Mercurial > hg > mpdl-xml-content
view texts/archimedesOldCVSRepository/archimedes/xml/marci_regul_062_la_1639.xml @ 17:9c3c82b4e517
Adding special instructions
author | Klaus Thoden <kthoden@mpiwg-berlin.mpg.de> |
---|---|
date | Thu, 02 May 2013 12:21:30 +0200 |
parents | 22d6a63640c6 |
children |
line wrap: on
line source
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE archimedes SYSTEM "../dtd/archimedes.dtd"> <archimedes xmlns:xlink="http://www.w3.org/1999/xlink"> <info> <author>Marci von Kronland, Johannes Marcus </author> <title>De proportione motus seu Regula sphygmica ad celeritatem et tarditatem pulsuum</title> <date>1639</date> <place>Prague</place> <translator/> <lang>la</lang> <cvs_file>marci_regul_062_la_1639.xml</cvs_file> <cvs_version/> <locator>062.xml</locator> </info> <text> <front> <section> <pb xlink:href="062/01/001.jpg"/> <p id="N1001B" type="main"> <s id="N1001D"><emph type="center"/>DE PROPORTIONE MOTUS<emph.end type="center"/></s> </p> <p id="N10024" type="main"> <s id="N10026"><emph type="center"/><emph type="italics"/>seu <lb/> Regula &longs;phyigmica <lb/>AD celeritatem et tarditatem pul&longs;uum ex illius motu <lb/> ponderibus geometricis librato <expan abbr="ab&longs;q;">ab&longs;que</expan> errore metiendam. </s> <lb/> <s id="N10038"> Authore <lb/> Ionanne Marco Marci Phil:ae er Medic:ae Doctore et ordi<lb/> nario Profe&longs;&longs;ore eiu&longs;dem Medic: facultatis in Vni<lb/> uer&longs;itate Pragen&longs;i Phy&longs;ico Reg: Boh.<emph.end type="italics"/><emph.end type="center"/></s> </p> <pb xlink:href="062/01/002.jpg"/> <p id="N10048" type="caption"> <s id="N1004A">IOANNES MARCVS MARCI PHIL: & MEDIC: DOCTOR <lb/><emph type="italics"/>et Profe&longs;&longs;or natus Landscronæ Hermundurarum in Boëmia <lb/>anno 1595, 13 Iunij.<emph.end type="italics"/></s> </p> </section> <section> <figure id="id.062.01.002.1.jpg" xlink:href="062/01/002/1.jpg"/> <pb xlink:href="062/01/003.jpg"/> <p id="N1005E" type="main"> <s id="N10060"><emph type="center"/>DIVO <lb/>FERDINANDO <lb/>TERTIO<emph.end type="center"/></s> </p> <p id="N1006B" type="main"> <s id="N1006D"><emph type="center"/>AUGUSTISSIMO ROMANORUM <lb/>IMPERATORI<emph.end type="center"/></s> </p> <p id="N10076" type="main"> <s id="N10078"><emph type="center"/>Hungariæ & Bohemiæ Regi &c. <lb/><emph type="italics"/>Domino meo Clementi&longs;&longs;imo.<emph.end type="italics"/><emph.end type="center"/></s> </p> <p id="N10085" type="main"> <s id="N10087"><emph type="center"/>Augu&longs;ti&longs;sime Cæ&longs;ar<emph.end type="center"/></s> </p> <p id="N1008E" type="main"> <s id="N10090">DVm ut annus hic nouus TUÆ Maje­<lb/>&longs;tati au&longs;picatus ordiatur, vota conci­<lb/>pio, & à tenuitate meà munu&longs;culum <lb/>TUÆ Maie: gratum e flagito: ecce ti­<lb/>bi hunc ip&longs;um, qui annum au&longs;picatur, <expan abbr="atq;">atque</expan> &longs;ua in ve<lb/>&longs;tigia reuoluit, motum mihi ultrò, ut Mercurius &longs;it <lb/>& munus, &longs;e offerentem: quid enim inquit extra <lb/>me quæris? in me &longs;unt omnia.</s> <s id="N100A5"> Ab&longs;it, in quam ego, <lb/>ut ad Cæ&longs;arem eas, qui tam in&longs;tabilis es & infidus, <pb xlink:href="062/01/004.jpg"/><expan abbr="atq;">atque</expan> eadem, quæ dare videbaris, rur&longs;um aufers. </s> <s id="N100B1">Nul<lb/>lum, inquit ille periculum ab in&longs;tabilitate: hic enim <lb/>Senex, ut vides, me quadratum fecit: quòd &longs;i tibi ita <lb/>videtur, me vel cubum facias. </s> <s id="N100BA">Benè inquam res ha­<lb/>bet, ad Cæ&longs;aremibis: verùm his ego te priùs circu­<lb/>lis illigabo, <expan abbr="at&qacute;">atque</expan>; his lineis ceu virgulis &longs;ub leges Geo­<lb/>metriæ cogam, ut non ni&longs;i ad nutum Cæ&longs;aris mo­<lb/>uearis: &longs;is autem men&longs;ura & &longs;imul cu&longs;tos illius mo<lb/>tus, à quo Regalis vita pendet. </s> <s id="N100CB">Hunc ergo motum <lb/>Augu&longs;ti&longs;sime Cæ&longs;ar modulis geometricis ad&longs;tri­<lb/>ctum, & nunc Medicinæ famulantem ad TUAM <lb/>Maie&longs;tatem tanquam Primum Motorem remitto, <lb/>qui & cores & Sol Imperij & Regnorum, Tuæque <lb/>benignitatis motu hunc in me motum commoui­<lb/>&longs;ti. </s> <s id="N100DA">Motum quidem hunc TUÆ Maie&longs;tati vt Soli <lb/>& Motori, at verò eidem Soli vt illuminatori Iri­<lb/>dem votiuam, gratitudinis & debitæ ob&longs;ervantiæ <lb/>ergo à TUÆ Maie&longs;tatis radijs conceptam hic idem <lb/>annus in proximo dabit: quam huc <expan abbr="u&longs;&qacute;">u&longs;que</expan>; quantum­<lb/>uis con&longs;pici volentem, & &longs;uà pulchritudine ambi­<lb/>tio&longs;am eadem fata, quæ pacem morantur, detinue­<lb/>re: ut nimirum hoc demum anno pace é victorijs <pb xlink:href="062/01/005.jpg"/>TUÆ Maie&longs;tatis na&longs;cente & pluuiá &longs;anguinis eju&longs;­<lb/>dem radijs &longs;iccatá, Iris con&longs;picua veluti arcus trium <lb/>phalis TUÆ Maie&longs;tatis &longs;equatur pompam trium­<lb/>phalem. </s> </p> <p id="N100F9" type="main"> <s id="N100FB">Augu&longs;ti&longs;simæ Maie&longs;tatis Tuæ </s> </p> <p id="N100FE" type="main"> <s id="N10100"><emph type="center"/>humillimus Servus & Cliens<emph.end type="center"/></s> </p> <p id="N10107" type="main"> <s id="N10109"><emph type="italics"/>Joannes Marcus Marci.<emph.end type="italics"/></s> </p> </section> </front> <body> <chap id="N10111"> <pb xlink:href="062/01/006.jpg"/> <p id="N10115" type="main"> <s id="N10117"><emph type="center"/>Definitiones.<emph.end type="center"/></s> </p> <p id="N1011E" type="main"> <s id="N10120"><emph type="center"/>1.<emph.end type="center"/></s> </p> <p id="N10127" type="main"> <s id="N10129"><emph type="italics"/>Contraria dicuntur quæ tollunt, uel impediunt &longs;u­<lb/>um contrarium.<emph.end type="italics"/></s> </p> <p id="N10132" type="main"> <s id="N10134">NAm contrariorum e&longs;t natura, ut &longs;imul e&longs;&longs;e <lb/>non po&longs;sint in uno &longs;ubjecto: necesse ergo unum <lb/>ab altero tolli, aut quò minùs recipiatur in illo <lb/>&longs;ubiecto impediri. </s> <s id="N1013D"> <expan abbr="Ita&qacute;">Itaque</expan>; calori frigus contrarium di­<lb/>cunt non totà &longs;uà latitudine, &longs;ed &longs;ecundùm illos gra­<lb/>dus, qui &longs;imul e&longs;&longs;e non po&longs;&longs;unt in codem &longs;ubjecto,<lb/>quatuor autem gradus caloris cum totidem gradibus <lb/>frigoris non e&longs;&longs;e contrarios, verúm inter &longs;e mi&longs;ceri, <expan abbr="at&qacute;">atque</expan>; <lb/>ex illis ita permixtis temperiem na&longs;ci. </s> <s id="N10152">Simili modo <lb/>motus motui dicet ut contrarius, qui à termino illius <lb/>idem mobile abducit, <expan abbr="nullam&qacute;">nullamque</expan>; partem viæ &longs;eu acce&longs;­<lb/>&longs;us ad illum terminum habet communem. </s> <s id="N1015F">Vt &longs;i in <lb/>fig: 1 ex <emph type="italics"/>a<emph.end type="italics"/> in <emph type="italics"/>b<emph.end type="italics"/> moveatur, erit motus contrarius, qui ex <lb/>eodem <emph type="italics"/>a<emph.end type="italics"/> idem mobilè in <emph type="italics"/>e<emph.end type="italics"/> ab ducit. </s> <s id="N1017E">Motus verò ex <emph type="italics"/>a<emph.end type="italics"/> in <lb/><emph type="italics"/>d<emph.end type="italics"/> non erit contrarius ab&longs;olutè, propterea quòd hic mo­<lb/>tus non abducit à termino motus <emph type="italics"/>b,<emph.end type="italics"/> verùm ad hunc in <lb/>omni puncto propiùs accedit: quód &longs;i enim ex <emph type="italics"/>b<emph.end type="italics"/> ducan<lb/>tur lineæ <emph type="italics"/>be. bf. bg,<emph.end type="italics"/> erit linea <emph type="italics"/>bf<emph.end type="italics"/> minor quam <emph type="italics"/>be,<emph.end type="italics"/> & <emph type="italics"/>bg<emph.end type="italics"/> mi<lb/>nor quam <emph type="italics"/>bf.<emph.end type="italics"/> Huju&longs;modi ergo motus dum inter &longs;e <pb xlink:href="062/01/007.jpg"/>mi&longs;centur, non &longs;e mutuó tollunt ab&longs;olutè, verúm in <lb/>eo in quo &longs;unt &longs;imiles, in motum medium coale&longs;centes <lb/>vià mediá <expan abbr="vtri&qacute;;">vtrique;</expan> termino propinquant: in quantum <lb/>verò contrarij, illam rectitudinem viæ tollunt. </s> <s id="N101CE">Con­<lb/>traria ergo dicuntur quæ tollunt, vel impediunt &longs;uum <lb/>contrarium. </s> </p> <p id="N101D5" type="main"> <s id="N101D7"><emph type="center"/>2.<emph.end type="center"/></s> </p> <p id="N101DE" type="main"> <s id="N101E0"><emph type="italics"/>Similia verò qua augent vel perficiunt &longs;uum &longs;imile.<emph.end type="italics"/></s> </p> <p id="N101E7" type="main"> <s id="N101E9">VT &longs;i ad motum <emph type="italics"/>ac<emph.end type="italics"/> alius ac cedat impul&longs;us, qui per <lb/>eandem lineam <emph type="italics"/>ac<emph.end type="italics"/> moveat idem mobile, erit hic <lb/>motus illi &longs;imilis, ac proinde eundem dicetur augere, <lb/>quemadmodum calor alium calorem &longs;ibi &longs;imilem: ca­<lb/>lor autem à luce, aut è contra, quia di&longs;similes, non di­<lb/>centur augeri. </s> </p> <p id="N10202" type="main"> <s id="N10204"><emph type="center"/>3.<emph.end type="center"/></s> </p> <p id="N1020B" type="main"> <s id="N1020D"><emph type="italics"/>Et mixta à quibus actiones procedunt mixtœ.<emph.end type="italics"/></s> </p> <p id="N10214" type="main"> <s id="N10216">ILlarum nimirum qualitatum, quæ vim habent a­<lb/>gendi, latiùs &longs;umpto nomine actionis, pro qualibet <lb/>actione etiam perfectiuà: <expan abbr="ita&qacute;">itaque</expan>; illa <expan abbr="quo&qacute;">quoque</expan>; mutatio, <lb/>quam dulcoacidum inducit, actio dicetur mixta: <lb/>quem admodum frigus calore temperatum actionem <lb/>efficere èx <expan abbr="utro&qacute;">utroque</expan>; mixtam. </s> <s id="N1022F">Sic ergo motus dicetur <pb xlink:href="062/01/008.jpg"/>mixtus, dum inpul&longs;us <expan abbr="ne&qacute;">neque</expan>; in totum &longs;imilis, <expan abbr="ne&qacute;">neque</expan>; in to­<lb/>tum e&longs;t contrarius alteri impul&longs;ui. </s> </p> <p id="N10240" type="main"> <s id="N10242"><emph type="center"/>4.<emph.end type="center"/></s> </p> <p id="N10249" type="main"> <s id="N1024B"><emph type="italics"/>Motus ab&longs;oluté contrarij, qui idem mòbile ducunt <lb/>ex eodem puncto ad partes oppo&longs;itas ejusdem lineæ rectæ.<emph.end type="italics"/></s> </p> <p id="N10254" type="main"> <s id="N10256"><emph type="center"/>5.<emph.end type="center"/></s> </p> <p id="N1025D" type="main"> <s id="N1025F"><emph type="italics"/>Motus &longs;ecundum quid contrarij, qui ex illo puncto, <lb/>&longs;eù principio motus angulum ducunt majorem a ut minorem recto <lb/>minorem verò duobus rectis.<emph.end type="italics"/></s> </p> <p id="N1026A" type="main"> <s id="N1026C"><emph type="center"/>6.<emph.end type="center"/></s> </p> <p id="N10273" type="main"> <s id="N10275"><emph type="italics"/>Motus qui ex eodem puncto tendunt ad ea&longs;dem <lb/>partes lineæ rectæ inter &longs;e &longs;unt &longs;imiles.<emph.end type="italics"/></s> </p> <p id="N1027E" type="main"> <s id="N10280"><emph type="center"/>7.<emph.end type="center"/></s> </p> <p id="N10287" type="main"> <s id="N10289"><emph type="italics"/>Motus qui minori angulo ab&longs;i&longs;tunt magis &longs;unt <lb/>&longs;imiles<emph.end type="italics"/></s> </p> <p id="N10292" type="main"> <s id="N10294"><emph type="center"/>8.<emph.end type="center"/></s> </p> <p id="N1029B" type="main"> <s id="N1029D"><emph type="italics"/>Motus perfectè mixti quorum principium e&longs;t an­<lb/>gulus rectus.<emph.end type="italics"/></s> </p> <p id="N102A6" type="main"> <s id="N102A8">VT &longs;i in fig: 2. ex eodem puncto <emph type="italics"/>a<emph.end type="italics"/> moueatur idem <lb/>mobile &longs;imul in <emph type="italics"/>b<emph.end type="italics"/> & <emph type="italics"/>e,<emph.end type="italics"/> dicetur hic motus ab&longs;olutè <lb/>contrarius. </s> <s id="N102C1">Motus verò ex eodem puncto <emph type="italics"/>a<emph.end type="italics"/> in <emph type="italics"/>b<emph.end type="italics"/> & <emph type="italics"/>d,<emph.end type="italics"/><lb/>aut in <emph type="italics"/>b<emph.end type="italics"/> & <emph type="italics"/>f,<emph.end type="italics"/> quorum hic major, ille minor &longs;it angulo re- <pb xlink:href="062/01/009.jpg"/>cto, erunt motus &longs;ecundùm quid contrarij: propterea <lb/>quòd non ex toto &longs;e impediunt aut tollunt: contrarie­<lb/>tas enim motus ex acce&longs;&longs;u & rece&longs;&longs;u ad eundem termi­<lb/>num prouenit: motus autem &longs;ecundùm quid contrari; <lb/>dum inter &longs;e mi&longs;centur, licet &longs;uos terminos non a&longs;­<lb/>&longs;equantur, ij&longs;dem tamen continuò fiunt propiores. <lb/>Quia verò lineæ motus quò minori angulo ab&longs;i&longs;tunt, <lb/>eò propiùs accedunt ad terminum, erunt hi motus ma<lb/>gis &longs;imiles: perfecta autem &longs;imilitudo in eadem lineà <lb/>rectà, quæ ad eundem terminum perducit. </s> <s id="N102F9">Motus de­<lb/>mum, quorum principium e&longs;t angulus rectus, quia ex <lb/>illà mixtione propiores quidem fiunt termino motus, <lb/>intervallum autem in fine motus &longs;patio inter principi­<lb/>um & terminum motus e&longs;t æquale, nimirum in fig: 7. <lb/>dicentur motus perfectè mixti: tantùm enim con<lb/>trarij, quantùm &longs;imilitudinis ine&longs;t; </s> </p> </chap> <chap id="N10308"> <subchap1 id="N10309"> <p id="N1030A" type="main"> <s id="N1030C"><emph type="center"/>Po&longs;itiones:<emph.end type="center"/></s> </p> <p id="N10313" type="main"> <s id="N10315"><emph type="center"/>I.<emph.end type="center"/></s> </p> <p id="N1031C" type="main"> <s id="N1031E"><emph type="italics"/>Simile & æquale auget &longs;uum &longs;imile in eadem rati­<lb/>one, totum quidem totum, pars verò partem &longs;ibi æqualem.<emph.end type="italics"/></s> </p> <p id="N10327" type="main"> <s id="N10329">SIt linea <emph type="italics"/>ad<emph.end type="italics"/> æqualis lineæ <emph type="italics"/>ef,<emph.end type="italics"/> & diuidatur bifariam in <lb/><emph type="italics"/>b<emph.end type="italics"/>: quód &longs;i ergo tota linea <emph type="italics"/>ad<emph.end type="italics"/> addatur toti <emph type="italics"/>e f,<emph.end type="italics"/> &longs;icuti tota <lb/> <figure id="id.062.01.009.1.jpg" xlink:href="062/01/009/1.jpg"/><lb/> <pb xlink:href="062/01/010.jpg"/>toti, & &longs;emi&longs;sis &longs;emi&longs;si, & <expan abbr="tri&etilde;s">triens</expan> trienti e&longs;t æqualis, ita to­<lb/>ta totam, & &longs;emi&longs;sis &longs;emi&longs;&longs;em, & triens trientem auge­<lb/>bit in eadem ratione, in quà tota totam. </s> <s id="N10360">Si ergo &longs;emi&longs;­<lb/>&longs;is <emph type="italics"/>ab<emph.end type="italics"/> addatur toti <emph type="italics"/>ef,<emph.end type="italics"/> quia ut <emph type="italics"/>ad<emph.end type="italics"/> ad <emph type="italics"/>ab,<emph.end type="italics"/> ita <emph type="italics"/>ef<emph.end type="italics"/> æqualis <emph type="italics"/>ad<emph.end type="italics"/><lb/> ad eandem <emph type="italics"/>ab,<emph.end type="italics"/> erit augmentum æquale eju&longs;dem &longs;emi&longs;­<lb/>&longs;i: &longs;ola ergo &longs;emi&longs;sis lineæ <emph type="italics"/>ef<emph.end type="italics"/> augetur à &longs;emi&longs;&longs;e lineæ <emph type="italics"/>ad<emph.end type="italics"/><lb/>in eà ratione, in quà tota auget totam. </s> <s id="N1039F">Et quia linea <lb/><emph type="italics"/>ad<emph.end type="italics"/> ad &longs;emi&longs;&longs;em <emph type="italics"/>ab<emph.end type="italics"/> rationem habet duplam, habebit <lb/><expan abbr="quo&qacute;">quoque</expan>, <emph type="italics"/>ef<emph.end type="italics"/> ad illam &longs;emi&longs;&longs;em, hoc e&longs;t ad &longs;uum augmen­<lb/>tum rationem duplam. </s> <s id="N103BC">Simili modo &longs;i augmentum <emph type="italics"/>cd<emph.end type="italics"/><lb/> &longs;it triens lineæ <emph type="italics"/>ad,<emph.end type="italics"/> erit linea <emph type="italics"/>ef<emph.end type="italics"/> ad illud augmentum in <lb/>ratione triplá. </s> <s id="N103D4">Simile ergo & æquale auget &longs;uum &longs;i­<lb/>mile in eadem ratione &c. </s> </p> <p id="N103D9" type="main"> <s id="N103DB"><emph type="center"/>II.<emph.end type="center"/></s> </p> <p id="N103E2" type="main"> <s id="N103E4"><emph type="italics"/>Contrarium æquale tollit vel impedit &longs;uum contra­<lb/>rium in eadem ratione, totum quidem totum, pars verò partem <lb/>&longs;ibi æqualem<emph.end type="italics"/></s> <figure id="id.062.01.010.1.jpg" xlink:href="062/01/010/1.jpg"/> <lb/> </p> <p id="N103F5" type="main"> <s id="N103F7">Sit <emph type="italics"/>ab<emph.end type="italics"/> ip&longs;i <emph type="italics"/>df<emph.end type="italics"/> contrarium & æquale, & diuidantur bi­<lb/>fariam in <emph type="italics"/>c<emph.end type="italics"/> & <emph type="italics"/>e<emph.end type="italics"/>: quia ergo <emph type="italics"/>ab<emph.end type="italics"/> totum e&longs;t æquale ip&longs;i <lb/><emph type="italics"/>df<emph.end type="italics"/> toti, erit <expan abbr="quo&qacute;">quoque</expan> &longs;emi&longs;sis <emph type="italics"/>ef<emph.end type="italics"/> æqualis &longs;emi&longs;si <emph type="italics"/>cb<emph.end type="italics"/>: tollit <lb/>autem <emph type="italics"/>ab<emph.end type="italics"/> totum <emph type="italics"/>df,<emph.end type="italics"/> tollet ergo & <emph type="italics"/>eb<emph.end type="italics"/> totum <emph type="italics"/>ef:<emph.end type="italics"/> quod <lb/>idem de reliquis partibus, <expan abbr="quacun&qacute;">quacunque</expan> ratione diuidan­<lb/>tur, o&longs;tendemus. </s> <s id="N10453">Dices calorem & frigus e&longs;&longs;e contra<lb/>ria, <expan abbr="ne&qacute;">neque</expan>; tamen à calore totum frigus, <expan abbr="ne&qacute;">neque</expan>; à frigore to- <pb xlink:href="062/01/011.jpg"/>tum calorem tolli & expelli, verùm tantum illorum <lb/>exce&longs;&longs;us: partes verò mutilatas inter &longs;e mi&longs;ceri, & ami­<lb/>cabili &longs;ocietate in eodem &longs;ubjecto coniungj</s> <s id="N10468">orùm <lb/>&longs;i in gradibus remi&longs;sis dee&longs;t illa proprietas contrari­<lb/>orum, <expan abbr="ne&qacute;">neque</expan>; &longs;anè contrarietas inerit. </s> <s id="N10473">Quidquid tamen <lb/>&longs;it de illis qualitatibus, de quibus alio loco di&longs;&longs;eren­<lb/>dum, con&longs;tat ex illà, quæ in motu e&longs;t contrarietate, &longs;i <lb/>æqualis &longs;it, nullum &longs;e qui motum: &longs;i major, hujus ex­<lb/>ce&longs;&longs;ui e&longs;&longs;e æqualem. </s> <s id="N1047E">Con&longs;tituatur enim in bilance <emph type="italics"/>ab <lb/>c<emph.end type="italics"/> pondus <emph type="italics"/>a<emph.end type="italics"/> 8. lib. quod vectem deprimet impul&longs;u 8, li­<lb/> <figure id="id.062.01.011.1.jpg" xlink:href="062/01/011/1.jpg"/><lb/><lb/> brali, <expan abbr="at&qacute;">atque</expan>; hujus impul&longs;us non ni&longs;i ab æquali totidem li­<lb/>brarum ponderis <emph type="italics"/>b<emph.end type="italics"/> impul&longs;u inhibetur. </s> <s id="N104A5">Quòd &longs;i pon­<lb/>dus in <emph type="italics"/>e<emph.end type="italics"/> lib. 5. eundem vectem &longs;ur&longs;um trahat, erit im­<lb/>pul&longs;us in <emph type="italics"/>a<emph.end type="italics"/> lib. 3. pondus ergo &longs;eu impul&longs;us in <emph type="italics"/>e<emph.end type="italics"/> contra­<lb/>rius impul&longs;ui in <emph type="italics"/>a<emph.end type="italics"/> tollit partem ex <emph type="italics"/>a<emph.end type="italics"/> &longs;ibi æqualem. </s> <s id="N104CC">Si­<lb/>mili modo &longs;i duo globi æquali ni&longs;u, & in eadem lineá <lb/>motus centri &longs;ibi occurrentes collidantur, nullus ab il- <pb xlink:href="062/01/012.jpg"/>lo contactu erit mótus: major verò impul&longs;us minorem <lb/>reflectet, tantò verò minori velocitate mouebitur à <lb/>contactu, quantò major e&longs;t re&longs;i&longs;tentia minoris: quia <lb/>nimirum impul&longs;us minor à majori tollit partem &longs;ibi <lb/>æqualem, &longs;imul verò occumbit erit ergò exce&longs;&longs;us ma­<lb/>joris principium motus à contactu: & cùm &longs;it agens <lb/>nece&longs;&longs;arium, motum producit &longs;ibi a qualem. </s> <s id="N104E3">Dices in­<lb/>terdum fieri ut duo globi &longs;ibi occurrentes <expan abbr="uter&qacute;">uterque</expan>; re&longs;ili­<lb/>at: quod <expan abbr="nõ">non</expan> ni&longs;i ab æquali impul&longs;u e&longs;&longs;e pote&longs;t; propte<lb/>rea quód motus e&longs;t æqualis exce&longs;&longs;ui majoris. </s> <s id="N104F4"><expan abbr="Re&longs;põdeo">Re&longs;pondeo</expan> <lb/>&longs;i motus, quo <expan abbr="centrũ">centrum</expan> <expan abbr="utriu&longs;&qacute;">utriu&longs;que</expan>; globi mouetur, &longs;it in ea­<lb/>dem lineà rectà, ab æquali impul&longs;u nunquam re&longs;ilire: <lb/>&longs;i autem motus centri unius &longs;it extra lineam motus al­<lb/>terius, quia lateraliter fit contactus, huju&longs;modi quidem <lb/>motum po&longs;&longs;e re&longs;ilire: verùm non ab&longs;oluté, &longs;ed tantùm <lb/>&longs;ecundùm quid e&longs;&longs;e contrarium. </s> <s id="N1050E">Vt in figurà &longs;ubjectà <lb/>&longs;i centrum <emph type="italics"/>a<emph.end type="italics"/> ex <emph type="italics"/>h,<emph.end type="italics"/> & centrum <emph type="italics"/>b<emph.end type="italics"/> ex <emph type="italics"/>l<emph.end type="italics"/> moueantur in ea­<lb/>dem lineà rectà <emph type="italics"/>h fl<emph.end type="italics"/>: &longs;it autem impul&longs;us ex <emph type="italics"/>a<emph.end type="italics"/> æqualis im<lb/>pul&longs;ui ex <emph type="italics"/>b,<emph.end type="italics"/> àcontactu in <emph type="italics"/>f<emph.end type="italics"/> nullus erit motus: propterea <lb/>quód impul&longs;us æquales æqualiter reluctantur, <expan abbr="&longs;e&qacute;">&longs;eque</expan>; im­<lb/>pediunt à motu. </s> <s id="N1054F">Quód &longs;i verò centrum grauitatis <emph type="italics"/>a<emph.end type="italics"/><lb/>ex <emph type="italics"/>c<emph.end type="italics"/> in <emph type="italics"/>a,<emph.end type="italics"/> & centrum grauitatis <emph type="italics"/>b<emph.end type="italics"/> ex <emph type="italics"/>d<emph.end type="italics"/> in <emph type="italics"/>b<emph.end type="italics"/> moueatur; quia <lb/>lineæ motus <emph type="italics"/>ac.db<emph.end type="italics"/> non coincidunt eidem lineæ rectæ, <lb/>dico huju&longs;modi motum non ab&longs;oluté, &longs;ed &longs;ecundùm <lb/>quid e&longs;&longs;e contrarium.</s> <s id="N10583"> Ducantur enim ex puncto con- <pb xlink:href="062/01/013.jpg"/>tactus <emph type="italics"/>f<emph.end type="italics"/> lineæ <emph type="italics"/>fg. fe<emph.end type="italics"/> motui centri parallelæ, lineæ nimi­<lb/>rum hypomochlij, extra quas cadunt centra <emph type="italics"/>a<emph.end type="italics"/> & <emph type="italics"/>b:<emph.end type="italics"/> quia <lb/>ergo plaga non ni&longs;i per centrum fit grauitatis, erunt li<lb/>neæ <emph type="italics"/>fab. fbb<emph.end type="italics"/> lineæ motus à percu&longs;sione: &longs;unt autem li<lb/>neæ <emph type="italics"/>ai.bk<emph.end type="italics"/> lineæ motus centri extra hypomochlium: <lb/> <figure id="id.062.01.013.1.jpg" xlink:href="062/01/013/1.jpg"/><lb/> quia ergo lineæ motus <emph type="italics"/>ab. ai,<emph.end type="italics"/> & <emph type="italics"/>bl.bk<emph.end type="italics"/> angulos ducunt <lb/><emph type="italics"/>iah.lbk<emph.end type="italics"/> minores duobus rectis, <expan abbr="erũt">erunt</expan> per defini: 5 motus <lb/>&longs;ecundùm quid contrarij, ac proinde inter &longs;emi&longs;centur <lb/>per prop: 31. </s> <s id="N105DA">Verùm de motu reflexo accuratiùs dice­<lb/>mus à prop: 36. <expan abbr="u&longs;&qacute;">u&longs;que</expan>; ad 40. </s> </p> <p id="N105E3" type="main"> <s id="N105E5"><emph type="center"/>III.<emph.end type="center"/></s> </p> <p id="N105EC" type="main"> <s id="N105EE"><emph type="italics"/>Mixtarum virium mixtæ &longs;unt actiones in ea­<lb/>dem ratione, in quà mi&longs;centur mi&longs;cibilia.<emph.end type="italics"/></s> </p> <p id="N105F7" type="main"> <s id="N105F9">CVm enim mixtum &longs;it &longs;ua mi&longs;cibilia inter &longs;e unita, & <lb/>nece&longs;&longs;ariò agat, <expan abbr="actionem&qacute;">actionemque</expan>; producat &longs;ibi æqua­<lb/>lem aget &longs;ecundùm &longs;e totum, ac proinde &longs;ecundúm il­<lb/>las partes, quæ in illo toto mi&longs;centur: actio ergo mixta <pb xlink:href="062/01/014.jpg"/>quia toti æqualis, habet partes virtuales illis partibus, à <lb/>quibus producitur æquales. </s> </p> <p id="N1060C" type="main"> <s id="N1060E"><emph type="center"/>IV.<emph.end type="center"/></s> </p> <p id="N10615" type="main"> <s id="N10617"><emph type="italics"/>Virtus agendi & actio inter &longs;e &longs;unt æquales, <expan abbr="e&longs;t&qacute;">e&longs;tque</expan> <lb/>idem modus incrementi.<emph.end type="italics"/></s> </p> <p id="N10624" type="main"> <s id="N10626">VIrtutem enim agendi magnam aut paruam dici­<lb/>mus, quæ multùm aut parum pote&longs;t agere: <expan abbr="ita&qacute;">itaque</expan>; <lb/>hujus molem ex actionum mole æ&longs;timamus; actionem <lb/>verò ab effectu no&longs;cimus: dupla ergo virtus, quæ actio­<lb/>nem dupló, & tripla quæ triplò majorem, aut magis <lb/>perfectam producit. </s> <s id="N10637">Et quia virtus naturalis non li­<lb/>berè &longs;ed ex nece&longs;sitate agit, <expan abbr="actionem&qacute;">actionemque</expan>; producit &longs;ibi <lb/>æqualem, erit idem modus incrementi <expan abbr="utriu&longs;&qacute;">utriu&longs;que</expan>;. </s> </p> <p id="N10646" type="main"> <s id="N10648"><emph type="center"/>Lemma,<emph.end type="center"/></s> </p> <p id="N1064F" type="main"> <s id="N10651"><emph type="italics"/>Si punctum æqualiter moueatur inplano motu &longs;i­<lb/>mul recto & laterali in eadem proportione <expan abbr="utrius&qacute;ue">utriusque</expan> interualli, <lb/>de&longs;cribet illo motu triangulum.<emph.end type="italics"/></s> </p> <p id="N10660" type="main"> <s id="N10662">MOueatur in fig: 3. punctum <emph type="italics"/>a<emph.end type="italics"/> ex <emph type="italics"/>a<emph.end type="italics"/> in <emph type="italics"/>f<emph.end type="italics"/> per lineam re<lb/>ctam <emph type="italics"/>af<emph.end type="italics"/> æqualiter in longum & latum, ita nimi­<lb/>rum ut in quolibet puncto longitudo excur&longs;us lateralis <lb/>&longs;it æqualis <expan abbr="lõgitudini">longitudini</expan> motus recti inter idem punctum <pb xlink:href="062/01/015.jpg"/>& principium motus, ide&longs;t <emph type="italics"/>ab<emph.end type="italics"/> ip&longs;i <emph type="italics"/>bg,<emph.end type="italics"/> & <emph type="italics"/>ac<emph.end type="italics"/> ip&longs;i <emph type="italics"/>cb,<emph.end type="italics"/> & <emph type="italics"/>ad<emph.end type="italics"/><lb/>ip&longs;i <emph type="italics"/>di,<emph.end type="italics"/> & <emph type="italics"/>ac<emph.end type="italics"/> ip&longs;i <emph type="italics"/>ek,<emph.end type="italics"/> & <emph type="italics"/>af<emph.end type="italics"/> ip&longs;i <emph type="italics"/>fl<emph.end type="italics"/> &longs;it æqualis, dico puncta <lb/><emph type="italics"/>aghikl<emph.end type="italics"/> cadere in latus <emph type="italics"/>al<emph.end type="italics"/> trianguli <emph type="italics"/>alf.<emph.end type="italics"/> Quòd &longs;i enim <lb/>punctum <emph type="italics"/>i, u:g<emph.end type="italics"/>: dicatur non in latus <emph type="italics"/>al,<emph.end type="italics"/> &longs;ed extra illud ca­<lb/><figure id="id.062.01.015.1.jpg" xlink:href="062/01/015/1.jpg"/> <arrow.to.target n="fig5"/><lb/>dere in <emph type="italics"/>r,<emph.end type="italics"/> ducatur linea <emph type="italics"/>ar,<emph.end type="italics"/> <expan abbr="erit&qacute;">eritque</expan>; angulus <emph type="italics"/>rad<emph.end type="italics"/> major <lb/>angulo <emph type="italics"/>iad.<emph.end type="italics"/> quia ergo latus <emph type="italics"/>dr<emph.end type="italics"/> lateri <emph type="italics"/>da<emph.end type="italics"/> e&longs;t æquale, & an<lb/>gulus <emph type="italics"/>adr<emph.end type="italics"/> rectus, erunt anguli <emph type="italics"/>dar. dra<emph.end type="italics"/> inter &longs;e æqua­<lb/>les, ac proinde &longs;emi&longs;&longs;es anguli recti. </s> <s id="N1072F">Similiter quia <lb/>latus <emph type="italics"/>fl<emph.end type="italics"/> e&longs;t æquale lateri <emph type="italics"/>fa,<emph.end type="italics"/> & angulus <emph type="italics"/>afl<emph.end type="italics"/> re­<lb/>ctus, erunt anguli <emph type="italics"/>fal. fla<emph.end type="italics"/> inter &longs;e æquales; igitur & an­<lb/>gulus <emph type="italics"/>laf<emph.end type="italics"/> angulo <emph type="italics"/>rad<emph.end type="italics"/> erit æqualis pars toti, quod e&longs;t ab­<lb/>&longs;urdum: non ergo punctum <emph type="italics"/>i<emph.end type="italics"/> extra latus <emph type="italics"/>al<emph.end type="italics"/> cadit. </s> <s id="N1076A">Simi­<lb/>li modo o&longs;tendemus non cadere intra illud latus: ca­<lb/>det ergò nece&longs;&longs;arió in ip&longs;um latus. </s> <s id="N10771">Si ergo punctum <lb/>æqualiter moueatur in plano motu &longs;imul recto & late­<lb/>rali in eadem proportione &c. </s> </p> <pb xlink:href="062/01/016.jpg"/> <p id="N1077B" type="main"> <s id="N1077D"><emph type="center"/>V.<emph.end type="center"/></s> </p> <p id="N10784" type="main"> <s id="N10786"><emph type="italics"/>Perfectio inten&longs;iua augetur eo modo, quo triangu­<lb/>lum &longs;ibi &longs;imile manens.<emph.end type="italics"/></s> </p> <p id="N1078F" type="main"> <s id="N10791">QVia perfectio inten&longs;iua non <expan abbr="ab&longs;&qacute;">ab&longs;que</expan>; motu fit, ac pro­<lb/>inde in aliquo tempore: &longs;upponatur illud tempus, <lb/>quo calor verbi gratia perficitur in quo <expan abbr="cun&qacute;">cunque</expan>; gradu, e&longs;­<lb/>&longs;e æquale lineæ <emph type="italics"/>af<emph.end type="italics"/>: & diuidatur æqualiter in minuta <emph type="italics"/>ab. <lb/>bc. cd. de. ef<emph.end type="italics"/>: quia ergo in &longs;ingulis minutis majora fiunt <lb/>hujus perfectionis in crementa, &longs;i in primo minuto <emph type="italics"/>ab<emph.end type="italics"/><lb/>perfectio inten&longs;iua &longs;it æqualis <emph type="italics"/>bg,<emph.end type="italics"/> erit in minuto &longs;ecun­<lb/>do <emph type="italics"/>bc<emph.end type="italics"/> major quam <emph type="italics"/>bg,<emph.end type="italics"/> & in tertiò minuto <emph type="italics"/>cd<emph.end type="italics"/> major <lb/>quam <emph type="italics"/>ch:<emph.end type="italics"/> dico huju&longs;modi incrementa e&longs;&longs;e &longs;imilia inter <lb/>&longs;e, ac proinde eo modo augeri, quo triangulum &longs;ibi &longs;i­<lb/>mile manens. </s> <s id="N107DF">Quia enim hæc perfectio continuò au­<lb/>getur, & veluti late&longs;cit ex illo puncto quietis; natura <lb/>autem uniformiter agit, <expan abbr="&longs;ibi&qacute;">&longs;ibique</expan>; &longs;emper e&longs;t &longs;imilis, erunt <lb/><expan abbr="quo&qacute;">quoque</expan>; &longs;imilia incrementa: Sicuti ergo perfectionem <lb/>&longs;ummam in tempore <emph type="italics"/>af<emph.end type="italics"/> æqualem lineæ <emph type="italics"/>fl,<emph.end type="italics"/> ita in hujus <lb/>temporis &longs;emi&longs;&longs;e: perfectionis &longs;emi&longs;&longs;em producet: igi­<lb/>tur ut tempus <emph type="italics"/>af<emph.end type="italics"/> ad perfectionem <emph type="italics"/>fl,<emph.end type="italics"/> ita tempus <emph type="italics"/>ac<emph.end type="italics"/> ad <lb/>perfectionem <emph type="italics"/>ek<emph.end type="italics"/> hoc e&longs;t ut latus <emph type="italics"/>af<emph.end type="italics"/> trianguli <emph type="italics"/>afl<emph.end type="italics"/> ad la­<lb/>tus <emph type="italics"/>fl,<emph.end type="italics"/> ita latus <emph type="italics"/>ae<emph.end type="italics"/> trianguli <emph type="italics"/>aek<emph.end type="italics"/> ad latus <emph type="italics"/>ek;<emph.end type="italics"/> ac proinde <lb/>&longs;imilia erunt triangula <emph type="italics"/>afl. aek.<emph.end type="italics"/> perfectio ergo inten&longs;i­<lb/>ua augetur eo modo, quo <expan abbr="triangulũ">triangulum</expan> &longs;ibi &longs;imile manens. </s> </p> <pb xlink:href="062/01/017.jpg"/> <p id="N10852" type="main"> <s id="N10854"><emph type="center"/>VI.<emph.end type="center"/></s> </p> <p id="N1085B" type="main"> <s id="N1085D"><emph type="italics"/>Impul&longs;us grauitatis ducetur &longs;ecundum rationem di&longs;tantiæ, <lb/>quam habet centrum grauitatis ab hypomochlio.<emph.end type="italics"/></s> </p> <p id="N10866" type="main"> <s id="N10868">HVjus po&longs;itionis veritatem probat Archimedes in <lb/>libro de æquiponderantibus: & nos in libro de <lb/>Arcu cæle&longs;ti ejus rationem à priori dare enitemur; quæ <lb/>non ni&longs;i ex naturà impul&longs;us priùs explicatà reddi po­<lb/>te&longs;t, hujus ergo demon&longs;trationem &longs;upponentes eà ve­<lb/>luti <emph type="italics"/>j<emph.end type="italics"/>am demon&longs;tratì in po&longs;terum utemur. </s> </p> </subchap1> <subchap1 id="N1087B"> <p id="N1087C" type="main"> <s id="N1087E"><emph type="center"/>Propo&longs;itio I.<emph.end type="center"/></s> </p> <p id="N10885" type="main"> <s id="N10887"><emph type="italics"/>Impul&longs;us e&longs;t virtus &longs;eu qualitas, loco motiua, quæ <lb/>non ni&longs;i in tempore, & per &longs;patium mouet finitum.