {1 / 3}) (1 - {1 / 5}) &c.} & $ic deinceps; & e lege quam ob$ervat $eries ex evolutione fractionis prioris æquationis exorta con$equitur lex quam ob$ervat $eries ex pofteriore fractione in $implices terminos per præcedentem methodum reductâ.

Sit 0 = {1 / (1 + {1 / 2})(1 + {1 / 3})(1 + {1 / 5})(1 + {1 / 7})(1 + {1 / 11}) &c.} = 1 - 2 - {1 / 3} - {1 / 5} + {1 / 6} - {1 / 7}&c. ducatur hæc æquatio in finitum numerum factorum 1 + {1 / 2}, 1 + {1 / 3}, 1 + {1 / 5}, &c. & æquatio re$ultans etiam erit nihilo æqua- [0689]SERIERUM, &c. lis; ducatur etiam æquatio exinde re$ultans in finitum numerum factorum huju$ce generis 1 - {1 / 2}, 1 - {1 / 3}, 1 - {1 / 5}, &c. & contentum etiam erit nihilo æquale; in quo ca$u omnes primi numeri ni$i finitus eo- rum numerus in $erie præcedente methodo deductâ $ignum habent -: & $ic de infinitis huju$cemodi $eriebus, fractionibus & terminis detegendis, vel rationalibus vel irrationalibus.

1. In genere a$$umantur quæcunque algebraicæ quantitates vel ra- tionales fractiones vel irrationales quantitates; inveniantur quæcun- que functiones harum quantitatum, reducantur hæ functiones ad $e- ries, $i modo $int infinitæ, convergentes; tum inveniuntur $eries, quarum $ummæ innote$cunt.

2. Inveniantur quæcunque functiones prædictarum $erierum & datarum infinitarum, quarum $ummæ innote$cunt; & $i modo $eries exinde re$ultantes $int convergentes, tum inveniuntur $eries, quarum fummæ innote$cunt.

THEOR. XLII.

1. Sit (x^α + x^β + x^γ + x^δ + &c.)(x^a + x^b + x^c + x^d + &c.) = x^a+α .... + N x^n, & N erit numerus modorum, quibus confici pote$t n ex additione cuju$cunque quantitatis vel a vel b vel c, &c. ad unam e quantitatibus α, β, γ, δ, &c. Si vero b $it negativa quantitas, tum de quantitatibus α, β, γ, δ, &c. $ubtrahenda e$t b.

2. Et $ic de pluribus factoribus in $e$e ductis: e. g. $it (1 + x^α z) (1 + x^β Z)(1 + x^γ Z)(1 + x^δ Z) &c. = 1 + Pz + Qz^2 ... N x^n z^m, tum coefficiens N erit diver$orum modorum numerus, quibus nume- rus n pote$t e$$e $umma m diver$orum terminorum α, β, γ, δ, &c. $it z = 1 & erit (1 + x)(1 + x^2)(1 + x^3) &c. = 1 + x + x^2 + 2x^3 ... Px^n, & P numerus modorum, quibus numerus n ex additione diver$orum terminorum 1, 2, 3, 4, &c. produci pote$t.

3. Sit {1 / (1 + x^α z)(1 + x^β z)(1 + x^γ z)&c.} = 1 + Pz + Qz^2 + Rz^3 ... N x^n z^m, & erit N numerus modorum, quibus numerus n ex [0690]DE SUMMATIONE additione m quantitatum α, β γ, δ, &c. 2α, 2β, 2γ, &c. 3α, 3β, 3γ, &c. produci pote$t.

4. Sit {1 / (1 - x)(1 - x^2)(1 - x^3)...(1 - x^m)} = 1 + x + 2x^2 + ... N x^n &c. & erit N numerus modorum, quibus produci pote$t n ex additione numerorum 1, 2, 3, 4, &c. $upponatur etiam {x / 1 - x} · {x^2 / 1 - x^2} · {x^3 / 1 - x^3}...{x^m / 1 - x^m} = {x^m.{m+1 / 2} / (1 - x)(1 - x^2)(1 - x^3)...(1 - x^m)} = x^m.{m+1 / 2} + ..... + N x^n+m.{m+1 / 2}, &c. unde N erit numerus diver$orum modorum quibus numerus n + m · {m + 1 / 2} dividi pote$t in m inæqua- les partes, & con$equenter quot modis n produci pote$t ex additione numerorum 1, 2, 3, ... m, tot modis numerus n + m · {m + 1 / 2} dividi pote$t in m inæquales partes.

5. Sint (A){1 / (1 - x)(1 - x^2)(1 - x^3)...(1 - x^m)} = 1 + P x... Nx^n, &c. & (B){x^m / (1 - x) (1 - x^2) (1 - x^3) ... (1 - x^m)} = x^m + P′x^m+1 ... M x^n, &c. & exinde (A-B) = {1 - x^m / (1 - x)(1 - x^2)...(1 - x^m)} = {1 / (1 - x)(1 - x^2)...(1 - x^m-1)} = 1 + Px ... (N - M)x^n, &c. unde differentia inter numerum modorum, quibus n & n - m numeri con- fici po$$unt ex numeris 1, 2, 3, ... m æqualis erit numero modorum, quibus n confici pote$t e numeris 1, 2, 3, ... m - 1.

Eodem modo ducatur A vel in (1 - x^m)(1 - x^m-1) vel B in (1 - x^m-1); &c. & con$imilia deduci po$$unt theoremata; & $ic deinceps.

6. E$t {1 / (1 - x)(1 - x^3)(1 - x^5)&c.} = (1 + x)(1 + x^2)(1 + x^3)[0691]SERIERUM, &c. &c. in infinitum = 1 + x + x^2 + 2 x^3 + ... N x^n: & exinde quot diver$is modis per additionem numerus n confici pote$t ex integris inæqualibus numeris, totidem modis idem numerus n confici pote$t per additionem numerorum modo $int impares, utrum $int æquales vel inæquales.

7. Contentum (x^-1 + 1 + x^1) (x^-3 + 1 + x^3) (x^-9 + 1 + x^9) (x^-27 + 1 + x^27) &c. præbet omnes exponentes quantitatis x vel ex additione vel ex $ubtractione numerorum 1, 3, 9, 27, &c. & $imilia etiam de reliquis numeris prædicari po$$unt.

8. Sit (1 - x)^r (1 - x)^s (1 - x)^t = (1 - x)^r+s+t = 1 - (r + s + t) x + .. N x^m &c.; tum, $i numerus modorum, quibus α quantitates in r contineri po$$unt, multiplicetur in numerum modorum, quibus β quantitates in s continentur; & productum re$ultans multiplicetur in numerum modorum, quibus m - α - β quantitates in t continen- tur; erit aggregatum e $ingulis contentis re$ultantibus N; ubi α, β & γ re$pective denotant quo$cunque numeros 1, 2, 3, &c.: & $imili- ter numerus modorum, quibus m quantitates in r + s + t contineri po$$unt, etiam erit N.

9. Sit (1 + x^r + x^s)^n = 1 + n x^r ... + N x^m &c.: & α r + β s = m; & inveniatur numerus modorum, quibus α quantitates conti- neri po$$unt in n; qui ducatur in numerum modorum, quibus β quantitates contineri po$$unt in n; tum erit $umma e $ingulis his pro- ductis = N.

Hìc etiam adjicere liceat quamplurimas huju$ce generis propo$itio- nes; in genere $i modo data quantitas vel $eries quocunque modo ex aliis conficiatur, animadvertentur etiam quomodo producentur ejus coefficientes, exponentes, &c. & re$ultabunt huju$ce generis propo$i- tiones: $i modo in diver$am formulam transformetur data quantitas, ita ut eædem coefficientes, exponentes, &c. vel aliæ ad has affigna- bilem relationem habentes e diver$is modis producentur; tum etiam re$ultabunt novæ huju$ce generis propo$itiones: hinc vix ulla datur $eries, e quâ non facile deduci po$$unt propo$itiones huju$modi.

10. In multitudine (n) literarum a b c d e f g h, &c. numeri modorum, quibus detrahi po$$unt quæcunque duæ proxime $ucce$$ivæ, viz. vel [0692]DE SUMMATIONE a & b, vel b & c, vel c & d, &c.; $emel, bis, ter, quater, &c. erunt n - 1, (n - 2) · {n - 3 / 2}, (n - 3) · {n - 4 / 2} · {n - 5 / 3}, &c.

Cor. Sit continua fractio {a / b + a} \\ b + a \\ b + &c. in infin.; # tum erunt fractiones $ucce$$ivæ ad datam vergentes a × {1 / b}, a × {b / b^2 + a}, a × {b^2 + a / b^3 + 2 b a}, a × {b^3 + 2 b a / b^4 + 3 b^2 a + a^2}, a × {b^4 + 3 b^2 a + a^2 / b^5 + 4 b^3 a + 3 b a^2}, &c. in genere erit fra- ctio, cujus numerator e$t a × (b^n-1 + (n - 2) b^n-3 a + (n - 3) · {n - 4 / 2} b^n-5 a^2 + (n - 4) · {n - 5 / 2} · {n - 6 / 3} b^n-7 a^3 + (n - 5) · {n - 6 / 2} · {n - 7 / 3}· {n - 8 / 4} b^n-9 a^7 + &c.), denominator vero b^n + (n - 1) b^n-2 a + (n - 2) · {n - 3 / 2} b^n-4 a^2 + (n - 3) · {n - 4 / 2} · {n - 5 / 3} b^n-6 a^3 + &c. approximatio ad valorem prædictæ continuæ fractionis.

Hæ fractiones etiam $ic exprimi po$$unt, viz. a × {1 / b}, a × {A / b A + a P}, a × {B / b B + a Q}, a × {C / b C + a R}, a × {D / b D + a S}, &c.; ubi literæ A, B, C, D, &c. re$pective denotant denominatores; & P, Q, R, S, &c. nume- ratores præcedentium fractionum.

Cor. Hæ fractiones erunt approximationes ad radicem quadraticæ æquationis x^2 + b x - a = 0, nam erit x = {a / b + a} \\ b + &c. # = {a / b + x}, & exinde x^2 + b x = a.

Cor. In datâ quadraticâ x^2 + b x - a = 0 pro x $cribatur z - b, [0693]SERIERUM, &c. & re$ultat z^2 - b z = a; unde per præcedens coroll. z = {a / - b + a} \\

    - b
+ &c. # , & exinde x = b + {a / - b} + a \\
    - b
+ a \\
    - b
+ &c. # altera radix prædictæ quadraticæ; continua fractio {a / b + a} \\ b + a \\ b + &c. # eadem erit ac continua fractio {a / - b + a} \\ - b + a \\ - b + &c. # , at ejus negativa; & con$equenter ea- rum approximationes eædem.

Cor. Hinc deduci po$$unt multæ continuæ fractiones, quarum $ummæ differunt tantummodo per datas quantitates; transformetur enim quæcunque quadratica æquatio x^2 + b x = a in alteram z^2 + B x = A e $cribendo z + p pro x, & erit a \\ b + a \\ b + a \\ b + &c. # = A \\ B + A \\ B + A \\ B + &c. # + p.

2. Et $imiliter in cubicâ æquatione x^3 + d x^2 - (a + b)x - a d = 0 pro x $cribatur z + e & re$ultet æquatio x^3 + D x^2 - (A + B)x - A D = 0, tum erit √ a + b \\ 1 + d \\ √ a + b \\ 1 + d \\ √ &c. # = [0694]DE SUMMATIONE √ A + B \\

    1 + D
\\
    √ A + B
\\
    1 + D
\\
    √ &c.
# + e.

Et $ic facile erui po$$unt infinitæ con$imiles propo$itiones ex a$$u- mendo diver$as approximationes ad quotientes, radices, &c.

THEOR. XLIII.

Fluentes fluxionum x^i x^. π′ & x^i+a x^. π′, ubi i $it infinitus numerus, a finitus, π′ vero quæcunque algebraìca finita functio literæ x, inter va- lores 0 & 1 quantitatis x po$itæ, erunt inter $e æquales.

Reducatur enim algebraica functio π′ ad terminos a$cendentes $ecundum dimen$iones quantitatis x, qui $int a x^π-1 + b x^π+ρ-1 + c x^π+2ρ-1 + &c. & evadent duæ fluentes prædictæ re$pective {a / i + π} + {b / i + π + ρ} + {c / i + π + 2ρ} + &c. & {a / i + α + π} + {b / i + α + π + ρ} + &c. $ed quoniam i e$t infinitus, hæ duæ $eries a$cendentes erunt inter $e in ratione æqualitatis.

PROB. XXXVI.

Qua$dam fluentes evolvere per producta infinita.

1. Fluens fluxionis {x^. / √(1 - x^2)} inter valores (0 & 1) quantitatis x per ex. 1. prob. 23. l. 1. erit {2 · 4 · 6 · 8 .. (2 i) / 1 · 3 · 5 · 7 .. (2 i - 1)} $. {x^2i x^. / √(1 - x^2)}; & $ic per prædict. exem. erit $. {x x^. / √(1 - x^2)} = {3 · 5 · 7 ... (2 i + 1) / 2 · 4 · 6 .. (2 i)} $. {x^2i+1 x^. / √(1 - x^2)^2}. Sit i infinitus & erit $. {x^2i x^. / √(1 - x^2)} = $. {x^2i+1 x^. / √ (1 - x^2)} = $. {x^2i+2 x^. / √(1 - x^2)}, & con$equenter $. {x x^. / √(1 - x^2)} (1): $. {x^. / √ (1 - x^2} ({π / 2})::{1 · 3 · 5 · 7 · &c. / 2 · 4 · 6 · &c.} [0695]SERIERUM, &c. : {2 · 4 · 6 · &c. / 1 · 3 · 5 · 7 · &c.}, unde {π / 2} = {2 · 2 / 1 · 3} · {4 · 4 / 3 · 5} · {6 · 6 / 5 · 7}· &c.

Ex. 2. Per ex. 1. prob. 23. $. x^m-1 x^. (1 - x^n)^{k-n / n} (P) & $. x^μ-1 x^. (1 - x^n)^{k-n / n} (Q) inter valores 0 & 1 quantitatis x po$itæ, erunt re$pective {(m + k) (m + k + n) (m + k + 2 n) ... (m + k + i n) / m(m + n) (m + 2 n) ... (m + i n)} $. x^m+in+n-1 x^. (1 - x^n)^{k-n / n}, & {(μ + k) (μ + k + n) ... (μ + k + in) / μ (μ + n) ... (μ + i n)} $. x^μ+in+n-1 x^. (1 - x^n)^{k-n / n}; cum vero i $it in$initus, tum evadunt hæ duæ fluentes in- ter $e æquales, & con$equenter erit {P / Q} = {μ(m + k) / m(μ + k)} · {(μ + n)(m + k + n) / (m + n)(μ + k + n)} · {(μ + 2 n)(m + k + 2 n) / (m + 2 n)(μ + k + 2 n)}. &c.

A$$umatur μ = n, vel 2 n vel 3 n vel 4 n, &c., ita quidem ut ejus fluens deduci pote$t; e. g. $it μ = n, & erit $. x^n-1 x^. (1 - x^n)^{k-n / n} = con$t. (C) - {1 / k} (1 - x^n)^{k / n} (R); po$ito vero x = 0, evane$cere oportet fluentem, unde C = {1 / k}; ergo erit Q = {1 / k}, & exinde con$tat P = {1 / k}. {μ(m + k) / m(μ + k)} · {(μ + n)(m + k + n) / (m + n)(μ + k + n)}. &c. = {1 / k} · {n(m + k) / m(n + k)} · {2 n (m + k + n) / (m + n)(2 n + k)}. {3 n (m + k + 2n) / (m + 2n)(3 n + k)} · &c.

Sit m = {n + α / 2} & k = {n - α / 2}, & re$ultat P = {4 · n / (n - α)^2} · {2 · 4 n^2 / 9 n^2 - α^2}· {4 · 6 n^2 / 25 n^2 - α^2}· &c. = {2 / n - α} · {2 n · 2 n / (n + α) (3 n - α)} · {4 n · 4 n / (3 n + α) (5 n - α)}. &c. = {π / n $in. {m π / n}} = {π / n co$. {α π / 2 n}}. Sit k = {μ n / v}, & evadet $. x^m-1 x^. [0696]DE SUMMATIONE (1 - x^n)^{μ / υ}-1 = {υ / m μ} · {2(μ υ + n μ) / (m + n)(μ + υ)} · {3(μ υ + n μ + n υ) / (m + 2 n)(μ + 2 υ)} · {4 (m υ + n μ + 2 n υ) / (m + 3 n)(μ + 3 υ)} · &c.

Cum $. {x^m-1 x^. / ^n √ (1 - x^n)^n-k} = $.{x^k-1 / ^n √(1 - x^n)^n-m} = {1 / k} · {n (m + k) / m(k + n)}. {2 n (m + k + n) / (m + n)(k + 2 n)}. &c. inter duos valores 0 & 1 quantitatis x po$itæ; & $imiliter erit $. {x^p-1 x^. / ^n √ (1 - x^n)^n-q} = $. {x^q-1 x^. / ^n √ (1 - x^n)^n-p} = {p + q / p q}. {n (p + q + n) / (p + n)(q + n)} · {2 n (p + q + 2n) / (p + 2n)(q + 2n)} · &c. & con$equenter {$. x^m-1 x^. (1 - x^n)^{k-n / n} / $. x^p-1 x^. (1 - x^n)^{q-n / n}} = {p q (m + k) / m k (p + q)} · {(p + n)(q + n)(m + k + n) / (m + n)(k + n)(p + q + n)}.{(p + 2 n)(q + 2 n) / (m + 2 n)(k + 2 n)} {(m + k + 2 n) / (p + q + 2 n)} · &c.

PROB. XXXVI. Innvenire diver$a producia ex binis huju$modi formulis, quæ inter $e $unt æqualia.

Sint producta re$pective {a + b / a b} · {n (a + b + n) / (n + a)(n + b)} · {2 n (a + b + 2 n) / (a + 2 n)(b + 2 n)} · &c. {c + d / c d} · {n (c + d + n) / (n + c) (n + d)}. &c. & $ic {p + q / p q} · {n (p + q + n) / (n + p) (n + q)} · &c., & {r + s / r s} · {n (r + s + n) / (n + r)(n + s)}. &c. ducantur duo priora producta in $e$e, & evadit productum {a + b / a b} × {c + d / c d} × {n (a + b + n) / (a + n)(b + n)} × {n (c + d + n) / (c + n)(d + n)}. &c. & $ic ducantur in $e$e duo po$teriora, & re$ul- [0697]SERIERUM, &c. tat {p + q / p q} × {r + s / r s}. &c. nunc nece$$e e$t ut fiat (a + b)(c + d)p q r s = a b c d (p + q)(r + s), & con$equenter $inguli ex his $ex factori- bus utrinque $int æquales: & exinde vel $int s = d, r = b, q = c, p = r + s = b + d, c + d = a, & a + b = p + q; vel $int s = d, r = b, q = r + s = b + d, p = a, c + d = p + q & a + b = c; tertio vero $int s = d, r = p + q, q = b, p = c, c + d = a & a + b = r + s = p + q + d. Hinc oriuntur tres formulæ infinitorum productorum, quæ erunt inter $e æqualia; etiamque $. {x^p-1 x^. / ^n √ (1 - x^n)^n-q} · $. {x^p+q-1 x^. / ^n √ (1 - x^n)^n-r} = $.{x^q-1 x^. / ^n √ (1 - x^n)^n-r} · $. {x^q+r-1 x^. / ^n √(1 - x^n)^n-p} = $.{x^p-1 x^. / ^n √ (1 - x^n)^n-r} · $. {x^p+r-1 x^. / ^n √ (1 - x^n)^n-q}; quæ fluentes inter valores 0 & 1 quantitatis x con- tinentur.

Cum vero p + q = n, erunt tria prædicta producta = {π / n r $in.{p π / n}}.

Et $ic progredi liceat ad deducenda diver$a producta e ternis qua- tuor, &c. huju$modi formulis, quæ inter $e $unt æqualia.

Per prob. prius tradita e fluentibus datarum fluxionum acquiri po$$unt infinita producta, quorum contenta e prædictis fluentibus acquiri po$$unt.

Erit $. {x^m+zn-1 x^. / (1 - x^n)^{n-k / n}} × $. {x^m+k+xn-1 x^. / (1 - x^n)^{k / n}} = {m / m + α n} $.{x^m-1 x^. / (1 - x^n)^{n-k / n}}. $. {x^m+k-1 x^. / (1 - x^n)^{k / n}}, ubi valores $ingularum prædictarum fluentium inter va- lores 0 & 1 quantitatis x a$$umendi $unt: con$tat e prob. 23. l. 1.

Et $ic e datis in$initis productis haud difficilis erit inve$tigatio, utrum prædicta producta $int prædicti generis, necne; $i vero $int [0698]DE SUMMATIONE producta prædicti generis, tum facile acquiri po$$unt fluentes, quibus æqualia $unt producta jam prædicta.

Singuli factores facile transformari po$$unt in infinitas alias irra- tionales, & exinde contenta in infinitis irrationalibus factoribus de- duci po$$unt.

PROB. XXVII.

Datâ $erie $ecundum continua contenta in $e$e ducta progrediente, inve- nire $eriem relationem inter $ucce$$ivos terminos exprimentem: $it data $e- ries p (1 + α)(1 + β)(1 + γ) &c.... (P) (1 + π)(1 + ρ)(1 + σ) (1 + τ) &c. tum erunt $ucce$$ivi termini T^m = Pπ & T^m+1 = P (1 + π)ρ, ergo erit relatio quæ$ita (1 + π)ρ T^m = π T^m+1.

Cor. 1. Ex datâ relatione inter $ucce$$ivos terminos per prob. 2. lib. præc. erui pote$t, annon $umma $eriei $it in$inita; $ed $eries $ecundum continua contenta progrediens facile transformari pote$t in æquationem relationem inter $ucce$$ivos terminos de$ignantem; ergo facile deduci pote$t, annon $eries $ecundum prædicta contenta progrediens $it finita.

Cor. 2. Facile ex principiis prius traditis innote$cunt ca$us, qui ex datis relationibus inter $ucce$$ivos terminos $eriei præbent fluxionales æquationes, in quibus variabiles quantitates $unt $ummæ $erierum & quantitas $ecundum cujus dimen$iones termini a$cendunt vel de- $cendunt.

Et vice versâ $it data prædicta fluxionalis æquatio; vel relatio inter $ucce$$ivos terminos, quæ exinde deduci pote$t; deinde ita redu- cantur æquationes inter $ucce$$ivos terminos & æquationem (1 + π) ρ T^m = π T^m+1 vel quæcunque aliæ datæ con$imiles ex continuâ $erie deductæ, ita ut exterminentur termini; & re$ultat æquatio relationem inter π, ρ, σ, &c. de$ignans, ubi π, ρ, σ, &c. $unt $ucce$$ivi valores eju$dem quantitatis: ex hâc æquatione inveniantur valores π, ρ, σ, &c.; & re$ultat $eries continua quæ$ita.

Aliter: A$$umatur functio quantitatis z di$tantiæ a primo $eriei termino pro $ummâ; deinde inveniantur $ucce$$ivi termini T & T′, & exinde ex a$$umpto primo termino contentorum, ita ut corre$pon- [0699]SERIERUM, &c. deat primo termino $eriei, cujus termini $unt T & T′, &c.; & tum ex terminis T^m & T^m+1 & præcedente factore 1 + π datis per æquatio- nem (1 + π)ρT^m = π T^m+1 facile acquiri pote$t factor 1 + ρ.

PROB. XXXVIII.

E prob.23. l.1. per factores huju$modi exprimere fluentem cuju$cun- que fluxionis huju$ce formulæ (a + bx^n)^m-1 x^rn-1 x^. inter valores o & {-a / b} quantitatis x^n contentam: fluens fluxionis (a + b x^n)^m-1 x^n-1 x^., quæ in genere erit {1 / m n b} × (a + b x^n)^m, inter prædictos valores quantitatis x contenta erit {a^m / m n b}; & con$equenter erit (P) $. (a + b x^n)^m-1 x^(1+1)n-1 x^. = {1 · 2 · 3 ... i / m + 1 · m + 2 .. m + i} × {a^i / b^i} × {a^m / m n b}, & $ic inveniri pote$t (Q) $. (a + b x^n)^m-1 x^(r+i)n-1 x^. = {r · r + 1 · r + 2 .. (r + i - 1) / m + r · m + r + 1 · m + r + 2 .. (m + r + i - 1)} × {a^i / b^i} × $. (a + b x^n)^m-1 x^rn-1 x^.; nunc fingatur i infinita quantitas, & re$ultat P = Q, & con$equenter {r · r + 1 · r + 2 · .. π + i - 1 / m + r · m + r + 1 · m + r + 2 .. (m + r + i - 1)} × {a^i-r / b^i-r}$. (a + bx^n)^m-1 x^rn-1 x^. = {1 · 2 · 3 · .. i / m · m + 1 · m + 2 · .. m + i} × {a^i-1 / b^i-1} × {a^m / m n b}; unde $. (a + b x^n)^m-1 x^rn-1 x^. = {1 · 2 · 3 · ..(i) × m + r · m + r + 1 · m + r + 2 · .. m + r + i - 1 / r · r + 1 · r + 2 .. (r + i - 1) × m · m + 1. m + 2 .. m + i} × {a^r-1 / b^r-1} × {a^m / m n b}.

Fallet hæc methodus, cum quidam factores in prædictâ fractione contenti evadant nihilo æquales; in his ca$ibus e transformatione datæ fluxionis in alteram $æpe deduci pote$t re$olutio, & ex ii$dem prin- [0700]DE SUMMATIONE cipiis, viz. transformationibus facile erui po$$unt in$initæ fluxiones, quarum particulares fluentes innote$cunt.

Sæpe vero fluentes prædictæ detegi po$$unt ex earum divi$ione in alias, $i enim fluentes prædictæ e $ingulis his innote$cant, tum fluen- tes e prædictis exinde inve$tigari po$$unt.

THEOR. XLIV.

Si data $eries A, cujus $umma innote$cit, quæ per datam quantita- tem (α) divi$a præbeat $eriem magis convergentem; & $imiliter quo- tiens per aliam datam quantitatem (β) divi$a præbeat $eriem adhuc magis convergentem; & $ic deinceps in infinitum; & ultima quo- tiens $it unitas; tum erit A = α × β × γ × δ × &c.

Ex. 1. Series 1 ± b + b^2 ± b^3 + b^4 ± &c. in infinitum per 1 ± b divi$a præbet; $eriem 1 + b^2 + b^4 + b^6 + &c. hæc autem $eries per 1 + b^2 divi$a dat 1 + b^4 + b^8 + b^12 + &c. quæ per 1 + b^4 divi$a præbet $eriem 1 + b^8 + b^16 + &c., &c.; quarum prima magis con- vergit quam $ecunda, $ecunda quam tertia, &c.; $i modo b minor $it quam 1.

Et con$equenter erit (1 ± b) (1 + b^2) (1 + b^4) (1 + b^8) (1 + b^16) (1 + b^32) &c. = {1 / 1 ∓ b}.

Cor. Sit b = {m / n}, ubi m minor e$t quam n; tum erit (1 ± {m / n}) (1 + {m^2 / n^2}) (1 + {m^4 / n^4}) (1 + {m^8 / n^8})&c. = ({n ± m / n}) ({n^2 + m^2 / n^2}) ({n^4 + m^4 / n^4}) ({n^8 + m^8 / n^8}) ({n^16 + m^16 / n^16}) &c. in infinitum = {1 / 1 ∓ {m / n}} = {n / n ∓ m}.

Ex. 2. Series 1 ± b + b^2 ± b^3 + b^4 ± b^5 + b^6 ± &c. per 1 ± b + b^2 ± b^3 + b^4 ... ± b^b divi$a præbet $eriem magis convergentem 1 ± b^b+1 + b^2b+2 ± b^3b+3 + b^4b+4 ± b^5b+5 + &c.; hæc autem $eries per $eriem 1 ± b^b+1 + b^2b+2 ± b^3k+3 + b^4k+4 .... b^rm+r divi$a præbet $eriem 1 ± b^(r+1).(b+1) + b^2(r+1)(b+1) ± b^3(r+1)(b+1) + b^4(r+1)(b+1) ± .. &c.; hæc au- [0701]SERIERUM, &c. tem $eries per $eriem 1 ± b^(r+1)(b+1) + b^2(r+1)(b+1) ± b^3(r+1)(b+1) ... b^6(r+1)(b+1) divi$a dat quotientem 1 ± b^(s+1)(r+1)(b+1) + b^2(s+1)(r+1)(b+1) ± b^3(s+1)(r+1)(b+1 + &c.; & $ic deinceps. Si omnes numeri b + 1, r + 1, s + 1, &c. $int impares; tum $igna ± vel po$$unt e$$e + vel -; $i autem unus e prædictis numeris b + 1, r + 1, &c. $it par, tum omnia $igna in $ub$equentibus quotientibus erunt +.

Hinc, $i b minor $it quam unitas, continuum productum (1 ± b + b^2 ± ... b^b)(1 ± b^b+1 + b^2b+2 ± b^3b+3 ... b^rb+1)(1 ± b^(r+1)(b+1) + b^2(r+1)(b+1) ± b^3(r+1)(b+1) + .. b^s(r+1)(b+1))(1 ± b^(s+1)(r+1)(b+1) + b^2(s+1)(r+1)(b+1) ± .. b^t(s+1)(r+1)(b+1))(1 ± b^(t+1)(s+1)(r+1)(b+1) + &c.) &c. in infinitum = {1 / 1 ∓ b}.

