Mercurial > hg > mpdl-xml-content
view texts/archimedesOldCVSRepository/archimedes/xml/eucli_ponde_056_la_1537.xml @ 14:c3c84bdd1fdd
Chinesische Version und XML-Version hinzugef?gt
author | Klaus Thoden <kthoden@mpiwg-berlin.mpg.de> |
---|---|
date | Thu, 02 May 2013 11:38:23 +0200 |
parents | 22d6a63640c6 |
children |
line wrap: on
line source
<?xml version="1.0"?> <!DOCTYPE archimedes SYSTEM "../dtd/archimedes.dtd"> <archimedes xmlns:xlink="http://www.w3.org/1999/xlink"> <info> <author>Pseudo Euclid</author> <title>de ponderoso et levi</title> <date>1537</date> <place>Paris</place> <translator></translator> <lang>la</lang> <cvs_file>eucli_ponde_056_la_1537.xml</cvs_file> <cvs_version/> <locator>056.xml</locator> </info> <text> <pb xlink:href="056/01/001.jpg" /><front><section><p type="head"> <s id="id.000001">EVCLIDIS DE LEVI ET PONDEROSO FRAGMENTUM.</s></p></section></front><body><chap><p type="margin"> <s id="id.000002"><arrow.to.target n="marg1"/><margin.target id="marg1"/><emph type="italics"/>Diffini<lb/>tiones.<emph.end type="italics"/></s></p><p type="main"> <s id="id.000003">1 Æqua magnitudine corpora &longs;unt, quæ loca replent æqua.</s> <s id="id.000004"> 2 Di­<lb/>uer&longs;a magnitudine corpora &longs;unt, quæ loca replent non æqua.</s> <s id="id.000005"> 3 Gr<expan abbr="ã">an</expan>dio<lb/>ra magnitudine <expan abbr="dicũtur">dicuntur</expan> corpora, quæ loco &longs;unt ampliore.</s> <s id="id.000006"> 4 Æqua po<lb/>tentia corpora &longs;unt, quor<expan abbr="ũ">um</expan> & tempore & aëre aquáve media æquabilis & <lb/>per æqualia interualla æquales &longs;unt motus.</s> <s id="id.000007"> 5 Diuer&longs;a potentia corpo­<lb/>ra &longs;unt, quorum, t<expan abbr="&etilde;">em</expan>pore diuer&longs;o motus &longs;unt æquales.</s> <s id="id.000008"> 6 Diuer&longs;or<expan abbr="ũ">um</expan> <expan abbr="pot&etilde;tia">poten<lb/>tia</expan> corporum, maius id potentia dicitur, quod mouendo temporis in&longs;um­<lb/>p&longs;it minus: minus autem <expan abbr="pot&etilde;tia">potentia</expan>, quod temporis amplius.</s> <s id="id.000009"> 7 Generis <lb/>eiu&longs;dem corpora &longs;unt, quæ cum æqua magnitudine &longs;int, etiam &longs;unt poten­<lb/>tia.</s> <s id="id.000010"> 8 Diuer&longs;a genere corpora &longs;unt, quæ cum æqua magnitudine &longs;int, <lb/>potentia non &longs;unt, per idem licet medium <expan abbr="moueã">moueantur</expan>.</s> <s id="id.000011"> 9 Diuer&longs;orum<lb/>genere corporum, potentius id dicitur quod e&longs;t &longs;olidius.</s></p><p type="margin"> <s id="id.000012"><arrow.to.target n="marg2"/><margin.target id="marg2"/><emph type="italics"/>Theore­<lb/>mata.<emph.end type="italics"/></s></p><p type="head"> <s id="id.000013"><emph type="italics"/>Theorema primum<emph.end type="italics"/></s></p><p> <s id="id.000014">Diuer&longs;orum potentia corporum, quod &longs;patium amplius moue­<lb/><arrow.to.target n="marg2"/><lb/>tur, habet amplius potentiæ.</s></p><pb xlink:href="056/01/002.jpg" pagenum="586"/><p> <s id="id.000015">Sint a & b corpora dio, &longs;int gd & ef, &longs;patia duo, gd maius per quod a, ef, minus per <lb/>quod b mouetur re&longs;ecabo à &longs;patio gd, gr, &longs;pa<lb/>tium, &longs;ic ut &longs;it ef &longs;patio <expan abbr="&longs;patiũ">&longs;patium</expan> gr æquale.