<emph.end type="italics"/></s> </p> <p id="N10890" type="main"> <s id="N10892">IMpul&longs;us dicitur ab impellendo: impellitur autem <lb/>mobile, dum loco &longs;uo expul&longs;um in alium transfer­<lb/>tur, aut &longs;impliciter; aut &longs;ecundúm quid, &longs;eu per com­<lb/>mutationem, dum loco totius immoto partium loca <lb/>permutantur: quod duobus modis fieri pote&longs;t, incho­<lb/>atiuè, & perfectè. </s> <s id="N1089F">Inchoatiuè dico, quæ &longs;ecundùm nul­ <lb/>lam partem &longs;en&longs;ibilem, &longs;ed per atomos in &longs;en&longs;iles vibra<lb/>tione quadam mouentur; cuju&longs;modi &longs;unt corpora &longs;o­<lb/>nora, quæ dum &longs;onant, motu quodam tremulo &longs;ub&longs;ul- <pb xlink:href="062/01/018.jpg"/>tant: & <expan abbr="quæcun&qacute;">quæcunque</expan>; corpora minorem habent impul­<lb/>&longs;um, quam ut loco moueantur: ut cùm tellus, aut &longs;a­<lb/>xum malleo percu&longs;&longs;um tremit quidem ex illo impul&longs;u, <lb/>&longs;ecundùm nullam verò partem &longs;en&longs;ibilem loco moue­<lb/>tur. </s> <s id="N108B8">Quód &longs;i <expan abbr="ne&qacute;">neque</expan>; &longs;onum edant corpora, <expan abbr="ne&qacute;">neque</expan>; tremu­<lb/>lâ vibratione motum te&longs;tentur, non videntur recipere <lb/>impul&longs;um: ut &longs;i granum milij terræ incidat: minorem <lb/>enim habet proportionem hic impul&longs;us, quam ut ali­<lb/>quam partem loco moueat, aut ab alijs auellat. </s> <s id="N108CB">Tre­<lb/>mor autem a percu&longs;sione videtur non <expan abbr="ab&longs;&qacute;">ab&longs;que</expan>; di&longs;tractio­<lb/>ne fieri atomorum: <expan abbr="dũ">dum</expan> minor e&longs;t impul&longs;us, quam ut to­<lb/>tum moueat: major verò quam ilia vis partium unit­<lb/>iua, quà inter &longs;e continuantur. </s> <s id="N108DE">Illa ergo corpora, quæ <lb/>uniones habent &longs;olubiles <expan abbr="ab&longs;&qacute;">ab&longs;que</expan>; reunione, fragilia &longs;unt: <lb/>cuju&longs;modi vitrum, lapides, gemmæ; quæ iteratis per­<lb/>cu&longs;sionibus, ob plures uniones &longs;olutas, demum fran­<lb/>guntur, & di&longs;siliunt: metalla verò tamet&longs;i tremunt <expan abbr="&longs;o-nant&qacute;">&longs;o­<lb/>nantque</expan>; à percu&longs;sione, ob atomos tamen reunibiles non <lb/>ni&longs;i cùm impetus longiùs abduxit, franguntur. </s> <s id="N108F5">Sic a­<lb/>qua in calice vitreo &longs;ub&longs;ultat, & veluti æ&longs;tu agitur ad <lb/>motum digiti per margines circumacti: motu verò ac <lb/>celerato extra calicem &longs;alit, <expan abbr="&longs;uáq;">&longs;uáque</expan> a&longs;pergine etiam lon­<lb/>giùs ad&longs;tantes attingit. </s> <s id="N10904"><expan abbr="Ita&qacute;">Itaque</expan>; hic impul&longs;us â principio <lb/>quidem non ni&longs;i &longs;ecundùm quid, & inchoatiuè, &longs;olum <lb/>tremorem inducendo: inde commutatione partium, <pb xlink:href="062/01/019.jpg"/>quá in gyrum aguntur, perfectà: demum motu &longs;impli­<lb/>citer mouent. </s> <s id="N10914">Vt igitur impul&longs;us loco moueat mobi­<lb/>le, nece&longs;&longs;e illam re&longs;i&longs;tentiam, quâ in loco &longs;uo aut alieno <lb/>detinetur, &longs;uperate. </s> <s id="N1091B">Secundùm quid autem inchoa­<lb/>tiuè mouetur, cùm æquatis viribus inter &longs;e luctantur <lb/>virtus partium vnitiua & impul&longs;us: quà quidem ratio­<lb/>ne cymbala, cordæ, <expan abbr="at&qacute;">atque</expan>; æra tinnula mouentur. </s> <s id="N10928">Lapi­<lb/>des verò & quæ fragilia &longs;unt, quia ex impul&longs;u uniones <lb/>&longs;en&longs;im depereunt, <expan abbr="ne&qacute;">neque</expan>; reuniri po&longs;&longs;unt, demum â per<lb/>cu&longs;sione continuatá pluribus unionibus euer&longs;is, &longs;eu <lb/>quia impul&longs;ui necdum ex&longs;oluto alius &longs;uperuenit im­<lb/>pul&longs;us, franguntur. </s> <s id="N10939">Manife&longs;tum ergo ex his Impul­<lb/>&longs;um e&longs;&longs;e virtutem finitam, quæ non quamlibet mo­<lb/>lem, &longs;ed finitam loco mouere & impellere pote&longs;t. </s> <s id="N10940">Et <lb/>quia motus ex uno loco in alium non ni&longs;i per medium <lb/>interuallum defert mobile, eju&longs;modi motum non po&longs;­<lb/>&longs;e fieri in in&longs;tanti, &longs;ed in aliquo tempore ita o&longs;tende­<lb/>mus. </s> <s id="N1094B">Moueatur ex <emph type="italics"/>a<emph.end type="italics"/> in <emph type="italics"/>b,<emph.end type="italics"/> inter quæ mediant partes lo­<lb/>ci <emph type="italics"/>cdefg<emph.end type="italics"/> &c. per quas nece&longs;&longs;arió tran&longs;it in <emph type="italics"/>b<emph.end type="italics"/>; propterea <lb/>quòd nequit medium tran&longs;ilire: quòd &longs;i ergo non ni&longs;i <lb/>in uno momento mouetur ex <emph type="italics"/>a<emph.end type="italics"/> in <emph type="italics"/>b,<emph.end type="italics"/> erit eodem <expan abbr="mom&etilde;-to">momen­<lb/>to</expan> &longs;imul in <emph type="italics"/>cdef<emph.end type="italics"/> pluribus locis adæquatis, quod nullâ <lb/>ratione fieri pote&longs;t. </s> <s id="N10986">Simili modo o&longs;tendemus alio <lb/>momento in <emph type="italics"/>g,<emph.end type="italics"/> alio in <emph type="italics"/>f,<emph.end type="italics"/> priús nimirum in parte priori <lb/>quam po&longs;teriori motum terminari: pluribus ergo mo-<pb xlink:href="062/01/020.jpg"/>mentis mouetur ex <emph type="italics"/>a<emph.end type="italics"/> in <emph type="italics"/>b,<emph.end type="italics"/> ac proînde motus nece&longs;&longs;ariò <lb/>fit in tempore. </s> <s id="N109AB">Sed <expan abbr="ne&qacute;">neque</expan>; tempore infinito per &longs;pati­<lb/>um mouétur finitum, &longs;i nimirum motus eju&longs;dem &longs;it <lb/>rationis & &longs;ibi &longs;imilis; nam &longs;i velocitas proportionali­<lb/>ter decre&longs;cat, non repugnat per &longs;patium finitum tem­<lb/>pore moueri infinito; ut &longs;i per lineam conchoideos ac­<lb/>ce&longs;&longs;us fiat ad alteram parallelam, &longs;patium interjectum <lb/>nullo in tempore tran&longs;ibit. </s> <s id="N109BE">Moueatur ergo mobile ex <lb/><emph type="italics"/>a<emph.end type="italics"/> in <emph type="italics"/>f<emph.end type="italics"/> motu æquali quantumuis lento: & &longs;umatur tem­<lb/>pus quodcunq; <emph type="italics"/>ik,<emph.end type="italics"/> <expan abbr="erit&qacute;">eritque</expan>; mobile extra terminum <emph type="italics"/>a,<emph.end type="italics"/> in <lb/>quo quie&longs;cebat. aut igitur in <emph type="italics"/>ik<emph.end type="italics"/> aliquam partem ug: <emph type="italics"/>a <lb/>b,<emph.end type="italics"/> aut in&longs;en&longs;ibile punctum tran&longs;mi&longs;it. </s> <s id="N109F0">Si partem, meti­<lb/>etur hæc &longs;patium <emph type="italics"/>af<emph.end type="italics"/> aliquo numero finito: igitur & <lb/>tempus, quo totum &longs;patium decurrit, erit finitum. </s> <s id="N109FD">Si <lb/> <figure id="id.062.01.020.1.jpg" xlink:href="062/01/020/1.jpg"/><lb/>non ni&longs;i punctum: quia tempus diuidi pote&longs;t, tran&longs;i­<lb/>bit in hujus &longs;emi&longs;&longs;e interuallum puncto minus, quod <lb/>e&longs;t ab&longs;urdum: non igitur motus æqualis per &longs;patium <lb/>finitum tempore infinito e&longs;&longs;e pote&longs;t. </s> <s id="N10A0F">Sed <expan abbr="ne&qacute;">neque</expan>, in tem­<lb/>pore finito per &longs;patium infinitum: <expan abbr="nã&qacute;">nanque</expan> in &longs;emi&longs;&longs;e tem­<lb/> poris, <expan abbr="at&qacute;">atque</expan>; hujus &longs;emi&longs;&longs;e &c. nunquid &longs;patium peram­<lb/> bulabit infinitum? quód &longs;i motus illâ &longs;ectione <expan abbr="demũ">demum</expan> <lb/> terminabit in aliquà parte finitâ, erit <expan abbr="quo&qacute;">quoque</expan>; totum fini­<lb/> tum. </s> <s id="N10A30">Deinde cùm motus incipiat à termino, erit ne­<lb/> ce&longs;&longs;ariò finitus. moueatur enim ex <emph type="italics"/>a<emph.end type="italics"/> per &longs;patium <emph type="italics"/>bcde<emph.end type="italics"/> <pb xlink:href="062/01/021.jpg"/><emph type="italics"/>f<emph.end type="italics"/> &c. in infinitum in tempore <emph type="italics"/>ghikl<emph.end type="italics"/> finito: igitur par­<lb/> tem quidem <emph type="italics"/>b<emph.end type="italics"/> in aliquà parte temporis tran&longs;ibit, quæ <lb/> &longs;it <emph type="italics"/>g<emph.end type="italics"/>; men&longs;urabit proinde tempus aliquo numero fini­<lb/> to: & cúm motum ponamus &longs;imilarem, qui in tempo­<lb/> re æquali partes conficit æquales, totidem partes erunt <lb/> in &longs;patio <emph type="italics"/>bcdef,<emph.end type="italics"/> qu<gap/>on tempore <emph type="italics"/>ghikl,<emph.end type="italics"/> ac proinde to­<lb/> tum interuallum erit finitum. </s> <s id="N10A76">Igitur impul&longs;us e&longs;t vir­<lb/> tus finita, quæ non ni&longs;i in tempore & per &longs;patium mo­<lb/> uet finitum. </s> </p> </subchap1> <subchap1 id="N10A7D"> <p id="N10A7E" type="main"> <s id="N10A80"><emph type="center"/>Propo&longs;itio II.<emph.end type="center"/></s> </p> <p id="N10A87" type="main"> <s id="N10A89"><emph type="italics"/>Impul&longs;us e&longs;t agens nece&longs;&longs;arium, <expan abbr="motum&qacute;">motumque</expan>; producit <lb/> &longs;ibi æqualem.<emph.end type="italics"/></s> </p> <p id="N10A96" type="main"> <s id="N10A98">NEce&longs;&longs;arium dico non &longs;olùm quò ad exercitium a­<lb/> ctus, quo modo omnia agentia, quæ non liberè a­<lb/> gunt, nece&longs;&longs;aria dicuntur; &longs;ed etiam quò ad perfectio­<lb/> nem actus, hoc e&longs;t agere &longs;ecundúm totum po&longs;&longs;e, &longs;eu <lb/> &longs;ummam perfectionem tribuere &longs;uo effectui: quod <lb/> non faciunt reliqua agentia naturalia, quæ non ni&longs;i à le­<lb/> uibus initijs ad &longs;umma euadunt incrementa: ut ma­<lb/> nife&longs;tum in calefactione. </s> <s id="N10AA9">At verò impul&longs;us &longs;tatim à <lb/> principio motum veloci&longs;simum producit: qui demum <lb/> &longs;patij tractu langue&longs;cit & emoritur, Cujus ratio e&longs;t, <pb xlink:href="062/01/022.jpg"/>quòd impul&longs;us &longs;it qualitas tran&longs;iens, quæ non pote&longs;t in <lb/> &longs;ubjecto con&longs;eruari <expan abbr="ab&longs;&qacute;">ab&longs;que</expan>; motu: quód &longs;i enim mobile <lb/> ad motum concitatum vel uno momento detineas, nul<lb/> lus ex illo contactu &longs;equitur motus: ni&longs;i ergo à princi­<lb/> pio, priu&longs;quam virtus ex&longs;oluatur, agat, nunquam &longs;uum <lb/> finem a&longs;&longs;equetur: unde à veloci&longs;simo & &longs;ibi æquali <lb/> motu exor&longs;us, quantùm virium deperit, tantum de ce­<lb/> leritate remittit</s> <s id="N10AC6"><expan abbr="Ne&qacute;;">Neque;</expan> hic nobis aduer&longs;antur, qui ne­<lb/> &longs;cio quas morulas inducunt, velociùs moueri dicentes <lb/> illud mobile, quod paucioribus morulis quie&longs;cit: nam <lb/> ex illorum <expan abbr="quo&qacute;">quoque</expan>; &longs;ententià impul&longs;us id quod pote&longs;t <lb/> &longs;ummum operatur: & à principio quidem pauciori­<lb/> bus morulis quie&longs;cit, inde veluti ex illo motu la&longs;&longs;atus <lb/> longiora ducit interualla. </s> </p> </subchap1> <subchap1 id="N10ADC"> <p id="N10ADD" type="main"> <s id="N10ADF"><emph type="center"/>Propo&longs;itio III.<emph.end type="center"/></s> </p> <p id="N10AE6" type="main"> <s id="N10AE8"><emph type="italics"/>Impul&longs;us non ni&longs;i per lineam rectam mouet &longs;uum mobile.<emph.end type="italics"/></s> </p> <p id="N10AEF" type="main"> <s id="N10AF1">DEmotu quidem, qui procedit à grauitate, nullum <lb/> e&longs;t dubium fieri per lineam rectam: &longs;ed etiam ea, <lb/> quæ proijciuntur &longs;eu manu, &longs;eu machinà, rectitudinem <lb/> &longs;eruare con&longs;tat; tantò enim metam feriunt ictu certio­<lb/>re, quantò minùs principium motus à lineà rectà aber<lb/> rauit. </s> <s id="N10AFE">At verò quæ circulariter mouentur, dubitatio­<lb/> nem habent: propterea quòd ex impul&longs;u non per line- <pb xlink:href="062/01/023.jpg"/>am rectam, &longs;ed circularem moueri videantur. </s> <s id="N10B07">Nihilo­<lb/> minus etiam in his, quæ circulariter mouentur, impul­<lb/> &longs;um ad motum rectum inelinare, & non ni&longs;i vi ab hy­<lb/> pomochlio illatà circumagi facile o&longs;tendemus. </s> <s id="N10B10">Ete­<lb/> nim eà ratione mouetur totum, quà illius partes, cúm <lb/> motus totius &longs;it &longs;uarum partium motus: at verò partes <lb/> &longs;ingulæ dum circumaguntur, &longs;i non firmiter cohærent <lb/> &longs;uo hypomochlio, non in circulum, &longs;ed per lineam re­<lb/> ctam mouentur: quod quidem in illà rotà ver&longs;atili, quà <lb/> gemmæ poliuntur, aut in lapide molari licebit experiri: <lb/> quòd &longs;i enim in illà planitie propè centrum arenam, <lb/>aut quid &longs;imile con&longs;tituas, videbis ex illà rotatione <lb/> ad circulos &longs;en&longs;im majores à centro propelli, & demum <lb/> excuti. </s> <s id="N10B27">Obijcies globum fi&longs;tulà &longs;triatà emi&longs;&longs;um velo­<lb/> ci&longs;simè gyrando, & veluti aërem terebrando ad metam <lb/> venire, <expan abbr="ne&qacute;">neque</expan>; ullum punctum, præterquam centrum, per <lb/> lineam rectam, &longs;ed per lineam &longs;piralem moueri: quia <lb/> nimirum ab illis &longs;ulcis, quibus fi&longs;tula interné excaua­<lb/> tur, toto illo tractu reuolutus impul&longs;um colligit circu­<lb/> larem: non igitur impul&longs;us nece&longs;&longs;ariò ducit per lineam <lb/> rectam. </s> <s id="N10B3C">Deinde &longs;i quis velociter currendo &longs;agittam ja­<lb/> culetur, aut lapidem proijciat, quantumuis principium <lb/> motus per lineam fiat perpendicularem, non tamen il<lb/> lud mobile per lineam rectam, &longs;ed arcuatim &longs;ur&longs;um elu<lb/> ctatur: propterea quòd non ad idem punctum, â quo <pb xlink:href="062/01/024.jpg"/>moueri cepit, fit relap&longs;us, verùm ad procur&longs;um jaculan­<lb/> tis in anteriora profertur. </s> <s id="N10B4D"><expan abbr="Ita&qacute;">Itaque</expan>; auem in volatu deijce­<lb/> re volentes, illius volatum tanti&longs;per oculis & arcu in­<lb/> tentis &longs;equuntur, & tum in ip&longs;o motu &longs;agittam ejacu­<lb/> lantur: qui motus non videtur fieri per lineam rectam. <lb/> Vt &longs;i auis ex <emph type="italics"/>b<emph.end type="italics"/> in <emph type="italics"/>f<emph.end type="italics"/> feratur, &longs;agitta per lineas <emph type="italics"/>mb.oc<emph.end type="italics"/> illius <lb/> volatum &longs;ecuta, in lineà demum <emph type="italics"/>ad<emph.end type="italics"/> à neruo excu&longs;&longs;a ean <lb/> dem figet in <emph type="italics"/>g.<emph.end type="italics"/> at verò ex <emph type="italics"/>a<emph.end type="italics"/> in <emph type="italics"/>g<emph.end type="italics"/> non ni&longs;i arcuatim & per <lb/> lineam inflexam, cuju&longs;modi <emph type="italics"/>ahig<emph.end type="italics"/> euadit: propterea <lb/> quòd motus &longs;agittæ videtur compo&longs;itus ex illo motu, <lb/><figure id="id.062.01.024.1.jpg" xlink:href="062/01/024/1.jpg"/> quo ad motum arcus, & quo à neruo impul&longs;a mouetur: <lb/> at verò motus, quo cum arcu mouetur, e&longs;t circulatis ha­<lb/> bens centrum in oculo &longs;agittantis: motus ergo ab hoc <pb xlink:href="062/01/025.jpg"/>in &longs;agittam deriuatus, ac proinde motus ex <expan abbr="utro&qacute;">utroque</expan>; mix­<lb/> tus erit circularis. </s> <s id="N10BA8">De&longs;cribatur arcus <emph type="italics"/>mn,<emph.end type="italics"/> cujus centrum <lb/> in oculo <emph type="italics"/>l,<emph.end type="italics"/> &longs;emidiameter verò &longs;agitta <emph type="italics"/>al<emph.end type="italics"/>: quæ ubi per ar­<lb/> cum <emph type="italics"/>ma<emph.end type="italics"/> moueri cæpit, ab alio impul&longs;u à neruo deriuato <lb/> per lineam agitur <emph type="italics"/>ad<emph.end type="italics"/>: dico motum ex <expan abbr="utroq;">utroque</expan> mixtum, <lb/> nimirum ex motu <emph type="italics"/>man,<emph.end type="italics"/> & ex motu <emph type="italics"/>ad<emph.end type="italics"/> non po&longs;&longs;e fieri <lb/> per lineam rectam. </s> <s id="N10BE3">Sit enim motus in <emph type="italics"/>ad<emph.end type="italics"/> ad motum in <lb/> <emph type="italics"/>man,<emph.end type="italics"/> ut linea recta <emph type="italics"/>ap<emph.end type="italics"/> ad arcum <emph type="italics"/>aq<emph.end type="italics"/>: & a&longs;&longs;umatur linea <lb/> <emph type="italics"/>qh<emph.end type="italics"/> æqualis lineæ <emph type="italics"/>ap,<emph.end type="italics"/> <expan abbr="erit&qacute;">eritque</expan>; motus compo&longs;itus ex <emph type="italics"/>ap. aq<emph.end type="italics"/><lb/> in <emph type="italics"/>h:<emph.end type="italics"/> &longs;imiliter o&longs;tendemus motum in <emph type="italics"/>i<emph.end type="italics"/> & <emph type="italics"/>g<emph.end type="italics"/> componi ex <lb/> motu recto & circulari: dico per puncta <emph type="italics"/>hig<emph.end type="italics"/> non pos-<lb/> &longs;e duci lineam rectam. </s> <s id="N10C35">Sit enim, &longs;i fieri pote&longs;t, linea <emph type="italics"/>ab <lb/> ig<emph.end type="italics"/> recta, & ex puncto <emph type="italics"/>q<emph.end type="italics"/> ducatur linea tangens circulum <lb/> in <emph type="italics"/>q,<emph.end type="italics"/> quæ <expan abbr="utrim&qacute;">utrimque</expan>; producta &longs;ecet lineas <emph type="italics"/>lf. ld<emph.end type="italics"/> in punctis <lb/> s. u: <expan abbr="erunt&qacute;">eruntque</expan>; lineæ <emph type="italics"/>qs. qu<emph.end type="italics"/> inter &longs;e æquales: quibus ex <lb/> puncto <emph type="italics"/>i<emph.end type="italics"/> ducatur linea parallela <emph type="italics"/>ix,<emph.end type="italics"/> <expan abbr="erit&qacute;">eritque</expan>; angulus <emph type="italics"/>ixq<emph.end type="italics"/> re <lb/> ctus, quia ergo in triangulo <emph type="italics"/>hxi<emph.end type="italics"/> duo anguli <emph type="italics"/>hxi. xhi<emph.end type="italics"/> du­<lb/> obus angulis <emph type="italics"/>hqu.qhu<emph.end type="italics"/> trianguli <emph type="italics"/>hqu<emph.end type="italics"/> &longs;unt æquales, <expan abbr="uter&qacute;">uterque</expan>; <lb/> <expan abbr="utri&qacute;">utrique</expan>, erunt &longs;imilia inter &longs;e; ac proinde ut <emph type="italics"/>hi<emph.end type="italics"/> ad <emph type="italics"/>hq,<emph.end type="italics"/> ita <lb/> <emph type="italics"/>xi<emph.end type="italics"/> ad <emph type="italics"/>qu,<emph.end type="italics"/> hoc e&longs;t ad <emph type="italics"/>qs<emph.end type="italics"/> illi æqualem. e&longs;t autem linea <emph type="italics"/>hx<emph.end type="italics"/><lb/> æqualis lineæ <emph type="italics"/>hq:<emph.end type="italics"/> igitur & linea <emph type="italics"/>xi<emph.end type="italics"/> erit æqualis lineæ <emph type="italics"/>qs,<emph.end type="italics"/><lb/> quod e&longs;t ab&longs;urdum: &longs;equeretur enim lineas <emph type="italics"/>is. xq<emph.end type="italics"/> in <lb/> centro <emph type="italics"/>l<emph.end type="italics"/> concurrentes e&longs;&longs;e parallelas. </s> <s id="N10CEA">Re&longs;pondeo ad <lb/> primum, motum globuli, quo gyrando ad metam va­<lb/> dit, e&longs;&longs;e compo&longs;itum ex impul&longs;u recto, quem ip&longs;i con- <pb xlink:href="062/01/026.jpg"/>fert puluis pyrius à tergo incen&longs;us, & eximpul&longs;u latera <lb/> li, quem viarum &longs;eu <expan abbr="eanaliculorũ">canaliculorum</expan> anfractus globulo e­<lb/> rumpenti conciliant: partes enim globuli prominen­<lb/> tes &longs;ulcis impre&longs;&longs;æ, eo&longs;dem ductus &longs;equendo, illà gyra­<lb/> tione globulum reuoluunt; quem motum adjuuat ig­<lb/> nis eadem viá pabulum &longs;equendo, & globulum impel­<lb/> lendo: dico ergo hunc motum partim &longs;imilem illi mo­<lb/> tui, quo rota circumagitur, partim di&longs;similem: propter­<lb/> ea, quòd globulus circa centrum mobile, rota autem <lb/> circa immobile reuoluatur. </s> <s id="N10D0B">At verò trochus <lb/> aut turbo, dum gyrando in aëre labitur, motu pror&longs;us <lb/> &longs;imili fertur: nam ex impul&longs;u funiculi multis &longs;piris re­<lb/> uoluti & retracti in gyrum agitur circa mobile cen­<lb/> trum: quod &longs;uà grauitate inter gyrandum de&longs;cendit. <lb/> at verò impul&longs;us, quo rota aut turbo circulariter moue<lb/> tur, &longs;i non impediatur, non circulari, &longs;ed motu recto mo<lb/> uebitur: quemadmodum exemplo illarum rerum, quæ <lb/> ad motum rotæ circumaguntur, o&longs;tendimus</s> <s id="N10D1E"><expan abbr="Ita&qacute;">Itaque</expan>; &longs;i ca­<lb/> tenula conuoluta unà extremitate in illius plano firme­<lb/> tur, videbis ex illâ vertigine &longs;en&longs;im reuolui, & demum <lb/> in lineam tangentem eju&longs;dem circuli extendi. </s> <s id="N10D2A">Ita tro­<lb/>chus aut turbo aquà con&longs;per&longs;us in motu re&longs;iccatur, dum <lb/> aquæ guttulæ ex illo impul&longs;u lineam rectam &longs;equendo <lb/> auelluntur. </s> <s id="N10D33">Simili ergo modo impul&longs;us, qui globu­<lb/> lum reuoluit, &longs;i non impediatur, lateraliter, & per line­ <pb xlink:href="062/01/027.jpg"/>am rectam mouebit. quod quidem con&longs;tabit, &longs;i globu­<lb/> lum friabilem &longs;ub&longs;tituas: ex motu enim gyrationis in <lb/> atomos infinitas di&longs;sipabitur. </s> <s id="N10D40">At verò continuitas par­<lb/> tium globuli di&longs;&longs;olui nequit ob firmitatem, <expan abbr="ne&qacute;">neque</expan>; late­<lb/> raliter moueri ob <expan abbr="re&longs;i&longs;t&etilde;tiam">re&longs;i&longs;tentiam</expan> illarum partium, quæ im­<lb/> pul&longs;u contra io aguntur: quòt enim lineæ tangentes, <lb/> tot: dem ine&longs;&longs;e videntur impul&longs;us: <expan abbr="ita&qacute;">itaque</expan>; centrum glo­<lb/> buli tantò magis detinetur in lineà rectà, quantò majori <lb/> velocitate in gyrum mouetur. </s> <s id="N10D5B">Dices quam ob rem er­<lb/> go turbo, dum &longs;uper axe mouetur horizonti parallelo, <lb/> non eandem firmitatem habet &longs;ui centri à partibus cir­<lb/> cumactis? <expan abbr="neq;">neque</expan> enim eidem puncto in&longs;i&longs;tit axis, verùm <lb/> huc illuc incerto motu oberrat. </s> <s id="N10D6A">Re&longs;pondeo id ab in <lb/> æquali illarum partium &longs;itu, quibus planum tangit, <lb/> prouenite: cùm non in <expan abbr="pũcto">puncto</expan> fiat <expan abbr="cõtactus">contactus</expan>. quia ergo in <lb/> &longs;uperficie illius plani a&longs;perà & in æquali partes aliæ &longs;unt <lb/> depre&longs;&longs;æ, aliæ prominentes & verruco&longs;æ, nece&longs;&longs;e muta­<lb/> tionem fieri in motu: dum vel &longs;ub&longs;idet in lacunas, vel <lb/> ad tubercula offendit. </s> <s id="N10D81">Ad &longs;ecundam objectionem, di­<lb/> co &longs;agittam circulariter moueri ex illo motu, quo cum <lb/> arcu mouetur; impul&longs;us enim à centro detinetur, quò <lb/> minùs per lineam rectam moueat: at verò motus &longs;agit­<lb/> tæ à neruo excu&longs;&longs;æ, quia à nullo detinetur, per lineam fit <lb/> mediam inter tangentem & lineam rectam, &longs;iuè per di­<lb/> a metrum parallelogrammi, cujus latera &longs;unt in propor­ <pb xlink:href="062/01/028.jpg"/>tione illorum motuum. </s> <s id="N10D94">Deinde e&longs;to demus impul&longs;um <lb/> lateraliter abducentem e&longs;&longs;e circularem, non tamen &longs;e­<lb/> quitur motum compo&longs;itum e&longs;&longs;e circularem: nam mo­<lb/> tus quidem compo&longs;itus ex motu recto <emph type="italics"/>ap<emph.end type="italics"/> & circulari <emph type="italics"/>a <lb/> q<emph.end type="italics"/> non in <emph type="italics"/>h,<emph.end type="italics"/> ut &longs;upponebatur, verùm in <emph type="italics"/>y<emph.end type="italics"/> abducit mobile, <lb/> propterea quòd interuallum motus circularis in fine <lb/> motus compo&longs;iti &longs;it æquale arcui <emph type="italics"/><expan abbr="aq.">aque</expan><emph.end type="italics"/> &longs;imiliter dum ex <lb/> <emph type="italics"/>y<emph.end type="italics"/> per lineam fertur <emph type="italics"/>yz<emph.end type="italics"/> æqualem lineæ <emph type="italics"/>ap,<emph.end type="italics"/> impul&longs;u cir­<lb/> culari &longs;patium tran&longs;mittit <emph type="italics"/>zt<emph.end type="italics"/> æquale &longs;patio <emph type="italics"/>py<emph.end type="italics"/> &longs;eu arcui <lb/> <emph type="italics"/>qs:<emph.end type="italics"/> dico puncta <emph type="italics"/>ayt<emph.end type="italics"/> e&longs;&longs;e in lineà rectà, ac proinde mo­<lb/> tum compo&longs;itum <emph type="italics"/>ayt<emph.end type="italics"/> rectum non verò circularem. <lb/> Ducantur enim diametri <emph type="italics"/>ay. y t:<emph.end type="italics"/> quia ergo an­<lb/> gulus <emph type="italics"/>zyt<emph.end type="italics"/> angulo <emph type="italics"/>pay,<emph.end type="italics"/> hic autem angulo alterno <emph type="italics"/>ayq<emph.end type="italics"/><lb/> e&longs;t æqualis, erit eidem angulus <emph type="italics"/>zyt<emph.end type="italics"/> ad verticem æqua­<lb/> lis, ac proinde linea <emph type="italics"/>ayt<emph.end type="italics"/> recta. </s> <s id="N10E26">Ratio autem quamob­<lb/> rem impul&longs;us non ni&longs;i per lineam rectam moueat, e&longs;t <lb/> hæc: quia cùm motus &longs;it via ad conjunctionem &longs;eu uni<lb/> onem cum &longs;uo termino, ad quem mouetur, erit non &longs;ui <lb/> &longs;ed finis gratia, ac proînde &longs;icuti nihil deficere, ita nihil <lb/> abundare debet: at verò &longs;icuti in vià rectà nihil de e&longs;t ad <lb/> finem con&longs;equendum, ita omnes reliquæ abundant: a­<lb/> bundare enim dicitur, <expan abbr="ab&longs;&qacute;">ab&longs;que</expan>; quo finis pote&longs;t obtineri. <lb/> Deinde cùm impul&longs;us &longs;it agens nece&longs;&longs;arium, habebit & <lb/> actionem & modum agendi determinatum; determi­<lb/> natio autem non ni&longs;i in lineà rectâ e&longs;&longs;e pote&longs;t, cùm hæc <pb xlink:href="062/01/029.jpg"/>&longs;it una, lineæ verò obliquæ infinitæ. </s> <s id="N10E45">Confirmatur ex <lb/> modo agendi reliquorum agentium naturalium, quæ <lb/> non ni&longs;i per lineas rectas operantur. </s> </p> </subchap1> <subchap1 id="N10E4C"> <p id="N10E4D" type="main"> <s id="N10E4F"><emph type="center"/>Propo&longs;itio IV.<emph.end type="center"/></s> </p> <p id="N10E56" type="main"> <s id="N10E58"><emph type="italics"/>Impul&longs;us in quolibet puncto circuli per lineam fit tangentem.<emph.end type="italics"/></s> </p> <p id="N10E5F" type="main"> <s id="N10E61">QVia enim motus e&longs;t rectus per pro: 3. talis autem <lb/> e&longs;&longs;e non pote&longs;t in circulo, igitur &longs;i incipiat ab ali­<lb/> quo puncto circuli, cadet immediaté po&longs;t illud pun­<lb/> ctum extra peripheriam illius circuli: non pote&longs;t au­<lb/> tem cadere intra circulum, cadet igitur extra circulum. <lb/> Probatur, punctum circuli immediatè ante contactum <lb/> verbi gratia <emph type="italics"/>a<emph.end type="italics"/> impellit <emph type="italics"/>o<emph.end type="italics"/> ad motum rectum: <expan abbr="punctũ">punctum</expan> ergo <lb/> immediatè po&longs;t illum contactum erit cum duobus pun<lb/> ctis <emph type="italics"/>a<emph.end type="italics"/> & <emph type="italics"/>o<emph.end type="italics"/> in lineà rectà, aut certè ad hujus rectitudinem <lb/> quam proximè fieri pote&longs;t, accedet: at verò intra peri­<lb/> pheriam circuli nullum e&longs;&longs;e pote&longs;t punctum, quod cum <lb/> duobus illis punctis <emph type="italics"/>a<emph.end type="italics"/> & <emph type="italics"/>o<emph.end type="italics"/> &longs;it in lineà rectà, aut ad natu­<lb/> ram lineæ rectæ quam proximè accedat, verum ad ma­<lb/> iorem curuitatem: cùm nece&longs;&longs;ariò &longs;it in peripheria ali­<lb/> cujus circuli minoris. </s> <s id="N10EA8">Cadat enim, &longs;i fieri pote&longs;t, intra <pb xlink:href="062/01/030.jpg"/>circulum illud punctum, per quod ducitur linea recta, <lb/> & &longs;it <emph type="italics"/>b<emph.end type="italics"/>: de&longs;cribatur autem circulus minor <emph type="italics"/>afp<emph.end type="italics"/> tangens <lb/> priorem in <emph type="italics"/>a<emph.end type="italics"/>: quód &longs;i ergo punctum <emph type="italics"/>b<emph.end type="italics"/> cadit extra pe­<lb/> ripheriam hujùs circuli, erit angulus <emph type="italics"/>bae<emph.end type="italics"/> minor <expan abbr="quid&etilde;">quidem</expan> <lb/> recto, major autem angulo &longs;emicirculi <emph type="italics"/>fae<emph.end type="italics"/> contra prop: <lb/> 16. tert: Verùm quia po&longs;&longs;et quis dicere illud punctum <lb/> <figure id="id.062.01.030.1.jpg" xlink:href="062/01/030/1.jpg"/> nece&longs;&longs;ariò cadere intra omnes circulos etiam in infini­<lb/> tum minores, propterea quòd angulus &longs;emicirculi &longs;it <lb/> major quouis angulo acuto: alià ratione îdem o&longs;ten­<lb/> demus. producatur ergo linea <emph type="italics"/>ab<emph.end type="italics"/> <expan abbr="utrim&qacute;">utrimque</expan>; in <emph type="italics"/>g. i<emph.end type="italics"/> &longs;ecans <lb/> circulum in <emph type="italics"/>g,<emph.end type="italics"/> arcus autem <emph type="italics"/>ag<emph.end type="italics"/> diuidatur bifariam in <emph type="italics"/>b,<emph.end type="italics"/> & <lb/> ducatur linea <emph type="italics"/>bal<emph.end type="italics"/>; <expan abbr="erit&qacute;">eritque</expan>; angulus <emph type="italics"/>hab,<emph.end type="italics"/> <expan abbr="at&qacute;">atque</expan>; huic ad verti­ <pb xlink:href="062/01/031.jpg"/>cem æqualis angulus <emph type="italics"/>ial<emph.end type="italics"/> major angulo contactus <emph type="italics"/>cah,<emph.end type="italics"/><lb/> <expan abbr="at&qacute;">atque</expan>; huic æquali angulo <emph type="italics"/>kad<emph.end type="italics"/>: multo ergo major angu­<lb/> lus <emph type="italics"/>gab,<emph.end type="italics"/> <expan abbr="at&qacute;">atque</expan>; angulus <emph type="italics"/>iad<emph.end type="italics"/> angulis contactus <emph type="italics"/>cah. kad<emph.end type="italics"/>: <lb/> puncta ergo circa contactum circuli <emph type="italics"/>a<emph.end type="italics"/> majori inter­<lb/> uallo ab&longs;unt à lineà quauis &longs;ecante, quam à lineà conta­<lb/> ctus, ac cum illis punctis, quæ in linea &longs;unt tangente, <lb/> magis accedunt ad naturam lineæ rectæ, quam cum il­<lb/> lis punctis, quæ in lineà &longs;unt &longs;ecante: motus ergò à con­<lb/> tactu per lineam fit tangentem. </s> <s id="N10F6E">Quæ igitur circulari­<lb/> ter mouentur, &longs;i in illà gyratione ab hypomochlio libe­<lb/> rentur, motu deinceps recto feruntur, facto initio mo­<lb/> tus ab illo puncto circuli, in quo ab hypomochlio avel­<lb/> luntur. </s> <s id="N10F79">Ita ergo lapis fundà circumactus, ubi ex illà ro­<lb/> tatione impul&longs;um collegit, laxatà habenà auolat motu <lb/> recto per lineam tangentem circuli, cujus &longs;emidiame­<lb/> ter e&longs;t longitudo fundæ. </s> </p> </subchap1> <subchap1 id="N10F82"> <p id="N10F83" type="main"> <s id="N10F85"><emph type="center"/>Propo&longs;itio V.<emph.end type="center"/></s> </p> <p id="N10F8C" type="main"> <s id="N10F8E"><emph type="italics"/>Impul&longs;us æqualis eodem vel æquali tempore per &longs;patium mouet <lb/> æquate.<emph.end type="italics"/></s> </p> <p id="N10F97" type="main"> <s id="N10F99">MAgnitudo &longs;eu exten&longs;io ine&longs;t motui non per&longs;e, &longs;ed <lb/> ratione loci in quo fit motus; motum enim mag<lb/> num dicimus, qui magno, paruum qui paruo &longs;patio con<lb/> tinetur; &longs;iuè actu habeat illam exten&longs;ionem, &longs;iuè virtu­ <pb xlink:href="062/01/032.jpg"/>aliter tantum: ut cùm idem &longs;patium currendo aut am­<lb/> bulando &longs;æpiùs remetimur. </s> <s id="N10FA8">Quia verò eju&longs;dem aut <lb/> æqualis magnitudinis eadem e&longs;t men&longs;ura: e&longs;t autem <lb/> men&longs;ura motus tempus: erit <expan abbr="quo&qacute;">quoque</expan>; eju&longs;dem aut æqua­<lb/> lis motus idem tempus. </s> <s id="N10FB5">Motus ergo æqualis in tempo­<lb/> re æquali per &longs;patium fit æquale: & cùm impul&longs;us &longs;it <lb/> agens nece&longs;&longs;arium, <expan abbr="motum&qacute;">motumque</expan>; producat &longs;ibi æqualem, <lb/> per prop: 2. æqualis impul&longs;us in eodem vel æquali tem<lb/> pore per &longs;patium mouebit æquale. </s> </p> <p id="N10FC4" type="main"> <s id="N10FC6"><emph type="center"/><emph type="italics"/>Definitio.<emph.end type="italics"/><emph.end type="center"/></s> </p> <p id="N10FD1" type="main"> <s id="N10FD3"><emph type="italics"/>Impul&longs;us qui mínori tempore per &longs;patium mouet æquale aut <lb/> majus, dicatur velox: qui verò majori tempore per &longs;patium mouet <lb/> æquale aut minus, dicatur tardus.<emph.end type="italics"/></s> </p> <p id="N10FDE" type="main"> <s id="N10FE0">VT &longs;i mobile <emph type="italics"/>H<emph.end type="italics"/> per &longs;patium <emph type="italics"/>de<emph.end type="italics"/> in tempore <emph type="italics"/>ab<emph.end type="italics"/> minori, <lb/> mobile verò <emph type="italics"/>K<emph.end type="italics"/> per idem &longs;patium <emph type="italics"/>de,<emph.end type="italics"/> aut huic æquale <lb/> <emph type="italics"/>fg<emph.end type="italics"/> in tempore <emph type="italics"/>abc<emph.end type="italics"/> májori moueatur: impul&longs;us quo <emph type="italics"/>H<emph.end type="italics"/><lb/> mouetur velox, quo autem <emph type="italics"/>K<emph.end type="italics"/> mouetur dicetur tardus. <lb/>velociùs enim &longs;patium tran&longs;mitti dicimus, in quo mobi­<lb/> <figure id="id.062.01.032.1.jpg" xlink:href="062/01/032/1.jpg"/><lb/> le minùs immoratur, &longs;eu ut Atomi&longs;tæ volunt, in quo <lb/> paucioribus morulis interquie&longs;cit. </s> <s id="N1102B">Quod autem mi­ <pb xlink:href="062/01/033.jpg"/>nori tempore per &longs;patium æquale, idem <expan abbr="quo&qacute;">quoque</expan>; minori <lb/> tempore per &longs;patium majus mouetur. </s> <s id="N11038">Diuidatur enim <lb/> exce&longs;&longs;us temporis bifariam in <emph type="italics"/>i<emph.end type="italics"/>: <expan abbr="at&qacute;">atque</expan>; hujus &longs;emi&longs;sis <emph type="italics"/>bi<emph.end type="italics"/> ad­<lb/> datur minori <emph type="italics"/>ab,<emph.end type="italics"/> <expan abbr="erit&qacute;">eritque</expan>; tempus compo&longs;itum <emph type="italics"/>abi<emph.end type="italics"/> majus <lb/> quidem minori <emph type="italics"/>ab,<emph.end type="italics"/> minus verò tempore majori <emph type="italics"/>abc.<emph.end type="italics"/> in <lb/> tempore ergò <emph type="italics"/>abi<emph.end type="italics"/> &longs;patium majus quam <emph type="italics"/>de,<emph.end type="italics"/> ac proinde <lb/> in minori tempore &longs;patium majus perambulabit. </s> <s id="N1107D">Eo­<lb/> dem modo o&longs;tendemus, &longs;i quid æquali tempore per <lb/> &longs;patium majus moueatur, idem in minori tempore per <lb/> &longs;patium majus moueri: &longs;i nimirum hujùs exce&longs;&longs;um bi­<lb/> fariam &longs;ecemus: nam &longs;patium illud æquale, <expan abbr="at&qacute;">atque</expan>; hujus <lb/> &longs;emi&longs;&longs;em in minori tempore pertran&longs;ibit. </s> </p> </subchap1> <subchap1 id="N1108E"> <p id="N1108F" type="main"> <s id="N11091"><emph type="center"/>Propo&longs;itio VI.<emph.end type="center"/></s> </p> <p id="N11098" type="main"> <s id="N1109A"><emph type="italics"/>Impul&longs;us major eodem vel æqualis tempore per &longs;patium majus, <lb/> minori verò tempore per &longs;patium mouet æquale.<emph.end type="italics"/></s> </p> <p id="N110A3" type="main"> <s id="N110A5">IMpul&longs;um magnum dicimus non exten&longs;iué, &longs;ed inten<lb/> &longs;iué, cujus perfectionem &longs;equitur velocitas motus. <lb/> quia ergo major velocitas in minori tempore per &longs;pati­<lb/> um mouet æquale aut majus, per defin: impul&longs;us verò <lb/> major majorem velocitatem producit, propterea quòd <lb/> agens &longs;it nece&longs;&longs;arium, <expan abbr="motum&qacute;">motumque</expan>; producat &longs;ibi æqua- <pb xlink:href="062/01/034.jpg"/>lem: mouebit &longs;ane eodem vel æquali tempore per &longs;pa­<lb/> tium majus, minori verò tempore per &longs;patium æquale. </s> </p> </subchap1> <subchap1 id="N110BC"> <p id="N110BD" type="main"> <s id="N110BF"><emph type="center"/>Propo&longs;itio VII.<emph.end type="center"/></s> </p> <p id="N110C6" type="main"> <s id="N110C8"><emph type="italics"/>Velocitas motus eandem rationem habet quam interualla, rati­<lb/> onem verò &longs;uorum temporum reciprocam.