
MAX-PLANCK-INSTITUT FÜR WISSENSCHAFTSGESCHICHTE
Max Planck Institute for the History of Science

Max Planck Digital Library (MPDL)

Subproject: Software development: Content based web access to XML documents

Josef Willenborg

Software comparision and selection

Version 1.0
Author Josef Willenborg
Created 17.09.2008
Last modified 11.11.2008
Last modified by Josef Willenborg

Content
1.Software comparision...3

1.1.Basic features..3
1.2.Repository...3
1.3.Indexing..4
1.4.Fulltext querying...4
1.5.Querying by attributes...4
1.6.XML querying...5
1.7.Language specific querying..5
1.8.Query results...5
1.9. Web development...6
1.10.Performance..6
1.11. Bugs..7

2.Architecture..8
2.1.Lucene...8
2.2. Oracle ..8
2.3. eXist with Lucene..9

3.Performance test...10
3.1.Lucene...10
3.2.eXist..10
3.3.Oracle..10

4.Datastore...12
5.Retrieve the part between two milestones..13
6.PDF documents...15
7.Decision..16

7.1.Indexing and query system...16
7.2. Datastore system..16

1. Software comparision

We examine different software systems by means of their main functions and features for
our user requirements in the area of web based access to XML-documents. We limit the
examination to three systems: Lucene, eXist and Oracle. These three systems promise the
best results for our basic needs but if they are proved not to be applicable systems such
as Tamino, DB2 and Postgres could be examined.

Functions which are mandadory for our requirements are marked bold. If one system has
a minus in one of these functions it could not be selected in our decision process.

1.1.Basic features

Function/Feature Lucene Oracle eXist
Open software ++ - ++
Price ++ (free) + (development

and production:
654 Euro for 2
years)

++ (free)

Customizable (extensible for
specific needs)

++ + ++

Easy maintenance and usage + + +
Powerful in functionality + ++ ++
Scalable + ++ +
Supported platforms ++ ++ ++
Further development of the software
for our needs (fulltext search for old
languages, version management in
repository etc.)

+ (with 11 main
developers)

+ (with many main
developers)

+ (with 5 main
developers)

1.2.Repository

Function/Feature Lucene Oracle eXist
Repository of files (hierarchical, with
folders)

- + +

Automatic index update when
documents are created, updated or
deleted

- - +

Trigger for events in folder
implementable

- +
(implementab
le in PL/SQL)

+ (implementable
in XQuery and
Java)

Access by HTTP/FTP (WebDAV) - + +
Access by SQL - + -
Versioning of files - - (but

restricted
functionality

- (only planed)

in repository
is available)

Repository of relational data (as
table content; content could also be
a reference to a file or URL)

- ++ -

RDBMS with SQL access (for
specific needs)

- ++ (complex) ++ (XQuery
access to external
SQL databases
over JDBC driver)

1.3.Indexing

Function/Feature Lucene Oracle eXist
Fulltext index encoded in UTF-81 + + +
XML index encoded in UTF-8 + + +
Many document formats (xml,
pdf, doc, html, ...)

+ (each format
has to be
implemented)

++ (over 150
formats)

- (only XML,
further types with
Lucene
extension2)

Range index + + +
NGram index (encoded in UTF-8,
option for Chinese)

- - +

1.4.Fulltext querying

Function/Feature Lucene Oracle eXist
Query encoding in UTF-8 + + +
Wildcard querying: * (left, middle,
right in the word)

+ (middle,
right)

++ (left,
middle, right)

++ (left, middle,
right)

Case sensitive querying + (with filter) + (with filter) +
Logical operators: and, or,
andNot

+ + +

Near operator + + +
Wildcard querying: ? (one
character)

- + +

Querying with e specific set of
characters: e.g. li[v,f]e

- - +

Writing similarity (fuzzy) + + + (with N-Gram
index)