Pro b in hoc contento $cribatur {m / n}, & re$ultat prædictum conti- nuum contentum (1 ± {m / n} + {m^2 / n^2} ±.. {m^b / n^b})(1 ± {m^b+1 / n^b+1} + {m^2b+2 / n^2b+2} ± ... {m^r(b+1) / n^r(b+1)})(1 ± {m^(r+1)(b+1) / n^(r+1)(b+1)} ± ... {m^s(r+1)(b+1) / n^s(r+1)(b+1)}) &c. = ({n^b+1 ± m^b+1 / (n ∓ m)n^b}) ({n^(r+1)(b+1) ± m^(r+1)(b+1) / (n^b+1 ∓ m^b+1) × n^r×(b+1)})({n^(s+1)(r+1)(b+1) ± m^(s+1)(r+1)(b+1) / (n^(r+1)(b+1) ∓ m^(r+1)(b+1)) n^s(r+1)(b+1)}) &c. in in$initum = {n / n ∓ m}.

2. Sit $eries 1 ± b^-1 + b^-2 ± b^-3 + b^-4 ± &c.; tum in præceden- tibus continuis factoribus pro b $cribatur b^-1, & re$ultat contentum e novis continuis factoribus datæ quantitati æquale.

Ex. 3. A$$umatur quæcunque algebraica functio quantitatis x, quæ $it π; in eâ pro x $cribatur - x & re$ultet quantitas A; deinde in π pro x $cribantur √(-1)x & - √(-1)x, & re$ultent quantitates B & B′, quarum productum B × B′ = A′: tum in quantitate π pro x $cri- bantur αx, α′x, α″x & α′″x; ubi α, α′, α″ & α′″ $unt radices æquationis z^4 + 1 = 0; & re$ultent quantitates C, C′, C″ & C′″ re$pective: ducantur hæ quantitates in $e$e, & dicatur contentum re$ultans C × C′ × C″ × C″′ = A″; tum pro x in datâ quantitate π $cribantur βx, β′x, β″x, β′″x, [0702]DE SUMMATIONE &c.; ubi β, β′, β″, β′″, &c. $unt radices æquationis z^8 + 1 = 0, & re- $ultent quantitates D, D′, D″, D′″, D″″, D′″″, D″″″, D′″″″; ducantur hæ quantitates in $e$e, & dicatur contentum re$ultans D × D′ × D″ × D′″ × &c... D^7 = A″; & in genere $int ε, ε′, ε″, ε′″, &c. radices æqua- tionis z^2α + 1 = 0; pro x in datâ quantitate π $cribantur εx, ε′x, ε″x, ε′″x, &c., & re$ultent quantitates P, P′, P″, P′″, &c.; ducantur hæ quantitates in $e$e & $it contentum re$ultans P × P′ × P″ × P′″ × &c. = A′^α; tum erit continuum contentum A × A′ × A″ × A′″ × &c. in infinitum = {1 / π}; $i modo π = 1 + a x^σ + b x^2σ + c x^3σ + &c. in in- finitum, & x minor $it quam ulla radix æquationis π = 0, vel ejus denominatoris vel cuju$cunque irrationalis quantitatis in prædictâ (π) contentæ nihilo æqualis redditæ; & σ $it affirmativa quantitas.

Si vero π = Γ + a x^σ + b x^2σ + c x^3σ + &c., tum {Γ / π} = {A / Γ} × {A′ / Γ^2} × {A″ / Γ^4} × {A′″ / Γ^8} × {A″″ / Γ^16} × &c. in in$initum.

Sit σ negativa quantitas, & x major quam ulla radix prædictarum æquationum, & erit etiam {Γ / π} = {A / Γ} × {A′ / Γ^2} × {A″ / Γ^4} × &c.

Si modo quantitas π transformetur in alteram ρ, & incognita quantitas x $it data algebraica functio incognitæ quantitatis (z) in quantitate ρ contentæ; tum ex methodo hìc traditâ erui po$$unt con- tinua contenta quantitatibus {1 / π} & {1 / ρ} re$pective & con$equenter inter $e æqualia.

4. Si π $it quæcunque fluxio λ x^., ubi λ e$t algebraica functio quan- titatis x; in fluente $. λx^. = V pro x $cribatur - x & re$ultet quanti- tas A; deinde in V pro x $cribantur √(- 1)x & - √ (- 1) x & re- $ultent quantitates B & B′, quarum productum B × B′ = A′; & $ic progrediendum e$t, ut in priori ca$u; & re$ultent quantitates A″, A′″, [0703]SERIERUM, &c. & tum erit {Γ / V} = {A / Γ} × {A′ / Γ^2} × {A″ / Γ^4} × {A′″ / Γ^8} × &c., $i modo V = Γ + ax^σ + bx^2σ + &c., & x minor $it quam quæcunque radix æquationis λ = 0, vel ejus denominatoris vel cuju$cunque irrationalis quantitatis in quantitate λ contentæ & nihilo æqualis redditæ; & σ $it affirmativa quantitas: at x major $it quam ulla prædicta radix, $i σ $it negativa quantitas.

In hoc ca$u æqualia continua contenta deduci po$$unt ex con$imili- bus transformationibus iis in prioribus ca$ibus traditis.

PROB. XXXIX.

1. _Invenire fluentem fluxionis_ {z^m-1 Z^. / 1 + Z^n} _inter valores_ 0 _& infinitum quan-_ _titatis_ Z.

1<_>mo. Inveniatur fluens prædicta inter valores 0 & 1 quantitatis z contenta per $eriem a$cendentem {1 / m}z^m - {1 / m + n}z^m+n + {1 / m + 2n}z^m+2n - {1 / m + 3n}z^m+3n + &c. deinde inveniatur fluens fluxionis prædictæ inter valores 1 & infinitum quantitatis z per $eriem de$cendentem {1 / m - n}z^m-n - {1 / m - 2n}z^m-2n + {1 / m - 3n}z^m-3n + &c. Nunc animadver- tendum e$t m minorem e$$e quam n, aliter fluentem quæ$itam e$$e in- finitam, & con$equenter fluentem quæ$itam æqualem e$$e $ummæ dua- rum $erierum {1 / m} - {1 / m + n} + {1 / m + 2n} - &c. & - ({1 / m - n} - {1 / m - 2n} + {1 / m - 3n} - &c.) quæ $umma {1 / m} + {1 / n^2 - m^2} - {1 / 4n^2 - m^2} + {1 / 9n^2 - m^2} - {1 / 16n^2 - m^2} + &c. = {π / n $in. {m / n}π}, quod e præcedentibus facile colligi pote$t.

[0704]DE SUMMATIONE

Con$tat e præcedente capite $eriem a$cendentem e$$e convergen- tem, cum z minor $it quam 1; de$cendentem $eriem e$$e convergen- tem, cum z major $it quam 1.

Erit $.{z^m-1 z^. / 1 + z^n} = {1 / m} × {z^m / 1 + z^n} + {1 / m} × {n / n + m} × {z^n+m / (1 + z^n)^2} + {1 / m} × {n / n + m} × {2n / 2n + m} × {z^2n+m / (1 + z^n)^3} + &c.; hæc $eries convergit, cum {z^n / 1 + z^n} minor $it quam ± 1; divergit autem, cum major $it.

2. Sit fluxio {(a z^m-1 + b z^m-2 + &c.)z^. / z^tn - pz^tn-n + q^tn-2n - &c.}, ubi t n major e$t quam m; $int radices æquationis z^t - p z^t-1 + q z^t-2 - &c. = 0, re$pective α, β, γ, δ, &c. & erit {(az^m-1 + &c.)z^. / z^tn - pz^tn-n + &c.} = {(Az^s-1 + &c.)z^. / z^n - α} + {(Bz^s-1 + &c.)z^. / z^n - β} + &c. unde ex hoc problemate inveniri po$$unt fluentes inter valo- res 0 & infinitum quantitatis z contentæ.

3. Sit fluxio {z^s-1 z^. / z^n + 1}, in eâ pro z $cribatur {x / a}, & re$ultabit {a^n-s x^s-1 x^. / x^n + a^n}, unde fluens fluxionis {x^s-1 x^. / x^n + a^n} inter valores 0 & infinitum quantitatis x erit a^s-n × {π / n × $in.{s / n}π}. Sit fluxio {α x^s-1 x^. / x^n + a^n} + {β x^s-1 x^. / x^n + b^n} = {x^n+s-1 x^. / x^n + a^n . x^n + b^n}; hinc αb^n + βa^n = 0 & α + β = 1; & fluens inter valores 0 & infi- nitum quantitatis x erit (α × a^s-n + β × b^s-n) × {π / n × $in. {s / n}π}.

Sit a^n = (l + √(l^2 - 1)) k^n, & b^n = (l - √(l^2 - 1)) k^n; i. e. $it flu- xio {x^n+s-1 x^. / x^2n + 2 l k^n x^n + k^2n}, & facile inveniri po$$unt quantitates α & β, & exinde fluens quæ$ita (α a^s-n + β b^s-n) × {π / n × $in. {s / n} π} = (cum l mi- [0705]SERIERUM, &c. nor $it quam ±1) {k^s-n × π / √(1 - l^2)n $in. {sπ / n}} × $in. arcus {s / n} ρ, &c., ubi ρ e$t arcus cujus co$inus e$t l.

Huju$ce generis plura problemata deduci po$$unt; transformetur enim data fluxio in alteram, cujus variabilis quantitas y datam habeat relationem ad variabilem datæ fluxionis quantitatem x; & $i modo cum x = α tum y = π, & cum x = β tum y = ρ; duæ fluentes inter va- lores α & β, π & ρ duarum variabilium x & y contentæ erunt re- $pective inter $e æquales. Et $ic de pluribus huju$ce generis tran$- formationibus; & ex his $eriebus deduci po$$unt aliæ inter $e æqua- les, &c.

THEOR. XLV.

1. Sint x & X $inus arcuum, qui $unt inter $e ut n: 1, & radius (r); tum erit X = n x + {1 - n^2 / 1 · 3 r^2} × A x^3 + {9 - n^2 / 1 · 5 r^2} × Bx^5 + {25 - n^2 / 1 · 7 r^2} × Cx^7 + {49 - n^2 / 1 · 9 r^2} × D x^9 + &c.

2. Sint x & X $inus arcuum, qui $unt inter $e ut n:m; tum erit X = {n / m}x + {1 - {n^2 / m^2} / 1. 3 r^2} A x^3 + {9 - {n^2 / m^2} / 1. 5 r^2} Bx^5 + {25 - {n^2 / m^2} / 1. 7 r^2} + &c. = {n / m}x + {m^2 - n^2 / 1 · 3 m^2 r^2} A x^3 + {9 m^2 - n^2 / 1 · 5 m^2 r^2} B x^5 + {25 m^2 - n^2 / 1 · 7 m^2 r^2} C x^7 + &c. = √({r^2 - x^2 / r^2}) × ({n / m} x + {4 - {n^2 / m^2} / 1. 3 r^2} × A x^3 + {16 - {n^2 / m^2} / 1. 5 r^2} × B x^5 + {36 - {n^2 / m^2} / 1. 7 r^2} C x^7 + &c.) = √({r^2 - x^2 / r^2})({n / m}x + {4 m^2 - n^2 / 1 · 3 m^2 r^2} Ax^3 + {16 m^2 - n^2 / 1 · 5 m^2 r^2} B x^5 + {36 m^2 - n^2 / 1 · 7 m^2 r^2} C x^7 + &c.): cum {n / m} $it impar numerus, tum abrumpitur $eries {n / m} x[0706]DE SUMMATIONE + {m^2 - n^2 / 1. 3m^2 r^2} A x^3 + {9 m^2 - n^2 / 1 · 5 m^2 r^2} B x^5 + &c.; cum autem {n / m} $it par nu- merus, tum abrumpitur $eries √({r^2 - x^2 / r^2})({n / m} x + {4 m^2 - n^2 / 1 · 3 m^2 r^2} A x^3 + {16 m^2 - n^2 / 1 · 5 m^2 r^2} B x^5 + &c.).

3. Sit x $inus arcus A, tum co$inus arcus {n / m} A erit r - {n^2 x^2 / 1 · 2 m^2 r} - {4 - {n^2 / m^2} / 1. 4 r^2} × A x^4 - {16 - {n^2 / m^2} / 1. 6 r^2} × B x^6 - {36 - {n^2 / m^2} / 1. 8 r^2} C x^8 + &c. = r - {n^2 / 1 · 2 m^2 r} x^2 - {4 m^2 - n^2 / 1 · 4 m^2 r^2} × A x^4 - {16 m^2 - n^2 / 1 · 6 m^2 r^2} × B x^6 - {36 m^2 - n^2 / 1 · 8 m^2 r^2} C x^8 - &c. = √(r^2 - x^2) × (1 + {1 - {n^2 / m^2} / 2r} x^2 + {9 - {n^2 / m^2} / 1. 4 r^2} × A x^4 + {25 - {n^2 / m^2} / 1. 6 r^2} × B x^6 + {49 - {n^2 / m^2} / 1. 8 r^2} × C x^8 + &c.) = √(r^2 - x^2) (1 + {m^2 - n^2 / 2 m^2 r^2} x^2 + {9 m^2 - n^2 / 1 · 4 m^2 r^2} × A x^2 + {25 m^2 - n^2 / 1 · 6 m^2 r^2} B x^4 + &c.). Cum {n / m} $it par numerus, tum $eries r - {n^2 / 1 · 2 m^2 r} x^2 - {4 m^2 - n^2 / 1 · 4 m^2 r^2} × A x^4 &c. abrumpitur; cum autem {n / m} $it impar numerus, tum po$terior $e- ries √(r^2 - x^2) (1 + {m^2 - n^2 / 2 m^2 r^2} x^2 + {9 m^2 - n^2 / 1 · 4 m^2 r^2} × A x^4 + {25 m^2 - n^2 / 1 · 6 m^2 r^2} × B x^6 + &c. terminat.

In omnibus his $eriebus literæ A, B, C, D, &c. præcedentium ter- minorum coeffiicentes re$pective denotant.

Omnes hæ $eries $emper convergent; nam $inus x non pote$t e$$e major quam + r vel - r.

Cor. Sit x $inus quantitas valde parva & con$equenter ejus arcui [0707]SERIERUM, &c. prope æqualis, & n {x / r} non major quam 1, tum hæ $eries ex arcu n x dato inveniunt ejus $inum vel co$inum prope: $i vero propior requi- ratur approximatio, ea facile deduci pote$t.

Facile con$imiles $eries per qua$libet duas $ub$equentes radium, $inum, co$inum, tangentem, cotangentem, co$ecantem, &c. vel plu- res deduci po$$unt.

4. Si prædictæ reducantur ad $eries $ecundum dimen$iones quanti- tatis x de$cendentes; tum erit X = {n / m} x + {m^2 - n^2 / 1 · 3 m^2 r^2} A x^3 + {9 m^2 - n^2 / 1 · 5 m^2 r^2} B x^5 + &c. = {(-4)^{n-m / 2m} x^{n / m} / r^{n-m / m}} - {n. n - m. r^2 / 4. n - m. m} A x^{n-2m / m} - {n - 2 m. n - 3 m. r^2 / 8. n - 2 m. m} B x^{n-4m / m} - {n-4 m. n - 5 m. r^2 / 12. n - 3 m. m} C x^{n-6m / m} - {n - 6 m. n - 7 m. r^2 / 16. n - 4 m. m} D x^{n-8m / m} - &c. = √(r^2 - x^2) ({n / m}{x / r} + {4 m^2 - n^2 / 1 · 3 m^2 r^2} A x^3 + {16 m^2 - n^2 / 1 · 5 m^2 r^2} B x^5 &c.) = √(r^2 - x^2) (2(-4)^{n-2m / 2m} × {x^{n-m / m} / r^{n-m / m}} + {(n - m) × (n - 2 m) / 4. (m - n). m} × A ({x / r})^{n-3m / m} + {(n - 3 m). (n - 4 m) / 8 × (2 m - n) × m} × B ({x / r})^{n-5m / m} + {(n - 5 m). (n - 6 m) / 12 × (3 m - n). m} × C ({x / r})^{n-7m / m} + &c.).

5. Co$inus y = r - {n^2 / 1 · 2 m^2 r} x^2 - {4 m^2 - n^2 / 1 · 4 m^2 r^2} A x^4 - {16 m^2 - n^2 / 1 · 6 m^2 r^2} B x^6 - &c. = - 2 × (-4)^{n-2m / 2m} {x^{n / m} / r^{n-m / m}} + {n × (n - m) / 4 m × (m - n)} A {x^{n-2m / m} / r^{n-3m / m}} + {(n - 2 m) / 8 m.} {(n - 3 m) / (2 m - n)} B {x^{n-4m / m} / r^{n-5m / m}} + {(n - 4 m) × (n - 5 m) / 12 m × (3 m - n)} C {x^{n-6m / m} / r^{n-7m / m}} + & c. = √(r^2 - x^2) [0708]DE SUMMATIONE (1 + {m^2 - n^2 / 2 m^2 r^2} x^2 + {9 m^2 - n^2 / 1 · 4 m^2 r^2} A x^4 + {25 m^2 - n^2 / 1 · 6 m^2 r^2} B x^6 + &c.) = √(r^2 - x^2) ((-4)^{n-m / 2m} × ({x / r})^{n-m / m} + {n - m. n - 2 m / 4 m × (m - n)} A ({x / r})^{n-3m / m} + {n - 3 m. n - 4 m / 8 m. 2 m - m} B ({x / r})^{n-5m / m} + {n - 5 m. n - 6 m / 12 m. 3 m - n} × C ({x / r})^{n-7m / m} + &c.).

Con$imiles $eries facile deduci po$$unt pro $inubus vel co$inubus, tangentibus vel cotangentibus, $ecantibus vel co$ecantibus, ver$is $i- nubus, &c. in terminis $ecundum dimen$iones co$inus, tangentis, &c. progredientibus.

6. Exhinc datâ $erie $ecundum dimen$iones quantitatis x progrediente a $cribendo in eâ pro x, x^2, x^3, &c. vel x^{n / m}, x^{n / m}-1, x^{n / m}-2, &c. earum valo- res hìc traditos, & ducendo hos valores in incognitas coefficientes, & æquando coefficientes corre$pondentium terminorum re$ultantis æquâtionis, ita ut evane$cant quantitas x & ejus pote$tates vel radi- dices; ex æquationibus hinc re$ultantibus erui po$$unt prædictæ co- efficientes quæ$itæ.

7. Sint s & c $inus & co$inus arcus A, cujus radius $it 1; & per s n, c n; s (n - 2), c (n - 2); s (n - 4), c (n - 4); &c. de$ignentur $inus & co$inus arcuum n A, (n - 2) A, (n - 4) × A, &c. tum ex princi- piis prius traditis erui po$$unt s^n = ± {1 / 2^n-1} (s n - n s (n - 2) + n. {n - 1 / 2} s (n - 4) - n. {n - 1 / 2}· {n - 2 / 3} s (n - 6) + n. {n - 1 / 2}· {n - 2 / 3}; {n - 3 / 4}s (n - 8) - &c.) cum n $it impar numerus; $ignum erit +, $i n = 4 m + 1, bui m e$t integer numerus; $in aliter -: $i vero n $it par numerus, &c., tum erit s^n = ± {1 / 2^n-1} (c n - n c (n - 2) + n. {n - 1 / 2} c (n - 4) - n. {n - 1 / 2}· {n - 2 / 3} c (n - 6) + &c.). Signum erit +, $i [0709]SERIERUM, &c. n = 4 m; $in aliter -; ultimus autem terminus erit {1 / 2} × n. {n - 1 / 2}· {n - 2 / 3}·.. {{1 / 2}n + 1 / {1 / 2}n}. Et $imiliter erit c^n = {1 / 2^n-1} (c n + n c (n - 1) + n. {n - 1 / 2} c (n - 2) + n. {n - 1 / 2}· {n - 2 / 3} c (n - 3) + &c.). Cum n $it par numerus, ultimus terminus erit {1 / 2} × n.{n - 1 / 2}· {n - 2 / 3}... {{1 / 2}n + 1 / {1 / 2}n}.

Ex hinc datâ $erie $ecundum dimen$iones quantitatis s vel x pro- grediente deduci pote$t $eries ei æqualis $ecundum quantitates s n, s (n - 2), s(n - 4), &c. & c n, c (n - 2), c (n - 4), &c. progrediens, cum n $it integer numerus.

Cor. Hinc data algebraica æquatio x^n - p x^n-1 + q x^n-2 - &c. = 0 transformari pote$t in æquationem a s (n) + b c (n - 1) + a′ s (n - 2) + b′ c (n - 3) + a″ s (n - 4) + b″ c (n - 5) + &c. = 0, vel a c n + b s (n - 1) + a′ c (n - 2) + b′ s (n - 3) + a″ s (n - 4) + b″ s (n - 5) + &c. = 0, prout n $it impar vel par numerus: tum datâ approximatione α ad valorem s, & con$equenter ad c & s 2 & c 2, s 3 & c 3, s 4 & c 4.. s n & c n; quoniam fluxiones quantitatum s n & c n $unt n × c (n) × A^. & n × s n × A^.; ubi A e$t arcus, cujus $inus e$t s; & $i e & f $int approximationes ad s n & c n, e′ & f′ ad s (n - 1) & c (n - 1), e″ & f″ ad s (n - 2) & c (n - 2), &c.; & $cribantur hæ approximationes pro $uis valoribus in datis æquationibus, & $it quantitas re$ultans B, erit {-B / n a c n + (n - 1) b s (n - 1) + (n - 2) a′ c (n - 2) + (n - 3) b′ s (n - 3) + &c.}, vel {-B / n a s n + (n - 1) b c (n - 1) + (n - 2) a′ s (n - 2) + &c.} propior approximatio: & $ic deinceps.

[0710]DE SUMMATIONE PROB. XL.

_Sit pote$tas_ (1 + x + x^2)^n = (1 + x (1 + x))^n = x^n (1 + x)^n + n x^n-1 (1 + x)^n-1 + n. {n-1 / 2} x^n-2 . (1 + x)^n-2 + n. {n-1 / 2}· {n-2 / 3} x^n-3 (1 + x)^n-3 + &c. _coefficientem medii ejus termini_ (x^n) _definire._

Coefficiens erit 1 + {n. n - 1 / 1 · 1} + {n (n - 1) (n - 2) (n - 3) / 1 · 2 · 1 · 2} + {n (n - 1) (n - 2) (n - 3) (n - 4) (n - 5) / 1 · 2 · 1 · 1 · 1 · 3} + &c.

Con$tat ex binomiali theoremate.

Cor.. Sint P, Q & R re$pective coefficientes mediorum termino- rum ad pote$tates n, n + 1 & n + 2; tum e $ub$titutione con$tabit {n + 2 / n + 1} (R - Q) - (Q - P) = 4 P.

Cor.. Quoniam {n + 2 / n + 1} (R - Q) - (Q - P) = 4 P, erit etiam {n + 3 / n + 1} (S - R) - (R - Q) = 4 Q, ubi P, Q, R & S $unt coeffici- entes mediorum terminorum re$pective; ita reducantur hæ duæ æquationes ad unam, ut exterminetur n, & re$ultat æquatio relatio- nem inter S, R, Q & P de$ignans.

Et $ic progredi liceat ad inveniendos terminos medios, &c. (n) po- te$tatis aliarum. E. g. Quantitatis (A) (a + b x + c x^2)^n medius ter- minus erit b^n + {n. n - 1 / 1 · 1} b^n-2 a c + {n. (n - 1) (n - 2) (n - 3) / 1 · 2 · 1 · 2} b^n-4 a^2 c^2 + {n. (n - 1) (n - 2) (n - 3) (n - 4) (n - 5) / 1 · 2 · 1 · 1 · 1 · 3} b^n-6 a^3 c^3 + &c.; & exinde {n + 2 / n + 1} (R - b Q) - b (Q - b P) = 4 a c P, $i modo P, Q & R denotent coefficientes mediorum terminorum quantitatis A ad pote- $tates n, n + 1 & n + 2 elevatæ.

[0711]SERIERUM, &c. PROB. XLI. Ex datis fluentibus vel integralibus, quœ a $e invicem deduci po$$int; in- venire infinitas $eries, quœ etiam a $e invicem po$$unt inve$tigari.

Reducantur $ingulæ datæ fluentes vel integrales ad infinitas $eries $ecundum dimen$iones variabilis x progredientes, & exorientur $eries, quæ a $e invicem deduci po$$unt.

Ex. 1. Ex datâ fluente $. (a + bx^n)^m × x^pn-1 x^. erui pote$t fluens flu- xionis (a + b x^n)^m+r × x^pn+vn-1 x^., ubi r & v integri $unt numeri vel affirmativi vel negativi, m vero & p haud integri affirmativi numeri; reducantur hæ fluxiones ad infinitas $eries, & re$ultant a^m x^pn-1 x^. + m a^m-1 b x^(p+1)n-1 x^. + m. {m - 1 / 2} a^m-2 b^2 x^(p+2)n-1 x^. + &c. & a^m+r x^pn+vn-1 x^. + (m + r). a^m+r-1 bx^(p+v+1)n-1 x^. + (m + r). {m + r - 1 / 2} a^m+r-2 b^2 x^(p+v+2)n-1 x^. + &c. quarum fluentes erunt re$pective {a^m x^pn / pn} + {ma^m-1 bx^(p+1)n / (p + 1)n} + &c. & {a^m+r x^pn+vn / (p + v) n} + {(m + r)a^m+r-1 bx^(p+v+1)n / (p + v + 1) n} + &c. unde con$tat $ummam feriei {1 / p + v} + {m + r / p + v + 1} × x^n + {(m + r). (m + r - 1) / 2. (p + v + 2)} x^2n + {(m + r) · (m + r - 1) · (m + r - 2) / 2 · 3 · (p + v + 3)} x^3n + &c. ($i modo v & r $int integri numeri vel affirmativi vel negativi, & p & m haud integri affirmativi numeri) deduci po$$e e $ummâ $eriei {1 / p} + {m / p + 1}x^n + {m · (m - 1) / 2 · (p + 2)}x^2n + {m · (m - 1) · (m - 2) / 2 · 3 · (p + 3)} x^3n + &c.

Cor. Datâ $ummâ unius $eriei prædicti generis, ex eâ deduci po$- $unt $ummæ omnium $erierum eju$dem generis, quicunque integri numeri $int valores quantitatum r & v: ex fluente enim fluxionis [0712]DE SUMMATIONE (a + b x^n)^m+r x^pn+vn-1 x^. ad unum integrum valorem quantitatum r & v re$pective erui po$$unt fluentes eju$dem fluxionis ad omnes integros valores quantitatum r & v.

Cor. 2. Ex datâ fluente $. (a + b x^n)^m-1 x^pn-1 x^. inveniri po- te$t fluens fluxionis (a + b x^n)^m-1 x^pn+vn-1 x^. = (a + bx^n)^m × ({1 / r n b} x^(q-1)n - {(q - 1)a / (r - 1)b} A x^(q-2)n + &c. a d v terminos) ± {p / p + m} · {p + 1 / p + m + 1} ... {p + v - 1 / p + m + v - 1} · {a^v / b^v}$. (a + bx^n)^m-1 x^pn-1 x^., ubi p + v = q, q + m - 1 = r; & A, &c. $int coefficientes præcedentium terminorum.

Reducantur $inguli termini ad infinitas $eries $ecundum reciprocas dimen$iones quantitatis x^n progredientes, & ex æquatis corre$ponden- tibus terminis in quibus eædem inveniuntur dimen$iones (p + v + m - w) quantitatis x^n, re$ultabit æquatio {(m - 1) · (m - 2) · (m - 3) / 1 · 2 · 3} {... (m - w + 1) / ... w - 1} × {1 / p + v + m - w} = m · {m - 1 / 2} · {m - 2 / 3} ... {m - w + 2 / w - 1} × {1 / p + m + v - 1} - m · {m - 1 / 2} · {m - 2 / 3} ... {m - w + 3 / w - 2} × {1 / p + m + v - 1} × {p + v - 1 / p + v + m - 2} + m · {m - 1 / 2} · {m - 2 / 3} ... {m - w + 4 / w - 3} × {1 / p + m + v - 1} × {p + v - 1 / p + m + v - 2} × {p + v - 2 / p + m + v - 3} - .. ± m · {m - 1 / 2} · {m - 2 / 3} ... {m - w + v + 1 / w - v} × {1 / p + m + v - 1} × {p + v - 2 / p + m + v - 2} × {p + v - 3 / p + m + v - 3} ... {p + 1 / p + m} ± &c. ± {p / p + m} · {p + 1 / p + m + 1} · {p + 2 / p + m + 2} ... {p + v - 1 / p + m + v - 1} × (m - 1) · {m - 2 / 2} · {m - 3 / 3} ... {m - w + v / w - v} × {1 / p + m + v - w}; $i modo v & w $int integri, p vero & m haud integri [0713]SERIERUM, &c. numeri: hic animadvertendum e$t quod omnes termini po$t w pri- mos rejiciendi $unt; etiamque adjiciendum e$t quod coefficiens ter- mini, cujus di$tantia a primo $it w - 1, invenietur {1 / p + m + v - 1} · {p + v - 1 / p + m + v - 2} · {p + v - 2 / p + m + v - 3} ... {p + v - w + 1 / p + m + v - w}.

