view texts/archimedesOldCVSRepository/archimedes/xml/fabri_tract_026_la_1646.xml @ 19:d1dd35fc15df

Yet another new version.
author Klaus Thoden <kthoden@mpiwg-berlin.mpg.de>
date Thu, 02 May 2013 12:23:20 +0200
parents 22d6a63640c6
children
line wrap: on
line source

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE archimedes SYSTEM "../dtd/archimedes.dtd">
<archimedes xmlns:xlink="http://www.w3.org/1999/xlink">
	<info>
		<author>Fabri, Honor&eacute;</author>
		<title>Tractatus physicus de motu locali</title>
		<date>1646</date>
		<place>Lyon</place>
		<translator/>
		<lang>la</lang>
		<cvs_file>fabri_tract_026_la_1646.xml</cvs_file>
		<cvs_version/>
		<locator>026.xml</locator>
	</info>
	<text>
		<front>
			<section>
				<pb xlink:href="026/01/001.jpg"/>
				<p id="N1001B" type="head">
					<s id="N1001D"><emph type="center"/>TRACTATVS <lb/>PHYSICVS <lb/>DE MOTV LOCALI, <lb/><emph type="italics"/>IN QVO<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N1002E" type="main">
					<s id="N10030"><emph type="center"/>EFFECTVS OMNES, QVI AD IMPETVM, <lb/>Motum naturalem, violentum, &amp; mixtum pertinent, <lb/>explicantur, &amp; ex principiis Phy&longs;icis <lb/>demon&longs;trantur.<emph.end type="center"/></s>
				</p>
				<p id="N1003D" type="main">
					<s id="N1003F"><emph type="center"/><emph type="italics"/>Auctore<emph.end type="italics"/> PETRO MOVSNERIO <emph type="italics"/>Doctore Medico:<emph.end type="italics"/><lb/>CVNCTA EXCERPTA<emph.end type="center"/></s>
				</p>
				<p id="N10052" type="main">
					<s id="N10054"><emph type="center"/><emph type="italics"/>Ex pr&aelig;lectionibus<emph.end type="italics"/> R. P. HONORATI FABRY, <lb/><emph type="italics"/>Societatis<emph.end type="italics"/> IESV.<emph.end type="center"/></s>
				</p>
				<figure id="id.026.01.001.1.jpg" xlink:href="026/01/001/1.jpg"/>
				<p id="N1006C" type="main">
					<s id="N1006E"><emph type="center"/><emph type="italics"/>LVGDVNI,<emph.end type="italics"/><lb/>Apud IOANNEM CHAMPION, <lb/>in foro Cambij.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1007E" type="main">
					<s id="N10080"><emph type="center"/><emph type="italics"/>M. </s>
					<s id="N10087">D C. XLVI.<emph.end type="italics"/><lb/>Cum Priuilegio Regis, &amp; Approbatione Doctorum.<emph.end type="center"/></s>
				</p>
				<pb xlink:href="026/01/002.jpg"/>
			</section>
			<section>
				<pb xlink:href="026/01/003.jpg"/>
				<figure id="id.026.01.003.1.jpg" xlink:href="026/01/003/1.jpg"/>
				<p id="N1009C" type="head">
					<s id="N1009E"><emph type="center"/>AMPLISSIMO, <lb/>NOBILISSIMOQVE DOMINO,<emph.end type="center"/></s>
				</p>
				<p id="N100A7" type="main">
					<s id="N100A9"><emph type="center"/>D. PETRO DE SEVE, <lb/>DOMINO DE FLECHERES, <lb/>SANCTIORIS CONSILII REGIS <lb/>Con&longs;iliario, in Lugdunen&longs;i Curia Pr&aelig;tori prima&shy;<lb/>rio, &amp; &longs;ecund&ugrave;m Mercatorum Pr&aelig;po&longs;ito, &amp;c.<emph.end type="center"/></s>
				</p>
				<p id="N100B8" type="main">
					<s id="N100BA"><emph type="center"/>PETRVS MOVSNERIVS,<emph.end type="center"/></s>
				</p>
				<p id="N100C1" type="main">
					<s id="N100C3"><!-- NEW --><emph type="italics"/>TIBI alterum no&longs;tr&aelig; Philo&longs;o&shy;<lb/>phi&aelig; f&oelig;tum in&longs;cribo, cui iam <lb/>primum in&longs;crip&longs;i<emph.end type="italics"/> &lpar;PR&AElig;TOR <lb/>AMPLISSIME&rpar; <emph type="italics"/>nempe idem <lb/>e&longs;&longs;e debeo, quia tu &longs;emper idem <lb/>es: </s>
					<s id="N100D9"><!-- NEW -->non muta&longs;ti merita, non mu&shy;<lb/>tabo officia: </s>
					<s id="N100DF"><!-- NEW -->multos non expo&longs;cam Patronos, qui <lb/>iam omnium optimum, &amp; meriti&longs;simum habeo; </s>
					<s id="N100E5"><!-- NEW -->neo <lb/>enim &longs;acra Philo&longs;ophi&aelig; anathemata rudi, &amp; ru&shy;<lb/>&longs;tico muro appendam, qu&aelig; ex &longs;acro tholo templi <lb/>Themidos am&oelig;niter pendent: </s>
					<s id="N100EF"><!-- NEW -->Nec leuem toti rei li&shy;<lb/>terari&aelig; iniuriam inferrem, &longs;i alium illi, qu&agrave;m li-<emph.end type="italics"/><pb xlink:href="026/01/004.jpg"/><emph type="italics"/>teratum Mec&aelig;natem accer&longs;erem: </s>
					<s id="N100FD"><!-- NEW -->&amp; ver&ograve; Tracta&shy;<lb/>tum hunc de Motu Locali, alteri qu&agrave;m tibi in&longs;cri&shy;<lb/>bere non debui, cuius imperia Ludgunen&longs;is orbis, po&shy;<lb/>ti&ugrave;s qu&agrave;m vrbis, componunt: </s>
					<s id="N10107"><!-- NEW -->Tu prudens Intelli&shy;<lb/>gentia, huic orbi &longs;emper a&longs;si&longs;tis; </s>
					<s id="N1010D"><!-- NEW -->ita motibus in&shy;<lb/>uigilas, vt quieti public&aelig; con&longs;ulas, remque ita pu&shy;<lb/>blicam admini&longs;tras, vt &longs;ingulis commoda procures: <lb/>C&aelig;ter&ugrave;m dubitare non po&longs;&longs;um, quin hunc meu&mtail; <lb/>quantulumcumque conatum, fidemque meam ia&mtail; <lb/>tibi &longs;emel oppigneratam, &amp; nunc altero voto peni&shy;<lb/>tus ob&longs;trictam, &aelig;qui bonique &longs;is con&longs;ulturus, Val&etail;.<emph.end type="italics"/><!-- KEEP S--></s>
				</p>
			</section>
			<section>
				<pb xlink:href="026/01/005.jpg"/>
				<figure id="id.026.01.005.1.jpg" xlink:href="026/01/005/1.jpg"/>
				<p id="N10129" type="head">
					<s id="N1012B"><emph type="center"/>PR&AElig;FATIO.<emph.end type="center"/></s>
				</p>
				<p id="N10132" type="main">
					<s id="N10134"><!-- NEW -->NIHIL habeo pr&aelig;fari &lpar;Beneuole Lector&rpar; <lb/>in gratiam huius tractatus de Motu Locali, <lb/>cuius am&oelig;nitatem &amp; vtilitatem, rerum co&shy;<lb/>piam &amp; &longs;yluam, tuo gu&longs;tui &amp; iudicio re&shy;<lb/>linquo: </s>
					<s id="N10140"><!-- NEW -->Multi &longs;an&egrave; hactenus in hac mate&shy;<lb/>ria feliciter de&longs;udarunt; </s>
					<s id="N10146"><!-- NEW -->&amp; quidem pr&aelig; c&aelig;teris magnus <lb/>ille Galileus, qui mirific&acirc;, &amp; fer&egrave; diuin&acirc; ingenij acie, <lb/>motum localem e&ograve; perduxit, qu&ograve; mortalium nemo per&shy;<lb/>duxerat; </s>
					<s id="N10150"><!-- NEW -->quia tamen multa omi&longs;it, qu&aelig; ad motum &longs;pe&shy;<lb/>ctant, vt nemo ne&longs;cit; </s>
					<s id="N10156"><!-- NEW -->nec ex principijs Phy&longs;icis mira&shy;<lb/>biles illos effectus demon&longs;trauit, &longs;ed tant&ugrave;m certis qui&shy;<lb/>bu&longs;dam proportionibus ex geometricis addixit; </s>
					<s id="N1015E"><!-- NEW -->vt Phy&shy;<lb/>&longs;ic&aelig; con&longs;ulamus, aliam inimus viam: </s>
					<s id="N10164"><!-- NEW -->Geometriam qui&shy;<lb/>dem adhibemus, ad explicandas, exponenda&longs;que pr&aelig;&shy;<lb/>dictas illas proportiones, qu&aelig; motibus in&longs;unt; </s>
					<s id="N1016C"><!-- NEW -->&longs;ed effe&shy;<lb/>ctus illos pr&aelig;dictis proportionibus affixos ad principia <lb/>Phy&longs;ica reducimus; </s>
					<s id="N10174"><!-- NEW -->id e&longs;t, c&ugrave;m &longs;upponamus qu&ograve;d &longs;int, <lb/>propter quid &longs;int demon&longs;tramus: </s>
					<s id="N1017A"><!-- NEW -->in votis erat motus <lb/>omnes vno volumine complecti; </s>
					<s id="N10180"><!-- NEW -->id e&longs;t effectus omnes <lb/>cuiu&longs;uis potenti&aelig; motricis; </s>
					<s id="N10186"><!-- NEW -->tres enim agno&longs;cimus hu&shy;<lb/>iu&longs;modi potentias: </s>
					<s id="N1018C"><!-- NEW -->primam naturalem voco, qu&aelig; e&longs;t <lb/>grauium: </s>
					<s id="N10192"><!-- NEW -->alteram animalem, qu&aelig; e&longs;t animantium: </s>
					<s id="N10196"><!-- NEW -->ter&shy;<lb/>tiam mediam, qu&aelig; ten&longs;orum e&longs;t vel compre&longs;&longs;orum: </s>
					<s id="N1019C"><!-- NEW -->In <lb/>hoc tractatu t&ugrave;m &agrave; motu progre&longs;&longs;iuo animantium, t&ugrave;m <lb/>ab alijs motibus, qui in animato corpore, neruorum &amp; <pb xlink:href="026/01/006.jpg"/>mu&longs;culorum opera fiunt, penitus ab&longs;tinemus; </s>
					<s id="N101A8"><!-- NEW -->c&ugrave;m &longs;ci&shy;<lb/>lic&egrave;t eas notiones &longs;upponant, qu&aelig; huius loci e&longs;&longs;e non <lb/>po&longs;&longs;unt, ab&longs;tinemus etiam &agrave; mirifica illa ten&longs;orum &amp; <lb/>compre&longs;&longs;orum vi, qu&aelig; medi&aelig; illius virtutis e&longs;t; </s>
					<s id="N101B2"><!-- NEW -->neque <lb/>adhuc e&ograve; rem Phy&longs;icam adduximus; Sed h&icirc;c tant&ugrave;m na&shy;<lb/>turam impetus con&longs;ideramus, motus naturalis affectio&shy;<lb/>nes, violenti, mixti ex rectis, reflexi, circularis, mixti <lb/>ex circularibus, illius qui fit in planis inclinatis &longs;ur&longs;um <lb/>&amp; deor&longs;um, vibrationum funependuli, diuer&longs;arum im&shy;<lb/>pre&longs;&longs;ionum, centri percu&longs;&longs;ionis, &amp;c. </s>
					<s id="N101C2"><!-- NEW -->Fort&egrave; aliquis poten&shy;<lb/>tias mechanicas de&longs;ideraret, lineas, motus, &amp; c&aelig;le&longs;tes <lb/>&longs;piras; </s>
					<s id="N101CA"><!-- NEW -->&longs;ed h&aelig; quidquid phy&longs;icum habent, &longs;ingulari tra&shy;<lb/>ctatui de corpore c&aelig;le&longs;ti, reliqua ver&ograve; A&longs;tronomi&aelig; con&shy;<lb/>cedunt: potenti&aelig; mechanic&aelig; ad Staticam pertinent, qua&shy;<lb/>re illarum tant&ugrave;m phy&longs;icum principium in hoc tractatu <lb/>explicamus, line&aelig; motus nihil phy&longs;icum habent. </s>
					<s id="N101D6"><!-- NEW -->Quare <lb/>ad vitandam confu&longs;ionem ad Mathe&longs;im illas remittimus, <lb/>cuius non modicam facient acce&longs;&longs;ionem; igitur &longs;ecun&shy;<lb/>dum Tomum de motu locali non expectabis, qui ne <lb/>cuncta quidem, qu&aelig; ad motum &longs;pectant comprehende&shy;<lb/>ret, &longs;ed huic &longs;tatim Metaphy&longs;icam demon&longs;tratiuam &longs;ub&shy;<lb/>necto. </s>
					<s id="N101E6"><!-- NEW -->C&aelig;ter&ugrave;m de &longs;ubtili&longs;&longs;imo i&longs;torum omnium inuen&shy;<lb/>torum auctore nihil dicam, qui cum &aelig;gr&egrave; tulerit paucula <lb/>illa qu&aelig; in prima tractatu pr&aelig;fatus &longs;um, os mihi peni&shy;<lb/>tus ob&longs;truxit: </s>
					<s id="N101F0"><!-- NEW -->omitto etiam qu&aelig; in me quidam iniqu&egrave; <lb/>cert&egrave; rerum &aelig;&longs;timatores iactarunt: </s>
					<s id="N101F6"><!-- NEW -->reponere po&longs;&longs;em cum <lb/>f&aelig;nore; </s>
					<s id="N101FC"><!-- NEW -->&longs;ed nos talem con&longs;uetudinem non habemus; </s>
					<s id="N10200"><!-- NEW -->de&shy;<lb/>dici hactenus pati iniurias, non inferre; quod non mod&ograve; <lb/>moralis Philo&longs;ophia, &longs;ed pr&aelig;&longs;ertim Chri&longs;tiana Religio me <lb/>docet. </s>
				</p>
				<pb xlink:href="026/01/007.jpg"/>
				<p id="N1020D" type="main">
					<s id="N1020F"><!-- NEW -->Vnum e&longs;t, de quo te monitum velim &lpar;Amice Lector&rpar; <lb/>opu&longs;culum i&longs;tud non &longs;ine aliquot erratis edi potui&longs;&longs;e, <lb/>pr&aelig;&longs;ertim c&ugrave;m in a&longs;&longs;ignandis cuilibet figur&aelig; &longs;uis chara&shy;<lb/>cteribus &longs;&aelig;pi&ugrave;s peccatum &longs;it; </s>
					<s id="N10219"><!-- NEW -->operas excu&longs;abis in rebus <lb/>Geometricis minim&egrave; ver&longs;atos: auctor tibi &longs;um, vt errata, <lb/>qu&aelig; fideliter adnotaui ca&longs;tiges, vt deinde cum maiore <lb/>gu&longs;tu Librum hunc perlegere po&longs;&longs;is. <lb/><gap desc="hr tag"/></s>
				</p>
				<p id="N10226" type="main">
					<s id="N10228"><emph type="center"/><emph type="italics"/>SYNOPSIS LIBRORVM<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N10233" type="main">
					<s id="N10235"><emph type="center"/><emph type="italics"/>huius tractatus.<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N10240" type="table">
					<s id="N10242">TABELLE WAR HIER<!-- KEEP S--></s>
				</p>
			</section>
			<section>
				<pb xlink:href="026/01/008.jpg"/>
				<figure id="id.026.01.008.1.jpg" xlink:href="026/01/008/1.jpg"/>
				<p id="N1024F" type="head">
					<s id="N10251"><emph type="center"/><emph type="italics"/>SYNOPSIS AMPLIOR.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1025D" type="main">
					<s id="N1025F">BREVISSIMAM huius operis Epitomem h&icirc;c <lb/>habes &lpar;Amice Lector&rpar; quam ex The&longs;ibus no&longs;tri <lb/>Philo&longs;ophi huc traduxi, qu&aelig; tibi ampli&longs;&longs;imi <lb/>indicis loco erit. </s>
				</p>
				<figure id="id.026.01.008.2.jpg" xlink:href="026/01/008/2.jpg"/>
				<p id="N1026D" type="main">
					<s id="N1026F"><emph type="center"/><emph type="italics"/>De Impetu.<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N1027A" type="main">
					<s id="N1027C"><!-- NEW -->1. IMPETVS e&longs;t qualitas exigens motum &longs;ui &longs;ubiecti: </s>
					<s id="N10280"><!-- NEW --><lb/>datur impetus; </s>
					<s id="N10285"><!-- NEW -->quia non pote&longs;t e&longs;&longs;e alia cau&longs;a exi&shy;<lb/>gitiua motus: </s>
					<s id="N1028B"><!-- NEW -->adde qu&ograve;d, potentia motrix e&longs;t acti&shy;<lb/>ua; </s>
					<s id="N10291"><!-- NEW -->igitur aliquid producit, &longs;ed non aliud qu&agrave;m <lb/>impetum, vt con&longs;tat ex dictis de motu: </s>
					<s id="N10297"><!-- NEW -->e&longs;t aliquid di&longs;tinctum &agrave; <lb/>&longs;ub&longs;tantia mobilis, qu&aelig; pote&longs;t e&longs;&longs;e &longs;ine impetu: </s>
					<s id="N1029D"><!-- NEW -->non e&longs;t modus, <lb/>quia di&longs;tinguitur ab effectu &longs;uo formali &longs;ecundario: </s>
					<s id="N102A3"><!-- NEW -->impetus non <lb/>producitur in eo mobili, quod moueri non pote&longs;t &agrave; potentia mo&shy;<lb/>trice applicata: </s>
					<s id="N102AB"><!-- NEW -->&amp; produci tant&ugrave;m pote&longs;t, vel in omni parte, vel <lb/>in nulla; </s>
					<s id="N102B1"><!-- NEW -->alioquin e&longs;&longs;et fru&longs;tr&agrave;; &amp; gratis ponitur ne&longs;cio quis impe&shy;<lb/>tus inefficax. </s>
				</p>
				<p id="N102B7" type="main">
					<s id="N102B9">2. Primo in&longs;tanti, quo e&longs;t impetus, non e&longs;t motus, ne &longs;imul im&shy;<lb/>petus &longs;it in duobus locis. </s>
					<s id="N102BE"><!-- NEW -->Impetus productus ad extra non produci&shy;<lb/>tur &agrave; quantitate, nec virtute re&longs;i&longs;titiua, nec ab alio, qu&agrave;m ab impe&shy;<lb/>tu, qui maxim&egrave; e&longs;t cau&longs;a connaturalis alterius impetus: </s>
					<s id="N102C6"><!-- NEW -->agit tan&shy;<lb/>t&ugrave;m ad extra, vt tollat impedimentum: </s>
					<s id="N102CC"><!-- NEW -->hinc, c&ugrave;m pro diuer&longs;a <lb/>applicatione &longs;it diuer&longs;um impedimentum, mod&ograve; pl&ugrave;s, mod&ograve; min&ugrave;s <lb/>agit; </s>
					<s id="N102D4"><!-- NEW -->maxim&egrave; ver&ograve;, cum maximum e&longs;t impedimentum: </s>
					<s id="N102D8"><!-- NEW -->hinc ictus <lb/>per lineam perpendicularem forti&longs;&longs;imus e&longs;t: port&ograve; omnes partes <lb/>impetus agunt ad extra actione communi. </s>
				</p>
				<p id="N102E0" type="main">
					<s id="N102E2"><!-- NEW -->3. Impetus inten&longs;us producere pote&longs;t remi&longs;&longs;um, minoris mobi&shy;<lb/>lis in maiore; </s>
					<s id="N102E8"><!-- NEW -->&amp; remi&longs;&longs;us inten&longs;um, maioris mobilis in minore, vt <lb/>patet; &aelig;qualis &aelig;qualem, &aelig;qualis mobilis in &aelig;quali, mod&ograve; &longs;it debi-<pb xlink:href="026/01/009.jpg"/>ta applicatio, cum maximo impedimento, quod reuer&acirc; tunc e&longs;t, <lb/>c&ugrave;m linea directionis connectit centra grauitatis vtriu&longs;que. </s>
					<s id="N102F4"><!-- NEW -->Datur <lb/>impetus alio impetu perfectior, &amp; imperfectior, &longs;ine quo non po&shy;<lb/>te&longs;t explicari natura vectis: </s>
					<s id="N102FC"><!-- NEW -->itaque dato quocunque dari pote&longs;t per&shy;<lb/>fectior, &amp; imperfectior: quia dato quocunque motu pote&longs;t dari ve&shy;<lb/>locior, &amp; tardior. </s>
				</p>
				<p id="N10304" type="main">
					<s id="N10306"><!-- NEW -->4. Propagatur impetus vniformiter tant&ugrave;m, c&ugrave;m omnes partes <lb/>corporis mouentur motu recto &aelig;quali: </s>
					<s id="N1030C"><!-- NEW -->ibi enim e&longs;t &aelig;qualis cau&longs;a, <lb/>vbi e&longs;t &aelig;qualis effectus: </s>
					<s id="N10312"><!-- NEW -->in motu circulari applicata potentia cen&shy;<lb/>tro vectis, producitur &aelig;qualis perfectionis vers&ugrave;s circunferentiam, <lb/>&amp; in&aelig;qualis numerus; </s>
					<s id="N1031A"><!-- NEW -->applicata ver&ograve; potentia circunferenti&aelig;, pro&shy;<lb/>ducitur &aelig;qualis numerus, &longs;ed in&aelig;qualis perfectionis vers&ugrave;s cen&shy;<lb/>trum; </s>
					<s id="N10322"><!-- NEW -->quia potentia non pote&longs;t producere immediat&egrave; perfectiorem, <lb/>&amp; imperfectiorem in infinitum: </s>
					<s id="N10328"><!-- NEW -->eadem potentia nece&longs;&longs;aria &aelig;quali&shy;<lb/>bus temporibus, &amp; ii&longs;dem circun&longs;tantiis, producit &aelig;qualem impe&shy;<lb/>tum, &amp; in&aelig;qualibus in&aelig;qualem: e&longs;t enim h&aelig;c ratio cau&longs;&aelig; nece&longs;&shy;<lb/>&longs;ari&aelig;. </s>
				</p>
				<p id="N10332" type="main">
					<s id="N10334"><!-- NEW -->5. Impetus innatus e&longs;t tant&ugrave;m determinatus ad lineam perpen&shy;<lb/>dicularem deor&longs;um; </s>
					<s id="N1033A"><!-- NEW -->alioquin &longs;i ad aliam determinari po&longs;&longs;et, primo <lb/>e&longs;&longs;et &aelig;qualis motus per inclinatam, &amp; perpendicularem; </s>
					<s id="N10340"><!-- NEW -->corpus <lb/>graue mi&longs;&longs;um per lineam inclinatam ab eo non declinaret; </s>
					<s id="N10346"><!-- NEW -->im&ograve; im&shy;<lb/>petus &longs;emel productus &lpar;&longs;i liberum e&longs;&longs;et medium&rpar; non de&longs;trueretur: </s>
					<s id="N1034C"><!-- NEW --><lb/>qu&aelig; omnia phy&longs;icis hypothe&longs;ibus repugnant: omnis alius impetus, <lb/>etiam acqui&longs;itus motu naturali deor&longs;um, e&longs;t indifferens ad omnem <lb/>lineam, ad vitanda infinita fer&egrave; natur&aelig; incommoda. </s>
				</p>
				<p id="N10355" type="main">
					<s id="N10357"><!-- NEW -->6. Impetus indifferens determinatur ad lineam multis modis: <lb/>prim&ograve;, &agrave; potentia motrice: </s>
					<s id="N1035D"><!-- NEW -->&longs;ecund&ograve;, ab impetu: </s>
					<s id="N10361"><!-- NEW -->terti&ograve;, ab alio impe&shy;<lb/>tu concurrente; quart&ograve;, ab obice occurrente: </s>
					<s id="N10367"><!-- NEW -->quint&ograve;, ab ip&longs;o appli&shy;<lb/>cationis diuer&longs;o modo: qu&aelig; omnia clara &longs;unt: hinc duo impetus ad <lb/>motum mixtum &longs;&aelig;p&egrave; concurrunt, quod &longs;emper fit, ni&longs;i determina&shy;<lb/>tiones &longs;int oppo&longs;it&aelig; ex diametro. </s>
					<s id="N10371"><!-- NEW -->Impetus e&longs;t capax inten&longs;ionis; </s>
					<s id="N10375"><!-- NEW --><lb/>quia aliquando de&longs;truitur ex parte: </s>
					<s id="N1037A"><!-- NEW -->eius exten&longs;io commen&longs;uratur <lb/>exten&longs;ioni mobilis; </s>
					<s id="N10380"><!-- NEW -->quod etiam c&aelig;teris qualitatibus commune e&longs;t: <lb/>impetus productus non con&longs;eruatur &agrave; cau&longs;a prim&ograve; productiua, &agrave; <lb/>qua etiam &longs;eparatus exi&longs;tit. </s>
				</p>
				<p id="N10388" type="main">
					<s id="N1038A"><!-- NEW -->7. Impetus non e&longs;t contrarius alteri ratione entitatis; </s>
					<s id="N1038E"><!-- NEW -->quia qui&shy;<lb/>libet cum quolibet in eodem &longs;ubiecto co&euml;xi&longs;tere pote&longs;t: </s>
					<s id="N10394"><!-- NEW -->pugnat <lb/>tamen vnus cum alio ratione determinationis: </s>
					<s id="N1039A"><!-- NEW -->hinc vnus impetus <lb/>pugnat cum alio ratione line&aelig; motus: </s>
					<s id="N103A0"><!-- NEW -->hinc vnus videtur de&longs;trui ab <pb xlink:href="026/01/010.jpg"/>alio; </s>
					<s id="N103A8"><!-- NEW -->quanquam impetus tant&ugrave;m de&longs;truitur, c&ugrave;m e&longs;t fru&longs;tr&agrave;: </s>
					<s id="N103AC"><!-- NEW -->hinc, &longs;i <lb/>e&longs;&longs;et tant&ugrave;m vnicus in eodem mobili, &amp; liberum e&longs;&longs;et medium, <lb/>nunquam de&longs;trueretur nec vnquam dici po&longs;&longs;et functus &longs;uo mune&shy;<lb/>re; quod omnin&ograve; gratis dicitur. </s>
				</p>
				<p id="N103B6" type="main">
					<s id="N103B8"><!-- NEW -->8. Hinc, &longs;i &longs;int tant&ugrave;m duo impetus in eodem mobili &aelig;quales <lb/>verbi gratia, vel ad eandem lineam determinantur, vel ad diver&longs;as; </s>
					<s id="N103BE"><!-- NEW --><lb/>&longs;i ad eandem, nihil impetus de&longs;truitur, &longs;ed e&longs;t dupl&ograve; velocior mo&shy;<lb/>tus; </s>
					<s id="N103C5"><!-- NEW -->&longs;i ad diuer&longs;as, vel &longs;unt oppo&longs;it&aelig; ex diametro, vel concurrentes <lb/>faciunt angulum; </s>
					<s id="N103CB"><!-- NEW -->&longs;i primum, vterque de&longs;truitur impetus; &longs;i &longs;e&shy;<lb/>cundum, de&longs;truitur aliquid illius, quod determinabimus in&shy;<lb/>fr&agrave;. </s>
					<s id="N103D3"><!-- NEW -->Impetus innatus nunquam de&longs;truitur: </s>
					<s id="N103D7"><!-- NEW -->dici po&longs;&longs;et grauitas ab&shy;<lb/>&longs;oluta; &longs;altem nihil e&longs;t, quod di&longs;tingui ab illa probare po&longs;&longs;it. </s>
					<s id="N103DD">Porr&ograve; <lb/>nunquam de&longs;truitur; </s>
					<s id="N103E2"><!-- NEW -->quia nunquam e&longs;t fru&longs;tr&agrave;; quippe eius finis, <lb/>vel v&longs;us, non e&longs;t tant&ugrave;m motus deor&longs;um, &longs;ed grauitatio, &longs;eu ni&longs;us <lb/>quidam deor&longs;um. </s>
					<s id="N103EA">Sed de grauitate ali&agrave;s. </s>
				</p>
				<figure id="id.026.01.010.1.jpg" xlink:href="026/01/010/1.jpg"/>
				<p id="N103F2" type="main">
					<s id="N103F4"><emph type="center"/><emph type="italics"/>De motu naturali deor&longs;um.<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N103FF" type="main">
					<s id="N10401">1. DAtur motus naturalis grauium deor&longs;um ab intrin&longs;eco, <lb/>quippe non pote&longs;t e&longs;&longs;e, vel &agrave; vi tractrice terr&aelig; vel fila&shy;<lb/>mentis quibu&longs;dam, vel materia quadam tenui expultrice. </s>
					<s id="N10408">Eius finis <lb/>e&longs;t globi terre&longs;tris compactio, &amp;c. </s>
					<s id="N1040D"><!-- NEW -->E&longs;t autem motus naturalis ab <lb/>impetu: </s>
					<s id="N10413"><!-- NEW -->prim&ograve;, quia eius acceleratio &longs;ine impetu explicari non po&shy;<lb/>te&longs;t: </s>
					<s id="N10419"><!-- NEW -->&longs;ecund&ograve;, quia, c&ugrave;m graue deor&longs;um cadens imprimat impetum <lb/>in corpore occurrente, cert&egrave; debet habere impetum: nec alio ar&shy;<lb/>gumento mihi probabis, Solem e&longs;&longs;e lucidum, ignem calidum. </s>
				</p>
				<p id="N10421" type="main">
					<s id="N10423"><!-- NEW -->2. Motus hic e&longs;t naturaliter acceleratus, &longs;cilicet, ab intrin&longs;eco; <lb/>patet experienti&acirc;. </s>
					<s id="N10429">Ratio e&longs;t: </s>
					<s id="N1042C"><!-- NEW -->quia, c&ugrave;m in libero medio non impe&shy;<lb/>diatur motus, &amp; impetus productus primo in&longs;tanti non con&longs;erue&shy;<lb/>tur &longs;ecundo &agrave; cau&longs;a prim&ograve; productiua, &longs;ed ab alia, &longs;itque ip&longs;a mo&shy;<lb/>bilis &longs;ub&longs;tantia cau&longs;a nece&longs;&longs;aria; </s>
					<s id="N10436"><!-- NEW -->cert&egrave; &longs;ecundo in&longs;tanti producit <lb/>nouum impetum: idem dica de tertio, quarto, &amp;c. </s>
					<s id="N1043C"><!-- NEW -->igitur cre&longs;cit <lb/>cau&longs;a motus; </s>
					<s id="N10442"><!-- NEW -->igitur &amp; motus: qu&aelig; ratio clari&longs;&longs;ima e&longs;t: </s>
					<s id="N10446"><!-- NEW -->hinc &aelig;quali&shy;<lb/>bus temporibus &aelig;qualia acquiruntur velocitatis momenta; </s>
					<s id="N1044C"><!-- NEW -->quia <lb/>cau&longs;a nece&longs;&longs;aria &aelig;qualibus temporibus, &aelig;qualem effectum produ&shy;<lb/>cit: quid clarius? </s>
				</p>
				<p id="N10454" type="main">
					<s id="N10456"><!-- NEW -->3. Hinc non pote&longs;t cre&longs;cere hic impetus &longs;ecund&ugrave;m porportio-<pb xlink:href="026/01/011.jpg"/>nem duplicatam temporum, c&ugrave;m cre&longs;cat &longs;ecund&ugrave;m proportionem <lb/>temporum, et&iuml;am ex mente Galilei: </s>
					<s id="N10460"><!-- NEW -->cre&longs;cit autem velocitas, vt im&shy;<lb/>petus; </s>
					<s id="N10466"><!-- NEW -->effectus, &longs;cilicet, vt cau&longs;a: </s>
					<s id="N1046A"><!-- NEW -->idem dico de motu, ratione velo&shy;<lb/>citatis; </s>
					<s id="N10470"><!-- NEW -->quippe motus ip&longs;e e&longs;t &longs;ua velocitas: at ver&ograve; ip&longs;a &longs;patia, <lb/>qu&aelig; decurruntur illo motu, &longs;i con&longs;ideretur crementum in in&longs;tan&shy;<lb/>tibus, cre&longs;cunt iuxta progre&longs;&longs;ionem arithmeticam &longs;implicem, <lb/>id e&longs;t, &longs;i primo in&longs;tanti, acquiritur vnum &longs;patium, &longs;ecundo acquiri&shy;<lb/>tur vnum &longs;patium, &longs;ecundo acquiruntur duo, tertio 3. quarto 4. at&shy;<lb/>que ita deinceps. </s>
				</p>
				<p id="N1047E" type="main">
					<s id="N10480"><!-- NEW -->4. Hoc autem facil&egrave; pote&longs;t <expan abbr="dem&otilde;&longs;trari">demon&longs;trari</expan>: </s>
					<s id="N10488"><!-- NEW -->quia, c&ugrave;m velocitas cre&longs;&shy;<lb/>cat iuxta proportionem temporum, &longs;i primo in&longs;tanti &longs;it vnus gradus <lb/>velocitatis, &longs;ecundo erunt duo, tertio tres, at que ita deinceps: </s>
					<s id="N10490"><!-- NEW -->igitur, <lb/>&longs;i mobile cum vno gradu velocitatis acquirit vnum &longs;patium, cert&egrave; <lb/>cum duobus acquiret duo &longs;patia, cum tribus tria, atque ita dein&shy;<lb/>ceps: debet autem vera progre&longs;&longs;io crementorum a&longs;&longs;umi in &longs;ingulis <lb/>in&longs;tantibus, quia reuer&agrave; &longs;ingulis in&longs;tantibus phy&longs;icis &lpar;nam de iis <lb/>loquor&rpar; noua fit huius crementi acce&longs;&longs;io. </s>
				</p>
				<p id="N1049E" type="main">
					<s id="N104A0"><!-- NEW -->5. Quia tamen in&longs;tantia non &longs;unt &longs;en&longs;ibilia, vt Phy&longs;ic&aelig; con&longs;u&shy;<lb/>latur, qu&aelig; res &longs;en&longs;ibiles con&longs;iderat, a&longs;&longs;umi debent partes temporis <lb/>&longs;en&longs;ibiles, in quibus reuer&acirc; progre&longs;&longs;io &longs;patiorum non e&longs;t arithmeti&shy;<lb/>ca &longs;implex; &longs;ed tam prop&egrave; accedit ad hanc numerorum imparium, <lb/>1. 3. 5. 7. &amp;c. </s>
					<s id="N104AC"><!-- NEW -->quam Galileus excogitauit, vt &longs;ine &longs;crupulo h&aelig;c a&longs;&shy;<lb/>&longs;umi po&longs;&longs;it: </s>
					<s id="N104B2"><!-- NEW -->hinc &longs;patia &longs;unt fer&egrave; vt temporum quadrata: dixi, fer&egrave;: </s>
					<s id="N104B6"><!-- NEW --><lb/>nam e&longs;t paul&ograve; minor proportio, c&ugrave;m tant&ugrave;m finita &longs;int in&longs;tantia <lb/>phy&longs;ica, qu&aelig; reuer&agrave; &longs;i infinita e&longs;&longs;ent in qualibet temporis &longs;en&longs;ibilis <lb/>parte, haud dubi&egrave; &longs;patia e&longs;&longs;ent omnin&ograve; in ratione duplicata tem&shy;<lb/>porum: &longs;ed, quia parum pro nihilo computatur, hanc progre&longs;&longs;io&shy;<lb/>nem Galilei deinceps v&longs;urpabimus in Phy&longs;ica. <!-- KEEP S--></s>
				</p>
				<p id="N104C4" type="main">
					<s id="N104C6">6. Hinc ratio euidens maioris ictus inflicti &agrave; corpore graui, <lb/>c&ugrave;m ex maiori altitudine cadit. </s>
					<s id="N104CB"><!-- NEW -->Sunt autem ictus, vt impetus; <lb/>impetus, vt tempora; h&aelig;c demum, vt radices &longs;patiorum &longs;en&longs;ibi&shy;<lb/>liter qu&aelig; omnia con&longs;tant ex dictis. </s>
					<s id="N104D3"><!-- NEW -->Impetus acqui&longs;itus in de&longs;cen&longs;u <lb/>e&longs;t &longs;emper imperfectior, &longs;i a&longs;&longs;umantur &longs;ingula in&longs;tantia, qu&aelig; reuer&acirc; <lb/>&longs;unt &longs;emper minora; </s>
					<s id="N104DB"><!-- NEW -->quia motus fit &longs;emper velocior: c&ugrave;m graue <lb/>de&longs;cendit in medio, quod re&longs;i&longs;tit, min&ugrave;s accurat&egrave; &longs;eruantur pr&aelig;di&shy;<lb/>ct&aelig; proportiones, qu&aelig; in vacuo modico accurati&longs;&longs;im&egrave; &longs;eruaren&shy;<lb/>tur. </s>
				</p>
				<p id="N104E5" type="main">
					<s id="N104E7"><!-- NEW -->7. Re&longs;i&longs;tentia medij non e&longs;t propter vllam formam improportio&shy;<lb/>natam, qua&longs;i ver&ograve; impetus &longs;it forma improportionata a&euml;ri: </s>
					<s id="N104ED"><!-- NEW -->&longs;ed in <pb xlink:href="026/01/012.jpg"/>duobus pr&aelig;&longs;ertim con&longs;i&longs;tit; </s>
					<s id="N104F5"><!-- NEW -->prim&ograve;, e&ograve; qu&ograve;d medium detrahat ali&shy;<lb/>quid grauitationis corporis grauis; </s>
					<s id="N104FB"><!-- NEW -->&longs;ecund&ograve;, e&ograve; qu&ograve;d partes medij <lb/>aliquam implicationem habeant, qu&aelig; &longs;olui non pote&longs;t &longs;ine aliqua <lb/>compre&longs;&longs;ione, vel ten&longs;ione; </s>
					<s id="N10503"><!-- NEW -->vtraque autem re&longs;i&longs;tit impetui: quod <lb/>&longs;pectat ad primum, &longs;i medium &longs;it &aelig;qualis grauitatis cum ip&longs;o cor&shy;<lb/>pore, detrahitur tota grauitatio, &longs;i &longs;ubdupl&aelig; &longs;ubduplum, &amp;c. </s>
					<s id="N1050B">de quo <lb/>ali&agrave;s. </s>
				</p>
				<p id="N10510" type="main">
					<s id="N10512"><!-- NEW -->8. Hinc corpus graue per medium rarius, c&aelig;teris paribus, fa&shy;<lb/>cil&egrave; de&longs;cendit; non tamen ex re&longs;i&longs;tentia medij cognita, pote&longs;t co&shy;<lb/>gno&longs;ci proportio grauitatis vtriu&longs;que, propter &longs;ecundum caput, ex <lb/>quo etiam petitur re&longs;i&longs;tentia. </s>
					<s id="N1051C"><!-- NEW -->Idem corpus cum eodem medio <lb/>comparatum, habet tres coniugationes: nam, vel e&longs;t grauius, vel&shy;<lb/>e&longs;t grauius, vel &aelig;qu&egrave; graue, vel min&ugrave;s. </s>
					<s id="N10524">Sunt etiam tres ali&aelig; con&shy;<lb/>iugationes, &longs;cilicet, eiu&longs;dem mobilis cum diuer&longs;is mediis, duorum <lb/>mobilium cum eodem medio, duorum mobilium cum duobus <lb/>mediis. </s>
				</p>
				<p id="N1052D" type="main">
					<s id="N1052F"><!-- NEW -->9. Figura corporis grauis deor&longs;um cadentis motum vel retardat <lb/>vel accelerat; </s>
					<s id="N10535"><!-- NEW -->retardat quidem, &longs;i plures partes medij amouend&aelig; <lb/>&longs;unt vel pauciores velociori motu; accelerat &egrave; contrario: </s>
					<s id="N1053B"><!-- NEW -->hinc idem <lb/>corpus <expan abbr="paralleliped&utilde;">parallelipedum</expan> iuxta tres diuer&longs;os &longs;itus, triplici motu diuer&shy;<lb/>&longs;o de&longs;cendere pote&longs;t: hinc ratio, cur acuminata tam facil&egrave; de&longs;cen&shy;<lb/>dant. </s>
					<s id="N10549"><!-- NEW -->Cubus, qui de&longs;cendit, imprimit a&euml;ri velociorem motum, <lb/>qu&agrave;m ip&longs;e habeat; &amp; qu&ograve; maior e&longs;t eius &longs;uperficies, e&ograve; velociorem. </s>
				</p>
				<p id="N1054F" type="main">
					<s id="N10551"><!-- NEW -->10. Duo globi, vel cubi eiu&longs;dem materi&aelig; &aelig;qu&egrave; velociter de&longs;&shy;<lb/>cendunt: </s>
					<s id="N10557"><!-- NEW -->ratio e&longs;t, quia, lic&egrave;t maioris vires habeant maiorem pro&shy;<lb/>portionem ad molem a&euml;ris re&longs;i&longs;tentis, qu&agrave;m vires minoris ad alte&shy;<lb/>ram a&euml;ris molem, qu&aelig; proprium illius motum retardat, c&ugrave;m tamen <lb/>a&euml;r, qui re&longs;i&longs;tit maiori cubo, debeat amoueri velociori motu, qu&agrave;m <lb/>a&euml;r, qui re&longs;i&longs;tit minori, &longs;itque eadem proportio re&longs;i&longs;tenti&aelig; ratione <lb/>motus, minoris ad maiorem, qu&aelig; e&longs;t ratione molis, maioris ad mi&shy;<lb/>norem; </s>
					<s id="N10567"><!-- NEW -->cert&egrave; ratio compo&longs;ita vtriu&longs;que erit eadem in vtroque cu&shy;<lb/>bo: igitur &aelig;qualiter de&longs;cendet vterque. </s>
				</p>
				<p id="N1056D" type="main">
					<s id="N1056F"><!-- NEW -->11. Si tamen &longs;int diuer&longs;&aelig; materi&aelig;, haud dubi&egrave;, qui con&longs;tat leuio&shy;<lb/>ri materia, tardi&ugrave;s de&longs;cendet; quia eius vires habent minorem <lb/>proportionem ad re&longs;i&longs;tentiam. </s>
					<s id="N10577"><!-- NEW -->Corpu&longs;cula etiam ex graui&longs;&longs;ima ma&shy;<lb/>teria tardi&longs;&longs;im&egrave; de&longs;cendunt: </s>
					<s id="N1057D"><!-- NEW -->tum, quia &agrave; filamentis illis, quibus par&shy;<lb/>tes a&euml;ris implicantur, facil&egrave; detinentur; </s>
					<s id="N10583"><!-- NEW -->analogiam habes in lapil&shy;<lb/>lo, qui ab arane&aelig; tela intercipitur: </s>
					<s id="N10589"><!-- NEW -->tum, quia, c&ugrave;m lati&longs;&longs;imam ali&shy;<lb/>quando habeant &longs;uperficiem pro modica mole, minimam habent <pb xlink:href="026/01/013.jpg"/><expan abbr="proportion&etilde;">proportionem</expan> virium ad <expan abbr="re&longs;i&longs;tenti&atilde;">re&longs;i&longs;tentiam</expan>: t&ugrave;m denique, quia, c&ugrave;m modico <lb/>impetu agitari po&longs;&longs;int ab a&euml;re mobili, vnus motus alium impedit. </s>
				</p>
				<p id="N1059C" type="main">
					<s id="N1059E"><!-- NEW -->12. Singulis in&longs;tantibus motus naturaliter accelerati cre&longs;cit <lb/>re&longs;i&longs;tentia; </s>
					<s id="N105A4"><!-- NEW -->quia, c&ugrave;m motus cre&longs;cat, &aelig;qualibus temporibus, plures <lb/>partes medij occurrunt; </s>
					<s id="N105AA"><!-- NEW -->cre&longs;cunt tamen vires in eadem proportio&shy;<lb/>ne, &longs;cilicet, impetus: igitur non mutatur progre&longs;&longs;io motus. </s>
					<s id="N105B0"><!-- NEW -->Hinc <lb/>colligo, contra Galil&aelig;um, motum rectum ex naturaliter accelerato <lb/>nunquam fieri &aelig;quabilem: dixi motum rectum; quia motus corpo&shy;<lb/>rum c&oelig;le&longs;tium ex accelerato factus e&longs;t &aelig;qualis. </s>
				</p>
				<figure id="id.026.01.013.1.jpg" xlink:href="026/01/013/1.jpg"/>
				<p id="N105BF" type="main">
					<s id="N105C1"><emph type="center"/><emph type="italics"/>De motu violento &longs;ur&longs;um.<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N105CC" type="main">
					<s id="N105CE">1. MOtus violentus &longs;ur&longs;um vulg&ograve; dicitur e&longs;&longs;e &agrave; principio ex&shy;<lb/>trin&longs;eco. </s>
					<s id="N105D3"><!-- NEW -->Triplici modo accidere pote&longs;t: </s>
					<s id="N105D7"><!-- NEW -->prim&ograve;, &longs;i reuer&agrave; <lb/>imprimatur impetus ab extrin&longs;eco, vt, c&ugrave;m mitto lapidem &longs;ur&longs;um: </s>
					<s id="N105DD"><!-- NEW --><lb/>&longs;ecund&ograve;, &longs;i corpus deor&longs;um cadens deinde reflectatur &longs;ur&longs;um; </s>
					<s id="N105E2"><!-- NEW -->tunc <lb/>autem nihil e&longs;t ab extrin&longs;eco, ni&longs;i determinatio noua, qu&aelig; e&longs;t &agrave; cor&shy;<lb/>pore reflectente: </s>
					<s id="N105EA"><!-- NEW -->terti&ograve;, &longs;i terra vtrinque e&longs;&longs;et peruia; </s>
					<s id="N105EE"><!-- NEW -->nam lapis haud <lb/>dubi&egrave; non &longs;i&longs;teret in centro, &longs;altem po&longs;t primum de&longs;cen&longs;um; </s>
					<s id="N105F4"><!-- NEW -->igitur <lb/>a&longs;cenderet per eandem lineam; </s>
					<s id="N105FA"><!-- NEW -->nullum tamen e&longs;t principium ex&shy;<lb/>trin&longs;ecum; igitur motus violentus dicit tant&ugrave;m motum &longs;ur&longs;um <lb/>corporis grauis. </s>
				</p>
				<p id="N10602" type="main">
					<s id="N10604"><!-- NEW -->2. Dari autem motum violentum, dubium e&longs;&longs;e non pote&longs;t, qui <lb/>&longs;upponit impetum, vel impre&longs;&longs;um ab extrin&longs;eco, vel in de&longs;cen&longs;u <lb/>acqui&longs;itum, qui reuer&acirc; ine&longs;t ip&longs;i mobili, c&ugrave;m ip&longs;um medium hunc <lb/>motum poti&ugrave;s impediat, qu&agrave;m iuuet: </s>
					<s id="N1060E"><!-- NEW -->hinc, &longs;i nullus e&longs;&longs;et impetus <lb/>extrin&longs;ecus, vel acqui&longs;itus, nullus e&longs;&longs;et motus violentus; quia im&shy;<lb/>petus innatus illius cau&longs;a e&longs;&longs;e non pote&longs;t. </s>
					<s id="N10616">Port&ograve; hic motus non e&longs;t <lb/>acceleratus, nec &aelig;qualis, alioquin <expan abbr="nunqu&atilde;">nunquam</expan> rediret deor&longs;um mobile. </s>
				</p>
				<p id="N1061F" type="main">
					<s id="N10621"><!-- NEW -->3. Hinc nece&longs;&longs;ari&ograve; e&longs;t retardatus: </s>
					<s id="N10625"><!-- NEW -->igitur de&longs;truitur impetus, non <lb/>quidem ab ip&longs;a medij re&longs;i&longs;tentia; </s>
					<s id="N1062B"><!-- NEW -->quippe idem medium non magis <lb/>re&longs;i&longs;tit motui &longs;ur&longs;um, qu&agrave;m motui deor&longs;um, vt patet: </s>
					<s id="N10631"><!-- NEW -->igitur de&longs;trui&shy;<lb/>tur ille impetus motus violenti ab impetu innato aliquo modo; </s>
					<s id="N10637"><!-- NEW -->non <lb/>quidem vt &agrave; contrario ratione entitatis, &longs;ed ratione determinatio&shy;<lb/>nis: </s>
					<s id="N1063F"><!-- NEW -->c&ugrave;m enim impetus innatus exigat motum deor&longs;um, &amp; alius &longs;ur&shy;<lb/>&longs;um: </s>
					<s id="N10645"><!-- NEW -->hic quidem pr&aelig;ualet, attamen fru&longs;tr&agrave; e&longs;t, ratione gradus <lb/>&aelig;qualis impetui innato: igitur de&longs;truitur ille gradus illo in&longs;tanti. </s>
				</p>
				<pb xlink:href="026/01/014.jpg"/>
				<p id="N1064E" type="main">
					<s id="N10650"><!-- NEW -->4. Hinc &longs;ingulis temporibus &aelig;qualibus de&longs;truitur gradus impe&shy;<lb/>tui innato; </s>
					<s id="N10656"><!-- NEW -->e&longs;t enim eadem ratio pro omnibus: </s>
					<s id="N1065A"><!-- NEW -->igitur temporibus <lb/>&aelig;qualibus de&longs;truitur &aelig;qualis impetus: </s>
					<s id="N10660"><!-- NEW -->igitur amittit ille motus <lb/>&aelig;qualia velocitatis momenta: </s>
					<s id="N10666"><!-- NEW -->igitur e&longs;t naturaliter retardatus: </s>
					<s id="N1066A"><!-- NEW -->igi&shy;<lb/>tur iuxta eam proportionem decre&longs;cit motus violentus, iuxtaquam <lb/>cre&longs;cit naturalis: igitur dici debent de hac progre&longs;&longs;ione retardatio&shy;<lb/>nis, qu&aelig; dicta &longs;unt de illa progre&longs;&longs;ione accelerationis. </s>
				</p>
				<p id="N10674" type="main">
					<s id="N10676"><!-- NEW -->5. Hinc impetus imperfectior initio de&longs;truitur: </s>
					<s id="N1067A"><!-- NEW -->quia, c&ugrave;m motus <lb/>ille &longs;it velocior initio, in&longs;tantia &longs;unt minora: </s>
					<s id="N10680"><!-- NEW -->atqui minori tempore <lb/>min&ugrave;s retardatur: </s>
					<s id="N10686"><!-- NEW -->igitur inperfectior impetus de&longs;truitur; </s>
					<s id="N1068A"><!-- NEW -->c&ugrave;m &egrave; <lb/>contrario in motu acceleratio initio acquiratur imperfectior, quia <lb/>in&longs;tantia &longs;unt maiora: vnde vides, gradus impetus e&longs;&longs;e heteroge&shy;<lb/>neos, &amp; principium illud etiam in impetu valere, &longs;cilicet, &longs;ubiectum <lb/>ita compleri ab vna forma, vt alterius homogene&aelig; non &longs;it ampli&ugrave;s <lb/>capax, &longs;altem naturaliter. </s>
				</p>
				<p id="N10698" type="main">
					<s id="N1069A">6. Hinc vltimus gradus impetus violenti e&longs;t omnium perfecti&longs;&shy;<lb/>&longs;imus, vt con&longs;tat. </s>
					<s id="N1069F"><!-- NEW -->Quie&longs;ceret vno in&longs;tanti mobile iactum &longs;ur&longs;um, &longs;i <lb/>gradus vltimus violenti e&longs;&longs;et &aelig;qualis perfectionis, cum impetu in&shy;<lb/>nato: </s>
					<s id="N106A7"><!-- NEW -->vbi enim ventum e&longs;&longs;et ad in&longs;tans &aelig;qualitatis, neutrum pr&aelig;&shy;<lb/>ualere po&longs;&longs;et: </s>
					<s id="N106AD"><!-- NEW -->igitur in&longs;tanti &longs;equenti e&longs;&longs;et quies: </s>
					<s id="N106B1"><!-- NEW -->c&ugrave;m tamen &longs;int <lb/>diuer&longs;&aelig; perfectionis, perfectior pr&aelig;ualet: vter autem &longs;it perfectior, <lb/>dicemus infr&agrave;. </s>
				</p>
				<p id="N106B9" type="main">
					<s id="N106BB"><!-- NEW -->7. Cum mobile &longs;ur&longs;um reflectitur, vel terra perforata &longs;uam lineam <lb/>motus &longs;ur&longs;um versus oppo&longs;itam c&oelig;li plagam promouet, vel aliud <lb/>&aelig;qualis ponderis, vel maioris, &longs;ur&longs;um mouet, tunc certum e&longs;t, inna&shy;<lb/>tum e&longs;&longs;e perfectiorem: </s>
					<s id="N106C5"><!-- NEW -->&longs;i ver&ograve; imprimitur ab alia potentia motrice, <lb/>tunc etiam imperfectior e&longs;t impetu innato; </s>
					<s id="N106CB"><!-- NEW -->nam in&aelig;qualis e&longs;t; </s>
					<s id="N106CF"><!-- NEW -->alio&shy;<lb/>quin, &longs;i e&longs;&longs;et &aelig;qualis, &longs;imul e&longs;&longs;ent in eodem &longs;ubiecto duo gradus <lb/>homogenei: </s>
					<s id="N106D7"><!-- NEW -->pr&aelig;&longs;tat autem e&longs;&longs;e imperfectiorem, qu&agrave;m perfectio&shy;<lb/>rem, vt plura impetus puncta &agrave; potentia imprimantur; </s>
					<s id="N106DD"><!-- NEW -->qu&ograve;d mul&shy;<lb/>tum facit ad mouenda maiora pondera: hinc nullo in&longs;tanti quie&longs;&shy;<lb/>cunt proiecta &longs;ur&longs;um. </s>
				</p>
				<p id="N106E5" type="main">
					<s id="N106E7"><!-- NEW -->8. Tandiu durat &longs;en&longs;ibiliter de&longs;cen&longs;us globi proiecti &longs;ur&longs;um, <lb/>quandiu durauit a&longs;cen&longs;us; </s>
					<s id="N106ED"><!-- NEW -->e&longs;t enim eadem ratio: &longs;agitt&aelig; ver&ograve; mi&shy;<lb/>n&ugrave;s durat a&longs;cen&longs;us, qu&agrave;m de&longs;cen&longs;us propter mixtionem materi&aelig;. </s>
					<s id="N106F3"><!-- NEW --><lb/>Si motus violentus e&longs;&longs;et &aelig;quabilis, percurreret proiectum &longs;patium <lb/>fer&egrave; duplum eo tempore, quo retardato percurrit &longs;ubduplum: </s>
					<s id="N106FA"><!-- NEW -->hinc <lb/>&longs;onus tam cit&ograve; auditur; </s>
					<s id="N10700"><!-- NEW -->quia propagatur cum particulis a&euml;ris &aelig;qua&shy;<lb/>bili fer&egrave; motu: </s>
					<s id="N10706"><!-- NEW -->e&longs;&longs;e autem &longs;patium fer&egrave; duplum, probatur ex eo, <pb xlink:href="026/01/015.jpg"/>qu&ograve;d &longs;patium motu &aelig;quabili decur&longs;um re&longs;pondet rectangulo; </s>
					<s id="N1070E"><!-- NEW -->de&shy;<lb/>cur&longs;um ver&ograve; motu retardato, re&longs;pondet triangulo, &longs;ubduplo rectan&shy;<lb/>guli: a&longs;&longs;umpto &longs;cilicet, &aelig;quali tempore. </s>
				</p>
				<p id="N10716" type="main">
					<s id="N10718"><!-- NEW -->9. Vites potenti&aelig; proiicientis toto ni&longs;u re&longs;pondent velocitati <lb/>acqui&longs;it&aelig; in toto de&longs;cen&longs;u corporis proiecti; <expan abbr="tant&utilde;dem">tantundem</expan> enim <lb/>impetus in de&longs;cen&longs;u acquiritur, quant&ugrave;m in a&longs;cen&longs;u deperditur. </s>
					<s id="N10724"><!-- NEW --><lb/>Impetus primo in&longs;tanti, quo e&longs;t, agit, &longs;i e&longs;t aliquod impedimen&shy;<lb/>tum; </s>
					<s id="N1072B"><!-- NEW -->e&longs;t enim cau&longs;a nece&longs;&longs;aria: </s>
					<s id="N1072F"><!-- NEW -->primo in&longs;tanti motus aliquid im&shy;<lb/>petus de&longs;truitur: </s>
					<s id="N10735"><!-- NEW -->&longs;iue pr&aelig;ce&longs;&longs;erit motus violentus, &longs;iue non pr&aelig;ce&longs;&shy;<lb/>&longs;erit, corpus graue &aelig;quali motu deor&longs;um cadit: </s>
					<s id="N1073B"><!-- NEW -->re&longs;i&longs;tentia a&euml;ris e&longs;t <lb/>quidem maior initio; &longs;ed etiam &longs;unt maiores vires. </s>
				</p>
				<figure id="id.026.01.015.1.jpg" xlink:href="026/01/015/1.jpg"/>
				<p id="N10746" type="main">
					<s id="N10748"><emph type="center"/><emph type="italics"/>De motu in planis inclinatis.<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N10753" type="main">
					<s id="N10755"><!-- NEW -->1. PLanum inclinatum e&longs;t &longs;ur&longs;um, vel deor&longs;um: </s>
					<s id="N10759"><!-- NEW -->in hoc de&longs;cen&shy;<lb/>dit corpus graue, ni&longs;i fort&egrave; retineatur ab a&longs;peritate, vel pro&shy;<lb/>pria, vel ip&longs;ius plani: </s>
					<s id="N10761"><!-- NEW -->impeditur autem motus naturalis in plano <lb/>pr&aelig;dicto, quia impeditur eius linea: </s>
					<s id="N10767"><!-- NEW -->ide&ograve; e&longs;t tardior hic motus in <lb/>plano inclinato, qu&agrave;m in perpendiculari: </s>
					<s id="N1076D"><!-- NEW -->in ea porr&ograve; proportione <lb/>e&longs;t tardior, in qua perpendiculum e&longs;t minus linea inclinata, eiu&longs;dem <lb/>&longs;cilicet, altitudinis; </s>
					<s id="N10775"><!-- NEW -->quippe e&ograve; tardior e&longs;t, qu&ograve; magis impeditur, &amp; <lb/>magis impeditur, qu&ograve; maius &longs;patium decurrendum e&longs;t, ad acqui&shy;<lb/>rendam eandem altitudinem: igitur eadem e&longs;t proportio impe&shy;<lb/>dimenti, qu&aelig; &longs;patij, &amp;c. </s>
				</p>
				<p id="N1077F" type="main">
					<s id="N10781"><!-- NEW -->2. Hinc motus &longs;unt vt line&aelig; permutando: </s>
					<s id="N10785"><!-- NEW -->hinc mobile de&longs;cendit <lb/>per &longs;e in pr&aelig;dicto plano: </s>
					<s id="N1078B"><!-- NEW -->licet enim motus impediatur, non tamen <lb/><expan abbr="tous">totus</expan>, impetus, qui acquiritur in eodem plano e&longs;t imperfectior ac&shy;<lb/>qui&longs;ito in perpendiculari in eadem proportione; </s>
					<s id="N10796"><!-- NEW -->nam impetus &longs;unt <lb/>vt motus: </s>
					<s id="N1079C"><!-- NEW -->hinc pote&longs;t perfectio impetus imminui in infinitum, c&ugrave;m <lb/>po&longs;&longs;it e&longs;&longs;e in infinitum linea magis, ac magis inclinata: igitur mo&shy;<lb/>tum imminui po&longs;&longs;e in infinitum, non tant&ugrave;m ex vecte, &longs;ed etiam <lb/>ex planis inclinatis haberi pote&longs;t. </s>
				</p>
				<p id="N107A6" type="main">
					<s id="N107A8"><!-- NEW -->3. Hinc producit impetum imperfectiorem impetus acqui&longs;itus <lb/>in hoc eodem plano, qu&agrave;m acqui&longs;itus in perpendiculari, &aelig;qualibus <lb/>&longs;cilicet temporibus, quia cau&longs;a imperfectior imperfectiorem pro&shy;<lb/>ducit effectum: </s>
					<s id="N107B2"><!-- NEW -->motus in plano inclinato deor&longs;um e&longs;t acceleratus <lb/>iuxta eandem proportionem, iuxta quam acceleratur in perpendi-<pb xlink:href="026/01/016.jpg"/>culo: </s>
					<s id="N107BC"><!-- NEW -->tempora, quibus percurruntur perpendiculum, &amp; linea plani <lb/>inclinati, &longs;unt vt line&aelig;; &longs;patia autem, qu&aelig; in pr&aelig;dictis lineis acqui&shy;<lb/>runtur &aelig;qualibus temporibus, &longs;unt vt motus, id e&longs;t, vt line&aelig; per&shy;<lb/>mutando, vt patet ex dictis. </s>
				</p>
				<p id="N107C6" type="main">
					<s id="N107C8">4. Ex his concludo, nece&longs;&longs;ari&ograve; per plana omnia eiu&longs;dem altitu&shy;<lb/>dinis acquiri eandem velocitatem, quantumuis a&longs;&longs;umantur longi&longs;&shy;<lb/>&longs;ima, mod&ograve; &longs;cilicet perpendicula &longs;int &longs;emper parallela. </s>
					<s id="N107CF">Hinc habes <lb/>apud Galileum, per omnes chordas circuli erecti de&longs;cen&longs;um fieri <lb/>&aelig;qualibus temporibus. </s>
					<s id="N107D6"><!-- NEW -->Vires, qu&aelig; &longs;u&longs;tinent pondus in plano in&shy;<lb/>clinato per lineam plano <expan abbr="parallel&atilde;">parallelam</expan>, &longs;unt ad eas, qu&aelig; &longs;u&longs;tinent in per&shy;<lb/>pendiculo, vt line&aelig; permutando; quia debent ad&aelig;quare impetum, <lb/>qui producitur, t&ugrave;m in plano inclinato, t&ugrave;m in perpendiculo. </s>
				</p>
				<p id="N107E4" type="main">
					<s id="N107E6"><!-- NEW -->5. Porr&ograve; min&ugrave;s grauitat in ip&longs;um planum inclinatum corpus gra&shy;<lb/>ue, qu&agrave;m in planum horizontale: </s>
					<s id="N107EC"><!-- NEW -->e&longs;t autem grauitatio in horizonta&shy;<lb/>li, &longs;eu Tangente, ad grauitationem in inclinata, &longs;eu &longs;ecante, vt ip&longs;&aelig; <lb/>line&aelig; permutando: quod facil&egrave; demon&longs;tramus. </s>
					<s id="N107F4"><!-- NEW -->Proiicitur mobile <lb/>facili&ugrave;s per inclinatum planum &longs;ur&longs;um, qu&agrave;m per ip&longs;am perpendi&shy;<lb/>cularem: patet experientia: cuius ratio e&longs;t, quia min&ugrave;s re&longs;i&longs;tit im&shy;<lb/>petus innatus, cuius minor e&longs;t ni&longs;us per inclinatam, vt con&longs;tat ex <lb/>dictis. </s>
				</p>
				<p id="N10800" type="main">
					<s id="N10802"><!-- NEW -->6. Ill&aelig; vires, qu&aelig; &longs;ufficiunt ad eum motum &longs;ur&longs;um in perpendi&shy;<lb/>culo, &longs;ufficiunt ad motum &longs;ur&longs;um in plano inclinato eiu&longs;dem alti&shy;<lb/>tudinis: </s>
					<s id="N1080A"><!-- NEW -->quia ill&aelig; vires &longs;ufficiunt ad a&longs;cen&longs;um, qu&aelig; acquiruntur in <lb/>toto de&longs;cen&longs;u: &longs;ed in de&longs;cen&longs;u inclinat&aelig;, &amp; perpendiculi acquirun&shy;<lb/>tur vires &aelig;quales, id e&longs;t, velocitas &aelig;qualis, vt dictum e&longs;t &longs;upr&agrave;. </s>
					<s id="N10812"><!-- NEW -->Om&shy;<lb/>nia puncta plani inclinati rectilinei, im&ograve; &amp; horizontalis, &longs;unt di&shy;<lb/>uer&longs;&aelig; inclinationis: in iis tamen planis inclinatis qu&aelig; vulg&ograve; a&longs;&longs;u&shy;<lb/>muntur, non mutatur &longs;en&longs;ibiliter inclinatio. </s>
				</p>
				<p id="N1081C" type="main">
					<s id="N1081E"><!-- NEW -->7. Hinc min&ugrave;s de&longs;truitur impetus in plano inclinato &longs;ur&longs;um, <lb/>qu&agrave;m in perpendiculo; </s>
					<s id="N10824"><!-- NEW -->quia diuti&ugrave;s durat: </s>
					<s id="N10828"><!-- NEW -->c&ugrave;m enim min&ugrave;s ac&shy;<lb/>quiratur in de&longs;cen&longs;u, vt dictum e&longs;t, min&ugrave;s etiam de&longs;truitur in a&longs;&shy;<lb/>cen&longs;u: </s>
					<s id="N10830"><!-- NEW -->hinc accedit propri&ugrave;s hic motus ad &aelig;quabilem: </s>
					<s id="N10834"><!-- NEW -->in eodem <lb/>plano rectilineo pote&longs;t e&longs;&longs;e a&longs;cen&longs;us, &amp; de&longs;cen&longs;us, vers&ugrave;s eandem <lb/>partem: </s>
					<s id="N1083C"><!-- NEW -->tale e&longs;&longs;et planum horizontale, in cuius vnico tant&ugrave;m pun&shy;<lb/>cto nulla e&longs;t inclinatio: in quolibet puncto huius plani e&longs;t &longs;ingu&shy;<lb/>laris inclinatio, vt patet, qu&aelig; e&longs;t ad perpendiculum, vt Tangens ad <lb/>&longs;ecantem &eacute;&longs;tque eadem proportio motuum. </s>
				</p>
				<p id="N10846" type="main">
					<s id="N10848"><!-- NEW -->8. Corpus graue in &longs;uperficie quadrantis caua, deor&longs;um cadit <lb/>motu naturaliter accelerato; </s>
					<s id="N1084E"><!-- NEW -->quia &longs;ingulis in&longs;tantibus accedit nouus <pb xlink:href="026/01/017.jpg"/>impetus; </s>
					<s id="N10856"><!-- NEW -->non tamen &aelig;qualibus temporibus, acquiruntur &aelig;qualia <lb/>velocitatis momenta; </s>
					<s id="N1085C"><!-- NEW -->quia in &longs;ingulis punctis quadrantis, e&longs;t diuer&shy;<lb/>&longs;a tangens; </s>
					<s id="N10862"><!-- NEW -->igitur mutatur progre&longs;&longs;io accelerationis, qu&aelig; cert&egrave; ma&shy;<lb/>jor e&longs;t initio, &amp; &longs;ub finem minor; quia initio tangentes acce&shy;<lb/>dunt propri&ugrave;s ad perpendiculum, &amp; &longs;ub finem ad horizonta<lb/>lem. </s>
				</p>
				<p id="N1086C" type="main">
					<s id="N1086E"><!-- NEW -->9. De&longs;cendit etiam in &longs;uperficie conuexa globi erecti motu ac&shy;<lb/>celerato; </s>
					<s id="N10874"><!-- NEW -->initio quidem, in minore proportione; </s>
					<s id="N10878"><!-- NEW -->&longs;ub finem, in maio&shy;<lb/>re; </s>
					<s id="N1087E"><!-- NEW -->vnde e&longs;t inuer&longs;a prioris: </s>
					<s id="N10882"><!-- NEW -->pote&longs;t etiam de&longs;cendere corpus graue <lb/>v&longs;que ad centrum terr&aelig; motu accelerato, in &longs;uperficie conuexa &longs;e&shy;<lb/>micirculi: </s>
					<s id="N1088A"><!-- NEW -->&longs;i &longs;uperficies terr&aelig; e&longs;&longs;et l&aelig;uigati&longs;&longs;ima, corpus proje&shy;<lb/>ctum moueretur in ea motu &aelig;quabili, nec de&longs;trueretur impetus im&shy;<lb/>pre&longs;&longs;us, vt con&longs;tat; </s>
					<s id="N10892"><!-- NEW -->pote&longs;t quoque de&longs;cendere per &longs;piralem: &longs;unt in&shy;<lb/>finita plana curua, in quibus facili&ugrave;s moueri pote&longs;t, quam in ho&shy;<lb/>rizontali recta. </s>
				</p>
				<figure id="id.026.01.017.1.jpg" xlink:href="026/01/017/1.jpg"/>
				<p id="N1089F" type="main">
					<s id="N108A1"><emph type="center"/><emph type="italics"/>De motu mixto ex rectis.<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N108AC" type="main">
					<s id="N108AE">1. DAri motum mixtum ille non dubitat, qui di&longs;cum proiicit. </s>
					<s id="N108B1"><!-- NEW --><lb/>Mixtus ex duobus rectis &aelig;quabilibus e&longs;t rectus, e&longs;t que <lb/>diagonalis vtriu&longs;que: </s>
					<s id="N108B8"><!-- NEW -->hinc de&longs;truitur aliquid impetus, iuxta pro&shy;<lb/>portionem differenti&aelig; diagonalis, &amp; vtriu&longs;que lateris &longs;imul &longs;ump&shy;<lb/>ti; </s>
					<s id="N108C0"><!-- NEW -->quia, &longs;cilicet, e&longs;t fru&longs;tr&agrave;: </s>
					<s id="N108C4"><!-- NEW -->qu&ograve; maior e&longs;t angulus, quem faciunt li&shy;<lb/>ne&aelig; determinationum, minor e&longs;t diagonalis; igitur pl&ugrave;s impetus <lb/>de&longs;truitur, donec tandem concurrant in oppo&longs;itas lineas, tunc enim <lb/>totius impetus de&longs;truitur. </s>
				</p>
				<p id="N108CE" type="main">
					<s id="N108D0"><!-- NEW -->2. <expan abbr="Qu&utilde;">Quum</expan> minor e&longs;t, vel acutior pr&aelig;dictus angulus, min&ugrave;s impetus <lb/>de&longs;truitur; </s>
					<s id="N108DA"><!-- NEW -->quia diagonalis maior e&longs;t; </s>
					<s id="N108DE"><!-- NEW -->donec tandem conueniant in <lb/>eandem lineam, tunc enim nihil de&longs;truitur: </s>
					<s id="N108E4"><!-- NEW -->datur de facto hic mo&shy;<lb/>tus in rerum natura; </s>
					<s id="N108EA"><!-- NEW -->talis e&longs;t motus nauis &agrave; duobus ventis impre&longs;&shy;<lb/>&longs;us; vel eiu&longs;dem partis a&euml;ris; im&ograve; &amp; ip&longs;ius venti: </s>
					<s id="N108F0"><!-- NEW -->motus mixtus ex <lb/>duobus retardatis iuxta eandem progre&longs;&longs;ionem e&longs;t rectus; </s>
					<s id="N108F6"><!-- NEW -->quia fit <lb/>per hypothenu&longs;im triangulorum proportionalium: idem dico de <lb/>duobus acceleratis. </s>
				</p>
				<p id="N108FE" type="main">
					<s id="N10900"><!-- NEW -->3. Si mixtus &longs;it ex &aelig;quali, &amp; accelerato, vel ex duobus accelera&shy;<lb/>tis in diuer&longs;a progre&longs;&longs;ione, vel ex duobus retardatis &longs;imiliter, fit per <lb/>lineam curuam, vt patet: </s>
					<s id="N10908"><!-- NEW -->dum proiicitur corpus graue per horizon-<pb xlink:href="026/01/018.jpg"/>talem in medio libero e&longs;t motus mixtus ex accelerato naturali, &amp; <lb/>retardato violento: e&longs;t enim acceleratus naturalis, c&ugrave;m deor&longs;um <lb/>deor&longs;um tendat qua&longs;i per gradus, &longs;eu diuer&longs;a plana inclinata. </s>
				</p>
				<p id="N10914" type="main">
					<s id="N10916"><!-- NEW -->4. Non tamen impetus acqui&longs;itus in eo motu e&longs;t eiu&longs;dem perfe&shy;<lb/>ctionis cum illo, qui acquireretur in perpendiculari eiu&longs;dem longi&shy;<lb/>tudinis; </s>
					<s id="N1091E"><!-- NEW -->&longs;ed tant&ugrave;m eiu&longs;dem altitudinis: </s>
					<s id="N10922"><!-- NEW -->nam perinde cre&longs;cit ille <lb/>impetus, atque cre&longs;ceret in diuer&longs;is planis inclinaris: </s>
					<s id="N10928"><!-- NEW -->impetus ver&ograve; <lb/>violentus in hoc motu retardatur; </s>
					<s id="N1092E"><!-- NEW -->t&ugrave;m, quia, &longs;i maneret idem, maior <lb/>e&longs;&longs;et ictus &longs;ub finem iactus, quod e&longs;t ridiculum; nec e&longs;t, qu&ograve;d aliqui <lb/>dicant, ab a&euml;re de&longs;trui, qui non min&ugrave;s re&longs;i&longs;tit naturali, qu&agrave;m vio&shy;<lb/>lento. </s>
				</p>
				<p id="N10938" type="main">
					<s id="N1093A"><!-- NEW -->5. Adde, qu&ograve;d e&longs;t duplex determinatio: </s>
					<s id="N1093E"><!-- NEW -->igitur aliquid de&longs;trui de&shy;<lb/>bet, non acqui&longs;iti; igitur impre&longs;&longs;i: </s>
					<s id="N10944"><!-- NEW -->de&longs;trui autem non dicitur acqui&shy;<lb/>&longs;itus, qu&ograve;d, &longs;cilicet, pl&ugrave;s de nouo accedat, qu&agrave;m pereat; </s>
					<s id="N1094A"><!-- NEW -->e&longs;t enim ac&shy;<lb/>celeratus: </s>
					<s id="N10950"><!-- NEW -->adde, qu&ograve;d non infligitur tantus ictus &longs;ub finem; </s>
					<s id="N10954"><!-- NEW -->igitur <lb/>de&longs;truitur aliquid impetus, non acqui&longs;iti, eo modo, quo diximus; </s>
					<s id="N1095A"><!-- NEW --><lb/>igitur impre&longs;&longs;i: ita tamen &longs;en&longs;im de&longs;truitur, vt pro &aelig;quabili per ali&shy;<lb/>quod &longs;patium qua&longs;i haberi po&longs;&longs;it. </s>
				</p>
				<p id="N10961" type="main">
					<s id="N10963"><!-- NEW -->6. Hinc mobile proiectum per horizontalem, ne primo quidem <lb/>in&longs;tanti per horizontalem mouetur, alioqui non e&longs;&longs;et motus mix&shy;<lb/>tus: </s>
					<s id="N1096B"><!-- NEW -->tardi&ugrave;s cadit mobile ita proiectum in plan&ugrave;m horizontale &longs;ub&shy;<lb/>iectum, qu&agrave;m cum &longs;ua &longs;ponte, ex eadem altitudine de&longs;cendit: </s>
					<s id="N10971"><!-- NEW -->cuius <lb/>rei clari&longs;&longs;ima e&longs;t experientia: ratio e&longs;t; </s>
					<s id="N10977"><!-- NEW -->quia impetus acqui&longs;itus in <lb/>hoc iactu non e&longs;t eiu&longs;dem perfectionis, c&ugrave;m acqui&longs;ito in perpendi&shy;<lb/>culo: </s>
					<s id="N1097F"><!-- NEW -->c&ugrave;m proiicitur mobile per inclinatam &longs;ur&longs;um, mouetur motu <lb/>mixto ex naturali &aelig;quabili, &amp; violento retardato: patet prima pars; </s>
					<s id="N10985"><!-- NEW --><lb/>quia acceleratur tant&ugrave;m naturalis deor&longs;um, &longs;altem in inclinata: </s>
					<s id="N1098A"><!-- NEW -->&longs;e&shy;<lb/>cunda pars etiam patet; quia &longs;ub finem minor e&longs;t ictus. </s>
				</p>
				<p id="N10990" type="main">
					<s id="N10992"><!-- NEW -->7. Hinc linea motus e&longs;t curua: </s>
					<s id="N10996"><!-- NEW -->iuxta diuer&longs;am progre&longs;&longs;ionem de&shy;<lb/>&longs;truitur hic impetus impre&longs;&longs;us: </s>
					<s id="N1099C"><!-- NEW -->t&ugrave;m pro diuer&longs;a inclinatione plani, <lb/>cuius etiam h&icirc;c habetur ratio; </s>
					<s id="N109A2"><!-- NEW -->nam &longs;ingulis in&longs;tantibus mutatur: </s>
					<s id="N109A6"><!-- NEW --><lb/>t&ugrave;m, quia mod&ograve; pl&ugrave;s impetus e&longs;t fru&longs;tr&agrave;, mod&ograve; min&ugrave;s; </s>
					<s id="N109AB"><!-- NEW -->pl&ugrave;s <lb/>cert&egrave;, c&ugrave;m linea determinationis impetus impre&longs;&longs;i facit obtu&shy;<lb/>&longs;iorem: </s>
					<s id="N109B3"><!-- NEW -->atqui initio e&longs;t obtu&longs;ior; &longs;ub finem ver&ograve; a&longs;cen&longs;us acu&shy;<lb/>tior. </s>
				</p>
				<p id="N109B9" type="main">
					<s id="N109BB"><!-- NEW -->8. A&longs;cen&longs;us proiecti per inclinatam diuti&ugrave;s durat, qu&agrave;m de&longs;&shy;<lb/>cen&longs;us, ratione eiu&longs;dem plani horizontalis; </s>
					<s id="N109C1"><!-- NEW -->quia, &longs;cilicet, a&longs;&shy;<lb/>cen&longs;us longior e&longs;t, qu&agrave;m de&longs;cen&longs;us: </s>
					<s id="N109C7"><!-- NEW -->e&longs;t autem longior; </s>
					<s id="N109CB"><!-- NEW -->quia, vt <lb/>e&longs;&longs;et &aelig;qualis, nihil impetus impre&longs;&longs;i deberet de&longs;trui in a&longs;cen&longs;u <pb xlink:href="026/01/019.jpg"/>porr&ograve; in de&longs;cen&longs;u e&longs;t motus mixtus ex accelerato naturali, <lb/>&amp; retardato violento, vt con&longs;tat ex dictis: </s>
					<s id="N109D7"><!-- NEW -->iactus per incli&shy;<lb/>natam ad angulum 45. e&longs;t omnium maximus, ratione eiu&longs;dem <lb/>plani horizontalis: clara e&longs;t experientia. </s>
					<s id="N109DF">Ratio e&longs;t: </s>
					<s id="N109E2"><!-- NEW -->quia per verti&shy;<lb/>calem &longs;ur&longs;um, nihil acquiritur in plano horizontali, ex quo fit ia&shy;<lb/>ctus; </s>
					<s id="N109EA"><!-- NEW -->nihil etiam per ip&longs;am horizontalem; igitur pl&ugrave;s acquiritur per <lb/>illam, qu&aelig; maxim&egrave; ab vtraque &longs;imul recedit. </s>
				</p>
				<p id="N109F0" type="main">
					<s id="N109F2"><!-- NEW -->9. H&aelig;c ratio e&longs;t ver&egrave; phy&longs;ica, geometrica nulla e&longs;t: hinc illi <lb/>iactus &aelig;quale &longs;patium acquirunt in pr&aelig;dicto plano horizontali, <lb/>qui fiunt per inclinatas &aelig;qualiter &agrave; pr&aelig;dicta inclinata ad ang. 45. <lb/>di&longs;tantes. </s>
					<s id="N109FC"><!-- NEW -->C&ugrave;m emittitur mobile per inclinatum deor&longs;um, in libero <lb/>medio, mouetur motu mixto ex naturali accelerato, &amp; impre&longs;&shy;<lb/>&longs;o retardato, vt con&longs;tat ex dictis; </s>
					<s id="N10A04"><!-- NEW -->ille autem primus accelera&shy;<lb/>tur per acce&longs;&longs;ionem impetus perfectionis qu&agrave;m in iactu per ho&shy;<lb/>rizontalem; </s>
					<s id="N10A0C"><!-- NEW -->&longs;ed imperfectionis, qu&agrave;m in perpendiculo: </s>
					<s id="N10A10"><!-- NEW -->retarda&shy;<lb/>tur ver&ograve; impetus min&ugrave;s, qu&agrave;m in iactu per horizontalem; pl&ugrave;s ve&shy;<lb/>r&ograve;, qu&agrave;m in iactu per ip&longs;um perpendiculum, in quo nihil impetus <lb/>de&longs;truitur. </s>
				</p>
				<p id="N10A1A" type="main">
					<s id="N10A1C"><!-- NEW -->10. C&ugrave;m &egrave; naui mobili &longs;ur&longs;um mittitur corpus graue, e&longs;t motus <lb/>mixtus ex tribus, in a&longs;cen&longs;u, &longs;cilicet, ex naturali &aelig;quabili, ex verti&shy;<lb/>cali retardato, &amp; horizontali &aelig;quabili: </s>
					<s id="N10A24"><!-- NEW -->mouetur &longs;ur&longs;um per cur&shy;<lb/>uam, &longs;emp&eacute;rque capiti iaculatoris imminet; </s>
					<s id="N10A2A"><!-- NEW -->quippe tant&ugrave;m acqui&shy;<lb/>rit in horizontali, quant&ugrave;m nauis: </s>
					<s id="N10A30"><!-- NEW -->in de&longs;cen&longs;u ver&ograve; e&longs;t motus <expan abbr="mix&shy;">mixtus</expan> <lb/>ex horizontali retardato, &amp; naturali accelerato: </s>
					<s id="N10A3A"><!-- NEW -->quia tamen bre&shy;<lb/>ui&longs;&longs;imo illo tempore, retardatio illa horizontalis non e&longs;t &longs;en&longs;ibilis, <lb/>fer&egrave; in ip&longs;ius iaculatoris caput de&longs;cendit; quod cert&egrave; ph&aelig;nomenon <lb/>ex no&longs;tris principiis euincitur. </s>
				</p>
				<p id="N10A44" type="main">
					<s id="N10A46"><!-- NEW -->11. Parum caut&egrave; Vfanus vniuer&longs;im a&longs;&longs;erit, iaculationem pil&aelig; ex <lb/>tormento, maiorem e&longs;&longs;e ex naui in continentem, &amp; minorem vi&shy;<lb/>ci&longs;&longs;im, c&ugrave;m vtriu&longs;que differentia peti po&longs;&longs;it, vel &agrave; puluere tormen&shy;<lb/>tario, vel ab eius compre&longs;&longs;ione, vel humiditate, vel tormenti fabri&shy;<lb/>ca, vel ip&longs;ius demum nauigij motu, qui pil&aelig; motum, vel accelerat, &longs;i <lb/>vers&ugrave;s eandem partem e&longs;t, vel retardat &egrave; contrario: in plano ho&shy;<lb/>rizontali duro pote&longs;t e&longs;&longs;e motus mixtus ex duobus, tribus, qua&shy;<lb/>tuor, &amp; pluribus aliis. </s>
				</p>
				<p id="N10A58" type="main">
					<s id="N10A5A"><!-- NEW -->12. C&ugrave;m &egrave; naui mobili emittitur &longs;agitta per horizontalem, qu&aelig; fa&shy;<lb/>cit angelum rectum cum linea directionis nauis, fertur qua&longs;i per dia&shy;<lb/>gonalem vtriu&longs;que, &longs;altem per aliquod &longs;patium: </s>
					<s id="N10A62"><!-- NEW -->c&ugrave;m ver&ograve; emitti-<pb xlink:href="026/01/020.jpg"/>tur per horizontalem, qu&aelig; conueniat cum eadem linea directionis, <lb/>iactus e&longs;t longior toto illo &longs;patio, quod nauis decurrit, dum iactus <lb/>durat; </s>
					<s id="N10A6E"><!-- NEW -->breuior tamen, &longs;i in partem oppo&longs;itam fiat iactus in hoc ca&shy;<lb/>&longs;u, &longs;i nauis &aelig;qualem impetum imprimeret, deor&longs;um rect&agrave; ferretur <lb/>mobile motu naturali; </s>
					<s id="N10A76"><!-- NEW -->im&ograve; &longs;agitta po&longs;&longs;et retorqueri in iaculatorem: </s>
					<s id="N10A7A"><!-- NEW --><lb/>&longs;i terra e&longs;&longs;et vtrimque peruia, lapis demi&longs;&longs;us per multa annorum <lb/>millia libraretur; non tamen e&longs;&longs;et motuus perpetuus. </s>
				</p>
				<figure id="id.026.01.020.1.jpg" xlink:href="026/01/020/1.jpg"/>
				<p id="N10A86" type="main">
					<s id="N10A88"><emph type="center"/><emph type="italics"/>De motu reflexo.<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N10A93" type="main">
					<s id="N10A95"><!-- NEW -->1. MOtus reflexi vera cau&longs;a e&longs;t impetus prior, ad nouam li&shy;<lb/>neam determinatus ab occurrente obice; </s>
					<s id="N10A9B"><!-- NEW -->planum refle&shy;<lb/>ctens e&longs;t cau&longs;a nou&aelig; determinationis &longs;uo modo; </s>
					<s id="N10AA1"><!-- NEW -->cau&longs;am enim di&shy;<lb/>co eam, ex qua aliquid &longs;equitur: </s>
					<s id="N10AA7"><!-- NEW -->ex gemina determinatione, noua, <lb/>&longs;cilicet, per ip&longs;am perpendicularem erectam in puncto contactus, <lb/>&amp; priore per lineam incidenti&aelig;, ab eodem puncto contactus pro&shy;<lb/>pagatam, fit determinatio mixta per lineam reflexionis; </s>
					<s id="N10AB1"><!-- NEW -->qu&aelig; omnia <lb/>patent ex terminis: </s>
					<s id="N10AB7"><!-- NEW -->hinc nullus impetus producitur &agrave; plano refle&shy;<lb/>ctente; </s>
					<s id="N10ABD"><!-- NEW -->quippe prior pote&longs;t determinari ad nouam lineam: adde, <lb/>qu&ograve;d planum, quod caret impetu, impetum producere non pote&longs;t. </s>
				</p>
				<p id="N10AC3" type="main">
					<s id="N10AC5"><!-- NEW -->2. Im&ograve; nihil impetus de&longs;truitur in reflexione pura per &longs;e; </s>
					<s id="N10AC9"><!-- NEW -->quia ni&shy;<lb/>hil impetus e&longs;t fru&longs;tr&agrave; per &longs;e in pura reflexione; </s>
					<s id="N10ACF"><!-- NEW -->multus tamen im&shy;<lb/>petus de&longs;truitur per accidens, t&ugrave;m ab ip&longs;o attritu t&ugrave;m mollitie <lb/>&amp; ce&longs;&longs;ione, t&ugrave;m pre&longs;&longs;ione: </s>
					<s id="N10AD7"><!-- NEW -->hinc &longs;uppo&longs;ito eodem iactu, perpendi&shy;<lb/>cularis reflexa e&longs;t omnium reflexarum minima; </s>
					<s id="N10ADD"><!-- NEW -->quia per eam li&shy;<lb/>neam maximus ictus infligitur; </s>
					<s id="N10AE3"><!-- NEW -->igitur maxima e&longs;t partium colli&longs;io, <lb/>&amp; pre&longs;&longs;io: hinc etiam corpora duriora longi&ugrave;s reflectuntur, per ip&longs;am <lb/>quoque <expan abbr="perpendicular&etilde;">perpendicularem</expan>, dum planum reflectens &longs;it &aelig;qu&egrave; durum. </s>
				</p>
				<p id="N10AEF" type="main">
					<s id="N10AF1"><!-- NEW -->3. Determinatio noua dupla e&longs;t prioris, po&longs;ita linea incidenti&aelig; <lb/>perpendiculari, &amp; po&longs;ito etiam plano reflectente immobili; </s>
					<s id="N10AF7"><!-- NEW -->quia <lb/>alioquin anguli reflexionis non e&longs;&longs;ent &aelig;quales angulis incidenti&aelig;: </s>
					<s id="N10AFD"><!-- NEW --><lb/>&longs;i globus reflectens &longs;it &aelig;qualis impacto, &aelig;qualis e&longs;t ce&longs;&longs;io re&longs;i&longs;tenci&aelig; <lb/>c&ugrave;m &longs;it &aelig;quale agens re&longs;i&longs;tenti, perid enim reflectens re&longs;i&longs;tit, per <lb/>quod e&longs;t: </s>
					<s id="N10B06"><!-- NEW -->igitur, &longs;i &aelig;qualis re&longs;i&longs;tit, &amp; cedit, cert&egrave; &aelig;qualiter ce&shy;<lb/>dit, &amp; re&longs;i&longs;tit: </s>
					<s id="N10B0C"><!-- NEW -->hinc noua determinatio &aelig;qualis e&longs;t priori: </s>
					<s id="N10B10"><!-- NEW -->hinc glo&shy;<lb/>bus impactis &longs;i&longs;tit immobilis; quia ex duabus determinationibus <lb/>oppo&longs;itis neutra pr&aelig;ualet. </s>
				</p>
				<pb xlink:href="026/01/021.jpg"/>
				<p id="N10B1B" type="main">
					<s id="N10B1D"><!-- NEW -->4. Tantum e&longs;t ab &aelig;qualitate pr&aelig;dicta ce&longs;&longs;ionis, &amp; re&longs;i&longs;tenti&aelig;, ad <lb/>nullam ce&longs;&longs;ionem, &amp; notam re&longs;i&longs;tentiam, quantum e&longs;t ad nullam <lb/><expan abbr="re&longs;i&longs;t&etilde;tiam">re&longs;i&longs;tentiam</expan>, &amp; totam ce&longs;&longs;ionem: </s>
					<s id="N10B28"><!-- NEW -->hinc, c&ugrave;m &agrave; tota ce&longs;&longs;ione ad &aelig;qua&shy;<lb/>litatem pr&aelig;dictam acquiratur tant&ugrave;m noua determinato &aelig;qualis <lb/>priori; </s>
					<s id="N10B30"><!-- NEW -->igitur ab eadem &aelig;qualitate ad nullam ce&longs;&longs;ionem tantun&shy;<lb/>dem acquiritur; </s>
					<s id="N10B36"><!-- NEW -->igitur dupla prioris, vt iam &longs;upr&agrave; dictum e&longs;t; </s>
					<s id="N10B3A"><!-- NEW -->nulla <lb/>e&longs;&longs;et re&longs;i&longs;tentia in vacuo; nulla e&longs;t ce&longs;&longs;io, c&ugrave;m ip&longs;um corpus refle&shy;<lb/>ctens nullo modo mouetur ab ictu. </s>
				</p>
				<p id="N10B42" type="main">
					<s id="N10B44"><!-- NEW -->5. Determinatio noua per lineam obliquam, e&longs;t ad nouam per <lb/>lineam perpendicularem, vt &longs;inus rectus anguli incidenti&aelig;, ad &longs;i&shy;<lb/>num totum, in qualibet hypothe&longs;i; </s>
					<s id="N10B4C"><!-- NEW -->quia &longs;unt h&aelig;, vt ictus, per vtran&shy;<lb/>que lineam; </s>
					<s id="N10B52"><!-- NEW -->ictus ver&ograve; vt grauitationes in horizontale planum, &amp; <lb/>in planum inclinatum, &longs;ub angulo complementi anguli incidenti&aelig;: </s>
					<s id="N10B58"><!-- NEW --><lb/>hinc noua determinatio per lineam obliquam, e&longs;t vt dupla &longs;inus re&shy;<lb/>cti anguli incidenti&aelig;, ad &longs;inum totum: </s>
					<s id="N10B5F"><!-- NEW -->hinc &longs;upra angulum inci&shy;<lb/>denti&aelig; 30, noua e&longs;t maior priore, infr&agrave; minor; in ip&longs;o angulo 30. <lb/>&aelig;qualis, &longs;uppo&longs;ita hypothe&longs;i plani reflectentis immobilis. </s>
				</p>
				<p id="N10B67" type="main">
					<s id="N10B69"><!-- NEW -->6. Ex hoc po&longs;itiuo principio demon&longs;tratur accurati&longs;&longs;im&egrave; &aelig;qua&shy;<lb/>litas anguli reflexionis, &amp; incidenti&aelig;, quod cert&egrave; demon&longs;tratum <lb/>non fuit ab Ari&longs;t. in problematis, &longs;ect. 17. problem. 4. &amp; 13. quibus <lb/>in locis fus&egrave; &longs;atis explicatur hoc Theorema, ducta comparatione, <lb/>t&ugrave;m &agrave; grauibus, qu&aelig; cadunt, t&ugrave;m ab orbibus, qu&aelig; rotantur, r&ugrave;m &agrave; <lb/>&longs;peculis: &longs;ed minim&egrave; demon&longs;tratur ex certis principiis &longs;ine petitio&shy;<lb/>ne principij. </s>
					<s id="N10B79"><!-- NEW -->In puncto reflexionis, po&longs;ita hypothe&longs;i plani immo&shy;<lb/>bilis reflectentis, nulla datur quies; </s>
					<s id="N10B7F"><!-- NEW -->quia vnum tant&ugrave;m e&longs;t conta&shy;<lb/>ctus in&longs;tans; &longs;ed eo in&longs;tanti e&longs;t motus, quo primo acquiritur locus. </s>
				</p>
				<p id="N10B85" type="main">
					<s id="N10B87"><!-- NEW -->7. Omnes line&aelig; reflex&aelig; per &longs;e &longs;unt &aelig;qualis longitudinis, &amp; ab <lb/>eodem puncto contactus, ad communem peripheriam terminan&shy;<lb/>tur: </s>
					<s id="N10B8F"><!-- NEW -->&longs;i globus impactus &longs;it &aelig;qualis reflectenti, &longs;itque linea inciden&shy;<lb/>ti&aelig; obliqua qu&aelig;libet terminata ad idem punctum contactus, re&shy;<lb/>flectitur pr&aelig;dictus globus per lineam tangentem globum refle&shy;<lb/>ctentem in eodem puncto; </s>
					<s id="N10B99"><!-- NEW -->quia h&aelig;c tangens e&longs;t diagonalis com&shy;<lb/>munis, &amp; determinatio mixta communis omnibus lineis inciden&shy;<lb/>ti&aelig;: e&longs;t tamen mod&ograve; longior, mod&ograve; breuior linea reflexa, &eacute;&longs;tque vt <lb/>vt &longs;inus complementi anguli incidenti&aelig;, ad &longs;inum totum, qui &longs;it <lb/>determinatio prior, vt facil&egrave; demon&longs;tramus. </s>
				</p>
				<p id="N10BA5" type="main">
					<s id="N10BA7">8. Si globus impactus &longs;it minor corpore reflectente, reflectitur <lb/>etiam per ip&longs;am perpendicularem, &amp; determinatio noua e&longs;t dupla&shy;<lb/>prioris, min&ugrave;s ratione globorum v. g. &longs;i globus impactus &longs;it &longs;ubdu-<pb xlink:href="026/01/022.jpg"/>plus, determinatio noua e&longs;t dupla prioris, min&ugrave;s vna quarta, <lb/>&amp;c. </s>
					<s id="N10BB4"><!-- NEW -->ratio e&longs;t, quia in ea proportione globus reflectens cedit, in <lb/>qua mouetur, igitur tant&ugrave;m detrahitur determinationis impacto <lb/>globo, quant&ugrave;m additur motus reflectenti: at ver&ograve; noua determina&shy;<lb/>tio per lineam incidenti&aelig; obliquam, e&longs;t ad nouam per ip&longs;am per&shy;<lb/>pendicularem, vt &longs;inus rectus anguli incidenti&aelig; ad &longs;inum totum. </s>
				</p>
				<p id="N10BC0" type="main">
					<s id="N10BC2"><!-- NEW -->9. In hac hypothe&longs;i line&aelig; reflex&aelig; omnes &longs;unt &longs;upra pr&aelig;dictam <lb/>tangentem, &longs;eu &longs;ectionem plani, maiores, vel minores, pro diuer&longs;a <lb/>men&longs;ura diagonalis: </s>
					<s id="N10BCA"><!-- NEW -->in &longs;uperiori ver&ograve; hypothe&longs;i &aelig;qualium globo&shy;<lb/>rum, &longs;unt omnes in ip&longs;a &longs;ectione plani: &longs;i denique globus impactus <lb/>&longs;it maior alio, omnes &longs;unt infra pr&aelig;dictam &longs;ectionem. </s>
					<s id="N10BD2"><!-- NEW -->Porr&ograve; in hac <lb/>hypothe&longs;i vltima, determinatio noua per ip&longs;am perpendicularem <lb/>e&longs;t minor priore: </s>
					<s id="N10BDA"><!-- NEW -->hinc non mod&ograve; nulla fit reflexio in perpendicula&shy;<lb/>ri, &longs;ed linea directa vlteri&ugrave;s propagatur; quia prior determinatio <lb/>pr&aelig;ualet. </s>
				</p>
				<p id="N10BE2" type="main">
					<s id="N10BE4"><!-- NEW -->10. Detrahitur priori portio &aelig;qualis rationi globorum; </s>
					<s id="N10BE8"><!-- NEW -->v. g. glo&shy;<lb/>bus reflectens e&longs;t &longs;ubduplus impacto de trahitur priori determina&shy;<lb/>tioni vna &longs;ecunda; </s>
					<s id="N10BF0"><!-- NEW -->e&longs;t &longs;ubquadruplus, vna quarta; atque ita dein&shy;<lb/>ceps: </s>
					<s id="N10BF6"><!-- NEW -->ratio patet ex dictis: </s>
					<s id="N10BFA"><!-- NEW -->in linea ver&ograve; incidenti&aelig; obliqua, deter&shy;<lb/>minatio e&longs;t ad determinationem in perpendiculari, vt &longs;inus rectus <lb/>anguli incidenti&aelig; ad &longs;inum totum: linea demum reflexa e&longs;t mod&ograve; <lb/>maior, mod&ograve; minor pro diuer&longs;a diagonali. </s>
				</p>
				<p id="N10C04" type="main">
					<s id="N10C06"><!-- NEW -->11. Si duo globi &aelig;quales in &longs;e inuicem impingantur &aelig;quali mo&shy;<lb/>tu, per lineam connectentem centra, vterque &aelig;quali motu priori re&shy;<lb/>troagitur; </s>
					<s id="N10C0E"><!-- NEW -->quia &aelig;qualis in &aelig;qualis &aelig;qualem impetum imprimit: </s>
					<s id="N10C12"><!-- NEW -->non <lb/>e&longs;t tamen motus reflexus; </s>
					<s id="N10C18"><!-- NEW -->quia totus prior impetus de&longs;truitur, vt <lb/>patet ex dictis: </s>
					<s id="N10C1E"><!-- NEW -->&longs;i autem in&aelig;quali motu concurrant, retroaguntur <lb/>ii&longs;dem motibus, permutando; quod etiam clarum e&longs;t: hinc egre&shy;<lb/>gium paradoxum, &longs;i quod aliud con&longs;equitur, &longs;cilicet, globum A, v. <lb/>g. &aelig;qualem motum imprimere globo B, &longs;iue hic moueatur, &longs;iue <lb/>quie&longs;cat. </s>
				</p>
				<p id="N10C2A" type="main">
					<s id="N10C2C"><!-- NEW -->12. Si ver&ograve; linea incidenti&aelig; &longs;it obliqua, vterque globus reflecte&shy;<lb/>tur pror&longs;us vt &agrave; plano immobili: </s>
					<s id="N10C32"><!-- NEW -->hinc reflexio &longs;it ad angulos &aelig;qua&shy;<lb/>les, &amp; line&aelig; omnes reflexionis &longs;unt &aelig;quales: ratio e&longs;t; </s>
					<s id="N10C38"><!-- NEW -->quia, quant&ugrave;m <lb/>detrahit globus reflectens re&longs;i&longs;tendo, tant&ugrave;m addit in partem op&shy;<lb/>po&longs;itam repellendo, po&longs;itiuo ni&longs;u, vel impetu: qu&ograve;d &longs;i alter globus <lb/>maiore, vel minore motu moueatur, vel &longs;i globi &longs;int in&aelig;quales, <lb/>cum &aelig;quali motu, vel in&aelig;quali, res etiam determinari pote&longs;t ex <lb/>pr&aelig;mi&longs;&longs;is. </s>
				</p>
				<pb xlink:href="026/01/023.jpg"/>
				<p id="N10C49" type="main">
					<s id="N10C4B"><!-- NEW -->13. Cum duo globi in &longs;e&longs;e inuicem impinguntur &aelig;quali motu, <lb/>minor retroagitur velociore motu, qu&agrave;m ante moueretur, vt clarum <lb/>e&longs;t: </s>
					<s id="N10C53"><!-- NEW -->maior ver&ograve;, &longs;i duplus e&longs;t alterius, &longs;i&longs;tit immobilis in puncto <lb/>contactus; </s>
					<s id="N10C59"><!-- NEW -->&longs;i maior duplo &longs;uum iter pro&longs;equitur, &longs;ed tardiore mo&shy;<lb/>tu; &longs;i minor duplo, retroagitur: qu&aelig; omnia facil&egrave; ex dictis demon&shy;<lb/>&longs;trantur. </s>
					<s id="N10C61"><!-- NEW -->Pote&longs;t impetus e&longs;&longs;e &aelig;qualis alteri, &amp; pr&aelig;ualere; pote&longs;t <lb/>&aelig;qualem impetum producere hoc in&longs;tanti, &amp; &longs;tatim in&longs;tanti, quod <lb/>&longs;equitur, totus de&longs;trui. </s>
				</p>
				<p id="N10C69" type="main">
					<s id="N10C6B"><!-- NEW -->14. Pote&longs;t globus retroagi in plano horizontali, lic&egrave;t in aliud cor&shy;<lb/>pus non incidat, ita vt initio tendat in ortum, verbi gratia: </s>
					<s id="N10C71"><!-- NEW -->t&ugrave;m <lb/>deinde, lic&egrave;t nihil pror&longs;us addatur, vers&ugrave;s occa&longs;um; </s>
					<s id="N10C77"><!-- NEW -->quod accidit, <lb/>cum globus vtroque motu, centri, &longs;cilicet, &amp; orbis, mouetur, &longs;ed <lb/>contrario; prim&ugrave;m enim motus centri pr&aelig;ualet, &longs;ed facil&egrave; cedit <lb/>propter attritum maiorem partium. </s>
					<s id="N10C81"><!-- NEW -->Nullus datur propri&egrave; motus <lb/>refractus: </s>
					<s id="N10C87"><!-- NEW -->lic&egrave;t enim incuruetur linea motus, dum per aquam &longs;u&shy;<lb/>bit mobile; h&aelig;c tamen e&longs;t reflexionis &longs;pecies. </s>
				</p>
				<p id="N10C8D" type="main">
					<s id="N10C8F"><!-- NEW -->15. Globus reflectens, qui ab ictu alterius mouetur, non mouetur <lb/>in&longs;tanti contactus; </s>
					<s id="N10C95"><!-- NEW -->quia impetus primo in&longs;tanti, quo e&longs;t, non mo&shy;<lb/>uetur; </s>
					<s id="N10C9B"><!-- NEW -->producitur enim impetus primo in&longs;tanti contactus: </s>
					<s id="N10C9F"><!-- NEW -->&longs;i impe&shy;<lb/>tus e&longs;&longs;et tant&ugrave;m determinatus ad vnam lineam, nulla fieri po&longs;&longs;et <lb/>reflexio, &longs;ed tant&ugrave;m repercu&longs;&longs;io; </s>
					<s id="N10CA7"><!-- NEW -->quia veri&longs;&longs;ima cau&longs;a reflexionis <lb/>con&longs;i&longs;tit in noua determinatione: </s>
					<s id="N10CAD"><!-- NEW -->per reflexionem po&longs;&longs;unt colligi <lb/>plures partes a&euml;ris &longs;onori ad Echometriam: </s>
					<s id="N10CB3"><!-- NEW -->&longs;agitta emi&longs;&longs;a per ho&shy;<lb/>rizontalem &longs;urs&ugrave;m, tantill&ugrave;m a&longs;cendit per arcum; quia tantill&ugrave;m <lb/>reflectitur ab a&euml;re. </s>
				</p>
				<figure id="id.026.01.023.1.jpg" xlink:href="026/01/023/1.jpg"/>
				<p id="N10CC0" type="main">
					<s id="N10CC2"><emph type="center"/><emph type="italics"/>De motu circulari.<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N10CCD" type="main">
					<s id="N10CCF"><!-- NEW -->1. DAri motum circularem, probatur infinitis fer&egrave; experimen&shy;<lb/>tis: </s>
					<s id="N10CD5"><!-- NEW -->cuius ratio &agrave; priori e&longs;t, qu&ograve;d po&longs;&longs;int extremitates eiu&longs;&shy;<lb/>dem cylindri in partes oppo&longs;itas pelli; </s>
					<s id="N10CDB"><!-- NEW -->vnde &longs;equitur nece&longs;&longs;ari&ograve; <lb/>motus circularis; quem ij negare coguntur, qui ex punctis mathe&shy;<lb/>maticis quantitatem componunt. </s>
					<s id="N10CE3"><!-- NEW -->Motus circularis in &longs;ublunaribus <lb/>oritur ex recto impedito; </s>
					<s id="N10CE9"><!-- NEW -->quia, &longs;cilicet, determinatur tant&ugrave;m im&shy;<lb/>petus ad lineam rectam: </s>
					<s id="N10CEF"><!-- NEW -->hinc quidam motus circularis e&longs;t mer&egrave; <lb/>per accidens, vt c&ugrave;m retinetur extremitas funependuli, &longs;eu <pb xlink:href="026/01/024.jpg"/>fund&aelig;, qu&aelig; &longs;i demittatur, &longs;equitur motus rectus: </s>
					<s id="N10CF9"><!-- NEW -->quidam tamen <lb/>non e&longs;t mer&egrave; peraccidens, vt c&ugrave;m pellitur extremitas cylindri in <lb/>plano horizontali; e&longs;t enim, iuxta in&longs;titutionem natur&aelig;, ad facili&shy;<lb/>tatem motus. </s>
				</p>
				<p id="N10D03" type="main">
					<s id="N10D05"><!-- NEW -->2. Quippe tale e&longs;t natur&aelig; in&longs;titutum, vt eo motu corpora mo&shy;<lb/>ueantur, quo facili&ugrave;s moueri po&longs;&longs;unt: </s>
					<s id="N10D0B"><!-- NEW -->atqui c&ugrave;m pellitur altera cy&shy;<lb/>lindri extremitas, in plano horizontali put&agrave; innatantis, facili&ugrave;s <lb/>mouetur, qu&agrave;m recto, &amp; qua&longs;i minore &longs;umptu, c&ugrave;m min&ugrave;s &longs;patij <lb/>acquirat: &aelig;quali tempore: </s>
					<s id="N10D15"><!-- NEW -->pote&longs;t dari motus circularis mixtus ex <lb/>duobus rectis, quorum vnus &longs;it, vt &longs;inus recti, alius vt ver&longs;i; vix <lb/>tamen hoc accidit vnqu&agrave;m, &longs;ed tant&ugrave;m oritur hic motus ex <lb/>determinatione per tangentem impedita, ratione alicuius puncti <lb/>immobilis. </s>
				</p>
				<p id="N10D21" type="main">
					<s id="N10D23"><!-- NEW -->3. Hinc, &longs;i tollatur impedimentum, &longs;tatim per tangentem or&shy;<lb/>bis fit motus, vt patet in funda: </s>
					<s id="N10D29"><!-- NEW -->in&aelig;qualiter partes radij pr&aelig;dicti <lb/>orbis mouentur, iuxta proportionem di&longs;tanti&aelig; maioris, &amp; minoris <lb/>&agrave; centro: </s>
					<s id="N10D31"><!-- NEW -->hinc propagatio impetus in&aelig;qualis, de qua iam &longs;upr&agrave;, <lb/>&longs;ingulis in&longs;tantibus &amp; punctis e&longs;t noua determinatio; </s>
					<s id="N10D37"><!-- NEW -->quia, &longs;cilicet, <lb/>&longs;ingulis punctis &longs;ua tangens re&longs;pondet: </s>
					<s id="N10D3D"><!-- NEW -->hinc, &longs;i imponatur rot&aelig; <lb/>aliud corpus, &longs;tatim abigitur, &longs;ine &longs;it in &longs;itu verticali, &longs;iue in &longs;itu ho&shy;<lb/>rizontali; hinc dum turbo rotatur, &longs;i vel aqu&aelig; guttula eius &longs;uper&shy;<lb/>ficies a&longs;pergitur, &amp; &longs;tatim di&longs;pergitur. </s>
				</p>
				<p id="N10D47" type="main">
					<s id="N10D49"><!-- NEW -->4 Dari impetum in motu circulari certi&longs;&longs;imum e&longs;t: </s>
					<s id="N10D4D"><!-- NEW -->punctum phy&shy;<lb/>&longs;icum e&longs;t capax huius motus; cuius finis multiplex e&longs;t; </s>
					<s id="N10D53"><!-- NEW -->corpus mo&shy;<lb/>uetur motu circulari circa centrum immobile cum motus centri <lb/>impeditur non tamen motus orbis, ad quem impetus facil&egrave; deter&shy;<lb/>minatur, c&ugrave;m &longs;it ad omnes lineas indifferens: </s>
					<s id="N10D5D"><!-- NEW -->adde v&longs;um vectis, <lb/>trochle&aelig;, alior&uacute;mque organorum, qui &longs;ine motu circulari e&longs;&longs;e non <lb/>pote&longs;t: omitto motum progre&longs;&longs;iuum, ips&uacute;mque brachiorum, &amp; ti&shy;<lb/>biarum v&longs;um, qui motu circulari carere non pote&longs;t. </s>
				</p>
				<p id="N10D67" type="main">
					<s id="N10D69"><!-- NEW -->5. Motus circularis rot&aelig; in plano verticali e&longs;t &aelig;quabilis per &longs;e; </s>
					<s id="N10D6D"><!-- NEW --><lb/>quia nihil e&longs;t, quod impetum &longs;emel impre&longs;&longs;um de&longs;truat: </s>
					<s id="N10D72"><!-- NEW -->lic&egrave;t enim <lb/>&longs;ingulis in&longs;tantibus &longs;it noua determinatio, nullus tamen impetus <lb/>e&longs;t fru&longs;tr&agrave;; </s>
					<s id="N10D7A"><!-- NEW -->quippe illud &longs;patium acquiritur in linea curua, quod in <lb/>recta, &longs;i nullum e&longs;&longs;et impedimentum, percurreret: </s>
					<s id="N10D80"><!-- NEW -->quemadmodum <lb/>enim in reflexione, qu&aelig; fit &agrave; plano immobili, nullus de&longs;truitur im&shy;<lb/>petus; </s>
					<s id="N10D88"><!-- NEW -->ita nullus h&icirc;c de&longs;truitur; </s>
					<s id="N10D8C"><!-- NEW -->tam enim centrum illud immobile <lb/>ad &longs;e qua&longs;i trahit mobile, qu&agrave;m planum immobile &agrave; &longs;e repellit; in <lb/>quo e&longs;t perfect&egrave; analogia. </s>
				</p>
				<pb xlink:href="026/01/025.jpg"/>
				<p id="N10D97" type="main">
					<s id="N10D99"><!-- NEW -->6. Hinc per &longs;e motus circularis integri orbis e&longs;t perpetuus; </s>
					<s id="N10D9D"><!-- NEW -->de&shy;<lb/>&longs;truitur tamen per accidens, &longs;cilicet, propter attritum axis: </s>
					<s id="N10DA3"><!-- NEW -->hinc <lb/>tam diu durat hic motus: </s>
					<s id="N10DA9"><!-- NEW -->clari&longs;&longs;imum experimentum habes in tur&shy;<lb/>bine, cuius cu&longs;pis l&aelig;uigati&longs;&longs;ima in plano l&aelig;uigati&longs;&longs;imo rotatur; </s>
					<s id="N10DAF"><!-- NEW -->nec <lb/>vnquam ce&longs;&longs;aret hic motus &longs;ine pr&aelig;dicto attritu, &amp; partium a&longs;peri&shy;<lb/>tate: </s>
					<s id="N10DB7"><!-- NEW -->nec quidquam ob&longs;tat, qu&ograve;d aliqu&aelig; partes rot&aelig;, qu&aelig; in circu&shy;<lb/>lo verticali voluitur, a&longs;cendant; </s>
					<s id="N10DBD"><!-- NEW -->quia etiam aliqu&aelig; de&longs;cendunt: qua&shy;<lb/>re &longs;emper remanet perfectum &aelig;quilibrium, &amp; harum de&longs;cen&longs;us, il&shy;<lb/>larum a&longs;cen&longs;um compen&longs;at. </s>
					<s id="N10DC5"><!-- NEW -->Qu&ograve; diuti&ugrave;s potentia motrix manet <lb/>applicata manubrio axis rot&aelig;, ita vt nouum &longs;emper producat im&shy;<lb/>petum, rot&aelig; motus velocior e&longs;t, atque diuti&ugrave;s durat: idem pror&longs;us <lb/>dico de rota circulo horizontali parallela. </s>
				</p>
				<p id="N10DCF" type="main">
					<s id="N10DD1"><!-- NEW -->7. C&ugrave;m mouetur &aelig;quali ni&longs;u acus circa immobile centrum, t&ugrave;m <lb/>in plano <expan abbr="horiz&otilde;tali">horizontali</expan>, t&ugrave;m in verticali, &longs;iue &longs;it <expan abbr="l&otilde;gior">longior</expan> vna, &longs;iue breuior <lb/>alia, per &longs;e plures gyros non de&longs;cribit vna, qu&agrave;m alia; </s>
					<s id="N10DE1"><!-- NEW -->quia per &longs;e <lb/>mouetur motu &aelig;quabili: </s>
					<s id="N10DE7"><!-- NEW -->per accidens tamen &longs;ecus accidit; </s>
					<s id="N10DEB"><!-- NEW -->quippe <lb/>maior e&longs;t maioris attritus: </s>
					<s id="N10DF1"><!-- NEW -->dixi, c&ugrave;m mouetur &aelig;quali ni&longs;u; </s>
					<s id="N10DF5"><!-- NEW -->nam &longs;&aelig;p&egrave; <lb/>contingit, maiore ni&longs;u potentiam motricem agere circa maiorem; </s>
					<s id="N10DFB"><!-- NEW --><lb/>&aelig;quali tamen tempore numerus circuitionum minoris, e&longs;t ad nu&shy;<lb/>merum circuitionum maioris per &longs;e vt acuum quadrata permu&shy;<lb/>tando; &longs;unt enim motus vt &longs;patia, &longs;pacia vt quadrata. </s>
				</p>
				<p id="N10E04" type="main">
					<s id="N10E06"><!-- NEW -->8. Verbi gratia, &longs;it acus maior 2. minor 1. cert&egrave; c&ugrave;m tota area or&shy;<lb/>bis maioris &longs;it quadrupla minoris, &longs;itque area maioris, &longs;patium ma&shy;<lb/>ioris, &amp; area minoris &longs;patium minoris, haud dubi&egrave; de&longs;cribet minor <lb/>quatuor circuitiones, eo tempore, quo maior decurret vnicam: </s>
					<s id="N10E10"><!-- NEW -->li&shy;<lb/>c&egrave;t enim extremitas minoris, qu&aelig; impellitur, habeat tant&ugrave;m du&shy;<lb/>plum impetum extremitatis maioris, &longs;itque impetus inten&longs;io in <lb/>minore, dupla inten&longs;ionis impetus in maiore; </s>
					<s id="N10E1A"><!-- NEW -->e&longs;t tamen quadrupla <lb/>illius, qu&aelig; e&longs;t in &longs;egmento maioris vers&ugrave;s centrum &aelig;quali minori <lb/>acui: porr&ograve; motus circulares &aelig;quabiles in vtraque cum eodem <lb/>impetu, &longs;unt vt motus recti. </s>
				</p>
				<p id="N10E24" type="main">
					<s id="N10E26"><!-- NEW -->9. Rota in plano verticali facili&ugrave;s mouetur, qu&agrave;m in horizonta&shy;<lb/>li; </s>
					<s id="N10E2C"><!-- NEW -->quia in illo mouetur per minimam impetus, vel potenti&aelig; acce&longs;&shy;<lb/>&longs;ionem; </s>
					<s id="N10E32"><!-- NEW -->&longs;ec&ugrave;s in i&longs;to; </s>
					<s id="N10E36"><!-- NEW -->quippe per minimam acce&longs;&longs;ionem tollitur <lb/>&aelig;quilibrium; </s>
					<s id="N10E3C"><!-- NEW -->im&ograve; moueri pote&longs;t in plano verticali, lic&egrave;t nullus im&shy;<lb/>primatur impetus rot&aelig;, v. <!-- REMOVE S-->g. <!-- REMOVE S-->per additionem minimi ponderis, vel <lb/>momenti, vt patet; c&ugrave;m tamen in plano horizontali moueri non <lb/>po&longs;&longs;it, ni&longs;i impetus imprimatur. </s>
				</p>
				<p id="N10E4A" type="main">
					<s id="N10E4C"><!-- NEW -->10. Si cylindrus in plano horizontali l&aelig;uigato in altera extremi&shy;<lb/>tate per tangentem impellatur, mouebitur motu circulati, &longs;cilicet, <pb xlink:href="026/01/026.jpg"/>faciliori, circa centrum, quod di&longs;tet ab altera extremitate vna <lb/>quarta totius cylindri: ratio e&longs;t: quia facili&ugrave;s mouetur circa illud <lb/>centrum, qu&agrave;m circa alia puncta, qu&ograve;d, &longs;cilicet, min&ugrave;s &longs;patij decur&shy;<lb/>ratur, po&longs;ito eodem &longs;emper motu alterius extremitatis, cui appli&shy;<lb/>catur immediat&egrave; potentia motrix. </s>
				</p>
				<p id="N10E5E" type="main">
					<s id="N10E60"><!-- NEW -->11. C&ugrave;m rota mouetur in verticali, atque pr&aelig;ponderat alter &longs;emi&shy;<lb/>circulus, haud dubi&egrave; hic pr&aelig;ponderans producit impetum in alio <lb/>&longs;emicirculo: </s>
					<s id="N10E68"><!-- NEW -->hinc fort&egrave; e&longs;t, qu&ograve;d mirere, impetus determinatus <lb/>deor&longs;um producit alium &longs;ur&longs;um: </s>
					<s id="N10E6E"><!-- NEW -->hinc impetus vnius partis mobi&shy;<lb/>lis pote&longs;t producere &longs;imilem in alia parte continua; </s>
					<s id="N10E74"><!-- NEW -->quod tant&ugrave;m in <lb/>hoc ca&longs;u locum habet: </s>
					<s id="N10E7A"><!-- NEW -->quando corpus incumbit plano, quod mo&shy;<lb/>uetur motu recto &aelig;quabili, ab eo non &longs;eparatur; &longs;ec&ugrave;s ver&ograve;, &longs;i in&shy;<lb/>cumbat plano, quod mouetur motu circulari. </s>
				</p>
				<figure id="id.026.01.026.1.jpg" xlink:href="026/01/026/1.jpg"/>
				<p id="N10E87" type="main">
					<s id="N10E89"><emph type="center"/><emph type="italics"/>De motu funependuli.<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N10E94" type="main">
					<s id="N10E96"><!-- NEW -->1. FVnependulum de&longs;cendit per arcum motu naturaliter acce&shy;<lb/>lerato: </s>
					<s id="N10E9C"><!-- NEW -->experientia clari&longs;&longs;ima e&longs;t: c&ugrave;m enim ex maiori &longs;ubli&shy;<lb/>mitate de&longs;cendit, maiorem ictum infligit. </s>
					<s id="N10EA2"><!-- NEW -->Ratio &agrave; priori e&longs;t quia <lb/>priori impetui acqui&longs;ito nouus accedit: </s>
					<s id="N10EA8"><!-- NEW -->non acceleratur in eadem <lb/>proportione, in qua &longs;upr&agrave; dictum e&longs;t accelerari in linea recta; </s>
					<s id="N10EAE"><!-- NEW -->quia <lb/>in hac acceleratur vniformiter, id e&longs;t, &aelig;qualibus temporibus, <lb/>&aelig;qualia acquiruntur velocitatis momenta; </s>
					<s id="N10EB6"><!-- NEW -->quia vel e&longs;t &longs;emper ea&shy;<lb/>dem inclinatio plani, vel idem perpendiculum: </s>
					<s id="N10EBC"><!-- NEW -->at ver&ograve; in fune&shy;<lb/>pendulo in &longs;ingulis punctis e&longs;t noua tangens; </s>
					<s id="N10EC2"><!-- NEW -->igitur noua inclina&shy;<lb/>tio plani; igitur noua ratio motus. </s>
				</p>
				<p id="N10EC8" type="main">
					<s id="N10ECA"><!-- NEW -->2. Initio acceleratur motus per maiora crementa, &longs;ub finem per mi&shy;<lb/>nora; </s>
					<s id="N10ED0"><!-- NEW -->v.g. <!-- REMOVE S-->&longs;i dato tempore acqui&longs;iuit vnum gradum impetus initio, <lb/>&aelig;quali deinde tempore acquiret min&ugrave;s: ratio clara e&longs;t: </s>
					<s id="N10ED8"><!-- NEW -->quia, vt ac&shy;<lb/>quireret &aelig;qualem, deberet e&longs;&longs;e eadem plani inclinatio; </s>
					<s id="N10EDE"><!-- NEW -->&longs;ed &longs;emper <lb/>cre&longs;cit Inclinatio; </s>
					<s id="N10EE4"><!-- NEW -->igitur &longs;emper imminuitur impetus &aelig;quali <expan abbr="t&etilde;pore">tempore</expan> <lb/>acqui&longs;itus: </s>
					<s id="N10EEE"><!-- NEW -->acquiritur tamen &aelig;qualis velocitas in arcu, &amp; in chor&shy;<lb/>da, &longs;eu plano inclinato, eiu&longs;dem altitudinis; igitur &longs;emper cre&longs;cit <lb/>motus funependuli in de&longs;cen&longs;u, &longs;ed minoribus incrementis. </s>
				</p>
				<p id="N10EF6" type="main">
					<s id="N10EF8"><!-- NEW -->3. Hinc breuiore tempore de&longs;cendit per radium perpendicula&shy;<lb/>rem, qu&agrave;m per quadrantis arcum eiu&longs;dem radij; </s>
					<s id="N10EFE"><!-- NEW -->t&ugrave;m quia breuior <lb/>e&longs;t linea; t&ugrave;m, quia in perpendiculari acceleratur motus per maiora <lb/>crementa. </s>
					<s id="N10F06"><!-- NEW -->Vibratio maior eiu&longs;dem funependuli &aelig;quali fer&egrave; tem-<pb xlink:href="026/01/027.jpg"/>pore cum minore perficitur: ratio e&longs;t: </s>
					<s id="N10F0E"><!-- NEW -->quia, c&ugrave;m fer&egrave; decurrantur <lb/>arcus iuxta &longs;ubten&longs;arum proportionem, cert&egrave; c&ugrave;m &longs;ubten&longs;&aelig; om&shy;<lb/>nes &aelig;quali tempore decurrantur, idem fer&egrave; fit in ip&longs;is arcubus: </s>
					<s id="N10F16"><!-- NEW -->dixi <lb/>fer&egrave;: </s>
					<s id="N10F1C"><!-- NEW -->nam reuer&agrave; minor vibratio citi&ugrave;s, maior tardi&ugrave;s perficitur, vt <lb/><expan abbr="c&otilde;&longs;tat">con&longs;tat</expan> <expan abbr="experi&etilde;tia">experientia</expan>: neque dee&longs;t ratio, quam in <expan abbr="analyticc&atilde;">analyticam</expan> remittimus. </s>
				</p>
				<p id="N10F2D" type="main">
					<s id="N10F2F"><!-- NEW -->4. Non a&longs;cendit funependulum ad eam altitudinem, ex qua pri&ugrave;s <lb/>de&longs;cenderat: </s>
					<s id="N10F35"><!-- NEW -->clara e&longs;t experientia: </s>
					<s id="N10F39"><!-- NEW -->neque ratio tant&ugrave;m petitur ab <lb/>a&euml;ris re&longs;i&longs;tentia; </s>
					<s id="N10F3F"><!-- NEW -->tam enim re&longs;i&longs;tit de&longs;cen&longs;ui, qu&agrave;m a&longs;cen&longs;ui; </s>
					<s id="N10F43"><!-- NEW -->&longs;ed ex <lb/>eo, qu&ograve;d &longs;ingulis in&longs;tantibus &longs;it qu&aelig;dam pugna, inter impetum in&shy;<lb/>natum, &amp; alium determinatum ad arcum &longs;ur&longs;um: </s>
					<s id="N10F4B"><!-- NEW -->quippe impetus <lb/>innatus ad totum de&longs;cen&longs;um, &longs;ed nullo modo ad a&longs;cen&longs;um con&shy;<lb/>currit: </s>
					<s id="N10F53"><!-- NEW -->hinc in maiori vibratione imminuitur motus, &amp; &longs;patium in <lb/>maiori proportione, qu&agrave;m in minori; </s>
					<s id="N10F59"><!-- NEW -->quia in hac line&aelig; &longs;ingul&aelig; a&longs;&shy;<lb/>cen&longs;us qua&longs;i <expan abbr="totid&etilde;">totidem</expan> inclinat&aelig; &longs;unt inclinatiores; in illa ver&ograve; min&ugrave;s. </s>
				</p>
				<p id="N10F63" type="main">
					<s id="N10F65"><!-- NEW -->5. Hinc diu vibratur funependulum per minores arcus, quippe <lb/>facilis e&longs;t a&longs;cen&longs;us per planum proxim&egrave; ad horizontale accedens: </s>
					<s id="N10F6B"><!-- NEW --><lb/>hinc etiam in funependulo maiori diuti&ugrave;s durant huiu&longs;modi vi&shy;<lb/>brationes, idque in arcubus paul&ograve; maioribus; </s>
					<s id="N10F72"><!-- NEW -->quia &longs;ubten&longs;&aelig; his <lb/>arcubus &longs;unt inclinatiores: </s>
					<s id="N10F78"><!-- NEW -->hinc refutabis eos, qui dicunt, vibra&shy;<lb/>tiones funependuli in vacuo fore perpetuas: </s>
					<s id="N10F7E"><!-- NEW -->arcus vibratio&shy;<lb/>nis a&longs;cen&longs;us fit motu naturaliter retardato, &longs;ed per imminu&shy;<lb/>tiones in&aelig;quales; quia pro diuer&longs;a inclinatione plani diuer&longs;imod&egrave; <lb/>retardatur. </s>
				</p>
				<p id="N10F88" type="main">
					<s id="N10F8A"><!-- NEW -->6. Vltimum punctum impetus acqui&longs;itus acqui&longs;itum in de&longs;cen&longs;u, <lb/>nullo modo ad de&longs;cen&longs;um concurrit, &longs;ed ad a&longs;cen&longs;um, vnico tan&shy;<lb/>t&ugrave;m in&longs;tanti; </s>
					<s id="N10F92"><!-- NEW -->quippe e&longs;t omnium imperfecti&longs;&longs;imum; </s>
					<s id="N10F96"><!-- NEW -->quod reuer&agrave; &longs;i <lb/>e&longs;&longs;et eiu&longs;dem perfectionis cum innato, a&longs;cen&longs;us &aelig;qualis e&longs;t de&longs;cen&shy;<lb/>&longs;ui: </s>
					<s id="N10F9E"><!-- NEW -->&longs;i &longs;int funependula in&aelig;qualia, vibrationes non &longs;unt &aelig;qu&egrave; diu&shy;<lb/>turn&aelig;: ratio e&longs;t: </s>
					<s id="N10FA4"><!-- NEW -->quia, &longs;i a&longs;&longs;umantur, v.g. duo quadrantes in&aelig;quales, <lb/>&longs;unt eju&longs;dem inclinationis; igitur minor citi&ugrave;s percurritur. </s>
				</p>
				<p id="N10FAA" type="main">
					<s id="N10FAC"><!-- NEW -->7. Porr&ograve; tempora vibrationum &longs;unt in ratione &longs;ubduplicata ar&shy;<lb/>cuum &longs;imilium, vel chordarum &longs;imilium, vel radiorum; </s>
					<s id="N10FB2"><!-- NEW -->id e&longs;t, vt <lb/>radices &longs;patiorum &longs;imilium: </s>
					<s id="N10FB8"><!-- NEW -->verbi gratia, &longs;it quadruplus alterius, <lb/>tempus vibrationis maioris e&longs;t duplum temporis vibrationis mino&shy;<lb/>ris; </s>
					<s id="N10FC0"><!-- NEW -->quod ita intelligendum e&longs;t, vt h&aelig;c proportio con&longs;ideretur in <lb/>partibus temporis &longs;en&longs;ibilibus, vt iam dictum e&longs;t de motu natura&shy;<lb/>liter accelerato deor&longs;um in perpendiculo, &amp; in planis inclinatis; <lb/>nam progre&longs;&longs;io arithmetica; a&longs;&longs;umpta in &longs;ingulis in&longs;tantibus, tran&shy;<lb/>&longs;it in hanc, &longs;i a&longs;&longs;umantur partes temporis &longs;en&longs;ibiles, quarum &longs;ingu&shy;<lb/>l&aelig; infinitis fer&egrave; con&longs;tent in&longs;tantibus. </s>
				</p>
				<pb xlink:href="026/01/028.jpg"/>
				<p id="N10FD1" type="main">
					<s id="N10FD3"><!-- NEW -->8. In maiori quadrante, circa &longs;upremam extremitatem, e&longs;t minor <lb/>inclinatio, qu&agrave;m in minore; </s>
					<s id="N10FD9"><!-- NEW -->hic enim &longs;tatim detorquetur &agrave; perpen&shy;<lb/>diculo, cum quo facit angulum maiorem: </s>
					<s id="N10FDF"><!-- NEW -->at ver&ograve; circa infirmam <lb/>extremitatem, e&longs;t maior inclinatio in maiore, qu&agrave;m in minore: </s>
					<s id="N10FE5"><!-- NEW -->hinc, <lb/>&longs;i comparetur vibratio maioris, cum vibratione minoris in modico <lb/>arcu, tempus illius e&longs;t paul&ograve; maius duplo, temporis huius; in maxi&shy;<lb/>mo arcu paul&ograve; min&ugrave;s duplo, dum, &longs;cilicet, longitudinum ratio <lb/>&longs;it quadrupla. </s>
				</p>
				<p id="N10FF1" type="main">
					<s id="N10FF3"><!-- NEW -->9. In de&longs;cen&longs;u funependuli velocitas acqui&longs;ita e&longs;t eadem cum ea, <lb/>qu&aelig; in &longs;ubten&longs;a eiu&longs;dem arcus acquiritur: </s>
					<s id="N10FF9"><!-- NEW -->hinc &longs;unt ijdem ictus: </s>
					<s id="N10FFD"><!-- NEW --><lb/>numerus, vibrationum non e&longs;t infinitus, lic&egrave;t in vacuo vibraretur <lb/>funependulum; </s>
					<s id="N11004"><!-- NEW -->quia, c&ugrave;m &longs;ingul&aelig; imminuantur, &amp; infinitis pun&shy;<lb/>ctis non con&longs;tent; </s>
					<s id="N1100A"><!-- NEW -->tandem ad vltimam peruenitur: </s>
					<s id="N1100E"><!-- NEW -->illa autem e&longs;t vl&shy;<lb/>tima, in cuius de&longs;cen&longs;u acquiritur tant&ugrave;m vnum punctum impetus <lb/>&longs;upra innatum; in ea tamen &longs;ententia, qu&aelig; vel infinitas partes actu, <lb/>vel infinita puncta cogno&longs;cit, cert&egrave; nunquam quie&longs;ceret funepen&shy;<lb/>dulum in vacuo vibratum. </s>
				</p>
				<p id="N1101A" type="main">
					<s id="N1101C"><!-- NEW -->10. Funependulum in fine a&longs;cen&longs;us non quie&longs;cit vno in&longs;tanti; </s>
					<s id="N11020"><!-- NEW --><lb/>quia impetui innato <expan abbr="n&utilde;quam">nunquam</expan> redditur &aelig;qualis acqui&longs;itus; </s>
					<s id="N11029"><!-- NEW -->po&longs;ita ta&shy;<lb/>men illa &aelig;qualitate, in&longs;tanti &longs;equenti e&longs;&longs;et quies: </s>
					<s id="N1102F"><!-- NEW -->funependulum <lb/>grauius citi&ugrave;s de&longs;cendit; </s>
					<s id="N11035"><!-- NEW -->e&longs;t enim eadem ratio, qu&aelig; fuit pro mo&shy;<lb/>tu naturali; </s>
					<s id="N1103B"><!-- NEW -->corpus oblongum &longs;olidum circa punctum immobile <lb/>in circulo verticali rotatum vibratur adin&longs;tat funependuli; de&longs;&shy;<lb/>cendit tamen citi&ugrave;s, qu&agrave;m funependulum eiu&longs;dem longitudinis. </s>
				</p>
				<p id="N11043" type="main">
					<s id="N11045">11. Ratio facilis e&longs;t; </s>
					<s id="N11048"><!-- NEW -->quia partes &longs;olid&aelig;, qu&aelig; accedunt propi&ugrave;s <lb/>ad extremitatem immobilem, accelerant motum aliarum, qu&aelig; <lb/>ad mobilem extremitatem accedunt; </s>
					<s id="N11050"><!-- NEW -->faciunt enim arcum mino&shy;<lb/>rem: </s>
					<s id="N11056"><!-- NEW -->hinc a&longs;cen&longs;us non peruenit ad tantam &longs;ublimitatem; </s>
					<s id="N1105A"><!-- NEW -->quia, vt <lb/>pr&aelig;dict&aelig; partes accelerant motum aliarum in de&longs;cen&longs;u, ita retar&shy;<lb/>dant in de&longs;cen&longs;u: </s>
					<s id="N11062"><!-- NEW -->hinc citi&ugrave;s quie&longs;cit hoc penduli genus, qu&agrave;m <lb/>aliud: </s>
					<s id="N11068"><!-- NEW -->ex hoc colligo paradoxon, &longs;cilicet, corpus moueri po&longs;&longs;e &longs;ua <lb/>&longs;ponte veloci&ugrave;s in arcu deor&longs;um, qu&agrave;m in perpendiculo; v.g. <!-- REMOVE S-->&longs;i iuxta <lb/>extremitatem immobilem &longs;it nodus plumbeus, cuius vi, altera ex&shy;<lb/>tremitas longi&ugrave;s di&longs;tans deor&longs;um rapiatur. </s>
				</p>
				<figure id="id.026.01.028.1.jpg" xlink:href="026/01/028/1.jpg"/>
				<p id="N11079" type="main">
					<s id="N1107B"><emph type="center"/><emph type="italics"/>De motu mixto ex circulari.<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N11086" type="main">
					<s id="N11088"><!-- NEW -->1. ROta, qu&aelig; mouetur in &longs;uperficie plana, mouetur motu mixto <lb/>ex recto centri, &amp; circulari orbis: </s>
					<s id="N1108E"><!-- NEW -->axis tant&ugrave;m rot&aelig; mouetur <lb/>motu recto: </s>
					<s id="N11094"><!-- NEW -->punctum contactus rot&aelig; mouetur motu tardi&longs;&longs;imo, <pb xlink:href="026/01/029.jpg"/>quando motus centri, &amp; &longs;uprema rot&aelig; pars in eandem partem &longs;e&shy;<lb/>runtur; </s>
					<s id="N1109E"><!-- NEW -->punctum ver&ograve; oppo&longs;itum veloci&longs;&longs;imo, quia in motu huius <lb/>rotus motus orbis additur motui centri; </s>
					<s id="N110A4"><!-- NEW -->in motu ver&ograve; illius, to&shy;<lb/>tus motus orbis, motui centri detrahitur: quod autem detrahit mo&shy;<lb/>tus orbis, nunquam &aelig;quale e&longs;t toti motui centri. </s>
				</p>
				<p id="N110AC" type="main">
					<s id="N110AE"><!-- NEW -->2. Hinc omnia puncta eiu&longs;dem circuli rot&aelig; mobilis in plano <lb/>hoc motu mixto mouentur in &aelig;quali motu: </s>
					<s id="N110B4"><!-- NEW -->hoc etiam motu mo&shy;<lb/>uetur globus de&longs;cendens in plano inclinato, in quo reuer&acirc; motu <lb/>h&aelig;c habes: </s>
					<s id="N110BC"><!-- NEW -->prim&ograve;, non mod&ograve; accelerari <expan abbr="mot&utilde;">motum</expan> centri, ver&ugrave;m etiam <lb/>motum orbis; <expan abbr="&longs;ec&utilde;d&ograve;">&longs;ecund&ograve;</expan>, ita <expan abbr="impet&utilde;">impetum</expan> propagari ab intrin&longs;eco, vt &longs;ingu&shy;<lb/>lis partibus eiu&longs;dem circuli, &amp; plani in &aelig;qualiter di&longs;tribuatur, terti&ograve; <lb/>hoc motu motum rectum non impediri &agrave; circulari, &amp; &longs;ed iuuari. </s>
				</p>
				<p id="N110D2" type="main">
					<s id="N110D4"><!-- NEW -->3. C&ugrave;m rota voluitur in &longs;uperficie connexa, mouetur motu mix&shy;<lb/>to ex duobus circularibus: &longs;imilis e&longs;t hic motus motui epicycli. </s>
					<s id="N110DA"><!-- NEW -->Ca&shy;<lb/>lamus volatilis, cuius mi&longs;&longs;io frequens, &amp; repercu&longs;&longs;io, ludi non in&shy;<lb/>grati copiam facit: </s>
					<s id="N110E2"><!-- NEW -->mouetur motu mixto ex recto, &amp; circulari: </s>
					<s id="N110E6"><!-- NEW -->in <lb/>hoc porr&ograve; motu pr&aelig;it calami caput, &amp; &longs;equuntur penn&aelig;; </s>
					<s id="N110EC"><!-- NEW -->quia a&euml;r <lb/>forti&ugrave;s re&longs;i&longs;tit pennis, qu&agrave;m thec&aelig;: hinc pennarum motum theca <lb/>grauior accelerat, cuius motum penn&aelig; retardant. </s>
				</p>
				<p id="N110F4" type="main">
					<s id="N110F6"><!-- NEW -->4. Hinc, &longs;i quando accidat, penas educi ex theca in libero medio; </s>
					<s id="N110FA"><!-- NEW --><lb/>&longs;tatim theca velociori motu mouetur, c&ugrave;m tamen penn&aelig; ip&longs;&aelig; &longs;i&shy;<lb/>&longs;tant: </s>
					<s id="N11101"><!-- NEW -->ex hac in&aelig;qualitate, ne impetus &longs;it fru&longs;tr&agrave;, propter detortas <lb/>in alteram partem pennas ab a&euml;re re&longs;i&longs;tente totum iaculum defle&shy;<lb/>ctitur, agit&uacute;r que in orbem; hinc motus orbis traducitur ex theca in <lb/>pennas, non contr&agrave;, vt aliquis fort&egrave; exi&longs;timaret, lic&egrave;t pennarum tar&shy;<lb/>ditas, &amp; obliqua deflexio, ratione cuius ab a&euml;re re&longs;tante, in alteram <lb/>partem qua&longs;i reflectentur, &longs;int nece&longs;&longs;aria conditio huius traductio&shy;<lb/>nis. </s>
				</p>
				<p id="N11111" type="main">
					<s id="N11113"><!-- NEW -->5. Hinc motu recto pr&aelig;dictum iaculum in vacuo tant&ugrave;m mo&shy;<lb/>ueretur, vt patet: hinc: </s>
					<s id="N11119"><!-- NEW -->c&ugrave;m penn&aelig; &longs;unt explicatiores, tardi&ugrave;s; </s>
					<s id="N1111D"><!-- NEW -->c&ugrave;m <lb/>ver&ograve; contractiores, veloci&ugrave;s mouetur, etiam motu orbis; </s>
					<s id="N11123"><!-- NEW -->cui non <lb/>min&ugrave;s a&euml;r re&longs;i&longs;tit, in pennis, &longs;cilicet, qu&agrave;m motui axis: </s>
					<s id="N11129"><!-- NEW -->hinc, &longs;i theca <lb/>&longs;it grauior, veloci&ugrave;s; </s>
					<s id="N1112F"><!-- NEW -->&longs;i leuior, tardi&ugrave;s iaculum fertur; </s>
					<s id="N11133"><!-- NEW -->etiam tenera <lb/>plumarum lanugo tarditatem conciliat: </s>
					<s id="N11139"><!-- NEW -->porr&ograve;, &longs;i axis mouetur mo&shy;<lb/>tu recto, quod reuer&agrave; fit, c&ugrave;m iaculum deor&longs;um demittitur in per&shy;<lb/>pendiculo, hic motus e&longs;t &longs;piralis cylindricus: ex his infinita fer&egrave; <lb/>ph&aelig;nomena explicari po&longs;&longs;unt. </s>
				</p>
				<p id="N11143" type="main">
					<s id="N11145"><!-- NEW -->6. Sunt infiniti propemodum motus mixti; </s>
					<s id="N11149"><!-- NEW -->v. <!-- REMOVE S-->g. <!-- REMOVE S-->cylindri ab alte&shy;<lb/>ra extremitate rotata emi&longs;&longs;i; </s>
					<s id="N11153"><!-- NEW -->longioris ha&longs;t&aelig;, qu&aelig; &longs;ur&longs;um facta cir&shy;<lb/>cuitione emittitur; </s>
					<s id="N11159"><!-- NEW -->brachij, gladij, &amp;c.  &longs;ed poti&longs;&longs;im&ugrave;m turbinis, qui <pb xlink:href="026/01/030.jpg"/>vel &longs;cutica, vel funiculo in torto circumagitur, in quo clari&longs;&longs;i&shy;<lb/>m&egrave; apparet motus centri, &amp; orbis: </s>
					<s id="N11163"><!-- NEW -->ratio motus orbis e&longs;t impe&shy;<lb/>tus impre&longs;&longs;us vtrique extremitati diametri va&longs;is in partes contra&shy;<lb/>rias; </s>
					<s id="N1116B"><!-- NEW -->ratio ver&ograve; motus centri e&longs;t, quia adducitur funiculo vel ex&shy;<lb/>ploditur, &longs;eu expellitur &longs;cutica: </s>
					<s id="N11171"><!-- NEW -->huius motus ph&aelig;nomena &longs;unt fer&egrave; <lb/>infinita: &longs;ingula ex no&longs;tris principiis facil&egrave; explicantur. </s>
				</p>
				<figure id="id.026.01.030.1.jpg" xlink:href="026/01/030/1.jpg"/>
				<p id="N1117C" type="main">
					<s id="N1117E"><emph type="center"/><emph type="italics"/>De diuer&longs;is impre&longs;&longs;ionibus motus.<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N11189" type="main">
					<s id="N1118B"><!-- NEW -->1. CVm &longs;u&longs;tinetur manus, &longs;eu brachium, in &longs;itu horizontali im&shy;<lb/>mobile, producitur nece&longs;&longs;ari&ograve; impetus &aelig;qualis impetui gra&shy;<lb/>uitationis; </s>
					<s id="N11193"><!-- NEW -->alioquin, &longs;i maior e&longs;&longs;et, &longs;ur&longs;um ferretur brachium; &longs;i ver&ograve; <lb/>minor, deor&longs;um: </s>
					<s id="N11199"><!-- NEW -->quia pr&aelig;ualeret grauitatio, porr&ograve; hic impetus pro&shy;<lb/>ducitur tant&ugrave;m &agrave; potentia motrice animantis, in &longs;ingulari organo; </s>
					<s id="N1119F"><!-- NEW --><lb/>non ver&ograve; in aliis partibus, etiam animatis, ni&longs;i quando mouentur; </s>
					<s id="N111A4"><!-- NEW --><lb/>nec in ip&longs;o pondere, &longs;i aliquod &longs;u&longs;tinetur: &longs;ic men&longs;a in pondere &longs;u&shy;<lb/>per po&longs;ito impetum nullum producit. </s>
					<s id="N111AB">Si anima immediat&egrave; in toto <lb/>corpore po&longs;&longs;et producere impetum, homo facil&egrave; volare po&longs;&longs;et. </s>
				</p>
				<p id="N111B0" type="main">
					<s id="N111B2"><!-- NEW -->2. C&ugrave;m &longs;u&longs;tinetur funependulum, nullus impetus producitur &agrave; <lb/>&longs;u&longs;tinente in ip&longs;o globo, ne &longs;cilicet, &longs;it fru&longs;tr&agrave;; </s>
					<s id="N111B8"><!-- NEW -->&longs;ec&ugrave;s ver&ograve;, &longs;i attolla&shy;<lb/>tur: </s>
					<s id="N111BE"><!-- NEW -->&longs;ic per quamlibet lineam corpus retineri pote&longs;t &longs;ine impetu in <lb/>eo corpore producto per &longs;e: </s>
					<s id="N111C4"><!-- NEW -->hinc, c&ugrave;m duo &longs;e&longs;e inuicem trahunt ad&shy;<lb/>uer&longs;o ni&longs;u, neuter in altero producit impetum per &longs;e; </s>
					<s id="N111CA"><!-- NEW -->&longs;ed per acci&shy;<lb/>dens, propter mollitiem, &amp; ten&longs;ionem partium: </s>
					<s id="N111D0"><!-- NEW -->c&ugrave;m ver&ograve; defertur <lb/>aliquid coniunctum, producitur haud dubi&egrave; &aelig;qualis impetus; </s>
					<s id="N111D6"><!-- NEW -->hinc <lb/>&longs;eparari non pote&longs;t; </s>
					<s id="N111DC"><!-- NEW -->quia &aelig;qualis e&longs;t motus latoris, &amp; delati: exem&shy;<lb/>plum habes in naui. </s>
				</p>
				<p id="N111E2" type="main">
					<s id="N111E4"><!-- NEW -->3. Si ver&ograve; nauis illic&ograve; &longs;i&longs;tat, vel tardi&ugrave;s moueri pergat, tunc fit &longs;e&shy;<lb/>paratio: hinc liquida effunduntur, &longs;i dum feruntur, breuior quietis <lb/>in va&longs;e intercedat morula. </s>
					<s id="N111EC"><!-- NEW -->Vt feratur cylindrus humeris <expan abbr="c&otilde;modi&ugrave;s">commodi&ugrave;s</expan> <lb/>debet &longs;u&longs;tineri in <expan abbr="c&etilde;tro">centro</expan> grauitatis, ad eleuationem anguli 49. quia <lb/><expan abbr="t&utilde;c">tunc</expan> manui, &amp; humero &aelig;qualiter <expan abbr="p&otilde;dus">pondus</expan> di&longs;tribuitur: </s>
					<s id="N11203"><!-- NEW -->ide&ograve; in circulo <lb/>voluitur &longs;cyphus aqua plenus &longs;ine effu&longs;ione; quia impetus determi&shy;<lb/>natus per tangentem circuli aquam ip&longs;am &agrave; centro circuli remouet. </s>
				</p>
				<p id="N1120B" type="main">
					<s id="N1120D"><!-- NEW -->4. C&ugrave;m trahitur aliquod corpus impetus impre&longs;&longs;us in vna parte <lb/>non producit impetum in alia, alioquin daretur proce&longs;&longs;us in infi&shy;<lb/>nitum; </s>
					<s id="N11215"><!-- NEW -->&longs;i chorda vtrinque trahatur, rumpetur in medio: </s>
					<s id="N11219"><!-- NEW -->&longs;i affixa <lb/>extremitati immobili, trahatur &agrave; potentia applicata alteri extremi-<pb xlink:href="026/01/031.jpg"/>tati, rumpetur iuxta primam illam extremitatem: &longs;i denique pon&shy;<lb/>ticulo &longs;uppo&longs;ito tendatur, vel pondere deprimente, in eo puncto <lb/>rumpetur. </s>
					<s id="N11227"><!-- NEW -->Ratio communis i&longs;torum omnium e&longs;t: </s>
					<s id="N1122B"><!-- NEW -->quia inter illas <lb/>duas partes fieri debet diui&longs;io per &longs;e, quarum vna mouetur, &longs;ec&ugrave;s <lb/>alia; vel quarum vtraque in partes oppo&longs;itas mouetur. </s>
				</p>
				<p id="N11233" type="main">
					<s id="N11235"><!-- NEW -->5. Vt quodlibet pondus facili&ugrave;s trahatur, &longs;inguli equi trahere <lb/>debent fune communi, poti&ugrave;s qu&agrave;m bigati; </s>
					<s id="N1123B"><!-- NEW -->quia tunc nihil fer&egrave; pe&shy;<lb/>rit impetus: </s>
					<s id="N11241"><!-- NEW -->c&ugrave;m plures idem pondus trahunt, agunt actione com&shy;<lb/>muni, alioqui &longs;inguli in toto pondere &longs;uum impetum producerent; <lb/>igitur &longs;inguli &longs;eor&longs;um trahere? </s>
					<s id="N11249"><!-- NEW -->e&longs;&longs;ent, quod fal&longs;um e&longs;t: </s>
					<s id="N1124D"><!-- NEW -->ide&ograve; currus <lb/>paul&ograve; po&longs;t initium motus facili&ugrave;s mouetur; </s>
					<s id="N11253"><!-- NEW -->quia aliquid impetus <lb/>pri&ugrave;s producti remanet: hinc etiam rupto fune, quo trahitur currus, <lb/>currus ip&longs;e modicum tempus adhuc mouetur. </s>
				</p>
				<p id="N1125B" type="main">
					<s id="N1125D"><!-- NEW -->6. Si, dum quis trahit toto ni&longs;u magnum aliquod pondus, funis <lb/>rumpatur, pron&ugrave;s corruit: quia maiorem impetum in &longs;e producit, <lb/>totum, &longs;cilicet, illum, quem in toto pondere produxi&longs;&longs;et eo in&longs;tan&shy;<lb/>ti, quo rumpitur finis, qui reuer&agrave; maior e&longs;t, propter impedimen&shy;<lb/>tum, ex pr&aelig;mi&longs;&longs;is principiis, maiorique applicatione potenti&aelig;, ner&shy;<lb/>uorum ten&longs;ione, &amp;c. </s>
					<s id="N1126B"><!-- NEW -->dum trahitur vnco an nullus immobilis ver&shy;<lb/>s&ugrave;s nauim, nauis fertur vers&ugrave;s littus; dum pellitur aduers&ugrave;m littus, <lb/>recedit &agrave; littore, quia pede, vel genu, imprimitur naui impetus in <lb/>contrariam pattem. </s>
				</p>
				<p id="N11275" type="main">
					<s id="N11277"><!-- NEW -->7. C&ugrave;m trahitur cylindrus vtrinque &aelig;qualiter, qui neque flecti, <lb/>neque tendi pote&longs;t, nullum impetum accipit; </s>
					<s id="N1127D"><!-- NEW -->im&ograve; in tractione nul&shy;<lb/>lus impetus e&longs;t inutilis: </s>
					<s id="N11283"><!-- NEW -->brachium infligit maiorem ictum, c&ugrave;m ma&shy;<lb/>iorem <expan abbr="arc&utilde;">arcum</expan> de&longs;cribit &longs;uo motu; </s>
					<s id="N1128D"><!-- NEW -->quia, &longs;cilicet, mouetur motu natu&shy;<lb/>raliter accelerato: </s>
					<s id="N11293"><!-- NEW -->hinc auer&longs;a manu validior impingitur colaphus, <lb/>qu&agrave;m aduer&longs;a; </s>
					<s id="N11299"><!-- NEW -->quia illa maiorem arcum de&longs;cribit: </s>
					<s id="N1129D"><!-- NEW -->hinc longius bra&shy;<lb/>chium c&aelig;teris paribus graui&ugrave;s ferit: hinc diu qua&longs;i rotatur bra&shy;<lb/>chium, vt longi&ugrave;s mittatur lapis. </s>
				</p>
				<p id="N112A5" type="main">
					<s id="N112A7"><!-- NEW -->8. Maiore fu&longs;te maior ictus infligitur; </s>
					<s id="N112AB"><!-- NEW -->quia potentia toto ni&longs;u <lb/>agens, diuti&ugrave;s manet applicata maiori, qu&agrave;m minori; </s>
					<s id="N112B1"><!-- NEW -->&longs;untque ictus <lb/>in ratione &longs;ubduplicata vtriu&longs;que fu&longs;tis; </s>
					<s id="N112B7"><!-- NEW -->v. <!-- REMOVE S-->g. <!-- REMOVE S-->fu&longs;tis pendens vnam <lb/>libram per maximum arcum impactus, infligit &longs;ubduplum ictum <lb/>alterius, quem infligit fu&longs;tis quatuor pendens libras per eundem <lb/>arcum impactus: </s>
					<s id="N112C5"><!-- NEW -->idem dicatur de mi&longs;&longs;o lapide: principium huius <lb/>veritatis pendet ex iis, qu&aelig; diximus lib. 2. de motu naturali&shy;<lb/>ter accelerate, iuxta progre&longs;&longs;ionem numerorum imparium, <lb/>1. 3. 5. &amp;c. </s>
				</p>
				<p id="N112CF" type="main">
					<s id="N112D1"><!-- NEW -->9. Fu&longs;tis circa centrum immobile vibratus, maximum ictum in-<pb xlink:href="026/01/032.jpg"/>fligit, non quidem in centro grauitatis, id e&longs;t, in medio, &longs;i &longs;it cy&shy;<lb/>lindrus, vel parallelipedum; </s>
					<s id="N112DB"><!-- NEW -->nec in extremitate mobili; </s>
					<s id="N112DF"><!-- NEW -->&longs;ed in eo <lb/>puncto, in quo e&longs;t centrum impetus impre&longs;&longs;i, id e&longs;t, quod &aelig;qualem <lb/>vtrinque dirimit impetum: ratio e&longs;t; </s>
					<s id="N112E7"><!-- NEW -->quia tunc totus impetus agit, <lb/>quant&ugrave;m pote&longs;t; </s>
					<s id="N112ED"><!-- NEW -->illud autem punctum Geometria demon&longs;trat e&longs;&longs;e <lb/>terminum medi&aelig; proportionalis, inter totum cylindrum, &amp; &longs;ub&shy;<lb/>duplum; mod&ograve; nulla ratio vectis habeatur alioquin centrum pro&shy;<lb/>cu&longs;&longs;ionis di&longs;tat 2/3 ab extremitate immobili. </s>
				</p>
				<p id="N112F7" type="main">
					<s id="N112F9"><!-- NEW -->10. C&ugrave;m fu&longs;tis inflectitur, reditque ad pri&longs;tinum &longs;tatum, vt <lb/>videre e&longs;t in tudicula maiore, maior ictus imprimitur: </s>
					<s id="N112FF"><!-- NEW -->quia non <lb/>tant&ugrave;m agit impetus extrin&longs;ec&ugrave;s adueniens; </s>
					<s id="N11305"><!-- NEW -->ver&ugrave;m etiam potentia <lb/>qu&aelig;dam media, qu&aelig; corpora compre&longs;&longs;a, vel ten&longs;a, ad pri&longs;tinum <lb/>&longs;tatum reducit: hinc maximus e&longs;t ictus tudicul&aelig;, c&ugrave;m eo in&longs;tanti, <lb/>quo reductum e&longs;t omnin&ograve; manubrium priori rectitudini, infligitur <lb/>ictus, quia tunc vis potenti&aelig; medi&aelig; e&longs;t maxima. </s>
				</p>
				<p id="N11311" type="main">
					<s id="N11313"><!-- NEW -->11. Rotato flagello ide&ograve; maxima vis ine&longs;t, quia diuti&ugrave;s potentia <lb/>manet applicata: </s>
					<s id="N11319"><!-- NEW -->hinc vides hoc principium e&longs;&longs;e vniuer&longs;ali&longs;&longs;imum, <lb/>quod iactis, pul&longs;is, &amp; impactis competit; </s>
					<s id="N1131F"><!-- NEW -->de malleorum ictu idem <lb/>pror&longs;us dicendum e&longs;t, quod de fu&longs;te; </s>
					<s id="N11325"><!-- NEW -->&longs;i autem mallei cadant <lb/>ex eadem altitudine, motu naturali accelerato, ictus &longs;unt vt <lb/>mallei, quia duplus malleus, v. <!-- REMOVE S-->g. <!-- REMOVE S-->duplum impetum acquirit: nam <lb/>&longs;ingul&aelig; partes &longs;eor&longs;im &aelig;qualem impetum acquirunt. </s>
				</p>
				<p id="N11333" type="main">
					<s id="N11335"><!-- NEW -->12. Si ver&ograve; ex diuer&longs;a altitudine cadant, vel &longs;unt &aelig;quales, vel <lb/>in&aelig;quales: </s>
					<s id="N1133B"><!-- NEW -->&longs;i primum, ictus &longs;unt vt tempora, quibus cadunt: </s>
					<s id="N1133F"><!-- NEW -->&longs;i <lb/>&longs;ecundum, ictus &longs;unt in ratione compo&longs;ita temporum, &amp; mal&shy;<lb/>leorum: </s>
					<s id="N11347"><!-- NEW -->&longs;i &longs;unt infinit&aelig;, partes actu, nulla e&longs;t proportio percu&longs;&longs;ionis <lb/>granuli cadentis, &amp; rupis ingentis grauitantis; </s>
					<s id="N1134D"><!-- NEW -->&longs;ed hoc vltimum fal&shy;<lb/>&longs;um e&longs;&longs;e con&longs;tat; </s>
					<s id="N11353"><!-- NEW -->non pote&longs;t tamen determinari proportio vitium <lb/>grauitationis, &amp; percu&longs;&longs;ionis, ni&longs;i numerus in&longs;tantium: quibus durat <lb/>motus deor&longs;um cogno&longs;catur. </s>
				</p>
				<p id="N1135B" type="main">
					<s id="N1135D"><!-- NEW -->13. Leui&longs;&longs;imi lapides vix emittuntur ad modicam di&longs;tantiam; </s>
					<s id="N11361"><!-- NEW --><lb/>quia &longs;tatim &longs;eparantur &agrave; potentia: </s>
					<s id="N11366"><!-- NEW -->parallelipedum cadens de or&shy;<lb/>&longs;um in &longs;itu horizontali maximum ictum infligit in centro grauita&shy;<lb/>tis, id e&longs;t, in medio; </s>
					<s id="N1136E"><!-- NEW -->quia tunc totus impetus agit, totus enim impe&shy;<lb/>ditur: </s>
					<s id="N11374"><!-- NEW -->in aliis punctis minor e&longs;t ictus, iuxta proportionem maioris <lb/>di&longs;tanti&aelig; &agrave; pr&aelig;dicto centro: &longs;i ver&ograve; percutiatur cylindrus innatans, <lb/>maxima erit vis, vel effectus ictus in centro grauitatis propter ean&shy;<lb/>dem rationem. </s>
				</p>
			</section>
		</front>
		<body>
			<chap id="N1137F">
				<pb pagenum="1" xlink:href="026/01/033.jpg"/>
				<figure id="id.026.01.033.1.jpg" xlink:href="026/01/033/1.jpg"/>
				<p id="N11389" type="head">
					<s id="N1138B"><emph type="center"/>LIBER PRIMVS, <lb/><emph type="italics"/>DE IMPETV.<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N11398" type="main">
					<s id="N1139A"><!-- NEW -->TRACTATVM hunc de motu locali <lb/>ab ip&longs;o impetu au&longs;picamur, ex cuius <lb/>profect&ograve; cognitione tota res i&longs;ta de&shy;<lb/>pendet; </s>
					<s id="N113A4"><!-- NEW -->cum enim impetus &longs;it cau&longs;a <lb/>immediata motus, vt fus&egrave; demon&longs;tra&shy;<lb/>bimus infr&agrave;; </s>
					<s id="N113AC"><!-- NEW -->&amp; cum propter quid &longs;it res cogno&longs;ci <lb/>non po&longs;&longs;it, ni&longs;i eius cau&longs;a cogno&longs;catur; </s>
					<s id="N113B2"><!-- NEW -->dubium e&longs;&longs;e <lb/>non pote&longs;t, quin pr&aelig;mittenda &longs;it tractatio illa, qu&aelig; <lb/>e&longs;t de impetu, vt deinde affectiones ip&longs;ius motus <lb/>per cau&longs;am eiu&longs;dem demon&longs;trentur; imm&ograve; au&longs;im <lb/>dicere ex vnius impetus cognitione, non mod&ograve; mo&shy;<lb/>tum ip&longs;um, ver&ugrave;m etiam totam rem Phy&longs;icam pen&shy;<lb/>dere. <lb/><gap desc="hr tag"/></s>
				</p>
				<p id="N113C5" type="main">
					<s id="N113C7"><emph type="center"/><emph type="italics"/>DEFINITIO I.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N113D3" type="main">
					<s id="N113D5">MOTVS <emph type="italics"/>localis e&longs;t tran&longs;itus mobilis &egrave; loco in locum continuo fluxu.<emph.end type="italics"/><lb/>Huius definitionis explicationem habebis in Metaphy&longs;ic&acirc;, <lb/>qu&aelig; &longs;an&egrave; explicatio ad rem pr&aelig;&longs;entem non facit. </s>
				</p>
				<p id="N113E1" type="main">
					<s id="N113E3"><emph type="center"/><emph type="italics"/>Definitio II.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N113EF" type="main">
					<s id="N113F1"><!-- NEW --><emph type="italics"/>Motus velox e&longs;t quo percurritur maius &longs;patium &aelig;quali tempore, vel <lb/>&aelig;quale &longs;patium minori tempore; contr&agrave; ver&ograve; motus tardus.<emph.end type="italics"/></s>
				</p>
				<pb pagenum="2" xlink:href="026/01/034.jpg"/>
				<p id="N113FF" type="main">
					<s id="N11401"><emph type="center"/><emph type="italics"/>Definitio III.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1140D" type="main">
					<s id="N1140F"><emph type="italics"/>Impetus e&longs;t qualitas exigens motum, &longs;eu fluxum localem &longs;ui &longs;ubiecti, vel <lb/>qua est cau&longs;a proxima motus illius mobilis, cui ine&longs;t, eo &longs;cilicet modo, quo <lb/>pote&longs;t e&longs;&longs;e cau&longs;a motus.<emph.end type="italics"/></s>
				</p>
				<p id="N1141A" type="main">
					<s id="N1141C"><!-- NEW -->Dico e&longs;&longs;e qualitatem &longs;iue di&longs;tincta &longs;it, &longs;iue non di&longs;tincta; </s>
					<s id="N11420"><!-- NEW -->quod h&icirc;c <lb/>cert&egrave; non di&longs;cutio; </s>
					<s id="N11426"><!-- NEW -->nec enim affirmo in hac definitione dari impetum; </s>
					<s id="N1142A"><!-- NEW --><lb/>&longs;ed definio tant&ugrave;m quid &longs;it impetus; </s>
					<s id="N1142F"><!-- NEW -->qui reuera aliud non e&longs;t, &longs;i e&longs;t: </s>
					<s id="N11433"><!-- NEW --><lb/>quippe id tant&ugrave;m concipio, cum impetum appello; </s>
					<s id="N11438"><!-- NEW -->&longs;iue &longs;it, &longs;iue non &longs;it, <lb/>ne quis fort&egrave; initio &longs;tatim mihi litem intendat; </s>
					<s id="N1143E"><!-- NEW -->quemadmodum definit <lb/>circulum Geometra; </s>
					<s id="N11444"><!-- NEW -->lic&egrave;t non a&longs;&longs;erat dari perfectum circulum; </s>
					<s id="N11448"><!-- NEW -->ita Phy&shy;<lb/>&longs;icus definit impetum, quamuis non affirmet dari impetum; </s>
					<s id="N1144E"><!-- NEW -->quod tamen <lb/>in &longs;exto Theoremate demon&longs;trabimus; </s>
					<s id="N11454"><!-- NEW -->itaque &longs;i e&longs;t impetus, haud dubi&egrave; <lb/>nihil omnin&ograve; pr&aelig;&longs;tat in &longs;uo &longs;ubiecto ni&longs;i motum; quod quomod&ograve; fiat, <lb/>explicabimus intr&agrave; in Theorematis. <!-- KEEP S--></s>
				</p>
				<p id="N1145D" type="main">
					<s id="N1145F"><emph type="center"/><emph type="italics"/>Hypothe&longs;is I.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1146B" type="main">
					<s id="N1146D"><!-- NEW --><emph type="italics"/>Datur motus localis<emph.end type="italics"/>; </s>
					<s id="N11476"><!-- NEW -->quis enim non videt volantem auem, natantem <lb/>pi&longs;cem; currentem equum, rotatum globum; denique vnum corpus mi&shy;<lb/>grans &egrave; loco in locum? </s>
					<s id="N1147E"><!-- NEW -->&longs;ed hoc e&longs;t moueri per Def. <!-- REMOVE S-->1. igitur infinitis fe&shy;<lb/>r&egrave; experimentis nititur h&aelig;c hypothe&longs;is, quam veram e&longs;&longs;e nece&longs;&longs;e e&longs;t, &longs;i <lb/>illa vera &longs;unt; &longs;ed illa certa &longs;unt phy&longs;ic&egrave;, neque citra miraculum fallere <lb/>po&longs;&longs;unt. </s>
				</p>
				<p id="N1148A" type="main">
					<s id="N1148C"><!-- NEW -->Diceret fort&egrave; aliquis etiam motum &longs;ube&longs;&longs;e oculorum fallaci&aelig;; c&ugrave;m &egrave; <lb/>naui mobili littus ip&longs;um moueri, ip&longs;umque nauigium non moueri iudi&shy;<lb/>cemus. </s>
					<s id="N11494">Quis enim oculos in Solem intendens, primo intuitu Solem &longs;ta&shy;<lb/>re non iudicet? </s>
					<s id="N11499"><!-- NEW -->cum tamen deinde pernici&longs;&longs;imo cur&longs;u rotari demon&longs;tre&shy;<lb/>mus; </s>
					<s id="N1149F"><!-- NEW -->adde alias oculorum fallacias circa motum; </s>
					<s id="N114A3"><!-- NEW -->&longs;ic rotata &longs;cintilla, vel <lb/>carbo accen&longs;us immotum orbem de&longs;cribere videtur; </s>
					<s id="N114A9"><!-- NEW -->&longs;ic nota inu&longs;ta <lb/>trocho, dum celerrim&egrave; rotatur, orbem etiam immobilem de&longs;cribere iu&shy;<lb/>dicatur; </s>
					<s id="N114B1"><!-- NEW -->&longs;ic &longs;tella cadens, vel exhalatio continenti &longs;ucce&longs;&longs;ione accen&longs;a <lb/>moueri videtur; </s>
					<s id="N114B7"><!-- NEW -->licet minim&egrave; moueatur; </s>
					<s id="N114BB"><!-- NEW -->idem dicendum de puluere <lb/>tormentario, vel alia qualibet materia; qu&aelig; continuata con&longs;ecutione <lb/>accenditur; </s>
					<s id="N114C3"><!-- NEW -->imm&ograve; trochus ip&longs;e in orbem celerrim&egrave; agitatus, quie&longs;cere <lb/>videtur; </s>
					<s id="N114C9"><!-- NEW -->&longs;ic qui vertigine laborant, ea moueri exi&longs;timant, qu&aelig; quie&longs;cunt; </s>
					<s id="N114CD"><!-- NEW --><lb/>idem exemplum habemus in ebrio&longs;is, iracundis, in iis qui ex graui febris <lb/>ardore delirant, &amp; in pueris qui diu in gyros eunt, vbi verti de&longs;ierint; </s>
					<s id="N114D4"><!-- NEW --><lb/>&longs;ic eorum qu&aelig; motu &aelig;quali feruntur, remotiora tardi&ugrave;s moueri viden&shy;<lb/>tur; </s>
					<s id="N114DB"><!-- NEW -->imm&ograve; &longs;i per eandem lineam oculus, &amp; mobile pari velocitate ince&shy;<lb/>dant, ip&longs;um mobile quie&longs;cere videtur, plura leges apud Opticos, de <lb/>quibus agemus &longs;uo loco: Igitur ex his omnibus con&longs;tat minim&egrave; con&longs;ta&shy;<lb/>re dari motum, ex eo qu&ograve;d oculis aliquid moueri videatur. </s>
				</p>
				<p id="N114E5" type="main">
					<s id="N114E7"><!-- NEW -->Re&longs;pondeo equidem fateri me, vi&longs;um ip&longs;um plurimis &longs;ube&longs;&longs;e fraudi&shy;<lb/>bus; </s>
					<s id="N114ED"><!-- NEW -->attamen &longs;i rect&egrave; oculus admoueatur, iu&longs;ta di&longs;tanti&agrave;, nec vllum &longs;it <lb/>impedimentum exterius nec interius; </s>
					<s id="N114F3"><!-- NEW -->fieri non pote&longs;t, quin oculus mo&shy;<lb/>tum ob&longs;eruet; an fort&egrave; currentis calami motus oculum meum fallere po-<pb pagenum="3" xlink:href="026/01/035.jpg"/>te&longs;t? </s>
					<s id="N114FE"><!-- NEW -->quidquid &longs;it, fateor vltr&ograve; hanc hypothe&longs;im in eo tant&ugrave;m certitudi&shy;<lb/>nis gradu e&longs;&longs;e reponendam, in quo reponitur h&aelig;c cognitio, qu&acirc; modo <lb/>cogno&longs;co me &longs;cribere, manu&longs;que, &amp; calami motum ob&longs;eruo; </s>
					<s id="N11506"><!-- NEW -->&longs;iue id tan&shy;<lb/>t&ugrave;m oculis fiat, &longs;iue intellectu ex oculis; quod ali&agrave;s di&longs;cutiemus; &longs;i quis <lb/>fort&egrave; in Phy&longs;ica maiorem certitudinem po&longs;tularet, cum eo cert&egrave; conue&shy;<lb/>nire non po&longs;&longs;um. </s>
				</p>
				<p id="N11510" type="main">
					<s id="N11512"><!-- NEW -->Porr&ograve; quod &longs;pectat ad fallacias illas qu&aelig; &longs;upra adduct&aelig; &longs;unt; </s>
					<s id="N11516"><!-- NEW -->certum <lb/>e&longs;t vel obiectum e&longs;&longs;e remotius, quam par &longs;it; </s>
					<s id="N1151C"><!-- NEW -->vel moueri celeri&ugrave;s, vel <lb/>e&longs;&longs;e aliquod impedimentum interius; </s>
					<s id="N11522"><!-- NEW -->pr&aelig;&longs;ertim in iis, qui &longs;eu vertigine, <lb/>vel alio capitis morbo laborant; &longs;ed ne h&icirc;c opticum agere videar, harum <lb/>fallaciarum certi&longs;&longs;imas cau&longs;as in &longs;uum locum remittimus. </s>
				</p>
				<p id="N1152A" type="main">
					<s id="N1152C"><!-- NEW -->C&aelig;ter&ugrave;m lic&egrave;t ad &longs;tatuendam, firmandamque hanc hypote&longs;im, Phy&shy;<lb/>&longs;ica experimenta rect&egrave; applicato &longs;en&longs;u comprobata &longs;ufficere po&longs;&longs;int; <lb/>non de&longs;unt tamen rationes mult&aelig; &agrave; priori, vt vulg&ograve; aiunt, quibus euin&shy;<lb/>citur, non mod&ograve; quid &longs;it motus, ver&ugrave;m etiam propter quid &longs;it. </s>
				</p>
				<p id="N11536" type="main">
					<s id="N11538"><!-- NEW -->Prima duci pote&longs;t &agrave; fine motus; </s>
					<s id="N1153C"><!-- NEW -->cum enim res creat&aelig; vbique &longs;imul <lb/>e&longs;&longs;e non po&longs;&longs;int, cert&egrave;, vt illo bono gaudeant, quo fort&egrave; carent, &amp; vt <lb/>coniungantur &longs;uo fini, motu locali opus e&longs;t; </s>
					<s id="N11544"><!-- NEW -->&longs;itit equus, abe&longs;t aqua, <lb/>cert&egrave;, ni&longs;i vel h&aelig;c propinetur, vel ille accedat, &longs;itim leuare non pote&shy;<lb/>rit; </s>
					<s id="N1154C"><!-- NEW -->at neutrum &longs;ine motu haberi pote&longs;t: Lapis remouetur &agrave; &longs;uo centro, <lb/>&agrave; &longs;uo globo, &agrave; &longs;uo fine, vt &longs;e&longs;e illi re&longs;tituat, deor&longs;um cadat nece&longs;&longs;e e&longs;t. </s>
					<s id="N11552"><!-- NEW --><lb/>Itaque ad cum finem res omnes creat&aelig; in&longs;titut&aelig; &longs;unt, quem &longs;ine motu <lb/>a&longs;&longs;equi non po&longs;&longs;unt; </s>
					<s id="N11559"><!-- NEW -->igitur dari motum nece&longs;&longs;e e&longs;t, vt res creat&aelig; cum lo&shy;<lb/>cum acquirant, in quo &longs;uo bono, &longs;uo fini, &longs;u&aelig; perfectioni coniungan&shy;<lb/>tur; vel &longs;altem id muneris obeant, cui ab ips&acirc; natur&acirc; de&longs;tinantur. </s>
				</p>
				<p id="N11561" type="main">
					<s id="N11563"><!-- NEW -->Secunda ratio ducitur &agrave; cau&longs;a efficiente; ni&longs;i enim daretur motus, <lb/>fru&longs;tr&agrave; daretur potentia motrix, t&ugrave;m in animantibus, t&ugrave;m in grauibus, <lb/>de qu&acirc; ali&agrave;s. </s>
				</p>
				<p id="N1156B" type="main">
					<s id="N1156D"><!-- NEW -->Tertia petitur &agrave; cau&longs;a formali; cum enim detur impetus, vt demon&shy;<lb/>&longs;trabimus infr&agrave;, nece&longs;&longs;e e&longs;t dari motum. </s>
				</p>
				<p id="N11573" type="main">
					<s id="N11575"><!-- NEW -->Quarta petitur &agrave; termino motus; </s>
					<s id="N11579"><!-- NEW -->cum enim globus proiectus &longs;it in <lb/>nouo loco in quo ante non erat; </s>
					<s id="N1157F"><!-- NEW -->cert&egrave; nouus locus qui &longs;uccedit alteri <lb/>relicto, e&longs;t terminus motus citra miraculum; igitur &longs;i e&longs;t nouus locus, <lb/>e&longs;t quoque motus. </s>
				</p>
				<p id="N11587" type="main">
					<s id="N11589">Quinta ab v&longs;u; nec enim &longs;ine motu flueret aqua, caderet lapis, gyros <lb/>agerent a&longs;tra, flaret ventus, volarent nubes, &amp;c. </s>
				</p>
				<p id="N1158E" type="main">
					<s id="N11590"><!-- NEW -->Sexta ab ip&longs;a Mechanica, qu&aelig; organa motui mini&longs;trat: </s>
					<s id="N11594"><!-- NEW -->quis enim ne&shy;<lb/>garet maius momentum e&longs;&longs;e cum maiori di&longs;tanti&acirc; coniunctum; </s>
					<s id="N1159A"><!-- NEW -->&longs;i ver&ograve; <lb/>maius momentum e&longs;t, nunquid pr&aelig;ualebit; igitur deor&longs;um cadet, imm&ograve; <lb/>&longs;euerior Geometria, vt omittam A&longs;tronomiam, motum &longs;upponit, cum ex <lb/>fluxu &longs;eu motu puncti infinitas fere lineas de&longs;cribat. </s>
					<s id="N115A4">Igitur certum e&longs;t <lb/>dari motum localem. </s>
				</p>
				<p id="N115A9" type="main">
					<s id="N115AB"><emph type="center"/><emph type="italics"/>Hypothe&longs;is II.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N115B7" type="main">
					<s id="N115B9"><!-- NEW --><emph type="italics"/>Datur quies, id e&longs;t priuatio motus.<emph.end type="italics"/> H&aelig;c hypothe&longs;is etiam certa e&longs;t, <pb pagenum="4" xlink:href="026/01/036.jpg"/>Quis enim neget &longs;edentem humi, vel decumbentem in lecto quie&longs;ceret <lb/>con&longs;ule &longs;en&longs;us rect&egrave; applicatos; </s>
					<s id="N115C9"><!-- NEW -->tam enim certus &longs;um me iam in cathe&shy;<lb/>dra quie&longs;cere, quam &longs;um certus Solem lucere; igitur ex certis experi&shy;<lb/>mentis certa hypothe&longs;is con&longs;equitur. </s>
					<s id="N115D1"><!-- NEW -->Non de&longs;unt rationes &agrave; priori; nam <lb/>prim&ograve; res aliqua &longs;uo bono, &longs;eu fini coniuncta ab eo &longs;eparari non po&longs;tu&shy;<lb/>lat, igitur nec moueri. </s>
					<s id="N115D9">Secund&ograve; maximum incommodum e&longs;&longs;et, &longs;i res &longs;e&shy;<lb/>mel mota perpetu&ograve; moueretur. </s>
					<s id="N115DE"><!-- NEW -->Terti&ograve;, finis, &longs;eu terminus motus recti, <lb/>e&longs;t quies; nam ideo lapis deor&longs;um cadit, vt in &longs;uo centro &longs;eu globo <lb/>quie&longs;cat, id e&longs;t vt cum aliis partibus totum illud, &longs;eu globum componat, <lb/>vt dicemus ali&agrave;s. </s>
				</p>
				<p id="N115E8" type="main">
					<s id="N115EA"><!-- NEW -->Diceret fort&egrave; aliquis &longs;ententias pr&aelig;dictas non valere in &longs;ententi&acirc; <lb/>Copernici, qu&aelig; terr&aelig; motum ad&longs;truit; pr&aelig;terea non mod&ograve; falli &longs;en&longs;us <lb/>circa motum, ver&ugrave;m etiam circa quietem. </s>
				</p>
				<p id="N115F2" type="main">
					<s id="N115F4"><!-- NEW -->Re&longs;pondeo prim&ograve; illam Copernici &longs;ententiam e&longs;&longs;e fal&longs;i&longs;&longs;imam, vt &longs;uo <lb/>loco o&longs;tendemus: &longs;ecund&ograve;, lic&egrave;t terra moueretur &longs;ecundum Coperni&shy;<lb/>cum, Sol, &amp; &longs;tell&aelig; quie&longs;cerent. </s>
				</p>
				<p id="N115FC" type="main">
					<s id="N115FE">Dices iuxta hypothe&longs;im Heraclidis Pontici, terra ip&longs;a, Sol etiam, &amp; <lb/>&longs;tell&aelig; mouentur. </s>
					<s id="N11603"><!-- NEW -->Re&longs;pondeo prim&ograve; hypothe&longs;im illam e&longs;&longs;e fal&longs;am, vt &longs;uo <lb/>loco videbimus; </s>
					<s id="N11609"><!-- NEW -->&longs;ecund&ograve; etiam data illa hypothe&longs;i po&longs;&longs;et dari quies; </s>
					<s id="N1160D"><!-- NEW -->&longs;i <lb/>enim globus eodem ver&longs;us occa&longs;um impetu proiiceretur, qu&ograve; ver&longs;us or&shy;<lb/>tum &agrave; terra ip&longs;a rapitur, ha&ugrave;d dubi&egrave; quie&longs;ceret: pr&aelig;terea iuxta hanc hy&shy;<lb/>pothe&longs;im, quietem appellarem vnius partis cum alia connexionem in ip&shy;<lb/>&longs;o toto &longs;eu globo, &amp; quie&longs;cere dicerem lapidem, qui tant&ugrave;m totius glo&shy;<lb/>bi motu mouetur, ex quo profect&ograve; tota &longs;oluitur difficultas. </s>
				</p>
				<p id="N1161B" type="main">
					<s id="N1161D"><!-- NEW -->Quod ver&ograve; &longs;pectat ad fallacias oculi circa quietem; </s>
					<s id="N11621"><!-- NEW -->eodem pror&longs;us <lb/>modo &longs;oluend&aelig; &longs;unt, quo iam &longs;upra &longs;olut&aelig; &longs;unt ali&aelig; circa motum: <lb/>vtr&ugrave;m ver&ograve; motus, &amp; quies dicant aliquid di&longs;tinctum &agrave; mobili, dice&shy;<lb/>mus infr&agrave;. </s>
				</p>
				<p id="N1162B" type="main">
					<s id="N1162D"><emph type="center"/><emph type="italics"/>Hypothe&longs;is III.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N11639" type="main">
					<s id="N1163B"><emph type="italics"/>Aliquid mouetur quod inc&oelig;pit moueri.<emph.end type="italics"/></s>
					<s id="N11642"><!-- NEW --> Video lapidem quie&longs;centem, <lb/>qui deinde proiectus mouetur; </s>
					<s id="N11648"><!-- NEW -->igitur ante non mouebatur, igitur cum <lb/>deinde mouetur, c&oelig;pit moueri; mille aliis experimentis h&aelig;c hypothe&shy;<lb/>&longs;is confirmari pote&longs;t. </s>
				</p>
				<p id="N11650" type="main">
					<s id="N11652"><emph type="center"/><emph type="italics"/>Hypothe&longs;is IV.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1165E" type="main">
					<s id="N11660"><emph type="italics"/>Aliquid mouetur quod tandem de&longs;init moueri, vel incipit quie&longs;cere.<emph.end type="italics"/></s>
					<s id="N11667"> Vi&shy;<lb/>deo rotatam pilam, qu&aelig; tandem quie&longs;cit, cadentem lapidem, qui tan&shy;<lb/>dem &longs;i&longs;tit, &amp;c. </s>
					<s id="N1166E">igitur certa e&longs;t h&aelig;c hypothe&longs;is. </s>
				</p>
				<p id="N11671" type="main">
					<s id="N11673"><emph type="center"/><emph type="italics"/>Hypothe&longs;is V.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1167F" type="main">
					<s id="N11681"><emph type="italics"/>Idem mouetur mod&ograve; tardi&ugrave;s, mod&ograve; veloci&ugrave;s.<emph.end type="italics"/></s>
					<s id="N11688"><!-- NEW --> Video rotatum globum, <lb/>qui &longs;en&longs;im quie&longs;cit: &longs;entio ab eodem globo mod&ograve; maiorem, mod&ograve; mi&shy;<lb/>norem ictum infligi, &amp;c. </s>
					<s id="N11690">igitur e&longs;t certa hypothe&longs;is. </s>
				</p>
				<pb pagenum="5" xlink:href="026/01/037.jpg"/>
				<p id="N11697" type="main">
					<s id="N11699"><emph type="center"/><emph type="italics"/>Hypothe&longs;is VI.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N116A5" type="main">
					<s id="N116A7"><emph type="italics"/>Corpus proiectum etiam &agrave; potenti&acirc; motrice &longs;eiunctum adhuc mouetur.<emph.end type="italics"/><lb/>Oculos omnium te&longs;tes appello. </s>
				</p>
				<p id="N116B0" type="main">
					<s id="N116B2"><emph type="center"/><emph type="italics"/>Hypothe&longs;is VII.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N116BE" type="main">
					<s id="N116C0"><emph type="italics"/>Corpus proiectum, &amp; in aliud impactum illud ip&longs;um impellit, &amp; mouet.<emph.end type="italics"/></s>
				</p>
				<p id="N116C7" type="main">
					<s id="N116C9"><emph type="center"/><emph type="italics"/>Hypothe&longs;is VIII.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N116D5" type="main">
					<s id="N116D7"><emph type="italics"/>Ignis applicatus &longs;ubiectum aptum, cui rect&egrave; applicatur nece&longs;&longs;ari&ograve; calefa&shy;<lb/>cit, nix frigefacit, Sol illuminat, corpus in aliud impactum illud ip&longs;um im&shy;<lb/>pellit.<emph.end type="italics"/></s>
					<s id="N116E2"> Pr&aelig;dict&aelig; omnes Hypothe&longs;es certi&longs;&longs;imis nix&aelig; experimentis certi&shy;<lb/>tudinem phy&longs;icam habent, &amp; citra miraculum fallere non po&longs;&longs;unt. </s>
				</p>
				<p id="N116E7" type="main">
					<s id="N116E9"><emph type="center"/><emph type="italics"/>Axioma I.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N116F5" type="main">
					<s id="N116F7"><emph type="italics"/>Contradictoria &longs;imul e&longs;&longs;e non po&longs;&longs;unt, vel non e&longs;&longs;e.<emph.end type="italics"/></s>
					<s id="N116FE"> Hoc ip&longs;um iam pr&aelig;&shy;<lb/>mi&longs;imus Logic&aelig; no&longs;tr&aelig; demon&longs;tratiu&aelig;, complectiturque prima illa <lb/>principia Metaphy&longs;ic&aelig;. </s>
				</p>
				<p id="N11705" type="main">
					<s id="N11707">1. <emph type="italics"/>Impo&longs;&longs;ibile est idem &longs;imul e&longs;&longs;e, &amp; non e&longs;&longs;e.<emph.end type="italics"/></s>
				</p>
				<p id="N1170F" type="main">
					<s id="N11711">2. <emph type="italics"/>Quodlibet e&longs;t, vel non est.<emph.end type="italics"/></s>
				</p>
				<p id="N11719" type="main">
					<s id="N1171B">3. <emph type="italics"/>De eodem alterum contradictoriorum ver&egrave; affirmatur, &amp; alterum ver&egrave; <lb/>negatur, non &longs;imul vtrumque.<emph.end type="italics"/></s>
				</p>
				<p id="N11725" type="main">
					<s id="N11727"><emph type="center"/><emph type="italics"/>Axioma II.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N11733" type="main">
					<s id="N11735"><emph type="italics"/>Maximum &longs;ignum di&longs;tinctionis realis in phy&longs;icis est &longs;eparabilitas, vel op&shy;<lb/>po&longs;itio.<emph.end type="italics"/></s>
					<s id="N1173E"><!-- NEW --> Nihil enim a &longs;e ip&longs;o &longs;eparari po&longs;t; </s>
					<s id="N11742"><!-- NEW -->quippe, vbi e&longs;t &longs;eparatio, &longs;eu <lb/>diui&longs;io, e&longs;t pluralitas; cur enim nummus A &amp; nummus B eiu&longs;dem ma&shy;<lb/>teri&aelig;, form&aelig;, ponderis, realiter di&longs;tinguuntur? </s>
					<s id="N1174A"><!-- NEW -->quia &longs;cilicet vnus <lb/>non e&longs;t alius inquies; &amp; quare vnus non e&longs;t alius? </s>
					<s id="N11750">quia vnus e&longs;t hic &amp; <lb/>alius non e&longs;t hic, vnum tango, &amp; alium non tango, vnus e&longs;t meus, &amp; <lb/>alius non e&longs;t meus, &amp;c. </s>
					<s id="N11757">vides pr&aelig;dicata contradictoria, qu&aelig; cum eidem <lb/>&longs;imul ine&longs;&longs;e non po&longs;&longs;int per Ax. 1. diuer&longs;is, &amp; di&longs;tinctis ine&longs;&longs;e nece&longs;&longs;e <lb/>e&longs;t. </s>
				</p>
				<p id="N1175E" type="main">
					<s id="N11760"><!-- NEW -->Diceret fort&egrave; aliquis hominem reproductum in duobus locis e&longs;&longs;e po&longs;&shy;<lb/>&longs;e, &amp; dum Rom&aelig; e&longs;t &agrave; &longs;e ip&longs;o Lugduni exi&longs;tente &longs;eiunctum e&longs;&longs;e; hoc <lb/>ip&longs;um ali&agrave;s examinabimus, dum con&longs;tet mod&ograve; id totum, &longs;i fiat, mira&shy;<lb/>culo tribuendum e&longs;&longs;e, cum tamen res phy&longs;icas citra miraculum con&longs;ide&shy;<lb/>remus. </s>
				</p>
				<p id="N1176C" type="main">
					<s id="N1176E"><emph type="center"/><emph type="italics"/>Axioma III.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1177A" type="main">
					<s id="N1177C"><emph type="italics"/>Vt dicatur aliquid exi&longs;tere, vel debet &longs;en&longs;u percipi, vel aliqua ratione <lb/>probari.<emph.end type="italics"/></s>
					<s id="N11785"><!-- NEW --> Qui enim a&longs;&longs;erit rem aliquam po&longs;itiuam exi&longs;tere, cert&egrave; po&longs;i&shy;<lb/>tiuo argumento demon&longs;trare debet quod &longs;it; </s>
					<s id="N1178B"><!-- NEW -->illud porr&ograve; argumentum <lb/>duci pote&longs;t vel ab experimento certo; </s>
					<s id="N11791"><!-- NEW -->&longs;ic probo exi&longs;tere rem aliquam, <lb/>quam video; vel ab aliqua ratione; </s>
					<s id="N11797"><!-- NEW -->&longs;ic ex eo qu&ograve;d cau&longs;a &longs;it nece&longs;&longs;aria <lb/>applicata &longs;ubiecto apto, probo effectum ip&longs;um produci; </s>
					<s id="N1179D"><!-- NEW -->vel eo qu&ograve;d &longs;it <lb/>effectus probo cau&longs;am e&longs;&longs;e vel ex nece&longs;&longs;itate, qu&acirc; aliquid e&longs;t nece&longs;&longs;a&shy;<lb/>rium ad aliquem finem &agrave; natura in&longs;titutum, quo natura ip&longs;a &longs;ine ab&longs;ur-<pb pagenum="6" xlink:href="026/01/038.jpg"/>do, vel graui&longs;&longs;imo incommodo carere non pote&longs;t, probo illud ip&longs;um <lb/>e&longs;&longs;e; </s>
					<s id="N117AC"><!-- NEW -->vel dem&ugrave;m ex aliqua reuelatione certa in rebus fidei; </s>
					<s id="N117B0"><!-- NEW -->igitur hoc <lb/>Axioma certum e&longs;t phy&longs;ic&egrave;; </s>
					<s id="N117B6"><!-- NEW -->quod ni&longs;i recipiatur &agrave; Philo&longs;ophis; </s>
					<s id="N117BA"><!-- NEW -->cuique <lb/>licebit impun&egrave; mentiri; &longs;i enim dicam extra mundi huius fines e&longs;&longs;e <lb/>alios orbes, intra tuum mu&longs;&aelig;um, in quo &longs;olus fort&egrave; degis, e&longs;&longs;e quin&shy;<lb/>quaginta homines, e&longs;&longs;e mille Soles, &amp; totidem Lunas in c&oelig;lo, &amp;c. </s>
					<s id="N117C4"><!-- NEW --><lb/>numquid &longs;tatim oppones Axioma i&longs;tud, <emph type="italics"/>qua ratio, qua experientia, qua <lb/>nece&longs;&longs;itas, qua reuelatio?<emph.end type="italics"/> Qu&aelig;&longs;tio facti e&longs;t, producendi &longs;unt te&longs;tes: huc <lb/>reuoca principium illud commune. </s>
				</p>
				<p id="N117D3" type="main">
					<s id="N117D5">1. <emph type="italics"/>Non &longs;unt multiplicanda entia &longs;ine nece&longs;&longs;itate, quod cert&egrave; non valet ni&longs;i <lb/>addas, vel &longs;ine ratione, vel &longs;ine experientia.<emph.end type="italics"/></s>
				</p>
				<p id="N117DF" type="main">
					<s id="N117E1">2. <emph type="italics"/>Qui a&longs;&longs;erit aliquid po&longs;itiu&egrave;, debet argumento po&longs;itiuo probare.<emph.end type="italics"/></s>
				</p>
				<p id="N117E9" type="main">
					<s id="N117EB"><emph type="center"/><emph type="italics"/>Axioma IV.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N117F7" type="main">
					<s id="N117F9"><emph type="italics"/>Quidquid exi&longs;tit phy&longs;ic&egrave; extra &longs;uas cau&longs;as ab omni alio &longs;eparatum, de&shy;<lb/>terminatum e&longs;t.<emph.end type="italics"/></s>
				</p>
				<p id="N11802" type="main">
					<s id="N11804"><!-- NEW -->Hoc Axioma explicatione modic&acirc; indiget: </s>
					<s id="N11808"><!-- NEW -->Determinatum illud <lb/>apello, quod illud ip&longs;um e&longs;t, quod e&longs;t, &amp; nihil aliud; </s>
					<s id="N1180E"><!-- NEW -->quod e&longs;t hoc, id <lb/>e&longs;t ab omni alio di&longs;tinctum; </s>
					<s id="N11814"><!-- NEW -->atqui quidquid productum e&longs;t, &longs;ingulare <lb/>e&longs;t, id e&longs;t, e&longs;t hoc; </s>
					<s id="N1181A"><!-- NEW -->&longs;i enim producitur, alicubi producitur, &amp; ali&shy;<lb/>quando, ergo dici pote&longs;t, e&longs;t h&icirc;c, e&longs;t nunc; igitur determinatum e&longs;t. </s>
					<s id="N11820"><!-- NEW --><lb/>Aliquis fort&egrave; &longs;tatim opponet mihi partes indeterminatas quantitatis: </s>
					<s id="N11825"><!-- NEW -->&longs;ed <lb/>pro&longs;ect&ograve; nulla pars actu e&longs;t qu&aelig; non &longs;it h&aelig;c, &amp; non alia; </s>
					<s id="N1182B"><!-- NEW -->igitur qu&aelig; <lb/>non &longs;it determinata, de quo ali&agrave;s; quidquid &longs;it, &longs;altem partes ill&aelig; fa&shy;<lb/>ciunt aliquod totum quod e&longs;t determinatum, quod mihi &longs;atis e&longs;t mod&ograve; <lb/>ad veritatem huius Axiomatis. <!-- KEEP S--></s>
					<s id="N11836"><!-- NEW -->Dices aliquid po&longs;&longs;e e&longs;&longs;e nullibi; </s>
					<s id="N1183A"><!-- NEW -->has <lb/>nugas refutabimus in Metaphy&longs;ica, qu&aelig; in mentem &longs;apientis viri ca&shy;<lb/>dere non po&longs;&longs;unt; nunc &longs;altem con&longs;tat id naturali modo fieri non <lb/>po&longs;&longs;e. </s>
				</p>
				<p id="N11844" type="main">
					<s id="N11846"><emph type="center"/><emph type="italics"/>Axioma V.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N11852" type="main">
					<s id="N11854"><emph type="italics"/>Quod vnum e&longs;t, determinatum e&longs;t.<emph.end type="italics"/></s>
					<s id="N1185B"><!-- NEW --> Quia quod vnum e&longs;t, e&longs;t hoc, &amp; <lb/>nihil aliud; </s>
					<s id="N11861"><!-- NEW -->nihil enim aliud e&longs;t vnum, ni&longs;i indiui&longs;um in &longs;e, &amp; diui&shy;<lb/>&longs;um &agrave; quolibet alio: </s>
					<s id="N11867"><!-- NEW -->quipp&egrave; indifferentia, vel indeterminatio ibi tan&shy;<lb/>tum e&longs;t, vbi &longs;unt plura; &longs;i enim tantum vnum e&longs;t, cert&egrave; non datur op&shy;<lb/>tio, &longs;i aliqua cau&longs;a e&longs;t indifferens ad effectum A &amp; B, id e&longs;t &longs;i non e&longs;t, <lb/>cur vnum potius qu&agrave;m alium producat? </s>
					<s id="N11871"><!-- NEW -->plures e&longs;&longs;e nece&longs;&longs;e e&longs;t; &longs;i enim <lb/>tant&ugrave;m vnus e&longs;t, cert&egrave; indifferens non e&longs;t. </s>
				</p>
				<p id="N11877" type="main">
					<s id="N11879"><emph type="center"/><emph type="italics"/>Axioma VI.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N11885" type="main">
					<s id="N11887"><emph type="italics"/>Quidquid e&longs;t, fru&longs;tr&agrave; non e&longs;t.<emph.end type="italics"/></s>
					<s id="N1188E"><!-- NEW --> Quidquid e&longs;t, id e&longs;t exi&longs;tit naturaliter <lb/>&longs;cilicet, &amp; citra miraculum, fru&longs;tr&agrave; non e&longs;t, id e&longs;t propter aliquem fi&shy;<lb/>nem e&longs;t ab ip&longs;a natura in&longs;titutum; </s>
					<s id="N11896"><!-- NEW -->finem autem rei ex ip&longs;o v&longs;u cogno&shy;<lb/>&longs;cimus; </s>
					<s id="N1189C"><!-- NEW -->v&longs;um ver&ograve; ip&longs;o fer&egrave; &longs;en&longs;u: </s>
					<s id="N118A0"><!-- NEW -->quod vt breui inductione confirme&shy;<lb/>mus, quidquid exi&longs;tit vel e&longs;t &longs;ub&longs;tantia, vel accidens; </s>
					<s id="N118A6"><!-- NEW -->&longs;i &longs;ub&longs;tantia, vel <lb/>incorporea, vel corporea; </s>
					<s id="N118AC"><!-- NEW -->&longs;i incorporea, vel e&longs;t Deus, vel Angelus, vel <pb pagenum="7" xlink:href="026/01/039.jpg"/>Anima rationalis; </s>
					<s id="N118B5"><!-- NEW -->atqui nihil horum fru&longs;tr&agrave; e&longs;t, vt con&longs;tat; </s>
					<s id="N118B9"><!-- NEW -->&longs;i corporea, <lb/>vel e&longs;t corpus, vel forma; </s>
					<s id="N118BF"><!-- NEW -->&longs;i corpus, vel elementum, vel mixtum; </s>
					<s id="N118C3"><!-- NEW --><lb/>vtrumque &longs;uum finem habet, &amp; con&longs;tantem v&longs;um; </s>
					<s id="N118C8"><!-- NEW -->&longs;i forma quamdiu <lb/>e&longs;t principium actionum compo&longs;iti fru&longs;tr&agrave; non e&longs;t; </s>
					<s id="N118CE"><!-- NEW -->quippe ad cum finem <lb/>e&longs;t in&longs;tituta; </s>
					<s id="N118D4"><!-- NEW -->hinc optima ratio ducitur, cur forma materialis &longs;eparata <lb/>exi&longs;tere non po&longs;&longs;it citra miraculum, quia &longs;cilicet fru&longs;tr&agrave; e&longs;&longs;et; </s>
					<s id="N118DA"><!-- NEW -->cum enim <lb/>non po&longs;&longs;it agere ni&longs;i in &longs;ubiecto, &longs;i &longs;ubiectum non e&longs;t, fru&longs;tr&agrave; e&longs;t; </s>
					<s id="N118E0"><!-- NEW -->at ver&ograve; <lb/>anima rationalis, qu&aelig; aliquas actiones in organicas habet, fru&longs;tr&agrave; non <lb/>e&longs;t etiam &longs;eparata, igitur immortalis e&longs;t: </s>
					<s id="N118E8"><!-- NEW -->vtramque rationem &longs;uo loco fu&shy;<lb/>s&egrave; demon&longs;trabimus; </s>
					<s id="N118EE"><!-- NEW -->&longs;i ver&ograve; accidens e&longs;t, haud dubi&egrave; alteri ine&longs;&longs;e debet <lb/>propter &longs;uum finem intrin&longs;ecum, quem alibi effectum formalem &longs;ecun&shy;<lb/>darium appellamus; </s>
					<s id="N118F6"><!-- NEW -->quem &longs;cilicet pr&aelig;&longs;tat in &longs;uo &longs;ubiecto, cui cert&egrave; &longs;i ni&shy;<lb/>hil pr&aelig;&longs;taret, in eo fru&longs;tr&agrave; e&longs;&longs;et; </s>
					<s id="N118FC"><!-- NEW -->&longs;ic caloris effectus &longs;ecundarius e&longs;t rare&shy;<lb/>factio, vel re&longs;olutio partium &longs;ui &longs;ubiecti, vel aliquid aliud; impetus, <lb/>motus &amp;c. </s>
					<s id="N11904"><!-- NEW -->Igitur tunc effet fru&longs;tr&agrave; accidens, cum &longs;uo illo effectu careret; </s>
					<s id="N11908"><!-- NEW --><lb/>hinc rationem contrarietatis aliquando petemus, certi&longs;&longs;imam quidem, <lb/>licet nouam, &amp; inde clari&longs;&longs;im&egrave; con&longs;tabit, cur, &amp; quomodo vnum contra&shy;<lb/>rium ab alio de&longs;trui dicatur; </s>
					<s id="N11911"><!-- NEW -->&longs;ed non e&longs;t huius loci: c&ugrave;m ver&ograve; audis fi&shy;<lb/>nem: </s>
					<s id="N11917"><!-- NEW -->ne qu&aelig;&longs;o cogites aliquid morale, nec enim illum finem intelligo, ad <lb/>quem ab agente rationabili de&longs;tinatur: &longs;ed eum dumtaxat, ad quem na&shy;<lb/>tura ip&longs;a, vel e&longs;&longs;entia rei &longs;pectat, &longs;ed de his &longs;atis. </s>
				</p>
				<p id="N1191F" type="main">
					<s id="N11921">Huc reuoca Principium illud, <emph type="italics"/>Deus &amp; Natura nihil faciunt fru&longs;tr&agrave;,<emph.end type="italics"/><lb/>id e&longs;t quod &longs;uo fine careat intrin&longs;eco. </s>
				</p>
				<p id="N1192B" type="main">
					<s id="N1192D"><!-- NEW -->Dices fort&egrave;, multa videri e&longs;&longs;e fru&longs;tr&agrave;, qu&aelig; tamen exi&longs;tunt; ad quid <lb/>enim vel tanta aquarum copia, vel tantus &longs;tellarum numerus, vel tot are&shy;<lb/>n&aelig; puncta? </s>
					<s id="N11935">tot fluitantes atomi? </s>
					<s id="N11938">tot in&longs;ecta? </s>
					<s id="N1193B">&amp; vermiculi: </s>
					<s id="N1193E"><!-- NEW -->Re&longs;pondeo <lb/>quamlibet &longs;tellam, quodlibet in&longs;ectum, &longs;eu vermiculum &longs;uis pollere pro&shy;<lb/>prietatibus; </s>
					<s id="N11946"><!-- NEW -->igitur fru&longs;tr&agrave; non e&longs;t, &amp; quodlibet punctum, quamlibet ato&shy;<lb/>mum, &amp; quamlibet guttulam aqu&aelig; e&longs;&longs;e partem huius vniuer&longs;itatis: </s>
					<s id="N1194C"><!-- NEW -->quod <lb/>enim dices de vna, dicam de omnibus; </s>
					<s id="N11952"><!-- NEW -->equidem pauciores e&longs;&longs;e po&longs;&longs;ent; <lb/>attamen nulla e&longs;t fru&longs;tr&agrave;, cum qu&aelig;libet &longs;imul cum aliis totum hoc com&shy;<lb/>ponat. </s>
				</p>
				<p id="N1195A" type="main">
					<s id="N1195C"><emph type="center"/><emph type="italics"/>Axioma VII.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N11968" type="main">
					<s id="N1196A"><emph type="italics"/>Tunc ponenda e&longs;t forma distincta &longs;ub&longs;tantialis vel accidentalis, dum e&longs;t ali&shy;<lb/>qua proprietas &longs;en&longs;ibilis, qu&aelig; non pote&longs;t tribui ip&longs;i materi&aelig;,<emph.end type="italics"/> h&icirc;c res tant&ugrave;m <lb/>naturales con&longs;idero, nec &longs;uper naturales attingo, qu&aelig; &longs;uas regulas diui&shy;<lb/>n&aelig; fidei debent, non &longs;en&longs;ibus. </s>
				</p>
				<p id="N11978" type="main">
					<s id="N1197A"><!-- NEW -->Hoc Axioma omnin&ograve; certum e&longs;t, &amp; per Ax. 3. confirmatur, vt enim <lb/>dicas aliquid di&longs;tinctum ab omni alio exi&longs;tere, vel debet id &longs;en&longs;u percipi, <lb/>vel aliqua ratione probari quod &longs;it; </s>
					<s id="N11982"><!-- NEW -->atqui formam &longs;ub&longs;tantialem &longs;en&longs;u <lb/>non percipis immediat&egrave;; </s>
					<s id="N11988"><!-- NEW -->igitur aliquem eius effectum &longs;en&longs;ibilem vel me&shy;<lb/>diat&egrave;, vel immediat&egrave;; </s>
					<s id="N1198E"><!-- NEW -->qui cert&egrave; &longs;i tribui po&longs;&longs;it materi&aelig;, haud dubi&egrave; per il&shy;<lb/>lum formam non probabis, ni&longs;i form&aelig; ip&longs;ius e&longs;&longs;e ant&egrave; demon&longs;tres; </s>
					<s id="N11994"><!-- NEW -->&longs;i ve&shy;<lb/>to e&longs;t forma accidentalis, quam &longs;en&longs;u percipis; cert&egrave; id tant&ugrave;m accidit ex <pb pagenum="8" xlink:href="026/01/040.jpg"/>aliqua affectione, qu&acirc; &longs;en&longs;um ip&longs;um afficit h&aelig;c forma, igitur ex effectu il&shy;<lb/>lo illam percipis, quod clarum e&longs;t. </s>
				</p>
				<p id="N119A1" type="main">
					<s id="N119A3"><!-- NEW -->Huc reuoca vulgare illud principium, <emph type="italics"/>Frustr&agrave; fit per plura, quod po&shy;<lb/>test fieri per pauciora,<emph.end type="italics"/> quod ad Tertium etiam reuocatur; </s>
					<s id="N119AF"><!-- NEW -->quod ita in&shy;<lb/>telligi non debet, vt &longs;ine gutta aqu&aelig; Oceanus, &longs;ine &longs;tella c&oelig;lum, &longs;ine gra&shy;<lb/>nulo aren&aelig; terra, &longs;ine altero oculorum homo &longs;tare non po&longs;&longs;int; </s>
					<s id="N119B7"><!-- NEW -->qu&aelig; <lb/>omnia fal&longs;i&longs;&longs;ima e&longs;&longs;e con&longs;tat; &longs;ed tant&ugrave;m quod illud dicatur exi&longs;tere &longs;iue <lb/>&longs;it &longs;ub&longs;tantia, &longs;iue accidens, quod vel experientia certa euincit, vel nece&longs;&shy;<lb/>&longs;itas, vel ratio, vel diuina fides &lpar;imm&ograve; &amp; humana in rebus humanis, non <lb/>tamen in &longs;cientiis.&rpar; </s>
				</p>
				<p id="N119C3" type="main">
					<s id="N119C5">Igitur nunquam claudicat hic equus Okami, vt vulg&ograve; dicitur, &longs;i hoc <lb/>fr&aelig;no regatur, &amp; pr&aelig;&longs;cripto ambulet pa&longs;&longs;u. </s>
				</p>
				<p id="N119CA" type="main">
					<s id="N119CC"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N119D8" type="main">
					<s id="N119DA">Ob&longs;eruabis &longs;eptem pr&aelig;mi&longs;&longs;a Axiomata, licet metaphy&longs;ica &longs;altem ali&shy;<lb/>qua ex parte e&longs;&longs;e videantur, ita pertinere ad Phy&longs;icam, vt plurim&aelig; phy&shy;<lb/>&longs;ic&aelig; affectiones &longs;ine illis explicari, &amp; demon&longs;trari non po&longs;&longs;int. </s>
				</p>
				<p id="N119E1" type="main">
					<s id="N119E3">Primum certum e&longs;t etiam certitudine metaphy&longs;ica, &longs;eu geometrica. </s>
					<s id="N119E6"><lb/>Secundum, Quartum, &amp; Quintum per Primum demon&longs;trari po&longs;&longs;unt. </s>
					<s id="N119EA"><!-- NEW --><lb/>Tertium e&longs;t veluti communis po&longs;itio, &longs;eu commune po&longs;tulatum, in quo <lb/>docti omnes conunciunt; </s>
					<s id="N119F1"><!-- NEW -->quippe nihil &longs;ine ratione dici debet &agrave; philo&longs;o&shy;<lb/>pho; </s>
					<s id="N119F7"><!-- NEW -->Sextum &amp; Septimum probari po&longs;&longs;unt per Tertium; &longs;ed iam ad <lb/>alia, qu&aelig; propi&ugrave;s ad phy&longs;icam accedunt, veniamus. </s>
				</p>
				<p id="N119FD" type="main">
					<s id="N119FF"><emph type="center"/><emph type="italics"/>Axioma VIII.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N11A0B" type="main">
					<s id="N11A0D"><emph type="italics"/>Quidquid prim&ograve; e&longs;t, &amp; ant&egrave; non erat, habet cau&longs;am di&longs;tinctam.<emph.end type="italics"/></s>
					<s id="N11A14"><!-- NEW --> Id e&longs;t quid&shy;<lb/>quid incipit e&longs;&longs;e ab alio e&longs;t; </s>
					<s id="N11A1A"><!-- NEW -->quippe &agrave; &longs;e e&longs;&longs;e non pote&longs;t; </s>
					<s id="N11A1E"><!-- NEW -->nihil enim &agrave; &longs;e <lb/>ip&longs;o dependere pote&longs;t &longs;eu produci; </s>
					<s id="N11A24"><!-- NEW -->quia quod &agrave; &longs;e e&longs;t, nece&longs;&longs;ari&ograve; e&longs;t, <lb/>quod ver&ograve; nece&longs;&longs;ari&ograve; e&longs;t, non e&longs;&longs;e non pote&longs;t, alioquin pri&ugrave;s e&longs;&longs;et, &amp; <lb/>po&longs;terius, pri&ugrave;s vt cau&longs;a, po&longs;teri&ugrave;s vt effectus: </s>
					<s id="N11A2C"><!-- NEW -->pr&aelig;terea quidquid produci&shy;<lb/>tur aliquando producitur, &amp; alicubi, vt certi&longs;&longs;imum e&longs;t; </s>
					<s id="N11A32"><!-- NEW -->&longs;ed quia hoc ali&shy;<lb/>qui negant, contendo tant&ugrave;m in hoc rerum ordine, &amp; naturaliter lo&shy;<lb/>quendo, quidquid producitur alicubi produci, &amp; aliquando, quod nemo <lb/>negabit; </s>
					<s id="N11A3C"><!-- NEW -->Igitur &longs;i aliquid &longs;e producit; cur h&icirc;c poti&ugrave;s quam ill&icirc;c? </s>
					<s id="N11A40">cur <lb/>nunc potius quam ant&egrave;? </s>
					<s id="N11A45">cum enim ant&egrave; nullibi e&longs;&longs;et, cur de&longs;init non <lb/>e&longs;&longs;e h&icirc;c &amp; non ill&icirc;c, nunc &amp; non ant&egrave;? </s>
					<s id="N11A4A"><!-- NEW -->hinc quod &agrave; &longs;e e&longs;t, vbique, &amp; <lb/>&longs;emper e&longs;t, &longs;ed ne quis mihi litem intendat, licet hoc Axioma certitudi&shy;<lb/>nem geometricam habeat; </s>
					<s id="N11A52"><!-- NEW -->&longs;ufficit mod&ograve; habere phy&longs;icam, quod ex om&shy;<lb/>nibus hypothe&longs;ibus demon&longs;tratur; </s>
					<s id="N11A58"><!-- NEW -->&longs;i enim aliquid de nouo produci&shy;<lb/>tur, quod certum e&longs;t, ab alio produci video: </s>
					<s id="N11A5E"><!-- NEW -->calor ab igne mediat&egrave; <lb/>vel immediat&egrave;, impetus &agrave; potentia motrice, vel ab alio impetu: </s>
					<s id="N11A64"><!-- NEW -->cuncta <lb/>h&aelig;c &longs;i reuera producuntur de quo alibi, ab alio produci con&longs;tat; </s>
					<s id="N11A6A"><!-- NEW -->in Me&shy;<lb/>taphy&longs;ica hoc ip&longs;um geometric&egrave; demon&longs;trabimus; </s>
					<s id="N11A70"><!-- NEW -->cum enim agere &longs;up&shy;<lb/>ponat e&longs;&longs;e; </s>
					<s id="N11A76"><!-- NEW -->quippe omnis actio alicuius agentis e&longs;t; </s>
					<s id="N11A7A"><!-- NEW -->&amp; cum agere termi&shy;<lb/>netur ad effectum, nam fieri e&longs;t alicuius fieri; cert&egrave; agens, &amp; terminus, <lb/>cau&longs;a, &amp; effectus di&longs;tinguuntur, igitur. <emph type="italics"/>Quidquid primo e&longs;t, &amp;c.<emph.end type="italics"/></s>
				</p>
				<pb pagenum="9" xlink:href="026/01/041.jpg"/>
				<p id="N11A8B" type="main">
					<s id="N11A8D"><emph type="center"/><emph type="italics"/>Axioma IX.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N11A99" type="main">
					<s id="N11A9B"><emph type="italics"/>Cau&longs;a debet exi&longs;tere vt immediat&egrave; agat.<emph.end type="italics"/></s>
					<s id="N11AA2"> Hoc certum e&longs;t; </s>
					<s id="N11AA5"><!-- NEW -->quia agere <lb/>&longs;upponit e&longs;&longs;e; </s>
					<s id="N11AAB"><!-- NEW -->quippe agere e&longs;t perfectio realis actu exi&longs;tens; igitur ali&shy;<lb/>cuius actu exi&longs;tentis; igitur certum e&longs;t etiam Geometric&egrave;, de quo in <lb/>Metaph. <!-- KEEP S--></s>
					<s id="N11AB4">Iam vero &longs;ufficiat certum e&longs;&longs;e phi&longs;ic&egrave;, vt con&longs;tat ex omnibus <lb/>hypoth. </s>
					<s id="N11AB9">phy&longs;icis; </s>
					<s id="N11ABC"><!-- NEW -->nihil enim videmus agere, ni&longs;i quod e&longs;t; </s>
					<s id="N11AC0"><!-- NEW -->&longs;i enim age&shy;<lb/>ret quod non e&longs;t; cur potius h&icirc;c, &amp; nunc quam alibi, &amp; ali&agrave;s? </s>
					<s id="N11AC6">cur in <lb/>hoc &longs;ubiecto potius qu&agrave;m in alio? </s>
				</p>
				<p id="N11ACB" type="main">
					<s id="N11ACD"><!-- NEW -->Dices, finis qui non e&longs;t influit; </s>
					<s id="N11AD1"><!-- NEW -->igitur agit; </s>
					<s id="N11AD5"><!-- NEW -->Re&longs;pondeo finem non <lb/>agere, nec influere ni&longs;i obiectiu&egrave;; </s>
					<s id="N11ADB"><!-- NEW -->atqui quod non exi&longs;tit actu, id e&longs;t in <lb/>&longs;tatu entatiuo, &amp; reali, pote&longs;t e&longs;&longs;e in &longs;tatu obiectiuo; </s>
					<s id="N11AE1"><!-- NEW -->id e&longs;t quod non <lb/>habet actum rei, pote&longs;t habere actum obiecti, id e&longs;t e&longs;&longs;e cognitum, &amp; <lb/>volitum, de quo ali&agrave;s; porr&ograve; h&icirc;c tant&ugrave;m intelligimus cau&longs;am efficien&shy;<lb/>tem, &amp;c. </s>
				</p>
				<p id="N11AEB" type="main">
					<s id="N11AED"><!-- NEW -->Dices, cau&longs;a principalis pulli exclu&longs;i pote&longs;t non e&longs;&longs;e; </s>
					<s id="N11AF1"><!-- NEW -->h&aelig;c omnia di&shy;<lb/>&longs;cutiemus &longs;uo loco cum de generatione animalium; </s>
					<s id="N11AF7"><!-- NEW -->&longs;ufficiat dixi&longs;&longs;e non <lb/>e&longs;&longs;e cau&longs;am immediatam, de qua h&icirc;c tantum loquimur; idem re&longs;pon&longs;um <lb/>e&longs;to de rana vaga. </s>
				</p>
				<p id="N11AFF" type="main">
					<s id="N11B01"><emph type="center"/><emph type="italics"/>Axioma X.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N11B0D" type="main">
					<s id="N11B0F"><emph type="italics"/>Cau&longs;a debet e&longs;&longs;e applicata vt immediat&egrave; agat.<emph.end type="italics"/></s>
					<s id="N11B16"><!-- NEW --> Cur enim poti&ugrave;s h&icirc;c <lb/>quam ill&icirc;c; in hoc &longs;ubiecto poti&ugrave;s, quam in alio, in hac di&longs;tantia poti&ugrave;s, <lb/>quam in alia? </s>
					<s id="N11B1E"><!-- NEW -->quidquid &longs;it, certum e&longs;t phy&longs;ic&egrave;; nec enim ignis, qui e&longs;t <lb/>Rom&aelig;, calefacit Lugduni. </s>
				</p>
				<p id="N11B24" type="main">
					<s id="N11B26"><!-- NEW -->Dices dari fort&egrave; actionem in di&longs;tans; </s>
					<s id="N11B2A"><!-- NEW -->Re&longs;pondeo negando, quod de&shy;<lb/>mon&longs;trabimus in Metaph.  pr&aelig;terea, licet daretur in productione quali&shy;<lb/>tatum occultarum, &amp; &longs;impathicorum quorundam effectuum, quos exa&shy;<lb/>minabimus &longs;uo loco; </s>
					<s id="N11B34"><!-- NEW -->nemo tamen dubitat quin productio caloris, lu&shy;<lb/>minis, impetus; de quibus hic tant&ugrave;m agimus, debeat e&longs;&longs;e ab applicata <lb/>cau&longs;a. </s>
				</p>
				<p id="N11B3C" type="main">
					<s id="N11B3E"><!-- NEW -->Dices impetum produci in extremitate pertic&aelig;, qu&aelig; non e&longs;t applica&shy;<lb/>ta, vel in globo tudiculario etiam non applicato; calorem &amp; lucem <lb/>produci &agrave; Sole in terra non applicata. </s>
					<s id="N11B46"><!-- NEW -->Re&longs;pondeo, e&longs;&longs;e applicationem <lb/>mediatam; nam &longs;i reuera h&aelig; qualitates producuntur continuata propa&shy;<lb/>gatione, diffunduntur per medium, in quo non e&longs;t difficultas. </s>
				</p>
				<p id="N11B4E" type="main">
					<s id="N11B50"><!-- NEW -->Dices etiam partes interiores cau&longs;&aelig; v. <!-- REMOVE S-->g. <!-- REMOVE S-->Solis agunt, &longs;ed non agunt <lb/>per totum medium; alioquin agerent in alias partes Solis, &agrave; quibus <lb/>obteguntur. </s>
					<s id="N11B5C"><!-- NEW -->Re&longs;pondeo, diffu&longs;ionem vel propagationem actionis in&shy;<lb/>choari tantum ab ips&acirc; &longs;uperficie Solis; </s>
					<s id="N11B62"><!-- NEW -->quippe omnes partes agunt <lb/>actione communi, de quo infr&agrave;; atqui actio communis &agrave; communi me&shy;<lb/>dio incipit. </s>
				</p>
				<p id="N11B6A" type="main">
					<s id="N11B6C">Dices ignem produci in parte medij remota interrupta propagatio&shy;<lb/>ne, vt con&longs;tat, &longs;i vitro per refractionem, vel &longs;peculo per reflectionem <lb/>radios Solares colligas. </s>
				</p>
				<p id="N11B73" type="main">
					<s id="N11B75"><!-- NEW -->Re&longs;pondeo, ignem quidem accendi in data di&longs;tantia; </s>
					<s id="N11B79"><!-- NEW -->at non &longs;ine <pb pagenum="10" xlink:href="026/01/042.jpg"/>aliqua applicatione, &longs;altem virtutis, in quo non e&longs;t difficultas; </s>
					<s id="N11B82"><!-- NEW -->quomo&shy;<lb/>do vero ignis accendatur, &amp; quid &longs;it ignem accendi, explicabimus &longs;uo <lb/>loco; quidquid &longs;it, certum e&longs;t ad productionem impetus requiri ali&shy;<lb/>quam applicationem, vt patet etiam in magnete. </s>
				</p>
				<p id="N11B8F" type="main">
					<s id="N11B91"><emph type="center"/><emph type="italics"/>Axioma XI.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N11B9D" type="main">
					<s id="N11B9F"><emph type="italics"/>Si cau&longs;a vniuoca applicata, &amp; non impedita est &longs;ufficiens ad productionem <lb/>effectus, non e&longs;t ponenda alia &longs;cilicet &aelig;quiuoca.<emph.end type="italics"/></s>
					<s id="N11BA8"><!-- NEW --> Non dico omnem cau&longs;am <lb/>e&longs;&longs;e vniuocam, &longs;ed tant&ugrave;m vniuocam &longs;ufficientem, &amp; applicatam e&longs;&longs;e <lb/>cau&longs;am, v. <!-- REMOVE S-->g. <!-- REMOVE S-->calor e&longs;t cau&longs;a &longs;ufficiens caloris, vt con&longs;tat in aqua calida; </s>
					<s id="N11BB4"><!-- NEW --><lb/>igitur &longs;i calor e&longs;t applicatus &longs;ubiecto, in quo producitur calor non &longs;upe&shy;<lb/>rans vires caloris applicati; </s>
					<s id="N11BBB"><!-- NEW -->dicendum e&longs;t calorem illum ab hoc produ&shy;<lb/>ci; </s>
					<s id="N11BC1"><!-- NEW -->cum calor &longs;it cau&longs;a nece&longs;&longs;aria; </s>
					<s id="N11BC5"><!-- NEW -->igitur &longs;i &longs;it applicatus &longs;ubjecto apto, <lb/>nece&longs;&longs;ari&ograve; agit; </s>
					<s id="N11BCB"><!-- NEW -->igitur quantum pote&longs;t; igitur effectus non e&longs;t tribuen&shy;<lb/>dus alteri cau&longs;&aelig;, quam &longs;ufficientem e&longs;&longs;e ignoramus. </s>
				</p>
				<p id="N11BD1" type="main">
					<s id="N11BD3"><!-- NEW -->Ad hoc Axioma aliud reuoca. <emph type="italics"/>Si ex applicatione alicuius &longs;equitur &longs;em&shy;<lb/>per effectus aliquis, illud ip&longs;um cau&longs;a dici debet huius effectus; </s>
					<s id="N11BDC"><!-- NEW -->licet aliud &longs;it <lb/>coniunctum, ex quo &longs;eor&longs;im &longs;umpto applicato non &longs;equitur effectus<emph.end type="italics"/>; </s>
					<s id="N11BE5"><!-- NEW -->v. <!-- REMOVE S-->g. <!-- REMOVE S-->ex <lb/>applicatione aqu&aelig; calid&aelig; &longs;equitur productio caloris; </s>
					<s id="N11BEF"><!-- NEW -->ex applicatione &longs;o&shy;<lb/>lius aqu&aelig; non &longs;equitur; </s>
					<s id="N11BF5"><!-- NEW -->igitur dicendum e&longs;t calorem hunc produci ab <lb/>ip&longs;o calore, qui aqu&aelig; ine&longs;t, non ver&ograve; ab ip&longs;a aqu&aelig; &longs;ub&longs;tantia; idem dico <lb/>de ferro frigido, &amp;c. </s>
				</p>
				<p id="N11BFD" type="main">
					<s id="N11BFF"><!-- NEW -->Dices non e&longs;&longs;e certum calorem produci; Re&longs;pondeo, negando; </s>
					<s id="N11C03"><!-- NEW -->&longs;ed, <lb/>quidquid &longs;it, loquor tant&ugrave;m hypothetic&egrave;; dixi enim &longs;i producatur, &agrave; <lb/>calore aqu&aelig; inh&aelig;rente producitur. </s>
				</p>
				<p id="N11C0B" type="main">
					<s id="N11C0D">Dices produci po&longs;&longs;e ab aliqua cau&longs;a ignota po&longs;ita dumtaxat tali, vel <lb/>tali conditione. </s>
					<s id="N11C12"><!-- NEW -->Re&longs;pondeo, hoc reuera geometric&egrave; non probari, &longs;ed <lb/>tant&ugrave;m phy&longs;ic&egrave;; </s>
					<s id="N11C18"><!-- NEW -->quidquid &longs;it, voco cau&longs;am id, ex cuius applicatione <lb/>&longs;equitur &longs;emper effectus, &amp; nunquam ali&agrave;s; </s>
					<s id="N11C1E"><!-- NEW -->nam phy&longs;ic&egrave; loquendo, &longs;iue <lb/>&longs;it alia cau&longs;a, &longs;iue non, eodem modo &longs;e habet, ac &longs;i e&longs;&longs;et cau&longs;a; quippe <lb/>certum e&longs;t phy&longs;ic&egrave; ignem calefacere, Solem illuminare, quod &longs;atis e&longs;t. </s>
				</p>
				<p id="N11C26" type="main">
					<s id="N11C28"><emph type="center"/><emph type="italics"/>Axioma XII.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N11C34" type="main">
					<s id="N11C36"><emph type="italics"/>Cau&longs;a nece&longs;&longs;aria &longs;ubiecto apto applicata, &amp; non impedita &longs;emper agit, &amp; <lb/>quantum pote&longs;t.<emph.end type="italics"/></s>
					<s id="N11C3F"><!-- NEW --> Hoc Axioma duas partes habet; </s>
					<s id="N11C43"><!-- NEW -->prima certa e&longs;t per hy&shy;<lb/>poth. 8. &amp; per definitionem cau&longs;&aelig; nece&longs;&longs;ari&aelig;, qu&aelig; in hoc differt &agrave; libe&shy;<lb/>r&acirc;: Secunda pars probatur; </s>
					<s id="N11C4B"><!-- NEW -->quia &longs;i partem effectus omitteret, quam ta&shy;<lb/>men ponere po&longs;&longs;et; haud dubi&egrave; non e&longs;&longs;et cau&longs;a nece&longs;&longs;aria contra hypoth. </s>
					<s id="N11C51"><!-- NEW --><lb/>nam &longs;i vnam partem effectus omittat; cur vnam poti&ugrave;s quam aliam? </s>
					<s id="N11C56"><lb/>cur non duas? </s>
					<s id="N11C5A">cur non omnes? </s>
					<s id="N11C5D">denique video cau&longs;am eandem eidem <lb/>&longs;ubiecto eodem modo applicatam, eundem &longs;emper effectum producere <lb/>per Hyp. <!-- REMOVE S-->8. </s>
				</p>
				<p id="N11C66" type="main">
					<s id="N11C68"><emph type="center"/><emph type="italics"/>Axioma XIII<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N11C74" type="main">
					<s id="N11C76"><emph type="italics"/>Exten&longs;io cau&longs;a non intendit effectum ad intra.<emph.end type="italics"/></s>
					<s id="N11C7D"><!-- NEW --> Qu&aelig;libet pars maioris <lb/>ignis non habet calorem inten&longs;iorem, qu&agrave;m qu&aelig;libet pars minoris; idem <pb pagenum="11" xlink:href="026/01/043.jpg"/>dico de grauitate plumbi, &amp;c. </s>
					<s id="N11C88">nec enim libra plumbi coniuncta cum <lb/>alia habet diuer&longs;am grauitatem ab e&acirc;, quam habet &longs;eparata. </s>
				</p>
				<p id="N11C8D" type="main">
					<s id="N11C8F">Dixi ad intra; </s>
					<s id="N11C92"><!-- NEW -->quia ad extra multum iuuat exten&longs;io; </s>
					<s id="N11C96"><!-- NEW -->&longs;ic maior ignis <lb/>longi&ugrave;s diffundit &longs;uum calorem; </s>
					<s id="N11C9C"><!-- NEW -->corpus graui&ugrave;s cadens majorem ictum <lb/>infligit; Ad hoc Axioma reuocatur i&longs;tud. </s>
				</p>
				<p id="N11CA2" type="main">
					<s id="N11CA4"><!-- NEW -->1. <emph type="italics"/>Omnes partes eiu&longs;dem cau&longs;&aelig; agunt ad extra actione communi,<emph.end type="italics"/> iuxta <lb/>eum modum quo illam explicabimus in Metaph.  nec punctum Solis &longs;e&shy;<lb/>paratum ad eandem di&longs;tantiam &longs;uam lucem, caloremque &longs;uum diffunde&shy;<lb/>ret; </s>
					<s id="N11CB4"><!-- NEW -->ad quam diffundit coniunctum cum aliis; </s>
					<s id="N11CB8"><!-- NEW -->idem dico de igne maiori, <lb/>&amp; minori; de quibus omnibus &longs;uo loco. </s>
					<s id="N11CBE">Huc etiam reuoca dicta illa <lb/>communia. </s>
				</p>
				<p id="N11CC3" type="main">
					<s id="N11CC5">2. <emph type="italics"/>Plures partes cau&longs;a plures partes effectus producunt, &amp; vici&longs;&longs;im.<emph.end type="italics"/></s>
				</p>
				<p id="N11CCD" type="main">
					<s id="N11CCF">3. <emph type="italics"/>Maior, &amp; perfectior cau&longs;a maiorem effectum producit, &amp; perfectiorem, <lb/>&amp; vici&longs;&longs;im.<emph.end type="italics"/></s>
				</p>
				<p id="N11CD9" type="main">
					<s id="N11CDB"><!-- NEW -->4. <emph type="italics"/>Perfectior effectus, vel imperfectior arguit cau&longs;am perfectiorem, vel im&shy;<lb/>perfectiorem, &longs;uppo&longs;it&acirc; e&acirc;dem applicatione; </s>
					<s id="N11CE4"><!-- NEW -->&longs;i enim maior e&longs;t applicatio &longs;ine <lb/>ratione loci, &longs;iue ratione temporis; haud dubi&egrave; maior erit effectus, vt con&longs;tat.<emph.end type="italics"/></s>
				</p>
				<p id="N11CEC" type="main">
					<s id="N11CEE"><emph type="center"/><emph type="italics"/>Axioma XIV.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N11CFA" type="main">
					<s id="N11CFC"><emph type="italics"/>Quidquid de&longs;truitur non e&longs;t &agrave; &longs;e.<emph.end type="italics"/></s>
					<s id="N11D03"><!-- NEW --> Hoc Axioma geometricum e&longs;t; </s>
					<s id="N11D07"><!-- NEW -->Quod <lb/>enim e&longs;t &agrave; &longs;e, nece&longs;&longs;ari&ograve; e&longs;t; </s>
					<s id="N11D0D"><!-- NEW -->c&ugrave;m &agrave; libertate &longs;eu voluntate alterius non <lb/>pendeat; </s>
					<s id="N11D13"><!-- NEW -->cum enim primo in&longs;tanti quo res e&longs;t, non &longs;it &agrave; &longs;e per Axiom. <!-- REMOVE S-->8. <lb/>de &longs;ecundo idem dici debet, quod de primo, vt patet: </s>
					<s id="N11D1B"><!-- NEW -->quippe id eo <lb/>primo in&longs;tanti non e&longs;t nece&longs;&longs;ari&ograve;, quia ita e&longs;t illo in&longs;tanti, vt po&longs;&longs;it non <lb/>e&longs;&longs;e; </s>
					<s id="N11D23"><!-- NEW -->&longs;ed etiam &longs;ecundo in&longs;tanti ita e&longs;t vt po&longs;&longs;it non e&longs;&longs;e; igitur non e&longs;t <lb/>nece&longs;&longs;ari&ograve;, igitur pendet ab alio, quod pote&longs;t facere vt non &longs;it. </s>
				</p>
				<p id="N11D29" type="main">
					<s id="N11D2B">Dices po&longs;&longs;e de&longs;trui &longs;ecundo in&longs;tanti ab aliquo contrario, &agrave; quo tamen <lb/>non pendet per po&longs;itiuum influxum. </s>
					<s id="N11D30"><!-- NEW -->Re&longs;pondeo, non videri quomo&shy;<lb/>do de&longs;trui po&longs;&longs;it, quod influxu po&longs;itiuo non indiget, vt &longs;it; quid enim <lb/>faceret contrarium, quod tant&ugrave;m exigere pote&longs;t contrarij de&longs;tructio&shy;<lb/>nem, quid e&longs;t porro de&longs;trui, ni&longs;i de&longs;inere con&longs;eruari? </s>
					<s id="N11D3A"><!-- NEW -->qu&aelig; omnia fus&egrave; <lb/>in Metaphy&longs;ica demon&longs;trabimus; </s>
					<s id="N11D40"><!-- NEW -->quidquid enim e&longs;t aliquo in&longs;tanti vel <lb/>e&longs;t &agrave; &longs;e, vel non &agrave; &longs;e; &longs;i prim&ugrave;m Deus e&longs;t; </s>
					<s id="N11D46"><!-- NEW -->&longs;i &longs;ecundum ab alio e&longs;t: <lb/>quidquid &longs;it, hoc Axioma certum e&longs;t phy&longs;ic&egrave;. </s>
				</p>
				<p id="N11D4C" type="main">
					<s id="N11D4E">Huc reuoca Axiomata &longs;equentia, qu&aelig; ex hoc vno deducuntur. </s>
				</p>
				<p id="N11D51" type="main">
					<s id="N11D53">1. <emph type="italics"/>Quidquid e&longs;t, &amp; non e&longs;t &agrave; &longs;e, e&longs;t, &longs;eu pendet, &longs;eu con&longs;eruatur ab alio.<emph.end type="italics"/><lb/>H&aelig;c enim &longs;unt idem, vt con&longs;tat. </s>
				</p>
				<p id="N11D5D" type="main">
					<s id="N11D5F">2. <emph type="italics"/>Quidquid destruitur, ad exigentiam alicuius de&longs;truitur, &longs;altem totius <lb/>natura, ne aliquid &longs;it fru&longs;tr&agrave;.<emph.end type="italics"/></s>
					<s id="N11D69"><!-- NEW --> Hoc etiam ex hypothe&longs;ibus &longs;equitur; </s>
					<s id="N11D6D"><!-- NEW -->cum <lb/>enim de&longs;trui &longs;it idem ac de&longs;inere con&longs;eruari; </s>
					<s id="N11D73"><!-- NEW -->cert&egrave; qui de&longs;init con&longs;er&shy;<lb/>uare in&longs;tanti A poti&ugrave;s quam in&longs;tanti B, hoc facere non pote&longs;t ni&longs;i ali&shy;<lb/>quid hoc exigat; &longs;cilicet iuxta leges natur&aelig;. </s>
				</p>
				<p id="N11D7B" type="main">
					<s id="N11D7D">3. <emph type="italics"/>Tandiu aliquid con&longs;eruatur, quandiu nihil exigit eius de&longs;tructionem.<emph.end type="italics"/><lb/>Hoc &longs;equitur ex priori, id e&longs;t quandiu e&longs;t eadem ratio, cur &longs;it, &amp; con&shy;<lb/>&longs;eruetur, qu&aelig; erat ant&egrave;. </s>
				</p>
				<pb pagenum="12" xlink:href="026/01/044.jpg"/>
				<p id="N11D8D" type="main">
					<s id="N11D8F"><emph type="center"/><emph type="italics"/>Axioma XV.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N11D9B" type="main">
					<s id="N11D9D"><emph type="italics"/>Contraria pugnant pro rata.<emph.end type="italics"/></s>
					<s id="N11DA4"><!-- NEW --> Nec enim alia regula e&longs;&longs;e pote&longs;t; </s>
					<s id="N11DA8"><!-- NEW -->&longs;ic minor <lb/>calor min&ugrave;s de&longs;truit frigoris; minor impetus min&ugrave;s de&longs;truit impetus <lb/>contrarij &lpar;&longs;i contrarium habet&rpar; qu&aelig; omnia con&longs;tant ex hypothe&longs;ibus. </s>
					<s id="N11DB0"><lb/>Ratio e&longs;t, quia pl&ugrave;s vel min&ugrave;s contrarij de&longs;truere, multam habet ex&shy;<lb/>ten&longs;ionem. </s>
					<s id="N11DB6">v.g. <!-- REMOVE S-->&longs;int duo contraria A &amp; B, &longs;it A vt 20. &longs;it B vt 5. cert&egrave; &longs;i <lb/>B de&longs;truat A &longs;upra ratam, vel &longs;upra id, quod &longs;ibi ex &aelig;quo re&longs;pondet, id <lb/>e&longs;t &longs;upra 5. cur potius 6. quam 7. 8. &amp;c. </s>
					<s id="N11DBF">Si infra, cur potius 4. quam 3. <lb/>2. &amp;c. </s>
					<s id="N11DC4">Igitur cum plures &longs;int termini t&ugrave;m infra, t&ugrave;m &longs;upra 5. cur potius <lb/>vnus qu&agrave;m alius? </s>
					<s id="N11DC9">atqui vnus tant&ugrave;m ex &aelig;quo re&longs;pondet, &longs;cilicet 5. &longs;ed <lb/>quod vnum e&longs;t determinatum e&longs;t, per Axioma 5. igitur pugnant pro <lb/>rata. </s>
					<s id="N11DD0"><!-- NEW -->Nec dicas A totum de&longs;trui &agrave; B, qu&ograve;d e&longs;t contra hypothe&longs;im, nam <lb/>modicum caloris non de&longs;truit totum frigus: </s>
					<s id="N11DD6"><!-- NEW -->in impetu res e&longs;t clari&longs;&longs;ima; <lb/>adde quod minor cau&longs;a min&ugrave;s agit per Ax. 13. num. </s>
					<s id="N11DDC">3. igitur min&ugrave;s exi&shy;<lb/>git; porr&ograve; cum dico vnum ab alio de&longs;trui, intelligo tant&ugrave;m ex applica&shy;<lb/>tione vnius &longs;equi de&longs;tructionem alterius &longs;altem ex parte. </s>
				</p>
				<p id="N11DE3" type="main">
					<s id="N11DE5">Ob&longs;eruabis h&aelig;c Axiomata &longs;altem maiori ex parte e&longs;&longs;e metaph. </s>
					<s id="N11DE8">qu&aelig; <lb/>nos fus&egrave; in Theorematis metaph. </s>
					<s id="N11DED"><!-- NEW -->explicabimus, &amp; demon&longs;trabimus; </s>
					<s id="N11DF1"><!-- NEW -->&longs;ed <lb/>nobis hoc loco &longs;atis e&longs;t, &longs;i parem cum phy&longs;icis &longs;upponas habere cer&shy;<lb/>titudinem, quod nemo negabit; con&longs;t&aacute;tque ex hypothe&longs;ibus, lic&egrave;t ma&shy;<lb/>iorem etiam habeant, de qua &longs;uo loco. </s>
				</p>
				<p id="N11DFB" type="main">
					<s id="N11DFD">Ob&longs;eruabis pr&aelig;tere&agrave; nos diuti&ugrave;s h&aelig;&longs;i&longs;&longs;e in pr&aelig;mittendis huic libro <lb/>Axiomatis, quod tamen in aliis libris non faciemus. </s>
				</p>
				<p id="N11E02" type="main">
					<s id="N11E04"><emph type="center"/><emph type="italics"/>Postulatum,<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N11E10" type="main">
					<s id="N11E12"><emph type="italics"/>Liceat datum corpus impellere, proiicere, deor&longs;um cadens excipere, motus <lb/>durationem &longs;en&longs;ibilem, &longs;patiumque &longs;en&longs;ibile, metiri, comparare, &amp;c.<emph.end type="italics"/></s>
				</p>
				<p id="N11E1B" type="main">
					<s id="N11E1D"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N11E2A" type="main">
					<s id="N11E2C"><emph type="italics"/>Motus e&longs;t aliquid realiter di&longs;tinctum &agrave; mobili.<emph.end type="italics"/></s>
					<s id="N11E33"> Demon&longs;tratur; Motus <lb/>e&longs;t in mobili, in quo ant&egrave; non erat per hypoth. </s>
					<s id="N11E38"><!-- NEW -->3. &amp; de&longs;init e&longs;&longs;e in mobili, <lb/>in quo ant&egrave; erat per hypoth.4. igitur mobile e&longs;t, &amp; non e&longs;t motus; </s>
					<s id="N11E3E"><!-- NEW -->igi&shy;<lb/>tur &agrave; motu &longs;eparatum; </s>
					<s id="N11E44"><!-- NEW -->igitur realiter di&longs;tinctum per Ax. 2. pr&aelig;terea <lb/>moueri, &amp; non moueri &longs;unt pr&aelig;dicata contradictoria, vt con&longs;tat; </s>
					<s id="N11E4A"><!-- NEW -->igi&shy;<lb/>tur eidem &longs;imul ine&longs;&longs;e non po&longs;&longs;unt per Ax. 1. igitur cum eo non &longs;unt <lb/>idem; </s>
					<s id="N11E52"><!-- NEW -->alioquin &longs;imul e&longs;&longs;ent; </s>
					<s id="N11E56"><!-- NEW -->igitur alterum illorum e&longs;t di&longs;tinctum &agrave; <lb/>mobili; </s>
					<s id="N11E5C"><!-- NEW -->non quies, vt con&longs;tat, qu&aelig; e&longs;t tant&ugrave;m negatio motus, &longs;eu per&shy;<lb/>&longs;euerantia in eodem loco; </s>
					<s id="N11E62"><!-- NEW -->igitur nullam dicit mutationem; at ver&ograve; <lb/>motus mutationem dicit, per Def. <!-- REMOVE S-->1. hoc Theorema fus&egrave; demon&longs;trabo <lb/>in Metaph. <!-- KEEP S--></s>
				</p>
				<p id="N11E6D" type="main">
					<s id="N11E6F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N11E7C" type="main">
					<s id="N11E7E"><emph type="italics"/>Motus non pote&longs;t dici propri&egrave; productus immediat&egrave;, vel effectus immedia&shy;<lb/>tus cau&longs;&aelig; efficientis.<emph.end type="italics"/></s>
					<s id="N11E87"> Demon&longs;t. </s>
					<s id="N11E8A"><!-- NEW -->Motus e&longs;t mutatio, &longs;eu tran&longs;itus ex loco <lb/>in locum per Def. <!-- REMOVE S-->1. &longs;ed mutatio propri&egrave; non producitur; </s>
					<s id="N11E92"><!-- NEW -->quipp&egrave; pro&shy;<lb/>ductio tant&ugrave;m terminatur ad ens; </s>
					<s id="N11E98"><!-- NEW -->nihil enim ni&longs;i ens produci pote&longs;t; </s>
					<s id="N11E9C"><!-- NEW --><pb pagenum="13" xlink:href="026/01/045.jpg"/>atqui nulla mutatio dicit tant&ugrave;m ens; </s>
					<s id="N11EA4"><!-- NEW -->pr&aelig;&longs;ertim h&aelig;c, qu&aelig; tant&ugrave;m dicit <lb/>terminum &agrave; quo, ide&longs;t locum relictum; </s>
					<s id="N11EAA"><!-- NEW -->&amp; terminum ad quem, id e&longs;t lo&shy;<lb/>cum immediatum acqui&longs;itum; </s>
					<s id="N11EB0"><!-- NEW -->nam &longs;eparato quocunque alio ab ip&longs;o <lb/>mobili; </s>
					<s id="N11EB6"><!-- NEW -->modo &longs;imul, id e&longs;t eodem in&longs;tanti relinquat primum locum, &amp; <lb/>nouum acquirat, omnin&ograve; mouetur, &longs;ed concretum illud ex loco relicto, <lb/>&amp; acqui&longs;ito produci non pote&longs;t; </s>
					<s id="N11EBE"><!-- NEW -->illud autem e&longs;t motus, qui cert&egrave; non <lb/>dicit tant&ugrave;m locum relictum &longs;ine acqui&longs;ito; </s>
					<s id="N11EC4"><!-- NEW -->alioqui &longs;i mobile de&longs;true&shy;<lb/>retur, diceretur moueri; </s>
					<s id="N11ECA"><!-- NEW -->nec etiam locum acqui&longs;itum &longs;ine priori relicto: </s>
					<s id="N11ECE"><!-- NEW --><lb/>alioqui &longs;i mobile prim&ograve; produceretur, diceretur moueri localiter; </s>
					<s id="N11ED3"><!-- NEW -->igitur <lb/>motus neutrum dicit &longs;eor&longs;im; &longs;i primum, diceretur de&longs;tructus; </s>
					<s id="N11ED9"><!-- NEW -->&longs;i &longs;ecun&shy;<lb/>dum, diceretur aliquo modo productus, vel poti&ugrave;s acqui&longs;itus; </s>
					<s id="N11EDF"><!-- NEW -->at vtrum&shy;<lb/>que coniunctim, &longs;imulque e&longs;&longs;entialiter dicit motus; </s>
					<s id="N11EE5"><!-- NEW -->nec enim conci&shy;<lb/>pio aliud, dum concipio motum: </s>
					<s id="N11EEB"><!-- NEW -->porr&ograve; vtrumque &longs;imul &longs;umptum indi&shy;<lb/>ui&longs;ibiliter non pote&longs;t dici, vel de&longs;tructum propri&egrave;, vel productum; Di&shy;<lb/>xi propri&egrave;; nam impropri&egrave; dici pote&longs;t motus productus. </s>
				</p>
				<p id="N11EF4" type="main">
					<s id="N11EF6"><!-- NEW -->Dices Motus e&longs;t ens, non &agrave; &longs;e; igitur ab alio; igitur motus e&longs;t pro&shy;<lb/>ductus. </s>
					<s id="N11EFC"><!-- NEW -->Re&longs;pondeo Motum non e&longs;&longs;e ens ab&longs;olutum, &longs;ed e&longs;&longs;e mutatio&shy;<lb/>nem entis, qu&aelig; mutatio e&longs;t concretum quoddam ex ente &amp; non ente; </s>
					<s id="N11F02"><!-- NEW --><lb/>qu&ograve;d cert&egrave; non pote&longs;t dici propri&egrave; productum, &longs;ed re&longs;ultans, vt relatio; </s>
					<s id="N11F07"><!-- NEW --><lb/>nam producatur, &longs;i fieri pote&longs;t; </s>
					<s id="N11F0C"><!-- NEW -->cert&egrave; e&longs;t aliquid, quod tam facil&egrave; de&shy;<lb/>&longs;trui pote&longs;t, quam produci; </s>
					<s id="N11F12"><!-- NEW -->igitur de&longs;truatur, &amp; remaneat tant&ugrave;m en&shy;<lb/>titas mobilis, qu&aelig;, quo in&longs;tanti priorem locum relinquit, nouum acqui&shy;<lb/>rat; cert&egrave; dicitur adhuc moueri, &amp; tamen non erit motus ex &longs;uppo&longs;itio&shy;<lb/>ne, quod ab&longs;urdum e&longs;t. </s>
				</p>
				<p id="N11F1C" type="main">
					<s id="N11F1E"><!-- NEW -->Dices potentia motrix e&longs;t actiua; </s>
					<s id="N11F22"><!-- NEW -->igitur agit; igitur producit, &longs;ed ni&shy;<lb/>hil ni&longs;i motum. </s>
					<s id="N11F28">Re&longs;p. potentiam motricem e&longs;&longs;e actiuam vt dicemus, <lb/>&amp; ab e&acirc; produci impetum, qui deinde exigit motum, vt dicemus <lb/>infr&agrave;. </s>
				</p>
				<p id="N11F2F" type="main">
					<s id="N11F31"><!-- NEW -->Nec e&longs;t quod aliqui ita mirentur h&aelig;c &agrave; me dici; </s>
					<s id="N11F35"><!-- NEW -->cum certum &longs;it effe&shy;<lb/>ctus formales &longs;ecundarios principum fer&egrave; qualitatum tales e&longs;&longs;e, vt mini&shy;<lb/>m&egrave; producantur; </s>
					<s id="N11F3D"><!-- NEW -->&longs;ed qua&longs;i re&longs;ultent ab exigentia; v. <!-- REMOVE S-->g. <!-- REMOVE S-->effectus calo&shy;<lb/>ris in &longs;uo &longs;ubiecto e&longs;t eiu&longs;dem &longs;ubiecti rarefactio, qu&aelig; reuer&acirc; non <lb/>producitur, vt con&longs;tat. </s>
				</p>
				<p id="N11F49" type="main">
					<s id="N11F4B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N11F58" type="main">
					<s id="N11F5A"><emph type="italics"/>Motus e&longs;t ab alio di&longs;tincto in aliquo genere cau&longs;&aelig;.<emph.end type="italics"/></s>
					<s id="N11F61"><!-- NEW --> Demon&longs;tratur, quia <lb/>motus, qui non erat, incipit e&longs;&longs;e per hypothe&longs;im tertiam; &longs;ed quod <lb/>huiu&longs;modi e&longs;t, habet cau&longs;am di&longs;tinctam per Ax.8. <!-- KEEP S--></s>
				</p>
				<p id="N11F6A" type="main">
					<s id="N11F6C"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N11F78" type="main">
					<s id="N11F7A"><!-- NEW -->Ob&longs;eruabis motum localem e&longs;&longs;e duplicis generis; </s>
					<s id="N11F7E"><!-- NEW -->primum genus mo&shy;<lb/>tus e&longs;t actio potenti&aelig; motricis, qu&aelig; reuer&agrave; mouet, &amp; cuius exercitium <lb/>dicitur motus, &longs;eu latio, &longs;eu motio, &longs;eu actio, qua reuer&acirc; agit, produ&shy;<lb/>citque impetum, non motum; </s>
					<s id="N11F88"><!-- NEW -->cum etiam &longs;ine motu defatigetur, vt cum <lb/>quis alium pellit, &agrave; quo pellitur &aelig;quali ni&longs;u; </s>
					<s id="N11F8E"><!-- NEW -->patet etiam in manu &longs;u&shy;<lb/>&longs;tinente aliquod pondus, qu&aelig; non mouetur; </s>
					<s id="N11F94"><!-- NEW -->licet reuer&acirc; etiam &longs;ummo <pb pagenum="14" xlink:href="026/01/046.jpg"/>conatu agat: </s>
					<s id="N11F9D"><!-- NEW -->imm&ograve; &longs;i potentia motrix produceret motum primum, non <lb/>impetum in corpore proiecto; </s>
					<s id="N11FA3"><!-- NEW -->nulla deinde e&longs;&longs;et cau&longs;a applicata ad pro&shy;<lb/>ducendum impetum: </s>
					<s id="N11FA9"><!-- NEW -->Itaque hic motus primi generis, &longs;i comparetur <lb/>cum potentia motrice, e&longs;t ver&egrave; influxus, vel actio; </s>
					<s id="N11FAF"><!-- NEW -->&longs;i cum termino, e&longs;t <lb/>eius fieri, &longs;eu dependentia; </s>
					<s id="N11FB5"><!-- NEW -->&longs;i cum &longs;ubiecto, &longs;eu mobili e&longs;t pa&longs;&longs;io; </s>
					<s id="N11FB9"><!-- NEW -->nec <lb/>propri&egrave; dicitur produci, ni&longs;i vt quo &lpar;vt vulg&ograve; loquuntur&rpar; nec enim <lb/>actio e&longs;t terminus, vel effectus, in quo &longs;i&longs;tat cau&longs;a; &longs;ed e&longs;t via, qua ten&shy;<lb/>dit ad terminum. </s>
					<s id="N11FC3"><!-- NEW -->Motus &longs;ecundi generis e&longs;t mutatio, &longs;eu tran&longs;itus ex <lb/>vno loco in alium; </s>
					<s id="N11FC9"><!-- NEW -->hoc e&longs;t finis, vel effectus formalis &longs;ecundarius, <lb/>quem exigit impetus; </s>
					<s id="N11FCF"><!-- NEW -->&amp; fru&longs;tr&agrave; ponitur alia entitas, qu&aelig; tant&ugrave;m e&longs;&longs;et <lb/>in&longs;tituta ad exigendam i&longs;tam loci mutationem; Igitur &longs;i &longs;ufficienter <lb/>exigatur ab ip&longs;o impetu, de quo infr&agrave;, cert&egrave; fru&longs;tra ponitur quodcun&shy;<lb/>que aliud per Ax.3. &amp; 7. </s>
				</p>
				<p id="N11FD9" type="main">
					<s id="N11FDB"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N11FE8" type="main">
					<s id="N11FEA"><emph type="italics"/>Cau&longs;a illa immediata motus, qu&aelig; non est efficiens, potest tant&ugrave;m e&longs;&longs;e exi&shy;<lb/>gens, qu&aelig; reducitur ad formalem, qu&aelig; &longs;uum effectum formalem &longs;ecundarium, <lb/>id est &longs;uum finem intrin&longs;ecum exigit.<emph.end type="italics"/></s>
					<s id="N11FF5"><!-- NEW --> Sic calor exigit rarefactionem, vel <lb/>re&longs;olutionem, impetus motum; </s>
					<s id="N11FFB"><!-- NEW -->cum enim non &longs;it cau&longs;a efficiens per Th. <!-- REMOVE S--><lb/>2. &longs;it tamen cau&longs;a per Th.3. nec &longs;it materialis, nec finalis, vt con&longs;tat, de&shy;<lb/>bet e&longs;&longs;e formalis, vel exigens, &longs;eu exigitiua; </s>
					<s id="N12004"><!-- NEW -->vt patet ex ip&longs;a cau&longs;arum <lb/>enumeratione; </s>
					<s id="N1200A"><!-- NEW -->non e&longs;t materialis, quia non recipit motum, ni&longs;i ab alio; </s>
					<s id="N1200E"><!-- NEW --><lb/>nec finalis, qu&aelig; &longs;upponit alias; cum ip&longs;a non &longs;it dum ponitur <lb/>effectus. </s>
				</p>
				<p id="N12015" type="main">
					<s id="N12017"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 5.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N12024" type="main">
					<s id="N12026"><!-- NEW --><emph type="italics"/>Entitas &longs;eu &longs;ubstantia mobilis non e&longs;t cau&longs;a immediata motus,<emph.end type="italics"/> Sit enim <lb/>lapis proiectus per Po&longs;tul. <!-- REMOVE S-->haud dubi&egrave; &longs;ub&longs;tantia lapidis non e&longs;t cau&longs;a <lb/>huius motus; </s>
					<s id="N12035"><!-- NEW -->quia lapis tandem &longs;i&longs;tit per hypoth.4. igitur non e&longs;t cau&longs;a <lb/>motus, quia e&longs;&longs;et cau&longs;a nece&longs;&longs;aria; </s>
					<s id="N1203B"><!-- NEW -->igitur &longs;emper cau&longs;aret per Ax.12. pr&aelig;&shy;<lb/>terea potentia motrix proiicientis ver&egrave; agit, cum etiam defatigetur; </s>
					<s id="N12041"><!-- NEW -->igi&shy;<lb/>tur aliquid producit, non motum immediat&egrave;, qui produci non pote&longs;t pro<lb/>pri&egrave;per Th. 2. Adde quod motus &longs;ecundi generis habet tant&ugrave;m cau&longs;am <lb/>immediatam exigentem, &longs;ed potentia motrix non exigit; </s>
					<s id="N1204B"><!-- NEW -->quia prim&ograve; <lb/>non defatigaretur exigendo; </s>
					<s id="N12051"><!-- NEW -->&longs;ecund&ograve; quia lapis &longs;eparatus &agrave; manu etiam <lb/>mouetur, &longs;ed non ad exigentiam potenti&aelig; motricis, vt patet; </s>
					<s id="N12057"><!-- NEW -->quia &longs;tatim <lb/>po&longs;t &longs;eparationem pote&longs;t illa potentia de&longs;trui, lic&egrave;t lapis longo p&ograve;&longs;t <lb/>tempore moueatur; &longs;ed quod non e&longs;t, nihil exigit. </s>
				</p>
				<p id="N1205F" type="main">
					<s id="N12061">Aliquis fort&egrave; diceret potentiam motricem exigere primam partem <lb/>motus, qu&aelig; deinde &longs;ecundam exigit, &amp; &longs;ecunda tertiam, tertia quar&shy;<lb/>tam, &amp;c. </s>
					<s id="N12068">Sed contra; </s>
					<s id="N1206B"><!-- NEW -->qu&aelig;ro quid &longs;it prima illa pars motus; </s>
					<s id="N1206F"><!-- NEW -->nec enim <lb/>aliud agno&longs;co ni&longs;i primam mutationem loci, qu&aelig; mutatio non pote&longs;t <lb/>exigere ni&longs;i quando e&longs;t; </s>
					<s id="N12077"><!-- NEW -->atqui quando e&longs;t, nihil reale e&longs;t actu ni&longs;i mo&shy;<lb/>bile, &amp; nouus locus acqui&longs;itus, mobile ip&longs;um non exigit, vt demon&longs;tra&shy;<lb/>tum e&longs;t, &amp; conce&longs;&longs;um, nec etiam locus de nouo acqui&longs;itus, in quo <lb/>&longs;cilicet mobile &longs;i&longs;tere pote&longs;t: quidquid pones aliud, impetum appellabo. </s>
				</p>
				<pb pagenum="15" xlink:href="026/01/047.jpg"/>
				<p id="N12085" type="main">
					<s id="N12087">Dices cum graue aliquod mouetur deor&longs;um, vel leue &longs;ur&longs;um, vel <lb/>corpus animatum &longs;e ip&longs;um mouet, dici pote&longs;t &longs;ub&longs;tantia corporis cau&longs;a <lb/>immediata motus. </s>
					<s id="N1208E"><!-- NEW -->Re&longs;p. negando, t&ugrave;m quia omnis potentia motrix <lb/>agit; </s>
					<s id="N12094"><!-- NEW -->igitur producit aliquid aliud, quod e&longs;t cau&longs;a motus: pr&aelig;terea po&shy;<lb/>tentia motrix corporis animati, agit v&longs;que ad defatigationem, &longs;udorem, <lb/>lic&egrave;t non &longs;it motus, igitur aliud producit, de corpore graui probabi&shy;<lb/>mus infr&agrave;. </s>
				</p>
				<p id="N1209E" type="main">
					<s id="N120A0"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 6.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N120AD" type="main">
					<s id="N120AF"><emph type="italics"/>Datur impetus.<emph.end type="italics"/></s>
					<s id="N120B6"><!-- NEW --> Demon&longs;tro, Sub&longs;tantia mobilis non e&longs;t cau&longs;a imme&shy;<lb/>diata motus, per Th.5. ergo aliquid aliud; igitur impetus, nam quod di&shy;<lb/>&longs;tinctum e&longs;t &agrave; &longs;ub&longs;tantia mobilis, &amp; exigit motum, e&longs;t impetus per <lb/>Def.3. &longs;ed quia hoc Theorema e&longs;t veluti princeps huius tractatus cardo, <lb/>in eo paul&ograve; diutius h&aelig;rendum e&longs;t, igitur. </s>
				</p>
				<p id="N120C2" type="main">
					<s id="N120C4"><!-- NEW -->Demon&longs;tro prim&ograve; dari impetum: </s>
					<s id="N120C8"><!-- NEW -->Quidquid e&longs;t, &amp; ant&egrave; non erat, non <lb/>e&longs;t &agrave; &longs;e, &longs;ed habet cau&longs;am per Ax.8. Motus de nouo e&longs;t per hypothe&longs;im <lb/>tertiam; </s>
					<s id="N120D0"><!-- NEW -->igitur habet cau&longs;am, &longs;ed non aliam, quam impetum, quod pro&shy;<lb/>bo: </s>
					<s id="N120D6"><!-- NEW -->Lapis cadens, vel impactus in alium lapidem mouet illum per hy&shy;<lb/>poth.7. &longs;ed &longs;ub&longs;tantia lapidis in alium impacti non e&longs;t cau&longs;a huius mo&shy;<lb/>tus, quia e&longs;&longs;et cau&longs;a nece&longs;&longs;aria vt patet; </s>
					<s id="N120DE"><!-- NEW -->igitur applicata eundem effe&shy;<lb/>ctum produceret per Ax.12. &longs;ed etiam applicata immediata non agit, vt <lb/>con&longs;tat experientia; igitur per idem Axioma non e&longs;t cau&longs;a. </s>
				</p>
				<p id="N120E6" type="main">
					<s id="N120E8"><!-- NEW -->Scio e&longs;&longs;e aliquas re&longs;pon&longs;iones, quas infr&agrave; refellemus; nunc &longs;ufficiat <lb/>dixi&longs;&longs;e lapidem impactum non producere motum, qui propri&egrave; non pro&shy;<lb/>ducitur per Th.2. nec exigere, vt con&longs;tat ex &longs;ecunda probatione Th. 5. <lb/>igitur &longs;i aliquid exigit, vel producit, voco impetum. </s>
				</p>
				<p id="N120F2" type="main">
					<s id="N120F4">Secund&ograve; probatur; potentia motrix e&longs;t actiua, quia defatigatur, quis <lb/>hoc neget? </s>
					<s id="N120F9"><!-- NEW -->igitur aliquid producit; </s>
					<s id="N120FD"><!-- NEW -->non motum, qui propri&egrave; non pro&shy;<lb/>ducitur per Th.2. igitur aliquid aliud; voco impetum; </s>
					<s id="N12103"><!-- NEW -->adde quod etiam <lb/>&longs;ine motu agit, &amp; defatigatur vt iam dictum e&longs;t; </s>
					<s id="N12109"><!-- NEW -->igitur habet alium effe&shy;<lb/>ctum immediatum; denique mouere, pellere, trahere, proiicere, percu&shy;<lb/>tere, nihil ni&longs;i actionem &longs;onant. </s>
				</p>
				<p id="N12111" type="main">
					<s id="N12113">Terti&ograve; probatur; pila di&longs;iuncta &agrave; manu proiicientis diu adhuc mo&shy;<lb/>uetur per hypoth.6. igitur hic motus habet cau&longs;am per Ax. 8. qu&aelig;libet <lb/>enim pars motus de nouo e&longs;t, neque du&aelig; illius partes &longs;imul e&longs;&longs;e po&longs;&longs;unt. </s>
					<s id="N1211A"><!-- NEW --><lb/>atqui potentia motrix non e&longs;t cau&longs;a per Ax.10. imm&ograve; pote&longs;t e&longs;&longs;e de&longs;tru&shy;<lb/>cta; igitur non e&longs;t cau&longs;a per Ax. 9. <!--neuer Satz-->Non e&longs;t etiam cau&longs;a &longs;ub&longs;tantia pil&aelig; <lb/>mobilis per Th.5.5. nec priores pattes motus per re&longs;p. </s>
					<s id="N12125"><!-- NEW -->ad primam in&shy;<lb/>&longs;tantiam Th 5. igitur aliquid aliud; voco impetum. </s>
				</p>
				<p id="N1212B" type="main">
					<s id="N1212D">Quart&ograve; probatur; </s>
					<s id="N12130"><!-- NEW -->pila proiecta &longs;en&longs;im &longs;ine &longs;en&longs;u tardiore motu <lb/>mouetur; donec tandem moueri omnino de&longs;inat per hypoth. </s>
					<s id="N12136"><!-- NEW -->5. igitur <lb/>non e&longs;t &longs;emper &aelig;qualis, &amp; eadem cau&longs;a huius motus per Ax. 12. &amp; 13. <lb/>num.3. igitur cau&longs;a huius motus eodem modo debilitatur, &longs;eu remitti&shy;<lb/>tur, quo ip&longs;e motus; </s>
					<s id="N12140"><!-- NEW -->&longs;ed decre&longs;cit &longs;ub&longs;tantia mobilis, nec potentia mo-<pb pagenum="16" xlink:href="026/01/048.jpg"/>trix, vel corpus prius impactum; </s>
					<s id="N12149"><!-- NEW -->ergo e&longs;t alia cau&longs;a pr&aelig;&longs;ens, qu&aelig; mi&shy;<lb/>nuitur; voco impetum. </s>
				</p>
				<p id="N1214F" type="main">
					<s id="N12151"><!-- NEW -->Quint&ograve; corpus graue deor&longs;um cadens accelerat &longs;uum motum, vt patet <lb/>experientia; </s>
					<s id="N12157"><!-- NEW -->qu&aelig; maxim&egrave; clara e&longs;t in funependulis, de qua in &longs;equen&shy;<lb/>tibus libris; </s>
					<s id="N1215D"><!-- NEW -->igitur debet e&longs;&longs;e cau&longs;a huius motus velocioris; </s>
					<s id="N12161"><!-- NEW -->non e&longs;t au&shy;<lb/>tem &longs;ub&longs;tantia lapidis, nec grauitas per Ax. 12. nec aliud quidpiam ex&shy;<lb/>trin&longs;ecum, vt videbimus &longs;uo loco; igitur aliquid aliquid intrin&longs;ecum, <lb/>voco impetum. </s>
					<s id="N1216B"><!-- NEW -->Igitur certum e&longs;t dari impetum; qui cert&egrave; tribui non <lb/>pote&longs;t, vel vlli connotationi, vel alteri exigenti&aelig;, vt con&longs;tat ex <lb/>dictis. </s>
				</p>
				<p id="N12173" type="main">
					<s id="N12175"><!-- NEW -->Diceret fort&egrave; alius h&aelig;c omnia e&longs;&longs;e dubia; </s>
					<s id="N12179"><!-- NEW -->nam fieri pote&longs;t vt Deus <lb/>tant&ugrave;m moueat; </s>
					<s id="N1217F"><!-- NEW -->quod &longs;ine impetu fieri po&longs;&longs;e certum e&longs;t; </s>
					<s id="N12183"><!-- NEW -->Re&longs;p. equi&shy;<lb/>dem per miraculum hoc fieri po&longs;&longs;e; &longs;ed quemadmadum certum e&longs;t phy&shy;<lb/>&longs;ic&egrave; ignem applicatum calefacere, niuem frigefacere, &amp; mod&ograve; calamum <lb/>&agrave; me h&aelig;c &longs;cribente moueri, ita certum o&longs;t phy&longs;ic&egrave; &longs;agittam &agrave; &longs;agittario <lb/>emitti, &amp; pilam &agrave; proiiciente, &amp;c. </s>
					<s id="N1218F"><!-- NEW -->adde quod Deus, vt auctor natur&aelig; <lb/>e&longs;t, agit tant&ugrave;m; </s>
					<s id="N12195"><!-- NEW -->vel de&longs;init agere iuxta exigentiam cau&longs;arum &longs;ecunda&shy;<lb/>rum; denique cau&longs;am phy&longs;ic&egrave; appello, ex cuius applicatione nunquam <lb/>non &longs;equitur effectus per Ax.11. num.1. </s>
				</p>
				<p id="N1219D" type="main">
					<s id="N1219F"><!-- NEW -->Dicerent alij hoc totum prouenire &agrave; corpu&longs;culis; </s>
					<s id="N121A3"><!-- NEW -->vel atomis, vel fila&shy;<lb/>mentis &longs;ine vlla actione; </s>
					<s id="N121A9"><!-- NEW -->equidem non reiicio corpu&longs;cula, &amp; perennia <lb/>corporum effluuia: </s>
					<s id="N121AF"><!-- NEW -->Dico tamen prim&ograve; globum quie&longs;centem humi ha&shy;<lb/>bere &longs;altem aliquas partes quie&longs;centes, vel immobiles; quis hoc neget? </s>
					<s id="N121B5"><!-- NEW --><lb/>imm&ograve; maximam &longs;uarum partium partem; </s>
					<s id="N121BA"><!-- NEW -->igitur cum deinde proiicitur <lb/>idem globus, ill&aelig; partes mouentur; </s>
					<s id="N121C0"><!-- NEW -->dari igitur debet cau&longs;a huius motus <lb/>per Ax.8, igitur impetus: </s>
					<s id="N121C6"><!-- NEW -->nec dicas moueri illas partes &agrave; corpu&longs;culis; </s>
					<s id="N121CA"><!-- NEW -->quia <lb/>ant&egrave; erant eadem, imm&ograve; plura corpu&longs;cula; </s>
					<s id="N121D0"><!-- NEW -->&amp; tamen non mouebant: </s>
					<s id="N121D4"><!-- NEW -->igi&shy;<lb/>tur non &longs;unt cau&longs;a huius motus per Ax.12. Dices excitari; &longs;ed quid hoc <lb/>e&longs;t excitari? </s>
					<s id="N121DC"><!-- NEW -->vel enim mutantur, vel non mutantur; </s>
					<s id="N121E0"><!-- NEW -->&longs;ecundum dici <lb/>non pote&longs;t; </s>
					<s id="N121E6"><!-- NEW -->quia vt excitentur, ex non excitatis mutari debent; igitur <lb/>per aliquid: </s>
					<s id="N121EC"><!-- NEW -->deinde quid e&longs;t illa excitatio, ni&longs;i impul&longs;io; igitur &longs;i mouen&shy;<lb/>tur illa corpu&longs;cula, &amp; excitantur &agrave; potentia motrice, etiam partes prius <lb/>immobiles mouebuntur, &amp; excitabuntur per Ax.12. quia &longs;unt applicat&aelig; <lb/>cau&longs;&aelig; nece&longs;&longs;ari&aelig;. </s>
				</p>
				<p id="N121F6" type="main">
					<s id="N121F8"><!-- NEW -->Dico &longs;ecund&ograve; minimum ex his corpu&longs;culis non &longs;emper moueri; </s>
					<s id="N121FC"><!-- NEW -->po&shy;<lb/>te&longs;t enim &longs;i&longs;tere; quis hoc neget? </s>
					<s id="N12202">igitur &longs;i mod&ograve; mouetur, mod&ograve; quie&longs;&shy;<lb/>cit, motus ab eo di&longs;tinguitur per Th.1. igitur mouetur per impetum, de <lb/>quo infr&agrave;. </s>
				</p>
				<p id="N12209" type="main">
					<s id="N1220B">Igitur datur nece&longs;&longs;ari&ograve; impetus, &longs;ine quo non po&longs;&longs;unt explicari pr&aelig;di&shy;<lb/>ct&aelig; omnes hypothe&longs;es, contra quem &longs;unt quidem graui&longs;&longs;im&aelig; difficultates, <lb/>quas &longs;en&longs;im in &longs;equentibus Theorematis, in quibus explicantur pro&shy;<lb/>prietates huius impetus, di&longs;cutiemus. </s>
				</p>
				<p id="N12214" type="main">
					<s id="N12216"><!-- NEW -->Diceret aliquis lapidem impul&longs;um ab a&euml;re deinde propelli; </s>
					<s id="N1221A"><!-- NEW -->&longs;ed a&euml;r po&shy;<lb/>tius re&longs;i&longs;tit motui; vt con&longs;tat experienti&acirc;; &longs;ed hoc &longs;oluemus infr&agrave;. </s>
				</p>
				<pb pagenum="17" xlink:href="026/01/049.jpg"/>
				<p id="N12224" type="main">
					<s id="N12226"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 7.<emph.end type="center"/></s>
				</p>
				<p id="N12232" type="main">
					<s id="N12234"><emph type="italics"/>Impetus est aliquid distinctum &agrave; &longs;ubstanti&acirc; mobilis.<emph.end type="italics"/></s>
					<s id="N1223B"> Demon&longs;tratur. </s>
					<s id="N1223E"><lb/>Quia &longs;ub&longs;tantia mobilis non e&longs;t cau&longs;a exigens motum per Th. 5. Impe&shy;<lb/>tus e&longs;t cau&longs;a exigens per Def. <!-- REMOVE S-->3. &amp; Th. 6. de eodem contradictoria dici <lb/>non po&longs;&longs;unt per Ax. 1. n. </s>
					<s id="N12248"><!-- NEW -->3. Igitur impetus non e&longs;t idem cum &longs;ub&longs;tanti&agrave; <lb/>mobilis; igitur di&longs;tinctus; deinde &longs;eparari pote&longs;t &agrave; &longs;ub&longs;tantia mobilis <lb/>per Hypoth. <!-- KEEP S--></s>
					<s id="N12251">4. igitur e&longs;t di&longs;tinctus per Ax. 2. <!-- KEEP S--></s>
				</p>
				<p id="N12255" type="main">
					<s id="N12257"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 8.<emph.end type="center"/></s>
				</p>
				<p id="N12263" type="main">
					<s id="N12265"><!-- NEW --><emph type="italics"/>Impetus est accidens<emph.end type="italics"/>; </s>
					<s id="N1226E"><!-- NEW -->Quippe non e&longs;t corpus, nec forma &longs;ub&longs;tantia&shy;<lb/>lis; quia omne corpus, &amp; omnis forma &longs;ub&longs;tantialis moueri pote&longs;t, &amp; <lb/>non moueri, vt con&longs;tat ex po&longs;t. </s>
					<s id="N12276">&amp; ex Hypoth. <!-- KEEP S--></s>
					<s id="N1227A"><!-- NEW -->3. &amp; 4. igitur di&longs;tingui&shy;<lb/>tur &agrave; motu; </s>
					<s id="N12280"><!-- NEW -->igitur &amp; ab impetu per Ax. 2. igitur impetus non e&longs;t &longs;ub&shy;<lb/>&longs;tantia; igitur accidens. </s>
				</p>
				<p id="N12286" type="main">
					<s id="N12288"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 9.<emph.end type="center"/></s>
				</p>
				<p id="N12294" type="main">
					<s id="N12296"><emph type="italics"/>Impetus non e&longs;t modus.<emph.end type="italics"/></s>
					<s id="N1229D"><!-- NEW --> Modus duplicis generis e&longs;&longs;e pote&longs;t: </s>
					<s id="N122A1"><!-- NEW -->Modus <lb/>primi generis e&longs;t entitas qu&aelig;dam diminuta, vt vulg&ograve; loquuntur, di&longs;tin&shy;<lb/>cta quidem modaliter, vt aiunt, &agrave; re, cui adh&aelig;ret; ac proinde ab ca &longs;e&shy;<lb/>parari pote&longs;t, non tamen exi&longs;tere &longs;eparata. </s>
					<s id="N122AB"><!-- NEW -->Modus &longs;ecundi generis non <lb/>e&longs;t entitas quidem di&longs;tincta; </s>
					<s id="N122B1"><!-- NEW -->e&longs;t tamen &longs;tatus quidam corporis; &longs;ic &longs;e&longs;&longs;io <lb/>e&longs;t modus, conden&longs;atio, compre&longs;&longs;io, &amp;c. </s>
					<s id="N122B7"><!-- NEW -->His po&longs;itis Impetus non e&longs;t mo&shy;<lb/>dus primi generis; </s>
					<s id="N122BD"><!-- NEW -->nihil enim probat impetum e&longs;&longs;e modum, quod etiam <lb/>non probet calorem, &amp; lucem e&longs;&longs;e modos; </s>
					<s id="N122C3"><!-- NEW -->dicere autem omnia acci&shy;<lb/>dentia e&longs;&longs;e modos non debemus, de quo &longs;uo loco; </s>
					<s id="N122C9"><!-- NEW -->modus enim ita &agrave; na&shy;<lb/>tur&acirc; comparatus e&longs;t, vt &longs;ine &longs;ubiecto actuali &longs;eu fulcro non exi&longs;tere mo&shy;<lb/>d&ograve;, &longs;ed ne concipi quidem po&longs;&longs;it; </s>
					<s id="N122D1"><!-- NEW -->v. <!-- REMOVE S-->g. <!-- REMOVE S-->actio non pote&longs;t concipi ni&longs;i &longs;it <lb/>alicuius actio; </s>
					<s id="N122DB"><!-- NEW -->nec fieri &longs;ine facto; </s>
					<s id="N122DF"><!-- NEW -->nec via &longs;ine termino; </s>
					<s id="N122E3"><!-- NEW -->nec dependen&shy;<lb/>tia &longs;ine dependente; </s>
					<s id="N122E9"><!-- NEW -->at ver&ograve; po&longs;&longs;um concipere calorem, &amp; impetum <lb/>&longs;ine alio, quod &longs;it actu; </s>
					<s id="N122EF"><!-- NEW -->lic&egrave;t enim calor exigat re&longs;olutionem partium <lb/>&longs;ui &longs;ubiecti, &longs;eu rarefactionem, &amp; impetus motum; nihil tamen impe&shy;<lb/>dit, quin per miraculum calor, &amp; impetus con&longs;eruari po&longs;&longs;int &longs;ine eo. </s>
					<s id="N122F7"><!-- NEW --><lb/>quod exigunt, hoc e&longs;t &longs;ine &longs;uo &longs;ine; </s>
					<s id="N122FC"><!-- NEW -->igitur &longs;ine &longs;ubiecto; </s>
					<s id="N12300"><!-- NEW -->non e&longs;t etiam <lb/>modus &longs;ecundi generis vt patet, &longs;ed de modis in Metaphy&longs;ica; vix enim <lb/>hoc Theorema ad rem Phy&longs;icam quicquam facit. </s>
				</p>
				<p id="N12308" type="main">
					<s id="N1230A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 10.<emph.end type="center"/></s>
				</p>
				<p id="N12316" type="main">
					<s id="N12318"><emph type="italics"/>Impetus e&longs;t qualitas Phy&longs;ica.<emph.end type="italics"/><!-- KEEP S--></s>
					<s id="N12320"> Sequitur ex dictis; cum nec &longs;it motus. </s>
					<s id="N12323"><!-- NEW --><lb/>nec &longs;ub&longs;tantia, nec modus, nec quidquam negatiuum, alioquin exige&shy;<lb/>ret; </s>
					<s id="N1232A"><!-- NEW -->igitur e&longs;t aliud accidens; vocetur qualitas. </s>
				</p>
				<p id="N1232E" type="main">
					<s id="N12330"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 11.<emph.end type="center"/></s>
				</p>
				<p id="N1233C" type="main">
					<s id="N1233E"><emph type="italics"/>Impetus est qualitas Phy&longs;ica.<emph.end type="italics"/><!-- KEEP S--></s>
					<s id="N12346"> Quia impetus e&longs;t di&longs;tinctus realiter &agrave; &longs;ue <lb/>&longs;ubiecto per Th. 7. E&longs;t enim &longs;eparabilis per Hypoth. <!-- KEEP S--></s>
					<s id="N1234C"><!-- NEW -->3. &amp; 4. igitur di&shy;<lb/>&longs;tinctus per Ax. 2. &longs;ed qualitatem realiter di&longs;tinctam apello Phy&longs;icam; <lb/>pr&aelig;&longs;ertim cum nec moralis &longs;it, nec Logica, &amp;c. </s>
				</p>
				<pb pagenum="18" xlink:href="026/01/050.jpg"/>
				<p id="N12358" type="main">
					<s id="N1235A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 12.<emph.end type="center"/></s>
				</p>
				<p id="N12366" type="main">
					<s id="N12368"><emph type="italics"/>Impetus est qualitas permanens.<emph.end type="italics"/></s>
					<s id="N1236F"><!-- NEW --> Quia lapis proiectus etiam &longs;eparatus <lb/>mouetur aliquandiu per Hyp. <!-- REMOVE S-->6. igitur durat eius cau&longs;a, &longs;cilicet impe&shy;<lb/>tus; igitur e&longs;t qualitas permanens. </s>
				</p>
				<p id="N12379" type="main">
					<s id="N1237B"><!-- NEW -->Diceret fort&egrave; aliquis lapidem proiectum pelli ab a&euml;re &agrave; tergo in&longs;tan&shy;<lb/>te, vt voluit Ari&longs;toteles pluribus in locis; </s>
					<s id="N12381"><!-- NEW -->&longs;ed pr&aelig;&longs;ertim 8. Ph.c.vlt.&amp; 7. <lb/>cap.2. 3.de C&oelig;lo, cap.  3. Re&longs;pondeo hoc dici non po&longs;&longs;e; </s>
					<s id="N12387"><!-- NEW -->Prim&ograve; quia non <lb/>mod&ograve; non iuuat a&euml;r; </s>
					<s id="N1238D"><!-- NEW -->&longs;ed etiam impedit motum proiecti, quod de omni <lb/>medio nece&longs;&longs;ari&ograve; dicendum e&longs;t, vt patet experienti&acirc;; </s>
					<s id="N12393"><!-- NEW -->vnde quo cra&longs;&longs;ius, <lb/>&longs;eu den&longs;ius e&longs;t <expan abbr="medi&utilde;">medium</expan>, motum potenti&ugrave;s retardat, vt videmus in proiectis <lb/>per aquam; </s>
					<s id="N1239F"><!-- NEW -->rationem &agrave; priori afferemus infr&agrave;, cum de re&longs;i&longs;tentia medij: </s>
					<s id="N123A3"><!-- NEW --><lb/>Secund&ograve;, quis dicat pilam rotatam in &longs;olo moueri a&euml;ris appul&longs;u? cum <lb/>alia corpora, qu&aelig; pila rotata pr&aelig;terlambendo qua&longs;i allambit, nullo mo&shy;<lb/>do moueantur; pr&aelig;&longs;ertim granula pulueris. </s>
					<s id="N123AC"><!-- NEW -->Terti&ograve;, an fort&egrave; a&euml;r id pr&aelig;&shy;<lb/>&longs;tare pote&longs;t &longs;ine vi impre&longs;&longs;a; </s>
					<s id="N123B2"><!-- NEW -->igitur non minus ip&longs;i pil&aelig; proiect&aelig;, quam <lb/>a&euml;ri ambienti imprimi poterit: </s>
					<s id="N123B8"><!-- NEW -->Quart&ograve;, nullus a&euml;r &agrave; tergo pellitur; </s>
					<s id="N123BC"><!-- NEW -->&longs;ed <lb/>potius ip&longs;a pila aduer&longs;us a&euml;ra pellit, dum emittitur manu; igitur &longs;i a&euml;r <lb/>&longs;uccedit &agrave; tergo, id totum accidit, vel metu vacui, vel ne a&euml;r compri&shy;<lb/>matur, vt videbimus infr&agrave;. </s>
					<s id="N123C6"><!-- NEW -->Quint&ograve; denique, cum diu moueatur eadem <lb/>pars a&euml;ris, haud dubi&egrave; in ca manet vis impre&longs;&longs;a; igitur impetus erit ad&shy;<lb/>huc qualitas permanens. </s>
				</p>
				<p id="N123CE" type="main">
					<s id="N123D0"><!-- NEW -->Ad id quod obiicitur ex Ari&longs;totele; </s>
					<s id="N123D4"><!-- NEW -->aliqui putant inclina&longs;&longs;e in cam &longs;en&shy;<lb/>tentiam; </s>
					<s id="N123DA"><!-- NEW -->c&ugrave;m tam en no&longs;tram teneant illu&longs;tres Peripatetici, quorum no&shy;<lb/>minibus parco, ne tot citationes paginas impleant; vide apud Conim&shy;<lb/>bric. </s>
					<s id="N123E2"><!-- NEW -->l. <!-- REMOVE S-->7. Phy&longs;. cap.  2. Aliqui excu&longs;ant ip&longs;um Ari&longs;totelem, putantque <lb/>non e&longs;&longs;e locutum ex propri&acirc; &longs;ententi&acirc;: </s>
					<s id="N123EA"><!-- NEW -->Alij dicunt Ari&longs;totelem quidem <lb/>tribui&longs;&longs;e aliquam vim extrin&longs;ecam a&euml;ri; </s>
					<s id="N123F0"><!-- NEW -->non tamen nega&longs;&longs;e intrin&longs;ecam <lb/>impetus; </s>
					<s id="N123F6"><!-- NEW -->quidquid &longs;it, ip&longs;a verba Ari&longs;totelis demon&longs;trant ip&longs;um agno&shy;<lb/>ui&longs;&longs;e vim motricem impre&longs;&longs;am a&euml;ri, hoc e&longs;t impetum &lpar;<emph type="italics"/>potentia enim<emph.end type="italics"/> &lpar;in&shy;<lb/>quit&rpar; &longs;cilicet motrix, <emph type="italics"/>qu&acirc; pollet proijciens qua&longs;i vim impre&longs;&longs;am tradit vtrique<emph.end type="italics"/>&rpar; <lb/>id e&longs;t a&euml;ri &longs;ur&longs;um, &amp; deor&longs;um; quid porr&ograve; e&longs;t illa vis motrix, ni&longs;i impetus. </s>
				</p>
				<p id="N1240C" type="main">
					<s id="N1240E"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 13.<emph.end type="center"/></s>
				</p>
				<p id="N1241A" type="main">
					<s id="N1241C"><emph type="italics"/>Impetus non producit motum.<emph.end type="italics"/></s>
					<s id="N12423"><!-- NEW --> Probatur, quia motus non dicitur pro&shy;<lb/>ductus per Th. 2. Adde &longs;i vis rationem metaphy&longs;icam; </s>
					<s id="N12429"><!-- NEW -->quia nihil cogit <lb/>dicere accidens aliquod, ex iis &longs;cilicet, qu&aelig; &longs;en&longs;u percipimus, agere ad <lb/>intra; </s>
					<s id="N12431"><!-- NEW -->quod videtur e&longs;&longs;e proprium &longs;ub&longs;tanti&aelig;, &longs;altem naturaliter; vt <lb/>demon&longs;trabimus in Metaph. <!-- KEEP S--></s>
				</p>
				<p id="N12438" type="main">
					<s id="N1243A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 14.<emph.end type="center"/></s>
				</p>
				<p id="N12446" type="main">
					<s id="N12448"><!-- NEW --><emph type="italics"/>Impetus exigit motum, id est fluxum mobilis in loco<emph.end type="italics"/>; </s>
					<s id="N12451"><!-- NEW -->quia cau&longs;a imme&shy;<lb/>diata motus e&longs;t tantum exigens, per Th. 4. &longs;ed impetus e&longs;t cau&longs;a motus <lb/>immediata per Th. 5. &amp; 6. igitur e&longs;t cau&longs;a exigens, adde quod id tant&ugrave;m <lb/>accidens &longs;en&longs;ibile pr&aelig;&longs;tare pote&longs;t in &longs;uo &longs;ubiecto, vt aliquam illius mu&shy;<lb/>tationem pr&aelig;&longs;tet, vel exigat; </s>
					<s id="N1245D"><!-- NEW -->qu&aelig; vel e&longs;t localis, hoc e&longs;t fluxus quidam: </s>
					<s id="N12461"><!-- NEW --><pb pagenum="19" xlink:href="026/01/051.jpg"/>per &longs;patium loci; </s>
					<s id="N12469"><!-- NEW -->vel alteratiua, vt vulg&ograve; vocatur; qu&agrave; &longs;cilicet vel re&shy;<lb/>&longs;oluuntur partes, vel rarefiunt, vel lique&longs;cunt, vel concre&longs;cunt &amp;c. </s>
					<s id="N1246F"><!-- NEW -->vel <lb/>dem&ugrave;m mutant &longs;en&longs;ibilem &longs;tatum; </s>
					<s id="N12475"><!-- NEW -->vel e&longs;t perfectiua aliquo modo, qua&shy;<lb/>tenus &longs;ubiectum nouam aliquam habitudinem acquirit ad &longs;en&longs;us; &longs;ic <lb/>lumen illuminando obiectum reddit illud vi&longs;ibile. </s>
					<s id="N1247D">&amp;c. </s>
					<s id="N12480">de quibus ali&agrave;s. </s>
				</p>
				<p id="N12483" type="main">
					<s id="N12485"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 15.<emph.end type="center"/></s>
				</p>
				<p id="N12491" type="main">
					<s id="N12493"><emph type="italics"/>Motus e&longs;t effectus formalis &longs;ecundarius impetus.<emph.end type="italics"/></s>
					<s id="N1249A"><!-- NEW --> Cum enim &longs;it cau&longs;a <lb/>exigens per Th. 121. Voco effectum formalem &longs;ecundarium, quem in <lb/>mobili exigit impetus; </s>
					<s id="N124A2"><!-- NEW -->quippe, vt iam dictum e&longs;t, cau&longs;a exigens redu&shy;<lb/>citur ad formalem; </s>
					<s id="N124A8"><!-- NEW -->nec enim cau&longs;at aliquid producendo, quod &longs;pectat ad <lb/>efficientem; </s>
					<s id="N124AE"><!-- NEW -->nec mouendo, quod &longs;pectat ad finalem; </s>
					<s id="N124B2"><!-- NEW -->nec determinando, <lb/>quod &longs;pectat ad obiectiuam; </s>
					<s id="N124B8"><!-- NEW -->nec recipiendo, quod &longs;pectat ad materia&shy;<lb/>lem; </s>
					<s id="N124BE"><!-- NEW -->nec dirigendo, quod &longs;pectat ad id&aelig;alem, vel exemplarem; &longs;ed <lb/>exigendo; </s>
					<s id="N124C4"><!-- NEW -->quatenus &longs;cilicet ad id &agrave; natura e&longs;t in&longs;tituta, vt ex eius in <lb/>&longs;ubiecto pr&aelig;&longs;entia talis affectio, vel mutatio con&longs;equatur; </s>
					<s id="N124CA"><!-- NEW -->vocatur au&shy;<lb/>tem effectus formalis &longs;ecundarius; non ver&ograve; primarius, qui e&longs;t tant&ugrave;m <lb/>concretum ex ip&longs;a form&acirc;, &amp; &longs;ubiecto. </s>
				</p>
				<p id="N124D2" type="main">
					<s id="N124D4"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 16.<emph.end type="center"/></s>
				</p>
				<p id="N124E0" type="main">
					<s id="N124E2"><emph type="italics"/>Motus e&longs;t finis intrin&longs;ecus impetus.<emph.end type="italics"/></s>
					<s id="N124E9"><!-- NEW --> Dum finem audis intrin&longs;ecum, <lb/>cogita qu&aelig;&longs;o aliquid phy&longs;icum; </s>
					<s id="N124EF"><!-- NEW -->e&longs;t enim id, propter quod talis, vel ta&shy;<lb/>lis forma in&longs;tituta e&longs;t: </s>
					<s id="N124F5"><!-- NEW -->quid enim aliud e&longs;&longs;e pote&longs;t; </s>
					<s id="N124F9"><!-- NEW -->finem enim rerum <lb/>naturalium ex ip&longs;o v&longs;u cogno&longs;cimus; </s>
					<s id="N124FF"><!-- NEW -->imm&ograve; idem e&longs;t finis cum ip&longs;o v&longs;u; </s>
					<s id="N12503"><!-- NEW --><lb/>cum igitur impetus illum tant&ugrave;m v&longs;um habeat, quem in ip&longs;o mobili <lb/>pr&aelig;&longs;tare cernimus, &longs;cilicet motum; </s>
					<s id="N1250A"><!-- NEW -->dicendum e&longs;t motum e&longs;&longs;e finem in&shy;<lb/>trin&longs;ecum impetus; </s>
					<s id="N12510"><!-- NEW -->adde quod cum fru&longs;tr&agrave; &longs;it impetus ille, qui non pr&aelig;&shy;<lb/>&longs;tat motum mediat&egrave; &longs;altem in &longs;uo &longs;ubiecto; quid enim aliud in &longs;uo &longs;ub&shy;<lb/>iecto pr&aelig;&longs;taret, quem effectum, quam mutationem? </s>
					<s id="N12518"><!-- NEW -->cert&egrave; &longs;i fru&longs;tr&agrave; e&longs;t, non <lb/>e&longs;t, per Ax.6.igitur vt &longs;it, debet habere id, &longs;ine quo e&longs;&longs;e non pote&longs;t; igitur <lb/>maximum eius bonum e&longs;t, igitur finis, quem natiu&acirc; vel innat&acirc; velut <lb/>appetenti&acirc; concupi&longs;cit, vel exigit. </s>
					<s id="N12522">Dixi mediat&egrave;, vel immediat&egrave;; </s>
					<s id="N12525"><!-- NEW -->num <lb/>reuera datur fort&egrave; aliquis impetus, vt dicemus infr&agrave;; </s>
					<s id="N1252B"><!-- NEW -->&longs;cilicet primus na&shy;<lb/>turalis, qui &longs;cilicet duos fines habet di&longs;iunctiu&egrave;; quorum alter e&longs;t gra&shy;<lb/>uitatio, alter motus deor&longs;um. </s>
				</p>
				<p id="N12533" type="main">
					<s id="N12535"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 17.<emph.end type="center"/></s>
				</p>
				<p id="N12541" type="main">
					<s id="N12543"><emph type="italics"/>Ni&longs;i e&longs;&longs;et motus non e&longs;&longs;et impetus.<emph.end type="italics"/></s>
					<s id="N1254A"><!-- NEW --> Probatur quia motus e&longs;t finis intrin&shy;<lb/>&longs;ecus impetus per Th. 16. igitur &longs;i nullus motus e&longs;&longs;e po&longs;&longs;et, &longs;uo fine ca&shy;<lb/>reret impetus; </s>
					<s id="N12552"><!-- NEW -->igitur non e&longs;&longs;et, vt patet, igitur non e&longs;&longs;et; </s>
					<s id="N12556"><!-- NEW -->quia quod <lb/>fru&longs;tr&agrave; e&longs;t, non e&longs;t per Ax. 6. nec ob&longs;tat quod &longs;upr&agrave; indicatum e&longs;t de im <lb/>petu naturali primo vel innato &lpar;&longs;ic enim deinceps appellabimus vt recti <lb/>di&longs;tinguamus ab acqui&longs;ito quem vocabimus impetum accelerationis&rpar; <lb/>qui &longs;ine motu con&longs;eruatur in corpore grauitante; </s>
					<s id="N12562"><!-- NEW -->quia ni&longs;i po&longs;&longs;ibilis e&longs;&shy;<lb/>&longs;et motus deor&longs;um nulla e&longs;&longs;et grauitatio; </s>
					<s id="N12568"><!-- NEW -->quippe grauitare e&longs;t deor&shy;<lb/>&longs;um inclinari, motumque inclinationis impediri; </s>
					<s id="N1256E"><!-- NEW -->hinc dicemus <pb pagenum="20" xlink:href="026/01/052.jpg"/>in &longs;ecundo libro impetum innatum &longs;&aelig;pi&ugrave;s e&longs;&longs;e &longs;ine motu; cum &longs;cilicet <lb/>impeditur &agrave; corpore &longs;u&longs;tinente? </s>
					<s id="N12579">imm&ograve; dicemus infr&agrave; primo in&longs;tanti, <lb/>quo e&longs;t impetus, nondum e&longs;&longs;e motum. </s>
				</p>
				<p id="N1257E" type="main">
					<s id="N12580"><!-- NEW -->Ob&longs;eruabis autem certi&longs;&longs;imam regulam; &longs;cilicet ex impo&longs;&longs;ibilitate <lb/>effectus formalis, &longs;equi impo&longs;&longs;ibilitatem cau&longs;&aelig; formalis, huiu&longs;que po&longs;&longs;i&shy;<lb/>bilitatem ex illius po&longs;&longs;ibilitate. </s>
				</p>
				<p id="N12588" type="main">
					<s id="N1258A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 18.<emph.end type="center"/></s>
				</p>
				<p id="N12596" type="main">
					<s id="N12598"><emph type="italics"/>Ni&longs;i e&longs;&longs;et impetus, non e&longs;&longs;et naturaliter motus.<emph.end type="italics"/></s>
					<s id="N1259F"><!-- NEW --> Quia ni&longs;i e&longs;&longs;et cau&longs;a, non <lb/>e&longs;&longs;et naturaliter effectus per Ax. 8. Impetus enim e&longs;t cau&longs;a motus per <lb/>Th.15. Deinde omnis motus e&longs;t ab aliqua potentia motrice, vt patet ex <lb/>omni hypothe&longs;i; </s>
					<s id="N125A9"><!-- NEW -->&longs;iue &longs;it naturalis in grauibus, &amp; leuibus, &longs;iue &longs;it vitalis <lb/>in viuentibus; </s>
					<s id="N125AF"><!-- NEW -->&longs;iue &longs;it media in compre&longs;&longs;is, &amp; dilatatis; &longs;iue alia qu&aelig;li&shy;<lb/>bet: </s>
					<s id="N125B5"><!-- NEW -->&longs;ed omnis potentia motrix e&longs;t actiua, quia mouet; </s>
					<s id="N125B9"><!-- NEW -->ergo agit, &longs;ed <lb/>motum non producit per Th. 2. Igitur impetum, qui deinde exigit mo&shy;<lb/>tum per Th. 14. Dixi naturaliter; </s>
					<s id="N125C1"><!-- NEW -->quia non e&longs;t dubium, quin Deus &longs;ine <lb/>impetu aliquo modo mouere po&longs;&longs;it; </s>
					<s id="N125C7"><!-- NEW -->ide&longs;t, facere &longs;ine impetu, vt corpus <lb/>mutet locum: </s>
					<s id="N125CD"><!-- NEW -->nec dicas Deum non po&longs;&longs;e &longs;upplere vices cau&longs;&aelig; formalis; </s>
					<s id="N125D1"><!-- NEW --><lb/>nam concedo id quidem pro effectu formali primario; </s>
					<s id="N125D6"><!-- NEW -->nec enim Deus <lb/>pote&longs;t facere, vt aliquid &longs;it calidum &longs;ine calore; </s>
					<s id="N125DC"><!-- NEW -->cum e&longs;&longs;e calidum &longs;it <lb/>idem, ac e&longs;&longs;e habens calorem; </s>
					<s id="N125E2"><!-- NEW -->id tamen nego pro effectu &longs;ecundario, <lb/>quem &longs;cilicet cau&longs;a formalis exigit: </s>
					<s id="N125E8"><!-- NEW -->Etenim &longs;icut pote&longs;t &longs;ummo iure non <lb/>&longs;atisfacere exigenti&aelig;; </s>
					<s id="N125EE"><!-- NEW -->ita pote&longs;t id <expan abbr="c&otilde;ferre">conferre</expan> &longs;ine exigenti&acirc;, qu&ograve;d cum exi&shy;<lb/>gentia conferre pote&longs;t; &longs;ic pote&longs;t corpus re&longs;oluere &longs;ine calore, mouere <lb/>fine impetu &amp;c. </s>
					<s id="N125FA"><!-- NEW -->quanquam vt verum fatear non e&longs;&longs;et propri&egrave; motus, &longs;ed <lb/>qua&longs;i continu&aelig; reproductionis modus; </s>
					<s id="N12600"><!-- NEW -->nam motus dicit aliquam pa&longs;&shy;<lb/>&longs;ionem; &longs;cilicet actum entis in potenti&acirc;, vt aiunt. </s>
				</p>
				<p id="N12606" type="main">
					<s id="N12608"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 19.<emph.end type="center"/></s>
				</p>
				<p id="N12614" type="main">
					<s id="N12616"><!-- NEW --><emph type="italics"/>Si e&longs;&longs;et motus naturaliter &longs;ine impetu, corpus per &longs;e ip&longs;um moueretur,<emph.end type="italics"/> id e&longs;t, <lb/>exigeret motum per &longs;uam entitatem; </s>
					<s id="N12621"><!-- NEW -->quia nullus impetus exigeret; </s>
					<s id="N12625"><!-- NEW -->ergo <lb/>aliquid aliud, nihil di&longs;tinctum, alioquin e&longs;&longs;et impetus; ergo ip&longs;a corpo&shy;<lb/>ris entitas; quanquam non e&longs;&longs;et motus, vt iam dictum e&longs;t, quia non e&longs;&shy;<lb/>&longs;et pa&longs;&longs;io. </s>
				</p>
				<p id="N1262F" type="main">
					<s id="N12631"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 20.<emph.end type="center"/></s>
				</p>
				<p id="N1263D" type="main">
					<s id="N1263F"><!-- NEW --><emph type="italics"/>Corpus illud &aelig;quali &longs;emper motu ferretur per &longs;e<emph.end type="italics"/>; </s>
					<s id="N12648"><!-- NEW -->Quia e&longs;&longs;et &longs;emper ea&shy;<lb/>dem cau&longs;a nece&longs;&longs;aria motus, id e&longs;t, ip&longs;a entitas corporis; </s>
					<s id="N1264E"><!-- NEW -->igitur idem <lb/>effectus per Axioma 12. igitur idem, vel &aelig;qualis motus: dixi per &longs;e pro&shy;<lb/>pter diuer&longs;um medium. </s>
				</p>
				<p id="N12656" type="main">
					<s id="N12658"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 21.<emph.end type="center"/></s>
				</p>
				<p id="N12664" type="main">
					<s id="N12666"><emph type="italics"/>Si e&longs;&longs;et aliquod corpus e&longs;&longs;entialiter mobile, impetu non indigeret.<emph.end type="italics"/></s>
					<s id="N1266D"> Probatur; </s>
					<s id="N12670"><!-- NEW --><lb/>quia in tantum indiget mobile impetu vt impetus exigat motum; </s>
					<s id="N12675"><!-- NEW -->&longs;ed <lb/>corpus illud per &longs;uam e&longs;&longs;entiam exigeret motum; </s>
					<s id="N1267B"><!-- NEW -->igitur non indigeret <lb/>impetu; </s>
					<s id="N12681"><!-- NEW -->po&longs;&longs;et tamen impediri eius motus, vt patet; imm&ograve; e&longs;&longs;et capax <lb/>recipiendi impetus., &longs;iue quem in ip&longs;o produceret, &longs;iue quem ab alia <pb pagenum="21" xlink:href="026/01/053.jpg"/>cau&longs;a extrin&longs;eca acciperet. </s>
				</p>
				<p id="N1268C" type="main">
					<s id="N1268E"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 22.<emph.end type="center"/></s>
				</p>
				<p id="N1269A" type="main">
					<s id="N1269C"><emph type="italics"/>Si e&longs;&longs;et aliquod corpus e&longs;&longs;entialiter immobile, e&longs;&longs;et incapax impetus.<emph.end type="italics"/></s>
					<s id="N126A3"> Pro&shy;<lb/>batur; quia, ni&longs;i e&longs;&longs;et motus, non e&longs;&longs;et impetus per Th. 17. igitur &longs;ubie&shy;<lb/>ctum incapax motus e&longs;t incapax impetus. </s>
				</p>
				<p id="N126AA" type="main">
					<s id="N126AC"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 23.<emph.end type="center"/></s>
				</p>
				<p id="N126B8" type="main">
					<s id="N126BA"><emph type="italics"/>Si e&longs;&longs;et aliquod &longs;ubiectum incapax impetus, e&longs;&longs;et incapax motus.<emph.end type="italics"/></s>
					<s id="N126C1"> Quia <lb/>vbi non pote&longs;t e&longs;&longs;e cau&longs;a formalis, ibi non pote&longs;t e&longs;&longs;e effectus forma&shy;<lb/>lis, quod certum e&longs;t. </s>
				</p>
				<p id="N126C8" type="main">
					<s id="N126CA"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 24.<emph.end type="center"/></s>
				</p>
				<p id="N126D6" type="main">
					<s id="N126D8"><!-- NEW --><emph type="italics"/>Omne corpus, quod e&longs;t capax motus, e&longs;t capax impetus, &amp; vici&longs;&longs;im.<emph.end type="italics"/><lb/>Probatur 1. pars; </s>
					<s id="N126E2"><!-- NEW -->quia impetus in eo non e&longs;&longs;et fru&longs;tr&agrave;; haberet enim <lb/>&longs;uum effectum formalem, &amp; finem intrin&longs;ecum. </s>
					<s id="N126E8">Probatur 2.pars; </s>
					<s id="N126EB"><!-- NEW -->quia in <lb/>eo impetus non e&longs;&longs;et fru&longs;tr&agrave; per Ax. 6. igitur haberet &longs;uum effectum; <lb/>igitur motum. </s>
				</p>
				<p id="N126F3" type="main">
					<s id="N126F5"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 25.<emph.end type="center"/></s>
				</p>
				<p id="N12701" type="main">
					<s id="N12703"><emph type="italics"/>Omne corpus finitum e&longs;t capax motus, &amp; impetus.<emph.end type="italics"/></s>
					<s id="N1270A"> Probatur 1. pars; </s>
					<s id="N1270D"><!-- NEW --><lb/>quia non e&longs;t vbique, igitur pote&longs;t transferri &egrave; loco in locum; cur enim <lb/>non po&longs;&longs;et? </s>
					<s id="N12714"><!-- NEW -->Dices fort&egrave; quia affixum e&longs;&longs;et e&longs;&longs;entialiter tali, vel tali lo&shy;<lb/>co, &longs;ed contra; </s>
					<s id="N1271A"><!-- NEW -->quia de&longs;truantur omnia, pr&aelig;ter ip&longs;um corpus; cert&egrave; <lb/>nulli affixum manet. </s>
					<s id="N12720">Dices &longs;patio imaginario; apage i&longs;tas nugas: <lb/>de i&longs;to &longs;patio plura demon&longs;trabimus in Metaphy. <!-- KEEP S--></s>
					<s id="N12726">Probatur 2. pars; </s>
					<s id="N12729"><!-- NEW -->quia <lb/>&longs;i e&longs;t capax motus, e&longs;t capax impetus per Th. 24. Quod dixi de corpo&shy;<lb/>re; dicendum e&longs;t de omni re creata finita permanente. </s>
				</p>
				<p id="N12731" type="main">
					<s id="N12733"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 26.<emph.end type="center"/></s>
				</p>
				<p id="N1273F" type="main">
					<s id="N12741"><emph type="italics"/>Quod durat tant&ugrave;m vno in&longs;tanti, e&longs;t incapax motus, &amp; impetus.<emph.end type="italics"/></s>
					<s id="N12748"><!-- NEW --> Pro&shy;<lb/>batur, quia non e&longs;t moueri, ni&longs;i relinquat locum, &amp; acquirat alium; </s>
					<s id="N1274E"><!-- NEW -->&longs;ed <lb/>1. acquirere locum, e&longs;t 1. e&longs;&longs;e in illo loco; </s>
					<s id="N12754"><!-- NEW -->&amp; relinquere locum e&longs;t, <lb/>1. non e&longs;&longs;e in eo loco; </s>
					<s id="N1275A"><!-- NEW -->nec &longs;imul e&longs;t in vtroque, quia in duobus locis <lb/>idem &longs;imul e&longs;&longs;e non pote&longs;t; vt demon&longs;tramus in Metaphy&longs;ica; </s>
					<s id="N12760"><!-- NEW -->&amp; phy&shy;<lb/>&longs;ic&egrave; certum e&longs;t ex omni hypothe&longs;i; </s>
					<s id="N12766"><!-- NEW -->igitur moueri nunc, id e&longs;t, hoc in&shy;<lb/>&longs;tanti, id e&longs;t, 1. acquirere nouum locum, &amp; 1. relinquere priorem, <lb/>&longs;upponit nece&longs;&longs;ari&ograve; ant&egrave; fui&longs;&longs;e in loco nunc relicto; </s>
					<s id="N1276E"><!-- NEW -->&longs;ed quod durat <lb/>tant&ugrave;m in in&longs;tanti, non habet ant&egrave;, neque po&longs;t; </s>
					<s id="N12774"><!-- NEW -->igitur quod durat tan&shy;<lb/>t&ugrave;m vno in&longs;tanti, moueri non pote&longs;t; </s>
					<s id="N1277A"><!-- NEW -->igitur e&longs;t incapax motus; igitur <lb/>&amp; impetus. </s>
				</p>
				<p id="N12780" type="main">
					<s id="N12782"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 27.<emph.end type="center"/></s>
				</p>
				<p id="N1278E" type="main">
					<s id="N12790"><!-- NEW --><emph type="italics"/>Deus e&longs;t incapax motus, &amp; impetus<emph.end type="italics"/>: </s>
					<s id="N12799"><!-- NEW -->Tum quia vbique, e&longs;t igitur <lb/>nouum locum acquirere non pote&longs;t; </s>
					<s id="N1279F"><!-- NEW -->igitur nec moueri per Definitio&shy;<lb/>nem 1. t&ugrave;m quia &aelig;ternitas Dei tota &longs;imul e&longs;t; </s>
					<s id="N127A5"><!-- NEW -->igitur nec fuit ant&egrave;, ne&shy;<lb/>que po&longs;t in ca; </s>
					<s id="N127AB"><!-- NEW -->igitur non pote&longs;t dici ant&egrave; habui&longs;&longs;e locum, quo nunc <lb/>caret: </s>
					<s id="N127B1"><!-- NEW -->&amp; nunc non habere illum quo caret; </s>
					<s id="N127B5"><!-- NEW -->t&ugrave;m quia immutabilitas <pb pagenum="22" xlink:href="026/01/054.jpg"/>Dei hoc prohibet; </s>
					<s id="N127BE"><!-- NEW -->nam moueri, e&longs;t affici intrin&longs;ec&egrave;; </s>
					<s id="N127C2"><!-- NEW -->quia etiam de&shy;<lb/>&longs;tructis omnibus extrin&longs;ecis creatis moueri po&longs;&longs;em, &amp; fru&longs;tr&agrave; recurres <lb/>ad partes virtuales immen&longs;itatis Dei, quas fer&egrave; animus abhorret; apa&shy;<lb/>ge partes in Deo: quis hoc ferre po&longs;&longs;it? </s>
					<s id="N127CC"><!-- NEW -->pr&aelig;terea &longs;i &longs;unt, &longs;unt e&longs;&longs;entia&shy;<lb/>liter immobiles; </s>
					<s id="N127D2"><!-- NEW -->igitur valet &longs;emper ratio allata; </s>
					<s id="N127D6"><!-- NEW -->igitur Deus e&longs;t inca&shy;<lb/>pax motus; igitur &amp; impetus. </s>
				</p>
				<p id="N127DC" type="main">
					<s id="N127DE"><!-- NEW -->Diceret aliquis Deum quantumuis Immen&longs;um in orbem conuolui <lb/>po&longs;&longs;e; igitur 1. ratio non probat de omni motu. </s>
					<s id="N127E4"><!-- NEW -->Re&longs;pondeo adhuc va&shy;<lb/>lere, quia etiam in orbem conuolui non pote&longs;t, ni&longs;i mutetur intrin&longs;e&shy;<lb/>c&egrave;; </s>
					<s id="N127EC"><!-- NEW -->atqui &longs;i e&longs;t immen&longs;us, non pote&longs;t mutari intrin&longs;ec&egrave; per motum; </s>
					<s id="N127F0"><!-- NEW --><lb/>quia nullum locum de nouo acquireret; </s>
					<s id="N127F5"><!-- NEW -->&longs;ed de hoc motu ali&agrave;s, cum de <lb/>infinito; </s>
					<s id="N127FB"><!-- NEW -->vel de puncto phy&longs;ico mobili; quidquid &longs;it. </s>
					<s id="N127FF">valet &longs;altem <lb/>1. ratio pro motu recto, &amp; ali&aelig; du&aelig; pro omni motu. </s>
				</p>
				<p id="N12804" type="main">
					<s id="N12806"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 28.<emph.end type="center"/></s>
				</p>
				<p id="N12812" type="main">
					<s id="N12814"><emph type="italics"/>Motus ip&longs;e moueri non pote&longs;t.<emph.end type="italics"/></s>
					<s id="N1281B"><!-- NEW --> Quia cum tant&ugrave;m dicat mutationem <lb/>loci; </s>
					<s id="N12821"><!-- NEW -->cert&egrave; mutatio non e&longs;t in loco; dicit enim tant&ugrave;m locum relictum <lb/>eo in&longs;tanti, quo nouus acquiritur. </s>
					<s id="N12827"><!-- NEW -->Pr&aelig;terea quod e&longs;t in loco dicit tan&shy;<lb/>t&ugrave;m ens phy&longs;icum; </s>
					<s id="N1282D"><!-- NEW -->&longs;ed mutatio dicit etiam non ens; <emph type="italics"/>Hinc egregium pa&shy;<lb/>radoxum; illud non mouetur per quod cuncta mouentur, qu&aelig; mouentur.<emph.end type="italics"/></s>
				</p>
				<p id="N12838" type="main">
					<s id="N1283A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 29.<emph.end type="center"/></s>
				</p>
				<p id="N12846" type="main">
					<s id="N12848"><emph type="italics"/>Duratio moueri non pote&longs;t.<emph.end type="italics"/></s>
					<s id="N1284F"> Cum enim &longs;it &longs;ucce&longs;&longs;iua, fluit per partes, <lb/>igitur qu&aelig;libet illius pars, &longs;eu quod durat vna in&longs;tanti tant&ugrave;m e&longs;t inca&shy;<lb/>pax motus, per Th. 26. </s>
				</p>
				<p id="N12856" type="main">
					<s id="N12858"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 30.<emph.end type="center"/></s>
				</p>
				<p id="N12864" type="main">
					<s id="N12866"><!-- NEW --><emph type="italics"/>Hinc actio moueri non pote&longs;t<emph.end type="italics"/>; </s>
					<s id="N1286F"><!-- NEW -->cum enim actio per quam res con&longs;erua&shy;<lb/>tur, &longs;it eius duratio; vt con&longs;tabit ex iis, qu&aelig; demon&longs;trabimus in Me&shy;<lb/>taphy&longs;ica, &amp; cum duratio moueri non po&longs;&longs;it, per Th. 29. cert&egrave; neque <lb/>actio moueri pote&longs;t. </s>
				</p>
				<p id="N12879" type="main">
					<s id="N1287B"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N12888" type="main">
					<s id="N1288A"><!-- NEW -->Hinc in tanta rerum creatarum multitudine &longs;unt tant&ugrave;m du&aelig;, qu&aelig; <lb/>&longs;unt e&longs;&longs;entialiter immobiles; &longs;cilicet motus, &amp; actio; </s>
					<s id="N12890"><!-- NEW -->quorum ille cum <lb/>&longs;it mutatio non e&longs;t ad&aelig;quat&egrave; aliquid po&longs;itiuum; &longs;ecus actio. </s>
				</p>
				<p id="N12896" type="main">
					<s id="N12898"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N128A5" type="main">
					<s id="N128A7"><!-- NEW -->Hinc &longs;unt tant&ugrave;m duo ad&aelig;quat&egrave; po&longs;itiua, qu&aelig; moueri non po&longs;&longs;unt; </s>
					<s id="N128AB"><!-- NEW --><lb/>&longs;cilicet Deus, &amp; actio; Deus, qui &longs;emper e&longs;t; </s>
					<s id="N128B0"><!-- NEW -->actio, qu&aelig; tant&ugrave;m vno <lb/>in&longs;tanti e&longs;t; Deus vbique e&longs;&longs;entialiter; actio hic tantum e&longs;&longs;entialiter; </s>
					<s id="N128B6"><!-- NEW --><lb/>Deus primum ens; actio infinitum ens; </s>
					<s id="N128BB"><!-- NEW -->e&longs;t enim modus; </s>
					<s id="N128BF"><!-- NEW -->Deus primum <lb/>mouens; actio ip&longs;e motus; &longs;cilicet primi generis, de quo in &longs;ect. </s>
					<s id="N128C5">Th.3. </s>
				</p>
				<p id="N128C8" type="main">
					<s id="N128CA"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N128D7" type="main">
					<s id="N128D9"><!-- NEW -->Hinc &longs;i res aliqua creata per actionem tant&aelig; perfectionis, qu&aelig; mille <lb/>annis e&longs;&longs;entialiter re&longs;ponderet, con&longs;eruaretur; </s>
					<s id="N128DF"><!-- NEW -->cert&egrave; per totum illud <lb/>tempus moueri non po&longs;&longs;et; </s>
					<s id="N128E5"><!-- NEW -->e&longs;&longs;et enim vnicum in&longs;tans, hoc e&longs;t duratio <pb pagenum="23" xlink:href="026/01/055.jpg"/>tota &longs;imul; </s>
					<s id="N128EE"><!-- NEW -->&longs;ed eodem in&longs;tanti in pluribus locis e&longs;&longs;e non pote&longs;t; igitur <lb/>nec moueri; </s>
					<s id="N128F4"><!-- NEW -->adde quod per cam actionem &longs;um in loco, per quam &longs;um <lb/>in tempore; </s>
					<s id="N128FA"><!-- NEW -->igitur &longs;i h&aelig;c e&longs;t &longs;emper eadem, illam eandem e&longs;&longs;e nece&longs;&longs;e <lb/>e&longs;t; &longs;ed h&aelig;c &longs;unt metaphy&longs;ica, qu&aelig; obiter tant&ugrave;m attingo, ali&agrave;s fus&egrave; <lb/>de mon&longs;trabo. </s>
				</p>
				<p id="N12902" type="main">
					<s id="N12904"><emph type="center"/><emph type="italics"/>Scolium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N12910" type="main">
					<s id="N12912"><!-- NEW -->Ob&longs;eruabis prim&ograve; ex dictis pr&aelig;clarum natur&aelig; in&longs;titutum; </s>
					<s id="N12916"><!-- NEW -->cum enim <lb/>corpus moueri &longs;emper non debeat, &lpar;quippe hoc e&longs;&longs;et maxim&egrave; incom&shy;<lb/>modum&rpar; cert&egrave; per &longs;uam entitatem moueri non exigit; </s>
					<s id="N1291E"><!-- NEW -->alioquin &longs;emper <lb/>moueretur; </s>
					<s id="N12924"><!-- NEW -->igitur per aliud ab entitate di&longs;tinctum, id e&longs;t per impetum; </s>
					<s id="N12928"><!-- NEW --><lb/>itaque licet per &longs;uam entitatem exigat fluxum in tempore, id e&longs;t con&longs;er&shy;<lb/>uari, &amp; durare; </s>
					<s id="N1292F"><!-- NEW -->id e&longs;t nouam &longs;emper actionem con&longs;eruatiuam; </s>
					<s id="N12933"><!-- NEW -->quia <lb/>maximum eius bonum e&longs;t durare vel exi&longs;tere; </s>
					<s id="N12939"><!-- NEW -->Igitur per &longs;e ip&longs;um illud <lb/>exigit; </s>
					<s id="N1293F"><!-- NEW -->quia &longs;emper exigit, non tamen per &longs;e ip&longs;um exigit fluxum in <lb/>loco, id e&longs;t motum; quia moueri non &longs;emper e&longs;t bonum. </s>
				</p>
				<p id="N12945" type="main">
					<s id="N12947"><!-- NEW -->Ob&longs;eruabis &longs;ecund&ograve;, cum idem corpus aliquando veloci&ugrave;s, tardi&ugrave;s <lb/>aliquando moueri exigat; </s>
					<s id="N1294D"><!-- NEW -->&longs;i per &longs;uam entitatem moueri exigeret, eo&shy;<lb/>dem &longs;emper ferretur motu; </s>
					<s id="N12953"><!-- NEW -->quia eadem &longs;emper e&longs;&longs;et exigentia; </s>
					<s id="N12957"><!-- NEW -->igitur <lb/>debet e&longs;&longs;e aliquid aliud; </s>
					<s id="N1295D"><!-- NEW -->illud autem e&longs;t impetus, qui aliquando maior <lb/>&longs;eu perfectior, aliquando ver&ograve; minor e&longs;t; </s>
					<s id="N12963"><!-- NEW -->igitur maiorem &longs;eu <expan abbr="velcio&shy;rem">velocio&shy;<lb/>rem</expan> motum aliquando exigit, aliquando minorem, &longs;eu tardiorem; </s>
					<s id="N1296D"><!-- NEW --><lb/>cum enim motus &longs;it eius finis intrin&longs;ecus, vt re&longs;olutio e&longs;t finis caloris <lb/>vel rarefactio; </s>
					<s id="N12974"><!-- NEW -->quemadmodum maior calor maiorem exigit, &longs;eu pr&aelig;&shy;<lb/>&longs;tat re&longs;olutionem; ita &amp; maior, &longs;eu perfectior impetus maiorem, &longs;eu <lb/>velociorem motum exigit. </s>
				</p>
				<p id="N1297C" type="main">
					<s id="N1297E"><!-- NEW -->Ob&longs;eruabis terti&ograve; aliud natur&aelig; in&longs;titutum, quo &longs;cilicet in eo tan&shy;<lb/>t&ugrave;m &longs;ubiecto recipi pote&longs;t cau&longs;a formalis, in quo recipi pote&longs;t eius effe&shy;<lb/>ctus formalis &longs;ecundarius: </s>
					<s id="N12986"><!-- NEW -->nec alia regula, pr&aelig;ter eam excogitari pote&longs;t; </s>
					<s id="N1298A"><!-- NEW --><lb/>cum enim aliqua forma ad talem, vel talem finem &agrave; natura in&longs;tituta e&longs;t; </s>
					<s id="N1298F"><!-- NEW --><lb/>cert&egrave; propter illum finem e&longs;t, igitur in eo non e&longs;t, in quo &longs;uum finem <lb/>con&longs;equi non pote&longs;t; </s>
					<s id="N12996"><!-- NEW -->alioquin fru&longs;tr&agrave; e&longs;&longs;et; </s>
					<s id="N1299A"><!-- NEW -->&amp; contra in eo e&longs;&longs;e pote&longs;t, <lb/>in quo fru&longs;tr&agrave; non e&longs;t; </s>
					<s id="N129A0"><!-- NEW -->cum &longs;cilicet in eo &longs;uum finem con&longs;equatur; </s>
					<s id="N129A4"><!-- NEW -->ad&shy;<lb/>de quod finis ille intrin&longs;ecus phy&longs;icus &longs;cilicet, non moralis, aliquis no&shy;<lb/>uus effectus e&longs;t; </s>
					<s id="N129AC"><!-- NEW -->atqui nouus effectus &longs;ine &longs;ua cau&longs;a e&longs;&longs;e non pote&longs;t, neque <lb/>cau&longs;a nece&longs;&longs;aria &longs;ine effectu; igitur ibi, &longs;cilicet in hoc &longs;ubiecto, in quo <lb/>e&longs;t, vel e&longs;&longs;e pote&longs;t effectus formalis, cau&longs;a formalis e&longs;t, vel e&longs;&longs;e pote&longs;t, <lb/>e&longs;t inquam citra miraculum. </s>
				</p>
				<p id="N129B6" type="main">
					<s id="N129B8">Ob&longs;eruabis quart&ograve; egregiam rationem; </s>
					<s id="N129BB"><!-- NEW -->propter quam res eadem in <lb/>pluribus locis naturaliter e&longs;&longs;e non pote&longs;t; </s>
					<s id="N129C1"><!-- NEW -->quippe cum res fuerit primo <lb/>producta in aliquo loco, illa cert&egrave; nouum locum acquirere non pote&longs;t <lb/>naturaliter; </s>
					<s id="N129C9"><!-- NEW -->ni&longs;i per motum, atqui motus dicit nece&longs;&longs;ario priorem lo&shy;<lb/>tum relictum, &amp; nouum acqui&longs;itum; </s>
					<s id="N129CF"><!-- NEW -->igitur cum tot acquirantur loca <lb/>per motum, quot relinquuntur; </s>
					<s id="N129D5"><!-- NEW -->&longs;i ante motum vnus tant&ugrave;m erat eiu&longs;&shy;<lb/>dem rei locus, po&longs;t motum etiam vnus e&longs;t: </s>
					<s id="N129DB"><!-- NEW -->quod autem producatur tan-<pb pagenum="24" xlink:href="026/01/056.jpg"/>t&ugrave;m res in vno loco patet; </s>
					<s id="N129E4"><!-- NEW -->vel enim &agrave; cau&longs;a prima vel ab aliqua 2. pro&shy;<lb/>ducitur; </s>
					<s id="N129EA"><!-- NEW -->&longs;i &agrave; 2. ergo ab aliqua aplicata; </s>
					<s id="N129EE"><!-- NEW -->igitur ex &longs;uppo&longs;itione qu&ograve;d il&shy;<lb/>la cau&longs;a 2. in vno tant&ugrave;m loco producta &longs;it, vni tantum applicari po&shy;<lb/>te&longs;t; </s>
					<s id="N129F6"><!-- NEW -->quod autem cau&longs;a 1. in pluribus locis naturaliter eundem effectum <lb/>non producat, certum e&longs;t, &amp; demon&longs;trabimus in Metaphy&longs;. quia &longs;in&shy;<lb/>gulis effectibus &longs;ingul&aelig; &longs;ufficiunt actiones; </s>
					<s id="N129FE"><!-- NEW -->&longs;ingulis terminis &longs;ingul&aelig; <lb/>vi&aelig;; </s>
					<s id="N12A04"><!-- NEW -->imm&ograve; hoc requiri videtur, &longs;eu &longs;pectare ad huius vniuer&longs;itatis or&shy;<lb/>dinem; </s>
					<s id="N12A0A"><!-- NEW -->quippe &longs;i res eadem in pluribus locis e&longs;&longs;et; cur potius in duo&shy;<lb/>bus quam in tribus? </s>
					<s id="N12A10"><!-- NEW -->deinde multiplex iure po&longs;&longs;et exi&longs;timari; </s>
					<s id="N12A14"><!-- NEW -->denique <lb/>quod vnum e&longs;t in entitate creata, &longs;eu dependente ab eadem cau&longs;a, vnum <lb/>e&longs;t etiam in dependentia; </s>
					<s id="N12A1C"><!-- NEW -->qu&aelig; e&longs;t actio, per quam dependet; &longs;ed de his <lb/>ali&agrave;s. </s>
				</p>
				<p id="N12A22" type="main">
					<s id="N12A24"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 31.<emph.end type="center"/></s>
				</p>
				<p id="N12A30" type="main">
					<s id="N12A32"><emph type="italics"/>Impetus non producitur in eo mobili, quod moueri non pote&longs;t &agrave; potentia <lb/>motrice applicata, lic&egrave;t &agrave; fortiori moueri po&longs;&longs;it.<emph.end type="italics"/></s>
					<s id="N12A3B"><!-- NEW --> Probatur, quia impetus <lb/>e&longs;t tant&ugrave;m propter motum, qui eius effectus e&longs;t, &amp; finis, per Th. 15. <lb/>&amp; 16. Igitur vbi non e&longs;t motus, fru&longs;tr&agrave; e&longs;t impetus; </s>
					<s id="N12A43"><!-- NEW -->&longs;ed quod fru&longs;tr&agrave; <lb/>e&longs;t, non e&longs;t; id e&longs;t non e&longs;t, quod fru&longs;tr&agrave; e&longs;&longs;et, &longs;i e&longs;&longs;et per Ax. 6. Exci&shy;<lb/>pio tamen impetum naturalem innatum, qui nunquam e&longs;t fru&longs;tr&agrave;, vt <lb/>dictum e&longs;t &longs;upr&agrave; in Theorem. <!-- KEEP S--></s>
					<s id="N12A4E"><!-- NEW -->17. adde quod non pote&longs;t cogno&longs;ci <lb/>impetus, ni&longs;i vel ex motu, vel ex ictu, vel ex contrario ni&longs;u, vel <lb/>impul&longs;u; </s>
					<s id="N12A56"><!-- NEW -->&longs;ed nihil horum cernitur in rupe quam ferio; </s>
					<s id="N12A5A"><!-- NEW -->Igitur non <lb/>e&longs;t dicendum in ea produci impetum, cuius rationem afferemus infr&agrave;; </s>
					<s id="N12A60"><!-- NEW --><lb/>nunc &longs;atis e&longs;t Ax. 3. id manife&longs;t&egrave; probari; </s>
					<s id="N12A65"><!-- NEW -->nam qui diceret in rupe im&shy;<lb/>mobili impetum imprimi; </s>
					<s id="N12A6B"><!-- NEW -->cert&egrave; po&longs;itiuo argumento probare tenere&shy;<lb/>tur, quod tant&ugrave;m duci pote&longs;t, vel ab experimento; </s>
					<s id="N12A71"><!-- NEW -->atqui h&icirc;c nullum e&longs;t; </s>
					<s id="N12A75"><!-- NEW --><lb/>vel &agrave; nece&longs;&longs;itate, qu&aelig; nulla e&longs;t; </s>
					<s id="N12A7A"><!-- NEW -->vel ex alio quocumque capite, quod <lb/>nullum excogitari pote&longs;t; </s>
					<s id="N12A80"><!-- NEW -->&longs;ed maiorem lucem huic Th. 3. ex proxim&egrave; <lb/>&longs;equentibus accer&longs;emus; </s>
					<s id="N12A86"><!-- NEW -->nec e&longs;t qu&ograve;d aliqui dicant produci impetum <lb/>inefficacem; </s>
					<s id="N12A8C"><!-- NEW -->qui cum fru&longs;tr&agrave; &longs;it, &longs;i e&longs;t, ex nullo capite probari pote&longs;t: </s>
					<s id="N12A90"><!-- NEW -->ad&shy;<lb/>de qu&ograve;d de&longs;truitur impetus, ne &longs;it fru&longs;tr&agrave;; </s>
					<s id="N12A96"><!-- NEW -->Igitur non producitur, ne &longs;it <lb/>fru&longs;tr&agrave;; </s>
					<s id="N12A9C"><!-- NEW -->nam con&longs;eruatio e&longs;t vera actio, vt dicemus &longs;uo loco; </s>
					<s id="N12AA0"><!-- NEW -->Igitur &longs;i <lb/>h&aelig;c non ponitur, ne aliquid &longs;it fru&longs;tr&agrave;; </s>
					<s id="N12AA6"><!-- NEW -->etiam 1. productio poni non <lb/>debet; vnde commentum illud impetus inefficacis pror&longs;us inefficax e&longs;t. </s>
				</p>
				<p id="N12AAC" type="main">
					<s id="N12AAE"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 32.<emph.end type="center"/></s>
				</p>
				<p id="N12ABA" type="main">
					<s id="N12ABC"><emph type="italics"/>Ideo potentia motrix non producit impetum in pr&aelig;dicta rupe.<emph.end type="italics"/> v.g. <emph type="italics"/>quia de&shy;<lb/>bilior e&longs;t.<emph.end type="italics"/></s>
					<s id="N12ACB"> Probatur, &amp; explicatur; quippe debilior potentia minorem ef&shy;<lb/>fectum producit per. </s>
					<s id="N12AD0"><!-- NEW -->Ax. 13. <emph type="italics"/>num.<emph.end type="italics"/> 2. igitur pauciores partes impetus <lb/>&aelig;quales vni cert&aelig; per idem <emph type="italics"/>num.<emph.end type="italics"/> 1. igitur &longs;i &longs;int plures partes &longs;ubiecti <lb/>mobilis, &longs;eu rupis, qu&agrave;m impetus; </s>
					<s id="N12AE4"><!-- NEW -->cum vna pars impetus duobus parti&shy;<lb/>bus &longs;ubiecti ine&longs;&longs;e non po&longs;&longs;it; </s>
					<s id="N12AEA"><!-- NEW -->licet plures vni &longs;imul in e&longs;&longs;e po&longs;&longs;int; </s>
					<s id="N12AEE"><!-- NEW --><lb/>non e&longs;t mirum &longs;i nullus impetus producatur; </s>
					<s id="N12AF3"><!-- NEW -->cum non po&longs;&longs;int tot partes <lb/>illius produci, quot e&longs;&longs;ent nece&longs;&longs;ari&aelig;; vt &longs;altem &longs;ingul&aelig; &longs;ingulis &longs;ubie&shy;<lb/>cti, &longs;eu rupis partibus di&longs;tribuerentur. </s>
				</p>
				<pb pagenum="25" xlink:href="026/01/057.jpg"/>
				<p id="N12AFF" type="main">
					<s id="N12B01"><!-- NEW -->Ob&longs;eruabis autem nouum quoddam gen&uacute;s re&longs;i&longs;tenti&aelig;; </s>
					<s id="N12B05"><!-- NEW -->nam &longs;ingul&aelig; <lb/>partes rupis ab applicata potenti&acirc; apt&aelig; &longs;unt loco moueri per impre&longs;&shy;<lb/>&longs;um impetum, &amp; maior potentia &longs;imul omnes loco moueret; </s>
					<s id="N12B0D"><!-- NEW -->at ver&ograve; <lb/>omnes &longs;imul, &amp; coniunctim con&longs;iderat&aelig;; </s>
					<s id="N12B13"><!-- NEW -->quatenus &longs;cilicet vna pars <lb/>non pote&longs;t moueri &longs;ine alia, &amp; comparat&aelig; cum illa potentia debili di&shy;<lb/>cuntur habere pr&aelig;dictam re&longs;i&longs;tentiam, qu&aelig; &longs;uperat potenti&aelig; vires; </s>
					<s id="N12B1B"><!-- NEW --><lb/>qu&ograve;d &longs;cilicet &agrave; maiori moueri tant&ugrave;m po&longs;&longs;int; quia plures partes im&shy;<lb/>petus po&longs;tulantur, quam &longs;int e&aelig;, qu&aelig; &agrave; pr&aelig;dict&acirc; potenti&acirc; po&longs;&longs;unt pro&shy;<lb/>duci. </s>
				</p>
				<p id="N12B24" type="main">
					<s id="N12B26"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 33.<emph.end type="center"/></s>
				</p>
				<p id="N12B32" type="main">
					<s id="N12B34"><!-- NEW --><emph type="italics"/>Vel producitur impetus in omnibus &longs;ubiecti partibus vnitis, vel in nulla; </s>
					<s id="N12B3A"><!-- NEW --><lb/>mod&ograve; nulla fiat &longs;eparatio, neque compre&longs;&longs;io<emph.end type="italics"/>: Certum e&longs;t enim in ijs omni&shy;<lb/>bus partibus, qu&aelig; auolant ab ictu, produci impetum. </s>
					<s id="N12B44"><!-- NEW -->Probatur igitur <lb/>1. quia &longs;i non producatur in omnibus partibus, &amp; nulla &longs;eparetur ab <lb/>alijs; </s>
					<s id="N12B4C"><!-- NEW -->cert&egrave; nulla mouetur, vt certum e&longs;t; </s>
					<s id="N12B50"><!-- NEW -->igitur nulla habet impetum; </s>
					<s id="N12B54"><!-- NEW --><lb/>quia ibi non e&longs;t cau&longs;a formalis, vbi non e&longs;t effectus formalis; alioquin <lb/>e&longs;&longs;et fru&longs;tr&agrave;, contra Ax. 6.2. </s>
					<s id="N12B5B"><!-- NEW -->Tu dicis produci impetum in aliquot parti&shy;<lb/>bus; hoc dicis, hoc proba? </s>
					<s id="N12B61">an potes digno&longs;cere impetum ni&longs;i ex motu? </s>
					<s id="N12B64"><lb/>vel con&longs;eruaretur h&icirc;c impetus &longs;equentibus in&longs;tantibus, vel &longs;tatim &longs;ecun&shy;<lb/>do in&longs;tanti de&longs;trueretur. </s>
					<s id="N12B6A">Primum dicere ab&longs;urdum e&longs;t; </s>
					<s id="N12B6D"><!-- NEW -->quia &longs;i hoc e&longs;&longs;et <lb/>multisictibus repetitis tandem moueretur totum mobile; &longs;i ver&ograve; de&shy;<lb/>&longs;trui dicatur. </s>
					<s id="N12B75">Secundo in&longs;tanti; eadem ratio probat non produci. </s>
					<s id="N12B78">Pri&shy;<lb/>mo in&longs;tanti, qu&aelig; probat de&longs;trui. </s>
					<s id="N12B7D">Secundo nam ideo de&longs;truitur. </s>
					<s id="N12B80">Secun&shy;<lb/>do quia e&longs;t fru&longs;tr&agrave;, &longs;ed non minus e&longs;t fru&longs;tr&agrave;. </s>
					<s id="N12B85">Primo igitur non produ&shy;<lb/>citur. </s>
					<s id="N12B8A">Primo 4. probatur; </s>
					<s id="N12B8D"><!-- NEW -->quia cum non &longs;ufficiant partes impetus, quas <lb/>dixi produci, vt omnibus partibus &longs;ubiecti di&longs;tribuantur; </s>
					<s id="N12B93"><!-- NEW -->cert&egrave; non e&longs;t <lb/>vlla ratio, cur poti&ugrave;s his qu&agrave;m illis di&longs;tribui dicantur; cum vna &longs;it tan&shy;<lb/>t&ugrave;m immediat&egrave; applicata. </s>
					<s id="N12B9B">Igitur certum e&longs;t vel produci in omnibus, vel <lb/>in nulla, ni&longs;i forte aliqu&aelig; auolent, &longs;ed tunc &longs;eparantur. </s>
				</p>
				<p id="N12BA0" type="main">
					<s id="N12BA2"><!-- NEW -->Obiiciet aliquis 1. e&longs;&longs;e cau&longs;am nece&longs;&longs;ariam applicatam &longs;ubiecto ap&shy;<lb/>to: </s>
					<s id="N12BA8"><!-- NEW -->igitur agit per Ax. 12. Re&longs;pondeo e&longs;&longs;e impeditam; </s>
					<s id="N12BAC"><!-- NEW -->nam re&longs;i&longs;tentia <lb/>&longs;ubiecti &longs;uperat vires potenti&aelig; vt dictum e&longs;t; </s>
					<s id="N12BB2"><!-- NEW -->imm&ograve; in ip&longs;o motu re&shy;<lb/>torqueo argumentum; lic&egrave;t enim &longs;it applicata cau&longs;a nece&longs;&longs;aria mouens, <lb/>non tamen mouet. </s>
				</p>
				<p id="N12BBA" type="main">
					<s id="N12BBC"><!-- NEW -->Obiiciet 2. Ignis applicatus agit in nonnullas partes &longs;ubiecti, lic&egrave;t <lb/>non agat in omnes; igitur &amp; potentia motrix. </s>
					<s id="N12BC2"><!-- NEW -->Re&longs;pondeo non e&longs;&longs;e pa&shy;<lb/>ritatem; </s>
					<s id="N12BC8"><!-- NEW -->quia vna pars pote&longs;t calefieri, &amp; re&longs;olui &longs;ine alia, vt con&longs;tat <lb/>non tamen vna moueri &longs;ine alia, cui coniuncta e&longs;t, ni&longs;i &longs;eparetur; igi&shy;<lb/>tur nec recipere impetum &longs;ine alia. </s>
				</p>
				<p id="N12BD0" type="main">
					<s id="N12BD2">Obiiciet. </s>
					<s id="N12BD5"><!-- NEW -->3. &longs;int duo trahentes idem mobile; </s>
					<s id="N12BD9"><!-- NEW -->ita vt &longs;eor&longs;im neuter <lb/>trahere po&longs;&longs;it, coniunctim ver&ograve; vterque po&longs;&longs;it; </s>
					<s id="N12BDF"><!-- NEW -->cert&egrave; &longs;i alter non pro&shy;<lb/>ducit impetum &longs;eor&longs;im, nec etiam coniunctim producet; </s>
					<s id="N12BE5"><!-- NEW -->nec enim au&shy;<lb/>gentur eius vires ab altero: </s>
					<s id="N12BEB"><!-- NEW -->Re&longs;pondeo vtrunque agere actione com&shy;<lb/>muni; igitur non e&longs;t mirum &longs;i effectus maior e&longs;t, quem tamen neuter <pb pagenum="26" xlink:href="026/01/058.jpg"/>&longs;eor&longs;im producere pote&longs;t. </s>
				</p>
				<p id="N12BF6" type="main">
					<s id="N12BF8"><!-- NEW -->Dices &longs;i vterque coniunctim producit effectum: </s>
					<s id="N12BFC"><!-- NEW -->&longs;int v. <!-- REMOVE S-->g. <!-- REMOVE S-->100. par&shy;<lb/>tes impetus; Igitur &longs;inguli producunt tant&ugrave;m 50. Igitur cur poti&ugrave;s in <lb/>in his partibus &longs;ubiecti, qu&agrave;m in alijs, cum vtriu&longs;que potentia eidem <lb/>&longs;ubiecti parti po&longs;&longs;et e&longs;&longs;e applicata? </s>
					<s id="N12C0A"><!-- NEW -->Re&longs;pondeo &longs;ingulos producere 100. <lb/>actione &longs;cilicet communi indiui&longs;ibiliter; </s>
					<s id="N12C10"><!-- NEW -->&longs;int enim duo trahentes A. &amp; <lb/>B. A. producit 100. &longs;ed non &longs;olus; </s>
					<s id="N12C16"><!-- NEW -->B. producit ea&longs;dem 100. &longs;ed non &longs;o&shy;<lb/>lus; &longs;ed explicabimus hunc modum actionis communis in Metaphys. <!-- REMOVE S--><lb/>quod autem agant actione communi patet per Ax. 13. </s>
				</p>
				<p id="N12C1F" type="main">
					<s id="N12C21"><!-- NEW -->Obiicies 4. producitur &longs;onus &longs;i ferias rupem; </s>
					<s id="N12C25"><!-- NEW -->igitur &amp; impetus; </s>
					<s id="N12C29"><!-- NEW -->Re&longs;&shy;<lb/>pondeo ad &longs;onum &longs;olam a&euml;ris colli&longs;ionem &longs;ufficere, quam fieri certum <lb/>e&longs;t &agrave; pr&aelig;dicto ictu; </s>
					<s id="N12C31"><!-- NEW -->deinde mallej motus impacti in rupem facit &longs;onum; </s>
					<s id="N12C35"><!-- NEW --><lb/>quidquid tandem &longs;it &longs;onus, de quo h&icirc;c non di&longs;puto: </s>
					<s id="N12C3A"><!-- NEW -->adde quod in ru&shy;<lb/>pe &longs;unt &longs;emper aliqu&aelig; partes tremul&aelig;, qu&aelig; modico tant&ugrave;m, eoque flexi&shy;<lb/>bili nexu cum alijs partibus copulantur; adde aliquam compre&longs;&longs;ionem, <lb/>ex qua modic&aelig; vibrationes &longs;equuntur. </s>
				</p>
				<p id="N12C44" type="main">
					<s id="N12C46"><!-- NEW -->Obiicies 5. Quando aliqu&aelig; partes auolant ab ictu, haud dubi&egrave; auo&shy;<lb/>lant propter impetum impre&longs;&longs;um: </s>
					<s id="N12C4C"><!-- NEW -->Igitur prius e&longs;t imprimi impetum, <lb/>qu&agrave;m auolare; igitur productus e&longs;t impetus in nonnullis partibus, &amp; <lb/>non in aliis, cum quibus ill&aelig; &longs;unt coniunct&aelig;. </s>
					<s id="N12C54"><!-- NEW -->Re&longs;pondeo equidem im&shy;<lb/>petum produci in illis partibus antequam auolent; </s>
					<s id="N12C5A"><!-- NEW -->&longs;ed ideo produci vt <lb/>deinde auolent nam tota ratio cur non producatur, e&longs;t ne &longs;it fru&longs;tr&agrave;; </s>
					<s id="N12C60"><!-- NEW -->&longs;ed <lb/>&longs;i auolent aliqu&aelig; partes: cert&egrave; in ijs non e&longs;t fru&longs;tr&agrave;, in quibus habet <lb/>&longs;uum effectum, id e&longs;t, motum. </s>
				</p>
				<p id="N12C68" type="main">
					<s id="N12C6A">Dices; </s>
					<s id="N12C6D"><!-- NEW -->igitur primo in&longs;tanti impetus ille e&longs;t fru&longs;tr&agrave;; </s>
					<s id="N12C71"><!-- NEW -->in quo non <lb/>habet &longs;uum effectum; </s>
					<s id="N12C77"><!-- NEW -->Re&longs;pondeo nunquam primo in&longs;tanti e&longs;&longs;e fru&longs;tr&agrave;, <lb/>mod&ograve; &longs;it motus &longs;ecundo cum etiam primo in&longs;tanti, quo e&longs;t impetus, <lb/>non po&longs;&longs;it e&longs;&longs;e motus, vt demon&longs;trabo infr&agrave;; imm&ograve; ideo ponitur im&shy;<lb/>petus primo vt &longs;it motus &longs;ecundo exigendo pro in&longs;tant &longs;equenti, de <lb/>cum impetus ponat tant&ugrave;m motum quo ali&agrave;s. </s>
				</p>
				<p id="N12C83" type="main">
					<s id="N12C85">Dices; </s>
					<s id="N12C88"><!-- NEW -->&longs;ed potentia motrix ne&longs;cit an po&longs;&longs;it pars aliqua mobilis &longs;epa&shy;<lb/>rari; igitur non e&longs;t qu&ograve;d aliquando producat impetum, aliquando <lb/>non producat. </s>
					<s id="N12C90"><!-- NEW -->Re&longs;pondeo non &longs;tare per cau&longs;am nece&longs;&longs;ariam, quin &longs;em&shy;<lb/>per agat; </s>
					<s id="N12C96"><!-- NEW -->&longs;ed per &longs;ubiectum, quod &longs;i aptum e&longs;t, &amp; capax effectus; </s>
					<s id="N12C9A"><!-- NEW -->haud <lb/>dubi&egrave; eo ip&longs;o cau&longs;a nece&longs;&longs;aria applicata in ip&longs;um aget; &longs;i ver&ograve; ineptum. </s>
					<s id="N12CA0"><lb/>haud dubi&egrave; non aget; </s>
					<s id="N12CA4"><!-- NEW -->nam ad hoc vt producatur effectus in &longs;ubiecto; </s>
					<s id="N12CA8"><!-- NEW --><lb/>non &longs;atis e&longs;t cau&longs;am po&longs;&longs;e producere, ni&longs;i etiam &longs;ubiectum po&longs;&longs;it recipe&shy;<lb/>re; </s>
					<s id="N12CAF"><!-- NEW -->igitur cum &longs;it talis ordo &agrave; natura in&longs;titutus, ne aliquid &longs;it fru&longs;tr&agrave;; </s>
					<s id="N12CB3"><!-- NEW --><lb/>cert&egrave; &longs;i impetus producibilis &longs;it futurus fru&longs;tr&agrave;, hauddubi&egrave; non produ&shy;<lb/>cetur; &longs;ecus ver&ograve; &longs;i fru&longs;tr&agrave; non &longs;it futurus, in quo non e&longs;t difficultas. </s>
				</p>
				<p id="N12CBA" type="main">
					<s id="N12CBC"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N12CC8" type="main">
					<s id="N12CCA">Ob&longs;eruabis 1. vix fieri po&longs;&longs;e quin &longs;emper aliqu&aelig; partes &longs;eparentur, <lb/>comprimantur, vel dilatentur, vt patet experienti&acirc;. </s>
				</p>
				<p id="N12CCF" type="main">
					<s id="N12CD1"><!-- NEW -->Ob&longs;eruabis 2. etiam maximam corporis molem &agrave; debili potentia mi-<pb pagenum="27" xlink:href="026/01/059.jpg"/>nimo etiam ictu moueri; </s>
					<s id="N12CDA"><!-- NEW -->quod etiam ob&longs;eruauit Galileus in &longs;uis dialo&shy;<lb/>gis de motu; </s>
					<s id="N12CE0"><!-- NEW -->quem cert&egrave; motum ob&longs;eruabis etiam in&longs;en&longs;ibilem, t&ugrave;m <lb/>oper&acirc; radij luminis repercu&longs;&longs;i, &amp; ad aliquod interuallum proiecti; </s>
					<s id="N12CE6"><!-- NEW -->t&ugrave;m <lb/>oper&acirc; &longs;eu pi&longs;orum in tympani membran&acirc; tremulo qua&longs;i motu &longs;ub&longs;ul&shy;<lb/>tantium; qu&acirc; etiam arte deprehenditur in arce ob&longs;e&longs;&longs;a, &longs;ub quam muri <lb/>partem cuniculi agantur. </s>
				</p>
				<p id="N12CF0" type="main">
					<s id="N12CF2"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N12CFF" type="main">
					<s id="N12D01"><!-- NEW -->Hinc egregia ratio erui pote&longs;t, cur ingens corporis moles &agrave; debili po&shy;<lb/>tentia loco moueri non po&longs;&longs;it; </s>
					<s id="N12D07"><!-- NEW -->cum enim tot &longs;altem requirantur partes <lb/>impetus, quot &longs;unt partes &longs;ubiecti: </s>
					<s id="N12D0D"><!-- NEW -->quia vel in omnibus, vel in nulla <lb/>producitur; </s>
					<s id="N12D13"><!-- NEW -->cert&egrave; cum &longs;int plures partes &longs;ubiecti, qu&agrave;m vt in &longs;ingulis <lb/>ab ea dumtaxat potenti&acirc; impetus produci po&longs;&longs;it; quid mirum e&longs;t, &longs;i mo&shy;<lb/>ueri non po&longs;&longs;it. </s>
				</p>
				<p id="N12D1B" type="main">
					<s id="N12D1D"><emph type="center"/><emph type="italics"/>Collorarium<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N12D2A" type="main">
					<s id="N12D2C"><!-- NEW -->Hinc certa ratio alterius vulgaris effectus potenti&aelig; motricis, qu&aelig; lapi&shy;<lb/>dem 40. librarum tardo tant&ugrave;m motu impellit, etiam cum &longs;ummo ni&longs;u, <lb/>cum tamen &longs;axo vnius libr&aelig; velociorem motum imprimat; </s>
					<s id="N12D34"><!-- NEW -->quia &longs;cilicet <lb/>partes impetus producti di&longs;tribuuntur pluribus partibus &longs;ubiecti in ma&shy;<lb/>iori lapide, &amp; paucioribus in minori; </s>
					<s id="N12D3C"><!-- NEW -->igitur &longs;ingul&aelig; partes minoris <lb/>habent plures partes impetus, vt manife&longs;t&egrave; con&longs;tat; </s>
					<s id="N12D42"><!-- NEW -->ergo ille impetus <lb/>inten&longs;ior e&longs;t; igitur maiorem exigit &longs;eu perfectiorem motum per Ax. <!-- REMOVE S--><lb/>13. num.2. </s>
				</p>
				<p id="N12D4B" type="main">
					<s id="N12D4D"><emph type="center"/><emph type="italics"/>Collorarium<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N12D5A" type="main">
					<s id="N12D5C"><!-- NEW -->Hinc &longs;ublata ratione diuer&longs;&aelig; re&longs;i&longs;tenti&aelig; medij, dato pondere <lb/>mobilis vtriu&longs;que, datoque ni&longs;u communi potenti&aelig;, pote&longs;t de&shy;<lb/>terminari certus velocitatis gradus vtriu&longs;que; </s>
					<s id="N12D64"><!-- NEW -->nam ratio velocitatum <lb/>e&longs;t inuer&longs;a ponderum v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;it pond&ugrave;s 4. librarum; </s>
					<s id="N12D6E"><!-- NEW -->fit etiam 2. librarum <lb/>&longs;it impetus impre&longs;&longs;us vtrique &longs;uppo&longs;ito communi, &amp; &aelig;quali ni&longs;u <lb/>potenti&aelig;, &amp; &aelig;quali tempore; </s>
					<s id="N12D76"><!-- NEW -->haud dubi&egrave; velocitas mobilis 2. libra&shy;<lb/>rum erit dupla velocitatis mobilis 4. librarum; </s>
					<s id="N12D7C"><!-- NEW -->quia cum &longs;int duplo <lb/>plures partes &longs;ubiecti in hoc mobili qu&agrave;m in illo &lpar;accipio enim vtrum&shy;<lb/>que eiu&longs;dem materi&aelig;, vt omnes lites fugiam&rpar; igitur in minori e&longs;t duplo <lb/>inten&longs;ior impetus: Igitur duplo velocior motus; </s>
					<s id="N12D86"><!-- NEW -->dixi, &longs;i fiat &aelig;quali <lb/>ni&longs;u, &amp; &aelig;quali tempore; </s>
					<s id="N12D8C"><!-- NEW -->quia reuer&acirc; non fit in tempore &aelig;quali, &longs;ed <lb/>in&aelig;quali, &longs;i &longs;upponatur idem arcus brachij v. <!-- REMOVE S-->g. <!-- REMOVE S-->iacientis; </s>
					<s id="N12D96"><!-- NEW -->nam tempo&shy;<lb/>ra &longs;unt in ratione &longs;ubduplicata ponderum; vt demon&longs;trabimus lib.  10. <lb/>&amp; velocitates &longs;unt vt tempora permutando. </s>
				</p>
				<p id="N12D9E" type="main">
					<s id="N12DA0"><emph type="center"/><emph type="italics"/>Collorarium<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N12DAD" type="main">
					<s id="N12DAF"><!-- NEW -->Hinc facil&egrave; determinari pote&longs;t proportio impetus impre&longs;&longs;i cognit&acirc; <lb/>grauitate mobilium; </s>
					<s id="N12DB5"><!-- NEW -->v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;it mobile graue vt4. &amp; aliud graue vt 2. haud <lb/>dubi&egrave; vt moueatur  &aelig;quali gradu velocitatis, debet produci duplo <lb/>maior impetus in maiori mobili, hoc e&longs;t, iuxta rationem maioris ad mi&shy;<lb/>nus, quod clari&longs;&longs;im&egrave; &longs;equitur ex dictis; </s>
					<s id="N12DC3"><!-- NEW -->vt enim tot &longs;int gradus impetus <pb pagenum="28" xlink:href="026/01/060.jpg"/>in qualibet parte minoris, quot &longs;unt in qualibet parte minoris; </s>
					<s id="N12DCC"><!-- NEW -->haud <lb/>dubi&egrave; impetus maioris habet eandem rationem ad impetum minoris; <lb/>quam habet maius ad minus. </s>
				</p>
				<p id="N12DD4" type="main">
					<s id="N12DD6"><emph type="center"/><emph type="italics"/>Collorarium<emph.end type="italics"/> 5.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N12DE3" type="main">
					<s id="N12DE5"><!-- NEW -->Hinc quoque ducitur manife&longs;ta ratio &longs;eu re&longs;pon&longs;io ad illud pr&aelig;cla&shy;<lb/>rum cert&egrave; quorundam philo&longs;ophorum <expan abbr="comm&etilde;tum">commentum</expan>, qui volunt ex mini&shy;<lb/>ma ponderis acce&longs;&longs;ione totam terr&aelig; molem inclinari, vt in nouo &aelig;qui&shy;<lb/>librio &longs;tatuatur; quod omnin&ograve; fal&longs;um e&longs;t; </s>
					<s id="N12DF3"><!-- NEW -->nam ex &longs;uppotione qu&ograve;d <lb/>terra non grauitet &lpar;vt vulg&ograve; dicitur, &amp; ali&agrave;s &agrave; nobis <expan abbr="dem&otilde;&longs;trabitur">demon&longs;trabitur</expan>&rpar; illa <lb/>cert&egrave; moueri non pote&longs;t ni&longs;i producantur tot partes impetus quot &longs;unt <lb/>partes &longs;ubiecti in tota terra; qu&aelig; cert&egrave; maximas <expan abbr="pot&etilde;ti&aelig;">potenti&aelig;</expan> vires po&longs;tulant. </s>
				</p>
				<p id="N12E05" type="main">
					<s id="N12E07"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 34.<emph.end type="center"/></s>
				</p>
				<p id="N12E13" type="main">
					<s id="N12E15"><emph type="italics"/>Primo in&longs;tanti, quo est impetus, non est ille motus, cuius hic impetus e&longs;t <lb/>cau&longs;a.<emph.end type="italics"/></s>
					<s id="N12E1E"> Probatur; </s>
					<s id="N12E21"><!-- NEW -->quia non pote&longs;t e&longs;&longs;e motus, ni&longs;i &longs;it locus prior reli&shy;<lb/>ctus, &amp; nouus acqui&longs;itus, igitur &longs;i eodem in&longs;tanti, quo e&longs;t impetus, <lb/>haberet motum, eodem in&longs;tanti e&longs;&longs;et in duobus locis, quod dici non <lb/>pote&longs;t; &amp; iam diximus in Th. 26. igitur impetus primo in&longs;tanti quo <lb/>e&longs;t non habet &longs;uum motum. </s>
				</p>
				<p id="N12E2D" type="main">
					<s id="N12E2F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 35.<emph.end type="center"/></s>
				</p>
				<p id="N12E3B" type="main">
					<s id="N12E3D"><emph type="italics"/>Imm&ograve; nihil e&longs;t, quod primo in&longs;tanti, quo e&longs;t, moueri po&longs;&longs;it.<emph.end type="italics"/></s>
					<s id="N12E44"><!-- NEW --> Quia non pote&longs;t <lb/>moueri, ni&longs;i acquirat nouum locum, &amp; priorem relinquat; </s>
					<s id="N12E4A"><!-- NEW -->igitur, vel &longs;i&shy;<lb/>mul in vtroque e&longs;t, quod dici non pote&longs;t; </s>
					<s id="N12E50"><!-- NEW -->vel in relicto ant&egrave; fuit; igitur <lb/>non e&longs;t primum in&longs;tans, contra &longs;uppo&longs;itionem. </s>
				</p>
				<p id="N12E56" type="main">
					<s id="N12E58"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 36.<emph.end type="center"/></s>
				</p>
				<p id="N12E64" type="main">
					<s id="N12E66"><emph type="italics"/>Potest impetus aliquo in&longs;tanti non moueri quo mouetur ip&longs;um mobile, in <lb/>quo est.<emph.end type="italics"/></s>
					<s id="N12E6F"><!-- NEW --> Nam moueatur mobile quodlibet; </s>
					<s id="N12E73"><!-- NEW -->&amp; dum mouetur, impella&shy;<lb/>tur, fact&acirc; &longs;cilicet acce&longs;&longs;ione noui impetus; haud dubi&egrave; hoc primo in&shy;<lb/>&longs;tanti, quo producitur impetus in dato mobili non mouetur per Th. <!-- REMOVE S--><lb/>35. quo tamen in&longs;tanti mouetur pr&aelig;dictum mobile. </s>
				</p>
				<p id="N12E7E" type="main">
					<s id="N12E80"><emph type="center"/><emph type="italics"/>Collorarium<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N12E8D" type="main">
					<s id="N12E8F"><!-- NEW -->Hinc egregium paradoxon; <emph type="italics"/>Pote&longs;t alique in&longs;tanti moueri &longs;ubiectum, lic&egrave;t <lb/>non moueantur illa omnia, que eidem &longs;ubiecto reuer&acirc; in&longs;unt.<emph.end type="italics"/></s>
				</p>
				<p id="N12E9A" type="main">
					<s id="N12E9C"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N12EA9" type="main">
					<s id="N12EAB"><!-- NEW -->Hinc etiam aliud paradoxon; </s>
					<s id="N12EAF"><!-- NEW --><emph type="italics"/>Impetus primo in&longs;tanti, quo e&longs;t, non habet <lb/>&longs;uum finem, nec habere pote&longs;t<emph.end type="italics"/>; patet, quia primo in&longs;tanti non habet <expan abbr="mot&utilde;">motum</expan>. </s>
				</p>
				<p id="N12EBE" type="main">
					<s id="N12EC0"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N12ECD" type="main">
					<s id="N12ECF"><!-- NEW -->Hinc pote&longs;t aliquid dato in&longs;tanti carere &longs;uo fine; </s>
					<s id="N12ED3"><!-- NEW -->lic&egrave;t non &longs;it fru&longs;tr&agrave;; <lb/>fru&longs;tr&acirc; enim tant&ugrave;m dicitur ille impetus, qui pro in&longs;tanti &longs;equenti <lb/>non pote&longs;t habere motum. </s>
				</p>
				<p id="N12EDB" type="main">
					<s id="N12EDD"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 37.<emph.end type="center"/></s>
				</p>
				<p id="N12EE9" type="main">
					<s id="N12EEB"><emph type="italics"/>Impetus pars recepta in parte &longs;ubiecti non exigit motum aliarum partium<emph.end type="italics"/><pb pagenum="29" xlink:href="026/01/061.jpg"/><emph type="italics"/>eiu&longs;dem &longs;ubiecti, lic&egrave;t coniunctarum.<emph.end type="italics"/></s>
					<s id="N12EFB"><!-- NEW --> Probatur 1. quia alioquin vna pars <lb/>impetus &longs;ufficeret ad mouendam ingentem rupem; quod ab&longs;urdum e&longs;t. </s>
					<s id="N12F01"><!-- NEW --><lb/>2. &longs;icut vna pars caloris non re&longs;oluit alias partes &longs;ubiecti; ita nec im&shy;<lb/>petus. </s>
					<s id="N12F08"><!-- NEW -->3. Ratio &agrave; priori e&longs;t; quia impetus non e&longs;t cau&longs;a efficiens motus <lb/>per Th. 13. &longs;ed tant&ugrave;m cau&longs;a formalis per Th. 15. Igitur pr&aelig;&longs;tat tant&ugrave;m <lb/>&longs;uum effectum formalem in eo &longs;ubiecto, in quo e&longs;t. </s>
				</p>
				<p id="N12F10" type="main">
					<s id="N12F12"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N12F1F" type="main">
					<s id="N12F21"><!-- NEW -->Hinc partes impetus non cau&longs;ant motum in &longs;uo &longs;ubiecto actione, vel <lb/>exigentia communi; </s>
					<s id="N12F27"><!-- NEW -->quia qu&aelig;libet pars impetus exigit tant&ugrave;m motum <lb/>&longs;ui &longs;ubiecti; </s>
					<s id="N12F2D"><!-- NEW -->id e&longs;t illius partis, qu&agrave;m afficit; quod etiam probatur per <lb/>Ax. 13. </s>
				</p>
				<p id="N12F33" type="main">
					<s id="N12F35"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N12F42" type="main">
					<s id="N12F44"><!-- NEW -->Hinc corpus grauius per&longs;e, &longs;altem eiu&longs;dem materi&aelig;, non cadit velo&shy;<lb/>ci&ugrave;s, qu&agrave;m leuius, vti globus plumbeus 100. librarum, qu&agrave;m globus <lb/>vnius libr&aelig; plumbeus; </s>
					<s id="N12F4C"><!-- NEW -->quia &longs;cilicet impetus vnius partis non iuuat mo&shy;<lb/>tum alterius: </s>
					<s id="N12F52"><!-- NEW -->pr&aelig;terea tam facil&egrave; 2, partes impetus in 2. partibus &longs;ubie&shy;<lb/>cti recept&aelig; ea&longs;dem mouent, qu&agrave;m 100. alias 100. dixi per &longs;e; </s>
					<s id="N12F58"><!-- NEW -->nam di&shy;<lb/>uer&longs;a e&longs;&longs;e pote&longs;t medij re&longs;i&longs;tentia; &longs;ed de his fu&longs;e in 2. lib. <!-- REMOVE S--><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 38.<emph.end type="center"/></s>
				</p>
				<p id="N12F69" type="main">
					<s id="N12F6B"><!-- NEW --><emph type="italics"/>Impetus recipitur tant&ugrave;m in ip&longs;a &longs;ub&longs;tantia &longs;ubiecti naturaliter.<emph.end type="italics"/> v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;i <lb/>mobile &longs;it ferrum calidum, recipitur in ip&longs;a &longs;ub&longs;tantia ferri; </s>
					<s id="N12F7A"><!-- NEW -->non ver&ograve; <lb/>in ip&longs;o calore &lpar;ex &longs;uppo&longs;itione quod calor &longs;it accidens, vt ali&agrave;s demon&shy;<lb/>&longs;trabimus; </s>
					<s id="N12F82"><!-- NEW -->nec in alijs accidentibus, &longs;i qu&aelig; &longs;unt, in eodem &longs;ubiecto; </s>
					<s id="N12F86"><!-- NEW -->pro&shy;<lb/>batur 1. quia &longs;i produceretur etiam impetus in accidentibus, quo plu&shy;<lb/>ra e&longs;&longs;ent accidentia in aliquo &longs;ubiecto; </s>
					<s id="N12F8E"><!-- NEW -->plures quoque partes impetus <lb/>producend&aelig; e&longs;&longs;ent; igitur maiori potenti&acirc; opus e&longs;&longs;et per Ax. 13. n. </s>
					<s id="N12F94">4. <lb/>Igitur difficili&ugrave;s mouerentur, quod e&longs;t ab&longs;urdum. </s>
					<s id="N12F99"><!-- NEW -->Diceret fort&egrave; ali&shy;<lb/>quis eundem impetum recipi &longs;imul in &longs;ub&longs;tantia &amp; in ip&longs;is accidenti&shy;<lb/>bus; </s>
					<s id="N12FA1"><!-- NEW -->&longs;ed contra, nam reuera, &longs;i hoc e&longs;&longs;et, dum proijcitur ferrum cali&shy;<lb/>dum, &amp; &longs;tatim frigefit, de&longs;trueretur totus impetus, de&longs;tructo &longs;cilicet <lb/>eius &longs;ubiecto: </s>
					<s id="N12FA9"><!-- NEW -->2. qui hoc diceret, deberet probare; </s>