<emph.end type="italics"/></s> </p> <p id="N110D1" type="main"> <s id="N110D3">Sit velocitas <emph type="italics"/>H<emph.end type="italics"/> dupla velocitatis <emph type="italics"/>K:<emph.end type="italics"/> dico hujus interual<lb/> <expan abbr="lũ">lum</expan> in ratione <expan abbr="quo&qacute;">quoque</expan>; e&longs;&longs;e duplà ad illud interuallum, <lb/> <figure id="id.062.01.034.1.jpg" xlink:href="062/01/034/1.jpg"/><lb/> per quod velocitas &longs;ubdupla eodem vel æquali tempo­<lb/> re mouetur: at verò tempus, quo velocitas dùpla per <lb/> &longs;patium æquale mouetur, in ratione &longs;ubduplá ad tem­<lb/> pus velocitatis minoris, Vt &longs;i velo citas <emph type="italics"/>H<emph.end type="italics"/> in tempore <emph type="italics"/>ab,<emph.end type="italics"/><lb/> velo citas autem <emph type="italics"/>K<emph.end type="italics"/> in tempore <emph type="italics"/>abc<emph.end type="italics"/> per idem &longs;patium <emph type="italics"/>de,<emph.end type="italics"/><lb/> aut illi æquale <emph type="italics"/>fg<emph.end type="italics"/> moueatur, erit ut velocitas <emph type="italics"/>H<emph.end type="italics"/> ad veloci­<lb/> tatem K, ita tempus <emph type="italics"/>abc<emph.end type="italics"/> minoris velocitatis ad <expan abbr="t&etilde;pus">tempus</expan> <emph type="italics"/>ab<emph.end type="italics"/><lb/> majoris velocitatis. </s> <s id="N1113A">Quia enim velocitas motus &longs;umi­<lb/> tur à magnitudine interualli, erit in eadem ratione in <lb/> quâ interuallum, ac proinde velo citas dupla per &longs;pati<lb/> um mouebit duplum. </s> <s id="N11143">E&longs;t autem tempus men&longs;ura <expan abbr="cu-ju&longs;&qacute;">cu­<lb/> ju&longs;que</expan>; velocitatis, minor <expan abbr="quid&etilde;">quidem</expan> majoris, major autem mi <lb/> noris; quot igitur magnitudines minoris interualli in <pb xlink:href="062/01/035.jpg"/>majori, totidem men&longs;uræ velocitatis majoris in men&longs;u­<lb/> râ velocitatis minoris continentur. </s> </p> </subchap1> <subchap1 id="N11158"> <p id="N11159" type="main"> <s id="N1115B"><emph type="center"/>Propo&longs;itio VIII.<emph.end type="center"/></s> </p> <p id="N11162" type="main"> <s id="N11164"><emph type="italics"/>Velocitas à principio motus per lineam perpendicularem e&longs;t <lb/> æqualis grauitati, minor verò per lineam inclinatam.<emph.end type="italics"/></s> </p> <p id="N1116D" type="main"> <s id="N1116F">IMpul&longs;us, quó magis impeditur ab alio impul&longs;u, eò mi <lb/> nùs mouet: e&longs;t <expan abbr="aut&etilde;">autem</expan> grauitas impul&longs;us deor&longs;um &longs;eu <lb/> ad mundi centrum mouens; in lineà ergo perpendicu­<lb/> lari quia â nullo impeditur impul&longs;u, <expan abbr="e&longs;t&qacute;">e&longs;tque</expan>; agens nece&longs;&longs;a­<lb/> rium, motum producet &longs;ibi æqualem, <expan abbr="eritq;">eritque</expan> velocitas <lb/> motus æqualis grauitati. </s> <s id="N11188">In lineâ verò inclinatâ, quia <lb/> grauitas impeditur ab hypomochlio, mouebit tantò <lb/> minús, quantò magis impeditur, per prop: 14. ac proin­<lb/> de velocitas erit minor grauitate. </s> <s id="N11191">Velocitas ergo a prin­<lb/> cipio motus per lineam perpendicularem e&longs;t æqualis <lb/> grauitati, minor verò per lineam inclinatam. </s> </p> </subchap1> <subchap1 id="N11198"> <p id="N11199" type="main"> <s id="N1119B"><emph type="center"/>Propo&longs;itio IX.<emph.end type="center"/></s> </p> <p id="N111A2" type="main"> <s id="N111A4"><emph type="italics"/>Velocitas continuò augetur in motu naturali, minuitur in motu <lb/> violento.<emph.end type="italics"/></s> </p> <p id="N111AD" type="main"> <s id="N111AF">GRauia enim quò ex loco altiori cadunt, majori vi­<lb/> olentià incidunt: violentia autem major ex impul­ <pb xlink:href="062/01/036.jpg"/>&longs;u majori, qui illo de&longs;cen&longs;u continuò majus ac majus <lb/> capit augmentum. </s> <s id="N111BA"><expan abbr="Ita&qacute;">Itaque</expan>; videmus globos ferreos à ma<lb/> chinà bellicà & vi ignis alti&longs;simè extolli, ut relap&longs;u lon­<lb/> giore impul&longs;um colligant majorem <expan abbr="ictu&qacute;">ictuque</expan>; violentiore <lb/> urbium tecta d ruant. </s> <s id="N111CA">Sic etiam fi&longs;tucis altiùs &longs;ublatis <lb/> palos adigunt & terræ magis infigunt. </s> <s id="N111CF">Similiter pon­<lb/> dus è filo pendulum, quò magis dimouetur â &longs;ua &longs;tatio­<lb/> ne, majori vi recurrit, & ultra &longs;tationem procurrit: qui <lb/> excur&longs;us non ad grauitatem, &longs;ed ad impul&longs;um illo re­<lb/> cur&longs;u collectum referri pote&longs;t. </s> <s id="N111DA">At verò impul&longs;us ma­<lb/> jor eodem vel æquali tempore per &longs;patium majus, mi­<lb/> nori verò tempore per &longs;patium æquale aut etiam majus <lb/> mouet per prop: 6. ac proinde per definitionem ma<emph type="italics"/>j<emph.end type="italics"/>o­<lb/> ri velocitate. velocitas ergo continuò augetur in motu <lb/> naturali, quod primò erat demon&longs;trandum. </s> <s id="N111ED">Quæ au­<lb/> tem motu violento mouentur, cuiu&longs;modi projecta &longs;eu <lb/> manu, &longs;eu machinà, à principio quidem veloci&longs;simè, in­<lb/> de minùs velociter mouentur, impul&longs;u veluti &longs;ene&longs;cen­<lb/> te: quia nimirum hujus principium e&longs;t externum, à quo <lb/> in motu <expan abbr="&longs;eparãtur">&longs;eparantur</expan>: virtus autem finita, quæ non ni&longs;i in <lb/> tempore & per &longs;patium mouet finitum: non igitur ex­<lb/> tra illud tempus mouere, ac proinde <expan abbr="ne&qacute;">neque</expan>; in &longs;ubiecto <lb/> con&longs;eruari pote&longs;t. </s> <s id="N11208">Emoritur autem &longs;eu naturâ &longs;uà, &longs;eu <lb/> quia grauitas contraria hunc &longs;en&longs;im atterit <expan abbr="minuit&qacute;">minuitque</expan>: ad <lb/> cuius decrementum grauitas magis ac magis inuale&longs;cit: <pb xlink:href="062/01/037.jpg"/>unde priusquam vincat, motu mixto ferri, demum ubi <lb/> præualuit, reuer&longs;ionem fieri videmus. </s> <s id="N11219">In motu verò <lb/> naturali principium motus e&longs;t internum, nimirum gra­<lb/> uitas, & qui à grauitate na&longs;citur impul&longs;us: qui cùm &longs;it <lb/> agens nece&longs;&longs;arium, motum producet &longs;ibi æqualem, & <lb/> prius quam finiat hunc motum, continuó ex eadem ra­<lb/> dice alius <expan abbr="at&qacute;">atque</expan>; alius impul&longs;us rena&longs;cens velocitatem mo<lb/> tus continuo augebit incremento. </s> <s id="N1122C">Dices quam ob rem <lb/> ergo grauia, dum in hypomochlio quie&longs;cunt, nihilo ma<lb/> gis grauitant, &longs;i continuo veluti fluxu inde na&longs;citur im­<lb/> pul&longs;us? Re&longs;pondeo impul&longs;um quidem continuo fluxu <lb/> à grauitate rena&longs;ci, verùm quantùm grauitas producit, <lb/> tantundem re&longs;i&longs;tentia & quies violenta in hypomo­<lb/> chlio ab&longs;umit: <expan abbr="quou&longs;&qacute;">quou&longs;que</expan>; ergo grauia quie&longs;cunt, idem <lb/> manet impul&longs;us, qui nequit ab q motu in &longs;ubiecto <lb/> con&longs;eruari. </s> <s id="N11243">Qui <expan abbr="opinãtur">opinantur</expan> grauia non à &longs;e ip&longs;is, verùm à <lb/> &longs;uo magnete &longs;eu tellure moueri quæ opinio non caret <lb/> probabilitate, dicent <expan abbr="utriu&longs;&qacute;">utriu&longs;que</expan>; motus principium e&longs;&longs;e <lb/> externum: verùm in his, quæ projiciuntur, in motu &longs;e­<lb/> parari, <expan abbr="at&qacute;">atque</expan> ita &longs;en&longs;im deficere impul&longs;um; ob retractio­<lb/> nem verò magneticam, ubi jam præualuit, non aliter <lb/> quam à grauitate fieri conuer&longs;ionem motus. </s> <s id="N1125E">Quæ au­<lb/> tem moueri dicuntur à grauitate, habere impul&longs;um à <lb/> tellure, <expan abbr="at&qacute;">atque</expan>; eo modo, quo ferrum ad &longs;uum magne­<lb/> tem moueri, at verò velocitatem ex illà tractione con­ <pb xlink:href="062/01/038.jpg"/>tinuatà na&longs;ci, dum impul&longs;us &longs;ibi ip&longs;i in&longs;tat non aliter <lb/> quam &longs;i à tergo impelleretur. </s> </p> </subchap1> <subchap1 id="N11271"> <p id="N11272" type="main"> <s id="N11274"><emph type="center"/>Propo&longs;itio X.<emph.end type="center"/></s> </p> <p id="N1127B" type="main"> <s id="N1127D"><emph type="italics"/>Incrementa velocitatis eadem ratione fiunt in motu recto & <lb/> inclinato.<emph.end type="italics"/></s> </p> <p id="N11286" type="main"> <s id="N11288">TAmet&longs;i grauitas in lineà inclinatâ deficiat ab illa <lb/> perfectione, quam habet in lineà perpendiculari, <lb/> non tamen eo modo, quo in lineà horizontali quie&longs;cit­<lb/> tota: exce&longs;&longs;us enim illius partis, quæ cum centro extra <lb/> hypomochlium cadit, à nullo impeditur: & cúm &longs;it a­<lb/> gens nece&longs;&longs;arium, motum producit &longs;ibi æqualem. quia <lb/> verò velocitas continuò augetur in de&longs;cen&longs;u, &longs;icuti gra­<lb/> uitas perfecta in lineà perpendiculari &longs;e habet ad &longs;uum <lb/> augmentum, ita grauitas diminuta in lineà inclinatà &longs;e <lb/> <figure id="id.062.01.038.1.jpg" xlink:href="062/01/038/1.jpg"/><lb/> habebit ad &longs;uum augmentum. </s> <s id="N112A4">Moueatur enim ex <emph type="italics"/>a<emph.end type="italics"/><lb/> idem mobile per lineam perpendicularem <emph type="italics"/>abc<emph.end type="italics"/> & per li­ <pb xlink:href="062/01/039.jpg"/>neam inclinatam <emph type="italics"/>ade:<emph.end type="italics"/> quia ergo motus <emph type="italics"/>ad<emph.end type="italics"/> motui <emph type="italics"/>ab,<emph.end type="italics"/> & <lb/> motus <emph type="italics"/>ae<emph.end type="italics"/> motui <emph type="italics"/>ac<emph.end type="italics"/> e&longs;t æqualis ut prop: 13. o&longs;tendemus: <lb/> &longs;unt autem duo triangula <emph type="italics"/>dab. eac<emph.end type="italics"/> &longs;imilia inter &longs;e, erit <lb/> ut <emph type="italics"/>bc<emph.end type="italics"/> ad <emph type="italics"/>ba,<emph.end type="italics"/> ita <emph type="italics"/>de<emph.end type="italics"/> ad <emph type="italics"/>da,<emph.end type="italics"/> incrementa nimirum velocita­<lb/> tis motus in linea perpendiculari & lineà inclinata. </s> <s id="N112FC">In <lb/> crementa ergo velocitatis eadem ratione fiunt &c. </s> </p> </subchap1> <subchap1 id="N11301"> <p id="N11302" type="main"> <s id="N11304"><emph type="center"/>Propo&longs;itio XI.<emph.end type="center"/></s> </p> <p id="N1130B" type="main"> <s id="N1130D"><emph type="italics"/>Impul&longs;us in quolibet motu &longs;eu recto, &longs;eu inclinato e&longs;t major gra­<lb/> uitate.<emph.end type="italics"/></s> </p> <p id="N11316" type="main"> <s id="N11318">MOtum in quolibet puncto lineæ perpendicularis <lb/> e&longs;&longs;e majorem &longs;uà grauitate nullum e&longs;t dubium: <lb/> nam cùm velocitas cum ip&longs;o motu incipiat augeri, &longs;icu<lb/> ti à principio e&longs;t æqualis grauitati, ita in progre&longs;&longs;u erit <lb/> major grauitate. </s> <s id="N11323">At verò de motu per lineam inclina­<lb/> tam dubitari pote&longs;t: propterea quód à grauitate fiat im<lb/> pedità, ac proinde minori: id tamen hac ratione o&longs;ten­<lb/> demus. </s> <s id="N1132C">Grauitas in lineà inclinatà eò magis impeditur <lb/> à &longs;uà velocitate, quò magis hæc inclinatur, <expan abbr="e&longs;t&qacute;">e&longs;tque</expan>; &longs;inus an<lb/> guli inclinationis idem qui grauitatis exce&longs;&longs;us: uti <lb/> prop: 14. o&longs;tendemus: grauitas ergo per lineam perpen­<lb/> dicularem ad grauitatem per lineam inclinatam, ut &longs;i­<lb/> nus totus ad &longs;inum complementi anguli inclinationis, <lb/> ac proinde ut linea <emph type="italics"/>ab<emph.end type="italics"/> ad linea <emph type="italics"/>ad.<emph.end type="italics"/> at verò velocitas in <emph type="italics"/>b<emph.end type="italics"/> <pb xlink:href="062/01/040.jpg"/>majorem rationem habet ad velocitatem in aliquo pun<lb/> cto <emph type="italics"/>f,<emph.end type="italics"/> cúm omni magnitudine datà minor a&longs;&longs;umi po&longs;sit: <lb/> e&longs;t autem velocitas in <emph type="italics"/>f<emph.end type="italics"/> major &longs;uà grauitate: erit ergo <lb/> velocitas in <emph type="italics"/>d<emph.end type="italics"/> major <expan abbr="quo&qacute;">quoque</expan>; eadem grauitate, cùm majo­<lb/> rem rationem habeat velocitas in <emph type="italics"/>b<emph.end type="italics"/> ad velocitatem in <emph type="italics"/>f,<emph.end type="italics"/><lb/> quam ad velocitatem in <emph type="italics"/>d.<emph.end type="italics"/> Idem de quouis alio pun­<lb/>cto o&longs;tendemus. impul&longs;us ergo in quolibet motu &longs;eu re<lb/> cto, &longs;eu inclinato e&longs;t major grauitate. </s> </p> </subchap1> <subchap1 id="N1138A"> <p id="N1138B" type="main"> <s id="N1138D"><emph type="center"/>Propo&longs;itio XII.<emph.end type="center"/></s> </p> <p id="N11394" type="main"> <s id="N11396"><emph type="italics"/>Incrementa velocitatis rationem habent quam temporum <lb/> quadrata.<emph.end type="italics"/></s> </p> <p id="N1139F" type="main"> <s id="N113A1">QVia virtus loco motiua eo modo augetur, quo tri­<lb/> angulum &longs;ibi &longs;imile manens, per po&longs;it: 5. propte­<lb/> rea quòd hujus augmentum &longs;it perfectio inten&longs;iua; <lb/> cùm ex illo puncto quietis veluti late&longs;cit, angulum con<lb/> &longs;tituit &longs;ui augmenti, ma<emph type="italics"/>j<emph.end type="italics"/>orem minoremuè pro <expan abbr="cuiu&longs;&qacute;">cuiu&longs;que</expan>; <lb/> perfectione, quam obtinet in principio motus, &longs;iuè ex <lb/> naturâ &longs;uâ, &longs;iue ex impedimento: majori enim perfecti­<lb/> oni maior angulus debetur. </s> <s id="N113BC">Sit primùm angulus <emph type="italics"/>nag<emph.end type="italics"/><lb/>&longs;e mi&longs;sis anguli recti; tempus verò <emph type="italics"/>ag<emph.end type="italics"/> in minuta <emph type="italics"/>ab. bc. <lb/> cd. de. ef.fg<emph.end type="italics"/> æqualiter diui&longs;um: velocitas ergò motus <lb/> augetur impul&longs;u auge&longs;cente in primo quidem minuto <lb/> in <emph type="italics"/>hb,<emph.end type="italics"/> in 2. in <emph type="italics"/>ic,<emph.end type="italics"/> in 3. in <emph type="italics"/>kd,<emph.end type="italics"/> <expan abbr="at&qacute;">atque</expan>; itæ con&longs;equenter æquatà <pb xlink:href="062/01/041.jpg"/>areà illius trianguli rectanguli, cujus longitudo nume­<lb/> rus minutorum, ba&longs;is verò terminus augmenti. </s> <s id="N113F4">Quia <lb/> verò eadem e&longs;t ratio motus & virtutis impul&longs;iuæ, vir­<lb/> <figure id="id.062.01.041.1.jpg" xlink:href="062/01/041/1.jpg"/><lb/> tus quidem dupla in eodem aut æquali tempore moue­<lb/> bit per &longs;patium duplum: quòd &longs;i ergo in primo minu­<lb/> to <emph type="italics"/>ab<emph.end type="italics"/> virtus <emph type="italics"/>a<emph.end type="italics"/> late&longs;cens, cum quà pariter cre&longs;cit veloci­<lb/> tas motus, terminum habet &longs;ui incrementi in <emph type="italics"/>hb,<emph.end type="italics"/> in &longs;e­<lb/> cundo minuto in <emph type="italics"/>ic,<emph.end type="italics"/> in 3. in <emph type="italics"/>kd<emph.end type="italics"/> &c. erit ut triangulum re­<lb/> ctangulum <emph type="italics"/>iac<emph.end type="italics"/> ad triangulum rectangulum <emph type="italics"/>hab,<emph.end type="italics"/> ita <lb/> &longs;patium decur&longs;um in duobus minutis ad &longs;patium decur<lb/> &longs;um in uno minuto; at verò duo triangula <emph type="italics"/>iac.hab<emph.end type="italics"/> &longs;unt <lb/> &longs;emi&longs;&longs;es duorum quadratorum <emph type="italics"/>ipac. hoab.<emph.end type="italics"/> ac pro­<lb/> inde in eàdem ratione, nimirum duplicatà ejus, <expan abbr="quã">quam</expan> ha­<lb/> bent latera <emph type="italics"/>ic.hb<emph.end type="italics"/>: igitur ut quadratum lateris <emph type="italics"/>ic<emph.end type="italics"/> ad qua­<lb/> dratum lateris <emph type="italics"/>hb,<emph.end type="italics"/> ita motus duorum minutorum ad <pb xlink:href="062/01/042.jpg"/>motum unius minuti; propterea quòd latus <emph type="italics"/>ca<emph.end type="italics"/> ad latus <lb/> <emph type="italics"/>ba<emph.end type="italics"/> eandem habeat rationem, quam latus <emph type="italics"/>ic<emph.end type="italics"/> ad latus <emph type="italics"/>hb,<emph.end type="italics"/><lb/> ac proinde illorum quadrata in eadem <expan abbr="quo&qacute;">quoque</expan>, ratione, <lb/> nimirum duplicata. </s> <s id="N11489"><expan abbr="Ita&qacute;">Itaque</expan>; &longs;i quadratum lateris <emph type="italics"/>ab,<emph.end type="italics"/> hoc <lb/> e&longs;t primi minuti, &longs;ubtrahas â quadrato <emph type="italics"/>ac<emph.end type="italics"/> &longs;ecundi minu­<lb/> ti, numerus reliquus dabit velocitatem motus in eodem <lb/> minuto: ut &longs;i cubitum unum <emph type="italics"/>vg.<emph.end type="italics"/> perambulet in primo <lb/> minuto, hujus quadratum, ide&longs;t unum, ab illius quadra<lb/> to, id, e&longs;t â quatuor &longs;ubtractum relinquit tria totidem <lb/> cubitorum illi &longs;patio, per quod <emph type="italics"/>a<emph.end type="italics"/> mouetur in minuto 2. <lb/> tribuenda. </s> <s id="N114B5">Similiter quia 3. minutis conficit cubitos 9. <lb/> ablato ex his quadrato &longs;ecundi minuti, numerus reli­<lb/> quus dabit velocitatem 5. cubitorum, qui minuto 3. de­<lb/> bentur. </s> <s id="N114BE">Rur&longs;um â numero 4. minuti in &longs;e ducto, ide&longs;t <lb/> 16. ablatis 9. quadrato tertij minuti rem anet numerus 7. <lb/> pro 4. minuto: totidem ergo cubitorum &longs;patium trans­<lb/> mittit mobile <emph type="italics"/>a<emph.end type="italics"/> in minuto quarto. </s> <s id="N114CD">Quód &longs;i angulus <lb/> augmenti major &longs;it aut minor &longs;emi&longs;&longs;e anguli recti, ut <lb/> angulus <emph type="italics"/>qag.<emph.end type="italics"/> aut <emph type="italics"/>rag,<emph.end type="italics"/> quod quidem contingit, cùm vir­<lb/> tus impul&longs;iua magis aut minùs e&longs;t inten&longs;a, tum quidem <lb/>illa virtus magis perfecta ex illo puncto continuò majo<lb/> ra &longs;umit incrementa: eadem tamen demon&longs;tratio, <expan abbr="at&qacute;">atque</expan>; <lb/> eadem e&longs;t proportio <expan abbr="utrobi&qacute;">utrobique</expan>;, propterea quòd parallelo­<lb/> gramma in proportione <expan abbr="quo&qacute;">quoque</expan>; &longs;int duplicatá &longs;uorum <lb/> laterum &longs;imul &longs;umptorum.| </s> </p> </subchap1> <subchap1 id="N114F8"> <pb xlink:href="062/01/043.jpg"/> <p id="N114FC" type="main"> <s id="N114FE"><emph type="center"/>Propo&longs;itio XIII.<emph.end type="center"/></s> </p> <p id="N11505" type="main"> <s id="N11507"><emph type="italics"/>Motus per lineam perpendicularem & lineam inclinatam, quo­<lb/> rum terminos conjungit linea recta perpendicularis ad lineam in­<lb/> clinatam, inter &longs;e &longs;unt æquales.<emph.end type="italics"/></s> </p> <p id="N11512" type="main"> <s id="N11514">ÆQuales dico non velocitate, quæ minor e&longs;t in lineà <lb/> inclinatà, &longs;ed duratione: hoc e&longs;t &longs;i ex eodem puncto <lb/> incipiat motus <emph type="italics"/>Vg.<emph.end type="italics"/> ex <emph type="italics"/>b,<emph.end type="italics"/> & unum quidem mobile per li­<lb/> neam perpendicularem <emph type="italics"/>ba,<emph.end type="italics"/> alterum verò huic æquale <lb/> per lineam <emph type="italics"/>bf<emph.end type="italics"/> ad horizontem inclinatam moueatur: a&longs;­<lb/> &longs;umpto quolibet puncto in lineà perpendiculari <emph type="italics"/>Vg. a,<emph.end type="italics"/><lb/> linea ex hoc puncto educta perpendicularis ad lineam <lb/> <emph type="italics"/>bf<emph.end type="italics"/> locum terminabit in <emph type="italics"/>f,<emph.end type="italics"/> ad quod mobile eodem tem­<lb/> <figure id="id.062.01.043.1.jpg" xlink:href="062/01/043/1.jpg"/><lb/> <pb xlink:href="062/01/044.jpg"/>pore per lineam <emph type="italics"/>bf,<emph.end type="italics"/> quo alterum mobile per lineam <emph type="italics"/>ba <emph.end type="italics"/><lb/> decurrit. </s> <s id="N11568">Ducatur enim ex puncto contactus <emph type="italics"/>f<emph.end type="italics"/> linea <emph type="italics"/>fe<emph.end type="italics"/><lb/> parallela lineæ perpendiculari <emph type="italics"/>ba,<emph.end type="italics"/> & producatur in <emph type="italics"/>g<emph.end type="italics"/>; ad <lb/> quam ex centro grauitatis <emph type="italics"/>d<emph.end type="italics"/> educta &longs;it linea perpendicu<lb/> laris <emph type="italics"/>dc,<emph.end type="italics"/> di&longs;tantia nimirum centri à lineà hypomochlij <emph type="italics"/>f <lb/> g:<emph.end type="italics"/> e&longs;t autem linea <emph type="italics"/>df<emph.end type="italics"/> &longs;emidiameter circuli, di&longs;tantia eju&longs;­<lb/> dem centri ab hypochlio, quam obtinet in lineâ perpen<lb/> diculari <emph type="italics"/>ba.<emph.end type="italics"/> quia ergo impul&longs;us augetur in ratione di­<lb/> &longs;tantiæ centri ab hypomochlio, per Po&longs;it: 6. <expan abbr="motũ&qacute;">motunque</expan>; pro <lb/> ducit &longs;ibi æqualem, per prop: 2. velocitas autem motus <lb/> eandem rationem habet quam interualla, per prop: 7. e­<lb/> rit ut <emph type="italics"/>fd<emph.end type="italics"/> impul&longs;us major ad <emph type="italics"/>dc<emph.end type="italics"/> impul&longs;um minorem, ita <lb/> motus in <emph type="italics"/>ba<emph.end type="italics"/> ad motum in <emph type="italics"/>bf:<emph.end type="italics"/> propterea quód triangula <lb/> <emph type="italics"/>abf.fdc<emph.end type="italics"/> &longs;int &longs;imilia, & linea <emph type="italics"/>dc<emph.end type="italics"/> perpendicularis, ac proinde <lb/> linea <expan abbr="quo&qacute;">quoque</expan>; <emph type="italics"/>af,<emph.end type="italics"/> &longs;imilis lineæ <expan abbr="perp&etilde;diculari">perpendiculari</expan> <emph type="italics"/>dc,<emph.end type="italics"/> perpendi­<lb/> cularis. </s> </p> </subchap1> <subchap1 id="N115F8"> <p id="N115F9" type="main"> <s id="N115FB"><emph type="center"/>Propo&longs;itio XIV:<emph.end type="center"/></s> </p> <p id="N11602" type="main"> <s id="N11604"><emph type="italics"/>Motus per lineam minùs inclinatam e&longs;t velocìor motu per li­<lb/> neam magis inclinatam, in ratione, quam habent &longs;inus complemen­<lb/> ti illarum inclinationum.<emph.end type="italics"/></s> </p> <p id="N1160F" type="main"> <s id="N11611">DVcantur ex puncto <emph type="italics"/>a<emph.end type="italics"/> lîneæ <emph type="italics"/>ab. ac. ad. ae. af,<emph.end type="italics"/> & &longs;it li­<lb/> nea <emph type="italics"/>ab<emph.end type="italics"/> horizontalis, linea verò <emph type="italics"/>at<emph.end type="italics"/> perpendicularis, <lb/> reliquæ lineæ ad horizontem inclinatæ: dico idem mo­<lb/> bile o verbi grat: inæqualiter moueri, velociùs quidem <pb xlink:href="062/01/045.jpg"/>in lineà <emph type="italics"/>ae<emph.end type="italics"/> minus inclinatà, minùs autem velociter in li­<lb/> neà <emph type="italics"/>ad<emph.end type="italics"/> magis inclinatà, <expan abbr="e&longs;&longs;e&qacute;">e&longs;&longs;eque</expan>; rationem velocitatis in <emph type="italics"/>ae<emph.end type="italics"/><lb/> ad velocitatem in <emph type="italics"/>ad,<emph.end type="italics"/> ut &longs;inus anguli <emph type="italics"/>ats<emph.end type="italics"/> ad &longs;inum angu­<lb/> li <emph type="italics"/>atr.<emph.end type="italics"/> Ex punctis contactus <emph type="italics"/>qrs<emph.end type="italics"/> demittantur lineæ <lb/> perpendiculares <emph type="italics"/>qt.rt.st:<emph.end type="italics"/> & aliæ lineæ perpendiculari <emph type="italics"/>at <emph.end type="italics"/><lb/> <figure id="id.062.01.045.1.jpg" xlink:href="062/01/045/1.jpg"/><lb/> parallelæ <emph type="italics"/>qg.rh.si<emph.end type="italics"/> <expan abbr="&longs;ecãtes">&longs;ecantes</expan> mobile in <emph type="italics"/>k. n. u,<emph.end type="italics"/> ex centro au<lb/> tem <emph type="italics"/>o<emph.end type="italics"/> ducantur lineæ perpendiculares ad lineam hypo­<lb/> mochlij <foreign lang="greek">oa. ob. og</foreign>, <expan abbr="erunt&qacute;">eruntque</expan>; lineæ <emph type="italics"/>qg. rh. si<emph.end type="italics"/> lineæ hypo­<lb/> mochlij. </s> <s id="N116A9">Quia verò angulus <emph type="italics"/>tsi,<emph.end type="italics"/> hoc e&longs;t angulus <emph type="italics"/>sh<emph.end type="italics"/> ex­ <pb xlink:href="062/01/046.jpg"/>ternus major e&longs;t angulo <emph type="italics"/>trh<emph.end type="italics"/> interno & oppo&longs;ito, erit an<lb/> gulus <foreign lang="greek">gso</foreign> angulo <foreign lang="greek">bgo</foreign>, & latus <foreign lang="greek">go</foreign> latere <foreign lang="greek">bo</foreign> majus: &longs;unt <lb/> autem latera <foreign lang="greek">go. bo</foreign> di&longs;tantia centri grauitatis. </s> <s id="N116DA">Quia er­<lb/> go maior impul&longs;us in <foreign lang="greek">go</foreign> maiori, quam in <foreign lang="greek">bo</foreign> minori di­<lb/> &longs;tantià; erit per prop: 6. velocior motus in linea <emph type="italics"/>as<emph.end type="italics"/> mi­<lb/> nús inclinatá, quam in lineà <emph type="italics"/>ar<emph.end type="italics"/> magis inclinatà. </s> <s id="N116F7">Quòd <lb/> autem velocitas motus &longs;it in ratione, quam habent cor­<lb/> dæ, &longs;eu &longs;inus complementi inclinationum, ita o&longs;tende­<lb/> mus: quia ut <foreign lang="greek">so</foreign> ad <foreign lang="greek">go</foreign>, ita corda <emph type="italics"/>at<emph.end type="italics"/> ad cordam <emph type="italics"/>as,<emph.end type="italics"/> & ut <emph type="italics"/>rò<emph.end type="italics"/><lb/> æqualis <foreign lang="greek">so</foreign> ad <foreign lang="greek">ob</foreign>, ita eadem corda <emph type="italics"/>at<emph.end type="italics"/> ad cordam <emph type="italics"/>ar:<emph.end type="italics"/> erit <lb/> <expan abbr="quo&qacute;">quoque</expan>; ut <foreign lang="greek">og</foreign> ad <foreign lang="greek">ob</foreign>, ita <emph type="italics"/>as<emph.end type="italics"/> ad <emph type="italics"/>ar.<emph.end type="italics"/> at verò ut cordæ <emph type="italics"/>as. ar,<emph.end type="italics"/><lb/> ita illarum &longs;emi&longs;&longs;es <emph type="italics"/>al. am<emph.end type="italics"/> &longs;inus angulorum <emph type="italics"/>apl. apm <emph.end type="italics"/><lb/> qui æquales &longs;unt angulis <emph type="italics"/>ats.atr<emph.end type="italics"/> angulis complementi <lb/> inclinationis, ob parallelas <emph type="italics"/>ts. pl,<emph.end type="italics"/> & <emph type="italics"/>tr. pm.<emph.end type="italics"/> <emph type="italics"/>Igitur ut <foreign lang="greek">og</foreign><lb/> ad <foreign lang="greek">ob</foreign>, ita &longs;inus complementi angulorum inclinationis, <lb/> quod erat o&longs;tendendum. </s> </p> </subchap1> <subchap1 id="N1177F"> <p id="N11780" type="main"> <s id="N11782"><emph type="center"/>Propo&longs;itio XV.<emph.end type="center"/></s> </p> <p id="N11789" type="main"> <s id="N1178B"><emph type="italics"/>Motus ex eodem puncto per lineas &longs;ubten&longs;as &longs;unt æquales motui <lb/> per diametrum eju&longs;dem circuli.<emph.end type="italics"/></s> </p> <p id="N11794" type="main"> <s id="N11796">MOueatur ex puncto <emph type="italics"/>b<emph.end type="italics"/> mobile per lineas <emph type="italics"/>bi. bh.bg. <lb/> bf.be<emph.end type="italics"/> ad horizontem inclinatas, hoc e&longs;t per cordas <lb/> arcuum <emph type="italics"/>bes.beh.beg.bef.be<emph.end type="italics"/>: dico eodem tempore per <pb xlink:href="062/01/047.jpg"/>cordam <emph type="italics"/>bf,<emph.end type="italics"/> aut <emph type="italics"/>bg,<emph.end type="italics"/> quo per diametrum eiu&longs;dem circuli <lb/> <emph type="italics"/>ba<emph.end type="italics"/> motum terminari. </s> <s id="N117C7">Quòd &longs;i enim ex puncto <emph type="italics"/>a<emph.end type="italics"/> du<lb/> cantur lineæ rectæ <emph type="italics"/>af. ag,<emph.end type="italics"/> erunt anguli <emph type="italics"/>afb. agb<emph.end type="italics"/> in &longs;emi­<lb/> circulo recti; ac proinde ex iam demon&longs;tratis motus in <lb/> <emph type="italics"/>ba<emph.end type="italics"/> motui in <emph type="italics"/>bf<emph.end type="italics"/> & <emph type="italics"/>bg<emph.end type="italics"/> duratione æqualis. </s> <s id="N117F4">Simili modo &longs;i <lb/> ex punctis <emph type="italics"/>befg<emph.end type="italics"/> in <emph type="italics"/>a<emph.end type="italics"/> terminetur motus, <expan abbr="erũt">erunt</expan> lineæ <emph type="italics"/>be.bf.<emph.end type="italics"/><lb/> <figure id="id.062.01.047.1.jpg" xlink:href="062/01/047/1.jpg"/><lb/> <emph type="italics"/>bg<emph.end type="italics"/> perpendiculares ad <emph type="italics"/>ae. af. ag,<emph.end type="italics"/> ac proinde motus in <emph type="italics"/>b <lb/> a<emph.end type="italics"/> motui in <emph type="italics"/>ea. fa. ga<emph.end type="italics"/> æqualis. </s> <s id="N11831">At verò &longs;i ex alio puncto <lb/> Vg <foreign lang="greek">a</foreign> incipiat motus, <expan abbr="ne&qacute;">neque</expan>; ad idem cum diametro pun­<lb/> ctum terminetur, cuju&longs;modi linea <foreign lang="greek">ab</foreign>, er t motus hujus <lb/> motui in diametro <emph type="italics"/>ba<emph.end type="italics"/> inæqualis. </s> <s id="N1184C">Ducatur enim ex <foreign lang="greek">a</foreign> in <lb/> <emph type="italics"/>a<emph.end type="italics"/> linea <foreign lang="greek">a</foreign> <emph type="italics"/>a,<emph.end type="italics"/> <expan abbr="erit&qacute;">eritque</expan>; motus hujus motui <emph type="italics"/>ba,<emph.end type="italics"/> ide&longs;t motui <foreign lang="greek">ad</foreign> <pb xlink:href="062/01/048.jpg"/>æqualis: linea verò <foreign lang="greek">gb</foreign> perpendicularis ad <foreign lang="greek">ab</foreign> motum ter­<lb/> minabit in <foreign lang="greek">b</foreign> æqualem motui <foreign lang="greek">ag</foreign>: e&longs;t autem linea <foreign lang="greek">ag</foreign> mi­<lb/> nor quam <foreign lang="greek">ad</foreign> motus ergo in <foreign lang="greek">ag</foreign>, ide&longs;t motus huic æqua <lb/> lis in <foreign lang="greek">ab</foreign> minori fit tempore quam in <foreign lang="greek">a</foreign> a.</s> </p> </subchap1> <subchap1 id="N118A1"> <p id="N118A2" type="main"> <s id="N118A4"><emph type="center"/>Propo&longs;itio XVI.<emph.end type="center"/></s> </p> <p id="N118AB" type="main"> <s id="N118AD"><emph type="italics"/>Motus grauitatis per lineam magis inclinatam in majori à <lb/> centro di&longs;tantià, tempore verò æquali terminatur.<emph.end type="italics"/></s> </p> <p id="N118B6" type="main"> <s id="N118B8">MOueatur mobile à puncto <emph type="italics"/>b<emph.end type="italics"/> per lineas <emph type="italics"/>ba. bi. bh. bg <lb/> bf be<emph.end type="italics"/>; dico &longs;olam lineam perpendicularem <emph type="italics"/>ba<emph.end type="italics"/> in <lb/> centro <emph type="italics"/>a,<emph.end type="italics"/> reliquas omnes extra centrum, <expan abbr="at&qacute;">atque</expan>; ex inclina­<lb/> tione majori ad majus interuallum terminari: ut quia <lb/> angulus <emph type="italics"/>abh<emph.end type="italics"/> e&longs;t major angulo <emph type="italics"/>abi,<emph.end type="italics"/> erit terminus mo­<lb/> <figure id="id.062.01.048.1.jpg" xlink:href="062/01/048/1.jpg"/><lb/> <pb xlink:href="062/01/049.jpg"/>tus, quem grauitas inducit in lineâ <emph type="italics"/>bh,<emph.end type="italics"/> remotior à cen­<lb/> tro, quàm in lineâ <emph type="italics"/>bi.<emph.end type="italics"/> Ducantur enim à centro <emph type="italics"/>a<emph.end type="italics"/> lineæ <emph type="italics"/>ai. <lb/> ab<emph.end type="italics"/> perpendiculares ad <emph type="italics"/>bi. bh,<emph.end type="italics"/> <expan abbr="erit&qacute;">eritque</expan>; terminus motus gra­<lb/> uitatis in <emph type="italics"/>i<emph.end type="italics"/> & <emph type="italics"/>h<emph.end type="italics"/> ob breui&longs;simam di&longs;tantiam, quæ e&longs;&longs;e po­<lb/> te&longs;t in illis lineis; quód &longs;i enim ex <emph type="italics"/>i<emph.end type="italics"/> moueatur in <emph type="italics"/>st,<emph.end type="italics"/> quia <lb/> illo progre&longs;&longs;u lineæ à centro ductæ fiunt majores, ma­<lb/> jor enim <emph type="italics"/>as<emph.end type="italics"/> angulo recto <emph type="italics"/>ais<emph.end type="italics"/> &longs;ubten&longs;a quam <emph type="italics"/>ai,<emph.end type="italics"/> mobile <lb/> motu naturali à centro magis abduceretur, quod fieri <lb/> nequit. </s> <s id="N11954">Quia ergo linea <foreign lang="greek">ag</foreign> major e&longs;t quàm linea <emph type="italics"/>ai,<emph.end type="italics"/><lb/> erit linea <emph type="italics"/>ab<emph.end type="italics"/>c dem multò major: igitur punctum <emph type="italics"/>h<emph.end type="italics"/> ter­<lb/> minus motus in lineà magis inclinatà, majori, punctum <lb/> verò <emph type="italics"/>i<emph.end type="italics"/> terminus motus in lineà minús inclinatâ, minori <lb/> à centro abe&longs;t interuallo. </s> <s id="N1197A">Quia vetò <expan abbr="uter&qacute;">uterque</expan>; motus tam <lb/> per <expan abbr="lineã">lineam</expan> <emph type="italics"/>ai<emph.end type="italics"/> <expan abbr="quã">quam</expan> per <expan abbr="lineã">lineam</expan> <emph type="italics"/>ah<emph.end type="italics"/> e&longs;t æqualis motui per <expan abbr="lineã">lineam</expan> <lb/> perpendicularem <emph type="italics"/>ab,<emph.end type="italics"/> propterea quòd lineæ perpendi­<lb/> culares <emph type="italics"/>as. ah<emph.end type="italics"/> <expan abbr="utrum&qacute;">utrumque</expan>; <expan abbr="motũ">motum</expan> conjungunt per prop: 13. <lb/> erit motus <emph type="italics"/>at<emph.end type="italics"/> motui <emph type="italics"/>ab<emph.end type="italics"/> æqualis, ac proinde in tempore <lb/> æquali. </s> </p> </subchap1> <subchap1 id="N119C7"> <p id="N119C8" type="main"> <s id="N119CA"><emph type="center"/>Propo&longs;itio XVII.<emph.end type="center"/></s> </p> <p id="N119D1" type="main"> <s id="N119D3"><emph type="italics"/>Motus grauitatis ex eodem puncto per lineas ad horizontem in­<lb/> clinatas in circulum terminatur, cuius diameter e&longs;t di&longs;tantia inter <lb/> illud punctum & mundi centrum.<emph.end type="italics"/></s> </p> <p id="N119DE" type="main"> <s id="N119E0">MOueatur ex puncto <emph type="italics"/>b<emph.end type="italics"/> mobile eju&longs;dem rationis per <lb/> lineàs ad horizontem inclinat as <emph type="italics"/>bi. bh. bg. bf.<emph.end type="italics"/> &c. <pb xlink:href="062/01/050.jpg"/>&longs;it autem mundi centrum <emph type="italics"/>a,<emph.end type="italics"/> & linea perpendicularis <emph type="italics"/>ba,<emph.end type="italics"/><lb/> dico motum per lineas <emph type="italics"/>bi. bh. bg. bf<emph.end type="italics"/> &c. in circulum ter <lb/> minari, cujus diameter linea perpendicularis <emph type="italics"/>ab<emph.end type="italics"/> di&longs;tan­<lb/> tia inter <emph type="italics"/>b<emph.end type="italics"/> & mundi centrum <emph type="italics"/>a.<emph.end type="italics"/> Ducantur enim à cen­<lb/> tro <emph type="italics"/>a<emph.end type="italics"/> lineæ <emph type="italics"/>ai.ah.ag.af<emph.end type="italics"/> &c. perpendiculares ad <emph type="italics"/>bi.bh.bg. <lb/> bf,<emph.end type="italics"/> <expan abbr="erunt&qacute;">eruntque</expan>; puncta <emph type="italics"/>i.h.g.f<emph.end type="italics"/> termini motus à grauitate: <lb/> <figure id="id.062.01.050.1.jpg" xlink:href="062/01/050/1.jpg"/><lb/> propterea quòd minima &longs;it hæc di&longs;tantia à mundi cen­<lb/> tro <emph type="italics"/>a.<emph.end type="italics"/> Quia verò anguli <emph type="italics"/>aib.ahb.afb<emph.end type="italics"/> &longs;unt recti ean­<lb/> dem habentes ba&longs;im <emph type="italics"/>ab.