2. Transformari po$$unt diver$is modis datæ fluxiones in alias, quarum fluentes e fluentibus datarum fluxionum deduci po$$unt; re- ducantur hæ fluxiones ad $eries $ecundum dimen$iones quarundam quantitatum progredientes, & inveniantur fluentes; & re$ultant $e- ries, quæ a $e invicem deduci po$$unt: e. g. $it fluxio data (a + bx^n)^m+r × x^(p+v)n-1 x^. = (b + ax^-n)^m+r × x^(m+r+p+v)n-1 x^.; reducantur hæ fluxiones ad terminos $ecundum dimen$iones quantitatis x^n vel x^-n vel (a + b x^n)^m vel b + a x^-n, &c. progredientes, & inveniantur fluentes $erie- rum re$ultantium; & facile con$tat $eries re$ultantes, modo conver- gant & proprie corrigantur, a $e invicem erui po$$e.

Ex. 2. Sint $eries a^m+r x^(p+v)n (({1 / (p + v) n} + (m + r) {b x^n / (p + v + 1) n a} + (m + r) · ({c / (p + v + 2) n a} + {m + r - 1 / 2} × {b^2 / a^2} × {1 / p + v + 2}) x^2n + &c.) = $. (a + bx^n + cx^2n)^m+r × x^(p+v)n-1 x^.. Ex $ummis duarum $erierum independentium huju$ce generis erui po$$unt $ummæ om- nium $erierum eju$dem generis, quicunque $int integri valores quan- titatum r & v; & exinde inveniri po$$unt $ummæ omnium $erierum exprimentium fluentes fluxionum (c + b x^-n + a x^-2n)^m+r × x^(2(m+r)+p+v)n-1 ^x. = (a + bx^n + cx^2n)^m+r × x^(p+v)n-1 x^., quarum termini $ecundum di- men$iones quantitatis x^n vel ejus reciprocas progrediuntur; vel $erie- rum, quæ exprimunnt fluentes fluxionum ex prædictis per transfor- mationes, &c. re$ultantium.

Et $ic in multis aliis ca$ibus.

Eadem etiam affirmari po$$unt, $i modo hæ $eries incipiant a ter- minis, quorum di$tantiæ a primis $int re$pective r, s, t, &c.; vel $e- [0714]DE SUMMATIONE ries con$tent ex quibu$que terminis prædictarum $erierum, quorum di$tantiæ a $e invicem $int re$pective ρ, σ, τ, &c. vel $ucce$$ivi termini ducantur in integram functionem a z^m + b z^m-1 + c z^m-2 + &c. quan- titatis z di$tantiæ a primo $eriei termino re$pective, ubi m e$t integer affirmativus numerus.

PROB. XLII.

_Invenire fluentem fluxionis_ {x^a x^. / 1 ± x^n}; _ubi_ α _e$t irrationalis quantitas._

1<_>mo. A$$umatur π fractio prope = α, & inveniatur $. {x^π x^. / 1 ± x^n}, quæ $it V; tum erit fluens quæ$ita = V × x^α-π prope.

2<_>do. Ex eâdem methodo inveniatur W = $. (α - π) × $. V x^α-π-1 x^. prope; tum erit V - W quantitas ad fluentem magis approximans; & $ic deinceps.

Eadem principia etiam applicari po$$unt ad inveniendas approxi- mationes ad fluentes omnium fluxionum.

THEOR. XLVI.

Summæ omnium $erierum {1 / α. β. γ. δ. &c.} + {1 / α + 1. β + 1. γ + 1. δ + 1. &c.} × x^b + {1 / α + 2. β + 2. γ + 2. δ + 2. &c.} x^2b + &c. = S deduci po$$unt e $ummis $erierum {1 / α} + {1 / α + 1}x^b + {1 / α + 2}x^2b + &c. = A, {1 / β} + {1 / β + 1}x^b + {1 / β + 2}x^2b + &c. = B, {1 / γ} + {1 / γ + 1}x^b + {1 / γ + 2} x^2b + &c. = C, {1 / δ} + {1 / δ + 1}x^b + {1 / δ + 2}x^2b + &c. = D, &c.: erunt {1 / α - β. α - γ. α - δ. &c.} × A + {1 / β - α. β - γ. β - δ. &c.}B + [0715]SERIERUM, &c. {1 / γ - α · γ - β · γ - δ · &c.} × C + {1 / δ - α · δ - β · δ - γ · &c.} D + &c. = ± S; erit +, cum numerus factorum α, β, γ, &c. $it par, $in ali- ter -.

Ex his $eriebus igitur facile erui po$$unt $ummæ omnium $erierum, quarum generalis terminus e$t {az^m + bz^m-1 + &c. / pz^n + qz^n-1 + &c.} × e^bz, ubi z e$t di$tantia a primo datæ $eriei termino, ni duæ quantitates α, β, γ, &c. $int inter $e æquales.

Cor. Hinc {1 / α + z} × {1 / α - β · α - γ · α - δ · &c.} + {1 / β + z} × {1 / β - α · β - γ · β - δ · &c.} + {1 / γ + z} × {1 / γ - α · γ - β · γ - δ · &c.} + {1 / δ + z} × {1 / δ - α · δ - β · δ - γ · &c.} + &c. = {± 1 / α + z · β + z · γ + z · δ + z. &c.}: $ignum erit +, $i numerus factorum α - β, α - γ, α - δ, &c. $it par; $in aliter -.

PROB. XLIII. Invenire $ummam quarumque fractionum, cum earum denominatores ni- bilo œquales, & con$equenter fractiones evadant infinitœ.

Supponantur quantitates in factoribus contentæ, quæ evadant ni- hilo æquales, variabiles; & augeantur per incrementa quam minima; reducantur fractiones re$ultantes ad communem denominatorem, & fimul addantur, &c.; tum fractio re$ultans reducatur ad minimos terminos per divi$ionem ejus numeratoris & denominatoris per maxi- mum communem divi$orem, & fractio re$ultans erit $umma quæ- $ita.

Ex. 1. Invenire $ummam fractionum {1 / α - β · α - γ} + {1 / β - α · β - γ} oum α fiat = β: augeantur quantitates α & β per e & 0; tum evadent [0716]DE SUMMATIONE fractiones {1 / α - β + e - 0. α - γ + e} + {1 / β - α + 0 - e · β - γ + 0} = {(β - γ + 0) - (α - γ + e) / α - β + e - 0 · α - γ + e · β - γ + 0} (ob β - α = 0) = {0 - e / e - 0 · α - γ + e · β - γ + 0} (ob e & 0 quam minima) = - {1 / α - γ · β - γ} = - {1 / (α - γ)^2}.

Et $ic $umma fractionum {1 / α - β · α - γ · α - δ} + {1 / β - α · β - γ · β - δ} + {1 / γ - α · γ - β · γ - δ} = {1 / (α - δ)^3}, cum α = β = γ; &c. & $imiliter $int (n) quantitates α, β, γ, δ, &c. inter $e æquales & θ non = α; tum erit {1 / α - β · α - γ · α - δ × &c. × α - θ} + {1 / β - α · β - γ · β - δ · &c.. β - θ} + {1 / γ - α · γ - β · γ - δ × &c. γ - θ} + &c. = {±1 / (α - θ)^n}.

THEOR. XLVII.

1. Summa $eriei {1 / αβγδ&c.} ± {1 / α + 1 · β + 1 · γ + 1 · δ + 1 &c.}x^b + {1 / α + 2 · β + 2 · γ + 2 · δ + 2 &c.}x^2b ± &c. $emper deduci pote$t e fluentibus fluxionum {x^bα-1 x^. / 1 ± x^b}, {x^bβ-1 x^. / 1 ± x^b}, {x^bγ-1 x^. / 1 ±x^b}, {x^bδ-1 x^. / 1 ± x^b}, &c.: 1^mo. $it b affirmativa quantitas, & hæ $eries $emper convergent, cum x minor $it quam 1; nunquam autem, cum major $it.

2. Cum vero x = 1 & denominator $it 1 + x^b; vel x = - 1, cum b $it impar numerus, vel fractio cujus denominator $it impar numerus, & denominator $it 1 - x^b; tum $eries $emper convergent: $i autem x = 1, & denominator $it 1 - x^b; vel x = -1, cum b $it impar nu- [0717]SERIERUM, &c. merus vel fractio ut antea & denominator 1 + x^b; tum fluentes $in- gularum fluxionum {x^bx-1 x^. / 1 ± x^b}, {x^bβ-1 x^. / 1 ± x^b}, {x^bγ-1 x^. / 1 ± x^b}, &c. erunt infinitæ: at hæ fluentes ducuntur re$pective in fractiones {1 / α - β · α - γ · α - δ · &c.} = α′, {1 / β - α · β - γ · β - δ · &c.} = β′, {1 / γ - α · γ - β · γ - δ · &c.} = γ′, {1 / δ - α · δ - β · δ - γ · &c.} = δ′, &c.; quarum $umma nihilo æqualis e$t; & ex fluentium in has fractiones re$pective ductarum $ummâ evane$cat logarithmus infinitus vel quantitas infinita.

Si quantitates α, β, γ, δ, &c. $int affirmativæ, tum inveniantur flu- entes prædictarum fluxionum inter valores 0 & 1 quantitatis x.

3. Si quæcunque quantitates α, β, &c. $int negativæ, i. e. - α, - β, &c.; tum pro - α, - β, &c. $cribantur l - α, l′ - β, &c., ubi l, l′, &c. $unt integri numeri proxime majores quam α, β, &c. re$pective; & inveniantur fluentes omnium fluxionum {x^(l-α)b-1 x^. / 1 ± x^b}, {x^(l′-β)b-1 x^. / 1 ± x^b}, &c. inter valores 0 & x quantitatis x contentæ, quæ $int A, B, C, &c. & quæ ductæ re$pective in α′, β′, &c. con$tituant $ummam α′A + β′B + &c. finitam; deinde inveniatur $umma - x^-αb ({1 / αb} ± {x^b / (α - 1)b} + {x^2b / (α - 2)b} ± {x^3b / (α - 3)b} .. {x^(l-1)b / (α - l + 1)b}) × α′ = P, - x^-βb ({1 / βb} ± {x^b / (β - 1)b} + {x^2b / (β - 2)b} .. {x^(l′-1)b / (β - l′ + 1)b}) × β′ = Q, &c.; i. e. inveniantur fluentes inter valores infini- tum & x quantitatis x fluxionum {(x^-αb-1 ⥊ x^(l - α)b -1) x^. / 1 ± x^b} = x^-αb-1 x^. ± x^-(α-1)b-1 x^. + x^-(α-2)b-1 x^. ± &c. = P, {(x^-βb-1 ⥊ x^(l′-β)b-1)x^. / 1±x^b} = x^-βb-1 x^. ± &c. = Q, &c.; ducantur hæ quantitates re$pective in α′, β′, &c.; tum erit $umma $eriei quæ$ita = α′(A ∓ P) + β′(B ∓ Q) + &c. = α′A + β′B + γ′C + &c. ∓ α′P ∓ β′Q ∓ &c.

[0718]DE SUMMATIONE

4. Si vero requiratur $umma prædictæ $eriei inter duos valores m & m′ quantitatis z contenta: inveniantur fluentes fluxionum {x^(m+α)b-1 ⥊ x^(m′+α)b-1 / 1 ± x^b} x^. = A, {x^(m+β)b-1 ⥊ x^(m′+β)b-1 / 1 ± x^b} x^. = B, {x^(m+γ)b-1 ⥊ x^(m′+γ)b-1 / 1 ± x^b} x^. = C, &c. inter valores 0 & x quantitatis x, cum m + a, m′ + α m + β, m′ + β; m + γ, m′ + γ; &c. $int affirmativæ quan- titates: $in vero quædam e prædictis $int negativæ quantitates; e. g. $int m + α & m′ + α negativæ quantitates, tum inveniatur fluens (P) fluxionis {x^(m+α)b-1 ⥊ x^(m′+α)b-1 / 1 ± x^b} x^. inter valores x & infinitum quantitatis x: $in vero m + α $it negativa & m′ + α affirmativa quantitas; & α + l affirmativa quantitas, ubi l e$t minimus integer numerus, qui pote$t $ummam α + l reddere affirmativam; inveniatur fluens inter valores x & infinitum quantitatis x fluxionis {x^(m+α)b-1 ⥊ x^(α+l)b-1 / 1 ± x^b} × x^., quæ $it P; deinde inveniatur fluens inter valores 0 & x quantitatis x contenta fluxionis {x^(α+l)b-1 ⥊ x^(α+m′)b-1 / 1 ± x^b} x^., quæ $it P′ tum fluens flu- xionis {x^(m+α)b-1 ⥊ x^(m+α)b-1 / 1 ± x^b} x^. quæ$ita erit P′ + P =A; & $ic de $in- gulis reliquis fluentibus B, C, &c. corrigendis; & exinde $umma quæ- $ita erit a′A + β′B + γ′C + &c.

5. Si α vel β vel γ &c. $it negativus numerus & inter m & m′ con- tentus; tum unus terminus prædictæ $eriei evadit in$initus, i. e. {1 / 0}; $in autem plures termini evadant infiniti; & coefficientes, in quas ducitur idem infinitus valor, $imul $umptæ nihilo $int æquales; tum fumma quæ$ita pote$t e$$e finita; $in aliter vero non.

6. Si vero fluens $it $. {z^ba-1 z^. / a ± bz^b} = {1 / a} × {1 / bα} z^bα ± {b / a^2} × {1 / b × (α + 1)} z^b(α+1) + &c., tum facile reduci pote$t ad prædictam formulam {1 / a} [0719]SERIERUM, &c. {a^α / b^α} × $. {x^bα-1 x^. / 1 ± x^b} e $cribendo {a^{1 / b} / b^{1 / b}}x pro z. Et $imiliter fluxio {x^bα-1 x^. / 1 ± x^b} reduci pote$t ad fluxionem - {z^-(α-1)b z^. / z^b ± 1} e $cribendo {1 / z} pro x, &c.

7. Sit data $eries {1 / α · α′. α″. α′″ · &c. × β · β′ · β″ · β′″ · &c. × γ · γ′ · γ″ · γ′″ · &c · × &c.} + {1 / α + 1 · α′ + 1 · α″ + 1 · α′″ + 1 · &c. × β + 1 · β′ + 1 · β″ + 1. &c.} × γ · γ′ + 1 · γ″ + 1 · &c.. &c. + {1 / α + 2 · α′ + 2 · &c. × β + 2 · β′ + 2. &c.. γ + 2 · γ′ + 2 · &c.. &c.}. ..{1 / α + z · α′ + z · α″ + z · &c. × β · β′ + z · β″ + z · &c. × γ + z · γ′ + z · &c. × &c.} in infini- tum; ubi z e$t di$tantia a primo datæ $eriei termino; & α - α′, α - α″, α - α″, &c.; β - β′, β - β″, β - β′″, &c.; γ - γ′, γ - γ″, γ - γ′″, &c., &c., $unt integri numeri; at α - β, α - γ, β - γ, &c. non $unt integri numeri: tum, $i $umma fractionum {1 / α - α′ · α - α″ · α - α′″. &c. × α - β · α - β′ · α - β″ · α - β′″ · &c. × α - γ · α - γ′ · α - γ″ · &c. · &c.} + {1 / α′ - α · α′ - α″ · α′ - α′″ · &c..α′ - β · α′ - β′ · α′ - β″ · α′ - β′″. &c.. α′ - γ. α′ - γ′ · α′ - γ″ · &c.} + {1 / α″ - α · α″ - α′ · α″ - α′″ · &c.. α″ - β · α″ - β′. α″ - β″ · α″ - β′″ · &c. × α″ - γ · α″ - γ′ · α″ - γ″ · α″ - γ′″. &c.. &c.} + {1 / α′″ - α · α′″ - α′ · α′″ - α″. &c. × α′″ - β · α′″ - β′ · α′″ - β′ · α′″ - β′″ · &c. × α′″ - γ · α′″ - γ′ · α′″ - γ″ · α′″ - γ′″ · &c. · &c.} + &c. = 0, etiamque $umma [0720]DE SUMMATIONE fractionum {1 / β - α · β - α′ · β - α″ · β - α′″ · &c. × β - β′ · β - β″ · β - β′″ · &c. × β - γ · β - γ′ · β - γ″ · β - γ′″ · &c.. &c.} + {1 / β′ - α · β′ - α′ · β′ - α″ · β′ - α′″ · &c. × β′ - β · β′ - β″ · β′ - β′″ · &c. × β′ - γ · β′ - γ′ · β′ - γ″ · β′ - γ″ · &c.. &c.} + {1 / β″ - α · β″ - α′ · β″ - α″ · β″ - α′″ · &c. × β″ - β · β″ - β′ · β″ - β′″ · &c. × β″ - γ · β″ - γ′ · β″ - γ″ · β″ - γ′″. &c. × &c.} + {1 / β′″ - α · β′″ - α′ · β′″ - α″. β′″ - α′″ · &c. × β′″ - β · β′″ - β′ · β′″ - β″ · &c. × β′″ - γ · β′″ - γ′. β′″ - γ″ · β′″ - γ′″ · &c. × &c.} + &c. = 0; & {1 / γ - α · γ - α′ · γ - α″ · γ - α′″. &c. × γ - β · γ - β′ · γ - β″ · γ - β′″ · &c. × γ - γ′ · γ - γ″ · γ - γ′″ · &c. × &c.} + {1 / γ′ - α · γ′ - α′ · γ′ - α″ · γ′ - α′″ · &c. × γ′ - β · γ′ - β′ · γ′ - β″ · γ′ - β′″. &c. × γ′ - γ · γ′ - γ″ · γ′ - γ′″ · &c. × &c.} + {1 / γ″ - α · γ″ - α′ · γ″ - α″ · γ″ - α′″ · &c. × γ″ - β · γ″ - β′ · γ″ - β″ · γ″ - β′″ · &c. × γ″ - γ · γ″ - γ′ · γ″ - γ′″ · &c. × &c.} + {1 / γ′″ - α · γ′″ - α′ · γ′″ - α″ · γ′″ - α′″ · &c. × γ′″ - β · γ′″ - β′ · γ′″ - β″ · γ′″ - β′″ · &c. × γ′″ - γ · γ′″ - γ′ · γ′″ - γ″ · &c. × &c.} + &c. = 0, &c.; $umma datæ $eriei in finitis terminis exprimi pote$t; $in aliter vero non: hoc fa- cile con$tat per additionem, &c. prius traditam.

8. Sit h negativa quantitas, & $i requirantur fluentes fluxionum {x^bα-1 x^. / 1 ± x^b}, {x^bβ-1 x^. / 1 ± x^b}, {x^bγ-1 x^. / 1 ± x^b}, &c. ad inveniendam $umman $eriei {1 / α · β · γ · δ &c.} + {1 / α + 1 · β + 1 · γ + 1 · &c.}x^b + {1 / α + 2 · β + 2 · γ + 2 · &c.} × x^2b +[0721]SERIERUM, &c. &c. de$cendentis $ecundum dimen$iones quantitatis x^b; quæ $eries $emper converget, cum x major $it quam 1; $in minor $it, diverget.

Si x = 1; haud multum diver$a erit $eries, cum h $it negativa, quam cum h $it affirmativa quantitas; & de eâ fere eadem prædicari po$$unt.

In hoc ca$u pro inve$tigandis fluentibus fluxionum {x^bα-1 x^. / 1 ± x^b},{x^bβ-1 x^. / 1 ± x^b}, {x^bγ-1 x^. / 1 ± x^b}, &c. inter valores m & m′ quantitatis z di$tantiæ a primo $eriei termino, $i α, β, γ, &c. $int affirmativæ quantitates, inveniatur fluens fluxionis {x^(m+b)α-1 ⥊x^(ml+b)α-1 / 1 ± x^b}x^. (inter valores infinitum & x quantita- tis x) = A: $i autem quædam α, β, γ, &c. $int negativæ; e. g. $it α ne- gativa quantitas, & l + α minima affirmativa, ubi l e$t integer affir- mativus numerus inter numeros m & m′ po$itus; inveniatur fluens fluxionis {x^(m+α)b-1 ⥊x^(l+α)b-1 / 1 ± x^b}x^. inter valores 0 & x quantitatis x, quæ fit P; deinde inveniatur fluens (A′) fluxionis {x^(l+α)b-1 ⥊x^(m′+α)b-1 / 1 ± x^b}x^. inter valores infinitum & x quantitatis x, tum erit fluens quæ$ita P ± A′ = A; & $ic de reliquis; ergo $umma $eriei quæ$ita erit α′A + β′B + &c.

Omnia de hoc ca$u, cum h $it negativa quantitas, affirmari po$- $unt; quæ prius affirmantur de ca$u, cum h $it affirmativa quantitas.

Con$imilia etiam applicari po$$unt ad inveniendas $ummas $erie- rum, quarum generalis terminus habeat formulam {az^m + bz^m-1 + &c. / pz^n + qz^n-1 + &c.}, ubi z e$t di$tantia a primo $eriei termino.

9. Sint datæ $eries {1 / α^2} + {1 / (α + 1)^2}x^b + {1 / (α + 2)^2}x^2b + {1 / (α + 3)^2}x^3b + &c. = A, {1 / α} + {1 / α + 1}x^b + {1 / α + 2}x^2b + &c. = A′, {1 / β} + {1 / β+1}x^b + {1 / β + 2}x^2b + &c. = B, {1 / γ} + {1 / γ + 1}x^b + {1 / γ + 2}x^2b + &c. = C, &c.: [0722]DE SUMMATIONE generales termini harum $erierum $unt re$pective {1 / (α + z)^2}x^zb, {1 / α + z}x^zb, {1 / β + z}x^zb, {1 / γ + z}, &c.; ducantur hæ fractiones in coefficientes a, b, c, d, e, &c. inve$tigandas, & re$ultant {a / (α + z)^2}, {b / α + z}, {c / β + z}, {d / γ + z}, &c.; reducantur hæ fractiones ad communem denominatorem & $i- mul addantur, & re$ultat $umma {a × (β + z)(γ + z)&c. + b(α + z)(β + z)(γ + z)&c. + c × (α + z)^2 (γ + z)&c. + d(α + z)^2 (β + z) &c. + &c. / (α + z)^2 × β + z.γ + z. &c.} fiat numerator ((b + c + d) + &c.)z^l-1 + (a + b(α + β + γ + &c.) + c(2α + γ + &c.) + d(2α + β + &c.) + &c.)z^l-2 + &c. = 1, quicunque $it valor quantitatis z; & con$equenter coefficientes e $in- gulis pote$tatibus quantitatis z nihilo re$pective æquales, & coeffi- ciens quæ non ducitur in pote$tatem quantitatis z erit 1, i. e. b + c + d + &c. = 0, a + b(α + β + &c.) + c(2α + γ + &c.) + &c. = 0; &c.; & a β γ &c. + bα β γ &c. + cα^2 γδ&c. + dα^2 βδ&c. + &c. = P = 1; & re$ultant l - 1 $implices æquationes involventes l incognitas quantitates a, b, c, d, &c.; e quibus deduci po$$unt rationes, quas ha- bent inter $e incognitæ a, b, c, d, &c. & ex ultimâ æquatione P = 1 erui po$$unt quantitates ip$æ a, b, c, d, &c. & con$equenter {a / (α + z)^2} + {b / α + z} + {c / β + z} + {d / γ + z} + &c. = {1 / (α + z)^2 .β + z.γ + z.δ + z.&c.}: e. g. $int γ = 0, δ = 0, &c., tum erit a = {1 / β - α}, b = - {1 / (β - α)^2} & c = - b; & con$equenter {1 / β - α} × {1 / (α + z)^2} - {1 / (β - α)^2} × {1 / α + z} + {1 / (β - α)^2} × {1 / β + z} = {1 / (α + z)^2 .β + z}; ergo erit $umma {1 / β - α} A - [0723]SERIERUM, &c. {1 / (β - α)^2}A′ + {1 / (β - α)^2}B æqualis $ummæ $eriei {1 / α^2 β} + {1 / (α + 1)^2 .β + 1} x^b + {1 / (α + 2)^2 .β + 2}x^2b + &c.

10. Sit $eries {1 / α^m .β^n .γ^r .δ^s .&c.} ± {1 / (α + 1)^m .(β + 1)^n .(γ + 1)^r .(δ + 1)^s .&c.} x^b + {1 / (α + 2)^m × (β + 2)^n × (γ + 2)^r × (δ + 2)^s}x^2b ± &c.; tum ejus $umma deduci pote$t ex datis $ummis $erierum {1 / α} ± {1 / α + 1}x^b + {1 / α + 2} x^2b ± &c. = A, {1 / α^2} ± {1 / (1 + α)^2}x^b + {1 / (α + 2)^2}x^2b ± &c. = A′, {1 / α^3} ± {1 / (α + 1)^3}x^b + {1 / (α + 2)^3}x^2b ± {1 / (α + 3)^3}x^3b + &c. = A″,...{1 / α^m} ± {1 / (α + 1)^m} + {x^2b / (α + 2)^m} ± {x^3b / (α + 3)^m} + &c. = A′^m-1; etiamque {1 / β} ± {x^b / β + 1} + {x^2b / β + 2} ± {x^3b / β + 3} + &c. = B, {1 / β^2} ± {x^b / (β + 1)^2} + {x^2b / (β + 2)^2} ± &c. = B′, {1 / β^3} ± {x^b / (β + 1)^3} + {x^2b / (β + 2)^3} ± &c. = B″,...{1 / β^n} ± {x^b / (β + 1)^n} + {x^2b / (β + 2)^n} ± {x^3b / (β + 3)^n} ± &c. = B′^m-1; & {1 / γ} ± {x^b / γ + 1} + {x^2b / γ + 2} ± &c. = C, {1 / γ^2} ± {x^b / (γ + 1)^2} + {1 / (γ + 2)^2} ± &c. = C′,...{1 / γ^r} ± {x^b / (γ + 1)^r} + {x^2b / (γ + 2)^r} ± {x^3b / (γ + 3)^r} + &c. = C′^r-1, & {1 / δ} ± {x^b / δ + 1} + {x^2b / δ + 2} ± {x^3b / δ + 3} + &c. = D,...{1 / δ^s} ± {x^b / (δ + 1)^s} + {x^2b / (δ + 2)^s} ± {x^3b / (δ + 3)^s} + &c. = D′^s-1, &c.; i. e. dentur $ummæ $erierum, quarum generales termini $unt {± 1 / α + z}, {± 1 / (α + z)^2}, {± 1 / (α + z)^3}, {± 1 / (α + z)^4},...{± 1 / (α + z)^m}; {± 1 / β + z}, {± 1 / (β + z)^2}, {± 1 / (β + z)^3}, [0724]DE SUMMATIONE ...{± 1 / (β + z)^n}; {± 1 / γ + z}, {± 1 / (γ + z)^2}, {± 1 / (γ + z)^3},...{± 1 / (γ + z)^r}; ±{1 / δ + z}, {± 1 / (δ + z)^2},...{± 1 / (δ + z)^s}; &c.; ducantur hi generales termini in coeffi- cientes deducendas a, a′, a″,.. a′^m-1; b, b′, b″,.. b′^n-1; c, c′, c″,.. c′^r-1; d, d′, d″,.. d′^s-1, &c.; re$pective; & deinde reducantur omnes fracti- ones re$ultantes ad communem denominatorem, qui erit (α + z)^m (β + z)^n (γ + z)^r (δ + z)^s &c.; & $imul addantur; tum fingan- tur coefficientes $ingularum pote$tatum quantitatis z in nume- ratore contentarum nihilo re$pective æquales, & re$ultant m + n + r + s&c. - 1 æquationes habentes (m + n + r + s + &c.) plu- res incognitas quantitates a, a′,.. a′^m-1; b, b′, b″,.. b′^n-1; c, c′, c″,.. c′^r-1; d, d′, d″,.. d′^s-1; &c. per unitatem quam numerus æquationum; ex his (m + n + r + s + &c. - 1) $implicibus æquationibus erui po$$unt rationes, quas habent inter $e $ingulæ incognitæ quantitates a, a′,.. a′^m-1; b, b′,.. b′^n-1; c, c′,.. c′^r-1; d, d′, .. d′^s-1, &c.: etiamque re$ultat $implex æquatio, ex fingendo terminum, in quo haud conti- netur z, unitati æqualem; & exinde erui po$$unt quantitates a, a′, a″, .. a′^m-1; b, b′, b″, &c., b′^n-1; c,.. c′^r-1, d,.. d′^s-1, &c.

Summa $eriei quæ$itæ erit = a A + a′ A′ + a″ A″ + ... a′^m-1 A′^m-1 + bB + b′B′ + b″B″ + .. + b′^m-1B′^m-1 + cC + c′C′ + c″C″ + .. c′^r-1C′^r-1 + dD + d′D′ + d″D″ + ... d′^s-1 D′^s-1 + &c.

Cor. Si m = 1, tum coefficiens a in $ummam $eriei ({1 / α} ± {x^b / α + 1} + &c. = A) ducenda = {1 / (α - β)^n × (α - γ)^r × (α - δ)^s × &c.}: $i vero m $it numerus major quam 1, tum vel e prædictis $implicibus æquatio- nibus, vel e prob. 43. deduci po$$unt coefficientes a, a′, a″, &c.

Cor. Summa $eriei {1 / α} ± {x^b / α + 1} + {x^2b / α + 2} ± &c. inter quo$cunque [0725]SERIERUM, &c. duos valores, quorum di$tantiæ a primo dantur, deduci pote$t e flu- ente fluxionis $.{x^αb-1 x^. / 1 ± x^b} proprie correctâ; etiamque $umma $eriei {1 / α^2} ± {x^b / (α + 1)^2} + {x^2b / (α + 2)^2} ± {x^3b / (α + 3)^2} + &c. deduci pote$t generaliter e fluente fluxionis $. {x^. / x}$.{x^αb-1 x^. / 1 ± x^b} vere correctâ; quæ dici pote$t fluens $e- cundi ordinis: & $imiliter $ummæ $erierum {1 / α^3} ± {x^b / (α + 1)^3} + {x^2b / (α + 2)^3} ± {x^3b / (α + 3)^4} + &c., {1 / α^4} ± {x^b / (α + 1)^4} + {x^2b / (α + 2)^4} ± {x^3b / (α + 3)^4} + &c., &c., deduci po$$unt e fluentibus fluxionum $.{x^. / x}$.{x^. / x}$.{x^2b-1 x^. / 1 ± x^b}, $.{x^. / x}$.{x^. / x} $.{x^. / x}$.{x^αb-1 x^. / 1 ± x^b}, &c. vere correctis; quæ dici po$$unt fluentes tertii, quarti, &c. ordinum: fluens $uperiori ordinis nunquam generaliter exprimi pote$t per fluentem inferioris ordinis.