					<s id="N12FAD"><!-- NEW -->nam eodem modo <lb/>mouetur corpus &longs;iue afficiatur pluribus accidentibus, &longs;iue paucioribus; <lb/>igitur non euincit experientia recipi in illis impetum, nec etiam ratio, <lb/>vt dicam paul&ograve; po&longs;t. </s>
					<s id="N12FB7"><!-- NEW -->Ratio &agrave; priori e&longs;&longs;e pote&longs;t; </s>
					<s id="N12FBB"><!-- NEW -->quia accidens cum &longs;uo <lb/>&longs;ubiecto coniunctum exigit &longs;emper e&longs;&longs;e pr&aelig;&longs;ens &longs;ubiecto, cum natura&shy;<lb/>liter extra &longs;ubiectum exi&longs;tere non po&longs;&longs;it; </s>
					<s id="N12FC3"><!-- NEW -->igitur cum exigat con&longs;erua&shy;<lb/>ri, &amp; exi&longs;tere; </s>
					<s id="N12FC9"><!-- NEW -->eo tant&ugrave;m modo, quo pote&longs;t naturaliter con&longs;eruari &amp; <lb/>exi&longs;tere; </s>
					<s id="N12FCF"><!-- NEW -->cert&egrave; exigit con&longs;eruari, &amp; ine&longs;&longs;e &longs;ubiecto; </s>
					<s id="N12FD3"><!-- NEW -->igitur exi&longs;tere in <lb/>eo loco, in quo exi&longs;tit &longs;ubiectum, vt patet; igitur, &longs;i &longs;ubiectum mutet <lb/>locum etiam accidens cum eo coniunctum mutare debet. </s>
				</p>
				<p id="N12FDB" type="main">
					<s id="N12FDD"><!-- NEW -->Dices, igitur &longs;imiliter dici pote&longs;t non recipi impetum in omni&shy;<lb/>bus partibus &longs;ubiecti mobilis, &longs;ed in vn&acirc; dumtaxat; cui cum <lb/>ali&aelig; &longs;int vnit&aelig;, exigunt moueri &longs;ine impetu ad illius motum? </s>
					<s id="N12FE5"><!-- NEW -->cum <lb/>hoc ip&longs;um ad omnem vnionem &longs;pectare videatur; </s>
					<s id="N12FEB"><!-- NEW -->Re&longs;pondeo vnam <pb pagenum="30" xlink:href="026/01/062.jpg"/>partem plumbi ita coniungi cum alia, vt etiam &longs;eparata naturaliter <lb/>exi&longs;tere po&longs;&longs;it; </s>
					<s id="N12FF6"><!-- NEW -->igitur non e&longs;t par ratio; </s>
					<s id="N12FFA"><!-- NEW -->pr&aelig;terea vna pars plumbi non <lb/>e&longs;t in loco alterius; </s>
					<s id="N13000"><!-- NEW -->nec enim inuicem penetrantur cum &longs;it compene&shy;<lb/>tratio accidentium cum &longs;ubiecto; </s>
					<s id="N13006"><!-- NEW -->deinde, qu&ograve; plures &longs;unt partes vnit&aelig;, <lb/>maior e&longs;t re&longs;i&longs;tentia, qu&aelig; ip&longs;o etiam &longs;en&longs;u percipitur; </s>
					<s id="N1300C"><!-- NEW -->denique non vide&shy;<lb/>tur cur potius produceretur in vna parte, quam in alia; qu&aelig; omnia <lb/>iam &longs;upr&agrave; Th. 33. demon&longs;trauimus. </s>
				</p>
				<p id="N13014" type="main">
					<s id="N13016"><!-- NEW -->Adde quod &longs;i impetus produceretur in ip&longs;is accidentibus, etiam in <lb/>ip&longs;o impetu prius producto alius impetus produceretur; </s>
					<s id="N1301C"><!-- NEW -->cum &longs;cilicet <lb/>noua fit impetus acce&longs;&longs;io; quod &longs;atis ridiculum e&longs;t; qua&longs;i ver&ograve; impetus <lb/>indigeat impetu &amp;c. </s>
					<s id="N13024"><!-- NEW -->h&icirc;c loquor tant&ugrave;m de accidentibus in &longs;ubiecto; <lb/>non ver&ograve; de Euchari&longs;ticis, qu&aelig; &agrave; &longs;ubiecto per miraculum &longs;eparata etiam <lb/>moueri po&longs;&longs;unt per impre&longs;&longs;um impetum. </s>
				</p>
				<p id="N1302C" type="main">
					<s id="N1302E"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1303B" type="main">
					<s id="N1303D"><!-- NEW -->Hinc manife&longs;t&egrave; patet, quid dicendum &longs;it de anima bruti, qu&aelig; moue&shy;<lb/>tur etiam &longs;ine impetu; </s>
					<s id="N13043"><!-- NEW -->quia exigit &longs;emper e&longs;&longs;e coniuncta corpori, &agrave; <lb/>quo di&longs;iuncta naturaliter exi&longs;tere non pote&longs;t, vt &longs;uo loco dicemus; igi&shy;<lb/>tur ad motum corporis, &longs;eu &longs;ubiecti moueri deber. </s>
				</p>
				<p id="N1304B" type="main">
					<s id="N1304D"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1305A" type="main">
					<s id="N1305C"><!-- NEW -->Idem quoque de Anima rationali dicendum e&longs;&longs;e videtur; </s>
					<s id="N13060"><!-- NEW -->lic&egrave;t <lb/>enim &agrave; corpore &longs;eparata naturaliter exi&longs;tere po&longs;&longs;it; </s>
					<s id="N13066"><!-- NEW -->tandi&ugrave; tamen cum <lb/>corpore manet coniuncta, quandiu agere pote&longs;t in organis corporeis; <lb/>ac proinde exigit con&longs;eruari in corpore ip&longs;o, quandiu &longs;uas operatio&shy;<lb/>nes organicas in eo exercere pote&longs;t. </s>
				</p>
				<p id="N13070" type="main">
					<s id="N13072"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1307F" type="main">
					<s id="N13081"><!-- NEW -->Hinc patet ratio manife&longs;ta ad qu&aelig;&longs;itum illud; </s>
					<s id="N13085"><!-- NEW -->quomodo &longs;cilicet po&shy;<lb/>tentia motrix materialis v.g. <!-- REMOVE S-->Taurus &longs;uo cornu hominem ventilare po&longs;&shy;<lb/>&longs;it; nec vlla &longs;upere&longs;t difficultas, dum dicas impetum non produci in <lb/>anima. </s>
				</p>
				<p id="N13091" type="main">
					<s id="N13093"><emph type="center"/><emph type="italics"/>Scolium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1309F" type="main">
					<s id="N130A1"><!-- NEW -->Ob&longs;eruabis prim&ograve; In hoc Theoremate dictum e&longs;&longs;e naturaliter; quia <lb/>per miraculum accidens &longs;eparatum ab omni &longs;ub&longs;tantia, dum &longs;it impe&shy;<lb/>netrabile, per impetum &longs;ibi impre&longs;&longs;um moueri pote&longs;t. </s>
				</p>
				<p id="N130A9" type="main">
					<s id="N130AB">Ob&longs;eruabis &longs;ecund&ograve; de anima bruti per miraculum &longs;eparat&acirc;, idem <lb/>pror&longs;us dicendum e&longs;&longs;e. </s>
				</p>
				<p id="N130B0" type="main">
					<s id="N130B2"><!-- NEW -->Ob&longs;eruabis terti&ograve; etiam Animam rationalem &longs;eparatam, mod&ograve; &longs;it <lb/>cum impenetrabilitate coniuncta, capacem e&longs;&longs;e impetus; </s>
					<s id="N130B8"><!-- NEW -->quem etiam <lb/>&agrave; potentia motrice corporea recipere pote&longs;t; </s>
					<s id="N130BE"><!-- NEW -->idem dictum e&longs;to de An&shy;<lb/>gelo; &longs;ed de vtroque ali&agrave;s. </s>
				</p>
				<p id="N130C4" type="main">
					<s id="N130C6"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 39.<emph.end type="center"/></s>
				</p>
				<p id="N130D2" type="main">
					<s id="N130D4"><!-- NEW --><emph type="italics"/>Quando corpus pellitur ab alio corpore per impetum impre&longs;&longs;um; </s>
					<s id="N130DA"><!-- NEW -->haud du&shy;<lb/>bi&egrave; impetus ille impre&longs;&longs;us ab aliqua cau&longs;a efficiente producitur<emph.end type="italics"/>; patet <lb/>per Ax. 8. </s>
				</p>
				<pb pagenum="31" xlink:href="026/01/063.jpg"/>
				<p id="N130E9" type="main">
					<s id="N130EB"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 40.<emph.end type="center"/></s>
				</p>
				<p id="N130F7" type="main">
					<s id="N130F9"><emph type="italics"/>Ille impetus non producitur &agrave; &longs;ub&longs;tantia corporis in aliud impacti.<emph.end type="italics"/></s>
					<s id="N13100"> Proba&shy;<lb/>tur; </s>
					<s id="N13105"><!-- NEW -->quia &longs;i produceretur, e&longs;&longs;et cau&longs;a nece&longs;&longs;aria vt <expan abbr="clar&utilde;">clarum</expan> e&longs;t; igitur appli&shy;<lb/>cata, &amp; non impedita ageret per Ax. 32. quod e&longs;t contra experientiam. </s>
					<s id="N1310F"><!-- NEW --><lb/>Dicunt aliqui requiri <expan abbr="mot&utilde;">motum</expan> pr&aelig;uium, vt agat; &longs;ed contra; </s>
					<s id="N13118"><!-- NEW -->nam motus <lb/>pr&aelig;uius non requiritur vt cau&longs;a, vt patet; </s>
					<s id="N1311E"><!-- NEW -->quia cau&longs;a vt agat debet exi&shy;<lb/>&longs;tere per Ax. 9. Igitur requiritur, vt conditio, quod dici non pote&longs;t; </s>
					<s id="N13124"><!-- NEW --><lb/>quia primo etiam conditio debet e&longs;&longs;e pr&aelig;&longs;ens; </s>
					<s id="N13129"><!-- NEW -->&longs;ed motus pr&aelig;uius de <lb/>nihil pre&longs;enti e&longs;t &longs;ecundo quia non pote&longs;t excogitari aliud munus con&shy;<lb/>ditionis; </s>
					<s id="N13131"><!-- NEW -->ni&longs;i vel vt tollat impedimentum, vel vt applicet cau&longs;am &longs;ubie&shy;<lb/>cto apto; </s>
					<s id="N13137"><!-- NEW -->pr&aelig;terea motus pr&aelig;uius non e&longs;t; </s>
					<s id="N1313B"><!-- NEW -->igitur eodem modo &longs;e <lb/>habet, ac &longs;i nunquam extiti&longs;&longs;et; &amp; &longs;i eo in&longs;tanti quo corpus impa&shy;<lb/>ctum primo tangit, amitteret totum impetum, ita vt expr&aelig;terito motu <lb/>nihil reliquum e&longs;&longs;et, haud dubi&egrave; corpus aliud non pelleret. </s>
				</p>
				<p id="N13145" type="main">
					<s id="N13147"><!-- NEW -->Diceret alius impetum e&longs;&longs;e tant&ugrave;m conditionem, qu&aelig; &longs;emper e&longs;t <lb/>de pr&aelig;&longs;enti: </s>
					<s id="N1314D"><!-- NEW -->ad hanc in&longs;tantiam non valet &longs;uperior re&longs;pon&longs;io; </s>
					<s id="N13151"><!-- NEW -->&amp; cert&egrave; <lb/>&longs;i eo ip&longs;o in&longs;tanti contactus noua fieret impetus acce&longs;&longs;io; </s>
					<s id="N13157"><!-- NEW -->haud dubi&egrave; <lb/>maior e&longs;&longs;et ictus; </s>
					<s id="N1315D"><!-- NEW -->lic&egrave;t cum eodem motu pr&aelig;uio, &amp; tamen idem e&longs;&longs;et <lb/>corpus <expan abbr="impact&utilde;">impactum</expan>, Igitur ad hanc <expan abbr="in&longs;tanti&atilde;">in&longs;tantiam</expan> alio modo re&longs;pondeo, ex appli&shy;<lb/>catione impetus &longs;emper &longs;equitur productio alterius impetus; </s>
					<s id="N1316D"><!-- NEW -->dum &longs;cili&shy;<lb/>cet &longs;ubiectum, cui applicatur &longs;it capax motus; </s>
					<s id="N13173"><!-- NEW -->ex applicatione corporis <lb/>&longs;eu &longs;ubiecti ip&longs;ius non &longs;emper &longs;equitur; igitur dicendum e&longs;t impetum <lb/>ip&longs;um e&longs;&longs;e cau&longs;am alterius per Ax. 11. n. </s>
					<s id="N1317B"><!-- NEW -->1. voco enim illud cau&longs;am, <lb/>ex cuius applicatione &longs;emper &longs;equitur &longs;imilis effectus; alioquin &longs;i hoc <lb/>neges; </s>
					<s id="N13183"><!-- NEW -->proba mihi aliter ignem accendi ab alio igne; </s>
					<s id="N13187"><!-- NEW -->dicam enim tibi <lb/>ignem applicatum e&longs;&longs;e tant&ugrave;m conditionem, &amp; produci &agrave; c&oelig;lo; proba <lb/>mihi aliter calorem produci &agrave; calore? </s>
					<s id="N1318F">quo enim medio, vel argu&shy;<lb/>mento id euinces? </s>
					<s id="N13194"><!-- NEW -->quo etiam non euincam impetum produci ab im&shy;<lb/>petu: Deinde affer rationem &agrave; priori, propter quam &longs;ub&longs;tantia <lb/>corporis producat impetum &longs;ur&longs;um? </s>
					<s id="N1319C"><!-- NEW -->v. <!-- REMOVE S-->g. <!-- REMOVE S-->cum non exigat &agrave; &longs;e ip&longs;a mo&shy;<lb/>tum &longs;urs&ugrave;m, qui violentus e&longs;t corpori graui; numquid certum e&longs;t, vt <lb/>dicemus infr&agrave; impetum produci ad extra, vt tollatur impedimentum <lb/>motus? </s>
					<s id="N131AA"><!-- NEW -->igitur illius e&longs;t tollere impedimentum, cuius e&longs;t exigere motum, <lb/>corpus ip&longs;um graue non exigit motum &longs;ur&longs;um, &longs;ed impetus; </s>
					<s id="N131B0"><!-- NEW -->igitur im&shy;<lb/>petus e&longs;t tollere impedimentum &longs;ui effectus; </s>
					<s id="N131B6"><!-- NEW -->igitur producere impetum, <lb/>quo vno tolli tant&ugrave;m pote&longs;t: </s>
					<s id="N131BC"><!-- NEW -->En tibi rationem &agrave; priori, cutum nullam <lb/>habeas: Pr&aelig;terea, cur negas impetum e&longs;&longs;e cau&longs;am &longs;ufficientem alterius <lb/>impetus, cum ex eius applicatione ip&longs;o &longs;en&longs;u percipiamus produci alium <lb/>impetum? </s>
					<s id="N131C6">qu&aelig; ratio? </s>
					<s id="N131C9"><!-- NEW -->quid inde ab&longs;urdi, quid incommodi: Igitur t&agrave;m <lb/>certum e&longs;t, imm&ograve; certius impetum produci ab alio impetu, qu&agrave;m calo&shy;<lb/>rem &agrave; calore. </s>
					<s id="N131D1"><!-- NEW -->Dices impetum iam habere alium effectum &longs;cilicet mo&shy;<lb/>tum; bella profecto ratio! &longs;ed numquid motus e&longs;t effectus formalis im&shy;<lb/>petus? </s>
					<s id="N131D9">pr&aelig;tere&agrave; e&longs;t-ne effectus ad extra? </s>
					<s id="N131DC"><!-- NEW -->deinde idem dico de calore; </s>
					<s id="N131E0"><!-- NEW --><pb pagenum="32" xlink:href="026/01/064.jpg"/>qui reuera habet effectum formalem &longs;ecundarium ad intra, &longs;cilicet rare&shy;<lb/>factionem, qu&aelig; e&longs;t mutatio exten&longs;ionis; </s>
					<s id="N131EA"><!-- NEW -->quemadmodum motus e&longs;t mu&shy;<lb/>tatio loci, vel vbicationis; </s>
					<s id="N131F0"><!-- NEW -->igitur cum hoc &verbar; non ob&longs;tante, calor pro&shy;<lb/>ducat calorem ad extra; cur impetus non producit impetum? </s>
					<s id="N131F6"><!-- NEW -->cuius pro&shy;<lb/>ductionem concedis virtuti corporum re&longs;i&longs;titiu&aelig;, id e&longs;t vnioni, impe&shy;<lb/>netrabilitati, &amp; c&aelig;teris huiu&longs;modi modorum &longs;uperfluorum qui&longs;quiliis; <lb/>de quibus plurimi tecum contendunt. </s>
				</p>
				<p id="N13200" type="main">
					<s id="N13202"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1320E" type="main">
					<s id="N13210"><!-- NEW -->Ob&longs;eruabis nonnullas e&longs;&longs;e difficultates, qu&aelig; communes &longs;unt etiam <lb/>illi &longs;ententi&aelig;, quam &longs;equuntur ij, qui exi&longs;timant impetum ad extra <lb/>produci &agrave; corpore impacto; quas tamen facil&egrave; &longs;oluemus infr&agrave; in conti&shy;<lb/>nuata no&longs;trorum Theorematum &longs;erie. </s>
				</p>
				<p id="N1321A" type="main">
					<s id="N1321C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 41.<emph.end type="center"/></s>
				</p>
				<p id="N13228" type="main">
					<s id="N1322A"><emph type="italics"/>Aliquis impetus non producitur ab alio impetu.<emph.end type="italics"/></s>
					<s id="N13231"> Probatur, quia aliquis <lb/>impetus producitur ad intra &agrave; potentia motrice, vt patet. </s>
					<s id="N13236">2. cum non <lb/>detur progre&longs;&longs;us in infinitum, nec impetus idem producatur &agrave; &longs;e ip&longs;o, ad <lb/>aliquem tandem vltimum &longs;eu primum deueniendum e&longs;t, qui ab alio im&shy;<lb/>petu non producatur. </s>
				</p>
				<p id="N1323F" type="main">
					<s id="N13241"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 42.<emph.end type="center"/></s>
				</p>
				<p id="N1324D" type="main">
					<s id="N1324F"><emph type="italics"/>Impetus producitur &longs;emper ad extra ab alio impetu.<emph.end type="italics"/></s>
					<s id="N13256"><!-- NEW --> Quia cum &longs;emper <lb/>ad illius productionem requiratur applicatio alterius impetus; cert&egrave; <lb/>non e&longs;t ponenda alia cau&longs;a per Ax. 11. </s>
				</p>
				<p id="N1325E" type="main">
					<s id="N13260"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 43.<emph.end type="center"/></s>
				</p>
				<p id="N1326C" type="main">
					<s id="N1326E"><!-- NEW --><emph type="italics"/>Hinc impetus habet duplex munus cau&longs;&aelig;; </s>
					<s id="N13274"><!-- NEW -->&longs;cilicet cau&longs;&aelig; exigentis ad intra <lb/>&amp; efficientis ad extra<emph.end type="italics"/>; vtrumque patet ex dictis. </s>
				</p>
				<p id="N1327D" type="main">
					<s id="N1327F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 44.<emph.end type="center"/></s>
				</p>
				<p id="N1328B" type="main">
					<s id="N1328D"><!-- NEW --><emph type="italics"/>Impetus agit tant&ugrave;m ad extra, vt tollat impedimentum motus<emph.end type="italics"/>; </s>
					<s id="N13296"><!-- NEW -->cum enim <lb/>motus &longs;it finis intrin&longs;ecus impetus; </s>
					<s id="N1329C"><!-- NEW -->cert&egrave; &longs;i nihil impediret motum, <lb/>haud dubi&egrave; gauderet impetus &longs;uo fine; </s>
					<s id="N132A2"><!-- NEW -->igitur fru&longs;tr&agrave; quidquam aliud <lb/>de&longs;ideraret; </s>
					<s id="N132A8"><!-- NEW -->pr&aelig;terea lic&egrave;t applicetur &agrave; tergo aliud mobile; </s>
					<s id="N132AC"><!-- NEW -->non tamen <lb/>propterea in eo producit, vt con&longs;tat experienti&acirc;; </s>
					<s id="N132B2"><!-- NEW -->denique cum tan&shy;<lb/>t&ugrave;m impetum cogno&longs;camus per motum; </s>
					<s id="N132B8"><!-- NEW -->cum nequidem e&longs;&longs;et impetus, <lb/>&longs;i non e&longs;&longs;et motus, per Th. 17. cert&egrave; totus e&longs;t impetus propter motum <lb/>qui e&longs;t eius finis; </s>
					<s id="N132C0"><!-- NEW -->igitur non agit ni&longs;i propter motum: </s>
					<s id="N132C4"><!-- NEW -->&longs;ed non pote&longs;t <lb/>excogitari, quid faciat propter motum, dum agit, ni&longs;i dicamus ideo <lb/>tant&ugrave;m agere, vt tollatur impedimentum; cum certum &longs;it corpus im&shy;<lb/>mobile, in quod impingitur aliud mobile, impedire eius motum. </s>
				</p>
				<p id="N132CE" type="main">
					<s id="N132D0"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 45.<emph.end type="center"/></s>
				</p>
				<p id="N132DC" type="main">
					<s id="N132DE"><!-- NEW --><emph type="italics"/>Hinc non &longs;imul agit impetus in orbem &longs;ed tant&ugrave;m per lineam <lb/>&longs;ui motus; </s>
					<s id="N132E6"><!-- NEW -->cui &longs;i nullum corpus occurrit reuer&agrave; non agit,<emph.end type="italics"/> Ratio e&longs;t; </s>
					<s id="N132ED"><!-- NEW -->quia li&shy;<lb/>c&egrave;t aliud corpus mobili admoueatur in alia linea; </s>
					<s id="N132F3"><!-- NEW -->cum non impediat <lb/>eius motum, vt &longs;uppono; </s>
					<s id="N132F9"><!-- NEW -->cum agat tant&ugrave;m impetus ad extra, vt tollat, <pb pagenum="33" xlink:href="026/01/065.jpg"/>impedimentum motu &longs;ui &longs;ubiecti, in eo non agit, quod non impedit; </s>
					<s id="N13302"><!-- NEW -->&amp; <lb/>cum impediatur tant&ugrave;m in vna linea, in ca tant&ugrave;m agit; igitur non <lb/>agit in orbem. </s>
				</p>
				<p id="N1330A" type="main">
					<s id="N1330C"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N13318" type="main">
					<s id="N1331A"><!-- NEW -->Ob&longs;eruabis prim&ograve;, hanc primam e&longs;&longs;e difficultatem; cum in hoc im&shy;<lb/>petus maxim&egrave; differat ab alijs qualitatibus &longs;i qu&aelig; &longs;unt, qu&aelig; agunt in or&shy;<lb/>bem, vt dicemus &longs;uo loco. </s>
				</p>
				<p id="N13322" type="main">
					<s id="N13324"><!-- NEW -->Ob&longs;eruabis &longs;ecund&ograve;, hanc etiam e&longs;&longs;e communem illorum &longs;ententiam, <lb/>qui dicunt impetum ad extr&agrave; produci ab ip&longs;o mobili, &longs;ed ita vt ab illis <lb/>vix &longs;olui po&longs;&longs;it; cum tamen &agrave; nobis facil&egrave; &longs;oluatur. </s>
				</p>
				<p id="N1332C" type="main">
					<s id="N1332E"><!-- NEW -->Ob&longs;eruabis terti&ograve;, impetum in vtroque munere cau&longs;&aelig; &longs;ube&longs;&longs;e tant&ugrave;m <lb/>vni line&aelig;; </s>
					<s id="N13334"><!-- NEW -->&longs;cilicet exigit motum per vnam lineam; </s>
					<s id="N13338"><!-- NEW -->cum per plures &longs;i&shy;<lb/>mul motus e&longs;&longs;e non po&longs;&longs;it; </s>
					<s id="N1333E"><!-- NEW -->ne idem mobile &longs;imul e&longs;&longs;et in pluribus lo&shy;<lb/>cis; </s>
					<s id="N13344"><!-- NEW -->&amp; producit impetum per vnam lineam; cum producat tant&ugrave;m pro&shy;<lb/>pter motum. </s>
				</p>
				<p id="N1334A" type="main">
					<s id="N1334C"><!-- NEW -->Ob&longs;eruabis quart&ograve;, alias qualitates, &longs;i qu&aelig; &longs;unt, non agere ad extra, <lb/>vt tollant impedimentum &longs;ui effectus ad intra; </s>
					<s id="N13352"><!-- NEW -->qui &longs;cilicet ab impedi&shy;<lb/>mento extrin&longs;eco impediri non pote&longs;t; </s>
					<s id="N13358"><!-- NEW -->vt accidit in ip&longs;o impetu; </s>
					<s id="N1335C"><!-- NEW -->etenim <lb/>corpus non pote&longs;t moueri ni&longs;i nouum locum acquirat: neque nouum <lb/>locum acquirere ab alio corpore occupatum, ni&longs;i corpus hoc loco ce&shy;<lb/>dat, neque hoc loco cedere pote&longs;t &longs;ine motu, vel moueri &longs;ine impetu, <lb/>igitur cum impediat motum amoueri debet, accepto dumtaxat impetu <lb/>ab alio mobili. </s>
				</p>
				<p id="N1336A" type="main">
					<s id="N1336C"><!-- NEW -->Ob&longs;eruabis quint&ograve; nonnullos e&longs;&longs;e, qui volunt motum vnius corporis <lb/>transferri in aliud corpus; </s>
					<s id="N13372"><!-- NEW -->&longs;ed mera e&longs;t metaphora; </s>
					<s id="N13376"><!-- NEW -->nihil enim pror&longs;us <lb/>e&longs;t quod ab vno in aliud tran&longs;eat, &longs;eu transferatur; nec aliud dici po&shy;<lb/>te&longs;t, ni&longs;i quod dictum e&longs;t, impetum &longs;cilicet nouum produci. </s>
				</p>
				<p id="N1337E" type="main">
					<s id="N13380"><!-- NEW -->Hinc etiam reiicies commentum illorum, qui dicunt ideo vnum <lb/>corpus ab alio moueri, quia ab vno in aliud deriuantur corpu&longs;cula illa, <lb/>qu&aelig; faciunt lumen, &amp; calorem; </s>
					<s id="N13388"><!-- NEW -->quia lumen, &amp; calor &longs;unt ver&aelig; qualita&shy;<lb/>tes, non corpu&longs;cula, vt demon&longs;trabimus in 5. tractatu: </s>
					<s id="N1338E"><!-- NEW -->Adde quod li&shy;<lb/>cet ferrum candens aliud frigidum impellat, etiam veloci&longs;&longs;im&egrave;; </s>
					<s id="N13394"><!-- NEW -->hoc ip&shy;<lb/>&longs;um &aelig;qu&egrave; frigidum manet; </s>
					<s id="N1339A"><!-- NEW -->denique in cra&longs;&longs;is tenebris nix &longs;eu glacies <lb/>frigidi&longs;&longs;ima pernici&longs;&longs;im&egrave; moueri pote&longs;t: &longs;ed apage i&longs;ta commenta. </s>
				</p>
				<p id="N133A0" type="main">
					<s id="N133A2"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 46.<emph.end type="center"/></s>
				</p>
				<p id="N133AE" type="main">
					<s id="N133B0"><emph type="italics"/>Omnes partes impetus mobilis agunt ad extra actione communi.<emph.end type="italics"/></s>
					<s id="N133B7"> Probatur <lb/>per Ax. 13. n. </s>
					<s id="N133BC"><!-- NEW -->1. ni&longs;i enim agerent actione communi &longs;ed qu&aelig;libet &longs;uam <lb/>produceret; </s>
					<s id="N133C2"><!-- NEW -->cur potius in hac parte &longs;ubiecti, quam in alia, deinde ap&shy;<lb/>plicatur tant&ugrave;m vna immediat&egrave;; </s>
					<s id="N133C8"><!-- NEW -->Igitur agunt omnes actione commu&shy;<lb/>ni; </s>
					<s id="N133CE"><!-- NEW -->omnes inquam ill&aelig;, qu&aelig; impediuntur; </s>
					<s id="N133D2"><!-- NEW -->cum enim impetus agat <lb/>tant&ugrave;m ad extr&agrave; vt tollat impedimentum &longs;ui motus; ille pro&longs;ect&ograve; age&shy;<lb/>re non debet, cuius motus vel effectus non impeditur. </s>
				</p>
				<pb pagenum="34" xlink:href="026/01/066.jpg"/>
				<p id="N133DE" type="main">
					<s id="N133E0"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 47.<emph.end type="center"/></s>
				</p>
				<p id="N133EC" type="main">
					<s id="N133EE"><emph type="italics"/>Hinc maiora corpora put&agrave; onerari&aelig; naues, lic&egrave;t tardi&longs;&longs;imo motu ferantur, <lb/>cum in aliud corpus impinguntur maxima vi illud impellunt.<emph.end type="italics"/></s>
					<s id="N133F7"> Ratio e&longs;t; <lb/>quia cum &longs;int plures partes impetus in pluribus partibus &longs;ubiecti, &amp; <lb/>omnes agant actione communi, non mirum e&longs;t &longs;i maiorem effectum <lb/>producant, per Ax. 13. n. </s>
					<s id="N13400">2. <!-- KEEP S--></s>
				</p>
				<p id="N13404" type="main">
					<s id="N13406"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N13412" type="main">
					<s id="N13414"><!-- NEW -->Vides prim&ograve; in hoc ca&longs;u compen&longs;ari inten&longs;ionem ab exten&longs;ione; </s>
					<s id="N13418"><!-- NEW --><lb/>quippe quod pr&aelig;&longs;tarent plures partes impetus in minore corporis mole <lb/>inten&longs;&aelig;; hoc idem pr&aelig;&longs;tare po&longs;&longs;unt exten&longs;&aelig; in maiore mole. </s>
				</p>
				<p id="N1341F" type="main">
					<s id="N13421">Secund&ograve; &longs;icut maior moles aptior e&longs;t ad motum imprimendum, &amp; mi&shy;<lb/>n&ugrave;s apta ad recipiendum ita minor contr&agrave; aptior e&longs;t ad recipiendum, &amp; <lb/>min&ugrave;s apta ad imprimendum. </s>
				</p>
				<p id="N13428" type="main">
					<s id="N1342A"><!-- NEW -->Terti&ograve;, Hinc corpora illa, quorum partes vel nullo vel modico nexu <lb/>copulantur, minimo fer&egrave; impul&longs;u commouentur; </s>
					<s id="N13430"><!-- NEW -->&longs;ic a&euml;r &amp; aqua mini&shy;<lb/>mo flante vento agitantur, nubes pelluntur; </s>
					<s id="N13436"><!-- NEW -->hinc tot procell&aelig; tempe&shy;<lb/>&longs;tate&longs;que cientur; nec vlla e&longs;t alia ratio, cur minima fer&egrave; venti vis, cui <lb/>modicum &longs;axum re&longs;i&longs;tit, tantam aqu&aelig;, vel a&euml;ris molem commoueat, ni&shy;<lb/>&longs;i quia cum partes illorum corporum nullo fer&egrave; nexu coniunct&aelig; &longs;int vna <lb/>&longs;ine alia moueri pote&longs;t, quod in aqua gelu concreta minim&egrave; accidit. </s>
				</p>
				<p id="N13442" type="main">
					<s id="N13444">Quart&ograve;, Hinc &longs;i maxima rupes ita comminueretur vt tota in pulue&shy;<lb/>rem &longs;eu &longs;abulum abiret, minima vis impre&longs;&longs;a particulas illas moueret. </s>
				</p>
				<p id="N13449" type="main">
					<s id="N1344B"><!-- NEW -->Quint&ograve;, Hinc diuino pen&egrave; con&longs;ilio factum e&longs;t, vt partes terre&longs;tris <lb/>globi arctiore fibula copulentur; </s>
					<s id="N13451"><!-- NEW -->ne, &longs;i di&longs;iunct&aelig; e&longs;&longs;ent, minimo flatu <lb/>di&longs;pergerentur: vt videre e&longs;t in puluere etiam graui&longs;&longs;imo, qui ab aura <lb/>flant e di&longs;pergitur. </s>
				</p>
				<p id="N13459" type="main">
					<s id="N1345B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 48.<emph.end type="center"/></s>
				</p>
				<p id="N13467" type="main">
					<s id="N13469"><emph type="italics"/>Impetus, cuius motus non impeditur, non agit ad extr&agrave;.<emph.end type="italics"/></s>
					<s id="N13470"><!-- NEW --> Probatur per <lb/>Th. 44. hinc &longs;i aliud corpus affigas mobili &agrave; tergo, nullum impetum in <lb/>eo producet, cuius effectus, qui cert&egrave; impetui &longs;ingularis e&longs;t, alia ratio <lb/>e&longs;&longs;e non pote&longs;t; </s>
					<s id="N1347A"><!-- NEW -->tam enim corpus e&longs;t applicatum &agrave; tergo, quam in <lb/>ip&longs;a fronte; &amp; nihil e&longs;t in vno, quod non &longs;it in alio, ni&longs;i quod in fronte <lb/>impedit motum, &agrave; tergo ver&ograve; non impedit. </s>
				</p>
				<p id="N13482" type="main">
					<s id="N13484"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N13491" type="main">
					<s id="N13493"><!-- NEW -->Hinc egregium paradoxon erui pote&longs;t; </s>
					<s id="N13497"><!-- NEW -->quod &longs;cilicet cau&longs;a nece&longs;&longs;aria <lb/>etiam immediat&egrave; applicata, &amp; non impedita in &longs;ubiecto apto non agit; </s>
					<s id="N1349D"><!-- NEW --><lb/>quod videtur e&longs;&longs;e contra Ax. 12. vnde vt agat cau&longs;a nece&longs;&longs;aria, debet <lb/>applicari debito modo; </s>
					<s id="N134A4"><!-- NEW -->&longs;i agat in orbem, omnis applicatio &longs;ufficiens <lb/>e&longs;t: </s>
					<s id="N134AA"><!-- NEW -->&longs;i ver&ograve; agat tant&ugrave;m per vnam lineam; </s>
					<s id="N134AE"><!-- NEW -->cert&egrave; applicari debet in ca <lb/>linea; alioquin non aget defectu debit&aelig; applicationis. </s>
				</p>
				<p id="N134B4" type="main">
					<s id="N134B6"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N134C3" type="main">
					<s id="N134C5"><!-- NEW -->Hinc etiam aliud paradoxon non minus iucundum; </s>
					<s id="N134C9"><!-- NEW -->cau&longs;a nece&longs;&longs;aria <pb pagenum="35" xlink:href="026/01/067.jpg"/>applicata, &amp; non impedita non agit; </s>
					<s id="N134D2"><!-- NEW -->at ver&ograve; agit impedita; </s>
					<s id="N134D6"><!-- NEW -->&longs;cilicet <lb/>impetus qui tant&ugrave;m agit, vt tollat impedimentum; igitur, &longs;i non <lb/>impediatur non agit. </s>
				</p>
				<p id="N134DE" type="main">
					<s id="N134E0"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 49.<emph.end type="center"/></s>
				</p>
				<p id="N134EC" type="main">
					<s id="N134EE"><!-- NEW --><emph type="italics"/>Quo min&ugrave;s impeditur impetus, min&ugrave;s agit ad extra, &amp; contr&agrave;; quo pl&ugrave;s <lb/>impeditur, pl&ugrave;s agit.<emph.end type="italics"/></s>
					<s id="N134F8"><!-- NEW --> Cum enim ide&ograve; agat ad extra, vt tollat impedi&shy;<lb/>mentum; </s>
					<s id="N134FE"><!-- NEW -->cert&egrave; &longs;i nullum e&longs;t, nihil agit, &longs;i min&ugrave;s, min&ugrave;s agit; igitur <lb/>agit pro rata, id e&longs;t, pro diuer&longs;a impedimenti ratione. </s>
				</p>
				<p id="N13504" type="main">
					<s id="N13506"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 50.<emph.end type="center"/></s>
				</p>
				<p id="N13512" type="main">
					<s id="N13514"><emph type="italics"/>Si linea motus, quam directionis appellant, ducatur per centrum vtriu&longs;que <lb/>corporis, maximum est impedimentum,<emph.end type="italics"/> vt patet. </s>
					<s id="N1351E"><!-- NEW -->&longs;int enim duo globi, <lb/>A mobilis, &amp; B. occurrens ip&longs;i A, &longs;itque linea directionis DE ducta <lb/>per centrum vtriu&longs;que AB, &amp; punctum contactus &longs;it C; </s>
					<s id="N13526"><!-- NEW -->cert&egrave; glo&shy;<lb/>bus B maximum ponit impedimentum, quod ab eo poni po&longs;&longs;it; </s>
					<s id="N1352C"><!-- NEW -->Igitur <lb/>impetus globi A agit quant&ugrave;m pote&longs;t in globum B; vt &longs;cilicet maxi&shy;<lb/>mum impedimentum remoueat. </s>
				</p>
				<p id="N13534" type="main">
					<s id="N13536"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 51.<emph.end type="center"/></s>
				</p>
				<p id="N13542" type="main">
					<s id="N13544"><!-- NEW --><emph type="italics"/>Si linea motus vel ip&longs;ius parallela cadat perpendiculariter in extremam <lb/>diametrum globi immobilis: </s>
					<s id="N1354C"><!-- NEW -->haud dubi&egrave; nihil impedit<emph.end type="italics"/>; </s>
					<s id="N13553"><!-- NEW -->&longs;it enim globus <lb/>mobilis A, Immobilis B, linea directionis &longs;it GA, ip&longs;i parallela FC; </s>
					<s id="N13559"><!-- NEW --><lb/>cert&egrave; globus B. non impedit motum globi A. cum nihil loci globi B <lb/>occupari debeat &agrave; globo A; Igitur impetus A non agit in globum B per <lb/>Th. 48. </s>
				</p>
				<p id="N13562" type="main">
					<s id="N13564"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 52.<emph.end type="center"/></s>
				</p>
				<p id="N13570" type="main">
					<s id="N13572"><!-- NEW --><emph type="italics"/>Si linea motus &longs;it inter vtramque; </s>
					<s id="N13578"><!-- NEW -->est minus impedimentum.<emph.end type="italics"/> &longs;it globus <lb/>immobilis BA; </s>
					<s id="N13581"><!-- NEW -->&longs;it linea motus GC cum impedimento, de qua in Th. 50. <lb/>&longs;it alia KB cum nullo impedimento, de qua in Th. 51. &longs;int ali&aelig; HD, <lb/>IE; </s>
					<s id="N13589"><!-- NEW -->cert&egrave; minus e&longs;t impedimentum in contactu D, qu&agrave;m in C; </s>
					<s id="N1358D"><!-- NEW -->quia ca&shy;<lb/>dit obliqu&egrave; in D, perinde atque &longs;i caderet in tangentem NO; Igitur <lb/>minus impeditur; in qua vero proportione, dicemus ali&agrave;s, cum de re&shy;<lb/>flexione, &amp; de motu mixto. </s>
				</p>
				<p id="N13597" type="main">
					<s id="N13599"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 53.<emph.end type="center"/></s>
				</p>
				<p id="N135A5" type="main">
					<s id="N135A7"><!-- NEW --><emph type="italics"/>Hinc producitur in contactu<emph.end type="italics"/> C, <emph type="italics"/>totus impetus; </s>
					<s id="N135B3"><!-- NEW -->in contactu<emph.end type="italics"/> D, <emph type="italics"/>min&ugrave;s; </s>
					<s id="N135BD"><!-- NEW -->in <lb/>contactu<emph.end type="italics"/> E <emph type="italics"/>adhuc min&ugrave;s; </s>
					<s id="N135C9"><!-- NEW -->in<emph.end type="italics"/> B <emph type="italics"/>nihil<emph.end type="italics"/>; </s>
					<s id="N135D6"><!-- NEW -->quia in ea proportione producitur <lb/>pl&ugrave;s vel min&ugrave;s impetus, quo pl&ugrave;s e&longs;t, vel min&ugrave;s impedimenti per <lb/>Th. 49. &longs;ed min&ugrave;s e&longs;t impedimentum in E, qu&agrave;m in C; </s>
					<s id="N135DE"><!-- NEW -->&amp; in E, qu&agrave;m <lb/>in D, per Th. 52; Igitur in D producitur min&ugrave;s impetus, qu&agrave;m in C, <lb/>&amp; min&ugrave;s in E, qu&agrave;m in D. <!-- KEEP S--></s>
				</p>
				<p id="N135E7" type="main">
					<s id="N135E9"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 54.<emph.end type="center"/></s>
				</p>
				<p id="N135F5" type="main">
					<s id="N135F7"><!-- NEW --><emph type="italics"/>Hinc eadem cau&longs;a nece&longs;&longs;aria etiam immediate applicata diuer&longs;um impe<emph.end type="italics"/><pb pagenum="36" xlink:href="026/01/068.jpg"/><emph type="italics"/>tum producit; vt patet in impetu, non tamen est eodem modo applicata, <lb/>id e&longs;t in eadem linea.<emph.end type="italics"/></s>
				</p>
				<p id="N1360A" type="main">
					<s id="N1360C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 55.<emph.end type="center"/></s>
				</p>
				<p id="N13618" type="main">
					<s id="N1361A"><emph type="italics"/>Hinc ratio multorum effectuum phy&longs;icorum e. </s>
					<s id="N1361F">ui potest<emph.end type="italics"/>; </s>
					<s id="N13625"><!-- NEW -->cur &longs;cilicet cor&shy;<lb/>pus incidens in aliud perpendiculariter maximum ictum infligat; </s>
					<s id="N1362B"><!-- NEW -->quia <lb/>&longs;cilicet maximum impetum producit, qui po&longs;&longs;it ab eo produci; </s>
					<s id="N13631"><!-- NEW -->cur <lb/>idem corpus obliqu&egrave; incidens in aliud minorem ictum infligat; cuius <lb/>rei alia ratio e&longs;&longs;e non pote&longs;t. </s>
					<s id="N13639"><!-- NEW -->Huc etiam reuoca tormenta bellica, qu&aelig; <lb/>vel directo, vel obliquo ictu muros verberant; </s>
					<s id="N1363F"><!-- NEW -->hinc perpendicularis <lb/>forti&longs;&longs;ima e&longs;t; lic&egrave;t eadem ratio pro motu corporum non valeat, qu&aelig; <lb/>valet pro diffu&longs;ione, &longs;eu propagatione qualitatum. </s>
				</p>
				<p id="N13647" type="main">
					<s id="N13649"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 56.<emph.end type="center"/></s>
				</p>
				<p id="N13655" type="main">
					<s id="N13657"><!-- NEW -->Hinc pote&longs;t determinari quota pars impetus producatur, &amp; quantus <lb/>&longs;it ictus; </s>
					<s id="N1365D"><!-- NEW -->cognito &longs;cilicet &amp; &longs;uppo&longs;ito eo impetus gradu, qui producitur, <lb/>cum totus producitur, vt fit in perpendiculari; </s>
					<s id="N13663"><!-- NEW -->quippe tota men&longs;ura <lb/>impetus continetur in arcu CB; quam proportionem nos infr&agrave; demon&shy;<lb/>&longs;trabimus. </s>
				</p>
				<p id="N1366B" type="main">
					<s id="N1366D"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 57.<emph.end type="center"/></s>
				</p>
				<p id="N13679" type="main">
					<s id="N1367B"><!-- NEW --><emph type="italics"/>Si linea directionis ducatur per centrum vtriu&longs;que globi, mobilis &longs;cilicet <lb/>&amp; immobilis, impetus producit totum impetum quem pote&longs;t producere &longs;iue in <lb/>maiori globo, &longs;iue in minori, &longs;iue in &aelig;quali<emph.end type="italics"/>; patet experientia; cuius ratio <lb/>e&longs;t; </s>
					<s id="N1368A"><!-- NEW -->quia impetus e&longs;t cau&longs;a nece&longs;&longs;aria; </s>
					<s id="N1368E"><!-- NEW -->Igitur idem impetus eodem mo&shy;<lb/>do applicatus &aelig;quali tempore, &aelig;qualem &longs;emper effectum producit, per <lb/>Ax. 12. igitur cum impetus agat tant&ugrave;m, vt tollat impedimentum per <lb/>Th. 44. &amp; cum in pr&aelig;dicta linea agat quantum pote&longs;t per Th. 50. cer&shy;<lb/>t&egrave; &aelig;qualem effectum producat nece&longs;&longs;e e&longs;t; &longs;iue in maiori &longs;iue in mino&shy;<lb/>ri, &longs;iue in &aelig;quali globo immobili. </s>
				</p>
				<p id="N1369C" type="main">
					<s id="N1369E"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 58.<emph.end type="center"/></s>
				</p>
				<p id="N136AA" type="main">
					<s id="N136AC"><!-- NEW --><emph type="italics"/>Hinc impetus remi&longs;&longs;us potest producere inten&longs;um; </s>
					<s id="N136B2"><!-- NEW -->&amp; h&aelig;c e&longs;t altera difficul&shy;<lb/>tas; </s>
					<s id="N136B8"><!-- NEW -->cum &longs;cilicet maior globus in minorem impingitur<emph.end type="italics"/>; </s>
					<s id="N136BF"><!-- NEW -->cum enim omnes <lb/>partes impetus maioris globi agant actione communi per Th. 46. &amp; <lb/>cum agant quant&ugrave;m maxim&egrave; po&longs;&longs;unt; </s>
					<s id="N136C7"><!-- NEW -->in minore globo, tot partes pro&shy;<lb/>ducunt impetus, quot in maiore, vt patet; </s>
					<s id="N136CD"><!-- NEW -->igitur in minore globo pau&shy;<lb/>cioribus partibus &longs;ubiecti di&longs;tribuuntur plures partes impetus; </s>
					<s id="N136D3"><!-- NEW -->ergo in <lb/>qualibet parte &longs;ubiecti &longs;unt plures; </s>
					<s id="N136D9"><!-- NEW -->&longs;ed hoc e&longs;t e&longs;&longs;e inten&longs;um, vt con&longs;tat, <lb/>igitur impetus remi&longs;&longs;us producit inten&longs;um; quod e&longs;t paradoxon egre&shy;<lb/>gium. </s>
				</p>
				<p id="N136E1" type="main">
					<s id="N136E3"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 59.<emph.end type="center"/></s>
				</p>
				<p id="N136EF" type="main">
					<s id="N136F1"><!-- NEW --><emph type="italics"/>Hinc etiam impetus inten&longs;us producit remi&longs;&longs;um, cum &longs;cilicet minor globus <lb/>in maiorem incidit<emph.end type="italics"/>; </s>
					<s id="N136FC"><!-- NEW -->quia &longs;cilicet pauciores partes impetus di&longs;tribuun&shy;<lb/>tur pluribus partibus &longs;ubiecti; </s>
					<s id="N13702"><!-- NEW -->igitur qu&aelig;libet &longs;ubiecti pauciores impe&shy;<lb/>tus habet; qu&aelig; omnia con&longs;tant ex dictis. </s>
				</p>
				<pb pagenum="37" xlink:href="026/01/069.jpg"/>
				<p id="N1370C" type="main">
					<s id="N1370E"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1371A" type="main">
					<s id="N1371C"><!-- NEW -->Ob&longs;eruabis prim&ograve;, &longs;ingularem impetus proprietatem, qu&aelig; alijs qua&shy;<lb/>litatibus minim&egrave; competit; </s>
					<s id="N13722"><!-- NEW -->nam ali&aelig; qualitates v. <!-- REMOVE S-->g. <!-- REMOVE S-->calor; </s>
					<s id="N1372A"><!-- NEW -->lumen in <lb/>eadem di&longs;tantia effectum &longs;emper &aelig;qu&egrave; inten&longs;um producunt; </s>
					<s id="N13730"><!-- NEW -->&longs;ecus ver&ograve; <lb/>impetus, qui pro maiori vel minori obice maiorem, vel minorem, hoc <lb/>e&longs;t inten&longs;iorem, vel remi&longs;&longs;iorem impetum in eadem di&longs;tantia producit; </s>
					<s id="N13738"><!-- NEW --><lb/>cuius ratio ex eo capite petitur; </s>
					<s id="N1373D"><!-- NEW -->qu&ograve;d impetus agat tant&ugrave;m ad extra <lb/>propter &longs;uum effectum ad intra, vt &longs;cilicet tollat impedimentum; </s>
					<s id="N13743"><!-- NEW -->igi&shy;<lb/>tur in totum, quod impedit, agit; </s>
					<s id="N13749"><!-- NEW -->igitur non habet certam, &amp; deter&shy;<lb/>minatam &longs;ph&aelig;ram; </s>
					<s id="N1374F"><!-- NEW -->cum tant&ugrave;m agat in obicem, &longs;iue &longs;it maior, &longs;iue <lb/>minor: </s>
					<s id="N13755"><!-- NEW -->Quia ver&ograve; e&longs;t cau&longs;a nece&longs;&longs;aria, &aelig;qualem effectum producit, id <lb/>e&longs;t tot partes impetus in maiore, quot in minore, ergo, cum in mino&shy;<lb/>re &longs;int pauciores partes &longs;ubiecti, &amp; plures in maiore; </s>
					<s id="N1375D"><!-- NEW -->haud dubi&egrave; qu&aelig;li&shy;<lb/>bet pars minoris habebit plures partes effectus, &amp; qu&aelig;libet pars maio&shy;<lb/>ris pauciores; igitur effectus erit inten&longs;ior in minore, &amp; remi&longs;&longs;ior in <lb/>maiore. </s>
				</p>
				<p id="N13767" type="main">
					<s id="N13769"><!-- NEW -->Pr&aelig;tere&agrave;, cum dixi omnes partes mobilis actione communi agere ad <lb/>extra; </s>
					<s id="N1376F"><!-- NEW -->ita prim&ograve; intelligi debet, vt omnes ill&aelig; partes moueantur: </s>
					<s id="N13773"><!-- NEW -->&longs;ecun&shy;<lb/>d&ograve;, vt linea motus, &longs;eu directionis per centra grauitatis vtriu&longs;que glo&shy;<lb/>bi v, g. <!-- REMOVE S-->ducatur; </s>
					<s id="N1377D"><!-- NEW -->alioquin, vel omnes actione communi non agunt, vel <lb/>minus agunt, de quo infr&agrave;; </s>
					<s id="N13783"><!-- NEW -->&longs;ufficit ver&ograve; iuxta pr&aelig;&longs;ens in&longs;titutum, vt <lb/>globus ita impellat alium vel &aelig;qualem, vel in&aelig;qualem, vt linea dire&shy;<lb/>ctionis ducatur per centrum grauitatis alterius; vide figuram. </s>
					<s id="N1378B">in qua <lb/>linea directionis e&longs;t DE. </s>
				</p>
				<p id="N13790" type="main">
					<s id="N13792"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 60.<emph.end type="center"/></s>
				</p>
				<p id="N1379E" type="main">
					<s id="N137A0"><!-- NEW --><emph type="italics"/>Impetus globi impacti in alium globum eo modo, quo diximus, id est, linea <lb/>directionis ducta per centra grauitatis vtriu&longs;que producit in eo &aelig;qualem<emph.end type="italics"/>; </s>
					<s id="N137AB"><!-- NEW -->Pro&shy;<lb/>batur, quia impetus e&longs;t cau&longs;a nece&longs;&longs;aria, qu&aelig; tunc agit quantum pote&longs;t <lb/>per Th. 57. &longs;ed &aelig;qualis pote&longs;t producere &aelig;qualem: </s>
					<s id="N137B3"><!-- NEW -->Probatur prim&ograve;, <lb/>exemplo aliarum qualitatum; </s>
					<s id="N137B9"><!-- NEW -->&longs;ecund&ograve;, quia ideo agit vt tollat impedi&shy;<lb/>mentum, hoc e&longs;t vt corpus illud amoueat loco; </s>
					<s id="N137BF"><!-- NEW -->igitur &aelig;quali motu per <lb/>&longs;e; </s>
					<s id="N137C5"><!-- NEW -->alioquin ni&longs;i &aelig;quali motu amoueret, non tolleret impedimentum, <lb/>vt pater; </s>
					<s id="N137CB"><!-- NEW -->terti&ograve; &longs;int 30. partes impetus, cert&egrave; vel producent plures vel <lb/>pauciores, vel totidem, non plures; </s>
					<s id="N137D1"><!-- NEW -->cur enim potius 31. quam 32. <lb/>nec etiam pauciores; cur enim potius 20. quam 18, &amp;c. </s>
					<s id="N137D7"><!-- NEW -->Igitur totidem; </s>
					<s id="N137DB"><!-- NEW --><lb/>quia cum &longs;int plures numeri plurium partium &longs;upra 30. &amp; pauciorum <lb/>infra vt patet; </s>
					<s id="N137E2"><!-- NEW -->&longs;itque tant&ugrave;m vnicus numerus &aelig;qualium; </s>
					<s id="N137E6"><!-- NEW -->cert&egrave; quod <lb/>vnum e&longs;t, determinatum e&longs;t, per Ax. 5. h&aelig;c ratio lic&egrave;t videatur negati&shy;<lb/>ua e&longs;t tamen potenti&longs;&longs;ima: </s>
					<s id="N137EE"><!-- NEW -->quart&ograve;, quia actus &longs;ecundus, re&longs;pondet actui <lb/>primo, id e&longs;t, effectus productus virtuti cau&longs;&aelig; producentis; </s>
					<s id="N137F4"><!-- NEW -->itaque cum <lb/>virtus agendi impetus &longs;it eius entitas, vt patet, cert&egrave; impetus productus <lb/>e&longs;t per &longs;e &aelig;qualis impetui producenti per &longs;e; id e&longs;t remoto omni <lb/>impedimento, &amp; facto eo contactu iuxta modum pr&aelig;dictum, ea quo-<pb pagenum="38" xlink:href="026/01/070.jpg"/>que lege, vt impetus agat quantum pote&longs;t, &amp; omnes partes mobilis <lb/>moueantur &aelig;quali motu. </s>
				</p>
				<p id="N13805" type="main">
					<s id="N13807"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N13814" type="main">
					<s id="N13816"><!-- NEW -->Hinc reijcis illos, qui volunt &agrave; globo &aelig;quali produci in &aelig;quali &longs;ub&shy;<lb/>duplum impetum; in &longs;ubduplo &longs;ubtriplum; in &longs;ubquadruplo &longs;ubquin&shy;<lb/>tuplum; ratio illorum e&longs;t; </s>
					<s id="N1381E"><!-- NEW -->quia duo globi &aelig;quales in&longs;tanti contactus <lb/>perinde &longs;e habent, atque &longs;i conflarent vnum corpus; </s>
					<s id="N13824"><!-- NEW -->&longs;ed &longs;i conflarent <lb/>vnum corpus quilibet &longs;ubduplum impetum haberet; </s>
					<s id="N1382A"><!-- NEW -->&longs;i ver&ograve; globus cum <lb/>alio &longs;ubduplo faceret vnum mobile; </s>
					<s id="N13830"><!-- NEW -->haud dubi&egrave; minor, id e&longs;t, &longs;ubduplus <lb/>haberet tant&ugrave;m &longs;ubtriplum impetum; atque ita deinceps; </s>
					<s id="N13836"><!-- NEW -->hoc totum <lb/>fal&longs;i&longs;&longs;imum e&longs;t; </s>
					<s id="N1383C"><!-- NEW -->nam prim&ograve; &longs;i globus &aelig;qualis acciperet tant&ugrave;m &longs;ubdu&shy;<lb/>plum impetum ab alio, &longs;ubduplo tant&ugrave;m motu ferretur; </s>
					<s id="N13842"><!-- NEW -->igitur &longs;ubdu&shy;<lb/>plum &longs;patium decurreret, quod e&longs;t contra experientiam, &amp; Th. 47. Se&shy;<lb/>cund&ograve;, ratio propo&longs;ita nulla e&longs;t; </s>
					<s id="N1384A"><!-- NEW -->quia quando globus impactus impellit <lb/>alium, e&longs;t veluti potenti&acirc;, qu&aelig; cum tota &longs;ua vi, &amp; cum impetu agit, <lb/>cuius nulla pars transfertur in alium globum; </s>
					<s id="N13852"><!-- NEW -->nec enim migrat de <lb/>de &longs;ubiecto in &longs;ubiectum, &longs;ed producit &longs;ibi &aelig;qualem: </s>
					<s id="N13858"><!-- NEW -->equidem &longs;i duo <lb/>globi &aelig;quales e&longs;&longs;ent vel coniuncti, vel contigui in linea directionis, <lb/>quilibet pro rata acciperet impetus producti partem &agrave; potentia applica&shy;<lb/>ta; </s>
					<s id="N13862"><!-- NEW -->&longs;i e&longs;&longs;ent &aelig;quales, qui&longs;que &longs;ubduplum: &longs;i alter &longs;ubduplus &longs;ubtri&shy;<lb/>plum, &amp;c. </s>
					<s id="N13868">&longs;ed h&aelig;c &longs;unt &longs;atis facilia. </s>
				</p>
				<p id="N1386B" type="main">
					<s id="N1386D"><!-- NEW -->Obijci fort&egrave; po&longs;&longs;et ab aliquo prim&ograve; experientia; </s>
					<s id="N13871"><!-- NEW -->videmus enim &longs;&aelig;p&egrave; <lb/>globum impul&longs;um in ludo Tudiculario moueri tardi&ugrave;s globo impellen&shy;<lb/>te; </s>
					<s id="N13879"><!-- NEW -->re&longs;pondeo id &longs;&aelig;p&egrave; accidere; </s>
					<s id="N1387D"><!-- NEW -->t&ugrave;m quia linea directionis non connec&shy;<lb/>tit centra vtriu&longs;que globi; </s>
					<s id="N13883"><!-- NEW -->igitur minor e&longs;t ictus per Th 52. t&ugrave;m quia <lb/>globus impellens, vel impul&longs;us deficiunt &agrave; perfecta &longs;ph&aelig;ra; </s>
					<s id="N13889"><!-- NEW -->t&ugrave;m quia <lb/>non e&longs;t perfecta &aelig;qualitas globorum; adde quod qu&ograve; accurati&ugrave;s pr&aelig;di&shy;<lb/>ct&aelig; leges ob&longs;eruantur, ip&longs;i motus ad &aelig;qualitatem propi&ugrave;s accedunt, vt <lb/>con&longs;tat experientia. </s>
				</p>
				<p id="N13893" type="main">
					<s id="N13895"><!-- NEW -->Obiici po&longs;&longs;et &longs;ecund&ograve; de&longs;trui aliquid impetus globi impellentis ab ip&longs;o <lb/>ictu, vt con&longs;tat experientia; </s>
					<s id="N1389B"><!-- NEW -->igitur illa pars impetus, qu&aelig; de&longs;truitur, non <lb/>producit nouum impetum in globo impul&longs;o; </s>
					<s id="N138A1"><!-- NEW -->Re&longs;pondeo de&longs;trui quidem <lb/>aliquid impetus in globo impacto, vt videbimus infr&agrave;; </s>
					<s id="N138A7"><!-- NEW -->cum tamen de&shy;<lb/>&longs;truatur tant&ugrave;m &longs;equenti po&longs;t ictum in&longs;tanti; </s>
					<s id="N138AD"><!-- NEW -->cert&egrave; cum exi&longs;tat adhuc <lb/>ip&longs;o in&longs;tanti contactus, nece&longs;&longs;ari&ograve; agit, quippe aliquid vltimo in&longs;tanti <lb/>pote&longs;t agere; </s>
					<s id="N138B5"><!-- NEW -->adde quod illud ip&longs;um repugnat manife&longs;t&aelig; experienti&aelig;; </s>
					<s id="N138B9"><!-- NEW --><lb/>lic&egrave;t enim aliquando de&longs;truatur totus impetus in globo impacto, quod <lb/>&longs;&aelig;p&egrave; accidit in ludo Tudiculario, nam illic&ograve; &longs;i&longs;tit pila eburnea; alius <lb/>tamen globus velociter mouetur, cuius effectus rationem infr&agrave; addu&shy;<lb/>cemus. </s>
				</p>
				<p id="N138C4" type="main">
					<s id="N138C6"><!-- NEW -->Obijci po&longs;&longs;et terti&ograve; inde &longs;equi progre&longs;&longs;um in infinitum, nam globus <lb/>A impactus in globum B impellet cum &aelig;quali motu, &amp; B in C etiam <lb/>&aelig;quali, C in D, atque ita deinceps; </s>
					<s id="N138CE"><!-- NEW -->mod&ograve; illi globi ita &longs;tatuantur, vt <lb/>linea directionis per omnium centra rect&agrave; ducatur; </s>
					<s id="N138D4"><!-- NEW -->Re&longs;pondeo, vel il-<pb pagenum="39" xlink:href="026/01/071.jpg"/>los omnes globos ita e&longs;&longs;e contiguos, vt mutuo contactu &longs;e inuicem tan&shy;<lb/>gant; </s>
					<s id="N138DF"><!-- NEW -->vel aliquod &longs;patium inter &longs;ingulos intercipi; </s>
					<s id="N138E3"><!-- NEW -->&longs;i primum, produci&shy;<lb/>tur impetus &agrave; potentia motrice in omnibus, &longs;i &longs;ufficiens e&longs;t; </s>
					<s id="N138E9"><!-- NEW -->non ver&ograve; <lb/>vnus globus in alio, vt con&longs;tat; </s>
					<s id="N138EF"><!-- NEW -->&longs;icut duo pondera &longs;imul attollo, quorum <lb/>vnum alteri incumbit: </s>
					<s id="N138F5"><!-- NEW -->&longs;i ver&ograve; non &longs;e tangant, dico antequam A im&shy;<lb/>pingatur in B, dum &longs;patium illud interiectum percurrit, amittere aliquid <lb/>impetus: </s>
					<s id="N138FD"><!-- NEW -->idem dico de B, &amp; C, vnde &longs;i nihil impetus in eo primo motu <lb/>periret &amp; linea directionis omnium centra perfect&egrave; connecteret; </s>
					<s id="N13903"><!-- NEW -->ita vt <lb/>omnium ictus illi omnino &longs;ine vlla deflexione re&longs;ponderent; </s>
					<s id="N13909"><!-- NEW -->haud du&shy;<lb/>bi&egrave; non po&longs;&longs;ent e&longs;&longs;e tot globi, quin po&longs;&longs;et alius addi, qui ab vltimo <lb/>pelleretur; </s>
					<s id="N13911"><!-- NEW -->&longs;ed vix illa omnia de quibus &longs;upr&agrave; po&longs;&longs;unt ob&longs;eruari; </s>
					<s id="N13915"><!-- NEW -->Hinc <lb/>tamen facil&egrave; vna pars a&euml;ris aliam pellit, quod di&longs;tinct&egrave; videmus in <lb/>aqua; &longs;ed de his ali&agrave;s, &longs;ufficiat mod&ograve; propo&longs;itam obiectionem inde <lb/>manere &longs;olutam. </s>
				</p>
				<p id="N1391F" type="main">
					<s id="N13921"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 61.<emph.end type="center"/></s>
				</p>
				<p id="N1392D" type="main">
					<s id="N1392F"><!-- NEW --><emph type="italics"/>Globus maior impactus in minorem imprimit illi inten&longs;iorem impetum, &amp; <lb/>velociorem motum per Th.<emph.end type="italics"/> 48. <emph type="italics"/>&amp;<emph.end type="italics"/> 47. Nec e&longs;t quod aliqui opponant Prin&shy;<lb/>cipium illud mechanicum; </s>
					<s id="N13942"><!-- NEW -->id e&longs;t, nullum corpus po&longs;&longs;e maiorem veloci&shy;<lb/>tatis gradum alteri corpori imprimere; </s>
					<s id="N13948"><!-- NEW -->eo &longs;cilicet gradu, quem ip&longs;um <lb/>habet; </s>
					<s id="N1394E"><!-- NEW -->nec enim inuenio Principium illud apud eos Mechanicos, qui <lb/>mechanica momenta &longs;uarum demon&longs;trationum momentis confirmant; <lb/>qu&icirc; porro fieri pote&longs;t, vt principium illud admittatur, quod manife&longs;t&aelig; <lb/>experienti&aelig; repugnat? </s>
					<s id="N13958">Quis enim non vidit vel maius &longs;axum in aliud <lb/>etiam tardo motu impactum maiorem motum, &amp; impetum imprimere? </s>
					<s id="N1395D"><lb/>quis non vidit maiores illas onerarias naues etiam pigro, &amp; tardo motu <lb/>labentes maximum impetum minori occurrenti cymb&aelig; etiam impri&shy;<lb/>mere? </s>
					<s id="N13965"><!-- NEW -->Rationem habes in Th. 47. &longs;ed dices; </s>
					<s id="N13969"><!-- NEW -->igitur aliquis velocitatis <lb/>gradus nullam habet cau&longs;am; igitur e&longs;t &agrave; nihilo, quod dici non pote&longs;t. </s>
					<s id="N1396F"><!-- NEW --><lb/>Re&longs;pondeo, plures partes impetus non produci in minore globo, qu&agrave;m <lb/>&longs;int in maiore; </s>
					<s id="N13976"><!-- NEW -->igitur nulla pars e&longs;t impetus minoris globi, qu&aelig; &longs;ui <lb/>cau&longs;am &longs;ufficientem non habeat; </s>
					<s id="N1397C"><!-- NEW -->&longs;ed cum partes impetus maioris globi <lb/>di&longs;tribuantur pluribus partibus &longs;ubiecti, faciunt remi&longs;&longs;um impetum, igi&shy;<lb/>tur &amp; tardum; </s>
					<s id="N13984"><!-- NEW -->cum &longs;cilicet impetus vnius partis non iuuet motum alte&shy;<lb/>rius per Th. 37. at ver&ograve; cum partes impetus producti in minore globo <lb/>di&longs;tribuantur paucioribus partibus &longs;ubiecti, faciunt inten&longs;iorem im&shy;<lb/>petum; igitur velociorem motum, quippe omnes producuntur ab <lb/>omnibus illis actione communi per Ax. 17. num. </s>
					<s id="N13990">1. quid clarius. </s>
				</p>
				<p id="N13993" type="main">
					<s id="N13995"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 62.<emph.end type="center"/></s>
				</p>
				<p id="N139A1" type="main">
					<s id="N139A3"><!-- NEW --><emph type="italics"/>Globus minor imprimit maiori remi&longs;&longs;iorem impetum &amp; tardiorem motum <lb/>&amp; &aelig;qualis, &aelig;quali &aelig;qualem<emph.end type="italics"/>; h&aelig;c omnia probantur per Th. 60. &amp; pr&aelig;-, <lb/>cedentia. </s>
				</p>
				<pb pagenum="40" xlink:href="026/01/072.jpg"/>
				<p id="N139B4" type="main">
					<s id="N139B6"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N139C2" type="main">
					<s id="N139C4"><!-- NEW -->Ob&longs;eruabis prim&ograve;, vtrumque globum e&longs;&longs;e eiu&longs;dem materi&aelig;; </s>
					<s id="N139C8"><!-- NEW -->&longs;i enim <lb/>&longs;int diuer&longs;&aelig; materi&aelig;, &longs;ec&ugrave;s accidit, qu&agrave;m diximus; </s>
					<s id="N139CE"><!-- NEW -->&longs;i v. <!-- REMOVE S-->g. <!-- REMOVE S-->&aelig;neus mi&shy;<lb/>nor pellatur ab eburneo maiore, maiorem motum hic illi non impri&shy;<lb/>met; </s>
					<s id="N139DA"><!-- NEW -->lic&egrave;t enim &longs;it maior exten&longs;io eburnei; </s>
					<s id="N139DE"><!-- NEW -->e&longs;t tamen minus pondus; <lb/>igitur pauciores partes. </s>
				</p>
				<p id="N139E4" type="main">
					<s id="N139E6"><!-- NEW -->Secund&ograve;, eos globos accipiendos e&longs;&longs;e, quorum partes, vel non auo&shy;<lb/>lent ab ictu, vel non comprimantur; </s>
					<s id="N139EC"><!-- NEW -->comprimuntur in plumbeis, <lb/>&aelig;neis, &amp; auolant in vitreis; cum enim &longs;it compre&longs;&longs;io, vel partium di&shy;<lb/>ui&longs;io, de&longs;truitur mult&ugrave;m impetus. </s>
				</p>
				<p id="N139F4" type="main">
					<s id="N139F6"><!-- NEW -->Terti&ograve; reiice commentum illorum, qui dicunt corpus illud e&longs;&longs;e ma&shy;<lb/>joris velocitatis capax, quod plures habet partes materi&aelig; &longs;ub eadem <lb/>quantitate; </s>
					<s id="N139FE"><!-- NEW -->nam &longs;uppo&longs;ita eadem re&longs;i&longs;tenti&aelig; ratione, omne corpus e&longs;t <lb/>capax illius velocitatis, cuius aliud e&longs;t capax; </s>
					<s id="N13A04"><!-- NEW -->cum nullus &longs;it motus, quo <lb/>non po&longs;&longs;it dari velocior, &amp; tardior, vt dicemus infr&agrave;; </s>
					<s id="N13A0A"><!-- NEW -->imm&ograve; &longs;it glo&shy;<lb/>bus plumbeus 12. librarum, &longs;it eburneus eiu&longs;dem diametri 2. librarum, <lb/>v. <!-- REMOVE S-->g. <!-- REMOVE S-->haud dubi&egrave; eadem potentia producet inten&longs;iorem impetum in <lb/>eburneo, vt patet experientia, &amp; ratio con&longs;tat ex dictis; </s>
					<s id="N13A18"><!-- NEW -->qua&longs;i ver&ograve; &longs;it <lb/>aliqua materi&aelig; inertia, qu&aelig; motum re&longs;puat; </s>
					<s id="N13A1E"><!-- NEW -->lic&egrave;t fort&egrave; maior &longs;it pro&shy;<lb/>portio re&longs;i&longs;tenti&aelig; medij comparat&aelig; cum globo eburneo, qu&agrave;m compa&shy;<lb/>rat&aelig; cum plumbeo; &longs;ed de re&longs;i&longs;tentia de percu&longs;&longs;ione, &amp; de &longs;patio age&shy;<lb/>mus infra. </s>
				</p>
				<p id="N13A28" type="main">
					<s id="N13A2A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 63.<emph.end type="center"/></s>
				</p>
				<p id="N13A36" type="main">
					<s id="N13A38"><emph type="italics"/>Omnis globus, qui in alium, qui mouetur impingitur, dum hic mouetur, ve&shy;<lb/>loci&ugrave;s mouetur eo &amp;c. </s>
					<s id="N13A3F"><!-- NEW -->in quem impingitur <emph.end type="italics"/> patet; alioquin numquam a&longs;&longs;equi <lb/>po&longs;&longs;et, quod ex ip&longs;is terminis con&longs;tat. </s>
				</p>
				<p id="N13A48" type="main">
					<s id="N13A4A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 64.<emph.end type="center"/></s>
				</p>
				<p id="N13A56" type="main">
					<s id="N13A58"><!-- NEW --><emph type="italics"/>Ex hac hypothe&longs;i globus impactus producit in alie nouas partes impetus<emph.end type="italics"/>; <lb/>quia impeditur eius motus, igitur vt tollat impedimentum, agit ad <lb/>extra per Th. 44. </s>
				</p>
				<p id="N13A65" type="main">
					<s id="N13A67"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 65.<emph.end type="center"/></s>
				</p>
				<p id="N13A73" type="main">
					<s id="N13A75"><!-- NEW --><emph type="italics"/>Hic impetus nouus productus minor e&longs;t eo qui produceretur in eodem globo <lb/>immobili<emph.end type="italics"/>: ratio e&longs;t; </s>
					<s id="N13A80"><!-- NEW -->quia &longs;i &longs;i&longs;teret, maius e&longs;&longs;et impedimentum, quia <lb/>totum motum impediret, cuius tant&ugrave;m partem impedit, dum mouetur , <lb/>lic&egrave;t paul&ograve; tardius; igitur minus agit ad extra per Th. 49. </s>
				</p>
				<p id="N13A88" type="main">
					<s id="N13A8A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 66.<emph.end type="center"/></s>
				</p>
				<p id="N13A96" type="main">
					<s id="N13A98"><!-- NEW --><emph type="italics"/>Mobile adh&aelig;rens alteri mobili &agrave; tergo; dum vtrumque &aelig;que velociter <lb/>feratur nullum producit in eo impetum.<emph.end type="italics"/></s>
					<s id="N13AA2"><!-- NEW --> Probatur, quia mobile quod pr&aelig;it, <lb/>non impedit motum &longs;ub&longs;equentis; igitur nullum impetum ab eo acci<lb/>pit per Th. 48. </s>
				</p>
				<pb pagenum="41" xlink:href="026/01/073.jpg"/>
				<p id="N13AAE" type="main">
					<s id="N13AB0"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 67.<emph.end type="center"/></s>
				</p>
				<p id="N13ABC" type="main">
					<s id="N13ABE"><!-- NEW --><emph type="italics"/>Hinc paradoxon egregium &longs;i quod aliud; </s>
					<s id="N13AC4"><!-- NEW -->globus percu&longs;&longs;us ab alio eadem <lb/>&longs;emper velocitate mouetur, &longs;iue moueretur in&longs;tanti percu&longs;&longs;ionis, &longs;iue &longs;i&shy;<lb/>&longs;teret.<emph.end type="italics"/> v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;it globus A quie&longs;cens, cui imprimantur ab alio B 40. gra&shy;<lb/>dus velocitatis: id e&longs;t &aelig;qualis impetus impetui percutientis, iam ver&ograve; <lb/>moueatur A, cum 20. grad. <!-- REMOVE S-->velocitatis, &amp; B, qui mouetur cum 40. <lb/>impingatur, cert&egrave; cum impediatur tant&ugrave;m &longs;ubduplum motus, produce&shy;<lb/>tur tant&ugrave;m &longs;ubduplum impetus, id e&longs;t 20. qui &longs;i addantur 20. grad. <!-- REMOVE S-->erunt <lb/>40. qu&aelig; omnia con&longs;tant per Th.49.48.&amp;c. </s>
				</p>
				<p id="N13AE1" type="main">
					<s id="N13AE3"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N13AF0" type="main">
					<s id="N13AF2">Hinc &aelig;quale &longs;emper &longs;patium percu&longs;&longs;us globus conficit, &longs;iue ante per&shy;<lb/>cu&longs;&longs;ionem moueretur, &longs;iue quie&longs;ceret. </s>
				</p>
				<p id="N13AF7" type="main">
					<s id="N13AF9"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N13B06" type="main">
					<s id="N13B08"><!-- NEW -->Hinc &longs;i &longs;ecund&ograve; percutiatur idem globus, &longs;patium totum, quod per&shy;<lb/>currit t&ugrave;m &agrave; prim&ograve;, t&ugrave;m &agrave; &longs;ecundo ictu e&longs;t maius eo, quod &agrave; primo ictu <lb/>confeci&longs;&longs;et, &longs;i non fui&longs;&longs;et &longs;ecund&ograve; percu&longs;&longs;us; maius inquam &longs;egmento &longs;pa&shy;<lb/>tij interiecto inter primum &amp; &longs;ecundum ictum. </s>
				</p>
				<p id="N13B12" type="main">
					<s id="N13B14"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N13B21" type="main">
					<s id="N13B23"><!-- NEW -->Hinc reiicies aliquos, quorum &longs;ententiam habes apud Doctum Mer&shy;<lb/>&longs;ennium, <emph type="italics"/>in prop.<emph.end type="italics"/> 20. <emph type="italics"/>ph&aelig;n. mech. quorum &longs;unt h&aelig;c verba; </s>
					<s id="N13B32"><!-- NEW -->&longs;i malleus pilam <lb/>currentem eodem, ac ante&agrave; modo percutiat, nonam &longs;ui motus partem; &longs;i ver&ograve; <lb/>currentem tertia vice percutiat, vnam vige&longs;imam &longs;eptimam &longs;ui motus par&shy;<lb/>tem ei tribuet, atque ita deinceps.<emph.end type="italics"/></s>
					<s id="N13B3E"> Supponit prim&ograve; h&aelig;c &longs;ententia mal&shy;<lb/>leum e&longs;&longs;e duplum pil&aelig; percu&longs;&longs;&aelig;. </s>
					<s id="N13B43"><!-- NEW -->Secund&ograve;, malleum imprimere pil&aelig; &longs;ub&shy;<lb/>dupl&aelig; &longs;ubtriplum motum; quod fal&longs;um e&longs;t, vt con&longs;tat ex Th 6. &amp; Co&shy;<lb/>roll. </s>
					<s id="N13B4B"><!-- NEW -->1. Pr&aelig;terea, lic&egrave;tin prim&agrave; percu&longs;&longs;ione imprimeret tant&ugrave;m pr&aelig;di&shy;<lb/>ct&aelig; pil&aelig; &longs;ubtriplum impetum, in &longs;ecunda percu&longs;&longs;ione maiorem impri&shy;<lb/>meret po&longs;t longiorem motum, vbi iam ad quietem propi&ugrave;s accedit; </s>
					<s id="N13B53"><!-- NEW -->mi&shy;<lb/>norem ver&ograve; paul&ograve; po&longs;t initium motus, vt con&longs;tat ex dictis, &amp; ex ip&longs;a ex&shy;<lb/>perientia; </s>
					<s id="N13B5B"><!-- NEW -->pote&longs;t quidem in aliquo puncto &longs;ui motus &longs;ecunda vice per&shy;<lb/>cuti, in quo &longs;ubtriplum tant&ugrave;m motum imprimet; </s>
					<s id="N13B61"><!-- NEW -->hoc e&longs;t eo in&longs;tanti&shy;<lb/>quo tant&ugrave;m ami&longs;it tertiam fui impetus partem; </s>
					<s id="N13B67"><!-- NEW -->tum deinde in tertia <lb/>percu&longs;&longs;ione pote&longs;t tant&ugrave;m &lpar;1/27&rpar; motus partem illi tribuere; </s>
					<s id="N13B6D"><!-- NEW -->eo &longs;cilicet in&shy;<lb/>&longs;tanti, quo tant&ugrave;m ami&longs;it &lpar;1/27&rpar; &longs;ui impetus partem; </s>
					<s id="N13B73"><!-- NEW -->&longs;ed in alijs temporis <lb/>punctis long&egrave; alia erit impetus producti ratio; Igitur tota h&aelig;c progre&longs;&shy;<lb/>&longs;io gratis omnin&ograve; fuit excogitata. </s>
				</p>
				<p id="N13B7B" type="main">
					<s id="N13B7D"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N13B8A" type="main">
					<s id="N13B8C"><!-- NEW -->Hinc etiam po&longs;t &longs;ecundam percu&longs;&longs;ionem &aelig;quale &longs;patium conficiet al&shy;<lb/>teri, quod iam confecit po&longs;t primam &aelig;qualibus temporibus; </s>
					<s id="N13B92"><!-- NEW -->igitur &aelig;qua&shy;<lb/>lis e&longs;t velocitas vtriu&longs;que motus; </s>
					<s id="N13B98"><!-- NEW -->quia &longs;cilicet, &longs;i e&longs;t &aelig;qualis impetus, e&longs;t <lb/>qualis motus: Ex his maximam carum dubitationum partem &longs;oluere po&shy;<lb/>teris qu&aelig; in eadem Mer&longs;enni propo&longs;itione courinentur reliquas vero ex <lb/>dicendis infr&agrave;. </s>
				</p>
				<pb pagenum="42" xlink:href="026/01/074.jpg"/>
				<p id="N13BA6" type="main">
					<s id="N13BA8"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 5.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N13BB5" type="main">
					<s id="N13BB7"><!-- NEW -->Ex dictis etiam colliges diuer&longs;as percu&longs;&longs;ionum rationes &longs;uppo&longs;ita di&shy;<lb/>uer&longs;a ratione ponderum globi percutientis, &amp; percu&longs;&longs;i; </s>
					<s id="N13BBD"><!-- NEW -->cum enim impe&shy;<lb/>tus productus &longs;it &aelig;qualis per &longs;e impetui producenti, per Th.60. mod&ograve; <lb/>debita fiat applicatio, de qua in Th.50. &longs;i percutiens &longs;it duplus percu&longs;&longs;i, <lb/>&longs;uppo&longs;ita eadem materia, motus percu&longs;&longs;i erit dupl&ograve; velocior; quia im&shy;<lb/>petus erit dupl&ograve; inten&longs;ior, vt con&longs;tat ex Th. 61. &longs;i ver&ograve; &longs;it quadruplus, <lb/>quadruplo, &amp;c. </s>
					<s id="N13BCB">Igitur velocitates motuum &longs;unt in rati&ograve;ne ponderum <lb/>permutando. </s>
				</p>
				<p id="N13BD0" type="main">
					<s id="N13BD2"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 68.<emph.end type="center"/></s>
				</p>
				<p id="N13BDE" type="main">
					<s id="N13BE0"><!-- NEW --><emph type="italics"/>Si corpus percu&longs;&longs;um &longs;it oblongum, &amp; percu&longs;&longs;io fiat in centro grauitatis eiu&longs;&shy;<lb/>dem corporis; </s>
					<s id="N13BE8"><!-- NEW -->producitur impetus in percu&longs;&longs;io &aelig;qualis impetui percutientis<emph.end type="italics"/>; </s>
					<s id="N13BEF"><!-- NEW -->&longs;ed <lb/>opus e&longs;t aliqua figura: </s>
					<s id="N13BF5"><!-- NEW -->Sit corpus AD, parallelipedum; </s>
					<s id="N13BF9"><!-- NEW -->diuidatur &aelig;qua&shy;<lb/>liter in E ita vt E &longs;it centrum grauitatis; </s>
					<s id="N13BFF"><!-- NEW -->&longs;i percu&longs;&longs;io fiatin E per lineam <lb/>perpendicularem HE, producetur impetus in corpore AD &aelig;qualis im&shy;<lb/>petui corporis percutientis; </s>
					<s id="N13C07"><!-- NEW -->quia &longs;cilicet &agrave; corpore AD non pote&longs;t maius <lb/>e&longs;&longs;e impedimentum; igitur agit quant&ugrave;m pote&longs;t impetus corporis per&shy;<lb/>cutientis per Th.50. igitur producit &aelig;qualem per Th.69. </s>
				</p>
				<p id="N13C0F" type="main">
					<s id="N13C11"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 69.<emph.end type="center"/></s>
				</p>
				<p id="N13C1D" type="main">
					<s id="N13C1F"><!-- NEW --><emph type="italics"/>Si percu&longs;&longs;io fiat in<emph.end type="italics"/> F <emph type="italics"/>per lineam perpendicularem<emph.end type="italics"/> IF, <emph type="italics"/>minus erit impedi&shy;<lb/>mentum, qu&agrave;m per<emph.end type="italics"/> HE, Quia &longs;i per HE, moueri tant&ugrave;m pote&longs;t motu <lb/>recto, &longs;i per IF, etiam motu circulari circa aliquod centrum; </s>
					<s id="N13C38"><!-- NEW -->&longs;ed hic <lb/>motus e&longs;t facilior quam ille; </s>
					<s id="N13C3E"><!-- NEW -->igitur minus e&longs;t impedimentum; </s>
					<s id="N13C42"><!-- NEW -->&lpar;&longs;uppono <lb/>autem cylindrum BC vtroque modo moueri po&longs;&longs;e ab applicata potentia&rpar; <lb/>igitur min&ugrave;s impetus producitur, &longs;i percu&longs;&longs;io fiat per IF, qu&agrave;m &longs;i fiat <lb/>per LK: </s>
					<s id="N13C4C"><!-- NEW -->In qua ver&ograve; proportione &longs;it minus impedimentum, &amp; minori <lb/>opus impetu, po&longs;ito eodem potenti&aelig; ni&longs;u, determinabimus facil&egrave; ali&agrave;s; <lb/>vt etiam demon&longs;trabimus circa quod centrum hic circularis motus fieri <lb/>debeat. </s>
				</p>
				<p id="N13C56" type="main">
					<s id="N13C58"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N13C64" type="main">
					<s id="N13C66"><!-- NEW -->Ex duobus capitibus minus e&longs;&longs;e pote&longs;t impedimentum; </s>
					<s id="N13C6A"><!-- NEW -->primum e&longs;t, <lb/>quod petitur &agrave; puncto contactus, &longs;ecundum &agrave; linea incidenti&aelig;; </s>
					<s id="N13C70"><!-- NEW -->v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;i <lb/>accipiatur punctum E, in quo e&longs;t centrum grauitatis corporis AD, &amp; in <lb/>eo fiat percu&longs;&longs;io; </s>
					<s id="N13C7C"><!-- NEW -->maximum e&longs;t impedimentum ratione puncti conta&shy;<lb/>ctus, in quo fit percu&longs;&longs;io; </s>
					<s id="N13C82"><!-- NEW -->&longs;i ver&ograve; percu&longs;&longs;io fiat per lineam perpendicu&shy;<lb/>larem HE, maximum e&longs;t impedimentum, ratione line&aelig;; </s>
					<s id="N13C88"><!-- NEW -->&longs;i autem ex <lb/>vtroque capite &longs;imul accidat impedimentum, maximum e&longs;t omnium; </s>
					<s id="N13C8E"><!-- NEW --><lb/>iam ver&ograve; &longs;i accipiatur punctum E, &amp; linea percu&longs;sionis ME; </s>
					<s id="N13C93"><!-- NEW -->minor e&longs;t <lb/>percu&longs;sio ratione line&aelig; non puncti; </s>
					<s id="N13C99"><!-- NEW -->accipiatur punctum N, &amp; linea <lb/>percu&longs;sionis MN, minor e&longs;t percu&longs;sio ratione puncti non line&aelig;, acci&shy;<lb/>piatur punctum N, &amp; linea IN, minor e&longs;t percu&longs;sio ratione vtriu&longs;que; </s>
					<s id="N13CA1"><!-- NEW --><lb/>&longs;i demum accipiatur punctum E, &amp; linea ME, minor e&longs;t percu&longs;sio ra&shy;<pb pagenum="43" xlink:href="026/01/075.jpg"/>tione line&aelig; non puncti; </s>
					<s id="N13CAB"><!-- NEW -->accipiatur punctum N linea percu&longs;&longs;ionis MN, <lb/>minor e&longs;t percu&longs;&longs;io ratione puncti non line&aelig;; </s>
					<s id="N13CB1"><!-- NEW -->&longs;i accipiatur punctum N, <lb/>&amp; linea IN, minor e&longs;t percu&longs;&longs;io ratione vtriu&longs;que: </s>
					<s id="N13CB7"><!-- NEW -->&longs;i demum accipia&shy;<lb/>tur punctum E &amp; linea HE, maior e&longs;t percu&longs;&longs;io ratione vtriu&longs;que; </s>
					<s id="N13CBD"><!-- NEW -->igi&shy;<lb/>tur &longs;unt quatuor coniugationes; &longs;eu quatuor cla&longs;&longs;es diuer&longs;arum percu&longs;&shy;<lb/>&longs;ionum. </s>
				</p>
				<p id="N13CC5" type="main">
					<s id="N13CC7"><!-- NEW -->Hinc compen&longs;ari pote&longs;t ratione vnius quod dee&longs;t ratione alterius, <lb/>v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;i fiat percu&longs;&longs;io in puncto E per lineam ME, pote&longs;t &longs;ciri punctum <lb/>inter ED, in quo percu&longs;&longs;io per lineam perpendicularem &longs;it &aelig;qualis <lb/>percu&longs;&longs;ioni per lineam ME; &longs;ed de his infr&agrave; in lib.  10. cum de percu&longs;&shy;<lb/>&longs;ione, determinabimus enim vnde proportiones i&longs;t&aelig; petend&aelig; &longs;int, &amp; <lb/>demon&longs;trabimus totam i&longs;tam rem, qu&aelig; mult&ugrave;m curio&longs;itatis habet, &amp; <lb/>vtilitatis. </s>
				</p>
				<p id="N13CDD" type="main">
					<s id="N13CDF">Determinabimus etiam dato puncto percu&longs;&longs;ionis F v.g. <!-- REMOVE S-->cum &longs;equatur <lb/>motus vectis, quodnam &longs;it centrum vectis &longs;eu huius motus. </s>
				</p>
				<p id="N13CE6" type="main">
					<s id="N13CE8"><!-- NEW -->Hinc demum &longs;equitur, ne hoc omittam, data minim&acirc; percu&longs;&longs;ione per <lb/>lineam MN dari po&longs;&longs;e adhuc minorem per lineam IN, &amp; alias incli&shy;<lb/>natas; </s>
					<s id="N13CF0"><!-- NEW -->&amp; data percu&longs;&longs;ione per lineam quantumuis inclinatam, po&longs;&longs;e da&shy;<lb/>ri &aelig;qualem per lineam perpendicularem; </s>
					<s id="N13CF6"><!-- NEW -->&amp; data per lineam perpendi&shy;<lb/>cularem extra centrum grauitatis E, po&longs;&longs;e dari &aelig;qualem; &amp; in qualibet <lb/>data ratione per aliquam inclinatam, qu&aelig; cadat in E, &longs;ed de his fus&egrave; <lb/>&longs;uo loco. </s>
				</p>
				<p id="N13D00" type="main">
					<s id="N13D02"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 70.<emph.end type="center"/></s>
				</p>
				<p id="N13D0E" type="main">
					<s id="N13D10"><!-- NEW --><emph type="italics"/>Corpus oblongum parallelipedum percutiens aliud corpus, put&agrave; globu&mtail;, <lb/>motu recto per lineam directionis, qu&aelig; producta &agrave; puncto contactus ducitur per <lb/>centrum globi, dum fiat contactus in centro grauitatis parallelipedi, maximum <lb/>ictum infligit, &longs;eu agit quant&ugrave;m pote&longs;t.<emph.end type="italics"/> v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;it parallelipedum EB; quod <lb/>moueatur motu recto parallelo, lineis CD, HG, &amp;c. </s>
					<s id="N13D25"><!-- NEW -->&longs;itque globus in <lb/>D; </s>
					<s id="N13D2B"><!-- NEW -->haud dubi&egrave; agit quant&ugrave;m pote&longs;t, quia &longs;cilicet e&longs;t maximum impedi&shy;<lb/>mentum per Th.68. Tam enim globus in D impedit motum paralleli&shy;<lb/>pedi, qu&agrave;m parallelipedum motum globi impacti per lineam ID; </s>
					<s id="N13D33"><!-- NEW -->impedit <lb/>inquam ratione oppo&longs;itionis; </s>
					<s id="N13D39"><!-- NEW -->quia centra grauitatis vtriu&longs;que con&shy;<lb/>currunt in eadem linea; igitur &longs;i maximum e&longs;t impedimentum, agit <lb/>quant&ugrave;m pote&longs;t Th. 50. hinc producitur impetus &aelig;qualis per Th.60. </s>
				</p>
				<p id="N13D41" type="main">
					<s id="N13D43"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 71.<emph.end type="center"/></s>
				</p>
				<p id="N13D4F" type="main">
					<s id="N13D51"><!-- NEW --><emph type="italics"/>Si percu&longs;&longs;io fiat in G, id e&longs;t &longs;i globus e&longs;&longs;et in G, producetur minor impetus, <lb/>&amp; in<emph.end type="italics"/> M <emph type="italics"/>adhuc minor<emph.end type="italics"/>; </s>
					<s id="N13D62"><!-- NEW -->vt con&longs;tat ex dictis in &longs;uperioribus Theorematis; <lb/>in qua vero proportione determinabimus ali&agrave;s. </s>
				</p>
				<p id="N13D68" type="main">
					<s id="N13D6A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 72.<emph.end type="center"/></s>
				</p>
				<p id="N13D76" type="main">
					<s id="N13D78"><!-- NEW --><emph type="italics"/>Si corpus percutiens non &longs;it parallelipedum, &longs;ed alterius figur&aelig; v.g.<emph.end type="italics"/> <emph type="italics"/>trigo&shy;<lb/>non,<emph.end type="italics"/> ADE, &longs;itque maioris facilitatis gratia Orthonium; </s>
					<s id="N13D89"><!-- NEW -->eiu&longs;que motus <lb/>&longs;it parallelus lineis ED, BC: </s>
					<s id="N13D8F"><!-- NEW -->&longs;it autem DA dupla DE; </s>
					<s id="N13D93"><!-- NEW -->&longs;itque diui&longs;a to&shy;<lb/>ta DA &aelig;qualiter in C, in C non erit maximus ictus; </s>
					<s id="N13D99"><!-- NEW -->quia in C non <pb pagenum="44" xlink:href="026/01/076.jpg"/>e&longs;t centrum grauitatis, vt patet; </s>
					<s id="N13DA2"><!-- NEW -->vt autem habeatur centrum impre&longs;&longs;io&shy;<lb/>nis; </s>
					<s id="N13DA8"><!-- NEW -->a&longs;&longs;umatur AN media proportionalis inter totam AD, &amp; &longs;ubdu&shy;<lb/>plum AC; </s>
					<s id="N13DAE"><!-- NEW -->cert&egrave; cum triangulum ANO &longs;it &longs;ubduplum totius ADE, <lb/>vt con&longs;tat ex Geometria, &amp; &aelig;quale trapezo ND EO; </s>
					<s id="N13DB4"><!-- NEW -->erit impetus in <lb/>vtroque &aelig;qualis; </s>
					<s id="N13DBA"><!-- NEW -->igitur in N erit centrum impre&longs;&longs;ionis, vel impetus; </s>
					<s id="N13DBE"><!-- NEW -->vt <lb/>autem habeatur centrum percu&longs;&longs;ionis; </s>
					<s id="N13DC4"><!-- NEW -->in quo &longs;cilicet maximus ictus in&shy;<lb/>fligitur, inueniatur centrum grauitatis H, ducaturque KHI parallela <lb/>DE, centrum percu&longs;&longs;ionis erit in I; </s>
					<s id="N13DCC"><!-- NEW -->quippe in I totus impeditur impetus <lb/>grauitatis vtrimque, cum &longs;it in &aelig;quilibrio; </s>
					<s id="N13DD2"><!-- NEW -->quomodo ver&ograve; inueniatur <lb/>punctum H facil&egrave; habetur ex Archimede, ductis &longs;cilicet AF, DB, qu&aelig; <lb/>diuidant bifariam &aelig;qualiter DE, EA; vel a&longs;&longs;umpta AI dupla ID, quod <lb/>demon&longs;trabimus in Mechan. <!-- KEEP S--></s>
				</p>
				<p id="N13DDD" type="main">
					<s id="N13DDF"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 37.<emph.end type="center"/></s>
				</p>
				<p id="N13DEB" type="main">
					<s id="N13DED"><!-- NEW --><emph type="italics"/>Si circa centrum immobile rotetur corpus parallelipedum<emph.end type="italics"/> CA, <emph type="italics"/>diuer&longs;a e&longs;t <lb/>ratio percu&longs;&longs;ionum ab ea, qu&agrave;m &longs;upr&agrave; propo&longs;uimus<emph.end type="italics"/>; </s>
					<s id="N13DFE"><!-- NEW -->moueatur  enim circa <lb/>centrum C, fitque CA diui&longs;a bifariam in B, haud dubi&egrave; punctum A <lb/>faciet arcum AE eo tempore, qu&ograve; punctum B faciet BD &longs;ubduplum <lb/>AE; </s>
					<s id="N13E08"><!-- NEW -->igitur punctum A dupl&ograve; veloci&ugrave;s mouetur qu&agrave;m B, vt con&longs;tat; </s>
					<s id="N13E0C"><!-- NEW -->igi&shy;<lb/>tur habet dupl&ograve; maiorem impetum; cum effectum habeat dupl&ograve; maio&shy;<lb/>rem per Ax. 13. n. </s>
					<s id="N13E14"><!-- NEW -->4. igitur cum totus motus &longs;egmenti AB &longs;it ad to&shy;<lb/>tum motum &longs;egmenti BC, vt &longs;patia acqui&longs;ita; </s>
					<s id="N13E1A"><!-- NEW -->cert&egrave; &longs;patia acqui&longs;ita <lb/>&longs;unt vt arcus; </s>
					<s id="N13E20"><!-- NEW -->igitur &amp; trapezus BAED, continet 3/4 totius CAE, vt <lb/>con&longs;tat; </s>
					<s id="N13E26"><!-- NEW -->&longs;unt enim &longs;ectores &longs;imilis in ratione duplicata radiorum; </s>
					<s id="N13E2A"><!-- NEW -->igi&shy;<lb/>tur totus motus &longs;egmenti BC &longs;ubquadruplus motus totius CA; igitur <lb/>&amp; impetus; </s>
					<s id="N13E32"><!-- NEW -->vt autem habeatur centrum impre&longs;&longs;ionis, vel impetus; </s>
					<s id="N13E36"><!-- NEW -->&longs;it &longs;e&shy;<lb/>ctor CHI, &longs;ubduplus totius CAE quod quomodo fiat, patet ex Geo&shy;<lb/>metria; </s>
					<s id="N13E3E"><!-- NEW -->accipiatur tant&ugrave;m &longs;ubdupla diagonalis quadrati lateris CA, igi&shy;<lb/>tur in puncto H e&longs;t centrum impre&longs;&longs;ionis, &longs;eu media proportionalis in&shy;<lb/>ter totam CA, &amp; &longs;ubduplam CB: </s>
					<s id="N13E46"><!-- NEW -->vt autem habeatur percu&longs;&longs;ionis, a&longs;&shy;<lb/>&longs;umatur CY dupla YA; </s>
					<s id="N13E4C"><!-- NEW -->Dico punctum Y e&longs;&longs;e centrum percu&longs;&longs;ionis; <lb/>quia perinde &longs;e habet, atque &longs;i e&longs;&longs;et trianguli cadentis ictus, vt demon&shy;<lb/>&longs;trabimus ali&agrave;s nunc tant&ugrave;m indica&longs;&longs;e &longs;ufficiat. </s>
				</p>
				<p id="N13E54" type="main">
					<s id="N13E56"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N13E63" type="main">
					<s id="N13E65"><!-- NEW -->Hinc etiam &longs;oluetur, quod proponunt aliqui; &longs;eu poti&ugrave;s qu&aelig;runt; </s>
					<s id="N13E69"><!-- NEW --><lb/>in qu&agrave; &longs;cilicet parte maiorem ictum infligat en&longs;is; </s>
					<s id="N13E6E"><!-- NEW -->&longs;i enim &longs;it eiu&longs;dem <lb/>cra&longs;&longs;itiei in omnibus &longs;uis partibus, idem dicendum e&longs;t quod de cylin&shy;<lb/>dro CA; &longs;i ver&ograve; in mucronem de&longs;inat, inueniemus etiam centrum <lb/>percu&longs;&longs;ionis. </s>
				</p>
				<p id="N13E78" type="main">
					<s id="N13E7A"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N13E87" type="main">
					<s id="N13E89"><!-- NEW -->Huc etiam reuoca clauarum ictus, vel aliorum corporum, qu&aelig; ad in&shy;<lb/>&longs;tar &longs;eu conorum, &longs;eu pyramidum ver&longs;us mucronem maiora &longs;unt, vel <lb/>den&longs;iora; quippe ex iacto &longs;upr&agrave; principio i&longs;torum omnium effectuum <lb/>rationes demon&longs;trabimus. </s>
				</p>
				<pb pagenum="45" xlink:href="026/01/077.jpg"/>
				<p id="N13E97" type="main">
					<s id="N13E99"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N13EA6" type="main">
					<s id="N13EA8"><!-- NEW -->Colligemus etiam quid dicendum &longs;it de malleorum ictu; </s>
					<s id="N13EAC"><!-- NEW -->&longs;it enim <lb/>malleus F &aelig;qualis malleo G &lpar;in his vna fere manubrij longitudinis ha&shy;<lb/>betur ratio&rpar; ducatur arcus NM, itemque OG; </s>
					<s id="N13EB4"><!-- NEW -->ictus mallei G e&longs;t fer&egrave; <lb/>&longs;ubduplus alterius, dum vterque malleus &longs;it &aelig;qualis; </s>
					<s id="N13EBA"><!-- NEW -->dixi fer&egrave;, quia <lb/>motus totius mallei G non e&longs;t omnin&ograve; &longs;ubduplus motus mallei F, quia <lb/>&longs;cilicet trapezus OD e&longs;t minor &longs;ubduplo alterius NE; </s>
					<s id="N13EC2"><!-- NEW -->quot&acirc; vero parte <lb/>&longs;it minor facil&egrave; pote&longs;t &longs;ciri opera Geometri&aelig;: &longs;ed h&aelig;c omnia determi&shy;<lb/>nabimus. </s>
				</p>
				<p id="N13ECA" type="main">
					<s id="N13ECC"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 74.<emph.end type="center"/></s>
				</p>
				<p id="N13ED8" type="main">
					<s id="N13EDA"><!-- NEW --><emph type="italics"/>Si daretur potentia motrix, qu&aelig; &longs;emper agere po&longs;&longs;et, impetus po&longs;&longs;et intendi <lb/>in infinitum<emph.end type="italics"/>; </s>
					<s id="N13EE5"><!-- NEW -->pater, quia quocumque dato motu pote&longs;t dari velocior in <lb/>infinitum; igitur pote&longs;t dari impetus inten&longs;ior, &amp; inten&longs;ior in infinitum. </s>
				</p>
				<p id="N13EEB" type="main">
					<s id="N13EED"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N13EF9" type="main">
					<s id="N13EFB"><!-- NEW -->H&icirc;c ob&longs;erua nouum di&longs;crimen, quod intercedit inter impetum, &amp; <lb/>alias qualitates; </s>
					<s id="N13F01"><!-- NEW -->qu&aelig; fort&egrave; non po&longs;&longs;unt intendi in infinitum, ratio di&longs;&shy;<lb/>criminis e&longs;t, quia totus calor exten&longs;us in maiore &longs;ubiecto non pote&longs;t <lb/>produci in minore, in quo eadem cau&longs;a eumdem &longs;emper effectum pro&shy;<lb/>ducit; </s>
					<s id="N13F0B"><!-- NEW -->quia &longs;cilicet agit vniformiter difformiter; at ver&ograve; impetus exten&shy;<lb/>&longs;us in magno <expan abbr="den&longs;o&qacute;ue">den&longs;oque</expan> malleo pote&longs;t producere &aelig;qualem in maxim&acirc; <lb/>fer&egrave; pil&acirc;. </s>
				</p>
				<p id="N13F17" type="main">
					<s id="N13F19"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 75.<emph.end type="center"/></s>
				</p>
				<p id="N13F25" type="main">
					<s id="N13F27"><!-- NEW --><emph type="italics"/>Impetus &longs;imilis, id e&longs;t, ad <expan abbr="e&atilde;dem">eandem</expan> lineam determinatus, &amp; &aelig;qualis in in&shy;<lb/>ten&longs;ione, non pote&longs;t intendere alium &longs;imilem<emph.end type="italics"/>; </s>
					<s id="N13F36"><!-- NEW -->Probatur, quia agit tant&ugrave;m ad <lb/>extra, vt tollat impedimentum per Th. 44. &longs;ed eorum mobilium, qu&aelig; <lb/>ver&longs;us <expan abbr="e&atilde;dem">eandem</expan> partem pari velocitate mouentur, neutrum impedit al&shy;<lb/>terius motum, vt con&longs;tat; igitur impetus &longs;imilis, &amp;c. </s>
				</p>
				<p id="N13F44" type="main">
					<s id="N13F46"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N13F52" type="main">
					<s id="N13F54"><!-- NEW -->Ob&longs;erua de impetu &longs;imili id tant&ugrave;m dici; </s>
					<s id="N13F58"><!-- NEW -->&longs;imili inquam id e&longs;t non <lb/>mod&ograve; eiu&longs;dem inten&longs;ionis; </s>
					<s id="N13F5E"><!-- NEW -->&longs;ed etiam eiu&longs;dem line&aelig;: </s>
					<s id="N13F62"><!-- NEW -->&longs;i enim alterum <lb/>de&longs;it, haud dubi&egrave; &longs;imilis impetus non e&longs;t; </s>
					<s id="N13F68"><!-- NEW -->&longs;ic impetus quatuor grad. <!-- REMOVE S-->in&shy;<lb/>tendere pote&longs;t impetum duorum graduum; </s>
					<s id="N13F70"><!-- NEW -->lic&egrave;t vterque ad <expan abbr="e&atilde;dem">eandem</expan> li&shy;<lb/>neam &longs;it determinatus; </s>
					<s id="N13F7A"><!-- NEW -->&longs;i ver&ograve; ad diuer&longs;as lineas determinentur; etiam <lb/>impetus vt duo pote&longs;t intendere impetum vt quatuor. </s>
				</p>
				<p id="N13F80" type="main">
					<s id="N13F82"><!-- NEW -->Ob&longs;eruabis pr&aelig;terea hoc Theorema ita e&longs;&longs;e intelligendum, vt impe&shy;<lb/>tus mobilis pr&aelig;euntis nullo modo impediatur; alioquin mobile &longs;ucce&shy;<lb/>dens omnin&ograve; aliud vrgeret, vt con&longs;tat. </s>
				</p>
				<p id="N13F8A" type="main">
					<s id="N13F8C"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N13F98" type="main">
					<s id="N13F9A"><!-- NEW -->Hinc &longs;imile pote&longs;t in aliquo ca&longs;u agere in &longs;imile; </s>
					<s id="N13F9E"><!-- NEW -->vnde rect&egrave; colligo <lb/>id tant&ugrave;m dictum e&longs;&longs;e ab Ari&longs;totele de qualitatibus alteratiuis; </s>
					<s id="N13FA4"><!-- NEW -->quid <lb/>ver&ograve; accidat, cum mobile graue mobili alteri &longs;uperponitur; dicemus <lb/>infr&agrave;. </s>
				</p>
				<pb pagenum="46" xlink:href="026/01/078.jpg"/>
				<p id="N13FB0" type="main">
					<s id="N13FB2"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 76.<emph.end type="center"/></s>
				</p>
				<p id="N13FBE" type="main">
					<s id="N13FC0"><!-- NEW --><emph type="italics"/>Exten&longs;io impetus respondet extentioni &longs;ui &longs;ubiecti, &longs;cilicet mobilis<emph.end type="italics"/>; </s>
					<s id="N13FC9"><!-- NEW -->cum <lb/>enim extra &longs;ubjectum e&longs;&longs;e non po&longs;&longs;it, cum &longs;it qualitas; </s>
					<s id="N13FCF"><!-- NEW -->cert&egrave; ibi e&longs;t, vbi <lb/>&longs;ubjectum e&longs;t; nam penetratur accidens cum ip&longs;o <expan abbr="&longs;ujecto">&longs;ubjecto</expan>. </s>
				</p>
				<p id="N13FD9" type="main">
					<s id="N13FDB"><emph type="center"/><emph type="italics"/>Scolium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N13FE7" type="main">
					<s id="N13FE9"><!-- NEW -->Ob&longs;eruabis qualitatem omnem ita &longs;uo &longs;ubjecto co&euml;xtendi, vt &aelig;qua&shy;<lb/>lem omnino quodlibet eius punctum, &longs;eu pars extentionem habeat ex&shy;<lb/>tentioni puncti, &longs;eu partis &longs;ui &longs;ubjecti; </s>
					<s id="N13FF1"><!-- NEW -->nec enim aliud e&longs;t, vnde po&longs;&longs;it <lb/>determinari extentio qualitatum, pr&aelig;ter ip&longs;am exten&longs;ionem &longs;ubjecti; </s>
					<s id="N13FF7"><!-- NEW --><lb/>quod maxim&egrave; in impetu videre e&longs;t, cuius partes in mobili den&longs;o minori <lb/>extentioni &longs;ubjacent, qu&agrave;m in mobili raro; </s>
					<s id="N13FFE"><!-- NEW -->cum ex maiore ictu &longs;eu per&shy;<lb/>cu&longs;&longs;ione in mobili den&longs;o plures impetus agentis partes e&longs;&longs;e con&longs;tet; quia <lb/>&longs;cilicet &longs;unt plures partes &longs;ubiecti. </s>
				</p>
				<p id="N14006" type="main">
					<s id="N14008"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 77.<emph.end type="center"/></s>
				</p>
				<p id="N14014" type="main">
					<s id="N14016"><!-- NEW --><emph type="italics"/>Datur impetus altero impetu perfectior &longs;ecundum entitatem<emph.end type="italics"/>; dixi &longs;ecun&shy;<lb/>dum entitatem; </s>
					<s id="N14021"><!-- NEW -->quia iam dictum e&longs;t &longs;upr&agrave; dari perfectiorem &longs;ecundum <lb/>inten&longs;ionem; </s>
					<s id="N14027"><!-- NEW -->huius Theorematis veritas mihi maxim&egrave; demon&longs;tranda <lb/>e&longs;t, ex quo t&agrave;m multa infr&agrave; deducemus; </s>
					<s id="N1402D"><!-- NEW -->&longs;ic autem probamus; </s>
					<s id="N14031"><!-- NEW -->Quotie&longs;&shy;<lb/>cunque mouetur corpus, producuntur &longs;altem tot partes impetus quot <lb/>&longs;unt partes mobilis per Th. 33. Quotie&longs;cunque producuntur in mobili <lb/>tot partes impetus quot &longs;unt in mobili partes &longs;ubjecti, mouetur mobile, <lb/>mod&oacute; non impediatur; </s>
					<s id="N1403D"><!-- NEW -->quia po&longs;ita cau&longs;a nece&longs;&longs;aria, &amp; non impedita per <lb/>Ax. 11. ponitur effectus, quod de omni cau&longs;a, &longs;ed de formali poti&longs;&longs;imum <lb/>dici debet; </s>
					<s id="N14045"><!-- NEW -->pr&aelig;terea datur aliquod pondus, quod data potentia &longs;ine me&shy;<lb/>chanico organo mouere non pote&longs;t, lic&egrave;t cum organo facil&egrave; moueat; </s>
					<s id="N1404B"><!-- NEW -->h&aelig;c <lb/>hypothe&longs;is certa e&longs;t; </s>
					<s id="N14051"><!-- NEW -->igitur cum mouet, producit tot partes impetus quot <lb/>&longs;unt nece&longs;&longs;ari&aelig;, vt omnibus partibus mobilis di&longs;tribuantur per idem Th. <!-- REMOVE S--><lb/>33. cum ver&ograve; non mouet, non producit tot partes impetus vt con&longs;tat ex <lb/>dictis; </s>
					<s id="N1405C"><!-- NEW -->igitur producit plures cum organo in mobili, qu&agrave;m &longs;ine organo; <lb/>igitur imperfectiores, quod demon&longs;tro: </s>
					<s id="N14062"><!-- NEW -->&longs;it enim vectis BF, cuius cen&shy;<lb/>trum &longs;eu fulcrum &longs;it in A, potentia in B, pondus G, quod attollitur in F; </s>
					<s id="N14068"><!-- NEW --><lb/>plures partes impetus produci po&longs;&longs;unt in F, vel in E, qu&agrave;m in B, &longs;cilicet <lb/>in ip&longs;o pondere; </s>
					<s id="N1406F"><!-- NEW -->quia pondus quod non pote&longs;t attolli in B, attollitur in <lb/>E, vel in F, vt patet ex dictis; </s>
					<s id="N14075"><!-- NEW -->pr&aelig;terea punctum F mouetur tardius, qu&agrave;m <lb/>B; </s>
					<s id="N1407B"><!-- NEW -->quia motus &longs;unt vt arcus, arcus vt &longs;emidiametri, h&aelig; demum vt AF, <lb/>ad AB; </s>
					<s id="N14081"><!-- NEW -->igitur motus puncti F, e&longs;t tardior, vel imperfectior; </s>
					<s id="N14085"><!-- NEW -->igitur im&shy;<lb/>petus puncti F, e&longs;t imperfectior impetu puncti B, per Ax. 13 num.4. atqui <lb/>non e&longs;t imperfectior ratione numeri partium, igitur ratione entitatis, <lb/>qu&aelig; imperfectior e&longs;t; igitur datur impetus altero impetu imperfectior. </s>
				</p>
				<p id="N1408F" type="main">
					<s id="N14091"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1409D" type="main">
					<s id="N1409F"><!-- NEW -->Ob&longs;eruabis prim&ograve; multa h&icirc;c &longs;upponi &longs;eu de&longs;iderari, qu&aelig; pertinent <lb/>ad propagationem impetus, de quibus infr&agrave;; Secund&ograve; hoc Theorema <pb pagenum="47" xlink:href="026/01/079.jpg"/>per Axioma illud Metaph.  probari, <emph type="italics"/>Data quacumque creatura dari potest <lb/>perfectior, vel imperfectior.<emph.end type="italics"/></s>
				</p>
				<p id="N140B1" type="main">
					<s id="N140B3"><!-- NEW -->Terti&ograve;, &longs;i dato quocunque motu pote&longs;t dari tardior: igitur dato quo&shy;<lb/>cunque impetu pote&longs;t dari imperfectior. </s>
				</p>
				<p id="N140B9" type="main">
					<s id="N140BB"><!-- NEW -->Quart&ograve;, &longs;i daretur punctum impetus in inten&longs;ione: non po&longs;&longs;et dari <lb/>motus tardior in infinitum &longs;ine diuer&longs;is gradibus perfectionis. </s>
				</p>
				<p id="N140C1" type="main">
					<s id="N140C3"><!-- NEW -->Quint&ograve;, &longs;ine hac diuer&longs;a impetus perfectione non po&longs;&longs;et explicari <lb/>productio continua impetus, qu&aelig; &longs;it temporibus in&aelig;qualibus, neque de&shy;<lb/>&longs;tructio eiu&longs;dem impetus; nec motus in diuer&longs;is planis inclinatis, vel in&shy;<lb/>diuer&longs;is lineis citra perpendicularem, &longs;ed de his omnibus &longs;uo loco. </s>
				</p>
				<p id="N140CD" type="main">
					<s id="N140CF"><!-- NEW -->Sext&ograve;, Denique ratio propo&longs;ita rem i&longs;tam euincit; </s>
					<s id="N140D3"><!-- NEW -->cum enim in motu <lb/>vectis plures partes producantur ver&longs;us centrum, &longs;cilicet, in maiori pon&shy;<lb/>dere, quod attollitur; &amp; cum h&aelig; habeant motum tardiorem, &longs;equitur ne&shy;<lb/>ce&longs;&longs;ari&ograve; e&longs;&longs;e imperfectiores. </s>
				</p>
				<p id="N140DD" type="main">
					<s id="N140DF"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 78.<emph.end type="center"/></s>
				</p>
				<p id="N140EB" type="main">
					<s id="N140ED"><emph type="italics"/>Dato quocumque impetu dari pote&longs;t imperfectior, &amp; imperfectior,<emph.end type="italics"/> quia da&shy;<lb/>to quocumque motu dari pote&longs;t tardior, ergo dato quocumque impetu <lb/>imperfectior. </s>
				</p>
				<p id="N140F9" type="main">
					<s id="N140FB"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 79.<emph.end type="center"/></s>
				</p>
				<p id="N14107" type="main">
					<s id="N14109"><emph type="italics"/>Non pote&longs;t explicari tarditas motus &longs;ine diuer&longs;a perfectione impetus, per <lb/>pauciores &longs;cilicet eiu&longs;dem impetus partes.<emph.end type="italics"/></s>
					<s id="N14112"><!-- NEW --> Prim&ograve;, quia cum retardari po&longs;&longs;it <lb/>hic motus, &amp; de&longs;trui &longs;ucce&longs;&longs;in&egrave; hic impetus; </s>
					<s id="N14118"><!-- NEW -->cumque in&longs;tantia motus <lb/>velocioris &longs;int breuiora; </s>
					<s id="N1411E"><!-- NEW -->cert&egrave; initio motus, breuiori &longs;cilicet tempore <lb/>imperfectior impetus de&longs;trui tant&ugrave;m pote&longs;t; </s>
					<s id="N14124"><!-- NEW -->cum enim &aelig;qualis &aelig;quali&shy;<lb/>bus temporibus; cert&egrave; in&aelig;qualis in&aelig;qualibus. </s>
					<s id="N1412A">Secund&ograve; quia vix explica&shy;<lb/>ri pore&longs;t quomodo du&aelig; form&aelig; homogene&aelig; in eodem &longs;ubiecti puncto <lb/>exi&longs;tere po&longs;&longs;int, quod etiam in commune e&longs;t calori, lumini, &amp;c. </s>
				</p>
				<p id="N14131" type="main">
					<s id="N14133"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 80.<emph.end type="center"/></s>
				</p>
				<p id="N1413F" type="main">
					<s id="N14141"><emph type="italics"/>Cum applicatur potentia centro vectis, non producitur &aelig;qualis impetus ver&shy;<lb/>&longs;us circumferentiam in omnibus partibus, &longs;ed maior ver&longs;us eandem circumfe&shy;<lb/>rentiam,<emph.end type="italics"/> quia e&longs;t maior motus. </s>
				</p>
				<p id="N1414D" type="main">
					<s id="N1414F"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1415C" type="main">
					<s id="N1415E"><!-- NEW -->Hinc difficili&ugrave;s attollitur pertica CA ex puncto C motu circulari, <lb/>qu&agrave;m ex puncto B motu recto; </s>
					<s id="N14164"><!-- NEW -->quia &longs;cilicet, cum motu recto ex puncto B <lb/>attollitur, omnes partes mouentur motu &aelig;quali; </s>
					<s id="N1416A"><!-- NEW -->igitur impetus &aelig;qualiter <lb/>omnibus di&longs;tribuitur; </s>
					<s id="N14170"><!-- NEW -->igitur mod&ograve; producantur tot partes impetus, quot <lb/>&longs;unt partes in mobili; </s>
					<s id="N14176"><!-- NEW -->haud dubi&egrave; attolletur: </s>
					<s id="N1417A"><!-- NEW -->at ver&ograve;, cum motu circulari <lb/>ex puncto C attollitur, omnes partes in&aelig;quali motu attolluntur; </s>
					<s id="N14180"><!-- NEW -->igitur <lb/>plures &longs;unt nece&longs;&longs;ari&aelig;, vt attollatur motu circulari; </s>
					<s id="N14186"><!-- NEW -->igitur difficili&ugrave;s iuxta <lb/>experimentum; adde quod cum applicatur potentia in C, punctum A, <lb/>maius momentum habet, de quo a&ugrave;&agrave;s. </s>
				</p>
				<p id="N1418E" type="main">
					<s id="N14190"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1419D" type="main">
					<s id="N1419F"><!-- NEW -->Hinc ratio euidens illius experimenti, quo manife&longs;t&egrave; con&longs;tat perti-<pb pagenum="48" xlink:href="026/01/080.jpg"/>cam CA, ex A, facilius attolli motu recto, qu&agrave;m circulari; cum &longs;ci&shy;<lb/>licet cuiu&longs;dam qua&longs;i reflexionis opera eodem tempore vtraque extremi&shy;<lb/>tas &aelig;quali motu attollitur. </s>
				</p>
				<p id="N141AC" type="main">
					<s id="N141AE"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 81.<emph.end type="center"/></s>
				</p>
				<p id="N141BA" type="main">
					<s id="N141BC"><arrow.to.target n="note1"/></s>
				</p>
				<p id="N141C1" type="margin">
					<s id="N141C3"><margin.target id="note1"/><emph type="italics"/>Fig.<emph.end type="italics"/>7. <lb/><emph type="italics"/>Tab.<emph.end type="italics"/>1.<!-- KEEP S--></s>
				</p>
				<p id="N141D5" type="main">
					<s id="N141D7"><!-- NEW --><emph type="italics"/>Si ver&ograve; applicetur potentia extra centrum vectis v. <!-- REMOVE S-->g. <!-- REMOVE S-->in<emph.end type="italics"/> F, <emph type="italics"/>po&longs;ito centro in<emph.end type="italics"/><lb/>A, <emph type="italics"/>producitur impetus minor ab<emph.end type="italics"/> F, <emph type="italics"/>ver&longs;us<emph.end type="italics"/> A; </s>
					<s id="N141F7"><!-- NEW --><emph type="italics"/>ab ver&ograve; ver&longs;us<emph.end type="italics"/> E, <emph type="italics"/>producitur <lb/>eiu&longs;dem perfectionis proportionaliter, cuius e&longs;t ab<emph.end type="italics"/> F, <emph type="italics"/>ver&longs;us<emph.end type="italics"/> A; denique ab E, <lb/>ver&longs;us B, producitur quidem vnum punctum, vel vnus gradus impetus <lb/>eiu&longs;dem perfectionis cum eo, qui productus e&longs;t in F, &amp; in E &lpar;&longs;upponi&shy;<lb/>tur enim ex. gr. <!-- REMOVE S-->vnus tant&ugrave;m gradus in F, &amp; in E, productus&rpar; at ver&ograve; <lb/>producuntur alij imperfectiones. </s>
					<s id="N14218"><!-- NEW -->v.g. <!-- REMOVE S-->in D, pr&aelig;ter &aelig;qu&egrave; perfectum pro&shy;<lb/>ducuntur 3. alij ad&aelig;quantes perfectionem prioris; </s>
					<s id="N14220"><!-- NEW -->in C ver&ograve;, pr&aelig;ter 4. <lb/>&longs;imiles ijs, qui &longs;unt in D, producuntur 5. alij ad&aelig;quantes prioris perfe&shy;<lb/>ctionem in B7; atque ita deinceps per numeros impares, &amp; quadrata, <lb/>nullus tamen producitur perfectioris entitatis. </s>
				</p>
				<p id="N1422A" type="main">
					<s id="N1422C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 82.<emph.end type="center"/></s>
				</p>
				<p id="N14238" type="main">
					<s id="N1423A"><!-- NEW --><emph type="italics"/>Determinatur h&aelig;c diuer&longs;a perfectio impetus &agrave; diuer&longs;a perfectione motus, <lb/>quatenus fit tali modo<emph.end type="italics"/>; </s>
					<s id="N14245"><!-- NEW -->qu&aelig; non pote&longs;t explicari per impetum remi&longs;&longs;io&shy;<lb/>rem, vel inten&longs;iorem; </s>
					<s id="N1424B"><!-- NEW -->nam cum &longs;it tant&ugrave;m impetus in&longs;titutus propter <lb/>motum; </s>
					<s id="N14251"><!-- NEW -->cert&egrave; ille tant&ugrave;m impetus produci pote&longs;t, ex quo pote&longs;t &longs;equi <lb/>motus; </s>
					<s id="N14257"><!-- NEW -->igitur &longs;i tali tant&ugrave;m motu data pars mobilis moueri pote&longs;t; haud <lb/>dubi&egrave; talis tant&ugrave;m impetus, ex quo &longs;equitur talis motus, in ea produ&shy;<lb/>cetur, &amp; tali modo. </s>
				</p>
				<p id="N1425F" type="main">
					<s id="N14261"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 83.<emph.end type="center"/></s>
				</p>
				<p id="N1426D" type="main">
					<s id="N1426F"><!-- NEW --><emph type="italics"/>Perfectio impetus non petitur tant&ugrave;m &agrave; perfectione motus &longs;i con&longs;ideretur <lb/>&longs;eor&longs;im entitas eiu&longs;dem impetus; </s>
					<s id="N14277"><!-- NEW -->&longs;ed debet comparari tota collectio omniu&mtail; <lb/>partium impetus, qu&aelig; in&longs;unt dat&aelig; parti &longs;ubiecti, cum tota collectione partium <lb/>qu&aelig; alteri parti mobilis in&longs;unt<emph.end type="italics"/>; </s>
					<s id="N14282"><!-- NEW -->quippe plures partes impetus po&longs;&longs;unt ha&shy;<lb/>bere eum motum, vel potius eam motus perfectionem, quam pauciores <lb/>haberent; igitur perfectio illarum e&longs;t ab ip&longs;o motu, quatenus cum ip&longs;o <lb/>partium numero comparatur. </s>
				</p>
				<p id="N1428C" type="main">
					<s id="N1428E"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 84.<emph.end type="center"/></s>
				</p>
				<p id="N1429A" type="main">
					<s id="N1429C"><!-- NEW --><emph type="italics"/>Impetus perfectus producere pote&longs;t imperfectum<emph.end type="italics"/>; patet in vecte; </s>
					<s id="N142A5"><!-- NEW -->nam po&shy;<lb/>tentia, &longs;en pondus extremitati appen&longs;um producit in &longs;e impetum, &agrave; quo <lb/>deinde impetus in toto vecte producitur per Th.42. &longs;ed impetus pon&shy;<lb/>deris appen&longs;i e&longs;t eiu&longs;dem perfectionis cum impetu producto in ip&longs;a ve&shy;<lb/>ctis extremitate, ex qua pendet; </s>
					<s id="N142B1"><!-- NEW -->cum &longs;it vtriu&longs;que &aelig;qualis motus; &longs;ed <lb/>ver&longs;us centrum eiu&longs;dem vectis producitur impetus imperfectior per <lb/>Th.82. igitur imperfectus &agrave; perfecto producitur. </s>
				</p>
				<p id="N142B9" type="main">
					<s id="N142BB"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 85.<emph.end type="center"/></s>
				</p>
				<p id="N142C7" type="main">
					<s id="N142C9"><!-- NEW --><emph type="italics"/>Impetus perfectus nunquam producitur ab imperfecto, per Ax.<emph.end type="italics"/> 3. <emph type="italics"/>num.<emph.end type="italics"/> 2. <lb/>adde quod nunquam effectus perfectio &longs;uperat perfectionem cau&longs;&aelig;; </s>
					<s id="N142DA"><!-- NEW -->dixi <lb/>perfectum ab imperfecto; </s>
					<s id="N142E0"><!-- NEW -->&longs;cilicet &longs;i con&longs;ideretur perfectio ratione en-<pb pagenum="49" xlink:href="026/01/081.jpg"/>titatis; </s>
					<s id="N142E9"><!-- NEW -->cum reuer&acirc;, vt dictum e&longs;t &longs;upr&agrave;, remi&longs;&longs;us producat inten&longs;um, <lb/>quod in vecte clari&longs;&longs;imum e&longs;t; </s>
					<s id="N142EF"><!-- NEW -->quippe momentum applicatum in F, quod <lb/>tardi&ugrave;s mouetur deor&longs;um, qu&agrave;m B, &longs;ur&longs;um, vt patet, habet impetum re&shy;<lb/>mi&longs;&longs;iorem, qui tamen producit in B, inten&longs;iorem: </s>
					<s id="N142F7"><!-- NEW -->Pro quo, ob&longs;eruabis <lb/>impetum imperfectum cum alio perfecto actione communi agentem <lb/>po&longs;&longs;e concurrere ad producendum perfectum, vt patet; </s>
					<s id="N142FF"><!-- NEW -->non tamen in <lb/>ratione cau&longs;&aelig; totalis: </s>
					<s id="N14305"><!-- NEW -->&longs;imiliter plures imperfecti &longs;imul concurrentes <lb/>po&longs;&longs;unt producere perfectum; quia plures imperfecti conjunctim ad&aelig;&shy;<lb/>quant perfectionem alterius perfectioris &longs;inguli &longs;eor&longs;im. </s>
				</p>
				<p id="N1430D" type="main">
					<s id="N1430F"><!-- NEW -->Ob&longs;eruabis &longs;ecund&ograve; pr&aelig;clarum natur&aelig; in&longs;titutum, quo factum e&longs;t; </s>
					<s id="N14313"><!-- NEW --><lb/>vt cum vires hominum maiora pondera leuare non po&longs;&longs;int, &longs;i &longs;eor&longs;un <lb/>con&longs;iderentur; </s>
					<s id="N1431A"><!-- NEW -->cum organis tamen mechanicis conjunct&aelig; nullum pon&shy;<lb/>dus quantumuis immane leuare non po&longs;&longs;int; </s>
					<s id="N14320"><!-- NEW -->quod cert&egrave; nullo modo ac&shy;<lb/>cideret, ni&longs;i plures partes impetus producerent neque plures producere <lb/>po&longs;&longs;ent, ni&longs;i minoris perfectionis e&longs;&longs;ent; quia facili&ugrave;s producitur effe&shy;<lb/>ctus imperfectus, quam perfectus per Ax. 13.num.4. </s>
				</p>
				<p id="N1432A" type="main">
					<s id="N1432C"><!-- NEW -->Terti&ograve; hinc optim&egrave; &agrave; natura proui&longs;um e&longs;t, vt motus tardior in infi&shy;<lb/>nitum e&longs;&longs;e po&longs;&longs;it; quod reuer&acirc; fieri non po&longs;&longs;et, ni&longs;i dari po&longs;&longs;et impetus <lb/>alio imperfectior. </s>
				</p>
				<p id="N14334" type="main">
					<s id="N14336"><!-- NEW -->Quart&ograve;, hinc quoque ben&egrave; explicatur diuer&longs;itas impetus, qu&aelig; oritur <lb/>tum &agrave; diuer&longs;o medio, t&ugrave;m &agrave; plano inclinato, t&ugrave;m ab aliis impedimentis, <lb/>t&ugrave;m &agrave; diuer&longs;o ni&longs;u eiu&longs;dem potenti&aelig;, t&ugrave;m maxim&egrave; &agrave; diuer&longs;o applicatio&shy;<lb/>nis modo; de quibus ali&agrave;s. </s>
				</p>
				<p id="N14340" type="main">
					<s id="N14342"><!-- NEW -->Quint&ograve;, &longs;i potentia applicata mobili immediat&egrave; illud moueat motu <lb/>recto, vel in &longs;ingulis punctis mobilis producitur vnum punctum impe&shy;<lb/>tus, vel plura; </s>
					<s id="N1434A"><!-- NEW -->&longs;i primum, erit primus tant&ugrave;m gradus maxim&aelig; perfectio&shy;<lb/>nis; </s>
					<s id="N14350"><!-- NEW -->ita vt perfectiorem producere non po&longs;&longs;it, ad quem e&longs;t determinata <lb/>potentia; </s>
					<s id="N14356"><!-- NEW -->imperfectiorem tamen impetu innato, de quo infr&agrave;; &longs;i ver&ograve; <lb/>&longs;ecundum, producet in &longs;ingulis partibus <expan abbr="e&utilde;dem">eundem</expan> gradum perfecti&longs;&longs;i&shy;<lb/>mum cum aliis pluribus, vel paucioribus heterogeneis, &amp; imperfectio&shy;<lb/>ribus. </s>
				</p>
				<p id="N14364" type="main">
					<s id="N14366"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 86.<emph.end type="center"/></s>
				</p>
				<p id="N14372" type="main">
					<s id="N14374"><!-- NEW --><emph type="italics"/>Potentia naturalis grauium producit tant&ugrave;m vno in&longs;tanti ad intra vnicum <lb/>punctum impetus in quolibet puncto &longs;ubiecti; </s>
					<s id="N1437C"><!-- NEW -->&longs;i tamen impetum producit, quod <lb/>definiam lib.<emph.end type="italics"/> 20. <emph type="italics"/>&amp; &longs;i dentur puncta &longs;ubiecti, quod ad pr&aelig;&longs;ens in&longs;titutum non <lb/>pertinet<emph.end type="italics"/>; </s>
					<s id="N1438D"><!-- NEW -->Probatur, quia fru&longs;tr&agrave; e&longs;&longs;ent plura puncta impetus; nec enim <lb/>&longs;unt multiplicand&aelig; form&aelig; &longs;ine nece&longs;&longs;itate, ratione &amp;c. </s>
					<s id="N14393">per Ax. 7. &amp; 3. <lb/>n. </s>
					<s id="N14398">1. Pr&aelig;terea non e&longs;t, cur potius produceret 2. qu&agrave;m 3. 4. &amp;c. </s>
					<s id="N1439B">atqui <lb/>quod vnum e&longs;t, determinatum e&longs;t per Ax. 5. <!-- KEEP S--></s>
				</p>
				<p id="N143A1" type="main">
					<s id="N143A3"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 87.<emph.end type="center"/></s>
				</p>
				<p id="N143AF" type="main">
					<s id="N143B1"><!-- NEW --><emph type="italics"/>Potentia motrix animantium etiam vno in&longs;tanti plura puncta, &longs;en partes <lb/>impetus in eadem parte &longs;ubiecti producere potest<emph.end type="italics"/>; </s>
					<s id="N143BC"><!-- NEW -->Probatur in proiectis, <lb/>quorum impetus aliquando pl&ugrave;s, aliquando min&ugrave;s durat lic&egrave;t &longs;en&longs;im <lb/>&longs;ingulis in&longs;tantibus aliquid illius de&longs;truatur; </s>
					<s id="N143C4"><!-- NEW -->determinatur autem <pb pagenum="50" xlink:href="026/01/082.jpg"/>numerus punctorum, &longs;eu partium ab ea potentia, cui &longs;ube&longs;t potentia <lb/>motrix; quia mod&ograve; maior e&longs;t ni&longs;us, mod&ograve; minor. </s>
				</p>
				<p id="N143CF" type="main">
					<s id="N143D1"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 88.<emph.end type="center"/></s>
				</p>
				<p id="N143DD" type="main">
					<s id="N143DF"><!-- NEW --><emph type="italics"/>Eadem potentia in&aelig;qualibus temporibus impetum in&aelig;qualem in perfectio&shy;<lb/>ne producit<emph.end type="italics"/>; </s>
					<s id="N143EA"><!-- NEW -->accipiatur enim totum illud tempus, quo vnicum tant&ugrave;m <lb/>punctum impetus producit &lpar;vocetur in&longs;tans&rpar; de quo in Th. 86; cert&egrave; <lb/>&longs;i in minori tempore agat, min&ugrave;s aget, per Ax. 13. num. </s>
					<s id="N143F2"><!-- NEW -->4. &longs;ed non <lb/>pote&longs;t min&ugrave;s agere ratione numeri, vt patet; igitur ratione perfectio&shy;<lb/>nis. </s>
				</p>
				<p id="N143FA" type="main">
					<s id="N143FC"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N14408" type="main">
					<s id="N1440A">Ob&longs;eruabis &longs;ine hoc Theoremate explicari non po&longs;&longs;e accelerationem <lb/>motus naturalis, vel augmentum impetus, vt videbimus. </s>
				</p>
				<p id="N1440F" type="main">
					<s id="N14411"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 89.<emph.end type="center"/></s>
				</p>
				<p id="N1441D" type="main">
					<s id="N1441F"><!-- NEW --><emph type="italics"/>Impetus violenti, qui &longs;en&longs;im de&longs;truitur in proiectis, po&longs;itis ij&longs;dem circum&shy;<lb/>&longs;tantiis medij, &amp; re&longs;i&longs;tenti&aelig;, minori tempore min&ugrave;s de&longs;truitur; </s>
					<s id="N14427"><!-- NEW -->plus ver&ograve; ma&shy;<lb/>jori:<emph.end type="italics"/> Quia h&aelig;c de&longs;tructio habet cau&longs;am; nam quidquid de&longs;truitur, ad <lb/>exigentiam alicuius de&longs;truitur, per Ax. 14. num. </s>
					<s id="N14432">2. igitur minori <lb/>tempore min&ugrave;s de&longs;truitur per Ax. <!-- REMOVE S-->13. 4. alioquin totus &longs;imul debe&shy;<lb/>ret de&longs;trui. </s>
				</p>
				<p id="N1443B" type="main">
					<s id="N1443D"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N14449" type="main">
					<s id="N1444B">Ob&longs;eruabis etiam &longs;ine hoc Theoremate non po&longs;&longs;e explicari de&longs;tru&shy;<lb/>ctionem impetus violenti, vt videbimus infr&agrave;. </s>
				</p>
				<p id="N14450" type="main">
					<s id="N14452"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1445F" type="main">
					<s id="N14461">Hinc, qu&ograve; potentia diuti&ugrave;s manet applicata &lpar;put&agrave; malleo&rpar; percu&longs;&longs;io ma&shy;<lb/>ior e&longs;t. </s>
				</p>
				<p id="N14466" type="main">
					<s id="N14468"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N14475" type="main">
					<s id="N14477">Hinc, qu&ograve; impedimentum diuti&ugrave;s manet applicatum, illa de&longs;tructio <lb/>e&longs;t maior. </s>
				</p>
				<p id="N1447C" type="main">
					<s id="N1447E"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1448B" type="main">
					<s id="N1448D"><!-- NEW -->Hinc pr&aelig;clara eruitur ratio, cur maior lapis, qu&agrave;m minor impactus <lb/>maiorem ictum infligat; </s>
					<s id="N14493"><!-- NEW -->lic&egrave;t tot partes impetus eodem in&longs;tanti produ&shy;<lb/>cantur in vno, quot in alio: </s>
					<s id="N14499"><!-- NEW -->quia &longs;cilicet diuti&ugrave;s manet applicatus po&shy;<lb/>tenti&aelig;; &longs;ed hanc rationem explicabimus fus&egrave; lib.  10. cum de percu&longs;&shy;<lb/>&longs;ione. </s>
				</p>
				<p id="N144A1" type="main">
					<s id="N144A3"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 90.<emph.end type="center"/></s>
				</p>
				<p id="N144AF" type="main">
					<s id="N144B1"><emph type="italics"/>Impetus propagatur nece&longs;&longs;ari&ograve; per totum corpus impul&longs;um, &longs;eu proiectum.<emph.end type="italics"/></s>
				</p>
				<p id="N144B8" type="main">
					<s id="N144BA">Probatur; </s>
					<s id="N144BD"><!-- NEW -->quia cum omnes eius partes moueantur, nec vlla &longs;ine im&shy;<lb/>petu moueri po&longs;&longs;it per Th. 18. &amp; 33. cum etiam potentia motrix non <lb/>&longs;it omnibus immediat&egrave; applicata, vt con&longs;tat; cert&egrave; &longs;ine propagatione, <lb/>vel diffu&longs;ione non pote&longs;t explicari productio huius motus. </s>
				</p>
				<pb pagenum="51" xlink:href="026/01/083.jpg"/>
				<p id="N144CB" type="main">
					<s id="N144CD"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N144D9" type="main">
					<s id="N144DB">Ob&longs;eruabis propagationem impetus, vel alterius qualitatis e&longs;&longs;e tan&shy;<lb/>t&ugrave;m continuatam eiu&longs;dem productionem, qu&aelig; incipit ab ea parte, cui <lb/>potentia e&longs;t immediat&egrave; applicata, &amp; propagatur, &longs;eu diffunditur per <lb/>omnes alias donec ad vltimam perueniat eo modo, quo iam definio. </s>
				</p>
				<p id="N144E4" type="main">
					<s id="N144E6"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 92.<emph.end type="center"/></s>
				</p>
				<p id="N144F2" type="main">
					<s id="N144F4"><!-- NEW --><emph type="italics"/>Illa progatio non fit per motum localem, ita vt pars impetus producta in <lb/>prima parte &longs;ubiecti tran&longs;eat ad &longs;ecundam,<emph.end type="italics"/> patet; quia cum impetus &longs;it ac&shy;<lb/>cidens per Th. 8. de &longs;ubiecto in &longs;ubiectum tran&longs;ire non pote&longs;t per deff. </s>
					<s id="N14501"><lb/>accidentis; de qua in Metaphy&longs;ic&acirc;; </s>
					<s id="N14505"><!-- NEW -->nec e&longs;t quod aliqui dicant &longs;e <expan abbr="n&otilde;">non</expan> po&longs;&longs;e <lb/>concipere, quomodo id fiat &longs;ine motu locali; </s>
					<s id="N1450F"><!-- NEW -->cum ip&longs;is etiam oculis <lb/>qua&longs;i cernatur; </s>
					<s id="N14515"><!-- NEW -->cum enim percutis corpus oblongum AE, &amp; cadit ictus <lb/>in extremitatem A, corpus ip&longs;um totum &longs;imul moues; igitur pars impe&shy;<lb/>tus, qu&aelig; recipitur in A, non migrat in E, &longs;ed h&aelig;c producitur in A, &amp; <lb/>alia in B, alia in C, atque ita deinceps. </s>
				</p>
				<p id="N1451F" type="main">
					<s id="N14521"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1452D" type="main">
					<s id="N1452F">Ob&longs;eruabis ex hac propagatione impetus per analogiam rect&egrave; om&shy;<lb/>nin&ograve; explicari propagationem luminis, &amp; aliarum qualitatum, de qui&shy;<lb/>bus &longs;uo loco. </s>
				</p>
				<p id="N14536" type="main">
					<s id="N14538"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 92.<emph.end type="center"/></s>
				</p>
				<p id="N14544" type="main">
					<s id="N14546"><!-- NEW --><emph type="italics"/>In propagatione impetus prima pars<emph.end type="italics"/> A v. <!-- REMOVE S-->g. <emph type="italics"/>non producit partem<emph.end type="italics"/> B, <emph type="italics"/>&amp; <lb/>h&aelig;c<emph.end type="italics"/> C; </s>
					<s id="N1455F"><!-- NEW --><emph type="italics"/>h&aelig;c ver&ograve;<emph.end type="italics"/> D, <emph type="italics"/>atque ita deinceps<emph.end type="italics"/>; Probatur. <!-- KEEP S--></s>
					<s id="N1456F"><!-- NEW -->Prim&ograve;, quia &longs;i hoc e&longs;&longs;et, <lb/>omne corpus po&longs;&longs;et moueri &agrave; qualibet potentia; nam mod&ograve; po&longs;&longs;et pro&shy;<lb/>duci vnum punctum impetus, hoc etiam aliud produceret, &amp; hoc aliud, <lb/>atque ita deinceps. </s>
					<s id="N14579">Secund&ograve;, Minimum granum &longs;uperpo&longs;itum rupi, to&shy;<lb/>tam ip&longs;am rupem mouere po&longs;&longs;et. </s>
					<s id="N1457E"><!-- NEW -->Tertio, Quia vel in omnibus, vel in <lb/>nulla parte impetus producitur per Th.33. Quart&ograve;, quia impetus mobi&shy;<lb/>lis projecti intenderetur; nam impetus vnius partis impetum alterius <lb/>intenderet. </s>
					<s id="N14588"><!-- NEW -->Quint&ograve;, quia impetus partis B, t&agrave;m ageret in A, trahendo, <lb/>qu&agrave;m in C pellendo; cum impetus vtroque modo propagetur. </s>
					<s id="N1458E"><!-- NEW -->Sext&ograve;, &longs;i <lb/>applicaretur potentia in C, non video, cur impetus partis C, ageret po&shy;<lb/>tius vers&ugrave;s E, qu&agrave;m vers&ugrave;s A? alioquin eadem pars impetus plures pro&shy;<lb/>ducere po&longs;&longs;et; igitur impetus potenti&aelig; motricis &longs;ufficiens erit cau&longs;a ad <lb/>producendum totum alium. </s>
					<s id="N1459A"><!-- NEW -->Septim&ograve;, tractionis impetus explicari non <lb/>pote&longs;t, &longs;i impetus vnius partis producat in alia impetum; alioquin dare&shy;<lb/>tur mutua actio infinities repetita, vt con&longs;ideranti patebit. </s>
					<s id="N145A2"><!-- NEW -->Octau&ograve;, &longs;i <lb/>impetus vnius partis producit in alia; </s>
					<s id="N145A8"><!-- NEW -->&longs;int duo globi contigui; igitur il&shy;<lb/>le, qui impellit alium, reflecti po&longs;&longs;et, quod nunquam accidit quando <lb/>&longs;unt contigui. </s>
				</p>
				<p id="N145B0" type="main">
					<s id="N145B2"><!-- NEW -->Ob&longs;eruabis illud quidem verum e&longs;&longs;e in motu recto, &longs;ecus in circulari; </s>
					<s id="N145B6"><!-- NEW --><lb/>nam cum cylindrus circa alteram extremitatem vibratus deor&longs;um cadit; <lb/>partes, qu&aelig; propi&ugrave;s ad extremitatem immobilem accedunt iuuant mo&shy;<lb/>tum aliarum, qu&aelig; longi&ugrave;s ab eadem recedunt. </s>
				</p>
				<pb pagenum="52" xlink:href="026/01/084.jpg"/>
				<p id="N145C3" type="main">
					<s id="N145C5"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 93.<emph.end type="center"/></s>
				</p>
				<p id="N145D1" type="main">
					<s id="N145D3"><emph type="italics"/>Impetus propagatur eodem in&longs;tanti, id e&longs;t, &longs;ine temporis &longs;ucce&longs;&longs;ione.<emph.end type="italics"/></s>
					<s id="N145DA"> Proba&shy;<lb/>tur; </s>
					<s id="N145DF"><!-- NEW -->&longs;it enim applicata potentia in A, dico &longs;imul produci impetum in <lb/>BCDE; </s>
					<s id="N145E5"><!-- NEW -->quia &longs;i primo in&longs;tanti produceretur in A, &amp; &longs;ecundo in B, vel <lb/>A moueretur ante B, vel impetus in A e&longs;&longs;et fru&longs;tr&agrave;; </s>
					<s id="N145EB"><!-- NEW -->vtrumque e&longs;t ab&longs;ur&shy;<lb/>dum; nam totum AE, &longs;imul mouetur. </s>
				</p>
				<p id="N145F1" type="main">
					<s id="N145F3"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 94.<emph.end type="center"/></s>
				</p>
				<p id="N145FF" type="main">
					<s id="N14601"><emph type="italics"/>Tribus tant&ugrave;m modis propagari pote&longs;t impetus ratione inten&longs;ionis.<emph.end type="italics"/></s>
					<s id="N14608"><!-- NEW --> Prim&ograve; <lb/>&longs;i &aelig;qualiter omnibus partibus &longs;ubjecti di&longs;tribuatur; id e&longs;t vniformiter. </s>
					<s id="N1460E"><lb/>Secund&ograve;, &longs;i pl&ugrave;s partibus propioribus, &amp; min&ugrave;s remotioribus. </s>
					<s id="N14612"><!-- NEW -->Terti&ograve;, &egrave; <lb/>contra, &longs;i pl&ugrave;s remotioribus, &amp; min&ugrave;s propioribus; </s>
					<s id="N14618"><!-- NEW -->tribus etiam ratione <lb/>perfectionis eo modo, quo diximus de inten&longs;ione; </s>
					<s id="N1461E"><!-- NEW -->at ver&ograve; nouem mo&shy;<lb/>dis propagari pote&longs;t ratione vtriu&longs;que; patet ex regula combinationum; </s>
					<s id="N14624"><!-- NEW --><lb/>&longs;i enim 3. ducantur in 3. habebis 9. Iam &longs;upere&longs;t, vt videamus, an reue&shy;<lb/>r&agrave; omnibus i&longs;tis modis impetus re ip&longs;a propagetur; </s>
					<s id="N1462B"><!-- NEW -->quod lic&egrave;t difficile <lb/>&longs;it, &amp; vix hactenus explicatum: Audeo tamen polliceri meum &longs;uper hac <lb/>re conatum non pror&longs;us inutilem fore. </s>
				</p>
				<p id="N14633" type="main">
					<s id="N14635"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 95.<emph.end type="center"/></s>
				</p>
				<p id="N14641" type="main">
					<s id="N14643"><!-- NEW --><emph type="italics"/>Impetus propagatur vniformiter in mobili, cuius omnes partes mouentur <lb/>&aelig;quali motu<emph.end type="italics"/>; </s>
					<s id="N1464E"><!-- NEW -->probatur, quia impetus non cogno&longs;citur ni&longs;i per motum; <lb/>igitur vbi e&longs;t &aelig;qualis motus, debet e&longs;&longs;e &aelig;qualis impetus in omnibus par&shy;<lb/>tibus, id e&longs;t &aelig;qualis graduum heterogeneorum collectio, in quo non <lb/>e&longs;t difficultas. </s>
				</p>
				<p id="N14658" type="main">
					<s id="N1465A"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N14666" type="main">
					<s id="N14668"><!-- NEW -->Ob&longs;eruabis illud mobile moueri motu &aelig;quali &longs;ecundum omnes &longs;ui <lb/>partes, quod mouetur motu recto; quippe fieri non pote&longs;t, quin omnes <lb/>partes, qu&aelig; mouentur motu recto &longs;implici, motu etiam &aelig;quali mouean&shy;<lb/>tur. </s>
				</p>
				<p id="N14672" type="main">
					<s id="N14674"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 96.<emph.end type="center"/></s>
				</p>
				<p id="N14680" type="main">
					<s id="N14682"><!-- NEW --><emph type="italics"/>Cum duo corpora &longs;e&longs;e mutu&ograve; tangunt, impetus in vtroque propagatur<emph.end type="italics"/> &longs;int <lb/>v. <!-- REMOVE S-->g. <!-- REMOVE S-->globi A &amp; B, &aelig;quales &longs;ibi inuicem contigui in C, &longs;it applicata po&shy;<lb/>tentia in D, non mod&ograve; producet impetum in globo A, &longs;ed etiam in B: </s>
					<s id="N14693"><!-- NEW --><lb/>probatur prim&ograve;, quia &longs;e habent per modum vnius, vt patet ex re&longs;i&longs;ten&shy;<lb/>tia, nec enim A moueri pote&longs;t &longs;ine B per lineam DE, quod cert&egrave; cla&shy;<lb/>ri&longs;&longs;imum e&longs;t; probatur &longs;ecund&ograve; quia &longs;i A produceret impetum in B, duo <lb/>globi, vel 3. vel 5. vel infiniti tant&ugrave;m re&longs;i&longs;terent, quant&ugrave;m vnicus glo&shy;<lb/>bus, quod fal&longs;um &amp; ab&longs;urdum e&longs;t. </s>
					<s id="N146A0"><!-- NEW -->Terti&ograve;, Ratio &agrave; priori e&longs;t; </s>
					<s id="N146A4"><!-- NEW -->quia ideo <lb/>producitur, &amp; propagatur impetus in toto A; </s>
					<s id="N146AA"><!-- NEW -->quia vna pars non pote&longs;t <lb/>moueri &longs;ine alia per Th. 33. &longs;ed non pote&longs;t A moueri ni&longs;i moueatur  B; <lb/>igitur in vtroque &longs;imul, &amp; &aelig;qualiter propagatur impetus. </s>
				</p>
				<p id="N146B2" type="main">
					<s id="N146B4"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N146C1" type="main">
					<s id="N146C3">Hinc ratio manife&longs;ta cur maior &longs;it re&longs;i&longs;tentia duorum qu&agrave;m vnius. </s>
				</p>
				<pb pagenum="53" xlink:href="026/01/085.jpg"/>
				<p id="N146CA" type="main">
					<s id="N146CC"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N146D9" type="main">
					<s id="N146DB"><!-- NEW -->Hinc eadem vis requiritur ad &longs;u&longs;tinenda duo pondera; &longs;iue vtrum&shy;<lb/>que &longs;eor&longs;im humeris incubet, &longs;iue alterum alteri &longs;uperponatur. </s>
				</p>
				<p id="N146E1" type="main">
					<s id="N146E3"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N146F0" type="main">
					<s id="N146F2">Hinc percu&longs;&longs;io vel ictus globi B, cui alter A &agrave; tergo immediat&egrave; in&shy;<lb/>&longs;i&longs;tit maior e&longs;t. </s>
				</p>
				<p id="N146F7" type="main">
					<s id="N146F9"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N14706" type="main">
					<s id="N14708">Hinc pondus alteri &longs;uperpo&longs;itum actione communi cum alio graui&shy;<lb/>tat in &longs;uppo&longs;itam manum. </s>
					<s id="N1470D">v. <!-- REMOVE S-->g. <!-- REMOVE S--><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 5.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1471E" type="main">
					<s id="N14720">Hinc potentia applicata in D, min&ugrave;s impetus &longs;ingulis imprimit. </s>
				</p>
				<p id="N14723" type="main">
					<s id="N14725"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 6.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N14732" type="main">
					<s id="N14734"><!-- NEW -->Hinc demum lic&egrave;t impetus ratione inten&longs;ionis &longs;it &aelig;qualis in vtroque <lb/>globo; </s>
					<s id="N1473A"><!-- NEW -->attamen, &longs;i accipiatur numerus partium vtriu&longs;que impetus, im&shy;<lb/>petus &longs;unt vt globi v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;i B e&longs;t &aelig;qualis A impetus productus in B e&longs;t <lb/>&aelig;qualis producto in A, &longs;i B &longs;it &longs;ubduplus, vel &longs;ubtriplus, impetus e&longs;t <lb/>&longs;ubtriplus, vel &longs;ubduplus; quorum omnium rationes patent ex Th.96. </s>
				</p>
				<p id="N14748" type="main">
					<s id="N1474A"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 7.<emph.end type="center"/></s>
				</p>
				<p id="N14756" type="main">
					<s id="N14758">Hinc etiam colligi pote&longs;t manife&longs;tum di&longs;crimen, quod intercedit inter <lb/>propagationem impetus, &amp; aliarum qualitatum, qu&aelig; &lpar;vt vulg&ograve; dicitur&rpar; <lb/>vniformiter difformiter propagantur, id e&longs;t, &aelig;qualiter in &aelig;quali <lb/>di&longs;tantia, &amp; in&aelig;qualiter in&aelig;quali. </s>
				</p>
				<p id="N14761" type="main">
					<s id="N14763"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 8.<emph.end type="center"/></s>
				</p>
				<p id="N1476F" type="main">
					<s id="N14771"><!-- NEW -->Hinc demum colligi pote&longs;t non mod&ograve; impetum produci in globo B <lb/>v. <!-- REMOVE S-->g. <!-- REMOVE S-->ver&ugrave;m etiam in a&euml;re ambiente, cui &longs;cilicet globus contiguus e&longs;t; </s>
					<s id="N1477B"><!-- NEW --><lb/>qui reuera a&euml;r facil&egrave; amouetur; </s>
					<s id="N14780"><!-- NEW -->t&ugrave;m quia propter raritatem pauci&longs;&longs;im&aelig; <lb/>partes mouend&aelig; &longs;unt; </s>
					<s id="N14786"><!-- NEW -->t&ugrave;m quia facil&egrave; diuiduntur, de quibus alias; </s>
					<s id="N1478A"><!-- NEW -->t&ugrave;m <lb/>quia, ne detur va&ccedil;uum, &longs;patium &agrave; tergo relictum occupare debet, quod <lb/>reuer&agrave; pr&aelig;&longs;tat breui peracto circuitu, vt videre e&longs;t in aqua; </s>
					<s id="N14792"><!-- NEW -->nec enim <lb/>totus a&euml;r agitari debet; </s>
					<s id="N14798"><!-- NEW -->quis enim id con&longs;equi po&longs;&longs;et; tum denique, quia <lb/>a&euml;r non grauitat in a&euml;re, igitur cum non re&longs;i&longs;tat vlla grauitatio, facil&egrave; <lb/>moueri pote&longs;t. </s>
				</p>
				<p id="N147A0" type="main">
					<s id="N147A2"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 97.<emph.end type="center"/></s>
				</p>
				<p id="N147AE" type="main">
					<s id="N147B0"><!-- NEW --><emph type="italics"/>Cum applicatur potentia centro motus circularis, ita propagatur impetus, vt <lb/>plures partes impetus continu&ograve; producantur ver&longs;us <expan abbr="circumferenti&atilde;">circumferentiam</expan><emph.end type="italics"/>; &longs;it enim <lb/>cylindrus CA, fig. </s>
					<s id="N147C0"><!-- NEW -->Th. 73. &longs;it centrum motus C; </s>
					<s id="N147C4"><!-- NEW -->haud dubi&egrave; plures <lb/>partes impetus producuntur in B, qu&agrave;m in C, &amp; plures in A, quam in B; </s>
					<s id="N147CA"><!-- NEW --><lb/>quia, cum pars B moueatur veloci&ugrave;s, qu&agrave;m C, &amp; A qu&agrave;m B; cert&egrave;, vbi e&longs;t <lb/>maior motus, vel effectus, ibi debet e&longs;&longs;e maior impetus, vel cau&longs;a per <lb/>Ax. 13. n. </s>
					<s id="N147D3"><!-- NEW -->4. quod autem &longs;it maior motus, con&longs;tat ex maioribus &longs;patiis, <lb/>vel arcubus &aelig;quali tempore confectis; quod ver&ograve; &longs;it impetus inten&longs;ior <pb pagenum="54" xlink:href="026/01/086.jpg"/>vers&ugrave;s circumferentiam, non perfectior, patet per Th. 8. </s>
				</p>
				<p id="N147DE" type="main">
					<s id="N147E0"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 98.<emph.end type="center"/></s>
				</p>
				<p id="N147EC" type="main">
					<s id="N147EE"><!-- NEW --><emph type="italics"/>Inten&longs;io impetus propagati iuxta hunc modum &longs;e habet, vt distantia &agrave; cen&shy;<lb/>tro motus<emph.end type="italics"/>; </s>
					<s id="N147F9"><!-- NEW -->&longs;int enim punctum B, &amp; punctum A: </s>
					<s id="N147FD"><!-- NEW -->ita &longs;e habet inten&longs;io <lb/>impetus puncti A ad inten&longs;ionem impetus puncti B, vt di&longs;tantia AC <lb/>ad BC. Probatur, quia cum impetus &longs;int vt motus, motus vt &longs;patia, &longs;patia <lb/>ver&ograve; &longs;int arcus AE. BD; </s>
					<s id="N14807"><!-- NEW -->arcus &longs;unt, vt &longs;emidiametri AC, BC; igitur vt <lb/>di&longs;tanti&aelig; qu&ograve;d erat demon&longs;trandum. </s>
				</p>
				<p id="N1480D" type="main">
					<s id="N1480F"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1481C" type="main">
					<s id="N1481E"><!-- NEW -->Hinc &longs;i di&longs;tantia CA e&longs;t dupla di&longs;tanti&aelig; CB, impetus in A e&longs;t du&shy;<lb/>plus impetus in B: at ver&ograve; impetus &longs;egmenti e&longs;t ad impetum alterius, <lb/>vt diximus in Th. 73. </s>
				</p>
				<p id="N14826" type="main">
					<s id="N14828"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N14835" type="main">
					<s id="N14837"><!-- NEW -->Hinc h&aelig;c propagatio fit iuxta progre&longs;&longs;ionem arithmeticam id e&longs;t, &longs;i <lb/>in prim&acirc; parte ver&longs;us centrum producitur impetus vt 1. in &longs;ecunda pro&shy;<lb/>ducitur vt duo, in terti&acirc; vt tria, atque ita deinceps; quia proportio <lb/>arithmetica e&longs;t laterum, &longs;eu linearum. </s>
				</p>
				<p id="N14841" type="main">
					<s id="N14843"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N14850" type="main">
					<s id="N14852">Hinc h&aelig;c propagatio e&longs;t omnin&ograve; inuer&longs;a illius, qu&aelig; aliis qualitatibus <lb/>competit, vt patet. </s>
				</p>
				<p id="N14857" type="main">
					<s id="N14859"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N14866" type="main">
					<s id="N14868">Hinc etiam manife&longs;ta ratio &longs;equitur illius experimenti, quod propo&shy;<lb/>&longs;uimus corol. </s>
					<s id="N1486D">2. Th. 80. </s>
				</p>
				<p id="N14870" type="main">
					<s id="N14872"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 5.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1487F" type="main">
					<s id="N14881"><!-- NEW -->Hinc &longs;i tant&ugrave;m habeatur ratio impetus, facil&egrave; pote&longs;t determinari in <lb/>qua proportione cylindrus facili&ugrave;s moueatur motu recto, qu&agrave;m motu <lb/>circulari; </s>
					<s id="N14889"><!-- NEW -->po&longs;ito &longs;cilicet centro motus in altera extremitate, cui applica&shy;<lb/>tur potentia; </s>
					<s id="N1488F"><!-- NEW -->quippe impetus propagatus in motu circulari e&longs;t &longs;umma <lb/>terminorum; </s>
					<s id="N14895"><!-- NEW -->propagatus ver&ograve; in motu recto e&longs;t vltimus terminorum, <lb/>v.g. <!-- REMOVE S-->&longs;int &longs;ex puncta &longs;ubiecti; </s>
					<s id="N1489D"><!-- NEW -->in quolibet producatur impetus vt vnum; </s>
					<s id="N148A1"><!-- NEW --><lb/>haud dubi&egrave; erit motus rectus; </s>
					<s id="N148A6"><!-- NEW -->vt ver&ograve; &longs;it motus circularis in primo <lb/>puncto; </s>
					<s id="N148AC"><!-- NEW -->producatur vt 1. in &longs;ecundo vt 2. in tertio, vt 3. atque ita dein&shy;<lb/>ceps; &longs;umma erit 21. cum tamen in motu recto e&longs;&longs;ent tant&ugrave;m 6. igitur <lb/>vt &longs;e habent 21. ad 6. ita &longs;e habet facilitas motus recti ad facilitatem <lb/>motus circularis. </s>
				</p>
				<p id="N148B6" type="main">
					<s id="N148B8"><!-- NEW -->Dixi, &longs;i tant&ugrave;m habeatur ratio impetus; </s>
					<s id="N148BC"><!-- NEW -->quia &longs;i addatur ratio graui&shy;<lb/>tationis, &longs;eu momenti; haud dubi&egrave; maior erit adhuc difficultas, de <lb/>quo infr&agrave; in Schol. <!-- REMOVE S--><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 6.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N148D0" type="main">
					<s id="N148D2"><!-- NEW -->Hinc qu&ograve; longior e&longs;t cylindrus, v. <!-- REMOVE S-->g. <!-- REMOVE S-->cre&longs;cit proportio maioris illius <lb/>facilitatis, vt patet inductione; </s>
					<s id="N148DC"><!-- NEW -->nam &longs;i &longs;int tant&ugrave;m 2. puncta, proportio <lb/>erit 3. ad 2.; </s>
					<s id="N148E2"><!-- NEW -->&longs;it tria 6. ad 3.; </s>
					<s id="N148E6"><!-- NEW -->&longs;i 4. 10. ad 4. &longs;i 5. 15. ad 5.; </s>
					<s id="N148EA"><!-- NEW -->&longs;i 6. 21. ad 6. <pb pagenum="55" xlink:href="026/01/087.jpg"/>&longs;i 7. 28. ad 7; </s>
					<s id="N148F3"><!-- NEW -->&longs;i 8. 36. ad 8; </s>
					<s id="N148F7"><!-- NEW -->&longs;i 9. 45. ad 9; atque ita deinceps; ex quibus prim&ograve; <lb/>vides cre&longs;cere &longs;emper proportionem. </s>
					<s id="N148FD"><!-- NEW -->Secund&ograve; inter duplam, &amp; triplam <lb/>rationem, &longs;cilicet 6. ad 3. &amp; 15. ad 5. intercedere 2 1/2; </s>
					<s id="N14903"><!-- NEW -->inter triplam &amp; <lb/>quadruplam intercedere 3. 1/2; </s>
					<s id="N14909"><!-- NEW -->inter quadruplam &amp; quintuplam inter&shy;<lb/>cedere 4 1/2; atque ita deinceps. </s>
				</p>
				<p id="N1490F" type="main">
					<s id="N14911"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 7.<emph.end type="center"/></s>
				</p>
				<p id="N1491D" type="main">
					<s id="N1491F"><!-- NEW -->Colligo denique po&longs;&longs;e in motu recto cum maiore ni&longs;u produci inten&shy;<lb/>&longs;iorem impetum in data ratione; </s>
					<s id="N14925"><!-- NEW -->&longs;it enim cylindrus AB, qui moueatur <lb/>circa centrum A, percurr&aacute;tque B, arcum BD; </s>
					<s id="N1492B"><!-- NEW -->qui accipiatur vt recta, <lb/>qu&aelig; &agrave; minimis arcubus &longs;en&longs;u di&longs;tingui non pote&longs;t; </s>
					<s id="N14931"><!-- NEW -->haud dubi&egrave; &longs;i eo <lb/>tempore, vel &aelig;quali, quo AB tran&longs;it in AD; </s>
					<s id="N14937"><!-- NEW -->eadem AB, vel &aelig;qualis <lb/>motu recto tran&longs;eat in FD, Dico impetum huius motus e&longs;&longs;e dupl&ograve; in&shy;<lb/>ten&longs;iorem impetu illius; </s>
					<s id="N1493F"><!-- NEW -->quia impetus &longs;unt vt motus; </s>
					<s id="N14943"><!-- NEW -->motus ver&ograve; vt <lb/>&longs;patia, qu&aelig; percurruntur &aelig;qualibus temporibus; </s>
					<s id="N14949"><!-- NEW -->&longs;ed &longs;patium rectanguli <lb/>AD, e&longs;t duplum trianguli ADB; </s>
					<s id="N1494F"><!-- NEW -->igitur &amp; motus; </s>
					<s id="N14953"><!-- NEW -->igitur &amp; impetus; </s>
					<s id="N14957"><!-- NEW -->&longs;i <lb/>ver&ograve; AB tran&longs;eat in EL, ita vt AF, &longs;it dupla AE; </s>
					<s id="N1495D"><!-- NEW -->impetus erunt <lb/>&aelig;quales; quia rectangulum AC, e&longs;t &aelig;quale triangulo ABD. </s>
				</p>
				<p id="N14963" type="main">
					<s id="N14965"><!-- NEW -->Dixi arcum BD, accipi vt lineam rectam; </s>
					<s id="N14969"><!-- NEW -->Si enim accipiatur vt ar&shy;<lb/>cus; haud dubi&egrave; motus cylindri AB, dum transfertur in FD, e&longs;t ad mo&shy;<lb/>tum eiu&longs;dem AB, dum transfertur in AD, vt rectangulum AD, ad &longs;e&shy;<lb/>ctorem, cuius arcus &longs;it &aelig;qualis rect&aelig; BD, &amp; radius ip&longs;i AB. <!-- KEEP S--></s>
				</p>
				<p id="N14974" type="main">
					<s id="N14976"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N14982" type="main">
					<s id="N14984">Ob&longs;eruabis prim&ograve;, id quod &longs;upr&agrave; dictum e&longs;t ita e&longs;&longs;e intelligendum, <lb/>vt momentum grauitationis nullo modo con&longs;ideretur, &amp; pr&aelig;dictus <lb/>cylindrus cen&longs;eatur poti&ugrave;s moueri in plano horizontali, &agrave; quo &longs;u&longs;tinea&shy;<lb/>tur, qu&agrave;m in circulo verticali, in quo libera &longs;it eius libratio, &longs;eu gra&shy;<lb/>uitatio. </s>
				</p>
				<p id="N1498F" type="main">
					<s id="N14991"><!-- NEW -->Secund&ograve;, non po&longs;&longs;e &longs;u&longs;tineri cylindrum horizonti parallelum, ni&longs;i <lb/>aliqua eius portio &longs;eu manu, &longs;eu forcipe, vel alio quouis modo accipia&shy;<lb/>tur, v.g. <!-- REMOVE S-->&longs;it cylindrus AG horizonti parallelus; vt in hoc &longs;itu reti&shy;<lb/>neatur, debet aliqua eius portio put&agrave; AB, manu teneri, alioqui ne &agrave; po&shy;<lb/>tenti&acirc; quidem infinita &longs;u&longs;tineri po&longs;&longs;et. </s>
				</p>
				<p id="N1499F" type="main">
					<s id="N149A1"><!-- NEW -->Terti&ograve;, &longs;i &longs;upponatur fulcitus in B; </s>
					<s id="N149A5"><!-- NEW -->vt retineatur in &aelig;quilibrio, debet <lb/>addi momentum in A; &longs;eu debet retineri ab ip&longs;a potenti&acirc; applicata <lb/>in A. <!-- KEEP S--></s>
				</p>
				<p id="N149AE" type="main">
					<s id="N149B0">Quart&ograve;, pondus in G &longs;e habet ad idem pondus in A, &longs;tatuto centro in <lb/>B, vt &longs;egmentum GB, ad BA, id e&longs;t, vt 5. ad 1. <!-- KEEP S--></s>
				</p>
				<p id="N149B6" type="main">
					<s id="N149B8"><!-- NEW -->Quint&ograve;, &longs;i proprio pondere frangeretur BG, haud dubi&egrave; in B frange&shy;<lb/>retur; </s>
					<s id="N149BE"><!-- NEW -->e&longs;t autem momentum ponderis BG, vt &longs;ubduplum eiu&longs;dem BG <lb/>po&longs;itum in G, vt demon&longs;trat Galileus prop.1.de re&longs;i&longs;tentia corp.&longs;it enim <lb/>BG, duarum librarum, &longs;itque BG, diui&longs;a bifariam in H; </s>
					<s id="N149C6"><!-- NEW -->haud dubi&egrave; <lb/>pondus in H, facit momentum &longs;ubduplum eiu&longs;dem in G, vt patet; </s>
					<s id="N149CC"><!-- NEW -->&longs;unt <lb/>enim vt di&longs;tanti&aelig;; </s>
					<s id="N149D2"><!-- NEW -->igitur cum &longs;egmentum HG tant&ugrave;m addat momenti <lb/>&longs;upra H, quant&ugrave;m detrahit HB; </s>
					<s id="N149D8"><!-- NEW -->cert&egrave; momentum totius ponderis BG, <pb pagenum="56" xlink:href="026/01/088.jpg"/>e&longs;t tant&ugrave;m &longs;ubduplum eiu&longs;dem po&longs;iti in G; </s>
					<s id="N149E1"><!-- NEW -->itaque &longs;it BG, 10. librarum, <lb/>&aelig;quiualet 5. libris &longs;tatutis in G, &amp; AB, vni libr&aelig; po&longs;it&aelig; in A; </s>
					<s id="N149E7"><!-- NEW -->&longs;ed h&aelig;c <lb/>libra in A, habet tant&ugrave;m &longs;ubquintuplum momentum eiu&longs;dem in G, igi&shy;<lb/>tur 5. libr&aelig; in A, &aelig;quiualent vni in G; </s>
					<s id="N149EF"><!-- NEW -->igitur vt &longs;tatuatur &aelig;quilibrium, <lb/>debent e&longs;&longs;e 24. libr&aelig; in A, &longs;eu vires &aelig;quiualentes; </s>
					<s id="N149F5"><!-- NEW -->quibus adde pondus <lb/>ab&longs;olutum 12. librarum; erunt 36. igitur re&longs;i&longs;tentia ad motum circula&shy;<lb/>rem verticalem ex triplici capite oritur. </s>
					<s id="N149FD">Prim&ograve; ex ip&longs;o pondere ab&longs;olut&egrave; <lb/>&longs;umpto, qu&aelig; communis e&longs;t motui propagationis. </s>
					<s id="N14A02"><!-- NEW -->Secund&ograve;, ex momento <lb/>eiu&longs;dem ponderis; </s>
					<s id="N14A08"><!-- NEW -->Terti&ograve;, ex tali genere propagationis, de quo &longs;upr&agrave;; <lb/>qu&aelig; omnia &longs;unt apprim&egrave; tenenda, ne quis error &longs;ubrepat. </s>
				</p>
				<p id="N14A0E" type="main">
					<s id="N14A10"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 99.<emph.end type="center"/></s>
				</p>
				<p id="N14A1C" type="main">
					<s id="N14A1E"><!-- NEW --><emph type="italics"/>Cum applicatur potentia circumferenti&aelig; motus circularis; </s>
					<s id="N14A24"><!-- NEW -->ita propagatur <lb/>impetus, vt plures partes ver&longs;us centrum motus producantur in pondere, quod <lb/>attollitur<emph.end type="italics"/>; </s>
					<s id="N14A2F"><!-- NEW -->&longs;it enim idem cylindrus CA; </s>
					<s id="N14A33"><!-- NEW -->&longs;itque applicata potentia in <lb/>A, dico ver&longs;us C, plures partes produci in pondere, Probatur, quia attol&shy;<lb/>litur pondus in C, quod moueri non pote&longs;tin A, oper&acirc; vectis AC, vt con&shy;<lb/>&longs;tat ex certa hypothe&longs;i; igitur plures partes impetus producuntur per <lb/>rationem 6. &amp; 7. Th.77, </s>
				</p>
				<p id="N14A3F" type="main">
					<s id="N14A41"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N14A4D" type="main">
					<s id="N14A4F"><!-- NEW -->Scio quidem hoc ip&longs;um &agrave; nemine hactenus, quod &longs;ciam, explicatum <lb/>e&longs;&longs;e; </s>
					<s id="N14A55"><!-- NEW -->atque fore vt &agrave; multis tanquam nouum, &amp; in&longs;olens min&ugrave;s fort&egrave; <lb/>probetur: </s>
					<s id="N14A5B"><!-- NEW -->quamquam illa hypothe&longs;is hoc ip&longs;um euincit, vulgaris cert&egrave;, <lb/>&amp; nemini qua&longs;i non nota; </s>
					<s id="N14A61"><!-- NEW -->qua nemp&egrave; dicimus in omnibus partibus mo&shy;<lb/>bilis, quod actu mouetur, impetum produci; </s>
					<s id="N14A67"><!-- NEW -->&amp; &longs;i quando accidat corpo&shy;<lb/>ris ingentem molem ab applicata potentia non po&longs;&longs;e moueri, illud e&longs;&longs;e <lb/>tant&ugrave;m, qu&ograve;d non po&longs;&longs;int produci tot partes impetus, quot &longs;unt nece&longs;&longs;a&shy;<lb/>ri&aelig;, vt omnibus partibus &longs;ubjecti di&longs;tribuantur; igitur ex hac hypothe&shy;<lb/>&longs;i, qu&aelig; ex manife&longs;tis ducitur experimentis, nece&longs;&longs;ari&ograve; dicendum e&longs;t plu&shy;<lb/>res partes impetus vers&ugrave;s centrum vectis produci in pondere, quod at&shy;<lb/>tollitur, cuius propagationis proportionem infr&agrave; demon&longs;trabimus. </s>
				</p>
				<p id="N14A77" type="main">
					<s id="N14A79"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 100.<emph.end type="center"/></s>
				</p>
				<p id="N14A85" type="main">
					<s id="N14A87"><emph type="italics"/>Impetus, qui producitur ver&longs;us centrum vectis in pondere, lic&egrave;t cre&longs;cat nu&shy;<lb/>mero, decre&longs;cit tamen in perfectione.<emph.end type="italics"/></s>
					<s id="N14A90"> Probatur per Th.81. ex motu imper&shy;<lb/>fectiore, cui re&longs;pondet impetus imperfectior per Ax. 17.num.4. non ratio&shy;<lb/>ne numeri, qui maior e&longs;t per Th.99. igitur ratione entitatis, &longs;eu perfe&shy;<lb/>ctionis entitatiu&aelig;. </s>
				</p>
				<p id="N14A99" type="main">
					<s id="N14A9B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 101.<emph.end type="center"/></s>
				</p>
				<p id="N14AA7" type="main">
					<s id="N14AA9"><!-- NEW --><emph type="italics"/>Tota collectio impetus, qu&aelig; in pondere ex dato puncto vectis producitur, e&longs;t <lb/>ad aliam collectionem alterius puncti in perfectione, vt distantia illius puncti <lb/>&agrave; centro, ad di&longs;tantiam huius<emph.end type="italics"/>: </s>
					<s id="N14AB6"><!-- NEW -->probatur, quia perfectio vnius collectionis <lb/>e&longs;t ad perfectionem alterius, vt motus ad motum; motus ver&ograve; &longs;unt vt <lb/>&longs;patia, &longs;patia vt arcus, arcus vt &longs;emediametri, h&aelig; demum, vt di&longs;tanti&aelig;. </s>
				</p>
				<pb pagenum="57" xlink:href="026/01/089.jpg"/>
				<p id="N14AC2" type="main">
					<s id="N14AC4"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 102.<emph.end type="center"/></s>
				</p>
				<p id="N14AD0" type="main">
					<s id="N14AD2"><!-- NEW --><emph type="italics"/>Impetus in ip&longs;o vecte &longs;ine pondere addito ita propagatur, vt &longs;it imperfectior <lb/>ver&longs;us centrum vectis<emph.end type="italics"/>; </s>
					<s id="N14ADD"><!-- NEW -->probatur, quia pondus ver&longs;us centrum mouetur <lb/>minore motu, vt con&longs;tat; igitur ab imperfectiore impetu; </s>
					<s id="N14AE3"><!-- NEW -->&longs;ed non e&longs;t <lb/>imperfectior tant&ugrave;m ratione numeri, id e&longs;t, pauciorum partium impe&shy;<lb/>tus; </s>
					<s id="N14AEB"><!-- NEW -->quia &longs;i hoc e&longs;&longs;et, &longs;it vectis AC, motus B, e&longs;t &longs;ubduplus motus <lb/>A; </s>
					<s id="N14AF1"><!-- NEW -->igitur &longs;i e&longs;t impetus eiu&longs;dem perfectionis entitatiu&aelig;, vt &longs;ic loquar; </s>
					<s id="N14AF5"><!-- NEW --><lb/>ita &longs;e habet numerus partium impetus in B, ad numerum partium in A, <lb/>vt motus B, ad motum A; </s>
					<s id="N14AFC"><!-- NEW -->&amp; hic vt arcus BD, ad arcum AE; </s>
					<s id="N14B00"><!-- NEW -->&amp; hic vt <lb/>BC, ad AC; </s>
					<s id="N14B06"><!-- NEW -->igitur e&longs;t &longs;ubduplus; </s>
					<s id="N14B0A"><!-- NEW -->igitur &aelig;qualis omnin&ograve; producitur <lb/>impetus ab eadem potentia in vecte AC, &longs;iue applicetur centro C, &longs;iue <lb/>circumferenti&aelig; A; </s>
					<s id="N14B12"><!-- NEW -->igitur &aelig;qu&egrave; facil&egrave;; quod e&longs;t contra experientiam; </s>
					<s id="N14B16"><!-- NEW --><lb/>probatur &longs;ecund&ograve;, quia &longs;i hoc e&longs;&longs;et, pondus idem t&agrave;m facil&egrave; attolleretur <lb/>in A, qu&agrave;m in B; quia idem impetus produceretur, quod e&longs;t contra ex&shy;<lb/>perientiam. </s>
				</p>
				<p id="N14B1F" type="main">
					<s id="N14B21"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 103.<emph.end type="center"/></s>
				</p>
				<p id="N14B2D" type="main">
					<s id="N14B2F"><emph type="italics"/>Ex hoc facil&egrave; intelligitur, cur impetus propagetur facili&ugrave;s &agrave; circumferen&shy;<lb/>tia ad centrum, qu&agrave;m &agrave; centro ad circumferentiam, &amp; cur longior vectis ab <lb/>eadem potentia moueri po&longs;&longs;it primo modo, non &longs;ecundo, quod clarum est.<emph.end type="italics"/></s>
				</p>
				<p id="N14B3A" type="main">
					<s id="N14B3C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 104.<emph.end type="center"/></s>
				</p>
				<p id="N14B48" type="main">
					<s id="N14B4A"><!-- NEW --><emph type="italics"/>Decre&longs;cit impetus ver&longs;us centrum iuxta rationem distantiarum<emph.end type="italics"/>; </s>
					<s id="N14B53"><!-- NEW -->probatur <lb/>quia decre&longs;cit iuxta rationem motuum; &amp; h&aelig;c iuxta rationem di&longs;tan&shy;<lb/>tiarum. </s>
				</p>
				<p id="N14B5B" type="main">
					<s id="N14B5D"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 105.<emph.end type="center"/></s>
				</p>
				<p id="N14B69" type="main">
					<s id="N14B6B"><!-- NEW --><emph type="italics"/>Non decre&longs;cit numerus partium impetus &agrave; circumferentia ad centrum<emph.end type="italics"/>; </s>
					<s id="N14B74"><!-- NEW --><lb/>probatur, quia cum &agrave; circumferentia ad centrum ita propagetur impe&shy;<lb/>tus, vt vnicum tant&ugrave;m punctum producatur in ip&longs;a extremitate mobilis; </s>
					<s id="N14B7B"><!-- NEW --><lb/>cert&egrave; non pote&longs;t min&ugrave;s impetus produci ver&longs;us centrum ratione nume&shy;<lb/>ri; </s>
					<s id="N14B82"><!-- NEW -->igitur non decre&longs;cit numerus; hinc producitur nece&longs;&longs;ari&ograve; imperfe&shy;<lb/>ctior ver&longs;us centrum. </s>
				</p>
				<p id="N14B88" type="main">
					<s id="N14B8A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 106.<emph.end type="center"/></s>
				</p>
				<p id="N14B96" type="main">
					<s id="N14B98"><!-- NEW --><emph type="italics"/>Non producuntur plures partes impetus in vecte ver&longs;us centrum, id est, non <lb/>&longs;unt plures in puncto vectis propi&ugrave;s ad centrum accedente, qu&agrave;m in co; quod <lb/>longi&ugrave;s distat:<emph.end type="italics"/> Probatur prim&ograve;, quia fru&longs;tr&agrave; e&longs;&longs;ent plures. </s>
					<s id="N14BA5">Secund&ograve;, cur <lb/>poti&ugrave;s in vna proportione, qu&agrave;m in alia? </s>
				</p>
				<p id="N14BAA" type="main">
					<s id="N14BAC"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 107.<emph.end type="center"/></s>
				</p>
				<p id="N14BB8" type="main">
					<s id="N14BBA"><!-- NEW --><emph type="italics"/>Ex his constat produci impetum &aelig;qualem numero in omnibus punctis vectis <lb/>a circumferentia ad centrum, cum &longs;cilicet applicatur potentia circumferenti&aelig;<emph.end type="italics"/>; </s>
					<s id="N14BC5"><!-- NEW --><lb/>probatur, quia non producitur numerus minor per Th.105. neque maior <lb/>per Th. 106. igitur &aelig;qualis; </s>
					<s id="N14BCC"><!-- NEW -->adde quod res explicari non pote&longs;t per ma&shy;<lb/>iorem, neque per minorem; ita vt &longs;cilicet pondera, qu&aelig; &agrave; data potentia <lb/>leuantur, &longs;int vt di&longs;tanti&aelig;, de quo &longs;upr&agrave;. </s>
				</p>
				<pb pagenum="58" xlink:href="026/01/090.jpg"/>
				<p id="N14BD8" type="main">
					<s id="N14BDA"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N14BE6" type="main">
					<s id="N14BE8"><!-- NEW -->Ob&longs;eruabis, quod aliquando in mentem venerat; </s>
					<s id="N14BEC"><!-- NEW -->&longs;cilicet, ver&longs;us cen&shy;<lb/>trum produci maiorem numerum in ratione di&longs;tantiarum permutando; </s>
					<s id="N14BF2"><!-- NEW --><lb/>&amp; imperfectiorem in ratione duplicata earumdem di&longs;tantiarum, etiam <lb/>permutando, v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;it idem vectis AC &longs;ectus bifariam in B; </s>
					<s id="N14BFD"><!-- NEW -->in puncto <lb/>B producitur numerus duplus producti in A; </s>
					<s id="N14C03"><!-- NEW -->at ver&ograve; perfectio impetus <lb/>in B e&longs;t ad perfectionem impetus in A, vt quadratum BC ad quadra&shy;<lb/>tum AC; </s>
					<s id="N14C0B"><!-- NEW -->vel in ratione &longs;ubquadrupla, lic&egrave;t tota collectio impetus B <lb/>&longs;it tant&ugrave;m &longs;ubdupla perfectione collectionis impetus A; </s>
					<s id="N14C11"><!-- NEW -->&longs;ed hoc profe&shy;<lb/>ct&ograve; dici non pote&longs;t; </s>
					<s id="N14C17"><!-- NEW -->nam &longs;int in A 4. partes impetus; igitur in B erunt <lb/>8. applicetur autem pondus in B. </s>
					<s id="N14C1D"><!-- NEW -->Prim&ograve; producentur in eo partes 8. <lb/>impetus perfectionis &longs;ubquadrupl&aelig;; </s>
					<s id="N14C23"><!-- NEW -->&longs;i comparentur cum partibus A, <lb/>tum producentur 16. qu&aelig; &aelig;quiualent 4 A; </s>
					<s id="N14C29"><!-- NEW -->igitur 24. at ver&ograve; in A pro&shy;<lb/>ducentur prim&ograve; 4. tum deinde 2. qu&aelig; &aelig;quiualent 8. productis in B; igitur <lb/>6. igitur pondus, quod leuari pote&longs;t in B, e&longs;t ad pondus, quod leuari pote&longs;t <lb/>in A, vt 24. ad 6.id e&longs;t, in ratione quadrupla quod omnin&ograve; fal&longs;um e&longs;t. </s>
				</p>
				<p id="N14C33" type="main">
					<s id="N14C35"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 108.<emph.end type="center"/></s>
				</p>
				<p id="N14C41" type="main">
					<s id="N14C43"><!-- NEW --><emph type="italics"/>Iam facil&egrave; explicatur ex dictis, quomodo, &amp; cuius rationis pondera attol&shy;<lb/>lantur ex diuer&longs;is punctis vectis<emph.end type="italics"/>; &longs;it enim idem vectis AC, &amp; producan&shy;<lb/>tur.v.g. </s>
					<s id="N14C50"><!-- NEW -->in &longs;ingulis punctis vectis &longs;ingula puncta impetus, &longs;ed diuer&longs;&aelig; <lb/>perfectionis; </s>
					<s id="N14C56"><!-- NEW -->haud dubi&egrave; plures partes impetus imperfecti po&longs;&longs;unt face&shy;<lb/>re impetum &aelig;qualem in perfectione alteri, qui con&longs;tat paucioribus, &longs;ed <lb/>perfectioribus; </s>
					<s id="N14C5E"><!-- NEW -->igitur cum impetus B &longs;it imperfectior dupl&ograve; qu&agrave;m im&shy;<lb/>petus in A, dupl&ograve; plures partes impetus producentur in B, qu&agrave;m in A, er&shy;<lb/>go dupl&ograve; maius pondus mouebitur; atque ita deinceps; </s>
					<s id="N14C66"><!-- NEW -->eum enim ap&shy;<lb/>ponitur pondus in B, producuntur in eo partes impetus omnes eiu&longs;dem <lb/>perfectionis; </s>
					<s id="N14C6E"><!-- NEW -->qu&aelig; &longs;cilicet re&longs;pondet B, id e&longs;t, qu&aelig; e&longs;t &longs;ubdupla perfectio&shy;<lb/>nis impetus A; </s>
					<s id="N14C74"><!-- NEW -->igitur plures partes producuntur, qu&agrave;m &longs;i e&longs;&longs;ent perfe&shy;<lb/>ctionis A; </s>
					<s id="N14C7A"><!-- NEW -->&longs;ed pauciores qu&agrave;m &longs;i e&longs;&longs;ent perfectionis O, qu&aelig; minor e&longs;t; <lb/>quippe eadem potentia, &longs;eu cau&longs;a, qu&aelig; agit quantum pote&longs;t &lpar;quod &longs;up&shy;<lb/>pono mod&ograve;&rpar; producit &aelig;qualem effectum in perfectione, per Ax. 13. n. </s>
					<s id="N14C82"><!-- NEW --><lb/>4. &longs;ed &aelig;qualis perfectio pote&longs;t con&longs;tare pluribus, vel paucioribus parti&shy;<lb/>bus perfectionis, nam 4. pattes perfectionis vt 4. faciunt &aelig;qualem effe&shy;<lb/>ctum alteri qui con&longs;tat 8. partibus perfectionis vt 2. quod certum e&longs;t; &longs;ed <lb/>de his plura ali&agrave;s. </s>
				</p>
				<p id="N14C8D" type="main">
					<s id="N14C8F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 109.<emph.end type="center"/></s>
				</p>
				<p id="N14C9B" type="main">
					<s id="N14C9D"><!-- NEW --><emph type="italics"/>Perfectio decre&longs;cit ver&longs;us centrum iuxta diuer&longs;am rationem longitudinum <lb/>vectis, &longs;eu distantiarum.<emph.end type="italics"/> v.g.&longs;it idem vectis AC, ita decre&longs;cit ab A ver&longs;us <lb/>centrum C; </s>
					<s id="N14CAA"><!-- NEW -->vt impetus puncti B &longs;it &longs;ubduplus in perfectione, puncti R <lb/>&longs;ubtriplus: </s>
					<s id="N14CB0"><!-- NEW -->iam ver&ograve; &longs;it vectis &longs;ubduplus prioris BC, &longs;ectus bifariam in <lb/>Z; </s>
					<s id="N14CB6"><!-- NEW -->&longs;i impetus productus in B, qu&etail; e&longs;t extremitas minoris vectis B &longs;it &aelig;qua&shy;<lb/>lis perfectionis cum impetu producto in A &lpar;&amp; reuera &longs;unt &aelig;quales&rpar; &longs;i <lb/>&aelig;quali tempore percurrant arcus &aelig;quales, &longs;cilicet AV, &amp; BD&rpar; cert&egrave; im-<pb pagenum="59" xlink:href="026/01/091.jpg"/>petus productus in Z e&longs;t &aelig;qualis producto in B, cum B pertinet ad ma&shy;<lb/>iorem vectem; </s>
					<s id="N14CC5"><!-- NEW -->quia vt AC totus maior vectis e&longs;t ad BC ita BC ad <lb/>ZC: igitur decre&longs;cit perfectio vers&ugrave;s centrum iuxta rationem longi&shy;<lb/>tudinum. </s>
				</p>
				<p id="N14CCD" type="main">
					<s id="N14CCF"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 110.<emph.end type="center"/></s>
				</p>
				<p id="N14CDB" type="main">
					<s id="N14CDD"><!-- NEW --><emph type="italics"/>Minima potentia est illa, qu&aelig; in extremitate vectis, qu&aelig; procul recedit &agrave; <lb/>centro, vnam tant&ugrave;m partem, vel vnum punctum impetus producit<emph.end type="italics"/>; nihil <lb/>enim min&ugrave;s produci pote&longs;t, po&longs;ito quod potentia applicata ad talem gra&shy;<lb/>dum perfectionis &longs;it determinata, id e&longs;t ad producendum impetum talis <lb/>perfectionis in ea parte &longs;ubjecti, cui applicatur immediat&egrave;, vt &longs;upr&agrave; di&shy;<lb/>ctum e&longs;t. </s>
				</p>
				<p id="N14CF0" type="main">
					<s id="N14CF2"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 111.<emph.end type="center"/></s>
				</p>
				<p id="N14CFE" type="main">
					<s id="N14D00"><emph type="italics"/>Si &longs;int tantum duo puncta vel du&aelig; partes vectis, illa potentia ad illum mo&shy;<lb/>uendum &longs;ufficiens motu circulari est ad aliam &longs;ufficientem ad illum mouen&shy;<lb/>dum motu recto, vt<emph.end type="italics"/> 1/2 <emph type="italics"/>ad<emph.end type="italics"/> 2. &longs;i &longs;int tria puncta vt 2. ad 3. &longs;i 4. vt 2. 1/2 ad 4. <lb/>&longs;i 5. vt 3. ad 5. &longs;i 6. vt 3. 1/2 ad 6. atque ita deinceps iuxta hanc propor&shy;<lb/>tionem in quo non e&longs;t difficultas, cum hoc totum &longs;equatur ex Th. 109. </s>
				</p>
				<p id="N14D16" type="main">
					<s id="N14D18"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N14D24" type="main">
					<s id="N14D26"><!-- NEW -->Ob&longs;erua tamen quacumque data potentia po&longs;&longs;e dari minorem; </s>
					<s id="N14D2A"><!-- NEW -->quia <lb/>quocumque dato motu, etiam recto, pote&longs;t dari tardior; </s>
					<s id="N14D30"><!-- NEW -->igitur quocum&shy;<lb/>que impetu imperfectior; </s>
					<s id="N14D36"><!-- NEW -->igitur quando appellaui potentiam minimam; </s>
					<s id="N14D3A"><!-- NEW --><lb/>intellige illam qu&aelig; comparatur cum vnico puncto impetus talis perfe&shy;<lb/>ctionis; h&aelig;c enim reuera minima e&longs;t illarum omnium, qu&aelig; po&longs;&longs;unt pro&shy;<lb/>ducere impetum talis perfectionis, &longs;i ver&ograve; comparetur cum impetu im&shy;<lb/>perfectiore, haud dubi&egrave; minima non e&longs;t. </s>
				</p>
				<p id="N14D45" type="main">
					<s id="N14D47"><!-- NEW -->Ob&longs;erua pr&aelig;terea &longs;uppo&longs;itum e&longs;&longs;e hactenus in extremitate vectis &longs;iue <lb/>maioris, &longs;iue minoris, produci impetum eiu&longs;dem perfectionis, eiu&longs;que <lb/>vnicum punctum, &longs;eu partem, vnde potentia qu&aelig; applicatur maiori vecti <lb/>conuenit quidem cum ea, qu&aelig; applicatur minori in eo, qu&ograve;d vtraque in <lb/>extremitate &longs;ui vectis producat vnum punctum impetus eiu&longs;dem perfe&shy;<lb/>ctionis; differt tamen in eo, qu&ograve;d illa, qu&aelig; applicatur maiori vecti, &longs;it <lb/>maior iuxta rationes pr&aelig;dictas in Theoremate. <!-- KEEP S--></s>
					<s id="N14D58">v. <!-- REMOVE S-->g. <!-- REMOVE S-->illa, qu&aelig; applicatur <lb/>vecti. </s>
					<s id="N14D61"><!-- NEW -->2. punctorum e&longs;t ad eam, qu&aelig; applicatur vecti trium punctorum, <lb/>&longs;cu partium, vt 1. 1/2 ad 2. &amp; &longs;i vectis &longs;it 4. punctorum ad 2. 1/2; </s>
					<s id="N14D67"><!-- NEW -->&longs;i 5. ad 3. <lb/>&longs;i 6. ad 3. 1/2; </s>
					<s id="N14D6D"><!-- NEW -->&longs;i 7. ad 4. &longs;i 8. ad 4. 1/2. Vides egregiam progre&longs;&longs;ionem; </s>
					<s id="N14D71"><!-- NEW -->&longs;it <lb/>enim vectis 2. punctorum AB, in puncto A, quod e&longs;t extremitas, produ&shy;<lb/>catur punctum impetus dat&aelig; perfectionis, in B producetur aliud, cuius <lb/>perfectio e&longs;t &longs;ubdupla prioris per Th. 109. igitur caracter, &longs;eu momen&shy;<lb/>tum totius impetus e&longs;t 1. 1/2. &longs;it porr&ograve; vectis 4. punctorum CDEF, in <lb/>C, quod e&longs;t extremitas; </s>
					<s id="N14D7F"><!-- NEW -->producatur vnum punctum impetus eiu&longs;dem <lb/>perfectionis cum eo, quod productum e&longs;t in A; </s>
					<s id="N14D85"><!-- NEW -->cert&egrave; in D producetur <lb/>aliud cuius perfectio erit ad priorem vt 3.ad 4. per idem Th. &longs;ic autem <lb/>notetur 1/4, in E 2/4, in F 3/4, in C vero 4/4; </s>
					<s id="N14D8D"><!-- NEW -->perfectiones enim &longs;unt vt lon-<pb pagenum="60" xlink:href="026/01/092.jpg"/>gitudines; </s>
					<s id="N14D96"><!-- NEW -->qu&aelig; &longs;i colligantur, habebis characterem totius impetus, 2 1/2: </s>
					<s id="N14D9A"><!-- NEW --><lb/>igitur totus impetus productus in minore vecte, qui con&longs;tat 2. punctis, <lb/>e&longs;t ad impetum, qui producitur in maiore con&longs;tante 4.punctis, vt 1. 1/2 ad <lb/>2. 1/2; </s>
					<s id="N14DA3"><!-- NEW -->igitur vectis maior maiorem potentiam ad mouendum ip&longs;um ve&shy;<lb/>ctem requirit; non cert&egrave; in de&longs;cen&longs;u; </s>
					<s id="N14DA9"><!-- NEW -->quippe &longs;uo pondere de&longs;cendit, &longs;ed <lb/>in plano horizontali; </s>
					<s id="N14DAF"><!-- NEW -->ni&longs;i enim potentia po&longs;&longs;it mouere vectem; haud <lb/>dubi&egrave; nullum pondus vecte mouebit. </s>
				</p>
				<p id="N14DB5" type="main">
					<s id="N14DB7"><!-- NEW -->At ver&ograve; &longs;i potentia &longs;it tant&ugrave;m dupla minim&aelig;, qu&aelig; datum vectem mo&shy;<lb/>uere po&longs;&longs;it; </s>
					<s id="N14DBD"><!-- NEW -->haud dubi&egrave; dato illo vecte datum fer&egrave; quodcumque pondus <lb/>mouere poterit; cum ip&longs;e vectis con&longs;tet fer&egrave; infinitis punctis in longi&shy;<lb/>tudine, vt patet ex dictis, &amp; con&longs;ideranti patebit. </s>
				</p>
				<p id="N14DC5" type="main">
					<s id="N14DC7"><!-- NEW -->Ob&longs;eruabis demum in mechanicis nullam fer&egrave; haberi rationem pon&shy;<lb/>deris ip&longs;ius vectis; </s>
					<s id="N14DCD"><!-- NEW -->parum enim pro nihilo computatur: </s>
					<s id="N14DD1"><!-- NEW -->Ex his tamen <lb/>erui po&longs;&longs;unt veri&longs;&longs;im&aelig; rationes Phy&longs;ic&aelig; proportionum vectis AH; </s>
					<s id="N14DD7"><!-- NEW -->&longs;ia&shy;<lb/>que A extremitas, H centrum; </s>
					<s id="N14DDD"><!-- NEW -->&longs;itque BH 1/2. CH 1/4, DH 1/2, EH &lpar;1/16&rpar;, <lb/>FH &lpar;1/32&rpar;, GH &lpar;1/64&rpar; pondus I applicetur in A, &amp; moueatur; </s>
					<s id="N14DE3"><!-- NEW -->cert&egrave; in B moue&shy;<lb/>bitur pondus K duplum I; </s>
					<s id="N14DE9"><!-- NEW -->quia, cum impetus productus in B, &longs;it &longs;ubdu&shy;<lb/>plus in perfectione illius, qui producitur in A; </s>
					<s id="N14DEF"><!-- NEW -->vt &aelig;qualis producatur in <lb/>B, &amp; in A, debent produci in B dupl&ograve; plures partes impetus; </s>
					<s id="N14DF5"><!-- NEW -->igitur du&shy;<lb/>pl&ograve; maius pondus mouebit; </s>
					<s id="N14DFB"><!-- NEW -->at ver&ograve; in C mouebitur pondus L quadru&shy;<lb/>plum I, in D octuplum, atque ita deinceps; donec tandem in G mouea&shy;<lb/>tur pondus, quod &longs;it ad I vt 64. ad 1. &amp; cum adhuc po&longs;&longs;int accipi inter <lb/>GH, partes aliquot&aelig; minores, &amp; minores fer&egrave; in infinitum, non mirum <lb/>e&longs;t &longs;i pondus maius po&longs;&longs;it adhuc moueri. </s>
				</p>
				<p id="N14E07" type="main">
					<s id="N14E09"><!-- NEW -->Ob&longs;eruabis etiam in omni vecte ab&longs;trahendo ab eius pondere, &amp; ap&shy;<lb/>plicata eadem potentia, hoc e&longs;&longs;e commune; </s>
					<s id="N14E0F"><!-- NEW -->vt po&longs;&longs;it quodcumque pon&shy;<lb/>dus attolli, lic&egrave;t difficili&ugrave;s in minore; </s>
					<s id="N14E15"><!-- NEW -->quia hic non pote&longs;t in tam mul&shy;<lb/>tas partes aliquotas &longs;en&longs;ibiliter diuidi, in medio tamen vecte duplum <lb/>&longs;emper pondus mouetur; &longs;iue ip&longs;e vectis &longs;it maior, &longs;iue minor. </s>
				</p>
				<p id="N14E1D" type="main">
					<s id="N14E1F">Ob&longs;eruabis deinde, &longs;i centrum vectis non &longs;it in altera extremitate, <lb/>&longs;ed. </s>
					<s id="N14E24"><!-- NEW -->v.g. <!-- REMOVE S-->in C; </s>
					<s id="N14E2A"><!-- NEW -->haud dubi&egrave; producitur in H, &amp; in B impetus &aelig;qualis; </s>
					<s id="N14E2E"><!-- NEW -->quia <lb/>&aelig;qualiter di&longs;tat vtrumque punctum &agrave; centro C; </s>
					<s id="N14E34"><!-- NEW -->igitur &aelig;quale pondus <lb/>mouebitur in B, &amp; in H; propagatur tamen nouo modo &agrave; C ver&longs;us H, de <lb/>quo iam &longs;upr&agrave; dictum e&longs;t. </s>
				</p>
				<p id="N14E3C" type="main">
					<s id="N14E3E">Ob&longs;eruabis denique triplicem propagationem impetus e&longs;&longs;e legiti&shy;<lb/>mam. </s>
					<s id="N14E43">Prima e&longs;t in motu recto, cum propagatur per partes &aelig;quales, t&ugrave;m <lb/>in perfectione, t&ugrave;m in numero in &longs;ingulis partibus &longs;ubjecti per gradus, <lb/>&longs;cilicet heterogeneos. </s>
					<s id="N14E4A"><!-- NEW -->Secunda e&longs;t in motu circulari, applicata &longs;cilicet <lb/>potentia centro; cum propagatur per partes &aelig;quales in perfectione, &amp; <lb/>in&aelig;quales in numero. </s>
					<s id="N14E52">Tertia e&longs;t in vecte, cum propagatur per partes <lb/>&aelig;quales in numero, &amp; in&aelig;quales in perfectione. </s>
				</p>
				<p id="N14E57" type="main">
					<s id="N14E59"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 112.<emph.end type="center"/></s>
				</p>
				<p id="N14E65" type="main">
					<s id="N14E67"><!-- NEW --><emph type="italics"/>Impetus debet determinari ad aliquam lineam motus<emph.end type="italics"/>; </s>
					<s id="N14E70"><!-- NEW -->probatur, quia <lb/>non pote&longs;t e&longs;&longs;e impetus, ni&longs;i exigat motum per Th.14. nec exigere mo-<pb pagenum="61" xlink:href="026/01/093.jpg"/>tum, ni&longs;i per aliquam lineam, vt patet; </s>
					<s id="N14E7B"><!-- NEW -->&longs;ed hoc e&longs;t impetum e&longs;&longs;e de&shy;<lb/>terminatum ad aliquam lineam motus; </s>
					<s id="N14E81"><!-- NEW -->pr&aelig;terea &longs;i non e&longs;t determina&shy;<lb/>tus ad aliquam lineam; </s>
					<s id="N14E87"><!-- NEW -->igitur indeterminatus, &amp; indifferens per Ax.1. <lb/>&longs;ed indifferens manere non pote&longs;t; cur enim potius haberet motum <lb/>per vnam lineam, qu&agrave;m per aliam? </s>
					<s id="N14E8F">igitur debet determinari. </s>
				</p>
				<p id="N14E92" type="main">
					<s id="N14E94"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 113.<emph.end type="center"/></s>
				</p>
				<p id="N14EA0" type="main">
					<s id="N14EA2"><!-- NEW --><emph type="italics"/>Impetus ad plures lineas &longs;eor&longs;im indifferens e&longs;t:<emph.end type="italics"/> Probatur, quia idem im&shy;<lb/>petus pil&aelig; in aliam impact&aelig; producit in ea impetum, qui pro diuer&longs;o <lb/>contactu ad diuer&longs;am lineam determinari pote&longs;t; </s>
					<s id="N14EAF"><!-- NEW -->pr&aelig;terea corpus graue <lb/>in diuer&longs;is planis inclinatis de&longs;cendit; </s>
					<s id="N14EB5"><!-- NEW -->igitur per diuer&longs;as lineas; </s>
					<s id="N14EB9"><!-- NEW -->deinde <lb/>pila reflectitur propter impetum priorem, qui tant&ugrave;m mutat lineam, vt <lb/>dicemus infr&agrave;; </s>
					<s id="N14EC1"><!-- NEW -->adde quod funependuli vibrati impetus &longs;ine reflexione <lb/>mutat lineam motus; igitur idem impetus ad plures lineas &longs;eor&longs;im e&longs;t <lb/>indifferens. </s>
				</p>
				<p id="N14EC9" type="main">
					<s id="N14ECB"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 114.<emph.end type="center"/></s>
				</p>
				<p id="N14ED7" type="main">
					<s id="N14ED9"><!-- NEW --><emph type="italics"/>Hinc idem impetus ad plures lineas potest determinari &longs;eor&longs;im<emph.end type="italics"/>; </s>
					<s id="N14EE2"><!-- NEW -->quia ad <lb/>eas pote&longs;t determinari, ad quas e&longs;t indifferens, vt patet; &longs;ed ad multas <lb/>e&longs;t indifferens per Theorema 113. igitur ad multas pote&longs;t determi&shy;<lb/>nari. </s>
				</p>
				<p id="N14EEC" type="main">
					<s id="N14EEE"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N14EFA" type="main">
					<s id="N14EFC"><!-- NEW -->Ob&longs;eruabis prim&ograve; determinationem hanc nihil e&longs;&longs;e aliud, ni&longs;i ip&longs;um <lb/>impetum cum tali linea comparatum, &longs;eu coniunctum; </s>
					<s id="N14F02"><!-- NEW -->vnam ver&ograve; li&shy;<lb/>neam differre ab alia ratione terminorum v. <!-- REMOVE S-->g. <!-- REMOVE S-->illa qu&aelig; tendit ver&longs;us <lb/>ortum differt ab ea, qu&aelig; tendit ver&longs;us au&longs;trum, vel occa&longs;um, &longs;cilicet <lb/>ratione terminorum, &longs;unt enim duo termini, nemp&egrave; &agrave; quo, &amp; ad quem; </s>
					<s id="N14F10"><!-- NEW --><lb/>4. autem modis differunt termini line&aelig;, vel enim neuter communis e&longs;t <lb/>vt AB. DC, vel terminus &agrave; quo vtrique line&aelig; communis e&longs;t, vt BA. <lb/>BE, vel terminus ad quem vt AB, EB; vel denique vici&longs;&longs;im commu&shy;<lb/>tantur termini, vt BE, EB, &amp; h&aelig;c terminorum coniugatio facit oppo&shy;<lb/>&longs;itionem maximam, id e&longs;t diametralem. </s>
				</p>
				<p id="N14F1D" type="main">
					<s id="N14F1F"><!-- NEW -->Secund&ograve; ob&longs;eruabis aliquando videri e&longs;&longs;e vtrumque terminum com&shy;<lb/>munem lic&egrave;t differant line&aelig;; </s>
					<s id="N14F25"><!-- NEW -->&longs;it linea recta BE, habet communes ter&shy;<lb/>minos cum curua BFE, lic&egrave;t omnin&ograve; differat ab illa; </s>
					<s id="N14F2B"><!-- NEW -->at profect&ograve; lic&egrave;t <lb/>BE videatur e&longs;&longs;e vnica &longs;implex linea duobus terminis clau&longs;a; </s>
					<s id="N14F31"><!-- NEW -->con&longs;tat <lb/>ramen ex pluribus aliis continuata, rect&aacute;que &longs;erie iunctis; </s>
					<s id="N14F37"><!-- NEW -->vnde, vt <lb/>linea dicatur eadem e&longs;&longs;e cum alia, debet vna cum ali&acirc; conuenire; ita vt <lb/>alteri &longs;uperpo&longs;ita nec excedat, nec deficiat. </s>
				</p>
				<p id="N14F3F" type="main">
					<s id="N14F41"><!-- NEW -->Terti&ograve; linea motus non differt ab ip&longs;o motu continuo tractu, &longs;eu <lb/>fluxu qua&longs;i labenti: </s>
					<s id="N14F47"><!-- NEW -->Porr&ograve; vnus motus differt ab alio, vel ratione velo&shy;<lb/>citatis, vel ratione terminorum; &longs;ed h&aelig;c parum difficultatis habent. </s>
				</p>
				<p id="N14F4D" type="main">
					<s id="N14F4F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 115.<emph.end type="center"/></s>
				</p>
				<p id="N14F5B" type="main">
					<s id="N14F5D"><!-- NEW --><emph type="italics"/>Impetus aliquis ad vnam tant&ugrave;m lineam pote&longs;t e&longs;&longs;e determinatus<emph.end type="italics"/>; </s>
					<s id="N14F66"><!-- NEW -->v. <!-- REMOVE S-->g. <lb/><emph type="italics"/>impetus naturalis innatus, de quo in Th.<emph.end type="italics"/> 17. <emph type="italics"/>nam de acqui&longs;ito certum e&longs;t ad<emph.end type="italics"/><pb pagenum="62" xlink:href="026/01/094.jpg"/><emph type="italics"/>plures determinari po&longs;&longs;e, vt videbimus cum de motu reflexo<emph.end type="italics"/>; </s>
					<s id="N14F82"><!-- NEW -->probatur quia <lb/>motus deor&longs;um e&longs;t finis huius impetus; </s>
					<s id="N14F88"><!-- NEW -->quia ideo corpus graue produ&shy;<lb/>cit in &longs;e impetum &lpar;&longs;i tamen producit&rpar; vt tendat deor&longs;um, vt certum e&longs;t; </s>
					<s id="N14F8E"><!-- NEW --><lb/>t&agrave;m enim omne graue non impeditum tendit deor&longs;um, qu&agrave;m omnis <lb/>ignis e&longs;t calidus; </s>
					<s id="N14F95"><!-- NEW -->igitur &longs;i e&longs;t proprietas omnis ignis e&longs;&longs;e calidum, quia <lb/>omni competit; </s>
					<s id="N14F9B"><!-- NEW -->ita omni graui competit tendere infr&agrave; leuius, mod&ograve; <lb/>non impediatur; </s>
					<s id="N14FA1"><!-- NEW -->igitur e&longs;t eius proprietas; </s>
					<s id="N14FA5"><!-- NEW -->igitur ille impetus e&longs;t de&shy;<lb/>terminatus ad lineam qu&aelig; tendit deor&longs;um; </s>
					<s id="N14FAB"><!-- NEW -->&longs;ed de hoc impetu naturali <lb/>innato fus&egrave; agemus infr&agrave; in &longs;ecund&ograve; libro; nunc &longs;ufficiat dixi&longs;&longs;e po&longs;&longs;e <lb/>dari aliquem impetum ita determinatum ad certam lineam, vt ad aliam <lb/>determinari non po&longs;&longs;it naturaliter, nulla e&longs;t enim repugnantia. </s>
				</p>
				<p id="N14FB5" type="main">
					<s id="N14FB7"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 116.<emph.end type="center"/></s>
				</p>
				<p id="N14FC3" type="main">
					<s id="N14FC5"><!-- NEW --><emph type="italics"/>Impetus determinatur aliquando ad lineam motus &agrave; potentia motrice<emph.end type="italics"/>; </s>
					<s id="N14FCE"><!-- NEW -->pro&shy;<lb/>batur, quia primus impetus ab ip&longs;a potentia productus &longs;ine impedimen&shy;<lb/>to ab alio determinari non pote&longs;t; potentia porr&ograve; motrix vel e&longs;t gra&shy;<lb/>uium, vel leuium, vel animantium, vel proiectorum, vel compre&longs;&longs;o&shy;<lb/>rum, &amp;c. </s>
				</p>
				<p id="N14FDA" type="main">
					<s id="N14FDC"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 117.<emph.end type="center"/></s>
				</p>
				<p id="N14FE8" type="main">
					<s id="N14FEA"><!-- NEW --><emph type="italics"/>Potentia ver&ograve; motrix determinatur vel &agrave; &longs;uo fine intrin&longs;eco, vel potius ab <lb/>ip&longs;a &longs;ua natura<emph.end type="italics"/>; </s>
					<s id="N14FF5"><!-- NEW -->&longs;ic grauitas &longs;eu potentia motrix grauium determinata <lb/>e&longs;t ad motum deor&longs;um perpendicularem, dum in medio libero corpus <lb/>graue mouetur; vel &agrave; plano inclinato; </s>
					<s id="N14FFD"><!-- NEW -->pro cuius diuer&longs;a inclinatione <lb/>diuer&longs;a e&longs;t linea motus deor&longs;um; </s>
					<s id="N15003"><!-- NEW -->vel ab ip&longs;a via, &longs;eu exitu patefacto; <lb/>&longs;ic potentia motrix compre&longs;&longs;orum &longs;uas vires exerit, &amp; mobile ip&longs;um <lb/>agit, qu&acirc; patet vi&acirc;, &longs;ur&longs;um, deor&longs;um &amp;c. </s>
					<s id="N1500B"><!-- NEW -->vel ab appetitu &longs;eu libero, &longs;eu <lb/>&longs;en&longs;itiuo; </s>
					<s id="N15011"><!-- NEW -->&longs;ic potentia progre&longs;&longs;iua animantium c&ograve; corpus agit, qu&ograve; iu&shy;<lb/>bet appetitus, vel ab aliqua affectione intrin&longs;eca intrin&longs;ec&ugrave;s vel extrin&shy;<lb/>&longs;ec&ugrave;s adueniente; </s>
					<s id="N15019"><!-- NEW -->&longs;ic dilatatur pupilla, vel contrahitur pro diuer&longs;a lu&shy;<lb/>minis appul&longs;i vi, vel obiecti di&longs;tantia: Huc reuoca motus illos natura&shy;<lb/>les, qui animalibus competunt v. <!-- REMOVE S-->g. <!-- REMOVE S-->tu&longs;&longs;is, &longs;ingultus, &longs;ternutationis, &amp;c. </s>
					<s id="N15025"><lb/>de quibus fus&egrave; &longs;uo loco. </s>
				</p>
				<p id="N15029" type="main">
					<s id="N1502B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 118.<emph.end type="center"/></s>
				</p>
				<p id="N15037" type="main">
					<s id="N15039"><!-- NEW --><emph type="italics"/>Impetus determinatur aliquando ad lineam ab alio impetu producente<emph.end type="italics"/>; </s>
					<s id="N15042"><!-- NEW --><lb/>&longs;ic impetus corporis proiecti determinatur ab impetu vel organi vel <lb/>manus proiicientis; </s>
					<s id="N15049"><!-- NEW -->quia nihil e&longs;t aliud &agrave; quo determinari po&longs;&longs;it, vt <lb/>patet; </s>
					<s id="N1504F"><!-- NEW -->adde figuram organi, di&longs;po&longs;itionem &longs;eu &longs;itum mobilis, quod ma&shy;<lb/>nu tenetur; </s>
					<s id="N15055"><!-- NEW -->impedimenti etiam habetur ratio v. <!-- REMOVE S-->g. <!-- REMOVE S-->corpus oblongum <lb/>proiici pote&longs;t, vel motu recto ad in&longs;tar teli, vel motu mixto ex recto <lb/>&amp; circulari; cum &longs;cilicet diuer&longs;imod&egrave; vibratur: </s>
					<s id="N15061"><!-- NEW -->&longs;i enim altera extremi&shy;<lb/>tas adhuc h&aelig;reat in manu, dum altera mouetur, vt cum quis baculo <lb/>ferit; </s>
					<s id="N15069"><!-- NEW -->tunc cert&egrave; e&longs;t aliqu&ograve;d impedimenti genus, ex quo oritur talis li&shy;<lb/>nea motus; illud autem impedimentum emergit ex diuer&longs;a applicatione <lb/>diuer&longs;aque brachij vibratione, qu&aelig; omnia &longs;unt &longs;atis clara. </s>
				</p>
				<pb pagenum="63" xlink:href="026/01/095.jpg"/>
				<p id="N15075" type="main">
					<s id="N15077"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 119.<emph.end type="center"/></s>
				</p>
				<p id="N15083" type="main">
					<s id="N15085"><!-- NEW --><emph type="italics"/>Impetus determinatus ad vnam lineam pote&longs;t ad aliam in &longs;uo fluxu deter&shy;<lb/>minatu<emph.end type="italics"/>; </s>
					<s id="N15090"><!-- NEW -->vt patet in corpore reflexo; nec enim dici pote&longs;t totum prio&shy;<lb/>rem impetum in ip&longs;o reflexionis puncto de&longs;trui, vt demon&longs;trabimus <lb/>ali&agrave;s. </s>
					<s id="N15098">Probatur etiam ex impetu proiectorum, qu&aelig; mutant lineam mo&shy;<lb/>tus manente adhuc priore impetu &longs;altem ex parte. </s>
				</p>
				<p id="N1509D" type="main">
					<s id="N1509F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 120.<emph.end type="center"/></s>
				</p>
				<p id="N150AB" type="main">
					<s id="N150AD"><!-- NEW --><emph type="italics"/>Corpus proiectum in aliud ita illud impellit, vt determinet lineam motus <lb/>ratione puncti contactus<emph.end type="italics"/>; </s>
					<s id="N150B8"><!-- NEW -->Sit enim, ne multiplicemus figuras, globus, <lb/>cuius linea directionis &longs;it DC, punctum contactus C, ita globus A im&shy;<lb/>pellet globum B, vt linea motus, ad quam determinatur, &longs;it CB, id e&longs;t <lb/>ducta &agrave; puncto contactus ad centrum globi impul&longs;i; </s>
					<s id="N150C2"><!-- NEW -->&longs;it etiam globus <lb/>P impactus in globum A punctum contactus &longs;it D, linea motus, ad <lb/>quam determinatur, e&longs;t DA, qu&aelig; &longs;cilicet &agrave; puncto contactus ducitur <lb/>per centrum grauitatis corporis impul&longs;i: </s>
					<s id="N150CC"><!-- NEW -->experientia huius rei certa <lb/>e&longs;t, nec ignorant qui in ludo minoris tudicul&aelig; ver&longs;ati &longs;unt; </s>
					<s id="N150D2"><!-- NEW -->ratio au&shy;<lb/>tem inde tant&ugrave;m duci pote&longs;t, quod &longs;cilicet ab ip&longs;o puncto contactus ita <lb/>diffunditur impetus, vt hinc inde &aelig;qualiter in vtroque hemi&longs;ph&aelig;rio <lb/>diffundatur; </s>
					<s id="N150DC"><!-- NEW -->coniungitur autem vtrumque hemi&longs;ph&aelig;rium circulo A, <lb/>vel B, in priore figura, e&longs;tque vtriu&longs;que communis &longs;ectio; </s>
					<s id="N150E2"><!-- NEW -->cum autem <lb/>vtrimque &longs;it &aelig;qualis impetus, nulla e&longs;t ratio, cur linea directionis in&shy;<lb/>clinet poti&ugrave;s in vnum hemi&longs;ph&aelig;rium, qu&agrave;m in aliud: </s>
					<s id="N150EA"><!-- NEW -->pr&aelig;terea cum <lb/>motus orbis globi determinetur &agrave; motu centri; </s>
					<s id="N150F0"><!-- NEW -->cum &longs;cilicet globus in <lb/>globum impingitur; </s>
					<s id="N150F6"><!-- NEW -->haud dubi&egrave; non pote&longs;t e&longs;&longs;e alius motus centri, ni&longs;i <lb/>qui determinatur &agrave; puncto contactus, &agrave; quo vnica tant&ugrave;m linea ad cen&shy;<lb/>trum duci pote&longs;t, vt con&longs;tat; &amp; h&aelig;c ratio veri&longs;&longs;ima e&longs;t, &amp; totam rem <lb/>ip&longs;am euincit. </s>
				</p>
				<p id="N15100" type="main">
					<s id="N15102"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 121.<emph.end type="center"/></s>
				</p>
				<p id="N1510E" type="main">
					<s id="N15110"><emph type="italics"/>Hinc lic&egrave;t diuer&longs;&aelig; &longs;int linea motus globi impellentis, &longs;i tamen &longs;it idem pun&shy;<lb/>ctum contactus ad <expan abbr="e&atilde;dem">eandem</expan> lineam globus impul&longs;us determinabitur,<emph.end type="italics"/> v. <!-- REMOVE S-->g. <!-- REMOVE S-->li&shy;<lb/>cet globus P. eiu&longs;dem figur&aelig; tangat globum A in D per lineam PD &longs;iue <lb/>per lineam HD &longs;iue per quamlibet aliam, globus A mouebitur &longs;emper <lb/>per lineam directionis DA propter rationem propo&longs;itam, quod etiam <lb/>mille experimentis conuincitur. </s>
				</p>
				<p id="N1512A" type="main">
					<s id="N1512C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 122.<emph.end type="center"/></s>
				</p>
				<p id="N15138" type="main">
					<s id="N1513A"><!-- NEW --><emph type="italics"/>Determinatur impetus corporis proiecti impacti in corpus reflectens ad no&shy;<lb/>uam lineam<emph.end type="italics"/>; </s>
					<s id="N15145"><!-- NEW -->patet experienti&acirc; in pil&acirc; reflex&acirc;; reflexionis autem ratio&shy;<lb/>nem afferemus in lib.  de motu reflexo. </s>
				</p>
				<p id="N1514B" type="main">
					<s id="N1514D"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 123.<emph.end type="center"/></s>
				</p>
				<p id="N15159" type="main">
					<s id="N1515B"><emph type="italics"/>Non determinatur tant&ugrave;m ratione puncti contactus.<emph.end type="italics"/></s>
					<s id="N15162"><!-- NEW --> Probatur, quia cum <lb/>eodem puncto contactus pote&longs;t e&longs;&longs;e determinatio ad diuer&longs;am lineam, <lb/>vt manife&longs;tum e&longs;t; &longs;it enim reflexio per angulum &aelig;qualem incidenti&aelig;, <lb/>&longs;ed diuer&longs;i anguli po&longs;&longs;unt in idem punctum coire, vt patet. </s>
				</p>
				<pb pagenum="64" xlink:href="026/01/096.jpg"/>
				<p id="N15170" type="main">
					<s id="N15172"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 124.<emph.end type="center"/></s>
				</p>
				<p id="N1517E" type="main">
					<s id="N15180"><!-- NEW --><emph type="italics"/>Non determinatur noua linea in motu reflexo &acirc; priore tant&ugrave;m linea <lb/>incidenti&aelig;<emph.end type="italics"/>; probatur, quia pote&longs;t e&longs;&longs;e eadem linea incidenti&aelig; cum di&shy;<lb/>uer&longs;is lineis motus reflexi, vt patet. </s>
				</p>
				<p id="N1518D" type="main">
					<s id="N1518F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 125.<emph.end type="center"/></s>
				</p>
				<p id="N1519B" type="main">
					<s id="N1519D"><!-- NEW --><emph type="italics"/>Non determinatur noua linea motus reflexi ratione tant&ugrave;m plani reflecten&shy;<lb/>tis<emph.end type="italics"/>: Probatur, quia cum eodem plano reflectente diuer&longs;&aelig; line&aelig; motus <lb/>reflexi e&longs;&longs;e po&longs;&longs;unt, vt con&longs;tat. </s>
				</p>
				<p id="N151AA" type="main">
					<s id="N151AC"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 126.<emph.end type="center"/></s>
				</p>
				<p id="N151B8" type="main">
					<s id="N151BA"><!-- NEW --><emph type="italics"/>Determinatur noua linea motus reflexi ratione line&aelig; prioris incidenti&aelig; com&shy;<lb/>parat&aelig; cum plano reflectente,<emph.end type="italics"/> e&longs;t enim angulus reflexionis &aelig;qualis angu&shy;<lb/>lo incidenti&aelig;, cuius effectus rationem ali&agrave;s afferemus, cum de motu <lb/>reflexo; </s>
					<s id="N151C9"><!-- NEW -->&amp; ver&ograve; multa h&icirc;c cur&longs;im tant&ugrave;m per&longs;tringimus, qu&aelig; in libro <lb/>de motu reflexo accurati&longs;&longs;im&egrave; demon&longs;trabimus; H&igrave;c tant&ugrave;m dixi&longs;&longs;e &longs;uf&shy;<lb/>ficiat determinari mobile in reflexionis puncto ad nouam lineam motus, <lb/>quod nemo in dubium reuocare pote&longs;t, &amp; propter quid fiat loco citato <lb/>demon&longs;trabimus. </s>
				</p>
				<p id="N151D5" type="main">
					<s id="N151D7"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 127.<emph.end type="center"/></s>
				</p>
				<p id="N151E3" type="main">
					<s id="N151E5"><!-- NEW --><emph type="italics"/>Quando globus in globum &aelig;qualem ita impingitur, vt linea directionis per <lb/>centra vtriu&longs;que ducatur, determinatio noua e&longs;t &aelig;qualis priori<emph.end type="italics"/>; </s>
					<s id="N151F0"><!-- NEW -->Patet ex&shy;<lb/>perientia in pilis illis eburneis, quas de&longs;iderat ludus minoris tudicul&aelig;; </s>
					<s id="N151F6"><!-- NEW --><lb/>nec e&longs;t vlla ratio, cur determinatio &longs;it maior poti&ugrave;s, qu&agrave;m minor, cum <lb/>vtraque pila &longs;it &aelig;qualis; </s>
					<s id="N151FD"><!-- NEW -->&longs;i enim maior e&longs;&longs;et, vel minor; cur poti&ugrave;s vno <lb/>gradu, qu&agrave;m duobus? </s>
					<s id="N15203">qu&agrave;m tribus? </s>
					<s id="N15206"><!-- NEW -->Pr&aelig;terea, cum re&longs;i&longs;tens, vel im&shy;<lb/>pediens e&longs;t &aelig;quale agenti; </s>
					<s id="N1520C"><!-- NEW -->certe &longs;icut agens refundit in pa&longs;&longs;um totum <lb/>id, quod habet, id e&longs;t &aelig;qualem impetum in inten&longs;ione, &amp; &aelig;qu&egrave; velo&shy;<lb/>cem motum per Th. 60. <!--neuer Satz-->Ita re&longs;i&longs;tens, vel impediens refundit &aelig;quale <lb/>impedimentum, quod tant&ugrave;m &longs;umi pote&longs;t ex &aelig;qualitate mobilium; </s>
					<s id="N15218"><!-- NEW -->&longs;ed <lb/>ex &aelig;quali impedimento duci tant&ugrave;m pote&longs;t &aelig;qualis determinatio priori; <lb/>denique pote&longs;t dari determinatio noua &aelig;qualis priori, vt con&longs;tat, &longs;ed <lb/>aliunde duci non pote&longs;t qu&agrave;m ex ip&longs;a mobilium &aelig;qualitate, mod&ograve; fiat <lb/>contactus per lineam connectentem centra. </s>
				</p>
				<p id="N15224" type="main">
					<s id="N15226"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 128.<emph.end type="center"/></s>
				</p>
				<p id="N15232" type="main">
					<s id="N15234"><!-- NEW --><emph type="italics"/>Hinc ratio manife&longs;ta illius mirifici effectus, &longs;cilicet quietis pil&aelig; impact&aelig;<emph.end type="italics"/>; </s>
					<s id="N1523D"><!-- NEW --><lb/>quippe h&aelig;c quie&longs;cet illic&ograve; ab ictu; </s>
					<s id="N15242"><!-- NEW -->quia &longs;cilicet, cum noua determina&shy;<lb/>tio &longs;it &aelig;qualis priori, non e&longs;t vlla ratio, cur alterutra pr&aelig;ualeat; </s>
					<s id="N15248"><!-- NEW -->nec <lb/>etiam pote&longs;t e&longs;&longs;e determinatio communis, &longs;eu mixta; cur enim potius <lb/>dextror&longs;um quam &longs;ini&longs;tror&longs;um? </s>
					<s id="N15250">de quo infr&agrave;. </s>
				</p>
				<p id="N15253" type="main">
					<s id="N15255"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 129.<emph.end type="center"/></s>
				</p>
				<p id="N15261" type="main">
					<s id="N15263"><!-- NEW --><emph type="italics"/>Quando linea directionis globi impacti non connectit centra vtriu&longs;qu&etail; <lb/>globi, determinatur noua linea motus t&ugrave;m &agrave; priore linea incidenti&aelig;, t&ugrave;m &agrave; <lb/>connectente centra, qu&aelig; &longs;cilicet per punctum contactus &agrave; centro impacti globi<emph.end type="italics"/><pb pagenum="65" xlink:href="026/01/097.jpg"/><emph type="italics"/>ad centrum alterius ducitur<emph.end type="italics"/>; quippe nihil e&longs;t aliud &agrave; quo determinari. </s>
					<s id="N15279"><lb/>po&longs;&longs;it, vt patet; </s>
					<s id="N1527D"><!-- NEW -->non determinatur etiam ab alterutra &longs;eor&longs;im, vt con&shy;<lb/>&longs;tat, igitur ab vtraque conjunctim; </s>
					<s id="N15283"><!-- NEW -->in qua ver&ograve; proportione dicemus, <lb/>&amp; demon&longs;trabimus in libro de motu reflexo; &longs;unt enim mirific&aelig; qu&aelig;&shy;<lb/>dam reflexionum proportiones, quas ibidem explicabimus. </s>
				</p>
				<p id="N1528B" type="main">
					<s id="N1528D"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 130.<emph.end type="center"/></s>
				</p>
				<p id="N15299" type="main">
					<s id="N1529B"><!-- NEW --><emph type="italics"/>Hinc globus &longs;ic impactus nunquam quie&longs;cit<emph.end type="italics"/>; </s>
					<s id="N152A4"><!-- NEW -->ratio e&longs;t, quia vtraque linea <lb/>determinationis cum angulum faciat, in communem lineam abit; </s>
					<s id="N152AA"><!-- NEW -->nam <lb/>ex duabus lineis motus minim&egrave; oppo&longs;itis ex diametro, fit alia tertia me&shy;<lb/>dia pro rata; h&icirc;c etiam latent my&longs;teria, de quibus loco citato. </s>
				</p>
				<p id="N152B2" type="main">
					<s id="N152B4"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 131.<emph.end type="center"/></s>
				</p>
				<p id="N152C0" type="main">
					<s id="N152C2"><!-- NEW --><emph type="italics"/>Si globus minor in maiorem impingatur per quamcumque lineam directio&shy;<lb/>nis, determinatur ad nouam lineam motus reflexi<emph.end type="italics"/>; </s>
					<s id="N152CD"><!-- NEW -->experientia clara e&longs;t; ra&shy;<lb/>tio e&longs;t, quia maior globus maius e&longs;t impedimentum, hinc nunquam <lb/>quie&longs;cit minor globus impactus. </s>
				</p>
				<p id="N152D5" type="main">
					<s id="N152D7"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 132.<emph.end type="center"/></s>
				</p>
				<p id="N152E3" type="main">
					<s id="N152E5"><!-- NEW --><emph type="italics"/>Si globus major in minorem impingatur per lineam directionis, qu&aelig; conne&shy;<lb/>ctat centra, &longs;eruat <expan abbr="e&atilde;dem">eandem</expan> lineam<emph.end type="italics"/>; </s>
					<s id="N152F4"><!-- NEW -->patet etiam experienti&acirc;, cuius ratio e&longs;t <lb/>minor re&longs;i&longs;tentia minoris globi; </s>
					<s id="N152FA"><!-- NEW -->&longs;i ver&ograve; &longs;it alia linea directionis, omni&shy;<lb/>n&ograve; reflectitur &longs;uo modo; </s>
					<s id="N15300"><!-- NEW -->id e&longs;t mutat lineam; </s>
					<s id="N15304"><!-- NEW -->&longs;ed de his omnibus fus&egrave; <lb/>ali&agrave;s; </s>
					<s id="N1530A"><!-- NEW -->h&icirc;c tant&ugrave;m &longs;ufficiat indica&longs;&longs;e; </s>
					<s id="N1530E"><!-- NEW -->&lpar;&longs;uppo&longs;ita linea directionis cen&shy;<lb/>trali &longs;eu connectente centra, &longs;ic enim deinceps eam appellabimus, in <lb/>quo ca&longs;u duplex determinatio tertiam mediam conflare non pote&longs;t&rpar; in&shy;<lb/>dica&longs;&longs;e inquam &longs;ufficiat nouam determinationem, vel e&longs;&longs;e &aelig;qualem prio&shy;<lb/>ri, vel maiorem, vel minorem; </s>
					<s id="N1531A"><!-- NEW -->&longs;i &aelig;qualis e&longs;t, globus impactus &longs;i&longs;tit; &longs;i <lb/>maior, reflectitur; &longs;i minor, <expan abbr="e&atilde;dem">eandem</expan> lineam, &longs;ed lenti&ugrave;s pro rata pro&shy;<lb/>&longs;equitur. </s>
				</p>
				<p id="N15326" type="main">
					<s id="N15328"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 133.<emph.end type="center"/></s>
				</p>
				<p id="N15334" type="main">
					<s id="N15336"><!-- NEW --><emph type="italics"/>Si &longs;it duplex impetus &aelig;qualis ad diuer&longs;as lineas determinatus in eodem mo&shy;<lb/>bili, &longs;ique ill&aelig; &longs;int ex diametro oppo&longs;it&aelig; &longs;i&longs;tere debet mobile<emph.end type="italics"/>; patet; </s>
					<s id="N15341"><!-- NEW -->&longs;it enim <lb/>globus vtrimque gemino malleo percu&longs;&longs;us &aelig;quali ictu; </s>
					<s id="N15347"><!-- NEW -->haud dubi&egrave; &longs;i&longs;tit; <lb/>cur enim poti&ugrave;s in vnam partem quam in aliam? </s>
					<s id="N1534D">cum &longs;imul in vtramque <lb/>moueri non po&longs;&longs;it. </s>
				</p>
				<p id="N15352" type="main">
					<s id="N15354"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 134.<emph.end type="center"/></s>
				</p>
				<p id="N15360" type="main">
					<s id="N15362"><!-- NEW --><emph type="italics"/>Si ver&ograve; alter impetus &longs;it inten&longs;ior, po&longs;ito eodem ca&longs;u, haud dubi&egrave; eius de&shy;<lb/>terminatio pr&aelig;ualebit pro rata<emph.end type="italics"/>; patet etiam experienti&agrave;; </s>
					<s id="N1536D"><!-- NEW -->ratio e&longs;t, quia im&shy;<lb/>petus fortior debiliorem vincit; pugnant enim pro rata per Ax. 15. <lb/>hinc &longs;i &longs;it dupl&ograve; inten&longs;ior, &longs;ubduplum &longs;u&aelig; velocitatis amittet, &longs;i tripl&egrave; <lb/>&longs;ubtriplum, &amp;c. </s>
					<s id="N15377">de quo ali&agrave;s. </s>
				</p>
				<p id="N1537A" type="main">
					<s id="N1537C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 135.<emph.end type="center"/></s>
				</p>
				<p id="N15388" type="main">
					<s id="N1538A"><emph type="italics"/>Si duo globi projecti &longs;ibi inuicem occurrant in line&aelig; directionis connectente <lb/>centra, reflectitur vterque &aelig;quali motu, quo ant&egrave;.<emph.end type="italics"/></s>
					<s id="N15393"> Probatur; </s>
					<s id="N15396"><!-- NEW -->&longs;unt enim globi <pb pagenum="66" xlink:href="026/01/098.jpg"/>A &amp; B, &amp; A feratur per lineam DE, &amp; B per lineam ED, punctum con&shy;<lb/>tactus &longs;it C, haud dubi&egrave; globus A impactus in B amittit totum &longs;uum im&shy;<lb/>petum per Th.127. &amp; 128. B, item impactus in A amittit totum &longs;uum per <lb/>eandem rationem; </s>
					<s id="N153A5"><!-- NEW -->globus A producit impetum in B &aelig;qualem &longs;uo per <lb/>Th.60. item B producit in A &aelig;qualem per idem Th. igitur tant&ugrave;m perit <lb/>impetus quant&ugrave;m accedit; </s>
					<s id="N153AD"><!-- NEW -->igitur in vtroque globo remanet &aelig;qualis im&shy;<lb/>petus priori; igitur &aelig;quali motu vterque mouetur, quod erat dem. </s>
					<s id="N153B3">&amp; h&aelig;c <lb/>e&longs;t ratio veri&longs;&longs;ima toties probat&aelig; experienti&aelig;. </s>
				</p>
				<p id="N153B8" type="main">
					<s id="N153BA"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 136.<emph.end type="center"/></s>
				</p>
				<p id="N153C6" type="main">
					<s id="N153C8"><!-- NEW --><emph type="italics"/>Hinc &aelig;quale &longs;patium conficiet regrediendo po&longs;t reflexionem, quem confeci&longs;&shy;<lb/>&longs;et motu directo, &longs;i propagatus fui&longs;&longs;et &longs;ine obice<emph.end type="italics"/>; </s>
					<s id="N153D3"><!-- NEW -->nam &aelig;quali motu &aelig;quali <lb/>tempore in eodem plano &longs;eu medio idem &longs;patium decurritur; quid ver&ograve; <lb/>accidat in aliis punctis contactus dicemus infr&agrave;, cum de reflexione. </s>
				</p>
				<p id="N153DB" type="main">
					<s id="N153DD"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 137.<emph.end type="center"/></s>
				</p>
				<p id="N153E9" type="main">
					<s id="N153EB"><!-- NEW --><emph type="italics"/>Si in eodem mobili duplex impetus producatur, quorum vterque &longs;eor&longs;im <lb/>ad duas lineas &longs;it determinatus qu&aelig; conjunct&aelig; faciant angulum, determinatur <lb/>vterque ad tertiam lineam mediam<emph.end type="italics"/>; </s>
					<s id="N153F8"><!-- NEW -->&longs;it enim mobile in A. v. <!-- REMOVE S-->g. <!-- REMOVE S-->globus, <lb/>cui &longs;imul imprimatur impetus determinatus ad lineam AD, in plano <lb/>horizontali AF; </s>
					<s id="N15404"><!-- NEW -->&longs;i vterque &longs;it &aelig;qualis, ad nouam lineam determinabi&shy;<lb/>tur AE; </s>
					<s id="N1540A"><!-- NEW -->quippe tant&ugrave;m debet acquirere in horizontali AB, vel in eius <lb/>parallela DE, quantum acquirit in alia horizontali AD, vel in eius pa&shy;<lb/>rallela BE; </s>
					<s id="N15412"><!-- NEW -->igitur debet ferri in E; </s>
					<s id="N15416"><!-- NEW -->igitur per diagonalem AE; </s>
					<s id="N1541A"><!-- NEW -->clara e&longs;t <lb/>omnin&ograve; experientia; </s>
					<s id="N15420"><!-- NEW -->cuius ratio &agrave; priori h&aelig;c e&longs;t, qu&ograve;d &longs;cilicet impetus <lb/>po&longs;&longs;it determinari ad quamlibet lineam ab alio impetu per Th.118.119. <lb/>igitur in eodem mobili pro rata quilibet alium determinat; </s>
					<s id="N15428"><!-- NEW -->igitur &longs;i <lb/>vterque &aelig;qualis e&longs;t, vterque &aelig;qualiter; igitur debet tantum &longs;patij acqui&shy;<lb/>ri in linea vnius, quantum in linea alterius. </s>
				</p>
				<p id="N15430" type="main">
					<s id="N15432"><!-- NEW -->Si ver&ograve; impetus per AC &longs;it duplus impetus per AD; </s>
					<s id="N15436"><!-- NEW -->accipiatur AC <lb/>dupla AD, ducatur DF &aelig;qualis &amp; parallela AC; </s>
					<s id="N1543C"><!-- NEW -->linea motus noua <lb/>erit diagonalis AF, quia vtraque determinatio concurrit ad nouam pro <lb/>rata; igitur debet &longs;patium acqui&longs;itum in AC e&longs;&longs;e duplum acqui&longs;iti <lb/>in AD. <!-- KEEP S--></s>
				</p>
				<p id="N15447" type="main">
					<s id="N15449"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 138.<emph.end type="center"/></s>
				</p>
				<p id="N15455" type="main">
					<s id="N15457"><!-- NEW --><emph type="italics"/>Si &longs;it duplex impetus in eodem mobili ad <expan abbr="e&atilde;dem">eandem</expan> lineam determinatus, non <lb/>mutabitur linea; </s>
					<s id="N15463"><!-- NEW -->&longs;ed cre&longs;cet motus &amp; &longs;patium<emph.end type="italics"/> Imprimatur impetus in A, <lb/>per AB, quo dato tempore percurratur &longs;patium AB; </s>
					<s id="N1546C"><!-- NEW -->deinde produca&shy;<lb/>tur &longs;imul alius impetus &aelig;qualis priori in eodem mobili per lineam AB; </s>
					<s id="N15472"><!-- NEW --><lb/>Dico quod eodem tempore percurretur tota AE, dupla &longs;cilicet AB; </s>
					<s id="N15477"><!-- NEW --><lb/>quia &longs;cilicet dupla cau&longs;a non impedita duplum effectum habet per Ax. <!-- REMOVE S--><lb/>13. num.1. duplus impetus duplum motum; igitur duplum &longs;patium; &longs;i <lb/>ver&ograve; &longs;it triplus impetus, triplum erit &longs;patium, &amp;c. </s>
				</p>
				<p id="N15481" type="main">
					<s id="N15483"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 139.<emph.end type="center"/></s>
				</p>
				<p id="N1548F" type="main">
					<s id="N15491"><!-- NEW --><emph type="italics"/>Si line&aelig; duplicis impetus, faciunt angulum acutiorem, longius erit &longs;patium<emph.end type="italics"/><pb pagenum="67" xlink:href="026/01/099.jpg"/><emph type="italics"/>acqui&longs;itum<emph.end type="italics"/>: </s>
					<s id="N154A3"><!-- NEW -->&longs;int du&aelig; line&aelig; IK IL, mobili &longs;cilicet &longs;tatuto in I; </s>
					<s id="N154A7"><!-- NEW --><lb/>haud dubi&egrave; noua linea erit IM; </s>
					<s id="N154AC"><!-- NEW -->&amp; quo angulus KIL, erit acutior &lpar;&longs;up&shy;<lb/>po&longs;itis &aelig;qualibus &longs;emper lateribus IK IL&rpar; Diagonalis IM, erit ma&shy;<lb/>ior; </s>
					<s id="N154B4"><!-- NEW -->donec tandem IL &amp; IK coeant in eandem lineam; </s>
					<s id="N154B8"><!-- NEW -->tunc enim li&shy;<lb/>nea erit dupla IK per Th. &longs;uperius: </s>
					<s id="N154BE"><!-- NEW -->quandiu ver&ograve; e&longs;t aliquis angulus in <lb/>I quantumuis acutus, linea motus erit minor dupla IK, ad quam tamen <lb/>propi&ugrave;s &longs;emper accedit; qu&aelig; omnia con&longs;tant ex elementis. </s>
				</p>
				<p id="N154C6" type="main">
					<s id="N154C8"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 140.<emph.end type="center"/></s>
				</p>
				<p id="N154D4" type="main">
					<s id="N154D6"><!-- NEW --><emph type="italics"/>Si line&aelig; duplicis impetus faciunt angulum obtu&longs;um, &longs;patium acqui&longs;itum erit <lb/>breuius, &amp; e&ograve; breuius qu&ograve; angulus e&longs;t obtu&longs;ior<emph.end type="italics"/>; </s>
					<s id="N154E1"><!-- NEW -->&longs;int enim <emph type="sup"/>c<emph.end type="sup"/> du&aelig; line&aelig; AD <lb/>AB mobili &longs;tatuto in A, noua linea erit AC per Th. 137. &amp; &longs;i accipia&shy;<lb/>tur angulus obtu&longs;ior HEF; </s>
					<s id="N154EF"><!-- NEW -->noua linea erit EG, eo rect&egrave; breuior, <lb/>qu&ograve; angulus e&longs;t obtu&longs;ior, non tamen iuxta rationem angulorum; </s>
					<s id="N154F5"><!-- NEW -->donec <lb/>tandem de&longs;inat angulus, &amp; ED EF co&euml;ant in vnam lineam; </s>
					<s id="N154FB"><!-- NEW -->tunc enim <lb/>nullum erit &longs;patium, quia &longs;i&longs;ter omnin&ograve; mobile per Th.133.qu&aelig; omnia <lb/>ip&longs;a luce clariora e&longs;&longs;e con&longs;tat; </s>
					<s id="N15503"><!-- NEW -->quippe qu&aelig; cum certis experimentis, &amp; <lb/>clari&longs;&longs;imis principiis con&longs;entiant; &longs;ed de his plura infr&agrave;. </s>
				</p>
				<p id="N15509" type="main">
					<s id="N1550B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 141.<emph.end type="center"/></s>
				</p>
				<p id="N15517" type="main">
					<s id="N15519"><!-- NEW --><emph type="italics"/>Ex his nece&longs;&longs;aria ducitur ratio, cur impetus duplus ad diuer&longs;as lineas de&shy;<lb/>terminatus non habeat motum duplum, &amp; con&longs;equenter &longs;patium duplum<emph.end type="italics"/>; </s>
					<s id="N15524"><!-- NEW -->nec <lb/>enim AE e&longs;t dupla AB, vt con&longs;tat; </s>
					<s id="N1552A"><!-- NEW -->nam &longs;i line&aelig; &longs;int oppo&longs;it&aelig; ex <lb/>diametro vt BA BE totus de&longs;truitur impetus, per Th.133. &longs;i ver&ograve; vna <lb/>in <expan abbr="e&atilde;dem">eandem</expan> lineam co&euml;at cum ali&acirc;, nihil impetus de&longs;truitur, nec impedi&shy;<lb/>tur per Th.138. igitur qu&agrave; proportione propi&ugrave;s accedet ad oppo&longs;itas; </s>
					<s id="N15538"><!-- NEW --><lb/>pl&ugrave;s de&longs;truetur, &amp; minus erit &longs;patium; &amp; qu&acirc; proportione accedent <lb/>propi&ugrave;s ad co&euml;untes, min&ugrave;s de&longs;truetur, &amp; maius erit &longs;patium, vt con&longs;tat <lb/>ex dictis. </s>
				</p>
				<p id="N15541" type="main">
					<s id="N15543"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 142.<emph.end type="center"/></s>
				</p>
				<p id="N1554F" type="main">
					<s id="N15551"><!-- NEW --><emph type="italics"/>Hinc impetus ad diuer&longs;as lineas determinati it a pugnant pro rata, vt mi&shy;<lb/>n&ugrave;s pugnent, quorum line&aelig; propi&ugrave;s accedunt ad co&euml;untes; pl&ugrave;s ver&ograve;, quorum <lb/>line&aelig; propi&ugrave;s accedunt ad oppo&longs;itas, idque iuxta proportiones Diagonalium,<emph.end type="italics"/><lb/>quod totum &longs;equitur ex dictis. </s>
				</p>
				<p id="N1555F" type="main">
					<s id="N15561"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1556D" type="main">
					<s id="N1556F"><!-- NEW -->Ob&longs;eruabis vt facili&ugrave;s concipias duos impetus ad duas lineas deter&shy;<lb/>minatos; </s>
					<s id="N15575"><!-- NEW -->finge tibi nauim &agrave; diuer&longs;is ventis impul&longs;am, &longs;eu lapidem pro&shy;<lb/>jectum &egrave; naui mobili; &longs;ed de his plura in lib.4. cum de motu mixto. </s>
				</p>
				<p id="N1557B" type="main">
					<s id="N1557D"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 143.<emph.end type="center"/></s>
				</p>
				<p id="N15589" type="main">
					<s id="N1558B"><emph type="italics"/>Impetus &longs;emel productus, quamdiu durat motus, con&longs;eruatur.<emph.end type="italics"/></s>
					<s id="N15592"> Probatur, <lb/>quia non pote&longs;t e&longs;&longs;e effectus, ni&longs;i &longs;it eius cau&longs;a per Ax. 8. igitur &longs;i e&longs;t mo&shy;<lb/>tus, e&longs;t impetus. </s>
				</p>
				<p id="N15599" type="main">
					<s id="N1559B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 144.<emph.end type="center"/></s>
				</p>
				<p id="N155A7" type="main">
					<s id="N155A9"><emph type="italics"/>Impetus non con&longs;eruatur &agrave; cau&longs;a prim&ograve; productiua.<emph.end type="italics"/></s>
					<s id="N155B0"> Probatur; quia proii-<pb pagenum="68" xlink:href="026/01/100.jpg"/>ciatur mobile per Po&longs;tulatum, etiam mouetur &longs;eparatum &agrave; potentia mo&shy;<lb/>trice per hypoth. </s>
					<s id="N155BA">6. igitur non con&longs;eruatur &agrave; potentia motrice per Ax. <!-- REMOVE S--><lb/>10. igitur nec &agrave; caus&acirc; prim&ograve; productiua. </s>
				</p>
				<p id="N155C0" type="main">
					<s id="N155C2"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 145.<emph.end type="center"/></s>
				</p>
				<p id="N155CE" type="main">
					<s id="N155D0"><!-- NEW --><emph type="italics"/>Hinc ab alia caus&acirc; con&longs;eruari nece&longs;&longs;e e&longs;t impetum<emph.end type="italics"/>: Probatur, quia impe&shy;<lb/>tus non e&longs;t &agrave; &longs;e, quia de&longs;truitur aliquando per Ax. 14. igitur con&longs;eruatur <lb/>ab alio per Ax.14. num. </s>
					<s id="N155DD"><!-- NEW -->1. non &agrave; cau&longs;a prim&ograve; productiua per Th.144.igi&shy;<lb/>tur ab alia, eaque applicata per Ax. <!-- REMOVE S-->10. qu&aelig;cumque tandem illa &longs;it, ali&shy;<lb/>quando cau&longs;am primam e&longs;&longs;e demon&longs;trabimus; </s>
					<s id="N155E7"><!-- NEW -->nunc ver&ograve; &longs;ufficiat dixi&longs;&shy;<lb/>&longs;e dari aliquam cau&longs;am reuer&acirc; applicatam, qu&aelig; ip&longs;um con&longs;eruat impe&shy;<lb/>tum; imm&ograve; ex hac ip&longs;a rerum con&longs;eruatione argumentum aliquando <lb/>ducemus, quo Deum ip&longs;um exi&longs;tere demon&longs;trabimus. </s>
				</p>
				<p id="N155F1" type="main">
					<s id="N155F3"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 146.<emph.end type="center"/></s>
				</p>
				<p id="N155FF" type="main">
					<s id="N15601"><emph type="italics"/>Si impetus con&longs;eruaretur &agrave; cau&longs;a prim&ograve; productiua, nunquam de&longs;truere&shy;<lb/>tur, quamdiu e&longs;&longs;et applicata.<emph.end type="italics"/></s>
					<s id="N1560A"><!-- NEW --> Demon&longs;tratur, quia e&longs;&longs;et cau&longs;a nece&longs;&longs;aria <lb/>&lpar;nam de hac ip&longs;a loquor&rpar; igitur &longs;emper ageret, igitur &longs;emper con&shy;<lb/>&longs;eruaret, quod e&longs;t contra experientiam; </s>
					<s id="N15612"><!-- NEW -->nam reuer&acirc; impetus pro&shy;<lb/>ductus deor&longs;um &agrave; corpore graui motu naturaliter accelerato de&longs;truitur, <lb/>vt patet; </s>
					<s id="N1561A"><!-- NEW -->pr&aelig;terea &longs;i corpus graue con&longs;eruaret impetum prim&ograve; produ&shy;<lb/>ctum, non produceret nouum contra experientiam; </s>
					<s id="N15620"><!-- NEW -->quippe cau&longs;a ne&shy;<lb/>ce&longs;&longs;aria non pl&ugrave;s agit vno in&longs;tanti qu&agrave;m alio, per Ax.12. adde quod im&shy;<lb/>petus de&longs;truitur ad exigentiam alterius, quidquid tandem illud &longs;it per <lb/>Ax.14. num.2. &amp; 3. &longs;ed cau&longs;a prim&ograve; productiua impetus non nouit rerum <lb/>exigentiam; </s>
					<s id="N1562C"><!-- NEW -->igitur illi facere &longs;atis non pote&longs;t; ex hoc etiam capite cau&shy;<lb/>&longs;&aelig; prim&aelig; exi&longs;tentiam &longs;uo loco demon&longs;trabimus. </s>
				</p>
				<p id="N15632" type="main">
					<s id="N15634"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N15640" type="main">
					<s id="N15642"><!-- NEW -->Ob&longs;eruabis prim&ograve; rem quamlibet ideo de&longs;trui, quia ce&longs;&longs;at cau&longs;a con&shy;<lb/>&longs;eruans illam con&longs;eruare; </s>
					<s id="N15648"><!-- NEW -->quippe quod de&longs;truitur eo in&longs;tanti dicitur de&shy;<lb/>&longs;trui, quo prim&ograve; non e&longs;t, &longs;eu quo incipit prim&ograve; non e&longs;&longs;e; atqui incipit <lb/>prim&ograve; non e&longs;&longs;e &longs;eu de&longs;init e&longs;&longs;e, cum de&longs;init con&longs;eruari. </s>
				</p>
				<p id="N15650" type="main">
					<s id="N15652"><!-- NEW -->Secund&ograve; ob&longs;eruabis pr&aelig;clarum natur&aelig; in&longs;titutum, quod etiam ex ip&longs;is <lb/>hypothe&longs;ibus con&longs;tat, quo fit vt qualitates qu&aelig; carent contrario &agrave; cau&longs;a <lb/>prim&ograve; productiua con&longs;eruentur, vt lumen; </s>
					<s id="N1565A"><!-- NEW -->ne &longs;i ab alia con&longs;eruarentur, <lb/>de&longs;truerentur vmquam; </s>
					<s id="N15660"><!-- NEW -->cum earum de&longs;tructionem nihil exigeret per <lb/>Ax.14.n.2. &amp; 3. at ver&ograve; qualitates, qu&aelig; contrarias habent: </s>
					<s id="N15666"><!-- NEW -->&longs;i qu&aelig; &longs;unt, <lb/>&agrave; cau&longs;a prim&ograve; productiua minim&egrave; con&longs;eruantur; </s>
					<s id="N1566C"><!-- NEW -->cum enim ideo con&shy;<lb/>trarium dicatur de&longs;truere contrarium, quia exigit eius de&longs;tructionem, id <lb/>e&longs;t, ne con&longs;eruetur amplius; </s>
					<s id="N15674"><!-- NEW -->cert&egrave; vt cau&longs;a con&longs;eruans ce&longs;&longs;et con&longs;eruare, <lb/>debet no&longs;&longs;e illam exigentiam; atqui nulla cognitione pollent cau&longs;&aelig; ill&aelig; <lb/>motrices naturales, de quibus e&longs;t qu&aelig;&longs;tio. </s>
				</p>
				<p id="N1567C" type="main">
					<s id="N1567E"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 147.<emph.end type="center"/></s>
				</p>
				<p id="N1568A" type="main">
					<s id="N1568C"><!-- NEW --><emph type="italics"/>Tamdiu con&longs;eruatur impetus, quamdiu nihil exigit eius destructionem<emph.end type="italics"/>; </s>
					<s id="N15695"><!-- NEW -->quia <lb/>de&longs;truitur tant&ugrave;m ad exigentiam alicuius, quidquid tandem illud &longs;it, de <pb pagenum="69" xlink:href="026/01/101.jpg"/>quo infr&agrave;, per Ax.14.num.2. cert&egrave; tamdiu non de&longs;truitur, quamdiu nihil <lb/>e&longs;t, quod exigat eius de&longs;tructionem; igitur tamdiu con&longs;eruatur per Ax. <!-- REMOVE S--><lb/>14.num.3. </s>
				</p>
				<p id="N156A5" type="main">
					<s id="N156A7"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N156B4" type="main">
					<s id="N156B6"><!-- NEW -->Inde certa ducitur ratio, cur mobile etiam &longs;eparatum &agrave; manu mouea&shy;<lb/>tur; </s>
					<s id="N156BC"><!-- NEW -->quia &longs;cilicet ip&longs;i adhuc ine&longs;t impetus, qui e&longs;t cau&longs;a motus; </s>
					<s id="N156C0"><!-- NEW -->quippe <lb/>&longs;uppo&longs;ui iam ant&egrave; de hac hypothe&longs;i quod &longs;it, non tamen propter quid &longs;it; <lb/>igitur h&aelig;c e&longs;t germana illius ratio &amp; cau&longs;a. </s>
				</p>
				<p id="N156C8" type="main">
					<s id="N156CA"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N156D7" type="main">
					<s id="N156D9">Hinc etiam rationem ducemus &aelig;qu&egrave; pr&aelig;claram in lib.2. motus natu&shy;<lb/>raliter accelerati. </s>
				</p>
				<p id="N156DE" type="main">
					<s id="N156E0"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 148.<emph.end type="center"/></s>
				</p>
				<p id="N156EC" type="main">
					<s id="N156EE"><!-- NEW --><emph type="italics"/>Impetus productus aliquando de&longs;truitur<emph.end type="italics"/>; Probatur, quia mobile, quod <lb/>ant&egrave; mouebatur, de&longs;init tandem moueri per hyp. </s>
					<s id="N156F9"><!-- NEW -->4. igitur de&longs;truitur <lb/>impetus; alioqui &longs;i remaneret, e&longs;&longs;et cau&longs;a nece&longs;&longs;aria &longs;ine effectu contra <lb/>Ax.12. ideo porr&ograve; de&longs;truitur, quia aliquid exigit eius de&longs;tructionem, <lb/>quippe h&aelig;c e&longs;t vnica de&longs;tructionis ratio per Ax.14. num.2. </s>
				</p>
				<p id="N15703" type="main">
					<s id="N15705"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 149.<emph.end type="center"/></s>
				</p>
				<p id="N15711" type="main">
					<s id="N15713"><!-- NEW --><emph type="italics"/>In lineis oppo&longs;itis impetus de&longs;truitur ab impetu &longs;uo modo<emph.end type="italics"/>; </s>
					<s id="N1571C"><!-- NEW -->&longs;it enim globus <lb/>proiectus ver&longs;us au&longs;trum; </s>
					<s id="N15722"><!-- NEW -->cui deinde imprimatur nouus impetus ver&shy;<lb/>&longs;us Boream; </s>
					<s id="N15728"><!-- NEW -->de&longs;truitur prior vt con&longs;tat, igitur ad exigentiam alicuius, <lb/>&longs;ed nihil e&longs;t quod po&longs;&longs;it exigere, ni&longs;i nouus impetus, &longs;cilicet mediat&egrave;; <lb/>nihil enim aliud e&longs;t applicatum, igitur nihil aliud exigit per Ax. 10. <lb/>h&aelig;c porr&ograve; exigentia non e&longs;t immediata, &longs;ed mediata, vt dixi. </s>
				</p>
				<p id="N15732" type="main">
					<s id="N15734"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 150.<emph.end type="center"/></s>
				</p>
				<p id="N15740" type="main">
					<s id="N15742"><!-- NEW --><emph type="italics"/>Impetus naturalis innatus exigit de&longs;tructionem alterius, qui ab extrin&longs;eco <lb/>ad diuer&longs;am lineam corpori graui impre&longs;&longs;us e&longs;t &longs;cilicet mediat&egrave;,<emph.end type="italics"/> experientia <lb/>certa e&longs;t in proiectis, qu&aelig; tandem quie&longs;cunt; </s>
					<s id="N1574F"><!-- NEW -->igitur ad exigentiam ali&shy;<lb/>cuius, &longs;ed illud tant&ugrave;m e&longs;t impetus innatus; </s>
					<s id="N15755"><!-- NEW -->nec enim e&longs;t &longs;ub&longs;tantia <lb/>corporis; </s>
					<s id="N1575B"><!-- NEW -->t&ugrave;m quia qualitas &longs;ub&longs;tanti&aelig; non opponitur; </s>
					<s id="N1575F"><!-- NEW -->t&ugrave;m quia nulla <lb/>e&longs;&longs;et ratio, cur &longs;ub&longs;tantia de&longs;trueret poti&ugrave;s vno in&longs;tanti vnum gradum, <lb/>qu&agrave;m duos, qu&agrave;m tres; </s>
					<s id="N15767"><!-- NEW -->adde quod ex duobus violentis oppo&longs;itis alte&shy;<lb/>rum de&longs;truit; igitur impetus e&longs;t cau&longs;a &longs;ufficiens de&longs;tructiua impetus, <lb/>igitur non e&longs;t ponenda alia, eo &longs;cilicet modo, quo diximus. </s>
				</p>
				<p id="N1576F" type="main">
					<s id="N15771"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 151.<emph.end type="center"/></s>
				</p>
				<p id="N1577D" type="main">
					<s id="N1577F"><!-- NEW --><emph type="italics"/>In reflexione de&longs;truitur aliquid impotus &longs;altem per accidens<emph.end type="italics"/>; patet expe&shy;<lb/>rientia, &longs;iue propter nouam determinationem, &longs;iue propter attritum, <lb/>vel pre&longs;&longs;ionem partium, de quo infr&agrave;. </s>
				</p>
				<p id="N1578C" type="main">
					<s id="N1578E"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 152.<emph.end type="center"/></s>
				</p>
				<p id="N1579A" type="main">
					<s id="N1579C"><!-- NEW --><emph type="italics"/>Hinc &longs;i excipias tant&ugrave;m impetum naturalem innatum, qui per &longs;uam de&shy;<lb/>terminationem nece&longs;&longs;ariam, &amp; quam nunquam mutat, pugnat cum omni<emph.end type="italics"/><pb pagenum="70" xlink:href="026/01/102.jpg"/><emph type="italics"/>extrin&longs;eco ad aliam lineam determinato, &amp; cum ip&longs;o acqui&longs;ito, quando mu&shy;<lb/>tat lineam perpendicularem deor&longs;um, de quo infr&agrave;; &longs;i hunc igitur excipias, <lb/>omnes aly pugnant tant&ugrave;m ratione diuer&longs;&aelig; line&aelig;, &longs;eu determinationis, in eodem <lb/>mobili:<emph.end type="italics"/> Vnde ille idem, qui modo pugnat prob&egrave; conueniet, &longs;i ad ean&shy;<lb/>dem lineam determinetur. </s>
				</p>
				<p id="N157B8" type="main">
					<s id="N157BA"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N157C6" type="main">
					<s id="N157C8"><!-- NEW -->Ob&longs;eruabis prim&ograve;, pr&aelig;clarum natur&aelig; in&longs;titutum, quo fit, vt impe&shy;<lb/>tus perennis non &longs;it; vnde cert&egrave; infinita propemodum emergerent ab&shy;<lb/>&longs;urda, &amp; incommoda. </s>
				</p>
				<p id="N157D0" type="main">
					<s id="N157D2"><!-- NEW -->Secund&ograve;, faciliorem modum de&longs;tructionis impetus in&longs;titui non po&shy;<lb/>tui&longs;&longs;e, imm&ograve; nec excogitari po&longs;&longs;e; qu&agrave;m enim facil&egrave;, vel impetus op&shy;<lb/>po&longs;itus in mobili producitur, vel corpus durum opponitur &amp;c. </s>
				</p>
				<p id="N157DA" type="main">
					<s id="N157DC">Terti&ograve;, pr&aelig;cipuam rationem huius de&longs;tructionis ducendam e&longs;&longs;e ex <lb/>Ax.6. in quo dicimus nihil e&longs;&longs;e fru&longs;tr&agrave;, cumque ordinem &agrave; natura e&longs;&longs;e <lb/>in&longs;titutum, vt poti&ugrave;s aliquid de&longs;truatur, &amp; de&longs;inat e&longs;&longs;e, qu&agrave;m fru&longs;tr&agrave; &longs;it, <lb/>&amp; dicimus de&longs;trui ad exigentiam totius natur&aelig;. </s>
				</p>
				<p id="N157E5" type="main">
					<s id="N157E7"><!-- NEW -->Quart&ograve;, cum impetus &longs;uo fine caret, fru&longs;tr&agrave; e&longs;t; </s>
					<s id="N157EB"><!-- NEW -->finis impetus e&longs;t mo&shy;<lb/>tus, vt &longs;&aelig;p&egrave; diximus, &longs;ic cum globus impactus in alium &aelig;qualem &longs;tatim <lb/>ab ictu &longs;i&longs;tit immobilis; </s>
					<s id="N157F3"><!-- NEW -->certe ne fru&longs;tr&agrave; &longs;it impetus, de&longs;truitur per Ax.6. <lb/>&amp; per Ax. 14. num.2. cum ver&ograve; determinatio altera maior e&longs;t, cert&egrave; pr&aelig;&shy;<lb/>ualet tant&ugrave;m pro rata; </s>
					<s id="N157FB"><!-- NEW -->igitur minor e&longs;t motus; </s>
					<s id="N157FF"><!-- NEW -->igitur, ne aliqui gradus <lb/>impetus &longs;int fru&longs;tr&agrave;, de&longs;truuntur, cum ver&ograve; &longs;unt duo impetus in eodem <lb/>mobili, vt in naui mobili ad lineas oppo&longs;itas determinati; </s>
					<s id="N15807"><!-- NEW -->haud dubi&egrave; <lb/>maior impetus pr&aelig;ualet pro rata per Ax. 15. Igitur non mod&ograve; totus <lb/>impetus minor perit, ne &longs;it fru&longs;tr&agrave;; </s>
					<s id="N1580F"><!-- NEW -->&longs;ed etiam aliquot gradus maioris, ne <lb/>&longs;int etiam fru&longs;tr&agrave;; nec enim in communem lineam co&iuml;re po&longs;&longs;unt. </s>
				</p>
				<p id="N15815" type="main">
					<s id="N15817">Denique quando &longs;unt duo impetus ad lineas diuer&longs;as determinati, <lb/>&longs;ed non oppo&longs;itas ex diametro, pugnant pro diuer&longs;o oppo&longs;itionis gradu, <lb/>vt &longs;upr&agrave; fus&egrave; dictum e&longs;t. </s>
					<s id="N1581E"><!-- NEW -->Igitur cum totus impetus non habeat totum <lb/>motum, quod duplex illa determinatio impedit, ne aliqui gradus <lb/>&longs;int fru&longs;tr&agrave;, de&longs;truuntur; </s>
					<s id="N15826"><!-- NEW -->igitur vides impetum impre&longs;&longs;um ab ex&shy;<lb/>trin&longs;eco de&longs;trui tant&ugrave;m ne &longs;it fru&longs;tr&agrave;; faceret enim vt e&longs;&longs;et fru&longs;tr&agrave; vel <lb/>nouus impetus, vel determinato noua, &amp; in hoc &longs;en&longs;u dicitur impetus <lb/>de&longs;trui ab impetu. </s>
				</p>
				<p id="N15830" type="main">
					<s id="N15832"><!-- NEW -->Quint&ograve;, &longs;i de&longs;trueretur mobile, etiam de&longs;trueretur impetus per idem <lb/>Ax. 6. quia e&longs;&longs;et fru&longs;tr&agrave; &longs;eparatum; </s>
					<s id="N15838"><!-- NEW -->imm&ograve; ex hoc vno principio demon&shy;<lb/>&longs;tramus accidentia &amp; formas &longs;ub&longs;tantiales materiales non po&longs;&longs;e natura&shy;<lb/>liter con&longs;eruari extra &longs;uum &longs;ubiectum, quia &longs;cilicet e&longs;&longs;ent fru&longs;tr&agrave;; quip&shy;<lb/>pe finem &longs;uum habent in &longs;ubiecto. </s>
				</p>
				<p id="N15842" type="main">
					<s id="N15844"><!-- NEW -->Sext&ograve;, Impetus naturalis innatus nunquam de&longs;truitur; </s>
					<s id="N15848"><!-- NEW -->quia nunquam <lb/>e&longs;t fru&longs;tr&agrave;; quippe &longs;emper habet alterum &longs;uorum effectuum formalium, <lb/>id e&longs;t vel motum deor&longs;um, vel grauitationem, adde quod fru&longs;tr&agrave; de&shy;<lb/>&longs;trueretur, cum &longs;it &longs;emper applicata potentia, id e&longs;t ip&longs;a grauitas, &longs;ed de <lb/>his infr&acirc; fus&egrave;. </s>
				</p>
				<pb pagenum="71" xlink:href="026/01/103.jpg"/>
				<p id="N15858" type="main">
					<s id="N1585A"><!-- NEW -->Septim&ograve;, Impetus &longs;ur&longs;um de&longs;truitur etiam, quia e&longs;t fru&longs;tr&agrave;; </s>
					<s id="N1585E"><!-- NEW -->quippe <lb/>naturalis detrahit aliquid &longs;patij pro rata; </s>
					<s id="N15864"><!-- NEW -->igitur ne aliquid impetus &longs;it <lb/>fru&longs;tr&agrave;, de&longs;truitur; </s>
					<s id="N1586A"><!-- NEW -->idem dico de impetu per inclinatam &longs;ur&longs;um, lic&egrave;t <lb/>min&ugrave;s de&longs;truatur qu&agrave;m in perpendiculari &longs;ur&longs;um; </s>
					<s id="N15870"><!-- NEW -->idem de impetu per <lb/>inclinatam deor&longs;um, &longs;ed min&ugrave;s adhuc, &longs;ed h&aelig;c acuratiori meditationi <lb/>&longs;unt relinquenda; </s>
					<s id="N15878"><!-- NEW -->quod reuer&acirc; pr&aelig;&longs;tabimus in lib.4. de motu mixto; </s>
					<s id="N1587C"><!-- NEW --><lb/>quidquid &longs;it, con&longs;tat ex dictis per idem Principium probari po&longs;&longs;e de&shy;<lb/>&longs;tructionem impetus, &longs;cilicet ne &longs;it fru&longs;tr&agrave;; &longs;ed de his ali&agrave;s fus&egrave;. </s>
				</p>
				<p id="N15883" type="main">
					<s id="N15885"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 153.<emph.end type="center"/></s>
				</p>
				<p id="N15891" type="main">
					<s id="N15893"><!-- NEW --><emph type="italics"/>Impetus productus ab extrin&longs;eco e&longs;t tant&ugrave;m contrarius ratione diuer&longs;&aelig; de&shy;<lb/>terminationis, &longs;eu diuer&longs;&aelig; line&aelig;<emph.end type="italics"/>; </s>
					<s id="N1589E"><!-- NEW -->Probatur prim&ograve;, quia vterque ad omnem <lb/>lineam e&longs;t indifferens per Th.113. igitur vnus non e&longs;t alteri contrarius <lb/>ratione entitatis; </s>
					<s id="N158A6"><!-- NEW -->c&ugrave;m vterque &longs;imilem motum, imm&ograve; <expan abbr="e&utilde;dem">eundem</expan> habere <lb/>po&longs;&longs;it, vt patet ex dictis: </s>
					<s id="N158B0"><!-- NEW -->Igitur ratione tant&ugrave;m line&aelig; vnus alteri e&longs;t <lb/>contrarius; hinc min&ugrave;s e&longs;t contrarietatis, quo min&ugrave;s e&longs;t oppo&longs;itionis <lb/>inter lineas &amp; contr&agrave;. </s>
				</p>
				<p id="N158B8" type="main">
					<s id="N158BA"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 154.<emph.end type="center"/></s>
				</p>
				<p id="N158C6" type="main">
					<s id="N158C8"><emph type="italics"/>Impetus naturalis acqui&longs;itus e&longs;t tant&ugrave;m contrarius alteri extrin&longs;eco ratio&shy;<lb/>ne line&aelig;.<emph.end type="italics"/></s>
					<s id="N158D1"> Probatur eodem modo; quia determinari pote&longs;t ad omnem li&shy;<lb/>neam, vt patet ex reflexione grauis cadentis. </s>
				</p>
				<p id="N158D6" type="main">
					<s id="N158D8"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 155.<emph.end type="center"/></s>
				</p>
				<p id="N158E4" type="main">
					<s id="N158E6"><!-- NEW --><emph type="italics"/>Impetus naturalis innatus non e&longs;t tant&ugrave;m contrarius ratione line&aelig;<emph.end type="italics"/>; quia <lb/>&longs;cilicet non pote&longs;t determinari ad omnem lineam, patet, alioquin cor&shy;<lb/>pus graue, quod &longs;ur&longs;um po&longs;t ca&longs;um reflectitur non de&longs;cenderet amplius, <lb/>de quo ali&agrave;s, h&aelig;c enim cur&longs;im tant&ugrave;m per&longs;tringo, ne quid aliis libris <lb/>detrahatur. </s>
				</p>
				<p id="N158F7" type="main">
					<s id="N158F9"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 156.<emph.end type="center"/></s>
				</p>
				<p id="N15905" type="main">
					<s id="N15907"><!-- NEW --><emph type="italics"/>Impetus ex naturali acqui&longs;ito pote&longs;t fieri violentus<emph.end type="italics"/>; </s>
					<s id="N15910"><!-- NEW -->vt patet in motu re&shy;<lb/>flexo grauium; ratio e&longs;t. </s>
					<s id="N15916">quia mutatur linea. </s>
				</p>
				<p id="N15919" type="main">
					<s id="N1591B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 157.<emph.end type="center"/></s>
				</p>
				<p id="N15927" type="main">
					<s id="N15929"><!-- NEW --><emph type="italics"/>Impetus ex non contrario eidem fit contrarius<emph.end type="italics"/>; </s>
					<s id="N15932"><!-- NEW -->vt patet in eodem ca&longs;u; <lb/>nam impetus naturalis innatus, qui in de&longs;cen&longs;u non erat contrarius <lb/>acqui&longs;ito, in motu &longs;ur&longs;um reflexo fit contrarius. </s>
				</p>
				<p id="N1593A" type="main">
					<s id="N1593C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 158.<emph.end type="center"/></s>
				</p>
				<p id="N15948" type="main">
					<s id="N1594A"><!-- NEW --><emph type="italics"/>Impetus deor&longs;um ab extrin&longs;eco non e&longs;t contrarius naturali innato ratione <lb/>line&aelig;,<emph.end type="italics"/> quia &longs;cilicet e&longs;t determinatus ad eandem lineam, &longs;i tamen e&longs;t con&shy;<lb/>trarius, id tant&ugrave;m e&longs;t ratione propagationis impetus acqui&longs;iti, vel ac <lb/>celerationis motus; quod reuer&agrave; multa, &amp; ben&egrave; long&acirc; explicatione indi&shy;<lb/>get, quam con&longs;ule in lib.4. </s>
				</p>
				<p id="N1595B" type="main">
					<s id="N1595D"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N15969" type="main">
					<s id="N1596B"><!-- NEW -->Ob&longs;eruabis cogno&longs;ci tant&ugrave;m contrarietatem qualitatum ex mutua de&shy;<lb/>&longs;tructione; </s>
					<s id="N15971"><!-- NEW -->cur ver&ograve; vna qualitas dicatur de&longs;truere aliam, &amp; cur illam <pb pagenum="72" xlink:href="026/01/104.jpg"/>de&longs;tructionem exigat; </s>
					<s id="N1597A"><!-- NEW -->maximum my&longs;terium e&longs;t, quod alibi enucleabi&shy;<lb/>mus; qu&agrave;m multa enim &longs;uper hac re tacuere Philo&longs;ophi! <!-- KEEP S--></s>
				</p>
				<p id="N15981" type="main">
					<s id="N15983"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 159.<emph.end type="center"/></s>
				</p>
				<p id="N1598F" type="main">
					<s id="N15991"><!-- NEW --><emph type="italics"/>Impetus &longs;ibi ip&longs;i pote&longs;t reddi contrarius,<emph.end type="italics"/> vt reuer&acirc; accidit in reflexione, <lb/>in qua de&longs;truitur impetus ex parte propter diuer&longs;as determinationes; </s>
					<s id="N1599C"><!-- NEW --><lb/>cum &longs;cilicet corpus reflectens mouetur; igitur impetus prout determina&shy;<lb/>tus ad lineam incidenti&aelig; e&longs;t aliquo modo &longs;ibi ip&longs;i contrarius, prout e&longs;t <lb/>determinatus ad lineam reflexionis. </s>
				</p>
				<p id="N159A5" type="main">
					<s id="N159A7">Iam fer&egrave; tumultuatim, &longs;i qu&aelig; &longs;unt reliqua, Theoremata congeremus. </s>
				</p>
				<p id="N159AA" type="main">
					<s id="N159AC"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 160.<emph.end type="center"/></s>
				</p>
				<p id="N159B8" type="main">
					<s id="N159BA"><!-- NEW --><emph type="italics"/>Impetus violentus intendi pote&longs;t &agrave; naturali, &amp; vici&longs;&longs;im<emph.end type="italics"/>; patet in projectis <lb/>deor&longs;um. </s>
				</p>
				<p id="N159C5" type="main">
					<s id="N159C7"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 161.<emph.end type="center"/></s>
				</p>
				<p id="N159D3" type="main">
					<s id="N159D5">Idem impetus pote&longs;t <expan abbr="e&utilde;dem">eundem</expan> alium aliquando pl&ugrave;s, aliquando min&ugrave;s <lb/>intendere. </s>
					<s id="N159DE">v. <!-- REMOVE S-->g. <!-- REMOVE S-->4. gradus impetus additi aliis 4. per <expan abbr="e&atilde;dem">eandem</expan> lineam <lb/>iidem ei&longs;dem, min&ugrave;s intendunt, vt iam &longs;upr&agrave; &longs;atis fus&egrave; dictum e&longs;t. </s>
				</p>
				<p id="N159EB" type="main">
					<s id="N159ED"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 162.<emph.end type="center"/></s>
				</p>
				<p id="N159F9" type="main">
					<s id="N159FB"><emph type="italics"/>Impetus dici pote&longs;t propri&egrave; de&longs;trui ad exigentiam totius natur&aelig;<emph.end type="italics"/> per Ax.14. <lb/>num.2. vt con&longs;tat ex multis Theorematis &longs;uperioribus. </s>
				</p>
				<p id="N15A05" type="main">
					<s id="N15A07"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 163.<emph.end type="center"/></s>
				</p>
				<p id="N15A13" type="main">
					<s id="N15A15"><!-- NEW --><emph type="italics"/>Omnis dici debet incipere, &amp; de&longs;inere intrin&longs;ec&egrave;, &amp; extrin&longs;ec&egrave;<emph.end type="italics"/>; quod enim <lb/>hoc in&longs;tanti primo e&longs;t, immediat&egrave; antecedenti vltimo non fuit, &amp; quod <lb/>primo non e&longs;t hoc in&longs;tanti, immediat&egrave; ant&egrave; vltimo fuit, nec pote&longs;t e&longs;&longs;e <lb/>immediat&egrave; p&ograve;&longs;t, ni&longs;i &longs;it immediat&egrave; ant&egrave;, &amp; vici&longs;&longs;im. </s>
				</p>
				<p id="N15A24" type="main">
					<s id="N15A26"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 164.<emph.end type="center"/></s>
				</p>
				<p id="N15A32" type="main">
					<s id="N15A34"><!-- NEW --><emph type="italics"/>Ideo producitur hic impetus numero poti&ugrave;s, qu&agrave;m alius omnin&ograve; &longs;imilis<emph.end type="italics"/>; </s>
					<s id="N15A3D"><!-- NEW -->quia <lb/>potentia motrix e&longs;t determinata ad tale indiuiduum &longs;iue &agrave; &longs;e, &longs;iue ab <lb/>alio; </s>
					<s id="N15A45"><!-- NEW -->idem enim de illa dicendum e&longs;t, quod de aliis cau&longs;is naturalibus; <lb/>porr&ograve; idem dici debet de de&longs;tructione, quod de productione. </s>
				</p>
				<p id="N15A4B" type="main">
					<s id="N15A4D"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N15A59" type="main">
					<s id="N15A5B">Ob&longs;eruabis breuiter aliqua, qu&aelig; fort&egrave; in no&longs;tris Theorematis fuere <lb/>omi&longs;&longs;a. </s>
				</p>
				<p id="N15A60" type="main">
					<s id="N15A62"><!-- NEW -->Prim&ograve; qualitates, qu&aelig; &agrave; cau&longs;a prim&ograve; productiua con&longs;eruantur, ab ea <lb/>intendi non po&longs;&longs;e; </s>
					<s id="N15A68"><!-- NEW -->quia &longs;ingulis in&longs;tantibus nouum effectum non pro&shy;<lb/>ducit; </s>
					<s id="N15A6E"><!-- NEW -->exemplum habes in luce; &longs;ecus vero de iis dicendum e&longs;t, qu&aelig; &agrave; <lb/>cau&longs;a prim&ograve; productiua non con&longs;eruantur. </s>
				</p>
				<p id="N15A74" type="main">
					<s id="N15A76"><!-- NEW -->Secund&ograve; qualitates, qu&aelig; contrarias habent, etiam de&longs;trui po&longs;&longs;e ab <lb/>alio, quam ab iis, &longs;cilicet ad exigentiam totius natur&aelig;; ne &longs;cilicet &longs;int <lb/>fru&longs;tr&agrave;. </s>
				</p>
				<p id="N15A7E" type="main">
					<s id="N15A80">Terti&ograve; aliqua carere contrario, non tamen con&longs;eruari &agrave; cau&longs;a prim&ograve; <lb/>productiua. </s>
					<s id="N15A85">v.g. <!-- REMOVE S-->anima bruti, qu&aelig; de&longs;truitur ad exigentiam totius natu&shy;<lb/>r&aelig;, n&ccedil; &longs;it fru&longs;tr&agrave;. </s>
				</p>
				<pb pagenum="73" xlink:href="026/01/105.jpg"/>
				<p id="N15A90" type="main">
					<s id="N15A92"><!-- NEW -->Quart&ograve;, impetum inten&longs;iorem in projectis diuti&ugrave;s durare; </s>
					<s id="N15A96"><!-- NEW -->quia cum <lb/>&longs;en&longs;im de&longs;truatur; cert&egrave; plures partes maiori tempore de&longs;truuntur, qu&agrave;m <lb/>pauciores. </s>
				</p>
				<p id="N15A9E" type="main">
					<s id="N15AA0"><!-- NEW -->Quint&ograve;, &longs;i totus impetus de&longs;trueretur vno in&longs;tanti, minima re&longs;i&longs;tentia <lb/>&longs;ufficeret ad motum impediendum: adde quod contraria pugnant pro <lb/>rata per Ax.15. </s>
				</p>
				<p id="N15AA8" type="main">
					<s id="N15AAA">Sext&ograve;, ob&longs;eruabis plurima in hoc libro qua&longs;i obiter e&longs;&longs;e indicata, qu&aelig; <lb/>in aliis fus&egrave; explicata maiorem lucem accipient. </s>
				</p>
				<p id="N15AAF" type="main">
					<s id="N15AB1"><!-- NEW -->Septim&ograve;, denique totam rem i&longs;tam, qu&aelig; pertinet ad impetum paul&ograve; <lb/>fu&longs;ius pertractatam in hoc primo libro; </s>
					<s id="N15AB7"><!-- NEW -->qu&ograve;d &longs;cilicet ab ea reliqua fer&egrave; <lb/>omnia pendeant, qu&aelig; in hoc tractatu habentur; &longs;ed de his &longs;atis. <lb/><figure id="id.026.01.105.1.jpg" xlink:href="026/01/105/1.jpg"/></s>
				</p>
			</chap>
			<chap id="N15AC3">
				<pb pagenum="74" xlink:href="026/01/106.jpg"/>
				<figure id="id.026.01.106.1.jpg" xlink:href="026/01/106/1.jpg"/>
				<p id="N15ACD" type="head">
					<s id="N15ACF"><emph type="center"/>LIBER SECVNDVS, <lb/><emph type="italics"/>DE MOTV NATVRALI.<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N15ADC" type="main">
					<s id="N15ADE"><!-- NEW -->MOtus localis naturalis lat&egrave; &longs;umptus e&longs;t, <lb/>qui ab aliqua caus&acirc; naturali ponitur; </s>
					<s id="N15AE4"><!-- NEW --><lb/>&longs;trict&egrave; ver&ograve; &longs;umitur pro motu grauium <lb/>deor&longs;um, &agrave; principio intrin&longs;eco &longs;altem <lb/>&longs;en&longs;ibiliter; </s>
					<s id="N15AED"><!-- NEW -->In hoc vltimo &longs;en&longs;u mo&shy;<lb/>tum naturalem v&longs;urpabo; &longs;it ergo. <lb/><gap desc="hr tag"/></s>
				</p>
				<p id="N15AF6" type="main">
					<s id="N15AF8"><emph type="center"/><emph type="italics"/>DEFINITIO 1.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N15B04" type="main">
					<s id="N15B06"><!-- NEW --><emph type="italics"/>MOtus localis naturalis e&longs;t, qui e&longs;t &agrave; grauitate deor&longs;um.<emph.end type="italics"/> h&aelig;c defini&shy;<lb/>tio vix aliqua explicatione indiget; dicitur e&longs;&longs;e &agrave; grauitate, <lb/>quidquid &longs;it grauitas, &longs;iue qualitas di&longs;tincta, &longs;iue non. </s>
				</p>
				<p id="N15B13" type="main">
					<s id="N15B15"><emph type="center"/><emph type="italics"/>Definitio<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N15B22" type="main">
					<s id="N15B24"><emph type="italics"/>Motus &aelig;quabilis e&longs;t, quo &aelig;qualibus quibu&longs;cumque temporibus &aelig;qualia per&shy;<lb/>curruntur &longs;patia ab eodem mobili.<emph.end type="italics"/></s>
				</p>
				<p id="N15B2D" type="main">
					<s id="N15B2F"><emph type="center"/><emph type="italics"/>Definitio<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N15B3C" type="main">
					<s id="N15B3E"><!-- NEW --><emph type="italics"/>Motus naturaliter acceleratus e&longs;t, quo &longs;ecundo tempore &aelig;quali primo ma&shy;<lb/>ius &longs;patium acquiritur, &amp; tertio, qu&agrave;m &longs;ecundo, &amp; quarto qu&agrave;m tertio, atque <lb/>ita deinceps; nulla &longs;cilicet addita vi ab extrin&longs;eco &longs;altem &longs;en&longs;ibiliter.<emph.end type="italics"/></s>
				</p>
				<p id="N15B4A" type="main">
					<s id="N15B4C"><!-- NEW -->Definit aliter hunc motum Galileus; </s>
					<s id="N15B50"><!-- NEW -->dicit enim eum e&longs;&longs;e, qui &aelig;quali&shy;<lb/>bus temporibus &aelig;qualia acquirit velocitatis momenta; </s>
					<s id="N15B56"><!-- NEW -->&longs;ed profect&ograve; non <lb/>conuenit h&aelig;c definitio omni motui naturaliter accelerato, v. <!-- REMOVE S-->g. <!-- REMOVE S-->motui <lb/>de&longs;cen&longs;us funependuli, vel in orbe cauo, vel etiam in plano decliui ma&shy;<lb/>xim&aelig; longitudinis; definitio no&longs;tra clarior e&longs;t. </s>
				</p>
				<p id="N15B64" type="main">
					<s id="N15B66"><emph type="center"/><emph type="italics"/>Hypothe&longs;is<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N15B73" type="main">
					<s id="N15B75"><!-- NEW --><emph type="italics"/>Corpus graue cadit deor&longs;um, &amp; cadens ex maiori altitudine maiorem ictum <lb/>infligit quam &longs;i caderet ex minore<emph.end type="italics"/>; &longs;i quis hoc neget hoc probet, patet ma&shy;<lb/>nife&longs;ta experientia. </s>
				</p>
				<pb pagenum="75" xlink:href="026/01/107.jpg"/>
				<p id="N15B86" type="main">
					<s id="N15B88"><emph type="center"/><emph type="italics"/>Hypothe&longs;is<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N15B95" type="main">
					<s id="N15B97"><!-- NEW --><emph type="italics"/>Arcus maior &amp; minor eiu&longs;dem funependuli &aelig;qualibus fer&egrave; temporibus, <lb/>percurruntur<emph.end type="italics"/>; h&aelig;c etiam &longs;&aelig;pi&ugrave;s probata e&longs;t, &amp; &longs;i quis fidem detrectat, <lb/>probare conetur. </s>
				</p>
				<p id="N15BA4" type="main">
					<s id="N15BA6"><emph type="center"/><emph type="italics"/>Hypothe&longs;is<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N15BB3" type="main">
					<s id="N15BB5"><!-- NEW -->Globus per planum inclinatum l&aelig;uigatum de&longs;cendens &longs;ecundum &longs;pa&shy;<lb/>tium citi&ugrave;s percurrit, qu&agrave;m primum; quod etiam &longs;en&longs;u percipi pote&longs;t, <lb/>&amp; tam &longs;&aelig;p&egrave; probatum e&longs;t, vt nemo iam negare audeat motus naturalis <lb/>accelerationem. </s>
				</p>
				<p id="N15BBF" type="main">
					<s id="N15BC1"><emph type="center"/><emph type="italics"/>Hypothe&longs;is<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N15BCE" type="main">
					<s id="N15BD0"><!-- NEW --><emph type="italics"/>Omne tempus &longs;en&longs;ibile non e&longs;t; </s>
					<s id="N15BD6"><!-- NEW -->idem dico de &longs;patio,<emph.end type="italics"/> quod nemo etiam <lb/>negare au&longs;it; alioquin &longs;i quis negaret, dicat mihi qu&aelig;&longs;o quot &longs;int in mi&shy;<lb/>nuto hor&aelig; in&longs;tantia? </s>
					<s id="N15BE1">quot in apice acus puncta? </s>
				</p>
				<p id="N15BE4" type="main">
					<s id="N15BE6"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N15BF3" type="main">
					<s id="N15BF5"><!-- NEW --><emph type="italics"/>Impetus additus alteri, &amp; determinatus ad <expan abbr="e&atilde;dem">eandem</expan> lineam, facit maiorem <lb/>&amp; inten&longs;iorem impetum<emph.end type="italics"/>; patet, &amp; vici&longs;&longs;im, &amp; detractus alteri minorem <lb/>facit, &amp; vici&longs;&longs;im. </s>
				</p>
				<p id="N15C06" type="main">
					<s id="N15C08"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N15C15" type="main">
					<s id="N15C17"><emph type="italics"/>Qu&acirc; proportione cre&longs;cit cau&longs;a, e&acirc;dem cre&longs;cit effectus, &amp; vici&longs;&longs;im, &longs;i eodem <lb/>modo eidemque &longs;ubjecto &longs;it applicata,<emph.end type="italics"/> probatur per Ax.12. l. <!-- REMOVE S-->1. &amp; qu&acirc; pro&shy;<lb/>portione illa decre&longs;cit, hic decre&longs;cit, &amp; vici&longs;&longs;im. </s>
				</p>
				<p id="N15C25" type="main">
					<s id="N15C27"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N15C34" type="main">
					<s id="N15C36"><emph type="italics"/>Eadem cau&longs;a nece&longs;&longs;aria non impedita &longs;ubjecto apte applicata &aelig;qualibus <lb/>temporibus &aelig;qualem effectum producit, &amp; contr&agrave;.<emph.end type="italics"/></s>
					<s id="N15C3F"> Probatur per Ax.12.l. </s>
					<s id="N15C42">1. &amp; <lb/>vici&longs;&longs;im &aelig;qualis effectus &longs;upponit &aelig;qualem cau&longs;am. </s>
				</p>
				<p id="N15C47" type="main">
					<s id="N15C49"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N15C56" type="main">
					<s id="N15C58"><!-- NEW --><emph type="italics"/>Ille effectus, qui non producitur &agrave; caus&acirc; prim&acirc;, &amp; ad cuius productionem <lb/>nulla cau&longs;a extrin&longs;eca e&longs;t applicata, producitur ab intrin&longs;eco<emph.end type="italics"/>; probatur, quia <lb/>habere debet aliquam cau&longs;am per Ax.8. <!-- KEEP S--></s>
				</p>
				<p id="N15C66" type="main">
					<s id="N15C68"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 5.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N15C75" type="main">
					<s id="N15C77"><!-- NEW --><emph type="italics"/>Illa cau&longs;a plus agit proportionaliter qu&aelig; habet minorem re&longs;istentiam; min&ugrave;s <lb/>ver&ograve;, qu&aelig; maiorem, qu&aelig; demum &aelig;qualem, &aelig;quali proportione agit.<emph.end type="italics"/> v.g. <!-- REMOVE S-->cau&longs;a, <lb/>cuius virtus, vel actiuitas e&longs;t vt 20. &amp; re&longs;i&longs;tentia vt 10. agit in maiori <lb/>proportione, qu&agrave;m illa cuius actiuitas e&longs;t 30. &amp; re&longs;i&longs;tentia 20. in minori <lb/>ver&ograve; qu&agrave;m ea, cuius actiuitas e&longs;t vt 3. &amp; re&longs;i&longs;tentia vt 1. in &aelig;quali de&shy;<lb/>nique cum illa, cuius actiuitas e&longs;t vt 4. &amp; re&longs;i&longs;tentia vt 2. <!-- KEEP S--></s>
				</p>
				<p id="N15C8D" type="main">
					<s id="N15C8F"><!-- NEW -->Hoc Axioma certi&longs;&longs;imum e&longs;t; </s>
					<s id="N15C93"><!-- NEW -->quippe 20. facili&ugrave;s &longs;uperabunt 10. qu&agrave;m <lb/>30. 20. &amp; difficili&ugrave;s quam 3. 1. &amp; &aelig;qu&egrave; facil&egrave;, ac 4. 2. In motu locali <lb/>res e&longs;t clari&longs;&longs;ima; </s>
					<s id="N15C9B"><!-- NEW -->quippe vires vt 12. tam facil&egrave; mouebunt 12. libras, <lb/>qu&agrave;m vires vt 4. 4.libras; </s>
					<s id="N15CA1"><!-- NEW -->&longs;ed facili&ugrave;s, qu&agrave;m vires vt 20. 30.libras, &amp; dif&shy;<lb/>ficili&ugrave;s qu&agrave;m vires vt 4. 3. libras; quid clarius? </s>
					<s id="N15CA7">Igitur illa cau&longs;a facili&ugrave;s <pb pagenum="76" xlink:href="026/01/108.jpg"/>&longs;uperat re&longs;i&longs;tentiam impedimenti, qu&aelig; habet maiorem proportionem <lb/>virium cum re&longs;i&longs;tentia, qu&agrave;m qu&aelig; minorem. </s>
				</p>
				<p id="N15CB1" type="main">
					<s id="N15CB3"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N15CBF" type="main">
					<s id="N15CC1">Si quando appellandum erit aliquod Axioma vel Theorema lib.  1.ci&shy;<lb/>tabitur Liber. </s>
				</p>
				<p id="N15CC6" type="main">
					<s id="N15CC8"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N15CD5" type="main">
					<s id="N15CD7"><emph type="italics"/>Datur motus localis naturalis, i&longs;que ab intrin&longs;eco.<emph.end type="italics"/></s>
					<s id="N15CDE"> Probatur; corpus gra&shy;<lb/>ue mouetur localiter deor&longs;um per hypoth. </s>
					<s id="N15CE3"><!-- NEW -->hic motus e&longs;t ab intrin&longs;eco, <lb/>quod probatur; </s>
					<s id="N15CE9"><!-- NEW -->non e&longs;t ab vll&acirc; caus&acirc; extrin&longs;ec&acirc;; igitur e&longs;t ab intrin&longs;eca <lb/>per Ax.4. antecedens probatur inductione fact&acirc; omnium extrin&longs;ecorum. </s>
					<s id="N15CEF"><!-- NEW --><lb/>Prim&ograve; non e&longs;t &agrave; cau&longs;a prima, vt aliquis fort&egrave; min&ugrave;s prudenter, &amp; magis <lb/>pi&egrave;, qu&agrave;m par &longs;it, diceret; </s>
					<s id="N15CF6"><!-- NEW -->quia ille effectus tribui tant&ugrave;m debet cau&longs;&aelig; <lb/>prim&aelig;, qui nullam habere pote&longs;t cau&longs;am &longs;ecundam applicatam, vt patet; </s>
					<s id="N15CFC"><!-- NEW --><lb/>&longs;ed hic effectus pote&longs;t habere cau&longs;am &longs;ecundam applicatam, quam a&longs;&longs;i&shy;<lb/>gnabimus infr&agrave;; </s>
					<s id="N15D03"><!-- NEW -->deinde cau&longs;a prima agit tant&ugrave;m naturaliter iuxta exi&shy;<lb/>gentiam cau&longs;arum &longs;ecundarum; </s>
					<s id="N15D09"><!-- NEW -->igitur ideo moueret corpus graue deor&shy;<lb/>&longs;um; </s>
					<s id="N15D0F"><!-- NEW -->quia tunc motum corpus graue exigeret; </s>
					<s id="N15D13"><!-- NEW -->&longs;ed hoc mihi &longs;ufficit, vt <lb/>dicatur hic motus e&longs;&longs;e ab intrin&longs;eco; </s>
					<s id="N15D19"><!-- NEW -->pr&aelig;terea, &longs;i dicatur Deus mouere <lb/>corpus graue deor&longs;um iuxta illius exigentiam, dicetur etiam t&ugrave;m cale&shy;<lb/>facere, t&ugrave;m illuminare, ad exigentiam ignis; </s>
					<s id="N15D21"><!-- NEW -->quippe t&agrave;m mihi &longs;en&longs;ibile <lb/>e&longs;t corpus graue de&longs;cendere &longs;ine vi impre&longs;&longs;a ab extrin&longs;eco, qu&agrave;m ignem <lb/>calefacere, &amp; &longs;olem lucere &longs;ine vi extrin&longs;eca; </s>
					<s id="N15D29"><!-- NEW -->adde quod illud &longs;olenne <lb/>e&longs;t natur&aelig; in&longs;titutum, vt id, quod exigit res aliqua ad finem &longs;uum con&longs;e&shy;<lb/>quendum, per virtutem intrin&longs;ecam po&longs;&longs;it ponere, &longs;i dumtaxat excipias <lb/>concur&longs;um diuinum, &amp; ip&longs;am con&longs;eruationem; </s>
					<s id="N15D33"><!-- NEW -->&longs;ic animal exigit vide&shy;<lb/>re, audire, &longs;entire, moueri; </s>
					<s id="N15D39"><!-- NEW -->igitur habet virtutem intrin&longs;ecam, per quam <lb/>videat, audiat, &amp; moueatur; </s>
					<s id="N15D3F"><!-- NEW -->&longs;ic ignis exigit calefacere, lucere; </s>
					<s id="N15D43"><!-- NEW -->a&euml;r, vel aqua <lb/>frigefacere, quidquid tandem &longs;int i&longs;t&aelig; qualitates, de quibus alibi; </s>
					<s id="N15D49"><!-- NEW -->&longs;ic <lb/>demum corpus graue exigit moueri deor&longs;um; quis enim neget corpori <lb/>graui t&agrave;m natiuum e&longs;&longs;e tendere deor&longs;um, cum &longs;cilicet corpus leuius &longs;ub&shy;<lb/>e&longs;t, qu&agrave;m &longs;it animali progredi, vrere igni, lucere, &amp;c. </s>
				</p>
				<p id="N15D53" type="main">
					<s id="N15D55"><!-- NEW -->Denique &longs;atis e&longs;t mihi, vt dicatur aliquid cau&longs;a, Phy&longs;ic&egrave; loquendo, &longs;i <lb/>ex illius applicatione &longs;emper &longs;equatur effectus; </s>
					<s id="N15D5B"><!-- NEW -->nam non nego po&longs;&longs;e fie&shy;<lb/>ri effectus omnes, qui no&longs;tris &longs;en&longs;ibus &longs;ubiiciuntur, &longs;altem extrin&longs;ecos, <lb/>e&longs;&longs;e &agrave; cau&longs;a prima, quippe &longs;i &longs;emper ex ignis applicatione Deus diffun&shy;<lb/>deret lucem, &amp; calorem, quem &longs;olus ip&longs;e produceret, igne ip&longs;o inerte re&shy;<lb/>licto, nullam pror&longs;us mutationem perciperemus; </s>
					<s id="N15D67"><!-- NEW -->&amp; nemo e&longs;&longs;et, qui non <lb/>exi&longs;timaret lucem hanc &amp; calorem hunc e&longs;&longs;e ab igne; </s>
					<s id="N15D6D"><!-- NEW -->igitur Phy&longs;ic&egrave; lo&shy;<lb/>quendo cau&longs;am appellamus id, ex cuius applicatione &longs;emper &longs;equitur <lb/>effectus, vt iam diximus in Ax. 11.l.1. n.1. Igitur cum ex corpore graui <lb/>po&longs;ito in a&euml;re libero &longs;equatur motus deor&longs;um; dicendum e&longs;t, Phy&longs;ic&egrave; lo&shy;<lb/>quend&ograve;, e&longs;&longs;e huius motus cau&longs;am, id e&longs;t in ordine ad Phy&longs;icam, perinde <lb/>omnin&ograve; &longs;e habere, atque &longs;i e&longs;&longs;et cau&longs;a, lic&egrave;t cau&longs;a non e&longs;&longs;et. </s>
				</p>
				<pb pagenum="77" xlink:href="026/01/109.jpg"/>
				<p id="N15D7F" type="main">
					<s id="N15D81"><!-- NEW -->Secund&ograve; hic motus non e&longs;t ab a&euml;re ambiente; </s>
					<s id="N15D85"><!-- NEW -->probatur, ruderet a&euml;r <lb/>deor&longs;um corpus graue, quia leuior e&longs;t, id e&longs;t ne &longs;upr&agrave; &longs;e corpus grauius <lb/>haberet; </s>
					<s id="N15D8D"><!-- NEW -->&longs;ed e&acirc;dem ratione corpus graue debet remouere &longs;ur&longs;um a&euml;ra, <lb/>id e&longs;t corpus leue, ne infr&agrave; &longs;e habeat corpus leuius; </s>
					<s id="N15D93"><!-- NEW -->e&longs;t enim par omni&shy;<lb/>n&ograve; ratio: </s>
					<s id="N15D99"><!-- NEW -->Pr&aelig;terea &longs;i a&euml;r trudit deor&longs;inn corpus graue, quia ip&longs;i loco <lb/>cedit; </s>
					<s id="N15D9F"><!-- NEW -->cert&egrave; ip&longs;e a&euml;r mouetur, igitur ab intrin&longs;eco; </s>
					<s id="N15DA3"><!-- NEW -->&longs;i enim vna pars a&euml;&shy;<lb/>ris pellit aliam, &amp; h&aelig;c aliam, tandem ad aliquam peruenitur, qu&aelig; &longs;e ip&shy;<lb/>&longs;am mouet; </s>
					<s id="N15DAB"><!-- NEW -->igitur motus illius e&longs;t ab intrin&longs;eco; </s>
					<s id="N15DAF"><!-- NEW -->igitur motus natura&shy;<lb/>lis; </s>
					<s id="N15DB5"><!-- NEW -->deinde non mod&ograve; lapis de&longs;cendit per a&euml;ra, &longs;ed per mediam aquam; </s>
					<s id="N15DB9"><!-- NEW --><lb/>igitur &longs;i ab a&euml;re truditur deor&longs;um, idem dicendum e&longs;t de aqu&acirc;, a qui <lb/>haud dubi&egrave; maiore vi truderetur; </s>
					<s id="N15DC0"><!-- NEW -->nam corpus den&longs;um maiore vi pellit, <lb/>qu&agrave;m rarum, vt con&longs;tat exprienti&acirc;; </s>
					<s id="N15DC6"><!-- NEW -->cum tamen corpus graue per me&shy;<lb/>dium den&longs;ius difficili&ugrave;s decendat; igitur medium ip&longs;um re&longs;i&longs;tit motui, <lb/>quis hoc neget? </s>
					<s id="N15DCE">igitur non e&longs;t cau&longs;a motus, quem impedit. </s>
				</p>
				<p id="N15DD1" type="main">
					<s id="N15DD3"><!-- NEW -->Denique &longs;i corpus graue non tendit, fertur que deor&longs;um &longs;u&aacute; &longs;ponte, <lb/>&longs;ed ab a&euml;re extru&longs;um; </s>
					<s id="N15DD9"><!-- NEW -->igitur dum vix &longs;u&longs;tineo manu; o. </s>
					<s id="N15DDD">libras ferri, &longs;eu <lb/>plumbi; </s>
					<s id="N15DE2"><!-- NEW -->h&aelig;c vis illata manui, quam prob&egrave; &longs;entio, e&longs;t ab a&euml;re impel&shy;<lb/>lente plumbum, quod e&longs;t ridiculum, cum eadem quantitas a&euml;ris incu&shy;<lb/>ber, &amp; &longs;ub&longs;it manui, &longs;iue &longs;u&longs;tineat plumbum, &longs;iue &longs;it vacua; ex hoc, ni <lb/>fallor, euincitur pondus ip&longs;um &longs;ui &longs;ponte deor&longs;um tendere. </s>
				</p>
				<p id="N15DEC" type="main">
					<s id="N15DEE"><!-- NEW -->Terti&ograve; non de&longs;unt, qui dicant corpus graue trahi ab ip&longs;a vi quadam <lb/>magnetic&acirc;, quod triplici modo fieri pote&longs;t; </s>
					<s id="N15DF4"><!-- NEW -->Prim&ograve; per qualitatem <lb/>quamdam diffu&longs;am, quod dici non pote&longs;t; </s>
					<s id="N15DFA"><!-- NEW -->quia capillus traheretur faci&shy;<lb/>li&ugrave;s, qu&agrave;m ingens &longs;axum, qu&agrave;m ma&longs;&longs;a, &longs;eu lamina; </s>
					<s id="N15E00"><!-- NEW -->&amp; facili&ugrave;s eadem po&shy;<lb/>tentia motrix minus pondus moueret qu&agrave;m maius, c&aelig;teris paribus; </s>
					<s id="N15E06"><!-- NEW -->pr&aelig;&shy;<lb/>terea manum meam &aelig;qualiter traheret, &longs;iue &longs;it cum aliquo pondere con&shy;<lb/>iuncta, &longs;iue &longs;it nuda &longs;ine pondere; </s>
					<s id="N15E0E"><!-- NEW -->deinde illa virtus tractrix ita diffun&shy;<lb/>ditur, vt in maiori di&longs;tantia &longs;it infirmior, fortior in minori; </s>
					<s id="N15E14"><!-- NEW -->alioqui <lb/>diffunderetur in infinitum, quod dici non pote&longs;t; </s>
					<s id="N15E1A"><!-- NEW -->igitur &longs;i idem lapis <lb/>demittatur ex maiore altitudine, tum ex minore; </s>
					<s id="N15E20"><!-- NEW -->haud dubi&egrave; morus ille <lb/>primus initio e&longs;&longs;et tardior i&longs;to contra experientiam; </s>
					<s id="N15E26"><!-- NEW -->deinde in &longs;pecu al&shy;<lb/>ti&longs;&longs;ima &longs;ubterranea trahi po&longs;&longs;et corpus vndequaque, &longs;icut in magnete; </s>
					<s id="N15E2C"><!-- NEW --><lb/>qu&aelig; omnia intelligi non po&longs;&longs;unt; denique virtutes illas &longs;eu qualitates <lb/>tractrices refellemus &longs;uo loco. </s>
				</p>
				<p id="N15E33" type="main">
					<s id="N15E35"><!-- NEW -->Secund&ograve;, aliqui dicunt hoc totum fieri per vim quamdam &longs;ympathi&shy;<lb/>cam, quod etiam fal&longs;i&longs;&longs;imum e&longs;t; </s>
					<s id="N15E3B"><!-- NEW -->t&ugrave;m quia h&aelig;c &longs;ympathia explicari <lb/>non pote&longs;t; </s>
					<s id="N15E41"><!-- NEW -->t&ugrave;m quia vel terra ip&longs;a producit aliquid in corpore graui, <lb/>quod in a&euml;re libratur; </s>
					<s id="N15E47"><!-- NEW -->vel corpus in &longs;e ip&longs;o; &longs;i primum; </s>
					<s id="N15E4B"><!-- NEW -->refellitur ii&longs;&shy;<lb/>dem omnin&ograve; rationibus, quibus ip&longs;am vim terr&aelig; tractricem &longs;upr&agrave; expu&shy;<lb/>gnauimus; &longs;i ver&ograve; &longs;ecundum, hoc ip&longs;um e&longs;t, quod &longs;upr&agrave; diximus. </s>
				</p>
				<p id="N15E53" type="main">
					<s id="N15E55"><!-- NEW -->Terti&ograve;, Dixere aliqui &longs;ubtili&ugrave;s profect&ograve; qu&agrave;m veri&ugrave;s, corpus graue <lb/>trahi deor&longs;um, non vi quadam occult&acirc;, vt &longs;upr&agrave; dictum e&longs;t; </s>
					<s id="N15E5B"><!-- NEW -->&longs;ed filamen&shy;<lb/>tis quibu&longs;dam, &longs;eu ductili terr&aelig; profluuio, quod illius capillitium vo&shy;<lb/>cant; </s>
					<s id="N15E63"><!-- NEW -->idque tant&ugrave;m fieri probant ducta ab electro analogi&acirc;, quod pa&shy;<lb/>leam &amp; minutiora corpu&longs;cula hac e&acirc;dem arte trahit; </s>
					<s id="N15E69"><!-- NEW -->&longs;ed profect&ograve; gra-<pb pagenum="78" xlink:href="026/01/110.jpg"/>uiores &longs;unt difficultates, quam vt illis fieri &longs;atis queat; </s>
					<s id="N15E72"><!-- NEW -->nam prim&ograve; cor&shy;<lb/>pus leuius ab his filamentis abripi facili&ugrave;s po&longs;&longs;et, vt con&longs;tat in electro; <lb/>igitur citi&ugrave;s de&longs;cenderet. </s>
				</p>
				<p id="N15E7A" type="main">
					<s id="N15E7C">Secund&ograve;, corpus vicinius etiam facili&ugrave;s abriperetur. </s>
				</p>
				<p id="N15E7F" type="main">
					<s id="N15E81">Terti&ograve;, numquid flante vento, vel imbre cadente di&longs;&longs;ipantur h&aelig;c fi&shy;<lb/>lamenta? </s>
					<s id="N15E86">quod etiam videmus in electro. </s>
				</p>
				<p id="N15E89" type="main">
					<s id="N15E8B">Quart&ograve;, manum meam &aelig;qu&egrave; facil&egrave; traheret terra his funiculis &longs;eu <lb/>pondere grauatam, &longs;eu vacuam. </s>
				</p>
				<p id="N15E90" type="main">
					<s id="N15E92"><!-- NEW -->Quint&ograve;, quemadmodum electrum ex omni parte trahit, ita terra ip&longs;a <lb/>per omnem lineam traheret; imm&ograve; etiam &longs;ur&longs;um in &longs;ubterranea &longs;pecu, <lb/>quod e&longs;t ab&longs;urdum. </s>
				</p>
				<p id="N15E9A" type="main">
					<s id="N15E9C"><!-- NEW -->Sext&ograve;, h&aelig;c filamenta, qu&aelig; deinde reducuntur, debent habere cau&shy;<lb/>&longs;am huius reductionis non extrin&longs;ecam; </s>
					<s id="N15EA2"><!-- NEW -->igitur intrin&longs;ecam; igitur datur <lb/>motus naturalis. </s>
				</p>
				<p id="N15EA8" type="main">
					<s id="N15EAA">Septim&ograve;, h&aelig;c filamenta per mediam flammam non traherent, quod <lb/>etiam fieri videmus in electro. </s>
				</p>
				<p id="N15EAF" type="main">
					<s id="N15EB1"><!-- NEW -->Quart&ograve;, motus naturalis non e&longs;t &agrave; virtute quadam pellente, quam <lb/>c&aelig;lo quidam affingunt; </s>
					<s id="N15EB7"><!-- NEW -->nam vel ab omni parte c&aelig;li deor&longs;um trudere&shy;<lb/>tur, vel ab vn&acirc;; &longs;i ab vna; </s>
					<s id="N15EBD"><!-- NEW -->igitur in omni c&aelig;li plaga corpus non fertur <lb/>deor&longs;um; </s>
					<s id="N15EC3"><!-- NEW -->&longs;i ab omni, ergo cum pellatur corpus per plures lineas etiam <lb/>oppo&longs;itas moueri non pote&longs;t: </s>
					<s id="N15EC9"><!-- NEW -->Pr&aelig;terea debilior e&longs;&longs;et h&aelig;c vis in maiori <lb/>di&longs;tanti&acirc;; denique vapores, &amp; alia minutiora corpu&longs;cula in a&euml;re fluitan&shy;<lb/>tia facili&ugrave;s deor&longs;um truderentur, contra experientiam. </s>
				</p>
				<p id="N15ED1" type="main">
					<s id="N15ED3"><!-- NEW -->Sed non e&longs;t omittendum, quod aliqui putant ex illis filamentis con&shy;<lb/>texi po&longs;&longs;e legitimam rationem, cur atomi etiam plumbe&aelig; materi&aelig; non <lb/>ita facil&egrave; de&longs;cendant; </s>
					<s id="N15EDB"><!-- NEW -->qu&ograve;d &longs;cilicet propter &longs;uam tenuitatem ab illis fi&shy;<lb/>lamentis non ita intercipi vel implicari po&longs;&longs;int; </s>
					<s id="N15EE1"><!-- NEW -->&longs;ed qua&longs;i pi&longs;ces per fo&shy;<lb/>ramina retium euadant; &longs;ed profect&ograve; long&egrave; alia ratio e&longs;t, qu&agrave;m &longs;uo loco <lb/>afferemus, nam etiam plum&aelig;, fe&longs;tuc&aelig;, pale&aelig;, &amp; alia corpu&longs;cula longio&shy;<lb/>ra, &longs;ed leui&longs;&longs;ima iis filamentis implicarentur, vt videre e&longs;t in electro. </s>
				</p>
				<p id="N15EEB" type="main">
					<s id="N15EED"><!-- NEW -->Quint&ograve;, aliqui recentiores exi&longs;timant corpora deor&longs;um trudi ab <lb/>ip&longs;a luce, qu&aelig; nihil e&longs;t aliud, quam motio &aelig;there&aelig; cuiu&longs;dam &longs;ub&longs;tan&shy;<lb/>ti&aelig; per poros a&euml;ris traduct&aelig;, vt ip&longs;i volunt; &longs;ed neque hoc probari po&shy;<lb/>te&longs;t. </s>
					<s id="N15EF7"><!-- NEW -->Prim&ograve; quia de nocte corpora &aelig;quali motu deor&longs;um feruntur; pe&shy;<lb/>rinde atque de die, nec min&ugrave;s in ob&longs;curi&longs;&longs;imo conclaui, qu&agrave;m &longs;ub dio, <lb/>vel aperto c&aelig;lo. </s>
					<s id="N15EFF"><!-- NEW -->Secund&ograve;, in &longs;ubterraneis locis etiam grauia &aelig;qu&egrave; veloci&shy;<lb/>ter de&longs;cendunt; </s>
					<s id="N15F05"><!-- NEW -->lic&egrave;t e&ograve; lumen non penetret; </s>
					<s id="N15F09"><!-- NEW -->quod &longs;i aliquis ob&longs;tinat&egrave;, <lb/>id a&longs;&longs;ereret; </s>
					<s id="N15F0F"><!-- NEW -->haud dubi&egrave; per medium a&euml;ra maior huius materi&aelig; copia <lb/>diffunditur, qu&agrave;m per medias rupes, quis hoc neget; igitur pauci&longs;&longs;imi <lb/>radij v&longs;que ad interius &amp; inferius antrum perueniunt. </s>
					<s id="N15F17"><!-- NEW -->Terti&ograve;, manum <lb/>meam &longs;iue ponderi coniunctam &longs;iue ab eo <expan abbr="&longs;eparat&atilde;">&longs;eparatam</expan> &aelig;qualis portio illius <lb/>materi&aelig; deor&longs;um pelleret, vt patet; igitur &aelig;quali motus vi. </s>
					<s id="N15F23">Quart&ograve;, cor&shy;<lb/>pus diaphanum, per cuius poros facil&egrave; traiicitur h&aelig;c materia, e&longs;&longs;et leuius <lb/>alio quod tamen fal&longs;um e&longs;t, vt videre e&longs;t in vitro, cry&longs;tallo, adamante, <lb/>glacie. </s>
					<s id="N15F2C"><!-- NEW -->Quint&ograve; maxima huius materi&aelig; copia collecta &longs;eu &longs;peculi opera <pb pagenum="79" xlink:href="026/01/111.jpg"/>&longs;eu vitri, maiore vi corpora deor&longs;um truderet; </s>
					<s id="N15F35"><!-- NEW -->quia maior cau&longs;a maio&shy;<lb/>rem effectum producit per Ax.2. Sext&ograve; po&longs;t refractionem lineam mutat <lb/>radius luminis; igitur deor&longs;um rect&agrave; non pelleret. </s>
					<s id="N15F3D"><!-- NEW -->Septim&ograve; radij traie&shy;<lb/>cti per vitrum maiore vi deor&longs;um pellerent qu&agrave;m per lignum, vel &longs;pon&shy;<lb/>giam; quipp&egrave; per h&aelig;c corpora traiecti &longs;ecundum authores huius &longs;enten&shy;<lb/>ti&aelig; di&longs;trahuntur propter obliquitatem pororum. </s>
					<s id="N15F47"><!-- NEW -->Octau&ograve; denique radij <lb/>profecti &agrave; Sole iuxta ortum, vel occa&longs;um &longs;unt vald&egrave; obliqui; igitur non <lb/>truderent deor&longs;um rect&agrave;. </s>
				</p>
				<p id="N15F4F" type="main">
					<s id="N15F51"><!-- NEW -->Nec e&longs;t quod pr&aelig;dicti &agrave;uthores confugiant ad experientiam, qua <lb/>&longs;cilicet videmus tripudiantes atomos in radio &longs;olari immer&longs;as; igitur <lb/>agitantur ab ip&longs;o radio, quod maxim&egrave; accidit in linea v&longs;toria, cuius <lb/>effectus veri&longs;&longs;imam rationem &longs;uo loco afferemus, cum de lumine. </s>
				</p>
				<p id="N15F5B" type="main">
					<s id="N15F5D"><!-- NEW -->Sext&ograve;, &longs;unt denique multi, <expan abbr="ii&qacute;ue">iique</expan> ex &longs;euerioribus Peripateticis, qui <lb/>exi&longs;timant grauia moueri deor&longs;um &agrave; generante, quod expre&longs;&longs;is verbis <lb/>traditum e&longs;t ab <emph type="italics"/>Ari&longs;totele l.<emph.end type="italics"/>8. <emph type="italics"/>phy&longs;. cap.<emph.end type="italics"/>4. <emph type="italics"/>iuxta<emph.end type="italics"/> principium illud vniuer&shy;<lb/>&longs;ali&longs;&longs;imum; <emph type="italics"/>Quidquid mouetur; </s>
					<s id="N15F80"><!-- NEW -->ab alio mouetur<emph.end type="italics"/>; </s>
					<s id="N15F87"><!-- NEW -->&longs;ed profect&ograve; ij ip&longs;i, qui <lb/>motum grauium generanti tribuunt, tanquam principi cau&longs;&aelig;, non ne&shy;<lb/>gant ine&longs;&longs;e grauibus grauitatem, qu&aelig; &longs;it principium actiuum minus <lb/>principale motus; </s>
					<s id="N15F91"><!-- NEW -->ad quem etiam, vt ip&longs;i exi&longs;timant, forma &longs;ub&longs;tantialis <lb/>concurrit; </s>
					<s id="N15F97"><!-- NEW -->In hoc quippe conueniunt omnes t&ugrave;m &longs;ectarum Principes, <lb/>t&ugrave;m recentiores: </s>
					<s id="N15F9D"><!-- NEW -->quidquid &longs;it etiam ex iis ip&longs;is datur motus naturalis, <lb/>qui e&longs;t &agrave; virtute proxima intrin&longs;eca; hoc ip&longs;um etiam &longs;en&longs;it Ari&longs;toteles <lb/>lib.4. de c&aelig;lo cap.  3. t. </s>
					<s id="N15FA5"><!-- NEW -->25. vbi ait grauibus &amp; leuibus ine&longs;&longs;e principium <lb/>actiuum &longs;uorum motuum; </s>
					<s id="N15FAB"><!-- NEW -->imm&ograve; &longs;i totum cap.4. l.8. phy&longs;. attent&egrave; lega&shy;<lb/>tur, vbi dicit moueri &agrave; generante, haud dubi&egrave; intelligetur nihil aliud in&shy;<lb/>tendi&longs;&longs;e Ari&longs;totelem qu&agrave;m grauia &agrave; generante, in&longs;tanti, quo generan&shy;<lb/>tur, accipere actum primum huius motus; id e&longs;t virtutem, &agrave; qua po&longs;&shy;<lb/>&longs;int reduci ad actum &longs;ecundum, id e&longs;t ad ip&longs;um motum, de cuius rei ve&shy;<lb/>ritate iam mihi non e&longs;t laborandum. </s>
				</p>
				<p id="N15FB9" type="main">
					<s id="N15FBB"><!-- NEW -->Igitur non mouetur corpus graue &agrave; cau&longs;a prim&acirc;, lic&egrave;t h&aelig;c concurrat <lb/>cum ali&acirc; ad eius motum, nec ab a&euml;re, nec &agrave; virtute magnetica, qu&aelig; in&shy;<lb/>&longs;it terr&aelig;, nec adductis, reducti&longs;que filamentis, nec &agrave; c&aelig;lo pellente, nec <lb/>&agrave; vi &longs;ympathic&acirc;, nec &agrave; generante proxim&egrave; &amp; immediat&egrave;; </s>
					<s id="N15FC5"><!-- NEW -->quia fort&egrave; iam <lb/>interiit, nec ab vllo alio extrin&longs;eco, vt con&longs;tat inductione; </s>
					<s id="N15FCB"><!-- NEW -->igitur ab ali&shy;<lb/>qu&acirc; vi intrin&longs;ec&acirc;, quidquid &longs;it, de qua alibi: h&aelig;c omnia paul&ograve; fu&longs;i&ugrave;s <lb/>tractauimus, quia in hoc vno Theoremate totam motus naturalis rem <lb/>verti iudicamus. </s>
				</p>
				<p id="N15FD5" type="main">
					<s id="N15FD7"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N15FE4" type="main">
					<s id="N15FE6"><!-- NEW --><emph type="italics"/>Motus naturalis est aliquid distinctum realiter &agrave; mobili:<emph.end type="italics"/> Probatur; </s>
					<s id="N15FEF"><!-- NEW --><lb/>mobile ip&longs;um aliquando quie&longs;cit per hypoth.4.lib.1. igitur e&longs;t &longs;ine mo&shy;<lb/>tu; </s>
					<s id="N15FF6"><!-- NEW -->igitur &longs;eparatum &agrave; motu; </s>
					<s id="N15FFA"><!-- NEW -->igitur realiter di&longs;tinctum per Ax.2. lib.1. <lb/>hoc etiam probatus per Th. 1.lib.  1. Et cert&egrave; mirari &longs;atis non po&longs;&longs;um <lb/>aliquos recentiores non po&longs;&longs;e concipere, vt ip&longs;i aiunt, motum e&longs;&longs;e ali&shy;<lb/>quid ab ip&longs;o mobili di&longs;tinctum; </s>
					<s id="N16004"><!-- NEW -->nam quotie&longs;cunque duo pr&aelig;dicata, vel <pb pagenum="80" xlink:href="026/01/112.jpg"/>attributa contradictoria, quorum &longs;cilicet vnum negat aliud, eidem &longs;ub&shy;<lb/>jecto diuer&longs;is temporibus ine&longs;&longs;e dicuntur, haud dubi&egrave; alterum &longs;altem ab <lb/>eo di&longs;tingui realiter nece&longs;&longs;e e&longs;t; </s>
					<s id="N16011"><!-- NEW -->alioqui &longs;i vtrumque idem e&longs;&longs;e cum vno <lb/>tertio vere dicitur; </s>
					<s id="N16017"><!-- NEW --><emph type="italics"/>mouetur, non monetur,<emph.end type="italics"/> qu&aelig; &longs;unt pr&aelig;dicata contradi&shy;<lb/>ctoria; </s>
					<s id="N16022"><!-- NEW -->igitur vel moueri, vel non moueri dicit di&longs;tinctum realiter &agrave; mo&shy;<lb/>bili; Secundum e&longs;t mera negatio; </s>
					<s id="N16028"><!-- NEW -->nam eo ip&longs;o, quod mobile e&longs;t &longs;ine vllo <lb/>addito, non mouetur; </s>
					<s id="N1602E"><!-- NEW -->igitur &longs;upr&agrave; ip&longs;um mobile dicit puram putam ne&shy;<lb/>gationem motus; igitur moueri, dicit aliquid di&longs;tinctum. </s>
				</p>
				<p id="N16034" type="main">
					<s id="N16036"><!-- NEW -->Pr&aelig;terea quotie&longs;cunque pr&aelig;dicatum aliquod tribuitur in propo&longs;i&shy;<lb/>tione affirmatiua fals&acirc;; </s>
					<s id="N1603C"><!-- NEW -->cert&egrave; pr&aelig;dicatum illud non ine&longs;t &longs;ubiecto; </s>
					<s id="N16040"><!-- NEW -->alio&shy;<lb/>quin e&longs;&longs;et vera, vt patet; </s>
					<s id="N16046"><!-- NEW -->igitur di&longs;tinguitur &agrave; &longs;ubiecto realiter; </s>
					<s id="N1604A"><!-- NEW -->&longs;ed h&aelig;c <lb/>propo&longs;itio, <emph type="italics"/>lapis mouetur,<emph.end type="italics"/> dum ip&longs;e quie&longs;cit, e&longs;t fal&longs;a; igitur motus non <lb/>ine&longs;t mobili, igitur ab eo di&longs;tinguitur realiter, &longs;eu modaliter, qu&aelig; e&longs;t <lb/>di&longs;tinctio realis minor. </s>
				</p>
				<p id="N1605A" type="main">
					<s id="N1605C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N16069" type="main">
					<s id="N1606B"><!-- NEW --><emph type="italics"/>Metus naturalis non e&longs;t immediat&egrave; ab entitate mobilis, ita vt nihil &longs;it aliud <lb/>vnde &longs;it hic motus:<emph.end type="italics"/> Probatur; lapis cadens ex maiore altitudine maiorem <lb/>ictum infligit perhypoth. </s>
					<s id="N16078"><!-- NEW -->1. maior e&longs;t effectus, igitur maior cau&longs;a, id e&longs;t <lb/>motus; </s>
					<s id="N1607E"><!-- NEW -->igitur cau&longs;a motus per Ax.2. &longs;ed e&longs;t eadem entitas mobilis, vt <lb/>patet; </s>
					<s id="N16084"><!-- NEW -->igitur non e&longs;t cau&longs;a immediata motus; Pr&aelig;terea globus per pla&shy;<lb/>num inclinatum deuolutus &longs;uum motum accelerat per hypotl. </s>
					<s id="N1608A">3. &amp; fune&shy;<lb/>pendulum &longs;uam vibrationem per hypoth. </s>
					<s id="N1608F">2. igitur debet e&longs;&longs;e cau&longs;a huius <lb/>maioris, &longs;eu velocioris motus per Ax.8. lib.  1. h&aelig;c porr&ograve; non e&longs;t &longs;ub&shy;<lb/>&longs;tantia ip&longs;ius corporis, qu&aelig; &longs;emper eadem e&longs;t, t&ugrave;m initio, t&ugrave;m in fine <lb/>motus per Ax.2. </s>
				</p>
				<p id="N16098" type="main">
					<s id="N1609A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N160A7" type="main">
					<s id="N160A9"><emph type="italics"/>Motus naturalis non e&longs;t immediat&egrave; ab ip&longs;a grauitate.<emph.end type="italics"/></s>
					<s id="N160B0"><!-- NEW --> Probatur, &longs;int <lb/>enim e&aelig;dem hypoth.1.2.3. igitur maior ictus in fine motus, &amp; velocior <lb/>motus debent habere cau&longs;am; &longs;ed h&aelig;c grauitas non e&longs;t, qu&aelig; &longs;emper ea&shy;<lb/>dem e&longs;t, vt patet, vtrum ver&ograve; di&longs;tinguatur grauitas ab ip&longs;a corporis <lb/>&longs;ub&longs;tantia di&longs;cutiemus in tractatu &longs;equenti. </s>
					<s id="N160BC"><!-- NEW -->Fuit aliquis non infim&aelig; no&shy;<lb/>t&aelig; Philo&longs;ophus, qui diceret maiorem illum ictum e&longs;&longs;e ab ips&acirc; corporis <lb/>&longs;ub&longs;tanti&acirc;; &longs;ed hoc iam refellimus Theoremate 4. lib.1. Adde quod im&shy;<lb/>petu, ad extra producitur ab alio impetu per Th.42.lib.1. Dicebat etiam <lb/>velociorem motum e&longs;&longs;e ab ips&acirc; grauitate connotante pr&aelig;uium motum, <lb/>quod etiam refellemus infr&agrave;. </s>
				</p>
				<p id="N160CA" type="main">
					<s id="N160CC"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 5.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N160D9" type="main">
					<s id="N160DB"><emph type="italics"/>Hinc motus naturalis e&longs;t ab impetu.<emph.end type="italics"/></s>
					<s id="N160E2"> Probatur; e&longs;t ab aliqua cau&longs;a per <lb/>Ax.8. lib.1. ab aliqua intrin&longs;eca per Th. 1. non &agrave; &longs;ub&longs;tantia corporis <lb/>grauis per Th. 3. non &agrave; grauitate per Th. 4. igitur ab impetu, quia <lb/>nihil aliud e&longs;&longs;e pote&longs;t intrin&longs;ecum, &agrave; quo &longs;it motus per definitionem <lb/>3. lib.  1. <!-- KEEP S--></s>
				</p>
				<pb pagenum="81" xlink:href="026/01/113.jpg"/>
				<p id="N160F2" type="main">
					<s id="N160F4"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 6.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N16101" type="main">
					<s id="N16103"><emph type="italics"/>Ille impetus ab aliqua cau&longs;a producitur.<emph.end type="italics"/></s>
					<s id="N1610A"> Probatur, quia quidquid de no&shy;<lb/>uo e&longs;t, habet cau&longs;am per Ax.8. lib.  1. <!-- KEEP S--></s>
				</p>
				<p id="N16110" type="main">
					<s id="N16112"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 7.<emph.end type="center"/></s>
				</p>
				<p id="N1611E" type="main">
					<s id="N16120"><!-- NEW -->Producitur ab aliqua cau&longs;a intrin&longs;eca, quia non producitur ab aliqua <lb/>extrin&longs;eca; alioquin motus naturalis e&longs;&longs;et ab extrin&longs;eco contra definitio&shy;<lb/>nem primam, &amp; Th.1. <!-- KEEP S--></s>
				</p>
				<p id="N16129" type="main">
					<s id="N1612B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 8.<emph.end type="center"/></s>
				</p>
				<p id="N16137" type="main">
					<s id="N16139"><!-- NEW --><emph type="italics"/>Hinc produci tant&ugrave;m pote&longs;t ab ip&longs;a &longs;ubstantia corporis grauis; </s>
					<s id="N1613F"><!-- NEW -->nam graui&shy;<lb/>tas e&longs;t ip&longs;e impetus innatus, de qua infr&agrave;:<emph.end type="italics"/> probatur; </s>
					<s id="N16148"><!-- NEW -->quia nihil e&longs;t aliud in&shy;<lb/>trin&longs;ecum, &agrave; quo produci po&longs;&longs;it; qu&ograve;d autem non producatur ab alio im&shy;<lb/>petu ad intra, patet per Th.41. lib.  1. <!-- KEEP S--></s>
				</p>
				<p id="N16151" type="main">
					<s id="N16153"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 9.<emph.end type="center"/></s>
				</p>
				<p id="N1615F" type="main">
					<s id="N16161"><emph type="italics"/>Impetus productus primo instanti durat proxim&egrave; &longs;equenti.<emph.end type="italics"/></s>
					<s id="N16168"> Probatur pri&shy;<lb/>m&ograve;; </s>
					<s id="N1616D"><!-- NEW -->quia &longs;emper habet &longs;uum effectum formalem; vel grauitationis, &longs;i <lb/>impeditur; </s>
					<s id="N16173"><!-- NEW -->vel motus in medio libero; </s>
					<s id="N16177"><!-- NEW -->igitur non e&longs;t fru&longs;tr&agrave;; </s>
					<s id="N1617B"><!-- NEW -->igitur <lb/>non de&longs;truitur per Th.162.lib.1. nihil enim exigit de&longs;tructionem; </s>
					<s id="N16181"><!-- NEW -->non <lb/>tota natura, quia non e&longs;t fru&longs;tr&agrave; per Ax. 6. non &agrave; contrario impetu, qui <lb/>&longs;&aelig;p&egrave; abe&longs;t, vt cum liber&egrave; mouetur corpus graue in a&euml;re, vel &longs;u&longs;tinetur, <lb/>v.g. <!-- REMOVE S-->glans plumbea ab ingenti rupe: </s>
					<s id="N1618D"><!-- NEW -->adde quod, lic&egrave;t producatur in cor&shy;<lb/>pore graui impetus violentus &longs;ur&longs;um, non de&longs;truitur, tamen innatus; alio&shy;<lb/>quin nihil e&longs;&longs;et, quod de&longs;trueret violentum per Th.150. &amp; Schol. <!-- REMOVE S-->Th. <!-- REMOVE S--><lb/>152.num.6.lib.1. <!-- KEEP S--></s>
				</p>
				<p id="N1619B" type="main">
					<s id="N1619D"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 10.<emph.end type="center"/></s>
				</p>
				<p id="N161A9" type="main">
					<s id="N161AB"><!-- NEW --><emph type="italics"/>Impetus ille innatus, qui durat &longs;ecundo instanti, con&longs;eruatur ab aliqua cau&shy;<lb/>&longs;a<emph.end type="italics"/>; e&longs;t certum per Ax. 14.lib.1.num.1. <!-- KEEP S--></s>
				</p>
				<p id="N161B7" type="main">
					<s id="N161B9"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 11.<emph.end type="center"/></s>
				</p>
				<p id="N161C5" type="main">
					<s id="N161C7"><emph type="italics"/>Non con&longs;eruatur &agrave; cau&longs;a prim&ograve; productiua.<emph.end type="italics"/></s>
					<s id="N161CE"><!-- NEW --> Probatur per Th.144. lib.1. <lb/>alioquin non po&longs;&longs;et intendi ab eadem cau&longs;a per Th. 146. lib 1. quipp&egrave; <lb/>con&longs;eruatio nihil e&longs;t aliud, qu&agrave;m repetita productio, vt con&longs;tat; </s>
					<s id="N161D6"><!-- NEW -->nam <lb/>cau&longs;a con&longs;eruans ver&egrave; influit; </s>
					<s id="N161DC"><!-- NEW -->igitur &longs;i e&longs;t cau&longs;a nece&longs;&longs;aria primo, &amp; &longs;e&shy;<lb/>cundo in&longs;tanti &aelig;quali ni&longs;u influit; </s>
					<s id="N161E2"><!-- NEW -->influit enim quantum pote&longs;t per Ax. <!-- REMOVE S--><lb/>12.lib.1.qu&ograve;d autem impetus intendatur, demon&longs;trabimus infr&agrave;; </s>
					<s id="N161E9"><!-- NEW -->con&longs;ule <lb/>Schol.Th.146.lib.1.in quo habes rationem pr&aelig;clari natura in&longs;tituti; </s>
					<s id="N161EF"><!-- NEW -->quo <lb/>&longs;cilicet factum e&longs;t, vt qualitates, qu&aelig; contrario carent &agrave; caus&acirc; prim&ograve; pro&shy;<lb/>ductiua; ali&aelig; ver&ograve;, qu&aelig; contrarium habent, ab alia caus&agrave; con&longs;er&shy;<lb/>uentur. </s>
				</p>
				<p id="N161F9" type="main">
					<s id="N161FB"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N16207" type="main">
					<s id="N16209"><!-- NEW -->Hinc ab ali&acirc; caus&acirc; con&longs;eruari nece&longs;&longs;e e&longs;t, vt patet, e&aacute;que aplicat&acirc; per <lb/>Ax.10.lib.1. qu&aelig;cumque tandem illa &longs;it; nos aliquando cau&longs;am primam <lb/>e&longs;&longs;e dicemus. </s>
				</p>
				<pb pagenum="82" xlink:href="026/01/114.jpg"/>
				<p id="N16215" type="main">
					<s id="N16217"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 12.<emph.end type="center"/></s>
				</p>
				<p id="N16223" type="main">
					<s id="N16225"><emph type="italics"/>Quando graue e&longs;t in medio libero, per quod &longs;cilicet de&longs;cendere pote&longs;t, &longs;ecun&shy;<lb/>do instanti producitur nouus impetus, itemque tertio, quarto, quinto. </s>
					<s id="N1622C">&amp;c.<emph.end type="italics"/></s>
					<s id="N16231"> Pro&shy;<lb/>batur prim&ograve;; </s>
					<s id="N16236"><!-- NEW -->quia &longs;ecundo in&longs;tanti e&longs;t eadem cau&longs;a qu&aelig; primo non ma&shy;<lb/>gis impedita, e&aacute;que nece&longs;&longs;aria; </s>
					<s id="N1623C"><!-- NEW -->igitur nece&longs;&longs;ari&ograve; agit per Ax. 12. lib.1. <lb/>igitur aliquem effectum producit; &longs;ed hic effectus non e&longs;t impetus pro&shy;<lb/>ductus primo in&longs;tanti, quia non con&longs;eruatur &agrave; cau&longs;a prim&ograve; productiua <lb/>per Th.11. igitur e&longs;t nouus. </s>
					<s id="N16246">Probatur &longs;ecund&ograve;; cre&longs;cit motus grauium in <lb/>libero medio per hypoth. </s>
					<s id="N1624B">1.2.3. igitur cre&longs;cit impetus; </s>
					<s id="N1624E"><!-- NEW -->quia cum motus <lb/>naturalis &longs;it ab impetu per Th.5. qu&acirc; proportione cre&longs;cit effectus, &longs;cilicet <lb/>formalis, &amp; exigenti&aelig;; </s>
					<s id="N16256"><!-- NEW -->&longs;ic enim motus e&longs;t effectus impetus per Th. 15. <lb/>lib.1.e&agrave;dem cre&longs;cit cau&longs;a per Ax.2. Probatur terti&ograve;, quia corpus graue ex <lb/>maiore altitudine cadens maiorem quoque ictum infligit per hypoth.1. <lb/>igitur maior impetus imprimitur in corpore percu&longs;&longs;o; &longs;ed impetus ad ex&shy;<lb/>tra producitur ab alio impetu per Th.42.lib.1. igitur &longs;i cre&longs;cit productus <lb/>inpetus, cre&longs;cit impetus producens. </s>
				</p>
				<p id="N16264" type="main">
					<s id="N16266"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N16272" type="main">
					<s id="N16274"><!-- NEW -->Hinc reiicies quorumdam placitum, qui volunt cau&longs;am velocioris <lb/>motus e&longs;&longs;e grauitatem ip&longs;am, quatenus connotat motum pr&aelig;uium; </s>
					<s id="N1627A"><!-- NEW -->quia <lb/>&longs;cilicet grauitas non producit illum maiorem impetum ad extra, vt con&shy;<lb/>&longs;tat; </s>
					<s id="N16282"><!-- NEW -->nec &longs;ub&longs;tantia ip&longs;ius corporis grauis per Th.40.lib.1.igitur ip&longs;e im&shy;<lb/>petus: </s>
					<s id="N16288"><!-- NEW -->pr&aelig;terea &longs;i hoc e&longs;&longs;et, fru&longs;tr&agrave; requireretur impetus contra Th. 5. <lb/>Denique motus pr&aelig;uius nihil e&longs;t amplius, cum alius &longs;uccedit: Vide Th. <!-- REMOVE S--><lb/>40.lib.1. vbi h&aelig;c fus&egrave; di&longs;cu&longs;&longs;imus. </s>
				</p>
				<p id="N16291" type="main">
					<s id="N16293"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 13.<emph.end type="center"/></s>
				</p>
				<p id="N1629F" type="main">
					<s id="N162A1"><!-- NEW --><emph type="italics"/>Impetus productus &longs;ecundo instanti in medio libero con&longs;eruatur tertio, &amp; <lb/>productus tertio con&longs;eruatur, quarto, atque ita deinceps<emph.end type="italics"/>; </s>
					<s id="N162AC"><!-- NEW -->quia &longs;cilicet nec con&shy;<lb/>&longs;eruantur &agrave; cau&longs;a primo productiua per Th.144.libri: </s>
					<s id="N162B2"><!-- NEW -->nec aliquid exigit <lb/>de&longs;tructionem; </s>
					<s id="N162B8"><!-- NEW -->non contrarius impetus, quia nullus e&longs;t applicatus, vt <lb/>con&longs;tat; </s>
					<s id="N162BE"><!-- NEW -->non re&longs;i&longs;tentia medij, qu&aelig; quidem alicuius momenti e&longs;t; </s>
					<s id="N162C2"><!-- NEW -->&longs;ed <lb/>non tanti, vt impedire po&longs;&longs;it motum omnin&ograve;, vt con&longs;tat; </s>
					<s id="N162C8"><!-- NEW -->nam &longs;uppono <lb/>liberum medium, igitur nec de&longs;truere impetum; </s>
					<s id="N162CE"><!-- NEW -->cum tamdiu duret cau&shy;<lb/>&longs;a quamdiu durat effectus, vt patet; </s>
					<s id="N162D4"><!-- NEW -->igitur nihil e&longs;t quod exigat impe&shy;<lb/>tus huius de&longs;tructionem; igitur non de&longs;truitur per Ax. 14. lib.1. <lb/><expan abbr="q&umacr;anta">quanta</expan> ver&ograve; &longs;it, &amp; quid &longs;it cuiu&longs;libet medij re&longs;i&longs;tentia, dicemus <lb/>infr&agrave;. </s>
				</p>
				<p id="N162E1" type="main">
					<s id="N162E3"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 14.<emph.end type="center"/></s>
				</p>
				<p id="N162EF" type="main">
					<s id="N162F1"><emph type="italics"/>Si impetus innatus impeditur, ita vt moueri non po&longs;&longs;it corpus graue, &longs;e&shy;<lb/>cundo instanti non producitur nouus impetus.<emph.end type="italics"/></s>
					<s id="N162FA"><!-- NEW --> Probatur prim&ograve;, non cre&longs;cit <lb/>corporis grauis &longs;eu grauitas, &longs;eu grauitatio, vt con&longs;tat experienti&acirc;; </s>
					<s id="N16300"><!-- NEW -->igitur <lb/>non cre&longs;cit impetus; </s>
					<s id="N16306"><!-- NEW -->alioquin &longs;i cre&longs;ceret cau&longs;a, cre&longs;ceret effectus per <lb/>Ax.2. igitur de re, qu&ograve;d &longs;it, certum e&longs;t, atque euidens; </s>
					<s id="N1630C"><!-- NEW -->iam demon&longs;tratur <lb/>propter quid &longs;it; </s>
					<s id="N16312"><!-- NEW -->impetus &longs;ecundo in&longs;tanti productus e&longs;&longs;et fru&longs;tr&agrave;; </s>
					<s id="N16316"><!-- NEW -->careret <pb pagenum="83" xlink:href="026/01/115.jpg"/>enim &longs;uo fine, vel effectu formali, id e&longs;t motu; igitur e&longs;&longs;et fru&longs;tr&agrave;, &longs;ed <lb/>quod fru&longs;tr&agrave; e&longs;t, non e&longs;t per Ax.6.l.1. </s>
				</p>
				<p id="N16321" type="main">
					<s id="N16323"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1632F" type="main">
					<s id="N16331">Ob&longs;erua qu&aelig;&longs;o, quod iam &longs;upr&agrave; indicatum e&longs;t, e&longs;&longs;e tres veluti &longs;pecies <lb/>impetus. </s>
					<s id="N16336">Prima e&longs;t impetus naturalis innati. </s>
					<s id="N16339">Secunda naturalis acqui&longs;iti. </s>
					<s id="N1633C"><lb/>Tertia violenti; </s>
					<s id="N16340"><!-- NEW -->innatus e&longs;t qui vel &agrave; generante &longs;imul cum corpore <lb/>graui productus e&longs;t; </s>
					<s id="N16346"><!-- NEW -->qui&longs;quis tandem &longs;it generans, de quo ali&agrave;s; </s>
					<s id="N1634A"><!-- NEW -->vel ab <lb/>ip&longs;o graui qua&longs;i profunditur, id e&longs;t, producitur in &longs;e ip&longs;o &longs;tatim initio, <lb/>quo e&longs;t; </s>
					<s id="N16352"><!-- NEW -->porr&ograve; cum in corpore graui duplex qua&longs;i proprietas &longs;en&longs;ibilis <lb/>e&longs;&longs;e videatur, &longs;cilicet grauitas, &longs;eu pondus &amp; motus deor&longs;um; </s>
					<s id="N16358"><!-- NEW -->cert&egrave; de&shy;<lb/>bet e&longs;&longs;e in eo aliquid per quod t&ugrave;m cogno&longs;ci po&longs;&longs;it eius pondus, t&ugrave;m in&shy;<lb/>cipiat moueri deor&longs;um; </s>
					<s id="N16360"><!-- NEW -->quippe maxim&egrave; corpora ex pondere cogno&longs;ci&shy;<lb/>mus, vnumque ab alio di&longs;tinguimus; </s>
					<s id="N16366"><!-- NEW -->igitur debet e&longs;&longs;e aliquid, quod &longs;en&shy;<lb/>&longs;um afficiat, vt cogno&longs;ci po&longs;&longs;it; </s>
					<s id="N1636C"><!-- NEW -->atqui illud ip&longs;um non e&longs;t &longs;ub&longs;tantia cor&shy;<lb/>poris; </s>
					<s id="N16372"><!-- NEW -->nam corpus graue me&aelig; manui &longs;u&longs;tinenti impetum imprimit; </s>
					<s id="N16376"><!-- NEW --><lb/>imm&ograve; vim alterius impetus infringit; </s>
					<s id="N1637B"><!-- NEW -->igitur oper&acirc; alterius per Th. 40. <lb/>&amp; 42.lib.1. Pr&aelig;terea illud ip&longs;um, quod agit, &longs;eu deor&longs;um pellit &longs;u&longs;tinen&shy;<lb/>tem manum, e&longs;t illud ip&longs;um quod inclinat corpus graue deor&longs;um imme&shy;<lb/>diat&egrave;, &longs;eu quod exigit motum naturalem deor&longs;um; </s>
					<s id="N16385"><!-- NEW -->illud autem quod <lb/>immediat&egrave; pr&aelig;&longs;tat hunc motum, nec e&longs;t &longs;ub&longs;tantia corporis grauis per <lb/>Th.3. igitur ip&longs;e impetus per Th.5. adde quod primo in&longs;tanti, quo e&longs;t im&shy;<lb/>petus, non e&longs;t motus ille, quem exigit per Th.34. lib.1. igitur pr&aelig;exi&longs;tit <lb/>&longs;emper impetus, qui ne &longs;it fru&longs;tr&agrave;, habet primum effectum &longs;uum forma&shy;<lb/>lem, id e&longs;t grauitationem: </s>
					<s id="N16393"><!-- NEW -->Ex his dicendum e&longs;t hunc impetum natiuum <lb/>nunquam de&longs;trui, quia nunquam e&longs;t fru&longs;tr&agrave;, habet enim &longs;emper aliquem <lb/>effectum, primum quidem &longs;i caret &longs;ecundo; </s>
					<s id="N1639B"><!-- NEW -->&longs;ecundum ver&ograve; &longs;i caret pri&shy;<lb/>mo; </s>
					<s id="N163A1"><!-- NEW -->quippe vtrumque &longs;imul habere non pote&longs;t; nam corporis pondus <lb/>cogno&longs;ci non pote&longs;t, dum fertur deor&longs;um accelerato motu, quot ver&ograve;, <lb/>&amp; quanta commoda ex cognitione ponderis cuiu&longs;libet materi&aelig; proce&shy;<lb/>dant, vix explicari pote&longs;t. </s>
				</p>
				<p id="N163AB" type="main">
					<s id="N163AD"><!-- NEW -->Ex his ver&ograve; concludendum &longs;upere&longs;t impetum innatum e&longs;&longs;e proprie&shy;<lb/>tatem quarto modo, vt vulg&ograve; aiunt, corporis grauis; </s>
					<s id="N163B3"><!-- NEW -->ac proinde ab illo <lb/>in&longs;eparabilem; </s>
