10
|
1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
|
|
2
|
|
3
|
|
4
|
|
5
|
|
6
|
|
7
|
|
8
|
|
9
|
|
10
|
|
11
|
|
12
|
|
13 <html xmlns="http://www.w3.org/1999/xhtml">
|
|
14 <head>
|
|
15 <title>Math - The Commons Math User Guide - Linear Algebra</title>
|
|
16 <style type="text/css" media="all">
|
|
17 @import url("../css/maven-base.css");
|
|
18 @import url("../css/maven-theme.css");
|
|
19 @import url("../css/site.css");
|
|
20 </style>
|
|
21 <link rel="stylesheet" href="../css/print.css" type="text/css" media="print" />
|
|
22 <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1" />
|
|
23 </head>
|
|
24 <body class="composite">
|
|
25 <div id="banner">
|
|
26 <span id="bannerLeft">
|
|
27
|
|
28 Commons Math User Guide
|
|
29
|
|
30 </span>
|
|
31 <div class="clear">
|
|
32 <hr/>
|
|
33 </div>
|
|
34 </div>
|
|
35 <div id="breadcrumbs">
|
|
36
|
|
37
|
|
38
|
|
39
|
|
40
|
|
41
|
|
42
|
|
43
|
|
44 <div class="xright">
|
|
45
|
|
46
|
|
47
|
|
48
|
|
49
|
|
50
|
|
51
|
|
52 </div>
|
|
53 <div class="clear">
|
|
54 <hr/>
|
|
55 </div>
|
|
56 </div>
|
|
57 <div id="leftColumn">
|
|
58 <div id="navcolumn">
|
|
59
|
|
60
|
|
61
|
|
62
|
|
63
|
|
64
|
|
65
|
|
66
|
|
67 <h5>User Guide</h5>
|
|
68 <ul>
|
|
69
|
|
70 <li class="none">
|
|
71 <a href="../userguide/index.html">Contents</a>
|
|
72 </li>
|
|
73
|
|
74 <li class="none">
|
|
75 <a href="../userguide/overview.html">Overview</a>
|
|
76 </li>
|
|
77
|
|
78 <li class="none">
|
|
79 <a href="../userguide/stat.html">Statistics</a>
|
|
80 </li>
|
|
81
|
|
82 <li class="none">
|
|
83 <a href="../userguide/random.html">Data Generation</a>
|
|
84 </li>
|
|
85
|
|
86 <li class="none">
|
|
87 <strong>Linear Algebra</strong>
|
|
88 </li>
|
|
89
|
|
90 <li class="none">
|
|
91 <a href="../userguide/analysis.html">Numerical Analysis</a>
|
|
92 </li>
|
|
93
|
|
94 <li class="none">
|
|
95 <a href="../userguide/special.html">Special Functions</a>
|
|
96 </li>
|
|
97
|
|
98 <li class="none">
|
|
99 <a href="../userguide/utilities.html">Utilities</a>
|
|
100 </li>
|
|
101
|
|
102 <li class="none">
|
|
103 <a href="../userguide/complex.html">Complex Numbers</a>
|
|
104 </li>
|
|
105
|
|
106 <li class="none">
|
|
107 <a href="../userguide/distribution.html">Distributions</a>
|
|
108 </li>
|
|
109
|
|
110 <li class="none">
|
|
111 <a href="../userguide/fraction.html">Fractions</a>
|
|
112 </li>
|
|
113
|
|
114 <li class="none">
|
|
115 <a href="../userguide/transform.html">Transform Methods</a>
|
|
116 </li>
|
|
117
|
|
118 <li class="none">
|
|
119 <a href="../userguide/geometry.html">3D Geometry</a>
|
|
120 </li>
|
|
121
|
|
122 <li class="none">
|
|
123 <a href="../userguide/optimization.html">Optimization</a>
|
|
124 </li>
|
|
125
|
|
126 <li class="none">
|
|
127 <a href="../userguide/ode.html">Ordinary Differential Equations</a>
|
|
128 </li>
|
|
129
|
|
130 <li class="none">
|
|
131 <a href="../userguide/genetics.html">Genetic Algorithms</a>
|
|
132 </li>
|
|
133 </ul>
|
|
134 <a href="http://maven.apache.org/" title="Built by Maven" class="poweredBy">
|
|
135 <img alt="Built by Maven" src="../images/logos/maven-feather.png"></img>
|
|
136 </a>
|
|
137
|
|
138
|
|
139
|
|
140
|
|
141
|
|
142
|
|
143
|
|
144
|
|
145 </div>
|
|
146 </div>
|
|
147 <div id="bodyColumn">
|
|
148 <div id="contentBox">
|
|
149 <div class="section"><h2><a name="a3_Linear_Algebra"></a>3 Linear Algebra</h2>
|
|
150 <div class="section"><h3><a name="a3.1_Overview"></a>3.1 Overview</h3>
|
|
151 <p>
|
|
152 Linear algebra support in commons-math provides operations on real matrices
|
|
153 (both dense and sparse matrices are supported) and vectors. It features basic
|
|
154 operations (addition, subtraction ...) and decomposition algorithms that can
|
|
155 be used to solve linear systems either in exact sense and in least squares sense.