1.5.Querying by attributes

Function/Feature Lucene Oracle eXist
Querying with attributes (e.g. + + (XPath + (XPath-

1 characters of the form ſ (longs) are encoded as one UTF-8 character internally
2 remark of Wolfgang Meier: „you could still define a trigger on the binary resource and
create your own Lucene-based index along with an XQuery extension function to
integrate Lucene results into an XQuery search“

author, title) operator) operator)
Date range queries + + +

1.6.XML querying

Function/Feature Lucene Oracle eXist
Support of XPath and XQuery - (but

implementable
with Java)

++ ++

Retrieve the XML fragment
between two milestones
(see chapter 5)

- (but
implementable
with Java)

+ (with own
servlet)

++ (with own
XQuery Java
extension)

1.7.Language specific querying

Function/Feature Lucene Oracle eXist
Lemmatizing in different
languages, stem operator

+ (11 spoken
languages not
including
italian, greek
and classic
latin)

++ (all major
spoken
languages
including italian
and greek,
classic latin)

+ (with Lucene
module)

Lemmatizing extensible by
programming language

++
(implementable
in Java)

++ (Oracle
PL/SQL
procedure which
could call Java
methods)

++ (with Lucene
module
implementable
in Java)

Lemmatizing extensible with
language specific dictionary

+
(implementable
in Java)

++ (build in) + (with Lucene
module)

Enrichment of the original query
with word forms out of an external
dictionary

+
(implementable
in Java)

++ (not
necessary
becaus already
contained in
stemming)

+ (with Lucene
module, also
implementable
in XQuery)

Querying with a thesaurus for
documents

- (but
implementable
in Java)

++ - (with Lucene
module
implementable
in Java)

Thesaurus maintenance and
querying in thesauruses

+ (Synonyms
with WordNet
could be
activated)

++ + (with Lucene
module)

1.8.Query results

Function/Feature Lucene Oracle eXist
Encoded in UTF-8 + + +
Customizable ++ (Java) ++ (Java, SQL,

XPath, XQuery,
result tables)

++ (XPath,
XQuery)

Sortable alphabtically by fields
(author, publication year)

+ + +

Sortable by relevance + + +(with Lucene
module)

Occurences of the query terms
could be presented in result
document (enrichment of the
original XML document with KWIC)

+ + +

1.9. Web development

Function/Feature Lucene Oracle eXist
Web interfaces + (JSP) + (JSP, SOAP,

XPath/XQuery,
WebDAV,
dynamic SQL)

++ (JSP, SOAP,
REST,
XMLRPC, Atom
Publishing
Protocol,
XPath/XQuery,
WebDAV)

Development of web applications + - ++
XQuery servlet for generating web
pages (similar to JSP)

- - ++

XQuery extensible with own Java
modules

- - ++

Web server with Servlet-Container + (Apache
Tomcat)

++ (built in
proprietary web
container)

++ (built in Jetty,
also Tomcat
possible)

Example web application for
querying documents (with KWIC
etc.)

+ - ++

1.10.Performance

See chapter 3 for more precise information.

Function/Feature Lucene Oracle eXist
Query response time ++ ++ ++
Indexing time ++ ++ ++
Document size ++ (> 2 GB,

efficiency is no
problem)

++ (18 MB is
tested, should
be much more)

++ (but system
hangs if it is too
big (> 100 MB))

Number of documents ++ (>
1.000.000)

++ (many, highly
scalable)

++ (up to 231)

1.11. Bugs3

Function/Feature Lucene Oracle eXist
little server crashes ++ ++ ++
little memory leaks ++ ++ + (Java heap

space problem
with special
XQueries in
sandbox)

3 limited functional test (no mass test)

2. Architecture

2.1.Lucene

2.2. Oracle

2.3. eXist with Lucene

3. Performance test

3.1.Lucene

Hardware Document base Indexing
time

Query
time

Remarks

Mac Pro with 2 x
2,66 Ghz Dual Core
Intel Xeon
Processor with 2
GB RAM

500 big XML
documents (each
with 300 pages)