					<s id="N163B9"><!-- NEW -->quid ver&ograve; fiat de illo, cum corpus graue fit leue; &longs;i tamen <lb/>hoc aliquando accidit, dicemus cum de grauitate, &amp; grauitatione, iam <lb/>ver&ograve; &longs;atis e&longs;t ad pr&aelig;&longs;ens in&longs;titutum impetum innatum ab ip&longs;o corpori <lb/>graui nunquam &longs;eparari, quandiu remanet graue. </s>
				</p>
				<p id="N163C3" type="main">
					<s id="N163C5"><!-- NEW -->Impetus naturalis acqui&longs;itus producitur ab eodem principio intrin&shy;<lb/>&longs;eco; </s>
					<s id="N163CB"><!-- NEW -->hinc dicitur naturalis: </s>
					<s id="N163CF"><!-- NEW -->dicitur ver&ograve; acqui&longs;itus, quia non e&longs;t inna&shy;<lb/>tus; </s>
					<s id="N163D5"><!-- NEW -->&longs;ed &longs;eparatur &agrave; corpore graui; </s>
					<s id="N163D9"><!-- NEW -->quod &longs;emper eo caret, quandiu <lb/>quie&longs;cit: </s>
					<s id="N163DF"><!-- NEW -->&longs;ed innato tant&ugrave;m accedit ad motus accelerationem, &amp; ad alia <lb/>quamplurima, qu&aelig; ex ea &longs;equuntur; </s>
					<s id="N163E5"><!-- NEW -->put&agrave; maiorem percu&longs;&longs;ionem, re&longs;i&shy;<lb/>&longs;tentiam, vim, &amp; ad tollendum totius natur&aelig; languidiorem; </s>
					<s id="N163EB"><!-- NEW -->quo cert&egrave; af&shy;<lb/>ficeretur, &longs;i corpus graue tardi&longs;&longs;imo motu deor&longs;um ferretur, de quo in&shy;<lb/>fr&agrave;; </s>
					<s id="N163F3"><!-- NEW -->Porr&ograve; impetus acqui&longs;itus in multis differt ab innato; prim&ograve; quia <pb pagenum="84" xlink:href="026/01/116.jpg"/>de&longs;truitur &agrave; corpore re&longs;i&longs;tente eo modo, quo diximus, &amp; dicemus infr&agrave;. </s>
					<s id="N163FC"><lb/>Secund&ograve;, quia determinari pote&longs;t ad omnem lineam. </s>
				</p>
				<p id="N16400" type="main">
					<s id="N16402">Impetus violentus e&longs;t, qui e&longs;t ab extrin&longs;eco, de quo agemus infr&agrave;, &amp; <lb/>iam &longs;upr&agrave; in lib.1. multa &longs;unt de eo demon&longs;trata. </s>
				</p>
				<p id="N16407" type="main">
					<s id="N16409"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 15.<emph.end type="center"/></s>
				</p>
				<p id="N16415" type="main">
					<s id="N16417"><!-- NEW --><emph type="italics"/>Impetus naturalis corporis grauis intenditur dum hoc ip&longs;um de&longs;cendit in <lb/>medio libero<emph.end type="italics"/>; demon&longs;tratur, Impetus nouus producitur in &longs;ecundo, ter&shy;<lb/>tio, quarto, &amp;c. </s>
					<s id="N16424">in&longs;tantibus per Th.12. &longs;ed productus in primo con&longs;er&shy;<lb/>uatur &longs;ecundo, per Th.9. productus &longs;ecundo con&longs;eruatur tertio, produ&shy;<lb/>ctus tertio con&longs;eruatur quarto per Th.13. igitur &longs;ecundus additur tertio, <lb/>tertius primo, &longs;ecundo, quartus primo, &longs;ecundo, &amp; tertio, &amp;c.&longs;ed impetus <lb/>additus alteri facit inten&longs;iorem impetum per Ax.1. igitur impetus natu&shy;<lb/>ralis intenditur, quod crat demon&longs;trandum. </s>
				</p>
				<p id="N16431" type="main">
					<s id="N16433"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 16.<emph.end type="center"/></s>
				</p>
				<p id="N1643F" type="main">
					<s id="N16441"><!-- NEW --><emph type="italics"/>Hinc motus naturalis deor&longs;um acceleratur<emph.end type="italics"/>; </s>
					<s id="N1644A"><!-- NEW -->hoc ip&longs;um &longs;uppo&longs;ui &longs;upr&agrave; <lb/>Quod e&longs;&longs;et in hyp.1.2.3. iam ver&ograve; demon&longs;tro propter quid e&longs;t; </s>
					<s id="N16450"><!-- NEW -->&longs;ie enim <lb/>hypothe&longs;is in Theorema conuerti pote&longs;t, vt &longs;&aelig;p&egrave; monuimus in metho&shy;<lb/>do; </s>
					<s id="N16458"><!-- NEW -->igitur probatur hoc Theorema facil&egrave;; </s>
					<s id="N1645C"><!-- NEW -->cre&longs;cit impetus in corpore gra&shy;<lb/>ui, quod tendit deor&longs;um in libero medio per T. 15. igitur cre&longs;cit cau&longs;a <lb/>motus; </s>
					<s id="N16464"><!-- NEW -->nam impetus e&longs;t cau&longs;a immediata motus naturalis per Th. 51. <lb/>&longs;ed qu&acirc; proportione cre&longs;cit cau&longs;a, debet cre&longs;cere effectus per Ax.2. igi&shy;<lb/>tur motus naturalis deor&longs;um cre&longs;cit, id e&longs;t acceleratur, id e&longs;t fit velo&shy;<lb/>cior, quod erat dem: </s>
					<s id="N1646E"><!-- NEW -->nec e&longs;t quod aliquis exi&longs;timet hic &agrave; me committi <lb/>vitio&longs;um argumentationis circulum; </s>
					<s id="N16474"><!-- NEW -->quippe probaui &longs;upr&agrave; cre&longs;cere im&shy;<lb/>petum, quia cre&longs;cit motus; </s>
					<s id="N1647A"><!-- NEW -->iam ver&ograve; probo cre&longs;cere motum, quia cre&longs;&shy;<lb/>cit impetus; nam prim&ograve; probaui produci nouum impetum in Th.12. eo <lb/>quod &longs;ecundo in&longs;tanti. </s>
					<s id="N16482"><!-- NEW -->v.g. <!-- REMOVE S-->&longs;it eadem cau&longs;a nece&longs;&longs;aria applicata non im&shy;<lb/>pedita, igitur t&agrave;m debet agere &longs;ecundo qu&agrave;m primo in&longs;tanti, h&aelig;c fuit <lb/>mea probatio &agrave; priori; </s>
					<s id="N1648C"><!-- NEW -->&longs;ecund&ograve; ver&ograve; probaui ex hypothe&longs;i certa; </s>
					<s id="N16490"><!-- NEW -->quia <lb/>&longs;cilicet cre&longs;cit motus, cuius veritatem cogno&longs;co &longs;en&longs;ibiliter in &longs;e, vnde <lb/>&longs;uppono tant&ugrave;m de illa quod &longs;it; </s>
					<s id="N16498"><!-- NEW -->igitur nullus committitur circulus; nam <lb/>diuer&longs;a e&longs;t omnin&ograve; cognitio. </s>
					<s id="N1649E">Prima &longs;cilicet qua cogno&longs;co de motu na&shy;<lb/>turaliter accelerato quod &longs;it, qu&aelig; mihi, &amp; ru&longs;tico communis e&longs;t. </s>
					<s id="N164A3"><!-- NEW -->Secun&shy;<lb/>da ver&ograve; qua non mod&ograve; cogno&longs;co de motu illo quod &longs;it acceleratus, ve&shy;<lb/>r&ugrave;m propter quid &longs;it acceleratus, id e&longs;t cau&longs;am huius accelerationis, id <lb/>e&longs;t propter quam attributum hoc ine&longs;t &longs;ubiecto, &amp; h&aelig;c e&longs;t vera demon&shy;<lb/>&longs;tratio &agrave; priori; porr&ograve; in Phy&longs;ica de effectu &longs;en&longs;ibili &longs;upponi debet quod <lb/>&longs;it, hoc enim percipitur &longs;en&longs;u. </s>
					<s id="N164B1">v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;upponam in Phy&longs;ica quod &longs;it motus <lb/>acceleratus, quod ignis &longs;it calidus, Sol lucidus, nix candida, vinum ru&shy;<lb/>brum, &amp;c. </s>
					<s id="N164BC">at ver&ograve; demon&longs;trabo propter quid h&aelig;c &longs;int, &longs;ed de his <lb/>&longs;atis. </s>
				</p>
				<p id="N164C1" type="main">
					<s id="N164C3"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N164CF" type="main">
					<s id="N164D1"><!-- NEW -->Ob&longs;eruabis etiam aliud natur&aelig; in&longs;titutum, quo &longs;cilicet factum e&longs;t, vt <pb pagenum="85" xlink:href="026/01/117.jpg"/>corpora grauia motu naturali accelerato deor&longs;um ferantur; </s>
					<s id="N164DA"><!-- NEW -->&longs;i enim motu <lb/>ferrentur &aelig;quabili, vel e&longs;&longs;et &aelig;qualis illi quem initio &longs;ui de&longs;cen&longs;us ha&shy;<lb/>bent, qui e&longs;t tardi&longs;&longs;imus, vt con&longs;tat ex ip&longs;a ictuum differentia; </s>
					<s id="N164E2"><!-- NEW -->atque <lb/>ita infinitum fer&egrave; tempus ponerent grauia in minimo etiam de&longs;cen&longs;u, <lb/>quod e&longs;&longs;et maxim&egrave; incommodum; &longs;i ver&ograve; motus ille e&longs;&longs;et &aelig;qualis mo&shy;<lb/>tui v.g. <!-- REMOVE S-->quem acqui&longs;iuit in &longs;patio 3. vel 4. perticarum, pondera corpo&shy;<lb/>rum cre&longs;cerent in immen&longs;um, ide&longs;t in ea proportione, qua ictus, qui in&shy;<lb/>fligitur &agrave; corpore graui confecto 4. perticarum &longs;patio maior e&longs;t ictu, qui <lb/>infligitur po&longs;t decur&longs;um minimum omnium &longs;patiorum, quod vald&egrave; in&shy;<lb/>commodum e&longs;&longs;et. </s>
				</p>
				<p id="N164F6" type="main">
					<s id="N164F8"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 17.<emph.end type="center"/></s>
				</p>
				<p id="N16504" type="main">
					<s id="N16506"><!-- NEW --><emph type="italics"/>&AElig;qualibus temporibus &aelig;qualis impetus producitur, &longs;i &longs;it eadem applica&shy;<lb/>tio, idemque impedimentum<emph.end type="italics"/>; </s>
					<s id="N16511"><!-- NEW -->probatur, quia cau&longs;a huius impetus e&longs;t ne&shy;<lb/>ce&longs;&longs;aria; &longs;ed eadem cau&longs;a nece&longs;&longs;aria &aelig;qualibus temporibus &aelig;qualem <lb/>impetum producit per Ax.3. </s>
				</p>
				<p id="N16519" type="main">
					<s id="N1651B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 18.<emph.end type="center"/></s>
				</p>
				<p id="N16527" type="main">
					<s id="N16529"><!-- NEW --><emph type="italics"/>Qua proportione cre&longs;cit impetus acceleratur motus<emph.end type="italics"/>; quia qu&aelig; proportio&shy;<lb/>ne cre&longs;cit cau&longs;a, etiam cre&longs;cit effectus per Ax.2. </s>
				</p>
				<p id="N16534" type="main">
					<s id="N16536"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 19.<emph.end type="center"/></s>
				</p>
				<p id="N16542" type="main">
					<s id="N16544"><!-- NEW --><emph type="italics"/>Hinc &aelig;qualibus temporibus in de&longs;cen&longs;u corpus graue acquirit aqualia ve&shy;<lb/>locitatis, vel accelerationis momenta<emph.end type="italics"/>; </s>
					<s id="N1654F"><!-- NEW -->hoc ip&longs;um e&longs;t quod definitionis lo&shy;<lb/>co Galileus in dialogo tertio de motu naturali a&longs;&longs;umit; </s>
					<s id="N16555"><!-- NEW -->quod tamen <lb/>meo iudicio fuit ant&egrave; demon&longs;trandum qu&agrave;m &longs;upponendum; quare &longs;ic <lb/>demon&longs;tramus, qu&acirc; proportione cre&longs;cit impetus, cre&longs;cit motus per Th. <!-- REMOVE S--><lb/>18. &longs;ed temporibus &aelig;qualibus acquiruntur &aelig;quales impetus gradus per <lb/>Th.17. igitur &aelig;qualia velocitatis momenta, vel incrementa. </s>
				</p>
				<p id="N16562" type="main">
					<s id="N16564"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 20.<emph.end type="center"/></s>
				</p>
				<p id="N16570" type="main">
					<s id="N16572"><!-- NEW --><emph type="italics"/>Spatia que per curruntur motu &aelig;quabili &aelig;qualibus temporibus &longs;unt &aelig;qualia<emph.end type="italics"/>; <lb/>Probatur per Def.2. </s>
				</p>
				<p id="N1657D" type="main">
					<s id="N1657F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 21.<emph.end type="center"/></s>
				</p>
				<p id="N1658B" type="main">
					<s id="N1658D"><!-- NEW --><emph type="italics"/>Duo motus &aelig;quabiles, qui durant &aelig;qualibus temporibus, &longs;unt vt &longs;patia<emph.end type="italics"/>; <lb/>patet; </s>
					<s id="N16598"><!-- NEW -->c&ugrave;m enim impetus &longs;int vt motus per Ax. 2. motus &longs;unt vt &longs;patia; <lb/>quippe vt ex impetu &longs;equitur motus, ita ex motu confectum &longs;pa&shy;<lb/>tium. </s>
				</p>
				<p id="N165A0" type="main">
					<s id="N165A2"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 22.<emph.end type="center"/></s>
				</p>
				<p id="N165AE" type="main">
					<s id="N165B0"><emph type="italics"/>Duo motus &aelig;quabiles, quibus percurruntur &longs;patia &aelig;qualia &longs;unt vt tempora <lb/>permutande<emph.end type="italics"/>;, patet, quia velocior e&longs;t, qu&ograve; percurritur &longs;patium &aelig;quale <lb/>minori tempore per Def.2. l. <!-- REMOVE S-->1. Igitur e&ograve; velocior, qu&ograve; minori tem&shy;<lb/>pore. </s>
				</p>
				<p id="N165C0" type="main">
					<s id="N165C2"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 23.<emph.end type="center"/></s>
				</p>
				<p id="N165CE" type="main">
					<s id="N165D0"><!-- NEW --><emph type="italics"/>Spatium, quod percurritur maiori tempore motu &aelig;quabili, est maius eo, <lb/>quod percurritur minori &aelig;qu&egrave; veloci motu in ea ratione, qua vnum tempus<emph.end type="italics"/><pb pagenum="86" xlink:href="026/01/118.jpg"/><emph type="italics"/>est maius alio<emph.end type="italics"/>; </s>
					<s id="N165E4"><!-- NEW -->patet, quia &aelig;qualia &longs;unt &aelig;qualibus temporibus per Th. <!-- REMOVE S--><lb/>20. igitur in&aelig;qualibus in&aelig;qualia iuxta rationem temporum; item &longs;pa&shy;<lb/>tium, quod idem percurritur minori tempore minus e&longs;t. </s>
				</p>
				<p id="N165ED" type="main">
					<s id="N165EF"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 24.<emph.end type="center"/></s>
				</p>
				<p id="N165FB" type="main">
					<s id="N165FD"><!-- NEW --><emph type="italics"/>Tempus quo maius &longs;patium percurritur eodem motu &aelig;quabili, e&longs;t maius e&ograve; <lb/>qu&ograve; minus conficitur iuxta rationem &longs;patiorum:<emph.end type="italics"/> Si enim &longs;patia &longs;unt vt tem&shy;<lb/>pora, igitur tempora &longs;unt vt &longs;patia; item tempus, quo minus &longs;patium <lb/>percurritur e&longs;t minus co, quo maius. </s>
				</p>
				<p id="N1660C" type="main">
					<s id="N1660E"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 25.<emph.end type="center"/></s>
				</p>
				<p id="N1661A" type="main">
					<s id="N1661C"><emph type="italics"/>Spatium, quod conficitur motu velociore, e&longs;t maius eo, quod percur&shy;<lb/>ritur &aelig;quali cert&egrave; tempore, &longs;ed tardiore motu,<emph.end type="italics"/> vt con&longs;tat per def. </s>
					<s id="N16626">2. l. <!-- REMOVE S-->1. <lb/>im&ograve; e&longs;t maius iuxta rationem velocitatis maioris, item e&longs;t minus iuxta <lb/>rationem tarditatis maioris. </s>
				</p>
				<p id="N1662F" type="main">
					<s id="N16631"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 26.<emph.end type="center"/></s>
				</p>
				<p id="N1663D" type="main">
					<s id="N1663F"><!-- NEW --><emph type="italics"/>Tempus, quo conficitur &longs;patium &aelig;quale &longs;ed uelociore motu, est minus eo <lb/>quo conficitur tardiore<emph.end type="italics"/>; </s>
					<s id="N1664A"><!-- NEW -->Probatur per def.2. &amp; per Th.22. idque in ratio&shy;<lb/>ne velocitatum permutando; item tempus quo conficitur &longs;patium &aelig;qua&shy;<lb/>le tardiore motu e&longs;t maius eo, quo conficitur velociore, patet. </s>
				</p>
				<p id="N16652" type="main">
					<s id="N16654"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 27.<emph.end type="center"/></s>
				</p>
				<p id="N16660" type="main">
					<s id="N16662"><emph type="italics"/>Si datum mobile eodem motu &aelig;quabili duo percurrat &longs;patia, tempora mo&shy;<lb/>tuum erunt vt &longs;patia, &amp; vici&longs;&longs;im &longs;patia vt tempora.<emph.end type="italics"/></s>
					<s id="N1666B"> Probatur per Th. <!-- REMOVE S--><lb/>24. &amp; 23. </s>
				</p>
				<p id="N16671" type="main">
					<s id="N16673"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 28.<emph.end type="center"/></s>
				</p>
				<p id="N1667F" type="main">
					<s id="N16681"><!-- NEW --><emph type="italics"/>Si idem mobile temporibus &aelig;qualibus percurrat duo &longs;patia motu &aelig;quabili, <lb/>&longs;ed in&aelig;quali velocitate; </s>
					<s id="N16689"><!-- NEW -->&longs;patia erunt vt velocitates, &amp; h&aelig; vt illa; </s>
					<s id="N1668D"><!-- NEW -->im&ograve; &longs;i <lb/>&longs;patia &longs;unt vt velocitates, tempora erunt &aelig;qualia<emph.end type="italics"/>; pater etiam per <lb/>Th.25. </s>
				</p>
				<p id="N16698" type="main">
					<s id="N1669A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 29.<emph.end type="center"/></s>
				</p>
				<p id="N166A6" type="main">
					<s id="N166A8"><!-- NEW --><emph type="italics"/>Si percurrantur &agrave; mobili &aelig;qualia &longs;patia, &longs;ed in&aelig;quali velocitate, ip&longs;&aelig; ve&shy;<lb/>locitates erunt in ratione permutata temporum, ide&longs;t maior velocitas re&longs;pon&shy;<lb/>debit minori tempori, &amp; minor maiori<emph.end type="italics"/>; Probatur per Th.23. </s>
				</p>
				<p id="N166B5" type="main">
					<s id="N166B7"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 30.<emph.end type="center"/></s>
				</p>
				<p id="N166C3" type="main">
					<s id="N166C5"><!-- NEW --><emph type="italics"/>Si duo mobilia mouentur motu &aelig;quabili, &longs;ed in&aelig;quali velocitate, &amp; in&aelig;qua&shy;<lb/>libus temporibus, &longs;patia &longs;unt in ratione compo&longs;ita ex ratione temporum, &amp; ex <lb/>ratione velocitatum,<emph.end type="italics"/> &longs;i enim &aelig;qualia &longs;int tempora, &longs;patia erunt vt velo&shy;<lb/>citates per Th.25. &longs;i &aelig;quales &longs;int velocitates, &longs;patia erunt vt tempora, per <lb/>Th.29. igitur &longs;i nec &aelig;quales velocitates, nec &aelig;qualia tempora, erit ratio <lb/>&longs;patiorum compo&longs;ita ex ratione temporum, &amp; ex ratione velocitatum; <lb/>&longs;it ratio temporum 3/2 ratio velocitatum 2/3 compo&longs;ita ex vtraque erit 6/2 <lb/>&longs;eu 3. vt con&longs;tat ex ip&longs;is elementis. </s>
				</p>
				<pb pagenum="87" xlink:href="026/01/119.jpg"/>
				<p id="N166E0" type="main">
					<s id="N166E2"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 31.<emph.end type="center"/></s>
				</p>
				<p id="N166EE" type="main">
					<s id="N166F0"><!-- NEW --><emph type="italics"/>Si duo mobilia ferantur motu &aelig;quabili per diuer&longs;a &longs;patia, &amp; diuer&longs;a velo&shy;<lb/>citate, tempora erunt in ratione compo&longs;ita ex ratione &longs;patiorum &amp; ratione <lb/>velocitatum permutata<emph.end type="italics"/>; </s>
					<s id="N166FD"><!-- NEW -->probatur eodem modo quo &longs;uperius Th. 30. &longs;it <lb/>ratio &longs;patiorum 4/1, velocitatum 4/2; </s>
					<s id="N16703"><!-- NEW -->permutetur h&aelig;c 1/4; componetur ex <lb/>vtraque 4/1, ide&longs;t 1/2, qu&aelig; e&longs;t ratio temporum. </s>
				</p>
				<p id="N16709" type="main">
					<s id="N1670B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 32.<emph.end type="center"/></s>
				</p>
				<p id="N16717" type="main">
					<s id="N16719"><!-- NEW --><emph type="italics"/>Si duo mobilia &aelig;quabili motu ferantur per diuer&longs;a &longs;patia, &amp; in&aelig;qualibus <lb/>temporibus; </s>
					<s id="N16721"><!-- NEW -->ratio velocitatum erit compo&longs;ita ex ratione &longs;patiorum, &amp; ex ra&shy;<lb/>tione temporum permutata<emph.end type="italics"/>; Probatur eodem modo; &longs;it ratio &longs;patiorum <lb/>4/2 temporum 1/2, permutetur 2/1, compo&longs;ita ex vtraque erit 2/2, ide&longs;t 4. <lb/>qu&aelig; e&longs;t ratio velocitatum. </s>
				</p>
				<p id="N1672E" type="main">
					<s id="N16730"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1673C" type="main">
					<s id="N1673E">Ob&longs;eruabis h&aelig;c omnia &agrave; vige&longs;imo Theoremate maiori ex parte tradi <lb/>&agrave; Galileo &longs;uo modo, optimo quidem, &longs;ed fort&egrave; longiore qu&agrave;m par &longs;it, <lb/>nulla habita ratione cau&longs;arum phy&longs;icarum. </s>
				</p>
				<p id="N16745" type="main">
					<s id="N16747"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 33.<emph.end type="center"/></s>
				</p>
				<p id="N16753" type="main">
					<s id="N16755"><!-- NEW --><emph type="italics"/>In motu naturaliter accelerato impetus nouus acquiritur &longs;ingulis in&longs;tanti&shy;<lb/>bus<emph.end type="italics"/>; Probatur quia &longs;ingulis in&longs;tantibus e&longs;t eadem cau&longs;a nece&longs;&longs;aria, igi&shy;<lb/>tur &longs;ingulis in&longs;tantibus aliquem effectum producit, per Ax. 12. l.1. &longs;ed <lb/>priorem non con&longs;eruat, vt dictum e&longs;t &longs;upr&agrave;, igitur nouum producit. </s>
				</p>
				<p id="N16764" type="main">
					<s id="N16766"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 34.<emph.end type="center"/></s>
				</p>
				<p id="N16772" type="main">
					<s id="N16774"><emph type="italics"/>Hinc &longs;ingulis in&longs;tantibus &aelig;qualibus nouus impetus &aelig;qualis acquiritur,<emph.end type="italics"/> quip&shy;<lb/>pe e&longs;t &aelig;qualis, im&ograve; eadem cau&longs;a, igitur &aelig;qualem effectum producit per <lb/>Ax.12. l.1. </s>
				</p>
				<p id="N16780" type="main">
					<s id="N16782"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 35.<emph.end type="center"/></s>
				</p>
				<p id="N1678E" type="main">
					<s id="N16790"><!-- NEW --><emph type="italics"/>Hinc &longs;ingulis in&longs;tantibus intenditur impetus in hoc motu<emph.end type="italics"/>; cum &longs;ingulis <lb/>in&longs;tantibus producatur nouus, &amp; prior con&longs;eruetur, cui cum addatur, <lb/>intenditur per Ax. 1. <!-- KEEP S--></s>
				</p>
				<p id="N1679E" type="main">
					<s id="N167A0"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 36.<emph.end type="center"/></s>
				</p>
				<p id="N167AC" type="main">
					<s id="N167AE"><emph type="italics"/>Hinc &longs;ingulis in&longs;tantibus &aelig;qualiter cre&longs;cit &amp; intenditur impetus<emph.end type="italics"/> per Th. <!-- REMOVE S--><lb/>34. igitur &aelig;qualiter etiam &longs;ingulis in&longs;tantibus cre&longs;cit velocitas motus <lb/>per Ax.2. </s>
				</p>
				<p id="N167BB" type="main">
					<s id="N167BD"><emph type="center"/><emph type="italics"/>Scholium<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N167C8" type="main">
					<s id="N167CA"><!-- NEW -->Ob&longs;eruabis <expan abbr="dict&umacr;">dictum</expan> e&longs;&longs;e &longs;upr&agrave; <emph type="italics"/>instantibus &aelig;qualibus,<emph.end type="italics"/> quia temporis natura <lb/>aliter explicari non pote&longs;t, qu&agrave;m per in&longs;tantia finita, vt demon&longs;trabimus <lb/>in Metaphy&longs;ica; </s>
					<s id="N167DC"><!-- NEW -->quid quid &longs;it, voco in&longs;tans totum illud tempus, quo res <lb/>aliqua &longs;imul producitur, &longs;iue &longs;it maius, &longs;iue minus, &longs;iue &longs;it pars maior, <lb/>vel minor, quod ad rem no&longs;tram nihil facit penitus; </s>
					<s id="N167E4"><!-- NEW -->nam dato quocun&shy;<lb/>que tempore finito pote&longs;t dari maius &amp; minus, quod certum e&longs;t; </s>
					<s id="N167EA"><!-- NEW -->igitur <lb/>totum illud tempus, quo producitur primus impetus acqui&longs;itus, vo-<pb pagenum="88" xlink:href="026/01/120.jpg"/>co in&longs;tans primum motus; cui &aelig;qualia deinde &longs;uccedunt tem&shy;<lb/>pora. </s>
				</p>
				<p id="N167F7" type="main">
					<s id="N167F9"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 37.<emph.end type="center"/></s>
				</p>
				<p id="N16805" type="main">
					<s id="N16807"><!-- NEW --><emph type="italics"/>Hinc cre&longs;cit impetus iuxta progre&longs;&longs;ionem arithmeticam; </s>
					<s id="N1680D"><!-- NEW -->cum &longs;ingula in&shy;<lb/>&longs;tantia &aelig;qualem impetum addant<emph.end type="italics"/>; </s>
					<s id="N16816"><!-- NEW -->&longs;i primo in&longs;tanti &longs;it vnus gradus, erunt <lb/>duo; productus &longs;cilicet alteri additus qui con&longs;eruatur, tertio erunt;. </s>
					<s id="N1681C"><lb/>quarto 4. quinto 5. &amp;c. </s>
					<s id="N16820">igitur cre&longs;cit &longs;ecundum progre&longs;&longs;ionem arith&shy;<lb/>meticam. </s>
				</p>
				<p id="N16825" type="main">
					<s id="N16827"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 38.<emph.end type="center"/></s>
				</p>
				<p id="N16833" type="main">
					<s id="N16835"><emph type="italics"/>Eodem modo cre&longs;cit velocitas, quia &longs;ingulis in&longs;tantibus &aelig;qualia acquirun&shy;<lb/>tur velocitatis momenta<emph.end type="italics"/> per Ax.2. &amp; per Th.36. </s>
				</p>
				<p id="N1683F" type="main">
					<s id="N16841"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 39.<emph.end type="center"/></s>
				</p>
				<p id="N1684D" type="main">
					<s id="N1684F"><emph type="italics"/>Maius &longs;patium acquiritur &longs;ecundo in&longs;tanti, qu&agrave;m primo, quia &longs;ecundo<emph.end type="italics"/><lb/>in&longs;tanti motus e&longs;t velocior per Th.36. igitur maius conficitur &longs;patium, <lb/>tempore &longs;cilicet &aelig;quali per Def. <!-- REMOVE S-->2. l. <!-- REMOVE S-->1. idem dico de tertio, quar&shy;<lb/>to, &amp;c. </s>
				</p>
				<p id="N16860" type="main">
					<s id="N16862"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 40.<emph.end type="center"/></s>
				</p>
				<p id="N1686E" type="main">
					<s id="N16870"><emph type="italics"/>Spatium quod acquiritur &longs;ecund&ograve; instanti e&longs;t ad &longs;patium quod acquiritur <lb/>primo vt velocitas, qu&aelig; e&longs;t &longs;ecundo ad velocitatem, qu&aelig; e&longs;t primo.<emph.end type="italics"/></s>
					<s id="N16879"><!-- NEW --> Patet per <lb/>Th.28. quia cum tempora illa &longs;int &aelig;qualia, &longs;patia &longs;unt nece&longs;&longs;ari&ograve; vt ve&shy;<lb/>locitates; quippe &aelig;quali velocitati &aelig;quale &longs;patium re&longs;pondet tempore <lb/>&aelig;quali, igitur in&aelig;quale in&aelig;quali, igitur maius maiori, idem dico de <lb/>aliis in&longs;tantibus. </s>
				</p>
				<p id="N16885" type="main">
					<s id="N16887"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 41.<emph.end type="center"/></s>
				</p>
				<p id="N16893" type="main">
					<s id="N16895"><emph type="italics"/>Hinc &longs;patium qucd acquiritur &longs;ecundo in&longs;tanti e&longs;t duplum illius, quod ac&shy;<lb/>quiritur primo.<emph.end type="italics"/></s>
					<s id="N1689E"> Probatur, quia velocitas e&longs;t dupla per Th 38. igitur &longs;pa&shy;<lb/>tium duplum, &amp; triplum tertio, quadruplum quarto, &amp;c. </s>
				</p>
				<p id="N168A3" type="main">
					<s id="N168A5"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 42.<emph.end type="center"/></s>
				</p>
				<p id="N168B1" type="main">
					<s id="N168B3"><!-- NEW --><emph type="italics"/>Hinc quodlibet &longs;patium cre&longs;cit &aelig;qualiter &longs;ingulis in&longs;tantibus &aelig;qualibus<emph.end type="italics"/>; </s>
					<s id="N168BC"><!-- NEW --><lb/>quia &longs;patia cre&longs;cunt vt motus, &longs;eu vt velocitates; h&aelig; cre&longs;cunt &aelig;qualiter <lb/>&longs;ingulis in&longs;tantibus &aelig;qualibus per Th.36. igitur &aelig;qualiter cre&longs;cunt &longs;in&shy;<lb/>gula &longs;patia per Th.40. </s>
				</p>
				<p id="N168C5" type="main">
					<s id="N168C7"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 43.<emph.end type="center"/></s>
				</p>
				<p id="N168D3" type="main">
					<s id="N168D5"><!-- NEW --><emph type="italics"/>Hinc &longs;patia cre&longs;cunt &longs;ingulis in&longs;tantibus &aelig;qualibus &longs;ecund&ugrave;m progre&longs;&longs;io&shy;<lb/>nem arithmeticam<emph.end type="italics"/>; quia cre&longs;cit vt velocitas per Th.40. h&aelig;c vt impetus <lb/>per Th.38. hic demum iuxta progre&longs;&longs;ionem arithmeticam per Th. 37. <lb/>igitur &longs;i &longs;patium acqui&longs;itum primo in&longs;tanti &longs;it 1. acqui&longs;itum &longs;ecundo erit <lb/>2. tertio 3. quarto 4. &amp;c. </s>
					<s id="N168E6">hinc &longs;patia acqui&longs;ita &longs;ingulis in&longs;tantibus &longs;unt <lb/>vt &longs;eries numerorum, qui componunt progre&longs;&longs;ionem &longs;implicem, &longs;cilicet <lb/>1.2.3.4.5.6. &amp;c. </s>
					<s id="N168ED"><!-- NEW -->dixi &longs;ingulis in&longs;tantibus &aelig;qualibus, quod e&longs;t apprim&egrave; <lb/>tenendum; &longs;i enim a&longs;&longs;umantur partes temporis maiores, perturbatur <lb/>h&aelig;c progre&longs;&longs;io, de quo infr&agrave;. </s>
				</p>
				<pb pagenum="89" xlink:href="026/01/121.jpg"/>
				<p id="N168F9" type="main">
					<s id="N168FB"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 44.<emph.end type="center"/></s>
				</p>
				<p id="N16907" type="main">
					<s id="N16909"><!-- NEW --><emph type="italics"/>Hinc pete&longs;t dici cre&longs;cere velocitatem quolibet in&longs;tanti iuxta rationem &longs;patij <lb/>quod illo in&longs;tanti decurritur<emph.end type="italics"/>; </s>
					<s id="N16914"><!-- NEW -->quod cert&egrave; verum e&longs;t, dum intelligatur legi&shy;<lb/>timus horum verborum &longs;en&longs;us; </s>
					<s id="N1691A"><!-- NEW -->quidquid reclamet Saluiatus apud <lb/>Galil. <!-- REMOVE S-->dialogo 3. mod&ograve; a&longs;&longs;umatur progre&longs;&longs;io incrementi in &longs;ingulis in&shy;<lb/>&longs;tantibus, in quibus reuer&agrave; fit; cur enim poti&ugrave;s in vno qu&agrave;m in alio? </s>
					<s id="N16924"><!-- NEW --><lb/>quippe &longs;i comparetur velocitas vnius in&longs;tantis cum velocitate alterius; </s>
					<s id="N16929"><!-- NEW --><lb/>haud dubi&egrave; erit eadem vtriu&longs;que ratio, qu&aelig; &longs;patiorum; </s>
					<s id="N1692E"><!-- NEW -->&longs;i enim vno in&shy;<lb/>&longs;tanti percurritur vnum &longs;patium cum vno velocitatis gradu; </s>
					<s id="N16934"><!-- NEW -->cert&egrave; in&shy;<lb/>&longs;tanti &aelig;quali acquiritur duplum &longs;patium cum duobus velocitatis gradi&shy;<lb/>bus, nec obe&longs;t, quod obiicit Galileus tunc motus e&longs;&longs;e &aelig;quabiles; </s>
					<s id="N1693C"><!-- NEW -->quia <lb/>motus qui fit in in&longs;tanti debet con&longs;iderari vt &aelig;quabilis; </s>
					<s id="N16942"><!-- NEW -->appello enim <lb/>in&longs;tans totum illud tempus, quo &longs;imul acquiritur aliquid impetus, ali&shy;<lb/>quid enim &longs;imul acquiri nece&longs;&longs;e e&longs;t; </s>
					<s id="N1694A"><!-- NEW -->nec demum ob&longs;tat quod dicit, dari <lb/>non po&longs;&longs;e motum in&longs;tantaneum, quod multi haud dubi&egrave; negabunt; </s>
					<s id="N16950"><!-- NEW -->ego <lb/>in Metaphy&longs;ica explicabo quonam pacto dari po&longs;&longs;it motus in&longs;tanta&shy;<lb/>neus, qui reuer&agrave; datur actu, non potenti&acirc;; </s>
					<s id="N16958"><!-- NEW -->quia quacunque duratione <lb/>data pote&longs;t dari minor; igitur quocunque dato motu pote&longs;t dari minor. </s>
				</p>
				<p id="N1695E" type="main">
					<s id="N16960"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1696C" type="main">
					<s id="N1696E"><!-- NEW -->Ob&longs;eruabis prim&ograve; hanc &longs;patiorum rationem, qu&aelig; e&longs;t eadem cum ra&shy;<lb/>tione velocitatum a&longs;&longs;umendam tant&ugrave;m e&longs;&longs;e in iis &longs;patiis, qu&aelig; acquirun&shy;<lb/>tur &longs;ingulis in&longs;tantibus; </s>
					<s id="N16976"><!-- NEW -->&longs;i enim accipiantur partes temporis maiores, qu&aelig; <lb/>conflentur ex multis in&longs;tantibus; </s>
					<s id="N1697C"><!-- NEW -->haud dubi&egrave; maior erit ratio &longs;patio&shy;<lb/>rum, qu&agrave;m velocitatum.v.g.&longs;i primo in&longs;tanti acquiratur primo &longs;patium, <lb/>&longs;ecundo, 2.tertio, 3.quarto 4.igitur &longs;i <expan abbr="c&otilde;paretur">comparetur</expan> velocitas primi in&longs;tantis <lb/>cum velocitate quarti &aelig;qualis erit, vt ratio &longs;patiorum, id e&longs;t, vt 1. ad 4. <lb/>At ver&ograve; &longs;i accipiatur pars temporis con&longs;tans duobus in&longs;tantibus, h&aelig;c 4. <lb/>in&longs;tantia conflabunt tant&ugrave;m 2. partes temporis &aelig;quales; </s>
					<s id="N1698E"><!-- NEW -->in prima ac&shy;<lb/>quirentur 3.&longs;patia, in &longs;ecunda 7.vt patet: </s>
					<s id="N16994"><!-- NEW -->&longs;ed quia velocitas prim&aelig; par&shy;<lb/>tis temporis non e&longs;t &aelig;quabilis, nec etiam velocitas &longs;ecund&aelig;; </s>
					<s id="N1699A"><!-- NEW -->addantur <lb/>velocitates primi &amp; &longs;ecundi in&longs;tantis, itemque &longs;eor&longs;im velocitates tertij, <lb/>&amp; quarti; </s>
					<s id="N169A2"><!-- NEW -->cert&egrave; ratio collectorum erit vt ratio &longs;patiorum; &longs;i enim velo&shy;<lb/>citas &longs;ecundi in&longs;tantis comparetur cum velocitate quarti e&longs;t tant&ugrave;m <lb/>1/2 cum tamen primum &longs;patium &longs;it ad &longs;ecundum in ratione 3/7. </s>
				</p>
				<p id="N169AA" type="main">
					<s id="N169AC">Secund&ograve;, &longs;i comparentur &longs;patia cum temporibus e&longs;t alia ratio v.g.&longs;pa&shy;<lb/>tium acqui&longs;itum vno in&longs;tanti &longs;e habet ad &longs;patium acqui&longs;itum in duobus <lb/>in&longs;tantibus, vt 1, ad 3.in tribus vt 1.ad 6.in 4. vt 1. ad 10. </s>
				</p>
				<p id="N169B3" type="main">
					<s id="N169B5"><!-- NEW -->Terti&ograve; ob&longs;eruabis, non po&longs;&longs;e &longs;en&longs;u percipi in&longs;tans, im&ograve; neque tempo&shy;<lb/>ris partem ex mille in&longs;tantibus conflatam; </s>
					<s id="N169BB"><!-- NEW -->nec etiam &longs;patium quod ac&shy;<lb/>quiritur primo in&longs;tanti; </s>
					<s id="N169C1"><!-- NEW -->adhibenda &longs;unt tamen in&longs;tantia nece&longs;&longs;ari&ograve; ad <lb/>explicandam proportionem huius accelerationis, qu&aelig; fit in &longs;ingulis in&shy;<lb/>&longs;tantibus; vt ver&ograve; rem i&longs;tam reuocemus ad &longs;en&longs;ibilem praxim, a&longs;&longs;ume&shy;<lb/>mus proportionem aliam &longs;en&longs;ibilem, qu&aelig; proxim&egrave; ad veram accedit, nec <lb/>fer&egrave; &longs;en&longs;ibiliter fallere pote&longs;t, de qua infr&agrave;. </s>
				</p>
				<pb pagenum="90" xlink:href="026/01/122.jpg"/>
				<p id="N169D1" type="main">
					<s id="N169D3"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 40.<emph.end type="center"/></s>
				</p>
				<p id="N169DF" type="main">
					<s id="N169E1"><!-- NEW --><emph type="italics"/>Collectio &longs;patiorum e&longs;t &longs;umma terminorum huius progre&longs;&longs;ionis arithmetic&aelig;<emph.end type="italics"/>; <lb/></s>
					<s id="N169EB"><!-- NEW -->C&ugrave;m enim ratio &longs;patiorum &longs;it vt ratio velocitatum; </s>
					<s id="N169EF"><!-- NEW -->dum &longs;cilicet h&aelig;c <lb/>progre&longs;&longs;io accipitur in in&longs;tantibus, &amp; ratio velocitatum vt ratio incre&shy;<lb/>menti impetuum; vt con&longs;tat ex dictis, &amp; h&aelig;c &longs;equatur &longs;implicem <lb/>progre&longs;&longs;ionem 1. 2. 3. 4. &amp;c. </s>
					<s id="N169F9">cert&egrave; collectio &longs;patiorum e&longs;t &longs;umma ter&shy;<lb/>minorum. </s>
				</p>
				<p id="N169FE" type="main">
					<s id="N16A00"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 41.<emph.end type="center"/></s>
				</p>
				<p id="N16A0C" type="main">
					<s id="N16A0E"><emph type="italics"/>Hinc cognito primo termino, &amp; vltimo, id e&longs;t &longs;patio quod per curritur primo <lb/>in&longs;tanti &amp; &longs;patio quod percurritur vltimo instanti, cogno&longs;citur &longs;umma, id e&longs;t <lb/>collectio &longs;patiorum, id e&longs;t, totum &longs;patium confectum.<emph.end type="italics"/> v.g.&longs;i primus terminus, <lb/>&longs;ecundus S.igitur &longs;umma e&longs;t 36. quippe vltimus terminus indicat nume&shy;<lb/>rum terminorum, quia primus e&longs;t &longs;emper vnitas, &amp; progre&longs;&longs;iuus etiam <lb/>vnitas. </s>
				</p>
				<p id="N16A20" type="main">
					<s id="N16A22"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 42.<emph.end type="center"/></s>
				</p>
				<p id="N16A2E" type="main">
					<s id="N16A30"><!-- NEW --><emph type="italics"/>Hinc cognita &longs;umma &amp; vltimo termino cogno&longs;citur etiam numerus in&longs;tan&shy;<lb/>tium &aelig;qualium, qui &longs;emper est idem cum numero terminorum, cogno&longs;citur <lb/>etiam primus terminus, id e&longs;t &longs;patium quod primo instanti percurritur, cogno&shy;<lb/>&longs;cuntur etiam gradus velocitatis<emph.end type="italics"/>; </s>
					<s id="N16A3F"><!-- NEW -->quippe h&aelig;c omnia &longs;unt in eadem ratio&shy;<lb/>ne; </s>
					<s id="N16A45"><!-- NEW -->qu&aelig; omnia con&longs;tant ex regulis arithmeticis pr&aelig;ter alia multa data, <lb/>qu&aelig; lubens omitto; </s>
					<s id="N16A4B"><!-- NEW -->t&ugrave;m quia Phy&longs;icam non &longs;apiunt, t&ugrave;m quia hypothe&shy;<lb/>&longs;is illa e&longs;t impo&longs;&longs;ibilis phy&longs;ic&egrave;; quis enim &longs;en&longs;u percipere po&longs;&longs;it &amp; di&shy;<lb/>&longs;tinguere vnum temporis in&longs;tans, vel &longs;patij punctum? </s>
					<s id="N16A53">lic&egrave;t recen&longs;enda <lb/>fuerit h&aelig;c accelerati motus proportio in in&longs;tantibus, vt ad &longs;ua phy&longs;ica <lb/>principia reduceretur. </s>
				</p>
				<p id="N16A5A" type="main">
					<s id="N16A5C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 43.<emph.end type="center"/></s>
				</p>
				<p id="N16A68" type="main">
					<s id="N16A6A"><!-- NEW --><emph type="italics"/>Data &longs;umma progre&longs;&longs;ionis huius &longs;implicis, inuenietur numerus terminorum, <lb/>&longs;i inueniatur numerus, per quem diuidatur, qui &longs;uperet tant&ugrave;m vnitate du&shy;<lb/>plum quotientis<emph.end type="italics"/>; </s>
					<s id="N16A77"><!-- NEW -->quippe habebis in duplo quotientis numerum termino&shy;<lb/>rum v.g. <!-- REMOVE S-->&longs;it &longs;umma 10. diui&longs;or &longs;it 5. quotiens 2. duplus 4. hic e&longs;t nume&shy;<lb/>rus terminorum dat&aelig; &longs;umm&aelig;; </s>
					<s id="N16A81"><!-- NEW -->&longs;it alia &longs;umma 21. diui&longs;or &longs;it 7.quotiens 3. <lb/>numerus terminorum 6. &longs;it alia &longs;umma 36. dini&longs;or &longs;it 9. quotiens 4. nu&shy;<lb/>merus terminorum 8. &longs;it alia &longs;umma 45. partitor &longs;it 10. quotiens 4 1/2, <lb/>numerus terminorum 9. quomodo ver&ograve; hic partitor inueniri po&longs;&longs;it, vi&shy;<lb/>derint Arithmetici; </s>
					<s id="N16A8D"><!-- NEW -->nec enim e&longs;t huius loci, quamquam dat&acirc; &longs;umm&acirc; <lb/>huius progre&longs;&longs;ionis &longs;implicis facil&egrave; cogno&longs;ci pote&longs;t numerus termino&shy;<lb/>rum; duplicetur enim, &amp; radix 9. neglecto re&longs;iduo dabit numerum ter&shy;<lb/>minorum v.g. <!-- REMOVE S-->&longs;it &longs;umma 21. duplicetur, erit 42. rad. </s>
					<s id="N16A99"><!-- NEW -->9. 6. dat numerum <lb/>terminorum; &longs;it &longs;umma 36. duplicetur, erit 72.rad.9.8. dabit numerum <lb/>terminorum. </s>
				</p>
				<p id="N16AA1" type="main">
					<s id="N16AA3"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 44.<emph.end type="center"/></s>
				</p>
				<p id="N16AAF" type="main">
					<s id="N16AB1"><!-- NEW --><emph type="italics"/>Semper decre&longs;cit proportio incrementi velocitatis, id est maior est proportio <lb/>velocitatis &longs;ecundi in&longs;tantis ad primum qu&agrave;m tertij ad &longs;ecundum, &amp; maior<emph.end type="italics"/><pb pagenum="91" xlink:href="026/01/123.jpg"/><emph type="italics"/>tertij ad &longs;ecundum qu&agrave;m quarti ad tertium, atque ita deinceps<emph.end type="italics"/>; </s>
					<s id="N16AC5"><!-- NEW -->&longs;it enim <lb/>primo in&longs;tanti velocitas vt 1.&longs;ecundo erit, vt 2.tertio, vt 3.quarto, vt 4. <lb/>&longs;ed maior e&longs;t proportio 2.ad 1.qu&agrave;m 3.ad 2. &amp; h&aelig;c maior qu&agrave;m 4. ad 3. <lb/>atque ita deinceps; </s>
					<s id="N16ACF"><!-- NEW -->&longs;imiliter maior e&longs;t proportio &longs;patij quod percurritur <lb/>&longs;ecundo in&longs;tanti ad &longs;patium, quod percurritur primo, qu&agrave;m &longs;patij, quod <lb/>percurritur &longs;ecundo in&longs;tanti ad &longs;patium, quod percurritur primo qu&agrave;m <lb/>&longs;patij quod percurritur tertio ad &longs;patium, quod percurritur &longs;ecundo, at&shy;<lb/>que ita deinceps; e&longs;t enim eadem ratio &longs;patiorum qu&aelig; &longs;ingulis in&longs;tanti&shy;<lb/>bus re&longs;pondent, qu&aelig; velocitatum, vt demon&longs;tratum e&longs;t &longs;upr&agrave;. </s>
				</p>
				<p id="N16ADD" type="main">
					<s id="N16ADF"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 45.<emph.end type="center"/></s>
				</p>
				<p id="N16AEB" type="main">
					<s id="N16AED"><!-- NEW --><emph type="italics"/>Minor e&longs;t proportio totius &longs;patij, quod acquiritur duobus instantibus ad to<lb/>tum &longs;patium, quod acquiritur vno, qu&agrave;m &longs;it illius, quod acquiritur quatuor in&shy;<lb/>&longs;tantibus ad aliud, quod acquiritur duobus<emph.end type="italics"/>; patet ex dictis; </s>
					<s id="N16AFA"><!-- NEW -->&longs;i enim primo <lb/>in&longs;tanti acquiritur vnum &longs;patium, &longs;ecundo acquiruntur 2.igitur duobus <lb/>&longs;imul acquirantur 3. igitur proportio e&longs;t vt 3.ad 1.Sed &longs;i duobus acqui&shy;<lb/>runtur 3. &longs;patia; </s>
					<s id="N16B04"><!-- NEW -->cert&egrave; 4.in&longs;tantibus acquiruntur 10. igitur proportio e&longs;t <lb/>vt 10.ad 3. &longs;ed proportio 10/3 e&longs;t maior 3/1, erit adhuc maior proportio &longs;pa&shy;<lb/>tij quod acquiretur 6. in&longs;tantibus ad illud quod acquiritur tribus; e&longs;t <lb/>enim &lpar;21/6&rpar; vt patet. </s>
				</p>
				<p id="N16B0E" type="main">
					<s id="N16B10"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 46.<emph.end type="center"/></s>
				</p>
				<p id="N16B1C" type="main">
					<s id="N16B1E"><!-- NEW --><emph type="italics"/>Si componatur &aelig;quabilis motus ex &longs;ubdupla velocitate maxima, &amp; mini&shy;<lb/>ma, &aelig;quali tempore, idem &longs;patium percurretur hoc motu naturaliter accelera&shy;<lb/>to<emph.end type="italics"/>; </s>
					<s id="N16B2B"><!-- NEW -->&longs;it enim maxima velocitas vt 6. minima vt 1. motu naturaliter acce&shy;<lb/>lerato percurrentur &longs;patia 21. cuius &longs;umm&aelig; termini &longs;unt 6.igitur 6. in&shy;<lb/>&longs;tantibus con&longs;tat hic motus; </s>
					<s id="N16B33"><!-- NEW -->accipiatur &longs;ubduplum maxim&aelig;, &amp; minim&aelig; <lb/>velocitatis, &longs;cilicet 3 1/2. s&iacute;tque velocitas motus &aelig;quabilis in&longs;tantium 6. <lb/>haud dubi&egrave; &longs;i ducantur 3 1/2 in 6 erunt 21.ratio ex eo petitur quod &longs;cili&shy;<lb/>cet, vt habeatur &longs;umma progre&longs;&longs;ionis arithmetic&aelig;, debet addi primus <lb/>terminus maximo, &amp; a&longs;&longs;umi &longs;ubduplum totius; </s>
					<s id="N16B3F"><!-- NEW -->illudque ducere in nu&shy;<lb/>merum terminorum per regulam arithmeticam; </s>
					<s id="N16B45"><!-- NEW -->atqui eadem e&longs;t ratio <lb/>velocitatum, qu&aelig; &longs;patiorum; vt dictum e&longs;t &longs;upr&agrave;; &longs;cilice, in &longs;ingulis <lb/>in&longs;tantibus. </s>
				</p>
				<p id="N16B4D" type="main">
					<s id="N16B4F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 47.<emph.end type="center"/></s>
				</p>
				<p id="N16B5B" type="main">
					<s id="N16B5D"><!-- NEW --><emph type="italics"/>Si a&longs;&longs;umantur partes temporis majores; qu&aelig; &longs;cilicet pluribus in&longs;tantibus <lb/>constent, &longs;erueturque eadem accelerationis progre&longs;&longs;io arithmetica, &longs;patium <lb/>quod ex &longs;umma huius progre&longs;&longs;ionis re&longs;ultabit, erit minus vero,<emph.end type="italics"/> &longs;int enim 6.in&shy;<lb/>&longs;tantia, &amp; cuilibet iuxta progre&longs;&longs;ionem pr&aelig;dictam &longs;uum &longs;patium re&longs;pon&shy;<lb/>deat, haud dubi&egrave; &longs;patium &longs;ecundi erit duplum &longs;patij primi, &amp; tertium <lb/>triplum, &amp;c. </s>
					<s id="N16B70">vt con&longs;tat ex dictis; </s>
					<s id="N16B73"><!-- NEW -->igitur erunt &longs;patia 21. iam ver&ograve; a&longs;&longs;u&shy;<lb/>mantur 3. partes temporis, quarum qu&aelig;libet ex 2. con&longs;tet in&longs;tantibus; </s>
					<s id="N16B79"><!-- NEW --><lb/>prim&aelig; parti tria ex pr&aelig;dictis &longs;patiis re&longs;pondeant; </s>
					<s id="N16B7E"><!-- NEW -->cert&egrave; &longs;i &longs;eruetur pro&shy;<lb/>gre&longs;&longs;io arithmetica, &longs;ecund&aelig; re&longs;pondebunt 6. &amp; terti&aelig; 9. igitur totum <lb/>&longs;patium erit 18. minus vero quod erat 21. &longs;i ver&ograve; a&longs;&longs;umantur tant&ugrave;m 2. <lb/>partes, quarum qu&aelig;libet tribus in&longs;tantibus con&longs;tet; </s>
					<s id="N16B88"><!-- NEW -->prim&aelig; parti re&longs;pon-<pb pagenum="92" xlink:href="026/01/124.jpg"/>debunt 6. &longs;ecund&aelig; 12. igitur &longs;umma erit 18. minor vero &longs;patio &longs;cilicet <lb/>21.hinc vides &longs;uppo&longs;ito eodem in&longs;tantium numero &longs;patium e&longs;&longs;e &longs;emper <lb/>&aelig;quale, &longs;iue a&longs;&longs;umantur partes maiores temporis, &longs;iue minores, v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;up&shy;<lb/>po&longs;itis 6.in&longs;tantibus, ex quibus totum &longs;patium 21.con&longs;equitur, &longs;iue a&longs;&longs;u&shy;<lb/>mantur tres partes, quarum qu&aelig;libet con&longs;tet 2. in&longs;tantibus, &longs;iue du&aelig;, <lb/>quarum qu&aelig;libet con&longs;tet tribus, &longs;patium quod ex illis re&longs;ultat, e&longs;t &longs;em&shy;<lb/>per idem &longs;cilicet 18. a&longs;&longs;umptis ver&ograve; 8. in&longs;tantibus, &amp; totali &longs;patio, quod <lb/>illis re&longs;pondet 36. &longs;patium quod ex partibus re&longs;ultabit erit 30. &longs;iue &longs;int <lb/>du&aelig; partes, quarum qu&aelig;libet con&longs;tet 4. in&longs;tantibus, &longs;iue &longs;int 4. quarum <lb/>qu&aelig;libet con&longs;tet duobus: </s>
					<s id="N16BA7"><!-- NEW -->hinc rur&longs;us vides a&longs;&longs;umpto maiori in&longs;tantium <lb/>numero &longs;patium verum habere maiorem rationem ad non verum, qu&agrave;m <lb/>a&longs;&longs;umpto minori in&longs;tantium numero, v.g.a&longs;&longs;umantur 4.in&longs;tantia, &longs;umma <lb/>&longs;patiorum erit 10. &longs;i ver&ograve; a&longs;&longs;umantur 2.partes temporis, quarum qu&aelig;li&shy;<lb/>bet duobus in&longs;tantibus re&longs;pondeat; </s>
					<s id="N16BB3"><!-- NEW -->&longs;umma &longs;patij erit 9.igitur ratio ve&shy;<lb/>ri &longs;patij ad non verum e&longs;t &lpar;10/9&rpar;. a&longs;&longs;umantur 6. in&longs;tantia &longs;patij veri, &longs;umma <lb/>erit 21.non veri 18. igitur ratio &lpar;21/18&rpar; &longs;eu 7/6 qu&aelig; maior e&longs;t priori: denique <lb/>a&longs;&longs;umantur 8. in&longs;tantia &longs;patij veri, &longs;umma erit 36. non veri 30 igitur ra&shy;<lb/>tio &lpar;36/30&rpar; &longs;eu 6/3 qu&aelig; maior e&longs;t prioribus, atque ita deinceps. </s>
				</p>
				<p id="N16BBF" type="main">
					<s id="N16BC1"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 48.<emph.end type="center"/></s>
				</p>
				<p id="N16BCD" type="main">
					<s id="N16BCF"><!-- NEW --><emph type="italics"/>Datis duabus partibus temporis, &amp; cognito &longs;patio quod percurritur in prima, <lb/>matius &longs;patium re&longs;pondebit &longs;ecund&aelig; quo vtraque in plures partes minores diui&shy;<lb/>detur, &longs;uppo&longs;ita &longs;emper eadem progre&longs;&longs;ione arithmetica in ip&longs;o incremento<emph.end type="italics"/>; </s>
					<s id="N16BDC"><!-- NEW --><lb/>&longs;int enim du&aelig; partes temporis &longs;en&longs;ibiles &aelig;quales AG. GH. &amp; &longs;pa&shy;<lb/>tium quod percurritur prima parte temporis AG &longs;it HI; </s>
					<s id="N16BE3"><!-- NEW -->in &longs;ecunda <lb/>percurretur IO, id e&longs;t, duplum HI; </s>
					<s id="N16BE9"><!-- NEW -->at ver&ograve; diuidatur pars temporis <lb/>AG in duas &aelig;quales AF, FG, &amp; con&longs;equenter totum tempus AH in 4. <lb/>&aelig;quales; </s>
					<s id="N16BF1"><!-- NEW -->haud dubi&egrave; in prima AF percurretur NP &longs;ubtripla HI, &amp; in <lb/>&longs;ecunda FG percurretur PK dupla NP; </s>
					<s id="N16BF7"><!-- NEW -->igitur in 4. partibus temporis <lb/>AH percurretur &longs;patium decuplum PN, &longs;ed HO e&longs;t tant&ugrave;m nonecupla <lb/>NP; </s>
					<s id="N16BFF"><!-- NEW -->igitur re&longs;ultabit maius &longs;patium in 4.partibus temporis, quam in dua&shy;<lb/>bus; lic&egrave;t du&aelig; &aelig;quiualeant 4. iuxta progre&longs;&longs;ionem arithmeticam. </s>
				</p>
				<p id="N16C05" type="main">
					<s id="N16C07"><!-- NEW -->Similiter AF diuidatur bifariam in E. &amp; tota AH in 8. &aelig;quales AE; </s>
					<s id="N16C0B"><!-- NEW --><lb/>cert&egrave; primis 4.percurretur idem &longs;patium ML &aelig;quale NK &amp; HI; </s>
					<s id="N16C10"><!-- NEW -->igitur <lb/>in prima AE percurretur MR. cuius ML &longs;it decupla; </s>
					<s id="N16C16"><!-- NEW -->nam 4. terminis <lb/>re&longs;pondet &longs;umma 10. &longs;ed 8. terminis id e&longs;t 8.partibus temporis re&longs;pon&shy;<lb/>det &longs;umma; </s>
					<s id="N16C1E"><!-- NEW -->6. &aelig;qualium RM; </s>
					<s id="N16C22"><!-- NEW -->&longs;ed HO tripla ML e&longs;t tantum 30. <lb/>&aelig;qualium MR; igitur in 8.partibus re&longs;ultabit maius &longs;patium, qu&agrave;m in <lb/>4.qu&aelig; &aelig;quiualent 8. </s>
				</p>
				<p id="N16C2A" type="main">
					<s id="N16C2C"><!-- NEW -->Ex quibus etiam con&longs;tat quo plures accipientur partes temporis ma&shy;<lb/>ius &longs;patium re&longs;ultare, donec tandem perueniatur ad vltima in&longs;tantia, ex <lb/>quibus re&longs;ultat maximum; </s>
					<s id="N16C34"><!-- NEW -->&amp; &longs;i accipias AG partes temporis AG. GH. <lb/>habebitur HO; </s>
					<s id="N16C3A"><!-- NEW -->&longs;i ver&ograve; 4.&aelig;quales AF, cre&longs;cet &longs;patium &longs;eu &longs;umma 1/9 HO; </s>
					<s id="N16C3E"><!-- NEW --><lb/>&longs;i autem 8. &aelig;quales AE cre&longs;cet 1/5 HO; </s>
					<s id="N16C43"><!-- NEW -->&longs;i porr&ograve; 16. &aelig;quales AD cre&longs;&shy;<lb/>cet &lpar;22/108&rpar; &longs;i 32. &aelig;quales AC cre&longs;cet &lpar;120/408&rpar;; &longs;i 64. &aelig;quales AB cre&longs;cet &lpar;496/1584&rpar;. </s>
				</p>
				<pb pagenum="93" xlink:href="026/01/125.jpg"/>
				<p id="N16C4D" type="main">
					<s id="N16C4F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 49.<emph.end type="center"/></s>
				</p>
				<p id="N16C5B" type="main">
					<s id="N16C5D"><!-- NEW --><emph type="italics"/>In progre&longs;&longs;ione arithmetica &longs;i diuidatur numerus terminorum bifariam &aelig;&shy;<lb/>qualiter nunquam &longs;umma po&longs;terioris &longs;egmenti e&longs;t tripla prioris<emph.end type="italics"/>; &longs;ed &longs;i acci&shy;<lb/>piantur duo termini e&longs;t tant&ugrave;m 2/1, &longs;i 4. e&longs;t 7/3 &longs;i 6. e&longs;t &lpar;15/6&rpar;, &longs;i 8. e&longs;t &lpar;26/10&rpar;, &longs;i 10&shy;<lb/>&lpar;40/15&rpar;, &longs;i 12. &lpar;57/21&rpar;, &longs;i 14. &lpar;77/28&rpar;, atque ita deinceps. </s>
				</p>
				<p id="N16C6C" type="main">
					<s id="N16C6E"><!-- NEW -->Ex quo ob&longs;erua mirabilem con&longs;equutionem; </s>
					<s id="N16C72"><!-- NEW -->quippe &longs;i a&longs;&longs;umantur <lb/>tant&ugrave;m duo termini, &amp; diuidantur bifariam, &longs;umma po&longs;terioris medie&shy;<lb/>tatis e&longs;t tripla prim&aelig; min&ugrave;s vnitate; </s>
					<s id="N16C7A"><!-- NEW -->&longs;i accipiantur 4. e&longs;t tripla min&ugrave;s <lb/>2. &longs;i 6. min&ugrave;s 3. &longs;i 8. min&ugrave;s 4. &longs;i 10. min&ugrave;s 5. &longs;i 12. min&ugrave;s 6. &longs;i 14. mi&shy;<lb/>n&ugrave;s 7. atque ita deinceps; vnde &longs;umma po&longs;terioris medietatis e&longs;t &longs;emper <lb/>tripla min&ugrave;s numero &longs;uorum terminorum, vel quod clarum e&longs;t min&ugrave;s <lb/>&longs;ubduplo vltimi, &longs;eu maximi termini, vel numeri terminorum totius <lb/>progre&longs;&longs;ionis, quod prob&egrave; omnin&ograve; tenendum e&longs;t, vt omnes experienti&aelig; <lb/>explica ri po&longs;&longs;int, quod infr&agrave; faciemus. </s>
				</p>
				<p id="N16C8A" type="main">
					<s id="N16C8C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 50.<emph.end type="center"/></s>
				</p>
				<p id="N16C98" type="main">
					<s id="N16C9A"><!-- NEW --><emph type="italics"/>Ex dictis hactenus facil&egrave; redditur ratio maioris ictus eiu&longs;dem corporis im&shy;<lb/>pacti quod cadit ex maiori altitudine<emph.end type="italics"/>; fuit hyp. </s>
					<s id="N16CA5">1. &longs;ed ide&ograve; e&longs;t maior ictus, <lb/>quia maior imprimitur impetus, vt patet, at ide&ograve; maior impetus impri&shy;<lb/>mitur, quia maior e&longs;t imprimens per Ax. 2. cre&longs;cit enim impetus, vt <lb/>con&longs;tat ex dictis. </s>
				</p>
				<p id="N16CAE" type="main">
					<s id="N16CB0"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 51.<emph.end type="center"/></s>
				</p>
				<p id="N16CBC" type="main">
					<s id="N16CBE"><!-- NEW --><emph type="italics"/>Hinc quoque ratio maxim&aelig; percu&longs;&longs;ionis ex &longs;olo pondere cadentis illius arie&shy;<lb/>tis inflict&aelig;<emph.end type="italics"/>; qu&acirc; &longs;cilicet alt&egrave; infiguntur lignei pali, quibus in mediis <lb/>aquis tanquam iacto fundamini &longs;uper&aelig;dificatur ingens &longs;&aelig;p&egrave; &aelig;dificij <lb/>moles. </s>
				</p>
				<p id="N16CCD" type="main">
					<s id="N16CCF"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 52.<emph.end type="center"/></s>
				</p>
				<p id="N16CDB" type="main">
					<s id="N16CDD"><!-- NEW --><emph type="italics"/>Hinc ex minima altitudine cadens corpus graue minimum fer&egrave; ictum in&shy;<lb/>fligit<emph.end type="italics"/>; quia primus impetus vald&egrave; debilis e&longs;t, qui tamen deinde facta <lb/>acce&longs;&longs;ione maximus fer&egrave; euadit. </s>
				</p>
				<p id="N16CEA" type="main">
					<s id="N16CEC"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 53.<emph.end type="center"/></s>
				</p>
				<p id="N16CF8" type="main">
					<s id="N16CFA"><!-- NEW --><emph type="italics"/>Hinc ratio, cur tanta &longs;it differentia impetus grauitationis, &amp; percu&longs;&longs;ionis <lb/>ab eodem mobili<emph.end type="italics"/>; </s>
					<s id="N16D05"><!-- NEW -->quia &longs;cilicet quantumuis tempore breui&longs;&longs;imo mouea&shy;<lb/>tur, plurimis tamen eius motus durat in&longs;tantibus; atqui quolibet in&longs;tan&shy;<lb/>ti motus acquiritur impetus &aelig;qualis primo impetui grauitationis, vt <lb/>con&longs;tat ex dictis. </s>
					<s id="N16D0F"><!-- NEW -->v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;it mobile quod moueatur per mille in&longs;tantia <lb/>&lpar;modicum cert&egrave; tempus &amp; minim&egrave; &longs;en&longs;ibile&rpar; po&longs;t hunc motum impetus <lb/>erit millecuplus; </s>
					<s id="N16D1B"><!-- NEW -->igitur effectus etiam millecuplus; qu&aelig; omnia con&longs;tant <lb/>ex dictis. </s>
				</p>
				<p id="N16D21" type="main">
					<s id="N16D23"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 54.<emph.end type="center"/></s>
				</p>
				<p id="N16D2F" type="main">
					<s id="N16D31"><!-- NEW --><emph type="italics"/>Hinc percu&longs;&longs;io qu&aelig; fit in primo in&longs;tanti contactus cre&longs;cit vt tempus<emph.end type="italics"/>; </s>
					<s id="N16D3A"><!-- NEW -->quia <lb/>c&ugrave;m &longs;ingulis in&longs;tantibus cre&longs;cat impetus per partes &aelig;quales, &amp; c&ugrave;m per&shy;<lb/>cu&longs;&longs;io &longs;it vt impetus; etiam erit vt tempus; </s>
					<s id="N16D42"><!-- NEW -->igitur percu&longs;&longs;io, qu&aelig; fit po&longs;t <lb/>duo in&longs;tantia motus eiu&longs;dem corporis grauis deor&longs;um cadentis e&longs;t du-<pb pagenum="94" xlink:href="026/01/126.jpg"/>pla illius, qu&aelig; &longs;it po&longs;t vnum in&longs;tans motus, &amp; qu&aelig; fit po&longs;t tria tripla, po&longs;t <lb/>4. quadrupla, atque ita deinceps; c&ugrave;m enim &aelig;qualibus temporibus &aelig;qua&shy;<lb/>lia acquirantur velocitatis momenta, id e&longs;t &aelig;quales impetus, impetus <lb/>erunt vt tempora, percu&longs;&longs;iones vt impetus, igitur percu&longs;&longs;iones vt tem&shy;<lb/>pora. </s>
				</p>
				<p id="N16D55" type="main">
					<s id="N16D57"><!-- NEW -->Dixi in primo in&longs;tanti contactus; nam reuer&acirc; &longs;ecund&ograve; in&longs;tanti con&shy;<lb/>tactus, ni&longs;i fiat reflexio, augetur vis ictus, quia cau&longs;a nece&longs;&longs;aria e&longs;t ap&shy;<lb/>plicata. </s>
				</p>
				<p id="N16D5F" type="main">
					<s id="N16D61"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 55.<emph.end type="center"/></s>
				</p>
				<p id="N16D6D" type="main">
					<s id="N16D6F"><!-- NEW --><emph type="italics"/>Hinc po&longs;&longs;unt comparari du&aelig; percu&longs;&longs;iones duorum grauium in&aelig;qualium <lb/>dum cadunt deor&longs;um<emph.end type="italics"/>; </s>
					<s id="N16D7A"><!-- NEW -->&longs;i enim cadunt &aelig;qualibus temporibus, percu&longs;&longs;io&shy;<lb/>nes erunt vt corpora &longs;eu grauitates, vt patet v.g. <!-- REMOVE S-->corpus 2. librarum po&longs;t <lb/>2. in&longs;tantia motus infligit duplam percu&longs;&longs;ionem illius, quam infligit cor&shy;<lb/>pus vnius libr&aelig; po&longs;t 2. in&longs;tantia motus; </s>
					<s id="N16D86"><!-- NEW -->&longs;i ver&ograve; tempora motus &longs;unt in&aelig;&shy;<lb/>qualia, &amp; grauitates &aelig;quales, percu&longs;&longs;iones erunt vt tempora; </s>
					<s id="N16D8C"><!-- NEW -->&longs;i demum <lb/>grauitates in&aelig;quales, &amp; tempora motus in&aelig;qualia, percu&longs;&longs;iones erunt <lb/>in ratione compo&longs;ita ex ratione grauitatum &amp; temporum, qu&aelig; omnia <lb/>patent ex dictis in Th. &longs;uperioribus, v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;it corpus duarum librarum, <lb/>&amp; alterum trium librarum; </s>
					<s id="N16D9C"><!-- NEW -->primum moueatur per 5. in&longs;tantia, &amp; &longs;ecun&shy;<lb/>dum 2.per 5. ratio grauitatum e&longs;t 3/2; </s>
					<s id="N16DA2"><!-- NEW -->ratio temporum e&longs;t 7/5; </s>
					<s id="N16DA6"><!-- NEW -->compo&longs;ita <lb/>ex vtraque erit &lpar;21/10&rpar;; &amp; h&aelig;c e&longs;t ratio percu&longs;&longs;ionum. </s>
				</p>
				<p id="N16DAC" type="main">
					<s id="N16DAE"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 56.<emph.end type="center"/></s>
				</p>
				<p id="N16DBA" type="main">
					<s id="N16DBC"><emph type="italics"/>Hinc pote&longs;t &longs;ciri ratio percu&longs;&longs;ionis. </s>
					<s id="N16DC1"><!-- NEW -->&amp; grauitationis eiu&longs;dem mobilis in pri&shy;<lb/>mo in&longs;tanti vtriu&longs;que, &longs;i cogno&longs;catur numerus in&longs;tantium motus<emph.end type="italics"/>; </s>
					<s id="N16DCA"><!-- NEW -->cum enim <lb/>&longs;ingulis in&longs;tantibus &aelig;qualis impetus accedat, vt &longs;&aelig;p&egrave; dictum e&longs;t; </s>
					<s id="N16DD0"><!-- NEW -->cert&egrave; <lb/>erit percu&longs;&longs;io ad grauitationem, vt numerus in&longs;tantium motus ad vnita&shy;<lb/>tem, v.g. <!-- REMOVE S-->grauitatio &longs;it vt 4.&longs;it&qacute;ue motus eiu&longs;dem corporis per 8. in&longs;tan&shy;<lb/>tia; percu&longs;&longs;io erit ad grauitationem, vt 32. ad 4.vel vt 8.ad 1.qu&aelig; om&shy;<lb/>nia con&longs;tant ex dictis. </s>
				</p>
				<p id="N16DDE" type="main">
					<s id="N16DE0"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 57.<emph.end type="center"/></s>
				</p>
				<p id="N16DEC" type="main">
					<s id="N16DEE"><!-- NEW --><emph type="italics"/>Hinc data percu&longs;&longs;ione, &longs;i cogno&longs;ceretur prob&egrave; numerus in&longs;tantium motus, <lb/>dari po&longs;&longs;et grauitatio ip&longs;i &aelig;qualis<emph.end type="italics"/>; </s>
					<s id="N16DF9"><!-- NEW -->v.g. <!-- REMOVE S-->&longs;it percu&longs;&longs;io dati corporis cadentis <lb/>per 8.in&longs;tantia, eius percu&longs;&longs;io e&longs;t octupla grauitationis eiu&longs;dem per Th. <!-- REMOVE S--><lb/>56. igitur &longs;i detur grauitatio octupla huius, erit &aelig;qualis dat&aelig; percu&longs;&shy;<lb/>&longs;ioni; dabitur autem grauitatio octupla, &longs;i detur corpus eiu&longs;dem mate&shy;<lb/>ri&aelig; octupl&ograve; grauius, vt con&longs;tat. </s>
				</p>
				<p id="N16E08" type="main">
					<s id="N16E0A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 38.<emph.end type="center"/></s>
				</p>
				<p id="N16E16" type="main">
					<s id="N16E18"><emph type="italics"/>Hinc primo in&longs;tanti grauitationis nullum fer&egrave; &longs;entitur pondus,<emph.end type="italics"/> quia mini&shy;<lb/>ma vis e&longs;t, qu&aelig; con&longs;equentibus in&longs;tantibus augetur, hinc lic&egrave;t corpus <lb/>breui tempore quis &longs;u&longs;tineat, paul&ograve; po&longs;t tamen ponderi cedit, ratio e&longs;t <lb/>clara ex dictis. </s>
				</p>
				<pb pagenum="95" xlink:href="026/01/127.jpg"/>
				<p id="N16E2A" type="main">
					<s id="N16E2C"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N16E38" type="main">
					<s id="N16E3A"><!-- NEW -->Ob&longs;eruabis prim&ograve; numerum in&longs;tantium non po&longs;&longs;e &agrave; quoquam &longs;en&longs;u <lb/>percipi, nec in calculos vocari, vt patet; </s>
					<s id="N16E40"><!-- NEW -->vnde Theoremata non po&longs;&longs;unt <lb/>ad praxim reduci defectu huius cognitionis; quam &longs;upra adhibui hypo&shy;<lb/>the&longs;eos loco. </s>
				</p>
				<p id="N16E48" type="main">
					<s id="N16E4A"><!-- NEW -->Secund&ograve; non pote&longs;t ad amu&longs;&longs;im tempus cum tempore componi ad <lb/>&aelig;qualitatem, vel aliam datam rationem; </s>
					<s id="N16E50"><!-- NEW -->lic&egrave;t enim vnum tempus &longs;en&longs;i&shy;<lb/>bile haberet mille in&longs;tantia &longs;upra aliud; </s>
					<s id="N16E56"><!-- NEW -->illa tamen in&aelig;qualitas &longs;en&longs;u <lb/>minim&egrave; perciperetur; idem dico de aliis rationibus, in quo, ni fallor, <lb/>maxim&egrave; peccant, qui temporum &aelig;qualitatem perfectam ob&longs;eruari po&longs;&longs;e <lb/>contendunt. </s>
				</p>
				<p id="N16E60" type="main">
					<s id="N16E62"><!-- NEW -->Terti&ograve;, idem dico de percu&longs;&longs;ionum ratione; </s>
					<s id="N16E66"><!-- NEW -->quippe non pote&longs;t &longs;en&longs;u <lb/>percipi in&aelig;qualitas duarum percu&longs;&longs;ionum, lic&egrave;t vires vnius pr&aelig;ualeant <lb/>mille punctis &longs;eu gradibus in&longs;en&longs;ibilibus; </s>
					<s id="N16E6E"><!-- NEW -->quippe non pote&longs;t di&longs;tingui <lb/>ab alia ni&longs;i vel ex &longs;patio; </s>
					<s id="N16E74"><!-- NEW -->atqui di&longs;cerni non pote&longs;t, an vnum &longs;patium <lb/>&longs;uperet aliud mille punctis; vel ex &longs;ono; </s>
					<s id="N16E7A"><!-- NEW -->atqui &longs;onus pote&longs;t diuidi in in&shy;<lb/>finitos fer&egrave; gradus &longs;en&longs;u minim&egrave; perceptibiles; </s>
					<s id="N16E80"><!-- NEW -->igitur nulla hypothe&longs;is <lb/>in his experimentis &longs;tatui pote&longs;t, quibus &aelig;qualitas vel temporum, vel <lb/>&longs;patiorum cogno&longs;ci dicatur; </s>
					<s id="N16E88"><!-- NEW -->nec dicas aliquot in&longs;tantia par&ugrave;m di&longs;eri&shy;<lb/>minis importare, nam c&ugrave;m &longs;ingulis in&longs;tantibus fiat &aelig;qualis impetus ac&shy;<lb/>ce&longs;&longs;io, mille in&longs;tantia reddunt percu&longs;&longs;ionem millecuplam grauitationis; </s>
					<s id="N16E90"><!-- NEW --><lb/>hinc certum e&longs;t ex numero in&longs;tantium cognito cogno&longs;ci tant&ugrave;m po&longs;&longs;e <lb/>numerum punctorum, &amp; vici&longs;&longs;im; </s>
					<s id="N16E97"><!-- NEW -->at cert&egrave; neuter &longs;en&longs;u percipi pote&longs;t; ne&shy;<lb/>que tanti e&longs;t hoc &longs;cire. </s>
				</p>
				<p id="N16E9D" type="main">
					<s id="N16E9F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 59.<emph.end type="center"/></s>
				</p>
				<p id="N16EAB" type="main">
					<s id="N16EAD"><!-- NEW --><emph type="italics"/>Hinc &longs;i corpus graue de&longs;cenderet motu &aelig;quabili eoque &aelig;quali motui primi <lb/>in&longs;tantis; </s>
					<s id="N16EB5"><!-- NEW -->cert&egrave; vix modicum &longs;patium post multos annos decurreret<emph.end type="italics"/>; </s>
					<s id="N16EBC"><!-- NEW -->&longs;uppo&shy;<lb/>namus enim quod plures habent, lic&egrave;t accurat&egrave; experimento &longs;ubii&shy;<lb/>ci non po&longs;&longs;it, &longs;cilicet vno &longs;ecundo minuto temporis decurri &agrave; corpore <lb/>graui deor&longs;um 12. pedes &longs;patij; </s>
					<s id="N16EC6"><!-- NEW -->in &longs;ecundo minuto &longs;upponamus e&longs;&longs;e <lb/>mille in&longs;tantia, quamuis infinita pen&egrave; contineat; </s>
					<s id="N16ECC"><!-- NEW -->&longs;itque in primo in&shy;<lb/>&longs;tanti motus vnus gradus impetus; </s>
					<s id="N16ED2"><!-- NEW -->&longs;ic enim vocetur illa pars impetus, que <lb/>producitur primo in&longs;tanti; </s>
					<s id="N16ED8"><!-- NEW -->cert&egrave; po&longs;t mille in&longs;tantia motus, erunt mille <lb/>gradus impetus; </s>
					<s id="N16EDE"><!-- NEW -->iam vcr&ograve; &longs;i accipiatur &longs;ubduplum maxim&aelig; &amp; minim&aelig; <lb/>velocitatis; </s>
					<s id="N16EE4"><!-- NEW -->id e&longs;t vnius gradus, &amp; mille graduum, &longs;cilicet 500. 1/2 tri&shy;<lb/>buaturque motui &aelig;quabili; </s>
					<s id="N16EEA"><!-- NEW -->haud dubi&egrave; vno fecundo minuto percur&shy;<lb/>rentur 12. pedes &longs;patij per Th. 46. Igitur &longs;i cum velocitate vt 500, 1/2 <lb/>percurrentur 12. pedes 1.minuto, cum velocitate vt 1. percurrentur <lb/>12. pedes 500.&longs;ecundis minutis, &amp;; 30. tertiis; </s>
					<s id="N16EF4"><!-- NEW -->&longs;i ver&ograve; accipiantur plura <lb/>in&longs;tantia, v.g. <!-- REMOVE S-->1000000.in&longs;tantia, percurrentur 12. pedes 500000. &longs;e&shy;<lb/>cundis minutis; </s>
					<s id="N16EFE"><!-- NEW -->&longs;i ver&ograve; 1000000000000. percurremur 500000000000. <lb/>&longs;ecundis, id e&longs;t 8333333333. minutis, id e&longs;t 138888888. horis <pb pagenum="96" xlink:href="026/01/128.jpg"/>id e&longs;t 5787037. diebus id e&longs;t 89031. annis, omitto minutias; atqui lon&shy;<lb/>g&egrave; adhuc plura in vno minuto continentur in&longs;tantia. </s>
				</p>
				<p id="N16F0B" type="main">
					<s id="N16F0D"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 60.<emph.end type="center"/></s>
				</p>
				<p id="N16F19" type="main">
					<s id="N16F1B"><!-- NEW --><emph type="italics"/>Si corpus graue de&longs;cenderet motu &aelig;quabili, eoque &aelig;quali motui vltimi in&shy;<lb/>stantis, duplum fer&egrave; &longs;patium &aelig;quali tempore conficeret illius quod conficit <lb/>motu accelerato, duplum inquam fer&egrave; &longs;cilicet paul&ograve; min&ugrave;s<emph.end type="italics"/>; </s>
					<s id="N16F28"><!-- NEW -->quia conficit <lb/>idem motu &aelig;quabili; </s>
					<s id="N16F2E"><!-- NEW -->cuius velocitas e&longs;t &longs;ubdupla maxim&aelig; &amp; minim&aelig;; </s>
					<s id="N16F32"><!-- NEW --><lb/>&longs;ed minima velocitas primi in&longs;tantis pro nihilo reputatur; </s>
					<s id="N16F37"><!-- NEW -->igitur acci&shy;<lb/>piatur tant&ugrave;m &longs;ubduplum maxim&aelig;, igitur cum velocitate &aelig;quali maxi&shy;<lb/>m&aelig;, eodem tempore duplum &longs;patium percurretur; </s>
					<s id="N16F3F"><!-- NEW -->igitur in vno minuto <lb/>&longs;ecundo, v.g. <!-- REMOVE S-->24. pedes; </s>
					<s id="N16F47"><!-- NEW -->igitur in vno minuto primo eodem motu &aelig;qua&shy;<lb/>bili 1440. pedes percurrentur; </s>
					<s id="N16F4D"><!-- NEW -->igitur in vna hora 86400. pedes; hinc <lb/>non e&longs;t quod aliqui adeo mirentur, &longs;eu poti&ugrave;s reiiciant hanc motus <lb/>accelerationem quod ex ea t&ugrave;m tardi&longs;&longs;imus motus, t&ugrave;m veloci&longs;&longs;imus <lb/>con&longs;equatur. </s>
				</p>
				<p id="N16F57" type="main">
					<s id="N16F59"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 61.<emph.end type="center"/></s>
				</p>
				<p id="N16F65" type="main">
					<s id="N16F67"><!-- NEW --><emph type="italics"/>Motus naturaliter acceleratus non propagatur per omnes tarditatis gra&shy;<lb/>dus<emph.end type="italics"/>; </s>
					<s id="N16F72"><!-- NEW -->quia tot &longs;unt huius propagationis gradus, quot &longs;unt in&longs;tantia, <lb/>quibus durat hic motus, cum &longs;ingulis in&longs;tantibus noua fiat impetus ac&shy;<lb/>ce&longs;&longs;io, &longs;ed non &longs;unt infinita in&longs;tantia, vt demon&longs;trabimus in Metaphy&shy;<lb/>&longs;ica; </s>
					<s id="N16F7C"><!-- NEW -->pr&aelig;tere&agrave; lic&egrave;t e&longs;&longs;ent infinita in&longs;tantia, non fieret adhuc per omnes <lb/>tarditatis gradus h&aelig;c propagatio; </s>
					<s id="N16F82"><!-- NEW -->quia daretur aliquis gradus tarditatis, <lb/>quem non comprehenderet h&aelig;c graduum &longs;eries; </s>
					<s id="N16F88"><!-- NEW -->nam incipit moueri <lb/>tardi&ugrave;s in plano inclinato qu&agrave;m in libero medio rect&agrave; deor&longs;um, vt con&shy;<lb/>&longs;tat, &amp; in medio den&longs;o qu&agrave;m in raro v.g. <!-- REMOVE S-->in aqua qu&agrave;m in a&euml;re; igitur <lb/>hic tarditatis gradus, quo incipit moueri in plano tantill&ugrave;m inclinato, <lb/>non continetur inter illos, quibus mouetur rect&agrave; deor&longs;um. </s>
				</p>
				<p id="N16F96" type="main">
					<s id="N16F98">Hinc duplici nomine reiice Galil&aelig;um qui hoc a&longs;&longs;erit. </s>
					<s id="N16F9B"><!-- NEW -->Prim&ograve;, quia <lb/>fru&longs;tr&agrave; ponit infinita in&longs;tantia &longs;ine nece&longs;&longs;itate; </s>
					<s id="N16FA1"><!-- NEW -->&longs;ecund&ograve;, quia ratio, quam <lb/>habet, non conuincit; </s>
					<s id="N16FA7"><!-- NEW -->vocat enim quietem tarditatem infinitam; </s>
					<s id="N16FAB"><!-- NEW -->&agrave; qua <lb/>dum recedit mobile, haud dubi&egrave; per omnes tarditatis gradus propagari <lb/>pote&longs;t eius motus; &longs;ed contr&agrave; prim&ograve;, nam reuer&agrave; quies non e&longs;t tarditas, <lb/>qu&aelig; motui tant&ugrave;m ine&longs;&longs;e pote&longs;t. </s>
					<s id="N16FB5">Secund&ograve;, quia t&agrave;m ex quiete &longs;equi po&shy;<lb/>te&longs;t immediat&egrave; velox motus, qu&agrave;m tardus, vt patet in proiectis. </s>
					<s id="N16FBA">Terti&ograve;, <lb/>quia motus incipit; </s>
					<s id="N16FBF"><!-- NEW -->igitur per aliquid &longs;ui, igitur ille primus motus &agrave; <lb/>quiete infinit&egrave; non di&longs;tat; denique rationes &longs;upr&agrave; propo&longs;it&aelig; rem i&longs;tam <lb/>euincunt. </s>
				</p>
				<p id="N16FC7" type="main">
					<s id="N16FC9"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N16FD5" type="main">
					<s id="N16FD7">Ob&longs;eruabis con&longs;ideratum e&longs;&longs;e hactenus hunc motum nulla habita <lb/>ratione re&longs;i&longs;tenti&aelig; medij, qu&aelig; haud dubi&egrave; hanc propo&longs;itionem motus <lb/>accelerati tantill&ugrave;m impedit, &longs;ed de re&longs;i&longs;tenti&agrave; medij agemus infr&agrave;. </s>
				</p>
				<p id="N16FDE" type="main">
					<s id="N16FE0"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N16FED" type="main">
					<s id="N16FEF">Ex dictis facil&egrave; reiicies prim&ograve; &longs;ententiam illorum, qui negant mo-<pb pagenum="97" xlink:href="026/01/129.jpg"/>tum naturalem accelerari, quos non ratio mod&ograve; euidenti&longs;&longs;ima, &longs;ed ade&ograve; <lb/>&longs;en&longs;ibile experimentum omnin&ograve; conuincere pote&longs;t. </s>
				</p>
				<p id="N16FF9" type="main">
					<s id="N16FFB"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N17008" type="main">
					<s id="N1700A"><!-- NEW -->Secund&ograve; reiicies illos, qui volunt accelerationem motus e&longs;&longs;e, vel &agrave; vi <lb/>magnetica, qu&acirc; terra trahit ad &longs;e omnia grauia; </s>
					<s id="N17010"><!-- NEW -->vel ab alia vi occulta, <lb/>qu&acirc; c&oelig;lum pellit deor&longs;um; </s>
					<s id="N17016"><!-- NEW -->vel &agrave; c&oelig;le&longs;ti illa, im&ograve; poti&ugrave;s fabulos&acirc; mate&shy;<lb/>ri&acirc;; </s>
					<s id="N1701C"><!-- NEW -->vel demum ab ip&longs;a vi &longs;ympathic&acirc;, qu&acirc; corpus &longs;uo centro propi&ugrave;s <lb/>factum totas &longs;uas vires exerit, vt ei &longs;e conjungat; qu&aelig; omnia gratis di&shy;<lb/>cuntur, &amp; ex dictis plu&longs;quam efficaciter refelli po&longs;&longs;unt, ne fru&longs;tr&agrave; tempus <lb/>in iis iterum refellendis teramus. </s>
				</p>
				<p id="N17026" type="main">
					<s id="N17028"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N17035" type="main">
					<s id="N17037"><!-- NEW -->Terti&ograve; reiicies, qui volunt motum accelerari ex a&euml;ris &agrave; tergo impel&shy;<lb/>lentis appul&longs;u, quod ridiculum e&longs;t: </s>
					<s id="N1703D"><!-- NEW -->lic&egrave;t enim Ari&longs;toteles videatur illud <lb/>&longs;en&longs;i&longs;&longs;e de projectis, quod examinabimus &longs;uo loco; </s>
					<s id="N17043"><!-- NEW -->nunquam tamen hoc <lb/>dixit de motu naturali; </s>
					<s id="N17049"><!-- NEW -->quin poti&ugrave;s antiquorum fuit omnium hic &longs;en&shy;<lb/>&longs;us, fieri <expan abbr="acce&longs;&longs;ion&etilde;">acce&longs;&longs;ionem</expan> mobili alicuius, vnde reddatur motus velocior; </s>
					<s id="N17053"><!-- NEW -->hinc <lb/>dictum illud vulgare, <emph type="italics"/>vire&longs;que acquirit eundo<emph.end type="italics"/>; </s>
					<s id="N1705F"><!-- NEW -->nihil porr&ograve; intelligi pote&longs;t <lb/>nomine virium, ni&longs;i id, ex quo maior ictus, &longs;eu percu&longs;&longs;io &longs;equitur; illud <lb/>autem e&longs;&longs;e impetum con&longs;tat. </s>
				</p>
				<p id="N17067" type="main">
					<s id="N17069"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N17076" type="main">
					<s id="N17078"><!-- NEW -->Quart&ograve; ex his &longs;ententia Ari&longs;totelica de motu accelerato optim&egrave; vin&shy;<lb/>dicatur; </s>
					<s id="N1707E"><!-- NEW -->qu&ograve;d &longs;cilicet grauia &longs;ub finem &longs;ui motus veloci&ugrave;s &longs;erantur ver&shy;<lb/>s&ugrave;s centrum; quod ex dictis, &amp; &longs;implici&longs;&longs;imis, certi&longs;&longs;imi&longs;que principiis <lb/>demon&longs;tratum fuit. </s>
				</p>
				<p id="N17086" type="main">
					<s id="N17088"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/> 5.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N17095" type="main">
					<s id="N17097"><!-- NEW -->Quint&ograve; reiicies etiam illorum &longs;ententiam, qui hanc accelerationem <lb/>tribuunt vel medio min&ugrave;s re&longs;i&longs;tenti, vel grauitatis augmento, vel impe&shy;<lb/>tui violento pri&ugrave;s impre&longs;&longs;o dum corpus graue attollitur, quod meo iudi&shy;<lb/>cio ridiculum e&longs;t; qua&longs;i ver&ograve; fru&longs;tum rupis deci&longs;um, deor&longs;umque ruens <lb/>impetum violentum aliquando habuerit. </s>
				</p>
				<p id="N170A3" type="main">
					<s id="N170A5"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 6.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N170B2" type="main">
					<s id="N170B4">Sext&ograve; reiicies illorum &longs;ententiam, qui volunt accelerationem motus <lb/>naturalis ita fieri, vt &longs;patia temporibus &aelig;qualibus acqui&longs;ita &longs;equantur &longs;e&shy;<lb/>riem numerorum imparium 1.3.5.7.9.11.13. &amp;c. </s>
					<s id="N170BB"><!-- NEW -->&amp; &longs;patia &longs;int vt <lb/>quadrata temporum v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;i primo in&longs;tanti acquiritur 1.&longs;patium: &longs;ecundo <lb/>acquiruntur 3. tertio 5. quarto 7. &amp;c. </s>
					<s id="N170C7"><!-- NEW -->fique vno in&longs;tanti acquiritur 1. <lb/>&longs;patium, duobus acquiruntur 4. tribus 9. quatuor 16. atque ita deinceps <lb/>per quadrata, qu&aelig; omnia ex dictis fal&longs;a e&longs;&longs;e con&longs;tat; </s>
					<s id="N170CF"><!-- NEW -->quippe &longs;i &aelig;qualibus <lb/>temporibus acquiruntur &aelig;qualia velocitatis momenta; igitur &longs;i primo <lb/>in&longs;tanti e&longs;t 1.gradus, &longs;ecundo erunt 2. igitur &longs;ecundo tempore cum duo&shy;<lb/>bus gradibus velocitatis vel impetus percurrentur duo tant&ugrave;m &longs;patia, &longs;i <lb/>prim&ograve; in&longs;tanti &aelig;quali cum vno gradu percurritur vnus, &longs;ed de his fus&egrave; <lb/>infr&agrave;. </s>
				</p>
				<pb pagenum="98" xlink:href="026/01/130.jpg"/>
				<p id="N170E1" type="main">
					<s id="N170E3"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 7.<emph.end type="center"/></s>
				</p>
				<p id="N170EF" type="main">
					<s id="N170F1">Septim&ograve; reiicies etiam aliquos recentiores, qui volunt fieri hanc pro&shy;<lb/>gre&longs;&longs;ionem &longs;patiorum &aelig;qualibus temporibus re&longs;pondentium &longs;ecund&ugrave;m <lb/>progre&longs;&longs;ionem Geometricam, duplam, &longs;cilicet iuxta hos numeros 1. 2. 4. <lb/>8. 16. 32. &amp;c. </s>
					<s id="N170FA"><!-- NEW -->quod etiam ex eadem ratione facil&egrave; confutatur: </s>
					<s id="N170FE"><!-- NEW -->reiicies <lb/>etiam alium recentiorem, qui vult hanc progre&longs;&longs;ionem &longs;umi ex linea <lb/>proportionaliter &longs;ect&acirc;, id e&longs;t in mediam &amp; extremam rationem; </s>
					<s id="N17106"><!-- NEW -->&longs;ed de <lb/>his omnibus in di&longs;&longs;ertatione &longs;equenti fus&egrave; di&longs;putamus; quippe rem hanc <lb/>tanti e&longs;&longs;e putamus, vt nihil omittendum &longs;it, quod ad eius pleni&longs;&longs;imam <lb/>confirmationem pertineat. <lb/><gap desc="hr tag"/></s>
				</p>
				<p id="N17113" type="main">
					<s id="N17115"><emph type="center"/>DISSERTATIO<emph.end type="center"/></s>
				</p>
				<p id="N1711C" type="main">
					<s id="N1711E"><emph type="center"/><emph type="italics"/>De Motu naturaliter accelerato.<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N17129" type="main">
					<s id="N1712B"><!-- NEW -->DV&aelig; &longs;unt poti&longs;&longs;im&ugrave;m in hac materia celebres &longs;ententi&aelig;; </s>
					<s id="N1712F"><!-- NEW -->Prima e&longs;t <lb/>Galilei, &amp; fer&egrave; omnium recentiorum, qui po&longs;t Galileum de motu <lb/>&longs;crip&longs;erunt; </s>
					<s id="N17137"><!-- NEW -->inter quos, ne omittam Genuen&longs;em Patricium, Balianum; </s>
					<s id="N1713B"><!-- NEW --><lb/>Doctus Mer&longs;ennus, &amp; eruditus Ga&longs;&longs;endus primum locum obtinent; </s>
					<s id="N17140"><!-- NEW --><lb/>quorum ille hanc &longs;ententiam multis in locis, &longs;cilicet in &longs;uis qu&aelig;&longs;tioni&shy;<lb/>bus Phy&longs;icis, in &longs;ua Galilei ver&longs;ione, in harmonia vniuer&longs;ali, &amp; demum <lb/>in &longs;ua Bali&longs;tica pa&longs;&longs;im, t&ugrave;m fus&egrave; proponit, &amp; explicat, t&ugrave;m etiam &longs;uis ra&shy;<lb/>tionibus confirmat; Galileus ver&ograve; illam habet t&ugrave;m in gemino &longs;y&longs;tema&shy;<lb/>te, t&ugrave;m in dialogo tertio de motu locali. </s>
				</p>
				<p id="N1714D" type="main">
					<s id="N1714F"><!-- NEW -->Secunda &longs;ententia no&longs;tra e&longs;t, de qua non &longs;emel di&longs;putandum fuit &agrave; <lb/>Magi&longs;tro, t&ugrave;m verbis t&ugrave;m etiam litteris &longs;criptis; &amp; ne quid fort&egrave; di&longs;&longs;imu&shy;<lb/>lem, illa e&longs;t &longs;ententia quam anonimo Philo&longs;ophe &lpar;quem non &longs;ine laude <lb/>appellat idem Mer&longs;ennus&rpar; tribuit. </s>
					<s id="N17159"><!-- NEW -->prop.18.&longs;u&aelig; Bali&longs;tic&aelig; &longs;ub finem; illa <lb/>e&longs;t inquam &longs;ententia, quam hactenus meo iudicio &longs;atis luculenter de&shy;<lb/>mon&longs;trauimus. </s>
				</p>
				<p id="N17161" type="main">
					<s id="N17163"><!-- NEW -->Sunt tres ali&aelig; &longs;ententi&aelig;, qu&aelig; ab eodem Mer&longs;enno referuntur; prima <lb/>e&longs;t qu&aelig; progre&longs;&longs;ionem &longs;patiorum <expan abbr="e&atilde;dem">eandem</expan> e&longs;&longs;e vult cum e&acirc;, qu&aelig; e&longs;t &longs;i&shy;<lb/>nuum ver&longs;orum, centro quadrantis po&longs;ito in centro terr&aelig;, &amp; altero ex&shy;<lb/>tremo &longs;inus totius in eo punct&ograve;, in quo incipit motus. </s>
					<s id="N17171">Secunda e&longs;t quo&shy;<lb/>rumdam, qui volunt progre&longs;&longs;ionem &longs;patiorum, qu&aelig; &longs;ingulis temporibus <lb/>re&longs;pondent, e&longs;&longs;e in progre&longs;&longs;ione geometrica dupla iuxta hos numeros, <lb/>1.2.4.8.32. Tertia e&longs;t alicuius, qui voluit e&longs;&longs;e iuxta proportionem line&aelig; <lb/>&longs;ect&aelig; in mediam, &amp; extremam rationem. </s>
				</p>
				<p id="N1717C" type="main">
					<s id="N1717E"><!-- NEW -->Tres vltim&aelig; &longs;ententi&aelig; nullo pror&longs;us nituntur fundamento; igitur vel <lb/>inde maxim&egrave; confutantur, qu&ograve;d gratis &longs;ine vllo pror&longs;us vel rationis vel <lb/>experimenti momento excogitat&aelig; &longs;int. </s>
					<s id="N17186"><!-- NEW -->Igitur in hac di&longs;&longs;ertatione du&aelig; <lb/>tant&ugrave;m prim&aelig; di&longs;cutiend&aelig; &longs;unt Sententi&aelig; Galilei &longs;chema hic habes <lb/>in linea AF, in qua a&longs;&longs;umitur AB, &longs;patium &longs;cilicet, quod dato tempore <pb pagenum="99" xlink:href="026/01/131.jpg"/>corpus graue &longs;uo motu percurrit; </s>
					<s id="N17193"><!-- NEW -->&amp; &longs;ecundo tempore &aelig;quali BC, qu&aelig; <lb/>tripla e&longs;t AB, tertio CD quintupla quarto DE &longs;eptupla, quinto EF <lb/>nonecupla; vides prim&ograve; &longs;eriem numerorum imparium 1. 3. 5. 7. 9.atque <lb/>ita deinceps. </s>
					<s id="N1719D">Secund&ograve; vides &longs;patia e&longs;&longs;e in ratione duplicata temporum, <lb/>hoc e&longs;t vt temporum quadrata. </s>
					<s id="N171A2"><!-- NEW -->v.g. <!-- REMOVE S-->&longs;i accipiatur &longs;patium AB primo tem&shy;<lb/>pore peractum, &amp; &longs;patium AC duobus temporibus confectum: ratio hu&shy;<lb/>ius ad illud e&longs;t vt 4.ad 1.id e&longs;t vt quadratum 2.ad quadratum 1. &longs;imiliter, <lb/>&longs;i accipiatur &longs;patium AD confectum tribus temporibus, erit 9.id e&longs;t qua&shy;<lb/>dratum 3, &longs;patium AE confectum 4.temporibus erit 16.id e&longs;t quadratum <lb/>4. &amp; AF 25. quadratum 5. <!-- KEEP S--></s>
				</p>
				<p id="N171B3" type="main">
					<s id="N171B5"><!-- NEW -->H&aelig;c &longs;ententia ingenios&egrave; &agrave; Galileo excogitata ex duplici capite &agrave; &longs;uis <lb/>auctoribus confirmatur; prim&ograve; experienti&acirc;, &longs;ecund&ograve; ratione. </s>
					<s id="N171BB"><!-- NEW -->Experien&shy;<lb/>tia tribus poti&longs;&longs;imum experimentis fulcitur; primum e&longs;t in motu deor&shy;<lb/>&longs;um per lineam perpendicularem. </s>
					<s id="N171C3"><!-- NEW -->v. <!-- REMOVE S-->g. <!-- REMOVE S-->in linea AF; </s>
					<s id="N171CB"><!-- NEW -->nam reuer&agrave; multi <lb/>&longs;unt, iique graui&longs;&longs;imi auctores in rebus t&ugrave;m philo&longs;ophicis, t&ugrave;m mathe&shy;<lb/>maticis ver&longs;ati&longs;&longs;imi, qui &longs;&aelig;pi&ugrave;s &longs;en&longs;u ip&longs;o probarunt, repetitis v&longs;que ad <lb/>nau&longs;eam experimentis, tempore vnius &longs;ecundi minuti corpus graue in <lb/>libero a&euml;re 12. pedes &longs;patij motu naturali deor&longs;um percurrere; in 2.ve&shy;<lb/>r&ograve; &longs;ecundis 48. in 3.&longs;ecundis 108.&longs;ed &longs;patia i&longs;ta &longs;unt vt temporum qua&shy;<lb/>drata, vt con&longs;tat. </s>
				</p>
				<p id="N171DB" type="main">
					<s id="N171DD">Secundum experimentum e&longs;t in plano inclinato, in quo corpus graue <lb/>de&longs;cendit iuxta pr&aelig;dictam progre&longs;&longs;ionem, quod expre&longs;&longs;is verbis te&longs;tatur <lb/>Galileus &agrave; &longs;e fui&longs;&longs;e probatum &longs;&aelig;pi&ugrave;s, nec vnquam &agrave; vero ne tantill&ugrave;m <lb/>quidem aberra&longs;&longs;e. </s>
					<s id="N171E6"><!-- NEW -->&longs;ed in perpendiculari deor&longs;um eadem proportione <lb/>cre&longs;cit motus, qu&acirc; in plano inclinato; lic&egrave;t in plano inclinato tardior &longs;it <lb/>motus, vt demon&longs;trabimus ali&agrave;s. </s>
				</p>
				<p id="N171EE" type="main">
					<s id="N171F0"><!-- NEW -->Tertium experimentum petitur ex funependulis; </s>
					<s id="N171F4"><!-- NEW -->in quibus &longs;&aelig;pi&ugrave;s <lb/>ob&longs;eruatum e&longs;t longitudinem funis, &amp; con&longs;equenter arcum quadrantis <lb/>longioris funependuli e&longs;&longs;e ad longitudinem, &longs;eu quadrantem alterius <lb/>breuioris, vt quadratum temporis, quo perficitur vibratio maioris ad <lb/>quadratum temporis, quo perficitur vibratio minoris.v.g.&longs;it longitudo <lb/>funependuli maioris, CG minoris ver&ograve; &longs;ubquadrupla CF; </s>
					<s id="N17202"><!-- NEW -->eleuetur vter&shy;<lb/>que funis, cui pondus &aelig;quale &longs;it appen&longs;um v&longs;que ad horizontalem <lb/>CDE &amp; alterum ex D; </s>
					<s id="N1720A"><!-- NEW -->alterum ver&ograve; ex E demi&longs;&longs;um cadat deor&longs;um; haud <lb/>dubi&egrave; funependulum CE duplum temporis collocabit in decurrendo <lb/>quadrante EG, &amp; funependulum ED &longs;ubduplum. </s>
					<s id="N17212"><!-- NEW -->v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;i CD conficit <lb/>&longs;uam vibrationem DF vno &longs;ecundo, EG conficiet &longs;uam EG duobus, vt <lb/>centies ob&longs;eruatum e&longs;t; </s>
					<s id="N1721E"><!-- NEW -->&longs;ed EG e&longs;t quadruplus DF, vt patet; igitur EG <lb/>&amp; DF &longs;unt vt quadrata temporum, quibus percurritur EG &amp; DF &longs;ed vt <lb/>de&longs;cendit graue per DF &amp; EG, ita de&longs;cendit per CF &amp; CG, quippe <lb/>DF &amp; EG habent rationem plani inclinati deor&longs;um. </s>
				</p>
				<p id="N17228" type="main">
					<s id="N1722A"><!-- NEW -->Adde quod, vt &longs;e habet tempus, quo de&longs;cendit per totum quadrantem <lb/>DF, ad tempus, quo de&longs;cendit per totum quadrantem EG. &longs;ic &longs;e habet <lb/>tempus, quo de&longs;cendit per arcum DL &longs;ubduplum DF ad tempus, quo <lb/>de&longs;cendit per arcum EI &longs;ubduplum EG; </s>
					<s id="N17234"><!-- NEW -->item tempus, quo de&longs;cendit <pb pagenum="100" xlink:href="026/01/132.jpg"/>per arcum DM &longs;ubquadruplum DF.ad tempus, quo de&longs;cendit per arcum <lb/>EK &longs;ubquadruplum EG; </s>
					<s id="N1723F"><!-- NEW -->denique vt tempus, quo per minimum ar&shy;<lb/>cum quadrantis DF, ad tempus, quo de&longs;cendit per alium proportiona&shy;<lb/>lem, &longs;cilicet quadruplum in quadrante EG; </s>
					<s id="N17247"><!-- NEW -->atqui tam parui arcus po&longs;&shy;<lb/>&longs;unt a&longs;&longs;umi, vt &longs;int ad in&longs;tar line&aelig; rect&aelig; deor&longs;um tangentis &longs;cilicet in D <lb/>&amp; in E; </s>
					<s id="N1724F"><!-- NEW -->igitur in his rectis de&longs;cendunt grauia iuxta progre&longs;&longs;ionem pr&aelig;&shy;<lb/>dictam; </s>
					<s id="N17255"><!-- NEW -->id e&longs;t, cum arcus minimus a&longs;&longs;umptus ab E, qui &aelig;quiualet rect&aelig;, <lb/>&longs;it quadruplus arcus minimi a&longs;&longs;umpti &agrave; puncto D, tempus, quo percurri&shy;<lb/>tur ille primus, e&longs;t ad tempus, quo percurritur hic &longs;ubquadruplus, vt tem&shy;<lb/>pus, quo percurritur EG ad tempus, quo percurritur DF vt dictum e&longs;t; </s>
					<s id="N1725F"><!-- NEW --><lb/>&longs;ed tempus, quo percurritur EG e&longs;t duplum illius, quo percurritur DF; </s>
					<s id="N17264"><!-- NEW --><lb/>igitur tempus, quo percurritur minimus arcus a&longs;&longs;umptus ab E, &amp; qui e&longs;t <lb/>ad in&longs;tar rect&aelig;, e&longs;t duplum temporis quo percurritur minimus arcus a&longs;&shy;<lb/>&longs;umptus &agrave; puncto D &longs;ubquadruplus prioris, &amp; qui e&longs;t etiam ad in&longs;tar re&shy;<lb/>ct&aelig;; igitur &longs;patia &longs;unt vt temporum quadrata. </s>
				</p>
				<p id="N1726F" type="main">
					<s id="N17271"><!-- NEW -->Quod autem tempus, quo percurritur EG &longs;it duplum illius, quo per&shy;<lb/>curritur DF, patet experienti&acirc;; </s>
					<s id="N17277"><!-- NEW -->nam &longs;i numerentur ducent&aelig; vibrationes <lb/>funependuli CD; </s>
					<s id="N1727D"><!-- NEW -->eodem tempore numerabuntur centum vibrationes <lb/>maioris CE; </s>
					<s id="N17283"><!-- NEW -->igitur vibrationum minoris numerus e&longs;t duplus numeri vi&shy;<lb/>brationum maioris, dum &longs;imul vibrantur; </s>
					<s id="N17289"><!-- NEW -->igitur eo tempore, quo fiunt <lb/>100.maioris, fient 200. minoris; nam omnes vibrationes eiu&longs;dem fune&shy;<lb/>penduli &longs;unt &aelig;qu&ograve; diuturn&aelig;, lic&egrave;t fiant per arcus in&aelig;quales eiu&longs;dem. </s>
					<s id="N17291"><lb/>quadrantis, vt &longs;&aelig;p&egrave; ob&longs;eruatum e&longs;t. </s>
					<s id="N17295">In his tribus poti&longs;&longs;imum experimen&shy;<lb/>tis fundatur h&aelig;c hypothe&longs;is Galilei, qu&aelig; nec clari&ugrave;s meo. </s>
					<s id="N1729A">iudicio, nec <lb/>&longs;inceri&ugrave;s exponi po&longs;&longs;unt. </s>
				</p>
				<p id="N1729F" type="main">
					<s id="N172A1"><!-- NEW -->Antequam rationes, qu&aelig; pro hac &longs;ententia facere videntur, propona&shy;<lb/>mus, refellamu&longs;que; </s>
					<s id="N172A7"><!-- NEW -->o&longs;tendo prim&ograve; quomodo cum his experimentis <lb/>&longs;tare po&longs;&longs;it no&longs;tra hypothe&longs;is; </s>
					<s id="N172AD"><!-- NEW -->igitur ex iis hypothe&longs;is Galilei rect&egrave; de&shy;<lb/>duci non pote&longs;t: </s>
					<s id="N172B3"><!-- NEW -->quippe h&aelig;c e&longs;t certi&longs;&longs;ima regula, quam nemo Philo&longs;o&shy;<lb/>phus negare au&longs;it: </s>
					<s id="N172B9"><!-- NEW -->Quotie&longs;cumque aliquod experimentum tale e&longs;t, vt <lb/>cum eo &longs;tare po&longs;&longs;int contrari&aelig; hypothe&longs;es; </s>
					<s id="N172BF"><!-- NEW -->ex eo cert&egrave; neutra deduci po&shy;<lb/>te&longs;t; igitur ex propo&longs;itis experimentis &longs;uam hypothe&longs;im Galileus non <lb/>legitim&egrave; deducit, quod vt clari&longs;&longs;im&egrave; o&longs;tendam. </s>
				</p>
				<p id="N172C7" type="main">
					<s id="N172C9"><!-- NEW -->Suppono, quando dicitur &longs;ecundum &longs;patium e&longs;&longs;e triplum primi &longs;up&shy;<lb/>po&longs;itis &aelig;qualibus temporibus, non ita Geometric&egrave;, certaque, &amp; acurat&acirc; <lb/>a&longs;&longs;ertione hoc dici; </s>
					<s id="N172D1"><!-- NEW -->quin vel aliqua puncta in &longs;patiis, vel in&longs;tantia in <lb/>temporibus de&longs;int, vel &longs;uper&longs;int; </s>
					<s id="N172D7"><!-- NEW -->&longs;i enim quis diceret &longs;patium e&longs;&longs;e tri&shy;<lb/>plum primi minus 100000. punctis, vel &longs;ecundum tempus e&longs;&longs;e maius <lb/>primo 100000. in&longs;tantibus; quis hanc, vel &longs;patij, vel temporis differen&shy;<lb/>tiam &longs;en&longs;u percipiat? </s>
					<s id="N172E1"><!-- NEW -->cum tamen experimentum omne phy&longs;icum &longs;en&longs;ui <lb/>&longs;ube&longs;&longs;e po&longs;&longs;it; </s>
					<s id="N172E7"><!-- NEW -->nec e&longs;t quod aliquis dicat hoc idem toties ob&longs;eruatum <lb/>e&longs;&longs;e, tam multis locis temporibus, totque ac tantis etiam te&longs;tibus, vt mi&shy;<lb/>nim&egrave; fraus aliqua, vel error &longs;ubrepere potuerit; nam cum parua &longs;it, &amp; <lb/>in&longs;en&longs;ibilis t&ugrave;m &longs;patiorum, t&ugrave;m temporum differentia, maius vel minus <lb/>&aelig;quali tempus, pro &aelig;quali, maius.vel minus tripl&ograve; &longs;patium pro triplo <pb pagenum="101" xlink:href="026/01/133.jpg"/>facil&egrave; accipi pote&longs;t, cum nullum di&longs;crimen &longs;en&longs;ibile e&longs;t. </s>
				</p>
				<p id="N172F8" type="main">
					<s id="N172FA"><!-- NEW -->Adde quod non de&longs;unt viri graui&longs;&longs;imi qui dicant &longs;e vix ob&longs;eruare po&shy;<lb/>tui&longs;&longs;e hanc &longs;patiorum progre&longs;&longs;ionem; </s>
					<s id="N17300"><!-- NEW -->plures appellare po&longs;&longs;em; </s>
					<s id="N17304"><!-- NEW -->vnus <lb/>Ga&longs;&longs;endus e&longs;t in&longs;tar omnium; </s>
					<s id="N1730A"><!-- NEW -->qui &longs;an&egrave; in ob&longs;eruando fuit acurati&longs;&longs;imus, <lb/>qui literis &longs;criptis, quas ego vidi, expre&longs;&longs;is verbis a&longs;&longs;erit progre&longs;&longs;ionem <lb/>hanc non e&longs;&longs;e omnin&ograve; iuxta hos numeros 1.3.5.7. &longs;ed &longs;ingulis addendas <lb/>e&longs;&longs;e &longs;uas minutias, quas ip&longs;e habet; </s>
					<s id="N17314"><!-- NEW -->&longs;ed ego omitto, quia etiam &longs;ua incer&shy;<lb/>titudine laborant; </s>
					<s id="N1731A"><!-- NEW -->igitur nullo experimento ad amu&longs;&longs;im concludes, <lb/>vel <expan abbr="&aelig;qualitat&etilde;">&aelig;qualitatem</expan> vel aliam accuratam t&ugrave;m temporum t&ugrave;m &longs;patiorum pro&shy;<lb/>portionem: </s>
					<s id="N17326"><!-- NEW -->Equidem &longs;en&longs;u percipio practicam hanc e&longs;&longs;e maiorem pede; </s>
					<s id="N1732A"><!-- NEW --><lb/>at tot lineis vel <expan abbr="p&utilde;ctis">punctis</expan> &longs;uperare ne Argus quidem cert&ograve;, ac di&longs;tinct&egrave; cer&shy;<lb/>neret: </s>
					<s id="N17335"><!-- NEW -->Sed efficaciter, meo iudicio, hanc Galilei hypothe&longs;im refello; </s>
					<s id="N17339"><!-- NEW -->&longs;int <lb/> 2.partes temporis &aelig;quales AE, EF, e&aelig;que &longs;en&longs;ibiles; </s>
					<s id="N1733F"><!-- NEW -->nec enim ali&aelig; a&longs;&shy;<lb/>&longs;umi po&longs;&longs;unt; </s>
					<s id="N17345"><!-- NEW -->&longs;intque minim&aelig; omnium &longs;en&longs;ibilium; </s>
					<s id="N17349"><!-- NEW -->haud dubi&egrave; con&longs;tant <lb/>&longs;ingul&aelig; infinitis fer&egrave; aliis in&longs;en&longs;ibilibus, vt patet; </s>
					<s id="N1734F"><!-- NEW -->igitur &longs;ic ratiocinatur <lb/>Galileus; </s>
					<s id="N17355"><!-- NEW -->in prima parte temporis AE corpus graue percurrit &longs;patium <lb/>GH, &amp; in &longs;ecunda &aelig;quali EF percurrit &longs;patium HL triplum prioris; </s>
					<s id="N1735B"><!-- NEW --><lb/>igitur &longs;patia &longs;unt vt quadrata temporum, rect&egrave;; &longs;ed antequam vlterius <lb/>progrediar;</s>
					<s id="N17362"> Qu&aelig;ro vel &agrave; Galileo, vel &agrave; quolibet alto, vtrum &longs;patium <lb/>HL &longs;it omnino triplum? </s>
					<s id="N17367">&amp; &longs;i aliquis contenderet dee&longs;&longs;e &lpar;1/1000000&rpar; GH <lb/>vtrum experimento pr&aelig;&longs;enti conuinci po&longs;&longs;it? </s>
					<s id="N1736C"><!-- NEW -->nemo, vt puto, id a&longs;&longs;erere <lb/>au&longs;it; </s>
					<s id="N17372"><!-- NEW -->hoc po&longs;ito, a&longs;&longs;umptaque progre&longs;&longs;ione arithmetica <expan abbr="qu&atilde;">quam</expan> no&longs;tra &longs;en&shy;<lb/>tentia in &longs;patiis ad&longs;truit; </s>
					<s id="N1737C"><!-- NEW -->&longs;i prima parte temporis AE percurratur &longs;pa&shy;<lb/>tium GH, &longs;ecunda EF. percurretur tant&ugrave;m HK duplum GH; </s>
					<s id="N17382"><!-- NEW -->igitur <lb/>minus e&longs;t hoc &longs;patium vero &longs;patio 1/4. &longs;cilicet tota KL; </s>
					<s id="N17388"><!-- NEW -->res pror&longs;us de&shy;<lb/>mon&longs;trata e&longs;&longs;et, &longs;i termini proportionis vnius e&longs;&longs;ent tant&ugrave;m 2. id e&longs;t, &longs;i <lb/>progre&longs;&longs;io fieret in partibus temporis &longs;en&longs;ibilibus; </s>
					<s id="N17390"><!-- NEW -->at po&longs;ito quod &longs;int <lb/>plures termini, vt reuer&acirc; &longs;unt; </s>
					<s id="N17396"><!-- NEW -->nam in totidem terminis fit progre&longs;&longs;io, in <lb/>quibus fit augmentum impetus, vel accelerationis acce&longs;&longs;io; </s>
					<s id="N1739C"><!-- NEW -->atqui h&aelig;c <lb/>fit in &longs;ingulis in&longs;tantibus, lic&egrave;t finitis, igitur &amp; progre&longs;&longs;io; </s>
					<s id="N173A2"><!-- NEW -->Quare du&aelig; <lb/>partes temporis AE, EF diuidantur in 4. &aelig;quales AD; cert&egrave; in duabus <lb/>primis percurretur &longs;patium. </s>
					<s id="N173AA">VQ &aelig;quale GH; igitur duabus vltimis per&shy;<lb/>curretur QK, qu&aelig; &longs;it ad QV vt 7. ad 3. nam prima parte percurritur 1. <lb/>&longs;patium. </s>
					<s id="N173B1"><!-- NEW -->&longs;ecunda 2. igitur QV continet tria &longs;patia; </s>
					<s id="N173B5"><!-- NEW -->tertia ver&ograve; 3. quarta <lb/>4.ergo h&aelig; du&aelig; vltim&aelig; 7. &longs;ed QM e&longs;t dupla QV; </s>
					<s id="N173BB"><!-- NEW -->igitur continet 6. igi&shy;<lb/>tur MK e&longs;t 1/3 VQ, vel KL; </s>
					<s id="N173C1"><!-- NEW -->igitur KM e&longs;t &lpar;1/12&rpar; GL; </s>
					<s id="N173C5"><!-- NEW -->igitur 12. L &lpar;1/10&rpar;, vel <lb/>1/6, igitur VK e&longs;t ad GL vt 10.ad 12. igitur totum &longs;patium VK e&longs;t mi&shy;<lb/>nus vero 1/6. Pr&aelig;terea 2. partes temporis AE EF diuidantur in 8. partes <lb/>&aelig;quales AE; </s>
					<s id="N173CF"><!-- NEW -->haud dubi&egrave; 4. primis percurretur &longs;patium XT &aelig;quale <lb/>GH, quod debet diuidi in 10. &longs;patia; </s>
					<s id="N173D5"><!-- NEW -->nam 4. terminis, &longs;eu temporibus <lb/>re&longs;pondent &longs;patia 10. quibus &aelig;qualia &longs;unt 40. in teta GL, cuius XT e&longs;t <lb/>&lpar;1/14&rpar;, &longs;ed &longs;i in 4.primis acquiruntur 10. 4. vltimis EF acquiruntur 26.&longs;cili&shy;<lb/>cet T 5; igitur tota X 5. e&longs;t 6. igitur e&longs;t ad GL vt 36. ad 40. &longs;eu 9. ad <lb/>10. igitur X 5. e&longs;t &longs;patium minus vero &lpar;1/10&rpar;. </s>
				</p>
				<p id="N173E1" type="main">
					<s id="N173E3"><!-- NEW -->Pr&aelig;terea diuidatur tempus AF in 16. partes &aelig;quales AB; </s>
					<s id="N173E7"><!-- NEW -->haud dubi&egrave; <pb pagenum="102" xlink:href="026/01/134.jpg"/>8 primis acquiritur &longs;patium YS &aelig;quale GH; quod debet diuidi in &longs;pa&shy;<lb/>tiola 36, qu&aelig; re&longs;pondent 8. temporibus, &longs;eu terminis huius progre&longs;&longs;io&shy;<lb/>nis, quibus &aelig;qualia &longs;unt 144. in GL, cuius YS e&longs;t 1/4, &longs;ed &longs;i in 8. primis <lb/>acquiruntur 36. in 8. vltimis acquirentur 100. igitur S 6. e&longs;t 100. igitur <lb/>Y6. e&longs;t 136. igitur e&longs;t ad GL vt 136. ad 144.&longs;eu 17.ad 18.igitur Y6.e&longs;t <lb/>&longs;patium totale minus vero &lpar;1/18&rpar;. </s>
				</p>
				<p id="N173FA" type="main">
					<s id="N173FC">Deinde diuidatur adhuc tempus AF in partes 32. &aelig;quales, 16. pri&shy;<lb/>mis acquiritur ZR &aelig;quale GH, quod debet diuidi in &longs;patiola 136.qu&aelig; <lb/>re&longs;pondent 16. temporibus quibus &aelig;qualia &longs;unt 544. in tota GL, cuius <lb/>ZR e&longs;t 1/4 &longs;ed &longs;i in 16. primis temporibus acquiruntur 136. in vltimis <lb/>16. acquiruntur 392. igitur R 7. e&longs;t 392. &amp; ZR 136. igitur Z 7.528. <lb/>igitur Z 7. e&longs;t ad GL, vt 528. ad 544. &longs;eu vt 33. ad 34. igitur Z 7 e&longs;t <lb/>&longs;patium minus ver&ograve; &lpar;1/34&rpar; </s>
				</p>
				<p id="N1740B" type="main">
					<s id="N1740D"><!-- NEW -->Denique &longs;i diuidatur tempus AF in partes 64.&longs;patium acqui&longs;itum erit <lb/>minus vero, a&longs;&longs;umpto &longs;cilicet tota HL &lpar;1/66&rpar;, &longs;i diuidatur in 128. partes, erit <lb/>minus &lpar;1/130&rpar; &longs;i diuidatur in 256. partes, erit minus &lpar;1/258&rpar; &longs;ed temporis par&shy;<lb/>tes 2.AE. EF minim&egrave; &longs;en&longs;ibilium diuidi po&longs;&longs;unt in infinita fer&egrave; in&longs;tan&shy;<lb/>tia; &longs;int tant&ugrave;m ex.g. </s>
					<s id="N17419">1000000. igitur &longs;patium tunc acqui&longs;itum erit mi&shy;<lb/>nus &longs;uppo&longs;ito vero HL &lpar;1/1000002&rpar;, qu&aelig; &longs;i de&longs;it tant&ugrave;m &longs;patio KL vt &longs;it 1/4 <lb/>totius GL, quis hoc di&longs;cernat? </s>
					<s id="N17420"><!-- NEW -->igitur etiam &longs;uppo&longs;ita progre&longs;&longs;ione arith&shy;<lb/>metica, qu&aelig; fiat in finitis in&longs;tantibus; </s>
					<s id="N17426"><!-- NEW -->&longs;i ob&longs;eruetur acurati&longs;&longs;im&egrave; &longs;patium, <lb/>quod percurritur in vna parte temporis &longs;en&longs;ibili v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;patium GH in <lb/>parte temporis AE; </s>
					<s id="N17432"><!-- NEW -->&longs;patium, quod acquiretur in tempore &longs;ecundo &aelig;qua&shy;<lb/>li t&agrave;m prop&egrave; accedet ad &longs;patium HL, id e&longs;t ad triplum prioris GH, vt <lb/>nullus mortalium di&longs;cernere po&longs;&longs;it; igitur cum hoc experimento t&agrave;m <lb/>pote&longs;t &longs;tare no&longs;tra hypothe&longs;is, qu&agrave;m alia Galilei, igitur neutra ex eo tan&shy;<lb/>t&ugrave;m euinci pote&longs;t. </s>
				</p>
				<p id="N1743E" type="main">
					<s id="N17440"><!-- NEW -->Hinc obiter ob&longs;erua progre&longs;&longs;ionem differentiarum; </s>
					<s id="N17444"><!-- NEW -->quippe &longs;i &longs;int <lb/>tant&ugrave;m 2. partes temporis, differentia e&longs;t 1/4; </s>
					<s id="N1744A"><!-- NEW -->&longs;i 4.1/6 &longs;i 8. &lpar;1/10&rpar;; &longs;i 16.&lpar;1/18&rpar;; &longs;i 32. <lb/>&lpar;1/34&rpar;; </s>
					<s id="N17450"><!-- NEW -->&longs;i 64.&lpar;1/66&rpar; nam prim&ograve; denominator fractionis &longs;uperat tant&ugrave;m binario <lb/>numerum partium temporis; &longs;ecund&ograve; differenti&aelig; denominatorum &longs;unt <lb/>in progre&longs;&longs;ione geometrica dupla numerorum 2. 4. 8. 16. 32. 64. <lb/>128. &amp;c. </s>
				</p>
				<p id="N1745A" type="main">
					<s id="N1745C"><!-- NEW -->Eodem modo &longs;oluendum e&longs;t &longs;ecundum experimentum rotati globi in <lb/>plano decliui; </s>
					<s id="N17462"><!-- NEW -->pr&aelig;&longs;ertim cum globus ab incur&longs;u a&longs;periorum partium <lb/>t&ugrave;m globi, t&ugrave;m plani &longs;altuatim de&longs;cendat; </s>
					<s id="N17468"><!-- NEW -->quod dubium e&longs;&longs;e non pote&longs;t, <lb/>&amp; qu&ograve; decliuius erit, facili&ugrave;s re&longs;iliet a plano, vt patet; &longs;ed de motu in <lb/>planis inclinatis fus&egrave; agemus infr&agrave; libro integro. </s>
				</p>
				<p id="N17470" type="main">
					<s id="N17472"><!-- NEW -->Quod &longs;pectat ad tertium experimentum; </s>
					<s id="N17476"><!-- NEW -->multa in eo &longs;upponuntur <lb/>vel fal&longs;a, vel &longs;altem dubia: vel ea qu&aelig; cum no&longs;tra hypothe&longs;i optim&egrave; con&shy;<lb/>ueniant. </s>
					<s id="N1747E"><!-- NEW -->Primum e&longs;t, quando dicuntur omnes vibrationes eiu&longs;dem fune&shy;<lb/>penduli, &longs;iue maiores, &longs;iue minores e&longs;&longs;e &aelig;quediuturn&aelig;, quod manife&longs;tis <lb/>experimentis repugnat; </s>
					<s id="N17486"><!-- NEW -->quippe vibratio maior pl&ugrave;s temporis; </s>
					<s id="N1748A"><!-- NEW -->minor ve&shy;<lb/>r&ograve; min&ugrave;s in &longs;uo de&longs;cen&longs;u ponit; </s>
					<s id="N17490"><!-- NEW -->dimittantur enim duo funependula &aelig;&shy;<lb/>qualia; </s>
					<s id="N17496"><!-- NEW -->alterum quidem ex altitudine 90.graduum, alterum ex altitudine <pb pagenum="103" xlink:href="026/01/135.jpg"/>10. vel 15.graduum; </s>
					<s id="N1749F"><!-- NEW -->ita vt &longs;imul vibrationes &longs;uas incipiant; </s>
					<s id="N174A3"><!-- NEW -->numerentur <lb/>vibrationes vtriu&longs;que, vbi 100. &egrave; minoribus numerat&ecedil; fuerint, numera&shy;<lb/>buntur circiter 97. &egrave; maioribus, quod &longs;&aelig;pi&ugrave;s ob&longs;eruaui te&longs;tibus etiam <lb/>adhibitis; </s>
					<s id="N174AD"><!-- NEW -->hoc ip&longs;um etiam ob&longs;eruarunt alij; </s>
					<s id="N174B1"><!-- NEW -->atque adeo ip&longs;e P.Mer&longs;en&shy;<lb/>nus, qui L. 2. &longs;u&aelig; ver&longs;ionis, Ar.17. Galileum arguit par&ugrave;m acurati &longs;tu&shy;<lb/>dij in his ob&longs;eruationibus adhibiti: </s>
					<s id="N174B9"><!-- NEW -->rationem huius effectus in libro de <lb/>funependulis explicabimus; </s>
					<s id="N174BF"><!-- NEW -->imm&ograve; &longs;i omnes vibrat&igrave;ones maiores prim&aelig; <lb/>vibrationi 90. grad. <!-- REMOVE S-->e&longs;&longs;ent &aelig;quales, &amp; ali&aelig; minores alterius funependu&shy;<lb/>li &longs;en&longs;un, vt &longs;it, minuerentur; </s>
					<s id="N174C9"><!-- NEW -->vix 90. maiores numerare po&longs;&longs;es, iam enu&shy;<lb/>meratis 100. ex minoribus; </s>
					<s id="N174CF"><!-- NEW -->&longs;ed de his omnibus &longs;uo loco; </s>
					<s id="N174D3"><!-- NEW -->in vna tamen <lb/>vel altera vibratione vix aliquod di&longs;crimen ob&longs;eruatur; quod tamen ob&shy;<lb/>&longs;eruari facil&egrave; po&longs;&longs;et in maioribus funependulis. </s>
				</p>
				<p id="N174DB" type="main">
					<s id="N174DD"><!-- NEW -->Secundum, quod &longs;upponitur, e&longs;t quod longitudines funependulorum <lb/>&longs;int pror&longs;us, vt quadrata temporum, quibus vibrationes &longs;ingulorum <lb/>fiunt, v.g. <!-- REMOVE S-->funependulum longitudinis 4. pedum facere vnam vibratio&shy;<lb/>nem eo tempore, quo funependulum longitudinis vnius pedis facit duas; </s>
					<s id="N174E9"><!-- NEW --><lb/>quod prim&ograve; in multis vibrationibus non t&agrave;m accurat&egrave; ob&longs;eruatur; </s>
					<s id="N174EE"><!-- NEW --><expan abbr="&longs;ec&umacr;-d&ograve;">&longs;ecun&shy;<lb/>d&ograve;</expan> lic&egrave;t ob&longs;eruaretur &longs;en&longs;ibiliter, idem re&longs;ponderi debet, quod &longs;upr&agrave; in <lb/>&longs;ingulis vibrationibus e&longs;&longs;e tant&ugrave;m di&longs;crimen; </s>
					<s id="N174F9"><!-- NEW -->quod etiam in multis &longs;en&longs;i&shy;<lb/>bile non e&longs;t; &longs;i enim di&longs;crimen primarum vibrationem v.g.&longs;it &lpar;1/100000000&rpar; <lb/>cert&egrave; vltimarum adhuc in&longs;en&longs;ibile erit. </s>
				</p>
				<p id="N17501" type="main">
					<s id="N17503"><!-- NEW -->Tertium &longs;uppo&longs;itum fuit, minimum arcum minoris quadrantis a&longs;&longs;um&shy;<lb/>ptum, &amp; alium minoris quadrantis e&longs;&longs;e ad in&longs;tar perpendicularium; </s>
					<s id="N17509"><!-- NEW -->c&ugrave;m <lb/>tamen diuer&longs;a &longs;it inclinatio minoris, &amp; maioris quadrantis: </s>
					<s id="N1750F"><!-- NEW -->quippe <lb/>principium maioris accedit propi&ugrave;s ad perpendicularem; </s>
					<s id="N17515"><!-- NEW -->facit enim <lb/>angulum contingenti&aelig; minorem; </s>
					<s id="N1751B"><!-- NEW -->alia ver&ograve; extremitas accedit propi&ugrave;s <lb/>ad horizontalem propter rationem pr&aelig;dictam; </s>
					<s id="N17521"><!-- NEW -->hinc illa extremitas ma&shy;<lb/>ioris, vnde e&longs;t initium motus, planum decliuius facit; altera ver&ograve; min&ugrave;s <lb/>decliue; &longs;ed h&aelig;c fus&egrave; pro&longs;equar &longs;uo loco. </s>
				</p>
				<p id="N17529" type="main">
					<s id="N1752B"><!-- NEW -->Quartum, quod &longs;upponitur e&longs;t, accelerationem motus fieri in qua&shy;<lb/>drante in ea ratione, in qua fit per plana chordarum inclinata, quod <lb/>etiam fal&longs;um e&longs;t; </s>
					<s id="N17533"><!-- NEW -->quia in eodem plano inclinato &longs;upponitur eadem <lb/>inclinatio; </s>
					<s id="N17539"><!-- NEW -->&longs;ecus in quadrante, cuius &longs;ingula puncta nouam faciunt in&shy;<lb/>clinationem: </s>
					<s id="N1753F"><!-- NEW -->adde quod quarta pars quadrantis maioris EK non facit <lb/>eandem inclinationem, quam totus quadrans minor DF ip&longs;i EK &aelig;qua&shy;<lb/>lis; quamquam hoc ip&longs;i vltr&ograve; concedent aduer&longs;arij. </s>
				</p>
				<p id="N17547" type="main">
					<s id="N17549"><!-- NEW -->Pr&aelig;terea, &longs;it ita vt &longs;upponitur; </s>
					<s id="N1754D"><!-- NEW -->ita vt &longs;en&longs;ibiliter differentia huius <lb/>progre&longs;&longs;ionis percipi non po&longs;&longs;it, &longs;intque numerat&aelig; omnes vibrationes <lb/>&longs;en&longs;ibiles dati funependuli ex altitudine 90, grad. <!-- REMOVE S-->demi&longs;&longs;i; </s>
					<s id="N17557"><!-- NEW -->qu&aelig; vix e&longs;&longs;e <lb/>po&longs;&longs;unt 1800; </s>
					<s id="N1755D"><!-- NEW -->&longs;int autem plures &longs;cilicet 2000. dicis confectas e&longs;&longs;e 2000 <lb/>minoris funependuli eo tempore, quo 1000. tant&ugrave;m in quadruplo fune&shy;<lb/>pendulo numerantur; </s>
					<s id="N17565"><!-- NEW -->annuo quidem, &longs;i res tant&ugrave;m &longs;en&longs;ibiliter con&longs;ide&shy;<lb/>retur; </s>
					<s id="N1756B"><!-- NEW -->&longs;in ver&ograve; &longs;ec&ugrave;s, id pernego; &longs;ed dico dee&longs;&longs;e v. <!-- REMOVE S-->g. <!-- REMOVE S-->1000000. puncta <lb/>&longs;patij, qu&aelig; di&longs;cerni non po&longs;&longs;unt, ita vt prim&aelig; vibrationi 1000. pun&shy;<lb/>cta &longs;ecund&aelig;, 2000. terti&aelig; 3000. &amp;c. </s>
					<s id="N17577"><!-- NEW -->vltim&aelig; ver&ograve;, &longs;eu mille&longs;im&aelig; <pb pagenum="104" xlink:href="026/01/136.jpg"/>1000000. qu&aelig; omnia &longs;unt in&longs;en&longs;ibilia, neque maiorem habent diffi&shy;<lb/>cultatem, qu&agrave;m in motu perpendiculari, de quo &longs;upr&agrave;; etiam conce&longs;&longs;is <lb/>vltr&ograve; omnibus experim&eacute;tis propo&longs;itis. </s>
					<s id="N17584"><!-- NEW -->Igitur &longs;uppo&longs;it&acirc; progre&longs;&longs;ione &longs;pa&shy;<lb/>tiorum arithmetica in in&longs;tantibus, t&agrave;m prop&egrave; accedit ad aliam, qu&agrave;m <lb/>Galileus ponit, &longs;iue in perpendiculari deor&longs;um, &longs;iue in quadrante fune&shy;<lb/>penduli; </s>
					<s id="N1758E"><!-- NEW -->a&longs;&longs;umptis &longs;cilicet partibus temporis &longs;en&longs;ibilibus, vt differentia <lb/>di&longs;cernit non po&longs;&longs;it; </s>
					<s id="N17594"><!-- NEW -->imm&ograve; nec duplum differenti&aelig;, nec centuplum, nec <lb/>millecuplum; </s>
					<s id="N1759A"><!-- NEW -->&longs;ed de his &longs;atis qu&aelig; ex dictis &longs;upr&agrave; facil&egrave; intelligi po&longs;&longs;unt: <lb/>quare veniemus iam ad rationes. </s>
				</p>
				<p id="N175A0" type="main">
					<s id="N175A2"><!-- NEW -->Prima ratio, quam affert Galileus e&longs;t; </s>
					<s id="N175A6"><!-- NEW -->quia cum natura in &longs;uis opera&shy;<lb/>tionibus adhibeat &longs;implici&longs;&longs;ima media; </s>
					<s id="N175AC"><!-- NEW -->&amp; cum acceleratio motus natu&shy;<lb/>ralis non po&longs;&longs;it fieri iuxta faciliorem, vel &longs;impliciorem progre&longs;&longs;ionem, <lb/>qu&agrave;m &longs;it-ea qu&aelig; fit per quadrata; </s>
					<s id="N175B4"><!-- NEW -->non e&longs;t dubium, quin iuxta illam pro&shy;<lb/>gre&longs;&longs;io motus naturaliter accelerati fieri debeat; pr&aelig;&longs;ertim c&ugrave;m omni&shy;<lb/>bus experimentis con&longs;entiat, &amp; in ea omnia ph&aelig;nomena explicari <lb/>po&longs;&longs;int. </s>
				</p>
				<p id="N175BE" type="main">
					<s id="N175C0">Re&longs;p. Prim&ograve; progre&longs;&longs;ionem arithmeticam &longs;implicem iuxta hos nu&shy;<lb/>meros 1.2.3.4. long&egrave; &longs;impliciorem e&longs;&longs;e alia qu&aelig; fit iuxta illos 1.3.5.7.vt <lb/>nemo non iudicabit. </s>
					<s id="N175C7"><!-- NEW -->Secund&ograve; <expan abbr="c&utilde;">cum</expan> accidit duas hypothe&longs;es conuenire cum <lb/>omnibus experimentis &longs;eu ph&aelig;nomonis, debet e&longs;&longs;e aliqua ratio, cur ad&shy;<lb/>hibeatur vna poti&ugrave;s qu&agrave;m alia; </s>
					<s id="N175D3"><!-- NEW -->&longs;ed nulla e&longs;t ratio, cur Galileus adhibeat <lb/>&longs;uam, vti videbimus; </s>
					<s id="N175D9"><!-- NEW -->nos ver&ograve; ratione demon&longs;tratiu&acirc; probamus no&longs;tram; </s>
					<s id="N175DD"><!-- NEW --><lb/>igitur no&longs;tra e&longs;t pr&aelig;ferenda pro theorica rei veritate; quia ver&ograve; alia in <lb/>temporibus &longs;en&longs;ibilibus proxim&egrave; ad verum accedit eam adhibendam e&longs;&longs;e <lb/>decernemus infr&agrave; ad praxim, &amp; communem i&longs;torum motuum men&shy;<lb/>&longs;uram. </s>
				</p>
				<p id="N175E8" type="main">
					<s id="N175EA">Secunda ratio e&longs;t; </s>
					<s id="N175ED"><!-- NEW -->quia, &longs;i accipiatur &longs;ubduplum maxim&aelig;, &amp; minim&aelig; <lb/>velocitatis; &longs;itque ex his qua&longs;i conflata velocitas motus &aelig;quabilis, hoc <lb/>motu &aelig;quabili &aelig;quali tempore p&egrave;rcurretur &longs;patium idem, quod ant&egrave; <lb/>motu naturaliter accelerato v.g. <!-- REMOVE S-->&longs;int numeri dat&aelig; progre&longs;&longs;ionis 1.3.5.7. <lb/>9.11. cert&egrave; &longs;umma terminorum &longs;eu totum &longs;patium erit 36. accipiatur <lb/>&longs;ubduplum primi 1/2 &amp; &longs;exti 5. 1/2 habebitur velocitas vt 6. igitur cum <lb/>velocitate vt 6. &aelig;quali tempore percurretur &longs;patium 36. quod rect&egrave; de&shy;<lb/>mon&longs;trauit Galileus. <!-- KEEP S--></s>
				</p>
				<p id="N17602" type="main">
					<s id="N17604"><!-- NEW -->Re&longs;pondeo non min&ugrave;s no&longs;tram hypothe&longs;im cum hoc ip&longs;o &longs;tare, qu&agrave;m <lb/>&longs;tet hypothe&longs;is Galilei: </s>
					<s id="N1760A"><!-- NEW -->&longs;int enim 6. in&longs;tantia, &amp; &longs;ingulis &longs;ua tribuantur <lb/>&longs;patiola more dicto 1 2 3 4 5 6. &longs;umma &longs;patiorum e&longs;t 21. a&longs;&longs;umatur &longs;ub&shy;<lb/>duplum velocitatis primi in&longs;tantis 1/2, &amp; &longs;ubduplum &longs;exti in&longs;tantis, &longs;cili&shy;<lb/>cet 3. conflatum ex vtroque 3 1/3; </s>
					<s id="N17614"><!-- NEW -->ducatur in 6.id e&longs;t in numerum termi&shy;<lb/>norum, vel in&longs;tantium; &longs;umma erit 21. igitur quod tribuit Galileus &longs;u&aelig; <lb/>progre&longs;&longs;ioni, etiam no&longs;tr&aelig; competit. </s>
				</p>
				<p id="N1761C" type="main">
					<s id="N1761E"><!-- NEW -->Tertia ratio petitur ex mathe&longs;i &longs;it enim linea AE diui&longs;a in quatuor <lb/>partes &aelig;quales, qu&aelig; nobis repre&longs;entent 4. partes temporis &aelig;quales; </s>
					<s id="N17624"><!-- NEW --><lb/>haud dubi&egrave;, c&ugrave;m acquirantur temporibus &aelig;qualibus &aelig;qualia velocitatis <lb/>momenta; </s>
					<s id="N1762B"><!-- NEW -->haud dubi&egrave;, inquam, his 4. temporibus AB, BC, CD, DE, ac-<pb pagenum="105" xlink:href="026/01/137.jpg"/>quirentur &aelig;quales velocitatis gradus; </s>
					<s id="N17634"><!-- NEW -->&longs;it autem BI, men&longs;ura velocitatis, <lb/>quam acquirit mobile cadens ex &longs;ua quiete in fine prim&aelig; partis tempo&shy;<lb/>ris AB; </s>
					<s id="N1763C"><!-- NEW -->cert&egrave; in fine &longs;ecund&aelig; partis temporis BC acquiret velocitatem, <lb/>qu&aelig; coniuncta cum priore BI faciet duplam CH, &amp; in fine terti&aelig; par&shy;<lb/>ti&aelig; CD triplam DG; </s>
					<s id="N17644"><!-- NEW -->denique in fine quart&aelig; DE quadruplam EF; </s>
					<s id="N17648"><!-- NEW -->quip&shy;<lb/>pe cum in parte BC remaneat tota velocitas B, &amp; acquiratur &aelig;qualis; </s>
					<s id="N1764E"><!-- NEW --><lb/>cert&egrave; in fine BC e&longs;t velocitas CH dupla illius qu&aelig; commen&longs;uratur BI. <lb/>&longs;imiliter in parte CD remanebit vtraque, &amp; accedet altera; </s>
					<s id="N17655"><!-- NEW -->igitur e&longs;t ve&shy;<lb/>locitas DG tripla BI, &amp; EF e&longs;t quadrupla: Similiter ita &longs;e ratio habet <lb/>cuiu&longs;libet alterius partis inter AB ad aliam alterius partis inter BC, vt <lb/>line&aelig; duct&aelig; parallel&aelig; BICH, &amp;c. </s>
					<s id="N1765F"><!-- NEW -->igitur cum &longs;patium acqui&longs;itum re&longs;&shy;<lb/>pondeat exercitio huius velocitatis; </s>
					<s id="N17665"><!-- NEW -->&longs;itque in&longs;tanti B vt BI, &amp; in&longs;tanti <lb/>C vt CH; </s>
					<s id="N1766B"><!-- NEW -->cert&egrave; tempore AB e&longs;t vt triangulum AIB; </s>
					<s id="N1766F"><!-- NEW -->nam &longs;patium AIB <lb/>e&longs;t collectio omnium linearum, qu&aelig; duci po&longs;&longs;unt parallel&aelig; in tempore <lb/>AB; </s>
					<s id="N17677"><!-- NEW -->idem dico de trapezo CBIH, qui e&longs;t triplus trianguli IBA; </s>
					<s id="N1767B"><!-- NEW -->&amp; de <lb/>trapezo GDCH, qui e&longs;t quintuplus; </s>
					<s id="N17681"><!-- NEW -->igitur triangulum HCA e&longs;t qua&shy;<lb/>druplum IBA; </s>
					<s id="N17687"><!-- NEW -->quia h&aelig;c triangula &longs;unt vt quadrata laterum; </s>
					<s id="N1768B"><!-- NEW -->igitur &longs;pa&shy;<lb/>tium acqui&longs;itum temporibus AB, BC, e&longs;t ad &longs;patium acqui&longs;itum tempo&shy;<lb/>re AB, vt triangulum HCB ad triangulum IBA; </s>
					<s id="N17693"><!-- NEW -->igitur vt quadratum <lb/>AB ad quadratum AC; </s>
					<s id="N17699"><!-- NEW -->igitur vt quadratum temporis AB ad quadra&shy;<lb/>tum temporis AC; igitur &longs;patia diuer&longs;is temporibus decur&longs;a &longs;unt vt qua&shy;<lb/>drata temporum, quibus &longs;ingula decurruntur. </s>
				</p>
				<p id="N176A1" type="main">
					<s id="N176A3"><!-- NEW -->H&aelig;c ratio ad &longs;peciem videtur e&longs;&longs;e demon&longs;tratiua, deficit tamen &agrave; ve&shy;<lb/>ra demon&longs;tratione; </s>
					<s id="N176A9"><!-- NEW -->primo, quia &longs;upponit in&longs;tantia infinita, qu&aelig; multi <lb/>pa&longs;&longs;im negabunt in tempore; </s>
					<s id="N176AF"><!-- NEW -->imm&ograve; aliquis vltr&ograve; demon&longs;trare tentaret <lb/>non e&longs;&longs;e infinita; </s>
					<s id="N176B5"><!-- NEW -->itaque ex &longs;uppo&longs;itione quod &longs;int tant&ugrave;m finita in&longs;tan&shy;<lb/>tia a&longs;&longs;umantur 4. &aelig;qualia AC, CD, DE, EF, cert&egrave; cum in&longs;tans &longs;it to&shy;<lb/>rum &longs;imul, velocitatem habet &aelig;quabilem &longs;ibi toti re&longs;pondentem; </s>
					<s id="N176BD"><!-- NEW -->igitur <lb/>in&longs;tanti AC re&longs;pondeat velocitas, cuius men&longs;ura &longs;it ABCG; </s>
					<s id="N176C3"><!-- NEW -->haud du&shy;<lb/>bi&egrave; in&longs;tanti CD re&longs;pondebit velocitas CH, &longs;cilicet dupla AB; </s>
					<s id="N176C9"><!-- NEW -->nam re&shy;<lb/>manet primus velocitatis gradus acqui&longs;itus primo in&longs;tanti: </s>
					<s id="N176CF"><!-- NEW -->&longs;ed alter &aelig;&shy;<lb/>qualis acquiritur; </s>
					<s id="N176D5"><!-- NEW -->igitur e&longs;t duplus prioris; </s>
					<s id="N176D9"><!-- NEW -->igitur re&longs;pondet line&aelig; DK. <lb/>qu&aelig; tripla e&longs;t AB, &amp; quarto line&aelig; FN, qu&aelig; e&longs;t quadrupla AB; </s>
					<s id="N176DF"><!-- NEW -->igitur <lb/>cre&longs;cit &longs;patium, vt rectangula CB, DH, EK, FM; </s>
					<s id="N176E5"><!-- NEW -->&longs;ed h&aelig;c cre&longs;cunt iuxta <lb/>progre&longs;&longs;ionem numerorum 1.2.3.4. nec aliter res e&longs;&longs;e pote&longs;t ex &longs;uppo&longs;i&shy;<lb/>tione quod &longs;int in&longs;tantia finita; </s>
					<s id="N176ED"><!-- NEW -->quod alibi ex profe&longs;&longs;o tractamus: </s>
					<s id="N176F1"><!-- NEW -->quippe <lb/>illa qu&aelig;&longs;tio pertinet ad Metaphy&longs;icam, non ver&ograve; ad phy&longs;icun; </s>
					<s id="N176F7"><!-- NEW -->nam vel <lb/>&longs;ingula aliquid addunt, vel nihil: aliquid addunt haud dubi&egrave;; </s>
					<s id="N176FD"><!-- NEW -->igitur con&shy;<lb/>&longs;iderantur tant&ugrave;m 4. in&longs;tantia prima AC, CD, DE, EF, in &longs;ua &longs;crie; </s>
					<s id="N17703"><!-- NEW -->cert&egrave; <lb/>non po&longs;&longs;unt aliam progre&longs;&longs;ionem facere qu&agrave;m eam, qu&aelig; e&longs;t iuxta hos <lb/>numeros 1.2.3.4.vnde non fit per triangula &longs;ed per rectangula minima; <lb/>igitur linea AF pr&aelig;cedentis figur&aelig; non e&longs;t recta, &longs;ed denticulata, qualis <lb/>e&longs;&longs;et ABGHIKLMN, &longs;ed long&egrave; minoribus gradibus, &longs;eu denticulis. </s>
					<s id="N1770F"><lb/>Hinc qu&ograve; rectangula CB, DH, &amp;c. </s>
					<s id="N17713"><!-- NEW -->fient maiora in partibus &longs;cilicet tem&shy;<lb/>poris &longs;en&longs;ibilibus, &longs;eruata &longs;cilicet in illis progre&longs;&longs;ione numerorum 1.2.3. <pb pagenum="106" xlink:href="026/01/138.jpg"/>4.progre&longs;&longs;io longi&ugrave;s di&longs;cedet &agrave; vera; </s>
					<s id="N1771E"><!-- NEW -->vt &longs;upr&agrave; iam totius repetitum fuit: </s>
					<s id="N17722"><!-- NEW --><lb/>quippe h&aelig;c progre&longs;&longs;io in puris in&longs;tantibus fieri tant&ugrave;m pote&longs;t, cum &longs;in&shy;<lb/>gulis in&longs;tantibus noua fiat acce&longs;&longs;io velocitatis, in hoc enim e&longs;t error, <lb/>qu&ograve;d in tota parte temporis AC ponatur &aelig;quabilis velocitas, eiu&longs;que <lb/>principium A, &longs;it &aelig;quale fini C; </s>
					<s id="N1772D"><!-- NEW -->nam AB, &amp; GH &longs;unt &aelig;quales; </s>
					<s id="N17731"><!-- NEW -->c&ugrave;m ta&shy;<lb/>men &longs;it minor velocitas in A, qu&agrave;m in C, ni&longs;i AC &longs;it tant&ugrave;m <expan abbr="in&longs;t&atilde;s">in&longs;tans</expan>; </s>
					<s id="N1773B"><!-- NEW -->vnde <lb/>tota velocitas in hypothe&longs;i Galilei acqui&longs;ita in 4.partibus temporis a&longs;&shy;<lb/>&longs;umptis e&longs;t, vt triangulum AFN; </s>
					<s id="N17743"><!-- NEW -->acqui&longs;ita ver&ograve; in no&longs;tra hypothe&longs;i e&longs;t vt <lb/>&longs;umma rectangulorum CB, CI, EK, EN, qu&aelig; &longs;umma e&longs;t ad triangulum <lb/>AFN, vt 10, ad 8. vel vt 5.ad 4. igitur maior 1/4; nam prima pars tempo&shy;<lb/>ris addit triangulum ABG, &longs;ecunda GHI. &amp;c. </s>
				</p>
				<p id="N1774D" type="main">
					<s id="N1774F"><!-- NEW -->Si tamen diuidantur i&longs;t&aelig; partes temporis in minores v. <!-- REMOVE S-->g. <!-- REMOVE S-->in 8. tunc <lb/>&longs;umma rectangulorum erit tant&ugrave;m maior 1/8; </s>
					<s id="N17759"><!-- NEW -->&longs;i in 16. &lpar;1/16&rpar; &longs;i in 32. &lpar;1/32&rpar;; </s>
					<s id="N1775D"><!-- NEW -->&longs;i in <lb/>64.&lpar;11/64&rpar;, cuius &longs;ehema h&icirc;c habes; &longs;int enim 3.partes temporis &longs;en&longs;ibiles A <lb/>CDFE, &amp; &longs;patium vt triangulum AFN, &longs;patia ver&ograve; acqui&longs;ita in &longs;ingulis <lb/>partibus, vt portiones trianguli pr&aelig;dicti, qu&aelig; ip&longs;is re&longs;pondent v. <!-- REMOVE S-->g. <!-- REMOVE S-->ac&shy;<lb/>qui&longs;itum in prima parte ad acqui&longs;itum in &longs;ecunda tant&ugrave;m, vt triangu&shy;<lb/>lum ACG ad trapezum GCDI &amp;c. </s>
					<s id="N1776F"><!-- NEW -->denique acqui&longs;itum in temporibus <lb/>in&aelig;qualibus, vt quadrata temporum v. <!-- REMOVE S-->g. <!-- REMOVE S-->acqui&longs;itum in prima parte ad <lb/>acqui&longs;itum in duabus, vt triangulum ACG ad triangulum ADI; </s>
					<s id="N1777B"><!-- NEW -->id e&longs;t <lb/>quadratum CA ad quadratum DA; </s>
					<s id="N17781"><!-- NEW -->in no&longs;tra ver&ograve; hypothe&longs;i, &longs;i velocitas <lb/>in tota prima parte AC ponatur vt CG &aelig;quabiliter; </s>
					<s id="N17787"><!-- NEW -->haud dubi&egrave; &longs;patium <lb/>acqui&longs;itum in pr&aelig;dictis 4. temporibus erit, vt &longs;umma rectangulorum C <lb/>B, CI, EK, EN, qu&aelig; maior e&longs;t toto triangulo, AFN, 4. triangulis ABG, <lb/>GHI, IKL, LMN, ie e&longs;t 1/4 totius trianguli AFN; atque ita &longs;umma re&shy;<lb/>ctangulorum continet 10. quadrata &aelig;qualia quadrato CB, &amp; triangu&shy;<lb/>lum AFN, continet. </s>
					<s id="N17795">tant&ugrave;m 8. </s>
				</p>
				<p id="N17798" type="main">
					<s id="N1779A"><!-- NEW -->Iam ver&ograve; diuidantur 4. partes temporis AF, in 8. &aelig;quales; </s>
					<s id="N1779E"><!-- NEW -->in &longs;enten&shy;<lb/>tia Galilei totum &longs;patium erit &longs;emper triangulum AFN, id e&longs;t vt &longs;ubdu&shy;<lb/>plum quadrati &longs;ub AF; </s>
					<s id="N177A6"><!-- NEW -->qu&aelig; c&ugrave;m &longs;it 8. quadratum erit 64.&amp; &longs;ubduplum <lb/>quadrati 32. at ver&ograve; &longs;umma rectangulorum e&longs;t 36. id e&longs;t continet 36. <lb/>quadrata &aelig;qualia quadrato XA; c&ugrave;m tamen triangulum AFN, conti&shy;<lb/>neat tant&ugrave;m 32. igitur &longs;umma pr&aelig;dicta e&longs;t ad triangulum AFN, vt 36. <lb/>ad 32. id e&longs;t vt 9.ad 8. igitur &longs;umma e&longs;t maior triangulo 1/8, qu&aelig; omnia <lb/>con&longs;tant. </s>
				</p>
				<p id="N177B4" type="main">
					<s id="N177B6"><!-- NEW -->Pr&aelig;terea diuidatur vlteri&ugrave;s tempus AF in 16. &aelig;quales partes; </s>
					<s id="N177BA"><!-- NEW -->qua&shy;<lb/>dratum 16. cum &longs;it 256. accipiatur &longs;ubduplum id e&longs;t 128. &amp; erit trian&shy;<lb/>gulum AFN, cui &longs;emper re&longs;pondet totum &longs;patium acqui&longs;itum in &longs;enten&shy;<lb/>tia Galilei; </s>
					<s id="N177C4"><!-- NEW -->at ver&ograve; &longs;umma rectangulorum erit 136. igitur &longs;umma e&longs;t ad <lb/>&longs;ummam vt 136.ad 128.id e&longs;t vt 17.ad 16. igitur e&longs;t maior &longs;umma trian&shy;<lb/>gulo &lpar;1/16&rpar; atque ita deinceps; </s>
					<s id="N177CC"><!-- NEW -->&longs;i vlteri&ugrave;s diuidas pr&aelig;dictum tempus in par&shy;<lb/>tes minores: quot porr&ograve; erunt, antequam fiat tota re&longs;olutio in in&longs;tan&shy;<lb/>tia, &longs;int enim v. <!-- REMOVE S-->g. <!-- REMOVE S-->in tempore AF in&longs;tantia 1000000. &longs;umma qu&aelig; re&longs;&shy;<lb/>pondet no&longs;tr&aelig; progre&longs;&longs;ioni, erit maior altera, qu&aelig; re&longs;pondet progre&longs;&longs;io&shy;<lb/>ni Galilei &lpar;1/1000000&rpar; quis hoc percipiat? </s>
				</p>
				<pb pagenum="107" xlink:href="026/01/139.jpg"/>
				<p id="N177E0" type="main">
					<s id="N177E2"><!-- NEW -->Si ver&ograve; in no&longs;tra hypothe&longs;i &longs;patium, quod re&longs;pondet prim&aelig; parti tem&shy;<lb/>poris AC &longs;it idem cum illo, quod re&longs;pondet eidem parti in &longs;ententia <lb/>Galilei, id e&longs;t &aelig;quale triangulo CAG, &longs;umma &longs;patiorum erit minor in <lb/>no&longs;tra hypothe&longs;i triangulo AFN &longs;ex triangulis &aelig;qualibus triangulo <lb/>ACG; igitur erit vt 10.ad 16. igitur minor 1/8. </s>
					<s id="N177EE"><!-- NEW -->&longs;i ver&ograve; diuidantur in 8. <lb/>temporis partes, triangulum AFN continebit 64. triangula &aelig;qualia <lb/>AXQ: </s>
					<s id="N177F6"><!-- NEW -->at ver&ograve; &longs;umma qu&aelig; re&longs;pondet no&longs;tr&aelig; hypothe&longs;i 36.igitur minor <lb/>&lpar;7/16&rpar;. denique &longs;i diuidantur in 16. partes, triangulum AFN continebit <lb/>256. triangula &aelig;qualia AYZ; at ver&ograve; &longs;umma no&longs;tra 136. igitur minor <lb/>&lpar;15/52&rpar; &longs;ed nunquam erit minor 1/2. </s>
				</p>
				<p id="N17800" type="main">
					<s id="N17802"><!-- NEW -->Ob&longs;eruabis obiter dictum e&longs;&longs;e &longs;upr&agrave; &longs;ummam rectangulorum CB CI <lb/>EK EN e&longs;&longs;e maiorem triangulo AFN, 2.quadratis &aelig;qualibus CB; </s>
					<s id="N17808"><!-- NEW -->&longs;i <lb/>ver&ograve; diuidatur tempus in 8. partes, &longs;umma rectangulorum e&longs;t minor pr&aelig;&shy;<lb/>cedenti &longs;umm&acirc;, toto quadrato &aelig;quali CB, id e&longs;t 4.quadratis &aelig;qualibus <lb/>XB, id e&longs;t 1/2 prim&aelig; differenti&aelig;, qu&aelig; e&longs;t &longs;umma duorum quadratorum <lb/>&aelig;qualium CB; </s>
					<s id="N17814"><!-- NEW -->at &longs;i diuidatur in 16. partes, tempus AF, &longs;umma rectan&shy;<lb/>gulorum e&longs;t minor pr&aelig;cedente 8. quadratis &aelig;qualibus QZ, vel &longs;ubdu&shy;<lb/>plo quadrati CB, id e&longs;t 1/4 prim&aelig; differenti&aelig; qu&aelig; e&longs;t &longs;umma duorum <lb/>quadratorum &aelig;qualium CB; </s>
					<s id="N1781E"><!-- NEW -->&longs;i 4. partes temporis diuidantur in 8. de&shy;<lb/>trahitur 1/2 differenti&aelig;, qu&aelig; e&longs;t inter &longs;ummam primam rectangulorum, <lb/>&amp; triangulum AFN; </s>
					<s id="N17826"><!-- NEW -->&longs;i diuidantur in 16. detrahitur 1/4 eiu&longs;dem diffe&shy;<lb/>renti&aelig;; </s>
					<s id="N1782C"><!-- NEW -->&longs;i diuidantur in 32. detrahitur 1/8, &longs;i in 64. &lpar;1/16&rpar;; </s>
					<s id="N17830"><!-- NEW -->atque ita deinceps, <lb/>&amp; nunquam h&aelig; minuti&aelig; &longs;ubtract&aelig; in infinitum totam differentiam ex&shy;<lb/>haurient; hinc minuti&aelig; i&longs;t&aelig; 1/2 1/4 1/8 &lpar;1/16&rpar; &lpar;1/32&rpar; &lpar;1/64&rpar; &amp;c. </s>
					<s id="N17838"><!-- NEW -->in infinitum non fa&shy;<lb/>ciunt vnum integrum; &longs;ed h&aelig;c &longs;unt facilia. </s>
				</p>
				<p id="N1783E" type="main">
					<s id="N17840"><!-- NEW -->Quarta ratio, quam afferunt aliqui, e&longs;t; </s>
					<s id="N17844"><!-- NEW -->quia &longs;i cum eadem velocita&shy;<lb/>te acqui&longs;ita in fine temporis dati &longs;ine augmento nouo moueatur mobi&shy;<lb/>le; </s>
					<s id="N1784C"><!-- NEW -->haud dubi&egrave; acquiret duplum &longs;patium tempore &aelig;quali tempori dato; </s>
					<s id="N17850"><!-- NEW --><lb/>v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;it triangulum AFE; </s>
					<s id="N17859"><!-- NEW -->&longs;itque velocitas acqui&longs;ita EF in 4. parti&shy;<lb/>bus temporis AE, vt iam &longs;upr&agrave; dictum e&longs;t, ne cogar repetere: </s>
					<s id="N1785F"><!-- NEW -->cert&egrave; &longs;i du&shy;<lb/>catur velocitas EF in tempus AE, vel EL &aelig;quale; </s>
					<s id="N17865"><!-- NEW -->habebitur rectan&shy;<lb/>gulum EK duplum trianguli AFE: </s>
					<s id="N1786B"><!-- NEW -->&longs;ed triangulum AFE e&longs;t &longs;umma <lb/>&longs;patiorum motus accelerati tempore AE, &amp; rectangulum EK e&longs;t &longs;um&shy;<lb/>ma &longs;patiorum motus &aelig;quabilis cum velocitate EF; igitur duplum e&longs;t <lb/>&longs;patium motus &aelig;quabilis, quod erat demon&longs;trandum. </s>
					<s id="N17875"><!-- NEW -->Pr&aelig;terea &longs;i diui&shy;<lb/>datur velocitas EF, &amp; eius &longs;ubdupla ducatur in tempus AE; habebitur <lb/>rectangulum &aelig;quale triangulo AFE, vt con&longs;tat. </s>
					<s id="N1787D"><!-- NEW -->Re&longs;pondeo facil&egrave; ex di&shy;<lb/>ctis, hoc ip&longs;um etiam ex no&longs;tra hypothe&longs;i proxime &longs;equi; </s>
					<s id="N17883"><!-- NEW -->&longs;int enim duo <lb/>in&longs;tantia; </s>
					<s id="N17889"><!-- NEW -->haud dubie &longs;i non cre&longs;cit velocitas, &longs;ecundo in&longs;tanti &aelig;quale <lb/>&longs;patium percurretur; </s>
					<s id="N1788F"><!-- NEW -->&longs;i vero &longs;ecundo in&longs;tanti cre&longs;cat, percurrentur illo <lb/>motu 3.&longs;patia; </s>
					<s id="N17895"><!-- NEW -->&amp; c&ugrave;m velocitas <expan abbr="&longs;ec&utilde;di">&longs;ecundi</expan> <expan abbr="in&longs;t&atilde;tis">in&longs;tantis</expan> &longs;it dupla velocitatis primi <lb/>in&longs;tantis, primo in&longs;tanti &longs;it 1.gradus v.g. <!-- REMOVE S-->&longs;ecundo erunt 2. gradus; </s>
					<s id="N178A5"><!-- NEW -->igi&shy;<lb/>tur moueatur per duo in&longs;tantia motu &aelig;quabili veloci vt 2. percurrentur <lb/>4. &longs;patia; </s>
					<s id="N178AD"><!-- NEW -->igitur totum &longs;patium, quod percurritur motu veloci vt 2. per <lb/>2.in&longs;tantia e&longs;t ad totum &longs;patium, quod percurritur &aelig;quali tempore mo-<pb pagenum="108" xlink:href="026/01/140.jpg"/>tu naturaliter accelerato vt 4. ad 3. igitur continet illud 1. &lpar;11/3&rpar;; </s>
					<s id="N178B8"><!-- NEW -->&longs;i ver&ograve; <lb/>&longs;int 3. in&longs;tantis continet illud, 1/2; &longs;i 4. continet 1. 3/5, &longs;i 5. continet 1.2/3 <lb/>&longs;i 5. continet 1 2/3. &longs;i 6. continet 1 5/7. &longs;i 7. continet 1 3/4. &longs;i 8. continet <lb/>1 7/9. &longs;i 9. continet 1 &lpar;4/11&rpar;. &longs;i 10. continet 1 9/5 &longs;ic quo plura erunt in&longs;tantia <lb/>accedet propi&ugrave;s ad rationem duplam, nunquam tamen ad illam perue&shy;<lb/>niet. </s>
					<s id="N178C6"><!-- NEW -->Ex dictis multa tumultuatim Corollaria congeri po&longs;&longs;unt; </s>
				</p>
				<p id="N178CA" type="main">
					<s id="N178CC"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N178D9" type="main">
					<s id="N178DB"><!-- NEW -->Etiam&longs;i non &longs;int partes infinit&aelig; temporis; </s>
					<s id="N178DF"><!-- NEW -->in ordine tamen ad praxim <lb/>eodem modo &longs;e habent, ac &longs;i e&longs;&longs;ent infinit&aelig;; quia lic&egrave;t finit&aelig; &longs;int, nume&shy;<lb/>rari tamen non po&longs;&longs;unt. </s>
				</p>
				<p id="N178E7" type="main">
					<s id="N178E9"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N178F6" type="main">
					<s id="N178F8"><!-- NEW -->Etiam &longs;i non &longs;int infiniti tarditatis gradus, vt con&longs;tat ex dictis, &longs;ed fi&shy;<lb/>niti; </s>
					<s id="N178FE"><!-- NEW -->in ordine tamen ad praxim eodem modo &longs;e habent, ac &longs;i e&longs;&longs;ent in&shy;<lb/>finiti; quia non pote&longs;t di&longs;tingui primus, &amp; minimus ab omnibus <lb/>aliis. </s>
				</p>
				<p id="N17906" type="main">
					<s id="N17908"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N17915" type="main">
					<s id="N17917"><!-- NEW -->Lic&egrave;t hypothe&longs;is Galilei &longs;it fal&longs;a in hypothe&longs;i in&longs;tantium finitorum; </s>
					<s id="N1791B"><!-- NEW --><lb/>nam &longs;ingulis in&longs;tantibus noua fit velocitatis acce&longs;&longs;io; </s>
					<s id="N17920"><!-- NEW -->phy&longs;ic&egrave; tamen lo&shy;<lb/>quendo eodem modo &longs;e habet, ac &longs;i e&longs;&longs;et vera; </s>
					<s id="N17926"><!-- NEW -->quia cum non po&longs;&longs;it pro&shy;<lb/>bari, ni&longs;i in partibus temporis &longs;en&longs;ibilibus; </s>
					<s id="N1792C"><!-- NEW -->cert&agrave;, c&ugrave;m qu&aelig;libet pars <lb/>&longs;en&longs;ibilis innumera fer&egrave; in&longs;tantia contineat, in quibus fit progre&longs;&longs;io; </s>
					<s id="N17932"><!-- NEW --><lb/>differentia vtriu&longs;que &longs;en&longs;ibilis e&longs;&longs;e non pote&longs;t; </s>
					<s id="N17937"><!-- NEW -->igitur linea denticulata <lb/> eodem modo &longs;e habet phy&longs;ic&egrave;, hoc e&longs;t &longs;en&longs;ibiliter, ac &longs;i e&longs;&longs;et recta; </s>
					<s id="N1793D"><!-- NEW -->&longs;ic&shy;<lb/>que progre&longs;&longs;io arithmetica in multis terminis reducitur &longs;en&longs;ibiliter ad <lb/>Geometriam in paucioribus terminis; imm&ograve; in communi illa &longs;ententia. </s>
					<s id="N17945"><!-- NEW --><lb/>in qua dicitur tempus con&longs;tare ex partibus actu infinitis, progre&longs;&longs;io Ga&shy;<lb/>lilei tant&ugrave;m locum habere pete&longs;t; </s>
					<s id="N1794C"><!-- NEW -->igitur h&aelig;c e&longs;to clauis huius difficul&shy;<lb/>tatis; </s>
					<s id="N17952"><!-- NEW -->progre&longs;&longs;io &longs;implex principium phy&longs;icum habet, non experimen&shy;<lb/>tum; </s>
					<s id="N17958"><!-- NEW -->progre&longs;&longs;io numerorum imparium experimentum non principium; </s>
					<s id="N1795C"><!-- NEW --><lb/>vtramque cum principio &amp; experimento componimus; prima enim &longs;i. </s>
					<s id="N17961"><lb/>a&longs;&longs;umantur partes temporis &longs;en&longs;ibiles tran&longs;it in &longs;ecundam, &longs;ecunda in <lb/>primam, &longs;i vltima a&longs;&longs;umantur in&longs;tantia. </s>
				</p>
				<p id="N17967" type="main">
					<s id="N17969"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N17976" type="main">
					<s id="N17978">Cognito &longs;patio quod percurritur in data parte temporis &longs;en&longs;ibili, co&shy;<lb/>gno&longs;ci pote&longs;t &longs;patium quod in duabus &aelig;qualibus vel 3.vel 4.&amp;c.percurri <lb/>pote&longs;t.v.g. </s>
					<s id="N1797F"><!-- NEW -->multi probarunt &longs;&aelig;pi&ugrave;s primo &longs;ecundo minuto corpus graue <lb/>percurrere 12. pedes; igitur duobus percurreret 48. accipe enim 9. 2. <lb/>id e&longs;t 4. &amp; in 4. duces 12. vt habeas 48. 4. ver&ograve; minutis percurret 192. <lb/>nam accipe 9. 4. id e&longs;t 16. &amp; in 16. duces 12.vt habeat 192. res omnin&ograve; <lb/>facilis. </s>
				</p>
				<p id="N1798B" type="main">
					<s id="N1798D"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 5.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1799A" type="main">
					<s id="N1799C"><!-- NEW -->Similiter cognito &longs;patio quod percurrit 4. &longs;ecundis minutis, cogno&shy;<lb/>&longs;ces &longs;patium, quod percurret 2. vel 1. v.g. <!-- REMOVE S-->percurrit 4. &longs;ecundis 192. pe-<pb pagenum="109" xlink:href="026/01/141.jpg"/>des; </s>
					<s id="N179A9"><!-- NEW -->accipe 9.4. id e&longs;t 16. &amp; per 16. diuide 192. quot&iacute;ens dabit 12. pro <lb/>primo &longs;ecundo: accipe 9.2. id e&longs;t, 4. &amp; diuide 192. per 4.quotiens dabit <lb/>48. pro duobus minutis, atque ita deinceps. </s>
				</p>
				<p id="N179B1" type="main">
					<s id="N179B3"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 6.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N179C0" type="main">
					<s id="N179C2"><!-- NEW -->Similiter cognito tempore cogno&longs;ci pote&longs;t &longs;patium decur&longs;um; </s>
					<s id="N179C6"><!-- NEW -->quia <lb/>&longs;patia &longs;unt vt quadrata temporum; </s>
					<s id="N179CC"><!-- NEW -->vel cognito &longs;patio cogno&longs;ci pote&longs;t <lb/>tempus; quia tempora &longs;unt, vt radices &longs;patiorum, h&aelig;c elementa &longs;altem <lb/>Arithmetices de&longs;iderant. </s>
				</p>
				<p id="N179D4" type="main">
					<s id="N179D6">Sed iam re&longs;tat, vt &longs;oluamus objectiones aliquas, qu&aelig; contra motus ac&shy;<lb/>celerationem pugnare videntur. </s>
				</p>
				<p id="N179DB" type="main">
					<s id="N179DD">Prima objectio e&longs;t; </s>
					<s id="N179E0"><!-- NEW -->&longs;i motus acceleratio fieret in in&longs;tantibus, &longs;ecundo <lb/>in&longs;tanti idem corpus e&longs;&longs;et in duobus locis ad&aelig;quatis quod &longs;ic o&longs;tendo: </s>
					<s id="N179E6"><!-- NEW --><lb/> &longs;it &longs;patium AB quod percurrit corpus graue primo in&longs;tanti; </s>
					<s id="N179EB"><!-- NEW -->haud du&shy;<lb/>bi&egrave; AB, e&longs;t eius locus ad&aelig;quatus; </s>
					<s id="N179F1"><!-- NEW -->&longs;ecundo in&longs;tanti percurrit BC duplum <lb/>AB; </s>
					<s id="N179F7"><!-- NEW -->igitur eodem in&longs;tanti re&longs;pondet loco BD, &amp; DC, quorum vterque <lb/>e&longs;t &aelig;qualis AB; igitur &longs;ecundo in&longs;tanti e&longs;t in duobus locis, &longs;cilicet BD <lb/>&amp; DC, quod dici non pote&longs;t. </s>
				</p>
				<p id="N179FF" type="main">
					<s id="N17A01"><!-- NEW -->H&aelig;c objectio impugnat omnem velocitatem; </s>
					<s id="N17A05"><!-- NEW -->hoc e&longs;t, non mod&ograve; eam, <lb/>qu&aelig; motui naturaliter accelerato competit; </s>
					<s id="N17A0B"><!-- NEW -->ver&ugrave;m etiam illam, qu&aelig; <lb/>ine&longs;t motui violento; igitur vt re&longs;pondeam facili&ugrave;s; </s>
					<s id="N17A11"><!-- NEW -->&longs;uppono punctum <lb/>phy&longs;icum, mobile &longs;cilicet A; </s>
					<s id="N17A17"><!-- NEW -->aut &longs;i mauis Angelum co&euml;xten&longs;um quadra&shy;<lb/>to A; </s>
					<s id="N17A1D"><!-- NEW -->qui &longs;cilicet moueatur motu accelerato, &amp; primo in&longs;tanti acquirat <lb/>locum immediatum &aelig;qualem priori, &longs;cilicet AB; </s>
					<s id="N17A23"><!-- NEW -->lic&egrave;t enim po&longs;&longs;et ac&shy;<lb/>quirere vibrationem participantem de priori; </s>
					<s id="N17A29"><!-- NEW -->quia tamen acquireret <lb/>tandem non participantem, id e&longs;t, qu&aelig; tota &longs;it extra illam, cui e&longs;t imme&shy;<lb/>diata, qualis e&longs;t AB. &longs;uppono h&icirc;c acquiri vibrationem non participan&shy;<lb/>tem de priori, id e&longs;t &longs;patium AB, &aelig;quale priori, in quo erat A, &amp; pror&shy;<lb/>&longs;us extra illud po&longs;itum lic&egrave;t immediatum; </s>
					<s id="N17A35"><!-- NEW -->hoc po&longs;ito, primo in&longs;tanti pun&shy;<lb/>ctum A acquirit AB tanquam locum ad&aelig;quatum, vt certum e&longs;t: </s>
					<s id="N17A3B"><!-- NEW -->certum <lb/>e&longs;t etiam loca BC, CD, e&longs;&longs;e ad&aelig;quata: </s>
					<s id="N17A41"><!-- NEW -->igitur &longs;imul, id e&longs;t eodem in&shy;<lb/>&longs;tanti in vtroque e&longs;&longs;e non pote&longs;t; </s>
					<s id="N17A47"><!-- NEW -->nam in&longs;tans &longs;imul totum e&longs;t; </s>
					<s id="N17A4B"><!-- NEW -->igitur <lb/>&longs;ecundo in&longs;tanti non percurrit BC, &longs;ed &longs;ecundo tempore &aelig;quali primo; </s>
					<s id="N17A51"><!-- NEW --><lb/>hoc enim &longs;ecundum tempus con&longs;tat duobus in&longs;tantibus, quod &longs;imul <lb/>vtrumque re&longs;pondet primo: </s>
					<s id="N17A58"><!-- NEW -->quippe dari po&longs;&longs;unt in&longs;tantia phy&longs;ica; </s>
					<s id="N17A5C"><!-- NEW -->igitur <lb/>primum in&longs;tans quo percurritur AB e&longs;t &aelig;quale duobus aliis, quibus <lb/>percurruntur BD, &amp; CD; vnde quando dixi primo in&longs;tanti acquiri &longs;pa&shy;<lb/>tium duplum primi, idem e&longs;t, ac &longs;i dixi&longs;&longs;em &longs;ecundo tempore &aelig;quali pri&shy;<lb/>mo, quod reuer&agrave; tempus con&longs;tat 2. in&longs;tantibus, quorum alterum re&longs;pon&shy;<lb/>det &longs;patio BC, &amp; alterum &longs;patio DC. <!-- KEEP S--></s>
				</p>
				<p id="N17A6B" type="main">
					<s id="N17A6D">Secunda objectio; </s>
					<s id="N17A70"><!-- NEW -->Sed inquiet aliquis, igitur non e&longs;t continua acce&shy;<lb/>leratio motus; nam in&longs;tans quo percurritur &longs;ecundum &longs;patium BD, c&ugrave;m <lb/>&longs;it &aelig;quale in&longs;tanti quo percurritur tertium &longs;patium DC, in vtroque &longs;pa&shy;<lb/>tio e&longs;t &aelig;quabilis motus. </s>
					<s id="N17A7A"><!-- NEW -->Re&longs;pondeo in&longs;tans quo percurritur &longs;ecundum <lb/>&longs;patium BD, e&longs;&longs;e maius in&longs;tanti, quo percurritur tertium &longs;patium DC; </s>
					<s id="N17A80"><!-- NEW --><lb/>t&agrave; tamen lege, vt vtrumque &longs;imul &longs;umptum &longs;it omnin&ograve; equale in&longs;tanti, <pb pagenum="110" xlink:href="026/01/142.jpg"/>quo percurritur primum &longs;pat&iacute;um AB; </s>
					<s id="N17A8A"><!-- NEW -->&longs;imiliter totum &longs;patium CG ita <lb/>percurritur tertio tempore, vt &longs;ingula &longs;patia CE. EI. FG. &longs;ingulis in&shy;<lb/>&longs;tantibus percurrantur; </s>
					<s id="N17A92"><!-- NEW -->&longs;ed h&aelig;c tria in&longs;tantia &longs;imul &longs;umpta &longs;unt &aelig;qualia <lb/>primo in&longs;tanti, quo percurritur &longs;patium; lic&egrave;t primum quo percurritur <lb/>CE &longs;it maius &longs;ecundo, quo percurritur EF, &amp; hoc maius tertio, quo per&shy;<lb/>curritur FG, atque ita deinceps. </s>
				</p>
				<p id="N17A9C" type="main">
					<s id="N17A9E">Ob&longs;eruabis po&longs;&longs;e velocitatem motus explicari duobus modis. </s>
					<s id="N17AA1">Prim&ograve;, <lb/>&longs;i a&longs;&longs;umantur tempora &aelig;qualia, &amp; &longs;patia in&aelig;qualia in ea progre&longs;&longs;ione, <lb/>quam hactenus explicuimus. </s>
					<s id="N17AA8">Secund&ograve; &longs;i accipiantur &longs;patia &aelig;qualia &amp; <lb/>tempora in&aelig;qualia, quod duobus modis fieri tant&ugrave;m pote&longs;t. </s>
					<s id="N17AAD">Prim&ograve; &longs;i ac&shy;<lb/>cipiantur &longs;patia &aelig;qualia primo &longs;patio, quod percurritur primo in&longs;tanti. </s>
					<s id="N17AB2"><!-- NEW --><lb/>Secund&ograve; &longs;i accipiantur &longs;patia &aelig;qualia alteri &longs;patio, quod in parte tempo&shy;<lb/>ris &longs;en&longs;ibili percurritur; </s>
					<s id="N17AB9"><!-- NEW -->in qua ver&ograve; proportione tempora fiant &longs;emper <lb/>minora, &apos;dicemus infr&agrave;; </s>
					<s id="N17ABF"><!-- NEW -->nec dicas durum e&longs;&longs;e dicere in&longs;tans e&longs;&longs;e po&longs;&longs;e <lb/>minus in&longs;tanti; </s>
					<s id="N17AC5"><!-- NEW -->nam equidem fateor in&longs;tanti mathematico nihil e&longs;&longs;e <lb/>po&longs;&longs;e minus; </s>
					<s id="N17ACB"><!-- NEW -->&longs;ecus ver&ograve; in&longs;tanti phy&longs;ico, quod e&longs;t diui&longs;ibile potenti&acirc;, vt <lb/>dicemus ali&agrave;s; nomine in&longs;tantis phy&longs;ici intelligo durationem indiui&longs;i&shy;<lb/>bilem, hoc e&longs;t, cuius entitas tota &longs;imul e&longs;t. </s>
				</p>
				<p id="N17AD3" type="main">
					<s id="N17AD5">Tertia objectio. </s>
					<s id="N17AD8"><!-- NEW -->Sed inquies, igitur &longs;ecundo tempore &aelig;quali primo <lb/>acquiruntur 2.gradus velocitatis, vel impetus; </s>
					<s id="N17ADE"><!-- NEW -->igitur tria &longs;patia &longs;ecun&shy;<lb/>do tempore percurruntur, quod e&longs;t contra hypothe&longs;im; </s>
					<s id="N17AE4"><!-- NEW -->quippe duo gra&shy;<lb/>dus impetus accedunt primo, &longs;imiliter tertio tempore producentur tres <lb/>gradus impetus; </s>
					<s id="N17AEC"><!-- NEW -->qui &longs;i iungantur tribus pr&aelig;cedentibus, erunt 6. Igitur <lb/>percurrentur tertio tempore 6. &longs;patia, &amp; quarto 10.quinto 15. quia &longs;in&shy;<lb/>gulis in&longs;tantibus debet produci impetus; e&longs;t enim cau&longs;a nece&longs;&longs;aria ap&shy;<lb/>plicata. </s>
				</p>
				<p id="N17AF6" type="main">
					<s id="N17AF8"><!-- NEW -->Re&longs;pond&etail;o, equidem eo in&longs;tanti, quo percurritur &longs;patium BD, pro&shy;<lb/>duci aliquid impetus, &amp; aliquid eo in&longs;tanti, quo percurritur &longs;patium <lb/>DC; </s>
					<s id="N17B00"><!-- NEW -->ita vt tamen totus ille impetus, qui producitur his duobus in&longs;tan&shy;<lb/>tibus, &longs;it &aelig;qualis illi, qui producitur primo in&longs;tanti, quo &longs;cilicet percurri&shy;<lb/>tur &longs;patium AB; </s>
					<s id="N17B08"><!-- NEW -->quia duo illa in&longs;tantia &longs;imul &longs;umpta faciunt tempus <lb/>&aelig;quale primo in&longs;tanti; </s>
					<s id="N17B0E"><!-- NEW -->atqui temporibus &aelig;qualibus eadem cau&longs;a nece&longs;&shy;<lb/>&longs;aria non impedita &aelig;qualem effectum producit per Ax.3.hinc vides &longs;in&shy;<lb/>gulis in&longs;tantibus eadem proportione decre&longs;cere impetum in perfectio&shy;<lb/>ne, qua tempus e&longs;t breuius, &longs;eu velocior motus; &longs;ed de hoc infr&agrave;. </s>
				</p>
				<p id="N17B18" type="main">
					<s id="N17B1A">Quarta objectio; </s>
					<s id="N17B1D"><!-- NEW -->&longs;i impetus &longs;ingulis in&longs;tantibus cre&longs;ceret, vel intende&shy;<lb/>retur, augeretur grauitatio: </s>
					<s id="N17B23"><!-- NEW -->quippe &longs;i grauitas primo in&longs;tanti producat <lb/>vnum gradum impetus; </s>
					<s id="N17B29"><!-- NEW -->&longs;ecundo &aelig;qualem producet, &amp; tertio, atque ita <lb/>deinceps, quod e&longs;&longs;et ab&longs;urdum; alioqui minima atomus quodlibet cor&shy;<lb/>pus graue ad&aelig;quaret, quod e&longs;t ab&longs;urdum. </s>
				</p>
				<p id="N17B31" type="main">
					<s id="N17B33"><!-- NEW -->Re&longs;pondeo nunquam impetum intendi, ni&longs;i &longs;it motus, qui e&longs;t illius fi&shy;<lb/>nis; </s>
					<s id="N17B39"><!-- NEW -->alioquin fru&longs;tra e&longs;&longs;et per plura in&longs;tantia; </s>
					<s id="N17B3D"><!-- NEW -->igitur de&longs;trui deberet; </s>
					<s id="N17B41"><!-- NEW -->nec <lb/>dicas impetum naturalem etiam fru&longs;tr&agrave; e&longs;&longs;e &longs;ine motu; </s>
					<s id="N17B47"><!-- NEW -->quia cum mo&shy;<lb/>tus non &longs;it eius finis ad&aelig;quatus; </s>
					<s id="N17B4D"><!-- NEW -->non mirum e&longs;t &longs;i po&longs;&longs;it e&longs;&longs;e &longs;ine motu; </s>
					<s id="N17B51"><!-- NEW --><lb/>atqui iam diximus &longs;upr&agrave; habere duos fines, quorum alterum &longs;emper ha-<pb pagenum="111" xlink:href="026/01/143.jpg"/>bet; </s>
					<s id="N17B5B"><!-- NEW -->primus e&longs;t grauitatio, &longs;eu ni&longs;us ver&longs;us centrum; &longs;ecundus motus <lb/>deor&longs;um; </s>
					<s id="N17B61"><!-- NEW -->c&ugrave;m tamen impetus additivius motum tant&ugrave;m pro fine habeat; <lb/>igitur &longs;i impeditur totus motus, non producitur hic impetus. </s>
				</p>
				<p id="N17B67" type="main">
					<s id="N17B69">Quinta objectio; </s>
					<s id="N17B6C"><!-- NEW -->&longs;i impetum &longs;uum intendit corpus graue; </s>
					<s id="N17B70"><!-- NEW -->&longs;imiliter <lb/>Ignis diceretur intendere calorem; Sol lucem, &amp;c. </s>
					<s id="N17B76"><!-- NEW -->Re&longs;pondeo prim&ograve; de <lb/>luce &longs;ingularem e&longs;&longs;e rationem; </s>
					<s id="N17B7C"><!-- NEW -->quia &longs;cilicet con&longs;eruatur &agrave; cau&longs;a &longs;ua pri&shy;<lb/>mo productiua; quidquid &longs;it; </s>
					<s id="N17B82"><!-- NEW -->&longs;i viderem effectum caloris, vel frigoris <lb/>perpetu&ograve; cre&longs;cere; </s>
					<s id="N17B88"><!-- NEW -->haud dubi&egrave; dicerem etiam cau&longs;as ip&longs;as intendi; </s>
					<s id="N17B8C"><!-- NEW -->atqui <lb/>hoc ip&longs;um video in motu naturali, qui effectus impetus e&longs;t; </s>
					<s id="N17B92"><!-- NEW -->adde quod <lb/>argumentum &agrave; pari debile e&longs;t; </s>
					<s id="N17B98"><!-- NEW -->cum enim &longs;int diuer&longs;i natur&aelig; fines, diuer&shy;<lb/>&longs;&aelig; &longs;unt vi&aelig; quibus &longs;uos fines con&longs;equ&iacute;tur; </s>
					<s id="N17B9E"><!-- NEW -->denique contrarietas caloris, <lb/>&amp; frigoris impedit fort&egrave;, ne vlterius vtraque qualitas intendatur, de qua <lb/>fus&egrave; &longs;uo loco; </s>
					<s id="N17BA6"><!-- NEW -->porr&ograve; dicemus Tomo &longs;exto calorem con&longs;eruari &agrave; cau&longs;a &longs;ua <lb/>primo productiua; quo po&longs;ito ce&longs;&longs;at difficultas; quod lic&egrave;t alicui durum <lb/>videri po&longs;&longs;it, demon&longs;trabo tamen. </s>
				</p>
				<p id="N17BAE" type="main">
					<s id="N17BB0">Sexta objectio; igitur &longs;i ex infinita di&longs;tantia lapis de&longs;cenderet, inten&shy;<lb/>deret etiam &longs;uum motum. </s>
					<s id="N17BB5">Re&longs;pondeo prim&ograve;, non po&longs;&longs;e dari infinitam il&shy;<lb/>lam di&longs;tantiam. </s>
					<s id="N17BBA"><!-- NEW -->Secund&ograve; etiam&longs;i daretur lapis, ex ea non caderet; </s>
					<s id="N17BBE"><!-- NEW -->fru&longs;tr&agrave; <lb/>enim e&longs;&longs;et ille motus: </s>
					<s id="N17BC4"><!-- NEW -->Terti&ograve;, &longs;i daretur motus infinitus, haud dubi&egrave; e&longs;&longs;et <lb/>&aelig;quabilis; </s>
					<s id="N17BCA"><!-- NEW -->qualis e&longs;t motus circularis corporum c&oelig;le&longs;tium; </s>
					<s id="N17BCE"><!-- NEW -->at ver&ograve; <lb/>motus naturalis deor&longs;um corporum grauium debet e&longs;&longs;e acceleratus ne <lb/>vel de&longs;cenderent tardi&ugrave;s, &longs;i cum primo tant&ugrave;m velocitatis gradu de&longs;cen&shy;<lb/>derent; </s>
					<s id="N17BD8"><!-- NEW -->vel &longs;u&longs;tineri vix po&longs;&longs;ent, &longs;i impetum innatum intentiorem habe&shy;<lb/>rent; vtrum ver&ograve; &longs;emper intendatur, &amp; ex quacumque altitudine cadat <lb/>corpus graue, videbimus infr&agrave;. </s>
				</p>
				<p id="N17BE0" type="main">
					<s id="N17BE2">Ex dictis hactenus facil&egrave; refelluntur ali&aelig; &longs;ententi&aelig; de proportione <lb/>motus naturaliter accelerati. </s>
				</p>
				<p id="N17BE7" type="main">
					<s id="N17BE9"><!-- NEW -->Et prim&ograve; quidem illa, qu&aelig; vult fieri &longs;ecundum rationem &longs;inuum <lb/>ver&longs;orum, lic&egrave;t initio t&agrave;m prop&egrave; accedat ad proportionem Galilei, vt <lb/>di&longs;cerni &longs;en&longs;ibiliter ab ea non po&longs;&longs;it; </s>
					<s id="N17BF1"><!-- NEW -->quare tut&ograve; &longs;atis a&longs;&longs;umi po&shy;<lb/>terit, &longs;i quando &longs;it opus illius loco, quod nos in explicandis motibus c&oelig;&shy;<lb/>le&longs;tibus pr&aelig;&longs;tabimus; </s>
					<s id="N17BF9"><!-- NEW -->interim quia facili&ugrave;s explicatur in motu recto per <lb/>rationem quadratorum qu&agrave;m &longs;inuum, illam retinebimus; </s>
					<s id="N17BFF"><!-- NEW -->pr&aelig;&longs;ertim c&ugrave;m <lb/>vtraque ad no&longs;tram reducatur; mod&ograve; progre&longs;&longs;io fiat in in&longs;tantibus. </s>
					<s id="N17C05"><!-- NEW --><lb/>Secund&ograve; reiicitur &longs;ententia illorum qui volunt hanc progre&longs;&longs;ionem fie&shy;<lb/>ri iuxta proportionem geometricam, quam vides in his numeris 1.2.4.8. <lb/>16. qu&aelig; lic&egrave;t initio min&ugrave;s recedat &agrave; vera, in progre&longs;&longs;u tamen mult&ugrave;m <lb/>aberrat, nec e&longs;t vlla ratio qu&aelig; pro illa faciat: </s>
					<s id="N17C10"><!-- NEW -->Et ver&ograve; nulla in mentem <lb/>venire pote&longs;t; ni&longs;i fort&egrave; dicatur, c&ugrave;m &longs;ecundo in&longs;tanti &longs;it dupla velocitas, <lb/>tertio <expan abbr="pon&etilde;dam">ponendam</expan> e&longs;&longs;e quadruplam, &amp; 4&degree;. </s>
					<s id="N17C1C">octuplam; </s>
					<s id="N17C1F"><!-- NEW -->quia vt velocitas pri&shy;<lb/>mi in&longs;tantis e&longs;t ad velocitatem &longs;ecundi, ita velocitas huius ad velocita&shy;<lb/>tem tertij, &amp; velocitas huius ad velocitatem quarti; </s>
					<s id="N17C27"><!-- NEW -->igitur &longs;equitur pro&shy;<lb/>gre&longs;&longs;ionem rationis geometric&aelig; dupl&aelig;; cur enim e&longs;&longs;et maior ratio pri&shy;<lb/>mi in&longs;tantis ad &longs;ecundum qu&agrave;m &longs;ecundi ad tertium tertij ad quartum? <lb/></s>
					<s id="N17C30">&amp;c. </s>
					<s id="N17C33"><!-- NEW -->&longs;ed profect&ograve; vix vlla apparet rationis &longs;pecies, c&ugrave;m nulla &longs;it cau&longs;a, <pb pagenum="112" xlink:href="026/01/144.jpg"/>qu&aelig; 3&degree; in&longs;tanti, &amp; 4&degree; pl&ugrave;s agat <expan abbr="qu&atilde;">quam</expan> primo, &amp; &longs;ecundo; </s>
					<s id="N17C40"><!-- NEW -->igitur e&longs;t peculiaris <lb/>cau&longs;a huius in&aelig;qualitatis rationum; </s>
					<s id="N17C46"><!-- NEW -->qu&ograve;d &longs;cilicet &aelig;qualibus temporibus <lb/>&aelig;qualia acquirantur velocitatis momenta; vt &longs;upr&agrave; demon&longs;trauimus; </s>
					<s id="N17C4C"><!-- NEW --><lb/>quippe id pr&aelig;&longs;tari debet in explicandis in&aelig;qualitatibus motuum recto&shy;<lb/>rum naturalium, quod pr&aelig;&longs;tant A&longs;tronomi in explicanda in&aelig;qualitate <lb/>motuum c&aelig;le&longs;tium; qui &longs;emper &aelig;qualitatem aliquam &longs;upponunt, nec e&longs;t <lb/>qu&ograve;d hanc &longs;ententiam nonnullis experimentis ictuum qui&longs;quam con&shy;<lb/>firmet, in quibus multa fraus &longs;ube&longs;&longs;e pote&longs;t. </s>
				</p>
				<p id="N17C59" type="main">
					<s id="N17C5B">Terti&ograve; reiicitur illa quoque &longs;ententia, qu&aelig; proportionem line&aelig; &longs;ect&aelig; <lb/>in mediam, &amp; extremam rationem huic line&aelig; tribuit, quam fer&egrave; in his <lb/>numeris vides 1.2.3.5.8, 13. 21. 34. 55. qu&aelig; &longs;ub finem etiam longi&longs;&longs;im&egrave; <lb/>aberrat, vt videre e&longs;t, quare ii&longs;dem rationibus impugnatur, quibus iam <lb/>aliam impugnauimus. </s>
				</p>
				<p id="N17C66" type="main">
					<s id="N17C68"><!-- NEW -->Scio e&longs;&longs;e alias multas rationes, quibus aliqui recentiores motus natu&shy;<lb/>ralis accelerationem explicare nituntur, &longs;ed iam &longs;upr&agrave; &longs;atis &longs;uperque re&shy;<lb/>iect&aelig; fuerunt, vel profect&ograve; e&aelig; &longs;unt, qu&aelig; ne quidem inter fabulo&longs;a po&euml;&shy;<lb/>tarum commenta locum aliquem habere po&longs;&longs;int: </s>
					<s id="N17C72"><!-- NEW -->Et ver&ograve; ni&longs;i me ani&shy;<lb/>mus fallit in re clari&longs;&longs;ima, rationem huius effectus ex communibus <lb/>principiis deductam cum ip&longs;is etiam experimentis con&longs;entire hactenus <lb/>ita demon&longs;trauimus, vt iam vix vllus dubitationi locus relinquatur; &longs;ed <lb/>interruptam Theorematum &longs;eriem tandem repetimus. </s>
				</p>
				<p id="N17C7E" type="main">
					<s id="N17C80"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 62.<emph.end type="center"/></s>
				</p>
				<p id="N17C8C" type="main">
					<s id="N17C8E"><!-- NEW --><emph type="italics"/>Si accipiantur &longs;patia &aelig;qualia primo &longs;patio, quod vno in&longs;tanti percurritur, <lb/>in&longs;tantia &longs;unt in&aelig;qualia in motu natur aliter accelerato<emph.end type="italics"/>; </s>
					<s id="N17C99"><!-- NEW -->probatur, quia &longs;e&shy;<lb/>cundum &longs;patium &aelig;quale primo percurritur motu velociore, qu&agrave;m pri&shy;<lb/>mo, &amp; tertium quam &longs;ecundo: </s>
					<s id="N17CA1"><!-- NEW -->ergo minori tempore per Def.2.l.1. &longs;ed <lb/>primum &longs;patium conficitur vno in&longs;tanti; </s>
					<s id="N17CA7"><!-- NEW -->igitur &longs;ecundum vno in&longs;tanti, <lb/>&longs;ed minore; idem dico de tertio. </s>
				</p>
				<p id="N17CAD" type="main">
					<s id="N17CAF"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 63.<emph.end type="center"/></s>
				</p>
				<p id="N17CBB" type="main">
					<s id="N17CBD"><!-- NEW --><emph type="italics"/>In ea proportione decre&longs;cunt h&aelig;c instantia,<emph.end type="italics"/> vt primum &longs;it maius &longs;ecundo, <lb/>&longs;ecundum tertio, tertium quarto, quartum quinto, quintum &longs;exto, <lb/>atque ita deinceps; ita vt &longs;ecundum &amp; tertium &longs;imul &longs;umpta, item quar&shy;<lb/>tum, quintum, &longs;extum, &longs;eptimum, item octauum, nonum, decimum, &longs;imul <lb/>&longs;umpta ad&aelig;quent primum, hoc e&longs;t vt vnum, duo, tria, quatuor, quinque, <lb/>&longs;ex, &amp;c. </s>
					<s id="N17CD0">faciant &longs;emper tempora &aelig;qualia, quia temporibus &aelig;qualibus &aelig;&shy;<lb/>qualia acquiruntur velocitatis momenta? </s>
					<s id="N17CD5"><!-- NEW -->igitur &longs;i primo in&longs;tanti per&shy;<lb/>curritur vnum &longs;patium; </s>
					<s id="N17CDB"><!-- NEW -->&longs;ecundo tempore &aelig;quali percurruntur duo &longs;pa&shy;<lb/>tia &aelig;qualia primo, &amp; tertio, tria; atque deinceps; </s>
					<s id="N17CE1"><!-- NEW -->&longs;ed vt &longs;upr&agrave; dictum e&longs;t <lb/>in re&longs;pon&longs;. ad obiect. primam, vno, &amp; <expan abbr="eod&etilde;">eodem</expan> in&longs;tanti non pote&longs;t idem cor&shy;<lb/>pus percurrere duo &longs;patia, ne &longs;imul e&longs;&longs;et in duobus locis; </s>
					<s id="N17CED"><!-- NEW -->igitur &longs;ingula <lb/>&longs;patia re&longs;pondent &longs;ingulis in&longs;tantibus lic&egrave;t minoribus; </s>
					<s id="N17CF3"><!-- NEW -->&longs;ed &longs;ecundo tem&shy;<lb/>pore &aelig;quali primo in&longs;tanti percurruntur duo &longs;patia &aelig;qualia primo &longs;pa&shy;<lb/>tio; </s>
					<s id="N17CFB"><!-- NEW -->igitur &longs;ecundum, &amp; tertium in&longs;tans debent &longs;imul &longs;umpta ad&aelig;quare <pb pagenum="113" xlink:href="026/01/145.jpg"/>primum, &longs;ed non &longs;unt &aelig;qualia, vt con&longs;tat; </s>
					<s id="N17D04"><!-- NEW -->alioquin duobus illis in&longs;tanti<lb/>bus motus e&longs;&longs;et &aelig;quabilis; igitur &longs;ecundum e&longs;t maius tertio, ita vt tamen <lb/>ex vtroque tempus fiat &aelig;quale primo in&longs;tanti. </s>
				</p>
				<p id="N17D0C" type="main">
					<s id="N17D0E"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 64.<emph.end type="center"/></s>
				</p>
				<p id="N17D1A" type="main">
					<s id="N17D1C"><!-- NEW --><emph type="italics"/>Non decre&longs;cunt illa in&longs;tantia &longs;ecundum lineam &longs;extam in extremam &amp; <lb/>mediam rationem propagatam; </s>
					<s id="N17D24"><!-- NEW -->ita vt primum &longs;it ad &longs;ecundum, vt &longs;ecundum <lb/>ad tertium, tertium ad quartum, quartum ad quintum at que ita deinceps<emph.end type="italics"/>; </s>
					<s id="N17D2D"><!-- NEW --><lb/>&longs;it enim aliqua &longs;eries numerorum, qui aliquo modo accedant ad pr&aelig;di&shy;<lb/>ctam proportionem 1.2.3.5.8.13.21.34.55. &longs;itque primum in&longs;tans vlti&shy;<lb/>mus numerus 55. &longs;ecundum 34.tertium 21. atque ita deinceps: </s>
					<s id="N17D36"><!-- NEW -->Equidem <lb/>&longs;ecundum, &amp; tertium ad&aelig;quant primum; </s>
					<s id="N17D3C"><!-- NEW -->at ver&ograve; quartum, quintum, <lb/>&longs;extum nullo modo ad&aelig;quant; </s>
					<s id="N17D42"><!-- NEW -->imm&ograve; ne quidem eius &longs;ubduplum, &amp; <lb/>mult&ograve; minus 3. alij addito primo: </s>
					<s id="N17D48"><!-- NEW -->imm&ograve; &longs;i linea data duodecies propor&shy;<lb/>tionaliter diuidatur, vltimum &longs;egmentum vix e&longs;&longs;et &longs;ubcentuplum primi, <lb/>vt con&longs;tat; igitur reiici debet h&aelig;c propo&longs;itio. </s>
				</p>
				<p id="N17D50" type="main">
					<s id="N17D52"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 65.<emph.end type="center"/></s>
				</p>
				<p id="N17D5E" type="main">
					<s id="N17D60"><!-- NEW --><emph type="italics"/>In&longs;tans primum non e&longs;t ad &longs;ecundum vt numerus ad numerum; </s>
					<s id="N17D66"><!-- NEW -->nec ad <lb/>tertium, quartum, quintum, &longs;extum, &amp;c.<emph.end type="italics"/> probatur, quia nullus numerus <lb/>excogitari pote&longs;t quo de&longs;ignari po&longs;&longs;it quantitas, &longs;eu perfectio, &longs;eu va&shy;<lb/>lor i&longs;torum in&longs;tantium; </s>
					<s id="N17D73"><!-- NEW -->&longs;it enim primum in&longs;tans &longs;ecundum &longs;it 3/5. tertium <lb/>2/5 quartum 4/9 quintum 2/9 &longs;extum 2/9. <!--neuer Satz-->Equidem &longs;ecundum, &amp; tertium ad&etail;&shy;<lb/>quant primum; </s>
					<s id="N17D7D"><!-- NEW -->adde quod non pote&longs;t amplius &longs;eries propagari per nu&shy;<lb/>meros rationales; </s>
					<s id="N17D83"><!-- NEW -->&longs;it autem &longs;ecundum &lpar;6/11&rpar; 3. &lpar;5/11&rpar; cum tribus aliis 4/9 1/9 7/9; </s>
					<s id="N17D87"><!-- NEW --><lb/>equidem &longs;i reducantur h&aelig; 5. minuti&aelig;, re&longs;pondebunt his &lpar;54/99&rpar; &lpar;45/99&rpar; &lpar;44/99&rpar; &lpar;12/99&rpar; &lpar;26/99&rpar;: </s>
					<s id="N17D8C"><!-- NEW --><lb/>igitur &longs;ecunda erit maior quarta; </s>
					<s id="N17D91"><!-- NEW -->at prima &longs;uperat &longs;ecundam &lpar;9/999&rpar; &longs;ecunda <lb/>tertiam &lpar;1/99&rpar; tertia quartam &lpar;11/99&rpar; quarta quintam &lpar;12/99&rpar;. Cur porr&ograve; h&aelig;c in&aelig;qua&shy;<lb/>litas, igitur numeri po&longs;&longs;unt a&longs;&longs;ignari; non po&longs;&longs;unt etiam poni in &longs;erie <lb/>geometrica &longs;ubdupla 1. 1/2 1/4 1/8 &amp;c. </s>
					<s id="N17D9B">quia &longs;ecunda. </s>
					<s id="N17D9E"><!-- NEW -->&amp; tertia non ad&aelig;quant <lb/>primam idem dicendum e&longs;t potiori iure de tribus aliis; </s>
					<s id="N17DA4"><!-- NEW -->nec etiam in &longs;e&shy;<lb/>rie arithmetica &longs;implici 1. 1/2 1/3 1/4 2/5 1/6; quia &longs;ecunda, &amp; tertia &longs;unt mi&shy;<lb/>nores prima 1/6, vt quarta, quinta, &longs;exta &longs;unt minores prima &lpar;26/74&rpar;. </s>
				</p>
				<p id="N17DAC" type="main">
					<s id="N17DAE"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 66.<emph.end type="center"/></s>
				</p>
				<p id="N17DBA" type="main">
					<s id="N17DBC"><!-- NEW --><emph type="italics"/>Datur aliquis &longs;eries numerorum irrationabilium, &longs;eu &longs;urdorum minorum, &amp; <lb/>minorum<emph.end type="italics"/>; quorum primus ita &longs;uperet &longs;ecundum, &longs;ecundus tertium, <lb/>tertius quartum, &amp;c. </s>
					<s id="N17DC9">vt &longs;ecundus, &amp; tertius ad&aelig;quent primum, item <lb/>quartus, quintus, &longs;extus. </s>
					<s id="N17DCE">item 4. alij, qui &longs;equuntur, item 5. item 6. &amp;c. </s>
					<s id="N17DD1"><!-- NEW --><lb/>v. <!-- REMOVE S-->g. <!-- REMOVE S-->pote&longs;t dari linea AG con&longs;tans tribus partibus &aelig;qualibus, &longs;cilicet <lb/>AB, BC, CG, &amp; &longs;ecunda BC duabus BD maiore, &amp; DC minore, &amp; ter&shy;<lb/>tia tribus prima CE minore ED, &longs;ed maiore EF, &longs;ecunda EF maiore F <lb/>G, atque ita deinceps; </s>
					<s id="N17DE0"><!-- NEW -->addi pote&longs;t quartum &longs;egmentum &aelig;quale AB; </s>
					<s id="N17DE4"><!-- NEW -->quod <lb/>&longs;ubdiuidetur in 4. partes, quarum prima &longs;it maior &longs;ecunda, &amp; <expan abbr="h&etail;c">haec</expan> tertia <lb/>&amp; h&aelig;c quarta, &amp; omnes minores FG; </s>
					<s id="N17DF0"><!-- NEW -->ita autem &longs;uperant prim&aelig; &longs;equen&shy;<lb/>tes, vt differentia prim&aelig;, &amp; &longs;ecund&aelig; &longs;it maior differentia &longs;ecund&aelig;, &amp; <pb pagenum="114" xlink:href="026/01/146.jpg"/>terti&aelig;, &amp; h&aelig;c maior differentia terti&aelig;, &amp; quart&aelig;; atque ita deinceps, nec <lb/>aliter res e&longs;&longs;e pote&longs;t. </s>
				</p>
				<p id="N17DFD" type="main">
					<s id="N17DFF"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 67.<emph.end type="center"/></s>
				</p>
				<p id="N17E0B" type="main">
					<s id="N17E0D"><!-- NEW --><emph type="italics"/>Hinc partes, quo fiunt minores, accedunt propi&ugrave;s ad &aelig;qualitatem,<emph.end type="italics"/> v.g. <!-- REMOVE S-->BD, <lb/>&amp; DC accedunt propi&ugrave;s ad &aelig;qualitatem qu&agrave;m AB, BD, &amp; DC, CE, pro&shy;<lb/>pi&ugrave;s qu&agrave;m CD, DB, &amp; CE, EF, qu&agrave;m EC, CD, atque ita deinceps, vt patet; <lb/>hinc po&longs;t aliquot in&longs;tantia motus, &aelig;qualia fer&egrave; redduntur in&longs;tantia, vt <lb/>con&longs;tat. </s>
				</p>
				<p id="N17E20" type="main">
					<s id="N17E22"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 68.<emph.end type="center"/></s>
				</p>
				<p id="N17E2E" type="main">
					<s id="N17E30"><!-- NEW --><emph type="italics"/>Hinc qua proportione decre&longs;cunt instantia, decre&longs;cit etiam perfectio <lb/>impetus<emph.end type="italics"/>; </s>
					<s id="N17E3B"><!-- NEW -->quia temporibus &aelig;qualibus eadem cau&longs;a nece&longs;&longs;aria &aelig;qualem ef&shy;<lb/>fectum producit per Ax. tertium igitur in&aelig;qualem in&aelig;qualibus, per Ax. <!-- REMOVE S--><lb/>13. num.4. igitur minorem minore tempore; </s>
					<s id="N17E44"><!-- NEW -->igitur minorem in eadem <lb/>proportione, in qua tempus e&longs;t; igitur qua proportione, &amp;c. </s>
				</p>
				<p id="N17E4A" type="main">
					<s id="N17E4C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 69.<emph.end type="center"/></s>
				</p>
				<p id="N17E58" type="main">
					<s id="N17E5A"><!-- NEW --><emph type="italics"/>Hinc vides qu&acirc;m &longs;it nece&longs;&longs;aria illa diuer&longs;a perfectio impetus, quam indi&shy;<lb/>cauimus lib.<emph.end type="italics"/>1. hinc impetus productus &longs;ecundo, &amp; tertio in&longs;tanti ad&aelig;&shy;<lb/>quat impetum productum primo, quem etiam ad&aelig;quat productus quar&shy;<lb/>to, quinto, &longs;exto, item productus &longs;eptimo, octauo, nono; decimo, atque ita <lb/>deinceps; </s>
					<s id="N17E6B"><!-- NEW -->hinc e&longs;t eadem differentia impetuum, qu&aelig; <expan abbr="in&longs;t&atilde;tium">in&longs;tantium</expan>; </s>
					<s id="N17E73"><!-- NEW -->hinc &longs;in&shy;<lb/>gulis &longs;patiis &aelig;qualibus primo &longs;patio, quod percurritur primo in&longs;tanti; </s>
					<s id="N17E79"><!-- NEW --><lb/>re&longs;pondent &longs;ingula in&longs;tantia, &amp; &longs;ingulis in&longs;tantibus &longs;inguli, &amp; &longs;ingulares <lb/>impetus; </s>
					<s id="N17E80"><!-- NEW -->hinc non e&longs;t quod primo in&longs;tanti dicantur produci plura pun&shy;<lb/>cta impetus in eodem puncto corporis grauis; </s>
					<s id="N17E86"><!-- NEW -->&longs;ed vnicum tant&ugrave;m pun&shy;<lb/>ctum talis perfectionis &longs;cilicet phy&longs;icum; cur enim potius duo puncta, <lb/>quam tria? </s>
					<s id="N17E8E">&longs;ed quod vnum e&longs;t determinatum e&longs;t per Ax. 5. lib.  1. hinc <lb/>optima ratio cur potius tali in&longs;tanti producatur impetus talis perfectio&shy;<lb/>nis qu&agrave;m alterius? </s>
					<s id="N17E95"><!-- NEW -->quippe perfectio impetus &longs;equitur perfectionem in&shy;<lb/>&longs;tantis quo producitur; </s>
					<s id="N17E9B"><!-- NEW -->hinc dicendum videtur omnia puncta impetus <lb/>e&longs;&longs;e diuer&longs;&aelig; perfectionis, vel heterogenea; vt vulg&ograve; aiunt Philo&longs;ophi; </s>
					<s id="N17EA1"><!-- NEW --><lb/>cuius rationem demon&longs;tratiuam afferemus lib.  &longs;equenti cum de motu <lb/>violento; </s>
					<s id="N17EA8"><!-- NEW -->hinc vides duplicem progre&longs;&longs;ionem; </s>
					<s id="N17EAC"><!-- NEW -->primam &longs;cilicet, qua ex <lb/>&longs;uppo&longs;itis temporibus &aelig;qualibus acquiruntur &longs;patia in&aelig;qualia, de qua <lb/>fus&egrave; &longs;upr&agrave;; </s>
					<s id="N17EB4"><!-- NEW -->in hac enim velocitas eadem proportione cum impetu cre&longs;&shy;<lb/>cit, &amp; cum ip&longs;o tempore; </s>
					<s id="N17EBA"><!-- NEW -->hoc e&longs;t tempore triplo e&longs;t tripla, quadruplo <lb/>quadrupla; </s>
					<s id="N17EC0"><!-- NEW -->item impetus in duplo tempore e&longs;t duplus, in triplo triplus; </s>
					<s id="N17EC4"><!-- NEW --><lb/>mod&ograve; progre&longs;&longs;io fiat in temporibus primo in&longs;tanti &aelig;qualibus; </s>
					<s id="N17EC9"><!-- NEW -->&longs;ecunda <lb/>progre&longs;&longs;io e&longs;t qua ex &longs;uppo&longs;itis &longs;patiis &aelig;qualibus tempora fluunt in&aelig;&shy;<lb/>qualia, hoc e&longs;t minora &amp; minora; </s>
					<s id="N17ED1"><!-- NEW -->quibus etiam re&longs;pondet impetus im&shy;<lb/>perfectior in eadem proportione temporum; prima fit per differentias <lb/>&aelig;quales, &amp; proportiones in&aelig;quales, &longs;ecunda ver&ograve; per differentias in&aelig;&shy;<lb/>quales, &amp; proportiones in&aelig;quales. </s>
				</p>
				<pb pagenum="115" xlink:href="026/01/147.jpg"/>
				<p id="N17EDF" type="main">
					<s id="N17EE1"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 70.<emph.end type="center"/></s>
				</p>
				<p id="N17EED" type="main">
					<s id="N17EEF"><!-- NEW --><emph type="italics"/>Si a&longs;&longs;umantur &longs;patia &longs;en&longs;ibilia &aelig;qualia, tempora &longs;unt fer&egrave; in ratione &longs;ubdu&shy;<lb/>plicata &longs;patiorum<emph.end type="italics"/>; </s>
					<s id="N17EFA"><!-- NEW -->crun enim &longs;patia &longs;int vt quadrata <expan abbr="t&etilde;porum">temporum</expan> &longs;en&longs;ibiliter; </s>
					<s id="N17F02"><!-- NEW --><lb/>cert&egrave; tempora &longs;unt, vt radices i&longs;torum quadratorum, &longs;cilicet &longs;patiorum; </s>
					<s id="N17F07"><!-- NEW --><lb/>&longs;int enim qu&aelig;cunque &longs;patia &aelig;qualia in linea AF; </s>
					<s id="N17F0C"><!-- NEW -->&longs;intque &longs;patia AC 4. <lb/>AE 16. radix quadr.4. e&longs;t 2.16. ver&ograve; 4. igitur tempora &longs;unt vt 4.2.&longs;i ve&shy;<lb/>r&ograve; accipiatur primum &longs;patium, quod vno tempore percurritur; </s>
					<s id="N17F14"><!-- NEW -->tempus <lb/>quo percurruntur duo &longs;patia &aelig;qualia primum e&longs;t v.2.quo percurruntur <lb/>tria v.3.quo percurruntur 4.&longs;patia, 2. atque ita deinceps; igitur in praxi <lb/>qu&aelig; tant&ugrave;m fit in &longs;patiis &longs;en&longs;ibilibus h&aelig;c progre&longs;&longs;io adhibenda e&longs;t, il&shy;<lb/>lamque deinceps, &longs;i quando opus e&longs;t, adhibebimus. </s>
				</p>
				<p id="N17F20" type="main">
					<s id="N17F22"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 71.<emph.end type="center"/></s>
				</p>
				<p id="N17F2E" type="main">
					<s id="N17F30"><!-- NEW --><emph type="italics"/>In vacuo &longs;i corpus graue de&longs;cenderet, pr&aelig;dict&aelig; proportiones accurati&longs;&longs;im&egrave; <lb/>&longs;eruarentur<emph.end type="italics"/>; </s>
					<s id="N17F3B"><!-- NEW -->quia &longs;cilicet nullum e&longs;&longs;e impedimentum; </s>
					<s id="N17F3F"><!-- NEW -->at ver&ograve; &longs;i aliquod <lb/>intercedit impedimentum; </s>
					<s id="N17F45"><!-- NEW -->haud dubi&egrave; non &longs;eruantur accurat&egrave;; e&longs;t autem <lb/>aliquod impedimentum in medio, quantumuis liberum e&longs;&longs;e videatur, <lb/>qu&aelig; omnia con&longs;tant. </s>
				</p>
				<p id="N17F4D" type="main">
					<s id="N17F4F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 72.<emph.end type="center"/></s>
				</p>
				<p id="N17F5B" type="main">
					<s id="N17F5D"><!-- NEW --><emph type="italics"/>Impetus naturalis addititius de&longs;truitur<emph.end type="italics"/>; patet experienti&acirc;; </s>
					<s id="N17F66"><!-- NEW -->quippe pila <lb/>deor&longs;um cadens tandem quie&longs;cit, lic&egrave;t &agrave; terra reflectatur ratione impe&shy;<lb/>dimenti, ex quo re&longs;ultat duplex determinatio, ratione cuius idem im&shy;<lb/>petus &longs;ibi aliquo modo redditur <expan abbr="c&otilde;trarius">contrarius</expan>; </s>
					<s id="N17F74"><!-- NEW -->&longs;ed de his fus&egrave; in primo libro <lb/>&agrave; Th.148. ad finem v&longs;que libri: </s>
					<s id="N17F7A"><!-- NEW -->nam reuer&acirc; du&aelig; determinationes op&shy;<lb/>po&longs;it&aelig; pugnant pro rata per Ax. 15.l.1. &amp; quotie&longs;cunque idem impetus <lb/>e&longs;t ad lineas oppo&longs;itas determinatus eodem modo &longs;e habet, ac &longs;i duplex <lb/>e&longs;&longs;et, &amp; quilibet &longs;u&aelig; &longs;ube&longs;&longs;et determinationi; </s>
					<s id="N17F84"><!-- NEW -->atqui &longs;i duplex e&longs;&longs;et oppo&shy;<lb/>&longs;itus, pugnarent pro rata; </s>
					<s id="N17F8A"><!-- NEW -->igitur t&agrave;m pugnant du&aelig; determinationes op&shy;<lb/>po&longs;it&aelig; in eodem impetu, qu&agrave;m duo impetus ad oppo&longs;itas lineas deter&shy;<lb/>minati; igitur impetus naturalis aduentitius de&longs;truitur, &amp;c. </s>
				</p>
				<p id="N17F92" type="main">
					<s id="N17F94"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 73.<emph.end type="center"/></s>
				</p>
				<p id="N17FA0" type="main">
					<s id="N17FA2"><!-- NEW --><emph type="italics"/>Impetus naturalis innatus nunquam de&longs;truitur<emph.end type="italics"/>; </s>
					<s id="N17FAB"><!-- NEW -->Probatur, quia nihil e&longs;te <lb/>quod exigat eius de&longs;tructionem, quia &longs;cilicet nunquam e&longs;t fru&longs;tr&agrave;; </s>
					<s id="N17FB1"><!-- NEW -->nam <lb/>vel habet motum deor&longs;um, vel grauitationis effectum, vel de&longs;truit impe&shy;<lb/>tum extrin&longs;ecum in motu violento; igitur nunquam e&longs;t fru&longs;tr&agrave;, cum &longs;em&shy;<lb/>per habeat aliquem effectum. </s>
				</p>
				<p id="N17FBB" type="main">
					<s id="N17FBD"><!-- NEW -->Dices lignum vi extrin&longs;eca in aqua immer&longs;um &longs;ua &longs;ponte a&longs;cendit; </s>
					<s id="N17FC1"><!-- NEW --><lb/>igitur ille gradus impetus grauitationis de&longs;truitur, &amp; alius producitur; <lb/>h&aelig;c qu&aelig;&longs;tio ad pr&aelig;&longs;ens in&longs;titutum non pertinet, &longs;ed ad librum de gra&shy;<lb/>uitate, &amp; leuitate. </s>
					<s id="N17FCA">Igitur breuiter re&longs;pondeo illum impetum nunquam <lb/>de&longs;trui, quandiu mobile grauitat, vel grauitatione &longs;ingulari, &lpar;&longs;ic corpus <lb/>grauitat in manum &longs;u&longs;tinentis,&rpar; vel grauitatione communi, &lpar;&longs;ic lignum <lb/>humori innatans grauitat, non quidem in aquam, at &longs;imul cum aqua;&rpar; <lb/>&longs;ed de grauitate, &amp; grauitatione in Tomo de &longs;tatibus corporum &longs;en&longs;ibi-<pb pagenum="116" xlink:href="026/01/148.jpg"/>libus, in quo o&longs;tendemus ideo lignum &longs;ur&longs;um emergere, quia ab aqua <lb/>extenditur, &amp; ideo corpora &longs;ur&longs;um ire, quia alia deor&longs;um eunt. </s>
				</p>
				<p id="N17FDC" type="main">
					<s id="N17FDE"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 74.<emph.end type="center"/></s>
				</p>
				<p id="N17FEA" type="main">
					<s id="N17FEC"><!-- NEW --><emph type="italics"/>Quando lapis de&longs;cendit per medium a&euml;ra, impeditur aliquantulum eius <lb/>motus<emph.end type="italics"/>: </s>
					<s id="N17FF7"><!-- NEW -->Probatur prim&ograve; experienti&acirc;, qu&aelig; certa e&longs;t; </s>
					<s id="N17FFB"><!-- NEW -->t&agrave;m enim a&euml;r impe&shy;<lb/>dit motum deor&longs;um, qu&agrave;m &longs;ur&longs;um, vt videre e&longs;t in mobili leuiore &longs;eu ra&shy;<lb/>riore, quod etiam flante vento ob&longs;eruare omnes po&longs;&longs;unt; </s>
					<s id="N18003"><!-- NEW -->quomodo ve&shy;<lb/>r&ograve; impediat, dicemus ali&agrave;s; </s>
					<s id="N18009"><!-- NEW -->&longs;ecund&ograve; corpus immobile, in quod mobile <lb/>impingitur, motum illius impedit; </s>
					<s id="N1800F"><!-- NEW -->&longs;ed in diuer&longs;as partes a&euml;ris corpus <lb/>graue impingitur in de&longs;cen&longs;u; igitur aliquantulum impeditur eius <lb/>motus. </s>
				</p>
				<p id="N18017" type="main">
					<s id="N18019"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 75.<emph.end type="center"/></s>
				</p>
				<p id="N18025" type="main">
					<s id="N18027"><!-- NEW --><emph type="italics"/>Hinc motus naturalis deor&longs;um aliquantulum retardatur,<emph.end type="italics"/> quia nihil aliud <lb/>pr&aelig;&longs;tare pote&longs;t huiu&longs;modi impedimentum, ni&longs;i aliquam retardationem; <lb/>igitur motus inde redditur tardior. </s>
				</p>
				<p id="N18034" type="main">
					<s id="N18036"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 76.<emph.end type="center"/></s>
				</p>
				<p id="N18042" type="main">
					<s id="N18044"><!-- NEW --><emph type="italics"/>Hinc etiam impetus producitur imperfectior<emph.end type="italics"/>; quia ex imperfectione ef&shy;<lb/>fectus requiritur imperfectio cau&longs;&aelig; per Ax. 13.l. </s>
					<s id="N1804F">1. &amp; qu&acirc; proportione <lb/>e&longs;t tardior motus e&acirc;dem impetus e&longs;t imperfectior, per Ax. <!-- REMOVE S-->5. excipe ta&shy;<lb/>men impetum innatum, qui &longs;emper habet eundem effectum grauitatio&shy;<lb/>nis, vel &longs;ingularis, qu&acirc; grauitas cum ip&longs;o medio, &longs;i reuer&acirc; medium gra&shy;<lb/>uitat, de quo ali&agrave;s. </s>
				</p>
				<p id="N1805C" type="main">
					<s id="N1805E"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 77.<emph.end type="center"/></s>
				</p>
				<p id="N1806A" type="main">
					<s id="N1806C"><!-- NEW --><emph type="italics"/>Quo medium den&longs;ius e&longs;t plus impedit motum deor&longs;um<emph.end type="italics"/>; </s>
					<s id="N18075"><!-- NEW -->Probatur, quia &longs;i <lb/>motum impedit; cert&egrave; non totum; quis enim hoc dicat; </s>
					<s id="N1807B"><!-- NEW -->&longs;ed e&aelig; dumta&shy;<lb/>xat partes, quibus incubat corpus graue; </s>
					<s id="N18081"><!-- NEW -->igitur qu&ograve; &longs;unt plures huiu&longs;&shy;<lb/>modi partes, maius e&longs;t impedimentum; </s>
					<s id="N18087"><!-- NEW -->&longs;ed in medio den&longs;iori plures &longs;unt <lb/>cum minore exten&longs;ione; </s>
					<s id="N1808D"><!-- NEW -->hoc enim e&longs;t, quod voco den&longs;ius; igitur me&shy;<lb/>dium den&longs;ius pl&ugrave;s impedit. </s>
				</p>
				<p id="N18093" type="main">
					<s id="N18095"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 78.<emph.end type="center"/></s>
				</p>
				<p id="N180A1" type="main">
					<s id="N180A3"><emph type="italics"/>Hinc tardi&ugrave;s de&longs;cendit mobile per mediam aquam, qu&agrave;m per medium <lb/>a&euml;ra,<emph.end type="italics"/> quia aqua e&longs;t den&longs;ior a&euml;re. </s>
				</p>
				<p id="N180AD" type="main">
					<s id="N180AF"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N180BB" type="main">
					<s id="N180BD"><!-- NEW -->Ob&longs;erua e&longs;&longs;e aliqua corpora minus den&longs;a, qu&aelig; motum omnin&ograve; im&shy;<lb/>pediunt; </s>
					<s id="N180C3"><!-- NEW -->quippe certum e&longs;t aquam e&longs;&longs;e den&longs;iorem ligno; </s>
					<s id="N180C7"><!-- NEW -->atqui li&shy;<lb/>gnum de&longs;cen&longs;um lapidis impedit, non ver&ograve; aqua; </s>
					<s id="N180CD"><!-- NEW -->quia &longs;cilicet lignum <lb/>non e&longs;t medium, vt aqua; </s>
					<s id="N180D3"><!-- NEW -->vt enim aliquod corpus &longs;it medium, debet e&longs;&longs;e <lb/>liquidum, vt, aqua &amp; alij liquores; vel &longs;pirabile vt a&euml;r, vapor, &amp;c. </s>
					<s id="N180D9"><!-- NEW -->ratio <lb/>e&longs;t, quia partes ligni, vel alterius corporis durioris, ita &longs;unt inter &longs;e con&shy;<lb/>junct&aelig;, vel implicat&aelig;, vt omnem tran&longs;itum intercludant, ni&longs;i corpus ip&shy;<lb/>&longs;um graue valido ictu vel impetu &longs;ibi viam aperiat; </s>
					<s id="N180E3"><!-- NEW -->igitur vt corpus ali&shy;<lb/>quod vice medij defungatur, debet in eo &longs;tatu e&longs;&longs;e, in quo eius partes <pb pagenum="117" xlink:href="026/01/149.jpg"/>modico fer&egrave; ni&longs;u &longs;eiungantur, &amp; loco cedant; </s>
					<s id="N180EE"><!-- NEW -->&longs;ed de his &longs;tatibus cor&shy;<lb/>porum fus&egrave; agemus Tomo 5. adde quod ad medium &longs;ufficit vacuum &longs;i <lb/>motus in vacuo e&longs;&longs;e pote&longs;t, de quo alibi; quod cert&egrave; e&longs;t omnium me&shy;<lb/>diorum optimum, cum nullo modo re&longs;i&longs;tar mobili. </s>
				</p>
				<p id="N180F8" type="main">
					<s id="N180FA"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 79.<emph.end type="center"/></s>
				</p>
				<p id="N18106" type="main">
					<s id="N18108"><emph type="italics"/>Hinc producitur impetus imperfectior in medio den&longs;iore:<emph.end type="italics"/> quia in eo tar&shy;<lb/>dior e&longs;t motus, ex cuius tarditate arguitur imperfectio impetus per Ax. <!-- REMOVE S--><lb/>13.num.4. </s>
				</p>
				<p id="N18115" type="main">
					<s id="N18117"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N18123" type="main">
					<s id="N18125"><!-- NEW -->Ob&longs;erua den&longs;itatem medij cogno&longs;ci ex eius grauitate; </s>
					<s id="N18129"><!-- NEW -->illud enim <lb/>den&longs;ius e&longs;t, quod e&longs;t grauius &amp; vici&longs;&longs;im; </s>
					<s id="N1812F"><!-- NEW -->quod fus&egrave; explicabimus &longs;uo lo&shy;<lb/>co; </s>
					<s id="N18135"><!-- NEW -->e&longs;t enim grauitas qu&aelig;dam <emph type="italics"/>den&longs;itas, vt ait<emph.end type="italics"/> Philo&longs;ophus <emph type="italics"/>t&ugrave;m l.<emph.end type="italics"/>4.<emph type="italics"/>pb.c.<emph.end type="italics"/><lb/>9.<emph type="italics"/>t.<emph.end type="italics"/>85. &amp; 86. <emph type="italics"/>den&longs;um &amp; rarum,<emph.end type="italics"/> inquit, <emph type="italics"/>&longs;unt lationis efficientia,<emph.end type="italics"/> &amp; paul&ograve; &longs;u&shy;<lb/>peri&ugrave;s; </s>
					<s id="N18160"><!-- NEW --><emph type="italics"/>e&longs;t autem den&longs;um graue, rarum ver&ograve; leue, &amp; l.<emph.end type="italics"/>8.<emph type="italics"/>c.<emph.end type="italics"/>7.<emph type="italics"/>t.<emph.end type="italics"/>55. <emph type="italics"/>h&aelig;c habet, <lb/>graue &amp; leue; molle &amp; durum den&longs;itates qu&aelig;dam e&longs;&longs;e, &amp; raritates videntur,<emph.end type="italics"/><lb/>qu&aelig; adnotare volui, vt vel inde con&longs;tet doctrinam hanc cum Peripate&shy;<lb/>tica optim&egrave; con&longs;entire. </s>
				</p>
				<p id="N18180" type="main">
					<s id="N18182"><!-- NEW -->Ob&longs;eruabis etiam h&icirc;c &agrave; me non di&longs;cuti, in quo con&longs;i&longs;tat den&longs;itas, vel <lb/>raritas, grauitas, vel leuitas; </s>
					<s id="N18188"><!-- NEW -->&longs;uppono tant&ugrave;m graue illud e&longs;&longs;e, quod ten&shy;<lb/>dit deor&longs;um; </s>
					<s id="N1818E"><!-- NEW -->leue illud, quod tendit &longs;ur&longs;um &longs;iue pellatur &agrave; grauiori, &longs;iue <lb/>non, den&longs;um ver&ograve; e&longs;&longs;e id quod mult&ugrave;m materia habet &longs;ub parua exten&shy;<lb/>&longs;ione, rarum &egrave; contrario; quorum omnium cau&longs;as, &amp; rationes &longs;uo loco <lb/>explicabimus. </s>
				</p>
				<p id="N18198" type="main">
					<s id="N1819A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 80.<emph.end type="center"/></s>
				</p>
				<p id="N181A6" type="main">
					<s id="N181A8"><!-- NEW --><emph type="italics"/>Sub medium leuius corpus graue de&longs;cendit<emph.end type="italics"/>; </s>
					<s id="N181B1"><!-- NEW -->certa e&longs;t hypothe&longs;is, ni&longs;i for&shy;<lb/>t&egrave; aliquando per accidens &longs;ecus accidat; </s>
					<s id="N181B7"><!-- NEW -->ratio porr&ograve; petitur ex ip&longs;a <lb/>grauitatis natura, qu&acirc; corpus graue tendit deor&longs;um; </s>
					<s id="N181BD"><!-- NEW -->nihil enim aliud <lb/>grauitas e&longs;t, quidquid tandem illa &longs;it; </s>
					<s id="N181C3"><!-- NEW -->quippe corpus graue de&longs;cendit, <lb/>quando medium liberum habet, idemque leuius, per quod de&longs;cendat; </s>
					<s id="N181C9"><!-- NEW --><lb/>quod cert&egrave; &longs;i grauius e&longs;&longs;et, haud dubi&egrave; non de&longs;cenderet; </s>
					<s id="N181CE"><!-- NEW -->&longs;ic ferrum, &amp; <lb/>&longs;axum plumbo liquato innatant; </s>
					<s id="N181D4"><!-- NEW -->cum tamen per mediam aquam de&shy;<lb/>&longs;cendant; </s>
					<s id="N181DA"><!-- NEW -->fic lignum aqu&aelig; &longs;upernatat, quod per liberum a&euml;ra de&longs;cendit; </s>
					<s id="N181DE"><!-- NEW --><lb/>ratio e&longs;t, quia grauius de&longs;cendit &longs;ub medium leuius; </s>
					<s id="N181E3"><!-- NEW -->cur autem id fiat <lb/>fus&egrave; alibi explicabo; id tant&ugrave;m obiter indico. </s>
					<s id="N181E9"><!-- NEW -->Omnis motus, qui fit &agrave; <lb/>principio intrin&longs;eco per lineam rectam propter locum e&longs;t, vt patet; quis <lb/>enim neget corpus graue ideo de&longs;cendere &longs;ub leuius, vt occupet aliquem <lb/>locum quo prius carebat, qui tamen illi connaturalis e&longs;t in hoc rerum <lb/>ordine? </s>
					<s id="N181F5"><!-- NEW -->cum &agrave; natura acceperit vim illam intrin&longs;ecam, qu&acirc; in eum lo&shy;<lb/>cum &longs;e&longs;e recipere pote&longs;t; </s>
					<s id="N181FB"><!-- NEW -->quam cert&egrave; vim intrin&longs;ecam nunquam &agrave; na&shy;<lb/>tura rebus creatis in&longs;itam e&longs;&longs;e con&longs;tat, ni&longs;i ad eum finem con&longs;equendum, <lb/>cui &agrave; natura de&longs;tinantur; </s>
					<s id="N18203"><!-- NEW -->cur ver&ograve; locus connaturalis corporis grauio&shy;<lb/>ris &longs;it ille, in quo leuiori &longs;ube&longs;t, non diu h&aelig;rebit animus, quin &longs;tatim ra&shy;<lb/>tio affulgeat; </s>
					<s id="N1820B"><!-- NEW -->cum enim corpus, quod e&longs;t &longs;upr&agrave;, &longs;u&longs;tineatur ab eo quod e&longs;t <lb/>infr&agrave;; </s>
					<s id="N18211"><!-- NEW -->illud cert&egrave; infra e&longs;&longs;e connaturalius e&longs;t, quod aptius e&longs;t ad &longs;u&longs;tinen-<pb pagenum="118" xlink:href="026/01/150.jpg"/>dum; </s>
					<s id="N1821A"><!-- NEW -->atqui den&longs;um aptius e&longs;t ad id munus, quia plures partes &longs;u&longs;tinentis <lb/>pauciores &longs;u&longs;tinent alterius leuioris, &longs;eu rarioris, vt con&longs;tat; </s>
					<s id="N18220"><!-- NEW -->v.g. <!-- REMOVE S-->certum <lb/>e&longs;t <expan abbr="c&atilde;dem">eandem</expan> a&euml;ris partem pluribus aqu&aelig; partibus re&longs;pondere; </s>
					<s id="N1822C"><!-- NEW -->&longs;ed de hoc <lb/>alias fus&egrave;; </s>
					<s id="N18232"><!-- NEW -->h&aelig;c interim &longs;ufficiat indica&longs;&longs;e, vt vel aliqua ratio affulgeat; </s>
					<s id="N18236"><!-- NEW --><lb/>cur &longs;cilicet corpus graue &longs;ub medium leuius &longs;ua &longs;ponte de&longs;cendat; </s>
					<s id="N1823B"><!-- NEW -->adde <lb/>quod cum omne corpus graue tendat deor&longs;um, tunc vnum infra aliud de&shy;<lb/>&longs;cendit, cum &longs;unt plures partes pellentis, qu&agrave;m pul&longs;i; denique per va&shy;<lb/>cuum modicum &longs;ine vlla re&longs;i&longs;tentia de&longs;cenderet. </s>
				</p>
				<p id="N18245" type="main">
					<s id="N18247"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 81.<emph.end type="center"/></s>
				</p>
				<p id="N18253" type="main">
					<s id="N18255"><!-- NEW --><emph type="italics"/>Sub medium grauius corpus leuius minim&egrave; de&longs;cendit, &longs;ed huic inna&shy;<lb/>tat<emph.end type="italics"/>; </s>
					<s id="N18260"><!-- NEW -->v.g. <!-- REMOVE S-->lignum aqu&aelig;, ferrum plumbo liquato; </s>
					<s id="N18266"><!-- NEW -->certa e&longs;t hypothe&longs;is: </s>
					<s id="N1826A"><!-- NEW -->ratio <lb/>e&longs;t, quia ideo de&longs;cendit graue &longs;ub medium, quia grauius &longs;eu den&longs;ius e&longs;t <lb/>medio; </s>
					<s id="N18272"><!-- NEW -->igitur, &longs;i den&longs;ius e&longs;t ip&longs;um medium, non de&longs;cendet; clarum e&longs;t; <lb/>cur ver&ograve; a&longs;cendat &longs;upra medium. </s>
					<s id="N18278"><!-- NEW -->v.g. <!-- REMOVE S-->cur lignum aqu&aelig; immer&longs;um tan&shy;<lb/>dem emergat h&icirc;c non di&longs;cutio, &longs;ed tant&ugrave;m indico ab ip&longs;a aqua &longs;ur&longs;um <lb/>extendi; quanta ver&ograve; parte lignum emergat, dicemus ali&agrave;s, cum de in&shy;<lb/>natantibus humido. </s>
				</p>
				<p id="N18284" type="main">
					<s id="N18286"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 82.<emph.end type="center"/></s>
				</p>
				<p id="N18292" type="main">
					<s id="N18294"><!-- NEW --><emph type="italics"/>Sub medium &aelig;qu&egrave; graue corpus non de&longs;cendit, nec etiam &longs;upra a&longs;cendit<emph.end type="italics"/>; </s>
					<s id="N1829D"><!-- NEW -->ra&shy;<lb/>tio e&longs;t, quia ideo de&longs;cendit &longs;ub medium, quia medium leuius e&longs;t, ideo <lb/>a&longs;cendit &longs;upra, quia medium grauius e&longs;t; </s>
					<s id="N182A5"><!-- NEW -->igitur &longs;i nec &longs;it grauius nec <lb/>leuius, non e&longs;t quod a&longs;cendat vel de&longs;cendat; </s>
					<s id="N182AB"><!-- NEW -->nihil tamen illius &longs;upra <lb/>primam medij &longs;uperficiem extare poterit; alioqui e&longs;&longs;et leuius medio, <lb/>contra &longs;uppo&longs;itionem. </s>
				</p>
				<p id="N182B3" type="main">
					<s id="N182B5"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 83.<emph.end type="center"/></s>
				</p>
				<p id="N182C1" type="main">
					<s id="N182C3"><!-- NEW --><emph type="italics"/>A&euml;r &longs;uam grauitatem habet<emph.end type="italics"/>; </s>
					<s id="N182CC"><!-- NEW -->quod iam &agrave; nullo in dubium reuocari po&shy;<lb/>te&longs;t; </s>
					<s id="N182D2"><!-- NEW -->nam &longs;i comprimatur intra vas &aelig;neum v.g. <!-- REMOVE S-->etiam minim&aelig; cra&longs;&longs;itu&shy;<lb/>dinis; </s>
					<s id="N182DA"><!-- NEW -->&longs;i deinde ponderetur, maius e&longs;t haud dubi&egrave; pondus, quo maior <lb/>e&longs;t a&euml;ris copia intru&longs;a; </s>
					<s id="N182E0"><!-- NEW -->atqui non modo triplum totius a&euml;ris, qui ante <lb/>compre&longs;&longs;ionem totam va&longs;is capacitatem occupabat intrudi pote&longs;t, vel <lb/>decuplum; </s>
					<s id="N182E8"><!-- NEW -->ver&ugrave;m etiam vigecuplum; </s>
					<s id="N182EC"><!-- NEW -->imm&ograve; centuplum, &amp; millecuplum <lb/>adhibita cochle&acirc;, vel alio mechanico organo, &amp; aucta va&longs;is cra&longs;&longs;itudine, <lb/>de quo ali&agrave;s: </s>
					<s id="N182F4"><!-- NEW -->quanta ver&ograve; &longs;it grauitas a&euml;ris comparata cum grauitate <lb/>aqu&aelig;, cen&longs;et Galileus e&longs;&longs;e fer&egrave; vt 1. ad 400. Mer&longs;ennus ver&ograve; vt 1. ad <lb/>1356. vel &longs;altem vt 1.ad 1300. Nos maiorem ill&agrave;; </s>
					<s id="N182FC"><!-- NEW -->h&acirc;c vero minorem <lb/>e&longs;&longs;e ob&longs;eruauimus, de quo ali&agrave;s; </s>
					<s id="N18302"><!-- NEW -->nec enim e&longs;t pr&aelig;&longs;entis in&longs;tituti, pro <lb/>quo &longs;ufficiat mod&ograve;, a&euml;ri aliquam ine&longs;&longs;e grauitatem; </s>
					<s id="N18308"><!-- NEW -->nec dicas a&euml;ra le&shy;<lb/>uem e&longs;&longs;e; </s>
					<s id="N1830E"><!-- NEW -->nam reuer&acirc; leuis e&longs;t, &longs;i comparetur cum aqua; </s>
					<s id="N18312"><!-- NEW -->grauis autem &longs;i <lb/>comparetur cum a&longs;cendente halitu, vel fort&egrave; cum vacuo; </s>
					<s id="N18318"><!-- NEW -->nec e&longs;t quod <lb/>aliquis fort&egrave; metuat, ne &longs;i a&euml;r &longs;it grauis, ab eo tandem opprimatur, nam <lb/>etiam&longs;i aqua &longs;it grauis non tamen opprimit vrinatores, cuius rei veri&longs;&longs;i&shy;<lb/>mam rationem &longs;uo loco afferemus; </s>
					<s id="N18322"><!-- NEW -->denique non e&longs;t quod aliqui &longs;atis <lb/>incaut&egrave; re&longs;pondeant, ip&longs;um a&euml;ra non e&longs;&longs;e grauem, &longs;ed tant&ugrave;m &longs;entiri ali&shy;<lb/>quod pondus cra&longs;&longs;ioris vaporis immixti; </s>
					<s id="N1832A"><!-- NEW -->nam de alio a&euml;re non affirmo <pb pagenum="119" xlink:href="026/01/151.jpg"/>grauem e&longs;&longs;e, ni&longs;i tant&ugrave;m de illo, quem &longs;piramus, in quo ambulamus, qui <lb/>nos ambit: </s>
					<s id="N18335"><!-- NEW -->adde quod Ari&longs;toteles l.4. <emph type="italics"/>de C&oelig;lo, c.<emph.end type="italics"/>5.<emph type="italics"/>t.<emph.end type="italics"/>36. tribuit a&euml;ri gra&shy;<lb/>uitatem his verbis; <emph type="italics"/>quapropter<emph.end type="italics"/> inquit, <emph type="italics"/>a&euml;r, &amp; aqua habent &amp; leuitatem, &amp; <lb/>grauitatem.<emph.end type="italics"/></s>
				</p>
				<p id="N18354" type="main">
					<s id="N18356"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 84.<emph.end type="center"/></s>
				</p>
				<p id="N18362" type="main">
					<s id="N18364"><!-- NEW --><emph type="italics"/>Medium eiu&longs;dem grauitatis cum dato corpore graui detrahit totam eius <lb/>grauitationem &longs;ingularem; </s>
					<s id="N1836C"><!-- NEW -->hoc e&longs;t corpus graue in medium &aelig;qu&egrave; graue non <lb/>grauitat<emph.end type="italics"/>; </s>
					<s id="N18375"><!-- NEW -->quia &longs;i grauitaret de&longs;cenderet; </s>
					<s id="N18379"><!-- NEW -->&longs;ic pars aqu&aelig; in aliam partem <lb/>aqu&aelig; non grauitat, &amp; &longs;i aqua ponderetur in aqua, nullius ponderis e&longs;t; </s>
					<s id="N1837F"><!-- NEW --><lb/>cum enim nulla &longs;it ratio cur vna &longs;it infr&agrave; poti&ugrave;s, qu&agrave;m alia, vna cert&egrave; al&shy;<lb/>terius locum non ambit; igitur caret grauitatione &longs;ingulari. </s>
				</p>
				<p id="N18386" type="main">
					<s id="N18388"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 85.<emph.end type="center"/></s>
				</p>
				<p id="N18394" type="main">
					<s id="N18396"><!-- NEW --><emph type="italics"/>Medium graue detrahit aliquid de &longs;ingulari grauitatione corporis grauio&shy;<lb/>ris<emph.end type="italics"/>; </s>
					<s id="N183A1"><!-- NEW -->certa e&longs;t hypothe&longs;is; </s>
					<s id="N183A5"><!-- NEW -->nec enim plumbum e&longs;t eius ponderis &longs;ingula&shy;<lb/>ris in aqua, cuius e&longs;t in a&euml;re; dixi &longs;ingularis; </s>
					<s id="N183AB"><!-- NEW -->nam &longs;i plumbum &amp; ip&longs;a <lb/>aqua &longs;imul appendantur, haud dubi&egrave; totum habebis pondus plumbi, &amp; <lb/>totum pondus aqu&aelig;; </s>
					<s id="N183B3"><!-- NEW -->ratio ver&ograve; huius effectus non e&longs;t huius loci; </s>
					<s id="N183B7"><!-- NEW -->quid&shy;<lb/>quid &longs;it, &longs;i &aelig;qualis grauitas medij tollit totam &aelig;qualem alterius corpo&shy;<lb/>ris; cert&egrave; maiorem alterius corporis totam non tollit per Th. 80. &longs;ed <lb/>tant&ugrave;m aliquid illius, quod quomodo fiat, dicemus Tomo quinto cum de <lb/>graui, &amp; leui. </s>
				</p>
				<p id="N183C3" type="main">
					<s id="N183C5"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 86.<emph.end type="center"/></s>
				</p>
				<p id="N183D1" type="main">
					<s id="N183D3"><!-- NEW --><emph type="italics"/>Medium graue detrahit eam partem grauitationis corporis grauioris, qu&aelig; <lb/>e&longs;t &aelig;qualis &longs;u&aelig; grauitationi.<emph.end type="italics"/> v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;i medij grauitas e&longs;t &longs;ubdupla, detrahit <lb/>&longs;ubduplum grauitationis; </s>
					<s id="N183E4"><!-- NEW -->&longs;i &longs;ubdecupla, &longs;ubdecuplum, atque ita dein&shy;<lb/>ceps; hoc iam olim &longs;uppo&longs;uit magnus Archim. <!-- KEEP S--></s>
					<s id="N183EB"><!-- NEW -->&longs;upponunt etiam reliqui <lb/>omnes, pr&aelig;&longs;ertim recentior Galileus; </s>
					<s id="N183F1"><!-- NEW -->&longs;i enim &aelig;qualis &longs;uperat &aelig;qualem, <lb/>ergo in&aelig;qualis pro rata; &longs;cilicet &longs;ubdupla &longs;ubduplum &longs;ubtripla, &amp;c. </s>
					<s id="N183F7"><!-- NEW -->Pr&aelig;&shy;<lb/>terea, cum detrahat aliquam partem grauitationis maioris per Th.85.nec <lb/>detrahat in&aelig;qualem maiorem, per Th.80.nec in&aelig;qualem minorem; cur <lb/>enim potius vnam minorem quam aliam? </s>
					<s id="N18401">cert&egrave; &aelig;qualem tant&ugrave;m <lb/>detrahere pote&longs;t, quod &longs;uo loco per Principium po&longs;itiuum demon&longs;tra&shy;<lb/>bimus. </s>
				</p>
				<p id="N18408" type="main">
					<s id="N1840A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 87.<emph.end type="center"/></s>
				</p>
				<p id="N18416" type="main">
					<s id="N18418"><!-- NEW --><emph type="italics"/>Hinc ratio cur grauia de&longs;cendant tardius in aqua, qu&agrave;m in a&euml;re, &amp; in <lb/>a&euml;re, qu&agrave;m in vacuo<emph.end type="italics"/>; </s>
					<s id="N18423"><!-- NEW -->hinc etiam maioris &longs;unt ponderis in a&euml;re quam in <lb/>aqua; </s>
					<s id="N18429"><!-- NEW -->hinc &longs;i grauitas alicuius corporis &longs;it ad grauitatem a&euml;ris vt 100. <lb/>ad 1. haud dubi&egrave; decre&longs;cet eius pondus in a&euml;re &lpar;1/100&rpar;; </s>
					<s id="N1842F"><!-- NEW -->id e&longs;t, &longs;i penderet 100. <lb/>libras in vacuo, in a&euml;re penderet 99. &amp; eo tempore quo in vacuo decur&shy;<lb/>reret 100. pa&longs;&longs;us, in a&euml;re decurreret 99. &longs;i nulla &longs;it aliunde re&longs;i&longs;tentia, <lb/>qualis reuer&acirc; e&longs;t, vt dicam infr&agrave;; </s>
					<s id="N18439"><!-- NEW -->&longs;imiliter &longs;i grauitas alicuius corporis <lb/>&longs;it ad grauitatem aqu&aelig;, vt 10. ad 1. decre&longs;cet eius pondus in aqua &lpar;1/10&rpar;, &amp; <lb/>eo tempore quo decurreret in vacuo 10. palmos &longs;patij, in aqua decurre <pb pagenum="120" xlink:href="026/01/152.jpg"/>ret tant&ugrave;m 9. po&longs;ito quod non &longs;it aliud quod re&longs;i&longs;tat; </s>
					<s id="N18448"><!-- NEW -->quanta ver&ograve; &longs;it <lb/>grauitas omnium corporum t&ugrave;m duriorum, qualia &longs;unt metalla, t&ugrave;m li&shy;<lb/>quidorum, t&ugrave;m &longs;pirabilium, dicemus &longs;uo loco; illorum tabulas habes <lb/>apud Gethaldum, &amp; Mer&longs;ennum. </s>
				</p>
				<p id="N18452" type="main">
					<s id="N18454"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 88.<emph.end type="center"/></s>
				</p>
				<p id="N18460" type="main">
					<s id="N18462"><!-- NEW --><emph type="italics"/>Hinc, &longs;i nihil aliud de&longs;cen&longs;um corporum grauium impediret, cognito pen&shy;<lb/>dere vtriu&longs;que, medij &amp; corporis grauis, &longs;patio, quod in vno illorum conficit, <lb/>cogno&longs;ci po&longs;&longs;et &longs;patium, quod in alio conficeret &aelig;quali tempore<emph.end type="italics"/>, v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;uppona&shy;<lb/>mus grauitatem aqu&aelig; e&longs;&longs;e ad grauitatem a&euml;ris vt 400. ad 1. &longs;itque corpus, <lb/>cuius grauitas &longs;it dupla grauitatis aqu&aelig;; </s>
					<s id="N18477"><!-- NEW -->haud dubi&egrave; eo tempore, quo <lb/>conficit in a&euml;re 799. &longs;patia, in aqua conf;iciet tant&ugrave;m 400. quia in vacuo <lb/>conficeret 800. a&euml;r autem detrahit &lpar;1/800&rpar;, &amp; aqua 1/2, vt con&longs;tat ex dictis; </s>
					<s id="N1847F"><!-- NEW -->&longs;i&shy;<lb/>militer cognitis &longs;patiis in vtroque medio confectis, &amp; grauitate vtriu&longs;que <lb/>medij cogno&longs;ceretur grauitas corporis de&longs;cendentis; quia tamen e&longs;t alia <lb/>re&longs;i&longs;tenti&aelig; ratio, h&icirc;c non h&aelig;reo. </s>
				</p>
				<p id="N18489" type="main">
					<s id="N1848B"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N18497" type="main">
					<s id="N18499"><!-- NEW -->Ob&longs;eruabis dictum e&longs;&longs;e hactenus; </s>
					<s id="N1849D"><!-- NEW -->&longs;i nihil aliud de&longs;cen&longs;um corporis <lb/>grauis impedit; </s>
					<s id="N184A3"><!-- NEW -->nam cert&egrave; aliud e&longs;t, de quo infr&agrave;, ex cuius ignoratione <lb/>plures haud dubi&egrave; in inue&longs;tigandis grauitatum medij rationibus hallu&shy;<lb/>cinarentur; </s>
					<s id="N184AB"><!-- NEW -->cum enim ob&longs;eruatum &longs;it globum plumbeum, cuius graui&shy;<lb/>tas e&longs;t fer&egrave; dodecupla grauitatis aqu&aelig;, conficere in libero a&euml;re 48. pedes <lb/>&longs;patij tempore duorum &longs;ecundorum, in aqua ver&ograve; 12. pedes eodem tem&shy;<lb/>pore; </s>
					<s id="N184B5"><!-- NEW -->cert&egrave; in vacuo ip&longs;o moueretur tardi&ugrave;s qu&agrave;m in a&euml;re; </s>
					<s id="N184B9"><!-- NEW -->quia eo tem&shy;<lb/>pore, quo conficit in aqua 12.pedes in vacuo conficeret &lpar;13 1/21&rpar;, &longs;i tant&ugrave;m <lb/>detrahitur &lpar;1/12&rpar; grauitationis, &amp; de&longs;cen&longs;us; </s>
					<s id="N184C1"><!-- NEW -->atqui in a&euml;re eodem tempore <lb/>conficit 48. pedes; </s>
					<s id="N184C7"><!-- NEW -->igitur veloci&ugrave;s moueretur in a&euml;re qu&agrave;m in vacuo; </s>
					<s id="N184CB"><!-- NEW --><lb/>igitur e&longs;t aliquid aliud quod impedit motum; </s>
					<s id="N184D0"><!-- NEW -->vt enim optim&egrave; monet <lb/>Mer&longs;ennus, &longs;i grauitas aqu&aelig; &longs;it ad grauitatem a&euml;ris vt 400 ad 1.&amp; graui&shy;<lb/>tas plumbi ad grauitatem aqu&aelig; vt 12. ad 1.eadem grauitas plumbi e&longs;t ad <lb/>grauitatem a&euml;ris vt 4800. igitur &longs;i &longs;patium, quod decurrit plumbum in <lb/>vacuo diuidatur in 4800. partes, decurret in a&euml;re 4799. partes; </s>
					<s id="N184DC"><!-- NEW -->in aqua <lb/>ver&ograve; 4400. quod e&longs;t contra experientiam; </s>
					<s id="N184E2"><!-- NEW -->nam &longs;patium, quod decurrit <lb/>in a&euml;re e&longs;t maius &longs;patio, quod decurrit in aqua 3/4; </s>
					<s id="N184E8"><!-- NEW -->quippe conficit 12. <lb/>pedes in aqua eodem tempore, quo in a&euml;re conficit 48; </s>
					<s id="N184EE"><!-- NEW -->igitur in aqua <lb/>amittit 3/4 &longs;u&aelig; grauitationis, &amp; &longs;ui motus; igitur 3600. partes; </s>
					<s id="N184F4"><!-- NEW -->igitur <lb/>plumbi grauitas e&longs;&longs;et ad grauitatem aqu&aelig; vt 4.ad 3.&amp; ad grauitatem a&euml;&shy;<lb/>ris vt 3600. ad 1. atqui vtrumque fal&longs;um e&longs;&longs;e con&longs;tat; </s>
					<s id="N184FC"><!-- NEW -->igitur e&longs;t aliquid <lb/>aliud, quod etiam impedit motum; nec ex motu diuer&longs;o per diuer&longs;a me&shy;<lb/>dia cogno&longs;ci pote&longs;t eorum grauitas. </s>
				</p>
				<p id="N18504" type="main">
					<s id="N18506"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 89.<emph.end type="center"/></s>
				</p>
				<p id="N18512" type="main">
					<s id="N18514"><!-- NEW --><emph type="italics"/>Hinc potiori iure reiicies illorum &longs;ententiam, qui volunt impediri motum <lb/>corporis de&longs;cendentis per diuer&longs;a media pro diuer&longs;a ratione grauitatum vtriu&longs;&shy;<lb/>que medy<emph.end type="italics"/>; quod cert&egrave; fal&longs;um e&longs;t; </s>
					<s id="N18521"><!-- NEW -->nam aqua &longs;it ad grauitatem a&euml;ris vt <lb/>400. ad 1. deberet omne corpus de&longs;cendere veloci&ugrave;s in a&euml;re quadrin-<pb pagenum="121" xlink:href="026/01/153.jpg"/>gente&longs;ies, qu&agrave;m in aqua, quod fal&longs;um e&longs;t; cum aliquod corpus nullo mo&shy;<lb/>do de&longs;cendat in aqua, quod de&longs;cendit in a&euml;re, vt lignum. </s>
				</p>
				<p id="N1852E" type="main">
					<s id="N18530"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 90.<emph.end type="center"/></s>
				</p>
				<p id="N1853C" type="main">
					<s id="N1853E"><!-- NEW --><emph type="italics"/>Non pote&longs;t corpus graue per medium corporeum de&longs;cendere, ni&longs;i vel totum <lb/>medium loco cedat, vel aliqu&aelig; partes eiu&longs;dem medij,<emph.end type="italics"/> patet; quia vnum cor&shy;<lb/>pus non pote&longs;t penetrari cum alio. </s>
				</p>
				<p id="N1854B" type="main">
					<s id="N1854D"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 91.<emph.end type="center"/></s>
				</p>
				<p id="N18559" type="main">
					<s id="N1855B"><!-- NEW --><emph type="italics"/>Totum medium loco non cedit in de&longs;cen&longs;u grauium<emph.end type="italics"/>; </s>
					<s id="N18564"><!-- NEW -->patet etiam, t&ugrave;m <lb/>quia ad mouendum totum medium exigua vis corporis grauis non &longs;uffi&shy;<lb/>cit; </s>
					<s id="N1856C"><!-- NEW -->t&ugrave;m quia t&agrave;m facil&egrave; per medium durum eiu&longs;dem grauitatis de&longs;cen&shy;<lb/>deret; denique patet manife&longs;t&acirc; experienti&acirc;. </s>
				</p>
				<p id="N18572" type="main">
					<s id="N18574"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 92.<emph.end type="center"/></s>
				</p>
				<p id="N18580" type="main">
					<s id="N18582"><!-- NEW --><emph type="italics"/>Hinc aliqua tant&ugrave;m partes medij loco cedunt<emph.end type="italics"/>; probatur, quia vel totum <lb/>medium, vel aliqu&aelig; eius partes, per Th.90.non primum per Th.91. igitur <lb/>&longs;ecundum, in his cert&egrave; non e&longs;t vlla difficultas. </s>
				</p>
				<p id="N1858F" type="main">
					<s id="N18591"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 93.<emph.end type="center"/></s>
				</p>
				<p id="N1859D" type="main">
					<s id="N1859F"><!-- NEW --><emph type="italics"/>Non po&longs;&longs;unt ill&aelig; partes loco cedere &longs;ine motu; </s>
					<s id="N185A5"><!-- NEW -->nec moueri &longs;ine impetu, nec <lb/>habere impetum, ni&longs;i producatur in illis &agrave; cau&longs;a aliqua applicata; qu&aelig; cert&egrave; <lb/>alia none&longs;t qu&agrave;m impetus corporis de&longs;cendentis,<emph.end type="italics"/> vt con&longs;tat ex iis, qu&aelig; dixi&shy;<lb/>mus primo lib. <!-- REMOVE S--><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 94.<emph.end type="center"/></s>
				</p>
				<p id="N185BD" type="main">
					<s id="N185BF"><!-- NEW --><emph type="italics"/>Ill&aelig; partes, qu&aelig; loco cedunt de&longs;cendenti corpori graui, nece&longs;&longs;ari&ograve; ab aliis <lb/>&longs;eparantur, &amp; &longs;uo appul&longs;u, vel impul&longs;u alias multas impellunt, ac &longs;eparant,<emph.end type="italics"/><lb/>atqui &longs;eparari non po&longs;&longs;unt ab aliis, ni&longs;i &longs;oluatur vnio, &longs;eu nexus, <lb/>quo cum aliis deuinciuntur; quidquid tandem &longs;it illa vnio, de qua <lb/>ali&agrave;s. </s>
				</p>
				<p id="N185CF" type="main">
					<s id="N185D1"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 95.<emph.end type="center"/></s>
				</p>
				<p id="N185DD" type="main">
					<s id="N185DF"><!-- NEW --><emph type="italics"/>Hinc qu&ograve; arctior e&longs;t ille nexus, difficilius &longs;oluitur<emph.end type="italics"/>; igitur maiore vi, vel <lb/>impetu opus e&longs;t, vt &longs;olui po&longs;&longs;it, vt con&longs;tat. </s>
				</p>
				<p id="N185EA" type="main">
					<s id="N185EC"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 96.<emph.end type="center"/></s>
				</p>
				<p id="N185F8" type="main">
					<s id="N185FA"><!-- NEW --><emph type="italics"/>Hinc corpus grauius &longs;ustinetur &agrave; leuiore.<emph.end type="italics"/> v.g. <!-- REMOVE S-->plumbum &agrave; ligno propter <lb/>arctiorem nexum partium ligni, qui ab impetu plumbi quantumuis gra&shy;<lb/>ui&longs;&longs;imi &longs;uperari non pote&longs;t; </s>
					<s id="N18609"><!-- NEW -->hinc corpus illud, medium tant&ugrave;m appello <lb/>in quo po&longs;&longs;int corpora moueri, cuius nexus &longs;uperari pote&longs;t &agrave; corpore <lb/>grauiori in aliqua &longs;altem figura, vel &longs;itu; </s>
					<s id="N18611"><!-- NEW -->hinc corpora dura non po&longs;&longs;unt <lb/>e&longs;&longs;e medium; </s>
					<s id="N18617"><!-- NEW -->imm&ograve; neque mollia, vt cera, argilla; &longs;ed vel liquida, vel <lb/>&longs;pirabilia. </s>
				</p>
				<p id="N1861D" type="main">
					<s id="N1861F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 97.<emph.end type="center"/></s>
				</p>
				<p id="N1862B" type="main">
					<s id="N1862D"><!-- NEW --><emph type="italics"/>Hinc ducitur euidens ratio, cur medium impediat motum &longs;i dumtaxat ha&shy;<lb/>beat arctiorum partium implicationem &amp; nexum<emph.end type="italics"/>; </s>
					<s id="N18638"><!-- NEW -->quia non modo partes <pb pagenum="122" xlink:href="026/01/154.jpg"/>medij amouend&aelig; &longs;unt &egrave; &longs;uo loco; </s>
					<s id="N18641"><!-- NEW -->ver&ugrave;m etiam nexus ille partium &longs;ol&shy;<lb/>uendus; igitur ex vtroque capite impeditur motus. </s>
				</p>
				<p id="N18647" type="main">
					<s id="N18649"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 98.<emph.end type="center"/></s>
				</p>
				<p id="N18655" type="main">
					<s id="N18657"><!-- NEW --><emph type="italics"/>Quo &longs;ubtiliores &longs;unt partes difficilius inter &longs;e implicari po&longs;&longs;unt &longs;eu ligari <lb/>quibu&longs;dam filamentis<emph.end type="italics"/>, con&longs;tat; </s>
					<s id="N18662"><!-- NEW -->igitur cum a&euml;ris partes &longs;int magis lubric&aelig;, <lb/>qu&agrave;m partes aqu&aelig;, &amp; facili&ugrave;s per obuia qu&aelig;que foramina irrepere po&longs;&shy;<lb/>&longs;int, non po&longs;&longs;unt ita contineri; </s>
					<s id="N1866A"><!-- NEW -->&longs;ic videmus mult&ugrave;m aqu&aelig; hauriri, dum <lb/>arctioribus retibus attollitur; </s>
					<s id="N18670"><!-- NEW -->imm&ograve; dum aquam manu &longs;tringimus, ali&shy;<lb/>quam re&longs;i&longs;tentiam &longs;en&longs;u percipimus; qu&aelig; cert&egrave; nulla e&longs;t, dum a&euml;ra &longs;trin&shy;<lb/>gimus. </s>
				</p>
				<p id="N18678" type="main">
					<s id="N1867A"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N18686" type="main">
					<s id="N18688">Ob&longs;eruabis vnionem continuatiuam corporum aliquando po&longs;itam <lb/>e&longs;&longs;e in plexu, vel implicatione partium, vt videmus in fune, ligno, carne, <lb/>o&longs;&longs;ibus, &amp;c. </s>
					<s id="N1868F">aliquando in vacui metu; </s>
					<s id="N18692"><!-- NEW -->&longs;ic aqua, vt &longs;uo va&longs;i adh&aelig;reat, <lb/>a&longs;cendit, vel &longs;ur&longs;um attollitur, ne detur vacuum; </s>
					<s id="N18698"><!-- NEW -->aliquando in coitione <lb/>quadam magnetica; </s>
					<s id="N1869E"><!-- NEW -->porr&ograve; hic plexus con&longs;tat ex infinitis fer&egrave; tenui&longs;&longs;i&shy;<lb/>morum filamentorum voluminibus, vel aduncis &longs;iue hamatis partibus, <lb/>&longs;eu corpu&longs;culis: </s>
					<s id="N186A6"><!-- NEW -->Vtrum ver&ograve; pr&aelig;ter h&aelig;c requiratur alius vnionis mo&shy;<lb/>dus, di&longs;cutiemus fus&egrave; Tomo 5. quidquid &longs;it; certum e&longs;t medium illud, <lb/>cuius partes arctiori maiorique nexu copulantur, long&egrave; difficili&ugrave;s per&shy;<lb/>curri po&longs;&longs;e, &longs;eu perrumpi. </s>
				</p>
				<p id="N186B0" type="main">
					<s id="N186B2"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 99.<emph.end type="center"/></s>
				</p>
				<p id="N186BE" type="main">
					<s id="N186C0"><!-- NEW --><emph type="italics"/>Hinc non mod&ograve; aqua detrahit plumbo<emph.end type="italics"/> &lpar;1/22&rpar; <emph type="italics"/>&longs;ui motus, quod &longs;cilicet plumbi gra&shy;<lb/>uitas &longs;it dedecupla grauitatis aqu&aelig;, ver&ugrave;m etiam propter re&longs;istentiam petitam <lb/>ex alio capite aliquid adhuc detrahere pote&longs;t<emph.end type="italics"/>; </s>
					<s id="N186D3"><!-- NEW -->&longs;cilicet quia partes aqu&aelig; non <lb/>po&longs;&longs;unt amoueri, ni&longs;i ab aliis &longs;eparentur; </s>
					<s id="N186D9"><!-- NEW -->atqui maiore vi opus e&longs;t ad&shy;<lb/>&longs;oluendum &longs;trictiorem nexum; </s>
					<s id="N186DF"><!-- NEW -->imm&ograve; lic&egrave;t partes aqu&aelig; nullo penitus <lb/>nexu vniantur, &longs;ed tant&ugrave;m vel vacui metu, vel alio modo, quod alibi ex&shy;<lb/>plicabimus; </s>
					<s id="N186E7"><!-- NEW -->omnin&ograve; detraherent adhuc plumbo &lpar;1/12&rpar; motus; </s>
					<s id="N186EB"><!-- NEW -->igitur, &longs;i <lb/>pr&aelig;ter illud impedimentum, quod petitur &agrave; comparatione grauitatis <lb/>corporis mobilis cum grauitate medij, addatur aliud long&egrave; robu&longs;tius; <lb/>non mirum e&longs;t, &longs;i maior inde &longs;equatur effectus, id e&longs;t maior imminutio <lb/>motus, qui qua&longs;i frangitur ab impedimento. </s>
				</p>
				<p id="N186F7" type="main">
					<s id="N186F9"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 100.<emph.end type="center"/></s>
				</p>
				<p id="N18705" type="main">
					<s id="N18707"><!-- NEW --><emph type="italics"/>Hinc petitur ratio illius experimenti, &longs;i verum e&longs;t, duobus &longs;ecundis per&shy;<lb/>currere plumbeam pilam in a&euml;re<emph.end type="italics"/> 48. <emph type="italics"/>&longs;patij pedes, in aqua ver&ograve;<emph.end type="italics"/> 12. <emph type="italics"/>pedes<emph.end type="italics"/>; </s>
					<s id="N1871E"><!-- NEW -->hinc <lb/>tenui nexu partes a&euml;ris copulantur; </s>
					<s id="N18724"><!-- NEW -->partes ver&ograve; aqu&aelig; firmiori; </s>
					<s id="N18728"><!-- NEW -->hinc a&euml;r <lb/>min&ugrave;s re&longs;i&longs;tit etiam motibus violentis; </s>
					<s id="N1872E"><!-- NEW -->hinc vix pote&longs;t qui&longs;piam in aqua <lb/>currere propter maiorem aqu&aelig; re&longs;i&longs;tentiam; </s>
					<s id="N18734"><!-- NEW -->hinc pote&longs;t dici quota parte <lb/>firmior &longs;it nexus vnius corporis qu&agrave;m alterius; </s>
					<s id="N1873A"><!-- NEW -->hinc non tant&ugrave;m copu&shy;<lb/>lantur partes metu vacui; </s>
					<s id="N18740"><!-- NEW -->alioquin &aelig;qu&egrave; re&longs;i&longs;terent partes a&euml;ris, ac par&shy;<lb/>tes aqu&aelig; ratione nexus; </s>
					<s id="N18746"><!-- NEW -->hinc videntur guttul&aelig; ill&aelig; &longs;pheric&aelig; inuolui te&shy;<lb/>nui qua&longs;i membranula, &longs;eu &longs;uperficie, cuius analogiam videmus in aqua <pb pagenum="123" xlink:href="026/01/155.jpg"/>feruente; </s>
					<s id="N18752"><!-- NEW -->in bullis, qu&aelig; ex guttis pluui&aelig; re&longs;ilientibus na&longs;ci videntur; </s>
					<s id="N18756"><!-- NEW -->in <lb/>bullis etiam illis &longs;aponariis, quas leui calamo pueri inter ludendum in&shy;<lb/>flant; </s>
					<s id="N1875E"><!-- NEW -->hinc ex minimo fer&egrave; contactu guttula &longs;pargitur, ni&longs;i fort&egrave; cum <lb/>multo a&longs;per&longs;a puluere cru&longs;tam quamdam induit &longs;olidiorem; </s>
					<s id="N18764"><!-- NEW -->&longs;ic bull&aelig; il&shy;<lb/>l&aelig; ad minimum etiam contactum di&longs;&longs;ipantur; </s>
					<s id="N1876A"><!-- NEW -->hinc ip&longs;a &longs;uperficies <lb/>aqu&aelig; plus videtur re&longs;i&longs;tere quod multis experimentis comprobatur; </s>
					<s id="N18770"><!-- NEW -->&longs;ed <lb/>illo maxim&egrave;, quo videmus findi &agrave; remo cum quodam qua&longs;i &longs;tridulo cre&shy;<lb/>pitu re&longs;i&longs;tenti&aelig; maioris te&longs;te; </s>
					<s id="N18778"><!-- NEW -->imm&ograve; cum ab ip&longs;a naui qua&longs;i &longs;ulcatur, <lb/>idem &longs;tridor auditur, maxim&egrave; in iis tractibus; </s>
					<s id="N1877E"><!-- NEW -->in quibus nullis fluctibus <lb/>agitata l&aelig;uigati&longs;&longs;imam faciem pr&aelig;fert; </s>
					<s id="N18784"><!-- NEW -->habes analogiam in illa cru&longs;ta, <lb/>qu&aelig; concre&longs;cit in &longs;uperficie liquorum, &longs;ed pr&aelig;&longs;ertim o&longs;&longs;arum: </s>
					<s id="N1878A"><!-- NEW -->adde quod <lb/>a&euml;r paul&ograve; compre&longs;&longs;ior vndique guttulam premens &aelig;quali ni&longs;u eam miri&shy;<lb/>fic&egrave; tornat: </s>
					<s id="N18792"><!-- NEW -->h&aelig;c tant&ugrave;m tumultuatim conge&longs;ta alibi fus&egrave; pertractabi&shy;<lb/>mus, &amp; ex &longs;implici&longs;&longs;imis principiis demon&longs;trabimus; plura h&icirc;c de graui&shy;<lb/>tate crant dicenda, &amp; de grauitatione, qu&aelig; tant&ugrave;m indica&longs;&longs;e &longs;ufficiat, vt <lb/>deinde Tomo quinto fus&egrave; explicentur. </s>
				</p>
				<p id="N1879C" type="main">
					<s id="N1879E"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 101.<emph.end type="center"/></s>
				</p>
				<p id="N187AA" type="main">
					<s id="N187AC"><!-- NEW --><emph type="italics"/>Non re&longs;istit medium propter compre&longs;&longs;ionem partium inferiorum, quas nullo <lb/>modo comprimi nece&longs;&longs;e e&longs;t, vel in&longs;en&longs;ibiliter<emph.end type="italics"/>; </s>
					<s id="N187B7"><!-- NEW -->cum enim tantus relinquatur <lb/>locus retr&ograve;, quantus acquiritur ant&egrave;, nulla opus e&longs;t compre&longs;&longs;ione; </s>
					<s id="N187BD"><!-- NEW -->&longs;ed <lb/>partes &agrave; fronte pul&longs;&aelig; fact&acirc; circuitione retror&longs;um eunt, non cert&egrave; tramite <lb/>recto; </s>
					<s id="N187C5"><!-- NEW -->&longs;i enim frons ip&longs;ius lata &longs;it, haud dubi&egrave; partes pul&longs;&aelig; alias pellunt, <lb/>&amp; h&aelig; vici&longs;&longs;im alias longo circuitu, vt patet experientia; nulla tamen, vel <lb/>modica fieri videtur compre&longs;&longs;io. </s>
				</p>
				<p id="N187CD" type="main">
					<s id="N187CF"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 102.<emph.end type="center"/></s>
				</p>
				<p id="N187DB" type="main">
					<s id="N187DD"><!-- NEW --><emph type="italics"/>Hinc quo &longs;unt plures partes diuidend&aelig;, qu&aelig; ant&egrave; uniebantur, maior e&longs;t re&longs;i&shy;<lb/>&longs;tentia<emph.end type="italics"/>; </s>
					<s id="N187E8"><!-- NEW -->igitur maiore vi opus e&longs;t, igitur maiore grauitate; </s>
					<s id="N187EC"><!-- NEW -->&longs;ed in medio <lb/>den&longs;iore ab eodem mobili plures &longs;eparantur qu&agrave;m in rariore; </s>
					<s id="N187F2"><!-- NEW -->quia &longs;ci&shy;<lb/>licet corpus den&longs;um plures habet &longs;ub minori exten&longs;ione, &amp; rarum &egrave; con&shy;<lb/>trario, vt videbimus &longs;uo loco; </s>
					<s id="N187FA"><!-- NEW -->igitur in medio den&longs;iore idem mobile ma&shy;<lb/>jorem re&longs;i&longs;tentiam inuenit, qu&agrave;m in rariore; </s>
					<s id="N18800"><!-- NEW -->lic&egrave;t vtriu&longs;que partes <lb/>&aelig;quali nexu &longs;eu fibula copulentur; </s>
					<s id="N18806"><!-- NEW -->quia &longs;cilicet plures &longs;unt diuidend&aelig; <lb/>in den&longs;iore; </s>
					<s id="N1880C"><!-- NEW -->quia plures &longs;cilicet in &aelig;quali &longs;patio occurrunt, qu&agrave;m in ra&shy;<lb/>riore; igitur maiore vi grauitatis opus e&longs;t. </s>
				</p>
				<p id="N18812" type="main">
					<s id="N18814"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 103.<emph.end type="center"/></s>
				</p>
				<p id="N18820" type="main">
					<s id="N18822"><!-- NEW --><emph type="italics"/>Hinc medium pote&longs;t comparari cum alio in<emph.end type="italics"/> 2. <emph type="italics"/>capitibus<emph.end type="italics"/>; </s>
					<s id="N18831"><!-- NEW -->Primum e&longs;t in <lb/>grauitate, vel den&longs;itate, nam reuer&acirc; ex maiori den&longs;itate maiorem gra&shy;<lb/>uitatem reducimus; </s>
					<s id="N18839"><!-- NEW -->Secundum e&longs;t in maiori, vel minori partium nexu, <lb/>ex quo 4. &longs;equuntur combinationes 2.mediorum; </s>
					<s id="N1883F"><!-- NEW -->nam vel &longs;unt eiu&longs;dem <lb/>grauitatis, &amp; mollitiei; </s>
					<s id="N18845"><!-- NEW -->vel eiu&longs;dem grauitatis &amp; diuer&longs;&aelig; mollitiei; </s>
					<s id="N18849"><!-- NEW -->vel <lb/>eiu&longs;dem mollitiei, &amp; diuer&longs;&aelig; grauitatis; </s>
					<s id="N1884F"><!-- NEW -->vel diuer&longs;&aelig; grauitatis, &amp; eiu&longs;&shy;<lb/>dem mollitiei; </s>
					<s id="N18855"><!-- NEW -->mollius autem illud appello, cuius partes laxiori nexu <lb/>copulantur; </s>
					<s id="N1885B"><!-- NEW -->porr&ograve; 4. i&longs;t&aelig; combinationes &longs;upponunt <expan abbr="id&etilde;">idem</expan> mobile <expan abbr="invtroq;">in vtroque</expan> <lb/>medio; </s>
					<s id="N18869"><!-- NEW -->&longs;i &longs;it prima combinatio, motus e&longs;t &aelig;qualis in vtroque; </s>
					<s id="N1886D"><!-- NEW -->&longs;i &longs;ecunda <pb pagenum="124" xlink:href="026/01/156.jpg"/>maior e&longs;t in molliori; </s>
					<s id="N18876"><!-- NEW -->&longs;i tertia maior in grauiori; </s>
					<s id="N1887A"><!-- NEW -->&longs;i ver&ograve; quarta &longs;ubdi&shy;<lb/>uidi pote&longs;t in duas; </s>
					<s id="N18880"><!-- NEW -->nam vel grauius e&longs;t conjunctum cum maiori molli&shy;<lb/>tie, vel leuius; </s>
					<s id="N18886"><!-- NEW -->&longs;i leuius, haud dubi&egrave; maior e&longs;t motus in leuiore; </s>
					<s id="N1888A"><!-- NEW -->&longs;i gra&shy;<lb/>uius &amp; mollities compen&longs;et grauitatem, id e&longs;t, &longs;i vt &longs;e habet grauitas gra&shy;<lb/>uioris ad leuitatem leuioris; </s>
					<s id="N18892"><!-- NEW -->ita &longs;e habet mollities illius ad mollitiem <lb/>huius, &aelig;qualis e&longs;t in vtroque; &longs;i &longs;ecus, pro rata; </s>
					<s id="N18898"><!-- NEW -->hinc pote&longs;t e&longs;&longs;e &aelig;qualis <lb/>motus in grauiore &amp; leuiore medio, &amp; in &aelig;qu&egrave; graui pote&longs;t e&longs;&longs;e maior <lb/>in grauiore; &amp; minor; </s>
					<s id="N188A0"><!-- NEW -->maior quidem, &longs;i maior &longs;it ratio mollitiei gra&shy;<lb/>uioris ad mollitiem leuioris, qu&agrave;m grauitatis ad grauitatem; </s>
					<s id="N188A6"><!-- NEW -->minor ve&shy;<lb/>r&ograve;, &longs;i maior &longs;it ratio grauitatis ad grauitatem, qu&agrave;m mollitiei ad molli&shy;<lb/>tiem; </s>
					<s id="N188AE"><!-- NEW -->&aelig;qualis denique &longs;i &aelig;qualis ratio; </s>
					<s id="N188B2"><!-- NEW -->&amp; his regulis cuncta facil&egrave; ex&shy;<lb/>plicari po&longs;&longs;unt; </s>
					<s id="N188B8"><!-- NEW -->h&icirc;c porr&ograve; &longs;uppono idem mobile, quod per vtrumque me&shy;<lb/>dium de&longs;cendere po&longs;&longs;it, id e&longs;t, quod &longs;it vtroque grauius, medium autem <lb/>appello illud, per quod mobile grauius per &longs;e de&longs;cendit; dixi per &longs;e quia <lb/>nonnunquam accidit, vt vel ratione figur&aelig;, vel alterius impedimenti non <lb/>de&longs;cendat. </s>
				</p>
				<p id="N188C4" type="main">
					<s id="N188C6"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 104.<emph.end type="center"/></s>
				</p>
				<p id="N188D2" type="main">
					<s id="N188D4"><!-- NEW --><emph type="italics"/>Sunt tres combinationes mobilis cum medio<emph.end type="italics"/>; </s>
					<s id="N188DD"><!-- NEW -->prima, &longs;i &longs;it idem mobile <lb/>cum diuer&longs;is mediis; </s>
					<s id="N188E3"><!-- NEW -->&longs;ecunda, &longs;i idem medium cum diuer&longs;is mobilibus; </s>
					<s id="N188E7"><!-- NEW --><lb/>tertia &longs;i diuer&longs;a mob&iuml;lia cum diuer&longs;is mediis; </s>
					<s id="N188EC"><!-- NEW -->de prim&acirc; actum e&longs;t iam <lb/>&longs;upr&agrave;; &longs;ecunda &longs;ube&longs;t 4. combinationibus. </s>
					<s id="N188F2"><!-- NEW -->Prima &longs;i mobilia &longs;int eiu&longs;&shy;<lb/>dem materi&aelig;, &longs;ed diuer&longs;&aelig; figur&aelig;; Secunda eiu&longs;dem figur&aelig; &amp; diuer&longs;&aelig; <lb/>materi&aelig;. </s>
					<s id="N188FA"><!-- NEW -->Quarta diuer&longs;&aelig; materi&aelig; &amp; figur&aelig;; </s>
					<s id="N188FE"><!-- NEW -->&longs;i prima &amp; &longs;ecunda, vel &longs;unt <lb/>figur&aelig; &aelig;quales, vel in&aelig;quales; </s>
					<s id="N18904"><!-- NEW -->&longs;i primum &longs;unt eiu&longs;dem grauitatis; &longs;i &longs;e&shy;<lb/>cundum diuer&longs;&aelig;; </s>
					<s id="N1890A"><!-- NEW -->quippe figur&aelig; &longs;imiles po&longs;&longs;unt e&longs;&longs;e &aelig;quales, vel in&aelig;&shy;<lb/>quales; </s>
					<s id="N18910"><!-- NEW -->&amp; figur&aelig; &aelig;quales po&longs;&longs;unt e&longs;&longs;e &longs;imiles, vel di&longs;&longs;imiles; </s>
					<s id="N18914"><!-- NEW -->&longs;i &longs;it tertia <lb/>combinatio, in qua &longs;int eiu&longs;dem figur&aelig;, &amp; diuer&longs;&aelig; materi&aelig;, diuer&longs;&aelig; in&shy;<lb/>quam in grauitate; </s>
					<s id="N1891C"><!-- NEW -->&longs;i figur&aelig; &longs;unt &aelig;quales, &longs;emper e&longs;t diuer&longs;a grauitas; </s>
					<s id="N18920"><!-- NEW -->&longs;i <lb/>in&aelig;quales pote&longs;t e&longs;&longs;e vel eadem, vel tertia; </s>
					<s id="N18926"><!-- NEW -->in quarta combinatione di&shy;<lb/>uer&longs;a compen&longs;atio fieri pote&longs;t; idem dicendum e&longs;t de tertia combinatio&shy;<lb/>ne diuer&longs;orum mobilium, &amp; mediorum, de quibus omnibus &longs;eor&longs;im iam <lb/>dicemus. </s>
				</p>
				<p id="N18930" type="main">
					<s id="N18932"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 105.<emph.end type="center"/></s>
				</p>
				<p id="N1893E" type="main">
					<s id="N18940"><emph type="italics"/>Si mobilia duo eiu&longs;dem materi&aelig;, figur&aelig;, &amp; grauitatis in eodem medio de&shy;<lb/>&longs;cendant, &aelig;quali motu feruntur<emph.end type="italics"/> dem. </s>
					<s id="N1894A"><!-- NEW -->vbi e&longs;t eadem proportio cau&longs;&aelig; &amp; re&longs;i&shy;<lb/>&longs;tenti&aelig; ibi e&longs;t idem effectus, per Ax. 5. &longs;ed in hoc ca&longs;u eadem e&longs;t illa pro&shy;<lb/>portio; </s>
					<s id="N18952"><!-- NEW -->nam e&longs;t &aelig;qualis cau&longs;a, &longs;cilicet grauitas; </s>
					<s id="N18956"><!-- NEW -->idem medium &aelig;qualiter <lb/>vtrique re&longs;i&longs;tens, cum non plures medij partes re&longs;i&longs;tant vni, quam alteri; <lb/>igitur &aelig;qualis proportio. </s>
				</p>
				<p id="N1895E" type="main">
					<s id="N18960"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 106.<emph.end type="center"/></s>
				</p>
				<p id="N1896C" type="main">
					<s id="N1896E"><!-- NEW --><emph type="italics"/>Maior e&longs;t re&longs;istentia eiu&longs;dem medij ratione &longs;cilicet partium, cum plures <lb/>eius partes re&longs;istunt qu&agrave;m cum pauciores<emph.end type="italics"/>; patet, quia maior effectus re&shy;<lb/>&longs;pondet pluribus partibus cau&longs;&aelig; per Ax.13.l.1. num.2. </s>
				</p>
				<pb pagenum="125" xlink:href="026/01/157.jpg"/>
				<p id="N1897F" type="main">
					<s id="N18981"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 107.<emph.end type="center"/></s>
				</p>
				<p id="N1898D" type="main">
					<s id="N1898F"><!-- NEW --><emph type="italics"/>Plures partes re&longs;istunt, quando plures pelluntur &agrave; mobili deor&longs;um<emph.end type="italics"/>; </s>
					<s id="N18998"><!-- NEW -->quip&shy;<lb/>pe in tantum re&longs;i&longs;tunt, in quantum ab aliis &longs;eparantur; </s>
					<s id="N1899E"><!-- NEW -->atqui in tantum <lb/>&longs;eparantur, in quantum amouentur &egrave; &longs;uo loco; </s>
					<s id="N189A4"><!-- NEW -->&longs;ed ideo amouentur &egrave; <lb/>&longs;uo loco, in quantum pelluntur; </s>
					<s id="N189AA"><!-- NEW -->igitur cum plures pelluntur tunc plures <lb/>re&longs;i&longs;tunt; igitur tunc maior e&longs;t re&longs;i&longs;tentia. </s>
				</p>
				<p id="N189B0" type="main">
					<s id="N189B2"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 108.<emph.end type="center"/></s>
				</p>
				<p id="N189BE" type="main">
					<s id="N189C0"><!-- NEW --><emph type="italics"/>Plures pelluntur &agrave; maiori &longs;uperficie, qu&agrave;m &agrave; minori, qu&aelig; tendit deor&longs;um <lb/>parallela horizonti.<emph.end type="italics"/> v.g. <!-- REMOVE S-->&agrave; &longs;uperficie cubi maioris, qu&agrave;m minoris; quippe <lb/>tot pelluntur quot re&longs;pondent prim&aelig; faciei, &longs;eu primo plano, quod e&longs;t in <lb/>fronte. </s>
				</p>
				<p id="N189D1" type="main">
					<s id="N189D3"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 109.<emph.end type="center"/></s>
				</p>
				<p id="N189DF" type="main">
					<s id="N189E1"><emph type="italics"/>Si diuidatur cubus in cubos minores, ratio &longs;uperficierum erit duplicat a la&shy;<lb/>terum, &amp; ratio &longs;olidorum triplicata,<emph.end type="italics"/> con&longs;tat ex Geometria, &longs;it enim cubus </s>
				</p>
				<p id="N189EB" type="main">
					<s id="N189ED"><!-- NEW --><arrow.to.target n="note2"/><lb/>GK, nam in gratiam eorum qui Geometriam ignorant hoc ip&longs;um ocu&shy;<lb/>lis &longs;ubiiciendum e&longs;&longs;e videtur; diuidantur 6. eius facies in 4. quadrata <lb/>&aelig;qualia v. <!-- REMOVE S-->g. <!-- REMOVE S-->facies AI in quad. </s>
					<s id="N189FD"><!-- NEW -->AE. EC. EG. EI. idem fiat in aliis <lb/>5. faciebus, quarum du&aelig; h&icirc;c tantum apparent; &longs;cilicet AK. KL; </s>
					<s id="N18A03"><!-- NEW -->&longs;ed <lb/>tribus aliis parallelis; </s>
					<s id="N18A09"><!-- NEW -->his tribus c&aelig;dem diui&longs;iones re&longs;pondent; </s>
					<s id="N18A0D"><!-- NEW -->haud <lb/>dubi&egrave; erunt cubi minores, quorum latus &longs;it &aelig;quale AB, &amp; qu&aelig;libet fa&shy;<lb/>cies &aelig;qualis quadrato AE, &longs;ed facies maior AI, e&longs;t quadrupla minoris <lb/>AE, ergo AI e&longs;t ad AE vt quadratum lateris AG ad quadratum lateris <lb/>AD; &longs;ed h&aelig;c e&longs;t ratio duplicata laterum 1. 2. 4. &longs;imiliter cubus maior <lb/>GK e&longs;t octuplum minoris DN, igitur vt cubus lateris AG ad cubum <lb/>lateris AD. &longs;ed h&aelig;c e&longs;t ratio triplicata. </s>
					<s id="N18A1D">1.2.4.8. </s>
				</p>
				<p id="N18A20" type="margin">
					<s id="N18A22"><margin.target id="note2"/>a <emph type="italics"/>Fig.<emph.end type="italics"/>26 <lb/><emph type="italics"/>Tab.<emph.end type="italics"/>1.<!-- KEEP S--></s>
				</p>
				<p id="N18A35" type="main">
					<s id="N18A37"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 110.<emph.end type="center"/></s>
				</p>
				<p id="N18A43" type="main">
					<s id="N18A45"><!-- NEW --><emph type="italics"/>Hinc pl&ugrave;s minuitur &longs;olidum in diuer&longs;ione cubi quam facies, &amp; pl&ugrave;s facies <lb/>qu&agrave;m latus<emph.end type="italics"/>; </s>
					<s id="N18A50"><!-- NEW -->patet ex dictis, nam latus minoris cubi e&longs;t tant&ugrave;m &longs;ubdu&shy;<lb/>plum lateris maioris, &amp; facies &longs;ubquadrupla; &longs;olidum ver&ograve; &longs;ub&shy;<lb/>octuplum. </s>
				</p>
				<p id="N18A58" type="main">
					<s id="N18A5A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 111.<emph.end type="center"/></s>
				</p>
				<p id="N18A66" type="main">
					<s id="N18A68"><!-- NEW --><emph type="italics"/>Hinc pl&ugrave;s minuitur grauitas, qu&agrave;m re&longs;i&longs;tentia minoris cubi<emph.end type="italics"/>; </s>
					<s id="N18A71"><!-- NEW -->quia grauitas <lb/>re&longs;pondet &longs;olido, &amp; re&longs;i&longs;tentia prim&etail; faciei; </s>
					<s id="N18A77"><!-- NEW -->re&longs;i&longs;tentia <expan abbr="inqu&amacr;">inquam</expan> ratione par&shy;<lb/>tium medij; </s>
					<s id="N18A81"><!-- NEW -->&longs;ed &longs;olidum plus minuitur qu&agrave;m facies, vt dictum e&longs;t; </s>
					<s id="N18A85"><!-- NEW -->igitur <lb/>plus minuitur grauitas, qu&aelig; e&longs;t cau&longs;a virium qu&agrave;m h&aelig;c re&longs;i&longs;tentia; ergo <lb/>decre&longs;cunt vires in maiore proportione qu&agrave;m h&aelig;c re&longs;i&longs;tentia, quod be&shy;<lb/>n&egrave; ob&longs;eruauit Galileus in d&igrave;alogis. </s>
				</p>
				<p id="N18A8F" type="main">
					<s id="N18A91"><!-- NEW -->Hinc concludit Galileus duos cubos eiu&longs;dem materi&aelig;, &longs;ed in&aelig;quales <lb/>de&longs;cendere in&aelig;quali motu; </s>
					<s id="N18A97"><!-- NEW -->maiorem &longs;cilicet veloci&ugrave;s minori; </s>
					<s id="N18A9B"><!-- NEW -->demon&shy;<lb/>&longs;trare videtur, quia maior habet maiorem proportionem virium ad re&shy;<lb/>&longs;i&longs;tentiam, qu&agrave;m minor; igitur maiorem habet effectum per Ax. 5. igi&shy;<lb/>tur maiorem, &amp; velociorem motum. </s>
				</p>
				<p id="N18AA5" type="main">
					<s id="N18AA7"><!-- NEW -->Scio non dee&longs;&longs;e multos viros doctos qui acriter in hanc &longs;ententiam <pb pagenum="126" xlink:href="026/01/158.jpg"/>in&longs;urgant: </s>
					<s id="N18AB0"><!-- NEW -->Obiicient fort&egrave; prim&ograve;, experientiam e&longs;&longs;e contrariam; </s>
					<s id="N18AB4"><!-- NEW -->&longs;i enim <lb/>accipiantur duo cubi maior, &amp; minor eiu&longs;dem materi&aelig;, &amp; dimittantur <lb/>ex eadem altitudine eodem pror&longs;us momento terram ferient; </s>
					<s id="N18ABC"><!-- NEW -->Re&longs;ponde&shy;<lb/>ri pote&longs;t momentum illud &longs;en&longs;u percipi non po&longs;&longs;e; &longs;i enim dicam ma&shy;<lb/>iorem tangere terram 1000. in&longs;tantibus ante minorem, an fort&egrave; &longs;en&longs;u <lb/>hoc percipies, vi&longs;u &longs;cilicet vel auditu? </s>
					<s id="N18AC6"><!-- NEW -->igitur in maxima altitudine h&aelig;c <lb/>&longs;patiorum in&aelig;qualitas, &amp; temporum &longs;en&longs;u percipi po&longs;&longs;et, qu&aelig; in minori <lb/>&longs;ub &longs;en&longs;um non cadit: pr&aelig;terea accipe pulueris granulum eiu&longs;dem ma&shy;<lb/>teri&aelig;, tuncque etiam &longs;en&longs;ibilem motuum differentiam videb&icirc;s, atqui <lb/>e&longs;t eadem ratio de omni minore. </s>
				</p>
				<p id="N18AD2" type="main">
					<s id="N18AD4"><!-- NEW -->Secund&ograve; obiicient, &longs;i &longs;uperponatur cubus minor maiori in &longs;uo motu <lb/>nunquam &longs;eparantur; igitur &aelig;quali motu de&longs;cendunt. </s>
					<s id="N18ADA"><!-- NEW -->Re&longs;p. videri po&shy;<lb/>te&longs;t equidem &aelig;quali motu de&longs;cendere quia &longs;unt veluti partes eiu&longs;dem <lb/>corporis, &amp; grauitant grauitatione communi, neque minor habet &longs;ingu&shy;<lb/>larem re&longs;i&longs;tentiam &longs;uperandam; </s>
					<s id="N18AE4"><!-- NEW -->imm&ograve; &longs;i &longs;uperponatur minor maiori, <lb/>vel maior minori, motus e&longs;t velocior qu&agrave;m e&longs;&longs;et &longs;olius maioris; </s>
					<s id="N18AEA"><!-- NEW -->quia <lb/>cum non &longs;it maior re&longs;i&longs;tentia, maiores illi vires opponuntur; igitur fa&shy;<lb/>cili&ugrave;s &longs;uperatur. </s>
				</p>
				<p id="N18AF2" type="main">
					<s id="N18AF4">Terti&ograve; obiicient; </s>
					<s id="N18AF7"><!-- NEW -->e&longs;t eadem &longs;pecie grauitas; </s>
					<s id="N18AFB"><!-- NEW -->igitur eadem grauitatio, <lb/>idemque motus deor&longs;um; </s>
					<s id="N18B01"><!-- NEW -->Re&longs;ponderi po&longs;&longs;et concedendo antecedens, <lb/>vnde in vacuo omnia grauia &aelig;qu&egrave; velociter de&longs;cenderent, &longs;i in eo mo&shy;<lb/>tus e&longs;&longs;et; at ver&ograve; altera duarum cau&longs;arum eiu&longs;dem &longs;peciei, qu&aelig; habet mi&shy;<lb/>norem proportionem actiuitatis ad re&longs;i&longs;tentiam, profect&ograve; min&ugrave;s agit, <lb/>quod certum e&longs;t. </s>
				</p>
				<p id="N18B0D" type="main">
					<s id="N18B0F"><!-- NEW -->Quart&ograve; obij:igitur motus po&longs;&longs;et e&longs;&longs;e velocior, &amp; velocior in infini&shy;<lb/>tum; </s>
					<s id="N18B15"><!-- NEW -->&longs;i enim maior cubus de&longs;cenderet veloci&ugrave;s; </s>
					<s id="N18B19"><!-- NEW -->igitur &longs;i detur maior ad&shy;<lb/>huc veloci&ugrave;s, atque ita deinceps: </s>
					<s id="N18B1F"><!-- NEW -->Re&longs;p. inanem pror&longs;us e&longs;&longs;e difficulta&shy;<lb/>tem; </s>
					<s id="N18B25"><!-- NEW -->quia cubus ille quantumuis maximus in vacuo de&longs;cendit veloci&ugrave;s <lb/>qu&agrave;m in aliquo medio v.g.in a&euml;re, igitur nunquam augmentum veloci&shy;<lb/>tatis infinitum e&longs;t; quippe inter duos gradus velocitatis infiniti &longs;unt <lb/>po&longs;&longs;ibiles. </s>
					<s id="N18B2F"><!-- NEW -->v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;it velocitas, quam habet in vacuo vt 2. illa ver&ograve; qu&agrave;m <lb/>habet in a&euml;re vt 1. &longs;i cre&longs;cat velocitas iuxta has minutias &longs;ingulis in&longs;tan&shy;<lb/>tibus 1/2 1/4 1/8 &lpar;1/16&rpar; &lpar;1/32&rpar;, atque ita deinceps; qu&agrave;m porr&ograve; mult&aelig; &longs;unt huiu&longs;modi <lb/>progre&longs;&longs;iones 1/3 1/6 &lpar;1/12&rpar; &lpar;1/24&rpar; &amp;c. </s>
					<s id="N18B3D">igitur obiectiones ill&aelig; non euertunt Gali&shy;<lb/>lei &longs;ententiam. </s>
				</p>
				<p id="N18B42" type="main">
					<s id="N18B44"><!-- NEW -->Inde idem Galileus o&longs;tendere videtur cur atomi materi&aelig; etiam gra&shy;<lb/>ui&longs;&longs;im&aelig;, &longs;eu granula pulueris motu tardi&longs;&longs;imo de&longs;cendant in a&euml;re vel in <lb/>aqua; quia &longs;cilicet per illam diui&longs;ionem ita imminut&aelig; &longs;unt vires graui&shy;<lb/>tatis, vt iam re&longs;i&longs;tentiam medij &longs;uperare non po&longs;&longs;int. </s>
				</p>
				<p id="N18B4E" type="main">
					<s id="N18B50"><!-- NEW -->Sed videtur e&longs;&longs;e graui&longs;&longs;ima difficultas, &longs;int enim duo cubi, maior B <lb/>F, minor GM, &amp; vterque innatet medio liquido duplo grauiori; </s>
					<s id="N18B56"><!-- NEW -->cert&egrave; ex&shy;<lb/>tabit maior toto rectangulo CA &aelig;quali CF, &amp; minor toto rectangulo <lb/>KH &aelig;quali KM; </s>
					<s id="N18B5E"><!-- NEW -->igitur e&longs;t eadem proportio grauitatis maioris ad re&longs;i&shy;<lb/>&longs;tentiam medij in grauitatione, qu&aelig; e&longs;t minoris; igitur &amp; in motu. </s>
				</p>
				<p id="N18B64" type="main">
					<s id="N18B66"><!-- NEW -->Re&longs;ponderi pote&longs;t e&longs;&longs;e maximam di&longs;paritatem inter grauitationem, &amp; <pb pagenum="127" xlink:href="026/01/159.jpg"/>motum; </s>
					<s id="N18B6F"><!-- NEW -->&longs;it enim cubus BD qui de&longs;cendat per totam AH; </s>
					<s id="N18B73"><!-- NEW -->haud dubi&egrave; <lb/>cum &longs;patium DI, contineat 3. cubos medij &aelig;quales DB, eos debet remo&shy;<lb/>uere in &longs;uo de&longs;cen&longs;u; </s>
					<s id="N18B7B"><!-- NEW -->&longs;it autem cubus BG; </s>
					<s id="N18B7F"><!-- NEW -->haud dubi&egrave;, cum &longs;it eadem pro&shy;<lb/>portio cubi AE ad cubum medij DM, qu&aelig; e&longs;t cubi BG ad cubum me&shy;<lb/>dij FL, eodem tempore vterque cubum medij &longs;uppo&longs;iti &egrave; &longs;uo loco extru&shy;<lb/>det; igitur eo tempore, quo AE expellet 3. DI, FL extrudet 3. EO, ergo <lb/>&aelig;quabili tempore in&aelig;quale &longs;patium percurrunt. </s>
				</p>
				<p id="N18B8B" type="main">
					<s id="N18B8D"><!-- NEW -->Dices ergo &longs;patia &longs;unt vt latera: </s>
					<s id="N18B91"><!-- NEW -->Re&longs;ponderi pote&longs;t hoc reuer&acirc; per &longs;e <lb/>e&longs;&longs;e debere; </s>
					<s id="N18B97"><!-- NEW -->&longs;ed quia cubus DM vt extrudatur, maiorem debet facere cir&shy;<lb/>cuitionem, vt &agrave; fronte retr&ograve; eat, velociori motu extrudi debet; </s>
					<s id="N18B9D"><!-- NEW -->igitur vi&shy;<lb/>res &longs;uas in eo con&longs;umit maiori ex parte cubus AE; hinc compen&longs;atio e&longs;&longs;e <lb/>videtur. </s>
				</p>
				<p id="N18BA5" type="main">
					<s id="N18BA7">Vt &longs;olui po&longs;&longs;it pr&aelig;&longs;ens difficultas, qu&aelig; cett&egrave; maxima e&longs;t, totam rem <lb/>i&longs;tam paul&ograve; fu&longs;i&ugrave;s e&longs;&longs;e explicandam iudico. </s>
					<s id="N18BAC"><!-- NEW -->Prim&ograve; itaque certum e&longs;t <lb/>partes medij, qu&aelig; prius in fronte erant, retroire; </s>
					<s id="N18BB2"><!-- NEW -->hoc ip&longs;um videmus in <lb/>naui qu&aelig; &longs;ulcat aquas, hoc ip&longs;um accidit in omni corpore natante etiam <lb/>immobili, quippe partes aqu&aelig; retinentur ab illa membranula, de qua &longs;u&shy;<lb/>pr&agrave;; </s>
					<s id="N18BBC"><!-- NEW -->&longs;ic enim &longs;&aelig;p&egrave; a&longs;&longs;urgunt, &amp; intume&longs;cunt &longs;upra labra va&longs;is; </s>
					<s id="N18BC0"><!-- NEW -->cur ver&ograve; <lb/>continui pen&egrave; circulares limbi dilatentur: </s>
					<s id="N18BC6"><!-- NEW -->Re&longs;p. nullo flante vento <lb/>vix aliquem circulum huiu&longs;modi in &longs;uperficie aqu&aelig; apparere &agrave; fronte, <lb/>&longs;ed tant&ugrave;m &agrave; tergo, &amp; lateribus, qua&longs;i ad in&longs;tar pyramidis; &longs;ed de his ali&agrave;s <lb/>fus&egrave;. </s>
				</p>
				<p id="N18BD0" type="main">
					<s id="N18BD2"><!-- NEW -->Secund&ograve; certum e&longs;t numerum partium, quas impellit maior cubus A <lb/>E; </s>
					<s id="N18BD8"><!-- NEW -->e&longs;&longs;e quadruplum numeri partium, quas impellit cubus BG: </s>
					<s id="N18BDC"><!-- NEW -->&longs;int autem <lb/>v.g.8. partes re&longs;i&longs;tentes cubo maiori, &longs;unt du&aelig; re&longs;i&longs;tentes cubo minoris; <lb/>&longs;ed vires cubi maioris &longs;unt ad vires cubi minoris vt 8. ad 1. igitur vires <lb/>vt 8. &longs;uperabunt facili&ugrave;s re&longs;i&longs;tentiam vt 8. quam vires vt 1. re&longs;i&longs;tentiam <lb/>vt 2.vnde dupl&ograve; veloci&ugrave;s moueretur, ni&longs;i a&euml;r dupl&ograve; velociori motu amo&shy;<lb/>uendus e&longs;&longs;et, quod vt clarius explicetur;</s>
				</p>
				<p id="N18BEA" type="main">
					<s id="N18BEC"><!-- NEW -->Sit cubus maior AF octuplus cubi GI, vt iam dictum e&longs;t; </s>
					<s id="N18BF0"><!-- NEW -->haud <lb/>dubi&egrave; a&euml;r qui &longs;ub&longs;tat cubo AF e&longs;t quadruplus a&euml;ris, qui &longs;ub&longs;tat cubo GI, <lb/>vnde &longs;i vires cubi AF e&longs;&longs;ent quadrupl&aelig; virium cubi GI, e&longs;&longs;et &aelig;qualis <lb/>proportio in vtroque virium, &amp; re&longs;i&longs;tenti&aelig;; </s>
					<s id="N18BFA"><!-- NEW -->&longs;ed &longs;unt octupl&aelig;; </s>
					<s id="N18BFE"><!-- NEW -->igitur faci&shy;<lb/>li&ugrave;s vincetur re&longs;i&longs;tentia; </s>
					<s id="N18C04"><!-- NEW -->igitur amouebitur a&euml;r facili&ugrave;s; &longs;it autem a&euml;r <lb/>expre&longs;&longs;us in globulis EFB, &amp;c. </s>
					<s id="N18C0A"><!-- NEW -->cuius &longs;uperficies cum relinquatur retr&ograve; <lb/>ver&longs;us AB, &amp; occupetur illa qu&aelig; e&longs;t in fronte EF; </s>
					<s id="N18C10"><!-- NEW -->haud dubi&egrave; partes <lb/>hinc inde diuiduntur in D, &amp; &longs;egmentum NB tran&longs;it in locum relicti <lb/>loci BC, FN tran&longs;it in NB, &amp; DF, in FN; </s>
					<s id="N18C18"><!-- NEW -->idem dico de &longs;egmentis oppo&shy;<lb/>&longs;itis; </s>
					<s id="N18C1E"><!-- NEW -->idem pror&longs;us dico de minori globo; </s>
					<s id="N18C22"><!-- NEW -->nam MH tran&longs;it in HQ, &amp; H <lb/>Q in QG, &amp; QG in GL, idem dico de &longs;egmentis oppo&longs;itis; </s>
					<s id="N18C28"><!-- NEW -->igitur h&aelig;c <lb/>e&longs;t circuitio partium medij, qu&agrave;m &longs;upr&agrave; indicauimus; hinc a&euml;r, qui amo&shy;<lb/>uetur &agrave; corpore graui de&longs;cendente moueri debet nece&longs;&longs;ari&ograve; veloci&ugrave;s <lb/>qu&agrave;m ip&longs;um corpus graue, quod de&longs;cendit. </s>
				</p>
				<p id="N18C32" type="main">
					<s id="N18C34"><!-- NEW -->In hoc porr&ograve; ob&longs;erua &longs;egmentum MH moueri tardi&ugrave;s qu&agrave;m DF; </s>
					<s id="N18C38"><!-- NEW -->quia <lb/>conficit &longs;ubduplum &longs;patium, eo tempore, quo DF conficit duplum; </s>
					<s id="N18C3E"><!-- NEW --><pb pagenum="128" xlink:href="026/01/160.jpg"/>nam DF &amp; FN &longs;unt dupl&aelig; MH &amp; &amp; HQ igitur dupla vi motrice opus <lb/>e&longs;t; </s>
					<s id="N18C48"><!-- NEW -->&longs;ed vires cubi AF &longs;unt ad vires cubi GI, vt 8. ad 1. partes ver&ograve; a&euml;ris, <lb/>quas impellit AF, &longs;unt ad partes a&euml;ris, quas impellit GI, vt 4.ad 1. igitur <lb/>&longs;i partes a&euml;ris mouerentur &aelig;quali motu cum ip&longs;is cubis, &agrave; quibus mo&shy;<lb/>uentur; </s>
					<s id="N18C52"><!-- NEW -->cert&egrave; maior moueretur motu velociori; </s>
					<s id="N18C56"><!-- NEW -->vt autem moueantur par&shy;<lb/>tes DF dupl&ograve; velociore motu, qu&agrave;m partes MH; </s>
					<s id="N18C5C"><!-- NEW -->debent vires, qu&aelig; mo&shy;<lb/>nent DF, e&longs;&longs;e in ratione dupla ad illas, qu&aelig; mouent MH, id e&longs;t eo tem&shy;<lb/>pore, quo vires vt 8.mouebunt mobile vt 4. motu vt 2. vires vt 1.moue&shy;<lb/>bunt mobile vt 1. motu vt 1. lic&egrave;t enim &longs;uperficies a&euml;ris EF moueatur <lb/>deor&longs;um; attamen ab alio a&euml;ere inferiore ita repertitur, vt &longs;ur&longs;um ver&longs;us <lb/>FN repellatur. </s>
				</p>
				<p id="N18C6A" type="main">
					<s id="N18C6C"><!-- NEW -->Equidem tota &longs;uperficies a&euml;ris DF, cum pluribus partibus con&longs;tet, <lb/>non pote&longs;t &longs;imul tran&longs;ire in FN; </s>
					<s id="N18C72"><!-- NEW -->quia pars D antequam perueniat ad F <lb/>tran&longs;it per medium DF; igitur &longs;ucce&longs;&longs;iu&egrave; per mea ad illud &longs;patium DF, <lb/>quo tempore quie&longs;ceret globus AF, quod ridiculum e&longs;t. </s>
				</p>
				<p id="N18C7A" type="main">
					<s id="N18C7C"><!-- NEW -->Quare fit nece&longs;&longs;ari&ograve; aliqua circuitio, &amp; partium a&euml;ris commixtio, <lb/>&longs;eu conflictus; </s>
					<s id="N18C82"><!-- NEW -->ita vt retroeant pul&longs;&aelig; prius &amp; repercu&longs;&longs;&aelig;; </s>
					<s id="N18C86"><!-- NEW -->non quidem <lb/>tramite recto, &longs;ed cum aliqua circuitione; </s>
					<s id="N18C8C"><!-- NEW -->quod cert&egrave; facil&egrave; concipi po&shy;<lb/>te&longs;t, qu&aelig; circuitio e&ograve; maior e&longs;t, quo latera cuborum &longs;unt maiora; ita&shy;<lb/>que cum h&aelig;c &longs;atis fus&egrave; videantur e&longs;&longs;e explicata, &longs;it. </s>
				</p>
				<p id="N18C94" type="main">
					<s id="N18C96"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 112.<emph.end type="center"/></s>
				</p>
				<p id="N18CA2" type="main">
					<s id="N18CA4"><!-- NEW --><emph type="italics"/>Duo cubi eiu&longs;de<emph.end type="italics"/>m <emph type="italics"/>materi&aelig;, &amp; diuer&longs;&aelig; grauitatis &aelig;quali motu per &longs;e de&longs;&shy;<lb/>cendunt<emph.end type="italics"/>; </s>
					<s id="N18CB5"><!-- NEW -->probatur, quia lic&egrave;t &longs;it maior proportio actiuitatis minus ad <lb/>&longs;uam re&longs;i&longs;tentiam, qu&agrave;m alterius; </s>
					<s id="N18CBB"><!-- NEW -->illud tamen compen&longs;atur; </s>
					<s id="N18CBF"><!-- NEW -->e&oacute;que par&shy;<lb/>tes a&euml;ris veloci&ugrave;s moueri debeant iuxta rationem laterum, vt patet ex <lb/>dictis; </s>
					<s id="N18CC7"><!-- NEW -->vnde nece&longs;&longs;ari&ograve; &longs;equitur motus &aelig;qualis in vtroque cubo; </s>
					<s id="N18CCB"><!-- NEW -->igitur <lb/>lic&egrave;t maioris cubi vires habeant maiorem proportionem ad molem, <lb/>qu&aelig; pr&aelig;cipuum illius motus retardat; </s>
					<s id="N18CD3"><!-- NEW -->tum tamen a&euml;r, qui re&longs;i&longs;tit maiori <lb/>cubo debeat amoueri, vt dictum e&longs;t velociore motu quam a&euml;r, qui re&longs;i&shy;<lb/>&longs;tit minori, &longs;itque eadem proportio re&longs;i&longs;tenti&aelig; ratione motus minoris <lb/>ad maiorem, qu&aelig; e&longs;t ratione molis maioris ad minorem; </s>
					<s id="N18CDD"><!-- NEW -->cert&egrave; ratio <lb/>compo&longs;ita vtriu&longs;qu&egrave; erit eadem in vtroque cubo; </s>
					<s id="N18CE3"><!-- NEW -->igitur &aelig;qu&egrave; velociter <lb/>vterque de&longs;cendet: </s>
					<s id="N18CE9"><!-- NEW -->hinc &longs;at&iacute;s facil&egrave; &longs;oluitur ratio Galilei, quam multi <lb/>parum cauti pro demon&longs;tratione venditarunt, ad aliam ver&ograve; rationem, <lb/>quam ex minuto puluere ducere videtur, etiam facil&egrave; re&longs;ponderi pote&longs;t; </s>
					<s id="N18CF1"><!-- NEW --><lb/>ideo corpu&longs;cula illa diu fluitare in a&euml;re, t&ugrave;m qu&ograve;d minimo fer&egrave; tenuis <lb/>aur&aelig; flatu agitentur; </s>
					<s id="N18CF8"><!-- NEW -->&longs;ic pulueris nubes medius ventus agit; </s>
					<s id="N18CFC"><!-- NEW -->quis enim <lb/>ne&longs;cit a&euml;ris partes agitari perpetu&ograve;; </s>
					<s id="N18D02"><!-- NEW -->imm&ograve; &amp; aqu&aelig; inter &longs;e mi&longs;ceri; </s>
					<s id="N18D06"><!-- NEW -->igi&shy;<lb/>tur ab agitationis veluti impre&longs;&longs;ione fluitant illa corpu&longs;cula, cum mini&shy;<lb/>mus fer&egrave; impetus extrin&longs;ecus illa commouere po&longs;&longs;it; </s>
					<s id="N18D0E"><!-- NEW -->t&ugrave;m etiam qu&ograve;d &agrave; <lb/>filamentis illis, quibus partes a&euml;ris implicantur facil&egrave; detineantur; ana&shy;<lb/>logiam habes in lapillo, qui ab arane&aelig; tela intercipitur. </s>
				</p>
				<pb pagenum="129" xlink:href="026/01/161.jpg"/>
				<p id="N18D1A" type="main">
					<s id="N18D1C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 113.<emph.end type="center"/></s>
				</p>
				<p id="N18D28" type="main">
					<s id="N18D2A"><!-- NEW --><emph type="italics"/>Duo globi eiu&longs;dem materi&aelig;, &amp; diuer&longs;&aelig; diametri de&longs;cendunt etiam &aelig;quali <lb/>motu propter <expan abbr="e&atilde;dem">eandem</expan> rationem<emph.end type="italics"/>; </s>
					<s id="N18D39"><!-- NEW -->imm&ograve; e&longs;t perfectior &aelig;qualitas in globis, <lb/>qu&agrave;m in cubis; </s>
					<s id="N18D3F"><!-- NEW -->quia perfectior fit circuitio, vt con&longs;ideranti patebit; <lb/>hinc globus eiu&longs;dem materi&aelig;, &amp; grauitatis cum cubo de&longs;cendit veloci&ugrave;s <lb/>quia &longs;cilicet a&euml;r in de&longs;cen&longs;u globi facili&ugrave;s agitur retr&ograve;, vt con&longs;tat. </s>
				</p>
				<p id="N18D47" type="main">
					<s id="N18D49"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 114.<emph.end type="center"/></s>
				</p>
				<p id="N18D55" type="main">
					<s id="N18D57"><!-- NEW --><emph type="italics"/>Corpus vtrimque in mucronem de&longs;inens facili&ugrave;s adhuc de&longs;cendit, <lb/>qu&acirc;m globus eiu&longs;dem materi&aelig;<emph.end type="italics"/>; ratio e&longs;t; </s>
					<s id="N18D62"><!-- NEW -->quia breuiore circuitu partes re&shy;<lb/>troeunt; </s>
					<s id="N18D68"><!-- NEW -->quippe tunc maxima e&longs;t facilitas in pellendo a&euml;re, qui e&longs;t &agrave; fron&shy;<lb/>te mobilis, cum veloci&ugrave;s moueri non debet ip&longs;o mobili; </s>
					<s id="N18D6E"><!-- NEW -->atqui hoc ip&shy;<lb/>&longs;um e&longs;t quod accidit mobili vtrimque aucto; </s>
					<s id="N18D74"><!-- NEW -->nam linea curua DBA, <lb/>quam percurrit de&longs;criptum mobile, non e&longs;t mult&ograve; longior; </s>
					<s id="N18D7A"><!-- NEW -->at ver&ograve; in <lb/>quadrato &longs;uperiori AF maiori e&longs;t dupl&ograve;; in circulo quidem minor dia&shy;<lb/>meter &longs;emiperipheri&aelig;, &longs;ed non dupl&ograve;. </s>
				</p>
				<p id="N18D82" type="main">
					<s id="N18D84"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 115.<emph.end type="center"/></s>
				</p>
				<p id="N18D90" type="main">
					<s id="N18D92"><!-- NEW --><emph type="italics"/>Idem corpus diuer&longs;o motu de&longs;cendere pote&longs;t,<emph.end type="italics"/> v. <!-- REMOVE S-->g. <!-- REMOVE S-->parallipedum A, &longs;i re&shy;<lb/>ctangulum BF &longs;it in fronte tardi&ugrave;s de&longs;cendet, qu&agrave;m &longs;i in fronte &longs;it re&shy;<lb/>ctangulum CE, vel rectangulum FH; </s>
					<s id="N18DA3"><!-- NEW -->hinc tribus motibus diuer&longs;is de&longs;&shy;<lb/>cendere pote&longs;t idem parallipedum, mod&ograve; habeat &longs;emper alteram facie&shy;<lb/>rum horizonti parallelam; </s>
					<s id="N18DAB"><!-- NEW -->hinc cylindrus eiu&longs;dem grauitatis de&longs;cendet <lb/>veloci&ugrave;s qu&agrave;m parallelipedum, vt patet ex dictis; </s>
					<s id="N18DB1"><!-- NEW -->ex quibus facil&egrave; intel&shy;<lb/>ligi pote&longs;t, qu&aelig;nam corpora facili&ugrave;s qu&agrave;m alia de&longs;cendant; quippe illa <lb/>regula e&longs;t certi&longs;&longs;ima qu&agrave;m &longs;upr&agrave; attulimus. </s>
					<s id="N18DB9"><!-- NEW -->Porr&ograve; ob&longs;eruabis omne <lb/>corpus difficili&ugrave;s pelli per lineam perpendicularem qu&agrave;m per obliquam; </s>
					<s id="N18DBF"><!-- NEW --><lb/>hinc globus pellit tant&ugrave;m vnicum punctum perpendiculariter; </s>
					<s id="N18DC4"><!-- NEW -->idem di&shy;<lb/>co de cono; cylindrus ver&ograve; vnam lineam, cubus integrum planum. </s>
				</p>
				<p id="N18DCA" type="main">
					<s id="N18DCC"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 116.<emph.end type="center"/></s>
				</p>
				<p id="N18DD8" type="main">
					<s id="N18DDA"><!-- NEW --><emph type="italics"/>Hinc duo corpora eiu&longs;dem grauitatis, &longs;ed quorum alterum<emph.end type="italics"/> f<emph type="italics"/>aciem, qu&aelig; e&longs;t <lb/>in fronte, habet maiorem, in&aelig;quali motu de&longs;cendunt<emph.end type="italics"/>; patet ex dictis; quia in <lb/>vtroque &longs;unt &aelig;quales vires, &longs;ed diuer&longs;a re&longs;i&longs;tentia. </s>
				</p>
				<p id="N18DED" type="main">
					<s id="N18DEF"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 117.<emph.end type="center"/></s>
				</p>
				<p id="N18DFB" type="main">
					<s id="N18DFD"><!-- NEW --><emph type="italics"/>Hinc tenues ill&aelig; &longs;uperficies corporum etiam materi&aelig; graui&longs;&longs;im&aelig;, vel in <lb/>a&euml;re fluitant, vel aquis innatant<emph.end type="italics"/>; ratio e&longs;t, quia re&longs;i&longs;tentia &longs;uperat <lb/>vires. </s>
				</p>
				<p id="N18E0A" type="main">
					<s id="N18E0C"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N18E18" type="main">
					<s id="N18E1A"><!-- NEW -->Ob&longs;eruabis primam &longs;uperficiem aqu&aelig; habere maiorem quamdam re&shy;<lb/>&longs;i&longs;tentiam propter illam, qua&longs;i membranulam, de qua &longs;upr&agrave;; </s>
					<s id="N18E20"><!-- NEW -->vnde a&longs;&longs;ur&shy;<lb/>git quiddam lymbus in margine bracte&aelig; ferri, vel auri innatantis; vel <lb/>etiam globuli paul&ograve; grauioris aqu&acirc;, igitur vt immergatur corpus debet <lb/>e&longs;&longs;e grauius tot&acirc; ill&acirc; aqu&acirc;, qu&aelig; capacitatem illam non cauam occu&shy;<lb/>paret. </s>
				</p>
				<pb pagenum="130" xlink:href="026/01/162.jpg"/>
				<p id="N18E30" type="main">
					<s id="N18E32"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 118.<emph.end type="center"/></s>
				</p>
				<p id="N18E3E" type="main">
					<s id="N18E40"><!-- NEW --><emph type="italics"/>Globi &aelig;quales diuer&longs;&aelig; materi&aelig; in&aelig;qualiter de&longs;cendunt<emph.end type="italics"/>; </s>
					<s id="N18E49"><!-- NEW -->quia &longs;cilicet alte&shy;<lb/>rum e&longs;t grauius, quod &longs;uppono; </s>
					<s id="N18E4F"><!-- NEW -->igitur &aelig;qualis e&longs;t re&longs;i&longs;tentia, &amp; vires <lb/>in&aelig;quales; </s>
					<s id="N18E55"><!-- NEW -->igitur non e&longs;t eadem proportio actiuitatis: &amp; re&longs;i&longs;tenti&aelig;; igi&shy;<lb/>tur non e&longs;t &aelig;qualis motus per Ax.5. <!-- KEEP S--></s>
				</p>
				<p id="N18E5C" type="main">
					<s id="N18E5E"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 119.<emph.end type="center"/></s>
				</p>
				<p id="N18E6A" type="main">
					<s id="N18E6C"><!-- NEW --><emph type="italics"/>Globi otiam in&aelig;quales diuer&longs;&aelig; materi&aelig; in&aelig;qualiter de&longs;cendunt<emph.end type="italics"/>; quod de&shy;<lb/>mon&longs;tro; </s>
					<s id="N18E77"><!-- NEW -->quia globi eiu&longs;dem materi&aelig; in&aelig;qualiter de&longs;cendunt per Th. <!-- REMOVE S--><lb/>113. &longs;ed duo globi &aelig;quales diuer&longs;&aelig; materi&aelig; de&longs;cendunt in&aelig;qualiter per <lb/>Th.118. igitur, &amp; in&aelig;quales; quod dico de globis&apos;, dicatur de cubis, &amp; <lb/>aliis figuris &longs;imilibus. </s>
				</p>
				<p id="N18E82" type="main">
					<s id="N18E84"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 120.<emph.end type="center"/></s>
				</p>
				<p id="N18E90" type="main">
					<s id="N18E92"><!-- NEW --><emph type="italics"/>Globus materi&aelig; leuioris pote&longs;t de&longs;cendere velociori motu quam parallelipe&shy;<lb/>dum grauioris<emph.end type="italics"/>; </s>
					<s id="N18E9D"><!-- NEW -->con&longs;tat experientia; ratio e&longs;t, quia cum globus ferreus de&longs;&shy;<lb/>cendat veloci&ugrave;s, qu&agrave;m ligneus per Th. 118. in data ratione, put&agrave; &lpar;1/100&rpar; <lb/>haud dubi&egrave; bractea ferri non modo &lpar;1/100&rpar; tardi&ugrave;s de&longs;cendet, ver&ugrave;m etiam <lb/>&lpar;20/100&rpar; in quo non e&longs;t difficultas. </s>
				</p>
				<p id="N18EA7" type="main">
					<s id="N18EA9"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 121.<emph.end type="center"/></s>
				</p>
				<p id="N18EB5" type="main">
					<s id="N18EB7"><!-- NEW --><emph type="italics"/>Hinc &longs;i mutetur figura po&longs;&longs;unt grauia diuer&longs;&aelig; materi&aelig; ita de&longs;cendere, vn <lb/>vel grauius, vel leuius, vel grauioris materi&aelig;, vel leuioris veloci&ugrave;s de&longs;cendat<emph.end type="italics"/>; <lb/>vt con&longs;tat ex regulis pr&aelig;&longs;criptis. </s>
				</p>
				<p id="N18EC4" type="main">
					<s id="N18EC6"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 122.<emph.end type="center"/></s>
				</p>
				<p id="N18ED2" type="main">
					<s id="N18ED4"><!-- NEW --><emph type="italics"/>Globi &aelig;quales diuer&longs;&aelig; materi&aelig;,<emph.end type="italics"/> v. <!-- REMOVE S-->g. <!-- REMOVE S-->ligneus, &amp; plumbeus de&longs;cendunt <lb/>in&aelig;qualiter iuxta proportionem grauitatis, &amp; re&longs;i&longs;tenti&aelig; medij compa&shy;<lb/>rat&aelig; cum vtroque, v.g. <!-- REMOVE S-->plumbo detrahitur &lpar;1/4800&rpar;; ligno ver&ograve; &lpar;8/300&rpar; v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;i <lb/>grauitas ligni &longs;it ad grauitatem a&euml;ris vt 300.ad 1. &amp; plumbi vt 4800. ad <lb/>1. &longs;it enim altitudo 33. pedum 4. digit. </s>
					<s id="N18EEF"><!-- NEW -->reducantur in digitos erunt 400. <lb/>in lineas 4800. igitur detrahetur vna linea &longs;patij plumbeo globo; </s>
					<s id="N18EF5"><!-- NEW -->ligneo <lb/>ver&ograve; vnus digitus cum 4. lineis; &longs;ed quis hoc ob&longs;eruet? </s>
				</p>
				<p id="N18EFB" type="main">
					<s id="N18EFD"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 123.<emph.end type="center"/></s>
				</p>
				<p id="N18F09" type="main">
					<s id="N18F0B"><!-- NEW --><emph type="italics"/>Corpus graue &longs;pongio&longs;um long&egrave; tardi&ugrave;s de&longs;cendit<emph.end type="italics"/>; </s>
					<s id="N18F14"><!-- NEW -->quia a&euml;r in perexigua <lb/>illa foramina inten&longs;us frangitur, re&longs;ilit, ac proinde motum impedit; talis <lb/>e&longs;t medulla &longs;ambuci, &longs;pongia, &longs;tupa, &amp;c. </s>
					<s id="N18F1C">imm&ograve; a&longs;perum corpus tardi&ugrave;s <lb/>de&longs;cendit, qu&ograve;d &longs;cilicet a&euml;r ab a&longs;perioribus illis &longs;alebris re&longs;iliens mo&shy;<lb/>tum retardet, hinc &longs;ibilus ille auditur &amp;c. </s>
				</p>
				<p id="N18F23" type="main">
					<s id="N18F25"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N18F31" type="main">
					<s id="N18F33"><!-- NEW -->Ex his con&longs;tat quid dicendum &longs;it de motu corporum grauium in <lb/>medio, &longs;iue &longs;int eiu&longs;dem materi&aelig;, &amp; &longs;imilis figur&aelig;, maioris vel minoris, <lb/>vel &aelig;qualis; </s>
					<s id="N18F3B"><!-- NEW -->tunc enim de&longs;cendunt &aelig;qualiter contra Galileum, &longs;iue <lb/>&longs;int diuer&longs;&aelig; materi&aelig;, &amp; &longs;imilis figur&aelig;, &aelig;qualis, vel in&aelig;qualis, <pb pagenum="131" xlink:href="026/01/163.jpg"/>tunc enim de&longs;cendunt in&aelig;qualiter, &longs;iue diuer&longs;&aelig; materi&aelig; &amp; diuer&longs;&aelig; fi&shy;<lb/>gur&aelig;; </s>
					<s id="N18F48"><!-- NEW -->tunc enim de&longs;cendunt mod&ograve; &aelig;qualiter, mod&ograve; in&aelig;qualiter; </s>
					<s id="N18F4C"><!-- NEW -->&aelig;quali&shy;<lb/>ter cert&egrave;, cum figura compen&longs;at materiam; </s>
					<s id="N18F52"><!-- NEW -->cum ver&ograve; non compen&longs;at, <lb/>in&aelig;qualiter pro rata; </s>
					<s id="N18F58"><!-- NEW -->denique &longs;i comparentur duo corpora cum diuer&longs;is <lb/>mediis; primo inuenienda e&longs;t proportio motuum vtriu&longs;que in eodem <lb/>t&ugrave;m &longs;ingulorum in diuer&longs;is mediis, vt &longs;upr&agrave; dictum e&longs;t. </s>
				</p>
				<p id="N18F60" type="main">
					<s id="N18F62"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 124.<emph.end type="center"/></s>
				</p>
				<p id="N18F6E" type="main">
					<s id="N18F70"><!-- NEW --><emph type="italics"/>In modico vacuo omnia &aelig;qu&egrave; velociter de&longs;cenderent<emph.end type="italics"/>: </s>
					<s id="N18F79"><!-- NEW -->Probatur, quia tota <lb/>diuer&longs;itas vel in&aelig;qualitas mediorum petitur &agrave; diuer&longs;a proportione acti&shy;<lb/>uitatis cum re&longs;i&longs;tentia medij per Ax. 5. &longs;ed in vacuo nulla e&longs;t re&longs;i&longs;ten&shy;<lb/>tia; </s>
					<s id="N18F83"><!-- NEW -->igitur nulla proportio; igitur nulla ratio motus in&aelig;qualis. </s>
				</p>
				<p id="N18F87" type="main">
					<s id="N18F89"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 125.<emph.end type="center"/></s>
				</p>
				<p id="N18F95" type="main">
					<s id="N18F97"><!-- NEW --><emph type="italics"/>In motu natur aliter accelerato deor&longs;um cre&longs;cit re&longs;istentia medij &longs;ingulis in&shy;<lb/>&longs;tantibus<emph.end type="italics"/>: </s>
					<s id="N18FA2"><!-- NEW -->probatur, quia &longs;ingulis in&longs;tantibus plures partes medij &longs;unt <lb/>&longs;uperand&aelig;; </s>
					<s id="N18FA8"><!-- NEW -->cre&longs;cunt enim &longs;patia, vt con&longs;tat ex dictis; igitur cre&longs;cit re&longs;i&shy;<lb/>&longs;tentia &longs;ingulis in&longs;tantibus. </s>
				</p>
				<p id="N18FAE" type="main">
					<s id="N18FB0"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 126.<emph.end type="center"/></s>
				</p>
				<p id="N18FBC" type="main">
					<s id="N18FBE"><!-- NEW --><emph type="italics"/>Cre&longs;cit re&longs;istentia iuxta rationem &longs;patiorum,<emph.end type="italics"/> probatur; </s>
					<s id="N18FC7"><!-- NEW -->quia cre&longs;cit iux&shy;<lb/>ta rationem plurium partium medij, qu&aelig; temporibus &aelig;qualibus percur&shy;<lb/>runtur; &longs;ed e&aelig; cre&longs;cunt iuxta rationem &longs;patiorum, vt con&longs;tat. </s>
				</p>
				<p id="N18FCF" type="main">
					<s id="N18FD1"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 127.<emph.end type="center"/></s>
				</p>
				<p id="N18FDD" type="main">
					<s id="N18FDF"><!-- NEW --><emph type="italics"/>Hinc cre&longs;cit re&longs;i&longs;tentia iuxta rationem velocitatum &longs;ingulis instantibus<emph.end type="italics"/>; </s>
					<s id="N18FE8"><!-- NEW --><lb/>qu&aelig; ratio &longs;equitur progre&longs;&longs;ionem arithmeticam &longs;implicem numerorum <lb/>1.2.3.4.5.6. ex &longs;uppo&longs;itione qu&ograve;d tempus con&longs;tet ex partibus finitis actu; </s>
					<s id="N18FEF"><!-- NEW --><lb/>nam eodem modo cre&longs;cit velocitas, quo cre&longs;cunt numeri pr&aelig;dicti; </s>
					<s id="N18FF4"><!-- NEW -->&longs;ed <lb/>eodem modo cre&longs;cunt &longs;patia, &longs;i dumtaxat accipiantur in &longs;ingulis in&longs;tan&shy;<lb/>tibus; </s>
					<s id="N18FFC"><!-- NEW -->re&longs;i&longs;tentia cre&longs;cit iuxta rationem &longs;patiorum; igitur iuxta ratio&shy;<lb/>nem velocitatum. </s>
				</p>
				<p id="N19002" type="main">
					<s id="N19004"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N19010" type="main">
					<s id="N19012"><!-- NEW -->Ob&longs;eruabis, &longs;i tempus con&longs;tet ex infinitis actu partibus, ita vt &longs;ingu&shy;<lb/>l&aelig; partes motus &longs;ingulis partibus temporis &amp; infinit&aelig; infinitis re&longs;pon&shy;<lb/>deant; </s>
					<s id="N1901A"><!-- NEW -->non pote&longs;t e&longs;&longs;e alia progre&longs;&longs;io, in qua fiat acceleratio motus na&shy;<lb/>turalis, qu&agrave;m illa Galilei iuxta hos numeros 1. 3. 5. 7. vt con&longs;tat ex dictis <lb/>per illud Principium; </s>
					<s id="N19022"><!-- NEW --><emph type="italics"/>&aelig;qualibus temporibus &aelig;qualia acquiruntur velocita&shy;<lb/>tis momenta<emph.end type="italics"/>; </s>
					<s id="N1902D"><!-- NEW -->&longs;i ver&ograve; tempus con&longs;tat ex finitis in&longs;tantibus &aelig;qualibus, nul&shy;<lb/>la datur progre&longs;&longs;io motus naturaliter accelerati; </s>
					<s id="N19033"><!-- NEW -->quia motus accelerari <lb/>non pote&longs;t; </s>
					<s id="N19039"><!-- NEW -->ne &longs;cilicet eodem in&longs;tanti mobile &longs;it in pluribus locis ad&aelig;&shy;<lb/>quatis; denique &longs;i tempus con&longs;tat ex finitis in&longs;tantibus actu, &amp; infinitis <lb/>potenti&acirc;, non pote&longs;t e&longs;&longs;e alia progre&longs;&longs;io huius accelerationis, quam h&aelig;c <lb/>no&longs;tra iuxta numeros toties repetitos 1.2.3.4.5. attamen quia illa finita <lb/>in&longs;tantia &longs;unt fer&egrave; innumera in qualibet parte &longs;en&longs;ibili temporis, in <lb/>praxi &longs;ine &longs;en&longs;ibili errore in partibus temporis &longs;en&longs;ibilibus po&longs;&longs;umus <pb pagenum="132" xlink:href="026/01/164.jpg"/>adhibere priorem progre&longs;&longs;ionem Galilei, &amp; in hoc cardine tota verri&shy;<lb/>tur, meo iudicio, propo&longs;it&aelig; qu&aelig;&longs;tionis difficultas. </s>
				</p>
				<p id="N1904E" type="main">
					<s id="N19050"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 128.<emph.end type="center"/></s>
				</p>
				<p id="N1905C" type="main">
					<s id="N1905E"><!-- NEW --><emph type="italics"/>Hinc cre&longs;cit re&longs;istentia iuxta rationem crementi impetus<emph.end type="italics"/>; cum enim cre&shy;<lb/>&longs;cant impetus in ratione velocitatum, vt con&longs;tat, &amp; cre&longs;cat re&longs;i&longs;tentia <lb/>medij in eadem ratione per Theor. <!-- REMOVE S-->127. cre&longs;cit etiam in ratione im&shy;<lb/>petuum. </s>
				</p>
				<p id="N1906F" type="main">
					<s id="N19071"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 129.<emph.end type="center"/></s>
				</p>
				<p id="N1907D" type="main">
					<s id="N1907F"><!-- NEW --><emph type="italics"/>Hinc cre&longs;cit re&longs;istentia medij in eadem ratione, in qua cre&longs;cunt vires mobi&shy;<lb/>lis<emph.end type="italics"/>; demon&longs;tr. </s>
					<s id="N1908A"><!-- NEW -->quia cre&longs;cunt vires, vt cre&longs;cit impetus; nam impetus e&longs;t <lb/>vis illa, qu&acirc; mobile &longs;uperat re&longs;i&longs;tentiam medij vt con&longs;tat, &longs;ed re&longs;i&longs;ten&shy;<lb/>tia cre&longs;cit vt impetus per Th. 128. igitur cre&longs;cit in ratione virium. </s>
				</p>
				<p id="N19092" type="main">
					<s id="N19094"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 130.<emph.end type="center"/></s>
				</p>
				<p id="N190A0" type="main">
					<s id="N190A2"><!-- NEW --><emph type="italics"/>Si cre&longs;cit re&longs;i&longs;tentia in eadem ratione in qua cre&longs;cunt vires, non mutatur <lb/>progre&longs;&longs;io effectuum.<emph.end type="italics"/> v.g. <!-- REMOVE S-->primo in&longs;tanti impetus &longs;it vt 1.&longs;itque 1.&longs;patium, <lb/>in quo e&longs;t re&longs;i&longs;tentia, vt 1. Secundo in&longs;tanti &longs;it impetus vt 2. re&longs;i&longs;tentia in <lb/>2. &longs;patiis vt 2. haud dubi&egrave; &longs;i vno in&longs;tanti vnus gradus impetus &longs;uperat <lb/>re&longs;i&longs;tentiam vt 1. dum percurrit 1.&longs;patium; </s>
					<s id="N190B5"><!-- NEW -->cert&egrave; 2. gradus impetus vno <lb/>in&longs;tanti &longs;uperabunt re&longs;i&longs;tentiam vt 2. dum conficit mobile 2. &longs;patia; at&shy;<lb/>que ita deinceps. </s>
				</p>
				<p id="N190BD" type="main">
					<s id="N190BF"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 132.<emph.end type="center"/></s>
				</p>
				<p id="N190CB" type="main">
					<s id="N190CD"><!-- NEW --><emph type="italics"/>Hinc cert&egrave; concludo contra Galileum, &amp; alios quo&longs;dam motum grauium <lb/>po&longs;t aliquod &longs;patium decur&longs;um ex naturaliter accelerato non fieri &aelig;quabilem,<emph.end type="italics"/><lb/>quia in tantum fieret &aelig;quabilis in quantum tanta e&longs;&longs;et re&longs;i&longs;tentia, vt no&shy;<lb/>uam accelerationem impediret; </s>
					<s id="N190DB"><!-- NEW -->&longs;ed h&aelig;c ratio nulla e&longs;t; </s>
					<s id="N190DF"><!-- NEW -->quia in eadem <lb/>ratione cre&longs;cit re&longs;i&longs;tentia, in qua cre&longs;cunt vires per Th. 129. igitur non <lb/>mutatur progre&longs;&longs;io motuum per Th. 130. igitur nec acceleratio; </s>
					<s id="N190E7"><!-- NEW -->igitur <lb/>motus naturalis ex accelerato non fit &aelig;quabilis: Equidem, vt iam &longs;upr&agrave; <lb/>dictum e&longs;t, in minori &longs;emper ratione cre&longs;cit velocitas, it&eacute;mque ip&longs;a re&longs;i&shy;<lb/>&longs;tentia quod in omni progre&longs;&longs;ione arithmetica iuxta numeros 1.2.3.4.5. </s>
				</p>
				<p id="N190F1" type="main">
					<s id="N190F3"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N190FF" type="main">
					<s id="N19101"><!-- NEW -->Ob&longs;eruabis remitti &agrave; nobis motum leuium &longs;ur&longs;um in 5. Tomum, in cu&shy;<lb/>ius tertio libro agemus de graui, &amp; leui; quia ideo corpus a&longs;cendit, quia <lb/>ab alio de&longs;cendente truditur &longs;ur&longs;um. </s>
				</p>
			</chap>
			<chap id="N19109">
				<pb pagenum="133" xlink:href="026/01/165.jpg"/>
				<figure id="id.026.01.165.1.jpg" xlink:href="026/01/165/1.jpg"/>
				<p id="N19113" type="head">
					<s id="N19115"><emph type="center"/>LIBER TERTIVS, <lb/><emph type="italics"/>DE MOTV VIOLENTO <lb/>&longs;ur&longs;um Perpendiculariter.<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N19124" type="main">
					<s id="N19126"><!-- NEW -->OMnis cert&egrave; motus, qui e&longs;t &agrave; principio ex&shy;<lb/>trin&longs;eco, violentus appellari pote&longs;t, attamen <lb/>h&icirc;c non ago de omni violento, &longs;ed dumta&shy;<lb/>xat de illo, qui fit &longs;urs&ugrave;m per lineam verticalem; </s>
					<s id="N19130"><!-- NEW -->quia <lb/>&longs;cilicet ex diametro opponitur motui naturali, qui <lb/>fit deors&ugrave;m perpendiculariter; igitur cum de hoc <lb/>ip&longs;o in &longs;ecundo Libro egerimus, de illo in hoc non <lb/>agemus. <lb/><gap desc="hr tag"/></s>
				</p>
				<p id="N1913F" type="main">
					<s id="N19141"><emph type="center"/><emph type="italics"/>DEFINITIO 1.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1914D" type="main">
					<s id="N1914F"><emph type="italics"/>MOtus violentus e&longs;t, quo corpus graue mouetur &longs;urs&ugrave;m per li&shy;<lb/>neam verticalem &agrave; principio extrin&longs;eco mediat&egrave;, vel immediat&egrave; vt <lb/>plurim&ugrave;m.<emph.end type="italics"/></s>
				</p>
				<p id="N1915A" type="main">
					<s id="N1915C"><!-- NEW -->Dixi &agrave; principio extrin&longs;eco, &longs;iue conjuncto, vt cum manu attollo &longs;ur&shy;<lb/>&longs;um corpus graue, &longs;iue non conjuncto, vt cum quis proiicit lapidem &longs;ur&shy;<lb/>s&ugrave;m, &longs;iue &longs;it verum principium effectiuum, vt cum impetus, quem poten&shy;<lb/>tia motrix producit in manu, producit alium in mobili; </s>
					<s id="N19166"><!-- NEW -->&longs;iue non &longs;it <lb/>principium effectiuum, &longs;ed tant&ugrave;m determinans, vt cum mobile quod <lb/>cadit deor&longs;um, &longs;ur&longs;um deinde repercutitur; </s>
					<s id="N1916E"><!-- NEW -->nec enim corpus repercu&shy;<lb/>tiens producit impetum nouum, vt dicemus cum de motu reflexo; </s>
					<s id="N19174"><!-- NEW -->quin <lb/>poti&ugrave;s producti partem de&longs;truit per accidens, &amp; quidquid illius &longs;upere&longs;t, <lb/>ad nouam lineam determinat; quod quomodo fiat fus&egrave; &longs;uo loco expli&shy;<lb/>cabimus, igitur lic&egrave;t corpus reflectens &longs;it tant&ugrave;m principium nou&aelig; de&shy;<lb/>terminationis, non ver&ograve; alicuius impetus producti, dici pote&longs;t princi&shy;<lb/>pium huius motus violenti. </s>
				</p>
				<p id="N19182" type="main">
					<s id="N19184">Dixi vt plurim&ugrave;m, nam &longs;i terra ducto per centrum foramine e&longs;&longs;et <lb/>peruia, haud dubi&egrave; lapis demi&longs;&longs;us vers&ugrave;s centrum iret motu naturaliter <pb pagenum="134" xlink:href="026/01/166.jpg"/>accelerato, t&ugrave;m deinde propter impetus acqui&longs;iti vim, &agrave; centro vers&ugrave;s <lb/>oppo&longs;itum circumferenti&aelig; punctum iret, motu cert&egrave; violento, qui ta&shy;<lb/>men ab extrin&longs;eco non e&longs;&longs;et. </s>
				</p>
				<p id="N19192" type="main">
					<s id="N19194"><emph type="center"/><emph type="italics"/>Hypothe&longs;is<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N191A1" type="main">
					<s id="N191A3"><!-- NEW --><emph type="italics"/>Corpus graue projectum &longs;ur&longs;um tandem redit<emph.end type="italics"/>; H&aelig;c hypothe&longs;is certa e&longs;t, <lb/>&amp; nemo e&longs;t qui eam in dubium vocet. </s>
				</p>
				<p id="N191AE" type="main">
					<s id="N191B0"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N191BD" type="main">
					<s id="N191BF"><!-- NEW --><emph type="italics"/>Quidquid erat, &amp; de&longs;init e&longs;&longs;e de&longs;truitur<emph.end type="italics"/>; Hoc Axioma certum e&longs;t, quip&shy;<lb/>pe de&longs;trui hoc tant&ugrave;m dicitur, quod de&longs;init e&longs;&longs;e. </s>
				</p>
				<p id="N191CA" type="main">
					<s id="N191CC"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N191D9" type="main">
					<s id="N191DB"><emph type="italics"/>Quidquid destruitur, ad exigentiam alicuius destruitur, &longs;altem totius na&shy;<lb/>tur&aelig;.<emph.end type="italics"/></s>
					<s id="N191E4"> Hoc Axioma idem e&longs;t cum Axiom. <!-- REMOVE S-->14. l. <!-- REMOVE S-->1. n. </s>
					<s id="N191EB"><!-- NEW -->2. vnde alia expli&shy;<lb/>catione minim&egrave; indiget; hoc ip&longs;um etiam demon&longs;traui in Th.147.149. <lb/>150,&amp;c. </s>
					<s id="N191F3">l. <!-- REMOVE S-->1. <!-- KEEP S--></s>
				</p>
				<p id="N191F9" type="main">
					<s id="N191FB"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N19208" type="main">
					<s id="N1920A"><!-- NEW --><emph type="italics"/>Datur motus violentus<emph.end type="italics"/>; demon&longs;tro; corpus proiicitur per lineam ver&shy;<lb/>ticalem per hyp. </s>
					<s id="N19215"><!-- NEW -->1. &longs;ed hic motus e&longs;t &agrave; principio extrin&longs;eco, igitur e&longs;t <lb/>violentus per def.1. probatur minor; Prim&ograve;, quia illud e&longs;t principium, <lb/>&longs;eu cau&longs;a motus, ex cuius applicatione &longs;emper &longs;equitur motus per Ax.11. <lb/>l. <!-- REMOVE S-->1.n. </s>
					<s id="N19221">1. &longs;ed ex applicatione potenti&aelig; extrin&longs;ec&aelig; v. <!-- REMOVE S-->g. <!-- REMOVE S-->arcus, manus, &amp;c. </s>
					<s id="N19228"><!-- NEW --><lb/>ad lineam &longs;ur&longs;um &longs;emper &longs;equitur motus &longs;ur&longs;um; igitur e&longs;t illius cau&longs;a. </s>
					<s id="N1922D"><lb/>Secund&ograve; probatur, quia mobile projectum &longs;urs&ugrave;m mouetur adhuc &longs;epa&shy;<lb/>ratum &agrave; potentia motrice per hyp. </s>
					<s id="N19233">6.l.1. igitur potentia motrix impre&longs;&shy;<lb/>&longs;it aliquid mobili, vi cuius deinde mouetur, igitur hic motus e&longs;t &agrave; prin&shy;<lb/>cipio extrin&longs;eco. </s>
				</p>
				<p id="N1923A" type="main">
					<s id="N1923C"><!-- NEW -->Diceret fort&egrave; aliquis produci hunc motum ab ip&longs;o mobili; &longs;ed con&shy;<lb/>tr&agrave;; </s>
					<s id="N19242"><!-- NEW -->igitur &longs;emper produceret, quod ab&longs;urdum e&longs;t: </s>
					<s id="N19246"><!-- NEW -->dicet, ad hoc vt pro&shy;<lb/>ducat determinari debere ab aliquo, &longs;ed contr&agrave;; </s>
					<s id="N1924C"><!-- NEW -->illud &agrave; quo determina&shy;<lb/>tur vel e&longs;t extrin&longs;ecum, vel intrin&longs;ecum, &longs;i primum, ergo hic motus e&longs;t <lb/>&longs;emper &agrave; principio extrin&longs;eco, quod &longs;atis e&longs;t e&longs;&longs;e determinans per def.1. <lb/>&longs;i ver&ograve; e&longs;t intrin&longs;ecum; igitur &longs;emper e&longs;&longs;et hic motus, quamdiu e&longs;&longs;et <lb/>ip&longs;um mobile, quod e&longs;t contra hyp. </s>
					<s id="N19258">1. nam reuera non &longs;emper mo&shy;<lb/>uetur. </s>
				</p>
				<p id="N1925D" type="main">
					<s id="N1925F"><!-- NEW -->Diceret fort&egrave; alius excitari qu&aelig;dam corpu&longs;cula, &agrave; quibus mouetur <lb/>corpus graue &longs;urs&ugrave;m; &longs;ed contr&agrave;; </s>
					<s id="N19265"><!-- NEW -->nam vel &longs;unt in ip&longs;o mobili illa cor&shy;<lb/>pu&longs;cula, vel extra mobile; &longs;i primum; </s>
					<s id="N1926B"><!-- NEW -->igitur hic motus &longs;emper erit ab <lb/>extrin&longs;eco mediat&egrave;, cum ab extrin&longs;eco excitentur; </s>
					<s id="N19271"><!-- NEW -->&longs;ed hoc &longs;ufficit ad <lb/>hoc; vt motus dicatur violentus per def. </s>
					<s id="N19277"><!-- NEW -->1. &longs;i ver&ograve; &longs;unt extra mobile; <lb/>igitur motus ille e&longs;t &longs;emper ab extrin&longs;eco, idque duplici nomine. </s>
				</p>
				<p id="N1927D" type="main">
					<s id="N1927F"><!-- NEW -->Denique diceret alius ex &longs;uppo&longs;itione, quod terra moueatur non po&longs;&shy;<lb/>&longs;e corpus graue proiici &longs;urs&ugrave;m per lineam verticalem, ni&longs;i tant&ugrave;m ad <lb/>&longs;peciem; </s>
					<s id="N19287"><!-- NEW -->vt &longs;i quis &egrave; naui mobili &longs;ur&longs;um proiiceret pilam rect&agrave; omni&shy;<lb/>n&ograve;, quoad eius fieri po&longs;&longs;it; videbitur enim iis, qui vehuntur eadem naui <pb pagenum="135" xlink:href="026/01/167.jpg"/>&longs;ur&longs;um ferri per lineam verticalem, aliis ver&ograve; in&longs;tantibus videbitur cla&shy;<lb/>ri&longs;&longs;im&egrave; ferri per lineam nouam inclinatam. </s>
				</p>
				<p id="N19294" type="main">
					<s id="N19296"><!-- NEW -->Re&longs;pondeo etiam admi&longs;&longs;a &longs;uppo&longs;itione dici &agrave; me motum illum &longs;ur&shy;<lb/>&longs;um e&longs;&longs;e per lineam verticalem, quando eadem linea recta connectit <lb/>&longs;emper h&aelig;c tria puncta; </s>
					<s id="N1929E"><!-- NEW -->&longs;cilicet centrum terr&aelig;, idem punctum &longs;uperfi&shy;<lb/>ciei terr&aelig;, &amp; ip&longs;am pilam; </s>
					<s id="N192A4"><!-- NEW -->ad illud ver&ograve; quod dicitur de naui, non diffi&shy;<lb/>teor verum e&longs;&longs;e; &longs;ed dico non e&longs;&longs;e propri&egrave; motum violentum, de quo h&icirc;c <lb/>tant&ugrave;m e&longs;t qu&aelig;&longs;tio, &longs;ed e&longs;&longs;e motum mixtum, de quo fus&egrave; &longs;uo loco. </s>
					<s id="N192AC"><!-- NEW -->Ob&longs;er&shy;<lb/>uabis autem h&icirc;c me ab&longs;tinere &agrave; refellendis ab&longs;urdis illis &longs;uppo&longs;itioni&shy;<lb/>bus, quibus pr&aelig;mi&longs;&longs;&aelig; objectiones innituntur; nam, cui qu&aelig;&longs;o in men&shy;<lb/>tem venire pote&longs;t ab ip&longs;a entitate corporis grauis produci motum in &longs;e? </s>
					<s id="N192B6"><lb/>quis credat produci frigus ab igne? </s>
					<s id="N192BA">calorem &agrave; niue? </s>
					<s id="N192BD">lucem &agrave; tenebris? </s>
					<s id="N192C0"><lb/>qu&aelig; porr&ograve; fabul&aelig;, qu&aelig; commenta, qu&aelig; &longs;omnia excogitari po&longs;&longs;unt, qu&aelig; <lb/>non vile&longs;cant &longs;i cum his comparentur. </s>
				</p>
				<p id="N192C6" type="main">
					<s id="N192C8"><!-- NEW -->Illa quoque corpu&longs;cula excitata leuiora &longs;unt, qu&agrave;m vt aliquod pr&aelig;fe&shy;<lb/>rant rationis momentum; cum mera &longs;int philo&longs;ophi&aelig; ludibria. </s>
				</p>
				<p id="N192CE" type="main">
					<s id="N192D0">Denique illa hypothe&longs;is de terr&aelig; motu nullis demon&longs;trationibus fir&shy;<lb/>mata e&longs;t, vt videbimus &longs;uo loco. </s>
				</p>
				<p id="N192D5" type="main">
					<s id="N192D7"><!-- NEW -->Vnum fort&egrave; e&longs;t, quod difficilius obiici pote&longs;t; </s>
					<s id="N192DB"><!-- NEW -->&longs;it enim linea vertica&shy;<lb/>lis AC, &longs;itque globus in A &aelig;qualiter impul&longs;us per lineas AD &amp; AB; </s>
					<s id="N192E1"><!-- NEW --><lb/>haud dubi&egrave; &longs;i anguli DAC, BAC &longs;int &aelig;quales: cert&egrave; mobile feretur <lb/>per lineam verticalem AC, vt con&longs;tat ex dictis. </s>
					<s id="N192E8"><!-- NEW -->Re&longs;pondeo motum illum <lb/>e&longs;&longs;e violentum; e&longs;t enim &agrave; principio extrin&longs;eco, coque gemino, &longs;eu mix&shy;<lb/>to, in quo non e&longs;t difficultas. </s>
				</p>
				<p id="N192F0" type="main">
					<s id="N192F2"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N192FF" type="main">
					<s id="N19301"><!-- NEW --><emph type="italics"/>Motus violentus habet cau&longs;am<emph.end type="italics"/>; quia de nouo e&longs;t, &amp; tandem de&longs;init per <lb/>hypoth. </s>
					<s id="N1930C">1. igitur habet cau&longs;am per Ax.8.l.1. </s>
				</p>
				<p id="N1930F" type="main">
					<s id="N19311"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1931E" type="main">