|
|
156 </p>
|
|
157 </div>
|
|
158 <div class="section"><h3><a name="a3.2_Real_matrices"></a>3.2 Real matrices</h3>
|
|
159 <p>
|
|
160 The <a href="../apidocs/org/apache/commons/math/linear/RealMatrix.html">
|
|
161 RealMatrix</a> interface represents a matrix with real numbers as
|
|
162 entries. The following basic matrix operations are supported:
|
|
163 <ul><li>Matrix addition, subtraction, multiplication</li>
|
|
164 <li>Scalar addition and multiplication</li>
|
|
165 <li>transpose</li>
|
|
166 <li>Norm and Trace</li>
|
|
167 <li>Operation on a vector</li>
|
|
168 </ul>
|
|
169 </p>
|
|
170 <p>
|
|
171 Example:
|
|
172 <div class="source"><pre>
|
|
173 // Create a real matrix with two rows and three columns
|
|
174 double[][] matrixData = { {1d,2d,3d}, {2d,5d,3d}};
|
|
175 RealMatrix m = new Array2DRowRealMatrix(matrixData);
|
|
176
|
|
177 // One more with three rows, two columns
|
|
178 double[][] matrixData2 = { {1d,2d}, {2d,5d}, {1d, 7d}};
|
|
179 RealMatrix n = new Array2DRowRealMatrix(matrixData2);
|
|
180
|
|
181 // Note: The constructor copies the input double[][] array.
|
|
182
|
|
183 // Now multiply m by n
|
|
184 RealMatrix p = m.multiply(n);
|
|
185 System.out.println(p.getRowDimension()); // 2
|
|
186 System.out.println(p.getColumnDimension()); // 2
|
|
187
|
|
188 // Invert p, using LU decomposition
|
|
189 RealMatrix pInverse = new LUDecompositionImpl(p).getSolver().getInverse();
|
|
190 </pre>
|
|
191 </div>
|
|
192 </p>
|
|
193 <p>
|
|
194 The three main implementations of the interface are <a href="../apidocs/org/apache/commons/math/linear/Array2DRowRealMatrix.html">
|
|
195 Array2DRowRealMatrix</a> and <a href="../apidocs/org/apache/commons/math/linear/BlockRealMatrix.html">
|
|
196 BlockRealMatrix</a> for dense matrices (the second one being more suited to
|
|
197 dimensions above 50 or 100) and <a href="../apidocs/org/apache/commons/math/linear/SparseRealMatrix.html">
|
|
198 SparseRealMatrix</a> for sparse matrices.
|
|
199 </p>
|
|
200 </div>
|
|
201 <div class="section"><h3><a name="a3.3_Real_vectors"></a>3.3 Real vectors</h3>
|
|
202 <p>
|
|
203 The <a href="../apidocs/org/apache/commons/math/linear/RealVector.html">
|
|
204 RealVector</a> interface represents a vector with real numbers as
|
|
205 entries. The following basic matrix operations are supported:
|
|
206 <ul><li>Vector addition, subtraction</li>
|
|
207 <li>Element by element multiplication, division</li>
|
|
208 <li>Scalar addition, subtraction, multiplication, division and power</li>
|
|
209 <li>Mapping of mathematical functions (cos, sin ...)</li>
|
|
210 <li>Dot product, outer product</li>
|
|
211 <li>Distance and norm according to norms L1, L2 and Linf</li>
|
|
212 </ul>
|
|
213 </p>
|
|
214 <p>
|
|
215 The <a href="../apidocs/org/apache/commons/math/linear/RealVectorFormat.html">
|
|
216 RealVectorFormat</a> class handles input/output of vectors in a customizable
|
|
217 textual format.