<emph.end type="italics"/> erunt in eodem &longs;emicirculo <emph type="italics"/>bef <lb/> g hia,<emph.end type="italics"/> cujus diameter linea <emph type="italics"/>ba<emph.end type="italics"/> perpendicularis, di&longs;tantia <lb/> inter <emph type="italics"/>b<emph.end type="italics"/> & mundi centrum. </s> </p> </subchap1> <subchap1 id="N11A73"> <pb xlink:href="062/01/051.jpg"/> <p id="N11A77" type="main"> <s id="N11A79"><emph type="center"/>Propo&longs;itio XVIII.<emph.end type="center"/></s> </p> <p id="N11A80" type="main"> <s id="N11A82"><emph type="italics"/>Velocitas in fine motus æquali tempore per &longs;patium mouet du­<lb/> plum velocitatis eodem motu collectæ.<emph.end type="italics"/></s> </p> <p id="N11A8B" type="main"> <s id="N11A8D">VT in fig: 5. &longs;i velocitas motus <emph type="italics"/>a<emph.end type="italics"/> in tempore <emph type="italics"/>ac<emph.end type="italics"/> conti­<lb/> nuò augeatur; quia hujus augmentum e&longs;t perfe­<lb/> ctio inten&longs;iua, ac proinde eo modo augetur, quo trian­<lb/> gulum &longs;ibi &longs;imile manens per po&longs;it: 5. erit velocitas in <lb/> fine motus, ut ba&longs;is eju&longs;dem trianguli <emph type="italics"/>bc.<emph.end type="italics"/> Moueatur er­<lb/> go hæc velocitas in <emph type="italics"/>e,<emph.end type="italics"/> & &longs;it tempus <emph type="italics"/>ec<emph.end type="italics"/> æquale tempori <lb/> <emph type="italics"/>ac,<emph.end type="italics"/> <expan abbr="erit&qacute;">eritque</expan>; velocitas illo motu colecta quadratum <emph type="italics"/>bcde<emph.end type="italics"/><lb/> duplum trianguli <emph type="italics"/>abc,<emph.end type="italics"/> propterea quòd eandem ba&longs;im <lb/> <emph type="italics"/>bc,<emph.end type="italics"/> altitudinem verò habet æqualem. </s> <s id="N11AD9">Quia ergo virtus <lb/> dupla in eodem vel æquali tempore per &longs;patium mouet <lb/> <expan abbr="duplũ">duplum</expan>, <expan abbr="e&longs;t&qacute;">e&longs;tque</expan>; <expan abbr="ead&etilde;">eadem</expan> ratio velocitatis & interualli, velocitas <lb/> in fine motus eodem vel æquali tempore per &longs;patium <lb/> mouebit duplum &c. </s> </p> </subchap1> <subchap1 id="N11AF0"> <p id="N11AF1" type="main"> <s id="N11AF3"><emph type="center"/>Propo&longs;itio XIX.<emph.end type="center"/></s> </p> <p id="N11AFA" type="main"> <s id="N11AFC"><emph type="italics"/>Velocitas in motu grauium collecta ultra &longs;tationem defert mo­<lb/> bile.<emph.end type="italics"/></s> </p> <p id="N11B05" type="main"> <s id="N11B07">STatio quidem grauium e&longs;t centrum terræ, ponderis <lb/> verò è filo penduli linea perpendicularis, in quà de­ <pb xlink:href="062/01/052.jpg"/>mum mobile ex illâ agitatione conquie&longs;cit. </s> <s id="N11B10">Quòd &longs;i <lb/> ergo &longs;eu corpus graue ad centrum, &longs;eu perpendiculum <lb/> in &longs;uam &longs;tationem moueatur, non &longs;tatim conquie&longs;cit <lb/> ex hoc motu &longs;iuè in centro, &longs;iuè in lineâ perpendiculari, <lb/> verùm ultra hos limites procurrit & recurrit, <expan abbr="at&qacute;">atque</expan>; eò ma­<lb/> gis, quò circuli majores. </s> <s id="N11B21">Quod quidem in perpendicu­<lb/> lo experientià con&longs;tat: de grauium verò à centro excur<lb/> &longs;u licet nulla experientia habeatur, id tamen &longs;imilitudo <lb/> rationis euincit: non enim minùs contra natu­<lb/> ram grauitatis e&longs;&longs;e videtur in circulo à lineâ &longs;tatio­<lb/> nis, quam in lineâ perpendiculari è centro efferi. </s> <s id="N11B2E">Hujus <lb/> autem ratio hæc: quia impul&longs;us in quolibet puncto, ac <lb/> proinde in fine motus e&longs;t major grauitate: per prop: 11. <lb/> e&longs;t autem agens nece&longs;&longs;arium per prop: 2. & non ni&longs;i per <lb/> lineam rectam mouet <expan abbr="&longs;uũ">&longs;uum</expan> mobile per prop: 3. &longs;uperabit <lb/> ergo illam, quâ in centro firmatur, grauitatem, non mi­<lb/> nùs, quam cùm lapidem &longs;imilis impul&longs;us à centro lon­<lb/> giùs abducit. </s> </p> </subchap1> <subchap1 id="N11B43"> <p id="N11B44" type="main"> <s id="N11B46"><emph type="center"/>Propo&longs;itio XX.<emph.end type="center"/></s> </p> <p id="N11B4D" type="main"> <s id="N11B4F"><emph type="italics"/>Velocitas in motu collecta per æqualia &longs;uo augmento decremen­<lb/> ta in quietem terminatur.<emph.end type="italics"/></s> </p> <p id="N11B58" type="main"> <s id="N11B5A">PErpendiculum liberè dimi&longs;&longs;um in &longs;uam &longs;tationem <lb/> recurrit, <expan abbr="at&qacute;">atque</expan>; eodem motu continuato ultra &longs;tatio­ <pb xlink:href="062/01/053.jpg"/>nem excurrit. </s> <s id="N11B67">Quòd &longs;i ergo impul&longs;us ex illo recur&longs;u <lb/> collectus aut idem maneat, aut continuò augeatur, quia <lb/> per prop: 18. </s> <s id="N11B6E">Velocitas in fine eodem vel æquali tempo­<lb/> re per &longs;patium mouet duplum velocitatis ex illo motu <lb/> collectæ, erit ex cur&longs;us major recur&longs;u: & quia ex quoli­<lb/> bet recur&longs;u magis excurrit, erit motus perpendiculi in­<lb/> finitus. </s> <s id="N11B79">At verò hic motus demum conquie&longs;cit: <expan abbr="nõ">non</expan> ergo <lb/> impul&longs;us augeri, aut idem e&longs;&longs;e pote&longs;t. </s> <s id="N11B82">Et quia per ar­<lb/> cus excurrit & recurrit continuò minores, nece&longs;&longs;e im­<lb/> pul&longs;um minui in illo a&longs;cen&longs;u; quia nimirum inter &longs;e <lb/> mi&longs;centur, & in de&longs;cen&longs;u quidem per eandem lineam <lb/> mouent grauitas & impul&longs;us, quem à grauitate conti­<lb/>nuo fluxu na&longs;ci dicebamus: à &longs;tatione verò grauitas im<lb/> pul&longs;ui reluctatur: quia nimirum contrarius impul&longs;us <lb/> ab eâdem grauitate rena&longs;cens tollit partem &longs;ibi æqua­<lb/> lem, per po&longs;it: 2. <expan abbr="e&longs;t&qacute;">e&longs;tque</expan>; motus reliquus æqualis exce&longs;&longs;ui <lb/> majoris ut Prop: 30. dicemus: &longs;icut ergo impul&longs;us conti­<lb/> nuò decre&longs;cit ij&longs;dem, quibus augebatur augmentis, ita <lb/> uelocitas à &longs;ummo augmento ad finem <expan abbr="u&longs;&qacute;">u&longs;que</expan>; motus con­<lb/> tinuò fit minor; &longs;imul verò &longs;umpta æqualis velocitati à <lb/> principio motus ad finem <expan abbr="augm&etilde;ti">augmenti</expan> collectæ: ut &longs;i in &longs;ig: 9. <lb/> <expan abbr="perpendiculũ">perpendiculum</expan> <emph type="italics"/>ae<emph.end type="italics"/> ex <emph type="italics"/>e<emph.end type="italics"/> recurrat in <emph type="italics"/>b,<emph.end type="italics"/> & ex <emph type="italics"/>b<emph.end type="italics"/> excurrat in <emph type="italics"/>&longs;i<emph.end type="italics"/> a&longs;­<lb/> &longs;umantur autem arcus <emph type="italics"/>bc. bd,<emph.end type="italics"/> & <emph type="italics"/>be.bf<emph.end type="italics"/> inter &longs;e æquales: <lb/> dico augmentum velocitatis in <emph type="italics"/>e<emph.end type="italics"/> eju&longs;dem decremento <lb/> in <emph type="italics"/>f,<emph.end type="italics"/> & augmentum velocitatis in <emph type="italics"/>c<emph.end type="italics"/> eju&longs;dem decremento <pb xlink:href="062/01/054.jpg"/>in <emph type="italics"/>d<emph.end type="italics"/> e&longs;&longs;e æquale. </s> <s id="N11BFD">Ducantur enim lineæ tangentes <emph type="italics"/>eg fg,<emph.end type="italics"/><lb/> & <emph type="italics"/>cb. dh:<emph.end type="italics"/> <expan abbr="erit&qacute;">eritque</expan>; inclinatio <emph type="italics"/>eg<emph.end type="italics"/> inclinationi <emph type="italics"/>fg,<emph.end type="italics"/> & inclina­<lb/> tio <emph type="italics"/>ch<emph.end type="italics"/> æqualis inclinationi <emph type="italics"/>dh<emph.end type="italics"/>: propterea quòd <expan abbr="ãguli">anguli</expan> <emph type="italics"/>ega.<lb/> fga,<emph.end type="italics"/> & anguli <emph type="italics"/>cha. dha<emph.end type="italics"/> &longs;unt æquales, impul&longs;us ergo gra­<lb/> uitatis in <emph type="italics"/>e<emph.end type="italics"/> eju&longs;dem impul&longs;ui in <emph type="italics"/>f,<emph.end type="italics"/> & impul&longs;us grauitatis <lb/> in <emph type="italics"/>c<emph.end type="italics"/> eju&longs;dem impul&longs;ui in <emph type="italics"/>d<emph.end type="italics"/> e&longs;t æqualis, ut con&longs;tat ex <lb/> prop. 14. </s> <s id="N11C5B">Quia ergo impul&longs;us æquales in <emph type="italics"/>e<emph.end type="italics"/> quidem & <emph type="italics"/>c<emph.end type="italics"/><lb/> augent, in <emph type="italics"/>f<emph.end type="italics"/> verò & <emph type="italics"/>d<emph.end type="italics"/> minuunt velocitatem motus, <expan abbr="erũt">erunt</expan> <lb/> æqualia velocitatis augmenta eju&longs;dem decremento; ac <lb/> proinde velocitas in motu collecta per æqualia &longs;uo aug<lb/> mento decrementa in quietem terminatur. </s> <s id="N11C81">Obijcies &longs;i <lb/> velocitas excur&longs;us &longs;imul &longs;umpta e&longs;t æqualis velocitati in <lb/> recur&longs;u collectæ, quia velocitas æqualis eodem vel æ­<lb/> quali tempore per &longs;patium mouet æquale, erunt excur­<lb/> &longs;us & recur&longs;us inter &longs;e æquales: ac proinde motus per­<lb/> pendiculi infinitus. </s> <s id="N11C8E">Re&longs;pondent quidam excur&longs;um e&longs;­<lb/> &longs;e minorem recur&longs;u: propterea quód illius motus à fu­<lb/> niculo perturbetur, cujus partes inæqualiter mouen­<lb/> tur: velociùs quidem centro propiores, minùs autem <lb/> velociter à centro remotiores. </s> <s id="N11C99">Dum ergo hæ re&longs;titant, <lb/> & minorum circulorum velocitatem morantur; illæ <lb/> præcurrere fe&longs;tinant: nece&longs;&longs;e ex illà luctâ impul&longs;um mi­<lb/> nui, ut non ni&longs;i ad minus interuallum &longs;e extendat. </s> <s id="N11CA2">Hu­<lb/> jus autem &longs;ignum e&longs;&longs;e illos &longs;inus, in quos funis contor­<lb/> quetur, & veluti fluctuat. </s> <s id="N11CA9">Verùm licet in fune, aut ca- <pb xlink:href="062/01/055.jpg"/>tenà, cujus partes ex &longs;e &longs;unt pondero&longs;æ, motus hic undo­<lb/> &longs;us &longs;ibi ip&longs;i &longs;it impedimento: non tamen hæc ratio lo­<lb/> cum habet in perquam &longs;ubtili & tenui&longs;simo filo, cujus <lb/> partes non ex &longs;e, verúm ex impul&longs;u ponderis appen&longs;i <lb/> <expan abbr="mou&etilde;tur">mouentur</expan>, <expan abbr="eo&qacute;">eoque</expan>; præci&longs;o aut abrupto à motu <expan abbr="conquie&longs;cũt">conquie&longs;cunt</expan>. <lb/> Deinde &longs;i ratio inæqualium circulorum perturbat il­<lb/> lum motum, quo perpendiculum à &longs;ua &longs;tatione procur<lb/> rit, turbabit <expan abbr="quo&qacute;">quoque</expan>; rationem motus, quam ad &longs;e habent <lb/> recur&longs;us: at verò hæc in æqualitas nihil ob&longs;tat, quò mi­<lb/> nùs recur&longs;us inter &longs;e &longs;int æquales: nihil ergo ob&longs;tabit, <lb/> quò minùs excur&longs;us <expan abbr="quo&qacute;">quoque</expan>; inter &longs;e &longs;int æquales. </s> <s id="N11CD8">Præte­<lb/> rea &longs;i funiculo <expan abbr="põdus">pondus</expan> accedat medio inter <expan abbr="hypemochliũ">hypomochlium</expan> <lb/> loco, motum accelerabit; non igitur ex &longs;e motum aut <lb/> pondus habet: propterea quòd negant maius pondus <lb/> velocitatem augere. </s> <s id="N11CEB">At verò &longs;i pars illa fili, quæ ob pon<lb/> dus acce&longs;&longs;orium velociùs mouetur, &longs;uo <expan abbr="quo&qacute;">quoque</expan>; pondere <lb/> mouebatur, fiet &longs;anè, ut continuà hac ponderis noui ac­<lb/> ce&longs;sione velocitas in infinitum augeatur. </s> <s id="N11CF8">Dicendum <lb/> ergò excur&longs;um perpendiculi continuò quidem mino­<lb/> rem fieri recur&longs;u; cau&longs;am verò hujus inæqualitatis non <lb/> in funiculo, &longs;ed in naturà circuli, in quo perpendiculum <lb/> mouetur, &longs;itam e&longs;&longs;e. </s> <s id="N11D03">Quia enim velocitas motus conti­<lb/> nuo fluxu augetur à grauitate, quæ ex inclinatione ma­<lb/> iori ob maiorem <expan abbr="viol&etilde;tiã">violentiam</expan> hypomochlii minùs grauitat, <lb/> impul&longs;us, quo perpendiculum recurrit, continuó qui- <pb xlink:href="062/01/056.jpg"/>dem maiora &longs;umit incrementa: quia tamen in quolibet <lb/> puncto circuli per lineas fit tangentes, quæ in recur&longs;u <lb/> continuó magis ac magis &longs;unt inclinatæ; erunt in quo­<lb/> libet puncto recur&longs;us minora huius velocitatis incre­<lb/> menta: ita nimirum ut &longs;i arcus &longs;umantur æquales, ma­<lb/> jor &longs;it acce&longs;sio velocitatis in arcu primo, quam in arcu <lb/> &longs;ecundo: & velocitas in arcu circuli collecta minor ve­<lb/> locitate in lineà rectà illi arcui æquali, quæ tangens &longs;it <lb/> principii eiu&longs;dem motus circularis. </s> <s id="N11D24">Sicuti verò in re­<lb/> cur&longs;u velocitas continuó & inæqualiter cre&longs;cit, ita in <lb/> excur&longs;u, quia motus violentus, proportionaliter decre­<lb/> &longs;cit, <expan abbr="fiunt&qacute;">fiuntque</expan>; huius decrementa æqualia illius incremen­<lb/> tis, prima nimirum ultimis; propterea quód <expan abbr="utra&qacute;">utraque</expan>; <expan abbr="fiũt">fiunt</expan> <lb/> ab eadem grauitate, quæ à principio excur&longs;us per lineas <lb/> grauitat magis inclinatas. </s> <s id="N11D3F">Quòd &longs;i ergo &longs;ola grauitas <lb/> minuat impul&longs;um, quia in æqualibus à &longs;tatione interual<lb/> lis, ob &longs;imilem inclinationem, æqualiter grauitat; erunt <lb/> ut arcus inter &longs;e, ita eiu&longs;dem grauitatis impul&longs;us: & <lb/> quia impul&longs;us contrarius tollit partem &longs;ibi æqualem, <lb/> erunt excur&longs;us & recur&longs;us inter &longs;e æquales. </s> <s id="N11D4C">At verò <lb/> quia non &longs;ola grauitas impul&longs;um minuit, &longs;ed etiam in­<lb/> clinatio motus; &longs;icuti enim grauitas extra lineam per­<lb/> pendicularem minùs grauitat, ita impul&longs;us extra line­<lb/> am &longs;ui motus, cuius terminus e&longs;t veluti centrum, mi <lb/> nús impellit &longs;uum mobile: quód &longs;i enim funda lapidem <pb xlink:href="062/01/057.jpg"/>excutiat, ad majus feretur interuallum, quam ut æquale <lb/> &longs;it illis rotationibus &longs;imul &longs;umptis, in quas idem lapis <lb/> fundæ alligatus reuoluitur. </s> <s id="N11D61">Quia ergo in illa gyratione <lb/> perpendiculi inclinatio motus continuò & æqualiter <lb/> mutatur, velocitas in excur&longs;u collecta eò minùs moue­<lb/> bit, quó major portio ex illâ inclinatione eidem dece­<lb/> dit. </s> <s id="N11D6C">Impul&longs;us ergo æqualis quia magis decre&longs;cit in ex­<lb/> cur&longs;u, quam idem augeatur in recur&longs;u, ad minus moue­<lb/> bit interuallum: ac proinde excur&longs;us perpendiculi eju&longs;­<lb/> dem recur&longs;ibus erunt minores. </s> </p> </subchap1> <subchap1 id="N11D75"> <p id="N11D76" type="main"> <s id="N11D78"><emph type="center"/>Propo&longs;itio XXI.<emph.end type="center"/></s> </p> <p id="N11D7F" type="main"> <s id="N11D81"><emph type="italics"/>Excur&longs;us grauium à termino motus in circulum terminatur, cu­<lb/> jus &longs;emidiameter e&longs;t di&longs;tantià inter principium motus & mundi <lb/> centrum.<emph.end type="italics"/></s> </p> <p id="N11D8C" type="main"> <s id="N11D8E">ATermino motus <emph type="italics"/>a.i.h.g.f.e<emph.end type="italics"/> in lineà perpendiculari, & <lb/> lineis ad horizontem inclinatis producantur lineæ <lb/> excur&longs;ui æquales lineis decur&longs;us, nimirum <emph type="italics"/>ap<emph.end type="italics"/> ip&longs;i <emph type="italics"/>ab, io<emph.end type="italics"/><lb/> verò ip&longs;i <emph type="italics"/>ib<emph.end type="italics"/> æqualis, dico puncta <emph type="italics"/>po<emph.end type="italics"/> e&longs;&longs;e in peripheria cir­<lb/> culi, cujus &longs;emidiameter <emph type="italics"/>ab<emph.end type="italics"/> di&longs;tantia inter principium <lb/> motus & mundi centrum. </s> <s id="N11DBE">Ducatur enim linea <emph type="italics"/>ao:<emph.end type="italics"/> quia <lb/> ergo lineæ <emph type="italics"/>bi. io<emph.end type="italics"/> inter &longs;e &longs;unt æquales, & anguli <emph type="italics"/>bia. oia<emph.end type="italics"/><lb/> recti, erit angulus <emph type="italics"/>abi<emph.end type="italics"/> angulo <emph type="italics"/>aoi,<emph.end type="italics"/> & latus <emph type="italics"/>ab<emph.end type="italics"/> lateri <emph type="italics"/>ao<emph.end type="italics"/><lb/> æquale: e&longs;t autem linea <emph type="italics"/>ap<emph.end type="italics"/> æqualis eidem <emph type="italics"/>ab,<emph.end type="italics"/> puncta er­ <pb xlink:href="062/01/058.jpg"/>go <emph type="italics"/>po<emph.end type="italics"/> &longs;unt in peripherià circuli, cujus centrum <emph type="italics"/>a,<emph.end type="italics"/> à quo <lb/> æqualiter ab&longs;i&longs;tunt illæ lineæ. </s> <s id="N11E0D">Simili modo o&longs;tende­<lb/> mus puncta <emph type="italics"/>n.m.l<emph.end type="italics"/> e&longs;&longs;e in peripheriá eju&longs;dem circuli, pro­<lb/> <figure id="id.062.01.058.1.jpg" xlink:href="062/01/058/1.jpg"/><lb/> pterea quód lineæ <emph type="italics"/>an. am. al,<emph.end type="italics"/> ba&longs;es nimirum æqualium <lb/> triangulorum, &longs;unt æquales lineæ <emph type="italics"/>ab.<emph.end type="italics"/> Excur&longs;us ergo <lb/> grauium à termino motus in <expan abbr="circulũ">circulum</expan> terminantur &c. </s> </p> </subchap1> <subchap1 id="N11E35"> <p id="N11E36" type="main"> <s id="N11E38"><emph type="center"/>Propo&longs;itio XII.<emph.end type="center"/></s> </p> <p id="N11E3F" type="main"> <s id="N11E41"><emph type="italics"/>Motus per arcus eju&longs;dem circuli rationem habet, quam &longs;inus an<lb/> guli dupli illorum angulorum, qui complementa &longs;unt inclinationis <lb/> cordarum.<emph.end type="italics"/></s> </p> <p id="N11E4C" type="main"> <s id="N11E4E">AS&longs;umantur arcus <emph type="italics"/>bdi. bdc,<emph.end type="italics"/> & <expan abbr="ducãtur">ducantur</expan> cordæ <emph type="italics"/>bi. bc,<emph.end type="italics"/><lb/> <expan abbr="erunt&qacute;">eruntque</expan>; anguli <emph type="italics"/>abi. abc<emph.end type="italics"/> anguli inclinationis corda- <pb xlink:href="062/01/059.jpg"/>rum <emph type="italics"/>bi. bc,<emph.end type="italics"/> & horum complementa <emph type="italics"/>bai. bac,<emph.end type="italics"/> propterea <lb/> quód anguli <emph type="italics"/>aib. acb<emph.end type="italics"/> in &longs;emicirculo &longs;unt recti. </s> <s id="N11E84">Tan­<lb/> gant ergo circulum in punctis <emph type="italics"/>ic<emph.end type="italics"/> lineæ <emph type="italics"/>ib. cg:<emph.end type="italics"/> & ex cen­<lb/> tro <emph type="italics"/>k<emph.end type="italics"/> educantur lineæ <emph type="italics"/>ki. kc<emph.end type="italics"/> perpendiculares ad <emph type="italics"/>ih.cg.<emph.end type="italics"/><lb/> quia ergo anguli <emph type="italics"/>khi. kge<emph.end type="italics"/> &longs;unt anguli inclinationum, e­<lb/> <figure id="id.062.01.059.1.jpg" xlink:href="062/01/059/1.jpg"/><lb/> runt anguli <emph type="italics"/>bki. gkc<emph.end type="italics"/> illorum complementa : angulo­<lb/> rum verò <emph type="italics"/>bai. bac<emph.end type="italics"/> ad peripheriam dupli: dico velocita­<lb/> tem motus in <emph type="italics"/>i<emph.end type="italics"/> ad velocitatem motus in <emph type="italics"/>c<emph.end type="italics"/> e&longs;&longs;e ut &longs;inum <lb/> anguli <emph type="italics"/>bki<emph.end type="italics"/> &longs;inum anguli <emph type="italics"/>bkc<emph.end type="italics"/> Quia enim motus in <lb/> quolibet puncto circuli per lineam fit tangentem per <pb xlink:href="062/01/060.jpg"/>prop: 4. erit ratio velocitatis in <emph type="italics"/>i<emph.end type="italics"/> & <emph type="italics"/>c<emph.end type="italics"/> quæ velocitas e&longs;t <lb/> tangentium <emph type="italics"/>ih. cg<emph.end type="italics"/>: e&longs;t autem velocitas in <emph type="italics"/>ih<emph.end type="italics"/> ad veloci­<lb/> tatem in <emph type="italics"/>cg<emph.end type="italics"/> ut &longs;inus <emph type="italics"/>bl<emph.end type="italics"/> anguli <emph type="italics"/>bki<emph.end type="italics"/> ad &longs;inum <emph type="italics"/>bm<emph.end type="italics"/> anguli <lb/> <emph type="italics"/>bkc<emph.end type="italics"/> per prop: 14. velocitas ergo in arcu <emph type="italics"/>ib<emph.end type="italics"/> ad velocita­<lb/> tem in arcu <emph type="italics"/>cb<emph.end type="italics"/> ut &longs;inus anguli <emph type="italics"/>bki<emph.end type="italics"/> ad &longs;inum anguli <emph type="italics"/>bkc,<emph.end type="italics"/><lb/> &longs;inus nimirum anguli dupli illorum angulorum, qui <lb/> complementa &longs;unt inclinationis cordarum <emph type="italics"/>bi.bc,<emph.end type="italics"/> quod <lb/> erat o&longs;tendendum. </s> </p> </subchap1> <subchap1 id="N11F4A"> <p id="N11F4B" type="main"> <s id="N11F4D"><emph type="center"/>Propo&longs;itio XXIII.<emph.end type="center"/></s> </p> <p id="N11F54" type="main"> <s id="N11F56"><emph type="italics"/>Perpendiculum per arcus æquales eju&longs;dem circuli inæquali <lb/> tempore mouetur: majori quidem propè &longs;tationem, minori verò per <lb/> arcus, qui magis ab&longs;unt à &longs;tatione.<emph.end type="italics"/></s> </p> <p id="N11F61" type="main"> <s id="N11F63">SInt duo arcus <emph type="italics"/>bd.d&longs;<emph.end type="italics"/> inter &longs;e æquales: <expan abbr="at&qacute;">atque</expan> <emph type="italics"/>bd<emph.end type="italics"/> propior, <lb/> <emph type="italics"/>df<emph.end type="italics"/> verò remotior à &longs;tatione <emph type="italics"/>b,<emph.end type="italics"/> dico motum in <emph type="italics"/>df<emph.end type="italics"/> e&longs;&longs;e <lb/> velociorem motu in <emph type="italics"/>db.<emph.end type="italics"/> Quia enim motus per arcus e­<lb/> ju&longs;dem circuli rationem habent, quam &longs;inus, per prop. <lb/> 22. e&longs;t autem &longs;inus <emph type="italics"/>bg<emph.end type="italics"/> major &longs;inu <emph type="italics"/>bt,<emph.end type="italics"/> erit velocior motus <lb/> in <emph type="italics"/>f<emph.end type="italics"/> quam in d: & quia arcus <emph type="italics"/>bd.df<emph.end type="italics"/> &longs;unt æquales, minori <lb/> tempore mouebitur in arcu <emph type="italics"/>df<emph.end type="italics"/> remotiore, quam in ar­<lb/> cu <emph type="italics"/>bd<emph.end type="italics"/> &longs;tationi propiore per prop. 6. </s> <s id="N11FC0">Dices velocitas mo­<lb/> tus ex <emph type="italics"/>f<emph.end type="italics"/> in <emph type="italics"/>d<emph.end type="italics"/> augetur inæqualiter, <expan abbr="fiunt&qacute;">fiuntque</expan>; ad &longs;ingula pun­<lb/> cta minora incrementa; mutatà ergo velocitate non ea- <pb xlink:href="062/01/061.jpg"/>dem erit ratio motus. </s> <s id="N11FDB">Re&longs;pondeo velocitatem ex <emph type="italics"/>f<emph.end type="italics"/> in <emph type="italics"/>d<emph.end type="italics"/><lb/> inæqualiter quidem augeri, & continuó minora fieri in­<lb/> crementa, per prop: 20. at verò velocitatem ex <emph type="italics"/>f<emph.end type="italics"/> in <emph type="italics"/>d<emph.end type="italics"/> col­<lb/> <figure id="id.062.01.061.1.jpg" xlink:href="062/01/061/1.jpg"/><lb/> lectam e&longs;&longs;e majorem velocitate ex <emph type="italics"/>d<emph.end type="italics"/> in <emph type="italics"/>b<emph.end type="italics"/> collectà. </s> <s id="N1200E">Quia <lb/> enim velocitatis ex <emph type="italics"/>d<emph.end type="italics"/> in <emph type="italics"/>b<emph.end type="italics"/> continuò <expan abbr="quo&qacute;">quoque</expan>; minora fiunt <lb/> incrementa; velocitas inde collecta erit minor veloci<lb/> tate ab æqualibus ip&longs;i <emph type="italics"/>d<emph.end type="italics"/> incrementis collectá: at verò <lb/> velocitas in <emph type="italics"/>f<emph.end type="italics"/> majora ex <emph type="italics"/>f<emph.end type="italics"/> in <emph type="italics"/>d<emph.end type="italics"/> &longs;umit incrementa, quam <lb/> ut æqualia &longs;int velocitati in <emph type="italics"/>d:<emph.end type="italics"/> velocitas ergo ex <emph type="italics"/>f<emph.end type="italics"/> in <emph type="italics"/>d<emph.end type="italics"/> col­<lb/> lecta e&longs;t multó major velocitate ex <emph type="italics"/>d<emph.end type="italics"/> in <emph type="italics"/>b<emph.end type="italics"/> collecta, ac pro <lb/> inde minori tempore illos arcus perambulat æquales. </s> </p> <pb xlink:href="062/01/062.jpg"/> <p id="N12068" type="main"> <s id="N1206A"><emph type="center"/><emph type="italics"/>Lemma I.<emph.end type="italics"/><emph.end type="center"/></s> </p> <p id="N12075" type="main"> <s id="N12077"><emph type="italics"/>Si a&longs;&longs;umantur arcus in ratione continuà, quam habent &longs;inus <lb/> intercipientes illos arcus, major erit proportio inter arcus po&longs;terio­<lb/> res, quam inter arcus priores.<emph.end type="italics"/></s> </p> <p id="N12082" type="main"> <s id="N12084">Sit arcus <emph type="italics"/>bd,<emph.end type="italics"/> &longs;inu <emph type="italics"/>ab<emph.end type="italics"/> & <emph type="italics"/>cd<emph.end type="italics"/> interceptus, in eadem ratio­<lb/> ne ad arcum <emph type="italics"/>df<emph.end type="italics"/> &longs;inu <emph type="italics"/>cd<emph.end type="italics"/> & <emph type="italics"/>ef<emph.end type="italics"/> interceptum, in quà &longs;i­<lb/>nus <emph type="italics"/>ab<emph.end type="italics"/> ad &longs;inum <emph type="italics"/>cd:<emph.end type="italics"/> & rur&longs;um arcus <emph type="italics"/>df<emph.end type="italics"/> àd arcum <emph type="italics"/>fh,<emph.end type="italics"/> ut <lb/> &longs;inus <emph type="italics"/>cd<emph.end type="italics"/> ad &longs;inum <emph type="italics"/>ef<emph.end type="italics"/>; dico proportionem tam inter &longs;i­<lb/> nus, quam inter arcus illis &longs;inubus interceptos conti­<lb/> nuò fieri majores, nimirum proportionem &longs;inus <emph type="italics"/>cd<emph.end type="italics"/> ad <lb/> &longs;inum <emph type="italics"/>ef,<emph.end type="italics"/> & arcus <emph type="italics"/>df<emph.end type="italics"/> ad arcum <emph type="italics"/>fh<emph.end type="italics"/> e&longs;&longs;e majorem, quam <lb/> &longs;inus <emph type="italics"/>ab<emph.end type="italics"/> ad <emph type="italics"/>cd,<emph.end type="italics"/> aut arcus <emph type="italics"/>bd<emph.end type="italics"/> ad <emph type="italics"/>df.<emph.end type="italics"/> A&longs;&longs;umatur enim ar­<lb/> cus <emph type="italics"/>bd<emph.end type="italics"/> grad: 9. <expan abbr="erit&qacute;">eritque</expan>; <emph type="italics"/>ab<emph.end type="italics"/> 100000. &longs;inus totus, <emph type="italics"/>cd<emph.end type="italics"/> autem <lb/> <emph type="italics"/>98769.<emph.end type="italics"/> &longs;inus grad. <emph type="italics"/>81.<emph.end type="italics"/> quòd &longs;i ergo fiat ut <emph type="italics"/>ab<emph.end type="italics"/> &longs;inus totus ad <lb/> 9, ita &longs;inus grad. <emph type="italics"/>81.<emph.end type="italics"/> ad aliud, prodibit arcus 8 in datâ ra­<lb/> tione, quam habet &longs;inus <emph type="italics"/>ab<emph.end type="italics"/> ad <emph type="italics"/>cd,<emph.end type="italics"/> &longs;i minutias omittamus. <lb/> Simili modo &longs;i fiat ut &longs;inus <emph type="italics"/>cd<emph.end type="italics"/> grad: <emph type="italics"/>81<emph.end type="italics"/> ad arcum <emph type="italics"/>df<emph.end type="italics"/> grad. <lb/> 8, ita &longs;inus <emph type="italics"/>ef<emph.end type="italics"/> grad.73 ad aliud, prodibit arcus <emph type="italics"/>fh<emph.end type="italics"/> grad. 7. <lb/> <expan abbr="at&qacute;">atque</expan>; ita con&longs;equenter inuenientur arcus reliqui, quos di<lb/> co majorem rationem habere ad arcus proximè &longs;equen­<lb/> tes, quam ad hos habeant arcus proximè antecedentes. <lb/> E&longs;t enim major proportio grad. 8 ad 7, quam grad. 9 ad <lb/> 8: & grad. 4 ad 3, quam grad. 5 ad 4. <expan abbr="at&qacute;">atque</expan>, eadem e&longs;t ratio <pb xlink:href="062/01/063.jpg"/>in arcubus reliquis. </s> <s id="N12187">Si ergo a&longs;&longs;umantur arcus in ratio­<lb/> ne continuâ, quam habent &longs;inus intercipientes illos ar­<lb/> <figure id="id.062.01.063.1.jpg" xlink:href="062/01/063/1.jpg"/><lb/> cus, major e&longs;t proportio inter arcus po&longs;teriores, quam <lb/> inter arcus priores. </s> </p> <p id="N12197" type="main"> <s id="N12199"><emph type="center"/><emph type="italics"/>Lemma II.<emph.end type="italics"/><emph.end type="center"/></s> </p> <p id="N121A4" type="main"> <s id="N121A6"><emph type="italics"/>Si quadrans circuli diuidatur in quot libet arcus æquales, mino­<lb/> res verò quam in ratione &longs;ubtriplá ad &longs;inum totum, habebunt &longs;inus <lb/> proximi intercipientes illos arcus minorem rationem quam duplam.<emph.end type="italics"/></s> </p> <p id="N121B1" type="main"> <s id="N121B3">IN fig: 6. </s> <s id="N121B6">Diuidatur quadrans circuli bifariam in <emph type="italics"/>h<emph.end type="italics"/> in <lb/> arcum <emph type="italics"/>bh<emph.end type="italics"/> gra: 60, & arcum <emph type="italics"/>ho<emph.end type="italics"/> grad: 30, <expan abbr="erit&qacute;">eritque</expan>, arcus <emph type="italics"/>bh<emph.end type="italics"/><lb/> maior &longs;inu toto: propterea quòd quadrans majo­<lb/> rem ad hunc, quam ad arcum grad. 60 habeat <expan abbr="ration&etilde;">rationem</expan>. <lb/> Quòd &longs;i ergo arcus <emph type="italics"/>bh<emph.end type="italics"/> &longs;ubdiuidatur in alios tres arcus <pb xlink:href="062/01/064.jpg"/><emph type="italics"/>bd. df.fh<emph.end type="italics"/> inter &longs;e æquales, minor erit proportio &longs;inus <emph type="italics"/>ab<emph.end type="italics"/><lb/> ad arcum <emph type="italics"/>bd<emph.end type="italics"/> quam tripla, habebit ergo ad arcum mino­<lb/> rem, quam &longs;it <emph type="italics"/>bd,<emph.end type="italics"/> rationem triplam, qui &longs;it <emph type="italics"/>bq,<emph.end type="italics"/> <expan abbr="at&qacute;">atque</expan>; hunc <lb/> intercipiens &longs;inus <emph type="italics"/>pq<emph.end type="italics"/> maior &longs;inu <emph type="italics"/>cd:<emph.end type="italics"/> dico &longs;inus proximos <lb/> intercipientes illos arcus, nimirum <emph type="italics"/>ab<emph.end type="italics"/> & <emph type="italics"/>cd,<emph.end type="italics"/> aut <emph type="italics"/>cd<emph.end type="italics"/> & <emph type="italics"/>ef.<emph.end type="italics"/><lb/> aut <emph type="italics"/>ef<emph.end type="italics"/> & <emph type="italics"/>gh<emph.end type="italics"/> minorem rationem habere quam duplam. <lb/> Erit enim &longs;inus <emph type="italics"/>cd.<emph.end type="italics"/> grad: 70, & &longs;inus <emph type="italics"/>ef<emph.end type="italics"/> grad: 50. & &longs;inus <emph type="italics"/>gh<emph.end type="italics"/><lb/> gtad: 30. at verò &longs;inus totus <emph type="italics"/>ab<emph.end type="italics"/> 100000. ad &longs;inum <emph type="italics"/>cd<emph.end type="italics"/> grad. <lb/> 70, nimirum ad 93969, & &longs;inus <emph type="italics"/>ef<emph.end type="italics"/> grad: 50 ad &longs;inum <emph type="italics"/>gh<emph.end type="italics"/><lb/> grad. 30 ide&longs;t. 76604. ad 50000 minorem habet <expan abbr="ration&etilde;">rationem</expan> <lb/> quam duplam. </s> <s id="N12279">Quod idem de aliis &longs;inubus proximè in­<lb/> tercipientibus illos arcus æquales, ex tabulis &longs;inuum <lb/> con&longs;tabit. </s> <s id="N12280">Quia verò &longs;inus propiores minorem ha­<lb/> bent rationem, erit minor proportio <emph type="italics"/>ab<emph.end type="italics"/> ad <emph type="italics"/>pq<emph.end type="italics"/> quam ad <lb/> <emph type="italics"/>cd.<emph.end type="italics"/> ac proinde minor quam dupla. </s> <s id="N12299">Si ergo quadrans cir­<lb/> culi diuidatur in quotlibet arcus æquales, minores verò <lb/> quam in ratione &longs;ubtriplá ad &longs;inum totum, habebunt &longs;i­<lb/> nus proximi intercipientes illos arcus minorem ratio­<lb/> nem quam duplam. </s> </p> <p id="N122A4" type="main"> <s id="N122A6"><emph type="center"/><emph type="italics"/>Lemma III.<emph.end type="italics"/><emph.end type="center"/></s> </p> <p id="N122B1" type="main"> <s id="N122B3"><emph type="italics"/>Si a&longs;&longs;umantur arcus in ratione continuá, quam habent &longs;inus <lb/> intercipientes illos arcus, <expan abbr="habeat&qacute;">habeatque</expan>; &longs;inus primus ad arcum interce­<lb/> ptum majorem rationem quam triplam, habebunt &longs;inus proximi ra<lb/> tionem ad &longs;e minorem quam duplam.<emph.end type="italics"/></s> </p> <pb xlink:href="062/01/065.jpg"/> <p id="N122C7" type="main"> <s id="N122C9">VT &longs;i arcus <emph type="italics"/>bd<emph.end type="italics"/> ad arcum <emph type="italics"/>df<emph.end type="italics"/> &longs;it ut &longs;inus <emph type="italics"/>ab<emph.end type="italics"/> ad &longs;inum <emph type="italics"/>cd:<emph.end type="italics"/><lb/> & rur&longs;um ut &longs;inus <emph type="italics"/>cd<emph.end type="italics"/> ad <emph type="italics"/>ef,<emph.end type="italics"/> ita arcus <emph type="italics"/>df<emph.end type="italics"/> ad <emph type="italics"/>fh,<emph.end type="italics"/> habeat <lb/> verò &longs;inus <emph type="italics"/>ab<emph.end type="italics"/> ad arcum <emph type="italics"/>bd<emph.end type="italics"/> majorem rationem quam tri<lb/> plam, dico &longs;inus intercipientes illos arcus rationem ad <lb/> &longs;e habere minorem quam duplam. </s> <s id="N1230F">Quia enim &longs;inus <emph type="italics"/>ab<emph.end type="italics"/><lb/> <figure id="id.062.01.065.1.jpg" xlink:href="062/01/065/1.jpg"/><lb/>> e&longs;t major &longs;inu <emph type="italics"/>cd<emph.end type="italics"/> erit <expan abbr="quo&qacute;">quoque</expan>; arcus <emph type="italics"/>bd<emph.end type="italics"/> major arcu <emph type="italics"/>df<emph.end type="italics"/>: fiat <lb/> ergo arcus <emph type="italics"/>bd<emph.end type="italics"/> æqualis arcui <emph type="italics"/>ds,<emph.end type="italics"/> <expan abbr="erit&qacute;">eritque</expan>; &longs;inus <emph type="italics"/>rs<emph.end type="italics"/> minor &longs;inu <lb/> <emph type="italics"/>cd<emph.end type="italics"/>: e&longs;t autem per Lemma 2. minor proportio eju&longs;dem <lb/> &longs;inus <emph type="italics"/>cd<emph.end type="italics"/> ad &longs;inum <emph type="italics"/>rs<emph.end type="italics"/> quam dupla; multò ergo minor ad <lb/> &longs;inum majorem <emph type="italics"/>ef<emph.end type="italics"/> quam dupla. </s> <s id="N1236C">Quod idem de aliis &longs;i­<lb/> nubus o&longs;tendemus. </s> <s id="N12371">Si ergo a&longs;&longs;umantur arcus in ratio­<lb/> ne continuà &c. </s> </p> <p id="N12376" type="main"> <s id="N12378"><emph type="center"/><emph type="italics"/>Lemma IV.<emph.end type="italics"/><emph.end type="center"/></s> </p> <p id="N12383" type="main"> <s id="N12385"><emph type="italics"/>Si a&longs;&longs;umantur arcus in ratione continuà, quam habent &longs;inus in<emph.end type="italics"/> <pb xlink:href="062/01/066.jpg"/><emph type="italics"/>tercipientes illos arcus, <expan abbr="habeat&qacute;">habeatque</expan>; &longs;inus primus ad arcum interce­<lb/> ptum majorem rationem quam triplam, erit &longs;inus &longs;ecundus major <lb/> illo arcu intercepto.