					<s id="N19320"><!-- NEW --><emph type="italics"/>I&longs;te motus &longs;upponit impetum<emph.end type="italics"/>; quia ni&longs;i e&longs;&longs;et impetus non e&longs;&longs;et natura&shy;<lb/>liter motus per Th.18.l.1. </s>
				</p>
				<p id="N1932B" type="main">
					<s id="N1932D"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1933A" type="main">
					<s id="N1933C"><!-- NEW --><emph type="italics"/>I&longs;te impetus debet e&longs;&longs;e in mobili projecto &longs;ur&longs;um<emph.end type="italics"/>; </s>
					<s id="N19345"><!-- NEW -->quia ibi e&longs;t cau&longs;a, vbi <lb/>e&longs;t effectus formalis, &longs;ed motus e&longs;t effectus formalis &longs;ecundarius impe&shy;<lb/>tus per Th.15.l.1. igitur cum motus &longs;it in projecto &longs;ur&longs;um, in eo e&longs;t etiam <lb/>impetus: </s>
					<s id="N1934F"><!-- NEW -->pr&aelig;terea &longs;ecunda pars motus non ponitur &agrave; potentia motrice; <lb/>quia illa non e&longs;t applicata mobili cum ponitur noua pars motus, igitur <lb/>ab alia cau&longs;a applicata, &longs;ed nulla e&longs;t extrin&longs;eca, vt patet, nulla intrin&longs;eca <lb/>pr&aelig;ter impetum. </s>
				</p>
				<p id="N19359" type="main">
					<s id="N1935B"><!-- NEW -->Diceret aliquis ab a&euml;re extrin&longs;ec&ugrave;s ambiente mobile ip&longs;um propelli; </s>
					<s id="N1935F"><!-- NEW --><lb/>&longs;ed contra, nam a&euml;r, &amp; omne aliud medium re&longs;i&longs;tit poti&ugrave;s qu&agrave;m iuuet, vt <lb/>demon&longs;trauimus l. <!-- REMOVE S-->&longs;ecundo Th. 1. Nec dicas fui&longs;&longs;e mentem Ari&longs;totelis, <lb/>cum nobiles Peripatetici contr&acirc; &longs;entiant; </s>
					<s id="N1936A"><!-- NEW -->Albertus Magnus, Toletus, <lb/>Scaliger, Suarius, &amp; recentiores; </s>
					<s id="N19370"><!-- NEW -->neque hoc negauit vnquam Ari&longs;tote-<pb pagenum="136" xlink:href="026/01/168.jpg"/>les, &longs;ed in hoc non mult&ugrave;m laboramus; nec dicas hinc &longs;equi motum <lb/>violentum e&longs;&longs;e &agrave; principio intrin&longs;eco contra def. </s>
					<s id="N1937B"><!-- NEW -->1. nam e&longs;t quidem &agrave; <lb/>principio intrin&longs;eco formali, non tamen &agrave; principio intrin&longs;eco mouen&shy;<lb/>te vel agente; </s>
					<s id="N19383"><!-- NEW -->nec enim impetus e&longs;t cau&longs;a efficiens motus &longs;ui &longs;ubjecti; <lb/>&longs;ed cau&longs;a formalis vt &longs;&aelig;p&egrave; explicuimus. </s>
				</p>
				<p id="N19389" type="main">
					<s id="N1938B"><!-- NEW -->Diceret fort&egrave; alius primam partem motus produci &agrave; potenti&acirc; motri&shy;<lb/>ce, &longs;ecundam ver&ograve; ab entitate ip&longs;ius corporis; &longs;ed contr&agrave;; </s>
					<s id="N19391"><!-- NEW -->igitur corpus <lb/>e&longs;&longs;et cau&longs;a nece&longs;&longs;aria; igitur &longs;emper produceret. </s>
					<s id="N19397"><!-- NEW -->Dices &longs;emper producere <lb/>&longs;i determinetur, &longs;ed contr&agrave;; &agrave; quo determinatur ad producendam &longs;ecun&shy;<lb/>dam partem? </s>
					<s id="N1939F"><!-- NEW -->nihil e&longs;t enim applicatum, &agrave; quo determinari po&longs;&longs;it; </s>
					<s id="N193A3"><!-- NEW -->Dices <lb/>accepi&longs;&longs;e determinationem; &longs;ed contr&agrave;; quid e&longs;t illa determinatio? </s>
					<s id="N193A9"><!-- NEW --><lb/>Dices e&longs;&longs;e modum; </s>
					<s id="N193AE"><!-- NEW -->igitur permanentem; igitur e&longs;t cau&longs;a motus per Ax. <!-- REMOVE S--><lb/>1. l. <!-- REMOVE S-->1. n. </s>
					<s id="N193B7">1. igitur e&longs;t impetus per def. </s>
					<s id="N193BA"><!-- NEW -->3. l. <!-- REMOVE S-->1. Dices determinari &agrave; priori <lb/>parte motus; &longs;ed contr&agrave; prim&ograve;, nam reuer&acirc; non e&longs;t illa pars cum deter&shy;<lb/>minatur corpus. </s>
					<s id="N193C4">Secund&ograve;, quid e&longs;t illa prima pars motus, ni&longs;i migratio &egrave; <lb/>loco in locum, qu&aelig; reuer&acirc; &agrave; potentia motrice produci propri&egrave; non po&shy;<lb/>te&longs;t per Th.2. l. <!-- REMOVE S-->1. &longs;ed de his iam fus&egrave; actum e&longs;t in toto fer&egrave; libro primo, <lb/>&longs;ed pr&aelig;&longs;ertim in Th.6. </s>
				</p>
				<p id="N193CF" type="main">
					<s id="N193D1"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 5.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N193DE" type="main">
					<s id="N193E0"><!-- NEW --><emph type="italics"/>Ille impetus e&longs;t vera qualitas Phy&longs;ica ab&longs;oluta<emph.end type="italics"/>; </s>
					<s id="N193E9"><!-- NEW -->hoc iam &longs;upr&agrave; demon&shy;<lb/>&longs;tratum e&longs;t, &longs;cilicet phy&longs;ic&egrave;; imm&ograve; ex motu violento maxim&egrave; probatur <lb/>dari impetum, &amp; vix quidquam e&longs;t in rerum natur&acirc;, quod clari&ugrave;s euin&shy;<lb/>cat aliquid de nouo produci. </s>
				</p>
				<p id="N193F3" type="main">
					<s id="N193F5"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 6.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N19402" type="main">
					<s id="N19404"><!-- NEW --><emph type="italics"/>I&longs;te impetus producitur ab aliqua cau&longs;a<emph.end type="italics"/>; </s>
					<s id="N1940D"><!-- NEW -->Probatur, quia e&longs;t de nouo; </s>
					<s id="N19411"><!-- NEW -->igi&shy;<lb/>tur non e&longs;t &agrave; &longs;e per Ax. 8. l. <!-- REMOVE S-->1. igitur e&longs;t ab alio; igitur ab aliqua <lb/>cau&longs;a. </s>
				</p>
				<p id="N1941B" type="main">
					<s id="N1941D"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 7.<emph.end type="center"/></s>
				</p>
				<p id="N19429" type="main">
					<s id="N1942B"><!-- NEW --><emph type="italics"/>Producitur ab aliqua cau&longs;a extrin&longs;eca<emph.end type="italics"/>; </s>
					<s id="N19434"><!-- NEW -->Probatur prim&ograve;, quia aliquis <lb/>motus violentus e&longs;t &agrave; cau&longs;a extrin&longs;eca per def.1. Secund&ograve;, e&longs;t ab aliqua <lb/>cau&longs;a applicata, &longs;ed e&longs;t tant&ugrave;m applicata potentia motrix; </s>
					<s id="N1943C"><!-- NEW -->igitur e&longs;t cau&shy;<lb/>&longs;a, per Ax. 11. l. <!-- REMOVE S-->1. nec enim producitur hic impetus ab entitate corpo&shy;<lb/>ris projecti, quod plu&longs;qu&agrave;m certum e&longs;t ex dictis; h&icirc;c enim tant&ugrave;m <lb/>e&longs;t qu&aelig;&longs;tio de illo motu, qui extrin&longs;ec&ugrave;s aduenit, non vero de reflexo <lb/>&longs;urs&ugrave;m, &amp;c. </s>
				</p>
				<p id="N1944A" type="main">
					<s id="N1944C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 8.<emph.end type="center"/></s>
				</p>
				<p id="N19458" type="main">
					<s id="N1945A"><!-- NEW --><emph type="italics"/>Producitur ab alio impetu<emph.end type="italics"/>; </s>
					<s id="N19463"><!-- NEW -->quia potentia motrix non agit ad extra ni&longs;i <lb/>per impetum productum in organo, vt patet; pr&aelig;terea &longs;i e&longs;t cau&longs;a vni&shy;<lb/>uoca &longs;ufficiens applicata, non e&longs;t ponenda &aelig;quiuoca per Ax.11.l.1. adde <lb/>quod impetus producitur &longs;emper ad extra ab alio impetu per Th. 42. <lb/>l.1.nec in his hactenus propo&longs;itis vlla e&longs;t difficultas. </s>
				</p>
				<p id="N1946F" type="main">
					<s id="N19471"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 9.<emph.end type="center"/></s>
				</p>
				<p id="N1947D" type="main">
					<s id="N1947F"><!-- NEW --><emph type="italics"/>Impetus impre&longs;&longs;us mobili &longs;ur&longs;um con&longs;eruatur per aliquod tempus<emph.end type="italics"/>; </s>
					<s id="N19488"><!-- NEW -->Probatur, <pb pagenum="137" xlink:href="026/01/169.jpg"/>quia mobile &longs;eparatum &agrave; potentia motrice adhuc mouetur per hyp.6.l.1, <lb/>igitur ille motus habet cau&longs;am, vt &longs;&aelig;p&egrave; dictum e&longs;t; </s>
					<s id="N19493"><!-- NEW -->non aliam, qu&agrave;m im&shy;<lb/>petum per Th.4. non productum de nouo, quippe nulla e&longs;t cau&longs;a mobili <lb/>applicata per Th. 7. &amp; 8. igitur iam ant&egrave; productam; igitur con&longs;er&shy;<lb/>uatur. </s>
				</p>
				<p id="N1949D" type="main">
					<s id="N1949F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 10.<emph.end type="center"/></s>
				</p>
				<p id="N194AB" type="main">
					<s id="N194AD"><!-- NEW --><emph type="italics"/>Con&longs;eruatur ab aliqua cau&longs;a extrin&longs;eca applicata<emph.end type="italics"/>; </s>
					<s id="N194B6"><!-- NEW -->vt patet ex dictis, non <lb/>ab a&euml;re; </s>
					<s id="N194BC"><!-- NEW -->igitur &agrave; nullo corpore; </s>
					<s id="N194C0"><!-- NEW -->igitur ab alia caus&acirc; in&longs;en&longs;ibili; </s>
					<s id="N194C4"><!-- NEW -->igitur <lb/>illam e&longs;&longs;e oportet, &amp; no&longs;&longs;e rerum omnium exigentias, &amp; po&longs;&longs;e cuncta <lb/>producere; </s>
					<s id="N194CC"><!-- NEW -->quippe con&longs;eruatio e&longs;t repetita productio; </s>
					<s id="N194D0"><!-- NEW -->imm&ograve; con&longs;erua&shy;<lb/>re per actionem, per quam &longs;it res in tali loco, &amp; tali tempore; </s>
					<s id="N194D6"><!-- NEW -->illa porr&ograve; <lb/>cau&longs;a in&longs;en&longs;ibilis incorporea, qu&aelig; vbique e&longs;t, &amp; &longs;emper, Deus e&longs;t: Nec <lb/>puta po&longs;&longs;e exi&longs;tentiam cau&longs;&aelig; prim&aelig; probari &longs;en&longs;ibiliori, vt &longs;ic loquar, <lb/>argumento, qu&agrave;m eo, quod petitur ex motu projectorum, quorum motus <lb/>durat etiam&longs;i &agrave; potentia motrice mobile ip&longs;um &longs;it &longs;eparatum. </s>
				</p>
				<p id="N194E2" type="main">
					<s id="N194E4"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 11.<emph.end type="center"/></s>
				</p>
				<p id="N194F0" type="main">
					<s id="N194F2"><emph type="italics"/>Hinc multa colligi po&longs;&longs;unt.<emph.end type="italics"/></s>
					<s id="N194F9"> Prim&ograve;, &longs;i nullus e&longs;&longs;et impetus extrin&longs;ecus, <lb/>vel acqui&longs;itus, nullus e&longs;&longs;et motus violentus, ni&longs;i tant&ugrave;m motus reflexus <lb/>cadentium deors&ugrave;m. </s>
					<s id="N19500"><!-- NEW -->Secund&ograve;, &longs;i nullus e&longs;&longs;et Deus, nullus e&longs;&longs;et motus <lb/>violentus; imm&ograve; nec vllus naturaliter acceleratus. </s>
					<s id="N19506">Terti&ograve;, &longs;i impetus e&longs;&shy;<lb/>&longs;et fluens vt motus, nullus e&longs;&longs;et motus violentus. </s>
					<s id="N1950B">Quart&ograve;, &longs;i &longs;ingul&aelig; par&shy;<lb/>tes motus produci debent ab aliqu&acirc; caus&acirc; efficiente, nullus etiam e&longs;&longs;et <lb/>motus violentus. </s>
				</p>
				<p id="N19512" type="main">
					<s id="N19514"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 12.<emph.end type="center"/></s>
				</p>
				<p id="N19520" type="main">
					<s id="N19522"><!-- NEW --><emph type="italics"/>Vt &longs;it motus violentus debent produci plures partes impetus violenti <lb/>qu&agrave;m &longs;int partes impetus naturalis<emph.end type="italics"/>; </s>
					<s id="N1952D"><!-- NEW -->Probatur, quia &longs;i e&longs;&longs;ent plures natura&shy;<lb/>lis deors&ugrave;m, qu&agrave;m &longs;int violenti &longs;ur&longs;um, corpus tenderet deor&longs;um; &longs;ed <lb/>tardi&ugrave;s per Th.134.l.1. &amp; &longs;i tot e&longs;&longs;ent vnius, quot alterius, mobile ip&longs;um <lb/>non moueretur per Th.133.l.1. </s>
				</p>
				<p id="N19537" type="main">
					<s id="N19539"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 13.<emph.end type="center"/></s>
				</p>
				<p id="N19545" type="main">
					<s id="N19547"><!-- NEW --><emph type="italics"/>Motus violentus non e&longs;t acceleratus<emph.end type="italics"/>; probatur prim&ograve; experienti&acirc;, qu&aelig; <lb/>certa e&longs;t. </s>
					<s id="N19552"><!-- NEW -->Secund&ograve;, quia &longs;i &longs;emper cre&longs;ceret, numquam rediret mobile <lb/>contra hyp.1. nec enim ab vllo reflectitur; &longs;i enim reflecteretur ab a&euml;re <lb/>inten&longs;us, mult&ograve; magis remi&longs;&longs;us. </s>
				</p>
				<p id="N1955A" type="main">
					<s id="N1955C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 14.<emph.end type="center"/></s>
				</p>
				<p id="N19568" type="main">
					<s id="N1956A"><emph type="italics"/>Hinc impetus in mobili &longs;ur&longs;um projecto non intenditur,<emph.end type="italics"/> quia non inten&shy;<lb/>ditur effectus per Th.13. igitur nec cau&longs;a per Ax.2.l.2. </s>
				</p>
				<p id="N19574" type="main">
					<s id="N19576"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 15.<emph.end type="center"/></s>
				</p>
				<p id="N19582" type="main">
					<s id="N19584"><!-- NEW --><emph type="italics"/>Motus violentus non e&longs;t &aelig;quabilis<emph.end type="italics"/>; </s>
					<s id="N1958D"><!-- NEW -->quia mobile tandem redit per hyp.1. <lb/>&longs;ed numquam rediret, &longs;i e&longs;&longs;et &aelig;quabilis; cur enim poti&ugrave;s hoc in&longs;tanti <lb/>qu&agrave;m alio? </s>
					<s id="N19595">cur ab hoc puncto &longs;patij poti&ugrave;s, qu&agrave;m ab alio? </s>
				</p>
				<pb pagenum="138" xlink:href="026/01/170.jpg"/>
				<p id="N1959C" type="main">
					<s id="N1959E"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 16.<emph.end type="center"/></s>
				</p>
				<p id="N195AA" type="main">
					<s id="N195AC"><!-- NEW --><emph type="italics"/>Hinc non con&longs;eruatur intactus impetus<emph.end type="italics"/>; </s>
					<s id="N195B5"><!-- NEW -->quia &longs;i e&longs;&longs;et intactus, e&longs;&longs;et &longs;em&shy;<lb/>per &aelig;qualis; igitur haberet &longs;emper &aelig;qualem motum per Ax.3.l.2. igitur <lb/>motus e&longs;&longs;et &aelig;quabilis, contra Th.15. </s>
				</p>
				<p id="N195BD" type="main">
					<s id="N195BF"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 17.<emph.end type="center"/></s>
				</p>
				<p id="N195CB" type="main">
					<s id="N195CD"><!-- NEW --><emph type="italics"/>Hinc nece&longs;&longs;e e&longs;t aliquid impetus destrui<emph.end type="italics"/>; </s>
					<s id="N195D6"><!-- NEW -->cum enim non remaneat inta&shy;<lb/>ctus, &amp; &aelig;qualis; nec fiat maior per Th.14. cert&egrave; fit minor, igitur detra&shy;<lb/>ctione aliqua per Ax.1.l.2. </s>
				</p>
				<p id="N195DE" type="main">
					<s id="N195E0"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 18.<emph.end type="center"/></s>
				</p>
				<p id="N195EC" type="main">
					<s id="N195EE"><!-- NEW --><emph type="italics"/>Singulis in&longs;tantibus aliquid de&longs;truitur impetus impre&longs;&longs;i<emph.end type="italics"/>; probatur quia <lb/>cur poti&ugrave;s vno quam alio? </s>
					<s id="N195F9">quippe illa ratio, qu&aelig; probat de vno probat <lb/>de &longs;ingulis. </s>
				</p>
				<p id="N195FE" type="main">
					<s id="N19600"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 19.<emph.end type="center"/></s>
				</p>
				<p id="N1960C" type="main">
					<s id="N1960E"><!-- NEW --><emph type="italics"/>Hinc nece&longs;&longs;ari&egrave; eadem vel aqualis cau&longs;a de&longs;tructionis debet e&longs;&longs;e applicata<emph.end type="italics"/>; <lb/>probatur, quia &aelig;qualis effectus &aelig;qualem cau&longs;am &longs;upponit, per Ax. <!-- REMOVE S--><lb/>3. l. <!-- REMOVE S-->2. <!-- KEEP S--></s>
				</p>
				<p id="N1961F" type="main">
					<s id="N19621"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 20.<emph.end type="center"/></s>
				</p>
				<p id="N1962D" type="main">
					<s id="N1962F"><!-- NEW --><emph type="italics"/>Illa cau&longs;a non e&longs;t tant&ugrave;m a&euml;r ambiens vt volunt aliqui<emph.end type="italics"/>; </s>
					<s id="N19638"><!-- NEW -->quia lic&egrave;t re&longs;i&shy;<lb/>&longs;tat motui, &longs;eu potius mobili, non tamen e&longs;t ea re&longs;i&longs;tentia, qu&aelig; po&longs;&longs;it <lb/>impetum tam cit&ograve; de&longs;truere; </s>
					<s id="N19640"><!-- NEW -->probatur prim&ograve;, quia &longs;i hoc e&longs;&longs;et, de&longs;true&shy;<lb/>retur &aelig;quali tempore per omnem lineam &longs;ur&longs;um, quod e&longs;t contra expe&shy;<lb/>rientiam, vt dicemus infr&agrave;; </s>
					<s id="N19648"><!-- NEW -->e&longs;&longs;et enim eadem cau&longs;a applicata; </s>
					<s id="N1964C"><!-- NEW -->igitur idem <lb/>&amp; &aelig;qualis effectus; </s>
					<s id="N19652"><!-- NEW -->probatur &longs;ecund&ograve;, quia non de&longs;truit a&euml;r primum il&shy;<lb/>lum gradum impetus naturalis acqui&longs;iti, vt con&longs;tat in motu deor&longs;um, qui <lb/>tamen e&longs;t imperfecti&longs;&longs;imus; igitur non e&longs;t &longs;ufficiens ad de&longs;truendum im&shy;<lb/>petum violentum, ni&longs;i longo tempore. </s>
					<s id="N1965C"><!-- NEW -->Terti&ograve;, globus &longs;urs&ugrave;m projectus <lb/>a&longs;cendit, &amp; deinde de&longs;cendit &aelig;quali tempore; </s>
					<s id="N19662"><!-- NEW -->igitur &longs;altem &longs;ingulis in&shy;<lb/>&longs;tantibus de&longs;truitur vnus gradus impetus violenti &aelig;qualis primo gradui <lb/>innato; </s>
					<s id="N1966A"><!-- NEW -->atqui a&euml;r non pote&longs;t vno in&longs;tanti de&longs;truere impetum &aelig;qualem <lb/>primo innato; alioqui non intenderetur motus naturalis. </s>
					<s id="N19670"><!-- NEW -->Quart&ograve;, &amp; h&aelig;c <lb/>e&longs;t ratio &agrave; priori, quotie&longs;cumque &longs;unt in eodem mobili duo impetus ad <lb/>oppo&longs;itas lineas determinati, pugnant pro rata, vt demon&longs;trauimus l.1. <lb/>Th. 149. 150. 152. &amp; in toto Schol. <!-- REMOVE S-->&amp; multis aliis pa&longs;&longs;im; atqui con&longs;er&shy;<lb/>uatur &longs;emper impetus naturalis innatus per Sch. <!-- REMOVE S-->Th.152.n.6.l.1.per Th. <!-- REMOVE S--><lb/>9. &amp; Schol.Th.14. &amp; Th.73.l.2. </s>
				</p>
				<p id="N19683" type="main">
					<s id="N19685"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 21.<emph.end type="center"/></s>
				</p>
				<p id="N19691" type="main">
					<s id="N19693"><!-- NEW --><emph type="italics"/>Illa cau&longs;a non e&longs;t entitas corporis mobilis, vel ip&longs;a grauitas, di&longs;tincta &longs;cili&shy;<lb/>cet ab impetu innato &longs;i qu&aelig; e&longs;t de qu&aelig; alias,<emph.end type="italics"/> probatur, quia non e&longs;&longs;et potior <lb/>ratio cur vno in&longs;tanti de&longs;truerentur duo gradus impetus, qu&agrave;m 3. 4. 5. <lb/>quippe grauitas exigeret de&longs;tructionem omnium: pr&aelig;terea omnis impe&shy;<lb/>tus de&longs;truitur ne &longs;it fru&longs;tr&agrave; per Schol, Th.152. &amp; Th.162.l.1. denique &longs;i <pb pagenum="139" xlink:href="026/01/171.jpg"/>ade&longs;t contrarius impetus de&longs;tructiuus eo modo, quo explicuimus l. <!-- REMOVE S-->1. non <lb/>e&longs;t ponenda alia cau&longs;a de&longs;tructiua. </s>
				</p>
				<p id="N196AD" type="main">
					<s id="N196AF"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 22.<emph.end type="center"/></s>
				</p>
				<p id="N196BB" type="main">
					<s id="N196BD"><!-- NEW --><emph type="italics"/>Hinc nece&longs;&longs;e e&longs;t impetum violentum de&longs;trui ab impetu naturali innato<emph.end type="italics"/>; </s>
					<s id="N196C6"><!-- NEW -->pro&shy;<lb/>batur, quia nulla e&longs;t cau&longs;a extrin&longs;eca de&longs;tructiua &longs;altem ad&aelig;quat&egrave; per hT. <lb/>20.igitur e&longs;t intrin&longs;eca per Ax.4. l.2. &longs;ed intrin&longs;eca vel e&longs;t mobilis enti&shy;<lb/>tas, vel grauitas, vel impetus innatus; </s>
					<s id="N196D0"><!-- NEW -->&longs;ed mobilis entitas non e&longs;t cau&longs;a <lb/>de&longs;tructiua; nec etiam ip&longs;a grauitas per Th.21. igitur impetus naturalis <lb/>innatus. </s>
				</p>
				<p id="N196D8" type="main">
					<s id="N196DA"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 23.<emph.end type="center"/></s>
				</p>
				<p id="N196E6" type="main">
					<s id="N196E8"><emph type="italics"/>Hinc vera ratio cur &longs;ingulis in&longs;tantibus aliquid de&longs;truatur,<emph.end type="italics"/> quia &longs;ingulis <lb/>in&longs;tantibus e&longs;t cau&longs;a de&longs;tructiua applicata, igitur &longs;ingulis in&longs;tantibus de&shy;<lb/>&longs;truit per Ax. 12. l. <!-- REMOVE S-->1. <!-- KEEP S--></s>
				</p>
				<p id="N196F7" type="main">
					<s id="N196F9"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 24.<emph.end type="center"/></s>
				</p>
				<p id="N19705" type="main">
					<s id="N19707"><!-- NEW --><emph type="italics"/>Hinc etiam ratio cur &longs;ingulis instantibus, &longs;eu &aelig;qualibus temporibus &aelig;qua&shy;<lb/>liter de&longs;truatur<emph.end type="italics"/>; </s>
					<s id="N19712"><!-- NEW -->quia &longs;ingulis in&longs;tantibus e&longs;t eadem cau&longs;a de&longs;tructiua ap&shy;<lb/>plicata; igitur &longs;ingulis in&longs;tantibus &aelig;qualiter de&longs;truit per Ax.3.l.2.porr&ograve; <lb/>in tantum de&longs;truit in quantum efficit, vt aliquid &longs;it fru&longs;tr&agrave;, vt fus&egrave; di&shy;<lb/>ctum e&longs;t lib.1.vel in quantum exigit eius <expan abbr="de&longs;truction&etilde;">de&longs;tructionem</expan>, nam perinde e&longs;t. </s>
				</p>
				<p id="N19720" type="main">
					<s id="N19722"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 25.<emph.end type="center"/></s>
				</p>
				<p id="N1972E" type="main">
					<s id="N19730"><!-- NEW --><emph type="italics"/>Hinc etiam petitur ratio, propter quam talis portio impetus violenti de&shy;<lb/>&longs;truatur vne in&longs;tanti<emph.end type="italics"/>; quia &longs;cilicet contraria pugnant prorata per Ax.15. <lb/>&amp; per Th.134.l.1. </s>
				</p>
				<p id="N1973D" type="main">
					<s id="N1973F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 26.<emph.end type="center"/></s>
				</p>
				<p id="N1974B" type="main">
					<s id="N1974D"><!-- NEW --><emph type="italics"/>Hinc illa inuer&longs;a communis dicti, &aelig;qualibus temporibus &aelig;qualia de&longs;truun&shy;<lb/>tur velocitatis momenta in motu violento<emph.end type="italics"/>; quippe eadem cau&longs;a eidem &longs;ub&shy;<lb/>jecto applicata &aelig;qualibus temporibus &aelig;qualem effectum producit per <lb/>Ax.3.l.2. &longs;ed impetus innatus e&longs;t cau&longs;a de&longs;tructiua impetus violenti per <lb/>Th. 22. igitur &aelig;qualibus temporibus, &amp;c. </s>
				</p>
				<p id="N1975E" type="main">
					<s id="N19760"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 27.<emph.end type="center"/></s>
				</p>
				<p id="N1976C" type="main">
					<s id="N1976E"><!-- NEW --><emph type="italics"/>In eadem proportione retardatur motus violentus, in qua naturalis accele&shy;<lb/>ratur<emph.end type="italics"/>: </s>
					<s id="N19779"><!-- NEW -->probatur quia &longs;ingulis in&longs;tantibus &aelig;qualibus acquiritur &aelig;qualis <lb/>gradus impetus, vt &longs;&aelig;p&egrave; dictum e&longs;t &longs;upr&agrave;; </s>
					<s id="N1977F"><!-- NEW -->atqui &longs;ingulis in&longs;tantibus de&shy;<lb/>&longs;truitur vnus gradus impetus violenti per Th.24. &longs;ed ille gradus re&longs;pon&shy;<lb/>det impetui innato per Th. 25. igitur &aelig;qualibus temporibus tant&ugrave;m de&shy;<lb/>&longs;truitur violenti, quant&ugrave;m acquiritur naturalis; cum enim primo in&shy;<lb/>&longs;tanti &longs;it impetus naturalis, &amp; &longs;ecundo tempore &aelig;quali acquiratur &aelig;qua&shy;<lb/>lis, item tertio, quarto, &amp;c. </s>
					<s id="N1978D"><!-- NEW -->cert&egrave; cum impetus innatus pugnet cum vio&shy;<lb/>lento pro rata; </s>
					<s id="N19793"><!-- NEW -->nec &longs;it potior ratio cur maiorem portionem qu&agrave;m mino&shy;<lb/>rem de&longs;truat, &aelig;qualem cert&egrave; de&longs;truit, itemque &longs;ecundo in&longs;tanti &aelig;qua&shy;<lb/>lem, item tertio, quarto; igitur in eadem proportione decre&longs;cit violentus, <lb/>&longs;eu retardatur, in qua naturalis acceleratur. </s>
				</p>
				<pb pagenum="140" xlink:href="026/01/172.jpg"/>
				<p id="N197A1" type="main">
					<s id="N197A3"><!-- NEW -->Hinc inuertenda e&longs;t progre&longs;&longs;ionis linea; </s>
					<s id="N197A7"><!-- NEW -->quippe linea AE repr&aelig;&longs;en&shy;<lb/>tat nobis progre&longs;&longs;ionem motus accelerati, qu&aelig; fit in in&longs;tantibus, &amp; li&shy;<lb/>nea FK progre&longs;&longs;ionem motus, qu&aelig; fit in partibus temporis &longs;en&longs;ibilibus; </s>
					<s id="N197AF"><!-- NEW --><lb/>in illa primo in&longs;tanti decurritur primum &longs;patium AB, &longs;ecundo tempore <lb/>&aelig;quali BC, tertio CD, quarto DE: </s>
					<s id="N197B6"><!-- NEW -->in hac vero prima parte acquiritur <lb/>&longs;patium FG &longs;ecunda &aelig;quali prim&aelig; GH, tertia HI, quarta IK; </s>
					<s id="N197BC"><!-- NEW -->igitur &longs;i ac&shy;<lb/>cipiatur linea AE, progrediendo ab A ver&longs;us E, vel linea FK progre&shy;<lb/>diendo ab F ver&longs;us K habebitur progre&longs;&longs;io motus naturaliter accelerati; </s>
					<s id="N197C4"><!-- NEW --><lb/>&longs;i ver&ograve; accipiatur EA, vel KF, progrediendo &longs;cilicet ab E ver&longs;us A, vel &agrave; <lb/>K ver&longs;us F, erit progre&longs;&longs;io motus violenti naturaliter retardati; </s>
					<s id="N197CB"><!-- NEW -->vt con&shy;<lb/>&longs;tat ex pr&aelig;ced&egrave;ntibus Theorematis; &amp; quemadmodum progre&longs;&longs;io acce&shy;<lb/>lerationis in in&longs;tantibus finitis fit iuxta &longs;eriem i&longs;torum numerorum 1.2. <lb/>3.4. in partibus ver&ograve; temporis &longs;en&longs;ibilibus iuxta &longs;eriem i&longs;torum 1.3.5.7. <lb/>ita fit omnin&ograve; progre&longs;&longs;io retardationis in in&longs;tantibus iuxta hos nume&shy;<lb/>ros 4.3.2.1. in partibus temporis &longs;en&longs;ibilibus iuxta hos 7.5. 3. 1. <!-- KEEP S--></s>
				</p>
				<p id="N197DA" type="main">
					<s id="N197DC"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 28.<emph.end type="center"/></s>
				</p>
				<p id="N197E8" type="main">
					<s id="N197EA"><!-- NEW --><emph type="italics"/>Motus violentus durat tot in&longs;tantibus &longs;cilicet &aelig;quiualentibus quot &longs;unt ij <lb/>gradus impetus quibus violentus &longs;uperat innatum,<emph.end type="italics"/> v.g. <!-- REMOVE S-->&longs;it vnus gradus im&shy;<lb/>petus innati; </s>
					<s id="N197F9"><!-- NEW -->producantur 5. gradus violenti, quorum &longs;inguli &longs;int &aelig;qua&shy;<lb/>les innato etiam <expan abbr="&aelig;quiual&etilde;ter">&aelig;quiualenter</expan>, motus durabit 4. in&longs;tantibus etiam &aelig;qui&shy;<lb/>ualenter id e&longs;t 4. temporibus, quorum &longs;ingula erunt &aelig;qualia primo in&shy;<lb/>&longs;tanti motus naturalis, probatur, cum &longs;ingulis in&longs;tantibus &aelig;qualibus de&shy;<lb/>&longs;truatur vnus gradus; cert&egrave; 4. in&longs;tantibus durat motus. </s>
				</p>
				<p id="N19809" type="main">
					<s id="N1980B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 29.<emph.end type="center"/></s>
				</p>
				<p id="N19817" type="main">
					<s id="N19819"><!-- NEW --><emph type="italics"/>Si accipiantur &longs;patia &aelig;qualia in hac progre&longs;&longs;ione retardationis, e&longs;t inuer&longs;a <lb/>illius, qu&agrave;m tribuimus &longs;upr&agrave; accelerationi, a&longs;&longs;umptis &longs;cilicet &longs;patiis &aelig;qualibus; </s>
					<s id="N19821"><!-- NEW --><lb/>tum &longs;i accipiantur &longs;patia &aelig;qualia prime &longs;patie quod decurritur prime in&longs;tan&shy;<lb/>ti metus naturalis, tum &longs;i accipiantur &longs;patia &aelig;qualia date &longs;patie quod in par&shy;<lb/>te temporis &longs;en&longs;ibili percurritur<emph.end type="italics"/>; </s>
					<s id="N1982D"><!-- NEW -->quippe quemadmodum in progre&longs;&longs;ione <lb/>accelerationis decre&longs;cunt tempora; </s>
					<s id="N19833"><!-- NEW -->&longs;ic in progre&longs;&longs;ione retardationis <lb/>cre&longs;cunt, a&longs;&longs;umptis &longs;cilicet &longs;patiis &aelig;qualibus; quare ne iam dicta hic re&shy;<lb/>petam, con&longs;ule qu&aelig; diximus lib.2. de hac progre&longs;&longs;ione. </s>
				</p>
				<p id="N1983B" type="main">
					<s id="N1983D"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 30.<emph.end type="center"/></s>
				</p>
				<p id="N19849" type="main">
					<s id="N1984B"><!-- NEW --><emph type="italics"/>Hinc instantia initio huius metus &longs;unt minora &longs;icut initio motus naturalis <lb/>&longs;unt maiora; </s>
					<s id="N19853"><!-- NEW -->&amp; &longs;ub finem in motu violente &longs;unt maiora, in naturali &longs;unt mi&shy;<lb/>nora<emph.end type="italics"/>; </s>
					<s id="N1985C"><!-- NEW -->quia &longs;cilicet hic acceleratur, ille retardatur: </s>
					<s id="N19860"><!-- NEW -->igitur velo&shy;<lb/>citas accelerati cre&longs;cit; </s>
					<s id="N19866"><!-- NEW -->igitur &longs;i accipiantur &longs;patia &aelig;qualia, decre&longs;cit tem&shy;<lb/>pus; </s>
					<s id="N1986C"><!-- NEW -->at ver&ograve; velocitas retardati decre&longs;cit, igitur a&longs;&longs;umptis &longs;patiis &aelig;quali&shy;<lb/>bus, cre&longs;cit tempus; </s>
					<s id="N19872"><!-- NEW -->igitur &longs;i accipiatur &longs;patium, quod percurritur primo <lb/>in&longs;tanti huius motus, &amp; deinde alia huic &aelig;qualia; </s>
					<s id="N19878"><!-- NEW -->haud dubi&egrave;, cum &longs;e&shy;<lb/>cundo in&longs;tanti motus &longs;it tardior, &longs;itque a&longs;&longs;umptum &aelig;quale &longs;patium; haud <lb/>dubi&egrave; inquam in&longs;tans &longs;ecundum erit maius primo, &amp; tertium &longs;ecundo, <lb/>atque ita deinceps. </s>
				</p>
				<pb pagenum="141" xlink:href="026/01/173.jpg"/>
				<p id="N19886" type="main">
					<s id="N19888"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 31.<emph.end type="center"/></s>
				</p>
				<p id="N19894" type="main">
					<s id="N19896"><!-- NEW --><emph type="italics"/>Hinc primo in&longs;tanti motus violenti de&longs;truitur minor gradus impetus qu&agrave;m <lb/>&longs;ecundo,<emph.end type="italics"/> quod demon&longs;tro; </s>
					<s id="N198A1"><!-- NEW -->quia eadem cau&longs;a breuiore tempore min&ugrave;s agit <lb/>per Ax.3.l.2. &amp; Ax. 13.l.1. num.4. igitur min&ugrave;s impetus de&longs;truitur pri&shy;<lb/>mo, qu&agrave;m &longs;ecundo, &amp; min&ugrave;s &longs;ecundo qu&agrave;m tertio, atque ita deinceps; <lb/>idem enim dici debet de cau&longs;a de&longs;tructiua, quod de productiua. </s>
				</p>
				<p id="N198AB" type="main">
					<s id="N198AD">Dices, igitur idem impetus de&longs;truitur primo in&longs;tanti, quo e&longs;t, &longs;i de&longs;trui&shy;<lb/>tur primo in&longs;tanti motus. </s>
					<s id="N198B2">Re&longs;pondeo negando; quia primo in&longs;tanti, quo <lb/>e&longs;t impetus, non e&longs;t motus per Th.34.l.1. <!-- KEEP S--></s>
				</p>
				<p id="N198B8" type="main">
					<s id="N198BA"><!-- NEW -->Dices, igitur impetus ille e&longs;t fru&longs;tr&agrave;, quia nullus effectus, &longs;eu motus <lb/>ex eo &longs;equitur; Re&longs;pondeo negando; nam omnes gradus impetus qui ei&shy;<lb/>dem parti mobilis in&longs;unt, communi qua&longs;i actione, vel exigentia indi&shy;<lb/>ui&longs;ibiliter exigunt motum. </s>
				</p>
				<p id="N198C4" type="main">
					<s id="N198C6"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 32.<emph.end type="center"/></s>
				</p>
				<p id="N198D2" type="main">
					<s id="N198D4"><!-- NEW --><emph type="italics"/>Hinc gradus omnes producti in eadem parte &longs;ubiecti &longs;unt in&aelig;quales in&shy;<lb/>perfectione<emph.end type="italics"/>; </s>
					<s id="N198DF"><!-- NEW -->cum enim &longs;inguli &longs;ingulis in&longs;tantibus de&longs;truantur, vt dictum <lb/>e&longs;t; quippe e&longs;t tant&ugrave;m vnus gradus impetus innati, &amp; cum &longs;ingula in&shy;<lb/>&longs;tantia &longs;int in&aelig;qualia, etiam &longs;inguli gradus illius impetus &longs;unt in&aelig;quales <lb/>in perfectione. </s>
				</p>
				<p id="N198E9" type="main">
					<s id="N198EB"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 33.<emph.end type="center"/></s>
				</p>
				<p id="N198F7" type="main">
					<s id="N198F9"><!-- NEW --><emph type="italics"/>Hinc redditur optima ratio, cur tot producantur poti&ugrave;s qu&agrave;m plures, qu&aelig; <lb/>alioquin minim&egrave; afferri pote&longs;t<emph.end type="italics"/>; </s>
					<s id="N19904"><!-- NEW -->imm&ograve;, ni&longs;i hoc e&longs;&longs;et, nulla e&longs;&longs;et huiu&longs;modi <lb/>naturalis retardatio; nam producantur, &longs;i fieri pote&longs;t, omnes &aelig;quales, &longs;int&shy;<lb/>que v.g.20. nunquid po&longs;&longs;unt e&longs;&longs;e 40. perfectionis &longs;ubdupl&aelig;, vel 10. du&shy;<lb/>pl&aelig;, vel 5. quadrupl&aelig; &amp;c. </s>
					<s id="N1990E">cur autem poti&ugrave;s vnum dices qu&agrave;m aliud? </s>
					<s id="N19911"><!-- NEW -->at <lb/>ver&ograve; optimam inde reddo rationem qu&ograve;d cum &longs;int omnes in&aelig;quales, c&ograve; <lb/>plures &longs;unt, qu&ograve; maior e&longs;t ni&longs;us; pauciores ver&ograve;, qu&ograve; minor. </s>
				</p>
				<p id="N19919" type="main">
					<s id="N1991B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 34.<emph.end type="center"/></s>
				</p>
				<p id="N19927" type="main">
					<s id="N19929"><emph type="italics"/>Hinc &longs;unt in&aelig;quales in e&acirc;dem proportione, in qu&aelig; in&longs;tantia &longs;unt in&aelig;qualia<emph.end type="italics"/><lb/>v. </s>
					<s id="N19932">g. <!-- REMOVE S-->qu&agrave; proportione primum in&longs;tans e&longs;t minus &longs;ecundo, &amp; &longs;ecundum <lb/>tertio, ita ille gradus impetus, qui de&longs;truitur primo in&longs;tanti, e&longs;t minor <lb/>vel imperfectior co, qui de&longs;truitur &longs;ecundo, &amp; qui de&longs;truitur &longs;ecundo <lb/>imperfectior co, qui de&longs;truitur tertio, atque ita deinceps. </s>
				</p>
				<p id="N1993D" type="main">
					<s id="N1993F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 35.<emph.end type="center"/></s>
				</p>
				<p id="N1994B" type="main">
					<s id="N1994D"><!-- NEW --><emph type="italics"/>Hinc perfecti&longs;&longs;imus omnium graduum ille e&longs;t qui de&longs;truitur vltimo in&longs;tan&shy;<lb/>ti, de quo infr&aacute;<emph.end type="italics"/>; </s>
					<s id="N19958"><!-- NEW -->quod &longs;equitur ex dictis nece&longs;&longs;ari&ograve;: vtr&ugrave;m ver&ograve; ille &longs;it &aelig;&shy;<lb/>qualis omnin&ograve; in perfectione impetui naturali innato, dicemus <lb/>infr&agrave;. </s>
				</p>
				<p id="N19960" type="main">
					<s id="N19962"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1996E" type="main">
					<s id="N19970"><!-- NEW -->Hic ob&longs;eruabis mirabilem &longs;an&aelig; natur&aelig; prouidentiam, qu&aelig; motus <lb/>omnes cum ip&longs;o naturali ita compo&longs;uit, vt &longs;it veluti regula omnium mo&shy;<lb/>tuum, &longs;itque vnum qua&longs;i principium perfectionis totius impetus; </s>
					<s id="N19978"><!-- NEW -->t&ugrave;m in <pb pagenum="142" xlink:href="026/01/174.jpg"/>motu naturali, in cuius progre&longs;&longs;ione producitur &longs;emper imperfectior, <lb/>t&ugrave;m in violento, in cuius progre&longs;&longs;ione de&longs;truitur &longs;emper perfectior; </s>
					<s id="N19983"><!-- NEW --><lb/>producitur imperfectior ab eadem cau&longs;a in minoribus temporibus, &amp; <lb/>de&longs;truitur perfectior ab eadem cau&longs;a in maioribus temporibus; </s>
					<s id="N1998A"><!-- NEW -->&amp; cum <lb/>impetus innatus &longs;it cau&longs;a de&longs;tructiua impetus violenti, habet in&aelig;qualem <lb/>proportionem cum &longs;uo effectu pro temporibus in&aelig;qualibus; </s>
					<s id="N19992"><!-- NEW -->&amp; cum <lb/>idem impetus innatus &longs;it qua&longs;i principium crementi, vel accelerationis, <lb/>&longs;icut e&longs;t principium retardationis; </s>
					<s id="N1999A"><!-- NEW -->cert&egrave; pro in&aelig;qualitate temporum e&longs;t <lb/>diuer&longs;a proportio crementorum; quo nihil clarius in hac materia meo <lb/>iudicio dici pote&longs;t. </s>
				</p>
				<p id="N199A2" type="main">
					<s id="N199A4"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 36.<emph.end type="center"/></s>
				</p>
				<p id="N199B0" type="main">
					<s id="N199B2"><!-- NEW --><emph type="italics"/>Hinc finis motus naturalis omnin&ograve; conuenit cum principio motus violenti; </s>
					<s id="N199B8"><!-- NEW --><lb/>&amp; finis huius cum principio illius<emph.end type="italics"/>; qu&aelig;cumque tandem progre&longs;&longs;io accipia&shy;<lb/>tur; </s>
					<s id="N199C2"><!-- NEW -->&longs;iue temporum &aelig;qualium in &longs;patiis in&aelig;qualibus; &longs;iue &longs;patio&shy;<lb/>rum &aelig;qualium in temporibus in&aelig;qualibus, &longs;iue a&longs;&longs;umantur in&longs;tan&shy;<lb/>tia in progre&longs;&longs;ione arithmetica &longs;implici iuxta hos numeros 1.2.3.4. &longs;iue <lb/>a&longs;&longs;umantur temporis partes &longs;en&longs;ibiles in progre&longs;&longs;ione Galilei iuxta hos <lb/>numeros 1.3.5.7. qu&aelig; omnia ex dictis nece&longs;&longs;ari&ograve; con&longs;equuntur. </s>
				</p>
				<p id="N199CE" type="main">
					<s id="N199D0"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 37.<emph.end type="center"/></s>
				</p>
				<p id="N199DC" type="main">
					<s id="N199DE"><!-- NEW --><emph type="italics"/>Nec mod&ograve; conuenit principium vnius cum alterius fine, &amp; vici&longs;&longs;im, &longs;ed <lb/>etiam ali&aelig; partes motus in di&longs;tantiis &aelig;qualibus<emph.end type="italics"/> &longs;it enim linea AG, quam <lb/>percurrit mobile demi&longs;&longs;um ex puncto A deor&longs;um motu naturaliter ac&shy;<lb/>celerato, &amp; moueatur per 6. in&longs;tantia, &longs;eu 6. tempora &aelig;qualia: </s>
					<s id="N199ED"><!-- NEW -->Primo <lb/>in&longs;tanti, quo percurrit &longs;patium AB; </s>
					<s id="N199F3"><!-- NEW -->haud dubi&egrave;, quando peruenit ad pun&shy;<lb/>ctum G, habet 7. gradus impetus &aelig;quales, quia ante motum AB habebat <lb/>innatum; </s>
					<s id="N199FB"><!-- NEW -->&longs;ed in motu illo fluunt 6. tempora &aelig;qualia, vt dictum e&longs;t; </s>
					<s id="N199FF"><!-- NEW -->igitur <lb/>6. acquirit gradus impetus, quorum quidem vltim&ograve; acqui&longs;itus nullum <lb/>adhuc habuit motum; </s>
					<s id="N19A07"><!-- NEW -->&longs;ed haud dubi&egrave; haberet, &longs;i vlteri&ugrave;s hic motus pro&shy;<lb/>pagaretur: </s>
					<s id="N19A0D"><!-- NEW -->his po&longs;itis imprimantur mobili in O 7.gradus impetus &aelig;qua&shy;<lb/>les prioribus &longs;urs&ugrave;m motu violento, per lineam OH; </s>
					<s id="N19A13"><!-- NEW -->cert&egrave; primo in&longs;tan&shy;<lb/>ti motus, &longs;eu tempore &aelig;quali prioribus percurret ON, id e&longs;t 6. &longs;patiola; </s>
					<s id="N19A19"><!-- NEW --><lb/>quia lic&egrave;t &longs;int 7.gradus; </s>
					<s id="N19A1E"><!-- NEW -->attamen impetus innatus corporis grauis detra&shy;<lb/>hit vnum &longs;patium, &longs;imulque de&longs;truit vnum gradum, &longs;ecundo tempore <lb/>percurret NM 5. tertio ML 4. quarto LK 3. quinto KI 2. &longs;exto IH 1. <lb/>igitur primum violenti ON re&longs;pondet vltimo naturali FG &longs;eu &longs;ecun&shy;<lb/>dum illius quinto huius, tertium illius quarto huius, quartum tertio, <lb/>quintum &longs;ecundo &longs;extum primo, &amp; vici&longs;&longs;im; idem pror&longs;us in progre&longs;&longs;ione <lb/>Galilei accidit, a&longs;&longs;umptis &longs;cilicet partibus temporis &longs;en&longs;ibilibus. </s>
				</p>
				<p id="N19A2E" type="main">
					<s id="N19A30"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 38.<emph.end type="center"/></s>
				</p>
				<p id="N19A3C" type="main">
					<s id="N19A3E"><!-- NEW --><emph type="italics"/>Hinc ad eam altitudinem a&longs;cendit motu violento cum iis gradibus impe&shy;<lb/>tus, quos habuit ab eadem altitudine decidens motu naturali<emph.end type="italics"/>; con&longs;tat ex <lb/>dictis. </s>
				</p>
				<pb pagenum="143" xlink:href="026/01/175.jpg"/>
				<p id="N19A4F" type="main">
					<s id="N19A51"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 39.<emph.end type="center"/></s>
				</p>
				<p id="N19A5D" type="main">
					<s id="N19A5F"><!-- NEW --><emph type="italics"/>Hinc &longs;i motus violentus, &amp; naturalis durent &aelig;qualibus temporibus, &longs;patia <lb/>vtriu&longs;que erunt &aelig;qualia<emph.end type="italics"/>; </s>
					<s id="N19A6A"><!-- NEW -->con&longs;tat etiam ex dictis v.g. <!-- REMOVE S-->corpus graue, motu <lb/>naturali in libero a&euml;re tempore duorum &longs;ecundorum percurrit 48. pe&shy;<lb/>des, igitur &longs;i moueatur &longs;ur&longs;um &aelig;quali tempore percurret 48. pedes per <lb/>&longs;e, dico per &longs;e; quippe ratione figur&aelig; corporis &longs;ecus accidere pote&longs;t, vt <lb/>plurim&ugrave;m etiam accedit ratione motus mixti ex motu centri recto, &amp; <lb/>motu orbis circulari, de quo infr&agrave;. </s>
				</p>
				<p id="N19A7A" type="main">
					<s id="N19A7C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 40.<emph.end type="center"/></s>
				</p>
				<p id="N19A88" type="main">
					<s id="N19A8A"><emph type="italics"/>Hinc, vt &longs;patia vtroque motu diuer&longs;a &longs;unt &aelig;qualia, ita tempora quibus de&shy;<lb/>curruntur &longs;unt &aelig;qualia,<emph.end type="italics"/> &amp; impetus acqui&longs;itus in fine naturalis cum in&shy;<lb/>nato e&longs;t &aelig;qualis impetui producta in principio violenti. </s>
				</p>
				<p id="N19A96" type="main">
					<s id="N19A98"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 41.<emph.end type="center"/></s>
				</p>
				<p id="N19AA4" type="main">
					<s id="N19AA6"><!-- NEW --><emph type="italics"/>Hinc tandiu durat de&longs;cen&longs;us mobilis proiecti &longs;urs&ugrave;m motu violento, quan&shy;<lb/>diu durat eiu&longs;dem a&longs;cen&longs;us, &amp; tot habet gradus impetus in fine de&longs;cen&longs;us, <lb/>quot habet in principio a&longs;cen&longs;us<emph.end type="italics"/>; </s>
					<s id="N19AB3"><!-- NEW -->e&longs;t enim &aelig;quale &longs;patium; </s>
					<s id="N19AB7"><!-- NEW -->igitur &aelig;quale <lb/>tempus; igitur &aelig;qualis vtrobique impetus. </s>
					<s id="N19ABD"><!-- NEW -->Sed h&icirc;c duo obiici po&longs;&longs;unt, <lb/>prim&ograve; &longs;agittam per lineam verticalem vibratam po&longs;ui&longs;&longs;e tant&ugrave;m in a&longs;&shy;<lb/>cen&longs;u 3. &longs;ecunda, in de&longs;cen&longs;u ver&ograve; 5. vt &longs;&aelig;pi&ugrave;s ob&longs;eruatum e&longs;t, te&longs;te Mer&shy;<lb/>&longs;enno; </s>
					<s id="N19AC7"><!-- NEW -->&longs;ecund&ograve;, &longs;i eodem tempore corpus graue &longs;urs&ugrave;m proiectum motu <lb/>violento a&longs;cenderet, quo deinde de&longs;cendit, in fine de&longs;cen&longs;us &aelig;qualis <lb/>e&longs;&longs;et ictus, &longs;eu percu&longs;&longs;io vtriu&longs;que; cum tamen illa &longs;it maior, qu&aelig; infli&shy;<lb/>gitur motu violento, vt con&longs;tat multis experimentis. </s>
				</p>
				<p id="N19AD1" type="main">
					<s id="N19AD3"><!-- NEW -->Re&longs;pondeo ad primum etiam te&longs;te Mer&longs;enno globum ferreum trium <lb/>aut 4. librarum &longs;ur&longs;um explo&longs;um &egrave; breuiore tormento &longs;ed latiore, &aelig;qua&shy;<lb/>le tempus in a&longs;cen&longs;u, &amp; in de&longs;cen&longs;u in&longs;ump&longs;i&longs;&longs;e; </s>
					<s id="N19ADB"><!-- NEW -->quod reuer&acirc; &longs;ec&ugrave;s acci&shy;<lb/>dit &longs;agitt&aelig;, cuius differentia a&longs;cen&longs;us, &amp; de&longs;cen&longs;us &longs;en&longs;u etiam percipi <lb/>pote&longs;t; </s>
					<s id="N19AE3"><!-- NEW -->t&ugrave;m quia lignea materia mult&ograve; leuior e&longs;t ferro, t&ugrave;m quia leui&longs;&longs;i&shy;<lb/>m&aelig; ill&aelig; penn&aelig;, quibus in&longs;truitur, motum retardant in de&longs;cen&longs;u; </s>
					<s id="N19AE9"><!-- NEW -->quod <lb/>maxim&egrave; confirmatur ex eo quod pluma facil&egrave; anhelitu &longs;ur&longs;um pellatur <lb/>&longs;atis veloci motu, qu&aelig; deinde tardi&longs;&longs;imo &longs;ua &longs;ponte de&longs;cendit: </s>
					<s id="N19AF1"><!-- NEW -->pr&aelig;terea <lb/>mucro ferreus, quo &longs;agitta armatur, &longs;emper pr&aelig;ire debet, cuius rei ratio&shy;<lb/>nem afferemus infr&agrave;; </s>
					<s id="N19AF9"><!-- NEW -->igitur cum in a&longs;cen&longs;u pr&aelig;eat, vt pr&aelig;eat in de&longs;cen&shy;<lb/>&longs;u, altera extremitas &longs;emicirculum &longs;uo motu facere debet, qui cert&egrave; ad <lb/>naturalem motum pertinet, altera tamen extremitas, qu&aelig; mouetur mo&shy;<lb/>tu contrario alterius motum retardat; ad &longs;ecundam obiectionem <lb/>re&longs;pondebo Th.44. </s>
				</p>
				<p id="N19B05" type="main">
					<s id="N19B07"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 42.<emph.end type="center"/></s>
				</p>
				<p id="N19B13" type="main">
					<s id="N19B15"><!-- NEW --><emph type="italics"/>Si motus violentus e&longs;&longs;et &aelig;quabilis, &longs;patium e&longs;&longs;et fer&egrave; duplum illius, quod <lb/>percurritur motu naturaliter retardato, a&longs;&longs;umptis &longs;cilicet <expan abbr="t&etilde;poribus">temporibus</expan> &aelig;qualibus<emph.end type="italics"/>; </s>
					<s id="N19B24"><!-- NEW --><lb/>cum enim motu &aelig;quabili compo&longs;ito ex &longs;ubdupla velocitate maxim&aelig;, &amp; <lb/>minim&aelig; motus accelerati &aelig;quali tempore percurratur &aelig;quale &longs;patium, <lb/>&longs;ubduplum minim&aelig; pro nihilo fer&egrave; habetur; </s>
					<s id="N19B2D"><!-- NEW -->igitur pote&longs;t tant&ugrave;m a&longs;&longs;u-<pb pagenum="144" xlink:href="026/01/176.jpg"/>mi &longs;ubduplum maxim&aelig;; igitur velocitas motus &longs;it &aelig;qualis maxim&aelig;, haud <lb/>dubi&egrave; &longs;patium duplum percurretur. </s>
				</p>
				<p id="N19B38" type="main">
					<s id="N19B3A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 43.<emph.end type="center"/></s>
				</p>
				<p id="N19B46" type="main">
					<s id="N19B48"><!-- NEW --><emph type="italics"/>Hinc ben&egrave; &agrave; natur&acirc; in&longs;titutum fuit impetum naturalem innatum &longs;emper <lb/>con&longs;eruari<emph.end type="italics"/>; </s>
					<s id="N19B53"><!-- NEW -->alioqui violentus e&longs;&longs;et &aelig;quabilis, igitur nunquam de&longs;ineret: <lb/>quantum ab&longs;urdum! quale incommodum &amp;c. </s>
				</p>
				<p id="N19B59" type="main">
					<s id="N19B5B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 44.<emph.end type="center"/></s>
				</p>
				<p id="N19B67" type="main">
					<s id="N19B69"><!-- NEW --><emph type="italics"/>Eadem e&longs;t ratio &longs;eu proportio ictuum, &amp; percu&longs;&longs;ionum, qu&aelig; integrorum <lb/>&longs;patiorum qu&aelig; &longs;cilicet toto motu percurruntur in a&longs;cen&longs;u &amp; de&longs;cen&longs;u,<emph.end type="italics"/> v. <!-- REMOVE S-->g. <lb/><!-- REMOVE S-->corpus graue cadens ex data altitudine 48 pedum &aelig;qualem ictum infli&shy;<lb/>git in fine de&longs;cen&longs;us, &amp; in principio a&longs;cen&longs;us, quo &longs;cilicet ad <expan abbr="e&atilde;dem">eandem</expan> <lb/>altitudinem a&longs;cenderet; </s>
					<s id="N19B81"><!-- NEW -->probatur, quia &aelig;qualis acquiritur impetus in <lb/>de&longs;cen&longs;u alteri, qui de&longs;truitur in a&longs;cen&longs;u, a&longs;&longs;umptis dumtaxat &longs;patiis illis <lb/>&aelig;qualibus; </s>
					<s id="N19B89"><!-- NEW -->igitur &aelig;qualis e&longs;t in fine de&longs;cen&longs;us, in quo e&longs;t totus acqui&longs;i&shy;<lb/>tus, atque in principio a&longs;cen&longs;us, in quo nullus e&longs;t de&longs;tructus: </s>
					<s id="N19B8F"><!-- NEW -->ad id ver&ograve;, <lb/>quod dicebatur &longs;upr&agrave; de &longs;agitta, cuius ictus maior e&longs;t initio a&longs;cen&longs;us, <lb/>qu&agrave;m in fine de&longs;cen&longs;us non diffiteor; </s>
					<s id="N19B97"><!-- NEW -->quia materia &longs;agitt&aelig;, t&ugrave;m lignea <lb/>t&ugrave;m plumea motum &longs;atis &longs;uperque retardat, vt differentia ictuum &longs;en&longs;u <lb/>ip&longs;o percipi po&longs;&longs;it; qu&aelig; tamen nulla perciperetur in a&longs;cen&longs;u de&longs;cen&longs;u&shy;<lb/>que globi ferrei. </s>
				</p>
				<p id="N19BA1" type="main">
					<s id="N19BA3"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 45.<emph.end type="center"/></s>
				</p>
				<p id="N19BAF" type="main">
					<s id="N19BB1"><!-- NEW --><emph type="italics"/>Hinc reiicies Galileum, &amp; alios eius &longs;ectatores qui volunt impetum corpori <lb/>impre&longs;&longs;um de&longs;trui tant&ugrave;m ab a&euml;re<emph.end type="italics"/>; </s>
					<s id="N19BBC"><!-- NEW -->quod plu&longs;qu&agrave;m fal&longs;um e&longs;&longs;e comper&shy;<lb/>tum e&longs;t, vt demon&longs;trauimus &longs;upr&agrave; Th. 20. qua&longs;i ver&ograve; non ad&longs;it aliqua <lb/>cau&longs;a nece&longs;&longs;aria de&longs;tructiua, &longs;cilicet impetus innatus; </s>
					<s id="N19BC4"><!-- NEW -->hinc etiam eum&shy;<lb/>dem reiicies, qui vult numquam fieri po&longs;&longs;e, vt motu naturaliter accelera&shy;<lb/>to tanta acquiratur velocitas, quanta imprimitur in motu violento; </s>
					<s id="N19BCC"><!-- NEW -->vult <lb/>enim motum acceleratum tran&longs;ire in &aelig;quabilem, cuius contrarium de&shy;<lb/>mon&longs;trauimus &longs;upr&agrave; Th. 131, l. <!-- REMOVE S-->2. igitur cum cre&longs;cat &longs;emper velocitas, <lb/>nullus e&longs;t finitus gradus, quem tandem non a&longs;&longs;equatur; imm&ograve; vt dictum <lb/>e&longs;t in pr&aelig;cedenti Th. a&longs;&longs;umptis &aelig;qualibus &longs;patiis, impetus, qui e&longs;t in <lb/>principio a&longs;cen&longs;us, &aelig;qualis e&longs;t cum eo, qui e&longs;t in fine de&longs;cen&longs;us. </s>
				</p>
				<p id="N19BDC" type="main">
					<s id="N19BDE"><!-- NEW -->Diceret fort&egrave; aliquis cadentem globum ex alti&longs;&longs;im&aelig; turris apice de&shy;<lb/>clinare &agrave; perpendiculari antequam terram feriat, vt con&longs;tat ex multis <lb/>experimentis; </s>
					<s id="N19BE6"><!-- NEW -->igitur pr&aelig;ualet tandem re&longs;i&longs;tentia a&euml;ris: </s>
					<s id="N19BEA"><!-- NEW -->&longs;ed re&longs;pondeo id <lb/>tant&ugrave;m accidere propter currentem illac a&euml;ris tractum; alioquin non <lb/>e&longs;&longs;et poti&ugrave;s ratio, cur in vnam partem declinaret, qu&agrave;m in aliam. </s>
				</p>
				<p id="N19BF2" type="main">
					<s id="N19BF4"><emph type="center"/><emph type="italics"/>Theoroma<emph.end type="italics"/> 46.<emph.end type="center"/></s>
				</p>
				<p id="N19C00" type="main">
					<s id="N19C02"><!-- NEW --><emph type="italics"/>Non e&longs;t eadem ratio ictuum, &longs;eu percu&longs;&longs;ionum, qu&aelig; e&longs;t &longs;egmentorum in&shy;<lb/>tegri &longs;patij<emph.end type="italics"/>; </s>
					<s id="N19C0D"><!-- NEW -->v.g. <!-- REMOVE S-->in &longs;ubduplo &longs;patij &longs;egmento non e&longs;t &longs;ubduplus ictus, &longs;it <lb/> enim &longs;patium integrum motus v&icirc;olenti OH, &amp; principium motus &longs;it <lb/>in O, finis in H; </s>
					<s id="N19C17"><!-- NEW -->accipiatur &longs;egmentum OM, quod e&longs;t qua&longs;i &longs;ubduplum O <lb/>H, ictus in M non e&longs;t profect&ograve; &longs;ubduplus ictus in O, &longs;ed tant&ugrave;m in L, vt <pb pagenum="145" xlink:href="026/01/177.jpg"/>con&longs;tat ex dictis; igitur rationes ictuum non &longs;unt, vt rationes &longs;egmen&shy;<lb/>torum integri &longs;patij. </s>
				</p>
				<p id="N19C24" type="main">
					<s id="N19C26"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 47.<emph.end type="center"/></s>
				</p>
				<p id="N19C32" type="main">
					<s id="N19C34"><!-- NEW --><emph type="italics"/>Vt in praxi determinentur rationes ictuum<emph.end type="italics"/>; </s>
					<s id="N19C3D"><!-- NEW -->a&longs;&longs;umatur progre&longs;&longs;io Gali&shy;<lb/>lei in AF, ita vt &longs;i prima parte temporis &longs;en&longs;ibili percurratur &longs;patium <lb/>FE 9 partium &aelig;qualium; </s>
					<s id="N19C45"><!-- NEW -->&longs;ecunda percurratur ED. 7. partium, tertia <lb/>DC 5. quarta CB 3; </s>
					<s id="N19C4B"><!-- NEW -->quinta BA 1. hoc po&longs;ito facil&egrave; erit determinare <lb/>rationes ictuum; </s>
					<s id="N19C51"><!-- NEW -->nam in de&longs;cen&longs;u ictus &longs;unt vt velocitates, &amp; h&aelig; vt tem&shy;<lb/>pora; </s>
					<s id="N19C57"><!-- NEW -->igitur &longs;i AB percurritur in dato tempore, &amp; AC in duobus prio&shy;<lb/>ri &aelig;qualibus; </s>
					<s id="N19C5D"><!-- NEW -->cert&egrave; ictus in de&longs;cen&longs;u AC e&longs;t duplus ictus in de&longs;cen&longs;u <lb/>AB; in AD triplus, &amp;c. </s>
					<s id="N19C63">Igitur in a&longs;cen&longs;u ictus in F erit quintuplus, <lb/>ictus in E quadruplus in D triplus, &amp;c. </s>
					<s id="N19C68">igitur ictus &longs;unt in ratione dupli&shy;<lb/>cata &longs;patiorum facto &longs;patij initio &agrave; &longs;ummo puncto A. <!-- KEEP S--></s>
				</p>
				<p id="N19C6E" type="main">
					<s id="N19C70"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 48.<emph.end type="center"/></s>
				</p>
				<p id="N19C7C" type="main">
					<s id="N19C7E"><!-- NEW --><emph type="italics"/>Hinc cognitis viribus, quibus corpus graue proijcitur ad datam altitudi&shy;<lb/>nem, cogno&longs;ci po&longs;&longs;unt vires, quibus ad aliam quamcumque proijciatur<emph.end type="italics"/>; </s>
					<s id="N19C89"><!-- NEW -->v. <!-- REMOVE S-->g. <lb/><!-- REMOVE S-->proiiciatur corpus graue ad altitudinem 48. pedum; </s>
					<s id="N19C92"><!-- NEW -->vires &longs;unt iis &aelig;qua&shy;<lb/>les, quas acquirit in de&longs;cen&longs;u eiu&longs;dem altitudinis 48. pedum; </s>
					<s id="N19C98"><!-- NEW -->&longs;it alia di&shy;<lb/>&longs;tantia 100. pedum; haud dubi&egrave; vires nece&longs;&longs;ari&aelig; ad motum hunc violen&shy;<lb/>tum &longs;unt &aelig;quales iis, quas acquireret in de&longs;cen&longs;u 100. pedum per Th. <!-- REMOVE S--><lb/>40. atqui ita &longs;e habent vires acqui&longs;it&aelig; in de&longs;cen&longs;u 48. pedum ad vires <lb/>acqui&longs;itas in de&longs;cen&longs;u 100. vt v.g. <!-- REMOVE S-->48. ad v.g. <!-- REMOVE S-->100. id e&longs;t fer&egrave; vt 7. <lb/>ad 10. </s>
				</p>
				<p id="N19CAB" type="main">
					<s id="N19CAD"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 49.<emph.end type="center"/></s>
				</p>
				<p id="N19CB9" type="main">
					<s id="N19CBB"><!-- NEW --><emph type="italics"/>Cognitis etiam &longs;patiis cogno&longs;cetur tempus<emph.end type="italics"/>; </s>
					<s id="N19CC4"><!-- NEW -->&longs;it enim decur&longs;um idem &longs;pa&shy;<lb/>tium 48. pedum motu violento &longs;ur&longs;um; </s>
					<s id="N19CCA"><!-- NEW -->idque v. <!-- REMOVE S-->g. <!-- REMOVE S-->tempore 2. &longs;ecundo&shy;<lb/>rum, quod fer&egrave; cum experientia con&longs;entit; </s>
					<s id="N19CD4"><!-- NEW -->&longs;it aliud &longs;patium 100. tempus <lb/>primi motus e&longs;t ad tempus &longs;ecundi vt v. <!-- REMOVE S-->g. <!-- REMOVE S-->48. ad v. <!-- REMOVE S-->g. <!-- REMOVE S-->100. quia &longs;patia <lb/>&longs;unt vt quadrata temporum; </s>
					<s id="N19CE4"><!-- NEW -->igitur tempora vt radices 4. hinc vires &longs;unt <lb/>in ratione temporum; </s>
					<s id="N19CEA"><!-- NEW -->quia vt temporibus &aelig;qualibus acquiruntur &aelig;qua&shy;<lb/>lia velocitatis momenta in motu naturali, ita &amp; de&longs;truuntur &aelig;qualia in <lb/>motu violento, qu&aelig; omnia con&longs;tant; igitur ictus &longs;unt vt vires, vires vt <lb/>tempora, tempora denique, vt radices <expan abbr="q.">que</expan> &longs;patiorum. </s>
				</p>
				<p id="N19CF8" type="main">
					<s id="N19CFA"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 150.<emph.end type="center"/></s>
				</p>
				<p id="N19D06" type="main">
					<s id="N19D08"><!-- NEW --><emph type="italics"/>In vltimo contactu motus violenti nullus e&longs;t ictus, v. <!-- REMOVE S-->g. <!-- REMOVE S-->mobile projectum <lb/>&longs;ur&longs;um<emph.end type="italics"/> <emph type="italics"/>per lineam<emph.end type="italics"/> FA <emph type="italics"/>nullam percu&longs;&longs;ionem infligeret in<emph.end type="italics"/> A; </s>
					<s id="N19D23"><!-- NEW -->probatur <lb/>quia non tendit vlteri&ugrave;s; </s>
					<s id="N19D29"><!-- NEW -->igitur non impeditur eius motus &agrave; &longs;uperficie <lb/>corporis terminati ad punctum A; igitur nullum impetum in eo produ&shy;<lb/>cit, qui tant&ugrave;m producitur ad tollendum impedimentum per Th.44.l.1. <lb/>igitur nullum ictum infligit, qui tant&ugrave;m infligitur per impetum, vt <lb/>con&longs;tat. </s>
				</p>
				<p id="N19D35" type="main">
					<s id="N19D37"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 51.<emph.end type="center"/></s>
				</p>
				<p id="N19D43" type="main">
					<s id="N19D45"><emph type="italics"/>Ex his &longs;atis facil&egrave; comparari po&longs;&longs;unt rationes percu&longs;&longs;ionis,<emph.end type="italics"/> qu&aelig; infliguntur <pb pagenum="146" xlink:href="026/01/178.jpg"/>t&ugrave;m ex ca&longs;u corporis grauis cadentis, t&ugrave;m ex vi mallei impacti, t&ugrave;m ex <lb/>impetu corporis projecti, t&ugrave;m ex grauitatione corporis grauis incum&shy;<lb/>bentis, qu&aelig; omnia h&icirc;c fu&longs;i&ugrave;s e&longs;&longs;ent tractanda, ni&longs;i locum proprium infr&agrave; <lb/>&longs;ibi vendicarent. </s>
				</p>
				<p id="N19D58" type="main">
					<s id="N19D5A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 52.<emph.end type="center"/></s>
				</p>
				<p id="N19D66" type="main">
					<s id="N19D68"><emph type="italics"/>Ad motum violentum non concurrit impetus innatus,<emph.end type="italics"/> probatur, quia im&shy;<lb/>petus ad lineas oppo&longs;itas ex diametro determinati ad communem li&shy;<lb/>neam determinari non po&longs;&longs;unt, cur enim poti&ugrave;s dextror&longs;um quam &longs;ini&shy;<lb/>stror&longs;um? </s>
					<s id="N19D76">igitur non concurrunt ad communem motum, ni&longs;i dicatur <lb/>impetus innatus valeo nomine concurrere ad violentum, quod eius li&shy;<lb/>neam &longs;ingulis temporibus qua&longs;i ca&longs;tiget, vltr&oacute;que, vel vlteri&ugrave;s currentem <lb/>contineat. </s>
				</p>
				<p id="N19D7F" type="main">
					<s id="N19D81"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 53.<emph.end type="center"/></s>
				</p>
				<p id="N19D8D" type="main">
					<s id="N19D8F"><!-- NEW --><emph type="italics"/>Hinc ad motum violentum impetus ab exteriore potentia mobili impre&longs;&longs;us <lb/>tant&ugrave;m concurrit<emph.end type="italics"/>; </s>
					<s id="N19D9A"><!-- NEW -->patet, cum enim in mobili projecto &longs;ur&longs;um &longs;it tant&ugrave;m <lb/>ille impetus pr&aelig;ter innatum, nec innatus concurrat per Th. 52. illum <lb/>tant&ugrave;m concurrere nece&longs;&longs;e e&longs;t: excipe &longs;emper impetum acqui&longs;itum, de <lb/>quo iam &longs;upr&agrave;. </s>
				</p>
				<p id="N19DA4" type="main">
					<s id="N19DA6"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 54.<emph.end type="center"/></s>
				</p>
				<p id="N19DB2" type="main">
					<s id="N19DB4"><!-- NEW --><emph type="italics"/>Primo instanti quo producitur impetus ille &agrave; potentia motrice in mobili, me&shy;<lb/>diante &longs;cilicet impetu producto in organo proprio, non e&longs;t motus<emph.end type="italics"/>; probatur, <lb/>quia primo in&longs;tanti, quo e&longs;t impetus, non e&longs;t motus, per Th.34.l.1. <!-- KEEP S--></s>
				</p>
				<p id="N19DC2" type="main">
					<s id="N19DC4"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 55.<emph.end type="center"/></s>
				</p>
				<p id="N19DD0" type="main">
					<s id="N19DD2"><!-- NEW --><emph type="italics"/>Impetus productus in manu producit impetum in organo vel in mobili pri&shy;<lb/>mo in&longs;tanti, quo e&longs;t<emph.end type="italics"/>; </s>
					<s id="N19DDD"><!-- NEW -->probatur, quia &longs;ecundo in&longs;tanti exigit motum &longs;ui &longs;ub&shy;<lb/>jecti; </s>
					<s id="N19DE3"><!-- NEW -->igitur tolli etiam impedimentum; </s>
					<s id="N19DE7"><!-- NEW -->igitur per motum medij; </s>
					<s id="N19DEB"><!-- NEW -->igitur <lb/>priori in&longs;tanti in eodem mobili debet e&longs;&longs;e impetus; </s>
					<s id="N19DF1"><!-- NEW -->igitur produci ab <lb/>impetu organi; igitur &amp; in organo ab impetu manus. </s>
				</p>
				<p id="N19DF7" type="main">
					<s id="N19DF9"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 56.<emph.end type="center"/></s>
				</p>
				<p id="N19E05" type="main">
					<s id="N19E07"><!-- NEW --><emph type="italics"/>Primo in&longs;tanti, quo producitur impetus in motu violento, nullus eius gra&shy;<lb/>dus de&longs;truitur<emph.end type="italics"/>; probatur, quia alioquin &longs;imul eodem in&longs;tanti, quo e&longs;&longs;e in&shy;<lb/>ciperet, e&longs;&longs;e de&longs;ineret, quod dici non pote&longs;t. </s>
				</p>
				<p id="N19E14" type="main">
					<s id="N19E16"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 57.<emph.end type="center"/></s>
				</p>
				<p id="N19E22" type="main">
					<s id="N19E24"><!-- NEW --><emph type="italics"/>Impetus innatus impedit ne producatur tantus impetus in motu violento,<emph.end type="italics"/><lb/>probatur, quia cert&egrave; t&agrave;m impedit primam productionem, qu&agrave;m con&longs;er&shy;<lb/>uationem, vt patet; </s>
					<s id="N19E30"><!-- NEW -->e&longs;t enim par vtrobique ratio; pr&aelig;terea agit in ip&longs;am <lb/>manum. </s>
				</p>
				<p id="N19E36" type="main">
					<s id="N19E38"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 58.<emph.end type="center"/></s>
				</p>
				<p id="N19E44" type="main">
					<s id="N19E46"><!-- NEW --><emph type="italics"/>Impetus violentus producitur minor, qu&agrave;m produceretur vno dumtaxat gra&shy;<lb/>du aquali ip&longs;i impetui innato<emph.end type="italics"/>; </s>
					<s id="N19E51"><!-- NEW -->quippe &longs;icut de&longs;truit &longs;ingulis in&longs;tantibus <lb/>&aelig;qualibus vnum gradum; </s>
					<s id="N19E57"><!-- NEW -->quia pugnat pro rata; </s>
					<s id="N19E5B"><!-- NEW -->ita pror&longs;us impedit, ne <pb pagenum="147" xlink:href="026/01/179.jpg"/>producatur vnus gradus &longs;ibi &aelig;qualis primo in&longs;tanti; cur enim duo po&shy;<lb/>ti&ugrave;s, qu&agrave;m tres? </s>
				</p>
				<p id="N19E66" type="main">
					<s id="N19E68"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 59.<emph.end type="center"/></s>
				</p>
				<p id="N19E74" type="main">
					<s id="N19E76"><!-- NEW --><emph type="italics"/>Secundo &longs;tatim in&longs;tanti de&longs;truit alterum gradum<emph.end type="italics"/>: </s>
					<s id="N19E7F"><!-- NEW -->quippe e&longs;t cau&longs;a ne&shy;<lb/>ce&longs;&longs;aria; </s>
					<s id="N19E85"><!-- NEW -->igitur &longs;tatim primo in&longs;tanti exigit de&longs;tructionem; </s>
					<s id="N19E89"><!-- NEW -->non cert&egrave; <lb/>pro primo in&longs;tanti per Th.56.igitur pro &longs;ecundo, atque ita pro aliis dein&shy;<lb/>ceps; de&longs;truitur autem, ne &longs;it fru&longs;tr&agrave; eo modo, quo diximus &longs;upr&agrave;. </s>
				</p>
				<p id="N19E91" type="main">
					<s id="N19E93"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 60.<emph.end type="center"/></s>
				</p>
				<p id="N19E9F" type="main">
					<s id="N19EA1"><!-- NEW --><emph type="italics"/>Hinc optima ratio illius instituti natur&aelig;, quo factum e&longs;t, vt impetus innatus <lb/>numquam destruatur<emph.end type="italics"/>; </s>
					<s id="N19EAC"><!-- NEW -->ne &longs;i aliquando de&longs;trueretur, nulla e&longs;&longs;et cau&longs;a de&shy;<lb/>&longs;tructiua impetus violenti; ac proinde &aelig;quabilis e&longs;&longs;et, &longs;emperque dura&shy;<lb/>ret, de&longs;tructiua inquam &longs;uo modo. </s>
				</p>
				<p id="N19EB4" type="main">
					<s id="N19EB6"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 61.<emph.end type="center"/></s>
				</p>
				<p id="N19EC2" type="main">
					<s id="N19EC4"><!-- NEW --><emph type="italics"/>Hinc corpus quod non grauitat, facil&egrave; proijcitur, vel impellitur<emph.end type="italics"/>: </s>
					<s id="N19ECD"><!-- NEW -->&longs;ic na&shy;<lb/>uis aquis innatans, nubes in a&euml;re liberat&aelig;; halitus, atque adeo ip&longs;&aelig; partes <lb/>aqu&aelig;, quas perexiguus lapillus in orbes pen&egrave; innumeros agit, ne quid <lb/>dicam de partibus a&euml;ris, qu&aelig; tam cit&ograve; &amp; procul mouentur, vt con&longs;tat in <lb/>&longs;ono, motu &longs;cilicet fer&egrave; &aelig;quabili. </s>
				</p>
				<p id="N19ED9" type="main">
					<s id="N19EDB"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 62.<emph.end type="center"/></s>
				</p>
				<p id="N19EE7" type="main">
					<s id="N19EE9"><!-- NEW --><emph type="italics"/>Hinc etiam &egrave; contrario corpus grauius difficili&ugrave;s &longs;ur&longs;um proijcitur<emph.end type="italics"/>: </s>
					<s id="N19EF2"><!-- NEW -->t&ugrave;m <lb/>quia plures partes impetus &longs;unt producend&aelig; in &longs;ubjecto grauiore quod <lb/>pluribus partibus con&longs;tat, t&ugrave;m impetus innatus maior e&longs;t, non quidem in <lb/>inten&longs;ione &longs;ed in exten&longs;ione, ac proinde impedit ne plures gradus pro&shy;<lb/>ducantur; quippe maius impedimentum plus impedit, quis hoc neget? </s>
				</p>
				<p id="N19EFE" type="main">
					<s id="N19F00"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 63.<emph.end type="center"/></s>
				</p>
				<p id="N19F0C" type="main">
					<s id="N19F0E"><!-- NEW --><emph type="italics"/>Omnes partes impetus product&aelig; in mobili primo instanti concurrunt ad <lb/>motum &longs;ecundi instantis<emph.end type="italics"/>; probatur, quia alioqui aliqua e&longs;&longs;et fru&longs;tr&agrave;, quod <lb/>dici non debet. </s>
				</p>
				<p id="N19F1B" type="main">
					<s id="N19F1D"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 64.<emph.end type="center"/></s>
				</p>
				<p id="N19F29" type="main">
					<s id="N19F2B"><!-- NEW --><emph type="italics"/>Concurrunt omnes ill&aelig;, qu&aelig; in&longs;unt eidem parti &longs;eu puncto mobilis <expan abbr="commun">communes</expan> <lb/>qua&longs;i actione vel exigentia<emph.end type="italics"/>; patet ex dictis de impetu, quia concurrunt ad <lb/>velocitatem, qu&aelig; e&longs;t indiui&longs;ibilis actu. </s>
				</p>
				<p id="N19F3C" type="main">
					<s id="N19F3E"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 65.<emph.end type="center"/></s>
				</p>
				<p id="N19F4A" type="main">
					<s id="N19F4C"><!-- NEW --><emph type="italics"/>Non ponitur tamen totus motus &longs;ecundo instanti, quem exigunt primo; <emph.end type="italics"/><lb/>quia impetus innatus aliquid detrahit, cum exigat motum deor&longs;um per <lb/>lineam oppo&longs;itam, igitur imminuitur motus pro rata. </s>
				</p>
				<p id="N19F58" type="main">
					<s id="N19F5A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 66.<emph.end type="center"/></s>
				</p>
				<p id="N19F66" type="main">
					<s id="N19F68"><!-- NEW --><emph type="italics"/>Hinc ille gradus motus qui non ponitur &longs;ecundo instanti respondet gradus <lb/>impetus qui destruitur<emph.end type="italics"/>; cum vterque habeat <expan abbr="e&atilde;dem">eandem</expan> men&longs;uram, &longs;cilicet <lb/>impetum innatum. </s>
				</p>
				<pb pagenum="148" xlink:href="026/01/180.jpg"/>
				<p id="N19F7D" type="main">
					<s id="N19F7F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 67.<emph.end type="center"/></s>
				</p>
				<p id="N19F8B" type="main">
					<s id="N19F8D"><!-- NEW --><emph type="italics"/>Hinc effectus pete&longs;t e&longs;&longs;e eo instanti quo non existit eius cau&longs;a partialis<emph.end type="italics"/>; </s>
					<s id="N19F96"><!-- NEW -->v.g. <!-- REMOVE S--><lb/>motus qui ponitur &longs;ecundo in&longs;tanti non min&ugrave;s exigitur ab eo gradu im&shy;<lb/>petus qui de&longs;truitur &longs;ecund&ograve; in&longs;tanti, qu&agrave;m ab aliis, non exigitur qui&shy;<lb/>dem &longs;ecundo &longs;ed primo pro &longs;ecundo; </s>
					<s id="N19FA1"><!-- NEW -->vnde dixi cau&longs;am partialem, quia <lb/>etiam exigitur ab aliis gradibus impetus, qui non de&longs;truuntur exigenti&acirc; <lb/>communi; </s>
					<s id="N19FA9"><!-- NEW -->quippe impetus non exigit ni&longs;i pro &longs;ecundo in&longs;tanti; </s>
					<s id="N19FAD"><!-- NEW -->nec vl&shy;<lb/>lum ab&longs;urdum e&longs;t eo in&longs;tanti cau&longs;am exigenti&aelig; non exi&longs;tere cum poni&shy;<lb/>tur eius effectus, &longs;cilicet id quod exigebat priori in&longs;tanti quo erat; </s>
					<s id="N19FB5"><!-- NEW -->nul&shy;<lb/>lus e&longs;t enim influxus huius cau&longs;&aelig;; pr&aelig;&longs;ertim cum non &longs;it cau&longs;a <lb/>totalis. </s>
				</p>
				<p id="N19FBD" type="main">
					<s id="N19FBF"><!-- NEW -->Vnde cum effectus qui ponitur &longs;ecundo in&longs;tanti non re&longs;pondeat per&shy;<lb/>fectioni cau&longs;&aelig; totius propter impedimentum, aliquis gradus cau&longs;&aelig; e&longs;&longs;et <lb/>fru&longs;tr&agrave;; </s>
					<s id="N19FC7"><!-- NEW -->igitur eodem in&longs;tanti &longs;ecundo de&longs;trui debet, alioqui ni&longs;i de&longs;true&shy;<lb/>retur &longs;ingulis in&longs;tantibus poneretur effectus non re&longs;pondens perfectioni <lb/>cau&longs;&aelig;; </s>
					<s id="N19FCF"><!-- NEW -->imm&ograve; numquam de&longs;trueretur totus motus violentus, vt con&longs;tat; </s>
					<s id="N19FD3"><!-- NEW --><lb/>itaque primo in&longs;tanti omnes gradus impetus qui &longs;unt exigunt motum <lb/>pro &longs;ecundo ne aliquis eo in&longs;tanti &longs;it fru&longs;tr&agrave; &longs;i non exigeret, &amp; &longs;ecundo <lb/>in&longs;tanti aliquis gradus impetus de&longs;truitur, ne &longs;it fru&longs;tr&agrave; eodem in&longs;tanti <lb/>&longs;ecundo, cum &longs;cilicet non &longs;int tot gradus motus, quot &longs;unt gradus impe&shy;<lb/>tus; atque ita deinceps tertio in&longs;tanti de&longs;truitur vnus gradus, vt iam &longs;u&shy;<lb/>pr&agrave; dictum e&longs;t. </s>
				</p>
				<p id="N19FE2" type="main">
					<s id="N19FE4"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 68.<emph.end type="center"/></s>
				</p>
				<p id="N19FF0" type="main">
					<s id="N19FF2"><emph type="italics"/>Ideo de&longs;truitur poti&ugrave;s vnus gradus impetus qu&agrave;m alius &longs;ecundo in&longs;tanti, <lb/>tertioque, &amp;c. </s>
					<s id="N19FF9"><!-- NEW -->quia talis e&longs;t perfectionis<emph.end type="italics"/>; </s>
					<s id="N1A000"><!-- NEW -->hoc iam &longs;upr&agrave; explicatum e&longs;t; quia <lb/>cum motus initio &longs;it velocior, in&longs;tantia &longs;unt minora, igitur min&ugrave;s im&shy;<lb/>petus in &longs;ingulis de&longs;truitur, pater ex dictis. </s>
				</p>
				<p id="N1A008" type="main">
					<s id="N1A00A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 69.<emph.end type="center"/></s>
				</p>
				<p id="N1A016" type="main">
					<s id="N1A018"><!-- NEW --><emph type="italics"/>Ille gradus impetus qui de&longs;truitur &longs;ecundo in&longs;tanti non concurrit ad motum <lb/>tertij in&longs;tantis<emph.end type="italics"/>; </s>
					<s id="N1A023"><!-- NEW -->quia non pote&longs;t concurrere ad motum ni&longs;i exigendo; </s>
					<s id="N1A027"><!-- NEW -->at&shy;<lb/>qui exigere tant&ugrave;m pote&longs;t, quando e&longs;t; </s>
					<s id="N1A02D"><!-- NEW -->quod enim non e&longs;t non exigit, <lb/>&longs;ed motus tertij in&longs;tantis exigitur &longs;ecundo; </s>
					<s id="N1A033"><!-- NEW -->&longs;ic enim tota res motus pro&shy;<lb/>cedit vt impetus primo in&longs;tanti exigat motum pro &longs;ecundo; </s>
					<s id="N1A039"><!-- NEW -->&amp; &longs;ecundo <lb/>pro tertio; </s>
					<s id="N1A03F"><!-- NEW -->&amp; tertio pro quarto, atque ita deinceps; </s>
					<s id="N1A043"><!-- NEW -->igitur impetus ille <lb/>qui de&longs;truitur; &longs;ecundo in&longs;tanti non exigit motum pro tertio, &amp; qui de&shy;<lb/>&longs;truitur tertio non exigit pro quarto, atque ita deinceps. </s>
				</p>
				<p id="N1A04B" type="main">
					<s id="N1A04D"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 70.<emph.end type="center"/></s>
				</p>
				<p id="N1A059" type="main">
					<s id="N1A05B"><!-- NEW --><emph type="italics"/>Hinc impetus innatus non concurrit ad motum violentum,<emph.end type="italics"/> vt dictum e&longs;t, <lb/>&longs;ed tant&ugrave;m impedit, immediat&egrave; quidem, quia cum exigat motum deor&shy;<lb/>s&ugrave;m, facit vt non &longs;it tantus motus &longs;ur&longs;um; </s>
					<s id="N1A068"><!-- NEW -->mediat&egrave; ver&ograve;, quia cum non <lb/>&longs;it tantus motus &longs;urs&ugrave;m, quantus e&longs;&longs;et, haud dubi&egrave; non re&longs;pondet ad&aelig;&shy;<lb/>quat&egrave; cau&longs;&aelig;; </s>
					<s id="N1A070"><!-- NEW -->igitur aliquid cau&longs;&aelig; fru&longs;tr&agrave; e&longs;t; </s>
					<s id="N1A074"><!-- NEW -->igitur de&longs;trui debet; hinc <pb pagenum="149" xlink:href="026/01/181.jpg"/>de&longs;truitur etiam hic impetus per principium commune, ne aliquid &longs;it <lb/>fru&longs;tr&agrave;. </s>
				</p>
				<p id="N1A07F" type="main">
					<s id="N1A081"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 71.<emph.end type="center"/></s>
				</p>
				<p id="N1A08D" type="main">
					<s id="N1A08F"><!-- NEW --><emph type="italics"/>Linea motus &longs;ur&longs;um determinatur &agrave; potentia motrice<emph.end type="italics"/>; </s>
					<s id="N1A098"><!-- NEW -->probatur, quia h&aelig;c <lb/>determinat impetum productum in manu vel in organo; </s>
					<s id="N1A09E"><!-- NEW -->hic ver&ograve; im&shy;<lb/>petum, quem producit in mobili &longs;urs&ugrave;m projecto; patet, quia nulla e&longs;t <lb/>alia cau&longs;a applicata. </s>
				</p>
				<p id="N1A0A6" type="main">
					<s id="N1A0A8"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 72.<emph.end type="center"/></s>
				</p>
				<p id="N1A0B4" type="main">
					<s id="N1A0B6"><!-- NEW --><emph type="italics"/>Tandem duo impetus violentus, &longs;cilicet, &amp; innatus ad &aelig;qualitatem perue&shy;<lb/>nirent, &longs;i vel vnus gradus violenti e&longs;&longs;et &aelig;qualis perfectionis cum innato<emph.end type="italics"/>; </s>
					<s id="N1A0C1"><!-- NEW -->cum <lb/>enim detrahatur &longs;emper pars aliquota alicuius totius, tandem perueni&shy;<lb/>tur ad vltimam; </s>
					<s id="N1A0C9"><!-- NEW -->igitur &longs;int 100. gradus impetus violenti, quorum quili&shy;<lb/>bet &longs;it &aelig;qualis impetui innato; </s>
					<s id="N1A0CF"><!-- NEW -->cert&egrave; cum temporibus &aelig;qualibus &aelig;qua&shy;<lb/>lis gradus impetus de&longs;truatur; </s>
					<s id="N1A0D5"><!-- NEW -->accipiatur illud tempus, in quo de&longs;trui&shy;<lb/>tur vnus, haud dubi&egrave; 100. &aelig;qualibus temporibus de&longs;truentur omnes 100. <lb/>igitur 99. in&longs;tantibus de&longs;truentur 99. gradus; </s>
					<s id="N1A0DD"><!-- NEW -->igitur &longs;upere&longs;t vnus; igitur <lb/>duo illi impetus perueniunt tandem ad &aelig;qualitatem. </s>
				</p>
				<p id="N1A0E3" type="main">
					<s id="N1A0E5"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 73.<emph.end type="center"/></s>
				</p>
				<p id="N1A0F1" type="main">
					<s id="N1A0F3"><!-- NEW --><emph type="italics"/>Vbi vterque perueni&longs;&longs;et ad &aelig;qualitatem, non e&longs;&longs;et potior ratio cur mobile mo&shy;<lb/>ueretur &longs;urs&ugrave;m qu&agrave;m deor&longs;um in&longs;tanti &longs;equenti<emph.end type="italics"/>; </s>
					<s id="N1A0FE"><!-- NEW -->probatur, quia t&agrave;m gra&shy;<lb/>dus impetus innati exigit motum deor&longs;um qu&agrave;m gradus impetus vio&shy;<lb/>lenti &longs;urs&ugrave;m; igitur neuter habebit motum per Th.133.l. </s>
					<s id="N1A106">1. <!-- KEEP S--></s>
				</p>
				<p id="N1A10A" type="main">
					<s id="N1A10C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 74.<emph.end type="center"/></s>
				</p>
				<p id="N1A118" type="main">
					<s id="N1A11A"><!-- NEW --><emph type="italics"/>Hinc ip&longs;o in&longs;tanti, quo e&longs;&longs;et &aelig;qualitas, e&longs;&longs;et adhuc motus<emph.end type="italics"/>; </s>
					<s id="N1A123"><!-- NEW -->quia in&longs;tanti <lb/>immediat&egrave; antecedenti erant duo gradus impetus violenti, &amp; vnus in&shy;<lb/>nati; igitur duo illi pr&aelig;ualent pro in&longs;tanti &longs;equenti, in quo e&longs;t &aelig;qua&shy;<lb/>litas. </s>
				</p>
				<p id="N1A12D" type="main">
					<s id="N1A12F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 75.<emph.end type="center"/></s>
				</p>
				<p id="N1A13B" type="main">
					<s id="N1A13D"><!-- NEW --><emph type="italics"/>Itaque quie&longs;ceret mobile ip&longs;o &longs;tatim in&longs;tanti, quod in&longs;tanti &aelig;qualitatis &longs;uc&shy;<lb/>cedit<emph.end type="italics"/>; patet, quia neuter impetus pro illo in&longs;tanti pr&aelig;ualere po&longs;&longs;et per <lb/>Th. 73. </s>
				</p>
				<p id="N1A14A" type="main">
					<s id="N1A14C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 76.<emph.end type="center"/></s>
				</p>
				<p id="N1A158" type="main">
					<s id="N1A15A"><!-- NEW --><emph type="italics"/>Igitur in&longs;tanti quietis nullus e&longs;&longs;et ampli&ugrave;s impetus violentus<emph.end type="italics"/>; </s>
					<s id="N1A163"><!-- NEW -->cum enim <lb/>&longs;ingulis in&longs;tantibus de&longs;truatur vnus gradus, v. <!-- REMOVE S-->g in&longs;tanti illo, quod &longs;e&shy;<lb/>quitur po&longs;t in&longs;tans &aelig;qualitatis, de&longs;truitur ille gradus, qui &longs;upere&longs;t; </s>
					<s id="N1A16D"><!-- NEW -->nec <lb/>pote&longs;t vel pl&ugrave;s, vel min&ugrave;s de&longs;trui; </s>
					<s id="N1A173"><!-- NEW -->pugnant enim pro rata; quod cert&egrave; <lb/>cuiquam fort&egrave; paradoxor videbitur, &longs;cilicet nullum tune e&longs;&longs;e motum <lb/>propter pugnam, cum tamen nulla e&longs;t amplius pugna. </s>
				</p>
				<p id="N1A17B" type="main">
					<s id="N1A17D"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 77.<emph.end type="center"/></s>
				</p>
				<p id="N1A189" type="main">
					<s id="N1A18B"><!-- NEW --><emph type="italics"/>Quies illa duraret tant&ugrave;m vno in&longs;tanti,<emph.end type="italics"/> probatur, quia cum in&longs;tanti quie&shy;<lb/>tis &longs;it tant&ugrave;m impetus innatus per Th. 76. cert&egrave; non impeditur quomi&shy;<lb/>nus habeat motum pro in&longs;tanti &longs;equenti, quem reuer&agrave; exigit; </s>
					<s id="N1A198"><!-- NEW -->igitur pro <pb pagenum="150" xlink:href="026/01/182.jpg"/>in&longs;tanti &longs;equenti moueritur; </s>
					<s id="N1A1A1"><!-- NEW -->&longs;ed pro alio antecedente mouebatur; igi&shy;<lb/>tur quies illa durat tant&ugrave;m vno in&longs;tanti. </s>
				</p>
				<p id="N1A1A7" type="main">
					<s id="N1A1A9"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 78.<emph.end type="center"/></s>
				</p>
				<p id="N1A1B5" type="main">
					<s id="N1A1B7"><!-- NEW --><emph type="italics"/>Quies illa non fit propter aliquam reflexionem, vt aliqui dicunt<emph.end type="italics"/>; </s>
					<s id="N1A1C0"><!-- NEW -->quia nul&shy;<lb/>la pror&longs;us e&longs;t reflexio, vbi nullum e&longs;t reflectens; </s>
					<s id="N1A1C6"><!-- NEW -->atqui nullum e&longs;t refle&shy;<lb/>ctens, vt patet, quia nullum e&longs;t corpus impediens motus propagationem; </s>
					<s id="N1A1CC"><!-- NEW --><lb/>lic&egrave;t enim medium impediat, non tamen per modum reflectentis pro&shy;<lb/>pri&egrave;; </s>
					<s id="N1A1D3"><!-- NEW -->immo vt dicemus infr&agrave; in puncto reflexionis nulla datur quies; &longs;ed <lb/>motus reflexus &longs;ibi vendicat librum &longs;ingularem. </s>
				</p>
				<p id="N1A1D9" type="main">
					<s id="N1A1DB"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 79.<emph.end type="center"/></s>
				</p>
				<p id="N1A1E7" type="main">
					<s id="N1A1E9"><emph type="italics"/>Hinc &longs;iue pr&aelig;ce&longs;&longs;erit motus violentus, &longs;iue non, corpus graue eodem vel &aelig;&shy;<lb/>quali motu deor&longs;um cadit,<emph.end type="italics"/> quia nullus amplius remanet impetus violen&shy;<lb/>tus in fine motus violenti, per Th.76. igitur &longs;olus impetus naturalis li&shy;<lb/>bero motu deors&ugrave;m fertur. </s>
				</p>
				<p id="N1A1F7" type="main">
					<s id="N1A1F9"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 80.<emph.end type="center"/></s>
				</p>
				<p id="N1A205" type="main">
					<s id="N1A207"><!-- NEW --><emph type="italics"/>Hinc reiicies aliquos apud Galileum, qui volunt ideo motum naturalem <lb/>accelerari, quia &longs;en&longs;im de&longs;truitur impetus violentus ant&egrave; impre&longs;&longs;us,<emph.end type="italics"/> quod pe&shy;<lb/>nitus ridiculum e&longs;t; quia lapis deci&longs;us &egrave; rupe etiam motu naturaliter <lb/>accelerato deor&longs;um cadit, lic&egrave;t e&ograve; nunquam motu violento euectus <lb/>fuerit. </s>
				</p>
				<p id="N1A218" type="main">
					<s id="N1A21A">Ob&longs;eruabis hanc hypothe&longs;im gradus impetus violenti &aelig;qualis perfe&shy;<lb/>ctionis cum innato e&longs;&longs;e fal&longs;am. </s>
					<s id="N1A21F">Prim&ograve;, quia commodius e&longs;t potenti&aelig; <lb/>motrici producere imperfectiorem impetum, &longs;ic enim plures illius gra&shy;<lb/>dus producere pote&longs;t. </s>
					<s id="N1A226"><!-- NEW -->Secund&ograve;, quia in reflexo &longs;ur&longs;um vltimus gradus <lb/>qui de&longs;truitur e&longs;t imperfectior innato, e&longs;t enim acqui&longs;itus; igitur in omni <lb/>alio motu &longs;urs&ugrave;m. </s>
					<s id="N1A22E"><!-- NEW -->Terti&ograve;, quia violentus e&longs;t cum innato in eadem &longs;ubie&shy;<lb/>cti parte; &longs;ed idem &longs;ubiectum formas homogeneas non patitur, de qu&ograve; <lb/>ali&agrave;s, hinc dicendum &longs;upere&longs;t non quie&longs;cere mobile in fine motus </s>
				</p>
				<p id="N1A236" type="main">
					<s id="N1A238"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 81.<emph.end type="center"/></s>
				</p>
				<p id="N1A244" type="main">
					<s id="N1A246"><!-- NEW --><emph type="italics"/>Corpus quod non grauitat proiicitur &longs;ur&longs;um motu &aelig;quabili per &longs;e<emph.end type="italics"/>; </s>
					<s id="N1A24F"><!-- NEW -->patet, quia <lb/>nihil e&longs;t quod de&longs;truat ip&longs;um impetum; </s>
					<s id="N1A255"><!-- NEW -->igitur &longs;emper moueretur, ni&longs;i <lb/>per accidens ab ip&longs;o medio eius motus retardaretur; </s>
					<s id="N1A25B"><!-- NEW -->vnde dixi <emph type="italics"/>per &longs;e,<emph.end type="italics"/><lb/>cum ratione medij retardetur; imm&ograve; qu&ograve; leuius e&longs;t, facili&ugrave;s &agrave; medio re&shy;<lb/>tinetur, vide Th.61. </s>
				</p>
				<p id="N1A268" type="main">
					<s id="N1A26A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 82.<emph.end type="center"/></s>
				</p>
				<p id="N1A276" type="main">
					<s id="N1A278"><!-- NEW --><emph type="italics"/>Non cre&longs;cit impetus naturalis in motu violento &longs;ur&longs;um<emph.end type="italics"/>; probatur prim&ograve;, <lb/>quia impetus naturalis aduentitius &longs;upponit motum deor&longs;um, ad cuius <lb/>inten&longs;ionem &agrave; natura fuit in&longs;titutus per re&longs;p. </s>
					<s id="N1A285">ad quartam obiect. </s>
					<s id="N1A288"><!-- NEW -->in di&longs;&shy;<lb/>&longs;ert.l.2. adde quod tardi&ugrave;s a&longs;cenderet, qu&agrave;m de&longs;cenderet; </s>
					<s id="N1A28E"><!-- NEW -->deinde velo&shy;<lb/>ci&ugrave;s de&longs;cenderet po&longs;tmotum violentum corpus graue, qu&agrave;m &longs;i nullo mo&shy;<lb/>tu violento pr&aelig;uio demitteretur deor&longs;um, qu&aelig; omnia experimentis <pb pagenum="151" xlink:href="026/01/183.jpg"/><expan abbr="eti&atilde;">etiam</expan> vulgaribus repugnant; imm&ograve; &amp; cunctis fer&egrave; pr&aelig;mi&longs;&longs;is Theorematis. <!-- KEEP S--></s>
				</p>
				<p id="N1A29F" type="main">
					<s id="N1A2A1"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 83.<emph.end type="center"/></s>
				</p>
				<p id="N1A2AD" type="main">
					<s id="N1A2AF"><!-- NEW --><emph type="italics"/>Motus violentus non tendit ad quietem per omnes tarditatis gradus, vt <lb/>pa&longs;&longs;im a&longs;&longs;erit Galileus<emph.end type="italics"/>; </s>
					<s id="N1A2BA"><!-- NEW -->Prim&ograve;, quia non &longs;unt infinita in&longs;tantia, &longs;ed retarda&shy;<lb/>tur tant&ugrave;m &longs;ingulis in&longs;tantibus; </s>
					<s id="N1A2C0"><!-- NEW -->Secund&ograve; in medio den&longs;iore min&ugrave;s du&shy;<lb/>rat; </s>
					<s id="N1A2C6"><!-- NEW -->igitur non tran&longs;it per tot gradus tarditatis; </s>
					<s id="N1A2CA"><!-- NEW -->pr&aelig;terea in plano incli&shy;<lb/>nato &longs;ur&longs;um &icirc;n minore proportione retardatur motus, quod etiam in <lb/>plano horizontali certi&longs;&longs;imum e&longs;t; quorum omnium rationes &longs;uo loco <lb/>videbimus. </s>
				</p>
				<p id="N1A2D4" type="main">
					<s id="N1A2D6"><!-- NEW -->Nec e&longs;t quod aliqui dicant infinito tribui non po&longs;&longs;e h&aelig;c pr&aelig;dicata <lb/>&aelig;qualitatis vel in&aelig;qualitatis, quod fal&longs;um e&longs;t, loquamur de infinito actu; </s>
					<s id="N1A2DC"><!-- NEW --><lb/>&longs;i enim e&longs;&longs;et numerus infinitus hominum, nunquid verum e&longs;&longs;et dicere <lb/>numerum oculorum e&longs;&longs;e maiorem numero hominum; </s>
					<s id="N1A2E3"><!-- NEW -->nec e&longs;t quod ali&shy;<lb/>qui confugiant ad di&longs;iunctiones; </s>
					<s id="N1A2E9"><!-- NEW -->nos rem i&longs;tam &longs;uo loco fus&egrave; tractabi&shy;<lb/>mus &amp; demon&longs;trabimus, ni fallor, cum Ari&longs;totele, fieri non p&ograve;&longs;&longs;e vt &longs;it <lb/>aliquod creatum infinitum actu; </s>
					<s id="N1A2F1"><!-- NEW -->lic&egrave;t vltr&ograve; concedamus plura e&longs;&longs;e infi&shy;<lb/>nita potenti&acirc;; &amp; ver&ograve; certum e&longs;t infinito potenti&acirc; non ine&longs;&longs;e huiu&longs;modi <lb/>pr&aelig;dicata &aelig;qualitatis, vel in&aelig;qualitatis. </s>
				</p>
				<p id="N1A2F9" type="main">
					<s id="N1A2FB"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 84.<emph.end type="center"/></s>
				</p>
				<p id="N1A307" type="main">
					<s id="N1A309"><!-- NEW --><emph type="italics"/>Imm&ograve; &longs;i tran&longs;iret mobile &longs;urs&ugrave;m proiectum per omnes tarditatis gradus, <lb/>nunquam profect&ograve; de&longs;cenderat<emph.end type="italics"/>; </s>
					<s id="N1A314"><!-- NEW -->quia cum &longs;ingulis in&longs;tantibus &longs;inguli gra&shy;<lb/>dus re&longs;pondeant, &amp; duo in&longs;tantia &longs;imul e&longs;&longs;e non po&longs;&longs;int; </s>
					<s id="N1A31A"><!-- NEW -->nunquam cert&egrave; <lb/>verum e&longs;&longs;et dicere fluxi&longs;&longs;e infinita; </s>
					<s id="N1A320"><!-- NEW -->igitur nec mobile per infinitos tar&shy;<lb/>ditatis gradus ad quietem perueni&longs;&longs;e; hoc Theorema &longs;upponit e&longs;&longs;e tan&shy;<lb/>t&ugrave;m finita in&longs;tantia. </s>
				</p>
				<p id="N1A328" type="main">
					<s id="N1A32A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 85.<emph.end type="center"/></s>
				</p>
				<p id="N1A336" type="main">
					<s id="N1A338"><!-- NEW --><emph type="italics"/>Re&longs;i&longs;tentia a&euml;ris est maior initio, qu&agrave;m in fine motus violenti,<emph.end type="italics"/> vt con&longs;tat ex <lb/>dictis, quia initio motus e&longs;t velocior, igitur plures partes a&euml;ris &aelig;quali <lb/>tempore re&longs;i&longs;tunt; in fine ver&ograve; &egrave; contrario. </s>
				</p>
				<p id="N1A345" type="main">
					<s id="N1A347"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 86.<emph.end type="center"/></s>
				</p>
				<p id="N1A353" type="main">
					<s id="N1A355"><!-- NEW --><emph type="italics"/>Hinc oppo&longs;ita e&longs;t omnin&ograve; ratio re&longs;istentia, qu&aelig; &longs;equitur ex motu violento illi, <lb/>qu&aelig; cum naturali e&longs;t coniuncta,<emph.end type="italics"/> h&aelig;c enim initio minor, in fine maior, illa <lb/>ver&ograve; initio maior, &amp; in fine minor; hinc prima cre&longs;cit cam &longs;uo motu, <lb/>&longs;ecunda cum &longs;uo decre&longs;cit. </s>
				</p>
				<p id="N1A364" type="main">
					<s id="N1A366"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 87.<emph.end type="center"/></s>
				</p>
				<p id="N1A372" type="main">
					<s id="N1A374"><!-- NEW --><emph type="italics"/>Decre&longs;cit igitur impetus eadem proportione, qua decre&longs;cit re&longs;i&longs;tentia<emph.end type="italics"/>; vt pa&shy;<lb/>tet ex dictis; igitur in toto motu eadem e&longs;t re&longs;i&longs;tenti&aelig; proportio. </s>
				</p>
				<p id="N1A37F" type="main">
					<s id="N1A381"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 88.<emph.end type="center"/></s>
				</p>
				<p id="N1A38D" type="main">
					<s id="N1A38F"><!-- NEW --><emph type="italics"/>Vari&aelig; &longs;unt potenti&aelig; motrices, &agrave; quibus mobile &longs;ur&longs;um proiici potest motu <lb/>violento,<emph.end type="italics"/> v.g. <!-- REMOVE S-->potentia motrix animantium, potentia motrix grauium mo&shy;<lb/>bili &longs;cilicet &longs;ur&longs;um repercu&longs;&longs;o; potentia motrix, qu&aelig; &longs;equitur ex com&shy;<lb/>pre&longs;&longs;ione &amp; rarefactione corporum, &longs;ed de his omnibus ali&agrave;s. </s>
				</p>
				<pb pagenum="152" xlink:href="026/01/184.jpg"/>
				<p id="N1A3A4" type="main">
					<s id="N1A3A6"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1A3B2" type="main">
					<s id="N1A3B4"><!-- NEW -->Ob&longs;eruabis prim&ograve; &longs;i aliquando accidat, vt aliqui volunt ictum, qui <lb/>&longs;tatim initio motus violenti infligitur, non e&longs;&longs;e maximum, &longs;ed minorem <lb/>eo, qui po&longs;t aliquod confectum &longs;patium infligitur; </s>
					<s id="N1A3BC"><!-- NEW -->quod probant in pila <lb/>ex fi&longs;tula &aelig;nea &longs;ur&longs;um emi&longs;&longs;a, qu&aelig; <expan abbr="moior&etilde;">maiorem</expan> ictum infligit in data di&longs;tantia, <lb/>quod &longs;an&egrave; &longs;i verum e&longs;t, h&aelig;c vnica e&longs;t, &longs;eu ratio, &longs;eu cau&longs;a, qu&ograve;d &longs;cilicet &longs;ur&shy;<lb/>&longs;um pila pellatur ab igne, qui ab ore fi&longs;tul&aelig; erumpens per aliquod &longs;pa&shy;<lb/>tium &agrave; tergo vrget; igni enim innatum e&longs;t &longs;ur&longs;um euolare. </s>
				</p>
				<p id="N1A3CC" type="main">
					<s id="N1A3CE">Ob&longs;eruabis &longs;ecund&ograve;, vix po&longs;&longs;e manu mobile &longs;ur&longs;um rect&agrave; proiici, quia <lb/>&longs;cilicet manus extremitas motu mixto mouetur ex duobus vel pluribus <lb/>circularibus, de quo infr&agrave;. </s>
				</p>
				<p id="N1A3D5" type="main">
					<s id="N1A3D7"><!-- NEW -->Ob&longs;erua terti&ograve;, non tant&ugrave;m propter grauitationem con&longs;eruari impe&shy;<lb/>tum naturalem innatum, &longs;ed etiam vt motui violento re&longs;i&longs;tat; at ver&ograve; <lb/>non re&longs;i&longs;teret, ni&longs;i grauitaret. </s>
				</p>
				<p id="N1A3DF" type="main">
					<s id="N1A3E1"><!-- NEW -->Ob&longs;erua quart&ograve;, reciprocas rationes motus naturalis &amp; violenti; in <lb/>quibus mirabile pror&longs;us fuit natur&aelig; in&longs;titutum, cum idem in vtroque il&shy;<lb/>larum &longs;it principium. </s>
				</p>
				<p id="N1A3E9" type="main">
					<s id="N1A3EB"><!-- NEW -->Ob&longs;erua quint&ograve;, finem motus violenti e&longs;&longs;e multiplicem, nullum ta&shy;<lb/>men &agrave; natura in&longs;titutum; </s>
					<s id="N1A3F1"><!-- NEW -->quippe potentia motrix, qu&aelig; agit ex appetitu <lb/>elicito, &lpar;vt vulg&ograve; aiunt,&rpar; &longs;eu cum cognitione, finem &longs;ibi proponit ad libi&shy;<lb/>t&ugrave;m; </s>
					<s id="N1A3F9"><!-- NEW -->illa ver&ograve; qu&aelig; vi compre&longs;&longs;ionis excitatur per accidens &longs;ur&longs;um agit <lb/>mobile poti&ugrave;s, qu&agrave;m per aliam lineam; repercu&longs;&longs;a &longs;urs&ugrave;m videntur e&longs;&longs;e <lb/>magis iuxta in&longs;titutum natur&aelig;. <lb/><figure id="id.026.01.184.1.jpg" xlink:href="026/01/184/1.jpg"/></s>
				</p>
			</chap>
			<chap id="N1A407">
				<pb pagenum="153" xlink:href="026/01/185.jpg"/>
				<figure id="id.026.01.185.1.jpg" xlink:href="026/01/185/1.jpg"/>
				<p id="N1A411" type="head">
					<s id="N1A413"><emph type="center"/>LIBER QVARTVS,  <lb/><emph type="italics"/>DE MOTV MIXTO EX <lb/>duobus, vel pluribus rectis.<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N1A422" type="main">
					<s id="N1A424"><!-- NEW -->MOTVM mixtum eum e&longs;&longs;e non dico, qui <lb/>ex pluribus aliis motibus componatur; <lb/>&longs;eu mi&longs;ceatur; </s>
					<s id="N1A42C"><!-- NEW -->nec enim plures motus <lb/>&longs;imul e&longs;&longs;e po&longs;&longs;unt in eodem mobili; </s>
					<s id="N1A432"><!-- NEW -->c&ugrave;m <lb/>tant&ugrave;m e&longs;&longs;e po&longs;&longs;it vno dumtaxat in&longs;tan&shy;<lb/>ti vnica migratio ex loco in locum; </s>
					<s id="N1A43A"><!-- NEW -->nec plura loca <lb/>naturali virtute &longs;imul acquiri po&longs;&longs;unt; </s>
					<s id="N1A440"><!-- NEW -->Igitur nec &longs;i&shy;<lb/>mul e&longs;&longs;e duo motus; </s>
					<s id="N1A446"><!-- NEW -->Itaque motus mixtus &longs;implex <lb/>e&longs;t, &longs;i con&longs;ideretur ratio, &amp; linea motus; </s>
					<s id="N1A44C"><!-- NEW -->mixtus ver&ograve; <lb/>dicitur, quod ex pluribus re&longs;ultet, qui reuer&acirc; non <lb/>&longs;unt, &longs;ed c&ugrave;m e&longs;&longs;e po&longs;&longs;int, qua&longs;i confluunt in tertium <lb/>motum communi &longs;umptu qua&longs;i de vtroque partici&shy;<lb/>pantem, quod totum fit propter diuer&longs;os impetus, <lb/>vel <expan abbr="e&utilde;dem">eundem</expan> ad diuer&longs;as lineas determinatum, vt fus&egrave; <lb/>explicabimus infr&agrave;: Porr&ograve; in hoc Libro explicamus <lb/>tant&ugrave;m motum mixtum, qui re&longs;ultat ex pluribus re&shy;<lb/>ctis, vt titulus ip&longs;e pr&aelig;fert. <lb/><gap desc="hr tag"/></s>
				</p>
				<p id="N1A467" type="main">
					<s id="N1A469"><emph type="center"/><emph type="italics"/>DEFINITIO 1.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1A475" type="main">
					<s id="N1A477"><!-- NEW --><emph type="italics"/>MOtus mixtus e&longs;t, qui &longs;equitur ex multiplici impetu ad <expan abbr="e&atilde;dem">eandem</expan>, vel di&shy;<lb/>uer&longs;as lineas determinato, vel eodem ad diuer&longs;as<emph.end type="italics"/>; </s>
					<s id="N1A486"><!-- NEW -->h&aelig;c definitio cla&shy;<lb/>ra e&longs;t; </s>
					<s id="N1A48C"><!-- NEW -->ob&longs;eruabis tant&ugrave;m ad motum mixtum &longs;ufficere duplicem impe-<pb pagenum="154" xlink:href="026/01/186.jpg"/>tum ad <expan abbr="e&atilde;dem">eandem</expan> lineam determinatam, deor&longs;um, v.g. <!-- REMOVE S-->in mobili proiecto; </s>
					<s id="N1A49B"><!-- NEW --><lb/>nec enim e&longs;t motus pur&egrave; naturalis, nec etiam violentus, vt con&longs;tat; igi&shy;<lb/>tur mixtus. </s>
				</p>
				<p id="N1A4A2" type="main">
					<s id="N1A4A4"><emph type="center"/><emph type="italics"/>Hypothe&longs;is<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1A4B1" type="main">
					<s id="N1A4B3"><!-- NEW --><emph type="italics"/>Cum proiicitur corpus per lineam horizontalem, vel inclinatum &longs;ur&longs;um, <lb/>vel deor&longs;um mobile percurrit lineam curuam<emph.end type="italics"/>; quod etiam pueri &longs;ciunt, qui <lb/>di&longs;co ludunt. </s>
				</p>
				<p id="N1A4C0" type="main">
					<s id="N1A4C2"><emph type="center"/><emph type="italics"/>Hypothe&longs;is<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1A4CF" type="main">
					<s id="N1A4D1"><!-- NEW --><emph type="italics"/>Globus etiam plumbeus &egrave; &longs;ummo malo malo mobilis nauis demi&longs;&longs;us per <lb/>lineam perpendicularem deor&longs;um minim&egrave; cadit, &longs;ed per curuam inclinatam<emph.end type="italics"/>: </s>
					<s id="N1A4DC"><!-- NEW --><lb/>h&aelig;c hypothe&longs;is mille &longs;altem nititur experimentis; </s>
					<s id="N1A4E1"><!-- NEW -->mod&ograve; &longs;ufficiat quod <lb/>&longs;it; nam propter quid &longs;it, demon&longs;trabo. </s>
				</p>
				<p id="N1A4E7" type="main">
					<s id="N1A4E9"><emph type="center"/><emph type="italics"/>Hypothe&longs;is<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1A4F6" type="main">
					<s id="N1A4F8"><!-- NEW --><emph type="italics"/>Proiectum per horizontalem &longs;ub finem motus min&ugrave;s ferit qu&agrave;m initio, im&ograve; <lb/>&amp; proiectum per inclinatam deor&longs;um<emph.end type="italics"/>; </s>
					<s id="N1A503"><!-- NEW -->h&aelig;c hypothe&longs;is centies probata fuit; <lb/>nec in dubium reuocari pote&longs;t. </s>
				</p>
				<p id="N1A509" type="main">
					<s id="N1A50B"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1A518" type="main">
					<s id="N1A51A"><!-- NEW --><emph type="italics"/>Omnis impetus qui mobili ine&longs;t dum ip&longs;um mouetur, pr&aelig;&longs;tat aliquid ad mo&shy;<lb/>tum<emph.end type="italics"/>; </s>
					<s id="N1A525"><!-- NEW -->vel enim retardat, vt impetus innatus retardat violentum, vt &longs;upr&agrave; <lb/>diximus; vel ad motum vn&agrave; cum alio, vel &longs;olus concurrit. </s>
					<s id="N1A52B">Ax.2. </s>
				</p>
				<p id="N1A52E" type="main">
					<s id="N1A530"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1A53D" type="main">
					<s id="N1A53F"><!-- NEW --><emph type="italics"/>Ille impetus qui alium retardat, haud dubi&egrave; retardat tant&ugrave;m pro rata<emph.end type="italics"/>; <lb/>hoc etiam &longs;upr&agrave; demon&longs;trauimus, &amp; qui de&longs;truitur, de&longs;truitur quoque <lb/>pro rata, ne &longs;it fru&longs;tr&agrave; qui de&longs;truitur. </s>
				</p>
				<p id="N1A54C" type="main">
					<s id="N1A54E"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1A55B" type="main">
					<s id="N1A55D"><!-- NEW --><emph type="italics"/>Ille impetus qui cum alio ad <expan abbr="e&utilde;dem">eundem</expan> motum concurrit, concurrit etiam pro <lb/>rata<emph.end type="italics"/>; hoc etiam &longs;upr&agrave; demon&longs;tratum e&longs;t, e&longs;t enim cau&longs;a nece&longs;&longs;aria, igitur <lb/>quantum pote&longs;t concurrit, igitur pro rata &longs;u&aelig; virtutis. </s>
				</p>
				<p id="N1A56E" type="main">
					<s id="N1A570"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1A57D" type="main">
					<s id="N1A57F"><!-- NEW --><emph type="italics"/>Lic&egrave;t &longs;int plures impetus in eodem mobili, non &longs;unt tamen plures &longs;imul li&shy;<lb/>ne&aelig; motus<emph.end type="italics"/>; ne mobile &longs;it &longs;imul in pluribus locis. </s>
				</p>
				<p id="N1A58A" type="main">
					<s id="N1A58C"><emph type="center"/><emph type="italics"/>Po&longs;tulatum<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1A599" type="main">
					<s id="N1A59B"><emph type="italics"/>Liceat a&longs;&longs;umere quamlibet coniugationem motuum,<emph.end type="italics"/> v. <!-- REMOVE S-->g. <!-- REMOVE S-->vel duorum &aelig;&shy;<lb/>quabilium, vel alterius &aelig;quabilis, &amp; alterius retardati, vel alterius &aelig;qua&shy;<lb/>bilis, &amp; alterius accelerati, vel alterius retardati, &amp; alterius accelera&shy;<lb/>ti, &amp;c. </s>
				</p>
				<p id="N1A5AD" type="main">
					<s id="N1A5AF"><emph type="center"/><emph type="italics"/>Po&longs;tulatum<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1A5BC" type="main">
					<s id="N1A5BE"><emph type="italics"/>Illa linea vocetur curua qu&aelig; con&longs;tat infinitis prope lateribus polygoni.<emph.end type="italics"/></s>
				</p>
				<p id="N1A5C5" type="main">
					<s id="N1A5C7"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1A5D4" type="main">
					<s id="N1A5D6"><!-- NEW --><emph type="italics"/>Motus mixtus ex duobus &aelig;quabilibus &aelig;qualibus e&longs;t rectus<emph.end type="italics"/>; &longs;it enim mo-<pb pagenum="155" xlink:href="026/01/187.jpg"/>bile in A, &longs;itque impetus per AB, &amp; alter &aelig;qualis per AD, motus mixtus <lb/>fiet per AE, a&longs;&longs;umpta &longs;cilicet DE &aelig;quali, &amp; parallela AB, quod probatur <lb/>per Th.137.l.1. <!-- KEEP S--></s>
				</p>
				<p id="N1A5E9" type="main">
					<s id="N1A5EB"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1A5F8" type="main">
					<s id="N1A5FA"><!-- NEW --><emph type="italics"/>Linea AE e&longs;t diagonalis quadrati, quotie&longs;cumque vterque impetus e&longs;t &aelig;&shy;<lb/>qualis, &amp; line&aelig; determinationum decu&longs;&longs;antur ad angulos rectos<emph.end type="italics"/>; probatur per <lb/>idem Th.137. <!-- KEEP S--></s>
				</p>
				<p id="N1A608" type="main">
					<s id="N1A60A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1A617" type="main">
					<s id="N1A619"><!-- NEW --><emph type="italics"/>Hinc de&longs;truitur aliquid impetus<emph.end type="italics"/>; </s>
					<s id="N1A622"><!-- NEW -->alioquin motus e&longs;&longs;et duplus cuiu&longs;li&shy;<lb/>bet &longs;eor&longs;im &longs;umpti, quod fal&longs;um e&longs;t; </s>
					<s id="N1A628"><!-- NEW -->nam motus &longs;unt vt line&aelig; &longs;ed diago&shy;<lb/>nalis quadrati non e&longs;t dupla lateris; hoc etiam probatur per Th. 141. <lb/>&amp; 142.l.1. </s>
				</p>
				<p id="N1A630" type="main">
					<s id="N1A632"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1A63F" type="main">
					<s id="N1A641"><!-- NEW --><emph type="italics"/>Motus mixtus ex duobus &aelig;quabilibus in&aelig;qualibus est etiam rectus<emph.end type="italics"/>; &longs;it <lb/>enim mobile in A eadem figura &longs;itque impetus per AC, &amp; alter &longs;ubdu&shy;<lb/>plus prioris per AD, motus fiet per AF ducta DF &aelig;quali, &amp; parallela AC, <lb/>quod probatur per Th.137.l.1. <!-- KEEP S--></s>
				</p>
				<p id="N1A651" type="main">
					<s id="N1A653"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 5.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1A660" type="main">
					<s id="N1A662"><!-- NEW --><emph type="italics"/>Linea AF e&longs;t diagonalis rectanguli, quotie&longs;cunque line&aelig; determinationum <lb/>decu&longs;&longs;antur ad angulos rectos<emph.end type="italics"/>; probatur per idem Th.137. <!-- KEEP S--></s>
				</p>
				<p id="N1A66E" type="main">
					<s id="N1A670"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 6.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1A67D" type="main">
					<s id="N1A67F"><emph type="italics"/>Hinc de&longs;truitur aliquid impetus per Th.<emph.end type="italics"/>141. &amp; 142.<emph type="italics"/>l.<emph.end type="italics"/>1. idque pro rata <lb/>ne aliquid &longs;it fru&longs;tr&agrave; per Ax.2. &amp; &longs;&aelig;p&egrave; iam probatum e&longs;t. </s>
				</p>
				<p id="N1A68F" type="main">
					<s id="N1A691"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 7.<emph.end type="center"/></s>
				</p>
				<p id="N1A69D" type="main">
					<s id="N1A69F"><!-- NEW --><emph type="italics"/>Hinc determinari pote&longs;t portio vtriu&longs;que impetus destructi,<emph.end type="italics"/> v.g. <!-- REMOVE S-->&longs;i &longs;int &aelig;&shy;<lb/>quales, portio detracta vtrique &aelig;qualibus temporibus e&longs;t differentia <lb/>diagonalis &amp; compo&longs;it&aelig; ex DA, AB, quod clarum e&longs;t; &longs;i vero impetus <lb/>&longs;int in&aelig;quales, portio de&longs;tructa erit &longs;emper differentia diagonalis, v.g. <!-- REMOVE S--><lb/>AF &amp; compo&longs;it&aelig; ex AC.AD. </s>
				</p>
				<p id="N1A6B3" type="main">
					<s id="N1A6B5"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 8.<emph.end type="center"/></s>
				</p>
				<p id="N1A6C1" type="main">
					<s id="N1A6C3"><!-- NEW --><emph type="italics"/>Aliquando impetus qui remanet in motu mixto est rationalis<emph.end type="italics"/>; </s>
					<s id="N1A6CC"><!-- NEW -->id e&longs;t habet <lb/>proportionem ad vtrumque, qu&aelig; appellari pote&longs;t, aliquando ad neutrum, <lb/><expan abbr="aliqu&atilde;do">aliquando</expan> ad alterutrum; </s>
					<s id="N1A6D7"><!-- NEW -->ad vtrumque v.g. <!-- REMOVE S-->&longs;i alter impetuum &longs;it 8.alter 6. <lb/>haud dubi&egrave; linea motus mixti erit 10. ad neutrum vt in diagonali qua&shy;<lb/>drati, &amp; in multis aliis; </s>
					<s id="N1A6E1"><!-- NEW -->ad alterum denique v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;i alter &longs;it &longs;ubduplus la&shy;<lb/>teris &aelig;quilateri; alter ver&ograve; eiu&longs;dem perpendicularis; nam diagonalis, &longs;eu <lb/>linea motus mixti erit latus ip&longs;um &aelig;quilateri. </s>
				</p>
				<p id="N1A6ED" type="main">
					<s id="N1A6EF"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 9.<emph.end type="center"/></s>
				</p>
				<p id="N1A6FB" type="main">
					<s id="N1A6FD"><!-- NEW --><emph type="italics"/>Si line&aelig; determinationum decu&longs;&longs;entur ad angulum obtu&longs;um, &longs;intque &aelig;qua&shy;<lb/>les impetus, linea motus mixti erit diagonalis Rhombi<emph.end type="italics"/>; </s>
					<s id="N1A708"><!-- NEW -->vt patet per Th.140. <lb/>l.1. pote&longs;t autem h&aelig;c diagonalis e&longs;&longs;e vel &aelig;qualis alteri laterum, vel ma-<pb pagenum="156" xlink:href="026/01/188.jpg"/>ior, vel minor; e&longs;t &aelig;qualis, quando angulus maior Rhombi e&longs;t 120. e&longs;t <lb/>minor c&ugrave;m angulus minor e&longs;t 60. denique e&longs;t maior, c&ugrave;m maior angu&shy;<lb/>lus e&longs;t minor 120, qu&aelig; omnia con&longs;tant ex Geometria. <!-- KEEP S--></s>
				</p>
				<p id="N1A718" type="main">
					<s id="N1A71A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 10.<emph.end type="center"/></s>
				</p>
				<p id="N1A726" type="main">
					<s id="N1A728"><!-- NEW --><emph type="italics"/>Si line&aelig; determinationum decu&longs;&longs;entur ad angulum acutum, &amp; &longs;int &aelig;qua&shy;<lb/>les impetus, linea motus mixti erit diagonalis Rhombi<emph.end type="italics"/>; qu&aelig; cert&egrave; e&ograve; longior <lb/>erit, qu&ograve; angulus erit acutior per Th. 139. l.1. porr&ograve; e&longs;t &longs;emper maior <lb/>lateribus &longs;eor&longs;im &longs;umptis. </s>
				</p>
				<p id="N1A737" type="main">
					<s id="N1A739"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1A745" type="main">
					<s id="N1A747"><!-- NEW -->Ob&longs;erua in Rhombo e&longs;&longs;e duas diagonales in&aelig;quales, vt con&longs;tat; </s>
					<s id="N1A74B"><!-- NEW -->igi&shy;<lb/>tur c&ugrave;m line&aelig; determinationum decu&longs;&longs;antur ad angulum obtu&longs;um, linea <lb/>motus mixti &longs;emper e&longs;t diagonalis minor; c&ugrave;m ver&ograve; decu&longs;&longs;antur ad an&shy;<lb/>gulum acutum, &longs;emper e&longs;t diagonalis maior. </s>
				</p>
				<p id="N1A755" type="main">
					<s id="N1A757"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1A764" type="main">
					<s id="N1A766"><!-- NEW -->Hinc qu&ograve; acutior e&longs;t angulus diagonalis accedit propi&ugrave;s ad duplum <lb/>lateris, donec tandem vtraque linea co&euml;at; tunc enim linea motus e&longs;t du&shy;<lb/>pla lateris. </s>
				</p>
				<p id="N1A76E" type="main">
					<s id="N1A770"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1A77D" type="main">
					<s id="N1A77F"><!-- NEW -->Hinc quoque qu&ograve; angulus e&longs;t obtu&longs;ior diagonalis accedit propi&ugrave;s ad <lb/>nullam, vt &longs;ic loquar, donec tandem vtraque linea concurrat in rectam, <lb/>tunc enim nulla e&longs;t diagonalis; igitur nulla linea motus. </s>
				</p>
				<p id="N1A787" type="main">
					<s id="N1A789"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 11.<emph.end type="center"/></s>
				</p>
				<p id="N1A795" type="main">
					<s id="N1A797"><!-- NEW --><emph type="italics"/>Cum alter impetuum e&longs;t maior, linea motus e&longs;t diagonalis Rhomboidis, mi&shy;<lb/>nor quidem &longs;i line&aelig; decu&longs;&longs;entur ad angulum obtu&longs;um; </s>
					<s id="N1A79F"><!-- NEW -->maior ver&ograve; &longs;i decu&longs;&longs;en&shy;<lb/>tur ad angulum acutum<emph.end type="italics"/>; vt patet ex dictis. </s>
				</p>
				<p id="N1A7A8" type="main">
					<s id="N1A7AA"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 12.<emph.end type="center"/></s>
				</p>
				<p id="N1A7B6" type="main">
					<s id="N1A7B8"><!-- NEW --><emph type="italics"/>Cum alter impetus in motu mixto est maior, linea motus mixti accedit <lb/>proprius ad lineam maioris; </s>
					<s id="N1A7C0"><!-- NEW -->hoc est facit angulum acutiorem cum illa<emph.end type="italics"/>; v.g. <!-- REMOVE S-->in <lb/>eadem figura &longs;it linea impetus maioris AC, &amp; minoris AD, linea motus <lb/>mixti e&longs;t diagonalis AF, qu&aelig; accedit propi&ugrave;s ad AC, qu&agrave;m ad AD, id e&longs;t <lb/>facit angulum acutiorem cum AC, vt patet ex dictis. </s>
				</p>
				<p id="N1A7CF" type="main">
					<s id="N1A7D1"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 13.<emph.end type="center"/></s>
				</p>
				<p id="N1A7DD" type="main">
					<s id="N1A7DF"><!-- NEW --><emph type="italics"/>Cum ver&ograve; impetus &longs;unt &aelig;quales, linea motus mixti facit angulum &aelig;qualem <lb/>cum linea vtriu&longs;que<emph.end type="italics"/>; vt AE in eadem figura quod etiam dici debet, lic&egrave;t <lb/>line&aelig; determinationum decu&longs;&longs;entur ad angulum obtu&longs;um vel acutum, <lb/> vt AC, EG. IM. </s>
				</p>
				<p id="N1A7EE" type="main">
					<s id="N1A7F0"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 14.<emph.end type="center"/></s>
				</p>
				<p id="N1A7FC" type="main">
					<s id="N1A7FE"><!-- NEW --><emph type="italics"/>Non cre&longs;cit, vel decre&longs;cit in eadem ratione, in qu&aelig; vnus impetus &longs;uperat <lb/>alium<emph.end type="italics"/>; </s>
					<s id="N1A809"><!-- NEW -->cum enim impetus &longs;int vt line&aelig;, &longs;ub quibus fiunt rectangula vel <lb/>Rhomboides; v.g. <!-- REMOVE S-->impetus AC e&longs;t duplus impetus AD, &longs;ed angulus D <lb/>AF non e&longs;t duplus anguli FAC, vt con&longs;tat ex Geometria. <!-- KEEP S--></s>
				</p>
				<pb pagenum="157" xlink:href="026/01/189.jpg"/>
				<p id="N1A818" type="main">
					<s id="N1A81A"><emph type="center"/><emph type="italics"/>Scolium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1A826" type="main">
					<s id="N1A828"><!-- NEW -->Ob&longs;eruabis dari de facto hunc motum mixtum ex duobus &aelig;quabilibus <lb/>in rerum natura; </s>
					<s id="N1A82E"><!-- NEW -->talis e&longs;t motus nauis, quam geminus ventus impellit in <lb/>mari, vel nubis, im&ograve; a&euml;ris pars in medio a&euml;re, atque adeo ip&longs;ius venti, <lb/>&longs;unt enim hi motus &aelig;quabiles per &longs;e; quippe retardantur &longs;olummodo <lb/>propter re&longs;i&longs;tentiam medij, non ver&ograve; propter vllam grauitationem. </s>
				</p>
				<p id="N1A838" type="main">
					<s id="N1A83A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 15.<emph.end type="center"/></s>
				</p>
				<p id="N1A846" type="main">
					<s id="N1A848"><!-- NEW --><emph type="italics"/>Motus mixtus ex duobus retardatis e&longs;t rectus<emph.end type="italics"/>; </s>
					<s id="N1A851"><!-- NEW -->&longs;it enim duplex impetus <lb/>per AE &amp; AH &aelig;qualis; </s>
					<s id="N1A857"><!-- NEW -->ita vt in dato tempore percurrat &longs;eor&longs;im AE mo&shy;<lb/>tu retardato; </s>
					<s id="N1A85D"><!-- NEW -->item AH iuxta proportionem Galilei; </s>
					<s id="N1A861"><!-- NEW -->cert&egrave; eo tempore quo <lb/>percurreret AD in AE, &amp; AI in AH percurrit AG motu m&icirc;xto per Th. <!-- REMOVE S--><lb/>5. Similiter eo tempore quo percurreret AE &longs;eor&longs;im, &amp; AH, percurrit <lb/>AF per Th.5. Igitur hic motus mixtus e&longs;t rectus, dum &longs;it vterque retar&shy;<lb/>datus iuxta <expan abbr="e&atilde;dem">eandem</expan> progre&longs;&longs;ionem; </s>
					<s id="N1A872"><!-- NEW -->&longs;imiliter &longs;i alter impetus impetus <lb/>&longs;it in&aelig;qualis, vt patet in &longs;equenti figura, &longs;it enim impetus per AE, &amp; <lb/>alter minor per AH, cert&egrave; ex AD, AI fit AG, &amp; ex AE, AH fit AF, quam <lb/>rectam e&longs;&longs;e con&longs;tat ex Geometria; nec vlla e&longs;t difficultas, qu&aelig; ex &longs;upe&shy;<lb/>rioribus Theorematis facil&egrave; &longs;olui non po&longs;&longs;it. </s>
				</p>
				<p id="N1A87E" type="main">
					<s id="N1A880"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1A88D" type="main">
					<s id="N1A88F">Hinc linea motus mixti ex duobus retardatis &longs;iue &aelig;qualibus, &longs;iue <lb/>in&aelig;qualibus e&longs;t diagonalis parallelogrammatis &longs;ub lineis determina&shy;<lb/>tionum. </s>
				</p>
				<p id="N1A896" type="main">
					<s id="N1A898"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1A8A4" type="main">
					<s id="N1A8A6">Ob&longs;eruabis dari de facto hunc motum in rerum natura, &longs;i v. <!-- REMOVE S-->g. <!-- REMOVE S-->in pla&shy;<lb/>no horizontali idem globus, vel &longs;imul gemino ictu impellatur, vel &longs;i iam <lb/>impul&longs;um mobile per nouam lineam impellatur. </s>
				</p>
				<p id="N1A8B1" type="main">
					<s id="N1A8B3"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 16.<emph.end type="center"/></s>
				</p>
				<p id="N1A8BF" type="main">
					<s id="N1A8C1"><!-- NEW --><emph type="italics"/>Motus mixtus ex duobus acceleratis uniformiter e&longs;t etiam rectus<emph.end type="italics"/>; </s>
					<s id="N1A8CA"><!-- NEW -->Proba&shy;<lb/>tur, quia debet tant&ugrave;m inuerti linea prioris &longs;cilicet mixti ex duobus re&shy;<lb/>tardatis; </s>
					<s id="N1A8D2"><!-- NEW -->&longs;i enim &agrave; puncto F pellatur per FE, FH, motu accelerato, ita <lb/>primo, tempori re&longs;pondeat FM, FN, &longs;ecundo NH, ME; </s>
					<s id="N1A8D8"><!-- NEW -->haud dubi&egrave; li&shy;<lb/>nea motus mixti erit FA; nam prim&ograve; tempori re&longs;pondebit FG, &amp; duo&shy;<lb/>bus FA, vt con&longs;tat ex dictis, &longs;iue vterque impetus &longs;it &aelig;qualis, &longs;iue alter <lb/>maior altero. </s>
				</p>
				<p id="N1A8E2" type="main">
					<s id="N1A8E4"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1A8F1" type="main">
					<s id="N1A8F3">Hinc etiam linea motus mixti ex duobus acceleratis e&longs;t diagonalis, <lb/>vt iam &longs;upr&agrave; dictum e&longs;t de omnibus aliis. </s>
				</p>
				<p id="N1A8F8" type="main">
					<s id="N1A8FA"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1A906" type="main">
					<s id="N1A908"><!-- NEW -->Ob&longs;eruabis hunc motum dari in rerum natura &longs;altem in corporibus <lb/>&longs;ublunaribus; nec enim e&longs;t acceleratus ni&longs;i &longs;it motus naturalis, qui &agrave; <lb/>duplici impetu e&longs;&longs;e non pote&longs;t. </s>
				</p>
				<pb pagenum="158" xlink:href="026/01/190.jpg"/>
				<p id="N1A914" type="main">
					<s id="N1A916"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 17.<emph.end type="center"/></s>
				</p>
				<p id="N1A922" type="main">
					<s id="N1A924"><!-- NEW --><emph type="italics"/>Si motus mixtus con&longs;tet ex &aelig;quabili, &amp; accelerato naturaliter &longs;it per li&shy;<lb/>neam curuam<emph.end type="italics"/>; </s>
					<s id="N1A92F"><!-- NEW -->&longs;it enim impetus per AF motu &aelig;quabili, &amp; per AC motu <lb/>accelerato naturaliter, ita vt eo tempore quo percurritur &longs;eor&longs;im &longs;pa&shy;<lb/>tium AB percurratur AD triplum; </s>
					<s id="N1A937"><!-- NEW -->cert&egrave; ex vtroque primo tempore re&shy;<lb/>&longs;ultat linea motus mixti AE, &longs;ecundo tempore EG, &longs;ed AEG non e&longs;t <lb/>recta; alioquin duo triangula ABE, ACG e&longs;&longs;ent proportionalia, quod <lb/>e&longs;t ab&longs;urdum. </s>
				</p>
				<p id="N1A941" type="main">
					<s id="N1A943"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 18.<emph.end type="center"/></s>
				</p>
				<p id="N1A94F" type="main">
					<s id="N1A951"><!-- NEW --><emph type="italics"/>H&aelig;c linea e&longs;t Parabola<emph.end type="italics"/>; </s>
					<s id="N1A95A"><!-- NEW -->quod ip&longs;e Galileus toties in&longs;inuauit, &amp; quiuis <lb/>etiam rudior Geometra intelliget; in quo diuti&ugrave;s non h&aelig;reo, pr&aelig;&longs;ertim <lb/>c&ugrave;m nullus &longs;it motus, qui con&longs;tet ex &aelig;quabili, &amp; naturaliter accelerato, <lb/>vt demon&longs;trabimus infr&agrave;. </s>
				</p>
				<p id="N1A964" type="main">
					<s id="N1A966"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 19.<emph.end type="center"/></s>
				</p>
				<p id="N1A972" type="main">
					<s id="N1A974"><!-- NEW --><emph type="italics"/>Si motus mixtus con&longs;tet ex &aelig;quabili &amp; naturaliter retardato, fit per lineam <lb/>curuam<emph.end type="italics"/>; &longs;i enim eo <expan abbr="t&etilde;pore">tempore</expan> quo per NE &longs;ur&longs;um proiicitur corpus graue <lb/>&amp; con&longs;equenter motu naturaliter retardato impellatur per NI motu <lb/>&aelig;quabili, diuidatur NI in 4. partes &aelig;quales v.g. <!-- REMOVE S-->ductis parallelis RD, <lb/>NE, PC, &amp;c. </s>
					<s id="N1A98B"><!-- NEW -->a&longs;&longs;umatur NS vel RM, cui affigatur quilibet numerus impar; </s>
					<s id="N1A98F"><!-- NEW --><lb/>put&agrave; 7. itaque RM &longs;int 7. ducatur HM parallel&aelig; IN, a&longs;&longs;umatur QL 5. <lb/>ducatur GL parallela, accipiatur VK 3. ducatur FK: </s>
					<s id="N1A996"><!-- NEW -->denique a&longs;&longs;umatur <lb/>FAI ducaturque AE parallela IN, &amp; de&longs;cribatur per puncta AKLMN, <lb/>linea curua; </s>
					<s id="N1A99E"><!-- NEW -->h&aelig;c e&longs;t Parabola, vt con&longs;tat ex Geometria; </s>
					<s id="N1A9A2"><!-- NEW -->nam &longs;i BK e&longs;t 1. <lb/>CL erit 4. DM 9. EV 16. &longs;ed &aelig;quales &longs;unt AF.AG.AH.AI. prioribus vt <lb/>patet; </s>
					<s id="N1A9AA"><!-- NEW -->igitur &longs;agitt&aelig; &longs;unt vt quadrata <expan abbr="applicatar&utilde;">applicatarum</expan>; </s>
					<s id="N1A9B2"><!-- NEW -->igitur h&aelig;c e&longs;t Parabola; <lb/>igitur curua, atqui motus mixtus pr&aelig;dictus fieret per hanc lineam, nam <lb/>eo tempore quo mobile e&longs;&longs;et in S, erit in M, concurrit enim vterque im&shy;<lb/>petus pro rata, &amp; eo tempore, quo e&longs;&longs;et in K erit in L, atque ita <lb/>deinceps. </s>
				</p>
				<p id="N1A9BE" type="main">
					<s id="N1A9C0"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1A9CC" type="main">
					<s id="N1A9CE"><!-- NEW -->Ob&longs;eruabis e&longs;&longs;e pror&longs;us inuer&longs;am prioris, qu&aelig; &longs;it ex motu &aelig;quabili, &amp; <lb/>naturaliter accelerato; </s>
					<s id="N1A9D4"><!-- NEW -->&longs;i enim per AE &longs;it &aelig;quabilis &amp; &aelig;qualis priori <lb/>per NI, &amp; per AI &longs;it acceleratus, &longs;i quo tempore peruenit in B motu &aelig;&shy;<lb/>quabili perueniat in F motu accelerato; haud dubi&egrave; perueniet in K, mox <lb/>in L, &amp;c. </s>
					<s id="N1A9DE"><!-- NEW -->quia eadem proportione, &longs;ed inuer&longs;a qu&acirc; retardatur, <lb/>acceleratur; </s>
					<s id="N1A9E4"><!-- NEW -->igitur &longs;i vltimo tempore retardati acquirit tant&ugrave;m <lb/>YE; </s>
					<s id="N1A9EA"><!-- NEW -->primo tempore &aelig;quali &longs;cilicet accelerati acquiret AF, atque ita <lb/>deinceps &longs;i per NE &longs;it retardatus, &amp; per NI &aelig;quabilis linea motus mixti <lb/>erit NLA; </s>
					<s id="N1A9F2"><!-- NEW -->&longs;i ver&ograve; &longs;it per AI acceleratus, &amp; per AE &aelig;quabilis &aelig;qualis <lb/>priori per NI, lineamosus mixti erit ALN eadem &longs;cilicet cum priori <lb/>mutatis tant&ugrave;m terminis &agrave; quo, &amp; ad quem; vtr&ugrave;m ver&ograve; in rerum natu&shy;<lb/>ra &longs;it huiu&longs;modi motus videbimus infr&agrave;. </s>
				</p>
				<pb pagenum="159" xlink:href="026/01/191.jpg"/>
				<p id="N1AA00" type="main">
					<s id="N1AA02"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 20.<emph.end type="center"/></s>
				</p>
				<p id="N1AA0E" type="main">
					<s id="N1AA10"><!-- NEW --><emph type="italics"/>Si con&longs;tet ex retardato &amp; accelerato, vt fit in perpendiculari &longs;ur&longs;um, &amp; <lb/>deor&longs;um motus mixtus, linea per quam fit e&longs;t curua,<emph.end type="italics"/> &longs;it enim retardatus <lb/>per AD, &longs;it acceleratus per AG, a&longs;&longs;umatur AB cum numero impari, put&agrave; <lb/>5.BC.3. CD.1. accipiatur AE.1. EF.3. ducantur parallel&aelig; BK. CL. DI. <lb/>&amp; ali&aelig; EM. FH. GI. &amp; per puncta AM. HI. ducatur linea curua, h&aelig;c e&longs;t <lb/>linea motus mixti ex retardato &amp; accelerato; h&aelig;c porr&ograve; non e&longs;t Parabo&shy;<lb/>la, vt con&longs;tat, quia quadratum AE non e&longs;t ad ad quadratum AF, vt qua&shy;<lb/>dratum AB, vel EM ad quadratum FH, vel AC. <!-- KEEP S--></s>
				</p>
				<p id="N1AA28" type="main">
					<s id="N1AA2A"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1AA36" type="main">
					<s id="N1AA38"><!-- NEW -->Ob&longs;eruabis in fine huius motus amplitudinem, &longs;eu &longs;inum rectum li&shy;<lb/>ne&aelig; &longs;cilicet GI, e&longs;&longs;e &aelig;qualem altitudini &longs;eu &longs;inui ver&longs;o, vel &longs;agitt&aelig; AG; </s>
					<s id="N1AA3E"><!-- NEW --><lb/>c&ugrave;m enim motus naturaliter acceleratus in eadem proportione cre&longs;cat, <lb/>quod hic &longs;uppono, in qua retardatus decre&longs;cit; </s>
					<s id="N1AA45"><!-- NEW -->cert&egrave; AG qu&aelig; e&longs;t linea <lb/>accelerati e&longs;t &aelig;qualis GI, qu&aelig; e&longs;t linea retardati: non tamen dicendum <lb/>e&longs;t lineam AI e&longs;&longs;e circulum, alioquin GH e&longs;&longs;et &aelig;qualis GI, &longs;ed GH e&longs;t, v. <!-- REMOVE S--><lb/>g. <!-- REMOVE S-->89. cum GI &longs;it radix quadr.81. e&longs;t enim 9. lic&egrave;t GM &longs;it &aelig;qualis GH. <lb/>&longs;ed de his lineis infr&agrave;. </s>
					<s id="N1AA54">Vtr&ugrave;m ver&ograve; &longs;it aliquis motus huiu&longs;modi, videbi&shy;<lb/>mus in &longs;equentibus Theorematis. <!-- KEEP S--></s>
				</p>
				<p id="N1AA5A" type="main">
					<s id="N1AA5C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 21.<emph.end type="center"/></s>
				</p>
				<p id="N1AA68" type="main">
					<s id="N1AA6A"><!-- NEW --><emph type="italics"/>Quando corpus proiicitur per horizontalem in a&euml;re libero, mouetur motu <lb/>mixto<emph.end type="italics"/>; </s>
					<s id="N1AA75"><!-- NEW -->probatur, quia &longs;unt duo impetus in eo corpore, &longs;cilicet innatus <lb/>deor&longs;um, &amp; impre&longs;&longs;us per horizontalem, vt patet; igitur vterque aliquid <lb/>pr&aelig;&longs;tat ad illum motum per Ax. 1. igitur e&longs;t motus mixtus per def. </s>
					<s id="N1AA7D">1. <!-- KEEP S--></s>
				</p>
				<p id="N1AA81" type="main">
					<s id="N1AA83"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 22.<emph.end type="center"/></s>
				</p>
				<p id="N1AA8F" type="main">
					<s id="N1AA91"><emph type="italics"/>Ille motus non e&longs;t mixtus ex vtroque &aelig;quabili.<emph.end type="italics"/></s>
					<s id="N1AA98"> Demon&longs;tro; motus mixtus <lb/>ex vtroque &aelig;quabili e&longs;t rectus per Th.1.&amp; 4. &longs;ed hic motus proiecti per <lb/>horizontalem non e&longs;t rectus per hyp.1. </s>
				</p>
				<p id="N1AA9F" type="main">
					<s id="N1AAA1"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 23.<emph.end type="center"/></s>
				</p>
				<p id="N1AAAD" type="main">
					<s id="N1AAAF"><!-- NEW --><emph type="italics"/>Ille motus non e&longs;t mixtus ex naturali &aelig;quabili &amp; alio accelerato<emph.end type="italics"/>; patet, <lb/>quia nulla e&longs;t cau&longs;a, &agrave; qua violentus po&longs;&longs;it accelerari. </s>
				</p>
				<p id="N1AABA" type="main">
					<s id="N1AABC"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 24.<emph.end type="center"/></s>
				</p>
				<p id="N1AAC8" type="main">
					<s id="N1AACA"><!-- NEW --><emph type="italics"/>Non est mixtus ex naturali &aelig;quabili &amp; violento retardato<emph.end type="italics"/>; </s>
					<s id="N1AAD3"><!-- NEW -->Prim&ograve;, quia <lb/>c&ugrave;m pro tata concurrant po&longs;t integrum quadrantem vix &longs;patium vnius <lb/>palmi confeci&longs;&longs;et in perpendiculari deor&longs;um per Th.59.l.2.quod tamen <lb/>e&longs;t contra experientiam.Secund&ograve;, quia ad aliquod tandem punctum per&shy;<lb/>ueniretur, in quo mobile haberet tant&ugrave;m impetum innatun; igitur nul&shy;<lb/>lus e&longs;&longs;et ictus contra experientiam. </s>
					<s id="N1AAE1"><!-- NEW -->Terti&ograve;, quia naturalis impetus in&shy;<lb/>tenditur in plano inclinato; </s>
					<s id="N1AAE7"><!-- NEW -->igitur in motu per inclinatam, e&longs;t enim <lb/>motus deor&longs;um; igitur intenditur impetus naturalis, vt patet ex lib.  2. <lb/>igitur non e&longs;t mixtus. </s>
				</p>
				<pb pagenum="160" xlink:href="026/01/192.jpg"/>
				<p id="N1AAF3" type="main">
					<s id="N1AAF5"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 25.<emph.end type="center"/></s>
				</p>
				<p id="N1AB01" type="main">
					<s id="N1AB03"><!-- NEW --><emph type="italics"/>Motus ille non e&longs;t mixtus ex naturali retardator &amp; violento &aelig;quabili, vel <lb/>accelerato<emph.end type="italics"/>; quia numquam de&longs;truitur impetus innatus, vt &longs;&aelig;pi&ugrave;s dictum <lb/>e&longs;t &longs;upr&agrave;, t&ugrave;m primo, t&ugrave;m &longs;ecundo libro, nec in hoc e&longs;t vlla diffi&shy;<lb/>cultas. </s>
				</p>
				<p id="N1AB12" type="main">
					<s id="N1AB14"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 26.<emph.end type="center"/></s>
				</p>
				<p id="N1AB20" type="main">
					<s id="N1AB22"><!-- NEW --><emph type="italics"/>Non est mixtus ex naturali accelerato &amp; violento &aelig;quabili<emph.end type="italics"/>; </s>
					<s id="N1AB2B"><!-- NEW -->demon&longs;tra&shy;<lb/>tur, prim&ograve;, quia &longs;ub finem motus e&longs;&longs;et maior impetus; </s>
					<s id="N1AB31"><!-- NEW -->quipp&egrave; nihil de&shy;<lb/>traheretur violento, &longs;ed mult&ugrave;m accederet naturali; igitur e&longs;&longs;et maior, <lb/>igitur e&longs;&longs;et maior ictus contra hyp. </s>
					<s id="N1AB39">3. &longs;ecund&ograve;, quotie&longs;cunque &longs;unt duo <lb/>impetus in eodem mobili ad diuer&longs;as lineas determinati, aliquid illo&shy;<lb/>rum de&longs;truitur per Th.141.l.1.terti&ograve; &longs;i e&longs;&longs;et vterque &aelig;quabilis, aliquid <lb/>de&longs;trueretur per Theorema 6. igitur potiori iure, &longs;i impetus naturalis <lb/>cre&longs;cat. </s>
				</p>
				<p id="N1AB44" type="main">
					<s id="N1AB46"><!-- NEW -->Diceret fort&egrave; aliquis impetum de&longs;trui ab a&euml;re, &longs;ed iam &longs;upr&agrave; re&longs;pon&shy;<lb/>&longs;um e&longs;t modicum inde imminui; </s>
					<s id="N1AB4C"><!-- NEW -->nec enim vnquam a&euml;r in corpore graui <lb/>de&longs;truit tant&ugrave;m impetus, quant&ugrave;m producitur naturalis &longs;i &longs;it acceleratus; <lb/>alioquin motus deor&longs;um non cre&longs;ceret contra experientiam, &amp; &longs;upr&agrave; in <lb/>toto fer&egrave; 2.lib.  demon&longs;trauimus. </s>
				</p>
				<p id="N1AB56" type="main">
					<s id="N1AB58"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 27.<emph.end type="center"/></s>
				</p>
				<p id="N1AB64" type="main">
					<s id="N1AB66"><!-- NEW --><emph type="italics"/>Hinc linea huius motus non e&longs;t Parabola<emph.end type="italics"/>; quia vt &longs;it Parabola, debet ille <lb/>motus con&longs;tare vel ex naturali &aelig;quabili, &amp; violento retardato per Th. <!-- REMOVE S--><lb/>19. vel ex naturali accelerato &amp; violento &aelig;quabili per Th. <!-- REMOVE S-->18. &longs;ed hic <lb/>motus neuter e&longs;t, non primum per Th. <!-- REMOVE S-->25. non &longs;ecundum per Theo&shy;<lb/>rema 26. </s>
				</p>
				<p id="N1AB7C" type="main">
					<s id="N1AB7E"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 28.<emph.end type="center"/></s>
				</p>
				<p id="N1AB8A" type="main">
					<s id="N1AB8C"><!-- NEW --><emph type="italics"/>Hinc reiicies Galileum,<emph.end type="italics"/> qui in dialogis h&aelig;c &longs;emper &longs;uppo&longs;uit, &longs;ed nun&shy;<lb/>quam probauit, nec probare vnquam potuit; </s>
					<s id="N1AB97"><!-- NEW -->hoc etiam &longs;upponunt <lb/>multi Galilei &longs;ectatores, qui cen&longs;ent impetum nunquam de&longs;trui ni&longs;i &agrave; <lb/>re&longs;i&longs;tentia medij; </s>
					<s id="N1AB9F"><!-- NEW -->&longs;ed qu&aelig;ro ab illis quodnam medium de&longs;truat partem <lb/>impetus in motu mixto; </s>
					<s id="N1ABA5"><!-- NEW -->nec enim linea motus mixti ad&aelig;quat duas alias <lb/>ex quibus qua&longs;i re&longs;ultat; </s>
					<s id="N1ABAB"><!-- NEW -->cert&egrave; hoc non pote&longs;t explicari cum infinitis fet&egrave; <lb/>aliis, ni&longs;i dicatur impetum de&longs;trui ab alio impetu, eo modo quo &longs;&aelig;p&egrave; <lb/>diximus, hoc e&longs;t ne &longs;it fru&longs;tr&agrave;; igitur impetus violentus de&longs;truitur ab in&shy;<lb/>nato, non tamen innatus &agrave; violento, vt &longs;&aelig;pi&ugrave;s inculcauimus. </s>
				</p>
				<p id="N1ABB5" type="main">
					<s id="N1ABB7"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 29.<emph.end type="center"/></s>
				</p>
				<p id="N1ABC3" type="main">
					<s id="N1ABC5"><!-- NEW --><emph type="italics"/>Non e&longs;t mixtus ex naturali accelerato eo modo quo acceleratur deor&longs;um per <lb/>lineam perpendicularem &amp; ex violento retardato<emph.end type="italics"/>: </s>
					<s id="N1ABD0"><!-- NEW -->Probatur, &longs;i ita e&longs;t, <expan abbr="t&atilde;t&ugrave;m">tant&ugrave;m</expan> <lb/>additur naturali, quantum detrahitur violento, im&ograve; pl&ugrave;s; </s>
					<s id="N1ABDA"><!-- NEW -->igitur &longs;emper <lb/>e&longs;t in eo mobili &aelig;qualis vel maior impetus; igitur &aelig;qualis e&longs;t &longs;emper, <lb/>vel maior ictus contra hyp. </s>
					<s id="N1ABE2"><!-- NEW -->3. adde quod non min&ugrave;s impeditur ab im&shy;<lb/>petu violento naturalis motus, qu&agrave;m ab inclinato plano; </s>
					<s id="N1ABE8"><!-- NEW -->&longs;ed in plano <pb pagenum="161" xlink:href="026/01/193.jpg"/>inclinato non acceleratur motus cum eadem acce&longs;&longs;ione, qua &longs;cilicet in&shy;<lb/>tenditur in perpendiculari deors&ugrave;m; </s>
					<s id="N1ABF3"><!-- NEW -->nec enim tam cit&ograve; de&longs;cendit mobi&shy;<lb/>le, quod certum e&longs;t, &amp; in lib.de planis inclinatis demon&longs;trabo, cum tan&shy;<lb/>t&ugrave;m h&icirc;c &longs;upponam ad in&longs;tar phy&longs;ic&aelig; hypothe&longs;eos; adde quod idem mo&shy;<lb/>bile proiectum per horizontalem in data di&longs;tantia min&ugrave;s ferit, qu&agrave;m pro&shy;<lb/>iectum per inclinatam deor&longs;um. </s>
				</p>
				<p id="N1ABFF" type="main">
					<s id="N1AC01"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 30.<emph.end type="center"/></s>
				</p>
				<p id="N1AC0D" type="main">
					<s id="N1AC0F"><!-- NEW --><emph type="italics"/>Itaque motus pr&aelig;dictus mixtus est ex violento retardato &amp; naturali acce&shy;<lb/>lerato, non eo quidem modo quo acceleratur in perpendiculari, &longs;ed eo quo acce&shy;<lb/>leratur in plano inclinato, quod hic &longs;ingulis <expan abbr="in&longs;t&atilde;tibus">in&longs;tantibus</expan> mutatur<emph.end type="italics"/>; </s>
					<s id="N1AC20"><!-- NEW -->probatur pri&shy;<lb/>mo, quia inductione facta non <expan abbr="c&otilde;&longs;tat">con&longs;tat</expan> ex omnibus aliis; </s>
					<s id="N1AC2A"><!-- NEW -->&longs;unt enim tant&ugrave;m <lb/>9 combinationes, quia &longs;unt tres differenti&aelig;, &longs;cilicet &aelig;quabilibus, retarda&shy;<lb/>tio, acceleratio; </s>
					<s id="N1AC32"><!-- NEW -->igitur &longs;i 3.ducantur in 3. &longs;unt 9. &longs;unt autem prima ex na&shy;<lb/>turali, quem deinceps voco primum, &aelig;quabili &amp; violento &lpar;quem voca&shy;<lb/>bo &longs;ecundum&rpar; &aelig;quabili, &longs;ecunda ex prima &aelig;quabili &amp; &longs;ecundo accelera&shy;<lb/>to, tertia ex primo &aelig;quabili &amp; &longs;ecundo retardato, quarta ex primo acce&shy;<lb/>lerato &amp; &longs;ecundo &aelig;quabili, quinta ex primo accelerato &amp; &longs;ecundo acce&shy;<lb/>lerato, &longs;exta ex primo accelerato &amp; &longs;ecundo retardato, &longs;eptima ex primo <lb/>retardato &amp; &longs;ecundo &aelig;quabili, octaua ex primo retardato &amp; &longs;ecundo ac&shy;<lb/>celerato, nona ex primo retardato, &amp; &longs;ecundo retardato: non e&longs;t prima <lb/>per Th.22. non &longs;ecunda per Th. 21. non tertia per Th. 24. non quarta, <lb/>per Th.26. non quinta per T.2h.23. non &longs;exta per Th.29. eo modo quo <lb/>diximus, non &longs;eptima per Th. 25. non octaua per Th. 25. non denique <lb/>nona per Th.25. igitur debet e&longs;&longs;e alius motus, &longs;ed alius excogitari non <lb/>pote&longs;t pr&aelig;ter illum quem adduxi. </s>
					<s id="N1AC4E"><!-- NEW -->Probatur &longs;ecund&ograve;, quia non min&ugrave;s <lb/>impeditur ab impetu violento impetus naturalis acqui&longs;itus qu&agrave;m &agrave; pla&shy;<lb/>no inclinato vt iam dictum e&longs;t; </s>
					<s id="N1AC56"><!-- NEW -->igitur acceleratur quidem &longs;ed min&ugrave;s; </s>
					<s id="N1AC5A"><!-- NEW -->nec <lb/>enim vterque e&longs;t &aelig;quabilis, nam linea e&longs;&longs;et recta per Th.4. &amp; naturalis <lb/>cre&longs;cit quia de&longs;cendit deor&longs;um; pr&aelig;terea per Th.24. non pote&longs;t impetus <lb/>naturalis e&longs;&longs;e &aelig;quabilis, igitur non pote&longs;t violentus e&longs;&longs;e vel &aelig;quabilis, <lb/>vel acceleratus, igitur retardatus. </s>
				</p>
				<p id="N1AC66" type="main">
					<s id="N1AC68"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 31.<emph.end type="center"/></s>
				</p>
				<p id="N1AC74" type="main">
					<s id="N1AC76"><!-- NEW --><emph type="italics"/>Motus naturalis acceleratus ex quo hic motus con&longs;tat acceleratur in alia <lb/>proportione qu&agrave;m fit ea, in qua acceleratur, dum per idem planum inclina&shy;<lb/>tum de&longs;cendit<emph.end type="italics"/>; </s>
					<s id="N1AC83"><!-- NEW -->probatur, quia &longs;ingulis in&longs;tantibus mutatur inclinatio pla&shy;<lb/>ni &longs;eu line&aelig;; igitur &longs;ingulis in&longs;tantibus mutatur proportio accelera&shy;<lb/>tionis. </s>
				</p>
				<p id="N1AC8B" type="main">
					<s id="N1AC8D"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 32.<emph.end type="center"/></s>
				</p>
				<p id="N1AC99" type="main">
					<s id="N1AC9B"><emph type="italics"/>Hinc perpetu&ograve; cre&longs;cit proportio accelerationis, quia &longs;emper cre&longs;cit inclina&shy;<lb/>tio plani,<emph.end type="italics"/> vt patet, c&ugrave;m en&icirc;m &longs;it linea curua per hyp. </s>
					<s id="N1ACA5">1. quo magis incur&shy;<lb/>uatur, accedit propi&ugrave;s ad perpendicularem, igitur motus magis accele&shy;<lb/>ratur. </s>
				</p>
				<pb pagenum="162" xlink:href="026/01/194.jpg"/>
				<p id="N1ACB0" type="main">
					<s id="N1ACB2"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 33.<emph.end type="center"/></s>
				</p>
				<p id="N1ACBE" type="main">
					<s id="N1ACC0"><emph type="italics"/>Hinc ratio hypothe&longs;eos prim&aelig;,<emph.end type="italics"/> c&ugrave;m enim con&longs;tet hic motus ex accelera&shy;<lb/>to &amp; retardato, eius linea e&longs;t curua per Th.20. non tamen e&longs;t Parabola, <lb/>vt con&longs;tat ex eodem Th.20. Vnde reiicies Galileum, qui vult lineam mo&shy;<lb/>tus proiecti per horizontalem in a&euml;re libero e&longs;&longs;e Parabolam. <!-- KEEP S--></s>
				</p>
				<p id="N1ACCF" type="main">
					<s id="N1ACD1"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 34.<emph.end type="center"/></s>
				</p>
				<p id="N1ACDD" type="main">
					<s id="N1ACDF"><!-- NEW --><emph type="italics"/>In hoc motu retardatur in maiori proportione violentus qu&agrave;m acceleretur <lb/>natur alis<emph.end type="italics"/>; </s>
					<s id="N1ACEA"><!-- NEW -->probatur, non in minore, quia pl&ugrave;s impetus adderetur qu&agrave;m de&shy;<lb/>traheretur; igitur maior e&longs;&longs;et in fine motus qu&agrave;m initio, igitur maior <lb/>ictus contra hyp.;. </s>
					<s id="N1ACF2">non in &aelig;quali, quia &longs;emper e&longs;&longs;et &aelig;qualis ictus con&shy;<lb/>tra hyp.3.&amp; contra Th.29. </s>
				</p>
				<p id="N1ACF7" type="main">
					<s id="N1ACF9"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 35.<emph.end type="center"/></s>
				</p>
				<p id="N1AD05" type="main">
					<s id="N1AD07"><!-- NEW --><emph type="italics"/>Hinc pl&ugrave;s detrahitur impetus qu&agrave;m addatur,<emph.end type="italics"/> quia &longs;cilicet detrahitur <lb/>pro rata, vt dicemus infr&agrave;; at ver&ograve; c&ugrave;m acceleretur tant&ugrave;m naturalis <lb/>iuxta rationem motus, &amp; motus &longs;it iuxta rationem plani, min&ugrave;s accele&shy;<lb/>ratur qu&agrave;m &longs;i caderet mobile perpendiculariter deor&longs;um. </s>
				</p>
				<p id="N1AD16" type="main">
					<s id="N1AD18"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 36.<emph.end type="center"/></s>
				</p>
				<p id="N1AD24" type="main">
					<s id="N1AD26"><!-- NEW --><emph type="italics"/>Hinc ratio clara cur &longs;it minor ictus in &longs;ine huius motus<emph.end type="italics"/>; </s>
					<s id="N1AD2F"><!-- NEW -->quia &longs;cilicet e&longs;t <lb/>min&ugrave;s impetus, quia pl&ugrave;s detractum e&longs;t qu&agrave;m additum; </s>
					<s id="N1AD35"><!-- NEW -->nec e&longs;t quod <lb/>tribuant hanc retardationem medio; </s>
					<s id="N1AD3B"><!-- NEW -->quippe a&euml;r non pl&ugrave;s re&longs;i&longs;tit motui <lb/>violento qu&agrave;m naturali; </s>
					<s id="N1AD41"><!-- NEW -->&longs;ed id quod detrahitur ab a&euml;re corpori graui, v. <!-- REMOVE S--><lb/>g. <!-- REMOVE S-->pil&aelig; plumbe&aelig; e&longs;t in&longs;en&longs;ibile, vt fatentur omnes; igitur idem <expan abbr="dicen-d&umacr;">dicen&shy;<lb/>dum</expan> e&longs;t de motu violento &amp; mixto, hinc hoc ip&longs;um etiam fieret in vacuo. </s>
				</p>
				<p id="N1AD50" type="main">
					<s id="N1AD52"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 37.<emph.end type="center"/></s>
				</p>
				<p id="N1AD5E" type="main">
					<s id="N1AD60"><!-- NEW --><emph type="italics"/>Impetus naturalis concurrit ad hunc motum<emph.end type="italics"/>; probatur, quia alioquin <lb/>e&longs;&longs;et rectus contra hyp. </s>
					<s id="N1AD6B">3. pr&aelig;tere&agrave; pote&longs;t concurrere; </s>
					<s id="N1AD6E"><!-- NEW -->nec enim &longs;unt li&shy;<lb/>ne&aelig; determinationum oppo&longs;it&aelig;; igitur concurrit per Th.137.l.1. <!-- KEEP S--></s>
				</p>
				<p id="N1AD75" type="main">
					<s id="N1AD77"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 38.<emph.end type="center"/></s>
				</p>
				<p id="N1AD83" type="main">
					<s id="N1AD85"><!-- NEW --><emph type="italics"/>Si impetus naturalis non concurreret ad hunc motum, proiectum moueretur <lb/>per lineam horizontalem rectam, vt con&longs;tat, motu &aelig;quabili<emph.end type="italics"/>; po&longs;ito quod non <lb/>retardaretur in horizontali, eodem modo moueretur quo in verticali <lb/>&longs;ur&longs;um, qu&aelig; omnia con&longs;tant ex dictis &longs;upr&agrave;. </s>
				</p>
				<p id="N1AD94" type="main">
					<s id="N1AD96"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 39.<emph.end type="center"/></s>
				</p>
				<p id="N1ADA2" type="main">
					<s id="N1ADA4"><!-- NEW --><emph type="italics"/>Patest vtrimque de&longs;cribi linea curua huius motus<emph.end type="italics"/>; </s>
					<s id="N1ADAD"><!-- NEW -->&longs;it enim mobile pro&shy;<lb/>jectum ex E per horizontalem EI <expan abbr="e&atilde;">eam</expan> &longs;cilicet velocitate, quam acqui&longs;iui&longs;&shy;<lb/>&longs;et motu naturaliter accelerato de&longs;cendendo ex A in E; </s>
					<s id="N1ADB9"><!-- NEW --><expan abbr="&longs;it&qacute;ue">&longs;itque</expan> AB &longs;pa&shy;<lb/>tium acqui&longs;itum primo in&longs;tanti de&longs;cen&longs;us; BC duplum, CD triplum, &amp;c. </s>
					<s id="N1ADC2"><!-- NEW --><lb/>iuxta progre&longs;&longs;ionem arithmeticam, &longs;it EI &aelig;qualis EA, diuidatur que eo&shy;<lb/>dem modo in 4. &longs;patia vt diui&longs;a e&longs;t EA; </s>
					<s id="N1ADC9"><!-- NEW -->a&longs;&longs;umpta EO &aelig;qualis AB, ducan&shy;<lb/>tur FN. GM. HL. IK. parallel&aelig; EV; </s>
					<s id="N1ADCF"><!-- NEW -->a&longs;&longs;umatur OP &aelig;qualis OE, &amp; PQ,<lb/>qu&aelig; &longs;it ad OE, vt OE ad hypothenu&longs;im &longs;eu planum inclinatum EN, a&longs;-<pb pagenum="163" xlink:href="026/01/195.jpg"/>&longs;inuatur QR &aelig;qualis OE, tum RS qu&aelig; &longs;it ad OE vt OQ ad planum incli&shy;<lb/>natum NM; </s>
					<s id="N1ADDC"><!-- NEW -->denique a&longs;&longs;umatur ST &aelig;qualis OE, tum TV, qu&aelig; &longs;it ad OF, <lb/>vt QS ad inclinatam ML; ducantur ON. QM. SL. VK. parallel&aelig; EI, <lb/>t&ugrave;m per puncta E.N.M.L.X ducatur curua, h&aelig;c e&longs;t linea pr&aelig;dicti motus, <lb/>demon&longs;tratur. </s>
				</p>
				<p id="N1ADE6" type="main">
					<s id="N1ADE8"><!-- NEW -->Impetus violentus percurrit EF eo tempore, quo naturalis percurrit <lb/>EO; </s>
					<s id="N1ADEE"><!-- NEW -->igitur linea motus mixti ex vtroque ducitur per punctum N, &amp; lic&egrave;t <lb/>videatur e&longs;&longs;e recta EN, &longs;cilicet diagonalis rectanguli OF, e&longs;t tamen cur&shy;<lb/>ua, quia mobile non percurrit EF vno in&longs;tanti; </s>
					<s id="N1ADF6"><!-- NEW -->igitur nec EO, igitur <lb/>motu &aelig;qualiter accelerato percurrit EO; </s>
					<s id="N1ADFC"><!-- NEW -->igitur EN non e&longs;t recta per <lb/>Th.20. Pr&aelig;terea.Secundo tempore impetus innatus remanet; </s>
					<s id="N1AE02"><!-- NEW -->igitur per&shy;<lb/>curratur OP cui addit ut PQ, quia impetus naturalis min&ugrave;s cre&longs;cit, vt di&shy;<lb/>ctum e&longs;t in Th.34. quippe cre&longs;cit iuxta rationem plani inclinati EN.ad <lb/>EO permutando, qu&aelig; &longs;it v.g. <!-- REMOVE S-->&longs;ubquadrupla; </s>
					<s id="N1AE0E"><!-- NEW -->igitur PQ e&longs;t &longs;ubquadrupla <lb/>EO; </s>
					<s id="N1AE14"><!-- NEW -->&amp; c&ugrave;m de&longs;trui &longs;upponatur vnus gradus violenti, v.g. <!-- REMOVE S-->&longs;uper&longs;unt tan&shy;<lb/>t&ugrave;m 3. quibus percurritur FG; igitur linea huius motus duci debet per <lb/>punctum M, idem dico de punctis L &amp; K, igitur h&aelig;c e&longs;t linea motus <lb/>mixti, qu&agrave;m &longs;cilicet corpus graue proiectum per horizontalem &longs;uo fluxu <lb/>de&longs;cribit, &amp; cuius alias proprietates demon&longs;trabimus. </s>
				</p>
				<p id="N1AE22" type="main">
					<s id="N1AE24"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 40.<emph.end type="center"/></s>
				</p>
				<p id="N1AE30" type="main">
					<s id="N1AE32"><emph type="italics"/>Hinc impetus naturalis in motu mixto cre&longs;cit &longs;emper in maiori proportione<emph.end type="italics"/><lb/>v.g. </s>
					<s id="N1AE3B">Oq.e&longs;t maior EO, &amp; QS maior OQ atque ita deinceps. </s>
				</p>
				<p id="N1AE3E" type="main">
					<s id="N1AE40"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 41.<emph.end type="center"/></s>
				</p>
				<p id="N1AE4C" type="main">
					<s id="N1AE4E"><!-- NEW --><emph type="italics"/>Impetus violentus h&icirc;c &longs;upponitur decre&longs;cere &longs;emper in eadem proportione<emph.end type="italics"/>; </s>
					<s id="N1AE57"><!-- NEW --><lb/>v.g. <!-- REMOVE S-->FG e&longs;t minor EF vno &longs;patio, GH minor EF vno &longs;patio; HI minor <lb/>GH vno &longs;patio, qu&aelig; omnia con&longs;tant. </s>
					<s id="N1AE60">Vtr&ugrave;m ver&ograve; id fiat, dicemus infr&agrave;, <lb/>&amp; exempli gratia tant&ugrave;m dictum e&longs;&longs;e volo. </s>
				</p>
				<p id="N1AE65" type="main">
					<s id="N1AE67"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 42.<emph.end type="center"/></s>
				</p>
				<p id="N1AE73" type="main">
					<s id="N1AE75"><emph type="italics"/>Hinc qu&ograve; maior e&longs;t impetus violentus in hoc motu, amplitudo huius linea <lb/>e&longs;t maior<emph.end type="italics"/> v.g. <!-- REMOVE S-->VK, qu&aelig; &longs;emper maior e&longs;t altitudine VE, vt enim e&longs;&longs;et &aelig;&shy;<lb/>qualis, impetus naturalis deberet cre&longs;cere in eadem proportione, in qua <lb/>decre&longs;cit violentus, vt dictum e&longs;t &longs;upr&agrave;. </s>
				</p>
				<p id="N1AE85" type="main">
					<s id="N1AE87"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 43.<emph.end type="center"/></s>
				</p>
				<p id="N1AE93" type="main">
					<s id="N1AE95"><!-- NEW --><emph type="italics"/>Determinari po&longs;&longs;et h&aelig;c amplitudo, &longs;i decre&longs;cat violentus in EI, vt decre&shy;<lb/>&longs;cit in verticali EA<emph.end type="italics"/>; </s>
					<s id="N1AEA0"><!-- NEW -->nam EI &amp; EA &longs;unt &aelig;quales, &longs;ed EI &amp; VK &longs;unt &aelig;qua&shy;<lb/>les, AE ver&ograve; e&longs;t linea, vel quam conficit mobile proiectum &longs;ur&longs;um cum <lb/>eodem, vel &aelig;quali impetu alteri quo proiicitur per horizontalem; &longs;eu <lb/>e&longs;t linea quam percurrit corpus graue deor&longs;um, dum acquirit &aelig;qualem <lb/>impetum alteri impre&longs;&longs;o eidem mobili per horizontalem EI. </s>
				</p>
				<p id="N1AEAC" type="main">
					<s id="N1AEAE"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 44.<emph.end type="center"/></s>
				</p>
				<p id="N1AEBA" type="main">
					<s id="N1AEBC"><!-- NEW --><emph type="italics"/>Hinc non pote&longs;t proijci in libero medio mobile graue per rectam horizonta&shy;<lb/>lem<emph.end type="italics"/>; </s>
					<s id="N1AEC7"><!-- NEW -->quippe moueri non pote&longs;t ni&longs;i motu mixto ex naturali accelerato <pb pagenum="164" xlink:href="026/01/196.jpg"/>eo modo quo diximus, &amp; violento retardato; </s>
					<s id="N1AED0"><!-- NEW -->igitur linea e&longs;t curua; dixi <lb/>in medio libero, c&ugrave;m in plano duro horizontali per lineam rectam pro&shy;<lb/>iici po&longs;&longs;it. </s>
				</p>
				<p id="N1AED8" type="main">
					<s id="N1AEDA"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 45.<emph.end type="center"/></s>
				</p>
				<p id="N1AEE6" type="main">
					<s id="N1AEE8"><!-- NEW --><emph type="italics"/>Hinc funis ten&longs;us, cuius &longs;cilicet vtraque extremitas immobiliter affixa e&longs;t, <lb/>nunquam e&longs;t rectus, &longs;ed inflectitur<emph.end type="italics"/>; </s>
					<s id="N1AEF3"><!-- NEW -->ratio e&longs;t, quia haud dubi&egrave; grauitat, igi&shy;<lb/>tur incuruatur; vtr&ugrave;m ver&ograve; faciat Parabolam h&aelig;c linea curua, vt vult <lb/>Galileus, examinabimus in libro de lineis motus. </s>
				</p>
				<p id="N1AEFB" type="main">
					<s id="N1AEFD"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1AF09" type="main">
					<s id="N1AF0B"><!-- NEW -->Ob&longs;eruabis funem ten&longs;um &longs;emper incuruari, ni&longs;i fort&egrave; ex maxima tra&shy;<lb/>ctione &longs;uam flexibilitatem amittat, cuius ope tant&ugrave;m curuatur, im&ograve; ita <lb/>tendi pote&longs;t, vt ten&longs;ioni cedens frangatur: Equidem po&longs;ito quod vel in&shy;<lb/>flecti po&longs;&longs;it, vel reduci, nece&longs;&longs;ari&ograve; inflectetur in medio, vt ben&egrave; demon&shy;<lb/>&longs;trat Galileus in dialogis, no&longs;que infr&agrave; ad potentiam vectis reducemus, <lb/>ne multiplicemus figuras. </s>
				</p>
				<p id="N1AF19" type="main">
					<s id="N1AF1B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 46.<emph.end type="center"/></s>
				</p>
				<p id="N1AF27" type="main">
					<s id="N1AF29"><!-- NEW --><emph type="italics"/>Hinc ducitur optima ratio, cur proiectum per lineam horizontalem, v.g.pi&shy;<lb/>la &egrave; tormento explo&longs;a, vel &longs;agitta arcu emi&longs;&longs;a per plura &longs;ecunda minuta mo&shy;<lb/>ueatur in medio a&euml;re antequam terram attingat<emph.end type="italics"/>; </s>
					<s id="N1AF36"><!-- NEW -->quod plu&longs;qu&agrave;m mille ex&shy;<lb/>perimentis comprobatum e&longs;t; </s>
					<s id="N1AF3C"><!-- NEW -->plura leges apud Mer&longs;ennum, v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;it tor&shy;<lb/>mentum horizonti parallelum extans &longs;upra horizontem tribus pedibus; </s>
					<s id="N1AF46"><!-- NEW --><lb/>certum e&longs;t &longs;patium illud trium pedum confici &agrave; globo perpendiculariter <lb/>demi&longs;&longs;o tempore 30. tertiorum; </s>
					<s id="N1AF4D"><!-- NEW -->c&ugrave;m tamen explo&longs;us per lineam hori&shy;<lb/>zontalem terram tant&ugrave;m attingat po&longs;t 4. &longs;ecunda, ide&longs;t 240. tertia; </s>
					<s id="N1AF53"><!-- NEW -->ita <lb/>Mer&longs;ennus l.2. de motu Prop. vltima, im&ograve; l. <!-- REMOVE S-->5. &longs;u&aelig; ver&longs;ionis art.5. con&shy;<lb/>tra Galileum o&longs;tendit glandem emi&longs;&longs;am &egrave; tormento minori conficere <lb/>75. exapedas, tempore vnius &longs;ecundi minuti in linea, qu&aelig; par&ugrave;m decli&shy;<lb/>nat ab horizontali; </s>
					<s id="N1AF61"><!-- NEW -->atqui tempore vnius &longs;ecundi minuti conficit 2.exa&shy;<lb/>pedas in perpendiculari deor&longs;um; </s>
					<s id="N1AF67"><!-- NEW -->igitur deberet glans infr&agrave; &longs;copum de&shy;<lb/>&longs;cendere notabiliter, id e&longs;t, toto 12. pedum interuallo, c&ugrave;m tamen vix <lb/>tantill&ugrave;m aberret &agrave; &longs;copo 1.Idem Mer&longs;ennus habet in Bali&longs;tica Prop.25. <lb/>globum &egrave; maiore tormento horizonti parallelo emi&longs;&longs;um in a&euml;re tractu <lb/>continuo vola&longs;&longs;e toto tempore 8. &longs;ecundorum, antequam planum hori&shy;<lb/>zontale attigi&longs;&longs;et, c&ugrave;m tamen &longs;ex tant&ugrave;m exapedis tormentum extaret <lb/>&longs;upra horizontem; </s>
					<s id="N1AF77"><!-- NEW -->alter globus ex alio tormento explo&longs;us 6. tantum &longs;e&shy;<lb/>cunda in a&euml;re con&longs;ump&longs;it; </s>
					<s id="N1AF7D"><!-- NEW -->im&ograve; bombardarum globi aliquando tota 14. <lb/>&longs;ecunda po&longs;uerunt; </s>
					<s id="N1AF83"><!-- NEW -->habet idem Mer&longs;ennus alia plura, quorum fides &longs;it <lb/>penes authores &agrave; quibus accepit; </s>
					<s id="N1AF89"><!-- NEW -->nam vt dicam quod res e&longs;t vix accu&shy;<lb/>rat&egrave; minima illa tempora metiri po&longs;&longs;umus; </s>
					<s id="N1AF8F"><!-- NEW -->quidquid &longs;it, ex illis &longs;altem <lb/>euinco mobile projectum per horizontalem pl&ugrave;s temporis in&longs;umere in <lb/>&longs;uo fluxu, quam &longs;i ex eadem altitudine perpendiculariter demittatur; vt <lb/>vult Galileus; </s>
					<s id="N1AF99"><!-- NEW -->cuius ratio alia non e&longs;t ab ea, qu&agrave;m &longs;upr&agrave; indicauimus, <lb/>qu&ograve;d &longs;cilicet motus naturalis min&ugrave;s cre&longs;cat in motu mixto qu&agrave;m in na-<pb pagenum="165" xlink:href="026/01/197.jpg"/>turali, vt &longs;upr&agrave; demon&longs;trauimus; </s>
					<s id="N1AFA4"><!-- NEW -->im&ograve; &longs;i cre&longs;ceret vt vult Galileus, ictus; <lb/>haud dubi&egrave; e&longs;&longs;et maior in fine motus qu&agrave;m initio, quod omnin&ograve; expe&shy;<lb/>rienti&aelig; repugnat. </s>
				</p>
				<p id="N1AFAC" type="main">
					<s id="N1AFAE"><!-- NEW -->Nec e&longs;t quod aliquis dicat glandem emi&longs;&longs;am per horizontalem tan&shy;<lb/>till&ugrave;m a&longs;cendere; </s>
					<s id="N1AFB4"><!-- NEW -->vnde plus temporis in a&longs;cen&longs;u &longs;imul &amp; de&longs;cen&longs;u col&shy;<lb/>locatur, qu&agrave;m in &longs;olo de&longs;cen&longs;u; </s>
					<s id="N1AFBA"><!-- NEW -->nam prim&ograve; vix hoc aliquis &longs;ibi per&longs;ua&shy;<lb/>&longs;erit, c&ugrave;m experimento percipi non po&longs;&longs;it; </s>
					<s id="N1AFC0"><!-- NEW -->Secund&ograve; lic&egrave;t verum e&longs;&longs;et, <lb/>non tamen e&longs;t tantus a&longs;cen&longs;us, quin adhuc pl&ugrave;s temporis ponat in a&longs;&shy;<lb/>cen&longs;u, atqu&eacute; in de&longs;cen&longs;u, qu&agrave;m in alti&longs;&longs;ima perpendiculari quadrupl&aelig; al&shy;<lb/>titudinis, vt con&longs;tat; </s>
					<s id="N1AFCA"><!-- NEW -->&longs;it enim horizontalis AF, di&longs;tans &agrave; plano hori&shy;<lb/>zontali altitudine BA; </s>
					<s id="N1AFD0"><!-- NEW -->&longs;it tormentum directum per lineam AF, &amp; glo&shy;<lb/>bus percurrat lineam curuam AEF, idque &longs;patio 8.&longs;ecundorum minu&shy;<lb/>torum; </s>
					<s id="N1AFD8"><!-- NEW -->&longs;itque DE 3. pedum; </s>
					<s id="N1AFDC"><!-- NEW -->cert&egrave; eo tempore quo conficit AE, &longs;i in <lb/>perpendiculari conficiat ED, cum ED conficiat tempore 30&tprime;; </s>
					<s id="N1AFE2"><!-- NEW -->haud <lb/>dubi&egrave; AE eodem tempore conficere deberet; </s>
					<s id="N1AFE8"><!-- NEW -->&longs;ed conficit AE tempore <lb/>4. &longs;ecundorum, vt con&longs;tat ex ip&longs;is multorum ob&longs;eruationibus; </s>
					<s id="N1AFEE"><!-- NEW -->igitur to&shy;<lb/>tam AEF deberet percurrere tempore 1&Prime;, id e&longs;t eo tempore quo in per&shy;<lb/>pendiculari deor&longs;um percurruntur 12. pedes; </s>
					<s id="N1AFF6"><!-- NEW -->denique &longs;i verum &longs;it glo&shy;<lb/>bum a&longs;cendere tantill&ugrave;m dum emittitur &egrave; tormento horizonti paralle&shy;<lb/>lo; </s>
					<s id="N1AFFE"><!-- NEW -->crediderim id e&longs;&longs;e t&ugrave;m ex aliqua repercu&longs;&longs;ione a&euml;ris, t&ugrave;m eo quod &agrave; <lb/>flamma &longs;ur&longs;um a&longs;cendente &longs;ur&longs;um etiam aliquantulum inclinetur; </s>
					<s id="N1B004"><!-- NEW -->quod <lb/>ver&ograve; &longs;pectat ad &longs;agittam, alia cau&longs;a non e&longs;t ni&longs;i modica a&euml;ris repercu&longs;&longs;io; </s>
					<s id="N1B00A"><!-- NEW --><lb/>e&longs;t enim leuior &longs;agitt&aelig; materia; &longs;ed de repercu&longs;&longs;ione fus&egrave; agemus <lb/>infr&agrave;. </s>
				</p>
				<p id="N1B011" type="main">
					<s id="N1B013"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 47.<emph.end type="center"/></s>
				</p>
				<p id="N1B01F" type="main">
					<s id="N1B021"><!-- NEW --><emph type="italics"/>Motus projecti &longs;ur&longs;um per inclinatam e&longs;t mixtus<emph.end type="italics"/>; </s>
					<s id="N1B02A"><!-- NEW -->probatur, quia con&longs;tat <lb/>ex naturali, &amp; violenti; qui c&ugrave;m non &longs;int in oppo&longs;itis lineis, ad commu&shy;<lb/>nem motum concurrunt, vt patet. </s>
				</p>
				<p id="N1B032" type="main">
					<s id="N1B034"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 48.<emph.end type="center"/></s>
				</p>
				<p id="N1B040" type="main">
					<s id="N1B042"><!-- NEW --><emph type="italics"/>Non e&longs;t mixtus ex vtroque &aelig;quabili<emph.end type="italics"/>; quia linea e&longs;&longs;et recta per Th.1.&longs;ed <lb/>linea huius motus e&longs;t curua per hyp. </s>
					<s id="N1B04D">non pertinet etiam hic motus ad <lb/>&longs;ecundam combinationem de qua Th. 30. nec ad quintam, nec ad <lb/>octauam, nec ad nonam, de aliis videbimus infr&agrave;. </s>
				</p>
				<p id="N1B054" type="main">
					<s id="N1B056"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 49.<emph.end type="center"/></s>
				</p>
				<p id="N1B062" type="main">
					<s id="N1B064"><!-- NEW --><emph type="italics"/>Non e&longs;t mixtus ex naturali accelerato, &amp; violento &aelig;quabili<emph.end type="italics"/>; </s>
					<s id="N1B06D"><!-- NEW -->probatur, <lb/>quia in fine motus e&longs;&longs;et maior impetus, igitur e&longs;&longs;et maior ictus contra ex&shy;<lb/>perientiam; </s>
					<s id="N1B075"><!-- NEW -->im&ograve; long&egrave; maior qu&agrave;m &longs;i mobile proiiceretur per horizon&shy;<lb/>talem, quia diuti&ugrave;s durat ille motus; </s>
					<s id="N1B07B"><!-- NEW -->igitur plures gradus impetus na&shy;<lb/>turalis acquiruntur; </s>
					<s id="N1B081"><!-- NEW -->igitur long&egrave; maior e&longs;t ictus; pr&aelig;tere&agrave; &longs;i impetus <lb/>naturalis de&longs;truit impetum &longs;ur&longs;um in verticali, cur non in inclinata? </s>
					<s id="N1B087"><!-- NEW -->nam <lb/>e&longs;t eadem omnin&ograve; ratio; </s>
					<s id="N1B08D"><!-- NEW -->quippe ide&ograve; de&longs;truitur in verticali, quia cor&shy;<lb/>pus graue &longs;ur&longs;um attollitur; </s>
					<s id="N1B093"><!-- NEW -->c&ugrave;m tamen &longs;ua &longs;ponte deor&longs;um ferri debe&shy;<lb/>ret; </s>
					<s id="N1B099"><!-- NEW -->&longs;ed non min&ugrave;s, c&ugrave;m per inclinatam &longs;ur&longs;um proiicitur, remouetur &agrave; <pb pagenum="166" xlink:href="026/01/198.jpg"/>&longs;uo centro, &amp; &longs;ur&longs;um rapitur; </s>
					<s id="N1B0A2"><!-- NEW -->nec ob&longs;tat oppo&longs;itio line&aelig; verticalis &longs;ur&shy;<lb/>&longs;um cum perpendiculari deor&longs;um; quia etiam per inclinatam deor&longs;um <lb/>fertur in plano inclinato, qu&aelig; opponitur ex diametro alteri inclinat&aelig; <lb/>&longs;ur&longs;um. </s>
				</p>
				<p id="N1B0AC" type="main">
					<s id="N1B0AE"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 50.<emph.end type="center"/></s>
				</p>
				<p id="N1B0BA" type="main">
					<s id="N1B0BC"><!-- NEW --><emph type="italics"/>Non e&longs;t mixtus in a&longs;cen&longs;u ex primo accelerato &amp; &longs;ecundo retardato, acce&shy;<lb/>lerato inquam eo modo quo acceleratur in perpendiculari deor&longs;um<emph.end type="italics"/>; </s>
					<s id="N1B0C7"><!-- NEW -->probatur <lb/>prim&ograve;, quia motus ille e&longs;&longs;et &longs;emper &aelig;qualis, quia tant&ugrave;m adderetur im&shy;<lb/>petus quant&ugrave;m detraheretur, igitur e&longs;&longs;et idem ictus in fine qui in princi&shy;<lb/>pio; Secund&ograve;, quia tempora motuum e&longs;&longs;ent breuiora qu&agrave;m par &longs;it con&shy;<lb/>tra experientiam, vt patet ex Th.46. </s>
				</p>
				<p id="N1B0D3" type="main">
					<s id="N1B0D5"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 51.<emph.end type="center"/></s>
				</p>
				<p id="N1B0E1" type="main">
					<s id="N1B0E3"><!-- NEW --><emph type="italics"/>Non e&longs;t mixtus in a&longs;cen&longs;u ex violento retardato, &amp; naturali accelerato, eo <lb/>modo quo diximus in Th.<emph.end type="italics"/> 30. probatur, quia c&ugrave;m acceleretur iuxta ratio&shy;<lb/>nem plani inclinati deor&longs;um, vt dictum e&longs;t, &longs;upra horizontalem; </s>
					<s id="N1B0F0"><!-- NEW -->nullum <lb/>e&longs;t ampli&ugrave;s planum inclinatum deor&longs;um; </s>
					<s id="N1B0F6"><!-- NEW -->igitur nulla acceleratio, im&ograve; <lb/>impetus naturalis, vt iam &longs;upr&agrave; dictum e&longs;t cre&longs;cit tant&ugrave;m vt motus deor&shy;<lb/>&longs;um acceleretur; </s>
					<s id="N1B0FE"><!-- NEW -->&longs;ed nullus e&longs;t h&icirc;c motus deor&longs;um; </s>
					<s id="N1B102"><!-- NEW -->modic&ugrave;m figur&aelig; <lb/>rem ob oculos ponit; </s>
					<s id="N1B108"><!-- NEW -->motus in plano AB e&longs;t ad motum in AC vt <lb/>AC ad AB, &amp; in AD, vt AD ad AB, &amp; in AE, vt AE ad AB; </s>
					<s id="N1B10E"><!-- NEW -->igitur immi&shy;<lb/>nuitur in infinitum; &longs;ed acceleratur in inclinata deor&longs;um iuxta hanc ra&shy;<lb/>tionem, igitur nulla &longs;upere&longs;t ampli&ugrave;s proportio, &longs;ecundum quam acce&shy;<lb/>lerari po&longs;&longs;et in inclinata &longs;ur&longs;um. </s>
				</p>
				<p id="N1B118" type="main">
					<s id="N1B11A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 52.<emph.end type="center"/></s>
				</p>
				<p id="N1B126" type="main">
					<s id="N1B128"><!-- NEW --><emph type="italics"/>Hic motus e&longs;t mixtus ex naturali &aelig;quabili, &amp; violento retardato in a&longs;cen&shy;<lb/>&longs;u<emph.end type="italics"/>; </s>
					<s id="N1B133"><!-- NEW -->probatur, quia nulla alia combinatio pr&aelig;ter hanc &longs;upere&longs;t, quam <lb/>tertio loco &longs;upr&agrave; collocauimus in Th. 30. ratio &agrave; priori e&longs;t, quia natura&shy;<lb/>lis innatus non retardatur; </s>
					<s id="N1B13B"><!-- NEW -->quia nunquam de&longs;truitur, nec acceleratur; </s>
					<s id="N1B13F"><!-- NEW --><lb/>quia &longs;ur&longs;um tendit mobile; </s>
					<s id="N1B144"><!-- NEW -->igitur &longs;upere&longs;t tant&ugrave;m quod &longs;it &aelig;quabilis, <lb/>violentus ver&ograve; non acceleratur, vt patet, quia nulla e&longs;t cau&longs;a: </s>
					<s id="N1B14A"><!-- NEW -->non e&longs;t <lb/>&aelig;quabilis, quia coniunctus e&longs;t cum cau&longs;a de&longs;tructiua; igitur e&longs;t re&shy;<lb/>tardatus. </s>
				</p>
				<p id="N1B152" type="main">
					<s id="N1B154"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 53.<emph.end type="center"/></s>
				</p>
				<p id="N1B160" type="main">
					<s id="N1B162"><!-- NEW --><emph type="italics"/>Hic motus e&longs;t mixtus in arcu de&longs;cen&longs;us ex naturali accelerato eo modo, quo <lb/>diximus &longs;upr&agrave; in Th.<emph.end type="italics"/> 30. <emph type="italics"/>&amp; violento retardato<emph.end type="italics"/>; </s>
					<s id="N1B173"><!-- NEW -->probatur per idem Th.e&longs;t <lb/>enim par vtrique motui ratio; quippe hic perinde &longs;e habet, atque &longs;i mo&shy;<lb/>bile per horizontalem proiiceretur, nam pr&aelig;uius motus <expan abbr="nequidqu&atilde;">nequidquam</expan> facit. </s>
				</p>
				<p id="N1B17F" type="main">
					<s id="N1B181"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 54.<emph.end type="center"/></s>
				</p>
				<p id="N1B18D" type="main">
					<s id="N1B18F"><!-- NEW --><emph type="italics"/>Arcus vterque constat linea curua<emph.end type="italics"/>; probatur per Th.19. non e&longs;t tamen <lb/>Parabola linea arcus de&longs;cen&longs;us per Th.20.&amp; 27. </s>
				</p>
				<p id="N1B19A" type="main">
					<s id="N1B19C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 55.<emph.end type="center"/></s>
				</p>
				<p id="N1B1A8" type="main">
					<s id="N1B1AA"><!-- NEW --><emph type="italics"/>Pote&longs;t hac linea vtcumque de&longs;cribi, &longs;uppo&longs;ita retardatione violenti in pro<emph.end type="italics"/>-<pb pagenum="167" xlink:href="026/01/199.jpg"/><emph type="italics"/>portione arithmetica &longs;implici<emph.end type="italics"/>; </s>
					<s id="N1B1BD"><!-- NEW -->&longs;it enim verticalis, AG horizontalis AN, <lb/>linea projectionis AD; </s>
					<s id="N1B1C3"><!-- NEW -->&longs;itque primum &longs;egmentum AD, quod &longs;cilicet <lb/>percurritur eo tempore quo in perpendiculari deor&longs;um percurritur DF, <lb/>id e&longs;t, v.g. <!-- REMOVE S-->&longs;exta eius pars, ducatur AFG, &longs;itque FG 5. partium, quarum <lb/>&longs;cilicet AD e&longs;t 6. a&longs;&longs;umatur GH &aelig;qualis DF, ducaturque FHI; </s>
					<s id="N1B1CF"><!-- NEW -->&longs;itque <lb/>HI 4. partium, a&longs;&longs;umatur IP &aelig;qualis GH, ducaturque HP; </s>
					<s id="N1B1D5"><!-- NEW -->accipiatur <lb/>PK 3. partium; </s>
					<s id="N1B1DB"><!-- NEW -->iam motus naturalis acceleratur eo modo quo &longs;upr&agrave; di&shy;<lb/>ctum e&longs;t iuxta rationem inclinationis deor&longs;um; </s>
					<s id="N1B1E1"><!-- NEW -->itaque a&longs;&longs;umatur KL <lb/>paulo maior IP; &longs;imiliter ducatur PLM, &longs;itque LM duarum partium, <lb/>&amp; MN paul&ograve; maior KL, tum &longs;it LNO, &longs;itque NO 1. partis, &amp; OB ma&shy;<lb/>ior MN, &amp; ducatur curua per puncta A.F.H.P.L.N.B. &amp; habebis <lb/>intentum. </s>
				</p>
				<p id="N1B1ED" type="main">
					<s id="N1B1EF"><!-- NEW -->Porr&ograve; h&aelig;c linea non e&longs;t parabolica, vt con&longs;tat ex Geometria &amp; plura <lb/>puncta habebis &longs;i minora &longs;patiola a&longs;&longs;umas; &longs;uppono enim DF e&longs;&longs;e tan&shy;<lb/>t&ugrave;m id &longs;patij quod primo in&longs;tanti in perpendiculari deor&longs;um &agrave; corpore <lb/>graui percurritur. </s>
				</p>
				<p id="N1B1F9" type="main">
					<s id="N1B1FB"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 56.<emph.end type="center"/></s>
				</p>
				<p id="N1B207" type="main">
					<s id="N1B209"><!-- NEW --><emph type="italics"/>Aliter h&aelig;c linea pote&longs;t de&longs;cribi &longs;uppo&longs;ita retardatione per numeros impa&shy;<lb/>res; vt habes in fig.<emph.end type="italics"/> 46.T.1. in qua AC e&longs;t verticalis, AB horizontalis, <lb/>AD inclinata 9. partium, FG 7. HI 5. reliqua vt &longs;upr&agrave; dictum e&longs;t. </s>
				</p>
				<p id="N1B216" type="main">
					<s id="N1B218"><!-- NEW -->Si ver&ograve; linea inclinata recedat longi&ugrave;s ab horizontali, &amp; accedat pro&shy;<lb/>pi&ugrave;s ad verticalem; vt habeantur puncta, transferantur eadem &longs;patia, &amp; <lb/>habebis puncta, per qu&aelig; de&longs;cribes pr&aelig;dictam lineam. </s>
				</p>
				<p id="N1B220" type="main">
					<s id="N1B222">Denique &longs;i inclinata accedat propi&ugrave;s ad horizontalem, transferantur <lb/>&longs;imiliter &longs;patia vnius in alteram. </s>
				</p>
				<p id="N1B227" type="main">
					<s id="N1B229">Ob&longs;eruabis autem crementa de&longs;cen&longs;us in GH. IB e&longs;&longs;e iuxta nume&shy;<lb/>ros impares 1.3.5.7.&amp;c. </s>
					<s id="N1B22E"><!-- NEW -->quandoquidem a&longs;&longs;umitur &longs;patium quod confi&shy;<lb/>citur in tempore &longs;en&longs;ibili, habita tamen &longs;emper ratione accelerationis, <lb/>qu&aelig; fit in plano inclinato, vnde cre&longs;cit &longs;emper proportio acceleratio&shy;<lb/>nis, vt &longs;upr&agrave; demon&longs;trauimus; qu&aelig; cert&egrave; proportionum in&aelig;qualitas ef&shy;<lb/>ficit, ne po&longs;&longs;int accurat&egrave; de&longs;cribi pr&aelig;dict&aelig; line&aelig;, &longs;ed tant&ugrave;m rudi Miner&shy;<lb/>u&acirc;, cum &longs;ingulis in&longs;tantibus mutetur proportio accelerationis. </s>
				</p>
				<p id="N1B23C" type="main">
					<s id="N1B23E"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1B24A" type="main">
					<s id="N1B24C"><!-- NEW -->Ob&longs;eruabis nondum e&longs;&longs;e &agrave; nobis determinatam proportionem illam, <lb/>in qua de&longs;truitur impetus violentus in motu mixto, qu&aelig; tamen ex dictis <lb/>&longs;upr&agrave; pote&longs;t colligi; quippe de&longs;truitur pro rata, ide&longs;t qua proportione <lb/>linea motus mixti e&longs;t minor linea compo&longs;ita ex vtroque, &longs;it ergo. </s>
				</p>
				<p id="N1B256" type="main">
					<s id="N1B258"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 57.<emph.end type="center"/></s>
				</p>
				<p id="N1B264" type="main">
					<s id="N1B266"><!-- NEW --><emph type="italics"/>Impetus violentus &longs;olus de&longs;truitur in arcu a&longs;cen&longs;us<emph.end type="italics"/>; </s>
					<s id="N1B26F"><!-- NEW -->probatur, quia natu&shy;<lb/>ralis non cre&longs;cit, vt patet; con&longs;tat enim arcus a&longs;cen&longs;us ex naturali &aelig;qua&shy;<lb/>bili, &longs;ed aliquis impetus decre&longs;cit, vt con&longs;tat ex dictis, igitur &longs;olus <lb/>violentus. </s>
				</p>
				<pb pagenum="168" xlink:href="026/01/200.jpg"/>
				<p id="N1B27D" type="main">
					<s id="N1B27F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 58.<emph.end type="center"/></s>
				</p>
				<p id="N1B28B" type="main">
					<s id="N1B28D"><!-- NEW --><emph type="italics"/>Impetus naturalis non decre&longs;cit etiam in arcu de&longs;cen&longs;us<emph.end type="italics"/>; probatur quia <lb/>cre&longs;cit, vt dictum e&longs;t &longs;upr&agrave;, igitur non decre&longs;cit. </s>
				</p>
				<p id="N1B298" type="main">
					<s id="N1B29A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 59.<emph.end type="center"/></s>
				</p>
				<p id="N1B2A6" type="main">
					<s id="N1B2A8"><emph type="italics"/>De&longs;truitur impetus violentus pro rata. </s>
					<s id="N1B2AD">id e&longs;t, qua proportione e&longs;t frustr&agrave;;<emph.end type="italics"/><lb/>v.g. </s>
					<s id="N1B2B4"><!-- NEW -->&longs;it impetus per AD inclinatam &longs;ur&longs;um, &amp; alius per AB perpendi&shy;<lb/>cularem deor&longs;um; </s>
					<s id="N1B2BA"><!-- NEW -->haud dubi&egrave; motus erit per AC; </s>
					<s id="N1B2BE"><!-- NEW -->igitur concurrunt <lb/>ad motum AC motus AB &amp; AD, vel poti&ugrave;s impetus; </s>
					<s id="N1B2C4"><!-- NEW -->igitur debet de&shy;<lb/>&longs;trui impetus in ea proportione, in qua AC e&longs;t minor AG, id e&longs;t com&shy;<lb/>po&longs;ita ex AD, DC, quod impetus AB non po&longs;&longs;it de&longs;trui; </s>
					<s id="N1B2CC"><!-- NEW -->totum id <lb/>quod de&longs;truetur detrahetur impetui AD; </s>
					<s id="N1B2D2"><!-- NEW -->igitur a&longs;&longs;umatur DF &longs;cilicet <lb/>differentia AC, &amp; AG; impetus de&longs;tructus ita &longs;e habet ad impetum <lb/>AD, vt DF ad AD, &amp; ad re&longs;iduum impetum ex AD, vt DF ad FA, <lb/>qu&aelig; omnia con&longs;tant ex Th.7. &longs;it ergo AC fig. </s>
					<s id="N1B2DC"><!-- NEW -->49. perpendicularis &longs;ur&shy;<lb/>&longs;um, AD inclinata, AB horizontalis; &longs;it impetus violentus re&longs;pondens <lb/>AD, &amp; naturalis DG, ducatur AGK, ex AD detrahatur DF, id e&longs;t <lb/>differentia AG &amp; compo&longs;it&aelig; ex AD. DG, &longs;upere&longs;t AF, cui a&longs;&longs;umitur <lb/>&aelig;qualis GK, ex qua detrahitur KH, id e&longs;t differentia GL, &amp; compo&longs;it&aelig; <lb/>ex GK, KL, &longs;upere&longs;t GH, cui LO accipitur &aelig;qualis, cui detrahitur <lb/>OM, id e&longs;t differentia LP &amp; compo&longs;it&aelig; ex LO, OP, &longs;upere&longs;t ML, cui <lb/>&aelig;qualis accipitur PR, atque ita deinceps. </s>
					<s id="N1B2EE"><!-- NEW -->Porr&ograve; demon&longs;tratur de&longs;trui <lb/>impetum violentum iuxta hanc proportionem; </s>
					<s id="N1B2F4"><!-- NEW -->quia de&longs;truitur, qua <lb/>proportione e&longs;t fru&longs;tr&agrave;, pro rata per Ax.2.&amp; Th.7.&longs;ed totus impetus qui <lb/>concurrit ad &longs;ecundam lineam AG, e&longs;t compo&longs;itus ex AD, GD; </s>
					<s id="N1B2FC"><!-- NEW -->quia &longs;i <lb/>naturalis &longs;olus e&longs;&longs;et, percurreret &longs;patium &aelig;quale DG; </s>
					<s id="N1B302"><!-- NEW -->&longs;i ver&ograve; &longs;olus e&longs;&longs;et <lb/>violentus percurreret &longs;patium &aelig;quale AD; </s>
					<s id="N1B308"><!-- NEW -->igitur vterque &longs;imul &longs;umptus <lb/>e&longs;t vt <expan abbr="c&otilde;po&longs;ita">compo&longs;ita</expan>, ex AG. DG. igitur &longs;i ea proportione e&longs;t fru&longs;tr&agrave;, qua motus <lb/>deficit, c&ugrave;m AG &longs;it motus; </s>
					<s id="N1B314"><!-- NEW -->cert&egrave; motus e&longs;t ad impetum, vt AG ad <expan abbr="compo-&longs;it&atilde;">compo&shy;<lb/>&longs;itam</expan> ex AD. DG; </s>
					<s id="N1B31E"><!-- NEW -->igitur deficit motus tota DF qu&aelig; e&longs;t differentia AG &amp; <lb/><expan abbr="c&otilde;po&longs;it&aelig;">compo&longs;it&aelig;</expan> ex AD. DG; </s>
					<s id="N1B327"><!-- NEW -->igitur impetus e&longs;t fru&longs;tr&agrave; in ratione DF; </s>
					<s id="N1B32B"><!-- NEW -->igitur de&shy;<lb/>bet de&longs;trui in ratione DF; </s>
					<s id="N1B331"><!-- NEW -->&longs;ed impetus DG &longs;eu naturalis nihil de&longs;trui&shy;<lb/>tur per Th.57. &amp; 58. igitur ex violento AD de&longs;truitur DF; </s>
					<s id="N1B337"><!-- NEW -->igitur &longs;u&shy;<lb/>pere&longs;t tantum AF vel &aelig;qualis GK; </s>
					<s id="N1B33D"><!-- NEW -->&longs;imiliter impetui GK &amp; KL re&shy;<lb/>&longs;pondet motus GL, &longs;ed GL e&longs;t minor compo&longs;ita ex GK &amp; KL &longs;eg&shy;<lb/>mento KH; </s>
					<s id="N1B345"><!-- NEW -->igitur e&longs;t fru&longs;tr&agrave; impetus in ratione KH; </s>
					<s id="N1B349"><!-- NEW -->igitur de&longs;truitur <lb/>in eadem ratione KH, non ex naturali KL; </s>
					<s id="N1B34F"><!-- NEW -->igitur ex violento GK; <lb/>igitur &longs;upere&longs;t tantum GH, vel &aelig;qualis LO, in qua &longs;imiliter procedi&shy;<lb/>tur. </s>
					<s id="N1B357">&amp; &longs;upere&longs;t LM vel &aelig;qualis PR, atque ita deinceps. </s>
				</p>
				<p id="N1B35A" type="main">
					<s id="N1B35C"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1B369" type="main">
					<s id="N1B36B">Hinc de&longs;truitur impetus initio motus in maiori quantitate, quia <pb pagenum="169" xlink:href="026/01/201.jpg"/>DF. v. <!-- REMOVE S-->g. <!-- REMOVE S-->e&longs;t maxima omnium differentiarum. </s>
				</p>
				<p id="N1B377" type="main">
					<s id="N1B379"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1B386" type="main">
					<s id="N1B388"><!-- NEW -->Hinc &longs;ub finem differentia line&aelig; motus v. <!-- REMOVE S-->g. <!-- REMOVE S-->TB &longs;emper e&longs;t maius <lb/>latus trianguli TXB; </s>
					<s id="N1B392"><!-- NEW -->idem dico de aliis; igitur differentia line&aelig; motus <lb/>&amp; compo&longs;it&aelig; ex duplici impetu e&longs;t &longs;emper minor &amp; minor in in&shy;<lb/>finitum. </s>
				</p>
				<p id="N1B39A" type="main">
					<s id="N1B39C"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1B3A9" type="main">
					<s id="N1B3AB">Po&longs;&longs;unt determinari &agrave; Geometria omnes anguli triangulorum ADG. <lb/>GKL. OLP. nam ADG e&longs;t &aelig;qualis CAD, at ver&ograve; GKL &aelig;qualis <lb/>KGD, &amp; hic duobus &longs;imul ADG &amp; DAG, igitur determinari facil&egrave; <lb/>poterunt ex doctrina triangulorum. </s>
				</p>
				<p id="N1B3B4" type="main">
					<s id="N1B3B6"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1B3C3" type="main">
					<s id="N1B3C5">Hinc etiam &longs;ciri poterit in quo puncto linea motus v.g. <!-- REMOVE S-->LP cum per&shy;<lb/>pendiculari OP faciat angulum rectum, quod &longs;atis e&longs;t indica&longs;&longs;e, nam hic <lb/>Geometram non ago. </s>
				</p>
				<p id="N1B3CE" type="main">
					<s id="N1B3D0"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 5.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1B3DD" type="main">
					<s id="N1B3DF">Hinc quoque &longs;ciri pote&longs;t maxima altitudo huius projectionis, qu&aelig; <lb/>&longs;cilicet in eo puncto e&longs;t, in quo linea motus cum perpendiculari deor&shy;<lb/>&longs;um facit angulum rectum, v.g. <!-- REMOVE S-->in puncto P, &longs;i angulus LPO e&longs;t <lb/>rectus. </s>
				</p>
				<p id="N1B3EA" type="main">
					<s id="N1B3EC"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 6.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1B3F9" type="main">
					<s id="N1B3FB"><!-- NEW -->Hinc pote&longs;t etiam &longs;ciri altitudo oper&acirc; triangulorum productorum <lb/>AG 2. GK 3. OLP. quod quiuis Geometra facil&egrave; intelliget; h&icirc;c quo&shy;<lb/>que obiter ob&longs;erua vnum, quod &longs;&aelig;p&egrave; ali&agrave;s indicauimus, quanti videlicet <lb/>momenti &longs;it Geometria in rebus phy&longs;icis. </s>
				</p>
				<p id="N1B405" type="main">
					<s id="N1B407"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 7.<emph.end type="center"/></s>
				</p>
				<p id="N1B413" type="main">
					<s id="N1B415"><!-- NEW -->Hinc etiam colligo arcum a&longs;cen&longs;us maiorem e&longs;&longs;e arcu de&longs;cen&longs;us &longs;u&shy;<lb/>pra idem planum horizontale AB; </s>
					<s id="N1B41B"><!-- NEW -->quia in arcu de&longs;cen&longs;us acceleratur <lb/>pro ratione diuer&longs;&aelig; inclinationis impetus naturalis; </s>
					<s id="N1B421"><!-- NEW -->igitur lineam mo&shy;<lb/>tus addunt propi&ugrave;s ad perpendicularem, vt vides in TB; </s>
					<s id="N1B427"><!-- NEW -->igitur min&ugrave;s <lb/>acquirit in horizontali; </s>
					<s id="N1B42D"><!-- NEW -->igitur minor amplitudo horizontalis &longs;ube&longs;t ar&shy;<lb/>cui de&longs;cen&longs;us projectorum qu&agrave;m arcui a&longs;cen&longs;us; dixi &longs;upr&agrave; idem pla&shy;<lb/>num, quia arcus de&longs;cen&longs;us infra planum AB propagatur fer&egrave; in infi&shy;<lb/>nitum. </s>
				</p>
				<p id="N1B437" type="main">
					<s id="N1B439"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 8.<emph.end type="center"/></s>
				</p>
				<p id="N1B445" type="main">
					<s id="N1B447"><!-- NEW -->Hinc reiicio Galileum qui nulla pror&longs;us fultus ratione phy&longs;ica vult <lb/>vtrumque e&longs;&longs;e &aelig;qualem, quod tamen omnibus experimentis repugnat, &amp; <lb/>ip&longs;i etiam pueri, qui di&longs;co ludunt ob&longs;eruare po&longs;&longs;unt arcum de&longs;cen&longs;us &longs;ui <lb/>di&longs;ci e&longs;&longs;e long&egrave; minorem, nec e&longs;t quod ad &longs;uam Parabolam confugiat, <lb/>qu&aelig; duo fal&longs;a &longs;upponit principia, &longs;cilicet &aelig;quabilitatem motus violen&shy;<lb/>ti, &amp; accelerationem naturalis eo &longs;cilicet modo quo fieret in perpendi&shy;<lb/>culari; at vtrumque fal&longs;um e&longs;&longs;e &longs;upr&agrave; demon&longs;trauimus, adde quod vt iam <pb pagenum="170" xlink:href="026/01/202.jpg"/>dixi in &longs;agitta emi&longs;&longs;a, projecto di&longs;co, &amp;c. </s>
					<s id="N1B45C"><!-- NEW -->omnes ob&longs;eruare po&longs;&longs;unt ar&shy;<lb/>cum a&longs;cen&longs;us maiorem e&longs;&longs;e arcu de&longs;cen&longs;us, quod etiam &longs;upponunt om&shy;<lb/>nes, qui de re tormentaria &longs;crip&longs;erunt; pr&aelig;&longs;ertim Vfanus tract. <!-- REMOVE S-->3. <lb/>c. <!-- REMOVE S-->13. </s>
				</p>
				<p id="N1B46A" type="main">
					<s id="N1B46C"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 9.<emph.end type="center"/></s>
				</p>
				<p id="N1B478" type="main">
					<s id="N1B47A">Hinc etiam colliges contra Vfanum globum &egrave; tormento emi&longs;&longs;um per <lb/>inclinatam &longs;ur&longs;um non ferri prim&ograve; per lineam rectam, quia mouetur <lb/>motu mixto, qui rectus e&longs;&longs;e non pote&longs;t in hoc ca&longs;u per Th.54. </s>
				</p>
				<p id="N1B481" type="main">
					<s id="N1B483"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 10.<emph.end type="center"/></s>
				</p>
				<p id="N1B48F" type="main">
					<s id="N1B491"><!-- NEW -->Motus mixtus arcus de&longs;cen&longs;us v&longs;que ad centrum terr&aelig; durare po&longs;&longs;et <lb/>&longs;i producerentur tot partes impetus quot &longs;unt in&longs;tantia illius motus; quia <lb/>c&ugrave;m &longs;emper de&longs;truatur minor impetus, &amp; minor in infinitum, po&longs;t ali&shy;<lb/>quod &longs;patium de&longs;cen&longs;us tam par&ugrave;m de&longs;truitur v&longs;que ad centrum terr&aelig; vt <lb/>non ad&aelig;quet totus ille impetus primam partem primo in&longs;tanti de&longs;tru&shy;<lb/>ctam, at tunc linea motus &agrave; perpendiculari deor&longs;um di&longs;tingui non <lb/>pote&longs;t. </s>
				</p>
				<p id="N1B4A1" type="main">
					<s id="N1B4A3"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 11.<emph.end type="center"/></s>
				</p>
				<p id="N1B4AF" type="main">
					<s id="N1B4B1"><!-- NEW -->Sed ne Geometriam omnin&ograve; de&longs;picere videar, in circulo demon&longs;tro <lb/>proportiones omnes in quibus decre&longs;cit motus violentus per quamlibet <lb/>lineam inclinatam &longs;ur&longs;um, vel deor&longs;um; </s>
					<s id="N1B4B9"><!-- NEW -->&longs;it ergo circulus ADGQ cen&shy;<lb/>tro B; </s>
					<s id="N1B4BF"><!-- NEW -->&longs;it motus violentus &longs;ur&longs;um BD coniunctus cum naturali BR, &longs;int&shy;<lb/>que ex gr. <!-- REMOVE S-->BR. RQ &aelig;quales; </s>
					<s id="N1B4C7"><!-- NEW -->haud dubi&egrave; linea motus erit BC, quia na&shy;<lb/>turalis BR pugnat pro rata per Th.134.l.1. eritque BC &longs;ubdupla BD; <lb/>igitur centro R. &longs;emidiametro RC de&longs;cribatur circulus CLPS, erit <lb/>&aelig;qualis priori, ducanturque ex centro B infinit&aelig; line&aelig; BE. BF. BK. <lb/>BN, &amp; vt res fit clarior, &longs;int omnes anguli DBE. EBF. FBG, &amp;c. <lb/></s>
					<s id="N1B4D4">&aelig;quales &longs;cilicet grad. <!-- REMOVE S-->30. &amp; ex punctis E.F.G.K.N.q. </s>
					<s id="N1B4D9"><!-- NEW -->ducantur line&aelig; <lb/>ad circunferentiam circuli CLPS. parallel&aelig; DP.Dico omnes e&longs;&longs;e &aelig;qua&shy;<lb/>les DC; </s>
					<s id="N1B4E1"><!-- NEW -->nam prim&ograve; FH. GL. KM. QP &longs;unt &aelig;quales, vt patet: </s>
					<s id="N1B4E5"><!-- NEW -->deinde <lb/>CE &amp; QO &longs;unt &aelig;quales; </s>
					<s id="N1B4EB"><!-- NEW -->igitur EV. OX, quod etiam certum e&longs;t; igi&shy;<lb/>tur &longs;i &longs;upponatur idem motus violentus &aelig;qualis BD per omnes inclina&shy;<lb/>tas BE. BF, &amp;c. </s>
					<s id="N1B4F3">coniunctus naturali &aelig;quali BR; </s>
					<s id="N1B4F6"><!-- NEW -->primum &longs;patium erit <lb/>BC, &longs;ecundum BV, tertium BH, quartum BL, quintum BM, &longs;extum <lb/>BO<emph type="sub"/>2<emph.end type="sub"/> &longs;eptimum BP. quod cert&egrave; mirabile e&longs;t; </s>
					<s id="N1B504"><!-- NEW -->nam ex BE. EV. fit BV per <lb/>Th.5. &longs;imiliter ex BF. FH. fit BH, ex BG. GL. fit BL; </s>
					<s id="N1B50A"><!-- NEW -->denique ex <lb/><expan abbr="Bq.">Bque</expan> QP fit BP; iam ver&ograve; proportiones i&longs;tarum linearum ex Trigo&shy;<lb/>nometria facil&egrave; intelligi po&longs;&longs;unt. </s>
				</p>
				<p id="N1B515" type="main">
					<s id="N1B517"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 60.<emph.end type="center"/></s>
				</p>
				<p id="N1B523" type="main">
					<s id="N1B525"><!-- NEW --><emph type="italics"/>Iactus per horizontalem, &amp; per verticalem nihil acquirit per &longs;e in eodem <lb/>plane horizontali, vnde incipit iactus<emph.end type="italics"/>; </s>
					<s id="N1B530"><!-- NEW -->probatur, quia verticalis iactus per <lb/><expan abbr="e&atilde;dem">eandem</expan> lineam redit; </s>
					<s id="N1B539"><!-- NEW -->horizontalis ver&ograve; &longs;tatim de&longs;cendit; quia motus <pb pagenum="171" xlink:href="026/01/203.jpg"/>mixtus e&longs;t per Th.44. dixi per &longs;e, nam fort&egrave; per accidens fieri pote&longs;t, vt <lb/>iactus horizontalis habeat arcum a&longs;cen&longs;us, &amp; de&longs;cen&longs;us. </s>
				</p>
				<p id="N1B544" type="main">
					<s id="N1B546"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 61.<emph.end type="center"/></s>
				</p>
				<p id="N1B552" type="main">
					<s id="N1B554"><!-- NEW --><emph type="italics"/>Hinc qu&ograve; iactus propi&ugrave;s accedit ad horizontalem &longs;eu verticalem, min&ugrave;s <lb/>acquirit in eodem plano horizontali, &longs;cilicet in eo &agrave; cuius extremitate inci&shy;<lb/>pit iactus<emph.end type="italics"/>; </s>
					<s id="N1B561"><!-- NEW -->probatur, quia c&ugrave;m iactus verticalis nihil pror&longs;us acqui&shy;<lb/>rat in horizontali plano per Theorema 60. cert&egrave; qu&ograve; propi&ugrave;s ad illum <lb/>iactus inclinatus accedet, min&ugrave;s acquiret; idem dico de iactu hori&shy;<lb/>zontali. </s>
				</p>
				<p id="N1B56B" type="main">
					<s id="N1B56D"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 62.<emph.end type="center"/></s>
				</p>
				<p id="N1B579" type="main">
					<s id="N1B57B"><!-- NEW --><emph type="italics"/>Hinc qu&ograve; iactus longi&ugrave;s recedit ab vtroque &longs;cilicet &agrave; verticali, &amp; hori&shy;<lb/>zontali, pl&ugrave;s acquiret in eodem plano horizontali<emph.end type="italics"/>; &longs;i enim qu&ograve; pl&ugrave;s ac&shy;<lb/>cedit ad vtrumque, min&ugrave;s acquirit, igitur pl&ugrave;s acquirit, qu&ograve; pl&ugrave;s re&shy;<lb/>cedit. </s>
				</p>
				<p id="N1B58A" type="main">
					<s id="N1B58C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 63.<emph.end type="center"/></s>
				</p>
				<p id="N1B598" type="main">
					<s id="N1B59A"><!-- NEW --><emph type="italics"/>Hinc iactus medius &longs;eu per inclinatam qua cum verticali, vel horizontali <lb/>facit angulum<emph.end type="italics"/> 45.<emph type="italics"/>&longs;eu &longs;emirectum, e&longs;t omnium maximus, id e&longs;t pl&ugrave;s acqui&shy;<lb/>rit in eodem plano horizontali, qu&agrave;m reliqui omnes<emph.end type="italics"/>; </s>
					<s id="N1B5AD"><!-- NEW -->experientia certi&longs;&longs;ima <lb/>e&longs;t, ratio e&longs;t quia ab horizontali &amp; verticali maxim&egrave; omnium di&longs;tat; <lb/>igitur maximus e&longs;t per Theorema 62. nec e&longs;t vlla alia ratio geome&shy;<lb/>trica. </s>
				</p>
				<p id="N1B5B7" type="main">
					<s id="N1B5B9"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 64.<emph.end type="center"/></s>
				</p>
				<p id="N1B5C5" type="main">
					<s id="N1B5C7"><!-- NEW --><emph type="italics"/>Iactus qui &aelig;qualiter ab horizontali &amp; verticali di&longs;tant, &longs;unt &aelig;quales<emph.end type="italics"/>; </s>
					<s id="N1B5D0"><!-- NEW --><lb/>probatur, quia qua proportione ad horizontalem &longs;eu verticalem acce&shy;<lb/>dit iactus, in ea proportione minor e&longs;t; </s>
					<s id="N1B5D7"><!-- NEW -->igitur qui &aelig;qualiter acce&shy;<lb/>dunt in proportione &aelig;quali, minores &longs;unt; </s>
					<s id="N1B5DD"><!-- NEW -->igitur &aelig;quales, quod mo&shy;<lb/>dica figura ob oculos ponet; </s>
					<s id="N1B5E3"><!-- NEW -->&longs;it enim quadrans ABF, iactus verti&shy;<lb/>calis AB, horizontalis AF, medius AD, hic maximus omnium <lb/>erit; at ver&ograve; AC, &amp; AE, qui ab AD &aelig;qualiter di&longs;tant, erunt &aelig;&shy;<lb/>quales. </s>
				</p>
				<p id="N1B5ED" type="main">
					<s id="N1B5EF"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1B5FB" type="main">
					<s id="N1B5FD">Ob&longs;eruabis prim&ograve;, omitti &agrave; me multa qu&aelig; &longs;uis Parabolis aliqui af&shy;<lb/>fingunt, qu&aelig; nec experimentis, nec vllis rationibus con&longs;en&shy;<lb/>tiunt. </s>
				</p>
				<p id="N1B604" type="main">
					<s id="N1B606"><!-- NEW -->Secund&ograve; rationem i&longs;torum omnium Theorematum; </s>
					<s id="N1B60A"><!-- NEW -->quia quo iactus <lb/>ad verticalem propi&ugrave;s accedit, maior quantitas impetus de&longs;truitur <lb/> v.g. <!-- REMOVE S-->in AD pl&ugrave;s qu&agrave;m in GK; </s>
					<s id="N1B614"><!-- NEW -->igitur cit&ograve; deficiunt vires huic iactui; </s>
					<s id="N1B618"><!-- NEW --><lb/>adde quod acquirit in verticali, quod alius acquirit in horizontali; </s>
					<s id="N1B61D"><!-- NEW -->at <pb pagenum="172" xlink:href="026/01/204.jpg"/>ver&ograve; qui propi&ugrave;s accedit ad horizontalem cit&ograve; de&longs;cendit infra planum <lb/>horizontale, t&ugrave;m quia propior e&longs;t, tum quia cit&ograve; naturalis impetus <lb/>acceleratur; </s>
					<s id="N1B62A"><!-- NEW -->igitur pl&ugrave;s acquirit in perpendiculari deor&longs;um, qu&agrave;m in <lb/>horizontali; qu&aelig; omnia ex certis principiis, non fictitiis dedu&shy;<lb/>cuntur. </s>
				</p>
				<p id="N1B632" type="main">
					<s id="N1B634"><!-- NEW -->Terti&ograve;, ob&longs;eruabis talem e&longs;&longs;e hypothe&longs;im illam Paraboli&longs;tarum, de <lb/>qua &longs;upr&agrave;; </s>
					<s id="N1B63A"><!-- NEW -->&longs;it enim iactus verticalis EA; </s>
					<s id="N1B63E"><!-- NEW -->medius EB; </s>
					<s id="N1B642"><!-- NEW -->cert&egrave; ex eorum <lb/>etiam principio eo tempore, quo motu &aelig;quabili percurreret mobile &longs;pa&shy;<lb/>tium EA, motu naturaliter retardato percurreret &longs;patium EG &longs;ubdu&shy;<lb/>plum; </s>
					<s id="N1B64C"><!-- NEW -->atqui percurrit EG eo tempore, quo idem percurreret GE motu <lb/>naturaliter accelerato; </s>
					<s id="N1B652"><!-- NEW -->&longs;ed percurret inclinatam EC eo tempore quo <lb/>percurret EA, &longs;cilicet motu &aelig;quabili; </s>
					<s id="N1B658"><!-- NEW -->&longs;unt enim &aelig;quales: Volunt autem <lb/>FE diuidi in 16. partes, &amp; ED in 8. ducique parallelas HQ IP, &amp;c. </s>
					<s id="N1B65E"><!-- NEW -->&amp; ac&shy;<lb/>cipi VR &lpar;1/16&rpar; FE, ita vt RQ &longs;it ad RH vt 9.ad 7. &amp; PS &lpar;4/16&rpar; &amp; NT &lpar;9/16&rpar;, vel O <lb/>T &lpar;1/16&rpar; PS &lpar;4/16&rpar; PR &lpar;9/16&rpar;; </s>
					<s id="N1B666"><!-- NEW -->igitur eo tempore, quo mobile e&longs;&longs;et in IX, erit in M; </s>
					<s id="N1B66A"><!-- NEW --><lb/>igitur motus naturalis acqui&longs;iuit XM, id e&longs;t 1/4 AE; </s>
					<s id="N1B66F"><!-- NEW -->igitur eo tempore quo <lb/>e&longs;&longs;et in B erit in D; </s>
					<s id="N1B675"><!-- NEW -->igitur motus naturalis acqui&longs;iuit BD quadruplum X <lb/>M; </s>
					<s id="N1B67B"><!-- NEW -->nam &longs;i vno tempore motu &aelig;quabili conficit EX, duobus conficit E <lb/>D &amp; &longs;i motu naturaliter accelerato conficit vno tempore XM, duobus <lb/>conficit BD iuxta proportionem Galilei, in qua &longs;patia &longs;unt vt temporum <lb/>quadrata; </s>
					<s id="N1B685"><!-- NEW -->&amp; quo tempore motu &aelig;quabili conficeret EA, vel EB naturali <lb/>conficeret GE vel CZ &aelig;qualem GE; ducatur igitur linea per puncta E. <lb/>RS, OM, h&aelig;c e&longs;t &longs;emiparabola cui &longs;i addas MZD, habebis totam ampli&shy;<lb/>tudinem Parabol&aelig; ED, hoc e&longs;t totum &longs;patium, quod acquirit in plano <lb/>horizontali ED iactus medius EB. <!-- KEEP S--></s>
				</p>
				<p id="N1B692" type="main">
					<s id="N1B694"><!-- NEW -->Si ver&ograve; &longs;it inclinata EY; </s>
					<s id="N1B698"><!-- NEW -->vt habeatur iuxta hanc hypothe&longs;im amplitu&shy;<lb/>do horizontalis; </s>
					<s id="N1B69E"><!-- NEW -->fiat &longs;emicirculus centro G, &longs;emidiametro GE; </s>
					<s id="N1B6A2"><!-- NEW -->&longs;it per&shy;<lb/>pendicularis YK, erit &longs;ubdupla amplitudo; </s>
					<s id="N1B6A8"><!-- NEW -->&longs;icut perpendicularis XL de&shy;<lb/>finit &longs;ubduplam amplitudinem LE iactus EB; </s>
					<s id="N1B6AE"><!-- NEW -->&longs;imiliter YK definit &longs;ubdu&shy;<lb/>plam amplitudinem iactus E 4.3. nam arcus YX e&longs;t &aelig;qualis arcui X 4. <lb/>igitur anguli YEC, CE. 3. &longs;unt &aelig;quales; hinc iactus &longs;unt &aelig;quales &longs;upra, &amp; <lb/>infra grad.45. vt autem habeatur altitudo Parabol&aelig; &longs;ubdupla XL e&longs;t al&shy;<lb/>titudo Parabol&aelig; iactus EC, &longs;ubdupla YX e&longs;t altitudo iactus EY, &longs;ubdu&shy;<lb/>pla 4.K e&longs;t altitudo iactus E 3. <!-- KEEP S--></s>
				</p>
				<p id="N1B6BD" type="main">
					<s id="N1B6BF"><!-- NEW -->Ex his facil&egrave; iuxta hypethe&longs;im tabul&aelig; omnium iactuum, cuiu&longs;libet <lb/>eleuationis con&longs;trui po&longs;&longs;unt; </s>
					<s id="N1B6C5"><!-- NEW -->de quibus habes plura apud Galileum in <lb/>dialogis, &amp; plurima apud Mer&longs;ennum in Bali&longs;tica; </s>
					<s id="N1B6CB"><!-- NEW -->quare ab illis ab&longs;ti&shy;<lb/>neo: pr&aelig;&longs;ertim cum &longs;it fal&longs;a illa hypothe&longs;is, eiu&longs;que &longs;ectatores vltr&ograve; fa&shy;<lb/>teantur tabulas illas non parum &agrave; vero abe&longs;&longs;e, de quo vide Mer&longs;ennum <lb/>prop.  30. Bali&longs;t. <!-- KEEP S--></s>
				</p>
				<p id="N1B6D6" type="main">
					<s id="N1B6D8"><!-- NEW -->Quart&ograve;, po&longs;&longs;unt iuxta no&longs;tram hypothe&longs;im tabul&aelig; nou&aelig; con&longs;trui, quod <lb/>&amp; ego pr&aelig;&longs;tarem, ni&longs;i pror&longs;us inutiles e&longs;&longs;ent; </s>
					<s id="N1B6DE"><!-- NEW -->quare prudenter omi&longs;&longs;as <lb/>e&longs;&longs;e prudentes omnes cen&longs;ebunt, cum h&icirc;c calculatorem non <expan abbr="ag&atilde;">agam</expan>, &longs;ed phi&shy;<lb/>lo&longs;ophum; </s>
					<s id="N1B6EA"><!-- NEW -->id cert&egrave; tolerari potuit in analyticis, qu&aelig; &longs;ine calculationibus <lb/>intelligi non po&longs;&longs;unt; </s>
					<s id="N1B6F0"><!-- NEW -->&longs;ed minim&egrave; ferendum in Phy&longs;ica, qu&aelig; &longs;ucculen-<pb pagenum="173" xlink:href="026/01/205.jpg"/>tior e&longs;t, qu&agrave;m vt numeris tant&ugrave;m, <expan abbr="&longs;icci&longs;&qacute;ue">&longs;icci&longs;que</expan> calculis nutriatur; </s>
					<s id="N1B6FD"><!-- NEW -->adde quod <lb/>Praxis Theoric&aelig; in his omnin&ograve; pr&aelig;ferenda e&longs;t; </s>
					<s id="N1B703"><!-- NEW -->quamquam huic etiam <lb/>parti dee&longs;&longs;e nolumus, &longs;ed in &longs;ingularem libellum omnes i&longs;tas tabulas &amp; <lb/>alias huiu&longs;modi remittimus; cum hic tant&ugrave;m rerum phy&longs;icarum cau&longs;as <lb/>explicemus. </s>
				</p>
				<p id="N1B70D" type="main">
					<s id="N1B70F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 65.<emph.end type="center"/></s>
				</p>
				<p id="N1B71B" type="main">
					<s id="N1B71D"><emph type="italics"/>Si accipiatur planum horizontale intra illud vnde incipit iactus haud du&shy;<lb/>bi&egrave; iactus omnium maximus erit horizontalis in vtraque hypothe&longs;i.<emph.end type="italics"/></s>
					<s id="N1B726"><!-- NEW --> Primo in <lb/>hypothe&longs;i Galilci, in qua Parabola GD figur&acirc; &longs;uperiore habet maximum <lb/>omnium amplitudinem; </s>
					<s id="N1B72E"><!-- NEW -->lic&egrave;t iactus per GX; </s>
					<s id="N1B732"><!-- NEW -->ex quo &longs;equitur, non ha&shy;<lb/>beat impetum maiorem, qu&acirc;m iactus per EY, vel EX; </s>
					<s id="N1B738"><!-- NEW -->in no&longs;tra ver&ograve;, ia&shy;<lb/>ctus per BG primo tempore pl&ugrave;s acquirit in horizontali BG, qu&agrave;m ia&shy;<lb/>ctus per BF; </s>
					<s id="N1B740"><!-- NEW -->igitur pl&ugrave;s etiam &longs;ecundo tempore; </s>
					<s id="N1B744"><!-- NEW -->nam BF acquirit tant&ugrave;m <lb/>primo tempore BH, at ver&ograve; BG acquirit RL; </s>
					<s id="N1B74A"><!-- NEW -->adde quod min&ugrave;s perit ex <lb/>iactu BG; </s>
					<s id="N1B750"><!-- NEW -->quippe a&longs;&longs;umatur BL in B 2. &amp; GL in 2. 3. detrahitur tant&ugrave;m <lb/>G. 3.ex BG; </s>
					<s id="N1B756"><!-- NEW -->at ver&ograve; a&longs;&longs;umatur BH in B 4. &amp; FH in 4.5. detrahitur F 5.ex <lb/>BF; </s>
					<s id="N1B75C"><!-- NEW -->igitur pl&ugrave;s ex BF qu&agrave;m ex BG; qu&aelig; omnia ex &longs;uperioribus regulis <lb/>iu&longs;ta no&longs;tram hypothe&longs;im pr&aelig;&longs;criptis con&longs;equuntur. </s>
				</p>
				<p id="N1B762" type="main">
					<s id="N1B764"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 66.<emph.end type="center"/></s>
				</p>
				<p id="N1B770" type="main">
					<s id="N1B772"><!-- NEW --><emph type="italics"/>Imm&ograve; probabile e&longs;t &aelig;quales fore iactus per inclinatas &longs;ur&longs;um, &amp; deor&longs;um <lb/>&aelig;qualiter ab horizontali, vnde incipit iactus, distantes; </s>
					<s id="N1B77A"><!-- NEW -->&aelig;quales inquam in ali&shy;<lb/>quo plano horizontali, inferiore<emph.end type="italics"/>; </s>
					<s id="N1B783"><!-- NEW -->&longs;i enim iactus fiat per BD eadem figura &amp; <lb/>BP nihil acquiritur in horizontali, vt con&longs;tat; </s>
					<s id="N1B789"><!-- NEW -->&longs;i ver&ograve; iactus &longs;it per BG <lb/>maximum &longs;patium acquirunt in horizontali plano inferiore; </s>
					<s id="N1B78F"><!-- NEW -->igitur qua <lb/>proportione propi&ugrave;s accedent line&aelig; &longs;eu iactus ad BD, PP min&ugrave;s acqui&shy;<lb/>rent; </s>
					<s id="N1B797"><!-- NEW -->qua ver&ograve; proportione propi&ugrave;s accedent ad RG pl&ugrave;s acquirent; </s>
					<s id="N1B79B"><!-- NEW -->igi&shy;<lb/>tur &aelig;qualiter pl&ugrave;s, &amp; min&ugrave;s hinc inde, &longs;i &aelig;qualiter hinc inde di&longs;tent; </s>
					<s id="N1B7A1"><!-- NEW -->im&shy;<lb/>m&ograve; hoc ip&longs;um pr&aelig;&longs;entibus oculis intueri lic&egrave;t; </s>
					<s id="N1B7A7"><!-- NEW -->&longs;i enim iactus BF compa&shy;<lb/>retur cum iactu BK; </s>
					<s id="N1B7AD"><!-- NEW -->cert&egrave; BK acquirit RK, BF acquirit BH &aelig;qualem B <lb/>K; </s>
					<s id="N1B7B3"><!-- NEW -->&longs;ed BF &amp; BK &aelig;qualiter di&longs;tant ab horizontali BG; </s>
					<s id="N1B7B7"><!-- NEW -->nam arcus GF, &amp; <lb/>GK &longs;unt &aelig;quales, vt con&longs;tat: idem dico de iactu BE, &amp; BX, qui acquirunt <lb/>&aelig;quale &longs;patium in horizontali &aelig;quale &longs;cilicet BZ. </s>
				</p>
				<p id="N1B7BF" type="main">
					<s id="N1B7C1"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1B7CD" type="main">
					<s id="N1B7CF"><!-- NEW -->Ob&longs;eruabis hoc omnin&ograve; lic&egrave;t mirum cuiquam fort&egrave; videatur, cert&egrave; <lb/>in&longs;titutum e&longs;&longs;e &agrave; natura; </s>
					<s id="N1B7D5"><!-- NEW -->&longs;i enim comparentur omnes iactus &longs;upr&agrave; hori&shy;<lb/>zontalem BG, haud dubi&egrave; cum duo extremi &longs;cilicet BD, &amp; BG nihil <lb/>pror&longs;us acquirant, vt con&longs;tat ex dictis, iactus medius &longs;cilicet ad gradum <lb/>45.erit omnium maximus, quia &aelig;qualiter ab vtraque extremitate di&longs;tat, <lb/>vt demon&longs;trauimus &longs;upr&agrave;; </s>
					<s id="N1B7E1"><!-- NEW -->&longs;i ver&ograve; comparentur omnes iactus, qui po&longs;&shy;<lb/>&longs;unt fieri &agrave; centro B per totum &longs;emicirculum <expan abbr="DGq;">DGque</expan> cert&egrave; cum duo ex&shy;<lb/>tremi BD, BQ nihil pror&longs;us acquirant, vt con&longs;tat, iactus medius, &longs;cilicet <lb/>ad gradum 90.qui e&longs;t BG erit omnium maximus, quia &aelig;qualiter ab vtra-<pb pagenum="174" xlink:href="026/01/206.jpg"/>que di&longs;tat extremitate; &longs;imiliter quemadmodum iactus &aelig;qualiter &agrave; me&shy;<lb/>dio iactu 45. di&longs;tantes &aelig;qualem amplitudinem acquirunt in horizontali <lb/>BG, ita qui &aelig;qualiter di&longs;tant &agrave; medio iactu 90.vel horizontali BG &aelig;qua&shy;<lb/>lem amplitudinem acquirunt in aliquo plano horizontali, &longs;cilicet in eo <lb/>vnde vterque iactus de&longs;init in perpendicularem deor&longs;um. </s>
				</p>
				<p id="N1B7FC" type="main">
					<s id="N1B7FE"><!-- NEW -->Ob&longs;eruabis &longs;ecundo, omnes perpendiculares deor&longs;um perinde accipi, <lb/>atque &longs;i e&longs;&longs;ent parallel&aelig; propter in&longs;en&longs;ibilem differentium; </s>
					<s id="N1B804"><!-- NEW -->quod cert&egrave; <lb/>ab omnibus admittitur; quomodo ver&ograve; per diuer&longs;a plana deor&longs;um cor&shy;<lb/>pus tendere po&longs;&longs;it, v&longs;que ad centrum terr&aelig;, Libro &longs;equenti explica&shy;<lb/>bimus. </s>
				</p>
				<p id="N1B80E" type="main">
					<s id="N1B810"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 67.<emph.end type="center"/></s>
				</p>
				<p id="N1B81C" type="main">
					<s id="N1B81E"><!-- NEW --><emph type="italics"/>In iactu per inclinatam deor&longs;um dato tempore min&ugrave;s detrahitur de impetu <lb/>violento, qu&agrave;m in iactu per inclinatam &longs;ur&longs;um<emph.end type="italics"/> &longs;it enim circulus centro A <lb/>&longs;emidiametro AG; </s>
					<s id="N1B82B"><!-- NEW -->&longs;itque AG horizontalis, &amp; AO perpendiculatis deor&shy;<lb/>&longs;um; </s>
					<s id="N1B831"><!-- NEW -->&longs;it iactus per inclinatam &longs;ur&longs;um AD, &longs;itque impetus violentus vt A <lb/>D, &amp; naturalis deor&longs;um vt DE; </s>
					<s id="N1B837"><!-- NEW -->linea motus erit DAE; </s>
					<s id="N1B83B"><!-- NEW -->igitur a&longs;&longs;umatur A <lb/>E in AC, &amp; DE in CB, ex impetu AD detrahitur DB, vt con&longs;tat ex dictis <lb/>quia totius ille fru&longs;tr&agrave; e&longs;t; </s>
					<s id="N1B843"><!-- NEW -->&longs;it autem inclinata deor&longs;um cum impetu vio&shy;<lb/>lento &aelig;quali AI &aelig;qualis AD, &longs;itque naturalis deor&longs;um acceleratus pro <lb/>rata plani inclinati vt IL, linea motus erit AL; </s>
					<s id="N1B84B"><!-- NEW -->a&longs;&longs;umatur AK, vt AL, &amp; <lb/>KH vt IL, detrahitur tant&ugrave;m IH, &longs;ed IH e&longs;t minor DB; igitur tempore <lb/>&longs;equenti &aelig;quali impetus violentus inclinat&aelig; &longs;ur&longs;um erit vt EF &aelig;qualis <lb/>AB inclinat&aelig; deor&longs;um, vt LM, qu&aelig; maior e&longs;t EF, quia e&longs;t &aelig;qua&shy;<lb/>lis AH. </s>
				</p>
				<p id="N1B857" type="main">
					<s id="N1B859"><!-- NEW -->Ratio &agrave; priori e&longs;t, quia cum inclinata deor&longs;um faciat acutum angu&shy;<lb/>lum cum perpendiculari deor&longs;um, cum quo obtu&longs;um facit inclinata &longs;ur&shy;<lb/>&longs;um, maior e&longs;t in illa linea motus; </s>
					<s id="N1B861"><!-- NEW -->e&longs;t enim maior diagonalis, in hac ve&shy;<lb/>r&ograve; minor, igitur in illa min&ugrave;s impetus e&longs;t fru&longs;tr&agrave;, in i&longs;ta ver&ograve; pl&ugrave;s, igitur <lb/>min&ugrave;s impetus in illa de&longs;truitur, pl&ugrave;s in i&longs;ta; qu&aelig; omnia con&longs;tant ex <lb/>Th. 110. &amp; 139. &amp; 140. l.1. habes etiam in qua proportione decre&longs;cat <lb/>impetus. </s>
				</p>
				<p id="N1B86D" type="main">
					<s id="N1B86F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 68.<emph.end type="center"/></s>
				</p>
				<p id="N1B87B" type="main">
					<s id="N1B87D"><!-- NEW --><emph type="italics"/>Hinc in iactu qui fit per inclinatam deor&longs;um min&ugrave;s detrahitur,<emph.end type="italics"/> &amp; in eo <lb/>qui fit per inclinationem &longs;ur&longs;um pl&ugrave;s detrahitur, in perpendiculari deor&shy;<lb/>&longs;um nihil detrahitur, in perpendiculari &longs;ur&longs;um totus detrahitur qui po&shy;<lb/>te&longs;t extrahi, id e&longs;t ex collectione vtriu&longs;que naturalis, &amp; violenti dupli <lb/>naturalis in prima linea motus; h&aelig;c omnia &longs;equuntur ex dictis. </s>
				</p>
				<p id="N1B88E" type="main">
					<s id="N1B890"><!-- NEW -->Obiici pote&longs;t vnum &longs;atis difficile; quia &longs;i in perpendiculari deor&longs;um <lb/>pur&agrave; in AP nihil detrahitur impetus violenti, igitur cre&longs;cit &longs;emper vis <lb/>ictus, quod videtur e&longs;&longs;e contra experientiam. </s>
				</p>
				<p id="N1B898" type="main">
					<s id="N1B89A"><!-- NEW -->Re&longs;p. me aliquando fui&longs;&longs;e in ea &longs;ententi&acirc;, vt reuer&acirc; exi&longs;timarem de&shy;<lb/>cre&longs;cere impetum violentum in iactu perpendiculari deor&longs;um; </s>
					<s id="N1B8A0"><!-- NEW -->cum <lb/>etiam exi&longs;timarem decre&longs;cere vim ictus; </s>
					<s id="N1B8A6"><!-- NEW -->&longs;ed re melius con&longs;iderata, cum <lb/>nunquam id experiri potuerim; </s>
					<s id="N1B8AC"><!-- NEW -->nam &longs;emper &longs;entio vim ictus maiorem, <pb pagenum="175" xlink:href="026/01/207.jpg"/>cum deor&longs;um mobile proiicitur, qu&agrave;m cum &longs;ua &longs;ponte ex eadem altitu&shy;<lb/>dine de&longs;cendit; cert&egrave; ni fallor cum ratio demon&longs;tratiua pro hac &longs;en&shy;<lb/>tentia faciat, non dubitaui ampli&ugrave;s priorem &longs;ententiam immutare. </s>
				</p>
				<p id="N1B8B9" type="main">
					<s id="N1B8BB"><!-- NEW -->Porr&ograve; ratio, qu&aelig; pro hac &longs;ententia facit, remque ip&longs;am euincit, talis <lb/>e&longs;t; </s>
					<s id="N1B8C1"><!-- NEW -->certum e&longs;t impetum violentum de&longs;trui &agrave; naturali aliquando in ma&shy;<lb/>iori, aliquando in minori proportione, vt con&longs;tat ex dictis; </s>
					<s id="N1B8C7"><!-- NEW -->illa autem, <lb/>&longs;eu maior, &longs;eu minor proportio aliam regulam non habet pr&aelig;ter illam <lb/>quam toties inculcauimus, id e&longs;t impetum de&longs;trui pro rata, id e&longs;t qua <lb/>proportione e&longs;t fru&longs;tr&agrave;, id e&longs;t qua proportione e&longs;t minor motus eo, qui <lb/>e&longs;&longs;et ab vtroque impetu &longs;i ad <expan abbr="e&atilde;dem">eandem</expan> lineam vterque determinatus e&longs;&longs;et <lb/>atqui cum proiicitur mobile deor&longs;um, vterque impetus ad <expan abbr="e&atilde;dem">eandem</expan> li&shy;<lb/>neam e&longs;t determinatus; </s>
					<s id="N1B8DF"><!-- NEW -->igitur nihil motus dee&longs;t per Th.138.l.1. igitur <lb/>nihil impetus e&longs;t fru&longs;tr&agrave;; igitur nihil impetus illius de&longs;truitur. </s>
				</p>
				<p id="N1B8E5" type="main">
					<s id="N1B8E7"><!-- NEW -->Quod dictum e&longs;&longs;e velim non con&longs;iderata medij re&longs;i&longs;tenti&acirc;, qu&aelig; cert&egrave; <lb/>aliquid impetus de&longs;truit, quod tamen in&longs;en&longs;ibile e&longs;t in medio libero, pu&shy;<lb/>t&agrave; in a&euml;re; </s>
					<s id="N1B8EF"><!-- NEW -->&longs;i enim in&longs;en&longs;ibilis e&longs;t h&aelig;c re&longs;i&longs;tentia in motu naturali; </s>
					<s id="N1B8F3"><!-- NEW -->dum <lb/>mobile &longs;it eius &longs;oliditatis, qu&aelig; &longs;uperet facil&egrave; vim a&euml;ris; cert&egrave; etiam in&shy;<lb/>&longs;en&longs;ibilis e&longs;t in motu proiectorum, pr&aelig;&longs;ertim in mediocri &longs;patio, e&longs;t <lb/>enim par vtrobique ratio. </s>
				</p>
				<p id="N1B8FD" type="main">
					<s id="N1B8FF"><!-- NEW -->Equidem fateor in longi&longs;&longs;imo &longs;patio po&longs;&longs;e tandem de&longs;trui totum im&shy;<lb/>petum violentum; </s>
					<s id="N1B905"><!-- NEW -->nam &longs;i aliquid in dato &longs;patio de&longs;truitur; </s>
					<s id="N1B909"><!-- NEW -->igitur in ma&shy;<lb/>iore pi&ugrave;s de&longs;truitur; </s>
					<s id="N1B90F"><!-- NEW -->atque ita deinceps, donec tandem totus de&longs;tructus <lb/>&longs;it; at ver&ograve; in iis altitudinibus, ex quibus corpus deor&longs;um proiicere po&longs;&shy;<lb/>&longs;umus, vix quidquam facit pr&aelig;dicta re&longs;i&longs;tentia. </s>
				</p>
				<p id="N1B917" type="main">
					<s id="N1B919">Nec e&longs;t quod aliquis dicat ab hac re&longs;i&longs;tentia non de&longs;trui impetum <lb/>naturalem in motu naturaliter accelerato, vt dictum e&longs;t in &longs;ecundo lib. <!-- KEEP S--></s>
					<s id="N1B91F"><lb/>Igitur nec de&longs;trui violentum; </s>
					<s id="N1B923"><!-- NEW -->nam qua proportione cre&longs;cit medij re&longs;i&shy;<lb/>&longs;tentia, cre&longs;cunt vires impetus, qui perpetu&ograve; augetur; </s>
					<s id="N1B929"><!-- NEW -->vnde cum <lb/>remaneat &longs;emper eadem re&longs;i&longs;tenti&aelig; proportio &longs;icut primo tempore mo&shy;<lb/>tus impedit h&aelig;c re&longs;i&longs;tentia, ne tantill&ugrave;m impetus producatur; </s>
					<s id="N1B931"><!-- NEW -->ita &longs;ecun&shy;<lb/>do tempore impedit ne tantill&ugrave;m &aelig;quale producatur; </s>
					<s id="N1B937"><!-- NEW -->igitur nihil pro&shy;<lb/>ducti impetus ab illa de&longs;truitur propter augmentum continuum: </s>
					<s id="N1B93D"><!-- NEW -->at ve&shy;<lb/>r&ograve; cum impetus violentus non intendatur; </s>
					<s id="N1B943"><!-- NEW -->cert&egrave; &longs;i tantill&ugrave;m illus perit, <lb/>primo vel &longs;ecundo in&longs;tanti motus, propter medij re&longs;i&longs;tentis, tantill&ugrave;m <lb/>&aelig;quale &longs;ingulis temporibus &aelig;qualibus de&longs;truitur; igitur cum infinitus <lb/>non &longs;it po&longs;t longi&longs;&longs;imum &longs;patij tractum totus tandem de&longs;truetur vio&shy;<lb/>lentus &longs;olo &longs;uper&longs;tite naturali. </s>
				</p>
				<p id="N1B94F" type="main">
					<s id="N1B951"><!-- NEW -->Hinc fort&egrave; &longs;agitta ex notabili altitudine min&ugrave;s ferit; </s>
					<s id="N1B955"><!-- NEW -->quia materia illa <lb/>lignea, &amp; plumea, ex qua con&longs;tat, mult&ugrave;m ab a&euml;re re&longs;i&longs;tente accipit de&shy;<lb/>trimenti: </s>
					<s id="N1B95D"><!-- NEW -->adde quod lic&egrave;t initio deor&longs;um rect&agrave; emittatur; </s>
					<s id="N1B961"><!-- NEW -->attamen mini&shy;<lb/>mo a&euml;ris flatu declinat tantill&ugrave;m obliqua; h&aelig;c ver&ograve; obliquitas maximam <lb/>ictus vim infringit, &amp; conflictus impetuum qua&longs;i ip&longs;um ictum di&longs;trahit, <lb/>quod facil&egrave; probabis, &longs;i modico fer&egrave; tactu cadentem perpendiculariter <lb/>&longs;agittam &agrave; &longs;uo tramite deturbes. </s>
				</p>
				<p id="N1B96D" type="main">
					<s id="N1B96F">Dices, etiam in glande &egrave; tormento explo&longs;a hoc ip&longs;um cernitur </s>
				</p>
				<pb pagenum="176" xlink:href="026/01/208.jpg"/>
				<p id="N1B976" type="main">
					<s id="N1B978"><!-- NEW -->Re&longs;p. e&longs;t minor vis ictus inflicti &agrave; glande deor&longs;um, qu&agrave;m &longs;ur&longs;um vt <lb/>aliqui putant; </s>
					<s id="N1B97E"><!-- NEW -->id autem ex duplici capite procedere; </s>
					<s id="N1B982"><!-- NEW -->primum e&longs;t, cum fe&shy;<lb/>ratur glans ab igne per aliquod tempus, non e&longs;t dubium, quin vis ignis <lb/>&longs;ur&longs;um maior &longs;it qu&agrave;m deor&longs;um; </s>
					<s id="N1B98A"><!-- NEW -->cum &longs;ur&longs;um gemino qua&longs;i impetu fera&shy;<lb/>tur, deor&longs;um ver&ograve; impetu tant&ugrave;m explo&longs;ionis; </s>
					<s id="N1B990"><!-- NEW -->&longs;ecundum e&longs;t, quia cum <lb/>glans iam deor&longs;um &longs;ua &longs;ponte de&longs;cendat, haud dubi&egrave; ab igne minus e&ograve; <lb/>impelli pote&longs;t, vt &longs;&aelig;p&egrave; diximus &longs;upr&agrave;; quidquid &longs;it, &longs;i proiiciatur deor&longs;um <lb/>globus plumbeus vel arcu, vel manu, ob&longs;eruabitur maiorem ab eo ictum <lb/>infligi, qu&agrave;m &longs;i &longs;ua &longs;ponte de&longs;cenderet. </s>
				</p>
				<p id="N1B99C" type="main">
					<s id="N1B99E"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 69.<emph.end type="center"/></s>
				</p>
				<p id="N1B9AA" type="main">
					<s id="N1B9AC"><!-- NEW --><emph type="italics"/>Si corpus moueatur deor&longs;um perpendiculariter motu mixto, eo tempore que <lb/>motu naturali acquireret illum impetum quem habet motu violento, acquirit <lb/>triplum illius &longs;patium<emph.end type="italics"/> v.g. <!-- REMOVE S-->in figura &longs;uperiore &longs;it linea perpendiculatis <lb/>deor&longs;um A E, in qua motu naturali dato tempore acquiratur AB, &amp; &longs;e&shy;<lb/>cundo tempore &aelig;quali BC; </s>
					<s id="N1B9BF"><!-- NEW -->&longs;itque impetus violentus vt AC: </s>
					<s id="N1B9C3"><!-- NEW -->Dico quod <lb/>&aelig;quali tempore prioribus acquireret AE triplum AC, quia motu ve&shy;<lb/>loci vt AC acquirit CE eo tempore, quo motu veloci vt AB acquirit A <lb/>B, &amp; veloci vt BC acquirit BC; </s>
					<s id="N1B9CD"><!-- NEW -->nam eo tempore, quo acquirit AB acqui&shy;<lb/>rit CD, &amp; eo tempore, quo acquirit BC acquirit DE; </s>
					<s id="N1B9D3"><!-- NEW -->ergo eo tempore, <lb/>quo acquirit AC acquirit CE; </s>
					<s id="N1B9D9"><!-- NEW -->ergo &longs;i iungatur motus naturalis violento, <lb/>eo tempore, quo motu naturali acquiretur tant&ugrave;m AC, motu mixto ex <lb/>naturali &amp; tali violento acquiretur AE, id e&longs;t triplum: </s>
					<s id="N1B9E1"><!-- NEW -->&longs;i ver&ograve; moueatur <lb/>duobus temporibus, ita vt prim&ograve; acquirat AC, &amp; altero triplum AC, <lb/>&longs;itque coniunctus impetus violentus vt AC; cert&egrave; duobus temporibus <lb/>acquiretur motu mixto octuplum AC, &longs;ed h&aelig;c &longs;unt facilia. </s>
				</p>
				<p id="N1B9EB" type="main">
					<s id="N1B9ED"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 70.<emph.end type="center"/></s>
				</p>
				<p id="N1B9F9" type="main">
					<s id="N1B9FB"><emph type="italics"/>Si corpus graue proiiciatur deor&longs;um per medium a&euml;ra, qui re&longs;i&longs;tat, cum <lb/>tandem de&longs;truatur impetus violentus, vbi totus de&longs;tructus e&longs;t, minor e&longs;t ictus <lb/>qu&agrave;m e&longs;&longs;et. </s>
					<s id="N1BA04"><!-- NEW -->&longs;i corpus graue &longs;olo impetu natur ali e&ograve; de&longs;cendi&longs;&longs;et<emph.end type="italics"/>; </s>
					<s id="N1BA0B"><!-- NEW -->quod demon&shy;<lb/>&longs;tro, &longs;it enim &longs;patium AD, quod percurrit motu mixto eo tempore, quo <lb/>motu naturali puro &longs;patium BC idem mobile percurreret, &longs;itque de&longs;tru&shy;<lb/>ctus in puncto D totus impetus violentus; </s>
					<s id="N1BA15"><!-- NEW -->cert&egrave; remanet tant&ugrave;m natu&shy;<lb/>ralis acqui&longs;itus eo tempore, quo mobile percurrit BC; </s>
					<s id="N1BA1B"><!-- NEW -->&longs;ed temporibus &aelig;&shy;<lb/>qualibus acquiruntur &aelig;qualia velocitatis momenta; </s>
					<s id="N1BA21"><!-- NEW -->igitur &aelig;qualis im&shy;<lb/>petus; </s>
					<s id="N1BA27"><!-- NEW -->igitur in C tant&ugrave;m ille impetus, qui e&longs;&longs;et in E vel in D; </s>
					<s id="N1BA2B"><!-- NEW -->&longs;ed dum <lb/>percurreret ED motu puro naturali, augetur impetus; </s>
					<s id="N1BA31"><!-- NEW -->igitur maior e&longs;&longs;et <lb/>impetus in D &longs;ub finem motus naturalis per AD, quam motus mixti per <lb/>eamdem AD; </s>
					<s id="N1BA39"><!-- NEW -->igitur maior ictus &longs;ub finem naturalis; igitur minus &longs;ub fi&shy;<lb/>nem violenti. </s>
				</p>
				<p id="N1BA3F" type="main">
					<s id="N1BA41"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 71.<emph.end type="center"/></s>
				</p>
				<p id="N1BA4D" type="main">
					<s id="N1BA4F"><emph type="italics"/>Hinc paradoxon egregium; </s>
					<s id="N1BA54"><!-- NEW -->mobile proiectum in data di&longs;tantia min&ugrave;s ferit <lb/>qu&agrave;m &longs;ua &longs;ponte demi&longs;&longs;um<emph.end type="italics"/>; quod nece&longs;&longs;ari&ograve; &longs;equitur ex dictis. </s>
				</p>
				<p id="N1BA5D" type="main">
					<s id="N1BA5F"><!-- NEW -->Ob&longs;eruabis &longs;crupulum adhuc fort&egrave; h&aelig;rere, cur &longs;cilicet impetus <pb pagenum="177" xlink:href="026/01/209.jpg"/>violentus non de&longs;truatur &agrave; naturali, cuius &longs;cilicet iu&longs;tam impedit propa&shy;<lb/>gationem; </s>
					<s id="N1BA6A"><!-- NEW -->&longs;ed profect&ograve; nullo modo impetus ille violentus impedit effe&shy;<lb/>ctum impetus naturalis innati vel addititij; </s>
					<s id="N1BA70"><!-- NEW -->quia vterque totum &longs;uum ef&shy;<lb/>fectum &longs;ortitur; </s>
					<s id="N1BA76"><!-- NEW -->quod autem &longs;pectat ad propagationem; cert&egrave; ita propa&shy;<lb/>gatur, vt temporibus &aelig;qualibus &aelig;qualis impetus accedat. </s>
				</p>
				<p id="N1BA7C" type="main">
					<s id="N1BA7E">Dices, debes quidem nouus impetus accedere, &longs;ed non tali <lb/>modo. </s>
				</p>
				<p id="N1BA83" type="main">
					<s id="N1BA85">Re&longs;p. non e&longs;&longs;e alium modum &agrave; natura in&longs;titutum, ni&longs;i vt temporibus <lb/>&aelig;qualibus &aelig;qualia velocitatis momenta acquirantur. </s>
				</p>
				<p id="N1BA8A" type="main">
					<s id="N1BA8C">Dices pr&aelig;terea, fru&longs;tr&agrave; accedit nouus impetus naturalis, cum iam ad&shy;<lb/>&longs;it violentus, qui eius munere defungi pote&longs;t. </s>
				</p>
				<p id="N1BA91" type="main">
					<s id="N1BA93"><!-- NEW -->Re&longs;p. cau&longs;am nece&longs;&longs;ariam nece&longs;&longs;ari&ograve; agere; igitur corpus graue perpe&shy;<lb/>tu&ograve; in medio libero &longs;uum motum intendit. </s>
				</p>
				<p id="N1BA99" type="main">
					<s id="N1BA9B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 72.<emph.end type="center"/></s>
				</p>
				<p id="N1BAA7" type="main">
					<s id="N1BAA9"><!-- NEW --><emph type="italics"/>Pote&longs;t vtcumque delineari linea motus mixti per inclinatam deor&longs;um<emph.end type="italics"/> &longs;it <lb/>enim perpendicularis deor&longs;um AB &longs;it iactus per inclinatam AF; </s>
					<s id="N1BAB4"><!-- NEW -->&longs;itque <lb/>impetus violentus vt AE naturalis vt EC, linea motus erit AC; </s>
					<s id="N1BABA"><!-- NEW -->a&longs;&longs;umatur <lb/>AF &aelig;qualis AC, &amp; DF &aelig;qualis EC, &longs;itque CH vt AD, &amp; impetus natu&shy;<lb/>ralis auctus vt HK, linea motus erit CK; </s>
					<s id="N1BAC2"><!-- NEW -->&longs;it CI &aelig;qualis DK, &amp; IG &aelig;qua&shy;<lb/>lis HK, &amp; KL &aelig;qualis CG; </s>
					<s id="N1BAC8"><!-- NEW -->&longs;it que impetus naturalis &longs;ecund&ograve; auctus vt L <lb/>M; </s>
					<s id="N1BACE"><!-- NEW -->linea motus erit KM; igitur connectantur puncta AC, KM per lineam <lb/>curuam, h&aelig;c e&longs;t linea qu&aelig;&longs;ita, vt con&longs;tat ex dictis &longs;upr&agrave;. </s>
				</p>
				<p id="N1BAD4" type="main">
					<s id="N1BAD6"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 73.<emph.end type="center"/></s>
				</p>
				<p id="N1BAE2" type="main">
					<s id="N1BAE4"><!-- NEW --><emph type="italics"/>Hinc pote&longs;t aliquo tempore tant&ugrave;m impetus violenti de&longs;trui quant&ugrave;m pro&shy;<lb/>ducitur naturalis<emph.end type="italics"/>; igitur &longs;i non con&longs;ideres re&longs;i&longs;tentiam medij, tunc &aelig;qua&shy;<lb/>lis e&longs;&longs;et ictus, &amp; &aelig;quabilis motus. </s>
				</p>
				<p id="N1BAF1" type="main">
					<s id="N1BAF3"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 74.<emph.end type="center"/></s>
				</p>
				<p id="N1BAFF" type="main">
					<s id="N1BB01"><!-- NEW --><emph type="italics"/>Quando mobile peruenit in M, &amp; acqui&longs;iuit in perpendiculari deor&longs;um to&shy;<lb/>tam altitudinem AR, non habet totum impetum naturalem, quem acquireret <lb/>motu naturali per totam AR, &longs;ed tant&ugrave;m illum, quem acquireret in compo&longs;ita <lb/>ex &longs;egmentis NO, PB, QR<emph.end type="italics"/>; quia ad motum i&longs;tum deor&longs;um non tant&ugrave;m <lb/>concurrit impetus naturalis, &longs;ed etiam violentus vt con&longs;tat. </s>
				</p>
				<p id="N1BB12" type="main">
					<s id="N1BB14"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 75.<emph.end type="center"/></s>
				</p>
				<p id="N1BB20" type="main">
					<s id="N1BB22"><emph type="italics"/>Hinc reiicies Galileum, &amp; alios,<emph.end type="italics"/> qui volunt in linea motus AC ac&shy;<lb/>quiri <expan abbr="tant&utilde;dem">tantundem</expan> impetus naturalis quantum in perpendiculari AB ac&shy;<lb/>quireretur. </s>
				</p>
				<p id="N1BB32" type="main">
					<s id="N1BB34"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 76.<emph.end type="center"/></s>
				</p>
				<p id="N1BB40" type="main">
					<s id="N1BB42"><!-- NEW --><emph type="italics"/>In naui mobili &longs;i &egrave; &longs;ummo malo remittatur corpus graue, de&longs;cendit motu <emph.end type="italics"/><pb pagenum="178" xlink:href="026/01/210.jpg"/><emph type="italics"/>mixto<emph.end type="italics"/>; probatur, quia duplex impetus concurrit ad illum motum, &longs;cilicet <lb/>naturalis deor&longs;um, &amp; horizontalis impre&longs;&longs;us &agrave; naui, vt con&longs;tat ex defini&shy;<lb/>tione 1.hyp.2. &amp; Ax.1. </s>
				</p>
				<p id="N1BB58" type="main">
					<s id="N1BB5A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 77.<emph.end type="center"/></s>
				</p>
				<p id="N1BB66" type="main">
					<s id="N1BB68"><!-- NEW --><emph type="italics"/>Ille motus e&longs;t mixtus ex naturali accelerato, &amp; violento per horizontalem <lb/>retardato<emph.end type="italics"/>; quod eodem modo probatur, quo &longs;upr&agrave; probatum e&longs;t in mobi&shy;<lb/>li proiecto per horizontalem Th.30. e&longs;t enim pror&longs;us eadem, cum &agrave; na&shy;<lb/>ui reuera imprimatur impetus iis omnibus, qu&aelig; motu nauis fe&shy;<lb/>runtur. </s>
				</p>
				<p id="N1BB79" type="main">
					<s id="N1BB7B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 78.<emph.end type="center"/></s>
				</p>
				<p id="N1BB87" type="main">
					<s id="N1BB89"><!-- NEW --><emph type="italics"/>Hinc reiicio omnes alias combinationes recepta &longs;exta; </s>
					<s id="N1BB8F"><!-- NEW -->imm&ograve; &longs;extam <lb/>ip&longs;am ex parte<emph.end type="italics"/>; nec enim naturalis acceleratur in hoc motu in ea <lb/>proportione, in qua acceleratur per lineam perpendicularem deor&shy;<lb/>&longs;um per Th. 29.&longs;ed iuxta rationem planorum inclinatorum per Theo&shy;<lb/>rema 31. nec etiam violentus de&longs;truitur vniformiter, &longs;ed pro rata per <lb/>Th. 39. </s>
				</p>
				<p id="N1BBA0" type="main">
					<s id="N1BBA2"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 79.<emph.end type="center"/></s>
				</p>
				<p id="N1BBAE" type="main">
					<s id="N1BBB0"><!-- NEW --><emph type="italics"/>Hinc initio pl&ugrave;s detrahitur violenti, &amp; min&ugrave;s additur naturalis, in <lb/>fine pl&ugrave;s additur naturalis &amp; min&ugrave;s detrahitur violenti<emph.end type="italics"/>; hinc minor e&longs;t <lb/>ictus in fine ni&longs;i malus nauis ad eam altitudinem a&longs;cenderet, ad quam <lb/>profect&ograve; nullus a&longs;cendit, qu&aelig; omnia con&longs;tant per Theorema 34. <lb/>35. 36. </s>
				</p>
				<p id="N1BBC1" type="main">
					<s id="N1BBC3"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 80.<emph.end type="center"/></s>
				</p>
				<p id="N1BBCF" type="main">
					<s id="N1BBD1"><!-- NEW --><emph type="italics"/>Hinc ratio curuitatis huius line&aelig;, vel hypothe&longs;is &longs;ecund&aelig;<emph.end type="italics"/>; </s>
					<s id="N1BBDA"><!-- NEW -->qu&aelig; tamen non <lb/>e&longs;t Parabola vt volunt aliqui; </s>
					<s id="N1BBE0"><!-- NEW -->hinc non eo tempore de&longs;cendit in nauim <lb/>pr&aelig;dictus globus, quo de&longs;cenderet per ip&longs;am perpendicularem motu <lb/>pur&egrave; naturali ex eadem altitudine, &longs;ed maiore tempore; quia motu mix&shy;<lb/>to non acceleratur iuxta proportionem motus naturalis puri per Th. <!-- REMOVE S--><lb/>77. quod confirmatur illis omnibus experimentis, qu&aelig; &longs;upr&agrave; adduxi <lb/>Th. <!-- REMOVE S-->46. </s>
				</p>
				<p id="N1BBF1" type="main">
					<s id="N1BBF3"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 81.<emph.end type="center"/></s>
				</p>
				<p id="N1BBFF" type="main">
					<s id="N1BC01"><!-- NEW --><emph type="italics"/>Hinc &longs;i nauis moueretur eadem velocitate, qua funis arcus cum re&shy;<lb/>dit, e&longs;&longs;etque aptata &longs;agitta, &amp; directa horizontaliter in naui; </s>
					<s id="N1BC09"><!-- NEW -->haud <lb/>dubi&egrave; &longs;i po&longs;t aliquod tempus &longs;taret illic&ograve; immota nauis: </s>
					<s id="N1BC0F"><!-- NEW -->emitteretur &longs;a&shy;<lb/>gita, non minore cert&egrave; vi qu&agrave;m ab ip&longs;o arcu<emph.end type="italics"/>; </s>
					<s id="N1BC18"><!-- NEW -->hinc etiam cum <lb/>nauis appellitur ad littus, &longs;i &longs;tatim &longs;ub&longs;i&longs;tat; </s>
					<s id="N1BC1E"><!-- NEW -->omnia qu&aelig; &longs;unt in <lb/>naui &longs;uccutiuntur &amp; <expan abbr="pleriq;">plerique</expan> cadunt incauti in partem aduer&longs;am propter <pb pagenum="179" xlink:href="026/01/211.jpg"/>impetum &agrave; naui acceptum; ex quo cert&egrave; experimento maxim&egrave; confir&shy;<lb/>matur hic impetus &agrave; naui impre&longs;&longs;us, per quem Galileus ex hypothe&longs;i mo&shy;<lb/>tus &aelig;&longs;tum maris explicat exemplo appul&longs;arum nauium ad littus, qu&aelig; <lb/>aquam vehunt. </s>
				</p>
				<p id="N1BC33" type="main">
					<s id="N1BC35"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 82.<emph.end type="center"/></s>
				</p>
				<p id="N1BC41" type="main">
					<s id="N1BC43"><!-- NEW --><emph type="italics"/>Hinc demi&longs;&longs;us globus plumbeus, vel alterius materi&aelig;, qu&aelig; facil&egrave; vim a&euml;ris <lb/>infringat &egrave; &longs;ummo malo nauis ad imum fer&egrave; malum de&longs;cendit,<emph.end type="italics"/> h&aelig;c e&longs;t ex&shy;<lb/>perientia &agrave; Galileo producta, non tamen adinuenta, &agrave; Ga&longs;&longs;endo do&shy;<lb/>cti&longs;&longs;im&egrave; &amp; eleganti&longs;&longs;im&egrave; explicata, ab omnibus Copernici &longs;ectatoribus <lb/>toties decantata, qu&aelig; vulgus ignobile ad admirationem adducit; </s>
					<s id="N1BC54"><!-- NEW -->im&ograve; <lb/>plures &egrave; Philo&longs;ophis fuere, qui eam in dubium adducerent, cum cam &longs;uis <lb/>principiis, ne dicam fort&egrave; &longs;omniis aduer&longs;ari putarent; certi&longs;&longs;imum tamen <lb/>e&longs;t illud experimentum centies, im&ograve; millies comprobatum, totis etiam <lb/>vrbibus &longs;pectantibus. </s>
					<s id="N1BC60"><!-- NEW -->Nec ratio huius experimenti adeo ab&longs;tru&longs;a e&longs;t, <lb/>vel recondita, quin &agrave; vulgari, ne dicam triobolari Philo&longs;opho &longs;tatim ex&shy;<lb/>plicari po&longs;&longs;it; </s>
					<s id="N1BC68"><!-- NEW -->cum enim imprimatur &agrave; naui mobili impetus pendulo <lb/>globo per horizontalem, &amp; alius ab ip&longs;a grauitate deor&longs;um per Th. 71. <lb/>cert&egrave; mouetur globus demi&longs;&longs;us re&longs;ecto funiculo motu mixto ex hori&shy;<lb/>zontali nauis, naturali corporis grauis; </s>
					<s id="N1BC72"><!-- NEW -->igitur per lineam curuam, qu&aelig; <lb/>fer&egrave; ad imum malum terminatur &longs;ed modicum figur&aelig; adhibendum e&longs;t; </s>
					<s id="N1BC78"><!-- NEW --><lb/>&longs;it planum aqu&aelig; <expan abbr="horiz&otilde;tale">horizontale</expan>, cui innatat nauis IH; </s>
					<s id="N1BC81"><!-- NEW -->&longs;it malus IA perpen&shy;<lb/>dicularis altus 48. pedes; </s>
					<s id="N1BC87"><!-- NEW -->diuidatur in 4. partes &aelig;quales; </s>
					<s id="N1BC8B"><!-- NEW -->corpus graue <lb/>conficiat &longs;patium illud duobus &longs;ecundis, v.g.igitur AK vno &longs;ecundo; </s>
					<s id="N1BC91"><!-- NEW -->e&longs;t <lb/>autem VK 12. pedum; </s>
					<s id="N1BC97"><!-- NEW -->iam ver&ograve; moueatur nauis per horizontalem IH, <lb/>vel AL maxima qua&longs;i velocitate qua triremis moueri pote&longs;t; </s>
					<s id="N1BC9D"><!-- NEW -->ita vt vna <lb/>hora faciat 16. milliaria Germanica, &amp; 15&prime;.4. milliaria, 3&prime; 800. pa&longs;&longs;us, <lb/>1&prime; 266. 1&Prime; 4. pa&longs;&longs;us &amp; &lpar;13/30&rpar;; </s>
					<s id="N1BCA5"><!-- NEW -->&longs;upponamus 1&Prime; conficere 18. pedes, &longs;itque AC <lb/>18. &amp; AK vel CE 12. haud dubi&egrave; motu mixto faciet lineam AE, &amp; &longs;e&shy;<lb/>cundo tempore lineam EH, donec tandem cadat in punctum H nauis, <lb/>qu&ograve; fer&egrave; peruenit punctum I; </s>
					<s id="N1BCAF"><!-- NEW -->nam eodem modo retardatur motus <lb/>nauis; </s>
					<s id="N1BCB5"><!-- NEW -->imm&ograve; pl&ugrave;s qu&agrave;m motus globi; </s>
					<s id="N1BCB9"><!-- NEW -->quod &longs;cilicet partes aqu&aelig;, qu&aelig; &agrave; <lb/>naui diuiduntur multum re&longs;i&longs;tant; </s>
					<s id="N1BCBF"><!-- NEW -->vnde fit compen&longs;atio; </s>
					<s id="N1BCC3"><!-- NEW -->nam initio <lb/>motus violentus, qua&longs;i &longs;ecum rapit motum naturalem initio tardi&longs;&longs;i&shy;<lb/>mum; pr&aelig;&longs;ertim cum non acceleretur, ni&longs;i iuxta rationem plani incli&shy;<lb/>nati, vt &longs;upr&agrave; dictum e&longs;t, &amp; in fine naturalis rapit violentum. </s>
				</p>
				<p id="N1BCCD" type="main">
					<s id="N1BCCF"><!-- NEW -->Dixi ad imum fer&egrave; malum; </s>
					<s id="N1BCD3"><!-- NEW -->nam reuera aliquid dee&longs;t quod tamen in&shy;<lb/>&longs;en&longs;ibile e&longs;t; </s>
					<s id="N1BCD9"><!-- NEW -->&longs;ed quia modico tempore globus de&longs;cendit; </s>
					<s id="N1BCDD"><!-- NEW -->&longs;it enim malus <lb/>108. pedum altitudinis, de&longs;cendit globus tempore 3&Prime;; </s>
					<s id="N1BCE3"><!-- NEW -->&longs;it 192.4; </s>
					<s id="N1BCE7"><!-- NEW -->&longs;it &longs;i <lb/>fieri pote&longs;t 432. de&longs;cendet 6&Prime;, &longs;ed nunquam accedit ad tantam altitudi&shy;<lb/>nem, igitur duobus vel tribus &longs;ecundis de&longs;cendit; </s>
					<s id="N1BCEF"><!-- NEW -->igitur modico tem&shy;<lb/>pore; </s>
					<s id="N1BCF5"><!-- NEW -->igitur violentus motus cen&longs;eri debet eo tempore &aelig;quabilis &longs;en&longs;i&shy;<lb/>biliter; </s>
					<s id="N1BCFB"><!-- NEW -->&amp; cum motus nauis nunquam &longs;it eiu&longs;dem velocitatis cum illa <lb/>qu&aelig; acquiritur tempore 2&Prime; in de&longs;cen&longs;u, quia cum in de&longs;cen&longs;u acquiran&shy;<lb/>tur, hoc dato tempore fer&egrave; 48. pedes &longs;patij; </s>
					<s id="N1BD03"><!-- NEW -->cert&egrave; motu &aelig;quabili cuius <pb pagenum="180" xlink:href="026/01/212.jpg"/>e&longs;&longs;et eadem velocitas acquirerentur 96. &longs;ed vix acquirerentur 24.vt di&shy;<lb/>ctum e&longs;t &longs;upr&agrave;; </s>
					<s id="N1BD0E"><!-- NEW -->igitur vix nauis percurrit in horizontali &aelig;qualem lineam <lb/>longitudini mali eo tempore, quo globus nauim attingit &longs;it enim <lb/>altitudo mali FA 48. pedum; </s>
					<s id="N1BD16"><!-- NEW -->&longs;it amplitudo &longs;patij horizontalis &aelig;qualis <lb/>FA; haud dubi&egrave; 1&Prime; percurret AD, id e&longs;t 12.pedes fer&egrave;, quo tempore per&shy;<lb/>currat FG. 24. pedes &amp; 20&Prime; percurret DF, &amp; GI. &longs;i motus &longs;umatur vt <lb/>&aelig;quabilis, vel GH, &longs;i retardatur, igitur 1&degree;&Prime; mobile percurrit &longs;egmentum <lb/>curu&aelig; AE &amp; 2&degree; EH. </s>
				</p>
				<p id="N1BD22" type="main">
					<s id="N1BD24"><!-- NEW -->Et lic&egrave;t videatur tant&ugrave;m acquirere MI, qu&aelig; e&longs;t minor DF 15. per&shy;<lb/>pendiculari deor&longs;um, acquirit totam EH, qu&aelig; non modo e&longs;t &agrave; motu na&shy;<lb/>turali, ver&ugrave;m etiam &agrave; motu violento; </s>
					<s id="N1BD2C"><!-- NEW -->nec enim motu naturali dum mi&shy;<lb/>&longs;cetur cum alio, tant&ugrave;m acquiritur deor&longs;um, quant&ugrave;m reuer&acirc; acquiritur <lb/>motu naturali puro, vt &longs;upr&agrave; monuimus; </s>
					<s id="N1BD34"><!-- NEW -->quia tamen etiam deor&longs;um mo&shy;<lb/>tus violentus deflectitur, etiam aliquid &longs;patij ratione violenti deor&longs;um <lb/>acquiritur; </s>
					<s id="N1BD3C"><!-- NEW -->&longs;i enim vbi peruenit in E vterque impetus intactus remane&shy;<lb/>ret &longs;ine acce&longs;&longs;ione, &longs;ine imminutione; </s>
					<s id="N1BD42"><!-- NEW -->haud dubi&egrave; per <expan abbr="e&atilde;dem">eandem</expan> EM, qu&aelig; <lb/>&longs;it tangens huius curu&aelig; AEH &longs;uum cur&longs;um pro&longs;equeretur; </s>
					<s id="N1BD4C"><!-- NEW -->igitur ac&shy;<lb/>quireret deor&longs;um totam DN, vel EO propter impetum naturalem pr&aelig;&shy;<lb/>uium; &longs;i ver&ograve; aliquid naturalis accedat, quid mirum &longs;i ratione illius ac&shy;<lb/>quiratur MI, vel NF? </s>
				</p>
				<p id="N1BD56" type="main">
					<s id="N1BD58">Dices non de&longs;cendit tam cit&ograve; motu naturali accelerato, mixto cum <lb/>violento, qu&agrave;m motu puro naturali. </s>
				</p>
				<p id="N1BD5D" type="main">
					<s id="N1BD5F"><!-- NEW -->Re&longs;pondeo concedo; </s>
					<s id="N1BD63"><!-- NEW -->vnde nunquam ex A in H 2&Prime; de&longs;cendit; </s>
					<s id="N1BD67"><!-- NEW -->&longs;ed <lb/>tardi&ugrave;s, lic&egrave;t FA &longs;it 48. ped. <!-- REMOVE S-->&longs;ed par&ugrave;m abe&longs;t t&ugrave;m propter minorem re&longs;i&shy;<lb/>&longs;tentiam huius impetus violenti, qui facil&egrave; detorquetur, &amp; con&longs;equen&shy;<lb/>tur min&ugrave;s illius perit, t&ugrave;m quia etiam de&longs;truitur aliquid violenti; igitur <lb/>paul&ograve; pl&ugrave;s temporis collocat in GI, qu&agrave;m in FG. </s>
				</p>
				<p id="N1BD75" type="main">
					<s id="N1BD77"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1BD83" type="main">
					<s id="N1BD85"><!-- NEW -->Ob&longs;eruabis prim&ograve;, &longs;i nouus impetus accedat, non e&longs;&longs;e expectandum <lb/>hunc effectum; quippe nihil accipit &agrave; naui globus deinceps, vbi &longs;emel <lb/>re&longs;ecto fune ab ea qua&longs;i &longs;eparatur. </s>
				</p>
				<p id="N1BD8D" type="main">
					<s id="N1BD8F">Secund&ograve;, &longs;i &longs;tatim &longs;i&longs;tat nauis demi&longs;&longs;o globo ad vnum malum nullo <lb/>modo de&longs;cendet, vt patet, &longs;ed ant&egrave;. </s>
				</p>
				<p id="N1BD94" type="main">
					<s id="N1BD96"><!-- NEW -->Terti&ograve;, &longs;i demittatur globus dum &longs;i&longs;tit nauis, t&ugrave;m deinde, vbi <lb/>demi&longs;&longs;us e&longs;t, impellatur nauis; non de&longs;cendet etiam ad radicem, &longs;ed <lb/>retr&ograve;. </s>
				</p>
				<p id="N1BD9E" type="main">
					<s id="N1BDA0"><!-- NEW -->Quart&ograve;, motus nauis non e&longs;t &aelig;quabilis, quidquid dicat Galileus; </s>
					<s id="N1BDA4"><!-- NEW -->alio&shy;<lb/>quin vna remorum impul&longs;ione opus e&longs;&longs;et, vt &longs;emper eodem motu moue&shy;<lb/>retur, aut cert&egrave; &longs;i continua remigatione impellatur; </s>
					<s id="N1BDAC"><!-- NEW -->cre&longs;ceret in infini&shy;<lb/>tum velocitas motus, &longs;i nihil de priori, velocitate detraheretur; </s>
					<s id="N1BDB2"><!-- NEW -->retarda&shy;<lb/>tur igitur ille nauis motus propter re&longs;i&longs;tentiam aqu&aelig;, cuius partes &amp; im&shy;<lb/>pellend&aelig; &amp; &longs;ulcand&aelig;, &longs;eu diuidend&aelig; &longs;unt; </s>
					<s id="N1BDBA"><!-- NEW -->hinc fiunt ro&longs;trat&aelig; naues <lb/>vel cu&longs;pidat&aelig; vt facili&ugrave;s aquam findere po&longs;&longs;int; </s>
					<s id="N1BDC0"><!-- NEW -->igitur ille motus nauis <lb/>non e&longs;t &aelig;quabilis; Idem pror&longs;us dicendum e&longs;t de impetu impre&longs;&longs;o in <pb pagenum="181" xlink:href="026/01/213.jpg"/>globo, cuius aliqu&aelig; partes de&longs;truuntur, ne &longs;int fru&longs;tr&agrave;, quod &longs;upr&agrave; de pro&shy;<lb/>jecto per horizontalem vel inclinatam luculenter demon&longs;trauimus. </s>
				</p>
				<p id="N1BDCD" type="main">
					<s id="N1BDCF"><!-- NEW -->Quint&ograve; &longs;i demittatur ex alia naui proxima immobili perpendiculari&shy;<lb/>ter omnin&ograve; de&longs;cendet; </s>
					<s id="N1BDD5"><!-- NEW -->Vnde valde hallucinantur ij, qui exi&longs;timant hunc <lb/>motum e&longs;&longs;e ab a&euml;re quem nauis commouet, quod fal&longs;i&longs;&longs;imum e&longs;t, quia <lb/>pertica ad in&longs;tar mali par&ugrave;m a&euml;ris commouet; </s>
					<s id="N1BDDD"><!-- NEW -->adde quod a&euml;r retr&ograve; agi&shy;<lb/>tur, vt patet in aqua; </s>
					<s id="N1BDE3"><!-- NEW -->pr&aelig;terea &longs;i &egrave; curru immobili demittatur globus eo <lb/>tempore, quo alius currus pr&aelig;teruolat, de&longs;cendit perpendiculariter; </s>
					<s id="N1BDE9"><!-- NEW -->&longs;i ve&shy;<lb/>r&ograve; &egrave; curru mobili etiam in maiori di&longs;tantia porrecta &longs;cilicet maxim&egrave; <lb/>extra currum demittente dextera; </s>
					<s id="N1BDF1"><!-- NEW -->globus ab ip&longs;o curru capietur; </s>
					<s id="N1BDF5"><!-- NEW -->h&icirc;c <lb/>etiam ob&longs;eruabis idem pror&longs;us accidere in curru mobili, quod in naui; </s>
					<s id="N1BDFB"><!-- NEW -->&longs;i <lb/>enim &egrave; fene&longs;tra currus mobilis demittas pilam, &longs;emper cadet ex aduer&longs;o; <lb/>idem dico de currente equo, cui in&longs;idens demittat globum, im&ograve; &longs;i locus <lb/>&longs;it planus &amp; politus, pila per aliquod tempus currum, vel equitem in&longs;e&shy;<lb/>quetur, quod qui&longs;que probare poterit, vt reuer&acirc; centies probatum <lb/>fuit. </s>
				</p>
				<p id="N1BE09" type="main">
					<s id="N1BE0B"><!-- NEW -->Sext&ograve; ad rationem Galilei, qui contendit motum circularem circa <lb/>centrum terr&aelig; e&longs;&longs;e &aelig;quabilem, quia &longs;cilicet mobile non recedit &agrave; centro: <lb/>leuis e&longs;t omnin&ograve; ratio; </s>
					<s id="N1BE13"><!-- NEW -->quia globus in medio a&euml;re motu mixto mouetur, <lb/>id e&longs;t habet impetum partim deor&longs;um, partim per tangentem, &amp; nullo <lb/>modo per circularem, vt certum e&longs;t; </s>
					<s id="N1BE1B"><!-- NEW -->nec enim rotata alium impetum im&shy;<lb/>primunt, igitur violentus e&longs;t; </s>
					<s id="N1BE21"><!-- NEW -->igitur de&longs;trui debet etiam iuxta commu&shy;<lb/>nia principia: </s>
					<s id="N1BE27"><!-- NEW -->adde quod motus mixtus fit per Diagonalem quod etiam <lb/>ip&longs;e admittit; </s>
					<s id="N1BE2D"><!-- NEW -->igitur totus impetus &aelig;qualem motum non habet; </s>
					<s id="N1BE31"><!-- NEW -->nec enim <lb/>Diagonalis &aelig;qualis e&longs;t vnquam duobus lateribus; </s>
					<s id="N1BE37"><!-- NEW -->igitur aliquid illius <lb/>fru&longs;tr&agrave; e&longs;t; </s>
					<s id="N1BE3D"><!-- NEW -->igitur de&longs;trui debet; </s>
					<s id="N1BE41"><!-- NEW -->pr&aelig;terea lic&egrave;t motus circularis &longs;it peren&shy;<lb/>nis circa centrum mundi; </s>
					<s id="N1BE47"><!-- NEW -->nam de illo tant&ugrave;m e&longs;t qu&aelig;&longs;tio, hoc ip&longs;um <lb/>&longs;upponit prim&ograve; motum illum e&longs;&longs;e &longs;implicem; </s>
					<s id="N1BE4D"><!-- NEW -->&longs;ecund&ograve;, nullam pror&longs;us <lb/>e&longs;&longs;e re&longs;i&longs;tentiam; </s>
					<s id="N1BE53"><!-- NEW -->atqui in hoc ca&longs;u vtrumque deficit; </s>
					<s id="N1BE57"><!-- NEW -->nam motus ille <lb/>circularis non e&longs;t &longs;implex &longs;ed mixtus, &amp; obe&longs;t re&longs;i&longs;tentia aqu&aelig;, vt &longs;upr&agrave; <lb/><expan abbr="dict&utilde;">dictum</expan> e&longs;t; ni&longs;i ver&ograve; con&longs;ideres <expan abbr="de&longs;cendent&etilde;">de&longs;cendentem</expan> globum &egrave; &longs;ummo malo, quis <lb/>dicat e&longs;&longs;e circularem? </s>
					<s id="N1BE68"><!-- NEW -->adde quod nauis imprimit tant&ugrave;m rectum per <lb/>tangentem, vt iam &longs;upr&agrave; dictum e&longs;t; </s>
					<s id="N1BE6E"><!-- NEW -->porr&ograve; ad illud, quod dicit non de&shy;<lb/>&longs;trui motum circularem &agrave; naturali, cui non e&longs;t contrarius, cum non re&shy;<lb/>moueat longi&ugrave;s &agrave; centro; </s>
					<s id="N1BE76"><!-- NEW -->videtur omnin&ograve; di&longs;&longs;imulare cau&longs;am impetus <lb/><expan abbr="de&longs;tructiu&atilde;">de&longs;tructiuam</expan>, qu&aelig; cett&egrave; in <expan abbr="c&otilde;trarietate">contrarietate</expan> tant&ugrave;m determinationis po&longs;ita e&longs;t, <lb/>vt &longs;upr&agrave; dictum e&longs;t; </s>
					<s id="N1BE85"><!-- NEW -->ex qua &longs;equitur aliquid impetus fru&longs;tr&agrave; e&longs;&longs;e; </s>
					<s id="N1BE89"><!-- NEW -->ac pro&shy;<lb/>inde de&longs;trui per Axioma illud toties decantatum, <emph type="italics"/>Quod frustr&agrave; e&longs;t, non e&longs;t<emph.end type="italics"/>: </s>
					<s id="N1BE95"><!-- NEW --><lb/>Pr&aelig;terea non video quomodo hanc rationem proponat magnus Gali&shy;<lb/>leus, qui nullum alium impetum violentum de&longs;trui putat, n&icirc;&longs;i tant&ugrave;m il&shy;<lb/>lum, qui e&longs;t per lineam verticalem &longs;ur&longs;um; nam ex motu illo impre&longs;&longs;o <lb/>&aelig;quabili, &amp; naturali accelerato &longs;uas Parabolas ad&longs;truit. </s>
				</p>
				<p id="N1BEA0" type="main">
					<s id="N1BEA2"><!-- NEW -->Septim&ograve;, non e&longs;t tamen quod diffitear ingenios&egrave; excogitatum ab eo <lb/>fui&longs;&longs;e, ideo globum &egrave; &longs;ummo malo demi&longs;&longs;um ad imum de&longs;cendere, quod <lb/>&longs;cilicet de&longs;cendat motu mixto ex naturali accelerato, &amp; violento &aelig;qua-<pb pagenum="182" xlink:href="026/01/214.jpg"/>bili, quod vt breuiter ob oculos ponatur &longs;it malus nauis mobilis IA, <lb/>qu&aelig; eo tempore, quo corpus graue de&longs;cendit ab A in D motu naturali, <lb/>percurrit FG &aelig;quabili motu, &amp; con&longs;equenter GI &aelig;qualem FG eo tem&shy;<lb/>pore, quo idem corpus graue percurrit DF triplam AD; </s>
					<s id="N1BEB5"><!-- NEW -->igitur globus <lb/>demi&longs;&longs;us ex A &longs;uo motu de&longs;cribit Parabolam AEH; quod etiam accidet <lb/>a&longs;&longs;umpta quacunque altitudine mali vel quocunque &longs;patio confecto &agrave; <lb/>naui mobili eo tempore, quo corpus graue motu naturali accelerato <lb/>conficit &longs;patium &aelig;quale altitudini mali. </s>
				</p>
				<p id="N1BEC1" type="main">
					<s id="N1BEC3"><!-- NEW -->Octau&ograve;, non e&longs;t tamen di&longs;&longs;imulandum, quod etiam non di&longs;&longs;imulauit <lb/>Mer&longs;ennus, talem non fore de&longs;cen&longs;um, &longs;i nauis v. <!-- REMOVE S-->g. <!-- REMOVE S-->eadem cum emi&longs;&longs;a <lb/>&longs;agitta, vel explo&longs;a &egrave; tormento glande velocitate moueretur; </s>
					<s id="N1BECF"><!-- NEW -->non quod <lb/>a&euml;r vel medium ob&longs;i&longs;tat, vt ip&longs;i dicunt; </s>
					<s id="N1BED5"><!-- NEW -->hoc enim iam &longs;upr&agrave; rejecimus; </s>
					<s id="N1BED9"><!-- NEW --><lb/>&longs;ed quod major impetus violentus efficiat, vt iam &longs;upr&agrave; dictum e&longs;t, ne in <lb/>tanta proportione naturalis acceleretur; </s>
					<s id="N1BEE0"><!-- NEW -->quod etiam &longs;uo boatu intonant <lb/>tormenta maiora, &egrave; quibus horizontaliter directis explo&longs;&aelig; pil&aelig; per plu&shy;<lb/>ra &longs;ecunda in libero a&euml;re moueantur, lic&egrave;t os tormenti &agrave; plano horizon&shy;<lb/>tis vix tribus pedibus ab&longs;it; </s>
					<s id="N1BEEA"><!-- NEW -->igitur non de&longs;cribunt &longs;uo motu Parabolas; </s>
					<s id="N1BEEE"><!-- NEW --><lb/>hinc &longs;ub finem minor e&longs;t ictus; hinc etiam fatetur idem Mer&longs;ennus &longs;e&shy;<lb/>cundum &longs;patium horizontale confici tardiore motu qu&agrave;m primum &amp; <lb/>tertium qu&agrave;m &longs;ecundum, atque ita deinceps. </s>
				</p>
				<p id="N1BEF7" type="main">
					<s id="N1BEF9"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 83.<emph.end type="center"/></s>
				</p>
				<p id="N1BF05" type="main">
					<s id="N1BF07"><!-- NEW --><emph type="italics"/>Si corpus graue proiiciatur &longs;ur&longs;um perpendiculariter &egrave; naui mobili, &longs;unt tres <lb/>impetus qui concurrunt ad illum motum<emph.end type="italics"/> &longs;it enim nauis mobilis per hori&shy;<lb/>zontalem LF, &egrave; qua &longs;ur&longs;um rect&acirc; per lineam perpendicularem LA pro&shy;<lb/>iiciatur corpus graue; </s>
					<s id="N1BF16"><!-- NEW -->huic cert&egrave; ine&longs;t triplus impetus, &longs;cilicet duo vio&shy;<lb/>lenti, alter per verticalem LA impre&longs;&longs;us &agrave; proiiciente; </s>
					<s id="N1BF1C"><!-- NEW -->alter per horizon&shy;<lb/>talem LF impre&longs;&longs;us &agrave; naui; </s>
					<s id="N1BF22"><!-- NEW -->tertius denique naturalis per ip&longs;am perpen&shy;<lb/>dicularem deor&longs;um LP; </s>
					<s id="N1BF28"><!-- NEW -->igitur tres i&longs;ti impetus &longs;uo modo concurrunt <lb/>ad motum per Ax.1.cert&egrave; &longs;i ine&longs;&longs;ent tant&ugrave;m duo impetus &longs;cilicet LA, &amp; <lb/>LF, motus fieret per inclinatam rectam LC; </s>
					<s id="N1BF30"><!-- NEW -->vel &longs;i tant&ugrave;m duo LP, &amp; <lb/>LA fieret per ip&longs;am LA motus retardatus; </s>
					<s id="N1BF36"><!-- NEW -->vel &longs;i LF &amp; LP fieret per <lb/>curuam deor&longs;um, vt con&longs;tat ex dictis; igitur per aliam lineam fieri de&shy;<lb/>bet ad quam tres illi impetus concurrunt. </s>
				</p>
				<p id="N1BF3E" type="main">
					<s id="N1BF40"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 84.<emph.end type="center"/></s>
				</p>
				<p id="N1BF4C" type="main">
					<s id="N1BF4E"><emph type="italics"/>Tam pugnat impetus naturalis per LP cum verticali LA quando e&longs;t con&shy;<lb/>junctus cum horizontali LF, qu&agrave;m cum nullus e&longs;t horizontalis,<emph.end type="italics"/> probatur, <lb/>quia &longs;emper mobile deor&longs;um trahit, vt patet. </s>
				</p>
				<p id="N1BF5A" type="main">
					<s id="N1BF5C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 85.<emph.end type="center"/></s>
				</p>
				<p id="N1BF68" type="main">
					<s id="N1BF6A"><!-- NEW --><emph type="italics"/>Hinc naturalis e&longs;t &aelig;quabilis, &amp; violentus &longs;ur&longs;um e&longs;t retardatus; </s>
					<s id="N1BF70"><!-- NEW -->horizon&shy;<lb/>talis ver&ograve; e&longs;t &aelig;quabilis &longs;altem &aelig;quiualenter<emph.end type="italics"/>; </s>
					<s id="N1BF79"><!-- NEW -->quia cum illo non pugnat ho&shy;<lb/>rizontalis, in a&longs;cen&longs;u &longs;altem perinde &longs;e habet; </s>
					<s id="N1BF7F"><!-- NEW -->imm&ograve; cum illo conuenit <lb/>ad de&longs;truendum violentum &longs;ur&longs;um, id e&longs;t ad deflectendum deor&longs;um <lb/>mobile vt con&longs;tat; </s>
					<s id="N1BF87"><!-- NEW -->igitur hic motus con&longs;tat ex naturali &amp; horizontali <pb pagenum="183" xlink:href="026/01/215.jpg"/>&aelig;quabilibus, &amp; violento retardato &longs;int enim tres impetus ab eodem <lb/>puncto E &longs;cilicet EF, ED, EA; </s>
					<s id="N1BF92"><!-- NEW -->ex EA ED fit mixtus EG, ex EA, <lb/>EF, violentus EB; denique ex mixto EG &agrave; naturali EF fit EC, qu&aelig; <lb/>omnia &longs;unt clara. </s>
				</p>
				<p id="N1BF9A" type="main">
					<s id="N1BF9C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 86.<emph.end type="center"/></s>
				</p>
				<p id="N1BFA8" type="main">
					<s id="N1BFAA"><emph type="italics"/>A&longs;cendit mobile ad <expan abbr="e&atilde;dem">eandem</expan> altitudinem hoc motu, ad quem a&longs;cenderet <lb/>&longs;ine horizontali<emph.end type="italics"/> v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;ine horizontali a&longs;cendit in B, cum horizontali <lb/>a&longs;cendit in C, &longs;ed DC, &amp; EB &longs;unt eiu&longs;dem altitudinis. </s>
				</p>
				<p id="N1BFBE" type="main">
					<s id="N1BFC0"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1BFCC" type="main">
					<s id="N1BFCE"><!-- NEW -->Ob&longs;eruabis, lic&egrave;t i&longs;te motus non fiat per lineam parabolicam, vt &longs;upr&agrave; <lb/>demon&longs;trauimus Th. 54. &amp; reliquis; quia tamen &longs;en&longs;ibiliter proxim&egrave; <lb/>accedit, deinceps vtemur Parabola vt in fig. </s>
					<s id="N1BFD6"><!-- NEW -->Th. 83. &amp; horizontalem <lb/>motum accipiemus pro &aelig;quabili; </s>
					<s id="N1BFDC"><!-- NEW -->lic&egrave;t omnin&ograve; &aelig;quabilis non &longs;it; </s>
					<s id="N1BFE0"><!-- NEW -->ni&longs;i <lb/>tant&ugrave;m &aelig;quiualenter; </s>
					<s id="N1BFE6"><!-- NEW -->dixi &aelig;quiualenter, quia eodem modo &longs;e habet hic <lb/>motus, ac &longs;i per inclinatam &longs;ur&longs;um LC impetu &longs;cilicet LC mobile pro&shy;<lb/>iiceretur; </s>
					<s id="N1BFEE"><!-- NEW -->&longs;ed in hoc ca&longs;u de&longs;trueretur impetus ille per inclinatam &longs;im&shy;<lb/>plex; </s>
					<s id="N1BFF4"><!-- NEW -->igitur &amp; mixtus; </s>
					<s id="N1BFF8"><!-- NEW -->quia tamen ille qui remanet partim ex LA, par&shy;<lb/>tim ex LF eodem modo fer&egrave; &longs;e habet ac &longs;i totus LF intactus maneret; <lb/>hinc dictum e&longs;t &longs;upr&agrave; &aelig;quiualenter e&longs;&longs;e &aelig;quabilem. </s>
				</p>
				<p id="N1C000" type="main">
					<s id="N1C002"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 87.<emph.end type="center"/></s>
				</p>
				<p id="N1C00E" type="main">
					<s id="N1C010"><!-- NEW --><emph type="italics"/>A&longs;cendit hoc motu ad &longs;ubduplam altitudinem illius, ad quam motu mixto <lb/>tantum ex verticali &amp; horizontali &longs;ine naturali a&longs;cenderet<emph.end type="italics"/>; quippe a&longs;cende&shy;<lb/>ret in C fig. </s>
					<s id="N1C01D"><!-- NEW -->Th.83. &longs;ine impetu naturali, &longs;ed FC &amp; LA &aelig;quales &longs;unt; </s>
					<s id="N1C021"><!-- NEW --><lb/>atqui motu violento puro, ni&longs;i naturalis obe&longs;&longs;et, a&longs;cenderet in A; </s>
					<s id="N1C026"><!-- NEW -->at ve&shy;<lb/>r&ograve; &longs;i obe&longs;t naturalis; </s>
					<s id="N1C02C"><!-- NEW -->a&longs;cendit tant&ugrave;m motu violento in K, &amp; mixto in <lb/>in D; </s>
					<s id="N1C032"><!-- NEW -->quia ex K in L motu naturali tot acquireret mobile gradus impe&shy;<lb/>tus naturalis quot amittit in motu violento ab L in K; </s>
					<s id="N1C038"><!-- NEW -->&longs;ed cum in impe&shy;<lb/>tu acqui&longs;ito &agrave; K in L motu &aelig;quabili a&longs;cenderet ab L in A, qu&aelig; e&longs;t dupla <lb/>LK vt o&longs;tendimus in &longs;ecundo libro; </s>
					<s id="N1C040"><!-- NEW -->&longs;ed motu mixto, &amp; verticali, &amp; ho&shy;<lb/>rizontali a&longs;cenderet in C; </s>
					<s id="N1C046"><!-- NEW -->&longs;ed FD e&longs;t &longs;ubdupla FE; igitur motu mixto <lb/>a&longs;cendit ad &longs;ubduplam altitudinem, &amp;c. </s>
				</p>
				<p id="N1C04C" type="main">
					<s id="N1C04E"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 88.<emph.end type="center"/></s>
				</p>
				<p id="N1C05A" type="main">
					<s id="N1C05C"><!-- NEW --><emph type="italics"/>Mobile projectum &egrave; naui mobili, vbi ad &longs;ummam altitudinem peruenit mo&shy;<lb/>tu mixto ex verticali retardato, horizontali &aelig;quabili, &amp; naturali item &aelig;qua&shy;<lb/>bili, de&longs;cendit etiam motu mixto ex horizontali retardato &longs;altem &aelig;quiualenter, <lb/>&amp; naturali accelerato<emph.end type="italics"/>; </s>
					<s id="N1C06B"><!-- NEW -->dixi &aelig;quiualenter, quia vt dixi in Sch. <!-- REMOVE S-->Th.86. lic&egrave;t <lb/>remaneat aliquid impetus verticalis qui in communem lineam abit cum <lb/>horizontali; </s>
					<s id="N1C075"><!-- NEW -->res tamen perinde &longs;e habet atque &longs;i totus verticalis de&longs;true&shy;<lb/>retur, &amp; totus horizontalis intactus permaneret; igitur de&longs;cen&longs;us fit mo&shy;<lb/>tu mixto ex naturali accelerato &amp; horizontali retardato per Th.30. quia <lb/>tamen modico illo tempore par&ugrave;m retardatur, vt &longs;upr&agrave; monui, &longs;en&longs;ibili&shy;<lb/>ter accipi pote&longs;t pro &aelig;quabili. </s>
				</p>
				<pb pagenum="184" xlink:href="026/01/216.jpg"/>
				<p id="N1C085" type="main">
					<s id="N1C087"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 89.<emph.end type="center"/></s>
				</p>
				<p id="N1C093" type="main">
					<s id="N1C095"><!-- NEW --><emph type="italics"/>Hinc &longs;en&longs;ibiliter ex a&longs;cen&longs;u &amp; de&longs;cen&longs;u fit<emph.end type="italics"/> <emph type="italics"/>integra Parabola<emph.end type="italics"/>; </s>
					<s id="N1C0A4"><!-- NEW -->nam pro&shy;<lb/>iiciatur ex L in A, eo tempore, quo nauis mouetur ex L in F, cert&egrave; &longs;i <lb/>tempus illud diuidatur bifariam prima parte mobile percurret LI tri&shy;<lb/>plam IK in verticali, &amp; LM &longs;ubduplam LF in horizontali; </s>
					<s id="N1C0AE"><!-- NEW -->igitur erit <lb/>in G; </s>
					<s id="N1C0B4"><!-- NEW -->&longs;ecunda ver&ograve; parte temporis in verticali percurrit IK, &amp; MF in <lb/>horizontali; </s>
					<s id="N1C0BA"><!-- NEW -->igitur erit in D; </s>
					<s id="N1C0BE"><!-- NEW -->pr&aelig;terea &longs;i accipiantur du&aelig; ali&aelig; partes tem&shy;<lb/>poris &aelig;quales; </s>
					<s id="N1C0C4"><!-- NEW -->prima in perpendiculari deor&longs;um percurret DE &aelig;qua&shy;<lb/>lem LK, &amp; in horizontali DO; </s>
					<s id="N1C0CA"><!-- NEW -->igitur erit in N; </s>
					<s id="N1C0CE"><!-- NEW -->&longs;ecunda vero in per&shy;<lb/>pendiculari percurret NQ triplam NO, &amp; NR in horizontali; igitur <lb/>erit in S; </s>
					<s id="N1C0D6"><!-- NEW -->&longs;ed h&aelig;c e&longs;t Parabola; </s>
					<s id="N1C0DA"><!-- NEW -->nam vt &longs;e habent quadrata applicatarum <lb/>v.g. <!-- REMOVE S-->EG, FL, ita &longs;agitt&aelig; DE, DF; dixi &longs;en&longs;ibiliter, nam vt &longs;upr&agrave; mo&shy;<lb/>nui e&longs;t alia linea, qu&aelig; tamen proxim&egrave; accedit ad Parabolam. <!-- KEEP S--></s>
				</p>
				<p id="N1C0E5" type="main">
					<s id="N1C0E7"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 90.<emph.end type="center"/></s>
				</p>
				<p id="N1C0F3" type="main">
					<s id="N1C0F5"><!-- NEW --><emph type="italics"/>Hinc fer&egrave; recedit mobile in idem punctum nauis, &egrave; quo &longs;ur&longs;um proiectum <lb/>e&longs;t<emph.end type="italics"/>; </s>
					<s id="N1C100"><!-- NEW -->dixi fer&egrave;, quia non e&longs;t omnin&ograve; Parabola; imm&ograve; &longs;upponitur motus <lb/>horizontalis t&ugrave;m nauis t&ugrave;m mobilis omnin&ograve; &aelig;quabilis, &agrave; quo tamen <lb/>tantill&ugrave;m deficit, &longs;ed in tam breui tempore non e&longs;t &longs;en&longs;ibile. </s>
				</p>
				<p id="N1C108" type="main">
					<s id="N1C10A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 91.<emph.end type="center"/></s>
				</p>
				<p id="N1C116" type="main">
					<s id="N1C118"><!-- NEW --><emph type="italics"/>Hinc quant&ugrave;m initio detrahit horizontali verticalis inten&longs;ior, &amp; &longs;ub finem <lb/>remittit, tant&ugrave;m initio remittit horizontali naturalis tardior, &amp; &longs;ub finem ve&shy;<lb/>locior detrahit<emph.end type="italics"/>; </s>
					<s id="N1C125"><!-- NEW -->&longs;ic in a&longs;cen&longs;u linea curua LD, initio par&ugrave;m recedit &agrave; ver&shy;<lb/>ticali LK, &amp; mult&ugrave;m &longs;ub finem; in de&longs;cen&longs;u ver&ograve; curua DS accedit <lb/>propi&ugrave;s ad horizontalem DT, &agrave; qua mult&ugrave;m recedit &longs;ub finem. </s>
				</p>
				<p id="N1C12D" type="main">
					<s id="N1C12F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 92.<emph.end type="center"/></s>
				</p>
				<p id="N1C13B" type="main">
					<s id="N1C13D"><!-- NEW --><emph type="italics"/>Hinc eadem, qu&acirc; mobilis proijcitur &longs;ur&longs;um &egrave; naui mobili, recipitur manu<emph.end type="italics"/>; <lb/>probata centies experientia; idem dico de &longs;agitta, arcu emi&longs;&longs;a, glande <lb/>tormento explo&longs;a, &amp;c. </s>
					<s id="N1C14A"><!-- NEW -->&longs;ic dum demittis manu in eadem naui aliquod <lb/>graue deor&longs;um, eadem &longs;emper &agrave; te di&longs;tantia cadit; &longs;ic in rhodis currenti&shy;<lb/>bus poma odorifera, &longs;ur&longs;um modica vi projecta eadem &longs;emper excipiun&shy;<lb/>tur manu, perinde atque &longs;i currus ip&longs;e &longs;taret. </s>
					<s id="N1C154"><!-- NEW -->Ita pror&longs;us &longs;e res habet <lb/>dum in&longs;idens equo etiam pernici&longs;&longs;im&egrave; currenti ludis huiu&longs;modi moti&shy;<lb/>bus; </s>
					<s id="N1C15C"><!-- NEW -->quorum nullum pror&longs;us di&longs;crimen ob&longs;eruabis in naui, &longs;iue &longs;tet &longs;iue <lb/>moueatur &longs;olito cur&longs;u; </s>
					<s id="N1C162"><!-- NEW -->&longs;i enim eadem velocitate, qua vel emi&longs;&longs;a &longs;agitta, <lb/>vel glans explo&longs;a moueretur; haud dubi&egrave; maximum di&longs;crimen inter&shy;<lb/>cederet. </s>
				</p>
				<p id="N1C16A" type="main">
					<s id="N1C16C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 93.<emph.end type="center"/></s>
				</p>
				<p id="N1C178" type="main">
					<s id="N1C17A"><!-- NEW --><emph type="italics"/>Hinc &longs;i pilam projectam &egrave; naui mobili continuo intuitu pro&longs;equaris &longs;ur&longs;um <lb/>rect&agrave; ferri iudicabis<emph.end type="italics"/>; </s>
					<s id="N1C185"><!-- NEW -->quippe cum perpetu&ograve; mutes perpendicularem pro&shy;<lb/>pter motum nauis, in eadem &longs;emper e&longs;&longs;e putas, in qua pila &longs;emper <lb/>occurrat; </s>
					<s id="N1C18D"><!-- NEW -->lic&egrave;t reuer&acirc; qui &longs;unt in naui immobili rem aliter e&longs;&longs;e <pb pagenum="185" xlink:href="026/01/217.jpg"/>iudicent; </s>
					<s id="N1C196"><!-- NEW -->quippe vident pilam &longs;uo motu de&longs;cribere curuam non &longs;imi&shy;<lb/>lem illi, quam di&longs;cus per lineam inclinatam &longs;ur&longs;um proiectus &longs;uo mo&shy;<lb/>tu de&longs;criberet; neque mirum e&longs;t, cum &longs;int e&aelig;dem vtriu&longs;que rationes, cum <lb/>hac tantum differentia, qu&ograve;d inclinata di&longs;ci &longs;it motus &longs;implicis, inclina&shy;<lb/>ta ver&ograve; pil&aelig; a&longs;cendentis &longs;it motus mixti ex horizontali &amp; verticali, &aelig;&shy;<lb/>quabili quidem in a&longs;cen&longs;us accelerato in de&longs;cen&longs;u. </s>
				</p>
				<p id="N1C1A4" type="main">
					<s id="N1C1A6"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 94.<emph.end type="center"/></s>
				</p>
				<p id="N1C1B2" type="main">
					<s id="N1C1B4"><emph type="italics"/>Ex his vides non valere vulgarem rationem, qu&aelig; vulg&ograve; affertur contra mo&shy;<lb/>tum terr&aelig;, &longs;equi &longs;cilicet ex eo lapidem proiectum &longs;ur&longs;um per verticalem longo <lb/>interuallo ver&longs;us occa&longs;um retr&ograve; de&longs;cen&longs;urum,<emph.end type="italics"/> quod tamen etiam ex motu <lb/>terr&aelig; &longs;uppo&longs;ito non &longs;equeretur, cum non &longs;equatur ex motu nauis. </s>
				</p>
				<p id="N1C1C2" type="main">
					<s id="N1C1C4"><!-- NEW -->Igitur alia ratione impugnari debet hypothe&longs;is illa, qu&aelig; terr&aelig; motum <lb/>de&longs;truit; </s>
					<s id="N1C1CA"><!-- NEW -->quod cert&egrave; &longs;i &agrave; me fieri po&longs;&longs;it, in tractatu de corporibus c&oelig;le&longs;ti&shy;<lb/>bus, vel de nouo &longs;y&longs;temate aliquando pr&aelig;&longs;tabimus; </s>
					<s id="N1C1D0"><!-- NEW -->non tamen e&longs;t quod <lb/>h&icirc;c di&longs;&longs;imulem aliquorum agendi methodum, qui ex hoc ph&oelig;nome&shy;<lb/>no con&longs;tanter a&longs;&longs;erunt terram moueri; </s>
					<s id="N1C1D8"><!-- NEW -->nam prim&ograve;, &longs;equeretur tant&ugrave;m <lb/>moueri circa centrum id e&longs;t motu orbis, non ver&ograve; motu centri; qu&aelig; e&longs;t <lb/>hypothe&longs;is Origani. </s>
					<s id="N1C1E0"><!-- NEW -->Secund&ograve; ex quiete terr&aelig; hoc idem ph&oelig;nomenon <lb/>&longs;equitur; </s>
					<s id="N1C1E6"><!-- NEW -->quippe, &longs;i terra quie&longs;cit, eadem manu cadentem excipio lapi&shy;<lb/>dem, qu&aelig; &longs;ur&longs;um rect&agrave; proiicit; </s>
					<s id="N1C1EC"><!-- NEW -->igitur quemadmodum ex hoc non infero <lb/>terr&aelig; quietem, &longs;ed aliunde; </s>
					<s id="N1C1F2"><!-- NEW -->ita neque ex hoc inferri pote&longs;t terr&aelig; motus; </s>
					<s id="N1C1F6"><!-- NEW --><lb/>cum enim duplex hypothe&longs;is eodem ph&oelig;nomeno &longs;tare pote&longs;t, neutra ex <lb/>eo euincitur; igitur &longs;icuti fateor ex hoc ph&oelig;nomeno minim&egrave; demon&shy;<lb/>&longs;trari terr&aelig; quietem ita &amp; tu fateri debes ex eo minim&egrave; ad&longs;trui po&longs;&longs;e <lb/>terr&aelig; motum. </s>
				</p>
				<p id="N1C201" type="main">
					<s id="N1C203"><!-- NEW -->Adde quod, haud dubi&egrave; &longs;i terra quie&longs;cit citi&ugrave;s proiectus lapis &longs;ur&longs;um <lb/>de&longs;cendit, qu&agrave;m &longs;i mouetur; </s>
					<s id="N1C209"><!-- NEW -->nec enim vt dictum e&longs;t &longs;upr&agrave; proiecta velo&shy;<lb/>ci&longs;&longs;imo motu per horizontalem de&longs;cendunt eo tempore, quo ex eadem <lb/>altitudine motu pur&egrave; naturali de&longs;cenderent; </s>
					<s id="N1C211"><!-- NEW -->quod multis euincitur ex&shy;<lb/>perimentis, vt vidimus in Th.46. atqui punctum terr&aelig; &longs;ub &aelig;quatore ve&shy;<lb/>loci&longs;&longs;im&egrave; moueretur, quod vno temporis &longs;ecundo conficeret 1250.pedes <lb/>geometricos &longs;i 5. pedes geometrici tribuantur pa&longs;&longs;ui, 4000. pa&longs;&longs;us leuc&aelig; <lb/>germanic&aelig;, 15. leuc&aelig; germanic&aelig; gradui &AElig;quatoris, toti demum &AElig;qua&shy;<lb/>tori 360. gradus; </s>
					<s id="N1C21F"><!-- NEW -->cum autem iactus medius tormenti validi&longs;&longs;imi &longs;it <lb/>15000. pedum, duretque 30&Prime; temporis; </s>
					<s id="N1C225"><!-- NEW -->cert&egrave; 30&Prime; temporis con&longs;icit pun&shy;<lb/>ctum &aelig;quatoris 37500. pedes; </s>
					<s id="N1C22B"><!-- NEW -->igitur mouetur veloci&ugrave;s explo&longs;a glande; </s>
					<s id="N1C22F"><!-- NEW --><lb/>igitur &longs;i h&aelig;c velocitas glandis impedit, ne t&agrave;m cit&ograve; deor&longs;um cadat, ma&shy;<lb/>jor velocitas motus terr&aelig; potiori iure illud ip&longs;um impediet; igitur &longs;i <lb/>terra quie&longs;cit, globus &longs;ur&longs;um proiectus veloci&ugrave;s recidet in terram, et&longs;i <lb/>terra moueatur tardi&ugrave;s. </s>
				</p>
				<p id="N1C23A" type="main">
					<s id="N1C23C"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1C248" type="main">
					<s id="N1C24A"><!-- NEW -->Ob&longs;eruabis duos tant&ugrave;m motus in naui mobili fui&longs;&longs;e hactenus explica&shy;<lb/>tos; </s>
					<s id="N1C250"><!-- NEW -->primus e&longs;t, quo demittitur plumbea pila &egrave; &longs;ummo mali; </s>
					<s id="N1C254"><!-- NEW -->&longs;ecundus e&longs;t, <lb/>quo ex <expan abbr="s&utilde;mo">summo</expan> malo, vel ex alio nauis mobilis puncto proiicitur <expan abbr="&longs;urs&utilde;">&longs;ursum</expan> cor-<pb pagenum="186" xlink:href="026/01/218.jpg"/>pus graue per lineam verticalem; </s>
					<s id="N1C267"><!-- NEW -->&longs;unt autem plures alij motus, tot &longs;cili&shy;<lb/>cet, quot po&longs;&longs;unt duci line&aelig; &egrave; &longs;ummo malo in orbem quoquo ver&longs;um; <lb/>quarum h&aelig; &longs;unt pr&aelig;cipu&aelig;. </s>
					<s id="N1C26F"><!-- NEW -->&longs;it apex mali B; </s>
					<s id="N1C273"><!-- NEW -->circa quem de&longs;cribatur cir&shy;<lb/>culus ACDE, &longs;itque prim&ograve; circulus ille verticalis parallelus &longs;cilicet li&shy;<lb/>ne&aelig; directionis nauis BA, qu&aelig; &longs;it v. <!-- REMOVE S-->g. <!-- REMOVE S-->ver&longs;us Boream; </s>
					<s id="N1C27F"><!-- NEW -->prim&ograve; habes li&shy;<lb/>neam verticalem &longs;ur&longs;um BE; </s>
					<s id="N1C285"><!-- NEW -->&longs;ecund&ograve; perpendicularem deor&longs;um BC; </s>
					<s id="N1C289"><!-- NEW --><lb/>terti&ograve; lineam directionis ver&longs;us Boream BA; </s>
					<s id="N1C28E"><!-- NEW -->quart&ograve; illi oppo&longs;itum <lb/>ver&longs;us Au&longs;trum BD; t&ugrave;m voluatur circulus circa axem immobilem AD <lb/>per quadrantem integrum, dum &longs;cilicet BE &longs;it ad Ortum, qu&aelig; e&longs;t quinta <lb/>linea, &amp; BC ip&longs;i oppo&longs;ita ad Occa&longs;um, qu&aelig; e&longs;t &longs;exta. </s>
					<s id="N1C298">Igitur habes 6. li&shy;<lb/>neas; </s>
					<s id="N1C29D"><!-- NEW -->&longs;cilicet &longs;ur&longs;um, deor&longs;um, ver&longs;us Boream &amp; Au&longs;trum, ver&longs;us Ortum, <lb/>&amp; Occa&longs;um; linea qu&aelig; tendit deor&longs;um pote&longs;t dupliciter con&longs;iderari, vel <lb/>enim demittitur &longs;ua &longs;ponte, vel proiicitur. </s>
				</p>
				<p id="N1C2A5" type="main">
					<s id="N1C2A7"><!-- NEW -->Iam ver&ograve; inter <expan abbr="Bore&atilde;">Boream</expan>, &amp; Occa&longs;um habes lineas triplicis generis, prim&ograve; <lb/>horizonti parallelas, qu&aelig; vt con&longs;iderentur; </s>
					<s id="N1C2B1"><!-- NEW -->cen&longs;eatur pr&aelig;dictus circulus <lb/>parallelus horizonti, ita vt ex centro B ducantur ad <expan abbr="circumferenti&atilde;">circumferentiam</expan> tot <lb/>line&aelig;, quot &longs;unt puncta in circumferentia; </s>
					<s id="N1C2BD"><!-- NEW -->&longs;ecund&ograve; inclinatas &longs;ur&longs;um &amp; <lb/>inclinatas deor&longs;um; </s>
					<s id="N1C2C3"><!-- NEW -->&longs;imiliter inter Occa&longs;um &amp; Au&longs;trum, inter Au&longs;trum <lb/>&amp; Ortum, inter Ortum &amp; Boream; porr&ograve; exprimes omnes lineas, &longs;i api&shy;<lb/>cem mali fingas centrum globi, &longs;eu &longs;i in circulo pr&aelig;dicto verticali &agrave; <lb/>centro B ad circumferentiam ducantur tot line&aelig; quot po&longs;&longs;unt duci, <lb/>tuncque circa axem EC immobilem voluatur circulus, &amp;c. </s>
					<s id="N1C2CF">his po&longs;i&shy;<lb/>tis &longs;it. </s>
				</p>
				<p id="N1C2D4" type="main">
					<s id="N1C2D6"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 95.<emph.end type="center"/></s>
				</p>
				<p id="N1C2E2" type="main">
					<s id="N1C2E4"><!-- NEW --><emph type="italics"/>Si proijciatur globus deor&longs;um &agrave; &longs;ummo malo, de&longs;cendet fer&egrave; ad imum ma&shy;<lb/>lum<emph.end type="italics"/>; </s>
					<s id="N1C2EF"><!-- NEW -->probatur, quia de&longs;cendet quidem veloci&ugrave;s qu&agrave;m &longs;i motu naturali <lb/>de&longs;cenderet vt con&longs;tat per Th. 69. &longs;ed profect&ograve; nihil acquiret in hori&shy;<lb/>zontali globus, quod non acquirat nauis; </s>
					<s id="N1C2F7"><!-- NEW -->igitur im&ugrave;m fer&egrave; malum attin&shy;<lb/>git &longs;ed opus e&longs;t aliqua figur&acirc;; </s>
					<s id="N1C2FD"><!-- NEW -->&longs;it enim apex mali A, de&longs;cendatque pri&shy;<lb/>m&ograve; ex A &longs;ua &longs;ponte in H; </s>
					<s id="N1C303"><!-- NEW -->haud dubi&egrave; &longs;i eo tempore, quo motu na&shy;<lb/>turali conficit AD, mixto deor&longs;um conficit AF, eo tempore cadet in G <lb/>ex A &longs;i hic impetus deor&longs;um adueniat; </s>
					<s id="N1C30B"><!-- NEW -->&longs;ed res e&longs;t clara; </s>
					<s id="N1C30F"><!-- NEW -->h&aelig;c porr&ograve; figura <lb/>non e&longs;t Parabola, lic&egrave;t &longs;it curua; </s>
					<s id="N1C315"><!-- NEW -->con&longs;tat autem h&icirc;c motus ex naturali <lb/>accelerato, ex impre&longs;&longs;o deor&longs;um &aelig;quabili per &longs;e, &amp; horizontali &longs;en&longs;i&shy;<lb/>biliter &aelig;quabili; pote&longs;t autem de&longs;ignari h&aelig;c linea motus ex &longs;upr&agrave; <lb/>dictis. </s>
				</p>
				<p id="N1C31F" type="main">
					<s id="N1C321"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 96.<emph.end type="center"/></s>
				</p>
				<p id="N1C32D" type="main">
					<s id="N1C32F"><!-- NEW --><emph type="italics"/>Si in circulo verticali pr&aelig;dicto proijciatur per lineam horizontalem ver&shy;<lb/>&longs;us Boream, mouebitur globus motu mixto ex duplici horizontali per <expan abbr="e&atilde;dem">eandem</expan> <lb/>lineam fer&egrave; &aelig;quabili; </s>
					<s id="N1C33D"><!-- NEW -->id e&longs;t &longs;en&longs;ibiliter, lic&egrave;t geometric&egrave; loquendo retardetur, <lb/>&amp; naturali accelerato<emph.end type="italics"/>; </s>
					<s id="N1C346"><!-- NEW -->&longs;it perpendicularis deor&longs;um AH, <expan abbr="horiz&omacr;talis">horizontalis</expan> AC, <lb/>quam conficiat eo tempore, quo conficit AH motu naturali, motu mixto <lb/>perueniet in K; </s>
					<s id="N1C352"><!-- NEW -->&longs;i ver&ograve; duplicetur horizontalis, ita vt eo tempore quo <lb/>conficit AH, conficiat AD, motu mixto perueniet in L; </s>
					<s id="N1C358"><!-- NEW -->h&aelig;c autem curua <pb pagenum="187" xlink:href="026/01/219.jpg"/>HL accedit ad Parabolam lic&egrave;t non &longs;it vera Parabola; quia quando ia&shy;<lb/>ctus horizontalis e&longs;t veloci&longs;&longs;imus, qualis in arce, vel in tormentis belli&shy;<lb/>cis, eodem tempore mobile non decidit in terram, quo de&longs;cenderet mo&shy;<lb/>tu pur&egrave; naturali ex eadem altitudine. </s>
				</p>
				<p id="N1C367" type="main">
					<s id="N1C369"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 97.<emph.end type="center"/></s>
				</p>
				<p id="N1C375" type="main">
					<s id="N1C377"><!-- NEW --><emph type="italics"/>Hinc, &longs;i motus nauis e&longs;&longs;et &aelig;qualis motui &longs;agitt&aelig;, motus ex vtroque mixtus <lb/>duplam amplitudinem in plano h&ograve;rizontali acquireret, v.g. <!-- REMOVE S-->&longs;i<emph.end type="italics"/> tant&ugrave;m &longs;agitta <lb/>emi&longs;&longs;a arcu extra nauim ex A perueniret in K, in naui mobili perueniret <lb/>in L; </s>
					<s id="N1C388"><!-- NEW -->&longs;i ver&ograve; nauis, vt reuer&acirc; fit, tardi&ugrave;s moueatur, &longs;agitta &egrave; naui emi&longs;&longs;a <lb/>ver&longs;us Boream &longs;cilicet acquiret pro rata, id e&longs;t &longs;i nauis motus &longs;it tant&ugrave;m <lb/>&longs;ubduplus perueniret in M; &longs;i &longs;ubquadruplus in N &amp;c. </s>
				</p>
				<p id="N1C390" type="main">
					<s id="N1C392"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 98.<emph.end type="center"/></s>
				</p>
				<p id="N1C39E" type="main">
					<s id="N1C3A0"><!-- NEW --><emph type="italics"/>Hinc tormentum bellicum quod e&longs;t in prora directum ad <expan abbr="e&atilde;dem">eandem</expan> lineam, <lb/>quam &longs;uo motu conficit nauis maiorem iactum habebit, non tamen &longs;en&longs;ibiliter<emph.end type="italics"/>; </s>
					<s id="N1C3AF"><!-- NEW --><lb/>quia motus nauis parum addit; </s>
					<s id="N1C3B4"><!-- NEW -->ob&longs;eruabis tamen non videri maiorem <lb/>qu&agrave;m &longs;i nauis quie&longs;ceret, quia eo tempore, quo &longs;agitta ex A peruenit in <lb/>L, nauis ex H peruenit in K; </s>
					<s id="N1C3BC"><!-- NEW -->igitur videtur &longs;emper e&longs;&longs;e idem iactus, &longs;iue <lb/>moueatur nauis &longs;iue non, quia e&longs;t &longs;emper eadem di&longs;tantia nauis, &amp; ter&shy;<lb/>mini iactus; cum nauis id totum acquirat &longs;patij, quod motui &longs;agitt&aelig; <lb/>accedit. </s>
				</p>
				<p id="N1C3C6" type="main">
					<s id="N1C3C8"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 99.<emph.end type="center"/></s>
				</p>
				<p id="N1C3D4" type="main">
					<s id="N1C3D6"><!-- NEW --><emph type="italics"/>Hinc vt quis maiore ni&longs;u lapidem v. <!-- REMOVE S-->g. <!-- REMOVE S-->proijciat, t&ugrave;m longiore tempore <lb/>brachium rotat, t&ugrave;m pr&aelig;uio cur&longs;u impetum auget,<emph.end type="italics"/> quia non tant&ugrave;m impe&shy;<lb/>tus brachij imprimitur mobili, &longs;ed etiam impetus totius corporis; </s>
					<s id="N1C3E7"><!-- NEW -->hinc <lb/>etiam &longs;i pr&aelig;mittatur cur&longs;us longiore &longs;altu in plano horizontali maius <lb/>&longs;patium traiicitur; qu&aelig; omnia ex ii&longs;dem principiis manife&longs;t&egrave; &longs;e&shy;<lb/>quuntur. </s>
				</p>
				<p id="N1C3F3" type="main">
					<s id="N1C3F5"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 100.<emph.end type="center"/></s>
				</p>
				<p id="N1C401" type="main">
					<s id="N1C403"><!-- NEW --><emph type="italics"/>Si ver&ograve; per oppo&longs;itam lineam ver&longs;us Au&longs;trum proijcitur mobile, mouebitur <lb/>motu mixto ex duobus horizontalibus ad oppo&longs;itas lineas, &amp; ex naturali ac&shy;<lb/>celerato<emph.end type="italics"/>; </s>
					<s id="N1C410"><!-- NEW -->&longs;it proiectio per AB, ita vt mobil&egrave; perueniat in L ni&longs;i impedia&shy;<lb/>tur; </s>
					<s id="N1C416"><!-- NEW -->cert&egrave; &longs;i nauis motu &longs;ubduplo in oppo&longs;itam partem feratur, peruenit <lb/>tant&ugrave;m in K, qu&aelig; omnia con&longs;tant ex dictis; </s>
					<s id="N1C41C"><!-- NEW -->nam impetus oppo&longs;iti pu&shy;<lb/>gnant pro rata, vt &longs;&aelig;p&egrave; diximus; </s>
					<s id="N1C422"><!-- NEW -->videbitur tamen e&longs;&longs;e &aelig;qualis iactus; </s>
					<s id="N1C426"><!-- NEW -->&longs;i <lb/>enim eo tempore, quo &longs;agitta peruenit in K, nauis fertur in oppo&longs;itam <lb/>partem &longs;patio &aelig;quali KL, haud dubi&egrave; di&longs;tantia &longs;emper erit &aelig;qualis; tan&shy;<lb/>t&ugrave;m enim recedit ver&longs;us Boream nauis, quant&ugrave;m &longs;agitta &agrave; puncto L ad <lb/>punctum K reducitur. </s>
				</p>
				<p id="N1C432" type="main">
					<s id="N1C434"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 101.<emph.end type="center"/></s>
				</p>
				<p id="N1C440" type="main">
					<s id="N1C442"><!-- NEW --><emph type="italics"/>Si motus nauis e&longs;&longs;et &aelig;qualis motui &longs;agitt&aelig; v. <!-- REMOVE S-->g.<emph.end type="italics"/> <emph type="italics"/>&longs;i nauis ferretur per <lb/>lineam GC &longs;eu TA ver&longs;us Boream, &amp; &longs;agitta &egrave; &longs;ummo malo emitteretur <lb/>per lineam TO ver&longs;us Au&longs;trum, de&longs;cenderet per lineam T.G. nec quidquam<emph.end type="italics"/><pb pagenum="188" xlink:href="026/01/220.jpg"/><emph type="italics"/>acquireret in horizontali<emph.end type="italics"/>; </s>
					<s id="N1C460"><!-- NEW -->quod probatur per Th. 133. l.1. &longs;ic globus tor&shy;<lb/>menti etiam ne latum quidem vnguem pertran&longs;iret in horizontali, vide&shy;<lb/>tur tamen &longs;emper e&longs;&longs;e idem iactus; </s>
					<s id="N1C468"><!-- NEW -->nam eo tempore, quo &longs;agitta caderet <lb/>&agrave; T in G, nauis e&longs;&longs;et in C, atqui CG &amp; GM &longs;unt a&longs;&longs;umpt&aelig; &aelig;quales; hinc <lb/>poti&ugrave;s arcus e&longs;&longs;et emi&longs;&longs;us qu&agrave;m &longs;agitta, &amp; tormentum explo&longs;um qu&agrave;m <lb/>globus. </s>
				</p>
				<p id="N1C472" type="main">
					<s id="N1C474"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1C480" type="main">
					<s id="N1C482"><!-- NEW -->Ob&longs;eruabis, &longs;i nauis motus &longs;it ad motum &longs;agitt&aelig; v. <!-- REMOVE S-->g. <!-- REMOVE S-->in ratione &longs;ub&shy;<lb/>dupla, &longs;cilicet vt FG, vel LM ad GM peruenit in L per Parabolam TL; </s>
					<s id="N1C48C"><!-- NEW -->&longs;t <lb/>vt EG vel KM ad GL peruenit in K per Parabolam TK; &longs;i vt DG vel I <lb/>M ad GM peruenitin I per Parabolam TI, &amp;c. </s>
					<s id="N1C494"><!-- NEW -->vnde vides Parabolas <lb/>i&longs;tas &longs;emper in infinitum contrahi, donec tandem in rectam TG de&longs;i&shy;<lb/>nant vbi motus nauis e&longs;t &aelig;qualis motui &longs;agitt&aelig;: Parabolas dixi &longs;en&longs;ibi&shy;<lb/>liter, &longs;cilicet eo modo, quo &longs;upr&agrave;. </s>
				</p>
				<p id="N1C49E" type="main">
					<s id="N1C4A0"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 102.<emph.end type="center"/></s>
				</p>
				<p id="N1C4AC" type="main">
					<s id="N1C4AE"><emph type="italics"/>Si ver&ograve; motus nauis e&longs;&longs;et maior motu &longs;agitt&aelig;, &longs;agitta f&egrave;rretur in <expan abbr="e&atilde;dem">eandem</expan> <lb/>partem in quam fertur nauis per &longs;patium &aelig;quale differentia illorum motuum,<emph.end type="italics"/><lb/>v.g. </s>
					<s id="N1C4BD"><!-- NEW -->&longs;i nauis moueatur per GM &amp; &longs;agitta per TA, &longs;itque motus nauis ad <lb/>motum &longs;agitt&aelig;, vt GM, ad IM; eo tempore quo nauis attinget M, &longs;agitta <lb/>cadet in I, &amp; &longs;i motus &longs;it vt GM ad KM cadet in K vel vt GM ad GL <lb/>cadet in L. per Parabolas, qu&aelig; omnia con&longs;tant ex dictis, &amp; ex Theore&shy;<lb/>mate per 134. l.1. </s>
				</p>
				<p id="N1C4C9" type="main">
					<s id="N1C4CB"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1C4D8" type="main">
					<s id="N1C4DA"><!-- NEW --><emph type="italics"/>Ex illa hypothe&longs;i &longs;equitur egregium paradoxon &longs;cilicet &longs;agittam retorqueri <lb/>in &longs;agittarium<emph.end type="italics"/>; </s>
					<s id="N1C4E5"><!-- NEW -->&longs;it enim motus nauis ad motum &longs;agitt&aelig; vt GM ad LM; </s>
					<s id="N1C4E9"><!-- NEW --><lb/>haud dubi&egrave; per Th. &longs;uperius eo tempore, quo nauis peruenit ad M &longs;a&shy;<lb/>gitta attinget punctum L, &amp; eo tempore quo nauis e&longs;&longs;et in L &longs;agitta e&longs;&shy;<lb/>&longs;et in puncto Y, &longs;i cum nauis peruenit in L illic&ograve; &longs;i&longs;tat &longs;agitta, cadet in <lb/>ip&longs;am nauim; </s>
					<s id="N1C4F4"><!-- NEW -->nam cadet in L quod clarum e&longs;t: </s>
					<s id="N1C4F8"><!-- NEW -->dixi &longs;i nauis &longs;i&longs;tat po&longs;t <lb/>emi&longs;&longs;am &longs;agittam, &longs;i enim nauis &longs;emper moueatur, &aelig;quabilis &longs;emper e&longs;&longs;e <lb/>videbitur &longs;agitt&aelig; iactus, &longs;i enim &egrave; naui immobili emi&longs;&longs;a fui&longs;&longs;et pr&aelig;dicta <lb/>&longs;agitta per horizontalem TO, acqui&longs;iui&longs;&longs;et &longs;patium vel amplitudinem G <lb/>L; </s>
					<s id="N1C504"><!-- NEW -->&longs;ed videtur confeci&longs;&longs;e ML, cum nauis mouetur; atqui ML e&longs;t &aelig;qualis <lb/>LG, quid clarius? </s>
				</p>
				<p id="N1C50A" type="main">
					<s id="N1C50C"><!-- NEW -->Hinc &longs;i quis in naui currat per lineam directionis id e&longs;t ver&longs;us eain <lb/>partem, in quam mouetur nauis, curret veloci&ugrave;s; </s>
					<s id="N1C512"><!-- NEW -->imm&ograve; &longs;i ambulet, ingen&shy;<lb/>tes faciet pa&longs;&longs;us &longs;eu &longs;altus v.g.&longs;i nauis conficit &longs;patium GM eo tempore <lb/>quo aliquis &longs;altat ex G in H; </s>
					<s id="N1C51A"><!-- NEW -->haud dubi&egrave; amplitudo eius &longs;altus erit com&shy;<lb/>po&longs;ita ex tota GM &amp; GH; </s>
					<s id="N1C520"><!-- NEW -->&longs;i ver&ograve; in partem oppo&longs;itam ver&longs;us C currat: </s>
					<s id="N1C524"><!-- NEW --><lb/>vel currit veloci&ugrave;s, vel tardi&ugrave;s, vel &aelig;quali motu: </s>
					<s id="N1C529"><!-- NEW -->&longs;i primum, aliquid &longs;patij <lb/>acquiret ver&longs;us C &aelig;qualis &longs;cilicet <expan abbr="differ&etilde;ti&aelig;">differenti&aelig;</expan> motuum; </s>
					<s id="N1C533"><!-- NEW -->&longs;i <expan abbr="&longs;ecund&utilde;">&longs;ecundum</expan>, recedet <lb/>ver&longs;us M &longs;patio &aelig;quali eidem differenti&aelig;; &longs;i tertium, nec accedet, nec re&shy;<lb/>cedet, &longs;ed totis viribus currens &longs;eu tentans currere in eodem &longs;emper lo-<pb pagenum="189" xlink:href="026/01/221.jpg"/>co &longs;tabit, vel &longs;i &longs;it rotatus globus in tabulato nauis mouebitur motu or&shy;<lb/>bis circa centrum immobile. </s>
				</p>
				<p id="N1C546" type="main">
					<s id="N1C548"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 103.<emph.end type="center"/></s>
				</p>
				<p id="N1C554" type="main">
					<s id="N1C556"><!-- NEW --><emph type="italics"/>Si proiiciatur mobile per lineam inclinatam deor&longs;um, qu&aelig; &longs;it hypothenu&longs;is <lb/>trianguli orthogonij, cuius ba&longs;is &longs;it horizontalis &amp; perpendiculum &longs;patium,<emph.end type="italics"/><lb/>quod percurritur motu naturali &aelig;quali tempore, idque in naui mobili <lb/>in eam <expan abbr="part&etilde;">partem</expan>, ver&longs;us quam mouetur nauis, erit motus mixtus ex naturali <lb/>accelerato &amp; inclinato mixto ex horizontali &amp; alio inclinato &longs;it enim <lb/>horizontalis AD, perpendicularis AMK, &longs;it AM &longs;patium quod percurri&shy;<lb/>tur in perpendiculari motu pur&egrave; naturali, eo tempore, quo percurritur <lb/>AC &longs;ubdupla AD, &longs;itque AM &longs;ubdupla AC, &amp; &longs;ecundo tempore &aelig;quali <lb/>percurratur in horizontali CD, &amp; in perpendiculari MK tripla AM; </s>
					<s id="N1C572"><!-- NEW --><lb/>erit motus mixtus per lineam parabolicam ANH; </s>
					<s id="N1C577"><!-- NEW -->nam &longs;uppono hori&shy;<lb/>zontalem &aelig;quabilem, c&ugrave;m par&ugrave;m ab eo ab&longs;it, vt &longs;upradictum e&longs;t; pr&aelig;&longs;er&shy;<lb/>tim cum &longs;en&longs;ibiliter h&aelig;c linea &longs;it parabolica. </s>
				</p>
				<p id="N1C57F" type="main">
					<s id="N1C581"><!-- NEW -->Iam ver&ograve; in eadem naui proiiciatur mobile per inclinatam AP, qu&aelig; <lb/>&longs;it diagonalis quadrati AP, &amp; impetus perinclinatam AP &longs;it ad impetum <lb/>per horizontalem AC, vt AP ad AC; </s>
					<s id="N1C589"><!-- NEW -->ducatur LPF parallela MN, &amp; CF <lb/>parallela AP; </s>
					<s id="N1C58F"><!-- NEW -->denique diagonalis AF: </s>
					<s id="N1C593"><!-- NEW -->haud dubi&egrave; ML e&longs;t &aelig;qualis AM, vt <lb/>patet; </s>
					<s id="N1C599"><!-- NEW -->&amp; &longs;i motus e&longs;&longs;et tantum mixtus ex AC &amp; AP fieret per diagona&shy;<lb/>lem AF, quam mobile eodem tempore percurreret quo vel AC vel AP; </s>
					<s id="N1C59F"><!-- NEW --><lb/>igitur &longs;i dum percurrit AF percurrit AM, motu naturali, cert&egrave; dum per&shy;<lb/>currit AN &longs;ubdupla AF, percurret tant&ugrave;m &longs;ubquadruplam AM; </s>
					<s id="N1C5A6"><!-- NEW -->a&longs;&longs;uma&shy;<lb/>tur ergo NO &aelig;qualis AS, &amp; FG &aelig;qualis AM; <expan abbr="ducaturq;">ducaturque</expan> curua AOG, h&aelig;c <lb/>e&longs;t linea qu&ecedil;&longs;ita. </s>
				</p>
				<p id="N1C5B2" type="main">
					<s id="N1C5B4"><!-- NEW -->Itaque idem dicendum e&longs;t de his inclinatis, quod de aliis &longs;upr&agrave; di&shy;<lb/>ctum e&longs;t Th.72. ni&longs;i quod accipitur inclinata mixta ex horizontali &amp; da&shy;<lb/>ta inclinata, v.g. <!-- REMOVE S-->ANF ex AC &amp; AP; </s>
					<s id="N1C5BE"><!-- NEW -->h&aelig;c autem linea non e&longs;t Parabolica, <lb/>quia quadratum MN, vel VO e&longs;t ad quadratum RG vt 1.ad 4.at ver&ograve; &longs;a&shy;<lb/>gitta AV e&longs;t ad &longs;agittam AP, vt 5.ad 12.porr&ograve; h&aelig;c linea &longs;ecat Parabolam <lb/>vt patet; &longs;i ver&ograve; accipiatur inclinatata AI, mixta inclinata erit AH igitur <lb/>a&longs;&longs;umatur HX &aelig;qualis AM, &amp; PZ &aelig;qualis AS ducetur linea huius mo&shy;<lb/>tus per AZX. qu&aelig;nam ver&ograve; &longs;int h&ccedil; line&aelig;, dicemus ali&agrave;s Tomo &longs;equenti. </s>
				</p>
				<p id="N1C5CC" type="main">
					<s id="N1C5CE"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 104.<emph.end type="center"/></s>
				</p>
				<p id="N1C5DA" type="main">
					<s id="N1C5DC"><!-- NEW --><emph type="italics"/>Si proiiciatur per inclinatam &longs;ur&longs;um in eam partem, in quam mouetur nauis, <lb/>erit etiam mixtus ex naturali, &amp; inclinato ex horizontali, &amp; data inclinata<emph.end type="italics"/>; <lb/>vnde idem pror&longs;us <expan abbr="dic&etilde;duin">dicendum</expan> e&longs;t de mixta inclinata, quod de &longs;implici in&shy;<lb/>clinata, de qua multa &longs;upr&agrave; dicta &longs;unt &agrave; Th.47. &longs;uppo&longs;ito tamen motu na&shy;<lb/>turali accelerato, ad quem proxim&egrave; accedit propter mutationem perpe&shy;<lb/>tuam line&aelig;. </s>