?? minutes

8 hours
(incl. OCR-
index)

Fulltext:
< 0,3
sec

OCR index
included

3.2.eXist

Hardware Document
base

Indexing
time

Query time Remarks

Suse Linux
Server AMD
Opteron
Processor, 6
GB RAM

11000 small
XML
documents (<
100 KB) and a
few big XML
documents (15
MB)

1 hour Fulltext:
< 0,3 sec

XML:
< 1 sec

BBAW test

Mac Pro with
2 x 2,66 Ghz
Dual Core
Intel Xeon
Processor
with 2 GB
RAM

111 XML-
documents (
all 130 MB,
between 4 KB
- 18 MB) with
XML index and
Lucene fulltext
index

11 minutes Fulltext:
< 0,3 sec

XML:
< 1 sec

Path operator
„/archimedes//s“
which delivers
300.000 result
sentences needs 1
sec.;
select one specific
page needs 1 sec,
select 100 specific
pages needs 100
sec;
some specific
queries need longer

3.3.Oracle

Hardware Document base Indexing
time

Query
time

Remarks

Windows XP 111 XML- 7,5 Fulltext: index: one xml

Workstation with 2 x
2,66 Ghz Dual Core
Intel Xeon
Processor with 2
GB RAM

documents (
all 130 MB,
between 4 KB -
18 MB) with XML
index and fulltext
index

minutes < 0,3 sec

XML:
< 1 sec.

type index and
one text index
on the same
table column;
some specific
queries need
longer

Oracle delivers methods to increase the performance:
- schema definition for the document column produce automatically object relational data

with better indexes so that XML queries are faster (XPath rewrite).
- function based indexes for specific needs
- scaling of the hardware

4. Datastore

A special requirement in our project is the persistent publication of documents by authors
or institutions. Documents of different versions and formats (XML, PDF, etc.) should be
archived with their metadata and in different document collections in a persistent way.
For this an open datastore system should be integrated into our overall indexing and
querying system. Special operations such as create, update and delete on versions of
documents and document collections have to trigger the same operation to the indexing
system.

Candidates for such a datastore system are Subversion (with own extensions), Zope and
Fedora.

5. Retrieve the part between two milestones

A special requirement is to retrieve and show the XML fragment between two milestones
(in TEI this are the elements „milestone“, „pb“, „cb“, „lb“) in a web browser. For example in
the document „caver_metod_020_it_1891.xml“ we want to search for the XML fragment
between page break n=464 and n=465. The problem is that page breaks could occur at
any place of the XML document (e.g. just in the middle of an italic markup in a paragraph
or in a table etc.).

With Oracle the operators in XQuery for querying such a fragment are supported
(following::*) but they are not performant (response times over 5 seconds) and also deliver
only in simple cases the desired results.
With eXist these operators in XPath and XQuery are not supported yet (following::* is not
possible).

A solution could be to make a „presentational copy“ of the original XML document where
the surrounding elements of milestones are resolved to „presentational elements“ which
have an explicit begin and end mark:
The preceding elements of a milestone m wich do not have an end mark before m are
explicitely end marked just before m and the following elements of a milestone m which do
not have a begin mark after m are explicitely begin marked just after m.

For example the original XML fragment with a „pb“ milestone:

<pb n=“464“/>
...
<p n=“4711“><s=“4811“><it>Dies ist
<pb n=“465“/>
ein Satz.</it></s></p>
...
<pb n=“466“/>

would be resolved presentational as:

<pb n="464">
...
<p n=“4711“><s n=“4811“><it>Dies ist</it></s></p>
</pb>
<pb n=“465“>
<p n=“4711“><s n=“4811“><it>ein Satz</it></s></p>
...
</pb>
<pb n=“466“>
...
</pb>

One solution could be to resolve the milestones online at query time with a programming
language. For example in Java this is simple and performant. It needs only 0,2 seconds to
find such a fragment at the end of a 10 MB file if the file is directly acessible in the file
system. Then the surrounding elements have to be resolved which does not need much
time.
In eXist one could extend XQuery with own Java modules. Also the access to the XML file
could be done directly (by the XML DB API) so that the performance of that operation
should be good.
In Oracle a special servlet would have to be implemented and deployed to the Oracle
servlet container which does access the database for the XML document. This could cost

some performance.