<emph.end type="italics"/></s> </p> <p id="N1239D" type="main"> <s id="N1239F">QVia enim ut &longs;inus ita arcus intercepti; habent <expan abbr="aut&etilde;">autem</expan> <lb/> &longs;inus proximi rationem ad &longs;e minorem quam du­<lb/> plam, per Lemma 3; habebunt <expan abbr="quo&qacute;">quoque</expan>; arcus minorem <lb/> rationem quam duplam. </s> <s id="N123B0">Et quia ut &longs;inus ad &longs;inum, ita <lb/> arcus ad arcum, erit permutando ut &longs;inus primus ad ar­<lb/> cum primum, ita &longs;inus &longs;ecundus ad arcum &longs;ecundum: <lb/> habet autem &longs;inus primus ad arcum primum majorem <lb/> rationem quam triplam, habebit <expan abbr="quo&qacute;">quoque</expan>; &longs;inus &longs;ecundus <lb/> ad arcum &longs;ecundum majorem rationem quam triplam. <lb/> Quia ergo ad eundem arcum &longs;ecundum majorem rati­<lb/> onem habet &longs;inus &longs;ecundus, quam arcus primus, erit &longs;i­<lb/> nus &longs;ecundus major quam arcus primus, hoc e&longs;t quam <lb/> arcus interceptus. </s> </p> </subchap1> <subchap1 id="N123C9"> <p id="N123CA" type="main"> <s id="N123CC"><emph type="center"/>Propo&longs;itio XXIV.<emph.end type="center"/></s> </p> <p id="N123D3" type="main"> <s id="N123D5"><emph type="italics"/>Perpendiculum ex quolibet puncto eju&longs;dem circuli æquali tem­<lb/> pore recurrit in &longs;uam &longs;tationem.<emph.end type="italics"/></s> </p> <p id="N123DE" type="main"> <s id="N123E0">IN circulo <emph type="italics"/>tuxb<emph.end type="italics"/> &longs;int duo perpendicula <emph type="italics"/>ab. ad<emph.end type="italics"/> extra &longs;u<lb/> am &longs;tationem <emph type="italics"/>at,<emph.end type="italics"/> <expan abbr="habeat&qacute;">habeatque</expan>; &longs;inus totus <emph type="italics"/>ab<emph.end type="italics"/> ad interual­<lb/> lum <emph type="italics"/>bd<emph.end type="italics"/> majorem rationem quam triplá, dico <expan abbr="utrum&qacute;">utrumque</expan>; <pb xlink:href="062/01/067.jpg"/><expan abbr="cod&etilde;">codem</expan> tempore recurrere in <emph type="italics"/>t.<emph.end type="italics"/> Erit enim velocitas in <emph type="italics"/>b<emph.end type="italics"/> ad <lb/> velocitatem in <emph type="italics"/>d,<emph.end type="italics"/> ut &longs;inus <emph type="italics"/>ab<emph.end type="italics"/> ad &longs;inum <emph type="italics"/>cd<emph.end type="italics"/> per prop: 22. <lb/> quòd &longs;i ergo in illo recur&longs;u eadem ratio velocitatis con­<lb/> &longs;taret, aut &longs;imilibus augeretur incrementis, quia major <lb/> proportio arcus <emph type="italics"/>bt<emph.end type="italics"/> ad arcum <emph type="italics"/>dt,<emph.end type="italics"/> quam &longs;inus <emph type="italics"/>ab<emph.end type="italics"/> ad &longs;inum <lb/> <emph type="italics"/>cd,<emph.end type="italics"/> quo quidem tempore perpendiculum <emph type="italics"/>ab<emph.end type="italics"/> recurrit <lb/> in <emph type="italics"/>t,<emph.end type="italics"/> eodem perpendiculum <emph type="italics"/>cd<emph.end type="italics"/> procurreret extra <emph type="italics"/>t,<emph.end type="italics"/> tanto <lb/> interuallo, quantus e&longs;t exce&longs;&longs;us hujus proportioni<emph type="italics"/>s.<emph.end type="italics"/> At <lb/> verò quia ad &longs;ingula puncta mutatà &longs;inuum ratione, <lb/> mutatur <expan abbr="quo&qacute;">quoque</expan>; ratio velocitatis: major enim proportio <lb/> <emph type="italics"/>cd<emph.end type="italics"/> ad <emph type="italics"/>ef,<emph.end type="italics"/> quam <emph type="italics"/>ab<emph.end type="italics"/> ad <emph type="italics"/>cd<emph.end type="italics"/> per lem: 1. erit <expan abbr="quo&qacute;">quoque</expan>; major pro­<lb/> portio arcus <emph type="italics"/>df<emph.end type="italics"/> ad <emph type="italics"/>fh,<emph.end type="italics"/> quam arcus <emph type="italics"/>bd<emph.end type="italics"/> ad <emph type="italics"/>df.<emph.end type="italics"/> quia ergo <lb/> cum hoc &longs;inuum & arcuum decremento continuó au­<lb/> getur illorum proportio, minuitur verò di&longs;tantia ter­<lb/> minorum motus, nece&longs;&longs;e demum ab&longs;umi & deficere, <expan abbr="il-lo&qacute;">il­<lb/> loque</expan>; deficiente <expan abbr="motũ">motum</expan> coæquari: quod non ni&longs;i in pun­<lb/> cto <emph type="italics"/>t<emph.end type="italics"/> dico po&longs;&longs;e fieri. </s> <s id="N124CE">Concurrat enim, &longs;i fieri pote&longs;t, <lb/> <expan abbr="utrum&qacute;">utrumque</expan>; perpendiculum in <emph type="italics"/>q<emph.end type="italics"/> minori, quam <emph type="italics"/>t,<emph.end type="italics"/> interuallo: <lb/> & quia non ante <emph type="italics"/>q<emph.end type="italics"/> fit concur&longs;us, &longs;i perpendiculum <emph type="italics"/>ab<emph.end type="italics"/><lb/> &longs;tatuatur in <emph type="italics"/>m<emph.end type="italics"/>; erit perpendiculum <emph type="italics"/>ad<emph.end type="italics"/> inter <emph type="italics"/>m<emph.end type="italics"/> & <emph type="italics"/>q<emph.end type="italics"/>: &longs;it er­<lb/> go in <emph type="italics"/>o.<emph.end type="italics"/> quia verò ut <emph type="italics"/>lm<emph.end type="italics"/> ad <emph type="italics"/>no,<emph.end type="italics"/> ita velocitas motus in <emph type="italics"/>m<emph.end type="italics"/><lb/> ad velocitatem motus in <emph type="italics"/>o<emph.end type="italics"/>: aut arcus <emph type="italics"/>mo<emph.end type="italics"/> ad arcum <emph type="italics"/>oq<emph.end type="italics"/><lb/> eandem habet rationem, quam &longs;inus <emph type="italics"/>lm<emph.end type="italics"/> ad &longs;inum <emph type="italics"/>no,<emph.end type="italics"/><lb/> aut non eandem, &longs;ed vel maiorem vel minorem: habe­<lb/> at primúm eandem rationem. </s> <s id="N12547">Dum ergo perpendicu­ <pb xlink:href="062/01/068.jpg"/>lum <emph type="italics"/>ad<emph.end type="italics"/> mouetur ex <emph type="italics"/>o<emph.end type="italics"/> in <emph type="italics"/>q,<emph.end type="italics"/> perpendiculum <emph type="italics"/>ab<emph.end type="italics"/> ex <emph type="italics"/>m<emph.end type="italics"/> in <emph type="italics"/>o<emph.end type="italics"/><lb/> promouebitur: non igitur concur&longs;us fit in <emph type="italics"/><expan abbr="q.">que</expan><emph.end type="italics"/> Simili mo <lb/> do &longs;i <emph type="italics"/>mo<emph.end type="italics"/> ad <emph type="italics"/>oq<emph.end type="italics"/> majorem habeat rationem, perpendicu­<lb/> <figure id="id.062.01.068.1.jpg" xlink:href="062/01/068/1.jpg"/><lb/> lum <emph type="italics"/>ad<emph.end type="italics"/> ex <emph type="italics"/>o<emph.end type="italics"/> majori quam <emph type="italics"/>oq<emph.end type="italics"/> interuallo abducetur. </s> <s id="N125A4">Si <lb/> demum minorem habeat rationem, auferatur pars pro­<lb/> portionalis, <expan abbr="at&qacute;">atque</expan>; rur&longs;um alia, <expan abbr="quou&longs;&qacute;">quou&longs;que</expan>; in <emph type="italics"/>q<emph.end type="italics"/> &longs;it æqualis aut <lb/> minor: & tum rur&longs;um o&longs;tendemus perpendiculum <emph type="italics"/>ad<emph.end type="italics"/><lb/> præcurrere: non igitur concur&longs;us in minori quam <emph type="italics"/>t<emph.end type="italics"/> in­<lb/> teruallo e&longs;&longs;e pote&longs;t. </s> <s id="N125CA">Quód &longs;i autem <emph type="italics"/>ad<emph.end type="italics"/> dicatur præcur­<lb/> rere in <emph type="italics"/>t,<emph.end type="italics"/> erit <emph type="italics"/>ab<emph.end type="italics"/> in aliquo puncto minús remoto, verbi <lb/> gratia<emph type="italics"/>s<emph.end type="italics"/>: igitur cùm <emph type="italics"/>ab<emph.end type="italics"/> ferebatur in <emph type="italics"/>q, ad<emph.end type="italics"/> necdum atti­<lb/> git <emph type="italics"/>t<emph.end type="italics"/>: erit ergo in aliquo puncto inter <emph type="italics"/>t<emph.end type="italics"/> & <emph type="italics"/>q,<emph.end type="italics"/> quod &longs;it <emph type="italics"/>s.<emph.end type="italics"/> Et <lb/> quia ut &longs;inus <emph type="italics"/>pq<emph.end type="italics"/> ad &longs;inum <emph type="italics"/>rs,<emph.end type="italics"/> ita motus in <emph type="italics"/>q<emph.end type="italics"/> ad motum in <lb/> <emph type="italics"/>s<emph.end type="italics"/>: e&longs;t autem &longs;inus <emph type="italics"/>pq<emph.end type="italics"/> major quam <emph type="italics"/>rs,<emph.end type="italics"/> erit arcus proporti­ <pb xlink:href="062/01/069.jpg"/>onalis minor qua <emph type="italics"/>qs:<emph.end type="italics"/> quia verò &longs;inus <emph type="italics"/>rs<emph.end type="italics"/> e&longs;t maior arcu <emph type="italics"/>sq<emph.end type="italics"/><lb/> per Lemma 4. minor autem arcu <emph type="italics"/>ts,<emph.end type="italics"/> erit arcus <emph type="italics"/>ts<emph.end type="italics"/> multò <lb/> major arcu proportionali: po&longs;ito ergo perpendiculo <emph type="italics"/>ab<emph.end type="italics"/><lb/> in <emph type="italics"/>s,<emph.end type="italics"/> perpendiculum <emph type="italics"/>ad<emph.end type="italics"/> necdum e&longs;&longs;e pote&longs;t in <emph type="italics"/>t.<emph.end type="italics"/> Quod <lb/> idem de quouis alio puncto o&longs;tendemus. </s> <s id="N12677">Quia ergo <lb/> perpendiculum <expan abbr="ne&qacute;">neque</expan>; propiùs concurrere, <expan abbr="ne&qacute;">neque</expan>; præcur­<lb/> rere pote&longs;t, concurret nece&longs;&longs;ariò in <emph type="italics"/>t.<emph.end type="italics"/> Poterit eadem ra­<lb/> tio in hunc modum fieri: motus &longs;e habent ut &longs;inus <expan abbr="at&qacute;">atque</expan>; <lb/> horum interualla, &longs;eu arcus &longs;inubus intercepti: hæc au­<lb/> tem interualla continuò fiunt minora, in puncto verò <lb/> <emph type="italics"/>t<emph.end type="italics"/> nulla: igitur & motus continuó minori, in puncto ve­<lb/> rò <emph type="italics"/>t<emph.end type="italics"/> nullo <expan abbr="ab&longs;i&longs;tũt">ab&longs;i&longs;tunt</expan> interuallo, Quòd &longs;i a&longs;&longs;umantur plura <lb/> puncta <emph type="italics"/>b.d. f.h.k.m.<emph.end type="italics"/> &c. eadem vià o&longs;tendemus ex omni­<lb/> bus &longs;imul recurrere in <emph type="italics"/>t<emph.end type="italics"/>: &longs;icuti enim ex <emph type="italics"/>b<emph.end type="italics"/> & <emph type="italics"/>d,<emph.end type="italics"/> ita ex <emph type="italics"/>d<emph.end type="italics"/> & <emph type="italics"/>f,<emph.end type="italics"/><lb/> & ex <emph type="italics"/>f<emph.end type="italics"/> & <emph type="italics"/>b, et<emph.end type="italics"/> ex <emph type="italics"/>h<emph.end type="italics"/> & <emph type="italics"/>k<emph.end type="italics"/> &c. æqualis fit recur&longs;us. </s> <s id="N126EB">Perpen­<lb/> diculum ergo ex <emph type="italics"/>b<emph.end type="italics"/> & <emph type="italics"/>d<emph.end type="italics"/> æqualiter recurrens recurret <lb/> <expan abbr="quo&qacute;">quoque</expan>; æqualiter ex <emph type="italics"/>b<emph.end type="italics"/> & <emph type="italics"/>f<emph.end type="italics"/> & <emph type="italics"/>h<emph.end type="italics"/> & <emph type="italics"/>k<emph.end type="italics"/> &c. </s> </p> </subchap1> <subchap1 id="N1271A"> <p id="N1271B" type="main"> <s id="N1271D"><emph type="center"/>Propo&longs;itio XXV.<emph.end type="center"/></s> </p> <p id="N12724" type="main"> <s id="N12726"><emph type="italics"/>Excur&longs;us perpendiculi in eodem circulo à lineà &longs;tationis &longs;unt in­<lb/> ter &longs;e æqualis.<emph.end type="italics"/></s> </p> <p id="N1272F" type="main"> <s id="N12731">QVia (in fig: 8.) velocitas in <emph type="italics"/>eb<emph.end type="italics"/> velocitati in <emph type="italics"/>fb,<emph.end type="italics"/> & <lb/> velocitas in <emph type="italics"/>cb<emph.end type="italics"/> e&longs;t æqualis velocitati in <emph type="italics"/>db<emph.end type="italics"/> per prop. <lb/> 20. e&longs;t <expan abbr="aut&etilde;">autem</expan> velocitas in <emph type="italics"/>eb<emph.end type="italics"/> ad <expan abbr="velocitat&etilde;">velocitatem</expan> in <emph type="italics"/>cb,<emph.end type="italics"/> ut arcus <emph type="italics"/>e<emph.end type="italics"/> <pb xlink:href="062/01/070.jpg"/><emph type="italics"/>b<emph.end type="italics"/> ad arcum <emph type="italics"/>cb:<emph.end type="italics"/> propterea quòd perpendiculum ex <emph type="italics"/>c<emph.end type="italics"/> & <emph type="italics"/>e<emph.end type="italics"/><lb/> æquali tempore recurrit in <emph type="italics"/>b<emph.end type="italics"/> per prop: 24. erit ut arcus <lb/> <emph type="italics"/>fb<emph.end type="italics"/> ad arcum <emph type="italics"/>db,<emph.end type="italics"/> ita velocitas excur&longs;us in <emph type="italics"/>fb<emph.end type="italics"/> ad velocita­<lb/> tem excur&longs;us in <emph type="italics"/>db.<emph.end type="italics"/> At verò ut idem arcus <emph type="italics"/>fb<emph.end type="italics"/> ad arcum <lb/> <emph type="italics"/>db,<emph.end type="italics"/> ita violentia inclinationum in illis arcubus collecta: <lb/> tollit autem violentia partem impul&longs;us &longs;ibi æqualem <lb/> per po&longs;it: 2. igitur ut arcus <emph type="italics"/>fb<emph.end type="italics"/> ad arcum <emph type="italics"/>db,<emph.end type="italics"/> ita ablatum <lb/> ad ablatum, hoc e&longs;t velocitatis decrementum, & velo­<lb/> citas reliqua ad reliquam velocitatem habet autem ve­<lb/> locitas motus eandem rationem, quam interualla. </s> <s id="N127CC">Quia <lb/> ergo excur&longs;us eandem rationem habent tum ad &longs;e, tum <lb/> ad interualla, quam habent recur&longs;us ad &longs;e, & &longs;ua inter­<lb/> ualla; fiunt autem recur&longs;us eodem vel æquali tempo­<lb/> re, erunt <expan abbr="quo&qacute;">quoque</expan>; excur&longs;us eodem vel æquali tempore, ac <lb/> proinde inter &longs;e æquales. </s> </p> </subchap1> <subchap1 id="N127DD"> <p id="N127DE" type="main"> <s id="N127E0"><emph type="center"/>Propo&longs;itio XXVI.<emph.end type="center"/></s> </p> <p id="N127E7" type="main"> <s id="N127E9"><emph type="italics"/>Motus per arcus &longs;imiles inæqualium circulorum rationem ha­<lb/> bent quam &longs;inus illorum arcuum.<emph.end type="italics"/></s> </p> <p id="N127F2" type="main"> <s id="N127F4">AS&longs;umantur duo arcus, in circulo quidem maiori <emph type="italics"/>bd. <lb/> bf,<emph.end type="italics"/> in circulo autem minori <emph type="italics"/>ce.cg<emph.end type="italics"/> inter &longs;e &longs;imiles: di­<lb/> co motum perpendiculi ex <emph type="italics"/>f<emph.end type="italics"/> in <emph type="italics"/>b<emph.end type="italics"/> ad motum ex <emph type="italics"/>g<emph.end type="italics"/> in <emph type="italics"/>c,<emph.end type="italics"/> & <lb/> motum ex <emph type="italics"/>d<emph.end type="italics"/> in <emph type="italics"/>b<emph.end type="italics"/> ad motum ex <emph type="italics"/>e<emph.end type="italics"/> in <emph type="italics"/>c<emph.end type="italics"/> eandem rationem <lb/> habere quam &longs;inus illorum arcuum. </s> <s id="N1283B">angant enim <pb xlink:href="062/01/071.jpg"/><expan abbr="utrum&qacute;">utrumque</expan>; circulum in punctis <emph type="italics"/>f.d.g.e<emph.end type="italics"/> lineæ <emph type="italics"/>fk. di,<emph.end type="italics"/> & <emph type="italics"/>gb eh<emph.end type="italics"/>: <lb/> <expan abbr="erit&qacute;">eritque</expan>; angulus <emph type="italics"/>akf<emph.end type="italics"/> angulo <emph type="italics"/>abg,<emph.end type="italics"/> & angulus <emph type="italics"/>aid<emph.end type="italics"/> angulo <emph type="italics"/>ab <lb/> e<emph.end type="italics"/> æqualis: propterea quód anguli <emph type="italics"/>afk. agb,<emph.end type="italics"/> & anguli <emph type="italics"/>ad <lb/> i. aeh<emph.end type="italics"/> &longs;int recti, anguli verò <emph type="italics"/>kaf.iad<emph.end type="italics"/> communes: velo­<lb/> citas ergo in <emph type="italics"/>f<emph.end type="italics"/> velocitati in <emph type="italics"/>g,<emph.end type="italics"/> & velocitas in <emph type="italics"/>d<emph.end type="italics"/> velocitati <lb/> <figure id="id.062.01.071.1.jpg" xlink:href="062/01/071/1.jpg"/><lb/> in <emph type="italics"/>e<emph.end type="italics"/> e&longs;t æqualis: igitur ut <emph type="italics"/>f<emph.end type="italics"/> ad <emph type="italics"/>d,<emph.end type="italics"/> ita <emph type="italics"/>g<emph.end type="italics"/> ad <emph type="italics"/>e<emph.end type="italics"/>: &longs;ed ut <emph type="italics"/>f<emph.end type="italics"/> ad <emph type="italics"/>d,<emph.end type="italics"/> ita <lb/> &longs;inus arcu<emph type="italics"/>s fb<emph.end type="italics"/> ad &longs;inum arcus <emph type="italics"/>db<emph.end type="italics"/>; & ut <emph type="italics"/>g<emph.end type="italics"/> ad <emph type="italics"/>e<emph.end type="italics"/> ita &longs;inus ar­<lb/> cus <emph type="italics"/>gc<emph.end type="italics"/> ad &longs;inum arcus <emph type="italics"/>ec<emph.end type="italics"/> per prop. 22. erit ergo permu­<lb/> tando motus in <emph type="italics"/>f<emph.end type="italics"/> ad motum in <emph type="italics"/>g,<emph.end type="italics"/> ut &longs;inus arcus <emph type="italics"/>fb<emph.end type="italics"/> ad &longs;i­<lb/> num arcus <emph type="italics"/>ge<emph.end type="italics"/>; & motus in <emph type="italics"/>d<emph.end type="italics"/> ad motum in <emph type="italics"/>e,<emph.end type="italics"/> ut &longs;inus ar- <pb xlink:href="062/01/072.jpg"/>cus <emph type="italics"/>db<emph.end type="italics"/> ad &longs;inum arcus <emph type="italics"/>ec.<emph.end type="italics"/> Motus ergo per arcus &longs;imiles <lb/> inæqualium circulorum rationem habent quam &longs;inus <lb/> illorum arcuum, </s> </p> </subchap1> <subchap1 id="N12936"> <p id="N12937" type="main"> <s id="N12939"><emph type="center"/>Propo&longs;itio XXVII.<emph.end type="center"/></s> </p> <p id="N12940" type="main"> <s id="N12942"><emph type="italics"/>Motus in circulo minori e&longs;t velocior motu in circulo majori.<emph.end type="italics"/></s> </p> <p id="N12949" type="main"> <s id="N1294B">IN circulo maiori <emph type="italics"/>dfb<emph.end type="italics"/> perpendiculum ex <emph type="italics"/>f<emph.end type="italics"/> in <emph type="italics"/>b,<emph.end type="italics"/> in cir­<lb/> culo verò minori <emph type="italics"/>mgc<emph.end type="italics"/> ex <emph type="italics"/>g<emph.end type="italics"/> in <emph type="italics"/>c<emph.end type="italics"/> moueatur: dico velo­<lb/> ciùs ex <emph type="italics"/>g<emph.end type="italics"/> in <emph type="italics"/>c,<emph.end type="italics"/> quam ex <emph type="italics"/>f<emph.end type="italics"/> in <emph type="italics"/>b<emph.end type="italics"/> recurrere. </s> <s id="N1298E">Quia enim mo­<lb/> tus in <emph type="italics"/>fb<emph.end type="italics"/> ad motum in <emph type="italics"/>gc,<emph.end type="italics"/> ut &longs;inus <emph type="italics"/>bg<emph.end type="italics"/> ad <expan abbr="&longs;inũ">&longs;inum</expan> <emph type="italics"/>cu<emph.end type="italics"/> per prop: <lb/> 25. & ut <emph type="italics"/>bg<emph.end type="italics"/> ad <emph type="italics"/>cu,<emph.end type="italics"/> ita <emph type="italics"/>ab<emph.end type="italics"/> ad <emph type="italics"/>ac,<emph.end type="italics"/> propterea quód lineæ <emph type="italics"/>bg cu<emph.end type="italics"/><lb/> &longs;int parallelæ, & triangula <emph type="italics"/>bag. eau<emph.end type="italics"/> &longs;imilia: e&longs;t autem <lb/> maior linea <emph type="italics"/>ab<emph.end type="italics"/> quam <emph type="italics"/>ac,<emph.end type="italics"/> erit <expan abbr="quo&qacute;">quoque</expan>; <emph type="italics"/>bg<emph.end type="italics"/> maior quam <emph type="italics"/>cu<emph.end type="italics"/><lb/> maior ergo motus ab eadem velocitate in <emph type="italics"/>bg,<emph.end type="italics"/> hoc e&longs;t in <lb/> <emph type="italics"/>fb<emph.end type="italics"/> maiori, quam in <emph type="italics"/>cu,<emph.end type="italics"/> hoc e&longs;t in <emph type="italics"/>ge,<emph.end type="italics"/> minori interuallo <lb/> per prop: 5. ac proinde in circulo minori e&longs;t velocior <lb/> motus, hoc e&longs;t minori fit tempore, quam in circulo ma­<lb/> jori. </s> </p> </subchap1> <subchap1 id="N12A15"> <p id="N12A16" type="main"> <s id="N12A18"><emph type="center"/>Propo&longs;itio XXVIII.<emph.end type="center"/></s> </p> <p id="N12A1F" type="main"> <s id="N12A21"><emph type="italics"/>Motus circulorum &longs;unt in ratione &longs;uorum temporum, quam ha­<lb/> bent diametri ad &longs;e duplicatam.<emph.end type="italics"/></s> </p> <p id="N12A2A" type="main"> <s id="N12A2C">QVia enim ut &longs;inus <emph type="italics"/>bg<emph.end type="italics"/> ad &longs;inum <emph type="italics"/>cu,<emph.end type="italics"/> ita motus in <emph type="italics"/>fb<emph.end type="italics"/><lb/> ad motum in <emph type="italics"/>gc<emph.end type="italics"/> per prop. 25. e&longs;t autem ut <emph type="italics"/>bg<emph.end type="italics"/> ad <emph type="italics"/>cu<emph.end type="italics"/> <pb xlink:href="062/01/073.jpg"/>ita motus in <emph type="italics"/>ab<emph.end type="italics"/> ad motum in <emph type="italics"/>ac<emph.end type="italics"/> propterea quòd motus <lb/> <emph type="italics"/>ab<emph.end type="italics"/> motui <emph type="italics"/>bg,<emph.end type="italics"/> & motus <emph type="italics"/>ac<emph.end type="italics"/> motui <emph type="italics"/>cu<emph.end type="italics"/> e&longs;t æqualis per prop: <lb/> 13. erit motus in <emph type="italics"/>fb<emph.end type="italics"/> ad motum in <emph type="italics"/>gc,<emph.end type="italics"/> ut motus in <emph type="italics"/>ab<emph.end type="italics"/> ad <lb/> motum in <emph type="italics"/>ac.<emph.end type="italics"/> At verò motus in <emph type="italics"/>ab<emph.end type="italics"/> ad motum in <emph type="italics"/>ac,<emph.end type="italics"/> & <lb/> <figure id="id.062.01.073.1.jpg" xlink:href="062/01/073/1.jpg"/><lb/> huius duplum <emph type="italics"/>lb<emph.end type="italics"/> ad <emph type="italics"/>mc<emph.end type="italics"/> rationem habent quam tempo­<lb/> rum quadrata per prop: 12. radices ergo quadratæ line­<lb/> arum <emph type="italics"/>bl. cm<emph.end type="italics"/> eandem rationem habent quam tempora <lb/> motus circulorum, ac proinde illorum temporum rati­<lb/> onem habent diametri ad &longs;e duplicatam. </s> </p> </subchap1> <subchap1 id="N12AC9"> <pb xlink:href="062/01/074.jpg"/> <p id="N12ACD" type="main"> <s id="N12ACF"><emph type="center"/>Propo&longs;itio XXIX.<emph.end type="center"/></s> </p> <p id="N12AD6" type="main"> <s id="N12AD8"><emph type="italics"/>Fieri pote&longs;t ut arcum circuli majoris minori tempore tran&longs;eat, <lb/> quam arcum circuli minoris.<emph.end type="italics"/></s> </p> <p id="N12AE1" type="main"> <s id="N12AE3">AS&longs;umatur in fig: 10. &longs;inus <emph type="italics"/>ou<emph.end type="italics"/> ad &longs;inum <emph type="italics"/>qm<emph.end type="italics"/> in eà rati­<lb/> one, in quà diameter major <emph type="italics"/>ab<emph.end type="italics"/> ad minorem <emph type="italics"/>om,<emph.end type="italics"/> <expan abbr="e-tit&qacute;">e­<lb/> ritque</expan>; velocitas in <emph type="italics"/>o<emph.end type="italics"/> ad velocitatem in <emph type="italics"/>q,<emph.end type="italics"/> ut <emph type="italics"/>ab<emph.end type="italics"/> ad <emph type="italics"/>om,<emph.end type="italics"/> hoc <lb/> e&longs;t ut motus <emph type="italics"/>qb<emph.end type="italics"/> in circulo maiori ad motum <emph type="italics"/>tm<emph.end type="italics"/> in cir­<lb/> culo minori. </s> <s id="N12B2E">Quód &longs;i ergo &longs;umantur duo arcus <emph type="italics"/>op. qr<emph.end type="italics"/><lb/> inter &longs;e æquales, maior erit proportio motus in <emph type="italics"/>qr<emph.end type="italics"/> ad <lb/> motum in <emph type="italics"/>op,<emph.end type="italics"/> quam ad motu in <emph type="italics"/>tm<emph.end type="italics"/>: velocior ergo mo­<lb/> tus in arcu <emph type="italics"/>op<emph.end type="italics"/> circuli maioris, quam in arcu <emph type="italics"/>tm<emph.end type="italics"/> circuli <lb/> minoris. </s> </p> </subchap1> <subchap1 id="N12B5C"> <p id="N12B5D" type="main"> <s id="N12B5F"><emph type="center"/>Propo&longs;itio XXX.<emph.end type="center"/></s> </p> <p id="N12B66" type="main"> <s id="N12B68"><emph type="italics"/>Ab impul&longs;u contrario & æquali nullus e&longs;t motus: ab impul&longs;u <lb/> verò contrario & inæquali motus e&longs;t æqualis exce&longs;&longs;ui majoris.<emph.end type="italics"/></s> </p> <p id="N12B71" type="main"> <s id="N12B73">QVia enim contrarium æquale tollit vel impedit &longs;u<lb/> um contrarium in eadem ratione, totum quidem <lb/> totum, pars verò partem &longs;ibi æqualem per po&longs;i: 2. </s> <s id="N12B7A">Su­<lb/> blato per contrarium æquale toto impul&longs;u nullus erit <lb/> motus, qui e&longs;&longs;e non pote&longs;t <expan abbr="ab&longs;q;">ab&longs;que</expan> impul&longs;u.</s> <s id="N12B85">Quód &longs;i ve­<lb/> rò impul&longs;us &longs;int inæquales, quia minor à majori tollit <lb/> partem &longs;ibi æqualem, erit reliquus exce&longs;&longs;us principium <pb xlink:href="062/01/075.jpg"/>motus. </s> <s id="N12B90">Ab impul&longs;u ergò contrario & æquali nullus e&longs;t <lb/> motus &c. </s> </p> </subchap1> <subchap1 id="N12B95"> <p id="N12B96" type="main"> <s id="N12B98"><emph type="center"/>Propo&longs;itio XXXI.<emph.end type="center"/></s> </p> <p id="N12B9F" type="main"> <s id="N12BA1"><emph type="italics"/>Motus &longs;ecundùm quid contrarij per lineam fiunt mediam, cujus <lb/> interuallam determinat &longs;inus complementi inclinationis, in ratione <lb/> quam habent impul&longs;us.<emph.end type="italics"/></s> </p> <p id="N12BAC" type="main"> <s id="N12BAE">VI in fig: 2 &longs;i mobile ex eodem puncto <emph type="italics"/>a<emph.end type="italics"/> moueatur <lb/> per lineas <emph type="italics"/>ab. af,<emph.end type="italics"/> aut per lineas <emph type="italics"/>ab. ad,<emph.end type="italics"/> & &longs;it angulus <lb/> <emph type="italics"/>baf<emph.end type="italics"/> major, angulus verò <emph type="italics"/>bad<emph.end type="italics"/> minor recto, erunt hi mo­<lb/> tus per definit: 5. &longs;ecundùm quid contrarij, ac proinde <lb/> in eo in quo &longs;unt contrarij, <expan abbr="tollũt">tollunt</expan> aut <expan abbr="impediũt">impediunt</expan> <expan abbr="&longs;uũ">&longs;uum</expan> con<lb/> <expan abbr="trariũ">trarium</expan>, per definit: 1. impul&longs;us ergo in <emph type="italics"/>af<emph.end type="italics"/> ab impul&longs;u in <emph type="italics"/>ab,<emph.end type="italics"/><lb/> & hic ab impul&longs;u in <emph type="italics"/>af<emph.end type="italics"/> retractus, quia <expan abbr="id&etilde;">idem</expan> mobile e&longs;&longs;e <expan abbr="nõ">non</expan> <lb/> pote&longs;t in pluribus locis, ac proinde <expan abbr="ne&qacute;">neque</expan>; pluribus moti­<lb/> bus agitari, mouebitur motu inter <expan abbr="utrum&qacute;">utrumque</expan>; medio, cu­<lb/> ju&longs;modi linea motus <emph type="italics"/>ad<emph.end type="italics"/>: dico huius lineæ interuallum à, <lb/> lineis extremis <emph type="italics"/>ab. af<emph.end type="italics"/> e&longs;&longs;e &longs;inum complementi angulo­<lb/> rum <emph type="italics"/>faddab,<emph.end type="italics"/> in ratione quam habet impul&longs;us <emph type="italics"/>ab<emph.end type="italics"/> ad im­<lb/> pul&longs;um <emph type="italics"/>af.<emph.end type="italics"/> Quia enim velocitas motus per lineas incli­<lb/> natas e&longs;t in ratione &longs;inus complementi illarum inclina­<lb/> tionum, per prop: 14. ratio autem velocitatis e&longs;t eadem <lb/> quæ impul&longs;us, propterea quòd impul&longs;us e&longs;t agens ne­<lb/> ce&longs;&longs;arium, <expan abbr="motum&qacute;">motumque</expan>; producit &longs;ibi æqualem per prop: 2. <pb xlink:href="062/01/076.jpg"/>erit &longs;inus complementi anguli <emph type="italics"/>fad<emph.end type="italics"/> ad &longs;inum comple­<lb/> menti anguli <emph type="italics"/>dab,<emph.end type="italics"/> ut impul&longs;us in <emph type="italics"/>af<emph.end type="italics"/> ad impul&longs;um in <emph type="italics"/>ab,<emph.end type="italics"/><lb/> Motus ergò &longs;ecundùm quid contrarij per lineam fiunt <lb/> mediam, cujus interuallum determinat &longs;inu<emph type="italics"/>s<emph.end type="italics"/> &c. </s> </p> </subchap1> <subchap1 id="N12C69"> <p id="N12C6A" type="main"> <s id="N12C6C"><emph type="center"/>Propo&longs;itio XXXII.<emph.end type="center"/></s> </p> <p id="N12C73" type="main"> <s id="N12C75"><emph type="italics"/>Motus perfectè mixtus fit per diametrum parallelogrammi, cu­<lb/> jus latera con&longs;tituit motus &longs;implex: & ex impul&longs;u quidem æquali <lb/> e&longs;t æqualis &longs;emis&longs;i, ex inæquali verò major &longs;emi&longs;&longs;e eju&longs;dem motus.<emph.end type="italics"/></s> </p> <p id="N12C80" type="main"> <s id="N12C82">MOtum perfectè mixtum con&longs;tituunt motus, qui æ­<lb/> qualiter &longs;unt &longs;imiles & contrarij: tantùm enim hic <lb/> <figure id="id.062.01.076.1.jpg" xlink:href="062/01/076/1.jpg"/><lb/> illum auget, quantùm & minuit. </s> <s id="N12C90">Moueatur idem mobi<lb/> le ex <emph type="italics"/>a<emph.end type="italics"/> in <emph type="italics"/>b<emph.end type="italics"/> & <emph type="italics"/>c,<emph.end type="italics"/> & &longs;it angulus <emph type="italics"/>bac<emph.end type="italics"/> rectus, <expan abbr="erit&qacute;">eritque</expan>; per defini­<lb/> tionem motus medius incipiens ab angulo recto per­<lb/> fectè mixtus: Dico hunc motum fieri per diametrum <lb/> <emph type="italics"/>ad<emph.end type="italics"/> parallelogrammi <emph type="italics"/>abdc,<emph.end type="italics"/> cuius latera <emph type="italics"/>ab. ac<emph.end type="italics"/> &longs;unt mo­<lb/> tus, qui inter le <expan abbr="mi&longs;c&etilde;tur">mi&longs;centur</expan>: & <expan abbr="&longs;iquid&etilde;">&longs;iquidem</expan> motus in <emph type="italics"/>ab<emph.end type="italics"/> &longs;it æqua <lb/> lis motui in <emph type="italics"/>ac,<emph.end type="italics"/> <expan abbr="motũ">motum</expan> <expan abbr="mixtũ">mixtum</expan> in <emph type="italics"/>ad<emph.end type="italics"/> e&longs;&longs;e <expan abbr="æqual&etilde;">æqualem</expan> &longs;emi&longs;si utri <pb xlink:href="062/01/077.jpg"/><expan abbr="u&longs;&qacute;">u&longs;que</expan>; motus &longs;imul &longs;umpti: &longs;i <expan abbr="aut&etilde;">autem</expan> motus fuerit inæqualis, <lb/> <expan abbr="maior&etilde;">maiorem</expan> &longs;emi&longs;&longs;e. </s> <s id="N12D04">Sit primò motus in <emph type="italics"/>ab<emph.end type="italics"/> æqualis motui in <lb/> <emph type="italics"/>ac<emph.end type="italics"/>: & ex <emph type="italics"/>bc<emph.end type="italics"/> termino <expan abbr="utriu&longs;&qacute;">utriu&longs;que</expan>; motus demittantur lineæ <lb/> perpendiculares <emph type="italics"/>be. ce,<emph.end type="italics"/> &longs;inus æqualium angulorum <emph type="italics"/>cde, <lb/> edb.<emph.end type="italics"/> Quia ergo ut <emph type="italics"/>ab<emph.end type="italics"/> ad <emph type="italics"/>ac,<emph.end type="italics"/> ita &longs;inus complementi <emph type="italics"/>eb<emph.end type="italics"/> ad <lb/> <emph type="italics"/>ec,<emph.end type="italics"/> erit diameter <emph type="italics"/>ad<emph.end type="italics"/> linea motus mixti. </s> <s id="N12D4F">E&longs;t autem mo­<lb/> tus in <emph type="italics"/>ab<emph.end type="italics"/> & <emph type="italics"/>ac<emph.end type="italics"/> duratione quidem æqualis motui in <emph type="italics"/>ae<emph.end type="italics"/><lb/> per prop: 13. magnitudine verò minor, cujus exce&longs;&longs;us <lb/> quadratum <emph type="italics"/>eb.<emph.end type="italics"/> & <emph type="italics"/>ec,<emph.end type="italics"/> &longs;eu <emph type="italics"/>ae<emph.end type="italics"/> & <emph type="italics"/>ed<emph.end type="italics"/>: at verò duo quadrata <emph type="italics"/>ae. <lb/> ed<emph.end type="italics"/> &longs;unt &longs;emi&longs;sis quadrati <emph type="italics"/>ad,<emph.end type="italics"/> hoc e&longs;t motus in <emph type="italics"/>ab.ac,<emph.end type="italics"/> cui, <lb/> æquale e&longs;t quadratum <emph type="italics"/>ad,<emph.end type="italics"/> propterea quòd <emph type="italics"/>ad<emph.end type="italics"/> &longs;it dupla <lb/> <emph type="italics"/>ae<emph.end type="italics"/> aut <emph type="italics"/>ed<emph.end type="italics"/>: igitur motus æqualiter mixtus fit per diame­<lb/> trum parallelogrammi, & ab æquali impul&longs;u e&longs;t æqua­<lb/> lis &longs;emi&longs;si <expan abbr="utriu&longs;&qacute;">utriu&longs;que</expan>; motus &longs;imul &longs;umpti. </s> <s id="N12DB9">Quód &longs;i mo­<lb/> tus &longs;it inæqualis, & <emph type="italics"/>u.g.<emph.end type="italics"/> dupló velocior in <emph type="italics"/>ef<emph.end type="italics"/> quam in <emph type="italics"/>eg,<emph.end type="italics"/><lb/> dico motum mixtum fieri quidem per diametrum <emph type="italics"/>eb,<emph.end type="italics"/><lb/> e&longs;&longs;e autem &longs;emi&longs;&longs;e maiorem. </s> <s id="N12DD8">De&longs;cripto enim centro <emph type="italics"/>b<emph.end type="italics"/><lb/> arcu <emph type="italics"/>mn,<emph.end type="italics"/> erit &longs;inus complementi <emph type="italics"/>ik<emph.end type="italics"/> ad &longs;inum comple­<lb/> menti <emph type="italics"/>ip,<emph.end type="italics"/> ut motus in <emph type="italics"/>ef<emph.end type="italics"/> ad motum in <emph type="italics"/>eg,<emph.end type="italics"/> ac proinde di­<lb/> ameter <emph type="italics"/>eh<emph.end type="italics"/> linea motus mixti: ad quam ex punctis <emph type="italics"/>fg<emph.end type="italics"/> du­<lb/> ctæ lineæ perpendiculares <emph type="italics"/>fl. go<emph.end type="italics"/> metientur defectum <lb/> motus in <emph type="italics"/>eh.<emph.end type="italics"/> Quia ergo ex angulo recto <emph type="italics"/>efh<emph.end type="italics"/> linea <emph type="italics"/>fl<emph.end type="italics"/> e&longs;t <lb/> perpendicularis ad ba&longs;im <emph type="italics"/>eh,<emph.end type="italics"/> erit ut <emph type="italics"/>ef<emph.end type="italics"/> ad <emph type="italics"/>fh,<emph.end type="italics"/> ita <emph type="italics"/>el<emph.end type="italics"/> ad <emph type="italics"/>lf,<emph.end type="italics"/> & <lb/> <emph type="italics"/>lf<emph.end type="italics"/> ad <emph type="italics"/>lh:<emph.end type="italics"/> ponitur autem quadratum <emph type="italics"/>ef<emph.end type="italics"/> duplum quadrat <lb/> <emph type="italics"/>fh,<emph.end type="italics"/> &longs;iue <emph type="italics"/>eg,<emph.end type="italics"/> erit ergo quadratum <emph type="italics"/>fl<emph.end type="italics"/> &longs;imiliter <expan abbr="duplũ">duplum</expan> quadra <pb xlink:href="062/01/078.jpg"/>ti <emph type="italics"/>lh.