					<s id="N1C5F3"><!-- NEW -->&longs;it enim inclinata &longs;ur&longs;um AB, qu&aelig; percurratur motu <lb/>&aelig;quabili eo tempore, quo horizontalis AE, vel quo motu naturali LA; </s>
					<s id="N1C5F9"><!-- NEW --><lb/>diuidatur AE bifariam in D; </s>
					<s id="N1C5FE"><!-- NEW -->ducatur DG, t&ugrave;m DC, AC, h&aelig;c e&longs;t linea mo&shy;<lb/>tus mixti ex inclinata AG, &amp; horizontali AD; </s>
					<s id="N1C604"><!-- NEW -->&longs;equitur deinde Parabola; </s>
					<s id="N1C608"><!-- NEW --><lb/>nam &longs;i eo tempore quo percurritur AD, percurritur AG, &amp; LM vel FA; </s>
					<s id="N1C60D"><!-- NEW --><pb pagenum="190" xlink:href="026/01/222.jpg"/>cert&egrave; eodem percurritur AC, igitur &longs;ubduplo tempore <expan abbr="percurr&etilde;tur">percurrentur</expan> AN; </s>
					<s id="N1C619"><!-- NEW --><lb/>igitur FO, qu&aelig; e&longs;t &longs;ubquadrupla FA; </s>
					<s id="N1C61E"><!-- NEW -->igitur a&longs;&longs;umatur NH &aelig;qualis FO, &amp; <lb/>CK &aelig;qualis FA, &amp; ducatur curua per puncta AHK; h&aelig;c e&longs;t &longs;emiparabo&shy;<lb/>la, nam KI e&longs;t ad KE vt quadratum IH ad quadratum EA. </s>
				</p>
				<p id="N1C626" type="main">
					<s id="N1C628"><!-- NEW -->Vnde vides omnes inclinatas &longs;ur&longs;um v&longs;que ab horizontali DB ad <lb/>verticalem DA inclu&longs;iu&egrave; e&longs;&longs;e Parabolas; omnes ver&ograve; inclinatas ab ea&shy;<lb/>dem horizontali DB ad perpendicularem DC inclu&longs;iu&egrave; non e&longs;&longs;e Para&shy;<lb/>bolas, &longs;ed propi&ugrave;s accedere ad rectam, vnde aliquis &longs;u&longs;picari po&longs;&longs;et e&longs;&longs;e <lb/>Hyperbolas. </s>
				</p>
				<p id="N1C634" type="main">
					<s id="N1C636"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 105.<emph.end type="center"/></s>
				</p>
				<p id="N1C642" type="main">
					<s id="N1C644"><!-- NEW --><emph type="italics"/>Si proijciatur mobile per inclinatam &longs;ur&longs;um vel deor&longs;um in partem oppo&longs;i&shy;<lb/>tam directionis nauis,<emph.end type="italics"/> <emph type="italics"/>&longs;cilicet per diagonales de&longs;cendit &amp; a&longs;cendit per li&shy;<lb/>neam rectam, &longs;ur&longs;um vel deor&longs;um, v.g.<emph.end type="italics"/> &longs;it horizontalis KL, inclinata <lb/>deor&longs;um KB, mixta erit KL; </s>
					<s id="N1C659"><!-- NEW -->&longs;it etiam inclinata KL, &amp; horizontalis <lb/>CH; </s>
					<s id="N1C65F"><!-- NEW -->mixta erit KH, cui addatur in eadem KF portio &longs;patij, quod motu <lb/>naturali percurritur; idem dico de aliis inclinatis. </s>
				</p>
				<p id="N1C665" type="main">
					<s id="N1C667"><!-- NEW -->Pr&aelig;terea &longs;it horizontalis VX, inclinata <expan abbr="&longs;urs&utilde;">&longs;ursum</expan> VN; </s>
					<s id="N1C66F"><!-- NEW -->mixta erit VY; </s>
					<s id="N1C673"><!-- NEW -->&longs;ic <lb/>ex VOVX fiet VS detracta &longs;cilicet portioni &longs;patij, quod detrahitur &agrave; <lb/>motu naturali; &longs;i ver&ograve; &longs;it vel major motus horizontalis, vel minor eo, <lb/>quem a&longs;&longs;ump&longs;imus, non percurrit mobile lineam rectam &longs;ed vel Para&shy;<lb/>bolam &longs;i &longs;ur&longs;um proiiciatur, vel &longs;i deor&longs;um aliam nouam, quam ad Hy&shy;<lb/>perbolam accedere &longs;upr&agrave; diximus. </s>
				</p>
				<p id="N1C681" type="main">
					<s id="N1C683"><!-- NEW -->Hinc cert&egrave;, quod mirabile dictu e&longs;t, &longs;i &egrave; puncto nauis V &longs;ur&longs;um per <lb/>inclinatam VO proiiciatur, &longs;tatimque po&longs;t proiectionem &longs;i&longs;tat nauis, in <lb/>ip&longs;am nauim de&longs;cendet mobile; </s>
					<s id="N1C68B"><!-- NEW -->atque ita ex his habeo omnes motus cir&shy;<lb/>culi verticalis paralleli line&aelig; directionis; </s>
					<s id="N1C691"><!-- NEW -->quare &longs;upere&longs;t vt explicemus <lb/>alios motus; ac prim&ograve; quidem per circulum horizontalem, cuius habeo <lb/>quoque duas lineas, &longs;cilicet communes &longs;ectiones horizontalis &amp; prio&shy;<lb/>ris verticalis, id e&longs;t lineam directionis ver&longs;us Boream, &amp; oppo&longs;itam ver&shy;<lb/>&longs;us Au&longs;trum. <!-- KEEP S--></s>
				</p>
				<p id="N1C69E" type="main">
					<s id="N1C6A0"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 106.<emph.end type="center"/></s>
				</p>
				<p id="N1C6AC" type="main">
					<s id="N1C6AE"><!-- NEW --><emph type="italics"/>Si proijciatur mobile per horizontalem ver&longs;us Ortum &egrave; naui mobili, <lb/>monebitur motu mixto ex duplici horizontali, &amp; naturali deor&longs;um<emph.end type="italics"/>, &longs;it <lb/>enim horizontalis ver&longs;us Boream AC, &amp; alia horizontalis AH ver&longs;us <lb/>ortum in eodem plano horizontali; </s>
					<s id="N1C6BD"><!-- NEW -->cert&egrave; ex vtraque fit mixta AK, qu&aelig; <lb/>&longs;i percurratur &aelig;quali tempore cum AC, &amp; eius &longs;ubdupla cum AB, AC <lb/>ver&ograve; &aelig;quali tempore cum AF; </s>
					<s id="N1C6C5"><!-- NEW -->quamqu&agrave;m &longs;uppono iam e&longs;&longs;e perpendi&shy;<lb/>cularem deor&longs;um AB; </s>
					<s id="N1C6CB"><!-- NEW -->denique cum AG &longs;ubquadrupla AF a&longs;&longs;umatur <lb/>ED &aelig;qualis AG perpendiculariter ducta in AD, &amp; KL &aelig;qualis AF <lb/>parallela ED, &amp; per puncta AEL ducatur curua, h&aelig;c e&longs;t linea motus <lb/>qu&aelig;&longs;ita; </s>
					<s id="N1C6D5"><!-- NEW -->voluatur autem triangulum AKL, donec &longs;it parallelum circulo <lb/>verticali vel alteri, ACO erit in proprio &longs;itu; </s>
					<s id="N1C6DB"><!-- NEW -->vnde eo tempore, quo e&longs;&shy;<lb/>&longs;et in DE punctum nauis A e&longs;&longs;et in B, &amp; eo, quo e&longs;&longs;et in KL, punctum A <lb/>e&longs;&longs;et in C; hoc e&longs;t &longs;ingula puncta AK, &egrave; regione AC ductis parallelis <pb pagenum="191" xlink:href="026/01/223.jpg"/>BD, CK, ac proinde nauis &amp; mobile &longs;emper e&longs;&longs;ent &egrave; regione in linea <lb/>ver&longs;us ortum. </s>
				</p>
				<p id="N1C6EA" type="main">
					<s id="N1C6EC"><!-- NEW -->Hinc &longs;i ex A dirigas <expan abbr="&longs;agitt&atilde;">&longs;agittam</expan> in H feris punctum K, quam artem prob&egrave; <lb/>no&longs;&longs;e debent rei tormentari&aelig; pr&aelig;fecti; </s>
					<s id="N1C6F6"><!-- NEW -->quippe &longs;agitta aberrabit &agrave; &longs;copo <lb/>ver&longs;us Boream declinans toto eo &longs;patio, quod conficit nauis eodem tem&shy;<lb/>pore, quo mouetur &longs;agitta; ita pror&longs;us &longs;i moueatur H ver&longs;us K, vt attin&shy;<lb/>gas ex puncto immobili A debes dirigere ictum in K, &longs;i quo tempore <lb/>&longs;agitta conficit AK &longs;copus H percurrit HK.Idem pror&longs;us dicendum e&longs;t <lb/>de iaculatione per lineam oppo&longs;itam ver&longs;us occa&longs;um. </s>
				</p>
				<p id="N1C704" type="main">
					<s id="N1C706"><!-- NEW -->Si ver&ograve; proiiciatur mobile per lineam inter Boream, &amp; Ortum, linea <lb/>motus erit Parabola cuius Tangens erit mixta ex horizontali ver&longs;us <lb/>Boream, &amp; declinante ver&longs;us Ortum, v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;it horizontalis ver&longs;us Boream <lb/>AF, quam hactenus a&longs;&longs;ump&longs;i pro linea directionis; </s>
					<s id="N1C714"><!-- NEW -->&longs;it linea ver&longs;us <lb/>Ortum AC; </s>
					<s id="N1C71A"><!-- NEW -->&longs;it declinans ver&longs;us Boream AL; </s>
					<s id="N1C71E"><!-- NEW -->&longs;itque impetus AL, ad <lb/>AE vt AL ad AE, quod hactenus &longs;uppo&longs;ui; </s>
					<s id="N1C724"><!-- NEW -->&longs;it LG &aelig;qualis AE, AG <lb/>e&longs;t mixta ex AE, AL; </s>
					<s id="N1C72A"><!-- NEW -->a&longs;&longs;umatur KI, &amp; GH vt iam diximus; fiatque <lb/>Parabola AIH, qu&aelig; circa axem AE ita voluatur, vt &longs;it perpendicularis <lb/>plano horizontali LF. </s>
				</p>
				<p id="N1C732" type="main">
					<s id="N1C734">Idem dico de omni alia declinante vel &agrave; Borea ad Ortum, vel ad Oc&shy;<lb/>ca&longs;um. </s>
				</p>
				<p id="N1C739" type="main">
					<s id="N1C73B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 107.<emph.end type="center"/></s>
				</p>
				<p id="N1C747" type="main">
					<s id="N1C749"><!-- NEW --><emph type="italics"/>Si mobile proiiciatur per declinantem ab Austro ad Ortum, cuius impetus <lb/>&longs;it vt linea; </s>
					<s id="N1C751"><!-- NEW -->conficit lineam parabolicam, cuius tangens vel amplitudo e&longs;t re&shy;<lb/>sta ad Ortum<emph.end type="italics"/>; </s>
					<s id="N1C75A"><!-- NEW -->&longs;it enim NF ad Boream, NA ad Au&longs;trum, NI ad Or&shy;<lb/>tum, ND ad Occa&longs;um; </s>
					<s id="N1C760"><!-- NEW -->&longs;it NL declinans ab au&longs;tro ad Ortum, &longs;itque im&shy;<lb/>petus per NL ad impetum per NF, vt NL ad NF; </s>
					<s id="N1C766"><!-- NEW -->mixta ex NF NL <lb/>e&longs;t HK; </s>
					<s id="N1C76C"><!-- NEW -->&longs;it autem KH &aelig;qualis &longs;patio, quod conficitur motu naturali eo <lb/>tempore, quo percurritur NF, &longs;it KI &aelig;qualis NK, &amp; IG quadrupla KH; <lb/>Parabola NHG e&longs;t linea motus qu&aelig;&longs;ita dum voluatur NIG circa axem <lb/>NI, dum IG pendeat perpendicularitur ex plano horizontali ON. </s>
				</p>
				<p id="N1C776" type="main">
					<s id="N1C778">Idem fiet, &longs;i proiiciatur per declinantem NB ab Au&longs;tro &longs;cilicet ad <lb/>Occa&longs;um. <!-- KEEP S--></s>
				</p>
				<p id="N1C77E" type="main">
					<s id="N1C780"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 108.<emph.end type="center"/></s>
				</p>
				<p id="N1C78C" type="main">
					<s id="N1C78E"><!-- NEW --><emph type="italics"/>Si mobile proiiciatur per inclinantem &longs;ur&longs;um in circulo verticali, cuius &longs;e&shy;<lb/>ctio cum horizontali tendit ad Ortum, conficit lineam parabolicam, cuius am&shy;<lb/>plitudo e&longs;t mixta ex horizontali ver&longs;us Boream, &amp; horizontali ver&longs;us Ortum,<emph.end type="italics"/><lb/> &longs;it linea ver&longs;us Boream AB, ver&longs;us Ortum AK, mixta ex vtraque AF, <lb/>linea inclinata &longs;ur&longs;um AP, Parabola AMN, qu&aelig; vertatur circa A do&shy;<lb/>nec incubet AFG, denique AFG circa FA voluatur, donec incubet <lb/>perpendiculariter plano; porr&ograve; perinde e&longs;t, &longs;iue proiiciatur per inclina&shy;<lb/>tam &longs;ur&longs;um ver&longs;us Ortum, &longs;iue ver&longs;us Occa&longs;um. <!-- KEEP S--></s>
				</p>
				<p id="N1C7A5" type="main">
					<s id="N1C7A7"><!-- NEW -->Si ver&ograve; proiiciatur per inclinatam deor&longs;um ver&longs;us Ortum, de&longs;cribit <lb/>lineam, qu&aelig; non e&longs;t Parabola, &longs;ed propi&ugrave;s accedit ad Hyperbolam, cuius <pb pagenum="192" xlink:href="026/01/224.jpg"/>tangens e&longs;t mixta ex inclinata deor&longs;um ex horizontali ver&longs;us Boream, <lb/> &longs;it enim AC ver&longs;us Boream, AB ver&longs;us Ortum, AD inclinata deor&shy;<lb/>&longs;um &longs;ub horizontali AB, AG qu&aelig; e&longs;t in eodem plano cum AD DG, <lb/>mixta ex AD, &amp; AC; </s>
					<s id="N1C7B8"><!-- NEW -->a&longs;&longs;umatur EF &aelig;qualis &longs;patio, quod conficitur <lb/>motu naturali eo tempore, quo conficitur AE, &amp; GH &aelig;qualis &longs;patio, <lb/>quod conficitur motu naturali eo tempore, quo percurritur AG; </s>
					<s id="N1C7C0"><!-- NEW -->duca&shy;<lb/>tur curua AFH, cuius &longs;itus vt habeatur &longs;it AB ver&longs;us Ortum, ex qua <lb/>pendeat perpendiculariter deor&longs;um triangulum ABH, t&ugrave;m circa axem <lb/>AD voluatur triangulum ADH, donec HD &longs;it parallela horizonti; </s>
					<s id="N1C7CA"><!-- NEW -->t&ugrave;m <lb/>circa axem AG voluatur triangulum AGH, dum GH &longs;it perpendicu&shy;<lb/>laris deor&longs;um, tunc enim linea motus AFH habebit proprium &longs;itum; <lb/>idem fiet &longs;i proiiciatur per inclinatam deor&longs;um ver&longs;us Occa&longs;um. <!-- KEEP S--></s>
				</p>
				<p id="N1C7D5" type="main">
					<s id="N1C7D7"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 109.<emph.end type="center"/></s>
				</p>
				<p id="N1C7E3" type="main">
					<s id="N1C7E5"><!-- NEW --><emph type="italics"/>Si proijciatur per inclinatam &longs;ur&longs;um, &amp; declinantem ad Ortum, linea mo&shy;<lb/>tus erit Parabola, cuius amplitudo erit mixta ex declinante horizontali, &amp; <lb/>horizontali ver&longs;us Boream,<emph.end type="italics"/> &longs;it enim horizontalis ver&longs;us Boream AK, <lb/>horizontalis ver&longs;us Ortum AR, declinans &agrave; Borea in Ortum AD, mixta <lb/>ex AD, AK &longs;it AI, &longs;itque Rhomboides AE parallelus horizonti; </s>
					<s id="N1C7F6"><!-- NEW -->&longs;it <lb/>EG perpendicularis &longs;ur&longs;um, &longs;it HD parallela GE; differentia &longs;patij, <lb/>quod acquiritur motu naturali eo tempore, quo percurritur AI, &amp; FC, <lb/>qu&aelig; &longs;it &longs;ubdupla EG. </s>
					<s id="N1C800"><!-- NEW -->Dico lineam motus AHF e&longs;&longs;e parabolicam, qu&aelig; <lb/>omnia con&longs;tant ex dictis; </s>
					<s id="N1C806"><!-- NEW -->idemque dictum e&longs;to de omni alia inclinata <lb/>&longs;ur&longs;um &longs;imul, &amp; declinante, &longs;eu ver&longs;us Ortum &longs;eu ver&longs;us Occa&longs;um; </s>
					<s id="N1C80C"><!-- NEW -->porr&ograve; <lb/>triangulum AEG incubat <expan abbr="perp&etilde;diculariter">perpendiculariter</expan> plano horizontali ADEK; </s>
					<s id="N1C816"><!-- NEW --><lb/>&longs;i ver&ograve; proiiciatur per inclinatam deor&longs;um voluatur AKE, dum KO <lb/>&longs;it perpendicularis deor&longs;um; </s>
					<s id="N1C81D"><!-- NEW -->&longs;it planum RK horizontale, voluatur <lb/>AKE circa A, ita vt KO &longs;it &longs;emper perpendicularis deor&longs;um, donec <lb/>AE &longs;ecet planum RK in AD &longs;int IO. &amp; EA vt EF, GH in &longs;uperio&shy;<lb/>re figura, &amp; per puncta AOM ducatur curua; h&aelig;c e&longs;t linea motus <lb/>qu&aelig;&longs;ita. </s>
				</p>
				<p id="N1C829" type="main">
					<s id="N1C82B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 110.<emph.end type="center"/></s>
				</p>
				<p id="N1C837" type="main">
					<s id="N1C839"><!-- NEW --><emph type="italics"/>Si proiiciatur per declinantem ab Austro ad Ortum &amp; inclinatam &longs;ur&longs;um, <lb/>de&longs;cribet Parabolam, cuius amplitudo erit mixta ex horizontali ver&longs;us Bo&shy;<lb/>ream &amp; declinante horizontali ab Au&longs;tro ad Ortum<emph.end type="italics"/> &longs;it AF horizontalis <lb/>ver&longs;us Boream, AG ver&longs;us Ortum, AI declinans ab Au&longs;tro ad Ortum, <lb/>AG mixta ex AF AI AL inclinata, ANK Parabola; </s>
					<s id="N1C84A"><!-- NEW -->&longs;it enim planum <lb/>FI horizontale cui triangulum ALI incubet perpendiculariter in &longs;e&shy;<lb/>ctione AG, reliqua &longs;unt facilia; </s>
					<s id="N1C852"><!-- NEW -->idem dico de inclinata &longs;ur&longs;um &longs;imul, &amp; <lb/>declinante ab Au&longs;tro ad Occa&longs;um; </s>
					<s id="N1C858"><!-- NEW -->&longs;i ver&ograve; &longs;it inclinata deor&longs;um, &longs;it pla&shy;<lb/>num ACB horizontale, AB &longs;it declinans, AC &longs;it mixta ex AB &amp; ho&shy;<lb/>rizontali ver&longs;us Boream AF; &longs;it AD inclinata deor&longs;um, fiatque cur&shy;<lb/>ua AQE more &longs;olito, ita vt triangulum ACE perpendiculariter <lb/>deor&longs;um pendeat ex plano horizontali ACB, reliqua &longs;unt facilia. </s>
				</p>
				<pb pagenum="193" xlink:href="026/01/225.jpg"/>
				<p id="N1C868" type="main">
					<s id="N1C86A"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1C876" type="main">
					<s id="N1C878"><!-- NEW -->Ob&longs;eruabis a&longs;&longs;umptam e&longs;&longs;e &agrave; me hactenus Parabolam, lic&egrave;t accurate <lb/>non &longs;int parabolic&aelig; line&aelig;, quia proxim&egrave; ad Parabolas accedunt; <lb/>cert&egrave; Phy&longs;ic&egrave; loquendo &amp; &longs;en&longs;ibiliter pro Parabolis a&longs;&longs;umi po&longs;&longs;e ni&shy;<lb/>hil vetat. </s>
				</p>
				<p id="N1C882" type="main">
					<s id="N1C884"><emph type="center"/><emph type="italics"/>Corollaria.<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N1C88F" type="main">
					<s id="N1C891">Ex his colligis mirabilium motuum rationem. </s>
					<s id="N1C894">Prim&ograve; mobile proje&shy;<lb/>ctum per lineam declinantem ab Ortu ferri po&longs;&longs;e rect&agrave; ad Ortum. </s>
				</p>
				<p id="N1C899" type="main">
					<s id="N1C89B">Secund&ograve; projectum per inclinatam deor&longs;um, ferri po&longs;&longs;e per ip&longs;am <lb/>perpendicularem deor&longs;um. </s>
				</p>
				<p id="N1C8A0" type="main">
					<s id="N1C8A2">Terti&ograve; projectum per inclinatam &longs;ur&longs;um, ferri po&longs;&longs;e per verti&shy;<lb/>calem. </s>
				</p>
				<p id="N1C8A7" type="main">
					<s id="N1C8A9">Quart&ograve;, rationem &agrave; priori habes, cur &longs;i ex equo vel &longs;puas, vel ali&shy;<lb/>quid demittas deor&longs;um, rect&agrave; perpendiculariter non cadat, &longs;ed &longs;emper <lb/>&egrave; regione, quod maxim&egrave; videre e&longs;t cum purgatur nauis mobilis, eiecta <lb/>&longs;cilicet aqu&acirc;, qu&aelig; &longs;emper nauim in&longs;equi videtur, im&ograve; &amp; cum quis pe&shy;<lb/>dem effert in naui hunc motum quoque ob&longs;eruat. </s>
				</p>
				<p id="N1C8B4" type="main">
					<s id="N1C8B6"><!-- NEW -->Quint&ograve; non erit etiam iniucundum inde elicere quomodo in maiore <lb/>naui, di&longs;co ludere vel pila quis po&longs;&longs;it, lic&egrave;t nauis motus nullo modo lu&shy;<lb/>dum impediat; qu&aelig; omnia ex iis, qu&aelig; diximus nece&longs;&longs;ari&ograve; con&longs;equuntur, <lb/>&amp; qu&aelig; manife&longs;tum probat experimentum. </s>
				</p>
				<p id="N1C8C0" type="main">
					<s id="N1C8C2"><!-- NEW -->Sext&ograve;, inde etiam eruuntur rationes motuum mixtorum ex pluribus <lb/>motibus v.g.4.5.6.7.&amp;c.in infinitum &longs;iue in eodem plano, &longs;iue in diuer&shy;<lb/>&longs;is; </s>
					<s id="N1C8CA"><!-- NEW -->In diuer&longs;is vt hactenus explicuimus; </s>
					<s id="N1C8CE"><!-- NEW -->in eodem vero &longs;iv.g.per BC, <lb/>BE, BA &longs;imul imprimantur impetus eidem mobili qui &longs;int vt ip&longs;&aelig; li&shy;<lb/>ne&aelig;; </s>
					<s id="N1C8D6"><!-- NEW -->prim&ograve; fiat ex BA BC mixta BD, &amp; ex BD BE, mixta BF, vel ex <lb/>BE BC mixta BG, &amp; ex BG BA mixta BF, vel ex BE BA mixta <lb/>BH, &amp; ex BH BC mixta BF; </s>
					<s id="N1C8DE"><!-- NEW -->vides &longs;emper e&longs;&longs;e <expan abbr="c&atilde;dem">eandem</expan> vltimam <lb/>mixtam in diuer&longs;is planis; iam o&longs;tendimus e&longs;&longs;e plures &longs;upr&agrave; in naui <lb/>mobili v.g. <!-- REMOVE S-->per planum verticale, horizontale, &amp; inclinatum. </s>
				</p>
				<p id="N1C8EC" type="main">
					<s id="N1C8EE"><!-- NEW -->Septim&ograve;, &longs;i in naui mobili curreret equus, vel currus, e&longs;&longs;et motus mix&shy;<lb/>tus ex quatuor aliis, &amp; &longs;i terra moueretur in naui mobili e&longs;&longs;ent quatuor <lb/>motus, &longs;i ex ea aliquod mobile proiiceretur; inuenitur autem linea mix&shy;<lb/>ta in diuer&longs;is planis per quamdam planorum circuitionem, de qua <lb/>&longs;upr&agrave;. </s>
				</p>
				<p id="N1C8FA" type="main">
					<s id="N1C8FC"><!-- NEW -->Octau&ograve;, po&longs;&longs;et facil&egrave; in eodem plano motus mixtus conflari ex qua&shy;<lb/>tuor aliis vel etiam pluribus, &longs;int enim quatuor in eodem plano AD <lb/>AE. AF. AH. ex AD AE fit AB, ex AB, A fi fit AC, ex AC AH <lb/>fit AG, qu&aelig; e&longs;t longior AC, &amp; AC longior AB: po&longs;&longs;es etiam compo&shy;<lb/>nere ex AH AF, atque ita deinceps eodem ordine, &amp; &longs;emper vltima <lb/>linea erit AG, quod cert&egrave; mirabile e&longs;t, &amp; &agrave; Geometris demon&longs;trari <lb/>pote&longs;t. </s>
				</p>
				<p id="N1C90C" type="main">
					<s id="N1C90E"><!-- NEW -->Non&ograve;, ex his motibus mixtis educi po&longs;&longs;unt rationes multorum effe-<pb pagenum="194" xlink:href="026/01/226.jpg"/>ctuum naturalium, qui ob&longs;eruantur in rebus naturalibus, quales &longs;unt v.g. <!-- REMOVE S--><lb/>nubium, vaporum, ventorumque motus, qui &longs;&aelig;p&egrave; turbinatim procellas <lb/>agunt, quorum turbinum ratio referri non debet, vt videbimus &longs;uo loco, <lb/>in repercu&longs;&longs;ionem aliquam, qu&aelig; fiat &agrave; concauis montibus, qui longi&longs;&longs;i&shy;<lb/>mo interuallo &longs;&aelig;pi&ugrave;s ab&longs;unt; </s>
					<s id="N1C920"><!-- NEW -->&longs;ed poti&ugrave;s petenda e&longs;t ab ip&longs;a mixti motus <lb/>natur&acirc;; </s>
					<s id="N1C926"><!-- NEW -->quipp&egrave; rara materies venti facil&egrave; recipit omnem impetum; </s>
					<s id="N1C92A"><!-- NEW -->ita&shy;<lb/>que ex pr&aelig;gnantibus &longs;&aelig;p&egrave; nubibus conferta tenui&longs;&longs;imorum halituum <lb/>examina fractis qua&longs;i carceribus quacumque linea erumpunt; <lb/>hinc infiniti propemodum motus, hinc turbines illi, &amp;c. </s>
					<s id="N1C934"><lb/>atque h&aelig;c de motu mixto ex pluribus <lb/>rectis &longs;int &longs;atis. <lb/><figure id="id.026.01.226.1.jpg" xlink:href="026/01/226/1.jpg"/></s>
				</p>
			</chap>
			<chap id="N1C940">
				<pb pagenum="195" xlink:href="026/01/227.jpg"/>
				<figure id="id.026.01.227.1.jpg" xlink:href="026/01/227/1.jpg"/>
				<p id="N1C94A" type="head">
					<s id="N1C94C"><emph type="center"/>LIBER QVINTVS, <lb/><emph type="italics"/>DE MOTV IN DIVERSIS <lb/>Planis.<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N1C95B" type="main">
					<s id="N1C95D"><!-- NEW -->HACTENVS con&longs;iderauimus motum in libe&shy;<lb/>ro medio; iam ver&ograve; con&longs;iderabimus in planis <lb/>durioribus, in quibus mobil&egrave; feratur vel &longs;ua <lb/>&longs;ponte vel ab extrin&longs;eco impul&longs;um. <lb/><gap desc="hr tag"/></s>
				</p>
				<p id="N1C96A" type="main">
					<s id="N1C96C"><emph type="center"/><emph type="italics"/>DEFINITIO 1.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1C978" type="main">
					<s id="N1C97A"><!-- NEW --><emph type="italics"/>PLanum inclinatum e&longs;t corpus durum l&aelig;uigati&longs;&longs;imum, in quo mobile quod&shy;<lb/>piam moueri po&longs;&longs;it, quod nec &longs;it verticale &longs;ur&longs;um, nec perpendiculare deor&shy;<lb/>&longs;um,<emph.end type="italics"/> non addo, nec horizonti parallelum; quia planum rectilineum hori&shy;<lb/>zontale e&longs;t etiam decliue, vt &longs;uo loco videbimus. </s>
				</p>
				<p id="N1C989" type="main">
					<s id="N1C98B"><emph type="center"/><emph type="italics"/>Hypothe&longs;is<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1C998" type="main">
					<s id="N1C99A"><emph type="italics"/>Corpus graue per planum inclinatum de&longs;cendit, &amp; quidem veloci&ugrave;s per illud <lb/>planum, quod min&ugrave;s recedit &agrave; perpendiculari, tardi&ugrave;s ver&ograve; per illud, quod pl&ugrave;s <lb/>recedit.<emph.end type="italics"/></s>
				</p>
				<p id="N1C9A5" type="main">
					<s id="N1C9A7"><emph type="center"/><emph type="italics"/>Hypothe&longs;is<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1C9B4" type="main">
					<s id="N1C9B6"><emph type="italics"/>Corpus graue in plano inclinato min&ugrave;s grauitat, id e&longs;t facili&ugrave;s &longs;ustinetur, &amp; <lb/>tardiore motu de&longs;cendit, qu&agrave;m in perpendiculari deor&longs;um.<emph.end type="italics"/></s>
				</p>
				<p id="N1C9BF" type="main">
					<s id="N1C9C1">Vtraque hypothe&longs;is certa e&longs;t, &amp; de vtraque &longs;upponimus tant&ugrave;m, qu&ograve;d <lb/>&longs;it, nam demon&longs;trabimus infr&agrave; propter quid &longs;it. </s>
				</p>
				<p id="N1C9C6" type="main">
					<s id="N1C9C8"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1C9D5" type="main">
					<s id="N1C9D7"><!-- NEW --><emph type="italics"/>Corpus graue ide&ograve; tant&ugrave;m mouetur &longs;ua &longs;ponte, vt deor&longs;um tendat<emph.end type="italics"/>: </s>
					<s id="N1C9E0"><!-- NEW -->hoc <lb/>Axioma con&longs;tat ex iis, qu&aelig; fus&egrave; demon&longs;traui &longs;ecund&ograve; lib.  adde quod, <lb/>deor&longs;um tendere, &amp; corpus graue &longs;ua &longs;ponte moueri idem pror&longs;us &longs;onare <lb/>videntur; </s>
					<s id="N1C9EA"><!-- NEW -->nec enim loquor de potenti&acirc; motrice animantium, vel de alia <lb/>quacumque magnetic&acirc;, &longs;ed de potenti&acirc; motrice grauium; </s>
					<s id="N1C9F0"><!-- NEW -->graue autem <lb/>illud appello, quod in medio rariore po&longs;itum deor&longs;um tendit, ni&longs;i impe&shy;<lb/>diatur, denique h&icirc;c &longs;uppono dari motum naturalem grauium deor&longs;um <pb pagenum="196" xlink:href="026/01/228.jpg"/>quod demon&longs;tratum e&longs;t &longs;ecundo lib.  &amp; ver&ograve; &longs;i tibi adhuc non fiat &longs;atis, <lb/>probetur hoc Axioma per hypothe&longs;im primam; nam reuer&acirc; &longs;uppono <lb/>qu&ograve;d omnibus experimentis comprobatur, &longs;cilicet corpus graue per pla&shy;<lb/>num Inclinatum deor&longs;um &longs;ua &longs;ponte de&longs;cendere, non ver&ograve; a&longs;cendere ni&longs;i <lb/>propter aliquam reflexionem. </s>
				</p>
				<p id="N1CA05" type="main">
					<s id="N1CA07"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1CA14" type="main">
					<s id="N1CA16"><!-- NEW --><emph type="italics"/>Motus, qui impeditur, imminuitur, idque pro rata, &amp; vici&longs;&longs;im impeditur <lb/>qui imminuitur<emph.end type="italics"/>; cur enim imminueretur &longs;eu retardaretur, &longs;i nullum &longs;it <lb/>impedimentum? </s>
				</p>
				<p id="N1CA23" type="main">
					<s id="N1CA25"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1CA32" type="main">
					<s id="N1CA34"><!-- NEW --><emph type="italics"/>Omne quod impedit motum, debet e&longs;&longs;e applicatum mobili vel per &longs;e, vel <lb/>per &longs;uam virtutem<emph.end type="italics"/>; hoc Axioma etiam certum e&longs;t. </s>
				</p>
				<p id="N1CA3F" type="main">
					<s id="N1CA41"><emph type="center"/><emph type="italics"/>Po&longs;tulatum.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1CA4D" type="main">
					<s id="N1CA4F"><!-- NEW --><emph type="italics"/>Liceat accipere in perpendiculari deor&longs;um, parallelas, cum &longs;cilicet a&longs;&longs;umi&shy;<lb/>tur modica altitudo<emph.end type="italics"/>; lic&egrave;t enim non &longs;int parallel&etail;, quia tamen in&longs;en&longs;ibili <lb/>interuallo ad &longs;e&longs;e inuicem accedunt, pro parallelis accipiuntur. </s>
				</p>
				<p id="N1CA5C" type="main">
					<s id="N1CA5E"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1CA6B" type="main">
					<s id="N1CA6D"><!-- NEW --><emph type="italics"/>Impeditur motus corporis in plano inclinato<emph.end type="italics"/>; certum e&longs;t quod impedia&shy;<lb/>tur, quia tardiore motu de&longs;cendit mobile per hyp. </s>
					<s id="N1CA78">2. igitur impeditur <lb/>per Axio.2. </s>
				</p>
				<p id="N1CA7D" type="main">
					<s id="N1CA7F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1CA8C" type="main">
					<s id="N1CA8E"><!-- NEW --><emph type="italics"/>Ideo impeditur, quia impeditur linea ad quam determinatus e&longs;t impetus <lb/>innatus<emph.end type="italics"/>; cum &longs;it determinatus ad lineam perpendicularem deor&longs;um per <lb/>Ax.1. cur enim poti&ugrave;s ad vnam lineam qu&agrave;m ad aliam? </s>
					<s id="N1CA9B"><!-- NEW -->atqui id tan&shy;<lb/>t&ugrave;m planum inclinatum efficit, vel impedit, ne deor&longs;um rect&agrave; tendere <lb/>po&longs;&longs;it; igitur ex eo tant&ugrave;m capite impedit. </s>
				</p>
				<p id="N1CAA3" type="main">
					<s id="N1CAA5"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1CAB2" type="main">
					<s id="N1CAB4"><!-- NEW --><emph type="italics"/>Non totus impeditur motus in plano inclinato<emph.end type="italics"/>; </s>
					<s id="N1CABD"><!-- NEW -->quia &longs;i totus impediretur, <lb/>nullus e&longs;&longs;et omnin&ograve; motus &longs;uper eodem plano, &longs;ed per planum inclina&shy;<lb/>tum mobile deor&longs;um mouetur per hyp.1.igitur totus motus non impedi&shy;<lb/>tur; hinc ratio &agrave; priori prim&aelig; hypothe&longs;eos. </s>
				</p>
				<p id="N1CAC7" type="main">
					<s id="N1CAC9"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1CAD6" type="main">
					<s id="N1CAD8"><!-- NEW --><emph type="italics"/>In ea proportione min&ugrave;s mouetur, in qu&aelig; pl&ugrave;s impeditur<emph.end type="italics"/>; </s>
					<s id="N1CAE1"><!-- NEW -->probatur per <lb/>Axioma 2.cum enim motus imminuatur, quia impeditur per idem Axio&shy;<lb/>ma; </s>
					<s id="N1CAE9"><!-- NEW -->cert&egrave; qu&ograve; pl&ugrave;s impeditur, pl&ugrave;s imminuitur; &longs;ed qu&ograve; pl&ugrave;s imminui&shy;<lb/>tur, minor e&longs;t, ergo qu&ograve; pl&ugrave;s impeditur, minor e&longs;t. </s>
				</p>
				<p id="N1CAEF" type="main">
					<s id="N1CAF1"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 5.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1CAFE" type="main">
					<s id="N1CB00"><!-- NEW --><emph type="italics"/>E&ograve; pl&ugrave;s impeditur motus, qu&ograve; maius &longs;patium conficiendum e&longs;t ad ac&shy;<lb/>quirendam <expan abbr="e&atilde;dem">eandem</expan> altitudinem, &longs;eu di&longs;tantiam &agrave; centro, illo &longs;patio, <lb/>quod conficitur in perpendiculari deor&longs;um<emph.end type="italics"/>; hoc Theor. <!-- REMOVE S-->vt clari&ugrave;s <lb/>demon&longs;tretur, aliquid figur&aelig; tribuendum e&longs;t. </s>
					<s id="N1CB15"><!-- NEW -->&longs;it perpendicularis deor-<pb pagenum="197" xlink:href="026/01/229.jpg"/>&longs;um, AB, &longs;it planum inclinatum AE duplum AB; </s>
					<s id="N1CB1E"><!-- NEW -->cert&egrave; vbi mobile ex A <lb/>peruenit in E per planum AE, di&longs;tat &aelig;qu&egrave; &agrave; centro, ac &longs;i e&longs;&longs;et in B; </s>
					<s id="N1CB24"><!-- NEW -->&longs;up&shy;<lb/>pono enim perpendiculares omnes deor&longs;um e&longs;&longs;e parallelas per po&longs;tula&shy;<lb/>tum; </s>
					<s id="N1CB2C"><!-- NEW -->igitur non acce&longs;&longs;it propi&ugrave;s ad centrum confecto &longs;patio AE, qu&agrave;m <lb/>confecto AB; </s>
					<s id="N1CB32"><!-- NEW -->igitur impeditur in plano AE in ea proportione, in qua <lb/>AB e&longs;t minor AE, nam haud dubi&egrave; AE e&longs;t maior AB, &longs;it autem dupla v.g. <!-- REMOVE S--><lb/>igitur impeditur non quidem totus motus &longs;ed &longs;ubduplus; </s>
					<s id="N1CB3B"><!-- NEW -->in plano ver&ograve; <lb/>AD impeditur iuxta cam proportionem in qua AB e&longs;t minor AD, nec <lb/>enim aliunde pote&longs;t impediri, cum &longs;cilicet impediatur tant&ugrave;m, quia im&shy;<lb/>peditur linea ad quam ab ip&longs;a natura determinatus e&longs;t per Th.2. v. <!-- REMOVE S-->g.li&shy;<lb/>nea deor&longs;um AB; </s>
					<s id="N1CB49"><!-- NEW -->quipp&egrave; line&aelig; comparantur inter &longs;e v.g. <!-- REMOVE S-->AE cum AB, <lb/>nam impedimentum line&aelig; AE in eo tant&ugrave;m po&longs;itum e&longs;t, qu&ograve;d difficili&ugrave;s <lb/>per illam qu&agrave;m per AB ad <expan abbr="c&etilde;trum">centrum</expan> feratur mobile, quod certum e&longs;t, cum <lb/>imperimentum petatur a difficultate; </s>
					<s id="N1CB59"><!-- NEW -->atqui difficultas motus, qui fit per <lb/>lineam AE in eo tant&ugrave;m e&longs;t, qu&ograve;d &longs;it maius &longs;patium conficiendum, igi&shy;<lb/>tur qu&ograve; maius &longs;patium e&longs;t, maior difficultas e&longs;t; igitur qu&ograve; maior linea <lb/>e&longs;t, maius impedimentum e&longs;t. </s>
				</p>
				<p id="N1CB63" type="main">
					<s id="N1CB65"><!-- NEW -->Adde quod vel impedimenti proportio petitur ab angulis vel &agrave; Tan&shy;<lb/>gentibus, vel &agrave; &longs;ecantibus; </s>
					<s id="N1CB6B"><!-- NEW -->nihil enim aliud ade&longs;&longs;e pote&longs;t; </s>
					<s id="N1CB6F"><!-- NEW -->igitur per Ax. <!-- REMOVE S--><lb/>3. pote&longs;t tant&ugrave;m impediri ab his; </s>
					<s id="N1CB76"><!-- NEW -->&longs;ed proportio impedimenti non pote&longs;t <lb/>e&longs;&longs;e ab angulis; </s>
					<s id="N1CB7C"><!-- NEW -->quod probatur prim&ograve;, quia &longs;i ego qu&aelig;ram &agrave; te in qua <lb/>proportione motus per AE e&longs;t tardior motu per AB; </s>
					<s id="N1CB82"><!-- NEW -->dices in ea, in qua <lb/>angulus EAB e&longs;t maior nullo angulo, quod e&longs;t ridiculum: </s>
					<s id="N1CB88"><!-- NEW -->Equidem di&shy;<lb/>ceres motum per AD e&longs;&longs;e velociorem motu per AE in ea proportione, <lb/>in qua angulus EAB e&longs;t maior angulo BAD, quod tamen fal&longs;um e&longs;t; </s>
					<s id="N1CB90"><!-- NEW -->e&longs;&longs;et <lb/>enim fer&egrave; dupl&ograve; maior, quod repugnat <expan abbr="experim&etilde;tis">experimentis</expan> omnibus; </s>
					<s id="N1CB9A"><!-- NEW -->at &longs;i <expan abbr="accipi&atilde;">accipiam</expan> <lb/>angulum BA, qui &longs;it tant&ugrave;m vnius gradus &longs;eu minuti, &longs;itque EAB angu&shy;<lb/>lus 60. grad. <!-- REMOVE S-->&longs;i velocitas motus per AI e&longs;&longs;et ad velocitatem motus per <lb/>AE vt angulus EAB ad angulum BAI, motus per AI e&longs;&longs;et &longs;exagecupl&ograve; <lb/>velocior, qu&agrave;m per AE, quod e&longs;t ab&longs;urdum: Diceret fort&egrave; aliquis in to&shy;<lb/>to angulo 90. GAB di&longs;tribui huius impedimenti motum v.g. <!-- REMOVE S-->&longs;i angulus <lb/>BAI &longs;it 1.grad. </s>
					<s id="N1CBB2"><!-- NEW -->motus per AI amittit tant&ugrave;m &lpar;1/90&rpar; &longs;ui motus; &longs;i angulus D <lb/>AB circiter 40.grad. </s>
					<s id="N1CBB8"><!-- NEW -->motus per AD amittit tant&ugrave;m &lpar;40/90&rpar;, &amp; per AE &lpar;60/90&rpar;; cum <lb/>&longs;it angulus BAE 60. grad. <!-- REMOVE S-->igitur motus per AB e&longs;t ad motum per AE <lb/>vt 3.ad 1. quod omnibus experimentis repugnat. </s>
				</p>
				<p id="N1CBC2" type="main">
					<s id="N1CBC4">Secund&ograve; probatur, quia &longs;i fiat inclinata proxim&egrave; accedens ad AG v. <!-- REMOVE S--><lb/>g.4&prime;.&amp; a&longs;&longs;umatur alia accedens 3&prime;. </s>
					<s id="N1CBCA">differentia anguli erit tant&ugrave;m 2&prime;. </s>
					<s id="N1CBCD">cum <lb/>tamen differentia longitudinis plani &longs;eu &longs;ecantis huius, &amp; illius, &longs;it ma&shy;<lb/>xima, vt con&longs;tat ex canone &longs;inuum, igitur non imminueretur motus in <lb/>plano inclinato ratione impedimenti contra Th.4. quis enim neget e&longs;&longs;e <lb/>maximum impedimentum motus tantum &longs;patium, quod <expan abbr="conficiend&utilde;">conficiendum</expan> e&longs;t. </s>
				</p>
				<p id="N1CBDC" type="main">
					<s id="N1CBDE"><!-- NEW -->Terti&ograve;, omnia experimenta con&longs;entiunt huic Theoremati, &amp; repu&shy;<lb/>gnant huic propo&longs;itioni qu&aelig; petitur ab angulis; </s>
					<s id="N1CBE4"><!-- NEW -->adde quod angulus ni&shy;<lb/>hil pror&longs;us facit ad motum, &longs;ed linea &longs;eu &longs;patium; denique hoc ip&longs;um e&longs;t <lb/>quod ab omnibus Mechanicis vulg&ograve; &longs;upponitur perinde qua&longs;i prima <pb pagenum="198" xlink:href="026/01/230.jpg"/>notio, qu&aelig; tamen aliqu&acirc; demon&longs;tratione indiget. </s>
				</p>
				<p id="N1CBF1" type="main">
					<s id="N1CBF3"><!-- NEW -->Equidem explicari pote&longs;t h&aelig;c demon&longs;tratio oper&acirc; libr&aelig;; </s>
					<s id="N1CBF7"><!-- NEW -->&longs;it enim <lb/>libra CG cuius centrum immobile e&longs;t A; </s>
					<s id="N1CBFD"><!-- NEW -->&longs;it autem diameter libr&aelig; CG, <lb/>pondus in C &longs;e habet ad pondus in D, tran&longs;lata &longs;cilicet diametro in DH <lb/>vt CA, ad BA; </s>
					<s id="N1CC05"><!-- NEW -->igitur pondus in D grauitaret min&ugrave;s in planum inclina&shy;<lb/>tum DA, qu&agrave;m in horizontali CAI; </s>
					<s id="N1CC0B"><!-- NEW -->nam pondus in D idem pr&aelig;&longs;tat, quod <lb/>pr&aelig;&longs;taret appen&longs;um in D fune DE; </s>
					<s id="N1CC11"><!-- NEW -->igitur grauitatio in C e&longs;t ad grauita&shy;<lb/>tionem in D, vt CA, vel DA ad BA; </s>
					<s id="N1CC17"><!-- NEW -->&longs;ed qu&acirc; proportione decre&longs;cit graui&shy;<lb/>tatio in planum, cre&longs;cit motus in plano inclinato, quia min&ugrave;s impeditur <lb/>per Th.4. igitur in perpendiculari ea nulla e&longs;t gtauitatio in planum; </s>
					<s id="N1CC1F"><!-- NEW -->nec <lb/>impeditur vllo modo motus, igitur ab E ver&longs;us C ita impeditur motus, vt <lb/>AC ver&longs;us C impeditur grauitatio in planum, &longs;ed impeditur grauitatio <lb/>in D v.g. <!-- REMOVE S-->in ratione totius CA ad EA, vel DA ad DI; igitur impeditur <lb/>motus in eadem proportione v.g. <!-- REMOVE S-->in plano DA ad DB vel AI, igitur in <lb/>ratione plani inclinati ad perpendicularem. </s>
				</p>
				<p id="N1CC31" type="main">
					<s id="N1CC33"><!-- NEW -->H&aelig;c omnia veri&longs;&longs;ima &longs;unt; </s>
					<s id="N1CC37"><!-- NEW -->&longs;upere&longs;t tamen vt &longs;ciatur ratio phy&longs;ica cur <lb/>pondus in D &aelig;quiualeat ponderi in B quod &longs;upponunt quidem omnes <lb/>Mechanici, &amp; omnibus experimentis congruit: </s>
					<s id="N1CC3F"><!-- NEW -->Equidem pondus pendu&shy;<lb/>lum ex D fune DB, vel longiore, e&longs;t eiu&longs;dem momenti, cuius e&longs;t affixum <lb/>in D, ita vt linea directionis, qu&aelig; ducitur ab eius centro re&longs;pondeat fu&shy;<lb/>ni DB; </s>
					<s id="N1CC49"><!-- NEW -->vnde rect&egrave; concluditur ab Archimede idem pondus affixum bra&shy;<lb/>chio BA eiu&longs;dem e&longs;&longs;e momenti cum pendulo DB, vel affixo puncto D, <lb/>quod cert&egrave; veri&longs;&longs;umum e&longs;t, nondum tamen rationem phy&longs;icam video; </s>
					<s id="N1CC51"><!-- NEW --><lb/>verum quidem e&longs;t idem pondus pendulum fune DB minoris e&longs;&longs;e <lb/>momenti, qu&agrave;m &longs;i e&longs;&longs;et affixum puncto C; </s>
					<s id="N1CC58"><!-- NEW -->nam &longs;uppono CG e&longs;&longs;e libram <lb/>in &longs;itu horizontali; </s>
					<s id="N1CC5E"><!-- NEW -->tum quia pondus illud DB trahit deor&longs;um extremum <lb/>libr&aelig; D per arcum DC longo circuitu, maxim&egrave; declinante &agrave; &longs;ua linea <lb/>directionis DB; </s>
					<s id="N1CC66"><!-- NEW -->t&ugrave;m quia ex hoc &longs;equitur nece&longs;&longs;ari&ograve; pondus B deflecti <lb/>&agrave; &longs;ua perpendiculari curua linea; </s>
					<s id="N1CC6C"><!-- NEW -->t&ugrave;m quia linea DA, qu&aelig; rigida &longs;uppo&shy;<lb/>nitur, re&longs;i&longs;tit motui DB &amp; patet; in qua ver&ograve; proportione, dictum e&longs;t <lb/>cert&egrave; hactenus, &longs;ed phy&longs;ic&egrave; non demon&longs;tratum. </s>
				</p>
				<p id="N1CC74" type="main">
					<s id="N1CC76"><!-- NEW -->Pater Mer&longs;ennus multis locis ex docti&longs;&longs;imo Roberuallo demon&longs;trat <lb/>rem i&longs;tam ingenio&longs;i&longs;&longs;im&egrave;; </s>
					<s id="N1CC7C"><!-- NEW -->&longs;it enim circulus centro R; </s>
					<s id="N1CC80"><!-- NEW -->&longs;int vectes &aelig;qua&shy;<lb/>les BF horizonti, DN perpendiculari paralleli; </s>
					<s id="N1CC86"><!-- NEW -->t&ugrave;m CL, FO, &aelig;qualiter <lb/>inclinati, ducantur CO EL; </s>
					<s id="N1CC8C"><!-- NEW -->haud dubi&egrave; &longs;i pondera C &amp; L &longs;int &aelig;qualia <lb/>erit &aelig;quilibrium; </s>
					<s id="N1CC92"><!-- NEW -->quod certum e&longs;t, &amp; demon&longs;trabimus cum de libra; </s>
					<s id="N1CC96"><!-- NEW -->e&longs;t <lb/>enim quarta propo&longs;itio Vbaldi de libra; </s>
					<s id="N1CC9C"><!-- NEW -->&longs;ed pondus in O pendulum &longs;ci&shy;<lb/>licet filo CO e&longs;t eiu&longs;dem momenti, cuius e&longs;t pondus in P; </s>
					<s id="N1CCA2"><!-- NEW -->igitur pon&shy;<lb/>dus in P &aelig;quale ponderi O &longs;u&longs;tineret pondus ML, &longs;ed pondus in P <lb/>e&longs;t ad pondus in B vel in F, ad hoc, vt &longs;it &aelig;quilibrium, RF ad R <lb/>P; </s>
					<s id="N1CCAC"><!-- NEW -->igitur pondus in A vel in R, quod erit ad pondus in L, vt P ad R <lb/>L, &longs;u&longs;tinebit pondus in L; </s>
					<s id="N1CCB2"><!-- NEW -->&longs;ed &longs;i applicetur potentia in C qu&aelig; trahat per <lb/>tangentem CT, faciet idem momentum quod faceret in B trahens per <lb/>tangentem BA; </s>
					<s id="N1CCBA"><!-- NEW -->at vicem illius potenti&aelig; gerit pondus B vel A, quod gra&shy;<lb/>uitat per BA; </s>
					<s id="N1CCC0"><!-- NEW -->igitur potentia applicata C per CT, &aelig;qualis ponderi A <pb pagenum="199" xlink:href="026/01/231.jpg"/>retineret pondus in L; </s>
					<s id="N1CCC9"><!-- NEW -->ducatur autem KLG Tangens parallela CT; </s>
					<s id="N1CCCD"><!-- NEW -->cert&egrave; <lb/>eadem potentia in L per LG retinebit pondus in L; </s>
					<s id="N1CCD3"><!-- NEW -->qu&aelig; idem retine&shy;<lb/>ret applicata in C per CT; </s>
					<s id="N1CCD9"><!-- NEW -->cum enim RC &amp; RL &longs;int &aelig;quales &longs;i &longs;int ap&shy;<lb/>plicat&aelig; du&aelig; potenti&aelig; &aelig;quales in C quidem per CT, &amp; in L per LG; </s>
					<s id="N1CCDF"><!-- NEW --><lb/>haud dubi&egrave; erit perfectum &aelig;quilibrium; </s>
					<s id="N1CCE4"><!-- NEW -->igitur &longs;i pondus A pendeat in <lb/>H fune LGH, retinebit pondus L in plano inclinato GLK; </s>
					<s id="N1CCEA"><!-- NEW -->e&longs;t autem <lb/>pondus H ad pondus LN SR ad RL; </s>
					<s id="N1CCF0"><!-- NEW -->&longs;ed triangula RSL, &amp; GKI <lb/>&longs;unt proportionalia; </s>
					<s id="N1CCF6"><!-- NEW -->igitur pondus in H e&longs;t ad pondus L, vt GI ad G <lb/>K; </s>
					<s id="N1CCFC"><!-- NEW -->igitur &longs;i vires, qu&aelig; retinent pondus in plano inclinato GK &longs;unt ad vi&shy;<lb/>res, qu&aelig; retinent pondus in perpendiculari GI, vt GI ad GK; igitur im&shy;<lb/>petus &longs;eu motus mobilis in plano GK e&longs;t ad impetum, &longs;eu motum eiu&longs;&shy;<lb/>dem in perpendiculo GI, vt GI ad GK. </s>
				</p>
				<p id="N1CD06" type="main">
					<s id="N1CD08"><!-- NEW -->H&aelig;c omnia veri&longs;&longs;ima &longs;unt, &longs;emper tamen de&longs;iderari videtur ratio phy&shy;<lb/>&longs;ica, cur idem pondus pendulum ex C in O, &longs;it eiu&longs;dem momenti cum <lb/>pondere affixo puncto P, &longs;eu brachio libr&aelig; horizontalis PS. quod cert&egrave; <lb/>Mechanica Axiomatis, vel hypothe&longs;eos loco iure a&longs;&longs;umere pote&longs;t; </s>
					<s id="N1CD12"><!-- NEW -->at ve&shy;<lb/>r&ograve; phy&longs;ica non &longs;atis habet de re cogno&longs;cere quod &longs;it, ni&longs;i &longs;ciat propter <lb/>quid &longs;it; igitur nos aliquam afferre conabimur. </s>
					<s id="N1CD1A">Suppono tant&ugrave;m tunc <lb/>e&longs;&longs;e &aelig;quilibrium perfectum duorum ponderum &aelig;qualium cum <expan abbr="vtrimq;">vtrimque</expan> <lb/>&aelig;qualia illa pondera ita &longs;unt appen&longs;a, vt linea directionis vnius &aelig;qua&shy;<lb/>lis &longs;it line&aelig; directionis alterius, cur enim alterum pr&aelig;ualeret &longs;i &longs;int &aelig;&shy;<lb/>qualia? </s>
					<s id="N1CD29">hoc po&longs;ito. </s>
				</p>
				<p id="N1CD2C" type="main">
					<s id="N1CD2E"><!-- NEW -->Dico pondus affixum P &aelig;quale ponderi L facere &aelig;quilibrium; cum <lb/>enim linea directionis &longs;it PO, &longs;i de&longs;cenderet liber&egrave; per PO. </s>
					<s id="N1CD34"><!-- NEW -->L eodem <lb/>tempore attolleretur per LS, quod cert&egrave; applicatis planis SL PO facil&egrave; <lb/>fieri po&longs;&longs;et; </s>
					<s id="N1CD3C"><!-- NEW -->&longs;ed eodem modo P grauitat, quo &longs;i de&longs;cenderet per PO; </s>
					<s id="N1CD40"><!-- NEW -->e&longs;t <lb/>enim eius linea directionis; </s>
					<s id="N1CD46"><!-- NEW -->atqui tunc faceret &aelig;quilibrium, quod o&longs;ten&shy;<lb/>do; </s>
					<s id="N1CD4C"><!-- NEW -->&aelig;quale &longs;patium conficeret L, per LS a&longs;cendendo, quod P per PO <lb/>de&longs;cendendo; </s>
					<s id="N1CD52"><!-- NEW -->igitur &longs;i attolleret L in S, &longs;imiliter pondus L &aelig;quale P in S <lb/>attolleret pondus P ex O in P, igitur neutrum pr&aelig;ualere pote&longs;t; &longs;ed quia <lb/>h&aelig;c fu&longs;i&ugrave;s explicabimus cum de libra, nunc tant&ugrave;m indica&longs;&longs;e &longs;ufficiat. </s>
				</p>
				<p id="N1CD5A" type="main">
					<s id="N1CD5C"><!-- NEW -->Supere&longs;t vt breuiter o&longs;tendamus accipi non po&longs;&longs;e hanc proportio&shy;<lb/>nem imminutionis motus in plano inclinato &agrave; Tangente BE t&ugrave;m <lb/>quia; </s>
					<s id="N1CD64"><!-- NEW -->iam &agrave; &longs;ecante accipi o&longs;tendimus, t&ugrave;m quia &longs;it Tangens BD &aelig;qualis <lb/>&longs;umi toti &longs;eu perpendiculari AB; </s>
					<s id="N1CD6A"><!-- NEW -->&longs;equeretur motum per AD &aelig;qualem <lb/>e&longs;&longs;e motui per AB; </s>
					<s id="N1CD70"><!-- NEW -->Equidem in maxima di&longs;tantia accedit Tangens ad <lb/>&longs;ecantem; igitur e&ograve; pl&ugrave;s impeditur motus, qu&ograve; maius &longs;patium conficien&shy;<lb/>dum e&longs;t, &amp;c. </s>
				</p>
				<p id="N1CD78" type="main">
					<s id="N1CD7A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 6.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1CD87" type="main">
					<s id="N1CD89"><emph type="italics"/>Ex hoc &longs;equitur nece&longs;&longs;ari&ograve; motum in plano inclinato e&longs;&longs;e ad motum in per&shy;<lb/>pendiculari, vt ip&longs;a perpendicularis ad ip&longs;um planum inclinatum,<emph.end type="italics"/> v.g. <!-- REMOVE S-->velo&shy;<lb/>citas motus per AE e&longs;t ad velocitatem motus per AB, vt ip&longs;a AB e&longs;t <lb/>ad ip&longs;am AE, &longs;it enim AE dupla AB, velocitas per AB e&longs;t dupla veloci&shy;<lb/>tatis per AE. <!-- KEEP S--></s>
				</p>
				<pb pagenum="200" xlink:href="026/01/232.jpg"/>
				<p id="N1CDA0" type="main">
					<s id="N1CDA2"><!-- NEW -->Ob&longs;erua qu&aelig;&longs;o, cum dico motum in plano inclinato e&longs;&longs;e ad motum <lb/>in perpendiculo, vt ip&longs;&aelig; line&aelig; permutando, ita intelligendum e&longs;&longs;e, vt <lb/>vel a&longs;&longs;umatur motus in &longs;ingulis in&longs;tantibus, ita vt eo in&longs;tanti, quo datum <lb/>&longs;patium in inclinata acquiritur, acquiratur duplum in perpendiculo; </s>
					<s id="N1CDAC"><!-- NEW -->quo <lb/>po&longs;ito valet cert&egrave; tant&ugrave;m illa proportio ratione motus &aelig;quabilis, &longs;i &longs;er&shy;<lb/>uari debet; nam perinde &longs;e habet phy&longs;ic&egrave;, atque &longs;i e&longs;&longs;et, vt iam fus&egrave; ex&shy;<lb/>plicatum e&longs;t lib.2. in re &longs;imili. </s>
				</p>
				<p id="N1CDB6" type="main">
					<s id="N1CDB8"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 7.<emph.end type="center"/></s>
				</p>
				<p id="N1CDC4" type="main">
					<s id="N1CDC6"><!-- NEW --><emph type="italics"/>Hinc de&longs;cendit mobile per &longs;e in plano inclinato<emph.end type="italics"/>; </s>
					<s id="N1CDCF"><!-- NEW -->ratio e&longs;t, quia totus mo&shy;<lb/>tus non impeditur, cum &longs;it eadem proportio, qu&aelig; e&longs;t perpendicularis <lb/>ad inclinatam; dixi per &longs;e, nam per accidens in plano &longs;cabro tantill&ugrave;m <lb/>inclinato mobile de&longs;cendit, adde quod corpus graue tamdiu mouetur <lb/>quandiu accedere pote&longs;t ad centrum terr&aelig;. </s>
				</p>
				<p id="N1CDDB" type="main">
					<s id="N1CDDD"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 8.<emph.end type="center"/></s>
				</p>
				<p id="N1CDE9" type="main">
					<s id="N1CDEB"><emph type="italics"/>Motus in infinitum imminui pote&longs;t,<emph.end type="italics"/> probatur, quia proportio perpen&shy;<lb/>dicularis ad inclinatam pote&longs;t e&longs;&longs;e minor in infinitum, quia inclinata <lb/>pote&longs;t e&longs;&longs;e longior, &amp; in infinitum. </s>
				</p>
				<p id="N1CDF7" type="main">
					<s id="N1CDF9"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 9.<emph.end type="center"/></s>
				</p>
				<p id="N1CE05" type="main">
					<s id="N1CE07"><!-- NEW --><emph type="italics"/>Ex his vera redditur ratio cur in plano inclinato ad angulum BG motus &longs;it <lb/>&longs;ubduplus illius qui fit in perpendiculari<emph.end type="italics"/>; v.g. <!-- REMOVE S-->&longs;it angulus BAE 60. cert&egrave; <lb/>AE e&longs;t dupla AB, &longs;ed motus in AB e&longs;t ad motum in AE vt AE ad AB <lb/>per Th.6. igitur e&longs;t duplus. </s>
				</p>
				<p id="N1CE18" type="main">
					<s id="N1CE1A"><!-- NEW -->Ex his reiicies quoque Cardanum, &amp; alios quo&longs;dam, qui diuer&longs;am <lb/>proportionem motuum in planis inclinatis deducunt ex diuer&longs;is angu&shy;<lb/>lis inclinationis; iuxta quam proportionem motus in AE e&longs;&longs;et &longs;ubtri&shy;<lb/>plus in AB contra experimentum. </s>
				</p>
				<p id="N1CE24" type="main">
					<s id="N1CE26"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 10.<emph.end type="center"/></s>
				</p>
				<p id="N1CE32" type="main">
					<s id="N1CE34"><!-- NEW --><emph type="italics"/>Motus acceleratur in plano inclinato<emph.end type="italics"/>; </s>
					<s id="N1CE3D"><!-- NEW -->experientia clari&longs;&longs;ima e&longs;t, ratio <lb/>eadem cum illa, quam adduximus lib.3. cum de motu naturali, quia &longs;ci&shy;<lb/>licet prior impetus con&longs;eruatur, &amp; acquiritur nouus, Im&ograve; acceleratur <lb/>iuxta <expan abbr="e&atilde;dem">eandem</expan> proportionem, vel no&longs;tram &longs;ingulis in&longs;tantibus, vel Gali&shy;<lb/>lei in partibus temporum &longs;en&longs;ibilibus; vnde a&longs;&longs;umemus deinceps i&longs;tam <lb/>Galilei proportionem, quia &longs;cilicet partes temporis &longs;en&longs;ibiles tant&ugrave;m <lb/>a&longs;&longs;umere po&longs;&longs;umus. </s>
				</p>
				<p id="N1CE51" type="main">
					<s id="N1CE53"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 11.<emph.end type="center"/></s>
				</p>
				<p id="N1CE5F" type="main">
					<s id="N1CE61"><!-- NEW --><emph type="italics"/>In plano inclinato e&longs;t idem impetus innatus qui est in perpendiculari,<emph.end type="italics"/> &longs;ed <lb/>in hac habet totum &longs;uum motum, non ver&ograve; in illa, quia impeditur, ni&longs;i <lb/>enim totus e&longs;&longs;et, non grauitaret corpus illud in planum inclinatum; </s>
					<s id="N1CE6E"><!-- NEW --><lb/>quippe &longs;uas omnes vires impetus ille exereret circa motum; </s>
					<s id="N1CE73"><!-- NEW -->igitur ali&shy;<lb/>quid illarum exerit circa motum aliquid circa planum, in quod ex parte <lb/>grauitat; igitur idem e&longs;t impetus innatus, adde quod ille e&longs;t in&longs;epa&shy;<lb/>rabilis. </s>
				</p>
				<pb pagenum="201" xlink:href="026/01/233.jpg"/>
				<p id="N1CE81" type="main">
					<s id="N1CE83"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 12.<emph.end type="center"/></s>
				</p>
				<p id="N1CE8F" type="main">
					<s id="N1CE91"><!-- NEW --><emph type="italics"/>Impetus naturalis aduentitius productus &agrave; corpore graui in plano inclinato <lb/>e&longs;t minor eo, qui producitur in perpendiculari<emph.end type="italics"/>; </s>
					<s id="N1CE9C"><!-- NEW -->probatur, quia e&longs;t minor <lb/>motus, igitur minor impetus, vt &longs;&aelig;p&egrave; diximus; </s>
					<s id="N1CEA2"><!-- NEW -->&longs;ecund&ograve; &lpar;h&aelig;c e&longs;t ratio <lb/>&agrave; priori;&rpar; quia cum ideo producatur impetus i&longs;te aduentitius, vt motus <lb/>acceleretur; </s>
					<s id="N1CEAA"><!-- NEW -->cert&egrave; debet re&longs;pondere motui, qui competit impetui innati; </s>
					<s id="N1CEAE"><!-- NEW --><lb/>&longs;i enim nullum habet motum, nullus accedit de nouo impetus, &egrave; con&shy;<lb/>tra ver&ograve; &longs;i e&longs;t motus, &longs;ed maior, &longs;i maior e&longs;t motus, &amp; minor &longs;i e&longs;t minor; <lb/>quia hic impetus tant&ugrave;m e&longs;t propter motum. </s>
				</p>
				<p id="N1CEB7" type="main">
					<s id="N1CEB9"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 13.<emph.end type="center"/></s>
				</p>
				<p id="N1CEC5" type="main">
					<s id="N1CEC7"><!-- NEW --><emph type="italics"/>Impetus qui producitur in acceleratione motus habet totum motum quem <lb/>exigit &lpar;pr&aelig;&longs;cindendo &agrave; re&longs;i&longs;tentia medij&rpar;<emph.end type="italics"/>; </s>
					<s id="N1CED2"><!-- NEW -->nec enim per illum mobile graui&shy;<lb/>tat in planum; </s>
					<s id="N1CED8"><!-- NEW -->alioquin cre&longs;ceret &longs;emper grauitatio; </s>
					<s id="N1CEDC"><!-- NEW -->igitur totus exerce&shy;<lb/>tur circa motum; </s>
					<s id="N1CEE2"><!-- NEW -->ratio e&longs;t quia hic impetus addititius non e&longs;t in&longs;titutus <lb/>propter grauitationem, &longs;ed tant&ugrave;m propter motum: adde quod ad om&shy;<lb/>nem lineam determinari pote&longs;t, &longs;ec&ugrave;s ver&ograve; naturalis &longs;altem om&shy;<lb/>nin&ograve;. </s>
				</p>
				<p id="N1CEEC" type="main">
					<s id="N1CEEE"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 14.<emph.end type="center"/></s>
				</p>
				<p id="N1CEFA" type="main">
					<s id="N1CEFC"><!-- NEW --><emph type="italics"/>Imminuitur motu illo grauitatio corporis in planum<emph.end type="italics"/>; ratio e&longs;t prim&ograve;; </s>
					<s id="N1CF05"><!-- NEW -->quia <lb/>qu&ograve; veloci&ugrave;s mouetur in plano, breuiori tempore &longs;ingulis partibus in&shy;<lb/>cumbit: </s>
					<s id="N1CF0D"><!-- NEW -->&longs;ecund&ograve; quia motu illo accelerato qua&longs;i di&longs;trahitur mobile ab <lb/>illa linea grauitationis in planum; hinc mobile celeri motu moueretur <lb/>in plano illo inclinato, quod eiu&longs;dem &longs;ub&longs;i&longs;tentis grauitationi &amp; ponde&shy;<lb/>ri vltr&ograve; cederet. </s>
				</p>
				<p id="N1CF17" type="main">
					<s id="N1CF19"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 15.<emph.end type="center"/></s>
				</p>
				<p id="N1CF25" type="main">
					<s id="N1CF27"><!-- NEW --><emph type="italics"/>Impetus innatus ex &longs;e e&longs;t &longs;emper determinatus ad lineam perpendicularem <lb/>deor&longs;um<emph.end type="italics"/>; </s>
					<s id="N1CF32"><!-- NEW -->quia grauitas tendit ad commune centrum, vt videbimus tra&shy;<lb/>ctatu &longs;equenti; </s>
					<s id="N1CF38"><!-- NEW -->tamen ratione plani qua&longs;i detorquetur ad lineam plani <lb/>ad quam tamen omnin&ograve; non determinatur, alioquin non grauitaret in <lb/>planum: </s>
					<s id="N1CF40"><!-- NEW -->vnde dixi, detorquetur &longs;eu qua&longs;i diuiditur, perinde qua&longs;i e&longs;&longs;et <lb/>duplex impetus, quorum alter per lineam perpendicularem deor&longs;um <lb/>e&longs;&longs;et determinatus, in quo non e&longs;t difficultas; impetus tamen aduenti&shy;<lb/>tius determinatur omnin&ograve; ad lineam plani. </s>
				</p>
				<p id="N1CF4A" type="main">
					<s id="N1CF4C"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1CF58" type="main">
					<s id="N1CF5A"><!-- NEW -->Dubitari pote&longs;t an grauitatio in planum inclinatum &longs;it vt re&longs;iduum <lb/>plani, cui detrahitur perpendiculum v.g. <!-- REMOVE S-->&longs;it planum inclinatum CD ad <lb/>angulum ACD 60. potentia qu&aelig; &longs;u&longs;tinet pondus B per EB e&longs;t ad pr&aelig;&shy;<lb/>dictum pondus vt CA ad CD; </s>
					<s id="N1CF66"><!-- NEW -->detrahitur CA ex CD, &longs;upere&longs;t FD &aelig;qua&shy;<lb/>lis &longs;cilicet CA; </s>
					<s id="N1CF6C"><!-- NEW -->an fort&egrave; grauitatio ponderis B in planum inclinatum C <lb/>D e&longs;t ad grauitationem eiu&longs;dem in planum horizontale; </s>
					<s id="N1CF72"><!-- NEW -->qu&aelig; e&longs;t graui&shy;<lb/>tatio tota, id e&longs;t nihil imminuta vt DF ad DC; </s>
					<s id="N1CF78"><!-- NEW -->attollatur enim totum <lb/>triangulum CAD in eadem &longs;itu altera manu, &amp; altera filo EB paralle-<pb pagenum="202" xlink:href="026/01/234.jpg"/>lo CF, retineatur pondus B ne &longs;cilicet deor&longs;um cadat; </s>
					<s id="N1CF83"><!-- NEW -->t&ugrave;m &longs;ubtrahatur <lb/>pondus trianguli CAD; nunquid fort&egrave; altera manus &longs;u&longs;tinebit tant&ugrave;m <lb/>&longs;ubduplum ponderis B? &amp; altera &longs;ubduplum? </s>
					<s id="N1CF8B"><!-- NEW -->igitur vt habeatur quod <lb/>&longs;u&longs;tinet &longs;uppo&longs;ita dextra v.g. <!-- REMOVE S-->debet &longs;ub&longs;trahi, quod &longs;u&longs;tinet &longs;ini&longs;tra, &longs;ed <lb/>quod &longs;u&longs;tinet &longs;ini&longs;tra, e&longs;t vt ip&longs;a potentia, id e&longs;t vt CA ad CD; igitur <lb/>tota CD repr&aelig;&longs;entat totum pondus, &longs;egmentum CF partem ponderis <lb/>qu&aelig; competit potenti&aelig; E, FD ver&ograve; partem qu&aelig; &longs;u&longs;tinetur &agrave; pla&shy;<lb/>no CF. <!-- KEEP S--></s>
				</p>
				<p id="N1CF9C" type="main">
					<s id="N1CF9E"><!-- NEW -->Hinc facil&egrave; po&longs;&longs;et determinari quota pars ponderis incubet plano,<lb/>&longs;it enim planum inclinatum AC, perpendiculum AB, accipiatur AB <lb/>&aelig;qualis AB, &longs;itque AC tripla AB, du&aelig; terti&aelig; ponderis incubant plano <lb/>&longs;i ver&ograve; &longs;it horizontale planum, totum pondus grauitat in illud; </s>
					<s id="N1CFA8"><!-- NEW -->nulla e&longs;t <lb/>enim perpendicularis, &longs;i &longs;it perpendiculare planum, nihil pror&longs;us gra&shy;<lb/>uitat; </s>
					<s id="N1CFB0"><!-- NEW -->quia nulla e&longs;t inclinata, &amp; qu&ograve; propi&ugrave;s accedit planum inclina&shy;<lb/>tum ad horizontalem pl&ugrave;s grauitat pondus in illud, min&ugrave;s ver&ograve;; qu&ograve; <lb/>propi&ugrave;s accedit ad perpendicularem. </s>
				</p>
				<p id="N1CFB8" type="main">
					<s id="N1CFBA"><!-- NEW -->Hinc e&longs;&longs;et oppo&longs;ita ratio grauitationis, &amp; motus, in plano inclinato; </s>
					<s id="N1CFBE"><!-- NEW --><lb/>nam qu&ograve; pl&ugrave;s e&longs;t grauitationis min&ugrave;s e&longs;t motus, qu&ograve; pl&ugrave;s motus, min&ugrave;s <lb/>grauitationis; </s>
					<s id="N1CFC5"><!-- NEW -->quando ver&ograve; planum inclinatum e&longs;t duplum perpendicu&shy;<lb/>culi vt planum CFD, tunc <expan abbr="tant&utilde;dem">tantundem</expan> detrahitur de grauitatione in <lb/>planum quant&ugrave;m de motu in eodem plano; </s>
					<s id="N1CFD1"><!-- NEW -->ide&longs;t vtrique &longs;ubduplum, <lb/>&longs;i ver&ograve; vt in plano ADC perpendiculum e&longs;t &longs;ubtriplum plani, detrahun&shy;<lb/>tur de motu 2/3 &amp; de grauitatione 1/3, idem dico de aliis, qu&aelig; cert&egrave; omnia <lb/>ex veris principiis phy&longs;icis con&longs;equi videntur, qu&ograve; enim plus grauitat <lb/>mobile in planum, pl&ugrave;s &longs;u&longs;tinetur; </s>
					<s id="N1CFDD"><!-- NEW -->qu&ograve; pl&ugrave;s &longs;u&longs;tinetur, pl&ugrave;s impeditur il&shy;<lb/>lius motus; </s>
					<s id="N1CFE3"><!-- NEW -->&longs;ed hoc repugnat communi Mechanicorum &longs;ententi&aelig;, qui <lb/>cen&longs;ent grauitationem in planum inclinatum e&longs;&longs;e ad grauitationem in <lb/>horizontale, vt Tangens e&longs;t ad &longs;ecantem, qu&aelig; &longs;it linea plani inclinati, <lb/>v.g. <!-- REMOVE S-->vt AB ad CD, quod cert&egrave; omnes &longs;upponunt, &longs;ed minim&egrave; <expan abbr="demon-&longs;tr&atilde;t">demon&shy;<lb/>&longs;trant</expan>, &longs;i quid video &longs;altem phy&longs;ic&egrave;; </s>
					<s id="N1CFF5"><!-- NEW -->nec enim illud nemon&longs;trant propri&egrave; ex <lb/>eo qu&ograve;d pondus in extremitate libr&aelig; affixum habeat diuer&longs;a momenta <lb/>iuxta rationem Tangentium ad &longs;ecantes, v.g. <!-- REMOVE S-->in &longs;ecunda figura Th.5. <lb/>pondus in D e&longs;t ad pondus in C vt BA ad DA, quod veri&longs;&longs;imum e&longs;t, &amp; <lb/>&longs;upr&agrave; demon&longs;trauimus; </s>
					<s id="N1D003"><!-- NEW -->quippe hoc pertinet ad rationem momenti, non <lb/>ver&ograve; grauitationis in planum; </s>
					<s id="N1D009"><!-- NEW -->adde quod affixum e&longs;t pondus vecti; </s>
					<s id="N1D00D"><!-- NEW -->igi&shy;<lb/>tur vectis &longs;u&longs;tinet totum illius pondus; </s>
					<s id="N1D013"><!-- NEW -->vtr&ugrave;m ver&ograve; &longs;i pondus in plano <lb/>inclinato veluti in vecte moueatur pondus quo grauitat in planum &longs;it <lb/>ad pondus quo grauitat in horizontali vt Tangens ad &longs;ecantem, cert&egrave; <lb/>non demon&longs;trant; </s>
					<s id="N1D01D"><!-- NEW -->attamen ita res pror&longs;us &longs;e habet; quare fit. </s>
				</p>
				<p id="N1D021" type="main">
					<s id="N1D023"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 16.<emph.end type="center"/></s>
				</p>
				<p id="N1D02F" type="main">
					<s id="N1D031"><emph type="italics"/>Grauitatio ponderis in planum inclinatum e&longs;t ad grauitationem eiu&longs;dem <lb/>in planum horizontale, vt Tangens, vel horizontalis ad &longs;ecantem, vel incli&shy;<lb/>natam,<emph.end type="italics"/> quod demon&longs;tro. </s>
					<s id="N1D03D"><!-- NEW -->Prim&ograve; &longs;it planum inclinatum GD, pondus in-<pb pagenum="203" xlink:href="026/01/235.jpg"/>cubans F; </s>
					<s id="N1D046"><!-- NEW -->dico grauitationem ponderis F in inclinatam GD e&longs;&longs;e ad gra&shy;<lb/>uitationem in horizontalem CD vt CD ad GD; </s>
					<s id="N1D04C"><!-- NEW -->quia pondus F pellit <lb/>planum per lineam FE &longs;eu GB Tangentem; </s>
					<s id="N1D052"><!-- NEW -->quia determinari non po&shy;<lb/>te&longs;t &longs;eu percu&longs;&longs;io, &longs;eu impre&longs;&longs;io ex alio capite qu&agrave;m ex linea ducta &agrave; <lb/>centro grauitatis perpendiculariter in planum, vt demon&longs;trauimus <lb/>in Th. 120. l. <!-- REMOVE S-->1. atqui libr&aelig; extremitas G initio de&longs;cendit per Tangen&shy;<lb/>tem GB, id e&longs;t per minimum arcum, qui fer&egrave; concurrit cum Tangente; </s>
					<s id="N1D060"><!-- NEW --><lb/>&longs;ed ide&ograve; de&longs;cendit in AB, quia pellitur deor&longs;um &agrave; pondere; </s>
					<s id="N1D065"><!-- NEW -->igitur men&shy;<lb/>&longs;ura grauitationis e&longs;t de&longs;cen&longs;us libr&aelig;, &longs;ed libra facili&ugrave;s de&longs;cendit ex A <lb/>deor&longs;um qu&agrave;m ex G in proportione AD ad CD vel GD ad CD; </s>
					<s id="N1D06D"><!-- NEW -->igitur <lb/>grauitatio ponderis in A e&longs;t ad grauitationem eiu&longs;dem in G, vt GD ad <lb/>CD; quia rationes cau&longs;arum &longs;unt e&aelig;dem cum rationibus effectuum. </s>
				</p>
				<p id="N1D075" type="main">
					<s id="N1D077"><!-- NEW -->Pr&aelig;terea &longs;it planum inclinatum GD, &longs;it IF parallela GD; </s>
					<s id="N1D07B"><!-- NEW -->&longs;int IK, I <lb/>M &amp; quadrans KFR; </s>
					<s id="N1D081"><!-- NEW -->punctum I &longs;it centrum libr&aelig; immobile; </s>
					<s id="N1D085"><!-- NEW -->cert&egrave; &longs;i &longs;it <lb/>alterum brachium libr&aelig; &aelig;quale IF in&longs;tructum &aelig;quali pondere F, erit &aelig;&shy;<lb/>quilibrium; &longs;ed pondus illud in F e&longs;t ad idem in R, vt IM ad IF, &longs;eu vt <lb/>CD ad GD, quod erat dem. </s>
				</p>
				<p id="N1D08F" type="main">
					<s id="N1D091"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1D09D" type="main">
					<s id="N1D09F"><!-- NEW -->Ob&longs;eruabis po&longs;&longs;e facil&egrave; ex dictis explicari diuer&longs;as potentias applica&shy;<lb/>tas ponderi F in eodem plano GD, prim&ograve; &longs;i accipiatur IHF parallela <lb/>GH cum centro immobili I pondus retinebitur, &longs;i potentia in I &longs;it ad <lb/>globum vt GC ad GD, vt demon&longs;tratum e&longs;t; &longs;i ver&ograve; pellat potentia per <lb/>lineam IF, globus de&longs;cendet, vt patet. </s>
				</p>
				<p id="N1D0AB" type="main">
					<s id="N1D0AD"><!-- NEW -->Hinc &longs;ecund&ograve; &longs;u&longs;tinens MF totum pondus F &longs;u&longs;tinet, patet, quia &longs;i&shy;<lb/>ue planum inclinatum pondus ip&longs;um tangat, &longs;iue perpendiculare, totum <lb/>&longs;u&longs;tinet pondus; &longs;ub&longs;tracto enim plano pondus immobile manet, adde <lb/>quod non pote&longs;t pondus F &longs;u&longs;tineri in brachio IM, ni&longs;i &aelig;quale pondus <lb/>ex &aelig;quali brachio oppo&longs;ito pendeat. </s>
				</p>
				<p id="N1D0B9" type="main">
					<s id="N1D0BB"><!-- NEW -->Terti&ograve; ex puncto T line&acirc; TFE non pote&longs;t &longs;u&longs;tineri pondus lic&egrave;t po&shy;<lb/>tentia in T e&longs;&longs;et infinita, quia ex TE de&longs;cendet in TV, patet; idem <lb/>dico de omnibus aliis lineis ductis ab F ad aliquod punctum inter <lb/>TM. </s>
				</p>
				<p id="N1D0C5" type="main">
					<s id="N1D0C7"><!-- NEW -->Quart&ograve; ex puncto X linea XF &longs;u&longs;tinebitur pondus dum potentia ap&shy;<lb/>plicetur in X, maior quidem potentia applicata in I, &longs;ed minor applica&shy;<lb/>ta in M; </s>
					<s id="N1D0CF"><!-- NEW -->nam potentia M e&longs;t ad potentiam I vt IF ad MF; </s>
					<s id="N1D0D3"><!-- NEW -->igitur poten&shy;<lb/>tia X e&longs;t ad potentiam M vt MF ad XF; ad potentiam ver&ograve; I vt IF <lb/>ad XF. <!-- KEEP S--></s>
				</p>
				<p id="N1D0DC" type="main">
					<s id="N1D0DE">Quint&ograve;, c&ugrave;m triangula IF M.HF 4. &longs;int proportionalia, potentia M <lb/>e&longs;t ad potentiam I vt HF ad 4. F. <!-- KEEP S--></s>
				</p>
				<p id="N1D0E4" type="main">
					<s id="N1D0E6"><!-- NEW -->Sext&ograve;, &longs;i applicetur potentia, vel in T pellendo per lineam TFE, qu&aelig; <lb/>cadit perpendiculariter in planum GD, vel &longs;i applicetur in A per lineam <lb/>AE trahendo, non poterit retineri globus, qu&aelig;cunque tandem poten&shy;<lb/>tia applicetur; </s>
					<s id="N1D0F0"><!-- NEW -->quia &longs;emper per GD globus rotari poterit nullo cor&shy;<lb/>pore impediente; </s>
					<s id="N1D0F6"><!-- NEW -->&longs;uppono enim t&ugrave;m planum t&ugrave;m globum e&longs;&longs;e perfect&egrave; <pb pagenum="204" xlink:href="026/01/236.jpg"/>politum, quod tamen nobis dee&longs;&longs;e certum e&longs;t ad experimentum, &longs;uppo&shy;<lb/>no nullam e&longs;&longs;e partium compre&longs;&longs;ionem, qua vna pars in aliam qua&longs;i pe&shy;<lb/>netret; </s>
					<s id="N1D103"><!-- NEW -->&longs;i enim totus locus datur ad de&longs;cen&longs;um; </s>
					<s id="N1D107"><!-- NEW -->cert&egrave; non e&longs;t vlla ratio <lb/>propter quam non de&longs;cendat; </s>
					<s id="N1D10D"><!-- NEW -->nec dicas affigi plano GD ab ip&longs;a vi ex&shy;<lb/>teri&ugrave;s affigente; </s>
					<s id="N1D113"><!-- NEW -->quia nullo modo impeditur motus, per datam lineam, <lb/>ni&longs;i vel aliquod corpus opponatur, vel alius impetus detrahat ab eadem <lb/>linea; atqui nihil horum prors&ugrave;s e&longs;t in hoc ca&longs;u. </s>
				</p>
				<p id="N1D11B" type="main">
					<s id="N1D11D"><!-- NEW -->Si potentia applicetur in N per lineam NF, maior e&longs;&longs;e debet qu&agrave;m in <lb/>I, &longs;ed minor qu&agrave;m in A; </s>
					<s id="N1D123"><!-- NEW -->e&longs;t autem ad potentiam in I vt IF ad NF; </s>
					<s id="N1D127"><!-- NEW --><lb/>quippe re&longs;i&longs;tit planum GD huic potenti&aelig; in N, non tamen re&longs;i&longs;tit in I; </s>
					<s id="N1D12C"><!-- NEW --><lb/>igitur illa maior e&longs;&longs;e debet, quod autem potentia in N &longs;it ad potentiam <lb/>in I, vt IF ad NF &lpar;po&longs;ito &longs;cilicet quod vtraque pondus E &longs;u&longs;tineat&rpar; pl&ugrave;s <lb/>qu&agrave;m certum e&longs;t; </s>
					<s id="N1D135"><!-- NEW -->quia c&ugrave;m pondus po&longs;&longs;it tant&ugrave;m moueri per EG &longs;eu per <lb/>lineam FI potentia NF trahit per FN; </s>
					<s id="N1D13B"><!-- NEW -->igitur potentia in N &longs;u&longs;tinens <lb/>pondus F e&longs;t ad potentiam in I &longs;u&longs;tinentem idem pondus, vt IF ad NF; <lb/>&longs;imiliter potentia in K &longs;u&longs;tinens idem pondus F e&longs;t ad potentiam in I vt <lb/>IF ad ZF, nam IZ e&longs;t perpendicularis in KF, donec tandem potentia <lb/>&longs;it in A applicata per AF in quam IF cadit perpendiculariter, igitur po&shy;<lb/>tentia in A debet e&longs;&longs;e infinita. </s>
				</p>
				<p id="N1D149" type="main">
					<s id="N1D14B"><!-- NEW -->Octau&ograve;, &longs;i pellatur pondus F per omnes lineas contentas &longs;ini&longs;tror&longs;um <lb/>inter FT &amp; FA deor&longs;um facili&ugrave;s cadet; </s>
					<s id="N1D151"><!-- NEW -->&longs;i ver&ograve; trahatur per lineas con&shy;<lb/>tentas inter TF &amp; FA dextror&longs;um, etiam deor&longs;um cadit; </s>
					<s id="N1D157"><!-- NEW -->quia perinde <lb/>e&longs;t &longs;iue trahatur per lineam IF, &longs;iue pellatur &aelig;quali ni&longs;u per lineam VF <lb/>qu&aelig; concurrit cum FI; </s>
					<s id="N1D15F"><!-- NEW -->&amp; perinde e&longs;t &longs;iue pellatur per IF, &longs;iue trahatur <lb/>per FV; idem dictum &longs;it de omnibus aliis lineis, qu&aelig; per centrum F <lb/>hinc inde ducuntur. </s>
				</p>
				<p id="N1D167" type="main">
					<s id="N1D169"><!-- NEW -->Vnum e&longs;t, quod de&longs;iderari videtur ex quo reliqua fer&egrave; omnia depen&shy;<lb/>dent, quomodo &longs;cilicet potentia in N trahens per FN &longs;it ad potentiam <lb/>in I trahentem per FI vt FI e&longs;t ad FN, quod &longs;ic breuiter demon&longs;tro: </s>
					<s id="N1D171"><!-- NEW --><lb/> &longs;it horizontalis BD, &amp; triangulum ECD; ex centro D ducatur arcus <lb/>BE, qui &longs;it v.g. <!-- REMOVE S-->30.grad. </s>
					<s id="N1D17A"><!-- NEW -->vt CE &longs;it &longs;ubdupla ED; </s>
					<s id="N1D17E"><!-- NEW -->cert&egrave; potentia in B <lb/>e&longs;t ad potentiam in E per EC vt BD, vel ED ad CD; </s>
					<s id="N1D184"><!-- NEW -->&longs;ed potentia in E <lb/>per EA Tangentem e&longs;t &aelig;qualis potenti&aelig; in B; </s>
					<s id="N1D18A"><!-- NEW -->&longs;it autem planum EA, &amp; <lb/>connectatur AC; </s>
					<s id="N1D190"><!-- NEW -->triangula AEC &amp; ECD &longs;unt proportionalia; </s>
					<s id="N1D194"><!-- NEW -->igitur <lb/>&longs;it AC verticalis, EC horizontalis, &amp; AE inclinata; </s>
					<s id="N1D19A"><!-- NEW -->&longs;it potentia in A <lb/>per AE trahens pondus E; </s>
					<s id="N1D1A0"><!-- NEW -->&longs;it potentia C trahens per CE; </s>
					<s id="N1D1A4"><!-- NEW -->dico quod <lb/>impeditur tractio toto angulo AEC, &longs;icut ante impediebatur grauitatio <lb/>toto angulo AEC; </s>
					<s id="N1D1AC"><!-- NEW -->igitur vtrobique e&longs;t &aelig;quale impedimentum; </s>
					<s id="N1D1B0"><!-- NEW -->&longs;ed in <lb/>primo ca&longs;u ratione impedimenti ita &longs;e habet potentia in E per EA ad <lb/>potentiam in E per EC, vt ED ad CD, vel vt EA ad EC; igitur in &longs;e&shy;<lb/>cundo in quo e&longs;t idem impedimentum potentia in A per EA e&longs;t ad po&shy;<lb/>tentiam in C per EC, vt ip&longs;a inclinata AE ad EC. <!-- KEEP S--></s>
				</p>
				<p id="N1D1BD" type="main">
					<s id="N1D1BF"><!-- NEW -->Non&ograve; denique ob&longs;eruabis, egregium e&longs;&longs;e apud Mer&longs;ennum tractatum <lb/>authore docti&longs;&longs;imo Roberuallo &longs;uper hac tota re, in quo cert&egrave; Geome-<pb pagenum="205" xlink:href="026/01/237.jpg"/>tria nihil de&longs;iderare pote&longs;t; </s>
					<s id="N1D1CA"><!-- NEW -->lic&egrave;t phy&longs;ica fort&egrave; aliquid de&longs;iderare po&longs;&longs;it; <lb/>adde quod implicatior illa figura infinitis fer&egrave; contexta lineis, quam ha&shy;<lb/>bet, equidem erudito Geometr&aelig; faciet &longs;atis, non tamen rudiori Tyroni, <lb/>qui vix in hoc labyrintho tutum &longs;e e&longs;&longs;e putabit. </s>
				</p>
				<p id="N1D1D4" type="main">
					<s id="N1D1D6"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 17.<emph.end type="center"/></s>
				</p>
				<p id="N1D1E2" type="main">
					<s id="N1D1E4"><!-- NEW --><emph type="italics"/>Si globus incumbat<emph.end type="italics"/> <emph type="italics"/>plano inclinato rotatur nece&longs;&longs;ari&ograve; deor&longs;um<emph.end type="italics"/>; </s>
					<s id="N1D1F3"><!-- NEW -->&longs;it enim <lb/>globus F in plano ED; </s>
					<s id="N1D1F9"><!-- NEW -->ducatur FH perpendicularis deor&longs;um; </s>
					<s id="N1D1FD"><!-- NEW -->h&aelig;c e&longs;t <lb/>linea directionis centri grauitatis, vt con&longs;tat; </s>
					<s id="N1D203"><!-- NEW -->igitur c&ugrave;m non &longs;u&longs;tinea&shy;<lb/>tur in pr&aelig;dicta linea, nec enim terminatur ad punctum contactus G, cer&shy;<lb/>t&egrave; debet rotari; </s>
					<s id="N1D20B"><!-- NEW -->adde quod non e&longs;t in &aelig;quilibrio, vt patet, ratio autem <lb/>in&aelig;qualitatis e&longs;t vt GF ad FN, nec vlla e&longs;t difficultas; igitur duplici <lb/>qua&longs;i motu de&longs;cendet in pr&aelig;dicto plano ille globus, &longs;cilicet motu centri <lb/>propter inclinationem plani, &amp; motu orbis, t&ugrave;m quia non e&longs;t in &aelig;qui&shy;<lb/>librio, t&ugrave;m quia in linea directionis FH non &longs;u&longs;tinetur &agrave; plano. </s>
				</p>
				<p id="N1D217" type="main">
					<s id="N1D219"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 18.<emph.end type="center"/></s>
				</p>
				<p id="N1D225" type="main">
					<s id="N1D227"><!-- NEW --><emph type="italics"/>Si corpus aliquod incumbat<emph.end type="italics"/> <emph type="italics"/>plano inclinato, &longs;ique linea directionis <lb/>centri grauitatis &longs;ecet ip&longs;um planum intra ba&longs;im corpus repit quidem in <lb/>pr&aelig;dicto plano &longs;ed non rotatur, &longs;i ver&ograve; cadat extra ba&longs;im rotatur, non repit<emph.end type="italics"/>; </s>
					<s id="N1D23A"><!-- NEW --><lb/>&longs;it enim planum inclinatum BC, cui incubet cubus DL, cuius cen&shy;<lb/>trum grauitatis &longs;it I; </s>
					<s id="N1D241"><!-- NEW -->ducatur RG perpendicularis deor&longs;um per cen&shy;<lb/>trum grauitatis I cadit in punctum G intra ba&longs;im BG; </s>
					<s id="N1D247"><!-- NEW -->igitur non ro&shy;<lb/>tabitur, &longs;ed repet; </s>
					<s id="N1D24D"><!-- NEW -->quia &longs;i &longs;u&longs;tinetur in G remoto &longs;en&longs;im plano BC; <lb/>haud dubi&egrave; portio GD non pr&aelig;ponderat portioni GL, vt patet ex <lb/>libra. </s>
				</p>
				<p id="N1D255" type="main">
					<s id="N1D257"><!-- NEW -->Sit quoque parallelipedum EK, centrum grauitatis N, perpendicu&shy;<lb/>laris ducta per centrum HNM cadit intra ba&longs;im; </s>
					<s id="N1D25D"><!-- NEW -->igitur non rotabi&shy;<lb/>tur, quia &longs;ubmoto plano BC non &longs;u&longs;tinetur quidem in M, &longs;ed minim&egrave; <lb/>inclinabitur dextror&longs;um; igitur non rotabitur. </s>
					<s id="N1D265"><!-- NEW -->Si ver&ograve; cadat extra ba&shy;<lb/>&longs;im haud dubi&egrave; rotabitur, &longs;it enim planum inclinatum AC, cui in&shy;<lb/>cumbat parallelipedum FN, cuius centrum grauitatis &longs;it L; </s>
					<s id="N1D26D"><!-- NEW -->ducatur L <lb/>perpendicularis, cadit in E extra ba&longs;im FD; </s>
					<s id="N1D273"><!-- NEW -->cert&egrave; latus DN inclinabi&shy;<lb/>tur deor&longs;um; igitur rotabitur, quia eodem modo &longs;e habet, quo &longs;e ha&shy;<lb/>beret, &longs;i &longs;ubmoto plano &longs;u&longs;tineretur in linea DX, &longs;ed trapezus DX <lb/>PN triangulo FXD pr&aelig;ponderat per regulas libr&aelig;, de quibus &longs;uo <lb/>loco. </s>
				</p>
				<p id="N1D27F" type="main">
					<s id="N1D281"><!-- NEW -->Ob&longs;eruabis autem prim&ograve; &longs;ciri po&longs;&longs;e data plani inclinatione &amp; ba&longs;i <lb/>parallelipedi maximam illius altitudinem, qua po&longs;ita non rotetur; </s>
					<s id="N1D287"><!-- NEW --><lb/>&longs;ecus ver&ograve; po&longs;ita quacunque alia maiore; </s>
					<s id="N1D28C"><!-- NEW -->&longs;it enim planum AC, ba&shy;<lb/>&longs;is parallelipedi FD; </s>
					<s id="N1D292"><!-- NEW -->erigantur FO, DN perpendiculares in <pb pagenum="206" xlink:href="026/01/238.jpg"/>AC; </s>
					<s id="N1D29B"><!-- NEW -->t&ugrave;m erigatur perpendicularis DX parallela AB; </s>
					<s id="N1D29F"><!-- NEW -->connectantur R <lb/>M: dico FX e&longs;&longs;e maximam altitudinem, vt con&longs;tat ex dictis. </s>
				</p>
				<p id="N1D2A5" type="main">
					<s id="N1D2A7"><!-- NEW -->Secund&ograve;, quotie&longs;cunque rectangulum, ita e&longs;t &longs;itum, vt eius <lb/>diagonalis &longs;it perpendicularis; </s>
					<s id="N1D2AD"><!-- NEW -->dico e&longs;&longs;e in perfecto &aelig;quilibrio; </s>
					<s id="N1D2B1"><!-- NEW --><lb/>&longs;it enim rectangulum BE, cuius diagonalis BE perpendicula&shy;<lb/>riter cadit in horizontalem AC; </s>
					<s id="N1D2B8"><!-- NEW -->cert&egrave; erit in &aelig;qualibrio; </s>
					<s id="N1D2BC"><!-- NEW -->&longs;it enim <lb/>diui&longs;um per lineam BE ita vt FH vel KI &longs;it libra qu&aelig; &longs;u&longs;tineatur in ful&shy;<lb/>cro BG; &longs;itque totum pondus trianguli BED appen&longs;um brachio GH, <lb/>&amp; aliud BET appen&longs;um brachio &aelig;quali GF, erit perfectum &aelig;quili&shy;<lb/>brium per regulas libr&aelig;, &longs;ed duo triangula eodem modo &longs;e habent <lb/>conjuncta, quo &longs;e haberent &longs;eparata &amp; appen&longs;a, vt patet. </s>
				</p>
				<p id="N1D2CA" type="main">
					<s id="N1D2CC">Terti&ograve;, omnia rectangula proportionalia in eodem &aelig;quilibrio rema&shy;<lb/>nerent v.g. <!-- REMOVE S-->rectangulum BG cum rectangulo BE, idem dico de Rhom&shy;<lb/>bo, Rhomboide, &amp;c. </s>
				</p>
				<p id="N1D2D5" type="main">
					<s id="N1D2D7">Quart&ograve;, inde etiam cogno&longs;citur in qua proportione minuatur pondus. </s>
					<s id="N1D2DA"><!-- NEW --><lb/>v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;it enim cylindrus AE horizontalis, &longs;u&longs;tineaturque in A immo&shy;<lb/>biliter, itemque in E; </s>
					<s id="N1D2E5"><!-- NEW -->cert&egrave; qui &longs;u&longs;tinet in E &aelig;qualiter &longs;u&longs;tinet; </s>
					<s id="N1D2E9"><!-- NEW -->at ver&ograve; <lb/>&longs;i attollatur in AD; </s>
					<s id="N1D2EF"><!-- NEW -->cert&egrave; potentia qu&aelig; in D &longs;u&longs;tinet, e&longs;t ad potentiam <lb/>qu&aelig; &longs;u&longs;tinet in E, vt AF ad AE, quia pondus grauitaret in D &amp; in E in <lb/>eadem ratione per Th. 16. &longs;ed potentia &longs;u&longs;tinens ad&aelig;quat ponderis ra&shy;<lb/>tionem, &longs;u&longs;tinens inquam, per DH; </s>
					<s id="N1D2F9"><!-- NEW -->nam reuer&agrave; &longs;u&longs;tinens per DF &aelig;qua&shy;<lb/>lis e&longs;&longs;e debet potenti&aelig; in E: </s>
					<s id="N1D2FF"><!-- NEW -->idem dico &longs;i attollatur in AP, nam potentia <lb/>trahens in P, per CP, e&longs;t ad potentiam in E, vt QA ad AP, vel AE; <lb/>igitur pondus in D e&longs;t ad pondus in P vt FA ad QA. </s>
				</p>
				<p id="N1D307" type="main">
					<s id="N1D309">Quint&ograve;, hinc &longs;i duo ferant parallelipedum in &longs;itu inclinato v.g.vt AD, <lb/>ferunt in&aelig;qualiter, &longs;cilicet in ratione AD FA, itemque &longs;i ferant in &longs;itu <lb/>inclinato AP, vel AC, donec tandem AE attollatur in B, nihil amplius <lb/>&longs;u&longs;tinet potentia in B, &amp; potentia in A totum &longs;u&longs;tinet. </s>
				</p>
				<p id="N1D312" type="main">
					<s id="N1D314"><!-- NEW -->Sext&ograve;, hinc c&ugrave;m attollitur cylindrus continu&ograve; min&ugrave;s &longs;entitur pondus <lb/>&amp; facili&ugrave;s attollitur; &longs;ic qui attollunt pontes illos ver&longs;atiles, initio maxi&shy;<lb/>mo ni&longs;u, &amp; modico &longs;ub finem trahunt. </s>
				</p>
				<p id="N1D31C" type="main">
					<s id="N1D31E"><!-- NEW -->Septim&ograve; ob&longs;eruabis, &longs;i circa centrum immobile A attollatur cylindrus <lb/>AE fune BE, potentia po&longs;ita in B, vel fune EO, potentia po&longs;ita in O; </s>
					<s id="N1D324"><!-- NEW --><lb/>h&aelig;c deber e&longs;&longs;e minor qu&agrave;m po&longs;ita in B, vt autem cogno&longs;catur propor&shy;<lb/>tio, fiat angulus PAE &aelig;qualis angulo OEB; </s>
					<s id="N1D32B"><!-- NEW -->ducatur PQ; </s>
					<s id="N1D32F"><!-- NEW -->dico poten&shy;<lb/>tiam in O e&longs;&longs;e ad potentiam B, vt AQ ad AP, quia &longs;i anguli OEB &amp; <lb/>PAQ &longs;unt &aelig;quales etiam anguli APQ &amp; AEB &longs;unt &aelig;quales; igitur <lb/>perinde e&longs;t &longs;iue trahatur PA circa A per lineam PQ, &longs;iue trahatur EA <lb/>circa A per lineam EB. <!-- KEEP S--></s>
					<s id="N1D33C">Idem dictum &longs;it de aliis lincis. </s>
				</p>
				<p id="N1D33F" type="main">
					<s id="N1D341"><!-- NEW -->Octau&ograve; &longs;i attollendum &longs;it rectangulum non quidem circa axem; </s>
					<s id="N1D345"><!-- NEW -->&longs;ed <lb/>circa angulum immobilem, etiam decre&longs;cit proportio ponderis, &longs;it enim <lb/>v.g. <expan abbr="quadrat&utilde;">quadratum</expan> ACFD, &longs;itque AD horizontalis, AI perpendicularis, duca&shy;<lb/>tur diagonalis AF, attollatur circa punctum A, ita vt transferatur in AG, <lb/>ducatur GB perpendicularis: </s>
					<s id="N1D355"><!-- NEW -->dico potentiam in G e&longs;&longs;e ad potentiam in <lb/>in A, vt AB ad AD; quippe res eodem modo &longs;e habet, ac &longs;i AF a&longs;cenderet <pb pagenum="207" xlink:href="026/01/239.jpg"/>per arcum FM, donec vbi AF traducta &longs;it in AM, tunc enim nulla erit <lb/>potentia in M propter &aelig;quilibrium. </s>
				</p>
				<p id="N1D362" type="main">
					<s id="N1D364"><!-- NEW -->Non&ograve;, hinc initio decre&longs;cit in maiori proportione ratione pr&aelig;pon&shy;<lb/>deranti&aelig;; </s>
					<s id="N1D36A"><!-- NEW -->quia po&longs;ita ba&longs;i KN, angulus KAN e&longs;t omnium maximus; at <lb/>ver&ograve; decre&longs;cit in minori proportione initio ratione &longs;egmenti horizon&shy;<lb/>talis AD, in quam cadit perpendicularis. </s>
				</p>
				<p id="N1D372" type="main">
					<s id="N1D374"><!-- NEW -->Decim&ograve;, &longs;i &longs;it rectangulum oblongum horizontale vt AE diffici&shy;<lb/>li&ugrave;s attolletur; </s>
					<s id="N1D37A"><!-- NEW -->quia quadratum AF figur&aelig; prioris debet tant&ugrave;m attolli <lb/>per arcum FM, vt &longs;tatuatur in &aelig;quilibro; </s>
					<s id="N1D380"><!-- NEW -->at ver&ograve; rectangulum AE fi&shy;<lb/>gur&aelig; huius attolli debet per arcum EC long&egrave; maiorem; </s>
					<s id="N1D386"><!-- NEW -->igitur difficili&ugrave;s: <lb/>porr&ograve; potentia in D e&longs;t ad potentiam in F vt AG ad AF, vt con&longs;tat ex <lb/>dictis. </s>
				</p>
				<p id="N1D38E" type="main">
					<s id="N1D390"><!-- NEW -->Vndecim&ograve;, denique, &longs;i &longs;it rectangulum oblongum, &longs;ed verticale vt <lb/>HK long&egrave; facili&ugrave;s attolletur, quia diagonalis HK debet tant&ugrave;m percur&shy;<lb/>rere arcum KM vt &longs;tatuatur in &aelig;quilibrio; </s>
					<s id="N1D398"><!-- NEW -->igitur minorem, igitur long&egrave; <lb/>facili&ugrave;s; porr&ograve; h&aelig;c omnia omnibus experimentis con&longs;entiunt, &amp; ex <lb/>principiis facillimis demon&longs;trantur. </s>
					<s id="N1D3A0">H&aelig;c paul&ograve; fu&longs;i&ugrave;s pro&longs;equutus &longs;um, <lb/>quia pertinent ad rationem plani inclinati. </s>
				</p>
				<p id="N1D3A5" type="main">
					<s id="N1D3A7"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 19.<emph.end type="center"/></s>
				</p>
				<p id="N1D3B3" type="main">
					<s id="N1D3B5"><!-- NEW --><emph type="italics"/>In plano inclinato acceleratur motus in eadem proportione qua acceleratur <lb/>in perpendiculari<emph.end type="italics"/>; </s>
					<s id="N1D3C0"><!-- NEW -->&longs;it enim planum inclinatum AC, perpendicularis A <lb/>E, in qua primo tempore &longs;en&longs;ibili percurrat AD; </s>
					<s id="N1D3C6"><!-- NEW -->&longs;ecund&ograve; DE; </s>
					<s id="N1D3CA"><!-- NEW -->cert&egrave; dato <lb/>etiam tempore lic&egrave;t maiore percurret AB; </s>
					<s id="N1D3D0"><!-- NEW -->igitur alio &aelig;quali percurret <lb/>CB; </s>
					<s id="N1D3D6"><!-- NEW -->nam vt &longs;e habet AE ad AG; </s>
					<s id="N1D3DA"><!-- NEW -->ita &longs;e habet AD ad AB, &amp; DE ad BC; <lb/>qu&aelig; omnia &longs;unt certa. </s>
				</p>
				<p id="N1D3E0" type="main">
					<s id="N1D3E2"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 20.<emph.end type="center"/></s>
				</p>
				<p id="N1D3EE" type="main">
					<s id="N1D3F0"><!-- NEW --><emph type="italics"/>Hinc &aelig;qualis ine&longs;t velocitas mobili decur&longs;a AC, inclinata &amp; decur&longs;a AE <lb/>perpendiculari,<emph.end type="italics"/> probatur, motus per AC e&longs;t ad motum per AE, vt AE, ad <lb/>AC per Th.6.igitur motus per AC e&longs;t tardior; </s>
					<s id="N1D3FD"><!-- NEW -->&longs;ed motu tardiore min&ugrave;s <lb/>&longs;patium conficitur &aelig;quali tempore in ca proportione, in qua motus e&longs;t <lb/>tardior; </s>
					<s id="N1D405"><!-- NEW -->&longs;ed proportio velocitatis e&longs;t vt AC ad AE: </s>
					<s id="N1D409"><!-- NEW -->atqui qu&acirc; propor&shy;<lb/>tione motus e&longs;t tardior alio, maius &longs;patium decurri debet, vt motu acce&shy;<lb/>lerato per minora crementa acquiratur velocitas alteri &aelig;qualis; </s>
					<s id="N1D411"><!-- NEW -->igitur <lb/>e&ograve; &longs;patium debet e&longs;&longs;e maius, qu&ograve; motus erit tardior; </s>
					<s id="N1D417"><!-- NEW -->igitur debet percur&shy;<lb/>ri AC in inclinata, &amp; AE in perpendiculari, vt &longs;it &aelig;qualis velocitas; </s>
					<s id="N1D41D"><!-- NEW --><lb/>&longs;it autem v.g. <!-- REMOVE S-->AC dupla AE, cert&egrave; motus per AC e&longs;t &longs;ubduplus motus <lb/>pes AE; </s>
					<s id="N1D426"><!-- NEW -->ducatur EB perpendicularis, cert&egrave; AB e&longs;t &longs;ubdupla AE; </s>
					<s id="N1D42A"><!-- NEW -->igitur <lb/>eo tempore, quo percurret AE, percurret tant&ugrave;m AB &longs;ubduplum &longs;cili&shy;<lb/>cet motu &longs;ubduplo; </s>
					<s id="N1D432"><!-- NEW -->igitur tempore &aelig;quali BC triplam AB; </s>
					<s id="N1D436"><!-- NEW -->&longs;ed tem&shy;<lb/>poribus &aelig;qualibus acquiruntur &aelig;qualia velocitatis momenta; </s>
					<s id="N1D43C"><!-- NEW -->igitur ve&shy;<lb/>locitas in C e&longs;t dupla illius, qu&aelig; erat in B; </s>
					<s id="N1D442"><!-- NEW -->&longs;ed qu&aelig; e&longs;t in E e&longs;t dupla il&shy;<lb/>lius, qu&aelig; e&longs;t in B; igitur qu&aelig; e&longs;t in E e&longs;t &aelig;qualis illi, qu&aelig; e&longs;t in C. <!-- KEEP S--></s>
					<s id="N1D449"><!-- NEW -->Adde <lb/>quod in ea proportione in qua motus e&longs;t tardior, &longs;patium e&longs;t maius, vt <lb/>&aelig;qualis velocitas acquiratur; </s>
					<s id="N1D451"><!-- NEW -->igitur &longs;i qu&aelig;libet pars &longs;patij motum auget <pb pagenum="208" xlink:href="026/01/240.jpg"/>min&ugrave;s quidem qua proportione motus e&longs;t tardior, &amp; &longs;i &longs;patium AC ma&shy;<lb/>jus e&longs;t &longs;patio AE in ca proportione in qua motus per AE e&longs;t velocior; </s>
					<s id="N1D45C"><!-- NEW --><lb/>pauciores partes &longs;patij AE augent motum, &longs;ed pl&ugrave;s &longs;ingul&aelig;, &amp; plures <lb/>&longs;patij AC augent motum, &longs;ed min&ugrave;s &longs;ingul&aelig;; </s>
					<s id="N1D463"><!-- NEW -->&longs;ed cum &longs;int plures in ea&shy;<lb/>dem proportione, in qua min&ugrave;s augent; cert&egrave; plures quarum &longs;ingul&aelig; mi&shy;<lb/>n&ugrave;s augent, &longs;imul &longs;umpt&aelig; &aelig;qualiter augent, v.g. <!-- REMOVE S-->&longs;int AC 4. partes, &amp; AE <lb/>2. &longs;ingul&aelig; AE augeant motum vt 4. &amp; &longs;ingul&aelig; AC vt 2. quia in ca pro&shy;<lb/>portione min&ugrave;s augent in qua 2. &longs;unt ad 4. cert&egrave; 2. &longs;imul &longs;umpt&aelig; augent <lb/>motum vt 8. &amp; 4. &longs;imul &longs;umpt&aelig; etiam vt 8. qu&aelig; dicta &longs;unt in gratiam <lb/>Geometrarum, &longs;ed meli&ugrave;s adhuc ex dictis patebit. </s>
				</p>
				<p id="N1D475" type="main">
					<s id="N1D477"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 21.<emph.end type="center"/></s>
				</p>
				<p id="N1D483" type="main">
					<s id="N1D485"><!-- NEW --><emph type="italics"/>Hinc aqualis e&longs;&longs;et ictus ab eodem mobili po&longs;t motum per AE. AF. AC. <lb/>AG.<emph.end type="italics"/> quia e&longs;&longs;et acqui&longs;itus &aelig;qualis impetus; igitur e&longs;&longs;et &aelig;qualis ictus, <lb/>quod cert&egrave; mirabile e&longs;t. </s>
				</p>
				<p id="N1D492" type="main">
					<s id="N1D494"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 22.<emph.end type="center"/></s>
				</p>
				<p id="N1D4A0" type="main">
					<s id="N1D4A2"><!-- NEW --><emph type="italics"/>Hinc pote&longs;t determinari &longs;patij qu&aelig;cunque petita proportio ad &longs;patium da&shy;<lb/>tum<emph.end type="italics"/>; </s>
					<s id="N1D4AD"><!-- NEW -->v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;it ictus inflictus &agrave; mobili decur&longs;a perpendiculari AE: </s>
					<s id="N1D4B5"><!-- NEW -->vis &aelig;&shy;<lb/>qualem ictum &longs;ed confecto &longs;patio duplo; </s>
					<s id="N1D4BB"><!-- NEW -->accipe AC duplam AE: vis &aelig;&shy;<lb/>qualem ictum &longs;ed confecto &longs;patio triplo, accipe AG triplam AE. <!-- KEEP S--></s>
				</p>
				<p id="N1D4C2" type="main">
					<s id="N1D4C4"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 23.<emph.end type="center"/></s>
				</p>
				<p id="N1D4D0" type="main">
					<s id="N1D4D2"><!-- NEW --><emph type="italics"/>Tempora quibus percurruntur &longs;patia planorum &longs;unt vt planorum longitu&shy;<lb/>dines,<emph.end type="italics"/> v.g.tempus quo percurritur planum inclinatum AC e&longs;t ad tempus <lb/>quo percurritur perpendicularis AE, vt AC ad AE; </s>
					<s id="N1D4DF"><!-- NEW -->probatur, c&ugrave;m enim <lb/>mobile in C &amp; in E habeat &aelig;qualem impetum &longs;eu velocitatem per Th. <!-- REMOVE S--><lb/>20. cert&egrave; c&ugrave;m motus in AC &longs;it &longs;ubduplus v.g. <!-- REMOVE S-->motus in AE, e&longs;t enim <lb/>vt AE ad AC per Th.6. igitur cum &longs;ubduplo motu &aelig;quali tempore ac&shy;<lb/>quiritur &longs;ubduplus impetus; </s>
					<s id="N1D4EE"><!-- NEW -->igitur tempore duplo &aelig;qualis impetus; </s>
					<s id="N1D4F2"><!-- NEW -->at&shy;<lb/>qui tempus motus per AC e&longs;t ad tempus motus per AE vt AC ad AE, <lb/>ide&longs;t duplum; </s>
					<s id="N1D4FA"><!-- NEW -->adde quod &longs;i &aelig;qualis impetus e&longs;t in C &amp; in E; </s>
					<s id="N1D4FE"><!-- NEW -->igitur &aelig;qua&shy;<lb/>lis in D &amp; in B, &longs;ed AB e&longs;t ad BC vt AD ad DE; </s>
					<s id="N1D504"><!-- NEW -->igitur &longs;i cre&longs;cit impe&shy;<lb/>tus per partes &longs;ubduplas in AC, nece&longs;&longs;ari&ograve; cre&longs;cit per partes duplas in <lb/>&longs;patio, atque in tempore; </s>
					<s id="N1D50C"><!-- NEW -->c&ugrave;m enim motus &longs;it &longs;ubduplus, tarditas e&longs;t &longs;ub&shy;<lb/>dupla; </s>
					<s id="N1D512"><!-- NEW -->igitur acquiritur in AC &longs;patium AB &longs;ubduplum AE eo tempore, <lb/>quo percurritur AE, &longs;i enim accipiantur &aelig;qualia tempora, &longs;patia &longs;unt vt <lb/>motus; </s>
					<s id="N1D51A"><!-- NEW -->&longs;ed motus per AC e&longs;t &longs;ubduplus; </s>
					<s id="N1D51E"><!-- NEW -->igitur &longs;patium AB e&longs;t &longs;ubdu&shy;<lb/>plum AE; </s>
					<s id="N1D524"><!-- NEW -->&longs;ed tempore &aelig;quali conficit BC triplum AB, igitur tota AC <lb/>e&longs;t dupla AE; </s>
					<s id="N1D52A"><!-- NEW -->&longs;ed percurritur tempore duplo; </s>
					<s id="N1D52E"><!-- NEW -->igitur tempora &longs;unt vt <lb/><expan abbr="l&otilde;gitudines">longitudines</expan> planorum; </s>
					<s id="N1D537"><!-- NEW -->&longs;ed clari&ugrave;s, &amp; breui&ugrave;s illud demon&longs;tro; </s>
					<s id="N1D53B"><!-- NEW -->In ea pro&shy;<lb/>portione erit maius tempus per AC qu&agrave;m per AE, in qua minor e&longs;t <lb/>motus per AC qu&agrave;m per AE; </s>
					<s id="N1D543"><!-- NEW -->&longs;i enim motus per AF e&longs;&longs;et ad motum per <lb/>AE vt AF ad AE, cert&egrave; &aelig;quali tempore AF &amp; AE percurrerentur; </s>
					<s id="N1D549"><!-- NEW -->igitur <lb/>qua proportione motus per AF e&longs;t minor, tempus e&longs;t maius; </s>
					<s id="N1D54F"><!-- NEW --><expan abbr="tant&utilde;dem">tantundem</expan> <lb/>enim additur tempori, quantum detrahitur motui; igitur tempora &longs;unt <pb pagenum="209" xlink:href="026/01/241.jpg"/>vt line&aelig;. </s>
					<s id="N1D55D">Hinc acquiritur velocitas &aelig;qualis, vt dictum e&longs;t Th. 20. quia <lb/>&longs;i tant&ugrave;m addit tempus per AF &longs;upra tempus per AE, quantum addit <lb/>motus per AE &longs;upra motum per AF, haud dubi&egrave; e&longs;t &aelig;qualitas. </s>
				</p>
				<p id="N1D564" type="main">
					<s id="N1D566"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 24.<emph.end type="center"/></s>
				</p>
				<p id="N1D572" type="main">
					<s id="N1D574"><emph type="italics"/>Hinc pote&longs;t determinari longitudo plani, qu&aelig; dato tempore percurratur,<emph.end type="italics"/> v. <!-- REMOVE S--><lb/>g. <!-- REMOVE S-->perpendicularis 3. pedum percurritur 30&tprime;. </s>
					<s id="N1D581">igitur &longs;i a&longs;&longs;umas planum <lb/>inclinatum 6. pedum, percurretur 1&Prime;. </s>
					<s id="N1D586">&longs;i 12. 2&prime;. </s>
					<s id="N1D589">&longs;i 24. 4&Prime;. </s>
					<s id="N1D58C">atque ita dein&shy;<lb/>ceps; </s>
					<s id="N1D591"><!-- NEW -->hinc po&longs;&longs;et dari planum inclinatum quod tant&ugrave;m 100. annis per&shy;<lb/>curretur, &longs;cilicet &longs;i longitudo plani a&longs;&longs;umpti &longs;it &aelig;que multiplex longitu&shy;<lb/>dinis 12. pedum atque 100. anni vnius &longs;ecundi; quod facil&egrave; e&longs;t, im&ograve; da&shy;<lb/>to plano cuiu&longs;cunque longitudinis, pote&longs;t dari tempus quodcunque quo <lb/>percurratur, de quo infr&agrave;. </s>
				</p>
				<p id="N1D59D" type="main">
					<s id="N1D59F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 25.<emph.end type="center"/></s>
				</p>
				<p id="N1D5AB" type="main">
					<s id="N1D5AD"><!-- NEW --><emph type="italics"/>Determinari pote&longs;t quantum &longs;patium conficiat mobile in plano inclinato; <lb/>dum conficit perpendicularem<emph.end type="italics"/>; </s>
					<s id="N1D5B8"><!-- NEW -->&longs;it enim perpendiculum AE, inclinata AC; </s>
					<s id="N1D5BC"><!-- NEW --><lb/>ducatus, EB perpendicularis in AC; </s>
					<s id="N1D5C1"><!-- NEW -->dico quod eodem tempore percur&shy;<lb/>ret AE &amp; AB, quod demon&longs;tro; </s>
					<s id="N1D5C7"><!-- NEW -->quia triangula EAB, EAC &longs;unt pro&shy;<lb/>portionalia: </s>
					<s id="N1D5CD"><!-- NEW -->igitur AB e&longs;t ad AE vt AE ad AC; </s>
					<s id="N1D5D1"><!-- NEW -->igitur motus in AB <lb/>e&longs;t ad motum in DE vt AB ad AE; </s>
					<s id="N1D5D7"><!-- NEW -->igitur &longs;i tempora a&longs;&longs;umantur &aelig;qua&shy;<lb/>lia &longs;patia erunt vt motus, vt patet, id e&longs;t motu &longs;ubduplo acquiritur &longs;pa&shy;<lb/>tium &longs;ubduplum: </s>
					<s id="N1D5DF"><!-- NEW -->nec alia e&longs;&longs;e pote&longs;t regula tarditatis, igitur &longs;patia <lb/>erunt vt AB ad AE, id e&longs;t in ratione motuum; </s>
					<s id="N1D5E5"><!-- NEW -->lic&egrave;t enim motus veloci&shy;<lb/>tas cre&longs;cat, attamen &longs;i accipiatur velocitas compo&longs;ita ex &longs;ubdupla maxi&shy;<lb/>m&aelig; &amp; minim&aelig;, percurretur AE motu &aelig;quabili &aelig;quali tempore; &longs;ed <lb/>compo&longs;ita ex &longs;ubdupla maxim&aelig; &amp; minim&aelig; per AB habet <expan abbr="e&atilde;dem">eandem</expan> ra&shy;<lb/>tionem ad priorem compo&longs;itam, qu&agrave;m motus per AB ad motum per AE. <lb/>&amp; hic quam habet AB ad AE. <!-- KEEP S--></s>
					<s id="N1D5F8">Sed h&aelig;c &longs;unt clara. </s>
				</p>
				<p id="N1D5FB" type="main">
					<s id="N1D5FD"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 26.<emph.end type="center"/></s>
				</p>
				<p id="N1D609" type="main">
					<s id="N1D60B"><!-- NEW --><emph type="italics"/>Hinc &aelig;quali tempore de&longs;cendit per inclinatam BE,<emph.end type="italics"/> &longs;it enim inclinata <lb/>AG, perpendicularis AE; &longs;it quoque FC perpendicularis in AG, &amp; FD, <lb/>in CF. <!-- KEEP S--></s>
					<s id="N1D619">Dico qu&ograve;d eo tempore, quo conficit CD perpendicularem <lb/>conficit CF inclinatam per Th.24. e&longs;t enim DF perpendicularis in IC. <lb/>&longs;icut FC in AG, &longs;ed CD e&longs;t &aelig;qualis AF, vt patet. </s>
				</p>
				<p id="N1D620" type="main">
					<s id="N1D622"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 27.<emph.end type="center"/></s>
				</p>
				<p id="N1D62E" type="main">
					<s id="N1D630"><!-- NEW --><emph type="italics"/>Hinc cognito &longs;patio quod percurritur in plano inclinato, cogno&longs;citur &longs;pa&shy;<lb/>tium quod conficeretur tempore &aelig;quali in perpendiculari,<emph.end type="italics"/> &longs;it enim tempus <lb/>quo percurritur AC; ducatur ex C perpendicularis CF. <!-- KEEP S--></s>
					<s id="N1D63E"><!-- NEW -->Dico confici AF <lb/>in perpendiculari eo tempore, quo percurritur AC: </s>
					<s id="N1D644"><!-- NEW -->vel &longs;it inclinata C <lb/>F, ducatur ex F perpendicularis FD; percurretur CD eo tempore, quo <lb/>percurritur CF, qu&aelig; probantur per Th.24.&amp; 25. </s>
				</p>
				<pb pagenum="210" xlink:href="026/01/242.jpg"/>
				<p id="N1D650" type="main">
					<s id="N1D652"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 28.<emph.end type="center"/></s>
				</p>
				<p id="N1D65E" type="main">
					<s id="N1D660"><!-- NEW --><emph type="italics"/>Hinc per omnes chordas in&longs;criptas circulo ad alteram extremitatem, <lb/>diametri perpendicularis terminatas de&longs;cendit mobile &aelig;quali tempore<emph.end type="italics"/>; </s>
					<s id="N1D66B"><!-- NEW -->a &longs;it <lb/>enim circulus centro B; </s>
					<s id="N1D671"><!-- NEW -->&longs;it diameter AE perpendicularis deor&longs;um; </s>
					<s id="N1D675"><!-- NEW -->du&shy;<lb/>catur AC inclinata, t&ugrave;m CE; </s>
					<s id="N1D67B"><!-- NEW -->de&longs;cendat haud dubi&egrave; &aelig;quali tempore <lb/>per AC.CE.AE. per Th.24.25.26. idem dico de omnibus aliis AD.D <lb/>E. AG.GE.AF.FE; </s>
					<s id="N1D683"><!-- NEW -->e&longs;t enim eadem omnibus ratio; hinc non pote&longs;t da&shy;<lb/>ri planum tam paru&aelig; longitudinis, quo non po&longs;&longs;it dari minus, quod dato <lb/>tempore percurratur. </s>
					<s id="N1D68B"><!-- NEW -->H&aelig;c e&longs;t illa propo&longs;itio toties &agrave; Galileo enuncia&shy;<lb/>ta; </s>
					<s id="N1D691"><!-- NEW -->cum enim motus per BE &longs;it ad motum per GE vt GE ad BE, &amp; tem&shy;<lb/>pus per BE ad tempus per GE vt BE ad GE; </s>
					<s id="N1D697"><!-- NEW -->cumque &longs;it vt BE ad GE <lb/>rita GE ad AE; </s>
					<s id="N1D69D"><!-- NEW -->cert&egrave; motus per AE e&longs;t ad motum per GE vt AE ad G <lb/>E; </s>
					<s id="N1D6A3"><!-- NEW -->igitur tant&ugrave;m addit AE &longs;upra GE ratione &longs;patij, quantum ratione <lb/>motus: igitur tempore &aelig;quali per AE. &amp; GE fiet motus, idem dico de <lb/>aliis chordis. </s>
				</p>
				<p id="N1D6AB" type="main">
					<s id="N1D6AD"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 29.<emph.end type="center"/></s>
				</p>
				<p id="N1D6B9" type="main">
					<s id="N1D6BB"><!-- NEW --><emph type="italics"/>Hinc datis duabus inclinatis &aelig;qualibus pote&longs;t determinari ratio tempo&shy;<lb/>rum, in quibus percurruntur<emph.end type="italics"/>; </s>
					<s id="N1D6C6"><!-- NEW -->&longs;int enim AG.AH &aelig;quales, &longs;ed diuer&longs;&aelig; incli&shy;<lb/>nationis; haud dubi&egrave; cum &aelig;quali tempore AG. AF percurrantur per <lb/>Th. 27. tempora quibus percurruntur AGAH erunt vt tempora quibus <lb/>percurruntur AF AH, &amp; h&aelig;c vt tempora quibus percurruntur AE. <!-- REMOVE S-->A <lb/>K, &amp; h&aelig;c vt radices quadrat&aelig; illorum &longs;patiorum AE. AK, cum autem <lb/>&longs;patia &longs;int vt quadrata temporum, vel in duplicata ratione, &longs;i inter AE <lb/>&amp; AK &longs;it media proportionalis AN. v. <!-- REMOVE S-->g. <!-- REMOVE S-->tempus quo percurretur AE <lb/>erit ad tempus, quo percurretur AK vt AE ad AN, vel AN ad AK. </s>
				</p>
				<p id="N1D6DE" type="main">
					<s id="N1D6E0"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 30.<emph.end type="center"/></s>
				</p>
				<p id="N1D6EC" type="main">
					<s id="N1D6EE"><emph type="italics"/>Hinc cognito tempore quo percurritur data portio linea cogno&longs;ci potest <lb/>tempus, quo percurritur aliud &longs;patium vel alia portio,<emph.end type="italics"/> v. <!-- REMOVE S-->g. <!-- REMOVE S-->cogno&longs;co tem&shy;<lb/>pus quo percurritur AK, &amp; volo cogno&longs;cere tempus quo percurritur K <lb/>E, con&longs;equenti motu ex AK, &longs;cio tempus quo percurritur &longs;ola AE, quod <lb/>e&longs;t ad tempus quo percurritur AK vt AE ad AN per Th. 28. igitur <lb/>tempus quo percurritur KE con&longs;equenti motu ex AK e&longs;t ad tempus, <lb/>quo percurritur AK vt EN ad NA, vel vt NK, ad NA. </s>
				</p>
				<p id="N1D706" type="main">
					<s id="N1D708"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 30.<emph.end type="center"/></s>
				</p>
				<p id="N1D714" type="main">
					<s id="N1D716"><!-- NEW --><emph type="italics"/>Hinc in planis in&aelig;qualibus t&ugrave;m in longitudine, t&ugrave;ns in inclinatione, <lb/>pote&longs;t &longs;ciri ratio temporum, quibus percurruntur<emph.end type="italics"/>; </s>
					<s id="N1D721"><!-- NEW -->&longs;int enim AC AR duo pla&shy;<lb/>na; </s>
					<s id="N1D727"><!-- NEW -->&longs;it autem AE perpendicularis indefinita; </s>
					<s id="N1D72B"><!-- NEW -->diuidatur AC bifariam <lb/>in V ducta perpendiculari VB; </s>
					<s id="N1D731"><!-- NEW -->ex B fiat circulus, &longs;ecabit puncta <lb/>ACE; </s>
					<s id="N1D737"><!-- NEW -->&longs;ecat etiam AR; </s>
					<s id="N1D73B"><!-- NEW -->in D igitur AC, &amp; AD percurruntur &aelig;quali <lb/>tempore per Th. 27. &longs;imiliter fiat circulus ART eodem modos cert&egrave; A <lb/>R &amp; AT percurruntur &aelig;qualibus temporibus per Th. 27. igitur tempus, <lb/>quo per curritur AR, vel AD e&longs;t ad tempus, quo percurritur AR vt <lb/>tempus, quo percurritur AE ad tempus, quo percurritur AT; </s>
					<s id="N1D747"><!-- NEW -->&longs;ed h&aelig;c <pb pagenum="211" xlink:href="026/01/243.jpg"/>&longs;unt vt radices AEAT, id e&longs;t tempus quo percurritur AE e&longs;t ad tem&shy;<lb/>pus, quo percurritur AT, vt AE ad mediam proportionalem inter AE <lb/>AT, vel vt AD ad mediam proportionalem inter AD AR; quippe AD <lb/>e&longs;t ad AR vt AE ad AT. </s>
				</p>
				<p id="N1D756" type="main">
					<s id="N1D758"><!-- NEW -->Galileus ver&ograve; demon&longs;trat rationem i&longs;torum temporum e&longs;&longs;e compo&longs;i&shy;<lb/>tam ex ratione longitudinem planorum &amp; ex ratione &longs;ubduplicata al&shy;<lb/>titudinum eorumdem permutatim accepta: pro quo ob&longs;erua &agrave; Galileo <lb/>rationem duplicatam appellari duplam, &amp; &longs;ubduplicatam appellari &longs;ub&shy;<lb/>duplam. </s>
				</p>
				<p id="N1D764" type="main">
					<s id="N1D766"><!-- NEW -->Ob&longs;eruabis denique plurima ex his colligi po&longs;&longs;e pr&aelig;&longs;ertim ex Th. 27. <lb/>qu&aelig; quia &longs;unt pur&egrave; geometrica, cert&egrave; phy&longs;ic&etail; minim&egrave; competunt; aliqua <lb/>tamen omittere non po&longs;&longs;um. </s>
				</p>
				<p id="N1D76E" type="main">
					<s id="N1D770"><!-- NEW -->Prim&ograve;, &longs;i &longs;int duo plana in&aelig;qualia ad angulum rectum, qui &longs;u&longs;tinea&shy;<lb/>tur ab horizontali, determinari po&longs;&longs;unt tempora de&longs;cen&longs;uum &longs;it enim <lb/>triangulum orthogonium ABE, ita vt AE &longs;it horizontalis; </s>
					<s id="N1D778"><!-- NEW -->ducatur B <lb/>G indefinita perpendicularis in ba&longs;im AE; </s>
					<s id="N1D77E"><!-- NEW -->t&ugrave;m FA perpendicularis in <lb/>AB; </s>
					<s id="N1D784"><!-- NEW -->t&ugrave;m FC perpendicularis in BE; </s>
					<s id="N1D788"><!-- NEW -->t&ugrave;m denique GE in BE; </s>
					<s id="N1D78C"><!-- NEW -->dico BA <lb/>BFBC percurri temporibus &aelig;qualibus, item BE, BG, EG, etiam &aelig;qua&shy;<lb/>libus; </s>
					<s id="N1D794"><!-- NEW -->igitur tempus, quo percurritur BA e&longs;t ad tempus quo percurri&shy;<lb/>tur BE, vt tempus, quo percurritur BF ad tempus quo percurritur BG; <lb/>h&aelig;c porr&ograve; &longs;unt in &longs;ubduplicata ratione BFBG vel BC, &amp; BE. <!-- KEEP S--></s>
				</p>
				<p id="N1D79D" type="main">
					<s id="N1D79F"><!-- NEW -->Secund&ograve;, &longs;i planum &longs;u&longs;tinens angulum rectum non &longs;it parallelum <lb/>horizonti 6. res &longs;imiliter determinari poterit; </s>
					<s id="N1D7A5"><!-- NEW -->&longs;it enim triangulum or&shy;<lb/>thogonium ABC ex B, ducatur perpendicularis deor&longs;um indefinit&egrave; BF, <lb/>t&ugrave;m EA in AB, t&ugrave;m DC in CB, t&ugrave;m EH parallela DC, t&ugrave;m GC in A <lb/>C; </s>
					<s id="N1D7AF"><!-- NEW -->denique AG parallela BF; dico quod BABEHE AE percurren&shy;<lb/>tur &aelig;qualibus temporibus item BCCDBD. </s>
				</p>
				<p id="N1D7B5" type="main">
					<s id="N1D7B7"><!-- NEW -->Terti&ograve;, &longs;iue de&longs;cendat ex B in C per lineam perpendicularem BC, <lb/>&longs;iue ex A per inclinatam AC, eodem modo de&longs;cendet &longs;iue per CD, &longs;iue <lb/>per CE; ratio e&longs;t clara, quia acquirit &aelig;qualem velocitatem &longs;iue ex A &longs;i&shy;<lb/>ue ex B de&longs;cendat pet Th. 20. erit autem tempus per CE ad tempus per <lb/>CD, vt CE ad CD per Th.23.&amp; motus per CE ad motum per CD, vt <lb/>CD ad CE per Th.6. po&longs;ito initio motus in C. <!-- KEEP S--></s>
				</p>
				<p id="N1D7C6" type="main">
					<s id="N1D7C8"><!-- NEW -->Quart&ograve;, pr&aelig;uio motu ex A vel ex B ad C pote&longs;t inueniri inclinata, <lb/>per quam mobile pergat moueri motu &longs;cilicet naturaliter accelerato, ita <lb/>vt &aelig;quali tempore illam conficiat; </s>
					<s id="N1D7D0"><!-- NEW -->&longs;i enim BC conficiet dato tempore; </s>
					<s id="N1D7D4"><!-- NEW --><lb/>igitur CF triplum CB conficiet tempore &aelig;quali; </s>
					<s id="N1D7D9"><!-- NEW -->&longs;it autem planum ho&shy;<lb/>rizontale EDK ad quod ex C ducendum &longs;it planum inclinatum, quod <lb/>eodem tempore percurratur, quo CF, diuidatur CF bifariam in H, &amp; ex <lb/>puncto H fiat arcus CK, ducaturque CK: </s>
					<s id="N1D7E3"><!-- NEW -->Dico CF &amp; CK &aelig;quali tem&shy;<lb/>pore confici per Th. 27. mod&ograve; ex quiete C procedat motus: </s>
					<s id="N1D7E9"><!-- NEW -->&longs;imiliter a&longs;&shy;<lb/>&longs;umi pote&longs;t alia horizontalis LM ducto arcu LF ex centro H; </s>
					<s id="N1D7EF"><!-- NEW -->nam CL <lb/>&amp; CF &aelig;quali tempore percurruntur; </s>
					<s id="N1D7F5"><!-- NEW -->&longs;i ver&ograve; pr&aelig;&longs;upponatur motus pr&aelig;&shy;<lb/>uius ex A vel ex B, haud dubi&egrave; CK breuiori tempore percurretur, qu&agrave;m <lb/>CF, idem dico de CL; </s>
					<s id="N1D7FD"><!-- NEW -->alioqui CE &amp; CI eodem pr&aelig;uio motu &longs;uppo <pb pagenum="212" xlink:href="026/01/244.jpg"/>&longs;ito &aelig;quali tempore percurrerentur, quod fal&longs;um e&longs;t; </s>
					<s id="N1D806"><!-- NEW -->nam &longs;it AC ad A <lb/>N vt AN ad AE; </s>
					<s id="N1D80C"><!-- NEW -->&longs;itque BC ad BO vt BO ad BI; </s>
					<s id="N1D810"><!-- NEW -->cert&egrave; tempus, quo <lb/>percurritur BC e&longs;t ad tempus, quo percurritur CI vt CB ad CO, &amp; <lb/>tempus quo percurritur BC e&longs;t ad tempus quo percurritur CE vt BC ad <lb/>CN; </s>
					<s id="N1D81A"><!-- NEW -->&longs;ed CN e&longs;t minor qu&agrave;m CO, vt con&longs;tat ex Geometria, quod bre&shy;<lb/>uiter in tironum <expan abbr="grati&atilde;">gratiam</expan> in terminis rationabilibus o&longs;tendo, &longs;it planum <lb/>inclinatum AE 9. &longs;itque AE id e&longs;t 9. ad AD. 6. vt AD ad AC 4. ex <lb/>centro C a&longs;&longs;umpta CH 3. ducatur arcus HB &amp; ex A ad pr&aelig;dictum ar&shy;<lb/>cum Tangens AB, t&ugrave;m ex BC G indefinit&egrave; &amp; ex E, EG perpendicularis <lb/>in EA; </s>
					<s id="N1D82C"><!-- NEW -->haud dubi&egrave; triangula CGE, CAB &longs;unt proportionalia; </s>
					<s id="N1D830"><!-- NEW -->igitur vt <lb/>CB;.ad CA. 4.ita CE 5. ad CG 6. 2/3; </s>
					<s id="N1D836"><!-- NEW -->igitur tota BG e&longs;t 9. 2/3; &longs;itque B <lb/>G ad BF, vt BF ad DC, quod vt fiat BG 9. 2/3 in BC 3. productum erit <lb/>29. igitur BF e&longs;t Rad. </s>
					<s id="N1D83E">quad. </s>
					<s id="N1D841"><!-- NEW -->29.igitur e&longs;t maior 5. &longs;ed &longs;i e&longs;&longs;et maior 5. C <lb/>M &amp; CD e&longs;&longs;ent &aelig;quales; </s>
					<s id="N1D847"><!-- NEW -->igitur CF e&longs;t maior CD; </s>
					<s id="N1D84B"><!-- NEW -->e&longs;t enim BF fer&egrave; 3. <lb/>1/2 paul&ograve; min&ugrave;s: </s>
					<s id="N1D851"><!-- NEW -->vt autem reperiatur linea inclinata, qu&aelig; percurratur &aelig;&shy;<lb/>quali tempore cum BC &longs;uppo&longs;ito pr&aelig;uio motu per BC, a&longs;&longs;umatur CK <lb/>&aelig;qualis CB id e&longs;t 3.partium, <expan abbr="fiat&qacute;ue">fiatque</expan> vt AC ad AK, ita AK ad AN; </s>
					<s id="N1D85D"><!-- NEW -->haud <lb/>dubi&egrave; percurret CN &aelig;quali tempore, quo BC; </s>
					<s id="N1D863"><!-- NEW -->vt ver&ograve; habeatur pun&shy;<lb/>ctum in horizontali, &longs;it AF perpendicularis bifariam diui&longs;a in K, &longs;it K <lb/>F diui&longs;a in 4. partes &aelig;quales, quibus addatur FP 1/4 KFEK V dupla FA, <lb/>&amp; producatur in X; </s>
					<s id="N1D86D"><!-- NEW -->ita vt EX &longs;it 1/4 EK: </s>
					<s id="N1D871"><!-- NEW -->dico quod pr&aelig;uio motu ex A in <lb/>K, &amp; deinde deflexo per KX conficietur KX &aelig;quali tempore cum AK; </s>
					<s id="N1D877"><!-- NEW --><lb/>&longs;i enim caderet mobile ex V primo tempore percurreret VL, id e&longs;t 1/4 V <lb/>K eo tempore, quo percurreret AK per Th.6. igitur &longs;ecundo tempore <lb/>&aelig;quali LK, id e&longs;t 3/4 VK; </s>
					<s id="N1D880"><!-- NEW -->igitur tertio tempore &aelig;quali KX 5/4 VK; nam eo&shy;<lb/>dem modo &longs;e habet in k &longs;iue de&longs;cendat ex V, &longs;iue ex A per Th.20. </s>
				</p>
				<p id="N1D886" type="main">
					<s id="N1D888"><!-- NEW -->Porr&ograve; vt habeatur in horizontali FS; </s>
					<s id="N1D88C"><!-- NEW -->&longs;it FR &aelig;qualis KF; </s>
					<s id="N1D890"><!-- NEW -->&longs;it FT &aelig;&shy;<lb/>qualis KR; </s>
					<s id="N1D896"><!-- NEW -->&longs;it arcus TS ex k: </s>
					<s id="N1D89A"><!-- NEW -->Dico quod ks e&longs;t linea qu&aelig;&longs;ita; </s>
					<s id="N1D89E"><!-- NEW -->nam &longs;i &longs;it <lb/>vt BS ad BZ, ita BZ ad BK, kz erit &aelig;qualis KF, vel AK; </s>
					<s id="N1D8A4"><!-- NEW -->&longs;ed tempus <lb/>quo percurritur AK e&longs;t ad tempus quo percurritur Dk vt BK ad AK <lb/>per Th.23.&amp; ad tempus, quo percurritur BS, vt Bk ad BZ, &amp; ad tem&shy;<lb/>pus quo percurritur ks vt Bk ad kz; ergo Ak &amp; ks percurruntur &aelig;&shy;<lb/>quali tempore, &longs;i kz &longs;it &aelig;qualis KF, quod &longs;ic breuiter demon&longs;tro, c&ugrave;m <lb/>figura apud Galileum de&longs;ideretur. </s>
					<s id="N1D8B2"><!-- NEW -->&longs;int AFFE &aelig;quales; </s>
					<s id="N1D8B6"><!-- NEW -->ducatur AE <lb/>qu&aelig; transferatur iu FG, &longs;itque GI &aelig;qualis AG, &longs;ic tota AG mihi repr&aelig;&shy;<lb/>&longs;entat totam BS &longs;uperioris figur&aelig;, vt con&longs;tat; </s>
					<s id="N1D8BE"><!-- NEW -->&longs;it autem AG ad AH vt A <lb/>H ad AI: </s>
					<s id="N1D8C4"><!-- NEW -->Dico GH e&longs;&longs;e &aelig;qualem AF; </s>
					<s id="N1D8C8"><!-- NEW -->&longs;it enim quadratum HD medi&aelig; <lb/>proportionalis: </s>
					<s id="N1D8CE"><!-- NEW -->Dico e&longs;&longs;e &aelig;quale rectangulo IC, d&ugrave;m AC &longs;it &aelig;qualis A <lb/>G; </s>
					<s id="N1D8D4"><!-- NEW -->igitur quadratum PR cuius latus e&longs;t &aelig;quale FG, &longs;eu AE continet <lb/>duo quadrata RDSN; </s>
					<s id="N1D8DA"><!-- NEW -->ergo GH e&longs;t &aelig;qualis VN; igitur GH quod erat <lb/>demon&longs;trandum. </s>
				</p>
				<p id="N1D8E0" type="main">
					<s id="N1D8E2"><!-- NEW -->Quint&ograve;, hinc nunquam ks vel kx pote&longs;t e&longs;&longs;e tripla Ak donec tan&shy;<lb/>dem perueniatur ad perpendiculum kH; </s>
					<s id="N1D8E8"><!-- NEW -->nam &longs;ecundo tempore percur&shy;<lb/>ritur kH triplum Ak, &longs;i primo percurritur Ak; </s>
					<s id="N1D8EE"><!-- NEW -->nunquam etiam ks vel <lb/>vlla alia inclinata pote&longs;t e&longs;&longs;e dupla tant&ugrave;m Ak; </s>
					<s id="N1D8F4"><!-- NEW -->&longs;ed &longs;emper e&longs;t maior, do-<pb pagenum="213" xlink:href="026/01/245.jpg"/>nec tandem perueniat ad horizontalem KY, qu&aelig; e&longs;t dupla AK, quia in <lb/>horizontali non acceleratur motus; </s>
					<s id="N1D8FF"><!-- NEW -->igitur cum impetu acqui&longs;ito in de&longs;&shy;<lb/>cen&longs;u AK, conficiet motu &aelig;quabili KY duplum AK per Th.42.l.3. po&longs;ito <lb/>qu&ograve;d non de&longs;truatur; atque ex his &longs;atis facil&egrave; intelligentur, qu&aelig;cumque <lb/>habes apud Galileum in dialog.3.&agrave; propo&longs;itione 3.ad 23. </s>
				</p>
				<p id="N1D909" type="main">
					<s id="N1D90B">Sext&ograve; non probat Galileus, &longs;ed tant&ugrave;m &longs;upponit mobile ad <expan abbr="e&atilde;dem">eandem</expan> <expan abbr="alti-tudin&etilde;">alti&shy;<lb/>tudinem</expan> a&longs;cendere po&longs;&longs;e motu reflexo ex qua de&longs;cendit, quod examinabi&shy;<lb/>mus lib. <!-- REMOVE S--><expan abbr="&longs;equ&etilde;ti">&longs;equenti</expan>, hinc non laborabimus in <expan abbr="examin&atilde;dis">examinandis</expan> prop.  24.25.26.27. </s>
				</p>
				<p id="N1D923" type="main">
					<s id="N1D925"><!-- NEW -->Septim&ograve;, cognito tempore, quo percurrit mobile perpendiculum EC <lb/>quod &longs;it diameter circuli; </s>
					<s id="N1D92B"><!-- NEW -->&longs;ciri pote&longs;t quo tempore percurrat duas chor&shy;<lb/>das &longs;imul EGGC; </s>
					<s id="N1D931"><!-- NEW -->&longs;it enim Tangens EF, &longs;itque vt FG ad FD, ita FD ad <lb/>FC; </s>
					<s id="N1D937"><!-- NEW -->cum EG &amp; EC de&longs;cendat &aelig;quali tempore per Th.27. cum in G &longs;it <lb/>idem motus, &longs;iue ex E, &longs;iue ex F de&longs;cendat per Th.20. cert&egrave; &longs;i de&longs;cendit <lb/>per EG dato tempore, quod &longs;it vt EG, de&longs;cendit per GC tempore, quod <lb/>e&longs;t vt GD; igitur tempus, quo de&longs;cendit per EC e&longs;t ad tempus, quo de&longs;&shy;<lb/>cendit per EGC, vt EG ad EGD. </s>
				</p>
				<p id="N1D943" type="main">
					<s id="N1D945"><!-- NEW -->Ob&longs;eruabis autem GF e&longs;&longs;e ad EF vt EF ad FC; </s>
					<s id="N1D949"><!-- NEW -->igitur FD e&longs;t media <lb/>inter FC GF, &amp; e&longs;t &aelig;qualis FE, igitur anguli FDE.FED &aelig;quales; </s>
					<s id="N1D94F"><!-- NEW -->&longs;ed FD <lb/>E e&longs;t &aelig;qualis duobus DCE.DEC, &amp; FEG, e&longs;t &aelig;qualis DCE; igitur duo G <lb/>DE DEC &longs;unt &aelig;quales. </s>
				</p>
				<p id="N1D957" type="main">
					<s id="N1D959"><!-- NEW -->Octau&ograve;, &longs;i accipiantur &aelig;quales horizontalis, &amp; perpendicularis, v.g. <!-- REMOVE S--><lb/>BA AC, ducaturque BC: </s>
					<s id="N1D960"><!-- NEW -->Dico nullum duci po&longs;&longs;e planum inclinatum &agrave; <lb/>puncto B ad perpendiculum AEM, quod breuiori tempore percurratur, <lb/>qu&agrave;m BC, nec intra angulum vt BR, nec extra vt BM; </s>
					<s id="N1D968"><!-- NEW -->&longs;it enim vt BC ad <lb/>BI ita BI ad BH, e&longs;t autem BI &aelig;qualis BA, igitur &longs;i BA, &longs;it 4.BC e&longs;t v.g. <!-- REMOVE S--><lb/>32. &amp; BH radix q.8.igitur HI e&longs;t fer&egrave; I paul&ograve; pl&ugrave;s; igitur cum BH percur&shy;<lb/>ratur &aelig;quali tempore cum AC, e&longs;t tempus, quo percurritur BH ad tem&shy;<lb/>pus quo percurritur HC vt BH ad HI. <!-- KEEP S--></s>
				</p>
				<p id="N1D976" type="main">
					<s id="N1D978"><!-- NEW -->Sit autem BR dupla AR, &longs;itque perpendicularis AK in BR; </s>
					<s id="N1D97C"><!-- NEW -->cert&egrave; KR <lb/>e&longs;t &longs;ubquadrupla BR; </s>
					<s id="N1D982"><!-- NEW -->igitur percurritur BL &aelig;qualis KR eo tempore quo <lb/>percurritur AR; </s>
					<s id="N1D988"><!-- NEW -->igitur BL &longs;it ad BV vt BV ad BR; </s>
					<s id="N1D98C"><!-- NEW -->igitur temporibus &aelig;&shy;<lb/>qualibus percurruntur BL LR; </s>
					<s id="N1D992"><!-- NEW -->igitur &longs;i tempus quo percurritur BL &longs;it vt <lb/>BH, tempus quo percurretur LR erit etiam vt BH; </s>
					<s id="N1D998"><!-- NEW -->igitur totum tempus <lb/>quo percurritur tota BR erit vt tota BE, &longs;ed tempus quo percurritur tota <lb/>BC e&longs;t tantum vt BI qu&etail; e&longs;t minor BC; </s>
					<s id="N1D9A0"><!-- NEW -->igitur BC breuiori tempore per&shy;<lb/>curritur qu&agrave;m BR; &longs;it <expan abbr="eti&atilde;">etiam</expan> vt BP ad BX ita BX ad BM, &longs;i BO e&longs;t 4. OP 2. <lb/>cert&egrave; BP e&longs;t rad.q. </s>
					<s id="N1D9AC"><!-- NEW -->12.id e&longs;t fer&egrave; 3.1/2 paul&ograve; min&ugrave;s, BM ver&ograve; e&longs;t dupla BA <lb/>vel BO; </s>
					<s id="N1D9B2"><!-- NEW -->igitur e&longs;t 8. ducatur ergo 8. in 4. 1/3 productum erit 28. cuius radix <lb/>e&longs;t fer&egrave; 5.1/3 paul&ograve; min&ugrave;s; </s>
					<s id="N1D9B8"><!-- NEW -->igitur BX e&longs;t 5.1/3 paul&ograve; min&ugrave;s; </s>
					<s id="N1D9BC"><!-- NEW -->cum autem BH <lb/>&longs;it 2.q.8.e&longs;t fer&egrave; 2.5/6, paul&ograve; min&ugrave;s; </s>
					<s id="N1D9C2"><!-- NEW -->igitur &longs;it vt BP 3.1/2 ad BX 5.1/3, ita BH <lb/>2.5/6 ad aliam; </s>
					<s id="N1D9C8"><!-- NEW -->cert&egrave; erit 144. id e&longs;t 4.&lpar;26/63&rpar;, lic&egrave;t min&ugrave;s acceptum &longs;it; </s>
					<s id="N1D9CC"><!-- NEW -->igitur <lb/>126.e&longs;t maior BI, qu&aelig; e&longs;t tant&ugrave;m 4; igitur BE breuiori tempore percur&shy;<lb/>ritur, qu&agrave;m BM. </s>
				</p>
				<p id="N1D9D4" type="main">
					<s id="N1D9D6"><!-- NEW -->Non&ograve;, per duas chordas quadrantis de&longs;cendit breuiori tempore mo&shy;<lb/>bile, qu&agrave;m per alteram tant&ugrave;m inferiorem &longs;cilicet &longs;it enim tant&ugrave;m <pb pagenum="214" xlink:href="026/01/246.jpg"/>quadrans ABG in quo &longs;int du&aelig; chord&aelig; GC, CB: </s>
					<s id="N1D9E1"><!-- NEW -->Dico qu&ograve;d per vtram&shy;<lb/>que ex G breuiori tempore de&longs;cendit, qu&agrave;m per inferiorem CB; </s>
					<s id="N1D9E7"><!-- NEW -->quia <lb/>per CB, &amp; GB &aelig;quali tempore de&longs;cendit per Th.27.&longs;ed per GCB bre&shy;<lb/>uiori tempore de&longs;cendit, qu&agrave;m per GB; </s>
					<s id="N1D9EF"><!-- NEW -->&longs;it enim GD perpendicularis <lb/>parallela AB; </s>
					<s id="N1D9F5"><!-- NEW -->&longs;it ED perpendicularis in CG, &amp; per 3. puncta GCD <lb/>ducatur circulus: </s>
					<s id="N1D9FB"><!-- NEW -->his po&longs;itis, GH &amp; GC eodem tempore percurrentur, <lb/>&amp; in C idem erit motus, &longs;iue ex G per GE, &longs;iue ex E per EC de&longs;cen&shy;<lb/>dat mobile per Th.27.&amp; 20. &longs;it autem EB ad EK vt EK ad EC, &longs;itque <lb/>BE v.g, dupla BE vel BA: </s>
					<s id="N1DA05"><!-- NEW -->dico EK e&longs;&longs;e &aelig;qualem BG; </s>
					<s id="N1DA09"><!-- NEW -->e&longs;t autem BH <lb/>maior BC vel AB, vel HG minor CK; </s>
					<s id="N1DA0F"><!-- NEW -->&longs;it etiam GH ad GI, ita GI <lb/>ad GB: </s>
					<s id="N1DA15"><!-- NEW -->dico tempus, quo de&longs;cendit per GCB e&longs;&longs;e ad tempus quo de&shy;<lb/>&longs;cendit per GB vt GCK ad compo&longs;itam ex GC, HI; </s>
					<s id="N1DA1B"><!-- NEW -->&longs;ed h&aelig;c e&longs;t ma&shy;<lb/>ior illa, vt patet ex Geometria, &amp; analytica; </s>
					<s id="N1DA21"><!-- NEW -->igitur breuiori tempore de&shy;<lb/>&longs;cendit per GCB, qu&agrave;m per GB; &longs;ed de hoc ali&agrave;s. </s>
				</p>
				<p id="N1DA27" type="main">
					<s id="N1DA29"><!-- NEW -->Sit enim EB 8. dupla &longs;cilicet AB; </s>
					<s id="N1DA2D"><!-- NEW -->&longs;it autem EE &longs;ubdupla EB ad <lb/>EK vt EK ad EB; </s>
					<s id="N1DA33"><!-- NEW -->a&longs;&longs;umatur GE, &longs;itque tempus, quo continetur GC. <lb/>vt GC, &amp; quo conficitur BC vt CK; </s>
					<s id="N1DA39"><!-- NEW -->igitur quo conficitur GCB vt <lb/>GCK: </s>
					<s id="N1DA3F"><!-- NEW -->&longs;imiliter &longs;it &longs;ecunda linea GB, &longs;itque tempus, quo percurritur <lb/>GH vt GC, vel NO &aelig;qualis GC, &longs;itque vt GH ad GN, ita GN ad <lb/>GB cert&egrave; &longs;i GH decurratur tempore GH, AB decurretur tempore <lb/>HN; </s>
					<s id="N1DA49"><!-- NEW -->&longs;ed HN maior e&longs;t MB, vel CG, vt con&longs;tat ex analytica; </s>
					<s id="N1DA4D"><!-- NEW -->adde quod <lb/>in figura prima &longs;it GI ad GM vt GM ad GB; </s>
					<s id="N1DA53"><!-- NEW -->cert&egrave; &longs;i tempore GI <lb/>percurratur GI, percurretur GB tempore GM; </s>
					<s id="N1DA59"><!-- NEW -->e&longs;t autem GM &aelig;qua&shy;<lb/>lis AB, vel EC; </s>
					<s id="N1DA5F"><!-- NEW -->&longs;imiliter &longs;it EC ad EK vt EK ad EB, &longs;i percurratur <lb/>EC tempore EC, percurretur EB tempore EK; </s>
					<s id="N1DA65"><!-- NEW -->&longs;ed GC percurretur <lb/>tempore GC &longs;ed GCK minor e&longs;t GIM; </s>
					<s id="N1DA6B"><!-- NEW -->&longs;it enim GM. 4. EK R. <expan abbr="q.">que</expan> <lb/>32. id e&longs;t, 5 7/8 paul&ograve; min&ugrave;s, quibus &longs;i &longs;ubtrahas CE 4. &amp; &longs;ub&longs;tituas CG <lb/>2. paul&ograve; pl&ugrave;s habebis 3 7/8; igitur GCK minor e&longs;t GIM. </s>
					<s id="N1DA77"><!-- NEW -->Ex his habes <lb/>omnes Galilei propo&longs;itiones de motu in planis inclinatis numero 38. in <lb/>quo &longs;tudio, vt verum fatear, maximam &longs;ibi laudem peperit; </s>
					<s id="N1DA7F"><!-- NEW -->in quo ta&shy;<lb/>men opere duo de&longs;iderari videntur, <expan abbr="alter&utilde;">alterum</expan> &agrave; Philo&longs;ophis, quod ita phy&longs;i&shy;<lb/>c&aelig; partes omnes neglexerit, vt fer&egrave; vni Geometri&aelig; &longs;atisfaceret; alterum <lb/>ab Geometris quod Geometriam equidem accurat&egrave; tractarit. </s>
					<s id="N1DA8D"><!-- NEW -->Sed min&ugrave;s <lb/>ad captum Tyronum: atque h&aelig;c de his &longs;int &longs;atis, vt tandem no&longs;trorum <lb/>Theorematum &longs;eriem interruptam repetamus. </s>
				</p>
				<p id="N1DA95" type="main">
					<s id="N1DA97"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 31.<emph.end type="center"/></s>
				</p>
				<p id="N1DAA3" type="main">
					<s id="N1DAA5"><!-- NEW --><emph type="italics"/>Ex dictis &longs;equitur pondus centum librarum po&longs;&longs;e habere tant&ugrave;m grauitatio&shy;<lb/>nem vnius libr&aelig;<emph.end type="italics"/>; </s>
					<s id="N1DAB0"><!-- NEW -->&longs;it enim planum inclinatum centuplum horizontalis, id <lb/>e&longs;t, &longs;ecans centupla Tangentis; haud dubi&egrave; grauitatio in pr&aelig;dictum pla&shy;<lb/>num erit tant&ugrave;m &longs;ubcentupla per Th.16. <!-- KEEP S--></s>
				</p>
				<p id="N1DAB9" type="main">
					<s id="N1DABB"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 32.<emph.end type="center"/></s>
				</p>
				<p id="N1DAC7" type="main">
					<s id="N1DAC9"><!-- NEW --><emph type="italics"/>Ex duobus ferentibus idem parallelipedum in &longs;itu inclinato pote&longs;t alter fer&shy;<lb/>re tant&ugrave;m vnam libram, lic&egrave;t pendat centum libras<emph.end type="italics"/>; </s>
					<s id="N1DAD4"><!-- NEW -->&longs;it enim ita inclina-<pb pagenum="215" xlink:href="026/01/247.jpg"/>tum, vt linea inclinationis &longs;it centupla horizontalis oppo&longs;it&aelig;; cert&egrave; qui <lb/>&longs;u&longs;tinet in altera extremitate eleuata &lpar;1/100&rpar; tant&ugrave;m &longs;u&longs;tinet ponderis par&shy;<lb/>tem per Th. 18. alius ver&ograve; &longs;u&longs;tinet in altera extremitate, qu&aelig; deor&longs;um <lb/>e&longs;t &lpar;93/100&rpar;. </s>
				</p>
				<p id="N1DAE3" type="main">
					<s id="N1DAE5"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 33.<emph.end type="center"/></s>
				</p>
				<p id="N1DAF1" type="main">
					<s id="N1DAF3"><!-- NEW --><emph type="italics"/>Qui pote&longs;t tant&ugrave;m datum pondus &longs;ur&longs;um attollere per lineam verticalem, <lb/>centuplum per inclinatum planum ad <expan abbr="e&atilde;dem">eandem</expan> altitudinem attollet<emph.end type="italics"/>; </s>
					<s id="N1DB02"><!-- NEW -->&longs;i enim &longs;it <lb/>inclinata ad perpendiculum in ratione centupla; haud dubi&egrave; qui attollit <lb/>datum pondus per ip&longs;um perpendiculum &longs;ine viribus auctis per inclina&shy;<lb/>tum planum, pondus centupl&ograve; maius attollet, quia potentia per inclina&shy;<lb/>tam e&longs;t ad potentiam per ip&longs;um perpendiculum vel altitudo ad inclina&shy;<lb/>tam per Theor. <!-- REMOVE S-->6. igitur &longs;i &aelig;qualis vtrobique applicetur potentia, pon&shy;<lb/>dus centupl&ograve; maius attollet per inclinatam, &longs;eu pellendo, &longs;eu tra&shy;<lb/>hendo. </s>
				</p>
				<p id="N1DB16" type="main">
					<s id="N1DB18"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 34.<emph.end type="center"/></s>
				</p>
				<p id="N1DB24" type="main">
					<s id="N1DB26"><emph type="italics"/>Hinc ratio plani inclinati demon&longs;trat<emph.end type="italics"/> <emph type="italics"/>cochle&aelig; vires.<emph.end type="italics"/> v.g. <!-- REMOVE S-->pellitur &longs;ur&longs;um <lb/>per DE inclinatam facili&ugrave;s qu&agrave;m verticalem DH in ratione DE ad <lb/>DH, qu&aelig; &longs;i e&longs;t tripla, eadem potentia qu&aelig; datum pondus attollit per <lb/>DH, tripl&ograve; maius attollet per DE, vel &longs;i attollat per DA verticalem, <lb/>tripl&ograve; maius attollet per &longs;piras vel Helices DE EC, CF, &amp;c. </s>
					<s id="N1DB3E">v&longs;que ad <lb/>A; hinc qu&ograve; Helix erit inclinatior, potentia maius pondus illius oper&acirc; <lb/>attollet. </s>
				</p>
				<p id="N1DB45" type="main">
					<s id="N1DB47"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 35.<emph.end type="center"/></s>
				</p>
				<p id="N1DB53" type="main">
					<s id="N1DB55"><!-- NEW --><emph type="italics"/>Hinc clar&egrave; vides compen&longs;ari longitudinem motus, &longs;patij vel temporis, pon&shy;<lb/>deris acce&longs;&longs;ione,<emph.end type="italics"/> v.g. <!-- REMOVE S-->tripl&ograve; maius pondus attollitur per DE qu&agrave;m per <lb/>DH; </s>
					<s id="N1DB64"><!-- NEW -->quia &longs;patium DE e&longs;t triplum DH; igitur motus triplus, &longs;cilicet in <lb/>duratione, &lpar;loquor enim de motu &aelig;quabili quo &longs;ur&longs;um corpus, vel tra&shy;<lb/>hitur, vel continu&ograve; pellitur.&rpar; </s>
				</p>
				<p id="N1DB6C" type="main">
					<s id="N1DB6E"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 36.<emph.end type="center"/></s>
				</p>
				<p id="N1DB7A" type="main">
					<s id="N1DB7C"><!-- NEW --><emph type="italics"/>Hinc nullus mons e&longs;&longs;e pote&longs;t quantumuis arduus, ad cuius apicem via faci&shy;<lb/>li in modum cochle&aelig; &longs;trata pertingi non po&longs;&longs;it<emph.end type="italics"/>; &amp; qu&ograve; plures erunt &longs;pir&aelig;, eo <lb/>facilior erit &amp; min&ugrave;s decliuis via. </s>
				</p>
				<p id="N1DB89" type="main">
					<s id="N1DB8B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 37.<emph.end type="center"/></s>
				</p>
				<p id="N1DB97" type="main">
					<s id="N1DB99"><!-- NEW --><emph type="italics"/>Quando de&longs;cendit mobile per multas &longs;piras, &longs;eu volutas, pote&longs;t determinari <lb/>altitudo perpendicularis, ex qua eodem tempore de&longs;cenderet<emph.end type="italics"/>; </s>
					<s id="N1DBA4"><!-- NEW -->&longs;it enim &longs;pira <lb/>&longs;eu cochlea AFCHD, &amp; perpendiculum AD; </s>
					<s id="N1DBAA"><!-- NEW -->cert&egrave; eodem tempore <lb/>de&longs;cendit per AFC, quo de&longs;cenderet per AG duplam AF; </s>
					<s id="N1DBB0"><!-- NEW -->&longs;ed eo tem&shy;<lb/>pore, quo de&longs;cendit per AF inclinatam, conficit AD per Th.27. qu&aelig; e&longs;t <lb/>ad AF vt AF ad BA; </s>
					<s id="N1DBB8"><!-- NEW -->&longs;it autem dupla: </s>
					<s id="N1DBBC"><!-- NEW -->&longs;imiliter eodem tempore conficit <lb/>AFG vel AFG, quo conficit AE duplam AG; denique eo tempore, <lb/>quo conficit AF CHD, vel AGD, conficit duplam AE. <!-- KEEP S--></s>
				</p>
				<pb pagenum="216" xlink:href="026/01/248.jpg"/>
				<p id="N1DBC9" type="main">
					<s id="N1DBCB">Sic etiam eo tempore, quo in perpendiculo conficit AD conficit &longs;ub&shy;<lb/>duplam &longs;cilicet AF, &longs;ed h&aelig;c &longs;unt clara. </s>
				</p>
				<p id="N1DBD0" type="main">
					<s id="N1DBD2"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 38.<emph.end type="center"/></s>
				</p>
				<p id="N1DBDE" type="main">
					<s id="N1DBE0"><!-- NEW --><emph type="italics"/>Quando proiicitur mobile per planum inclinatum &longs;ur&longs;um in ea proportione <lb/>proiicitur longi&ugrave;s, qu&ograve; inclinata ip&longs;a longior e&longs;t perpendiculari.<emph.end type="italics"/> v.g. <!-- REMOVE S-->&longs;i proii&shy;<lb/>citur per BA in verticali, illa eadem <expan abbr="pot&etilde;tia">potentia</expan> qu&aelig; proiicit in A ex B, pro&shy;<lb/>iiciet <expan abbr="quoq;">quoque</expan> ex F in A, ex M in A, atque ita deinceps ex &longs;ingulis punctis <lb/>horizontalis BM; </s>
					<s id="N1DBFB"><!-- NEW -->ratio e&longs;t, quia in ea proportione de&longs;truitur impetus <lb/>per BA, in qua motus per AB de&longs;cendit; </s>
					<s id="N1DC01"><!-- NEW -->nam impetus innatus deor&shy;<lb/>&longs;um qua&longs;i trahit mobile graue; </s>
					<s id="N1DC07"><!-- NEW -->impetus ver&ograve; impre&longs;&longs;us &longs;ur&longs;um attollit; </s>
					<s id="N1DC0B"><!-- NEW --><lb/>igitur pugnant pro rata, vt &longs;&aelig;p&egrave; diximus in tertio libro, &amp; alibi: </s>
					<s id="N1DC10"><!-- NEW -->&longs;imiliter <lb/>in inclinata FA impetus innatus qua&longs;i reducit mobile deor&longs;um dum <lb/>impre&longs;&longs;us violentus &longs;ur&longs;um promouet; </s>
					<s id="N1DC18"><!-- NEW -->igitur &longs;i impetus innatus per AB, <lb/>&amp; per AT &aelig;qualem vim haberet, haud dubi&egrave; &aelig;quale &longs;patium contine&shy;<lb/>ret mobile projectum per BA &amp; FA; </s>
					<s id="N1DC20"><!-- NEW -->nam eadem potentia cum &aelig;quali <lb/>re&longs;i&longs;tentia idem pr&aelig;&longs;tat &amp; in&aelig;qualiter de&longs;cendit per AB AF, &amp; motus <lb/>per AF e&longs;t ad motum per AB, vt AB ad AF. v.g. <!-- REMOVE S-->&longs;ubduplus; </s>
					<s id="N1DC2A"><!-- NEW -->igitur re&shy;<lb/>&longs;i&longs;tentia per BA erit dupla re&longs;i&longs;tenti&aelig; per FA; </s>
					<s id="N1DC30"><!-- NEW -->igitur &longs;patium per FA <lb/>erit duplum; </s>
					<s id="N1DC36"><!-- NEW -->igitur ex F a&longs;cendet in A, quo cum eo impetu ex B a&longs;cendet <lb/>in A, &longs;uppo&longs;ita eadem potentia; </s>
					<s id="N1DC3C"><!-- NEW -->idem etiam dicendum de aliis punctis <lb/>horizontalis BM: </s>
					<s id="N1DC42"><!-- NEW -->pr&aelig;terea ille impetus &longs;ufficit ad motum &longs;ur&longs;um per <lb/>FA, qui accipitur in de&longs;cen&longs;u AF, vt con&longs;tat ex dictis; </s>
					<s id="N1DC48"><!-- NEW -->itemque &longs;ufficit <lb/>ad motum &longs;ur&longs;um per BA qui acquiritur in de&longs;cen&longs;u AB; &longs;ed &aelig;qualis ve&shy;<lb/>locitas, vel impetus acquiritur in vtroque de&longs;cen&longs;u AB AF per Th. 20. <lb/>igitur idem impetus &longs;ufficit ad de&longs;cen&longs;um BA FA. </s>
				</p>
				<p id="N1DC52" type="main">
					<s id="N1DC54"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 39.<emph.end type="center"/></s>
				</p>
				<p id="N1DC60" type="main">
					<s id="N1DC62"><!-- NEW --><emph type="italics"/>Hinc dicendum e&longs;t impetum naturalem per inclinatam FA vel MA non <lb/>&longs;ur&longs;um intendi, &longs;eu cre&longs;cere<emph.end type="italics"/>; </s>
					<s id="N1DC6D"><!-- NEW -->alioqui ex A mobile de&longs;cenderet citi&ugrave;s in F, <lb/>po&longs;tqu&agrave;m ex F proiectum e&longs;&longs;et in A, qu&agrave;m &longs;i tant&ugrave;m ex A in F demit&shy;<lb/>teretur, quod e&longs;t contra experientiam; adde qu&ograve;d impetus naturalis &longs;ur&shy;<lb/>&longs;um non cre&longs;cit, vt iam &longs;&aelig;p&egrave; dictum e&longs;t. </s>
				</p>
				<p id="N1DC77" type="main">
					<s id="N1DC79"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 40.<emph.end type="center"/></s>
				</p>
				<p id="N1DC85" type="main">
					<s id="N1DC87"><!-- NEW --><emph type="italics"/>Destruitur aliquid impetus impre&longs;&longs;i in mobili per planum inclinatum.<emph.end type="italics"/><lb/>Probatur, quia tandem quie&longs;cit mobile; </s>
					<s id="N1DC91"><!-- NEW -->igitur ce&longs;&longs;at motus; </s>
					<s id="N1DC95"><!-- NEW -->igitur &amp; im&shy;<lb/>petus: </s>
					<s id="N1DC9B"><!-- NEW -->nec dicas id fieri ab a&euml;re, vel plani &longs;cabritie; </s>
					<s id="N1DC9F"><!-- NEW -->nam, &longs;i hoc e&longs;&longs;et, <lb/>&aelig;quale &longs;patium conficeret in FA &amp; LA; </s>
					<s id="N1DCA5"><!-- NEW -->quippe &aelig;qualis portio plani <lb/>&aelig;qualiter re&longs;i&longs;tit; Idem dico de a&euml;re; igitur de&longs;truitur impetus impre&longs;&shy;<lb/>&longs;us ab impetu naturali. </s>
				</p>
				<p id="N1DCAD" type="main">
					<s id="N1DCAF"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 41.<emph.end type="center"/></s>
				</p>
				<p id="N1DCBB" type="main">
					<s id="N1DCBD"><!-- NEW --><emph type="italics"/>Destruitur tant&ugrave;m pro rata, hoc e&longs;t in ratione, quam habet perpendiculum <lb/>ad inclinatam.<emph.end type="italics"/> v.g. <!-- REMOVE S-->&longs;it perpendiculum FCA; </s>
					<s id="N1DCCA"><!-- NEW -->haud dubi&egrave; &longs;i non de&longs;true&shy;<lb/>retur motus &longs;ur&longs;um cum eo gradu impetus, quo ex F a&longs;cendit in C motu <lb/>retardato, a&longs;cenderet in A motu &aelig;quabili, &amp; eodem tempore; </s>
					<s id="N1DCD2"><!-- NEW -->igitur eo <pb pagenum="217" xlink:href="026/01/249.jpg"/>tempore de&longs;truitur totus impetus; </s>
					<s id="N1DCDB"><!-- NEW -->&longs;i ver&ograve; proiiciatur per LC; </s>
					<s id="N1DCDF"><!-- NEW -->cert&egrave; im&shy;<lb/>petus totus non de&longs;truitur per LC, eo tempore, quo ex F a&longs;cenderet in <lb/>C, &longs;ed pro rata, id e&longs;t in ratione FC ad LC, qu&aelig; &longs;it &longs;ubdupla v.g. <!-- REMOVE S-->igitur <lb/>impetus de&longs;truitur tant&ugrave;m &longs;ubduplus; </s>
					<s id="N1DCEB"><!-- NEW -->igitur eo tempore, quo ex F a&longs;cen&shy;<lb/>dit in C, ex L a&longs;cendet in K, ita vt LM &aelig;quali FC addatur MK &aelig;qua&shy;<lb/>lis EB; e&longs;t autem EB &longs;ubdupla CA vel EF. </s>
					<s id="N1DCF3"><!-- NEW -->Similiter &longs;it perpendicu&shy;<lb/>lum FG, &amp; inclinata HF tripla FG; </s>
					<s id="N1DCF9"><!-- NEW -->a&longs;&longs;umatur FC &aelig;qualis FG, item&shy;<lb/>que HO &aelig;qualis GF; </s>
					<s id="N1DCFF"><!-- NEW -->cert&egrave; eo tempore, quo perpendiculari detrahitur <lb/>totus impetus, detrahitur tant&ugrave;m &longs;ubtriplum per inclinatam HF; </s>
					<s id="N1DD05"><!-- NEW -->igitur <lb/>a&longs;&longs;umatur ER &longs;ubtripla EF; </s>
					<s id="N1DD0B"><!-- NEW -->&amp; addatur OP &aelig;qualis FR: </s>
					<s id="N1DD0F"><!-- NEW -->dico quod eo <lb/>tempore, quo ex G a&longs;cendit in F, ex H a&longs;cendit in P; </s>
					<s id="N1DD15"><!-- NEW -->quippe a&longs;cenderet <lb/>in O, &longs;i eo tempore totus impetus de&longs;trueretur, &amp; in S &longs;i nullus; </s>
					<s id="N1DD1B"><!-- NEW -->igitur <lb/>in P, &longs;i &longs;ubtriplus tant&ugrave;m de&longs;truatur, de&longs;truitur porr&ograve; &longs;ubtriplus, quia vis <lb/>impetus innati per FH e&longs;t tant&ugrave;m &longs;ubtripla eiu&longs;dem per FG; </s>
					<s id="N1DD23"><!-- NEW -->atqui de&shy;<lb/>&longs;truitur tant&ugrave;m ab impetu innato, qu&aelig; omnia certi&longs;&longs;im&egrave; con&longs;tant; Ex <lb/>quo habes tempora e&longs;&longs;e vt lineas. </s>
				</p>
				<p id="N1DD2B" type="main">
					<s id="N1DD2D"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 42.<emph.end type="center"/></s>
				</p>
				<p id="N1DD39" type="main">
					<s id="N1DD3B"><!-- NEW --><emph type="italics"/>Hinc pote&longs;t dici quo tempore conficiatur tota inclinata &longs;ur&longs;um &longs;cilicet eo <lb/>tempore quo inclinata deor&longs;um percurritur.<emph.end type="italics"/> v.g, CL dupla CF percurritur <lb/>tempore duplo illius, quo percurritur CF; </s>
					<s id="N1DD48"><!-- NEW -->igitur mobile proiectum ex <lb/>L in C percurrit LC eodem tempore a&longs;cendendo, quo percurrit EL de&shy;<lb/>&longs;cendendo; &longs;ed percurrit EL de&longs;cendendo eodem tempore, quo percur&shy;<lb/>rit perpendicularem quadruplam CF, vt &longs;upr&agrave; diximus. </s>
				</p>
				<p id="N1DD52" type="main">
					<s id="N1DD54"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 43.<emph.end type="center"/></s>
				</p>
				<p id="N1DD60" type="main">
					<s id="N1DD62"><!-- NEW --><emph type="italics"/>Hinc nunquam in inclinata &longs;ur&longs;um proiectum mobile acquirit duplum &longs;pa&shy;<lb/>tium illius quod acquirit idem proiectum in verticali &longs;ur&longs;um,<emph.end type="italics"/> v. <!-- REMOVE S-->g. <!-- REMOVE S-->ex H pro&shy;<lb/>iectum nunquam acquiret in HF duplum &longs;patium GF, po&longs;ito qu&ograve;d ex <lb/>G proiiciatur tant&ugrave;m in F dato tempore, &longs;itque eadem potentia per HF. <lb/>Probatur, quia &longs;emper de&longs;truitur aliquid impetus iuxta proportionem <lb/>FG ad FH per Th.40. &longs;ed &longs;i nullus de&longs;truitur impetus, duplum &longs;patium <lb/>conficit; </s>
					<s id="N1DD7B"><!-- NEW -->igitur &longs;i aliquid de&longs;truitur, duplum &longs;patium non conficitur: po&shy;<lb/>te&longs;t tamen propi&ugrave;s in infinitum ad duplum accedere. </s>
				</p>
				<p id="N1DD81" type="main">
					<s id="N1DD83"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 44.<emph.end type="center"/></s>
				</p>
				<p id="N1DD8F" type="main">
					<s id="N1DD91"><!-- NEW --><emph type="italics"/>Hinc erecta perpendiculari<emph.end type="italics"/> FC, <emph type="italics"/>ductaque horizontali<emph.end type="italics"/> FL, <emph type="italics"/>productaque <lb/>in infinitum, &longs;i ex quolibet illius puncto eleuetur planum inclinatum termina&shy;<lb/>tum ad<emph.end type="italics"/> C, <emph type="italics"/>eadem potentia que ex<emph.end type="italics"/> F <emph type="italics"/>in<emph.end type="italics"/> C <emph type="italics"/>mobile proiiciet, etiam ex quolibet <lb/>puncto de&longs;ignato in horizontali proiiciet in<emph.end type="italics"/> C <emph type="italics"/>per planum inclinatum<emph.end type="italics"/>; quod <lb/>probatur per Th. 38. </s>
				</p>
				<p id="N1DDC6" type="main">
					<s id="N1DDC8"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 45.<emph.end type="center"/></s>
				</p>
				<p id="N1DDD4" type="main">
					<s id="N1DDD6"><!-- NEW --><emph type="italics"/>Ex his etiam probatur proiici ex<emph.end type="italics"/> L <emph type="italics"/>in<emph.end type="italics"/> C <emph type="italics"/>ab ea potentia, qu&aelig; ex<emph.end type="italics"/> F <emph type="italics"/>proiicit in<emph.end type="italics"/><lb/>C; </s>
					<s id="N1DDF2"><!-- NEW -->cum enim primo tempore proiiciat ex L in K &lpar;&longs;uppono enim LC <lb/>e&longs;&longs;e quadruplam KC&rpar; cert&egrave; &longs;ecundo conficit tant&ugrave;m KC; </s>
					<s id="N1DDF8"><!-- NEW -->e&longs;t enim mo&shy;<lb/>tus violentus &longs;ur&longs;um retardatus inuer&longs;us motus deor&longs;um accelerati; </s>
					<s id="N1DDFE"><!-- NEW -->at-<pb pagenum="218" xlink:href="026/01/250.jpg"/>qui motu naturaliter accelerato &longs;i primo tempore conficit KC, &longs;ecun&shy;<lb/>do conficit KL triplum CK; igitur &longs;i motu retardato primo tempore <lb/>conficit LK, &longs;ecundo conficit KC &longs;ubtriplum LK. <!-- KEEP S--></s>
				</p>
				<p id="N1DE0C" type="main">
					<s id="N1DE0E"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 46.<emph.end type="center"/></s>
				</p>
				<p id="N1DE1A" type="main">
					<s id="N1DE1C"><!-- NEW --><emph type="italics"/>Si proiiciatur in horizontali motus per &longs;e e&longs;t &aelig;qualis in &longs;patio modico<emph.end type="italics"/>: </s>
					<s id="N1DE25"><!-- NEW -->Pro&shy;<lb/>batur, quia in nulla proportione de&longs;truitur, vt patet; </s>
					<s id="N1DE2B"><!-- NEW -->dixi per &longs;e, quia re&shy;<lb/>uera nullum e&longs;t planum perfect&egrave; l&etail;uigatum, nec etiam mobile: </s>
					<s id="N1DE31"><!-- NEW -->vnde cum <lb/>a&longs;peritas plani re&longs;i&longs;tat, inde maxim&egrave; motus retardatur; dixi in &longs;patio <lb/>modico, nam planum horizontale rectilineum longius, e&longs;t planum incli&shy;<lb/>natum, de quo infr&agrave;, vnde vt motus &longs;it &aelig;qualis, debet proiici in &longs;uperfi&shy;<lb/>cie curua &aelig;qualiter di&longs;tante &agrave; centro mundi. </s>
				</p>
				<p id="N1DE3D" type="main">
					<s id="N1DE3F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 47.<emph.end type="center"/></s>
				</p>
				<p id="N1DE4B" type="main">
					<s id="N1DE4D"><!-- NEW --><emph type="italics"/>Si proiiciatur mobile deor&longs;um per inclinatum planum, mouetur veloci&ugrave;s<emph.end type="italics"/> B; <lb/>certum e&longs;t, &amp; acquirit maius &longs;patium &longs;ingulis temporibus iuxta ratio&shy;<lb/>nem impetus accepti. </s>
					<s id="N1DE5A"><!-- NEW -->v.g. <!-- REMOVE S-->&longs;it planum ABE, in quo primo dato tem&shy;<lb/>pore mobile acquirat AB, &longs;itque impetus impre&longs;&longs;us &aelig;qualis &icirc;mpetui, <lb/>quem acquirit dum percurrit &longs;patium AB; </s>
					<s id="N1DE64"><!-- NEW -->haud dubi&egrave; primo tempore <lb/>ratione vtriu&longs;que impetus percurrit AC, &longs;cilicet, duo &longs;patia; </s>
					<s id="N1DE6A"><!-- NEW -->&longs;ecundo <lb/>CD, id e&longs;t 4. &longs;patia; </s>
					<s id="N1DE70"><!-- NEW -->tertio DE, id e&longs;t 6. &longs;patia; atque ita deinceps: vn&shy;<lb/>de vides proportionem arithmeticam, qu&aelig; na&longs;citur ex acce&longs;&longs;ione quan&shy;<lb/>tumuis modica noui impetus. </s>
				</p>
				<p id="N1DE78" type="main">
					<s id="N1DE7A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 48.<emph.end type="center"/></s>
				</p>
				<p id="N1DE86" type="main">
					<s id="N1DE88"><!-- NEW --><emph type="italics"/>In plano inclinato non de&longs;truitur impetus impre&longs;&longs;us, quia non e&longs;t frustr&agrave;<emph.end type="italics"/>; <lb/>igitur non de&longs;truitur per Sch. <!-- REMOVE S-->Th.152.lib.1. &longs;ic diximus in Theoremate <lb/>68. l.4. in proiecto deor&longs;um per lineam perpendicularem deor&longs;um non <lb/>de&longs;trui quidquam impetus impre&longs;&longs;i, lic&egrave;t de&longs;truatur in proiecto per in&shy;<lb/>clinatam deor&longs;um in libero medio, vt diximus in Th.67. lib.4. vide Th. <!-- REMOVE S--><lb/>68.lib.4. </s>
				</p>
				<p id="N1DE9E" type="main">
					<s id="N1DEA0"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 49.<emph.end type="center"/></s>
				</p>
				<p id="N1DEAC" type="main">
					<s id="N1DEAE"><!-- NEW --><emph type="italics"/>Pote&longs;t determinari quantus impetus imprimi debeat mobili per planum in&shy;<lb/>clinatum, vt &aelig;quali velocitate moueatur quo mouetur in perpendiculari &longs;u&aelig; <lb/>&longs;ponte,<emph.end type="italics"/> hoc e&longs;t vt &aelig;quali tempore &aelig;quale &longs;patium vtrimque acquiratur, <lb/>a&longs;&longs;umpto &longs;cilicet &longs;patio totali, quod toti motui competit, non ver&ograve; eius <lb/>tant&ugrave;m parte; debet enim a&longs;&longs;umi impetus iuxta proportionem differen&shy;<lb/>ti&aelig; &longs;patij, quod acquiritur in perpendiculari, &amp; alterius &longs;patij, quod ac&shy;<lb/>quiritur in perpendiculari, &amp; alterius &longs;patij, quod acquiritur in inclina&shy;<lb/>ta. </s>
					<s id="N1DEC5"><!-- NEW -->v.g. <!-- REMOVE S-->&longs;it planum inclinatum AH, perpendiculum ver&ograve; AE; </s>
					<s id="N1DECB"><!-- NEW -->ducatur <lb/>EB perpendicularis in AH, mobile percurrit AB in inclinata eo tem&shy;<lb/>pore, quo percurrit AE in perpendiculo; </s>
					<s id="N1DED3"><!-- NEW -->a&longs;&longs;umatur AC &aelig;qualis AE; </s>
					<s id="N1DED7"><!-- NEW --><lb/>&longs;i imprimatur impetus, qui &longs;it ad acqui&longs;itum in &longs;patio AB vt BC ad AB: </s>
					<s id="N1DEDC"><!-- NEW --><lb/>dico quod mobile eodem tempore percurret AE, &amp; AC, vt con&longs;tat; </s>
					<s id="N1DEE1"><!-- NEW --><lb/>quia impetus in C e&longs;t &aelig;qualis impetui in E; </s>
					<s id="N1DEE6"><!-- NEW -->vt ver&ograve; percurrat in incli&shy;<lb/>nata AH &aelig;quale &longs;patium AG, &aelig;quali tempore, quo percurrit AG; </s>
					<s id="N1DEEC"><!-- NEW -->a&longs;-<pb pagenum="219" xlink:href="026/01/251.jpg"/>&longs;umatur AF &aelig;qualis AH, addaturque impetus, qui &longs;it ad acqui&longs;itum in <lb/>H, vt GF ad FA, vel AH, &amp; habebitur intentum: </s>
					<s id="N1DEF7"><!-- NEW -->dixi totum &longs;patium re&shy;<lb/>&longs;pondens &longs;cilicet toti motui; </s>
					<s id="N1DEFD"><!-- NEW -->alioqui &longs;i pars tant&ugrave;m accipiatur t&ugrave;m &longs;pa&shy;<lb/>tij, t&ugrave;m motus, res procul dubio &longs;ecus accidet; &longs;it enim impetus impre&longs;&shy;<lb/>&longs;us vt BC ad AB. <!-- KEEP S--></s>
					<s id="N1DF06"><!-- NEW -->Equidem prim&ograve; tempore, quo in perpendiculari con&shy;<lb/>citur AE, conficitur AC &aelig;qualis; </s>
					<s id="N1DF0C"><!-- NEW -->at ver&ograve; &longs;ecundo, quo conficitur EG <lb/>triplum AE in perpendiculari, conficitur CI quadruplum AC, vel <lb/>AE; </s>
					<s id="N1DF14"><!-- NEW -->igitur non &longs;unt &aelig;qualia &longs;patia; &longs;ed h&aelig;c &longs;unt &longs;atis facilia. </s>
				</p>
				<p id="N1DF18" type="main">
					<s id="N1DF1A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 50.<emph.end type="center"/></s>
				</p>
				<p id="N1DF26" type="main">
					<s id="N1DF28"><!-- NEW --><emph type="italics"/>Si planum horizontale &longs;it perfect&egrave; l&aelig;uigatum in vne tant&ugrave;m illius puncto &longs;i&shy;<lb/>&longs;tere pote&longs;t mobile graue<emph.end type="italics"/>; </s>
					<s id="N1DF33"><!-- NEW -->&longs;it enim globus terr&aelig; centro A &longs;emidiametro <lb/>AE; </s>
					<s id="N1DF39"><!-- NEW -->&longs;itque planum horizontale FEGN l&aelig;uigati&longs;&longs;imum: dico qu&ograve;d in <lb/>puncto contactus E quie&longs;cet mobile. </s>
					<s id="N1DF3F"><!-- NEW -->Probatur, quia ex omni alio puncto <lb/>mobile pote&longs;t de&longs;cendere; </s>
					<s id="N1DF45"><!-- NEW -->&longs;it enim in G. v.g. <!-- REMOVE S-->haud dubi&egrave; GA maior e&longs;t <lb/>AE; </s>
					<s id="N1DF4D"><!-- NEW -->igitur GE planum e&longs;t inclinatum, id e&longs;t, E propi&ugrave;s accedet ad cen&shy;<lb/>trum terr&aelig; A; &longs;ed per planum inclinatum mobile de&longs;cendit per hyp. </s>
					<s id="N1DF53"><!-- NEW -->1. <lb/>idem dico de omni alio plani puncto, excepto puncto E, ex quo non <lb/>pote&longs;t moueri, ni&longs;i a&longs;cendat, id e&longs;t &agrave; centro A recedat; igitur in eo <lb/>quie&longs;cet. </s>
				</p>
				<p id="N1DF5D" type="main">
					<s id="N1DF5F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 51.<emph.end type="center"/></s>
				</p>
				<p id="N1DF6B" type="main">
					<s id="N1DF6D"><emph type="italics"/>Hinc in men&longs;a lauigati&longs;&longs;ima globus vel eburneus, vel cry&longs;tallinus vix vn&shy;<lb/>quam &longs;istit, ni&longs;i in eius centro,<emph.end type="italics"/> quod multis experimentis comprobatum <lb/>e&longs;t, &amp; ratio luce meridian&acirc; clarior &agrave; rudioribus etiam primo &longs;tatim ob&shy;<lb/>tutu cernitur. </s>
				</p>
				<p id="N1DF7B" type="main">
					<s id="N1DF7D"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 52.<emph.end type="center"/></s>
				</p>
				<p id="N1DF89" type="main">
					<s id="N1DF8B"><!-- NEW --><emph type="italics"/>Hinc ridiculum &longs;eu joculare paradoxon, quo &longs;cilicet dici pote&longs;t duorum alter <lb/>in eodem plano a&longs;cendere, alter de&longs;cendere, lic&egrave;t in <expan abbr="e&atilde;dem">eandem</expan> c&oelig;li plagam con&shy;<lb/>uer&longs;i ambulent<emph.end type="italics"/>; </s>
					<s id="N1DF9C"><!-- NEW -->&longs;i enim alter ex G in E; </s>
					<s id="N1DFA0"><!-- NEW -->alter ver&ograve; ex E in F tenderet; </s>
					<s id="N1DFA4"><!-- NEW -->hic <lb/>cert&egrave; a&longs;cenderet, quia recederet &agrave; terr&aelig; centro A; </s>
					<s id="N1DFAA"><!-- NEW -->ille ver&ograve; de&longs;cende&shy;<lb/>ret, quia ad centrum accederet; &amp; &longs;i in partes oppo&longs;itas ambulent, in <lb/>hoc eodem plano vterque &longs;imul a&longs;cendere, vel &longs;imul de&longs;cendere pote&longs;t. </s>
				</p>
				<p id="N1DFB2" type="main">
					<s id="N1DFB4"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 53.<emph.end type="center"/></s>
				</p>
				<p id="N1DFC0" type="main">
					<s id="N1DFC2"><!-- NEW --><emph type="italics"/>E&longs;t etiam aliud paradoxon, &longs;cilicet in eodem puncto E duo plana eadem li&shy;<lb/>ne&acirc; contenta hinc inde a&longs;cendere; </s>
					<s id="N1DFCA"><!-- NEW -->vel duos montes alti&longs;&longs;imos in eadem recta <lb/>linea contineri; </s>
					<s id="N1DFD0"><!-- NEW -->vel mediam vallem, &amp; gemines montes linea recti&longs;&longs;ima &longs;imul <lb/>connecti<emph.end type="italics"/>; h&aelig;c porr&ograve; &longs;unt &longs;atis facilia, &amp; vix &longs;upra vulgi captum. </s>
				</p>
				<p id="N1DFD9" type="main">
					<s id="N1DFDB"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 54.<emph.end type="center"/></s>
				</p>
				<p id="N1DFE7" type="main">
					<s id="N1DFE9"><!-- NEW --><emph type="italics"/>Adde aliud paradoxon &longs;cilicet idem mobile per duo plana parallela in&aelig;&shy;<lb/>quali motu de&longs;cendere.<emph.end type="italics"/> v.g. <!-- REMOVE S-->per plana XFB, VEA, nam VEA e&longs;t per&shy;<lb/>pendiculum; at ver&ograve; XFB e&longs;t horizontale, vt clarum e&longs;t. </s>
				</p>
				<p id="N1DFF8" type="main">
					<s id="N1DFFA"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 55.<emph.end type="center"/></s>
				</p>
				<p id="N1E006" type="main">
					<s id="N1E008"><!-- NEW --><emph type="italics"/>Pote&longs;t determinari motus proportio cuiu&longs;libet puncti a&longs;&longs;ignati in plano EN<emph.end type="italics"/>; </s>
					<s id="N1E011"><!-- NEW --><pb pagenum="220" xlink:href="026/01/252.jpg"/>&longs;it enim punctum G; </s>
					<s id="N1E019"><!-- NEW -->ducatur &agrave; centro A recta AGH; </s>
					<s id="N1E01D"><!-- NEW -->haud dubi&egrave; e&longs;t per&shy;<lb/>pendicularis; </s>
					<s id="N1E023"><!-- NEW -->ducatur IGK &longs;ecans GH; ad angulos rectos; </s>
					<s id="N1E027"><!-- NEW -->h&aelig;c e&longs;t ho&shy;<lb/>rizontalis, qu&aelig; ad hanc perpendicularem pertinet; </s>
					<s id="N1E02D"><!-- NEW -->ducatur HI parallela <lb/>EG; </s>
					<s id="N1E033"><!-- NEW -->h&aelig;c e&longs;t inclinata, vt patet ex dictis; imm&ograve; per ip&longs;am deff. </s>
					<s id="N1E037">1. &longs;ed mo&shy;<lb/>tus in inclinata e&longs;t vt ip&longs;um perpendiculum ad inclinatam per Th. 6. <lb/>igitur motus per HI in ip&longs;o puncto H, vel per GE in ip&longs;o puncto G e&longs;t <lb/>ad motum per HG, vt HG ad HI. <!-- KEEP S--></s>
				</p>
				<p id="N1E041" type="main">
					<s id="N1E043"><!-- NEW -->Aliter ducatur HZ perpendicularis IH; </s>
					<s id="N1E047"><!-- NEW -->dico motum in G vel ex G <lb/>initio e&longs;&longs;e ad motum per VE vel GL vt GH ad GZ; &longs;unt enim duo <lb/>triangula IGH, ZGH proportionalia. </s>
				</p>
				<p id="N1E04F" type="main">
					<s id="N1E051"><!-- NEW -->Aliter ducatur LK parallela GG; </s>
					<s id="N1E055"><!-- NEW -->triangula GKL, GHI &longs;unt propor&shy;<lb/>tionalia; igitur motus per GE e&longs;t ad motum per HG, vt LG ad LK. <!-- KEEP S--></s>
				</p>
				<p id="N1E05C" type="main">
					<s id="N1E05E"><!-- NEW -->Aliter ducatur QL, triangula QLA, LGK &longs;unt proportionalia; </s>
					<s id="N1E062"><!-- NEW -->igi&shy;<lb/>tur motus per GE e&longs;t ad motum per HG vt QL ad AL; igitur vt &longs;inus <lb/>rectus anguli QAL ad totum. </s>
					<s id="N1E06A">Idem dico de puncto O, &amp; omnibus alia <lb/>in quibus e&longs;t eadem praxis. </s>
				</p>
				<p id="N1E06F" type="main">
					<s id="N1E071"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 56.<emph.end type="center"/></s>
				</p>
				<p id="N1E07D" type="main">
					<s id="N1E07F"><!-- NEW --><emph type="italics"/>In &longs;ingulis punctis plani EN e&longs;t diuer&longs;us motus<emph.end type="italics"/>; </s>
					<s id="N1E088"><!-- NEW -->nam in puncto E nullus <lb/>e&longs;t motus per Th. 50.atqui in puncto G e&longs;t motus; </s>
					<s id="N1E08E"><!-- NEW -->idem dico de puncto <lb/>O, atqui in puncto O e&longs;t maior motus, qu&agrave;m in G, &longs;cilicet initio, id e&longs;t <lb/>velocior incipit motus in O, qu&agrave;m in G; </s>
					<s id="N1E096"><!-- NEW -->probatur quia in G e&longs;t ad mo&shy;<lb/>tum maximum qui fit in perpendiculari vt QL ad LA, &amp; in puncto O <lb/>vt YP ad PA, &longs;ed YP e&longs;t maior QL, vt con&longs;tat; </s>
					<s id="N1E09E"><!-- NEW -->igitur initio e&longs;t maior <lb/>motus in O qu&agrave;m in G; igitur qu&acirc; proportione horizontalis EN erit <lb/>longior, puncta, qu&aelig; longi&ugrave;s di&longs;tabunt, habebunt rationem plani ma&shy;<lb/>gis inclinati. </s>
				</p>
				<p id="N1E0A8" type="main">
					<s id="N1E0AA"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 57.<emph.end type="center"/></s>
				</p>
				<p id="N1E0B6" type="main">
					<s id="N1E0B8"><!-- NEW --><emph type="italics"/>Pote&longs;t determinari grauitatio in &longs;ingulis punctis plani EN<emph.end type="italics"/>; </s>
					<s id="N1E0C1"><!-- NEW -->cum enim <lb/>grauitatio in plano inclinato &longs;it ad grauitationem in horizontali vt <lb/>Tangens ad &longs;ecantem, vel vt horizontalis, in quam &longs;cilicet cadit perpen&shy;<lb/>lum ad inclinatam per Th. 16. &longs;it punctum, G grauitatio in eo puncto <lb/>e&longs;t ad grauitationem in puncto E, vt QA ad AL, &amp; in puncto O ve YA <lb/>ad AP: idem dico de aliis punctis. </s>
				</p>
				<p id="N1E0CF" type="main">
					<s id="N1E0D1"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 58.<emph.end type="center"/></s>
				</p>
				<p id="N1E0DD" type="main">
					<s id="N1E0DF"><!-- NEW --><emph type="italics"/>Hinc e&ograve; minor e&longs;t grauitatio, qu&ograve; maior e&longs;t di&longs;tantia ab E<emph.end type="italics"/>; </s>
					<s id="N1E0E8"><!-- NEW -->atque ita ab E <lb/>ver&longs;us N cre&longs;cit motus, &amp; decre&longs;cit grauitatio; at ver&ograve; ab N ver&longs;us B <lb/>cre&longs;cit grauitatio, &amp; decre&longs;cit motus. </s>
				</p>
				<p id="N1E0F0" type="main">
					<s id="N1E0F2"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 59.<emph.end type="center"/></s>
				</p>
				<p id="N1E0FE" type="main">
					<s id="N1E100"><emph type="italics"/>Globus ab O ver&longs;us E rotatus &longs;emper acceleraret &longs;uum motum.<emph.end type="italics"/></s>
					<s id="N1E107"><!-- NEW --> Demon&shy;<lb/>&longs;tro, quia impetus productus in O con&longs;eruaretur etiam in G, &amp; nouus <lb/>produceretur, igitur acceleraret &longs;uum motum; </s>
					<s id="N1E10F"><!-- NEW -->&longs;uppono enim planum E <lb/>N e&longs;&longs;e l&aelig;uigati&longs;&longs;imum; </s>
					<s id="N1E115"><!-- NEW -->igitur nihil e&longs;&longs;et, &agrave; quo de&longs;trueretur: </s>
					<s id="N1E119"><!-- NEW -->adde qu&ograve;d <pb pagenum="221" xlink:href="026/01/253.jpg"/>&longs;emper haberet &longs;uum effectum; </s>
					<s id="N1E122"><!-- NEW -->igitur non e&longs;&longs;et fru&longs;tr&agrave;; igitur per Schol. <!-- REMOVE S--><lb/>Th.152.l.1. </s>
				</p>
				<p id="N1E129" type="main">
					<s id="N1E12B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 60.<emph.end type="center"/></s>
				</p>
				<p id="N1E137" type="main">
					<s id="N1E139"><!-- NEW --><emph type="italics"/>Ille motus acceleratur per partes in&aelig;quales<emph.end type="italics"/>; </s>
					<s id="N1E142"><!-- NEW -->quia &longs;cilicet motus additus <lb/>in O minor e&longs;&longs;et qu&agrave;m in N, &amp; in G qu&agrave;m in O per Th. 56. igitur per <lb/>partes in&aelig;quales acceleraretur, imm&ograve; pote&longs;t determinari proportio cre&shy;<lb/>menti motus in &longs;ingulis; </s>
					<s id="N1E14C"><!-- NEW -->cum enim in O &longs;it vt YP, in QL. in Yvt T <foreign lang="greek">d</foreign><lb/>ad AC; cert&egrave; cre&longs;cit in proportione &longs;inuum rectorum ad &longs;inum totum. </s>
				</p>
				<p id="N1E155" type="main">
					<s id="N1E157"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 61.<emph.end type="center"/></s>
				</p>
				<p id="N1E163" type="main">
					<s id="N1E165"><!-- NEW --><emph type="italics"/>Mobile de&longs;cendens ex O in E tran&longs;it per tot plana inclinata diuer&longs;a, quot <lb/>&longs;unt puncta in tota EO vt con&longs;tat, vel poti&ugrave;s quot po&longs;&longs;unt duci Tangentes di&shy;<lb/>uer&longs;&aelig; in toto arcu PE<emph.end type="italics"/>; quippe Tangens puncti P e&longs;&longs;et parallela IG, idem <lb/>dico de omnibus aliis punctis arcus PE. </s>
				</p>
				<p id="N1E174" type="main">
					<s id="N1E176"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 62.<emph.end type="center"/></s>
				</p>
				<p id="N1E182" type="main">
					<s id="N1E184"><!-- NEW --><emph type="italics"/>Motus funependuli in quolibet puncto arcus, per quem de&longs;cendit, e&longs;t ad mo&shy;<lb/>tum in perpendiculari, vt &longs;inus re&longs;idui arcus ad &longs;emidiametrum<emph.end type="italics"/>; </s>
					<s id="N1E18F"><!-- NEW -->v.g. <!-- REMOVE S-->&longs;it fune&shy;<lb/>pendulum AD in perpendiculari, quod vibrari po&longs;&longs;it circa punctum im&shy;<lb/>mobile A, eleuetur in A<foreign lang="greek">b</foreign>, ducatur Tangens <foreign lang="greek">b</foreign> V motus funependiculi in <lb/>puncto <foreign lang="greek">b</foreign> &longs;cilicet initio, idem e&longs;t, qui e&longs;&longs;et in plano inclinato <foreign lang="greek">b</foreign>V vt patet, <lb/>atqui motus in inclinato plano <foreign lang="greek">b</foreign> V e&longs;t ad motum in <expan abbr="perp&etilde;diculari">perpendiculari</expan> vt <foreign lang="greek">a</foreign> V. <lb/>ad <foreign lang="greek">b</foreign> V, &longs;ed <foreign lang="greek">a</foreign>V e&longs;t ad <foreign lang="greek">b</foreign>V vt <foreign lang="greek">ab</foreign> ad A<foreign lang="greek">b</foreign>, &longs;unt enim triangula proportionalia; <lb/>igitur motus initio &longs;cilicet in puncto arcus put&agrave; B e&longs;t ad motum in per&shy;<lb/>pendiculari etiam initio con&longs;ideratum, vt &longs;inus rectus re&longs;idui arcus, put&agrave; <lb/><foreign lang="greek">b</foreign> D ad &longs;emidiametrum, vel &longs;inum totum, id e&longs;t <foreign lang="greek">a b</foreign> ad A <foreign lang="greek">b</foreign>, idem dico de <lb/>omnibus aliis punctis. </s>
				</p>
				<p id="N1E1E2" type="main">
					<s id="N1E1E4"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 63.<emph.end type="center"/></s>
				</p>
				<p id="N1E1F0" type="main">
					<s id="N1E1F2"><!-- NEW --><emph type="italics"/>Hinc proportio accelerationis motus in de&longs;cen&longs;u funependuli &longs;eu incremen&shy;<lb/>ti in &longs;ingulis punctis additi e&longs;t in proportione huiu&longs;modi &longs;inuum minorum &longs;em&shy;<lb/>per &amp; minorum<emph.end type="italics"/>; v.g. <!-- REMOVE S-->motus in puncto B e&longs;t vt BA &longs;emidiameter in <foreign lang="greek">t</foreign> vt <foreign lang="greek">t</foreign><lb/><foreign lang="greek">m</foreign> in <foreign lang="greek">b</foreign> vt <foreign lang="greek">b a</foreign>, id e&longs;t lic&egrave;t maior &longs;it motus in <foreign lang="greek">t</foreign> qu&agrave;m in B, cum &longs;cilicet <lb/>de&longs;cendit ex B in <foreign lang="greek">t</foreign>, vt illa portio crementi qu&aelig; in ip&longs;o puncto <foreign lang="greek">t</foreign> addi&shy;<lb/>tur e&longs;t ad primam in B vt <foreign lang="greek">t m</foreign> ad BA. </s>
				</p>
				<p id="N1E229" type="main">
					<s id="N1E22B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 64.<emph.end type="center"/></s>
				</p>
				<p id="N1E237" type="main">
					<s id="N1E239"><!-- NEW --><emph type="italics"/>Hinc velocitas acqui&longs;ita in arcu BT e&longs;t ad acqui&longs;itam in arcu B <foreign lang="greek">b</foreign>, vt <lb/>omnes &longs;inus eiu&longs;dem arcus B <foreign lang="greek">t</foreign> ad omnes &longs;inus arcus B <foreign lang="greek">b</foreign>, &amp; h&aelig;c ad acqui&longs;i&shy;<lb/>tum in toto quadrante BD, vt hi ad omnes &longs;inus quadrantis<emph.end type="italics"/>; </s>
					<s id="N1E252"><!-- NEW -->&longs;imiliter pote&longs;t <lb/>comparari acqui&longs;ita tant&ugrave;m in arcu BT, cum acqui&longs;ita in arcu <foreign lang="greek">t b</foreign> vel <foreign lang="greek">b</foreign><lb/>D, quod probatur; quia motus, qui re&longs;pondet &longs;ingulis punctis arcus initio <lb/>e&longs;t in proportione &longs;inuum &longs;eu tran&longs;uer&longs;arum BA, <foreign lang="greek">t m, b a</foreign>, &amp;c. </s>
					<s id="N1E267"><!-- NEW -->igitur &longs;i <lb/>&agrave; &longs;ingulis punctis arcus quadrantis in rectam lineam compo&longs;iti duce&shy;<lb/>rentur; </s>
					<s id="N1E26F"><!-- NEW -->ha&ugrave;d dubi&egrave; pr&aelig;dictam aream qua&longs;i occupabunt; igitur acqui&longs;ita <lb/>in vno puncto e&longs;t ad acqui&longs;itam in alio puncto vt linea tran&longs;uer&longs;a ad <pb pagenum="222" xlink:href="026/01/254.jpg"/>tran&longs;uer&longs;am v. <!-- REMOVE S-->g. <!-- REMOVE S-->acqui&longs;ita in &longs;olo puncto <foreign lang="greek">t</foreign> nulla habita ratione &longs;upe&shy;<lb/>riorum ad acqui&longs;itam in &longs;olo puncto <foreign lang="greek">b</foreign> vt <foreign lang="greek">tm</foreign> ad <foreign lang="greek">ba</foreign> ita acqui&longs;ita in arcu <lb/>B <foreign lang="greek">t</foreign> e&longs;t ad acqui&longs;itam in arcu <foreign lang="greek">t b</foreign>, vt area &longs;inuum B <foreign lang="greek">t a</foreign>, ad aream &longs;inum <lb/>arcus <foreign lang="greek">t b. </foreign></s>
				</p>
				<p id="N1E2A3" type="main">
					<s id="N1E2A5"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1E2B1" type="main">
					<s id="N1E2B3"><!-- NEW -->Ob&longs;eruabis pr&aelig;dicta ita intelligenda e&longs;&longs;e, vt a&longs;&longs;umantur arcus exten&longs;i <lb/>in lineam rectam, ne &longs;cilicet &longs;inus pl&ugrave;s &aelig;quo contrahantur, &longs;eu potius <lb/>aliquo modo compenetrentur; </s>
					<s id="N1E2BB"><!-- NEW -->&longs;emper enim accidet trapezus mixtus, v. <!-- REMOVE S--><lb/>g. <!-- REMOVE S-->&longs;it trapezus A <foreign lang="greek">t</foreign> a&longs;&longs;umatur recta &aelig;qualia arcui B <foreign lang="greek">t</foreign> &amp; du&aelig; rect&aelig; &aelig;qua&shy;<lb/>les duabus BA <foreign lang="greek">t m</foreign>, quarta erit curua; igitur erit trapezus mixtus, qu&aelig; cer&shy;<lb/>t&egrave; cautio adhibenda e&longs;t, alioquin fal&longs;um e&longs;&longs;et &longs;uperius Theorema, &longs;ed de <lb/>funependulis infr&agrave;. </s>
				</p>
				<p id="N1E2D6" type="main">
					<s id="N1E2D8"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 65.<emph.end type="center"/></s>
				</p>
				<p id="N1E2E4" type="main">
					<s id="N1E2E6"><!-- NEW --><emph type="italics"/>In plano horizontali E O motus incrementa in diuer&longs;is punctis habent <lb/><expan abbr="e&atilde;dem">eandem</expan> proportionem quam habent in motu funependuli per arcum &longs;uum<emph.end type="italics"/> v. <!-- REMOVE S-->g. <lb/><!-- REMOVE S-->fit planum EO ducatur AP O, motus in O e&longs;t ad motum in perpendicu&shy;<lb/>lari vt PX ad AE, &longs;it funependulum AP cuius centrum; </s>
					<s id="N1E2FB"><!-- NEW -->cui affixa e&longs;t im&shy;<lb/>mobiliter extremitas funis, &longs;it A &amp; punctum quietis &longs;it E, motus illius in <lb/>puncto P e&longs;t ad motum in puncto C vt PX ad AB: </s>
					<s id="N1E303"><!-- NEW -->&longs;imiliter motus in G <lb/>puncto plani e&longs;t ad motum in perpendiculari vt LQ ad AE per Th.55. <lb/><expan abbr="item&qacute;ue">itemque</expan> &longs;it funependulum in L, motus in L e&longs;t ad motum in C vt LQ <lb/>ad AE, idem dico de punctis T &amp; Y &amp; omnibus aliis; igitur crementa <lb/>motus t&ugrave;m in motu t&ugrave;m in arcu &longs;unt in eadem proportione. </s>
				</p>
				<p id="N1E312" type="main">
					<s id="N1E314"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 66.<emph.end type="center"/></s>
				</p>
				<p id="N1E320" type="main">
					<s id="N1E322"><emph type="italics"/>Determinari pote&longs;t velocitas acqui&longs;ita in de&longs;cen&longs;u OE,<emph.end type="italics"/> e&longs;t enim vt trian&shy;<lb/>gulum <expan abbr="mixt&utilde;">mixtum</expan> cuius alterum latus rectum &longs;it ad OE, alterum ad angulos <lb/>rectos PX, tertium curua connectens &longs;inus rectos infra PX ver&longs;us vt E <lb/>vides in figura EO 4. e&longs;t autem h&aelig;c velocitas ad velocitatem acqui&longs;i&shy;<lb/>tam in perpendiculari &aelig;quali OE vt pr&aelig;dictum triangulum EO 4. ad <lb/>rectangulum &longs;ub OEA. </s>
				</p>
				<p id="N1E338" type="main">
					<s id="N1E33A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 67.<emph.end type="center"/></s>
				</p>
				<p id="N1E346" type="main">
					<s id="N1E348"><!-- NEW --><emph type="italics"/>Non de&longs;cendit mobile per per OE &amp; GE &aelig;quali tempore vt patet,<emph.end type="italics"/> quia <lb/>h&aelig;c Tangens EO pote&longs;t e&longs;&longs;e longior in infinitum; &longs;ed has proportiones <lb/>demon&longs;trabimus Tom, &longs;equenti, quia multam Geometriam de&longs;ide&shy;<lb/>rant. </s>
				</p>
				<p id="N1E357" type="main">
					<s id="N1E359"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 68.<emph.end type="center"/></s>
				</p>
				<p id="N1E365" type="main">
					<s id="N1E367"><!-- NEW --><emph type="italics"/>Omne planum quod ad aliquod punctum circumferenti&aelig; globi terre&longs;tris <lb/>terminatur, &amp; productum vlterius non &longs;ecat centrum pote&longs;t pl&aelig;num inclina&shy;<lb/>tum e&longs;&longs;e,<emph.end type="italics"/> v.g. <!-- REMOVE S-->in planum LD vel YD, imm&ograve; nullum e&longs;t planum quod non <lb/>&longs;it horizontale, id e&longs;t quod non cadat perpendiculariter in aliquem ra&shy;<lb/>dium vel in aliquod perpendiculum v.g. <!-- REMOVE S-->LD e&longs;t horizontalis quia ca-<pb pagenum="223" xlink:href="026/01/255.jpg"/>dit perpendiculariter in perpendiculum AD, idem dico de plano YD, <lb/>cuius perpendiculum vt inueniatur, ex centro A adducatur perpendicu&shy;<lb/>laris in YD: </s>
					<s id="N1E385"><!-- NEW -->hinc non pote&longs;t de&longs;cendere corpus ad centrum terr&aelig; per <lb/>planum inclinatum rectilineum quia linea recta qu&aelig; ducitur ad cen&shy;<lb/>trum e&longs;t perpendiculum; igitur non e&longs;t planum inclinatum. </s>
				</p>
				<p id="N1E38D" type="main">
					<s id="N1E38F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 69.<emph.end type="center"/></s>
				</p>
				<p id="N1E39B" type="main">
					<s id="N1E39D"><!-- NEW --><emph type="italics"/>Pote&longs;t determinari motus duorum planorum inclinatorum quorum idem <lb/>est perpendiculum,<emph.end type="italics"/> &longs;it enim arcus terr&aelig; GFC centro A; </s>
					<s id="N1E3A8"><!-- NEW -->&longs;int duo plana <lb/>FK GFL quorum idem e&longs;t perpendiculum LA; </s>
					<s id="N1E3AE"><!-- NEW -->motus in K per KF initio <lb/>e&longs;t ad motum per K vt DC ad DCA; </s>
					<s id="N1E3B4"><!-- NEW -->ducatur autem AH perpendicula&shy;<lb/>ris in GL, &amp; centro A ducatur arcus HE, ducaturque vel HO perpendi&shy;<lb/>cularis in AL vel CP in AH; </s>
					<s id="N1E3BC"><!-- NEW -->dico motum in L e&longs;&longs;e vt PC ad CA: &longs;ed <lb/>h&aelig;c &longs;unt facilia. </s>
				</p>
				<p id="N1E3C2" type="main">
					<s id="N1E3C4"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 70.<emph.end type="center"/></s>
				</p>
				<p id="N1E3D0" type="main">
					<s id="N1E3D2"><!-- NEW --><emph type="italics"/>Nullus gradus impetus de&longs;truitur in de&longs;cen&longs;u KF vel MF per &longs;e<emph.end type="italics"/>; </s>
					<s id="N1E3DB"><!-- NEW -->quia nihil <lb/>e&longs;t &agrave; quo de&longs;truatur, dixi per &longs;e; nam per accidens aliquid de&longs;trui pote&longs;t <lb/>t&ugrave;m ratione plani &longs;cabri t&ugrave;m etiam ratione a&euml;ris. </s>
				</p>
				<p id="N1E3E3" type="main">
					<s id="N1E3E5"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 71.<emph.end type="center"/></s>
				</p>
				<p id="N1E3F1" type="main">
					<s id="N1E3F3"><!-- NEW --><emph type="italics"/>Omnes gradus acqui&longs;iti in de&longs;cen&longs;u concurrunt ad de&longs;cen&longs;um pr&aelig;ter vnum <lb/>&longs;cilicet pr&aelig;ter acqui&longs;itum vltimo instanti de&longs;cen&longs;us<emph.end type="italics"/>; quia impetus non con&shy;<lb/>currit ad motum primo in&longs;tanti quo e&longs;t, per Th. 34. lib.1. de omnibus <lb/>aliis certum e&longs;t quod concurrant, quia non impediuntur, igitur concur&shy;<lb/>runt per Ax.12. lib.1. <!-- KEEP S--></s>
				</p>
				<p id="N1E405" type="main">
					<s id="N1E407"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 72.<emph.end type="center"/></s>
				</p>
				<p id="N1E413" type="main">
					<s id="N1E415"><!-- NEW --><emph type="italics"/>Omnes gradus impetus qui concurrunt ad de&longs;cen&longs;um, concurrunt ad a&longs;cen&shy;<lb/>&longs;um pr&aelig;ter vnum<emph.end type="italics"/>; </s>
					<s id="N1E420"><!-- NEW -->probatur, quia &longs;i omnes concurrerent, maior e&longs;&longs;et a&longs;&shy;<lb/>cen&longs;us de&longs;cen&longs;u quod e&longs;t ab&longs;urdum: adde quod impetus innatus ad li&shy;<lb/>neam &longs;ur&longs;um determinari non pote&longs;t per Th.12. &longs;ed impetus innatus <lb/>concurrit ad de&longs;cen&longs;um, vt patet. </s>
				</p>
				<p id="N1E42A" type="main">
					<s id="N1E42C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 73.<emph.end type="center"/></s>
				</p>
				<p id="N1E438" type="main">
					<s id="N1E43A"><!-- NEW --><emph type="italics"/>Hinc tot concurrunt ad a&longs;cen&longs;um quot ad de&longs;cen&longs;um<emph.end type="italics"/>; </s>
					<s id="N1E443"><!-- NEW -->nam ad a&longs;cen&longs;um <lb/>omnes pr&aelig;ter vltimum, ad de&longs;cen&longs;um omnes pr&aelig;ter primum; igitur tot <lb/>concurrunt ad a&longs;cen&longs;um, quot ad de&longs;cen&longs;um. </s>
				</p>
				<p id="N1E44B" type="main">
					<s id="N1E44D">Dices, primo in&longs;tanti a&longs;cen&longs;us aliquis gradus de&longs;truitur. </s>
					<s id="N1E450"><!-- NEW -->Re&longs;ponderet <lb/>aliquis, tran&longs;eat antecedens, quia c&ugrave;m in&longs;tanti vltimo de&longs;cen&longs;us omnes <lb/>gradus pr&aelig;ter innatum exigant motus pro &longs;equenti in&longs;tanti, quod e&longs;t pri&shy;<lb/>mum in&longs;tans a&longs;cen&longs;us; cert&egrave; tot concurrunt ad primum in&longs;tans a&longs;cen&longs;us, <lb/>quot ad vltimum de&longs;cen&longs;us, lic&egrave;t aliquis gradus de&longs;truatur pro primo in&shy;<lb/>&longs;tanti a&longs;cen&longs;us. </s>
					<s id="N1E45E"><!-- NEW -->Re&longs;ponderet alius, c&ugrave;m primo in&longs;tanti a&longs;cen&longs;us gradus <lb/>ille qui vltimo de&longs;cen&longs;us productus e&longs;t concurrat ad motum, igitur illo <lb/>in&longs;tanti fru&longs;tr&agrave; non e&longs;&longs;e, igitur non debere de&longs;trui, c&ugrave;m eo tant&ugrave;m no&shy;<lb/>mine de&longs;truatur impetus; </s>
					<s id="N1E468"><!-- NEW -->igitur primo in&longs;tanti a&longs;cen&longs;us non de&longs;trui <pb pagenum="224" xlink:href="026/01/256.jpg"/>vllum <expan abbr="grad&utilde;">gradum</expan> impetus, quia &longs;cilicet impetus innatus in omnibus in&longs;tan&shy;<lb/>tibus pr&aelig;cedentibus habuit motum <expan abbr="deors&utilde;">deorsum</expan>; </s>
					<s id="N1E47B"><!-- NEW -->igitur nullo <expan abbr="in&longs;t&atilde;ti">in&longs;tanti</expan> pr&aelig;teri&shy;<lb/>to exigebat motum oppo&longs;itum: adde quod vltimo in&longs;tanti de&longs;cen&longs;us quo <lb/>mobile ponitur in F impetus naturalis non exigit ampli&ugrave;s motum, cur <lb/>enim potius ver&longs;us M qu&agrave;m ver&longs;us N, igitur primo tant&ugrave;m in&longs;tanti a&longs;&shy;<lb/>cen&longs;us quo mobile fertur ver&longs;us N, impetus naturalis exigit mobile re&shy;<lb/>dire in F. <!-- KEEP S--></s>
				</p>
				<p id="N1E48E" type="main">
					<s id="N1E490"><!-- NEW -->Dices, &longs;i primo in&longs;tanti a&longs;cen&longs;us nullus gradus impetus de&longs;truitur; igi&shy;<lb/>tur nec &longs;ecundo neque tertio, non e&longs;t enim potior ratio pro vno qu&agrave;m <lb/>pro altero. </s>
					<s id="N1E498"><!-- NEW -->Re&longs;ponderet negando, nam ideo, vt iam indicaui, primo <expan abbr="in&longs;t&atilde;-ti">in&longs;tan&shy;<lb/>ti</expan> a&longs;cen&longs;us nullus gradus de&longs;truitur, quia in&longs;tanti immediat&egrave; <expan abbr="anteced&etilde;ti">antecedenti</expan>, <lb/>quod erat vltimum de&longs;cen&longs;us, impetus innatus non exigebat quidquam <lb/>ampli&ugrave;s, igitur nullus gradus e&longs;t fru&longs;tr&agrave;, igitur nullus de&longs;truitur, at ver&ograve; <lb/>in&longs;tanti a&longs;cen&longs;us impetus innatus exigit pro &longs;equente, quod e&longs;t &longs;ecun&shy;<lb/>dum a&longs;cen&longs;us mobile redire in F, igitur ex illa pugna &longs;ecundi in&longs;tantis <lb/>de&longs;truitur aliquid impetus; </s>
					<s id="N1E4B0"><!-- NEW -->&longs;ed profect&ograve; primo a&longs;cen&longs;us de&longs;truitur ali&shy;<lb/>quid impetus, quia aliquid motus remittitur, propter impetum inna&shy;<lb/>tum; </s>
					<s id="N1E4B8"><!-- NEW -->igitur aliquis impetus e&longs;t fru&longs;tr&agrave;: </s>
					<s id="N1E4BC"><!-- NEW -->non tamen hoc facit, quin omnes <lb/>gradus in de&longs;cen&longs;u acqui&longs;iti concurrant ad a&longs;cen&longs;um; igitur tot concur&shy;<lb/>runt ad a&longs;cen&longs;um, quot ad de&longs;cen&longs;um, cum hac tamen differentia, quod <lb/>impetus innatus, qui concurrit ad de&longs;cen&longs;um, non ad a&longs;cen&longs;um &longs;it long&egrave; <lb/>velocior vltimo in&longs;tanti motus acqui&longs;ito, qui concurrit ad de&longs;cen&longs;um, <lb/>non ad a&longs;cen&longs;um, </s>
				</p>
				<p id="N1E4CA" type="main">
					<s id="N1E4CC"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 74.<emph.end type="center"/></s>
				</p>
				<p id="N1E4D8" type="main">
					<s id="N1E4DA"><!-- NEW --><emph type="italics"/>Hinc in ea proportione cre&longs;cit impetus in de&longs;cen&longs;u, qua decre&longs;cit in a&longs;cen&longs;u, <lb/>&amp; in eadem cre&longs;cit, &amp; decre&longs;cit motus in eadem cre&longs;cunt, &amp; decre&longs;cunt &longs;pa&shy;<lb/>tia,<emph.end type="italics"/> v.g. <!-- REMOVE S-->&longs;int &longs;ex in&longs;tantia de&longs;cen&longs;us iuxta proportionem &longs;cilicet in&longs;tan&shy;<lb/>tium, in qua res i&longs;ta facili&ugrave;s explicatur: </s>
					<s id="N1E4EB"><!-- NEW -->primo in&longs;tanti motus &longs;unt duo <lb/>gradus impetus, quorum alter tant&ugrave;m concurrit, &longs;cilicet qui pr&aelig;extitit; </s>
					<s id="N1E4F1"><!-- NEW --><lb/>qui enim producitur primo illo in&longs;tanti, non concurrit ad illum motum <lb/>per Th. 34. lib.  1. igitur primo in&longs;tanti &longs;unt duo gradus impetus, vnus <lb/>gradus motus, &amp; vnum &longs;patium; </s>
					<s id="N1E4FA"><!-- NEW -->&longs;ecundo ver&ograve; in&longs;tanti &longs;unt tres gradus <lb/>impetus quorum vnus non concurrit, 2. gradus motus, 2.&longs;patia, atque ita <lb/>deinceps; donec tandem &longs;exto eo vltimo in&longs;tanti de&longs;cen&longs;us &longs;int 7. gra&shy;<lb/>dus impetus, quorum vnus non concurrit, 6. gradus motus, &amp; 6. <lb/>&longs;patia. </s>
				</p>
				<p id="N1E506" type="main">
					<s id="N1E508"><!-- NEW -->Similiter primo in&longs;tanti a&longs;cen&longs;us &longs;unt 7. gradus impetus, quorum <lb/>vnus non concurrit &longs;cilicet innatus, 6. gradus motus, 6. &longs;patia; &longs;ecundo <lb/>6.gradus impetus, quorum vnus non concurrit &longs;cilicet innatus, 5.gradus <lb/>motus, 5.&longs;patia, atque ita deinceps. </s>
				</p>
				<p id="N1E512" type="main">
					<s id="N1E514"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 35.<emph.end type="center"/></s>
				</p>
				<p id="N1E520" type="main">
					<s id="N1E522"><!-- NEW --><emph type="italics"/>Hinc &aelig;qualia fer&egrave; vtrimque &longs;unt &longs;patia de&longs;cen&longs;us &longs;cilicet, &amp; a&longs;cen&longs;us<emph.end type="italics"/>; v.g. <!-- REMOVE S--><lb/>MF &aelig;quale FN, quia e&longs;t &longs;umma eorumdem terminorum per Th. 74. <lb/>igitur ex F mobile a&longs;cendit ad altitudinem FN &aelig;qualem altitudini FM, <pb pagenum="225" xlink:href="026/01/257.jpg"/>ex qua pri&ugrave;s de&longs;cenderat dixi fer&egrave;, quia cum innatus &longs;it perfectior vlti&shy;<lb/>mo acqui&longs;ito paul&ograve; pl&ugrave;s &longs;patij acquiritur in de&longs;cen&longs;u, qu&agrave;m in a&longs;cen&longs;u, <lb/>&longs;ed minimum e&longs;t &longs;en&longs;ibile. </s>
				</p>
				<p id="N1E539" type="main">
					<s id="N1E53B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 76.<emph.end type="center"/></s>
				</p>
				<p id="N1E547" type="main">
					<s id="N1E549"><emph type="italics"/>Hinc &aelig;qualibus temporibus a&longs;cendit fer&egrave; ab F in N, &amp; de&longs;cendit ex M <lb/>in F,<emph.end type="italics"/> quia numerus terminorum &aelig;qualis e&longs;t numero in&longs;tantium. </s>
				</p>
				<p id="N1E553" type="main">
					<s id="N1E555"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 77.<emph.end type="center"/></s>
				</p>
				<p id="N1E561" type="main">
					<s id="N1E563"><!-- NEW --><emph type="italics"/>Hinc motum haberet fer&egrave; perpetuum ab M in F ab F in N, ab N ite&shy;<lb/>rum in F, &amp;c.<emph.end type="italics"/> &longs;i enim de&longs;cendens ex M in F a&longs;cendit ad &aelig;qualem altitu&shy;<lb/>dinem FN, ita &amp; de&longs;cendens ex N in F a&longs;cendet ad &aelig;qualem altitudi&shy;<lb/>nem FM, atque ita deinceps; </s>
					<s id="N1E572"><!-- NEW -->igitur motus erit fer&egrave; perpetuus; </s>
					<s id="N1E576"><!-- NEW -->&longs;ed pro&shy;<lb/>fect&ograve; nullum e&longs;t corpus t&agrave;m l&aelig;uigatum, quod motum non impediat: dixi <lb/>fer&egrave;, quia de&longs;cen&longs;us tantill&ugrave;m &longs;uperat a&longs;cen&longs;um, &longs;ed vix intra mille an&shy;<lb/>nos &longs;en&longs;u id percipi po&longs;&longs;et. </s>
				</p>
				<p id="N1E580" type="main">
					<s id="N1E582"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 78.<emph.end type="center"/></s>
				</p>
				<p id="N1E58E" type="main">
					<s id="N1E590"><!-- NEW --><emph type="italics"/>Hinc &longs;i terrestris globus e&longs;&longs;et perforatus in perpendiculo FAI, &longs;i ex puncto <lb/>F demitteretur globus plumbeus per FAI de&longs;cenderet ex F in A, tum ex <lb/>Aa&longs;cenderet in I &aelig;quali fer&egrave; tempore<emph.end type="italics"/>; </s>
					<s id="N1E59D"><!-- NEW -->quod nece&longs;&longs;ari&ograve; &longs;equitur ex dictis; </s>
					<s id="N1E5A1"><!-- NEW --><lb/>quia omnes gradus qui concurrent ad a&longs;cen&longs;um, etiam concurrerent ad <lb/>de&longs;cen&longs;um, pr&aelig;ter vnum, &longs;cilicet vltimo in&longs;tanti de&longs;cen&longs;us acqui&longs;itum; </s>
					<s id="N1E5A8"><!-- NEW --><lb/>&amp; omnes, qui concurrerent ad de&longs;cen&longs;um, concurrerent etiam ad a&longs;cen&shy;<lb/>&longs;um pr&aelig;ter vnum, &longs;cilicet primum vel innatum; </s>
					<s id="N1E5AF"><!-- NEW -->igitur &aelig;quale &longs;patium <lb/>&aelig;quali tempore percurreretur; </s>
					<s id="N1E5B5"><!-- NEW -->quod cert&egrave; dictum &longs;it ab&longs;trahendo &agrave; re&shy;<lb/>&longs;i&longs;tentia a&euml;ris, qu&aelig; fort&egrave; modica e&longs;&longs;et; </s>
					<s id="N1E5BB"><!-- NEW -->Ex hac perpetua vibrationum &longs;e&shy;<lb/>rie aliquando explicabimus cau&longs;as phy&longs;icas apog&aelig;i &amp; perig&aelig;i Solis, &amp; <lb/>aliorum planetarum; adhibe <expan abbr="c&atilde;dem">eandem</expan> cautionem, de qua &longs;upr&agrave;. </s>
				</p>
				<p id="N1E5C7" type="main">
					<s id="N1E5C9"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 79.<emph.end type="center"/></s>
				</p>
				<p id="N1E5D5" type="main">
					<s id="N1E5D7"><emph type="italics"/>Si duo plana inclinata faciunt angulum e&longs;t fer&egrave; &aelig;qualis a&longs;cen&longs;us de&longs;cen&longs;ui.<emph.end type="italics"/><lb/>v. </s>
					<s id="N1E5E0"><!-- NEW -->g. <!-- REMOVE S-->de&longs;cendat per LF dico quod a&longs;cendet per FR ad altitudinem fer&egrave; <lb/>&aelig;qualem LF, quia lic&egrave;t in angulo illo LFR &longs;it noua determinatio ad <lb/>nouam lineam motus, id e&longs;t qua&longs;i reflexio; </s>
					<s id="N1E5EA"><!-- NEW -->nihil e&longs;t tamen quod de&longs;truat <lb/>impetum; nam in reflexione &longs;eu noua determinatione non perit aliquid <lb/>impetus nece&longs;&longs;ari&ograve; vt lib.  &longs;equenti demon&longs;trabimus. </s>
				</p>
				<p id="N1E5F2" type="main">
					<s id="N1E5F4"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 80.<emph.end type="center"/></s>
				</p>
				<p id="N1E600" type="main">
					<s id="N1E602"><emph type="italics"/>E&longs;t tamen alia ratio de motu funependuli qu&acirc; euincemus a&longs;cen&longs;um e&longs;&longs;e mi&shy;<lb/>norem de&longs;cen&longs;u,<emph.end type="italics"/> de qua infr&agrave;. </s>
				</p>
				<p id="N1E60C" type="main">
					<s id="N1E60E"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 81.<emph.end type="center"/></s>
				</p>
				<p id="N1E61A" type="main">
					<s id="N1E61C"><!-- NEW --><emph type="italics"/>Initio a&longs;cen&longs;us per FN de&longs;truuntur gradus impetus producti &longs;ub finem de&shy;<lb/>&longs;cen&longs;us, &amp; &longs;ub finem a&longs;cen&longs;us destruuntur producti initio de&longs;cen&longs;us:<emph.end type="italics"/> ratio e&longs;t <lb/>clara, quia producti &longs;ub finem de&longs;cen&longs;us &longs;unt imperfectiores, c&ugrave;m pl&ugrave;s <lb/>recedant &agrave; perpendiculari, per Th. 55. &longs;imiliter initio a&longs;cen&longs;us longi&ugrave;s <lb/>recedit linea &agrave; verticali; </s>
					<s id="N1E62D"><!-- NEW -->igitur min&ugrave;s de&longs;truetur impetus, vt &longs;&aelig;p&egrave; incul-<pb pagenum="226" xlink:href="026/01/258.jpg"/>cauimus; nam idem de&longs;truitur in dato puncto a&longs;cen&longs;us, qui producere&shy;<lb/>tur in eodem puncto de&longs;cen&longs;us. </s>
				</p>
				<p id="N1E638" type="main">
					<s id="N1E63A">Dices, gradus productus vltimo in&longs;tanti de&longs;cen&longs;us non de&longs;truitur pri&shy;<lb/>mo a&longs;cen&longs;us. </s>
					<s id="N1E63F"><!-- NEW -->Re&longs;pondeo de&longs;trui; </s>
					<s id="N1E643"><!-- NEW -->hinc eadem cau&longs;a idem de&longs;truit primo <lb/>in&longs;tanti a&longs;cen&longs;us quod produxit vltimo in&longs;tanti de&longs;cen&longs;us; de&longs;truit in&shy;<lb/>quam mediat&egrave;. </s>
				</p>
				<p id="N1E64B" type="main">
					<s id="N1E64D"><!-- NEW -->H&icirc;c ob&longs;eruabis &longs;ingulare di&longs;crimen, quod intercedit inter cau&longs;am <lb/>producentem, &amp; exigentem; </s>
					<s id="N1E653"><!-- NEW -->nam producens ver&egrave; agit, exigens ver&ograve; tan&shy;<lb/>t&ugrave;m exigit; </s>
					<s id="N1E659"><!-- NEW -->illa con&longs;equitur effectum eo in&longs;tanti quo agit; </s>
					<s id="N1E65D"><!-- NEW -->h&aelig;c ver&ograve; non <lb/>habet effectum eo in&longs;tanti, quo exigit, &longs;ed pro &longs;equenti; </s>
					<s id="N1E663"><!-- NEW -->e&longs;t tamen cau&longs;a <lb/>eo in&longs;tanti, quo exigit, non cert&egrave; agens, &longs;ed exigens: </s>
					<s id="N1E669"><!-- NEW -->exemplum habes <lb/>in impetu, qui non habet motum eo in&longs;tanti quo exigit, &longs;ed tant&ugrave;m &longs;e&shy;<lb/>quenti pro quo exigit; </s>
					<s id="N1E671"><!-- NEW -->igitur e&longs;t cau&longs;a motus antequ&agrave;m &longs;it motus, non <lb/>agens &longs;ed exigens; at ver&ograve; cum impetus alium impetum producit e&longs;t <lb/>tant&ugrave;m cau&longs;a illius cum agit. </s>
				</p>
				<p id="N1E679" type="main">
					<s id="N1E67B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 82.<emph.end type="center"/></s>
				</p>
				<p id="N1E687" type="main">
					<s id="N1E689"><!-- NEW --><emph type="italics"/>Vltimo in&longs;tanti a&longs;cen&longs;us &longs;unt duo gradus impetus, &longs;cilicet productus primo <lb/>in&longs;tanti de&longs;cen&longs;us cum innato<emph.end type="italics"/>; </s>
					<s id="N1E694"><!-- NEW -->igitur in&longs;tanti &longs;equenti erit motus, id e&longs;t, <lb/>de&longs;cen&longs;us, quia pr&aelig;ualet innatus qui perfectior e&longs;t, vt con&longs;tat ex dictis; </s>
					<s id="N1E69A"><!-- NEW --><lb/>igitur nullum erit in&longs;tans quietis; qu&aelig; omnia explicari debent eodem <lb/>modo, quo iam explicuimus in motu violento, lib.3. e&longs;t enim eadem ra&shy;<lb/>tio, &amp;c. </s>
					<s id="N1E6A3">qu&aelig; omitto ne multa h&icirc;c repetere cogar. </s>
				</p>
				<p id="N1E6A6" type="main">
					<s id="N1E6A8"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 83.<emph.end type="center"/></s>
				</p>
				<p id="N1E6B4" type="main">
					<s id="N1E6B6"><!-- NEW --><emph type="italics"/>Ictus e&longs;&longs;ent fer&egrave; &aelig;quales in &longs;egmentis &aelig;qualibus a&longs;cen&longs;us &amp; de&longs;cen&longs;us,<emph.end type="italics"/> quia <lb/>motus e&longs;&longs;et &aelig;qualis in illis; igitur ictus &aelig;quales, quod facil&egrave; e&longs;t. </s>
				</p>
				<p id="N1E6C1" type="main">
					<s id="N1E6C3"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 84.<emph.end type="center"/></s>
				</p>
				<p id="N1E6CF" type="main">
					<s id="N1E6D1"><!-- NEW --><emph type="italics"/>In planis eiu&longs;dem inclinationis idem corpus graue e&longs;t eiu&longs;dem ponderis<emph.end type="italics"/> v. <!-- REMOVE S--><lb/>g. <!-- REMOVE S-->&longs;int plana FE. GD. HO eiu&longs;dem inclinationis cum communi &longs;ci&shy;<lb/>licet perpendiculo ODEA; </s>
					<s id="N1E6E1"><!-- NEW -->cert&egrave; pondus corporis in O e&longs;t ad pondus <lb/>eiu&longs;dem in H vt AH ad AO per Th.57. &amp; pondus corporis eiu&longs;dem in <lb/>D e&longs;t ad pondus eiu&longs;dem in G vt AG ad AD, &amp; in E vt AF ad AE; </s>
					<s id="N1E6E9"><!-- NEW --><lb/>&longs;ed AF e&longs;t ad AE vt AG ad AD, vt AH ad AO; &longs;unt enim triangula <lb/>proportionalia. </s>
				</p>
				<p id="N1E6F0" type="main">
					<s id="N1E6F2">Hinc reiice quorumdam recentiorum &longs;ententiam, qui volunt corpus, <lb/>quod propi&ugrave;s ad centrum terr&aelig; accedit, e&longs;&longs;e min&ugrave;s graue, &amp; grauius quod <lb/>longi&ugrave;s &agrave; centro recedit, quod de grauitate corporis ab&longs;olut&egrave; &longs;umpti nul&shy;<lb/>latenus dici pote&longs;t vt con&longs;tat, vtrum ver&ograve; &longs;i cum alio in eadem libra &longs;ta&shy;<lb/>tuatur hinc inde, videbimus &longs;uo loco. </s>
				</p>
				<p id="N1E6FD" type="main">
					<s id="N1E6FF"><!-- NEW -->Diceret fort&egrave; aliquis in ip&longs;o centro &longs;poliari &longs;ua tota grauitate; </s>
					<s id="N1E703"><!-- NEW -->igitur <lb/>quo propi&ugrave;s accedit ad centrum maiori grauitatis portione multatur; </s>
					<s id="N1E709"><!-- NEW -->&longs;ed <lb/>nego con&longs;equentiam; </s>
					<s id="N1E70F"><!-- NEW -->nec enim &longs;equitur priuari parte grauitatis dum <lb/>abe&longs;t &agrave; centro, lic&egrave;t tota priuetur cum e&longs;t in centro &longs;ed de hac qu&aelig;&longs;tione <lb/>plura ali&agrave;s; nec enim huius loci e&longs;t. </s>
				</p>
				<pb pagenum="227" xlink:href="026/01/259.jpg"/>
				<p id="N1E71B" type="main">
					<s id="N1E71D"><!-- NEW -->Sed ne hoc fort&egrave; excidat &longs;i Globus CGLH de&longs;cendat ex A ad cen&shy;<lb/>trum mundi &longs;eu grauium E, qu&aelig;ri pote&longs;t vtrum omnes partes mouean&shy;<lb/>tur &longs;ua &longs;ponte ver&longs;us L etiam ill&aelig; qu&aelig; vltra centrum E proce&longs;&longs;erunt, &longs;eu <lb/>quod idem e&longs;t, vtrum globus CGLH, cuius centrum E e&longs;t coniun&shy;<lb/>ctum cum centro grauium E tran&longs;latus in IFKB eiu&longs;dem &longs;it ponderis, <lb/>cuius e&longs;&longs;et in A. v.g. <!-- REMOVE S-->Re&longs;p. prim&ograve; globum pr&aelig;dictum, cuius centrum e&longs;t in E, nullius e&longs;&longs;e <lb/>ponderis, vt con&longs;tat; nec enim poti&ugrave;s in vnam partem, qu&agrave;m in aliam <lb/>inclinat. </s>
				</p>
				<p id="N1E731" type="main">
					<s id="N1E733"><!-- NEW -->Re&longs;pondeo &longs;ecund&ograve; globum <expan abbr="e&utilde;dem">eundem</expan>, cuius centrum e&longs;t D ex&shy;<lb/>tra centrum grauium E grauitare, quia inclinat ver&longs;us E.R e&longs;pondeo ter&shy;<lb/>ti&ograve; non &aelig;qualiter grauitare, &longs;iue &longs;it in D, &longs;iue &longs;it in A; </s>
					<s id="N1E73F"><!-- NEW -->quia grauitat per <lb/>&longs;uam entitatem quatenus coniuncta e&longs;t cum inclinatione; </s>
					<s id="N1E745"><!-- NEW -->&longs;ed non e&longs;t ea&shy;<lb/>dem entitas in A qu&aelig; in D cum eadem inclinatione, igitur nec eadem <lb/>grauitas; </s>
					<s id="N1E74D"><!-- NEW -->non enim grauitat inde &longs;ecundum totam &longs;uam entitatem; <lb/>quia &longs;cilicet &longs;ectio MFNE non pote&longs;t ampli&ugrave;s grauitare infr&agrave; E, quan&shy;<lb/>doquidem E e&longs;t locus infimus. </s>
				</p>
				<p id="N1E755" type="main">
					<s id="N1E757">Dices grauitare grauitatione communi. </s>
					<s id="N1E75A"><!-- NEW -->Re&longs;pondeo ad extra conce&shy;<lb/>do, &longs;cilicet ad producendum impetum in corpore quod impedit motum, <lb/>&longs;ecus ver&ograve; grauitatione intrin&longs;ec&acirc;; vnde &longs;i &longs;u&longs;tineretur globus in F non <lb/>&longs;u&longs;tineretur totus, &longs;ed fort&egrave; detraheretur de toto pondere, prim&ograve; &longs;ectio <lb/>MFNE, qu&aelig; non grauitat ver&longs;us F &amp; altera &aelig;qualis qu&aelig; ab ea &longs;u&longs;tine&shy;<lb/>retur. </s>
					<s id="N1E768"><!-- NEW -->v.g. <!-- REMOVE S-->&longs;i &longs;ectio OCPD immediat&egrave; incumberet &longs;ectioni MFNE, <lb/>ita vt corda OP iungeretur cord&aelig; MN; </s>
					<s id="N1E770"><!-- NEW -->cert&egrave; vtraque con&longs;i&longs;teret; dixi <lb/>fort&egrave;, quia non e&longs;t ita certum, vt videbimus alias. </s>
					<s id="N1E776"><!-- NEW -->Dices igitur &longs;i globus <lb/>ille e&longs;&longs;et in centro, minima vi adhibita amoueretur; </s>
					<s id="N1E77C"><!-- NEW -->igitur idem timen&shy;<lb/>dum e&longs;&longs;et de toto terre&longs;tri globo; </s>
					<s id="N1E782"><!-- NEW -->&longs;ed noli timere qu&aelig;&longs;o t&agrave;m facil&egrave; terr&aelig; <lb/>motum; </s>
					<s id="N1E788"><!-- NEW -->imm&ograve; &longs;i globus ille &longs;emel occuparet centrum E., cum non tan&shy;<lb/>tum hemi&longs;pherium GLH contra nitatur GCH; </s>
					<s id="N1E78E"><!-- NEW -->ver&ugrave;m etiam CGL, <lb/>CHL, &amp; infinita alia; </s>
					<s id="N1E794"><!-- NEW -->cert&egrave; vt moueatur vbi &longs;emel centrum E occupat, <lb/>debent tot fer&egrave; produci gradus impetus, quot produci deberent vt mo&shy;<lb/>ueretur extra centrum, vt probabimus cum de grauitate &longs;cilicet in tra&shy;<lb/>ctatu &longs;equenti phy&longs;ic&aelig; &longs;ingulari: Interim dicendum e&longs;t &longs;ingulas partes <lb/>huius globi &longs;eor&longs;im grauitare, cum centrum occupat, excepto illo puncto <lb/>quod in centro e&longs;t. </s>
				</p>
				<p id="N1E7A2" type="main">
					<s id="N1E7A4"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 85.<emph.end type="center"/></s>
				</p>
				<p id="N1E7B0" type="main">
					<s id="N1E7B2"><!-- NEW --><emph type="italics"/>Pote&longs;t, corpus graue de&longs;cendere ad centrum terr&aelig; per planum conuexum <lb/>quadrantis,<emph.end type="italics"/> &longs;it enim globus terr&aelig; GBCK, centrum A; de&longs;cribatur ex <lb/>K &longs;emidiametro KA quadrans KLA. </s>
					<s id="N1E7BF">Dico qu&ograve;d corpus graue de&longs;cen&shy;<lb/>det per conuexum arcum LVA, non tamen per concauum. </s>
					<s id="N1E7C4"><!-- NEW -->Probatur <lb/>prima pars, quia &agrave; puncto L per arcum LVA &longs;emper accedit propi&ugrave;s ad <lb/>centrum A; </s>
					<s id="N1E7CC"><!-- NEW -->igitur per illam de&longs;cendet, quia nulla e&longs;t alia linea minor <lb/>dextror&longs;um; </s>
					<s id="N1E7D2"><!-- NEW -->&longs;i enim e&longs;&longs;et aliqua, e&longs;&longs;et LCA; </s>
					<s id="N1E7D6"><!-- NEW -->quia po&longs;&longs;unt tant&ugrave;m duci <lb/>du&aelig; ill&aelig; rect&aelig; breui&longs;&longs;im&aelig;, qu&aelig; terminentur ad puncta LC vt patet; </s>
					<s id="N1E7DC"><!-- NEW -->&longs;ed <lb/>LCA e&longs;t maior arcu LVA: </s>
					<s id="N1E7E2"><!-- NEW -->Probatur &longs;ecunda pars, quia ab L in A in-<pb pagenum="228" xlink:href="026/01/260.jpg"/>tror&longs;um pote&longs;t duci linea LA breuior arcu LVA; igitur per concauum <lb/>LVA non de&longs;cenderet mobile. </s>
				</p>
				<p id="N1E7ED" type="main">
					<s id="N1E7EF"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 86.<emph.end type="center"/></s>
				</p>
				<p id="N1E7FB" type="main">
					<s id="N1E7FD"><!-- NEW --><emph type="italics"/>Motus puncti L initio e&longs;&longs;et minor motu puncti V initio; </s>
					<s id="N1E803"><!-- NEW -->id e&longs;t po&longs;ito quod <lb/>demittatur ex V ver&longs;us A<emph.end type="italics"/>; </s>
					<s id="N1E80C"><!-- NEW -->demon&longs;tro, quia eodem modo &longs;e habet in L, <lb/>atque &longs;i e&longs;&longs;et in puncto L <expan abbr="T&atilde;gentis">Tangentis</expan> LC, vt pater; </s>
					<s id="N1E816"><!-- NEW -->&longs;ed motus per LC ini&shy;<lb/>tio e&longs;t ad motum per LA vt ND ad NA vel vt LC ad LA per Th.55. <lb/>at ver&ograve; motus in V vel in F initio per FE <expan abbr="T&atilde;gentem">Tangentem</expan> e&longs;t ad motum per&shy;<lb/>pendiculi FA vt FE ad FA; </s>
					<s id="N1E824"><!-- NEW -->&longs;ed e&longs;t maior ratio FE ad FA, qu&agrave;m LE <lb/>ad LA, vt con&longs;tat; igitur motus initio in V e&longs;t minor qu&agrave;m in L <lb/>initio. </s>
				</p>
				<p id="N1E82C" type="main">
					<s id="N1E82E"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 87.<emph.end type="center"/></s>
				</p>
				<p id="N1E83A" type="main">
					<s id="N1E83C"><!-- NEW --><emph type="italics"/>Hinc e&longs;t inuer&longs;a ratio motus funependuli vulgaris &amp; plani inclinati recti,<emph.end type="italics"/><lb/>in quibus motus &longs;upremi puncti e&longs;t maior motu cuiu&longs;libet alterius pun&shy;<lb/>cti, vnde inciperet motus, cum tamen hic &longs;it minor: porr&ograve; po&longs;&longs;et e&longs;&longs;e <lb/>funependulum KLA dum vel LVA e&longs;&longs;et orbis durus quem media di&shy;<lb/>uideret rima qua&longs;i ecliptica globi penduli ex K fune exten&longs;o, &amp; per ri&shy;<lb/>mam incerto KL, vel quod facili&ugrave;s e&longs;&longs;et &longs;i KL e&longs;&longs;et pri&longs;ma durum, quod <lb/>circa K immobile moueri &longs;eu volui po&longs;&longs;et. </s>
				</p>
				<p id="N1E850" type="main">
					<s id="N1E852"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 88.<emph.end type="center"/></s>
				</p>
				<p id="N1E85E" type="main">
					<s id="N1E860"><emph type="italics"/>Alia via facilior occurrit, qu&aelig; mihi videtur non e&longs;&longs;e omittenda qua propor&shy;<lb/>tiones ill&aelig; diuer&longs;i motus demonstrari po&longs;&longs;ent,<emph.end type="italics"/> &longs;it. </s>
					<s id="N1E86A"><!-- NEW -->v.g. <!-- REMOVE S-->punctum L; </s>
					<s id="N1E870"><!-- NEW -->a&longs;&longs;umatur <lb/>arcus LQ &aelig;qualis arcui LA; </s>
					<s id="N1E876"><!-- NEW -->ducatur recta AQ, in quam ducatur LK <lb/>perpendicularis: </s>
					<s id="N1E87C"><!-- NEW -->dico motum in L per arcum LVA initio e&longs;&longs;e ad motum <lb/>per LA vt KA ad LA: </s>
					<s id="N1E882"><!-- NEW -->&longs;imiliter &longs;it punctum V; </s>
					<s id="N1E886"><!-- NEW -->a&longs;&longs;umatur VL &aelig;qualis <lb/>arcui VA; </s>
					<s id="N1E88C"><!-- NEW -->&amp; in hanc perpendicularis VX.dico motum in V per arcum <lb/>VA e&longs;&longs;e ad motum per ip&longs;um perpendiculum VA vt XA ad rectam <lb/>VA; </s>
					<s id="N1E894"><!-- NEW -->idem dico de omnibus aliis: </s>
					<s id="N1E898"><!-- NEW -->Ratio e&longs;t, quia Tangens, qu&aelig; ducere&shy;<lb/>tur in V e&longs;&longs;et parallela AX; igitur triangula vtrimque e&longs;&longs;ent &aelig;qualia. </s>
					<s id="N1E89E"><!-- NEW --><lb/>v.g. <!-- REMOVE S-->FEA &amp; FYA: item motus in P e&longs;t ad motum per ip&longs;um perpen&shy;<lb/>diculum, vt Tangens PM ad PA, vt con&longs;tat ex dictis. </s>
				</p>
				<p id="N1E8A7" type="main">
					<s id="N1E8A9"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 89.<emph.end type="center"/></s>
				</p>
				<p id="N1E8B5" type="main">
					<s id="N1E8B7"><!-- NEW --><emph type="italics"/>Hinc totus motus per LA perpendiculum e&longs;t ad totum motum per arcum <lb/>LVA, vt omnes chord&aelig; duct&aelig; ab A ad omnia puncta quadrantis AVL <lb/>&longs;imul &longs;umpt&aelig; ad totidem &longs;ubduplas chordarum ductarum ab A ad alterna <lb/>puncta totius &longs;emicirculi ALQ vel ad totidem <expan abbr="T&atilde;gentes">Tangentes</expan> &longs;imul &longs;umptas<emph.end type="italics"/>: </s>
					<s id="N1E8CA"><!-- NEW -->cum <lb/>enim motus in L per arcum LVA &longs;it ad motum in L por ip&longs;um perpen&shy;<lb/>diculum LA vt &longs;ubdupla AQ ad LA, &amp; motus in V per arcum in A <lb/>&longs;it ad motum in V per rectam VA, vt &longs;ubdupla chord&aelig; AL ad rectam <lb/>VA, atque ita deinceps per Th.88. cert&egrave; omnia antecedentis &longs;imul &longs;um&shy;<lb/>pta habent illam rationem ad omnia con&longs;equentia &longs;imul &longs;umpta, vt con&shy;<lb/>&longs;tat; igitur totus motus, &amp;c. </s>
				</p>
				<pb pagenum="229" xlink:href="026/01/261.jpg"/>
				<p id="N1E8DE" type="main">
					<s id="N1E8E0"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 90.<emph.end type="center"/></s>
				</p>
				<p id="N1E8EC" type="main">
					<s id="N1E8EE"><!-- NEW --><emph type="italics"/>Globus de&longs;cendens B per conuexum arcum LVA in quo A e&longs;t centrum <lb/>terr&aelig; a&longs;cenderet denu&ograve; per quadrantem oppo&longs;itum AFS<emph.end type="italics"/>; </s>
					<s id="N1E8F9"><!-- NEW -->patet, quia totus <lb/>impetus non de&longs;trueretur in centro A, qui &longs;cilicet e&longs;&longs;et inten&longs;ior pro&shy;<lb/>pter accelerationem de&longs;cen&longs;us, qu&agrave;m vt in momento de&longs;truatur; quod <lb/>probatur ex aliis funependulis, &amp; reflexis. </s>
				</p>
				<p id="N1E903" type="main">
					<s id="N1E905"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 91.<emph.end type="center"/></s>
				</p>
				<p id="N1E911" type="main">
					<s id="N1E913"><!-- NEW --><emph type="italics"/>Non a&longs;cenderet per totum arcum AFS<emph.end type="italics"/>; </s>
					<s id="N1E91C"><!-- NEW -->hoc Theorema probabitur cum <lb/>de motu funependuli, e&longs;t enim eadem pro vtroque ratio; qu&aelig; in eo po&shy;<lb/>&longs;ita e&longs;t, qu&ograve;d in a&longs;cen&longs;u aliquid impetus de&longs;truatur. </s>
				</p>
				<p id="N1E924" type="main">
					<s id="N1E926"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 92.<emph.end type="center"/></s>
				</p>
				<p id="N1E932" type="main">
					<s id="N1E934"><!-- NEW --><emph type="italics"/>Veloci&ugrave;s de&longs;cenderet per arcum maiorem LVA quam per minorem XA; </s>
					<s id="N1E93A"><!-- NEW --><lb/>veloci&ugrave;s, inquam, pro rata<emph.end type="italics"/>; </s>
					<s id="N1E942"><!-- NEW -->nam arcum XA citi&ugrave;s percurreret; </s>
					<s id="N1E946"><!-- NEW -->ratio e&longs;t, <lb/>quia modicus XA e&longs;t magis curuus, vt patet; </s>
					<s id="N1E94C"><!-- NEW -->igitur determinatio&shy;<lb/>nis mutatio maior e&longs;t: adde quod maior arcus accedit propi&ugrave;s ad <lb/>rectam. </s>
				</p>
				<p id="N1E954" type="main">
					<s id="N1E956"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 93.<emph.end type="center"/></s>
				</p>
				<p id="N1E962" type="main">
					<s id="N1E964"><!-- NEW --><emph type="italics"/>Non modo per quadrantem circuli de&longs;cendere pote&longs;t in centrum terr&aelig;, &longs;ed <lb/>etiam per &longs;emicirculum<emph.end type="italics"/>; </s>
					<s id="N1E96F"><!-- NEW -->vt videre e&longs;t in eadem figura, nam &longs;i globus &longs;ta&shy;<lb/>tueretur iuxta Quantul&ugrave;m, &longs;cilicet, extra perpendiculum AQ dextror&shy;<lb/>&longs;um, v.g. <!-- REMOVE S-->vers&ugrave;s P; </s>
					<s id="N1E979"><!-- NEW -->cert&egrave; de&longs;cenderet v&longs;que ad A per conuexum &longs;emicir&shy;<lb/>culi QLA; per conuexum, inquam, non per concauum, vt dictum e&longs;t <lb/>de quadrante LVA. </s>
					<s id="N1E981"><!-- NEW -->Ratio e&longs;t, quia accederet &longs;emper propi&ugrave;s ad cen&shy;<lb/>trum A; </s>
					<s id="N1E987"><!-- NEW -->igitur e&longs;&longs;et planum inclinatum per Th. 2. igitur per illud de&shy;<lb/>&longs;cenderet, nec vlla e&longs;&longs;et difficultas; </s>
					<s id="N1E98D"><!-- NEW -->quod autem accedat &longs;emper propi&ugrave;s <lb/>ad A per &longs;emicirculum QLA, certum e&longs;t; </s>
					<s id="N1E993"><!-- NEW -->quia PA minor e&longs;t QA; nam <lb/>diameter e&longs;t maxima &longs;ubten&longs;arum in circulo. </s>
					<s id="N1E999"><!-- NEW -->Imm&ograve; per alium &longs;emi&shy;<lb/>circulum ASQ a&longs;cenderet denu&oacute;que de&longs;cenderet repetitis pluribus vi&shy;<lb/>brationibus; nunquam tamen a&longs;cenderet v&longs;que ad punctum Q propter <lb/>tamdem rationem, quam in Theoremate 92. adduximus. </s>
				</p>
				<p id="N1E9A3" type="main">
					<s id="N1E9A5">Ob&longs;eruabis pr&aelig;terea non tant&ugrave;m corpus graue po&longs;&longs;e de&longs;cendere per <lb/>&longs;emicirculum, qui &longs;ecet centrum mundi A, &longs;ed etiam per plures alios. </s>
					<s id="N1E9AA"><lb/>v.g. <!-- REMOVE S-->per &longs;emicirculum ROB, quia &longs;cilicet ab R ver&longs;us BO &amp; ab O <lb/>ver&longs;us B &longs;emper de&longs;cendit, a&longs;cenditque propi&ugrave;s ad A, c&ugrave;m nulla linea in&shy;<lb/>ter AOB duci po&longs;&longs;it ad punctum A, qu&aelig; non &longs;it maior BA, vt <lb/>con&longs;tat. </s>
				</p>
				<p id="N1E9B6" type="main">
					<s id="N1E9B8"><!-- NEW -->Vt autem habeas i&longs;tos circulos; accipe centrum &longs;upr&agrave; A ver&longs;us K, mo&shy;<lb/>do radius &longs;eu &longs;emidiameter de&longs;cendat infr&agrave; A. v.g. <!-- REMOVE S-->IB vel KB, &amp;c. </s>
				</p>
				<p id="N1E9C0" type="main">
					<s id="N1E9C2"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 94.<emph.end type="center"/></s>
				</p>
				<p id="N1E9CE" type="main">
					<s id="N1E9D0"><!-- NEW --><emph type="italics"/>Hinc pote&longs;t aliquis dimidium globum terre&longs;trem percurrere, lic&egrave;t &longs;emper <lb/>de&longs;cendat<emph.end type="italics"/>; </s>
					<s id="N1E9DB"><!-- NEW -->vt&longs;i conficiat &longs;emicirculum ROB, &amp; licet &longs;emper a&longs;cendat, <pb pagenum="230" xlink:href="026/01/262.jpg"/>vt &longs;i conficiat &longs;emicirculum BIIR; h&aelig;c ita clara &longs;unt, vt oculis tant&ugrave;m <lb/>indigeant. </s>
				</p>
				<p id="N1E9E6" type="main">
					<s id="N1E9E8"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 59.<emph.end type="center"/></s>
				</p>
				<p id="N1E9F4" type="main">
					<s id="N1E9F6"><!-- NEW --><emph type="italics"/>Hinc pote&longs;t e&longs;&longs;e mons per quem aliquis a&longs;cendat, lic&egrave;t &longs;ub planum horizon&shy;<lb/>tale de&longs;cendat.<emph.end type="italics"/> v.g. <!-- REMOVE S-->&longs;it Tangens in puncto B; </s>
					<s id="N1EA03"><!-- NEW -->haud dubi&egrave; qui ex B ver&longs;us <lb/>H procederet per arcum BH, haud dubi&egrave; a&longs;cenderet, quia recederet <lb/>&longs;emper &agrave; centro mundi A; </s>
					<s id="N1EA0B"><!-- NEW -->de&longs;cenderet tamen infra Tangentem in B; </s>
					<s id="N1EA0F"><!-- NEW -->igi&shy;<lb/>tur mons e&longs;&longs;et infra horizontale planum; montem enim appello tractum <lb/>arduum, in quo dum aliquis ambulat, a&longs;cendit, hoc e&longs;t recedit &agrave; terr&aelig; <lb/>centro. </s>
				</p>
				<p id="N1EA19" type="main">
					<s id="N1EA1B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 96.<emph.end type="center"/></s>
				</p>
				<p id="N1EA27" type="main">
					<s id="N1EA29"><!-- NEW --><emph type="italics"/>Diuer&longs;&aelig; e&longs;&longs;ent rationes motus in de&longs;cen&longs;u per &longs;emicirculum QLA<emph.end type="italics"/>; </s>
					<s id="N1EA32"><!-- NEW -->&longs;cilicet <lb/>in iis punctis, qu&aelig; propi&ugrave;s accedunt ad A motus e&longs;&longs;et velocior initio <lb/>&longs;cilicet; </s>
					<s id="N1EA3A"><!-- NEW -->pote&longs;t autem haberi h&aelig;c proportio ductis Tangentibus, vt &longs;&aelig;p&egrave; <lb/>iam dixi; </s>
					<s id="N1EA40"><!-- NEW -->at ver&ograve; in &longs;emicirculo ROB in puncto T e&longs;&longs;et veloci&longs;&longs;imus mo&shy;<lb/>tus initio, quia angulus ITA e&longs;t maximus eorum omnium, qui po&longs;&longs;unt <lb/>fieri ductis duabus rectis ab A &amp; I co&euml;untibus in &longs;emicirculo ROB, igi&shy;<lb/>tur &amp; illi oppo&longs;itus; </s>
					<s id="N1EA4A"><!-- NEW -->igitur perpendiculum AT accedit propi&ugrave;s ad Tan&shy;<lb/>gentem; </s>
					<s id="N1EA50"><!-- NEW -->igitur planum inclinatius e&longs;t; </s>
					<s id="N1EA54"><!-- NEW -->igitur in puncto T e&longs;t velocior mo&shy;<lb/>tus initio qu&agrave;m in aliis; igitur acceleratur motus ab R in T per cre&shy;<lb/>menta &longs;emper maiora, &amp; ab ip&longs;o T ad B per crementa minora. </s>
				</p>
				<p id="N1EA5C" type="main">
					<s id="N1EA5E"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 97.<emph.end type="center"/></s>
				</p>
				<p id="N1EA6A" type="main">
					<s id="N1EA6C"><!-- NEW --><emph type="italics"/>Pote&longs;t de&longs;cendere corpus graue v.g. <!-- REMOVE S-->globus v&longs;que ad centrum terr&aelig; per He&shy;<lb/>licem<emph.end type="italics"/>; </s>
					<s id="N1EA79"><!-- NEW -->&longs;it enim globus terr&aelig; AEQO, centrum K; </s>
					<s id="N1EA7D"><!-- NEW -->diuidatur QK in 4. <lb/>partes &aelig;quales QR.RP.PS.SK; </s>
					<s id="N1EA83"><!-- NEW -->a&longs;&longs;umatur EH &aelig;qualis QR, &amp; AC &aelig;qua&shy;<lb/>lis QP, &amp; OM &aelig;qualis QS; </s>
					<s id="N1EA89"><!-- NEW -->t&ugrave;m per &longs;ignata puncta de&longs;cribatur helix Q <lb/>HCZMK: </s>
					<s id="N1EA8F"><!-- NEW -->dico quod per eius conuexum globus de&longs;cenderet ex Q, ad <lb/>centrum terr&aelig;; </s>
					<s id="N1EA95"><!-- NEW -->quia &longs;emper accedit propi&ugrave;s ad centrum; </s>
					<s id="N1EA99"><!-- NEW -->imm&ograve; per plura <lb/>volumina de&longs;cendere pote&longs;t; &longs;it enim QK diui&longs;a in 8. partes &aelig;quales Q <lb/>TTR, &amp;c. </s>
					<s id="N1EAA1"><!-- NEW -->t&ugrave;m a&longs;&longs;umatur EF &aelig;qualis QT, AB &aelig;qualis QR, ON &aelig;qualis <lb/>QV t&ugrave;m QR in ip&longs;a QK, &amp; &aelig;qualis QY, ED, a qualis QS, &amp; OL &aelig;qualis <lb/>QX; &amp; per puncta a&longs;&longs;ignata de&longs;cribatur Helix QFBNPIDLK, per cam <lb/>de&longs;cenderet globus ad centrum terr&aelig; K po&longs;t duas circumuolutiones. </s>
				</p>
				<p id="N1EAAB" type="main">
					<s id="N1EAAD"><!-- NEW -->Per aliam quoque &longs;piralem compo&longs;itam ex &longs;emicirculis de&longs;cendere <lb/>pote&longs;t ad centrum terr&aelig; B; </s>
					<s id="N1EAB3"><!-- NEW -->&longs;it enim centrum terr&aelig; F &amp; globus terr&aelig; A <lb/>CMD; </s>
					<s id="N1EAB9"><!-- NEW -->accipiantur duo puncta hinc inde HK ad libitum; </s>
					<s id="N1EABD"><!-- NEW -->tunc ex H <lb/>fiat &longs;emicirculus MB; </s>
					<s id="N1EAC3"><!-- NEW -->haud dubi&egrave; globus po&longs;itus in M de&longs;cendet in B per <lb/>conuexum &longs;emicirculi in B; </s>
					<s id="N1EAC9"><!-- NEW -->quia B inter omnia illius puncta accedit pro&shy;<lb/>xim&egrave; ad F; </s>
					<s id="N1EACF"><!-- NEW -->t&ugrave;m ex K ducatur &longs;emicirculus BI; </s>
					<s id="N1EAD3"><!-- NEW -->cert&egrave; ex B de&longs;cenderet in I <lb/>propter <expan abbr="e&atilde;dem">eandem</expan> rationem, t&ugrave;m ex H de&longs;cribatur &longs;emicirculus IF; </s>
					<s id="N1EADD"><!-- NEW -->cert&egrave; <lb/>ex I de&longs;cendet in F, qu&aelig; omnia patent ex dictis; </s>
					<s id="N1EAE3"><!-- NEW -->po&longs;&longs;unt autem multipli&shy;<lb/>cari i&longs;t&aelig; &longs;pir&aelig; in infinitum: Hinc lic&egrave;t globus &longs;ingulis horis 100000. leu&shy;<lb/>cas conficeret in de&longs;cen&longs;u, non tamen attingeret centrum ni&longs;i po&longs;t 1000. <lb/>annos, imm&ograve; plures &longs;ecund&ugrave;m numerum &longs;pirarum. </s>
				</p>
				<pb pagenum="231" xlink:href="026/01/263.jpg"/>
				<p id="N1EAF1" type="main">
					<s id="N1EAF3"><!-- NEW -->Denique pote&longs;t de&longs;cendere per plura plana inclinata AKLMNO <lb/>PQRST, &longs;iue ducantur perpendiculariter, &longs;cilicet AK in BC, KL in B <lb/>D, atque ita deinceps; </s>
					<s id="N1EAFB"><!-- NEW -->&longs;iue non perpendiculariter, mod&ograve; DL &longs;it maior C <lb/>K, EM maior DL, at que ita deinceps; attamen vltimum planum TB non <lb/>erit inclinatum, &longs;ed perpendiculum, vt patet. </s>
				</p>
				<p id="N1EB03" type="main">
					<s id="N1EB05"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 98.<emph.end type="center"/></s>
				</p>
				<p id="N1EB11" type="main">
					<s id="N1EB13"><!-- NEW --><emph type="italics"/>Po&longs;&longs;unt e&longs;&longs;e infinita plana inter orbem terr&aelig;, &amp; horizontale per qu&aelig; globus <lb/>&longs;eu corpus graue non de&longs;cendet<emph.end type="italics"/>; </s>
					<s id="N1EB1E"><!-- NEW -->&longs;it enim centrum terr&aelig; C, ex quo de&longs;cri&shy;<lb/>batur arcus QMH ducta diametro MCA in M; </s>
					<s id="N1EB24"><!-- NEW -->ducatur Tangens NM <lb/>L; </s>
					<s id="N1EB2A"><!-- NEW -->h&aelig;c erit horizontale planum, vt con&longs;tat; </s>
					<s id="N1EB2E"><!-- NEW -->t&ugrave;m ex aliquo puncto infra C <lb/>put&agrave; ex A de&longs;cribatur arcus SMK; </s>
					<s id="N1EB34"><!-- NEW -->cerc&egrave; &longs;i ponatur globus in M non <lb/>de&longs;cendet per arcum MG, quia poti&ugrave;s a&longs;cenderet; </s>
					<s id="N1EB3A"><!-- NEW -->imm&ograve; &longs;i ponatur <lb/>in T de&longs;cendet in M, imm&ograve; facili&ugrave;s pelleretur corpus graue per arcum <lb/>MT, qu&agrave;m per horizontalem MN, vt patet; </s>
					<s id="N1EB42"><!-- NEW -->igitur potentia illa, qu&aelig; per <lb/>horizontalem pellit non e&longs;t omnium minima, qu&aelig; per arcum MQ pel&shy;<lb/>lit; quia in eo nullo modo globus a&longs;cendit, &longs;ed &longs;emper &agrave; centro C &aelig;qui&shy;<lb/>di&longs;tat. </s>
					<s id="N1EB4C"><!-- NEW -->Si ver&ograve; a&longs;&longs;umas qu&aelig;cumque centra &longs;upra B put&agrave; D, &amp; E, &amp; ducas <lb/>arcus TMGPOMF; </s>
					<s id="N1EB52"><!-- NEW -->cert&egrave; globus de&longs;cendet per MO, &amp; MP, vt manife&shy;<lb/>&longs;tum e&longs;t ex dictis, &amp; hoc fort&egrave; ludicrum cuiquam videbitur; </s>
					<s id="N1EB58"><!-- NEW -->&longs;i enim col&shy;<lb/>locetur globus in T, de&longs;cendit ver&longs;us M; </s>
					<s id="N1EB5E"><!-- NEW -->&longs;i ver&ograve; in Y de&longs;cendet ver&longs;us <lb/>P; </s>
					<s id="N1EB64"><!-- NEW -->lic&egrave;t V &amp; T non di&longs;t&eacute;t pollice; </s>
					<s id="N1EB68"><!-- NEW -->po&longs;&longs;unt enim accipi minima illa &longs;patia <lb/>ver&longs;us M, vbi e&longs;t angulus contingenti&aelig;; </s>
					<s id="N1EB6E"><!-- NEW -->nulla tamen pote&longs;t duci recta ab <lb/>M infra MN, per quam globus non de&longs;cendat veloci&ugrave;s initio, qu&agrave;m per <lb/>vllum arcum, &longs;iue MP, &longs;iue MO, &longs;iue quemcumque alium quamtumuis <lb/>maxim&egrave; incuruatum vel inclinatum; </s>
					<s id="N1EB78"><!-- NEW -->quia &longs;cilicet recta illa ducta ex M <lb/>infra MN &longs;ecat omnes illos arcus, vt patet; </s>
					<s id="N1EB7E"><!-- NEW -->igitur initio facit planum <lb/>inclinatius: dixi initio, quia deinde in arcu mult&ugrave;m inuale&longs;cit motus, <lb/>cum &longs;emper deficiat in recta, vt diximus abund&egrave; &longs;upr&agrave;. </s>
				</p>
				<p id="N1EB86" type="main">
					<s id="N1EB88"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 99.<emph.end type="center"/></s>
				</p>
				<p id="N1EB94" type="main">
					<s id="N1EB96"><!-- NEW --><emph type="italics"/>Si quadrans ita di&longs;tet &agrave; centro mundi, vt t&ugrave;m alter eius radius, t&ugrave;m Tan&shy;<lb/>gens ip&longs;i parallela cen&longs;eantur perpendiculares, globus de&longs;cendet ex eius vertice <lb/>per arcum<emph.end type="italics"/>: </s>
					<s id="N1EBA3"><!-- NEW -->Sit enim quadrans ATE erectus &longs;upra horizontem, ita vt <lb/>AE &longs;it horizontalis, &amp; t&ugrave;m TA, t&ugrave;m 3. A perpendiculares; </s>
					<s id="N1EBA9"><!-- NEW -->cert&egrave; de&longs;cen&shy;<lb/>det globus per eius conuexum VBA in eadem proportione, in qua de&longs;&shy;<lb/>cerdit per &longs;emicirculum, de quo &longs;upr&agrave;; </s>
					<s id="N1EBB1"><!-- NEW -->Igitur motus per quadrantem T <lb/>BE e&longs;t ad motum per ip&longs;um perpendiculum in eadem ratione, in qua e&longs;t <lb/>ad motum per &longs;emicirculum; </s>
					<s id="N1EBB9"><!-- NEW -->quippe motus in T nullus e&longs;t per arcum TE; </s>
					<s id="N1EBBD"><!-- NEW --><lb/>5.ver&ograve; motus per arcum 5.E, initio &longs;cilicet, vt &longs;&aelig;p&egrave; dictum e&longs;t, e&longs;t ad mo&shy;<lb/>tum per ip&longs;am perpendicularem vt A 7.ad A 5.in 4.vt A 7.ad A 4. in B <lb/>vt A <foreign lang="greek">d</foreign> ad AB, in D vt AH ad AD in X vt AF ad AX, in E, vt AE ad A <lb/>E; </s>
					<s id="N1EBCC"><!-- NEW -->vides autem tran&longs;ire motum hunc fer&egrave; per omnes gradus tarditatis: </s>
					<s id="N1EBD0"><!-- NEW -->di&shy;<lb/>co fer&egrave;, quia reuer&acirc; non tran&longs;it per omnes; quippe &longs;i fieret maior qua&shy;<lb/>drans tangens i&longs;tum in T, motus e&longs;&longs;et iuxta initium pr&aelig;&longs;ertim tar&shy;<lb/>dior. </s>
				</p>
				<pb pagenum="232" xlink:href="026/01/264.jpg"/>
				<p id="N1EBDE" type="main">
					<s id="N1EBE0"><!-- NEW -->Ob&longs;erua&longs;ti iam vt puto motum per Arcum TBE e&longs;&longs;e inuer&longs;um vul&shy;<lb/>garis funependuli; </s>
					<s id="N1EBE6"><!-- NEW -->quippe in illo motuum incrementa initio &longs;unt mino&shy;<lb/>ra, &amp; &longs;emper cre&longs;cunt; at ver&ograve; in hoc initio &longs;unt maiora, &amp; &longs;emper de&shy;<lb/>cre&longs;cunt. </s>
				</p>
				<p id="N1EBEE" type="main">
					<s id="N1EBF0"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 100.<emph.end type="center"/></s>
				</p>
				<p id="N1EBFC" type="main">
					<s id="N1EBFE"><!-- NEW --><emph type="italics"/>Po&longs;&longs;unt determinari vires, qu&aelig; &longs;u&longs;tinere po&longs;&longs;unt datum pondus collocatu&mtail;<emph.end type="italics"/><lb/><emph type="italics"/>in arcu erecto ATE<emph.end type="italics"/>: </s>
					<s id="N1EC0D"><!-- NEW -->quippe ad &longs;u&longs;tinendum pondus in T null&aelig; vires <lb/>requiruntur, ad &longs;u&longs;tinendum in E &aelig;qualis potentia ponderi requiritur; </s>
					<s id="N1EC13"><!-- NEW --><lb/>at ver&ograve; potentia, qu&aelig; &longs;u&longs;tinet in 5. &longs;e habet ad &aelig;qualem vt A 7.ad AE, <lb/>in 4.vt A Z.ad AE, in B vt A<foreign lang="greek">d</foreign> ad AE, in D vt AH ad AE, in X vt AF ad <lb/>AE; </s>
					<s id="N1EC20"><!-- NEW -->denique in E vt AE ad AE; ratio e&longs;t, quia potentia debet e&longs;&longs;e pro&shy;<lb/>portionata momento ponderis, &longs;eu motus, &longs;ed motus in B.v.g.per BE e&longs;t <lb/>ad motum qui fit per perpendicularem vt A<foreign lang="greek">d</foreign> ad AB vel AE, igitur po&shy;<lb/>tentia qu&aelig; impedit hunc motum, id e&longs;t qu&aelig; &longs;u&longs;tinet pondus in B e&longs;t ad <lb/>illam qu&aelig; &longs;u&longs;tinet in E vt A <foreign lang="greek">d</foreign> ad AE. <!-- KEEP S--></s>
				</p>
				<p id="N1EC35" type="main">
					<s id="N1EC37"><!-- NEW -->Debet autem &longs;u&longs;tineri pondus vel per Tangentem ductam ad punctum <lb/>B vel ip&longs;i parallelam in certo dumtaxat funiculo, vt fit in trochleis; vnde <lb/>&longs;i &longs;emicirculus A 2.E &longs;it trochlea, &amp; pondus pendeat ex E, <expan abbr="adhibeaturq;">adhibeaturque</expan> <lb/>potentia trahens in A, debet e&longs;&longs;e &aelig;qualis ponderi, &longs;ed de trochleis fus&egrave; <lb/>lib.  11. </s>
				</p>
				<p id="N1EC47" type="main">
					<s id="N1EC49"><!-- NEW -->Hinc etiam facil&egrave; determinari pote&longs;t quomodo de&longs;truatur impetus, <lb/>&longs;i proiiciatur globus per arcum EBT &longs;ur&longs;um; </s>
					<s id="N1EC4F"><!-- NEW -->nam in eadem proportione <lb/>de&longs;truetur in a&longs;cendendo, qua acceleratur de&longs;cendendo; </s>
					<s id="N1EC55"><!-- NEW -->neque e&longs;t h&icirc;c <lb/>&longs;ingularis difficultas; </s>
					<s id="N1EC5B"><!-- NEW -->quemadmodum enim in de&longs;cen&longs;u &longs;emper accele&shy;<lb/>ratur per incrementa in&aelig;qualia iuxta rationem explicatam; </s>
					<s id="N1EC61"><!-- NEW -->ita in a&longs;cen&shy;<lb/>&longs;u &longs;emper retardatur per detractiones in&aelig;quales; </s>
					<s id="N1EC67"><!-- NEW -->in de&longs;cen&longs;u quidem per <lb/>incrementa initio minora, &amp; maiora &longs;ub finem; in a&longs;cen&longs;u &egrave; contrario <lb/>per detractiones initio maiores &longs;ub finem minores. </s>
				</p>
				<p id="N1EC6F" type="main">
					<s id="N1EC71"><!-- NEW -->Hinc denique determinari pote&longs;t quant&ugrave;m corpus grauitet in toto <lb/>arcu TBE; </s>
					<s id="N1EC77"><!-- NEW -->in E nihil grauitat, in T totum grauitat; igitur grauitatio in <lb/>T, &longs;eu tota e&longs;t ad grauitationem in E, vt TA ad nihil, in 5. ver&ograve; vt AT <lb/>ad AT, in 4. vt AT ad AA, in B vt AT ad AS, atque ita deinceps, qu&aelig; <lb/>con&longs;tant ex dictis. </s>
				</p>
				<p id="N1EC81" type="main">
					<s id="N1EC83">In&longs;uper ob&longs;erua corpus graue incumbens arcui TBE, per varias lineas <lb/>po&longs;&longs;e pelli, vel trahi, de quibus idem pror&longs;us dicendum e&longs;t, quod dictum <lb/>e&longs;t in Th.5. &amp; Sch.Th.16. </s>
				</p>
				<p id="N1EC8A" type="main">
					<s id="N1EC8C"><!-- NEW -->Adde quod omi&longs;imus, &longs;ed facil&egrave; ex dictis lib.  1. intelligi pote&longs;t, im&shy;<lb/>petum qui producitur in acceleratione motus per planum inclinatum <lb/>e&longs;&longs;e imperfectiorem ex duplici capite; prim&ograve; ratione minoris temporis, <lb/>quo producitur ex ratione maioris vel minoris inclinationis, &longs;eu longi&shy;<lb/>tudinis. </s>
					<s id="N1EC98"><!-- NEW -->v.g. <!-- REMOVE S-->&longs;it planum inclinatum AC; </s>
					<s id="N1EC9E"><!-- NEW -->cert&egrave; cum po&longs;t motum per A <lb/>E, &amp; per AB &longs;it &aelig;qualis ictus vel impetus; </s>
					<s id="N1ECA4"><!-- NEW -->&amp; c&ugrave;m tempus quo de&longs;cendit <lb/>per AE &longs;it duplum temporis, quo de&longs;cendit per AB; </s>
					<s id="N1ECAA"><!-- NEW -->cert&egrave; &longs;ingulis in&longs;tan&shy;<lb/>tibus, quibus durat motus per AC, producitur impetus &longs;ubduplus tan-<pb pagenum="233" xlink:href="026/01/265.jpg"/>t&ugrave;m in perfectione illius, qui producitur per AB; &longs;i enim &aelig;qualis perfe&shy;<lb/>ctionis; </s>
					<s id="N1ECB7"><!-- NEW -->igitur impetus po&longs;t de&longs;cen&longs;um per AC e&longs;&longs;et duplus illius qui ha&shy;<lb/>betur in B po&longs;t de&longs;cen&longs;um per AB; </s>
					<s id="N1ECBD"><!-- NEW -->&longs;i autem e&longs;&longs;et minor &longs;ubduplo; </s>
					<s id="N1ECC1"><!-- NEW -->igitur <lb/>in C, vel impetus e&longs;&longs;et minor quam in B contra hypothe&longs;im; </s>
					<s id="N1ECC7"><!-- NEW -->igitur debet <lb/>&longs;ubduplus; </s>
					<s id="N1ECCD"><!-- NEW -->igitur dupl&ograve; plures &longs;unt gradus impetus in C qu&agrave;m in B, c&ugrave;m <lb/>&longs;cilicet &longs;inguli gradus impetus in B &aelig;quiualeant duobus impetus in A: <lb/>his adde aliqua breuia Corollaria, qu&aelig; qui&longs;que ex dictis facil&egrave; colligere <lb/>poterit. </s>
				</p>
				<p id="N1ECD7" type="main">
					<s id="N1ECD9"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1ECE6" type="main">
					<s id="N1ECE8"><!-- NEW -->Ex his prim&ograve; vides perfectam analogiam impetus in omni motu, qui <lb/>reuera explicari non pote&longs;t, ni&longs;i detur impetus alio imperfectior: </s>
					<s id="N1ECEE"><!-- NEW -->Porr&ograve; <lb/>multa h&icirc;c de&longs;iderantur, qu&aelig; ad motum in planis inclinatis pertinent, que <lb/>in Tomum &longs;equentem remittimus; quia potiori iure ad Mathematicam <lb/>&longs;pectant, qu&agrave;m ad Phy&longs;icam. </s>
				</p>
				<p id="N1ECF8" type="main">
					<s id="N1ECFA"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1ED07" type="main">
					<s id="N1ED09"><!-- NEW -->Secund&ograve;, impetus po&longs;&longs;e in infinitum decre&longs;cere perfectionem quod <lb/>prim&ograve; con&longs;tat ex eo, qu&ograve;d infra horizontalem po&longs;&longs;int duci line&aelig; min&ugrave;s <lb/>&amp; min&ugrave;s inclinat&aelig;: &longs;ecund&ograve; ex eo, qu&ograve;d po&longs;&longs;int inter quamlibet inclina&shy;<lb/>tam deor&longs;um rectam, &amp; &longs;uperficiem orbis terr&aelig; de&longs;cribi infiniti orbes, <lb/>quorum centrum &longs;it &longs;upra centrum terr&aelig;, quorum arcus initio faciunt <lb/>minorem, &amp; minorem inclinationem. </s>
				</p>
				<p id="N1ED17" type="main">
					<s id="N1ED19"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1ED26" type="main">
					<s id="N1ED28">Terti&ograve;, hinc colliges impetum qui producitur in primo puncto de&longs;&shy;<lb/>cen&longs;us illorum arcuum e&longs;&longs;e pror&longs;us alogum cum illo, qui producitur in <lb/>primo puncto de&longs;cen&longs;us cuiu&longs;libet rect&aelig; inclinat&aelig;, &amp; illum qui &agrave; pro&shy;<lb/>ximo puncto ver&longs;us punctum contactus in Tangente producitur <lb/>e&longs;&longs;e etiam alogum cum illo, qui in proximo puncto ver&longs;us idem pun&shy;<lb/>ctum contactus producitur in circumferentia circuli, cuius centrum &longs;it <lb/>infra centrum terr&aelig;, id e&longs;t cuius radius &longs;it longior radio orbis terr&aelig;, </s>
				</p>
				<p id="N1ED37" type="main">
					<s id="N1ED39"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1ED46" type="main">
					<s id="N1ED48">Quart&ograve;, quid mirabilius quam ad idem punctum contactus po&longs;&longs;e du&shy;<lb/>ci infinitos circulos quorum arcus omnes in ea&longs;dem partes incuruan&shy;<lb/>tur, lic&egrave;t &longs;int infiniti? </s>
					<s id="N1ED4F"><!-- NEW -->quia &longs;umpto termino in eodem puncto contactus <lb/>omnin&ograve; a&longs;cendant &longs;cilicet ij, qui maiores &longs;unt orbe terr&aelig;, &amp; infiniti, qui <lb/>de&longs;cendunt, ij &longs;cilicet qui minores &longs;unt; &amp; vnicus tant&ugrave;m medius, qui <lb/>nec a&longs;cendat nec de&longs;cendat, qui e&longs;t orbis terr&aelig;. </s>
				</p>
				<p id="N1ED59" type="main">
					<s id="N1ED5B"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 5.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1ED68" type="main">
					<s id="N1ED6A"><!-- NEW -->Quint&ograve;, non po&longs;&longs;e facili&ugrave;s globum moueri, qu&agrave;m in &longs;uperficie terr&aelig;, <lb/>&longs;i prob&egrave; l&aelig;uigata e&longs;&longs;et; </s>
					<s id="N1ED70"><!-- NEW -->nullum enim e&longs;t planum &longs;upra &longs;iue rectum, &longs;iue <lb/>curuum, quod non a&longs;cendat; </s>
					<s id="N1ED76"><!-- NEW -->nullum infr&agrave; quod non de&longs;cendat: hinc mo&shy;<lb/>tus e&longs;&longs;et &aelig;quabilis. </s>
				</p>
				<pb pagenum="234" xlink:href="026/01/266.jpg"/>
				<p id="N1ED80" type="main">
					<s id="N1ED82"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 6.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1ED8F" type="main">
					<s id="N1ED91"><!-- NEW -->Sext&ograve;, cum globus rotatur in plano inclinato mouetur motu mixto, <lb/>&longs;cilicet ex motu orbis &amp; centri, <expan abbr="mouetur&qacute;ue">moueturque</expan> veloci&ugrave;s qu&agrave;m cubus eiu&longs;&shy;<lb/>dem ponderis; </s>
					<s id="N1ED9D"><!-- NEW -->quia pauciores partes plani fricantur &agrave; globo; </s>
					<s id="N1EDA1"><!-- NEW -->&longs;ed h&aelig;c ra&shy;<lb/>tio non valet, ni&longs;i &longs;upponatur planum non e&longs;&longs;e perfect&egrave; l&aelig;uigatum; </s>
					<s id="N1EDA7"><!-- NEW -->igi&shy;<lb/>tur e&longs;t alia ratio: an quia cubus mouetur motu centri? </s>
					<s id="N1EDAD"><!-- NEW -->globus ver&ograve; motu <lb/>centri &amp; orbis; </s>
					<s id="N1EDB3"><!-- NEW -->&longs;ed motus orbis iuuat motum centri; </s>
					<s id="N1EDB7"><!-- NEW -->&longs;ed h&aelig;c ratio nulla <lb/>e&longs;t, quia <expan abbr="tant&utilde;dem">tantundem</expan> pars &longs;uperior globi addit motui centri quant&ugrave;m <lb/>inferior detrahit; </s>
					<s id="N1EDC3"><!-- NEW -->igitur alia ratio e&longs;t, &longs;cilicet non tant&ugrave;m globum de&longs;&shy;<lb/>cendere in plano inclinato per grauitatem ab&longs;olutam, &longs;ed etiam per re&longs;&shy;<lb/>pectiuam, <expan abbr="e&longs;t&qacute;ue">e&longs;tque</expan> veluti potentia Mechanica admota, &longs;cilicet vectis, cu&shy;<lb/>jus qua&longs;i vicem gerit &longs;emidiameter circuli: </s>
					<s id="N1EDD1"><!-- NEW -->porr&ograve; vectis centrum e&longs;t <lb/>punctum contactus; </s>
					<s id="N1EDD7"><!-- NEW -->dixi &longs;emidiametrum, non ver&ograve; diametrum; </s>
					<s id="N1EDDB"><!-- NEW -->quia to&shy;<lb/>tum pondus globi non e&longs;t appen&longs;um extrem&aelig; diametro, &longs;ed extrem&aelig; &longs;e&shy;<lb/>midiametro in hoc ca&longs;u; illa autem extremitas e&longs;t centrum grauitatis <lb/>globi. </s>
				</p>
				<p id="N1EDE5" type="main">
					<s id="N1EDE7"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 7.<emph.end type="center"/></s>
				</p>
				<p id="N1EDF3" type="main">
					<s id="N1EDF5"><!-- NEW -->Septim&ograve;, hinc etiam apparet analogia impetus imperfectioris, qui pro&shy;<lb/>ducitur ver&longs;us centrum vectis, &amp; illius, qui producitur in mobili per <lb/>planum inclinatum; </s>
					<s id="N1EDFD"><!-- NEW -->nam ideo e&longs;t imperfectior, qui producitur ver&longs;us <lb/>centrum vectis, quia temporibus &aelig;qualibus partes mobiles vectis, qu&aelig; <lb/>&longs;unt ver&longs;us centrum acquirunt &longs;patia in&aelig;qualia &longs;cilicet, minora, &amp; mi&shy;<lb/>nora in infinitum; </s>
					<s id="N1EE07"><!-- NEW -->ita pror&longs;us in planis inclinatis cum acquirantur tem&shy;<lb/>poribus &aelig;qualibus &longs;patia in&aelig;qualia; </s>
					<s id="N1EE0D"><!-- NEW -->minora cert&egrave; in longioribus, &longs;up&shy;<lb/>po&longs;ita dumtaxat eadem perpendiculi altitudine debet produci impetus <lb/>imperfectior; nam ex imperfectione effectus id e&longs;t motus, ben&egrave; colligitur <lb/>imperfectio cau&longs;&aelig; id e&longs;t impetus. </s>
				</p>
				<p id="N1EE17" type="main">
					<s id="N1EE19"><emph type="center"/><emph type="italics"/>Collorarium<emph.end type="italics"/> 8.<emph.end type="center"/></s>
				</p>
				<p id="N1EE25" type="main">
					<s id="N1EE27"><!-- NEW -->Octau&ograve; denique, mirabile e&longs;t, qu&icirc; fieri po&longs;&longs;it, vt eadem potentia qu&aelig; <lb/>totas &longs;uas vires exerens globum proiicit per lineam verticalem ad al&shy;<lb/>titudinem vnius pollicis, id e&longs;t qu&aelig; proiicere tant&ugrave;m pote&longs;t per &longs;patium <lb/>digitale, per omnes tamen inclinatas, qu&aelig; ad extremitatem huius per&shy;<lb/>pendiculi duci po&longs;&longs;unt, cuiu&longs;cunque &longs;int longitudinis, non auctis viri&shy;<lb/>bus proiiciat; quis hoc crederet? </s>
					<s id="N1EE35">ni&longs;i manife&longs;ta cogeret demon&longs;tratio, <lb/>quam habes in Th.20.27. &amp;c. </s>
				</p>
			</chap>
			<chap id="N1EE3A">
				<pb pagenum="235" xlink:href="026/01/267.jpg"/>
				<figure id="id.026.01.267.1.jpg" xlink:href="026/01/267/1.jpg"/>
				<p id="N1EE44" type="head">
					<s id="N1EE46"><emph type="center"/>LIBER SEXTVS, <lb/><emph type="italics"/>DE MOTV REFLEXO.<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N1EE53" type="main">
					<s id="N1EE55"><!-- NEW -->DE motu reflexo agendum e&longs;&longs;e videtur hoc <lb/>loco; pr&aelig;mittendu&longs;que e&longs;t motui circula&shy;<lb/>ri, qui fort&egrave; &longs;ine motu reflexo nunquam fit, <lb/>vt dicemus infr&agrave;. <lb/><gap desc="hr tag"/></s>
				</p>
				<p id="N1EE62" type="main">
					<s id="N1EE64"><emph type="center"/><emph type="italics"/>DEPINITIO 1.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1EE70" type="main">
					<s id="N1EE72"><emph type="italics"/>MOtus reflexus e&longs;t reditus mobilis ratione corporis impedientis primam <lb/>lineam motus.<emph.end type="italics"/></s>
				</p>
				<p id="N1EE7B" type="main">
					<s id="N1EE7D"><!-- NEW -->H&aelig;c definitio e&longs;t clara; </s>
					<s id="N1EE81"><!-- NEW -->dicitur reditus, quia reuer&acirc; mobile, quod re&shy;<lb/>percutitur, &longs;eu reflectitur, qua&longs;i redit, &longs;eu retr&ograve; agitur; </s>
					<s id="N1EE87"><!-- NEW -->&longs;iue id fiat per <lb/>eandem lineam, qu&acirc; appul&longs;um fuit; &longs;iue per aliam: </s>
					<s id="N1EE8D"><!-- NEW -->&longs;ic pila in murum <lb/>impacta reflecti dicitur, ita vt eius linea frangatur in ip&longs;a muri &longs;uperfi&shy;<lb/>cie, quod duobus tant&ugrave;m modis fieri pote&longs;t: prim&ograve; &longs;ine angulo, vt cum <lb/>redit mobile per eandem lineam, per quam pri&ugrave;s acce&longs;&longs;erat, &longs;icque linea <lb/>reflexionis opponi videtur ex diametro line&aelig; incidenti&aelig;. </s>
					<s id="N1EE99">Secund&ograve; cum <lb/>angulo, qu&ograve;d &longs;cilicet in puncto reflexionis linea reflexionis cum linea <lb/>incidenti&aelig; faciat angulum. </s>
				</p>
				<p id="N1EEA0" type="main">
					<s id="N1EEA2"><emph type="center"/><emph type="italics"/>Definitio<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1EEAF" type="main">
					<s id="N1EEB1"><emph type="italics"/>Corpus reflectens e&longs;t, quod motum liberum alterius corporis impacti non <lb/>permittit vlteri&ugrave;s per eandem lineam propagari, &longs;ed illius lineam frangit, &amp; <lb/>inflectit,<emph.end type="italics"/> &amp;c. </s>
					<s id="N1EEBD">huius corporis conditiones in &longs;equentibus Theorematis <lb/>definiemus. </s>
				</p>
				<p id="N1EEC2" type="main">
					<s id="N1EEC4"><emph type="center"/><emph type="italics"/>Definitio<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1EED1" type="main">
					<s id="N1EED3"><emph type="italics"/>Punctum reflexionis e&longs;t punctum illud plani reflectentis, in quo linea refle&shy;<lb/>xionis, &amp; linea incidenti&aelig; co&euml;unt.<emph.end type="italics"/></s>
				</p>
				<p id="N1EEDC" type="main">
					<s id="N1EEDE"><emph type="center"/><emph type="italics"/>Definitio<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1EEEB" type="main">
					<s id="N1EEED"><emph type="italics"/>Linea incidenti&aelig; e&longs;t illa linea motus. </s>
					<s id="N1EEF2">per quam mobile ante reflexionem ap&shy;<lb/>pellitur ad planum reflectens.<emph.end type="italics"/></s>
				</p>
				<pb pagenum="236" xlink:href="026/01/268.jpg"/>
				<p id="N1EEFD" type="main">
					<s id="N1EEFF"><emph type="center"/><emph type="italics"/>Definitio<emph.end type="italics"/> 5.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1EF0C" type="main">
					<s id="N1EF0E"><!-- NEW --><emph type="italics"/>Linea reflexionis e&longs;t illa linea motus, per quam mobile po&longs;t reflexionem re&shy;<lb/>cedit &agrave; plano inclinato<emph.end type="italics"/>; hinc vides punctum reflexionis e&longs;&longs;e terminum ad <lb/>quem illius line&aelig;, &amp; terminum &agrave; quo huius. </s>
				</p>
				<p id="N1EF1B" type="main">
					<s id="N1EF1D"><emph type="center"/><emph type="italics"/>Definitio<emph.end type="italics"/> 6.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1EF2A" type="main">
					<s id="N1EF2C"><emph type="italics"/>Angulus incidenti&aelig; e&longs;t, quem facit cum plano reflectente linea inci&shy;<lb/>denti&aelig;.<emph.end type="italics"/></s>
				</p>
				<p id="N1EF35" type="main">
					<s id="N1EF37"><emph type="center"/><emph type="italics"/>Definitio<emph.end type="italics"/> 7.<emph.end type="center"/></s>
				</p>
				<p id="N1EF43" type="main">
					<s id="N1EF45"><emph type="italics"/>Angulus reflexionis e&longs;t, quem facit linea reflexionis cum eodem plano.<emph.end type="italics"/></s>
				</p>
				<p id="N1EF4C" type="main">
					<s id="N1EF4E"><emph type="center"/><emph type="italics"/>Definitio<emph.end type="italics"/> 8.<emph.end type="center"/></s>
				</p>
				<p id="N1EF5A" type="main">
					<s id="N1EF5C"><!-- NEW --><emph type="italics"/>Cathetus e&longs;t linea perpendiculariter cadens in planum reflectens ducta ab <lb/>aliquo puncto linea incidentia<emph.end type="italics"/>; </s>
					<s id="N1EF67"><!-- NEW -->&amp; tunc dicitur Cathetus incidenti&aelig;; </s>
					<s id="N1EF6B"><!-- NEW -->vel <lb/>ab aliquo line&aelig; reflexionis, &amp; tunc dicitur Cathetus reflexionis; h&aelig;c <lb/>omnia &longs;unt facilia, qu&aelig; in gratiam Tyronum breuiter in figura <lb/>propono. </s>
				</p>
				<p id="N1EF75" type="main">
					<s id="N1EF77"><!-- NEW -->Sit FB linea plani reflectentis; </s>
					<s id="N1EF7B"><!-- NEW -->&longs;it D punctum reflexionis; &longs;it AD <lb/>linea incidenti&aelig;, DH linea reflexionis, AB Cathetus incidenti&aelig;, HF <lb/>Cathetus reflexionis, ADB angulus incidenti&aelig;, EDF oppo&longs;itus, <lb/>HDF angulus reflexionis, CDB oppo&longs;itus, ADH angulus apertur&aelig; <lb/>vel pyramidis reflexionis, EDC oppo&longs;itus, ADE angulus &longs;upplementi <lb/>anguli incidenti&aelig;, HDG angulus complementi anguli reflexionis, re&shy;<lb/>ctangulum BH &longs;uperficies reflexionis, BF &longs;ectio plani reflectentis, &amp; <lb/>pr&aelig;dict&aelig; &longs;uperficiei. </s>
				</p>
				<p id="N1EF8D" type="main">
					<s id="N1EF8F"><emph type="center"/><emph type="italics"/>Hypothe&longs;is<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1EF9C" type="main">
					<s id="N1EF9E"><emph type="italics"/>Aliquod corpus in aliud cum impetu impaction reflectitur,<emph.end type="italics"/> h&aelig;c hypothe&shy;<lb/>&longs;is certa e&longs;t. </s>
				</p>
				<p id="N1EFA8" type="main">
					<s id="N1EFAA"><emph type="center"/><emph type="italics"/>Hypothe&longs;is<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1EFB7" type="main">
					<s id="N1EFB9"><!-- NEW --><emph type="italics"/>Corpus reflexum in aliud impactum aliquando illud mouet<emph.end type="italics"/>; &longs;ic pila ab <lb/>aliquo corpore reflexa in aliam incidens mouet illam. </s>
				</p>
				<p id="N1EFC4" type="main">
					<s id="N1EFC6"><emph type="center"/><emph type="italics"/>Hypothe&longs;is<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1EFD3" type="main">
					<s id="N1EFD5"><!-- NEW --><emph type="italics"/>Quo motus directus, &longs;cilicet qui &longs;is per lineam incidentia, e&longs;t maior, maior <lb/>e&longs;t quoque motus reflexus<emph.end type="italics"/>; &longs;i enim maiore vi pila appellitur in parietem <lb/>maiore vi etiam retorquctur. </s>
				</p>
				<p id="N1EFE2" type="main">
					<s id="N1EFE4"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1EFF1" type="main">
					<s id="N1EFF3"><!-- NEW --><emph type="italics"/>Idem impetus ad plures lineas determinari pere&longs;t &longs;eor&longs;um<emph.end type="italics"/>; </s>
					<s id="N1EFFC"><!-- NEW -->hoc Axima <lb/>certum e&longs;t; probatum e&longs;t in libro 1. Th.113.114. &amp;c. </s>
					<s id="N1F002">dixi &longs;eor&longs;im, nam <lb/>plures &longs;imul lineas habere non pote&longs;t per Th.115.l.1. </s>
				</p>
				<p id="N1F007" type="main">
					<s id="N1F009"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1F016" type="main">
					<s id="N1F018"><!-- NEW --><emph type="italics"/>Vbi e&longs;t effectus, ibi e&longs;t cau&longs;a, effectus inquam formalis,<emph.end type="italics"/> v. <!-- REMOVE S-->g. <!-- REMOVE S-->vbi e&longs;t album, <lb/>ibi e&longs;t id, quod exigit motum, &longs;eu pr&aelig;&longs;tat illum motum in mobili; </s>
					<s id="N1F027"><!-- NEW -->id e&longs;t <pb pagenum="237" xlink:href="026/01/269.jpg"/>impetus: quippe omnis motus e&longs;t ab impetu, quod &longs;&aelig;pi&ugrave;s in toto libro <lb/>primo demon&longs;tratum e&longs;t. </s>
				</p>
				<p id="N1F032" type="main">
					<s id="N1F034"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1F041" type="main">
					<s id="N1F043"><emph type="italics"/>Impetus destruitur tant&ugrave;m ne &longs;it frustra per Sch. <!-- REMOVE S-->Theor.<emph.end type="italics"/>152.<emph type="italics"/>&amp; alia multa <lb/>libro prim&ograve;,<emph.end type="italics"/> &longs;i enim impetus &longs;uum po&longs;&longs;et habere effectum reuer&acirc; non de&shy;<lb/>&longs;trueretur. </s>
				</p>
				<p id="N1F057" type="main">
					<s id="N1F059"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1F066" type="main">
					<s id="N1F068"><!-- NEW --><emph type="italics"/>Tunc dici non pote&longs;t tota cau&longs;a destructa &lpar;cau&longs;a inquam formalis&rpar; cum <lb/>tuus effectus non e&longs;t de&longs;tructus<emph.end type="italics"/>; &longs;eu tunc non debet dici de&longs;tructus totus <lb/>impetus cum totus motus non e&longs;t de&longs;tructus. </s>
				</p>
				<p id="N1F075" type="main">
					<s id="N1F077"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1F084" type="main">
					<s id="N1F086"><!-- NEW --><emph type="italics"/>Datur motus reflexus<emph.end type="italics"/>; </s>
					<s id="N1F08F"><!-- NEW -->nemo dubitat: </s>
					<s id="N1F093"><!-- NEW -->quippe aliquod corpus in aliud <lb/>impactum reflectitur per Ax. primum &longs;ed &longs;i corpus reflectitur e&longs;t motus <lb/>reflexus; </s>
					<s id="N1F09B"><!-- NEW -->igitur certum e&longs;t de motu reflexo quod &longs;it; infr&agrave; ver&ograve; videbi&shy;<lb/>mus propter quid &longs;it. </s>
				</p>
				<p id="N1F0A1" type="main">
					<s id="N1F0A3"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1F0B0" type="main">
					<s id="N1F0B2"><!-- NEW --><emph type="italics"/>In motu reflexo e&longs;t impetus<emph.end type="italics"/>; probatur, quia vbi e&longs;t motus, ibi e&longs;t impe&shy;<lb/>tus per Axioma 2. <!-- KEEP S--></s>
				</p>
				<p id="N1F0BE" type="main">
					<s id="N1F0C0"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1F0CD" type="main">
					<s id="N1F0CF"><!-- NEW --><emph type="italics"/>Hinc cau&longs;a motus reflexi e&longs;t impetus qui ine&longs;t corpori reflexo<emph.end type="italics"/>; </s>
					<s id="N1F0D8"><!-- NEW -->nec enim e&longs;t <lb/>quidquam aliud applicatum cum mobile &longs;eparatum t&ugrave;m &agrave; corpore refle&shy;<lb/>ctente, t&ugrave;m &agrave; manu proiicientis etiam moueatur; </s>
					<s id="N1F0E0"><!-- NEW -->igitur nihil extrin&longs;e&shy;<lb/>cum pote&longs;t e&longs;&longs;e cau&longs;a huius motus; </s>
					<s id="N1F0E6"><!-- NEW -->igitur aliquod intrin&longs;ecum, voco <lb/>impetum; </s>
					<s id="N1F0EC"><!-- NEW -->h&icirc;c diuti&ugrave;s non h&aelig;reo, quia &longs;imile argumentum habes in ter&shy;<lb/>tio libro, in quo fus&egrave; probaui requiri impetum ad motum violentum, <lb/>atqui nullus motus reflexus e&longs;t naturalis; igitur violentus vel mixtus, <lb/>igitur requirit nece&longs;&longs;ari&ograve; impetum. </s>
				</p>
				<p id="N1F0F6" type="main">
					<s id="N1F0F8"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1F105" type="main">
					<s id="N1F107"><!-- NEW --><emph type="italics"/>Ille impetus vel producitur nouus, vel con&longs;eruatur prauius<emph.end type="italics"/>; clarum e&longs;t, <lb/>nec aliud excogitari pote&longs;t. </s>
				</p>
				<p id="N1F112" type="main">
					<s id="N1F114"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 5.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1F121" type="main">
					<s id="N1F123"><!-- NEW --><emph type="italics"/>Ille impetus non producitur &agrave; corpore reflectente<emph.end type="italics"/>: </s>
					<s id="N1F12C"><!-- NEW -->probatur prim&ograve;, quia <lb/>omnis impetus producitur ad extra ab alio impetu per Theor. <!-- REMOVE S-->42. lib.1. <lb/>Secund&ograve; probatur, quia corpus reflectens &longs;emper produceret impetum <lb/>in alio corpore applicato; </s>
					<s id="N1F138"><!-- NEW -->e&longs;&longs;et enim cau&longs;a nece&longs;&longs;aria; </s>
					<s id="N1F13C"><!-- NEW -->igitur nece&longs;&longs;ari&ograve; <lb/>ageret per Ax.12. lib.1. nec e&longs;t quod dicas agere tant&ugrave;m po&longs;ita tali con&shy;<lb/>ditione: </s>
					<s id="N1F144"><!-- NEW -->hoc e&longs;t po&longs;ito motu pr&aelig;uio, quod &longs;atis ridiculum e&longs;t, vt iam <lb/>ali&agrave;s monui; </s>
					<s id="N1F14A"><!-- NEW -->quia conditio nihil aliud pr&aelig;&longs;tat in cau&longs;a qu&agrave;m applicatio&shy;<lb/>nem &longs;ubiecti apti, in quo agat, &amp; &longs;ubtractionem omnis impedimenti; </s>
					<s id="N1F150"><!-- NEW --><lb/>atqui cum proxim&egrave; pila parieti adh&aelig;ret, e&longs;t omnin&ograve; applicata, &amp; abe&longs;t <lb/>omne impedimentum: </s>
					<s id="N1F157"><!-- NEW -->pr&aelig;terea &longs;i corpus reflectens ageret; </s>
					<s id="N1F15B"><!-- NEW -->haud dubi&egrave; <pb pagenum="238" xlink:href="026/01/270.jpg"/>&longs;i maius e&longs;t maiorem impetum produceret; </s>
					<s id="N1F164"><!-- NEW -->nec enim agit tant&ugrave;m pars, <lb/>qu&aelig; tangitur; </s>
					<s id="N1F16A"><!-- NEW -->alioqui globus qui tangit tant&ugrave;m in puncto minim&egrave; re&shy;<lb/>flecteretur; quid enim punctum agere pote&longs;t? </s>
					<s id="N1F170"><!-- NEW -->Igitur &longs;i tant&ugrave;m agit, quo <lb/>maius e&longs;t pl&ugrave;s agit; qu&aelig; omnia &longs;unt perab&longs;urda; Igitur non producitur <lb/>ille impetus &agrave; corpore reflectente. </s>
					<s id="N1F178">Vide Th. 40.lib.1.&amp;c. </s>
				</p>
				<p id="N1F17B" type="main">
					<s id="N1F17D"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 6.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1F18A" type="main">
					<s id="N1F18C"><!-- NEW --><emph type="italics"/>Non producitur ab vllo alio extrin&longs;eco<emph.end type="italics"/>; </s>
					<s id="N1F195"><!-- NEW -->non ab a&euml;re, qui motui ob&longs;i&shy;<lb/>&longs;tit; </s>
					<s id="N1F19B"><!-- NEW -->&longs;ed nihil e&longs;t aliud extrin&longs;ecum applicatum; </s>
					<s id="N1F19F"><!-- NEW -->Igitur non producitur <lb/>ab vlla cau&longs;a extrin&longs;eca: </s>
					<s id="N1F1A5"><!-- NEW -->adde &longs;i vis rationem euidenti&longs;&longs;imam, qu&aelig; Theo&shy;<lb/>rema &longs;uperius mirific&egrave; confirmat; </s>
					<s id="N1F1AB"><!-- NEW -->quia &longs;cilicet maxim&egrave; applicatur mo&shy;<lb/>bile corpori reflectenti per lineam perpendicularem; </s>
					<s id="N1F1B1"><!-- NEW -->igitur per illam <lb/>maxim&egrave; deberet agere: </s>
					<s id="N1F1B7"><!-- NEW -->quipp&egrave; per lineam obliquam qua&longs;i tant&ugrave;m allam&shy;<lb/>bitur corpus reflectens; </s>
					<s id="N1F1BD"><!-- NEW -->atqui linea reflexionis perpendicularis minima <lb/>e&longs;t omnium quamuis per accidens, vt con&longs;tat experienti&acirc;, &amp; nos infr&agrave; <lb/>demon&longs;trabimus; </s>
					<s id="N1F1C5"><!-- NEW -->c&ugrave;m tamen deberet e&longs;&longs;e maxima; </s>
					<s id="N1F1C9"><!-- NEW -->igitur impetus non <lb/>producitur in mobili reflexo, nec ab ip&longs;o corpore reflectente, nec ab vllo <lb/>alio extrin&longs;eco; quia nihil pror&longs;us aliud applicatum e&longs;t, &agrave; quo produci <lb/>po&longs;&longs;it. </s>
					<s id="N1F1D3"><!-- NEW -->Re&longs;pondent aliqui produci &agrave; generante; &longs;ed quodnam e&longs;t illud <lb/>generans? </s>
					<s id="N1F1D9"><!-- NEW -->non cau&longs;a &longs;ecunda, vt patet; an ver&ograve; prima? </s>
					<s id="N1F1DD">&longs;ed quis dicat <lb/>moueri tant&ugrave;m &agrave; Deo pilam &agrave; muro repercu&longs;&longs;am? </s>
					<s id="N1F1E2">&longs;ed quidquid moue&shy;<lb/>tur, inquies, ab alio mouetur, vt vult Philo&longs;ophus. <!-- KEEP S--></s>
					<s id="N1F1E8"><!-- NEW -->Re&longs;pondeo mediat&egrave; <lb/>&longs;cilicet, vel immediat&egrave;; </s>
					<s id="N1F1EE"><!-- NEW -->quippe illa pila &agrave; &longs;e ip&longs;a non mouetur, &longs;ed ab <lb/>impul&longs;ore mediante, &longs;cilicet, impetu impre&longs;&longs;o; &longs;ed h&aelig;c alibi iam indi&shy;<lb/>cauimus. </s>
				</p>
				<p id="N1F1F6" type="main">
					<s id="N1F1F8"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 7.<emph.end type="center"/></s>
				</p>
				<p id="N1F204" type="main">
					<s id="N1F206"><!-- NEW --><emph type="italics"/>Non producitur ille impetus ab ip&longs;o mobili,<emph.end type="italics"/> vt con&longs;tat nec enim exigit <lb/>moueri illo motu; </s>
					<s id="N1F211"><!-- NEW -->adde quod e&longs;t cau&longs;a nece&longs;&longs;aria; </s>
					<s id="N1F215"><!-- NEW -->igitur nulla e&longs;&longs;et ra&shy;<lb/>tio, cur mod&ograve; maiorem, mod&ograve; minorem effectum, hoc e&longs;t impetum pro&shy;<lb/>duceret; quod tamen accidit; &longs;ed h&aelig;c &longs;unt facilia. </s>
				</p>
				<p id="N1F21D" type="main">
					<s id="N1F21F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 8.<emph.end type="center"/></s>
				</p>
				<p id="N1F22B" type="main">
					<s id="N1F22D"><!-- NEW --><emph type="italics"/>Non producitur nouus impetus in reflectione pura:<emph.end type="italics"/> probatur, quia produ&shy;<lb/>ceretur ab aliqua cau&longs;a: </s>
					<s id="N1F238"><!-- NEW -->illa autem e&longs;&longs;et vel extrin&longs;eca, vel intrin&longs;eca; </s>
					<s id="N1F23C"><!-- NEW --><lb/>non producitur ab vlla caus&acirc; extrin&longs;ec&agrave; per Theor.6.nec ab vlla intrin&shy;<lb/>&longs;ec&acirc; per Th.7. igitur &agrave; nulla; </s>
					<s id="N1F243"><!-- NEW -->igitur nullus producitur; </s>
					<s id="N1F247"><!-- NEW -->dixi in reflexio&shy;<lb/>ne pur&acirc;, quia pr&aelig;ter reflexionem fieri pote&longs;t, vt corpus reflectens mobi&shy;<lb/>le impellat; </s>
					<s id="N1F24F"><!-- NEW -->vt cum duo globi mutu&ograve; colliduntur, vel vt &longs;it aliqua com&shy;<lb/>pre&longs;&longs;io, qu&acirc; po&longs;it&acirc; nouus impetus producetur; </s>
					<s id="N1F255"><!-- NEW -->non e&longs;t tamen qu&ograve;d ali&shy;<lb/>quis dicat motum reflexum e&longs;&longs;e tant&ugrave;m &agrave; compre&longs;&longs;ione; </s>
					<s id="N1F25B"><!-- NEW -->quia qu&ograve; corpus <lb/>durius e&longs;t; </s>
					<s id="N1F261"><!-- NEW -->&amp; min&ugrave;s redit, meli&ugrave;s reflectitur; &longs;ic marmor &agrave; marmore fa&shy;<lb/>cil&egrave; reflectitur. </s>
				</p>
				<p id="N1F267" type="main">
					<s id="N1F269"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 9.<emph.end type="center"/></s>
				</p>
				<p id="N1F275" type="main">
					<s id="N1F277"><!-- NEW --><emph type="italics"/>Hinc impetus ille, qui e&longs;t cau&longs;a motus reflexi, e&longs;t idem cum pr&aelig;uio con&longs;er<emph.end type="italics"/>-<pb pagenum="239" xlink:href="026/01/271.jpg"/><emph type="italics"/>uato<emph.end type="italics"/>; quia vel e&longs;t productus de nouo, vel pr&aelig;uius, per Th. 4. non pri&shy;<lb/>mum per Th.8.igitur e&longs;t pr&aelig;uius. </s>
				</p>
				<p id="N1F28C" type="main">
					<s id="N1F28E"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 10.<emph.end type="center"/></s>
				</p>
				<p id="N1F29A" type="main">
					<s id="N1F29C"><!-- NEW --><emph type="italics"/>Hinc potentia motrix, qu&aelig; pri&ugrave;s impegit mobile in corpus reflectens e&longs;t cau&shy;<lb/>&longs;a huius motus reflexi<emph.end type="italics"/>; </s>
					<s id="N1F2A7"><!-- NEW -->quia &longs;cilicet e&longs;t cau&longs;a impetus, vi cuius mobile <lb/>mouetur etiam motu reflexo; hinc qui ludit pil&aacute;, ver&egrave; dicitur cau&longs;a re&shy;<lb/>flexionis pil&aelig;, cau&longs;a inquam, &longs;ed mouens. </s>
				</p>
				<p id="N1F2AF" type="main">
					<s id="N1F2B1"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 11.<emph.end type="center"/></s>
				</p>
				<p id="N1F2BD" type="main">
					<s id="N1F2BF"><!-- NEW --><emph type="italics"/>Corpus reflectens dici pote&longs;t aliquo modo cau&longs;a reflexionis, id e&longs;t, cau&longs;a no&shy;<lb/>u&aelig; determinationis line&aelig; motus<emph.end type="italics"/>; ni&longs;i enim occurreret paries. </s>
					<s id="N1F2CA"><!-- NEW -->v.g. <!-- REMOVE S-->non re&shy;<lb/>flecteretur pila; quamquam dici debet poti&ugrave;s occa&longs;io, imm&ograve; impedi&shy;<lb/>mentum prioris line&aelig;, ex quo nece&longs;&longs;ari&ograve; &longs;equitur noua linea, ve dicam <lb/>infr&agrave;. </s>
				</p>
				<p id="N1F2D6" type="main">
					<s id="N1F2D8"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 12.<emph.end type="center"/></s>
				</p>
				<p id="N1F2E4" type="main">
					<s id="N1F2E6"><!-- NEW --><emph type="italics"/>Hinc habetur veri&longs;&longs;ima cau&longs;a reflexionis<emph.end type="italics"/>; </s>
					<s id="N1F2EF"><!-- NEW -->cum enim impetus non con&shy;<lb/>&longs;eruetur &agrave; cau&longs;a prim&ograve; producente, vt &longs;&aelig;p&egrave; dictum e&longs;t &longs;upr&agrave;, nec de&longs;trui <lb/>po&longs;&longs;it &longs;altem totus &agrave; corpore reflectente; </s>
					<s id="N1F2F7"><!-- NEW -->cert&egrave; debet &longs;uum motum vlte&shy;<lb/>ri&ugrave;s propagare; </s>
					<s id="N1F2FD"><!-- NEW -->igitur per aliquam lineam; quomodo ver&ograve; determine&shy;<lb/>tur linea reflexionis, dicemus infr&agrave;. </s>
				</p>
				<p id="N1F303" type="main">
					<s id="N1F305"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 13.<emph.end type="center"/></s>
				</p>
				<p id="N1F311" type="main">
					<s id="N1F313"><emph type="italics"/>Hinc non destruitur totus impetus in puncto reflexionis.<emph.end type="italics"/></s>
					<s id="N1F31A"> Probatur prim&ograve;, <lb/>quia motus reflexus e&longs;t ab impetu per Th. 3. &longs;ed non producitur nouus <lb/>impetus per Theorema 8. igitur e&longs;t impetus, qui erat ante reflexionem <lb/>per Th.9. igitur non de&longs;truitur totus, &longs;altem per &longs;e, in puncto reflexio&shy;<lb/>nis. </s>
					<s id="N1F325">Probatur &longs;ecund&ograve; &agrave; priori; </s>
					<s id="N1F328"><!-- NEW -->quia nunquam de&longs;truitur impetus, ni&longs;i <lb/>quando e&longs;t fru&longs;tra per Ax.3.&longs;ed corpus reflectens non facit, vt &longs;it fru&longs;tr&agrave;, <lb/>quia non impedit omnem lineam motus; </s>
					<s id="N1F330"><!-- NEW -->igitur &longs;i ad aliquam determi&shy;<lb/>nari pote&longs;t, impetus non erit fru&longs;tr&agrave;: ad quam autem determinari de&shy;<lb/>beat, dicemus infr&agrave;. </s>
				</p>
				<p id="N1F338" type="main">
					<s id="N1F33A"><!-- NEW -->Dixi, non de&longs;truitur totus impetus; </s>
					<s id="N1F33E"><!-- NEW -->quia fort&egrave; aliqua pars illius de&shy;<lb/>&longs;truitur in reflexione vt demon&longs;trabo, &longs;cilicet per accidens: dixi pr&aelig;terea <lb/>per &longs;e, quia per accidens pote&longs;t accidere vt totus impetus de&longs;truatur pro&shy;<lb/>pter mollitiem vel corporis reflexi, vel propter aliam cau&longs;am, de quo <lb/>ali&agrave;s. </s>
				</p>
				<p id="N1F34A" type="main">
					<s id="N1F34C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 14.<emph.end type="center"/></s>
				</p>
				<p id="N1F358" type="main">
					<s id="N1F35A"><!-- NEW --><emph type="italics"/>Ex hoc etiam habetur impetum non e&longs;&longs;e &longs;ucce&longs;&longs;iuum &longs;ed qualitatem perma&shy;<lb/>nentem eamque durare, lic&egrave;t &agrave; cau&longs;a prim&ograve; producente non con&longs;eruetur &longs;ed ab <lb/>alia<emph.end type="italics"/>; vt iam alias demon&longs;trauimus. </s>
				</p>
				<p id="N1F367" type="main">
					<s id="N1F369"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 15.<emph.end type="center"/></s>
				</p>
				<p id="N1F375" type="main">
					<s id="N1F377"><!-- NEW -->In omni reflexione determinatur noua linea motus; </s>
					<s id="N1F37B"><!-- NEW -->clarum e&longs;t, quia <lb/>non e&longs;t motus &longs;ine linea determinata, vt patet; </s>
					<s id="N1F381"><!-- NEW -->&longs;ed non remanet prior <pb pagenum="240" xlink:href="026/01/272.jpg"/>linea; </s>
					<s id="N1F38A"><!-- NEW -->igitur e&longs;t noua, igitur illa determinatur; cur enim poti&ugrave;s, qu&agrave;m <lb/>alia, ni&longs;i determinaretur vna. </s>
				</p>
				<p id="N1F390" type="main">
					<s id="N1F392"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 16.<emph.end type="center"/></s>
				</p>
				<p id="N1F39E" type="main">
					<s id="N1F3A0"><!-- NEW --><emph type="italics"/>Non determinatur &agrave; puncto contactus <expan abbr="tam&utilde;m">tantum</expan><emph.end type="italics"/>; </s>
					<s id="N1F3AC"><!-- NEW -->quia ab eodem puncto <lb/>plures line&aelig; reflexionis procedere po&longs;&longs;unt; </s>
					<s id="N1F3B2"><!-- NEW -->non &agrave; linea incidenti&aelig; tan&shy;<lb/>t&ugrave;m; </s>
					<s id="N1F3B8"><!-- NEW -->quia &longs;i tantill&ugrave;m inclinetur planum eadem linea incidenti&aelig; pote&longs;t <lb/>habere diuer&longs;as lineas reflexionis; </s>
					<s id="N1F3BE"><!-- NEW -->non determinatur <expan abbr="deniq;">denique</expan> ab ip&longs;o plano <lb/>inclinato quod diuer&longs;as lineas reflectit; </s>
					<s id="N1F3C8"><!-- NEW -->non determinatur, inquam, ab <lb/>his omnibus &longs;eor&longs;im &longs;umptis, vt patet, &longs;ed ab omnibus coniunctim: </s>
					<s id="N1F3CE"><!-- NEW --><lb/>quippe ab his determinatur linea motus, ex quibus po&longs;itis, &amp; applicatis <lb/>nece&longs;&longs;ari&ograve; &longs;equitur; </s>
					<s id="N1F3D5"><!-- NEW -->&longs;ed ex applicatione i&longs;torum omnium &longs;eor&longs;im non &longs;e&shy;<lb/>quitur talis linea; </s>
					<s id="N1F3DB"><!-- NEW -->qu&aelig; tamen &longs;equitur ex applicatione omnium coniun&shy;<lb/>ctim, vt patet; igitur ab his coniunctim &longs;umptis determinatur linea. </s>
				</p>
				<p id="N1F3E1" type="main">
					<s id="N1F3E3"><!-- NEW -->Dices, linea incidenti&aelig; non e&longs;t ampli&ugrave;s, quando linea reflexionis <lb/>determinatur; igitur non pote&longs;t illam determinare. </s>
					<s id="N1F3E9"><!-- NEW -->Re&longs;pondeo deter&shy;<lb/>minationem in eo e&longs;&longs;e po&longs;itam tant&ugrave;m, qu&ograve;d impetus po&longs;ito tali angulo <lb/>incidenti&aelig; non po&longs;&longs;it aliam inire lineam, pr&aelig;ter illam vnicam; </s>
					<s id="N1F3F1"><!-- NEW -->c&ugrave;m enim <lb/>impetus ex &longs;e &longs;it indifferens ad omnes lineas, eo ip&longs;o determinatur ad <lb/>vnam, quo impeditur ne per alias motus propagetur; </s>
					<s id="N1F3F9"><!-- NEW -->atqui angulus inci&shy;<lb/>denti&aelig; non mod&ograve; dicit lineam incidenti&aelig;, &longs;ed lineam plani, atque adeo <lb/>apicem anguli qui e&longs;t in puncto contactus; igitur po&longs;ito illo angulo <lb/>incidenti&aelig; impetus determinatur ad lineam reflexionis. </s>
				</p>
				<p id="N1F403" type="main">
					<s id="N1F405"><!-- NEW -->Porr&ograve; quod impediatur omnis alia linea, patet ex eo, quod primo ip&longs;a <lb/>linea incidenti&aelig; impeditur ne vlteri&ugrave;s producatur ab impenetrabilita&shy;<lb/>te; &amp; duritie plani reflectentis; imm&ograve; &amp; omnes ali&aelig; impediuntur, qu&aelig; <lb/>per ip&longs;um planum duci po&longs;&longs;unt. </s>
				</p>
				<p id="N1F40F" type="main">
					<s id="N1F411">Secund&ograve;, quod &longs;pectat ad alias, qu&aelig; citra planum reflectens &agrave; pun&shy;<lb/>cto contactus duci quoque po&longs;&longs;unt, omnes pr&aelig;ter vnam impediuntur, <lb/>qu&aelig; &longs;cilicet facit angulum cum plano &aelig;qualem angulo incidenti&aelig;, vt <lb/>demon&longs;trabimus infr&agrave;. </s>
				</p>
				<p id="N1F41A" type="main">
					<s id="N1F41C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 17.<emph.end type="center"/></s>
				</p>
				<p id="N1F428" type="main">
					<s id="N1F42A"><!-- NEW --><emph type="italics"/>Ideo determinatur impetus ad omnem lineam, quia impeditur prior linea<emph.end type="italics"/>; <lb/>clarum e&longs;t; ni&longs;i enim impediretur prior; </s>
					<s id="N1F435"><!-- NEW -->cert&egrave; non determinaretur ad <lb/>nouam, quod certum e&longs;t: </s>
					<s id="N1F43B"><!-- NEW -->adde quod planum reflectens perinde &longs;e habet, <lb/>que &longs;i mobile impelleret cum eo impetus gradu, quem ip&longs;um mobile <lb/>iam habet; </s>
					<s id="N1F443"><!-- NEW -->impelleret autem per lineam perpendicularem in puncto <lb/>contactus erectam; &longs;ed propter priorem determinationem fit noua linea <lb/>mixta, de qua infr&agrave;. </s>
				</p>
				<p id="N1F44B" type="main">
					<s id="N1F44D"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 18.<emph.end type="center"/></s>
				</p>
				<p id="N1F459" type="main">
					<s id="N1F45B"><!-- NEW --><emph type="italics"/>Corpus reflectens impedit motum<emph.end type="italics"/>; </s>
					<s id="N1F464"><!-- NEW -->quia e&longs;t impenetrabile, durum, den&shy;<lb/>&longs;um; &longs;ed de his infr&agrave;, quando con&longs;iderabimus impedimenta ratione <lb/>materi&aelig;. </s>
				</p>
				<pb pagenum="241" xlink:href="026/01/273.jpg"/>
				<p id="N1F470" type="main">
					<s id="N1F472"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 19.<emph.end type="center"/></s>
				</p>
				<p id="N1F47E" type="main">
					<s id="N1F480"><emph type="italics"/>Corpus reflectens pl&ugrave;s, vel min&ugrave;s impedit motum ratione diuer&longs;&aelig; appul&longs;io&shy;<lb/>nis:<emph.end type="italics"/> probatur, quia motus reflexus aliquando e&longs;t maior, aliquando e&longs;t <lb/>minor, de quo infr&agrave;. </s>
				</p>
				<p id="N1F48C" type="main">
					<s id="N1F48E"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 20.<emph.end type="center"/></s>
				</p>
				<p id="N1F49A" type="main">
					<s id="N1F49C"><!-- NEW --><emph type="italics"/>Si corpus reflectens impingeretur in mobile, cui nullus prius ine&longs;&longs;et impetus, <lb/>punctum contactus determinaret lineam motus<emph.end type="italics"/>; vt demon&longs;trauimus lib.10. <lb/><expan abbr="moueret&qacute;ue">moueretque</expan> globum, v.g. <!-- REMOVE S-->per lineam perpendicularem ductam &agrave; puncto <lb/>contactus per centrum globi per Th.120.&amp; 121. lib.1. <!-- KEEP S--></s>
				</p>
				<p id="N1F4B1" type="main">
					<s id="N1F4B3"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 21.<emph.end type="center"/></s>
				</p>
				<p id="N1F4BF" type="main">
					<s id="N1F4C1"><!-- NEW --><emph type="italics"/>Qu&ograve; maiorem ictum infligit mobile per lineam incidenti&aelig; corpori refle&shy;<lb/>ctenti, e&longs;t maius impedimentum<emph.end type="italics"/>; </s>
					<s id="N1F4CC"><!-- NEW -->cum enim impetus agat tant&ugrave;m ad extra, <lb/>vt tollat impedimentum; </s>
					<s id="N1F4D2"><!-- NEW -->cert&egrave; qu&ograve; maior e&longs;t ictus, pl&ugrave;s agit impetus; </s>
					<s id="N1F4D6"><!-- NEW --><lb/>igitur qu&ograve; maior e&longs;t ictus, e&longs;t maius impedimentum, &amp; vici&longs;&longs;im qu&ograve; <lb/>maius e&longs;t impedimentum e&longs;t maior ictus; &amp; contr&agrave;, qu&ograve; minor e&longs;t ictus, <lb/>e&longs;t minus impedimentum, &amp; vici&longs;&longs;im &longs;uppo&longs;ita &longs;cilicet eadem potenti&acirc; <lb/>impellente, vt demon&longs;tratum e&longs;t libro primo. </s>
				</p>
				<p id="N1F4E1" type="main">
					<s id="N1F4E3"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 22.<emph.end type="center"/></s>
				</p>
				<p id="N1F4EF" type="main">
					<s id="N1F4F1"><!-- NEW --><emph type="italics"/>Quando linea incidenti&aelig; cadit perpendiculariter in planum reflectens e&longs;t <lb/>maximum impedimentum<emph.end type="italics"/>; quia &longs;cilicet e&longs;t maximus ictus, vt probauimus <lb/>lib.1. <!-- KEEP S--></s>
				</p>
				<p id="N1F4FF" type="main">
					<s id="N1F501"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 23.<emph.end type="center"/></s>
				</p>
				<p id="N1F50D" type="main">
					<s id="N1F50F"><emph type="italics"/>Qu&ograve; linea incidenti&aelig; cadit obliqui&ugrave;s in <expan abbr="plan&utilde;">planum</expan>, e&longs;t min&ugrave;s <expan abbr="impediment&utilde;">impedimentum</expan>,<emph.end type="italics"/> quia <lb/>e&longs;t minor ictus. </s>
					<s id="N1F521">v.g.in fig. </s>
					<s id="N1F524"><!-- NEW -->Definitione.8. ictus per lineam GD e&longs;t ad <lb/>ictum per lineam AD, vt AD ad AB; </s>
					<s id="N1F52A"><!-- NEW -->nec in his immoror, qu&aelig; lib.1. <lb/>&amp; aliis &longs;ufficienter demon&longs;trata &longs;unt; </s>
					<s id="N1F530"><!-- NEW -->pr&aelig;&longs;ertim cum de planis inclina&shy;<lb/>tis; </s>
					<s id="N1F536"><!-- NEW -->nam perinde &longs;e habet inflictus ictus, atque grauitatio in ip&longs;um pla&shy;<lb/>num; </s>
					<s id="N1F53C"><!-- NEW -->e&longs;t enim grauitatio in planum inclinatum, vt &longs;upr&agrave; fus&egrave; dictum e&longs;t <lb/>in Th.16. lib.5.ad grauitationem in horizontale, vt Tangens horizonta&shy;<lb/>les ad &longs;ecantem, id e&longs;t, vt AB ad AD; </s>
					<s id="N1F544"><!-- NEW -->nam BD e&longs;t qua&longs;i perpendicu&shy;<lb/>laris; igitur ictus &longs;unt, vt &longs;inus anguli incidenti&aelig; ad &longs;inum totum. </s>
					<s id="N1F54A"><!-- NEW -->v. <!-- REMOVE S-->g. <!-- REMOVE S--><lb/>vt AB, ad AD hinc per lineam, AD, e&longs;t min&ugrave;s impedimentum qu&agrave;m <lb/>per GD imm&ograve; eadem e&longs;t ratio impedimentorum &amp; ictuum; igitur im&shy;<lb/>pedimentum in linea, GD e&longs;t ad impedimentum per lineam, AD, vt <lb/>AD, ad AB. <!-- KEEP S--></s>
				</p>
				<p id="N1F55A" type="main">
					<s id="N1F55C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 24.<emph.end type="center"/></s>
				</p>
				<p id="N1F568" type="main">
					<s id="N1F56A"><!-- NEW --><emph type="italics"/>Hinc pl&ugrave;s, vel min&ugrave;s determinat nouam lineam motus planum reflectens<emph.end type="italics"/>; </s>
					<s id="N1F573"><!-- NEW --><lb/>cum enim ideo determinetur impetus ad nouam lineam, quia impeditur <lb/>prior per Theorema 17. cert&egrave; in eadem proportione determinatur ad <lb/>nouam, in qua impeditur prior; </s>
					<s id="N1F57C"><!-- NEW -->&longs;ed pl&ugrave;s vel min&ugrave;s impeditur per Th. <!-- REMOVE S--><lb/>23. igitur pl&ugrave;s vel min&ugrave;s determinatur impetus; </s>
					<s id="N1F583"><!-- NEW -->igitur pl&ugrave;s vel min&ugrave;s <lb/>determinat planum reflectens: porr&ograve; planum BD, determinat mobile <pb pagenum="242" xlink:href="026/01/274.jpg"/>quod reflectit per lineam DG, &amp; ni&longs;i e&longs;&longs;et alia determinatio per DG <lb/>reflecteretur mobile, vt reuer&acirc; fit, cum linea incidenti&aelig; e&longs;t perpen&shy;<lb/>dicularis. </s>
				</p>
				<p id="N1F592" type="main">
					<s id="N1F594"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 25.<emph.end type="center"/></s>
				</p>
				<p id="N1F5A0" type="main">
					<s id="N1F5A2"><!-- NEW --><emph type="italics"/>Hinc planum reflectens maxim&egrave; determinat impetum ad nouam lineam <lb/>cum linea incidenti&aelig; e&longs;t perpendicularis<emph.end type="italics"/>; </s>
					<s id="N1F5AD"><!-- NEW -->quia tunc e&longs;t maximum impedi&shy;<lb/>mentum per Th.22.igitur maxim&egrave; determinat per Th.24. &amp; contr&agrave;, qu&ograve; <lb/>linea incidenti&aelig; e&longs;t obliquior, minor e&longs;t determinatio ad lineam no&shy;<lb/>uam; igitur h&aelig;c tria &longs;unt in eadem proportione, &longs;cilicet ictus, impedi&shy;<lb/>mentum, determinatio noua. </s>
				</p>
				<p id="N1F5B9" type="main">
					<s id="N1F5BB"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 26.<emph.end type="center"/></s>
				</p>
				<p id="N1F5C7" type="main">
					<s id="N1F5C9"><!-- NEW --><emph type="italics"/>Maxima determinatio, qu&acirc; planum reflectens po&longs;&longs;it impetum, mobili im&shy;<lb/>pre&longs;&longs;um, qua&longs;i retorquere, e&longs;t illa, qu&aelig; fit per lineam perpendicularem.<emph.end type="italics"/> v.g.per <lb/>DG; </s>
					<s id="N1F5D6"><!-- NEW -->&longs;i enim planum ip&longs;um mobile impelleret &agrave; puncto contactus D; <lb/>cert&egrave; impelleret tant&ugrave;m per lineam perpendicularem, &longs;eu per lineam <lb/>ductam &agrave; puncto D per centrum globi, &longs;i v. <!-- REMOVE S-->g. <!-- REMOVE S-->e&longs;&longs;et globus, vt demon&shy;<lb/>&longs;trauimus in primo lib.1. Igitur maxima determinatio, qu&aelig; po&longs;&longs;it inferri <lb/>&agrave; plano e&longs;t in ip&longs;a perpendiculari. </s>
				</p>
				<p id="N1F5E6" type="main">
					<s id="N1F5E8"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 27.<emph.end type="center"/></s>
				</p>
				<p id="N1F5F4" type="main">
					<s id="N1F5F6"><!-- NEW --><emph type="italics"/>Hinc, &longs;i linea incidenti&aelig; e&longs;t perpendicularis GD, linea quoque reflexionis <lb/>e&longs;t eadem DG<emph.end type="italics"/>; </s>
					<s id="N1F601"><!-- NEW -->quia huic e&longs;t maximum impedimentum, quia &longs;cilicet e&longs;t <lb/>maximus ictus; igitur maxima determinatio per Th. 25. &longs;ed maxima e&longs;t <lb/>illa, qu&acirc; mobile per ip&longs;am perpendicularem DG &agrave; puncto contactus D <lb/>retorquetur per Th.26. Igitur &longs;i linea incidenti&aelig;, &amp;c. </s>
					<s id="N1F60B">quod erat proban&shy;<lb/>dum. </s>
					<s id="N1F610"><!-- NEW -->Probatur pr&aelig;terea, quia &longs;i linea incidenti&aelig; e&longs;t perpendicularis <lb/>GD, non e&longs;t potior ratio, cur linea reflexionis inclinet dextror&longs;um ver&shy;<lb/>&longs;us A, qu&agrave;m &longs;ini&longs;tror&longs;um ver&longs;us H; igitur debet e&longs;&longs;e perpendicu&shy;<lb/>laris. </s>
				</p>
				<p id="N1F61A" type="main">
					<s id="N1F61C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 28.<emph.end type="center"/></s>
				</p>
				<p id="N1F628" type="main">
					<s id="N1F62A"><!-- NEW --><emph type="italics"/>Si linea incidenti&aelig; cadat obliqu&egrave; in planum, linea reflexionis non erit per&shy;<lb/>pendicularis<emph.end type="italics"/> v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;it linea incidentia AD, linea reflexionis non e&longs;t per&shy;<lb/>pendicularis DG; quia tunc non e&longs;t maximus ictus, nec maximum im&shy;<lb/>pedimentum per Th.23.igitur nec maxima determinatio per Theor.24. <lb/>igitur non fit per ip&longs;am perpendicularem DG per Th. 26. </s>
				</p>
				<p id="N1F63F" type="main">
					<s id="N1F641"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 29.<emph.end type="center"/></s>
				</p>
				<p id="N1F64D" type="main">
					<s id="N1F64F"><!-- NEW --><emph type="italics"/>Hinc linea reflexionis, qu&aelig; &longs;equitur lineam incidenti&aelig; obliqu&egrave; cadentem in <lb/>planum non tant&ugrave;m determinatur &agrave; plane reflectente &longs;ed participat aliquid de <lb/>priori determinatione.<emph.end type="italics"/> v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;it linea incidenti&aelig; AD, linea reflexionis <lb/>DH; </s>
					<s id="N1F662"><!-- NEW -->non tant&ugrave;m determinatur h&aelig;c linea &agrave; plano FB, alioqui e&longs;&longs;et DG, <lb/>nec e&longs;t eadem cum prima; alioqui e&longs;&longs;et DE, &longs;ed partim determinatur &agrave; <lb/>plano FB per DG partimque reti nec aliquid prim&aelig; determinationis, &amp; <lb/>ex vtraque fit DH, vt con&longs;tat, quia qu&ograve; linea incidenti&aelig; e&longs;t obliquior, <lb/>planum min&ugrave;s determinat per Th. 25. </s>
				</p>
				<pb pagenum="243" xlink:href="026/01/275.jpg"/>
				<p id="N1F672" type="main">
					<s id="N1F674"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 30.<emph.end type="center"/></s>
				</p>
				<p id="N1F680" type="main">
					<s id="N1F682"><!-- NEW --><emph type="italics"/>Hinc qu&acirc; proportione planum min&ugrave;s confert ad nouam determinationem, <lb/>pl&ugrave;s remanet prioris determinationis; </s>
					<s id="N1F68A"><!-- NEW -->qu&ograve; ver&ograve; pl&ugrave;s illud confert, huius min&ugrave;s <lb/>restat<emph.end type="italics"/>; </s>
					<s id="N1F693"><!-- NEW -->hinc, cum planum totam confert <expan abbr="nou&atilde;">nouam</expan> <expan abbr="determination&etilde;">determinationem</expan> vt in per&shy;<lb/>pendiculari DD, nihil prioris remanet; </s>
					<s id="N1F6A1"><!-- NEW -->hinc &longs;i linea incidenti&aelig; &longs;it pa&shy;<lb/>rallela plano BF nulla fiet noua determinatio, tota priore intacta; </s>
					<s id="N1F6A7"><!-- NEW -->&longs;i ve&shy;<lb/>r&ograve; &longs;it perpendicularis GD, tota determinatio e&longs;t noua, &amp; nihil prioris <lb/>remanet; &longs;i demum line&aelig; incidenti&aelig; &longs;int ali&aelig;, confert vtrumque ad no&shy;<lb/>uam determinationem pro rata. </s>
				</p>
				<p id="N1F6B1" type="main">
					<s id="N1F6B3"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 31.<emph.end type="center"/></s>
				</p>
				<p id="N1F6BF" type="main">
					<s id="N1F6C1"><!-- NEW --><emph type="italics"/>Si pellatur mobile per AD in planum FB, determinatio line&aelig; reflexionis <lb/>erit qua&longs;i mixta &longs;inistror&longs;um<emph.end type="italics"/>; </s>
					<s id="N1F6CC"><!-- NEW -->&longs;i enim ex D propagaretur motus in E rect&egrave; <lb/>&longs;ini&longs;tror&longs;um acquireret DF in linea BF, vt patet; </s>
					<s id="N1F6D2"><!-- NEW -->igitur &longs;i &longs;it linea inci&shy;<lb/>denti&aelig; AD, noua determinatio per DH con&longs;tabit partim ex eo, qu&ograve;d <lb/>planum reflectens confert partim ex eo, quod remanet prioris determi&shy;<lb/>nationis, quod re&longs;pondet DF, &amp; ex eo quod confert planum FB, quod <lb/>re&longs;pondet DP; </s>
					<s id="N1F6DE"><!-- NEW -->quia ictus per AD e&longs;t ad ictum per GD, vt PD ad DP <lb/>vel DG; </s>
					<s id="N1F6E4"><!-- NEW -->&longs;ed e&longs;t eadem ratio impedimenti eademque determinationis <lb/>per Theoremata &longs;uperiora; atqui ex DPDF fit DHGO. igitur deter&shy;<lb/>minatio line&aelig; reflex&aelig; e&longs;t mixta, quod erat probandum. </s>
				</p>
				<p id="N1F6EC" type="main">
					<s id="N1F6EE"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 32.<emph.end type="center"/></s>
				</p>
				<p id="N1F6FA" type="main">
					<s id="N1F6FC"><!-- NEW --><emph type="italics"/>Hinc decre&longs;cit determinatio, quam confert planum iuxta rationem &longs;inuum <lb/>ver&longs;orum in<emph.end type="italics"/> GD. v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;i &longs;it linea incidenti&aelig; AD; </s>
					<s id="N1F70B"><!-- NEW -->ducatur APH paral&shy;<lb/>lela FB, determinatio quam confert planum, decre&longs;cit &longs;inu ver&longs;o PG; </s>
					<s id="N1F711"><!-- NEW -->&longs;i <lb/>ver&ograve; &longs;it linea incidenti&aelig; ID, decre&longs;cit &longs;inu ver&longs;o LG; atque ita dein&shy;<lb/>ceps; at ver&ograve; cre&longs;cit portio prioris determinationis line&aelig; incidenti&aelig; <lb/>iuxta rationem &longs;inuum rectorum in DB v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;i &longs;it linea incidenti&aelig; AD, <lb/>cre&longs;cit &longs;inu recto AP &aelig;quali BD &longs;i &longs;it IL cre&longs;cit &longs;inu recto IL vel RD. </s>
				</p>
				<p id="N1F721" type="main">
					<s id="N1F723"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 33.<emph.end type="center"/></s>
				</p>
				<p id="N1F72F" type="main">
					<s id="N1F731"><!-- NEW --><emph type="italics"/>Hinc angulus reflexionis e&longs;t &aelig;qualis angulo incidenti&aelig;, &amp; hoc e&longs;t principium <lb/>po&longs;itiuum huius &aelig;qualitatis angulorum.<emph.end type="italics"/> &longs;it enim linea incidenti&aelig; AD, du&shy;<lb/>catur APH, AB, HF; </s>
					<s id="N1F73E"><!-- NEW -->cert&egrave; DF &amp; DB &longs;unt &aelig;quales APPH; </s>
					<s id="N1F742"><!-- NEW -->item&shy;<lb/>que ABPDHF &longs;unt &aelig;quales; </s>
					<s id="N1F748"><!-- NEW -->atqui determinatio line&aelig; reflexionis <lb/>e&longs;t mixta ex DFH; </s>
					<s id="N1F74E"><!-- NEW -->igitur erit DH; </s>
					<s id="N1F752"><!-- NEW -->&longs;ed triangula DFH, DAB &longs;unt <lb/>&aelig;qualia &amp; anguli HDFADB &longs;unt &aelig;quales: </s>
					<s id="N1F758"><!-- NEW -->&longs;imiliter &longs;it linea inciden&shy;<lb/>ti&aelig; ID, ducatur IN parallela AHIRNM; </s>
					<s id="N1F75E"><!-- NEW -->cert&egrave; duo anguli IDR, <lb/>NDM &longs;unt &aelig;quales; </s>
					<s id="N1F764"><!-- NEW -->idem dico de omnibus aliis lineis incidenti&aelig;, &amp; <lb/>h&aelig;c e&longs;t vera ratio po&longs;itiua &agrave; priori, de qua plura infr&agrave;; </s>
					<s id="N1F76A"><!-- NEW -->non dee&longs;t etiam <lb/>negatiua, quia &longs;cilicet po&longs;ita linea incidenti&aelig; AD c&ugrave;m &longs;ini&longs;tror&longs;um &longs;int <lb/>infiniti anguli in&aelig;quales angulo incidenti&aelig;; </s>
					<s id="N1F772"><!-- NEW -->non e&longs;t potior ratio, cur <lb/>per vnum fiat qu&agrave;m per alium, &amp; cum &longs;it tant&ugrave;m vnus &aelig;qualis HDM in <lb/>eodem &longs;cilicet plano; </s>
					<s id="N1F77A"><!-- NEW -->cert&egrave; per illum fieri debet; </s>
					<s id="N1F77E"><!-- NEW -->quippe quod vnum <lb/>e&longs;t, determinatum e&longs;t, vt &longs;&aelig;p&egrave; diximus ali&agrave;s; </s>
					<s id="N1F784"><!-- NEW -->nec e&longs;t qu&ograve;d aliqui delica-<pb pagenum="244" xlink:href="026/01/276.jpg"/>tioris &longs;thomachi rationem hanc negatiuam, cum tanta nau&longs;ea re&longs;puant, <lb/>cum optima &longs;it; </s>
					<s id="N1F78F"><!-- NEW -->nec vlli fallaci&aelig; &longs;ubiiciatur, non tamen &longs;olitariam e&longs;&longs;e <lb/>oportuit; quippe effectus po&longs;itiuus per principium po&longs;itiuum ad &longs;uam <lb/>cau&longs;am reducendus e&longs;t. </s>
				</p>
				<p id="N1F797" type="main">
					<s id="N1F799"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 34.<emph.end type="center"/></s>
				</p>
				<p id="N1F7A5" type="main">
					<s id="N1F7A7"><!-- NEW --><emph type="italics"/>Hinc vides e&longs;&longs;e &longs;emper quatuor angulos &aelig;quales,<emph.end type="italics"/> &longs;cilicet, angulum inci&shy;<lb/>denti&aelig;, angulum reflexionis &amp; duos his oppo&longs;itos; allos ver&ograve; quatuor <lb/>etiam inter &longs;e &aelig;quales, &longs;cilicet duos angulos complementi &amp; duos his <lb/>oppo&longs;itos. </s>
				</p>
				<p id="N1F7B6" type="main">
					<s id="N1F7B8"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 35.<emph.end type="center"/></s>
				</p>
				<p id="N1F7C4" type="main">
					<s id="N1F7C6"><!-- NEW --><emph type="italics"/>Hinc quoque reiicies illos, qui nolunt in reflexione impetum produci in mo&shy;<lb/>bili &agrave; plano reflectente<emph.end type="italics"/>; quod reuer&acirc;, &longs;i fieret nulla e&longs;&longs;et ratio &aelig;qualitatis <lb/>angulorum incidenti&aelig;, &amp; reflexionis, reiicies quoque aliquos apud Mer&shy;<lb/>&longs;ennum in ph&aelig;nom. </s>
					<s id="N1F7D5"><!-- NEW -->Balli&longs;t. <!-- REMOVE S-->prop.  24. qui ponunt duo qualitatum gene&shy;<lb/>ra, quarum ali&aelig; mobile firmiter affigant plano, ali&aelig; &agrave; plano remoueant, <lb/>quod plu&longs;qu&agrave;m ridiculum e&longs;t; </s>
					<s id="N1F7DF"><!-- NEW -->itemque alios ibidem, qui nolunt circa <lb/>punctum reflexionis ab impre&longs;&longs;ione mobilis fo&longs;&longs;ulam fieri, &longs;ed non &longs;ine <lb/>compre&longs;&longs;ione, cuius deinde vi repellitur idem mobile; </s>
					<s id="N1F7E7"><!-- NEW -->&longs;ed in duro mar&shy;<lb/>more nullum omnin&ograve; apparet ve&longs;tigium huius fo&longs;&longs;ul&aelig;, adde quod &longs;i hoc <lb/>e&longs;&longs;et, &longs;emper reflexio fieret per ip&longs;am perpendicularem; </s>
					<s id="N1F7EF"><!-- NEW -->quod vero perti&shy;<lb/>net ad illas qualitates magneticas, quarum ali&aelig; retinent, ali&aelig; repellunt <lb/>mobile, p&oelig;nitus in hoc ca&longs;u in&longs;ul&longs;&aelig; &longs;unt; </s>
					<s id="N1F7F7"><!-- NEW -->alioqui etiam &longs;ine motu pr&aelig;&shy;<lb/>uio repellerent: vtrum ver&ograve; in magnete admittend&aelig; &longs;int, fus&egrave; di&longs;puta&shy;<lb/>bimus &longs;uo loco. </s>
				</p>
				<p id="N1F7FF" type="main">
					<s id="N1F801"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 36.<emph.end type="center"/></s>
				</p>
				<p id="N1F80D" type="main">
					<s id="N1F80F"><emph type="italics"/>Ex hac angulorum &aelig;qualitate t&ugrave;m Captotrica infinita fer&egrave; Theoremata de&shy;<lb/>monstrat in radiis vi&longs;ilibus, in &longs;peculis v&longs;toriis, t&ugrave;m Echometria in reflexione <lb/>&longs;onorum.<emph.end type="italics"/></s>
					<s id="N1F81A"><!-- NEW --> Et ver&ograve; noua Catoptrica pote&longs;t e&longs;&longs;e in motu, qu&aelig; eadem pror&shy;<lb/>&longs;us demon&longs;trabit, t&ugrave;m in &longs;peculis parabolicis, &agrave; quibus omnia mi&longs;&longs;ilia <lb/>projecta per parallelas axi Parabol&aelig; in idem punctum reflectentur; </s>
					<s id="N1F822"><!-- NEW -->vel <lb/>Ellipticis, &agrave; quibus omnia mi&longs;&longs;ilia projecta &agrave; dato puncto per omnes li&shy;<lb/>neas ad idem punctum reflectentur; </s>
					<s id="N1F82A"><!-- NEW -->vel Hyperbolicis, &agrave; quibus mi&longs;&longs;ilia <lb/>projecta per plures lineas ad idem punctum ad aliud punctum omnes re&shy;<lb/>flectuntur; </s>
					<s id="N1F832"><!-- NEW -->vel Sph&aelig;ricis concauis, &agrave; quibus mi&longs;&longs;ilia projecta per plures <lb/>lineas decu&longs;&longs;atas in eodem puncto ad idem punctum reflectuntur; vel <lb/>Sph&aelig;ricis conuexis, &agrave; quibus mi&longs;&longs;ile proiectum &agrave; quolibet puncto dato <lb/>ad quodlibet aliud datum reflectitur. </s>
					<s id="N1F83C"><!-- NEW -->Ratio e&longs;t, quia in circulo &longs;unt om&shy;<lb/>nia plana; </s>
					<s id="N1F842"><!-- NEW -->qu&aelig;libet enim Tangens planum e&longs;t; &longs;iue denique in Cylin&shy;<lb/>dricis, Conicis, &amp;c. </s>
					<s id="N1F848"><!-- NEW -->qu&aelig; omnia ex principiis Catoptricis demon&longs;trari <lb/>po&longs;&longs;unt: </s>
					<s id="N1F84E"><!-- NEW -->adde &longs;i vis in hac Catoptrica ver&longs;atos e&longs;&longs;e debere, qui pil&acirc; lu&shy;<lb/>dunt, quos nunquam falleret ictus, &longs;i hanc rationem angulorum non mo&shy;<lb/>d&ograve; perfect&egrave; callerent, ver&ugrave;m etiam ad praxim reducerent: imm&ograve; po&longs;&longs;et <lb/>e&longs;&longs;e aliqua portio muri talis figur&aelig;, vt &longs;emper inde reflexa pila per da&shy;<lb/>tum cuniculum rect&agrave; traiiceretur. </s>
				</p>
				<pb pagenum="245" xlink:href="026/01/277.jpg"/>