Another solution for resolving the milestone elements is to preprocess all original XML
documents with a programming language. There are two ways in doing this:

1. make a „presentational copy document file“ of each XML document file
2. make a „presentational copy document file“ of each page of each XML document

file

These presentational files are also indexed in eXist with the structural index.

Disadvantage of this solution is the double index space for the presentational copies. But
this solution is preferred because the query system would be much faster for the very
frequent operation of getting a page in a document.

6. PDF documents
For integrating the document format pdf into the query and indexing system there are two
ways:

1. in eXist a trigger has to be defined on the binary resource for the pdf documents to
update the separate Lucene index and also an XQuery extension function has to be
defined to integrate Lucene results into an XQuery search.

2. pdf documents are converted to XML documents with CDATA sections for each
page and indexed just the same as the XML documents

7. Decision

7.1.Indexing and query system

Lucene could be the system only for fulltext querying and also for a special integration of
own implemented language technology in fulltext searching. Other document formats such
as pdf could be integrated with some additional programming effort. A structural index for
XML queryies is not supported. Lucene is open software.

eXist (together with the Lucene module) could be the system for both fulltext querying and
structural querying and has a built in web engine/container and a basic datastore system.
Web applications could be implemented relative easy with the XQuery module which also
could be extended in Java for own functionality. Language technology could be integrated
with own Java implemented analyzers for Lucene. Further document formats such as pdf
could be integrated with relative little effort. eXist is open software.

Oracle could be the system for both fulltext querying and structurural querying and has a
built in web engine/container and a basic datastore system. For our language specific
needs it has many built in functionality so that less own implementation is necessary. But
for extending the language technology vendor specific PL/SQL procedures have to be
implemented. Other document formats such as pdf could be integrated for fulltext querying
with no implementation effort. Oracle is no open software.

We decide to use eXist with Lucene because:
1. requirements: all mandatory requirements and also many other requirements are

satisfied
2. architecture: XML and fulltext query system in one system (with the new Lucene

module), many web interfaces.
3. development of own web applications: is easy, clear design is supported.
4. performance/stability: first function and performance test was good.
5. extensibility: could be extended for our needs (language technology, other

document formats, repository trigger, etc.). It could also be extended with Java
modules, for example to support performant file search methods etc.

6. language technology: Oracle has the most promising built in functionality but the
upsetting and extension of that technology is complicated. In eXist with Lucene
there is less built in technology but it is more easy to extend. If we find out later that
Oracle is easier and better for our language technology than we could trace back to
this solution for our fulltext query system

7. repository: a basic repository system already exists. The versioning of documents
could be available in one of the next releases.

8. open software: yes.

7.2. Datastore system

The descision for the datastore/repository system will be discussed and reasoned in an
externalized document.

	1.Software comparision
	1.1.Basic features
	1.2.Repository
	1.3.Indexing
	1.4.Fulltext querying
	1.5.Querying by attributes
	1.6.XML querying
	1.7.Language specific querying
	1.8.Query results
	1.9. Web development
	1.10.Performance
	1.11. Bugs3

	2.Architecture
	2.1.Lucene
	2.2. Oracle
	2.3. eXist with Lucene

	3.Performance test
	3.1.Lucene
	3.2.eXist
	3.3.Oracle

	4.Datastore
	5.Retrieve the part between two milestones
	6.PDF documents
	7.Decision
	7.1.Indexing and query system
	7.2. Datastore system