Et $ic de $ummis reliquarum $erierum prædictarum inve$tigandis.

Cor. Hinc generaliter detegi pote$t $umma $eriei inter quo$cun- que terminos contenta; cujus generalis terminus $it quæcunque ra- tionalis functio quantitatis z di$tantiæ a primo $eriei termino in x^bz ducta, viz. {a z^m + b z^m-1 + c z^m-2 + &c. / f z^n + g z^n-1 + h z^n-2 + &c.} × x^bz, ubi m & n $unt integri numeri; $i modo generaliter dentur fluentes omnium fluxionum $ub$equentium formularum {x^bπ-1 x^. / 1 ± x^b}, {x^. / x}$.{x^bπ-1 x^. / 1 ± x^b}, {x^. / x}$.{x^. / x}$.{x^bπ-1 x^. / 1 ± x^b}, {x^. / x}$.{x^. / x} $.{x^. / x}$.{x^bπ-1 x^. / 1 ± x^b}, {x^. / x}$.{x^. / x}$.{x^. / x}$.{x^. / x}$.{x^bπ-1 x^. / 1 ± x^b}, &c. ubi h & π $int quæcunque quantitates po$$ibiles vel impo$$ibiles: i. e. $i detur generaliter fluens fluxionis {x^bπ-1 x^. / 1 ± x^b}, tum dabitur $umma omnis $eriei, cujus generalis terminus habeat prædictam formulam, & in cujus denominatore [0726]DE SUMMATIONE fz^n + gz^n-1 + &c. haud contineantur duo vel plures divi$ores vel fa- ctores inter $e æquales; i. e. denominator fz^n + gz^n-1 + &c. non dividi pote$t per quantitatem formulæ (σz + ρ)^2; & $imiliter $umma omnis $eriei, cujus generalis terminus prædictam habeat formulam, & in cujus denominatore fz^n + gz^n-1 + &c. haud contineatur cubi- cus divi$or vel factor (σz + ρ)^3, deduci pote$t e fluentibus fluxionum formularum {x^bπ-1 x^. / 1 ± x^b} & {x^. / x}$.{x^bπ-1 x^. / 1 ± x^b}; & $ic deinceps.

Cor. Sit data $eries, cujus generalis terminus e$t {± 1 / (α + z)^m (β + z)^n (γ + z)^r (δ + z)^s &c.}x^bz, & dentur $ummæ $erierum inter valores H & K quantitatis z contentarum {1 / α + 1} ± {1 / α + 2}x^b + {1 / α + 3}x^2b ± &c., {1 / α^2} ± {1 / (α + 1)^2}x^b + {1 / (α + 2)^2}x^2b ± {1 / (α + 3)^2}x^3b + &c., {1 / α^3} ± {x^b / (α + 1)^3} + {x^2b / (α + 2)^3} ± &c., ...{1 / α^m} ± {x^b / (α + 1)^m} + {x^2b / (α + 2)^m} ± &c.; & {1 / β} ± {x^b / β + 1} + {x^2b / β + 2} ± &c., {1 / β^2} ± {x^b / (β + 1)^2} + {x^2b / (β + 2)^2} ± &c., ... {1 / β^n} ± {x^b / (β + 1)^n} + {x^2b / (β + 2)^n} ± &c.; & {1 / γ} ± {x^b / γ + 1} + {x^2b / γ + 2} ± &c., {1 / γ^2} ± {x^b / (γ + 1)^2} + {x^2b / (γ + 2)^b} ± &c., ... {1 / γ^r} ± {x^b / (γ + 1)^r} + {x^2b / (γ + 2)^r} ± &c.; & {1 / δ} ± {x^b / δ + 1} + {x^2b / δ + 2} ± &c., {1 / δ^2} ± {x^b / (δ + 1)^2} + {x^2b / (δ + 2)^2} + &c.,... {1 / δ^s} ± {x^b / (δ + 1)^s} + {x^2b / (δ + 2)^s} ± &c., &c.; tum ex iis deduci pote$t $umma datæ $eriei inter prædictos valores H & K contenta: $ummæ autem præ- dictarum $erierum inter valores H & K quantitatis z contentarum ex fluentibus fluxionum {x^bα-1 x^. / 1 ± x^b}, {x^. / x} $.{x^bα-1 x^. / 1 ± x^b}, {x^. / x} $.{x^. / x} $.{x^bα-1 x^. / 1 ± x^b}, {x^. / x} $. {x^. / x} $. {x^. / x} [0727]SERIERUM, &c. $. {x^bα-1 x^. / 1 ± x^b} u$que ad m terminos; {x^bβ-1 x^. / 1 ± x^b}, {x^. / x} $.{x^βb-1 x^. / 1 ± x^b}, {x^. / x} $.{x^. / x} $.{x^βb-1 x^. / 1 ± x^b}, u$que ad n terminos; {x^γb-1 x^. / 1 ± x^b}, {x^. / x} $. {x^γb-1 x^. / 1 ± x^b}, &c. u$que ad r terminos; & $ic de- inceps; inter valores 0 & x quantitatis x contentis exprimi po$$unt.

Sit h affirmativa quantitas, hæ $eries convergent, cum x inter 1 & - 1 contineatur; & $i x major $it quam 1, tum $emper divergent: $i vero x = 1, tum $emper converget, necne; prout numerus dimen- $ionum quantitatis z in numeratore $eriei ad affirmativam reductæ minor $it per quantitatem majorem quam unitatem quam ejus di- men$iones in denominatore, necne.

11. Erit $eries {1 / r} ± {m / (r + 1)} · {bx^n / a} + m · {m - 1 / 2} × {1 / (r + 2)} · {b^2 x^2n / a^2} ± m · {m - 1 / 2} · {m - 2 / 3} × {1 / (r + 3)} · {b^3 x^3n / a^3} + m. {m - 1 / 2} · {m - 2 / 3}· {m - 3 / 4} × {1 / (r + 4)} × {b^4 x^4n / a^4} + &c. = {n / a^m x^rn} $. (a ± b x^n)^m x^rn-1 x^. vere correctæ du- catur hæc æquatio in x^bn-1 x^. & inveniatur fluens utriu$que partis æquationis re$ultantis, & evadet {1 / r h} ± {m / r + 1 · h + 1} × {b x^n / a} + {m · (m - 1) / 2 · r + 2 · h + 2} × {b^2 x^2n / a^2} ± {m · (m - 1) · (m - 2) / 2 · 3 · (r + 3) · (h + 3)} × {b^3 x^3n / a^3} + {m · (m - 1) · m - 2 · m - 3 / 2 · 3 · 4 · (r + 4) · (b + 4)} × {b^4 x^4n / a^4} ± &c. = {n^2 x^-bn / a^m} $. x^(b-r)n-1 x^. $. x^rn-1 x^. (a ± bx^n)^m; ducatur hæc æquatio in x^kn-1 x^., & in veniatur fluens æqua- tionis re$ultantis, quæ erit {1 / r h k} ± {m / r + 1 · h + 1 · k + 1} × {b x^n / a} + {m · m - 1 / 2 · r + 2 · b + 2 · k + 2} × {b^2 x^2n / a^2} ± &c. = {n^3 / a^m} x^-kn $. x^(k-h)n-1 x^. $. x^(b-r)n-1 x^. $. x^rn-1 x^. (a ± b x^n)^m; & $ic deinceps; & con$tat, $i modo m, r, h, k, &c., $int quantitates, quæ habent formulam ± l + {1 / 2} vel ± l, ubi l e$t in- teger numerus, prædictas fluentes inveniri po$$e finitorum termino- rum, circularium arcuum & logarithmorum ope.

[0728]DE SUMMATIONE

Cor. Hinc $it generalis terminus m · {m - 1 / 2} · {m - 2 / 3} .. {m - z + 1 / z} × {1 / r + z} · {a z^M + b z^M-1 + c z^M-2 + &c. / f z^N + g z^N-1 + &c.} × e^z, ubi e = {b x^n / a} & M & N $unt integri numeri; & omnes divi$ores denominatoris f z^N + g z^N-1 + &c. habeant formulam z ± l ± {1 / 2}λ, in quâ l & λ $unt integri nu- meri vel 0, & z e$t di$tantia a primo $eriei termino, & m & r quanti- tates formulæ prius traditæ ± l ± {1 / 2} λ; & haud duo vel plures divi- $ores $unt inter $e æquales; tum ejus $umma detegi pote$t ope fini- torum terminorum, circularium arcuum & logarithmorum.

Cor. Con$tat e $ummis $erierum, quarum generales termini re$pe- ctive $unt V × {x^z / (z ± l ± {1 / 2}λ)^h} = L, V × {x^z / (z ± l ± {1 / 2} λ)^b-1} = L′, V × {x^z / (z ± l ± {1 / 2} λ)^b-2} = L″, ... V × {x^z / (z ± l ± {1 / 2} λ)^2} = L′^b-2, V × {x^z / (z ± l ± {1 / 2} λ)} = L′^b-1; & V × {x^z / (z ± l′ ± {1 / 2} λ′)^b′} = M, V × {x^z / (z ± l′ ± {1 / 2} λ′)^b′-1} = M′, {x^z / (z ± l′ ± {1 / 2} λ′)^b′-1} = M″, ... V × {x^z / (z ± l′ ± {1 / 2} λ′)^2} = M′^b-2, V × {x^z / (z ± l′ ± {1 / 2} λ)} = M′^b-1, etiamque V × {x^z / (z ± l″ ± {1 / 2} λ″)^b″} = N, V × {x^z / (z ± l″ ± {1 / 2} λ″)^b″-1} = N′, ... V × {x^z / (z ± l″ ± {1 / 2}λ″)^2} = N′^b-2, V × {x^z / (z ± l″ ± {1 / 2} λ)} = N′^b-1; &c. per prob. acquiri po$$e $ummam $eriei, cujus generalis terminus e$t V × {a z^M + b z^M-1 + &c. / (z ± l ± {1 / 2}λ)^b × (z ± l′ ± {1 / 2} λ′)^b′ × (z ± l″ ± {1 / 2} λ″)^b″ × &c.}, $i modo M, h, h′, b″, &c. $int integri numeri; con$tat etiam ex additione prius u$itatâ generalem terminum e$$e a L + a′ L′ + a″ L″ + &c. + bM + b′M′ + &c.; & coefficientes a, a′, &c., b, b′, &c. exinde inve$tigari po$$e.

[0729]SERIERUM, &c.

Sint 2l, 2l′, 2l″, &c.; 2λ, 2λ′, 2λ″, &c. integri numeri & V = m · {m - 1 / 2} · {m - 2 / 3}...{m - z + 1 / z} × {1 / μ + z}; tum $ummæ prædictarum $erierum detegi po$$unt e fluentibus fluxionum formularum $. x^μn-1 x^. (a + b x^n)^m, $. {x^. / x} $. (a + b x^n)^m x^μn-1 x^., $. {x^. / x} $. {x^. / x} $. (a + b x^n)^m x^μn-1 x^., $. {x^. / x} $. {x^. / x} $. {x^. / x} $. (a + b x^n)^m x^μn-1 x^., &c.; ubi quantitas μ habet prædictam for- mulam ± l ± {1 / 2} λ, l & λ exi$tentibus integris numeris.

Ex his fluentibus generaliter deductis detegi po$$unt $ummæ $erie- rum inter quo$cunque duos valores quantitatis z po$itæ etiamque, $i modo dentur fluentes harum fluxionum inter quo$cunque duos valores quantitatis x, erui po$$unt corre$pondentes prædictarum $erie- rum $ummæ.

E principiis prius traditis dijudicari po$$unt harum $erierum con- vergentiæ.

Si modo fluentes harum fluxionum per finitos terminos, circulares arcus, & logarithmos exprimi po$$int; tum per finitos terminos, cir- culares arcus & logarithmos etiam exprimi po$$unt fluentes, quæ ex- primunt $ummam e $ingulis terminis prædictæ $eriei, quorum di$tan- tiæ a $e invicem $it H. Si enim $eries $ecundum dimen$iones quan- titatis x^n progrediantur; tum in fluente inventâ pro x^n $cribantur α x^n, β x^n, γ x^n, &c., ubi α, β, γ, &c. $unt radices æquationis w^H - 1 = 0; & deinde per methodum in medit. algebr. datam progrediendum e$t.

Con$imiles etiam propo$itiones erui po$$unt de $eriebus, quarum $ummæ exprimi po$$unt per ellipticos arcus & alias fluentes.

12. Sit $. {x^. / 1 + x} = log. (1 + x) = a, tum erit x = a + {a^2 / 1 · 2} + {a^3 / 1 · 2 · 3} + &c., & e^a = 1 + x; hinc e medit. algebr. {α^n-m e^αn + β^n-m e^ρa + γ^n-m e^βa + δ^n-m e^δa + &c. / n} (P) = {a^m / 1 · 2 · 3 .. m} + {a^n+m / 1 · 2 · 3 .. n + m} + [0730]DE SUMMATIONE {a^2n+m / 1 · 2 · 3 .. 2n + m} + {a^3n+m / 1 · 2 · 3 .. 3n + m} + &c.; ubi α, β, γ, δ, &c. $unt (n) radices æquationis x^n - 1 = 0. 2. Erit e^-a = 1 - a + {a^2 / 1 · 2} - {a^3 / 1 · 2 · 3} + &c. & exinde {α^n-m e^-az + β^n-m e^-βa + γ^n-m e^-γa + &c. / n}(P) = ± {a^m / 1 · 2 · 3 .. m} ± {a^n+m / 1 · 2 .. n + m} ± {a^2n+m / 1 · 2 .. 2n + m} ± &c.: $igna af- fixa erunt +, $i n & m $int pares numeri; erunt -, $i n $it par & m impar; erunt alternatim + & -, $i n $it impar; $ignum affixum primo termino erit +, $i m $it par, $in aliter -; & exinde uterque ca$us evadit idem, cum n & m $int pares numeri.

Sint α & δ corre$pondentes impo$$ibiles radices, quæ $int e^α + e^δ = e^a+b√(-1) + e^a-b√(-1) = e^a (e^b√(-1) + e^-b√(-1)); ergo ex $ummis omnium quantitatum huju$ce formulæ e^b√(-1) + e^-b√(-1) = 2 (1 - {b^2 / 1 · 2} + {b^4 / 1 · 2 · 3 · 4} - {b^6 / 1 · 2 · 3 · 4 · 5 · 6} + &c.) = 2 co$. arcus b cir- culi, cujus radius e$t 1, erui po$$unt $ummæ omnium quantita- tum formulæ (P), vel $erierune 1 ± {1 / m + 1 · m + 2 .. n + m} a^n + {1 / m + 1 · m + 2 .. 2n + m}a^2n ± &c. erit {e^a√(-1) - e^-a√(-1) / 2 √ (-1)} = a - {a^3 / 1 · 2 · 3} + {a^5 / 1 · 2 .. 5} - {a^7 / 1 · 2 .. 7} + &c. = x $in. prædicti arcus (a).

2. Sint fluentes $. {x^. / √ (1 - α x^2)} = a, $. {x^. ′ / √ (1 - βx′^2)} = a, $. {x^. ″ / √ (1 - γ x″^2)} = a, &c.; tum erunt x = a - {αa^3 / 1 · 2 · 3} + {α^2 a^5 / 1 · 2 .. 5} - &c., x′ = a - {β a^3 / 1 · 2 · 3} + &c., x″ = a - {γ a^3 / 1 · 2 · 3} + &c.; $i modo $. {x^. / √ (1 - α x^2)} = a, $. {x^. ′ / √ (1 - β x′^2)} = a, &c. inter valores 0 & x, 0 & [0731]SERIERUM, &c. x′, &c. quantitatum x, x′, &c. contineantur; etiamque {α^n-m x + β^n-m x′ + γ^n-m x″ + &c. / n} = {± a^m / 1 · 2 · 3 .. 2m} ± {a^2n+m / 1 · 2 · 3 .. 2n + 2m} ± {a^4n+m / 1 · 2 · 3 .. 4n + m} ± &c. $igna affixa leges prius traditas ob$ervant.

Hæ $eries evadunt eædem ac priores, & con$equenter ex quantita- tibus e^αa, e^βa, e^γa, &c. deduci po$$unt quantitates x, x′, x″, &c.: $. {x^. / √ (1 - α x^2)} = a, $ {x^. / √ (1 - β x′^2)} = a, $. {x^. / √ (1 - γ x″^2)} = a, &c. inter valores o & x, o & x′, o & x″, &c. quantitatum x, x′, x″, &c. con- tentæ erunt arcus circuli, cujus radius e$t 1 & $inus po$$ibiles vel im- po$$ibiles quantitates re$pective x √ (α), x′ √ (β), &c. in {1 / √ (α)}, {1 / √ (β)}, {1 / √ (γ)}, &c. re$pective ductæ; i. e. erunt x = a - {α a^3 / 1 · 2 · 3} + &c., x′ = a - {β a^3 / 1 · 2 · 3} + {β^2 a^5 / 1 · 2 .. 5} - &c., &c.: & $. {- x^. / √ (1 - α x^2)} = a, {- x^. ′ / √ (1 - β x′^2)} = a, $. {- x^. ″ / √ (1 - γ x″^2)} = a, &c. inter valores 1 & x, 1 & x′, 1 & x″, &c. quantitatum x, x′, x″, &c. contentæ erunt arcus cir- culi, cujus radius e$t 1, & con$inus po$$ibiles vel impo$$ibiles quanti- tates x √ (α), x √ (β), x √ (γ), &c. in {1 / √ (α)}, {1 / √ (β)}, {1 / √ (γ)}, &c. re- $pective ductæ; i. e. erunt x = 1 - {α a^2 / 1 · 2} + {α^2 a^4 / 1 · 2 · 3 · 4} - &c., x′ = 1 - {β a^2 / 1 · 2} + &c., &c.

3. Sit a + {a^2 / 1 · 2} + {a^3 / 1 · 2 · 3} + {a^4 / 1 · 2 · 3 · 4} + &c. = x, ubi a^. = {x^. / 1 + x}; ducatur hæc æquatio in a^m-1 a^., & inveniatur fluens æquationis re$ul- tantis, quæ erit {1 / m + 1} a^m+1 + {1 / m + 2} × {1 / 1 · 2} a^m+2 + {1 / m + 3} × {1 / 1 · 2 · 3} [0732]DE SUMMATIONE a^m+3 + &c. = $. a^m-1 x a^. = $. a^m-1 {x x^. / 1 + x} = a^m-1 (x - {1 / m} a) - (m - 1) a^m-2 (x - {1 / m - 1} a) + (m - 1) · (m - 2) (x - {1 / m - 2} a) - (m - 1) · (m - 2) · (m - 3) (x - {1 / m - 3} a) + &c.

4. Ad eundem modum $it a - {a^2 / 1 · 2} + {a^3 / 1 · 2 · 3} - &c. = x; ubi a^. = {x^. / 1 - x}; ducatur hæc æquatio in a^m-1 a^. & re$ultat æquatio a^m a^. - {a^m+1 / 1 · 2} a^. + &c. = a^m-1 a^. x; cujus fluens erit {a^m+1 / m + 1} - {a^m+2 / m + 2} + &c. = a^m-1 (- x + {1 / m} a) - (m - 1) a^m-2 (- x + {1 / m - 1} a) + (m - 1) · (m - 2) a^m-3 (- x + {1 / m - 2} a) - &c.

5. Et $imiliter $it æquatio a - {a^3 / 2 · 3} + {a^5 / 2 · 3 · 4 · 5} - &c. = x, ubi a^. = {x^. / √ (1 - x^2)}; ducatur prior æquatio in a^m-1 a^. & inveniatur fluens re$ultantis fluxionis, quæ erit {a^m / m + 1} - {a^m+3 / 2 · 3 · (m + 3)} + {a^m+5 / 2 · 3 · 4 · 5 · (m + 5)} - &c. = - a^m-1 × √ (1 - x^2) + (m - 1) a^m-2 x + (m - 1) · (m - 2) a^m-3 × √ (1 - x^2) - (m - 1) · (m - 2) · (m - 3) a^m-4 x - &c. = - (a^m-1 - (m - 1) · (m - 2) a^m-3 + (m - 1) · (m - 2) · (m - 3) · (m - 4) a^m-5 - &c.) √ (1 - x^2) + ((m - 1) · a^m-2 - (m - 1) · (m - 2) · (m - 3) a^m-4 + &c.) x.

6. Sit æquatio 1 - {a^2 / 1 · 2} + {a^4 / 1 · 2 · 3 · 4} - &c. = x, ubi a^. = {- x^. / √ (1 - x^2)}; ducatur hæc æquatio in a^m-1 a^. & inveniatur fluens fluxionis re$ultan- tis, quæ erit {a^m / m} - {a^m+2 / 1 · 2 · (m + 2)} + {a^m+4 / 1 · 2 · 3 · 4 · (m + 4)} - &c. = (a^m-1 + (m - 1) · (m - 2) a^m-3 + &c.) √ (1 - x^2) + ((m - 1) a^m-2 + (m - 1) · (m - 2) · (m - 3) a^m-4 + &c.) x.

[0733]SERIERUM, &c.

Et con$imilia applicari po$$unt ad omnes ca$us prius traditos; in omnibus hi$ce ca$ibus $eries (quæ denotat $ummam) terminat cum m $it integer affirmativus numerus: deinde ducantur æquationes re$ul- tantes in a^m′-1 a^., & inveniantur fluentes æquationum re$ultantium, & introducitur novus factor in $inguli termini datæ $eriei denominato- rem; & $erierum $ummæ in finitis terminis exprimi pote$t, $i modo m & m′ $int integri numeri.

7. Hinc con$tat ex hâc methodo deduci po$$e in finitis terminis $um- mam omnis $eriei, cujus generalis terminus e$t {± a^lz+b / 1 · 2 · 3 · 4 .. n z × (z + m) · (z + m′) · (z + m″) · &c.}, ubi z e$t di$tantia a primo $eriei termino; & m, m′, m″, &c. $unt quicunque diver$i integri numeri.

8. Sit æquatio a + {a^2 / 1 · 2} + {a^3 / 1 · 2 · 3} + &c. = x, ducatur hæc æquatio in a^r & re$ultat a^r+1 + {a^r+2 / 1 · 2} + {a^r+3 / 1 · 2 · 3} + &c. = a^r x; inveniatur ejus fluxio, & re$ultat (r + 1) a^r + {(r + 2) a^r+1 / 1 · 2} + {(r + 3) a^r+2 / 1 · 2 · 3} + &c. = r a^r-1 x + a^r {x^. / a^.} = r a^r-1 x + a^r (1 + x) ob a^. = {x^. / (1 + x)}; ducatur hæc æquatio in a^r′-r+1 & inveniatur fluxio æquationis re$ultantis, quæ erit ((r + 1) · (r′ + 1) a^r′ + {(r + 2) · (r′ + 2) / 1 · 2} a^r′+1 + &c.) a^. = (r a^r′ x + a^r′+1 (1 + x)) = r r′ a^r′-1 x a^. + r a^r′ x^. + (r′ + 1) a^r′ (1 + x) a^. + a^r+1 x^. = (r r′ a^r′-1 x + (r + r′ + 1 + a′) a^r′ (1 + x) a^.; dividatur hæc æqua- tio per a^. & re$ultat æquatio quæ$ita.

Ducatur æquatio re$ultans in a^rl′-r′+1 & inveniatur æquationis re$ul- tantis fluxio, & introducitur novus factor in numeratorem; & $ic de- inceps. Per eandem methodum introduci po$$unt con$imiles factores in numeratores omnium $erierum hìc traditarum. Literæ r, r′, r″, &c. denotent qua$cunque quantitates po$$ibiles vel impo$$ibiles; cor- [0734]DE SUMMATIONE re$pondentes impo$$ibiles radices $int r = e + f √ (- 1) & r′ = e - f √ (- 1); ducantur eædem functiones harum radicum in $e- riem po$$ibiles quantitates $olummodo involventem, & po$t $ingulam multiplicationem per methodum hìc traditam inveniantur fluxiones vel fluentes, & $eries re$ultans erit po$$ibilis.

9. Hinc con$tat ex hâc methodo deduci po$$e in $initis terminis $um- mam omnis $eriei, cujus generalis terminus e$t {± a^lz+b × (A z^m + B z^m-1 + C z^m-2 + &c.) / 1 · 2 · 3 .. n z · (z + k) · (z + k′) · (z + k″) · (z + k′″) · &c.}; ubi z ut antea denotat di$tan- tiam a primo datæ $eriei termino, & literæ k, k′, k″, &c. de$ignant integros diver$os numeros.

Eadem etiam perfici po$$unt ex additione $erierum hìc traditarum in invariabiles quantitates deducendas ductarum.

Si requirantur $eries, e quarum $ummis evane$cunt termini, qui circulares arcus & logarithmos continent; inveniantur $ummæ per methodos prius traditas; & fiant termini, qui involvunt independentes circulares arcus & logarithmos nihilo re$pective æquales, & ex æqua- tionibus re$ultantibus erui po$$unt $eries quæ$itæ.

Hæ $eries etiam inveniri po$$unt ex prædictâ additione termino- rum.

10. Et $imiliter ex datis $ummis $erierum, quarum generales termini $unt {a^lz+b / 1 · 2 · 3 .. n z · (α + z)}, {a^lz+b / 1 · 2 · 3 .. n z · β + z}, {a^lz+b / 1 · 2 · 3 .. n z · γ + z}, {a^lz+b / 1 · 2 · 3 .. n z · δ + z}, &c. & principiis hìc traditis erui po$$unt $um- mæ omnium $erierum formulæ, cujus generalis terminus exprimitur per fractionem, cujus numerator e$t a^lz+b × (A z^m + B z^m-1 + C z^m-2 + &c.), & denominator 1 · 2 · 3 · n z × (α + z) · (α + z + 1) · (α + z + 2) .. (α + z + e) × (β + z) (β + z + 1) (β + z + 2) .. (β + z + e′) × (γ + z) (γ + z + 1) (γ + z + 2) .. (γ + z + e″) × (δ + z) (δ + z + 1) (δ + z + 2) .. (δ + z + e″′) × &c.; ni quilibet factores in denominatore contenti $int inter $e æquales.

[0735]SERIERUM, &c.

Ex $ummâ $eriei, cujus generalis terminus e$t {± a^lz+b / 1 · 2 · 3 .. z · (α + z)}, datâ per principia hic tradita erui pote$t $umma $eriei, cujus genera- lis terminus e$t {± a^lz+b / 1 · 2 · 3 .. n z · (α + z)}.

11. Sit $eries A x^n + B x^n+m + C x^n+2m + D x^n+3m + &c. = y, cujus in- dices variabilis quantitatis x $int in arithmeticâ progre$$ione; ducan- tur $ucce$$ivi termini $eriei re$pective in terminos $ucce$$ivos trium arithmeticarum $erierum r z + s, r′ z + s′ & r″ z + s″, ubi z e$t di- $tantia a primo datæ $eriei termino, & re$ultant tres $eries s A x^n + (r + s) B x^n+m + (2 r + s) C x^n+2m + &c. = S, s′ A x^n + (r′ + s′) B x^n+m + (2 r′ + s′) C x^n+2m + &c. = S′, s″ A x^n + (r″ + s″) B x^n+m + (2 r″ + s″) C x^n+2m + &c. = S″: ex $ummis duarum priorum $erierum inter $e independentium datis acquiri pote$t tertiæ $umma: a$$umantur enim duæ æquationes e r + e′ r′ = r″ & e s + e′ s′ = s″, e quibus erui po$$unt e & e′, & exinde e S + e′ S′ = S″ $ummæ quæ$itæ.

Et $imiliter ducantur $ucce$$ivi termini $eriei re$ultantis in $ucce$$ivos $ecundæ arithmeticæ $eriei terminos, & re$ultat $eries, cujus $umma de- duci pote$t ex $ummis trium eju$dem generis $erierum: & $imiliter du- catur data $eries in (h) arithmeticas $eries $ucce$$ive; tum $umma $eriei re$ultantis erui pote$t e $ummis (h + 1) independentium $erierum eju$- dem generis datis; vel quod idem e$t, ducantur $ucce$$ivi termini præ- dictæ $eriei in $ucce$$ivos terminos quantitatis ′A z^m + ′B z^m-1 + ′C z^m-2 + &c. = (r z + s)(t z + l)(t′ z + l′)(t″ z + l″) &c., ubi z di$tantia a primo datæ $eriei termino $ucce$$ive denotat 0, 1, 2, 3, &c. tum ex $ummis (m + 1) $erierum re$ultantium inter $e independentium datis erui po$$unt $ummæ omnium eju$dem generis $erierum: vel magis generaliter ducantur $ucce$$ivi termini $eriei A x^n + B x^n+m + C x^n+2m + &c. in a φ:z + b φ′:z + c:φ″:z + d:φ′″:z + &c. = P, & $i- militer in a′ φ:z + b′ φ′:z + c′ φ″:z + &c. = Q; etiamque in a″ φ : z + b″ φ′:z + c″ φ″:z + &c., &c. = R, ubi φ:z, φ′:z, φ″:z, &c. $unt diver$æ datæ functiones quantitatis (z) di$tantiæ a primo datæ $eriei termino; & P, Q, R, &c. $unt (n) quantitates inter $e indepen- dentes, & $int $ummæ $erierum re$ultantium re$pective A′, A″, A′″, A″″, [0736]DE SUMMATIONE &c.; tum ex $ummis (n) diver$arum re$ultantium huju$ce generis $e- rierum erui po$$unt $ummæ omnium eju$dem generis $erierum; e. g. $it $umma $eriei re$ultantis ex ducendo $ucce$$ivos terminos datæ $eriei Ax^n + Bx^n+m + &c. in $ucce$$ivos & corre$pondentes terminos quan- titatis (αφ: z + βφ′: z + γφ″: z + δφ″: z + &c. = T) = B.