				<p id="N1F85E" type="main">
					<s id="N1F860"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 37.<emph.end type="center"/></s>
				</p>
				<p id="N1F86C" type="main">
					<s id="N1F86E"><!-- NEW --><emph type="italics"/>In reflexione destruitur aliquid impetus, &longs;i talis &longs;it vtriu&longs;que determina&shy;<lb/>tionis pugna, vt aliquid impetus &longs;it frustr&agrave;<emph.end type="italics"/>; </s>
					<s id="N1F879"><!-- NEW -->vt con&longs;tat ex his, qu&aelig; diximus <lb/>libro primo; </s>
					<s id="N1F87F"><!-- NEW -->con&longs;tat autem in reflexione e&longs;&longs;e determinationum pugnam <lb/>per Th 31. &amp; 32. pugnat enim &longs;uo modo prior determinatio per GD <lb/>cum &longs;ecunda oppo&longs;ita per DG; igitur aliquid impetus de&longs;truitur, &longs;i ex <lb/>tali pugna aliquid &longs;it fru&longs;tr&agrave;. </s>
					<s id="N1F889"><!-- NEW -->Ob&longs;eruabis autem eundem impetum in eo&shy;<lb/>dem mobili cum duplici determinatione perinde &longs;e habere in ordine <lb/>ad nouam, vt patet, lineam, atque &longs;i e&longs;&longs;ent duo impetus in ratione deter&shy;<lb/>minationum: vtr&ugrave;m autem aliquid impetus &longs;it fru&longs;tr&agrave; per &longs;e, determina&shy;<lb/>bimus infr&agrave;. </s>
				</p>
				<p id="N1F895" type="main">
					<s id="N1F897"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 38.<emph.end type="center"/></s>
				</p>
				<p id="N1F8A3" type="main">
					<s id="N1F8A5"><!-- NEW --><emph type="italics"/>Si totus impetus destrueretur nulla e&longs;&longs;et reflexio<emph.end type="italics"/>; </s>
					<s id="N1F8AE"><!-- NEW -->quod maxim&egrave; e&longs;&longs;et ab&shy;<lb/>&longs;urdum &amp; incommodum toti natur&aelig;; </s>
					<s id="N1F8B4"><!-- NEW -->&longs;i ver&ograve; nullus impetus de&longs;truere&shy;<lb/>tur, &longs;eu per &longs;e, &longs;eu per accidens, daretur motus perpetuus; </s>
					<s id="N1F8BA"><!-- NEW -->quippe mo&shy;<lb/>bile ad eandem altitudinem a&longs;cenderet po&longs;t reflexionem, iterumque de&shy;<lb/>&longs;cendens ad <expan abbr="e&atilde;dem">eandem</expan> a&longs;cenderet atque ita deinceps; igitur motus e&longs;&longs;et <lb/>perpetuus, &amp; nunquam corpus illud quie&longs;ceret, quod e&longs;t contra in&longs;titu&shy;<lb/>tum natur&aelig;. </s>
				</p>
				<p id="N1F8CA" type="main">
					<s id="N1F8CC"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1F8D8" type="main">
					<s id="N1F8DA">Ob&longs;erua prim&ograve; ex hypothe&longs;i certa haberi, dari motum reflexum, ex <lb/>qua colligo totum impetum non de&longs;trui. </s>
					<s id="N1F8DF">Secund&ograve; ex hypothe&longs;i certa <lb/>haberi, motum reflexum e&longs;&longs;e minorem directo vlteri&ugrave;s propagato, vt <lb/>con&longs;tat experienti&acirc;, ex qua colligo aliquam portionem impetus de&longs;trui, <lb/>&longs;altem per accidens propter compre&longs;&longs;ionem, &amp; alli&longs;ionem partium. </s>
				</p>
				<p id="N1F8E8" type="main">
					<s id="N1F8EA"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 39.<emph.end type="center"/></s>
				</p>
				<p id="N1F8F6" type="main">
					<s id="N1F8F8"><!-- NEW --><emph type="italics"/>Maior e&longs;t determinatio, qu&aelig; confertur &agrave; plano mobili per lineam perpendi&shy;<lb/>cularem incidenti, qu&agrave;m prior, qu&aelig; inerat mobili<emph.end type="italics"/>; </s>
					<s id="N1F903"><!-- NEW -->probatur, quia nec e&longs;t <lb/>minor, nec &aelig;qualis, non minor; </s>
					<s id="N1F909"><!-- NEW -->alioquin prior vinceret; </s>
					<s id="N1F90D"><!-- NEW -->non &aelig;qualis, <lb/>quia neutra pr&aelig;ualeret; </s>
					<s id="N1F913"><!-- NEW -->igitur e&longs;t maior; </s>
					<s id="N1F917"><!-- NEW -->&longs;i vtraque determinatio e&longs;&longs;et <lb/>aqualis totus impetus de&longs;trui deberet; </s>
					<s id="N1F91D"><!-- NEW -->igitur eadem e&longs;t proportio impe&shy;<lb/>tus remanentis, qu&aelig; e&longs;t mixt&aelig; determinationis ex priori, &amp; noua; </s>
					<s id="N1F923"><!-- NEW -->nul&shy;<lb/>lus enim impetus e&longs;&longs;e pote&longs;t &longs;ine determinatione; </s>
					<s id="N1F929"><!-- NEW -->igitur &longs;i tota perit de&shy;<lb/>terminatio, totus etiam perit impetus, qui illi re&longs;pondet; </s>
					<s id="N1F92F"><!-- NEW -->&amp; &longs;i remanet <lb/>aliquid determinationis mixt&aelig;, aliquid etiam impetus remanet, qui e&longs;t <lb/>ad priorem impetum, vt h&aelig;c determinatio re&longs;idua ad priorem determi&shy;<lb/>nationem; quantum ver&ograve; remaneat prioris impetus, dicam infr&agrave;. </s>
				</p>
				<p id="N1F939" type="main">
					<s id="N1F93B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 40.<emph.end type="center"/></s>
				</p>
				<p id="N1F947" type="main">
					<s id="N1F949"><!-- NEW --><emph type="italics"/>Determinatio per DG &agrave; plano e&longs;t dupla determinationis prioris per lineam <lb/>incidenti&aelig; GD<emph.end type="italics"/>; quod &longs;ic demon&longs;tro; </s>
					<s id="N1F954"><!-- NEW -->&longs;it linea incidenti&aelig; ID, linea re&shy;<lb/>flexionis erit DN, &longs;cilicet ad angulos &aelig;quales, per Th. 33. &longs;it autem an&shy;<lb/>gulus NDM 30. graduum, &amp; NDG 60. ducatur NO parallela GD; </s>
					<s id="N1F95C"><!-- NEW --><pb pagenum="246" xlink:href="026/01/278.jpg"/>t&ugrave;m ID producatur in O, denique ducatur NG: </s>
					<s id="N1F964"><!-- NEW -->prima determinatio <lb/>line&aelig; incidenti&aelig; ID, e&longs;t per DO, determinatio plani e&longs;t per DG; </s>
					<s id="N1F96A"><!-- NEW -->&longs;ed <lb/>DO e&longs;t &aelig;qualis DG; </s>
					<s id="N1F970"><!-- NEW -->nam DON, DNG &longs;unt &aelig;quilatera &aelig;qualia; </s>
					<s id="N1F974"><!-- NEW --><lb/>hinc determinatio mixta e&longs;t per DN, diuidens angulum GDO bifa&shy;<lb/>riam; </s>
					<s id="N1F97B"><!-- NEW -->igitur &longs;i &longs;it linea incidenti&aelig; ID &amp; angulus ID B. 30. graduum, <lb/>&aelig;qualis e&longs;t determinatio plani determinationi prioris line&aelig;; </s>
					<s id="N1F981"><!-- NEW -->hinc angu&shy;<lb/>lus diuiditur &aelig;qualiter bifariam; </s>
					<s id="N1F987"><!-- NEW -->&longs;it ver&ograve; linea incidenti&aelig; AD produ&shy;<lb/>cta v&longs;que ad E, linea reflexionis DH; </s>
					<s id="N1F98D"><!-- NEW -->ducatur HE; </s>
					<s id="N1F991"><!-- NEW -->a&longs;&longs;umatur DT <lb/>&aelig;qualis EH: </s>
					<s id="N1F997"><!-- NEW -->dico determinationem plani e&longs;&longs;e ad determinationem <lb/>prioris line&aelig; AD vel DE, vt DT ad DE; </s>
					<s id="N1F99D"><!-- NEW -->cum enim determinatio mix&shy;<lb/>ta &longs;it per DH; </s>
					<s id="N1F9A3"><!-- NEW -->cert&egrave; DH accedit propi&ugrave;s ADDG, qu&agrave;m ad DE; </s>
					<s id="N1F9A7"><!-- NEW -->igi&shy;<lb/>tur determinatio per DG e&longs;t ad determinationem, per DE vt DT <lb/>&aelig;qualis HE ad DE; nam perinde &longs;e habent, atque &longs;i e&longs;&longs;ent duo impe&shy;<lb/>tus determinati ad duas lineas, de quibus hoc ip&longs;um demon&longs;trauimus <lb/>t&ugrave;m libro 1. Th.137. 138. 139. &amp;c. </s>
					<s id="N1F9B3"><!-- NEW -->t&ugrave;m lib.4. &agrave; Th. 1. ad Th.14.quippe <lb/>linea determinationis mixt&aelig; e&longs;t diagonalis, vt &longs;&aelig;p&egrave; probauimus: </s>
					<s id="N1F9B9"><!-- NEW -->deinde <lb/>&longs;it linea incidenti&aelig; per KD; </s>
					<s id="N1F9BF"><!-- NEW -->&longs;it DX linea reflexionis; </s>
					<s id="N1F9C3"><!-- NEW -->&longs;it XQ, ip&longs;ique <lb/>&aelig;qualis DZ, dico determinationem per DG e&longs;&longs;e ad determinationem <lb/>per DQ vt DZ ad DQ, &longs;ed XQ e&longs;t minor GS, vt con&longs;tat; </s>
					<s id="N1F9CB"><!-- NEW -->igitur qu&ograve; <lb/>linea incidenti&aelig; accedit propi&ugrave;s ad perpendicularem GD, determinatio <lb/>plani e&longs;t maior, e&longs;tque vt chord&aelig; NO, HE, <expan abbr="Xq;">Xque</expan> igitur &longs;i tandem li&shy;<lb/>nea incidenti&aelig; &longs;it perpendicularis GD, determinatio plani e&longs;t ad deter&shy;<lb/>minationem line&aelig; incidenti&aelig;, vt DY &aelig;qualis GS ad DG: </s>
					<s id="N1F9DB"><!-- NEW -->&longs;ed cum ex <lb/>Th.4. multa lux reliquis con&longs;equentibus imm&ograve; &amp; antecedentibus afful&shy;<lb/>gere po&longs;&longs;it, paul&ograve; fu&longs;i&ugrave;s explicandum, &amp; demon&longs;trandum e&longs;&longs;e videtur: </s>
					<s id="N1F9E3"><!-- NEW --><lb/>itaque duobus modis, prim&ograve; ex hypothe&longs;i anguli reflexionis &aelig;qualis an&shy;<lb/>gulo incidenti&aelig;, quod iam reuer&acirc; pr&aelig;&longs;titum e&longs;t; &longs;ed cum ex hoc Theo&shy;<lb/>remate pr&aelig;dicta &aelig;qualitas angulorum reflexionis tanquam per princi&shy;<lb/>pium immediatum po&longs;itiuum demon&longs;trari po&longs;&longs;it, ne &longs;it aliqua circuli <lb/>&longs;pecies, quo determinatio noua dupla prioris po&longs;ita linea incidenti&aelig; <lb/>perpendiculari per &aelig;qualitatem anguli reflexionis, &amp; h&aelig;c &aelig;qualitas per <lb/>illam eandem determinationem duplam demon&longs;tretur, aliam viam inire <lb/>oportet, vnde intima totius reflexionis principia eruantur, quod vt <lb/>fiat. </s>
				</p>
				<p id="N1F9F8" type="main">
					<s id="N1F9FA"><!-- NEW -->Prim&ograve; certum e&longs;t, corpus reflectens in perpendiculari, &lpar;qu&aelig; e&longs;t cum <lb/>linea incidenti&aelig; terminata ad punctum contactus ducitur per centrum <lb/>grauitatis globi reflexi&rpar; certum e&longs;t inquam corpus reflectens in pr&aelig;di&shy;<lb/>cta linea aliquando cedere, aliquando non cedere; </s>
					<s id="N1FA04"><!-- NEW -->cedere autem dici&shy;<lb/>tur c&ugrave;m vel amouetur &agrave; corpore impacto, vel &longs;altem concutitur: <lb/>tunc autem nullo modo cedere dicitur, cum ab ictu nullo modo mo&shy;<lb/>uetur. </s>
				</p>
				<p id="N1FA0E" type="main">
					<s id="N1FA10"><!-- NEW -->Secund&ograve;, ce&longs;&longs;io, &amp; re&longs;i&longs;tentia ita po&longs;&longs;unt comparari, vt vel ce&longs;&longs;io &longs;it <lb/>&aelig;qualis re&longs;i&longs;tenti&aelig;, vel ce&longs;&longs;io &longs;ine re&longs;i&longs;tentia, vel re&longs;i&longs;tentia &longs;ine ce&longs;&longs;ione: </s>
					<s id="N1FA16"><!-- NEW --><lb/>porr&ograve; tunc e&longs;t ce&longs;&longs;io tota, cum nulla e&longs;t re&longs;i&longs;tentia, quod tantum accide&shy;<lb/>ret, &longs;i corpus moueretur in vacuo; </s>
					<s id="N1FA1D"><!-- NEW -->quippe nullum e&longs;t medium quamtum-<pb pagenum="247" xlink:href="026/01/279.jpg"/>uis rarum, &amp; tenue, quod aliquantulum non re&longs;i&longs;tat, vt clarum e&longs;t; </s>
					<s id="N1FA26"><!-- NEW -->tunc <lb/>quoque e&longs;t re&longs;i&longs;tentia &longs;ine ce&longs;&longs;ione, &longs;eu tota re&longs;i&longs;tentia, cum ip&longs;um cor&shy;<lb/>pus re&longs;i&longs;tens nullo modo cedit; </s>
					<s id="N1FA2E"><!-- NEW -->id e&longs;t nullo modo mouetur ab ictu; </s>
					<s id="N1FA32"><!-- NEW -->neque <lb/>enim excogitari pote&longs;t maior re&longs;i&longs;tentia; </s>
					<s id="N1FA38"><!-- NEW -->denique tunc e&longs;t &aelig;qualis ce&longs;&shy;<lb/>&longs;io re&longs;i&longs;tenti&aelig;, cum ip&longs;um corpus, in quod aliud impingitur &lpar;vocetur re&shy;<lb/>flectens&rpar; tant&ugrave;m cedit quantum re&longs;i&longs;tit; </s>
					<s id="N1FA40"><!-- NEW -->cedit autem per motum; </s>
					<s id="N1FA44"><!-- NEW -->igitur <lb/>&longs;i reflectenti imprimitur &aelig;qualis motus ab impacto reflectens &aelig;qualiter <lb/>cedit, &amp; re&longs;i&longs;tit, &longs;i minor min&ugrave;s cedit, &amp; pl&ugrave;s re&longs;i&longs;tit, &longs;i nullus nullo mo&shy;<lb/>do cedit, &longs;ed tant&ugrave;m re&longs;i&longs;tit; &longs;i maior pl&ugrave;s cedit, &amp; min&ugrave;s re&longs;i&longs;tit, &longs;cili&shy;<lb/>cet in infinitum, donec tandem in vacuo &longs;it tantum ce&longs;&longs;io, nulla re&longs;i&shy;<lb/>&longs;tentia. </s>
				</p>
				<p id="N1FA52" type="main">
					<s id="N1FA54"><!-- NEW -->Terti&ograve;, tunc impactum motum &aelig;qualem imprimit reflectenti, cum <lb/>impactum &aelig;quale e&longs;t reflectenti, t&ugrave;m mole, t&ugrave;m pondere v.g. <!-- REMOVE S-->globus A <lb/>impactus in globum B eiu&longs;dem materi&aelig;, &amp; diametri, modo nullus fiat <lb/>attritus partium, &longs;eu compre&longs;&longs;io, &longs;itque linea directionis connectens <lb/>centra per punctum contactus, quod in primo libro iam demon&longs;tratum <lb/>e&longs;t; </s>
					<s id="N1FA64"><!-- NEW -->cum enim totus impetus globi A agat, &amp; quantum pote&longs;t; </s>
					<s id="N1FA68"><!-- NEW -->cert&egrave; pro&shy;<lb/>ducit &aelig;qualem; </s>
					<s id="N1FA6E"><!-- NEW -->nec enim aliunde determinari pote&longs;t &aelig;qualitas effectus <lb/>qu&agrave;m ab &aelig;qualitate cau&longs;&aelig; po&longs;itis ii&longs;dem circum&longs;tantiis, &amp; cum impetus <lb/>in B impre&longs;&longs;us di&longs;tribuatur tot partibus quot producens &aelig;qualis in A, <lb/>vterque impetus e&longs;t &aelig;qu&egrave; inten&longs;us; </s>
					<s id="N1FA78"><!-- NEW -->igitur &aelig;qu&egrave; velox motus per &longs;e; </s>
					<s id="N1FA7C"><!-- NEW -->cum <lb/>per accidens aliquando &longs;ecus accidat; </s>
					<s id="N1FA82"><!-- NEW -->&longs;i ver&ograve; reflectens &longs;it minor, idem <lb/>impetus paucioribus partibus di&longs;tribuitur; </s>
					<s id="N1FA88"><!-- NEW -->igitur inten&longs;ior e&longs;t; </s>
					<s id="N1FA8C"><!-- NEW -->igitur <lb/>velocior motus, &longs;ecus ver&ograve; cum maior e&longs;t, donec tandem tanta &longs;it moles, <lb/>vt plura &longs;int puncta in reflectente, qu&agrave;m &longs;int in impacto puncta impe&shy;<lb/>tus; tunc enim nullus imprimitur impetus, vt con&longs;tat ex dictis lib.  1. <!-- KEEP S--></s>
				</p>
				<p id="N1FA97" type="main">
					<s id="N1FA99"><!-- NEW -->Quart&ograve;, quod autem &longs;it &aelig;qualis re&longs;i&longs;tentia, &amp; ce&longs;&longs;io globi B &aelig;qualis <lb/>globo A etiam certum e&longs;t; </s>
					<s id="N1FA9F"><!-- NEW -->t&ugrave;m quia, &longs;i &aelig;qualiter mouetur, &aelig;qualiter ce&shy;<lb/>dit, vt iam dixi &longs;i &aelig;qualiter cedit, &aelig;qualiter re&longs;i&longs;tit; </s>
					<s id="N1FAA5"><!-- NEW -->nam qu&acirc; proportio&shy;<lb/>ne min&ugrave;s cedit, pl&ugrave;s re&longs;i&longs;tit; </s>
					<s id="N1FAAB"><!-- NEW -->igitur qua proportione ce&longs;&longs;io augetur, re&longs;i&shy;<lb/>&longs;tentia imminuitur: pr&aelig;terea cum re&longs;i&longs;tat per &longs;uam entitatem impene&shy;<lb/>trabilem, duram &amp;c. </s>
					<s id="N1FAB3"><!-- NEW -->cert&egrave; &longs;i e&longs;t &aelig;qualis entitas, e&longs;t &aelig;qualis re&longs;i&longs;tentia; </s>
					<s id="N1FAB7"><!-- NEW --><lb/>quod etiam videmus in corporibus immer&longs;is eiu&longs;dem grauitatis cum <lb/>medio, ita vt tot &longs;int partes impellentes, quot impul&longs;&aelig;; </s>
					<s id="N1FABE"><!-- NEW -->denique illud <lb/>experimentum quo videmus globum A impactum in B &aelig;qualem per li&shy;<lb/>neam connectentem centra immobilem &longs;i&longs;tere, rem i&longs;tam euincit; </s>
					<s id="N1FAC6"><!-- NEW -->nam <lb/>ideo &longs;i&longs;tit, quia e&longs;t &aelig;qualis determinatio noua priori; </s>
					<s id="N1FACC"><!-- NEW -->nam vt &longs;e habet <lb/>re&longs;i&longs;tentia reflectentis, ita &longs;e habet noua determinatio, quam &longs;uo modo <lb/>confert impacto, vt &longs;upr&agrave; demon&longs;tratum e&longs;t: </s>
					<s id="N1FAD4"><!-- NEW -->&amp; c&ugrave;m &longs;int ad lineas op&shy;<lb/>po&longs;itas ex diametro h&aelig; du&aelig; determinationes, neutra pr&aelig;ualere pote&longs;t; <lb/>igitur nece&longs;&longs;e e&longs;t &longs;i&longs;tere globum impactum. </s>
				</p>
				<p id="N1FADC" type="main">
					<s id="N1FADE"><!-- NEW -->Quint&ograve;, certum e&longs;t determinationem nouam e&longs;&longs;e iuxta proportionem <lb/>re&longs;i&longs;tenti&aelig;, &amp; hanc iuxta proportionem minoris ce&longs;&longs;ionis; </s>
					<s id="N1FAE4"><!-- NEW -->vnde cum <lb/>nulla e&longs;t re&longs;i&longs;tentia, &longs;ed tant&ugrave;m ce&longs;sio, nulla pror&longs;us e&longs;t noua determina&shy;<lb/>tio igitur &agrave; termino nullius re&longs;i&longs;tenti&aelig;, &amp; totius ce&longs;sionis ad terminum <pb pagenum="248" xlink:href="026/01/280.jpg"/>&aelig;qualis ce&longs;&longs;ionis, &amp; re&longs;i&longs;tenti&aelig;, acquiritur tant&ugrave;m noua determinatio <lb/>&aelig;qualis priori: </s>
					<s id="N1FAF3"><!-- NEW -->&longs;imiliter &agrave; termino nullius ce&longs;&longs;ionis, &amp; totius re&longs;i&longs;tenti&aelig; <lb/>ad terminum &aelig;qualis re&longs;i&longs;tenti&aelig;, &amp; ce&longs;&longs;ionis, acquiritur tant&ugrave;m &aelig;qualis <lb/>ce&longs;&longs;io; </s>
					<s id="N1FAFB"><!-- NEW -->&longs;ed qua proportione cre&longs;cit ce&longs;&longs;io, imminuitur re&longs;i&longs;tentia, &amp; vi&shy;<lb/>ci&longs;sim; </s>
					<s id="N1FB01"><!-- NEW -->igitur cum &aelig;qualis ce&longs;sio, &amp; re&longs;i&longs;tentia &longs;int in communi medio; </s>
					<s id="N1FB05"><!-- NEW --><lb/>tant&ugrave;m enim e&longs;t ab &aelig;quali re&longs;i&longs;tentia &amp; &aelig;quali ce&longs;sione ad totam ce&longs;&shy;<lb/>&longs;ionem, &amp; nullam re&longs;i&longs;tentiam, quant&ugrave;m e&longs;t ab &aelig;quali re&longs;i&longs;tentia &amp; ce&longs;&shy;<lb/>&longs;ione &aelig;quali ad totam re&longs;i&longs;tentiam, &amp; nullam ce&longs;sionem; </s>
					<s id="N1FB0E"><!-- NEW -->&amp; cum &agrave; nulla <lb/>re&longs;i&longs;tentia ad &aelig;qualem acquiritur noua determinatio &aelig;qualis priori; </s>
					<s id="N1FB14"><!-- NEW -->cer&shy;<lb/>t&egrave; ab &aelig;quali ad totam acquiretur <expan abbr="tant&utilde;dem">tantundem</expan> determinationis nou&aelig;; igi&shy;<lb/>tur tunc erit dupla prioris, quod erat demon&longs;trandum. </s>
				</p>
				<p id="N1FB20" type="main">
					<s id="N1FB22"><!-- NEW -->Sext&ograve;, pr&aelig;terea globus A impactus &longs;ine acce&longs;sione noui impetus non <lb/>pote&longs;t veloci&ugrave;s moueri, qu&agrave;m ant&egrave; moueretur; </s>
					<s id="N1FB28"><!-- NEW -->&longs;ed per reflexionem non <lb/>acquirit maiorem impetum, vt con&longs;tat; </s>
					<s id="N1FB2E"><!-- NEW -->igitur veloci&ugrave;s, qu&agrave;m ant&egrave; non <lb/>mouetur; </s>
					<s id="N1FB34"><!-- NEW -->igitur &longs;i con&longs;ideretur globus A impactus; </s>
					<s id="N1FB38"><!-- NEW -->&longs;i e&longs;t &aelig;qualis re&longs;i&shy;<lb/>&longs;tentia, nullo modo mouetur; </s>
					<s id="N1FB3E"><!-- NEW -->&longs;i e&longs;t maior re&longs;i&longs;tentia, &longs;ed non tota; </s>
					<s id="N1FB42"><!-- NEW -->mo&shy;<lb/>uetur quidem motu reflexo; </s>
					<s id="N1FB48"><!-- NEW -->&longs;ed in&aelig;quali priori, &longs;i adhuc maior moue&shy;<lb/>tur etiam, &longs;ed velociore motu, donec tandem in tota re&longs;i&longs;tentia toto <lb/>priore motu moueatur per &longs;e, vt dicemus paul&ograve; p&ograve;&longs;t; </s>
					<s id="N1FB50"><!-- NEW -->&longs;i ver&ograve; &longs;it minor <lb/>re&longs;i&longs;tentia ce&longs;sione, mouetur quidem per eandem lineam, &longs;ed tardiore <lb/>motu, &longs;i adhuc minor mouetur quoque, &longs;ed velociore motu, donec tan&shy;<lb/>dem in nulla re&longs;i&longs;tentia &longs;it totus prior motus; </s>
					<s id="N1FB5A"><!-- NEW -->&longs;i ver&ograve; con&longs;ideretur glo&shy;<lb/>bus reflectens, &longs;i e&longs;t &aelig;qualis re&longs;i&longs;tentia mouetur &aelig;quali motu; &longs;i maior <lb/>minore; &longs;i tota nullo; </s>
					<s id="N1FB62"><!-- NEW -->&longs;i vero &longs;it minor re&longs;i&longs;tentia mouetur motu velo&shy;<lb/>ciore, atque ita deinceps; &longs;i nulla qua&longs;i infinito: </s>
					<s id="N1FB68"><!-- NEW -->dico qua&longs;i, quia &longs;i va&shy;<lb/>cuum moueri po&longs;&longs;et per impo&longs;sibile, cert&egrave; cum non re&longs;i&longs;tat, infinit&egrave; ce&shy;<lb/>deret; igitur infinito motu qua&longs;i moueretur. </s>
				</p>
				<p id="N1FB70" type="main">
					<s id="N1FB72"><!-- NEW -->Septim&ograve;, vnde vides ab illo communi medio ver&longs;us vtrumque extre&shy;<lb/>mum cre&longs;cere &longs;emper motum globi impacti; </s>
					<s id="N1FB78"><!-- NEW -->donec tandem in vtroque <lb/>extremo &aelig;quali motu moueatur, quo iam pri&ugrave;s mouebatur in linea inci&shy;<lb/>denti&aelig;; </s>
					<s id="N1FB80"><!-- NEW -->at ver&ograve; globi reflectentis ver&longs;us extremum nullius ce&longs;sionis im&shy;<lb/>minui motum, donec tandem in illo extremo nullus &longs;it; </s>
					<s id="N1FB86"><!-- NEW -->cre&longs;cere vero <lb/>ver&longs;us aliud extremum, donec tandem in illo infinitus &longs;it, eo modo, quo <lb/>diximus, id e&longs;t infinita ce&longs;sio, quam accipio ad in&longs;tar motus infinit&aelig; ve&shy;<lb/>locitatis; quemadmodum accipi pote&longs;t nulla ce&longs;sio, &longs;eu tota re&longs;i&longs;tentia <lb/>ad in&longs;tar motus infinit&aelig; tarditatis. </s>
				</p>
				<p id="N1FB92" type="main">
					<s id="N1FB94"><!-- NEW -->Octau&ograve;, globus impactus imprimit &longs;emper &aelig;qualem impetum refle&shy;<lb/>ctenti, qui pro diuer&longs;a huius mole diuer&longs;um modum pr&aelig;&longs;tat; </s>
					<s id="N1FB9A"><!-- NEW -->&longs;i refle&shy;<lb/>ctens &aelig;qualis e&longs;t &aelig;qualem, &longs;i maior minorem, &longs;i minor maiorem; </s>
					<s id="N1FBA0"><!-- NEW -->quippe <lb/>idem impetus in paucioribus partibus facit maiorem motum, in totidem <lb/>&aelig;qualem, in pluribus minorem, donec tandem &longs;i plures &longs;int partes &longs;ub&shy;<lb/>jecti qu&agrave;m partes impetus, nullus &longs;it motus; igitur nullus impetus, vt <lb/>con&longs;tat ex his, qu&aelig; diximus lib.1. <!-- KEEP S--></s>
				</p>
				<p id="N1FBAD" type="main">
					<s id="N1FBAF"><!-- NEW -->Non&ograve;, hinc motus reflexus in perpendiculari minor e&longs;t ea parte mo&shy;<lb/>tus, qu&aelig; reflectenti imprimitur; </s>
					<s id="N1FBB5"><!-- NEW -->vel enim imprimitur motus &aelig;qualis, <pb pagenum="249" xlink:href="026/01/281.jpg"/>vel in&aelig;qualis, &longs;i &aelig;qualis, cert&egrave; toto motu multatur globus impactus; </s>
					<s id="N1FBBE"><!-- NEW -->&longs;i <lb/>in&aelig;qualis, vel minor, vel maior; </s>
					<s id="N1FBC4"><!-- NEW -->&longs;i minor, cert&egrave; e&longs;t aliquis motus refle&shy;<lb/>xus &aelig;qualis priori min&ugrave;s ea parte, qu&aelig; reflectenti imprimitur, donec <lb/>tandem nullus imprimatur motus; </s>
					<s id="N1FBCC"><!-- NEW -->tunc enim reflexus e&longs;t priori &aelig;qua&shy;<lb/>lis; &longs;i ver&ograve; maior imprimitur, fort&egrave; nullus e&longs;t reflexus po&longs;ito &longs;cilicet ra&shy;<lb/>dio incidenti&aelig; perpendiculari, minor tamen erit idem motus globi im&shy;<lb/>pacti vlteri&ugrave;s per eandem lineam propagati. </s>
					<s id="N1FBD6"><!-- NEW -->v.g.&longs;i &longs;it duplus detrahitur <lb/>priori motui 1/2, &longs;i triplus 1/3, &longs;i quadruplus 1/4, atque ita deinceps; &longs;i de&shy;<lb/>nique infinities velocior ex &longs;uppo&longs;itione impo&longs;sibili detrahitur aliquid, <lb/>quod habet ad priorem motum proportionem minoris in&aelig;qualitatis in&shy;<lb/>finitam. </s>
				</p>
				<p id="N1FBE2" type="main">
					<s id="N1FBE4"><!-- NEW -->Decim&ograve;, ex his rect&egrave; concludi pote&longs;t non produci infinita puncta im&shy;<lb/>petus, nec e&longs;&longs;e infinitas partes &longs;ubjecti actu; </s>
					<s id="N1FBEA"><!-- NEW -->alioqui punctum mouere&shy;<lb/>tur motu infinito, qui repugnat: </s>
					<s id="N1FBF0"><!-- NEW -->pr&aelig;terea nullum e&longs;&longs;et corpus quamtum&shy;<lb/>nis magnum, cui modico ictu non imprimatur impetus, &longs;i impetus con&shy;<lb/>flat infinitis partibus; </s>
					<s id="N1FBF8"><!-- NEW -->quare in vtraque progre&longs;sione &longs;i&longs;tendum e&longs;t; <lb/>prim&ograve; in nulla ce&longs;sione &amp; tota re&longs;i&longs;tentia, cum &longs;cilicet plura &longs;unt pun&shy;<lb/>cta &longs;ubjecti, qu&agrave;m impetus. </s>
					<s id="N1FC00"><!-- NEW -->Secund&ograve; cum reflectens tant&ugrave;m con&longs;tat <lb/>vnico puncto, in quo &longs;cilicet impetus finitus impre&longs;&longs;us pr&aelig;&longs;tat veloci&longs;&shy;<lb/>&longs;imum motum quem pr&aelig;&longs;tare pote&longs;t; </s>
					<s id="N1FC08"><!-- NEW -->lic&egrave;t enim dato quocunque motu <lb/>po&longs;sit dari velocior, non tamen cum dato impetu finito determinato &longs;i&shy;<lb/>ne acce&longs;sione alterius; &longs;ed iam interruptam no&longs;trorum Theorematum &longs;e&shy;<lb/>riem pro&longs;equamur. </s>
				</p>
				<p id="N1FC12" type="main">
					<s id="N1FC14"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 41.<emph.end type="center"/></s>
				</p>
				<p id="N1FC20" type="main">
					<s id="N1FC22"><!-- NEW --><emph type="italics"/>Determinatio noua cuiu&longs;libet alterius anguli incidenti&aelig; obliqui, vel acuti, <lb/>e&longs;t ad priorem, vt duplum &longs;inus recti eiu&longs;dem anguli ad &longs;inum totum.<emph.end type="italics"/> v. <!-- REMOVE S-->g. <lb/> &longs;it radius incidenti&aelig; AD in <expan abbr="plan&utilde;">planum</expan> immobile BDF: </s>
					<s id="N1FC35"><!-- NEW -->dico nouam de&shy;<lb/>terminationem e&longs;&longs;e ad priorem, vt duplum AB, id e&longs;t BC ad DA. De&shy;<lb/>mon&longs;tro; </s>
					<s id="N1FC3D"><!-- NEW -->cum enim ictus per AD obliquam &longs;it ad ictum per AB per&shy;<lb/>pendicularem, vt AB ad AD, vt con&longs;tat ex dictis, t&ugrave;m &longs;upra, t&ugrave;m in lib. <lb/>de planis inclinatis; </s>
					<s id="N1FC45"><!-- NEW -->ictus enim habent eam proportionem, quam ha&shy;<lb/>bent grauitationes; </s>
					<s id="N1FC4B"><!-- NEW -->&longs;ed grauitatio in inclinatam AD e&longs;t ad grauitatio&shy;<lb/>nem in horizontalem DB, vt DB ad DA; </s>
					<s id="N1FC51"><!-- NEW -->igitur ictus inflictus plano <lb/>DB per inclinatam AD e&longs;t ad inflictum per ip&longs;am perpendicularem <lb/>GD vt PR &aelig;qualem AB ad DA; </s>
					<s id="N1FC59"><!-- NEW -->nam ictus in planum AD per GD <lb/>idem e&longs;t cum ictu in DB per AD: </s>
					<s id="N1FC5F"><!-- NEW -->&longs;imiliter &longs;it incidens KD, &longs;itque an&shy;<lb/>gulus IDR &aelig;qualis KDG, ictus in ID per GD e&longs;t &aelig;qualis ictui in <lb/>DR per KD; </s>
					<s id="N1FC67"><!-- NEW -->&longs;unt enim GDI, KDR &aelig;quales; </s>
					<s id="N1FC6B"><!-- NEW -->&longs;ed ictus in ID e&longs;t, vt <lb/>grauitatio in eandem ID; </s>
					<s id="N1FC71"><!-- NEW -->h&aelig;c autem in inclinatam DI, ad aliam in <lb/>horizontalem DR vt DR ad DI; </s>
					<s id="N1FC77"><!-- NEW -->igitur ictus in DI per GD e&longs;t ad <lb/>ictum in DR per GD, vt DR vel LI ad ID; </s>
					<s id="N1FC7D"><!-- NEW -->&longs;ed K <foreign lang="greek">b</foreign> e&longs;t &aelig;qualis IL; </s>
					<s id="N1FC85"><!-- NEW --><lb/>nam arcus KG &amp; IR &longs;unt &aelig;quales; </s>
					<s id="N1FC8A"><!-- NEW -->igitur ictus per GD in DR e&longs;t ad <lb/>ictum in DR per KD e&longs;t vt DK ad K <foreign lang="greek">b</foreign>; &longs;ed impedimentum e&longs;t vt ictus. </s>
					<s id="N1FC94"><!-- NEW --><lb/>re&longs;i&longs;tentia vt impedimentum, determinatio noua, vt re&longs;i&longs;tentia; </s>
					<s id="N1FC99"><!-- NEW -->igitur <pb pagenum="250" xlink:href="026/01/282.jpg"/>determinatio noua in linea incidenti&aelig; GD e&longs;t ad nouam in linea inci&shy;<lb/>denti&aelig; KD, vt GD vel KD ad K <foreign lang="greek">b</foreign>, &amp; in linea incidenti&aelig; AD vt AD <lb/>ad AB; </s>
					<s id="N1FCAA"><!-- NEW -->igitur vt &longs;inus totus ad &longs;inum rectum dati anguli incidenti&aelig;; </s>
					<s id="N1FCAE"><!-- NEW -->&longs;ed <lb/>in linea incidenti&aelig; perpendiculari GD, determinatio noua e&longs;t ad pri o&shy;<lb/>rem in ratione dupla; </s>
					<s id="N1FCB6"><!-- NEW -->igitur vt G <foreign lang="greek">d</foreign> ad GD; </s>
					<s id="N1FCBE"><!-- NEW -->ergo noua per KD e&longs;t <lb/>ad nouam per DG, vt K <foreign lang="greek">q</foreign>, ad G <foreign lang="greek">d</foreign>; </s>
					<s id="N1FCCC"><!-- NEW -->nam vt e&longs;t K <foreign lang="greek">b</foreign> ad GD ita K <foreign lang="greek">q</foreign> ad <lb/>G <foreign lang="greek">d</foreign>; </s>
					<s id="N1FCDE"><!-- NEW -->ergo noua per KD e&longs;t ad priorem vt K <foreign lang="greek">q</foreign> ad KD, &amp; noua per <lb/>AD, vt AC ad AD, atque ita deinceps; ergo determinatio noua per <lb/>lineam incidenti&aelig; obliquam e&longs;t ad priorem, vt duplum &longs;inus recti an&shy;<lb/>guli incidenti&aelig; ad &longs;inum totum, quod erat demon&longs;trandum. </s>
				</p>
				<p id="N1FCEC" type="main">
					<s id="N1FCEE"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 42.<emph.end type="center"/></s>
				</p>
				<p id="N1FCFA" type="main">
					<s id="N1FCFC"><!-- NEW --><emph type="italics"/>Hinc in ip&longs;o angulo<emph.end type="italics"/> 60. <emph type="italics"/>determinatio noua e&longs;t &aelig;qualis priori, id e&longs;t in an&shy;<lb/>gulo incidenti&aelig;<emph.end type="italics"/> 30. &longs;it enim pr&aelig;dictus angulus IDR; </s>
					<s id="N1FD0D"><!-- NEW -->cert&egrave; RI e&longs;t &longs;ubdu&shy;<lb/>pla ID, vt con&longs;tat; </s>
					<s id="N1FD13"><!-- NEW -->&longs;ed determinatio noua per ID e&longs;t ad priorem, vt <lb/>dupla IR ad ID; ergo vt &aelig;qualis ad &aelig;qualem. </s>
				</p>
				<p id="N1FD19" type="main">
					<s id="N1FD1B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 43.<emph.end type="center"/></s>
				</p>
				<p id="N1FD27" type="main">
					<s id="N1FD29"><emph type="italics"/>Hinc &longs;upra angulum<emph.end type="italics"/> 30.<emph type="italics"/>v&longs;que ad<emph.end type="italics"/> 90. <emph type="italics"/>noua determinatio e&longs;t maior priore,<emph.end type="italics"/><lb/>donec tandem in ip&longs;a GD vel in ip&longs;o angulo GDR 90. &longs;it dupla prio&shy;<lb/>ris, infr&agrave; ver&ograve; angulum 30. e&longs;t minor priore, donec tandem in ip&longs;a &longs;e&shy;<lb/>ctione plani FDB nulla &longs;it noua. </s>
				</p>
				<p id="N1FD42" type="main">
					<s id="N1FD44"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 44.<emph.end type="center"/></s>
				</p>
				<p id="N1FD50" type="main">
					<s id="N1FD52"><!-- NEW --><emph type="italics"/>Ex his demonstratur acurati&longs;&longs;im&egrave; &aelig;qualitas anguli reflexionis cum &longs;uo an&shy;<lb/>gulo incidenti&aelig;<emph.end type="italics"/>; </s>
					<s id="N1FD5D"><!-- NEW -->&longs;it enim linea incidenti&aelig; KD v. <!-- REMOVE S-->g. <!-- REMOVE S-->determinatio noua <lb/>per DG e&longs;t ad priorem per DQ, vt K <foreign lang="greek">q</foreign> vel XQ &aelig;qualis ad DQ; igi&shy;<lb/>tur vt DZ &aelig;qualis QX ad DX; </s>
					<s id="N1FD71"><!-- NEW -->&longs;ed quotie&longs;cumque &longs;unt du&aelig; determi&shy;<lb/>nationes, fit mixta per diagonalem Parallelo grammatis; </s>
					<s id="N1FD77"><!-- NEW -->&longs;ed QZ e&longs;t pa&shy;<lb/>rallelogramma, &amp; DX diagonalis; </s>
					<s id="N1FD7D"><!-- NEW -->igitur determinatio mixta ex vtra&shy;<lb/>que e&longs;t per DX; </s>
					<s id="N1FD83"><!-- NEW -->&longs;ed angulus XDG e&longs;t &aelig;qualis KDG, vt patet, nam <lb/>XDG e&longs;t &aelig;qualis DXQ, &amp; hic DQX, &amp; hic QD <foreign lang="greek">d</foreign>, &amp; hic QDK; </s>
					<s id="N1FD8D"><!-- NEW --><lb/>igitur KDR, qui e&longs;t angulus incidenti&aelig; e&longs;t &aelig;qualis angulo XDF, qui <lb/>e&longs;t angulus reflexionis: idem dico de omni alio. </s>
				</p>
				<p id="N1FD94" type="main">
					<s id="N1FD96">Ob&longs;erua&longs;ti iam ni fallor prim&ograve; determinationes nouas e&longs;&longs;e vt chor&shy;<lb/>das arcus &longs;ubdupli incidenti&aelig;. </s>
					<s id="N1FD9B">Secund&ograve; planum reflectens qua&longs;i repelle&shy;<lb/>re omnes ictus per DG, id e&longs;t per lineam, qu&aelig; &agrave; puncto contactus duci&shy;<lb/>tur per centrum grauitatis, vt demon&longs;tratum e&longs;t lib.1. Th.120.121. </s>
				</p>
				<p id="N1FDA2" type="main">
					<s id="N1FDA4"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 45.<emph.end type="center"/></s>
				</p>
				<p id="N1FDB0" type="main">
					<s id="N1FDB2"><!-- NEW --><emph type="italics"/>Nullus impetus de&longs;truitur per &longs;e in pura reflexione<emph.end type="italics"/>; </s>
					<s id="N1FDBB"><!-- NEW -->nam per accidens vt <lb/>plurim&ugrave;m de&longs;truitur, vt dicemus infr&agrave;: </s>
					<s id="N1FDC1"><!-- NEW -->dixi in pura reflexione; </s>
					<s id="N1FDC5"><!-- NEW -->quia cum <lb/>fit aliqua compre&longs;&longs;io, vel repellitur corpus impactus ni&longs;u po&longs;itiuo, etiam <lb/>de&longs;truitur impetus; </s>
					<s id="N1FDCD"><!-- NEW -->demon&longs;tratur Th. quia nihil impetus e&longs;t fru&longs;tr&agrave;; </s>
					<s id="N1FDD1"><!-- NEW --><lb/>igitur nihil de&longs;truitur: </s>
					<s id="N1FDD6"><!-- NEW -->con&longs;equentia patet ex dictis; probatur antece&shy;<lb/>dens, quia linea determinationis mixt&aelig; e&longs;t &longs;emper &aelig;qualis line&aelig; prioris <lb/>determinationis, &longs;i remoto obice fui&longs;&longs;et propagata. </s>
					<s id="N1FDDE"><!-- NEW -->v.g. <!-- REMOVE S-->&longs;it linea inciden-<pb pagenum="251" xlink:href="026/01/283.jpg"/>ti&aelig; AD, qu&aelig; vlteri&ugrave;s producta &longs;ine reflexione &longs;it, vt DE; </s>
					<s id="N1FDE9"><!-- NEW -->cert&egrave; deter&shy;<lb/>minatio, &longs;eu motus e&longs;t vt DE, vt patet: </s>
					<s id="N1FDEF"><!-- NEW -->iam reflectatur in D &agrave; plano <lb/>BF; </s>
					<s id="N1FDF5"><!-- NEW -->noua determinatio per DG e&longs;t ad priorem, vt DT &aelig;qualis HE ad <lb/>DE; </s>
					<s id="N1FDFB"><!-- NEW -->igitur determinatio mixta per DH e&longs;t vt DH, &longs;ed DH e&longs;t &aelig;qua&shy;<lb/>lis DE; </s>
					<s id="N1FE01"><!-- NEW -->igitur determinatio mixta e&longs;t &aelig;qualis priori; </s>
					<s id="N1FE05"><!-- NEW -->igitur nihil im&shy;<lb/>petus e&longs;t fru&longs;tr&agrave;; </s>
					<s id="N1FE0B"><!-- NEW -->igitur nihil illius de&longs;truitur, quod erat demon&longs;trandum: </s>
					<s id="N1FE0F"><!-- NEW --><lb/>Idem demon&longs;trari pote&longs;t in quacunque line&acirc;; in perpendiculo ver&ograve; <lb/>GD; </s>
					<s id="N1FE16"><!-- NEW -->c&ugrave;m noua per DG &longs;it dupla prioris per D <foreign lang="greek">d</foreign>, id e&longs;t, vt DY &aelig;qua&shy;<lb/>lis GD, ad DA; cert&egrave; mixta erit DG &aelig;qualis DA. <!-- KEEP S--></s>
				</p>
				<p id="N1FE21" type="main">
					<s id="N1FE23"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 46.<emph.end type="center"/></s>
				</p>
				<p id="N1FE2F" type="main">
					<s id="N1FE31"><!-- NEW --><emph type="italics"/>Hinc omnes line&aelig; reflex&aelig; per &longs;e &longs;unt &aelig;quales,<emph.end type="italics"/> quia &longs;unt &longs;emidiametri eiu&longs;&shy;<lb/>dem circuli; </s>
					<s id="N1FE3C"><!-- NEW -->dico per &longs;e; </s>
					<s id="N1FE40"><!-- NEW -->nam per accidens &longs;ec&ugrave;s accidit; </s>
					<s id="N1FE44"><!-- NEW -->hinc mal&egrave; di&shy;<lb/>citur reflexam perpendicularem e&longs;&longs;e omnium reflexarum breui&longs;&longs;imam <lb/>per &longs;e; quod lic&egrave;t ita e&longs;&longs;e videatur, illud reuer&acirc; e&longs;t per accidens. </s>
				</p>
				<p id="N1FE4C" type="main">
					<s id="N1FE4E">Obiiceret fort&egrave; aliquis <expan abbr="pil&atilde;">pilam</expan> reflexam nunquam ad eam a&longs;cendere <expan abbr="&longs;ubli-mitat&etilde;">&longs;ubli&shy;<lb/>mitatem</expan> ex qua pri&ugrave;s demi&longs;&longs;a fuerat. </s>
					<s id="N1FE5B"><!-- NEW -->Re&longs;p. hoc <expan abbr="veri&longs;&longs;im&utilde;">veri&longs;&longs;imum</expan> e&longs;&longs;e &longs;ed per acci&shy;<lb/>dens hoc ita fieri certum e&longs;t propter diui&longs;ionem, attritum, compre&longs;&longs;io&shy;<lb/>nem, ce&longs;&longs;ionemque partium; </s>
					<s id="N1FE67"><!-- NEW -->vnde pila e&ograve; alti&ugrave;s a&longs;cendit, qu&ograve; durior, &amp; <lb/>leuigatior e&longs;t illa materia, ex qua con&longs;tat, planumque ip&longs;um leuigatius, <lb/>durius &amp; ad libellam acuratius ita compo&longs;itum, vt &longs;it omnin&ograve; horizonti <lb/>parallelum: </s>
					<s id="N1FE71"><!-- NEW -->adde quod planum debet e&longs;&longs;e pror&longs;us immobile; &longs;i enim mo&shy;<lb/>bile &longs;it, multus impetus de&longs;truitur. </s>
				</p>
				<p id="N1FE77" type="main">
					<s id="N1FE79"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 47.<emph.end type="center"/></s>
				</p>
				<p id="N1FE85" type="main">
					<s id="N1FE87"><!-- NEW --><emph type="italics"/>Hinc lic&egrave;t non po&longs;&longs;it e&longs;&longs;e motus mixtus ex duplici impetu ad diuer&longs;as lineas <lb/>determinato, ni&longs;i aliquid impetus destruatur, vt constat ex dictis; </s>
					<s id="N1FE8F"><!-- NEW -->pote&longs;t ta&shy;<lb/>men e&longs;&longs;e linea motus qua&longs;i mixta ex duabus cum eodem &longs;cilicet impetu lic&egrave;t <lb/>nihil impetus destruatur; e&longs;t enim maximum di&longs;crimen vtriu&longs;que, vt <lb/>patet.<emph.end type="italics"/></s>
				</p>
				<p id="N1FE9B" type="main">
					<s id="N1FE9D"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 48.<emph.end type="center"/></s>
				</p>
				<p id="N1FEA9" type="main">
					<s id="N1FEAB"><!-- NEW --><emph type="italics"/>Ideo perpendicularis reflexa e&longs;t reflexarum minima, non quidem per &longs;e, <lb/>&longs;ed per accidens<emph.end type="italics"/>; </s>
					<s id="N1FEB6"><!-- NEW -->quia cum perpendicularis maximum ictum infligat, fit <lb/>maior compre&longs;&longs;io partium, attritus, diui&longs;io; ex quibus nece&longs;&longs;ari&ograve; &longs;equi&shy;<lb/>tur pl&ugrave;s impetus de&longs;trui. </s>
				</p>
				<p id="N1FEBE" type="main">
					<s id="N1FEC0"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 49.<emph.end type="center"/></s>
				</p>
				<p id="N1FECC" type="main">
					<s id="N1FECE"><!-- NEW --><emph type="italics"/>Motus reflexus non e&longs;t mixtus ex motu plani pellentis &amp; alio<emph.end type="italics"/>; </s>
					<s id="N1FED7"><!-- NEW -->quia reue&shy;<lb/>r&agrave; planum nullum imprimit impetum, quod etiam ex dictis nece&longs;&longs;ari&ograve; <lb/>&longs;equitur; </s>
					<s id="N1FEDF"><!-- NEW -->&longs;ed e&longs;t veluti occa&longs;io, ex qua re&longs;ultat noua determinatio mix&shy;<lb/>ta, ratione &longs;cilicet impedimenti, eo modo, quo diximus; &longs;i enim pla&shy;<lb/>num ip&longs;um nouum impetum imprimeret mobili, non e&longs;&longs;et pura reflexio. </s>
					<s id="N1FEE7"><lb/>de qua modo agimus, &longs;ed alia, de qua infr&agrave;. </s>
				</p>
				<p id="N1FEEB" type="main">
					<s id="N1FEED"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 50.<emph.end type="center"/></s>
				</p>
				<p id="N1FEF9" type="main">
					<s id="N1FEFB"><!-- NEW --><emph type="italics"/>Non datur quies vlla in puncto reflexionis<emph.end type="italics"/>; </s>
					<s id="N1FF04"><!-- NEW -->appello puram reflexionem, <pb pagenum="252" xlink:href="026/01/284.jpg"/>in qua nullus &longs;it attritus nec <expan abbr="c&otilde;pre&longs;&longs;io">compre&longs;&longs;io</expan>, vel in mobili impacto, vel in pla&shy;<lb/>no reflectente; prob. </s>
					<s id="N1FF13"><!-- NEW -->quia mobile vno tant&ugrave;m in&longs;tanti tangit <expan abbr="plan&utilde;">planum</expan>; </s>
					<s id="N1FF1B"><!-- NEW -->igitur <lb/>nullo in&longs;tanti quie&longs;cit; </s>
					<s id="N1FF21"><!-- NEW -->antecedens certum e&longs;t, quia eo in&longs;tanti, quo prim&ograve; <lb/>tangit, habet <expan abbr="impet&utilde;">impetum</expan>; </s>
					<s id="N1FF2B"><!-- NEW -->nec enim de&longs;truitur totus per Th.38.igitur in&longs;tanti <lb/>&longs;equenti habebit &longs;uum effectum, ergo motum; </s>
					<s id="N1FF31"><!-- NEW -->ergo vno tant&ugrave;m in&longs;tanti <lb/>tangit; </s>
					<s id="N1FF37"><!-- NEW -->nec dicas impetum illum impediri; </s>
					<s id="N1FF3B"><!-- NEW -->nam ideo impediretur motus <lb/>pro &longs;equenti in&longs;tanti, quia tangitur planum primo in&longs;tanti; </s>
					<s id="N1FF41"><!-- NEW -->igitur &longs;imi&shy;<lb/>liter, non moueretur tertio in&longs;tanti, quia priori, id e&longs;t &longs;ecundo planum <lb/>tangeretur; idem dico de quarto, quinto &amp;c. </s>
					<s id="N1FF49"><!-- NEW -->ergo mobile omnin&ograve; quie&shy;<lb/>&longs;ceret, nec reflecteretur, quod e&longs;t contra Th.1.igitur vno tant&ugrave;m in&longs;tanti <lb/>tangit mobile planum, quod erat antecedens propo&longs;itum: Iam ver&ograve; pro&shy;<lb/>batur con&longs;equentia; </s>
					<s id="N1FF53"><!-- NEW -->&longs;i quie&longs;cit in puncto reflexionis mobile; </s>
					<s id="N1FF57"><!-- NEW -->igitur eo <lb/>in&longs;tanti, quo tangit illud punctum; </s>
					<s id="N1FF5D"><!-- NEW -->&longs;ed eo in&longs;tanti non quie&longs;cit, quo reue&shy;<lb/>r&acirc; mouetur; </s>
					<s id="N1FF63"><!-- NEW -->atqui eo in&longs;tanti quo tangit reuer&acirc; mouetur; quia moueri, e&longs;t <lb/>nouum locum prim&ograve; acquirere per def.1. l.1. </s>
				</p>
				<p id="N1FF69" type="main">
					<s id="N1FF6B">Obiicies, primo in&longs;tanti contactus mobile tangit planum quie&longs;cens, <lb/>ergo non mouetur. </s>
					<s id="N1FF70">Re&longs;pondeo negando <expan abbr="con&longs;e&qtilde;uens">con&longs;equens</expan>, nam reuer&acirc; pote&longs;t <lb/>mobile in plano immobili moueri. </s>
				</p>
				<p id="N1FF79" type="main">
					<s id="N1FF7B"><!-- NEW -->Obiicies &longs;ecund&ograve;, mobile in puncto non mouetur; igitur in puncto <lb/>reflexionis non mouetur. </s>
					<s id="N1FF81">Re&longs;pondeo prim&ograve; negando antecedens; qui <lb/>enim admittunt puncta phy&longs;ica, dicent acquiri po&longs;&longs;e motu punctum phy&shy;<lb/>&longs;icum &longs;patij. </s>
					<s id="N1FF88">Re&longs;pondeo &longs;ecund&ograve; eandem e&longs;&longs;e difficultatem pro motu &longs;e&shy;<lb/>quentis in&longs;tantis, quidquid &longs;it, &longs;iue dentur puncta &longs;iue non, cuius di&longs;cu&longs;&shy;<lb/>&longs;io pertinet ad Metaphy&longs;icam, ne.no negabit motum reuer&acirc; e&longs;&longs;e, cum pri&shy;<lb/>mo nouus locus acquiritur, in quo non e&longs;t difficultas. </s>
				</p>
				<p id="N1FF91" type="main">
					<s id="N1FF93"><!-- NEW -->Obiicies terti&ograve;, in puncto nulla e&longs;t &longs;ucce&longs;&longs;io; igitur neque motus. </s>
					<s id="N1FF97"><!-- NEW --><lb/>Re&longs;pondeo prim&ograve;, nulla e&longs;t &longs;ucce&longs;sio actu, concedo, potentia, nego; </s>
					<s id="N1FF9C"><!-- NEW -->Re&shy;<lb/>&longs;pondeo &longs;ecund&ograve;, concedo antecedens, di&longs;tinguo con&longs;equens; </s>
					<s id="N1FFA2"><!-- NEW -->nullus e&longs;t <lb/>motus &longs;ucce&longs;siuus, concedo; in&longs;tantaneus, nego. </s>
				</p>
				<p id="N1FFA8" type="main">
					<s id="N1FFAA">Obiicies quart&ograve;, nullus datur motus in&longs;tantaneus. </s>
					<s id="N1FFAD"><!-- NEW -->Re&longs;pondeo, nullus <lb/>datur in&longs;tantaneus actu nego, potenti&acirc; concedo; quia quocunque dato <lb/>motu pote&longs;t dari minor. </s>
				</p>
				<p id="N1FFB5" type="main">
					<s id="N1FFB7">Obiicies quint&ograve;, igitur motus in eo puncto non pote&longs;t e&longs;&longs;e tardior, &amp; <lb/>velocior. </s>
					<s id="N1FFBC">Re&longs;pondeo primo negando; nam vno motu in&longs;tantaneo actu <lb/>pote&longs;t dari velocior, vel tardior, qu&aelig; omnia facil&egrave; in Metaphy&longs;icis expli&shy;<lb/>cantur, &amp; demon&longs;trantur, ex quibus cert&egrave; res i&longs;ta phy&longs;ica minim&egrave; de&shy;<lb/>pendet. </s>
				</p>
				<p id="N1FFC5" type="main">
					<s id="N1FFC7">Obiicies &longs;ext&ograve;, authoritatem Ari&longs;totelis. <!-- KEEP S--></s>
					<s id="N1FFCB"><!-- NEW -->Re&longs;pondeo Ari&longs;totelem in&shy;<lb/>telligendum e&longs;&longs;e de corpore projecto &longs;ur&longs;um motu violento, quod ante&shy;<lb/>quam de&longs;cendat vno in&longs;tanti quie&longs;cit; quod etiam demon&longs;traui lib.  3.Im&shy;<lb/>m&ograve; plerique &longs;unt inter Peripateticos qui tenent in puncto reflexionis <lb/>non dari quietem, in hoc &longs;cilicet reflexionis genere, de quo h&icirc;c agimus, <lb/>qui fus&egrave; hanc qu&aelig;&longs;tionem di&longs;cutiunt, nos breuiore methodo v&longs;i rem <lb/>ip&longs;am, ni fallor ex no&longs;tris principiis demon&longs;trauimus. </s>
				</p>
				<pb pagenum="253" xlink:href="026/01/285.jpg"/>
				<p id="N1FFDF" type="main">
					<s id="N1FFE1"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N1FFED" type="main">
					<s id="N1FFEF">Ob&longs;erua prim&ograve;, &longs;i planum reflectens cedit, vel mobile ip&longs;um, rem <lb/>aliter e&longs;&longs;e explicandam. </s>
				</p>
				<p id="N1FFF4" type="main">
					<s id="N1FFF6"><!-- NEW -->Secund&ograve; tribus modis <expan abbr="plan&utilde;">planum</expan> cedere, prim&ograve; per <expan abbr="diui&longs;ion&etilde;">diui&longs;ionem</expan> partium &longs;i fran<lb/>gantur; 2&degree; per diui&longs;ionem &longs;ine fractione propri&egrave; &longs;umpta, &longs;ed <expan abbr="c&utilde;">cum</expan> ce&longs;sione. </s>
				</p>
				<p id="N20008" type="main">
					<s id="N2000A">Terti&ograve;, &longs;ine diui&longs;ione, &longs;ed non &longs;ine compre&longs;sione. </s>
				</p>
				<p id="N2000D" type="main">
					<s id="N2000F"><!-- NEW --><expan abbr="Ex&etilde;plum">Exemplum</expan> primi generis habes in charta, &longs;eu vitro, qu&aelig; <expan abbr="d&utilde;">dum</expan> reflectit fran&shy;<lb/>gitur: </s>
					<s id="N2001C"><!-- NEW --><expan abbr="exempl&utilde;">exemplum</expan> &longs;ecundi in cera molli, vel pingui terr&acirc;; </s>
					<s id="N20023"><!-- NEW -->tertii <expan abbr="deniq;">denique</expan> in <expan abbr="m&etilde;-brana">men&shy;<lb/>brana</expan> ten&longs;a, vel fune ten&longs;o: </s>
					<s id="N20031"><!-- NEW -->&longs;imiliter mobile ip&longs;um tribus modis cedere <lb/>pote&longs;t 1&degree; <expan abbr="c&utilde;">cum</expan> diui&longs;ione partium, &amp; fractione, &longs;ic <expan abbr="d&utilde;">dum</expan> <expan abbr="vitr&utilde;">vitrum</expan> &agrave; marmore refle&shy;<lb/>ctitur in mille partes abit.2&degree; &longs;ine fractione, &longs;ed non &longs;ine depre&longs;sione; &longs;ic <lb/>plumbum deprimitur in corpus durum impactum, aut cera mollis. </s>
					<s id="N20047">3&degree; &longs;ine <lb/>diui&longs;ione, &longs;ed <expan abbr="n&otilde;">non</expan> &longs;ine aliqua compre&longs;sione, &longs;ic ve&longs;icca inflata reflectitur. </s>
				</p>
				<p id="N20050" type="main">
					<s id="N20052">Itaque duo &longs;unt planorum genera. </s>
					<s id="N20055">Primum e&longs;t eorum, qu&aelig; non cedunt <lb/>pr&aelig; duritie. </s>
					<s id="N2005A"><!-- NEW -->Secundum eorum, qu&aelig; cedunt vel per fractionem, vel per de&shy;<lb/>pre&longs;sionem, vel per compre&longs;sionem: </s>
					<s id="N20060"><!-- NEW -->per fractionem dupliciter; </s>
					<s id="N20064"><!-- NEW -->prim&ograve; &longs;i <lb/>alterantur tant&ugrave;m aliqu&aelig; partes minutiores, vt fit in molliori lapide; </s>
					<s id="N2006A"><!-- NEW --><lb/>Secund&ograve; &longs;i per fractionem corpus diuidatur in partes notabiles, vt fit in <lb/>vitro, glacie; adde totidem genera mobilium. </s>
				</p>
				<p id="N20071" type="main">
					<s id="N20073"><!-- NEW -->Ob&longs;erua terti&ograve; e&longs;&longs;e tres alias combinationes; </s>
					<s id="N20077"><!-- NEW -->vel enim mobile reflecti&shy;<lb/>tur &agrave; mobili, &longs;ed non pellitur &agrave; plano, &amp; h&aelig;c e&longs;t pura reflexio; vel pellitur <lb/>&agrave; plano &longs;ine motu pr&aelig;uio, vel &longs;imul reflectitur, &amp; pellitur &agrave; plano, quod <lb/>&longs;imul mouetur. </s>
					<s id="N20081">Ob&longs;erua 4&degree; <expan abbr="c&utilde;">cum</expan> mouetur corpus reflectens &agrave; mobili im&shy;<lb/>pacto tres e&longs;&longs;e quoque <expan abbr="c&otilde;binationes">combinationes</expan>, vel enim cum mouetur corpus refle&shy;<lb/>ctens, reflectitur, &longs;eu retroagitur mobile impactum, vel <expan abbr="c&otilde;&longs;i&longs;tit">con&longs;i&longs;tit</expan>, &longs;eu quie&shy;<lb/>&longs;cit, vel non retroagitur, &longs;ed idem iter pro&longs;equitur. </s>
					<s id="N20096"><!-- NEW -->Ob&longs;erua 5&degree; <expan abbr="c&umacr;">cum</expan> &longs;int <lb/>quinque veluti &longs;tatus corporis reflectentis; </s>
					<s id="N200A0"><!-- NEW -->nam vel e&longs;t molle, vel pre&longs;si&shy;<lb/>bile, vel durum vel fragile, vel friabile, &amp; totidem &longs;tatus mobilis, e&longs;&longs;e 25. <lb/>combinationes, vt patet ex regula combinationum, in quo non e&longs;t diffi&shy;<lb/>cultas; igitur deinceps con&longs;iderabo reflexionem ratione poti&ugrave;s materi&aelig; <lb/>corporis, t&ugrave;m reflexi, t&ugrave;m reflectentis, &longs;it ergo. </s>
				</p>
				<p id="N200AC" type="main">
					<s id="N200AE"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 51.<emph.end type="center"/></s>
				</p>
				<p id="N200BA" type="main">
					<s id="N200BC"><!-- NEW --><emph type="italics"/>De&longs;truitur impetus in reflexione ex multis capitibus<emph.end type="italics"/>: prim&ograve;, ratione diuer&shy;<lb/>&longs;&aelig; determinationis, &longs;i talis e&longs;t vt aliquid impetus &longs;it fru&longs;tr&agrave;, &longs;uppo&longs;ita <lb/>etiam perfecta duritie mobilis, &amp; plani &amp; figura apta. </s>
					<s id="N200C9"><!-- NEW -->Secund&ograve;, ratione <lb/>diui&longs;ionis partium vel plani, vel mobilis, vel vtriu&longs;que; </s>
					<s id="N200CF"><!-- NEW -->&longs;i enim alteran&shy;<lb/>tur partes, fit qua&longs;i fo&longs;&longs;ula, quam &longs;en&longs;im &longs;ubit mobile, cumque &longs;ingulis <lb/>in&longs;tantibus &longs;it noua difficultas &longs;uperanda, &longs;emper inde imminuitur impe&shy;<lb/>tus: </s>
					<s id="N200D9"><!-- NEW -->adde quod minor e&longs;t determinatio plani quod cadit; </s>
					<s id="N200DD"><!-- NEW -->igitur minor <lb/>e&longs;t motus reflexus; </s>
					<s id="N200E3"><!-- NEW -->igitur pl&ugrave;s impetus e&longs;t fru&longs;tr&agrave;; </s>
					<s id="N200E7"><!-- NEW -->igitur pl&ugrave;s de&longs;truitur; </s>
					<s id="N200EB"><!-- NEW --><lb/>&longs;i autem planum vel ip&longs;um mobile propter fragilitatem in partes di&longs;si&shy;<lb/>liat, etiam de&longs;truitur aliquid impetus; Tertio ratione impre&longs;sionis; <lb/>Quarto ratione compre&longs;sionis; Quint&ograve; ratione repul&longs;ionis; Sext&ograve; ra&shy;<lb/>tione liberioris ce&longs;sionis; &longs;ed h&aelig;c omnia minuti&ugrave;s videntur e&longs;&longs;e ex&shy;<lb/>plicanda. </s>
				</p>
				<pb pagenum="254" xlink:href="026/01/286.jpg"/>
				<p id="N200FC" type="main">
					<s id="N200FE"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 52.<emph.end type="center"/></s>
				</p>
				<p id="N2010A" type="main">
					<s id="N2010C"><!-- NEW --><emph type="italics"/>De&longs;truitur impetus cum &longs;cilicet mobili impacto in planum atteruntur par&shy;<lb/>tes vel plani, vel mobilis, vel vtriu&longs;que,<emph.end type="italics"/> &longs;ic cum &longs;axum alliditur molliori la&shy;<lb/>pidi, prima &longs;uperficies re&longs;i&longs;tit quidem; </s>
					<s id="N20119"><!-- NEW -->at cert&egrave; min&ugrave;s qu&agrave;m par &longs;it, vt <lb/>&longs;i&longs;tat mobile; </s>
					<s id="N2011F"><!-- NEW -->de&longs;truitur tamen aliquid impetus, quia impeditur tantil&shy;<lb/>l&ugrave;m &longs;altem prima illa determinatio; </s>
					<s id="N20125"><!-- NEW -->Secunda &longs;uperficies re&longs;i&longs;tit etiam in <lb/>maiori &longs;cilicet proportione, t&ugrave;m quia impetus eua&longs;it infirmior ex primo <lb/>qua&longs;i conflictu, t&ugrave;m quia paul&ograve; durior e&longs;t &longs;ecunda &longs;uperficies qu&agrave;m pri&shy;<lb/>ma, quod &longs;cilicet aliqu&aelig; partes qua&longs;i intrudantur in vacuitates interce&shy;<lb/>ptas; </s>
					<s id="N20131"><!-- NEW -->&longs;ic pila lignea multis ictibus confu&longs;a durior e&longs;t; </s>
					<s id="N20135"><!-- NEW -->denique tertia &longs;u&shy;<lb/>perficies re&longs;i&longs;tit in maiori proportione qu&agrave;m &longs;ecunda &amp; quarta qu&agrave;m <lb/>tertia; </s>
					<s id="N2013D"><!-- NEW -->atque ita deinceps, donec tandem, vel totus impetus vincatur, vel <lb/>determinatio prior &longs;uperetur: </s>
					<s id="N20143"><!-- NEW -->hinc &longs;i alterantur partes plani tant&ugrave;m, mi&shy;<lb/>n&ugrave;s impetus de&longs;truetur, qu&agrave;m &longs;i atterantur partes mobilis; quia impetus <lb/>partium mobilis attritarum totus de&longs;init, nec vllam vim ampli&ugrave;s facit, <lb/>quod potiori iure dicendum e&longs;t, &longs;i atterantur partes vtriu&longs;que. </s>
				</p>
				<p id="N2014D" type="main">
					<s id="N2014F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 53.<emph.end type="center"/></s>
				</p>
				<p id="N2015B" type="main">
					<s id="N2015D"><!-- NEW --><emph type="italics"/>Hinc pluribus lic&egrave;t in&longs;tantibus mobile tangat planum, non tamen vllo quie&shy;<lb/>&longs;cit<emph.end type="italics"/>; alioqui &longs;emper quie&longs;ceret per Th.50. </s>
				</p>
				<p id="N20168" type="main">
					<s id="N2016A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 54.<emph.end type="center"/></s>
				</p>
				<p id="N20176" type="main">
					<s id="N20178"><!-- NEW --><emph type="italics"/>Hinc cum atteruntur partes plani ab impactione mobilis, minor e&longs;t reflexio<emph.end type="italics"/>; </s>
					<s id="N20181"><!-- NEW --><lb/>quia minor e&longs;t cau&longs;a, &longs;cilicet impetus, qu&aelig; minor e&longs;t adhuc &longs;i atterantur <lb/>partes mobilis, &amp; minor adhuc, &longs;i partes vtriu&longs;que; qu&aelig; omnia con&longs;tant <lb/>ex dictis. </s>
				</p>
				<p id="N2018A" type="main">
					<s id="N2018C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 55.<emph.end type="center"/></s>
				</p>
				<p id="N20198" type="main">
					<s id="N2019A"><!-- NEW --><emph type="italics"/>Cum re&longs;iliunt partes mobilis, destruitur impetus pen &longs;e, quia &longs;cilicet illa di&shy;<lb/>ui&longs;io, vel &longs;olutio continuitatis &longs;eu plexus re&longs;i&longs;tit<emph.end type="italics"/>; </s>
					<s id="N201A5"><!-- NEW -->igitur impedit, &longs;ed omne im&shy;<lb/>pedimentum detrahit aliquid impetus: </s>
					<s id="N201AB"><!-- NEW -->dixi per &longs;e, nam per accidens fieri <lb/>pote&longs;t, vt aliqua particula re&longs;iliens maiore cum impetu moueatur, vt pa&shy;<lb/>tet aliquando experienti&acirc;; quia pr&aelig;ter priorem impetum, qui cum aliis <lb/>partibus illi communis erat, additur alius propter nouam alli&longs;ionem, &longs;eu, <lb/>quod mirabilius e&longs;t, cum aliqua particula ex maiore ma&longs;s&acirc; diuellitur, im&shy;<lb/>petus totius mobilis qua&longs;i migrat in particulam illam, perinde qua&longs;i ab <lb/>eo emitteretur, id e&longs;t cum ant&egrave; totum mobile veloci&longs;&longs;imo motu ferretur, <lb/>particula auul&longs;a, eodem deinde mouetur. </s>
				</p>
				<p id="N201BD" type="main">
					<s id="N201BF"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 56.<emph.end type="center"/></s>
				</p>
				<p id="N201CB" type="main">
					<s id="N201CD"><!-- NEW --><emph type="italics"/>Porr&ograve; re&longs;iliunt particul&aelig; mobilis per omnes fer&egrave; lineas, qu&aelig; determinantur <lb/>per accidens &agrave; forma vel &longs;ectione diui&longs;ionis<emph.end type="italics"/>; </s>
					<s id="N201D8"><!-- NEW -->qu&aelig; enim dextror&longs;um &longs;eparan&shy;<lb/>tur, dextror&longs;um eunt; </s>
					<s id="N201DE"><!-- NEW -->atque ita in omnem partem &longs;ine alia regula; </s>
					<s id="N201E2"><!-- NEW -->cur <lb/>ver&ograve; ab ictu diuellantur partes, non e&longs;t huius loci di&longs;cutere; </s>
					<s id="N201E8"><!-- NEW -->&longs;ic enim <lb/>qua&longs;i finditur &longs;axum ex colli&longs;ione; </s>
					<s id="N201EE"><!-- NEW -->t&ugrave;m quia ex illo omnium partium <lb/>&longs;uccu&longs;&longs;u &longs;oluitur illarum nexus; </s>
					<s id="N201F4"><!-- NEW -->t&ugrave;m quia intruduntur aliqu&aelig; partes, <pb pagenum="255" xlink:href="026/01/287.jpg"/>qua&longs;i ad in&longs;tar cunei, qu&aelig; ali&agrave;s diuidunt; </s>
					<s id="N201FD"><!-- NEW -->t&ugrave;m denique, quia e&longs;t aliqua <lb/>compre&longs;&longs;io, cuius vires cert&egrave; maxim&aelig; &longs;unt, vt dicemus alibi: </s>
					<s id="N20203"><!-- NEW -->Exemplum <lb/>habes t&ugrave;m in corpore duro, quale e&longs;t vitrum, cuius modicam laminam &longs;i <lb/>duriori pauimento impingas, hinc inde mille particul&aelig; tumultuatim re&shy;<lb/>&longs;ilient; t&ugrave;m in corpore liquido, vt in aqua, qu&aelig; etiam ad corpus durum <lb/>alli&longs;a in mille guttulas di&longs;pergitur, quia eius partes facil&egrave; &longs;eparantur. </s>
				</p>
				<p id="N2020F" type="main">
					<s id="N20211"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 57.<emph.end type="center"/></s>
				</p>
				<p id="N2021D" type="main">
					<s id="N2021F"><!-- NEW --><emph type="italics"/>Si vel mobile e&longs;t mollius, vel ip&longs;um planum, vel vtrumque, ita vt non atte&shy;<lb/>rantur partes, &longs;ed tant&ugrave;m citra compre&longs;&longs;ionem cedant, de&longs;truitur etiam multus <lb/>impetus<emph.end type="italics"/>; </s>
					<s id="N2022C"><!-- NEW -->&longs;it enim v.g.pila ex molliori cera, haud dubi&egrave; ex impactione non <lb/>comprimitur quidem, &longs;ed deprimitur, nec amplius figuram &longs;ph&aelig;r&aelig;, &longs;ed <lb/>portionis habet: </s>
					<s id="N20234"><!-- NEW -->in qua reuer&acirc; depre&longs;&longs;ione multus e&longs;t conflictus, nec &longs;uf&shy;<lb/>ficienter prima &longs;uperficies re&longs;i&longs;tit, lic&egrave;t aliquid impetus de&longs;truat, nec <lb/>etiam &longs;ecunda, nec tertia, qu&aelig; tamen re&longs;i&longs;tunt &longs;emper in maiori propor&shy;<lb/>tione; </s>
					<s id="N2023E"><!-- NEW -->donec tandem vel totus ictus qua&longs;i extinguatur, vel determinatio <lb/>prior &longs;uperetur; </s>
					<s id="N20244"><!-- NEW -->ex quo &longs;equitur reflexio, &longs;ed minor: </s>
					<s id="N20248"><!-- NEW -->porr&ograve; minor refle&shy;<lb/>xio re&longs;ultat ex mollitie mobilis, quam plani, c&aelig;teris paribus, &amp; minor <lb/>adhuc ex mollitie vtriu&longs;que; in quo ver&ograve; con&longs;i&longs;tat mollities corpo&shy;<lb/>rum, &amp; quomodo deprimantur &longs;ine compre&longs;&longs;ione, explicabimus tra&shy;<lb/>ctatu &longs;equenti. </s>
				</p>
				<p id="N20254" type="main">
					<s id="N20256"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 58.<emph.end type="center"/></s>
				</p>
				<p id="N20262" type="main">
					<s id="N20264"><!-- NEW --><emph type="italics"/>Hinc plumbum ad reflexionem min&ugrave;s aptum e&longs;t,<emph.end type="italics"/> quia &longs;cilicet eius partes <lb/>difficili&ugrave;s auelluntur, &amp; &agrave; maiore ictu, qui ex grauitate maiore re&longs;ultat, <lb/>facili&ugrave;s deprimuntur; </s>
					<s id="N20271"><!-- NEW -->hinc cum in molliorem terram pila alliditur, qua&longs;i <lb/>emoritur eius &longs;altus; </s>
					<s id="N20277"><!-- NEW -->hinc, &longs;i grauior ictus e&longs;t, qualis e&longs;t maioris vel mi&shy;<lb/>noris pil&aelig; &egrave; tormento explo&longs;&aelig;, &amp; mollior terra, qualis e&longs;t illa qu&acirc; vulg&ograve; <lb/>aggeres munitionum farciuntur, pila terram ip&longs;am facto foramine pene&shy;<lb/>trat, c&ugrave;m facil&egrave; cedat materia; nec inde amplius re&longs;ultat, cuius rei ratio <lb/>e&longs;t clari&longs;&longs;ima quia &longs;en&longs;im extinguitur impetus, nec angu&longs;ti&aelig; foraminis <lb/>reditum patiuntur. </s>
				</p>
				<p id="N20285" type="main">
					<s id="N20287"><!-- NEW -->Hinc mult&acirc; lan&acirc; muniuntur latera nauium contra maiora tormenta; </s>
					<s id="N2028B"><!-- NEW --><lb/>quippe globi vis &longs;en&longs;im emoritur in lana, quia &longs;inguli pili re&longs;i&longs;tunt; &amp; <lb/>quia facil&egrave; cedunt difficili&ugrave;s diuiduntur, &longs;ed fallenti illa ce&longs;&longs;ione ictum <lb/>quoque fallunt, in quo non e&longs;t difficultas. </s>
				</p>
				<p id="N20294" type="main">
					<s id="N20296"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 59.<emph.end type="center"/></s>
				</p>
				<p id="N202A2" type="main">
					<s id="N202A4"><!-- NEW --><emph type="italics"/>Quando fit aliqua compre&longs;&longs;io, distribuitur etiam impetus<emph.end type="italics"/>; </s>
					<s id="N202AD"><!-- NEW -->e&longs;t enim con&shy;<lb/>flictus, &amp; pugna partium inter &longs;e; </s>
					<s id="N202B3"><!-- NEW -->&longs;it enim ve&longs;icca in pauimentum alli&shy;<lb/>&longs;a, partes antic&aelig; a&euml;ris, quo ve&longs;icca inflatur, comprimunt, &amp; qua&longs;i po&longs;ti&shy;<lb/>cas repellunt, &agrave; quibus mutu&ograve; retruduntur; </s>
					<s id="N202BB"><!-- NEW -->vides pugnam; </s>
					<s id="N202BF"><!-- NEW -->igitur de&shy;<lb/>&longs;truitur impetus: </s>
					<s id="N202C5"><!-- NEW -->&longs;ed re&longs;tituitur &longs;tatim &agrave; potentia motrice media, qu&acirc; <lb/>&longs;cilicet corpus omne compre&longs;&longs;um pl&ugrave;s &aelig;quo, vt &longs;e&longs;e in pri&longs;tinum exten&shy;<lb/>&longs;ionis &longs;tatum re&longs;tituat, producit in &longs;e impetum: porr&ograve; de hac potenti&acirc; <pb pagenum="254" xlink:href="026/01/288.jpg"/>agemus fus&egrave; tractatu &longs;equenti lib.2. porr&ograve; vel comprimitur tantum mo&shy;<lb/>bile, vel tant&ugrave;m ip&longs;um planum, vel &longs;imul vtrumque. </s>
				</p>
				<p id="N202D4" type="main">
					<s id="N202D6"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 60.<emph.end type="center"/></s>
				</p>
				<p id="N202E2" type="main">
					<s id="N202E4"><!-- NEW --><emph type="italics"/>Ex hac compre&longs;&longs;ione &longs;equitur aliqua reflexio<emph.end type="italics"/>; </s>
					<s id="N202ED"><!-- NEW -->&longs;iue tant&ugrave;m mobile com&shy;<lb/>primatur, vt ve&longs;icca inflata vel pila; </s>
					<s id="N202F3"><!-- NEW -->quippe pr&aelig;ter reflexionem puram, <lb/>id e&longs;t pr&aelig;ter priorem impetum, qui tamen ex parte de&longs;truitur, fit acce&longs;&longs;io <lb/>noui impetus; </s>
					<s id="N202FB"><!-- NEW -->igitur maior e&longs;t motus qui reuer&acirc; impetus maior e&longs;t, qu&ograve; <lb/>maior e&longs;t compre&longs;&longs;io, qu&aelig; maior e&longs;t, qu&ograve; maior e&longs;t ictus; </s>
					<s id="N20301"><!-- NEW -->hinc maxim&egrave; <lb/>apta e&longs;t ad reflexionem pila, &amp; ve&longs;icca; </s>
					<s id="N20307"><!-- NEW -->&longs;i tamen excipias mobile duri&longs;&shy;<lb/>&longs;imum in planum duri&longs;&longs;imum impactum; </s>
					<s id="N2030D"><!-- NEW -->tunc enim maxima e&longs;t reflexio, <lb/>experienti&acirc; te&longs;te; </s>
					<s id="N20313"><!-- NEW -->&longs;i ver&ograve; planum ip&longs;um comprimatur, ex illa quoque <lb/>compre&longs;&longs;ione &longs;equitur noui impetus acce&longs;&longs;io: </s>
					<s id="N20319"><!-- NEW -->Exemplum habes in fune <lb/>ten&longs;o, vel in membrana timpani bellici, in qua pi&longs;a tam facil&egrave; &longs;ub&longs;ultant; </s>
					<s id="N2031F"><!-- NEW --><lb/>emoritur tamen fer&egrave; totus prior impetus propter ce&longs;&longs;ionem plani; </s>
					<s id="N20324"><!-- NEW -->&amp; ni&longs;i <lb/>nouus accederet, haud dubi&egrave; vel nulla penitus vei minima fieret refle&shy;<lb/>xio; </s>
					<s id="N2032C"><!-- NEW -->denique fieri pote&longs;t compre&longs;&longs;io t&ugrave;m in mobili, t&ugrave;m in plano v.g. <!-- REMOVE S-->&longs;i <lb/>ve&longs;icca inflata repercutiatur &agrave; membrana tympani maxim&egrave; ten&longs;a, in hoc <lb/>ca&longs;u maxima fit noui impetus acce&longs;&longs;io ex duplici compre&longs;&longs;ione; </s>
					<s id="N20336"><!-- NEW -->&longs;ed ma&shy;<lb/>xima fit etiam prioris impetus imminutio ex duplici etiam capite, nem&shy;<lb/>p&egrave; ex compre&longs;&longs;ione, eaque duplici, &amp; noua determinatione; &longs;ed h&aelig;c &longs;unt <lb/>facilia. </s>
				</p>
				<p id="N20340" type="main">
					<s id="N20342"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 61.<emph.end type="center"/></s>
				</p>
				<p id="N2034E" type="main">
					<s id="N20350"><emph type="italics"/>Si corpus in aliud impactum repellatur per productionem impetus. </s>
					<s id="N20355"><!-- NEW -->v.g. <!-- REMOVE S-->&longs;i <lb/>duo globi mutu&ograve; impellantur, de&longs;truitur etiam impetus ex hoc capite,<emph.end type="italics"/> vt patet <lb/>experientia: </s>
					<s id="N20362"><!-- NEW -->imm&ograve; &longs;i globus in &aelig;qualem globum impingatur de&longs;truitur <lb/>totus impetus prior; </s>
					<s id="N20368"><!-- NEW -->vt dictum e&longs;t alibi, de quo etiam infr&agrave;: </s>
					<s id="N2036C"><!-- NEW -->Ratio huius <lb/>Theorematis e&longs;t, quia aliqua impetus portio e&longs;t fru&longs;tr&agrave;; </s>
					<s id="N20372"><!-- NEW -->quia non pote&longs;t <lb/>habere &longs;uum effectum; igitur de&longs;trui debet. </s>
				</p>
				<p id="N20378" type="main">
					<s id="N2037A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 62.<emph.end type="center"/></s>
				</p>
				<p id="N20386" type="main">
					<s id="N20388"><!-- NEW --><emph type="italics"/>Si globus in alium &aelig;qualem impingitur, ita vt punctum contactus, &amp; cen&shy;<lb/>trum vtriu&longs;que &longs;int in eadem linea, multa <expan abbr="&longs;equ&utilde;tur">&longs;equuntur</expan> ph&aelig;nomena, qu&aelig; iam atti&shy;<lb/>gimus lib.<emph.end type="italics"/>1.<emph type="italics"/>&agrave; Th.<emph.end type="italics"/>60.Prim&ograve;, &aelig;qualis impetus in globo, in quem impactus <lb/>e&longs;t, producitur per Th.60.lib.1. Secund&ograve;, &aelig;qualis e&longs;t determinatio noua <lb/>priori; </s>
					<s id="N203A3"><!-- NEW -->probatur per Th.127.lib.1. Terti&ograve;, de&longs;truitur totus impetus prior <lb/>per Th.128. hinc quie&longs;cit globus impactus; </s>
					<s id="N203A9"><!-- NEW -->cuius rei non pote&longs;t e&longs;&longs;e alia <lb/>cau&longs;a; </s>
					<s id="N203AF"><!-- NEW -->nec enim dicas de&longs;trui totum impetum illum &lpar;vt reuer&acirc; totus de&shy;<lb/>&longs;truitur&rpar; ratione re&longs;i&longs;tenti&aelig;, qu&aelig; minor e&longs;t, qu&agrave;m e&longs;&longs;et, &longs;i in parietem il&shy;<lb/>lideretur; </s>
					<s id="N203B7"><!-- NEW -->igitur tota ratio, cur de&longs;truatur totus impetus, duci tant&ugrave;m <lb/>pote&longs;t ex eo, quod &longs;it fru&longs;tr&agrave;; </s>
					<s id="N203BD"><!-- NEW -->e&longs;t autem fru&longs;tr&agrave;, quia cum prior deter&shy;<lb/>minatio ferat globum impact&ugrave;m per eandem lineam, &amp; noua per oppo&shy;<lb/>&longs;itam; </s>
					<s id="N203C5"><!-- NEW -->vtraque cert&egrave; &aelig;qualis e&longs;t; </s>
					<s id="N203C9"><!-- NEW -->igitur neutra pr&aelig;ualet; </s>
					<s id="N203CD"><!-- NEW -->igitur globus <lb/>con&longs;i&longs;tit; </s>
					<s id="N203D3"><!-- NEW -->&longs;i quis enim diceret non e&longs;&longs;e &aelig;quales; </s>
					<s id="N203D7"><!-- NEW -->igitur altera maior e&longs;t; </s>
					<s id="N203DB"><!-- NEW --><lb/>igitur debet pr&aelig;ualere; </s>
					<s id="N203E0"><!-- NEW -->igitur &longs;i prior e&longs;t, debet vlteri&ugrave;s propagari motus <pb pagenum="255" xlink:href="026/01/289.jpg"/>in eadem linea; </s>
					<s id="N203E9"><!-- NEW -->&longs;i noua, igitur debet tantill&ugrave;m reflecti; igitur cum nec <lb/>vlteri&ugrave;s producatur motus, nec retr&ograve; agatur mobile, vtraque determi&shy;<lb/>natio nece&longs;&longs;ari&ograve; &aelig;qualis e&longs;t. </s>
					<s id="N203F1"><!-- NEW -->Qu&aelig;nam ver&ograve; &longs;it huius &aelig;qualitatis ratio &agrave; <lb/>priori, difficil&egrave; dictu e&longs;t; </s>
					<s id="N203F7"><!-- NEW -->dico tamen petendam e&longs;&longs;e ab &aelig;qualitate glo&shy;<lb/>borum; </s>
					<s id="N203FD"><!-- NEW -->cum enim determinatio noua &longs;it dupl&ograve; maior &agrave; plano immobili <lb/>&amp; duro; </s>
					<s id="N20403"><!-- NEW -->cert&egrave; &agrave; plano mobili minor e&longs;t, vt con&longs;tat, quia cedit; </s>
					<s id="N20407"><!-- NEW -->igitur <lb/>qu&acirc; proportione pl&ugrave;s, vel min&ugrave;s cedit, e&longs;t minor dupla; </s>
					<s id="N2040D"><!-- NEW -->&longs;ed maior glo&shy;<lb/>bus min&ugrave;s cedit, qu&agrave;m &aelig;qualis; </s>
					<s id="N20413"><!-- NEW -->quia ce&longs;&longs;io e&longs;t minor impul&longs;ione; </s>
					<s id="N20417"><!-- NEW -->igitur <lb/>quando ce&longs;&longs;io e&longs;t &aelig;qualis impul&longs;ioni, &aelig;quales &longs;unt determinationes; </s>
					<s id="N2041D"><!-- NEW -->at&shy;<lb/>qui cum producitur &aelig;qualis impetus, &amp; imprimitur &aelig;qualis motus, <lb/>&aelig;qualis e&longs;t ce&longs;&longs;i&ograve; impul&longs;ioni, id e&longs;t &aelig;qu&egrave; cedit, ac impellitur; cum tamen, <lb/>&longs;i maior &longs;it globus, non &aelig;qu&egrave; cit&ograve; cedat, quia tardior motus imprimitur, <lb/>&amp; h&aelig;c e&longs;t, ni fallor, vera ratio huius &aelig;qualitatis determinationum, &amp; <lb/>h&aelig;c vera cau&longs;a quietis globi impacti, de qua iam &longs;upr&agrave; Th. 40. </s>
				</p>
				<p id="N2042B" type="main">
					<s id="N2042D"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 63.<emph.end type="center"/></s>
				</p>
				<p id="N20439" type="main">
					<s id="N2043B"><!-- NEW --><emph type="italics"/>Cum ver&ograve; globus impellitur in globum &aelig;qualem per lineam obliquam, num&shy;<lb/>quam quie&longs;cit<emph.end type="italics"/>; </s>
					<s id="N20446"><!-- NEW -->quod demon&longs;tratur, quia &longs;emper e&longs;t determinatio mixta; </s>
					<s id="N2044A"><!-- NEW --><lb/>quod vt meli&ugrave;s intelligatur, opus e&longs;t nou&acirc; figur&acirc; &longs;it ergo punctum con&shy;<lb/>tactus duorum globorum B, &amp; ip&longs;a CBN &longs;it Tangens communis, &longs;eu <lb/>&longs;ectio plani, qu&aelig; gerit vicem plani reflectentis; </s>
					<s id="N20453"><!-- NEW -->fit autem prim&ograve; linea <lb/>incidenti&aelig; connectens centra FBA; </s>
					<s id="N20459"><!-- NEW -->nulla fit in ea reflexio per Th. 61. <lb/>quia &longs;cilicet determinatio noua per lineam BF e&longs;t &aelig;qualis priori per <lb/>FB; </s>
					<s id="N20461"><!-- NEW -->&longs;it EB linea incidenti&aelig; faciens angulum EBC cum Tangente <lb/>NC; </s>
					<s id="N20467"><!-- NEW -->determinatio noua e&longs;t ad determinationem priorem vt BG vel <lb/>ER ad BE, &amp; &longs;i &longs;it linea incidenti&aelig; DB vt BH, vel SD ad BD; </s>
					<s id="N2046D"><!-- NEW -->deni&shy;<lb/>que &longs;i &longs;it BV vt TV ad BV, donec tandem linea incidenti&aelig; &longs;it CB, qu&acirc; <lb/>po&longs;it&acirc; nulla e&longs;t determinatio noua; </s>
					<s id="N20475"><!-- NEW -->vides e&longs;&longs;e eandem viam proportio&shy;<lb/>num qu&aelig; fuit &longs;upr&agrave;; </s>
					<s id="N2047B"><!-- NEW -->lic&egrave;t non &longs;it futura eadem angulorum reflexionis <lb/>proportio, quia determinationum nouarum rationes non &longs;unt e&aelig;dem; <lb/>producatur enim EBL DBM &amp;c. </s>
					<s id="N20483"><!-- NEW -->determinatio prior per EB e&longs;t ad <lb/>nouam per BF, vt BE ad BG; </s>
					<s id="N20489"><!-- NEW -->igitur ducantur EP PL; </s>
					<s id="N2048D"><!-- NEW -->a&longs;&longs;umatur LI <lb/>&aelig;qualis BG, &amp; GI, BL &aelig;qualis BE; </s>
					<s id="N20493"><!-- NEW -->denique ducatur BI: dico BI e&longs;&longs;e <lb/>lineam reflexionis &longs;eu determinationem mixtam ex BG BL per Th. <!-- REMOVE S--><lb/>137.lib.1.&amp;c. <!-- KEEP S--></s>
					<s id="N2049D"><!-- NEW -->Similiter &longs;i &longs;it linea incidenti&aelig; DBN, ducanturque DO. <lb/>OM, &amp; a&longs;&longs;umatur MK &aelig;qualis BH, vel SD, dico lineam BK e&longs;&longs;e de&shy;<lb/>terminationem mixtam ex BH BM, ex quibus etiam longitudo omnium <lb/>reflexarum facil&egrave; determinari pote&longs;t; quippe longitudo e&longs;t vt linea de&shy;<lb/>terminationis mixt&aelig;. </s>
					<s id="N204A9"><!-- NEW -->v.g. <!-- REMOVE S-->BI, BK; </s>
					<s id="N204AF"><!-- NEW -->demon&longs;tratur autem h&aelig;c determi&shy;<lb/>nationum progre&longs;&longs;io, quia determinatio per EB e&longs;t ad determinationem <lb/>per FB vt ictus per EB ad ictum per FB, vt iam &longs;&aelig;p&egrave; dictum e&longs;t; </s>
					<s id="N204B7"><!-- NEW -->&longs;ed <lb/>ictus per EB in CN e&longs;t ad ictum per FB vt ER ad FB vel EB, id e&longs;t, vt <lb/>&longs;inus rectus anguli incidenti&aelig; ad &longs;inum totum; </s>
					<s id="N204BF"><!-- NEW -->&longs;ed determinatio noua <lb/>in perpendiculo FB e&longs;t ad priorem, vt FB ad BF per Th.62. igitur noua <lb/>determinatio per EB e&longs;t ad priorem vt ER &longs;eu &longs;inus rectus anguli EBC <pb pagenum="256" xlink:href="026/01/290.jpg"/>ad &longs;inum totum EB, &amp; per DB vt DS ad DB: idem dico de aliis. </s>
				</p>
				<p id="N204CC" type="main">
					<s id="N204CE">Hinc colligo prim&ograve;, omnes determinationes nouas in hypothe&longs;i glo&shy;<lb/>borum &aelig;qualium e&longs;&longs;e &longs;ubduplas in ei&longs;dem angulis priorum determina&shy;<lb/>tionum in hypothe&longs;i corporis reflectentis immobilis. </s>
				</p>
				<p id="N204D5" type="main">
					<s id="N204D7">Colligo &longs;ecund&ograve;, omnes reflexiones fieri nece&longs;&longs;ari&ograve; per eandem li&shy;<lb/>neam, qu&aelig; &longs;cilicet e&longs;t Tangens puncti contactus globi reflectentis, quod <lb/>vald&egrave; mirificum e&longs;t, &amp; facil&egrave; ob&longs;eruabunt, qui Tudicula minore ludunt. </s>
					<s id="N204DE"><!-- NEW --><lb/>Colligo &longs;exto, cum angulus incidenti&aelig; e&longs;t 60. lineam reflexam e&longs;&longs;e &longs;ub&shy;<lb/>duplam direct&aelig; qu&aelig; vlteri&ugrave;s produceretur; infr&agrave; ver&ograve; &longs;exto e&longs;&longs;e maio&shy;<lb/>rem, &longs;upr&agrave; ver&ograve; e&longs;&longs;e minorem, e&longs;t autem longitudo line&aelig; &longs;inus comple&shy;<lb/>menti anguli incidenti&aelig;. </s>
					<s id="N204E9">v.g. <!-- REMOVE S-->&longs;i linea incidenti&aelig; &longs;it EB e&longs;t EG, &longs;i DB <lb/>e&longs;t DH, &longs;i VB e&longs;t VX. </s>
				</p>
				<p id="N204F0" type="main">
					<s id="N204F2"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 64.<emph.end type="center"/></s>
				</p>
				<p id="N204FE" type="main">
					<s id="N20500"><!-- NEW --><emph type="italics"/>Si globus minor in maiorem impingatur, qui ab eo tamen moueatur per li&shy;<lb/>neam connectentem centra vtriu&longs;que impactus, reflectitur<emph.end type="italics"/>; </s>
					<s id="N2050B"><!-- NEW -->ratio e&longs;t, quia ma&shy;<lb/>ior globus e&longs;t maius impedimentum, vt iam diximus Th. 131.lib.1.id <lb/>e&longs;t, vt clari&ugrave;s hic explicetur, qu&aelig; ibidem tant&ugrave;m obiter indicauimus, <lb/>noua determinatio maior e&longs;t priore, quia ce&longs;sio e&longs;t minor impul&longs;ione; &longs;it <lb/>autem. </s>
					<s id="N20517"><!-- NEW -->v.g. <!-- REMOVE S-->globus reflectens duplus impacto; </s>
					<s id="N2051D"><!-- NEW -->igitur motus e&longs;t &longs;ubduplus, <lb/>quia &longs;cilicet impetus di&longs;tribuitur pluribus partibus &longs;ubjecti; </s>
					<s id="N20523"><!-- NEW -->igitur &longs;in&shy;<lb/>gul&aelig; min&ugrave;s habent; </s>
					<s id="N20529"><!-- NEW -->igitur impetus e&longs;t remi&longs;sior; </s>
					<s id="N2052D"><!-- NEW -->igitur motus tardior; </s>
					<s id="N20531"><!-- NEW --><lb/>igitur ce&longs;sio minor &longs;ubduplo; </s>
					<s id="N20536"><!-- NEW -->igitur determinatio noua e&longs;t maior &aelig;qua&shy;<lb/>li 1/2 hinc debet nece&longs;&longs;ari&ograve; reflecti, quia quotie&longs;cunque ad lineas op&shy;<lb/>po&longs;itas ex diametro determinatur impetus, maior determinatio pr&aelig;ua&shy;<lb/>let pro rata per Th.134.lib.1. nam perinde &longs;e habet, atque &longs;i e&longs;&longs;et duplex <lb/>impetus; </s>
					<s id="N20542"><!-- NEW -->quanta porr&ograve; e&longs;&longs;e debeat linea reflexa, determinari pote&longs;t; </s>
					<s id="N20546"><!-- NEW -->&longs;i <lb/>enim determinatio noua e&longs;&longs;et &longs;olilaria mobile cum eo impetu, quem ha&shy;<lb/>bet <expan abbr="c&otilde;ficeret">conficeret</expan> v.g. <!-- REMOVE S-->BA vel BF; </s>
					<s id="N20554"><!-- NEW -->diuidatur BF in duas partes &aelig;quales in <foreign lang="greek">u</foreign>, <lb/>determinatio noua e&longs;t ad priorem vt 3. ad 2. a&longs;&longs;umatur F<foreign lang="greek">b</foreign> &aelig;qualis B<foreign lang="greek">u</foreign>; </s>
					<s id="N20566"><!-- NEW --><lb/>igitur propter determinationem priorem oppo&longs;itam &longs;cilicet BA detra&shy;<lb/>hi debent du&aelig; partes toti B<foreign lang="greek">b</foreign> &longs;cilicet <foreign lang="greek">bu</foreign> &aelig;qualis BA; </s>
					<s id="N20575"><!-- NEW -->igitur linea re&shy;<lb/>flexa erit B<foreign lang="greek">u</foreign> dupla totius BF; </s>
					<s id="N2057F"><!-- NEW -->&longs;it etiam globus reflectens, qui mouetur <lb/>ab impacto, quadruplus, determinatio noua erit ad priorem vt 7. ad 4. <lb/>fit B<foreign lang="greek">d</foreign> ad BA vt 7. ad 4. ex B<foreign lang="greek">d</foreign> detrahatur DH &aelig;qualis BA, &longs;upere&longs;t <lb/>HB id e&longs;t 3/4 totius BF; non pote&longs;t autem e&longs;&longs;e maior determinatio no&shy;<lb/>ua priore qu&agrave;m in ratione dupla, vt diximus &longs;upr&agrave;. </s>
					<s id="N20593"><!-- NEW -->Ratio e&longs;t, quia e&ograve; mi&shy;<lb/>nor e&longs;t determinatio noua, qu&ograve; maior e&longs;t motus impre&longs;&longs;us globo maiori <lb/>reflectenti; </s>
					<s id="N2059B"><!-- NEW -->igitur tantum detrahitur dupl&aelig;, quantum additur motus; </s>
					<s id="N2059F"><!-- NEW -->&longs;i <lb/>motus e&longs;t &aelig;qualis, detrahitur dupl&aelig; &aelig;qualis priori; </s>
					<s id="N205A5"><!-- NEW -->igitur &longs;upere&longs;t &aelig;qua&shy;<lb/>lis; </s>
					<s id="N205AB"><!-- NEW -->&longs;i motus e&longs;t &longs;ubduplus, detrahitur dupl&aelig; &longs;ubdupla prioris; </s>
					<s id="N205AF"><!-- NEW -->igitur &longs;u&shy;<lb/>pere&longs;t 1/2 &longs;i &longs;ubquadruplus detrahitur dupl&aelig; &longs;ubquadrupla prioris, igitur <lb/>&longs;upere&longs;t 1 3/4 &longs;i &longs;it duplus motus, determinatio noua e&longs;t &longs;ubdupla; </s>
					<s id="N205B7"><!-- NEW -->igitur <lb/>priori detrahitur 1/2 de quo infr&agrave;; </s>
					<s id="N205BD"><!-- NEW -->quod autem &longs;pectat ad longitudi&shy;<lb/>nes linearum non e&longs;t difficultas; quippe determinatio minor detrahi <lb/>deber maiori. </s>
				</p>
				<pb pagenum="257" xlink:href="026/01/291.jpg"/>
				<p id="N205C9" type="main">
					<s id="N205CB"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 65.<emph.end type="center"/></s>
				</p>
				<p id="N205D7" type="main">
					<s id="N205D9"><!-- NEW --><emph type="italics"/>Si globus minor in maiorem impingatur per lineam obliquam incidenti&aelig;, <lb/>&longs;emper reflectitur<emph.end type="italics"/>; </s>
					<s id="N205E4"><!-- NEW -->quipp&egrave; &longs;it determinatio mixta ex priore, &amp; noua, qu&aelig; <lb/>determinari pote&longs;t, &longs;i aliquid &agrave; nou&aelig; figur&aelig; de&longs;cribatur; </s>
					<s id="N205EA"><!-- NEW -->&longs;it circulus <lb/>FQCD; </s>
					<s id="N205F0"><!-- NEW -->&longs;int diametri QD, FC; </s>
					<s id="N205F4"><!-- NEW -->&longs;it AI dupla AF, &longs;itque determi&shy;<lb/>natio prior vt FA, &longs;i &longs;ecunda &longs;it vt AI, erit dupla prioris; </s>
					<s id="N205FA"><!-- NEW -->igitur corpus <lb/>reflectens erit immobile; </s>
					<s id="N20600"><!-- NEW -->igitur &longs;i linea incidenti&aelig; &longs;it EA, reflexa erit <lb/>AT, ita vt anguli TAF, EAF &longs;int &aelig;quales; </s>
					<s id="N20606"><!-- NEW -->&longs;i autem determinatio no&shy;<lb/>ua &longs;it ad priorem vt AH ad AF, id e&longs;t, v.g. <!-- REMOVE S-->vt 3. ad 2. po&longs;it&acirc; &longs;cilicet li&shy;<lb/>ne&acirc; incidenti&aelig; perpendiculari FA in planum reflectens QD, quod cert&egrave; <lb/>mouebitur per Th. 64. aliter procedendum e&longs;t vt inueniatur linea re&shy;<lb/>flexa re&longs;pondens line&aelig; incidenti&aelig; obliqu&aelig;; </s>
					<s id="N20614"><!-- NEW -->diuidatur FAMK ita vt <lb/>KN &longs;it ad AF vt 3.ad 2. ac proinde AH &longs;it diui&longs;a bifariam in K; </s>
					<s id="N2061A"><!-- NEW -->de&shy;<lb/>&longs;cribatur circulus KMNR, &longs;it linea qu&aelig;libet incidenti&aelig; obliqua EA; </s>
					<s id="N20620"><!-- NEW --><lb/>producatur in B; </s>
					<s id="N20625"><!-- NEW -->ducantur OX BT parallel&aelig; AH; </s>
					<s id="N20629"><!-- NEW -->a&longs;&longs;umatur AG &aelig;qua&shy;<lb/>lis OX, &amp; GS &aelig;qualis AB; </s>
					<s id="N2062F"><!-- NEW -->cert&egrave; BS erit &aelig;qualis OX vel AG; </s>
					<s id="N20633"><!-- NEW -->duca&shy;<lb/>tur AS, h&aelig;c erit reflexa qu&aelig;&longs;ita: </s>
					<s id="N20639"><!-- NEW -->idem dico de omnibus aliis lineis in&shy;<lb/>cidenti&aelig;; demon&longs;tratur eodem modo quo &longs;upr&agrave; in Th. 30. 31. 32. qu&aelig; <lb/>con&longs;ule, ne hic repetere cogar. </s>
				</p>
				<p id="N20641" type="main">
					<s id="N20643"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 66.<emph.end type="center"/></s>
				</p>
				<p id="N2064F" type="main">
					<s id="N20651"><!-- NEW --><emph type="italics"/>Si globus maior impingatur in minorem, per lineam incidenti&aelig; connecten&shy;<lb/>tem centra nullo modo reflectitur &longs;ed per eandem lineam primum motum pro&shy;<lb/>pagat lic&egrave;t tardi&ugrave;s per Th.<emph.end type="italics"/>132. lib.1. in qua ver&ograve; proportione retardetur <lb/>motus non ita facil&egrave; dictu e&longs;t; dici tamen pote&longs;t &amp; explicari in fig. </s>
					<s id="N20660"><!-- NEW -->Th. <!-- REMOVE S--><lb/>63. &longs;i enim globi &longs;unt &aelig;quales, ce&longs;&longs;io &aelig;qualis e&longs;t impul&longs;ioni; </s>
					<s id="N20667"><!-- NEW -->&longs;i globus <lb/>impactus &longs;it maior, ce&longs;&longs;io e&longs;t maior impul&longs;ione, vt con&longs;tat; </s>
					<s id="N2066D"><!-- NEW -->igitur, &longs;i globus <lb/>e&longs;t ad globum vt FB ad FB; </s>
					<s id="N20673"><!-- NEW -->determinatio noua erit ad priorem vt FB <lb/>ad FB; </s>
					<s id="N20679"><!-- NEW -->igitur quie&longs;cet globus impactus per Th. 62. &longs;i ver&ograve; globus impa&shy;<lb/>ctus &longs;it ad alium vt EB ad ER; </s>
					<s id="N2067F"><!-- NEW -->determinatio noua erit ad priorem, vt <lb/>BG ad BF; </s>
					<s id="N20685"><!-- NEW -->igitur motus retardatus globi impacti e&longs;t ad non retardatum <lb/>vt FG ad FB; </s>
					<s id="N2068B"><!-- NEW -->quod &longs;i globus impactus e&longs;t ad alium vt DB ad DS, deter&shy;<lb/>minatio noua e&longs;t ad priorem vt BH ad BF; </s>
					<s id="N20691"><!-- NEW -->&longs;i &longs;it vt TV, ad VB, deter&shy;<lb/>minatio noua erit ad priorem vt BX ad BF, donec tandem nullus &longs;it <lb/>globus re&longs;i&longs;tens; neque res aliter e&longs;&longs;e pote&longs;t. </s>
				</p>
				<p id="N20699" type="main">
					<s id="N2069B"><!-- NEW -->Hinc vides duos terminos oppo&longs;itos, qui &longs;unt, nulla re&longs;i&longs;tentia, &amp; infi&shy;<lb/>nita re&longs;i&longs;tentia; </s>
					<s id="N206A1"><!-- NEW -->nulla e&longs;t re&longs;i&longs;tentia, cum globus impactus in nullum in&shy;<lb/>cidit, &longs;ed e&longs;t veluti infinita ce&longs;&longs;io; </s>
					<s id="N206A7"><!-- NEW -->cum ver&ograve; globus in corpus immobile <lb/>impingitur, e&longs;t veluti infinita re&longs;i&longs;tentia ratione huius motus; </s>
					<s id="N206AD"><!-- NEW -->cum ver&ograve; <lb/>globus in alium globum, quem mouet, impingitur, &longs;i vterque &aelig;qualis e&longs;t; </s>
					<s id="N206B3"><!-- NEW --><lb/>e&longs;t etiam &aelig;qualis ce&longs;&longs;io re&longs;i&longs;tenti&aelig;; </s>
					<s id="N206B8"><!-- NEW -->igitur globus impactus quie&longs;cit, &amp; <lb/>hoc e&longs;t iu&longs;tum medium extremorum pr&aelig;dictorum, id e&longs;t, inter nullam <lb/>ce&longs;&longs;ionem, &amp; infinitam ce&longs;&longs;ionem; </s>
					<s id="N206C0"><!-- NEW -->media e&longs;t &aelig;qualis ce&longs;&longs;io; </s>
					<s id="N206C4"><!-- NEW -->&amp; inter nul&shy;<lb/>lam re&longs;i&longs;tentiam &amp; infinitam re&longs;i&longs;tentiam media e&longs;t &aelig;qualis re&longs;i&longs;tentia; </s>
					<s id="N206CA"><!-- NEW --><pb pagenum="258" xlink:href="026/01/292.jpg"/>re&longs;i&longs;tentia autem con&longs;ideratur in globo impacto, cuius re&longs;i&longs;titur motui; </s>
					<s id="N206D2"><!-- NEW --><lb/>ce&longs;&longs;io ver&ograve; in alio, qui motui cedit; </s>
					<s id="N206D7"><!-- NEW -->appello autem infinitam re&longs;i&longs;ten&shy;<lb/>tiam cui nulla re&longs;pondet ce&longs;&longs;io; </s>
					<s id="N206DD"><!-- NEW -->nihil enim aliud pr&aelig;&longs;taret infinita; </s>
					<s id="N206E1"><!-- NEW -->por&shy;<lb/>r&ograve; cum nulla e&longs;t ce&longs;&longs;io, determinatio noua e&longs;t dupla prioris, vt demon&shy;<lb/>&longs;tratum e&longs;t &longs;upr&agrave;; </s>
					<s id="N206E9"><!-- NEW -->igitur nihil prioris remanet; </s>
					<s id="N206ED"><!-- NEW -->cum ver&ograve; nulla e&longs;t re&longs;i&shy;<lb/>&longs;tentia, tota prior remanet, &amp; nulla e&longs;t noua: </s>
					<s id="N206F3"><!-- NEW -->denique cum ce&longs;&longs;io &aelig;qua&shy;<lb/>lis e&longs;t re&longs;i&longs;tenti&aelig;, tant&ugrave;m remanet prioris quant&ugrave;m e&longs;t nou&aelig;; </s>
					<s id="N206F9"><!-- NEW -->igitur <lb/>vtraque &aelig;qualis e&longs;t: Vnde vides, ni fallor, perfectam analogiam, &amp;c. </s>
					<s id="N206FF">Ob&shy;<lb/>&longs;erua&longs;ti ni fallor, quod in hac re poti&longs;&longs;imum e&longs;t. </s>
					<s id="N20704"><!-- NEW -->Prim&ograve;, tunc e&longs;&longs;e infini&shy;<lb/>tam re&longs;i&longs;tentiam, cum nulla e&longs;t ce&longs;&longs;io: vt in corpore reflectente pror&longs;us <lb/>immobili. </s>
					<s id="N2070C">Secund&ograve;, tunc e&longs;&longs;e infinitam ce&longs;&longs;ionem, cum nulla e&longs;t re&longs;i&shy;<lb/>&longs;tentia vt in vacuo. </s>
					<s id="N20711"><!-- NEW -->Terti&ograve;, &aelig;qualitatem ce&longs;&longs;ionis, &amp; re&longs;i&longs;tenti&aelig; &aelig;quali&shy;<lb/>ter ab vtroque di&longs;tare; tant&ugrave;m enim e&longs;t inter &aelig;qualitatem illam, &amp; in&shy;<lb/>finitam ce&longs;&longs;ionem quantum inter eandem &aelig;qualitatem, &amp; infinitam re&shy;<lb/>&longs;i&longs;tentiam. </s>
					<s id="N2071B">Quart&ograve; ab infinita ce&longs;&longs;ione ad &aelig;qualitatem accedere nouam <lb/>determinationem &aelig;qualem priori. </s>
					<s id="N20720"><!-- NEW -->Quint&ograve;, ab eadem &aelig;qualitate ad in&shy;<lb/>finitam re&longs;i&longs;tentiam <expan abbr="tant&utilde;dem">tantundem</expan> accedere, ac proinde nouam determi&shy;<lb/>nationem e&longs;&longs;e duplam prioris; ex quo etiam probatur &aelig;qualitas angulo&shy;<lb/>rum incidenti&aelig;, &amp; reflexionis. </s>
				</p>
				<p id="N2072E" type="main">
					<s id="N20730"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 67.<emph.end type="center"/></s>
				</p>
				<p id="N2073C" type="main">
					<s id="N2073E"><!-- NEW --><emph type="italics"/>Si globus maior impingatur in minorem per lineam obliquam &longs;emper re&shy;<lb/>flectitur, lic&egrave;t aliquando in&longs;en&longs;ibiliter, quia fit determinatio mixta ex noua &amp; <lb/>priore, cuius proportio determinari pote&longs;t<emph.end type="italics"/>; &longs;it enim determinatio noua ad <lb/>priorem in linea incidenti&aelig; perpendiculari vt C<foreign lang="greek">d</foreign> ad CA fig. </s>
					<s id="N20751"><!-- NEW -->Th. 65. <lb/> vel vt AZ ad AF, &longs;it linea incidenti&aelig; obliqua EA producta in B; </s>
					<s id="N20757"><!-- NEW --><lb/>cert&egrave; &longs;i determinatio noua per lineam incidenti&aelig; obliquam EA e&longs;t ad <lb/>priorem, vt AZ ad AF; </s>
					<s id="N2075E"><!-- NEW -->&longs;umatur B<foreign lang="greek">u</foreign> &aelig;qualis AY; </s>
					<s id="N20766"><!-- NEW -->ducantur Y<foreign lang="greek">u</foreign> A<foreign lang="greek">u</foreign><lb/>dico A<foreign lang="greek">u</foreign> e&longs;&longs;e lineam reflexionis, quia e&longs;t mixta ex AY &amp; AB, vt con&shy;<lb/>&longs;tat ex dictis; Idem dico de aliis incidenti&aelig;. </s>
				</p>
				<p id="N20779" type="main">
					<s id="N2077B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 68.<emph.end type="center"/></s>
				</p>
				<p id="N20787" type="main">
					<s id="N20789"><!-- NEW --><emph type="italics"/>Si globus in &aelig;qualem globum impingatur, qui &aelig;quali impetu in eum etiam <lb/>impingitur per lineam connectentem centra<emph.end type="italics"/>; </s>
					<s id="N20794"><!-- NEW -->vterque retro agitur &aelig;quali <lb/>p&oelig;nitus motu, quo &longs;uam lineam vlteri&ugrave;s propaga&longs;&longs;et, &longs;i in alterum glo&shy;<lb/>bum non incidi&longs;&longs;et per Th.137.lib.1.&longs;i autem in&aelig;quali impetu mouean&shy;<lb/>tur, non e&longs;t determinatum &longs;upr&agrave;; pote&longs;t autem &longs;it determinari, fig. </s>
					<s id="N2079E"><!-- NEW -->1. <lb/>Tab.1.&longs;it globus A impactus in alium B motu vt 4. eodem tempore, quo <lb/>globus B impingitur in A motu vt 2. cert&egrave; globus B retr&ograve; agetur motu vt <lb/>4. quipp&egrave; &longs;iue moueatur &aelig;quali motu, &longs;iue minori, &longs;iue etiam quie&longs;cat, <lb/>&longs;emper &aelig;quali motu &agrave; globo A impelletur; quod cert&egrave; mirabile e&longs;t; pri&shy;<lb/>mum con&longs;tat per Th. 135.lib.  tertium con&longs;tat per Theor.128.lib.1. </s>
					<s id="N207AC"><!-- NEW -->Igi&shy;<lb/>tur &longs;ecundum con&longs;tat, &longs;i enim impellitur motu vt 4.dum in contrariam <lb/>partem mouetur vt 4. mult&ograve; magis &longs;i tant&ugrave;m mouetur vt 2. &amp; &longs;i tant&ugrave;m <lb/>impellitur motu vt 4. dum quie&longs;cit mult&ograve; magis motu vt 4. dum in <pb pagenum="259" xlink:href="026/01/293.jpg"/>contrariam partem mouetur motu vt 2. at ver&ograve; globus A non retro age&shy;<lb/>tur: </s>
					<s id="N207BD"><!-- NEW -->motu vt 4. &longs;ed tant&ugrave;m motu vt 2. vt patet; </s>
					<s id="N207C1"><!-- NEW -->quippe omnin&ograve; con&longs;i&longs;teret, <lb/>&longs;i globus B nullum pr&aelig;uium impetum habui&longs;&longs;et; &longs;i ver&ograve; habui&longs;&longs;et mo&shy;<lb/>tum vt 4. t&ugrave;m etiam A retroageretur motu vt 4. igitur motu vt duo, &longs;i <lb/>B impre&longs;&longs;it impetum vt duo. </s>
				</p>
				<p id="N207CB" type="main">
					<s id="N207CD"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 69.<emph.end type="center"/></s>
				</p>
				<p id="N207D9" type="main">
					<s id="N207DB"><!-- NEW --><emph type="italics"/>Si globus A in&aelig;qualem globum impingatur per lineam obliquam, ita vt al&shy;<lb/>ter in alterum impetu mutuo impingatur, determinari pote&longs;t motus vtriu&longs;que <lb/>vterque reflectetur<emph.end type="italics"/>; </s>
					<s id="N207E8"><!-- NEW -->certum e&longs;t, fit enim determinatio mixta ex noua, &amp; <lb/>priore; </s>
					<s id="N207EE"><!-- NEW -->igitur e&longs;t motus, quod duobus modis fieri pote&longs;t; </s>
					<s id="N207F2"><!-- NEW -->prim&ograve; &longs;i &aelig;qua&shy;<lb/>lis vtriu&longs;que &longs;it motus, &longs;it linea incidenti&aelig; EB producta in L fig.Th.63. <lb/> per quam globus A ab E proiicitur in globum B; </s>
					<s id="N207FA"><!-- NEW -->e&longs;tque LB linea in&shy;<lb/>cidenti&aelig;, per quam globus proiicitur in globum A, ita vt punctum con&shy;<lb/>tactus &longs;it B, &amp; linea connectens centra ABF; </s>
					<s id="N20802"><!-- NEW -->&longs;i globus B con&longs;i&longs;teret in <lb/>puncto B globus A reflecteretur per lineam BI, vt demon&longs;tratum e&longs;t in <lb/>Theoremate 63. quia determinatio prior e&longs;t, vt BL, noua vt BG; </s>
					<s id="N2080A"><!-- NEW -->igitur <lb/>ex vtraque fit BI; </s>
					<s id="N20810"><!-- NEW -->at ver&ograve; &longs;i globus B imprimat impetum in globo A <lb/>&aelig;qualem quidem, &longs;i linea incidenti&aelig; e&longs;&longs;et perpendicularis, minorem ta&shy;<lb/>men, quia e&longs;t obliqua qui e&longs;t ad &aelig;qualem vt BG ad BF; </s>
					<s id="N20818"><!-- NEW -->cert&egrave; determina&shy;<lb/>tio noua e&longs;t dupla BG; </s>
					<s id="N2081E"><!-- NEW -->quippe ratione reflexionis e&longs;t vt BG, ratione <lb/>impul&longs;ionis vt BG; </s>
					<s id="N20824"><!-- NEW -->igitur compo&longs;ita ex vtraque vt B<foreign lang="greek">d</foreign> dupla BG; </s>
					<s id="N2082C"><!-- NEW -->a&longs;&longs;u&shy;<lb/>matur LP &aelig;qualis; </s>
					<s id="N20832"><!-- NEW -->haud dubi&egrave; B<foreign lang="greek">d</foreign>, &amp; P<foreign lang="greek">d</foreign> BL; cert&egrave; determinatio mix&shy;<lb/>ta ex B<foreign lang="greek">d</foreign>, BL erit BP, qu&aelig; erit linea reflexionis. </s>
					<s id="N20844"><!-- NEW -->Hinc egregium Corol&shy;<lb/>larium deduco quod &longs;cilicet reflectatur globus A per angulos &aelig;quales, <lb/>quotie&longs;cunque globo &aelig;quali impetu contranitente repellitur; </s>
					<s id="N2084C"><!-- NEW -->quippe <lb/>angulus PBF e&longs;t &aelig;qualis angulo EBF: alterum etiam deduco, omnes li&shy;<lb/>neas reflexionis ad quo&longs;cunque angulos &longs;iue rectos, &longs;iue obliquos dum <lb/>vterque globus mutuo impetu ab &aelig;quali potentia in &longs;e&longs;e inuicem impin&shy;<lb/>guntur, e&longs;&longs;e &aelig;quales, quod cert&egrave; mirabile e&longs;t. </s>
					<s id="N20858">Secund&ograve;, &longs;i non &longs;it &aelig;qualis <lb/>vtriu&longs;que motus, &longs;ed motus globi DB &longs;it ad motum globi A vt AZ ad <lb/>AF fig. </s>
					<s id="N2085F"><!-- NEW -->Th.65. res fer&egrave; eodem modo determinari pote&longs;t; </s>
					<s id="N20863"><!-- NEW -->quipp&egrave; mo&shy;<lb/>tus impre&longs;&longs;us &agrave; globo B per lineam perpendicularem e&longs;t ad motum im&shy;<lb/>pre&longs;&longs;um A per inclinatam EA vt AZ ad AY; &longs;it autem linea inci&shy;<lb/>denti&aelig; DB fig. </s>
					<s id="N2086D">Th. 63. eiu&longs;dem incidenti&aelig; cum EA fig. </s>
					<s id="N20870"><!-- NEW -->Th. 65. igitur <lb/>globus A incidat per DB, &amp; globus B per MB, ita vt punctum conta&shy;<lb/>ctus &longs;it B, &amp; linea connectens centra FA; determinatio noua ratione in&shy;<lb/>cidenti&aelig; e&longs;t vt BH, cui addatur HF &aelig;qualis AY fig. </s>
					<s id="N2087A"><!-- NEW -->alterius ratione <lb/>motus impre&longs;&longs;i &agrave; globo B; </s>
					<s id="N20880"><!-- NEW -->tota determinatio erit BF; </s>
					<s id="N20884"><!-- NEW -->a&longs;&longs;umatur MT <lb/>&aelig;qualis BF: dico nouam lineam qu&aelig;&longs;itam e&longs;&longs;e B<foreign lang="greek">q</foreign> mixtam &longs;cilicet ex <lb/>BF BM, quod probatur vt &longs;upr&agrave;. </s>
				</p>
				<p id="N20890" type="main">
					<s id="N20892"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 70.<emph.end type="center"/></s>
				</p>
				<p id="N2089E" type="main">
					<s id="N208A0"><!-- NEW --><emph type="italics"/>Si duo globi in&aelig;quales inuicem impingantur per lineam connectentem cen&shy;<lb/>tra diuer&longs;imod&egrave; <expan abbr="po&longs;s&utilde;t">po&longs;sunt</expan> reflecti<emph.end type="italics"/>; </s>
					<s id="N208AF"><!-- NEW -->Prim&ograve;, &longs;i motus vtriu&longs;que e&longs;t &aelig;qualis, minor <lb/>globus retroagetur; </s>
					<s id="N208B5"><!-- NEW -->accipit enim totum impetum maioris globi, id e&longs;t, <pb pagenum="260" xlink:href="026/01/294.jpg"/>impetum &aelig;qualem; </s>
					<s id="N208BE"><!-- NEW -->igitur retro agitur velociore motu in eadem propor&shy;<lb/>tione qua alter globus maior e&longs;t altero, v.g. <!-- REMOVE S-->&longs;i maior e&longs;t duplus, retroa&shy;<lb/>getur motu duplo illius, quo &longs;uum iter pro&longs;equeretur, ni&longs;i maior globus <lb/>occurreret; </s>
					<s id="N208CA"><!-- NEW -->at ver&ograve; globus maior duplus &longs;cilicet alterius non retroage&shy;<lb/>tur; </s>
					<s id="N208D0"><!-- NEW -->quipp&egrave; &longs;i minor globus con&longs;i&longs;teret in puncto contactus, maior glo&shy;<lb/>bus &longs;uum iter pro&longs;equeretur motu &longs;ubduplo; </s>
					<s id="N208D6"><!-- NEW -->quippe determinatio noua <lb/>e&longs;&longs;et &longs;ubdupla prioris, vt patet ex Th.66. &longs;ed accipit etiam impetum &longs;ub&shy;<lb/>duplum illius, quem habet, igitur determinatio noua e&longs;t compo&longs;ita ex <lb/>duabus &longs;ubduplis; </s>
					<s id="N208E0"><!-- NEW -->igitur e&longs;t &aelig;qualis priori; </s>
					<s id="N208E4"><!-- NEW -->igitur <expan abbr="n&otilde;">non</expan> retroagetur, &longs;ed con&shy;<lb/>&longs;i&longs;tet &longs;i duplus e&longs;t; &longs;i ver&ograve; maior duplo &longs;uum iter pro&longs;equetur &longs;ed minore <lb/>motu pro rata, &longs;i minor duplo retroagetur. </s>
					<s id="N208F0"><!-- NEW -->Hinc egregium effatum, &longs;i duo <lb/>globi in &longs;e &longs;e inuicem allidantur &aelig;quali motu, &longs;i maior duplus e&longs;t, con&longs;i&shy;<lb/>&longs;tet ad punctum contactus; </s>
					<s id="N208F8"><!-- NEW -->&longs;i maior duplo &longs;uum iter pro&longs;equetur; &longs;i mi&shy;<lb/>nor reflectetur; </s>
					<s id="N208FE"><!-- NEW -->quod &longs;i motu in&aelig;quali mouentur, vel maior mouetur <lb/>maiori motu, vel minor; </s>
					<s id="N20904"><!-- NEW -->&longs;i maior, minor retroagetur, maior ver&ograve; vel re&shy;<lb/>troagetur, vel con&longs;i&longs;tet, vel eadem via mouebitur; </s>
					<s id="N2090A"><!-- NEW -->retroagetur quidem, &longs;i <lb/>noua determinatio compo&longs;ita &longs;cilicet ex impetu impre&longs;&longs;o &agrave; minore glo&shy;<lb/>bo, &amp; determinatione reflexionis quam conferet globus minor, etiam&longs;i <lb/>quie&longs;ceret; </s>
					<s id="N20914"><!-- NEW -->&longs;i noua inquam determinatio &longs;it maior priore; </s>
					<s id="N20918"><!-- NEW -->con&longs;i&longs;tet ver&ograve;, <lb/>&longs;i fit &aelig;qualis; </s>
					<s id="N2091E"><!-- NEW -->&longs;uum denique iter pro&longs;equetur, &longs;i &longs;it minor: qu&aelig; omnia ex <lb/>dictis facil&egrave; determinari po&longs;&longs;unt. </s>
				</p>
				<p id="N20924" type="main">
					<s id="N20926"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 71.<emph.end type="center"/></s>
				</p>
				<p id="N20932" type="main">
					<s id="N20934"><!-- NEW --><emph type="italics"/>Si ver&ograve; duo globi in&aelig;quales in &longs;e&longs;e inuicem impingantur per lineas obliquas, <lb/>&longs;unt quoque tres combinationes<emph.end type="italics"/>; </s>
					<s id="N2093F"><!-- NEW -->vel enim vterque impingitur motu &aelig;quali, <lb/>vel maior globus maiore motu, vel minor; vt autem habeatur linea, &longs;eu <lb/>determinatio cuiu&longs;libet globi, &longs;upponi debet prim&ograve; linea incidenti&aelig; al&shy;<lb/>terius v.g. <!-- REMOVE S-->maioris. </s>
					<s id="N2094B"><expan abbr="Sec&utilde;d&ograve;">Secund&ograve;</expan> &longs;upponi debet minor quie&longs;cere. </s>
					<s id="N20951"><!-- NEW -->Terti&ograve;, inue&shy;<lb/>niri noua determinatio, qu&aelig; confertur maiori &agrave; minore quie&longs;cente, qu&aelig; <lb/>facil&egrave; inueniri pote&longs;t cognita determinatione noua, quam conferret &longs;i <lb/>linea incidenti&aelig; e&longs;&longs;et perpendicularis; Quart&ograve;, debet inueniri determi&shy;<lb/>natio noua qu&aelig; confertur &agrave; minore maiori ratione impetus, qu&aelig; facil&egrave; <lb/>inueniri pote&longs;t cognita determinatione huius impetus per lineam per&shy;<lb/>pendicularem. </s>
					<s id="N20961">Quint&ograve;, debet componi determinatio noua ex vtraque. </s>
					<s id="N20964"><!-- NEW --><lb/>Sext&ograve; denique, ex his habebitur determinatio mixta ex hac compo&longs;ita, &amp; <lb/>linea incidenti&aelig; producta, quod facil&egrave; ex dictis intelligitur; &longs;imiliter, vt <lb/>habeatur reflexo minoris, debent eadem pr&aelig;&longs;upponi in maiore. </s>
				</p>
				<p id="N2096D" type="main">
					<s id="N2096F"><!-- NEW -->Obiiceret hic &longs;ort&egrave; aliquis mirari &longs;e quamobrem duo globi &aelig;quales <lb/>in &longs;e&longs;e inuicem &aelig;quali motu impinguntur vterque retroagatur, c&ugrave;m po&shy;<lb/>ti&ugrave;s vterque con&longs;i&longs;tere deberet: quemadmodum quie&longs;cit globus cui im&shy;<lb/>primuntur duo impetus contrarij, hoc e&longs;t ad lineas oppo&longs;itas determi&shy;<lb/>nati. </s>
					<s id="N2097B"><!-- NEW -->Re&longs;pondeo cum eodem in&longs;tanti eidem globo duplex ille impetus <lb/>imprimitur, non videri vllam rationem, cur alter pr&aelig;ualeat; </s>
					<s id="N20981"><!-- NEW -->at ver&ograve; vbi <lb/>iam impetus e&longs;t productus, pote&longs;t ad aliam lineam determinari, vt patet; </s>
					<s id="N20987"><!-- NEW --><lb/>igitur ratione determinationis nou&aelig;, qu&aelig; e&longs;t &aelig;qualis priori de&longs;truitur; </s>
					<s id="N2098C"><!-- NEW --><pb pagenum="261" xlink:href="026/01/295.jpg"/>igitur, &longs;i nihil aliud e&longs;&longs;et, globus quie&longs;ceret; at ver&ograve; ratione impetus <lb/>noui producti ab alio globo, vel eius impetu, retroagitur. </s>
				</p>
				<p id="N20996" type="main">
					<s id="N20998"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 72.<emph.end type="center"/></s>
				</p>
				<p id="N209A4" type="main">
					<s id="N209A6"><!-- NEW --><emph type="italics"/>Pote&longs;t globus retroagi, lic&egrave;t in aliud corpus non incidat<emph.end type="italics"/>: hoc e&longs;t vulgare, <lb/>mirificum tamen experimentum, &longs;it enim globus ECBL incubans <lb/>plano horizontali MLG, in quem de&longs;cendat planum, quod ni&longs;i globi <lb/>re&longs;i&longs;teret materies, re&longs;ecaret &longs;ectionem DHE. </s>
					<s id="N209B5"><!-- NEW -->Dico quod ab i&longs;to ictu <lb/>globus determinabitur ad duos motus, alterum centri K ver&longs;us A, alte&shy;<lb/>rum orbis puncti D &longs;cilicet, vel C ver&longs;us E, ita vt initio motus centri <lb/>pr&aelig;ualeat ver&longs;us A, qui cit&ograve; de&longs;truitur propter affrictum partium plani; </s>
					<s id="N209BF"><!-- NEW --><lb/>vnde remanet tant&ugrave;m motus orbis, quo &longs;cilicet globus rotatur ver&longs;us F; </s>
					<s id="N209C4"><!-- NEW --><lb/>nec e&longs;t alia ratio huius experimenti, in quo habetur qu&aelig;dam reflexio &longs;i&shy;<lb/>ne corpore reflectente: pro quo ob&longs;erua fore vt experimentum meli&ugrave;s <lb/>&longs;uccedat, &longs;i cadat ictus propi&ugrave;s ad punctum C, quia diuti&ugrave;s voluitur <lb/>orbis. </s>
				</p>
				<p id="N209CF" type="main">
					<s id="N209D1"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 73.<emph.end type="center"/></s>
				</p>
				<p id="N209DD" type="main">
					<s id="N209DF"><!-- NEW --><emph type="italics"/>Hinc etiam ratio euidenti&longs;&longs;ima alterius experimenti, quod vald&egrave; familiare <lb/>e&longs;t iis, qui breuioribus globulis ludunt<emph.end type="italics"/>; </s>
					<s id="N209EA"><!-- NEW -->&longs;i enim ita proiiciatur per medium <lb/>a&euml;ra globulus, vt eius hemi&longs;ph&aelig;rium &longs;uperi&ugrave;s moueatur contrario motu <lb/>motui centri, vel vt A&longs;tronomi loquuntur in Antecedentia, vbi globulus <lb/>terr&aelig; planum attingit, vel illico con&longs;i&longs;tit, vel retroagitur, ni&longs;i aliqua <lb/>portio plani in&aelig;qualis ali&ograve; reflectat; </s>
					<s id="N209F6"><!-- NEW -->cuius rei ratio e&longs;t duplex ille mo&shy;<lb/>tus, quorum &longs;i determinatio &aelig;qualis e&longs;t, con&longs;i&longs;tit globus; </s>
					<s id="N209FC"><!-- NEW -->&longs;i ver&ograve; determi&shy;<lb/>natio motus orbis &longs;it maior, quod &longs;emper accidit in breuiore ictu; cert&egrave; <lb/>cum pr&aelig;ualeat, globum retroire nece&longs;&longs;e e&longs;t. </s>
				</p>
				<p id="N20A04" type="main">
					<s id="N20A06"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 74.<emph.end type="center"/></s>
				</p>
				<p id="N20A12" type="main">
					<s id="N20A14"><!-- NEW --><emph type="italics"/>Globulus eburneus in alium impactus con&longs;istit quidem &longs;i centrum respicias<emph.end type="italics"/>; </s>
					<s id="N20A1D"><!-- NEW --><lb/>at ver&ograve; &longs;&aelig;p&egrave; accidit globulum circa centrum &longs;uum immobile motu cir&shy;<lb/>culari &amp; horizontali ad in&longs;tar vorticis conuolui; </s>
					<s id="N20A24"><!-- NEW -->cuius effectus ratio e&longs;t, <lb/>quia c&ugrave;m prior impetus ideo tant&ugrave;m de&longs;truatur, quia e&longs;t fru&longs;tr&agrave;, &amp; fru&shy;<lb/>&longs;tr&agrave; e&longs;t, quia &aelig;qualis e&longs;t determinatio vtraque per lineas oppo&longs;itas, de&shy;<lb/>terminatio inquam motus centri; </s>
					<s id="N20A2E"><!-- NEW -->&longs;i tamen globi deficiat &aelig;quilibrium, vt <lb/>&longs;emper reuer&acirc; tantill&ugrave;m deficit, in partem illam globus voluitur, vt vide&shy;<lb/>mus in corpore oblongo, cuius dum vna extremitas pellitur circa cen&shy;<lb/>trum aliquod voluitur; </s>
					<s id="N20A38"><!-- NEW -->&longs;ed de motu circulari infr&agrave;; &longs;ed tanti&longs;per &longs;ph&aelig;&shy;<lb/>ri&longs;terium ingredi placuit, vt alios effectus motus reflexi demon&shy;<lb/>&longs;tremus. </s>
				</p>
				<p id="N20A40" type="main">
					<s id="N20A42"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 75.<emph.end type="center"/></s>
				</p>
				<p id="N20A4E" type="main">
					<s id="N20A50"><!-- NEW --><emph type="italics"/>Cum pila coniicitur in parietem ad latus, re&longs;ilit in pauimentum, vnde ite&shy;<lb/>rum repercutitur fallente &longs;altu<emph.end type="italics"/>; </s>
					<s id="N20A5B"><!-- NEW -->ratio e&longs;t clara, quia quadruplici qua&longs;i <lb/>motu mouetur pila in vltimo &longs;altu; </s>
					<s id="N20A61"><!-- NEW -->Primus e&longs;t motus centri bis reflexus; </s>
					<s id="N20A65"><!-- NEW --><pb pagenum="262" xlink:href="026/01/296.jpg"/>Secundus primus motus orbis, quo &longs;cilicet primum in parietem illi&longs;a e&longs;t, <lb/>Tertius motus orbus mixtus, quo ex pariete re&longs;i&longs;tit; </s>
					<s id="N20A6F"><!-- NEW -->Quartus denique <lb/>motus orbis, quo mouetur po&longs;t qu&agrave;m &agrave; pauimento repercu&longs;&longs;a e&longs;t, exem&shy;<lb/>plum habes in pila rotata per planum horizontale, qu&aelig; obliqu&egrave; in aduer&shy;<lb/>&longs;um planum impingitur; </s>
					<s id="N20A79"><!-- NEW -->&longs;tatim enim ob&longs;eruas nouum motum orbis mix&shy;<lb/>tum ex priori &amp; nouo, in quo e&longs;t quidem maxima difficultas; &longs;ed de his <lb/>motibus mixtis agemus infr&agrave; lib.  9. </s>
				</p>
				<p id="N20A81" type="main">
					<s id="N20A83"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 76.<emph.end type="center"/></s>
				</p>
				<p id="N20A8F" type="main">
					<s id="N20A91"><!-- NEW --><emph type="italics"/>Cum pila emittitur rotato &longs;ur&longs;um pilari reticulo &longs;altus vt plurim&ugrave;m fallit, <lb/>&longs;ecus ver&ograve; &longs;i emittatur reticulo deor&longs;um acto<emph.end type="italics"/>; </s>
					<s id="N20A9C"><!-- NEW -->ratio e&longs;t, quia in primo ca&longs;u <lb/>motus orbis pil&aelig; e&longs;t contrarius motui centri, vt patet; inde fraus &longs;altus, <lb/>&longs;ecus ver&ograve; in &longs;ecundo ca&longs;u. </s>
				</p>
				<p id="N20AA4" type="main">
					<s id="N20AA6"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 77.<emph.end type="center"/></s>
				</p>
				<p id="N20AB2" type="main">
					<s id="N20AB4"><!-- NEW --><emph type="italics"/>Cum pila veloci&longs;&longs;im&egrave; ita emittitur, vt linea incidenti&aelig; faciat angulum acu&shy;<lb/>ti&longs;&longs;imum cum pauimento, nullus fer&egrave; e&longs;t &longs;altus<emph.end type="italics"/>; </s>
					<s id="N20ABF"><!-- NEW -->quia cum par&ugrave;m valeat vis <lb/>reflexiua ad angulum acuti&longs;&longs;imum; </s>
					<s id="N20AC5"><!-- NEW -->quia prior determinatio fer&egrave; pr&aelig;ua&shy;<lb/>let, &amp; remanet tota, non quidem intacta, &longs;ed vix &longs;aucia; </s>
					<s id="N20ACB"><!-- NEW -->determinatio <lb/>motus orbis, qui promouet motum centri, iuuat priorem determina&shy;<lb/>tionem motus centri; igitur vel nullus, vel modicus, i&longs;que celerrimus <lb/>fit &longs;altus. </s>
				</p>
				<p id="N20AD5" type="main">
					<s id="N20AD7"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 78.<emph.end type="center"/></s>
				</p>
				<p id="N20AE3" type="main">
					<s id="N20AE5"><emph type="italics"/>Cum pila cadit obliqua linea in pauimentum non longo &agrave; pariete interuallo, <lb/>in quem linea &longs;ur&longs;um inclinata po&longs;t &longs;altum &longs;tatim impingitur long&egrave; alti&ugrave;s <lb/>a&longs;cendit pil&aelig; &longs;altus,<emph.end type="italics"/> ratio petitur &agrave; noua reflexione, quod facil&egrave; e&longs;t. </s>
				</p>
				<p id="N20AF1" type="main">
					<s id="N20AF3"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 79.<emph.end type="center"/></s>
				</p>
				<p id="N20AFF" type="main">
					<s id="N20B01"><!-- NEW --><emph type="italics"/>Cum pila obliqu&egrave; cadit in iuncturam parietis &amp; pauimenti, non reflectitur, <lb/>&amp; tunc maxim&egrave; fallit &longs;altus<emph.end type="italics"/>; </s>
					<s id="N20B0C"><!-- NEW -->ratio e&longs;t, quia e&longs;t duplex punctum conta&shy;<lb/>ctus; </s>
					<s id="N20B12"><!-- NEW -->igitur determinationum nouarum conflictus; </s>
					<s id="N20B16"><!-- NEW -->quipp&egrave; paries ver&longs;us <lb/>pauimentum; </s>
					<s id="N20B1C"><!-- NEW -->hoc ver&ograve; ver&longs;us parietem repellit; igitur tant&ugrave;m &longs;upere&longs;t, <lb/>vt in pauimento rotetur &longs;ine &longs;altu, quod accidit ad omnem angulum in&shy;<lb/>cidenti&aelig; obliquum, vt patet experienti&acirc;, cuius ratio communis e&longs;t. </s>
				</p>
				<p id="N20B24" type="main">
					<s id="N20B26"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 80.<emph.end type="center"/></s>
				</p>
				<p id="N20B32" type="main">
					<s id="N20B34"><!-- NEW --><emph type="italics"/>Cum leniore affrictu pil&aelig; funis perstringitur vel, vt aiunt, crispatur, &longs;altus <lb/>etiam ludentis manum frustratur<emph.end type="italics"/>; quia motus orbis mutatur in illo funis <lb/>incu&longs;&longs;u, vt patet. </s>
				</p>
				<p id="N20B41" type="main">
					<s id="N20B43"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 81.<emph.end type="center"/></s>
				</p>
				<p id="N20B4F" type="main">
					<s id="N20B51"><!-- NEW --><emph type="italics"/>Denique, cum reticulo motus orbis is a intorquetur, vt vel circulo horizon&shy;<lb/>tali, vel alteri inclinato &longs;it parallelus, &longs;altus pil&aelig; fallaci&aelig; &longs;ube&longs;t<emph.end type="italics"/>; </s>
					<s id="N20B5C"><!-- NEW -->quippe &agrave; <lb/>priori determinatione motus orbis tuebatur; </s>
					<s id="N20B62"><!-- NEW -->omitto in&aelig;qualitatem pa&shy;<lb/>uimenti, qu&aelig; &longs;altum pil&aelig; &longs;&aelig;pi&longs;&longs;im&egrave; &agrave; &longs;ua linea detorquet; &longs;ed fort&egrave; &longs;atis <lb/>lu&longs;um e&longs;t. </s>
				</p>
				<pb pagenum="263" xlink:href="026/01/297.jpg"/>
				<p id="N20B6E" type="main">
					<s id="N20B70"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 82.<emph.end type="center"/></s>
				</p>
				<p id="N20B7C" type="main">
					<s id="N20B7E"><!-- NEW --><emph type="italics"/>Cum planus lapis per lineam incidenti&aelig; vald&egrave; obliquam in &longs;uperficiem <lb/>aqu&aelig; proijcitur, qua&longs;i repit lapis in ip&longs;a &longs;uperficie &longs;eu plurimo &longs;altu di&longs;currit<emph.end type="italics"/>; </s>
					<s id="N20B89"><!-- NEW --><lb/>quia &longs;cilicet modica re&longs;i&longs;tentia &longs;ufficit ad reflexionem, cum angulus in&shy;<lb/>cidenti&aelig; e&longs;t obliquior, vt con&longs;tat ex dictis; </s>
					<s id="N20B90"><!-- NEW -->vt tamen longiorem tractum <lb/>percurrat lapis, ita proiiciendus e&longs;t, vt eius horizonti planior &longs;uperficies <lb/>&longs;it parallela; </s>
					<s id="N20B98"><!-- NEW -->imm&ograve; tantill&ugrave;m portio anthica attollatur: cur autem, &amp; <lb/>quomodo re&longs;i&longs;tat &longs;uperficies aqu&aelig;, dicemus &longs;uo loco. </s>
				</p>
				<p id="N20B9E" type="main">
					<s id="N20BA0"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 83.<emph.end type="center"/></s>
				</p>
				<p id="N20BAC" type="main">
					<s id="N20BAE"><!-- NEW --><emph type="italics"/>Imm&ograve; &longs;&aelig;pi&ugrave;s accidit maiorum tormentorum pilas ab aqua reflecti aliquo&shy;<lb/>ties, vt multis experimentis comprobatum e&longs;t<emph.end type="italics"/>; </s>
					<s id="N20BB9"><!-- NEW -->nec enim ab interiore maris <lb/>fundo reflecti po&longs;&longs;unt, &longs;ed lineam incidenti&aelig; vald&egrave; obliquam e&longs;&longs;e nece&longs;&shy;<lb/>&longs;e e&longs;t; habes egregium experimentum apud Mercennum in ph&oelig;n. </s>
					<s id="N20BC1"><!-- NEW --><lb/>Balli&longs;t propo&longs;itione 25. ab illu&longs;tri viro petro Petito ob&longs;eruatum, quo <lb/>duntaxat a&longs;&longs;erit pilam &egrave; tormento ferreo 10 pedes longo, &amp; horizontali <lb/>parallelo emi&longs;&longs;am, quinquies &agrave; &longs;uperficie Oceani reflexam fui&longs;&longs;e; &longs;ed de <lb/>hoc paul&ograve; p&ograve;&longs;t. </s>
				</p>
				<p id="N20BCC" type="main">
					<s id="N20BCE"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 84.<emph.end type="center"/></s>
				</p>
				<p id="N20BDA" type="main">
					<s id="N20BDC"><!-- NEW --><emph type="italics"/>Addo vnum, quod &longs;&aelig;pi&ugrave;s ob&longs;eruatum e&longs;t in illo iactu planorum lapidum, <lb/>qu&ograve;d &longs;cilicet &longs;ub finem iactus qua&longs;i in orbem dextror&longs;um reflectantur<emph.end type="italics"/>; </s>
					<s id="N20BE7"><!-- NEW -->cuius <lb/>ratio manife&longs;ta e&longs;t motus orbis horizontali parallelus, qui pr&aelig;ter motum <lb/>centri lapidi impre&longs;&longs;us e&longs;t; </s>
					<s id="N20BEF"><!-- NEW -->quia facili&ugrave;s de&longs;truitur motus centri, qu&agrave;m <lb/>motus orbis; </s>
					<s id="N20BF5"><!-- NEW -->vnde &longs;ub finem hic illum in &longs;uas partes trahit, dextror&longs;um <lb/>&longs;cilicet, &longs;i dextra proiiciatur lapis; </s>
					<s id="N20BFB"><!-- NEW -->quia duobus primis digitis po&longs;terior <lb/>lapidis portio &longs;ini&longs;tror&longs;um inflectitur; igitur anterior dextror&longs;um, in <lb/>quo non e&longs;t difficultas. </s>
				</p>
				<p id="N20C03" type="main">
					<s id="N20C05"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 85.<emph.end type="center"/></s>
				</p>
				<p id="N20C11" type="main">
					<s id="N20C13"><!-- NEW --><emph type="italics"/>Cum proiicitur globus in aquam per lineam incidenti&aelig; obliquam, &longs;i non re&shy;<lb/>flectitur ab ip&longs;a &longs;uperficie aqu&aelig;; </s>
					<s id="N20C1B"><!-- NEW -->incuruatur eius linea producta per mediam <lb/>aquam,<emph.end type="italics"/> v.g. <!-- REMOVE S-->&longs;it vas ABD G, &longs;olidum aqu&aelig; va&longs;e contentum CBDF; </s>
					<s id="N20C26"><!-- NEW -->li&shy;<lb/>nea obliqua incidenti&aelig; globi projecti IH, producta HD: </s>
					<s id="N20C2C"><!-- NEW -->dico quod <lb/>frangetur in H, &amp; qua&longs;i refringetur in HE; </s>
					<s id="N20C32"><!-- NEW -->experientia certi&longs;&longs;ima e&longs;t; </s>
					<s id="N20C36"><!-- NEW --><lb/>ratio ver&ograve; e&longs;t, quia c&ugrave;m vis reflexiua puncti H &longs;it aliqua, hoc e&longs;t, c&ugrave;m &longs;it <lb/>aliquid determinationis nou&aelig;, qu&aelig; haud dubi&egrave; minor e&longs;t priore, debet <lb/>nece&longs;&longs;ari&ograve; mutari linea; </s>
					<s id="N20C3F"><!-- NEW -->quod autem &longs;it aliquid determinationis nou&aelig; <lb/>in H, patet ex eo quod angulus incidenti&aelig; &longs;it vald&egrave; obliquus, reflectitur <lb/>globus; igitur in altero angulo incidenti&aelig; debet e&longs;&longs;e aliquid nou&aelig; de&shy;<lb/>terminationis. </s>
					<s id="N20C49"><!-- NEW -->Secund&ograve;, quia pl&ugrave;s re&longs;i&longs;tit aqua, qu&agrave;m a&euml;r; </s>
					<s id="N20C4D"><!-- NEW -->igitur fran&shy;<lb/>gitur prior determinatio, &amp; h&aelig;c e&longs;t vera ratio huius effectus, quem ali&shy;<lb/>qui ob&longs;eruarunt; </s>
					<s id="N20C55"><!-- NEW -->Et fort&egrave; dici po&longs;&longs;et refractio motus, qu&aelig; pror&longs;us e&longs;t <lb/>contraria refractioni luminis; </s>
					<s id="N20C5B"><!-- NEW -->quippe refractio luminis talis e&longs;t, vt radius <lb/>primo medio raro in den&longs;um incidens incuruetur ad perpendicularem, <lb/>cum tamen linea motus obliqu&egrave; incidens &egrave; medio raro in den&longs;um incur-<pb pagenum="264" xlink:href="026/01/298.jpg"/>uetur &agrave; perpendiculari: </s>
					<s id="N20C68"><!-- NEW -->An fort&egrave; etiam ex hoc ph&aelig;nomeno duci pote&longs;t <lb/>vera men&longs;ura, &longs;eu regula refractionum, quod ingenio&longs;i&longs;&longs;im&egrave; excogitauit <lb/>vir illu&longs;tris Renatus De&longs;cartes in &longs;ua Dioptrica; </s>
					<s id="N20C70"><!-- NEW -->&longs;ed di&longs;crimen maximum <lb/>e&longs;t, qu&ograve;d luminis diffu&longs;io &longs;eu propagatio nullum dicat motum localem, <lb/>vt &longs;uo loco demon&longs;trabimus; </s>
					<s id="N20C78"><!-- NEW -->quippe lumen qualitas e&longs;t, vt impetus; quod <lb/>tamen ad rem pr&aelig;&longs;entem nihil pror&longs;us facit. </s>
				</p>
				<p id="N20C7E" type="main">
					<s id="N20C80"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 86.<emph.end type="center"/></s>
				</p>
				<p id="N20C8C" type="main">
					<s id="N20C8E"><!-- NEW --><emph type="italics"/>Linea refractionis motus non e&longs;t recta &lpar;&longs;ic eam deinceps appellabimus.&rpar;<emph.end type="italics"/><lb/><expan abbr="C&utilde;">Cum</expan> enim ideo deflectat &agrave; recta HD, quia <expan abbr="plan&utilde;">planum</expan> in H re&longs;i&longs;tit motui globi; <lb/>igitur etiam in K deflectet &agrave; recta KE, quia etiam medium in K re&longs;i&longs;tit. </s>
				</p>
				<p id="N20CA1" type="main">
					<s id="N20CA3"><!-- NEW -->Ob&longs;eruabis tamen prim&ograve;, vix hoc di&longs;cerni po&longs;&longs;e, ni&longs;i &longs;it maxima vis <lb/>motus; </s>
					<s id="N20CA9"><!-- NEW -->quippe grauitas corporis defert corpus deor&longs;um; vnde vis illa <lb/>grauitationis impedit, ne corpus reflectat &longs;eu re&longs;iliat &longs;ur&longs;um Secund&ograve;, &longs;i <lb/>corpus in aquam projectum &longs;it leuius aqua, non mod&ograve; h&aelig;c refractio &longs;en&shy;<lb/>&longs;ibilis e&longs;t, ver&ugrave;m etiam illa perpetua refractionum &longs;eries, quia aqua &longs;em&shy;<lb/>per attollit &longs;ur&longs;um corpus leuius. </s>
					<s id="N20CB5">Terti&ograve;, in corpore oblongo hoc expe&shy;<lb/>rimentum maxim&egrave; probatur, quia plures partes aqu&aelig; &longs;imul reflectunt. </s>
				</p>
				<p id="N20CBA" type="main">
					<s id="N20CBC"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 87.<emph.end type="center"/></s>
				</p>
				<p id="N20CC8" type="main">
					<s id="N20CCA"><emph type="italics"/>Linea motus refracti non e&longs;t recta,<emph.end type="italics"/> prob. </s>
					<s id="N20CD2">quia cum in &longs;ingulis punctis <lb/>aqu&aelig; fer&egrave; mutetur, curuam e&longs;&longs;e nece&longs;&longs;e e&longs;t. </s>
				</p>
				<p id="N20CD7" type="main">
					<s id="N20CD9"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 88.<emph.end type="center"/></s>
				</p>
				<p id="N20CE5" type="main">
					<s id="N20CE7"><!-- NEW --><emph type="italics"/>Hinc optima ratio ducitur, cur globus ex tormento excu&longs;&longs;us ad angulum <lb/>incidenti&aelig; vald&egrave; acutum &longs;uperficiem aqu&aelig; penetret<emph.end type="italics"/>; </s>
					<s id="N20CF2"><!-- NEW -->ex qua denu&ograve; emergit <lb/>qua&longs;i per arcum primum deor&longs;um; </s>
					<s id="N20CF8"><!-- NEW -->t&ugrave;m demum &longs;ur&longs;um inflexum imm&ograve; <lb/>plures accidunt huiu&longs;modi repetit&aelig; emer&longs;iones: </s>
					<s id="N20CFE"><!-- NEW -->hinc vald&egrave; falluntur, <lb/>qui credunt ab ip&longs;o fundo maris globum repercuti; quod plu&longs;qu&agrave;m ri&shy;<lb/>diculum e&longs;t; hoc quoque <expan abbr="experiment&utilde;">experimentum</expan> in projectis &longs;axis &longs;&aelig;pi&ugrave;s ob&longs;eruaui. </s>
				</p>
				<p id="N20D0A" type="main">
					<s id="N20D0C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 89.<emph.end type="center"/></s>
				</p>
				<p id="N20D18" type="main">
					<s id="N20D1A"><!-- NEW --><emph type="italics"/>Hinc cum &longs;axa planiora &longs;unt in medio a&euml;re &longs;imile ob&longs;eruari pote&longs;t experi&shy;<lb/>mentum<emph.end type="italics"/>; </s>
					<s id="N20D25"><!-- NEW -->nam po&longs;t aliquem de&longs;cen&longs;um iterum a&longs;cendit &longs;axum; nec e&longs;t <lb/>quod aliquis vento flanti cau&longs;am huius effectus tribuat, qui &longs;emper acci&shy;<lb/>dit etiam vald&egrave; &longs;ereno c&oelig;lo. </s>
				</p>
				<p id="N20D2D" type="main">
					<s id="N20D2F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 90.<emph.end type="center"/></s>
				</p>
				<p id="N20D3B" type="main">
					<s id="N20D3D"><!-- NEW --><emph type="italics"/>Hinc cau&longs;a euidens illius a&longs;cen&longs;us &longs;agitt&aelig; quamtumuis per lineam horizon&shy;<lb/>ti parallelam emitatur<emph.end type="italics"/>; </s>
					<s id="N20D48"><!-- NEW -->quipp&egrave; ab a&euml;re inferiori qua&longs;i repercutitur, ali&shy;<lb/>quid &longs;imile coniicio in glandibus ex tormento explo&longs;is; </s>
					<s id="N20D4E"><!-- NEW -->e&longs;t enim aliquis <lb/>quamuis in&longs;en&longs;ibilis a&longs;cen&longs;us; </s>
					<s id="N20D54"><!-- NEW -->hinc fort&egrave; ratio, cur in &longs;copum lineas di&shy;<lb/>rectionis horizonti parallel&aelig; re&longs;pondentem globus incidat, c&ugrave;m infra <lb/>&longs;copum cadere deberet, vt reuer&acirc; fit in notabili di&longs;tantia propter mo&shy;<lb/>tum mixtum; </s>
					<s id="N20D5E"><!-- NEW -->exemplum huius effectus clari&longs;&longs;imum video in illis auicu&shy;<lb/>lis, qu&aelig; per &longs;altus, vel arcus huiu&longs;modi volant; prim&ograve; enim de&longs;cendere <lb/>videntur, &longs;ed vix a&longs;cendunt. </s>
				</p>
				<pb pagenum="265" xlink:href="026/01/299.jpg"/>
				<p id="N20D6A" type="main">
					<s id="N20D6C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 91.<emph.end type="center"/></s>
				</p>
				<p id="N20D78" type="main">
					<s id="N20D7A"><!-- NEW --><emph type="italics"/>Pote&longs;t determinari proportio anguli huius refractionis motus, &longs;i cogno&longs;catur <lb/>re&longs;i&longs;tentia, qua medium re&longs;istit perpendiculari<emph.end type="italics"/>; </s>
					<s id="N20D85"><!-- NEW -->v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;i globus plumbeus ex <lb/>a&euml;re perpendiculariter cadat in &longs;uperficiem aqu&aelig;, haud dubi&egrave; ip&longs;am <lb/>aquam &longs;ubit, &longs;ed minore motu; </s>
					<s id="N20D91"><!-- NEW -->quippe frangitur ab ip&longs;a den&longs;itate aqu&aelig; <lb/>vis primi impetus, quo &longs;cilicet per liberiorem a&euml;ra pri&ugrave;s ferebatur: </s>
					<s id="N20D97"><!-- NEW -->vnde <lb/>&longs;i habeatur proportio re&longs;i&longs;tenti&aelig; aqu&aelig; po&longs;ita linea incidenti&aelig; perpendi&shy;<lb/>culari, non e&longs;t dubium, quin habeatur etiam re&longs;i&longs;tentia po&longs;ita linea in&shy;<lb/>cidenti&aelig; obliqua; nam eodem modo hoc determinandum e&longs;t, quo &longs;upr&agrave; <lb/>determinatum fuit Th. 66. 67. v. <!-- REMOVE S-->g. <!-- REMOVE S-->in fig. </s>
					<s id="N20DA7"><!-- NEW -->Th. 65. determinatio noua <lb/>po&longs;ita perpendiculari &longs;it ad priorem vt AZ ad AF, ita vt per mediam <lb/>aquam conficiat tant&ugrave;m &longs;patium A<foreign lang="greek">d</foreign> v. <!-- REMOVE S-->g. <!-- REMOVE S-->eo tempore, quo in libero a&euml;&shy;<lb/>re conficit AC; </s>
					<s id="N20DB9"><!-- NEW -->cert&egrave; &longs;i linea incidenti&aelig; &longs;it inclinata EA, determinatio <lb/>noua erit ad priorem, vt AY ad AE, vel AB; </s>
					<s id="N20DBF"><!-- NEW -->igitur fiet mixta ex AY <lb/>AB, &longs;cilicet A<foreign lang="greek">u</foreign>; </s>
					<s id="N20DC9"><!-- NEW -->non tamen eo tempore conficiet A<foreign lang="greek">u</foreign>, quo conficiet <lb/>A<foreign lang="greek">d</foreign>; </s>
					<s id="N20DD7"><!-- NEW -->quia &longs;cilicet omnes partes aqu&aelig; re&longs;i&longs;tunt, vt con&longs;tat; </s>
					<s id="N20DDB"><!-- NEW -->igitur con&shy;<lb/>ficietur A <foreign lang="greek">q</foreign> &aelig;qualis A<foreign lang="greek">d</foreign>; qu&aelig; porr&ograve; &longs;it proportio re&longs;i&longs;tenti&aelig;, qu&aelig; mobi&shy;<lb/>le retardat in aqua, &amp; re&longs;i&longs;tenti&aelig;, qu&aelig; idem retardat in a&euml;re determina&shy;<lb/>ri non pote&longs;t, ni&longs;i prim&ograve; cogno&longs;catur proportio grauitatis vtriu&longs;que. </s>
					<s id="N20DEB"><!-- NEW --><lb/>Secund&ograve;, ni&longs;i &longs;ciatur in quo po&longs;ita &longs;it h&aelig;c re&longs;i&longs;tentia: Terti&ograve;, ni&longs;i per&shy;<lb/>&longs;pectum &longs;it, an maiore nexu partes aqu&aelig; inter &longs;e copulentur, an mino&shy;<lb/>re, vel &aelig;quali, de quo alias. </s>
					<s id="N20DF4">Equidem P. <!-- REMOVE S-->Mer&longs;ennus lib.1.a.15. &longs;u&aelig; ver&shy;<lb/>&longs;ionis a&longs;&longs;erit corpus graue per mediam aquam conficere 12. pedes &longs;patij <lb/>eo <expan abbr="t&etilde;pore">tempore</expan>, quo 48. percurrit in a&euml;re, id e&longs;t, tempore duorum &longs;ecundorum. </s>
				</p>
				<p id="N20E01" type="main">
					<s id="N20E03">Ob&longs;eruabis autem h&icirc;c tant&ugrave;m con&longs;ideratam fui&longs;&longs;e lineam A<foreign lang="greek">q</foreign> rectam <lb/>&longs;ine noua determinatione, qu&aelig; &longs;cilicet in&longs;en&longs;ibilis e&longs;t, quando linea in&shy;<lb/>cidenti&aelig; non e&longs;t tam obliqua, nec impetus tantarum virium. </s>
					<s id="N20E0E"><!-- NEW -->Denique <lb/>ob&longs;eruabis cognito vno angulo motus refracti ad datum angulum inci&shy;<lb/>denti&aelig; cogno&longs;ci facil&egrave; quemlibet alium, qui alteri angulo incidenti&aelig; re&shy;<lb/>&longs;pondeat, vt patet ex dictis: </s>
					<s id="N20E18"><!-- NEW -->Vtrum ver&ograve; anguli refractionum motus ex <lb/>a&euml;re in aquam &longs;int iidem cum angulis refractionum luminis ex aqua in <lb/>a&euml;ra, examinabimus alibi: </s>
					<s id="N20E20"><!-- NEW -->h&aelig;c interim &longs;ufficiant de motu refracto; quem <lb/>tamen adhuc reflexum e&longs;&longs;e contendo, imm&ograve; nulla e&longs;t refractio in motu, <lb/>qu&aelig; non &longs;it reflexio, &amp; nulla reflexio in lumine, qu&aelig; non &longs;it refractio, de <lb/>quo fus&egrave; alibi. </s>
				</p>
				<p id="N20E2A" type="main">
					<s id="N20E2C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 92.<emph.end type="center"/></s>
				</p>
				<p id="N20E38" type="main">
					<s id="N20E3A"><!-- NEW --><emph type="italics"/>Aqua, qu&aelig; cadit in planum durum re&longs;ilit in mille partes quoquo ver&longs;um<emph.end type="italics"/>; </s>
					<s id="N20E43"><!-- NEW --><lb/>non cert&egrave;, qu&ograve;d partes inferiores pellantur &agrave; &longs;uperioribus, vt volunt ali&shy;<lb/>qui; </s>
					<s id="N20E4A"><!-- NEW -->&longs;ed qu&ograve;d facil&egrave; &longs;eparentur partes aqu&aelig;; </s>
					<s id="N20E4E"><!-- NEW -->vnde non mirum e&longs;t, &longs;i vel <lb/>modico impetu di&longs;pergantur; </s>
					<s id="N20E54"><!-- NEW -->quippe, vt corpus aliquod reflectatur in&shy;<lb/>tegrum, id e&longs;t &longs;ine partium di&longs;per&longs;ione, debet re&longs;i&longs;tentia vnionis partium <lb/>e&longs;&longs;e maior tota vi impetus ad nouam lineam determinati; </s>
					<s id="N20E5C"><!-- NEW -->cur ver&ograve; po&shy;<lb/>ti&ugrave;s vna guttula dextror&longs;um repercutiatur, qu&agrave;m &longs;ini&longs;tror&longs;um; </s>
					<s id="N20E62"><!-- NEW -->cert&egrave; alia <lb/>ratio e&longs;&longs;e non pote&longs;t, ni&longs;i prim&ograve; diuer&longs;a figura t&ugrave;m aqu&aelig; impact&aelig;, t&ugrave;m <pb pagenum="266" xlink:href="026/01/300.jpg"/>plani reflectentis; Secund&ograve; a&euml;r re&longs;iliens; </s>
					<s id="N20E6D"><!-- NEW -->Terti&ograve; &longs;ectio ip&longs;a, vt &longs;ic lo&shy;<lb/>quar, diui&longs;ionis, &longs;eu conflictus aliarum partium: idem, c&aelig;teris paribus, de <lb/>lapide, cuius mille particul&aelig; re&longs;iliunt. </s>
				</p>
				<p id="N20E75" type="main">
					<s id="N20E77"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 93.<emph.end type="center"/></s>
				</p>
				<p id="N20E83" type="main">
					<s id="N20E85"><!-- NEW --><emph type="italics"/>Globus reflectens, qui ab ictu alterius mouetur, non mouetur ip&longs;o instanti con&shy;<lb/>tactus<emph.end type="italics"/>; prob. </s>
					<s id="N20E90"><!-- NEW -->quia eo primum in&longs;tanti ab alio globo accipit impetum; &longs;ed <lb/>primo in&longs;tanti, quo e&longs;t impetus, non e&longs;t motus, vt demon&longs;tratum e&longs;t lib. <!-- REMOVE S--><lb/>1.igitur globus reflectens, &amp;c. </s>
					<s id="N20E99">mouetur tamen. </s>
					<s id="N20E9C">Secund&ograve; in&longs;tans; vnde <lb/>vno tant&ugrave;m in&longs;tanti contactus e&longs;t. </s>
				</p>
				<p id="N20EA1" type="main">
					<s id="N20EA3"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 94.<emph.end type="center"/></s>
				</p>
				<p id="N20EAF" type="main">
					<s id="N20EB1"><!-- NEW --><emph type="italics"/>Hinc colligo produci illum impetum ip&longs;o in&longs;tanti contactus<emph.end type="italics"/>; </s>
					<s id="N20EBA"><!-- NEW -->alioqui in&longs;tan&shy;<lb/>ti &longs;equenti non e&longs;&longs;et motus; </s>
					<s id="N20EC0"><!-- NEW -->imm&ograve; daretur quies in puncto reflexionis; </s>
					<s id="N20EC4"><!-- NEW --><lb/>quippe, &longs;i tant&ugrave;m &longs;ecundo in&longs;tanti produceretur, fieret contactus in duo&shy;<lb/>bus in&longs;tantibus; igitur e&longs;&longs;et quies. </s>
				</p>
				<p id="N20ECB" type="main">
					<s id="N20ECD"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 95.<emph.end type="center"/></s>
				</p>
				<p id="N20ED9" type="main">
					<s id="N20EDB"><!-- NEW --><emph type="italics"/>Figura corporis impacti variare pote&longs;t reflexionem<emph.end type="italics"/>; &longs;i enim corpus impa&shy;<lb/>ctum &longs;it parallelipedum v. <!-- REMOVE S-->g. <!-- REMOVE S-->multiplex e&longs;&longs;e pote&longs;t reflexionis variatio <lb/>pro diuer&longs;o appul&longs;u, vt con&longs;ideranti patebit. </s>
				</p>
				<p id="N20EEC" type="main">
					<s id="N20EEE"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 96.<emph.end type="center"/></s>
				</p>
				<p id="N20EFA" type="main">
					<s id="N20EFC"><!-- NEW --><emph type="italics"/>Si impetus e&longs;&longs;et tant&ugrave;m determinatus ad vnam lineam; </s>
					<s id="N20F02"><!-- NEW -->nulla daretur re&shy;<lb/>flexio<emph.end type="italics"/>; patet, quia nulla daretur cau&longs;a reflexionis, qu&aelig; tant&ugrave;m e&longs;t impe&shy;<lb/>tus prior ad nouam lineam determinatus ratio plani oppo&longs;iti. </s>
				</p>
				<p id="N20F0D" type="main">
					<s id="N20F0F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 97.<emph.end type="center"/></s>
				</p>
				<p id="N20F1B" type="main">
					<s id="N20F1D"><!-- NEW --><emph type="italics"/>Qu&ograve; angulus incidenti&aelig; e&longs;t obliquior, facili&ugrave;s fit reflexio<emph.end type="italics"/>; </s>
					<s id="N20F26"><!-- NEW -->quia minor por&shy;<lb/>tio impetus de&longs;truitur quamuis per accidens; </s>
					<s id="N20F2C"><!-- NEW -->igitur motus propagatur <lb/>facili&ugrave;s; adde quod noua determinatio min&ugrave;s recedit &agrave; priori. </s>
				</p>
				<p id="N20F32" type="main">
					<s id="N20F34"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N20F40" type="main">
					<s id="N20F42"><!-- NEW -->Prim&ograve; ob&longs;eruabis cau&longs;&aelig; reflexionis e&longs;&longs;e multiplices; </s>
					<s id="N20F46"><!-- NEW -->&longs;cilicet planum <lb/>reflectens, priorem impetum permanentem, nouam determinationem: </s>
					<s id="N20F4C"><!-- NEW -->in <lb/>plano ver&ograve; reflectente con&longs;iderantur impenetrabilitas, durities, &amp; im&shy;<lb/>mobilitas: </s>
					<s id="N20F54"><!-- NEW -->in priore impetu con&longs;ideratur capacitas ad nouam lineam <lb/>motus, &amp; &longs;ufficiens inten&longs;io ad hoc, vt aliquid impetus ab ictu vel con&shy;<lb/>tactu remaneat; </s>
					<s id="N20F5C"><!-- NEW -->denique noua determinatio, &longs;i radius incidenti&aelig; &longs;it <lb/>perpendicularis, debet e&longs;&longs;e maior priore; </s>
					<s id="N20F62"><!-- NEW -->alioqui nulla erit reflexio; &longs;i <lb/>ver&ograve; linea incidenti&aelig; &longs;it obliqua, pote&longs;t e&longs;&longs;e maior, vel minor, vel <lb/>&aelig;qualis. </s>
				</p>
				<p id="N20F6A" type="main">
					<s id="N20F6C"><!-- NEW -->Secund&ograve; ob&longs;eruabis veri&longs;&longs;imam cau&longs;am reflexionis po&longs;itam e&longs;&longs;e in de&shy;<lb/>terminatione noua, ratione cuius pote&longs;t e&longs;&longs;e motus; </s>
					<s id="N20F72"><!-- NEW -->igitur impetus non <lb/>e&longs;t fru&longs;tr&agrave;; igitur non debet de&longs;trui &longs;ecund&ugrave;m illam portionem, qu&aelig; <lb/>non e&longs;t fru&longs;tr&agrave;. </s>
				</p>
				<pb pagenum="267" xlink:href="026/01/301.jpg"/>
				<p id="N20F7E" type="main">
					<s id="N20F80"><!-- NEW -->Terti&ograve;, quod &longs;pectat ad &aelig;qualitatem anguli reflexionis, &amp; anguli in&shy;<lb/>cidenti&aelig;, non e&longs;t alia huius &aelig;qualitatis ratio pr&aelig;ter illam, quam attuli&shy;<lb/>mus; </s>
					<s id="N20F88"><!-- NEW -->nec e&longs;t quod aliqui aliam rationem commini&longs;cantur, cuius prin&shy;<lb/>cipia the&longs;im ip&longs;am &longs;upponunt; </s>
					<s id="N20F8E"><!-- NEW -->nam prim&ograve; &longs;upponunt omnem virtutem <lb/>quantumuis impeditam eniti maxim&egrave; quantum pote&longs;t, vt producat ef&shy;<lb/>fectum &longs;ecund&ugrave;m inten&longs;ionem agentis; </s>
					<s id="N20F96"><!-- NEW -->c&ugrave;m fort&egrave; Geometra admitte&shy;<lb/>ret hoc principium &longs;ine alia probatione: an fort&egrave; virtus ip&longs;a cogno&longs;cit <lb/>intentionem, agentis, id e&longs;t impetus potenti&aelig; motricis? </s>
					<s id="N20F9E">numquid impe&shy;<lb/>tus ip&longs;e determinari debet ab ip&longs;a potentia motrice? </s>
					<s id="N20FA3">numquid e&longs;t deter&shy;<lb/>minatio noua &agrave; plano reflectente? </s>
					<s id="N20FA8">an fort&egrave; potentia motrix intendit <lb/>motum per aliam lineam, qu&agrave;m per lineam incidenti&aelig;? </s>
					<s id="N20FAD"><!-- NEW -->cum ip&longs;a linea <lb/>reflexionis &longs;emper accidat pr&aelig;ter intentionem potenti&aelig; motricis natu&shy;<lb/>ralis; denique lic&egrave;t hoc totum verum e&longs;&longs;et, vnde probatur po&longs;&longs;e impe&shy;<lb/>tum ad angulum reflexionis &aelig;qualem &longs;e ip&longs;um determinare? </s>
					<s id="N20FB7"><!-- NEW -->Secund&ograve;, <lb/>&longs;upponunt impetum e&longs;&longs;e indifferentem ad diuer&longs;as lineas, quod &longs;an&egrave; ve&shy;<lb/>rum e&longs;t; </s>
					<s id="N20FBF"><!-- NEW -->probare tamen deberent, &amp; di&longs;cernere impetum innatum ab <lb/>omni ali&ograve;, at, e&longs;to id verum &longs;it; cur poti&ugrave;s determinatur ad lineam qu&aelig; <lb/>faciat angulum &aelig;qualem, qu&agrave;m in&aelig;qualem angulo incidenti&aelig;? </s>
					<s id="N20FC7">ex hoc <lb/>enim principio non probatur h&aelig;c &aelig;qualitas. </s>
				</p>
				<p id="N20FCC" type="main">
					<s id="N20FCE"><!-- NEW -->Terti&ograve;, &longs;upponunt dextra fieri &longs;ini&longs;tra in reflexione, &amp; transferri an&shy;<lb/>gulos, idque in eodem plano; </s>
					<s id="N20FD4"><!-- NEW -->ben&egrave; e&longs;t; </s>
					<s id="N20FD8"><!-- NEW -->rem factam &longs;upponunt, quam <lb/>nemo negat; </s>
					<s id="N20FDE"><!-- NEW -->&longs;ed propter quid fiat demon&longs;trandum e&longs;&longs;et; &longs;i enim qu&aelig;&shy;<lb/>ram, cur in eodem plano &longs;int radius incidenti&aelig;. </s>
					<s id="N20FE4">radius reflexus, &amp; &longs;e&shy;<lb/>ctio communis plani reflectentis? </s>
					<s id="N20FE9">non video quonam modo demon&shy;<lb/>&longs;trent. </s>
					<s id="N20FEE"><!-- NEW -->Dicent fort&egrave;, quia ita fit in lumine; </s>
					<s id="N20FF2"><!-- NEW -->belle! ob&longs;curum per ob&longs;cu&shy;<lb/>rius; </s>
					<s id="N20FF8"><!-- NEW -->quippe ratio reflexionis clarior e&longs;t in motu, qu&agrave;m in flumine, vt <lb/>&longs;uo loco videbimus; </s>
					<s id="N20FFE"><!-- NEW -->igitur negari po&longs;&longs;et de lumine, lic&egrave;t verum &longs;it, do&shy;<lb/>nec &longs;it demon&longs;tratum; imm&ograve; quamuis probatum e&longs;&longs;et de lumine, quis <lb/>vnquam deduxit &agrave; pari argumentum demon&longs;tratiuum? </s>
					<s id="N21006"><!-- NEW -->Dicent non e&longs;&longs;e <lb/>poti&ugrave;s rationem, cur fiat per vnum planum ex aliis infinitis, qu&agrave;m per <lb/>aliud; </s>
					<s id="N2100E"><!-- NEW -->ben&egrave; e&longs;t, iam vtuntur illa negatiua ratione, quam paul&ograve; ant&egrave; re&shy;<lb/>&longs;puebant, lic&egrave;t optima &longs;it, nec quidquam in contrarium afferunt; </s>
					<s id="N21014"><!-- NEW -->at &longs;o&shy;<lb/>litariam e&longs;&longs;e non oportet; quippe vt iam &longs;upr&agrave; monui, effectus po&shy;<lb/>&longs;itiuus per principium po&longs;itiuum ad &longs;uam cau&longs;am reducendus e&longs;t. </s>
				</p>
				<p id="N2101C" type="main">
					<s id="N2101E"><!-- NEW -->Denique dicent hanc e&longs;&longs;e demon&longs;trationem <emph type="italics"/>Aristotelis in Problematis <lb/>&longs;ect.<emph.end type="italics"/>17.<emph type="italics"/>Probl.<emph.end type="italics"/>13. quod vt palam fiat, textum ip&longs;um de&longs;cribo, <emph type="italics"/>quamobrem,<emph.end type="italics"/><lb/>inquit, <emph type="italics"/>corpora, qu&aelig; feruntur, vbi alicubi occurrerunt, re&longs;ilire in partem con&shy;<lb/>trariam &longs;olent, nec ni&longs;i ad &longs;imiles angulos, an quod non &longs;olum eo feruntur im&shy;<lb/>petu, quo pro &longs;ua parte ip&longs;a fieri apti&longs;&longs;ima &longs;unt, ver&ugrave;m etiam illo, qui &agrave; mittente <lb/>profici&longs;citur; </s>
					<s id="N21040"><!-- NEW -->&longs;uus igitur ce&longs;&longs;at cuique impetus, cum &longs;uum ad locum peruene&shy;<lb/>rint, omnia namque requie&longs;cere &longs;olent vbi in eam &longs;edem &longs;e&longs;e contulerunt, quam <lb/>&longs;uapte natur&acirc; de&longs;iderant; </s>
					<s id="N21048"><!-- NEW -->&longs;ed externo illo, quem habent, impetu nece&longs;&longs;itas ori&shy;<lb/>tur amplius mouendi; </s>
					<s id="N2104E"><!-- NEW -->quod c&ugrave;m in partem priorem effici neque at, quia re pro&shy;<lb/>hibetur objecta, vel in latus, vel in rectum agi nece&longs;&longs;e e&longs;t; </s>
					<s id="N21054"><!-- NEW -->omnia autem in an&shy;<lb/>gulos re&longs;iliunt &longs;imiles, quoniam eodem ferri cogantur, qu&ograve; motus ducat; </s>
					<s id="N2105A"><!-- NEW -->quem<emph.end type="italics"/><pb pagenum="268" xlink:href="026/01/302.jpg"/><emph type="italics"/>is dedit, qui mi&longs;erit; </s>
					<s id="N21067"><!-- NEW -->eo autem vt angulo, vel acuto, vel recto ferantur omnin&ograve; <lb/>incidit; vt igitur in &longs;peculis extremum line&aelig; rect&aelig;, &amp;c. </s>
					<s id="N2106D">itaque feruntur, &amp;c. </s>
					<s id="N21070"><lb/>cum angulo tanto retorqueantur, quanto vertex con&longs;titerit,<emph.end type="italics"/> &amp;c Sed qu&aelig;&longs;o, quis <lb/>vmquam agno&longs;cet demon&longs;trationem in mera comparatione pr&aelig;&longs;ertim <lb/>in problematis quorum rationes Ari&longs;toteles, vel alter, vt aliqui volunt, <lb/>illorum auctor dubitanter tant&ugrave;m proponit? </s>
					<s id="N2107D"><!-- NEW -->Igitur vix au&longs;im a&longs;&longs;erere ab <lb/>Ari&longs;totele hoc ip&longs;um fui&longs;&longs;e demon&longs;tratum; </s>
					<s id="N21083"><!-- NEW -->&longs;ed aliam demon&longs;trationem <lb/>aggrediuntur, pro qua &longs;upponunt prim&ograve; determinationem e&longs;&longs;e formam, <lb/>&longs;eu formalitatem, &longs;eu connotationem; </s>
					<s id="N2108B"><!-- NEW -->quam par&ugrave;m h&aelig;c phy&longs;icam &longs;a&shy;<lb/>piunt, &amp; demon&longs;trationem olent! Secund&ograve;, vnumquodque per &longs;e deter&shy;<lb/>minare ad aliud, ad quod e&longs;t determinatum, &amp; determinationem fieri <lb/>per id, quod e&longs;t maxim&egrave; determinatum; </s>
					<s id="N21095"><!-- NEW -->quia propter quod vnumquod&shy;<lb/>que tale e&longs;t, &amp; illud magis; </s>
					<s id="N2109B"><!-- NEW -->quam debile fulcrum! Terti&ograve; &longs;upponunt, <lb/>principium determinans effectum &longs;ecundum genus, &amp; &longs;peciem &longs;imilem <lb/>&longs;ibi reddere in vtroque, etiam Logic&egrave;; </s>
					<s id="N210A3"><!-- NEW -->Quart&ograve;, &longs;upponunt ex duobus <lb/>indeterminatis po&longs;&longs;e fieri determinatum; quid inde? </s>
					<s id="N210A9"><!-- NEW -->Quint&ograve;, &longs;uppo&shy;<lb/>nunt angulum reflexionis determinari ab angulo incidenti&aelig;; &longs;ed h&aelig;c e&longs;t <lb/>the&longs;is. </s>
					<s id="N210B1"><!-- NEW -->Ex his principiis prim&ograve; concludunt reflexionem fieri per angulos <lb/>&aelig;quales, idque in eodem plano; </s>
					<s id="N210B7"><!-- NEW -->&longs;cio quidem de re quod &longs;it, &longs;ed non vi&shy;<lb/>deo demon&longs;trari propter quid &longs;it ex his principiis, vt con&longs;ideranti pate&shy;<lb/>bit; </s>
					<s id="N210BF"><!-- NEW -->nec e&longs;t quod vlteri&ugrave;s in iis refutandis immoremur; </s>
					<s id="N210C3"><!-- NEW -->pr&aelig;&longs;ertim c&ugrave;m <lb/>rem hanc acurati&longs;&longs;im&egrave; demon&longs;trauerimus &longs;upr&agrave;; </s>
					<s id="N210C9"><!-- NEW -->&longs;ed antequam ab hoc <lb/>motu reflexo di&longs;cedam, alia demon&longs;tratio reiicienda e&longs;t, qu&aelig; &longs;ic propo&shy;<lb/>nitur &longs;it planum reflectens immobile, MR, &longs;it linea incidenti&aelig; KD; </s>
					<s id="N210D1"><!-- NEW --><lb/>h&aelig;c e&longs;t, vt aiunt, determinatio mixta ex duabus K<foreign lang="greek">b</foreign>, K<foreign lang="greek">q</foreign>: </s>
					<s id="N210DE"><!-- NEW -->hoc po&longs;ito, li&shy;<lb/>nea reflexa erit DX, mixta &longs;cilicet ex D<foreign lang="greek">q</foreign> D<foreign lang="greek">u</foreign>; </s>
					<s id="N210EC"><!-- NEW -->&longs;ed profect&ograve; non video, <lb/>nec &longs;entio vim huius determinationis; </s>
					<s id="N210F2"><!-- NEW -->prim&ograve; enim nego motum per <lb/>KD e&longs;&longs;e mixtum; </s>
					<s id="N210F8"><!-- NEW -->e&longs;t enim tant&ugrave;m vnicum principium determinationis; </s>
					<s id="N210FC"><!-- NEW --><lb/>igitur vna tant&ugrave;m e&longs;t determinatio; </s>
					<s id="N21101"><!-- NEW -->nam prim&ograve; h&aelig;c eadem linea KD <lb/>po&longs;&longs;et e&longs;&longs;e mixta ex pluribus aliis; </s>
					<s id="N21107"><!-- NEW -->quipp&egrave; po&longs;&longs;unt e&longs;&longs;e infinita Paralle&shy;<lb/>logrammata, quibus h&aelig;c diagonalis KD communis e&longs;&longs;e po&longs;&longs;it; cur au&shy;<lb/>tem poti&ugrave;s erit diagonalis vnius qu&agrave;m alterius. </s>
					<s id="N2110F">Secund&ograve;, &longs;i cadat deor&shy;<lb/>&longs;um corpus graue impingaturque in planum inclinatum, nunquid e&longs;t <lb/>motus &longs;implex, &amp; purus naturalis? </s>
					<s id="N21116">quis e&longs;t qui hoc neget, &longs;i terminos <lb/>ip&longs;os capiat? </s>
					<s id="N2111B"><!-- NEW -->&longs;ed dicunt, &longs;i proiiciatur mobile per inclinatam in planum <lb/>horizontale, e&longs;t motus mixtus ex naturali accelerato, &amp; impre&longs;&longs;o; </s>
					<s id="N21121"><!-- NEW -->equi&shy;<lb/>dem hic motus mixtus e&longs;t, &longs;ed tota linea curua; </s>
					<s id="N21127"><!-- NEW -->qu&aelig; non e&longs;t parabolica, <lb/>vt con&longs;tat ex dictis &longs;upr&agrave; lib.4.non facit lineam directionis, &longs;ed vltimum <lb/>illius &longs;egmentum, &longs;eu vltima Tangens, qu&aelig; tanquam recta a&longs;&longs;umitur: <lb/>pr&aelig;terea quis vmquam lineam incidenti&aelig; a&longs;&longs;ump&longs;it ni&longs;i rectum? </s>
					<s id="N21131"><!-- NEW -->igitur <lb/>lic&egrave;t linea incidenti&aelig; po&longs;&longs;it e&longs;&longs;e mixta ex duabus aliis, quod negari non <lb/>pote&longs;t; </s>
					<s id="N21139"><!-- NEW -->pote&longs;t tamen e&longs;&longs;e &longs;implex, quod nemo etiam negabit; </s>
					<s id="N2113D"><!-- NEW -->igitur hoc <lb/>ip&longs;um nihil facit ad hanc incidenti&aelig; lineam; </s>
					<s id="N21143"><!-- NEW -->igitur illud primum an&shy;<lb/>tecedens e&longs;t fal&longs;um, in quo habetur lineam incidenti&aelig; e&longs;&longs;e mixtam; </s>
					<s id="N21149"><!-- NEW -->quia <lb/>c&ugrave;m debeat e&longs;&longs;e vniuer&longs;ale, vt &longs;cilicet vniuer&longs;aliter concludat; </s>
					<s id="N2114F"><!-- NEW -->cert&egrave;, &longs;i <pb pagenum="269" xlink:href="026/01/303.jpg"/>vniuer&longs;ale e&longs;t, fal&longs;um e&longs;&longs;e con&longs;tat; addunt aliqui e&longs;&longs;e mixtam &aelig;quiualen&shy;<lb/>ter. </s>
					<s id="N2115A"><!-- NEW -->Terti&ograve;, cum &longs;it eadem potentia motrix applicata, t&ugrave;m in K, t&ugrave;m in <lb/>A; </s>
					<s id="N21160"><!-- NEW -->cert&egrave; debet e&longs;&longs;e idem impetus; </s>
					<s id="N21164"><!-- NEW -->cum autem du&aelig; line&aelig; K <foreign lang="greek">q</foreign> K <foreign lang="greek">b</foreign> repr&aelig;&shy;<lb/>&longs;entent duos impetus, qui concurrunt ad motum mixtum per KD &lpar;nam <lb/>hoc ip&longs;i dicunt&rpar; cert&egrave; duo ABAP &longs;imul &longs;umpti &aelig;quales e&longs;&longs;e deberent <lb/>duobus K <foreign lang="greek">q</foreign> K <foreign lang="greek">b</foreign>, quod fal&longs;um e&longs;t; quia KD &longs;it 4. &longs;itque angulus GDK <lb/>30.grad. </s>
					<s id="N21180">K <foreign lang="greek">q</foreign> e&longs;t 2. igitur collecta <foreign lang="greek">q</foreign> K <foreign lang="greek">b</foreign> e&longs;t 6. &amp; eius quadratum 36. at <lb/>ver&ograve; quadratum AB e&longs;t 18. ergo quadratum collect&aelig; ex ABAP e&longs;t <lb/>32. igitur illa maior e&longs;t. </s>
				</p>
				<p id="N21193" type="main">
					<s id="N21195"><!-- NEW -->Sed iam ad aliam propo&longs;itionem venio, in qua dicitur linea reflexio&shy;<lb/>nis DX e&longs;&longs;e mixta ex D <foreign lang="greek">q</foreign> D <foreign lang="greek">u</foreign> quod fal&longs;um e&longs;t; </s>
					<s id="N211A3"><!-- NEW -->nam prim&ograve; hoc dicis, <lb/>hoc proba po&longs;itiuo argumento: </s>
					<s id="N211A9"><!-- NEW -->Dices, quia non pote&longs;t aliter explicari <lb/>&aelig;qualitas anguli reflexionis; </s>
					<s id="N211AF"><!-- NEW -->bell&egrave;! nego antecedens; nam lic&egrave;t nondum <lb/>verus illius modus explicatus non e&longs;&longs;et, proba tuum e&longs;&longs;e verum. </s>
					<s id="N211B5"><!-- NEW -->Secund&ograve; <lb/>vel aliquid prioris determinationis manet, vel nihil; </s>
					<s id="N211BB"><!-- NEW -->non primum, vt ip&longs;i <lb/>volunt; </s>
					<s id="N211C1"><!-- NEW -->alioqui DX e&longs;&longs;et mixta ex tribus &longs;cilicet DQ, D <foreign lang="greek">q</foreign>, D <foreign lang="greek">u</foreign>, quod <lb/>ab&longs;urdum e&longs;t; </s>
					<s id="N211CF"><!-- NEW -->quod &longs;i nihil remaneat prioris determinationis; </s>
					<s id="N211D3"><!-- NEW -->ergo ni&shy;<lb/>hil prioris impetus, quod etiam concedunt; </s>
					<s id="N211D9"><!-- NEW -->igitur producitur nouus, &longs;ci&shy;<lb/>licet propter compre&longs;&longs;ionem a&euml;ris, corporis reflexi, &amp; reflectentis; </s>
					<s id="N211DF"><!-- NEW -->&longs;ed <lb/>profect&ograve;, lic&egrave;t hoc totum verum e&longs;&longs;et, c&ugrave;m illa compre&longs;&longs;io fieret in linea <lb/>qu&aelig; per centrum globi producitur, &longs;cilicet &agrave; puncto contactus, &longs;cilicet <lb/>in linea DG; </s>
					<s id="N211E9"><!-- NEW -->cert&egrave; per illam fieret repercu&longs;&longs;io; </s>
					<s id="N211ED"><!-- NEW -->Terti&ograve; tunc maxima e&longs;t <lb/>percu&longs;&longs;io, cum linea incidenti&aelig; e&longs;t perpendicularis; </s>
					<s id="N211F3"><!-- NEW -->igitur tunc e&longs;&longs;e de&shy;<lb/>bet maxima vis compre&longs;&longs;ionis; </s>
					<s id="N211F9"><!-- NEW -->igitur maxima vis repercu&longs;&longs;ionis, &longs;ed e&longs;t <lb/>tant&ugrave;m vt DG; at ver&ograve;, &longs;i linea incidenti&aelig; &longs;it AD, vis repercu&longs;&longs;ionis <lb/>erit, vt collecta ex DFDP qu&aelig; maior e&longs;t priore. </s>
					<s id="N21201">Quart&ograve;, cur DX erit <lb/>poti&ugrave;s mixta ex duabus D <foreign lang="greek">q</foreign>, D <foreign lang="greek">u</foreign>, qu&agrave;m ex duabus aliis? </s>
					<s id="N2120E"><!-- NEW -->Quint&ograve;, perinde <lb/>&longs;e habet planum reflectens, atque &longs;i globum ip&longs;um pelleret, c&ugrave;m nihil de&shy;<lb/>terminationis prioris remaneat, vt ip&longs;i volunt, &longs;ed pelleret per ip&longs;am <lb/>DG. Sext&ograve;, proba argumento po&longs;itiuo e&longs;&longs;e mixtam DX ex D <foreign lang="greek">u</foreign>, D <foreign lang="greek">q</foreign>; nam <lb/>hoc reuer&acirc; fingis &longs;ine ratione. </s>
					<s id="N21222">Septim&ograve;, pr&aelig;terea &longs;i corpus e&longs;&longs;et duri&longs;&longs;i&shy;<lb/>mum min&ugrave;s reflecti po&longs;&longs;et &agrave; plano duri&longs;&longs;imo, &longs;i nulla fieret compre&longs;&longs;io. </s>
					<s id="N21227"><!-- NEW --><lb/>Octau&ograve; proba mihi impetum priorem de&longs;trui per &longs;e; </s>
					<s id="N2122C"><!-- NEW -->nam c&ugrave;m &longs;it indif&shy;<lb/>ferens ad omnes lineas, nunquam de&longs;truitur, ni&longs;i &longs;it fru&longs;tr&agrave;; </s>
					<s id="N21232"><!-- NEW -->hic autem <lb/>fru&longs;tr&agrave; non e&longs;t: </s>
					<s id="N21238"><!-- NEW -->Itaque manife&longs;tum efficitur, non mod&ograve; ex his principiis <lb/>non demon&longs;trari &aelig;qualitatem anguli reflexionis, &longs;ed ne argumento qui&shy;<lb/>dem probabili comprobari; quia tamen in no&longs;tra demon&longs;tratione multa <lb/>&longs;unt, qu&aelig; ip&longs;is non probantur, breuiter recen&longs;eo. </s>
				</p>
				<p id="N21242" type="main">
					<s id="N21244">Suppono prim&ograve;, planum reflectens e&longs;&longs;e principium nou&aelig; determina&shy;<lb/>tionis, quod nemo inficiebitur. </s>
					<s id="N21249">Secund&ograve;, e&longs;&longs;e tant&ugrave;m principium vnius <lb/>determinationis quia vnum principium e&longs;t. </s>
					<s id="N2124E">Terti&ograve;, per quamcunque li&shy;<lb/>neam incidat globus in punctum D plani &longs;cilicet immobilis, e&longs;t &longs;emper <lb/>idem punctum contactus &amp; eadem <expan abbr="T&atilde;gens">Tangens</expan>. <!-- KEEP S--></s>
					<s id="N2125A">Quart&ograve;, &agrave; puncto contactus <lb/>globi duci tant&ugrave;m po&longs;&longs;e vnicam lineam ad centrum. </s>
					<s id="N2125F"><!-- NEW -->Quint&ograve;, cum deter&shy;<lb/>minationis terminus &agrave; quo &longs;it illud punctum contactus, per illam tan-<pb pagenum="270" xlink:href="026/01/304.jpg"/>tum lineam fieri pote&longs;t; </s>
					<s id="N2126A"><!-- NEW -->nam perinde &longs;e habet globus ille, atque &longs;i re&shy;<lb/>pelleretur &agrave; plano; </s>
					<s id="N21270"><!-- NEW -->nec alia e&longs;&longs;e pote&longs;t linea directionis globi, vt fus&egrave; <lb/>probauimus, cum de impetu; </s>
					<s id="N21276"><!-- NEW -->nec in hoc e&longs;t vlla difficultas, quia cen&shy;<lb/>trum grauitatis dirigit lineam motus; hoc po&longs;ito. </s>
				</p>
				<p id="N2127C" type="main">
					<s id="N2127E"><!-- NEW -->Si nulla e&longs;&longs;et determinatio pr&aelig;ter hanc, haud dubi&egrave; globus per DG <lb/>moueretur, vt reuer&acirc; &longs;it cum linea incidenti&aelig; e&longs;t perpendicularis; </s>
					<s id="N21284"><!-- NEW -->quia <lb/>du&aelig; line&aelig; oppo&longs;it&aelig; non faciunt determinationem mixtam; </s>
					<s id="N2128A"><!-- NEW -->&longs;ecus ver&ograve; <lb/>omnes alias; </s>
					<s id="N21290"><!-- NEW -->cum igitur globus pr&aelig;dictus reflectatur per DX, illud &longs;it <lb/>nece&longs;&longs;ari&ograve; per determinationem mixtam, quod etiam fatentur omnes: </s>
					<s id="N21296"><!-- NEW --><lb/>mixta e&longs;&longs;e non pote&longs;t ni&longs;i ex duabus &longs;it, vnica tant&ugrave;m &agrave; plano reflecten&shy;<lb/>te e&longs;t, &longs;cilicet per DG; </s>
					<s id="N2129D"><!-- NEW -->igitur altera e&longs;&longs;e debet, e&aacute;que prior per KDQ; </s>
					<s id="N212A1"><!-- NEW --><lb/>c&ugrave;m enim prior determinatio &longs;upponatur, vt KD vel vt DQ: e&longs;t enim <lb/>&longs;emper eadem, &amp; c&ugrave;m noua &longs;it per DG, po&longs;ita diagonali DX, quis non <lb/>videt e&longs;&longs;e mixtam ex DQ &amp; DZ &aelig;quali QX? nam perinde &longs;e habet <lb/>globus in D, atque &longs;i pelleretur hinc per DQ, hinc per DZ, ita vt impe&shy;<lb/>tus e&longs;&longs;ent vt line&aelig; DZ DQ. </s>
				</p>
				<p id="N212AE" type="main">
					<s id="N212B0"><!-- NEW -->Ex his concludo determinationem nouam e&longs;&longs;e ad priorem po&longs;it&acirc; li&shy;<lb/>ne&acirc; incidenti&aelig; KD, vt DZ vel QX ad DQ po&longs;it&acirc; ver&ograve; line&acirc; inciden&shy;<lb/>ti&aelig; AD, vt EH ad DE; </s>
					<s id="N212B8"><!-- NEW -->denique in perpendiculari GD, vt <foreign lang="greek">d</foreign> G ad DG, <lb/>id e&longs;t, in ratione dupla; </s>
					<s id="N212C2"><!-- NEW -->&amp; nemo e&longs;t meo iudicio, qui rem i&longs;tam attent&egrave; <lb/>con&longs;iderans non concedat vltr&ograve; de re quod &longs;it, ex hypothe&longs;i &aelig;qualitatis <lb/>angulorum reflexionis cum aliis incidenti&aelig;; vt autem demon&longs;tretur <lb/>propter quid &longs;it, aliud principium adhibendum e&longs;t, quod fus&egrave; pr&aelig;&longs;titi&shy;<lb/>mus &longs;upr&agrave;. </s>
					<s id="N212CE"><!-- NEW -->Sed obiiciunt i&longs;tam determinationem nouam qu&aelig; fit &agrave; plano <lb/>e&longs;&longs;e fictitiam, &amp; chymericam; </s>
					<s id="N212D4"><!-- NEW -->&longs;ed meo iudicio chymeram facit, qui rem <lb/>tam claram non capit; </s>
					<s id="N212DA"><!-- NEW -->cum enim non negent nouam determinationem <lb/>e&longs;&longs;e in motu reflexo, nam impetus e&longs;t indifferens, vt &longs;upr&agrave; probatum e&longs;t <lb/>abund&egrave;, &amp; ex motu funependuli euincitur; </s>
					<s id="N212E2"><!-- NEW -->cert&egrave; &longs;i noua e&longs;t, &agrave; plano e&longs;t: </s>
					<s id="N212E6"><!-- NEW --><lb/>&longs;ed &agrave; plano e&longs;t per ip&longs;am perpendicularem vt demon&longs;tratum e&longs;t &longs;upr&agrave;; <lb/>igitur h&aelig;c noua determinatio fictitia non e&longs;t. </s>
				</p>
				<p id="N212ED" type="main">
					<s id="N212EF"><!-- NEW -->Sed dicunt ab eodem plano e&longs;&longs;e non po&longs;&longs;e determinationem in&aelig;qua&shy;<lb/>lem; quia idem principium eundem effectum habet. </s>
					<s id="N212F5">Re&longs;p. negando ante&shy;<lb/>cedens; </s>
					<s id="N212FA"><!-- NEW -->c&ugrave;m enim pro diuer&longs;a re&longs;i&longs;tentia diuer&longs;a &longs;it determinatio, &amp; <lb/>c&ugrave;m planum pr&aelig;dictum mod&ograve; pl&ugrave;s, mod&ograve; min&ugrave;s re&longs;i&longs;tat; quid mirum &longs;i <lb/>diuer&longs;a &longs;it etiam determinatio? </s>
				</p>
				<p id="N21302" type="main">
					<s id="N21304">In&longs;tant, lineam determinationis eiu&longs;dem impetus e&longs;&longs;e &longs;emper &aelig;qua&shy;<lb/>lem. </s>
					<s id="N21309">Re&longs;p. negando; </s>
					<s id="N2130C"><!-- NEW -->quia idem impetus ad duas lineas pote&longs;t determi&shy;<lb/>nari &longs;imul, qu&aelig; faciant determinationem mixtam; vnde lic&egrave;t idem im&shy;<lb/>petus habeat eandem lineam &longs;patij, non tamen eandem lineam determi&shy;<lb/>nationis. </s>
					<s id="N21316"><!-- NEW -->v.g. <!-- REMOVE S-->quando dico determinationem nouam in perpendiculari <lb/>e&longs;&longs;e ad priorem vt DY ad DG; </s>
					<s id="N2131E"><!-- NEW -->non dico propterea DY e&longs;&longs;e lineam &longs;pa&shy;<lb/>tij; &longs;ed c&ugrave;m du&aelig; determinationes comparantur, a&longs;&longs;umi po&longs;&longs;unt line&aelig;, <lb/>qu&aelig; de&longs;ignent proportionem &longs;eu rationem determinationum, quid fa&shy;<lb/>cilius? </s>
				</p>
				<p id="N21328" type="main">
					<s id="N2132A"><!-- NEW -->Qu&aelig;res, quid &longs;it illa determinatio: facilis qu&aelig;&longs;tio. </s>
					<s id="N2132E"><!-- NEW -->Re&longs;p. e&longs;&longs;e ip&longs;um <pb pagenum="271" xlink:href="026/01/305.jpg"/>impetum cum habitudine actuali ad talem vel talem lineam; </s>
					<s id="N21337"><!-- NEW -->quod au&shy;<lb/>tem po&longs;&longs;it e&longs;&longs;e pl&ugrave;s vel min&ugrave;s determinatus ad vnam, qu&agrave;m ad aliam, du&shy;<lb/>bium e&longs;&longs;e non pote&longs;t, nec in dubium reuocari, &amp; ben&egrave; di&longs;tinguitur li&shy;<lb/>nea quanta in ratione determinationis, &amp; quanta in ratione &longs;patij: </s>
					<s id="N21341"><!-- NEW -->imm&ograve; <lb/>hoc ip&longs;i &longs;upponunt; nam &longs;i KD e&longs;t mixta ex K <foreign lang="greek">b</foreign> &amp; K <foreign lang="greek">q</foreign>, quis non vi&shy;<lb/>det e&longs;&longs;e eundem impetum cum determinatione duplici in&aelig;quali? </s>
					<s id="N21351">pr&aelig;&shy;<lb/>terea, quis neget globum impactum perpendiculariter in alium &aelig;qua&shy;<lb/>lem quie&longs;cere? </s>
					<s id="N21358"><!-- NEW -->cur ver&ograve; quie&longs;cit, ni&longs;i quia impetus e&longs;t fru&longs;tr&agrave;; <lb/>cur autem e&longs;t fru&longs;tr&agrave;, ni&longs;i quia cum determinatio <lb/>noua &longs;it &aelig;qualis priori? </s>
					<s id="N21360">&longs;ed de <lb/>his &longs;atis. <lb/><figure id="id.026.01.305.1.jpg" xlink:href="026/01/305/1.jpg"/></s>
				</p>
			</chap>
			<chap id="N2136B">
				<pb pagenum="272" xlink:href="026/01/306.jpg"/>
				<figure id="id.026.01.306.1.jpg" xlink:href="026/01/306/1.jpg"/>
				<p id="N21375" type="head">
					<s id="N21377"><emph type="center"/>LIBER SEPTIMVS, <lb/><emph type="italics"/>DE MOTV CIRCVLARI.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N21385" type="main">
					<s id="N21387">CVM in natura minim&egrave; de&longs;ideretur motus cir&shy;<lb/>cularis, eius affectiones breuiter in hoc libro <lb/>demon&longs;trantur. <lb/><gap desc="hr tag"/></s>
				</p>
				<p id="N21391" type="main">
					<s id="N21393"><emph type="center"/><emph type="italics"/>DEFINITIO 1.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2139F" type="main">
					<s id="N213A1"><emph type="italics"/>MOtus circularis e&longs;t, cuius linea &aelig;qualiter in omnibus &longs;uis punctis &agrave; com&shy;<lb/>muni centro distat.<emph.end type="italics"/> v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;i punctum in periph&aelig;ria circuli moue&shy;<lb/>retur. </s>
				</p>
				<p id="N213B1" type="main">
					<s id="N213B3"><emph type="center"/><emph type="italics"/>Definitio<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N213C0" type="main">
					<s id="N213C2"><emph type="italics"/>Radius motus e&longs;t linea recta ducta ab illo communi centro ad periph&aelig;&shy;<lb/>riam.<emph.end type="italics"/></s>
				</p>
				<p id="N213CB" type="main">
					<s id="N213CD"><emph type="center"/><emph type="italics"/>Definitio<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N213DA" type="main">
					<s id="N213DC"><emph type="italics"/>Arcus e&longs;t pars periph&aelig;ria maior, vel minor.<emph.end type="italics"/></s>
				</p>
				<p id="N213E3" type="main">
					<s id="N213E5"><emph type="center"/><emph type="italics"/>Definitio<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N213F2" type="main">
					<s id="N213F4"><!-- NEW --><emph type="italics"/>Tangens e&longs;t linea, qu&aelig; tangit periph&aelig;riam in vnico puncto, quam tamen <lb/>non &longs;ecat<emph.end type="italics"/>; h&aelig;c omnia clara &longs;unt, imm&ograve; vulgaria. </s>
				</p>
				<p id="N213FF" type="main">
					<s id="N21401"><emph type="center"/><emph type="italics"/>Hypothe&longs;is<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2140E" type="main">
					<s id="N21410"><!-- NEW --><emph type="italics"/>Si dum rota vertitur imponatur eius &longs;umma &longs;uperficiei aliquod mobile, <lb/>proijcitur &agrave; rota, &longs;eu poti&ugrave;s amouetur<emph.end type="italics"/>; res clara e&longs;t in molari lapide, in <lb/>funda, &amp;c. </s>
				</p>
				<p id="N2141D" type="main">
					<s id="N2141F"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2142C" type="main">
					<s id="N2142E"><!-- NEW --><emph type="italics"/>Illa mouentur &aelig;qualiter, qu&aelig; temporibus &aelig;qualibus aqualia &longs;patia percur&shy;<lb/>runt; in&aelig;qualiter ver&ograve; qua in&aelig;qualia; qua maiora, celeri&ugrave;s; tardi&ugrave;s, qua <lb/>minora.<emph.end type="italics"/></s>
				</p>
				<p id="N2143A" type="main">
					<s id="N2143C"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N21449" type="main">
					<s id="N2144B"><emph type="italics"/>Qua &longs;imul incipiunt moueri, &amp; de&longs;inunt, aquali tempore mouentur.<emph.end type="italics"/></s>
				</p>
				<pb pagenum="273" xlink:href="026/01/307.jpg"/>
				<p id="N21456" type="main">
					<s id="N21458"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N21465" type="main">
					<s id="N21467"><emph type="italics"/>Datur motus circularis.<emph.end type="italics"/></s>
					<s id="N2146E"><!-- NEW --> Probatur infinitis fer&egrave; experimentis; prim&ograve; in <lb/>libr&acirc; cuius brachia motu tant&ugrave;m circulari de&longs;cendunt. </s>
					<s id="N21474"><!-- NEW -->Secund&ograve; in ve&shy;<lb/>cte, qui etiam mouetur circulari motu; </s>
					<s id="N2147A"><!-- NEW -->Terti&ograve; in turbine, rota molari, <lb/>liquore contento intra vas &longs;ph&aelig;ricum; Quart&ograve; in funependulo vibrato. </s>
					<s id="N21480"><!-- NEW --><lb/>Probatur &longs;ecund&ograve;; </s>
					<s id="N21485"><!-- NEW -->quia pote&longs;t imprimi impetus vtrique extremitati ci&shy;<lb/>lindri in partes oppo&longs;itas, &longs;it enim cilindrus, vel parallelipedum LC, <lb/>cuius extremitati imprimatur impetus, per lineam CP, itemque extre&shy;<lb/>mitati L &aelig;qualis per lineam LG oppo&longs;itam CP. Dico, quod mouebitur <lb/>circulariter circa centrum K, ita vt extremitas L conficiat arcum LB &amp; <lb/>C arcum CE; </s>
					<s id="N21493"><!-- NEW -->nec enim C moueri pote&longs;t per CP neque L per LM; </s>
					<s id="N21497"><!-- NEW --><lb/>quippe c&ugrave;m &longs;it &aelig;qualis impetus, neutra extremitas pr&aelig;ualere pote&longs;t: </s>
					<s id="N2149C"><!-- NEW -->non <lb/>vtraque, quia MP e&longs;t maior LC; </s>
					<s id="N214A2"><!-- NEW -->nec dici pote&longs;t neutram moueri, cum <lb/>moueri po&longs;&longs;it L per arcum LT, &amp; C per arcum CS; </s>
					<s id="N214A8"><!-- NEW -->quippe impetus <lb/>e&longs;t indifferens ad omnem lineam; &amp; h&aelig;c e&longs;t ratio &agrave; priori circularis <lb/>motus de qua fus&egrave; infr&agrave;. </s>
				</p>
				<p id="N214B0" type="main">
					<s id="N214B2"><!-- NEW -->Ob&longs;eruabis motum circularem ab iis negari, qui ex punctis mathema&shy;<lb/>ticis continuum componunt; </s>
					<s id="N214B8"><!-- NEW -->quia ex eo &longs;equeretur non po&longs;&longs;e dari mo&shy;<lb/>tum continuum velociorem, vel tardiorem, quod ridiculum e&longs;t; </s>
					<s id="N214BE"><!-- NEW -->&longs;i enim <lb/>punctum Q &aelig;quali tempore moueatur cum puncto C cert&egrave; arcus QR <lb/>quem percurrit eo tempore, quo C percurrit arcum CS, e&longs;&longs;et &aelig;qualis <lb/>arcui CS, quod e&longs;t ab&longs;urdum; </s>
					<s id="N214C8"><!-- NEW -->quod cert&egrave; ne admittere cogantur, mo&shy;<lb/>tum circularem negant, quod &aelig;qu&egrave; ab&longs;urdum e&longs;t; </s>
					<s id="N214CE"><!-- NEW -->pr&aelig;&longs;ertim eum ad vi&shy;<lb/>tandum motum circularem infinita quoque ab&longs;urda deglutiant, ma&shy;<lb/>nife&longs;tis experimentis contradicant, oculos ip&longs;os intuentium pr&aelig;&longs;tigiis <lb/>illudi a&longs;&longs;erant, ferreum vectem dum mouetur in mille partes diffringi <lb/>etiam iurent; &longs;ed h&aelig;c omitto. </s>
				</p>
				<p id="N214DA" type="main">
					<s id="N214DC"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N214E9" type="main">
					<s id="N214EB"><!-- NEW --><emph type="italics"/>Ni&longs;i impediretur impetus determinatio per lineam rectam, non daretur mo&shy;<lb/>tus circularis &longs;altem in &longs;ublunaribus.<emph.end type="italics"/> v. <!-- REMOVE S-->g. <!-- REMOVE S-->ni&longs;i impediretur determinatio <lb/>impetus, qui ine&longs;t puncto L per lineam LM; </s>
					<s id="N214FC"><!-- NEW -->haud dubi&egrave; non mouere&shy;<lb/>tur per arcum LB, &longs;ed per rectam LM; igitur ille motus non e&longs;&longs;et cir&shy;<lb/>cularis. </s>
				</p>
				<p id="N21504" type="main">
					<s id="N21506"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N21513" type="main">
					<s id="N21515"><!-- NEW --><emph type="italics"/>Hinc motus circularis oritur ex recto impedito in &longs;ingulis punctis<emph.end type="italics"/>: </s>
					<s id="N2151E"><!-- NEW -->dixi in <lb/>&longs;ingulis punctis; </s>
					<s id="N21524"><!-- NEW -->quia lic&egrave;t in puncto L impediretur, non tamen in &longs;e&shy;<lb/>quenti; </s>
					<s id="N2152A"><!-- NEW -->e&longs;&longs;et quidem noua linea determinationis, non tamen curua; &longs;i <lb/>tamen in &longs;ingulis punctis impediatur &aelig;quali &longs;emper radio, haud dubi&egrave; <lb/>e&longs;t circularis. </s>
				</p>
				<p id="N21532" type="main">
					<s id="N21534">Ob&longs;eruabis dictum e&longs;&longs;e &longs;upra in &longs;ublunaribus quia corpora c&oelig;le&longs;tia <lb/>mouentur motu circulari non habita vlla ratione motus recti, de quo <lb/>&longs;uo loco. </s>
				</p>
				<pb pagenum="274" xlink:href="026/01/308.jpg"/>
				<p id="N2153F" type="main">
					<s id="N21541"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2154E" type="main">
					<s id="N21550"><!-- NEW --><emph type="italics"/>Hinc &longs;ingulis instantibus punctum dum mouetur circa centrum<emph.end type="italics"/> K <emph type="italics"/>deter&shy;<lb/>minatur ad nouam lineam<emph.end type="italics"/>; </s>
					<s id="N21561"><!-- NEW -->quia &longs;cilicet &longs;ingulis in&longs;tantibus impeditur; </s>
					<s id="N21565"><!-- NEW --><lb/>igitur &longs;ingulis in&longs;tantibus nouam determinationem accipit; e&longs;t enim ea&shy;<lb/>dem ratio pro &longs;ecundo in&longs;tanti, qu&aelig; e&longs;t pro primo, itemque pro tertio, <lb/>quarto, &amp;c. </s>
				</p>
				<p id="N2156E" type="main">
					<s id="N21570"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 5.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2157D" type="main">
					<s id="N2157F"><!-- NEW --><emph type="italics"/>Hinc tot &longs;unt determinationes &longs;ingulis in&longs;tantibus re&longs;pondentes, quot &longs;unt <lb/>Tangentes in circulo<emph.end type="italics"/>; </s>
					<s id="N2158A"><!-- NEW -->quipp&egrave; in &longs;ingulis punctis determinatur ad Tan&shy;<lb/>gentem; </s>
					<s id="N21590"><!-- NEW -->&longs;ed impeditur denu&ograve; pro &longs;equenti in&longs;tanti; </s>
					<s id="N21594"><!-- NEW -->igitur ad nouam <lb/>Tangentem determinatur; </s>
					<s id="N2159A"><!-- NEW -->e&longs;t autem h&aelig;c veri&longs;&longs;ima motus circularis ra&shy;<lb/>tio; </s>
					<s id="N215A0"><!-- NEW -->quod &longs;cilicet cum &longs;ingulis in&longs;tantibus &aelig;qualiter impediatur motus <lb/>rectus; </s>
					<s id="N215A6"><!-- NEW -->quia altera mobilis extremitas accedere non pote&longs;t, &longs;ingulis quo&shy;<lb/>que in&longs;tantibus ad nouam Tangentem determinatur &aelig;quali &longs;emper ra&shy;<lb/>dio; vnde nece&longs;&longs;ari&ograve; &longs;equitur motus circularis. </s>
				</p>
				<p id="N215AE" type="main">
					<s id="N215B0"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 6.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N215BD" type="main">
					<s id="N215BF"><!-- NEW --><emph type="italics"/>Hinc reiicies aliquem recentiorem, qui vult motum circularem e&longs;&longs;e mixtum <lb/>ex duobus rectis, quorum alter &longs;it vt &longs;inus recti, alter ver&ograve; vt &longs;inus ver&longs;i,<emph.end type="italics"/> &longs;it <lb/>enim quadrans KCE; &longs;it impetus per EK, &amp; per EO, vel duplex, vel <lb/>idem determinatus ad duas i&longs;tas lineas, ita vt determinatio per EK &longs;it <lb/>ad determinationem EO, vt &longs;inus ver&longs;i ad rectos. </s>
					<s id="N215D0"><!-- NEW -->v. <!-- REMOVE S-->g. <!-- REMOVE S-->a&longs;&longs;umpto arcu <lb/>EM, vt EN ad NM; cert&egrave; hoc po&longs;ito debet moueri punctum E per li&shy;<lb/>neam circularem EMC. </s>
					<s id="N215DC"><!-- NEW -->Equidem &longs;i e&longs;&longs;et duplex impetus, vel vnus tan&shy;<lb/>t&ugrave;m cum duplici illa determinatione, ex eo &longs;equeretur motus circularis <lb/>mixtus ex duobus rectis; </s>
					<s id="N215E4"><!-- NEW -->&longs;icut rectus pote&longs;t ex duobus circularibus ori&shy;<lb/>ri, vt dicemus ali&agrave;s; </s>
					<s id="N215EA"><!-- NEW -->non tamen inde &longs;equitur omnem motum circula&shy;<lb/>rem e&longs;&longs;e mixtum ex duobus rectis, quod nemo non videt: </s>
					<s id="N215F0"><!-- NEW -->quippe po&longs;ito <lb/>qu&ograve;d radius KE &longs;it affixus immobiliter centro K, lic&egrave;t pellatur tant&ugrave;m, <lb/>per Tangentem EO etiam cum valido impetu, nihilo tamen minus mo&shy;<lb/>tu circulari mouebitur: </s>
					<s id="N215FA"><!-- NEW -->Adde quod difficile e&longs;&longs;et duos impetus ita attem&shy;<lb/>perare, vt cre&longs;ceret vnus in ratione &longs;inuum ver&longs;orum, &amp; alter in ratione <lb/>&longs;inuum rectorum; </s>
					<s id="N21602"><!-- NEW -->nec enim motus illi recti, ex quibus circularis qua&longs;i <lb/>na&longs;ceretur, &aelig;quales e&longs;&longs;e po&longs;&longs;unt; </s>
					<s id="N21608"><!-- NEW -->igitur &longs;ufficit vnius impetus ad vnam <lb/>tant&ugrave;m lineam primo in&longs;tanti determinatus v.g. <!-- REMOVE S-->ad Tangentem EO, qui <lb/>ratione impedimenti in K &longs;uum effectum habere non pote&longs;t, &longs;ed reduci&shy;<lb/>tur continu&ograve; ver&longs;us K &aelig;quali &longs;emper di&longs;tantia; </s>
					<s id="N21614"><!-- NEW -->ex quo &longs;equitur nece&longs;&longs;a&shy;<lb/>ri&ograve; motus circularis, &longs;cilicet ex illa qua&longs;i funis adductione; </s>
					<s id="N2161A"><!-- NEW -->&longs;i enim ex <lb/>puncto K laxaretur habena &longs;egmentis &aelig;qualibus; </s>
					<s id="N21620"><!-- NEW -->differenti&aelig; &longs;inus totius <lb/>&amp; &longs;ecantis v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;egmento VO in arcu EP; cert&egrave; E moueretur per <lb/>rectam EO. </s>
				</p>
				<p id="N2162C" type="main">
					<s id="N2162E"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 7.<emph.end type="center"/></s>
				</p>
				<p id="N2163A" type="main">
					<s id="N2163C"><!-- NEW --><emph type="italics"/>Hinc optim&egrave; intelligitur ratio hypothe&longs;eos prim&aelig;<emph.end type="italics"/>; </s>
					<s id="N21645"><!-- NEW -->&longs;i enim punctum E &longs;epara-<pb pagenum="275" xlink:href="026/01/309.jpg"/>retur &agrave; recta EK eo in&longs;tanti, quo imprimitur impetus; </s>
					<s id="N2164E"><!-- NEW -->haud dubi&egrave; per <lb/>rectam EO moueretur; </s>
					<s id="N21654"><!-- NEW -->quia &longs;cilicet impetus puncti E determinatus e&longs;t <lb/>in puncto E ad motum per Tangentem EO; </s>
					<s id="N2165A"><!-- NEW -->&amp; &longs;i nullum e&longs;&longs;et impedi&shy;<lb/>mentum per rectam EO, moueretur; </s>
					<s id="N21660"><!-- NEW -->atqui &longs;i &longs;eparetur punctum E, ce&longs;&shy;<lb/>&longs;at impedimentum, vt patet; </s>
					<s id="N21666"><!-- NEW -->nec enim amplius retinetur ex puncto K; </s>
					<s id="N2166A"><!-- NEW --><lb/>igitur ce&longs;&longs;at ratio motus circularis; </s>
					<s id="N2166F"><!-- NEW -->igitur motu recto per rectam EO <lb/>mouebitur; </s>
					<s id="N21675"><!-- NEW -->&longs;ic lapis impo&longs;itus rot&aelig; dum maximo cum impetu vertitur, <lb/>per Tangentem proiicitur; </s>
					<s id="N2167B"><!-- NEW -->&longs;ic gutta aqu&aelig;, qu&aelig; cadit in volubilem tro&shy;<lb/>chum etiam di&longs;pergitur; </s>
					<s id="N21681"><!-- NEW -->&longs;ic rota ip&longs;a, cuius aliqua pars pr&aelig; nimia vi <lb/>motus diffringitur, illam qua&longs;i proiicit per rectam; </s>
					<s id="N21687"><!-- NEW -->hinc ratio vnica <lb/>proiectionis qu&aelig; fit oper&acirc; fundarum; </s>
					<s id="N2168D"><!-- NEW -->&longs;it enim funda KE vel KL, qu&aelig; <lb/>moueatur per arcum LE; </s>
					<s id="N21693"><!-- NEW -->cert&egrave;, &longs;i lapis demittatur in puncto E, lapis <lb/>proiicietur per rectam LO; </s>
					<s id="N21699"><!-- NEW -->nec enim ad aliam lineam lapis, dum e&longs;t in <lb/>puncto E, e&longs;t determinatus, ni&longs;i ad Tangentem EO, ad quam dumtaxat <lb/>impetus puncti EA e&longs;t determinatus; in hoc igitur Fundibularij tan&shy;<lb/>t&ugrave;m in&longs;i&longs;tit indu&longs;tria, qu&acirc; &longs;cilicet &longs;axum in funda rotatum &longs;copum cui <lb/>de&longs;tinatur, attingat, vt illam Tangentem inueniat qu&aelig; &agrave; pr&aelig;dicto &longs;copo <lb/>in circulum, quem &longs;uo motu de&longs;cribit, funda ducitur. </s>
					<s id="N216A7"><!-- NEW -->v.g. <!-- REMOVE S-->&longs;it radius fun&shy;<lb/>d&aelig; KL hypomoclium K, circulus quem de&longs;cribit funda LEC; </s>
					<s id="N216AF"><!-- NEW -->&longs;it &longs;co&shy;<lb/>pus O, ducatur tangens EO; </s>
					<s id="N216B5"><!-- NEW -->cert&egrave;, &longs;i vbi funda peruenit in E, dimit&shy;<lb/>tat lapidem, pr&aelig;dictum &longs;copum non illic&ograve; feriet; </s>
					<s id="N216BB"><!-- NEW -->hinc etiam ratio, cur in <lb/>naui dum motu recto mouetur  facil&egrave; con&longs;i&longs;tamus; cum tamen &lpar;quod in <lb/>longioribus illis nauiculis facil&egrave; contingere pote&longs;t&rpar; &longs;i circa centrum <lb/>&longs;uum nauis vertatur, quod accidit cum vtraque extremitas in partes op&shy;<lb/>po&longs;itas, vel remo, vel pertica pellitur, nec in ca con&longs;i&longs;tamus. </s>
				</p>
				<p id="N216C7" type="main">
					<s id="N216C9"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 8.<emph.end type="center"/></s>
				</p>
				<p id="N216D5" type="main">
					<s id="N216D7"><!-- NEW --><emph type="italics"/>Si rota plana in circulo horizontali voluatur, &longs;itque pondus plano rot&aelig; incu&shy;<lb/>bans, in eo producetur impetus<emph.end type="italics"/>; vt certum e&longs;t; </s>
					<s id="N216E2"><!-- NEW -->an ver&ograve; pondus retroagi de&shy;<lb/>beat, pr&aelig;&longs;ertim &longs;i &longs;it globus, vel aqua; </s>
					<s id="N216E8"><!-- NEW -->an ver&ograve; per Tangentem proiici, <lb/>dubium e&longs;&longs;e pote&longs;t; </s>
					<s id="N216EE"><!-- NEW -->videntur enim pro vtraque hypothe&longs;i facere expe&shy;<lb/>rienti&aelig;; </s>
					<s id="N216F4"><!-- NEW -->pro prima quidem, &longs;i rotetur rota concaua &longs;eu &longs;cutella plena <lb/>aqua; </s>
					<s id="N216FA"><!-- NEW -->aqua enim in partem contrariam volui videbitur; &amp;, &longs;i plano <lb/>quod in circulo horizontali voluitur imponatur globus leuigati&longs;&longs;imus, <lb/>cert&egrave; in partem oppo&longs;itam ibit. </s>
					<s id="N21702"><!-- NEW -->Secund&aelig; hypothe&longs;i alia videntur fauere <lb/>experimenta; </s>
					<s id="N21708"><!-- NEW -->&longs;i enim trochus volubilis, vel aqua, vel puluere a&longs;perga&shy;<lb/>tur, &longs;tatim aqua re&longs;ilit per Tangentem, idem dico de puluere, &longs;i funda in <lb/>circulo horizontali voluatur, lapis demi&longs;&longs;us per Tangentem ibit: &longs;ed <lb/>h&aelig;c omnia, qu&aelig; ad proiectiones pertinent, lic&egrave;t ill&aelig; &longs;equantur ex motu <lb/>circulari, examinabimus &amp; demon&longs;trabimus lib.  10. cum de proiectis. </s>
				</p>
				<p id="N21714" type="main">
					<s id="N21716"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 9.<emph.end type="center"/></s>
				</p>
				<p id="N21722" type="main">
					<s id="N21724"><!-- NEW --><emph type="italics"/>Cau&longs;a motus circularis e&longs;t ea, qu&aelig; cum tali impedimento coniuncta e&longs;t<emph.end type="italics"/>; </s>
					<s id="N2172D"><!-- NEW -->ex <lb/>quo accidit diametrum mobilis in aliquo &longs;ui puncto retineri immobi&shy;<lb/>lem; &longs;unt autem varij modi huius applicationis. </s>
					<s id="N21735">Primus e&longs;t ille, quem <lb/>indicauimus &longs;upr&agrave; Th.1.cum &longs;cilicet vtraque extremitas cylindri &aelig;quali <pb pagenum="276" xlink:href="026/01/310.jpg"/>impetu in partes oppo&longs;itas pellitur. </s>
					<s id="N2173F">v.g. <!-- REMOVE S-->C per CP, L per LG. Secundus<lb/>e&longs;t, cum affigitur altera extremitas. </s>
					<s id="N21746">v.g. <!-- REMOVE S-->punctum K affigitur, ita vt tamen <lb/>propter flexibilitatem radij KL, idem radius moueri po&longs;&longs;it circa cen&shy;<lb/>trum K, vt videmus in funependulis. </s>
					<s id="N2174F"><!-- NEW -->Tertius e&longs;t, &longs;i diameter fulcro K <lb/>in&longs;eratur, vt in obelis ferri, vel magnetica acu: huc reuoca rotas omnes, <lb/>qu&aelig; in circulo horizontali, &amp; verticali voluuntur. </s>
					<s id="N21757">Quartus, &longs;i cum ali&shy;<lb/>qua explo&longs;ione digitorum motus imprimatur, vel globo, vel trocho, vel <lb/>iis cubis, quibus in&longs;cripti numeri po&longs;t girationem &longs;ortem indicant. </s>
					<s id="N2175E"><!-- NEW --><lb/>Quintus, &longs;i cum flagello trochus agatur; </s>
					<s id="N21763"><!-- NEW -->cum enim implicetur flagel&shy;<lb/>lum trocho, vbi retrahitur, in gyros agitur trochus; </s>
					<s id="N21769"><!-- NEW -->huc reuoca funem <lb/>illum plicatilem, quibus armatus ferro trochus voluitur: </s>
					<s id="N2176F"><!-- NEW -->adde his refle&shy;<lb/>xionem variam ex qua &longs;&aelig;p&egrave; oritur h&aelig;c turbinatio; </s>
					<s id="N21775"><!-- NEW -->t&ugrave;m etiam figuram <lb/>va&longs;is; </s>
					<s id="N2177B"><!-- NEW -->&longs;ic aqua intra vas &longs;ph&aelig;ricum voluitur; </s>
					<s id="N2177F"><!-- NEW -->&longs;ic in vorticibus voluitur <lb/>aqua propter pr&aelig;ruptum de&longs;cen&longs;um aluei; </s>
					<s id="N21785"><!-- NEW -->&longs;ic etiam turbinatim de&longs;cen&shy;<lb/>dit aqua per tubum infundibuli; c&aelig;tera omitto, qu&aelig; ex his facil&egrave; intel&shy;<lb/>ligi po&longs;&longs;unt. </s>
				</p>
				<p id="N2178D" type="main">
					<s id="N2178F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 10.<emph.end type="center"/></s>
				</p>
				<p id="N2179B" type="main">
					<s id="N2179D"><!-- NEW --><emph type="italics"/>Datur impetus in motu circulari<emph.end type="italics"/>; </s>
					<s id="N217A6"><!-- NEW -->probatur facil&egrave;, quia etiam ab&longs;ente <lb/>potentia motrice durat motus; </s>
					<s id="N217AC"><!-- NEW -->igitur ade&longs;&longs;e debet illius cau&longs;a; igitur <lb/>impetus, clarum e&longs;t; </s>
					<s id="N217B2"><!-- NEW -->debet autem e&longs;&longs;e hic impetus ita determinatus, vt <lb/>determinatio vnius puncti impediat determinationem alteri&ugrave;s; &longs;ed aliam <lb/>permittat, alioqui de&longs;trueretur totus impetus, &amp; h&aelig;c vici&longs;&longs;im illam. </s>
				</p>
				<p id="N217BA" type="main">
					<s id="N217BC"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 11.<emph.end type="center"/></s>
				</p>
				<p id="N217C8" type="main">
					<s id="N217CA"><!-- NEW --><emph type="italics"/>Subjectum huius impetus e&longs;t omne mobile<emph.end type="italics"/>; </s>
					<s id="N217D3"><!-- NEW -->non e&longs;t difficultas pro mobili <lb/>corporeo, quod pluribus partibus con&longs;tat; </s>
					<s id="N217D9"><!-- NEW -->quippe impetus vnius partis <lb/>pote&longs;t impedire impetum alterius; </s>
					<s id="N217DF"><!-- NEW -->at difficilius e&longs;t dictu, an punctum, <lb/>&longs;i detur, moueri po&longs;&longs;it circulariter: de puncto phy&longs;ico loquor? </s>
					<s id="N217E5"><!-- NEW -->cui cer&shy;<lb/>t&egrave; non repugnat motus circularis; quipp&egrave; lic&egrave;t careat partibus actu, non <lb/>tamen caret partibus potenti&acirc;. </s>
					<s id="N217ED"><!-- NEW -->Dices, non mutat locum; </s>
					<s id="N217F1"><!-- NEW -->igitur non mo&shy;<lb/>uetur: </s>
					<s id="N217F7"><!-- NEW -->antecedens con&longs;tare videtur, quia &longs;emper remanet in eodem loco: </s>
					<s id="N217FB"><!-- NEW --><lb/>con&longs;equentia etiam videtur e&longs;&longs;e clara per Def.1. lib.  1. Re&longs;pondeo pri&shy;<lb/>m&ograve; mutare locum re&longs;pectiuum; </s>
					<s id="N21802"><!-- NEW -->quippe lic&egrave;t punctum phy&longs;icum non ha&shy;<lb/>beat partes, habet tamen facies; </s>
					<s id="N21808"><!-- NEW -->vnde facies conuertuntur per motum <lb/>circularem; </s>
					<s id="N2180E"><!-- NEW -->igitur non habent ampli&ugrave;s eundem re&longs;pectum; igitur nec <lb/>eundem locum re&longs;pectiuum. </s>
					<s id="N21814"><!-- NEW -->Re&longs;pondeo &longs;ecund&ograve;, punctum phy&longs;icum ha&shy;<lb/>bere partes potenti&acirc;, non actu; </s>
					<s id="N2181A"><!-- NEW -->vnde mutat locum, dum voluitur; </s>
					<s id="N2181E"><!-- NEW -->quia <lb/>qu&aelig;libet pars potenti&acirc; diuer&longs;&aelig; parti &longs;patij potenti&acirc; re&longs;pondet; </s>
					<s id="N21824"><!-- NEW -->&longs;ed h&icirc;c <lb/>non di&longs;cutio qu&aelig;&longs;tionem illam, an dentur puncta phy&longs;ica; </s>
					<s id="N2182A"><!-- NEW -->&longs;ed tant&ugrave;m <lb/>a&longs;&longs;ero, ex &longs;uppo&longs;itione qu&ograve;d detur punctum phy&longs;icum moueri po&longs;&longs;e mo&shy;<lb/>tu circulari: </s>
					<s id="N21832"><!-- NEW -->Idem de Angelo dici pote&longs;t, non tamen de puncto mathe&shy;<lb/>matico, cuius motus concipi non pote&longs;t; </s>
					<s id="N21838"><!-- NEW -->vnde optim&egrave; negat Ari&longs;toteles <lb/>punctum mathematicum moueri po&longs;&longs;e; </s>
					<s id="N2183E"><!-- NEW -->imm&ograve; nos aliquando repugnare <lb/>dari punctum mathematicum o&longs;tendemus; igitur ex dictis patet, omne <pb pagenum="277" xlink:href="026/01/311.jpg"/>mobile, quod &longs;cilicet moueri pote&longs;t motu recto, motu circulari etiam <lb/>moueri po&longs;&longs;e. </s>
				</p>
				<p id="N2184B" type="main">
					<s id="N2184D"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 12.<emph.end type="center"/></s>
				</p>
				<p id="N21859" type="main">
					<s id="N2185B"><!-- NEW --><emph type="italics"/>Finis huius motus varius e&longs;t in natur&acirc;, &amp; multiplex v&longs;us<emph.end type="italics"/>; prim&ograve; enim <lb/>ex motu circulari fit, vt impetus qui e&longs;t ad omnem lineam indifferens <lb/>habeat &longs;uum effectum, cum omnes line&aelig; impediuntur pr&aelig;ter vnam, &amp; <lb/>hoc e&longs;t vera ratio &agrave; priori huius motus. </s>
					<s id="N2186A"><!-- NEW -->Secund&ograve; nulla libratio, &longs;eu vi&shy;<lb/>bratio e&longs;&longs;e po&longs;&longs;et, ni&longs;i motus circularis e&longs;&longs;et; hinc nullus libr&aelig; v&longs;us, ve&shy;<lb/>ctis, trochle&aelig;, aliorumque organorum mechanicorum quorum opera <lb/>inutilis e&longs;&longs;et &longs;ine motu circulari. </s>
					<s id="N21874"><!-- NEW -->Terti&ograve;, omitto gyros, &amp; &longs;piras, turbi&shy;<lb/>num, rotarum, lapidum molarium, imm&ograve; &amp; &longs;yderum orbitas, fundarum <lb/>librationes; </s>
					<s id="N2187C"><!-- NEW -->imm&ograve; &amp; ip&longs;orum brachiorum; digitorum, tybiarum v&longs;um; <lb/>imm&ograve; au&longs;im dicere motum circularem non min&ugrave;s toti natur&aelig; vtilem <lb/>e&longs;&longs;e, qu&agrave;m rectum. </s>
				</p>
				<p id="N21884" type="main">
					<s id="N21886"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 13.<emph.end type="center"/></s>
				</p>
				<p id="N21892" type="main">
					<s id="N21894"><!-- NEW --><emph type="italics"/>Motus circularis pote&longs;t appellari &longs;implex<emph.end type="italics"/>; </s>
					<s id="N2189D"><!-- NEW -->quia ex pluribus mixtus non <lb/>e&longs;t omnis motus circularis, lic&egrave;t aliquis motus circularis po&longs;&longs;it e&longs;&longs;e mixtus <lb/>ex duobus rectis, vt dictum e&longs;t &longs;upr&agrave;; </s>
					<s id="N218A5"><!-- NEW -->non min&ugrave;s qu&agrave;m rectus pote&longs;t e&longs;&longs;e <lb/>mixtus ex duobus circularibus; </s>
					<s id="N218AB"><!-- NEW -->non e&longs;t tamen propterea dicendum om&shy;<lb/>nem circularem e&longs;&longs;e mixtum; </s>
					<s id="N218B1"><!-- NEW -->cum &longs;cilicet in mobili, quod circulari mo&shy;<lb/>tu mouetur, non fit duplex impetus; quis autem dicat motum funepen&shy;<lb/>duli &longs;ur&longs;um vibrati e&longs;&longs;e mixtum? </s>
					<s id="N218B9"><!-- NEW -->equidem in &longs;ublunaribus nullus e&longs;t mo&shy;<lb/>tus circularis qui ex multiplici determinatione non con&longs;tet, vt dictum <lb/>e&longs;t &longs;upr&agrave;; </s>
					<s id="N218C1"><!-- NEW -->Vnde fort&egrave; vel eo nomine mixtus dici po&longs;&longs;et, &longs;ed propter ean&shy;<lb/>dem rationem motus reflexus mixtus dici po&longs;&longs;et; </s>
					<s id="N218C7"><!-- NEW -->quidquid &longs;it, dum rem <lb/>intelligas, loquere vt voles; </s>
					<s id="N218CD"><!-- NEW -->dixi in &longs;ublunaribus, quia corpora c&oelig;le&longs;tia <lb/>ita &longs;unt &agrave; natura in&longs;tituta, vt circulari motu rotari po&longs;tulent; de quo &longs;uo <lb/>loco: </s>
					<s id="N218D5"><!-- NEW -->Et ver&ograve; h&aelig;c legitima videtur e&longs;&longs;e Ari&longs;totelis &longs;ententia, qui motum <lb/>naturalem rectum grauibus, &amp; leuibus tribuit, circularem ver&ograve; c&oelig;le&longs;ti&shy;<lb/>bus; </s>
					<s id="N218DD"><!-- NEW -->ex quo etiam motu tanquam ex natiua proprietate quintam c&oelig;lo&shy;<lb/>rum e&longs;&longs;entiam concludit; denique nulla videtur e&longs;&longs;e repugnantia, nul&shy;<lb/>lumque ab&longs;urdum, &longs;i motus circularis alicui corpori competat. </s>
					<s id="N218E5"><!-- NEW -->Vtrum <lb/>ver&ograve; motus circularis dici po&longs;&longs;it naturalis, dubium e&longs;&longs;e non pote&longs;t, pro <lb/>c&oelig;le&longs;tibus illis corporibus, &longs;i &agrave; principio intrin&longs;eco rotantur; </s>
					<s id="N218ED"><!-- NEW -->pro &longs;ub&shy;<lb/>lunaribus aliquod fort&egrave; dubium e&longs;&longs;et; &longs;ed qu&aelig;&longs;o te cum funependulum <lb/>&longs;ua &longs;ponte vibratum de&longs;cendit, quo nomine motum illum appellas? </s>
					<s id="N218F5">Nun&shy;<lb/>quid e&longs;t &agrave; principio intrin&longs;eco? </s>
					<s id="N218FA">cur igitur naturalem appellare detrectas? </s>
					<s id="N218FD"><lb/>rem intelligis, loquere vt voles. </s>
				</p>
				<p id="N21901" type="main">
					<s id="N21903"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 14.<emph.end type="center"/></s>
				</p>
				<p id="N2190F" type="main">
					<s id="N21911"><emph type="italics"/>Omnia puncta eiu&longs;dem circuli mouentur &aelig;quali motu.<emph.end type="italics"/></s>
					<s id="N21918"><!-- NEW --> Probatur quia <lb/>&aelig;qualibus temporibus &aelig;quales arcus percurrunt, vt con&longs;tat; igitur mo&shy;<lb/>uentur &aelig;quali motu, id e&longs;t &aelig;qu&egrave; velociter per Axioma 1. <!-- KEEP S--></s>
				</p>
				<pb pagenum="278" xlink:href="026/01/312.jpg"/>
				<p id="N21925" type="main">
					<s id="N21927"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 15.<emph.end type="center"/></s>
				</p>
				<p id="N21933" type="main">
					<s id="N21935"><!-- NEW --><emph type="italics"/>Puncta diuer&longs;orum circulorum mouentur in&aelig;quali motu<emph.end type="italics"/>; </s>
					<s id="N2193E"><!-- NEW -->quia tempori&shy;<lb/>bus &aelig;qualibus in&aelig;quales percurrunt arcus; </s>
					<s id="N21944"><!-- NEW -->igitur in&aelig;quali motu per <lb/>Axio. <!-- REMOVE S-->1. v.g. <!-- REMOVE S-->puncta L &amp; C qu&aelig; di&longs;tant &aelig;qualiter &agrave; centro K, mouentur <lb/>&aelig;quali motu, quia &aelig;quali tempore conficiunt &aelig;quales arcus CS, LT; at <lb/>ver&ograve; puncta CQ in&aelig;quali motu mouentur, quia &aelig;quali tempore arcus <lb/>in&aelig;quales percurrunt, &longs;cilicet CS, QX. </s>
				</p>
				<p id="N21954" type="main">
					<s id="N21956"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 16.<emph.end type="center"/></s>
				</p>
				<p id="N21962" type="main">
					<s id="N21964"><!-- NEW --><emph type="italics"/>Hinc puncta, qu&aelig; accedunt propi&ugrave;s ad centrum mouentur tardi&ugrave;s, qu&aelig; lon&shy;<lb/>gi&ugrave;s recedunt, mouentur veloci&ugrave;s.<emph.end type="italics"/> v.g. <!-- REMOVE S-->C veloci&ugrave;s, quia conficit arcum ma&shy;<lb/>iorem; </s>
					<s id="N21973"><!-- NEW -->CSQ tardi&ugrave;s, quia &aelig;quali tempore conficit arcum minorem <lb/>QR &longs;unt autem arcus &longs;imiles, vt radij, id e&longs;t QR e&longs;t ad CS, vt radius <lb/>KQ ad QC, &longs;ed motus &longs;unt vt arcus; igitur motus, vt radij, vel di&longs;tanti&aelig; <lb/>&agrave; centro communi. </s>
				</p>
				<p id="N2197D" type="main">
					<s id="N2197F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 17.<emph.end type="center"/></s>
				</p>
				<p id="N2198B" type="main">
					<s id="N2198D"><!-- NEW --><emph type="italics"/>Ex his constat impetum, qui pr&aelig;stat motum circularem distribui in mobili <lb/>vniformiter, id e&longs;t &aelig;qualem in eodem circulo, vel in distantia &aelig;quali, &amp; dif&shy;<lb/>formiter, id e&longs;t in&aelig;qualem in diuer&longs;is circulis, vel in diuer&longs;a distantia<emph.end type="italics"/>; </s>
					<s id="N2199A"><!-- NEW -->quia <lb/>ex in&aelig;qualitate motus cogno&longs;ci tant&ugrave;m pote&longs;t in&aelig;qualitas impetus; </s>
					<s id="N219A0"><!-- NEW -->fit <lb/>autem h&aelig;c diffu&longs;io, &longs;eu propagatio in ratione longitudinum v. <!-- REMOVE S-->g. <!-- REMOVE S-->impe&shy;<lb/>tus in Q e&longs;t ad impetum in C, vt longitudo KQ ad KC, vt con&longs;tat ex <lb/>dictis; </s>
					<s id="N219AE"><!-- NEW -->accipio autem omnes partes impetus, qu&aelig; &longs;unt in Q, &amp; compa&shy;<lb/>ro omnes illas cum omnibus illis, qu&aelig; in&longs;unt puncto C; </s>
					<s id="N219B4"><!-- NEW -->nam certum e&longs;t <lb/>ex his qu&aelig; fus&egrave; diximus lib.1.non produci plures partes impetus in C, <expan abbr="qu&atilde;">quam</expan> <lb/>in <expan abbr="q;">que</expan> &longs;ed perfectiorem impetum produci in C, qu&agrave;m in Q: </s>
					<s id="N219C4"><!-- NEW -->recole qu&aelig; <lb/>diximus lib.1. &agrave; Th. 99. ad Th.112. in quibus habes totam propagatio&shy;<lb/>nem impetus determinati ad motum circularem; </s>
					<s id="N219CC"><!-- NEW -->&longs;iue applicetur po&shy;<lb/>tentia centro, id e&longs;t iuxta centrum; &longs;iue circumferenti&aelig;. </s>
				</p>
				<p id="N219D2" type="main">
					<s id="N219D4"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 18.<emph.end type="center"/></s>
				</p>
				<p id="N219E0" type="main">
					<s id="N219E2"><!-- NEW --><emph type="italics"/>Motus puncti C non e&longs;t velocior motu puncti Q ratione temporis, &longs;ed &longs;patij<emph.end type="italics"/>; </s>
					<s id="N219EB"><!-- NEW --><lb/>quia vtrumque mouetur &longs;emper &aelig;quali tempore, quia &longs;unt in eodem ra&shy;<lb/>dio; </s>
					<s id="N219F2"><!-- NEW -->recole etiam, qu&aelig; diximus alibi, &longs;cilicet lib.  2. in comparatione <lb/>motuum, vel a&longs;&longs;umi po&longs;&longs;e &longs;patia &aelig;qualia cum temporibus in&aelig;qualibus, <lb/>vel tempora &aelig;qualia cum &longs;patiis in&aelig;qualibus; </s>
					<s id="N219FA"><!-- NEW -->atqui in motu circulari <lb/>cum omnes partes eiu&longs;dem mobilis &longs;imul moueantur, id e&longs;t &longs;imul inci&shy;<lb/>piant, &amp; de&longs;inant moueri; </s>
					<s id="N21A02"><!-- NEW -->cert&egrave; &aelig;quali tempore mouentur; </s>
					<s id="N21A06"><!-- NEW -->&longs;ed motus <lb/>e&longs;t in&aelig;qualis; igitur non ratione temporis, quod &aelig;quale e&longs;t, &longs;ed <lb/>&longs;patij. </s>
				</p>
				<p id="N21A0E" type="main">
					<s id="N21A10">Hic fort&egrave; aliquis de&longs;ideraret &longs;olutionem illius argumenti, quod vul&shy;<lb/>g&ograve; ducitur ex motu circulari contra puncta phy&longs;ica, quod &longs;ic breuiter <lb/>proponi pote&longs;t. </s>
					<s id="N21A17"><!-- NEW -->Sit punctum Q, quod acquirat punctum &longs;patij ver&longs;us R <lb/>vno in&longs;tanti; </s>
					<s id="N21A1D"><!-- NEW -->certe punctum C, quod mouetur ver&longs;us S, acquiret eodem <pb pagenum="279" xlink:href="026/01/313.jpg"/>illo in&longs;tanti plu&longs;quam punctum &longs;patij; </s>
					<s id="N21A26"><!-- NEW -->igitur eodem in&longs;tanti erit in <lb/>duobus loris, quod e&longs;t ab&longs;urdum; </s>
					<s id="N21A2C"><!-- NEW -->nec pote&longs;t dici punctum C moueri <lb/>duobus in&longs;tantibus, &longs;ed minoribus, qu&aelig; &longs;cilicet re&longs;pondeant in&longs;tanti, quo <lb/>mouetur punctum <expan abbr="q;">que</expan> quia &longs;i po&longs;t primum in&longs;tans C &longs;i&longs;teret, Q mouere&shy;<lb/>tur adhuc, quod e&longs;t ab&longs;urdum; nam &longs;imul incipit, &amp; de&longs;init moueri, <lb/>cum puncto C. <!-- KEEP S--></s>
					<s id="N21A3D"><!-- NEW -->Equidem non pote&longs;t explicari maior velocitas motus C <lb/>per in&longs;tantia minora, vt patet; igitur per &longs;patia maiora. </s>
					<s id="N21A43"><!-- NEW -->Itaque re&longs;pon&shy;<lb/>deo &longs;i C &amp; Q mouentur in eodem radio conjunctim non po&longs;&longs;e pun&shy;<lb/>ctum K acquirere punctum &longs;patij nullo modo participans cum priori, <lb/>&longs;ed participans; </s>
					<s id="N21A4D"><!-- NEW -->lic&egrave;t enim punctum &longs;patij careat partibus actu, habet <lb/>tamen partes potentia, vt explicabimus fus&egrave; &longs;uo loco; </s>
					<s id="N21A53"><!-- NEW -->&longs;unt enim vbica&shy;<lb/>tiones communicantes, &amp; non communicantes, quod explico in Ange&shy;<lb/>lo &longs;it enim Angelus co&euml;xten&longs;us quadrato FC, &lpar;quam hypothe&longs;im <lb/>nemo negabit;&rpar; &longs;it alius &aelig;qualis exten&longs;ionis co&euml;xten&longs;us quadrato HE, <lb/>qui con&longs;i&longs;tat dum primus Angelus mouetur; </s>
					<s id="N21A5F"><!-- NEW -->cert&egrave; ita moueri pote&longs;t, vt <lb/>primo in&longs;tanti occupet &longs;patium CK, &amp; co&euml;xtendatur alteri Angelo, vt <lb/>certum e&longs;t; </s>
					<s id="N21A67"><!-- NEW -->quipp&egrave; vnico in&longs;tanti locum &longs;ibi ad&aelig;quatum occupare po&shy;<lb/>te&longs;t; </s>
					<s id="N21A6D"><!-- NEW -->vel ita moueri pote&longs;t, vt primo in&longs;tanti occupet &longs;patium GD, &amp; <lb/>co&euml;xtendatur quidem alteri Angelo &longs;ed inad&aelig;quat&egrave;: </s>
					<s id="N21A73"><!-- NEW -->his po&longs;itis, &longs;patium <lb/>HE comparatum cum &longs;patio FC e&longs;t non communicans; </s>
					<s id="N21A79"><!-- NEW -->&longs;patium ver&ograve; <lb/>GD communicans, tum cum HE, tum cum HA, po&longs;&longs;unt autem dari <lb/>huiu&longs;modi &longs;patia in infinitum pl&ugrave;s vel min&ugrave;s participantia v. <!-- REMOVE S-->g. <!-- REMOVE S-->LM <lb/>plus participat de AC quam BD, &amp; BD plu&longs;quam NO; </s>
					<s id="N21A87"><!-- NEW -->igitur non <lb/>e&longs;t dubium quin Angelus moueatur eo tardi&ugrave;s, &longs;uppo&longs;ito &aelig;quali tempo&shy;<lb/>re, quo acquirit &longs;patium pl&ugrave;s participans de priore; </s>
					<s id="N21A8F"><!-- NEW -->vnde quando vno <lb/>in&longs;tanti acquirit &longs;patium non communicans HE, non pote&longs;t veloci&ugrave;s <lb/>moueri illo in&longs;tanti, vel &aelig;quali; </s>
					<s id="N21A97"><!-- NEW -->nec pote&longs;t motus e&longs;&longs;e velocior ratione <lb/>&longs;patij, lic&egrave;t po&longs;&longs;it e&longs;&longs;e ratione temporis; quia &longs;patium HE acquirere po&shy;<lb/>te&longs;t minore in&longs;tanti. </s>
					<s id="N21A9F"><!-- NEW -->Quod dicitur de Angelo, dicatur de puncto phy&longs;i&shy;<lb/>co; cuius exten&longs;io e&longs;t quidem indiui&longs;ibilis actu vt exten&longs;io Angeli diui&shy;<lb/>&longs;ibilis tamen potentia in infinitum. </s>
				</p>
				<p id="N21AA7" type="main">
					<s id="N21AA9"><!-- NEW -->His po&longs;itis, motus extremitatis radij dirigit motum aliorum puncto&shy;<lb/>rum ver&longs;us centrum; &longs;ed punctum extremitatis radij non pote&longs;t <lb/>dato in&longs;tanti moueri veloci&ugrave;s qu&agrave;m &longs;i punctum &longs;patij non communi&shy;<lb/>cans acquirat, quo po&longs;ito nullum aliud punctum radij acquirit eodem <lb/>in&longs;tanti &longs;patium non communicans. </s>
				</p>
				<p id="N21AB5" type="main">
					<s id="N21AB7"><!-- NEW -->Dices, ponamus punctum extremitatis facta acce&longs;&longs;ione noui &longs;egmenti <lb/>moueri eadem velocitate, qu&acirc; pri&ugrave;s mouebatur, cum terminabat radium; </s>
					<s id="N21ABD"><!-- NEW --><lb/>igitur acquirit punctum &longs;patij non participans; igitur extremitas noua <lb/>illo in&longs;tanti acquirit plu&longs;quam punctum. </s>
					<s id="N21AC4"><!-- NEW -->Re&longs;pondeo, &longs;i addatur extremi&shy;<lb/>tas noua facta &longs;cilicet acce&longs;&longs;ione noui &longs;egmenti, po&longs;ito quod punctum <lb/>prioris extremitatis moueatur &aelig;qu&egrave; velociter ac pri&ugrave;s; </s>
					<s id="N21ACC"><!-- NEW -->cert&egrave; noua ex&shy;<lb/>tremitas veloci&ugrave;s mouebitur priore, vt con&longs;tat; </s>
					<s id="N21AD2"><!-- NEW -->igitur in&longs;tanti minore <lb/>acquiret &longs;patium non communicans; igitur hoc in&longs;tanti minore prior <lb/>extremitas acquirit &longs;patium communicans. </s>
					<s id="N21ADA"><!-- NEW -->Ex his vides velocitatem <pb pagenum="280" xlink:href="026/01/314.jpg"/>motus circularis ratione eiu&longs;dem radij, vel mobilis explicari per &longs;patia <lb/>magis, vel min&ugrave;s communicantia; </s>
					<s id="N21AE5"><!-- NEW -->at ver&ograve; velocitatem motus recti per <lb/>in&longs;tantia maiora, &amp; minora: </s>
					<s id="N21AEB"><!-- NEW -->Sed h&aelig;c fus&egrave; in Metaphy&longs;ica explicabimus; </s>
					<s id="N21AEF"><!-- NEW --><lb/>neque h&icirc;c contendimus dari vel puncta, vel in&longs;tantia; </s>
					<s id="N21AF4"><!-- NEW -->&longs;ed tant&ugrave;m po&longs;ito <lb/>quod dentur, ita &longs;olui po&longs;&longs;e argumentum illud, quod vulg&ograve; ducitur ex <lb/>motu circulari, quo reuer&acirc; puncta Mathematica non tamen phy&longs;ica pro&shy;<lb/>fligantur: </s>
					<s id="N21AFE"><!-- NEW -->&longs;imiliter &longs;olues argumentum illud vix triobolare, quo dicuntur <lb/>e&longs;&longs;e tot puncta in minore circulo, quot in maiore, eo quod iidem radij <lb/>vtrumque &longs;ecent, quia &longs;i duo radij ad duo puncta immediata maioris <lb/>terminentur, penetrantur inad&aelig;quat&egrave; in &longs;ectione minoris circuli; &longs;ed <lb/>de hoc ali&agrave;s. </s>
				</p>
				<p id="N21B0A" type="main">
					<s id="N21B0C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 19.<emph.end type="center"/></s>
				</p>
				<p id="N21B18" type="main">
					<s id="N21B1A"><!-- NEW --><emph type="italics"/>Motus circularis pote&longs;t e&longs;&longs;e velocior, &amp; tardior in infinitum<emph.end type="italics"/>; </s>
					<s id="N21B23"><!-- NEW -->quia quocun&shy;<lb/>que dato radio pote&longs;t dari maior, &amp; minor; </s>
					<s id="N21B29"><!-- NEW -->imm&ograve; pote&longs;t compen&longs;ari <lb/>motus; </s>
					<s id="N21B2F"><!-- NEW -->&longs;it enim radius EC diui&longs;us bifariam in H; </s>
					<s id="N21B33"><!-- NEW -->cert&egrave; &longs;i moueatur <lb/>EC circa centrum E; </s>
					<s id="N21B39"><!-- NEW -->C mouebitur duplo veloci&ugrave;s qu&agrave;m H, quia arcus <lb/>CN e&longs;t duplus HT; </s>
					<s id="N21B3F"><!-- NEW -->&longs;i tamen &longs;it radius AH; </s>
					<s id="N21B43"><!-- NEW -->cert&egrave; &longs;i pote&longs;t moueri <lb/>&aelig;qu&egrave; velociter, &longs;i enim a&longs;&longs;umatur H <foreign lang="greek">m</foreign> &aelig;qualis HT, &amp; percurrat H <foreign lang="greek">m</foreign><lb/>eo tempore, quo alter radius EC percurrit CN, motus erit &aelig;qualis; </s>
					<s id="N21B52"><!-- NEW -->quia <lb/>arcus CN &amp; H <foreign lang="greek">m</foreign> &longs;unt &aelig;quales, vt con&longs;tat: </s>
					<s id="N21B5C"><!-- NEW -->pote&longs;t etiam vectis longio&shy;<lb/>ris extremitas moueri motu &aelig;quali cum extremitate minoris; </s>
					<s id="N21B62"><!-- NEW -->&longs;i enim <lb/>H extremitas HE percurrit H <foreign lang="greek">m</foreign>, &amp; a&longs;&longs;umatur vectis duplus EC, diuida&shy;<lb/>tur H <foreign lang="greek">m</foreign> bifariam in T ducaturque ETN; </s>
					<s id="N21B72"><!-- NEW -->cert&egrave; &longs;i C conficiat CN co&shy;<lb/>dem tempore, vtraque extremitas C &amp; H &aelig;qu&egrave; velociter mouebitur; </s>
					<s id="N21B78"><!-- NEW -->&longs;i <lb/>autem duplicetur adhuc longitudo radij, diuidatur HT bifariam in X, <lb/>ducaturque linea, atque ita deinceps; qu&aelig; omnia &longs;unt trita. </s>
				</p>
				<p id="N21B80" type="main">
					<s id="N21B82"><!-- NEW -->Ex his habes principium motus tardioris, &amp; velocioris in infinitum; </s>
					<s id="N21B86"><!-- NEW -->&longs;i <lb/>enim punctum H &longs;emper &aelig;quali tempore conficiat arcum H <foreign lang="greek">m</foreign>; </s>
					<s id="N21B90"><!-- NEW -->cert&egrave; <lb/>punctum C conficiet arcum C <foreign lang="greek">b</foreign> duplum prioris; </s>
					<s id="N21B9A"><!-- NEW -->quia EC e&longs;t dupla <lb/>EH; </s>
					<s id="N21BA0"><!-- NEW -->&longs;i ver&ograve; accipiatur tripla, conficiet triplum, atque ita deinceps; </s>
					<s id="N21BA4"><!-- NEW -->&longs;ed <lb/>pote&longs;t vectis e&longs;&longs;e longior, &amp; longior in infinitum; </s>
					<s id="N21BAA"><!-- NEW -->igitur motus velo&shy;<lb/>cior, &amp; velocior; </s>
					<s id="N21BB0"><!-- NEW -->&longs;i ver&ograve; punctum C conficiat tant&ugrave;m arcum CN &aelig;qua&shy;<lb/>lem H <foreign lang="greek">m</foreign>; haud dubi&egrave; punctum H mouebitur dupl&ograve; tardi&ugrave;s, &amp; &longs;i acci&shy;<lb/>piatur vectis duplus CE, cuius extremitas percurrat arcum &aelig;qualem <lb/>CN, punctum H mouebitur quadrupl&ograve; tardi&ugrave;s, atque ita deinceps. </s>
				</p>
				<p id="N21BBE" type="main">
					<s id="N21BC0"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 20.<emph.end type="center"/></s>
				</p>
				<p id="N21BCC" type="main">
					<s id="N21BCE"><emph type="italics"/>Motus circularis non e&longs;t naturaliter acceleratus.<emph.end type="italics"/></s>
					<s id="N21BD5"><!-- NEW --> Probatur, quia in infi&shy;<lb/>nitum intenderetur, quod e&longs;&longs;et ab&longs;urdum in natura; </s>
					<s id="N21BDB"><!-- NEW -->caret enim termino: </s>
					<s id="N21BDF"><!-- NEW --><lb/>non e&longs;t difficultas pro motu circulari violento quo v.g. <!-- REMOVE S-->vertitur rota in <lb/>circulo verticali, vel mixto, quo &longs;cilicet lapis &longs;ph&aelig;ricus ita de&longs;cendit, vt <lb/>circa &longs;uum centrum etiam voluatur, vel indifferenti, quo recta vertitur <lb/>in circulo horizontali; </s>
					<s id="N21BEC"><!-- NEW -->quia nullum e&longs;t principium accelerationis i&longs;to&shy;<lb/>rum motuum; </s>
					<s id="N21BF2"><!-- NEW -->igitur e&longs;t tant&ugrave;m difficultas pro naturali circulari, quo <pb pagenum="281" xlink:href="026/01/315.jpg"/>fort&egrave; &longs;ydera rotantur; qui tamen non e&longs;t acceleratus per &longs;e, propter ra&shy;<lb/>tionem pr&aelig;dictam. </s>
				</p>
				<p id="N21BFD" type="main">
					<s id="N21BFF">Obiiceret fort&egrave; aliquis; </s>
					<s id="N21C02"><!-- NEW -->eadem ratio qu&aelig; probat motum naturalem <lb/>deor&longs;um accelerari, eadem probat circularem naturalem etiam intendi: <lb/>quipp&egrave; &longs;emper ade&longs;t principium intrin&longs;ecum applicatum. </s>
					<s id="N21C0A"><!-- NEW -->Re&longs;pondeo <lb/>negandam e&longs;&longs;e paritatem; </s>
					<s id="N21C10"><!-- NEW -->quia naturalis motus grauium non accelera&shy;<lb/>tur fru&longs;tr&agrave;; </s>
					<s id="N21C16"><!-- NEW -->Nunquam enim recedit &agrave; &longs;uo fine; </s>
					<s id="N21C1A"><!-- NEW -->at ver&ograve;, &longs;i motus circula&shy;<lb/>ris &longs;yderum acceleraretur, tandem abiret in infinitum, quod reuer&acirc; e&longs;&longs;et <lb/>contra finem &agrave; natura in&longs;titutum; quipp&egrave; carerent &longs;uo fine, &amp; v&longs;u corpo&shy;<lb/>ra c&oelig;le&longs;tia, &longs;i long&egrave; celeriori motu rotarentur. </s>
				</p>
				<p id="N21C24" type="main">
					<s id="N21C26">Obiiceret alius, motus circularis naturalis non acceleraretur, igitur <lb/>tardi&longs;&longs;imus e&longs;&longs;et, qualis reuer&acirc; motus naturalis grauium deor&longs;um, quod <lb/>e&longs;t contra experientiam. </s>
					<s id="N21C2D"><!-- NEW -->Re&longs;pondeo, vel determinatum impetus gradum, <lb/>eumque vald&egrave; intentum produxi&longs;&longs;e iuxta in&longs;titutum &longs;u&aelig; natur&aelig;, vel per <lb/>aliquot minuta &longs;e&longs;e moui&longs;&longs;e motu recto naturaliter accelerato; &longs;ed de <lb/>hoc motu &longs;yderum agemus fus&egrave; aliquando, cum de cau&longs;is corporum c&oelig;&shy;<lb/>le&longs;tium. </s>
				</p>
				<p id="N21C39" type="main">
					<s id="N21C3B"><!-- NEW -->Obiicies de&longs;cen&longs;um funependuli, qui e&longs;t naturaliter acceleratus; &longs;ed <lb/>profect&ograve; ille motus e&longs;t tant&ugrave;m per accidens circularis. </s>
				</p>
				<p id="N21C41" type="main">
					<s id="N21C43"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N21C4F" type="main">
					<s id="N21C51"><!-- NEW -->Ob&longs;eruabis ex dictis &longs;atis con&longs;tare, qu&agrave;m temer&egrave; mirentur aliqui tan&shy;<lb/>tam motuum c&oelig;le&longs;tium celeritatem, cum motus circularis velocitas in <lb/>infinitum augeri po&longs;&longs;it: Ob&longs;eruabis pr&aelig;terea, &longs;i fort&egrave; motus rectus corpo&shy;<lb/>rum c&oelig;le&longs;tium pr&aelig;ce&longs;&longs;it per aliquot minuta, motum illum, qui deinde <lb/>&longs;ucce&longs;&longs;it, non e&longs;&longs;e perfect&egrave; circularem, &longs;ed mixtum, quem aliquando ex&shy;<lb/>plicabimus, &amp; ex eo cau&longs;as Apog&aelig;i, Perig&aelig;i, declinationis, &amp;c. </s>
					<s id="N21C5F">omn&eacute;&longs;&shy;<lb/>que anomalias deducemus &longs;uo loco. </s>
				</p>
				<p id="N21C64" type="main">
					<s id="N21C66"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 21.<emph.end type="center"/></s>
				</p>
				<p id="N21C72" type="main">
					<s id="N21C74"><!-- NEW --><emph type="italics"/>Rota circulo verticali parallela circa axem mobilis addito minimo im&shy;<lb/>petu per &longs;e moueri pote&longs;t<emph.end type="italics"/>; </s>
					<s id="N21C7F"><!-- NEW -->&longs;it enim ABCD plano verticali parallela circa <lb/>centrum E volubilis; </s>
					<s id="N21C85"><!-- NEW -->&longs;itque in perfecto &aelig;quilibrio, &amp; accedat minima <lb/>vis impetus in A v.g. <!-- REMOVE S-->haud dubi&egrave; punctum E de&longs;cendet deor&longs;um, alio&shy;<lb/>quin maneret &aelig;quilibrium, &amp; non maneret: dixi per &longs;e; </s>
					<s id="N21C8F"><!-- NEW -->nam c&ugrave;m non <lb/>po&longs;&longs;it volui circa centrum E, ni&longs;i vel cum mobili axe duobus hinc inde <lb/>lunatis fulcris &longs;u&longs;tentato, vel facto foramine circa axem immobilem, vel <lb/>circa geminos apices conicos immi&longs;&longs;os iu&longs;tis apothecis in plano rot&aelig; <lb/>excauatis, quales videmus in acu magnetica; atqui non pote&longs;t volui rota <lb/>&longs;iue primo, &longs;iue &longs;ecundo, &longs;iue tertio modo voluatur &longs;ine multa compre&longs;&shy;<lb/>&longs;ione partium, id e&longs;t, &longs;ine aliquo affrictu, in quo mult&aelig; particul&aelig; vnius <lb/>plani cum particulis alterius qua&longs;i pectinatim commi&longs;&longs;&aelig;, motum &amp; im&shy;<lb/>petunt &longs;i&longs;tunt. </s>
				</p>
				<p id="N21CA3" type="main">
					<s id="N21CA5"><emph type="center"/><emph type="italics"/>Theor&egrave;ma<emph.end type="italics"/> 22.<emph.end type="center"/></s>
				</p>
				<p id="N21CB1" type="main">
					<s id="N21CB3"><emph type="italics"/>Rota minor in eodem &longs;itu de quo &longs;upr&agrave; &aelig;qu&egrave; facil&egrave; moueri pote&longs;t, ac maior<emph.end type="italics"/><pb pagenum="282" xlink:href="026/01/316.jpg"/><emph type="italics"/>per &longs;e.<emph.end type="italics"/></s>
					<s id="N21CC3"><!-- NEW --> Probatur prim&ograve;, quia vtraque minimo impetu moueri pote&longs;t per <lb/>Th. 21. Secund&ograve;, quia addita minima vi impetus in F, &amp; minima in A <lb/>t&agrave;m facil&egrave; maior rota de&longs;cendit, qu&agrave;m minor, quia &aelig;qualiter tollitur <lb/>&aelig;quilibrium vtriu&longs;que: dixi per &longs;e, quia maior rota propter maius pon&shy;<lb/>dus maiore affrictu motum impedit. </s>
				</p>
				<p id="N21CCF" type="main">
					<s id="N21CD1"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 23.<emph.end type="center"/></s>
				</p>
				<p id="N21CDD" type="main">
					<s id="N21CDF"><!-- NEW --><emph type="italics"/>Pote&longs;t vis aliqua applicata rot&aelig; in A v.g. <!-- REMOVE S-->rotam mouere in eodem &longs;itu ver&shy;<lb/>ticali; lic&egrave;t nullum impetum producat.<emph.end type="italics"/></s>
					<s id="N21CEB"><!-- NEW --> Probatur, quia vis minima pote&longs;t <lb/>deprimere rotam ABCD. v.g. <!-- REMOVE S-->per Th.21. &longs;ed vis minima non pote&longs;t <lb/>producere impetum in qualibet rota, vt patet; </s>
					<s id="N21CF5"><!-- NEW -->nec enim producere po&shy;<lb/>te&longs;t, ni&longs;i in tota rota producat per Th.33. lib.  primo; &longs;ed vis minima im&shy;<lb/>petus tot partes impetus, producere non pote&longs;t, quot e&longs;&longs;ent nece&longs;&longs;ari&aelig;, vt <lb/>omnibus partibus rot&aelig; di&longs;tribuerentur. </s>
				</p>
				<p id="N21CFF" type="main">
					<s id="N21D01"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 24.<emph.end type="center"/></s>
				</p>
				<p id="N21D0D" type="main">
					<s id="N21D0F"><emph type="italics"/>Hinc egregium paradoxum; </s>
					<s id="N21D14"><!-- NEW -->pote&longs;t aliquid mouere rotam, &amp; non agere in <lb/>rotam<emph.end type="italics"/>; </s>
					<s id="N21D1D"><!-- NEW -->quia vis mouens non pote&longs;t in rotam agere, ni&longs;i impetum in ea <lb/>producat, vt patet; </s>
					<s id="N21D23"><!-- NEW -->&longs;ed pote&longs;t illa vis rotam mouere lic&egrave;t impetum in ea <lb/>non producat per Th.23. igitur mouere, &amp; non agere: </s>
					<s id="N21D29"><!-- NEW -->quod quomodo <lb/>fiat facil&egrave; explicari pote&longs;t; quipp&egrave; illa vis ponderis. </s>
					<s id="N21D2F"><!-- NEW -->v.g. <!-- REMOVE S-->qu&aelig; accedit pun&shy;<lb/>cto A cum toto pondere &longs;emicirculi BA DE, grauitatione communi <lb/>pr&aelig;ualet grauitationi alterius &longs;emicirculi rot&aelig; BC DE; </s>
					<s id="N21D39"><!-- NEW -->quia &longs;cilicet <lb/>maior e&longs;t; &longs;ic pondus vnius &longs;crupuli &longs;uperpo&longs;itum ingenti rupi non pro&shy;<lb/>ducit in rupe impetum, &longs;ed &longs;i fort&egrave; appendatur rupes, &longs;imul cum illa gra&shy;<lb/>uitat, quod facil&egrave; concipi pote&longs;t. </s>
				</p>
				<p id="N21D43" type="main">
					<s id="N21D45"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 25.<emph.end type="center"/></s>
				</p>
				<p id="N21D51" type="main">
					<s id="N21D53"><!-- NEW --><emph type="italics"/>Cum de&longs;cendit deor&longs;um &longs;emicirculus BA DE, attollitur &longs;ur&longs;um &longs;emicir&shy;<lb/>culus oppo&longs;itus<emph.end type="italics"/>; </s>
					<s id="N21D5E"><!-- NEW -->quia &longs;cilicet impetus illius producit in i&longs;to alium impe&shy;<lb/>tum; </s>
					<s id="N21D64"><!-- NEW -->nec enim corpus graue a&longs;cendit &longs;ur&longs;um &longs;ua &longs;ponte in medio leuio&shy;<lb/>re; igitur ab extrin&longs;eco; </s>
					<s id="N21D6A"><!-- NEW -->&longs;ed nulla e&longs;t alia cau&longs;a applicata pr&aelig;ter impe&shy;<lb/>tum &longs;emicirculi de&longs;cendentis; </s>
					<s id="N21D70"><!-- NEW -->igitur ab eo producitur hic impetus, <lb/>i&longs;que omnin&ograve; &aelig;qualis; quia &longs;cilicet vterque mouetur motu &aelig;quali. </s>
				</p>
				<p id="N21D76" type="main">
					<s id="N21D78"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 26.<emph.end type="center"/></s>
				</p>
				<p id="N21D84" type="main">
					<s id="N21D86"><!-- NEW --><emph type="italics"/>Hinc impetus deor&longs;um producere pote&longs;t impetum &longs;ur&longs;um<emph.end type="italics"/>; quippe <lb/>ad aliam lineam determinare non pote&longs;t, quod vald&egrave; paradoxum e&longs;t. </s>
				</p>
				<p id="N21D91" type="main">
					<s id="N21D93"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 27.<emph.end type="center"/></s>
				</p>
				<p id="N21D9F" type="main">
					<s id="N21DA1"><!-- NEW --><emph type="italics"/>Hinc impetus vnius partis mobilis continui pote&longs;t impetum &longs;imilem produ&shy;<lb/>cere in alia parte eiu&longs;dem mobilis<emph.end type="italics"/>; vt patet ex dictis, quod tant&ugrave;m locum <lb/>habet in motu circulari. </s>
					<s id="N21DAE">Diceret aliquis, igitur in motu recto etiam lo&shy;<lb/>cum habebit. </s>
					<s id="N21DB3"><!-- NEW -->Re&longs;pondeo negando, alioqui minima potentia quodlibet <lb/>pondus motu recto moueret etiam nullo adhibito mechanico organo; </s>
					<s id="N21DB9"><!-- NEW --><lb/>quia modo produceretur tantulus impetus in aliqua parte, hic produce&shy;<lb/>ret alium, &amp; hic alium, imm&ograve; vterque &longs;ecundo in&longs;tanti alium produce-<pb pagenum="283" xlink:href="026/01/317.jpg"/>ret: </s>
					<s id="N21DC5"><!-- NEW -->e&longs;&longs;et enim cau&longs;a nece&longs;&longs;aria; </s>
					<s id="N21DC9"><!-- NEW -->&longs;ed hoc e&longs;t ab&longs;urdum: ratio ver&ograve; di&longs;pa&shy;<lb/>ritatis e&longs;t, quia mobile, quod motu circulari voluitur circa centrum, <lb/>quod e&longs;t in ip&longs;o mobili duplicis mobilis vicem gerit, quorum vnum im&shy;<lb/>pedit motum alterius, nec moueri po&longs;&longs;unt, ni&longs;i motibus oppo&longs;itis. </s>
				</p>
				<p id="N21DD4" type="main">
					<s id="N21DD6"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 28.<emph.end type="center"/></s>
				</p>
				<p id="N21DE2" type="main">
					<s id="N21DE4"><!-- NEW --><emph type="italics"/>Si applicetur pondus in<emph.end type="italics"/> K, <emph type="italics"/>minus erit illius<emph type="sup"/>a<emph.end type="sup"/> momentum, qu&agrave;m in A, erit&shy;<lb/>que ad momentum in A, vt LE ad AE<emph.end type="italics"/>; </s>
					<s id="N21DFB"><!-- NEW -->quod &longs;&aelig;pi&ugrave;s iam &longs;upr&agrave; dictum <lb/>e&longs;t; </s>
					<s id="N21E01"><!-- NEW -->pr&aelig;&longs;ertim lib.4. Inde tamen egregium deduco paradoxum, &longs;cilicet <lb/>minimam vim &longs;ufficere ad deprimendum &longs;emicirculum BA DE &longs;iue &longs;it <lb/>applicata in A &longs;iue in K; facili&ugrave;s tamen id pr&aelig;&longs;tare in C, qu&agrave;m in K, <lb/>id e&longs;t velociore motu. </s>
				</p>
				<p id="N21E0B" type="main">
					<s id="N21E0D"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 29.<emph.end type="center"/></s>
				</p>
				<p id="N21E19" type="main">
					<s id="N21E1B"><!-- NEW --><emph type="italics"/>Potentia in C applicata etiam minima per lineam CN, mouebit &longs;emicir&shy;<lb/>culum DE BE &longs;ur&longs;um<emph.end type="italics"/>; vt patet; </s>
					<s id="N21E26"><!-- NEW -->nullum tamen producet impetum, &longs;i <lb/>minima &longs;it; </s>
					<s id="N21E2C"><!-- NEW -->ratio e&longs;t, quia eodem modo &longs;e habet, ac &longs;i detraheret partem <lb/>ponderis &longs;emicirculi DC BE, qua detracta non e&longs;t ampli&ugrave;s &aelig;quili&shy;<lb/>brium; </s>
					<s id="N21E34"><!-- NEW -->igitur oppo&longs;itus &longs;emicirculus BA DE pr&aelig;ualere debet; </s>
					<s id="N21E38"><!-- NEW -->vnde <lb/>ideo a&longs;cendit ille, quia de&longs;cendit i&longs;te; </s>
					<s id="N21E3E"><!-- NEW -->qui ideo de&longs;cendit, quia vel de&shy;<lb/>trahitur aliquid de momento alterius, vel impeditur; </s>
					<s id="N21E44"><!-- NEW -->atqui impedire <lb/>tant&ugrave;m pote&longs;t, vel per productionem impetus, vel per applicationem po&shy;<lb/>tenti&aelig; per CN, qu&aelig; actione communi cum toto impetu &longs;emicirculi <lb/>BA DE iuuat eius de&longs;cen&longs;um; </s>
					<s id="N21E4E"><!-- NEW -->nam perinde &longs;e habet potentia, &longs;iue &longs;it, <lb/>applicata in A per lineam AO &longs;iue in C per CN: quod cert&egrave; manife&shy;<lb/>&longs;tum e&longs;t. </s>
				</p>
				<p id="N21E56" type="main">
					<s id="N21E58"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 30.<emph.end type="center"/></s>
				</p>
				<p id="N21E64" type="main">
					<s id="N21E66"><!-- NEW --><emph type="italics"/>Hinc etiam habes duo paradoxa<emph.end type="italics"/>; </s>
					<s id="N21E6F"><!-- NEW -->primum e&longs;t, potentiam immediat&egrave; <lb/>concurrere ad motum &longs;emicirculi, cui non e&longs;t applicata, &amp; mediat&egrave; tan&shy;<lb/>t&ugrave;m ad motum illius, cui applicata e&longs;t; nam potentia applicata in C per <lb/>CN concurrit immediat&egrave; ad motum A deor&longs;um, &amp; &longs;imul cum A ad mo&shy;<lb/>tum Cur&longs;um. </s>
					<s id="N21E7B">Secundum e&longs;t, &longs;olam negationem e&longs;&longs;e cau&longs;am motus, &longs;ci&shy;<lb/>licet detractionem partis momenti, quod clarum e&longs;t. </s>
				</p>
				<p id="N21E80" type="main">
					<s id="N21E82"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 31.<emph.end type="center"/></s>
				</p>
				<p id="N21E8E" type="main">
					<s id="N21E90"><emph type="italics"/>Hinc etiam alia deduco paradoxa.<emph.end type="italics"/></s>
					<s id="N21E97"> Primum e&longs;t, facili&ugrave;s &longs;u&longs;tineri maius <lb/>pondus, qu&agrave;m minus. </s>
					<s id="N21E9C">Secundum pl&ugrave;s addi ponderis, qu&ograve; pl&ugrave;s detrahi&shy;<lb/>tur. </s>
					<s id="N21EA1"><!-- NEW -->Tertium pl&ugrave;s detrahi, qu&ograve; pl&ugrave;s additur, v.g. <!-- REMOVE S-->&longs;i detrahatur aliqua por&shy;<lb/>tio ex &longs;emicirculo BC DE, &longs;emicirculus rot&aelig; oppo&longs;itus de&longs;cendet, ni&longs;i <lb/>&longs;it potentia in CA, qua &longs;u&longs;tineatur; </s>
					<s id="N21EAB"><!-- NEW -->&amp; qu&ograve; maior portio detrahetur po&shy;<lb/>tenti&aelig;, maius pondus incumbet; qu&ograve; minor, minus. </s>
					<s id="N21EB1">Sed h&aelig;c clara <lb/>&longs;unt. </s>
				</p>
				<p id="N21EB6" type="main">
					<s id="N21EB8"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 32.<emph.end type="center"/></s>
				</p>
				<p id="N21EC4" type="main">
					<s id="N21EC6"><emph type="italics"/>Impetus productus in rota con&longs;eruatur aliquamdiu.<emph.end type="italics"/></s>
					<s id="N21ECD"><!-- NEW --> Duplex impetus con&shy;<lb/>&longs;iderari pote&longs;t in rota; </s>
					<s id="N21ED3"><!-- NEW -->primus e&longs;t productus ad intra accedente, &longs;cilicet <lb/>minima vi ponderis alteri &longs;emicirculo, put&acirc; puncto A, qua po&longs;ita tolla-<pb pagenum="284" xlink:href="026/01/318.jpg"/>tur &aelig;quilibrium, quo &longs;ublato &longs;ua &longs;ponte mouetur rota; </s>
					<s id="N21EDE"><!-- NEW -->hic autem impe&shy;<lb/>tus prim&ograve; durat in toto de&longs;cen&longs;u quadrantis AD; </s>
					<s id="N21EE4"><!-- NEW -->imm&ograve; acceleratur tan&shy;<lb/>till&ugrave;m motus, lic&egrave;t long&egrave; min&ugrave;s, qu&agrave;m in funependulo propter re&longs;i&longs;ten&shy;<lb/>tiam &longs;emicirculi oppo&longs;iti contranitentis; </s>
					<s id="N21EEC"><!-- NEW -->vbi ver&ograve; A peruenit in D, <lb/>non acceleratur ampli&ugrave;s motus, &longs;ed tantill&ugrave;m a&longs;cendit ver&longs;us C &amp;, dein&shy;<lb/>de de&longs;cendit, tandemque quie&longs;cit in D paucis confectis vibrationibus; </s>
					<s id="N21EF4"><!-- NEW --><lb/>&longs;ed de hoc cur&longs;u, &amp; recur&longs;u agemus fus&egrave; lib.  &longs;equenti; </s>
					<s id="N21EF9"><!-- NEW -->alter impetus e&longs;t <lb/>productus ab extrin&longs;eco, applicata &longs;cilicet valida potenti&aacute;, qui rotam <lb/>agit velociore motu, vt patet, c&ugrave;m pr&aelig;ter impetum ad intra &longs;it etiam im&shy;<lb/>petus productus ab extrin&longs;eca cau&longs;a; </s>
					<s id="N21F03"><!-- NEW -->igitur maior e&longs;t impetus; igitur <lb/>maior motus: </s>
					<s id="N21F09"><!-- NEW -->porr&ograve; hic impetus aliquandiu con&longs;eruatur, vt patet expe&shy;<lb/>rienti&acirc;; nec e&longs;t vlla cau&longs;a &longs;ufficiens applicata, &agrave; qua tam cit&ograve; de&shy;<lb/>&longs;truatur. </s>
				</p>
				<p id="N21F11" type="main">
					<s id="N21F13"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 33.<emph.end type="center"/></s>
				</p>
				<p id="N21F1F" type="main">
					<s id="N21F21"><!-- NEW --><emph type="italics"/>Quando voluitur rota ab applicata valida potentia in A. v.g. <!-- REMOVE S-->per AO, <lb/>non modo producitur impetus in &longs;emicirculo BA DE, &longs;ed etiam in oppo&longs;ito<emph.end type="italics"/>; <lb/>c&ugrave;m vtrique mediat&egrave; vel immediat&egrave; &longs;it applicata &longs;ufficienter, exemplo <lb/>vectis. </s>
				</p>
				<p id="N21F32" type="main">
					<s id="N21F34"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 34.<emph.end type="center"/></s>
				</p>
				<p id="N21F40" type="main">
					<s id="N21F42"><emph type="italics"/>Non destruitur per &longs;e impetus productus in rota ab extrin&longs;eco.<emph.end type="italics"/></s>
					<s id="N21F49"><!-- NEW --> Probatur, <lb/>quia lic&egrave;t &longs;ingulis in&longs;tantibus mutetur eius determinatio, vt con&longs;tat ex <lb/>dictis; </s>
					<s id="N21F51"><!-- NEW -->nam per &longs;e impetus in hoc motu e&longs;t determinatus ad lineam re&shy;<lb/>ctam; </s>
					<s id="N21F57"><!-- NEW -->nullus tamen impetus e&longs;t fru&longs;tr&agrave;: </s>
					<s id="N21F5B"><!-- NEW -->quipp&egrave; illud &longs;patium acquiritur <lb/>in linea curua, quod in recta percurreretur &longs;i nullum e&longs;&longs;et impedimen&shy;<lb/>tum; </s>
					<s id="N21F63"><!-- NEW -->quemadmodum enim in reflexione, qu&aelig; fit &agrave; plano immobili, nul&shy;<lb/>lus de&longs;truitur impetus; </s>
					<s id="N21F69"><!-- NEW -->ita nullus h&icirc;c de&longs;truitur; t&agrave;m enim centrum il&shy;<lb/>lud immobile ad &longs;e qua&longs;i mobile trahit, qu&agrave;m planum immobile ad &longs;e re&shy;<lb/>pellit. </s>
				</p>
				<p id="N21F71" type="main">
					<s id="N21F73">Qu&aelig;reret fort&egrave; aliquis, vtrum in &longs;emicirculo a&longs;cendente impetus de&shy;<lb/>&longs;truatur ab impetu naturali grauitationis. </s>
					<s id="N21F78"><!-- NEW -->Re&longs;pondeo negando, quia <lb/>nunquam a&longs;cendit C, ni&longs;i de&longs;cendat A; </s>
					<s id="N21F7E"><!-- NEW -->nunquam ver&ograve; de&longs;cendit A, ni&longs;i <lb/>&longs;it maior vis in A quam in C, quod certum e&longs;t; </s>
					<s id="N21F84"><!-- NEW -->igitur grauitatio C impe&shy;<lb/>dit quidem, ne &longs;it tantus motus in A, nunquam tamen impedit totum <lb/>motum, cum maius e&longs;t momentum in A; </s>
					<s id="N21F8C"><!-- NEW -->quod &longs;i &aelig;quale &longs;it vtrinque mo&shy;<lb/>mentum; cert&egrave; totus motus vtrinque impeditur, &amp; h&aelig;c e&longs;t vera ratio <lb/>&aelig;quilibrij, de quo ali&agrave;s. </s>
				</p>
				<p id="N21F94" type="main">
					<s id="N21F96"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 35.<emph.end type="center"/></s>
				</p>
				<p id="N21FA2" type="main">
					<s id="N21FA4"><!-- NEW --><emph type="italics"/>Hinc &longs;i nullus &longs;it partium affrictus, e&longs;&longs;et motus ille perpetuus<emph.end type="italics"/>; quia nul&shy;<lb/>lus de&longs;truitur impetus per Th. 34. igitur ille motus e&longs;&longs;et perpetuus. </s>
				</p>
				<p id="N21FAF" type="main">
					<s id="N21FB1"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 36.<emph.end type="center"/></s>
				</p>
				<p id="N21FBD" type="main">
					<s id="N21FBF"><!-- NEW --><emph type="italics"/>In maiore rota e&longs;t maior affrictus partium, &amp; impetus citi&ugrave;s destruitur.<emph.end type="italics"/><lb/>Secunda pars &longs;equitur ex prima; h&aelig;c autem ex maiore ponderis grauita&shy;<lb/>tione, vel in axem, vel in &longs;ubjectum planum. </s>
				</p>
				<pb pagenum="285" xlink:href="026/01/319.jpg"/>
				<p id="N21FCF" type="main">
					<s id="N21FD1"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 37.<emph.end type="center"/></s>
				</p>
				<p id="N21FDD" type="main">
					<s id="N21FDF"><!-- NEW --><emph type="italics"/>Lic&egrave;t impetus non destruatur in motu rot&aelig;, &amp; impediatur determinatio <lb/>prima, vt patet; </s>
					<s id="N21FE7"><!-- NEW -->attamen impedimentum non pote&longs;t minus excogitari<emph.end type="italics"/>; </s>
					<s id="N21FEE"><!-- NEW -->c&ugrave;m <lb/>nulla po&longs;&longs;it duci linea recta declinans ab AO, per quam noua determi&shy;<lb/>natio fieri po&longs;&longs;it; </s>
					<s id="N21FF6"><!-- NEW -->fit enim ratione anguli contingenti&aelig;; </s>
					<s id="N21FFA"><!-- NEW -->igitur determi&shy;<lb/>natio noua proxim&egrave; accedit ad priorem; igitur e&longs;t minimum impedi&shy;<lb/>mentum. </s>
				</p>
				<p id="N22002" type="main">
					<s id="N22004"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 38.<emph.end type="center"/></s>
				</p>
				<p id="N22010" type="main">
					<s id="N22012"><!-- NEW --><emph type="italics"/>Hinc in maiori rota minus e&longs;t impedimentum<emph.end type="italics"/>; </s>
					<s id="N2201B"><!-- NEW -->quia &longs;cilicet minor e&longs;t <lb/>angulus contingenti&aelig;; </s>
					<s id="N22021"><!-- NEW -->maius ver&ograve; in minori rota: </s>
					<s id="N22025"><!-- NEW -->porr&ograve; minor rota &agrave; <lb/>maiore &longs;eparata citi&ugrave;s &longs;uos gyros ab&longs;oluit; </s>
					<s id="N2202B"><!-- NEW -->quia &longs;unt minores, &lpar;&longs;uppono <lb/>&aelig;qualem impetum in extremo orbe rot&aelig; vtriu&longs;que productum,&rpar; idque <lb/>pro rata; &longs;i enim minor &longs;it &longs;ubdupla maioris, maior vnum tantum gyrum <lb/>aget eo tempore, quo minor duos percurret. </s>
				</p>
				<p id="N22035" type="main">
					<s id="N22037"><!-- NEW -->Ob&longs;erua prim&ograve;, pondus applicatum in A non mod&ograve; producere impe&shy;<lb/>tum in toto radio AE; </s>
					<s id="N2203D"><!-- NEW -->&longs;ed etiam in toto radio oppo&longs;ito EC; </s>
					<s id="N22041"><!-- NEW -->ratio e&longs;t, <lb/>quia &longs;i impetus radij AE producit impetum in radio EC; </s>
					<s id="N22047"><!-- NEW -->cert&egrave; pondus <lb/>additum radio AE cen&longs;etur pars eiu&longs;dem radij; </s>
					<s id="N2204D"><!-- NEW -->igitur impetus illius <lb/>ponderis immediat&egrave; producit impetum in radio EC; </s>
					<s id="N22053"><!-- NEW -->quia impedit hic <lb/>radius oppo&longs;itus motum alterius AE; </s>
					<s id="N22059"><!-- NEW -->igitur, vt tollat impedimentum, <lb/>producit AE impetum in EC; </s>
					<s id="N2205F"><!-- NEW -->&longs;i autem produceretur tant&ugrave;m impetus in <lb/>EC ab impetu radij AE; </s>
					<s id="N22065"><!-- NEW -->igitur, vel aliquid impetus e&longs;&longs;et fru&longs;tr&agrave;, vel <lb/>nunquam radius minor po&longs;&longs;et attollere maiorem, quacunque accedente <lb/>potentia; </s>
					<s id="N2206D"><!-- NEW -->&longs;it enim radius FE, in quo producatur quilibet impetus, &longs;it&shy;<lb/>que radius oppo&longs;itus maior duplo EC; </s>
					<s id="N22073"><!-- NEW -->cert&egrave; &longs;i impetus radij FE produ&shy;<lb/>cit impetum in radio EC, vel producit &aelig;qualem, vel minorem, maiorem <lb/>enim producere non pote&longs;t; &longs;i minorem, vel &aelig;qualem; </s>
					<s id="N2207B"><!-- NEW -->igitur remi&longs;&longs;io&shy;<lb/>rem, quia pluribus partibus &longs;ubjecti di&longs;tribuitur; </s>
					<s id="N22081"><!-- NEW -->igitur vel motus e&longs;&longs;et <lb/>remi&longs;&longs;ior radij EC qu&agrave;m radij FE, quod dici non pote&longs;t; </s>
					<s id="N22087"><!-- NEW -->vel aliquid <lb/>impetus radij FE e&longs;&longs;et fru&longs;tr&agrave;, quod etiam dici non pote&longs;t; itaque poten&shy;<lb/>tia applicata in F, mediante &longs;cilicet organo, quodcumque tandem illud <lb/>&longs;it.v.g. </s>
					<s id="N22091"><!-- NEW -->pugno, producit impetum in ip&longs;o organo, impetus ver&ograve; organi, <lb/>&longs;eu pugni producit impetum prim&ograve; in toto radio FE, t&ugrave;m in toto radio <lb/>EC, id e&longs;t totus impetus t&ugrave;m pugni, t&ugrave;m radij FC, &longs;cilicet innatus pro&shy;<lb/>ducit impetum in alio radio EC; </s>
					<s id="N2209B"><!-- NEW -->nec enim producitur tant&ugrave;m ab impe&shy;<lb/>tu radij propter rationem &longs;upr&agrave; allatam, c&ugrave;m &longs;it maior impetus in radio <lb/>EC qu&agrave;m in radio FE; </s>
					<s id="N220A3"><!-- NEW -->nec tant&ugrave;m ab impetu pugni, vel organi admo&shy;<lb/>ti; </s>
					<s id="N220A9"><!-- NEW -->quia etiam&longs;i nullus accederet nouus impetus radio AE, &longs;ed tant&ugrave;m <lb/>minimum pondus; </s>
					<s id="N220AF"><!-- NEW -->haud dubi&egrave; attolleret radium EC: </s>
					<s id="N220B3"><!-- NEW -->Adde quod ra&shy;<lb/>dius EC impedit motum radij FE; </s>
					<s id="N220B9"><!-- NEW -->igitur ab impetu huius producitur <lb/>etiam in illo impetus; igitur t&ugrave;m ab impetu pugni, vel organi, t&ugrave;m ab <lb/>impetu radij FE producitur impetus in radio EC. <!-- KEEP S--></s>
				</p>
				<pb pagenum="286" xlink:href="026/01/320.jpg"/>
				<p id="N220C7" type="main">
					<s id="N220C9"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 39.<emph.end type="center"/></s>
				</p>
				<p id="N220D5" type="main">
					<s id="N220D7"><!-- NEW --><emph type="italics"/>H&aelig;c in&aelig;qualis distributio impetus e&longs;t veri&longs;&longs;ima cau&longs;a girationis illius, quam <lb/>videmus in cylindro projecto per vibrationem &longs;iue brachium &longs;ur&longs;um &longs;iue deor&shy;<lb/>&longs;um vibretur<emph.end type="italics"/>; </s>
					<s id="N220E4"><!-- NEW -->quod ab omnibus facil&egrave; ob&longs;eruari pote&longs;t &longs;it enim cylin&shy;<lb/>drus ED libratus per arcum AD, &longs;tatimque demittatur; </s>
					<s id="N220EA"><!-- NEW -->vbi attigit <lb/>punctum D, e&longs;t quidem determinatus ad Tangentem DP, &amp; punctum I <lb/>ad Tangentem IR; </s>
					<s id="N220F2"><!-- NEW -->quia tamen e&longs;t minor impetus in I, qu&agrave;m in D, &amp; <lb/>minor adhuc in E; </s>
					<s id="N220F8"><!-- NEW -->cert&egrave; D debet moueri veloci&ugrave;s qu&agrave;m I, &amp; I quam E; </s>
					<s id="N220FC"><!-- NEW --><lb/>igitur motu recto moueri non pote&longs;t pr&aelig;dictus cylindrus ED; </s>
					<s id="N22101"><!-- NEW -->moueri <lb/>motu recto, id e&longs;t in &longs;itu parallelo ED; </s>
					<s id="N22107"><!-- NEW -->igitur extremitas D gyros aget, <lb/>quia retinetur ab aliis punctis, quorum tardior e&longs;t motus; </s>
					<s id="N2210D"><!-- NEW -->&longs;ed h&icirc;c erit <lb/>motus mixtus, de quo in lib.9.agemus, &amp; totam rem i&longs;tam fus&egrave; explica&shy;<lb/>bimus; </s>
					<s id="N22115"><!-- NEW -->h&icirc;c tant&ugrave;m &longs;ufficiat dixi&longs;&longs;e cau&longs;am legitimam illius circuitionis <lb/>e&longs;&longs;e tant&ugrave;m in&aelig;qualem illam di&longs;tributionem impetus in cylindro ED; <lb/>a&longs;&longs;ignauimus autem ibidem lineam, quam &longs;uo motu de&longs;cribit extremitas <lb/>D, &amp; centrum, circa quod &longs;uos gyros agit. </s>
				</p>
				<p id="N2211F" type="main">
					<s id="N22121"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 40.<emph.end type="center"/></s>
				</p>
				<p id="N2212D" type="main">
					<s id="N2212F"><!-- NEW --><emph type="italics"/>Diu durat motus impre&longs;&longs;us rot&aelig; in circulo verticali, &longs;i vel modicus &longs;it par&shy;<lb/>tium affrictus<emph.end type="italics"/>; </s>
					<s id="N2213A"><!-- NEW -->Probatur, quia c&ugrave;m non de&longs;truatur impetus aliunde, qu&agrave;m <lb/>ab affrictu, dicendum e&longs;t minimum etiam &longs;ingulis in&longs;tantibus de&longs;trui <lb/>impetum; </s>
					<s id="N22142"><!-- NEW -->igitur diu durat impetus; </s>
					<s id="N22146"><!-- NEW -->igitur diu durat motus: nec e&longs;t alia <lb/>ratio vulgaris illius experimenti, quo videmus perforatam acum circa <lb/>cylindrum leuigati&longs;&longs;imum diu rotari. </s>
				</p>
				<p id="N2214E" type="main">
					<s id="N22150"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 41.<emph.end type="center"/></s>
				</p>
				<p id="N2215C" type="main">
					<s id="N2215E"><!-- NEW --><emph type="italics"/>Cum rota voluitur in circulo horizontali, non pote&longs;t moueri applicata mini&shy;<lb/>ma potentia<emph.end type="italics"/>; </s>
					<s id="N22169"><!-- NEW -->Probatur, quia nullo modo rotatur ad intra, id e&longs;t non pro&shy;<lb/>ducit in &longs;e impetum, vt patet; </s>
					<s id="N2216F"><!-- NEW -->igitur debet produci impetus in illa &agrave; po&shy;<lb/>tentia applicata; igitur tot partes impetus, quot &longs;unt &longs;altem in tota rota, <lb/>cum &longs;ingul&aelig; partes moueantur. </s>
				</p>
				<p id="N22177" type="main">
					<s id="N22179"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 42.<emph.end type="center"/></s>
				</p>
				<p id="N22185" type="main">
					<s id="N22187"><!-- NEW --><emph type="italics"/>Hinc difficili&ugrave;s mouetur in circulo horizontali qu&agrave;m in verticali<emph.end type="italics"/>; patet, <lb/>quia in hoc &agrave; minima potentia applicata pote&longs;t moueri per Th.21. &longs;ecus <lb/>ver&ograve; in illo per Th.41. igitur in horizontali difficili&ugrave;s moueri pote&longs;t, <lb/>qu&agrave;m in verticali. </s>
					<s id="N22196">Ob&longs;eruabis autem tribus modis volui po&longs;&longs;e huiu&longs;modi <lb/>rotam. </s>
					<s id="N2219B">Prim&ograve; &longs;i in plano horizontali leuigati&longs;&longs;imo voluatur. </s>
					<s id="N2219E">Secund&ograve;, &longs;i <lb/>circa cylindrum immobilem, qui aperto foramini in&longs;eritur. </s>
					<s id="N221A3"><!-- NEW -->Terti&ograve;, &longs;i <lb/>vno concauo vnius axis ducatur per centrum rot&aelig;, in&longs;eratur vnus &longs;oli&shy;<lb/>dus, quo fulcitus orbis con&longs;i&longs;tat in &aelig;quilibrio, difficili&ugrave;s voluitur primo <lb/>modo rota propter affrictum plurimarum partium; &longs;ecundo facili&ugrave;s, &longs;ed <lb/>long&egrave; facili&ugrave;s tertio &longs;ic autem voluitur acus magnetica. </s>
				</p>
				<p id="N221AF" type="main">
					<s id="N221B1"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 43.<emph.end type="center"/></s>
				</p>
				<p id="N221BD" type="main">
					<s id="N221BF"><!-- NEW --><emph type="italics"/>Potentia applicata talis e&longs;&longs;e debet, vt po&longs;&longs;it imprimere impetum toti rota<emph.end type="italics"/>; </s>
					<s id="N221C8"><!-- NEW --><pb pagenum="287" xlink:href="026/01/321.jpg"/>cum enim non po&longs;&longs;it moueri vna pars rot&aelig; &longs;ine alia; </s>
					<s id="N221D0"><!-- NEW -->cert&egrave;, vel impetus <lb/>imprimitur omnibus, vel nulli per Th.37. lib.1.pr&aelig;&longs;ertim c&ugrave;m totus im&shy;<lb/>petus, qui rot&aelig; imprimitur, &longs;it ab extrin&longs;eco; nec enim accidit huic rot&aelig;, <lb/>quod alteri, qu&aelig; &longs;itum verticalem habet, cuius &longs;emicirculus, cui admoue&shy;<lb/>tur potentia per lineam deor&longs;um motu naturali ex parte deor&longs;um fertur, <lb/>vt &longs;upra explicatum e&longs;t. </s>
					<s id="N221DE"><!-- NEW -->Hinc totus impetus in rota horizontali produ&shy;<lb/>citur ab extrin&longs;eco; hinc ab ea tant&ugrave;m potentia volui pote&longs;t, qu&aelig; tot <lb/>partes impetus pote&longs;t producere, quot &longs;unt nece&longs;&longs;ari&aelig;, vt omnibus parti&shy;<lb/>bus plani illius circularis di&longs;tribuantur, iuxta propagationem, qu&aelig; motui <lb/>circulari competit. </s>
				</p>
				<p id="N221EA" type="main">
					<s id="N221EC"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 44.<emph.end type="center"/></s>
				</p>
				<p id="N221F8" type="main">
					<s id="N221FA"><!-- NEW --><emph type="italics"/>Hinc in vtroque &longs;emicirculo plani producitur impetus ab ip&longs;a potentia ap&shy;<lb/>plicata, non vero ab impetu producto in altero &longs;emicirculo producitur impetus <lb/>in alio,<emph.end type="italics"/> vt con&longs;tat ex dictis; </s>
					<s id="N22207"><!-- NEW -->&longs;it enim rota horizonti parallela ABCD, &amp; <lb/>applicetur potentia in A per AO, non pote&longs;t produci impetus in radio <lb/>AE, ni&longs;i tollatur impedimentum; </s>
					<s id="N2220F"><!-- NEW -->impedit autem radius EC eo primo <lb/>in&longs;tanti; </s>
					<s id="N22215"><!-- NEW -->igitur debet &longs;imul tolli impedimentum, &amp; produci impetus in <lb/>AE; </s>
					<s id="N2221B"><!-- NEW -->&longs;ed non pote&longs;t tolli impedimentum, ni&longs;i per impetum; </s>
					<s id="N2221F"><!-- NEW -->igitur non <lb/>mod&ograve; producitur impetus in AE, &longs;ed etiam in EC; </s>
					<s id="N22225"><!-- NEW -->atqui impetus in <lb/>EC non producitur ab impetu producto in EA; </s>
					<s id="N2222B"><!-- NEW -->applicetur enim poten&shy;<lb/>tia in F; </s>
					<s id="N22231"><!-- NEW -->cert&egrave; min&ugrave;s impetus producetur in FE, qu&agrave;m in EC, vt con&shy;<lb/>&longs;tat; </s>
					<s id="N22237"><!-- NEW -->igitur impetus in EC producitur ab ip&longs;a potentia applicata in A, <lb/>vel in F; &longs;i ver&ograve; rota &longs;it verticalis, ab eadem potentia, &amp; impetu innato <lb/>radij AE. vel &longs;emicirculi DA BE. <!-- KEEP S--></s>
				</p>
				<p id="N22240" type="main">
					<s id="N22242"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 45.<emph.end type="center"/></s>
				</p>
				<p id="N2224E" type="main">
					<s id="N22250"><!-- NEW --><emph type="italics"/>Hinc facili&ugrave;s mouetur rota motu illo circulari, qu&agrave;m recto<emph.end type="italics"/>; </s>
					<s id="N22259"><!-- NEW -->quia &longs;it dia&shy;<lb/>meter AC, vt moueatur  motu recto per &longs;e debet produci impetus eiu&longs;&shy;<lb/>dem perfectionis in omnibus partibus AC, vt con&longs;tat ex dictis lib.  1. &longs;i <lb/>enim motus omnium partium e&longs;t &aelig;qualis; </s>
					<s id="N22263"><!-- NEW -->igitur &amp; impetus, at ver&ograve;, vt <lb/>moueatur motu circulari in plano horizontali facto &longs;cilicet circulo <lb/>ABCD, &amp; admota potentia in A; </s>
					<s id="N2226D"><!-- NEW -->cert&egrave; impetus qui producitur in A, <lb/>&amp; in C, e&longs;t minor impetu producto in F, &amp; in H; </s>
					<s id="N22273"><!-- NEW -->igitur &longs;i producatur <lb/>in A impetus eiu&longs;dem perfectionis ad motum circularem cum eo, qui <lb/>produceretur admotum rectum; </s>
					<s id="N2227B"><!-- NEW -->haud dubi&egrave; totus impetus productus in <lb/>AC ad motum rectum e&longs;t perfectior toto impetu producto ad circula&shy;<lb/>rem; igitur difficili&ugrave;s ille, hic facili&ugrave;s producitur. </s>
				</p>
				<p id="N22283" type="main">
					<s id="N22285"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 46.<emph.end type="center"/></s>
				</p>
				<p id="N22291" type="main">
					<s id="N22293"><!-- NEW --><emph type="italics"/>Si applicetur potentia in F, difficili&ugrave;s mouebit rotam, qu&agrave;m &longs;i applicetur in <lb/>A<emph.end type="italics"/>; </s>
					<s id="N2229E"><!-- NEW -->ratio clara e&longs;t, quia producet in F impetum eiu&longs;dem perfectionis, <lb/>quem produceret in A, vt certum e&longs;t; </s>
					<s id="N222A4"><!-- NEW -->igitur maior erit impetus in to&shy;<lb/>ta AC; </s>
					<s id="N222AA"><!-- NEW -->igitur difficili&ugrave;s mouebitur rota: adde quod longitudo vectis <lb/>iuuat motum EC. <!-- KEEP S--></s>
				</p>
				<pb pagenum="288" xlink:href="026/01/322.jpg"/>
				<p id="N222B5" type="main">
					<s id="N222B7"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 47.<emph.end type="center"/></s>
				</p>
				<p id="N222C3" type="main">
					<s id="N222C5"><!-- NEW --><emph type="italics"/>Facil&egrave; cogno&longs;citur, in qua proportione potentia applicata puncte A facili&ugrave;s <lb/>vertat rotam, qu&agrave;m applicata puncto F in circulo &longs;cilicet horizontali<emph.end type="italics"/>; </s>
					<s id="N222D0"><!-- NEW -->&longs;it enim <lb/>&longs;olus vectis FC, cuius centrum &longs;it E; </s>
					<s id="N222D6"><!-- NEW -->cert&egrave; &longs;i vertatur in circulo hori&shy;<lb/>zontali, potentia applicata extremitati C facili&ugrave;s ver&longs;abit, qu&agrave;m appli&shy;<lb/>cata puncto F, iuxta proportionem CE ad EF, vel ad HE; igitur po&shy;<lb/>tentia applicata puncto H, vectis CF e&longs;t eiu&longs;dem momenti, cuius e&longs;t ea&shy;<lb/>dem applicata puncto F, quia &aelig;qualem pror&longs;us effectum, &longs;cilicet impe&shy;<lb/>tum, debet producere in vecte CF, vt moueatur in circulo horizontali <lb/>circa centrum E. <!-- KEEP S--></s>
					<s id="N222E7"><!-- NEW -->Probatur vlteri&ugrave;s, quia motus, &aelig;quabiles &longs;cilicet, &longs;unt <lb/>vt &longs;patia, impetus vt motus, vires vt impetus; </s>
					<s id="N222ED"><!-- NEW -->igitur applicata potenti&aelig; <lb/>in C producat impetum in vecte CF, vt vertatur in plano horizontali, &amp; <lb/>C eo motu acquirat CS &longs;egmentum CE &longs;ectorem CES; </s>
					<s id="N222F5"><!-- NEW -->&longs;egmentum <lb/>ver&ograve; FE &longs;ectorem FEV; </s>
					<s id="N222FB"><!-- NEW -->applicetur autem eadem potentia in F, vt ver&shy;<lb/>tatur, idem vectis FC, &amp; producatur in F impetus &aelig;qualis impetui an&shy;<lb/>t&egrave; producto in C; </s>
					<s id="N22303"><!-- NEW -->haud dubi&egrave; punctum F percurret arcum FG eo tem&shy;<lb/>pore, quo C priore motu percurrebat CS, vt patet; </s>
					<s id="N22309"><!-- NEW -->quia arcus CS e&longs;t <lb/>&aelig;qualis quadranti FG; igitur &longs;egmentum FE quadrantem FEG, &amp; &longs;eg&shy;<lb/>mentum EC quadrantem CED. </s>
				</p>
				<p id="N22311" type="main">
					<s id="N22313"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 48.<emph.end type="center"/></s>
				</p>
				<p id="N2231F" type="main">
					<s id="N22321"><!-- NEW --><emph type="italics"/>Ex his determinantur omnes ali&aelig; proportiones<emph.end type="italics"/>; </s>
					<s id="N2232A"><!-- NEW -->&longs;i enim fit vectis AC <lb/>&lpar;quem &longs;uppono &aelig;qualem in omnibus &longs;uis partibus &amp; volubilem circa <lb/>centrum E in plano horizontali&rpar; &amp; applicetur potentia in puncto A, in <lb/>quo producat minimum impetum, quem pote&longs;t immediat&egrave; producere ex <lb/>hypothe&longs;i toties repetita, ita vt dato tempore percurrat A arcum AK, &longs;i <lb/>&longs;it vectis AH, &amp; applicetur potentia in A, mouebit facili&ugrave;s, qu&agrave;m AC <lb/>iuxta proportionem 8/5; </s>
					<s id="N2233A"><!-- NEW -->nam in vecte AC &longs;patium e&longs;t compo&longs;itum ex <lb/>gemino &longs;ectore AEK, CES, &amp; in vecte AH &longs;patium e&longs;t compo&longs;itum <lb/>ex &longs;ectore AEK &amp; ZEH, qui &longs;ubquadruplus e&longs;t AEK; </s>
					<s id="N22342"><!-- NEW -->igitur hoc &longs;pa&shy;<lb/>tium totum confectum hoc vltimo motu e&longs;t ad prius &longs;patium vt 5. ad 8. <lb/>igitur &amp; motus; </s>
					<s id="N2234A"><!-- NEW -->igitur &amp; impetus; </s>
					<s id="N2234E"><!-- NEW -->&longs;ed qu&ograve; minor e&longs;t impetus, e&longs;t maior <lb/>facilitas; igitur facilitas vltimi motus e&longs;t ad facilitatem primi, vt 8. ad 5. <lb/>idem dico, &longs;i applicetur potentia in H. <!-- KEEP S--></s>
				</p>
				<p id="N22357" type="main">
					<s id="N22359"><!-- NEW -->Si ver&ograve; retento &longs;emper eodem vecte AC applicetur potentia t&ugrave;m in <lb/>A, t&ugrave;m in F, facilitas motus potenti&aelig; applicat&aelig; in A e&longs;t ad facilitatem <lb/>motus potenti&aelig; applicat&aelig; in F, vt AE ad FE, vel vt AB ad AK, vel <lb/>vt AEB ad AEK, qu&aelig; omnia con&longs;tant ex dictis; igitur applicata in F <lb/>in vecte AC e&longs;t ad applicatam in F in vecte FE vt 5. ad 8. &longs;ed h&aelig;c &longs;unt <lb/>&longs;atis clara, nec vlteriore explicatione indigent. </s>
				</p>
				<p id="N22367" type="main">
					<s id="N22369"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 49.<emph.end type="center"/></s>
				</p>
				<p id="N22375" type="main">
					<s id="N22377"><!-- NEW --><emph type="italics"/>Hinc qu&ograve; propi&ugrave;s ad centrum applicatur potentia, e&ograve; maior e&longs;t difficultas <lb/>motus<emph.end type="italics"/>; </s>
					<s id="N22382"><!-- NEW -->igitur &longs;i applicetur ip&longs;i centro mathematic&egrave; con&longs;iderato e&longs;t infi&shy;<lb/>nita difficultas; </s>
					<s id="N22388"><!-- NEW -->igitur nulla potentia &longs;uperare po&longs;&longs;et hanc difficultatem; </s>
					<s id="N2238C"><!-- NEW --><pb pagenum="289" xlink:href="026/01/323.jpg"/>hinc vt artifices &longs;uas ver&longs;ent rotas facili&ugrave;s, vel maxim&egrave; curuum manu&shy;<lb/>brium adhibent, vel affixo ver&longs;us circumferentiam in plano rot&aelig; clauo <lb/>rotam agunt in orbes; qu&aelig; omnia clar&egrave; &longs;equuntur ex dictis. </s>
				</p>
				<p id="N22398" type="main">
					<s id="N2239A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 50.<emph.end type="center"/></s>
				</p>
				<p id="N223A6" type="main">
					<s id="N223A8"><!-- NEW --><emph type="italics"/>Minor rota facili&ugrave;s vertitur in circulo horizontali; </s>
					<s id="N223AE"><!-- NEW -->qu&agrave;m maior.<emph.end type="italics"/> v. <!-- REMOVE S-->g.ro&shy;<lb/>ta FGHI, qu&agrave;m AB CD; </s>
					<s id="N223B9"><!-- NEW -->quia &longs;cilicet producitur min&ugrave;s impetus in <lb/>minore, qu&agrave;m in maiore, vt patet; </s>
					<s id="N223BF"><!-- NEW -->&longs;unt enim pauciores partes in mino&shy;<lb/>re, plures in maiore; </s>
					<s id="N223C5"><!-- NEW -->mouetur autem facili&ugrave;s minor, qu&agrave;m maior iuxta <lb/>rationem diametrorum, permutando; </s>
					<s id="N223CB"><!-- NEW -->Probatur, quia producatur impe&shy;<lb/>tus in A maioris rot&aelig;, ita vt dato tempore conficiat AK; </s>
					<s id="N223D1"><!-- NEW -->t&ugrave;m &aelig;qualis <lb/>impetus in F minoris rot&aelig;; </s>
					<s id="N223D7"><!-- NEW -->cert&egrave; eodem tempore conficiet punctum F <lb/>arcum FG &aelig;qualem AK; </s>
					<s id="N223DD"><!-- NEW -->&longs;ed quadrans FEG e&longs;t ad &longs;ectorem AEK, vt <lb/>FE ad AE, vt con&longs;tat; </s>
					<s id="N223E3"><!-- NEW -->igitur facilitas motus minoris rot&aelig; e&longs;t ad facili&shy;<lb/>tatem motus maioris, vt FE ad AE; </s>
					<s id="N223E9"><!-- NEW -->igitur &amp; impetus; &longs;ed qu&ograve; minor <lb/>e&longs;t impetus, e&longs;t maior facilitas, &amp;c. </s>
				</p>
				<p id="N223EF" type="main">
					<s id="N223F1"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 51.<emph.end type="center"/></s>
				</p>
				<p id="N223FD" type="main">
					<s id="N223FF"><!-- NEW --><emph type="italics"/>Hinc tant&aelig; molis po&longs;&longs;et e&longs;&longs;e rota in &longs;itu horizontali, vt &agrave; potentia etiam ve&shy;<lb/>geta minim&egrave; verti po&longs;&longs;es,<emph.end type="italics"/> vt clarum e&longs;t; </s>
					<s id="N2240A"><!-- NEW -->neque h&icirc;c vllo modo con&longs;idero <lb/>re&longs;i&longs;tentiam, qu&aelig; petitur &agrave; compre&longs;&longs;ione, &amp; affrictu partium, qui haud <lb/>dubi&egrave; maior e&longs;t in maiore rota; </s>
					<s id="N22412"><!-- NEW -->&longs;ed tant&ugrave;m con&longs;idero re&longs;i&longs;tentiam ne&shy;<lb/>gatiuam, hoc e&longs;t eam, qu&aelig; tant&ugrave;m petitur &agrave; maiore numero partium ro&shy;<lb/>t&aelig;; </s>
					<s id="N2241A"><!-- NEW -->qu&ograve; enim &longs;unt plures &longs;ubjecti partes, plures etiam partes impetus de&shy;<lb/>&longs;iderantur, vt &longs;&aelig;p&egrave; dictum e&longs;t; igitur maior potentia. </s>
				</p>
				<p id="N22420" type="main">
					<s id="N22422"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 52.<emph.end type="center"/></s>
				</p>
				<p id="N2242E" type="main">
					<s id="N22430"><!-- NEW --><emph type="italics"/>Destruitur impetus productus in hac rot&aelig; horizontali, &longs;ed &longs;en&longs;im &longs;ine &longs;en&longs;u <lb/>propter affrictum,<emph.end type="italics"/> vt &longs;upr&agrave; dictum e&longs;t: </s>
					<s id="N2243B"><!-- NEW -->hinc e&longs;&longs;et motus perpetuus, &longs;i nul&shy;<lb/>lus e&longs;&longs;et affrictus; </s>
					<s id="N22441"><!-- NEW -->min&ugrave;s impetus de&longs;truitur in maiore rota, qu&agrave;m in mi&shy;<lb/>nore: hinc gyrus minoris citi&ugrave;s peragitur, &amp; de&longs;init minor citi&ugrave;s <lb/>moueri. </s>
				</p>
				<p id="N22449" type="main">
					<s id="N2244B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 53.<emph.end type="center"/></s>
				</p>
				<p id="N22457" type="main">
					<s id="N22459"><!-- NEW --><emph type="italics"/>Minor rota citi&ugrave;s &longs;uum gyrum ab&longs;oluit, qu&agrave;m maior,<emph.end type="italics"/> vt dictum e&longs;t &longs;upr&agrave;, <lb/>&longs;iue &longs;it in &longs;itu verticali, &longs;iue in &longs;itu horizontali; </s>
					<s id="N22464"><!-- NEW -->&longs;ed non e&longs;t determinata <lb/>proportio, qu&agrave;m h&icirc;c de&longs;ideramus; dico enim tempora motuum e&longs;&longs;e, vt <lb/>radios. </s>
					<s id="N2246C"><!-- NEW -->v.g.tempus, quo rota minor FGHI &longs;uum gyrum ab&longs;oluit, e&longs;&longs;e ad <lb/>tempus, quo maior ABCD &longs;uum perficit, vt e&longs;t radius FE ad radium <lb/>AE, quod demon&longs;tro; </s>
					<s id="N22474"><!-- NEW -->quia &longs;it impetus &aelig;qualis impre&longs;&longs;us puncto A ma&shy;<lb/>ioris rot&aelig; puncto F minoris, ita vt A &amp; F moueantur &aelig;quali motu; </s>
					<s id="N2247A"><!-- NEW -->mi&shy;<lb/>nor rota conficit duos orbes eo tempore, quo maior vnum conficit, vt <lb/>con&longs;tat ex dictis; quia &longs;uppono. </s>
					<s id="N22482"><!-- NEW -->v. <!-- REMOVE S-->g. <!-- REMOVE S-->circulum minoris e&longs;&longs;e &longs;ubduplum; <lb/></s>
					<s id="N22483"><!-- NEW -->igitur tempus, quo peragitur maior e&longs;t ad tempus, quo peragitur minor <lb/>in ratione dupla; </s>
					<s id="N22484"><!-- NEW -->igitur vt radius AE ad radium FE, quod erat demon&shy;<lb/>&longs;trandum. </s>
				</p>
				<pb pagenum="290" xlink:href="026/01/324.jpg"/>
				<p id="N22494" type="main">
					<s id="N22496"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 54.<emph.end type="center"/></s>
				</p>
				<p id="N224A2" type="main">
					<s id="N224A4"><!-- NEW --><emph type="italics"/>Hinc &longs;i tant&ugrave;m habeatur ratio vectis, maior difficili&ugrave;s ver&longs;atur in plano <lb/>horizontali, qu&agrave;m minor.<emph.end type="italics"/> v.g. <!-- REMOVE S-->AE circa centrum E quam FE, producto <lb/>&longs;cilicet &aelig;quali motu in extremitate vtriu&longs;que A &amp; F; </s>
					<s id="N224B3"><!-- NEW -->&longs;i enim A dato <lb/>tempore percurrit AK; </s>
					<s id="N224B9"><!-- NEW -->cert&egrave; F percurret FG; </s>
					<s id="N224BD"><!-- NEW -->&longs;ed quadrans FEG e&longs;t <lb/>&longs;ubduplus &longs;ectoris AEK, vt con&longs;tat; </s>
					<s id="N224C3"><!-- NEW -->igitur facili&ugrave;s vertitur FE, qu&agrave;m <lb/>AE in proportione AE, ad FE: </s>
					<s id="N224C9"><!-- NEW -->&longs;i tamen non con&longs;ideretur pondus &longs;eu <lb/>re&longs;i&longs;tentia vectis, haud dubi&egrave; &longs;i pondus &longs;it in Q, facili&ugrave;s mouebitur ope&shy;<lb/>ra maioris vectis AE, qu&agrave;m minoris FE; </s>
					<s id="N224D1"><!-- NEW -->quia opera maioris mouetur <lb/>motu vt QT; </s>
					<s id="N224D7"><!-- NEW -->oper&acirc; ver&ograve; minoris motu vt QY, igitur difficili&ugrave;s opera <lb/>minoris in proportione QY ad QT; </s>
					<s id="N224DD"><!-- NEW -->denique &longs;i pondus &longs;it in F maioris <lb/>vectis, &amp; in <foreign lang="greek">d</foreign> minoris, &longs;itque AE ad AF, vt FE ad F <foreign lang="greek">d</foreign>, &aelig;quale erit <lb/>momentum vtriu&longs;que vectis ad mouendum pondus; </s>
					<s id="N224ED"><!-- NEW -->quia arcus FV erit <lb/>&aelig;qualis arcui <foreign lang="greek">d</foreign> Y; </s>
					<s id="N224F7"><!-- NEW -->h&icirc;c autem nullomodo con&longs;ideratur vectis re&longs;i&longs;ten&shy;<lb/>tia; </s>
					<s id="N224FD"><!-- NEW -->&longs;i ver&ograve; producatur <expan abbr="tant&utilde;dem">tantundem</expan> impetus in toto vecte AE quamtum <lb/>in FE; </s>
					<s id="N22507"><!-- NEW -->cert&egrave; pro rata &longs;ingul&aelig; partes FE duplum habent; </s>
					<s id="N2250B"><!-- NEW -->igitur tempo&shy;<lb/>ra gyrorum erunt in ratione duplicata radiorum; </s>
					<s id="N22511"><!-- NEW -->quia cum F habeat du&shy;<lb/>plum impetum A, cert&egrave; de&longs;cribit orbem integrum eo tempore, quo A <lb/>quadrantem; </s>
					<s id="N22519"><!-- NEW -->ergo F 4. orbes, dum A vnicum: &longs;ed h&aelig;c &longs;unt facilia. </s>
				</p>
				<p id="N2251D" type="main">
					<s id="N2251F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 55.<emph.end type="center"/></s>
				</p>
				<p id="N2252B" type="main">
					<s id="N2252D"><!-- NEW --><emph type="italics"/>Si vectis BH ita pellatur in B in plano horizontali, in quo liber&egrave; moueri <lb/>po&longs;&longs;it<emph.end type="italics"/> <emph type="italics"/>v.g. <!-- REMOVE S-->dum aqu&aelig; &longs;upernatat, nulli centro immobili affixus, &longs;it que aqualis <lb/>den&longs;itatis in omnibus &longs;uis partibus; mouebitur circa aliquod centrum, etiam&longs;i <lb/>nulli centro affigatur.<emph.end type="italics"/></s>
					<s id="N22543"><!-- NEW --> Probatur, quia punctum B veloci&ugrave;s mouebitur, qu&agrave;m <lb/>A vel H, vt patet experienti&acirc;: </s>
					<s id="N22549"><!-- NEW -->ratio e&longs;t, quia min&ugrave;s impetus producitur <lb/>in toto cylindro BH, applicata potentia in B, qu&agrave;m in A, quod e&longs;t cen&shy;<lb/>trum grauitatis cylindri BA, vt iam o&longs;tendimus Th. 68. 69. BB; </s>
					<s id="N22551"><!-- NEW -->porr&ograve; <lb/>ratio &agrave; priori e&longs;t, quia c&ugrave;m impetus producatur tant&ugrave;m ad extra, vt tol&shy;<lb/>latur impedimentum motus, vt fus&egrave; o&longs;tendimus lib.  1. cert&egrave; in tant&ugrave;m <lb/>amouetur impedimentum, in quantum amouetur corpus impediens mo&shy;<lb/>tum alterius; </s>
					<s id="N2255D"><!-- NEW -->atqui amoueri tant&ugrave;m pote&longs;t per motum; </s>
					<s id="N22561"><!-- NEW -->igitur eo motu <lb/>amouetur, quo facili&ugrave;s amoueri pote&longs;t, &amp; minore &longs;umptu, vt ita dicam, <lb/>id e&longs;t minore impetu: </s>
					<s id="N22569"><!-- NEW -->porr&ograve; cum potentia &longs;it determinata ad producen&shy;<lb/>dum tabem impetum, immediat&egrave; &longs;cilicet, id e&longs;t, in ea parte, cui immedia&shy;<lb/>t&egrave; admouetur; </s>
					<s id="N22571"><!-- NEW -->alioqui &longs;i po&longs;&longs;et minorem, &amp; minorem in infinitum pro&shy;<lb/>ducere po&longs;&longs;et etiam immediat&egrave; &longs;ine oper&acirc; organi mechanici quodlibet <lb/>pondus mouere, quod e&longs;t ab&longs;urdum, de quo iam &longs;upr&agrave;; </s>
					<s id="N22579"><!-- NEW -->&longs;it igitur potentia <lb/>applicata in A, &longs;cilicet in centro grauitatis cylindri BH; </s>
					<s id="N2257F"><!-- NEW -->cert&egrave; producit <lb/>maximum impetum, quem pote&longs;t producere in cylindro BH &lpar;&longs;uppono <lb/>enim e&longs;&longs;e cau&longs;am nece&longs;&longs;ariam, &amp; producere perfecti&longs;&longs;imum impetum, <lb/>quem producere po&longs;&longs;it&rpar; producit inquam maximum ratione numeri; </s>
					<s id="N22589"><!-- NEW --><lb/>c&ugrave;m in toto cylindro BH producat impetum eiu&longs;dem perfectionis; </s>
					<s id="N2258E"><!-- NEW -->igi&shy;<lb/>tur mouetur motu recto; </s>
					<s id="N22594"><!-- NEW -->igitur &aelig;quali in omnibus partibus; </s>
					<s id="N22598"><!-- NEW -->igitur &aelig;qua&shy;<lb/>lis e&longs;t impetus in omnibus partibus, id e&longs;t, &aelig;qu&egrave; inten&longs;us; </s>
					<s id="N2259E"><!-- NEW -->&longs;it autem po-<pb pagenum="291" xlink:href="026/01/325.jpg"/>tentia applicata in B, ita vt in puncto B producatur impetus eiu&longs;dem <lb/>perfectionis, de quo &longs;upr&agrave;: </s>
					<s id="N225A9"><!-- NEW -->&longs;i mouetur motu circulari circa aliquod cen&shy;<lb/>trum v. <!-- REMOVE S-->g. <!-- REMOVE S-->circa centrum H, &amp; punctum B conficiat arcum BD &aelig;qua&shy;<lb/>lem rect&aelig; b I, vel BL quam &aelig;quali tempore B vel A ant&egrave; percurrebant <lb/>motu recto; </s>
					<s id="N225B7"><!-- NEW -->cert&egrave; totus cylindrus BH acquiret tant&ugrave;m &longs;patium BHD <lb/>motu circulari circa centrum H; </s>
					<s id="N225BD"><!-- NEW -->&longs;ed motu recto acqui&longs;iuit &longs;patium re&shy;<lb/>ctanguli BK, quod maius e&longs;t, vt patet; </s>
					<s id="N225C3"><!-- NEW -->igitur motus circularis circa H <lb/>cylindri BH e&longs;t ad rectum, vt &longs;ector BHD ad rectangulum BK; </s>
					<s id="N225C9"><!-- NEW -->igitur <lb/>facilitas motus circularis e&longs;t ad facilitatem motus recti pr&aelig;&longs;entis, vt re&shy;<lb/>ctangulum BK ad &longs;ectorem BHD; </s>
					<s id="N225D1"><!-- NEW -->qu&aelig;nam ver&ograve; &longs;it h&aelig;c proportio pa&shy;<lb/>tet ex Cyclometria, &longs;uppo&longs;it&acirc; ratione Archimedis periph&aelig;ri&aelig; ad diame&shy;<lb/>trum; </s>
					<s id="N225D9"><!-- NEW -->igitur cum cylindrus impul&longs;us in B facili&ugrave;s moueri po&longs;&longs;it motu <lb/>circulari, qu&agrave;m recto, vt con&longs;tat ex dictis; </s>
					<s id="N225DF"><!-- NEW -->&amp; c&ugrave;m eo motu moueatur, <lb/>quo facili&ugrave;s moueri pote&longs;t; </s>
					<s id="N225E5"><!-- NEW -->mod&ograve; po&longs;&longs;it ad illum determinari, non mirum <lb/>e&longs;t &longs;i eo moueatur, &amp; minor impetus producatur in eodem cylindro <lb/>BH; debet autem e&longs;&longs;e aliquod centrum huius motus, quod determina&shy;<lb/>bimus paul&ograve; p&ograve;&longs;t, po&longs;tquam breuiter exilem quamdam objectionem de <lb/>impetu refutauerimus. </s>
				</p>
				<p id="N225F1" type="main">
					<s id="N225F3"><!-- NEW -->Itaque obiiciunt aliqui, impetum non produci ad extra ab impetu; </s>
					<s id="N225F7"><!-- NEW --><lb/>quia &longs;cilicet impetus habet iam effectum &longs;cilicet motum; </s>
					<s id="N225FC"><!-- NEW -->igitur aliud <lb/>munus non e&longs;t illi imponendum; </s>
					<s id="N22602"><!-- NEW -->igitur non producit alium effectum; <lb/>igitur non e&longs;t cau&longs;a impetus. </s>
				</p>
				<p id="N22608" type="main">
					<s id="N2260A"><!-- NEW -->Re&longs;pondeo prim&ograve;, calor e&longs;t cau&longs;a rarefactionis; </s>
					<s id="N2260E"><!-- NEW -->igitur non producit <lb/>alium calorem, quia habet iam vnum effectum; &longs;i tuum argumentum <lb/>concludit, meum quoque concludet. </s>
					<s id="N22616"><!-- NEW -->Re&longs;pondeo &longs;ecund&ograve;, anima produ&shy;<lb/>cit vi&longs;ionem, ergo auditionem producere non pote&longs;t, c&ugrave;m iam habeat <lb/>vnum effectum: </s>
					<s id="N2261E"><!-- NEW -->Dices, eandem cau&longs;am po&longs;&longs;e habere plures effectus; cur <lb/>igitur negas de impetu? </s>
				</p>
				<p id="N22624" type="main">
					<s id="N22626"><!-- NEW -->Re&longs;pondeo terti&ograve; direct&egrave;, motum e&longs;&longs;e effectum impetus ad intra, quem <lb/>pr&aelig;&longs;tat in &longs;uo &longs;ubjecto; </s>
					<s id="N2262C"><!-- NEW -->igitur e&longs;t effectus formalis &longs;ecundarius; </s>
					<s id="N22630"><!-- NEW -->nec <lb/>alius e&longs;&longs;e pote&longs;t, vt lib.1. demon&longs;trauimus; </s>
					<s id="N22636"><!-- NEW -->at ver&ograve; impetus e&longs;t effectus <lb/>alterius impetus ad extra; </s>
					<s id="N2263C"><!-- NEW -->igitur impetus e&longs;t cau&longs;a efficiens impetus, id&shy;<lb/>que ad extra &amp; cau&longs;a formalis, vel exigitiua motus ad intra; </s>
					<s id="N22642"><!-- NEW -->&longs;icut calor <lb/>e&longs;t cau&longs;a formalis, vel exigitiua rarefactionis ad intra, cau&longs;a ver&ograve; effi&shy;<lb/>ciens alterius caloris ad extra; </s>
					<s id="N2264A"><!-- NEW -->&amp; ver&ograve; nullo argumento probabis calo&shy;<lb/>rem &agrave; calore produci, quo ego non probem impetum ab impetu produ&shy;<lb/>ci; </s>
					<s id="N22652"><!-- NEW -->igitur impetus e&longs;t cau&longs;a alterius impetus; </s>
					<s id="N22656"><!-- NEW -->quia phy&longs;ic&egrave; loquendo il&shy;<lb/>lud vocamus cau&longs;am, ex cuius applicatione &longs;equitur nece&longs;&longs;ari&ograve; effectus; </s>
					<s id="N2265C"><!-- NEW --><lb/>atqui applicato corpore &longs;olo &longs;ine impetu nullus impetus producitur ad <lb/>extra, vt patet; </s>
					<s id="N22663"><!-- NEW -->applicato ver&ograve; cum impetu, producitur &longs;tatim alius im&shy;<lb/>petus; </s>
					<s id="N22669"><!-- NEW -->igitur ip&longs;e impetus e&longs;t cau&longs;a: </s>
					<s id="N2266D"><!-- NEW -->nec dicas requiri, vt conditionem; </s>
					<s id="N22671"><!-- NEW --><lb/>quia prim&ograve;, nullum e&longs;&longs;et munus huius conditionis; nec enim applica&shy;<lb/>ret cau&longs;am &longs;ubjecto, nec remoueret vllum impedimentum. </s>
					<s id="N22678">Secund&ograve; di&shy;<lb/>cam &longs;imiliter calorem e&longs;&longs;e conditionem. </s>
					<s id="N2267D">Terti&ograve;, dicerem etiam e&longs;&longs;e con&shy;<lb/>ditionem ad motum. </s>
					<s id="N22682"><!-- NEW -->Quart&ograve;, quis dicat corpus graue producere impe-<pb pagenum="292" xlink:href="026/01/326.jpg"/>tum &longs;ur&longs;um immediat&egrave; per &longs;e; &longs;ed h&aelig;c omittamus, qu&aelig; leuia &longs;unt, pr&aelig;&shy;<lb/>&longs;ertim c&ugrave;m demon&longs;trauerimus luculenter lib.1.impetum produci ab im&shy;<lb/>petu, vt &longs;cilicet tollatur impedimentum. </s>
				</p>
				<p id="N2268F" type="main">
					<s id="N22691"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 56.<emph.end type="center"/></s>
				</p>
				<p id="N2269D" type="main">
					<s id="N2269F"><emph type="italics"/>Quando pellitur cylindrus innatans<emph.end type="italics"/> <emph type="italics"/>in puncto L non vertitur circa cen&shy;<lb/>trum A.<emph.end type="italics"/><!-- KEEP S--></s>
					<s id="N226AF"><!-- NEW --> Probatur, quia vertatur circa centrum A. v.g. <!-- REMOVE S-->&amp; percurrat B <lb/>arcum BC, &amp; totus cylindrus duos &longs;ectores BAC, GAH; </s>
					<s id="N226B7"><!-- NEW -->&longs;it autem <lb/>BC &longs;ubduplus quadrantis BE, &amp; duo &longs;ectores pr&aelig;dicti &aelig;quales qua&shy;<lb/>dranti BAE; </s>
					<s id="N226BF"><!-- NEW -->hoc po&longs;ito, &longs;patium totius cylindri erit, vt quadrans; </s>
					<s id="N226C3"><!-- NEW -->igi&shy;<lb/>tur motus; igitur impetus: </s>
					<s id="N226C9"><!-- NEW -->iam ver&ograve; vertatur circa centrum H, ita vt B <lb/>percurrat arcum BD &aelig;qualem BC &lpar;erit autem BD &longs;ubquadruplus qua&shy;<lb/>drantis BF;&rpar; igitur totus cylindrus circa centrum H percurret &longs;patium <lb/>&longs;ectoris BHD &aelig;qualis quadranti BAE; </s>
					<s id="N226D3"><!-- NEW -->igitur motus circa centrum H <lb/>e&longs;t &aelig;qualis motui circa centrum A; </s>
					<s id="N226D9"><!-- NEW -->igitur e&longs;t eadem difficultas motus; <lb/>igitur non vertitur poti&ugrave;s circa centrum A, qu&agrave;m circa centrum H. <!-- KEEP S--></s>
				</p>
				<p id="N226E0" type="main">
					<s id="N226E2"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 57.<emph.end type="center"/></s>
				</p>
				<p id="N226EE" type="main">
					<s id="N226F0"><!-- NEW --><emph type="italics"/>Pote&longs;t determinari centrum, circa quod vertitur cylindrus BH innatans <lb/>humido, modo &longs;upponatur &aelig;qualis den&longs;itatis, &amp; cra&longs;&longs;itudinis<emph.end type="italics"/>; </s>
					<s id="N226FB"><!-- NEW -->diuidatur enim <lb/>AH bifariam in M: </s>
					<s id="N22701"><!-- NEW -->Dico vertiginem futuram circa centrum M, quod <lb/>demon&longs;tro; </s>
					<s id="N22707"><!-- NEW -->quia vertatur circa M, &amp; extremitas B moueatur &aelig;quali <lb/>motu, quo pri&ugrave;s moueri &longs;upponebatur circa A, vel circa H; </s>
					<s id="N2270D"><!-- NEW -->cert&egrave; c&ugrave;m <lb/>arcus BR &longs;it ad arcum BE vt BM ad BA, id e&longs;t vt 3. ad 2. erit BN <lb/>&longs;ubtripla BR, c&ugrave;m &longs;it &aelig;qualis BC &longs;ubdupla BE; </s>
					<s id="N22715"><!-- NEW -->totum autem &longs;patium <lb/>confectum hoc motu erit conflatum ex &longs;ectoribus BMN, &amp; HMO, vt <lb/>patet: </s>
					<s id="N2271D"><!-- NEW -->porr&ograve; &longs;ector BMN e&longs;t &longs;ubtriplus quadrantis BMR, qui quadrans <lb/>e&longs;t ad priorem BAE, vt 9. ad 4. id e&longs;t, vt quadratum 3. ad quadratum 2. <lb/>vt con&longs;tat; </s>
					<s id="N22725"><!-- NEW -->igitur conflatum ex &longs;ectore BMN, &amp; &longs;ectore HMO e&longs;t ad <lb/>quadrantem BAE, vel conflatum ex geminis &longs;ectoribus BAC, HAG <lb/>vt 3 1/3 ad 4. &longs;i autem accipiatur centrum, vel inter MA, vel MH, maius <lb/>erit &longs;patium, vt con&longs;tat ex Geometria; </s>
					<s id="N2272F"><!-- NEW -->igitur circa centrum M e&longs;t mini&shy;<lb/>mum &longs;patium; </s>
					<s id="N22735"><!-- NEW -->igitur minimus motus; </s>
					<s id="N22739"><!-- NEW -->igitur minimus impetus; igitur <lb/>maxima facilitas; igitur &longs;i pellatur in B, vertetur circa M, quod hactenus <lb/>non explicatum mod&ograve; ab aliquo, quod &longs;ciam, ver&ugrave;m etiam ne propo&longs;itum <lb/>quidem fuit. </s>
				</p>
				<p id="N22743" type="main">
					<s id="N22745"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 58.<emph.end type="center"/></s>
				</p>
				<p id="N22751" type="main">
					<s id="N22753"><!-- NEW --><emph type="italics"/>Hinc facil&egrave; dictu e&longs;t, cur naues ita impul&longs;&aelig; ab altera extremitate circa al&shy;<lb/>teram extremitatem non vertantur,<emph.end type="italics"/> vt patet experienti&acirc;; </s>
					<s id="N2275E"><!-- NEW -->quia h&aelig;c tendit <lb/>in partem oppo&longs;itam; </s>
					<s id="N22764"><!-- NEW -->nec etiam circa centrum grauitatis nauis, quod <lb/>etiam manife&longs;tis experientiis confirmatur, c&ugrave;m &longs;cilicet impul&longs;a extremi&shy;<lb/>tas maiorem arcum de&longs;cribat, &longs;ed circa medium centrum inter vtrum&shy;<lb/>que, ex quo principio tota remigationis ratio pendet: </s>
					<s id="N2276E"><!-- NEW -->imm&ograve; &amp; guber&shy;<lb/>naculi, quod puppi affigitur, vt con&longs;ideranti patebit, quod &longs;ufficiat indi&shy;<lb/>ca&longs;&longs;e; </s>
					<s id="N22776"><!-- NEW -->&longs;i ver&ograve; pellatur idem cylindrus in T. v.g. <!-- REMOVE S-->mouebitur circa cen-<pb pagenum="293" xlink:href="026/01/327.jpg"/>trum, quod e&longs;t inter MH, lic&egrave;t propi&ugrave;s accedat ad M, qu&agrave;m ad H, vt <lb/>con&longs;tat ex calculatione; </s>
					<s id="N22783"><!-- NEW -->e&longs;t autem aliquod punctum inter TA, ex quo &longs;i <lb/>pellatur, mouebitur circa punctum H; </s>
					<s id="N22789"><!-- NEW -->&longs;i ver&ograve; a&longs;&longs;umantur alia puncta <lb/>ver&longs;us A, ex quibus pellatur, centra motus, erunt extra BH, ac proinde <lb/>extremitas B pul&longs;a ex B mouetur per arcum BN; </s>
					<s id="N22791"><!-- NEW -->pul&longs;a ex A per rectam <lb/>AL; pul&longs;a denique ex punctis, qu&aelig; &longs;unt inter BA, per arcus maiorum <lb/>circulorum, e&ograve; &longs;an&egrave; maiorum, qu&ograve; propi&ugrave;s punctum, ex quo pellitur, ac&shy;<lb/>cedit ad A. <!-- KEEP S--></s>
				</p>
				<p id="N2279C" type="main">
					<s id="N2279E"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 59.<emph.end type="center"/></s>
				</p>
				<p id="N227AA" type="main">
					<s id="N227AC"><!-- NEW --><emph type="italics"/>Si pellatur nauis, vel cylindrus BH in puncto T, difficili&ugrave;s mouebitur, etiam <lb/>ex &longs;uppo&longs;itione, qu&ograve;d circa centrum M moueatur<emph.end type="italics"/>; </s>
					<s id="N227B7"><!-- NEW -->quod eodem modo de&shy;<lb/>mon&longs;tratur, quo &longs;upr&agrave;; </s>
					<s id="N227BD"><!-- NEW -->accipiatur TZ &aelig;qualis BC; </s>
					<s id="N227C1"><!-- NEW -->&longs;it autem BT &aelig;qua&shy;<lb/>lis TA; </s>
					<s id="N227C7"><!-- NEW -->cert&egrave; arcus TS erit &aelig;qualis arcui BE; </s>
					<s id="N227CB"><!-- NEW -->igitur &longs;ector VMB erit <lb/>&longs;ubduplus quadrantis BMR: </s>
					<s id="N227D1"><!-- NEW -->&longs;imiliter &longs;ector HMX erit &longs;ubduplus qua&shy;<lb/>drantis HMP; </s>
					<s id="N227D7"><!-- NEW -->igitur motus erit, vt aggregatum ex his duobus &longs;ectori&shy;<lb/>bus; </s>
					<s id="N227DD"><!-- NEW -->&longs;ed cum applicatur potentia in B, motus e&longs;t vt aggregatum ex duo&shy;<lb/>bus &longs;ectoribus BMN, HNO; </s>
					<s id="N227E3"><!-- NEW -->&longs;it autem quadrans BMR, vt 9. &amp; qua&shy;<lb/>drans HMP vt 1. igitur cum applicatur potentia in B, motus e&longs;t ad mo&shy;<lb/>tum cum applicatur in T vt 3 1/3 ad 5. igitur &amp; impetus; igitur facilitas <lb/>primi motus e&longs;t ad facilitatem &longs;ecundi, vt 5. ad 3 1/3 igitur in T diffici&shy;<lb/>li&ugrave;s pellitur, qu&agrave;m in B. </s>
				</p>
				<p id="N227EF" type="main">
					<s id="N227F1"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 60.<emph.end type="center"/></s>
				</p>
				<p id="N227FD" type="main">
					<s id="N227FF"><!-- NEW --><emph type="italics"/>Hinc maxima difficultas e&longs;t ad minimam, vt rectangulum BK ad aggre&shy;<lb/>tum ex duobus &longs;ectoribus BMN &amp; HMO, id e&longs;t vt<emph.end type="italics"/> 6. 2/7 ad 2. &lpar;13/21&rpar;: </s>
					<s id="N2280A"><!-- NEW -->hinc <lb/>nauis, qu&aelig; pellitur &egrave; lateris puncto, quod re&longs;pondet centro A, difficili&ugrave;s <lb/>long&egrave; mouetur; &longs;uppono enim nauim e&longs;&longs;e eiu&longs;dem latitudinis, &amp; den&longs;i&shy;<lb/>tatis, nec &longs;abulo adh&aelig;rere. </s>
				</p>
				<p id="N22814" type="main">
					<s id="N22816"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 61.<emph.end type="center"/></s>
				</p>
				<p id="N22822" type="main">
					<s id="N22824"><!-- NEW --><emph type="italics"/>Si &longs;uperponatur corpus plano rot&aelig;, qu&aelig; voluitur in circulo horizontali, pro&shy;<lb/>iicietur per Tangentem extremam.<emph.end type="italics"/> v.g. <!-- REMOVE S-->&longs;it rota ABCD horizontali pa&shy;<lb/>rallela qu&aelig; vertatur ab A ver&longs;us B celeri motu, &longs;itque planum eius le&shy;<lb/>uigati&longs;&longs;imum; </s>
					<s id="N22835"><!-- NEW -->imponatur globus etiam leuigati&longs;&longs;imus puncto A: </s>
					<s id="N22839"><!-- NEW -->dico <lb/>quod proiicietur per Tangentem AF, quia impetus, qui in illo impri&shy;<lb/>mitur in puncto F e&longs;t determinatus ad Tangentem A <foreign lang="greek">q</foreign>; </s>
					<s id="N22845"><!-- NEW -->&longs;ed non impe&shy;<lb/>ditur, quominus habeat &longs;uum motum; </s>
					<s id="N2284B"><!-- NEW -->nec enim globus pr&aelig;dictus ita <lb/>affigitur plano rot&aelig;, quin liber&egrave; &longs;eor&longs;im moueri po&longs;&longs;it: </s>
					<s id="N22851"><!-- NEW -->dixi per Tangen&shy;<lb/>tem extremam, quia &longs;i imponatur globus puncto F; </s>
					<s id="N22857"><!-- NEW -->cert&egrave; non impelle&shy;<lb/>tur per Tangentem F <foreign lang="greek">u</foreign>, vt patebit ex &longs;equenti propo&longs;itione; quod &agrave; nul&shy;<lb/>lo hactenus, quod &longs;ciam, ob&longs;eruatum fuit. </s>
				</p>
				<p id="N22863" type="main">
					<s id="N22865"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 62.<emph.end type="center"/></s>
				</p>
				<p id="N22871" type="main">
					<s id="N22873"><emph type="italics"/>Si imponatur globus puncto F plani horizontalis rot&aelig; ABCD, non proii&shy;<lb/>cietur per Tangentem F<emph.end type="italics"/> <foreign lang="greek">u</foreign> quod prim&ograve; manife&longs;tis experimentis comproba&shy;<lb/>tum e&longs;t. </s>
					<s id="N22883"><!-- NEW -->Secund&ograve; probatur, quia dum globus his punctis, in quibus re-<pb pagenum="294" xlink:href="026/01/328.jpg"/>cta F <foreign lang="greek">u</foreign> &longs;ecat alios maiores circulos concentricos, ab his punctis nouum <lb/>impetum accipit, ratione cuius debet mutare lineam, quod certum e&longs;t; </s>
					<s id="N22892"><!-- NEW --><lb/>cum autem circuli maiores rot&aelig; moueantur veloci&ugrave;s, qu&agrave;m FGH, po&shy;<lb/>tiori iure mutari debet determinatio currentis globi in pr&aelig;dicto plano; </s>
					<s id="N22899"><!-- NEW --><lb/>qu&aelig;nam ver&ograve; &longs;it h&aelig;c linea motus, difficil&egrave; dictu e&longs;t; dicemus tamen <lb/>Tomo &longs;equenti, cum de lineis motus. </s>
				</p>
				<p id="N228A0" type="main">
					<s id="N228A2"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N228AE" type="main">
					<s id="N228B0"><!-- NEW -->Ob&longs;eruabis prim&ograve;, &longs;i &longs;it rota ABCD verticali circulo parallela, proii&shy;<lb/>ci corpus ab eius periph&aelig;ria per lineam min&ugrave;s di&longs;tantem ab ip&longs;a peri&shy;<lb/>ph&aelig;ria, qu&ograve; maior e&longs;t circulus; </s>
					<s id="N228B8"><!-- NEW -->quia &longs;cilicet tunc angulus contingenti&aelig; <lb/>e&longs;t maior; </s>
					<s id="N228BE"><!-- NEW -->hinc &longs;i terra moueretur &lpar;lic&egrave;t reuer&acirc;, quie&longs;cat&rpar; non e&longs;&longs;et pe&shy;<lb/>riculum, ne proiicerentur lapides per Tangentem, qu&aelig; vix di&longs;taret per <lb/>longum &longs;patij tractum ab ip&longs;o arcu terr&aelig;, vt ob&longs;eruat Galileus, &amp; res <lb/>ip&longs;a facilis e&longs;t; vnde miror nonnullos Philo&longs;ophos, alioquin docti&longs;&longs;i&shy;<lb/>mos, id argumenti contra motum terr&aelig; &aacute;ttuli&longs;&longs;e, cuius nulla penitus <lb/>vis e&longs;t, vt nonnemo in elementis Geometricis etiam mediocriter tinctus <lb/>facil&egrave; demon&longs;trabit. </s>
				</p>
				<p id="N228CE" type="main">
					<s id="N228D0"><!-- NEW -->Ob&longs;erua &longs;ecund&ograve;, ex his peti rationes projectionis fund&aelig;, qu&aelig; in quo&shy;<lb/>cunque circulo &longs;uos gyros habet; e&longs;t enim eadem ratio. </s>
				</p>
				<p id="N228D6" type="main">
					<s id="N228D8"><!-- NEW -->Ob&longs;erua terti&ograve;, cum aliquod corpus incubat plano, quod motu recto <lb/>mouetur, numquam ab eo &longs;eparari, quamdiu planum ip&longs;um &aelig;quabili mo&shy;<lb/>tu mouetur; </s>
					<s id="N228E0"><!-- NEW -->qui&agrave; non mutatur determinatio impetus &icirc;mpre&longs;&longs;i corpori <lb/>incubanti; &amp; c&ugrave;m &aelig;qualis &longs;it impetus t&ugrave;m in plano, t&ugrave;m in globo. </s>
					<s id="N228E6"><!-- NEW -->v.g. <lb/><!-- REMOVE S-->&longs;uperimpo&longs;ito, vtrumque &aelig;quali motu nece&longs;&longs;ario mouetur; </s>
					<s id="N228ED"><!-- NEW -->igitur &longs;ine <lb/>projectione; </s>
					<s id="N228F3"><!-- NEW -->&longs;ic dum nauis recto cur&longs;u mouetur &longs;ecundo flumine, omnia <lb/>qu&aelig; naui in&longs;unt, &aelig;qualiter cum ip&longs;a naui mouentur; at ver&ograve; &longs;i planum <lb/>mouetur motu circulari, mutatur determinatio &longs;ingulis in&longs;tantibus, vnde <lb/>&longs;equitur projectio, vt dictum e&longs;t &longs;upr&agrave;. </s>
				</p>
				<p id="N228FD" type="main">
					<s id="N228FF">Ob&longs;erua quart&ograve;, globum impo&longs;itum rot&aelig; ABCD initio tardi&ugrave;s, t&ugrave;m <lb/>deinde veloci&ugrave;s moueri, qu&ograve; &longs;cilicet pl&ugrave;s recedit &agrave; centro E, quia &agrave; pun&shy;<lb/>ctis plani, in quibus rotatur, &amp; qu&aelig; maiore motu vertuntur, maiorem <lb/>quoque impetus vim accipit. </s>
				</p>
				<p id="N22908" type="main">
					<s id="N2290A"><!-- NEW -->Ob&longs;erua quint&ograve;, globum in plano ABCD per lineam FVB rotatum <lb/>moueri veloci&ugrave;s ip&longs;is punctis plani, in quibus rotatur, excepto primo <lb/>in&longs;tanti motus; </s>
					<s id="N22912"><!-- NEW -->quia accipit &agrave; &longs;ingulis punctis &aelig;qualem impetum ip&longs;i <lb/>impetui, qui ip&longs;is ine&longs;t; qui cum priori conjunctus diagonalem facit, vt <lb/>&longs;upr&agrave; dictum e&longs;t, cum de motu mixto &amp; lib.  1. cum de determinatione <lb/>motus. </s>
				</p>
				<p id="N2291C" type="main">
					<s id="N2291E"><!-- NEW -->Ob&longs;eruabis &longs;ext&ograve;, moueri motu accelerato maiori &amp; maiori, quod <lb/>cert&egrave; mirum e&longs;t; </s>
					<s id="N22924"><!-- NEW -->cum tamen rota in cuius plano horizontali rotatur, <lb/>motu &aelig;quali moueatur; </s>
					<s id="N2292A"><!-- NEW -->maxim&egrave; autem cre&longs;cit ille motus, quia priorem <lb/>&longs;emper impetum &longs;eruat, cui nouus &longs;emper accedit, exceptis paucis <lb/>gradibus, qui ob conflictum determinationum, &amp; impetuum excidunt; <pb pagenum="295" xlink:href="026/01/329.jpg"/>quia quotie&longs;cunque nouus impetus ad nouam lineam determinatus ac&shy;<lb/>cedit priori, non e&longs;t dubium, quin de&longs;truatur aliquid impetus, quia ali&shy;<lb/>quid fru&longs;tr&agrave; e&longs;t, vt lib.  1. demon&longs;tratum e&longs;t. </s>
				</p>
				<p id="N2293B" type="main">
					<s id="N2293D"><!-- NEW -->Ob&longs;erua &longs;eptim&ograve;, aliud mirabilius, &longs;cilicet impetum po&longs;&longs;e produci in <lb/>eo mobili, cui iam ine&longs;t maior impetus, qu&agrave;m in&longs;it alteri, &agrave; quo nouus <lb/>imprimitur; quod cert&egrave; nunquam fieri pote&longs;t, cum nouus impetus ad <lb/>eandem lineam e&longs;t determinatus, ad quam prior impetus, qui mobili <lb/>ine&longs;t, iam determinatus e&longs;t. </s>
				</p>
				<p id="N22949" type="main">
					<s id="N2294B">Ob&longs;eruabis octau&ograve;; </s>
					<s id="N2294E"><!-- NEW -->quotie&longs;cunque planum, quod mouetur motu re&shy;<lb/>cto, vel de&longs;init illic&ograve; moueri, vel tardi&ugrave;s mouetur, tunc globus incubans <lb/>mouetur vlteri&ugrave;s, &amp; qua&longs;i proiicitur; </s>
					<s id="N22956"><!-- NEW -->hoc ip&longs;um vidimus in naui: </s>
					<s id="N2295A"><!-- NEW -->ratio <lb/>clara e&longs;t; quia prior impetus in globo productus, qui manet intactus, <lb/>&longs;uum effectum habet. </s>
				</p>