<emph.end type="italics"/> quadratum ergo <emph type="italics"/>fh<emph.end type="italics"/> <expan abbr="utriq;">utrique</expan> æquale continebit tria <lb/> quadrata, quorum &longs;ingula &longs;int æqualia quadrato <emph type="italics"/>lh.<emph.end type="italics"/> & <lb/> quia quadratum <emph type="italics"/>ef<emph.end type="italics"/> e&longs;t duplum quadrati <emph type="italics"/>fh,<emph.end type="italics"/> erit quadra­<lb/> tum <emph type="italics"/>eh<emph.end type="italics"/> æquale nouem quadratis <emph type="italics"/>lh<emph.end type="italics"/> &longs;imul &longs;umptis. </s> <s id="N12EB0">At <lb/> verò quadratum <emph type="italics"/>el<emph.end type="italics"/> duplum quadrati <emph type="italics"/>lf<emph.end type="italics"/> erit quadruplum <lb/> quadrati <emph type="italics"/>lh,<emph.end type="italics"/> <expan abbr="a&longs;&longs;umpto&qacute;">a&longs;&longs;umptoque</expan>; quadrato <emph type="italics"/>eo,<emph.end type="italics"/> aut huic æquali <emph type="italics"/>lh<emph.end type="italics"/><lb/> erunt duo quadrata <emph type="italics"/>el. lh<emph.end type="italics"/> &longs;imul &longs;umpta æqualia <expan abbr="quin&qacute;">quinque</expan>; <lb/> quadratis <emph type="italics"/>lh<emph.end type="italics"/>: Maiora ergo quam &longs;emi&longs;sis quadrati <emph type="italics"/>eh,<emph.end type="italics"/><lb/> quòd æquale ponitur nouem quadratis <emph type="italics"/>lh.<emph.end type="italics"/> Igitur mo­<lb/> tus perfectè mixtus fit per diametrum parallelogram­<lb/> mi, cujus latera con&longs;tituit motus &longs;implex &c. </s> </p> </subchap1> <subchap1 id="N12EFD"> <p id="N12EFE" type="main"> <s id="N12F00"><emph type="center"/>Propo&longs;itio XXXIII.<emph.end type="center"/></s> </p> <p id="N12F07" type="main"> <s id="N12F09"><emph type="italics"/>Motus mixtus incipiens ab angulo majori quam recto, e&longs;t minor <lb/> &longs;emi&longs;&longs;e: incipiens verò ab angulo minori quam recto, major &longs;emi&longs;&longs;e <lb/> motus &longs;imul &longs;umpti.<emph.end type="italics"/></s> </p> <p id="N12F14" type="main"> <s id="N12F16">Sit primùm in fig: 7. angulus <emph type="italics"/>dae<emph.end type="italics"/> maior recto, & an­<lb/> gulus <emph type="italics"/>bac<emph.end type="italics"/> rectus, <expan abbr="erit&qacute;">eritque</expan>; quadratum <emph type="italics"/>bb<emph.end type="italics"/> æquale qua­<lb/> drato <emph type="italics"/>ab<emph.end type="italics"/>: e&longs;t autem quadratum <emph type="italics"/>db,<emph.end type="italics"/> ex ce&longs;&longs;us nimirum <lb/> motus <emph type="italics"/>ad,<emph.end type="italics"/> quadrato <emph type="italics"/>bh,<emph.end type="italics"/> ac proinde quadrato <emph type="italics"/>ah<emph.end type="italics"/> maius: <lb/> igitur quadratum <emph type="italics"/>ad<emph.end type="italics"/> æquale duobus quadratis <emph type="italics"/>dh. ah<emph.end type="italics"/> ad <lb/> quadratum minus <emph type="italics"/>ah<emph.end type="italics"/> maiorem rationem habet quam <lb/> duplam: motus ergo in <emph type="italics"/>ah<emph.end type="italics"/> mixtus e&longs;t minor &longs;emi&longs;&longs;e <pb xlink:href="062/01/079.jpg"/>motus in <emph type="italics"/>ad,<emph.end type="italics"/> <expan abbr="at&qacute;">atque</expan>; illius duplum minus quam motus in <emph type="italics"/>a <lb/> d. ae<emph.end type="italics"/> &longs;imul &longs;umpti. </s> <s id="N12F87">Quòd &longs;i angulus <emph type="italics"/>fag<emph.end type="italics"/> &longs;it minor recto, <lb/> erit latus <emph type="italics"/>fh,<emph.end type="italics"/> & huius quadratum minus quam <emph type="italics"/>ah:<emph.end type="italics"/> mo­<lb/> tus ergo in <emph type="italics"/>af<emph.end type="italics"/> ad motum in <emph type="italics"/>ah<emph.end type="italics"/> minorem rationem ha­<lb/> bet quam duplam, ac proinde motus in <emph type="italics"/>ah<emph.end type="italics"/> major &longs;emi&longs;­<lb/> &longs;e motus in <emph type="italics"/>af,<emph.end type="italics"/> & illius duplum majus quá motus in <emph type="italics"/>af. <lb/> ag<emph.end type="italics"/> &longs;imul &longs;umpti. </s> </p> </subchap1> <subchap1 id="N12FC4"> <p id="N12FC5" type="main"> <s id="N12FC7"><emph type="center"/>Propo&longs;itio XXXIV.<emph.end type="center"/></s> </p> <p id="N12FCE" type="main"> <s id="N12FD0"><emph type="italics"/>Motus mixtus e&longs;t nece&longs;&longs;arió minor diametro quadrati aut <lb/>parallelogrammi, cujus latera &longs;unt motus &longs;implex.<emph.end type="italics"/></s> </p> <p id="N12FD9" type="main"> <s id="N12FDB">NAm motus quidem in <emph type="italics"/>be<emph.end type="italics"/> mixtus (in fig: 4.) e&longs;t du­<lb/> plum quadrati eiu&longs;dem <emph type="italics"/>be<emph.end type="italics"/>: quadratum verò <emph type="italics"/>db<emph.end type="italics"/> ad <lb/> quadratum <emph type="italics"/>be<emph.end type="italics"/> e&longs;t quadruplum. </s> <s id="N12FFA">Cau&longs;a verò hujus de­<lb/> &longs;ectus e&longs;t contrarietas illorum motuum, ex angulis pro­<lb/> ueniens, cum quibus augetur & minuitur, <expan abbr="quou&longs;q;">quou&longs;que</expan> an­<lb/> gulus late&longs;cens æqualis fiat duobus rectis, in quo &longs;um­<lb/> ma e&longs;t contrarietas, ac proinde nullus e&longs;&longs;e pote&longs;t motus. <lb/> Angulo verò decre&longs;cente augetur &longs;imilitudo motus, <lb/> <expan abbr="quou&longs;q;">quou&longs;que</expan> angulo deficiente &longs;int una linea motus, in quà <lb/> perfecta &longs;imilitudo, nulla autem e&longs;t contrarietas. <expan abbr="Itaq;">Itaque</expan> <lb/> motus æqualis motum auget in eadem ratione, totus <lb/> quidem totum, pars verò partem &longs;ibi æqualem per <lb/> po&longs;it. 1. </s> </p> </subchap1> <subchap1 id="N1301D"> <pb xlink:href="062/01/080.jpg"/> <p id="N13021" type="main"> <s id="N13023"><emph type="center"/>Propo&longs;itio XXXV.<emph.end type="center"/></s> </p> <p id="N1302A" type="main"> <s id="N1302C"><emph type="center"/><emph type="italics"/>Problema I.<emph.end type="italics"/><emph.end type="center"/></s> </p> <p id="N13037" type="main"> <s id="N13039"><emph type="italics"/>Lineam motus mixti, & illius magnitudinem determinare.<emph.end type="italics"/></s> </p> <p id="N13040" type="main"> <s id="N13042">SIt primùm motus <emph type="italics"/>pq. pr<emph.end type="italics"/> perfectè mixtus, incipiens ab <lb/> angulo recto <emph type="italics"/>qpr<emph.end type="italics"/>: & ex <emph type="italics"/>q<emph.end type="italics"/> & <emph type="italics"/>r<emph.end type="italics"/> ducantur lineæ <emph type="italics"/>qs. rs<emph.end type="italics"/> pa<lb/> rallelæ ad <emph type="italics"/>pq. pr,<emph.end type="italics"/> <expan abbr="erit&qacute;">eritque</expan>; per prop. 31. motus mixtus in di­<lb/> ametro <emph type="italics"/>ps<emph.end type="italics"/>: ad quam ex termino <expan abbr="utriu&longs;q;">utriu&longs;que</expan> motus <emph type="italics"/>q<emph.end type="italics"/> & <emph type="italics"/>r<emph.end type="italics"/><lb/> <figure id="id.062.01.080.1.jpg" xlink:href="062/01/080/1.jpg"/><lb/> demittantur lineæ perpendiculares <emph type="italics"/>qt.ru,<emph.end type="italics"/> <expan abbr="eritq;">eritque</expan> motus <lb/> mixtus ex <emph type="italics"/>pqpr<emph.end type="italics"/> æqualis duobus quadratis <emph type="italics"/>pu.pt.<emph.end type="italics"/> ab&longs;cin­ <pb xlink:href="062/01/081.jpg"/>datur ergo ex linea <emph type="italics"/>tq<emph.end type="italics"/> productà linea <emph type="italics"/>tx<emph.end type="italics"/> æqualis lineæ <emph type="italics"/>p <lb/> u,<emph.end type="italics"/> & ex puncto <emph type="italics"/>p,<emph.end type="italics"/> interuallo autem <emph type="italics"/>px<emph.end type="italics"/> de&longs;cribatur arcus <lb/> <emph type="italics"/>xy,<emph.end type="italics"/> <expan abbr="connectantur&qacute;">connectanturque</expan>; linea <emph type="italics"/>px<emph.end type="italics"/>: dico quadratum <emph type="italics"/>py<emph.end type="italics"/> e&longs;&longs;e <lb/> motum mixtum & duratione æqualem motui <emph type="italics"/>pq. pr<emph.end type="italics"/> &longs;i­<lb/> mul &longs;umptis. </s> <s id="N130EF">Quia enim quadratum <emph type="italics"/>py<emph.end type="italics"/> quadrato <emph type="italics"/>px,<emph.end type="italics"/><lb/> hoc autem duobus quadratis <emph type="italics"/>pt.tx,<emph.end type="italics"/> &longs;eu <emph type="italics"/>pu<emph.end type="italics"/> e&longs;t æquale: e&longs;t <lb/> autem motus <emph type="italics"/>pt<emph.end type="italics"/> motui <emph type="italics"/>pq,<emph.end type="italics"/> & <emph type="italics"/>pu<emph.end type="italics"/> motui <emph type="italics"/>pr<emph.end type="italics"/> æqualis dura­<lb/> tione per prop: 13. erit motus mixtus in <emph type="italics"/>py<emph.end type="italics"/> &longs;imiliter æ­<lb/> qualis motibus <emph type="italics"/>pq<emph.end type="italics"/> & <emph type="italics"/>pr<emph.end type="italics"/> &longs;imul &longs;umptis. </s> <s id="N1313B">Quòd &longs;i verò <lb/> motus imperfectè mixtus & inæqualis <emph type="italics"/>ab. ac<emph.end type="italics"/> ab angulo <lb/> incipiat maiori aut minori quam recto <emph type="italics"/>bac<emph.end type="italics"/>: a&longs;&longs;uman­<lb/> tur duo puncta <emph type="italics"/>fg<emph.end type="italics"/> æqualiter remota ab <emph type="italics"/>a,<emph.end type="italics"/> à quibus pro­<lb/> tractæ lineæ perpendiculares <emph type="italics"/>fh. gh<emph.end type="italics"/> &longs;e inter&longs;ecent in <emph type="italics"/>h,<emph.end type="italics"/> <expan abbr="e-rit&qacute;">e­<lb/> ritque</expan>; angulus <emph type="italics"/>fhg<emph.end type="italics"/> complementum anguli <emph type="italics"/>bac,<emph.end type="italics"/> & &longs;imul <lb/> &longs;umpti æquales duobus rectis. </s> <s id="N1317E">De&longs;cribatur ergo ex <emph type="italics"/>h<emph.end type="italics"/><lb/> arcus <emph type="italics"/>fig,<emph.end type="italics"/> <expan abbr="&longs;ecetur&qacute;">&longs;eceturque</expan>; bifariam in <emph type="italics"/>i<emph.end type="italics"/> eà ratione, ut &longs;inus <emph type="italics"/>ik<emph.end type="italics"/> ad <lb/> &longs;inum <emph type="italics"/>il<emph.end type="italics"/> &longs;it, ut motus <emph type="italics"/>ab<emph.end type="italics"/> ad motum <emph type="italics"/>ac:<emph.end type="italics"/> dico lineam ex <emph type="italics"/>a<emph.end type="italics"/><lb/> productam in <emph type="italics"/>i<emph.end type="italics"/> e&longs;&longs;e lineam motus mixti. </s> <s id="N131BF">Producatur e­<lb/> nim <emph type="italics"/>fh<emph.end type="italics"/> in <emph type="italics"/>p,<emph.end type="italics"/> <expan abbr="erit&qacute;">eritque</expan>; angulus <emph type="italics"/>fpa<emph.end type="italics"/> complementum anguli <emph type="italics"/>f <lb/> ap,<emph.end type="italics"/> & angulus <emph type="italics"/>aog<emph.end type="italics"/> complementum anguli <emph type="italics"/>oag<emph.end type="italics"/>: duo er­<lb/> go anguli <emph type="italics"/>hpo. aog<emph.end type="italics"/> hoc e&longs;t <emph type="italics"/>hop,<emph.end type="italics"/> &longs;imul &longs;umpti &longs;unt æqua<l<lb/> les duobus angulis <emph type="italics"/>fhi: thg<emph.end type="italics"/> &longs;imul &longs;umptis, propterea <lb/> quód &longs;int complementa eju&longs;dem anguli <emph type="italics"/>fag,<emph.end type="italics"/> e&longs;t autem <lb/> angulus <emph type="italics"/>hop<emph.end type="italics"/> externus major angulo <emph type="italics"/>iho<emph.end type="italics"/> interno quanti­<lb/> tate anguli <emph type="italics"/>bio,<emph.end type="italics"/> angulus verò <emph type="italics"/>iph<emph.end type="italics"/> internus minor angu­ <pb xlink:href="062/01/082.jpg"/>lo <emph type="italics"/>ihf<emph.end type="italics"/> externo, quantitate eju&longs;dem anguli <emph type="italics"/>hip:<emph.end type="italics"/> angulus <lb/> ergo <emph type="italics"/>hop<emph.end type="italics"/> angulo <emph type="italics"/>fhi,<emph.end type="italics"/> & angulus <emph type="italics"/>oph<emph.end type="italics"/> angulo <emph type="italics"/>tho<emph.end type="italics"/> &longs;eu <emph type="italics"/>ihg<emph.end type="italics"/><lb/> e&longs;t æqualis, ac proinde <emph type="italics"/>ik. il<emph.end type="italics"/> &longs;unt &longs;inus complementi an­<lb/> gulorum <emph type="italics"/>iag.e ai.<emph.end type="italics"/> Et quia motus &longs;unt in ratione, quam <lb/> habent &longs;inus complementi inclinationum, erit linea <emph type="italics"/>ai<emph.end type="italics"/><lb/> linea motus mixti ex <emph type="italics"/>ab.ac<emph.end type="italics"/>; ad quam ex termino <expan abbr="utriu&longs;&qacute;">utriu&longs;que</expan>; <lb/> motus <emph type="italics"/>b.c<emph.end type="italics"/> demittantur lineæ perpendiculares <emph type="italics"/>bd.ce:<emph.end type="italics"/><lb/> <expan abbr="erũt&qacute;">eruntque</expan>, duo quadrata <emph type="italics"/>ad.ae<emph.end type="italics"/> &longs;imul &longs;umpta motus mix­<lb/> tus: ab&longs;cindatur ergo ex <emph type="italics"/>db<emph.end type="italics"/> producta <emph type="italics"/>dm<emph.end type="italics"/> æqualis <emph type="italics"/>ae,<emph.end type="italics"/> & <lb/> centro <emph type="italics"/>a<emph.end type="italics"/> ducatur arcus <emph type="italics"/>mn,<emph.end type="italics"/> dico quadratum <emph type="italics"/>an<emph.end type="italics"/> e&longs;&longs;e ma­<lb/> gnitudinem motus mixti. </s> <s id="N132BD">Erit enim quadratum <emph type="italics"/>am,<emph.end type="italics"/><lb/> hoc e&longs;t <emph type="italics"/>an,<emph.end type="italics"/> æquale duobus quadratis <emph type="italics"/>ad. dm,<emph.end type="italics"/> &longs;eu <emph type="italics"/>ae,<emph.end type="italics"/> cui <lb/> æqualis &longs;umebatur <emph type="italics"/>dm.<emph.end type="italics"/> Lineam ergo motus mixti & il­<lb/> lius magnitudinem determinauimus, quod erat facien­<lb/> dum. </s> </p> </subchap1> <subchap1 id="N132E5"> <p id="N132E6" type="main"> <s id="N132E8"><emph type="center"/>Propo&longs;itio XXXVI.<emph.end type="center"/></s> </p> <p id="N132EF" type="main"> <s id="N132F1"><emph type="italics"/>Mobile &longs;eu impul&longs;u, &longs;eu à grauitate moueatur, &longs;i planum occur­<lb/> rat, reflectit ab eodem plano per lineam rectam.<emph.end type="italics"/></s> </p> <p id="N132FA" type="main"> <s id="N132FC">IMpul&longs;us &longs;it dum corpus unum alteri in currit & alli<lb/> dit, &longs;iue <expan abbr="utrum&qacute;">utrumque</expan>, &longs;iue unum ex illis moueatur, <expan abbr="at&qacute;">atque</expan>; eo <lb/> magis mouet & impellit, quò magis ferit & allidit: & <lb/> &longs;iquidem re&longs;i&longs;tentia minor e&longs;t impul&longs;u, in illam partem <lb/> mouet illud mobile, in quam &longs;it plaga, eundem motum <pb xlink:href="062/01/083.jpg"/>continuando; velocitate tamen eó minori, quó re&longs;i­<lb/> &longs;tentia e&longs;t majòr. </s> <s id="N13315">Quód &longs;i re&longs;i&longs;tentia &longs;it major impul­<lb/> &longs;u, eádem velocitate, quà impulit, in partem auer&longs;am re <lb/> pellitur: propterea quód illa plaga æqualem in <expan abbr="utro&qacute;">utroque</expan>; <lb/> mobili impul&longs;um producit. </s> <s id="N13322">E&longs;t autem major plaga ex <lb/> velociori & magis violento incur&longs;u: igitur ab æquali <lb/> plagá æqualis <expan abbr="quo&qacute;">quoque</expan>; recur&longs;us. </s> <s id="N1332D">Et quia per motum fit <lb/> plaga, mouetur autem mobile ad motum &longs;ui centri, erit <lb/> <expan abbr="quoq;">quoque</expan> plaga ab eodem centro. </s> <s id="N13338">Sed & re&longs;i&longs;tentia fit â cen<lb/> tro &longs;eu grauitatis, &longs;eu contrarij impul&longs;us: eadem ergo ra<lb/> <figure id="id.062.01.083.1.jpg" xlink:href="062/01/083/1.jpg"/><lb/> tione minor re&longs;i&longs;tentia impul&longs;um recipit, quà major ei­<lb/> dem re&longs;i&longs;tit. </s> <s id="N13348">Vt &longs;i mobile ex <emph type="italics"/>a<emph.end type="italics"/> moueatur à grauitate qui <lb/> dem in <emph type="italics"/>b,<emph.end type="italics"/> ex impul&longs;u verò in <emph type="italics"/>f<emph.end type="italics"/>aut <emph type="italics"/>c:<emph.end type="italics"/> &longs;it autem major re&longs;i­ <pb xlink:href="062/01/084.jpg"/>&longs;tentià in <emph type="italics"/>b<emph.end type="italics"/> & <emph type="italics"/>f,<emph.end type="italics"/> quam ut loco moueantur ex illo impul­<lb/> &longs;u, minor autem in <emph type="italics"/>c<emph.end type="italics"/>: motus quidem ex <emph type="italics"/>b<emph.end type="italics"/> & <emph type="italics"/>f<emph.end type="italics"/> in <emph type="italics"/>a<emph.end type="italics"/> refle­<lb/> ctit, ex <emph type="italics"/>c<emph.end type="italics"/> verò expul&longs;o illo mobili quie&longs;cit, &longs;i &longs;it æquale: <lb/> eundem verò motum continuat in <emph type="italics"/>d,<emph.end type="italics"/> &longs;i minus &longs;it percu&longs;­<lb/> &longs;um: quia tamen re&longs;i&longs;tentia impul&longs;um minuit, quó ma­<lb/> jor re&longs;i&longs;tentia, eò minor velocitas motus. </s> </p> </subchap1> <subchap1 id="N133A3"> <p id="N133A4" type="main"> <s id="N133A6"><emph type="center"/>Propo&longs;itio XXXVII.<emph.end type="center"/></s> </p> <p id="N133AD" type="main"> <s id="N133AF"><emph type="italics"/>Motus in &longs;e ip&longs;um reflectit, cùm centrum grauitatis & conta­<lb/> ctus &longs;unt in eádem lineá motus.<emph.end type="italics"/></s> </p> <p id="N133B8" type="main"> <s id="N133BA">GLobus <emph type="italics"/>a<emph.end type="italics"/> occurrat plano in <emph type="italics"/>b,<emph.end type="italics"/> <expan abbr="&longs;itq;">&longs;itque</expan> centrum grauita<lb/> tis aut impul&longs;us <emph type="italics"/>e<emph.end type="italics"/> in lineà motus <emph type="italics"/>ab<emph.end type="italics"/> perpendiculari<lb/> ad contactum <emph type="italics"/>b,<emph.end type="italics"/> dico hunc motum in &longs;e ip&longs;um reflecti. <lb/> Quia enim motus & huius plaga ad motum fit &longs;ui cen­<lb/> tri, erit motus globi <emph type="italics"/>a,<emph.end type="italics"/> & hujus plaga in lineâ <emph type="italics"/>ab<emph.end type="italics"/> à centro <lb/> <emph type="italics"/>e<emph.end type="italics"/> ductà per contactum: & quia eadem ratione impul­<lb/> &longs;um recipit & impellit, <expan abbr="e&longs;tq;">e&longs;tque</expan> major re&longs;i&longs;tentia in <emph type="italics"/>b<emph.end type="italics"/> quam <lb/> impul&longs;us ex <emph type="italics"/>e,<emph.end type="italics"/> erit motus reflexus in eadem lineà <emph type="italics"/>ab.<emph.end type="italics"/><lb/> Motus ergo in &longs;e ip&longs;um reflectit, cúm centrum grauita<lb/> tis & contactus &longs;unt in eadem lineà motus. </s> <s id="N13418">Obijcies <lb/> cùm pila percutit planum, eàdem vi percutitur ab illo <lb/> plano: e&longs;t autem à percu&longs;sione æquali impul&longs;us æqua­<lb/> lis, quó enim violentiùs incidit, eó magis impetuosé re&longs;i­<lb/> rit ab illá plagà: impul&longs;us ergo, quem pila recipit â pla- <pb xlink:href="062/01/085.jpg"/>no, e&longs;t æqualis impul&longs;ui, quod idem plano allidit. </s> <s id="N13427">Quia <lb/> verò hi impul&longs;us tendunt in partes oppo&longs;itas eju&longs;dem <lb/> lineæ rectæ, erunt per definit: 4. contrarij ab&longs;olutè: tol­<lb/> lit autem contrarium æquale &longs;uum contrarium in eà­<lb/> dem ratione, totum quidem totum, pars verò partem <lb/> &longs;ibi æqualem; &longs;ublato ergo per contrarium æquale im­<lb/> pul&longs;u nullus erit motus reflexus, cùm linea motus e&longs;t <lb/> perpendicularis ad illud planum. </s> <s id="N13438">Quód &longs;i à percu&longs;sio­<lb/> ne in plano, aut globo quie&longs;cente factá morus reflectit, <lb/> quid prohibet ab eodem plano, aut globo, &longs;i motu op­<lb/> po&longs;ito ferantur, & violentià æquali &longs;ibi occurant, à per­<lb/> cu&longs;sione æquali eundem motum reflecti? Vt in hac ob­<lb/> <arrow.to.target n="marg1"/><lb/> &longs;curitate aliquam lucem con&longs;equamur, quæ non ni&longs;i ex <lb/> naturà impul&longs;us priús cognitá eluce&longs;cit, de quâ in lib: de <lb/> Arcu Cæle&longs;ti latiùs di&longs;&longs;eremus, <expan abbr="notãdum">notandum</expan> hic breuiter 1. <lb/> <arrow.to.target n="marg2"/><lb/> Impul&longs;um fieri à percu&longs;sione juxta determinationem il­<lb/> lius plagæ, <expan abbr="quã">quam</expan> centrum inducit percutientis, & quam <lb/> centrum recipit percu&longs;si; partes enim mobilis impul­<lb/> <arrow.to.target n="marg3"/><lb/> &longs;um recipiunt per lineas motui centri parallelas. 2. <expan abbr="Hãc">Hanc</expan> <lb/> plagam, quæ fit à corpore percu&longs;&longs;o, aliter dum quie&longs;cit, <lb/> aliter dum e&longs;t in motu impul&longs;um determinare: quia <lb/> enim plaga ex impul&longs;u, percu&longs;&longs;um verò quie&longs;cens nul­<lb/> lum ex &longs;e habet impul&longs;um, verùm à percutiente; eádem <lb/> plaga, quà percutitur, impul&longs;um determinat in percuti<lb/> ente: ab æquali ergo plagà æqualis impul&longs;us. </s> <s id="N13478">Cum au­ <pb xlink:href="062/01/086.jpg"/>tem percutitur in motu, quia ex &longs;e impul&longs;um habet, <expan abbr="nõ">non</expan> ex <lb/> illà plagà, quam recipit à percutiente, &longs;ed quam infert <lb/> impul&longs;um determinat; licet ergo illorum corporum, <lb/> quæ violentiá inæquali colliduntur, idem &longs;it contactus, <lb/> non tamen eadem ab <expan abbr="utro&qacute;">utroque</expan>, verùm â majori major, à <lb/> <arrow.to.target n="marg4"/><lb/> minori impul&longs;u minor infertur plaga. </s> <s id="N13496">3. Corpora per­<lb/> cu&longs;&longs;a alia e&longs;&longs;e mollia, quorum partes percu&longs;sioni <expan abbr="cedũt">cedunt</expan>, <lb/> inter &longs;e verò unitæ <expan abbr="man&etilde;t">manent</expan>; cuju&longs;modi argilla, cera, lana, <lb/> plumbum, &c. </s> <s id="N134A7">Alia dura; & &longs;iquidem percu&longs;sioni nul­<lb/> lo modo cedunt, ab&longs;olutè dura; &longs;i autem percu&longs;sioni ce<lb/> dunt, <expan abbr="ne&qacute;">neque</expan>; partes inter &longs;e unitæ manent, fragilia dicun­<lb/> tur; ut vitrum, te&longs;ta, tophus, &c. </s> <s id="N134B4">Corpora demum ab&longs;o­<lb/> lutè dura alia &longs;unt &longs;onora, quorum atomi vibratione <lb/> quadam mouentur, ut propo: 1. dictum; alia &longs;urda, quo <lb/> <arrow.to.target n="marg5"/><lb/> rum atomi nullo aut in&longs;en&longs;ibili motu monentur. 4 <lb/> Impul&longs;um naturà &longs;uà inclinare ad motum perfectum, <lb/> quo mobile &longs;ecundúm &longs;e totum locum mutat. </s> <s id="N134C6">Quòd <lb/> &longs;i ergo impul&longs;us, quem plaga inducit, proportionem <lb/> habeat ad illud mobile, eodem quo percutiens motu fe­<lb/> retur: &longs;i autem minor &longs;it impul&longs;us quam ut loco moue­<lb/> atur, habeat vorò idem mobile partes fragiles, aut in &longs;e <lb/> cedentes, percutiens percu&longs;&longs;um perforabit, aut excaua­<lb/> bit; it a nimirum &longs;i major &longs;it &longs;oliditas percu&longs;si, quam ut <lb/> impetus per omnes partes eluctetur, qui non prius iram <lb/> ponit, quam continuatà illarum partium, cuas perrum­ <pb xlink:href="062/01/087.jpg"/>pit, vel collidit, re&longs;i&longs;tentia vires ab&longs;umat. </s> <s id="N134DD">Ex huju&longs;mo­<lb/> di ergo corporibus nullo modo reflectit motus, ni&longs;i in <lb/> progre&longs;&longs;u, priú&longs;quam exoluatur, occurrant partes magis <lb/> &longs;olidæ: ita enim pila ubi calcem dera&longs;it àmuro, ex oc­<lb/> cur&longs;u &longs;axi reflectit: quod non &longs;it &longs;i viá, quà irrupit á fi&longs;­<lb/> &longs;urà rur&longs;um coëat, quemadmodum in ligno viridi, cu­<lb/> jus vulnus ex partium fi&longs;&longs;arum coalitu mox &longs;olidatur. <lb/> Corpora autem dura ab&longs;oluté quia <expan abbr="ne&qacute;">neque</expan>; perforantur, <lb/> <expan abbr="ne&qacute;">neque</expan>; partes habent percu&longs;sioni cedentes, æqualem reci­<lb/> piunt <expan abbr="at&qacute;">atque</expan>; inferunt plagam, morum verò ex illà plagâ re <lb/> flectunt, <expan abbr="at&qacute;">atque</expan>; eó magis, quó duritie magis præ&longs;tant. </s> <s id="N13504">In­<lb/> de ergò fit quód vala vitrea aut cry&longs;tallina inæqualiter <lb/> colliduntur, pro ut illa corpora, ad quæ offendunt, per­<lb/> cu&longs;sioni magis aut minús cedunt: quia nimirum non <lb/>ex illà, quam inferunt, &longs;ed ex illâ, quam recipiunt, plaga <lb/> colliduntur. 5. </s> <s id="N13511">Impul&longs;um fieri per lineam rectam: & &longs;i­<lb/> <arrow.to.target n="marg6"/><lb/> cuti grauitas minús mouet, quó magis linea motus ad <lb/> horizontem e&longs;t inclinata, quie&longs;cit verò à motu in lineà <lb/> eidem parallelás ita impul&longs;um ex inclinatione motus <lb/> &longs;en&longs;im minui, & demum in hypomochlio deficere. <lb/> Quòd &longs;i ergo mobile occurrat plano, it a ut contactus <lb/> &longs;it in lineá motus eiu&longs;dem centri, quia centrum hypo­<lb/> mochlio occurrit, totus ex illà plagà emoritur impul­<lb/> &longs;us; propterea quòd motui quies non minùs e&longs;t contra<lb/> ria, quam motus: at verò &longs;i planum &longs;it inclinatum, in il­ <pb xlink:href="062/01/088.jpg"/>là tantum parte, quæ hypomochlio occurrit, motus <expan abbr="cõ-quie&longs;cit">con­<lb/> quie&longs;cit</expan>, reliquà parte, quæ cum centro extra hypomo­<lb/> chlium cadit, nihil impedità: impul&longs;us ergo pilæ, cúm <lb/> motus centri e&longs;t perpendicularis ad planum, ubi percu&longs;­<lb/> &longs;it in hypomochlio â motu conquie&longs;cit: at vero <expan abbr="planũ">planum</expan> <lb/> ex illà plagà in percutiente nouum determinat impul­<lb/> &longs;um, juxta directionem plagæ, quam infert; à quo <expan abbr="ead&etilde;">eadem</expan>, <lb/> quà venit, vià retroagitur: & &longs;iquidem duritie præ&longs;tat, <lb/> erit plaga & qui hanc &longs;equitur impul&longs;us in <expan abbr="utro&qacute;">utroque</expan>; æqua­<lb/> lis, ac proinde motus reflexus æqualis motui recto: de­<lb/> ficiet autem motus reflexus â motu recto, &longs;i defectu du­<lb/> ritiei minorem recipiat, quam dedit plagam. </s> <s id="N13555">Quód &longs;i <lb/> ergo duo globi violentiá æquali &longs;ibi occurrant, <expan abbr="&longs;it&qacute;">&longs;itque</expan>; mo­<lb/> tus centri <expan abbr="utriu&longs;&qacute;">utriu&longs;que</expan>; in eádem lineà rectà; quia tum <expan abbr="uterq;">uterque</expan> <lb/> alteri, non minús quam planum, e&longs;t hypomochlij loco, <lb/> ab illâ communi plagà in <expan abbr="utro&qacute;">utroque</expan>, emoritur, nouus verò <lb/> quo retro aguntur, impul&longs;us regeneratur. </s> <s id="N13572">Licet verò <lb/> po&longs;it: 2. inficiamur eju&longs;modi globos &longs;ibi occurrentes re<lb/> &longs;ilire, id tamen exempli gratia ad naturam contrarij ma­<lb/> gis explicandam, & ex &longs;uppo&longs;itione, &longs;i nimirum impul­<lb/> &longs;us ei ratione mi&longs;ceantur, à nobis dictum fuit: at verò hi <lb/> impul&longs;us non mi&longs;centur, verùm uni abolito alius &longs;uc­<lb/> cedit. </s> <s id="N13581">Quód &longs;i verò <expan abbr="uter&qacute;">uterque</expan>; globus in motu percutiat vi­<lb/> olentià inæ quali, impul&longs;us quidem minoris, ubi percu&longs;­<lb/> &longs;it majus, ob hypomochlium à motu conquie&longs;cit, im­ <pb xlink:href="062/01/089.jpg"/>pul&longs;um verò &longs;ibi &longs;imilem & æqualem producit, &longs;eu de­<lb/> terminat in majori ex illa, quam infert, plagà, hoc e&longs;t <lb/> partem tollit à majori &longs;ibi æqualem. </s> <s id="N13594">At verò majus, ubi <lb/> percu&longs;sit, non videtur conquie&longs;cere â motu, propterea <lb/> quòd minus non habeat rationem hypomochlij ad ma <lb/> jus, impul&longs;um verò in minori producit &longs;ibi æqualem; ut <lb/> &longs;i minor impul&longs;us ut 3. major ut 7. minor quidem à ma­<lb/> jori tollit partem &longs;ibi æqualem ide&longs;t 3. & &longs;imul ob con­<lb/> trariam in hypomochlio quietem ex&longs;pirat; majus verò <lb/> quia tota vi percutit minus, impul&longs;um ut 7. producit ex <lb/> illà plagà, motum autem à percu&longs;sione non ni&longs;i partes 4. <lb/> reliquæ perficiunt. <expan abbr="Ita&qacute;">Itaque</expan>; fit ut ex illà in æquali plagà, ve <lb/> locitate ferantur inæquali, minori quidem majus ob vi­<lb/> res à percu&longs;sione accitas & mutilatas, majori verò mi­<lb/> nus ob ea&longs;dem vires de integro acqui&longs;itas. </s> <s id="N135B3">Dices inter­<lb/> dum fieri ut inæquali violentià &longs;ibi occurrant duo glo­<lb/> bi, & tamen <expan abbr="uter&qacute;">uterque</expan>; re&longs;iliat. </s> <s id="N135BE">Re&longs;pondeo &longs;i contactus fi <lb/> at in lineà motus centri, videtur non po&longs;&longs;e fieri ut major <lb/> re&longs;iliat, propterea, quód major violentia non detinetur <lb/> à minori: at veró &longs;i ex obliquo &longs;e percutiant, fieri po&longs;&longs;e <lb/> ut etiam ille globus, qui magis percu&longs;sit, re&longs;iliat, aut in <lb/> codem, quo percu&longs;sit, loco con&longs;i&longs;tat. </s> <s id="N135CB">In&longs;tabis hanc &longs;o­<lb/> lutionem non <expan abbr="u&longs;q;">u&longs;que</expan> <expan abbr="quaq;">quaque</expan> experientiæ con&longs;onare: nam <lb/> <expan abbr="quomodocunq;">quomodocunque</expan> duo globi inter &longs;e commicantur, <expan abbr="atq;">atque</expan> <lb/> adeò in lineà motus centri &longs;e percutiant violentiâ in­ <pb xlink:href="062/01/090.jpg"/>æquali, <expan abbr="uter&qacute;">uterque</expan> re&longs;ilit ab illà plagà, magis quidem qui mi­<lb/> nus, minùs verò qui magis percu&longs;sit: non igitur exce&longs;­<lb/> &longs;us majoris e&longs;t principium morus reliqui à contactu. <lb/> Vt objectioni & experientiæ &longs;atis fiat, dicendum à quo­<lb/> libet contactu impul&longs;um deficere & ex&longs;pirare, nouum <lb/> verò à percu&longs;sione determinari, qui motu eidem plagæ <lb/> æquali retroagit illud mobile. </s> <s id="N135F8">Cùm enim impul&longs;us â <lb/> percu&longs;sione fiat, juxta determinationem plagæ, quam <lb/> recipit à percutiente, nihil mirum &longs;i â determinatione <lb/> nouâ nouum impul&longs;um <expan abbr="cõ&longs;equatur">con&longs;equatur</expan>: quomodo in acu <lb/> nauticà fieri videmus, quæ quoties oppo&longs;itum polum <lb/> tangit, directionem, quà eidem polo &longs;e obuertit, &longs;orti­<lb/> tur nouam. </s> <s id="N1360B">Quod minùs difficulter admittes, &longs;i per­<lb/> pendas quá ratione va&longs;tæ campanæ ingens mugitus, & <lb/> qui hunc &longs;uá vibratione fouet in gyrum actus impul&longs;us <lb/> ex leui&longs;simo tactu repente contice&longs;cat: quid ergo mi­<lb/> rum ex tactu pilæ haud paulo majoris impul&longs;um cohi­<lb/> beri? In&longs;tabis an igitur globus ligneus, &longs;i ex oppo&longs;ito <lb/> quantumuis motu lento moueatur, repercutiet pilam <lb/> ferream <expan abbr="quacun&qacute;">quacunque</expan>; violentiá irruentem? Ad pleniorem <lb/> hujus <expan abbr="at&qacute;">atque</expan>; aliarum obiectionum &longs;olutionem, notandum <lb/> primò: ut mobile moueatur, non &longs;ufficere quemlibet <lb/> impul&longs;um, &longs;ed proportionatum illi mobili: impul&longs;us e­<lb/> nim, quo globus ligneus ad motum concitatur, haud <lb/>quaquam loco mouebit pilam ferream ejusdem molis <pb xlink:href="062/01/091.jpg"/>aut maiorem: at verò &longs;i huius impul&longs;u moueatur glo­<lb/> bus ligneus, motu agit abitur multò velociore. </s> <s id="N13634">Secundò: <lb/> <arrow.to.target n="marg7"/><lb/> hanc proportionem motus & impul&longs;us non á mole, &longs;ed <lb/> á grauitate illorum corporum determinari: <expan abbr="ita&qacute;">itaque</expan>; glo­<lb/> bus ligneus major, & glans plumbea minor, &longs;i æquipon­<lb/> derant, ab impul&longs;u æquali æquali velocitate mouentur <lb/> Simili modo &longs;i eandem rationem habeant impul&longs;us <lb/> quam habent pondera, erit velocitas motus æqualis' <lb/> Tertió percu&longs;sionem & quæ hanc &longs;equitur plagam non <lb/> <arrow.to.target n="marg8"/><lb/> uno in&longs;tanti, &longs;ed in aliquo tempore quantumuis imper­<lb/> ceptibili perfici: cùm enim plaga proueniat non ex &longs;olo <lb/> contactu, &longs;ed ex irruptione violentá, quá veluti pene­<lb/> trat percutiens percu&longs;&longs;um, non e&longs;&longs;e pote&longs;t <expan abbr="ab&longs;&qacute;">ab&longs;que</expan>; motu; <lb/> cùm ergo percutiens tangit, necdum e&longs;t plaga, &longs;ed fit; <lb/> cujus &longs;ignum fragor â percu&longs;sione non ni&longs;i in tempore <lb/> proueniens. </s> <s id="N13665">Sicuti ergo plaga &longs;ua habet incrementa, ita <lb/> determinatio impul&longs;us: & &longs;i quod mobile non totam <lb/> plagam recipit, deficiet <expan abbr="quo&qacute;">quoque</expan>; in eadem ratione impul­<lb/> &longs;us. </s> <s id="N13672">Quartó: impul&longs;um ex&longs;pirare ubi totam perfecit <lb/> <arrow.to.target n="marg9"/><lb/> plagam, partem verò non ni&longs;i cum parte emori: re&longs;idu­<lb/> um ergo plagæ &longs;eu impul&longs;us, &longs;i nihil e&longs;t quod recipiat il­<lb/> lam plagam, erit principium motus á percu&longs;sione con­<lb/> tinuati. </s> <s id="N13682">His &longs;uppo&longs;itis, ita rem tran&longs;igemus &longs;it ergo. </s> </p> <p id="N13685" type="margin"> <s id="N13687"><margin.target id="marg1"/><emph type="italics"/>R<gap/><emph.end type="italics"/></s> </p> <p id="N13691" type="margin"> <s id="N13693"><margin.target id="marg2"/><emph type="italics"/>No <lb/> 1.<emph.end type="italics"/></s> </p> <p id="N1369E" type="margin"> <s id="N136A0"><margin.target id="marg3"/><emph type="italics"/>2.<emph.end type="italics"/></s> </p> <p id="N136A9" type="margin"> <s id="N136AB"><margin.target id="marg4"/><emph type="italics"/>3<emph.end type="italics"/></s> </p> <p id="N136B4" type="margin"> <s id="N136B6"><margin.target id="marg5"/><emph type="italics"/>4<emph.end type="italics"/></s> </p> <p id="N136BF" type="margin"> <s id="N136C1"><margin.target id="marg6"/><emph type="italics"/>5<emph.end type="italics"/></s> </p> <p id="N136CA" type="margin"> <s id="N136CC"><margin.target id="marg7"/>2</s> </p> <p id="N136D1" type="margin"> <s id="N136D3"><margin.target id="marg8"/>3</s> </p> <p id="N136D8" type="margin"> <s id="N136DA"><margin.target id="marg9"/>4</s> </p> <p id="N136DF" type="main"> <s id="N136E1"><emph type="center"/><emph type="italics"/>Pori&longs;ma I.<emph.end type="italics"/><emph.end type="center"/></s> </p> <pb xlink:href="062/01/092.jpg"/> <p id="N136EF" type="main"> <s id="N136F1"><emph type="italics"/>Si globus alium globum percutiat quie&longs;centem & æqualem, illo <lb/> expul&longs;o quie&longs;cit.