</s> <s id="id.000016"> Cæte<lb/>ra &longs;ponte patent.</s><figure id="id.056.01.002.1.jpg" xlink:href="056/01/002/1.jpg"/></p><p type="head"> <s id="id.000017"><emph type="italics"/>Theorema &longs;ecundum<emph.end type="italics"/></s></p><p> <s id="id.000018">EOrundem genere corpor<expan abbr="ũ">um</expan><lb/>&longs;i ip&longs;a inter &longs;e erunt multiplicia, erunt æque ip&longs;orum potentiæ <lb/>multiplices.</s></p><p> <s id="id.000019">Sit corpus ag, eodem genere corpori d duplum, dico.<lb/><figure id="id.056.01.002.2.jpg" xlink:href="056/01/002/2.jpg"/>etiam potentia duplum e&longs;&longs;e.</s> <s id="id.000020"> Sit enim ag, quidem cor­<lb/>poris potentia eh, d uero & ag iuxta multiplicis ex­<lb/>ce&longs;&longs;um in ab & bg, diuidatur, &longs;ic ut utriu&longs;que potentia,<lb/>ip&longs;ius d corporis pot<expan abbr="&etilde;">en</expan>tiæ quæ erat c æqualis, fiat rur&longs;us <lb/>ut ag corpus in partes ab, bg corpori d æquas diui&longs;imus.</s> <s id="id.000021"> &longs;ic eh, potentiam in partes <lb/>er & rh, æquas c potentia diuidamus.</s> <s id="id.000022"> Liquidum e&longs;t eh potenti<expan abbr="ã">am</expan> duplum potentiæ c <lb/>euadere.</s></p><p type="head"> <s id="id.000023"><emph type="italics"/>Theorema tertium<emph.end type="italics"/></s></p><p> <s id="id.000024">EOrund<expan abbr="&etilde;">em</expan> genere corpor<expan abbr="ũ">um</expan>, proportio, & magnitudine, & potentia <lb/>e&longs;t eadem.</s></p><figure id="id.056.01.002.3.jpg" xlink:href="056/01/002/3.jpg"/><p> <s id="id.000025">Sit à corpus<lb/>corporis eo­<lb/>dem genere b duplum, di­<lb/>co ut a corpus ad b cor<lb/>pus e&longs;t, &longs;ic corporis a <expan abbr="pot&etilde;tia">poten<lb/>tia</expan> g ad corporis b potentiam d e&longs;&longs;e.</s> <s id="id.000026"> Patet &longs;i ut corpora &longs;ic potentias æque utrinque <lb/>multipliciter diuidamus.</s></p><p type="head"> <s id="id.000027"><emph type="italics"/>Theorema quartum<emph.end type="italics"/></s></p><p type="main"> <s id="id.000028">QUæ corpora, æqua potentia eiu&longs;dem generis corpori &longs;unt, eiu&longs;d<expan abbr="&etilde;">em</expan><lb/>&longs;unt inter &longs;e generis, ablatis enim æqualibus illi tertio, er<expan abbr="ũ">un</expan>t ip&longs;o­<lb/>rum uirtutes æquales, quia potentiæ tertij æquales.</s></p><p> <s id="id.000029">Quor<expan abbr="ũ">um</expan> corpor<expan abbr="ũ">um</expan> & magnitudo & potentia proportio una e&longs;t, ip&longs;a generis eiu&longs;d<expan abbr="&etilde;">em</expan> erunt.<lb/></s> <s id="id.000030"> Sit ut a corpus ad corpus b, &longs;ic corpus a potentia ad corporis b potenti<expan abbr="ã">am</expan> d, dico a. b. <lb/>corpora generis eiu&longs;d<expan abbr="&etilde;">em</expan> e&longs;&longs;e.</s> <s id="id.000031">Statuamus <expan abbr=".n.">enim</expan> a. corpus, æquale corpori cuius potentia &longs;it <lb/>r. </s> <s id="id.000032">Erunt igitur ut b ad a, &longs;ic r ad potentiam ip&longs;ius a quæ e&longs;t g.</s> <s id="id.000033"> Reliqua pat<expan abbr="&etilde;">en</expan>t. </s></p></chap></body></text></archimedes>