				<p id="N22962" type="main">
					<s id="N22964">Ob&longs;eruabis non&ograve;, &longs;i terra moueretur ex hypothe&longs;i Copernici, qu&aelig; <lb/>tamen fal&longs;i&longs;&longs;ima e&longs;t, idem Parallelus terre&longs;tris globi in&aelig;quali motu mo&shy;<lb/>ueretur. </s>
					<s id="N2296B"><!-- NEW -->v. <!-- REMOVE S-->g. <!-- REMOVE S-->idem punctum &AElig;quatoris, dum Soli direct&egrave; re&longs;pondet de <lb/>meridie tardiore motu; </s>
					<s id="N22975"><!-- NEW -->oppo&longs;itum ver&ograve; de media nocte veloci&ugrave;s moue&shy;<lb/>retur; </s>
					<s id="N2297B"><!-- NEW -->ex qua tamen in&aelig;qualitate motus aliqui mal&egrave; &longs;u&longs;picantur &aelig;&longs;tum <lb/>maris oriri; </s>
					<s id="N22981"><!-- NEW -->quippe lic&egrave;t fort&egrave; aliquis &aelig;&longs;tus maris ex illa hypothe&longs;i &longs;e&shy;<lb/>queretur, long&egrave; tamen diuer&longs;us ab eo, qui nunc e&longs;t; nam prim&ograve;, iis omni&shy;<lb/>bus qui eidem Meridiano &longs;ub&longs;unt eodem tempore accideret &aelig;&longs;tus &longs;cili&shy;<lb/>cet de meridie. </s>
					<s id="N2298B"><!-- NEW -->Secund&ograve; his, qui propi&ugrave;s accedunt ad polos long&egrave; minor <lb/>&aelig;&longs;tus e&longs;&longs;et; vtrumque autem fal&longs;um e&longs;&longs;e con&longs;tat. </s>
					<s id="N22991"><!-- NEW -->Terti&ograve;, eadem &longs;emper <lb/>hora in &longs;ingulis punctis eiu&longs;dem Paralleli &longs;eor&longs;im ferueret &aelig;&longs;tus; &longs;ed de <lb/>his ali&agrave;s plura. </s>
				</p>
				<p id="N22999" type="main">
					<s id="N2299B"><!-- NEW -->Ob&longs;eruabis decim&ograve;, qu&ograve; diutius potentia motrix manet applicata, ac&shy;<lb/>cedente continenter maiore ni&longs;u, maior quoque impetus producitur in <lb/>rota, quod clarum e&longs;t; vnde diuti&ugrave;s deinde rota ver&longs;atur. </s>
				</p>
				<p id="N229A3" type="main">
					<s id="N229A5"><!-- NEW -->Ob&longs;eruabis vndecim&ograve;, trochum in gyros actum ita aliquando ver&longs;ari, <lb/>vt &longs;tare pror&longs;us immobilis videatur; quia ferreum fulcrum, cui ligneus <lb/>conus innititur vel excauato &longs;ibi foramine excurrere vltr&agrave; non pote&longs;t, <lb/>vel motu centri penitus quie&longs;cente &longs;upere&longs;t tant&ugrave;m motus orbis. </s>
				</p>
				<p id="N229AF" type="main">
					<s id="N229B1"><!-- NEW -->Ob&longs;eruabis duodecim&ograve;, antequam quie&longs;cat trochus, inclinata verti&shy;<lb/>gine per aliquod tempus ver&longs;ari, moxque, vbi decidit, in plano ip&longs;o ad <lb/>in&longs;tar globi adhuc rotari; </s>
					<s id="N229B9"><!-- NEW -->&longs;ed quia h&aelig;c pertinent ad motum mixtum ex <lb/>circularibus in libro 9. remitto: &amp; ver&ograve; multa &longs;unt in hoc trochi motu, <lb/>qu&aelig;&longs;i attent&egrave; con&longs;iderentur, maximam admirationem mouere po&longs;&longs;int. </s>
				</p>
				<p id="N229C1" type="main">
					<s id="N229C3"><!-- NEW -->Ob&longs;eruabis decimoterti&ograve;, &longs;i ferrum, quo trochus armatur, ita e&longs;&longs;et <lb/>infixum vt reuer&acirc; centrum grauitatis cum puncto contactus plani con&shy;<lb/>necteret; </s>
					<s id="N229CB"><!-- NEW -->nulla e&longs;&longs;et inclinata vertigo, antequam impetus extinguere&shy;<lb/>tur; cur enim poti&ugrave;s in vnam partem, qu&agrave;m in aliam. </s>
				</p>
				<p id="N229D1" type="main">
					<s id="N229D3"><!-- NEW -->Ob&longs;eruabis decimoquarto aquam in vorticibus facil&egrave; circulari motu <lb/>conuolui, &amp; a&euml;ra, vel halitum in turbinibus; </s>
					<s id="N229D9"><!-- NEW -->quia &longs;cilicet vel nullus, vel <lb/>modicus e&longs;t obex: idem dico de nube, fumo, acu magnetica, trocho, vel <lb/>&longs;ph&aelig;ra l&aelig;uigata in plano leuigato. </s>
				</p>
				<pb pagenum="296" xlink:href="026/01/330.jpg"/>
				<p id="N229E5" type="main">
					<s id="N229E7"><!-- NEW -->Ob&longs;eruabis decimoquint&ograve;, &longs;i in eadem parte plani diu vertatur Tro&shy;<lb/>chus, qua&longs;i excauat &longs;ibi foramen; </s>
					<s id="N229ED"><!-- NEW -->arrodit enim plani partes &longs;uis denti&shy;<lb/>culis; etiam pelitum ferrum: </s>
					<s id="N229F3"><!-- NEW -->inde etiam impetum de&longs;trui certum e&longs;t; <lb/>nec enim &longs;ine re&longs;i&longs;tentia id fieri pote&longs;t. </s>
				</p>
				<p id="N229F9" type="main">
					<s id="N229FB">Ob&longs;eruabis decimo&longs;ext&ograve;, impetum eundem habere po&longs;&longs;e motum cir&shy;<lb/>cularem, &amp; rectum in &longs;ublunaribus, &amp; per accidens determinari tant&ugrave;m <lb/>ad motum circularem, ratione &longs;cilicet impedimenti, vt con&longs;tat ex dictis. </s>
				</p>
				<p id="N22A02" type="main">
					<s id="N22A04"><!-- NEW -->Ob&longs;eruabis decimo&longs;eptim&ograve;, motum rectum accelerari, &longs;ed diu non <lb/>durare; </s>
					<s id="N22A0A"><!-- NEW -->retardari ver&ograve; violentum, ac &aelig;qu&egrave; diu durare; </s>
					<s id="N22A0E"><!-- NEW -->circularem <lb/>ver&ograve; non accelerari, &longs;ed min&ugrave;s retardari, atque adeo <lb/>long&egrave; diuti&ugrave;s durare; quia tant&ugrave;m per accidens <lb/>retardatur, &longs;ed de his <lb/>&longs;atis. <lb/><figure id="id.026.01.330.1.jpg" xlink:href="026/01/330/1.jpg"/></s>
				</p>
			</chap>
			<chap id="N22A20">
				<pb pagenum="297" xlink:href="026/01/331.jpg"/>
				<figure id="id.026.01.331.1.jpg" xlink:href="026/01/331/1.jpg"/>
				<p id="N22A2A" type="head">
					<s id="N22A2C"><emph type="center"/>LIBER OCTAVVS, <lb/><emph type="italics"/>DE MOTV FVNEPENDVLORVM.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N22A3A" type="main">
					<s id="N22A3C"><!-- NEW -->NIHIL inuenio apud antiquos, quod ad <lb/>hoc genus motus pertineat; </s>
					<s id="N22A42"><!-- NEW -->&longs;unt tamen <lb/>plerique recentiores qui fus&egrave; de illo di&shy;<lb/>&longs;putarunt, quorum haud dubi&egrave; princi&shy;<lb/>pem locum obtinet Galileus, qui &longs;an&egrave; <lb/>mirabiles aliquas huius motus affectiones explicat <lb/>t&ugrave;m in gemino Sy&longs;themate; t&ugrave;m in Dialogis, cui ac&shy;<lb/>cedunt Balianus Mercennus, &amp; nonnulli alij. </s>
				</p>
				<p id="N22A52" type="main">
					<s id="N22A54"><!-- NEW -->Ego ver&ograve; in hoc libro omnium vibrationum cau&shy;<lb/>&longs;as inquiram, qu&aelig; &longs;unt duplicis generis: </s>
					<s id="N22A5A"><!-- NEW -->Primum e&longs;t <lb/>earum, quibus vibrata hinc inde funependula agun&shy;<lb/>tur, qu&aelig; titulum huic libro fecerunt; &longs;unt autem tres <lb/>funependulorum &longs;pecies. </s>
					<s id="N22A64">Prima e&longs;t eorum, qu&aelig; in al&shy;<lb/>tera extremitate fune appen&longs;a vibrantur in circulo <lb/>verticali. </s>
					<s id="N22A6B">Secunda e&longs;t eorum, qu&aelig; ab altera etiam ex&shy;<lb/>tremitate appen&longs;a fune pri&ugrave;s obtorto in circulo ho&shy;<lb/>rizontali &longs;uos agunt gyros. </s>
					<s id="N22A72">Tertia e&longs;t chordarum, <lb/>quarum vtraque extremitas clauo immobili affigi&shy;<lb/>tur. </s>
					<s id="N22A79"><!-- NEW -->Secundum genus vibrationum e&longs;t earum, quibus <lb/>aguntur grauia cum &agrave; &longs;uo centro grauitatis remouen&shy;<lb/>tur, vt &longs;e&longs;e reducant, quarum &longs;unt du&aelig; &longs;pecies; prima <lb/>e&longs;t earum, quibus vibratur in circulo verticali corpus <lb/>aliquod circa alteram extremitatem, vt campana. </s>
					<s id="N22A85"><lb/>Secunda e&longs;t earum, quibus vibrantur grauia circa <pb pagenum="298" xlink:href="026/01/332.jpg"/>punctum proximum &longs;uo centro grauitatis, &longs;ic v. <!-- REMOVE S-->g. <lb/><!-- REMOVE S-->trabs trabi &longs;uperimpo&longs;ita libratur, &amp; vibratur. <lb/><gap desc="hr tag"/></s>
				</p>
				<p id="N22A96" type="main">
					<s id="N22A98"><emph type="center"/><emph type="italics"/>DEFINITIO I.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N22AA4" type="main">
					<s id="N22AA6"><!-- NEW --><emph type="italics"/>VIbratio funependuli prim&aelig; &longs;peciei e&longs;t motus circularis, quo a&longs;cendit, &amp; <lb/>de&longs;cendit funependulum<emph.end type="italics"/>; </s>
					<s id="N22AB1"><!-- NEW -->&longs;unt autem ali&aelig; &aelig;quales, ali&aelig; in&aelig;quales: </s>
					<s id="N22AB5"><!-- NEW --><lb/>&aelig;quales &longs;unt, qu&aelig; &longs;unt eiu&longs;dem radij, in&aelig;quales &egrave; contrario: </s>
					<s id="N22ABA"><!-- NEW -->ali&aelig; &longs;imi&shy;<lb/>les, qu&aelig; &longs;imiles arcus complectuntur; di&longs;&longs;imiles &egrave; contrario: </s>
					<s id="N22AC0"><!-- NEW -->ali&aelig; &aelig;qu&egrave; <lb/>diuturn&aelig;, qu&aelig; temporibus &aelig;qualibus perficiuntur: </s>
					<s id="N22AC6"><!-- NEW -->ali&aelig; integr&aelig;, quarum <lb/>de&longs;cen&longs;us integrum quadrantem comprehendit; non integr&aelig; &egrave; contra&shy;<lb/>rio; </s>
					<s id="N22ACE"><!-- NEW -->portio vet&ograve; vibrationis e&longs;t arcus; &longs;ed h&aelig;c omnia in propo&longs;ito. </s>
					<s id="N22AD2"><!-- NEW -->Sche&shy;<lb/>mate explicamus; </s>
					<s id="N22AD8"><!-- NEW -->&longs;it enim plumbeus globus E appen&longs;us fune EA ex <lb/>puncto A immobili, AE e&longs;t radius, vel longitudo funependuli E, NEC <lb/>e&longs;t vibratio integra, LER non integra, LE portio vibrationis NEC, <lb/>NL &amp; MF portiones &longs;imiles, MDB, NEC vibrationes in&aelig;quales: ex <lb/>his reliqua facil&egrave; intelligi poterunt. </s>
				</p>
				<p id="N22AE4" type="main">
					<s id="N22AE6"><emph type="center"/><emph type="italics"/>Definitio<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N22AF3" type="main">
					<s id="N22AF5"><emph type="italics"/>Momentum e&longs;t exce&longs;&longs;us virtutis mouentis &longs;upra re&longs;istentiam alterius.<emph.end type="italics"/> v. <!-- REMOVE S-->g. <lb/><!-- REMOVE S-->&longs;int brachia vectis in&aelig;qualia, momentum e&longs;t in longiore ea vis, qua de&shy;<lb/>&longs;cendens deor&longs;um &longs;ur&longs;um attollit minus &longs;eu breuius. </s>
				</p>
				<p id="N22B04" type="main">
					<s id="N22B06"><emph type="center"/><emph type="italics"/>Definitio<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N22B13" type="main">
					<s id="N22B15"><!-- NEW --><emph type="italics"/>Ten&longs;io e&longs;t vis allata ab extrin&longs;eco corpore, qua augetur eius exten&longs;io<emph.end type="italics"/>; </s>
					<s id="N22B1E"><!-- NEW -->res <lb/>e&longs;t clara in ten&longs;o fune, quomodocunque id fiat, quod h&icirc;c non di&longs;cutio; <lb/>compre&longs;&longs;io ver&ograve; e&longs;t vis illata ab extrin&longs;eco corpori, qua contrahitur eius <lb/>exten&longs;io v.g. <!-- REMOVE S-->in intorto fune. </s>
				</p>
				<p id="N22B2A" type="main">
					<s id="N22B2C"><!-- NEW -->Ob&longs;eruabis autem ad ten&longs;ionem, &amp; compre&longs;&longs;ionem requiri, vt &longs;ubla&shy;<lb/>ta illa vi extrin&longs;eca, vel impedimento admoto corpus ten&longs;um, vel com&shy;<lb/>pre&longs;&longs;um ad pri&longs;tinam exten&longs;ionem &longs;e&longs;e reducat; neque di&longs;puto de mo&shy;<lb/>do, quo id fieri po&longs;&longs;it, qui alterius loci e&longs;t. </s>
				</p>
				<p id="N22B38" type="main">
					<s id="N22B3A"><emph type="center"/><emph type="italics"/>Hypothe&longs;is<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N22B47" type="main">
					<s id="N22B49"><!-- NEW --><emph type="italics"/>Corpus graue funependulum &agrave; &longs;u&aelig; quiete, vel &egrave; &longs;uo centro grauitatis remo&shy;<lb/>tum de&longs;cendit &longs;u&acirc; &longs;ponte, iterumque a&longs;cendit, id e&longs;t vibratur<emph.end type="italics"/>; cer&shy;<lb/>tum e&longs;t. </s>
				</p>
				<p id="N22B56" type="main">
					<s id="N22B58"><emph type="center"/><emph type="italics"/>Hypothe&longs;is<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N22B65" type="main">
					<s id="N22B67"><!-- NEW --><emph type="italics"/>Funependula longiora maiore tempore &longs;uam vibrationam conficiunt, bre&shy;<lb/>uiora minore<emph.end type="italics"/>; quod etiam certum e&longs;t. </s>
				</p>
				<p id="N22B72" type="main">
					<s id="N22B74"><emph type="center"/><emph type="italics"/>Hypothe&longs;is<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N22B81" type="main">
					<s id="N22B83"><emph type="italics"/>Motus naturalis e&longs;t acceleratus in tempore &longs;en&longs;ibili in proportione nume&shy;<lb/>rorum<emph.end type="italics"/> 1.3.5.7. <emph type="italics"/>&amp;c.<emph.end type="italics"/> quod multis explicatum e&longs;t lib.  2. &longs;i ver&ograve; acceleratio <pb pagenum="299" xlink:href="026/01/333.jpg"/>a&longs;&longs;umatur in &longs;ingulis in&longs;tantibus finitis, e&longs;t iuxta &longs;eriem &longs;implicem nu&shy;<lb/>merorum 1. 2. 3. 4. &amp;c. </s>
				</p>
				<p id="N22B9A" type="main">
					<s id="N22B9C"><emph type="center"/><emph type="italics"/>Hypothe&longs;is<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N22BA9" type="main">
					<s id="N22BAB"><!-- NEW --><emph type="italics"/>Motus in plano inclinato e&longs;t ad motum in perpendiculari, vt perpendicula&shy;<lb/>ris ad inclinatam<emph.end type="italics"/>; </s>
					<s id="N22BB6"><!-- NEW -->quod etiam lib.5.fus&egrave; explicatum e&longs;t; e&longs;t autem &longs;em&shy;<lb/>per in plano inclinato motus prioris grauis. </s>
				</p>
				<p id="N22BBC" type="main">
					<s id="N22BBE"><emph type="center"/><emph type="italics"/>Hypothe&longs;is<emph.end type="italics"/> 5.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N22BCB" type="main">
					<s id="N22BCD"><!-- NEW --><emph type="italics"/>In quadrante incubante perpendiculariter plano horizontali, tot &longs;unt di&shy;<lb/>uer&longs;a plana inclinata, quot &longs;unt puncta, &longs;eu Tangentes<emph.end type="italics"/>; hoc etiam certum <lb/>e&longs;t, &amp; angulus contingenti&aelig; maior e&longs;t in minore circulo, minor in <lb/>maiore. </s>
				</p>
				<p id="N22BDC" type="main">
					<s id="N22BDE"><emph type="center"/><emph type="italics"/>Hypothe&longs;is<emph.end type="italics"/> 6.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N22BEB" type="main">
					<s id="N22BED"><!-- NEW --><emph type="italics"/>Nullus arcus circuli e&longs;t vt linea recta, nec &longs;ine errore accipi pote&longs;t vt recta,<emph.end type="italics"/><lb/>contrariam hypothe&longs;im aliqui &longs;upponunt, quam tamen fal&longs;am e&longs;&longs;e &longs;ciunt; </s>
					<s id="N22BF7"><!-- NEW --><lb/>lic&egrave;t enim quoad &longs;en&longs;um error &longs;ube&longs;&longs;e non po&longs;&longs;it; </s>
					<s id="N22BFC"><!-- NEW -->attamen repugnat <lb/>Geometri&aelig;: </s>
					<s id="N22C02"><!-- NEW -->hinc &longs;uppo&longs;itio no&longs;tra Geometric&egrave; vera e&longs;t; &longs;ed de hoc in&shy;<lb/>fr&agrave; fus&egrave;. </s>
				</p>
				<p id="N22C08" type="main">
					<s id="N22C0A"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N22C17" type="main">
					<s id="N22C19"><!-- NEW --><emph type="italics"/>Tamdiu durat motus, quandiu durat impetus; hic autem tandiu durat, <lb/>quamdiu non e&longs;t frustr&agrave;.<emph.end type="italics"/></s>
				</p>
				<p id="N22C23" type="main">
					<s id="N22C25"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N22C32" type="main">
					<s id="N22C34"><emph type="italics"/>Noua determinatio impotus cum priore facit mixtum &longs;i determinatio mixta <lb/>facit nouam lineam.<emph.end type="italics"/></s>
				</p>
				<p id="N22C3D" type="main">
					<s id="N22C3F"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N22C4C" type="main">
					<s id="N22C4E"><emph type="italics"/>Quotie&longs;cunque fit mixta determinatio per acce&longs;&longs;ionem noni impetus, de&shy;<lb/>&longs;truitur aliquid impetus prioris, patet.<emph.end type="italics"/></s>
				</p>
				<p id="N22C57" type="main">
					<s id="N22C59"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N22C66" type="main">
					<s id="N22C68"><emph type="italics"/>Impetus innatus non concurrit ad motum &longs;ur&longs;um.<emph.end type="italics"/></s>
				</p>
				<p id="N22C6F" type="main">
					<s id="N22C71"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 5.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N22C7E" type="main">
					<s id="N22C80"><!-- NEW --><emph type="italics"/>In inclinata min&ugrave;s destruitur impetus dato tempore, qu&agrave;m in perpendicu&shy;<lb/>lari &longs;ur&longs;um, pl&ugrave;s ver&ograve; destruitur, qu&ograve; propi&ugrave;s accedit ad verticalem<emph.end type="italics"/>; h&aelig;c <lb/>omnia qu&aelig; loco Axiomatum h&icirc;c propo&longs;ui, in &longs;uperioribus libris, pr&aelig;&shy;<lb/>&longs;ertim in Quinto abund&egrave; demon&longs;traui. </s>
				</p>
				<p id="N22C8F" type="main">
					<s id="N22C91"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N22C9E" type="main">
					<s id="N22CA0"><!-- NEW --><emph type="italics"/>Funependulum de&longs;cendit motu accelerato<emph.end type="italics"/>; </s>
					<s id="N22CA9"><!-- NEW -->experientia certa e&longs;t, eius <lb/>ratio e&longs;t eadem cum ea, quam attuli lib.2. de motu naturali, vt eius ac&shy;<lb/>celerationem demon&longs;trarem; </s>
					<s id="N22CB1"><!-- NEW -->&longs;cilicet impetus nouus &longs;ingulis in&longs;tantibus <lb/>producitur, c&ugrave;m &longs;it &longs;emper eadem cau&longs;a applicata; </s>
					<s id="N22CB7"><!-- NEW -->corpus enim graue <lb/>&longs;ua &longs;ponte de&longs;cendit; </s>
					<s id="N22CBD"><!-- NEW -->quod autem impetui priori accedat, patet; </s>
					<s id="N22CC1"><!-- NEW -->nec <lb/>enim de&longs;truitur &longs;altem totus alioqui fru&longs;tr&agrave; produceretur, contra Axio&shy;<lb/>ma primum, adde qu&ograve;d in plano inclinato deor&longs;um graue de&longs;cendit motu <pb pagenum="300" xlink:href="026/01/334.jpg"/>naturaliter accelerato; </s>
					<s id="N22CCE"><!-- NEW -->igitur in arcu NLE. v. <!-- REMOVE S-->g. <!-- REMOVE S-->qui habet rationem <lb/>plani inclinati in omnibus &longs;uis punctis per hypothe&longs;im 5. Pr&aelig;terea ictus <lb/>e&longs;t maior, qu&ograve; maior e&longs;t arcus vibration&icirc;s; </s>
					<s id="N22CDA"><!-- NEW -->igitur impetus maior; </s>
					<s id="N22CDE"><!-- NEW -->igitur <lb/>cre&longs;cit impetus; </s>
					<s id="N22CE4"><!-- NEW -->igitur motus e&longs;t acceleratus; </s>
					<s id="N22CE8"><!-- NEW -->deinde maior vibratio, &amp; <lb/>minor eiu&longs;dem penduli fiunt fer&egrave; temporibus &aelig;qualibus; </s>
					<s id="N22CEE"><!-- NEW -->igitur nece&longs;&longs;a&shy;<lb/>ri&ograve; acceleratur motus: </s>
					<s id="N22CF4"><!-- NEW -->Denique probatur euidenter non de&longs;trui totum <lb/>priorem impetum; </s>
					<s id="N22CFA"><!-- NEW -->quia &longs;cilicet idem e&longs;t impedimentum, &longs;i quod e&longs;t ad <lb/>productionem noui, quod e&longs;t ad con&longs;eruationem prioris; </s>
					<s id="N22D00"><!-- NEW -->&longs;ed illud im&shy;<lb/>pedimentum, id e&longs;t inclinatio plani, non impedit productionem noui, <lb/>lic&egrave;t minoris, vt videbimus paul&ograve; p&ograve;&longs;t; </s>
					<s id="N22D08"><!-- NEW -->quia &longs;cilicet in omni plano in&shy;<lb/>clinato corpus graue mouetur per hypoth.4. igitur non impedit con&longs;er&shy;<lb/>uationem prioris, &longs;altem totam, lic&egrave;t fort&egrave; aliquid de&longs;trueretur, de quo <lb/>paul&ograve; p&ograve;&longs;t; </s>
					<s id="N22D12"><!-- NEW -->igitur acceleratur nece&longs;&longs;ari&ograve; ille motus: </s>
					<s id="N22D16"><!-- NEW -->Et h&aelig;c e&longs;t ratio &agrave; <lb/>priori huius effectus, qu&ograve;d &longs;cilicet pl&ugrave;s addatur impetus, qu&agrave;m tollatur; </s>
					<s id="N22D1C"><!-- NEW --><lb/>igitur remanet maior; </s>
					<s id="N22D21"><!-- NEW -->igitur velocior motus; in qua ver&ograve; ratione min&ugrave;s <lb/>de&longs;truatur qu&agrave;m producatur, vel nouus &longs;it minor priore, dicemus <lb/>infr&agrave;. </s>
				</p>
				<p id="N22D29" type="main">
					<s id="N22D2B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N22D38" type="main">
					<s id="N22D3A"><emph type="italics"/>In motu funependuli decre&longs;cunt &longs;emper incrementa motus.<emph.end type="italics"/></s>
					<s id="N22D41"> Probatur faci&shy;<lb/>l&egrave;; </s>
					<s id="N22D46"><!-- NEW -->quia c&ugrave;m in &longs;ingulis punctis de&longs;cen&longs;us arcus NE mutetur ratio plani <lb/>inclinati diuer&longs;a ab ea, qu&aelig; e&longs;t in puncto <expan abbr="q;">que</expan> &longs;unt enim vt Tangentes; </s>
					<s id="N22D50"><!-- NEW --><lb/>cert&egrave; Tangentes punctorum, qu&aelig; propi&ugrave;s accedunt ad N, accedunt <lb/>etiam propi&ugrave;s ad perpendicularem deor&longs;um, &agrave; qua longi&ugrave;s recedunt <lb/>Tangentes, qu&aelig; accedunt propi&ugrave;s ad E, vt con&longs;tat; </s>
					<s id="N22D59"><!-- NEW -->at qui motus in planis, <lb/>qu&aelig; accedunt propi&ugrave;s ad horizontalem, minor e&longs;t; </s>
					<s id="N22D5F"><!-- NEW -->igitur incrementa <lb/>motus qu&aelig; in de&longs;cen&longs;u NE accedunt, minora &longs;unt ver&longs;us E, maiora ver&shy;<lb/>&longs;us N; igitur decre&longs;cunt, quod erat demon&longs;trandum. </s>
				</p>
				<p id="N22D67" type="main">
					<s id="N22D69">Ob&longs;eruabis iam demon&longs;tratum lib.5. Th.62.63. h&aelig;c incrementa e&longs;&longs;e, <lb/>vt &longs;inus arcus re&longs;idui, qu&aelig; tu con&longs;ule, ne hic repetere cogar. </s>
				</p>
				<p id="N22D6E" type="main">
					<s id="N22D70"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N22D7D" type="main">
					<s id="N22D7F"><!-- NEW --><emph type="italics"/>Hinc &longs;emper cre&longs;cit motus funependuli in de&longs;cen&longs;u arcus NE, &longs;ed minori&shy;<lb/>bus &longs;en&longs;im incrementis<emph.end type="italics"/>; </s>
					<s id="N22D8A"><!-- NEW -->quod etiam ali&agrave;s ob&longs;eruatum e&longs;t; </s>
					<s id="N22D8E"><!-- NEW -->vnde nece&longs;&longs;ari&ograve; <lb/>concludo min&ugrave;s accelerari in quadrante NE, qu&agrave;m in perpendiculari <lb/>NS, quod demon&longs;tratum e&longs;t, &amp; minus &longs;patium percurri in arcu NE <lb/>&aelig;quali &longs;cilicet tempore, qu&agrave;m in perpendiculari NS, quod nece&longs;&longs;arium <lb/>e&longs;t: </s>
					<s id="N22D9A"><!-- NEW -->Nec e&longs;t quod aliquis &longs;ua experimenta opponat, &longs;cilicet quadrantem <lb/>NE percurri tempore vnius &longs;ecundi, &longs;i radius AE &longs;it tripedalis, c&ugrave;m <lb/>alioqui perpendiculum AE graue corpus percurrat eodem tempore, <lb/>quorum alterum, vel poti&ugrave;s vtrumque fal&longs;um e&longs;&longs;e nece&longs;&longs;e e&longs;t; </s>
					<s id="N22DA4"><!-- NEW -->nam prim&ograve; <lb/>quadrans NE e&longs;t maior radio AE; </s>
					<s id="N22DAA"><!-- NEW -->igitur percurrit citi&ugrave;s AE qu&agrave;m <lb/>NE: &longs;ecund&ograve;, minora &longs;unt motus incrementa in quadrante, quia &longs;in&shy;<lb/>gula puncta illius habent rationem plani inclinati, quis autem tam ac&shy;<lb/>curat&egrave; in tripedali <expan abbr="p&etilde;dulo">pendulo</expan> iu&longs;tum tempus ob&longs;eruare po&longs;&longs;it? </s>
					<s id="N22DB8">nec accurat&aelig; <pb pagenum="301" xlink:href="026/01/335.jpg"/>ill&aelig; ob&longs;eruationes e&longs;&longs;e po&longs;&longs;unt, qu&aelig; &longs;en&longs;ibiles non &longs;unt, &longs;iue aures con&shy;<lb/>&longs;ulas, qu&aelig; &longs;onum excipiunt, &longs;iue oculos, qui motum ip&longs;um ob&longs;eruant. </s>
					<s id="N22DC2"><!-- NEW --><lb/>Terti&ograve;, &longs;i oculos con&longs;ulis; num ip&longs;i poti&ugrave;s vident motum vibrati pendu&shy;<lb/>li e&longs;&longs;e tardiorem, qu&agrave;m demi&longs;&longs;i per lineam perpendicularem? </s>
					<s id="N22DC9">nec alius <lb/>nodus hic &longs;oluendus e&longs;t, nec a&euml;r &longs;en&longs;ibiliter pil&aelig; plumbe&aelig; re&longs;i&longs;tit, nec <lb/>min&ugrave;s re&longs;i&longs;tit motui circulari qu&agrave;m recto. </s>
					<s id="N22DD0"><!-- NEW -->Denique compertum e&longs;t &agrave; me <lb/>in longiore pendulo motum in arcu e&longs;&longs;e tardiorem, qu&agrave;m in perpendi&shy;<lb/>culo: </s>
					<s id="N22DD8"><!-- NEW -->nodus ob&longs;eruationis facilis e&longs;t, nam adhibui AE planum durum <lb/>re&longs;pondens accurat&egrave; perpendiculari, cui aliud planum E <foreign lang="greek">b</foreign> ad angulos <lb/>rectos affixum erat <expan abbr="re&longs;p&otilde;dens">re&longs;pondens</expan> Tangenti; </s>
					<s id="N22DE8"><!-- NEW -->t&ugrave;m demi&longs;&longs;o ex A globulo plum&shy;<lb/>beo &longs;imulque alio &aelig;quali pendulo &longs;cilicet circa A ex N per NE; </s>
					<s id="N22DEE"><!-- NEW -->ex quo <lb/>accidit citi&ugrave;s auditum e&longs;&longs;e ictum globi cadentis perpendiculariter, qu&agrave;m <lb/>vibrati per arcum NE: quis autem hoc non videat, &longs;iue &longs;en&longs;um ip&longs;um, <lb/>&longs;iue rationem con&longs;ulat? </s>
					<s id="N22DF8">fuit meum pendulum 12. pedes longum. </s>
				</p>
				<p id="N22DFB" type="main">
					<s id="N22DFD">Qu&aelig;reret aliquis prim&ograve; quanta fuerit differentia temporum Secund&ograve;, <lb/>quanto tempore globus pendulus ex N in E peruenerit. </s>
					<s id="N22E02"><!-- NEW -->Re&longs;pondeo inu&shy;<lb/>tilem e&longs;&longs;e qu&aelig;&longs;tionem; </s>
					<s id="N22E08"><!-- NEW -->nec enim minimas illas temporum differentias <lb/>&longs;en&longs;u metiri po&longs;&longs;umus; </s>
					<s id="N22E0E"><!-- NEW -->&longs;i enim affirmarem cum nonnullis corpus graue <lb/>per medium liberum 12. &longs;patij pedes conficere vno temporis &longs;ecundo; </s>
					<s id="N22E14"><!-- NEW --><lb/>cert&egrave; &longs;i quis contenderet vel dee&longs;&longs;e, vel &longs;upere&longs;&longs;e 1000. in&longs;tantia; quonam <lb/>argumento, vel experimento contrarium euincere po&longs;&longs;em? </s>
					<s id="N22E1B">quod cert&egrave; <lb/>dictum e&longs;&longs;e velim, vt vel inde o&longs;tendatur in ca&longs;&longs;um laborare eos, qui <lb/>hanc &longs;cientiam his tant&ugrave;m experimentis confirmant, qu&aelig; circa in&longs;en&longs;i&shy;<lb/>bilia ver&longs;antur. </s>
					<s id="N22E24"><!-- NEW -->Equidem magnifacio in rebus phy&longs;icis experimentum, <lb/>&longs;ine quo nulla hypothe&longs;is e&longs;&longs;e pote&longs;t; </s>
					<s id="N22E2A"><!-- NEW -->at modo &longs;en&longs;ibile &longs;it, alioqui cer&shy;<lb/>tum e&longs;&longs;e non pote&longs;t; </s>
					<s id="N22E30"><!-- NEW -->&longs;i autem &longs;en&longs;ibile e&longs;t, omnibus commune e&longs;&longs;e debet, <lb/>sum &longs;en&longs;us applicent; </s>
					<s id="N22E36"><!-- NEW -->igitur nunquam vir prudens &longs;e&longs;e accinget ad in&shy;<lb/>dagandam rationem alicuius experimenti, quod certum e&longs;&longs;e non pote&longs;t: </s>
					<s id="N22E3C"><!-- NEW --><lb/>vnde &longs;i quis omnes ob&longs;eruationes, t&ugrave;m &agrave; Plinio, t&ugrave;m &agrave; Cardano, t&ugrave;m &agrave; <lb/>Fraca&longs;torio, t&ugrave;m &agrave; Porta, t&ugrave;m ab aliis propo&longs;itas ad principia phy&longs;ica re&shy;<lb/>ducere velit, per me &longs;tat, non contradico; numquam tamen illa mihi <lb/>mens erit, cui &longs;atis e&longs;t rationes, &amp; cau&longs;as phy&longs;icas illorum tant&ugrave;m expe&shy;<lb/>rimentorum explicare, qu&aelig; mihi certa &longs;unt, &longs;untque omnibus commu&shy;<lb/>nia, vel e&longs;&longs;e po&longs;&longs;unt. </s>
				</p>
				<p id="N22E4B" type="main">
					<s id="N22E4D"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N22E5A" type="main">
					<s id="N22E5C"><emph type="italics"/>In motu funependuli &longs;ingulis instantibus e&longs;t noua determinatio motus.<emph.end type="italics"/></s>
					<s id="N22E63"><!-- NEW --> Pro&shy;<lb/>batur, quia &longs;ingulis in&longs;tantibus e&longs;t qua&longs;i nouum planum; </s>
					<s id="N22E69"><!-- NEW -->tot &longs;unt enim <lb/>plana in quadrante NE, quot Tangentes, &amp; tot Tangentes quot pun&shy;<lb/>cta, tot denique puncta, quot in&longs;tantia; </s>
					<s id="N22E71"><!-- NEW -->atqui in &longs;ingulis nouis planis <lb/>mutatur determinatio; </s>
					<s id="N22E77"><!-- NEW -->igitur in &longs;ingulis punctis; igitur in &longs;ingulis in&shy;<lb/>&longs;tantibus. </s>
				</p>
				<p id="N22E7D" type="main">
					<s id="N22E7F"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N22E8B" type="main">
					<s id="N22E8D">Ob&longs;eruabis e&longs;&longs;e aliqua Lemmata pr&aelig;mittenda antequam proportio&shy;<lb/>nes motus per arcum NE demon&longs;trentur. </s>
				</p>
				<pb pagenum="302" xlink:href="026/01/336.jpg"/>
				<p id="N22E96" type="main">
					<s id="N22E98"><emph type="center"/><emph type="italics"/>Lemma<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N22EA5" type="main">
					<s id="N22EA7"><!-- NEW --><emph type="italics"/>Pote&longs;t determinari tempus, quo percurruntur duo &longs;patia &aelig;qualia motu na&shy;<lb/>turaliter accelerato in&aelig;quali.<emph.end type="italics"/> &longs;it v.g. <!-- REMOVE S-->tempus AF; </s>
					<s id="N22EB4"><!-- NEW -->&longs;it velocitas EF ac&shy;<lb/>qui&longs;ita tempore AF motu &longs;cilicet naturaliter accelerato minore; </s>
					<s id="N22EBA"><!-- NEW -->&longs;it <lb/>etiam velocitas FD acqui&longs;ita alio motu maiore eodem tempore AF; </s>
					<s id="N22EC0"><!-- NEW --><lb/>haud dubi&egrave; &longs;patium acqui&longs;itum primo motu erit ad acqui&longs;itum &longs;ecundo, <lb/>&aelig;quali &longs;cilicet tempore, vt triangulum EAF ad triangulum DAF, vt <lb/>con&longs;tat ex dictis lib.2. in controuer&longs;ia; </s>
					<s id="N22EC9"><!-- NEW -->&longs;patium ver&ograve; acqui&longs;itum tempo&shy;<lb/>re AF primo motu, &longs;cilicet minore, idque v.g. <!-- REMOVE S-->in ratione &longs;ubdupla erit <lb/>ad &longs;patium acqui&longs;itum &longs;ecundo motu maiore tempore &longs;ubduplo AI, vt <lb/>triangulum EAF ad triangulum BAI, &longs;ed BAI, e&longs;t &longs;ubduplum EAF, <lb/>id e&longs;t, vt FA ad IA, vt patet: </s>
					<s id="N22ED7"><!-- NEW -->vt autem inueniantur tempora, qu&aelig; re&shy;<lb/>&longs;pondent &longs;patiis in&aelig;qualibus; </s>
					<s id="N22EDD"><!-- NEW -->&longs;it AH media proportionalis inter AI &amp; <lb/>AF; </s>
					<s id="N22EE3"><!-- NEW -->haud dubi&egrave; triangulum CHA e&longs;t &longs;ubduplum DAF; </s>
					<s id="N22EE7"><!-- NEW -->igitur &aelig;quale <lb/>EAF; </s>
					<s id="N22EED"><!-- NEW -->igitur velocitas acqui&longs;ita tempore AF &longs;it FE, motu &longs;cilicet mi&shy;<lb/>nore; </s>
					<s id="N22EF3"><!-- NEW -->acqui&longs;ita ver&ograve; tempore AH motu maiore &longs;it HC; </s>
					<s id="N22EF7"><!-- NEW -->cert&egrave; &longs;patia <lb/>erunt vt CHA &amp; DAF: </s>
					<s id="N22EFD"><!-- NEW -->&longs;ed h&aelig;c &longs;unt &aelig;qualia; igitur motu maiore con&shy;<lb/>ficitur &aelig;quale &longs;patium tempore AH &amp; motu minore tempore AF. <!-- KEEP S--></s>
				</p>
				<p id="N22F04" type="main">
					<s id="N22F06"><emph type="center"/><emph type="italics"/>Lemma<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N22F13" type="main">
					<s id="N22F15"><!-- NEW --><emph type="italics"/>Si accipiantur tempora &aelig;qualia cum motibus in&aelig;qualibus, &longs;patia &longs;unt vt <lb/>ba&longs;es triangulorum<emph.end type="italics"/>; </s>
					<s id="N22F20"><!-- NEW -->&longs;it enim tempus AI, quo motu maiore acquiratur ve&shy;<lb/>locitas IB, &amp; minore IK; </s>
					<s id="N22F26"><!-- NEW -->cert&egrave; &longs;patia &longs;unt vt triangula BAI, KAI; </s>
					<s id="N22F2A"><!-- NEW --><lb/>&longs;ed h&aelig;c &longs;unt vt ba&longs;es BI, KI, imm&ograve; &longs;unt vt rectangula BA KA; nec <lb/>in his e&longs;t quidquam difficultatis. </s>
				</p>
				<p id="N22F31" type="main">
					<s id="N22F33"><emph type="center"/><emph type="italics"/>Lemma<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N22F40" type="main">
					<s id="N22F42"><!-- NEW -->Po&longs;&longs;unt determinari vel &longs;patia in&aelig;qualia temporibus &aelig;qualibus, vel <lb/>tempora in&aelig;qualia &longs;patiis &aelig;qualibus in chordis eiu&longs;dem quadrantis, &amp; <lb/>in perpendiculari, &longs;it tempus DI; </s>
					<s id="N22F4A"><!-- NEW -->&longs;it motus per ip&longs;am perpendicula&shy;<lb/>rem AP, vel DI; </s>
					<s id="N22F50"><!-- NEW -->&longs;it motus etiam per chordam inclinatam DP; </s>
					<s id="N22F54"><!-- NEW -->velo&shy;<lb/>citas primi e&longs;t ad velocitatem &longs;ecundi in tempore DI, vt DP ad DI, <lb/>vel vt AK ad &longs;inum VK, vel vt IP ad NP, vel vt quadratum IA ad <lb/>rectangulum NA; </s>
					<s id="N22F5E"><!-- NEW -->&longs;ed &longs;patia &longs;unt vt velocitates &longs;uppo&longs;itis temporibus <lb/>&aelig;qualibus; </s>
					<s id="N22F64"><!-- NEW -->igitur &longs;patium, quod percurritur in ip&longs;a perpendiculari e&longs;t <lb/>ad &longs;patium, quod percurritur in inclinata DP temporibus &aelig;qualibus, vt <lb/>quadratum IA ad rectangulum NA, vel vt DP ad DI, vel vt DT ad <lb/>DP, qu&aelig; omnia con&longs;tant; </s>
					<s id="N22F6E"><!-- NEW -->&longs;it autem motus in inclinata FP; cert&egrave; &longs;pa&shy;<lb/>tium acqui&longs;itum in perpendiculari e&longs;t ad &longs;patium acqui&longs;itum in FP, vt <lb/>QZP ad ZI, vel FP ad FY, vel AP ad PR, vel AL ad LX, vel  PI <lb/>ad PM, vel vt quadratum IA, ad rectangulum MA, vel vt F <foreign lang="greek">d</foreign> ad PF, <lb/>&longs;ed F <foreign lang="greek">d</foreign> e&longs;t &aelig;qualis DT, quia cum DP &amp; FP percurrantur temporibus <lb/>&aelig;qualibus, <expan abbr="&longs;i&qacute;ue">&longs;ique</expan> eo tempore quo percurritur DP, percurritur DT, &amp; <lb/>eo quo percurritur FP, percurritur. </s>
					<s id="N22F8A">F <foreign lang="greek">d</foreign>; cert&egrave; DT &amp; F <foreign lang="greek">d</foreign> &longs;unt <lb/>quales. </s>
				</p>
				<pb pagenum="303" xlink:href="026/01/337.jpg"/>
				<p id="N22F9B" type="main">
					<s id="N22F9D">Idem dico de omnibus aliis chordis, quarum motus, &amp; velocitates, <lb/>&longs;patia temporibus &aelig;qualibus acqui&longs;ita &longs;unt ad motus, velocitates, &longs;patia <lb/>acqui&longs;ita in perpendiculari, vt ip&longs;arum longitudines ad DT, vel duplam <lb/>DI, vel vt earum &longs;ubdupl&aelig; &longs;eu &longs;inus recti &longs;ubdupli &longs;ui arcus ad &longs;inum to&shy;<lb/>tum DI, vel vt rectangula &longs;ub illis &longs;inubus comprehen&longs;a, &amp; &longs;inu toto <lb/>ad quadratum &longs;inus totius. </s>
				</p>
				<p id="N22FAA" type="main">
					<s id="N22FAC"><emph type="center"/><emph type="italics"/>Lemma<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N22FB9" type="main">
					<s id="N22FBB"><!-- NEW --><emph type="italics"/>Si &longs;int du&aelig; quantitates in data ratione, &amp; ali&aelig; du&aelig; in data, &longs;ed minore; </s>
					<s id="N22FC1"><!-- NEW -->&longs;i &longs;it <lb/>media proportionalis inter duas primas &amp; media inter duas posteriores, &longs;itque <lb/>data noua quantitas ad aliam, vt prima priorum quantitatum ad primam <lb/>mediam proportionalem, &longs;it denique eadem quantitas noua ad aliam vt prima <lb/>po&longs;teriorum quantitatum ad &longs;ecundam mediam proportionalem, cert&egrave; erit mi&shy;<lb/>nor ratio noua quantitatis ad &longs;ecundam que&longs;itam, qu&agrave;m ad primam<emph.end type="italics"/> v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;it <lb/>DE prima quantitas, &amp; LK &longs;ecunda; </s>
					<s id="N22FD8"><!-- NEW -->&longs;it KR tertia, VZ quarta; </s>
					<s id="N22FDC"><!-- NEW -->&longs;itque <lb/>prima ad &longs;ecundam, vt 4. ad 9. &amp; tertia ad quartam, vt 3. ad 12. cert&egrave; e&longs;t <lb/>minor ratio terti&aelig; ad quartam, qu&agrave;m prim&aelig; ad &longs;ecundam; </s>
					<s id="N22FE4"><!-- NEW -->inter primam <lb/>&amp; &longs;ecundam &longs;it media proportionalis AC &aelig;qualis FH, id e&longs;t <foreign lang="greek">s</foreign>, &amp; &longs;it <lb/>quinta quantitas; </s>
					<s id="N22FF0"><!-- NEW -->&longs;it etiam alia inter tertiam &amp; quartam; </s>
					<s id="N22FF4"><!-- NEW -->&longs;it TS &aelig;qualis <lb/>VY, &longs;cilicet <foreign lang="greek">s</foreign>; &longs;itque &longs;exta quantitas, &amp; vt prima ad &longs;ecundam, ita <lb/>&longs;eptima quantitas v. <!-- REMOVE S-->g. <!-- REMOVE S-->DE ad octauam AC, &longs;itque vt tertia quantitas <lb/>VX vel QR ad &longs;extam VY, vel TS, ita eadem &longs;eptima DE ad nonam <lb/>AC. <!-- KEEP S--></s>
					<s id="N23009">Dico e&longs;&longs;e minorem ratione &longs;eptim&aelig; DE ad nonam AT, qu&agrave;m <lb/>eiu&longs;dem &longs;eptim&aelig; DE ad octauam AC, quia AB vel DE e&longs;t ad AC vt <lb/>2. ad 3. &amp; ad X, vt a. </s>
					<s id="N23010">ad 4. qu&aelig; omnia con&longs;tant ex Geometria. <!-- KEEP S--></s>
				</p>
				<p id="N23014" type="main">
					<s id="N23016"><emph type="center"/><emph type="italics"/>Lemma<emph.end type="italics"/> 5.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N23023" type="main">
					<s id="N23025"><!-- NEW --><emph type="italics"/>Si &longs;int<emph.end type="italics"/> <emph type="italics"/>du&aelig; chord&aelig; in quadrante EIB, &amp; producatur BI v&longs;que ad G; </s>
					<s id="N23031"><!-- NEW -->&longs;it&shy;<lb/>que EM perpendicularis, in quam cadat IH, qu&aelig; cum EI faciat angulum <lb/>rectum; </s>
					<s id="N23039"><!-- NEW -->ex eodem puncto H ducatur HQ perpendicularis in EB: </s>
					<s id="N2303D"><!-- NEW -->dico mino&shy;<lb/>rem e&longs;&longs;e proportionem EQ ad EB, qu&agrave;m GI ad GB<emph.end type="italics"/>; </s>
					<s id="N23046"><!-- NEW -->&longs;it enim IP paral&shy;<lb/>lela EG, vt EP e&longs;t ad EB, &longs;ic GI ad GB; </s>
					<s id="N2304C"><!-- NEW -->igitur EQ habet minorem <lb/>proportionem ad EB, quam GI ad GB; </s>
					<s id="N23052"><!-- NEW -->&longs;imiliter &longs;int chord&aelig; EIL, <lb/>EL; </s>
					<s id="N23058"><!-- NEW -->ducatur HK perpendicularis in EL: </s>
					<s id="N2305C"><!-- NEW -->dico EK habere minorem <lb/>rationem ad EL, qu&agrave;m FI ad FL; </s>
					<s id="N23062"><!-- NEW -->nam vt EO e&longs;t ad EL, ita FI ad FL; </s>
					<s id="N23066"><!-- NEW --><lb/>igitur minor e&longs;t ratio EK ad EL, qu&agrave;m FI ad FL; </s>
					<s id="N2306B"><!-- NEW -->Idem dico de om&shy;<lb/>nibus aliis chordis: </s>
				</p>
				<p id="N23071" type="main">
					<s id="N23073"><emph type="center"/><emph type="italics"/>Lemma<emph.end type="italics"/> 6.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N23080" type="main">
					<s id="N23082"><!-- NEW --><emph type="italics"/>Cognite tempore, quo percurritur &longs;egmentum, line&aelig; cogno&longs;ci pote&longs;t tempus, que <lb/>aliud &longs;egmentum percurretur motu &longs;cilicet propagate<emph.end type="italics"/>; </s>
					<s id="N2308D"><!-- NEW -->&longs;it v. <!-- REMOVE S-->g. <!-- REMOVE S-->perpendicu&shy;<lb/>laris deor&longs;um DI; </s>
					<s id="N23097"><!-- NEW -->&longs;it primum &longs;egmentum DG decur&longs;um tempore AB; </s>
					<s id="N2309B"><!-- NEW --><lb/>&longs;it vt DC ad DH, ita DH ad DI; </s>
					<s id="N230A0"><!-- NEW --><expan abbr="&longs;it&qacute;ue">&longs;itque</expan> vt DG ad DH, ita tempus <lb/>AB ad AC; dico quod &longs;ecundum &longs;egmentum percurretur tempore BC <lb/>po&longs;t primum decur&longs;um, patet ex dictis lib.2. &amp; 5. <!-- KEEP S--></s>
				</p>
				<pb pagenum="304" xlink:href="026/01/338.jpg"/>
				<p id="N230B0" type="main">
					<s id="N230B2"><emph type="center"/><emph type="italics"/>Lemma<emph.end type="italics"/> 7.<emph.end type="center"/></s>
				</p>
				<p id="N230BE" type="main">
					<s id="N230C0"><!-- NEW --><emph type="italics"/>Cognito tempore, quo percurritur chorda cuiu&longs;libet arcus, cogno&longs;ci pote&longs;t <lb/>quantum &longs;paty eodem tempore percurratur in <expan abbr="perp&etilde;diculari">perpendiculari</expan> &amp; in alia chorda<emph.end type="italics"/>; </s>
					<s id="N230CF"><!-- NEW --><lb/> &longs;it chorda EL; </s>
					<s id="N230D4"><!-- NEW -->fiat angulus rectus ELM, itemque MDE: </s>
					<s id="N230D8"><!-- NEW -->dico quod <lb/>eodem tempore percurretur EL EM ED; </s>
					<s id="N230DE"><!-- NEW -->&longs;imiliter fiat angulus re&shy;<lb/>ctus EIH, itemque HKE, HQE: dico quod eodem tempore percur&shy;<lb/>rentur EI, EH, EK,EQ. idem dico de omnibus aliis chordis, qu&aelig; <lb/>omnia con&longs;tant ex his qu&aelig; diximus lib.2. &amp; 5. <!-- KEEP S--></s>
				</p>
				<p id="N230ED" type="main">
					<s id="N230EF"><emph type="center"/><emph type="italics"/>Lemma<emph.end type="italics"/> 8.<emph.end type="center"/></s>
				</p>
				<p id="N230FB" type="main">
					<s id="N230FD"><!-- NEW --><emph type="italics"/>Due chorda ELB citi&ugrave;s percurruntur qu&agrave;m &longs;ola EB; </s>
					<s id="N23103"><!-- NEW -->itemque due EIB, <lb/>qu&agrave;m EB<emph.end type="italics"/>; </s>
					<s id="N2310C"><!-- NEW -->quia eodem tempore percurruntur EI, <expan abbr="Eq;">Eque</expan> &amp; IB eodem <lb/>tempore percurritur &longs;iue &agrave; G incipiat motus &longs;iue ab E; </s>
					<s id="N23116"><!-- NEW -->nam ab &aelig;quali <lb/>altitudine &aelig;qualis acquiritur impetus, &longs;ed minor e&longs;t proportio EQ ad <lb/>EB, quam GI ad GB per Lemma quintum; </s>
					<s id="N2311E"><!-- NEW -->igitur &longs;i &longs;it media propor&shy;<lb/>tionalis inter GI, GB, &amp; &longs;ecunda inter EQEB, &longs;itque vt GI ad pri&shy;<lb/>mam proportionalem; </s>
					<s id="N23126"><!-- NEW -->ita tempus, quo percurritur EI ad aliud X, &amp; vt <lb/>EQ ad &longs;ecundam proportionalem, ita idem tempus, quo percurritur EI, <lb/>vel EQ ad aliud Z; </s>
					<s id="N2312E"><!-- NEW -->cert&egrave; tempus Z e&longs;t maius tempore X per Lemma <lb/>4. &longs;ed EQB percurritur tempore Z, &amp; EIB tempore X; </s>
					<s id="N23134"><!-- NEW -->EQ ver&ograve;, &amp; <lb/>EI tempore &aelig;quali per Lemma 7. igitur du&aelig; EIB citi&ugrave;s percurruntur, <lb/>qu&agrave;m EB; </s>
					<s id="N2313C"><!-- NEW -->idem dico de aliis: hoc ip&longs;um etiam demon&longs;trauit Galil. <!-- REMOVE S-->in <lb/>dialogis. </s>
				</p>
				<p id="N23144" type="main">
					<s id="N23146"><emph type="center"/><emph type="italics"/>Lemma<emph.end type="italics"/> 9.<emph.end type="center"/></s>
				</p>
				<p id="N23152" type="main">
					<s id="N23154"><!-- NEW --><emph type="italics"/>Tres chord&aelig; facili&ugrave;s percurruntur, qu&agrave;m du&aelig;<emph.end type="italics"/>; </s>
					<s id="N2315D"><!-- NEW -->&longs;int enim tres EILB; </s>
					<s id="N23161"><!-- NEW --><lb/>&longs;int du&aelig; ELB. Prim&ograve;, du&aelig; EIL citi&ugrave;s percurruntur qu&agrave;m EL, quia <lb/>IL eodem tempore percurritur, &longs;iue initium motus ducatur ab F, &longs;iue ab <lb/>E; </s>
					<s id="N2316A"><!-- NEW -->&amp; minor e&longs;t ratio EK ad EL, qu&agrave;m FI ad FL per Lem.5.EI, &amp; EK <lb/>&aelig;qu&egrave; cit&ograve; percurruntur per Lem. <!-- REMOVE S-->7. igitur &longs;it vt FI ad mediam propor&shy;<lb/>tionalem inter FI &amp; FL; </s>
					<s id="N23174"><!-- NEW -->ita tempus Z ad tempus X, &amp; vt EK ad me&shy;<lb/>diam proportionalem inter EK EL, ita tempus Z ad tempus Y; </s>
					<s id="N2317A"><!-- NEW -->cert&egrave; <lb/>tempus Y erit maius tempore X per Lem. <!-- REMOVE S-->8. igitur citi&ugrave;s percurrentur <lb/>du&aelig; EIL, qu&agrave;m EL; </s>
					<s id="N23184"><!-- NEW -->&longs;ed &longs;i eodem tempore percurrerentur du&aelig; EIL <lb/>cum EL; </s>
					<s id="N2318A"><!-- NEW -->cert&egrave; LB &aelig;quali tempore percurreretur, quia e&longs;t idem impetus <lb/>in L, &longs;iue ab E per EL, &longs;iue ab F per FL incipiat motus, vt con&longs;tat, &amp; e&longs;t <lb/>idem in I, &longs;iue ab E, &longs;iue ab F incipiat; </s>
					<s id="N23192"><!-- NEW -->igitur idem in L &longs;iue ab E per <lb/>EIL, &longs;iue ab F per FL, &longs;iue ab E per EL; </s>
					<s id="N23198"><!-- NEW -->igitur LB &aelig;quali tempore <lb/>percurretur, &longs;iue motus &longs;it ab E per ELB, &longs;iue ab E per EI, LB, po&longs;ito <lb/>qu&ograve;d EIL &amp; EL &aelig;quali tempore percurrantur; </s>
					<s id="N231A0"><!-- NEW -->&longs;ed EIL percurrun&shy;<lb/>tur citi&ugrave;s qu&agrave;m EL; </s>
					<s id="N231A6"><!-- NEW -->igitur citi&ugrave;s EILB, qu&agrave;m ELB; </s>
					<s id="N231AA"><!-- NEW -->igitur c&ugrave;m ELB <lb/>percurrantur citi&ugrave;s, qu&agrave;m EB, &amp; EILB, qu&agrave;m ELB; </s>
					<s id="N231B0"><!-- NEW -->cert&egrave; EILB per&shy;<lb/>curruntur citi&ugrave;s, qu&agrave;m EB: Eodem modo demon&longs;trabitur 4. chordas ci&shy;<lb/>ti&ugrave;s percurri, qu&agrave;m 3. 5. qu&agrave;m 4. atque ita deinceps. </s>
				</p>
				<pb pagenum="305" xlink:href="026/01/339.jpg"/>
				<p id="N231BC" type="main">
					<s id="N231BE"><emph type="center"/><emph type="italics"/>Lemma<emph.end type="italics"/> 10.<emph.end type="center"/></s>
				</p>
				<p id="N231CA" type="main">
					<s id="N231CC"><!-- NEW --><emph type="italics"/>Velocitas acqui&longs;ita in duabus chordis EIB e&longs;t &aelig;qualis acqui&longs;it&aelig; in EB<emph.end type="italics"/>; </s>
					<s id="N231D5"><!-- NEW --><lb/>quia acqui&longs;ita in EI e&longs;t &aelig;qualis acqui&longs;it&aelig; in GI; </s>
					<s id="N231DA"><!-- NEW -->&longs;unt enim eiu&longs;dem al&shy;<lb/>titudinis; </s>
					<s id="N231E0"><!-- NEW -->igitur acqui&longs;ita in EIB &aelig;qualis acqui&longs;it&aelig; in GB: </s>
					<s id="N231E4"><!-- NEW -->&longs;ed acqui&shy;<lb/>&longs;ita in GB e&longs;t &aelig;qualis acqui&longs;it&aelig; in EIB; </s>
					<s id="N231EA"><!-- NEW -->igitur acqui&longs;ita in EB e&longs;t &aelig;qua&shy;<lb/>lis acqui&longs;it&aelig; in EIB, itemque acqui&longs;ita in ELB acqui&longs;it&aelig; in EB: </s>
					<s id="N231F0"><!-- NEW -->imm&ograve; <lb/>acqui&longs;ita in tribus EILB e&longs;t &aelig;qualis acqui&longs;it&aelig; in EB; </s>
					<s id="N231F6"><!-- NEW -->quia acqui&longs;ita in <lb/>EIL e&longs;t &aelig;qualis acqui&longs;it&aelig; in EL; </s>
					<s id="N231FC"><!-- NEW -->igitur acqui&longs;ita in EILB &aelig;qualis <lb/>acqui&longs;it&aelig; in ELB: </s>
					<s id="N23202"><!-- NEW -->&longs;ed acqui&longs;ita in ELB e&longs;t &aelig;qualis acqui&longs;it&aelig; in EB; igi&shy;<lb/>tur acqui&longs;ita in EB &aelig;qualis acqui&longs;it&aelig; in EILB idem dico de 5. chordis, <lb/>6.7. atque ita deinceps. </s>
				</p>
				<p id="N2320B" type="main">
					<s id="N2320D"><!-- NEW -->Quod cert&egrave; mirabile e&longs;t, &amp; qua&longs;i paradoxon; </s>
					<s id="N23211"><!-- NEW -->pr&aelig;&longs;ertim c&ugrave;m duplici <lb/>motu acquiratur &aelig;qualis velocitas in &longs;patiis in&aelig;qualibus, quorum mauis <lb/>citi&ugrave;s percurritur; </s>
					<s id="N23219"><!-- NEW -->Equidem in AB, EB acquiritur &aelig;qualis velocitas, <lb/>vel impetus, &longs;ed breuius &longs;patium, &longs;cilicet AB citius percurritur; </s>
					<s id="N2321F"><!-- NEW -->at ver&ograve; <lb/>in EB, &amp; ELB acquiritur &aelig;qualis velocitas; </s>
					<s id="N23225"><!-- NEW -->lic&egrave;t &longs;patium longius ELB <lb/>percurratur citi&ugrave;s, qu&agrave;m EB; &longs;imiliter EILB veloci&ugrave;s, quam ELB &amp; EB. <!-- KEEP S--></s>
				</p>
				<p id="N2322C" type="main">
					<s id="N2322E"><!-- NEW -->Hinc &longs;upr&agrave; velocitas acqui&longs;ita in perpendiculari &longs;eu radio quadrantis <lb/>non e&longs;t ad velocitatem acqui&longs;itam in toto arcu quadrantis vt quadratum <lb/>&longs;ub radio ad ip&longs;um quadrantem, quia &longs;cilicet velocitas acqui&longs;ita per ar&shy;<lb/>cum ELB e&longs;t &aelig;qualis acqui&longs;it&aelig; per omnes chordas facto initio motus <lb/>ab E; &longs;ed velocitas acqui&longs;ita in 6. chordis. </s>
					<s id="N2323A">v. <!-- REMOVE S-->g. <!-- REMOVE S-->e&longs;t &aelig;qualis acqui&longs;it&aelig; in <lb/>5. 4. 3. 2. 1. igitur velocitas acqui&longs;ita in EB e&longs;t &aelig;qualis acqui&longs;it&aelig; in ar&shy;<lb/>cu ELB, &amp; in ip&longs;a perpendiculari ER. </s>
				</p>
				<p id="N23245" type="main">
					<s id="N23247"><emph type="center"/><emph type="italics"/>Lemma<emph.end type="italics"/> 11.<emph.end type="center"/></s>
				</p>
				<p id="N23253" type="main">
					<s id="N23255"><!-- NEW --><emph type="italics"/>Hinc Lemma vniuer&longs;ali&longs;&longs;imum &longs;tatuitur, &longs;cilicet ab eodem puncto altitudi&shy;<lb/>n&icirc;s ad <expan abbr="e&atilde;dem">eandem</expan> horizontalem, vel ab eadem horizontali ad idem punctum <lb/>deor&longs;um, vel ab eadem horizontali ad aliam horizontalem aquales acquiri <lb/>velocitates, &longs;iue plures &longs;int line&aelig;, &longs;ine vnica, &longs;iue &longs;implices, &longs;iue compo&longs;it&aelig;, &longs;iue <lb/>recta, &longs;iue curua<emph.end type="italics"/>; qu&aelig; omnia ex Lemmate decimo manife&longs;ta redduntur. </s>
				</p>
				<p id="N2326A" type="main">
					<s id="N2326C"><emph type="center"/><emph type="italics"/>Lemma<emph.end type="italics"/> 12.<emph.end type="center"/></s>
				</p>
				<p id="N23278" type="main">
					<s id="N2327A"><!-- NEW --><emph type="italics"/>Velocitas acqui&longs;ita in toto arcu quadrantis ELB non debet a&longs;&longs;umi in area <lb/>tota quadrantis AEB, &longs;ed in linea recta &aelig;quali toti arcui ELB, ductis &longs;ci&shy;<lb/>licet lineis rectis tran&longs;uer&longs;is, qua &longs;int ip&longs;is &longs;inubus rectis &aelig;quales, cuius con&longs;tru&shy;<lb/>ctionis<emph.end type="italics"/>; </s>
					<s id="N23289"><!-- NEW -->&longs;it enim linea AN &aelig;qualis arcui quadrantis, &amp; NT radio; </s>
					<s id="N2328D"><!-- NEW -->igi&shy;<lb/>tur totum triangulum mixtum ex rectis AN, NT, &amp; curua TQH, e&longs;t <lb/>velocitas acqui&longs;ita in toto arcu quadrantis; &longs;it autem A <foreign lang="greek">s</foreign> &aelig;qualis lateri <lb/>quadrati in&longs;cripti qua e&longs;t ad AN proxim&egrave; vt 10. ad 11. e&longs;t enim AB ra&shy;<lb/>dix quad. </s>
					<s id="N2329D">98. &longs;itque AE &longs;inus rectus quad. </s>
					<s id="N232A0"><!-- NEW -->45. cert&egrave; rectangulum NE <lb/>e&longs;t velocitas acqui&longs;ita in chorda A <foreign lang="greek">s</foreign>, &longs;ed h&aelig;c e&longs;t &aelig;qualis acqui&longs;it&aelig; in <lb/>toto arcu quadrantis AN; </s>
					<s id="N232AC"><!-- NEW -->igitur rectangulum NE e&longs;t &aelig;quale triangulo <lb/>mixto NTOA, denique velocitas acqui&longs;ita in radio A 4. &aelig;quali AF, <lb/>e&longs;t vt quadratum 4 F, &longs;ed quadratum 4. F e&longs;t &aelig;quale rectangulo BE, vt <lb/>con&longs;tat, nam A <foreign lang="greek">s</foreign> e&longs;t dupla AE; </s>
					<s id="N232BA"><!-- NEW -->igitur rectangulum e&longs;t &longs;ubduplum qua-<pb pagenum="306" xlink:href="026/01/340.jpg"/>drati &longs;ub A <foreign lang="greek">s</foreign>, &longs;ed quadratum &longs;ub A <foreign lang="greek">s</foreign> e&longs;t duplum quadrati 4 F; </s>
					<s id="N232CB"><!-- NEW -->igitur <lb/>quadratum 4 F e&longs;t &aelig;quale rectangulo <foreign lang="greek">s</foreign> E; igitur &amp; triangulo mixto <lb/>NTQA. </s>
				</p>
				<p id="N232D7" type="main">
					<s id="N232D9"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N232E5" type="main">
					<s id="N232E7"><!-- NEW -->Inde Corollarium cyclometricum deduci pote&longs;t, &longs;cilicet proportio, <lb/>quam habet triangulum mixtum NTQA ad quadrantem, cuius arcus <lb/>&aelig;qualis e&longs;t rect&aelig; AN, &amp; radius rect&aelig; AF. v.g. <!-- REMOVE S-->ad quadrantem AFL, <lb/>vel INT, vel LAC; </s>
					<s id="N232F3"><!-- NEW -->porr&ograve; triangulum pr&aelig;dictum e&longs;t maius quadrante <lb/>&longs;ectione ex curua TQA, &amp; rect&acirc; AT; </s>
					<s id="N232F9"><!-- NEW -->aut cert&egrave; qui inuenerit triangu&shy;<lb/>lum mixtum KLQ &aelig;quale mixto FQ <foreign lang="greek">d</foreign>, habebit rectangulum KF &aelig;qua&shy;<lb/>le quadranti AFL; </s>
					<s id="N23305"><!-- NEW -->&amp; vt res i&longs;ta promoueatur &agrave; Geometris: </s>
					<s id="N23309"><!-- NEW -->dico qua&shy;<lb/>dratum &longs;ub radio e&longs;&longs;e ad &longs;emicirculum, vt triangulum mixtum NTQA <lb/>ad rectangulum NF; </s>
					<s id="N23311"><!-- NEW -->porr&ograve; mixtum FTQA con&longs;tat ex omnibus &longs;inu&shy;<lb/>bus ver&longs;is collectis; </s>
					<s id="N23317"><!-- NEW -->illud ver&ograve; ex omnibus &longs;inubus rectis; vt autem in&shy;<lb/>ueniatur illud collectum, accipi debet motus qui cre&longs;cat &longs;ecundum pro&shy;<lb/>portionem &longs;inuum ver&longs;orum v.g. <!-- REMOVE S-->in linea FT, velocitas puncti F e&longs;t vt <lb/>FA, in <foreign lang="greek">q</foreign>, vt <foreign lang="greek">q</foreign> O in <foreign lang="greek">b</foreign>, vt <foreign lang="greek">b</foreign> P, &amp;c. </s>
				</p>
				<p id="N23333" type="main">
					<s id="N23335"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N23341" type="main">
					<s id="N23343">Ob&longs;eruabis autem prim&ograve; lineas tran&longs;uer&longs;as FA, <foreign lang="greek">q</foreign> O, <foreign lang="greek">b</foreign> P, <foreign lang="greek">d</foreign> Q, CR, <lb/>&amp;c. </s>
					<s id="N23354">e&longs;&longs;e &aelig;quales lineis CB <foreign lang="greek">m u</foreign> ZT <foreign lang="greek">w</foreign> S, <foreign lang="greek">u</foreign> R, &amp;c. </s>
					<s id="N23363">quia BC figura <lb/> quam vocemus <expan abbr="figur&atilde;">figuram</expan> primam, e&longs;t &aelig;qualis AF, fig. </s>
					<s id="N2336C">quam vocemus <lb/>&longs;ecundam. </s>
					<s id="N23371"><!-- NEW -->O <foreign lang="greek">q</foreign> &longs;ecund&aelig; e&longs;t &aelig;qualis H <foreign lang="greek">q</foreign>, min&ugrave;s HO; </s>
					<s id="N2337D"><!-- NEW -->&longs;ed HO &longs;ecund&aelig; <lb/>e&longs;t &aelig;qualis QM prim&aelig;, vel BD; </s>
					<s id="N23383"><!-- NEW -->igitur O <foreign lang="greek">q</foreign> &longs;ecund&aelig; e&longs;t &aelig;qualis DC <lb/>prim&aelig;; </s>
					<s id="N2338D"><!-- NEW -->&longs;ed DC e&longs;t &aelig;qualis VA, quia VD e&longs;t quadratum, &longs;ed V <foreign lang="greek">m</foreign> e&longs;t <lb/>&aelig;qualis VA; </s>
					<s id="N23397"><!-- NEW -->igitur DC; </s>
					<s id="N2339B"><!-- NEW -->igitur O <foreign lang="greek">q</foreign> &longs;ecund&aelig;: </s>
					<s id="N233A3"><!-- NEW -->pr&aelig;terea IP &longs;ecund&aelig; e&longs;t <lb/>&aelig;qualis AD, qu&aelig; e&longs;t &longs;ubdupla AF; </s>
					<s id="N233A9"><!-- NEW -->igitur &aelig;qualis P <foreign lang="greek">b</foreign>; </s>
					<s id="N233B1"><!-- NEW -->&longs;ed IP e&longs;t &aelig;qua&shy;<lb/>lis BT prim&aelig;; </s>
					<s id="N233B7"><!-- NEW -->igitur BT, cui etiam e&longs;t &aelig;qualis TZ; </s>
					<s id="N233BB"><!-- NEW -->igitur TZ &aelig;qualis <lb/>P <foreign lang="greek">b</foreign> &longs;ecund&aelig;: </s>
					<s id="N233C5"><!-- NEW -->idem dico de aliis tran&longs;uer&longs;is: imm&ograve; demon&longs;trabimus tom. <lb/></s>
					<s id="N233CA"><!-- NEW --><expan abbr="&longs;eq.">&longs;eque</expan> quadratricem quadrantis, cuius radius &longs;it NA terminari ad punctum <lb/>T, ita vt NT &longs;it ba&longs;is quadratricis, &amp; NA latus; non tamen propterea <lb/>h&aelig;c linea &longs;inuum e&longs;t quadratrix, vt demon&longs;trabimus. </s>
				</p>
				<p id="N233D5" type="main">
					<s id="N233D7"><emph type="center"/><emph type="italics"/>Lemma<emph.end type="italics"/> 13.<emph.end type="center"/></s>
				</p>
				<p id="N233E3" type="main">
					<s id="N233E5"><!-- NEW --><emph type="italics"/>Diuer&longs;&aelig; chord&aelig; acquirunt diuer&longs;am velocitatem pro diuer&longs;a ratione &longs;inuum <lb/>ver&longs;orum &longs;uorum arcuum.<emph.end type="italics"/> v. <!-- REMOVE S-->g. <!-- REMOVE S-->velocitas acqui&longs;ita in chorda AM e&longs;t <lb/>&aelig;qualis acqui&longs;it&aelig; in &longs;inu ver&longs;o AQ, &amp; acqui&longs;ita in chorda AL &aelig;qualis <lb/>acqui&longs;it&aelig; in &longs;inu ver&longs;o AR, atque ita deinceps; donec acqui&longs;ita in AC <lb/>&longs;it &aelig;qualis acqui&longs;it&aelig; in &longs;inu toto AB. <!-- KEEP S--></s>
				</p>
				<p id="N233FB" type="main">
					<s id="N233FD">Itaque in chorda qu&aelig; ducitur ab A, velocitas cre&longs;cit vt in &longs;inu ver&longs;o <lb/>eiu&longs;dem.v.g. </s>
					<s id="N23402">in AM, AL, AK; in chorda ver&ograve;, qu&aelig; ducitur ab aliquo <lb/>puncto arcus AC v&longs;que ad C, cre&longs;cit vt in &longs;inu recto. </s>
					<s id="N23407"><!-- NEW -->v.g. <!-- REMOVE S-->velocitas ac&shy;<lb/>qui&longs;ita in chorda LC e&longs;t &aelig;qualis acqui&longs;it&aelig; in perpendiculari LE, qu&aelig; <lb/>e&longs;t &longs;inus rectus arcus LC; item acquiritur &aelig;qualis velocitas in duabus <lb/>at que in vna, dum &longs;cilicet communes terminos habeant. </s>
					<s id="N23413"><!-- NEW -->v.g. <!-- REMOVE S-->in duabus <pb pagenum="307" xlink:href="026/01/341.jpg"/>AKC acquiritur &aelig;qualis acqui&longs;it&aelig; in AC; </s>
					<s id="N2341E"><!-- NEW -->nam in AK, A <foreign lang="greek">w</foreign> acquiritur <lb/>&aelig;qualis; </s>
					<s id="N23426"><!-- NEW -->t&ugrave;m etiam in KC, <foreign lang="greek">w</foreign> C; Item in tribus acquiritur &aelig;qualis ac&shy;<lb/>qui&longs;it&aelig; in duabus, atque ita deinceps. </s>
				</p>
				<p id="N23430" type="main">
					<s id="N23432">Pr&aelig;terea velocitas acqui&longs;ita in chordis mediis.v.g. </s>
					<s id="N23435"><!-- NEW -->in chorda LI e&longs;t <lb/>&aelig;qualis acqui&longs;it&aelig; in LZ, vel RT, vel in &longs;inu toto AB, min&ugrave;s &longs;inu ver&longs;o <lb/>arcus LA, &amp; &longs;inu recto arcus IC; &longs;ed h&aelig;c &longs;unt &longs;atis facilia. </s>
				</p>
				<p id="N2343D" type="main">
					<s id="N2343F"><!-- NEW -->Idem dico de chordis arcus quadrantis funependuli AEB figura Lem&shy;<lb/>ma.4. v. <!-- REMOVE S-->g. <!-- REMOVE S-->de chorda IB, in qua velocitas acqui&longs;ita e&longs;t &aelig;qualis acqui&shy;<lb/>&longs;it&aelig; in RB, vel in duabus ILB, vel in tribus 4. 5. atque ita deinceps: <lb/>hinc etiam vides in quadrante EB acquiri &aelig;qualem velocitatem, &longs;iue <lb/>EA &longs;it perpendicularis deor&longs;um, &longs;iue AB. <!-- KEEP S--></s>
				</p>
				<p id="N23450" type="main">
					<s id="N23452"><emph type="center"/><emph type="italics"/>Lemma<emph.end type="italics"/> 14.<emph.end type="center"/></s>
				</p>
				<p id="N2345E" type="main">
					<s id="N23460"><!-- NEW --><emph type="italics"/>Citi&ugrave;s de&longs;cendet corpus per duas EIB, qu&agrave;m per IB<emph.end type="italics"/>; </s>
					<s id="N23469"><!-- NEW -->quia de&longs;cen&longs;us e&longs;t <lb/>&aelig;qu&egrave; diuturnus per EB, &amp; IB; &longs;ed citi&ugrave;s de&longs;cendit per EIB, qu&agrave;m per <lb/>EB, vt iam &longs;upr&agrave; dictum e&longs;t in Lem. <!-- REMOVE S-->8. igitur citi&ugrave;s per EIB, qu&agrave;m <lb/>per IB. </s>
				</p>
				<p id="N23475" type="main">
					<s id="N23477"><emph type="center"/><emph type="italics"/>Lemma<emph.end type="italics"/> 15.<emph.end type="center"/></s>
				</p>
				<p id="N23483" type="main">
					<s id="N23485"><!-- NEW --><emph type="italics"/>Citi&ugrave;s de&longs;cendet per<emph.end type="italics"/> <emph type="italics"/>duas chordas BHF, qu&agrave;m per duas BGF, &agrave; quiete<emph.end type="italics"/><lb/>B; </s>
					<s id="N23495"><!-- NEW -->&longs;int enim du&aelig; BHF, &longs;itque BH. v.g. <!-- REMOVE S-->chorda arcus 30.grad.&longs;c.5 1764. <lb/>earum partium, quarum &longs;inus totus e&longs;t 100000. &longs;it Tangens BE; </s>
					<s id="N2349D"><!-- NEW -->&longs;it HD <lb/>perpendicularis in BH, &amp; HT in BD; </s>
					<s id="N234A3"><!-- NEW -->cert&egrave; HT e&longs;t media proportio&shy;<lb/>nalis inter DT, &amp; TB; </s>
					<s id="N234A9"><!-- NEW -->e&longs;tque differentia &longs;inus totius, &amp; &longs;inus OH 60. <lb/>grad. <!-- REMOVE S-->e&longs;t autem OH 86603. igitur HT 13397. quadretur HT, produ&shy;<lb/>ctum diuidatur per BT 50000. quotiens dabit TD 3589. qu&aelig; &longs;i adda&shy;<lb/>tur BT, habebitur tota BD 53589. quadretur BD; </s>
					<s id="N234B5"><!-- NEW -->a&longs;&longs;umatur &longs;ubduplum <lb/>quadrati, ex quo extrahatur radix; </s>
					<s id="N234BB"><!-- NEW -->habebitur KD, vel BK 37893. &longs;it <lb/>autem LF 200000. ad 141422. &aelig;qualem BF, ita BF ad LH 100000. <lb/>cert&egrave; tempus per LH e&longs;t ad tempus per BH, vt LH ad BH; </s>
					<s id="N234C3"><!-- NEW -->&longs;ed tempus <lb/>per LH e&longs;t ad tempus per LF, vt LH ad 141422.igitur tempus per BH <lb/>e&longs;t ad tempus per HF facto initio motus ex L, vt BH 51764. ad 41422. <lb/>igitur ad tempus per BHF, vt 51764.ad 93186. porr&ograve; BH &amp; BK &aelig;qua&shy;<lb/>li tempore percurruntur; </s>
					<s id="N234CF"><!-- NEW -->igitur tempus per BK e&longs;t BH, id e&longs;t 51764. <lb/>c&ugrave;m autem &longs;patia in eadem linea &longs;int in ratione duplicata temporum; <lb/>cert&egrave; &longs;patium BK acqui&longs;itum tempore 51764.e&longs;t ad &longs;patium acqui&longs;itum <lb/>in BF tempore 93186. vt quadratum 51764. ad quadratum 93186.id e&longs;t, <lb/>vt 2679511696.ad 8676630576.vnde fact&acirc; regul&acirc; trium habeo &longs;patium <lb/>decur&longs;um in BF 122702. tempore 93186. &longs;ed tota BF e&longs;t 141422. igitur <lb/>citi&ugrave;s percurruntur du&aelig; BHF, qu&agrave;m BF. </s>
				</p>
				<p id="N234DF" type="main">
					<s id="N234E1"><!-- NEW -->Pr&aelig;terea &longs;int du&aelig; BGF, BG e&longs;t 100000.&longs;it perpendicularis G 4 c&ugrave;m <lb/>angulus GB 4.&longs;it grad.30. erit vt 5 G ad GB, ita BG ad B 4. igitur B 4. <lb/>erit 115469. &longs;it 4.3.perpendicularis in BF, quadratum B 4. e&longs;t duplum <lb/>quadrati B 3.igitur B 3. erit 81655. iam ver&ograve; FN e&longs;t &longs;ecans grad.75. &longs;ci&shy;<lb/>licet 386370.igitur GN e&longs;t 334606. detracta &longs;cilicet FG &aelig;quali BH; </s>
					<s id="N234ED"><!-- NEW -->&longs;it <lb/>autem NG ad 359557. vt h&aelig;c ad NF; </s>
					<s id="N234F3"><!-- NEW -->cert&egrave; tempus per BG e&longs;t ad tem-<pb pagenum="308" xlink:href="026/01/342.jpg"/>pus per NG, vt BG ad NG, &amp; ad tempus per GF, vt BG ad 24951. &amp; <lb/>ad tempus per BGF, vt BG id e&longs;t, 100000. ad 124951. porr&ograve; tempus <lb/>per B 3. e&longs;t BG; </s>
					<s id="N23500"><!-- NEW -->ergo vt quadratum temporis per BG ad quadratum <lb/>temporis per BGF, &longs;cilicet vt 10000000000. ad 1561475241. ita B 3. <lb/>&longs;cilicet 81655. ad aliam, h&aelig;c erit 123496. igitur in BF, qu&aelig; e&longs;t partium <lb/>141422. percurruntur partes 123496. eo tempore, quo percurruntur <lb/>BGF; </s>
					<s id="N2350C"><!-- NEW -->at ver&ograve; eo tempore, quo percurruntur BHF; </s>
					<s id="N23510"><!-- NEW -->percurruntur in <lb/>BF 122702. igitur pauciores; </s>
					<s id="N23516"><!-- NEW -->igitur minore tempore; igitur du&aelig; BHF <lb/>percurruntur minore tempore, qu&agrave;m du&aelig; BGF, quod erat demon&shy;<lb/>&longs;trandum. </s>
				</p>
				<p id="N2351E" type="main">
					<s id="N23520"><!-- NEW -->Similiter de&longs;cendet citi&ugrave;s per duas BHF, qu&agrave;m per duas BZF: </s>
					<s id="N23524"><!-- NEW -->imm&ograve; <lb/>quod mirabile e&longs;t, patetque ex analytica, citi&ugrave;s per duas BGF, qu&agrave;m per <lb/>duas BZF; </s>
					<s id="N2352C"><!-- NEW -->&lpar;&longs;uppono enim BZ e&longs;&longs;e arcum grad. <!-- REMOVE S-->45.&rpar; &longs;it enim Z <foreign lang="greek">u</foreign> per&shy;<lb/>pendicularis, itemque Z <foreign lang="greek">d, d</foreign> B e&longs;t &aelig;qualis BR. igitur 70711. Z <foreign lang="greek">d</foreign> e&longs;t <lb/>29289. igitur <foreign lang="greek">d u</foreign> 1223. igitur B <foreign lang="greek">u</foreign> 71924. igitur B <foreign lang="greek">b</foreign> 51858. iam tempus <lb/>per BZ e&longs;t ad tempus per YZ vt BZ ad YZ. id e&longs;t, vt 76536. ad 184777. <lb/>&longs;it autem vt AYF 261313. ad aliam 219737.ita h&aelig;c ad YZ; </s>
					<s id="N23552"><!-- NEW -->cert&egrave; tem&shy;<lb/>pus per BZ e&longs;t ad tempus per BZF, vt BZ ad 111496. igitur B <foreign lang="greek">b</foreign> fit <lb/>tempore BZ; ergo vt quadratum BZ ad quadratum 111496. id e&longs;t, vt <lb/>4857759296. ad 12431358016. ita &longs;it B <foreign lang="greek">b</foreign>, id e&longs;t 51858.ad 132708.igitur <lb/>eo tempore, quo percurruntur BZF, percurruntur in BF 132708.earum <lb/>partium, quarum BF e&longs;t 141422. &longs;ed pauciores percurruntur eo tempo&shy;<lb/>re, quo fit de&longs;cen&longs;us per BHF, vel BGF. </s>
				</p>
				<p id="N2356A" type="main">
					<s id="N2356C"><emph type="center"/><emph type="italics"/>Lemma<emph.end type="italics"/> 16.<emph.end type="center"/></s>
				</p>
				<p id="N23578" type="main">
					<s id="N2357A"><emph type="italics"/>Citi&ugrave;s percurruntur du&aelig; inferiores.v.g. </s>
					<s id="N2357F"><!-- NEW -->HGF, qu&agrave;m du&aelig; BHF<emph.end type="italics"/>; </s>
					<s id="N23586"><!-- NEW -->e&longs;t enim <lb/>PF &longs;ubdupla &longs;ecantis NF; </s>
					<s id="N2358C"><!-- NEW -->igitur 193185. FG e&longs;t 51764. GP 141421. <lb/>&longs;it autem PG ad 165285.vt h&aelig;c ad PF; </s>
					<s id="N23592"><!-- NEW -->cert&egrave; tempus per HG e&longs;t ad <lb/>tempus per PG, vt HG ad PG; </s>
					<s id="N23598"><!-- NEW -->igitur tempus per HG e&longs;t ad tempus <lb/>per HGF, vt 51764. ad 75628. &longs;ed BX e&longs;t &aelig;qualis, eiu&longs;demque incli&shy;<lb/>nationis cum HG; </s>
					<s id="N235A0"><!-- NEW -->igitur tempus, quo percurritur BX e&longs;t BX. vel HG; </s>
					<s id="N235A4"><!-- NEW --><lb/>&longs;it autem vt BX ad 75628. ita h&aelig;c ad aliam 111092. igitur eo tempore, <lb/>quo percurruntur HGF, percurruntur in BF 111092. minor BF; igitur <lb/>citi&ugrave;s percurruntur HGF qu&agrave;m BHF, vel BZF, &amp;c. </s>
					<s id="N235AD">igitur du&aelig; infe&shy;<lb/>riores citi&ugrave;s, qu&agrave;m du&aelig; &longs;uperiores. </s>
				</p>
				<p id="N235B2" type="main">
					<s id="N235B4"><!-- NEW -->Ex his manife&longs;tum e&longs;t, qu&aelig;nam &longs;int qua&longs;i termini progre&longs;&longs;ionis in a&longs;&shy;<lb/>&longs;umptis duabus chordis; &longs;i enim diuidatur arcus BF in 6.arcus &aelig;quales, <lb/>BF tardi&longs;&longs;im&egrave;, BHF veloci&longs;&longs;im&egrave;, &amp;c. </s>
					<s id="N235BC">po&longs;t BHF, BGF, t&ugrave;m &longs;ingul&aelig; ab <lb/>H ver&longs;us Z &amp; ver&longs;us V re&longs;pondent &longs;ingul&aelig; immediat&egrave; AG ver&longs;us Z, &amp; <lb/>ver&longs;us <foreign lang="greek">q. </foreign></s>
				</p>
				<p id="N235C6" type="main">
					<s id="N235C8"><emph type="center"/><emph type="italics"/>Lemma<emph.end type="italics"/> 17.<emph.end type="center"/></s>
				</p>
				<p id="N235D4" type="main">
					<s id="N235D6"><!-- NEW --><emph type="italics"/>Si &longs;int duo pendula in&aelig;qualia, tempora de&longs;cen&longs;uum per chordas &longs;imiles, <lb/>&longs;unt in ratione &longs;ubduplicat a earumdem; </s>
					<s id="N235DE"><!-- NEW -->h&aelig; ver&ograve; &longs;unt vt radij<emph.end type="italics"/>; </s>
					<s id="N235E5"><!-- NEW -->&longs;it enim qua&shy;<lb/>drans A <foreign lang="greek">a r</foreign>, cuius radius A <foreign lang="greek">a</foreign> &longs;it &longs;ubquadruplus radij AB; </s>
					<s id="N235F3"><!-- NEW -->&longs;int chord&aelig; <lb/>&longs;imiles <foreign lang="greek">a r</foreign>, BF; </s>
					<s id="N235FD"><!-- NEW -->h&aelig;c e&longs;t quadrupla illius; </s>
					<s id="N23601"><!-- NEW -->igitur cum &longs;it eadem vtriu&longs;-<pb pagenum="309" xlink:href="026/01/343.jpg"/>que inclinatio; </s>
					<s id="N2360A"><!-- NEW -->eo tempore, quo percurretur tota <foreign lang="greek">a r</foreign> percurretur tan&shy;<lb/>t&ugrave;m quarta pars BF; </s>
					<s id="N23614"><!-- NEW -->igitur &longs;uper&longs;unt 1/4 BF; </s>
					<s id="N23618"><!-- NEW -->&longs;ed &longs;ecundo tempore &longs;en&shy;<lb/>&longs;ibili &aelig;quali primo percurritur &longs;patium triplum &longs;patij primi temporis; </s>
					<s id="N2361E"><!-- NEW --><lb/>igitur tota BF percurritur tempore duplo, &amp; <foreign lang="greek">a r</foreign> &longs;ubduplo; </s>
					<s id="N23627"><!-- NEW -->igitur tem&shy;<lb/>pora &longs;unt vt radices 1. &amp; 4. igitur in ratione &longs;ubduplicata; </s>
					<s id="N2362D"><!-- NEW -->pr&aelig;terea &longs;int <lb/>chord&aelig; <foreign lang="greek">a</foreign> X <foreign lang="greek">r</foreign>, &amp; ali&aelig; du&aelig; BZF &longs;imiles prioribus; cert&egrave; &longs;i prima mino&shy;<lb/>ris quadrantis <foreign lang="greek">a</foreign> X percurratur vno tempore. </s>
					<s id="N23641"><!-- NEW -->Prima maioris BF, percur&shy;<lb/>ritur duobus temporibus; </s>
					<s id="N23647"><!-- NEW -->&longs;ed in eadem proportione percurrentur du&aelig; <lb/>X <foreign lang="greek">b</foreign> ZF, vt patet; </s>
					<s id="N23651"><!-- NEW -->quia vt e&longs;t <foreign lang="greek">w</foreign> X ad X <foreign lang="greek">r</foreign>, ita XZ ad ZF: idem pror&longs;us di&shy;<lb/>co, &longs;i accipiantur tres chord&aelig;, 4.5.6. &amp;c. </s>
					<s id="N2365F">in vtroque arcu. </s>
				</p>
				<p id="N23662" type="main">
					<s id="N23664"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 5.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N23671" type="main">
					<s id="N23673"><emph type="italics"/>Vibratio minor eiu&longs;dem, vel &aelig;qualis funependuli breuiore tempore percurri&shy;<lb/>tur.<emph.end type="italics"/></s>
					<s id="N2367C"><!-- NEW --> Probatur quia percurruntur citi&ugrave;s du&aelig; chord&aelig; inferiores HGF, <lb/>qu&agrave;m du&aelig; &longs;uperiores qu&aelig;cunque per Lem. <!-- REMOVE S-->16. imm&ograve; &amp; tres inferiores, <lb/>qu&agrave;m tres &longs;uperiores, atque ita deinceps; igitur totus arcus inferior <lb/>HGF, qui con&longs;tat ex his chordis minoribus &longs;emper, &amp; minoribus per&shy;<lb/>curretur citi&ugrave;s, qu&agrave;m &longs;uperior, &amp; maior.v.g. </s>
					<s id="N2368A">BHF. </s>
				</p>
				<p id="N2368D" type="main">
					<s id="N2368F"><!-- NEW -->Adde quod, multis con&longs;tat experimentis minorem vibrationem citi&ugrave;s <lb/>peragi, quod plu&longs;quam centies &agrave; me probatum e&longs;t; </s>
					<s id="N23695"><!-- NEW -->&longs;i enim &longs;imul demit&shy;<lb/>tantur duo funependula &aelig;qualia; </s>
					<s id="N2369B"><!-- NEW -->alterum quidem &egrave; &longs;ummo quadrantis <lb/>puncto, alterum ex decimo, vel decimoquinto altitudinis gradu, appo&longs;ito <lb/>in puncto quietis aliquo &longs;onoro corpore; </s>
					<s id="N236A3"><!-- NEW -->haud dubi&egrave; ictum, qui &longs;equitur <lb/>ex minori vibratione, pri&ugrave;s audies; </s>
					<s id="N236A9"><!-- NEW -->t&ugrave;m &longs;tatim alium; </s>
					<s id="N236AD"><!-- NEW -->imm&ograve; &longs;i numeren&shy;<lb/>tur vibrationes vtriu&longs;que eodem tempore plures minoris, maioris ver&ograve; <lb/>pauciores numerabuntur; </s>
					<s id="N236B5"><!-- NEW -->&longs;&aelig;pi&ugrave;s numeraui 11.minores eo tant&ugrave;m tem&shy;<lb/>pore, quo alter, qui mecum erat 10. maiores numerabat, &amp; 40. circiter <lb/>minores dum alter 37.maiores recen&longs;eret; </s>
					<s id="N236BD"><!-- NEW -->&amp; cert&egrave; &longs;i vibratio vtraque <lb/>maior &longs;cilicet, &amp; minor per <expan abbr="e&utilde;dem">eundem</expan> arcum recurreret, centum minores <lb/>eo fer&egrave; tempore agerentur, quo 90.maiores; lic&egrave;t enim vtraque decre&longs;&shy;<lb/>cat, maior tamen decre&longs;cit in maiore proportione, qu&agrave;m minor, cuius <lb/>rei rationem afferemus infr&agrave;. </s>
				</p>
				<p id="N236CD" type="main">
					<s id="N236CF">Nec e&longs;t quod aliquis cum Galileo, Baliano, &amp; aliis opponat, omnes <lb/>vibrationes, &longs;iue maiores &longs;int, &longs;iue minores e&longs;&longs;e &aelig;qu&egrave; diuturnas, idque <lb/>manife&longs;tis con&longs;tare experimentis, quibus ego alia certi&longs;&longs;ima experimen&shy;<lb/>ta oppono, quibus etiam vltr&ograve; a&longs;&longs;entitur P. Mer&longs;ennus, Galileo alioqui <lb/>addicti&longs;&longs;imus, in ver&longs;ione eiu&longs;dem Galilei lib.  1. art. </s>
					<s id="N236DA"><!-- NEW -->18. &amp; ver&ograve; docti <lb/>omnes Galileo &longs;unt addicti&longs;simi; </s>
					<s id="N236E0"><!-- NEW -->in qua ver&ograve; proportione minor vibra&shy;<lb/>tio breuiore tempore peragatur, qu&agrave;m major, difficil&egrave; dictu e&longs;t, &amp; vix <lb/>determinari pote&longs;t, ni&longs;i fort&egrave; dicatur in ea proportione arcum HF citi&ugrave;s <lb/>percurri, qu&agrave;m arcum BHF, in qua du&aelig; chord&aelig; HGF citi&ugrave;s percur&shy;<lb/>runtur, qu&agrave;m du&aelig; BZF; &longs;ed de his fus&egrave; ali&agrave;s. </s>
				</p>
				<p id="N236EC" type="main">
					<s id="N236EE"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 6.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N236FB" type="main">
					<s id="N236FD"><!-- NEW --><emph type="italics"/>Velocitates acqui&longs;ita in vibrationibus in&aelig;qualibus &longs;unt vt altitudines<emph.end type="italics"/>; </s>
					<s id="N23706"><!-- NEW -->&longs;int <lb/>enim vibrationes du&aelig; BF, HF; </s>
					<s id="N2370C"><!-- NEW -->dico velocitatem acqui&longs;itam in de&longs;cen-<pb pagenum="310" xlink:href="026/01/344.jpg"/>&longs;u BF e&longs;&longs;e ad acqui&longs;itam in de&longs;cen&longs;u HP, vt vecta AF ad rectam OF, <lb/>quod facil&egrave; probatur; </s>
					<s id="N23717"><!-- NEW -->quia ex B in F &aelig;qualis acquiritur velocitas &longs;iue <lb/>per rectam BF <expan abbr="de&longs;c&etilde;dat">de&longs;cendat</expan> mobile, &longs;iue per duas BHF, &longs;iue per tres BHGF, <lb/>&longs;iue per totum quadrantem BHF; </s>
					<s id="N23723"><!-- NEW -->&longs;ed &aelig;qualis e&longs;t acqui&longs;ita per BF ac&shy;<lb/>qui&longs;it&aelig; per AF, vel BE; </s>
					<s id="N23729"><!-- NEW -->qu&aelig; omnia con&longs;tant per Lemm.10.&amp; 11.&longs;imili&shy;<lb/>ter acqui&longs;ita in recta HF e&longs;t &aelig;qualis acqui&longs;it&aelig; in recta OF in duabus <lb/>HGF; </s>
					<s id="N23731"><!-- NEW -->imm&ograve; &amp; in arcu HZF; </s>
					<s id="N23735"><!-- NEW -->igitur acqui&longs;ita in arcu BHF e&longs;t ad <lb/>acqui&longs;itam in arcu HZF, vt acqui&longs;ita in AF ad acqui&longs;itam in OF; </s>
					<s id="N2373B"><!-- NEW -->&longs;ed <lb/>illa e&longs;t ad hanc vt AF ad OF, vt con&longs;tat; igitur &longs;unt vt altitudines, quod <lb/>erat probandum. </s>
				</p>
				<p id="N23743" type="main">
					<s id="N23745"><!-- NEW -->Hinc non &longs;unt vt chord&aelig;, neque vt arcus; </s>
					<s id="N23749"><!-- NEW -->hinc acqui&longs;ita in arcu <lb/>BHF e&longs;t dupla acqui&longs;it&aelig; in arcu HZF; </s>
					<s id="N2374F"><!-- NEW -->c&ugrave;m tamen arcus BF non &longs;it <lb/>duplus; &longs;ed &longs;e&longs;quialter arcus HZF. </s>
				</p>
				<p id="N23755" type="main">
					<s id="N23757"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 7.<emph.end type="center"/></s>
				</p>
				<p id="N23763" type="main">
					<s id="N23765"><!-- NEW --><emph type="italics"/>Hinc &longs;unt diuer&longs;i ictus in&aelig;qualium vibrationum in eadem altitudinum ra&shy;<lb/>tione<emph.end type="italics"/>; </s>
					<s id="N23770"><!-- NEW -->quia eadem e&longs;t ratio ictuum, qu&aelig; velocitatum acqui&longs;itarum in <lb/>puncto percu&longs;sionis; </s>
					<s id="N23776"><!-- NEW -->&longs;ed ratio velocitatum e&longs;t eadem qu&aelig; altitudinum, <lb/>&longs;eu perpendicularium per Th.7. igitur eadem ratio ictuum, qu&aelig; altitu&shy;<lb/>dinum; </s>
					<s id="N2377E"><!-- NEW -->&longs;ed in&aelig;qualium vibrationum eiu&longs;dem funependuli diuer&longs;&aelig; &longs;unt <lb/>altitudines; igitur diuer&longs;i ictus, quod erat demon&longs;trandum. </s>
				</p>
				<p id="N23784" type="main">
					<s id="N23786"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 8.<emph.end type="center"/></s>
				</p>
				<p id="N23792" type="main">
					<s id="N23794"><!-- NEW --><emph type="italics"/>In diuer&longs;is funependulis &longs;imilium vibrationum velocitates &longs;unt vt chord&aelig;<emph.end type="italics"/>; </s>
					<s id="N2379D"><!-- NEW --><lb/>&longs;int enim duo funependula in&aelig;qualis A <foreign lang="greek">r</foreign>, AF; </s>
					<s id="N237A6"><!-- NEW -->cert&egrave; &longs;it vibratio maio&shy;<lb/>ris BF, &amp; minoris vibratio &longs;imilis <foreign lang="greek">a r</foreign>, velocitas vibrationis BF e&longs;t vt al&shy;<lb/>titudo AF &amp; minoris <foreign lang="greek">a r</foreign>, vt altitudo A <foreign lang="greek">r</foreign>; </s>
					<s id="N237BA"><!-- NEW -->&longs;ed vt AF e&longs;t ad A <foreign lang="greek">r</foreign>, ita BF <lb/>ad <foreign lang="greek">a r</foreign>; </s>
					<s id="N237C8"><!-- NEW -->&longs;unt enim triangula proportionalia; </s>
					<s id="N237CC"><!-- NEW -->idem dico de aliis.v.g ZF <lb/>&amp; X <foreign lang="greek">r</foreign>, iu quo non e&longs;t difficultas: hinc percu&longs;siones vtriu&longs;que erunt etiam <lb/>vt chord&aelig;, quia &longs;unt vt altitudines. </s>
				</p>
				<p id="N237D8" type="main">
					<s id="N237DA"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 9.<emph.end type="center"/></s>
				</p>
				<p id="N237E6" type="main">
					<s id="N237E8"><!-- NEW --><emph type="italics"/>Tempora, quibus peraguntur vibrationes &longs;imiles funependulorum in&aelig;qua&shy;<lb/>lium &longs;unt fer&egrave; in ratione &longs;ubduplicata longitudinum, &longs;eu radiorum<emph.end type="italics"/>: </s>
					<s id="N237F3"><!-- NEW -->Probatur, <lb/>quia tempora de&longs;cen&longs;uum per chordas &longs;imiles &longs;unt in ratione &longs;ubdupli&shy;<lb/>cata earumdem chordarum, &longs;iue &longs;int 2.&longs;iue &longs;int tres, &amp; per Lemma 17. <lb/>&longs;ed &longs;i accipiantur plures chord&aelig;, tandem habebitur arcus; </s>
					<s id="N237FD"><!-- NEW -->igitur vibra&shy;<lb/>tio per arcum e&longs;t veluti de&longs;cen&longs;us per infinitas fer&egrave; chordas &aelig;quales; </s>
					<s id="N23803"><!-- NEW -->&longs;ed <lb/>tempora horum de&longs;cen&longs;uum &longs;unt in ratione &longs;ubduplicata chordarum; </s>
					<s id="N23809"><!-- NEW -->&amp; <lb/>h&aelig;c e&longs;t eadem ratio cum &longs;ubduplicata radiorum; igitur tempora vibra&shy;<lb/>tionum &longs;imilium &longs;unt fer&egrave; in ratione &longs;ubduplicata radiorum. </s>
				</p>
				<p id="N23811" type="main">
					<s id="N23813"><!-- NEW -->Ob&longs;eruabis rem <expan abbr="i&longs;t&atilde;">i&longs;tam</expan> accurat&egrave;, &amp; analytic&egrave; di&longs;cuti po&longs;&longs;e, &longs;it enim qua&shy;<lb/>drans ADH maioris vibrationis, &amp; quadrans CED minoris; </s>
					<s id="N2381D"><!-- NEW -->&longs;itque <lb/>CD &longs;ubquadrupla AD, &amp; arcus DE &longs;ubquadruplus DKH; </s>
					<s id="N23823"><!-- NEW -->a&longs;&longs;umatur <lb/>DN &longs;ubquadruplus DH; </s>
					<s id="N23829"><!-- NEW -->&longs;itque DN &aelig;qualis DE; </s>
					<s id="N2382D"><!-- NEW -->cert&egrave; eo tempore, <pb pagenum="311" xlink:href="026/01/345.jpg"/>quo percurretur DE, percurretur plu&longs;quam DN; </s>
					<s id="N23836"><!-- NEW -->quippe DN e&longs;t min&ugrave;s <lb/>inclinatus, qu&agrave;m DE: </s>
					<s id="N2383C"><!-- NEW -->porr&ograve; recta NH eodem deinde tempore percur&shy;<lb/>retur, &longs;iue ducatur initium motus AD per arcum DN, &longs;iue AD per re&shy;<lb/>ctam DN, &longs;iue ab O per rectam ON; quia in N e&longs;t &aelig;qualis velocitas <lb/>per Lemm. </s>
					<s id="N23846"><!-- NEW -->11. igitur tempus, quo percurritur recta NH, facto initio <lb/>motus ex D per rectam, vel arcum DN, e&longs;t ad tempus, quo percurritur <lb/>DN, vt 42466.ad DN, id e&longs;t ad 390181. &longs;it enim vt ON ad 111347. <lb/>ita h&aelig;c ad OH 179995. detrahatur ON ex 111347.&longs;upere&longs;t 42466.igi&shy;<lb/>tur eo tempore, quo percurritur DE, percurritur plu&longs;quam DN; </s>
					<s id="N23852"><!-- NEW -->per&shy;<lb/>curritur tamen min&ugrave;s, qu&agrave;m DL; </s>
					<s id="N23858"><!-- NEW -->quia tempus, quo percurritur DL e&longs;t <lb/>ad tempus quo percurritur LH facto initio motus in D, vt DL 51764. <lb/>ad 41422. igitur eo tempore, quo percurritur DE; percurritur min&ugrave;s <lb/>qu&agrave;m DL. </s>
				</p>
				<p id="N23862" type="main">
					<s id="N23864"><!-- NEW -->Adde quod rect&aelig; DE, DM, &aelig;quali tempore percurruntur; </s>
					<s id="N23868"><!-- NEW -->&longs;ed DM <lb/>breuiore tempore percurritur, qu&agrave;m arcus DL, imm&ograve; arcus DE citi&ugrave;s <lb/>peragitur, qu&agrave;m recta DE; </s>
					<s id="N23870"><!-- NEW -->igitur citi&ugrave;s qu&agrave;m arcus DL; </s>
					<s id="N23874"><!-- NEW -->&longs;i ver&ograve; acci&shy;<lb/>piatur arcus DR; </s>
					<s id="N2387A"><!-- NEW -->cert&egrave; tempus per arcum DE e&longs;t paul&ograve; minus tempo&shy;<lb/>re per arcum DR; quia tempus, quo percurritur DR e&longs;t ad tempus, quo <lb/>percurretur RH, facto initio motus in D, vt 45444.ad 41705.&longs;ed vtrum&shy;<lb/>que tempus debet e&longs;&longs;e &aelig;quale, vt &longs;cilicet arcus in DH &aelig;quali tempore <lb/>cum arcu DE percurratur. </s>
				</p>
				<p id="N23886" type="main">
					<s id="N23888"><!-- NEW -->Ob&longs;eruabis pr&aelig;terea, vt inueniatur arcus quadrantis DH, cuius tem&shy;<lb/>pus &longs;it &longs;ubduplum ip&longs;ius quadrantis, vel &aelig;quale tempori per arcum DE, <lb/>a&longs;&longs;umendum e&longs;&longs;e punctum in arcu DH, puta N; </s>
					<s id="N23890"><!-- NEW -->per quod &longs;i ducatur <lb/>HNO, &longs;itque vt ON ad OV, ita OV ad OH, ip&longs;a NV erit &aelig;qualis <lb/>ip&longs;i ND; </s>
					<s id="N23898"><!-- NEW -->quipp&egrave; tempus per DN e&longs;t ad tempus per ON, vt ip&longs;a DN ad <lb/>ON; </s>
					<s id="N2389E"><!-- NEW -->&longs;ed tempus per ON e&longs;t ad tempus per NH, vt ON ad NV; </s>
					<s id="N238A2"><!-- NEW -->igi&shy;<lb/>tur tempus per DN e&longs;t ad tempus per NH, vt DN ad NV; </s>
					<s id="N238A8"><!-- NEW -->igitur DN, <lb/>&amp; NH facto initio motus &agrave; D fiunt tempore &aelig;quali; </s>
					<s id="N238AE"><!-- NEW -->&longs;ed vt tempus per <lb/>rectam DN ad tempus per rectam NH; </s>
					<s id="N238B4"><!-- NEW -->ita tempus per duas DXN ad <lb/>tempus per duas NZH; </s>
					<s id="N238BA"><!-- NEW -->ita tempus per 4. &aelig;quales in&longs;criptas arcui DN <lb/>ad tempus per 4.&aelig;quales in&longs;criptas arcui NZH, atque ita deinceps; igi&shy;<lb/>tur ita tempus per arcum DN ad tempus per arcum NZH. </s>
				</p>
				<p id="N238C2" type="main">
					<s id="N238C4"><!-- NEW -->Quomodo ver&ograve; po&longs;&longs;it inueniri punctum N, viderint Geometr&aelig;; </s>
					<s id="N238C8"><!-- NEW -->nec <lb/>enim phy&longs;ici e&longs;t in&longs;tituti; habetur autem ex analytica, &longs;i excipiatur ar&shy;<lb/>cus DN. 24. gra. </s>
					<s id="N238D0">20&prime;. </s>
					<s id="N238D3">circiter; &longs;itque HO &longs;ecans anguli AHO grad.57. <lb/>10&prime;. </s>
					<s id="N238D8"><!-- NEW -->&longs;itque ON, ad OV vt OV ad OH, ip&longs;a NV erit proxim&egrave; &aelig;qualis <lb/>ip&longs;i ND: igitur DN. &amp; NH &aelig;qualibus temporibus percurrentur. </s>
					<s id="N238DE">Simili&shy;<lb/>ter opera eiu&longs;dem analytic&aelig; habebitur arcus, qui peragitur in DZH eo <lb/>tempore, quo arcus DNF percurritur, po&longs;&longs;untque h&aelig;c omnia in cano&shy;<lb/>nes redigi. </s>
				</p>
				<p id="N238E7" type="main">
					<s id="N238E9"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 10.<emph.end type="center"/></s>
				</p>
				<p id="N238F5" type="main">
					<s id="N238F7"><emph type="italics"/>In diuer&longs;is punctis arcus diuer&longs;us impetus producitur.<emph.end type="italics"/></s>
					<s id="N238FE"> Prob. </s>
					<s id="N23901"><!-- NEW -->&longs;it enim <lb/>pendulum fune ex centro immobili A; </s>
					<s id="N23907"><!-- NEW -->&longs;itque AO horizontalis, AD <pb pagenum="312" xlink:href="026/01/346.jpg"/>perpendicularis; </s>
					<s id="N23910"><!-- NEW -->haud dubi&egrave; producit maiorem impetum in O, qu&agrave;m in <lb/>LH quipp&egrave; in D nullo modo grauitat in &longs;uppo&longs;itam manum, in H mi&shy;<lb/>n&ugrave;s grauitat, in O maxim&egrave;; &longs;ed qua proportione pl&ugrave;s, vel min&ugrave;s graui&shy;<lb/>tat, producit maiorem vel minorem impetum, vt patet. </s>
				</p>
				<p id="N2391A" type="main">
					<s id="N2391C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 11.<emph.end type="center"/></s>
				</p>
				<p id="N23928" type="main">
					<s id="N2392A"><emph type="italics"/>Impetus, quem producit in H, e&longs;t ad impetum, quem producit in O, vt HC <lb/>ad DA vel OA.<emph.end type="italics"/></s>
					<s id="N23933"><!-- NEW --> Probatur, quia grauitatio in H e&longs;t ad grauitationem in <lb/>O, vt CH ad DA, vt demon&longs;tratum e&longs;t &longs;upr&agrave; lib.  de motu in planis in&shy;<lb/>clinatis; </s>
					<s id="N2393B"><!-- NEW -->ratio e&longs;t, quia in ea proportione maior e&longs;t, vel minor grauita&shy;<lb/>tio, in qua pl&ugrave;s vel min&ugrave;s impeditur; </s>
					<s id="N23941"><!-- NEW -->atqui in O non impeditur; </s>
					<s id="N23945"><!-- NEW -->quia li&shy;<lb/>nea determinationis ad motum e&longs;t eadem cum linea grauitationis; </s>
					<s id="N2394B"><!-- NEW -->quip&shy;<lb/>p&egrave; globus O grauitat per <expan abbr="Oq;">Oque</expan> &longs;ed OQ e&longs;t Tangens puncti O; </s>
					<s id="N23955"><!-- NEW -->igitur e&longs;t <lb/>linea determinationis in puncto O; </s>
					<s id="N2395B"><!-- NEW -->igitur linea determinationis in pun&shy;<lb/>cto O e&longs;t eadem cum linea grauitationis; at ver&ograve; in H linea grauitatio&shy;<lb/>nis e&longs;t HG, &amp; determinationis HF diuer&longs;a &agrave; priore, &longs;ed de his iam plu&shy;<lb/>ra ali&agrave;s. </s>
				</p>
				<p id="N23965" type="main">
					<s id="N23967"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N23973" type="main">
					<s id="N23975">Ob&longs;eruabis globum pr&aelig;dictum in H diuer&longs;imode po&longs;&longs;e &longs;u&longs;tineri. </s>
					<s id="N23978">Pri&shy;<lb/>m&ograve;, per Tangentem HI. <!-- KEEP S--></s>
					<s id="N2397E">Secund&ograve; applicata potentia in F per FH. Terti&ograve;, <lb/>per horizontalem HV tracto &longs;cilicet fune. </s>
					<s id="N23983">Quart&ograve;, per HK. Quint&ograve;, per <lb/>GH. </s>
					<s id="N23988"><!-- NEW -->Sext&ograve; denique in aliis punctis intermediis applicari pote&longs;t poten&shy;<lb/>tia; </s>
					<s id="N2398E"><!-- NEW -->&longs;i primo modo, &amp; &longs;ecundo potentia &longs;u&longs;tinens pondus in H e&longs;t ad <lb/>&longs;u&longs;tinentem in D ex A vel in O ex Q vt HC ad DA vel HA; </s>
					<s id="N23994"><!-- NEW -->ad &longs;u&longs;ti&shy;<lb/>nentem ver&ograve; ex A in H, vt CH ad CA, &longs;i tertio per HV potentia ap&shy;<lb/>plicata in V e&longs;t ad applicatam in A, dum vtraque &longs;imul agat vt HC ad <lb/>HA; </s>
					<s id="N2399E"><!-- NEW -->&longs;i quarto modo applicata in K &aelig;qualis e&longs;t applicat&aelig; in A, itemque <lb/>applicata in Y per YH, vel in O per OH, po&longs;ita HZ &aelig;quali HA; </s>
					<s id="N239A4"><!-- NEW -->&longs;i <lb/>quinto modo applicata in G per GHS &longs;u&longs;tinet totum pondus, itemque <lb/>applicata in S per SH; &longs;i denique &longs;exto modo, pro rata. </s>
				</p>
				<p id="N239AC" type="main">
					<s id="N239AE"><!-- NEW -->Ob&longs;eruabis &longs;ecund&ograve; rem omnin&ograve; &longs;citu digni&longs;&longs;imam, e&longs;&longs;e duas tant&ugrave;m <lb/>lineas, quibus applicata potentia totum pondus &longs;u&longs;tinet, &longs;cilicet GH, HS, <lb/>e&longs;&longs;e quoque duas quibus applicata potentia pondus pendulum &longs;u&longs;tinens <lb/>in dato puncto puta H, habet minimam rationem, qu&aelig; haberi po&longs;&longs;it ad <lb/>potentiam applicatam in A per AH; &longs;unt autem ill&aelig; CH, HV, qu&aelig; e&longs;t <lb/>ip&longs;a horizontalis. </s>
				</p>
				<p id="N239BC" type="main">
					<s id="N239BE"><!-- NEW -->Ob&longs;eruabis terti&ograve;, applicatam in puncto C per CH e&longs;&longs;e minimam <lb/>earum omnium, qu&aelig; cum alia applicata in A per HA pendulum pondus <lb/>&longs;u&longs;tinere po&longs;&longs;it; </s>
					<s id="N239C6"><!-- NEW -->ali&agrave;s ver&ograve; hinc inde applicatas e&longs;&longs;e maiores, v.g. <!-- REMOVE S-->applica&shy;<lb/>tam in E per EH e&longs;&longs;e ad applicatam in A per HA, vt EH ad HA; </s>
					<s id="N239CE"><!-- NEW -->appli&shy;<lb/>catam ver&ograve; in Z e&longs;&longs;e ad <expan abbr="e&atilde;dem">eandem</expan> vt ZH ad HA; applicatam in T vt <lb/>TH ad HA, &amp;c. </s>
					<s id="N239DA"><!-- NEW -->&longs;unt autem 4.&aelig;quales exceptis maxima, qu&aelig; totum pon&shy;<lb/>dus &longs;u&longs;tinet per lineas HS GH, &amp; minim&acirc;, qu&aelig; cum applicata in A mi&shy;<lb/>nimis viribus &longs;u&longs;tinet, per lineas CH HV; </s>
					<s id="N239E2"><!-- NEW -->&longs;i ver&ograve; a&longs;&longs;umantur qu&aelig;cum&shy;<lb/>que ali&aelig; line&aelig;, &longs;unt 4. &aelig;quales v.g. <!-- REMOVE S-->accipiatur EH, &longs;it HB ip&longs;i &aelig;qualis <pb pagenum="313" xlink:href="026/01/347.jpg"/>producta per H ad X; </s>
					<s id="N239EF"><!-- NEW -->erunt haud dubi&egrave; 4.line&aelig;, quibus eadem applica&shy;<lb/>ta potentia cum altera in A &longs;u&longs;tinebit pondus, &longs;cilicet HE &amp; oppo&longs;ita <lb/>HI, HB cum oppo&longs;ita HX, &longs;uppono enim HB e&longs;&longs;e &aelig;qualem HE, &amp; BH <lb/>pellere ver&longs;us H: qu&aelig; omnia cert&egrave; ob&longs;erua&longs;&longs;e non piget, pr&aelig;&longs;ertim c&ugrave;m <lb/>tota res i&longs;ta iucunda iuxta, atque vtilis e&longs;&longs;e videatur. </s>
				</p>
				<p id="N239FB" type="main">
					<s id="N239FD"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N23A0A" type="main">
					<s id="N23A0C"><!-- NEW -->Colligo prim&ograve; ex his determinationem impetus producti in puncto <lb/>O e&longs;&longs;e omnin&ograve; &longs;implicem &agrave; propria &longs;cilicet ponderis penduli grauitatio&shy;<lb/>ne, nec quidquam facere potentiam applicatam in A; </s>
					<s id="N23A14"><!-- NEW -->quippe impetus <lb/>determinatur ad Tangentem OQ, qu&aelig; e&longs;t eadem cum linea grauitatio&shy;<lb/>nis; vnde reuer&acirc; &longs;u&longs;tinetur totum pondus in O. <!-- KEEP S--></s>
				</p>
				<p id="N23A1D" type="main">
					<s id="N23A1F"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N23A2C" type="main">
					<s id="N23A2E"><!-- NEW -->Secund&ograve;, &longs;i pondus &longs;it in D, e&longs;t determinatio mixta vtraque &aelig;qualis, <lb/>nam neque potentia retinens in A e&longs;t maior potentia grauitationis in&shy;<lb/>clinantis deor&longs;um; </s>
					<s id="N23A36"><!-- NEW -->alioquin &longs;i maior e&longs;&longs;et, pr&aelig;ualeret; </s>
					<s id="N23A3A"><!-- NEW -->igitur mobile fer&shy;<lb/>retur ver&longs;us A; </s>
					<s id="N23A40"><!-- NEW -->c&ugrave;m tamen quie&longs;cat in D, nec etiam maior e&longs;t potentia <lb/>grauitationis; </s>
					<s id="N23A46"><!-- NEW -->alioqui pondus ferretur deor&longs;um, nec dicas nullam e&longs;&longs;e <lb/>potentiam applicatam in A; </s>
					<s id="N23A4C"><!-- NEW -->nam reuer&acirc;, &longs;i quis ex puncto A &longs;u&longs;tinet <lb/>pendulum pondus, maxim&egrave; defatigatur, &amp; maxim&egrave; agit eius potentia mo&shy;<lb/>trix; quomodo ver&ograve; &longs;u&longs;tineantur pondera, dicemus lib.  10. </s>
				</p>
				<p id="N23A54" type="main">
					<s id="N23A56"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N23A63" type="main">
					<s id="N23A65"><!-- NEW -->Terti&ograve;, &longs;i pondus &longs;it in H vel in L e&longs;t determinatio mixta ex duabus <lb/>in&aelig;qualibus, ita vt determinatio potenti&aelig;, qu&aelig; e&longs;t applicata in A &longs;it mi&shy;<lb/>nor determinatione, qu&aelig; e&longs;t &agrave; grauitatione ponderis; </s>
					<s id="N23A6D"><!-- NEW -->&longs;it enim pondus in <lb/>H, &longs;itque determinatio altera per lineam HA, altera per lineam HG; </s>
					<s id="N23A73"><!-- NEW -->&longs;i <lb/>vtraque &aelig;qualis e&longs;t, linea determinationis mixt&aelig; non e&longs;&longs;et Tangens HF; </s>
					<s id="N23A79"><!-- NEW --><lb/>nec enim angulus AHG diuidit &aelig;qualiter bifariam ip&longs;am HF; atqui <lb/>cum vtraque determinatio e&longs;t &aelig;qualis, po&longs;ita quod vtraque linea faciat <lb/>angulum, linea nou&aelig; determinationis facit angulum vtrimque &aelig;qualem, <lb/>vt demon&longs;trauimus &longs;upr&agrave;. </s>
				</p>
				<p id="N23A85" type="main">
					<s id="N23A87"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N23A94" type="main">
					<s id="N23A96"><!-- NEW -->Quart&ograve; hinc colligo, determinationem, qu&aelig; e&longs;t &agrave; potentia applicata <lb/>in A cre&longs;cere continu&egrave; ab O ad D, ita vt in O &longs;it nulla, in D &longs;it maxima, <lb/>id e&longs;t &aelig;qualis alteri determinationi propri&aelig; grauitationis; </s>
					<s id="N23A9E"><!-- NEW -->in reliquis ve&shy;<lb/>r&ograve; punctis prima e&longs;t ad &longs;ecundam, vt &longs;inus rectus &longs;uperioris arcus ad &longs;i&shy;<lb/>num totum, v.g.&longs;i pondus &longs;it in L, determinatio grauitationis e&longs;t ad aliam <lb/>vt LA ad LR, &longs;i &longs;it in H vt HA ad HS, &longs;i &longs;it in O vt OA ad nihil; </s>
					<s id="N23AA8"><!-- NEW -->&longs;i <lb/>&longs;it in D vt DA ad DA; idem dico de omnibus aliis punctis inter&shy;<lb/>mediis. </s>
				</p>
				<p id="N23AB0" type="main">
					<s id="N23AB2"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 5.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N23ABF" type="main">
					<s id="N23AC1">Quint&ograve; colligo, impetum grauitationis productum in &longs;ingulis pun&shy;<lb/>ctis e&longs;&longs;e ad impetum productum in O, id e&longs;t ad maximum, qui po&longs;&longs;it <pb pagenum="314" xlink:href="026/01/348.jpg"/>produci </s>
					<s id="N23ACB"><!-- NEW -->vno in&longs;tanti ab ip&longs;o corpore grani, vt &longs;inum rectum arcus infe&shy;<lb/>rioris ad &longs;inum totum; </s>
					<s id="N23AD1"><!-- NEW -->&longs;it enim pondus in L, impetus productus in L <lb/>e&longs;t ad productum in O, vt &longs;inus BL ad LA; </s>
					<s id="N23AD7"><!-- NEW -->&longs;it in H, vt &longs;inus HC ad <lb/>HA; </s>
					<s id="N23ADD"><!-- NEW -->&longs;it in O vt OA ad OA, &longs;it in D vt nihil ad DA: </s>
					<s id="N23AE1"><!-- NEW -->hinc vides con&shy;<lb/>trarias vices impetus producti in &longs;ingulis punctis, &amp; determinationis, <lb/>qu&aelig; e&longs;t &agrave; potentia applicata in A; </s>
					<s id="N23AE9"><!-- NEW -->quipp&egrave; ille continu&ograve; imminuitur ab <lb/>O ad D; </s>
					<s id="N23AEF"><!-- NEW -->h&aelig;c ver&ograve; continuo cre&longs;cit; </s>
					<s id="N23AF3"><!-- NEW -->ille totus e&longs;t in O nullus in D; </s>
					<s id="N23AF7"><!-- NEW -->h&aelig;c <lb/>tota in D, nulla in O; </s>
					<s id="N23AFD"><!-- NEW -->ille e&longs;t ad totum, vt &longs;inus arcus inferioris ad &longs;i&shy;<lb/>num totum; h&aelig;c ver&ograve; e&longs;t ad totam, &longs;eu maximam, vt &longs;inus arcus &longs;uperio&shy;<lb/>ris ad &longs;inum totum. </s>
				</p>
				<p id="N23B05" type="main">
					<s id="N23B07"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 6.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N23B14" type="main">
					<s id="N23B16"><!-- NEW -->Sext&ograve;, hinc colligo rationem &agrave; priori huius imminutionis impetus; </s>
					<s id="N23B1A"><!-- NEW --><lb/>cum enim impetus de&longs;truatur ne &longs;it fru&longs;tr&agrave;; </s>
					<s id="N23B1F"><!-- NEW -->cert&egrave; propter <expan abbr="e&atilde;dem">eandem</expan> ratio&shy;<lb/>nem non producitur, ne &longs;cilicet &longs;it fru&longs;tr&agrave;; </s>
					<s id="N23B29"><!-- NEW -->c&ugrave;m enim impetus &longs;it vt mo&shy;<lb/>tus, &longs;it mobile in L cum duplici determinatione alteram per lineam LA <lb/>alteram L <foreign lang="greek">d</foreign>; </s>
					<s id="N23B35"><!-- NEW -->&longs;it autem h&aelig;c ad illam vt LA ad LR, vel vt L <foreign lang="greek">d</foreign> &aelig;qualis <lb/>LA ad L <foreign lang="greek">b</foreign> &aelig;qualem LR, &longs;itque arcus LO grad. <!-- REMOVE S-->30. LR e&longs;t &longs;ubdupla <lb/>LA; </s>
					<s id="N23B47"><!-- NEW -->&longs;it <foreign lang="greek">b u</foreign> &aelig;qualis L <foreign lang="greek">d</foreign>, ip&longs;ique parallela, &amp; <foreign lang="greek">u d</foreign> &aelig;qualis L <foreign lang="greek">b</foreign> &amp; paralle&shy;<lb/>la; </s>
					<s id="N23B5D"><!-- NEW -->cert&egrave; hoc po&longs;ito, motus erit per L <foreign lang="greek">u</foreign>, &longs;cilicet per diagonalem, vt &longs;&aelig;&shy;<lb/>pi&ugrave;s &longs;upr&agrave; demon&longs;trauimus; </s>
					<s id="N23B67"><!-- NEW -->igitur &longs;i tant&ugrave;m e&longs;&longs;et determinatio L <foreign lang="greek">d</foreign> mo&shy;<lb/>tus e&longs;&longs;et L <foreign lang="greek">d</foreign>; </s>
					<s id="N23B75"><!-- NEW -->&longs;i ver&ograve; conjungatur determinatio L <foreign lang="greek">b</foreign>, motus erit L <foreign lang="greek">u</foreign>; </s>
					<s id="N23B81"><!-- NEW -->&longs;ed <lb/>impetus e&longs;t vt motus; </s>
					<s id="N23B87"><!-- NEW -->igitur impetus L <foreign lang="greek">d</foreign>, cum vtraque determinatione <lb/>conjunctus non haberet totum &longs;uum effectum, id e&longs;t motum L <foreign lang="greek">d</foreign>; </s>
					<s id="N23B95"><!-- NEW -->igitur <lb/>aliquid illius e&longs;t fru&longs;tr&agrave;; </s>
					<s id="N23B9B"><!-- NEW -->igitur producitur tant&ugrave;m impetus vt L <foreign lang="greek">u</foreign>; </s>
					<s id="N23BA3"><!-- NEW -->&longs;ed <lb/>vt L <foreign lang="greek">u</foreign> ad L <foreign lang="greek">d</foreign>, ita LB ad LA; nam triangula L <foreign lang="greek">u d</foreign>, &amp; BLA &longs;unt &aelig;qua&shy;<lb/>lia, &amp; &aelig;quiangula, vt patet. </s>
				</p>
				<p id="N23BB7" type="main">
					<s id="N23BB9"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 7.<emph.end type="center"/></s>
				</p>
				<p id="N23BC5" type="main">
					<s id="N23BC7"><!-- NEW -->Septim&ograve; colligo, &longs;ingulis in&longs;tantibus mutari determinationem qu&aelig; e&longs;t <lb/>ab A, &amp; con&longs;equenter determinationem mixtam, ip&longs;amque acce&longs;&longs;ionem <lb/>impetus noui: </s>
					<s id="N23BCF"><!-- NEW -->hinc etiam rect&egrave; explicatur, in quo po&longs;itum &longs;it illud impe&shy;<lb/>dimentum ratione cuius corpus rect&agrave; deor&longs;um non tendit; quipp&egrave; in <lb/>eo tant&ugrave;m po&longs;itum e&longs;t, quod &longs;it noua determinatio, idem dico de re&longs;i&shy;<lb/>&longs;tentia. </s>
				</p>
				<p id="N23BD9" type="main">
					<s id="N23BDB">Ob&longs;eruabis autem idem pr&aelig;&longs;tare funem affixum in A ratione conti&shy;<lb/>nuitatis, &amp; vnionis &longs;uarum partium, quod pr&aelig;&longs;taret potentia in A fune <lb/>ip&longs;o trahens, vt con&longs;tat, &longs;eu pondus contranitens ex rotula appen&longs;um. </s>
				</p>
				<p id="N23BE2" type="main">
					<s id="N23BE4"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 8.<emph.end type="center"/></s>
				</p>
				<p id="N23BF0" type="main">
					<s id="N23BF2"><!-- NEW -->Octau&ograve; colligo, cre&longs;cere impedimentum ab O in D in ratione &longs;i&shy;<lb/>nuum ver&longs;orum arcus &longs;uperioris; </s>
					<s id="N23BF8"><!-- NEW -->c&ugrave;m enim in L v. <!-- REMOVE S-->g. <!-- REMOVE S-->motus &longs;it ad mo&shy;<lb/>tum liberum in O vt L <foreign lang="greek">u</foreign> ad L <foreign lang="greek">d</foreign> vel vt LB ad LA, impeditur motus vt <lb/>RO; </s>
					<s id="N23C0C"><!-- NEW -->nam motus, vel impetus in L e&longs;t minor impetu in O, differentia <lb/>vtriu&longs;que RO, &longs;ed RO e&longs;t &longs;inus ver&longs;us arcus OL; idem dico de <lb/>reliquis. </s>
				</p>
				<pb pagenum="315" xlink:href="026/01/349.jpg"/>
				<p id="N23C18" type="main">
					<s id="N23C1A"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 9.<emph.end type="center"/></s>
				</p>
				<p id="N23C26" type="main">
					<s id="N23C28"><!-- NEW -->Non&ograve; colligo hoc impedimentum facere quidem, ne tantus impetus <lb/>nouus accidat, non tamen facere vt productus ant&egrave; pereat; </s>
					<s id="N23C2E"><!-- NEW -->quippe ni&shy;<lb/>hil impetus ant&egrave; producti de&longs;truitur per &longs;e; </s>
					<s id="N23C34"><!-- NEW -->lic&egrave;t determinatio noua per <lb/>Tangentem nouam accedat in &longs;ingulis punctis; </s>
					<s id="N23C3A"><!-- NEW -->nihil tamen impetus e&longs;t <lb/>fru&longs;tr&agrave;; </s>
					<s id="N23C40"><!-- NEW -->vt in reflexione dictum e&longs;t, adde quod determinatio prior, nihil <lb/>pror&longs;us confert; </s>
					<s id="N23C46"><!-- NEW -->quia tota impeditun &agrave; potentia retinente in A immo&shy;<lb/>biliter; dixi per &longs;e, quia per accidens propter aliquam ten&longs;ionem chor&shy;<lb/>d&aelig; pote&longs;t aliquid de&longs;trui, qu&aelig; ten&longs;io e&longs;t pror&longs;us per accidens. </s>
				</p>
				<p id="N23C4E" type="main">
					<s id="N23C50"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 10.<emph.end type="center"/></s>
				</p>
				<p id="N23C5C" type="main">
					<s id="N23C5E"><!-- NEW -->Decim&ograve; colligo inde reddi rationem &agrave; priori, cur ille motus vibra&shy;<lb/>tionis funependuli &longs;it acceleratus; </s>
					<s id="N23C64"><!-- NEW -->quia impetus additur &longs;ingulis in&longs;tan&shy;<lb/>tibus, &amp; nihil de&longs;truitur; </s>
					<s id="N23C6A"><!-- NEW -->imm&ograve; &longs;i de&longs;trueretur iuxta rationem pr&aelig;dicti <lb/>impedimenti, &amp; pondus e&longs;&longs;et in H, c&ugrave;m ratio impedimenti &longs;it SO, &amp; <lb/>ratio noui impetus CH &aelig;qualis SO; </s>
					<s id="N23C72"><!-- NEW -->haud dubi&egrave; in H <expan abbr="tant&utilde;dem">tantundem</expan> pro&shy;<lb/>duceretur impetus, quantum de&longs;trueretur; igitur nullum &longs;entiretur pon&shy;<lb/>dus in H, quod ab&longs;urdum e&longs;t. </s>
				</p>
				<p id="N23C7E" type="main">
					<s id="N23C80"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 12.<emph.end type="center"/></s>
				</p>
				<p id="N23C8C" type="main">
					<s id="N23C8E"><!-- NEW --><emph type="italics"/>Velocitates acqui&longs;it&aelig; in funependulis in&aelig;qualibus &longs;unt vt altitudines<emph.end type="italics"/>; &longs;it <lb/>enim in figura. </s>
					<s id="N23C99"><!-- NEW -->Th. 10. Funependulum maius AH, minus GH; </s>
					<s id="N23C9D"><!-- NEW -->&longs;it vi&shy;<lb/>bratio minoris FYH; </s>
					<s id="N23CA3"><!-- NEW -->&longs;it vibratio maioris DKH: </s>
					<s id="N23CA7"><!-- NEW -->dico velocitatem <lb/>acqui&longs;itam in prima vibratione e&longs;&longs;e ad acqui&longs;itam in &longs;ecunda, vt AH ad <lb/>GH; </s>
					<s id="N23CAF"><!-- NEW -->&longs;i ver&ograve; vibratio maioris &longs;it tant&ugrave;m LKH; </s>
					<s id="N23CB3"><!-- NEW -->dico e&longs;&longs;e &aelig;qualem ve&shy;<lb/>locitatem vtriu&longs;que, qu&aelig; omnia patent ex dictis: hinc &longs;eruari po&longs;&longs;unt <lb/>qu&aelig; cumque proportiones ictuum inflictorum &agrave; malleis, vel &longs;imul, vel <lb/>&longs;ucce&longs;&longs;iue, &amp;c. </s>
				</p>
				<p id="N23CBD" type="main">
					<s id="N23CBF"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 13.<emph.end type="center"/></s>
				</p>
				<p id="N23CCB" type="main">
					<s id="N23CCD"><!-- NEW --><emph type="italics"/>Ex dictis po&longs;&longs;unt multa determinari, &longs;eu cogno&longs;ci primo cognito numero vi&shy;<lb/>brationum funependulorum in&aelig;qualium, qu&aelig; eodem tempore peraguntur, co&shy;<lb/>gno&longs;ci po&longs;&longs;unt altitudines, &longs;eu longitudines funium<emph.end type="italics"/>; </s>
					<s id="N23CDA"><!-- NEW -->&longs;unt enim longitudines, <lb/>vt quadrati numerorum permutando; </s>
					<s id="N23CE0"><!-- NEW -->&longs;int enim duo funependula A, &amp; <lb/>B, &amp; numerentur vibrationes 5. penduli A &amp; 7. penduli B &aelig;quali tem&shy;<lb/>pore; a&longs;&longs;umantur quadrati vtriu&longs;que 25. &amp; 49. cert&egrave; longitudo penduli <lb/>A, erit ad longitudinem penduli B vt 49. ad 25. Secund&ograve;, ex cognita <lb/>minima longitudine cogno&longs;citur maxima v.g.&longs;it funependulum tripeda&shy;<lb/>le, cuius integra vibratio tempore vnius &longs;ecundi minuti peragitur, vt <lb/>aliqui volunt &lpar;quod tant&ugrave;m exempli gratia a&longs;&longs;umptum &longs;it&rpar; numerentur. </s>
					<s id="N23CF0"><!-- NEW --><lb/>v.g. <!-- REMOVE S-->10. vibrationes huius tripedalis funependuli eo tempore, quo du&aelig; <lb/>&aelig;nt&ugrave;m vibrationes alterius maioris numerantur; &longs;int quadrati 100. &amp; <lb/>4. cert&egrave; longitudo maioris e&longs;t ad longitudinem maioris vt 4. ad 100.igi&shy;<lb/>tur &longs;i 4. dant 100. quid dabunt 3. habeo 75. igitur longitudo maioris <lb/>funependuli e&longs;t 75. pedum. </s>
					<s id="N23CFF"><!-- NEW -->Terti&ograve;, pote&longs;t cogno&longs;ci altitudo putei quan&shy;<lb/>tumuis alti&longs;&longs;imi, vel alterius loci editi, ex quo demittitur corpus graue; </s>
					<s id="N23D05"><!-- NEW --><pb pagenum="316" xlink:href="026/01/350.jpg"/>&longs;i enim toto eo tempore, quo corpus graue cadit, numerentur 6. vibratio&shy;<lb/>nes tripedalis funependuli; </s>
					<s id="N23D0F"><!-- NEW -->haud dubi&egrave; motus ille durauit &longs;ex minutis <lb/>&longs;ecundis; igitur &longs;i pr&aelig;cogno&longs;catur quantum &longs;patij percurratur deor&longs;um, <lb/>dum fluit vnum &longs;ecundum minutum, quod &longs;it.v.g. </s>
					<s id="N23D17">&longs;patium pedum 18 6/7 <lb/>hoc po&longs;ito, quadrentur tempora &longs;cilicet, &amp; 6. habeo 1. &amp; 36. iam facio <lb/>regulam trium, &longs;i 1.dat. </s>
					<s id="N23D1E">18 6/7 quid dabunt 36. &amp; habeo 619. pedes mi&shy;<lb/>nus 1/2. </s>
				</p>
				<p id="N23D25" type="main">
					<s id="N23D27"><!-- NEW -->Ob&longs;eruabis autem dictum fui&longs;&longs;e &agrave; me &longs;upr&agrave; funependulum tripedale <lb/>peragere &longs;uam integram vibrationem tempore vnius &longs;ecundi minuti; </s>
					<s id="N23D2D"><!-- NEW --><lb/>quod cert&egrave;, vt ait eruditus Mer&longs;ennus, &longs;&aelig;pi&ugrave;s ob&longs;eruatum e&longs;t; </s>
					<s id="N23D32"><!-- NEW -->h&aelig;c autem <lb/>e&longs;t ob&longs;eruatio Mer&longs;enni, quam habet in Bali&longs;t. <!-- REMOVE S-->prop.15.eamque &longs;&aelig;pi&ugrave;s, <lb/>vt ip&longs;e ait, iteratam: </s>
					<s id="N23D3C"><!-- NEW -->Itaque dicit tripedalis &longs;ili &longs;patio quadrantis hor&aelig;, <lb/>nongentas vibrationes fui&longs;&longs;e numeratas, &longs;ed in quadrante hor&aelig; &longs;unt 15. <lb/>minuta prima; </s>
					<s id="N23D44"><!-- NEW -->igitur nongenta &longs;ecunda; igitur cum &longs;ingul&aelig; vibrationes <lb/>&aelig;quali tempore peragantur &longs;ingulis &longs;ecundis minutis re&longs;pondent. </s>
				</p>
				<p id="N23D4A" type="main">
					<s id="N23D4C"><!-- NEW -->Inde in&longs;ignem difficultatem educit idem auctor; </s>
					<s id="N23D50"><!-- NEW -->cum enim in per&shy;<lb/>pendiculari deor&longs;um percurrantur 12. pedes tempore vnius &longs;ecundi mi&shy;<lb/>nuti, &amp; 48. tempore duorum &longs;ecundorum, quod multis ob&longs;eruationibus <lb/>comprobatum e&longs;t; </s>
					<s id="N23D5A"><!-- NEW -->cert&egrave; tempore &longs;emi&longs;ecundi minuti 3. tant&ugrave;m pedes <lb/>confici nece&longs;&longs;e e&longs;t; </s>
					<s id="N23D60"><!-- NEW -->igitur eo tempore, quo radius tripedalis percurritur, <lb/>totus etiam percurritur quadrantis arcus, qui e&longs;t 4 3/7; </s>
					<s id="N23D66"><!-- NEW -->igitur maior e&longs;t <lb/>motus in arcu, qu&agrave;m in perpendiculari, quod dici non pote&longs;t; c&ugrave;m ne <lb/>&aelig;qualis quidem &longs;it. </s>
				</p>
				<p id="N23D6E" type="main">
					<s id="N23D70"><!-- NEW -->Ad &longs;oluendum hunc nodum &longs;upponendum e&longs;t vibrationes minores <lb/>citi&ugrave;s peragi, qu&agrave;m maiores; </s>
					<s id="N23D76"><!-- NEW -->quod etiam ibidem ob&longs;eruat idem auctor; </s>
					<s id="N23D7A"><!-- NEW --><lb/>igitur non e&longs;t dubium, quin long&egrave; plures vibrationes fiant, qu&agrave;m fierent <lb/>&longs;i omnes e&longs;&longs;ent &aelig;quales arcui quadrantis; </s>
					<s id="N23D81"><!-- NEW -->&longs;i enim numeres minores dum <lb/>alius numerat maiores; </s>
					<s id="N23D87"><!-- NEW -->cum numerabis 10. ille vix 9. habebit, &amp; &longs;i <lb/>omnes maiores e&longs;&longs;ent &aelig;quales prim&aelig; integr&aelig;, dum habes 9. vix haberet <lb/>8. itaque non re&longs;pondent &longs;ingul&aelig; vibrationes &aelig;quales prim&aelig; integr&aelig; <lb/>&longs;ingulis &longs;ecundis minutis; &longs;ed fer&egrave; &longs;ingulis pl&ugrave;s 16. vel 17. minutis <lb/>tertiis. </s>
				</p>
				<p id="N23D93" type="main">
					<s id="N23D95"><!-- NEW -->Quare eo tempore, quo percurritur arcus quadrantis funependuli tri&shy;<lb/>pedalis non percurruntur in perpendiculo 6. pedes; </s>
					<s id="N23D9B"><!-- NEW -->quia in perpendi&shy;<lb/>culo percurruntur 6. pedes eo tempore, quo diagonalis quadrati, &longs;eu latus <lb/>quadrati in&longs;cripti percurritur; </s>
					<s id="N23DA3"><!-- NEW -->v.g. <!-- REMOVE S-->in figura Lem.3.percurruntur DT <lb/>dupla radij ID, eo tempore, quo percurritur DP; </s>
					<s id="N23DAB"><!-- NEW -->&longs;ed DP percurritur <lb/>tardi&ugrave;s, qu&agrave;m arcus DKP; </s>
					<s id="N23DB1"><!-- NEW -->igitur DKP citi&ugrave;s qu&agrave;m DT; </s>
					<s id="N23DB5"><!-- NEW -->igitur non <lb/>percurritur &longs;patium 6. pedum in perpendiculo eo tempore, quo percur&shy;<lb/>ritur arcus quadrantis DKP, cuius radius ID &longs;it tripedalis; </s>
					<s id="N23DBD"><!-- NEW -->pr&aelig;terea <lb/>non percurruntur tant&ugrave;m in perpendiculo eodem tempore pedes &longs;patij <lb/>4 5/7, vel vndecim, &longs;i radius con&longs;tat 7. pedibus, vt voluit idem auctor l. <!-- REMOVE S-->2. <lb/>de cau&longs;is &longs;onorum Prop. 27. Cor. <!-- REMOVE S-->3. quia &longs;i radius habet 3. arcus <lb/>quadrantis habet 4 5/7. &longs;i radius habet 7. arcus quadrantis habet 11. <lb/>&longs;ed eodem tempore conficitur maius &longs;patium in perpendiculo, qu&agrave;m in <pb pagenum="317" xlink:href="026/01/351.jpg"/>arcu, cuius ratio con&longs;tat clari&longs;&longs;im&egrave; ex dictis, quia dum mobile mouea&shy;<lb/>tur in perpendiculo &longs;ingulis in&longs;tantibus nouum impetum &aelig;qualem pri&shy;<lb/>mo producit, in arcu ver&ograve; minorem; </s>
					<s id="N23DD8"><!-- NEW -->igitur minor e&longs;t motus; </s>
					<s id="N23DDC"><!-- NEW -->igitur mi&shy;<lb/>nus &longs;patium eodem tempore percurritur in arcu, &amp; maius in perpendi&shy;<lb/>culo; </s>
					<s id="N23DE4"><!-- NEW -->igitur non percurruntur 11. tant&ugrave;m in perpendiculo eo tempore <lb/>quo 11. percurruntur in arcu; quantum ver&ograve; &longs;patium in perpendiculo <lb/>percurratur eo tempore, quo arcus quadrantis dati conficitur, determi&shy;<lb/>nabimus infr&agrave;. </s>
				</p>
				<p id="N23DEE" type="main">
					<s id="N23DF0"><!-- NEW -->Denique ob&longs;eruabis, ex hoc etiam po&longs;&longs;e concludi omnes vibrationes <lb/>eiu&longs;dem funependuli non e&longs;&longs;e &aelig;qu&egrave; diuturnas; </s>
					<s id="N23DF6"><!-- NEW -->nam reuer&agrave; &longs;i &aelig;qu&egrave; diu&shy;<lb/>turn&aelig; e&longs;&longs;ent, &amp; nongent&aelig; numerat&aelig; e&longs;&longs;ent &longs;patio 15. minutorum; </s>
					<s id="N23DFC"><!-- NEW -->haud <lb/>dubi&egrave; &longs;ingul&aelig; &longs;ingulis &longs;ecundis minutis re&longs;ponderent; igitur eo tempore, <lb/>quo tres &longs;patij pedes decurrerentur in perpendiculo, in quadrantis arcu <lb/>4. 3/7 conficerentur, quod fieri non pote&longs;t. </s>
				</p>
				<p id="N23E06" type="main">
					<s id="N23E08"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 14.<emph.end type="center"/></s>
				</p>
				<p id="N23E14" type="main">
					<s id="N23E16"><!-- NEW --><emph type="italics"/>In a&longs;cen&longs;u vibrationis funependuli de&longs;truitur impetus<emph.end type="italics"/>; patet, quia de&longs;init <lb/>motus; </s>
					<s id="N23E21"><!-- NEW -->igitur &amp; impetus, ne &longs;it fru&longs;tr&agrave;; </s>
					<s id="N23E25"><!-- NEW -->pr&aelig;terea applicatum e&longs;t princi&shy;<lb/>pium de&longs;tructionis impetus; </s>
					<s id="N23E2B"><!-- NEW -->igitur de&longs;truitur; antecedens ex dicendis <lb/>infra clari&longs;&longs;imum euadet. </s>
				</p>
				<p id="N23E31" type="main">
					<s id="N23E33"><!-- NEW -->De&longs;truitur autem impetus propter impetum innatum, qui &longs;ingulis in&shy;<lb/>&longs;tantibus contranititur; </s>
					<s id="N23E39"><!-- NEW -->quemadmodum enim in motu violento &longs;ur&longs;um <lb/>ideo de&longs;truitur impetus ab innato, quia hic e&longs;t determinatus ad lineam <lb/>deor&longs;um; </s>
					<s id="N23E41"><!-- NEW -->ille ver&ograve; &longs;ur&longs;um, ex quo determinatio mixta oritur; </s>
					<s id="N23E45"><!-- NEW -->vnde ali&shy;<lb/>quid impetus de&longs;truitur, ne &longs;it fru&longs;tr&agrave;; idem pror&longs;us dicendum e&longs;t in a&longs;&shy;<lb/>cen&longs;u per arcum. </s>
				</p>
				<p id="N23E4D" type="main">
					<s id="N23E4F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 15.<emph.end type="center"/></s>
				</p>
				<p id="N23E5B" type="main">
					<s id="N23E5D"><!-- NEW --><emph type="italics"/>Singulis in&longs;tantibus in&aelig;qualiter de&longs;truitur impetus in a&longs;cen&longs;u illo vibratio&shy;<lb/>nis<emph.end type="italics"/>; prob. </s>
					<s id="N23E6A"><!-- NEW -->quia &longs;ingulis in&longs;tantibus mutatur determinatio, id e&longs;t ratio <lb/>plani inclinati; </s>
					<s id="N23E70"><!-- NEW -->nam quodlibet punctum arcus, vt &longs;&aelig;p&egrave; dictum e&longs;t, facit <lb/>planum inclinatum diuer&longs;um; </s>
					<s id="N23E76"><!-- NEW -->igitur line&aelig; vtriu&longs;que determinationis <lb/>faciunt diuer&longs;um angulum; </s>
					<s id="N23E7C"><!-- NEW -->igitur determinatio noua mixta diuer&longs;a e&longs;t; <lb/>igitur pl&ugrave;s vel min&ugrave;s impetus de&longs;truitur, quia pl&ugrave;s vel min&ugrave;s e&longs;t fru&longs;tr&agrave;, <lb/>quod ex dicendis patebit. </s>
				</p>
				<p id="N23E84" type="main">
					<s id="N23E86"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 16.<emph.end type="center"/></s>
				</p>
				<p id="N23E92" type="main">
					<s id="N23E94"><!-- NEW --><emph type="italics"/>De&longs;truitur impetus in &longs;ingulis punctis iuxta rationem &longs;inuum rectorum ar&shy;<lb/>cuum inferiorum<emph.end type="italics"/> v.g. <!-- REMOVE S-->&longs;it arcus a&longs;cen&longs;us DIO, &longs;itque mobile pendulum in <lb/>H; </s>
					<s id="N23EA3"><!-- NEW -->impetus qui de&longs;truitur in H, e&longs;t ad impetum qui de&longs;truitur in per&shy;<lb/>pendiculari &longs;ur&longs;um &lpar;&longs;uppo&longs;ito &longs;cilicet <expan abbr="t&etilde;pore">tempore</expan>&rpar; vt &longs;inus HC ad &longs;inum HA; </s>
					<s id="N23EAD"><!-- NEW --><lb/>nam de&longs;truitur in ea ratione, iuxta quam de&longs;trueretur in plano inclinato <lb/>EH; </s>
					<s id="N23EB4"><!-- NEW -->&longs;ed in planis inclinatis iuxta pr&aelig;dictam rationem impetum de&longs;trui <lb/>demon&longs;tratum e&longs;t &longs;uo loco; </s>
					<s id="N23EBA"><!-- NEW -->adde quod impetus innatus determinat mo&shy;<lb/>bile ad lineam deor&longs;um HG, alius ver&ograve; ad lineam HM; </s>
					<s id="N23EC0"><!-- NEW -->atqui &longs;i e&longs;&longs;ent <lb/>duo gradus impetus, quorum alter e&longs;&longs;et determinatus per HM, alter per <pb pagenum="318" xlink:href="026/01/352.jpg"/>HGV, motus fieret per HX, &longs;ed HX e&longs;t &aelig;qualis HM; </s>
					<s id="N23ECC"><!-- NEW -->igitur de&longs;truitur <lb/>&longs;ubduplus impetus, quia e&longs;t fru&longs;tr&agrave;; </s>
					<s id="N23ED2"><!-- NEW -->&longs;ed HC e&longs;t &longs;ubdupla HA: </s>
					<s id="N23ED6"><!-- NEW -->pr&aelig;terea <lb/>impetus innatus retrahit mobile per HE min&ugrave;s, qu&agrave;m AD iuxta eam <lb/>proportionem, in qua motus per HE e&longs;t minor qu&agrave;m motus per AD; </s>
					<s id="N23EDE"><!-- NEW -->&longs;ed <lb/>motus per HE e&longs;t ad motum per AD vt HE ad AE, vel vt HC ad HA; </s>
					<s id="N23EE4"><!-- NEW --><lb/>igitur illa vis, qu&aelig; retrahit mobile per HE e&longs;t ad eam, qua retrahitur <lb/>per AD vt HC ad HA; </s>
					<s id="N23EEB"><!-- NEW -->&longs;ed in eadem proportione de&longs;truitur impetus, <lb/>quo mobile fertur &longs;ur&longs;um, in qua retrahitur deor&longs;um; </s>
					<s id="N23EF1"><!-- NEW -->igitur impetus de&shy;<lb/>&longs;tructus in H e&longs;t ad de&longs;tructum in perpendiculo vt HC ad HA; ergo <lb/>vt &longs;inus rectus arcus inferioris e&longs;t ad &longs;inum totum. </s>
				</p>
				<p id="N23EF9" type="main">
					<s id="N23EFB"><!-- NEW -->Dictum e&longs;t eodem tempore; </s>
					<s id="N23EFF"><!-- NEW -->nam minori tempore min&ugrave;s impetus de&shy;<lb/>&longs;truitur, pl&ugrave;s ver&ograve; maiori; </s>
					<s id="N23F05"><!-- NEW -->vnde quando comparatur impetus de&longs;tructus <lb/>in plano inclinato &longs;ur&longs;um cum de&longs;tructo in verticali, &longs;emper intelligi&shy;<lb/>tur vtrumque de&longs;trui eodem tempore; </s>
					<s id="N23F0D"><!-- NEW -->alioquin vitio&longs;a e&longs;&longs;et proportio, <lb/>&amp; comparatio; idem dico de impetu producto, quod de de&longs;tructo. </s>
				</p>
				<p id="N23F13" type="main">
					<s id="N23F15"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N23F21" type="main">
					<s id="N23F23">Inde colliges in eadem proportione min&ugrave;s impetus de&longs;trui in a&longs;cen&longs;u <lb/>per planum inclinatum, qu&acirc; min&ugrave;s producitur in de&longs;cen&longs;u. </s>
				</p>
				<p id="N23F28" type="main">
					<s id="N23F2A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 17.<emph.end type="center"/></s>
				</p>
				<p id="N23F36" type="main">
					<s id="N23F38"><emph type="italics"/>Totus impetus qui concurrit ad de&longs;cen&longs;um funependuli, non concurrit ad <lb/>a&longs;cen&longs;um,<emph.end type="italics"/> prob. </s>
					<s id="N23F42"><!-- NEW -->quia impetus innatus non concurrit ad a&longs;cen&longs;um, vt <lb/>con&longs;tat ex dictis alibi; &longs;ed hic concurrit ad de&longs;cen&longs;um. </s>
				</p>
				<p id="N23F48" type="main">
					<s id="N23F4A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 18.<emph.end type="center"/></s>
				</p>
				<p id="N23F56" type="main">
					<s id="N23F58"><!-- NEW --><emph type="italics"/>Aliquis etiam gradus impetus concurrit ad a&longs;cen&longs;um, qui non concurrit <lb/>ad de&longs;cen&longs;um,<emph.end type="italics"/> probatur, quia vltimo in&longs;tanti de&longs;cen&longs;us aliquid impetus <lb/>noui producitur quantumuis minimi, quia &longs;ingulis in&longs;tantibus motus <lb/>deor&longs;um aliquid impetus accedit; </s>
					<s id="N23F67"><!-- NEW -->&longs;ed ille impetus non concurrit ad mo&shy;<lb/>tum deor&longs;um; </s>
					<s id="N23F6D"><!-- NEW -->quia cum primo illo in&longs;tanti, quo e&longs;t, non concurrat ad <lb/>motum, cumque illud in&longs;tans &longs;it vltimum motus deor&longs;um; </s>
					<s id="N23F73"><!-- NEW -->cert&egrave; ad mo&shy;<lb/>tum deor&longs;um non concurrit, &longs;ed ad motum &longs;ur&longs;um concurrit, nam pri&shy;<lb/>mo in&longs;tanti, quo e&longs;t, exigit motum pro &longs;equenti; e&longs;t autem &longs;equens <lb/>in&longs;tans primum a&longs;cen&longs;us. </s>
				</p>
				<p id="N23F7D" type="main">
					<s id="N23F7F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 19.<emph.end type="center"/></s>
				</p>
				<p id="N23F8B" type="main">
					<s id="N23F8D"><!-- NEW --><emph type="italics"/>A&longs;cen&longs;us funependuli non e&longs;t &aelig;qualis de&longs;cen&longs;ui:<emph.end type="italics"/> patet experienti&acirc;; ratio <lb/>e&longs;t manife&longs;ta; </s>
					<s id="N23F98"><!-- NEW -->quia impetus innatus non concurrit ad a&longs;cen&longs;um, lic&egrave;t ad <lb/>de&longs;cen&longs;um concurrat; </s>
					<s id="N23F9E"><!-- NEW -->nec dicas impetus gradum vltimum non concur&shy;<lb/>rere etiam ad de&longs;cen&longs;um, lic&egrave;t concurrat ad a&longs;cen&longs;um; </s>
					<s id="N23FA4"><!-- NEW -->nec enim e&longs;t pa&shy;<lb/>ritas; </s>
					<s id="N23FAA"><!-- NEW -->quia impetus innatus, &longs;eu primus gradus e&longs;t perfecti&longs;&longs;imus omnium <lb/>productorum; </s>
					<s id="N23FB0"><!-- NEW -->vltimus ver&ograve; imperfecti&longs;&longs;imus, t&ugrave;m quia producitur mi&shy;<lb/>nori tempore, t&ugrave;m quia producitur in plano inclinati&longs;&longs;imo; igitur &longs;i <lb/>comparetur cum primo, pro nullo fer&egrave; haberi deber impetus. </s>
				</p>
				<pb pagenum="319" xlink:href="026/01/353.jpg"/>
				<p id="N23FBC" type="main">
					<s id="N23FBE"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N23FCA" type="main">
					<s id="N23FCC"><!-- NEW -->Hinc manife&longs;ta ratio, cur funependulum po&longs;t vibrationem de&longs;cen&longs;us <lb/>non perueniat in a&longs;cen&longs;u ad tantam altitudinem; </s>
					<s id="N23FD2"><!-- NEW -->nec e&longs;t quod aliqui di&shy;<lb/>cant a&euml;ra interceptum efficere, ne ad &aelig;qualem altitudinem a&longs;cendat, <lb/>c&ugrave;m a&euml;r non min&ugrave;s re&longs;i&longs;tat de&longs;cen&longs;ui, qu&agrave;m a&longs;cen&longs;ui; quod quomodo <lb/>fiat, iam alibi explicuimus. </s>
				</p>
				<p id="N23FDC" type="main">
					<s id="N23FDE"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 20.<emph.end type="center"/></s>
				</p>
				<p id="N23FEA" type="main">
					<s id="N23FEC"><!-- NEW --><emph type="italics"/>Maioris vibrationis a&longs;cen&longs;us imminuitur in maiori proportione, qu&agrave;m mi&shy;<lb/>noris<emph.end type="italics"/>; </s>
					<s id="N23FF7"><!-- NEW -->certa experientia, cuius ratio e&longs;t, quia in arcu &longs;uperiore pl&ugrave;s im&shy;<lb/>petus de&longs;truitur, in inferiore min&ugrave;s; </s>
					<s id="N23FFD"><!-- NEW -->igitur pl&ugrave;s &longs;patij detrahitur maiori <lb/>vibrationi, qu&agrave;m minori, &longs;cilicet in a&longs;cen&longs;u; </s>
					<s id="N24003"><!-- NEW -->h&aelig;c ratio demon&longs;tratiua e&longs;t, <lb/>quia qu&ograve; min&ugrave;s impetus de&longs;truitur &longs;ingulis in&longs;tantibus, pl&ugrave;s &longs;patij ac&shy;<lb/>quiritur, vt con&longs;tat ex planis inclinatis; </s>
					<s id="N2400B"><!-- NEW -->&longs;it enim in eadem figura pla&shy;<lb/>num inclinatum DO, &amp; verticale DA; </s>
					<s id="N24011"><!-- NEW -->imprimatur impetus mobili ex D, <lb/>cert&egrave; cum eodem impetu a&longs;cendet per DA &amp; per DO, vt demon&longs;traui&shy;<lb/>mus cum de planis inclinatis; </s>
					<s id="N24019"><!-- NEW -->igitur &longs;ingulis in&longs;tantibus min&ugrave;s impetus <lb/>in DO de&longs;truitur, qu&agrave;m in DA; </s>
					<s id="N2401F"><!-- NEW -->vnde maius &longs;patium conficitur; </s>
					<s id="N24023"><!-- NEW -->e&longs;t enim <lb/>DO maior DA: </s>
					<s id="N24029"><!-- NEW -->ita pror&longs;us accidit in arcu a&longs;cen&longs;us funependuli; </s>
					<s id="N2402D"><!-- NEW -->&longs;it enim <lb/>arcus a&longs;cen&longs;us DH &aelig;qualis arcui de&longs;cen&longs;us oppo&longs;iti; </s>
					<s id="N24033"><!-- NEW -->cert&egrave; tantill&ugrave;m im&shy;<lb/>petus de&longs;truetur; </s>
					<s id="N24039"><!-- NEW -->igitur arcus a&longs;cen&longs;us fer&egrave; accedet ad A; </s>
					<s id="N2403D"><!-- NEW -->&longs;i vet&ograve; arcus <lb/>de&longs;cen&longs;us &longs;it &aelig;qualis DL, pl&ugrave;s impetus de&longs;truetur in a&longs;cen&longs;u; igitur ar&shy;<lb/>cus a&longs;cen&longs;us habebit minorem proportionem ad DL, qu&agrave;m prior ad DH, <lb/>&amp; h&aelig;c e&longs;t veri&longs;&longs;ima ratio luculenti&longs;&longs;imi experimenti, quod fer&egrave; omnibus <lb/>notum e&longs;t. </s>
				</p>
				<p id="N24049" type="main">
					<s id="N2404B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 21.<emph.end type="center"/></s>
				</p>
				<p id="N24057" type="main">
					<s id="N24059"><!-- NEW --><emph type="italics"/>Si proijciatur mobile per ip&longs;um perpendiculum DA cum eo impetu, quo <lb/>ex D feratur in A motu naturaliter retardato; </s>
					<s id="N24061"><!-- NEW -->cert&egrave; cum eodem impetu fere&shy;<lb/>tur in O per DO, &amp; per arcum DLO:<emph.end type="italics"/> probatur quia ex A in D, vel ex O <lb/>in D &longs;iue per chordam OD, &longs;iue per arcum OHD &aelig;qualis impetus ac&shy;<lb/>quiritur per Lemma 11. &longs;ed cum eodem impetu, quo ex A fertur in D. <lb/>vel ex O in D motu naturaliter accelerato, ex D ferri pote&longs;t in A vel in <lb/>O: </s>
					<s id="N24072"><!-- NEW -->dixi cum eodem impetu, ita vt tot gradus impetus concurrant ad a&longs;&shy;<lb/>cen&longs;um, quot ad de&longs;cen&longs;um; </s>
					<s id="N24078"><!-- NEW -->&longs;i enim aliquis gradus concurrens ad de&longs;&shy;<lb/>cen&longs;um, non concurreret ad a&longs;cen&longs;um; </s>
					<s id="N2407E"><!-- NEW -->haud dubi&egrave; non perueniret mo&shy;<lb/>bile ad <expan abbr="e&atilde;dem">eandem</expan> altitudinem; quod autem &aelig;quale &longs;patium re&longs;pondeat <lb/>a&longs;cen&longs;ui, &amp; de&longs;cen&longs;ui &longs;uppo&longs;ito &aelig;quali impetu, iam demon&longs;tratum e&longs;t &longs;u&shy;<lb/>pr&agrave; l. <!-- REMOVE S-->3. &amp; 5. &longs;ed iam examinand&aelig; &longs;unt proportiones huius de&longs;tructio&shy;<lb/>nis impetus in maioribus, &amp; minoribus vibrationibus. </s>
				</p>
				<p id="N24090" type="main">
					<s id="N24092"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 22.<emph.end type="center"/></s>
				</p>
				<p id="N2409E" type="main">
					<s id="N240A0"><!-- NEW --><emph type="italics"/>Pote&longs;t determinari in qua parte arcus de&longs;inat motus &longs;ur&longs;um in a&longs;cen&longs;u <lb/>vibrationis, &longs;i cogno&longs;catur ad quam altitudinem ferretur mobile per ip&longs;um <lb/>perpendiculum<emph.end type="italics"/>; </s>
					<s id="N240AD"><!-- NEW -->fit cum punctum infimum D, &longs;itque in pendule ille impe&shy;<lb/>tus, haud dubi&egrave; per arcum ferretur in <foreign lang="greek">a</foreign>, ducatur <foreign lang="greek">a</foreign>Q parallela AO; </s>
					<s id="N240B7"><!-- NEW -->haud <pb pagenum="320" xlink:href="026/01/354.jpg"/>dubi&egrave; per arcum feretur in Q &amp; per chordam DO perueniet in <foreign lang="greek">q</foreign>; </s>
					<s id="N240C4"><!-- NEW -->&longs;i ve&shy;<lb/>r&ograve; illo impetu ferri tant&ugrave;m po&longs;&longs;it in B per per DA, fertur in 4.per DO, <lb/>&amp; in L per arcum; </s>
					<s id="N240CC"><!-- NEW -->denique &longs;i ferri tant&ugrave;m po&longs;&longs;it illo impetu per DA in <lb/>G, feretur in 3 per DO, &amp; in H per arcum; </s>
					<s id="N240D2"><!-- NEW -->qu&aelig; omnia con&longs;tant ex Th. <!-- REMOVE S--><lb/>20. quia cum eodem impetu a&longs;cendit mobile ad <expan abbr="e&atilde;dem">eandem</expan> altitudinem <lb/>&longs;iue per ip&longs;um perpendiculum, &longs;iue per chordas, &longs;iue per arcus; ex hoc <lb/>confirmatur maxim&egrave; Th.10. quia &longs;i diuidatur perpendiculum in partes <lb/>&aelig;quales ductis parallelis AO, arcus ita diuidetur, vt &longs;uperior arcus &longs;it <lb/>minor. </s>
					<s id="N240E5"><!-- NEW -->v.g. <!-- REMOVE S-->diuidatur DA in B &aelig;qualiter bifariam; </s>
					<s id="N240EB"><!-- NEW -->ducatur BL parallela <lb/>AO, non diuidit arcum OD bifariam, c&ugrave;m arcus OL &longs;it &longs;ubtriplus arcus <lb/>OD; </s>
					<s id="N240F3"><!-- NEW -->igitur c&ugrave;m eo tant&ugrave;m impetu, quo in perpendiculo acquireretur in <lb/>a&longs;cen&longs;u DB &longs;ubduplum DA, in arcu acquiretur DL, qu&aelig; e&longs;t 2/3 totius D&shy;<lb/>O; igitur minores vibrationes min&ugrave;s imminuuntur in a&longs;cen&longs;u, qu&agrave;m <lb/>maiores. </s>
				</p>
				<p id="N240FD" type="main">
					<s id="N240FF"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 23.<emph.end type="center"/></s>
				</p>
				<p id="N2410B" type="main">
					<s id="N2410D"><!-- NEW --><emph type="italics"/>Hinc tam facil&egrave; vibratur funependulum per minimum arcum, v. <!-- REMOVE S-->g. <!-- REMOVE S-->cum <lb/>primo impetu, quo a&longs;cenderet ex D in C vel in<emph.end type="italics"/> 3. <emph type="italics"/>a&longs;cendit in H<emph.end type="italics"/>; quia &longs;cilicet <lb/>cum eo impetu, quo minimum fer&egrave; &longs;patium acquirit in perpendiculo, <lb/>notabile &longs;atis &longs;patium decurrit in arcu. </s>
				</p>
				<p id="N24126" type="main">
					<s id="N24128"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 24.<emph.end type="center"/></s>
				</p>
				<p id="N24134" type="main">
					<s id="N24136"><!-- NEW --><emph type="italics"/>Hinc tamdiu durant minim&aelig; illa vibrationes; </s>
					<s id="N2413C"><!-- NEW -->quia &longs;ingul&aelig; minima por&shy;<lb/>tione imminuuntur, &amp; maiores &egrave; contrari&ograve; tam cit&ograve; decurtantur<emph.end type="italics"/>; </s>
					<s id="N24145"><!-- NEW -->cuius re&longs; <lb/>non e&longs;t alia ratio pr&aelig;ter eam, quam &longs;upr&agrave; adduximus, qu&aelig; rem ip&longs;am <lb/>euincit; e&longs;t tamen in&longs;ignis difficultas, quam paul&ograve; po&longs;t di&longs;cutiemus in <lb/>&longs;equenti Schol. <!-- REMOVE S--><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 25.<emph.end type="center"/></s>
				</p>
				<p id="N2415A" type="main">
					<s id="N2415C"><!-- NEW --><emph type="italics"/>Hinc ratio, cur minimo &longs;er&egrave; cur&longs;u funependulum etiam graui&longs;&longs;imum modi&shy;<lb/>ca libratione vibretur<emph.end type="italics"/>; </s>
					<s id="N24168"><!-- NEW -->imm&ograve;, quod fort&egrave; alicui mirum videretur, ip&longs;o an&shy;<lb/>helitu graui&longs;&longs;ima pondera moueri po&longs;&longs;unt, quod quiuis facil&egrave; probare <lb/>poterit; </s>
					<s id="N24170"><!-- NEW -->pro quo diligenter ob&longs;eruandum e&longs;t, vt eo dumtaxat ordine an&shy;<lb/>helitus repetatur, quo vibrationes fiunt, ita vt iam euntem molem &agrave; <lb/>tergo impellat; vnde accidet, vt repetito tandem anhelitu maiore motu <lb/>funependulum vibretur. </s>
				</p>
				<p id="N2417A" type="main">
					<s id="N2417C"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N24188" type="main">
					<s id="N2418A"><!-- NEW -->Ob&longs;eruabis prim&ograve; maximam occurrere difficultatem contra ea, qu&aelig; <lb/>hactenus demon&longs;trauimus; &longs;it enim quadrans AIE, &longs;itque EA diui&longs;a <lb/>in 4. partes &aelig;quales. </s>
					<s id="N24192"><!-- NEW -->v.g. <!-- REMOVE S-->ex A cadat corpus graue in E, &amp; ex E a&longs;cen&shy;<lb/>dat denu&ograve; per EA e&acirc; lege, vt omnes gradus impetus acqui&longs;iti in de&longs;cen&shy;<lb/>&longs;u concurrant ad a&longs;cen&longs;um, excepto primo gradu impetus innati; </s>
					<s id="N2419C"><!-- NEW -->cert&egrave; <lb/>non a&longs;cendet in A, vt con&longs;tat ex dictis; </s>
					<s id="N241A2"><!-- NEW -->igitur a&longs;cendat in B, &amp; ex B ite&shy;<lb/>rum de&longs;cendat in E, redeatque ver&longs;us A; </s>
					<s id="N241A8"><!-- NEW -->haud dubi&egrave; perueniet tant&ugrave;m <lb/>in C; </s>
					<s id="N241AE"><!-- NEW -->ita vt tantum detrahatur &longs;patij in hoc &longs;ecundo a&longs;cen&longs;u, quantum <lb/>detractum e&longs;t in primo: idem dico de tertio, quarto, &amp;c. </s>
					<s id="N241B4"><!-- NEW -->ducantur BH, <pb pagenum="321" xlink:href="026/01/355.jpg"/>CG, D F parallel&aelig; AI; </s>
					<s id="N241BD"><!-- NEW -->cum &longs;patium eo modo decidatur ex area EI, quo <lb/>ex perpendiculo EA maiori vibrationi detrahitur IH, &longs;ecund&aelig; minori <lb/>HG, terti&aelig; GF, quart&aelig; FE; igitur pl&ugrave;s detrahitur minoribus, qu&agrave;m <lb/>maioribus. </s>
				</p>
				<p id="N241C7" type="main">
					<s id="N241C9"><!-- NEW -->Re&longs;pondeo, maius &longs;patium percurri &longs;ur&longs;um maiore tempore, qu&agrave;m <lb/>minus; </s>
					<s id="N241CF"><!-- NEW -->&longs;it enim EA con&longs;tans 36. &longs;patia iuxta nouam progre&longs;&longs;ionem <lb/>arithmeticam, &longs;intque 8. gradus impetus acqui&longs;iti in de&longs;cen&longs;u AE con&shy;<lb/>iuncti cum innato: </s>
					<s id="N241D7"><!-- NEW -->primo in&longs;tanti, &longs;eu tempore percurrentur tant&ugrave;m 7. <lb/>&longs;patia, <expan abbr="de&longs;truetur&qacute;ue">de&longs;trueturque</expan> vnus gradus impetus, &longs;ecundo 6. <expan abbr="de&longs;truetur&qacute;ue">de&longs;trueturque</expan> al&shy;<lb/>ter gradus impetus; denique tertio 5. quatto 4. &amp;c. </s>
					<s id="N241E7"><!-- NEW -->igitur 28. &longs;patia 7. <lb/>in&longs;tantibus; igitur non perueniet in A mobile, &longs;ed conficiet &longs;patium, <lb/>quod erit ad EA, vt 28. ad 36. porr&ograve; &longs;i cadat ex 28. acquiret 7. gradus <lb/>impetus pr&aelig;ter innatum, quorum ope &longs;ecundo a&longs;cendet ad 21. tertio ad <lb/>15. quart&ograve; ad 10. quinto ad 6. &longs;ext&ograve; ad 3. &longs;eptimo ad 1. igitur &longs;patium <lb/>quod amittit in a&longs;cen&longs;u continet 8. in &longs;ecundo 7. in tertio 6. in quarto <lb/>5. in quinto 4. in &longs;exto 3. in &longs;eptimo 2. igitur e&longs;t maxima in&aelig;qualitas, <lb/>qu&aelig; pari modo explicari pote&longs;t in progre&longs;&longs;ione Galilei. <!-- KEEP S--></s>
				</p>
				<p id="N241FA" type="main">
					<s id="N241FC">Secund&ograve;, obijci pote&longs;t: </s>
					<s id="N241FF"><!-- NEW -->amitti tant&ugrave;m &longs;patij &longs;ingulis temporibus, <lb/>quantum acquiritur primo tempore, vel in&longs;tanti, cum impetu innato: &longs;ed <lb/>cum primo ille velocitatis gradu vix intra multos annos conficeretur <lb/>modicum &longs;patium. </s>
					<s id="N2420A"><!-- NEW -->Re&longs;pondeo, &longs;i con&longs;ideretur tant&ugrave;m illud &longs;patium, <lb/>quod acquiritur primo tempore cum impetu non impedito; </s>
					<s id="N24210"><!-- NEW -->haud dubi&egrave; <lb/>in&longs;en&longs;ibile e&longs;t, &amp; lic&egrave;t infinitus fer&egrave; repetatur illud idem &longs;patium; </s>
					<s id="N24216"><!-- NEW -->haud <lb/>dubi&egrave; in&longs;en&longs;ibile manet: vnde &longs;i a&longs;cen&longs;us fiat in 10000. in&longs;tantibus, to&shy;<lb/>ties accipi debet illud ip&longs;um &longs;patium, ex quo modicum tant&ugrave;m re&longs;ultat, <lb/>quod minuitur in &longs;ecundo a&longs;cen&longs;u, itemque in tertio, quarto, &amp;c. </s>
				</p>
				<p id="N24220" type="main">
					<s id="N24222"><!-- NEW -->Vnde ten&longs;io funis, ex quo pendet corpus graue con&longs;ideranda e&longs;t, qui <lb/>cum propter impetum de&longs;cen&longs;us mox dilatetur, &amp; tendatur, mox contra&shy;<lb/>hatur, t&ugrave;m in a&longs;cen&longs;u, t&ugrave;m in de&longs;cen&longs;u; </s>
					<s id="N2422A"><!-- NEW -->cert&egrave; mult&ugrave;m impetus de&longs;truitur, <lb/>quod autem tendatur maxim&egrave; in de&longs;cen&longs;u pr&aelig;dictus funis, con&longs;tat <lb/>multis experimentis &longs;i minor e&longs;t; nam reuer&acirc;; &longs;i maior, e&longs;&longs;et multum re&shy;<lb/>tardaret motum t&ugrave;m a&euml;ris re&longs;i&longs;tentia, qu&aelig; etiam aliquid facit, lic&egrave;t totus <lb/>hic effectus ab illa pendere non po&longs;&longs;it, vt aliqui volunt, t&ugrave;m etiam partes <lb/>funis propi&ugrave;s ad centrum accedentes, qu&aelig; citi&ugrave;s de&longs;cendunt, &amp;c. </s>
				</p>
				<p id="N24238" type="main">
					<s id="N2423A"><!-- NEW -->Terti&ograve;, &longs;unt tres determinationes in a&longs;cen&longs;u; </s>
					<s id="N2423E"><!-- NEW -->prima e&longs;t impetus pro&shy;<lb/>ducti in de&longs;cen&longs;u determinati ad Tangentem; &longs;ecunda funis per &longs;uam li&shy;<lb/>neam qua&longs;i retrahentis pendulum. </s>
					<s id="N24246"><!-- NEW -->tertia ip&longs;ius impetus innati qua&longs;i tra&shy;<lb/>hentis deor&longs;um idem pondus; atqui ex pugna trium determinationum in <lb/>eodem mobili de&longs;truitur mult&ugrave;m impetus, vt patet ex dictis alibi. </s>
				</p>
				<p id="N2424E" type="main">
					<s id="N24250"><!-- NEW -->Quart&ograve;, cum eo impetu, cuius ope non po&longs;&longs;et corpus a&longs;cendere per <lb/>ip&longs;um perpendiculum EA, a&longs;cendit adhuc per arcum EI; </s>
					<s id="N24256"><!-- NEW -->lic&egrave;t enim cum <lb/>co impetu, quo fertur in F po&longs;&longs;it fieri in D, &longs;ed tardiori motu; </s>
					<s id="N2425C"><!-- NEW -->attamen <lb/>quia impetus qui pendulo ine&longs;t, e&longs;t determinatus ad talem gradum ve&shy;<lb/>locitatis, quo cert&egrave; per ip&longs;am ED ferri non pote&longs;t; </s>
					<s id="N24264"><!-- NEW -->quod etiam euincitur <lb/>ex organis mechanicis, &amp; planis inclinatis; </s>
					<s id="N2426A"><!-- NEW -->nam reuer&agrave; moueret aliquis <pb pagenum="322" xlink:href="026/01/356.jpg"/>per planum tantill&ugrave;m inclinatum maximam corporis molem, quam per <lb/>aliud planum inclinatius, &amp; accedens propi&ugrave;s ad verticale minim&egrave; mo&shy;<lb/>uere po&longs;&longs;et; </s>
					<s id="N24277"><!-- NEW -->cuius effectus alia ratio non e&longs;t, ni&longs;i quod impetus, qui im&shy;<lb/>primitur mobili ad talem gradum velocitatis &longs;it determinatus; atqui in <lb/>perpendiculo eo motu moueri non pote&longs;t, vt con&longs;tat, &longs;ed in plano lon&shy;<lb/>giore. </s>
				</p>
				<p id="N24281" type="main">
					<s id="N24283"><!-- NEW -->Quint&ograve;, hinc vera ratio, cur in &longs;uperiore arcu de&longs;truatur cit&ograve; impe&shy;<lb/>tus; </s>
					<s id="N24289"><!-- NEW -->tardi&ugrave;s ver&ograve; in in inferiore; </s>
					<s id="N2428D"><!-- NEW -->quia, c&ugrave;m Tangens cuiu&longs;libet puncti ar&shy;<lb/>cus &longs;it eius planum, &amp; h&aelig;c in arcu &longs;uperiore accedat propi&ugrave;s ad perpen&shy;<lb/>diculum; non mirum e&longs;t, &longs;i cum eo impetu per arcum &longs;uperiorem mo&shy;<lb/>ueri non po&longs;&longs;it mobile c&ograve; non a&longs;cendat, cuius tant&ugrave;m ope per inferio&shy;<lb/>rem arcum a&longs;cendit. </s>
				</p>
				<p id="N24299" type="main">
					<s id="N2429B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 26.<emph.end type="center"/></s>
				</p>
				<p id="N242A7" type="main">
					<s id="N242A9"><!-- NEW --><emph type="italics"/>Omnes vibrationes numerari non po&longs;&longs;unt<emph.end type="italics"/>; </s>
					<s id="N242B2"><!-- NEW -->certum e&longs;t, c&ugrave;m &longs;int infinit&aelig; <lb/>fer&egrave; in&longs;en&longs;ibiles, nec pote&longs;t &longs;en&longs;u di&longs;cerni, quantus &longs;it arcus minim&aelig; vi&shy;<lb/>brationis; </s>
					<s id="N242BC"><!-- NEW -->&longs;i tamen de&longs;trueretur tant&ugrave;m impetus in a&longs;cen&longs;u ab impetu <lb/>innato, nec ten&longs;io funis, triplex determinatio, re&longs;i&longs;tentia a&euml;ris, &amp; diuer&longs;&aelig; <lb/>partes funis, quarum minores vibrationes impediuntur quidquam fa&shy;<lb/>cerent, cognita differentia prima vibrationis &amp; &longs;ecunda, fort&egrave; cogno&longs;ci <lb/>po&longs;&longs;et numerus vibrationum cognito principio progre&longs;&longs;ionis; </s>
					<s id="N242C8"><!-- NEW -->quantus <lb/>ver&ograve; &longs;it numerus vibrationum, qu&aelig; incipiunt &agrave; maiore, &amp; quantus illa&shy;<lb/>rum qu&aelig; incipiunt &agrave; minore etiam incertum e&longs;t, v.g. <!-- REMOVE S-->&longs;i funependulum <lb/>AD demittatur ex O, &amp; deinde ex L; </s>
					<s id="N242D4"><!-- NEW -->certum e&longs;t quidem e&longs;&longs;e plures vi&shy;<lb/>brationes cum demittitur ex O toto eo vibrationum numero, qu&aelig; re&shy;<lb/>cen&longs;entur, donec perueniatur ad illam vibrationem, cuius a&longs;cen&longs;us con&shy;<lb/>&longs;tat arcu DL; </s>
					<s id="N242DE"><!-- NEW -->nam deinceps &aelig;qualis erit numerus earum, qu&aelig; con&longs;e&shy;<lb/>quentur, &amp; earum, quarum prima demittitur ex L, vt patet; </s>
					<s id="N242E4"><!-- NEW -->quot ver&ograve; <lb/>pr&aelig;cedant vibrationes antequam perueniatur ad illam, cuius a&longs;cen&longs;us <lb/>e&longs;t arcus DL; equidem aliqua ob&longs;eruatione affixo &longs;cilicet maiore qua&shy;<lb/>drante parieti iu &longs;uos gradus di&longs;tributo cogno&longs;ci pote&longs;t, &longs;ed nunquam <lb/>&longs;atis acurata. </s>
				</p>
				<p id="N242F0" type="main">
					<s id="N242F2">Itaque certum e&longs;t prim&ograve; accelerari motum in de&longs;cen&longs;u, &amp;c retardari <lb/>in a&longs;cen&longs;u. </s>
				</p>
				<p id="N242F7" type="main">
					<s id="N242F9"><!-- NEW -->Secund&ograve;, certum e&longs;t impetum nouum accedere in de&longs;cen&longs;u in &longs;ingu&shy;<lb/>lis punctis arcus iuxta rationem &longs;inus recti arcus inferioris; in a&longs;cen&longs;u <lb/>ver&ograve; imminui acqui&longs;itum impetum in eadem ratione, omi&longs;&longs;a ea parte <lb/>impetus, qu&aelig; de&longs;truitur t&ugrave;m in a&longs;cen&longs;u t&ugrave;m in de&longs;cen&longs;u propter ten&longs;io&shy;<lb/>nem funis, &amp; re&longs;i&longs;tentiam a&euml;ris. </s>
				</p>
				<p id="N24305" type="main">
					<s id="N24307"><!-- NEW -->Terti&ograve;, certum e&longs;t, primum gradum impetus &longs;cilicet innatum concur&shy;<lb/>rere ad de&longs;cen&longs;um; </s>
					<s id="N2430D"><!-- NEW -->&longs;ecus ver&ograve; ad a&longs;cen&longs;um, &amp; contra vltimum gradum <lb/>concurrere ad a&longs;cen&longs;um, &longs;ecus ad de&longs;cen&longs;um; &longs;ed hic vltimus gradus mi&shy;<lb/>nimus e&longs;t, &amp; pro nihilo reputandus. </s>
				</p>
				<p id="N24315" type="main">
					<s id="N24317">Quart&ograve;, certum e&longs;t a&longs;cen&longs;um minorem e&longs;&longs;e de&longs;cen&longs;u, nec funependu&shy;<lb/>lum ad <expan abbr="c&atilde;dem">eandem</expan>, vnde dimi&longs;&longs;um e&longs;t pri&ugrave;s, a&longs;cendere altitudinem. </s>
				</p>
				<pb pagenum="323" xlink:href="026/01/357.jpg"/>
				<p id="N24324" type="main">
					<s id="N24326">Quint&ograve;, certum e&longs;t arcum de&longs;cen&longs;us maioris vibrationis habere ma&shy;<lb/>iorem proportionem ad arcum a&longs;cen&longs;us, qui &longs;equitur, qu&agrave;m habeat ar&shy;<lb/>cus de&longs;cen&longs;us minoris vibrationis ad &longs;uum a&longs;cen&longs;um. </s>
				</p>
				<p id="N2432D" type="main">
					<s id="N2432F"><!-- NEW -->Sext&ograve;, certum e&longs;t non tant&ugrave;m imminui arcum a&longs;cen&longs;us ab a&euml;re ob&longs;i&shy;<lb/>&longs;tente &longs;ed maxim&egrave; ab impetu innato retrahente deor&longs;um funependulum; </s>
					<s id="N24335"><!-- NEW --><lb/>t&ugrave;m etiam maxim&egrave; ab ip&longs;a ten&longs;ione funis, t&ugrave;m ab ip&longs;o fune adducente <lb/>pondus; t&ugrave;m denique &agrave; diuer&longs;is partibus funis, qu&aelig; dum ab aliis retinen&shy;<lb/>tur, qua&longs;i cum illis pugnant, ex qua pugna &longs;equitur aliqua clades in <lb/>motu. </s>
				</p>
				<p id="N24340" type="main">
					<s id="N24342"><!-- NEW -->Septim&ograve;, certum e&longs;t acquiri &aelig;qualem impetum ex eadem altitudine <lb/>in motu deor&longs;um, &longs;iue per arcum, &longs;iue per chordam, &longs;iue per ip&longs;um per&shy;<lb/>pendiculum in&aelig;quali tamen tempore; &longs;imiliter de&longs;trui &aelig;qualem im&shy;<lb/>petum in a&longs;cen&longs;u, qui ad <expan abbr="e&atilde;dem">eandem</expan> altitudinem pertingit. </s>
				</p>
				<p id="N24350" type="main">
					<s id="N24352">Octau&ograve;, certum e&longs;t eo tempore, quo de&longs;cendit mobile per arcum in <lb/>ip&longs;o perpendiculo acquirere &longs;patium maius ip&longs;o arcu, minus tamen du&shy;<lb/>plo radij. </s>
				</p>
				<p id="N24359" type="main">
					<s id="N2435B"><!-- NEW -->Non&ograve;, certum e&longs;t, non accelerari motum per arcum in de&longs;cen&longs;u iuxta <lb/>proportionem numerorum 1.3.5.7. vt volunt aliqui; </s>
					<s id="N24361"><!-- NEW -->quia h&aelig;c accele&shy;<lb/>ratio ex ip&longs;o Galileo &longs;upponit principium illud, &aelig;qualibus temporibus <lb/>acquiruntur &aelig;qualis velocitatis momenta, &longs;ed in&aelig;qualia acquiruntur in <lb/>arcu; vt patet ex dictis; </s>
					<s id="N2436B"><!-- NEW -->mult&ograve; min&ugrave;s intenditur iuxta proportionem <lb/>arcuum qui &longs;ecantur &agrave; lineis ductis parallelis horizontali ab iis punctis <lb/>perpendiculi, in quibus &longs;ecatur iuxta hos numeros 1. 3. 5. 7. certum e&longs;t <lb/>etiam non retardari iuxta <expan abbr="e&atilde;dem">eandem</expan> proportionem in a&longs;cen&longs;u: quippe in <lb/>hoc in eadem proportione retardatur, qua in illo acceleratur. </s>
				</p>
				<p id="N2437B" type="main">
					<s id="N2437D"><!-- NEW -->Decim&ograve;, certum e&longs;t omnes vibrationes non po&longs;&longs;e numerari cuiu&longs;cum&shy;<lb/>que longitudinis &longs;it ip&longs;um funependulum: imm&ograve; hoc vald&egrave; e&longs;&longs;et inutile, <lb/>vt inutile e&longs;t no&longs;&longs;e numerum granorum aren&aelig; maris. </s>
				</p>
				<p id="N24385" type="main">
					<s id="N24387">Vndecim&ograve;, <expan abbr="cert&utilde;">certum</expan> e&longs;t vibrationes minores citi&ugrave;s ab&longs;olui, qu&agrave;m maiores. </s>
				</p>
				<p id="N2438E" type="main">
					<s id="N24390"><!-- NEW -->Duodecim&ograve;, certum e&longs;t tempora vibrationum funependulorum in&aelig;&shy;<lb/>qualium e&longs;&longs;e fer&egrave;, vt radices longitudinum, &amp; longitudines, vt quadrata <lb/>temporum dixi: fer&egrave;, nec enim omnin&ograve; res ita &longs;e habet. </s>
				</p>
				<p id="N24398" type="main">
					<s id="N2439A"><!-- NEW -->Con&longs;tat ex iis qu&aelig; &longs;upr&agrave; diximus, ea omnia, qu&aelig; hactenus enumerata <lb/>&longs;unt, certa e&longs;&longs;e cum aliis plurimis &longs;upr&agrave; recen&longs;itis; &longs;unt etiam aliqua in&shy;<lb/>nota. </s>
					<s id="N243A2"><!-- NEW -->Prim&ograve; incertum fuit hactenus, in qua proportione temporum per&shy;<lb/>curratur arcus: </s>
					<s id="N243A8"><!-- NEW -->Equidem certum e&longs;t in qua proportione velocitas cre&longs;cit, <lb/>vt &longs;upr&agrave; demon&longs;tratum e&longs;t; incertum, qu&aelig;nam &longs;it progre&longs;&longs;io &longs;patiorum <lb/>&longs;eu proportio motus in &longs;patio arcus, dato &longs;cilicet tempore &longs;en&longs;ibili. </s>
				</p>
				<p id="N243B0" type="main">
					<s id="N243B2"><!-- NEW -->Ob&longs;eruo tamen, &longs;i con&longs;ideretur hic motus in in&longs;tantibus, demitta&shy;<lb/>t&uacute;rque funependulum &egrave; &longs;ummo arcu, &longs;patium quod acquiritur primo in&shy;<lb/>&longs;tanti e&longs;t ad &longs;patium, quod acquiritur &longs;ecundo, vt &longs;inus totus ad colle&shy;<lb/>ctum ex &longs;inu toto &amp; &longs;inu recto immediato arcus inferioris, qui proxim&egrave; <lb/>accedit ad totum; e&longs;t autem ad &longs;patium, quod acquiritur tertio in&longs;tan&shy;<lb/>ti, vt &longs;inus totus ad collectum ex &longs;inu toto &amp; duobus &longs;inubus rectis im&shy;<lb/>mediatis, atque ita deinceps. </s>
				</p>
				<pb pagenum="324" xlink:href="026/01/358.jpg"/>
				<p id="N243C6" type="main">
					<s id="N243C8"><!-- NEW -->Ob&longs;eruo &longs;ecund&ograve; iuxta progre&longs;&longs;ionem Galilei, &longs;i a&longs;&longs;umatur pars tem&shy;<lb/>poris &longs;en&longs;ibilis, in qua percurratur &longs;patium &longs;uperius in arcu, non po&longs;&longs;e <lb/>cogno&longs;ci quanto tempore percurratur reliquus arcus; </s>
					<s id="N243D0"><!-- NEW -->&longs;it enim trian&shy;<lb/>gulum mixtum ABE, quale iam expre&longs;&longs;imus, &longs;itque primus arcus dato <lb/>tempore decur&longs;us ad reliquum vt AD ad DE; </s>
					<s id="N243D8"><!-- NEW -->ducatur DC, &longs;itque v.g. <!-- REMOVE S--><lb/>trapezus DCBA ad triangulum ABE vt 2. ad.7.dico velocitatem, qu&aelig; <lb/>acquiritur in arcu AD, e&longs;&longs;e ad illam, qu&aelig; acquiritur in AE vt 2.ad 7. &amp; <lb/>ad illam, qu&aelig; acquiritur in DE, vt 2.ad 5.&longs;ed in hoc motu tempora non <lb/>&longs;unt vt velocitates; </s>
					<s id="N243E5"><!-- NEW -->quia temporibus &aelig;qualibus non acquiruntur &aelig;qua&shy;<lb/>les velocitatis gradus; </s>
					<s id="N243EB"><!-- NEW -->igitur nec &longs;patia vt temporum, &longs;eu velocitatum <lb/>quadrata; igitur incertum e&longs;t hactenus, in qua proportione temporum <lb/>percurrantur duo arcus dati in quadrante, &amp; qu&aelig; proportio &longs;patiorum <lb/>re&longs;pondeat temporibus datis. </s>
				</p>
				<p id="N243F5" type="main">
					<s id="N243F7">Secund&ograve;, incertum etiam hactenus in qua proportione percurratur <lb/>veloci&ugrave;s arcus, qu&agrave;m chorda, &amp; tardi&ugrave;s, qu&agrave;m radius in perpendiculo, <lb/>&amp; quantum &longs;patium in eodem perpendiculo percurratur eo tempore, <lb/>quo totus arcus quadrantis peragitur. </s>
				</p>
				<p id="N24400" type="main">
					<s id="N24402"><!-- NEW -->Terti&ograve; incertum e&longs;t, in qua proportione minor vibratio citi&ugrave;s peraga&shy;<lb/>tur, qu&agrave;m maior; </s>
					<s id="N24408"><!-- NEW -->lic&egrave;t cogno&longs;ci po&longs;&longs;it in qua proportione peragantur ci&shy;<lb/>ti&ugrave;s du&aelig; chord&aelig; in&longs;cript&aelig; arcui minori, qu&agrave;m du&aelig; in&longs;cript&aelig; arcui maio&shy;<lb/>ri; &amp; lic&egrave;t certum &longs;it omnes chordas &longs;eor&longs;im &longs;umptas &aelig;qualibus tem&shy;<lb/>poribus decurri, &amp; citi&ugrave;s decurri duas eidem arcui in&longs;criptas, qu&agrave;m &longs;o&shy;<lb/>lam inferiorem. </s>
				</p>
				<p id="N24414" type="main">
					<s id="N24416"><!-- NEW -->Quart&ograve; incertum e&longs;t, in qua proportione imminuatur impetus t&ugrave;m in <lb/>de&longs;cen&longs;u, t&ugrave;m in a&longs;cen&longs;u, t&ugrave;m propter re&longs;i&longs;tentiam a&euml;ris, t&ugrave;m propter ten&shy;<lb/>&longs;ionem chord&aelig;, t&ugrave;m ratione triplicis determinationis in &longs;ingulis pun&shy;<lb/>ctis arcus; </s>
					<s id="N24420"><!-- NEW -->lic&egrave;t certum &longs;it quantum &longs;ingulis in&longs;tantibus detrahatur im&shy;<lb/>petus in a&longs;cen&longs;u ab impetu innato retrahente pendulum deor&longs;um; incer&shy;<lb/>tum e&longs;t tamen, quantus &longs;it ille impetus innatus. </s>
				</p>
				<p id="N24428" type="main">
					<s id="N2442A"><!-- NEW -->Quint&ograve;, incertum e&longs;t in qua proportione a&longs;cen&longs;us prim&aelig; vibrationis <lb/>&longs;it minor de&longs;cen&longs;u eiu&longs;dem; </s>
					<s id="N24430"><!-- NEW -->incertum etiam, in qua proportione a&longs;cen&shy;<lb/>&longs;us &longs;ecund&aelig; &longs;it minor a&longs;cen&longs;u prime; </s>
					<s id="N24436"><!-- NEW -->incertum denique, in qua proportio&shy;<lb/>ne pl&ugrave;s imminuatur a&longs;cen&longs;us maiorum vibrationum, qu&agrave;m minorum; li&shy;<lb/>c&egrave;t certum &longs;it pl&ugrave;s imminui. </s>
				</p>
				<p id="N2443E" type="main">
					<s id="N24440"><!-- NEW -->Sext&ograve;, incertum e&longs;t, quot peragantur vibrationes dati funependulis <lb/>item quantus &longs;it arcus vltim&aelig; vibrationis; </s>
					<s id="N24446"><!-- NEW -->item in qua proportione ma&shy;<lb/>ior &longs;it numerus vibrationum, quarum prima maior e&longs;t numero vibratio&shy;<lb/>num, quarum prima minor e&longs;t; denique quot intercipiantur vibratio&shy;<lb/>nes in differentia data duorum arcuum. </s>
				</p>
				<p id="N24450" type="main">
					<s id="N24452"><!-- NEW -->H&aelig;c, qu&aelig; hactenus propo&longs;uimus in 6. vltimis capitibus, &longs;unt omnin&ograve; <lb/>incerta, ita vt neque &longs;en&longs;u percipi po&longs;&longs;int, neque fuerit hactenus vllum <lb/>principium, per quod po&longs;sint demon&longs;trari; ni&longs;i fort&egrave; primum caput ex&shy;<lb/>cipias, de quo infr&agrave;. </s>
				</p>
				<p id="N2445C" type="main">
					<s id="N2445E">Prim&ograve; dubium e&longs;t an numerus vibrationum funependuli maioris &longs;it <lb/>maior numero vibrationum funependuli minoris, po&longs;ito qu&ograve;d primam <pb pagenum="325" xlink:href="026/01/359.jpg"/>vtriu&longs;que vibratio &longs;it &longs;imilis. </s>
				</p>
				<p id="N24468" type="main">
					<s id="N2446A"><!-- NEW -->Secund&ograve; dubium e&longs;t, an numerus vibrationum funependuli longio&shy;<lb/>ris &longs;it &aelig;qualis numero vibrationum alterius minoris, po&longs;ito qu&ograve;d prima <lb/>vtriu&longs;que ab eadem altitudine demittatur; vel po&longs;ito qu&ograve;d arcus prim&aelig; <lb/>maioris funependuli &longs;it &aelig;qualis arcui prim&aelig; minoris. </s>
				</p>
				<p id="N24474" type="main">
					<s id="N24476"><!-- NEW -->Terti&ograve; dubium e&longs;t, in qua proportione pendula materi&aelig; grauiores <lb/>&longs;uas vibrationes citi&ugrave;s peragant, qu&agrave;m pendula materi&aelig; leuioris; </s>
					<s id="N2447C"><!-- NEW -->item&shy;<lb/>que dubium, quanto tempore citi&ugrave;s extinguantur vibrationes penduli <lb/>materi&aelig; leuioris, qu&agrave;m grauioris: </s>
					<s id="N24484"><!-- NEW -->lic&egrave;t certum &longs;it citi&ugrave;s ab&longs;olui vibra&shy;<lb/>tiones funependuli materi&aelig; leuioris, qu&agrave;m grauioris; h&aelig;c &longs;unt dubia, <lb/>qu&aelig; breuiter di&longs;cutiemus in &longs;equentibus Theorematis. <!-- KEEP S--></s>
				</p>
				<p id="N2448D" type="main">
					<s id="N2448F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 27.<emph.end type="center"/></s>
				</p>
				<p id="N2449B" type="main">
					<s id="N2449D"><!-- NEW --><emph type="italics"/>Funependula longiora diuti&ugrave;s vibrantur, qu&agrave;m breuiora, &longs;i prima vtriu&longs;&shy;<lb/>que vibratio &longs;it &longs;imilis<emph.end type="italics"/>; </s>
					<s id="N244A8"><!-- NEW -->experientia manife&longs;ta e&longs;t; </s>
					<s id="N244AC"><!-- NEW -->ratio etiam euidens, <lb/>quia vt &longs;e habent &longs;ingul&aelig; vibrationes minoris ad &longs;ingulas maioris; </s>
					<s id="N244B2"><!-- NEW -->ita <lb/>omnes minoris &longs;e habent ad omnes maioris, vt patet; </s>
					<s id="N244B8"><!-- NEW -->&longs;ed &longs;ingul&aelig; maio&shy;<lb/>ris diuti&ugrave;s durant, qu&agrave;m &longs;ingul&aelig; minoris; </s>
					<s id="N244BE"><!-- NEW -->igitur omnes maioris diuti&ugrave;s <lb/>durant, qu&agrave;m omnes minoris; igitur funependula longiora diuti&ugrave;s vi&shy;<lb/>brantur, &amp;c. </s>
				</p>
				<p id="N244C6" type="main">
					<s id="N244C8"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 28.<emph.end type="center"/></s>
				</p>
				<p id="N244D4" type="main">
					<s id="N244D6"><!-- NEW --><emph type="italics"/>Tot &longs;unt vibrationes maioris funependuli per &longs;e, quot &longs;unt minoris, po&longs;ito <lb/>quod vtriu&longs;que vibratio prima &longs;it &longs;imilis<emph.end type="italics"/>; </s>
					<s id="N244E1"><!-- NEW -->demon&longs;tratur, &longs;it enim fune&shy;<lb/>pendulum maius AG, &amp; minus AO &longs;ubquadruplum &longs;cilicet AG, demit&shy;<lb/>tatur AG ex AD, &amp; AO ex AB, impetus acqui&longs;itus in G per DG e&longs;t <lb/>&aelig;qualis acqui&longs;ito in perpendiculo AG; </s>
					<s id="N244EB"><!-- NEW -->&amp; impetus acqui&longs;itus in O per <lb/>BO e&longs;t &aelig;qualis acqui&longs;ito in perpendiculo per AO; </s>
					<s id="N244F1"><!-- NEW -->&longs;ed acqui&longs;itus in per&shy;<lb/>pendiculo AG e&longs;t duplus acqui&longs;iti in perpendiculo AO, vt con&longs;tat; </s>
					<s id="N244F7"><!-- NEW -->&longs;unt <lb/>enim velocitates, vel impetus acqui&longs;iti in ratione &longs;ubduplicata &longs;patio&shy;<lb/>rum; </s>
					<s id="N244FF"><!-- NEW -->pr&aelig;terea impetus, qui de&longs;truitur in a&longs;cen&longs;u GK, e&longs;t &aelig;qualis acqui&longs;i&shy;<lb/>to in de&longs;cen&longs;u DG, excepto primo gradu; </s>
					<s id="N24505"><!-- NEW -->itemque de&longs;tructus in a&longs;cen&longs;u <lb/>OM &aelig;qualis acqui&longs;ito in de&longs;cen&longs;u BO; </s>
					<s id="N2450B"><!-- NEW -->igitur de&longs;tructus in a&longs;cen&longs;u GK <lb/>e&longs;t duplus de&longs;tructi in a&longs;cen&longs;u OM; </s>
					<s id="N24511"><!-- NEW -->itaque po&longs;t de&longs;cen&longs;um BO a&longs;cendat <lb/>funependulum in N, ita vt a&longs;cen&longs;us ON &longs;it minor de&longs;cen&longs;u arcu NM: </s>
					<s id="N24517"><!-- NEW --><lb/>quia &longs;cilicet ad a&longs;cen&longs;um non concurrit impetus innatus: </s>
					<s id="N2451C"><!-- NEW -->dico qu&ograve;d po&longs;t <lb/>de&longs;cen&longs;um DG a&longs;cendet tant&ugrave;m in H; </s>
					<s id="N24522"><!-- NEW -->ita vt a&longs;cen&longs;us GH &longs;it minor de&longs;&shy;<lb/>cen&longs;u toto arcu HK quadruplo MN: </s>
					<s id="N24528"><!-- NEW -->porr&ograve; tempus a&longs;cen&longs;us per GK <lb/>e&longs;t duplum a&longs;cen&longs;us per OM; </s>
					<s id="N2452E"><!-- NEW -->&amp; &longs;i concurreret impetus innatus, a&longs;cen&shy;<lb/>&longs;us e&longs;&longs;et &aelig;qualis de&longs;cen&longs;ui per &longs;e; </s>
					<s id="N24534"><!-- NEW -->igitur perueniret in K; </s>
					<s id="N24538"><!-- NEW -->igitur &longs;i non <lb/>concurrat vno tempore dee&longs;t &longs;patium NM, vel IK, id e&longs;t toto eo tem&shy;<lb/>pore, quo a&longs;cendit pendulum AO; </s>
					<s id="N24540"><!-- NEW -->impetus innatus cum aliis concur&shy;<lb/>rens ad a&longs;cen&longs;um promoueret mobile toto &longs;patio NM, quod dee&longs;t tan&shy;<lb/>t&ugrave;m defectu illius concur&longs;us; </s>
					<s id="N24548"><!-- NEW -->igitur, &longs;i &aelig;quali tempore non concurrat ad <lb/>a&longs;cen&longs;um GK; </s>
					<s id="N2454E"><!-- NEW -->cert&egrave; ex a&longs;cen&longs;u detrahetur tant&ugrave;m IK &aelig;qualis v.g. <!-- REMOVE S-->MN; </s>
					<s id="N24554"><!-- NEW --><lb/>&longs;i ver&ograve; duobus temporibus &aelig;qualibus non concurrat; </s>
					<s id="N24559"><!-- NEW -->cert&egrave; ex a&longs;cen&longs;u <pb pagenum="326" xlink:href="026/01/360.jpg"/>detrahetur HK quadruplum MN; </s>
					<s id="N24562"><!-- NEW -->nam &longs;icut idem impetus concurrens <lb/>duobus temporibus addit quadruplum &longs;patium propter motum accele&shy;<lb/>ratum; </s>
					<s id="N2456A"><!-- NEW -->ita &longs;i non concurrat duobus temporibus, deerit &longs;patium qua&shy;<lb/>druplum illius quod dee&longs;&longs;et, &longs;i tant&ugrave;m vno tempore non concurreret; </s>
					<s id="N24570"><!-- NEW --><lb/>igitur a&longs;cen&longs;us maioris funependuli erit OH; </s>
					<s id="N24575"><!-- NEW -->igitur OH, ON erunt vi&shy;<lb/>brationes &longs;imiles; </s>
					<s id="N2457B"><!-- NEW -->igitur &longs;i de&longs;cendat AG ex H, &amp; AO ex N, vibrationes <lb/>a&longs;cen&longs;us &longs;ecundi erunt adhuc &longs;imiles propter <expan abbr="c&atilde;dem">eandem</expan> rationem; </s>
					<s id="N24585"><!-- NEW -->igitur <lb/>&amp; vibrationes tertij a&longs;cen&longs;us, quarti, quinti, atque ita deinceps; </s>
					<s id="N2458B"><!-- NEW -->igitur tot <lb/>erunt vibrationes maioris, quot minoris per &longs;e, &longs;i prima vtriu&longs;que vi&shy;<lb/>bratio &longs;it &longs;imilis: dixi per &longs;e; nam per accidens ratione funis fer&egrave; &longs;emper <lb/>accidit mutari i&longs;tum ordinem vibrationum. </s>
				</p>
				<p id="N24595" type="main">
					<s id="N24597"><!-- NEW -->Pr&aelig;terea, c&ugrave;m impetus, quo pendulum maius a&longs;cendit per GK, <lb/>&longs;it duplus illius, quo minus a&longs;cendit per OM, c&ugrave;m in &longs;ingulis punctis <lb/>a&longs;cen&longs;us OM, &amp; &longs;ingulis a&longs;cen&longs;us GK de&longs;truatur impetus; </s>
					<s id="N2459F"><!-- NEW -->cum GK &longs;it <lb/>quadruplum OM; </s>
					<s id="N245A5"><!-- NEW -->cert&egrave; in &longs;ingulis punctis GK impetus de&longs;truitur &longs;ub&shy;<lb/>duplus illius, qui in &longs;ingulis punctis OM de&longs;truitur; &longs;i enim &aelig;qualis; </s>
					<s id="N245AB"><!-- NEW -->igi&shy;<lb/>tur impetus per GK e&longs;&longs;et quadruplus impetus per OM; </s>
					<s id="N245B1"><!-- NEW -->&longs;i minor &longs;ubdu&shy;<lb/>plo v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;ubquadruplus; </s>
					<s id="N245BB"><!-- NEW -->igitur impetus per GK e&longs;&longs;et &aelig;qualis impetui <lb/>per OM; </s>
					<s id="N245C1"><!-- NEW -->&longs;ed e&longs;t tantum duplus; </s>
					<s id="N245C5"><!-- NEW -->igitur &longs;ubduplus de&longs;truitur in &longs;ingulis <lb/>punctis, igitur in &aelig;quali punctorum GK numero, &longs;ubduplus tant&ugrave;m im&shy;<lb/>petus de&longs;trueretur; </s>
					<s id="N245CD"><!-- NEW -->in duplo punctorum numero, &aelig;qualis, in quadruplo <lb/>punctorum numero, duplus; </s>
					<s id="N245D3"><!-- NEW -->de&longs;truitur autem in &longs;ingulis punctis GK <lb/>&longs;ubduplus; quia &longs;ubduplum tant&ugrave;m tempus re&longs;pondet &longs;ingulis punctis G <lb/>K illius temporis, quod re&longs;pondet &longs;ingulis punctis OM. </s>
				</p>
				<p id="N245DB" type="main">
					<s id="N245DD"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N245EA" type="main">
					<s id="N245EC">Prim&ograve; colligo, &longs;olutionem primi dubij propo&longs;iti &longs;upr&agrave;, ita vt non iam <lb/>dubium, at certum omnin&ograve; &longs;uper&longs;it. </s>
				</p>
				<p id="N245F1" type="main">
					<s id="N245F3"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N24600" type="main">
					<s id="N24602"><!-- NEW -->Secund&ograve; colligo, &longs;olutionem &longs;ecundi dubij, &longs;i enim funependulum P <lb/>G demittatur ex PR &amp; AG ex AT; </s>
					<s id="N24608"><!-- NEW -->haud dubi&egrave; plures erunt vibrationes <lb/>penduli PG, qu&agrave;m AG; </s>
					<s id="N2460E"><!-- NEW -->quia tot e&longs;&longs;ent AG, quot PG, &longs;i AG demittere&shy;<lb/>tur ex AD; </s>
					<s id="N24614"><!-- NEW -->&longs;ed plures &longs;unt vibrationes funependuli AG demi&longs;&longs;i ex AD, <lb/>qu&agrave;m eiu&longs;dem ex AT; </s>
					<s id="N2461A"><!-- NEW -->ergo plures funependuli PG demi&longs;&longs;i ex PR, <lb/>qu&agrave;m AG demi&longs;&longs;i ex AT; vnde &longs;oluitur prima pars dubij &longs;ecundi, </s>
				</p>
				<p id="N24620" type="main">
					<s id="N24622"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2462F" type="main">
					<s id="N24631"><!-- NEW -->Terti&ograve; colligo, &longs;olutionem &longs;ecund&aelig; partis eiu&longs;dem dubij; </s>
					<s id="N24635"><!-- NEW -->&longs;i enim A <lb/>O demittatur ex AB, &amp; AG ex AS; </s>
					<s id="N2463B"><!-- NEW -->ita arcus GS &longs;it &aelig;qualis arcui OB; </s>
					<s id="N2463F"><!-- NEW --><lb/>cert&egrave; erunt plures vibrationes AO, qu&agrave;m AG, vt patet ex dictis; quod <lb/>&longs;pectat ad tertium dubium, illud ip&longs;um &longs;oluemus paul&ograve; p&ograve;&longs;t. </s>
				</p>
				<p id="N24646" type="main">
					<s id="N24648"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N24655" type="main">
					<s id="N24657"><!-- NEW -->Quart&ograve; &longs;i demittatur funependulum AG ex AV, vt de&longs;cendat in A <lb/>G, &longs;itque clauus horizonti parallelus in P, non a&longs;cendet &longs;egmentum PG <lb/>in PR, vt vult Galileus; </s>
					<s id="N2465F"><!-- NEW -->quia AV non a&longs;cenderet in AT, quod ip&longs;e &longs;up-<pb pagenum="327" xlink:href="026/01/361.jpg"/>ponit; </s>
					<s id="N24668"><!-- NEW -->atqui &longs;upr&agrave; demon&longs;trauimus a&longs;cen&longs;um minorem e&longs;&longs;e de&longs;cen&longs;u, non <lb/>tant&ugrave;m propter re&longs;i&longs;tentiam a&euml;ris, vt vult ip&longs;e Galileus; &longs;ed propter prin&shy;<lb/>cipium intrin&longs;ecum de&longs;tructiuum impetus acqui&longs;iti in de&longs;cen&longs;u, de quo <lb/>&longs;upr&agrave;. </s>
				</p>
				<p id="N24672" type="main">
					<s id="N24674"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 5.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N24681" type="main">
					<s id="N24683"><!-- NEW -->Quint&ograve; equidem, &longs;i AG demittatur ex AR, affixo clauo in P, non <lb/>mod&ograve; &longs;egmentum PG a&longs;cendet in PR, ver&ugrave;m etiam alti&ugrave;s a&longs;cendet ver&shy;<lb/>&longs;us A; imm&ograve; gyri plures erunt, &longs;i clauus affigatur propi&ugrave;s ad punctum <lb/>G, qui cert&egrave; gyri qu&ograve; minores erunt, e&ograve; citi&ugrave;s conficientur. </s>
				</p>
				<p id="N2468D" type="main">
					<s id="N2468F"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 6.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2469C" type="main">
					<s id="N2469E"><!-- NEW -->Pote&longs;t determinari numerus i&longs;torum gyrorum; </s>
					<s id="N246A2"><!-- NEW -->&longs;it enim prim&ograve; clauus <lb/>in P, &longs;int que APG &aelig;quales; </s>
					<s id="N246A8"><!-- NEW -->&longs;i AG po&longs;t de&longs;cen&longs;um KG a&longs;cenderet in <lb/>AD; </s>
					<s id="N246AE"><!-- NEW -->cert&egrave; &longs;egmentum PG a&longs;cenderet per &longs;emicircumferentiam GR <lb/>A, in PA, ratio e&longs;t, quia pendulum G de&longs;cendent ex K; </s>
					<s id="N246B4"><!-- NEW -->&longs;ed ex hypothe&longs;i <lb/>Galilei &longs;i de&longs;cenderet ex Y a&longs;cenderet in R; </s>
					<s id="N246BA"><!-- NEW -->igitur c&ugrave;m a&longs;cendet cum illo <lb/>impetu acqui&longs;ito in de&longs;cen&longs;u KG, a&longs;cenderet in D ex hypothe&longs;i Galilei; <lb/>&longs;ed arcus GD e&longs;t &aelig;qualis GRA. </s>
				</p>
				<p id="N246C2" type="main">
					<s id="N246C4"><!-- NEW -->Ob&longs;eruabis prim&ograve; iuxta no&longs;tram hypothe&longs;im, qua diximus pendulum <lb/>AG po&longs;t de&longs;cen&longs;um per KG non a&longs;cendere in D, vix po&longs;&longs;e cogno&longs;ci <lb/>affixo clauo, ad quod punctum circuli GRA ex G pendulum peruentu&shy;<lb/>rum &longs;it; </s>
					<s id="N246CE"><!-- NEW -->&longs;i enim per GD a&longs;cendat in F, &amp; a&longs;&longs;umatur AZ &aelig;qualis DF, non <lb/>dee&longs;&longs;ent fort&egrave;, qui exi&longs;timarent arcum a&longs;cen&longs;us per GRA e&longs;&longs;e GRZ <lb/>&aelig;qualem GF; </s>
					<s id="N246D6"><!-- NEW -->&longs;ed pl&ugrave;s impetus de&longs;truitur in arcu GRZ, qu&agrave;m in arcu <lb/>GF, vt patet ex dictis; </s>
					<s id="N246DC"><!-- NEW -->nam nullum e&longs;t punctum in arcu GF, in quo pl&ugrave;s <lb/>impetus de&longs;truatur, qu&agrave;m in alio dato arcus GRZ; </s>
					<s id="N246E2"><!-- NEW -->c&ugrave;m tamen &longs;int ali&shy;<lb/>qua puncta in arcu GRZ, in quibus pl&ugrave;s impetus de&longs;truitur, qu&agrave;m in <lb/>arcu GF, v.g. <!-- REMOVE S-->in puncto R; </s>
					<s id="N246EC"><!-- NEW -->itaque ducatur FD parallela AD: </s>
					<s id="N246F0"><!-- NEW -->dico qu&ograve;d <lb/>perueniet pendulum in <foreign lang="greek">d</foreign>; </s>
					<s id="N246FA"><!-- NEW -->quippe cum eodem impetu ad <expan abbr="e&atilde;dem">eandem</expan> altitu&shy;<lb/>dinem a&longs;cenditur; qu&aelig; omnia certa &longs;unt. </s>
				</p>
				<p id="N24704" type="main">
					<s id="N24706"><!-- NEW -->Ob&longs;eruabis &longs;ecund&ograve;, &longs;i affigatur clauus in <foreign lang="greek">q</foreign>, &longs;intque P<foreign lang="greek">q</foreign>G &aelig;quales, ex <lb/>hypothe&longs;i Galilei; </s>
					<s id="N24714"><!-- NEW -->pendulum G prim&ograve; ex G perueniet in P, cum eo &longs;cili&shy;<lb/>cet impetu, quo perueniet in T; </s>
					<s id="N2471A"><!-- NEW -->t&ugrave;m deinde ex P per <foreign lang="greek">b</foreign> redit in G aucto <lb/>&longs;cilicet impetu in de&longs;cen&longs;u P <foreign lang="greek">b</foreign> G, &amp; ex G iterum a&longs;cendit in P; atque ita <lb/>deinceps; quippe gyri perennes e&longs;&longs;ent, ni&longs;i tandem totum filum circa <lb/>clauum conuolueretur. </s>
				</p>
				<p id="N2472C" type="main">
					<s id="N2472E"><!-- NEW -->Ob&longs;eruabis pr&aelig;terea, aliquid &longs;imile contingere, cum pondus filo pen&shy;<lb/>dulum in gyros, agimus circa mobilem digitum, v.g. <!-- REMOVE S-->quippe vltimi gyri <lb/>citi&ugrave;s ab&longs;oluuntur; </s>
					<s id="N24738"><!-- NEW -->quia &longs;cilicet breuiores &longs;unt, &longs;ed h&aelig;c &longs;unt facilia; </s>
					<s id="N2473C"><!-- NEW -->ob&shy;<lb/>&longs;eruabis tamen cum voluitur filum illud circa digitum pendulum, non <lb/>moueri motu circulari, &longs;ed &longs;pirali; vnde c&ugrave;m motus mixtus &longs;it, in librum <lb/>&longs;equentem reiicimus. </s>
				</p>
				<p id="N24746" type="main">
					<s id="N24748"><!-- NEW -->Ob&longs;eruabis deinde, cum pendulum AG de&longs;cendit ex V in G, &amp; prop&shy;<lb/>ter clauum, &agrave; quo retinetur, filum a&longs;cendit in R, a&longs;cen&longs;um GR ferri bre&shy;<lb/>uiore tempore, qu&agrave;m a&longs;cen&longs;um GT; </s>
					<s id="N24750"><!-- NEW -->quia a&longs;cen&longs;us GT &amp; GD &aelig;quali &longs;e-<pb pagenum="328" xlink:href="026/01/362.jpg"/>r&egrave; tempore peraguntur; </s>
					<s id="N24759"><!-- NEW -->&longs;unt enim vibrationes eiu&longs;dem funependuli; </s>
					<s id="N2475D"><!-- NEW --><lb/>quippe lic&egrave;t minor vibratio minore tempore fiat; </s>
					<s id="N24762"><!-- NEW -->illud tamen &longs;en&longs;u di&longs;&shy;<lb/>cerni non pote&longs;t, ni&longs;i in &longs;erie multarum vibrationum; </s>
					<s id="N24768"><!-- NEW -->atqui GR perfici&shy;<lb/>tur &aelig;quali tempore, &longs;iue pendulum de&longs;cendat ex V; &longs;iue ex Y; </s>
					<s id="N2476E"><!-- NEW -->acquiritur <lb/>enim &aelig;qualis impetus vtroque modo; </s>
					<s id="N24774"><!-- NEW -->&longs;ed a&longs;cen&longs;us GR fieret &aelig;quali <lb/>tempore cum de&longs;cen&longs;u YG; </s>
					<s id="N2477A"><!-- NEW -->hic ver&ograve; breuiore, qu&agrave;m VG, vt patet; &longs;unt <lb/>enim numeri vibrationum, vt radices longitudinum. </s>
				</p>
				<p id="N24780" type="main">
					<s id="N24782"><!-- NEW -->Ob&longs;eruabis denique po&longs;&longs;e funependulum, PG &longs;olidum demitti ex A, <lb/>&longs;i tantill&ugrave;m inclinctur; fed de hoc funependulorum genere agemus <lb/>infr&agrave;. </s>
				</p>
				<p id="N2478A" type="main">
					<s id="N2478C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 29.<emph.end type="center"/></s>
				</p>
				<p id="N24798" type="main">
					<s id="N2479A"><!-- NEW --><emph type="italics"/>Funependulum in fine a&longs;cen&longs;us non quie&longs;cit vno in&longs;tanti<emph.end type="italics"/>; </s>
					<s id="N247A3"><!-- NEW -->quia numquam <lb/>ad perfectam &aelig;qualitatem peruenitur; quod eodem modo probatur, <lb/>quo &longs;upr&agrave; l. <!-- REMOVE S-->3. e&longs;t enim par ratio. </s>
				</p>
				<p id="N247AD" type="main">
					<s id="N247AF"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 30.<emph.end type="center"/></s>
				</p>
				<p id="N247BB" type="main">
					<s id="N247BD"><!-- NEW --><emph type="italics"/>Figura penduli multum facit ad motum vibrationis<emph.end type="italics"/>: </s>
					<s id="N247C6"><!-- NEW -->&longs;ph&aelig;rica omnium <lb/>fer&egrave; apti&longs;&longs;ima e&longs;t pr&aelig;ter Conchoidem, &amp; eam, qu&aelig; con&longs;taret ex duobus <lb/>conis in communi ba&longs;i coniunctis, vel in gemina pyramide; ratio con&longs;tat <lb/>ex cis, qu&aelig; diximus de motu naturali. </s>
				</p>
				<p id="N247D0" type="main">
					<s id="N247D2"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 31.<emph.end type="center"/></s>
				</p>
				<p id="N247DE" type="main">
					<s id="N247E0"><!-- NEW --><emph type="italics"/>Funis mult&ugrave;m etiam facit<emph.end type="italics"/>; </s>
					<s id="N247E9"><!-- NEW -->omnium optimus e&longs;t tenui&longs;&longs;imus, qui &longs;ci&shy;<lb/>licet facili&ugrave;s a&euml;ra &longs;ecat; </s>
					<s id="N247EF"><!-- NEW -->nec enim dubium e&longs;t, quin huic diui&longs;ioni re&longs;i&longs;tat <lb/>a&euml;r, cuius re&longs;i&longs;tenti&aelig; analogiam videmus in aqua, quam funis oblongus <lb/>non ni&longs;i cum &longs;en&longs;ibili re&longs;i&longs;tentia diuidit, vt videre e&longs;t in iis funibus, qui&shy;<lb/>bus ab equis naues trahuntur; </s>
					<s id="N247F9"><!-- NEW -->aliqui adhibent ductum auri filum; </s>
					<s id="N247FD"><!-- NEW -->&longs;ed <lb/>vnum pr&aelig;&longs;ertim ob&longs;eruandum e&longs;t, &longs;cilicet ne pr&aelig; nimia tenuitate maio&shy;<lb/>ris fort&egrave; vi ponderis vlterius ducatur, vel dilatetur; </s>
					<s id="N24805"><!-- NEW -->vtrumque enim mo&shy;<lb/>tum vibrationis retardat: </s>
					<s id="N2480B"><!-- NEW -->imm&ograve; pendulum ip&longs;um non de&longs;criberet &longs;emi&shy;<lb/>circulum; an ver&ograve; &longs;emiellyp&longs;im vt volunt aliqui, definiemus &longs;uo loco, <lb/>cum de lineis motus. </s>
				</p>
				<p id="N24813" type="main">
					<s id="N24815"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 32.<emph.end type="center"/></s>
				</p>
				<p id="N24821" type="main">
					<s id="N24823"><!-- NEW --><emph type="italics"/>Pondus funependuli mult&ugrave;m facit ad vibrationis motum<emph.end type="italics"/>; </s>
					<s id="N2482C"><!-- NEW -->&longs;i enim granu&shy;<lb/>lum plumbeum appendatur, vix &longs;uperabit re&longs;i&longs;tentiam funis, qui vt vi&shy;<lb/>bretur, optim&egrave; ten&longs;us e&longs;&longs;e debet; atqui notabili pondere tendi tant&ugrave;m <lb/>pote&longs;t. </s>
				</p>
				<p id="N24836" type="main">
					<s id="N24838"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 33.<emph.end type="center"/></s>
				</p>
				<p id="N24844" type="main">
					<s id="N24846"><!-- NEW --><emph type="italics"/>Materia funependuli mult&ugrave;m etiam facit ad vibrationis motum &longs;uppo&longs;ita <lb/>&longs;cilicet eadem figura<emph.end type="italics"/>; </s>
					<s id="N24851"><!-- NEW -->quippe tam leuis e&longs;&longs;e po&longs;&longs;et materia, vt nec a&euml;ris <lb/>vim nec funis re&longs;i&longs;tentiam &longs;uperaret: </s>
					<s id="N24857"><!-- NEW -->hinc globus &longs;ubereus vel &egrave; &longs;ambu&shy;<lb/>cea medulla con&longs;tans, tardi&ugrave;s de&longs;cendit, qu&agrave;m plumbeus; </s>
					<s id="N2485D"><!-- NEW -->habes apud <lb/>Mer&longs;ennum has proportiones; </s>
					<s id="N24863"><!-- NEW -->globus plumbeus pendulus fune pedum <lb/>3. 1/2 &egrave; &longs;ummo quadrantis arcu demi&longs;&longs;us a&longs;cendit per arcum oppo&longs;itum <pb pagenum="329" xlink:href="026/01/363.jpg"/>&aelig;qualem minus vno digito; </s>
					<s id="N2486E"><!-- NEW -->&longs;ubereus ver&ograve; minus 4/9 arcus quadrantis; </s>
					<s id="N24872"><!-- NEW --><expan abbr="&longs;&atilde;-buceus">&longs;am&shy;<lb/>buceus</expan> minus 6/7 cereus minus tribus digitis; </s>
					<s id="N2487B"><!-- NEW -->addit pr&aelig;terea <expan abbr="plumbe&utilde;">plumbeum</expan> in <lb/>perpendiculo conficere 48. pedes tempore duorum &longs;ecundorum, cereum <lb/>paul&ograve; maiore tempore; </s>
					<s id="N24887"><!-- NEW -->quod tamen percipi non pote&longs;t; </s>
					<s id="N2488B"><!-- NEW -->&longs;ubereum in eo&shy;<lb/>dem &longs;patio percurrendo ponere tria &longs;ecunda medullarum 5. ve&longs;icam pi&longs;&shy;<lb/>cis inflatam 8. &longs;ed h&aelig;c accurat&egrave; ob&longs;eruari non po&longs;&longs;unt; </s>
					<s id="N24893"><!-- NEW -->&longs;i enim dicam <lb/>&longs;upere&longs;&longs;e, vel dee&longs;&longs;e aliquid, vel &longs;patij, vel temporis, quod tamen &longs;en&longs;u <lb/>minim&egrave; percipiatur; quis e&longs;t qui contrarium probare po&longs;&longs;it. </s>
				</p>
				<p id="N2489B" type="main">
					<s id="N2489D"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N248A9" type="main">
					<s id="N248AB">Ob&longs;eruabis prim&ograve; non e&longs;&longs;e omittendum, quod habet Galileus in dia&shy;<lb/>logis, &amp; facil&egrave; ex dictis colligi pote&longs;t, &longs;cilicet pendula diuer&longs;&aelig; longitu&shy;<lb/>dini sita po&longs;&longs;e componi, vt vnum vnicam vibrationem efficiat, dum aliud <lb/>percurrit 2. vel 3. &amp;c. </s>
					<s id="N248B4"><!-- NEW -->atque ita haberi po&longs;&longs;e quemdam oculorum qua&longs;i <lb/>concentum non &longs;onorum &longs;ed motuum, v.g. <!-- REMOVE S-->&longs;i &longs;it alter funis longus 4. pe&shy;<lb/>des; </s>
					<s id="N248BE"><!-- NEW -->alter ver&ograve; vnum, pendulum ex illo duas percurret; </s>
					<s id="N248C2"><!-- NEW -->quia numeri <lb/>vibrationum &longs;unt, vt tempora; </s>
					<s id="N248C8"><!-- NEW -->h&aelig;c ver&ograve; &longs;ubduplicata longitudinum; </s>
					<s id="N248CC"><!-- NEW -->h&icirc;c <lb/>autem vides quadam &longs;peciem diapa&longs;on, cuius proportio in his numeris <lb/>po&longs;ita e&longs;t 1/2; </s>
					<s id="N248D4"><!-- NEW -->&longs;i vero aliud funependulum &longs;it longum 9. pedes, conficiet <lb/>&amp; alterum vnum hoc eodem tempore tres vibrationes; </s>
					<s id="N248DA"><!-- NEW -->&longs;i &longs;it aliud, 16. <lb/>pedes longum, &amp; alterum vnum; </s>
					<s id="N248E0"><!-- NEW -->hec eodem tempore conficiet 4. vibra&shy;<lb/>tiones, atque ita deinceps poteris habere quamlibet proportionem in <lb/>numeris vibrationum ex ip&longs;a combinationum regula; &longs;ed profect&ograve; non <lb/>magnam voluptatem ex hac qua&longs;i oculorum mu&longs;ic&acirc; percipies, &longs;altem <lb/>ego modicam percipere potui. </s>
				</p>
				<p id="N248EC" type="main">
					<s id="N248EE"><!-- NEW -->Ob&longs;eruabis &longs;ecund&ograve;, hactenus actum e&longs;&longs;e &agrave; nobis de primo funepen&shy;<lb/>dulorum genere &longs;atis longa tractatione; iam ergo &longs;upere&longs;t, vt de aliis <lb/>agamus. </s>
				</p>
				<p id="N248F6" type="main">
					<s id="N248F8"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 34.<emph.end type="center"/></s>
				</p>
				<p id="N24904" type="main">
					<s id="N24906"><!-- NEW --><emph type="italics"/>Pondus pendulum contorto fune gyros agit reciprocos in plano horizontali<emph.end type="italics"/>; </s>
					<s id="N2490F"><!-- NEW --><lb/>ratio petitur tant&ugrave;m ex compre&longs;&longs;ione intorti funis, qui dum &longs;e &longs;e redu&shy;<lb/>cit ad pri&longs;tinum &longs;tatum, pendulum pondus in gyros agit; </s>
					<s id="N24916"><!-- NEW -->cum ver&ograve; acce&shy;<lb/>leretur motus, &amp; nouus &longs;emper accedat impetus, pendulum ip&longs;um funi <lb/>etiam pri&longs;tino &longs;tatui re&longs;tituto qua&longs;i primam gratiam refert, c&ugrave;m impe&shy;<lb/>tum in eum refundat; </s>
					<s id="N24920"><!-- NEW -->&longs;i enim funis &longs;olus ade&longs;&longs;et nullo pendulo pondere <lb/>ten&longs;us; </s>
					<s id="N24926"><!-- NEW -->haud dubi&egrave; &longs;tatim quie&longs;ceret, vbi &longs;ublata e&longs;&longs;et compre&longs;&longs;io; </s>
					<s id="N2492A"><!-- NEW -->at ver&ograve; <lb/>quia impetus ponderi pendulo impre&longs;&longs;us adhuc durat funem ip&longs;um in <lb/>contrariam partem intorquet; donec tandem po&longs;t multos gyros repeti&shy;<lb/>tos pendulum pondus quie&longs;cat. </s>
				</p>
				<p id="N24934" type="main">
					<s id="N24936"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N24942" type="main">
					<s id="N24944"><!-- NEW -->Ob&longs;eruabis plures e&longs;&longs;e huius funependuli motus affectiones, qu&aelig; cert&egrave; <lb/>demon&longs;trari po&longs;&longs;unt; quia tamen cau&longs;a huius, qui &longs;equitur ex compre&longs;&shy;<lb/>&longs;ione e&longs;t noua potentia motrix, qu&agrave;m mediam vocamus, cuius mirifica <lb/>vis vix cogno&longs;ci pote&longs;t, ni&longs;i prob&egrave; cogno&longs;catur ratio den&longs;i, rari, &amp;c. </s>
					<s id="N2494E">tra-<pb pagenum="330" xlink:href="026/01/364.jpg"/>ctationem hanc in alium Tomum reiicimus, in quo fus&egrave; agemus de om&shy;<lb/>nibus affectionibus huius potenti&aelig;. </s>
				</p>
				<p id="N24958" type="main">
					<s id="N2495A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 35.<emph.end type="center"/></s>
				</p>
				<p id="N24966" type="main">
					<s id="N24968"><!-- NEW --><emph type="italics"/>Corpus oblongum flexibile in altera extremitate immobiliter affixum, &longs;i in&shy;<lb/>curuetur non mod&ograve; reducit &longs;e&longs;e ad pri&longs;tinum &longs;tatum, ver&ugrave;m etiam multas <lb/>tremulas vibrationes hinc inde facit<emph.end type="italics"/>; </s>
					<s id="N24975"><!-- NEW -->quarum cau&longs;a e&longs;t motus acceleratus <lb/>eiu&longs;dem potenti&aelig; motricis medi&aelig;; has quoque vibrationes remitti&shy;<lb/>mus. </s>
				</p>
				<p id="N2497D" type="main">
					<s id="N2497F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 36.<emph.end type="center"/></s>
				</p>
				<p id="N2498B" type="main">
					<s id="N2498D"><!-- NEW --><emph type="italics"/>Funis ten&longs;us in vtraque extremitate affixus, &longs;i pul&longs;etur infinitas fer&egrave; tremu&shy;<lb/>la&longs;que vibrationes hinc inde peragit<emph.end type="italics"/>; &longs;unt etiam mirabiles harum vibra&shy;<lb/>tionum affectiones, quas multis Theorematis in eodem volumine pro&shy;<lb/>&longs;equemur. </s>
				</p>
				<p id="N2499C" type="main">
					<s id="N2499E">Diceret aliquis; </s>
					<s id="N249A1"><!-- NEW -->igitur in hoc tractatu omnia, qu&aelig; &longs;pectant ad motum <lb/>non habentur; Re&longs;pondeo, tractatum hunc e&longs;&longs;e poti&longs;&longs;imum in&longs;titutum <lb/>ad demon&longs;trandas omnes affectiones t&ugrave;m motus grauium, t&ugrave;m motus <lb/>impre&longs;&longs;i &agrave; principio extrin&longs;eco, intactis pror&longs;us iis motibus, qui &longs;unt vel <lb/>&agrave; potentia motrice animantium, in ip&longs;is dumtaxat animantibus, de qui&shy;<lb/>bus agemus &longs;uo loco, quales &longs;unt progredi, currere, volare, notare, repe&shy;<lb/>re, &amp;c. </s>
					<s id="N249B1"><!-- NEW -->vel &agrave; leuitate corporum, &longs;i fort&egrave; aliquis motus e&longs;t &agrave; leuitate, <lb/>quod h&icirc;c non di&longs;cutio, &longs;ed remitto in librum de graui &amp; leui; </s>
					<s id="N249B7"><!-- NEW -->vel de&shy;<lb/>nique ab illa potenti&acirc; medi&acirc;, cui omnes motus ten&longs;orum; compre&longs;&longs;orum, <lb/>arcuum; reique tormentari&aelig; t&ugrave;m hydraulic&aelig;, pneumatic&aelig;, &amp;c. </s>
					<s id="N249BF">tribue&shy;<lb/>mus: </s>
					<s id="N249C4"><!-- NEW -->de his cert&egrave; motibus in hoc tractatu non agemus; </s>
					<s id="N249C8"><!-- NEW -->quia c&ugrave;m non <lb/>po&longs;&longs;int demon&longs;trari illorum affectiones, ni&longs;i cogno&longs;cantur illorum cau&shy;<lb/>&longs;&aelig;; </s>
					<s id="N249D0"><!-- NEW -->neque h&aelig; cogno&longs;ci po&longs;&longs;int, ni&longs;i multa alia cogno&longs;cantur, vt certi&longs;&longs;i&shy;<lb/>mum e&longs;t; min&ugrave;s prudenter factum e&longs;&longs;et, &longs;i de iis hoc loco di&longs;putatio <lb/>in&longs;titueretur. </s>
				</p>
				<p id="N249D8" type="main">
					<s id="N249DA"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 37.<emph.end type="center"/></s>
				</p>
				<p id="N249E6" type="main">
					<s id="N249E8"><!-- NEW --><emph type="italics"/>E&longs;t aliud corporis libratilis genus<emph.end type="italics"/> &longs;i &longs;it v. <!-- REMOVE S-->g. <!-- REMOVE S-->corpus oblongum, grane, <lb/>&amp; &longs;olidum AF in &longs;itu horizontali innixum plano verticali EBCD; </s>
					<s id="N249F7"><!-- NEW -->&longs;i <lb/>enim extremitas F attollatur per arcum FG circa centrum B; </s>
					<s id="N249FD"><!-- NEW -->haud du&shy;<lb/>bi&egrave; altera A deprimetur per arcum AI circa idem centrum B; </s>
					<s id="N24A03"><!-- NEW -->at &longs;tatim <lb/>G de&longs;cendet motu naturaliter accelerato in F, &amp; propter acqui&longs;itum in <lb/>de&longs;cen&longs;u, de&longs;cendet infra horizontalem GF per arcum FH, circa cen&shy;<lb/>trum C, &amp; I a&longs;cendet in A, t&ugrave;m in K, &longs;ed K &longs;tatim de&longs;cendet, atque ita <lb/>deinceps; </s>
					<s id="N24A0F"><!-- NEW -->donec tandem po&longs;t multas vibrationes quie&longs;cat AF in &longs;itu <lb/>horizontali; </s>
					<s id="N24A15"><!-- NEW -->porr&ograve; G de&longs;cendit, quia GI non e&longs;t in &aelig;quilibrio, c&ugrave;m <lb/>centrum grauitatis &longs;it in M; igitur BG, qu&aelig; e&longs;t longior BI, de&longs;cen&shy;<lb/>det. </s>
				</p>
				<p id="N24A1D" type="main">
					<s id="N24A1F"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N24A2C" type="main">
					<s id="N24A2E">Prim&ograve; colligo, motum accelerari in de&longs;cen&longs;u GF, quia impetus acqui&shy;<lb/>&longs;itus in G remanet adhuc in Q, &amp; nouus acquiritur, vt &longs;&aelig;pe dictum e&longs;t. </s>
				</p>
				<pb pagenum="331" xlink:href="026/01/365.jpg"/>
				<p id="N24A37" type="main">
					<s id="N24A39"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N24A46" type="main">
					<s id="N24A48"><!-- NEW -->Secund&ograve;, impetum acqui&longs;itum in G e&longs;&longs;e minorem acqui&longs;ito in <expan abbr="q;">que</expan> &amp; <lb/>acqui&longs;itum in Q minorem acqui&longs;ito in F; quia momentum in G e&longs;t ad <lb/>momentum in E, vt OB ad FB, vt &longs;upr&agrave; dictum e&longs;t multis locis. </s>
				</p>
				<p id="N24A54" type="main">
					<s id="N24A56"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N24A63" type="main">
					<s id="N24A65"><!-- NEW -->Terti&ograve; colligo, e&longs;&longs;e inuer&longs;as rationes accelerationis in funependulo, &amp; <lb/>in priori, quod vibratur in plano verticali: quippe in i&longs;to impetus ac&shy;<lb/>qui&longs;itus in &longs;uperiore arcu e&longs;t maior acqui&longs;ito in inferiore, &longs;ecus in illo. </s>
				</p>
				<p id="N24A6D" type="main">
					<s id="N24A6F"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N24A7C" type="main">
					<s id="N24A7E">Quart&ograve; colligo, i&longs;tas vibrationes non e&longs;&longs;e perpetuas, quia &longs;ecunda e&longs;t <lb/>minor prima, &amp; tertia minor &longs;ecunda, atque ita deinceps propter ratio&shy;<lb/>nem, quam attulimus &longs;upr&agrave;. </s>
				</p>
				<p id="N24A85" type="main">
					<s id="N24A87"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 5.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N24A94" type="main">
					<s id="N24A96"><!-- NEW -->Quint&ograve; colligo, vibrationes minores fieri citi&ugrave;s, qu&agrave;m maiores, v. <!-- REMOVE S-->g. <lb/><!-- REMOVE S-->QF qu&agrave;m GF, quod multis con&longs;tat experimentis, &amp; ratio e&longs;t manife&longs;ta; </s>
					<s id="N24A9F"><!-- NEW --><lb/>quia QF &longs;it &aelig;qualis QG; cert&egrave; QF accedit propi&ugrave;s ad perpendicularem <lb/>qu&agrave;m GQ; </s>
					<s id="N24A9G"> igitur c&ugrave;m &longs;it &aelig;qualis, breuiore tempore percurretur, quod <lb/>clari&longs;&longs;imum e&longs;t. </s>
				</p>
				<p id="N24AAC" type="main">
					<s id="N24AAE"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 6.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N24ABB" type="main">
					<s id="N24ABD"><!-- NEW -->Sext&ograve; colligo, ea&longs;dem vel &longs;imiles &longs;equi &longs;i AF &longs;u&longs;pendatur ex LN; e&longs;t <lb/>enim pror&longs;us eadem ratio. </s>
				</p>
				<p id="N24AC3" type="main">
					<s id="N24AC5"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 7.<emph.end type="center"/></s>
				</p>
				<p id="N24AD1" type="main">
					<s id="N24AD3"><!-- NEW -->Septim&ograve; colligo, alia corpora etiam cubica, vel alterius figur&aelig; plano <lb/>horizontali v. <!-- REMOVE S-->g. <!-- REMOVE S-->ip&longs;i &longs;olo incubantia, &longs;i tantill&ugrave;m &egrave; &longs;uo &longs;itu remouean&shy;<lb/>tur per &longs;imiles vibrationes &longs;e&longs;e in illum re&longs;tituere; imm&ograve; ex minima <lb/>percu&longs;&longs;ione multis huiu&longs;modi vibrationibus percu&longs;&longs;um corpus contre&shy;<lb/>mi&longs;cit. </s>
				</p>
				<p id="N24AE3" type="main">
					<s id="N24AE5"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 38.<emph.end type="center"/></s>
				</p>
				<p id="N24AF1" type="main">
					<s id="N24AF3"><!-- NEW --><emph type="italics"/>Si corpus &longs;olidum pendulum circa punctum immobile ita voluatur, vt ex <lb/>verticali &longs;itu amoueatur; </s>
					<s id="N24AFB"><!-- NEW -->haud dubi&egrave; de&longs;cendet, a&longs;cendetque per vibrationes <lb/>repetitas<emph.end type="italics"/>; </s>
					<s id="N24B04"><!-- NEW -->&amp; hoc e&longs;t vltimum vibrationum genus, quarum eadem e&longs;t <lb/>pror&longs;us ratio, &amp; cau&longs;a, quam &longs;uperioribus tribuimus, iis &longs;cilicet, qu&aelig; in <lb/>plano verticali &agrave; pendulo pondere de&longs;cribuntur; </s>
					<s id="N24B0C"><!-- NEW -->nam in vtroque genere <lb/>vibrationum prim&ograve; acceleratur motus; </s>
					<s id="N24B12"><!-- NEW -->&longs;ecund&ograve; pl&ugrave;s initio, min&ugrave;s ad fi&shy;<lb/>nem vibrationis, terti&ograve; non &longs;unt perpetu&aelig; vibrationes; </s>
					<s id="N24B18"><!-- NEW -->quart&ograve; ad a&longs;cen&shy;<lb/>&longs;um non concurrit impetus innatus; quint&ograve;, impetus de&longs;truitur cum ma&shy;<lb/>iore proportione in maiore vibratione, qu&agrave;m in minore, &amp;c. </s>
					<s id="N24B20">qu&aelig; vtri&shy;<lb/>que generi &longs;unt communia. </s>
				</p>
				<p id="N24B25" type="main">
					<s id="N24B27"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 39.<emph.end type="center"/></s>
				</p>
				<p id="N24B33" type="main">
					<s id="N24B35"><!-- NEW --><emph type="italics"/>Funependulum, &amp; corpus oblongum eiu&longs;dem longitudinis non de&longs;cendunt <lb/>equ&egrave; velociter, &longs;i ex eadem altitudine demi&longs;&longs;a circa <expan abbr="centr&utilde;">centrum</expan> immobile vibrentur<emph.end type="italics"/>; </s>
					<s id="N24B44"><!-- NEW --><pb pagenum="332" xlink:href="026/01/366.jpg"/> &longs;it enim corpus oblongum AB vibratum circa centrum immobile A <lb/>per arcum BC, &longs;itque pendulum pondus C fune CA, demi&longs;&longs;um, &amp; vi&shy;<lb/>bratum per arcum BC; </s>
					<s id="N24B50"><!-- NEW -->cert&egrave; tardi&ugrave;s funependulum hoc arcum BC per&shy;<lb/>curret, qu&agrave;m corpus oblongum, quod multis experimentis comprobatum <lb/>e&longs;t; </s>
					<s id="N24B58"><!-- NEW -->ratio e&longs;t, quia in pondere funependulo &longs;olum pondus E cen&longs;eri de&shy;<lb/>bet cau&longs;a motus; </s>
					<s id="N24B5E"><!-- NEW -->quippe, lic&egrave;t funis aliquid conferat; </s>
					<s id="N24B62"><!-- NEW -->quia tamen tam <lb/>exilis e&longs;&longs;e pote&longs;t, vt vix quidquam addat p&oacute;deris, pro nihilo computatur; </s>
					<s id="N24B68"><!-- NEW --><lb/>igitur totus motus e&longs;t ab ip&longs;o pondere pendulo; at ver&ograve; in corpore ob&shy;<lb/>longo AB, quod &longs;it v. <!-- REMOVE S-->g. <!-- REMOVE S-->parallelipedum, vel cylindricum, non tant&ugrave;m e&longs;t <lb/>motus &agrave; puncto B, ver&ugrave;m etiam &agrave; punctis FE, &amp;c. </s>
					<s id="N24B75">cum enim punctum <lb/>F, v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;i &longs;eor&longs;im &longs;umatur, percurrat arcum FG citi&ugrave;s qu&agrave;m punctum B <lb/>&longs;eor&longs;im arcum BC, cert&egrave; punctum F, qua&longs;i deor&longs;um rapit punctum B igi&shy;<lb/>tur totum corpus AB citi&ugrave;s ab&longs;oluit &longs;uam vibrationem, qu&agrave;m funepen&shy;<lb/>dulum, quod erat probandum. </s>
				</p>
				<p id="N24B84" type="main">
					<s id="N24B86"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 40.<emph.end type="center"/></s>
				</p>
				<p id="N24B92" type="main">
					<s id="N24B94"><!-- NEW --><emph type="italics"/>Vt &longs;u&longs;tineatur corpus oblongum AB, facili&ugrave;s &longs;u&longs;tinetur in B, qu&agrave;m in P, <lb/>&amp; in F, qu&agrave;m in E, &amp; in E qu&agrave;m in H,<emph.end type="italics"/> atque ita deinceps &lpar;&longs;uppono autem, <lb/>qu&ograve;d po&longs;&longs;it volui circa centrum A&rpar; ratio clara e&longs;t ex vecte, de quo &longs;uo <lb/>loco; imm&ograve; lic&egrave;t AB penderet tant&ugrave;m vnam vnciam, po&longs;&longs;et aliquod <lb/>a&longs;&longs;ignari punctum iuxta A, in quo ab homine robu&longs;ti&longs;&longs;imo &longs;u&longs;tineri non <lb/>po&longs;&longs;et in &longs;itu horizontali AB. <!-- KEEP S--></s>
				</p>
				<p id="N24BA8" type="main">
					<s id="N24BAA"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 41.<emph.end type="center"/></s>
				</p>
				<p id="N24BB6" type="main">
					<s id="N24BB8"><!-- NEW --><emph type="italics"/>Si de&longs;cendat cylindrus AB in AC circa centrum A, &amp; occurrat in AC <lb/>alteri corpori, ictum maximum infliget ex puncte F, &longs;i AF e&longs;t media pro&shy;<lb/>portionalis inter AE, AB, &amp; habeatur tantum ratio impetus ab&longs;olut&egrave; &longs;umpti <emph.end type="italics"/>; </s>
					<s id="N24BC5"><!-- NEW --><lb/>hoc fuit iucundi&longs;&longs;imum Theorema, quod in lib.  1. demon&longs;trauimus; </s>
					<s id="N24BCA"><!-- NEW -->ne&shy;<lb/>que h&icirc;c repeto; </s>
					<s id="N24BD0"><!-- NEW -->vnum tant&ugrave;m addo vald&egrave; paradoxon in punctum G e&longs;&longs;e <lb/>maximum ictum, non tamen maximam vim, &longs;cilicet ad mouendum; </s>
					<s id="N24BD6"><!-- NEW --><lb/>nam in D maior erit vis, qu&agrave;m in G, &amp; in I, qu&agrave;m in D; erit tamen mi&shy;<lb/>nor motus, &longs;eu minor impre&longs;&longs;io. </s>
				</p>
				<p id="N24BDD" type="main">
					<s id="N24BDF"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 42.<emph.end type="center"/></s>
				</p>
				<p id="N24BEB" type="main">
					<s id="N24BED"><!-- NEW --><emph type="italics"/>In maiori proportione de&longs;truitur impetus in a&longs;cen&longs;u vibrationis eiu&longs;dem <lb/>corporis oblongi, quam in a&longs;cen&longs;it vibrationis funependuli<emph.end type="italics"/>; </s>
					<s id="N24BFA"><!-- NEW -->con&longs;tat cert&egrave; cla&shy;<lb/>ri&longs;&longs;imis experimentis; </s>
					<s id="N24C00"><!-- NEW -->ratio e&longs;t, quia plures partes impetus innati re&longs;i&shy;<lb/>&longs;tunt; quipp&egrave; impetus innatus funis tam paruus e&longs;t, vt pro nullo ha&shy;<lb/>beatur. </s>
				</p>
				<p id="N24C08" type="main">
					<s id="N24C0A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 43.<emph.end type="center"/></s>
				</p>
				<p id="N24C16" type="main">
					<s id="N24C18"><!-- NEW --><emph type="italics"/>Hinc &longs;unt pauciores vibrationes corporis oblongi, qu&agrave;m funependuli,<emph.end type="italics"/> cum <lb/>&longs;inguli a&longs;cen&longs;us pl&ugrave;s impetus de&longs;truant in vibrationibus corporis ob&shy;<lb/>longi, qu&agrave;m funependuli: </s>
					<s id="N24C2B"><!-- NEW -->Hinc citi&ugrave;s quie&longs;cit corpus oblongum vibra&shy;<lb/>tum, qu&agrave;m funependulum; </s>
					<s id="N24C31"><!-- NEW -->lic&egrave;t vtrumque ex eadem altitudine demitta&shy;<lb/>tur; quod etiam multis experimentis comprobatur, &amp; ratio patet ex <lb/>dictis. </s>
				</p>
				<pb pagenum="333" xlink:href="026/01/367.jpg"/>
				<p id="N24C3D" type="main">
					<s id="N24C3F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 44.<emph.end type="center"/></s>
				</p>
				<p id="N24C4B" type="main">
					<s id="N24C4D"><!-- NEW --><emph type="italics"/>Vibrationes minores corporis oblongi citi&ugrave;s peraguntur, qu&agrave;m minores<emph.end type="italics"/>; ex&shy;<lb/>perientia certa e&longs;t, ratio ver&ograve; eadem cum ea, quam explicuimus &longs;upr&agrave; <lb/>in funependulis. </s>
				</p>
				<p id="N24C5A" type="main">
					<s id="N24C5C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 45.<emph.end type="center"/></s>
				</p>
				<p id="N24C68" type="main">
					<s id="N24C6A"><!-- NEW --><emph type="italics"/>Min&ugrave;s producitur impetus in E, v.g. <!-- REMOVE S-->corporis oblongi, &longs;cilicet in de&longs;cen&longs;u, <lb/>qu&agrave;m &longs;i AE &longs;eparata e&longs;&longs;et ab AB<emph.end type="italics"/>; </s>
					<s id="N24C77"><!-- NEW -->patet, pl&ugrave;s tamen producitur, qu&agrave;m &longs;i <lb/>E deferretur &agrave; B, vt accidit in funependulis; </s>
					<s id="N24C7D"><!-- NEW -->prima pars e&longs;t certa; </s>
					<s id="N24C81"><!-- NEW -->quia <lb/>corpus oblongum AE perficit citi&ugrave;s &longs;uam vibrationem, qu&agrave;m AB; &longs;ecun&shy;<lb/>da etiam probatur, quia alioqui vibratio corporis oblongi, &amp; vibratio <lb/>funependuli eiu&longs;dem longitudinis &aelig;quali tempore percurreretur. </s>
				</p>
				<p id="N24C8B" type="main">
					<s id="N24C8D"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 46.<emph.end type="center"/></s>
				</p>
				<p id="N24C99" type="main">
					<s id="N24C9B"><!-- NEW --><emph type="italics"/>Si punctum H e&longs;&longs;et nodus long&egrave; grauior reliquo AB, extremitas B percur&shy;<lb/>reret citius arcum BC, qu&agrave;m ip&longs;um perpendiculum<emph.end type="italics"/>; </s>
					<s id="N24CA8"><!-- NEW -->quia &longs;cilicet impetus <lb/>nodi A &longs;eg mentum HB &longs;ecum abriperet; </s>
					<s id="N24CAE"><!-- NEW -->&longs;ed eo tempore, quo percurri&shy;<lb/>tur arcus HI, non percurritur, perpendiculum &aelig;quale arcui BC, vt pa&shy;<lb/>tet; </s>
					<s id="N24CB6"><!-- NEW -->imm&ograve; po&longs;&longs;et ita componi corpus oblongum, vt punctum B t&ugrave;m in <lb/>perpendiculo, t&ugrave;m in arcu BC, &aelig;qu&egrave; cit&ograve; moueretur; multa haud <lb/>dubi&egrave; dicenda &longs;uper&longs;unt de hoc pendulorum genere, qu&aelig; <lb/>remittimus in appendicem, quam huic Tomo <lb/>&longs;ubnectimus. <lb/><figure id="id.026.01.367.1.jpg" xlink:href="026/01/367/1.jpg"/></s>
				</p>
			</chap>
			<chap id="N24CC8">
				<pb pagenum="334" xlink:href="026/01/368.jpg"/>
				<figure id="id.026.01.368.1.jpg" xlink:href="026/01/368/1.jpg"/>
				<p id="N24CD2" type="head">
					<s id="N24CD4"><emph type="center"/>LIBER SECVNDVS, <lb/><emph type="italics"/>DE MOTV NATVRALI.<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N24CE1" type="head">
					<s id="N24CE3"><emph type="center"/>LIBER NONVS, <lb/><emph type="italics"/>DE MOTV MIXTO EX RECTO, ET <lb/>Circulari, vel ex pluribus Circularibus.<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N24CF2" type="main">
					<s id="N24CF4"><!-- NEW -->MOTVS mixtus e&longs;&longs;e pote&longs;t vel ex recto, <lb/>&amp; circulari, vel ex duobus rectis, &amp; <lb/>circulari, vel ex duobus circularibus, &amp; <lb/>recto, vel ex pluribus circularibus, at&shy;<lb/>que ita deinceps: de iis acturus &longs;um in <lb/>hoc libro, reiectis tamen lineis i&longs;torum motuum in <lb/>Tomum &longs;equentem. <lb/><gap desc="hr tag"/></s>
				</p>
				<p id="N24D07" type="main">
					<s id="N24D09"><emph type="center"/><emph type="italics"/>DEFINITIO<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N24D16" type="main">
					<s id="N24D18"><emph type="italics"/>MOtus mixtus ex circulari &amp; recto ille e&longs;t, ad quem concurrit duplex <lb/>impetus, quorum vnus &longs;it determinatus ad motum rectum, &amp; alius <lb/>ad circularem, vel vnus tantum impetus, ad cremam, &amp; rectam lineam &longs;im <lb/>modo determinatus.<emph.end type="italics"/></s>
				</p>
				<p id="N24D25" type="main">
					<s id="N24D27"><!-- NEW -->Hunc modum explicabimus infr&agrave; in Theorematis; </s>
					<s id="N24D2B"><!-- NEW -->interea definitio, <lb/>&longs;atis clara e&longs;t mihi videtur: exemplum habes in rota, qu&aelig; in recto plano <lb/>voluitur. </s>
				</p>
				<p id="N24D33" type="main">
					<s id="N24D35"><emph type="center"/><emph type="italics"/>Definitio<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N24D42" type="main">
					<s id="N24D44"><!-- NEW --><emph type="italics"/>Motus mixtus ex duobus circularibus e&longs;t, ad quem concurvit impetus, vel <lb/>vnicus, vel duplex ad duas lineas circulares determinatus<emph.end type="italics"/>; </s>
					<s id="N24D4F"><!-- NEW -->&longs;imiliter de&shy;<lb/>finiri pote&longs;t mixtus in duobus, &amp; circulari; duobus circularibus &amp; recto, <lb/>pluribus circularibus. </s>
				</p>
				<p id="N24D57" type="main">
					<s id="N24D59"><!-- NEW -->Sed qu&aelig;&longs;o, cum audis motum mixtum ex duobus, caue credas, duos <lb/>motus ine&longs;&longs;e eidem mobili; quod cert&egrave; fieri non pote&longs;t, &longs;ed tant&ugrave;m plu&shy;<lb/>res impetus, vel vnicum ad diuer&longs;as lineas determinatum. </s>
				</p>
				<pb pagenum="335" xlink:href="026/01/369.jpg"/>
				<p id="N24D65" type="main">
					<s id="N24D67"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N24D74" type="main">
					<s id="N24D76"><emph type="italics"/>Illa partes mouentur veloci&ugrave;s, qu&aelig; tempore aquali maius &longs;patium acquirunt <lb/>tardi&ugrave;s ver&ograve;, que minus &longs;patium, clari&longs;&longs;imum e&longs;t, nec maiori indiget expli&shy;<lb/>catione.<emph.end type="italics"/></s>
				</p>
				<p id="N24D82" type="main">
					<s id="N24D84"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N24D91" type="main">
					<s id="N24D93"><!-- NEW --><emph type="italics"/>Cum vtraque determinatio motus ad <expan abbr="e&atilde;dem">eandem</expan> partem &longs;pectat, acquiritur <lb/>maius &longs;patium; </s>
					<s id="N24D9F"><!-- NEW -->tum ver&ograve; ad diuer&longs;as partes minus, at que ita prorata<emph.end type="italics"/>; hoc <lb/>etiam Axioma certum e&longs;t. </s>
				</p>
				<p id="N24DA8" type="main">
					<s id="N24DAA"><emph type="center"/><emph type="italics"/>Hypothe&longs;is.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N24DB6" type="main">
					<s id="N24DB8"><!-- NEW --><emph type="italics"/>Rot&aelig; circa idem centrum mobilis &longs;emicirculi oppo&longs;iti in partes contrarias <lb/>feruntur, motu &longs;cilicet orbis per arcus &longs;cilicet &aelig;quales<emph.end type="italics"/>; </s>
					<s id="N24DC7"><!-- NEW -->nam anguli oppo&longs;iti <lb/>&aelig;quales &longs;unt; &longs;ed arcus &longs;unt vt anguli. </s>
				</p>
				<p id="N24DCD" type="main">
					<s id="N24DCF"><emph type="center"/><emph type="italics"/>Po&longs;tulatum.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N24DDB" type="main">
					<s id="N24DDD"><emph type="italics"/>Liceat rotare orbem in plana &longs;uperficie, in conuexa, in concaua, in &aelig;quali. </s>
					<s id="N24DE4"><lb/>in&aelig;quali, ita vt motus orbis conueniat cum motu centri, vel ab eo diuer&longs;us &longs;it.<emph.end type="italics"/></s>
				</p>
				<p id="N24DEA" type="main">
					<s id="N24DEC"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N24DF9" type="main">
					<s id="N24DFB"><!-- NEW --><emph type="italics"/>Rota, qu&aelig; mouetur in &longs;uperficie plana, mouetur motu mixto ex recto centri <lb/>&amp; circulari orbis<emph.end type="italics"/>; </s>
					<s id="N24E0A"><!-- NEW -->&longs;it enim AQLZ incubans plano AD in quo rotatur, <lb/>&longs;itque AD recta &aelig;qualis arcui <expan abbr="Aq;">Aque</expan> cert&egrave; po&longs;ito quod motus orbis &longs;it &aelig;&shy;<lb/>qualis motui centri, id e&longs;t po&longs;ito quod &aelig;qualibus temporibus &longs;egmentum <lb/>plani percurratur motu centri v.g. <!-- REMOVE S-->QE vel AD &aelig;quale arcui, qui circa <lb/>centrum O conuoluitur motu orbis, v.g. <!-- REMOVE S-->arcui AQ, quodlibet punctum <lb/>peripheri&aelig; rot&aelig; mouebitur motu mixto ex recto, &amp; circulari v. <!-- REMOVE S-->g. <!-- REMOVE S-->pun&shy;<lb/>ctum L motu centri fertur ver&longs;us V &amp; motu orbis ver&longs;us Q; &longs;i enim <lb/>e&longs;&longs;et tantum motus centri ver&longs;us E, omnes partes mouerentur motu recto <lb/>v.g. <!-- REMOVE S-->L per rectam LV, A per rectam AD; </s>
					<s id="N24E30"><!-- NEW -->&longs;i ver&ograve; e&longs;&longs;et tant&ugrave;m motus <lb/>orbis, omnes partes mouerentur tant&ugrave;m motu circulari v. <!-- REMOVE S-->g. <!-- REMOVE S-->L, per ar&shy;<lb/>cum LZ; A per arcum AZ; </s>
					<s id="N24E3C"><!-- NEW -->at cum &longs;imul &longs;it vterque motus, id e&longs;t vtraque <lb/>determinatio, cert&egrave; vtraque confert de &longs;uo; igitur e&longs;t motus mixtus. </s>
				</p>
				<p id="N24E42" type="main">
					<s id="N24E44"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N24E51" type="main">
					<s id="N24E53"><!-- NEW --><emph type="italics"/>Vnicum tant&ugrave;m punctum rot&aelig; mouetur metu recto, &longs;cilicet centrum, c&aelig;tera <lb/>per lineam curuam<emph.end type="italics"/>; </s>
					<s id="N24E60"><!-- NEW -->de centro con&longs;tat, quia c&ugrave;m &longs;emper &aelig;qualiter di&longs;ter <lb/>&agrave; planis AD &amp; LV, &longs;cilicet eodem radio OL, ON; </s>
					<s id="N24E66"><!-- NEW -->cert&egrave; percurrit OE <lb/>parallelam vtrique; &longs;ed parallela vtrique e&longs;t recta, punctum ver&ograve; L mo&shy;<lb/>uetur per lineam curuam, vt con&longs;tabit ex illius de&longs;criptione, qu&agrave;m tra&shy;<lb/>demus infr&agrave;. </s>
				</p>
				<p id="N24E72" type="main">
					<s id="N24E74"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N24E81" type="main">
					<s id="N24E83"><!-- NEW --><emph type="italics"/>Si diuidatur arcus LQ in tres arcus aquales &amp; planum AD in tres par&shy;<lb/>tes &aelig;quales, pote&longs;t a&longs;&longs;ignari punctum, in quo &longs;it L decur&longs;o prime arcu LK<emph.end type="italics"/>; </s>
					<s id="N24E92"><!-- NEW -->&longs;i <lb/>enim e&longs;&longs;et tant&ugrave;m <expan abbr="co&etail;tri">centri</expan>, e&longs;&longs;et in <foreign lang="greek">m</foreign>, &longs;i motus orbis e&longs;&longs;et in K; </s>
					<s id="N24E9C"><!-- NEW -->igitur <lb/>&longs;it recta MI parallela LV, &longs;itque KI &aelig;qualis AB, vel L <foreign lang="greek">m</foreign>; </s>
					<s id="N24EA6"><!-- NEW -->haud dubi&egrave; erit <pb pagenum="336" xlink:href="026/01/370.jpg"/>in I; </s>
					<s id="N24EAF"><!-- NEW -->nec enim de&longs;cendet infra MI, vt con&longs;tat: </s>
					<s id="N24EB3"><!-- NEW -->&longs;ic motus orbis dat LK, <lb/>vel MK motus centri L <foreign lang="greek">m</foreign> vel KI; </s>
					<s id="N24EBD"><!-- NEW -->igitur vterque &longs;imul LI vel KI: </s>
					<s id="N24EC1"><!-- NEW -->&longs;i&shy;<lb/>militer decur&longs;o arcu KH, punctum rot&aelig; L erit in G; </s>
					<s id="N24EC7"><!-- NEW -->nam motus orbis <lb/>dat LH, vel NH, vel motus centri AC vel LV; igitur &longs;i a&longs;&longs;umatur HG <lb/>&aelig;qualis LV, vterque motus dabit LIG. </s>
				</p>
				<p id="N24ECF" type="main">
					<s id="N24ED1"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N24EDE" type="main">
					<s id="N24EE0"><!-- NEW -->Hinc colligo, de&longs;criptionem line&aelig;, quam &longs;uo motu &longs;eu flux^u de&longs;cri&shy;<lb/>bit punctum L, cuius infinita puncta a&longs;&longs;ignari po&longs;&longs;unt, &longs;i enim diuidatur <lb/>planum &aelig;quale arcui LQ in tot partes, in quot diuiditur arcus LQ, &amp; <lb/>cuilibet &longs;inui recto arcus a&longs;&longs;umpti addatur &longs;egmentum plani con&longs;tans <lb/>tot partibus, quot partibus arcus aliis arcubus v.g.&longs;inui MK, KI &aelig;qua&shy;<lb/>lis L <foreign lang="greek">m</foreign>, &longs;inui NH, LV, denique &longs;inui toti OQ tota LY, habebuntur &longs;in&shy;<lb/>gula puncta huius line&aelig; L, I, G, F quam rotatilem appellamus; qu&aelig; cert&egrave; <lb/>e&ograve; acurati&ugrave;s de&longs;cribetur, qu&ograve; plura eius puncta &longs;ignabuntur, id e&longs;t qu&ograve; <lb/>diuidetur arcus LQ in plures arcus, &amp; planum LV in plures partes. </s>
				</p>
				<p id="N24EFA" type="main">
					<s id="N24EFC"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N24F09" type="main">
					<s id="N24F0B"><!-- NEW -->Linea quoque rotatilis puncti A de&longs;cribi pote&longs;t diui&longs;o arcu AZ in <lb/>tres arcus, &amp; plano AD in 3. pattes; </s>
					<s id="N24F11"><!-- NEW -->&longs;int enim &longs;inus TX, Y <foreign lang="greek">p</foreign> &longs;itque TS <lb/>&aelig;qualis AB, YR &aelig;qualis AG, &amp; ZP &aelig;qualis AD; </s>
					<s id="N24F1B"><!-- NEW -->cert&egrave; de&longs;cribetur h&aelig;c <lb/>linea per puncta ASRP &agrave; quo plura puncta &longs;ignabuntur, e&ograve; accurati&ugrave;s <lb/>de&longs;cribetur, qu&aelig; omnia con&longs;tant ex dictis; </s>
					<s id="N24F23"><!-- NEW -->nam motus orbis dat AT vel <lb/>XT motus centri AB; igitur TS. </s>
				</p>
				<p id="N24F29" type="main">
					<s id="N24F2B"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N24F38" type="main">
					<s id="N24F3A"><!-- NEW -->Hinc vides punctum L oppo&longs;itum puncto contactus ita moueri, vt <lb/>motus orbis addatur motui centri; punctum ver&ograve; A ita mouetur, vt mo&shy;<lb/>tus orbis detrahatur motui centri. </s>
				</p>
				<p id="N24F42" type="main">
					<s id="N24F44"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N24F51" type="main">
					<s id="N24F53"><!-- NEW -->Hinc etiam de&longs;cribi pote&longs;t linea, quam de&longs;cribit quodlibet punctum <lb/>interioris circuli v.g. <!-- REMOVE S-->punctum E; </s>
					<s id="N24F5B"><!-- NEW -->de&longs;cribatur enim arcus quadr&aacute;tis &amp; 2. <lb/>diuidatur in 3. arcus &aelig;quales, ducanturque per puncta &longs;ignata 3.4. rect&aelig; <lb/>parallel&aelig; OE, a&longs;&longs;umatur 3. 5. &aelig;qualis L <foreign lang="greek">m</foreign> &amp; 4, 6, &aelig;qualis LV; denique <lb/>2.7. &aelig;qualis LV, <expan abbr="connectantur&qacute;ue">connectanturque</expan> puncta &longs;ignata per lineam nouam, E <lb/>5.6.7. h&aelig;c e&longs;t linea quam de&longs;cribit &longs;uo motu mixto punctum C, qu&aelig; <lb/>con&longs;tat ex dictis. </s>
				</p>
				<p id="N24F71" type="main">
					<s id="N24F73"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 5.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N24F80" type="main">
					<s id="N24F82"><!-- NEW -->Aliter de&longs;cribi pote&longs;t h&aelig;c linea rotatilis; </s>
					<s id="N24F86"><!-- NEW -->&longs;it enim AD diui&longs;a v.g. <!-- REMOVE S-->in <lb/>tres partes &aelig;quales, <expan abbr="item&qacute;ue">itemque</expan> OE ex punctis <foreign lang="greek">r</foreign> Q, de&longs;cribantur circuli <lb/>&aelig;quales rot&aelig;, <expan abbr="a&longs;&longs;umantur&qacute;ue">a&longs;&longs;umanturque</expan> arcus BS &aelig;qualis LK &amp; arcus CR &aelig;qua&shy;<lb/>lis LK, &amp; habebis puncta SR: </s>
					<s id="N24F9E"><!-- NEW -->&longs;imiliter a&longs;&longs;umatur arcus <foreign lang="greek">m</foreign> I &aelig;qualis LK <lb/>&amp; alter V.G. &aelig;qualis LH, &amp; habebis puncta IG, idem fiet pro aliis pun&shy;<lb/>ctis; hinc vides rotatiles de&longs;cribi po&longs;&longs;e per &longs;inus, &amp; per arcus. </s>
				</p>
				<pb pagenum="337" xlink:href="026/01/371.jpg"/>
				<p id="N24FAE" type="main">
					<s id="N24FB0"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 6.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N24FBD" type="main">
					<s id="N24FBF"><!-- NEW -->Collige punctum L in arcu de&longs;cen&longs;us LQ ita moueri, vt motus orbis <lb/>addat &longs;inus rectos motui centri v.g. <!-- REMOVE S-->motus orbis LK addit &longs;inum rectum <lb/>MK; punctum vero oppo&longs;itum A ita mouetur in arcu AZ, vt motus or&shy;<lb/>bis detrahat &longs;inus rectos motui centri v. <!-- REMOVE S-->g. <!-- REMOVE S-->motus orbis AT detrahit <lb/>&longs;inum XT, punctum Z ita vt a&longs;cendit per arcum ZL, vt motus orbis <lb/>addat motui centri &longs;inus ver&longs;os v. <!-- REMOVE S-->g. <!-- REMOVE S-->motus orbis arcus ZQ addit &longs;inum <lb/>ver&longs;um Z 11. denique punctum oppo&longs;itum Q ita de&longs;cendit per arcum <lb/>QA vt motus orbis detrahat motui &longs;inus ver&longs;os v. <!-- REMOVE S-->g. <!-- REMOVE S-->motus orbis arcus <lb/>QT detrahit &longs;inum ver&longs;um Q 13. hinc vides qu&agrave;m ben&egrave; conueniant, <lb/>&longs;ingul&aelig; quadrantes rot&aelig; cuius rei ratio clari&longs;&longs;ima e&longs;t. </s>
				</p>
				<p id="N24FE3" type="main">
					<s id="N24FE5"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 7.<emph.end type="center"/></s>
				</p>
				<p id="N24FF1" type="main">
					<s id="N24FF3">Hinc punctum Z in a&longs;cen&longs;u Z, 10.grad. </s>
					<s id="N24FF6"><!-- NEW -->60. tant&ugrave;m addit motui cen&shy;<lb/>tri, quantum L in de&longs;cen&longs;u L, 10.grad.30. a&longs;cen&longs;us ver&ograve; 10. L grad. <!-- REMOVE S-->30. <lb/>tantum addet quantum a&longs;cen&longs;us 10, Q grad. <!-- REMOVE S-->denique &longs;i accipiatur primus <lb/>arcus a&longs;cen&longs;us addit &longs;inum ver&longs;um, &longs;i vltimus, rectum; at ver&ograve; primus <lb/>de&longs;cen&longs;us in &longs;emicirculo dumtaxat &longs;uperiore addit &longs;inum rectum, vlti&shy;<lb/>mus ver&longs;um, qu&aelig; omnia certi&longs;&longs;im&egrave; con&longs;tant. </s>
				</p>
				<p id="N25008" type="main">
					<s id="N2500A"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N25016" type="main">
					<s id="N25018">Ob&longs;eruabis hanc e&longs;&longs;e liueam rotatilem, qu&agrave;m &agrave; multis annis cum in&shy;<lb/>finitis fer&egrave; rotatilium &longs;peciebus &amp; proprietatibus no&longs;ter Philo&longs;ophus in&shy;<lb/>uenit, de quibus &longs;equenti Tomo. <!-- KEEP S--></s>
				</p>
				<p id="N25020" type="main">
					<s id="N25022"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2502F" type="main">
					<s id="N25031"><!-- NEW --><emph type="italics"/>Omnia puncta rot&aelig; AQLZ, qu&aelig; rotatur in plano, mouentur in&aelig;quali mo&shy;<lb/>tu<emph.end type="italics"/>; </s>
					<s id="N2503C"><!-- NEW -->de duobus oppo&longs;itis LA con&longs;tat manife&longs;t&egrave;, quia &aelig;quali tempore <lb/>L acquirit maius &longs;patium, qu&agrave;m A, v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;patium LI eo tempo&shy;<lb/>re quo A acquirit &longs;patium AS: </s>
					<s id="N25048"><!-- NEW -->de duobus QZ etiam con&longs;tat; </s>
					<s id="N2504C"><!-- NEW -->nam <lb/>Z ita mouetur ver&longs;us L, vt motus orbis addat &longs;inum ver&longs;um motui centri <lb/>Q ver&ograve; ita mouetur, vt detrahat <expan abbr="e&utilde;dem">eundem</expan> &longs;inum; </s>
					<s id="N25058"><!-- NEW -->igitur Z mouetur velo&shy;<lb/>ci&ugrave;s, qu&agrave;m <expan abbr="q;">que</expan> de duobus K &amp; 10. certum e&longs;t, nam 10. pl&ugrave;s addit a&longs;cen&shy;<lb/>dendo qu&agrave;m K de&longs;cendendo &aelig;quali tempore; </s>
					<s id="N25064"><!-- NEW -->nam 10. in arcu 10. L ad&shy;<lb/>dit motui centri 10. M, &amp; K in de&longs;cen&longs;u KH addit addit tant&ugrave;m 14. H; </s>
					<s id="N2506A"><!-- NEW --><lb/>&longs;ed h&aelig;c e&longs;t minor.10. M, vt con&longs;tat toto &longs;inu ver&longs;o arcus HQ; &amp; lic&egrave;t <lb/>punctum 10. in a&longs;cen&longs;u eodem tempore addat 10. M quo punctum L <lb/>in de&longs;cen&longs;u addit MK &aelig;qualem; </s>
					<s id="N25077"><!-- NEW -->non tamen propterea mouentur &aelig;qu&egrave; <lb/>velociter; </s>
					<s id="N2507D"><!-- NEW -->quia punctum L initio mouetur veloci&ugrave;s, &amp; &longs;ub finem tardi&ugrave;s; </s>
					<s id="N25081"><!-- NEW --><lb/>at ver&ograve; punctum 10. initio mouetur tardi&ugrave;s; vnde quocunque arcu a&longs;&shy;<lb/>&longs;umpto inter 10. L, &amp; alio &aelig;quali inter LK, punctum L mouebitur <lb/>veloci&ugrave;s initio. </s>
				</p>
				<p id="N2508A" type="main">
					<s id="N2508C"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N25099" type="main">
					<s id="N2509B"><!-- NEW -->Hinc colligo, punctum L omnium veloci&longs;&longs;im&egrave; moueri initio &amp; pun&shy;<lb/>ctum A omnium tardi&longs;&longs;im&egrave;; ratio e&longs;t quia puncto L motus orbis addit <pb pagenum="338" xlink:href="026/01/372.jpg"/>totum id quod pote&longs;t addere, po&longs;ito quod &longs;it &aelig;qualis motui centri, &amp; pun&shy;<lb/>cto A detrahit totum id, quod pote&longs;t detrahere. </s>
				</p>
				<p id="N250A8" type="main">
					<s id="N250AA"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N250B7" type="main">
					<s id="N250B9">Colligo &longs;ecund&ograve;, duo puncta eodem tempore &longs;patia &aelig;qualia po&longs;&longs;e ac&shy;<lb/>quire, lic&egrave;t vtrumque mobile in&aelig;quali motu moueatur. </s>
				</p>
				<p id="N250BE" type="main">
					<s id="N250C0"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N250CD" type="main">
					<s id="N250CF"><!-- NEW -->Terti&ograve;, &longs;i a&longs;&longs;umatur punctum <foreign lang="greek">b</foreign> grad.45, illud ip&longs;um e&longs;&longs;e, quod maxi&shy;<lb/>mum omnium &longs;patium conficit eo tempore, quo reuoluitur quadrans, <lb/>id e&longs;t eo tempore, quo percurrit lineam L, I, G, F; nam percurrit &longs;egmen&shy;<lb/>tum rotatilis, cuius chorda e&longs;t <foreign lang="greek">d b</foreign>, &longs;eu percurrit duplam &longs;egmenti L 15. <lb/>atqui dupla L 15. e&longs;t maior LF, vt con&longs;tat. </s>
				</p>
				<p id="N250E3" type="main">
					<s id="N250E5"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N250F2" type="main">
					<s id="N250F4"><!-- NEW -->Centrum O mouetur veloci&ugrave;s, qu&agrave;m punctum contactus A, vt certum <lb/>e&longs;t; nam eo tempore quo centrum conficit OP &aelig;qualem AB, punctum A <lb/>conficit tant&ugrave;m AS. </s>
				</p>
				<p id="N250FC" type="main">
					<s id="N250FE"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 5.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2510B" type="main">
					<s id="N2510D"><!-- NEW --><emph type="italics"/>Punctum A non regreditur, &longs;ed tantill&ugrave;m accedit dextror&longs;um<emph.end type="italics"/>; </s>
					<s id="N25116"><!-- NEW -->ratio e&longs;t, <lb/>quia dextror&longs;um acquirit AB, v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;ini&longs;tror&longs;um ver&ograve; acquirit XT &aelig;&shy;<lb/>qualem arcui AV; </s>
					<s id="N25122"><!-- NEW -->&longs;ed arcus e&longs;t m&acirc;ior &longs;uo &longs;inu; </s>
					<s id="N25126"><!-- NEW -->igitur pl&ugrave;s acquirit dex&shy;<lb/>tror&longs;um, qu&agrave;m &longs;ini&longs;tror&longs;um; igitur non regreditur, nec etiam remanet in <lb/>linea AO. </s>
				</p>
				<p id="N2512E" type="main">
					<s id="N25130"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 6.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2513D" type="main">
					<s id="N2513F"><!-- NEW --><emph type="italics"/>Omnia puncta inter OQ mouentur tardi&ugrave;s, qu&agrave;m centrum O<emph.end type="italics"/>; </s>
					<s id="N25148"><!-- NEW -->&longs;it enim <lb/>punctum P v.g. <!-- REMOVE S-->cert&egrave; perueniet in 7. ita vt OPR 7. &longs;int &aelig;quales; </s>
					<s id="N25150"><!-- NEW -->&longs;ed P <lb/>7. e&longs;t minor OE, lic&egrave;t P 7. tantill&ugrave;m incuruetur; </s>
					<s id="N25156"><!-- NEW -->&egrave; contrario ver&ograve; nullum <lb/>e&longs;t punctum inter GZ, quod non moueatur veloci&ugrave;s, qu&agrave;m O, vt patet; </s>
					<s id="N2515C"><!-- NEW --><lb/>hinc Z mouetur veloci&longs;&longs;im&egrave; omnium punctorum diametri ZQ, Q ver&ograve; <lb/>tardi&longs;&longs;im&egrave;; </s>
					<s id="N25163"><!-- NEW -->O denique medio qua&longs;i motu inter vtrumque; </s>
					<s id="N25167"><!-- NEW -->tardi&ugrave;s qui&shy;<lb/>dem c&aelig;teris inter ZO, veloci&ugrave;s tamen aliis, qu&aelig; &longs;unt inter OQ; imm&ograve; <lb/>omnia puncta radiorum OA, OQ, qu&aelig; di&longs;tant &aelig;qualiter ab O eo tem&shy;<lb/>pore, quo centrum O percurrit totam OE, acquirunt &aelig;qualia &longs;patia, <lb/>itemque &aelig;qualia, qu&aelig; &longs;unt in radiis OL, OZ, lic&egrave;t prioribus maiora: <lb/>&longs;imiliter motus aliarum partium, qu&aelig; &longs;unt intra circulum, <expan abbr="earum&qacute;ue">earumque</expan> <lb/>&longs;patia, dato tempore cogno&longs;ci po&longs;&longs;unt, &amp; ex dictis facil&egrave; intelliguntur. </s>
				</p>
				<p id="N2517F" type="main">
					<s id="N25181"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2518E" type="main">
					<s id="N25190"><!-- NEW -->H&icirc;nc collige vulgi &longs;en&longs;um; nam plerique omnes exi&longs;timant t&ugrave;m om&shy;<lb/>nes partes peripheri&aelig; rot&aelig; moueri &aelig;qu&egrave; velociter, t&ugrave;m nullam e&longs;&longs;e par&shy;<lb/>tem intra circulum vel arcum, qu&aelig; non moueatur tardi&ugrave;s, t&ugrave;m partibus <lb/>peripheri&aelig;, tum ip&longs;o centro. </s>
				</p>
				<p id="N2519A" type="main">
					<s id="N2519C"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N251A9" type="main">
					<s id="N251AB"><!-- NEW -->Colligo &longs;ecund&ograve;, fi fiat quadrans A, 18. 16. vt e&longs;t arcus 18.16.ad rect&aacute; <pb pagenum="339" xlink:href="026/01/373.jpg"/>18.A.ita rectam 18. A e&longs;&longs;e ad LA; </s>
					<s id="N251B5"><!-- NEW -->quia A 16. e&longs;t &aelig;qualis &longs;emicirculo L <lb/>QA, &amp; hic arcui quadrantis L. 19. &longs;ed vt 16.18.ad 18.A vel L 19. &aelig;qua&shy;<lb/>lem, ita L 19. ad LA; igitur A e&longs;t media proportionalis inter LA, &amp; ar&shy;<lb/>cum 18. 16. &longs;ed de hoc ali&agrave;s. </s>
				</p>
				<p id="N251BF" type="main">
					<s id="N251C1"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 7.<emph.end type="center"/></s>
				</p>
				<p id="N251CD" type="main">
					<s id="N251CF"><!-- NEW --><emph type="italics"/>Punctum L mouetur veloci&ugrave;s, &amp; veloci&ugrave;s in infinitum puncto A<emph.end type="italics"/>; </s>
					<s id="N251D8"><!-- NEW -->a&longs;&longs;umatur <lb/>enim motus puncti L per vnicum gradum quadrantis LQ addatur &longs;inus <lb/>rectus vnius grad. <!-- REMOVE S-->1745. ip&longs;i gradui, &longs;cilicet 1746. eritque &longs;patium con&shy;<lb/>&longs;ectum 3491. paul&ograve; pl&ugrave;s; </s>
					<s id="N251E8"><!-- NEW -->detrahatur autem gradus ex &longs;inu &longs;upere&longs;t I, &longs;it&shy;<lb/>que &longs;inus ver&longs;us vnius gradus 15. cert&egrave; erit &longs;patium decur&longs;um ab A da&shy;<lb/>to illo tempore paul&ograve; pl&ugrave;s; </s>
					<s id="N251F0"><!-- NEW -->&longs;ed velocitates motuum &aelig;qu&agrave;li tempore &longs;unt <lb/>vt &longs;patia; </s>
					<s id="N251F6"><!-- NEW -->igitur velocitas motus puncti L e&longs;t ad velocitatem motus pun&shy;<lb/>cti A, vt 3491.ad 15.id e&longs;t vt 232.ad I; atqui &longs;i accipiatur in orbe &longs;patium <lb/>minus vno gradu, erit adhuc maior proportio motus puncti L ad motum <lb/>puncti A. <!-- KEEP S--></s>
				</p>
				<p id="N25201" type="main">
					<s id="N25203"><!-- NEW -->Imm&ograve;, &longs;i ponas &longs;inum totum partium 1000000. &amp; a&longs;&longs;umat motum L, <lb/>&amp; A per vnum minutum arcus erit 2910, &amp; eius &longs;inus rectus 2908.ver&shy;<lb/>&longs;us ver&ograve;; igitur motus A erit vt 2. motus L 5818. igitur motus L ad mo&shy;<lb/>tum A per vnum minutum quadrantis, vt 2909. ad I, <expan abbr="atq;">atque</expan> ita in infinit&uacute;. </s>
				</p>
				<p id="N25211" type="main">
					<s id="N25213"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 8.<emph.end type="center"/></s>
				</p>
				<p id="N2521F" type="main">
					<s id="N25221"><!-- NEW --><emph type="italics"/>Minor rota inclu&longs;a maiori ita mouetur, vt &longs;it maior in illa motus centri, <lb/>qu&agrave;m motus orbis<emph.end type="italics"/>; </s>
					<s id="N2522C"><!-- NEW -->&longs;it enim minor rota P <foreign lang="greek">p</foreign>; </s>
					<s id="N25234"><!-- NEW -->haud dubi&egrave; centrum O acqui&shy;<lb/>ret &longs;patium OE dupl&ograve; maius arcu P <foreign lang="greek">w</foreign> eo tempore, quo motus orbis per&shy;<lb/>curret <expan abbr="e&utilde;dem">eundem</expan> arcum P <foreign lang="greek">w</foreign>; an ver&ograve; &longs;ingula puncta quadrantis P <foreign lang="greek">w</foreign> re&longs;&shy;<lb/>pondeant &longs;ingulis punctis plani <foreign lang="greek">w q</foreign>, vel &longs;ingula duobus, vulgaris diffi&shy;<lb/>cultas e&longs;t, qu&aelig; ab Ari&longs;totelica rota &longs;ibi nomen fecit, quam h&icirc;c breuiter <lb/>di&longs;cutimus. <lb/><gap desc="hr tag"/></s>
				</p>
				<p id="N2525A" type="main">
					<s id="N2525C"><emph type="center"/>DIGRESSIO<emph.end type="center"/></s>
				</p>
				<p id="N25263" type="main">
					<s id="N25265"><emph type="center"/><emph type="italics"/>De Rota Ari&longs;totelica.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N25271" type="main">
					<s id="N25273">ARi&longs;toteles hanc difficultatem habet, qu&aelig;&longs;t. </s>
					<s id="N25276"><!-- NEW -->24. Mechanicorum, <expan abbr="qu&atilde;">quam</expan> <lb/>etiam explicat Blancanus, <expan abbr="proponit&qacute;">proponitque</expan>; </s>
					<s id="N25284"><!-- NEW -->Mer&longs;ennus in pr&aelig;fatione &longs;u&aelig; <lb/>ver&longs;ionis <expan abbr="mechanicar&utilde;">mechanicarum</expan> Galilei; nos illam hoc loco breuiter di&longs;cutiemus. </s>
				</p>
				<p id="N2528E" type="main">
					<s id="N25290">1. Tribus modis pote&longs;t moueri rota in plano 1&degree;. </s>
					<s id="N25293">ita vt motus centri <lb/>motui orbis &longs;it &aelig;qualis, id e&longs;t vt centrum percurrat lineam rectam &aelig;qua&shy;<lb/>lem arcui orbis, qui <expan abbr="eod&etilde;">eodem</expan> <expan abbr="t&etilde;pore">tempore</expan> conuertitur. </s>
					<s id="N252A2">2&degree;. </s>
					<s id="N252A5">ita vt motus orbis &longs;it mi&shy;<lb/>nor motu centri, id e&longs;t vt centrum percurrat lineam rectam <expan abbr="maior&etilde;">maiorem</expan> arcu, <lb/>qui <expan abbr="eod&etilde;">eodem</expan> <expan abbr="t&etilde;pore">tempore</expan> conuoluitur. </s>
					<s id="N252B8">3&degree;. </s>
					<s id="N252BB">ita vt motus centri &longs;it minor motu orbis. </s>
				</p>
				<p id="N252BE" type="main">
					<s id="N252C0">2. Primum motus modum di&longs;cu&longs;&longs;imus in &longs;uperioribus Theorematis, <lb/>2. ver&ograve;, &amp; 3. di&longs;cutiemus hoc loco. </s>
					<s id="N252C5">&longs;it ergo in pr&aelig;&longs;enti fig. </s>
					<s id="N252C8"><!-- NEW -->rota incubans <lb/>plano CN in puncto C centro A, radio AC, qu&aelig; <expan abbr="ali&atilde;">aliam</expan> includat <expan abbr="conc&etilde;tric&atilde;">concentricam</expan> <pb pagenum="340" xlink:href="026/01/374.jpg"/>radio AB; </s>
					<s id="N252DB"><!-- NEW -->&longs;itque v.g. <!-- REMOVE S-->AB &longs;ubdupla AC; </s>
					<s id="N252E1"><!-- NEW -->&longs;it planum CE &aelig;quale arcui C <lb/>H; </s>
					<s id="N252E7"><!-- NEW -->ita vt in decur&longs;u &longs;ingula puncta CH re&longs;pondeant &longs;ingulis CE; </s>
					<s id="N252EB"><!-- NEW -->c&ugrave;m <lb/>autem rapiatur rota ABD &agrave; maiore; </s>
					<s id="N252F1"><!-- NEW -->haud dubi&egrave; punctum D peruenit <lb/>in F, cum punctum A peruenit in G; id e&longs;t radius AD conuenit <lb/>cum GF. </s>
				</p>
				<p id="N252F9" type="main">
					<s id="N252FB"><!-- NEW -->3. Porr&ograve; caput difficultatis poti&longs;&longs;imum in eo po&longs;itum e&longs;t, quod BF &longs;it <lb/>dupla arcus BD; </s>
					<s id="N25301"><!-- NEW -->igitur vel &longs;ingula puncta arcus BD re&longs;pondent in de&shy;<lb/>cur&longs;u &longs;ingulis BF, vel &longs;ingula BD re&longs;pondent duobus BF, vel alterna <lb/>puncta BF &longs;altuatim remanent penitus intacta; </s>
					<s id="N25309"><!-- NEW -->&longs;ed nihil horum dici <lb/>po&longs;&longs;e videtur: </s>
					<s id="N2530F"><!-- NEW -->non primum.quia alioquin tot e&longs;&longs;ent puncta in arcu DB, <lb/>quot in plano BF &aelig;quali arcui CH, igitur &longs;ubduplus arcus e&longs;&longs;et &aelig;qualis <lb/>duplo, qu&ograve;d dici non pote&longs;t; </s>
					<s id="N25317"><!-- NEW -->lic&egrave;t aliqui vltr&ograve; concedant, quod ego mi&shy;<lb/>nim&egrave; concedere, nedum concipere po&longs;&longs;um; </s>
					<s id="N2531D"><!-- NEW -->non pote&longs;t etiam dici quod <lb/>&longs;ingula puncta arcus DB re&longs;pondeant duobus punctis plani BF; </s>
					<s id="N25323"><!-- NEW -->c&ugrave;m <lb/>enim puncta D, &amp; C &longs;int in eodem radio AC; </s>
					<s id="N25329"><!-- NEW -->cert&egrave; &longs;i punctum tangit in <lb/>motu punctum plani proxim&egrave; &longs;equens dextror&longs;um; </s>
					<s id="N2532F"><!-- NEW -->igitur AB cadit per&shy;<lb/>pendiculariter in BF; </s>
					<s id="N25335"><!-- NEW -->igitur &amp; AC in CE; </s>
					<s id="N25339"><!-- NEW -->igitur punctum C tangit <lb/>etiam in motu punctum proxim&egrave; &longs;equens plani CE; </s>
					<s id="N2533F"><!-- NEW -->igitur planum CE <lb/>e&longs;&longs;et duplum arcus CH, &longs;ed e&longs;t &aelig;quale per con&longs;tructionem; </s>
					<s id="N25345"><!-- NEW -->nec e&longs;t quod <lb/>aliqui prouocent ad experimentum, quod nullum e&longs;t; quippe quod cert&aelig; <lb/>&amp; geometric&aelig; demon&longs;trationi repugnaret. </s>
				</p>
				<p id="N2534D" type="main">
					<s id="N2534F"><!-- NEW -->4. Non pote&longs;t etiam dici, qu&ograve;d alterna puncta plani BF qua&longs;i &longs;altua&shy;<lb/>tim remaneant intacta; </s>
					<s id="N25355"><!-- NEW -->nam eo tempore, quo aliquod punctum plani C <lb/>E re&longs;pondens puncto intacto plani BF tangitur; </s>
					<s id="N2535B"><!-- NEW -->haud dubi&egrave; aliquod pun&shy;<lb/>ctum arcus BD tangit planum BF; </s>
					<s id="N25361"><!-- NEW -->alioquin centrum A de&longs;cenderet &longs;u&shy;<lb/>pra lineam AG; </s>
					<s id="N25367"><!-- NEW -->igitur maior rota non incubaret plano CE contra hy&shy;<lb/>pothe&longs;im; </s>
					<s id="N2536D"><!-- NEW -->igitur quolibet in&longs;tanti aliquod punctum arcus BD tangit <lb/>planum BF; </s>
					<s id="N25373"><!-- NEW -->igitur nullum punctum plani BF intactum e&longs;t; </s>
					<s id="N25377"><!-- NEW -->quippe om&shy;<lb/>ne punctum contactus plani CE, &amp; maioris circuli re&longs;pondet puncto <lb/>contactus oppo&longs;ito plani BF, &amp; minoris circuli; igitur non remanent al&shy;<lb/>terna puncta plani BF qua&longs;i &longs;altuatim intacta. </s>
				</p>
				<p id="N25381" type="main">
					<s id="N25383"><!-- NEW -->5. Hinc reiicies infinita illa vacuola Galilei; </s>
					<s id="N25387"><!-- NEW -->&longs;i enim in linea BM re&shy;<lb/>manent infinita puncta intacta, non ver&ograve; in CN; </s>
					<s id="N2538D"><!-- NEW -->cert&egrave; vbi punctum, <lb/>quod immediat&egrave; &longs;equitur C tangitur, &amp; fit punctum contactus, vel nul&shy;<lb/>lum punctum in BF tangitur vel aliquod; &longs;i <expan abbr="prim&utilde;">primum</expan>; </s>
					<s id="N25399"><!-- NEW -->igitur radius minoris <lb/>rot&aelig; imminuitur, quod e&longs;t ab&longs;urdum: &longs;i &longs;ecundum; </s>
					<s id="N2539F"><!-- NEW -->igitur nullum vacuo&shy;<lb/>lum intercipitur, quod e&longs;t contra Galileum; </s>
					<s id="N253A5"><!-- NEW -->quod ver&ograve; &longs;pectat ad poli&shy;<lb/>gona concentrica determinabimus paul&ograve; p&ograve;&longs;t; </s>
					<s id="N253AB"><!-- NEW -->&longs;int enim duo poligona <lb/>concentrica centro D, quorum maius ita voluatur, vt AI re&longs;pondeat AF, <lb/>id e&longs;t circa centrum A; </s>
					<s id="N253B3"><!-- NEW -->cert&egrave; M mouebitur per arcum MI, D per arcum <lb/>DE, B per arcum BM; </s>
					<s id="N253B9"><!-- NEW -->igitur &longs;ingula puncta mouebuntur motu &longs;implicis <lb/>circulari <expan abbr="co&qacute;ue">coque</expan> veloci&ugrave;s, qu&ograve; recedent longi&ugrave;s ab A: hinc punctum B <lb/>mouebitur omnium veloci&longs;&longs;im&egrave;, quia longi&longs;&longs;im&egrave; di&longs;tat &agrave; puncto A. <!-- KEEP S--></s>
				</p>
				<p id="N253C6" type="main">
					<s id="N253C8"><!-- NEW -->6. Si ver&ograve; minus poligonum dirigat motum, qui prim&ograve; fiat ciat cen&shy;<lb/>trum D; </s>
					<s id="N253CE"><!-- NEW -->haud dubi&egrave; punctum A mouebitur per arcum AV, per <expan abbr="qu&etilde;">quem</expan> retro-<pb pagenum="341" xlink:href="026/01/375.jpg"/>agetur; </s>
					<s id="N253DB"><!-- NEW -->igitur &longs;i maius poligonum dirigat motum, relinquentur plura <lb/>&longs;egmenta in plano CH intacta &aelig;qualia DE; &longs;i ver&ograve; minus dirigat latera <lb/>maioris poligoni, aliquid &longs;emper de priori &longs;patio in plano BF qua&longs;i re&shy;<lb/>petent per regre&longs;&longs;um. </s>
				</p>
				<p id="N253E5" type="main">
					<s id="N253E7"><!-- NEW -->7. Hinc tamen mal&egrave; concludit Galileus &longs;imile quid accidere in mo&shy;<lb/>tu circulorum concentricorum; </s>
					<s id="N253ED"><!-- NEW -->e&longs;t enim maxima di&longs;paritas: Prim&ograve;, quia <lb/>centrum A circuli in priori figur&acirc; nunquam recedit &agrave; linea AL, alio&shy;<lb/>qui radij circuli eiu&longs;dem e&longs;&longs;ent in&aelig;quales, c&ugrave;m tamen M poligoni a&longs;cen&shy;<lb/>dat &longs;upra MI. Secund&ograve;, quia nullum punctum peripheri&aelig; circuli quie&longs;&shy;<lb/>cit. </s>
					<s id="N253F9">Terti&ograve;, quia omnia puncta circuli mouentur motu mixto ex recto, <lb/>&amp; circulari, excepto centro, c&ugrave;m tamen omnia puncta poligoni motu <lb/>circulari moueantur, excepto puncto contactus, quod quie&longs;cit. </s>
				</p>
				<p id="N25402" type="main">
					<s id="N25404"><!-- NEW -->8. Et ne omittam aliud, quod miraculi loco e&longs;t apud <expan abbr="e&utilde;dem">eundem</expan> <expan abbr="Galile&atilde;">Galileam</expan>, <lb/>quo &longs;cilicet primum illud &longs;uum effectum confirmare concendit, &longs;cilicet <lb/>punctum dici po&longs;&longs;e &aelig;quale line&aelig; &longs;it enim &longs;emicirculus ABMC, rectan&shy;<lb/>gulum BN, triangulum ALN, recta KD parallela BC, denique AI circa <lb/>axem AM; </s>
					<s id="N2541A"><!-- NEW -->voluantur h&aelig;c tria; </s>
					<s id="N2541E"><!-- NEW -->cert&egrave; rectangulum relinquit cylindrum, <lb/>triangulum, conum, &amp; &longs;emicirculus hemi&longs;ph&aelig;rium; </s>
					<s id="N25424"><!-- NEW -->&longs;it autem idem pla&shy;<lb/>num KD parallelum BC &longs;ecans h&aelig;c tria; </s>
					<s id="N2542A"><!-- NEW -->haud dubi&egrave; &longs;ectio coni HF <lb/>erit circulus, i&longs;que &aelig;qualis plano contento duobus circulis parallelis, <lb/>quorum maior habeat diametrum KD, &amp; minor IE, quod breuiter de&shy;<lb/>mon&longs;tratur; </s>
					<s id="N25434"><!-- NEW -->quia quando IA e&longs;t &aelig;quale quadratis IGA, led BA e&longs;t &aelig;&shy;<lb/>qualis AI, &amp; BC &aelig;qualis KD dupla AI; </s>
					<s id="N2543A"><!-- NEW -->igitur quadratum KD e&longs;t qua&shy;<lb/>druplum quadrati KG, vel IA; </s>
					<s id="N25440"><!-- NEW -->igitur continet quatuor quadrata AI, &amp; <lb/>AI quatuor AG, vel HG; </s>
					<s id="N25446"><!-- NEW -->igitur continet quadratum IE, &amp; HF; </s>
					<s id="N2544A"><!-- NEW -->&longs;ed cir&shy;<lb/>culi &longs;unt vt quadrata diametrorum; </s>
					<s id="N25450"><!-- NEW -->igitur circulus diametri KD conti&shy;<lb/>net circulos diametri IE, &amp; HF; </s>
					<s id="N25456"><!-- NEW -->igitur, &longs;i ex circulo diametri CD de&shy;<lb/>trahatur circulus diametri IE, &longs;upere&longs;t corona illa, cuius latitudo e&longs;t IK, <lb/>&amp; ED, de qua &longs;upr&agrave;; igitur &aelig;qualis e&longs;t circulo diametri AF. <!-- KEEP S--></s>
				</p>
				<p id="N2545F" type="main">
					<s id="N25461"><!-- NEW -->9. Hinc concludit Galileus punctum apicis coni A e&longs;&longs;e &aelig;quale cir&shy;<lb/>culo diametri BC; </s>
					<s id="N25467"><!-- NEW -->quod cert&egrave; non mihi videtur &longs;equi; </s>
					<s id="N2546B"><!-- NEW -->c&ugrave;m &longs;emper aga&shy;<lb/>tur de ba&longs;i coni, qu&aelig; non e&longs;t punctum, &amp; lic&egrave;t conus HF A &longs;it &aelig;qualis <lb/>&longs;olido KIB in orbem &longs;cilicet ducto, detracto dumtaxat hemi&longs;ph&aelig;rio ex <lb/>cylindro, quod tamen non demon&longs;trat Galileus, &longs;ed demon&longs;trarum &longs;up&shy;<lb/>ponit &agrave; Luca Valerio; </s>
					<s id="N25477"><!-- NEW -->nunquam pao&longs;ect&ograve; perueniet ad punctum mathe&shy;<lb/>maticum; </s>
					<s id="N2547D"><!-- NEW -->quippe &longs;emper habebit conum &aelig;qualem alteri &longs;olido; &longs;i ver&ograve; <lb/>quis admittat puncta phy&longs;ica, concedi po&longs;&longs;et vltr&ograve; punctum phy&longs;icum <lb/>conicum &aelig;quale e&longs;&longs;e alteri &longs;olido maxim&egrave; dilatato propter angulum <lb/>contingenti&aelig; KBI in quo non videtur e&longs;&longs;e difficultas. </s>
				</p>
				<p id="N25488" type="main">
					<s id="N2548A"><!-- NEW -->10. Quod autem conus HAF &longs;it &aelig;qualis pr&aelig;dicto &longs;olido, quod Ga&shy;<lb/>lileus vocat &longs;calprum orbiculare, breuiter demon&longs;tro; </s>
					<s id="N25490"><!-- NEW -->quia cum ba&longs;is HF <lb/>&longs;it &aelig;qualis KI, ED, id e&longs;t coron&aelig;, itemque &longs;ingul&aelig; ba&longs;es &longs;upra HF v&longs;que <lb/>adverticem A; </s>
					<s id="N25498"><!-- NEW -->cert&egrave; totum HFA conflatum ex omnibus ba&longs;ibus e&longs;t &aelig;&shy;<lb/>quale toti &longs;olido &longs;eu &longs;calpro conflato ex omnibus coronis; h&aelig;c obiter <lb/>attigi&longs;&longs;e volui, ne fort&egrave; di&longs;&longs;imulatum &agrave; nobis e&longs;&longs;e qui&longs;quam exi&longs;timaret, <pb pagenum="342" xlink:href="026/01/376.jpg"/>&longs;ed iam hoc poti&longs;&longs;imum &longs;upere&longs;t, vt difficultatem propo&longs;itam de rota <lb/>Ari&longs;totelica breuiter &longs;oluamus, </s>
				</p>
				<p id="N254A9" type="main">
					<s id="N254AB"><!-- NEW -->11. Certum e&longs;t prim&ograve; in hypothe&longs;i, qu&aelig; componit continuum ex <lb/>punctis mathematicis vix po&longs;&longs;e explicari, &longs;iue dicantur e&longs;&longs;e infinita, vt <lb/>vult Galileus, &longs;iue finita vt alij volunt; </s>
					<s id="N254B3"><!-- NEW -->quia nec idem punctum minoris <lb/>rot&aelig; pluribus &longs;ui plani re&longs;pondet, nec &longs;ingula &longs;ingulis re&longs;pondent, nec <lb/>etiam fiunt illi &longs;altus intactis finitis, vel infinitis vacuolis; imm&ograve; talis e&longs;t <lb/>motus circularis natura, vt minim&egrave; concipi, nedum explicari po&longs;&longs;it iuxta <lb/>hypothe&longs;im punctorum mathematicorum. </s>
				</p>
				<p id="N254BF" type="main">
					<s id="N254C1"><!-- NEW -->12. Certum e&longs;t &longs;ecund&ograve;, vix etiam explicari po&longs;&longs;e iuxta hypothe&longs;im <lb/>partium proportionalium infinitarum actu; </s>
					<s id="N254C7"><!-- NEW -->quia contactus ip&longs;e globi, &amp; <lb/>plani tam ob&longs;cur&egrave; in hac hypothe&longs;i explicatur, vt etiam authores ip&longs;i, <lb/>qui huic &longs;ententi&aelig; patrocinantur, vltr&ograve; a&longs;&longs;erant in&longs;eparabilem e&longs;&longs;e diffi&shy;<lb/>cultatem; </s>
					<s id="N254D1"><!-- NEW -->quod enim dicunt contactum fieri in parte indeterminata, <lb/>ne&longs;cio an aliquis &longs;i non blandiens capere po&longs;&longs;it: nunquid enim contactus <lb/>e&longs;t determinatus qui realis e&longs;t, &amp; &longs;ingularis, id e&longs;t hic &amp; non alius? </s>
					<s id="N254DB">nun&shy;<lb/>quid e&longs;t aliquid, quod tangit ab omni, eo quod tangit, di&longs;tinctum? </s>
					<s id="N254E0"><!-- NEW -->quip&shy;<lb/>pe tangere, &amp; non tangere &longs;unt pr&aelig;dicata contradictoria; &longs;ed de his fus&egrave; <lb/>in Metaphy&longs;ica. </s>
				</p>
				<p id="N254E8" type="main">
					<s id="N254EA"><!-- NEW -->13. Adde quod, lic&egrave;t contactus globi in plano explicari po&longs;&longs;et, &longs;upe&shy;<lb/>re&longs;&longs;et tamen eadem difficultas; nam c&ugrave;m nulla &longs;it pars, &longs;iue indetermina&shy;<lb/>ta, &longs;iue determinata in plano BF, qu&aelig; &longs;it intacta, &amp; cum eadem pars <lb/>arcus BD non re&longs;pondeat pluribus partibus plani BF, &amp; c&ugrave;m &longs;ingu&shy;<lb/>l&aelig; partes arcus &longs;ingulis partibus non re&longs;pondeant &lpar;qu&aelig; omnia <lb/>con&longs;tant ex dictis&rpar; profect&ograve; eadem e&longs;t difficultas iuxta hypothe&longs;im par&shy;<lb/>tium proportionalium infinitarum actu, qu&aelig; e&longs;t iuxta hypothe&longs;im pun&shy;<lb/>ctorum mathematicorum finitorum, vel infinitorum. </s>
				</p>
				<p id="N254FE" type="main">
					<s id="N25500">14. His po&longs;itis, &longs;upere&longs;t tant&ugrave;m vt &longs;oluatur h&aelig;c difficultas iuxta hy&shy;<lb/>pothe&longs;im punctorum phy&longs;icorum, vel partium diui&longs;ibilium in infini&shy;<lb/>tum potenti&acirc;, cuius principia &amp; difficultates in Metaphy&longs;ica di&longs;cu&shy;<lb/>tiemus. </s>
				</p>
				<p id="N25509" type="main">
					<s id="N2550B"><!-- NEW -->Dico ergo &longs;atis facil&egrave; iuxta hanc hypothe&longs;im explicari, &amp; &longs;olui po&longs;&longs;e <lb/>nodum rot&aelig; Ari&longs;totelic&aelig;: </s>
					<s id="N25511"><!-- NEW -->quippe punctum phy&longs;icum curuum tangit <lb/>punctum phy&longs;icum planum, &longs;ed non ad&aelig;quat&egrave;; </s>
					<s id="N25517"><!-- NEW -->quipp&egrave; nullum curuum <lb/>ad&aelig;quari pote&longs;t plano, &longs;eu cum plano conuenire, quod nemo Geometra <lb/>negare poterit: </s>
					<s id="N2551F"><!-- NEW -->quippe du&aelig; quantitates po&longs;&longs;unt duobus modis con&longs;ide&shy;<lb/>rari: Prim&ograve; in ordine ad &aelig;qualitatem, vel in&aelig;qualitatem. </s>
					<s id="N25525"><!-- NEW -->Secund&ograve;, in <lb/>ordine ad commen&longs;urationem, vel conuenientiam, vel <expan abbr="incommen&longs;ura-bilitat&etilde;">incommen&longs;ura&shy;<lb/>bilitatem</expan>; </s>
					<s id="N25531"><!-- NEW -->&longs;i primo modo, vna quantitas, vel dicitur alteri &aelig;qualis, vel in&aelig;&shy;<lb/>qualis; </s>
					<s id="N25537"><!-- NEW -->&longs;i in&aelig;qualis, vel maior, vel minor; </s>
					<s id="N2553B"><!-- NEW -->&longs;i maior vel minor, dicitur <lb/>rationalis, vel irrationalis &longs;eu aloga; &longs;ed h&aelig;c &longs;unt vulgaria, paul&ograve; ob&longs;cu&shy;<lb/>riora, qu&aelig; &longs;equuntur. </s>
				</p>
				<p id="N25543" type="main">
					<s id="N25545"><!-- NEW -->15. Si enim &longs;ecundo modo con&longs;iderentur, vel po&longs;&longs;unt commen&longs;urari, <lb/>vel non po&longs;&longs;unt; </s>
					<s id="N2554B"><!-- NEW -->&longs;i primum, &longs;unt nece&longs;&longs;ari&ograve; &aelig;quales; </s>
					<s id="N2554F"><!-- NEW -->&longs;i in&aelig;quales ill&aelig; &longs;unt <lb/>vel alog&aelig; e&aelig;dem qu&aelig; &longs;upr&agrave;, &longs;ic diagonalis <expan abbr="c&otilde;parata">comparata</expan> cum latere quadrati <pb pagenum="343" xlink:href="026/01/377.jpg"/>e&longs;t aloga, hoc e&longs;t ita in&aelig;qualis, vt nulla &longs;it vtrique pars aliquota commu&shy;<lb/>munis; </s>
					<s id="N25560"><!-- NEW -->alog&aelig; quidem in ordine ad commen&longs;urationem, non tamen in <lb/>ordines ad partes aliquotas; </s>
					<s id="N25566"><!-- NEW -->&longs;ic maior arcus comparatus cum linea recta <lb/>&longs;ubdupla non e&longs;t alogus primo modo &longs;ed <expan abbr="&longs;ec&utilde;do">&longs;ecundo</expan>, id e&longs;t illa linea, qu&aelig; e&longs;t <lb/>&longs;ubdupla arcus, non pote&longs;t conuenire cum arcu toto, nec cum aliqua <lb/>eius parte; </s>
					<s id="N25574"><!-- NEW -->&longs;i ver&ograve; &longs;int &aelig;quales, po&longs;&longs;unt etiam dici alog&aelig; in ordine ad <lb/>commen&longs;urationem, &longs;i nullo modo conuenire po&longs;&longs;unt quamtumuis diui&shy;<lb/>dantur; </s>
					<s id="N2557C"><!-- NEW -->&longs;ic angulus, quem faciunt du&aelig; circumferenti&aelig;, pote&longs;t quidem e&longs;&longs;e <lb/>&etail;qualis angulo dato rectilineo; </s>
					<s id="N25582"><!-- NEW -->nunquam tamen cum eo conuenire po&shy;<lb/>te&longs;t; </s>
					<s id="N25588"><!-- NEW -->&longs;ic arcus &aelig;qualis rect&aelig;, &longs;ic denique punctum curuum &aelig;quale puncto <lb/>plano; </s>
					<s id="N2558E"><!-- NEW -->lic&egrave;t enim totum punctum tangatur ab al&icirc;o puncto, non tamen <lb/>ad&aelig;quat&egrave;, quia exten&longs;io vnius e&longs;t aloga cum exten&longs;ione alterius; </s>
					<s id="N25594"><!-- NEW -->analo&shy;<lb/>giam habes in duobus Angelis; </s>
					<s id="N2559A"><!-- NEW -->quorum vnus figuram &longs;ph&aelig;ricam <expan abbr="pedal&etilde;">pedalem</expan> <lb/>induat, alter cubicam, &amp; alter alterum tangat; </s>
					<s id="N255A4"><!-- NEW -->nam reuer&acirc; totus Angelus <lb/>tangitur, quia caret partibus, non tamen ad&aelig;quat&egrave;, vt certum e&longs;t; </s>
					<s id="N255AA"><!-- NEW -->imm&ograve; <lb/>po&longs;&longs;et Angelus cuius e&longs;t figura &longs;ph&aelig;rica, ita duobus aliis, quorum e&longs;&longs;et <lb/>figura cubica adh&aelig;rere, vt <expan abbr="vtriq;">vtrique</expan> inad&aelig;quat&egrave; adh&aelig;reret v.g. <!-- REMOVE S-->Angelus A <lb/>punctis BC ita vt ip&longs;um punctum contactus e&longs;&longs;et in ip&longs;a qua&longs;i commi&longs;&shy;<lb/>&longs;ura: </s>
					<s id="N255BC"><!-- NEW -->imm&ograve; pote&longs;t Angelus, cuius e&longs;t figura &longs;ph&aelig;rica habere diuer&longs;os con&shy;<lb/>tactus inad&aelig;quatos in tota facie Angeli, cuius e&longs;t figura cubica v.g. <!-- REMOVE S-->An&shy;<lb/>gelus A vel in D vel in E, vel in F; </s>
					<s id="N255C6"><!-- NEW -->imm&ograve; &longs;unt infiniti potentia huiu&longs;modi <lb/>inad&aelig;quat&egrave; diuer&longs;i; </s>
					<s id="N255CC"><!-- NEW -->denique Angelus A pote&longs;t longo tempore in &longs;uper&shy;<lb/>ficie v.g. <!-- REMOVE S-->Angeli C &longs;ucce&longs;&longs;iu&egrave; moueri, acquirendo &longs;cilicet nouos conta&shy;<lb/>ctus inad&aelig;quatos; </s>
					<s id="N255D6"><!-- NEW -->vocetur autem contactus E centralis, &longs;eu medius; con&shy;<lb/>tactus ver&ograve; B extremus. </s>
				</p>
				<p id="N255DC" type="main">
					<s id="N255DE">16. Nec A e&longs;t; </s>
					<s id="N255E1"><!-- NEW -->qu&ograve;d aliqui ne&longs;cio quas partes viruales in angelo ex&shy;<lb/>ten&longs;o agno&longs;cant, qu&aelig; cert&egrave; &agrave; me concipi non po&longs;&longs;unt; </s>
					<s id="N255E7"><!-- NEW -->ni&longs;i fort&egrave; aliquid <lb/>extrin&longs;ecum &longs;onent, &longs;cilicet Angelum exten&longs;um multis &longs;imul partibus <lb/>alicuius corporis coextendi po&longs;&longs;e; </s>
					<s id="N255EF"><!-- NEW -->vnde fit &longs;ingulis inad&aelig;quat&egrave; coexten&shy;<lb/>di; quod nemo negabit; </s>
					<s id="N255F5"><!-- NEW -->&longs;ed ne dici moremur in hac materia, quam h&icirc;c <lb/>ex profe&longs;&longs;o non tractamus; </s>
					<s id="N255FB"><!-- NEW -->cettum e&longs;t iuxta hanc hypothe&longs;im punctorum <lb/>phy&longs;icorum facil&egrave; explicari motum rot&aelig; Ari&longs;totelic&aelig;: </s>
					<s id="N25601"><!-- NEW -->quippe dum pun&shy;<lb/>ctum quod proxim&egrave; accedit ad C in arcu CH incubat puncto plani C <lb/>E, qu&ograve;d immediat&egrave; &longs;equitur C, idque centrali contactu punctum, quod <lb/>proxim&egrave; &longs;equitur B in arcu BD, quem &longs;ubduplum CH &longs;uppono, tangit <lb/>punctum, quod &longs;equitur immediat&egrave; B in plano BF contactu extremo, id <lb/>e&longs;t commi&longs;&longs;ura puncti B &amp; alterius contactu medio, tangit <expan abbr="punct&utilde;">punctum</expan> plani <lb/>quod probatur; </s>
					<s id="N25615"><!-- NEW -->quia punctum, quod immediat&egrave; &longs;equitur B in arcu BDC <lb/>quod vocabimus deinceps &longs;ecundum, tangit contactu tertium punctum <lb/>plani BF eo in&longs;tanti, quo tertium punctum arcus CH tangit contactu <lb/>medio tertium plani CE; igitur eo in&longs;tanti, quo &longs;ecundum CH tangit <lb/>contactu medio &longs;ecundum CE, &longs;ecundum BD tangit contactu extremo <lb/>primum BF, extremo inquam ratione puncti arcus, non ratione puncti <lb/>plani. </s>
				</p>
				<p id="N25625" type="main">
					<s id="N25627"><!-- NEW -->17. Si ver&ograve; e&longs;&longs;et maior rota, e&icirc;u&longs;que contactus e&longs;&longs;et inter BC, e&longs;&longs;ent <pb pagenum="344" xlink:href="026/01/378.jpg"/>alij contactus inad&aelig;quati, vt facil&egrave; intelligi pote&longs;t ex dictis, pote&longs;t au&shy;<lb/>tem fieri, vt dixi, vt &longs;int plures contactus inad&aelig;quati etiam arcus CH, <lb/>ni&longs;i veloci&longs;&longs;im&egrave; moueatur ratione loci, id e&longs;t ni&longs;i punctum phy&longs;icum <lb/>mobile acquirat &longs;ingulis in&longs;tantibus punctum loci immediatum non <lb/>participans de priori; </s>
					<s id="N25638"><!-- NEW -->quod cert&egrave; pote&longs;t acquirere duplici motu, &longs;cilicet <lb/>vel recto vel mixto ex recto, &amp; circulari; nec e&longs;t enim dubium, quin An&shy;<lb/>gelus v. <!-- REMOVE S-->g. <!-- REMOVE S-->inducta figura &longs;ph&aelig;rica non po&longs;&longs;it volui circa &longs;e ip&longs;um velo&shy;<lb/>ci&ugrave;s, &amp; veloci&ugrave;s in infinitum. </s>
				</p>
				<p id="N25646" type="main">
					<s id="N25648"><!-- NEW -->18. V. g.. angelus A pote&longs;t circa centrum mathematicum, id e&longs;t <lb/>imaginatum B immobile agi in orbem tardi&ugrave;s, &amp; tardi&ugrave;s quidem, &longs;i <expan abbr="vn&utilde;">vnum</expan> <lb/>orbem faciat pluribus, &amp; pluribus in&longs;tantibus; veloci&ugrave;s ver&ograve;, &longs;i pauciori&shy;<lb/>bus; </s>
					<s id="N25656"><!-- NEW -->quot ver&ograve; in&longs;tantibus vnum integrum orbem peragat, &longs;i tempus <lb/>con&longs;tet finitis in&longs;tantibus; </s>
					<s id="N2565C"><!-- NEW -->exi&longs;timo prim&ograve;, po&longs;&longs;e pluribus, &amp; pluribus pe&shy;<lb/>ragere quia tardi&ugrave;s, &amp; tardi&ugrave;s in infinitum moueri pote&longs;t; </s>
					<s id="N25662"><!-- NEW -->&longs;ecund&ograve; pau&shy;<lb/>cioribus, &amp; paucioribus, donec tandem vno in&longs;tanti conficiat integrum <lb/>orbem; </s>
					<s id="N2566A"><!-- NEW -->vt autem moueatur adhuc veloci&ugrave;s in infinitum; aget quidem &longs;in&shy;<lb/>gulos orbes &longs;ingulis in&longs;tantibus, &longs;ed minoribus, &longs;eu breuioribus. </s>
				</p>
				<p id="N25670" type="main">
					<s id="N25672"><!-- NEW -->19. Ob&longs;eruabis Angelum A po&longs;&longs;e tribus modis moueri; </s>
					<s id="N25676"><!-- NEW -->prim&ograve; circa <lb/>centrum B immobile, vt iam dictum e&longs;t, idque veloci&ugrave;s, &amp; tardi&ugrave;s in in&shy;<lb/>finitum, &amp; hic motus e&longs;t perfect&egrave; circularis: </s>
					<s id="N2567E"><!-- NEW -->Secund&ograve; motu recto &longs;impli&shy;<lb/>ci per lineas BE, IH, idque etiam tardi&ugrave;s, &amp; veloci&ugrave;s; </s>
					<s id="N25684"><!-- NEW -->tardi&ugrave;s quidem, &longs;i <lb/>plura ponat in&longs;tantia, vt centrum B re&longs;pondeat E, vel totus circulus A <lb/>toti F; </s>
					<s id="N2568C"><!-- NEW -->veloci&ugrave;s uer&ograve; &longs;i pauciora donec tandem vno in&longs;tanti circulus A <lb/>re&longs;pondeat F ad&aelig;quat&egrave;, id e&longs;t acquirat locum immediatum non partici&shy;<lb/>pantem, quod adhuc fiet veloci&ugrave;s, &amp; veloci&ugrave;s in infinitum; quia pote&longs;t id <lb/>fieri per in&longs;tantia breuiora, &amp; breuiora. </s>
				</p>
				<p id="N25696" type="main">
					<s id="N25698"><!-- NEW -->20. Terti&ograve; pote&longs;t moueri motu mixto ex duobus pr&aelig;cedentibus, ita <lb/>vt qua&longs;i rotetur in plano IH, quod tribus modis fieri pote&longs;t: </s>
					<s id="N25699"><!-- NEW -->primo &longs;i D <lb/>punctum &longs;cilicet <expan abbr="re&longs;p&otilde;deret">re&longs;ponderet</expan> H; </s>
					<s id="N256A4"><!-- NEW -->&longs;ecundo, &longs;i aliud punctum inter DI tertio; </s>
					<s id="N256A8"><!-- NEW --><lb/>&longs;i aliquod inter DCI, primo pote&longs;t fieri, vel &longs;ucce&longs;&longs;iu&egrave; per contactus <lb/>inad&aelig;quatos, vel in in&longs;tanti, idem dico de &longs;ecundo, &amp; tertio, donec <lb/>tandem eo motu tran&longs;eat in F, ita vt punctum F re&longs;pondeat H &amp; circa B <lb/>totum orbem confecerit; &longs;ed de his plura cum de Angelis. <!-- KEEP S--></s>
				</p>
				<p id="N256B4" type="main">
					<s id="N256B6"><!-- NEW -->21. Porr&ograve; punctum B eo in&longs;tanti, quo &longs;ecundum CH tangit conta&shy;<lb/>ctu medio, &longs;ecundum CE tangit extremo &longs;ecundum BF; </s>
					<s id="N256BC"><!-- NEW -->igitur &longs;imul <lb/>cum alio id e&longs;t cum &longs;ecundo BD; </s>
					<s id="N256C2"><!-- NEW -->&longs;i ver&ograve; accipiatur quodlibet aliud pun&shy;<lb/>ctum inter RC; </s>
					<s id="N256C8"><!-- NEW -->illud cert&egrave; non tangit vllo modo ad primum BF eo in&shy;<lb/>&longs;tanti, quo &longs;ecundum CH tangit contactu medio &longs;ecundum CE; </s>
					<s id="N256CE"><!-- NEW -->&longs;i ta&shy;<lb/>men accipiatur aliquod punctum inter BA v.g. <!-- REMOVE S-->R; cert&egrave; punctum R tan&shy;<lb/>git &longs;olum &longs;ecundum RV, &longs;ed contactu, qui nec e&longs;t extremus, nec medius, <lb/>&longs;ed inter vtrumque, eo &longs;cilicet in&longs;tanti, quo &longs;ecundum CH tangit con&shy;<lb/>tactu medio primum CE. </s>
				</p>
				<p id="N256DC" type="main">
					<s id="N256DE"><!-- NEW -->22. Ex his facil&egrave; intellegi pote&longs;t hic motus; quic &longs;cilicet idem punctum <lb/>rot&aelig; minoris pote&longs;t re&longs;pondere diuer&longs;is punctis &longs;ui plani, &longs;ed diuer&longs;o <lb/>contactu, quod facil&egrave; explicatur, t&ugrave;m per analogiam motus angelici, t&ugrave;m <pb pagenum="345" xlink:href="026/01/379.jpg"/>per analogiam partium curuarum rot&aelig; exten&longs;arum. </s>
					<s id="N256ED">Vnde ex &longs;uperiori&shy;<lb/>bus re&longs;pon&longs;ionibus, du&aelig; &longs;i rect&egrave; explicentur &longs;oluunt hunc nodum. </s>
					<s id="N256F2"><!-- NEW -->Tertia <lb/>ver&ograve; omnin&ograve; fal&longs;a e&longs;t; </s>
					<s id="N256F8"><!-- NEW -->nam prim&ugrave;m dici pote&longs;t fieri aliquos &longs;altus con&shy;<lb/>tactuum inad&aelig;quatorum; </s>
					<s id="N256FE"><!-- NEW -->quia &longs;cilicet punctum &longs;ecundum BD tangit &longs;e&shy;<lb/>cundum BF contactu quidem extremo in puncto arcus, &longs;ed medio in <lb/>puncto plani; </s>
					<s id="N25706"><!-- NEW -->igitur plures contactus inad&aelig;quati inter extremum &amp; me&shy;<lb/>dium qua&longs;i omittuntur per &longs;altus; nullum e&longs;t tamen in&longs;tans, quod ali&shy;<lb/>quo punctum plani non tangatur aliquo contactu, ab aliquo puncto ar&shy;<lb/>cus, vel etiam &agrave; duobus in ip&longs;a commi&longs;&longs;ura, qu&aelig; commi&longs;&longs;ura ad in&longs;tar <lb/>puncti mathematici imaginarij concipi pote&longs;t. </s>
				</p>
				<p id="N25712" type="main">
					<s id="N25714"><!-- NEW -->23. Secund&ograve; dici pote&longs;t, quod idem punctum arcus BD tangat duo <lb/>puncta plani BF &longs;ed diuer&longs;o contactu; nec enim duo puncta plani tan&shy;<lb/>guntur ab eodem puncto arcus contactu medio in ip&longs;o puncto arcus. </s>
					<s id="N2571C"><lb/>Terti&ograve; denique dici non pote&longs;t &longs;ingula puncta BD &longs;ingulis punctis B <lb/>F re&longs;pondere, vt con&longs;tat ex dictis, atque ita ex iis, qu&aelig; hactenus diximus <lb/>&longs;ufficienter explicatus e&longs;t &longs;ecundus modus motus rot&aelig; in plano. </s>
				</p>
				<p id="N25724" type="main">
					<s id="N25726"><!-- NEW -->Quod ver&ograve; &longs;pectat ad tertium; </s>
					<s id="N2572A"><!-- NEW -->&longs;i minor globus centro G in eadem <lb/>figura moueatur, vt motus orbis &longs;it &aelig;qualis motui centri v.g. <!-- REMOVE S-->ex G mo&shy;<lb/>ueatur in I, ex K perueniat in M, &longs;itque FM vel GI &aelig;qualis arcus FK, <lb/>&amp; rota minor GF &longs;ecum rapiat maiorem GE; </s>
					<s id="N25736"><!-- NEW -->haud dubi&egrave; motus orbis <lb/>maioris rot&aelig; e&longs;t maior motu centri, vt patet; quippe eo tempore, quo re&shy;<lb/>uoluitur arcus quadrantis, &amp; centrum acquirit tant&ugrave;m GI &longs;ubduplum <lb/>eiu&longs;dem arcus. </s>
				</p>
				<p id="N25740" type="main">
					<s id="N25742"><!-- NEW -->24. E&longs;t autem in hoc motu eadem difficultas; </s>
					<s id="N25746"><!-- NEW -->nam vel &longs;ingula pun&shy;<lb/>cta EI re&longs;pondent &longs;ingulis EN, vel du&aelig; EI re&longs;pondent eidem EN vel <lb/>alterna EI non tangunt per &longs;altus; </s>
					<s id="N2574E"><!-- NEW -->atqui nihil horum dici po&longs;&longs;e videtur: </s>
					<s id="N25752"><!-- NEW --><lb/>non primum, quia &longs;unt plura puncta EI quam EN: </s>
					<s id="N25757"><!-- NEW -->non &longs;ecundum, <lb/>quia &longs;i duo puncta EI tangerent idem EN; </s>
					<s id="N2575D"><!-- NEW -->igitur duo FK tangerent <lb/>idem FM quod fal&longs;um e&longs;t, non denique tertium; </s>
					<s id="N25765"><!-- NEW -->quia &longs;i punctum &longs;ecun&shy;<lb/>dum FK tangat contactu tantum extremo primum FK, ita vt &longs;it conta&shy;<lb/>ctus extremus in vtroque id e&longs;t in &longs;ecundo plani, &amp; in &longs;ecundo arcus; <lb/>haud dubi&egrave; &longs;ecundus EI tangit &longs;ecundum EN contactu medio in pun&shy;<lb/>cto arcus &amp; extremo in puncto plani </s>
				</p>
				<p id="N25771" type="main">
					<s id="N25773"><!-- NEW -->25. Itaque hic motus explicari debet per diuer&longs;os contactas inad&aelig;&shy;<lb/>quatos; non pote&longs;t tamen fieri, quin minor rota &longs;uum motum componat <lb/>cum motu maioris, vt explicauimus abund&egrave;, cum de motu circulari, v.g. <!-- REMOVE S--><lb/>non pote&longs;t minor rota ita moueri, vt acquirat quodlibet eius punctum <lb/>locum immediat&egrave; non participantem vno in&longs;tanti, &longs;i ex eo &longs;equatur aliud <lb/>punctum, vel eiu&longs;dem rot&aelig;, vel alterius coniunct&aelig; moueri veloci&ugrave;s, vt <lb/>con&longs;tat ex dictis. </s>
				</p>
				<p id="N25784" type="main">
					<s id="N25786"><!-- NEW -->26. Vides autem prim&ograve;, motum maioris rot&aelig; accedere propi&ugrave;s ad cir&shy;<lb/>cularem, cum mouetur hoc &longs;ecundo motus genere; </s>
					<s id="N2578C"><!-- NEW -->quia &longs;cilicet motus <lb/><expan abbr="c&etilde;tri">centri</expan> &longs;i <expan abbr="c&otilde;paretur">comparetur</expan> cum motu orbis maioris rot&aelig;, minor e&longs;t; </s>
					<s id="N25799"><!-- NEW -->&longs;i enim nullus <lb/>e&longs;&longs;et motus centri, &longs;ed tant&ugrave;m motus orbis, e&longs;&longs;et motus perfect&egrave; circula&shy;<lb/>ris; </s>
					<s id="N257A1"><!-- NEW -->igitur quo minor e&longs;t motus centri, &amp; maior motus orbis, accedit ille <pb pagenum="346" xlink:href="026/01/380.jpg"/>motus propi&ugrave;s ad circularem, &amp; &egrave; contrario qu&ograve; maior e&longs;t motus centri, <lb/>vt accidit in &longs;ecundo genere motus, accedit propi&ugrave;s ad motum rectum; <lb/>cum ver&ograve; alter alteri &aelig;qualis e&longs;t motus mixtus, quem medium appellare <lb/>po&longs;&longs;umus. </s>
				</p>
				<p id="N257B0" type="main">
					<s id="N257B2"><!-- NEW -->27. Aliqua puncta maioris rot&aelig;; </s>
					<s id="N257B6"><!-- NEW -->cuius motus &agrave; minori dirigitur re&shy;<lb/>tro&euml;unt, &longs;cilicet, qu&aelig; accedunt propi&ugrave;s ad punctum contactus E, v. <!-- REMOVE S-->g. <lb/><!-- REMOVE S-->ip&longs;um E vbi centrum rot&aelig; e&longs;t in KI regreditur in O: </s>
					<s id="N257C1"><!-- NEW -->imm&ograve; regredi vi&shy;<lb/>detur v&longs;que ad X, id e&longs;t, donec &longs;ecus lineam BM; </s>
					<s id="N257C7"><!-- NEW -->igitur cum arcus ZE <lb/>M, &longs;it &longs;ubduplus arcus ZIM, vt con&longs;tat, &amp; c&ugrave;m motus centri &longs;it &longs;ubduplus <lb/>motus orbis, etiam arcus, qui regreditur, e&longs;t &longs;ubduplus illius, qui non re&shy;<lb/>greditur; &longs;ed <expan abbr="mot&utilde;">motum</expan> centri &longs;equitur. </s>
					<s id="N257D5"><!-- NEW -->Terti&ograve;, &longs;i ducas multas parallelas AL, <lb/>qu&aelig; diuidant YE in arcus &aelig;quales, habebis puncta line&aelig; motus v.g. <!-- REMOVE S-->&longs;it E <lb/>V &longs;ubduplus EY &longs;it, VO &longs;ubdupla EN, &longs;it EZ 2/3 XY; </s>
					<s id="N257DF"><!-- NEW -->&longs;it IX 2/3 EN; deni&shy;<lb/>que ip&longs;a YP &aelig;qualis EN. </s>
				</p>
				<p id="N257E5" type="main">
					<s id="N257E7"><!-- NEW -->28. Quart&ograve;, aliquod punctum nec progreditur, nec regreditur vno <lb/>in&longs;tanti, eo &longs;cilicet; </s>
					<s id="N257ED"><!-- NEW -->quo tantum detrahit motus orbis, quantum addit <lb/>motus centri, <expan abbr="pote&longs;t&qacute;ue">pote&longs;tque</expan> determinari punctum illud; </s>
					<s id="N257F7"><!-- NEW -->im&ograve; &amp; proportiones <lb/>motus cuiu&longs;libet puncti; &longs;ed h&aelig;c ex po&longs;itis principiis facil&egrave; colligitur <lb/>oper&acirc; analytices. </s>
				</p>
				<p id="N257FF" type="main">
					<s id="N25801"><!-- NEW -->Quint&ograve; punctum E mouetur veloci&ugrave;s, cum dirigitur motus &acirc; minori <lb/>rota, qu&agrave;m punctum C, cum dirigitur motus &agrave; maiori; </s>
					<s id="N25807"><!-- NEW -->quia motus orbis <lb/>mult&ugrave;m illud retroagit: </s>
					<s id="N2580D"><!-- NEW -->imm&ograve; non mouetur tardi&longs;&longs;im&egrave; omnium; </s>
					<s id="N25811"><!-- NEW -->&longs;ed pun&shy;<lb/>ctum illud, quod nec progreditur, nec regreditur, &longs;ed modic&ugrave;m vel a&longs;cen&shy;<lb/>dit vel de&longs;cendit; &longs;unt autem duo huiu&longs;modi puncta, alterum in arcu I <lb/>E, alterum in YE. <!-- KEEP S--></s>
				</p>
				<p id="N2581C" type="main">
					<s id="N2581E"><!-- NEW -->29. Sext&ograve; denique ex his principis ben&egrave; &egrave;xplicatur quomodo maior <lb/>vel minor rota, cuius motus ab alia minore dirigitur, moueri pote&longs;t; </s>
					<s id="N25824"><!-- NEW -->nec <lb/>e&longs;t quod in his diuti&ugrave;s immoremur, vt tandem interruptam no&longs;tro&shy;<lb/>rum Theorematum &longs;eriem repetamus, &longs;unt enim plures alij motus mixti <lb/>non tant&ugrave;m ex recto, &amp; circulari, &longs;ed ex duobus &amp; pluribus circularibus; <lb/>quorum omnium rationes ni&longs;i me veritas ip&longs;a fallit &lpar;qu&aelig; tamen falle&shy;<lb/>re non pote&longs;t&rpar; ad &longs;ua principi&aelig; phy&longs;ica reducemus. </s>
				</p>
				<p id="N25833" type="main">
					<s id="N25835"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 9.<emph.end type="center"/></s>
				</p>
				<p id="N25841" type="main">
					<s id="N25843"><!-- NEW --><emph type="italics"/>Globus, qui de&longs;cendit deor&longs;um in plano inclinato, mouetur motu mix&shy;<lb/>to ex recto centri, &amp; circulari orbis<emph.end type="italics"/>; </s>
					<s id="N25850"><!-- NEW -->patet ex dictis, cum more rot&aelig; <lb/>moueatur, &longs;ic etiam mouetur globus deor&longs;um demi&longs;&longs;us cum aliqua in&shy;<lb/>clinatione; </s>
					<s id="N25858"><!-- NEW -->cuius cert&egrave; nulla pars a&longs;cendit, &longs;en regreditur; </s>
					<s id="N2585C"><!-- NEW -->e&longs;t enim <lb/>eadem illius ratio; </s>
					<s id="N25862"><!-- NEW -->cur autem moueatur ille motu mixto, &amp; non <lb/>recto &longs;implici: </s>
					<s id="N25868"><!-- NEW -->ratio e&longs;t, quia propter primam illam inclinationem <lb/>tollitur eius &aelig;quilibrium; </s>
					<s id="N2586E"><!-- NEW -->c&ugrave;m enim globus perfectus in a&euml;re vibratus, <lb/>&longs;i nulla ad&longs;it inclinatio, &longs;it in perfecto &aelig;quilibrio, cert&egrave;, &longs;i vel modica in&shy;<lb/>clinatio accedat vel in C vel in D tolletur &aelig;quilibrium, quia illa incli&shy;<lb/>natio <expan abbr="id&etilde;">idem</expan> pr&aelig;&longs;tat quod pondus nouum <expan abbr="addit&utilde;">additum</expan>; porr&ograve; huius inclinationis: <pb pagenum="347" xlink:href="026/01/381.jpg"/>ratio ex eo petitur prim&ograve;, qu&ograve;d prius globus demittatur per planum <lb/>inclinatum, &longs;iue cadat ex ip&longs;a manu, &longs;iue ex alio plano v.g. <!-- REMOVE S-->ex recto vel <lb/>alio plano decliui. </s>
					<s id="N2588B"><!-- NEW -->Secund&ograve; ex eo, qu&ograve;d pri&ugrave;s moueatur altera extremi&shy;<lb/>tas put&agrave; C, qu&agrave;m D; </s>
					<s id="N25891"><!-- NEW -->igitur acquirit C pl&ugrave;s impetus motu naturaliter ac&shy;<lb/>celerato; </s>
					<s id="N25897"><!-- NEW -->igitur retinetur &agrave; puncto; </s>
					<s id="N2589B"><!-- NEW -->qu&ograve;d lic&egrave;t deinde moueatur, tardi&ugrave;s <lb/>tamen mouetur; </s>
					<s id="N258A1"><!-- NEW -->igitur C vbi ad imum de&longs;cendit iterum videtur a&longs;cen&shy;<lb/>dere t&ugrave;m propter determinationem nouam; </s>
					<s id="N258A7"><!-- NEW -->t&ugrave;m quia ab oppo&longs;ito pun&shy;<lb/>cto de&longs;cendente qua&longs;i attollitur: </s>
					<s id="N258AD"><!-- NEW -->non dixi a&longs;cendere, &longs;ed tant&ugrave;m videri <lb/>a&longs;cendere, quia reuer&acirc; non a&longs;cendit; </s>
					<s id="N258B3"><!-- NEW -->alioquin aliquod punctum regrede&shy;<lb/>retur, quod fal&longs;um e&longs;t; nec enim pote&longs;t a&longs;cendere, ni&longs;i regrediatur, vt <lb/>con&longs;tat. </s>
				</p>
				<p id="N258BB" type="main">
					<s id="N258BD"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 10.<emph.end type="center"/></s>
				</p>
				<p id="N258C9" type="main">
					<s id="N258CB"><!-- NEW --><emph type="italics"/>Hinc non de&longs;truitur ille impetus ab impetu innato, vt fit in funependulis<emph.end type="italics"/>; </s>
					<s id="N258D4"><!-- NEW --><lb/>quia &longs;cilicet de&longs;truitur tant&ugrave;m ab innato in a&longs;cen&longs;u; </s>
					<s id="N258D9"><!-- NEW -->&longs;ed nullum pun&shy;<lb/>ctum globi a&longs;cendit, vt dictum e&longs;t, quod vt meli&ugrave;s intelligatur, &longs;it in fi&shy;<lb/>gura Th. 1. globus centro O; </s>
					<s id="N258E1"><!-- NEW -->&longs;itque OF perpendicularis deor&longs;um, qu&aelig; <lb/>percurritur ab eodem centro O motu centri; </s>
					<s id="N258E7"><!-- NEW -->&longs;itque motus orbis ab L <lb/>in <expan abbr="q;">que</expan> intelligatur autem planium AI 6; </s>
					<s id="N258F1"><!-- NEW -->cert&egrave; punctum A, quod perinde <lb/>&longs;e habet, atque &longs;i e&longs;&longs;et punctum contactus, de&longs;cribit lineam ARP ergo <lb/>non a&longs;cendit; igitur non de&longs;truitur impetus productus ab impetu in&shy;<lb/>nato. </s>
				</p>
				<p id="N258FB" type="main">
					<s id="N258FD"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N25909" type="main">
					<s id="N2590B">Ob&longs;eruabis 1&degree;. </s>
					<s id="N2590E"><!-- NEW -->mirificam e&longs;&longs;e impetus propagationem in hoc motu; <lb/>quippe omnes partes mouentur in&aelig;quali motu, lic&egrave;t moueantur &agrave; prin&shy;<lb/>cipio intrin&longs;eco. </s>
				</p>
				<p id="N25916" type="main">
					<s id="N25918">1. Non tantum accelerari motum centri, &longs;ed etiam motum orbis, vt <lb/>patet experienti&acirc; in globo de&longs;cendente per decliue planum. </s>
				</p>
				<p id="N2591F" type="main">
					<s id="N25921"><!-- NEW -->3. Si globus non de&longs;cendat in plano declini &longs;ed in libero a&euml;re po&longs;t <lb/>primam librationem motus orbis non cre&longs;cit; </s>
					<s id="N25929"><!-- NEW -->quia omnes partes ten&shy;<lb/>dere po&longs;&longs;unt deor&longs;um, nec ab vllo obice impediuntur; non e&longs;t autem <lb/>par ratio pro motu in plano decliui, vt patet. </s>
				</p>
				<p id="N25931" type="main">
					<s id="N25933"><!-- NEW -->4. Hinc motus orbis &longs;en&longs;im dece&longs;cit, &longs;ed omnin&ograve; in&longs;en&longs;ibiliter; </s>
					<s id="N25937"><!-- NEW --><lb/>quia non de&longs;truitur ab impetu innato, vt iam dictum e&longs;t; </s>
					<s id="N2593C"><!-- NEW -->nec enim &longs;ic <lb/>motus circularis e&longs;t contrarius motui recto; </s>
					<s id="N25942"><!-- NEW -->quippe mod&ograve; centrum <lb/>grauitatis globi feratur motu recto, hoc &longs;atis e&longs;&longs;e videtur, &longs;iue partes mo&shy;<lb/>tu circulari ferantur: circa idem centrum, &longs;iue omnes motu recto per <lb/>lineas parallelas ferantur:</s> 
					<s id="N25943"><!-- NEW -->ratio &agrave; priori e&longs;t, quia in tantum vnus impe&shy;<lb/>tus de&longs;truit alium in eadem parte mobilis, in quantum impeditur ab eo <lb/>eius motus deor&longs;um totius globi nullo modo impeditur ab illo motu <lb/>circulari, quia globus &aelig;qu&egrave; cit&ograve; de&longs;cendit vno, atque alio motu, vt con&shy;<lb/>&longs;tat mille experienti&aelig;. </s>
				</p>
				<p id="N25957" type="main">
					<s id="N25959"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 11.<emph.end type="center"/></s>
				</p>
				<p id="N25965" type="main">
					<s id="N25967"><!-- NEW --><emph type="italics"/>Si corporis grauis altera extremitas &longs;it grauior demittaturque in eo &longs;itu,<emph.end type="italics"/><pb pagenum="348" xlink:href="026/01/382.jpg"/><emph type="italics"/>in quo &longs;it parallelum horizonti; </s>
					<s id="N25976"><!-- NEW -->haud dubi&egrave; extremitas grauior pr&aelig;it motu <lb/>mixto<emph.end type="italics"/>; </s>
					<s id="N2597F"><!-- NEW -->quia &longs;cilicet qua&longs;i ab ali&acirc; leuiore retinetur, exemplum habes in <lb/>&longs;agitt&acirc; ferro armat&acirc;, &amp; in fune ex quo plumbum pendet; ratio euiden&shy;<lb/>ti&longs;&longs;ima e&longs;t; </s>
					<s id="N25987"><!-- NEW -->quia illa extremitas facili&ugrave;s medij re&longs;i&longs;tentiam &longs;uperat, igitur <lb/>pr&aelig;ire debet; </s>
					<s id="N2598D"><!-- NEW -->igitur motu mixto; </s>
					<s id="N25991"><!-- NEW -->illa tamen tardi&ugrave;s de&longs;cendit, qu&agrave;m <lb/>de&longs;cenderet, &longs;i &agrave; leuiore e&longs;&longs;et &longs;eparata; </s>
					<s id="N25997"><!-- NEW -->leuior ver&ograve; veloci&ugrave;s, qu&agrave;m &longs;i e&longs;&shy;<lb/>&longs;et &longs;olitaria; quod autem non &longs;it alia ratio, patet poti&longs;&longs;imum ex eo, qu&ograve;d <lb/>plumbum ita demi&longs;&longs;um, vt funis pr&aelig;eat, tandem funem a&longs;&longs;equitur, &amp; tan&shy;<lb/>dem &agrave; tergo relinquit. </s>
				</p>
				<p id="N259A1" type="main">
					<s id="N259A3"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N259B0" type="main">
					<s id="N259B2">Hinc petenda e&longs;t vera ratio illius ph&oelig;nomeni, quod iam &longs;upr&agrave; l. <!-- REMOVE S-->3. <lb/>indicauimus, &longs;cilicet &longs;agittam pl&ugrave;s temporis ponere in de&longs;cen&longs;u, qu&agrave;m <lb/>in a&longs;cen&longs;u minoremque infligere ictum, qu&agrave;m leuius lignum, &amp; mult&ograve; <lb/>leuior penna cu&longs;pidis ferre&aelig; motum retardat. </s>
				</p>
				<p id="N259BD" type="main">
					<s id="N259BF"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N259CC" type="main">
					<s id="N259CE"><!-- NEW -->Si altera extremitas &longs;agitt&aelig; plumis in&longs;truatur, lic&egrave;t proijciatur motu <lb/>violento &longs;ur&longs;um extremitas ferro armata pr&aelig;it plumis &agrave; tergo relictis; </s>
					<s id="N259D4"><!-- NEW --><lb/>ratio e&longs;t, quia a&euml;r forti&ugrave;s re&longs;i&longs;tit pluuis, qu&agrave;m ferro, vel ligno; igitur ca&shy;<lb/>rum motum retardat. </s>
				</p>
				<p id="N259DB" type="main">
					<s id="N259DD"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N259EA" type="main">
					<s id="N259EC"><!-- NEW -->Hinc &longs;agitta pennis atton&longs;is fertur in incertum, &amp; &longs;copum fallit, cui <lb/>fuerat de&longs;tinata; </s>
					<s id="N259F2"><!-- NEW -->quia lic&egrave;t lignum minore vi polleat, qu&agrave;m ferrum; </s>
					<s id="N259F6"><!-- NEW -->vix <lb/>tamen &longs;en&longs;ibilis e&longs;t differentia; </s>
					<s id="N259FC"><!-- NEW -->adde quod minima deflexio, vel decli&shy;<lb/>natio ad retr&ograve; agendum ferrum &longs;ufficit; corpus enim facil&egrave; mouetur mo&shy;<lb/>tu mixto ex recto, &amp; circulari. </s>
				</p>
				<p id="N25A04" type="main">
					<s id="N25A06"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N25A13" type="main">
					<s id="N25A15"><!-- NEW -->Hinc ratio illius iaculi breui cu&longs;pide armati, cuius altera extremitas <lb/>decu&longs;&longs;atim fi&longs;&longs;a cra&longs;&longs;iore charta paulul&ugrave;m expan&longs;a munitur, qu&etail; deflexio&shy;<lb/>nem impedit; </s>
					<s id="N25A1D"><!-- NEW -->cuius rei analogiam habes in nauis gubernaculo; </s>
					<s id="N25A21"><!-- NEW -->e&longs;t enim <lb/>ad in&longs;tar quadruplicis claui motum dirigentis; </s>
					<s id="N25A27"><!-- NEW -->qu&icirc;ppe inclinari non <lb/>pote&longs;t, ni&longs;i multum a&euml;ris pellant al&aelig; ill&aelig; chartace&aelig;: In &longs;agitta aliquid <lb/>&longs;imile habes. </s>
				</p>
				<p id="N25A2F" type="main">
					<s id="N25A31"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 5.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N25A3E" type="main">
					<s id="N25A40"><!-- NEW -->Hinc &longs;i euibretur iaculum illud per horizontalem v.g. <!-- REMOVE S-->circa pro&shy;<lb/>prium axem conuoluitur; </s>
					<s id="N25A48"><!-- NEW -->quia a&euml;r tenues illas tran&longs;uerberat alas, ex <lb/>qua a&euml;ris vel colli&longs;ione, vel appul&longs;u, vel qua&longs;i reflexione facil&egrave; &longs;equitur <lb/>circularis motus, qui nullatenus impedit rectum, vt iam dixi &longs;upr&agrave;; </s>
					<s id="N25A50"><!-- NEW -->&longs;ed <lb/>cum eo motum mixtum componit, de quo paul&ograve; p&ograve;&longs;t; nunc tant&ugrave;m &longs;uf&shy;<lb/>ficiat attigi&longs;&longs;e veri&longs;&longs;imam rationem illorum gyrorum. </s>
				</p>
				<p id="N25A58" type="main">
					<s id="N25A5A"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 6.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N25A67" type="main">
					<s id="N25A69"><!-- NEW -->Simile ph&oelig;nomenum habes in illis volatilibus calamis, qui multis <lb/>copiam ludi faciunt; </s>
					<s id="N25A6F"><!-- NEW -->nam prim&ograve; tignea illa, vel o&longs;&longs;ea theca, cui com-<pb pagenum="349" xlink:href="026/01/383.jpg"/>mittuntur plum&aelig;, plumas ip&longs;as pr&aelig;it propter rationem pr&aelig;dictam; </s>
					<s id="N25A78"><!-- NEW -->nam <lb/>a&euml;ra facili&ugrave;s diuidit; </s>
					<s id="N25A7E"><!-- NEW -->&longs;ecund&ograve; vertiginem illam habet, de qua &longs;upr&agrave;; </s>
					<s id="N25A82"><!-- NEW -->quia <lb/>a&euml;r qua&longs;i reuerberat, <expan abbr="torquetq;">torquetque</expan> plumas; de hoc motu paul&ograve; p&ograve;&longs;t agemus. </s>
				</p>
				<p id="N25A8D" type="main">
					<s id="N25A8F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 12.<emph.end type="center"/></s>
				</p>
				<p id="N25A9B" type="main">
					<s id="N25A9D"><!-- NEW --><emph type="italics"/>Cum Cylindrus ita dimittitur, vt altera extremitas motu circulari praeat, <lb/>remanente initio aliquo centro immobili, de&longs;cendit motu mixto ex recto &amp; <lb/>circulari<emph.end type="italics"/>; </s>
					<s id="N25AAA"><!-- NEW -->vt con&longs;tat ex iis, qu&aelig; diximus de globo deor&longs;um cadente hoc <lb/>genere motus; &longs;unt tamen h&icirc;c multa ob&longs;eruanda. </s>
					<s id="N25AB0">Prim&ograve; omnes partes <lb/>globi initio moueri, &longs;ed in&aelig;qualiter, c&ugrave;m tamen aliqua pars cylindri non <lb/>moueatur. </s>
					<s id="N25AB7"><!-- NEW -->Sit enim cylindrus AC ita innixus B, vt liber&egrave; moueri po&longs;&longs;it; </s>
					<s id="N25ABB"><!-- NEW --><lb/>haud dubi&egrave;, c&ugrave;m non &longs;it &aelig;quilibrium, &longs;egmentum BC pr&aelig;ualebit; </s>
					<s id="N25AC0"><!-- NEW -->igitur <lb/>circa centrum B extremitas C de&longs;cendet per arcum CD, &amp; A per arcum <lb/>AE; donec tandem punctum B moueatur per rectam BF, &longs;eu per aliam <lb/>proxim&egrave; accedentem, &longs;i. </s>
					<s id="N25ACA"><!-- NEW -->tantill&ugrave;m &agrave; plano BF repellatur; </s>
					<s id="N25ACE"><!-- NEW -->punctum ver&ograve; <lb/>C motu mixto ex recto deor&longs;um, &amp; circulari circa B; </s>
					<s id="N25AD4"><!-- NEW -->ea tamen lege, vt <lb/>motus orbis nullo modo acceleretur, &longs;ed tant&ugrave;m motus centri; igitur <lb/>hic motus con&longs;tat ex motu centri accelerato, &amp; motu orbis qua&longs;i &aelig;qua&shy;<lb/>bili, cuius linea de&longs;cribi pote&longs;t, vt videbimus l. <!-- REMOVE S-->12. dixi, fer&egrave; &aelig;quabilem, <lb/>quia aliquid de&longs;truitur &longs;ingulis in&longs;tantibus ratione nou&aelig; determinatio&shy;<lb/>nis, vt diximus &longs;upr&agrave; cum de motu circulari, &longs;ed par&ugrave;m pro nihilo repu&shy;<lb/>tatur. </s>
				</p>
				<p id="N25AE6" type="main">
					<s id="N25AE8"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N25AF4" type="main">
					<s id="N25AF6">Ob&longs;erua 1&degree;. </s>
					<s id="N25AF9">e&longs;&longs;e plures huius motus mixti &longs;pecies. </s>
					<s id="N25AFC">Prim&ograve; e&longs;t mixtus <lb/>ex motu centri &amp; motu orbis &aelig;quali. </s>
					<s id="N25B01">Secundo ex 1&degree;. </s>
					<s id="N25B04">maiore &amp; 2&degree;. </s>
					<s id="N25B07">mi&shy;<lb/>nore. </s>
					<s id="N25B0C">Terti&ograve; ex 1&degree;. </s>
					<s id="N25B0F">minore &amp; 2&degree;. </s>
					<s id="N25B12">maiore. </s>
					<s id="N25B15">Quart&ograve; ex 1&degree;. </s>
					<s id="N25B18">accelerato 2&degree;. <lb/></s>
					<s id="N25B1C">&aelig;quabili Quint&ograve; ex 1&degree;. </s>
					<s id="N25B1F">accelerato 2&degree;. </s>
					<s id="N25B22">retardato. </s>
					<s id="N25B25">Sext&ograve; ex vtroque retar&shy;<lb/>dato. </s>
					<s id="N25B2A">Septim&ograve; ex vtroque accelerato. </s>
					<s id="N25B2D">Octau&ograve; ex 1&degree;. </s>
					<s id="N25B30">&aelig;quabili 2&degree;. </s>
					<s id="N25B33">accele&shy;<lb/>rato.Nono ex 1&degree;. </s>
					<s id="N25B38">retardato 2&degree;. </s>
					<s id="N25B3B">accelerato. </s>
					<s id="N25B3E">Decim&ograve; ex 1&degree;. </s>
					<s id="N25B41">&aelig;quabili 2&degree;. </s>
					<s id="N25B44">ac&shy;<lb/>celerato.Vndecim&ograve; ex 1&degree;. </s>
					<s id="N25B49">&aelig;quabili 2&degree;. </s>
					<s id="N25B4C">retardato &amp;c. </s>
					<s id="N25B4F"><!-- NEW -->nec enim h&icirc;c dee&longs;t <lb/>maxima motuum &longs;ylua, quorum tamen, quia e&longs;t eadem ratio, nimis acu&shy;<lb/>ratam di&longs;tributionem omittimus, non facil&egrave; haberi pote&longs;t; </s>
					<s id="N25B57"><!-- NEW -->c&ugrave;m enim <lb/>&longs;int tres termini, &longs;cilicet &aelig;quabilis, retardatus, acceleratus, erunt 9. <lb/>combinationes; </s>
					<s id="N25B5F"><!-- NEW -->&amp; c&ugrave;m &longs;ingul&aelig; tres differentias habeant; nam vel mo&shy;<lb/>tus orbis e&longs;t &aelig;qualis motui centri, vel maior, vel minor, ducantur 9.in 3. <lb/>&amp; erunt 27. </s>
				</p>
				<p id="N25B67" type="main">
					<s id="N25B69"><!-- NEW -->Ob&longs;erua &longs;ecund&ograve; centrum motus po&longs;&longs;e vel propi&ugrave;s accedere ad A <lb/>v.g.&longs;i e&longs;&longs;et in G, vel ad C v.g. <!-- REMOVE S-->&longs;i e&longs;&longs;et Z. &longs;i primum, maior e&longs;t motus orbis, <lb/>id e&longs;t velocior, lic&egrave;t pauciores circuitus fiant; </s>
					<s id="N25B73"><!-- NEW -->quia extremitas C ma&shy;<lb/>iorem arcum de&longs;cribens pl&ugrave;s temporis in de&longs;cen&longs;u ponit; </s>
					<s id="N25B79"><!-- NEW -->igitur maio&shy;<lb/>rem velocitatem acquirit; &longs;i ver&ograve; &longs;ecundum, &egrave; contrario. </s>
				</p>
				<p id="N25B7F" type="main">
					<s id="N25B81"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 13.<emph.end type="center"/></s>
				</p>
				<p id="N25B8D" type="main">
					<s id="N25B8F"><!-- NEW --><emph type="italics"/>Cum cylindrus proijcitur &longs;ur&longs;um it a vt aliquod punctum rect&agrave; feratur, cir&shy;<lb/>ca quod voluitur cylindrus, </s>
					<s id="N25B98"><!-- NEW -->est motus mixtus ex recto centri, &amp; circulari orbis,<emph.end type="italics"/><pb pagenum="350" xlink:href="026/01/384.jpg"/>pro quo non e&longs;t noua difficultas; nam e&longs;t pror&longs;us eadem ratio, ni&longs;i <lb/>quod prim&ograve; debet pri&ugrave;s imprimi motus rectus omnibus partibus erecto <lb/>cylindro t&ugrave;m vbi &longs;eparatur &agrave; manu circulariis. </s>