|
|
218 </p>
|
|
219 </div>
|
|
220 <div class="section"><h3><a name="a3.4_Solving_linear_systems"></a>3.4 Solving linear systems</h3>
|
|
221 <p>
|
|
222 The <code>solve()</code> methods of the <a href="../apidocs/org/apache/commons/math/linear/DecompositionSolver.html">DecompositionSolver</a>
|
|
223 interface support solving linear systems of equations of the form AX=B, either
|
|
224 in linear sense or in least square sense. A <code>RealMatrix</code> instance is
|
|
225 used to represent the coefficient matrix of the system. Solving the system is a
|
|
226 two phases process: first the coefficient matrix is decomposed in some way and
|
|
227 then a solver built from the decomposition solves the system. This allows to
|
|
228 compute the decomposition and build the solver only once if several systems have
|
|
229 to be solved with the same coefficient matrix.
|
|
230 </p>
|
|
231 <p>
|
|
232 For example, to solve the linear system
|
|
233 <pre>
|
|
234 2x + 3y - 2z = 1
|
|
235 -x + 7y + 6x = -2
|
|
236 4x - 3y - 5z = 1
|
|
237 </pre>
|
|
238 Start by decomposing the coefficient matrix A (in this case using LU decomposition)
|
|
239 and build a solver
|
|
240 <div class="source"><pre>
|
|
241 RealMatrix coefficients =
|
|
242 new Array2DRowRealMatrix(new double[][] { { 2, 3, -2 }, { -1, 7, 6 }, { 4, -3, -5 } },
|
|
243 false);
|
|
244 DecompositionSolver solver = new LUDecompositionImpl(coefficients).getSolver();
|
|
245 </pre>
|
|
246 </div>
|
|
247
|
|
248 Next create a <code>RealVector</code> array to represent the constant
|
|
249 vector B and use <code>solve(RealVector)</code> to solve the system
|
|
250 <div class="source"><pre>
|
|
251 RealVector constants = new RealVectorImpl(new double[] { 1, -2, 1 }, false);
|
|
252 RealVector solution = solver.solve(constants);
|
|
253 </pre>
|
|
254 </div>
|
|
255
|
|
256 The <code>solution</code> vector will contain values for x
|
|
257 (<code>solution.getEntry(0)</code>), y (<code>solution.getEntry(1)</code>),
|
|
258 and z (<code>solution.getEntry(2)</code>) that solve the system.
|
|
259 </p>
|
|
260 <p>
|
|
261 Each type of decomposition has its specific semantics and constraints on
|
|
262 the coefficient matrix as shown in the following table. For algorithms that
|
|
263 solve AX=B in least squares sense the value returned for X is such that the
|
|
264 residual AX-B has minimal norm. If an exact solution exist (i.e. if for some
|
|
265 X the residual AX-B is exactly 0), then this exact solution is also the solution
|
|
266 in least square sense. This implies that algorithms suited for least squares
|
|
267 problems can also be used to solve exact problems, but the reverse is not true.
|
|
268 </p>
|
|
269 <p><table class="bodyTable"><tr class="a"><td><font size="+2">Decomposition algorithms</font></td>
|
|
270 </tr>
|
|
271 <tr class="b"><font size="+1"><td>Name</td>
|
|
272 <td>coefficients matrix</td>
|
|
273 <td>problem type</td>
|
|
274 </font></tr>
|
|
275 <tr class="a"><td><a href="../apidocs/org/apache/commons/math/linear/LUDecomposition.html">LU</a></td>
|
|
276 <td>square</td>
|
|
277 <td>exact solution only</td>
|
|
278 </tr>
|
|
279 <tr class="b"><td><a href="../apidocs/org/apache/commons/math/linear/CholeskyDecomposition.html">Cholesky</a></td>
|
|
280 <td>symmetric positive definite</td>
|
|
281 <td>exact solution only</td>
|
|
282 </tr>
|
|
283 <tr class="a"><td><a href="../apidocs/org/apache/commons/math/linear/QRDecomposition.html">QR</a></td>
|
|
284 <td>any</td>
|
|
285 <td>least squares solution</td>
|
|
286 </tr>
|
|
287 <tr class="b"><td><a href="../apidocs/org/apache/commons/math/linear/EigenDecomposition.html">eigen decomposition</a></td>
|
|
288 <td>square</td>
|
|
289 <td>exact solution only</td>
|
|
290 </tr>
|
|
291 <tr class="a"><td><a href="../apidocs/org/apache/commons/math/linear/SingularValueDecomposition.html">SVD</a></td>