Fiant p a + qa′ + r a″ + &c. = a, pb + qb′ + rb″ + &c. = β, pc + qc″ + rc′ + &c. = γ, pd + qd′ + rd″ + &c. = δ, &c.; & re- $ultant n æquationes totidem (n) incognitates p, q, r, s, &c. invol- ventes, e quibus inveniantur quantitates p, q, r, s, &c.; tum erit p A′ + q A″ + r A′″ + sA″″ + &c. = B.

Cor. Quoniam y = Ax^n + B x^n+m + Cx^n+2m + &c., & exinde ax^x-1 y + x^x {y^. / x^.} = (a + n) Ax^2+n-1 + (a + n + m) Bx^n+m-1 + (a + n + 2m) Cx^n+2m-1 + &c.; & $imiliter multiplicetur hæc æquatio in x^β, & inve- niatur fluxio æquationis re$ultantis, & $equitur $umma $eriei re$ul- tantis ex multiplicatione datæ $eriei in duas arithmeticas $eries: & $ic ex datâ $eriei $ummâ acquiri pote$t $umma $eriei re$ultantis ex mul- tiplicatione terminorum datæ $eriei in quotlibet arithmeticas $eries.

12. Sit $eries A + Bx^n + Cx^2n + Dx^3n + &c. = P; tum erit {1 / α} A + {1 / α + n}Bx^n + {1 / α + 2n}Cx^2n + .. {1 / α + mz}x^mz + &c. = {1 / α}(P - {1 / x^α}$.x^2 P^.); ducatur hæc æquatio in x^β-1 x^., & inveniatur ejus fluens, quæ erit {1 / α · β}A + {1 / α + n · β + n}Bx^n + {1 / α + 2n · β + 2n}Cx^2n + &c. = {1 / αβ} P - {1 / α} × {1 / β - α}x^-2 $. x^2 P^. - {1 / β} × {1 / α - β} x^-β $. x^β P^.; & in genere erit $umma $eriei {A / αβγδ&c.} + {Bx^n / α + n · β + n · γ + n · δ + n · &c.} + {Cx^2n / α + 2n · β + 2n · γ + 2n · δ + 2n} + {Dx^3n / α + 3n · β + 3n · γ + 3n · δ + 3n} + &c. = {1 / αβγδ&c.} × P - {1 / α} · {1 / β - α} · {1 / γ - α} · {1 / δ - α} · &c. × x^-x $. x^x P^. [0737]SERIERUM, &c. - {1 / β} · {1 / α - β} · {1 / γ - β} · {1 / δ - β} · &c. × x^-β $.x^β P^. - {1 / γ} · {1 / α - γ} · {1 / β - γ}. {1 / δ - γ}. &c. × x^-γ $. x^γ P^. - {1 / δ} · {1 / α - δ} · {1 / β - δ} · {1 / γ - δ} · &c. × x^-δ $. x^δ P^. - &c.

Hoc facile deduci pote$t ex hoc theoremate, viz. {1 / α} · {1 / β - α} · {1 / γ - α} · &c. + {1 / β} · {1 / α - β} · {1 / γ - β} · {1 / δ - β} · &c. + {1 / γ} · {1 / α - γ} · {1 / β - γ} · {1 / δ - γ} · &c. + &c. + {1 / δ} · {1 / α - δ} · {1 / β - δ} · {1 / α - δ} · &c. + &c. = {1 / αβγδ&c.}.

Cor. Hinc, $i $umma (P) $eriei, cujus generalis terminus $it φ, de- tur; $umma $eriei, cujus generalis terminus e$t {φ / α + z · β + z · γ + z · δ + z · &c.}; vel magis generaliter {φ × (az^m + b z^m-1 + cz^m-2 + &c.) / α + z · β + z · γ + z · δ + z · &c.} ubi m e$t integer numerus; pendet ex fluentibus fluxionum x^α P^., x^β P^., x^γ P^., x^δ P^., &c.; vel quod idem e$t ex $ummis $erierum n x^α+n ({B / α + n} + {2C / α + 2n}x^n + {3D / α + 3n}x^2n + {4E / α + 4n}x^3n + &c.), nx^β+n ({1 / β + n} + {2C / β + 2n}x^n + {3D / β + 3n}x^2n + &c.), nx^γ+n ({1 / γ + n} + {2C / γ + 2n} x^n + {3D / γ + 3n}x^2n + &c.), nx^δ+n ({B / δ + n} + {2C / δ + 2n}x^n + {3D / γ + 3n}x^2n + &c.), &c.; ni duæ vel plures e quantitatibus α, β, γ, δ, &c. $int inter $e æquales; in quo ca$u e præcedentibus petenda e$t $umma.

13. Sit (a + bx^n)^m = A + Bx^n + Cx^2n + &c. = P; ducatur hæc æquatio in x^rn-1 x^., & inveniatur fluens æquationis re$ultantis φ × x^rn = A′ + B′x^n + C′x^2n + &c.; ducatur hæc æquatio in x^sn-1 x^. & in- veniatur fluens æquationis re$ultantis; & $ic deinceps; & re$ultant [0738]DE SUMMATIONE $eries {A / r · s · t · &c.} + {Bx^n / r + n · s + n · t + n · &c.} + {Cx^2n / r + 2n · s + 2n · t + 2n · &c.} + &c.; cujus $umma exprimi pote$t in finitis terminis, $i literæ r, s, t, &c. integros denotent numeros; per prædictos & cir- circulares arcus & logarithmos, $i denotent affirmativas fractiones, quarum denominatores non majores $unt quam 2; per prædictos & ellipticos & hyperbolicos arcus, $i denominatores non majores $int quam 3; &c.

14. Sit (a + bx^n + cx^2n ... x^ln)^m = A + Bx^n + Cx^2n = P, ducatur hæc æquatio in x^rn-1 x^., x^r′n-1 x^., x^r″n-1 x^., &c. & inveniantur fluentes æqua- tionum re$ultantium φ = A′ + B′x^n + C′x^2n + &c.; ducantur æquatio- nes re$ultantes in x^sn-1 x^., x^s′n-1 x^., x^s″n-1 x^., &c., & inveniantur fluentes fluxionum re$ultantium, & $ic deinceps; tum, $i r, r′, r″, &c., s, s′, s″, &c., &c. $int integri numeri, ex (l - 1) fluentibus independentibus prædictis erui po$$unt reliquæ: $i vero differentiæ inter prædictas quantitates r, r′, r″, &c.; s, s′, s″, &c.; &c.; $int integri numeri, tum ex l independentibus erui po$$unt reliquæ; & $ic deinceps.

Cor. Erunt x^-β $. x^β-α-1 x^. $. x^x-1 x^. P = x^-α $. x^α-β-1 x^. $. x^β-1 x^. P, x^-γ $. x^γ-β-1 x^. $. x^β-α-1 x^. $. x^α-1 x^. P = x^-γ $.x^γ-α-1 x^. $.x^α-β-1 x^. $. x^β-1 x^. P = x^-β $.x^β-γ-1 x^. $. x^γ-α-1 x^. $. x^α-1 x^. = x^-β $. x^β-α-1 x^. $. x^α-γ-1 x^. $. x^γ-1 x^. = x^-α $. x^α-β-1 x^. $. x^β-γ-1 x^. $. x^γ-1 x^. = x^-α $. x^α-γ-1 x^. $. x^γ-β-1 x^. $. x^β-1 x^., & $ic deinceps: $i modo omnes flu- entes inter eo$dem valores quantitatis x contineantur; $i vero quar- tus adjiciatur index δ, tum re$ultant 1 · 2 · 3 · 4 = 24 fluentes inter $e æquales; & $ic deinceps.

THEOR. XLVIII.

Sint T^m, T^n, T^r, T^s, &c. termini $eriei A, quorum di$tantiæ a primo vel quocunque alio $eriei termino $int re$pective m, n, r, s, &c. i. e. in generali termino A′, pro z di$tantiâ a primo $eriei termino $cri- bantur z + m, z + n, z + r, z + s, &c., & re$ultent termini T^m, T^n, T^r, T^s, &c. $int T′^m′, T′^n′, T′^r′, T′^s′, &c. termini $eriei B, quorum di- $tantiæ a primo $int re$pective m′, n′, r′, s′, &c.; i. e. in generali [0739]SERIERUM, &c. termino B′ pro z di$tantiâ a primo $eriei termino $cribantur z + m′, z + n′, z + r′, z + s′, &c., & re$ultent $eriei termini T′^m′, T′^n′, T′^r′, T′^s′, &c. $int etiam T″^m″, T″^n″, T″^r″, T″^s″, &c. termini $eriei C, quo- rum di$tantiæ a primo $int re$pective m″, n″, r″, s″, &c.; i. e. in generali termino C′ pro z di$tantiâ a primo $eriei termino $cribantur z + m″, z + n″, z + r″, z + s″, &c., & re$ultent termini T″^m′, T″^n″, T″^r″, T″^s″, &c.; & $ic deinceps.

A$$umatur quantitas aT^m + bT^n + cT^r + dT^s + &c. + a′T′^m′ + b′T′^n′ + c′T′^r′ + d′T′^s′ + &c. + a″T″^m″ + b″T″^n″ + c″T″^r″ + d″T″^s″ + &c. pro termino $eriei quæ$itæ, tum ex $ummis (S, S′, S″, &c.) datarum $erierum A, B, C, &c. acquiri pote$t $umma $eriei re$ul- tantis quæ$itæ, erit enim (a + b + c + d + &c.) × S + (a′ + b′ + c′ + d′ + &c.) × S′ + (a″ + b″ + c″ + d″ + &c.) × S″ + &c. - a(T^0 + T^1 + T^2 + .. T^m-1) - b(T^0 + T^1 + T^2 + .. T^n-1) - c(T^0 + T^1 + T^2 + .. T^r-1) - d(T^0 + T^1 + T^2 + .. T^s-1) - &c. - a′(T′^0 + T′^1 + T′^2 .. + T′^m′-1) - b′(T′^0 + T′^1 + T′^2 + T′^3 + .. + T′^n′-1) - c′(T′^0 + T′^1 + T′^2 + .. + T′^n′-1) - d′(T′^0 + T′^1 + .. T′^s′-1) + &c. - a″(T″^0 + T″^1 + T″^2 + .. + T″^m″-1) - b″(T″^0 + T″^1 + T″^2 + T″^3 + .. + T″^n″-1) - c″(T″^0 + T″^1 + T″^2 + .. + T″^r″-1) - &c.

Sit a + b + c + d + &c. = 0, & a′ + b′ + c′ + d′ + &c. = 0, & a″ + b″ + c″ + d″ + &c. = 0, &c. tum in finitis prædictis terminis exprimi pote$t $umma re$ultantis $eriei.

PROB. XLVI. Invenire infinitas $eries, quarum $ummœ innote$cant.

1. A$$umatur quæcunque quantitas pro $ummâ, reducatur ea per divi$ionem, extractionem radicum, &c. ad $eriem convergentem, & re$ultat $eries, cujus $umma innote$cit.

2. Reducatur a$$umpta quantitas ad $eriem $ecundum dimen$iones quarumcunque perparvarum quantitatum (x) in eâ contentarum progrediens, & exoriuntur $eries, quarum $ummæ innote$cunt: an- non prædictæ $eries convergent, deduci pote$t e principiis prius tra- [0740]DE SUMMATIONE ditis; viz. ex $upponendo denominatorem & $ingulas irrationales quantitates nihilo æquales, & deducendo minimam radicem (a) quantitatis x in æquationibus re$ultantibus; & $i x minor $it quam α, tum $eries a$cendens $emper converget; $i autem x major $it quam maxima prædictarum radicum, tum $emper converget, $i modo $it $eries $ecundum dimen$iones quantitatis x de$cendens.

3. A$$umantur quantitates pro $ummis, deinde reducantur quan- titates a$$umptæ ad $eries $ecundum dimen$iones unius, duarum, trium, &c. quantitatum, vel $ecundum qua$dam datas functiones quarundam quantitatum progredientes; ita quidem ut $eries evadant convergentes; & deducuntur $eries, quarum $ummæ innote$cunt.

4. Ducantur æquationes deductæ in fluxiones formularum, quæ reddent fluentes re$ultantium æquationum facile integrabiles; & ex- inde erui po$$unt $eries $ummabiles; & $ic deinceps.

5. Inveniantur diver$i valores quantitatum a$$umptarum per qua$- dam functiones $ecundum dimen$iones quarundam perparvarum quantitatum a$cendentes vel permagnarum de$cendentes; & exinde $æpe $acilius erui po$$unt fluentes earum $ummarum, differentiarum, &c.; $ed animadvertendum e$t, $i a$cendens $eries convergat, tum de- $cendens diverget, ni omnes radices quantitatum a$$umptarum po$$i- biles vel impo$$ibiles inter $e quodammodo habeantur æquales; in quo ca$u nonnunquam convergent & nonnunquam divergent & a$- cendens & de$cendens $eries, & in algebraicis quantitatibus utræque plerumque evadent eædem vel una affirmativa & altera negativa & æqualis: in fluentibus proprie correctis eadem affirmari po$$unt.

6. Ex theor. P + ({P^. / x^.}) e + {1 / 2}({P^. / x^. ^2}) e^2 + &c. & P + (({P^. / x}) e + ({P^. / y^.})0 + &c.) + &c. erui po$$unt $ummæ multarum $e- rierum.

Ex. 1. Erit a^b+n = a^b (1 + nA + {n^2 A^2 / 1 · 2} + {n^3 A^3 / 1 · 2 · 3} + {n^4 A^4 / 1 · 2 · 3 · 4} + &c.), ubi A e$t logarithmus quantitatis a.

[0741]SERIERUM, &c.

Ex. 2. Erit √(b + a x + a n) = A^{1 / 2} + {a n / 2 A^{1 / 2}} - {1 / 4} × {a^2 n^2 / 2 A^{3 / 2}} + {1 / 4} × {3 / 2} × {a^3 n^3 / 2 · 3 A^{5 / 2}} - {1 / 4} × {3 / 2} × {5 / 2} × {a^5 n^5 / 2 · 3 · 4 A^{7 / 2}} + {1 / 4} × {3 / 2} · {5 / 2} · {7 / 2} × {a^7 n^7 / 2 · 3 · 4 · 5 A^{9 / 2}} - &c., ubi A = √(b + a x).

Ex. 3. Erit (x + b + n)^x+n = (x + b)^x (1 + ({x / x + b} + log. (x + b)) n) + {1 / 2}n^2 (x · (x - 1) · (x + b)^x-2 + 2(x + b)^x-1 + 2 x × (x + b)^x-1 × log. (x + b) + (x + b)^x × log. (x + b)^2) + &c.

Cum plures variabiles in a$$umptâ quantitate contineantur, tum ex theor. 21. 1. 3. erui po$$unt plures $eries, quarum $ummæ innote$cunt.

Convergentiæ harum $erierum ex principiis prius traditis dijudicari po$$unt.

7. Et $ic ex a$$umptis quantitatibus per quamcunque methodum con- tinuo inveniantur quantitates, quæ ad eas $emper propius accedunt, & ultimo propius accedunt quam pro datâ quâvis differentiâ, tum inveniuntur $eries, quarum $ummæ innote$cunt: hinc ex omnibus methodis approximationes ad qua$cunque radices vel quantitates con- tinuo deducendi prius traditis erui po$$unt $eries, quarum $ummæ $int radices, &c. ip$æ. E. g. Sint quæcunque quantitates perparvæ, & reducantur quæcunque a$$umptæ quantitates, ita ut progrediantur $e- cundum dimen$iones perparvarum quantitatum, & re$ultant $eries convergentes, quarum $ummæ $unt quantitates a$$umptæ.

8. Sit P quæcunque functio quantitatis (x) = 0, i. e. P = 0; pro valore quantitatis x a$$umatur a, & $cribatur a pro x in functione P, & re$ultet quantitas A; $cribatur etiam in quantitatibus {P^. / x^.}, ({P^.. / x^. ^2}), ({P^... / x^. ^3}), ({P^.... / x^. ^4}), &c.; a pro x, & re$ultent π, π′, π″, π′″, &c.; tum, $i π((a + z) - a) + {1 / 2} π′ ((a + z)^2 - a^2) + {1 / 2 · 3} π″ ((a + z)^3 - a^3) + {1 / 2 · 3 · 4} ((a + z)^4 - a^4) + &c. minor $it quam A, & inter a & a + z [0742]DE SUMMATIONE nulla contineatur po$$ibilis vel impo$$ibilis radix æquationis ({P^. / x^.}) = 0, erit radix datæ æquationis major quam a + z.

Eadem principia etiam ad duas vel plures æquationes duas vel plures incognitas quantitates habentes, etiamque ad $ucce$$ivas ap- proximationes detegendas applicari po$$unt.

9. A$$umantur quæcunque quantitates vel algebraicæ vel fluxionales vel incrementiales, reducantur eæ ad diver$as $eries $ecundum dimen- $iones diver$arum perparvarum vel permagnarum quantitatum pro- gredientes, & re$ultant diver$æ $eries inter $e æquales; vel reducan- tur prædictæ quantitates in diver$as $eries, & inveniantur fluentes vel integrales inter eo$dem valores earundem variabilium contentæ, & re$ultant diver$æ $eries inter $e æquales.

10. Sint P & Q infinitæ $eries, quæ convergunt, cum x $it quæcun- que quantitas minor quam α, tum etiam $eries progrediens $ecundum dimen$iones quantitatis (x) = $ · P x^m x^. $ · Q x^n x^. vel = $ · x^n′ x^. $ · x^m′ x^. &c. × $ · P x^m x^. $ · Q x^n x^. converget, cum x minor $it quam α.

2. Si prædictæ quantitates $emper convergant, cum x major $it quam α, tum etiam $eries prædictæ = $ · P x^n x^. × $ · Q x^n x^. &c. conver- gent, cum x major $it quam α.

Con$imilia etiam affirmari po$$unt de pluribus quantitatibus eju$- dem generis P, Q, R, S, &c.

THEOR. XLIX.

Sit data $eries $ecundum dimen$iones quantitatis x progrediens, & v functio quantitatis x perparva, vel permagna; tum inveniatur x = φ: v, $cribatur φ: v in datâ $erie pro x, & reducatur re$ultans ad $eriem $ecundum dimen$iones quantitatis v progredientem, ita ut exoriatur $eries convergens, & invenitur $eries cujus $umma innote$cit.

Sunt ca$us, in quibus $eries re$ultans nunquam converget; e. g. $it $eries x - {1 / 2} x^2 + {1 / 3} x^3 - {1 / 4} x^4 + &c., & √(1 - x^2) = v perparva quantitas, & exinde x = √(1 - v^2), $cribatur hæc quantitas pro x in datâ $erie, & re$ultat $eries (1 - v^2)^{1 / 2} - {1 / 2}(1 - v^2)^{2 / 2} + {1 / 3}(1 - v^2)^{3 / 2} [0743]SERIERUM, &c. - &c. = (1 - {1 / 2} + {1 / 3} - {1 / 4} + &c.) - {1 / 2} (1 - 1 + 1 - 1 + 1 - &c.) v^2 + {1 / 8} (1 × (1 - 2) - 1 × (2 - 2) + 1 × 1 - 1 × 2 + 1 × 3 - &c.) v^4 + &c.; quæ $eries nunquam converget, nam x - {1 / 2} x^2 + {1 / 3} x^3 - &c. = $ · {x^. / 1 + x} = {- v v^. / √(1 - v^2) × (1 + √(1 - v^2))}; $ed radix æqua- tionis 1 + √(1 - v^2) = 0 erit v = 0, ergo $eries $ecundum dimen$i- ones quantitatis v progrediens nunquam converget, cum v $it finita quantitas.

THEOR. L.

Erit {u / u + 1} = {u^. / u} - {u^. / u^2} + {u^. / u^3} - {u^. / u^4} + &c., unde log. (u + 1) - log. u = {1 / u} - {1 / 2 u^2} + {1 / 3 u^3} - &c.; at log. (1 + u) = $ · {u^. / 1 + u} = u - {1 / 2} u^2 + {1 / 3} u^3 - &c., unde log. u = u - u^-1 - {u^2 - u^-2 / 2} + {u^3 - u^-3 / 3} - &c.: hæc $eries nunquam converget, cum u $it po$$ibilis quantitas: $i au- tem u $it impo$$ibilis a + b √(- 1), & a^2 + b^2 = 1, tum $eries $em- per converget.

THEOR. LI.

Sit data æquatio relationem inter P, Q, R, &c. exprimens, quarum haud duæ in $e$e ducuntur, vel $imul involvuntur; ducatur data æquatio in ρ′; ubi ρ′ e$t fluxio functionis e $ingulis quantitatibus P, Q, R, &c., $i modo fluens requiratur; vel incrementum functionis e prædictis quantitatibus, $i modo integralis requiratur; tum inve- niri pote$t fluens vel integralis æquationis re$ultantis.

Ex. Sint quantitates, quæ $int quæcunque functiones quantitatis x ± x^-1; vel quantitatis, in quâ x & x^-1 $imiliter involvuntur; tum ea facile reduci pote$t ad functionem $inuum & co$inuum arcuum circuli.

Erunt {(x + √(x^2 - 1))^{n / m} - (x - √(x^2 - 1))^{n / m} / 2 √(- 1)} & {(x + √(x^2 - 1))^{n / m} [0744]DE SUMMATIONE + (x - √(x^2 - 1))^{n / m} /2} $inus & co$inus arcus circuli, qui erit ad arcum cujus $inus e$t √(1 - x^2) & co$inus x:: n: m. Si quantitates in præ- dictâ functione $int z^{n / m} - z^{-n / m} vel z^{n / m} + z^{-n / m}, tum pro z $cribatur x + √(x^2 - 1), & pro z^{n / m} - z^{-n / m} & z^{n / m} + z^{-n / m} $cribantur 2 √(- 1) s^{n / m} & 2 c^{n / m}, ubi s^{n / m} e$t $inus arcus {n / m} A & c^{n / m} co$inus eju$dem arcus, & co$inus arcus A e$t x & radius 1.

Cor. Hinc, $i in æquatione u - u^-1 - {u^2 - u^-2 / 2} + {u^3 - u^-3 / 3} - &c. = $ · {u^. / u} pro u $cribatur x + √(x^2 - 1), re$ultat s - {s′ / 2} + {s″ / 3} - &c. = $ · {x^. / √(-1) · √(x^2 - 1)} = $ · {x^. / √(1 - x^2)} = z arcui, cujus radius e$t 1 & co$in. = x.

2. Denotentur $inus & co$inus arcus q x per s^(q) & c^(q) re$pective, tum erunt $ · {s^(q) x^. / √(1 - x^2)} & $ · {c^(q) x^. / √(1 - x^2)} re$pective {c^(q) / q} & {s^(q) / q}; nam $it $inus s^(q) = s′, tum erit {s^.′ / √(1 - s′^2)} = {s^.′ / c^(q)} = {q x^. / √(1 - x^2)} & exinde {s′ / q} = $ · {c^(q) x^. / √(1 - x^2)}; & ad eundem modum inveniri pote$t {c^(q) / q} = $ · {s^(q) x^. / √(1 - x^2)}.

Hoc etiam verum e$t, cum q $it fractio.

3. Fluens fluxionis (s^(q) ^m × c^(q) ^n × {q x^. / √(1 - x^2)}) = {1 / m + 1}s^(q) ^m+1 c^(q) ^n-1 - {1 / m + 1} × {n - 1 / m + 3}s^(q) ^m+3 × c^(q) ^n-3 + {1 / m + 1} × {n - 1 / m + 3} × {n - 3 / m + 5}s^(q) ^m+5 c^(q) ^n-5 - {1 / m + 1} × {n - 1 / m + 3} × {n - 3 / m + 5} × {n - 5 / m + 7}s^(q) ^m+7 c^(q) ^n-7 + {1 / m + 1} × {n - 1 / m + 3} × {n - 3 / m + 5} × {n - 5 / m + 7} [0745]SERIERUM, &c. × {n - 7 / m + 9} × s^(q) ^m+9 × c^(q) ^n-9 - &c.; hæc $eries $emper terminat, cum n $it impar numerus: vel fluens prædicta erit {1 / n + 1} c^(q) ^n+1 s^(q) ^m-1 - {1 / n + 1} · {m - 1 / n + 3} c^(q) ^n+3 × s^(q) ^m-3 + {1 / n + 1} × {m - 1 / n + 3} × {m - 3 / n + 5} × c^(q) ^n+5 s^m-5 - {1 / n + 1} × {m - 1 / n + 3} · {m - 3 / n + 5} · {m - 5 / n + 7} × c^(q) ^n+7 s^m-7 + &c., quæ $emper terminat cum m $it impar numerus.

4. Ducatur prædicta æquatio s - {s′ / 2} + {s″ / 3} - {s′″ / 4} + &c. = z in {x^. / √(1 - x^2)} & inveniatur fluens æquationis re$ultantis, deinde ducatur æquatio re$ultans in {x^. / √(1 - x^2)} & inveniatur fluens æquationis re$ul- tantis; & $ic deinceps; & re$ultant $eries, quarum $ummæ innote$cunt.

5. Fluens fluxionis ({u^m-1 u^. / (1 + u^n)^e}) = {u^m / m} - {e u^m+n / m + n} + e · {e + 1 / 2} · {u^m+2n / m + 2 n} &c. - M′ vel = - {u^m-en / e n - m} + {e u^m-en-n / e n - m + n} - e × {e + 1 / 2} × {u^m-en-2n / e n + 2 n - m} &c. + M″, ubi M′ = {1 / m} - {e / m + n} + e · {e + 1 / 2} × {1 / m + 2 n} &c., & M″ = {1 / e n - m} - {e / e n + n - m} + e · {e + 1 / 2} · {1 / e n + 2 n - m} &c.; quæ erunt fluentes fluxionum {u^m-1 u^. / (1 + u^n)^e} & {u^en-m-1 u^. / (1 + u^n)^e} inter valores 0 & 1 quantita- tis u contentarum: ducatur hæc æquatio in u^en-2m-1 u^., & invenientur flu- entes flux. re$ult. {u^en-m / m · e n - m} - {e u^en+n-m / m + n · e n + n - m} + e · {e + 1 / 2} {u^en+2n-m / m + 2 n · e n + 2 n - m} &c. - {M′u^en-2m / e n - 2 m} + {M′ / e n - 2 m} = {u^-m / m · e n - m} - {e u^-m-n / m + n · e n + n - m} + e · {e + 1 / 2} {u^-m-2n / m + 2 n · e n + 2 n - m} &c. + [0746]DE SUMMATIONE {M″ u^en-2m / e n - 2 m} - {M″ / e n - 2 m}; ducatur hæc æquatio in {u^m-{1 / 2}en / 2√(-1)}, & re$ul- tat {u^{1 / 2}en - u^-{1 / 2}en / 2 √(- 1) m · e n - m} - e{u^{1 / 2}en+n - u^-{1 / 2}en-n / 2 √(- 1) · m + n · e n + n - m} + &c. = 0; & per principia prius tradita e $cribendo x + √(x^2 - 1) pro u facile reduci pote$t data æquatio ad $eriem $inuum: ducatur iterum iterumque reducta æquatio in {x^. / √(1 - x^2)}; & inveniantur fluentes re$ultantium æquationum; & re$ultant novæ $eries, quarum $ummæ innote$cunt.

6. Erit (2 c^({n / 2}))^-e = ((x + √(x^2 - 1))^{n / 2} + (x - √(x^2 - 1))^{n / 2})^-e = (x + √(x^2 - 1))^{1 / 2}en - e (x + √(x^2 - 1))^{1 / 2}en+n + &c. = (x - (√x^2 - 1))^{1 / 2}en - e (x - √(x^2 - 1))^{1 / 2}n+n + &c.; & exinde ((x + √(x^2 - 1))^{1 / 2}en - (x - √(x^2 - 1))^{1 / 2}en) - e ((x + √(x^2 - 1))^{1 / 2}en+n - (x - √(x^2 - 1))^{1 / 2}en+n) + &c. = s^{1 / 2}en - e s^{1 / 2}en+n + &c. = 0; vel ducatur 2 (c^({n / 2}))^-e = (x + √(x^2 - 1))^{1 / 2}en - e (x + √(x^2 - 1))^{1 / 2}en+n + &c. in (x + √(x^2 - 1))^m-{1 / 2}en & (2 c^({n / 2}))^-e = (x - √(x^2 - 1))^{1 / 2}en - e (x - √(x^2 - 1))^{1 / 2}en+n + &c. in (x - √(x^2 - 1))^m-{1 / 2}en, & $ubducatur po$terior re$ultans æquatio de priori, & dividatur per 2√(- 1) & re$ultabit {s^(m-{1 / 2}en) / (2 c^({n / 2}))^e} = s^(m) - e s^(m+n) + e · {e + 1 / 2} s^(m+2n) - &c.; ducatur hæc æquatio in {x^. / √(1 - x^2)}, & inve- niatur fluens æquationis re$ultantis; deinde ducatur fluens prædicta in {x^. / √(1 - x^2)} & inveniatur fluens æquationis re$ultantis; & $ic de- inceps; & re$ultabunt $eries quarum $ummæ innote$cunt.