<emph.end type="italics"/></s> </p> <p id="N136FA" type="main"> <s id="N136FC">VT &longs;i duo globi lignei inter &longs;e &longs;int æquales, aut cum a­<lb/> lio quouis globo eju&longs;dem ponderis, <expan abbr="at&qacute;">atque</expan>; hic illum <lb/> percutiat quie&longs;centem; quia impul&longs;us percutientis ad <lb/> <expan abbr="utrum&qacute;">utrumque</expan>; globum eandem habet rationem ex notabili <lb/> 2. æqualis autem impul&longs;us non ni&longs;i á plagá &longs;it perfectâ, e­<lb/> rit velocitas in percu&longs;&longs;o non ante illam plagam: non er­<lb/> go incipiente plagá præcurret <expan abbr="&longs;e&qacute;">&longs;eque</expan>, auellet à <expan abbr="percuti&etilde;te">percutiente</expan>, <lb/> &longs;ed plagà demum perfectà illam velocitatem con&longs;ecu­<lb/> tus. </s> <s id="N1371F">Et quia ex notabili 4. impul&longs;us, ubi plagam perfe­<lb/> cit, ex&longs;pirat; nullam verò plagam inducit globus qùie­<lb/> &longs;cens, propterea quód <expan abbr="ne&qacute;">neque</expan>; irruptio violenta &longs;eu pene­<lb/> tratio fiat ab illo globo, qui eàdem velocitate, quà percu<lb/> titur, &longs;e abducit; quie&longs;cet globus percutiens ab illa, <lb/> quam fecit, plagà. </s> </p> <p id="N13730" type="main"> <s id="N13732"><emph type="center"/><emph type="italics"/>Pori&longs;ma II.<emph.end type="italics"/><emph.end type="center"/></s> </p> <p id="N1373D" type="main"> <s id="N1373F"><emph type="italics"/>Si globus major percutiat minorem quie&longs;centem, minori expul&longs;o <lb/> eundem motum continuat major.<emph.end type="italics"/></s> </p> <p id="N13748" type="main"> <s id="N1374A">QVia enim minus pondus æquali celeritate mouetur <lb/> a minori impul&longs;u; illam velocitatem motus qua <lb/> præcurrit <expan abbr="&longs;e&qacute;">&longs;eque</expan>; auellit à percutiente, à minori plagâ con­ <pb xlink:href="062/01/093.jpg"/>&longs;equetur, quam ut totum impul&longs;um producat. </s> <s id="N13759">Et quia<lb/> impul&longs;us non ni&longs;i à plagà emoritur; impul&longs;us reliquus, <lb/> qui nec dum percu&longs;sit, eundem motum continuabit. <lb/> Habeat enim pondus <emph type="italics"/>de<emph.end type="italics"/> ad pondus <emph type="italics"/>fg<emph.end type="italics"/> eandem <expan abbr="ration&etilde;">rationem</expan>, <lb/> quam habet impul&longs;us maioris <emph type="italics"/>ac<emph.end type="italics"/> ad impul&longs;um minoris <lb/> <figure id="id.062.01.093.1.jpg" xlink:href="062/01/093/1.jpg"/><lb/> <emph type="italics"/>ab,<emph.end type="italics"/> <expan abbr="percutiat&qacute;">percutiatque</expan>; <emph type="italics"/>de<emph.end type="italics"/> ip&longs;um <emph type="italics"/>fg<emph.end type="italics"/>: quia ergo plagà non ni&longs;i in <lb/> aliquo tempore fit, & &longs;icuti plaga, ita <expan abbr="quo&qacute;">quoque</expan>; impul&longs;us <lb/> &longs;ua habet incrementa, erit impul&longs;us <emph type="italics"/>ab<emph.end type="italics"/> prior impul&longs;u <emph type="italics"/>ac.<emph.end type="italics"/><lb/> e&longs;t autem <emph type="italics"/>ac<emph.end type="italics"/> ad <emph type="italics"/>al,<emph.end type="italics"/> ut <emph type="italics"/>de<emph.end type="italics"/> ad <emph type="italics"/>fg<emph.end type="italics"/>: & permutando <emph type="italics"/>ac<emph.end type="italics"/> ad <emph type="italics"/>de,<emph.end type="italics"/><lb/> ut <emph type="italics"/>ab<emph.end type="italics"/> ad <emph type="italics"/>fg<emph.end type="italics"/>; eadem ergò velocitas in <expan abbr="utro&qacute;">utroque</expan>;. </s> <s id="N137E3">Et quia eá­<lb/> dem velocitate mouentur, nulla à contactu erit plaga. <lb/> Ita ergo pila ferrea dum murum percutit, quia minori <lb/> impul&longs;u, ad motum concitantur partes in muro percu&longs;­<lb/> &longs;æ, illam velocitatem motus, quâ pila ferrea mouetur, <lb/> ab incipiente & necdum perfectà plagà con&longs;equuntur: <lb/> impul&longs;æ ergo motum pilæ anteuertunt, <expan abbr="&longs;uo&qacute;">&longs;uoque</expan>; impetu a­<lb/> liis in&longs;tant: & &longs;icubi major vis ob&longs;tat, pila à tergo hæ­<lb/> rentes nouo impul&longs;u urget, <expan abbr="quou&longs;&qacute;">quou&longs;que</expan>; illà percu&longs;sione <expan abbr="cõ">con</expan><lb/> tinuatà totum impul&longs;um plaga hauriat & ab&longs;umat <lb/> Quód &longs;i major &longs;it impul&longs;us, quam ut æqualis &longs;it illi pla­<lb/> gæ, quà murum perforat, motum à rupturâ continuat li­<lb/> li exce&longs;&longs;ui æqualem. </s> </p> <pb xlink:href="062/01/094.jpg"/> <p id="N1380C" type="main"> <s id="N1380E"><emph type="center"/><emph type="italics"/>Pori&longs;ma III.<emph.end type="italics"/><emph.end type="center"/></s> </p> <p id="N13819" type="main"> <s id="N1381B"><emph type="italics"/>Si globus minor percutiat majorem quie&longs;centem, habeat verò <lb/> minorem rationem ad &longs;uum impul&longs;um, quam ad globum majorem, <lb/> expul&longs;o majori minor quie&longs;cit aut reflectit.<emph.end type="italics"/></s> </p> <p id="N13826" type="main"> <s id="N13828">HAbeat globus <emph type="italics"/>a<emph.end type="italics"/> maior ad minorem <emph type="italics"/>b<emph.end type="italics"/> rationem du­<lb/> plam, ide&longs;t grauitas &longs;eu pondus majoris &longs;it duplum <lb/> ponderis minoris; impul&longs;us autem minoris ad eju&longs;dem <lb/> grauitatem in ratione majori quam dupla. </s> <s id="N1383D">Quia ergo <lb/> grauitas & impul&longs;us inter &longs;e &longs;unt contraria, erit motus <lb/> æqualis exce&longs;&longs;ui maioris; e&longs;t autem impul&longs;us minoris <lb/> maior grauitate maioris, propterea quód ad grauitatem <lb/> minoris maiorem habeat rationem; erit ergo huius ex­<lb/> ce&longs;&longs;us principium motus maiori. </s> <s id="N1384A">Igitur &longs;i globus mi­<lb/> nor percutiat maiorem, quia ab æquali impul&longs;u minor <lb/> e&longs;t velocitas motus, non ante perfectam plagam auelli <lb/> pote&longs;t à percutiente: & quia à plagà perfectâ emoritur <lb/> impul&longs;us, minori autem velocitate maior &longs;e abducit ab <lb/> illà plagà, quàm irruptio fiat minoris; repercutiet ma<lb/> ior minorem, <expan abbr="erit&qacute;">eritque</expan>; huius plaga ad men&longs;uram illius tar­<lb/> ditatis. </s> <s id="N1385F">Globus ergo minor, ubi percu&longs;sit maiorem, illo <lb/> expul&longs;o reflectit. </s> <s id="N13864">Quòd &longs;i ob motum velociorem nullà <lb/> à percu&longs;&longs;o inducitur plaga, minor expul&longs;o maiori qui­<lb/> e&longs;cit. </s> </p> <pb xlink:href="062/01/095.jpg"/> <p id="N1386E" type="main"> <s id="N13870"><emph type="center"/><emph type="italics"/>Pori&longs;ma IV.<emph.end type="italics"/><emph.end type="center"/></s> </p> <p id="N1387B" type="main"> <s id="N1387D"><emph type="italics"/>Si globus minor percutiat majorem quie&longs;centem, habeat verò <lb/> majorem rationem ad &longs;uum impul&longs;um, quam ad globum majorem, <lb/> illo immoto reflectit minor.<emph.end type="italics"/></s> </p> <p id="N13888" type="main"> <s id="N1388A">VT &longs;i impul&longs;us, quo minor globus mouetur, ad illius <lb/> grauitatem &longs;it in ratione duplà; globus veró major <lb/> ad minorem rationem habeat maiorem quam duplam, <lb/> erit impul&longs;us minoris minor grauitate maioris; non er­<lb/> gò <expan abbr="illã">illam</expan> mouere valebit, propterea quód motus ab exce&longs;­<lb/> &longs;u fiat maioris. </s> <s id="N1389B">Quód &longs;i ergo minor globus percutiat <lb/> maiorem, quia ex illà plagà minor e&longs;t impul&longs;us, quam ut <lb/> loco moueat; globus quidem maior à percu&longs;sione qui <lb/> e&longs;cit, minor verò quia à percu&longs;&longs;o quie&longs;cente nouam & <lb/> æqualem illi, quam dedit, plagam recipit, motum refle­<lb/> ctit. </s> <s id="N138A8">Ex iam definitis di&longs;&longs;oluemus & hoc </s> </p> <p id="N138AB" type="main"> <s id="N138AD"><emph type="center"/><emph type="italics"/>Problema I.<emph.end type="italics"/><emph.end type="center"/></s> </p> <p id="N138B8" type="main"> <s id="N138BA"><emph type="italics"/>Globum in plano quie&longs;centem percutere alio globo <expan abbr="quacun&qacute;">quacunque</expan> vi­<lb/> olentià, <expan abbr="ne&qacute;">neque</expan>; tamen loco mouere.<emph.end type="italics"/></s> </p> <p id="N138CB" type="main"> <s id="N138CD">AS&longs;umatur globus <emph type="italics"/>a<emph.end type="italics"/> <expan abbr="cuiu&longs;cunq;">cuiu&longs;cunque</expan> molis & ponderis, eius <lb/> tamen firmitatis, quò totum impetum &longs;ufferre vale­<lb/> at, <expan abbr="ne&qacute;">neque</expan>; di&longs;siliat ex illo ictu: <expan abbr="con&longs;tituatur&qacute;">con&longs;tituaturque</expan>; in plano <emph type="italics"/>AB<emph.end type="italics"/> <pb xlink:href="062/01/096.jpg"/>liberè, & <expan abbr="ab&longs;q;">ab&longs;que</expan> ullo nexu: <expan abbr="qu&etilde;">quem</expan> percuti volumus ab alio <lb/> globo, æquali tamen aut minori, <expan abbr="quacũ&qacute;">quacunque</expan> violentia, <expan abbr="at&qacute;">atque</expan>; <lb/> adeò à machinà bellicà effulminato, <expan abbr="ne&qacute;">neque</expan>; tamen &longs;uo lo­<lb/> co moueri. quod quidem nullis machinis, aut retinacu­<lb/> lis, &longs;ed duntaxat unius globi appo&longs;itione con&longs;eque­<lb/> <figure id="id.062.01.096.1.jpg" xlink:href="062/01/096/1.jpg"/><lb/> mur, qui iram illius fulminis à globo percu&longs;&longs;o hauriat & <lb/> ab&longs;umat. </s> <s id="N13917">Appone ergo à tergo alium globum illi æqua<lb/> lem <emph type="italics"/>b,<emph.end type="italics"/> & &longs;it linea motus pilæ ad utrum <expan abbr="&qacute;">que</expan> globum perpen<lb/> dicularis; dico globum <emph type="italics"/>a<emph.end type="italics"/> nulla ratione loco moueri a <lb/> globo <emph type="italics"/>d.<emph.end type="italics"/> Quia enim globus <emph type="italics"/>a<emph.end type="italics"/> eodem momento, quo <lb/> percutitur à globo <emph type="italics"/>d,<emph.end type="italics"/> percutit globum <emph type="italics"/>b<emph.end type="italics"/> &longs;ibi æqualem, <lb/> inducet illà percu&longs;sione plagam perfectam, ac proinde <pb xlink:href="062/01/097.jpg"/>per Pori&longs;: 1. â percu&longs;sione quie&longs;cet. </s> <s id="N13950">Quòd &longs;i plures glo­<lb/> bi æquales &longs;e <expan abbr="contingãt">contingant</expan> in lineà motus centri, ut <emph type="italics"/>f.g.h.i,<emph.end type="italics"/><lb/> percu&longs;&longs;o <emph type="italics"/>f<emph.end type="italics"/> primo ab æquali <emph type="italics"/>e,<emph.end type="italics"/> ultimus <emph type="italics"/>i<emph.end type="italics"/> mouetur, reliquis <lb/> <emph type="italics"/>f.g.h<emph.end type="italics"/> immotis; propterea quód per Pori&longs;. <emph type="italics"/>1.<emph.end type="italics"/> po&longs;terior <lb/> prioris exhaurit plagam. </s> <s id="N13982">t verò &longs;i unus æqualium po&longs;t <lb/> fe habeat minores <expan abbr="quotcun&qacute;">quotcunque</expan>; ut <emph type="italics"/>o.p.q.<emph.end type="italics"/> percu&longs;&longs;o à <emph type="italics"/>k<emph.end type="italics"/> æqua­<lb/> li <emph type="italics"/>l,<emph.end type="italics"/> omnes cum <emph type="italics"/>l<emph.end type="italics"/> moto mouentur, ut con&longs;tat per Pori&longs;.2. <lb/> Quòd &longs;i demum percu&longs;sio incipiat à minori <emph type="italics"/>q<emph.end type="italics"/> ug: omni­<lb/> bus immotis aut reflexis ultimus mouetur, per Pori&longs;. 3. <lb/> aut &longs;i minor e&longs;t impul&longs;us grauitate, quie&longs;cit, per Pori&longs;. <lb/> 4. </s> <s id="N139B3">Eadem vià di&longs;&longs;oluemus hoc </s> </p> <p id="N139B6" type="main"> <s id="N139B8"><emph type="center"/><emph type="italics"/>Problema II.<emph.end type="italics"/><emph.end type="center"/></s> </p> <p id="N139C3" type="main"> <s id="N139C5"><emph type="italics"/>Globum in plano quie&longs;centem alio globo <expan abbr="quacun&qacute;">quacunque</expan> violentià per<lb/> cu&longs;&longs;um, ad imperatam di&longs;tantiam mouere.<emph.end type="italics"/></s> </p> <p id="N139D2" type="main"> <s id="N139D4">VT &longs;i globum <emph type="italics"/>b<emph.end type="italics"/> ab alio globo æquali aut minori <expan abbr="qua-cun&qacute;">qua­<lb/> cunque</expan> violentiâ percu&longs;&longs;um, ad locum determinatum <lb/> vg: <emph type="italics"/>c<emph.end type="italics"/> mouere velis, <expan abbr="ne&qacute;">neque</expan>; limitem hunc præterire, quan­<lb/> tumuis effræni impetu feratur</s> <s id="N139F1">n eodem loco, quem <lb/> terminum illi motui præfixi&longs;ti, globum con&longs;titue æqua­<lb/> lem, dico in eodem loco à motu quie&longs;cere globum <emph type="italics"/>b.<emph.end type="italics"/><lb/> Quia enim globum <emph type="italics"/>c<emph.end type="italics"/> quie&longs;centem percutit globus æ­<lb/> qualis <emph type="italics"/>b,<emph.end type="italics"/> per Pori&longs;. <emph type="italics"/>i<emph.end type="italics"/> quie&longs;cet ex illa, quam fecit, plagâ. </s> </p> <pb xlink:href="062/01/098.jpg"/> <p id="N13A16" type="main"> <s id="N13A18"><emph type="center"/><emph type="italics"/>Pori&longs;ma V.<emph.end type="italics"/><emph.end type="center"/></s> </p> <p id="N13A23" type="main"> <s id="N13A25"><emph type="italics"/>Si duo globi eju&longs;dem molis &longs;eu ponderis &longs;e percutiant in motu, <lb/> <expan abbr="uter&qacute;">uterque</expan>; reflectit.<emph.end type="italics"/></s> </p> <p id="N13A32" type="main"> <s id="N13A34">NAm quia idem pondus <expan abbr="utriu&longs;&qacute;">utriu&longs;que</expan>;, erit <expan abbr="quoq;">quoque</expan> velocitas <lb/> motus, quam plaga inducit, æqualis; eadem ergo ve­<lb/> locitate reflectit percutiens, quà percu&longs;&longs;um mouebatur. <lb/> Ex quo fit manife&longs;tum illorum velocitatem, quæ in mo <lb/> tu &longs;e percutiunt, à percu&longs;sione permutari: quæ enim ma<lb/> gis percutiunt, minùs; & quæ minùs percutiunt, magis <lb/> impetuo&longs;è reflectunt. </s> </p> <p id="N13A4B" type="main"> <s id="N13A4D"><emph type="center"/><emph type="italics"/>Pori&longs;ma VI.<emph.end type="italics"/><emph.end type="center"/></s> </p> <p id="N13A58" type="main"> <s id="N13A5A"><emph type="italics"/>Si globus major in motu percutiat minorem, habeat verò minor <lb/> minorem rationem ad &longs;uum impul&longs;um, quam ad globum majorem, <lb/> <expan abbr="uter&qacute;">uterque</expan>; reflectit.<emph.end type="italics"/></s> </p> <p id="N13A69" type="main"> <s id="N13A6B">QVia enim major e&longs;t impul&longs;us minoris grauitate ma­<lb/> joris, ob minorem hujus quam illius ratio nem, &longs;i mi­<lb/> nor percutiat majorem, mouebitur ex illà plagà major: <lb/> reflectit autem & minor à majori, propterea quód à qua<lb/> <expan abbr="cun&qacute;">cunque</expan> hujus plagâ mouetur minor. </s> <s id="N13A7A">Igitur &longs;i globus ma­<lb/> jor in motu percutiat minorem &c. </s> </p> <p id="N13A7F" type="main"> <s id="N13A81"><emph type="center"/><emph type="italics"/>Pori&longs;ma VII.<emph.end type="italics"/><emph.end type="center"/></s> </p> <pb xlink:href="062/01/099.jpg"/> <p id="N13A8F" type="main"> <s id="N13A91"><emph type="italics"/>Si globus major in motu percutiat minorem, habeat verò minor <lb/> majorem rationem ad &longs;uum impul&longs;um, quam ad globum majorem, <lb/> minori reflexo motum continuat major.<emph.end type="italics"/></s> </p> <p id="N13A9C" type="main"> <s id="N13A9E">QVia enim minor e&longs;t impul&longs;us minoris grauitate ma<lb/> joris, propterea quòd minorem ad hanc quam ad im<lb/> pul&longs;um habeat rationem, non poterit grauitas majoris <lb/> moueri ex impul&longs;u minoris: licet ergo plaga fiat à mi­<lb/> nori, quia tamen minorem producit impul&longs;um, quam <lb/> ut grauitatem majoris loco moueat, non pote&longs;t ex illà <lb/> plagà reflecti major. </s> <s id="N13AAD">Quia verò à minori impul&longs;u æqua <lb/> li velocitate mouetur minor, erit velocitas in minori æ­<lb/> qualis velocitati majoris à plagà necdum perfectà: im­<lb/> pul&longs;us ergo reliquus, qui necdum percu&longs;sit, motum con­<lb/> tinuabit. </s> <s id="N13AB8">Si ergo globus major in motu percutiat mi­<lb/> norem &c. </s> </p> <p id="N13ABD" type="main"> <s id="N13ABF"><emph type="center"/><emph type="italics"/>Pori&longs;ma VIII.<emph.end type="italics"/><emph.end type="center"/></s> </p> <p id="N13ACA" type="main"> <s id="N13ACC"><emph type="italics"/>Si globus major in motu percutiat minorem, habéat verò minor <lb/> ad majorem eandem rationem, quam habet ad &longs;uum impul&longs;um, mi­<lb/> nori reflexo quie&longs;cit major.<emph.end type="italics"/></s> </p> <p id="N13AD7" type="main"> <s id="N13AD9">MInorem quidem globem à majori reflecti con&longs;tat, <lb/> propterea quód ex hujus plagà impul&longs;us quidem æ­<lb/> qualis, maior autem velo citas in minori con&longs;equatur: àt <lb/> verò globum maiorem â percu&longs;sione quie&longs;cere, cùm e­ <pb xlink:href="062/01/100.jpg"/>andem habet rationem minor ad hunc, quam habet ad <lb/> &longs;uum impul&longs;um, ita o&longs;tendemus: motus non ni&longs;i ab ex­<lb/> ce&longs;&longs;u fit maioris; at verò impul&longs;us ex illà plagà, quam in­<lb/> ducit minor in maiori, non maior &longs;ed æqualis e&longs;t eiu&longs;­<lb/> dem grauitati, ex &longs;uppo&longs;itione; non ergo ex illo impul­<lb/> &longs;u moueri pote&longs;t major. </s> <s id="N13AF0">Quia verò à percu&longs;sione exol­<lb/> uitur, minor autem, quam ut mouere po&longs;sit, impul&longs;us <lb/> regeneratur, quie&longs;cet ex illà plagà globus maior. </s> </p> </subchap1> <subchap1 id="N13AF7"> <p id="N13AF8" type="main"> <s id="N13AFA"><emph type="center"/>Propo&longs;itio XXXVIII.<emph.end type="center"/></s> </p> <p id="N13B01" type="main"> <s id="N13B03"><emph type="italics"/>Cùm centrum grauitatis cadit extra lineam hypomochlij, motus <lb/> in illam partem, in quà e&longs;t centrum, reflectit.<emph.end type="italics"/></s> </p> <p id="N13B0C" type="main"> <s id="N13B0E">OCcurrat globus <emph type="italics"/>dcg<emph.end type="italics"/> plano <emph type="italics"/>ab<emph.end type="italics"/> non perpendiculari­<lb/> ter, &longs;ed ex obliquo, faciens angulum incidentiæ <emph type="italics"/>adc<emph.end type="italics"/><lb/> acutum, <expan abbr="erit&qacute;">eritque</expan>; linea <emph type="italics"/>cd<emph.end type="italics"/> ducta per contactum linea hypo­<lb/> mochlii, & motui centri parallela, centrum verò <emph type="italics"/>e<emph.end type="italics"/> extra <lb/> lineam hypomochlii: dico ex puncto contactus <emph type="italics"/>a<emph.end type="italics"/> mo­<lb/> tum reflexum fieri in illam partem, in quâ e&longs;t centrum <emph type="italics"/>e.<emph.end type="italics"/><lb/> Quia enim motus & plaga ad motum fit centri: <expan abbr="centrũ">centrum</expan> <lb/> verò <emph type="italics"/>e<emph.end type="italics"/> plano occurrit per lineam <emph type="italics"/>ed,<emph.end type="italics"/> <expan abbr="e&longs;t&qacute;">e&longs;tque</expan>; maior re&longs;i&longs;ten<lb/> tia in plano quam impul&longs;us, erit motus reflexus ad partes <lb/> oppo&longs;itas illi plagæ, ac proinde in partem in quà e&longs;t cen­<lb/> trum. </s> </p> </subchap1> <subchap1 id="N13B65"> <pb xlink:href="062/01/101.jpg"/> <p id="N13B69" type="main"> <s id="N13B6B"><emph type="center"/>Propo&longs;itio XXXIX.<emph.end type="center"/></s> </p> <p id="N13B72" type="main"> <s id="N13B74"><emph type="italics"/>Motus reflexus fit per lineam parallelam illi lineæ, quæ cum lineà <lb/> perpendiculari ad contactum angulum con&longs;tituit in centro, cujus &longs;i­<lb/> nus e&longs;t æqualis interuallo inter centrum grauitatis & lineam hy­<lb/> pomochlij.<emph.end type="italics"/></s> </p> <p id="N13B81" type="main"> <s id="N13B83">IN eàdem figurà ducatur ex <emph type="italics"/>e<emph.end type="italics"/> centro grauitatis &longs;eu im­<lb/> pul&longs;us linea <emph type="italics"/>ef<emph.end type="italics"/> perpendicularis ad lineam hypomo­<lb/> chlii <emph type="italics"/>cd,<emph.end type="italics"/> & linea <emph type="italics"/>eg<emph.end type="italics"/> faciens cum lineà <emph type="italics"/>dh<emph.end type="italics"/> perpendiculari <lb/> ad contactum in eodem centro <emph type="italics"/>e<emph.end type="italics"/> angulum <emph type="italics"/>heg,<emph.end type="italics"/> cuius &longs;i­<lb/> nus <emph type="italics"/>hg<emph.end type="italics"/> &longs;it æqualis lineæ <emph type="italics"/>fe<emph.end type="italics"/> interuallo inter centrum gra­<lb/> <figure id="id.062.01.101.1.jpg" xlink:href="062/01/101/1.jpg"/><lb/> uitatis <emph type="italics"/>e<emph.end type="italics"/> & lineam hypomochlii: dico motum reflexum <lb/> fieri per lineam <emph type="italics"/>di<emph.end type="italics"/> parallelam lineæ <emph type="italics"/>eg.<emph.end type="italics"/> Quia enim cen­<lb/> trum grauitatis, dum &longs;uà mole ferit planum in puncto <emph type="italics"/>d<emph.end type="italics"/> <pb xlink:href="062/01/102.jpg"/> per lineam <emph type="italics"/>ed<emph.end type="italics"/> &longs;e ip&longs;um veluti partitur: illa quidem pars <lb/> quæ hypomochlio in&longs;i&longs;tit, <expan abbr="atq&qacute;">atque</expan> illam plagam inducit, ea­<lb/> dem vià, quá impulit, & impul&longs;u æquali retro agitur: re­<lb/> liqua verò, quæ cum centro extra hypomochlium ca­<lb/> dit, per lineam fertur <emph type="italics"/>ek<emph.end type="italics"/> parallelam lineæ <emph type="italics"/>db,<emph.end type="italics"/> propterea <lb/> quód hæc &longs;it proxima motui grauitatis ab hypomo­<lb/> chlio impeditæ. </s> <s id="N13C0F">Quia ergo motus <emph type="italics"/>eh.ek,<emph.end type="italics"/> quibus cen­<lb/> trum grauitatis agitur, &longs;ecundúm quid &longs;unt contrarii, <lb/> propterea quód angulus <emph type="italics"/>hek<emph.end type="italics"/> &longs;it minor duobus rectis, e­<lb/> rit motus mixtus per lineam mediam inter <emph type="italics"/>eh<emph.end type="italics"/> & <emph type="italics"/>ek,<emph.end type="italics"/> cu­<lb/> jus interuallum determinat &longs;inus complementi inclina­<lb/> tionis, in ratione quam habent impul&longs;us per Prop; 31. e&longs;t <lb/> autem interuallum <emph type="italics"/>fe,<emph.end type="italics"/> hoc e&longs;t &longs;inus <emph type="italics"/>dm<emph.end type="italics"/> anguli <emph type="italics"/>dem,<emph.end type="italics"/> men­<lb/> &longs;ura grauitatis extra hypomochlium; linea vero <emph type="italics"/>fd<emph.end type="italics"/> &longs;inus <lb/> anguli reliqui men&longs;ura illius, quæ hypomochlio in&longs;i&longs;tit <lb/> grauitatis: &longs;i fiat ut <emph type="italics"/>fd<emph.end type="italics"/> ad <emph type="italics"/>ef,<emph.end type="italics"/> ita <emph type="italics"/>kg<emph.end type="italics"/> &longs;inus complementi an<lb/> guli <emph type="italics"/>heg<emph.end type="italics"/> ad<emph type="italics"/>hg<emph.end type="italics"/> &longs;inum complementi anguli <emph type="italics"/>keg<emph.end type="italics"/> erit li­<lb/> nea <emph type="italics"/>eg<emph.end type="italics"/> linea motus mixti ex <emph type="italics"/>eh<emph.end type="italics"/> & <emph type="italics"/>ek<emph.end type="italics"/> per Prop: 31. </s> <s id="N13C8E">Vel &longs;ic <lb/> motus reflexus fit per lineam <emph type="italics"/>de<emph.end type="italics"/> perpendicularem ad <lb/> contactum; inclinatio autem motus reflexi augetur in <lb/> ratione interualli inter centrum grauitatis & hypomo­<lb/> chlium: Si igitur fiat ut &longs;inus totus nimirum motus re­<lb/> flexus, ad men&longs;uram hujus interuàlli, hoc e&longs;t grauitatem <lb/> extra hypomochlium, ita linea motus <emph type="italics"/>eh<emph.end type="italics"/> &longs;inus nimirum <lb/> anguli <emph type="italics"/>hek,<emph.end type="italics"/> hoc e&longs;t &longs;inus totus ad &longs;inum <emph type="italics"/>hg<emph.end type="italics"/> anguli incli­ <pb xlink:href="062/01/103.jpg"/>nationis, erit eadem linea <emph type="italics"/>eg<emph.end type="italics"/> motus mixti. </s> <s id="N13CC1">Quia ergo <lb/> mobile mouetur ad motum &longs;ui centri, erit motus ex <emph type="italics"/>d<emph.end type="italics"/><lb/> reflexus per lineam parallelam illi lineæ, quæ cum lineà <lb/> perpendiculari ad contactum angulum con&longs;tituit in <lb/> centro, cujus &longs;inus e&longs;t æqualis interuallo inter centrum <lb/> grauitatis & lineam hypomochlij. </s> </p> </subchap1> <subchap1 id="N13CD3"> <p id="N13CD4" type="main"> <s id="N13CD6"><emph type="center"/>Propo&longs;itio XXXX.<emph.end type="center"/></s> </p> <p id="N13CDD" type="main"> <s id="N13CDF"><emph type="italics"/>Anguli incidentiæ & reflexionis &longs;unt inter &longs;e æquales.<emph.end type="italics"/></s> </p> <p id="N13CE6" type="main"> <s id="N13CE8">QVia enim duo latera <emph type="italics"/>eh.bg<emph.end type="italics"/> trianguli <emph type="italics"/>ehg<emph.end type="italics"/> æqualia <lb/> &longs;unt duobus lateribus <emph type="italics"/>ef. fd<emph.end type="italics"/> trianguli <emph type="italics"/>efd,<emph.end type="italics"/> & angu­<lb/> lus, qui adjacet uni æqualium laterum, rectus, erunt tri­<lb/> angula æqualia, & angulus <emph type="italics"/>fde<emph.end type="italics"/> angulo <emph type="italics"/>heg<emph.end type="italics"/> æqualis: e&longs;t <lb/> autem angulo <emph type="italics"/>heg<emph.end type="italics"/> æqualis angulus <emph type="italics"/>edi<emph.end type="italics"/> ob parallelas <emph type="italics"/>eg. <lb/> di<emph.end type="italics"/>; idem ergo angulus <emph type="italics"/>edi<emph.end type="italics"/> e&longs;t æqualis angulo <emph type="italics"/>fde:<emph.end type="italics"/> &longs;unt <lb/> verò duo <expan abbr="quo&qacute;">quoque</expan>; anguli <emph type="italics"/>a.de.bde<emph.end type="italics"/> inter le æquales, nimi­<lb/> rum recti; ablatis ergo duobus angulis <emph type="italics"/>fde.edi<emph.end type="italics"/> æquali­<lb/> bus, erunt anguli reliqui <emph type="italics"/>adf.bdi,<emph.end type="italics"/> anguli nimirum inci­<lb/> dentiæ & reflexionis inter &longs;e æquales. </s> <s id="N13D55">Priu&longs;quam de mo <lb/> tu reflexo finiamus, unum <expan abbr="at&qacute;">atque</expan>; alterum Problema pro <lb/> corollario adducemus, quorum &longs;olutio magis difficilis <lb/> habetur, ex ijs autem, quæ hactenus &longs;unt demon&longs;trata, <lb/> facilè di&longs;&longs;oluuntur. </s> <s id="N13D64">Sit ergo </s> </p> <pb xlink:href="062/01/104.jpg"/> <p id="N13D6A" type="main"> <s id="N13D6C"><emph type="center"/><emph type="italics"/>Problema<emph.end type="italics"/><emph.end type="center"/></s> </p> <p id="N13D77" type="main"> <s id="N13D79"><emph type="italics"/>Tribus globis in <expan abbr="quacun&qacute;">quacunque</expan>; di&longs;tantia extra lineam rectam a&longs;&longs;um<lb/> ptis, punctum determinare in globo &longs;ecundo, à quo reflexus primus <lb/> percutiat tertium.<emph.end type="italics"/></s> </p> <p id="N13D88" type="main"> <s id="N13D8A">IN figurà &longs;ubiectà a&longs;&longs;umantur globi <emph type="italics"/>s.p.r.<emph.end type="italics"/> in di&longs;tantiâ <lb/> <emph type="italics"/>sp.pr.rs:<emph.end type="italics"/> <expan abbr="oporteat&qacute;">oporteatque</expan>; in globo <emph type="italics"/>p<emph.end type="italics"/> punctum determina­<lb/> re, ad quod globus <emph type="italics"/>s<emph.end type="italics"/> allidens, <expan abbr="inde&qacute;">indeque</expan>; reflexus percutiat <lb/> globum <emph type="italics"/>r.<emph.end type="italics"/> Tangant illos globos lineæ <emph type="italics"/>ac. bd<emph.end type="italics"/> in punctis <lb/> <emph type="italics"/>a.c. b.d,<emph.end type="italics"/> & diuidantur bifariam in punctis <emph type="italics"/>e<emph.end type="italics"/> & <emph type="italics"/>f;<emph.end type="italics"/> à quibus in <lb/> circulum <emph type="italics"/>p<emph.end type="italics"/> excurrant lineæ rectæ <emph type="italics"/>eg.fg.<emph.end type="italics"/> &longs;e inter&longs;ecantes <lb/> in puncto reflexionis <emph type="italics"/>g,<emph.end type="italics"/> eo modo, quo docent Optici in­<lb/> uento, & producantur <expan abbr="utrin&qacute;">utrinque</expan> in <emph type="italics"/>k.l,<emph.end type="italics"/> & <emph type="italics"/>h. i;<emph.end type="italics"/> dico <expan abbr="punctũ">punctum</expan> <lb/> <emph type="italics"/>g<emph.end type="italics"/> e&longs;&longs;e illud punctum, â quo globus <emph type="italics"/>s<emph.end type="italics"/> reflexus percutiat <lb/> globum<emph type="italics"/>r.<emph.end type="italics"/> Quia enim angulus <emph type="italics"/>egd<emph.end type="italics"/> angulo <emph type="italics"/>fgc<emph.end type="italics"/> per con­<lb/> &longs;tructionem, & angulus <emph type="italics"/>egh<emph.end type="italics"/> angulo <emph type="italics"/>fgk<emph.end type="italics"/> ad verticem e&longs;t <lb/> æquali<emph type="italics"/>s<emph.end type="italics"/>; ablatis ex his illis erunt anguli reliqui <emph type="italics"/>hgd. kge<emph.end type="italics"/><lb/> æquales: linea ergo &longs;ubten&longs;a <emph type="italics"/>hg<emph.end type="italics"/> e&longs;t æqualis lineæ <emph type="italics"/>kg.<emph.end type="italics"/> & <lb/> quia linea <emph type="italics"/>fd<emph.end type="italics"/> lineæ <emph type="italics"/>fb,<emph.end type="italics"/> & angulus <emph type="italics"/>dfg<emph.end type="italics"/> e&longs;t æqualis angulo <lb/> <emph type="italics"/>bfn,<emph.end type="italics"/> erit corda <emph type="italics"/>gh<emph.end type="italics"/> æqualis cordæ <emph type="italics"/>ni.<emph.end type="italics"/> Similiter o&longs;tende­<lb/> mus cordam <emph type="italics"/>gk<emph.end type="italics"/> æqualem cordæ <emph type="italics"/>ml.<emph.end type="italics"/> Ducatur ergo per <lb/> contactum â centro <emph type="italics"/>p<emph.end type="italics"/> linea <emph type="italics"/>pq,<emph.end type="italics"/> <expan abbr="at&qacute;">atque</expan>, ex <emph type="italics"/>q<emph.end type="italics"/> circulus de­<lb/> &longs;cribatur æqualis circulo<emph type="italics"/>s,<emph.end type="italics"/> tangens priorem in <emph type="italics"/>g,<emph.end type="italics"/> <expan abbr="agatur&qacute;">agaturque</expan>; <lb/> linea <emph type="italics"/>qr<emph.end type="italics"/> parallela lineæ <emph type="italics"/>gi<emph.end type="italics"/>: quòd &longs;i ergo globus <emph type="italics"/>s<emph.end type="italics"/> motu &longs;ui <pb xlink:href="062/01/105.jpg"/>centri de&longs;cribat lineam <emph type="italics"/>sq,<emph.end type="italics"/> de&longs;cribet punctum <emph type="italics"/>m<emph.end type="italics"/> motu <lb/> &longs;imili lineam <emph type="italics"/>mg<emph.end type="italics"/> illi parallelam, <expan abbr="tanget&qacute;">tangetque</expan>; globus <emph type="italics"/>s<emph.end type="italics"/> <expan abbr="globũ">globum</expan> <lb/> <emph type="italics"/>p<emph.end type="italics"/> in puncto <emph type="italics"/>g<emph.end type="italics"/>: dico punctum <emph type="italics"/>m<emph.end type="italics"/> ex <emph type="italics"/>g<emph.end type="italics"/> per lineam <emph type="italics"/>gi,<emph.end type="italics"/> cen­<lb/> trum veró <emph type="italics"/>q<emph.end type="italics"/> per lineam <emph type="italics"/>qr<emph.end type="italics"/> illi parallelam reflecti. </s> <s id="N13F12">rit <lb/> enim <emph type="italics"/>gy<emph.end type="italics"/> linea hypomochlii, ad quam ex <emph type="italics"/><expan abbr="q.">que</expan><emph.end type="italics"/> cadat linea <lb/> <figure id="id.062.01.105.1.jpg" xlink:href="062/01/105/1.jpg"/><lb/> perpendicularis <emph type="italics"/>qt,<emph.end type="italics"/> <expan abbr="at&qacute;">atque</expan>; huic æqualis &longs;umatur in lineâ <lb/> motus centri <emph type="italics"/>qz,<emph.end type="italics"/> à cujus termino <emph type="italics"/>z<emph.end type="italics"/> ducta linea perpendi­<lb/> cularis &longs;ecabit circulum in puncto <emph type="italics"/>x,<emph.end type="italics"/> per quod tran&longs;it li­<lb/> nea motus reflexi per Prop 39. tribus ergò globis extra <lb/> lineam rectam a&longs;&longs;umptis punctum determinauimus in <pb xlink:href="062/01/106.jpg"/>globo &longs;ecundo, à quo reflexus primus tangit tertium: <lb/> quod erat faciendum. </s> <s id="N13F58">Secundum Problema. </s> </p> <p id="N13F5B" type="main"> <s id="N13F5D"><emph type="center"/>DE MOTV REFLEXO <expan abbr="LAPILLORũ">LAPILLORum</expan> EX AQVA.