|
|
292 <td>any</td>
|
|
293 <td>least squares solution</td>
|
|
294 </tr>
|
|
295 </table>
|
|
296 </p>
|
|
297 <p>
|
|
298 It is possible to use a simple array of double instead of a <code>RealVector</code>.
|
|
299 In this case, the solution will be provided also as an array of double.
|
|
300 </p>
|
|
301 <p>
|
|
302 It is possible to solve multiple systems with the same coefficient matrix
|
|
303 in one method call. To do this, create a matrix whose column vectors correspond
|
|
304 to the constant vectors for the systems to be solved and use <code>solve(RealMatrix),</code>
|
|
305 which returns a matrix with column vectors representing the solutions.
|
|
306 </p>
|
|
307 </div>
|
|
308 <div class="section"><h3><a name="a3.5_Eigenvalueseigenvectors_and_singular_valuessingular_vectors"></a>3.5 Eigenvalues/eigenvectors and singular values/singular vectors</h3>
|
|
309 <p>
|
|
310 Decomposition algorithms may be used for themselves and not only for linear system solving.
|
|
311 This is of prime interest with eigen decomposition and singular value decomposition.
|
|
312 </p>
|
|
313 <p>
|
|
314 The <code>getEigenvalue()</code>, <code>getEigenvalues()</code>, <code>getEigenVector()</code>,
|
|
315 <code>getV()</code>, <code>getD()</code> and <code>getVT()</code> methods of the
|
|
316 <code>EigenDecomposition</code> interface support solving eigenproblems of the form
|
|
317 AX = lambda X where lambda is a real scalar.
|
|
318 </p>
|
|
319 <p>The <code>getSingularValues()</code>, <code>getU()</code>, <code>getS()</code> and
|
|
320 <code>getV()</code> methods of the <code>SingularValueDecomposition</code> interface
|
|
321 allow to solve singular values problems of the form AXi = lambda Yi where lambda is a
|
|
322 real scalar, and where the Xi and Yi vectors form orthogonal bases of their respective
|
|
323 vector spaces (which may have different dimensions).
|
|
324 </p>
|
|
325 </div>
|
|
326 <div class="section"><h3><a name="a3.6_Non-real_fields_complex_fractions_..."></a>3.6 Non-real fields (complex, fractions ...)</h3>
|
|
327 <p>
|
|
328 In addition to the real field, matrices and vectors using non-real <a href="../apidocs/org/apache/commons/math/FieldElement.html">field elements</a> can be used.
|
|
329 The fields already supported by the library are:
|
|
330 <ul><li><a href="../apidocs/org/apache/commons/math/complex/Complex.html">Complex</a></li>
|
|
331 <li><a href="../apidocs/org/apache/commons/math/fraction/Fraction.html">Fraction</a></li>
|
|
332 <li><a href="../apidocs/org/apache/commons/math/fraction/BigFraction.html">BigFraction</a></li>
|
|
333 <li><a href="../apidocs/org/apache/commons/math/util/BigReal.html">BigReal</a></li>
|
|
334 </ul>
|
|
335 </p>
|
|
336 </div>
|
|
337 </div>
|
|
338
|
|
339 </div>
|
|
340 </div>
|
|
341 <div class="clear">
|
|
342 <hr/>
|
|
343 </div>
|
|
344 <div id="footer">
|
|
345 <div class="xright">©
|
|
346 2003-2010
|
|
347
|
|
348
|
|
349
|
|
350
|
|
351
|
|
352
|
|
353
|
|
354
|
|
355
|
|
356 </div>
|
|
357 <div class="clear">
|
|
358 <hr/>
|
|
359 </div>
|
|
360 </div>
|
|
361 </body>
|
|
362 </html>
|