7. Erit {1 / (x - √(x^2 - 1))^{1 / 2}n + y (x + √(x^2 - 1))^{1 / 2}n} = (x + √(x^2 - 1)){n / 2} [0747]SERIERUM, &c. - y (x + √(x^2 - 1))^{3n / 2} + &c., &c., {1 / (x + √(x^2 - 1))^{1 / 2}n + y (x - √(x^2 - 1))^{1 / 2}n} = (x - √(x^2 - 1))^{1 / 2}n - y (x - √(x^2 - 1))^{3 / 2}n + &c.; $ubtrahatur alter æquatio de alterâ, & dividatur per 2√(- 1), re- $ultat (1 - y) × {s^({1 / 2}n) / 1 + y^2 + 2 y c^(n)} = s^({n / 2}) - y s ({3n / 2}) + &c.: multiplicetur prima æquatio per (x + √(x^2 - 1))^{n / 2} & $ecunda per (x - √(x^2 - 1))^{n / 2} & $ubtrahatur alter de alterâ, & dividatur per 2 √(- 1), & re$ultat {s^(n) / 1 + y^2 + 2 y c^(n)} = s^(n) - s^(2n) y + &c.: multiplicentur hæ æquationes per {x^. / √(1 - x^2)} & inveniantur fluentes æquationum re$ultantium termino- rum, & deducuntur $eries, quarum $ummæ innote$cunt: vel multipli- cetur prima æquatio per (x + √(x^2 - 1))^m-{n / 2}; & $ecunda per (x - √(x^2 - 1))^m-{n / 2}, & collocentur quantitates in ordine (x + √(x^2 - 1))^b ± (x - √(x^2 - 1))^b = H, quæ denotat s^(b) $inum vel co$inum arcus h z, ubi z e$t arcus, cujus co$inus e$t x; vel $cribatur y^q pro y, & de- inde multiplicentur æquationes per y^p-1 y^. & inveniantur fluentes, ex hypothe$i quod y $olummodo $it variabilis; & con$equuntur $eries, quarum $ummæ innote$cunt.

8. In $ummis $erierum prius traditarum inve$tigandis, haud nece$$a- rio introducendi $unt $inus & co$inus arcuum n z, in eorum loco re- tineantur quantitates algebraicæ {(x + √(x^2 - 1))^n + (x - √(x^2 - 1))^n / 2} = P & {(x + √(x^2 - 1))^n - (x - √(x^2 - 1))^n / 2 √(- 1)} = Q.

A$$umatur log. u = u - u^-1 - {u^2 - u^-2 / 2} + &c.; ducatur hæc æquatio in {u^. / u}, & re$ultat fluxio, cujus fluens e$t u + u^-1 - {u^2 + u^-2 / 2 · 2} [0748]DE SUMMATIONE + {u^3 + u^-3 / 3 · 3} - &c. = $ · log. u × {u^. / u} = {1 / 2} (log. u)^2; hæc $eries ut prædi- citur $emper divergit, ni u $it impo$$ibilis quantitas x + √(x^2 - 1): log. impo$$ibilis quantitatis denotat circularem arcum, &c.: & $imi- liter erui po$$unt omnes $eries, quæ ex introductione $inuum & co- $inuum per hanc methodum deduci po$$unt.

9. Sint duæ æquationes A = 0 & B = 0, in quibus a in unâ $imili- ter involvitur ac β in alterâ; tum $ubtrahatur una æquatio de alterâ, & pro α & β $cribantur x + √(x^2 - 1) & x - √(x^2 - 1); & s^(b) & c^(b) pro {(x + √(x^2 - 1))^b - (x - √(x^2 - 1))^b / 2 √(- 1)} & {(x + √(x^2 - 1))^b + (x + √(x^2 - 1))^b / 2}, & re$ultat æquatio, in quâ involvuntur $inus & co- $inus arcuum h z; e. g. $int duæ æquationes (a + b)^q = a^q + q a^q-1 b + q · {q - 1 / 2} a^q-2 b^2 + q · {q - 1 / 2} · {q - 2 / 3} a^q-3 b^3 + &c. & (a + c)^q = a^q + q a^q-1 c + q · {q - 1 / 2} a^q-2 c^2 + &c.; $ubtrahatur po$terior æqua- tio de priori; deinde pro c ponatur eadem functio quantitatis x + √(x^2 - 1) ac b $it quantitatis x - √(x^2 - 1); & facile transformari pote$t æquatio re$ultans in æquationes $inus & co$inus arcuum h z involventes.

Et $imiliter transformari po$$unt prædictæ æquationes, &c. in æquationes, quæ $unt con$imiles functiones quantitatum x + √(x^2 - 1) & x - √(x^2 - 1); vel quarumcunque aliarum datarum quantitatum; ducantur æquationes re$ultantes in fluxiones, quarum fluentes $unt functiones e $ingulis prædictis quantitatibus; re$ultant $eries, quarum $ummæ innote$cunt e fluentibus quantitatum in æquationibus con- tentarum; & $ic deinceps.

[0749]SERIERUM, &c. PROB. XLV. _Invenire $ummam $eriei_ x + {x^2 / 2^2} + {x^3 / 3^2} + &c. cum x = {1 / 2}:

Erit log. {1 / 1 - x} = x + {x^2 / 2} + {x^3 / 3} + &c. in hâc æquatione pro x $cribatur {v / v - 1} & re$ultat log. {1 / 1 - {v / v - 1}} = log. (1 - v) = {v / v - 1} + {v^2 / 2 (v - 1)^2} + {v^3 / 3 (v - 1)^3} + &c. = (1 - v^-1)^-1 + {(1 - v^-1)^-2 / 2} + {(1 - v^-1)^-3 / 3} + &c.; in hâc æquatione pro 1 - v $cribatur u & re$ul- tat log. u = 1 - u^-1 + {(1 - u^-1)^2 / 2} + {(1 - u^-1)^3 / 3} + &c. = - (1 - u) - {(1 - u)^2 / 2} - {(1 - u)^3 / 3} - &c., quæ prius inventa fuit = u - u^-1 - {u^2 - u^-2 / 2} + {u^3 - u^-3 / 3} - &c.; prima $eries converget, cum 1 - u^-1 minor $it quam ± 1; $ecunda cum 1 - u $it etiam minor quam ± 1: $ed $ · {x^. / x} log. {1 / 1 - x} = x + {x^2 / 2^2} + {x^3 / 3^2} + &c., & $ · {x^. / 1 - x} log. x = (1 - x) + {(1 - x)^2 / 2^2} + {(1 - x)^3 / 3^2} + &c. - (1 + {1 / 4} + {1 / 9} + {1 / 16} + &c. = A), & exinde con$tat log. x × log. {1 / 1 - x} = $ · {x^. / x} × log. {1 / 1 - x} + $ · {x^. / 1 - x} × log. x = (x + {x^2 / 2^2} + {x^3 / 3^2} + &c.) + (1 - x + {(1 - x)^2 / 2^2} + {(1 - x)^3 / 3^2} + &c. - A); fingatur x = {1 / 2}, & re$ultat log · {1 / 2} × log. 2 = 2 × ({1 / 2} + {{1 / 4} / 2^2} + {{1 / 8} / 3^2} + {{1 / 16} / 4^2} + &c.) - (A = 1 + {1 / 4} + {1 / 9} + {1 / 16} + &c.) & exinde valor $eriei x + {x^2 / 4} + {x^3 / 9} + &c. cum x = {1 / 2}.

[0750]DE SUMMATIONE

Et ex con$imilibus principiis detegi pote$t $umma $eriei x + {x^2 / 2^2} + {x^3 / 3^2} + &c. = {2 a^2 / 3}, {a^2 / 3} - {1 / 2} (log. 2)^2, {4 a^2 / 15} - (log. {√(5) - 1 / 2})^2, vel {2 / 15} a^2 - (log. {√(5) - 1 / 2})^2; prout x $it = 1, {1 / 2}, {3 - √(5) / 2} vel {√(5) - 1 / 2}.

THEOR. LII.

1. Erit z + 1 · z + 2 · z + 3 .... n z = 1 · 2 · 3 .. (n - 1) × (n + 1) · n + 2 · n + 3 ... (2 n - 1) × (2 n + 1) · 2 n + 2 · 2 n + 3 .. (3 n - 1) × (3 n + 1) · 3 n + 2 · 3 n + 3 ... (4 n - 1) × (4 n + 1) · 4 n + 2 · 4 n + 3 &c. ad (n z - 1) × n^z; nam {1 · 2 · 3 .. n z / 1 · 2 · 3 .. z} = z + 1 · z + 2 · z + 3 .. n z = {1 · 2 · 3 .. n z / n · 2 n · 3 n .. n z} × n^z = 1 · 2 · 3 · n - 1 · n + 1 · n + 2 .. 2 n - 1 · 2 n + 1 · 2 n + 2 .. 3 n - 1 · 3 n + 1 ... (n z - 1) × n^z; $it n = 2 & evadet z + 1 · z + 2 · z + 3 ... n z = 1 · 3 · 5 · 7 ... (2 z - 1) × 2^z.

2. Sit z infinita quantitas & erit z^z: (z - n)^z: 1: 1 - n + {n^2 / 2} - {n^3 / 2 · 3} + {n^4 / 2 · 3 · 4} - &c., & z^z: (z + n)^z:: 1: 1 + n + {n^2 / 2} + {n^3 / 1 · 2 · 3} + {n^4 / 1 · 2 · 3 · 4} + &c. unde tres quantitates (z - n)^z, z^z & (z + n)^n erunt ultimo in ratione quantitatum α, 1 & β; ubi α & β $unt nu- meri, qui corre$pondeant logarithmis n & - n. Erunt z^z: (z + n)^z :: 1: 1 + n + {1 / 2} n^2 + {1 / 6} n^3 + &c. etiamque (z + n)^z: (z + n)^z+n:: 1: (z + n)^n:: 1: z^n & con$equenter z^z: (z + n)^z+n: 1: (1 + n + {1 / 2} n^2 + {1 / 6} n^3 + &c.) z^n.

Et $ic facile deduci po$$unt innumeræ propo$itiones huju$modi, quæ o$tendunt limites, ad quos continuo vergunt datæ algebraicæ vel exponentiales quantitates, u$que donec z evadat infinita.

[0751]SERIERUM, &c.

3. In genere, $i dentur quæcunque irrationales quantitates, earum rationes inter $e ad infinitam di$tantiam detegere.

Primo rejiciantur omnes quantitates in iis, quæ ad infinitam di- $tantiam infinite minores $int quam reliquæ, i. e. nihil valent per extractionem radicum, &c. deinde reducantur reliquæ in $eries con- vergentes, & ex iis deduci po$$unt relationes ad infinitam di$tantiam quæ$itæ.

1. 1. Datâ quantitate A involvente alias z, &c. infinite magnas; in- venire annon A finita $it: $i in finito numero factorum contineatur A; tum ex ejus reductione ad $eries $ecundum dimen$iones quanti- tatis z progredientes con$tat, annon quantitas A $it finita.

2. Sint datæ æquationes, quæ vere con$tituuntur, cum z $it quæ- cunque finita quantitas; tum etiam vere con$tituentur, cum z evadat infinita: & $i in datis æquationibus pro z $cribatur z + n vel n z, &c., veræ erunt æquationes re$ultantes: e. g. a$$umatur 1^2 . 2^2 . 3^2 .. z^2 × {e^2z / z^2z+1} = 2 π, & exinde 1^2 . 2^2 .. z^2 × (z + 1)^2 × {e^2z+2 / (z + 1)^2z+3} = 2 π, unde 2 π × (z + 1)^2 × {e^2 × z^2z+1 / (z + 1)^2z+3} = 2 π, & e^2 × {z^2z+1 / (z + 1)^2z+1} = 1, & con- $equenter {(z + 1)^2z+1 / z^2z+1} = 1 + 2 + {4 / 1 · 2} + {8 / 2 · 3} + {16 / 2 · 3 · 4} + {32 / 2 · 3 · 4 · 5} + {64 / 2 · 3 · 4 · 5 · 6} + &c. = e^2, aliter æquatio a$$umpta non pote$t e$$e vera.

3. Augeatur infinita quantitas (z) per (n) finitas quantitates a, b, c, &c.; & $int quantitates re$ultantes per earum $ub$titutiones pro z in datâ quantitate A, B, C, D, &c.; tum erit α A + β B + γ C + δ D + &c. = 0, cum α + β + γ + δ + &c. = 0, & A $it finita: e. g. $it præcedens æquatio 1^2 · 2^2 · 3^2 · 4^2 .. z^2 {e^2z / z^2z+1} = 2 π, pro z $cribatur z + 1 & re$ultat 1^2 · 2^2 · 3^2 .. z^2 × {e^2z+2 / (z + 1)^2z+1} = 2 π, & exinde 1^2 · 2^2 · 3^2 .. [0752]DE SUMMATIONE z^2 × e^2z × ({e^2 / (z + 1)^2z+1} - {1 / z^2z+1}) = - 1^2 · 2^2 · 3^2 .. z^2 × e^2z ((1 + 2 + {4 / 1 · 2} + {8 / 1 · 2 · 3} + &c. - e^2) z^-2z-1 - &c.), at $it (1 + 2 + {4 / 2} + {8 / 1 · 2 · 3} + &c.) - e^2 = 0, & $ub$equentes quantitates erunt infinite parvæ, cum z evadat infinita: ergo con$tat exemplum.

4. Inveniantur $ucce$$ivi termini datæ quantitatis, & per principia prius tradita dijudicari pote$t, utrum $eries $it finita necne.

5. Sit fluxio (a + b x^n)^m x^rn-1 x^., inveniatur fluens (A) huju$ce flu- xionis inter valores 0 & -{a / b} quantitatis x^n po$ita; deinde per prob. 23. inveniatur fluens (P) fluxionis (a + b x^n)^m±h x^(r±i)n-1 x^. inter prædictos valores, ubi h & i $unt infinitæ quantitates; vel altera infinita, altera vero $inita vel nulla: per eandem methodum inve- niatur fluens (B) fluxionis (a + b x^n)^s x^tn-1 x^. inter eo$dem valores po$ita & exinde per prædictum prob. inveniatur fluens (Q) fluxionis (a + b x^n)^s±h x^(t±i)n-1 x^.; & ex æquando fluentes P & Q con$equitur relatio inter A & B quæ involvit quantitates infinite magnas: du- cantur plures huju$modi quantitates in $e$e, vel inveniantur fluen- tes prædictarum fluxionum ex diver$is modis; & ad eas applicentur con$imilia principia; & re$ultant æquationes involventes quantitates infinite magnas, vel potius limites ad quos quantitates appropin- quant prius quam quædam quantitates in iis contentæ evadant in$i- nite magnæ.

6. Erit 1^2 × 2^2 × 3^2 ... z^2 × {e^2z / z^2z+1} = 2 π peripheria circuli, cujus ra- dius e$t 1: & (1 - m^2) × (2^2 - m^2) × (3^2 - m^2) ... (z^2 - m^2) × {e^2z / z^2z+1} = {m / 2} × $in. arc. m S; etiamque (z + m) × (z + m + 1) × (z + m + 2) ... (2 z + m) × {e^z / 2^2z z^z} = 2^m-{1 / 2}.

[0753]SERIERUM, &c. PROB. XLVI.

Datâ $erie (P) a + b x^n + c x^2n + d x^3n + &c. .. D x^(m-3)n + C x^(m-2)n + B x^(m-1)n + A x^mn + &c. in infinitum progrediente, ubi a, b, c, d, &c. D, C, B, A, &c. $int quæcunque datæ functiones quantitatis z di$tantiæ a primo $eriei termino; invenire legem, quam ob$ervant cceffi- cientes ejus (P) quadrati, &c.

A$$umatur A coefficiens generalis termini cuju$cunque x^mn, tum erit 2 (a A + b B + c C + &c.) coefficiens termini x^mn $eriei, quæ $it quadratum $eriei P: $int vero l & L coefficientes quorumcunque terminorum x^rn & x^(m-r)n; tum erit L l generalis terminus $eriei a A + b B + c C + &c. Ex hoc vero generali termino dato deducatur $umma $eriei in infinitum, quæ correcta præbet $eriei $ummam a A + b B + c C + &c. i. e. generalem terminum $eriei (P^2) = a^2 + 2 a b x^2 + &c.

2. Ex ii$dem principiis etiam inveniri pote$t generalis terminus $eriei, quæ $it P^s = a^s + s a^s-1 b x^2 + &c. $i modo $ummæ $erierum exinde ortarum in finitis terminis exprimi po$$int: in his autem $eriebus continentur una, duæ vel plures variabiles quantitates; e. g. $it s = 2, & una $olummodo in $erie re$ultante continetur va- riabilis quantitas; $it s = 3, & una vel duæ variabiles quantitates in $eriebus re$ultantibus continentur; $it s = 4, & una vel duæ vel tres variabiles quantitates in $eriebus re$ultantibus continentur; & $ic deinceps. Facile con$tant generales termini ad has $eries, quæcun- que $it pote$tas s. Et $ic de lege cuju$cunque functionis huju$ce $e- riei vel plurium $erierum inve$tigandâ.

NOVA METHODUS DIFFERENTIARUM. THEOR. LIII.

Sit data $eries in omni parte celeriter convergens a x + b x^2 + c x^3 + d x^4 + e x^5 + &c. in eâ pro x $cribantur $ucce$$ive p, 2 p, 3 p, 4 p, [0754]DE SUMMATIONE 5 p, &c.; quantitates re$ultantes erunt a p + b p^2 + c p^3 + &c. = S^1, 2 a p + 4 b p^2 + 8 c p^3 + &c. = S^2, 3 a p + 9 b p^2 + 27 c p^3 + &c. = S^3, 4 a p + 16 b p^2 + 64 c p^3 + &c. = S^4, &c.; & dentur prædictæ $ummæ S^1, S^2, S^3, S^4 & S^5; invenire $ummam S^6 prope.

Fingatur α S^1 + β S^2 + γ S^3 + δ S^4 + ε S^5 = α (a p + b p^2 + c p^3 + &c.) + β (2 a p + 4 b p^2 + 8 c p^3 + &c.) + γ (3 a p + 9 b p^2 + 27 c p^3 + &c.) + δ(4 a p + 16 b p^2 + 64 c p^3 + &c.) + &c. = (α + 2 β + 3 γ + 4 δ + &c.) a p + (α + 4 β + 9 γ + 16 δ + &c.) b p^2 + (α+ 8 β + 27 γ + 64 δ + &c.) c p^3 + (α + 16 β + 81 γ + 256 δ + &c.) d p^4 + &c. = S^6 = 6 a p + 36 b p^2 + 216 c p^3 + 1296 d p^4 + &c.

Fiant corre$pondentes termini huju$ce æquationis re$pective inter $e æquales, & exinde re$ultant æquationes

α+2β+3γ+4δ+5ε=6 # Differentiæ # 6γ+24δ+60ε=120=μ-2λ=π α+4β+9γ+16δ+25ε=36 # 2β+6γ+12δ+20ε=30=λ # 18γ+96δ+300ε=720=ν-2μ=ρ α+8β+27γ+64δ+125ε=216 # 4β+18γ+48δ+100ε=180=μ # 54γ+384δ+1500ε=430=ξ-2ν=σ α+16β+81γ+256δ+625ε=1296 # 8β+54γ+192δ+500ε=1080=ν # 24δ+120ε=360=ρ-3π=τ α+32β+243γ+1024δ+3125ε=7776 # 16β+162γ+768δ+2500ε=6480=ξ # 96δ+600ε=2160=σ-3ρ=υ # # 120ι=720=υ-4τ

unde ε = 6, δ = - 15, γ = 20, β = - 15, α = 6; & con$equenter S^6 = 6 S^5 - 15 S^4 + 20 S^3 - 15 S^2 + 6 S^1 prope; & in genere erit S^n = n S^n-1 - n · {n - 1 / 2} S^n-2 + n · {n - 1 / 2} · {n - 2 / 3} S^n-3 - n · {n - 1 / 2} · {n - 2 / 3} {n - 3 / 4} S^n-4 .... ± n. {n - 1 / 2} · {n - 2 / 3} S^3 ∓ n · {n - 1 / 2} S^2 ± n S^1 prope; ubi coefficientes inveniuntur eædem ac in $erie - e^n + n e^n-1 f - n · {n - 1 / 2} e^n-2 f^2 + &c. = - (e - f)^n, $i modo primus & ultimus termi- nus abjiciantur.

Cor. Sit n = 5, re$ultat S^5 = 5 S^4 - 10 S^3 + 10 S^2 - 5 S^1 = 5 (S^4 - S^1) - 10 (S^3 - S^2); $int S^1, S^2, S^3 & S^4 logarithmi rationum r: r + p, r: r + 2 p, r: r + 3 p, r: r + 4 p re$pective; tum erit S^5 logar. rationis r: r + 5 p prope: in genere erit S^n = n (S^n-1 ± S^1) - n · {n - 1 / 2} (S^n-2 ± S^2) + n · {n - 1 / 2} · {n - 2 / 3} (S^n-3 ± S^3) - &c.

[0755]SERIERUM, &c.

1. 2. Ii$dem literis ea$dem quantitates denotantibus, erit S^m+n = {m + n · n + m - 1 · m + n - 2 ... m + 2 / 1 · 2 · 3 ·, · n - 1} × S^n-1 - {n - 1 / 1} A × {m + 1 / m + 2} S^n-2 + {n - 2 / 2} × B × {m + 2 / m + 3} S^n-3 - {n - 3 / 3} × C × {m + 3 / m + 4} S^n-4 + {n - 4 / 4} × D × {m + 4 / m + 5} S^n-5 - {n - 5 / 5} × E × {m + 5 / m - 6} × S^n-6 + &c. u$que ad termi- num S<_>1 prope, ubi literæ A, B, C, D, E, &c. præcedentes coefficientes re$pective denotant, & m e$t integer numerus.

THEOR. LIV.

1. Si in præcedente $erie $cribantur + p, - p, 2 p, - 2 p, 3 p, - 3 p .... n p, - n p; exorientur quantitates a p + b p^2 + c p^3 + d p^4 + &c. = S^1, - a p + b p^2 - c p^3 + d p^4 - &c. = S^-1, 2 a p + 4 b p + 8 c p^3 + &c. = S^2, - 2 a p + 4 b p^2 - 8 c p^3 + &c. = S^-2, 3 a p + 9 b p^2 + 27 c p^3 + &c. = S^3, - 3 a p + 9 b p^2 - 27 c p^3 + &c. = S^-3, &c. tum erit $umma S^m = {m · (m^2 - 1) · (m^2 - 4) · (m^2 - 9) · (m^2 - 16) ... (m^2 - (n - 1)^2) · (m - n) / n · (n^2 - 1) · (n^2 - 4) · (n^2 - 9) ... (n^2 - (n - 1)^2) × 2 n = 1 · 2 · 3 · 4 ... 2 n} S^-n + A × {m + n / m - n} S^+n - {2 n / 1} × B × {m - n / m + (n - 1)} S^-n+1 - C × {m + (n - 1) / m - (n - 1)} S^n-1 + {2 n - 1 / 2} D × {m - (n - 1) / m + (n - 2)} S^-n+2 + {m + (n - 2) / m - (n - 2)} E S^n-2 - {2 n - 2 / 3} F × {m - (n - 2) / m + (n - 3)} S^-n+3 - G × {m + (n - 3) / m - (n - 3)} S^n-3 + &c. prope; ubi literæ A, B, C, D, &c. præcedentes coefficientes re$pective denotant: generaliter vero coefficientes terminorum S^-n+s & S^n-s erunt re$pec. tive {2 n - s + 1 / s} × L × {m - (n - s + 1 / m + (n - s)} & M × {m + (n - s) / m - (n - s)}, ubi li- teræ L & M earum præcedentes coefficientes re$pective denotant, quæ coefficientes affirmativæ vel negativæ a$$umendæ $unt, prout s $it par vel impar numerus.

[0756]DE SUMMATIONE

2. Si pro x in prædictâ $erie $cribantur p, - p, 2 p, - 2 p, 3 p, - 3 p ..... (n - 1) p, - (n - 1) p, n p re$pective; tum erit S^m = {m · (m^2 - 1) · (m^2 - 4) · (m^2 - 9) ... (m^2 - (n - 1)^2) / 1 · 2 · 3 · 4 ... (2 n - 1)} S^n - A × {m - n / m + (n - 1)} S^-n+1 - {2 n - 1 / 1} × B × {m + (n - 1) / m - (n - 1)} S^n-1 + C × {m - (n - 1) / m + (n - 2)} S^-n+2 + {2 n - 2 / 2} × D × {m + (n - 2) / m - (n - 2)} S^n-2 - &c. prope, ubi A, B, C, &c. præcedentes coefficientes ut antea denotant, & generaliter coefficien- tes terminorum S^-n+s & S^n-s erunt re$pective L × {m - (n - s + 1) / m + n - s} & {2 n - s / s} × M × {m + (n - s) / m - (n - s)}; L & M earum præcedentes coefficientes re$pective denotantibus, quæ autem coefficientes affumendæ $unt af- firmativæ vel negativæ, prout s $it par vel impar numerus.

Cor. 1. Si m $it negativa quantitas; tum in hi$ce $eriebus pro m $eribenda e$t - m, & re$ultat quantitas quæ$ita.

Cor. 2. Cum numerus terminorum S^1, S^2, S^3, &c. detur, tum hæc methodus plerumque magis converget quam ea in theor. præcedente tradita; & con$imilis propo$itio etiam vera e$t de $eriebus in theor. $ub$eq. contentis.

THEOR. LV.

In $erie prædictâ a x + b x^2 + c x^3 + d x^4 + &c. pro x $cribantur re$pective p, q, r, s, t, &c. & m; & dicantur $ummæ $erierum re$ul- tantium re$pective S^p, S^q, S^r, S^s, &c., & S^m; tum erit S^m = {m × (m - q) × (m - r) × (m - s) × (m - t) × &c. / p × (p - q) × (p - r) × (p - s) × (p - t) × &c.} S^p + {m · (m - p) × (m - r) × (m - s) × (m - t) × &c. / q · (q - p) · (q - r) · (q - s) · (q - t) × &c.} × S^q + {m · (m - p) · (m - q) · (m - s) · (m - t) × &c. / r · (r - p) · (r - q) · (r - s) · (r - t) × &c.} × S^r + &c. = a m + b m^2 + c m^3 + d m^4 + &c. prope; hìc vero anim- [0757]SERIERUM, &c. advertendum e$t coefficientem cuju$cunque termini S^π e$$e {m · (m - p) · (m - q) · (m - r) · (m - s) · &c. / π · (π - p) · (π - q) · (π - r) · (π - s) · &c.}, in cujus numeratore haud conti- netur factor m - π.

Cor. Hinc facile deduci po$$unt quædam arithmeticæ propo$itio- nes, e. g. $int quæcunque quantitates p, q, r, s, t, &c.; & m; tum per theorema {m · (m - q) · (m - r) · &c. / p · (p - q) · (p - r) · &c.} × S^p + {m · (m - p) · (m - r) · &c. / q · (q - p) · (q - r) · &c.} S^q + {m · (m - p) · (m - q) · &c. / r · (r - p) · (r - q) · &c.} S^r + &c. = a m + b m^2 + c m^3 + &c. prope; unde {m · (m - q) · (m - r) · &c. / p · (p - q) · (p - r) · &c.} × (a p + b p^2 + c p^3 + &c.) + {m · (m - p) · (m - r) · &c. / q · (q - p) · (q - r) · &c.} × (a q + b q^2 + c q^3 + &c.) + {m · (m - p) · (m - q) · &c. / r · (r - p) · (r - q) · &c.} × (a r + b r^2 + c r^3 + &c.) + &c. = a m + b m^2 + c^3 + &c., & con$equenter ex æquatis inter $e corre$pon- dentibus terminis {m · (m - q) · (m - r) · (m - s) · &c. / p (p - q) · (p - r) · (p - s) · &c.} (A) p + {m · (m - p) · (m - r) · (m - s) · &c. / q (q - p) · (q - r) · (q - s) · &c.} (B) q + {m · (m - p) · (m - q) · (m - s) · &c. / r (r - p) · (r - q) · (r - s) · &c.} (C) r + &c. = p A + q B + r C + &c. = m; & in ge- nere p^i A + q^i B + r^i C + &c. = m^i; $i modo i $it integer & non ma- jor quam numerus quantitatum p, q, r, s, t, &c.

Summa fractionum {p / α - β · α - γ · α - δ · α - ε · &c.} + {Q / β - α · β - γ · β - δ · β - ε · &c.} + {R / γ - α · γ - β · γ - δ · γ - ε · &c.} + {S / δ - α · δ - β · δ - γ · δ - ε · &c.} + &c. = π; ubi P, Q, R, S, &c. $unt rationales & integrales functiones quantitatum α, β, γ, δ, &c.; [0758]DE SUMMATIONE i. e. $unctiones, in quibus nullus negativus vel fractionalis index continetur: & in quantitate P $imiliter involvuntur omnes quanti- titates β, γ, δ, &c. præter unam α; & $ic in quantitatibus Q, R, S, &c. $imiliter involvuntur omnes prædictæ quantitates præter unam β, γ, δ, &c. re$pective: & in quantitate P $imiliter involvuntur quantitates β, γ, δ, ε, &c.; ac quantitates α, γ, δ, ε, &c. in Q; & α, β, δ, ε, &c. in R; α, β, γ, ε, &c. in S, &c.: & ultimo functio quantitatis α in P ea- dem e$t ac functio quantitatis β in Q, & utraque eadem ac functio quantitatis γ in C, & $ic deinceps: tum, $i numerus literarum α, β, γ, δ, &c. $it n; & dimen$iones literarum α, β, γ, &c. in quantitatibus P, Q, R, S, &c. contentarum $int m, m - 1, m - 2, &c.; ubi n & m $unt integri numeri; erit π functio rationalis & integralis quantita- tum α, β, γ, δ, &c., in quâ $imiliter involvuntur quantitates α, β, γ, δ, &c.; cujus dimen$iones quantitatum in eâ contentarum haud ex- $uperant m - n; $i m $it minor quam n, tum erit π = 0.