<emph.end type="center"/></s> </p> <p id="N13F68" type="main"> <s id="N13F6A">QVi obliquè incidentes illam minimè findunt, <lb/> <expan abbr="ne&qacute;ue">neque</expan> merguntur; verùm inde reflexi, <expan abbr="at&qacute;">atque</expan>; ite­<lb/> rum relap&longs;i reciprocà alli&longs;ione, & reli&longs;ione &longs;altu quodam <lb/> progredi videntur. </s> <s id="N13F7B">E&longs;t autem prima difficultas, quam <lb/> ob rem huju&longs;modi lapilli, <expan abbr="quacun&qacute;">quacunque</expan>; violentià projecti, <lb/> aquam molli&longs;simam non perrumpant, in quâ etiam pul­<lb/> ui&longs;culus & leui&longs;simæ arenulæ &longs;uà grauitate &longs;idunt. </s> <s id="N13F88">Se­<lb/> cunda quà ratione â primâ reflexione alias inducant pla­<lb/> gas non perpendiculares: conuer&longs;io enim illa motus vi­<lb/> detur non ni&longs;i â grauitate na&longs;ci, quo modo in omnibus <lb/> projectis fieri con&longs;tat: at verò grauitas non ni&longs;i per line­<lb/> am mouet perpendicularem. </s> <s id="N13F95">In figurà &longs;ubjectà lapillus <lb/> &longs;eu globulus <emph type="italics"/>a<emph.end type="italics"/> â percu&longs;sione obliquà <emph type="italics"/>ba<emph.end type="italics"/> reflectit in <emph type="italics"/>k<emph.end type="italics"/>: in <lb/> de verò non perpendiculariter in <emph type="italics"/>q,<emph.end type="italics"/> verùm obliquè rela­<lb/> bitur in <emph type="italics"/>l,<emph.end type="italics"/> <expan abbr="noua&qacute;">nouaque</expan>; illatà & relatâ plagà reflectit in <emph type="italics"/>m<emph.end type="italics"/>: &longs;imi­<lb/> liter ex <emph type="italics"/>m<emph.end type="italics"/> in <emph type="italics"/>u,<emph.end type="italics"/> & ex <emph type="italics"/>o<emph.end type="italics"/> in <emph type="italics"/>x<emph.end type="italics"/> ad nouam &longs;e ex obliquo vibrat <lb/> plagam. </s> <s id="N13FE2">Hujus autem &longs;olutio pendet ex his, quæ de mo <lb/> tu reflexo â nobis &longs;unt dicta. </s> <s id="N13FE7">Quia enim percu&longs;sio fit á <lb/> centro, magnitudo autem plagæ ab hypomochlio deter­<lb/> minatur; quó enim major pars hypomochlio occurrit, <lb/> eó majorem plagam inducit, unde ictus graui&longs;simus per <pb xlink:href="062/01/107.jpg"/>pendiculatis; propterea quód cum centro partès omnes <lb/> coincidunt, <expan abbr="at&qacute;">atque</expan>; in illam plagam cooperantur: quó ve­<lb/>rò ictus magis e&longs;t obliquus, eó minorem plagam infert. <lb/> Quia ergo lapilli obliquè incidentes non ni&longs;i parte exi­<lb/> guà feriunt, major autem vis extra hypomochlium ca­<lb/> dit. <expan abbr="ob&longs;tat&qacute;">ob&longs;tatque</expan>; quò minùs illa &longs;uo fulcro innitatur; inde fit <lb/> ut non mergantur, <expan abbr="ne&qacute;">neque</expan>; findant quantumuis mollem a­<lb/> <figure id="id.062.01.107.1.jpg" xlink:href="062/01/107/1.jpg"/><lb/> quam. </s> <s id="N14015">In globulo enim <emph type="italics"/>a<emph.end type="italics"/> &longs;ola pars <emph type="italics"/>dic<emph.end type="italics"/> hypomochlio oc<lb/> currit, reliqua <emph type="italics"/>dghci<emph.end type="italics"/> cum centro <emph type="italics"/>a<emph.end type="italics"/> extra hypomochli­<lb/> um cadit, <expan abbr="at&qacute;">atque</expan>; ab illâ plagà idem mobile abducit. </s> <s id="N14038">Quia <lb/> verò minor e&longs;t plaga, quam ut perrumpat, recipiet à per<lb/> cu&longs;&longs;o æqualem, qua re&longs;iliat, plagam, ac proinde mino <lb/> rem, quam ut impul&longs;um producat illi æqualem, quo cen<lb/> trum mouetur. </s> <s id="N14043">Motus ergò reflexus e&longs;t mixtus ex motu <pb xlink:href="062/01/108.jpg"/>centri <emph type="italics"/>ag<emph.end type="italics"/> à primà, & motu <emph type="italics"/>af<emph.end type="italics"/> à plagâ &longs;ecundà, linea <emph type="italics"/>v<emph.end type="italics"/>erò <lb/> motus reflexi <emph type="italics"/>ah<emph.end type="italics"/> per Prop: 39. quia ergo minor impul&longs;us <lb/> à reflexione, impul&longs;u, quo centrum agitur, deficiet pri­<lb/> ùs, <expan abbr="illo&qacute;">illoque</expan>; deficiente motum continuabit major impul­<lb/> &longs;us; & priu&longs;quam &longs;ui juris &longs;it, lineà motus mixti &longs;inuo­<lb/> &longs;è, quomodo grauia à motu violento, &longs;e abducet; inde <lb/> per tangentem arcus jam deficientis, ac proinde ex obli­<lb/> quo &longs;e deuoluet, ut nouà illatà & relatà plagâ &longs;e rur&longs;um <lb/> attollat. </s> <s id="N14076">Quia verò illo cur&longs;u & recur&longs;u virtus elangue <lb/> &longs;cit, quantumuis æquali parte feriat, minor tamen â per­<lb/> cu&longs;sione &longs;ecundâ fit plaga, quam ut motus inde reflexus <lb/> &longs;it æqualis primo: inde ergo fit ut à &longs;ecundà percu&longs;sione <lb/> in <emph type="italics"/>d<emph.end type="italics"/> minor &longs;it altitudo motus reflexi in <emph type="italics"/>m<emph.end type="italics"/>; & in <emph type="italics"/>o<emph.end type="italics"/> minor <lb/> quàm in <emph type="italics"/>m,<emph.end type="italics"/> <expan abbr="quou&longs;&qacute;">quou&longs;que</expan>; demum motus centri à percu&longs;sioni­<lb/> bus iteratis exoluatur: aut quia minor in fine altitudo <lb/> motus reflexi, quam diameter illius lapilli &longs;eu globuli, <lb/>ob aquam motui reluctantem ictus emoritur; <expan abbr="at&qacute;">atque</expan>; inde <lb/> fit, quòd in fine motus ab huju&longs;modi lapillis aqua di&longs;per<lb/> gatur: à <emph type="italics"/>p<emph.end type="italics"/> enim in <emph type="italics"/>q<emph.end type="italics"/> reflexus motus, ob altitudinem dia­<lb/> metro minorem, viam incedit <emph type="italics"/>pq<emph.end type="italics"/> ob aquæ grauitatem <lb/> magis impeditam. </s> <s id="N140C3">Non &longs;olúm verò in aquà ex huju&longs;mo­<lb/> di ictu obliquo fiunt repercu&longs;siones, verum in <expan abbr="quocun&qacute;">quocunque</expan> <lb/> alio plano minùs tamen &longs;en&longs;ibiles: cujus ratio e&longs;t mol­<lb/> lities aquæ, quæ pre&longs;&longs;a rea&longs;&longs;urgit, <expan abbr="ictu&qacute;">ictuque</expan>; geminato ferit. <lb/> <expan abbr="Ita&qacute;">Itaque</expan>; videmus pilas lu&longs;orias magis re&longs;ilire, quæ â plagà ce <pb xlink:href="062/01/109.jpg"/>dunt in &longs;e ip&longs;as, & veluti complanantur, <expan abbr="at&qacute;">atque</expan>; ita plagam <lb/> inducunt latiorem; mox verò â plagâ impul&longs;u gemina­<lb/> to rea&longs;&longs;urgunt: idem enim &longs;it &longs;iuè planum, &longs;iuè mobile <lb/> eidem plano alli&longs;um eà ratione moueatur. </s> <s id="N140E8">Similes ictus <lb/> repetiti fiunt in cauo &longs;phærico, cuju&longs;modi peluis: ab <lb/> <figure id="id.062.01.109.1.jpg" xlink:href="062/01/109/1.jpg"/><lb/> uno enim puncto reflexus globus in alia porro offendit <lb/> & allidit: ut &longs;i globus ex <emph type="italics"/>l<emph.end type="italics"/> demittatur in peluim <emph type="italics"/>msbp,<emph.end type="italics"/> a <lb/> puncto <emph type="italics"/>m<emph.end type="italics"/> ad angulos reflectit æquales in <emph type="italics"/>n,<emph.end type="italics"/> ex<emph type="italics"/>n<emph.end type="italics"/> verò in <lb/> <emph type="italics"/>b,<emph.end type="italics"/> ex <emph type="italics"/>b<emph.end type="italics"/> in <emph type="italics"/>o,<emph.end type="italics"/> tum in <emph type="italics"/>p,<emph.end type="italics"/> à quo extra peluim reflectit in <emph type="italics"/><expan abbr="q.">que</expan><emph.end type="italics"/> <expan abbr="Id&etilde;">Idem</expan> <lb/> ex <emph type="italics"/>r<emph.end type="italics"/> delap&longs;us in <emph type="italics"/>s<emph.end type="italics"/> maiori angulo reflectens, ob cordas ma<lb/> iores, pauciores inducit plagas. </s> <s id="N1414E">Ex <emph type="italics"/>z<emph.end type="italics"/> demum in <emph type="italics"/>b<emph.end type="italics"/> refle­<lb/> xus quia nullibi offendit, quemadmodum <expan abbr="ne&qacute;">neque</expan>; in linea <lb/> perpendiculari <emph type="italics"/>ab,<emph.end type="italics"/> nullam præterea inducit plagam. <lb/> Tertium Problema. </s> </p> <pb xlink:href="062/01/110.jpg"/> <p id="N14170" type="main"> <s id="N14172"><emph type="center"/>DE REFLEXIONE MOTVS CIRCVLARIS.<emph.end type="center"/></s> </p> <p id="N14179" type="main"> <s id="N1417B">VT &longs;i duo globi ab eodem hypomochlio filo &longs;u&longs;pen&longs;i, <lb/> & in &longs;uam &longs;tationem recurrentes &longs;e percutiant in il­<lb/> lo motu. </s> <s id="N14182">Quia enim hic motus di&longs;cedit à lineà rectà, per <lb/> quam ducit impul&longs;us, nece&longs;&longs;e alio modo reflexionem fi­<lb/> eri, quám in motu recto. </s> <s id="N14189">Mouetur autem vel unus tan­<lb/> tum, vel <expan abbr="uter&qacute;">uterque</expan>;, ac proinde hic illum percutit aut quies<lb/> centem, aut commotum; & &longs;iquidem percu&longs;sio fiat in <lb/> motu, <expan abbr="uter&qacute;">uterque</expan>; reflectit: Si verò quie&longs;cit alter, interdum <lb/> reflectit ille qui percu&longs;sit, interdum in ip&longs;o ictu emori­<lb/> tur motus. </s> <s id="N1419E">Quod qua ratione fiat &longs;ubjectà figurá pate<lb/> fiet. </s> <s id="N141A3">Percutiant ergò &longs;e duo globi <foreign lang="greek">eg</foreign> ab eodem hypomo<lb/> chlio <foreign lang="greek">a</foreign> &longs;u&longs;pen&longs;i in ip&longs;o motu, & ducantur lineæ tangen­<lb/> tes <foreign lang="greek">bo. qc</foreign> <expan abbr="at&qacute;">atque</expan>; his parallelæ <foreign lang="greek">yi.yk</foreign> lineæ hypomochlij; in <lb/> lineà autem, <foreign lang="greek">g</foreign> per <expan abbr="utrumq;">utrumque</expan> centrum ductà, & <expan abbr="utrinq;">utrinque</expan> <lb/> protractà &longs;umatur <foreign lang="greek">gp</foreign> æqualis <foreign lang="greek">yl</foreign>, & ex <foreign lang="greek">p</foreign> excitetur li­<lb/> nèa perpendicularis <foreign lang="greek">pm</foreign>, <expan abbr="eritq;">eritque</expan> linea <foreign lang="greek">gm</foreign>, &longs;i nihil impediat, <lb/> linea motus reflexi, per Prop: 39. motus nimirum mix­<lb/> tus ex motu centri <foreign lang="greek">gw</foreign> & motu à percus&longs;ione <foreign lang="greek">gn</foreign>. </s> <s id="N141F4">At verò <lb/> huic motui ob&longs;tat funiculus, à quo globus detinetur, <lb/> quò minùs extra <expan abbr="peripheriã">peripheriam</expan> circuli euagetur. </s> <s id="N141FF">Quia ve­<lb/> rò hic motus à reflexione & motus à retractione funi­<lb/> culi angulum ducunt <foreign lang="greek">agm</foreign> minorem duobus rectis, erunt <lb/> per definit: 5. &longs;ecundùm quid contrarii, ac proinde inter <pb xlink:href="062/01/111.jpg"/>&longs;e mi&longs;centur. </s> <s id="N14210">Motus ergò ex <expan abbr="utroq;">utroque</expan> mixtus à percu&longs;sio­<lb/> ne reflectit. </s> <s id="N14219">Simili modo o&longs;tendemus globum <foreign lang="greek">e</foreign> refle­<lb/> cti ex illà plagà. </s> <s id="N14222">Quòd &longs;i globus <emph type="italics"/>a<emph.end type="italics"/> percutiat globum <emph type="italics"/>b<emph.end type="italics"/><lb/> quie&longs;centem, & minori filo &longs;u&longs;pen&longs;um, erit per Prop: 39 <lb/> linea motus reflexi <emph type="italics"/><expan abbr="aq.">aque</expan><emph.end type="italics"/> & quia hic motus in partes oppo­<lb/> <figure id="id.062.01.111.1.jpg" xlink:href="062/01/111/1.jpg"/><lb/> &longs;itas tendit eiu&longs;dem lineæ rectæ, per quam retrahitur ab <lb/> hypomochlio, erunt motus ab&longs;olutè contrarii: globus <lb/> ergò <emph type="italics"/>a<emph.end type="italics"/> &longs;i in illo &longs;itu percutiat <emph type="italics"/>b,<emph.end type="italics"/> â percu&longs;sione quie&longs;cet; <lb/> tantò verò minùs reflectet, quantó maior fuerit angu­ <pb xlink:href="062/01/112.jpg"/>lus <foreign lang="greek">a</foreign><emph type="italics"/>aq<emph.end type="italics"/> Si demum globus <emph type="italics"/>b<emph.end type="italics"/> percutiat globum <emph type="italics"/>a<emph.end type="italics"/> quie­<lb/> &longs;centem & longiori filo &longs;u&longs;pen&longs;um, erit linea motus re­<lb/> flexi <emph type="italics"/>br<emph.end type="italics"/> ad ea&longs;dem partes cum retractione hypomo­<lb/> chlii, propterea quòd linea <emph type="italics"/>bp<emph.end type="italics"/> &longs;it motus centri, linea ve­<lb/> rò <emph type="italics"/>bn<emph.end type="italics"/> motus à percu&longs;sione; globus ergo <emph type="italics"/>b<emph.end type="italics"/> percu&longs;&longs;o glo­<lb/> bo <emph type="italics"/>a<emph.end type="italics"/> reflectet in illo &longs;itu à percu&longs;sione: Eadem via di&longs; <lb/> &longs;oluemus & illam quæ&longs;tionem. </s> </p> <p id="N1429A" type="main"> <s id="N1429C"><emph type="center"/>DE IN ÆQVALIVM PONDERVM LAPSV<emph.end type="center"/></s> </p> <p id="N142A3" type="main"> <s id="N142A5">MAgnis motibus & animorum contentionibus a<lb/> gitatam: dum hi quidem rationibus &longs;e tuentur, illi <lb/> verò experientià eos urgent, <expan abbr="errori&longs;&qacute;">errori&longs;que</expan>; manife&longs;ti reos pe<lb/> ragunt. </s> <s id="N142B2">Quorum opinio vulgi applau&longs;u excepta pal­<lb/> mam tulit, judice magis &longs;en&longs;u quam ratione. </s> <s id="N142B7">At verò <lb/> qui opinantur inæqualia pondera æquali lap&longs;u ruere, <lb/> videntur magis id, quod motui per &longs;e ine&longs;t, attendi&longs;&longs;e, <lb/> impedimenta verò motus, quæ ab extra fiunt, veluti du­<lb/> biæ &longs;ortis neglexi&longs;&longs;e. </s> <s id="N142C2">Vt verò hanc litem dirimamus, <lb/> memoriá repetendum id, quod Prop: 37. notabili 4. di­<lb/> ximus, impul&longs;um deficere à plagà perfecta, partem verò <lb/> hujus cum parte æquali plagæ emori. </s> <s id="N142CB">Secundo â re&longs;i­<lb/> &longs;tentiá majori plagam induci majorem: propterea quòd <lb/> percutiens magis tum immoratur. </s> <s id="N142D2">Tertio omnia cor­<lb/> pora re&longs;i&longs;tere diui&longs;ioni, <expan abbr="at&qacute;">atque</expan>; eó magis, quó major e&longs;t vir­ <pb xlink:href="062/01/113.jpg"/>tus illarum partium unitiua, ut Prop: 1. dictum: quan­<lb/> tumuis ergo aër naturá &longs;uá &longs;it fluidus, <expan abbr="at&qacute;">atque</expan>; omni <lb/> aurá mobilis, non tamen <expan abbr="ab&longs;&qacute;">ab&longs;que</expan>, violentiá, ac proinde <lb/> non <expan abbr="ab&longs;&qacute;">ab&longs;que</expan>; plagà findi pote&longs;t. </s> <s id="N142F1">Quar­<lb/> to majorem diui&longs;ionem fieri à majori plagà; multúm e­<lb/> nim aëris non eadem facilitate mouemus, <expan abbr="ne&qacute;">neque</expan>; eadem <lb/> velocitate parte ferri latiore, quam in mucronem tenua­<lb/> ta hunc penetramus. </s> <s id="N14300">His &longs;uppo&longs;itis: dico 1. motum qua <lb/> tenus à grauitate procedit eiu&longs;dem &longs;peciei &longs;eu gradus, eà­<lb/> dem celeritate fieri in omnibus, quantumuis mole, figu<lb/> rà, pondere à &longs;e differant: ratio, quia ut mobile mouea­<lb/> tur, non quilibet impul&longs;us, &longs;ed proportionatus e&longs;&longs;e debet <lb/> ad illud mobile; ab eadem ergo proportione eadem ve­<lb/> locitas motus: at veró impul&longs;us, quo totum mobile mo­<lb/> uetur, eandem rationem habet ad illud mobile, quam &longs;e­<lb/> mi&longs;sis illius impul&longs;us ad &longs;emi&longs;&longs;em, & triens ad trientem <lb/> eju&longs;dem mobilis; eadem ergo velocitas motus. </s> <s id="N14315">Quod <lb/> idem de qualibet particulá, <expan abbr="quacun&qacute;">quacunque</expan>; factá diui&longs;ione, di­<lb/> cendum; non minùs enim extra illud mobile, quam in <lb/> mobili, & alijs conjunctæ &longs;uo inpul&longs;u mouentur. </s> <s id="N14322">Dices <lb/> virtus collecta e&longs;t fortior &longs;e ip&longs;à di&longs;per&longs;à: major ergo im<lb/> pul&longs;us in partibus unitis, quam extra illam unionem. </s> <s id="N14329">Re <lb/> &longs;pondeo illud axioma non in omnibus valere, &longs;ed tan­<lb/> tum in ordine ad actionem, quæ extra illud &longs;ubjectum <lb/> terminatur; ita enim lux alteri conjuncta lumen longi­ <pb xlink:href="062/01/114.jpg"/>ùs protendit, nihilo ex illa conjunctione luce auctà: ita <lb/> ergo impul&longs;us partium unitarum licet magis percutiat, <lb/> non tamen in ordine ad motum, quo illius &longs;ubjectum <lb/> fertur, magis inuale&longs;cit, quemadmodum cùm plures &longs;i­<lb/> mul vocem attollunt, licet magis audiatur, non tamen <lb/> ex aliorum vociferatione &longs;ingulorum clamor facilitatur. <lb/> Plura quæ pro hac &longs;ententià, & <expan abbr="cõtra">contra</expan> afferri po&longs;&longs;unt, &longs;uo <lb/> loco dicemus; nunc verò dato e&longs;&longs;e veram, illam inæqua­<lb/> litatem motus con&longs;tare, <expan abbr="at&qacute;">atque</expan>; ex alià radice na&longs;ci paucis o­<lb/> &longs;tendemus. </s> <s id="N14350">Dico &longs;ecundò, illam inæqualitatem motus, <lb/> quo inæqualia pondera mouentur, e&longs;&longs;e à medio, in quo <lb/> fit motus; <expan abbr="at&qacute;">atque</expan>; illa corpora, quorum grauitas &longs;eu impul­<lb/> &longs;us majorem rationem habet ad &longs;uam plagam, velociùs <lb/> moueri. </s> <s id="N1435F">Quia enim aër re&longs;i&longs;tit diui&longs;ioni ex notabili 3. <lb/> erit plaga ad men&longs;uram hujus re&longs;i&longs;tentiæ; deficiet ergò <lb/> impul&longs;us, ac proinde velocitas motus in eà ratione, in <lb/> quâ magnitudo plagæ: igitur ut plaga ad plagam, ita ve­<lb/> locitatis decrementum. </s> <s id="N1436A">At verò grauitas illorum cor­<lb/> porum majorem rationem habet, quam illorum plaga: <lb/> &longs;it enim globus <emph type="italics"/>ab<emph.end type="italics"/> ad globum <emph type="italics"/>cd<emph.end type="italics"/> in ratione duplà, <expan abbr="erit&qacute;">eritque</expan>; <lb/> illorum plaga æqualis circulo maximo &longs;uæ &longs;phæræ, pro<lb/> pterea quód plaga inducitur non ni&longs;i à parte inferiore, <lb/> quæ aërem findit, & cui &longs;oli aër re&longs;i&longs;tit: habet autem cir­<lb/> culus maximus &longs;phæræ &longs;eu globi in ratione duplà ad ali­<lb/> am &longs;phæram, minorem rationem, quám duplam, ad hu- <pb xlink:href="062/01/115.jpg"/>jus circulum maximum; globus ergo major plagam in­<lb/> ducit minorem, quàm ut &longs;it dupla ad plagam minoris <lb/> globi: ut &longs;i globus major &longs;it duarum lib: erit &longs;emi&longs;sis, id­<lb/> e&longs;t lib: una, æqualis globo minori; hujus verò plaga &longs;e­<lb/> mi&longs;sis plagæ totius minor plagâ totá globi minoris. quia <lb/> ergò plaga tollit partem &longs;ibi æqualem, maius erit decre<lb/> mentum velocitatis in librà unà, dum extra illud totum, <lb/> &longs;eu globum maiorem & per &longs;e, ide&longs;t in globo minori mo<lb/> uetur. </s> <s id="N1439F">Et quia in medio &longs;imilari eadem plaga continu­<lb/> atur, eadem ratio erit decrementi quæ interualli; ut &longs;i in <lb/> toto motu deficiat cubitus unus, deficiet in &longs;emi&longs;&longs;e hu­<lb/> jus motus illius &longs;emi&longs;sis: <expan abbr="atq;">atque</expan> inde ratio con&longs;tat, quam ob <lb/> rem à principio motus inæqualia pondera &longs;imul ferri <lb/> <expan abbr="videãtur">videantur</expan>, inde verò magnis à &longs;e di&longs;iungi interuallis. </s> <s id="N143B4">Ma­<lb/> lè ergo rationem huius inæqualitatis petunt à proporti­<lb/> one illorum ponderum, quæ á ratione cre&longs;centis plagæ <lb/> de&longs;umi debet; ablatá enim á grauitate &longs;eu impul&longs;u parte <lb/> æquali &longs;uæ plagæ, reliquus impul&longs;us dabit illam inæqua­<lb/> lem velocitatem. </s> <s id="N143C1">Obiicies fieri non po&longs;sè ut eadem ratio <lb/> maneat plagæ in illo motu inæquali continuatæ, propte<lb/> rea quód aër percu&longs;&longs;us alium percutiat, <expan abbr="viamq;">viamque</expan> eá rati­<lb/> one aperiat ruenti globo, plagæ imminenti &longs;e <expan abbr="&longs;ubduc&etilde;s">&longs;ubducens</expan>, <lb/> non aliter, quám cùm ultro cedentem trudimus: <expan abbr="itaq;">itaque</expan> in <lb/> relap&longs;u globi maioris, quem ignis in &longs;ublime tulit, pri­<lb/> u&longs;quam terram feriat, ab aëris percu&longs;sione hiatum in il- <pb xlink:href="062/01/116.jpg"/>lá fieri quidam a&longs;&longs;euerant. </s> <s id="N143E0">Cùm ergò aër ab illo ictu &longs;e <lb/> &longs;ubducat, nullam inducet plagam, nullum proinde velo­<lb/> citatis decrementum; non aliter quam &longs;i globus per fi&longs;­<lb/> &longs;uram muri tran&longs;uolet muro inoffen&longs;o. </s> <s id="N143E9">Deinde cùm im<lb/> pul&longs;us continuò augeatur, erit continuó minor re&longs;i&longs;ten­<lb/> tia. </s> <s id="N143F0">Re&longs;pondeo aerem quidem impelli & præcurrere, <lb/> verùm minori celeritate, quàm ut plagam effugiat á ter­<lb/> go hærentem; major enim globi impetus, quâm ut ab <lb/> aere fluido recipiatur: unde eadem re&longs;i&longs;tentia in aëre per <lb/> forando, non minús, quàm &longs;i &longs;ecundo flumine elucte­<lb/> mur motu velociori, quàm &longs;it defluxus; non minor e­<lb/> nim difficultas in perrumpendo, quam &longs;i in aquà fiat im­<lb/> motà. </s> <s id="N14401">Deinde licet aër percu&longs;&longs;us à plagà &longs;e &longs;ubducat & <lb/> præcurrat, alius tamen in locum plagæ &longs;e infundit non <lb/> minori vi findendus: <expan abbr="ne&qacute;">neque</expan>; enim aër di&longs;cerpi pote&longs;t eo <lb/> modo, quo corpora magis den&longs;a, in quibus perruptis cor<lb/> pus magis &longs;ubtile interceptum viam præ&longs;tat faciliorem; <lb/> verùm <expan abbr="quacun&qacute;">quacunque</expan>; plaga incidit, eadem aëris &longs;oliditas per­<lb/> rumpenda. </s> <s id="N14418">Ad &longs;ecundam rationem, dico velocitatem <lb/> motus continuò quidem augeri, ac proinde illam re&longs;i­<lb/> &longs;tentiam medij auctà velocitate faciliùs perrumpi; pro­<lb/> pterea quód ablatà parte æquali major &longs;it exce&longs;&longs;us reli­<lb/> quus: nego autem â velociori plagà minus e&longs;&longs;e decre­<lb/> mentum. </s> <s id="N14425">An non velociùs vectem deprimunt libræ 10. <lb/> aut 100, quam libra <emph type="italics"/>1?<emph.end type="italics"/> & tamen granum unum aut deci- <pb xlink:href="062/01/117.jpg"/>ma pars grani æqualem partem ex hoc, <expan abbr="at&qacute;">atque</expan>, ex illis tollit. <lb/> Verùm deceptio latet ob exiguitatem decrementi, que­<lb/> madmodum &longs;i ad deprimendum libras 100. unum <expan abbr="at&qacute;">atque</expan>; <lb/> alterum granum apponas. </s> <s id="N14442">Quia ergò retardatio motus <lb/> e&longs;t à medio, quó medium magis re&longs;i&longs;tit diui&longs;ioni, eó mi­<lb/> nor velocitas motus, major autem exce&longs;&longs;us tarditatis in <lb/> minori: propterea quód auctá re&longs;i&longs;tentiá eadem diffe­<lb/> rentia in minori interuallo. </s> <s id="N1444D">E contra minuitur exce&longs;<lb/> &longs;us in medio magis raro; <expan abbr="ita&qacute;">itaque</expan>; &longs;i detur corpus infinitæ ra­<lb/> ritatis, cuiu&longs;modi vacuum, quia nulla re&longs;i&longs;tentia, nulla <lb/> <expan abbr="quo&qacute;">quoque</expan>; erit inæqualitas motus. </s> <s id="N1445E">Quòd autem à &longs;olá re&longs;i­<lb/> &longs;tentià medij procedat inæqualitas motus, ratio manife­<lb/> &longs;ta: idem enim pondus &longs;e ip&longs;o velociús, <expan abbr="at&qacute;">atque</expan>; cum alio <lb/> pondere <expan abbr="quocun&qacute;">quocunque</expan>; exce&longs;&longs;u majori, eádem velocitate de­<lb/> &longs;cendit, &longs;i rationem plagæ & re&longs;i&longs;tentiam medii in illâ <lb/> <figure id="id.062.01.117.1.jpg" xlink:href="062/01/117/1.jpg"/><lb/> proportione minuàs. </s> <s id="N1447A">Sit enim vas plumbeum, aut de <lb/> alià materià graui, formá dimidiæ &longs;phæræ, cuju&longs;modi <foreign lang="greek">bgd</foreign> <pb xlink:href="062/01/118.jpg"/>habens cauitatem in parte &longs;uperiore, & à plagâ auer&longs;a, <lb/> centrum verò grauitatis in <gap/> ne dum labitur &longs;e inuertat: <lb/> quód &longs;i ergo alium globum <expan abbr="quocun&qacute;">quocunque</expan>; exce&longs;&longs;u leuio­<lb/> rem con&longs;tituas in illà cauitate, eádem cum illo va&longs;e ce­<lb/> leritate feretur. </s> <s id="N14495">At verò &longs;i inæqualitas motus e&longs;&longs;et <lb/> à grauitate, oporteret illud vas magis pondero&longs;um <lb/> præcurrere, globum verò leuiorem attolli, & longo po&longs;t <lb/> tergum interuallo relinqui. </s> <s id="N1449E">Obiicies grauitas e&longs;t impul<lb/> &longs;us, impul&longs;us verò per Prop: 2. motum producit &longs;ibi æ<lb/> qualem; à majori ergò grauitate major, ac proinde velo­<lb/> cior motus: quòd &longs;i ergò libra una in <expan abbr="quin&qacute;">quinque</expan>; &longs;ecundis <lb/> per &longs;patium mouet cubitorum 100, mouebit hujus du­<lb/> plum in eodem, vel æquali tempore per &longs;patium <expan abbr="duplũ">duplum</expan>. <lb/> Deinde plaga inducitur ex motu; non enim manus à la­<lb/> pide in eà quie&longs;cente, &longs;ed ubi iram ex motu concepit, vul<lb/> neratur: at verò majus pondus æquali lap&longs;u magis vulne<lb/> rat, velocior ergo motus. </s> <s id="N144BB">Re&longs;pondeo grauitatem e&longs;&longs;e <lb/> impul&longs;um, & velocitatem motus in eá ratione, in quá e&longs;t <lb/> grauitas &longs;eu impul&longs;us; dupla ergo grauitas in eodem, vel <lb/> æquali tempore mouebit per &longs;patium duplum. </s> <s id="N144C4">At verò <lb/> cùm inferunt libras duas Vg: plumbi in duplà ferri celeri<lb/> tate ad libram unam, falluntur; propterea quòd illa gra­<lb/> uitas in alio &longs;it &longs;ubiecto, cuius partes omnes æquali gra­<lb/> uitate mouentur: &longs;icuti enim pars extra totum Vg. libra <lb/> una â &longs;ua grauitate mouetur cum tantà velocitate, ita <pb xlink:href="062/01/119.jpg"/>partes librarum decem, aut centum in toto unitæ eádem <lb/> velocitate <expan abbr="mou&etilde;tur">mouentur</expan> á &longs;uá <expan abbr="cuiq;">cuique</expan> propria grauitate. </s> <s id="N144DF">Quód <lb/> &longs;i grauitas librarum decem con&longs;tituatur in &longs;ubiecto uni­<lb/> us libræ, tum verò decupla velocitate mouebitur illud <lb/> &longs;ubiectum. </s> <s id="N144E8">Ni&longs;i ergò grauitas magis &longs;it inten&longs;a, nihil <lb/> proficiet ad velocitatem augendam illorum moles. <lb/> Quód autem maior grauitas plagam inducat maiorem, <lb/> ut &longs;i libræ decem percutiant libram unam, huius ratio <lb/> e&longs;t, quia totidem fiunt plagæ, quot in maiori continen­<lb/> tur partes æquales: quemadmodum &longs;i decem ictus &longs;i­<lb/> mul inferantur, aut &longs;i priu&longs;quam vis emoriatur prioris <lb/> plagæ, reliquæ &longs;equantur. </s> <s id="N144F9">Impul&longs;us ergò in illo &longs;ubie­<lb/> cto minori á maiori percu&longs;&longs;o magis e&longs;t inten&longs;us. <expan abbr="Atq;">Atque</expan> <lb/> inde fit, quód globus minor accepta à maiori plaga præ­<lb/> currat; quód &longs;i enim globos <expan abbr="quotcunq;">quotcunque</expan> eà &longs;erie di&longs;po­<lb/> nas, ut continuò maiorem minor &longs;equatur, percu&longs;&longs;o pri­<lb/> mo videbis qua&longs;i uno impetu omnes ad motum conci­<lb/> tari, verùm celeritate, pro ratione magnitudinis, inæ­<lb/> quali. </s> </p> </subchap1> <subchap1 id="N14512"> <p id="N14513" type="main"> <s id="N14515"><emph type="center"/>Propo&longs;itio XXXXI.<emph.end type="center"/></s> </p> <p id="N1451C" type="main"> <s id="N1451E"><emph type="center"/><emph type="italics"/>Problema II.<emph.end type="italics"/><emph.end type="center"/></s> </p> <p id="N14529" type="main"> <s id="N1452B"><emph type="italics"/>Regulam con&longs;truere ad celeritatem & tarditatem pul&longs;uum <expan abbr="ab&longs;&qacute;">ab&longs;que</expan>; <lb/> errore metiendam.<emph.end type="italics"/></s> </p> <pb xlink:href="062/01/120.jpg"/> <p id="N1453B" type="main"> <s id="N1453D">REgula hæc nullo apparatu, &longs;ed. hac arte &longs;implici <lb/> confit &longs;iue ex ligno, &longs;iue ex qualibet alià materià. </s> <s id="N14542">Hu<lb/> ius longitudo <emph type="italics"/>ab<emph.end type="italics"/> unius cubiti, aut ad placitum: quó enim <lb/> maior, eò plures differentias tarditatis indicabit: nam <lb/> ad velocitatem &longs;ummam indicandam quælibet magni­<lb/> tudo &longs;ufficit. </s> <s id="N14553">Latitudo verò, quæ cordam &longs;eu filum ca­<lb/> piat cum numerorum notis eidem ad&longs;criptis. </s> <s id="N14558">Filum <lb/> porro eo modo, quo fidibus aptatur; parte &longs;uperiore <lb/> trochleâ ver&longs;atili conuolutum, parte verò inferiore fora <lb/> mine tran&longs;mi&longs;&longs;um, globulum habens dependentem, qui <lb/> eidem rectitudinem præ&longs;tat & pondus. </s> <s id="N14563">Tota longitu­<lb/> do regulæ, quæ continetur inter foramen & trochleam, <lb/> æqualiter &longs;ecetur in partes quotlibet Vg. 60, aut 100. <lb/> <figure id="id.062.01.120.1.jpg" xlink:href="062/01/120/1.jpg"/><lb/> quas trochleà laxatâ nodulus <emph type="italics"/>q,<emph.end type="italics"/> globulo interea de&longs;cen­ <pb xlink:href="062/01/121.jpg"/>dente, percurrit, <expan abbr="&longs;uo&qacute;">&longs;uoque</expan> contactu quot eju&longs;modi &longs;egmen­<lb/> ta contineat longitudo eju&longs;dem fili cum &longs;uo globulo à <lb/> foramine penduli, o&longs;tendit. </s> <s id="N14585">Cùm ergo per dictum in­<lb/> &longs;trumentum pul&longs;us celeritatem indagare voles, trochle­<lb/> am ver&longs;ando filum eò <expan abbr="u&longs;&qacute;">u&longs;que</expan>; laxa, dum globulus in <emph type="italics"/>e<emph.end type="italics"/> Vg. <lb/> aut <emph type="italics"/>g<emph.end type="italics"/> de&longs;cendat: quom ex <emph type="italics"/>g,<emph.end type="italics"/> in quo naturaliter à motu <lb/> quie&longs;cit, in <emph type="italics"/>l<emph.end type="italics"/> vel <emph type="italics"/>o<emph.end type="italics"/> dimotum inde recurrere &longs;inas; in­<lb/> terea, dum globulus per arcum <emph type="italics"/>cd<emph.end type="italics"/> ultra <expan abbr="citra&qacute;">citraque</expan> <emph type="italics"/>g<emph.end type="italics"/> excurrit, <lb/> <expan abbr="plure&longs;&qacute;">plure&longs;que</expan>; recur&longs;us facit, agitationem quidem arteriæ ma­<lb/> nu, motum verò perpendiculi vi&longs;u explora, <expan abbr="at&qacute;">atque</expan>; unum <lb/> alteri compara. </s> <s id="N145D2">Quód &longs;i tardior arteriæ motus, perpen­<lb/> diculum trochleá laxatá producas, &longs;i celerior contrahas <lb/> Æquato demum <expan abbr="utriu&longs;&qacute;">utriu&longs;que</expan>; motu, quænam &longs;it celeritatis <lb/> ratio, ex numerorum diui&longs;ione, quem nodulus cum filo <lb/> depre&longs;&longs;us indicabit, facilè cogno&longs;ces. </s> <s id="N145E1">Quin & quamli­<lb/> bet mutationem ad &longs;ingula momenta ex collatione ad <lb/> huiu&longs;modi numeros factâ conijcies. </s> <s id="N145E8">Vbi ergo men&longs;u­<lb/> ram pul&longs;us quam maximè naturalis hac vià deprehen­<lb/> des: diui&longs;ionis interuallum, quod nodulus indicabit, <lb/> diligenter nota; ad cuius motum reliquos pul&longs;us com<lb/> parando illorum exce&longs;&longs;us &, defectus facilè obtinebis. <lb/> Porro huiu&longs;modi regulam celeritatem & tarditatem pul<lb/> &longs;uum <expan abbr="ab&longs;&qacute;">ab&longs;que</expan>; errore meti i, hac vià o&longs;tendemus. </s> <s id="N145FB">Pul&longs;us in <lb/> ter &longs;e aut &longs;unt æquales, quorum eadem e&longs;t velocitas mo­<lb/> tus, atque i&longs;dem fiunt momentis: aut inæquales, cele­ <pb xlink:href="062/01/122.jpg"/>ritate & tarditate à &longs;e differentes, <expan abbr="quorũ">quorum</expan> inæqualia &longs;unt <lb/> durationis momenta. </s> <s id="N1460C">Quia ergo motus perpendiculi <lb/> e&longs;t illorum men&longs;ura; erit quidem æqualium pul&longs;uum æ­<lb/> qualis, inæqualium verò inæqualis in ea ratione, in quâ <lb/> velocitas pul&longs;uum. </s> <s id="N14615">At verò recur&longs;us & excur&longs;us perpen<lb/> diculi ex eadem productione inter &longs;e &longs;unt æquales: pro­<lb/> pterea quód perpendiculum ex quolibet puncto <expan abbr="eiu&longs;d&etilde;">eiu&longs;dem</expan> <lb/> circuli æquali tempore recurrit in &longs;uam &longs;tationem per <lb/> Prop: 24. &longs;unt autem excur&longs;us <expan abbr="quo&qacute;">quoque</expan>; inter &longs;e æquales per <lb/> Prop: 25. excur&longs;us ergo & recur&longs;us in unà circulatione <lb/> &longs;imul &longs;umpti &longs;unt æquales excur&longs;ibus & recur&longs;ibus o­<lb/> mnium circulationum &longs;imul <expan abbr="quo&qacute;">quoque</expan>; &longs;umptis: & quia uni <lb/> æqualium pul&longs;uum circulatio a&longs;&longs;umpta e&longs;t æqualis, e­<lb/> runt reliquæ circulationes reliquis pul&longs;ibus æquales. <lb/> Motus ergo perpendiculi ex eádem productione fili <lb/> metitur pul&longs;us inter &longs;e æquales. </s> <s id="N1463A">Quia verò motus per­<lb/> pendiculi per arcus &longs;imiles inæqualium circulorum ra­<lb/> tionem habent ad &longs;e quam &longs;inus illorum arcuum, hoc e&longs;t <lb/> lineæ &longs;ubten&longs;æ arcus dupli, per Prop: 25. ac proinde <lb/> quam habent motus per diametrum illorum circulo­<lb/> rum per Prop: 15. motus autem per diametrum &longs;e habent <lb/> ut quadrata temporum per Prop: 12. </s> <s id="N14649">Si &longs;umatur radix <lb/> quadrata illius proportionis, quam habent diametri ad <lb/> &longs;e, erunt in eadem ratione tempora motus, in quà radices <lb/> quadratæ: ut &longs;i diameter maioris circuli ad diametrum <pb xlink:href="062/01/123.jpg"/>minoris circuli &longs;it quadrupla, huius radix quadrata, duo, <lb/> dabit tempus in ratione duplá: &longs;i ergo motus per dia­<lb/> metrum minoris circuli &longs;it unius minuti, erit motus ma­<lb/> ioris diametri duorum minutorum. </s> <s id="N1465C">Sunt autem pro­<lb/> ductiones fili &longs;emidiametri illorum circulorum, in qui­<lb/> bus perpendiculum mouetur, æquales diui&longs;ionum in­<lb/> teruallis, quæ globulus in productione fili percurrit: ea­<lb/> dem ergo proportio interualli, quæ motus illorum cir­<lb/> culorum. </s> <s id="N14669">Quia ergo motus inæqualium circulorum <lb/> metiuntur pul&longs;us inæquales, eo&longs;dem metientur diui&longs;io­<lb/> num interualla: ac proinde regulam con&longs;truximus ad <lb/> velocitatem & tarditatem pul&longs;uum <expan abbr="ab&longs;q;">ab&longs;que</expan> errore metien<lb/> dam, quod erat faciendum. </s> </p> </subchap1> </chap> <chap id="N14678"> <p id="N14679" type="main"> <s id="N1467B"><emph type="center"/>Parergon.<emph.end type="center"/></s> </p> <p id="N14682" type="main"> <s id="N14684"><emph type="center"/><emph type="italics"/>Problema.<emph.end type="italics"/><emph.end type="center"/></s> </p> <p id="N1468F" type="main"> <s id="N14691"><emph type="italics"/>Horologium con&longs;truere, quod &longs;uo motu tempus numeret diui&longs;um <lb/> in partes minores, quàm tertias unius &longs;ecundi.<emph.end type="italics"/></s> </p> <p id="N1469A" type="main"> <s id="N1469C">QVanti u&longs;us & utilitatis &longs;it tempus in quàm minimas <lb/> partes diui&longs;um po&longs;&longs;e numerare, <expan abbr="norũt">norunt</expan> A&longs;tronomi, <lb/> & ex conatibus Tychonis Brahe &longs;atis con&longs;tat; qui ad hu<lb/> iu&longs;modi horologia fabricanda nihil intentatum reliquit: <lb/> quam uis huius votum non ni&longs;i ad &longs;ecunda numeranda <pb xlink:href="062/01/124.jpg"/>le extendit. </s> <s id="N146AF">Aliquid ampliùs damus: & non modó &longs;e­<lb/> cunda, verùm etiam huius triente minorem partem nu­<lb/> merabimus. </s> <s id="N146B6">Horologium autem hoc nullis rotulis cir­<lb/> cumagitur, nullis ponderibus libratur; verùm &longs;uâ nati­<lb/> uâ grauitate, à quà nu&longs;quam aberrat, ad normam præ­<lb/> &longs;criptam agitatur: illud inquam idem, quod ad celerita­<lb/> tem & tarditatem pul&longs;uum metiendam paulo ante con­<lb/> &longs;truximus. </s> <s id="N146C3">Huius enim pondus à filo pendulum &longs;uo <lb/> motu tempus in quotlibet partes diui&longs;um numerabit. <lb/> Quòd autem hic motus minor e&longs;&longs;e po&longs;sit, quâm tertia <lb/> pars unius &longs;ecundi, ita o&longs;ten demus: agitationes arteriæ, <lb/> cuiu&longs;modi in me ip&longs;o numeraui, &longs;patio unius horæ fi­<lb/> unt 4850. motus autem perpendiculi his æquales fiunt â <lb/> productione fili maiori quàm digitorum 5. </s> <s id="N146D2">Quia ergo <lb/> motus circulorum &longs;unt in ratione &longs;uorum temporum, <lb/> quam habent diametri ad &longs;e duplicatam, per Prop: 28. &longs;i <lb/> &longs;umatur pars nona huius productionis pro &longs;emidiame­<lb/> tro circuli, erit hic motus triplo velocior illo, ac proinde <lb/> huius recur&longs;us &longs;patio horæ unius 14550 multò plures, <lb/> quàm 10800 partes tertiæ unius &longs;ecundi. </s> <s id="N146E1">Et quia hic mo­<lb/> tus bifariam &longs;ecari pote&longs;t in excur&longs;um & recur&longs;um, fient <lb/> &longs;anè &longs;patio unius horæ partes 29100. </s> <s id="N146E8">Horologium ergò <lb/> con&longs;truximus, quod &longs;uo motu tempus numerat diui&longs;um <lb/> in partes minores quàm tertias unius &longs;ecundi. </s> <s id="N146EF">Quia ta­<lb/> men hic motus veloci&longs;simus ob paruitatem circelli mi- <pb xlink:href="062/01/125.jpg"/>nùs e&longs;t diuturnus, &longs;ufficiet filum producere, <expan abbr="quou&longs;&qacute;">quou&longs;que</expan>; mo<lb/> tus perpendiculi &longs;it æqualis uni &longs;ecundo. </s> <s id="N146FE">Quod quidem <lb/> hac ratione con&longs;equemur: &longs;umatur <expan abbr="quæcun&qacute;">quæcunque</expan>; produ­<lb/> ctio fili, aliquantó tamen longior, quò minùs citò à mo­<lb/> tu conquie&longs;cat: <expan abbr="numerentur&qacute;">numerenturque</expan>; huius excur&longs;us per &longs;pati­<lb/> um unius horæ quadrantis, & &longs;int Vg. 300. <expan abbr="erunt&qacute;">eruntque</expan>; &longs;pa­<lb/> tio horæ unius 1200. </s> <s id="N14717">Quòd &longs;i ergò fiat ut quadratum <lb/> temporis, nimirum trium &longs;ecundorum, ide&longs;t 9 ad 1, ita <lb/> longitudo fili ad minorem, erit hujus motus æqualis <lb/> uni &longs;ecundo. <lb/> <arrow.to.target n="fig38"/></s> </p> </chap> </body> <back> <section> <pb xlink:href="062/01/126.jpg"/> <p id="N1472A" type="main"> <s id="N1472C"><emph type="center"/>[Errata not transcribed.]<emph.end type="center"/></s> </p> <pb xlink:href="062/01/127.jpg"/> <p id="N14736" type="main"> <s id="N14738"><emph type="center"/>PRAGÆ.<emph.end type="center"/></s> </p> <p id="N1473F" type="main"> <s id="N14741"><emph type="center"/>Typis Ioannis Bilinæ.<emph.end type="center"/></s> </p> <p id="N14748" type="main"> <s id="N1474A"><emph type="center"/><emph type="italics"/>Anno<emph.end type="italics"/><emph.end type="center"/></s> </p> <p id="N14755" type="main"> <s id="N14757"><emph type="center"/><emph type="italics"/>M. DC. XXXIX:<emph.end type="italics"/><emph.end type="center"/></s> </p> <pb xlink:href="062/01/128.jpg"/> <pb xlink:href="062/01/129.jpg"/> </section> </back> </text> </archimedes>