Facile ex hi$ce vel pluribus $implicibus æquationibus erui po$$unt plures huju$modi propo$itiones.

THEOR. LVI.

Sit $eries celeriter convergens a x^b + b x^b+k + c x^b+2k + d x^b+3k + &c., in eâ pro x $cribantur re$pective p, q, r, s, t, &c. π, & m; & dicantur $ummæ exinde re$ultantes re$pective S^p, S^q, S^r, S^s, &c. & S^m; tum erit S^m = {m^b × (m^k - q^k) × (m^k - r^k) × (m^k - s^k) × &c. / p^b (p^k - q^k) × (p^k - r^k) × (p^k - s^k) × &c.} × S^p + {m^b × (m^k - p^k) × (m^k - r^k) × (m^k - s^k) × &c. / q^b (q^k - p^k) × (q^k - r^k) × (q^k - s^k) × &c.} × S^q + {m^b × (m^k - p^k) × (m^k - q^k) × (m^k - s^k) × &c. / r^b (r^k - p^k) × (r^k - q^k) × (r^k - s^k) × &c.} S^r + &c. = a m^b + b m^b+k + c m^b+2k + d m^b+3k + &c. prope; coefficiens cuju$cunque termini S^π erit {m^b × (m^k - p^k) × (m^k - q^k) × (m^k - r^k) × &c. / π^b (π^k - p^k) × (π^k - q^k) × (π^k - r^k) × &c.}, in cujus numeratore haud continetur factor m^k - π^k.

[0759]SERIERUM, &c.

Cor. 1. Hinc con$tat $ummam e $ingulis quantitatibus {(m^k - q^k) × (m^k - r^k) × (m^k - s^k) × &c. / (p^k - q^k) × (p^k - r^k) × (p^k - s^k) × &c.} (A) + {(m^k - p^k) × (m^k - r^k) × (m^k - s^k) × &c. / (q^k - p^k) × (q^k - r^k) × (q^k - s^k) × &c.} (B) + {(m^k - p^k) × (m^k - q^k) × (m^k - s^k) × &c. / (r^k - p^k) × (r^k - q^k) × (r^k - s^k) × &c.} (C) + &c. = 1; etiam- que p^fk A + q^fk B + r^fk C + s^fk D + &c. = m^fk, $i modo $ $it integer & non major quam numerus quantitatum p, q, r, s, &c..

Cor. 2. Ducantur factores e $ingulis numeratoribus in $e$e; e. g. (m^k - q^k) × (m^k - r^k) × (m^k - s^k) × (m^k - t^k) × &c. = ± q^k r^k s^k t^k &c. ∓ (q^k r^k s^k &c. + q^k s^k t^k &c. + r^k s^k t^k &c. + &c.) m^k ± (q^k r^k &c. + q^k s^k &c. + r^k s^k &c. + q^k t^k &c.) m^2k ∓ (q^k &c. + r^k &c. + s^k &c. + t^k &c.) m^3k ± &c.; & $ic de $ingulis reliquis numeratoribus: in his numeratoribus re- $ultantibus rejiciantur omnes termini, in quibus haud inveniuntur eædem (l) dimen$iones quantitatis m^k, & pro $ingulis numeratoribus a$$umatur coefficiens quantitatis m^lk; tum erit $umma $ingularum fractionum re$ultantium nihilo æqualis; ni l = 0, in quo ca$u erit $umma prædicta = 1.

Omnia hæc facile con$tant e $cribendo pro x in a$$umptâ quanti- tate ejus valores p, q, r, s, &c. $ucce$$ive.

Eadem etiam perfici po$$unt pro $eriebus diver$arum formularum.

E libro tertio con$tat, ut $eries hoc modo deductæ plerumque cæ- teris paribus magis celeriter convergent, cum quantitates interpo- landæ a$$umantur in quâdam geometricâ quam in quâvis aliâ ra- tione.

In prob. huju$ce generis re$olvendis primum inveniendi $unt ter- mini tabulæ a quæ$ito haud longe di$tantes; inter quos nulli evadunt vel in$initi, vel nihilo æquales.

Hinc facile erui po$$unt quam proxime areæ vel centra gravitatis, &c. curvarum & $olidorum a datis ordinatis & $e invicem haud longe di$tantia, &c.

[0760]DE SUMMATIONE THEOR. LVII.

1. In quantitate y quæ$itâ $int a, b, c, d, e, &c. $ucce$$ivi valores quantitatis x; & S^a, S^b, S^c, S^d, S^e, &c. eorum corre$pondentes valores quantitatis y; tum pote$t e$$e y = {(x - b) (x - c) (x - d) (x - e) &c. / (a - b) (a - c) (a - d) (a - e) &c.} × S^a + {(x - a) × (x - c) (x - d) (x - e) &c. / (b - a) (b - c) (b - d) (b - e) &c.} × S^b + {(x - a) (x - b) × (x - d) (x - e) &c. / (c - a) (c - b) (c - d) (c - e) &c.} S^c + {(x - a) (x - b) (x - c) × (x - e) &c. / (d - a) (d - b) (d - c) (d - e) &c.} × S^d + {(x - a) (x - b) (x - c) (x - d) × &c. / (e - a) (e - b) (e - c) (e - d) &c.} × S^e + &c.

2. Aliter: Eadem quantitas y $ic exprimi pote$t y = S^a + (x - a) ({1 / a - b} S^a + {1 / b - a} S^b) + (x - a) (x - b) ({1 / a - b} × {1 / a - c} × S^a + {1 / b - a} × {1 / b - c} S^b + {1 / c - a} × {1 / c - b} S^c) + (x - a) (x - b) (x - c) ({1 / a - b} × {1 / a - c} × {1 / a - d} S^a + {1 / b - a} × {1 / b - c} × {1 / b - d} S^b + {1 / c - a} × {1 / c - b} × {1 / c - d} S^c + {1 / d - a} × {1 / d - b} × {1 / d - c} S^d) + (x - a) (x - b) (x - c) (x - d) ({1 / a - b} × {1 / a - c} × {1 / a - d} × {1 / a - e} S^a + {1 / b - a} × {1 / b - c} × {1 / b - d} × {1 / b - e} × S^b + {1 / c - a} × {1 / c - b} × {1 / c - d} × {1 / c - e} S^c + {1 / d - a} × {1 / d - b} × {1 / d - c} × {1 / d - e} S^d + {1 / e - a} × {1 / e - b} × {1 / e - c} × {1 / e - d} S^e) + &c.

PROB. XLVII.

A$$umatur data quantitas A + B x + C x^2 + D x^3 + ... + L x^n-1 = y, & dentur (n) valores α, β, γ, δ, ... x quantitatis z, qui vere cor- re$pondent (n) valoribus π, ρ, σ, τ, ... φ quantitatis y; & e regulâ [0761]SERIERUM, &c. prius traditâ deduci po$$unt; i. e. $int A + B α + C α^2 + D α^3 + ... + L α^n-1 = π, A + B β + C β^2 + D β^3 + ... + L β^n-1 = ρ, A + B γ + C γ^2 + D γ^3 + ... L γ^n-1 = σ, &c., A + B χ + C χ^2 + D χ^3 ... + L χ^n-1 = φ; dentur etiam (m) valores a, b, c, d, &c. quanti- tatis (x), quibus corre$pondent (m) valores P, Q, R, S, &c. quanti- tatis y; $ed cum regulâ prius traditâ, viz. A + B x + C x^2 + D x^3 + &c. = y haud concordant; eorum errores $int re$pective p, q, r, s, &c.; i. e. $int A + B a + C a^2 + D a^3 + ... + L a^n-1 = P - p, A + B b + C b^2 + D b^3 ... + L b^n-1 = Q - q, A + B c + C c^2 + D c^3 ... L c^n-1 = R - r, &c.: corrigere a$$umptam quantitatem A + B x + C x^2 + D x^3 + ... + L x^n-1 = y.

Scribantur {p / (a - α) × (a - β) × (a - γ) ... (a - χ)} = M, {q / (b - α) × (b - β) × (b - γ) × (b - δ) ... × (b - χ)} = N, {r / (c - α) × (c - β) × (c - γ) ... (c - χ)} = O, {s / (d - α) × (d - β) × (d - γ) ... (d - χ)} = P, {t / (e - α) × (e - β) × &c.} = Q, &c.

Quantitas pro correctione a$$umatur (x - α) × (x - β) × (x - γ) × (x - δ) × ... × (x - χ) (M + (x - a) ({1 / a - b} M + {1 / b - a} N) + (x - a) × (x - b) ({1 / (a - b) × (a - c)} M + {1 / (b - a) × (b - c)} N + {1 / (c - a) × (c - b)} O) + (x - a) × (x - b) × (x - c) ({1 / (a - b) × (a - c) × (a - d)} M + {1 / (b - a) × (b - c) × (b - d)} N + {1 / (c - a) × (c - b) × (c - d)} O + {1 / (d - a) × (d - b) × (d - c)} P) + (x - a) × (x - b) × (x - c) × (x - d) ({1 / (a - b) × (a - c) × (a - d) × (a - e)} M + {1 / (b - a) × (b - c) × [0762]DE SUMMATIONE (b - d) × (b - e)} N + {1 / (c - a) × (c - b) × (c - d) × (c - e)} O + {1 / (d - a) × (d - b) × (d - c) × (d - e)} P + {1 / (e - a) × (e - b) × (e - c) × (e - d)} Q) + &c.) Lex, quam ob$ervant $ucceffive coefficientes prædictorum terminorum, erit {1 / (a - b) × (a - c) × (a - d) × (a - e) × &c.}, {1 / (b - a) × (b - c) × (b - d) × (b - e) × &c.}, {1 / (c - a) × (c - b) × (c - d) × (c - e) × &c.}, {1 / (d - a) × (d - b) × (d - c) × (d - e) × &c.}, {1 / (e - a) × (e - b) × (e - c) × (e - d) × &c.}, &c.: termini autem $ucce$$ivi $unt M, N, O, P, Q, R, &c.; etiamque $ucce$$ive ducuntur re$ultantes quantitates in (x - a), (x - a) × (x - b), (x - a) (x - b) (x - c), (x - a) (x - b) (x - c) (x - d), &c.

In multis ca$ibus præ$tat, ut ex repetitis operationibus per primam correctionem in hâc regulâ traditam, viz. prima correctio = {(x - α) × (x - β) × (x - γ) .. (x - χ) / (a - α) × (a - β) × (a - γ) .. (a - χ)} × p, $ecunda = {(x - α) × (x - β) × (x - γ) .. (x - χ) × (x - a) / (b - α) × (b - β) × (b - γ) .. (b - χ) × (b - a)} × q, &c. detegantur novæ correctiones, u$que donec re$ultat correctio quæ$ita.

2. Sint π, ρ, σ, τ, &c. quantitates, quæ omnes erunt nihilo æqua- les, cum x = α vel β vel γ vel δ, &c.; etiamque erunt re$pective P, R, S, T, &c., cum x $it re$pective a, b, c, d, &c.: $it λ quantitas nihilo æqualis, cum x = b vel c vel d, &c. at = L, cum x = a: & $i- militer $it μ = 0, cum x = a, vel c vel d, &c., at = m, cum x = b; & $ic $it v = 0, cum x = a vel b vel d, &c., at = n, cum x = c; & $ic deinceps; deinde a$$umi pote$t correctio quæ$ita = {π / P} × {λ / L} × p + {ρ / R} × {μ / m} × q + {σ / S} × {v / n} × r + &c.

[0763]SERIERUM, &c.

Ex principiis hìc traditis, &c. & datis n valoribus datæ quantitatis y corre$pondentibus, & erroribus (m) valorum prædictæ quantitatis; cum duæ vel plures variabiles (x, y, z, &c.) quantitates in datâ æquatione contineantur; tum ex a$$umptis (m + n) æquationibus huju$ce generis a + b x + c z + &c. + d x^2 + e z x + f z^2 + &c. + g x^3 + h x^2 z + &c. + &c. = y, quæ corre$pondent (m + n) diver$is corre$pondentibus valoribus quantitatum (x, y, z, &c.) erui po$$unt (m + n) coefficientes a, b, c, &c. quæ$itæ.

METHODUS CORRESPONDENDENTIUM VALORUM. PROB. XLVIII.

1. Sint a, b, c, d, &c. dati valores quantitatis x, cujus $int S^a, S^b, S^c, S^d, &c. corre$pondentes valores quantitatis y: invenire functionem quantitatis (x), quæ pro valoribus (a, b, c, d, &c.) quantitatis (x) habet S^a, S^b, S^c, S^d, &c. corre$pondentes valores quantitatis (y).

A$$umatur y = {(x - b) × (x - c) × (x - d) × (x - e) × &c. / (a - b) × (a - c) × (a - d) × (a - e) × &c.} × S^a + {(x - a) × (x - c) × (x - d) × (x - e) × &c. / (b - a) × (b - c) × (b - d) × (b - e) × &c.} × S^b + {(x - a) × (x - b) × (x - d) × (x - e) × &c. / (c - a) × (c - b) × (c - d) × (c - e) × &c.} × S^c + {(x - a) × (x - b) × (x - c) × (x - e) × &c. / (d - a) × (d - b) × (d - c) × (d - e) × &c.} × S^d + &c.; tum evadent valores quantitatis (y) re$pective S^a, S^b, S^c, S^d, &c.: cum eorum corre$pondentes valores quantitatis (x) fiant a, b, c, d, &c. re$pective.

2. Ii$dem po$itis; cum x evadat a, b, c, d, &c.; tum A, B, C, D, &c. evadat α, β, γ, δ, &c. re$pective; a$$umatur y = {A / α} × {(x - b) × (x - c) × (x - d) × &c. / (a - b) × (a - c) × (a - d) × &c.} × S^a + {B / β} × {(x - a) × (x - c) × (x - d) × &c. / (b - a) × (b - c) × (b - d) × &c.} × S^b + + {C / γ} × {(x - a) × (x - b) × (x - d) × &c. / (c - a) × (c - b) × (c - d) × &c.} × S^c + {D / δ} × {(x - a) × (x - b) [0764]DE SUMMATIONE × (x - c) × &c. / (d - a) × (d - b) × (d - c) × &c.} × S^d + &c.; in quo ca$u valores quantitatis (y) erunt etiam re$pective S^a, S^b, S^c, S^d, &c., cum valores quantitatis (x) $int a, b, c, d, &c.: e. g. $int A, B, C, D, &c. re$pective x, tum erit α = a, β = b, γ = c, δ = d, &c.; unde y = {x × (x - b) × (x - c) × (x - d) × &c. / a × (a - b) × (a - c) × (a - d) × &c.} × S^a + {x × (x - a) × (x - c) × (x - d) × &c. / b × (b - a) × (b - c) × (b - d) × &c.} × S^b + {x × (x - a) × (x - b) × (x - d) × &c. / c × (c - a) × (c - b) × (c - d) × &c.} × S^c + &c.; quæ eadem erit ac quantitas e methodo differentiarum deducta.

THEOR. LVIII.

Quantitates a$$umptæ A, B, C, D, &c. fiant α, β, γ, δ, &c.; cum x evadat a, b, c, d, &c. re$pective: deinde a$$umantur quantitates p, q, r, s, &c.; quæ nihilo $unt æquales, cum x = a; etiamque p′, q′, r′, s′, &c. quæ nihilo $unt æquales, cum x = b; & $imiliter p″, q″, r″, s″, &c. nihilo æquales, cum x = c; & $ic de quantitatibus p′″, q′″, r′″, s′″, &c.; p″′, q″″, &c.; quæ nihilo evadunt æquales, cum x = d, e, &c. re- $pective: $int H, I, K, L, &c. valores quantitatum p′ × p″ × p′″ × p″″ × &c., q × q″ × q′″ × q″″ × &c., r × r′ × r′″ × r″″ × &c., s × s′ × s″ × s″″ × &c., &c., cum x evadat a, b, c, d, &c., re$pective; tum a$$umatur y = {A / α} × {p′ × p″ × p′″ × &c. / H} × S^a + {B / β} × {q × q″ × q′″ × &c. / I} × S^b + {C / γ} × {r × r′ × r″ × &c. / K} × S^c + &c.; & S^a, S^b, S^c, S^d, &c. erunt valores quantitatis (y), qui corre$pondent valoribus a, b, c, d, &c. quantitatis x re- $pective.

THEOR. LIX.

Sit æquatio, quæ $it functio quantitatum (x, y, z, &c.), in quâ con- tinentur (n) coefficientes ad libitum a$$umendæ; dentur etiam (n) [0765]SERIERUM, &c. corre$pondentes valores $ingularum incognitarum quantitatum (x, y, z, &c.); invenire coefficientes prædictas.

Pro incognitis quantitatibus (x, y, z, &c.) $cribantur earum (n) corre$pondentes valores, re$ultant (n) æquationes totidem (n) incog- nitas quantitates, i. e. (n) coefficientes ad libitum a$$umendas, ha- bentes; e quibus detegi po$$unt coefficientes ip$æ.

2. Sint (m) æquationes (n + m) incognitas quantitates (x. y, z, &c.) habentes, & in $ingulis hi$ce æquationibus contineantur (r) incog- nitæ coefficientes ad libitum a$$umendæ; tum ex datis (r) corre$pon- dentibus valoribus $ingularum incognitarum quantitatum (x, y, z, &c.) per methodum prius traditam erui po$$unt coefficientes ip$æ.

PROB. XLIX.

I_nvenire quantitatem, quæ evadat re$pective_ S, S′, S″, S′″, &c.; _cum_ x = α, y = β, z = γ, &c.; x = α′, y = β′, z = γ′, &c.; x = α″, y = β″, z = γ″, &c.; &c.

A$$umantur quæcunque functiones (H, K, L, &c.; A, B, C, D, &c.) quantitatum (x, y, z, &c.); in functionibus H, K, L, &c. pro incog- nitis quantitatibus (x, y, z, &c.) $cribantur re$pective α, β, γ, &c.; α′, β′, γ′, &c.; α″, β″, γ″, &c.; α′″, β′″, γ′″, &c.; &c.; & re$ultent quantitates h, k, l, &c. re$pective: in functione (A) pro incognitis quantitatibus (x, y, z, &c.) $cribantur prædictæ quantitates α, β, γ, &c.; α′, β′, γ′, &c.; α″, β″, γ″, &c.; &c.; re$ultent quantitates a, a′, a″, a′″, &c.: & $imiliter in functionibus B, C, D, &c.; $cribantur pro incognitis (x, y, z, &c.) præ- dictæ quantitates & re$ultent quantitates b, b′, b″, &c.; c, c′, c″, &c.; d, d′, d″, &c. Quantitas quæ$ita pote$t e$$e {H / h} × {(A - a′) × (A - a″) × (A - d′″) × &c. / (a - a′) × (a - a″) × (a - a′″) × &c.} × S + {K / k} × {(B - b) × (B - b″) × (B - b′″) × &c. / (b′ - b) × (b′ - b″) × (b′ - b′″) × &c.} × S′ + {L / l} × {(C - c) × (C - c′) × (C - c′″) × &c. / (c″ - c) × (c″ - c′) × (c″ - c′″) × &c.} × S″ + &c.

Cor. Si requiratur, ut quantitas detegenda $it maxime $implex; tum pro H, K, L, &c. a$$umatur invariabilis quantitas; & pro A, B, [0766]DE SUMMATIONE C, &c. a$$umantur functiones quantitatum (x, y, z, &c.) huju$ce for- mulæ e x + f y + g z + &c. + d; ubi literæ e, f, g, &c. & d invaria- biles quantitates re$pective denotant.

PROB. L. Datâ nonnullorum ca$uum re$olutione, & formulâ in quâ generalis con- netur; eam detegere.

Primo a$$umatur ca$us, $i modo $ieri po$$it, in quo una $olum- modo continetur incognita quantitas, & ex eo ca$u deduci pote$t in- cognita quantitas: & $ic de $ingulis reliquis incognitis quantitatibus, i. e. continuo inveniantur ca$us, in quibus una reliqua vel ea cum quibu$dam prius inventis $olummodo contineatur, & exinde deduci pote$t prædicta reliqua quantitas: $i vero non innote$cat methodus inveniendi ca$um, in quo una $olummodo incognita quantitas con- tineatur; inveniantur duo independentes ca$us, in quibus duæ $olum- modo contineantur incognitæ quantitates: & $i haud dentur duo in- dependentes ca$us, in quibus $olummodo contineantur quæcunque duæ incognitæ quantitates cum prædictis inventis, inveniantur tres ca$us, in quibus continentur tres incognitæ quantitates cum prius in- ventis; & $ic deinceps: & exinde detegi po$$unt incognitæ quanti- tates in re$olutione contentæ, & con$equenter re$olutio quæ$ita.

Ex. Sit formula V = {x^2 z + b x y + 1 / f x + g z}; & detur ca$us, cum x & y nihilo $int re$pective æquales, viz. $it z = 3 & V = 2; tum re$ultat {1 / g z} = V, & exinde g = {1 / z × V} = {1 / 2 · 3}: 2^do. detur ca$us cum y = 0 & x = 5, viz. $it z = 4 & V = 3, tum erit V = {x^2 z + 1 / f x + {1 / 6} z} = {25 z + 1 / f x + {4 / 6}} = 3, & exinde f = {101 - 2 / 15} = 6{3 / 5}; & $imiliter $int x, y & z re$pec- tive 1, 2 & 3 cum V = 6, tum erit 6 = {3 + 2 h + 1 / 6{3 / 5} × 1 + {1 / 6} × 3}; & exinde h = 19{3 / 10}.

[0767]SERIERUM, &c.

Cor. 1. Hoc problema ad re$olutionem quam plurimorum proble- matum applicari pote$t, nam in multis ca$ibus facile innote$cet for- mula prædicta.

Ex. 1. Sit æquatio x^n - p x^n-1 + q x^n-2 - r x^n-3 + s x^n-4 - &c. = 0, cujus radices $int α, β, γ, δ, &c.; invenire æquationem cujus ra- dices (z) $unt α + β, α + γ, α + δ, β + γ, β + δ, γ + δ, &c.: for- mula æquationis erit z^n·{(n-1) / 2}=m + a p z^m-1 + (a′ p^2 + b q)z^m-2 + (a″ p^3 + b′ p q + c r)z^m-3 + (a′″ p^4 + b″ p^2 q + c′ p r + d q^2 + e s)z^m-4 + &c. = 0; $inguli enim termini eidem pote$tati (z^m-x) quantitatis (z) annectendi ea$dem (α) habent dimen$iones quantitatum p, q, r, s, &c.; $i modo dimen$iones quantitatum p, q, r, s, &c. $int re$pective 1, 2, 3, 4, &c. I<_>mo. A$$umatur æquatio x^n - x^n-1 = 0, in quâ q, r, s, &c. de$unt & p = 1, tum erunt valores quantitatis (x) re$pective 1, 0, 0, 0, &c., & con$equenter (n-1) valores quantitatis (z) erunt 1, cæ- teræ vero nihilo æquales; unde æquatio erit z^m - (n - 1)z^m-1 + (n - 1) · {n - 2 / 2} z^m-2 - (n - 1) · {n - 2 / 2} · {n - 3 / 3}z^m-3 + &c. = 0; & exinde a = - (n - 1), a′ = (n - 1) · {n - 2 / 2}, a″ = - (n - 1) · {n - 2 / 2} · {n - 3 / 3}, &c.: 2<_>do. a$$umatur x^n - x^n-2 = 0, ubi q = - 1 & p, q, r, s, &c. de$unt, cujus radices $unt 1 & - 1, & 0, 0, 0, &c.; unde (n - 2) valores quantitatis z erunt 1, & n - 2 etiam - 1; cæ- teræ vero erunt nihilo æquales; & æquatio erit z^m -- (n - 2) z^m-2 + (n - 2) · {n - 3 / 2}z^m-4 - &c. = 0; unde b, d, &c. coefficientes ter- minorum q, q^2, q^3, &c. erunt re$pective - (n - 2), (n - 2) · {n - 3 / 2}, - (n - 2) · {n - 3 / 2} · {n - 4 / 3}, &c.: & $imiliter ex a$$umptâ æquatione huju$ce formulæ x^n - p x^n-1 + q x^n-2 = 0, cujus duæ radices (α & β) innote$cunt & cæteræ nihilo $unt æquales, detegi po$$unt coefficien- tes terminorum p q & p^2 q^2; & ex duabus æquationibus prædictæ for- mulæ x^n - p x^n-1 + q x^n-2 = 0, quarum (n - 2) radices in duabus re [0768]DE SUMMATIONE $pectivis æquationibus nihilo $unt æquales, duæ vero reliquæ inno- te$cunt & non $unt eædem in utrâque æquatione, deduci po$$unt co- efficientes terminorum p^3 q & p q^2; p^4 q & p^2 q^2: & $imiliter ex tribus diver$is æquationibus prædictæ formulæ detegi po$$unt coefficientes terminorum p^5 q, p^3 q^2, p q^3; p^6 q, p^4 q^2, p^2 q^3: & $ic deinceps: eadem methodus etiam applicari pote$t ad terminos, in quibus continentur literæ p, q, r, &c.

THEOR. LX.

Nonnullæ coefficientes unius erui po$$unt e coefficientibus alterius ca$us; quod plerumque fieri pote$t, cum unus $it particularis ca$us alterius; vel quendam nexum habent inter $e duorum ca$uum quæ- dam coefficientes.

Deducantur coefficientes terminorum in unâ quantitate, & e datâ relatione deduci po$$unt coefficientes alterius quantitatis.

Ex. Sit quantitas A in quâ continentur literæ a, b, c, d, &c.; $it etiam quantitas B, in quâ omnes literæ a, b, c, d, &c. non involven- tes literas p, q, r, &c. $imiliter involvuntur ac in quantitate A; tum deducatur eadem $unctio quantitatum A & B, quæ $it E & F; in his quantitatibus omnes literæ, quæ non involvunt literas p, q, r, s, &c.; $imiliter involventur.

Ex. 1. Sit æquatio data in$erioris ordinis x^4 + q x^2 - r x + s = 0, cujus radices $int α, β, γ, δ; & æquatio, cujus radices $int α + β, α + γ, α + δ, β + γ, β + δ, γ + δ, erit v^6 + 2 q v^4 + (q^2 - 4^s) v^2 - r^2 = 0.

Ducatur data æquatio x^4 + q x^2 - r x + s = 0 in $implicem æqua- tionem (x = 0), cujus radix e$t (0); & $it æquatio x^5 + q x^3 - r x^2 + s x = 0, cujus radices erunt α, β, γ, δ, 0; & radices æquationis $imi- liter exinde re$ultantis erunt α + β, α + γ, β + γ, α + δ, β + δ, γ + δ, α, β, γ, δ; & æquatio ip$a (v^4 + q v^2 - r v + s) × (v^6 + 2 q v^4 + (q^2 - 4 s) × v^2 - r^2) = 0; cujus æquationis omnes termini iidem erunt, ac termini æquationis $imiliter re$ultantis e datâ æquatione x^5 + q x^3 - r x^2 + s x - t = 0; in quibus continentur $olummodo literæ q, r, s.

Per æquationem $imiliter re$ultantem in hoc ca$u de$ignatur æqua- tio, cujus radices $unt λ + μ, λ + ν, λ + π, λ + ρ, μ + ν, μ + π, [0769]SERIERUM, &c. μ + ρ, ν + π, ν + ρ, π + ρ; $i modo λ, μ, ν, π, ρ $int re$pective radices æquationis x^5 + q x^3 - r x^2 + s x - t = 0.

SCHOLIUM.

Finis huic operi non e$t imponendus, priu$quam paucula de me- thodo re$olvendi hæc cum multis aliis problematibus adjiciantur, quæ dici pote$t methodus deductionis & reductionis; omnia enim ferè mathematica nihil aliud volunt, quam e datâ methodo deductionis quantitates reducere: per deductionis methodum de$igno quamcun- que notam operationem; E. g. vel quantitatum additionem, $ub- ductionem, multiplicationem, divi$ionem, extractionem earum radi- cum, &c. quoniam hæc operatio bene nota e$$e $upponitur, $emper perfici pote$t exinde deductio: $i vero exigat problema, ut iterum iterumque repetatur data operatio, in multis ca$ibus propter calculi laborem ad reductionis methodum confugere haud inutile videtur; E. g. Sint a x + b x^2 + c x^3 + &c. = y, a z + b z^2 + c z^3 + &c. = x, a v + b v^2 + c v^3 + &c. = z, a w + b w^2 + c w^3 + &c. = v, &c. fa- cile con$tat ut labor hujus calculi repetitis operationibus valde cre$- cit; & idem affirmari pote$t de inveniendis primis, $ecundis, tertiis, &c. fluxionibus quantitatis (a + b x^n + c x^2n + &c.) × (e + f x^n + g x^2n + &c.)^m.

1.1. Ex datâ quantitate deductâ & deductionis methodo ejus redu- ctionem invenire, e$t problema maximè generale; huju$ce problematis particulares erunt $ub$equentes ca$us, viz. $it x quantitas invenienda, & a quantitas deducta; & methodus deductionis talis $it, ut A x^n + B x^n-1 + C x^n-2 + &c. = a; reductio vero hujus quantitatis (a) ad quæ$itam x eadem e$t, ac re$olutio algebraicæ æquationis A x^n + B x^n-1 + &c. = a. 2. Sit quantitas deducta quæcunque fluens, & data deductio $it vulgaris methodus inveniendi fluxiones datarum fluentium, & methodus reductionis erit methodus inveniendi fluen- tem ex datâ fluxione: hoc vero problema plerumque re$olutionem recipiet ex a$$umptâ quantitate generali (cujus irrationalitas vel for- mula ferè deduci pote$t e datâ quantitate & datâ etiam deductionis methodo) pro quantitate quæ$itâ; $cribatur hæc quantitas pro ejus [0770]DE SUMMATIONE valore, & e datâ deductionis methodo inveniatur altera quantitas, quâ datæ quantitati æquali e$$e $uppo$itâ, exinde erui pote$t pro- blematis re$olutio: e. g. $it data quantitas (a^2 + 7 x + x^2) × (a^2 + x^2)^{5 / 2} = W, cujus quantitas reducta $it A, & methodus deductionis A + {A^. / x^.}, i. e. A + {A^. / x^.} = W; $ed ex hâc methodo con$tat quæ$itam quan- titatem A, $i modo algebraice exprimi po$$it, eandem habere irratio- nalitatem ac quantitatem W; a$$umatur igitur (a^2 + x^2){7 / 2} × (p + q x + r x^2 + &c.) = A, & e prædictâ methodo inveniri po$$unt p = 1, q = 0, r = 0, &c. ergo quantitas quæ$ita erit (a^2 + x^2){7 / 2}; generalis autem re$olutio erit {$. e^x (a^2 + 7 x + x^2) × (a^2 + x^2){7 / 2} x^. / e^x} + b e^-x = A, ubi b e$t quantitas ad libitum a$$umenda; unde, $i generalis requira- tur re$olutio quantitatis A, a$$umi debet re$olutio, quæ prædictam generalem continet.

Cor. Hinc con$tat e præcedenti $ub$titutione deductum e$$e $olum- modo particularem valorem quantitatis A, quoniam $ub$titutio $olum- modo e$t particularis & non continet in $e omnes valores quantitatis A.

3. Con$imilia etiam principia applicari po$$unt ad reductionem datæ quantitatis in plures, quarum methodi deductionum dantur; & $ic de æquationibus inter qua$cunque quantitates: hinc ex datâ me- thodo deductionis erui po$$unt quælibet quantitates, quas reducere liceat; a$$umantur enim quæcunque quantitates & ex iis per datam methodum deductionis inveniantur quantitates quæ$itæ.

4. Hìc vero animadvertendum e$t, ut talis $it deductionis methodus, quæ ($i modo eadem data quantitas $ub diversâ $pecie lateat) diver- $am haud $pecie $ed re præbeat quantitatem deductam: e. g. $it me- thodus deductionis talis ut e datâ quantitate a x^n y^m deducatur quan- titas n^2 a x^n-1 y^m + m^2 a x^n y^m-1; $it data quantitas x^n+m, & quantitas per prædictam methodum inve$tigationis inventa erit (n + m)^2 x^n+m-1; at x^n+m = x^n × x^m, & quantitas per eandem methodum inventa n^2 x^n-1 × x^m + m^2 x^n × x^m-1 = (n^2 + m^2) x^n+m-1, $ed n^2 + m^2 non e$t (n + m)^2, ergo ex eâdem quantitate x^n+m $ub diversâ $pecie (x^n × x^m) latente per hanc methodum deductionis diver$æ exorientur quantita- [0771]SERIERUM, &c. tes, & methodus deductionis habet relationem ad qualitatem æque ad quantitatem, ni ex aliis datis ad finitum re$pon$ionum numerum re- $tinguatur quæ$tio propo$ita: $i modo talis $it methodus deductionis, ut eædem quantitates $ub diver$is formulis latentes $emper ea$dem præ- beant quantitates; tum quantitas data utcunque in diver$am formulam vel etiam in in$initas approximationes transformari pote$t, & exinde omnes regulæ de approximationibus in hoc & præcedente libro tra- ditæ mutatis mutandis ad hunc ca$um applicari po$$unt.

5. Sæpe ex repetitis n operationibus & animadver$ione methodo- rum, e quibus formantur termini, con$tabit lex, quam ob$ervat $e- ries, quæ exprimit quantitatem deductam per operationem n vicies repetitam, quæ quantitas dicatur terminus ad n di$tantiam; pro n $cribatur {r / m}, & invenietur $eries, quæ exprimit quantitatem in eadem $calâ ad {r / m} di$tantiam. E. g. Ex operatione inveniendi fluxiones da- tarum quantitatum $æpius repetitâ con$tabit fluxio rectanguli x y or- dinis vero (n) = y x^. ^n + n y^. x^. ^n-1 + n. {(n - 1) / 2} y^.. x^. ^n-2 + n · {n - 1 / 2} · {n - 2 / 3} y^... ^n-3 x^. + &c. In hâc fluxione pro n $cribatur {r / m}, & re$ultat quantitas in eâdem $calâ ad {r / m} di$tantiam po$ita. Ex. 2. Fluxio r ordinis quantitatis x^n invenietur n · (n - 1) · (n - 2) ... (n - r + 1) x^n-r x^. ^r + r · {r - 1 / 2} × n · (n - 1) ... (n - r + 2) x^n-r+1 x^. ^r-2 x^.. + r · {r - 1 / 2} · {r - 2 / 3} × n · (n - 1) · (n - 2) ... (n - r + 3) x^n-r+2 x^. ^r-3 x^... + &c. quæ etiam ita $cribi pote$t n x^n-1 x^. ^r + r × n · (n - 1) x^n-2 x^. x^. ^r-1 + r · {r - 1 / 2} × n \\ + r · {r - 1 / 2} · n (n - 1) · (n - 2) x^n-3 x^. ^r-2 x^. ^2 + &c. Sit terminus x^. ^a ^α × x^. ^b ^β × x^. ^c ^γ × x^. ^d ^δ × \\ · (n - 1) x^n-2 x^. ^r-2 x^.. [0772]DE SUMMATIONE &c.; ubi a α + b β + c γ + &c. = r; tum ejus coefficiens erit N × n × (n - 1) · (n - 2) × (n - 3) ... (n - t + 1), ubi t = α + β + γ + δ + &c.; & N numerus qui e$t functio quantitatis r & prædictorum numerorum a, α, b, β, c, γ, &c. facile deducenda: in hâc $erie pro r $cribatur {k / l}, & con$tabit lex quam ob$ervat quantitas ad di$tantiam {k / l} in $calâ fluxionum pote$tatis x^n po$ita.

Sit r negativus numerus & $eries prædicta denotet quantitatis x^n fluentes; $ed hic animadvertendum e$t, quod$i numerus factorum $it negativus, tum de$ignat factores in denominatore contentos, $i nu- merus factorum affirmativus denotet factores in numeratore. E. g. Requiratur fluens r ordinis quantitatis x^n, hìc r e$t negativus nume- rus, & numerus factorum (n · n - 1 ... (n - r + 1)) e$t r; ergo numerus factorum in denominatore contentorum erit r, & ultimus factor (n - r + 1) erit in hoc ca$u (n + r), & $eries prædicta evadet {x^n+r / n + 1 · n + 2 .. (n + r) · x^. ^r} + r · {r + 1 / 2} × {x^n+r+1 x^.. / (n + 1) · (n + 2) ... (n + r + 1) · x^. ^r+2} - r · {r + 1 / 2} · {r + 2 / 3} × {x^n+r+2 x^... / (n + 1) · (n + 2) ... (n + r + 2) × x^. ^r+3} + &c. huju$ce $eriei lex e præcedente con$equitur: $i vero requiratur termi- nus in $calâ fluentium hìc traditarum quantitatis x^n ad di$tantiam - {k / l} a primo po$itus; $i {k / l} $it integer affirmativus numerus, tum $olum- modo requiruntur fluentes datæ quantitatis x^n; $i vero {k / l} $it fractio ad minimos terminos reducta, tum inveniantur quantitates in $calâ $ub$equente (ubi di$tantiæ a primo $int, &c. - 2, - 1, 0, 1, 2, &c. & earum corre$pondentes termini, &c., {1 / n + 1 · n + 2}, {1 / n + 1}, 1, n, n. (n - 1), &c.) quarum di$tantiæ a primo termino $int re$pective - {k / l}, - {k - 1 / l}, - {k - 2 / l} ... - {k - l + 1 / l}; pro his l quantitatibus inventis [0773]SERIERUM, &c. $cribantur A, B, C, D, &c. re$pective; tum erunt quantitates in eâ- dem $calâ, quarum di$tantiæ a $ecundo $it - {k / l}, - {k - 1 / l}, - {k - 2 / l}, &c. re$pective (n + {k / l}) A, (n + {k - 1 / l}) B, (n + {k - 2 / l}) C, &c. & $ic deinceps; & quantitas quæ$ita erit A x^n+{k / l} x^. ^{-k / l}, $i x^. ^{1 / l} $it con$tans quan- titas.

Facile etiam con$tat, $i modo $it v quantitas, cujus fluxio (v^. ^{1 / l}) or- dinis {1 / l} vel quantitas in $calâ fluxionum ad di$tantiam {1 / l} a datâ fluente po$ita $it con$tans, ubi l $it integer numerus; & $it z^. ^r+{1 / l} datâ fluxio; e$$e fluentem r + {1 / l} ordinis = (ubi r e$t integer numerus) z + A v^r + B v^r-{1 / l} + C v^r-{2 / l} + &c.... F v^{2 / l} + G v^{1 / l} + H, ubi A, B, C ... F, G, H $unt invariabiles quantitates ad libitum a$$umendæ.

Ferè omnia etiam, quæ prius tradita fuere de fluxionibus, fluxio- nalibus æquationibus & earum multiplicatoribus, &c. ad ha$ce inter- polationes applicari po$$unt: hìc for$an haud indignum e$t ob$ervatu, quod $eries, cujus termini hanc habeant formulam A x^ez+f, ubi z e$t di$tantia a primo $eriei termino, & e & f $unt invariabiles quantitates, & A algebraica functio vel rationalis vel irrationalis literæ z, $emper exprimi pote$t vel per fluxionalem æquationem, vel per interpolatio- nem $eriei, quæ e$t re$olutio fluxionalis æquationis & con$equenter e$t re$olutio fluxionalis æquationis ordinis vero fractionalis: $i enim A $it rationalis functio quantitatis z, tum erit re$olutio fluxionalis æquationis; $i vero radices rationalis functionis contineat quantitas A, tum plerumque recurrendum e$t ad interpolationem $erierum ex fluxionalibus æquationibus exortarum.

Dimen$iones cuju$cunque incognitæ quantitatis in $ucce$$ivis ter- minis datæ $eriei per inæquales differentias augeantur vel diminuan- [0774]DE SUMMATIONE, &c. tur, tum $umma $eriei nec per finitam algebraicam nec fluxionalem æquationem exprimi pote$t.

Sit $eries, cujui termini per hanc formulam A x^α exprimuntur, ubi α e$t quæcunque functio quantitatis z di$tantiæ a primo $eriei termino vel algebraica vel fluxionalis, vel incrementialis vel formulæ, cujus differentia inter numerum factorum in numeratore & denominatore contentorum haud eadem manet; e prædictis principiis, i. e. terminis ad in$initam di$tantiam con$titutis, inveniri pote$t, utrum convergit, necne; etiamque annon exprimi pote$t per algebraicam vel fluxiona- lem, &c. æquationem.

De hâc deductionum & reductionum doctrinâ, i. e. $ub$titutionibus mentionem fieri hìc cen$ui con$ilio, ut via in hâc maxime generali $cientiâ ad multo majora $ternatur.

[0775] CORRIGENDA.

SÆ P E pro in lege duct. vel multiplicat. in, & po$t verba reduct. & re$olv. pro in lege ad, & pro incrementialis, lege incrementalis, & pro integralis, lege integrale, & nonnunquam pro fiunt vel fiant, lege evadunt vel evadant, &c.; pag. 18. lin. 11. pro β & α, lege β′ & α′; l. 12. pro {1 / }, lege {x / }; pag. 19. l. 13. pro pote$t, lege pote$t, necne; pag. 20. l. 17. pro (v), lege (v), necne; p. 26. l. antepenult. pro P, lege P^.; pag. 45. l. 27. pro affirmativa, lege nega- tiva; pag. 53. l. 10. pro b x, lege b x^n; pag. 51. 1. 8. pro v, lege v, l, t, &c.; l. antepenult. pro fluxione, lege fluxio; pag. 58. l. 13. dele)<_>t, & pro U, lege U′; pag. 60. l. ultim. pro n + 2, lege n + 1, & pro m - 1, lege m + 1; pag. 61. l. 1. pro n - 2, lege n + 1; pag. 64. l. 8. pro par, lege impariter par; l. 15. pro ± p, lege ∓ p; l. antepenult. & penult. pro α x, β x & γ x, lege 2 α x, 2 β x & 2 γ x; pag. 68. l. 11. pro $ingularium, lege $ingularum; pag. 71. l. 1. pro x^. ^n, lege x^n; pag. 72. l. 1. pro, cujus, lege in v^. ducta, cujus; pag. 73. l. 16. pro Q ×, lege Q × (); pag. 74. l. 15. po$t (π, ρ, σ, τ, &c.), lege etiamque (π^2, ρ^2, σ^2, &c., π^3, ρ^3, σ^3, &c., &c.); pag. 75. l. 8. pro $uos, lege ejus; pag. 77. l. 3. pro ... +, lege ... + E; pag. 81. 1. 20. pro $luxione, lege fluxionem; pag. 81. 1. 20. pro z^., lege z^-1 z^.; pag. 81. 1. 6. pro functio, lege rationalis $un- ctio; pag. 81. 1. 8. dele V; l. antepenult. pro $umma, lege earum $umma; pag. 86. l. 5. pro x $emel, lege z; pag. 91. 1. 27. pro m ± r, lege m ± λ; pag. 91. 1. 9. pro reducendæ, lege redu- cantur; pag. 91. 1. 26. pro s, lege s^.; pag. 99. l. 19. pro X, lege X^.; pag. 101. 1. 16. pro σ & v, lege σ, τ & v; pag. 101. 1. 6. pro y^., lege y; pag. 111. 1. 15. pro pro unde, lege unde{P / Q}; pag. 121. 1. 18. pro = 0, lege = 0, &c.; pag. 131. 1. 4. pro exigat, lege exigere; pag. 131. 1. 13. pro δ x, lege δ y; pag. 141. 1. 7. pro coefficientibus, lege coefficientibus corre$pondentium termino- rum; l. 17. pro x^., lege x; pag. 141. 1. 10. pro $uo, lege ejus; pag. 150. l. 23. pro utri$que par- tibus, lege ad utra$que partes; pag. 152. l. 24. & pag. 151. 1. 4. pro alteri parti, lege ad alteram partem; 1. 22. pro fluenti, lege ad fluentem; pag. 151. 1. 23. pro V^., lege V^. = 0; pag. 160. 1. ultim. pro $. X x^., lege X x^.; pag. 161. 1. 23. pro n - m, lege m; pag. 161. 1. 7. pro Q, lege - Q; 1. 7. pro - r) = 0, lege - r)) = 0; pag. 171. 1. 21. pro fluxionum, lege fluentes fluxio- num; pag. 171. 1. 17. pro m - 1 + 1, lege m - n + 1; 1. 19. pro æquatione, lege quantitate; pag. 171. 1. 17. pro prius, lege po$tea; pag. 181. 1. 5. pro) 2, lege)<_>2; 1. 6. pro R R^. P^. P^.., lege R^. P^. P^..; pag. 181. 1. 2. pro π^.., lege π^.; pag. 191. 1. 24. pro x^n, lege x^n & y^n; pag. 191. 1. 19. {q x^. / q}, lege {q x^. / p}; pag. 201. 1. 25. pro x, lege x^.; pag. 201. 1. 1. pro x^l+n-b-1, lege x^l+n-b-1 + &c.; 1. 20. pro vel, lege aliter; pag. 201. 1. antepenult. dele x^.; pag. 201. 1. penult. pro X x^., lege X x^. ^2; pag. 211. 1. 8. pro notas. lege datas, & pro inveniatur, lege tum invenietur; pag. 211. 1. 6. pro X y^. ^2, lege X^. y^. ^2; 1. 10. pro P p x, lege P p x^.; 1. 15. pro P q x^., lege P q y^.; pag. 213. 1. 6. pro p y^., lege p y^.., & pro σ, lege σ; l. ultim. pro τ M^., lege τ M; pag. 225. l. 2. pro habet, lege habent; pag. 231. 1. 7. pro x z, lege x^2; pag. 231. 1. 7. pro transformantur, lege transfor- mare; 1. 8. pro reducatur æquatio in, lege reducere æquationem ad; pag. 231. 1. 6. pro præ- dictis, lege e prædictis; pag. 251. 1. 2. pro b^2 - a, lege b^2 - c a; 1. 4. pro equat, lege æquat; pag. 261. 1. 18. pro + K, lege × I; 1. 19. pro I, lege H; 1. 20. pro H, lege G; pag. 261. 1. penult. collocentur n, n - 1, n - 2 $upra y^., y^., y^.; pag. 261. 1. 6. pro e fluxionali æquatione (m) ordinis, lege e fluxionalibus æquationibus (m - 1, m - 2, m - 3, &c.) ordinum; & pro deduci po- te$t, lege deduci pote$t; in his duobus ca$ibus A, B, C, &c, N, M, L, &c.; p, q, r, &c. denotant datas functiones quantitatis x; pag. 261. 1. 11 & 14. pro x, y, &c., lege p, x, y, &c.; 1. 16. pro y, x & x^., lege p, y, x & x^.; 1. 17. pro x, lege p & x, & pro $it variabilis, lege $int variabiles; 1. antepenult. pro β y^., lege p β x^.; pag. 271. 1. 6. pro y^. $emel, lege y; pag. 271. 1. 3. pro y^. ^n-1 & y^. ^n-2 $emel lege z^. ^n-1 & z^. ^n-2; pag. 281. 1. 8. pro n + 1, n & n - 1, lege n, n - 1 & n - 2; 1. 13. pro [0776]CORRIGENDA. x^. ^n-1, lege x^. ^n-1; 1. 14. pro = 0, lege = E; pag. 281. 1. 8. pro termini, lege in terminis; 1. 9. dele & re$ultant u = {y √(y^. ^2 + x^. ^2) / x^.} & t = x + {y y^. / x^.}; pag. 281. 1. 23. pro B = 0, lege W = 0; pag. 291. 1. 25. pro P^., lege P; pag. 291. 1. 19. pro a x^. y^., lege 2 x^. y^.; pag. 291. 1. 11. pro R, lege R′; pag. 301. 1. 11. pro P x^., lege P z^.; 1. 9 & 10. pro A, lege A; pag. 301. 1. 7. pro x + x^., lege x + x.; pag. 301. 1. penult. pro fluxionales, lege integralis; pag. 301. 1. 4. pro z(1 - z)^2, lege z^2; pag. 311. 1. 6. pro $. {z^. / z}, lege - $. {z^. / z}; pag. 311. 1. 11. pro n - n x., lege x - n x.; 1. 18. pro (n - 1), lege - (n - 1); pag. 311. 1. 11. pro ax, lege (n + 1)a x; pag. 311. 1. penult. pro a′^n-2, lege a′^n-1; 1. ult. pro b′, b″, &c., lege b′(), b″(), &c.; pag. 318. pro d′, d″, &c., e, e″, &c., f, g, &c. l, lege d′(), d″(), &c., e(), e′(), f(), g(), &c.; 1. 7. pro l′^π, lege l′^π-2; 1. 8 & 9. pro l″^π & l′^π-1, lege l″^π () & l′^π-1 (); pag. 321. 1. 12. pro x^. + e, lege x + (e; 1. 17. pro l, lege k, & pro π, lege π′, & pro π - 1, lege π′ - 1; 1. 20. pro. lege modo n major $it quam m per duo vel plures, $in aliter for$an exigat (π′) prædicti generis integralia; pag. 321. 1. 29. pro illarum, lege harum; pag. 321. 1. 14. pro quæ $it B, lege $cribantur hæ quantitates pro $uis valoribus in integrali A & re$ultet B; 1. 17 & 19. pro x, lege z; pag. 321. 1. 14. pro {r^z z. / }, lege {r^x r^x. z. / R^2}, & pro Q =, lege Q = v^..; pag. 331. 1. 5. pro =, lege = -, & pro {b / A}x, lege {b / A}x x^.; pag. 331. 1. 15. pro P, lege P.; pag. 341. 1. 1. pro applicari, lege applicare; 1. 20. pro facilies, lege facile; pag. 351. 1. 8. pro de, lege ex; pag. 351. 1. 1. pro x^m, lege x^mr, & pro (r - 1) m & (r - 2) m, lege (m - 1)r & (m - 2)r; pag. 371. 1. 2. pro (n - 1)q. lege (n - 1)p; pag. 371. 1. 1. pro radicum, lege radicum ductis; pag. 371. 1. 17. pro 3. lege 3. Sit α æqualis vel major quam β, β quam γ, γ quam δ &c.; tum; pag. 381. 1. 16. pro (a - α), lege - (α - a); pag. 391. 1. 5. pro α, lege a; pag. 391. 1. 24. pro x^x + x^x-1, lege 1 + {1 / x}; pag. 401. 1. 9. pro vel γ, &c, lege γ, &c. vel α′ vel β′, &c. vel α″, &c.; pag. 401. 1. 7. dele Q R; pag. 401. 1. 6. pro b $emel lege β; 1. 17. pro + $emel lege -; pag. 401. 1. 10. pro + N e^5, lege ± N e^5; pag. 411. 1. ult. pro a x $emel lege a x^3; pag. 411. 1. 1. pro æquatione, lege quantitate; pag. 421. 1. 1. pro 1 - {1 / 2}x, lege x - {1 / 2} x^2; 1. 2. pro - $emper lege +; 1. 16. pro 1 - {1 / 2 · 2^2}, lege 1 + {1 / 2 · 2^2}, & pro -, lege +; pag. 421. 1. 11. pro {cα - a / b - dα}, lege {cβ - a / b - aβ}; pag. 421. 1. 3. pro eadem, lege for$an eadem; 1. 7. pro + {1 / 5}, lege - {1 / 5}; pag. 431. 1. 10. pro x - x, lege x - x.; pag. 441. 1. 7. pro x - a & (x - a)^2, lege x - 2 & (x - 2)^2; pag. 444. 1. 2. pro quantitates, lege quantitatis; pag. 451. 1. 17. pro a + e′, lege e′ - a; 1. 19. pro a′ + e″, lege e″ - a; 1. 21. pro a′^m + e′^m+1, lege e′^m+1 - a′^m; 1. 23. pro a + e′ & a′ + e″, lege e′ - a & e″ - a′; pag. 452. 1. 13. pro approximatione, lege approximatione; cum a$$umi po$$it, tum (n) ad libitum a$$umi pote$t; 1. 14. pro cum r + s + t, lege cum t + s + b vel r + s + 2b; pag. 451. 1. 4. pro approxima- tionibus, lege approximationibus inveniendis, & pro z, lege v; pag. 451. 1. 22. pro {a^2 / α^2}, lege {α^2 / a^2}; pag. 451. 1. ult. pro z^t, lege x^t; pag. 461. 1. 3 & 4. pro n - 1, n - 2, n - 3 & n, lege n - 2, n - 3 & n - 1; pag. 461. 1. pro x^5, lege x^4; 1.5. pro x^2, lege x^2r; pag. 461. 1. 15. pro W′^{m / s}, [0777]CORRIGENDA. lege W′^{ml / s}; 1. 18. pro a x^r, lege a′ x^r; pag. 461. 1. 13. pro p a^n-1 & q a^n-2, lege p a^n-2 & q a^n-3; pag. 471. 1. 12. dele in his ca$ibus $æpe præ$tat affumere α = 0, β = 0, γ = 0, &c.; pag. 481. 1. 5. pro 3 z e + e^2, lege 6 z e + 3 e^2; pag. 481. 1. 10. pro præcedentes, lege præcedentium; pag. 491. 1. 6. pro i. e. lege viz.; 1. 14. pro 0, lege infin.; 1. 17. pro T t^{1 / 2} + T t = 1, lege T = t T^{1 / 2} + t; pag. 491. 1. 6. pro τ, lege τ x^n-2; pag. 491. 1. 5. pro s t′, lege r t′; pag. 491. 1. 2. pro (n + 1), lege 2(n + 1); 1. 3. pro (n + 2), lege 3(n + 2); pag. 501. 1. 2. pro × (n + 1) × (m + 1), lege × (m + 1); pag. 501. 1. 9. pro {1 / }, lege {{1 / 2} / }; 1. 13 & 14. pro {1 / }, lege {{1 / 2} / }; pag. 501. 1. 10. pro vel, lege &; pag. 501. 1. 8. pro 2 z′ + 5, lege 4 z′ + 5; pag. 501. 1. 7. pro 2 h^2 + 3 h, lege 2 h^2 + 3 h + 1; 1. 10. pro h z + h + 1, lege h z + 4 h + 1; pag. 511. 1. 9. pro α + α, lege α + a; pag. 511. 1. 9. pro {n + 1 / 2}, lege n + 1; pag. 521. 1. 5. pro {1 / h &c.}, lege {1 / h^2 &c.}, & pro {1 / (γ - α)}, lege {1 / b^2 (γ - α)}; pag. 521. 1. 9. pro x, lege x^πb+2b; pag. 521. 1. 6. pro re$ultantis, lege re$ultantis & datæ; 1. 23. pro $ed, lege &; 1. 26. pro fingantur, lege evadant; 1. 27. pro 0, lege 0, &c.; pag. 521. 1. 3. pro $ummæ, lege $umma, & pro æquales, lege æqualis; 1. 20. pro termini ad di$tantias a primo, lege termini datæ $eriei, qui incipiunt ad di$tantias ab ejus primo 0, &c.; pag. 531. 1. ult. pro termini, lege terminis; pag. 531. 1. 14. pro A, B, C, D, &c., lege {A / a}, {B / b}, {C / c}, {D / d}, &c.; pag. 541. 1. 8 & 9. pro z^-1, z^-2 & z^-3, lege z, z^2 & z^3; pag. 541. 1. 1. pro b B + 1. 2 c C, lege a′ + b B + b′ A + 2 C c + &c; pag. 571. 1. 12. pro tum, lege tum pro termino (t); pag. 571. 1. 6. pro t^...., lege 16 t^....; 1. 12. pro t′, lege t′^r; pag. 571. 1. 7. pro m + 1, lege m - 1; 1. 11 & 13. pro 1. 2 &, lege ± 1 · 2, &c.; pag. 591. 1. 4. pro $it, lege a$$umatur; pag. 601. 1. 4. pro r, lege r - 1; pag. 611. 1. 13. pro $unt, lege $int; pag. 611. 1. 12. pro x^2 & x^3, lege x & x^2; pag. 621. 1. 6. pro π^2, lege π^2λ; pag. 621. 1. 13. dele 4 bis; pag. 621. 1. 16. pro valores 0, lege valores 0 vel infinitum; pag. 631. 1. 3. pro A, lege A^-1; pag. 631. 1. 1. pro A, lege A′; pag. 641. 1. 2. pro b, lege - b; pag. 651. 1. 14. dele hinc; pag. 671. 1. 2 & 3. pro 2 m, 2n + 2m & 4n + m, lege 2m + 1, 2n + 2m + 1 & 4n + 2m + 1, & pro a^m, a^2n+m & a^4m+m, lege a^2m+1, a^2n+2m+1 & a^4n+2m+1; 1. 9. dele re$pective; 1. 10 & 16. pro ductæ, lege ducti; pag. 681. 1. · pro eædem, lege eædem po$$ibiles; pag. 681. 1. antepen. pro $unt, lege $unt (n′); pag. 681. 1. 1 & 8. pro (n), lege (n′); 1. 7. pro c″ & c′, lege c′ & c″; pag. 681. 1. · pro α + z, β + z, γ + z, δ + z, lege α + 2n, β + 2n, γ + 2n, δ + 2 n, re$pective; pag. 681. 1. 2. pro cujus, lege quarum; pag. 691. 1. 3. & 6. pro alter, lege altera; pag. 711. 1. pen. pro q^2, lege q.

[0778] [0779] [0780] [0781] [0781a] Fig. 1. C _i k d_ B _f g c h e b_ A Fig. 2. _e d c h a b_ I E D C B A Fig. 3. A _p_ A P Pag. 581, 2, 3. V R F A M P E B _v R_ K C L D _f a_ Pag. 586. η π V R F A _e b_ ε E B _k c_ κ K C _l d_ λ L D _m n p_ T N M P _y x v r_ Z T′ _f_ Pag. 602. A α Q π R _b l_ β ξ _m c_ γ σ _d n_ M L P δ _o e_ Fig. 4. O N L P A Q B R C S D T E F Fig. γ _a m b_ π α _c d e g f h_ β ξ _k o i p l q r b n_ γ σ Pag. 584. E F A E B M P K C _f a_ h a m f o k k n b g l Pag. 147. R A S _e f m p_ M _h_ P Fig β _a m_ ξ _h_ μ″ μ′ μ α ν″ ν′ ν β π _h′ b n_ h a m f k o g b n _A_ l Fig. α h l a m f n b g k o k _A_ [0782] [0783] [0784]