					<s id="N25BA8">Secund&ograve; centrum pote&longs;t <lb/>accedere propi&ugrave;s ad &longs;ummam extremitatem vel ad imam. </s>
					<s id="N25BAD">Terti&ograve;, a&longs;cendit <lb/>e&ograve; alti&ugrave;s cylindrus, qu&ograve; centrum motus orbis accedit propi&ugrave;s ad &longs;um&shy;<lb/>mam extremitatem. </s>
					<s id="N25BB4"><!-- NEW -->Quart&ograve;, pote&longs;t extremitas ima impelli duobus mo&shy;<lb/>dis: </s>
					<s id="N25BBA"><!-- NEW -->prim&ograve; &longs;i retr&ograve; agitur, &longs;ecund&ograve; &longs;i ant&egrave;; </s>
					<s id="N25BBE"><!-- NEW -->&longs;ed quia h&aelig;c omnia perti&shy;<lb/>nent ad diuer&longs;os oblong&aelig; ha&longs;t&aelig; motus iucundaque militaris illius exer&shy;<lb/>citationis ph&oelig;nomena, quorum omnium rationem in &longs;ingulari Theo&shy;<lb/>remate afferemus; e&ograve; totam rem i&longs;tam remittimus. </s>
				</p>
				<p id="N25BC8" type="main">
					<s id="N25BCA"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 14.<emph.end type="center"/></s>
				</p>
				<p id="N25BD6" type="main">
					<s id="N25BD8"><!-- NEW --><emph type="italics"/>Quando globus, &longs;eu rota voluitur in &longs;uperficie curua immobili, omnes eius <lb/>partes mouentur motu mixto ex duobus circularibus, &longs;cilicet ex motu circula&shy;<lb/>ri centri, &amp; circulari orbis,<emph.end type="italics"/> e&longs;t enim motus centri circularis &longs;i voluatur <lb/>globus in orbe, hoc e&longs;t in &longs;uperficie curua; </s>
					<s id="N25BE7"><!-- NEW -->porr&ograve; h&aelig;c &longs;uperficies vel e&longs;t <lb/>conuexa, vel concaua, vel e&longs;t circuli maioris, vel minoris; </s>
					<s id="N25BED"><!-- NEW -->itemque &longs;i con&shy;<lb/>caua vel e&longs;t circuli &aelig;qualis, vel maioris, vel minoris; igitur &longs;unt 6. nou&aelig; <lb/>combinationes, qu&aelig; &longs;i ducantur in 27. habebis 162. &longs;ed quia, &longs;i e&longs;t con&shy;<lb/>caua minoris, vel &aelig;qualis, non pote&longs;t globus in ea rotari. </s>
					<s id="N25BF7"><!-- NEW -->Hinc &longs;unt tan&shy;<lb/>t&ugrave;m 4. legitim&aelig; combinationes nou&aelig;, qu&aelig; &longs;i ducantur in 27, habebis <lb/>108; &longs;ed iam &longs;eor&longs;im rem i&longs;tam con&longs;ideremus. </s>
				</p>
				<p id="N25BFF" type="main">
					<s id="N25C01"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 15.<emph.end type="center"/></s>
				</p>
				<p id="N25C0D" type="main">
					<s id="N25C0F"><emph type="italics"/>Explicari po&longs;&longs;unt omnia ph&oelig;nomena rot&aelig;, qu&aelig; circa &aelig;qualem rotam immo&shy;<lb/>bilem it a rotatur, vt arcus mobilis, &amp; immobilis decur&longs;i &longs;int &aelig;quales.<emph.end type="italics"/></s>
					<s id="N25C18"><!-- NEW --> Sit rota <lb/>immobilis centro L, radio AB; &longs;it alia centro C &aelig;qualis priori, qu&aelig; ita <lb/>moueatur, vt &longs;inguli arcus BE re&longs;pondeant &longs;ingulis arcubus BT, &amp; pun&shy;<lb/>ctum E tangat in T, D in X, F in D. <!-- KEEP S--></s>
					<s id="N25C23">Prim&ograve; centrum mouetur motu cir&shy;<lb/>culari, de&longs;cribitque circulum radio AC, &longs;cilicet duplum circuli immobi&shy;<lb/>lis ABX. </s>
					<s id="N25C2A"><!-- NEW -->Secund&ograve; motus centri e&longs;t dupl&ograve; maior motu orbis, id e&longs;t eo <lb/>tempore, quo in &longs;uperficie conuexa decur&longs;us e&longs;t arcus BT, centrum C <lb/>confecit arcum CV duplum; cuius ph&oelig;nomeni ratio clara e&longs;t, quia &longs;ci&shy;<lb/>licet centrum C di&longs;tat &longs;emper ab A toto radio AC duplo AB. <!-- KEEP S--></s>
				</p>
				<p id="N25C35" type="main">
					<s id="N25C37"><!-- NEW -->Terti&ograve; pote&longs;t de&longs;cribi linea, quam punctum B &longs;uo fluxu de&longs;cribit; <lb/>ducatur &longs;emicirculus CVT; diuidatur in 12. partes &aelig;quales ductis radiis <lb/>AC, AL, AV &amp;c.qui &longs;ecant circulum ABX in punctis YZ <foreign lang="greek">dg</foreign> &amp;c. </s>
					<s id="N25C43"><!-- NEW -->t&ugrave;m <lb/>ex punctis, qu&aelig; terminant ductos radios in &longs;emicirculo CVT de&longs;cri&shy;<lb/>bantur circuli radio CB; haud dubi&egrave; tangent hi circuli circulum ABX <lb/>in punctis YZ <foreign lang="greek">dg</foreign> &amp;c. </s>
					<s id="N25C51">denique accipiatur arcus YG &aelig;qualis YB, t&ugrave;m <lb/>ZH &aelig;qualis ZB, t&ugrave;m <foreign lang="greek">d</foreign> I &aelig;qualis <foreign lang="greek">d</foreign> B, atque ita deinceps, &amp; per puncta <lb/>BGHIK. &amp;c. </s>
					<s id="N25C60"><!-- NEW -->ducantur curua BGLMOQS, atque idem fiat &longs;ini&shy;<lb/>&longs;tror&longs;um, &amp; habebitur linea, quam &longs;uo fluxu de&longs;cribit punctum B; </s>
					<s id="N25C66"><!-- NEW -->quod <lb/>breuiter demon&longs;tratur, quia quando centrum C e&longs;t in L, decurrit arcum <lb/>CL &longs;ubduplum CV; </s>
					<s id="N25C6E"><!-- NEW -->igitur tangit in <foreign lang="greek">d</foreign>; </s>
					<s id="N25C76"><!-- NEW -->igitur decurrit B <foreign lang="greek">d</foreign> &longs;ubduplum <lb/>BT; </s>
					<s id="N25C80"><!-- NEW -->igitur circa centrum C motu orbis conuer&longs;us e&longs;t arcus &longs;ubduplus <pb pagenum="351" xlink:href="026/01/385.jpg"/>BE e&longs;t &aelig;qualis <foreign lang="greek">d</foreign> B; </s>
					<s id="N25C8D"><!-- NEW -->&longs;ed <foreign lang="greek">d</foreign> I e&longs;t &aelig;qualis <foreign lang="greek">d</foreign> B; ig&iuml;tur punctum circuli mo&shy;<lb/>bilis e&longs;t in I, idem pror&longs;us demon&longs;trabitur de aliis punctis. </s>
				</p>
				<p id="N25C9B" type="main">
					<s id="N25C9D"><!-- NEW -->Quart&ograve;, hinc triangula curuilinea BYG, BZH, B <foreign lang="greek">d</foreign> I &longs;unt I&longs;o&longs;celia; </s>
					<s id="N25CA5"><!-- NEW --><lb/>ip&longs;um vero BVK e&longs;t &aelig;quilaterum quia AK e&longs;t Tangens, vt con&longs;tat; </s>
					<s id="N25CAA"><!-- NEW --><lb/>imm&ograve; &longs;inguli circuli debent tangere &longs;uum radium, vt patet; porr&ograve; miri&shy;<lb/>fica e&longs;t huius line&aelig; figura, qu&aelig; &longs;ectionem cordis exhibet, quam ideo <lb/>deinceps lineam cordis appellabimus, cuius &longs;unt in&longs;ignes omnin&ograve; pro&shy;<lb/>prietates, quas &longs;uo loco demon&longs;trabimus. </s>
				</p>
				<p id="N25CB5" type="main">
					<s id="N25CB7"><!-- NEW -->Quint&ograve;, punctum B initio tardi&longs;&longs;im&egrave; mouetur cum eo tempore, quo <lb/>decurrit BG punctum oppo&longs;itum D decurrat D6; </s>
					<s id="N25CBD"><!-- NEW -->ratio e&longs;t, quia motus <lb/>centri defert D in I, cui motus orbis cum motu centri con&longs;entiens ad&shy;<lb/>dit P6, c&ugrave;m tamen motus orbis puncti B &longs;it contrarius motui centri; </s>
					<s id="N25CC5"><!-- NEW --><lb/>adde quod motus centri circa centrum A tribuit maiorem motum <lb/>puncto D, qu&agrave;m B iuxta proportionem radiorum; igitur c&ugrave;m DA <lb/>&longs;it tripla BA, motus centri D e&longs;t triplus motus centri B, igitur duplici <lb/>nomine motus puncti B e&longs;t tardior. </s>
					<s id="N25CD0">Prim&ograve;, quia motus orbis <lb/>tant&ugrave;m addit D, quantum detrahit B. Secund&ograve;, quia motus centri addit <lb/>D motum triplum illius, quem addit B. </s>
				</p>
				<p id="N25CD7" type="main">
					<s id="N25CD9"><!-- NEW -->Sext&ograve; po&longs;&longs;unt haberi per <expan abbr="analytic&atilde;">analyticam</expan> proportiones arcuum line&aelig; motus, <lb/>quos B &etail;qualibus <expan abbr="t&etilde;poribus">temporibus</expan> percurrit v.g.BG, GH, HI, IK, KL, LM, <expan abbr="deniq;">denique</expan> <lb/>vltimus RS &aelig;qualis D6; </s>
					<s id="N25CED"><!-- NEW -->indico breuiter huius proportionem, cum BGDP <lb/>e&longs;t tripla BY, &amp; P6; </s>
					<s id="N25CF3"><!-- NEW -->e&longs;t quadrupla; </s>
					<s id="N25CF7"><!-- NEW -->igitur fer&egrave; &aelig;qualis BV, &longs;i ducantur <lb/>du&aelig; rect&aelig; YB, YG angulus rectilineus GYB e&longs;t &aelig;qualis YAB, id e&longs;t <lb/>15 grad.igitur ita &longs;e habet arcus BG ad BY vt recta BY ad BA, id e&longs;t fer&egrave;, <lb/>vt 1.ad 4.paul&ograve; min&ugrave;s; </s>
					<s id="N25D01"><!-- NEW -->&longs;ed D6 e&longs;t quadruplus BY; </s>
					<s id="N25D05"><!-- NEW -->igitur BG e&longs;t ad D6 <lb/>vt 1. ad 16.paul&ograve; minus; </s>
					<s id="N25D0B"><!-- NEW -->&longs;ed eo maior erit proportio motus D, quo a&longs;&shy;<lb/>&longs;umetur minor arcus; </s>
					<s id="N25D11"><!-- NEW -->vt autem habeatur proportio a&longs;&longs;umpto arcu in&shy;<lb/>tegro quadrantis e&longs;t vt M S ad MB; porr&ograve; e&longs;t fer&egrave; eadem proportio <lb/>motuum punctorum appo&longs;itorum rot&aelig; mobilis, &longs;iue rotetur in plano re&shy;<lb/>ctiline&aelig;, &longs;iue in &longs;uperficie curua. </s>
				</p>
				<p id="N25D1B" type="main">
					<s id="N25D1D"><!-- NEW -->Septim&ograve;, puncta B &amp; E de tempore, quo percurritur arcus quadran&shy;<lb/>tis percurrunt &longs;patia &aelig;qualia: </s>
					<s id="N25D23"><!-- NEW -->hinc ET, BM &longs;unt &aelig;quales; </s>
					<s id="N25D27"><!-- NEW -->imm&ograve; <lb/>&longs;i ducantur rect&aelig; BEMTB, erit ET perfectum quadratum vt con&longs;tat, <lb/>cuius diagonalis erit BM; </s>
					<s id="N25D2F"><!-- NEW -->igitur &aelig;qualis BX, qu&aelig; omnia con&longs;tant ex <lb/>ip&longs;is elementis; porr&ograve; punctum B veloci&longs;&longs;im&egrave; omnium mouetur, vt pa&shy;<lb/>tet ex dictis. </s>
				</p>
				<p id="N25D37" type="main">
					<s id="N25D39"><!-- NEW -->Octau&ograve;, quodlibet punctum circuli mobilis BEDF &longs;uo motu de&shy;<lb/>&longs;cribit arcum line&aelig; cordis, vt certum e&longs;t, qui in mille punctis decu&longs;&shy;<lb/>&longs;antur cum linea puncti, quam de&longs;cribit punctum B v.g. <!-- REMOVE S-->linea puncti D <lb/>decu&longs;&longs;atur cum linea puncti B in <expan abbr="q.">que</expan> quippe D q, S q &longs;unt &aelig;quales, linea <lb/>puncti E cum linea puncti B in L; denique de&longs;cribi pote&longs;t h&aelig;c linea <lb/>BKMN &amp;c. </s>
					<s id="N25D4D"><!-- NEW -->ductis radiis ex centro ad libitum &longs;ine vllo diui&longs;ionis <lb/>ordine v.g. <!-- REMOVE S-->ducatur A <foreign lang="greek">d</foreign>; </s>
					<s id="N25D59"><!-- NEW -->L nulla habita diui&longs;ionis ratione; </s>
					<s id="N25D5D"><!-- NEW -->ex L de&longs;cri&shy;<lb/>batur arcus radio L <foreign lang="greek">d</foreign>; </s>
					<s id="N25D67"><!-- NEW -->a&longs;&longs;umantur <foreign lang="greek">d</foreign> I, <foreign lang="greek">d</foreign> B &aelig;quales, per I; </s>
					<s id="N25D73"><!-- NEW -->haud dubi&egrave; <lb/>ducetur linea; idem dico de aliis punctis. </s>
				</p>
				<pb pagenum="352" xlink:href="026/01/386.jpg"/>
				<p id="N25D7D" type="main">
					<s id="N25D7F"><!-- NEW -->Non&ograve;, &longs;i a&longs;&longs;umatur quodlibet punctum intra rotam v.g. <!-- REMOVE S-->punctum <lb/>X perueniet in A eo tempore, quo B erit in M, vt patet; </s>
					<s id="N25D87"><!-- NEW -->hinc moue&shy;<lb/>bitur per lineam motus mixti, qui accedit propi&ugrave;s ad circularem; <lb/>quemadmodum enim cum rota mouetur in plano rectilineo, punctum <lb/>illius, quod accedit propi&ugrave;s ad centrum mouetur eo motu, qui accedit <lb/>propi&ugrave;s ad motum centri, id e&longs;t ad motum rectum. </s>
					<s id="N25D93"><!-- NEW -->Similiter punctum, <lb/>quod accedit propi&ugrave;s ad Q in hac rota mouetur eo motu, qui accedit <lb/>propi&ugrave;s ad motum centri C, id e&longs;t ad motum circularem; igitur hic mo&shy;<lb/>tus puncti X pl&ugrave;s participat de motu centri, qu&agrave;m de motu orbis, qui <lb/>&longs;cilicet in eo minimus e&longs;t. </s>
				</p>
				<p id="N25D9F" type="main">
					<s id="N25DA1"><!-- NEW -->Decim&ograve;, hinc &longs;i motus minoris rot&aelig; radio CX dirigatur &agrave; motu ma&shy;<lb/>ioris radio CB; </s>
					<s id="N25DA7"><!-- NEW -->h&aelig;c quidem ita mouetur vt &longs;ingula puncta BE re&shy;<lb/>&longs;pondeant &longs;ingulis BT, non tamen &longs;ingula XY &longs;ingulis XB; </s>
					<s id="N25DAD"><!-- NEW -->&longs;ed hic <lb/>etiam accer&longs;endi &longs;unt contactus illi inad&aelig;quati extremi pl&ugrave;s, minu&longs;ue, <lb/>de quibus &longs;upr&agrave;; e&longs;t enim pror&longs;us eadem difficultas, quam &longs;upr&agrave; di&longs;cu&longs;&shy;<lb/>&longs;imus &longs;uo titulo rot&aelig; Ari&longs;totelic&aelig;, quam h&icirc;c tant&ugrave;m indica&longs;&longs;e &longs;ufficiat, <lb/>c&ugrave;m ex pr&aelig;dictis principiis omnin&ograve; &longs;oluatur. </s>
				</p>
				<p id="N25DB9" type="main">
					<s id="N25DBB"><!-- NEW -->Vndecim&ograve; &longs;imiliter, &longs;i minor rota motum maioris dirigat; </s>
					<s id="N25DBF"><!-- NEW -->haud du&shy;<lb/>bi&egrave; maioris idem punctum pluribus punctis &longs;uperficiei curu&aelig;, cui in&shy;<lb/>cumbit inad&aelig;quato dumtaxat contactu re&longs;pondebit, eritque diuer&longs;a li&shy;<lb/>nea huius motus, &amp; aliqua puncta retroagentur; </s>
					<s id="N25DC9"><!-- NEW -->quod quomodo fiat, <lb/>iam &longs;upr&agrave; explicuimus; quod ver&ograve; &longs;pectat ad proprietates i&longs;tarum linea&shy;<lb/>rum, in &longs;ingularem tractatum cas remittimus. </s>
				</p>
				<p id="N25DD1" type="main">
					<s id="N25DD3"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 16.<emph.end type="center"/></s>
				</p>
				<p id="N25DDF" type="main">
					<s id="N25DE1"><!-- NEW --><emph type="italics"/>Explicari po&longs;&longs;unt omnia ph&oelig;nomena, qu&aelig; in &longs;uperficie curua circuli <lb/>maioris rotatur<emph.end type="italics"/>; </s>
					<s id="N25DEC"><!-- NEW -->&longs;it enim &longs;uperficies curua BF radius AB, &longs;itque rota <lb/>radio NB, cuius peripheria e&longs;t &aelig;qualis BF; </s>
					<s id="N25DF2"><!-- NEW -->igitur M tanget C, O tan&shy;<lb/>get D, &amp; B tandem tanget F; igitur mouetur h&aelig;c rota motu mixto ex <lb/>duobus circularibus. </s>
				</p>
				<p id="N25DFA" type="main">
					<s id="N25DFC">Prim&ograve;, &longs;ignari po&longs;&longs;unt omnia puncta huius line&aelig; v. <!-- REMOVE S-->g. <!-- REMOVE S-->MIHF <lb/>per qu&aelig; ducenda e&longs;t linea curua, cuius etiam affectiones ali&agrave;s demon&shy;<lb/>&longs;trabimus. </s>
				</p>
				<p id="N25E07" type="main">
					<s id="N25E09"><!-- NEW -->Secund&ograve;, punctum B mouetur initio tardi&longs;&longs;im&egrave;, O veloci&longs;&longs;im&egrave;; </s>
					<s id="N25E0D"><!-- NEW -->ratio&shy;<lb/>nem iam bis attulimus; </s>
					<s id="N25E13"><!-- NEW -->quia &longs;cilicet maior e&longs;t motus, cum motus centri <lb/>conuenit cum motu orbis; minor ver&ograve; &egrave; contrario. </s>
				</p>
				<p id="N25E19" type="main">
					<s id="N25E1B"><!-- NEW -->Terti&ograve;, motus huius rot&aelig; accedit propi&ugrave;s ad motum rot&aelig; in plano <lb/>rectilineo, qu&agrave;m motus rot&aelig; &longs;uperioris; quia BF, qu&aelig; e&longs;t &longs;uperficies ma&shy;<lb/>ioris circuli, accedit propi&ugrave;s ad lineam rectam. </s>
				</p>
				<p id="N25E23" type="main">
					<s id="N25E25"><!-- NEW -->Quart&ograve;, &longs;i &longs;it minor rota radio NR cuius motus dirigatur &agrave; motu <lb/>maioris radio NB, de&longs;cribit lineam, qu&aelig; accedit propi&ugrave;s ad lineam <lb/>rectam RSTVX, &longs;eu poti&ugrave;s ad motum centri, quod mouetur motu <lb/>circulari per arcum NG, &agrave; quo non recedit, vt patet: </s>
					<s id="N25E2F"><!-- NEW -->porr&ograve; minor <lb/>rota percurrit maiorem &longs;uperficiem &longs;ua peripheria, quod etiam expli-<pb pagenum="353" xlink:href="026/01/387.jpg"/>candum e&longs;t per contactus inad&aelig;quatos; tunc enim motus centri long&egrave; <lb/>&longs;uperat motum orbis. </s>
				</p>
				<p id="N25E3C" type="main">
					<s id="N25E3E"><!-- NEW -->Quint&ograve;, &longs;i vera e&longs;&longs;et hypothe&longs;is Copernici, terra moueretur hoc vlti&shy;<lb/>mo motu mixto ex motu centri, &amp; motu orbis; </s>
					<s id="N25E44"><!-- NEW -->vnde omnia puncta <lb/>eiu&longs;dem circuli paralleli mouerentur in&aelig;quali motui tardi&longs;&longs;imo qui&shy;<lb/>dem punctum contactus hoc e&longs;t meridiano re&longs;pondens, veloci&longs;&longs;imo ve&shy;<lb/>r&ograve; ip&longs;i oppo&longs;itum, &longs;cilicet de media nocte: porr&ograve; in hoc motu motus <lb/>centri e&longs;&longs;et fer&egrave; maior motu orbis iuxta communem de diametro ma&shy;<lb/>gni orbis &longs;ententiam. </s>
				</p>
				<p id="N25E52" type="main">
					<s id="N25E54">Sext&ograve;, &longs;i motus maioris rot&aelig; dirigatur &agrave; minore res eodem modo <lb/>explicanda e&longs;t, quo explicuimus illam per <expan abbr="c&otilde;tactus">contactus</expan> diuer&longs;os inad&aelig;quatos <lb/>t&ugrave;m Th. 15. num. </s>
					<s id="N25E5F"><!-- NEW -->11. t&ugrave;m in digre&longs;&longs;ione multis locis: </s>
					<s id="N25E63"><!-- NEW -->porr&ograve; po&longs;&longs;unt e&longs;&longs;e <lb/>diuer&longs;&aelig; proportiones circuli mobilis, &amp; immobilis; qui &longs;i maximus e&longs;t, <lb/>minimus illius arcus accipi pote&longs;t pro linea recta. </s>
				</p>
				<p id="N25E6B" type="main">
					<s id="N25E6D"><!-- NEW -->Septim&ograve;, pote&longs;t ita rota moueri, vt pars &longs;uperior retr&ograve; agatur, id e&longs;t, <lb/>vt motus orbis &longs;it oppo&longs;itus motui <expan abbr="c&eacute;tri">centri</expan> v.g.&longs;i punctum N moueatur qui&shy;<lb/>dem dextror&longs;um motu centri, O ver&ograve; &longs;ini&longs;tror&longs;um motu orbis; </s>
					<s id="N25E75"><!-- NEW -->&longs;ed tunc <lb/>punctum B mouebitur dextror&longs;um motu orbis, &longs;ed e&longs;t noua difficultas: </s>
					<s id="N25E7B"><!-- NEW --><lb/>quippe ex hac hypothe&longs;i punctum O de&longs;criberet &longs;uo motu lineam &longs;imi&shy;<lb/>lem, &amp; &aelig;qualem line&aelig; rotatili BMIHF; punctum ver&ograve; B moueretur <lb/>iuxta hanc hypothe&longs;in eo modo, quo mouetur punctum O iuxta prio&shy;<lb/>rem. </s>
					<s id="N25E86"><!-- NEW -->Sic autem moueri dicuntur quidam Epicycli ab A&longs;tronomis, quo&shy;<lb/>rum centrum mouetur in con&longs;equentia, hoc e&longs;t &longs;ecundum &longs;eriem <lb/>&longs;ignorum; </s>
					<s id="N25E8E"><!-- NEW -->&longs;ummum ver&ograve; punctum, &longs;eu &longs;tella apog&aelig;a retr&ograve; agitur, &longs;eu <lb/>in partem aduer&longs;am contendit, vel vt vocant, in pr&aelig;cedentia: </s>
					<s id="N25E94"><!-- NEW -->tales <lb/>vulg&ograve; ponuntur Solis Epicycli &amp; Lun&aelig;; vnde obiter colligo, qu&agrave;m &longs;it <lb/>nece&longs;&longs;aria A&longs;tronomis h&aelig;c de motu mixto &longs;ententia, vt &longs;ua ph&oelig;nome&shy;<lb/>na ad &longs;uas cau&longs;as phy&longs;icas reducant. </s>
				</p>
				<p id="N25E9E" type="main">
					<s id="N25EA0">Octau&ograve; denique, po&longs;&longs;unt e&longs;&longs;e diuer&longs;&aelig; line&aelig; huius motus pro diuer&longs;a <lb/>circulorum proportione, quarum figuras, de&longs;criptiones, affectiones &longs;uo <lb/>loco demon&longs;trabimus, &amp; nouos latices tum Geometris, t&ugrave;m Phy&longs;icis <lb/>aperiemus, ex quibus vbertim fluit infinitarum fer&egrave; demon&longs;trationum <lb/>materia. </s>
				</p>
				<p id="N25EAD" type="main">
					<s id="N25EAF"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 17.<emph.end type="center"/></s>
				</p>
				<p id="N25EBB" type="main">
					<s id="N25EBD"><!-- NEW --><emph type="italics"/>Explicari po&longs;&longs;unt cuncta ph&oelig;nomena rot&aelig; maioris mobilis circa minore&mtail; <lb/>immobilem<emph.end type="italics"/>; &longs;it enim rota minor centro A, cui incubet maior rota cen&shy;<lb/>tro K, radio KB duplo BA, roteturque circa &longs;uperficiem BDFTH <lb/>punctum 5 re&longs;pondebit F &amp; Q po&longs;t decur&longs;am &longs;uperficiem puncto B, <lb/>eritque motus mixtus. </s>
				</p>
				<p id="N25ECE" type="main">
					<s id="N25ED0"><!-- NEW -->Prim&ograve;, centrum K mouebitur motu circulari, quia &longs;emper &aelig;qualiter <lb/>di&longs;tat &agrave; puncto A; igitur de&longs;cribit circulum, cuius radius e&longs;t KA. </s>
				</p>
				<p id="N25ED6" type="main">
					<s id="N25ED8"><!-- NEW -->Secund&ograve;, pote&longs;t facil&egrave; de&longs;cribi linea motus puncti B v.g. <!-- REMOVE S-->diuidatur <lb/>enim BDFH in 8 arcus &aelig;quales, &amp; B5 in 4; t&ugrave;m per puncta <pb pagenum="354" xlink:href="026/01/388.jpg"/>CDE &amp;c. </s>
					<s id="N25EE5"><!-- NEW -->de&longs;cribantur circuli radio KB; </s>
					<s id="N25EE9"><!-- NEW -->&amp; a&longs;&longs;umatur CR &aelig;qualis <lb/>B 2; t&ugrave;m DL &aelig;qualis B 3, t&ugrave;m EM &aelig;qualis B 4, t&ugrave;m FN &aelig;qualis B 5, <lb/>atque ita deinceps, vt per puncta &longs;ignata de&longs;cribatur linea curua <lb/>BRLMNOPRQ, h&aelig;c e&longs;t linea huius motus. </s>
				</p>
				<p id="N25EF3" type="main">
					<s id="N25EF5"><!-- NEW -->Terti&ograve;, omnia puncta mouentur in&aelig;qualiter, B quidem tardi&longs;&longs;im&egrave;, <lb/>Q veloci&longs;&longs;im&egrave;; </s>
					<s id="N25EFB"><!-- NEW -->nam eo tempore, qu&ograve; B conficit BR, modicum illud <lb/>&longs;patium IQ decuerit QS, cuius proportio ex analy&longs;i cogno&longs;ci pote&longs;t; </s>
					<s id="N25F01"><!-- NEW --><lb/>idem dico de motu aliorum punctorum; e&longs;t etiam eadem ratio huius <lb/>in&aelig;qualitatis, de qua &longs;upr&acirc;, cuius omnes proportiones a&longs;&longs;ignari po&longs;&shy;<lb/>&longs;unt. </s>
				</p>
				<p id="N25F0A" type="main">
					<s id="N25F0C"><!-- NEW -->Quart&ograve; ob&longs;erua, figuram huius line&aelig;, qu&aelig; accedere videtur ad &longs;pi&shy;<lb/>ralem: pr&aelig;terea linea puncti B, &longs;cilicet BRLMNOPRQ, &longs;ecat li&shy;<lb/>neam puncti Q in 8 mirabili implicatione, cuius interior portio exhibet <lb/>&longs;ectionem cordis &longs;cilicet BRLMN 8 XY <foreign lang="greek">d</foreign> B. </s>
				</p>
				<p id="N25F1A" type="main">
					<s id="N25F1C"><!-- NEW -->Quint&ograve;, deinde pro diuer&longs;a proportione rotarum maioris, &longs;cilicet &amp; <lb/>minoris rot&aelig;, &longs;unt diuer&longs;&aelig; line&aelig;, &amp; motus mixti diuer&longs;i; imm&ograve; po&longs;&longs;et <lb/>rota immobilis, circa quam alia rotatur, tam parua e&longs;&longs;e, vt linea tant&ugrave;m <lb/>po&longs;t multas gyrationes perfici po&longs;&longs;et. </s>
				</p>
				<p id="N25F26" type="main">
					<s id="N25F28"><!-- NEW -->Sext&ograve;, po&longs;&longs;unt etiam determinari line&aelig; aliorum punctorum intra <lb/>rotam mobilem v, g.puncti T; </s>
					<s id="N25F2E"><!-- NEW -->quod vt fiat, &longs;emper e&longs;t a&longs;&longs;umendus ra&shy;<lb/>dius KB, qui &longs;cilicet, dum K e&longs;t in <foreign lang="greek">m</foreign>, incubat <foreign lang="greek">m</foreign> R, dum e&longs;t in M incubat <lb/>ML, dum e&longs;t in <foreign lang="greek">q</foreign> re&longs;pondet <foreign lang="greek">q</foreign> M; </s>
					<s id="N25F46"><!-- NEW -->denique dum e&longs;t in 9 re&longs;pondet <lb/>9 N; itaque a&longs;&longs;umantur <foreign lang="greek">m</foreign> 3, M <foreign lang="greek">w, q</foreign> 7, 9 <foreign lang="greek">b</foreign> &aelig;quales K, &amp; ducatur per <lb/>&longs;ignata puncta linea curua T3 <foreign lang="greek">p</foreign> 7 <foreign lang="greek">b</foreign>, h&aelig;c e&longs;t linea motus mixti pun&shy;<lb/>cti T. </s>
				</p>
				<p id="N25F64" type="main">
					<s id="N25F66"><!-- NEW -->Septim&ograve;, quando motus minoris rot&aelig; radio KT dirigitur &agrave; motu <lb/>maioris radio KB, rotatur illa in &longs;uperficie circuli radio AT, &longs;ed ita <lb/>quadratus TV qua&longs;i repat per contactus inad&aelig;quatos in &longs;emicirculo <lb/>T 11 10; </s>
					<s id="N25F70"><!-- NEW -->porr&ograve; in hoc ca&longs;u maxima e&longs;&longs;et difficultas rot&aelig; Ari&longs;totelic&aelig;; <lb/>denique, quando maior dirigitur &agrave; minori, quadrans B5 qua&longs;i contra&shy;<lb/>hitur in arcu minore BC, qu&aelig; contractio explicatur per contractus in&shy;<lb/>ad&aelig;quatos, vt iam &longs;&aelig;p&egrave; diximus in aliis motibus. </s>
				</p>
				<p id="N25F7A" type="main">
					<s id="N25F7C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 18.<emph.end type="center"/></s>
				</p>
				<p id="N25F88" type="main">
					<s id="N25F8A"><!-- NEW --><emph type="italics"/>Explicari po&longs;&longs;unt omnia ph&oelig;nomena rot&aelig; mobilis in &longs;uperficie concaua <lb/>maioris circuli<emph.end type="italics"/>; dixi maioris circuli; </s>
					<s id="N25F95"><!-- NEW -->quia in &longs;uperficie concaua mi&shy;<lb/>noris, vel &aelig;qualis moueri non pote&longs;t, vt con&longs;tat; </s>
					<s id="N25F9B"><!-- NEW -->&longs;it ergo fig.4. rota <lb/>mobilis radio PC; </s>
					<s id="N25FA1"><!-- NEW -->&longs;it &longs;uperficies concaua circuli dupli prioris in <lb/>peripheria CGK; </s>
					<s id="N25FA7"><!-- NEW -->diuidatur CGK in 8 arcus &aelig;quales; haud <lb/>dubi&egrave; tota &longs;uperficies rot&aelig; mobilis &longs;ucce&longs;&longs;iu&egrave; percurret totam <lb/>&longs;uperficiem concauam CGK, c&ugrave;m illa &longs;it huic &aelig;qualis, hoc po&shy;<lb/>&longs;ito. </s>
				</p>
				<p id="N25FB1" type="main">
					<s id="N25FB3"><!-- NEW -->Prim&ograve;, punctum C percurret rectam CAK, nec vnquam ab <lb/>ea di&longs;cedet, &amp; centrum P percurret &longs;emicirculum PQN; </s>
					<s id="N25FB9"><!-- NEW -->quippe <pb pagenum="355" xlink:href="026/01/389.jpg"/>&longs;emper &aelig;qualem &longs;eruabit di&longs;tantiam &agrave; &longs;uperficie concaua CGK; </s>
					<s id="N25FC2"><!-- NEW -->&longs;ed illa <lb/>e&longs;t PC; </s>
					<s id="N25FC8"><!-- NEW -->igitur &longs;emper di&longs;tabit &aelig;qualiter &agrave; centro A; igitur de&longs;cribit &longs;e&shy;<lb/>micirculum PQN. </s>
				</p>
				<p id="N25FCE" type="main">
					<s id="N25FD0"><!-- NEW -->Secund&ograve;, quod &longs;pectat ad primum; </s>
					<s id="N25FD4"><!-- NEW -->cert&egrave; punctum A rot&aelig; mobilis <lb/>tanget ip&longs;um G; </s>
					<s id="N25FDA"><!-- NEW -->e&longs;t enim quadrans CG &aelig;qualis &longs;emicirculo CA, &longs;ed <lb/>cum A tanget G, C erit in A; </s>
					<s id="N25FE0"><!-- NEW -->denique C tanget K; </s>
					<s id="N25FE4"><!-- NEW -->igitur C percurret <lb/>rectam CAK; </s>
					<s id="N25FEA"><!-- NEW -->porr&ograve; facil&egrave; o&longs;tendetur punctum C moueri per alia pun&shy;<lb/>cta v.g.per punctum T; </s>
					<s id="N25FF0"><!-- NEW -->nam punctum 9.tanget E; </s>
					<s id="N25FF4"><!-- NEW -->igitur TY e&longs;t tangens <lb/>igitur AY &amp; YE; </s>
					<s id="N25FFA"><!-- NEW -->igitur ET, TA &longs;unt &aelig;quales, vt con&longs;tat; igitur C duce&shy;<lb/>tur per. </s>
					<s id="N26000">T; </s>
					<s id="N26003"><!-- NEW -->pr&aelig;terea C 4. DV &longs;unt arcus &aelig;quales, quia angulus CAD e&longs;t <lb/>&longs;ubduplus CP 4. vel YTD, vt con&longs;tat; </s>
					<s id="N26009"><!-- NEW -->igitur arcus DV e&longs;t &aelig;qualis C 4. <lb/>igitur C ducitur per V: idem o&longs;tendetur pro aliis punctis. </s>
				</p>
				<p id="N2600F" type="main">
					<s id="N26011">Terti&ograve;, hinc pote&longs;t determinari longitudo di&longs;tantiarum CV, VT, &amp;c. </s>
					<s id="N26014"><!-- NEW --><lb/>nam AE e&longs;t chorda arcus 135. id e&longs;t, e&longs;t dupla &longs;inus grad. <!-- REMOVE S-->67. 1/2 AT e&longs;t <lb/>chorda arcus 90. id e&longs;t latus quadrati in&longs;cripti: denique RA e&longs;t chorda <lb/>arcus 45. id e&longs;t dupla &longs;inus 22. 1/2 hinc vides qu&agrave;m acurat&egrave; recta AC &longs;e&shy;<lb/>cet omnes arcus DV, ET, &amp;c.ita vt &longs;int &aelig;quales aliis arcubus maioris cir&shy;<lb/>culi, &longs;cilicet DC, DV, EC, ET, PR, PC, &amp;c. </s>
				</p>
				<p id="N26023" type="main">
					<s id="N26025">Quart&ograve;, hinc vides punctum C initio tardi&longs;&longs;im&egrave; moueri, &amp; continu&egrave; <lb/>&longs;uum motum accelerare, donec perueniat in A, quem ab A in K retar&shy;<lb/>dat in eadem proportione, in qua AC in A accelerat, CV e&longs;t fer&egrave; &longs;ubtri&shy;<lb/>pla VT, &longs;cilicet 15224. ad 43354.TR e&longs;t ad CT vt 64886.ad 58578. vt <lb/>con&longs;tat ex tabulis &longs;inuum. </s>
				</p>
				<p id="N26030" type="main">
					<s id="N26032"><!-- NEW -->Quint&ograve;, non mod&ograve; punctum C rot&aelig; mobilis mouetur motu recto, <lb/>ver&ugrave;m etiam alia puncta circumferenti&aelig; eiu&longs;dem rot&aelig;; </s>
					<s id="N26038"><!-- NEW -->e&longs;t enim par om&shy;<lb/>nium ratio v.g. <!-- REMOVE S-->punctum 2. mouetur per rectam 3.A punctum 4.per re&shy;<lb/>ctam DA. punctum 9.per rectam EA; quod cert&egrave; mirabile videtur, &amp; <lb/>primo intuitu vix credi po&longs;&longs;et. </s>
				</p>
				<p id="N26044" type="main">
					<s id="N26046"><!-- NEW -->Sext&ograve;, &longs;i a&longs;&longs;umatur aliud punctum intra rotam de&longs;cribi poterit facil&egrave; <lb/>linea illius motus; </s>
					<s id="N2604C"><!-- NEW -->&longs;it v.g. <!-- REMOVE S-->punctum 6. ducantur rect&aelig; TYYTZR; nam <lb/>radius PR migrat in TV, YTZRQA, &longs;umantur TV, YT, Z<foreign lang="greek">d</foreign>, QX &aelig;&shy;<lb/>quales P6.&amp; per &longs;ignata puncta de&longs;cribatur curua 6. T<foreign lang="greek">d</foreign>X, h&aelig;c e&longs;t linea <lb/>motus puncti 6. cuius motus initio e&longs;t tardior, &longs;ub finem velocior. </s>
				</p>
				<p id="N26060" type="main">
					<s id="N26062"><!-- NEW -->Septim&ograve;, hinc pote&longs;t dirigi motus minoris &agrave; motu maioris, &amp; vici&longs;&longs;im, <lb/>quod explicandum e&longs;t eodem pror&longs;us modo, quo iam &longs;&aelig;p&egrave; explicatum <lb/>e&longs;t per diuer&longs;os &longs;cilicet contactus inad&aelig;quatos, pro quo tant&ugrave;m ob&longs;erua, <lb/>&longs;i minor dirigatur &agrave; maiore, puncta minoris dextror&longs;um mouentur <lb/>t&ugrave;m &longs;ini&longs;trorum; contra ver&ograve; &longs;i maior dirigatur &agrave; minore, puncta maio&shy;<lb/>ris mouentur &longs;ini&longs;tror&longs;um, t&ugrave;m dextror&longs;um, qu&aelig; omnia ex dictis facil&egrave; <lb/>intelligi po&longs;&longs;unt, &amp; explicari. </s>
				</p>
				<p id="N26072" type="main">
					<s id="N26074"><!-- NEW -->Octau&ograve;, pr&aelig;terea puncta radij RC a&longs;&longs;umpta, qu&aelig; propi&ugrave;s ad extre&shy;<lb/>mitatem C accedunt, de&longs;cribunt lineam, qu&aelig; propi&ugrave;s accedit ad rectam; </s>
					<s id="N2607A"><!-- NEW --><lb/>qu&aelig; ver&ograve; accedunt propi&ugrave;s ad centrum P, de&longs;cribunt lineam magis cur&shy;<lb/>uam; </s>
					<s id="N26081"><!-- NEW -->idem de punctis in radio PA; </s>
					<s id="N26085"><!-- NEW -->nam e&longs;t eadem ratio, qu&aelig; omnia ex <lb/>dictis con&longs;tant; </s>
					<s id="N2608B"><!-- NEW -->an fort&egrave; c&ugrave;m punctum C de&longs;cribat rectam, punctum P <pb pagenum="356" xlink:href="026/01/390.jpg"/>circulum, &amp; qu&aelig; propi&ugrave;s accedunt ad C min&ugrave;s curuam, qu&aelig; propi&ugrave;s <lb/>ad P magis curuam; &longs;ed tractatu &longs;equenti omnes i&longs;tas lineas explica&shy;<lb/>bimus. </s>
				</p>
				<p id="N26098" type="main">
					<s id="N2609A"><!-- NEW -->Non&ograve;, &longs;i &longs;uperficies &longs;it minoris circuli qu&agrave;m dupli; </s>
					<s id="N2609E"><!-- NEW -->cert&egrave; punctum C, <lb/>v.g. <!-- REMOVE S-->non de&longs;cribet rectum CK, &longs;ed aliam curuam &longs;ini&longs;tror&longs;um; &longs;i ver&ograve; <lb/>&longs;it maioris circuli qu&agrave;m dupli, de&longs;cribet aliam curuam dextror&longs;um, qu&aelig; <lb/>omnia con&longs;tant ex dictis. </s>
				</p>
				<p id="N260AA" type="main">
					<s id="N260AC"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N260B8" type="main">
					<s id="N260BA"><!-- NEW -->Non videntur omittenda aliqua Corollaria Cyclom&egrave;trica, qu&aelig; ex di&shy;<lb/>ctis &longs;ua &longs;ponte na&longs;ci videntur; </s>
					<s id="N260C0"><!-- NEW -->nam prim&ograve; &longs;emicirculus AQG e&longs;t &aelig;qua&shy;<lb/>lis triangulo mixto ex arcubus GC, &amp; GA, &amp; recta AC; quia quadrans <lb/>AGC e&longs;t &aelig;qualis circulo A9.CB, vt patet. </s>
				</p>
				<p id="N260C8" type="main">
					<s id="N260CA"><!-- NEW -->Secund&ograve;, omnes radij eodem modo &longs;ecantur &agrave; circulo v.g. <!-- REMOVE S-->AC, AD. <lb/>AE: &longs;unt enim CVE <foreign lang="greek">w</foreign>, D4.&aelig;quales, item C 3. T, VE9. &amp;c. </s>
				</p>
				<p id="N260D6" type="main">
					<s id="N260D8">Terti&ograve;, omnes arcus intercepti inter radios &longs;unt &aelig;quales v.g. <!-- REMOVE S-->DY, C 4. <lb/>T4. E4. GF, F9.9 <foreign lang="greek">d. </foreign><!-- KEEP S--></s>
					<s id="N260E3">&amp;c. </s>
				</p>
				<p id="N260E6" type="main">
					<s id="N260E8"><!-- NEW -->Quart&ograve;, pr&aelig;terea arcus &agrave; puncto contactus maioris, &amp; dupli circuli <lb/>v&longs;que ad quemlibet radium &longs;unt &aelig;quales, v.g. <!-- REMOVE S-->G9, A &amp; GC, G9. <foreign lang="greek">d</foreign> GD, <lb/>G9. &amp; GE, GF, &amp; GC, t&ugrave;m FR, &amp; FC, F <foreign lang="greek">b</foreign>, &amp; FD, F <foreign lang="greek">w</foreign> &amp; FE, t&ugrave;m ET, <lb/>&amp; EC, E 4. &amp; ED; denique DV, DC. <!-- KEEP S--></s>
				</p>
				<p id="N26101" type="main">
					<s id="N26103"><!-- NEW -->Quint&ograve;, triangula illa mixta ex duplici arcu &aelig;quali maioris, &amp; minoris <lb/>circuli, &amp; altero latere recto, &longs;unt &aelig;qualia &longs;ectionibus minoribus circuli, <lb/>quarum arcus &aelig;quales &longs;unt prioribus minoris circuli, &longs;ic triangulum <lb/>mixtum ex arcubus GC, G9. A, &amp; recta AE e&longs;t &aelig;quale &longs;emicirculo G9. <lb/>A; </s>
					<s id="N2610F"><!-- NEW -->mixtun ver&ograve; ex arcubus FC, FR, &amp; recta RC, e&longs;t &aelig;quale &longs;ectioni VA <lb/>vel E9. A, mixtum ex arcubus ET, EC &amp; recta, &aelig;quale e&longs;t &longs;ectioni TA <lb/>vel 9. <foreign lang="greek">d</foreign> A; denique mixtum ex arcu DC, DV, &amp; recta CV e&longs;t &aelig;quale <lb/>&longs;ectioni RA. </s>
				</p>
				<p id="N2611D" type="main">
					<s id="N2611F"><!-- NEW -->Sext&ograve; &longs;ubtracto ex pr&aelig;dictis triangulis alio triangulo mixto per da&shy;<lb/>tum radium quemcumque, &longs;ubtrahitur portio &aelig;qualis ex &longs;emicirculo <lb/>minore, &amp; re&longs;iduum &aelig;quale e&longs;t re&longs;iduo v.g.ex triangulo mixto G9. AC <lb/>G ducto radio AF, detrahitur triangulum mixtum GF <foreign lang="greek">r</foreign>, ex &longs;emicir&shy;<lb/>culo A9. C, detrahitur portio &aelig;qualis 7. A; </s>
					<s id="N2612F"><!-- NEW -->igitur re&longs;iduum &longs;emicirculi <lb/>e&longs;t &aelig;quale re&longs;iduo trianguli mixti; </s>
					<s id="N26135"><!-- NEW -->deinde ducto radio AC detrahitur <lb/>triangulo mixto pr&aelig;dicto aliud mixtum minus GE9. ex &longs;emicirculo A <lb/>9. C detrahitur portio A9. &aelig;qualis detracto; igitur Trapezus re&longs;iduus, E <lb/>9. A 7. E, e&longs;t &aelig;qualis triangulo mixto CA9. C. idem dico de aliis. </s>
				</p>
				<p id="N2613F" type="main">
					<s id="N26141"><!-- NEW -->Septim&ograve;, c&ugrave;m &longs;ector AFG &longs;it &aelig;qualis quadranti AP9. &longs;ectio ACZ, <lb/>e&longs;t maior quadrante pr&aelig;dicto triangulo mixto GCF vel &longs;ectiore 7. A; </s>
					<s id="N26147"><!-- NEW --><lb/>atqui &longs;ectio ACZ habet arcum 135. &amp; A 7. arcum 90. igitur &longs;ectio ar&shy;<lb/>cus 135. e&longs;t &aelig;qualis quadranti plus &longs;ectione arcus; </s>
					<s id="N2614E"><!-- NEW -->igitur triangulum A <lb/>7.4.A e&longs;t &aelig;quale quadranti; triangulum ver&ograve; mixtum GCA e&longs;t &aelig;quale <lb/>quadranti, min&ugrave;s pr&aelig;dicta &longs;ectione arcus 90. </s>
				</p>
				<p id="N26156" type="main">
					<s id="N26158"><!-- NEW -->Octau&ograve;, hinc triangulum mixtum ex arcubus A 7.9. GG &amp; recta AG <pb pagenum="357" xlink:href="026/01/391.jpg"/>e&longs;t &aelig;quale quadrato radij AQ; idem dico de mixto ex arcubus AT9. 9. <lb/>C, &amp; recta AC; </s>
					<s id="N26167"><!-- NEW -->hinc vtrumque &longs;imul &longs;umptum detracta &longs;cilicet duplici <lb/>portione A 7.9. TA e&longs;t &aelig;quale quadrato in&longs;cripto, &amp; duplex illa &longs;ectio <lb/>figura ouali e&longs;t &aelig;qualis triangulo mixto ex tribus arcubus G9. 9. C, C <lb/>G; quod facil&egrave; geometric&egrave; demon&longs;tratur; </s>
					<s id="N26171"><!-- NEW -->&longs;it enim circulus centro B; </s>
					<s id="N26175"><!-- NEW --><lb/>&longs;int du&aelig; diametri, GE, AC, quibus in 4. quadrantes diuidatur circulus; </s>
					<s id="N2617A"><!-- NEW --><lb/>t&ugrave;m a&longs;&longs;umatur arcus GF, &aelig;qualis FC, &amp; CD; </s>
					<s id="N2617F"><!-- NEW --><expan abbr="duc&atilde;tur">ducantur</expan> rect&aelig; AD, AF, GF, <lb/>IF: </s>
					<s id="N26188"><!-- NEW -->dico triangulum mixtum ex rectis AF, FG, &amp; arcu GA, e&longs;&longs;e &aelig;quale <lb/>quadranti, quod demon&longs;tro; </s>
					<s id="N2618E"><!-- NEW -->triangula KAL, KFG &longs;unt &aelig;quiangula, quia <lb/>anguli K vtrinque &longs;unt &aelig;quales: </s>
					<s id="N26194"><!-- NEW -->&longs;ed DAF, &amp; AFG, &longs;u&longs;tinent &aelig;quales ar&shy;<lb/>cus; </s>
					<s id="N2619A"><!-- NEW -->igitur &longs;unt &aelig;quales; </s>
					<s id="N2619E"><!-- NEW -->igitur &longs;unt proportionalia; igitur vt quadr. </s>
					<s id="N261A2">BA ad <lb/>quadr. </s>
					<s id="N261A7">IF: &longs;ed quadr. </s>
					<s id="N261AA">BF e&longs;t duplum quadr. </s>
					<s id="N261AD">IF; </s>
					<s id="N261B0"><!-- NEW -->igitur &amp; BA e&longs;t duplum; </s>
					<s id="N261B4"><!-- NEW --><lb/>igitur KAL duplum KFG; </s>
					<s id="N261B9"><!-- NEW -->igitur BAK &aelig;quale; </s>
					<s id="N261BD"><!-- NEW -->igitur tantum additur, <lb/>quantum tollitur; igitur pr&aelig;dictum triangulum e&longs;t &aelig;quale quadranti. </s>
				</p>
				<p id="N261C3" type="main">
					<s id="N261C5"><!-- NEW -->Non&ograve; pr&aelig;terea, Trapezus FC9. AEF e&longs;t &aelig;qualis triangulo mixto ex <lb/>arcubus ABC, TAR, &amp; recta RC; </s>
					<s id="N261CB"><!-- NEW -->Trapezus ver&ograve; E9. TA, CE &aelig;qualis <lb/>mixto triangulo ex arcubus ABCAT, &amp; recta TC; </s>
					<s id="N261D1"><!-- NEW -->Trapezus ver&ograve; D<foreign lang="greek">m</foreign>A <lb/>CD e&longs;t &aelig;qualis mixto ex arcubus ABC, AV, &amp; recta VC; </s>
					<s id="N261DB"><!-- NEW -->hinc lulu&shy;<lb/>la DCBAVD e&longs;t &aelig;qualis &longs;ectori ACD; </s>
					<s id="N261E1"><!-- NEW -->igitur quadranti P9. C: </s>
					<s id="N261E5"><!-- NEW -->hinc <lb/>altera lulula AT 4. ECBA e&longs;t dupla prioris; </s>
					<s id="N261EB"><!-- NEW -->igitur &aelig;qualis &longs;emicircu&shy;<lb/>lo AC, vel &longs;ectori AEC: hinc tota figura ex AC, CE, &amp; recto CA, e&longs;t <lb/>&aelig;qualis circulo A9. CB. <!-- KEEP S--></s>
				</p>
				<p id="N261F4" type="main">
					<s id="N261F6"><!-- NEW -->Decim&ograve;, Trapezus E <foreign lang="greek">w b</foreign> RCE e&longs;t &aelig;qualis quadranti P9. C: </s>
					<s id="N261FE"><!-- NEW -->hinc &longs;i <lb/>detrahatur ex pr&aelig;dicto Trapezo triangulum mixtum E 4. TCE, illa <lb/>figura E <foreign lang="greek">w b</foreign> RT 4. E e&longs;t &aelig;qualis triangulo rectilineo AP9. &longs;imiliter <lb/>ali&aelig; figur&aelig; T 4. DVT, R <foreign lang="greek">b</foreign> 4. TRA <foreign lang="greek">m b</foreign> RA, A <foreign lang="greek">m</foreign> 9. <foreign lang="greek">r</foreign> F <foreign lang="greek">w</foreign> RA; item 9. <lb/><foreign lang="greek">r</foreign> F <foreign lang="greek">p r</foreign>, &amp;c. </s>
				</p>
				<p id="N26229" type="main">
					<s id="N2622B"><!-- NEW -->Vndecim&ograve;, &longs;ector ACE diuiditur in duas partes &aelig;quales ab arcu R <lb/><foreign lang="greek">w</foreign>; </s>
					<s id="N26234"><!-- NEW -->item &longs;ector ADF ab arcu <foreign lang="greek">m r</foreign>; </s>
					<s id="N2623C"><!-- NEW -->item totus quadrans AGC ab arcu A <lb/>9. G; </s>
					<s id="N26242"><!-- NEW -->denique illa figura E <foreign lang="greek">w</foreign> RTE e&longs;t &aelig;qualis Trapezo D <foreign lang="greek">b</foreign> RVD; </s>
					<s id="N2624E"><!-- NEW -->igi&shy;<lb/>tur Trapezus &aelig;qualis rectilineo A9.P, itemque Trapezus T9.ECT <lb/>&aelig;qualis quadranti P9. C; </s>
					<s id="N26256"><!-- NEW -->igitur Trapezo E <foreign lang="greek">p</foreign> RCE; </s>
					<s id="N2625E"><!-- NEW -->igitur triangulum <lb/>mixtum <foreign lang="greek">b</foreign> 9. <foreign lang="greek">w b</foreign> &aelig;quale mixto T <foreign lang="greek">b</foreign> R; </s>
					<s id="N26270"><!-- NEW -->&longs;ed de his &longs;atis, qu&aelig; tant&ugrave;m indi&shy;<lb/>ca&longs;&longs;e &longs;ufficiat; omitto enim infinita alia, de quibus in Cyclometria. </s>
				</p>
				<p id="N26276" type="main">
					<s id="N26278"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 19.<emph.end type="center"/></s>
				</p>
				<p id="N26284" type="main">
					<s id="N26286"><emph type="italics"/>Si ita moueatur cylindrus per quamcunque lineam, vt eius axis moueatur <lb/>motu recto, totu&longs;que cylindrus circa axem motu circulari moueatur, motus <lb/>mixtus e&longs;t, cuius diuer&longs;a &longs;unt ph&oelig;nomena.<emph.end type="italics"/></s>
				</p>
				<p id="N26291" type="main">
					<s id="N26293"><!-- NEW -->Prim&ograve;, axis mouetur tant&ugrave;m motu recto; </s>
					<s id="N26297"><!-- NEW -->ali&aelig; ver&ograve; partes motu mixto <lb/> &longs;it enim cylindrus CH, cuius axis &longs;it AB, circa quem moueatur cylin&shy;<lb/>drus motu circulari, &amp; qui per <expan abbr="e&atilde;dem">eandem</expan> lineam AB indefinit&egrave; produ&shy;<lb/>ctam mouetur; cert&egrave; punctum C, v.g. <!-- REMOVE S-->mouetur motu mixto ex motu cen&shy;<lb/>tri A, vel axis AB, &amp; motus orbis. </s>
				</p>
				<p id="N262A9" type="main">
					<s id="N262AB"><!-- NEW -->Secund&ograve;, punctum C mouetur motu &longs;pir&aelig;; nam &longs;i tant&ugrave;m motu orbis <pb pagenum="358" xlink:href="026/01/392.jpg"/>moueretur, decur&longs;o &longs;emicirculo peruenire in L, F, N, &amp;c. </s>
					<s id="N262B4"><!-- NEW -->igitur &longs;i eo <lb/>tempore, quo C decurrit motu centri, &longs;emicirculum CD; </s>
					<s id="N262BA"><!-- NEW -->punctum axis <lb/>A decurrit AK; </s>
					<s id="N262C0"><!-- NEW -->haud dubi&egrave; punctum C erit in E, t&ugrave;m in F, t&ugrave;m in G, t&ugrave;m <lb/>in T; &longs;ed hic motus &longs;piralis e&longs;t, vt con&longs;tat. </s>
				</p>
				<p id="N262C6" type="main">
					<s id="N262C8"><!-- NEW -->Terti&ograve;, omnia puncta peripheri&aelig; CD mouentur &aelig;quali motu; quia <lb/>&longs;cilicet &aelig;qualem motum centri, &amp; orbis participant. </s>
				</p>
				<p id="N262CE" type="main">
					<s id="N262D0"><!-- NEW -->Quart&ograve;, &longs;i motus centri vel axis &longs;it minor, frequentiores &longs;unt Helices <lb/>v.g. <!-- REMOVE S-->&longs;i eo tempore, quo C decurrit &longs;emicirculum CD, A decurreret tan&shy;<lb/>t&ugrave;m AR, C perueniret tant&ugrave;m in Q, mox in I, atque ita deinceps moue&shy;<lb/>retur per frequentiores &longs;piras; &longs;i ver&ograve; motus axis &longs;it maior, &longs;pir&aelig; erunt <lb/>rariores, vt patet, v.g. <!-- REMOVE S-->&longs;i eo tempore, quo C motu centri decurrit &longs;emi&shy;<lb/>circulum CD, punctum A decurrit AL, punctum C decurret &longs;piram C <lb/>M, mox MT, &amp;c. </s>
				</p>
				<p id="N262E4" type="main">
					<s id="N262E6"><!-- NEW -->Quint&ograve;, are&aelig; circuli CAD mouebuntur motu &longs;pirali, excepto centro <lb/>A, minores tamen &longs;piras conficeret, &longs;cilicet circa cylindrum cuius minor <lb/>e&longs;t ba&longs;is, vt patet; </s>
					<s id="N262EE"><!-- NEW -->vnde minore motu mouentur, qu&agrave;m C vel D; </s>
					<s id="N262F2"><!-- NEW -->igitur <lb/>axis AB tardi&longs;&longs;imo motu mouentur; </s>
					<s id="N262F8"><!-- NEW -->partes ver&ograve; &longs;uperficiei cylindri <lb/>veloci&longs;&longs;im&egrave;; aliarum ver&ograve; partium, qu&aelig; accedunt propi&ugrave;s ad periph&aelig;&shy;<lb/>riam, veloci&ugrave;s. </s>
					<s id="N26300"><!-- NEW -->qu&aelig; propi&ugrave;s ad centrum, tardi&ugrave;s: </s>
					<s id="N26304"><!-- NEW -->hoc motu mouentur al&aelig; <lb/>auium; </s>
					<s id="N2630A"><!-- NEW -->qu&aelig; directo volatu tendunt per lineam rectam, vt grues; nam <lb/>qu&aelig;libet pars al&aelig; motum axis habet, &amp; orbis. </s>
				</p>
				<p id="N26310" type="main">
					<s id="N26312"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 20.<emph.end type="center"/></s>
				</p>
				<p id="N2631E" type="main">
					<s id="N26320"><emph type="italics"/>Explicari po&longs;&longs;unt omnia ph&oelig;nomena calami volatilis<emph.end type="italics"/> &longs;it enim calamus <lb/>&longs;eu cylindrus DA, in altera extremitate D ita excauatus, vt du&aelig; penn&aelig; <lb/>BD, CE in&longs;eri po&longs;&longs;int eo fer&egrave; modo, quo vides. </s>
				</p>
				<p id="N2632C" type="main">
					<s id="N2632E"><!-- NEW -->Prim&ograve;, mouetur axis FA motu recto; reliqu&aelig; ver&ograve; partes motu mix&shy;<lb/>to ex recto axis, &amp; circulari orbis eo modo, quo diximus de cylindro <lb/>in &longs;uperiore Theoremate. <!-- KEEP S--></s>
				</p>
				<p id="N26337" type="main">
					<s id="N26339"><!-- NEW -->Secund&ograve;, &longs;emper calamus DA pr&aelig;it, &longs;cilicet ip&longs;a ba&longs;is A, &amp; &longs;equun&shy;<lb/>tur penn&aelig;; </s>
					<s id="N2633F"><!-- NEW -->ratio e&longs;t, quia penn&icirc;s re&longs;i&longs;tit forti&ugrave;s a&euml;r, vt pater; </s>
					<s id="N26343"><!-- NEW -->igitur earum <lb/>vim facili&ugrave;s &longs;uperat; </s>
					<s id="N26349"><!-- NEW -->hinc &longs;emper retinentur &agrave; tergo, nec alia ratio e&longs;&longs;e <lb/>pote&longs;t; </s>
					<s id="N2634F"><!-- NEW -->pr&aelig;&longs;ertim c&ugrave;m penn&aelig; ita &longs;int compo&longs;it&aelig; propter diuaricationem, <lb/>vt multum a&euml;ra verberent; </s>
					<s id="N26355"><!-- NEW -->quod autem pennis maxim&egrave; re&longs;i&longs;tat a&euml;r, patet <lb/>ex auium volatu; </s>
					<s id="N2635B"><!-- NEW -->im&ograve; ex ip&longs;o plumarum de&longs;cen&longs;u; </s>
					<s id="N2635F"><!-- NEW -->hinc penn&aelig; ill&aelig;, qui&shy;<lb/>bus ornantur equitum pilei, &longs;emper &agrave; tergo &longs;equuntur currentem equi&shy;<lb/>tem; </s>
					<s id="N26367"><!-- NEW -->idem dico de fa&longs;ciis illis tran&longs;uer&longs;ariis, quibus iunguntur equites; <lb/>idem de militaribus &longs;ignis, &longs;eu vexillis. </s>
				</p>
				<p id="N2636F" type="main">
					<s id="N26371">Terti&ograve;, hinc ratio motus recti calami, quia, c&ugrave;m &longs;emper pr&aelig;eat, <lb/><expan abbr="e&utilde;dem">eundem</expan> &longs;itum &longs;eruat, penna&longs;que ip&longs;as qua&longs;i reluctantes trahit, &longs;untque <lb/>ip&longs;&aelig; ad in&longs;tar claui, qui puppim regit. </s>
				</p>
				<p id="N2637B" type="main">
					<s id="N2637D"><!-- NEW -->Quart&ograve;, cum plum&aelig; ita deuaricat&aelig; qua&longs;i &agrave; reflante a&euml;ra pellantur &longs;e&shy;<lb/>quitur nece&longs;&longs;ario motus orbis circa axem calami DA; </s>
					<s id="N26383"><!-- NEW -->quippe h&icirc;c motus <lb/>facilis e&longs;t; </s>
					<s id="N26389"><!-- NEW -->&longs;ic enim voluitur vectis &longs;eu cylindrus, quotie&longs;cumque ab altera <pb pagenum="359" xlink:href="026/01/393.jpg"/>tremitate pellitur; </s>
					<s id="N26392"><!-- NEW -->igitur cum pellantur D &amp; C; quid mirum &longs;i totus ca&shy;<lb/>lamus cum ip&longs;is pennis conuertatur. </s>
				</p>
				<p id="N26398" type="main">
					<s id="N2639A"><!-- NEW -->Quint&ograve;, hinc motus calami e&longs;t mixtus ex recto axis, &amp; circulari or&shy;<lb/>bis; </s>
					<s id="N263A0"><!-- NEW -->igitur &longs;piralis e&longs;t; </s>
					<s id="N263A4"><!-- NEW -->&longs;pir&aelig; autem maiores &longs;unt, vel minores pro diuer&longs;a <lb/>di&longs;tantia partium ab axe AF, qui debet cen&longs;eri productus v&longs;que ad G; </s>
					<s id="N263AA"><!-- NEW --><lb/>nam partes, qu&aelig; longi&ugrave;s di&longs;tant ab axe, maiores &longs;piras decurrunt; ali&aelig; <lb/>ver&ograve; minores; porr&ograve; &longs;pir&aelig; ip&longs;&aelig; e&ograve; frequentiores &longs;unt, qu&ograve; motus orbis <lb/>velocior e&longs;t, &amp; contr&agrave; rariores, qu&ograve; tardior. </s>
				</p>
				<p id="N263B3" type="main">
					<s id="N263B5"><!-- NEW -->Sext&ograve;, &longs;i &longs;it tant&ugrave;m vnica penna, calamus non mouetur hoc motu; </s>
					<s id="N263B9"><!-- NEW --><lb/>quia vix a&euml;r verberatur; </s>
					<s id="N263BE"><!-- NEW -->adde quod in eam partem, qu&aelig; caret penna im&shy;<lb/>pul&longs;us nece&longs;&longs;ari&ograve; inclinatur; idem accidit cum altera penna fracta e&longs;t, <lb/>vel minus apt&egrave; diuaricata. </s>
				</p>
				<p id="N263C6" type="main">
					<s id="N263C8"><!-- NEW -->Septim&ograve;, in cam partem conuertitur, &longs;eu &longs;piras agit, in quam penn&aelig; <lb/>ip&longs;&aelig; detorquentur; </s>
					<s id="N263CE"><!-- NEW -->alioquin non e&longs;&longs;et, cur poti&ugrave;s in vnam, qu&agrave;m in aliam <lb/>&longs;uos agerent orbes; </s>
					<s id="N263D4"><!-- NEW -->igitur ita diuaricantur penn&aelig;, vt earum plana &longs;ibi in&shy;<lb/>uicem &longs;int obliqua; </s>
					<s id="N263DA"><!-- NEW -->cuius rei ratio pr&aelig;dicta clari&longs;&longs;ima c&ugrave;m &longs;it; non e&longs;t <lb/>quod amplius de hac re laboremus. </s>
				</p>
				<p id="N263E0" type="main">
					<s id="N263E2"><!-- NEW -->Octau&ograve;, &longs;i penn&aelig; di&longs;tractiones &longs;unt, &amp; maxim&egrave; diuaricat&aelig;; </s>
					<s id="N263E6"><!-- NEW -->motus <lb/>axis e&longs;t tardior; ratio e&longs;t, quia in eo &longs;tatu multum a&euml;ra pellunt, &longs;eu venti&shy;<lb/>lant, &agrave; quo retinentur. </s>
				</p>
				<p id="N263EE" type="main">
					<s id="N263F0"><!-- NEW -->Non&ograve;, &longs;i di&longs;tractiores &longs;unt, motus orbis e&longs;t etiam tardior, &longs;untque <lb/>rariores &longs;pir&aelig;; </s>
					<s id="N263F6"><!-- NEW -->ratio e&longs;t eadem, quia c&ugrave;m motus orbis e&longs;t maior, etiam <lb/>pl&ugrave;s a&euml;ris vertigo illa &longs;ecum abripit; </s>
					<s id="N263FC"><!-- NEW -->hinc maior e&longs;t re&longs;i&longs;tentia; vnde <lb/>ob&longs;eruabis, vt motus orbis min&ugrave;s impediatur, ita pennas e&longs;&longs;e componen&shy;<lb/>das, vt a&euml;ra &longs;ua qua&longs;i acie c&aelig;&longs;im diuidant, ne &longs;i pellant tota &longs;ua &longs;uperficie, <lb/>maior &longs;it re&longs;i&longs;tentia. </s>
				</p>
				<p id="N26406" type="main">
					<s id="N26408">Decim&ograve;, &longs;i demum pl&ugrave;s &aelig;quo &longs;int diuaricat&aelig;, ita vt angulum obtu&longs;i&longs;&shy;<lb/>&longs;imum faciant, ce&longs;&longs;at omnin&ograve; motus orbis propter maiorem re&longs;i&longs;tentiam, <lb/>qu&aelig; vertiginem illam impedit. </s>
				</p>
				<p id="N2640F" type="main">
					<s id="N26411"><!-- NEW -->Vndecim&ograve;, ita penn&aelig; aptari debent, vt &longs;en&longs;im inflex&aelig; &agrave; radice DE <lb/>ver&longs;us apices BC afflatum a&euml;ris diuer&longs;um excipiant, &amp; di&longs;&longs;imilem: vnde <lb/>accidit, vt partes ip&longs;&aelig;, qu&aelig; retardantur, &amp; maiore vi pollent in vertigi&shy;<lb/>nem agantur, in eam &longs;cilicet partem, in quam aliqua inclinatio conducit <lb/>&longs;ic globus retentus &agrave; corpore oppo&longs;ito in orbem agitur propter rationem <lb/>pr&aelig;dictam, ne ille impetus &longs;it fru&longs;tr&agrave;, qui adhuc &longs;upere&longs;t. </s>
					<s id="N2641F"><!-- NEW -->Hinc vides <lb/>motum orbis non imprimi calamo &agrave; pennis, &longs;ed pennis &agrave; calamo; </s>
					<s id="N26425"><!-- NEW -->qui <lb/>c&ugrave;m ab illis retardetur, ne aliquid impetus &longs;it fru&longs;tr&agrave;, &longs;upplet motu cir&shy;<lb/>culari, quod recto difficiliori propter re&longs;i&longs;tentiam orbis con&longs;equi non <lb/>pote&longs;t; </s>
					<s id="N2642F"><!-- NEW -->determinatur quidem motus circularis in talem partem ab ip&longs;a <lb/>pennarum deflexione; </s>
					<s id="N26435"><!-- NEW -->non tamen imprimitur: </s>
					<s id="N26439"><!-- NEW -->hinc &longs;i fort&egrave; in via pen&shy;<lb/>n&aelig; ex &longs;ua theca decidant, calamus ip&longs;e &longs;ine nouo impul&longs;u longi&ugrave;s &longs;pa&shy;<lb/>tium conficito; tribuit enim motui recto non impedito, quod circulari, <lb/>vel &longs;pirali, &longs;i penn&aelig; ade&longs;&longs;ent tribueret. </s>
				</p>
				<p id="N26443" type="main">
					<s id="N26445"><!-- NEW -->Duodecim&ograve;, &longs;i penn&aelig; contractiores &longs;unt, &amp; angulum acutiorem fa&shy;<lb/>ciant, calamus veloci&ugrave;s mouetur motu axis; </s>
					<s id="N2644B"><!-- NEW -->ratio e&longs;t, quia re&longs;i&longs;tentia mi-<pb pagenum="360" xlink:href="026/01/394.jpg"/>n&ugrave;s retardat; </s>
					<s id="N26454"><!-- NEW -->&longs;unt enim pauciores partes, qu&aelig; valde obliqu&egrave; cadunt: </s>
					<s id="N26458"><!-- NEW --><lb/>hinc minor e&longs;t appul&longs;us, quod clarum e&longs;t; hinc, vt calamus veloci&ugrave;s per&shy;<lb/>gat, con&longs;tringuntur penn&aelig;. </s>
				</p>
				<p id="N2645F" type="main">
					<s id="N26461"><!-- NEW -->Decimoterti&ograve;, &longs;i contractiores &longs;unt, &amp; rect&egrave; compo&longs;it&aelig;, cum illa &longs;cili&shy;<lb/>cet inflexione, <expan abbr="eoq;">eoque</expan> &longs;itu, de quo n.11.non mod&ograve; velocior erit motus axis, <lb/>&longs;ed etiam motus orbis; </s>
					<s id="N2646D"><!-- NEW -->ratio e&longs;t, quia minor orbis citi&ugrave;s perficitur: </s>
					<s id="N26471"><!-- NEW -->adde <lb/>quod minus a&euml;ris huic motui re&longs;i&longs;tit; </s>
					<s id="N26477"><!-- NEW -->vnde vides ita e&longs;&longs;e aptandas pen&shy;<lb/>nas, vt re&longs;i&longs;tentia a&euml;ris in&aelig;qualis cau&longs;et illam vertiginem, qu&aelig; tamen <lb/>tanta e&longs;&longs;e non debet; alioquin ip&longs;um motum orbis omnin&ograve; impediret, <lb/>vt diximus n. </s>
					<s id="N26481">10. </s>
				</p>
				<p id="N26484" type="main">
					<s id="N26486"><!-- NEW -->Decimoquart&ograve;, denique &longs;i pl&ugrave;s &aelig;quo contract&aelig; &longs;unt, e&longs;&longs;et motus or&shy;<lb/>bis; quippe modica e&longs;t a&euml;ris re&longs;i&longs;tentia, qu&aelig; ad motum illum non &longs;ufficit, <lb/>lic&egrave;t &longs;emper &longs;int aliqui gyri, &longs;ed rariores. </s>
				</p>
				<p id="N2648E" type="main">
					<s id="N26490"><!-- NEW -->Decimoquint&ograve;, tres aliquando, aliquando du&aelig; in&longs;eruntur penn&aelig;; </s>
					<s id="N26494"><!-- NEW -->e&longs;t <lb/>enim eadem vertiginis cau&longs;a, im&ograve; quatuor in&longs;eri po&longs;&longs;ent; &longs;unt enim qua&longs;i <lb/>totidem claui, qui dirigunt illum motum. </s>
				</p>
				<p id="N2649C" type="main">
					<s id="N2649E"><!-- NEW -->Decimo&longs;ext&ograve;, &longs;i penn&aelig; delicatioribus pilis tenera lanugine ve&longs;tian&shy;<lb/>tur, tardi&ugrave;s mouetur calamus vtroque motu; quia vix a&euml;ra penetrare po&longs;&shy;<lb/>&longs;unt delicatiores molliore&longs;que pili. </s>
				</p>
				<p id="N264A6" type="main">
					<s id="N264A8"><!-- NEW -->Decimo&longs;eptim&ograve;, &longs;i proiicitur &longs;ur&longs;um, de&longs;cendatque deor&longs;um rect&agrave;, e&longs;t <lb/>motus mixtus ex recto &amp; circulari; </s>
					<s id="N264AE"><!-- NEW -->&longs;i ver&ograve; proiiciatur per horizontalem, <lb/>vel inclinatam, e&longs;t motus mixtus ex duobus rectis &amp; circulari, vt con&shy;<lb/>&longs;tat; </s>
					<s id="N264B6"><!-- NEW -->ex quo motu fit linea mixta ex Parabola &amp; Helice; </s>
					<s id="N264BA"><!-- NEW -->&longs;it enim cylin&shy;<lb/>drus CH, cuius motus &longs;piralis &longs;it CEFGT mixtus ex recto CT, &amp; cir&shy;<lb/>culari orbis CD; &longs;it etiam mixtus LTQ ex accelerato LM, &amp; &aelig;quabili <lb/>MQ cert&egrave; &longs;i addatur LQ circulus &longs;eu &longs;pira CEF, &amp;c. </s>
					<s id="N264C7">&longs;itque RC &aelig;qua&shy;<lb/>lis IE, &amp; VT &aelig;qualis NG, habebitur &longs;pira mixta LCSVQ </s>
				</p>
				<p id="N264D0" type="main">
					<s id="N264D2"><!-- NEW -->Decimooctau&ograve;, &longs;i penn&aelig; latiores &longs;unt, &longs;eu maiorem habent &longs;uperfi&shy;<lb/>ciem, min&ugrave;s apt&aelig; &longs;unt ad vtrumque motum, &longs;cilicet axis, &amp; centri; quia <lb/>a&euml;r pl&ugrave;s &aelig;quo re&longs;i&longs;tit, nam plures illius pelluntur partes. </s>
				</p>
				<p id="N264DA" type="main">
					<s id="N264DC"><!-- NEW -->Decimonon&ograve;, &longs;i ver&ograve; contractiores &longs;unt, etiam min&ugrave;s apt&aelig; videntur: <lb/>quippe a&euml;ra facil&egrave; diuidunt. </s>
				</p>
				<p id="N264E2" type="main">
					<s id="N264E4"><!-- NEW -->Vige&longs;im&ograve;, &longs;i breuiores, certi&longs;&longs;imus e&longs;t motus orbis; quia minor circu&shy;<lb/>lus citi&ugrave;s perficitur. </s>
				</p>
				<p id="N264EA" type="main">
					<s id="N264EC"><!-- NEW -->Vige&longs;imoprim&ograve;, &longs;i longiores, &egrave; contrario: adde quod ab axis leuioris <lb/>motu, dirigi vix po&longs;&longs;unt. </s>
				</p>
				<p id="N264F2" type="main">
					<s id="N264F4"><!-- NEW -->Vige&longs;imo&longs;ecund&ograve;, &longs;i altera pennarum &longs;it fracta, e&longs;&longs;et motus orbis; quia <lb/>&longs;egmentum fractum aliarum partium motum non &longs;equitur, vt patet. </s>
				</p>
				<p id="N264FA" type="main">
					<s id="N264FC"><!-- NEW -->Vige&longs;imoterti&ograve;, &longs;i calamus &longs;it leuior, ineptus e&longs;t; </s>
					<s id="N26500"><!-- NEW -->quia re&longs;i&longs;tentiam <lb/>pennarum non &longs;uperat; quippe contra reflantis a&euml;ris vim, calami pr&aelig;ua&shy;<lb/>lens impetus leuiores pennas &longs;ecum abripere debet. </s>
				</p>
				<p id="N26508" type="main">
					<s id="N2650A"><!-- NEW -->Vige&longs;imoquart&ograve;, &longs;i longior &longs;it calamus, min&ugrave;s aptus e&longs;t; quia &longs;cilicet <lb/>plures partes impetus qu&aelig; in&longs;unt grauiori calamo nullo negotio re&longs;i&shy;<lb/>&longs;tentiam a&euml;ris, &amp; retardationem pennarum &longs;uperant. </s>
				</p>
				<p id="N26512" type="main">
					<s id="N26514"><!-- NEW -->Vige&longs;imoquint&ograve;, &longs;i longior &longs;it calamus, min&ugrave;s aptus e&longs;t; </s>
					<s id="N26518"><!-- NEW -->t&ugrave;m quia gra-<pb pagenum="361" xlink:href="026/01/395.jpg"/>uior e&longs;t, t&ugrave;m quia difficili&ugrave;s conuertitur, vt &longs;emper pr&aelig;eat; e&longs;t enim ma&shy;<lb/>ior re&longs;i&longs;tentia ad conuertendum longius corpus, vt patet. </s>
				</p>
				<p id="N26523" type="main">
					<s id="N26525"><!-- NEW -->Vige&longs;imo&longs;ext&ograve;, &longs;i breuior &amp; leuior, ineptus e&longs;t propter rationem alla&shy;<lb/>tam; </s>
					<s id="N2652B"><!-- NEW -->nam &longs;i breui&longs;&longs;imus &longs;it, eius tamen grauitatis, qu&aelig; &longs;ufficiat ad &longs;upe&shy;<lb/>randam a&euml;ris vim, apti&longs;&longs;imus cen&longs;eri debet: hinc aliquando globulus per&shy;<lb/>foratus calami vicem gerit. </s>
				</p>
				<p id="N26533" type="main">
					<s id="N26535"><!-- NEW -->Vige&longs;imo&longs;eptim&ograve;, extremitas calami, qu&aelig; pr&aelig;it, debet e&longs;&longs;e paul&ograve; maior, <lb/>&amp; qua&longs;i nodo armata, vt &longs;cilicet facili&ugrave;s pr&aelig;ire po&longs;&longs;it, ne alia extremitas <lb/>qua&longs;i reluctetur; igitur ad in&longs;tar clau&aelig; calamus componi debet. </s>
				</p>
				<p id="N2653D" type="main">
					<s id="N2653F"><!-- NEW -->Vige&longs;imooctau&ograve;, in vacuo nulla pror&longs;us e&longs;&longs;et vertigo huius volatilis <lb/>calami; </s>
					<s id="N26545"><!-- NEW -->quia nulla e&longs;&longs;et a&euml;ris re&longs;i&longs;tentia; &longs;ed de his &longs;atis. </s>
				</p>
				<p id="N26549" type="main">
					<s id="N2654B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 21.<emph.end type="center"/></s>
				</p>
				<p id="N26557" type="main">
					<s id="N26559"><!-- NEW --><emph type="italics"/>Cuncta ph&oelig;nomena teli &longs;eu iaculi volatilis explicari po&longs;&longs;unt<emph.end type="italics"/>: </s>
					<s id="N26562"><!-- NEW -->huius teli <lb/>figuram habes rudiore manu adumbratam; h&icirc;c habes. </s>
					<s id="N26568">cu&longs;pis e&longs;t C, du&shy;<lb/>plex clauus &longs;eu quadruplex BGDABE, ex aliqua leuiore materia <lb/>con&longs;tans v.g. <!-- REMOVE S-->ex charta duplicata, vel pennis, hoc po&longs;ito. </s>
				</p>
				<p id="N26571" type="main">
					<s id="N26573"><!-- NEW -->Prim&ograve;, cu&longs;pis C po&longs;t eiaculationem &longs;emper pr&aelig;it; </s>
					<s id="N26577"><!-- NEW -->ratio e&longs;t, quia <lb/>al&aelig; ill&aelig; leuiores &agrave; tergo &longs;equuntur; min&ugrave;s enim a&euml;ris vim frangere <lb/>queunt. </s>
				</p>
				<p id="N2657F" type="main">
					<s id="N26581"><!-- NEW -->Secund&ograve;, in eo &longs;tatu &longs;emper remanet iaculum; </s>
					<s id="N26585"><!-- NEW -->quia non pote&longs;t &longs;ur&longs;um <lb/>attolli extremitas B, nec deor&longs;um deprimi; </s>
					<s id="N2658B"><!-- NEW -->quia ala ABE impedit; </s>
					<s id="N2658F"><!-- NEW -->nec <lb/>etiam dextror&longs;um, vel &longs;ini&longs;tror&longs;um inclinari; </s>
					<s id="N26595"><!-- NEW -->quia ala BGD prohibet; </s>
					<s id="N26599"><!-- NEW --><lb/>igitur &longs;i nec &longs;ur&longs;um, neque deor&longs;um, nec &longs;ini&longs;tror&longs;um, nec extror&longs;um <lb/>inclinari pote&longs;t; haud dubi&egrave; in eodem &longs;itu remanebit. </s>
				</p>
				<p id="N265A0" type="main">
					<s id="N265A2"><!-- NEW -->Terti&ograve;, citi&longs;&longs;imo motu fertur hoc iaculi genus; </s>
					<s id="N265A6"><!-- NEW -->quia nihil prohibet; </s>
					<s id="N265AA"><!-- NEW --><lb/>quippe a&euml;r facil&egrave; diuiditur ab ip&longs;o iaculo CB; </s>
					<s id="N265AF"><!-- NEW -->t&ugrave;m deinde ab ip&longs;is alis <lb/>c&aelig;&longs;im qua&longs;i &longs;ecatur acie dumtaxat, nunquam &longs;uperficie oppo&longs;ita; adde <lb/>quod, a&euml;r facil&egrave; fluit per 4. illas cauitates BGFE, DGFA, &amp;c. </s>
					<s id="N265B7"><!-- NEW -->&longs;emper <lb/>enim a&euml;ri opponitur acies anguli; &longs;ed h&aelig;c &longs;unt facilia. </s>
				</p>
				<p id="N265BD" type="main">
					<s id="N265BF"><!-- NEW -->Quart&ograve;, non agitur in vertiginem hoc iaculum; </s>
					<s id="N265C3"><!-- NEW -->quia &longs;cilicet non e&longs;t <lb/>tanta a&euml;ris re&longs;i&longs;tentia, quantam e&longs;&longs;e oportet; </s>
					<s id="N265C9"><!-- NEW -->adde quod nulla e&longs;t alarum <lb/>inflexio, qu&aelig; faciat in&aelig;qualem re&longs;i&longs;tentiam, vt in calamo volatili; </s>
					<s id="N265CF"><!-- NEW -->igitur <lb/>e&longs;t tant&ugrave;m motus axis; vbi tamen vibratur per horizontalem, vel incli&shy;<lb/>natam, mouetur motu mixto ex duobus rectis, de quo iam ali&agrave;s. </s>
				</p>
				<p id="N265D7" type="main">
					<s id="N265D9"><!-- NEW -->Quint&ograve;, huc reuoca &longs;agittas, qu&aelig; tribus in&longs;truct&aelig; pennis <expan abbr="e&utilde;dem">eundem</expan> <lb/>&longs;emper retinent &longs;itum in motu, vt ferrum &longs;eu mucro pr&aelig;eat; vnde vides <lb/>eumdem &longs;emper &longs;equi effectum, &longs;iue tres &longs;int al&aelig;, &longs;iue quatuor. </s>
				</p>
				<p id="N265E5" type="main">
					<s id="N265E7"><!-- NEW -->Sext&ograve;, huc reuoca minima illa &longs;picula &longs;pic&acirc; in&longs;tructa, qu&aelig; per tubum <lb/>pneumaticum pueri flatu eiaculantur; </s>
					<s id="N265ED"><!-- NEW -->nam cu&longs;pis &longs;emper pr&aelig;it, quia <lb/>motus alterius extremitatis leuiore &longs;pica retardatur; &longs;ed h&aelig;c &longs;unt fa&shy;<lb/>cilia. </s>
				</p>
				<p id="N265F5" type="main">
					<s id="N265F7"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 22.<emph.end type="center"/></s>
				</p>
				<p id="N26603" type="main">
					<s id="N26605"><!-- NEW --><emph type="italics"/>Explicatur etiam motus illius, qua&longs;i velaris moletrin&aelig;, qua pueri curren&shy;<lb/>tes &longs;&aelig;pi&longs;&longs;im&egrave; ludum<emph.end type="italics"/>; cuius figuram h&icirc;c habes; nam eo tempore, <pb pagenum="362" xlink:href="026/01/396.jpg"/>quo DA fertur per ip&longs;um D, BC cum &longs;uis velus vertitur circa DA. <!-- KEEP S--></s>
				</p>
				<p id="N26616" type="main">
					<s id="N26618">Prim&ograve;, hinc e&longs;t motus mixtus, &amp; recto axis DA &amp; circulari CB. <!-- KEEP S--></s>
				</p>
				<p id="N2661C" type="main">
					<s id="N2661E"><!-- NEW -->Secund&ograve;, hinc e&longs;t motus perfect&egrave; &longs;piralis, nec enim differt &agrave; motu cy&shy;<lb/>lindri; de quo &longs;upr&agrave;. </s>
				</p>
				<p id="N26624" type="main">
					<s id="N26626">Terti&ograve;, &longs;pir&aelig; &longs;unt frequentiores, qu&ograve; motus e&longs;t velocior motu centri <lb/>A, maiores &egrave; contrario. </s>
				</p>
				<p id="N2662B" type="main">
					<s id="N2662D"><!-- NEW -->Quart&ograve;, debet con&longs;tare debet CB ex leui&longs;&longs;ima materia; alioquin non <lb/>mouebitur motu orbis. </s>
				</p>
				<p id="N26633" type="main">
					<s id="N26635"><!-- NEW -->Quint&ograve;, debet facil&egrave; po&longs;&longs;e moueri circa A; alioquin vis illa reflantis <lb/>a&euml;ris, qu&aelig; CB motum circularem imprimit, non &longs;ufficeret. </s>
				</p>
				<p id="N2663B" type="main">
					<s id="N2663D"><!-- NEW -->Sext&ograve;, ideo BC mouetur circa A; </s>
					<s id="N26641"><!-- NEW -->quia cum vela C &amp; B polleant mul&shy;<lb/>tum a&euml;ra, maior e&longs;t re&longs;i&longs;tentia; </s>
					<s id="N26647"><!-- NEW -->hinc propter modicam inclinationem <lb/>axis DA a&euml;r in &longs;uperficies C &amp; B obliqu&egrave; incidens illas impellit; &longs;ed <lb/>quia axis BA re&longs;i&longs;tit nece&longs;&longs;ari&ograve; circa A, motu circulari cientur. </s>
				</p>
				<p id="N2664F" type="main">
					<s id="N26651"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 23.<emph.end type="center"/></s>
				</p>
				<p id="N2665D" type="main">
					<s id="N2665F"><!-- NEW --><emph type="italics"/>Explicari po&longs;&longs;unt omnes motus ponderis, &longs;eu plumei &agrave; tergo valuarum fu&shy;<lb/>nependuli, cuius vi valu&aelig; ip&longs;a claudantur,<emph.end type="italics"/> v.g.&longs;it fores AE quarum va&shy;<lb/>rum e&longs;t AF; &longs;it funis CDG, cuius extremitas immobiliter affixa &longs;it C, <lb/>pondus appen&longs;um &longs;it G, cuius vi &longs;eu motu fores ip&longs;&aelig; clauduntur. </s>
				</p>
				<p id="N2666E" type="main">
					<s id="N26670"><!-- NEW -->Prim&ograve;, certum e&longs;t pondus G non moueri motu recto; quia cum ip&shy;<lb/>&longs;o rectangulo AE mouetur circa axem immobilem AB. <!-- KEEP S--></s>
				</p>
				<p id="N26677" type="main">
					<s id="N26679">Secund&ograve;, certum e&longs;t non moueri motu pur&egrave; circulari, qui mouetur <lb/>per lineam GD. </s>
				</p>
				<p id="N2667E" type="main">
					<s id="N26680"><!-- NEW -->Terti&ograve;, certum e&longs;t rectangulum A moueri motu pur&egrave; circulari, vt pa&shy;<lb/>tet; ita vt DE &longs;uo motu de&longs;cribat cylindrum, cuius radius &longs;eu &longs;emidia&shy;<lb/>meter ba&longs;is e&longs;t BE. <!-- KEEP S--></s>
				</p>
				<p id="N26689" type="main">
					<s id="N2668B">Quart&ograve;, certum e&longs;t, quodlibet punctum huius rectanguli de&longs;&shy;<lb/>cribere circulum, maiorem &longs;cilicet vel minorem pro diuer&longs;a di&longs;tan&shy;<lb/>tia ab axe AB, v. <!-- REMOVE S-->g. <!-- REMOVE S-->punctum D de&longs;cribit circulum, cuius radius <lb/>e&longs;t DA, punctum ver&ograve; I de&longs;cribit circulum, cuius radius e&longs;t HI. <!-- KEEP S--></s>
				</p>
				<p id="N26699" type="main">
					<s id="N2669B">Quint&ograve;, certum e&longs;t pondus G moueri motu mixto ex circulari forium. <lb/></s>
					<s id="N2669F">&amp; recto deor&longs;um. </s>
				</p>
				<p id="N266A2" type="main">
					<s id="N266A4"><!-- NEW -->Sext&ograve;, habes &longs;chema huius motus in cylindro A quem de&longs;cribunt <lb/>fores &longs;uo motu, &longs;i enim A moueatur per &longs;emicirculum AB, &amp; rectam A <lb/>C; </s>
					<s id="N266AC"><!-- NEW -->haud dubi&egrave; mouebitur per AD; igitur hic motus e&longs;t &longs;piralis, nec e&longs;t <lb/>alia difficultas. </s>
				</p>
				<p id="N266B2" type="main">
					<s id="N266B4"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 24.<emph.end type="center"/></s>
				</p>
				<p id="N266C0" type="main">
					<s id="N266C2"><!-- NEW --><emph type="italics"/>Quando voluitur funis circa cylindrum, vel axem, mouetur motu <lb/>&longs;pirali, &longs;ed diuer&longs;o &agrave; prioribus<emph.end type="italics"/>; </s>
					<s id="N266CF"><!-- NEW -->&longs;unt enim ver&aelig; &longs;pir&aelig; ad in&longs;tar &longs;apien&shy;<lb/>tia in diuer&longs;a volumina contorti; </s>
					<s id="N266D5"><!-- NEW -->&longs;ic funis circa digitum &longs;&aelig;p&egrave; <lb/>rotatur.; </s>
					<s id="N266DB"><!-- NEW -->e&longs;t enim motus mixtus ex diuer&longs;is circularibus: </s>
					<s id="N266E1"><!-- NEW -->quipp&egrave; <pb pagenum="363" xlink:href="026/01/397.jpg"/>in &longs;ingulis punctis e&longs;t diuer&longs;a determinatio ad nouum circulum, quia <lb/>e&longs;t nouus radius, quia continu&ograve; radius huius vertiginis imminuitur; <lb/>porr&ograve; duobus modis pote&longs;t funis circa axem vel cylindrum conuolui. </s>
					<s id="N266EE"><!-- NEW --><lb/>Prim&ograve;, &longs;i &longs;emper circa <expan abbr="e&utilde;dem">eundem</expan> cylindri circulum voluatur; </s>
					<s id="N266F7"><!-- NEW -->tunc autem <lb/>facit veras &longs;piras, vt vides in A. Secund&ograve;, &longs;i circa diuer&longs;os eiu&longs;dem axis <lb/>circulos, vel potius diuer&longs;a eiu&longs;dem axis puncta voluatur, &amp; hic e&longs;t mo&shy;<lb/>tus &longs;piralis conicus, vt vides in cono FDE; </s>
					<s id="N26701"><!-- NEW -->idem e&longs;&longs;et motus &longs;i conus <lb/>circa axem volueretur &longs;imulque aliquod punctum peripheri&aelig; ba&longs;is coni <lb/>rect&agrave; ab ip&longs;a peripheria ad verticem coni tenderet; </s>
					<s id="N26709"><!-- NEW -->&longs;i enim totus conus <lb/>moueatur motu axis recto, quodlibet punctum &longs;uperficiei coni mouetur <lb/>motu &longs;pirali cylindrico, excepto dumtaxat ip&longs;o vertice; hoc denique <lb/>motu mouerentur &longs;ingula puncta baculi ED, qui in conum rotaretur &agrave; <lb/>vertice E eo tempore, quo rotans ip&longs;e per rectam EG moueretur. </s>
				</p>
				<p id="N26715" type="main">
					<s id="N26717"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 25.<emph.end type="center"/></s>
				</p>
				<p id="N26723" type="main">
					<s id="N26725"><!-- NEW --><emph type="italics"/>Similiter po&longs;&longs;unt explicari motus &longs;pirales &longs;ph&aelig;rici, quos habes in<emph.end type="italics"/>; </s>
					<s id="N2672E"><!-- NEW -->hic au&shy;<lb/>tem motus duplex e&longs;t; </s>
					<s id="N26734"><!-- NEW -->primus mixtus ex recto per axem KL, quo totus <lb/>globus mouetur, &amp; ex circulari circa axem KL, qui reuer&acirc; e&longs;t &longs;piralis <lb/>cylindricus; </s>
					<s id="N2673C"><!-- NEW -->&longs;ecundus mixtus ex duobus circularibus, &longs;cilicet ex circulari <lb/>circa axem KL, &amp; circulari per arcum IL, v.g. <!-- REMOVE S-->&longs;i punctum eo tempore <lb/>voluatur circa axem KL per arcum IO, quo fertur per arcum IL vnde <lb/>habes in hac figura tres motus &longs;pirales, quorum &longs;inguli con&longs;tant ex circu&shy;<lb/>lari circa axem KL; </s>
					<s id="N2674A"><!-- NEW -->&longs;ed deinde con&longs;tant &longs;inguli ex &longs;ingulis motibus di&shy;<lb/>uer&longs;is, &longs;cilicet &longs;piralis cylindricus ex motu puncti I v.g. <!-- REMOVE S-->per rectam IN <lb/>parallelam KL; </s>
					<s id="N26754"><!-- NEW -->&longs;piralis conicus per rectam IL, &amp; &longs;piralis &longs;ph&aelig;ricus <lb/>per arcum IPL; </s>
					<s id="N2675A"><!-- NEW -->hinc duo primi con&longs;tant ex circulari, &amp; recto; certius <lb/>ver&ograve; ex duobus circularibus. </s>
				</p>
				<p id="N26760" type="main">
					<s id="N26762"><!-- NEW -->Denique pote&longs;t e&longs;&longs;e &longs;piralis concoidicus qualem vides in i&longs;que du&shy;<lb/>plex; </s>
					<s id="N26768"><!-- NEW -->prim&ograve; &longs;i vertatur conois circa axem SV; </s>
					<s id="N2676C"><!-- NEW -->&longs;ecund&ograve;, &longs;i vertatur circa <lb/>axem XZ: </s>
					<s id="N26772"><!-- NEW -->quippe hoc modo &longs;pir&aelig; erunt maiores; </s>
					<s id="N26776"><!-- NEW -->&longs;unt quoque &longs;inguli <lb/>triplicis generis; </s>
					<s id="N2677C"><!-- NEW -->e&longs;t enim vel parabolicus, vel ellipticus, vel hyperboli&shy;<lb/>cus; porr&ograve;, qui dicunt motus c&oelig;le&longs;tes e&longs;&longs;e &longs;pirales, viderint an &longs;int cy&shy;<lb/>lindrici vel &longs;ph&aelig;rici, vel conici, vel elliptici &amp;c. </s>
					<s id="N26784">omitto &longs;piralem in pla&shy;<lb/>no, mixtum &longs;cilicet ex circulari &amp; recto, cuius &longs;chema habes Th.24. t&ugrave;m <lb/>L 5. Th.79. de quo etiam ali&agrave;s, cum de lineis motus. </s>
				</p>
				<p id="N2678B" type="main">
					<s id="N2678D"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 26.<emph.end type="center"/></s>
				</p>
				<p id="N26799" type="main">
					<s id="N2679B"><!-- NEW --><emph type="italics"/>Cum taleola &longs;upra planum rectilineum ita repit, vt etiam circa propriu&mtail; <lb/>centrum voluatur, est motus mixtus ex recto &amp; circulari<emph.end type="italics"/>; </s>
					<s id="N267A6"><!-- NEW -->neque hic motus <lb/>diuer&longs;us e&longs;t &agrave; motu rot&aelig; in plano, &longs;it enim taleola centro A, circa quod <lb/>vertitur dum centrum A repit motu recto per rectam AD, perinde &longs;e <lb/>habet, atque &longs;i rota in plano BE vel CF rotaretur; </s>
					<s id="N267B0"><!-- NEW -->imm&ograve; pote&longs;t tabella <lb/>GK ita moueri, vt eius centrum A moueatur per AD, dum reliqu&aelig; par&shy;<lb/>tes circa centrum A voluuntur; </s>
					<s id="N267B8"><!-- NEW -->tunc enim punctum H eodem motu <lb/>moueretur, quo alia puncta peripheri&aelig; huius rot&aelig;; </s>
					<s id="N267BE"><!-- NEW -->punctum ver&ograve; I eo <lb/>modo quo I in radio BA, dum rota mouetur, quod &longs;upr&agrave; fus&egrave; explicui-<pb pagenum="364" xlink:href="026/01/398.jpg"/>mus; denique ita moueri pote&longs;t taleola, vt prim&ograve; B moueatur motu or&shy;<lb/>bis ver&longs;us. </s>
					<s id="N267CB">Secund&ograve;, ver&longs;us K; Terti&ograve;, vt motus centri &longs;it maior vel minor <lb/>motu orbis. </s>
					<s id="N267D0">Quart&ograve;, vt &longs;it &aelig;qualis. </s>
				</p>
				<p id="N267D3" type="main">
					<s id="N267D5"><!-- NEW -->Denique, ne omittam motum illum, quo clauis &longs;eu planum &longs;olidum <lb/>in l&aelig;uigata men&longs;a mouetur, dico mixtum e&longs;&longs;e ex recto alicuius centri &amp; <lb/>circularis orbis; </s>
					<s id="N267DD"><!-- NEW -->&longs;it enim v.g.baculus AD, qui ita repat in plano l&aelig;ui&shy;<lb/>gato vt altera eius extremitas forti&ugrave;s impellatur, mouebitur motu mixto <lb/>ex circulari circa centrum C per Th.55.l.7. &amp; recto orbis circa C; </s>
					<s id="N267E5"><!-- NEW -->de&shy;<lb/>&longs;cribent autem du&aelig; extremitates A &amp; D lineas rotatiles diuer&longs;as; hic au&shy;<lb/>tem motus diuer&longs;us erit pro diuer&longs;a coniugatione motus orbis, &amp; mo&shy;<lb/>tus centri, c&ugrave;m hic po&longs;&longs;it e&longs;&longs;e vel maior, vel minor motu orbis, vel <lb/>&aelig;qualis, </s>
				</p>
				<p id="N267F1" type="main">
					<s id="N267F3"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 27.<emph.end type="center"/></s>
				</p>
				<p id="N267FF" type="main">
					<s id="N26801"><emph type="italics"/>Explicari po&longs;&longs;unt omnia ph&oelig;nomena motus globi.<emph.end type="italics"/></s>
				</p>
				<p id="N26808" type="main">
					<s id="N2680A"><!-- NEW -->Prim&ograve;, ita globus rotatur aliquando in plano, vt motus orbis de&longs;cri&shy;<lb/>bat circulos perpendiculariter incubantes plano; </s>
					<s id="N26810"><!-- NEW -->&longs;ic vulg&ograve; proijcitur <lb/>globus, nec differt hic motus &agrave; motu rot&aelig; in plano; e&longs;t enim mixtus ex <lb/>recto centri &amp; circulari orbis. </s>
				</p>
				<p id="N26818" type="main">
					<s id="N2681A"><!-- NEW -->Secund&ograve;, ita rotatur aliquand&ograve;, vt &longs;it &longs;emper idem punctum contactus, <lb/>&amp; motus orbis de&longs;cribat circulos parallelos plano in quo rotatur; non <lb/>differt etiam hic motus &agrave; motu rot&aelig;, qu&aelig; in plano verticali rotaretur. </s>
				</p>
				<p id="N26822" type="main">
					<s id="N26824"><!-- NEW -->Terti&ograve;, ita rotatur, vt motus orbis de&longs;cribat circulos inclinatos pl&ugrave;s, <lb/>vel min&ugrave;s; </s>
					<s id="N2682A"><!-- NEW -->non differt autem hic motus &agrave; motu rot&aelig;, qu&aelig; in plano in&shy;<lb/>clinato rotaretur; mutatur autem continue punctum contactus in 1&degree;. <lb/></s>
					<s id="N26831">&amp; 3&degree;. </s>
					<s id="N26834">motu. </s>
				</p>
				<p id="N26837" type="main">
					<s id="N26839">Porr&ograve;, &longs;&aelig;pi&ugrave;s ob&longs;eruabis i&longs;tos motus globi in aqua, in qua &longs;cilicet fa&shy;<lb/>cil&egrave; circa centrum voluitur per quodcunque planum. </s>
				</p>
				<p id="N2683E" type="main">
					<s id="N26840"><!-- NEW -->Quart&ograve;, ita mouetur vt con&longs;tet hic motus ex duobus qua&longs;i circulari&shy;<lb/>bus, &amp; ex recto; </s>
					<s id="N26846"><!-- NEW -->quando &longs;cilicet inflectitur ita motus centri, vt mouea&shy;<lb/>tur centrum per lineam curuam; </s>
					<s id="N2684C"><!-- NEW -->dixi curuam; non ver&ograve; circularem; </s>
					<s id="N26850"><!-- NEW --><lb/>quia non habet centrum motus pur&egrave; circularem, &longs;ed mixtum ex <lb/>recto &amp; circulari; </s>
					<s id="N26857"><!-- NEW -->exemplum habes clari&longs;&longs;imum in illo deflexu <lb/>globi, qui vald&egrave; familiaris e&longs;t iis, qui trunculorum ludum exercent; <lb/>quippe tantill&ugrave;m detorquetur circa horizontalem, ex qua declinatione <lb/>&longs;equitur motus mixtus ex tribus, &longs;cilicet ex motu orbis in circulo hori&shy;<lb/>zontali, ex motu orbis in verticali, &amp; motu centri recto. </s>
				</p>
				<p id="N26863" type="main">
					<s id="N26865"><!-- NEW -->Quint&ograve;, ita proijcitur globus aliquand&ograve;, vt motus centri &longs;it contrarius <lb/>motui orbis; tunc autem vel &longs;i&longs;tit globus, vel etiam redit, cum motus or&shy;<lb/>bis inten&longs;ior e&longs;t, de quo iam &longs;upr&agrave;. </s>
				</p>
				<p id="N2686D" type="main">
					<s id="N2686F">Sext&ograve;, cum proijcitur &longs;ur&longs;um per lineam perpendicularem, ita vt non <lb/>mod&ograve; motus centri, ver&ugrave;m etiam motus orbis imprimatur, mouetur mo&shy;<lb/>tu mixto ex recto centri &amp; circulari orbis, nec differt hic motus &agrave; motu <lb/>rot&aelig; in plano recto, idem dico de de&longs;cen&longs;u &amp; de iactu circuli ferrei vel <lb/>lignei. </s>
				</p>
				<pb pagenum="365" xlink:href="026/01/399.jpg"/>
				<p id="N2687E" type="main">
					<s id="N26880"><!-- NEW -->Septim&ograve;, cum proijcitur globus per inclinatam, mouetur motu mixto <lb/>ex tribus &longs;cilicet ex recto violento centri, ex naturali deor&longs;um &amp; ex cir&shy;<lb/>culari orbis, e&longs;tque idem motus, qui e&longs;&longs;et, &longs;i globus rotaretur in plano <lb/>curuo fer&egrave; parabolico; </s>
					<s id="N2688A"><!-- NEW -->quippe centrum de&longs;cribit hanc lineam; &longs;ed linea <lb/>centri e&longs;t &longs;emper parallela plano, in quo rotatur globus. </s>
				</p>
				<p id="N26890" type="main">
					<s id="N26892"><!-- NEW -->Octau&ograve;, cum rotatur globus in plano decliui per lineam inclinatam <lb/>mouetur motu mixto ex tribus, &longs;cilicet ex duobus rectis centri, &amp; circu&shy;<lb/>lari orbis; </s>
					<s id="N2689A"><!-- NEW -->hic motus &longs;imilis e&longs;t priori; </s>
					<s id="N2689E"><!-- NEW -->quippe centrum de&longs;cribit fer&egrave; Pa&shy;<lb/>rabolam; hinc facilis methodus de&longs;cribend&aelig; Parabol&aelig; ex iactu globuli <lb/>atramento tincti, quam etiam tradit Galileus. <!-- KEEP S--></s>
				</p>
				<p id="N268A7" type="main">
					<s id="N268A9"><!-- NEW -->Non&ograve;, &longs;i globi alterum hemi&longs;ph&aelig;rium &longs;it grauius, cum rotatur in recto <lb/>plano, deflectit in cam partem quam &longs;pectat hemi&longs;ph&aelig;rium grauius; </s>
					<s id="N268AF"><!-- NEW --><lb/>im&ograve; deinde detorquetur in oppo&longs;itam, e&longs;tque motus mixtus ex duobus <lb/>circularibus, altero &longs;cilicet librationis, altero gyri rotatilis, &amp; recto cen&shy;<lb/>tri; </s>
					<s id="N268B8"><!-- NEW -->porr&ograve; mouetur centrum motu curuo qui aliquando accedit propi&ugrave;s <lb/>ad circularem; </s>
					<s id="N268BE"><!-- NEW -->huc etiam reuoca motum parop&longs;idis rotul&aelig;, qu&aelig; in mul&shy;<lb/>tos agitur gyros &amp; &longs;piras; quia pr&aelig;ualet portio grauior, e&oacute;que detorquet <lb/>centrum motus. </s>
				</p>
				<p id="N268C6" type="main">
					<s id="N268C8"><!-- NEW -->Decim&ograve;, hinc quod iucundum e&longs;&longs;et, &longs;i huiu&longs;modi globum in datum <lb/>&longs;copum proijceres; </s>
					<s id="N268CE"><!-- NEW -->haud dubi&egrave; alium feriret; </s>
					<s id="N268D2"><!-- NEW -->igitur vt &longs;copum &longs;ignatum <lb/>tangas, ali&ograve; collimare debes; </s>
					<s id="N268D8"><!-- NEW -->porr&ograve; linea huius motus eadem e&longs;t, qu&aelig; <lb/>e&longs;&longs;et, &longs;i globus rotaretur in linea parallela line&aelig;, quam de&longs;cribit cen&shy;<lb/>trum; </s>
					<s id="N268E1"><!-- NEW -->qu&aelig; vel e&longs;t &longs;pira, vel circulus, vel alia curua, iuxta diuer&longs;am con&shy;<lb/>iugationem motum; illa autem facil&egrave; haberi pote&longs;t ex dictis &longs;upr&agrave;. </s>
				</p>
				<p id="N268E7" type="main">
					<s id="N268E9">Vndecimo, &longs;i in plano recto ita rotetur cylindrus, vt &longs;inguli circuli <lb/>paralleli ba&longs;i rotentur &aelig;qualiter, &longs;inguli circuli mouentur motu mixto <lb/>ex recto centri, &amp; circulari orbis, e&longs;tque hic motus &longs;imilis motui rot&aelig; <lb/>in plano recto, de quo &longs;upr&agrave;. </s>
				</p>
				<p id="N268F2" type="main">
					<s id="N268F4"><!-- NEW -->Duodecim&ograve;, &longs;i ver&ograve; ita rotetur, vt altera eius extremitas velociore <lb/>motu feratur, e&longs;t alius motus mixtus ex curuo axis &amp; circulari orbis, <lb/>dixi curuum axis; quia non e&longs;t nece&longs;&longs;ari&ograve; circularis. </s>
				</p>
				<p id="N268FC" type="main">
					<s id="N268FE"><!-- NEW -->Decimoterti&ograve;, cum rotatur conus, mouetur motu mixto ex curuo axis <lb/>&amp; circulari orbis, hic motus &longs;atis communis e&longs;t; eius porr&ograve; ratio e&longs;t; </s>
					<s id="N26904"><!-- NEW --><lb/>quia c&ugrave;m &longs;inguli circuli &longs;uperficiei coni ita rotentur, vt motus orbis &longs;u <lb/>&aelig;qualis motui centri; cert&egrave; c&ugrave;m &longs;int omnes in&aelig;quales, &longs;patium decur&shy;<lb/>runt. </s>
					<s id="N2690D"><!-- NEW -->Hinc vertex retr&ograve; relinquitur &agrave; ba&longs;i; </s>
					<s id="N26911"><!-- NEW -->hinc ba&longs;is nece&longs;&longs;ari&ograve; retor&shy;<lb/>quetur; </s>
					<s id="N26917"><!-- NEW -->dixi autem curuum axis; </s>
					<s id="N2691B"><!-- NEW -->quippe centrum ba&longs;is non mouetur <lb/>motu pur&egrave; circulari; nam tantill&ugrave;m verticem promouet, quia motus <lb/>eius centri maxim&egrave; iuuatur &agrave; motu eius orbis, qui long&egrave; maior e&longs;t. </s>
				</p>
				<p id="N26923" type="main">
					<s id="N26925"><!-- NEW -->Decimoquart&ograve;, huc demum reuoca gyros illarum pyxidum, quarum <lb/>margines oppo&longs;iti &longs;unt circuli in&aelig;quales; quippe &longs;unt veluti fru&longs;ta co&shy;<lb/>ni, cuius angulus verticis e&longs;t valde acutus. </s>
				</p>
				<p id="N2692D" type="main">
					<s id="N2692F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 28.<emph.end type="center"/></s>
				</p>
				<p id="N2693B" type="main">
					<s id="N2693D"><!-- NEW --><emph type="italics"/>Morus di&longs;ci facil&egrave; explicari potest;<emph.end type="italics"/>; </s>
					<s id="N26946"><!-- NEW -->e&longs;t enim planum circulare, cuius <pb pagenum="366" xlink:href="026/01/400.jpg"/>centrum de&longs;cribit fer&egrave; Parabolam; </s>
					<s id="N2694F"><!-- NEW -->vnde eius motus e&longs;t mixtus ex para&shy;<lb/>bolico centri, &amp; circulari orbis in circulo horizontali; </s>
					<s id="N26955"><!-- NEW -->igitur motus cen&shy;<lb/>tri con&longs;tat ex duobus rectis, &longs;cilicet ex violento, &amp; naturali deor&longs;um; <lb/>porr&ograve; e&longs;t idem motus qui e&longs;&longs;et, &longs;i circulus verticali parallelus rotaretur <lb/>in linea parabolica de&longs;cripta in plano horizontali. </s>
				</p>
				<p id="N2695F" type="main">
					<s id="N26961"><!-- NEW -->Ob&longs;eruo autem prim&ograve; motum orbis di&longs;ci e&longs;&longs;e po&longs;&longs;e maiorem motu <lb/>centri, vel minorem, vel ip&longs;i &aelig;qualem; quod quomodo fieri po&longs;&longs;it, fus&egrave; <lb/>&longs;upr&agrave; explicuimus. </s>
				</p>
				<p id="N26969" type="main">
					<s id="N2696B"><!-- NEW -->Secund&ograve;, &longs;i altera eius portio &longs;it grauior motus orbis, non e&longs;t idem <lb/>cum centro di&longs;ci, vt patet; pr&aelig;ualet enim portio grauior, &longs;ed propi&ugrave;s <lb/>accedit ad portionem grauiorem. </s>
				</p>
				<p id="N26973" type="main">
					<s id="N26975"><!-- NEW -->Terti&ograve;, hinc c&ugrave;m di&longs;cus cadit in terram, re&longs;itit altera eius portio, &longs;ci&shy;<lb/>licet leuior; </s>
					<s id="N2697B"><!-- NEW -->quia c&ugrave;m de&longs;cribat maiorem circulum orbis, maiorem im&shy;<lb/>petum habet; hinc conuertitur di&longs;cus. </s>
				</p>
				<p id="N26981" type="main">
					<s id="N26983"><!-- NEW -->Quart&ograve;, imprimitur motus orbis in ip&longs;o iactu; </s>
					<s id="N26987"><!-- NEW -->quia &longs;cilicet vna pars <lb/>mouetur, antequam alia di&longs;cedat &egrave; manu proijcientis; vnde &longs;equitur <lb/>nece&longs;&longs;ari&ograve; motus orbis. </s>
				</p>
				<p id="N2698F" type="main">
					<s id="N26991"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 29.<emph.end type="center"/></s>
				</p>
				<p id="N2699D" type="main">
					<s id="N2699F"><emph type="italics"/>Explicari po&longs;&longs;unt omnia ph&oelig;nomena longioris<emph.end type="italics"/> <emph type="italics"/>ha&longs;t&aelig; vel &longs;ari&longs;&longs;&aelig;.<emph.end type="italics"/></s>
				</p>
				<p id="N269AC" type="main">
					<s id="N269AE"><!-- NEW -->Prim&ograve;, &longs;it ha&longs;ta in plano horizontali BG; &longs;i motu &longs;implici attollatur <lb/>extremitas B, mouebitur per arcum BA circa centrum G. <!-- KEEP S--></s>
				</p>
				<p id="N269B5" type="main">
					<s id="N269B7"><!-- NEW -->Secund&ograve;, &longs;i non mod&ograve; attollatur, &longs;ed euibretur cum aliquo vi&longs;u, ele&shy;<lb/>uata &longs;cilicet tantill&ugrave;m extremitate G, mouebitur vtraque extremitas; <lb/>non cert&egrave; circa F, &longs;ed circa E, vel D, ita vt GE &longs;it 1/4 AG per Th.55.l.7. </s>
				</p>
				<p id="N269BF" type="main">
					<s id="N269C1"><!-- NEW -->Terti&ograve;, &longs;i extremitas G non adducatur &longs;ed B per aliquam Tangentem <lb/>arcus BA euibretur pro diuer&longs;a Tangente diuer&longs;us erit motus, &longs;i v.g.per <lb/>Tangentem BH punctum D a&longs;&longs;urget per DE, igitur G redibit in C, B <lb/>ver&ograve; &longs;patium compo&longs;itum ex tota v. <!-- REMOVE S-->g. <!-- REMOVE S-->&amp; eius &longs;ubdupla BC; </s>
					<s id="N269CF"><!-- NEW -->e&longs;t autem <lb/>hic motus mixtus ex recto centri D &amp; circulari orbis; </s>
					<s id="N269D5"><!-- NEW -->&longs;i ver&ograve; extremi&shy;<lb/>tas B euibretur per Tangentem HL &amp; D, vel E per EK; haud dubi&egrave; ex&shy;<lb/>tremitas G min&ugrave;s retroagetur, &amp; acquiret dextror&longs;um maius &longs;patium. </s>
				</p>
				<p id="N269DD" type="main">
					<s id="N269DF"><!-- NEW -->Quart&ograve;, &longs;i nullo modo adducatur centrum D, vel extremitas G; </s>
					<s id="N269E3"><!-- NEW -->nun&shy;<lb/>quam G ad manum ludentis perueniet, id e&longs;t nunquam perueniet in B; <lb/>vnde manife&longs;t&egrave; patet hunc motum circularem non fieri circa C. <!-- KEEP S--></s>
				</p>
				<p id="N269EC" type="main">
					<s id="N269EE"><!-- NEW -->Quint&ograve;, &longs;i ita euibretur ha&longs;ta, vt tantill&ugrave;m adducatur centrum motus <lb/>circularis, &longs;cilicet D; </s>
					<s id="N269F4"><!-- NEW -->haud dubi&egrave; altera extremitas G cadere poterit in <lb/>B, id e&longs;t peruenire ad manum ludentis; </s>
					<s id="N269FA"><!-- NEW -->&longs;i ver&ograve; pl&ugrave;s &aelig;quo adducatur, <lb/>manum ludentis fallet, &longs;eu pr&aelig;teribit; </s>
					<s id="N26A00"><!-- NEW -->&longs;i denique min&ugrave;s adducatur, por&shy;<lb/>rigi manum oportet, vt extremitates G excipiat: porr&ograve; hic motus e&longs;t <lb/>mixtus ex tribus, &longs;cilicet ex duobus rectis centri, &amp; circulari orbis. </s>
				</p>
				<p id="N26A08" type="main">
					<s id="N26A0A"><!-- NEW -->Sext&ograve;, ita poterit adduci centrum D, &amp; &longs;imul euibrari B, vt ha&longs;t&aelig; me&shy;<lb/>dium C facto &longs;emicircuitu in dextram erectam cadat, quadretque ad in&shy;<lb/>&longs;tar iaculi mi&longs;&longs;ilis, cuius mucro deor&longs;um vergens pr&aelig;d&aelig; plagam inten&shy;<lb/>tat; hoc ludi genus o&longs;tentationem Hi&longs;panicam vulg&ograve; vocant. </s>
				</p>
				<pb pagenum="367" xlink:href="026/01/401.jpg"/>
				<p id="N26A18" type="main">
					<s id="N26A1A"><!-- NEW -->Septim&ograve;, erigitur ha&longs;ta, &longs;i extremitas G tantill&ugrave;m eleuata cum altera <lb/>oppo&longs;ita B, t&ugrave;m &longs;tatim B deprimatur; </s>
					<s id="N26A20"><!-- NEW -->vnde accidit ip&longs;am G noua acce&longs;&shy;<lb/>&longs;ione impetus &longs;ur&longs;um promoueri; </s>
					<s id="N26A26"><!-- NEW -->quippe &longs;i deprimatur B circa aliquod <lb/>centrum, attollitur G; </s>
					<s id="N26A2C"><!-- NEW -->adde aliquam refluxionem ip&longs;ius G, qu&aelig; vald&egrave; <lb/>initio remouetur &agrave; manu, vt cum deinde adducitur, maiorem faciat ar&shy;<lb/>cum; </s>
					<s id="N26A34"><!-- NEW -->igitur maiore tempore; </s>
					<s id="N26A38"><!-- NEW -->igitur &longs;en&longs;im ab ip&longs;a manu maior in illam <lb/>deriuatur impetus; denique vt deinde maiore quoque arcu extremitas B <lb/>deprimatur, remoueaturque, &amp; con&longs;equenter oppo&longs;ita G magis attolla&shy;<lb/>tur, &amp; accedat. </s>
				</p>
				<p id="N26A42" type="main">
					<s id="N26A44">Octau&ograve;, duobus aliis modis erigitur ha&longs;ta &egrave; &longs;itu horizontali. </s>
				</p>
				<p id="N26A47" type="main">
					<s id="N26A49"><!-- NEW -->Prim&ograve;, conuer&longs;o intror&longs;um brachio; </s>
					<s id="N26A4D"><!-- NEW -->eleuatur enim extremitas G. <lb/>&amp; deprimitur illic&ograve; B; </s>
					<s id="N26A53"><!-- NEW -->vnde minore conatu deinde attollitur; </s>
					<s id="N26A57"><!-- NEW -->minus e&longs;t <lb/>enim momentum vectis; </s>
					<s id="N26A5D"><!-- NEW -->&longs;it enim vectis in &longs;itu horizontali LN, &longs;itque <lb/>eius momentum vt LN; </s>
					<s id="N26A63"><!-- NEW -->cert&egrave; &longs;i attollatur in LO, eius momentum erit <lb/>tant&ugrave;m vt LM; </s>
					<s id="N26A69"><!-- NEW -->hinc facil&egrave; eleuatur pertica po&longs;t aliquam inclinationem <lb/>&longs;ur&longs;um; &longs;ecundus modus, cum torquetur extrin&longs;ecus brachium, pro quo <lb/>e&longs;t eadem pror&longs;us ratio. </s>
				</p>
				<p id="N26A71" type="main">
					<s id="N26A73">Non&ograve;, erigitur adhuc duobus modis ha&longs;ta. </s>
				</p>
				<p id="N26A76" type="main">
					<s id="N26A78">Prim&ograve;, intorto extrin&longs;ecus brachio, detortoque. </s>
					<s id="N26A7B"><!-- NEW -->Secund&ograve;, contorte <lb/>intror&longs;um reduct&oacute;que traiecto &longs;ub ha&longs;tam capite; e&longs;t autem eadem ra&shy;<lb/>tio, qu&aelig; &longs;upr&agrave;. </s>
				</p>
				<p id="N26A83" type="main">
					<s id="N26A85"><!-- NEW -->Decim&ograve;, cum erecta ha&longs;ta &longs;ur&longs;um ita proijcitur, vt po&longs;t circuitum pot <lb/>medium truncum excipiatur, mouetur motu mixto ex recto centri, &amp; <lb/>circulari orbis; quod duobus modis fieri pote&longs;t. </s>
					<s id="N26A8D"><!-- NEW -->Prim&ograve;, &longs;i extremitas qu&aelig; <lb/>tenetur manu, retr&ograve; agatur, vbi pri&ugrave;s &longs;ur&longs;um tota ha&longs;ta impul&longs;a e&longs;t; quip&shy;<lb/>pe ex eo duplici motu centri, &amp; orbis &longs;equetur conuer&longs;io ha&longs;t&aelig;, &amp; is <lb/>de&longs;cen&longs;us in quo commod&egrave; per medium truncum excipi po&longs;&longs;it. </s>
					<s id="N26A97">Secund&ograve;. </s>
					<s id="N26A9A"><lb/>hoc eodem motu mouebitur, eritque &longs;imile ph&oelig;nomenum, &longs;i extremitas, <lb/>qu&aelig; tenetur manu impul&longs;a prim&ograve; &longs;ur&longs;um cum tota ha&longs;ta, t&ugrave;m deinde <lb/>ant&egrave; pellatur, ita vt extremitas oppo&longs;ita retr&ograve; agatur. </s>
				</p>
				<p id="N26AA2" type="main">
					<s id="N26AA4"><!-- NEW -->Vndecim&ograve;, motus orbis pote&longs;t aliquando e&longs;&longs;e maior, aliquando minor, <lb/>pro diuer&longs;o &longs;cilicet impul&longs;u: </s>
					<s id="N26AAA"><!-- NEW -->idem dico de motu centri; </s>
					<s id="N26AAE"><!-- NEW -->im&ograve; po&longs;&longs;et <lb/>e&longs;&longs;e tantus motus centri, vt conuer&longs;io ha&longs;t&aelig; perfici non po&longs;&longs;et; </s>
					<s id="N26AB4"><!-- NEW -->e&longs;t au&shy;<lb/>tem motus centri velocior initio in a&longs;cen&longs;u, &amp; tardior in fine; &amp; contr&agrave; <lb/>tardior initio de&longs;cen&longs;us, &amp; in fine velocior, vt con&longs;tat ex dictis l.2. &amp; 3. <!-- KEEP S--></s>
				</p>
				<p id="N26ABD" type="main">
					<s id="N26ABF"><!-- NEW -->Duodecim&ograve;, cum motus centri modicus e&longs;t, par&ugrave;m a&longs;&longs;urgit ha&longs;ta, &amp; <lb/>lic&egrave;t morus orbis &longs;it maximus vix integram conuer&longs;ionem perficere <lb/>pote&longs;t; cum ver&ograve; motus centri maximus e&longs;t, &amp; motus orbis modicus, <lb/>etiam &longs;uam conuer&longs;ionem non perficit, &longs;ed alti&ugrave;s a&longs;&longs;urgit mucro. </s>
				</p>
				<p id="N26AC9" type="main">
					<s id="N26ACB"><!-- NEW -->Decimoterti&ograve;, centrum motus orbis non videtur e&longs;&longs;e aliud ab ip&longs;is <lb/>3/4 ver&longs;us mucronem, vt iam &longs;&aelig;pe indicauimus: porr&ograve; ni&longs;i hoc centrum <lb/>motus orbis retroagatur tantill&ugrave;m, id e&longs;t 1/4 longitudinis ha&longs;t&aelig;, non po&shy;<lb/>terit excipi per medium truncum, ni&longs;i maius producatur. </s>
				</p>
				<p id="N26AD5" type="main">
					<s id="N26AD7"><!-- NEW -->Decimoquart&ograve;, pote&longs;t centrum orbis, vel pl&ugrave;s &aelig;quo retr&ograve; agi, vel ante <lb/>pelli, vt con&longs;tat; </s>
					<s id="N26ADD"><!-- NEW -->vnde tota fer&egrave; indu&longs;tria po&longs;ita e&longs;t in temperando illius <pb pagenum="368" xlink:href="026/01/402.jpg"/>motu recto; </s>
					<s id="N26AE6"><!-- NEW -->denique non e&longs;t omittendum etiam ha&longs;tam eratam &longs;olo <lb/>nixam &longs;ur&longs;um intorto pugno ita proijci po&longs;&longs;e, vt po&longs;t circuitum excipia&shy;<lb/>tur, nec e&longs;t noua difficultas; communicatur enim prim&ograve; motus centri <lb/>rectus, t&ugrave;m motus orbis, imm&ograve;, &longs;i &longs;it breuior, etiam geminos circuitus <lb/>facit, antequam iu&longs;ta manu excipiatur. </s>
				</p>
				<p id="N26AF2" type="main">
					<s id="N26AF4">Decimoquint&ograve;, extremitas, qu&aelig; manu tenetur veloci&ugrave;s deinde moue&shy;<lb/>tur. </s>
					<s id="N26AF9">Prim&ograve;, patet experientia. </s>
					<s id="N26AFC">Secund&ograve;, maius &longs;patium conficit; </s>
					<s id="N26AFF"><!-- NEW -->ratio e&longs;t, <lb/>quia mouetur circa centrum maiore &longs;emidiametro, quas con&longs;tat 1/4 totius <lb/>ha&longs;t&aelig;, quod vt facili&ugrave;s videatur, &longs;it ha&longs;ta AE, qu&aelig; pellatur &longs;ur&longs;um mo&shy;<lb/>tu recto CE, &longs;itque motus orbis circa centrum C; </s>
					<s id="N26B09"><!-- NEW -->vbi ver&ograve; C peruenit <lb/>in D, A peruenit in L, &amp; D in I; </s>
					<s id="N26B0F"><!-- NEW -->vbi ver&ograve; C peruenit in E, A peruenit in <lb/>G &amp; D rediit in D; </s>
					<s id="N26B15"><!-- NEW -->vides quanta &longs;it differentia motus; </s>
					<s id="N26B19"><!-- NEW -->nam eo tempore, <lb/>quo A decurrit &longs;patium AKL, D decurrit tant&ugrave;m DHI; </s>
					<s id="N26B1F"><!-- NEW -->qu&aelig;nam por&shy;<lb/>r&ograve; &longs;it h&aelig;c figura; </s>
					<s id="N26B25"><!-- NEW -->cert&egrave; &longs;i non e&longs;t Ellip&longs;is, propi&ugrave;s ad illam accedit: <lb/>idem dico de de&longs;cen&longs;u ha&longs;t&aelig;, quod dictum e&longs;t de a&longs;cen&longs;u. </s>
				</p>
				<p id="N26B2B" type="main">
					<s id="N26B2D"><!-- NEW -->Decimo&longs;ext&ograve;, duobus aliis modis pote&longs;t ha&longs;ta in a&euml;re <expan abbr="c&otilde;uerti">conuerti</expan>; </s>
					<s id="N26B35"><!-- NEW -->prim&ograve;, &longs;i <lb/>mucro agatur retr&ograve;, vtraque manu admota alteri extremitati: </s>
					<s id="N26B3B"><!-- NEW -->hic autem <lb/>modus differt &agrave; prioribus, quod in illis motus centri rectus pr&aelig;cedat <lb/>motum orbis; in hoc ver&ograve; vterque &longs;imul incipiat. </s>
					<s id="N26B43"><!-- NEW -->Secund&ograve;, &longs;i prim&ograve; in <lb/>humeris liberetur ha&longs;ta, t&ugrave;m &longs;ur&longs;um euibretur; &longs;ed h&aelig;c &longs;unt facilia. </s>
				</p>
				<p id="N26B49" type="main">
					<s id="N26B4B"><!-- NEW -->Decimo&longs;eptim&ograve;, ad ha&longs;tam reuocabis baculum rotatum ab altera ex&shy;<lb/>tremitate; &longs;it enim baculus AE rotatus circa extremitatem A, t&ugrave;m &longs;ta&shy;<lb/>tim demi&longs;&longs;us. </s>
					<s id="N26B53"><!-- NEW -->Prim&ograve;, E po&longs;t &longs;emicirculum peruenit in A. Secund&ograve;, E im&shy;<lb/>primitur maior impetus, vt patet: hinc terti&ograve; mouetur velocius. </s>
					<s id="N26B59"><!-- NEW -->Quart&ograve;, <lb/>A non de&longs;cendit infra AE, po&longs;t quam demi&longs;&longs;us e&longs;t baculus, vt pater ex&shy;<lb/>perienti&acirc;; ratio e&longs;t, quia E per tangentem EL determinata impedit, ne <lb/>A deor&longs;um tendat. </s>
					<s id="N26B63"><!-- NEW -->Quint&ograve;, E per arcum EG non mouetur; </s>
					<s id="N26B67"><!-- NEW -->alioquin A <lb/>e&longs;&longs;et immobilis: </s>
					<s id="N26B6D"><!-- NEW -->pr&aelig;terea F. non mouetur motu circulari, ni&longs;i retineatur <lb/>in A; </s>
					<s id="N26B73"><!-- NEW -->&longs;ed non retinetur; igitur non mouetur per EG. Sext&ograve;, non moue&shy;<lb/>tur quoque per rectam EF, quia retinetur E ab A, &amp; reliquis partibus, <lb/>qu&aelig; min&ugrave;s habent impetus. </s>
					<s id="N26B7B"><!-- NEW -->Septim&ograve;, mouetur E per lineam curuam, qu&aelig; <lb/>accedit ad ellip&longs;im, &longs;cilicet per EHA; </s>
					<s id="N26B81"><!-- NEW -->A ver&ograve; a&longs;&longs;urgit &longs;upra AE; </s>
					<s id="N26B85"><!-- NEW -->ratio <lb/>huius motus petitur ex eo quod, neque per EF, neque per arcum EG <lb/>mouetur extremitas E; igitur per curuam de vtraque participan&shy;<lb/>tem. </s>
				</p>
				<p id="N26B8F" type="main">
					<s id="N26B91"><!-- NEW -->Decimooctau&ograve;, cum ita proijcitur baculus, vt altera extremitas cit&iacute;&ugrave;s <lb/>moueatur qu&agrave;m alia, &longs;equitur motus mixtus ex recto centri, &amp; circulari <lb/>orbis; </s>
					<s id="N26B99"><!-- NEW -->quia &longs;cilicet illa pars, qu&aelig; maiorem impetum habet, qua&longs;i retr&ograve; <lb/>agitur ab alia, qu&aelig; minorem habet, non quidem motu pur&egrave; circulari; <lb/>alioqui omnin&ograve; retineretur ab alia extremitate, &longs;ed alio mixto, quia non <lb/>omnin&ograve; retinetur. </s>
				</p>
				<p id="N26BA3" type="main">
					<s id="N26BA5"><!-- NEW -->Decimonon&ograve;, hinc pote&longs;t ita temperari motus ille orbis, vt tant&ugrave;m <lb/>&longs;emicircuitum in toto cur&longs;u impleat, cum &longs;cilicet partes omnes &aelig;quali <lb/>fer&egrave; cum impetu mouentur; </s>
					<s id="N26BAD"><!-- NEW -->&longs;i enim &aelig;qualitas e&longs;t in motu omnium <lb/>partium, mouentur omnes motu recto; </s>
					<s id="N26BB3"><!-- NEW -->&longs;i ver&ograve; motus &longs;ingularum &longs;unt <pb pagenum="369" xlink:href="026/01/403.jpg"/>vt radij, motus e&longs;t pur&egrave; circularis; &longs;i ver&ograve; e&longs;t alia in&aelig;qualitas, erit <lb/>mixtus, qui magis accedet ad circularem, qu&ograve; maior erit in&aelig;qualitas, &amp; <lb/>magis ad rectum, qu&ograve; minor erit. </s>
				</p>
				<p id="N26BC0" type="main">
					<s id="N26BC2"><!-- NEW -->Vige&longs;im&ograve;, hinc qui ludunt trunculis illis lu&longs;oriis inuer&longs;o tamen mo&shy;<lb/>re, quod &longs;&aelig;p&egrave; hic fit, quo &longs;cilicet non globus in trunculos, &longs;ed trunculi <lb/>in globum proijciantur, arripiunt trunculum ip&longs;um per medium trun&shy;<lb/>cum, vt &longs;cilicet &aelig;qualem impetum &longs;ingulis partibus imprimant; vnde <lb/>&longs;equitur motus rectus, &amp; ex motu recto vniformis trunculi ca&longs;us, ne &longs;i <lb/>altera extremitas ante aliam &longs;olum tangat, &longs;tatim re&longs;iliat alia per ali&shy;<lb/>quot gyros, &amp; &agrave; &longs;copo di&longs;cedat. </s>
				</p>
				<p id="N26BD2" type="main">
					<s id="N26BD4">Vige&longs;imoprim&ograve;, mouetur baculus proiectus eo modo, de quo num. </s>
					<s id="N26BD7"><!-- NEW -->18. <lb/>circa aliquod centrum, quod tribus quartis tribuimus ver&longs;us eam ex&shy;<lb/>tremitatem, qu&aelig; vltim&ograve; &agrave; manu dimittitur; quippe facili&ugrave;s circa hoc <lb/>centrum mouetur, de quo alibi, vnde e&longs;t motus mixtus ex recto centri, <lb/>ex recto naturali, &amp; ex circulari orbis, qu&aelig; omnia ex dictis &longs;atis intelli&shy;<lb/>guntur. </s>
				</p>
				<p id="N26BE5" type="main">
					<s id="N26BE7">Vige&longs;imo&longs;ecund&ograve;, non &longs;unt omittenda aliquot ph&oelig;nomena, qu&aelig; in <lb/>trunculorum ludo fer&egrave; &longs;emper occurrunt. </s>
					<s id="N26BEC">1&degree;. </s>
					<s id="N26BEF">&longs;i iuxta verticem tangan&shy;<lb/>tur facili&ugrave;s decutiuntur, quia maior e&longs;t vectis, 2&degree;. </s>
					<s id="N26BF4">min&ugrave;s deflectit glo&shy;<lb/>bus &agrave; &longs;uo tramite, &longs;i per &longs;ummos vertices decutiat, quia min&ugrave;s re&longs;i&longs;tunt. </s>
					<s id="N26BF9"><lb/>3&degree;. </s>
					<s id="N26BFD">hinc, &longs;i etiam per imum pedem directo ictu verberentur, pl&ugrave;s re&longs;i&shy;<lb/>&longs;tunt, quia minor e&longs;t vectis, 4&degree;. </s>
					<s id="N26C02">hinc &longs;tatim &agrave; recta via globus deflectit, <lb/>5&degree;. </s>
					<s id="N26C07">&longs;i obliqu&egrave; globus feriat trunculum, qua&longs;i lambendo, par&ugrave;m declinat <lb/>&agrave; &longs;uo cur&longs;u, quia minima e&longs;t re&longs;i&longs;tentia, qu&iacute;a obliquus ictus minimus <lb/>e&longs;t, vt con&longs;tat ex dictis &longs;&aelig;pi&ugrave;s in &longs;uperioribus libris. </s>
					<s id="N26C10"><!-- NEW -->6. cum &longs;ic obliqu&egrave; <lb/>decutitur trunculus, hic decu&longs;&longs;us deinde alios decutit; </s>
					<s id="N26C16"><!-- NEW -->quia ex obliquo <lb/>ictu cra&longs;&longs;ioris pedis agitur in vertiginem circa verticem ad in&longs;tar coni, <lb/>de quo &longs;upr&agrave;; &amp; cum maiorem gyrum de&longs;cribit, vix vnquam accidit, vt <lb/>in &longs;atis frequenti &longs;ylua in alium trunculum non incidat, quem etiam <lb/>decutit. </s>
					<s id="N26C22">7&degree;. </s>
					<s id="N26C25">aliqui tradunt artem, qua nouem trunculi decuti po&longs;&longs;unt, <lb/>quod multis modis pr&aelig;&longs;tari pote&longs;t, &longs;ed ad rem pr&aelig;&longs;entem non &longs;pe&shy;<lb/>ctat. </s>
				</p>
				<p id="N26C2C" type="main">
					<s id="N26C2E"><!-- NEW -->Vige&longs;imoterti&ograve;, e&longs;t etiam aliud ludi genus, quo pueri ru&longs;ticani ludunt; </s>
					<s id="N26C32"><!-- NEW --><lb/>e&longs;t autem minimum parallelipedum gemino mucrone hinc inde in&longs;tru&shy;<lb/>ctum, vel cuius vtraque extremitas e&longs;t emarginata, vel ad in&longs;tar fu&longs;i in <lb/>apicem coni, hinc inde de&longs;inens; &longs;i enim baculo ro&longs;trum illud ferias, <lb/>&longs;tatim a&longs;&longs;urgit. </s>
					<s id="N26C3D"><!-- NEW -->Sit enim prim&ograve; parallelipedum emarginatum AD in&shy;<lb/>cubans &longs;olo EC; </s>
					<s id="N26C43"><!-- NEW -->&longs;i ro&longs;trum A baculo percutiatur, deprimitur A circa <lb/>centrum E, &amp; attollitur D maiore quidem arcu; igitur maiore impe&shy;<lb/>tu, qui quia non retinetur omnin&ograve; non mouetur circulari motu D, <lb/>&longs;ed curuo mixto circa centrum E, quod ab extremitate D tantill&ugrave;m <lb/>eleuatur. </s>
					<s id="N26C4F">Secund&ograve;, ex hoc ph&oelig;nomeno manife&longs;t&egrave; confirmatur, quod <lb/>diximus &longs;upr&agrave; de baculo num. </s>
					<s id="N26C54">17. quod &longs;cilicet a&longs;&longs;urgat extremitas illa, <lb/>qu&aelig; manu tenetur &longs;upra horizontalem. </s>
					<s id="N26C59"><!-- NEW -->Terti&ograve;, idem pror&longs;us accidet <pb pagenum="370" xlink:href="026/01/404.jpg"/> &longs;i &longs;upra planum horizontale BA v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;it cylindrus CB extans aliqua <lb/>&longs;ui parte put&agrave; FC; </s>
					<s id="N26C68"><!-- NEW -->&longs;i percutiatur baculo ED in C, a&longs;&longs;urget propter <lb/><expan abbr="e&atilde;dem">eandem</expan> rationem motu mixto; </s>
					<s id="N26C71"><!-- NEW -->nam prim&ograve; circa centrum F deprimi&shy;<lb/>tur C, &amp; attollitur B; </s>
					<s id="N26C77"><!-- NEW -->B quidem velociore motu, vt patet; igitur &longs;ecum <lb/>attollit extremitatem oppo&longs;itam C motu mixto propter rationem iam <lb/>&longs;upr&agrave; allatam. </s>
				</p>
				<p id="N26C7F" type="main">
					<s id="N26C81">Vige&longs;imoquart&ograve;, AB &longs;i baculus in a&euml;re libratus perpendiculariter. </s>
					<s id="N26C84"><!-- NEW --><lb/>v. <!-- REMOVE S-->g. <!-- REMOVE S-->percutiatur altero baculo ED. Prim&ograve;, in centro grauitatis C <lb/>baculi AB, mouebitur AB motu recto; </s>
					<s id="N26C8F"><!-- NEW -->ratio e&longs;t, quia omnes partes mo&shy;<lb/>uentur &aelig;qualiter; igitur motu recto. </s>
					<s id="N26C95"><!-- NEW -->Secund&ograve;, tunc erit maximus <lb/>iactus, &longs;i ED percutiat C, ita vt EC media proportionalis inter ED, <lb/>&amp; eius &longs;ubduplam EG; </s>
					<s id="N26C9D"><!-- NEW -->quia ED producit maximum impetum &amp; to&shy;<lb/>tum; e&longs;t enim C centrum grauitatis impetus totius ED, &amp; centrum gra&shy;<lb/>uitatis corporis impedientis AB. Terti&ograve;, hinc &longs;i ED feriat in puncto G, <lb/>non erit tantus iactus lic&egrave;t AB proijciatur motu recto. </s>
					<s id="N26CA7"><!-- NEW -->Quart&ograve;, &longs;i <lb/>percutiatur in F, non mouebitur motu recto, vt con&longs;tat experienti&acirc;; </s>
					<s id="N26CAD"><!-- NEW --><lb/>quippe maior impetus producetur in extremitate B, qu&agrave;m in A; </s>
					<s id="N26CB2"><!-- NEW -->igitur <lb/>non mouebitur motu recto, &longs;ed mixto circa centrum mobile H. Quint&ograve;, <lb/>non producetur totus impetus, qui pote&longs;t produci ab ip&longs;o ED; </s>
					<s id="N26CBA"><!-- NEW -->quia <lb/>non impedietur totus, vt patet: quippe extremitas B facili&ugrave;s cedit. </s>
					<s id="N26CC0"><!-- NEW --><lb/>Sext&ograve;, quo punctum ictus accedet propi&ugrave;s ad extremitatem B, minor <lb/>erit motus centri, <expan abbr="maior&qacute;ue">maiorque</expan> motus circularis, &amp; con&longs;equenter minor <lb/>iactus, &amp; contr&agrave;, qu&ograve; punctum ictus accedet propi&ugrave;s ad centrum C. <lb/>Septim&ograve;, &longs;unt 6. ictuum combinationes in hoc ca&longs;u; </s>
					<s id="N26CCF"><!-- NEW -->nam vel ictus <lb/>cadet in centrum grauitatis C baculi AB vel extra; &longs;i primum, tribus <lb/>modis id fieri pote&longs;t. </s>
					<s id="N26CD7"><!-- NEW -->Prim&ograve;, &longs;i centrum grauitatis impetus baculi ED <lb/>feriat &longs;cilicet ip&longs;um C. Secund&ograve;, &longs;i aliud punctum inter CD put&agrave; K. <lb/>Terti&ograve;, &longs;i aliquod inter CE put&agrave; G; </s>
					<s id="N26CDF"><!-- NEW -->&longs;i ver&ograve; &longs;ecundum ii&longs;dem tribus mo&shy;<lb/>dis fieri pote&longs;t, &longs;ed de his &longs;atis; &longs;upere&longs;t tant&ugrave;m, ni fallor, vt ea ph&oelig;no&shy;<lb/>mena, qu&aelig; in tudiaria gladiatura ob&longs;eruari po&longs;&longs;unt, eorumque cau&longs;as <lb/>explicemus, &longs;ed illud pr&aelig;&longs;tabimus in lib.  &longs;equenti. </s>
				</p>
				<p id="N26CE9" type="main">
					<s id="N26CEB"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 13.<emph.end type="center"/></s>
				</p>
				<p id="N26CF7" type="main">
					<s id="N26CF9"><!-- NEW --><emph type="italics"/>Explicari po&longs;&longs;unt omnia ph&oelig;nomena turbinis &longs;en trochi circumacti<emph.end type="italics"/>: </s>
					<s id="N26D02"><!-- NEW -->Tur&shy;<lb/>binum puerilium duo &longs;unt genera: primum e&longs;t eorum, qui ferro mu&shy;<lb/>niuntur, qui cert&egrave; diuer&longs;&aelig; &longs;unt figur&aelig;, &longs;ph&aelig;ric&aelig;, conic&aelig; &amp;c. </s>
					<s id="N26D0A">communi&shy;<lb/>ter tamen fiunt iuxta figuram cordis, vt vides in A. <!-- KEEP S--></s>
					<s id="N26D10">Secundum e&longs;t eo&shy;<lb/>rum, qui ferro carent, quorum &longs;unt etiam diuer&longs;&aelig; figur&aelig;, communior e&longs;t <lb/>conois, vt vides in</s>
				</p>
				<p id="N26D17" type="main">
					<s id="N26D19"><!-- NEW -->Prim&ograve;, circumagitur vel &longs;cutica vt B, vel funiculo intorto vt A: <lb/>vtriu&longs;que ratio eadem e&longs;t; c&ugrave;m enim circumuolutus funiculus reduci&shy;<lb/>tur, haud dubi&egrave; trochum ip&longs;um in orbem agit. </s>
				</p>
				<p id="N26D21" type="main">
					<s id="N26D23">Secund&ograve;, cum mouetur trochus circa axem CD immobilem, e&longs;t mo&shy;<lb/>tus pur&egrave; circularis. </s>
				</p>
				<pb pagenum="371" xlink:href="026/01/405.jpg"/>
				<p id="N26D2C" type="main">
					<s id="N26D2E"><!-- NEW -->Terti&ograve;, c&ugrave;m mouetur circa axem mobilem motu recto, e&longs;t motus mix&shy;<lb/>tus ex recto &amp; circulari &longs;imilis motui rot&aelig;; cum ver&ograve; mouetur  axis in <lb/>orbem, mouetur motu mixto ex duobus circularibus, &amp; hic e&longs;t motus <lb/>veri&longs;&longs;imus turbinationis. </s>
				</p>
				<p id="N26D38" type="main">
					<s id="N26D3A"><!-- NEW -->Quart&ograve;, cau&longs;a motus orbis e&longs;t prima reductio &longs;cutic&aelig;, &longs;eu funiculi, <lb/>qu&aelig; circumagit turbinem; </s>
					<s id="N26D40"><!-- NEW -->cau&longs;a ver&ograve; motus axis e&longs;t extremitas funicu&shy;<lb/>li, vel &longs;cutic&aelig;, qu&aelig; trochum aliquo modo, vel adducit, vel qua&longs;i explodit, <lb/>vel expellit; </s>
					<s id="N26D48"><!-- NEW -->adducit quidem funiculus, cuius altera extremitas etiam <lb/>adducitur; </s>
					<s id="N26D4E"><!-- NEW -->expellitur ver&ograve; trochus, cum verbere adigitur: &longs;ed de his <lb/>paul&ograve; p&ograve;&longs;t. </s>
				</p>
				<p id="N26D54" type="main">
					<s id="N26D56"><!-- NEW -->Quint&ograve;, ide&ograve; trochus mouetur motu orbis, &longs;eu motu circulari, quia <lb/>impetus contrarii &longs;imul imprimuntur, v.g.in fig.B imprimitur impetus E <lb/>per artum EHF, &amp; F per arcum FGE: </s>
					<s id="N26D5E"><!-- NEW -->vnd&egrave; &longs;equitur nece&longs;&longs;ari&ograve; motus <lb/>circularis; hinc digitis in contrarias partes explo&longs;is turbo in orbem <lb/>agitur. </s>
				</p>
				<p id="N26D66" type="main">
					<s id="N26D68"><!-- NEW -->Sext&ograve;, diu durat i&longs;te motus circularis turbinis, quia non de&longs;truitur <lb/>ab impetu contrario grauitationis, vt iam diximus alibi, &longs;ed tant&ugrave;m ab <lb/>affrictu ad planum illud, in quo vertitur, &amp; &agrave; noua determinatione, qu&aelig; <lb/>&longs;ingulis in&longs;tantibus ponitur, qu&aelig; pro nihilo fer&egrave; haberi debet; hinc qu&ograve; <lb/>vertex turbinis, politior e&longs;t, &amp; planum in quo &longs;uos gyros agit, l&aelig;uiga&shy;<lb/>tius, diuti&ugrave;s durat eius motus. </s>
				</p>
				<p id="N26D76" type="main">
					<s id="N26D78"><!-- NEW -->Septim&ograve;, aliquando dormire dicitur turbo cum celerrim&egrave; mouetur, <lb/>defixo &longs;cilicet axe in eodem loco, &amp; &longs;itu, ratio petitur ex eo qu&ograve;d ver&shy;<lb/>tex cert&egrave; componitur cum ip&longs;o plano fact&acirc; &longs;ibi veluti in&longs;en&longs;ibili apo&shy;<lb/>theca &longs;eu fo&longs;&longs;ula, cuius tenuis margo impedit motum centri; igitur mo&shy;<lb/>tus orbis vnicus e&longs;t, igitur maior. </s>
				</p>
				<p id="N26D84" type="main">
					<s id="N26D86"><!-- NEW -->Octau&ograve;, verbere adigitur trochus, <expan abbr="ip&longs;i&qacute;ue">ip&longs;ique</expan> imprimitur prim&ograve; motus <lb/>orbis, quia lora illa &longs;cutic&aelig; trocho aduoluta, vbi deinde explicantur, tro&shy;<lb/>chum ip&longs;um circumagunt: </s>
					<s id="N26D92"><!-- NEW -->&longs;ecund&ograve; motus centri, quia eadem lora ad in&shy;<lb/>&longs;tar fund&aelig; qua&longs;i trochum explodunt; </s>
					<s id="N26D98"><!-- NEW -->&longs;ic plerumque accidit adhiberi lora, <lb/>vt longi&ugrave;s ligneus orbis proijciatur; </s>
					<s id="N26D9E"><!-- NEW -->quippe dum explicantur lora, du&shy;<lb/>plex ille motus nece&longs;&longs;ari&ograve; imprimitur; </s>
					<s id="N26DA4"><!-- NEW -->primus quidem, quia explicari <lb/>non po&longs;&longs;unt, ni&longs;i trochus circumagatur; </s>
					<s id="N26DAA"><!-- NEW -->&longs;ecundus ver&ograve;, quia explicari <lb/>lora non po&longs;&longs;unt ni&longs;i in aliquam partem ferantur, &amp; trochum ip&longs;um tra&shy;<lb/>hant, vel &longs;altem impellant; </s>
					<s id="N26DB2"><!-- NEW -->adde quod diuti&ugrave;s manet potentia applicata; <lb/>hinc maior effectus, analogiam habes in funda. </s>
				</p>
				<p id="N26DB8" type="main">
					<s id="N26DBA"><!-- NEW -->Non&ograve;, quando turbo ferro in&longs;tructus, cui funiculus aduolutus e&longs;t, re&shy;<lb/>tent&acirc; alter&agrave; funiculi extremitate, &amp; explicato eodem funiculo circum&shy;<lb/>agitur; </s>
					<s id="N26DC2"><!-- NEW -->haud dubi&egrave; maiore vi pollet hic motus, <expan abbr="durat&qacute;ue">duratque</expan> di&ugrave;, t&ugrave;m quie <lb/>funiculus e&longs;t, longior, t&ugrave;m quia maiore ni&longs;u qua&longs;i euibratur, t&ugrave;m quia <lb/>di&ugrave; manet potentia applicata; </s>
					<s id="N26DCE"><!-- NEW -->porr&ograve; duobus modis explicatur funiculus; </s>
					<s id="N26DD2"><!-- NEW --><lb/>prim&ograve; enim adducitur, &longs;eu retrahitur, ex quo accidit, vt motus centri <lb/>determinetur in <expan abbr="e&atilde;dem">eandem</expan> partem; </s>
					<s id="N26DDD"><!-- NEW -->&longs;ecund&ograve; non adducitur, &longs;ed tant&ugrave;m <lb/>altera extremitas retinetur; vnde fit, vt motus centri nullus fer&egrave; &longs;it. </s>
				</p>
				<p id="N26DE3" type="main">
					<s id="N26DE5"><!-- NEW -->Decim&ograve;, motus centri circularis in cam &longs;emper e&longs;t partem, in quam <pb pagenum="372" xlink:href="026/01/406.jpg"/>exterior turbinis portio motu orbis conuoluitur; </s>
					<s id="N26DEE"><!-- NEW -->v.g. <!-- REMOVE S-->turbo B mouetur <lb/>motu orbis per arcum EHF; </s>
					<s id="N26DF6"><!-- NEW -->igitur motu circulari centri vel axis moue&shy;<lb/>bitur per DK, &longs;i &longs;upponatur erectus perpendiculariter in plano LDK; </s>
					<s id="N26DFC"><!-- NEW --><lb/>ratio e&longs;t, quia circularis axis determinatur &agrave; circulari orbis; igitur vter&shy;<lb/>que fit in <expan abbr="e&atilde;dem">eandem</expan> partem. </s>
				</p>
				<p id="N26E07" type="main">
					<s id="N26E09"><!-- NEW -->Vndecim&ograve;, diuer&longs;a &longs;cabrities plani in quo circumagitur turbo mul&shy;<lb/>t&ugrave;m immutat turbinationis modum; tunc enim vel diuer&longs;a plani incli&shy;<lb/>nat&icirc; ratio, vel diuer&longs;&aelig; qua&longs;i fo&longs;&longs;ul&aelig;, vel in&longs;en&longs;ibiles &longs;copuli turbinem e&ograve; <lb/>&longs;&aelig;pe adigunt, quo impre&longs;&longs;i motus indoles minim&egrave; ferret. </s>
					<s id="N26E13"><!-- NEW --><lb/>Duodecim&ograve;, lic&egrave;t imprimatur motus rectus axi per adductionem, vel <lb/>emi&longs;&longs;ionem funiculi, non tamen mouetur axis motu recto; quia hic mo&shy;<lb/>tus rectus ab ip&longs;o motu orbis immutatur, ita vt ex vtroque motus fiat <lb/>mixtus, ip&longs;eque ade&ograve; axis motu qua&longs;i &longs;pirali, reliqu&aelig; ver&ograve; partes in&aelig;&shy;<lb/>quali motu circumagantur. </s>
				</p>
				<p id="N26E20" type="main">
					<s id="N26E22"><!-- NEW -->Decimoterti&ograve;, quando axis mouetur motu circulari, pote&longs;t e&longs;&longs;e circu&shy;<lb/>lus, quem de&longs;cribit maior vel minor; </s>
					<s id="N26E28"><!-- NEW -->&longs;i maior e&longs;t, i&longs;que duplus circuli <lb/>ba&longs;is trochi &longs;ingula puncta ba&longs;is de&longs;cribunt lineam cordis, dum motus <lb/>orbis, &amp; axis &aelig;quali numero circulorum con&longs;tent; </s>
					<s id="N26E30"><!-- NEW -->&longs;i ver&ograve; axis de&longs;cribit <lb/>circulum &aelig;qualem ba&longs;i, <expan abbr="&longs;it&qacute;ue">&longs;itque</expan> numerus circulorum <expan abbr="vtriu&longs;&qacute;ue">vtriu&longs;que</expan> motus &aelig;&shy;<lb/>qualis, de&longs;cribit quodlibet punctum periph&aelig;ri&aelig; ba&longs;is lineam nouam, <lb/>cuius &longs;chema hic habes, &longs;it enim circulus, quem de&longs;cribit punctum <lb/>axis, quod e&longs;t centrum ba&longs;is &longs;uprem&aelig; trochi, <expan abbr="AHKq;">AHKque</expan> &longs;itque ba&longs;is ip&longs;a <lb/>circulus EDBC; </s>
					<s id="N26E4A"><!-- NEW -->hoc po&longs;ito moueatur centrum A per circulum AHK <lb/>Q, cum erit in G, erit in F, cum in H erit in D, cum in D, erit in L; &amp;c. </s>
					<s id="N26E50"><lb/>igitur punctum periph&aelig;ri&aelig; ba&longs;is E de&longs;cribit &longs;uo motu lineam curuam <lb/>EFADLMPCAE, qu&aelig; &longs;uas habet proprietates, de quibus &longs;uo loco. </s>
				</p>
				<p id="N26E56" type="main">
					<s id="N26E58"><!-- NEW -->Decimoquart&ograve;, ob&longs;eruas, ni&longs;i fallor, mirabilem huius motus analo&shy;<lb/>giam; </s>
					<s id="N26E5E"><!-- NEW -->&longs;it enim centrum circuli, qui circa alium immobilem conuertitur, <lb/>decurrat circulum dupl&ograve; maiorem, de&longs;cribit lineam cordis, de qua &longs;upr&agrave;, <lb/>&longs;i maiorem duplo &lpar;e&acirc; tamen lege vt centrum, &amp; orbis &aelig;quali tempore <lb/>&longs;uum circulum decurrant&rpar; de&longs;cribitur linea, qu&aelig; accedit propi&ugrave;s ad cir&shy;<lb/>culum; </s>
					<s id="N26E6A"><!-- NEW -->&longs;i ver&ograve; circulus centri &longs;it &aelig;qualis circulo orbis, habes lineam in <lb/>&longs;uperiore &longs;chemate, qu&aelig; geminum <expan abbr="circul&utilde;">circulum</expan> imperfectum pr&aelig;fert, qui e&ograve; <lb/>propi&ugrave;s ad &longs;e inuicem <expan abbr="acced&utilde;t">accedunt</expan>, quo circulus centri minor e&longs;t; </s>
					<s id="N26E7A"><!-- NEW -->c&ugrave;m enim <lb/>nullus e&longs;t omnin&ograve; <expan abbr="c&etilde;tri">centri</expan> circulus, tunc ambo circuli imperfecti in vnum <lb/><expan abbr="perfect&utilde;">perfectum</expan> co&euml;unt; &longs;i ver&ograve; circulus centri &longs;it minor dupl&ograve;, &longs;ed maior &aelig;quali, <lb/>minor erit &longs;uperior illa figura EFA, &amp;c. </s>
					<s id="N26E8B">donec tandem vbi circulus cen&shy;<lb/>tri e&longs;t duplus circuli orbis vnica tant&ugrave;m figura de&longs;cribatur, &longs;cilicet linea <lb/>cordis. </s>
					<s id="N26E92"><!-- NEW -->Sed de his omnibus fus&egrave; &longs;uo loco; &longs;unt enim mirific&aelig; harum <lb/>linearum proprietates. </s>
				</p>
				<p id="N26E98" type="main">
					<s id="N26E9A"><!-- NEW -->Decimoquint&ograve;, &longs;altitat initio proiectus turbo; </s>
					<s id="N26E9E"><!-- NEW -->ratio e&longs;t, quia motus <lb/>centri maior e&longs;t; </s>
					<s id="N26EA4"><!-- NEW -->igitur ob maiorem affrictum &longs;&aelig;pi&ugrave;s re&longs;ilit; quod pro&shy;<lb/>fect&ograve; non accideret, &longs;i planum l&aelig;uigati&longs;&longs;imum e&longs;&longs;et, &amp; ferreus mucro <lb/>politi&longs;&longs;imus hinc &longs;tatim primus ille ardor deferue&longs;cit, &amp; mili&ugrave;s turbi&shy;<lb/>natur. </s>
				</p>
				<pb pagenum="373" xlink:href="026/01/407.jpg"/>
				<p id="N26EB2" type="main">
					<s id="N26EB4"><!-- NEW -->Decimo&longs;ext&ograve;, antequam quie&longs;cat turbo, inclinatur, &longs;uo&longs;que orbes agit <lb/>inclinato qua&longs;i corpore, &amp; obliquo axe; </s>
					<s id="N26EBA"><!-- NEW -->ratio e&longs;t, quia vel axis &longs;eu ferreus <lb/>mucro tantill&ugrave;m abe&longs;t &agrave; grauitatis centro, vel aliquis plani &longs;copulus, vel <lb/>decliuis plaga turbinem ip&longs;um inclinat; agit tamen adhuc aliquot obli&shy;<lb/>quos gyros propter vim prioris impetus, qu&aelig; &longs;en&longs;im &agrave; grauitatione tur&shy;<lb/>binis frangitur, &amp; tandem omnin&ograve; &longs;uperatur. </s>
				</p>
				<p id="N26EC6" type="main">
					<s id="N26EC8"><!-- NEW -->Decimo&longs;eptim&ograve;, hinc, vbi terrarum tangit depre&longs;&longs;us turbo, ad in&longs;tar <lb/>rot&aelig; deind&aelig; rotatur; ratio e&longs;t, quia multus adhuc remanet impetus ad <lb/>motum orbis determinatus, qui vbi tangitur, &longs;olum trochum ip&longs;um cum <lb/>centro ad in&longs;tar rot&aelig; pr&aelig;cipitem agit. </s>
				</p>
				<p id="N26ED4" type="main">
					<s id="N26ED6"><!-- NEW -->Decimooctau&ograve;, hinc vides naturam maxim&egrave; gaudere motu recto qui <lb/>paul&ograve; ante turbini erecto minim&egrave; concedebatur; cur enim in vnam po&shy;<lb/>ti&ugrave;s partem, qu&agrave;m in aliam? </s>
					<s id="N26EDE"><!-- NEW -->at ver&ograve; lap&longs;o iacentique facil&egrave; permittitur; <lb/>nam in plano motus orbis rot&aelig; facil&egrave; determinat motum rectum <lb/>centri. </s>
				</p>
				<p id="N26EE6" type="main">
					<s id="N26EE8"><!-- NEW -->Decimonon&ograve;, ad turbinem reuoco cubum illum, &longs;uis numeris vel <lb/>characteribus in&longs;tructum, &amp; duobus hinc inde in &longs;uprema, &amp; ima facie, <lb/>qua&longs;i paxillis, vel communi axe munitum, cuius figuram h&icirc;c habes; vol&shy;<lb/>uitur enim hic cubus circa &longs;uum axem, neque e&longs;t noua difficultas. </s>
				</p>
				<p id="N26EF2" type="main">
					<s id="N26EF4">Vige&longs;im&ograve;, huc etiam reuoca fu&longs;um, qui dum turbinatim ver&longs;atur, di&shy;<lb/>uer&longs;is etiam motibus moueri pote&longs;t &longs;ur&longs;um, deor&longs;um, dextror&longs;um, &longs;ini&shy;<lb/>&longs;tror&longs;um, &iuml;ta vt in eo mira motuum varietas ob&longs;eruari po&longs;&longs;it. </s>
				</p>
				<p id="N26EFB" type="main">
					<s id="N26EFD"><!-- NEW -->Vige&longs;imoprim&ograve;, reuocabis quoque motum parop&longs;idis, dum digito <lb/>qua&longs;i flagellatur; e&longs;t enim quoddam turbinationis genus, cuius ratio <lb/>facilis e&longs;t, &amp; con&longs;tat ex dictis. </s>
				</p>
				<p id="N26F05" type="main">
					<s id="N26F07"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 31.<emph.end type="center"/></s>
				</p>
				<p id="N26F13" type="main">
					<s id="N26F15"><!-- NEW --><emph type="italics"/>Explicari po&longs;&longs;unt ph&oelig;nomena<emph.end type="italics"/> <emph type="italics"/>motus Excentricorum<emph.end type="italics"/>; </s>
					<s id="N26F24"><!-- NEW -->&longs;it circulus ALK <lb/>M centro E; </s>
					<s id="N26F2A"><!-- NEW -->&longs;it alius excentricus ACOD centro B, circa quod mouea&shy;<lb/>tur punctum A v.g. <!-- REMOVE S-->motu orbis; </s>
					<s id="N26F32"><!-- NEW -->Prim&ograve;, nulla erit in&aelig;qualit&agrave;s motus, &longs;ed <lb/>tant&ugrave;m videbitur e&longs;&longs;e; </s>
					<s id="N26F38"><!-- NEW -->nam <expan abbr="punct&utilde;">punctum</expan> A, in quo &longs;it a&longs;trum po&longs;t decur&longs;um <lb/>quadrantem; </s>
					<s id="N26F42"><!-- NEW -->videbitur in N; </s>
					<s id="N26F46"><!-- NEW -->igitur videbitur tant&ugrave;m confeci&longs;&longs;e arcum A <lb/>N minorem quadrante; </s>
					<s id="N26F4C"><!-- NEW -->hinc motus ab A ad C indicabitur tardior; </s>
					<s id="N26F50"><!-- NEW -->at ve&shy;<lb/>AC ad O videbitur velocior; </s>
					<s id="N26F56"><!-- NEW -->quia credetur confeci&longs;&longs;e arcum maiorem <lb/>NK, &aelig;quali &longs;cilicet tempore, quo AN; </s>
					<s id="N26F5C"><!-- NEW -->hinc ab A ad C, id e&longs;t ab apog&aelig;o <lb/>dicitur e&longs;&longs;e tardior; vel ocior ver&ograve; AC ad I, id e&longs;t ad perig&aelig;um, &longs;ed h&aelig;c <lb/>&longs;unt facilia, &amp; communia, per qu&aelig; explicantur anomali&aelig;, &amp; in&aelig;quali&shy;<lb/>tates &longs;impliciores motuum c&aelig;le&longs;tium. </s>
				</p>
				<p id="N26F66" type="main">
					<s id="N26F68"><!-- NEW -->Secund&ograve;, &longs;i voluatur circulus radio AE circa centrum E, nec &longs;it vllus <lb/>motus circa centrum B; haud dubi&egrave; omnes partes excentrici ADOC <lb/>mouebuntur motu circulari &longs;ed in&aelig;quali, vt patet. </s>
				</p>
				<p id="N26F70" type="main">
					<s id="N26F72"><!-- NEW -->Terti&ograve;, &longs;i &longs;it motus circularis circa vtrumque centrum; cert&egrave; centrum <lb/>B circumagetur per circellum BGHF, punctum ver&ograve; A excentrici <lb/>de&longs;cribet hanc lineam APIQBSIRA, vt con&longs;tat ex dictis Th. 30. <lb/>num. </s>
					<s id="N26F7C">30. </s>
				</p>
				<pb pagenum="374" xlink:href="026/01/408.jpg"/>
				<p id="N26F83" type="main">
					<s id="N26F85">Quart&ograve;, hine in &longs;ingulis circuitionibus videretur facere duas, &amp; pe&shy;<lb/>rig&aelig;um videretur ver&longs;us eam partem, ver&longs;us quam videretur apog&aelig;um. </s>
				</p>
				<p id="N26F8A" type="main">
					<s id="N26F8C"><!-- NEW -->Quint&ograve;, centrum B po&longs;&longs;et moueri per circellum minorem BGHF, <lb/>vel per alium, cuius centrum e&longs;&longs;et inter BE; per hos autem circellos <lb/>explicant A&longs;tronomi diuer&longs;as excentricitatis mutationes. </s>
				</p>
				<p id="N26F94" type="main">
					<s id="N26F96">Sext&ograve;, moueretur punctum A in&aelig;qualiter, v.g. <!-- REMOVE S-->eo tempore, quo per&shy;<lb/>currit AP, percurrit tant&ugrave;m SI, vt con&longs;tat ex dictis &longs;upr&agrave;. </s>
				</p>
				<p id="N26F9D" type="main">
					<s id="N26F9F"><!-- NEW -->Septim&ograve;, po&longs;&longs;unt etiam determinari illi arcus, qui tardi&ugrave;s lic&egrave;t de&shy;<lb/>cur&longs;i, veloci&ugrave;s tamen decurri viderentur; </s>
					<s id="N26FA5"><!-- NEW -->nam in A videretur moueri <lb/>tardi&longs;&longs;im&egrave;; at ver&ograve; veloci&longs;&longs;im&egrave; in B. </s>
				</p>
				<p id="N26FAB" type="main">
					<s id="N26FAD"><!-- NEW -->Octau&ograve;, po&longs;&longs;unt plures excentrici &longs;imul componi cum pluribus etiam <lb/>concentricis; </s>
					<s id="N26FB3"><!-- NEW -->&longs;ed de iis fus&egrave; in A&longs;tronomia; h&icirc;c tantum &longs;ufficiat indi&shy;<lb/>ca&longs;&longs;e, &amp; qua&longs;i reduxi&longs;&longs;e ad principia motuum mixtorum. </s>
				</p>
				<p id="N26FB9" type="main">
					<s id="N26FBB"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 32.<emph.end type="center"/></s>
				</p>
				<p id="N26FC7" type="main">
					<s id="N26FC9"><emph type="italics"/>Po&longs;&longs;unt explicari omnia ph&oelig;nomena<emph.end type="italics"/> <emph type="italics"/>Epiciclorum.<emph.end type="italics"/></s>
					<s id="N26FD6"><!-- NEW --> Prim&ograve; &longs;it circulus H <lb/>BCK centro A, &longs;it epicyclus LIQG, centro G; </s>
					<s id="N26FDC"><!-- NEW -->a&longs;&longs;umatur quodlibet <lb/>eius punctum, put&agrave; G, quod moueatur  motu mixto id e&longs;t, motu centri, <lb/>&amp; motu orbis: po&longs;&longs;unt a&longs;&longs;ignari omnia puncta line&aelig; huius motus, om&shy;<lb/>nes velocitatis proportiones, &amp;c. </s>
				</p>
				<p id="N26FE6" type="main">
					<s id="N26FE8">Secund&ograve;, &longs;i H moueatur ver&longs;us K, &amp; G ver&longs;us Q de&longs;cribet &longs;peciem <lb/>line&aelig; cordis GZMNE. </s>
				</p>
				<p id="N26FED" type="main">
					<s id="N26FEF">Terti&ograve;, G mouebitur veloci&ugrave;s, in G quam in N, E, &amp;c. </s>
					<s id="N26FF2">tardi&longs;&longs;im&egrave; in <lb/>perig&aelig;o E, veloci&longs;&longs;im&egrave; in Apog&aelig;o G. <!-- KEEP S--></s>
				</p>
				<p id="N26FF8" type="main">
					<s id="N26FFA">Quart&ograve;, temporibus &aelig;qualibus diuer&longs;os arcus de&longs;cribit, &longs;cilicet ar&shy;<lb/>cum compr&aelig;hen&longs;um angulo HAN, NAC. </s>
				</p>
				<p id="N26FFF" type="main">
					<s id="N27001"><!-- NEW -->Quint&ograve;, &longs;i G moueatur ver&longs;us L &amp; H ver&longs;us K, tardi&longs;&longs;imus motus <lb/>er&icirc;t in apog&aelig;o G, veloci&longs;&longs;imus in perig&aelig;o E; nam eo tempore, quo &agrave; pe&shy;<lb/>rig&aelig;o conficit arcum compr&aelig;hen&longs;um angulo CAM, conficit ab apo&shy;<lb/>g&aelig;o arcum compr&aelig;hen&longs;um angulo MAH. </s>
				</p>
				<p id="N2700B" type="main">
					<s id="N2700D">Sext&ograve;, &longs;i motus epicycli &longs;it in&aelig;qualis motui centri, diuer&longs;a erit linea <lb/>hu&icirc;us motus mixti, diuer&longs;&aelig; motuum, &amp; velocitatum proportiones. </s>
				</p>
				<p id="N27012" type="main">
					<s id="N27014"><!-- NEW -->Septim&ograve;, &longs;i &longs;int duo Epicycli, erit etiam diuer&longs;a linea, &amp; diuer&longs;a mo&shy;<lb/>tuum proportio; pote&longs;t autem accidere, vt vel vterque in <expan abbr="e&atilde;dem">eandem</expan> par&shy;<lb/>tem, vel in diuer&longs;as tendant. </s>
				</p>
				<p id="N27020" type="main">
					<s id="N27022"><!-- NEW -->Octau&ograve;, pote&longs;t etiam Epicyclus rotari in excentrico, in quo ca&longs;u di&shy;<lb/>uer&longs;us erit motus, diuer&longs;a linea; qu&aelig; omnia facil&egrave; ex dictis con&longs;tant, de <lb/>quibus fus&egrave; agemus &longs;uo loco. </s>
				</p>
				<p id="N2702A" type="main">
					<s id="N2702C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 33.<emph.end type="center"/></s>
				</p>
				<p id="N27038" type="main">
					<s id="N2703A"><!-- NEW --><emph type="italics"/>Si rota moueatur in circulo parallelo illi plane, cui incubat perpendicula&shy;<lb/>riter eodem fer&egrave; motu moneri videtur, quo turbo, de quo &longs;upr&agrave;<emph.end type="italics"/>; </s>
					<s id="N27045"><!-- NEW -->a&longs;&longs;umatur <lb/>enim figura prima Th. 15. in qua &longs;it circulus immobilis in plano hori&shy;<lb/>zontali BTXD, &amp; erigatur rota BEDF, ita vt &longs;it parallela circulo <lb/>verticali, tangatque priorem circulum in B, cuius deinde periph&aelig;riam <lb/>&longs;en&longs;im percurrat; </s>
					<s id="N27051"><!-- NEW -->haud dubi&egrave; punctum B de&longs;cribet &longs;uo motu lineam, qu&aelig; <pb pagenum="375" xlink:href="026/01/409.jpg"/>pote&longs;t declinari; </s>
					<s id="N2705A"><!-- NEW -->&longs;it enim circulus immobilis BDFC, mobilis FEG, <lb/>punctum F po&longs;t decur&longs;um quadrantem FD extat &longs;upra planum hori&shy;<lb/>zontis tota ID erecta; </s>
					<s id="N27062"><!-- NEW -->po&longs;t decur&longs;um ver&ograve; &longs;emicirculum tota BK <lb/>erecta &aelig;quali BF, vt con&longs;tat; </s>
					<s id="N27068"><!-- NEW -->igitur vertatur FBK, circa FB, donec incu&shy;<lb/>bet perpendiculariter plano horizontali in BF; </s>
					<s id="N2706E"><!-- NEW -->t&ugrave;m circa FK, ita ere&shy;<lb/>ctam vertatur planum, donec incubet DI, erecta in I, fiet planum, in quo <lb/>de&longs;cribetur linea huius motus; </s>
					<s id="N27076"><!-- NEW -->a&longs;&longs;umatur autem DH &aelig;qualis AI; </s>
					<s id="N2707A"><!-- NEW -->dico <lb/>quod ducetur per FHK: </s>
					<s id="N27080"><!-- NEW -->&longs;imiliter inuenientur alia puncta, quod &longs;uffi&shy;<lb/>ciat indica&longs;&longs;e; </s>
					<s id="N27086"><!-- NEW -->e&longs;t autem hic motus maxim&egrave; in&aelig;qualis propter ratio&shy;<lb/>nem, de qua &longs;upr&agrave;: </s>
					<s id="N2708C"><!-- NEW -->&longs;ed de his &longs;atis; </s>
					<s id="N27090"><!-- NEW -->imm&ograve; certum e&longs;t punctum F &longs;uo <lb/>motu pr&aelig;dicto de&longs;cribere perfectum circulum duplum circuli rota&shy;<lb/>ti, cuius centrum e&longs;t D erectum in A, nam DH, DF, DK &longs;unt &aelig;qua&shy;<lb/>les; </s>
					<s id="N2709A"><!-- NEW -->&longs;i enim circulus tangat in M, punctum F erectum toto arcu FM, <lb/>re&longs;pondebit perpendiculariter puncto O, ita vt OM &longs;it &aelig;qualis PB, vel <lb/>HS, vel AN; erigatur autem OR, donec incubet perpendiculariter, <lb/>extat &longs;uper AD erecta in A tota QR, ita OQ &longs;it &aelig;qualis AD. <!-- KEEP S--></s>
					<s id="N270A5">Sed <lb/>quad. </s>
					<s id="N270AA"><!-- NEW -->AO e&longs;t &aelig;quale quadratis AM, MO; igitur &longs;it quad. </s>
					<s id="N270AE"><!-- NEW -->AM qua&shy;<lb/>dratum MO erit 8. igitur quadratum A 24. &longs;ed extat &longs;uper MO, QR, <lb/>&aelig;qualis OM; </s>
					<s id="N270B6"><!-- NEW -->igitur &longs;i &agrave; D erecto ducantur du&aelig; rect&aelig;, altera ad Q, altera <lb/>ad R, line&aelig; OR erect&aelig;; </s>
					<s id="N270BC"><!-- NEW -->cert&egrave; DQ erit &aelig;qualis AO; </s>
					<s id="N270C0"><!-- NEW -->e&longs;t enim ip&longs;i pa&shy;<lb/>rallela; </s>
					<s id="N270C6"><!-- NEW -->t&ugrave;m fiet triangulum ortogon ex tribus DQ, QR, DR; igitur <lb/>quadr. </s>
					<s id="N270CC"><!-- NEW -->DR e&longs;t &aelig;quale duobus DQ, QR, &longs;ed DQ e&longs;t &aelig;qualis A <lb/>O; igitur quadr. </s>
					<s id="N270D2"><!-- NEW -->DQ e&longs;t 24. QR e&longs;t &aelig;qualis OM; igitur quadr. </s>
					<s id="N270D6">QR <lb/>e&longs;t 8. igitur quadratum DR e&longs;t 32. &longs;ed quadr. </s>
					<s id="N270DB"><!-- NEW -->DF e&longs;t 32. po&longs;ito <lb/>quadrato AF 16.igitur DR erit &aelig;qualis DF; igitur circu&shy;<lb/>lus duplus, &amp;c. </s>
					<s id="N270E3">quod erat demon&shy;<lb/>&longs;trandum. <lb/><figure id="id.026.01.409.1.jpg" xlink:href="026/01/409/1.jpg"/></s>
				</p>
			</chap>
			<chap id="N270EE">
				<pb pagenum="376" xlink:href="026/01/410.jpg"/>
				<figure id="id.026.01.410.1.jpg" xlink:href="026/01/410/1.jpg"/>
				<p id="N270F8" type="head">
					<s id="N270FA"><emph type="center"/>LIBER DECIMVS, <lb/><emph type="italics"/>DE DIVERSIS MOTIONVM, VEL <lb/>imprimendi motus rationibus.<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N27109" type="main">
					<s id="N2710B"><!-- NEW -->HACTENVS explicauimus naturam cau&shy;<lb/>&longs;&aelig; formalis motus, ide&longs;t impetus in <lb/>libro primo: proprietates motus natu&shy;<lb/>ralis &longs;ecundo: tertio violenti affectio&shy;<lb/>nes; </s>
					<s id="N27117"><!-- NEW -->quarto mixti ex pluribus rectis: </s>
					<s id="N2711B"><!-- NEW --><lb/>quinto motum in diuer&longs;is planis con&longs;iderauimus; <lb/>&longs;exto reflexum; &longs;eptimo circularem; octauo fune&shy;<lb/>pendulorum vibrationes; nono mixtum ex circulari, <lb/>qu&aelig; omnia &longs;pectant, vel ad cau&longs;am formalem, vel <lb/>ad principium intrin&longs;ecum, vel ad modum etiam <lb/>intrin&longs;ecum, vel ad &longs;patium, &amp;c. </s>
					<s id="N2712A"><!-- NEW -->iam ver&ograve; con&longs;i&shy;<lb/>deramus diuer&longs;os modos, quibus impetus imprimi <lb/>pote&longs;t; pote&longs;t enim mobile proijci, pelli, trahi, percuti, <lb/>premi, &longs;u&longs;tineri, tornari, &amp;c. </s>
					<s id="N27134">de quibus omnibus iam <lb/>nobis, hoc decimo libro agendum videtur, vt dein&shy;<lb/>de vndecimo de organis motus, &amp; duodecimo de li&shy;<lb/>neis tandem agamus. <lb/><gap desc="hr tag"/></s>
				</p>
				<p id="N27140" type="main">
					<s id="N27142"><emph type="center"/><emph type="italics"/>DEFINITIO I.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2714E" type="main">
					<s id="N27150"><!-- NEW --><emph type="italics"/>IMpre&longs;&longs;io e&longs;t productio impetus in exteriore mobili, vel ni&longs;us ad illam.<emph.end type="italics"/><lb/>Explicatione multa non indiget h&aelig;c definitio; </s>
					<s id="N2715A"><!-- NEW -->dicitur productio <lb/>impetus, quia reuer&acirc; quando proijcitur lapis, in eum deriuatur aliquid <pb pagenum="377" xlink:href="026/01/411.jpg"/>ab ip&longs;o proijciente mediat&egrave;, vel immediat&egrave;, cuius vi deinde mouetur; </s>
					<s id="N27165"><!-- NEW -->at&shy;<lb/>qui vnus impetus illud ip&longs;um pr&aelig;&longs;tare pote&longs;t, vr con&longs;tat ex dictis, toto, <lb/>lib.  1. additum e&longs;t, vel ni&longs;us ad illam, vt producitur impetus in omni <lb/>pul&longs;ione, nec in omni percu&longs;&longs;ione; </s>
					<s id="N2716F"><!-- NEW -->cum enim quis pellit ingentem rupem <lb/>&longs;eu percutit pugno; nullum cert&egrave; producit impetum, ni&longs;i aliqua pars <lb/>auolet, qu&aelig; omnia con&longs;tant ex dictis l.1. </s>
				</p>
				<p id="N27177" type="main">
					<s id="N27179"><emph type="center"/><emph type="italics"/>Definitio<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N27186" type="main">
					<s id="N27188"><emph type="italics"/>Re&longs;i&longs;tentia mobilis e&longs;t illa ratio, que mobili ine&longs;t, cuius vi vel motum omnem <lb/>ip&longs;um mobile ab applicata potentia renuit vel tardiorem tantum permittit.<emph.end type="italics"/></s>
				</p>
				<p id="N27191" type="main">
					<s id="N27193"><!-- NEW -->Quid ver&ograve; &longs;it illa ratio, &amp; in quo po&longs;ita &longs;it explicabimus infr&agrave;; </s>
					<s id="N27197"><!-- NEW -->nihil <lb/>enim aliud nomine re&longs;i&longs;tenti&aelig; intelligi pote&longs;t, qu&agrave;m id, quo mobile re&shy;<lb/>&longs;i&longs;tit motui; </s>
					<s id="N2719F"><!-- NEW -->re&longs;i&longs;tere autem motui, e&longs;t vel totum impedire motum vel <lb/>eius partem, per quid autem re&longs;i&longs;tat, &amp; propter quid dicemus infr&agrave;: &longs;atis <lb/>e&longs;t dixi&longs;&longs;e, quid &longs;it re&longs;i&longs;tere &amp; re&longs;i&longs;tentia. </s>
				</p>
				<p id="N271A7" type="main">
					<s id="N271A9"><emph type="center"/><emph type="italics"/>Hypothe&longs;is.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N271B5" type="main">
					<s id="N271B7"><!-- NEW -->Lapis 20. librarum difficili&ugrave;s proijcitur, vel &longs;u&longs;tinetur ab eadem po&shy;<lb/>tenti&acirc;, qu&agrave;m lapis vnius libr&aelig;; hypothe&longs;is certa e&longs;t. </s>
				</p>
				<p id="N271BD" type="main">
					<s id="N271BF">Axiomata nulla pr&aelig;mittemus cum Theoremata lib.  1. demon&longs;trata <lb/>&longs;ufficiant. </s>
				</p>
				<p id="N271C4" type="main">
					<s id="N271C6"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N271D3" type="main">
					<s id="N271D5"><emph type="italics"/>Explicari po&longs;&longs;unt omnia ph&oelig;nomena &longs;u&longs;tentationis.<emph.end type="italics"/></s>
				</p>
				<p id="N271DC" type="main">
					<s id="N271DE"><!-- NEW -->Prim&ograve;, vt manus &longs;u&longs;tineat pondus in &longs;itu horizontali producit in &longs;e <lb/>impetum; </s>
					<s id="N271E4"><!-- NEW -->quia, c&ugrave;m brachium libero motu librari po&longs;&longs;it, &longs;uo pondere <lb/>de&longs;cenderet, ni&longs;i aliquod re&longs;i&longs;teret; </s>
					<s id="N271EA"><!-- NEW -->&longs;ed ip&longs;um brachium non re&longs;i&longs;tit; </s>
					<s id="N271EE"><!-- NEW -->igi&shy;<lb/>tur aliquid quod brachio ine&longs;t; igitur impetus. </s>
				</p>
				<p id="N271F4" type="main">
					<s id="N271F6"><!-- NEW -->Secund&ograve;, impetus, quem ip&longs;a potentia motrix in brachio producit, <lb/>non e&longs;t maior impetu grauitationis ip&longs;ius brachij; </s>
					<s id="N271FC"><!-- NEW -->quia alioquin pr&aelig;ua&shy;<lb/>leret; igitur brachium a&longs;cenderet, contra hypothe&longs;im. </s>
				</p>
				<p id="N27202" type="main">
					<s id="N27204"><!-- NEW -->Terti&ograve;, ille impetus non e&longs;t etiam minor; </s>
					<s id="N27208"><!-- NEW -->quia alioqui impetus gra&shy;<lb/>uitationis pr&aelig;ualeret; igitur brachium de&longs;cenderet, contra hypo&shy;<lb/>the&longs;im. </s>
				</p>
				<p id="N27210" type="main">
					<s id="N27212">Quart&ograve;, hinc &longs;equitur e&longs;&longs;e &aelig;qualem, c&ugrave;m &longs;it per n.1.nec &longs;it maior per <lb/>2.nec minor per 3. &longs;equitur nece&longs;&longs;ari&ograve; e&longs;&longs;e &aelig;qualem. </s>
				</p>
				<p id="N27217" type="main">
					<s id="N27219"><!-- NEW -->Quint&ograve;, &longs;ingulis in&longs;tantibus impetus productus priore in&longs;tanti de&shy;<lb/>&longs;truitur; probatur, quia quotie&longs;cumque ad lineas oppo&longs;itas ex diame&shy;<lb/>tro determinantur duo impetus &aelig;quales, de&longs;truuntur, &longs;i de&longs;trui po&longs;&longs;unt <lb/>per Theorema 123.lib.1. at ver&ograve; impetus innatus de&longs;trui non pote&longs;t, per <lb/>Theorema 77. libro 2. igitur de&longs;truitur productus &agrave; potentia mo&shy;<lb/>trice. </s>
				</p>
				<p id="N27227" type="main">
					<s id="N27229"><!-- NEW -->Sext&ograve;, propter molliores partes organi, v. <!-- REMOVE S-->g. <!-- REMOVE S-->mu&longs;culorum, neruo&shy;<lb/>rum, impetus naturalis aliquem &longs;emper effectum &longs;ortitur, com&shy;<lb/>pre&longs;&longs;ionis, diui&longs;ionis, ten&longs;ionis: </s>
					<s id="N27235"><!-- NEW -->ratio e&longs;t, quia anima non produ-<pb pagenum="378" xlink:href="026/01/412.jpg"/>cit impetum in omnibus immediat&egrave;; vt patet; </s>
					<s id="N2723E"><!-- NEW -->alioquin etiam re&longs;ectis <lb/>neruis brachij po&longs;&longs;et brachium moueri; </s>
					<s id="N27244"><!-- NEW -->igitur ill&aelig; partes, qu&aelig; tan&shy;<lb/>t&ugrave;m habent impetum grauitationis deor&longs;um, qua&longs;i pugnant cum <lb/>aliis, qu&aelig; impetum grauitationis habent impetum ab ima; </s>
					<s id="N2724C"><!-- NEW -->quemad&shy;<lb/>modum enim, cum aliquod pondus humeris incubat, vel manui; &longs;en&shy;<lb/>tio ponderis vim, cuius effectus rationem afferemus paul&ograve; p&ograve;&longs;t, ita <lb/>pror&longs;us partes, qu&aelig; immediat&egrave; ab anima impetum non accipiunt, alias <lb/>deprimunt. </s>
				</p>
				<p id="N27258" type="main">
					<s id="N2725A"><!-- NEW -->Septim&ograve;, &longs;ingulis in&longs;tantibus anima producit impetum in organo; <lb/>quia &longs;ingulis de&longs;truitur per num. </s>
					<s id="N27260"><!-- NEW -->5. igitur c&ugrave;m re&longs;i&longs;tat continu&ograve; graui&shy;<lb/>tationi, t&ugrave;m ip&longs;ius organi, t&ugrave;m partium coniunctarum cum organo, <lb/>&longs;iue &longs;int animat&aelig;, &longs;iue inanimes, debet ade&longs;&longs;e cau&longs;a huius re&longs;i&longs;tenti&aelig;; <lb/>igitur nouus impetus, c&ugrave;m prior de&longs;truatur. </s>
				</p>
				<p id="N2726A" type="main">
					<s id="N2726C"><!-- NEW -->Octau&ograve;, impetus productus in organo, quod mouetur, produ&shy;<lb/>cit impetum in aliis partibus cum ip&longs;o organo coniunctis; pro&shy;<lb/>batur; </s>
					<s id="N27274"><!-- NEW -->cum enim &longs;ingul&aelig; partes mouentur, &longs;ingul&aelig; habent impe&shy;<lb/>tum, &longs;ed &longs;ingul&aelig; impetum ab anima non habent immediat&egrave;, vt <lb/>con&longs;tat; </s>
					<s id="N2727C"><!-- NEW -->igitur aliqu&aelig; partes habent impetum ab impetu ip&longs;ius <lb/>organi: </s>
					<s id="N27282"><!-- NEW -->&longs;ecund&ograve; eodem pror&longs;us modo moueo vnguem, quo lapil&shy;<lb/>lum; </s>
					<s id="N27288"><!-- NEW -->&longs;ed lapillus, quem moueo manu, non accipiet impetum imme&shy;<lb/>diat&egrave; ab anima, &longs;ed ab organo, vel poti&ugrave;s ab impetu organi; igitur nec <lb/>vnguis, nec ali&aelig; partes, qu&aelig; non &longs;unt organum motus, lic&egrave;t cum eo <lb/>coniunct&aelig; &longs;int. </s>
				</p>
				<p id="N27292" type="main">
					<s id="N27294"><!-- NEW -->Non&ograve;, cum ver&ograve; organum non mouetur.v.g.manus quantumuis ex&shy;<lb/>ten&longs;a, vel erecta, non producit impetum in aliis partibus coniun&shy;<lb/>ctis, lic&egrave;t animatis; probatur prim&ograve;, fru&longs;tr&agrave; produceretur, c&ugrave;m <lb/>impediri po&longs;&longs;it earum motus deor&longs;um &longs;ine impetu, alioquin men&longs;a, <lb/>qu&aelig; &longs;u&longs;tinet pondus, produceret in eo impetum, quod e&longs;t ridicu&shy;<lb/>lum. </s>
					<s id="N272A2"><!-- NEW -->Secund&ograve;, quia &longs;i impetus organi producit impetum in partibus <lb/>vnitis, quo eas qua&longs;i reducit &longs;ur&longs;um; </s>
					<s id="N272A8"><!-- NEW -->igitur impetus grauitationis <lb/>partium vnitarum producit etiam impetum deor&longs;um in organo; <lb/>imm&ograve; daretur proce&longs;&longs;us in infinitum, de quo paul&ograve; p&ograve;&longs;t. </s>
				</p>
				<p id="N272B0" type="main">
					<s id="N272B2"><!-- NEW -->Decim&ograve;, cum manus &longs;u&longs;tinet aliquod pondus immobiliter, non <lb/>producit in eo impetum; </s>
					<s id="N272B8"><!-- NEW -->Prim&ograve;, quia, &longs;i non producitur impe&shy;<lb/>tus in alijs partibus vnitis, lic&egrave;t animatis, mult&ograve; min&ugrave;s in alijs; </s>
					<s id="N272BE"><!-- NEW --><lb/>Secund&ograve;, quia eodem modo &longs;u&longs;tinetur pondus &agrave; manu, quo ab alio <lb/>corpore inanimo, v. <!-- REMOVE S-->g. <!-- REMOVE S-->&agrave; men&longs;a; </s>
					<s id="N272C9"><!-- NEW -->&longs;ed h&aelig;c non producit impetum in <lb/>pondere, quod &longs;u&longs;tinet, vt dicam paul&ograve; p&ograve;&longs;t; </s>
					<s id="N272CF"><!-- NEW -->Terti&ograve;, quia fru&longs;tr&agrave; pro&shy;<lb/>duceretur; </s>
					<s id="N272D5"><!-- NEW -->quia mod&ograve; manus &longs;u&longs;tinens &longs;tet immobilis; haud dubi&egrave; etiam <lb/>&longs;ublato omni extrin&longs;eco impetu &agrave; pondere adhuc &longs;u&longs;tinebitur. </s>
				</p>
				<p id="N272DB" type="main">
					<s id="N272DD">Dices; </s>
					<s id="N272E0"><!-- NEW -->igitur fru&longs;tr&agrave; produceretur impetus in manu; </s>
					<s id="N272E4"><!-- NEW -->Re&longs;p. negando <lb/>quia ni&longs;i potentia motrix produceret impetum in manu, ab ip&longs;o pon&shy;<lb/>dere deprimeretur; igitur non e&longs;t fru&longs;tr&agrave; omnin&ograve; ille impetus. </s>
				</p>
				<p id="N272EC" type="main">
					<s id="N272EE"><!-- NEW -->Dices, non habet motum; </s>
					<s id="N272F2"><!-- NEW -->igitur e&longs;t fru&longs;tr&agrave;; </s>
					<s id="N272F6"><!-- NEW -->Re&longs;p. omnem impetum <lb/>non e&longs;&longs;e fru&longs;tr&agrave;, lic&egrave;t careat motu, vt patet in ip&longs;o impetu innato, <pb pagenum="379" xlink:href="026/01/413.jpg"/>cuius duplex e&longs;t effectum; </s>
					<s id="N27301"><!-- NEW -->&longs;cilicet grauitatio, &amp; motus, vt ali&agrave;s iam in&shy;<lb/>dicauimus; </s>
					<s id="N27307"><!-- NEW -->&longs;imiliter impetus productus &agrave; potentia motrice, in &longs;uo or&shy;<lb/>gano habere pote&longs;t duplicem effectum; </s>
					<s id="N2730D"><!-- NEW -->primus e&longs;t motus; </s>
					<s id="N27311"><!-- NEW -->&longs;ecundus e&longs;t <lb/>ni&longs;us &longs;eu conatus oppo&longs;itus extrin&longs;eco motui; </s>
					<s id="N27317"><!-- NEW -->quemadmodum enim in&shy;<lb/>natus &longs;emper habet motum, ni&longs;i impediatur ab alio corpore, ita &amp; im&shy;<lb/>petus organi potenti&aelig; motricis, nec e&longs;t magna difficultas; imm&ograve; cla&shy;<lb/>ri&longs;&longs;ima vtriu&longs;que potenti&aelig; analogia. </s>
				</p>
				<p id="N27321" type="main">
					<s id="N27323"><!-- NEW -->Vndecim&ograve;, hinc ben&egrave; explicatur, quomodo defatigetur ten&longs;um bra&shy;<lb/>&longs;iue coniunctum &longs;iue coniunctum; </s>
					<s id="N27329"><!-- NEW -->&longs;it cum extrin&longs;eco <expan abbr="p&otilde;dere">pondere</expan>, &longs;iue <expan abbr="c&utilde;">cum</expan> pro&shy;<lb/>pria tant&ugrave;m grauitate; </s>
					<s id="N27337"><!-- NEW -->quia partes aliqu&aelig; tendunt deor&longs;um, ali&aelig; ver&ograve; &longs;ur&shy;<lb/>&longs;um; </s>
					<s id="N2733D"><!-- NEW -->hinc &longs;emper fit aliqua ten&longs;io; igitur aliqua diui&longs;io; </s>
					<s id="N27341"><!-- NEW -->igitur dolor, &longs;ic <lb/>enim tenditur funis &agrave; <expan abbr="p&otilde;dere">pondere</expan> pendulo, pondus ver&ograve; <expan abbr="incub&atilde;s">incubans</expan> t&ugrave;m aliquas <lb/>partes premit, t&ugrave;m alias maxim&egrave; di&longs;trahit, in quo non e&longs;t difficultas; </s>
					<s id="N27351"><!-- NEW -->&longs;i <lb/>autem manus incubet men&longs;&aelig;, v. <!-- REMOVE S-->g. <!-- REMOVE S-->&amp; pondus manui fit tant&ugrave;m com&shy;<lb/>pre&longs;&longs;io partium, qu&aelig; pro mollitie facil&egrave; cedunt &amp; &longs;eparantur; </s>
					<s id="N2735D"><!-- NEW -->igitur <lb/>pondus producit impetum in manu &amp; neruis; alioquin nulla e&longs;&longs;et ten&shy;<lb/>&longs;io, neque compre&longs;&longs;io. </s>
				</p>
				<p id="N27365" type="main">
					<s id="N27367"><!-- NEW -->Duodecim&ograve;, hinc ben&egrave; colligo non produci impetum &agrave; potentia mo&shy;<lb/>trice in toto organo; </s>
					<s id="N2736D"><!-- NEW -->quia &longs;i hoc e&longs;&longs;et, omnes partes &longs;tarent immobili&shy;<lb/>ter; </s>
					<s id="N27373"><!-- NEW -->e&longs;&longs;et enim hic impetus &aelig;qualis impetui grauitationis, t&ugrave;m organi, <lb/>t&ugrave;m ponderis; </s>
					<s id="N27379"><!-- NEW -->t&ugrave;m aliarum partium, cum organo coniunctarum; </s>
					<s id="N2737D"><!-- NEW -->igitur <lb/>nulla e&longs;&longs;et defatigatio; quia tam facil&egrave; anima produceret impetum, <lb/>2&degree;.in&longs;tanti, 3&degree;, 4&degree;. </s>
					<s id="N27385">&amp;c. </s>
					<s id="N27388">qu&agrave;m 1&degree;; </s>
					<s id="N2738B"><!-- NEW -->&longs;ed nulla e&longs;t defatigatio pro 1&degree;; </s>
					<s id="N2738F"><!-- NEW -->igitur <lb/>nulla e&longs;&longs;et in reliquis, quod tamen e&longs;t contra hypothe&longs;im; </s>
					<s id="N27395"><!-- NEW -->imm&ograve; po&longs;&longs;e&shy;<lb/>mus liber&egrave; moueri per medium a&euml;ra; cum enim 1&degree;. </s>
					<s id="N2739B"><!-- NEW -->in&longs;tanti po&longs;&longs;emus <lb/>producere impetum maiorem impetu grauitationis, vt patet; </s>
					<s id="N273A1"><!-- NEW -->cert&egrave; non <lb/>de&longs;trueretur totus, 2&degree; in&longs;tanti; igitur cum 2&degree;. </s>
					<s id="N273A7">in&longs;tanti po&longs;&longs;et &aelig;qualis <lb/>1&degree;. </s>
					<s id="N273AC"><!-- NEW -->impetus produci; </s>
					<s id="N273B0"><!-- NEW -->&longs;emper intenderetur; </s>
					<s id="N273B4"><!-- NEW -->igitur facil&egrave; moueremur, <lb/>quod ab&longs;urdum e&longs;t; </s>
					<s id="N273BA"><!-- NEW -->igitur po&longs;&longs;umus quidem &longs;altu &longs;ur&longs;um totum cor&shy;<lb/>pus attollere; </s>
					<s id="N273C0"><!-- NEW -->at c&ugrave;m in omnibus partibus potentia motrix non pro&shy;<lb/>ducat impetum immediat&egrave;; </s>
					<s id="N273C6"><!-- NEW -->cert&egrave; deor&longs;um tendunt, motu naturaliter <lb/>accelerato, vnde tandem organum ip&longs;um deor&longs;um &longs;ecum trahunt; &longs;ed <lb/>de his ali&agrave;s plura, cum de potentia progre&longs;&longs;iua. </s>
				</p>
				<p id="N273CE" type="main">
					<s id="N273D0"><!-- NEW -->Decimoterti&ograve;, quando pondus &longs;u&longs;tinetur &agrave; plano immobili, v. <!-- REMOVE S-->g. <!-- REMOVE S-->&agrave; <lb/>men&longs;a, non producitur in eo impetus &longs;ur&longs;um &agrave; men&longs;a; quia impetus <lb/>producitur tant&ugrave;m ad extra ab alio impetu, per Th.42. l.1. &longs;ed nullus e&longs;t <lb/>impetus &longs;ur&longs;um in men&longs;a, vt patet. </s>
				</p>
				<p id="N273DE" type="main">
					<s id="N273E0"><!-- NEW -->Decimoquart&ograve;, pondus non producit impetum in ip&longs;a men&longs;a, ni&longs;i vel <lb/>tota men&longs;a, vel aliqu&aelig; eius partes moueantur, vel comprimantur, vel <lb/>dilatentur; </s>
					<s id="N273E8"><!-- NEW -->quod reuera fer&egrave; &longs;emper accidit; </s>
					<s id="N273EC"><!-- NEW -->quia cum &longs;it perpetuum <lb/>corporum effluuium, mult&aelig; partes &longs;eparantur vi ponderis, qu&aelig; ab iis <lb/>corpu&longs;culis, qu&aelig; auolarunt, continebantur; </s>
					<s id="N273F4"><!-- NEW -->&longs;ic tandem po&longs;t multos an&shy;<lb/>nos trabs lignea incubanti ponderi cedit; </s>
					<s id="N273FA"><!-- NEW -->&longs;ic lapis &longs;en&longs;im terram de&shy;<lb/>primit, &longs;ic globus plumbeus diuti&ugrave;s mol&aelig; incubans, &longs;ibi qua&longs;i fo&longs;&longs;ulam <lb/>fingit, depre&longs;&longs;is duntaxat mollioribus partibus; </s>
					<s id="N27402"><!-- NEW -->quod cert&egrave; fit vel in-<pb pagenum="380" xlink:href="026/01/414.jpg"/>&longs;en&longs;ibili motu vel per &longs;eparationem aliquarum partium; </s>
					<s id="N2740B"><!-- NEW -->cum enim da&shy;<lb/>to quocumque motu, dari po&longs;&longs;it tardior; cert&egrave; pote&longs;t e&longs;&longs;e continuus <lb/>motus, quo per centum annos, vix latus vnguis acquiratur, quod nemo <lb/>Philo&longs;ophus mirabitur, qui naturam motus circularis prob&egrave; intelle&shy;<lb/>xerit. </s>
				</p>
				<p id="N27417" type="main">
					<s id="N27419"><!-- NEW -->Decimoquint&ograve;, brachium omnin&ograve; explicatum difficili&ugrave;s &longs;u&longs;tinet <lb/>pondus, quam contractum; </s>
					<s id="N2741F"><!-- NEW -->quia maius e&longs;t explicati momentum, vt pa&shy;<lb/>tet; e&longs;t enim qua&longs;i longior vectis circa extremum humerum rotatus. </s>
				</p>
				<p id="N27425" type="main">
					<s id="N27427">Obijceret aliquis, contra ea qu&aelig; diximus num. </s>
					<s id="N2742A"><!-- NEW -->14. &longs;it globulus libram <lb/>pendens incubans men&longs;&aelig; 99. librarum; </s>
					<s id="N27430"><!-- NEW -->haud dubi&egrave; qui men&longs;am pon&shy;<lb/>derat, centum librarum pondus &longs;u&longs;tinet; igitur globulus producit in <lb/>men&longs;a impetum. </s>
					<s id="N27438"><!-- NEW -->Re&longs;p. neg. <!-- REMOVE S--><expan abbr="con&longs;eq.">con&longs;eque</expan> nam ide&ograve; &longs;entitur pondus 100. li&shy;<lb/>brarum; quia vtrumque pondus grauitatione communi in &longs;uppo&longs;itam <lb/>grauitat manum. </s>
				</p>
				<p id="N27445" type="main">
					<s id="N27447"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N27454" type="main">
					<s id="N27456"><emph type="italics"/>Explicari po&longs;&longs;unt omnia ph&oelig;nomena detentionis.<emph.end type="italics"/></s>
				</p>
				<p id="N2745D" type="main">
					<s id="N2745F"><!-- NEW -->Prim&ograve;, aliquis detinetur, &longs;imul, &amp; &longs;u&longs;tinetur; </s>
					<s id="N27463"><!-- NEW -->&longs;it globum pendulum <lb/>fune, cuius altera extremitas manu tenetur immobili; </s>
					<s id="N27469"><!-- NEW -->nullus autem <lb/>producitur impetus in ip&longs;o globo, quo &longs;ur&longs;um, qua&longs;i attollatur; </s>
					<s id="N2746F"><!-- NEW -->quod <lb/>probatur, ii&longs;dem omnin&ograve; rationibus, quibus probauimus in &longs;uperiori <lb/>Theo. <!-- REMOVE S-->de &longs;u&longs;tentatione; </s>
					<s id="N27479"><!-- NEW -->ip&longs;a tamen chorda, &longs;i vel brachio, vel digito cir&shy;<lb/>cumuoluatur, &longs;ua vbique inurit ve&longs;tigia; </s>
					<s id="N2747F"><!-- NEW -->premit enim molliorem car&shy;<lb/>nem, &amp; neruos; huic aliqua diui&longs;io; hinc dolor: nec in hoc &longs;ingularis <lb/>e&longs;t difficultas. </s>
				</p>
				<p id="N27487" type="main">
					<s id="N27489"><!-- NEW -->Secund&ograve;, retinetur aliquod mobile, per quamlibet lineam, vel fune, <lb/>vel vnco, vel manu, v.g. <!-- REMOVE S-->auolans auis filo, indomitus equus fr&aelig;no, di&longs;ce&shy;<lb/>dens homo pallio vel manu; </s>
					<s id="N27493"><!-- NEW -->hoc po&longs;ito, non producitur impetus &agrave; reti&shy;<lb/>nente in mobili retento per &longs;e; </s>
					<s id="N27499"><!-- NEW -->quia perinde &longs;e habet, atque &longs;i rupes im&shy;<lb/>mobilis retineret annulo ferreo, vel vnco; </s>
					<s id="N2749F"><!-- NEW -->&longs;ed rupes non producit im&shy;<lb/>petum in eo corpore, quod retinet, dixi per &longs;e; </s>
					<s id="N274A5"><!-- NEW -->nam &longs;i partes aliqu&aelig; <lb/>&longs;eparari po&longs;&longs;int vel dilatari; haud dubi&egrave; producitur in iis impetus. </s>
				</p>
				<p id="N274AB" type="main">
					<s id="N274AD"><!-- NEW -->Terti&ograve;, hinc &longs;i duo retineant &longs;e &longs;e inuicem vel fune, vel annulo, vel <lb/>cylindro, multus impetus producitur ab vtroque in altero; </s>
					<s id="N274B3"><!-- NEW -->quippe ten&shy;<lb/>duntur nerui &amp; mu&longs;culi, ex qua ten&longs;ione mult&aelig; partes &longs;eparantur; </s>
					<s id="N274B9"><!-- NEW -->hinc <lb/>dolor &amp; defatigatio; </s>
					<s id="N274BF"><!-- NEW -->igitur producitur impetus, quod cert&egrave; clari&longs;&longs;im&egrave; <lb/>&longs;equitur ex no&longs;tris principiis; </s>
					<s id="N274C5"><!-- NEW -->cum enim potentia motrix alicui mobili <lb/>applicatur, quod &longs;imul totum mouere non pote&longs;t propter re&longs;i&longs;tentiam <lb/>vel ip&longs;ius molis, vel impetus contrarij; </s>
					<s id="N274CD"><!-- NEW -->&longs;i fort&egrave; aliqua pars amoueri po&shy;<lb/>te&longs;t, &amp; &longs;eparari ab aliis in eam potentia applicata &longs;uas vires exerit; quo&shy;<lb/>modo ver&ograve; rumpatur funis, vtrimque tractus, dicemus paul&ograve; p&ograve;&longs;t, cum <lb/>de tractione. </s>
				</p>
				<p id="N274D7" type="main">
					<s id="N274D9"><!-- NEW -->Quart&ograve;, retinetur aliquod mobile immobiliter in plano decliui, id&shy;<lb/>que duobus modus; prim&ograve;, qua&longs;i trahendo: </s>
					<s id="N274DF"><!-- NEW -->&longs;ecund&ograve;, qua&longs;i pellendo, nul&shy;<lb/>lus impetus producitur per &longs;e in mobili retento &agrave; retinente; </s>
					<s id="N274E5"><!-- NEW -->quod pro-<pb pagenum="381" xlink:href="026/01/415.jpg"/>batur eodem modo, quo &longs;upr&agrave;; </s>
					<s id="N274EE"><!-- NEW -->per accidens autem producitur propter <lb/><expan abbr="e&atilde;dem">eandem</expan> rationem vnde &longs;upr&agrave;; </s>
					<s id="N274F7"><!-- NEW -->&longs;uppono autem nullo modo vel trahi <lb/>&longs;ur&longs;um, vel pelli vtrimque: porr&ograve; retinetur ab &aelig;quali potentia, quod <lb/>iam alibi demon&longs;trauimus lib.5. in quo etiam fus&egrave; explicuimus diuer&shy;<lb/>&longs;as lineas, quibus potentia applicari pote&longs;t. </s>
				</p>
				<p id="N27501" type="main">
					<s id="N27503"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N27510" type="main">
					<s id="N27512"><emph type="italics"/>Hinc facil&egrave; explicantur omnia ph&oelig;nomena lationis.<emph.end type="italics"/></s>
				</p>
				<p id="N27519" type="main">
					<s id="N2751B"><!-- NEW -->Prim&ograve;, lationem appello illam impre&longs;&longs;ionem, qua potentia motrix <lb/>aliquid &longs;uo organo, mediat&egrave; vel immediat&egrave; coniunctum &longs;ecum vna de&shy;<lb/>fert; </s>
					<s id="N27523"><!-- NEW -->&longs;ic dum quis ambulat, pileum etiam, quo caput tegitur, mouet; &longs;ic <lb/>equus rapit, nauis vehit nautam, currus aurigam defert. </s>
				</p>
				<p id="N27529" type="main">
					<s id="N2752B"><!-- NEW -->Secund&ograve;, imprimitur impetus in vtroque; probatur facil&egrave;; quia <lb/>vtrumque mouetur cum eo tamen di&longs;crimine, quod lator in &longs;e producit <lb/>impetum, qui in mobili delato alium producit. </s>
				</p>
				<p id="N27533" type="main">
					<s id="N27535"><!-- NEW -->Terti&ograve;, impetus latoris &aelig;qualis e&longs;t impetui delato, quia vtrique ine&longs;t <lb/>&aelig;qualis motus; igitur &aelig;qualis impetus. </s>
				</p>
				<p id="N2753B" type="main">
					<s id="N2753D"><!-- NEW -->Quart&ograve;, hinc c&ugrave;m nauis imprimat impetum iis omnibus, qu&aelig; vehit <lb/>&aelig;qualem &longs;uo, non e&longs;t mirum &longs;i motus qui ob&longs;eruantur &egrave; naui mobili <lb/>t&ugrave;m in proiectis, t&ugrave;m in demi&longs;&longs;is, t&ugrave;m in di&longs;per&longs;is, &longs;imiles omnin&ograve; iis <lb/>appareant, qui ob&longs;eruantur &egrave; naui immobili, lic&egrave;t omnin&ograve; &longs;int di&longs;&longs;imi&shy;<lb/>les; qu&aelig; omnia fus&egrave; explicui l.4. </s>
				</p>
				<p id="N27549" type="main">
					<s id="N2754B"><!-- NEW -->Quint&ograve;, hinc qu&aelig; vehuntur naui non &longs;eparantur ab ip&longs;a naui, quia <lb/>&aelig;quali motu feruntur, ni&longs;i nauis illic&ograve; &longs;i&longs;tat; </s>
					<s id="N27551"><!-- NEW -->quia impetus prior, non &longs;ta&shy;<lb/>tim de&longs;truitur, quod iam explicuimus alibi; </s>
					<s id="N27557"><!-- NEW -->imm&ograve; &longs;e&longs;e aliquando &longs;ub&shy;<lb/>trahit equiti; </s>
					<s id="N2755D"><!-- NEW -->quia, &longs;cilicet, demi&longs;&longs;o vel inflexo tantill&ugrave;m dor&longs;o, perni&shy;<lb/>citer &longs;e&longs;e eripit; </s>
					<s id="N27563"><!-- NEW -->idem accidit globo, quem in plano horizontali l&aelig;ui&shy;<lb/>gato &longs;u&longs;tines; </s>
					<s id="N27569"><!-- NEW -->&longs;i enim illic&ograve; demittas orbem velociter ductum, vel &longs;ta&shy;<lb/>tim ducas reduca&longs;que; haud dubi&egrave; globus in eo plano mouebitur. </s>
				</p>
				<p id="N2756F" type="main">
					<s id="N27571"><!-- NEW -->Sext&ograve;, qu&aelig;dam humeris &amp; collo, qu&aelig;dam capite, alia manu feruntur, <lb/>etiam liquida va&longs;e contenta; </s>
					<s id="N27577"><!-- NEW -->vas autem ip&longs;um effunditur, &longs;i motus ali&shy;<lb/>qua notabili morula interrumpatur; </s>
					<s id="N2757D"><!-- NEW -->c&ugrave;m enim &longs;uperficies aqu&aelig; v. <!-- REMOVE S-->g. <lb/><!-- REMOVE S-->in eam partem adhuc moueatur, in quam pri&ugrave;s erat denominata; certe <lb/>&longs;i maior e&longs;t motus, effunditur aqua. </s>
				</p>
				<p id="N27588" type="main">
					<s id="N2758A"><!-- NEW -->Septim&ograve;, hinc e&longs;t aliquod artificium, quo ita po&longs;&longs;int in plano hori&shy;<lb/>zontali verticali manubrio in&longs;tructo deferri orbes pleni liquore, vt ni&shy;<lb/>hil penitus effundatur; </s>
					<s id="N27592"><!-- NEW -->&longs;i enim ita temperetur brachij motus, vt &longs;it con&shy;<lb/>tinuus &amp; &aelig;quabilis, non mod&ograve; nihil effundetur; </s>
					<s id="N27598"><!-- NEW -->ver&ugrave;m etiam, ne ip&longs;a <lb/>quidem &longs;uperficies liquoris mutabitur; </s>
					<s id="N2759E"><!-- NEW -->vt autem &longs;it continuus ille bra&shy;<lb/>chij motus, &amp; &aelig;quabilis; </s>
					<s id="N275A4"><!-- NEW -->debet ita porrigi brachium, &longs;eu componi cum <lb/>in&aelig;quali reliqui corporis motu, vt eo aliquando tardior, aliquando ve&shy;<lb/>locior &longs;it; porr&ograve; h&aelig;c in&aelig;qualitas motus progre&longs;&longs;iui procedit ex duplici <lb/>illo qua&longs;i gemini crucis arcu, geminoque vtriu&longs;que centro, &longs;ed de hoc <lb/>alibi. </s>
				</p>
				<p id="N275B0" type="main">
					<s id="N275B2"><!-- NEW -->Octau&ograve;, hinc qu&ograve; veloci&ugrave;s corpus progredietur minoribu&longs;que, lic&egrave;t, <pb pagenum="382" xlink:href="026/01/416.jpg"/>frequentioribus pa&longs;&longs;ibus, brachij motus accedit propi&ugrave;s ad &aelig;quabilem; </s>
					<s id="N275BB"><!-- NEW --><lb/>igitur min&ugrave;s mutatur &longs;uperficies liquoris va&longs;e contenti; </s>
					<s id="N275C0"><!-- NEW -->hinc in naui, <lb/>qu&aelig; veloci&longs;&longs;imo motu fertur, ne tremit quidem &longs;uperficies aqu&aelig;, quam <lb/>repo&longs;itam quis habet in va&longs;e; denique qu&ograve; &longs;uperficies concaua orbis <lb/>&longs;eu va&longs;is e&longs;t maioris circuli facili&ugrave;s effunditur liquor, quia planum e&longs;t <lb/>minus decliue, &amp; minus recedit ab horizontali, &amp; contr&agrave; &longs;i e&longs;t minoris <lb/>&longs;ph&aelig;r&aelig; &longs;eu circuli, hinc fort&egrave; tantus e&longs;t maris &aelig;&longs;tus in Oceano, &amp; mo&shy;<lb/>dicus vald&egrave; in Mediterraneo, &longs;ed de his alibi. </s>
				</p>
				<p id="N275D0" type="main">
					<s id="N275D2">Non&ograve;, his adde amphoras illas aqua, vel lacte ad &longs;ummum v&longs;que <lb/>marginem repletas, quas ru&longs;tican&aelig; f&oelig;min&aelig; &egrave; &longs;ummo capite ita portant, <lb/>vt nihil penitus effundatur, quia &longs;cilicet ten&longs;o collo ambulant, vt capi&shy;<lb/>tis motus ad &aelig;quabilem propius accedat. </s>
				</p>
				<p id="N275DB" type="main">
					<s id="N275DD"><!-- NEW -->Decim&ograve;, non e&longs;t omittendum ille orbis gyrus cum &longs;cypho pleno; <lb/>quod vt melius intelligatur. </s>
					<s id="N275E3"><!-- NEW -->Sit orbis AFEG pendulus filo FA; </s>
					<s id="N275E7"><!-- NEW -->&longs;it <lb/>&longs;cyphus EDC plenus aqua vel alio liquore, puncto circuli E in&longs;idens, <lb/>t&ugrave;m rotetur orbis circa centrum F; </s>
					<s id="N275EF"><!-- NEW -->haud dubi&egrave;, ne gutta quidem aqu&aelig; <lb/>effundetur; </s>
					<s id="N275F5"><!-- NEW -->ratio e&longs;t, c&ugrave;m E &longs;it &longs;emper punctum oppo&longs;itum centro, mo&shy;<lb/>tus F &amp; &longs;cyphus motu illo circulari maxim&egrave; pellatur, prematurque ver&shy;<lb/>&longs;us E, aqua ip&longs;a etiam ver&longs;us E recipit impetum ver&longs;us fundum &longs;cyphi; </s>
					<s id="N275FD"><!-- NEW --><lb/>qui c&ugrave;m &longs;it inten&longs;ior natiuo propri&aelig; grauitationis aqu&aelig;, non e&longs;t mirum <lb/>&longs;i pr&aelig;ualeat, &amp; nihil penitus effundatur in gyro, pr&aelig;&longs;ertim c&ugrave;m partes <lb/>omnes aqu&aelig; moueantur eo motu, quo in primo &longs;itu omnin&ograve; relinquun&shy;<lb/>tur; </s>
					<s id="N27608"><!-- NEW -->adde quod lic&egrave;t impetus innatus tantill&ugrave;m obe&longs;&longs;et, impeditur ta&shy;<lb/>men ab illa vligine, qu&aelig; cum aqua commixta e&longs;t, de qua iam &longs;upr&agrave;; </s>
					<s id="N2760E"><!-- NEW --><lb/>quod autem &longs;cyphus impellatur ver&longs;us E, patet clari&longs;&longs;im&egrave; in funda, in <lb/>qua lapis circumagitur, &longs;ed de funda infr&agrave;, cum de proiectione; tunc <lb/>enim rem i&longs;tam demon&longs;trabimus. </s>
				</p>
				<p id="N27617" type="main">
					<s id="N27619"><!-- NEW -->Vndecim&ograve;, vt feratur cylindrus humeris commodi&ugrave;s in &longs;itu e&longs;&longs;e de&shy;<lb/><arrow.to.target n="note3"/><lb/>bet, vt &longs;upr&agrave; horizontalem eleuetur ad angulum 45. grad. <!-- REMOVE S-->&longs;it enim 60. <lb/>grad &longs;itque cylindrus AF, cuius centrum grauitatis C incubans puncto <lb/>humeri C, tunc humerus &longs;u&longs;tinet totum pondus ab&longs;olutum cylindri, <lb/>&amp; manus nihil: </s>
					<s id="N2762B"><!-- NEW -->&longs;i ver&ograve; manu erectum &longs;u&longs;tineatur in DG; haud du&shy;<lb/>bi&egrave; manus totum &longs;u&longs;tinet pondus ab&longs;olutum, humerus nihil, &longs;i &longs;u&longs;ti&shy;<lb/>neatur KCI in C, vel NCL in C, maius pondus &longs;u&longs;tinebitur propter <lb/>rationem vectis de quo in lib.  &longs;equenti. </s>
					<s id="N27635"><!-- NEW -->Denique, &longs;i &longs;u&longs;tineatur in HCE <lb/>ad angulum HCA, 60. grad. <!-- REMOVE S-->humerus &longs;u&longs;tinet vt BH, manus vt EI; </s>
					<s id="N2763D"><!-- NEW --><lb/>ergo non di&longs;tribuitur pondus &aelig;qualiter humero &amp; manui; igitur com&shy;<lb/>modi&ugrave;s fieri pote&longs;t, &longs;i &aelig;qualiter di&longs;tribuitur, quod vt fiat debet e&longs;&longs;e ad <lb/>eleuationem anguli 45. &longs;ed h&aelig;c pertinent ad libram, &amp; vectem de quibus <lb/>agemus infr&agrave;, etiam &longs;upra lib.5. &longs;&aelig;pi&ugrave;s indicauimus. </s>
				</p>
				<p id="N27648" type="margin">
					<s id="N2764A"><margin.target id="note3"/>b <emph type="italics"/>Fig.<emph.end type="italics"/>28 <lb/><emph type="italics"/>Tab.<emph.end type="italics"/>4.</s>
				</p>
				<p id="N2765C" type="main">
					<s id="N2765E"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2766B" type="main">
					<s id="N2766D"><emph type="italics"/>Aliquod mobile graue dimittitur deor&longs;um multis modis.<emph.end type="italics"/></s>
				</p>
				<p id="N27674" type="main">
					<s id="N27676">Prim&ograve;, per lineam perpendicularem, &amp; tunc e&longs;t motus pur&egrave; natura&shy;<lb/>lis, &longs;imulque omnes partes mobilis dimittuntur. </s>
				</p>
				<pb pagenum="383" xlink:href="026/01/417.jpg"/>
				<p id="N2767F" type="main">
					<s id="N27681">Secund&ograve;, per planum inclinatum tuncque &longs;i globus e&longs;t, rotatur, quia <lb/>tollitur &aelig;quilibrium. </s>
				</p>
				<p id="N27686" type="main">
					<s id="N27688">Terti&ograve;, ita dimittitur globus, vt prim&ograve; per manum qua&longs;i decliuem ca&shy;<lb/>dat, tuncque &longs;imiliter rotatur propter <expan abbr="e&atilde;dem">eandem</expan> rationem. </s>
				</p>
				<p id="N27691" type="main">
					<s id="N27693">Quart&ograve;, dimittitur funependulum, &amp; tunc de&longs;cendit per arcum. </s>
				</p>
				<p id="N27696" type="main">
					<s id="N27698">Quint&ograve;, dimittitur cylindrus, cuius altera extremitas nititur &longs;olo, &amp; <lb/>tunc de&longs;cendit etiam per arcum. </s>
				</p>
				<p id="N2769D" type="main">
					<s id="N2769F">Sext&ograve;, dimittitur baculus; </s>
					<s id="N276A2"><!-- NEW -->&longs;ed in&aelig;qualiter, ita vt altera eius extremitas <lb/>cadat, antequam alia dimittatur, &amp; tunc etiam circumagitur baculus; &longs;ed <lb/>h&aelig;c &longs;unt facilis. </s>
				</p>
				<p id="N276AA" type="main">
					<s id="N276AC"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 5.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N276B9" type="main">
					<s id="N276BB"><emph type="italics"/>Aliquot&acirc; mobile proiectum excipitur manu multis modis.<emph.end type="italics"/></s>
				</p>
				<p id="N276C2" type="main">
					<s id="N276C4">Prim&ograve;, firma &amp; fixa manu, in quam cadit eodem modo, quo caderet <lb/>in parietem, vt patet. </s>
				</p>
				<p id="N276C9" type="main">
					<s id="N276CB">Secund&ograve;, manu repellente, tunque e&longs;t maior ictus. </s>
				</p>
				<p id="N276CE" type="main">
					<s id="N276D0"><!-- NEW -->Terti&ograve;, manu &longs;en&longs;im &longs;ub&longs;idente, vt fallat ictum; </s>
					<s id="N276D4"><!-- NEW -->&longs;ic lapidem &longs;ur&longs;um <lb/>proiectum cadentem ita excipimus manu, imm&ograve; &amp; maiorem globum, <lb/>vt vix vllum ictum &longs;entiamus; </s>
					<s id="N276DC"><!-- NEW -->quod vt fiat, manus retroagi debet, non <lb/>quidem pari velocitate cum globo, &longs;ed paul&ograve; tardiore motu, vt &longs;cilicet <lb/>modicum impetum imprimat globus; </s>
					<s id="N276E4"><!-- NEW -->&longs;i enim manus pari velocitate <lb/>moueretur, nullum pror&longs;us impetum imprimeret globus; </s>
					<s id="N276EA"><!-- NEW -->&longs;i ver&ograve; non <lb/>moueretur, &longs;ed omnin&ograve; manus quie&longs;ceret, maximum ictum exceptus <lb/>globus infligeret; </s>
					<s id="N276F2"><!-- NEW -->&longs;i ver&ograve; moueatur &longs;ed paul&ograve; tardius aliquid impetus <lb/>imprimetur &longs;ingulis in&longs;tantibus, donec tandem totus ictus extingua&shy;<lb/>tur; </s>
					<s id="N276FA"><!-- NEW -->adde quod mollities manus ad extinguendum ictum poti&longs;&longs;imum <lb/>confert; analogiam habes in lana, qu&aelig; tormentorum vim penitus <lb/>eneruat. </s>
				</p>
				<p id="N27702" type="main">
					<s id="N27704">Quart&ograve;, vt longi&ugrave;s repellatur pila, &longs;ecundus modus adhiberi debet <lb/>eritque motus mixtus ex directo &amp; reflexo. </s>
				</p>
				<p id="N27709" type="main">
					<s id="N2770B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 6.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N27718" type="main">
					<s id="N2771A"><emph type="italics"/>Explicari po&longs;&longs;unt omnia ph&oelig;nomena tractionis.<emph.end type="italics"/></s>
				</p>
				<p id="N27721" type="main">
					<s id="N27723"><!-- NEW -->Prim&ograve;, trahitur mobile per productionem impetus; </s>
					<s id="N27727"><!-- NEW -->nec enim po&shy;<lb/>tentia motrix, qu&aelig; reuer&acirc; cau&longs;a e&longs;t tractionis, quidquam aliud produce&shy;<lb/>re pote&longs;t; </s>
					<s id="N2772F"><!-- NEW -->pr&aelig;terea quod trahitur, ver&egrave; mouetur; igitur per impetum, <lb/>&longs;ic differt tractio &agrave; mera detentione, de qua &longs;upr&agrave;. </s>
				</p>
				<p id="N27735" type="main">
					<s id="N27737"><!-- NEW -->Secund&ograve;, hinc tractio e&longs;t actio potenti&aelig; motricis, qua mobile ip&longs;um <lb/>propi&ugrave;s accedit ad motorem; </s>
					<s id="N2773D"><!-- NEW -->nam motor ad &longs;e trahit mobile; </s>
					<s id="N27741"><!-- NEW -->igitur <lb/>mobile accedit ad motorem: </s>
					<s id="N27747"><!-- NEW -->quod tant&ugrave;m dictum &longs;it de tractione di&shy;<lb/>recta; nam per reflexam, ip&longs;e motor ad mobile accedit, de qua <lb/>infr&agrave;. </s>
				</p>
				<p id="N2774F" type="main">
					<s id="N27751"><!-- NEW -->Terti&ograve;, quando trahitur aliquod mobile, impetus producitur in om&shy;<lb/>nibus illius partibus; </s>
					<s id="N27757"><!-- NEW -->probatur, quia omnes mouentur; igitur omnes <lb/>recipiunt impetum. </s>
					<s id="N2775D">Secund&ograve;, quia &longs;i tant&ugrave;m in vna produci impetum <pb pagenum="384" xlink:href="026/01/418.jpg"/>oporteret, vt reliqu&aelig; etiam mouerentur &agrave; quacumque potentia quodli&shy;<lb/>bet mobile trahi po&longs;&longs;et, quod e&longs;t ab&longs;urdum. </s>
				</p>
				<p id="N27767" type="main">
					<s id="N27769">Dices, alias partes re&longs;i&longs;tere. </s>
					<s id="N2776C"><!-- NEW -->Re&longs;p. igitur vt moueantur, &longs;uperari debet <lb/>illarum re&longs;i&longs;tentia; </s>
					<s id="N27772"><!-- NEW -->igitur per aliquid de nouo proctum; </s>
					<s id="N27776"><!-- NEW -->igitur per <lb/>impetum: </s>
					<s id="N2777C"><!-- NEW -->imm&ograve; non producitur in vna, ni&longs;i producatur in aliis; </s>
					<s id="N27780"><!-- NEW --><lb/>alioquin fru&longs;tr&agrave; e&longs;&longs;et ille impetus, cui nullus effectus re&longs;pon&shy;<lb/>deret; </s>
					<s id="N27787"><!-- NEW -->igitur &longs;i de&longs;truitur, quando fru&longs;tr&agrave; e&longs;&longs;et, &longs;i con&longs;eruaretur; </s>
					<s id="N2778B"><!-- NEW -->ita <lb/>etiam non producitur quando fru&longs;tr&agrave; e&longs;&longs;et, &longs;i produceretur; e&longs;t enim <lb/>par vtrimque ratio. </s>
				</p>
				<p id="N27793" type="main">
					<s id="N27795"><!-- NEW -->Quart&ograve;, hinc lic&egrave;t trahatur ingens rupes, non propterea mouetur, <lb/>quia non pote&longs;t impetus produci in omnibus illius partibus ab applica&shy;<lb/>ta potentia; igitr in nulla per Th.33.l.1. </s>
				</p>
				<p id="N2779D" type="main">
					<s id="N2779F">Dices, e&longs;t cau&longs;a nece&longs;&longs;aria applicata. </s>
					<s id="N277A2">Re&longs;p. e&longs;&longs;e quidem applicatam, &longs;ed <lb/>e&longs;&longs;e impeditam propter maximam rupis re&longs;i&longs;tentiam, quam debiliores <lb/>potenti&aelig; vires &longs;uperare non po&longs;&longs;unt. </s>
				</p>
				<p id="N277A9" type="main">
					<s id="N277AB"><!-- NEW -->Quint&ograve;, hinc vna pars tracta non &longs;equitur aliam vltr&ograve;; </s>
					<s id="N277AF"><!-- NEW -->&longs;i enim vltr&ograve; <lb/>&longs;equeretur minima potentia, &longs;ufficeret ad trahendum maximum pondus; <lb/>pr&aelig;terea &longs;ingul&aelig; partes mouentur per impetum. </s>
				</p>
				<p id="N277B7" type="main">
					<s id="N277B9">Diceret aliquis, impetus productus in vna parte producit impetum <lb/>in alia. </s>
					<s id="N277BE">Re&longs;p. negando; alioquin minima potentia quodlibet pondus <lb/>moueret contra experientiam. </s>
				</p>
				<p id="N277C3" type="main">
					<s id="N277C5"><!-- NEW -->Dices, impetus vnius corporis producit impetum in alio, &agrave; quo eius <lb/>motus impeditur; igitur impetus vnius partis producit impetum in <lb/>alia, &agrave; qua eius motus impeditur. </s>
					<s id="N277CD"><!-- NEW -->Re&longs;p. impetum, qui reuer&acirc; alicui <lb/>corpori ine&longs;t, hoc ip&longs;um pr&aelig;&longs;tare; </s>
					<s id="N277D3"><!-- NEW -->at impetus non producitur in vna <lb/>parte mobilis, ni&longs;i &longs;imul in aliis producatur; </s>
					<s id="N277D9"><!-- NEW -->vel enim producitur in <lb/>omnibus, vel in nulla; </s>
					<s id="N277DF"><!-- NEW -->hinc colliges quantum ab&longs;urdum &longs;equeretur, <lb/>ni&longs;i hoc e&longs;&longs;et; </s>
					<s id="N277E5"><!-- NEW -->quia perpetua e&longs;&longs;et impetus productio, &amp; minimus im&shy;<lb/>petus totam ip&longs;am terram moueret; </s>
					<s id="N277EB"><!-- NEW -->vide qu&aelig; diximus &longs;uper ea re toto <lb/>lib.1. nec enim totus impetus motoris producit totum &longs;uum effectum <lb/>in vnico puncto mobilis, quod ridiculum dictu e&longs;t; </s>
					<s id="N277F3"><!-- NEW -->alioquin produ&shy;<lb/>ceretur impetus inten&longs;i&longs;&longs;imus; </s>
					<s id="N277F9"><!-- NEW -->igitur in pluribus; igitur in omnibus, <lb/>qu&aelig; &longs;imul moueri debent, vel in multa. </s>
				</p>
				<p id="N277FF" type="main">
					<s id="N27801">Diceret aliquis; </s>
					<s id="N27804"><!-- NEW -->quando mouetur corpus equi, mouetur etiam ani&shy;<lb/>ma; </s>
					<s id="N2780A"><!-- NEW -->igitur &longs;ine impetu; </s>
					<s id="N2780E"><!-- NEW -->igitur per impetum corporis; </s>
					<s id="N27812"><!-- NEW -->igitur nomine <lb/>tant&ugrave;m vnionis; </s>
					<s id="N27818"><!-- NEW -->igitur pars corporis alteri vnita etiam &longs;ine impetu, <lb/>&longs;cilicet per impetum alterius moueri pote&longs;t: hanc difficultatem iam <lb/>&longs;oluimus &longs;upr&agrave; l.1.Th.38.Cor.12. </s>
				</p>
				<p id="N27820" type="main">
					<s id="N27822"><!-- NEW -->Sext&ograve;, producitur impetus &aelig;qualis in omnibus partibus, quod trahi&shy;<lb/>tur motu recto; </s>
					<s id="N27828"><!-- NEW -->quia &longs;cilicet motus e&longs;t &aelig;qualis; igitur &amp; impetus. </s>
				</p>
				<p id="N2782C" type="main">
					<s id="N2782E">Septim&ograve;, funis trahi pote&longs;t diuer&longs;imod&egrave;. </s>
					<s id="N27831"><!-- NEW -->Prim&ograve;, &longs;i altera eius extre&shy;<lb/>mitas annulo, &longs;eu clauo immobili affixa &longs;it; </s>
					<s id="N27837"><!-- NEW -->alteri ver&ograve; applicetur po&shy;<lb/>tentia, vel pondus; &longs;iue &longs;it in &longs;itu horizontali, &longs;iue in verticali. </s>
					<s id="N2783D">Secund&ograve;, <lb/>&longs;i vtrique extremitati applicetur pondus vel alia potentia motrix. </s>
					<s id="N27842"><!-- NEW --><lb/>Terti&ograve;, &longs;i vtraque extremitas clauo immobiliter affigatur in &longs;itu hori-<pb pagenum="385" xlink:href="026/01/419.jpg"/>zontali, admoueaturque pondus, &longs;eu potentia alicui chord&aelig; puncto <lb/>deor&longs;um trahens: </s>
					<s id="N2784E"><!-- NEW -->denique &longs;i ponticulo maxim&egrave; attollatur, &amp; tendatur <lb/>chorda po&longs;ita in priori &longs;itu; </s>
					<s id="N27854"><!-- NEW -->&longs;i prim&ograve;, rumpetur chorda per &longs;e in ea ex&shy;<lb/>tremitate, qu&aelig; immobiliter clauo affigitur; </s>
					<s id="N2785A"><!-- NEW -->&longs;i tertio &amp; quarto in ea <lb/>parte, in qua vel deprimitur, vel attollitur: dixi per &longs;e, quia per acci&shy;<lb/>dens &longs;ecus accidit, vt reuer&acirc; &longs;&aelig;p&egrave; fit, vel propter inflexionem nodi, vel <lb/>aliquas partes debiliores, vel pre&longs;&longs;ionem maiorem cum ten&longs;ione con&shy;<lb/>iunctam &amp;c. </s>
					<s id="N27866"><!-- NEW -->&longs;ed quia h&aelig;c ph&oelig;nomena pertinent partim ad ten&longs;ionem, <lb/>&amp; compre&longs;&longs;ionem, partim ad re&longs;i&longs;tentiam corporum, de quibus agemus <lb/>Tomo &longs;equenti; </s>
					<s id="N2786E"><!-- NEW -->cert&egrave; hoc loco demon&longs;trari non po&longs;&longs;unt; </s>
					<s id="N27872"><!-- NEW -->igitur &longs;atis <lb/>e&longs;t mod&ograve; indica&longs;&longs;e huius demon&longs;trationis locum, qui talis e&longs;t: inter il&shy;<lb/>las duas partes fieri debet diui&longs;io chord&aelig;, quarum vna reuer&acirc; trahitur, <lb/>alia ver&ograve; non mouetur, vel quarum vtraque mouetur &longs;ed in partes op&shy;<lb/>po&longs;itas, quod nemo negabit. </s>
					<s id="N2787E"><!-- NEW -->Et hoc principio h&aelig;c omnia, demon&longs;trari <lb/>po&longs;&longs;unt; </s>
					<s id="N27884"><!-- NEW -->&longs;ed de his omnibus &longs;uo loco fus&egrave; agemus; h&aelig;c enim vberri&shy;<lb/>mam demon&longs;trationum &longs;egetem dabunt, pr&aelig;&longs;ertim &longs;i comparentur inter <lb/>&longs;e omnes chordarum affectiones, v.g. <!-- REMOVE S-->materia, figura, pondus, longitudo, <lb/>cra&longs;&longs;ities, &longs;itus, diuer&longs;a potenti&aelig; applicatio. </s>
				</p>
				<p id="N27890" type="main">
					<s id="N27892"><!-- NEW -->Octau&ograve;, quando corpus trahitur fune, qu&ograve; funis e&longs;t longior per &longs;e, <lb/>difficili&ugrave;s trahitur; </s>
					<s id="N27898"><!-- NEW -->ratio e&longs;t, quia funis tant&aelig; longitudinis e&longs;&longs;e pote&longs;t, <lb/>vt ne ip&longs;e quidem &longs;ine pondere trahi po&longs;&longs;it; </s>
					<s id="N2789E"><!-- NEW -->igitur qu&acirc; proportione <lb/>erit breuior dum applicari po&longs;&longs;it potentia, facili&ugrave;s trahet, dixi per &longs;e; </s>
					<s id="N278A4"><!-- NEW --><lb/>quia funis longior, cuius plures partes &longs;unt, maiorem patitur ten&longs;io&shy;<lb/>nem; </s>
					<s id="N278AB"><!-- NEW -->hinc vt partes &longs;e&longs;e reducant corpus ip&longs;um adducunt; </s>
					<s id="N278AF"><!-- NEW -->adde quod, <lb/>qu&ograve; aliquod corpus magis tenditur, maioris impetus e&longs;t capax, quia <lb/>priori remanenti qui non e&longs;t fru&longs;tr&agrave;, quia &longs;uum effectum habet, &longs;ecun&shy;<lb/>dus accedit &agrave; &longs;ecundo ni&longs;u, igitur, quando dico corpus trahi facili&ugrave;s <lb/>breuiori fine, nullam habeo rationem ten&longs;ionis; qu&aelig; cert&egrave; facere po&shy;<lb/>te&longs;t, dum funis non &longs;it tant&aelig; longitudinis, vt corpus facili&ugrave;s trahatur <lb/>propter illa duo capita, qu&aelig; indicauimus. </s>
				</p>
				<p id="N278BF" type="main">
					<s id="N278C1">Non&ograve;, hinc vno fune facili&ugrave;s trahitur corpus, qu&agrave;m duobus. </s>
					<s id="N278C4"><!-- NEW -->Prim&ograve;, <lb/>quia pluribus partibus funis di&longs;tribuitur impetus; </s>
					<s id="N278CA"><!-- NEW -->igitur e&ograve; minus &longs;in&shy;<lb/>gul&aelig; habent, qu&ograve; plures &longs;unt; &longs;ecund&ograve;, quia cum vnus e&longs;t funis, e&longs;t <lb/>maior ten&longs;io, qu&aelig; iuuat corporis tracti motum. </s>
					<s id="N278D2"><!-- NEW -->Terti&ograve;, quia &longs;i &longs;unt duo <lb/>funis vel diuer&longs;is partibus corporis tracti affliguntur, vel vni, &longs;i pri&shy;<lb/>mum; </s>
					<s id="N278DA"><!-- NEW -->igitur &longs;unt du&aelig; line&aelig; directionis, ex quibus fit altera mixta; </s>
					<s id="N278DE"><!-- NEW --><lb/>&longs;ed nunquam mi&longs;centur du&aelig; determinationes &longs;ine aliqua iactura, quan&shy;<lb/>do e&longs;t duplex impetus, vt fus&egrave; &longs;atis demon&longs;tratum e&longs;t &longs;upr&agrave;, &longs;i &longs;ecun&shy;<lb/>dum etiam &longs;unt du&aelig;, vt patet; </s>
					<s id="N278E7"><!-- NEW -->igitur eadem valet ratio; </s>
					<s id="N278EB"><!-- NEW -->cum ver&ograve; &longs;unt <lb/>plures funes, min&ugrave;s impetus &longs;ingulis di&longs;tribuitur; hinc plura fila te&shy;<lb/>nui&longs;&longs;ima &longs;u&longs;tinere po&longs;&longs;unt ingens pondus. </s>
				</p>
				<p id="N278F3" type="main">
					<s id="N278F5"><!-- NEW -->Decim&ograve;, hinc facil&egrave; colligi pote&longs;t, quid dicendum &longs;it de pluribus equis <lb/>trahentibus currum; </s>
					<s id="N278FB"><!-- NEW -->qui cert&egrave; ad currum iungi non po&longs;&longs;unt, ni&longs;i &longs;int <lb/>plures funes, qui tamen in communem &longs;eu funem &longs;eu temonem de&longs;i&shy;<lb/>nunt; &longs;it autem pondus A, linea directionis GE. </s>
					<s id="N27904">Si &longs;it tant&ugrave;m vnus <pb pagenum="386" xlink:href="026/01/420.jpg"/>equus, vel trahet duobus funibus BECE, vel vnico GE, addito axe <lb/>DF, &amp; duobus funibus DHFH. </s>
					<s id="N2790E"><!-- NEW -->Hoc &longs;ecundo modo facili&ugrave;s trahet; <lb/>quia impetus meli&ugrave;s deriuatur in pondus A per lineam EG, qu&aelig; per <lb/>centrum grauitatis ducitur. </s>
				</p>
				<p id="N27916" type="main">
					<s id="N27918"><!-- NEW -->Ob&longs;eruabis autem, &longs;i cylindrus quo trahitur quodlibet pondus per <lb/>lineam AB; </s>
					<s id="N2791E"><!-- NEW -->trahatur per duas CFDF, t&ugrave;m &aelig;qualibus viribus per duas <lb/>CHGD, haud dubi&egrave; hoc &longs;ecundo modo facili&ugrave;s trahetur, vt con&longs;tat, <lb/>&amp; facili&ugrave;s per duas CFDF, qu&agrave;m per duas CEDE; </s>
					<s id="N27926"><!-- NEW -->&longs;uppono autem <lb/>ita trahi CF, vt &aelig;qualiter trahatur per DF; </s>
					<s id="N2792C"><!-- NEW -->alioqui axis volueretur <lb/>circa B, in quo non e&longs;t difficultas: </s>
					<s id="N27932"><!-- NEW -->hoc po&longs;ito, dico po&longs;&longs;e a&longs;&longs;ignari dif&shy;<lb/>ferentiam i&longs;torum motuum; </s>
					<s id="N27938"><!-- NEW -->a&longs;&longs;umatur enim punctum D, quod trahi&shy;<lb/>tur per DF &amp; per DI parallelam CF &aelig;qualiter vtrimque; </s>
					<s id="N2793E"><!-- NEW -->cert&egrave; mo&shy;<lb/>uebitur per DGL; &longs;i autem trahatur CD per duas CHDG &aelig;qualibus <lb/>viribus ab eadem potentia facili&ugrave;s trahetur iuxta rationem DF ad DG, <lb/>vel DFL ad DE, vt con&longs;tat ex dictis l. <!-- REMOVE S-->4. de motu mixto t&ugrave;m etiam l.1. </s>
				</p>
				<p id="N2794A" type="main">
					<s id="N2794C"><!-- NEW -->Vndecim&ograve;, &longs;i autem iungantur duo equi ad trahendum pondus A <lb/>axe DF, &amp; fune EG; </s>
					<s id="N27952"><!-- NEW -->&longs;i &aelig;qualiter trahant, quod tamen vix accidere po&shy;<lb/>te&longs;t, lic&egrave;t differentia &longs;it pror&longs;us in&longs;en&longs;ibilis; </s>
					<s id="N27958"><!-- NEW -->&longs;i autem in&aelig;qualiter tra&shy;<lb/>hant, perit aliquid impetus vtriu&longs;que, vt patet; </s>
					<s id="N2795E"><!-- NEW -->nam eo tempore, quo <lb/>D, cui maior vis ine&longs;t v.g. <!-- REMOVE S-->progreditur, F regreditur; </s>
					<s id="N27966"><!-- NEW -->igitur meo iudi&shy;<lb/>cio, ne pereat quidquam impetus, ita debent collocari equi, vt pondus <lb/>&longs;it A, funis communis BC, primus axis DE, primus equus F trahens <lb/>funibus FDFE, t&ugrave;m &longs;ecundus axis GH coniunctus cum primo funibus <lb/>GDHE, &longs;ecundus equus I trahens funibus IG, IH, atque ita deinceps: </s>
					<s id="N27972"><!-- NEW --><lb/>hoc po&longs;ito totus impetus productus &agrave; primo equo F <expan abbr="c&otilde;municatur">communicatur</expan> primo <lb/>axi DE; </s>
					<s id="N2797D"><!-- NEW -->pr&aelig;terea totus impetus productus &agrave; &longs;ecundo equo I communi&shy;<lb/>catur &longs;ecundo axi GH, &amp; ex hoc primo DE; </s>
					<s id="N27983"><!-- NEW -->igitur DE recipit totum im&shy;<lb/>petum ab vtroque equo productum; </s>
					<s id="N27989"><!-- NEW -->qui cert&egrave; inten&longs;i&longs;&longs;imus e&longs;&longs;et, ni&longs;i axis <lb/>DE coniunctus e&longs;&longs;et cum pondere A; </s>
					<s id="N2798F"><!-- NEW -->igitur totus impetus ab vtroque <lb/>equo productus toti ponderi di&longs;tribuitur, ni&longs;i fort&egrave; maius &longs;it <expan abbr="p&otilde;dus">pondus</expan>; </s>
					<s id="N27999"><!-- NEW -->tunc <lb/>enim tertius equus M accedere deberet; igitur nihil pror&longs;us perit impetus. </s>
				</p>
				<p id="N2799F" type="main">
					<s id="N279A1"><!-- NEW -->Duodecim&ograve;, vterque equus producit impetum in pondere A actione <lb/>communi; probatur, quia, &longs;i qui&longs;que &longs;ingularem impetum produceret, <lb/>qui toti ponderi di&longs;tribui non po&longs;&longs;et, cur poti&ugrave;s his partibus quam aliis? </s>
					<s id="N279A9"><lb/>igitur c&ugrave;m omnibus di&longs;tribuatur; </s>
					<s id="N279AD"><!-- NEW -->cert&egrave; ab vtroque &longs;imul producitur; </s>
					<s id="N279B1"><!-- NEW --><lb/>nec enim alter equus trahit tant&ugrave;m alteram partem ponderis; </s>
					<s id="N279B6"><!-- NEW -->qu&aelig; enim <lb/>a&longs;&longs;ignari pote&longs;t, &longs;ed &longs;inguli totum pondus, &longs;ed coniunctim, id e&longs;t qu&aelig;li&shy;<lb/>bet pars ponderis ab vtroque trahitur, &longs;ed non &longs;ola, totum pondus ab <lb/>altero trahitur, &longs;ed non &longs;olo; </s>
					<s id="N279C0"><!-- NEW -->equidem equus F non producit impetum in <lb/>funibus DGI, nec in axe GH, nec equus I in funibus DFE, quia nullo <lb/>modo impediunt motum, vnde equus I, vt &aelig;qualiter cum &aelig;quo F trahat <lb/>pondus A, debet paul&ograve; maiore ni&longs;u trahere; qui cert&egrave; determinari pote&longs;t; </s>
					<s id="N279CA"><!-- NEW --><lb/>&longs;uppono enim prim&ograve; vtrumque F, I totis viribus eniti: </s>
					<s id="N279CF"><!-- NEW -->&longs;ecund&ograve; equum I <lb/>non min&ugrave;s conferre ad motum ponderis A, qu&agrave;m equum F 3. funes DG, <lb/>EH &amp; axem GH e&longs;&longs;e &lpar;1/1000&rpar; ponderis A; cert&egrave; hoc po&longs;ito equus I e&longs;t fortior <lb/>equo F &lpar;1/1000&rpar;. </s>
				</p>
				<pb pagenum="387" xlink:href="026/01/421.jpg"/>
				<p id="N279DD" type="main">
					<s id="N279DF"><!-- NEW -->Decimoterti&ograve;, currus initio difficili&ugrave;s trahitur; </s>
					<s id="N279E3"><!-- NEW -->ratio e&longs;t, quia nullus <lb/>impetus ine&longs;t initio, qui vbi &longs;emel productus primo in&longs;tanti; </s>
					<s id="N279E9"><!-- NEW -->nec totus <lb/>de&longs;truatur &longs;ecundo; </s>
					<s id="N279EF"><!-- NEW -->nec enim totus fru&longs;tr&agrave; e&longs;t; </s>
					<s id="N279F3"><!-- NEW -->habet enim aliquem effe&shy;<lb/>ctum, id e&longs;t motum; </s>
					<s id="N279F9"><!-- NEW -->augetur per acce&longs;&longs;ionem noui impetus &longs;ecundo in&shy;<lb/>&longs;tanti producti; idem dico de tertio, quarto, quinto, &amp;c. </s>
					<s id="N279FF"><!-- NEW -->donec tandem <lb/>po&longs;t aliquod tempus motu <expan abbr="&aelig;&qacute;uabili">&aelig;quabili</expan> procedat currus; </s>
					<s id="N27A09"><!-- NEW -->quia &longs;cilicet quan&shy;<lb/>tum de&longs;truitur &longs;ingulis in&longs;tantibus, <expan abbr="tant&utilde;dem">tantundem</expan> fer&egrave; producitur, &longs;ed mi&shy;<lb/>n&ugrave;s profect&ograve;, qu&agrave;m initio; igitur facili&ugrave;s; </s>
					<s id="N27A15"><!-- NEW -->igitur initio difficili&ugrave;s; </s>
					<s id="N27A19"><!-- NEW -->hinc <lb/>equi totis neruis enituntur initio, pr&aelig;&longs;ertim in plano arduo; </s>
					<s id="N27A1F"><!-- NEW -->at vbi cur&shy;<lb/>rus primum impetum accepit, long&egrave; facili&ugrave;s deinde propagatur; </s>
					<s id="N27A25"><!-- NEW -->hinc &longs;i <lb/>rumpatur funis, quo trahitur currus pr&aelig;cipiti equorum cur&longs;u, currus <lb/>ip&longs;e deinde per aliquod tempus adhuc rotatur; </s>
					<s id="N27A2D"><!-- NEW -->igitur prior impetus du&shy;<lb/>rat adhuc; nec enim nouus producitur. </s>
				</p>
				<p id="N27A33" type="main">
					<s id="N27A35"><!-- NEW -->Decimoquart&ograve;, &longs;i dum quis trahit toto ni&longs;u magnum aliquod pondus, <lb/>funis rumpatur, pronus corruit; </s>
					<s id="N27A3B"><!-- NEW -->ratio e&longs;t, quia totum <expan abbr="impet&utilde;">impetum</expan> in &longs;e produ&shy;<lb/>cit, quem in &longs;e &longs;imul &amp; pondere integro fune &longs;eruato produxi&longs;&longs;et; </s>
					<s id="N27A45"><!-- NEW -->hinc <lb/>dum duo in partes aduer&longs;as cylindrum, vel funem trahunt, &longs;i dimittat <lb/>vnus &longs;upinus, alter proruit; </s>
					<s id="N27A4D"><!-- NEW -->qu&aelig; omnia ex no&longs;tris principijs luce clariora <lb/>redduntur; </s>
					<s id="N27A53"><!-- NEW -->non e&longs;t tamen, quod aliquis exi&longs;timet huius ph&oelig;nomeni ra&shy;<lb/>tionem tant&ugrave;m &agrave; priori impetu con&longs;eruato e&longs;&longs;e; </s>
					<s id="N27A59"><!-- NEW -->qui cert&egrave; minor erat in <lb/>trahente, qu&agrave;m vt hunc effectum pr&aelig;&longs;tare po&longs;&longs;it, c&ugrave;m toti ponderi di&shy;<lb/>&longs;tribuatur; igitur poti&longs;&longs;ima ratio duci debet ab impetu nouo producto, <lb/>qu&icirc; c&ugrave;m in auul&longs;um pondus tran&longs;ire non po&longs;&longs;it, totus in ip&longs;o trahente <lb/>qua&longs;i &longs;ub&longs;i&longs;tit. </s>
				</p>
				<p id="N27A65" type="main">
					<s id="N27A67"><!-- NEW -->Decimoquint&ograve;, vt quis fortius trahat firmo pede, &amp; crure intento, &longs;o&shy;<lb/>lum ip&longs;um aduer&longs;o ni&longs;u premit; </s>
					<s id="N27A6D"><!-- NEW -->ratio in promptu e&longs;t, quia dum manu <lb/>trahit corporis truncum lumborum vi, &amp; o&longs;&longs;ium contractorum explica&shy;<lb/>tione &longs;ur&longs;um attollit; </s>
					<s id="N27A75"><!-- NEW -->igitur nouus impetus ponderi tracto accedit; </s>
					<s id="N27A79"><!-- NEW -->hinc <lb/>pede, vel genu in partem aduer&longs;am contranititur, qui trahit; </s>
					<s id="N27A7F"><!-- NEW -->nam que&shy;<lb/>madmodum gemino brachio forti&ugrave;s trahimus, qu&agrave;m vno; ita pror&longs;us, <lb/>cum brachiorum vis iuuatur &agrave; lumbis, cruribus, &amp;c. </s>
					<s id="N27A87">haud dubi&egrave; vali&shy;<lb/>dior e&longs;t. </s>
				</p>
				<p id="N27A8C" type="main">
					<s id="N27A8E"><!-- NEW -->Decimo&longs;ext&ograve;, cum facili&ugrave;s amoueri pote&longs;t, quod pellimus pede, vel <lb/>genu, qu&agrave;m quod trahimus manu, vel vnco, illud ip&longs;um mouetur; </s>
					<s id="N27A94"><!-- NEW -->hinc <lb/>vnco, &longs;i quis annulum apprehen&longs;um trahat quantumuis immobilem, &amp; <lb/>pede firmo nauim pellat in aduer&longs;am partem; </s>
					<s id="N27A9C"><!-- NEW -->haud dubi&egrave;, quia facili&ugrave;s <lb/>moueri pote&longs;t nauis qu&agrave;m annulus, ver&longs;us annulum ibit; </s>
					<s id="N27AA2"><!-- NEW -->&longs;ed ne diuer&shy;<lb/>&longs;as impre&longs;&longs;ionum rationes, qu&aelig; in motu nauis vulg&ograve; apparent di&longs;traha&shy;<lb/>mus; hoc loco breuiter omnes congerendas e&longs;&longs;e putaui. </s>
					<s id="N27AAA">Prim&ograve; ad lit&shy;<lb/>tus tendit cum trahitur vnco annullus immobilis, vt iam dictum e&longs;t. </s>
					<s id="N27AAF"><!-- NEW -->Se&shy;<lb/>cund&ograve;, &longs;i pellitur, vel fundum aqu&aelig;, vel aliud corpus immobile longio&shy;<lb/>ri ligno, &amp; pede pellatur ip&longs;a nauis in aduer&longs;am partem, in cam ibit <lb/>propter <expan abbr="e&atilde;dem">eandem</expan> rationem; Terti&ograve; &longs;i pellatur aqua remis fixo etiam pe&shy;<lb/>de vel crure contranitente in aduer&longs;am partem, idem &longs;equetur effectus. </s>
					<s id="N27ABF"><lb/>Quart&ograve;, hinc qu&ograve; remus latior e&longs;t, &amp; longior erit, maior erit effectus, <pb pagenum="388" xlink:href="026/01/422.jpg"/>mod&ograve; &longs;uppetant vires. </s>
					<s id="N27AC8"><!-- NEW -->Quint&ograve;, hinc latioris claui inflexione vertitur <lb/>nauis; </s>
					<s id="N27ACE"><!-- NEW -->Sext&ograve;, inflata ventis &longs;ecundis vela nauem agunt; </s>
					<s id="N27AD2"><!-- NEW -->ratio clari&longs;&longs;ima <lb/>e&longs;t, quia non po&longs;&longs;unt vela impelli, ni&longs;i alia nauis, cui &longs;unt coniuncta mo&shy;<lb/>ueatur; &longs;ed de re nautica agemus fus&egrave; &longs;uo loco, atque adeo de tota re <lb/>hydraulica. </s>
				</p>
				<p id="N27ADC" type="main">
					<s id="N27ADE">Decimo&longs;eptim&ograve;, denique ex dictis multa corollaria con&longs;equi po&longs;&longs;unt. </s>
					<s id="N27AE1"><lb/>Certum e&longs;t. </s>
					<s id="N27AE7">1&degree;. </s>
					<s id="N27AEA">pars tracta non &longs;equitur trahentem &longs;ua &longs;ponte 2.&degree;. </s>
					<s id="N27AED">re&longs;i&longs;tit <lb/>alteri trahenti, 3&degree;. </s>
					<s id="N27AF2">non producit impetum pars trahens in tracta. </s>
					<s id="N27AF5">4&degree;. </s>
					<s id="N27AF8">non <lb/>trahitur immediat&egrave;, &amp; ali&aelig; mediat&egrave;, &longs;ed omnes &longs;imul immediat&egrave;. </s>
					<s id="N27AFD">5&degree;. </s>
					<s id="N27B00">nul&shy;<lb/>lus impetus productus in corpore tracto impeditur. </s>
					<s id="N27B05">6&degree;. </s>
					<s id="N27B08">impetus prim&aelig; <lb/>partis non producit impetum in aliis. </s>
					<s id="N27B0D">7&degree;. </s>
					<s id="N27B10">quando dico tauri trahunt iu&shy;<lb/>gum producunt impetum actione communi. </s>
					<s id="N27B15">8&degree;. </s>
					<s id="N27B18"><!-- NEW -->rota facili&ugrave;s trahitur, <lb/>qu&agrave;m cubus; quia pauciores partes plani re&longs;i&longs;tunt. </s>
					<s id="N27B1E">9&degree;. </s>
					<s id="N27B21">quando fracto <lb/>fune trahens pronus corruit, non tant&ugrave;m hic ca&longs;us procedit &agrave; priore <lb/>impetu, &longs;ed maxim&egrave; &agrave; nouo. </s>
					<s id="N27B28">1&degree;. </s>
					<s id="N27B2B">extremitas funis fracti re&longs;ilit propter <lb/>pr&aelig;cedentem ten&longs;ionem. </s>
					<s id="N27B30">11&degree;. </s>
					<s id="N27B33">hinc cum di&longs;cerpitur charta vel tela edi&shy;<lb/>tur &longs;onus &longs;tridulus, qui prouenit &agrave; motu extremorum filorum qu&aelig; re&longs;i&shy;<lb/>liunt. </s>
					<s id="N27B3A">12&degree;. </s>
					<s id="N27B3D">imm&ograve; cum baculus frangitur, aliqua &longs;egmenta maxima vi eui&shy;<lb/>brantur, &longs;entiturque in manu qua&longs;i formicans dolor, propter illas tre&shy;<lb/>mulas &longs;uccu&longs;&longs;iones. </s>
					<s id="N27B44">13&degree;. </s>
					<s id="N27B47"><!-- NEW -->cum trahitur cylindrus vtrimque in aduer&longs;as <lb/>partes &agrave; duobus contranitentibus &aelig;qualium virium, &longs;i minim&egrave; inflecti <lb/>po&longs;&longs;it, ille pr&aelig;ualebit, cuius vtraque manus propi&ugrave;s ad medium cylin&shy;<lb/>drum accedit; </s>
					<s id="N27B51"><!-- NEW -->&longs;ec&ugrave;s ver&ograve;, &longs;i inflectatur; e&longs;t enim ad in&longs;tar gemini vectis. </s>
					<s id="N27B55"><lb/>14&degree;. </s>
					<s id="N27B59"><!-- NEW -->cum trahitur cylindrus &aelig;qualiter vtrimque, qui neque flecti, ne&shy;<lb/>que tendi po&longs;&longs;it; </s>
					<s id="N27B5F"><!-- NEW -->haud dubi&egrave; nullum impetum habet, quia e&longs;&longs;et fru&longs;tr&agrave;, <lb/>15. de&longs;truitur impetus in tractione, ne &longs;it fru&longs;tr&agrave;: ex his reliqua facil&egrave; <lb/>intelligentur. </s>
				</p>
				<p id="N27B67" type="main">
					<s id="N27B69"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 7.<emph.end type="center"/></s>
				</p>
				<p id="N27B75" type="main">
					<s id="N27B77"><emph type="italics"/>Explicari po&longs;&longs;unt omnia, qu&aelig; pertinent ad impul&longs;um.<emph.end type="italics"/></s>
				</p>
				<p id="N27B7E" type="main">
					<s id="N27B80"><!-- NEW -->Prim&ograve;, impul&longs;us duplicis e&longs;t generis: </s>
					<s id="N27B84"><!-- NEW -->primus e&longs;t coniunctus cum per&shy;<lb/>cu&longs;&longs;ione, &longs;ic tudicula impul&longs;us globus emittitur: &longs;ecundus &longs;ine percu&longs;&longs;io&shy;<lb/>ne; </s>
					<s id="N27B8C"><!-- NEW -->&amp; hic duplex e&longs;t: </s>
					<s id="N27B90"><!-- NEW -->Primus, quo mobile impul&longs;um &longs;eparatur ab impel&shy;<lb/>lente: </s>
					<s id="N27B96"><!-- NEW -->Secundus, quo non &longs;eparatur, &longs;ed ip&longs;i continu&ograve; adh&aelig;ret; </s>
					<s id="N27B9A"><!-- NEW -->quia <lb/>continuo impul&longs;u mouetur; de hoc tant&ugrave;m vltimo impul&longs;u agitur in <lb/>hoc Th. <!-- REMOVE S-->Secund&ograve;, ex dictis de tractatione colligi po&longs;&longs;unt ea, qu&aelig; dici debent <lb/>de impul&longs;u, quatenus nulli percu&longs;&longs;ioni nec emi&longs;&longs;ioni coniunctus e&longs;t. </s>
				</p>
				<p id="N27BA6" type="main">
					<s id="N27BA8"><lb/>1&degree;. </s>
					<s id="N27BAC"><!-- NEW -->impellens producit impetum in &longs;e ip&longs;e; 2&degree;. </s>
					<s id="N27BB0">impetus impellentis pro&shy;<lb/>ducit impetum in corpore. </s>
					<s id="N27BB5">3&degree;. </s>
					<s id="N27BB8">&longs;ingulis in&longs;tantibus de&longs;truitur aliquid <lb/>impetus impellentis, &amp; impul&longs;i. </s>
					<s id="N27BBD">4&degree;. </s>
					<s id="N27BC0">initio difficili&ugrave;s mobile mouetur <lb/>impul&longs;u. </s>
					<s id="N27BC5">5&degree;. </s>
					<s id="N27BC8">po&longs;t primum motum t&ugrave;m deinde facili&ugrave;s mouetur corpus <lb/>impul&longs;um, nec tanto ni&longs;u potenti&aelig; opus e&longs;t. </s>
					<s id="N27BCD">6&degree;. </s>
					<s id="N27BD0">cum &aelig;quali motu mo&shy;<lb/>uetur impul&longs;um tant&ugrave;m impetus producitur, quant&ugrave;m de&longs;truitur. </s>
					<s id="N27BD5">7&degree;. </s>
					<s id="N27BD8"><lb/>cum pellitur rupes immobilis, nullus in ea producitur impetus, ni&longs;i <pb pagenum="389" xlink:href="026/01/423.jpg"/>fort&egrave; aliqua pars &longs;eparetur, vel comprimatur. </s>
					<s id="N27BE1">8&degree;. </s>
					<s id="N27BE4"><!-- NEW -->producitur tamen <lb/>&icirc;mpetus in organo; probatur ex ni&longs;u; imm&ograve; &amp; compre&longs;&longs;ione molliorum <lb/>partium. </s>
					<s id="N27BEC">9&degree;. </s>
					<s id="N27BEF"><!-- NEW -->quando duo &longs;e&longs;e mutu&ograve;, &amp; &aelig;quali ni&longs;u pellunt, vterque in &longs;e <lb/>ip&longs;o, &amp; in alio producit impetum; </s>
					<s id="N27BF5"><!-- NEW -->in &longs;e quidem, quia maxim&egrave; euitetur, <lb/>&amp; defatigatur potentia motrix; in alio ver&ograve;, in quo fit aliqua partium <lb/>compre&longs;&longs;io, qu&aelig; &longs;ine impetu <expan abbr="n&utilde;quam">nunquam</expan> fit. </s>
					<s id="N27C01">10&degree;. </s>
					<s id="N27C04"><!-- NEW -->&longs;i os pelleret os, &longs;eu corpus <lb/>durum aliud durum, natiua vi di&longs;tincta &agrave; grauitatione, in neutro pro&shy;<lb/>duceretur impetus; </s>
					<s id="N27C0C"><!-- NEW -->quia e&longs;&longs;et fru&longs;tr&agrave;: vide qu&aelig; diximus &longs;upr&agrave; de tra&shy;<lb/>ctione. </s>
					<s id="N27C12">11&degree;. </s>
					<s id="N27C15"><!-- NEW -->pellens etiam firmo pede &longs;olum, in aduer&longs;am partem pellit, <lb/>&longs;eu premit; rationem iam attulimus &longs;upr&agrave;. </s>
					<s id="N27C1B">12&degree;. </s>
					<s id="N27C1E">&longs;i dum reluctantem alium <lb/>&amp; contranitentem pellis, &longs;e&longs;e illic&ograve; cedens eripiat, pronus in terram <lb/>corrues. </s>
					<s id="N27C25"><!-- NEW -->13&degree;.&longs;&iacute; plures idem pondus pellant, actione communi impetum <lb/>producunt; h&aelig;c, &amp; alia multa ex dictis de tractione facil&egrave; per eadem <lb/>principia demon&longs;trantur. </s>
				</p>
				<p id="N27C2D" type="main">
					<s id="N27C2F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 8.<emph.end type="center"/></s>
				</p>
				<p id="N27C3B" type="main">
					<s id="N27C3D"><emph type="italics"/>Attolli aliquid pote&longs;t &amp; eleuari,<emph.end type="italics"/> 1&degree;. </s>
					<s id="N27C45"><!-- NEW -->&longs;i producatur impetus maior impe&shy;<lb/>tu grauitationis; ratio clara e&longs;t, quia fortior pr&aelig;ualet. </s>
					<s id="N27C4B">2&degree;. </s>
					<s id="N27C4E"><!-- NEW -->de&longs;truitur &longs;e&shy;<lb/>cundo in&longs;tanti aliquid impetus producti; quia e&longs;t fru&longs;tr&agrave; propter <lb/>impetum natiuum. </s>
					<s id="N27C56">3&degree;. </s>
					<s id="N27C59"><!-- NEW -->&longs;i tant&ugrave;m producatur impetus &longs;ingulis in&shy;<lb/>&longs;tantibus, quantum de&longs;truitur, motus erit &aelig;quabilis, &longs;i pl&ugrave;s, acceleratus, <lb/>&longs;i min&ugrave;s, retardatus, patet ex dictis.4&degree;.pondus attollitur initio difficili&ugrave;s <lb/>propter rationem pr&aelig;dictam; min&ugrave;s enim produci debet impetus &longs;ecun&shy;<lb/>do in&longs;tanti, qu&agrave;m prim&ograve;. </s>
					<s id="N27C65">5&degree;. </s>
					<s id="N27C68">&longs;ub funem tamen vald&egrave; laborat potentia <lb/>propter <expan abbr="compre&longs;&longs;ion&etilde;">compre&longs;&longs;ionem</expan>, &amp; ten&longs;ionem partium, de qua &longs;upr&agrave;.6&degree;. </s>
					<s id="N27C71"><!-- NEW -->difficili&ugrave;s <lb/>attollitur ingens pondus, qu&agrave;m modicum; ratio clara e&longs;t, quia plures <lb/>partes impetus imprimi debent maiori, cui plures in&longs;unt, qu&agrave;m minori. </s>
					<s id="N27C79"><lb/>7&degree;. </s>
					<s id="N27C7D">facilius attollitur per planum inclinatum, qu&agrave;m per lineam vertica&shy;<lb/>lem deor&longs;um, rationem iam attulimus l. <!-- REMOVE S-->5. 8&degree;. </s>
					<s id="N27C84">hinc etiam organo me&shy;<lb/>chanico facili&ugrave;s attollitur pondus, de quo lib.  11. 9&degree;. </s>
					<s id="N27C89"><!-- NEW -->lic&egrave;t grauitas non <lb/>re&longs;i&longs;teret, corpus maius difficilius attolleretur, qu&agrave;m minus; quia plures <lb/>partes impetus illius motus de&longs;ideraret, qu&agrave;m huius, &longs;ed maior impetus <lb/>difficili&ugrave;s imprimitur, qu&agrave;m minor. </s>
				</p>
				<p id="N27C93" type="main">
					<s id="N27C95"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 9.<emph.end type="center"/></s>
				</p>
				<p id="N27CA1" type="main">
					<s id="N27CA3"><!-- NEW --><emph type="italics"/>Corpus<emph.end type="italics"/> 1&degree;. <emph type="italics"/>deprimitur per impetum infra medium grauius, v. <!-- REMOVE S-->g. <!-- REMOVE S-->lignu&mtail; <lb/>infra aquam<emph.end type="italics"/>; ratio clara e&longs;t. </s>
					<s id="N27CB8">2&degree;. </s>
					<s id="N27CBB">deprimitur, vel trahendo, vel impellen&shy;<lb/>do, vel calcando. </s>
					<s id="N27CC0">3&degree;. </s>
					<s id="N27CC3">trahimus &longs;&aelig;p&egrave; deor&longs;um, vt corpus attollatur &longs;ur&shy;<lb/>&longs;um, vt in trochleis. </s>
					<s id="N27CC8">4&degree;. </s>
					<s id="N27CCB"><!-- NEW -->qu&ograve; corpus maius e&longs;t, &amp; leuius difficili&ugrave;s depri&shy;<lb/>mitur infra medium grauius, quia non pote&longs;t deprimi ni&longs;i plures medij <lb/>grauiores partes attollantur, vt clarum e&longs;t; exemplum habes in nauibus, <lb/>5&degree;. </s>
					<s id="N27CD5">deprimimus aliquando corpora per ten&longs;ionem, vt ramos arborum, <lb/>&longs;eu per librationem, vt campanarum funes, &longs;eu extremos vectes. </s>
					<s id="N27CDA">6&degree;. </s>
					<s id="N27CDD"><lb/>clauus deprimitur, vel palus tribus modis. </s>
					<s id="N27CE1">1&degree;. </s>
					<s id="N27CE4">percu&longs;&longs;ione; 2&degree;. </s>
					<s id="N27CE7">ia&shy;<lb/>ctu &longs;eu eiaculatione. </s>
					<s id="N27CEC">3&degree;. </s>
					<s id="N27CEF">impul&longs;ione; de hac iam &longs;upr&agrave; actum e&longs;t, de dua&shy;<lb/>bus primis paul&ograve; p&ograve;&longs;t agetur, &longs;ed h&aelig;c &longs;unt facilia, &amp; faciles cau&longs;&aelig;. </s>
				</p>
				<pb pagenum="390" xlink:href="026/01/424.jpg"/>
				<p id="N27CF8" type="main">
					<s id="N27CFA"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 10.<emph.end type="center"/></s>
				</p>
				<p id="N27D06" type="main">
					<s id="N27D08"><emph type="italics"/>Omnes gyrationum modi explicari, &amp; demon&longs;trari po&longs;&longs;unt.<emph.end type="italics"/></s>
				</p>
				<p id="N27D0F" type="main">
					<s id="N27D11"><!-- NEW -->Prim&ograve;, vertitur baculus manu primo circa proprium axem, vt <expan abbr="veru">verum</expan>, <lb/>quia inflectitur eodem modo manus &amp; inferior brachij portio: </s>
					<s id="N27D17"><!-- NEW -->&longs;ecundo <lb/>circa alteram extremitatem qu&aelig; manu tenetur: tertio circa quodlibet <lb/>aliud punctum, ratio petitur t&ugrave;m &agrave; tali brachij motu, t&ugrave;m ab eo modo, <lb/>quo baculus tenetur, </s>
				</p>
				<p id="N27D21" type="main">
					<s id="N27D23"><!-- NEW -->Secund&ograve;, circumagitur funis vel funda; </s>
					<s id="N27D27"><!-- NEW -->quia producitur maior im&shy;<lb/>petus in extremitate remota circa centrum immobile; hinc circulus; </s>
					<s id="N27D2D"><!-- NEW --><lb/>hinc quia extremitatis illius motus determinatur &longs;emper ad Tangentem, <lb/>tenditur funis; &longs;ed de funda infr&agrave;, cum de proiectione. </s>
				</p>
				<p id="N27D34" type="main">
					<s id="N27D36"><!-- NEW -->Terti&ograve;, multos alios gyros facimus, manu, brachio, collo, pede, toto <lb/>denique corporis trunco; </s>
					<s id="N27D3C"><!-- NEW -->quot enim habemus articulos, tot motus cir&shy;<lb/>cularis habemus centra; </s>
					<s id="N27D42"><!-- NEW -->hinc &longs;u&aelig; apothec&aelig; caput o&longs;&longs;is tam apt&egrave; in&longs;e&shy;<lb/>ritur, vt circa illam facil&egrave; moueatur; </s>
					<s id="N27D48"><!-- NEW -->exemplum habes in oculo, dum <lb/>infra &longs;uam thecam voluitur; </s>
					<s id="N27D4E"><!-- NEW -->&longs;ed de tota corporis fabrica, quatenus con&shy;<lb/>ducit ad motum, &longs;uo loco agemus; nec enim hi motus ad hunc tracta&shy;<lb/>tum pertinent. </s>
				</p>
				<p id="N27D56" type="main">
					<s id="N27D58"><!-- NEW -->Quart&ograve;, hinc reuoca deflexionem illam iacti globi, de qua &longs;upr&agrave;, qu&aelig; <lb/>familiaris e&longs;t trunculorum ludo, item gyros globi, quem, vel inter duas <lb/>volas circumagis, vel inter volam, &amp; aliud planum, qui partim ad impul&shy;<lb/>&longs;um, partim ad tractum pertinent; &longs;ed neque h&aelig;c &longs;unt difficilia. </s>
				</p>
				<p id="N27D62" type="main">
					<s id="N27D64"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N27D70" type="main">
					<s id="N27D72"><!-- NEW -->Ob&longs;eruabis vix po&longs;&longs;e vno Theoremate compr&aelig;hendi omnia ph&oelig;no&shy;<lb/>mena percu&longs;&longs;ionis, cuius &longs;unt tria veluti prima genera, &longs;cilicet ictus, ca&shy;<lb/>&longs;us, iactus: ictum appello illam percu&longs;&longs;ionem, qu&aelig; infligitur pugno, ma&shy;<lb/>nu, calce, cornu, vel quolibet organo, cum potentia motrice coniuncto, <lb/>v.g. <!-- REMOVE S-->fu&longs;te, &longs;axo, flagello, &amp;c. </s>
					<s id="N27D80"><!-- NEW -->ca&longs;us e&longs;t percu&longs;&longs;io &agrave; corpore graui deor&longs;um <lb/>cadente inflicta; iactus denique e&longs;t percu&longs;&longs;io, qu&aelig; aliquam emi&longs;&longs;ionem, <lb/>&longs;eu vibrationem &longs;upponit, lapidis, pil&aelig;, &amp;c. </s>
					<s id="N27D88">itaque vt omnia percu&longs;&longs;io&shy;<lb/>nis ph&oelig;nomena di&longs;tincti&ugrave;s explicemus, &longs;ingulis Theorematis &longs;ingulos <lb/>percu&longs;&longs;ionis modos explicabimus. </s>
				</p>
				<p id="N27D8F" type="main">
					<s id="N27D91"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 11.<emph.end type="center"/></s>
				</p>
				<p id="N27D9D" type="main">
					<s id="N27D9F"><emph type="italics"/>Explicantur omnia ph&oelig;nomena percu&longs;&longs;ionis, qu&aelig; infligitur manu, pugno, <lb/>brachio, calce, cornu.<emph.end type="italics"/></s>
				</p>
				<p id="N27DA8" type="main">
					<s id="N27DAA"><!-- NEW -->Prim&ograve;, pugnus infligit ictum diuer&longs;o motu; prim&ograve;, motu recto; </s>
					<s id="N27DAE"><!-- NEW -->&longs;it <lb/>enim humerus AB, caput cubiti B, os cubiti BF, fiat arcus AC, &amp; KI, <lb/>ita vt ABK &longs;it &aelig;qualis ABF; </s>
					<s id="N27DB6"><!-- NEW -->cert&egrave; ACI erit totum brachium ten&longs;um, <lb/>caput B nunquam recedit ab arcu BC, nec extremitas F &agrave; recta FI; </s>
					<s id="N27DBC"><!-- NEW -->vbi <lb/>autem F peruenit in G; </s>
					<s id="N27DC2"><!-- NEW -->a&longs;&longs;umatur GE &aelig;qualis FB: </s>
					<s id="N27DC6"><!-- NEW -->vbi ver&ograve; F peruenit <lb/>in H; </s>
					<s id="N27DCC"><!-- NEW -->a&longs;&longs;umatur HD &aelig;qualis FB, &amp; habebitur proportio motus extre&shy;<lb/>mitatis F &amp; capitis B; vides motum rectum FI mixtum ex duobus cir&shy;<lb/>cularibus circa centrum immobile A, &amp; mobile B. </s>
				</p>
				<p id="N27DD4" type="main">
					<s id="N27DD6"><!-- NEW -->Secund&ograve;, po&longs;&longs;et moueri per omnem lineam, v. <!-- REMOVE S-->g. <!-- REMOVE S-->FN, FM, <pb pagenum="391" xlink:href="026/01/425.jpg"/>imm&ograve;, &amp; per lineam perpendicularem &longs;ur&longs;um, vel deor&longs;um, &amp; qu&ograve; <lb/>pl&ugrave;s contrahetur brachium, motus rectus per horizontalem erit maior; </s>
					<s id="N27DE5"><!-- NEW --><lb/>&longs;it enim angulus cubiti ABO, ita vt BF &longs;it in BO; </s>
					<s id="N27DEA"><!-- NEW -->cert&egrave; extremitas <lb/>O percurret motu recto totam OP; </s>
					<s id="N27DF0"><!-- NEW -->&amp; &longs;i omnin&ograve; contrahatur brachium, <lb/>ita vt F &longs;it in A, percurret extremitas A totam rectam AP; </s>
					<s id="N27DF6"><!-- NEW -->tunc au&shy;<lb/>tem ictus e&longs;t fortior, cum linea motus recti e&longs;t maior; quippe &longs;ingulis in&shy;<lb/>&longs;tantibus nouus impetus accedit. </s>
				</p>
				<p id="N27DFE" type="main">
					<s id="N27E00"><!-- NEW -->Terti&ograve;, pote&longs;t inueniri maximum &longs;patium quod pote&longs;t confici ab ex&shy;<lb/>tremitate brachij motu recto; </s>
					<s id="N27E06"><!-- NEW -->&longs;it enim centrum humeri immobile A, <lb/>&longs;it AC os humeri, CD cubiti, &longs;it AD perpendicularis deor&longs;um; </s>
					<s id="N27E0C"><!-- NEW -->&longs;it <lb/>angulus BAC maxim&aelig; deflexionis, qua os humeri po&longs;&longs;it retr&ograve; agi; </s>
					<s id="N27E12"><!-- NEW -->&longs;it <lb/>CGK, item DFO, &longs;it BG recta, BH &aelig;qualis CD; </s>
					<s id="N27E18"><!-- NEW -->ducatur EHL <lb/>perpendicularis &longs;ur&longs;um, &longs;itque CEOS cubiti: dico EL e&longs;&longs;e maximum <lb/>&longs;patium, &amp;c. </s>
					<s id="N27E20"><!-- NEW -->c&ugrave;m enim caput cubiti C po&longs;&longs;it tant&ugrave;m retroagi in B; </s>
					<s id="N27E24"><!-- NEW -->cert&egrave; <lb/>non pote&longs;t extremitas D, in quocumque loco &longs;it, circuli DFO &longs;ecare <lb/>BG, in puncto quod propi&ugrave;s accedat ad centrum A qu&agrave;m H; </s>
					<s id="N27E2C"><!-- NEW -->&longs;ed om&shy;<lb/>nium linearum, qu&aelig; po&longs;&longs;unt duci per H &longs;ur&longs;um perpendiculariter, ma&shy;<lb/>xima e&longs;t EL; </s>
					<s id="N27E34"><!-- NEW -->imm&ograve; EL e&longs;t omnium maxima, qu&aelig; duci po&longs;&longs;unt po&longs;ita <lb/>extremitate inter DE; </s>
					<s id="N27E3A"><!-- NEW -->vt autem habeatur omnium maxima; </s>
					<s id="N27E3E"><!-- NEW -->&longs;it punctum <lb/>K &longs;ur&longs;um, ad quod tant&ugrave;m nodus, &longs;eu caput cubiti C peruenire pote&longs;t; </s>
					<s id="N27E44"><!-- NEW --><lb/>a&longs;&longs;umatur KO &aelig;qualis CD, ex centro B fiat arcus AH, t&ugrave;m ex O ad <lb/>arcum AH; </s>
					<s id="N27E4B"><!-- NEW -->ducatur Tangens OQF; </s>
					<s id="N27E4F"><!-- NEW -->certum e&longs;t e&longs;&longs;e maximam lineam; <lb/>quia accedit propi&ugrave;s ad centrum A, vt con&longs;tat. </s>
				</p>
				<p id="N27E55" type="main">
					<s id="N27E57">Quart&ograve;, pote&longs;t pugnus ferire motu perfect&egrave; circulari, idque duobus <lb/>modis. </s>
					<s id="N27E5C">Prim&ograve;, &longs;i brachium exten&longs;um AD circa centrum moueatur per <lb/>arcum DFO figura prima. </s>
					<s id="N27E61"><!-- NEW -->Secund&ograve;, &longs;i moueatur  caput cubiti; </s>
					<s id="N27E65"><!-- NEW -->&longs;it enim <lb/> os humeri AB, &amp; cubiti BC caput cubiti B; </s>
					<s id="N27E6B"><!-- NEW -->ex A fiat arcus BEL; </s>
					<s id="N27E6F"><!-- NEW --><lb/>t&ugrave;m ex aliquo puncto &longs;upr&agrave; A, put&agrave; ex N radio NC fiat arcus CI; </s>
					<s id="N27E74"><!-- NEW -->t&ugrave;m <lb/>a&longs;&longs;umpta AK &aelig;quali AB fiat arcus KH &longs;ecans priorem in I; </s>
					<s id="N27E7A"><!-- NEW -->cert&egrave; extre&shy;<lb/>mitas C moueri poterit per arcum CI, donec brachium extentum &longs;it <lb/>in AI, quod non e&longs;t difficile; h&icirc;c porr&ograve; vides motum circularem ex <lb/>duobus alijs circularibus mixtum. </s>
				</p>
				<p id="N27E84" type="main">
					<s id="N27E86">Quint&ograve;, moueri per quamcumque aliam lineam curuam, ellipticam, <lb/>parabolicam &amp;c. </s>
					<s id="N27E8B"><!-- NEW -->imm&ograve; per infinitas alias nouas; </s>
					<s id="N27E8F"><!-- NEW -->vides nouam FDC, <lb/>qu&aelig; vt fiat cubitus IF e&longs;t &longs;emper &longs;ibi ip&longs;i parallelus; </s>
					<s id="N27E95"><!-- NEW -->quod vt fiat, caput <lb/>I &amp; extremitas F debent moueri &aelig;quali motu; </s>
					<s id="N27E9B"><!-- NEW -->&longs;unt enim CBLDEK <lb/>FI &aelig;quales &amp; parallel&aelig;: </s>
					<s id="N27EA1"><!-- NEW -->ex quo fit hanc curuam e&longs;&longs;e &longs;peciem nou&aelig; <lb/>Conchoidis, de qua ali&agrave;s; mouetur autem initio tardi&ugrave;s, &amp; &longs;ub <lb/>finem veloci&ugrave;s, non quidem proprio motu circa centrum I, &longs;ed motu <lb/>mixto. </s>
				</p>
				<p id="N27EAB" type="main">
					<s id="N27EAD"><!-- NEW -->Sext&ograve;, e&longs;t maximus ictus inflictus &agrave; pugno, qui mouetur motu re&shy;<lb/>cto per longiorem lineam, qu&aelig; accedit propi&ugrave;s ad lineam brachij dein&shy;<lb/>de extenti; </s>
					<s id="N27EB5"><!-- NEW -->qu&ograve; enim e&longs;t longior linea producitur &longs;en&longs;un maior impe&shy;<lb/>tus; </s>
					<s id="N27EBB"><!-- NEW -->e&longs;t enim motus naturaliter acceleratus, c&ugrave;m &longs;it applicata con&shy;<lb/>tinu&ocirc; potentia motrix: </s>
					<s id="N27EC1"><!-- NEW -->pr&aelig;terea ictus e&longs;t magis directus, &longs;i linea <pb pagenum="392" xlink:href="026/01/426.jpg"/>motus propi&ugrave;s accedit ad lineam brachij extenti: hinc qu&ograve; plus cotra&shy;<lb/>hitur brachium ad infligendum ictum e&longs;t validior ictus, quia e&longs;t lon&shy;<lb/>gior linea &amp; magis directa, quod natura ip&longs;a docuit pueros pugnis con&shy;<lb/>tendentes. </s>
				</p>
				<p id="N27ED0" type="main">
					<s id="N27ED2"><!-- NEW -->Septim&ograve;, auer&longs;a manu impingitur validior colaphus, qu&agrave;m aduer&longs;a; </s>
					<s id="N27ED6"><!-- NEW --><lb/>quia mouetur manus per arcum paul&ograve; maiorem &longs;emicirculo; </s>
					<s id="N27EDB"><!-- NEW -->in quo <lb/>motus continu&ograve; cre&longs;cit; at ver&ograve; &longs;i aduer&longs;&acirc;; </s>
					<s id="N27EE1"><!-- NEW -->non validus e&longs;t ictus; </s>
					<s id="N27EE5"><!-- NEW -->pri&shy;<lb/>m&ograve; quia quando auer&longs;a infligitur, &amp; e&longs;t motus circa duplex centrum, <lb/>vterque circularis in <expan abbr="e&atilde;dem">eandem</expan> partem tendit; </s>
					<s id="N27EF1"><!-- NEW -->igitur maior e&longs;t; </s>
					<s id="N27EF5"><!-- NEW -->&longs;ecus <lb/>accidit cum aduer&longs;&agrave;: </s>
					<s id="N27EFB"><!-- NEW -->Secund&ograve;, non tam extendi pote&longs;t brachium impa&shy;<lb/>ctum intror&longs;um, qu&agrave;m in aduer&longs;am partem; igitur minor e&longs;t arcus, <lb/>vel os humeri &longs;i&longs;titur, atque ita ex parte extinguitur ictus. </s>
					<s id="N27F03"><!-- NEW -->Terti&ograve; <lb/>manus auer&longs;a durior e&longs;t, qu&agrave;m aduer&longs;a; </s>
					<s id="N27F09"><!-- NEW -->e&longs;t enim vola mollior; </s>
					<s id="N27F0D"><!-- NEW -->h&aelig;c <lb/>ver&ograve; mollities extinguit vim ictus, vt &longs;&aelig;p&egrave; demon&longs;trauimus: de rota&shy;<lb/>tione brachij, qu&aelig; maxim&egrave; vim auget, dicemus infr&agrave;, cum de Tudicu&shy;<lb/>la, clau&acirc;, baculo, de lineis ver&ograve; dicemus lib.12. </s>
				</p>
				<p id="N27F17" type="main">
					<s id="N27F19"><!-- NEW -->Octau&ograve;, qui longioribus brachijs in&longs;tructi &longs;unt, maiores ictus <lb/>infligunt; </s>
					<s id="N27F1F"><!-- NEW -->patet, quia maiorem de&longs;cribunt arcum; </s>
					<s id="N27F23"><!-- NEW -->igitur velociore <lb/>motu rotatur pugnus; </s>
					<s id="N27F29"><!-- NEW -->cum tamen motu circulari mouetur brachium; <lb/>certum e&longs;t maiorem ictum minim&egrave; infligi ab extremitate, vt con&longs;tat <lb/>ex dictis de baculo lib.1. Th.73. ni&longs;i fort&egrave; ratione contracti pugni, quod <lb/>iam ibidem indicauimus. </s>
				</p>
				<p id="N27F33" type="main">
					<s id="N27F35"><!-- NEW -->Non&ograve;, cum deor&longs;um impingitur pugnus, cre&longs;cit ictus propter acce&longs;&shy;<lb/>&longs;ionem motus naturalis accelerati; </s>
					<s id="N27F3B"><!-- NEW -->e&longs;t enim corpus graue; </s>
					<s id="N27F3F"><!-- NEW -->cum &longs;ur&longs;um, <lb/>&egrave; contrario imminuitur motus: in qua ver&ograve; proportione, dicemus in&shy;<lb/>fr&agrave; cum de malleo. </s>
				</p>
				<p id="N27F47" type="main">
					<s id="N27F49">Decim&ograve;, aliquando rotatur brachium, antequam infligatur ictus, <lb/>vel intror&longs;um, vel in partem oppo&longs;itam, pr&aelig;&longs;ertim vt longi&ugrave;s ia&shy;<lb/>ciatur lapis, vt pila reticulo, vel auer&longs;o, vel aduer&longs;o procul <lb/>emittatur, &amp;c. </s>
					<s id="N27F52">ratio e&longs;t, quia continu&ograve; augetur motus, vt iam di&shy;<lb/>ctum e&longs;t. </s>
				</p>
				<p id="N27F57" type="main">
					<s id="N27F59"><!-- NEW -->Vndecim&ograve;, breuiter indico ictum inflictum ab ip&longs;o cubiti capi&shy;<lb/>te retr&ograve; acto, &longs;atis grauem e&longs;&longs;e; </s>
					<s id="N27F5F"><!-- NEW -->t&ugrave;m quia durior e&longs;t ille nodus; t&ugrave;m <lb/>quia ad eius motum non mod&ograve; &longs;uperius brachij &longs;egmentum, ver&ugrave;m <lb/>etiam inferius concurrit. </s>
				</p>
				<p id="N27F67" type="main">
					<s id="N27F69"><!-- NEW -->Duodecim&ograve;, infligitur etiam grauis ictus calce, cuius e&longs;t eadem <lb/>ratio, qu&aelig; &longs;upr&agrave;; e&longs;t enim duplex centrum, duplex motus, &amp;c. </s>
					<s id="N27F6F">Ob&shy;<lb/>&longs;eruabis tamen. </s>
					<s id="N27F74">Prim&ograve; ictum maiorem infligi, &longs;i crura longiora &longs;unt. </s>
					<s id="N27F77"><!-- NEW --><lb/>Secund&ograve; aduer&longs;o calce quam auer&longs;o; e&longs;t enim oppo&longs;ita brachiorum <lb/>ratio, c&ugrave;m genu aduer&longs;um &longs;it, &amp; auersum cubiti caput. </s>
					<s id="N27F7E"><!-- NEW -->Terti&ograve;, equi <lb/>&egrave; contrario calcem forti&ugrave;s retroagunt, quia tibi&aelig; po&longs;terioris ge&shy;<lb/>nu auer&longs;um e&longs;t; </s>
					<s id="N27F86"><!-- NEW -->adde quoque ictum ab ip&longs;o genu inflictum; </s>
					<s id="N27F8A"><!-- NEW -->de <lb/>quo idem dicendum e&longs;t, quod de ictu &agrave; nodo cubiti inflicto iam <lb/>diximus; quippe in eo tant&ugrave;m differunt, qu&ograve;d habeant contrarios <lb/>&longs;itus. </s>
				</p>
				<pb pagenum="393" xlink:href="026/01/427.jpg"/>
				<p id="N27F98" type="main">
					<s id="N27F9A"><!-- NEW -->Decimoterti&ograve;, explo&longs;ione inten&longs;i digiti talitrum imprimitur, cuius <lb/>&longs;unt tres modi; primus e&longs;t, cum vngue medij, vel alterius digiti pul&longs;o <lb/>tanti&longs;per molliore &longs;ummi pollicis apice, inten&longs;us deinde digitus eo&shy;<lb/>dem vngue talitrum impingit. </s>
					<s id="N27FA4">Secundum e&longs;t, cum retento &longs;ummo di&shy;<lb/>gito ab aliquo molliori corpore &longs;tatim dimittitur. </s>
					<s id="N27FA9"><!-- NEW -->Tertium e&longs;t, cum <lb/>mollior medij digiti, &amp; pollicis apex po&longs;t aliquam pre&longs;&longs;ionem, non <lb/>&longs;ine aliquo &longs;trepitu exploditur; </s>
					<s id="N27FB1"><!-- NEW -->ratio primi e&longs;t, quia dum vnguis mol&shy;<lb/>liorem &longs;ub&longs;tantiam premit, auget impetum potentia motrix in illa <lb/>mora, neruu&longs;que maxim&egrave; intenditur; </s>
					<s id="N27FB9"><!-- NEW -->igitur maior e&longs;t ictus; </s>
					<s id="N27FBD"><!-- NEW -->eadem <lb/>ratio valet pro &longs;ecundo, &amp; tertio modo; </s>
					<s id="N27FC3"><!-- NEW -->&longs;trepitus ille oritur &agrave; colli&shy;<lb/>&longs;ione, vel compre&longs;&longs;ione: </s>
					<s id="N27FC9"><!-- NEW -->imm&ograve; &longs;i nulla fieret compre&longs;&longs;io aut cert&egrave; <lb/>&longs;i nulla cederet mollior materia, non e&longs;&longs;et maior ictus; adde quod <lb/>non tant&ugrave;m augetur impetus &agrave; potentia motrice diuti&ugrave;s agente, &longs;ed <lb/>etiam ratione compre&longs;&longs;ionis noua &longs;it impetus acce&longs;&longs;io, vt patet in <lb/>arcu. </s>
				</p>
				<p id="N27FD5" type="main">
					<s id="N27FD7">Decimoquart&ograve;, denique quod &longs;pectat ad cornu facil&egrave; explicari pote&longs;t <lb/>quomodo ab irato tauro intendatur, vno &longs;cilicet durioris capitis motu, <lb/>atque ade&ograve; totius corporis. </s>
				</p>
				<p id="N27FDE" type="main">
					<s id="N27FE0"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 12.<emph.end type="center"/></s>
				</p>
				<p id="N27FEC" type="main">
					<s id="N27FEE"><emph type="italics"/>Explicari po&longs;&longs;unt omnes ictus, qui infliguntur impacto &longs;cilicet &longs;axo, fu&longs;te, <lb/>flagello, &amp; alio quouis organo, cui &longs;emper potentia motrix coniuncta e&longs;t, nec <lb/>ab ea &longs;eparatur,<emph.end type="italics"/> excepto dumtaxat omni malleorum genere, gladiorum, <lb/>&amp;c. </s>
					<s id="N27FFC"><!-- NEW -->prim&ograve; manus in&longs;tructa &longs;axo grauiorem ictum infligit; </s>
					<s id="N28000"><!-- NEW -->t&ugrave;m quia <lb/>multus impetus imprimitur graui &longs;axo; </s>
					<s id="N28006"><!-- NEW -->t&ugrave;m quia durior e&longs;t materia; </s>
					<s id="N2800A"><!-- NEW --><lb/>igitur nihil cedit: </s>
					<s id="N2800F"><!-- NEW -->porr&ograve; maior e&longs;t ictus, &longs;i deor&longs;um intendatur, c&ugrave;m <lb/>accedat impetus grauitatis ip&longs;ius &longs;axi: adde ferream manicam, qu&aelig; prop&shy;<lb/>ter <expan abbr="e&atilde;dem">eandem</expan> rationem petentem colaphum infringit. </s>
				</p>
				<p id="N2801B" type="main">
					<s id="N2801D"><!-- NEW -->Secund&ograve;, fu&longs;tis impingi pote&longs;t duobus modis; </s>
					<s id="N28021"><!-- NEW -->prim&ograve; motu recto, <lb/>c&ugrave;m &longs;cilicet porrecto brachio extremitas fu&longs;tis &longs;copum attingit; </s>
					<s id="N28027"><!-- NEW -->&longs;ecund&ograve; <lb/>motu circulari rotato &longs;cilicet brachio: </s>
					<s id="N2802D"><!-- NEW -->primo modo infligitur ictus pun&shy;<lb/>ctim, vt vulg&ograve; dicunt: &longs;ecundo qua&longs;i c&aelig;&longs;im, vterque &longs;ua ph&oelig;nomena <lb/>habet. </s>
				</p>
				<p id="N28035" type="main">
					<s id="N28037"><!-- NEW -->Terti&ograve;, cum punctim impingitur fu&longs;tis, qu&ograve; hic maior e&longs;t, maiorem <lb/>incutit ictum; </s>
					<s id="N2803D"><!-- NEW -->pr&aelig;&longs;ertim, &longs;i gemina manu intenditur; </s>
					<s id="N28041"><!-- NEW -->quia &longs;cilicet ma&shy;<lb/>jor impetus imprimitur; </s>
					<s id="N28047"><!-- NEW -->huc reuoca &longs;ari&longs;&longs;&aelig; graui&longs;&longs;imum ictum, quo <lb/>ferrea lorica perfodi pote&longs;t; </s>
					<s id="N2804D"><!-- NEW -->quia &longs;cilicet maior impetus imprimitur in&shy;<lb/>tentis pri&ugrave;s, &amp; vibratis brachijs; </s>
					<s id="N28053"><!-- NEW -->mult&ugrave;m enim confert, tum illa bra&shy;<lb/>chiorum, atque ade&ograve; totius &longs;ari&longs;&longs;&aelig; vibratio; </s>
					<s id="N28059"><!-- NEW -->t&ugrave;m etiam neruorum ten&shy;<lb/>&longs;io, vt videmus in arcu; </s>
					<s id="N2805F"><!-- NEW -->&longs;ed hoc iam &longs;upr&agrave; explicuimus; huc etiam <lb/>reuoca cra&longs;&longs;iorem illum vectem, quo fores ip&longs;i pul&longs;ati perrum&shy;<lb/>puntur. </s>
				</p>
				<p id="N28067" type="main">
					<s id="N28069"><!-- NEW -->Quart&ograve;, longitudo &longs;ari&longs;&longs;&aelig; compen&longs;ari pote&longs;t cra&longs;&longs;itie; </s>
					<s id="N2806D"><!-- NEW -->&longs;it enim <lb/>&longs;ari&longs;&longs;a 12. pedes alta pendens 12. libras; </s>
					<s id="N28073"><!-- NEW -->&longs;it alia 6. pedes alta pendens <pb pagenum="394" xlink:href="026/01/428.jpg"/>12. libras vtraque &aelig;quali ni&longs;u, &amp; modo ab eadem potentia impacta &aelig;&shy;<lb/>qualem ictum infligit; </s>
					<s id="N2807E"><!-- NEW -->probatur quia tantumdem impetus imprimitur <lb/>vni, quantum alteri; </s>
					<s id="N28084"><!-- NEW -->nam a&euml;ris re&longs;i&longs;tentia vix quidquam facit; </s>
					<s id="N28088"><!-- NEW -->lic&egrave;t pau&shy;<lb/>l&ograve; pl&ugrave;s re&longs;i&longs;tat a&euml;r breuiori, cuius ba&longs;is latior e&longs;t in ratione dupla, qu&agrave;m <lb/>longiori; hinc cra&longs;&longs;iori fu&longs;te lic&egrave;t breuiore maximus ictus infringitur, <lb/>vt patet experienti&acirc;. </s>
				</p>
				<p id="N28092" type="main">
					<s id="N28094">Diceret aliquis h&aelig;c repugnare omnibus experimentis, quibus &longs;cili&shy;<lb/>cet clari&longs;&longs;im&egrave; con&longs;tat minorem e&longs;&longs;e breuiorum &longs;ari&longs;&longs;arum vim. </s>
				</p>
				<p id="N28099" type="main">
					<s id="N2809B">Re&longs;p. hoc ip&longs;um accidere; quia breuiores &longs;ari&longs;&longs;&aelig;, quas habemus, vel <lb/>exiliores &longs;unt longioribus, vel &longs;altem non cra&longs;&longs;iores, c&ugrave;m tamen cra&longs;&longs;io&shy;<lb/>res e&longs;&longs;e oporteat in eadem ratione, in qua ill&aelig; longiores &longs;unt vt &aelig;qualis <lb/>&longs;it ictus. </s>
				</p>
				<p id="N280A4" type="main">
					<s id="N280A6"><!-- NEW -->Quint&ograve;, cur ver&ograve; maior fu&longs;tis maiorem impetum &agrave; brachiorum vi <lb/>recipiat; </s>
					<s id="N280AC"><!-- NEW -->ratio e&longs;t, prim&ograve; quia maiori vtrumque brachium admouetur: </s>
					<s id="N280B0"><!-- NEW --><lb/>&longs;ecund&ograve;, quia vibratur antequam intendatur; </s>
					<s id="N280B5"><!-- NEW -->atqui ex ea vibratione <lb/>multus impetus accedit, vt patet ex vibrato ariete: </s>
					<s id="N280BB"><!-- NEW -->terti&ograve;, quia maior <lb/>fu&longs;tis tardi&ugrave;s mouetur, vt con&longs;tat; </s>
					<s id="N280C1"><!-- NEW -->igitur pl&ugrave;s impetus in eo producit <lb/>potentia motrix, qu&aelig; &longs;ingulis in&longs;tantibus toto ni&longs;u fu&longs;tem impellit; </s>
					<s id="N280C7"><!-- NEW -->&amp; <lb/>h&aelig;c e&longs;t vera ratio &agrave; priori: </s>
					<s id="N280CD"><!-- NEW -->quart&ograve;, adde quod pondus maioris fu&longs;tis <lb/>qua&longs;i neruos extendit; </s>
					<s id="N280D3"><!-- NEW -->atqui ten&longs;i nerui fortiores &longs;unt; </s>
					<s id="N280D7"><!-- NEW -->in qua ver&ograve; <lb/>proportione &longs;it maior ictus, dicemus numero &longs;equenti; e&longs;t enim res <lb/>&longs;citu digni&longs;&longs;ima. </s>
				</p>
				<p id="N280DF" type="main">
					<s id="N280E1"><!-- NEW -->Sext&ograve;, determinari pote&longs;t proportio ictuum maioris, &amp; minoris <lb/>fu&longs;tis, cum vterque punctim impingitur ab eadem potenti&acirc; per eam&shy;<lb/>dem lineam &aelig;quali ni&longs;u; </s>
					<s id="N280E9"><!-- NEW -->&longs;it fu&longs;tis minor H duarum librarum; </s>
					<s id="N280ED"><!-- NEW -->&longs;it <lb/>maior I 8. librarum; </s>
					<s id="N280F3"><!-- NEW -->&longs;it datum tempus L, quo I &longs;uam lineam K <lb/>motu accelerato &longs;patium conficit: </s>
					<s id="N280F9"><!-- NEW -->dico H eodem tempore L con&shy;<lb/>ficere tant&ugrave;m &longs;patium prioris &longs;ubquadruplum; </s>
					<s id="N280FF"><!-- NEW -->igitur duplo tem&shy;<lb/>pore conficit &longs;patium K: </s>
					<s id="N28105"><!-- NEW -->&longs;ed &aelig;qualibus temporibus acquiruntur <lb/>&aelig;qualia velocitatis momenta motu accelerato; </s>
					<s id="N2810B"><!-- NEW -->igitur vbi H confi&shy;<lb/>cit &longs;patium K, habet &longs;ubduplam velocitatem illius, quam habet I <lb/>confecto eodem &longs;patio K; </s>
					<s id="N28113"><!-- NEW -->&longs;ed moles H e&longs;t quadrupla molis I; </s>
					<s id="N28117"><!-- NEW -->igi&shy;<lb/>tur impetus H e&longs;t duplus impetu I; </s>
					<s id="N2811D"><!-- NEW -->igitur dupl&ograve; maior ictus: </s>
					<s id="N28121"><!-- NEW -->quod <lb/>vt clari&ugrave;s videatur, in &longs;chemate hoc ip&longs;um demon&longs;tro, producitur <lb/>&aelig;qualis impetus eodem tempore in H &amp; in I; </s>
					<s id="N28129"><!-- NEW -->e&longs;t enim eadem poten&shy;<lb/>tia, idem ni&longs;us, &longs;ed di&longs;tribuitur in H numero partium quadru&shy;<lb/>plo numeri partium I; </s>
					<s id="N28131"><!-- NEW -->igitur velocitas, vel inten&longs;io impetus H e&longs;t <lb/>&longs;ubquadrupla; </s>
					<s id="N28137"><!-- NEW -->igitur &longs;i I tempore L percurrit AG; </s>
					<s id="N2813B"><!-- NEW -->cert&egrave; H eodem <lb/>tempore percurrit AB &longs;ubquadruplam AG; </s>
					<s id="N28141"><!-- NEW -->igitur duplo tempore <lb/>AC &aelig;qualem AG; </s>
					<s id="N28147"><!-- NEW -->&longs;ed H decur&longs;a AC, habet &longs;ubuplam veloci&shy;<lb/>tatem I, decur&longs;a AG; </s>
					<s id="N2814D"><!-- NEW -->quia decur&longs;a AF habet &aelig;qualem: </s>
					<s id="N28151"><!-- NEW -->&longs;ed AF e&longs;t <lb/>quadrupla AC; igitur decur&longs;a AC habet &longs;ubduplam, &amp;c. </s>
					<s id="N28157"><!-- NEW -->&longs;ed ra&shy;<lb/>tione molis habet H quadruplum impetus; igitur ratione vtriu&longs;que <lb/>duplum. </s>
				</p>
				<pb pagenum="395" xlink:href="026/01/429.jpg"/>
				<p id="N28163" type="main">
					<s id="N28165">Ob&longs;eruabis autem prim&ograve; ratione ponderis H, quod &longs;u&longs;ti&nacute;etur, aliquid <lb/>impetus detrahendum e&longs;&longs;e. </s>
					<s id="N2816A">Secund&ograve;, vt accurat&egrave; procedatur vtrumque <lb/>fu&longs;tem funependulum e&longs;&longs;e po&longs;&longs;e. </s>
					<s id="N2816F"><!-- NEW -->Terti&ograve;, ictus e&longs;&longs;e vt impetus; impetus <lb/>ver&ograve; in ratione &longs;ubduplicata ponderum, hoc e&longs;t, vt radices quadratas. </s>
					<s id="N28175"><!-- NEW --><lb/>v.g. <!-- REMOVE S-->fu&longs;tis maior pendit 36. libras, minor 4; </s>
					<s id="N2817C"><!-- NEW -->ictus maioris e&longs;t ad ictum <lb/>minoris vt 6. ad 2. Quart&ograve;, denique plures partes percuti &agrave; maiore <lb/>fu&longs;te, cuius ba&longs;is latior e&longs;t, nec tam facil&egrave; comprimi, nec ip&longs;um fu&longs;tem <lb/>incuruari; ac proinde min&ugrave;s ictui detrahi, &longs;ed de his &longs;atis. </s>
				</p>
				<p id="N28186" type="main">
					<s id="N28188">Septim&ograve;, &longs;i fu&longs;tis c&aelig;&longs;im impingatur, maiorem ictum infligit. </s>
					<s id="N2818B">Prim&ograve;, <lb/>non circa extremitatem &longs;ed circa 2/3, vt demon&longs;trabimus infr&agrave;. </s>
					<s id="N28190"><!-- NEW -->Secund&ograve;, <lb/>qu&ograve; maior e&longs;t arcus fu&longs;tis e&longs;t maior ictus; </s>
					<s id="N28196"><!-- NEW -->ratio patet ex dictis; c&ugrave;m &longs;it <lb/>motus acceleratus. </s>
					<s id="N2819C">Terti&ograve;, pote&longs;t hic motus totum implere orbem, &longs;iue <lb/>fieri auer&longs;a, &longs;iue aduer&longs;a manu. </s>
					<s id="N281A1">Quart&ograve;, auer&longs;a manu impactus fu&longs;tis ma&shy;<lb/>iorem ictum infligit, quia brachium hoc modo intentum maiore vi <lb/>pollet, vt dictum e&longs;t &longs;upr&agrave;. </s>
					<s id="N281A8"><!-- NEW -->Quint&ograve;, hinc &longs;&aelig;p&egrave; ita inflecti &longs;eu tornari po&shy;<lb/>te&longs;t brachium, vt de&longs;cribat arcum minoris circuli, &longs;ed maiorem, &longs;eu po&shy;<lb/>tius lineam &longs;piralem, in qua de&longs;cribenda diuti&ugrave;s moratur; </s>
					<s id="N281B0"><!-- NEW -->hinc motus fit <lb/>maior, quia e&longs;t acceleratus; igitur maior ictus. </s>
					<s id="N281B6">Sext&ograve;, &longs;i fu&longs;tis deor&longs;um <lb/>feratur motu circulari, impetus naturalis accedit impre&longs;&longs;o. </s>
					<s id="N281BB">Septim&ograve;, &longs;i <lb/>vtraque manu intendatur fu&longs;tis, maior erit ictus, vt con&longs;tat ex dictis. </s>
					<s id="N281C0"><lb/>Octau&ograve; denique, quod dictum e&longs;t de fu&longs;te impacto c&aelig;&longs;im, dici debet <lb/>en&longs;e. </s>
				</p>
				<p id="N281C6" type="main">
					<s id="N281C8">Octau&ograve;, aliquando fu&longs;tis inflectitur; </s>
					<s id="N281CB"><!-- NEW -->quia flexibilis e&longs;t; </s>
					<s id="N281CF"><!-- NEW -->cum &longs;cilicet <lb/>motu circulari, &longs;eu c&aelig;&longs;im diuerberat, &longs;eu flagellat; </s>
					<s id="N281D5"><!-- NEW -->&longs;it enim fu&longs;tis CA, <lb/>qui rotetur circa centrum C; </s>
					<s id="N281DB"><!-- NEW -->cert&egrave; vbi B peruenerit in E, A perueniet <lb/>in H; </s>
					<s id="N281E1"><!-- NEW -->igitur inflexus e&longs;t fu&longs;tis HEC, vel GFC; ratio e&longs;t, quia c&ugrave;m po&shy;<lb/>tentia applicata in C agat toto ni&longs;u. </s>
					<s id="N281E7"><!-- NEW -->v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;i &longs;egmentum CB &longs;eiunctum <lb/>e&longs;&longs;et &agrave; &longs;egmento BA; </s>
					<s id="N281F1"><!-- NEW -->haud dubi&egrave; punctum B perueniet citi&ugrave;s in F, qu&agrave;m <lb/>&longs;i vtrumque &longs;egmentum coniunctum e&longs;&longs;et, vt notum e&longs;t; </s>
					<s id="N281F7"><!-- NEW -->quia maior im&shy;<lb/>petus imprimitur B &longs;eiuncta; </s>
					<s id="N281FD"><!-- NEW -->atqui lic&egrave;t CB &longs;it coniunctum BA, ab eo <lb/>tamen facil&egrave;, non quidem omnin&ograve; &longs;eiungi, &longs;ed deflecti, dimoueri pote&longs;t <lb/>propter flexibilitatem materi&aelig;; </s>
					<s id="N28205"><!-- NEW -->igitur B relinquet &agrave; tergo BA; </s>
					<s id="N2820B"><!-- NEW -->igitur <lb/>fu&longs;tis inflectetur, &amp; h&aelig;c e&longs;t vera ratio huius ph&oelig;nomeni: hinc virgul&aelig; <lb/>&longs;ucco &amp; humore plen&aelig;, nerui bubuli latiores, canones, funiculi, lora, <lb/>en&longs;es, manubria Tudicul&aelig; maioris, &amp; alia huiu&longs;modi propter rationem <lb/>pr&aelig;dictam inflectuntur. </s>
				</p>
				<p id="N28217" type="main">
					<s id="N28219"><!-- NEW -->Non&ograve;, extremitas fu&longs;tis inflexi, cum deinde redit, maiorem ictum in&shy;<lb/>fligit: </s>
					<s id="N2821F"><!-- NEW -->ratio e&longs;t, v.g. <!-- REMOVE S-->A vbi attingit D po&longs;t inflexionem; </s>
					<s id="N28225"><!-- NEW -->quia maiorem <lb/>impetum habet; </s>
					<s id="N2822B"><!-- NEW -->nam pr&aelig;ter impre&longs;&longs;um &agrave; potentia applicata in C, acce&shy;<lb/>dit alius ab ip&longs;a inflexione, cuius rationem afferemus tractatu &longs;equenti, <lb/>cum de compre&longs;&longs;ione, &amp; ten&longs;ione corporum; </s>
					<s id="N28233"><!-- NEW -->e&longs;t enim qu&aelig;dam potentia <lb/>media inter potentiam grauitationis, &amp; potentiam animatorum, quam <lb/>proinde mediam appellabimus; </s>
					<s id="N2823B"><!-- NEW -->qu&acirc; &longs;cilicet corpora &longs;e&longs;e re&longs;tituunt pri&shy;<lb/>&longs;tin&aelig; exten&longs;ioni, cuius mirificos effectus habemus in arcu chordis pul-<pb pagenum="396" xlink:href="026/01/430.jpg"/>&longs;atis, va&longs;is pneumaticis, &amp; hydraulicis, denique in tota re tormentaria; <lb/>hinc prim&ograve; Tudicul&aelig; maioris manubrium inflexum mult&ugrave;m auget ip&longs;am <lb/>vim ictus, de quo infr&agrave;. </s>
					<s id="N2824A">Secund&ograve;, neruus bubulus, prim&ograve; inflexus, t&ugrave;m <lb/>&longs;tatim rediens &longs;capulas mal&egrave; afficit. </s>
					<s id="N2824F">Terti&ograve;, flexibiles virg&aelig; tran&longs;uer&longs;as <lb/>plagas cum tanto dolore infligunt inu&longs;tis vibicibus. </s>
					<s id="N28254">Quart&ograve;, idem dico <lb/>de regula illa latiore, qua remigiorum pr&aelig;&longs;ides, remiges tardos ca&longs;ti&shy;<lb/>gant &amp;c. </s>
				</p>
				<p id="N2825B" type="main">
					<s id="N2825D"><!-- NEW -->Decim&ograve;, non videtur omittendum flagelli ph&oelig;nomenum; </s>
					<s id="N28261"><!-- NEW -->e&longs;t autem <lb/>duplex flagellorum genus; </s>
					<s id="N28267"><!-- NEW -->primum illorum e&longs;t, quibus aurig&aelig; &longs;uos <lb/>equos agunt; </s>
					<s id="N2826D"><!-- NEW -->&longs;ecundum eorum, quibus &longs;eges in area teritur; </s>
					<s id="N28271"><!-- NEW -->quod &longs;pe&shy;<lb/>ctat ad primum, vel loris vel funiculis con&longs;tat; </s>
					<s id="N28277"><!-- NEW -->acris ver&ograve; e&longs;t ictus, quem <lb/>inurit eius pr&aelig;&longs;ertim extremitas; </s>
					<s id="N2827D"><!-- NEW -->ratio e&longs;t, quia c&ugrave;m partes funis, qu&aelig; <lb/>propius ad manubrium accedunt, citi&ugrave;s moueantur, &amp; alias pon&egrave; relin <lb/>quant, i&longs;t&aelig; deinde in &longs;uo motu pl&ugrave;s temporis ponunt; </s>
					<s id="N28285"><!-- NEW -->igitur, c&ugrave;m &longs;it <lb/>motus acceleratus, maiorem induunt impetum, maioremque imprimunt: </s>
					<s id="N2828B"><!-- NEW --><lb/>adde qu&ograve;d, continu&ograve; arcum minoris circuli extremitas ip&longs;a de&longs;cribit, <lb/>qu&aelig; vltim&ograve; tantum applicatur: </s>
					<s id="N28292"><!-- NEW -->hinc nouus accelerationis modus, vt <lb/>clari&longs;&longs;im&egrave; videtur in funiculo circa digitum, cui aduoluitur in gyros <lb/>acto: </s>
					<s id="N2829A"><!-- NEW -->Quod &longs;pectat ad flagellum frumentarium, mouetur motu mixto <lb/>ex duobus circularibus; </s>
					<s id="N282A0"><!-- NEW -->con&longs;tat enim de gemino fu&longs;te, quorum alter <lb/>circa alterius extremitatem rotatur; </s>
					<s id="N282A6"><!-- NEW -->hic ver&ograve; circa centrum humeri: </s>
					<s id="N282AA"><!-- NEW --><lb/>porr&ograve; extremus fu&longs;tis facit integrum circulum, vnde maximum ictum <lb/>infligit, quem &longs;cilicet pr&aelig;ce&longs;&longs;it longior motus; </s>
					<s id="N282B1"><!-- NEW -->adde quod qua&longs;i &agrave; tergo <lb/>relinquitur extremus fu&longs;tis ab altero; </s>
					<s id="N282B7"><!-- NEW -->igitur diuti&ugrave;s potentia maner ap&shy;<lb/>plicata; </s>
					<s id="N282BD"><!-- NEW -->igitur maiorem impetum producit, ex quo &longs;equitur maior ictus; </s>
					<s id="N282C1"><!-- NEW --><lb/>porr&ograve; vt vltima extremitas extremi fu&longs;tis qua&longs;i retroagitur; </s>
					<s id="N282C6"><!-- NEW -->quod &longs;cilicet <lb/>eius centrum ant&egrave; producatur, &longs;eu porrigatur; </s>
					<s id="N282CC"><!-- NEW -->c&ugrave;m enim attollitur fla&shy;<lb/>gellum illud plicatile; haud dubi&egrave; extremitas deor&longs;um tendit proprio <lb/>pondere, &amp; producto in aduer&longs;am partem eius centro, vel altera extre&shy;<lb/>mitate, quid mirum &longs;i perficit circulum? </s>
					<s id="N282D6">eius lineam de&longs;cribemus l.12. </s>
				</p>
				<p id="N282D9" type="main">
					<s id="N282DB"><!-- NEW -->Vndecim&ograve;, &longs;ed aliquam huius ph&oelig;nomeni adumbrationem iuuerit <lb/>exhibere; </s>
					<s id="N282E1"><!-- NEW -->&longs;it flagellum plicatile DAB, &longs;itque AB &longs;olum are&aelig; horizon&shy;<lb/>ti parallelum; </s>
					<s id="N282E7"><!-- NEW -->porr&ograve; &longs;it AB extremus fu&longs;tis, qui voluitur circa cen&shy;<lb/>trum A; </s>
					<s id="N282ED"><!-- NEW -->DA ver&ograve; &longs;it primus fu&longs;tis ad in&longs;tar manubrij volubilis circa <lb/>centrum D; </s>
					<s id="N282F3"><!-- NEW -->&longs;it autem circellus DO, EF, &amp; brachium LMD, cuius <lb/>contractione dum erigitur flagellum, extremitas B de&longs;cribit &longs;ecirculum <lb/>DOE, &amp; A curuam AXG in a&longs;cen&longs;u, in de&longs;cen&longs;u GTA; </s>
					<s id="N282FB"><!-- NEW -->B ver&ograve; in <lb/>a&longs;cen&longs;u curuam BECK, in de&longs;cen&longs;u denique curuam KRB: </s>
					<s id="N28301"><!-- NEW -->itaque <lb/>motus extremitas D mouetur motu circulari; </s>
					<s id="N28307"><!-- NEW -->A ver&ograve; motu mixto ex <lb/>circulari duplici, &longs;cilicet punctorum A &amp; D; </s>
					<s id="N2830D"><!-- NEW -->D quidem per circellum <lb/>DFEO; </s>
					<s id="N28313"><!-- NEW -->A ver&ograve; per arcum AC, denique B motu mixto ex tribus cir&shy;<lb/>cularibus D &longs;cilicet in circello DFEO, A in arcu AC, B denique in <lb/>circulo ABS; </s>
					<s id="N2831B"><!-- NEW -->igitur B mouetur integro circulo circa A, A circa D per <lb/>arcum AC, &amp; D circa Y integro etiam circulo; </s>
					<s id="N28321"><!-- NEW -->vbi ver&ograve; A e&longs;t in G, &amp; <lb/>D in E, B e&longs;t in H; </s>
					<s id="N28327"><!-- NEW -->mouetur autem B veloci&ugrave;s qu&agrave;m A, t&ugrave;m in a&longs;cen&longs;u, <pb pagenum="397" xlink:href="026/01/431.jpg"/>t&ugrave;m de&longs;cen&longs;u; </s>
					<s id="N28330"><!-- NEW -->quia tota GH eodem in&longs;tanti cadit in AB; quippe H <lb/>participat motum A per GA, &amp; motum D per ED, quod clari&longs;&longs;imum <lb/>e&longs;t. </s>
				</p>
				<p id="N28338" type="main">
					<s id="N2833A"><!-- NEW -->Duodecim&ograve;, maior e&longs;t ictus, &longs;i initio de&longs;cen&longs;us fu&longs;tis AB tantill&ugrave;m <lb/>retr&ograve; inclinet, vt GH; </s>
					<s id="N28340"><!-- NEW -->quia B ab H in B pl&ugrave;s temporis ponit, qu&agrave;m &agrave; <lb/>Q, vt patet; </s>
					<s id="N28346"><!-- NEW -->igitur diuti&ugrave;s potentia manet applicata; </s>
					<s id="N2834A"><!-- NEW -->igitur maiorem <lb/>impetum producit; </s>
					<s id="N28350"><!-- NEW -->igitur maior e&longs;t ictus; </s>
					<s id="N28354"><!-- NEW -->debet autem in eo &longs;itu e&longs;&longs;e, <lb/>in quo motus A in G ita temperetur cum motu B in H, vt eodem mo&shy;<lb/>mento vtrumque feriat planum AB; </s>
					<s id="N2835C"><!-- NEW -->&longs;i enim vel A attingat ant&egrave; B, vel <lb/>B ant&egrave; A, minor e&longs;t ictus, vt con&longs;tat; </s>
					<s id="N28362"><!-- NEW -->quia totus motus &longs;imul non im&shy;<lb/>peditur; </s>
					<s id="N28368"><!-- NEW -->pote&longs;t autem cogno&longs;ci ille &longs;itus vel illa inclinatio cognita pro&shy;<lb/>portione motus circularis circa D, &amp; circa A; </s>
					<s id="N2836E"><!-- NEW -->imm&ograve; ni&longs;i retineatur <lb/>DA; </s>
					<s id="N28374"><!-- NEW -->haud dubi&egrave; A tanget &longs;olum AB ex G, antequam B de&longs;cendat in B <lb/>ex H; </s>
					<s id="N2837A"><!-- NEW -->igitur attemperandus e&longs;t motus fu&longs;tis DA; </s>
					<s id="N2837E"><!-- NEW -->pr&aelig;terea pondus in <lb/>de&longs;cen&longs;u auget ictum, deinde B de&longs;cendit deor&longs;um motu orbis &amp; motu <lb/>centri: </s>
					<s id="N28386"><!-- NEW -->pr&aelig;terea B pote&longs;t in a&longs;cen&longs;u maiorem arcum &longs;ui orbis decurre&shy;<lb/>re, qu&agrave;m in de&longs;cen&longs;u, vel &aelig;qualem: denique maior e&longs;t ictus quando po&shy;<lb/>tentia toto ni&longs;u euidente fu&longs;tis AB pl&ugrave;s temporis ante ictum in &longs;uo mo&shy;<lb/>tu in&longs;umit. </s>
				</p>
				<p id="N28390" type="main">
					<s id="N28392"><!-- NEW -->Decimoterti&ograve;, e&longs;t etiam aliud flagelli genus pluribus catenulis ferreis <lb/>in&longs;tructi, ex quibus &longs;ingulis &longs;inguli ferrei globi aliquando &longs;piculis, &amp; <lb/>clauis armati pendent, quorum graui&longs;&longs;imus e&longs;t ictus propter rationes <lb/>pr&aelig;dictas; </s>
					<s id="N2839C"><!-- NEW -->pr&aelig;&longs;ertim c&ugrave;m catenula, &longs;eu funiculus, facili&ugrave;s adduci, &amp; in&shy;<lb/>flecti po&longs;&longs;it, qu&agrave;m extremus ille fu&longs;tis, de quo &longs;upr&agrave;; </s>
					<s id="N283A2"><!-- NEW -->neque dee&longs;t ar&shy;<lb/>tificium; quo quis hoc armorum genere vtens etiam contra plures &longs;e&longs;e <lb/>tueri po&longs;&longs;it. </s>
				</p>
				<p id="N283AA" type="main">
					<s id="N283AC">Decimoquart&ograve;, denique vulgare e&longs;t ph&oelig;nomenum illud funiculi, &longs;en <lb/>flagelli, quo &longs;cilicet initio remouetur manubrij extremitas, mox &longs;tatim <lb/>adducitur, ex qua productione, &amp; adductione per vndantem funem <lb/>propagatur impetus v&longs;que ad eiu&longs;dem extremitatem nodo vt plurim&ugrave;m <lb/>ad&longs;trictam. </s>
					<s id="N283B7"><!-- NEW -->Hinc prim&ograve; &longs;trepitus ille aurigis familiari&longs;&longs;imus; </s>
					<s id="N283BB"><!-- NEW -->quippe <lb/>maxima fit a&euml;ris colli&longs;io in extremo fune; immo, &amp; partium ten&longs;io, &longs;eu <lb/>di&longs;tractio propter motus illos contrarios productionis. </s>
					<s id="N283C3">Secund&ograve;, hinc <lb/>di&longs;trahitur funis, &amp; qua&longs;i laceratur, di&longs;tractis &longs;cilicet tenui&longs;&longs;imis illis <lb/>filamentis, ex quibus con&longs;tat. </s>
					<s id="N283CA">Terti&ograve;, hinc &longs;tringitur illa extremitas no&shy;<lb/>do, t&ugrave;m vt acrior &longs;it ictus, t&ugrave;m vt filamenta illa nodo illo contineantur. </s>
					<s id="N283CF"><!-- NEW --><lb/>Quart&ograve;, duplex e&longs;t motus illius funis propter flexibilitatem; </s>
					<s id="N283D4"><!-- NEW -->hinc ill&aelig; <lb/>vnd&aelig; &longs;eu &longs;pir&aelig;; </s>
					<s id="N283DA"><!-- NEW -->nam remouetur caput funis, quod deinde &longs;equuntur <lb/>ali&aelig; partes per &longs;inuo&longs;os flexus; &longs;ed mox vbi adducitur idem caput, maios <lb/>impetus producitur in aliis partibus. </s>
					<s id="N283E2"><!-- NEW -->Quint&ograve;, currentes vnd&aelig; &longs;eu flexus <lb/>adductionis, qu&aelig; fit maiore impetu, qu&agrave;m productio, tandem in <lb/>primos flexus &longs;inuatos ab ip&longs;a productione incurrunt: hinc augetur <lb/>impetus, &amp; motus extremitatis. </s>
					<s id="N283EC"><!-- NEW -->Sext&ograve;, adde quod lic&egrave;t &longs;it tant&ugrave;m, vel <lb/>productio, vel adductio flagelli, &longs;unt iidem &longs;er&egrave; effectus, &longs;ed minim&egrave; <lb/>&aelig;quales, quia augetur continu&ograve; motus flexuum; </s>
					<s id="N283F4"><!-- NEW -->t&ugrave;m quia funis ver&longs;us <pb pagenum="398" xlink:href="026/01/432.jpg"/>extremitatem &longs;en&longs;im imminuitur; </s>
					<s id="N283FD"><!-- NEW -->t&ugrave;m quia minor e&longs;t radius illius mo&shy;<lb/>tus, quia circulari incipit: hinc extremitas funis veloci&longs;&longs;im&egrave; tandem <lb/>mouetur, &amp; impacta acuti&longs;&longs;imum ictum incutit. </s>
					<s id="N28405"><!-- NEW -->Septim&ograve;, ob&longs;erua pro&shy;<lb/>pter illam inflexionem motum diuti&ugrave;s per&longs;euerare; </s>
					<s id="N2840B"><!-- NEW -->igitur potentia <lb/>manet diuti&ugrave;s applicata; </s>
					<s id="N28411"><!-- NEW -->igitur maiorem effectum producit, vnde re&shy;<lb/>uocare pote&longs;t: hunc effectum ad illud ph&aelig;nomenum baculi flexibilis, <lb/>de quo &longs;upr&agrave;. </s>
					<s id="N28419">Octau&ograve;, hinc pueri &longs;trophiolis pr&aelig;dicto modo inflexis <lb/>inter &longs;e contendunt, pro quo e&longs;t eadem ratio. </s>
					<s id="N2841E"><!-- NEW -->Non&ograve;, hinc vt excutiatur <lb/>puluis ex pannis, eodem modo &longs;uccutiuntur; </s>
					<s id="N28424"><!-- NEW -->t&ugrave;m propter ten&longs;ionem <lb/>filorum, qu&aelig; pulueri liberiores meatus aperit; </s>
					<s id="N2842A"><!-- NEW -->t&ugrave;m propter vibrationes <lb/>qu&aelig; puluerem abigunt: </s>
					<s id="N28430"><!-- NEW -->imm&ograve; flexibus aduer&longs;is tapetes ita &longs;uccutiun&shy;<lb/>tur, vt flexus hinc inde currentes qua&longs;i tumentes fluctus, &longs;ibi inuicem <lb/>occurrant in medio tapete, &amp; allidantur; </s>
					<s id="N28438"><!-- NEW -->hinc &longs;equitur ten&longs;io; </s>
					<s id="N2843C"><!-- NEW -->hinc <lb/>vibratio, pulueris excu&longs;&longs;io, hinc etiam &longs;trepitus; denique clari&longs;&longs;im&egrave; vi&shy;<lb/>dentur flexus illi volubiles in exten&longs;a mappa, quorum ratio patet ex <lb/>dictis. </s>
				</p>
				<p id="N28446" type="main">
					<s id="N28448"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 13.<emph.end type="center"/></s>
				</p>
				<p id="N28454" type="main">
					<s id="N28456"><!-- NEW --><emph type="italics"/>Explicari po&longs;&longs;unt omnia percu&longs;&longs;ionum ph&oelig;nomena, qu&aelig; fiunt opera mallei,<emph.end type="italics"/><lb/>h&icirc;c con&longs;ideratur malleus qua&longs;i incu&longs;&longs;us circulari motu, qui nullo mo&shy;<lb/>do coniunctus &longs;it cum motu naturali deor&longs;um, quod tamen infr&agrave; ex&shy;<lb/>plicabimus; hoc po&longs;ito. </s>
				</p>
				<p id="N28464" type="main">
					<s id="N28466"><!-- NEW -->Prim&ograve;, qu&ograve; maior e&longs;t malleus eodem arcu impactus &amp; manubrio, <lb/>maior e&longs;t ictus, quia tardi&ugrave;s mouetur; </s>
					<s id="N2846C"><!-- NEW -->igitur potentia manet diuti&ugrave;s <lb/>applicata; igitur maior e&longs;t ictus, vt con&longs;tat ex dictis. </s>
				</p>
				<p id="N28472" type="main">
					<s id="N28474"><!-- NEW -->Secund&ograve;, hinc ex hac hypothe&longs;i ictus &longs;unt in ratione &longs;ubduplicata <lb/>ponderum malleorum; con&longs;tat etiam, po&longs;ita &longs;cilicet eadem longitudine <lb/>manubrij. </s>
				</p>
				<p id="N2847C" type="main">
					<s id="N2847E">Terti&ograve;, maior incutitur ictus non quidem circa extremitatem <lb/>ba&longs;is mallei, nec circa medium, &longs;ed circa mediam proportionalem <lb/>inter diametrum ba&longs;is, &amp; &longs;ubduplum, patet per Th. 73. l. <!-- REMOVE S-->1. Co&shy;<lb/>rol. <!-- REMOVE S-->4. <!-- KEEP S--></s>
				</p>
				<p id="N2848C" type="main">
					<s id="N2848E"><!-- NEW -->Quart&ograve;, &longs;i &longs;it longius manubrium mallei, maiorem ictum infliget; </s>
					<s id="N28492"><!-- NEW --><lb/>quia tardius maiorem arcum decurrit, qu&agrave;m minorem; </s>
					<s id="N28497"><!-- NEW -->igitur potentia <lb/>manet diuti&ugrave;s applicata; </s>
					<s id="N2849D"><!-- NEW -->igitur maiorem effectum producit; </s>
					<s id="N284A1"><!-- NEW -->quod au&shy;<lb/>tem tardi&ugrave;s &longs;uum arcum perficiat maior radius, patet experientia ma&shy;<lb/>ioris pertic&aelig; &amp; breuioris fu&longs;tis; cuius ratio e&longs;t, quia idem impetus ma&shy;<lb/>iori moli impre&longs;&longs;us remi&longs;&longs;ior e&longs;t, quia &longs;cilicet pluribus partibus di&longs;tri&shy;<lb/>buitur. </s>
				</p>
				<p id="N284AD" type="main">
					<s id="N284AF"><!-- NEW -->Quint&ograve;, velocitates extremitatum, po&longs;ita diuer&longs;a longitudine manu&shy;<lb/>brij, &longs;unt vt ip&longs;&aelig; longitudines permutando: </s>
					<s id="N284B5"><!-- NEW -->probatur, quia c&ugrave;m &longs;it mo&shy;<lb/>tus acceleratus, &longs;patia &longs;unt vt quadrata temporum; &longs;ed velocitates <lb/>&longs;unt vt tempora, &amp; tempora &longs;unt in ratione &longs;ubduplicata &longs;patiorum. </s>
					<s id="N284BD"><!-- NEW --><lb/>id e&longs;t, vt diametri quadratorum, id e&longs;t, vt longitudines, &longs;it enim lon&shy;<lb/>gitudo AB, qu&aelig; dato tempore H decurrat &longs;patium ABF, potentia <pb pagenum="399" xlink:href="026/01/433.jpg"/>&longs;cilicet toto ni&longs;u applicata, &longs;it etiam longitudo AC dupla AB: </s>
					<s id="N284C9"><!-- NEW -->dico <lb/>quod eodem tempore H acquiret &aelig;quale &longs;patium &longs;cilicet CAD; </s>
					<s id="N284CF"><!-- NEW -->igitur <lb/>CAD e&longs;t 1/4 CAG, quia e&longs;t &aelig;quale BAF; </s>
					<s id="N284D5"><!-- NEW -->igitur CD e&longs;t 1/4 CG, &longs;ed <lb/>CG e&longs;t duplus BF; </s>
					<s id="N284DB"><!-- NEW -->igitur CD e&longs;t &longs;ubduplus BF; </s>
					<s id="N284DF"><!-- NEW -->igitur velocitas ex&shy;<lb/>tremitatis C in CA e&longs;t &longs;ubdupla velocitatis B in BA: </s>
					<s id="N284E5"><!-- NEW -->adde quod AC c&ugrave;m <lb/>numerus partium AC &longs;it duplus numeri partium AB, &amp; c&ugrave;m in eadem <lb/>proportione di&longs;tribuatur impetus AC, &amp; AB; cert&egrave; partes maioris &longs;i <lb/>comparentur cum partibus proportionalibus minoris, &longs;ubduplam tan&shy;<lb/>t&ugrave;m habebunt portionem. </s>
				</p>
				<p id="N284F1" type="main">
					<s id="N284F3"><!-- NEW -->Sext&ograve;, ictus inflicti &agrave; malleis, quorum manubria diuer&longs;am longitu&shy;<lb/>dinem habent, &longs;uppo&longs;ito eodem angulo, &longs;unt vt longitudines; </s>
					<s id="N284F9"><!-- NEW -->&longs;i enim <lb/>eo tempore, quo AB facit &longs;patium BAF, AC facit CAD; </s>
					<s id="N284FF"><!-- NEW -->cert&egrave; &aelig;quali <lb/>tempore AC faciet DAG, vt con&longs;tat ex natura motus accelerati; </s>
					<s id="N28505"><!-- NEW --><lb/>igitur acquirit <expan abbr="tant&utilde;dem">tantundem</expan> impetus; </s>
					<s id="N2850E"><!-- NEW -->&longs;ed eo tempore, quo AC decurrit <lb/>CAD, acquirit &aelig;qualem impetum AB dum percurrit BAF, vt patet ex <lb/>dictis; </s>
					<s id="N28516"><!-- NEW -->igitur AC decur&longs;o CAG habet duplum impetum AB decur&longs;o <lb/>BAF; </s>
					<s id="N2851C"><!-- NEW -->igitur dupla e&longs;t vis ictus; </s>
					<s id="N28520"><!-- NEW -->igitur ictus &longs;unt in ratione &longs;ubdupli&shy;<lb/>cata CAG, BAF; igitur vt ACAB. </s>
				</p>
				<p id="N28526" type="main">
					<s id="N28528"><!-- NEW -->Septim&ograve;, diceret aliquis velocitatem C decur&longs;o CD, e&longs;&longs;e &longs;ubduplam <lb/>velocitatis B decur&longs;o BF; </s>
					<s id="N2852E"><!-- NEW -->&longs;ed velocitas C, decur&longs;o CG, e&longs;t dupla velo&shy;<lb/>citatis eiu&longs;dem C decur&longs;o CD; </s>
					<s id="N28534"><!-- NEW -->igitur velocitas C, decur&longs;o CG, e&longs;t <lb/>&aelig;qualis velocitati B, decur&longs;o BF; igitur &aelig;qualis ictus. </s>
					<s id="N2853A"><!-- NEW -->Re&longs;p. conce&longs;&longs;a <lb/>prim&acirc; con&longs;equenti&acirc;, vltim&acirc; ver&ograve; negat&acirc;; </s>
					<s id="N28540"><!-- NEW -->quia non tant&ugrave;m impetus <lb/>puncti C incutit ictum &longs;ed totius CA, qui cen&longs;etur e&longs;&longs;e collectus in <lb/>malleo in quo e&longs;t qua&longs;i centrum huius impetus, vt iam explicuimus <lb/>ali&agrave;s; &longs;ed velocitas totius CA confecto CAD e&longs;t &aelig;qualis velocitati <lb/>totius BA confecto BAF, cuius velocitas CA confecto CAG e&longs;t dupla, <lb/>vt iam probatum e&longs;t. </s>
				</p>
				<p id="N2854E" type="main">
					<s id="N28550"><!-- NEW -->Octau&ograve;, hinc ictus CA confecto CAD e&longs;t &aelig;qualis ictui AB con&shy;<lb/>fecto BAF, &amp; ictus CA confecto CI duplo CD e&longs;t ad ictum CA con&shy;<lb/>fecto CD, vt radix CA ad radicem CI: </s>
					<s id="N28558"><!-- NEW -->hinc vides hunc motum con&shy;<lb/>uenire in eo cum recto, qu&ograve;d &longs;cilicet ictus inflictus motu recto &agrave; mi&shy;<lb/>nori mole, &longs;it ad ictum maioris, &longs;uppo&longs;ita linea motus &aelig;quali in ratio&shy;<lb/>ne &longs;ubduplicata ponderum; qu&ograve;d dicitur etiam de motu circulari duo&shy;<lb/>rum fu&longs;tium in&aelig;qualium, quorum ictus &longs;unt in ratione &longs;ubduplicata <lb/>longitudinum, a&longs;&longs;umptis duntaxat arcubus &aelig;qualibus ab extremitate <lb/>vtriu&longs;que decur&longs;is. </s>
				</p>
				<p id="N28568" type="main">
					<s id="N2856A"><!-- NEW -->Non&ograve;, cum mallei &longs;unt diuer&longs;i ponderis, &amp; longitudinis, facil&egrave; co&shy;<lb/>gno&longs;ci poterit proportio ictuum; </s>
					<s id="N28570"><!-- NEW -->e&longs;t enim compo&longs;ita ex ratione lon&shy;<lb/>gitudinum &amp; &longs;ubduplicata ponderum v.g. <!-- REMOVE S-->&longs;it malleus A, cuius longitu&shy;<lb/>do &longs;it 2. pondus 4. &longs;it malleus B cuius longitudo &longs;it pondus; </s>
					<s id="N2857A"><!-- NEW -->rect&egrave; ra&shy;<lb/>tio longitudinum e&longs;t 2/3, &amp; &longs;ubduplicata ponderum e&longs;t 2/3; </s>
					<s id="N28580"><!-- NEW -->ducatur vna <lb/>in aliam, vt euadat compo&longs;ita &longs;cilicet 4/1 vel longitudo A &longs;it I, &amp; B 2; </s>
					<s id="N28586"><!-- NEW --><lb/>habebitur ratio &longs;ubduplicata ponderum 2/1, &amp; ratio longitudinum 3/2; </s>
					<s id="N2858D"><!-- NEW --><lb/>ducatur vna in aliam, habebitur ratio compo&longs;ita 2/2; </s>
					<s id="N28594"><!-- NEW -->igitur &longs;unt &aelig;qua-<pb pagenum="400" xlink:href="026/01/434.jpg"/>les, qu&aelig; omnia facil&egrave; intelliguntur ex dictis; </s>
					<s id="N2859D"><!-- NEW -->itaque habes 4. combina&shy;<lb/>tiones duorum malleorum; </s>
					<s id="N285A3"><!-- NEW -->vel enim e&longs;t idem pondus vtrique, &amp; ea&shy;<lb/>dem longitudo, vel idem pondus, &longs;ed diuer&longs;a longitudo, vel eadem lon&shy;<lb/>gitudo &amp; diuer&longs;um pondus, vel diuer&longs;um pondus &amp; diuer&longs;a longitudo; <lb/>&longs;i ver&ograve; e&longs;t diuer&longs;a longitudo &longs;imul, &amp; diuer&longs;um pondus, vel eidem ine&longs;t <lb/>maius pondus, &amp; maior longitudo, vel maior longitudo, &amp; minus pon&shy;<lb/>dus, &amp; contr&agrave; alteri minor longitudo, &amp; minus pondus, vel maius pon&shy;<lb/>dus, &amp; minor longitudo, quorum omnium proportiones &longs;unt determi&shy;<lb/>nat&aelig;. </s>
				</p>
				<p id="N285B5" type="main">
					<s id="N285B7"><!-- NEW -->Decim&ograve;, quod &longs;pectat ad cra&longs;&longs;itudinem manubrij, illa haud dubi&egrave; <lb/>auget aliquando vim ictus, aliquando imminuit; </s>
					<s id="N285BD"><!-- NEW -->auget quidem, cum <lb/>malleus centrum impetus occupat eo modo, quo explicuimus l. <!-- REMOVE S-->1.Th.73. <lb/>Corol.4. imminuit ver&ograve; cum ab eo centro recedit, vt manife&longs;tum e&longs;t ex <lb/>dictis ibidem, cum infligitur ictus eo mallei puncto, in quo non e&longs;t <lb/>pr&aelig;dictum centrum, formicat manus infligentis, vt patet experienti&acirc;; </s>
					<s id="N285CB"><!-- NEW --><lb/>quippe extremitas illa manubrij, qu&aelig; manu tenetur, vel attollitur, vel <lb/>deprimitur; </s>
					<s id="N285D2"><!-- NEW -->attollitur quidem, &longs;i punctum contactus, vel ictus e&longs;t inter <lb/>pr&aelig;dictum centrum &amp; manum; </s>
					<s id="N285D8"><!-- NEW -->&amp; &egrave; contrario deprimitur, &longs;i centrum <lb/>ip&longs;um &longs;it inter punctum contactus &amp; manum; </s>
					<s id="N285DE"><!-- NEW -->&amp; quia manus im&shy;<lb/>pedit, ne vel attollatur, vel deprimatur, impetus in illam qua&shy;<lb/>&longs;i refunditur; </s>
					<s id="N285E6"><!-- NEW -->hinc illa formicatio non &longs;ine maximo &longs;&aelig;pi&ugrave;s do&shy;<lb/>loris &longs;en&longs;u; </s>
					<s id="N285EC"><!-- NEW -->denique ob&longs;erua nouem e&longs;&longs;e combinationes, &longs;i con&shy;<lb/>&longs;iderentur in malleo longitudo, &amp; latitudo manubrij cum ip&longs;o <lb/>pondere; quippe &longs;i 3. ducantur in 3. erunt 9. &longs;ed h&aelig;c &longs;unt fa&shy;<lb/>cilia. </s>
				</p>
				<p id="N285F6" type="main">
					<s id="N285F8"><!-- NEW -->Vndecim&ograve;, &longs;i malleus impingatur deor&longs;um cre&longs;cit ictus propter mo&shy;<lb/>tum naturaliter acceleratum, additum &longs;cilicet extrin&longs;ec&ugrave;s impre&longs;&longs;o; </s>
					<s id="N285FE"><!-- NEW --><lb/>&longs;i enim mallei cadunt ex eadem altitudine, &longs;untque eiu&longs;dem ponderis, <lb/>ictus &aelig;quales e&longs;&longs;e nece&longs;&longs;e e&longs;t; </s>
					<s id="N28605"><!-- NEW -->&longs;i ver&ograve; &longs;unt eiu&longs;dem ponderis, &amp; cadunt <lb/>ex diuer&longs;a altitudine impetus acqui&longs;iti motu naturali, &longs;unt in ratione <lb/>&longs;ubduplicata altitudinum; </s>
					<s id="N2860D"><!-- NEW -->&longs;i ver&ograve; &longs;unt diuer&longs;i ponderis, &amp; cadunt ex <lb/>diuer&longs;a altitudine, &longs;unt in ratione compo&longs;ita aliquomodo ex vtraque; </s>
					<s id="N28613"><!-- NEW --><lb/>dico aliquo modo, quia non e&longs;t omnin&ograve; propria compo&longs;itio rationum; </s>
					<s id="N28618"><!-- NEW --><lb/>pote&longs;t tamen facil&egrave; proportio ictuum inueniri, v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;it malleus A, &amp; <lb/>malleus B, ictus A ratione impetus impre&longs;&longs;i extrin&longs;ecus &longs;it vt 8, ratione <lb/>ca&longs;us &longs;it vt 2; </s>
					<s id="N28625"><!-- NEW -->at ver&ograve; ictus B ratione impetus impre&longs;&longs;i &longs;it vt 6, ratione <lb/>ca&longs;us vt 3: </s>
					<s id="N2862B"><!-- NEW -->addantur 8, &amp; 2 erunt 10; </s>
					<s id="N2862F"><!-- NEW -->adduntur 6, &amp; 3 erunt 9; </s>
					<s id="N28633"><!-- NEW -->igitur <lb/>ictus &longs;unt in ratione &lpar;10/9&rpar;, vt con&longs;tat: </s>
					<s id="N28639"><!-- NEW -->porr&ograve; quemadmodum nouus im&shy;<lb/>petus accedit ratione motus naturalis, cum malleus impingitur deor&shy;<lb/>&longs;um, ita aliquid impetus de&longs;truitur cum malleus impingitur &longs;ur&longs;um, vt <lb/>patet; </s>
					<s id="N28643"><!-- NEW -->denique, quia &longs;unt 5 termini, quos re&longs;picit ictus, &longs;cilicet pondus <lb/>mallei, longitudo manubrij, cra&longs;&longs;itudo arcus extremitatis, &amp; linea &longs;ur&shy;<lb/>&longs;um vel deor&longs;um, ita &longs;unt 25. combinationes ictuum; &longs;ed hoc fa&shy;<lb/>cile e&longs;t. </s>
				</p>
				<pb pagenum="401" xlink:href="026/01/435.jpg"/>
				<p id="N28651" type="main">
					<s id="N28653">Duodecim&ograve;, ictus eiu&longs;dem mallei per diuer&longs;os arcus &longs;unt in ra&shy;<lb/>tione &longs;ubduplicata arcuum. </s>
					<s id="N28658"><!-- NEW -->v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;it malleus AC arcus CD, t&ugrave;m <lb/>arcus CG: </s>
					<s id="N28662"><!-- NEW -->dico ictus per vtrumque arcum e&longs;&longs;e in ratione &longs;ubdu&shy;<lb/>plicata arcuum CD, EG, id e&longs;t in ratione 2/3, vt con&longs;tat ex dictis; <lb/>pote&longs;t etiam facil&egrave; inueniri proportio, &longs;i &longs;it diuer&longs;a longitudo, vel <lb/>diuer&longs;um pondus &amp;c. </s>
					<s id="N2866C"><!-- NEW -->hinc ratio manife&longs;ta, cur per minimum ictum <lb/>nullus fer&egrave; &longs;it ictus: &longs;ed h&aelig;c ex dicendis infr&agrave; de ca&longs;u clari&longs;&longs;im&egrave; intel&shy;<lb/>ligentur. </s>
				</p>
				<p id="N28674" type="main">
					<s id="N28676">Decimoterti&ograve;, claua reduci debet ad malleum. </s>
					<s id="N28679"><!-- NEW -->Prim&ograve;, deter&shy;<lb/>minari pote&longs;t, ex quo puncto maiorem ictum infligit, quando mo&shy;<lb/>uetur motu recto; </s>
					<s id="N28681"><!-- NEW -->&longs;it enim centrum grauitatis clau&aelig; I, in quo &longs;i <lb/>&longs;u&longs;tineatur, &longs;tabit in &aelig;quilibrio; </s>
					<s id="N28687"><!-- NEW -->ducatur FIE, maiorem ictum <lb/>infliget ex puncto E, quia <expan abbr="tant&utilde;dem">tantundem</expan> e&longs;t impetus in &longs;egmento <lb/>FEK quantum in &longs;egmento FEA; </s>
					<s id="N28693"><!-- NEW -->igitur totus impeditur impe&shy;<lb/>tus; igitur maximus erit ictus &longs;i infligat ictum motu circulari circa <lb/>aliud e&longs;t centrum percu&longs;&longs;ionis, de quo infr&agrave;. </s>
					<s id="N2869B"><!-- NEW -->Terti&ograve;, hoc percu&longs;&longs;io&shy;<lb/>nis organum validum ictum infligit propter illam extremam cra&longs;&shy;<lb/>&longs;itudinem, e&longs;t enim quoddam mallei genus, &amp; vald&egrave; periculo&longs;um; </s>
					<s id="N286A3"><!-- NEW --><lb/>pr&aelig;&longs;ertim &longs;i ferreis clauis armetur; </s>
					<s id="N286A8"><!-- NEW -->hinc vulg&ograve; tribuitur Herculi tan&shy;<lb/>quam in&longs;igne fortitudinis &longs;ymbolum; porr&ograve; t&agrave;m alt&egrave; clauum infigit <lb/>&longs;ibi coniunctum, quam infigeret, &longs;i claua ip&longs;a erectum, &amp; qua&longs;i expe&shy;<lb/>ctantem ictum feriret. </s>
				</p>
				<p id="N286B2" type="main">
					<s id="N286B4">Decimoquart&ograve;, Tudicula maior reuocatur ad malleum. </s>
					<s id="N286B7"><!-- NEW -->Prim&ograve; <lb/>faciunt ad ictum longitudo manubrij, flexibilitas, in&aelig;qualitas, mal&shy;<lb/>lei pondus, durities materi&aelig;, arcus motus, veget&aelig; potenti&aelig; vires; </s>
					<s id="N286BF"><!-- NEW --><lb/>omitto ea, qu&aelig; cum malleo habet communia, quorum ratio ex <lb/>dictis con&longs;tare pote&longs;t; igitur non videntur e&longs;&longs;e repetenda. </s>
					<s id="N286C6">Secund&ograve;, <lb/>flexibilitas manubrij auget vim ictus, t&ugrave;m quia potentia diuti&ugrave;s <lb/>manet applicata, c&ugrave;m aliquo tempore in ip&longs;a vibratione malleus &agrave; <lb/>tergo relinquatur, t&ugrave;m quia potentia illa media, de qua &longs;upra, &longs;uum <lb/>impetum, impetui alterius adiungit. </s>
					<s id="N286D1"><!-- NEW -->Terti&ograve;, ita manubrium fa&shy;<lb/>bricatur, vt continua imminutione ver&longs;us malleum decre&longs;cat, quod <lb/>multum facit ad ictum, quia h&aelig;c in&aelig;qualitas inflexioni re&longs;i&longs;tit ver&shy;<lb/>&longs;us caput manubrij; </s>
					<s id="N286DB"><!-- NEW -->igitur initio inflectitur manubrium, non pro&shy;<lb/>cul &agrave; malleo, t&ugrave;m deinde aucto impetu in partibus remotioribus, <lb/>qu&aelig; difficili&ugrave;s inflectuntur; </s>
					<s id="N286E3"><!-- NEW -->igitur in&aelig;qualiter partes ill&aelig; redeunt, <lb/>atque &longs;e&longs;e pri&longs;tino &longs;tatui re&longs;tituunt; </s>
					<s id="N286E9"><!-- NEW -->atqui ex illa in&aelig;qualitate diu&shy;<lb/>ti&ugrave;s durat motus; </s>
					<s id="N286EF"><!-- NEW -->igitur inde maior euadit: </s>
					<s id="N286F3"><!-- NEW -->&longs;imile quid videmus in <lb/>arcu, cuius medium cra&longs;&longs;ius e&longs;t: adde quod &longs;i &aelig;qualis &longs;it cra&longs;&longs;itudo, <lb/>incipit inflexio ver&longs;us illam extremitatem, qu&aelig; propi&ugrave;s accedit ad <lb/>manum, longi&ugrave;s recedit &agrave; malleo, vt patet experienti&acirc;, in fune, <lb/>virg&acirc; &amp;c. </s>
					<s id="N286FF"><!-- NEW -->&longs;ed de arcu, ten&longs;ione, compre&longs;&longs;ione fus&egrave; agemus <lb/>tractatu &longs;ingulari: </s>
					<s id="N28705"><!-- NEW -->h&aelig;c tantum obiter indica&longs;&longs;e &longs;ufficiat. <pb pagenum="402" xlink:href="026/01/436.jpg"/>Quart&ograve;, maximus e&longs;t ictus, cum malleus eo in&longs;tanti attingit pilam, quo <lb/>manubrium e&longs;t rectum; </s>
					<s id="N28710"><!-- NEW -->tunc enim e&longs;t modum vibrationis &longs;eu reditus; <lb/>igitur maximus impetus. </s>
					<s id="N28716"><!-- NEW -->Quint&ograve;, &longs;i altera extremitas mallei, qu&aelig; glo&shy;<lb/>bum attingit, &longs;it obliqua, globum ip&longs;um attollit propter punctum con&shy;<lb/>tactus; quod cert&egrave; clarum e&longs;t. </s>
					<s id="N2871E"><!-- NEW -->Sext&ograve;, durities mallei mult&ugrave;m facit ad <lb/>ictum; </s>
					<s id="N28724"><!-- NEW -->&longs;i enim cedat lignum, imminuitur impetus, vt patet; hinc ar&shy;<lb/>mill&acirc;, vel annulo ferreo armatur vtraque ba&longs;is mallei, vt firmior eua&shy;<lb/>dat. </s>
					<s id="N2872C"><!-- NEW -->Septim&ograve;, globi ratio multa habenda e&longs;t, cui infligitur ictus; </s>
					<s id="N28730"><!-- NEW -->quippe <lb/>&longs;i leuior e&longs;t ab a&euml;re ambiente impeditur, &amp; retinetur; </s>
					<s id="N28736"><!-- NEW -->&longs;i ver&ograve; mollior <lb/>minor ictus infligitur, quia cedit materies; </s>
					<s id="N2873C"><!-- NEW -->hinc pil&aelig; &egrave; duriore buxo <lb/>tornantur; </s>
					<s id="N28742"><!-- NEW -->hinc etiam tunduntur pil&aelig; malleo, vt materies den&longs;ior <lb/>euadat, impleanturque infinita fer&egrave; vacuola a&euml;re plena, qu&aelig; pilam le&shy;<lb/>uiorem reddunt; &longs;ed h&aelig;c ad emi&longs;&longs;ionem, &amp; proiectionem pertinent, <lb/>de quibus infr&agrave;. </s>
					<s id="N2874C"><!-- NEW -->Octau&ograve;, vt recta via procedat pila debet in id punctum <lb/>malleus infligi, ex quo ducta per centrum pil&aelig; linea, &amp; deinde produ&shy;<lb/>cta concurrat cum ip&longs;a linea directionis; nec enim aliter determinari <lb/>pote&longs;t linea motus globi per Th... l.1. hinc manubrium debet &longs;emper <lb/>facere angulos rectos cum linea directionis. </s>
					<s id="N28758"><!-- NEW -->Non&ograve;, ad ictum inflictum <lb/>&agrave; maiori Tudicula tres potenti&aelig; motrices concurrunt, &longs;cilicet ip&longs;a po&shy;<lb/>tentia impellentis, potentia motus deor&longs;um, &amp; ip&longs;a media; </s>
					<s id="N28760"><!-- NEW -->igitur h&aelig;c <lb/>ars in eo pr&aelig;&longs;ertim po&longs;ita e&longs;t, quod h&aelig; potenti&aelig; ita temperentur, &longs;eu <lb/>componantur, vt vna non ob&longs;it alteri, &amp; &longs;ingul&aelig; pro viribus agat: ex <lb/>his alia facil&egrave; intelligentur. </s>
				</p>
				<p id="N2876A" type="main">
					<s id="N2876C"><!-- NEW -->Decimoquint&ograve;, &longs;upere&longs;t familiaris ille &longs;oni effectus, quem mal&shy;<lb/>leus cadens in incudem edit, quem tamen h&icirc;c non di&longs;cutiemus; quia <lb/>naturam &amp; affectiones &longs;onorum alio Tomo de qualitatibus &longs;en&longs;ibilibus <lb/>libro &longs;ingulari fus&egrave; explicabimus. </s>
				</p>
				<p id="N28776" type="main">
					<s id="N28778"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 14.<emph.end type="center"/></s>
				</p>
				<p id="N28784" type="main">
					<s id="N28786"><!-- NEW --><emph type="italics"/>Ex dictis explicaris po&longs;&longs;um omnia ph&oelig;nomena, qu&aelig; ob&longs;eruantur in ludo <lb/>rudis gladiatori&aelig;<emph.end type="italics"/>; </s>
					<s id="N28792"><!-- NEW -->Primo, tria &longs;unt in hac arte, ad qu&aelig; reliqua facil&egrave; re&shy;<lb/>ducuntur; </s>
					<s id="N28798"><!-- NEW -->primum e&longs;t declinatio; &longs;ecundum petitio; tertium confla&shy;<lb/>tum ex vtroque. </s>
					<s id="N2879E">Secund&ograve;, pote&longs;t declinati, vel auerti ictus, &longs;eu petitio <lb/>duobus modis. </s>
				</p>
				<p id="N287A3" type="main">
					<s id="N287A5">Prim&ograve;, &longs;i declinatio cum aliqua impactione coniungatur. </s>
				</p>
				<p id="N287A8" type="main">
					<s id="N287AA">Secund&ograve;, &longs;i tant&ugrave;m cum mera re&longs;i&longs;tentia, vel &longs;implici impul&shy;<lb/>&longs;ione. <lb/><arrow.to.target n="note4"/></s>
				</p>
				<p id="N287B3" type="margin">
					<s id="N287B5"><margin.target id="note4"/>a <emph type="italics"/>Fig.<emph.end type="italics"/> 17 <lb/><emph type="italics"/>Tab.<emph.end type="italics"/> 5.<!-- KEEP S--></s>
				</p>
				<p id="N287C8" type="main">
					<s id="N287CA"><!-- NEW -->Terti&ograve;, vtriu&longs;que modi &longs;unt 4. combinationes; </s>
					<s id="N287CE"><!-- NEW -->&longs;iue enim duo gladij <lb/>AC, DF, capulares pil&aelig; AD; </s>
					<s id="N287D4"><!-- NEW -->&longs;it autem gladius AC declinans petitio&shy;<lb/>nem alterius DF; id cert&egrave; quatuor modis pr&aelig;&longs;tare pote&longs;t. </s>
					<s id="N287DA">Prim&ograve;, &longs;i <lb/>punctum contactus ad mucronem vtriu&longs;que propi&ugrave;s accedat. </s>
					<s id="N287DF"><!-- NEW -->v.g. <!-- REMOVE S-->&longs;i <lb/>vterque &longs;it in &longs;itu ACDF. Secund&ograve;, &longs;i propi&ugrave;s accedat ad capulum <lb/>vtriu&longs;que, talis e&longs;t &longs;itus DFCH. Terti&ograve;, &longs;i accedat propi&ugrave;s ad mu&shy;<lb/>cronem gladij petentis DF, &amp; propi&ugrave;s ad capulum declinantis. <pb pagenum="403" xlink:href="026/01/437.jpg"/>Quart&ograve;, &egrave; contrario &longs;i accedat propi&ugrave;s ad capulum petentis DF, &amp; pro&shy;<lb/>pi&ugrave;s ad mucronem declinantis; addi pote&longs;t quinta combinatio, cum <lb/>&longs;cilicet contactus e&longs;t in medio vtriu&longs;que. </s>
				</p>
				<p id="N287F6" type="main">
					<s id="N287F8"><!-- NEW -->Quart&ograve;, &longs;i &longs;it mera impul&longs;io &longs;ine percu&longs;&longs;ione, vel impactione, maxi&shy;<lb/>ma vis e&longs;t declinationis, cum punctum contactus accedit propi&ugrave;s ad ca&shy;<lb/>pulum declinantis, &amp; ad mucronem petentis iuxta tertiam combinatio&shy;<lb/>nem, &amp; &longs;itum DFPE, &amp; punctum contactus in B; </s>
					<s id="N28802"><!-- NEW -->ratio e&longs;t, cum verta&shy;<lb/>tur PE circa P applicat&aelig; potenti&aelig; in P, maius e&longs;t momentum in B <lb/>qu&agrave;m in alio puncto ver&longs;us E, vt patet; </s>
					<s id="N2880A"><!-- NEW -->quippe B mouetur minore motu; </s>
					<s id="N2880E"><!-- NEW --><lb/>igitur facili&ugrave;s; </s>
					<s id="N28813"><!-- NEW -->pr&aelig;terea FD mouetur circa D; igitur in B facili&ugrave;s pelli&shy;<lb/>tur, qu&agrave;m in vllo puncto ver&longs;us D ratione vectis. </s>
				</p>
				<p id="N28819" type="main">
					<s id="N2881B"><!-- NEW -->Quint&ograve;, cum punctum contactus accedit propi&ugrave;s ad capulum peten&shy;<lb/>tis, &amp; ad mucronem impellentis, minima vis e&longs;t declinationis, &longs;cilicet <lb/>iuxta quartam combinationem, &amp; &longs;itum DFRG: ratio e&longs;t, quia minor <lb/>e&longs;t vis potenti&aelig; applicat&aelig; in R, &amp; maior re&longs;i&longs;tentia applicat&aelig; in D, vt <lb/>patet ex dictis. </s>
				</p>
				<p id="N28827" type="main">
					<s id="N28829"><!-- NEW -->Sext&ograve;, cum punctum contactus accedit propi&ugrave;s ad capulum vtr&iuml;u&longs;que <lb/>iuxta &longs;ecundam combinationem, &amp; &longs;itum DFSH, tunc e&longs;t maxima vis <lb/>declinantis, &amp; maxima re&longs;i&longs;tentia petentis; </s>
					<s id="N28831"><!-- NEW -->vnde vna compen&longs;atur ab <lb/>alia; </s>
					<s id="N28837"><!-- NEW -->cum ver&ograve; punctum contactus accedit propi&ugrave;s ad mucronem vtriu&longs;&shy;<lb/>que, minima e&longs;t vis impellentis, &amp; minima re&longs;i&longs;tentia impul&longs;i iuxta pri&shy;<lb/>mam combinationem, &amp; &longs;itum DFAC; ratio patet ex dictis. </s>
				</p>
				<p id="N2883F" type="main">
					<s id="N28841"><!-- NEW -->Septim&ograve;, hinc tam facil&egrave; declinatur ictus gladij DF, &longs;iue fiat iuxta <lb/>primam combinationem, &longs;iue iuxta &longs;ecundam, quia lic&egrave;t &longs;it minima vis <lb/>in prima; </s>
					<s id="N28849"><!-- NEW -->e&longs;t etiam minima re&longs;i&longs;tentia; </s>
					<s id="N2884D"><!-- NEW -->&amp; lic&egrave;t &longs;it maxima re&longs;i&longs;tentia <lb/>in &longs;ecunda, e&longs;t etiam maxima vis; </s>
					<s id="N28853"><!-- NEW -->igitur vna compen&longs;at aliam, vt patet; </s>
					<s id="N28857"><!-- NEW --><lb/>imm&ograve; iuxta &longs;itum DFQK, po&longs;ito puncto contactus in L, &amp; iuxta om&shy;<lb/>nem alium &longs;itum, in quo punctum contactus &aelig;qualiter di&longs;tat &agrave; mucro&shy;<lb/>ne vtriu&longs;que, vis declinantis &aelig;qualis e&longs;t; e&longs;t enim &aelig;qualis ratio virium, <lb/>&amp; re&longs;i&longs;tenti&aelig;, vt con&longs;tat, po&longs;ita vtriu&longs;que longitudine. </s>
				</p>
				<p id="N28862" type="main">
					<s id="N28864"><!-- NEW -->Octau&ograve;, &longs;i ver&ograve; impul&longs;io, vel declinatio fiat cum impactione, tribus <lb/>modis id fieri pote&longs;t; </s>
					<s id="N2886A"><!-- NEW -->primo, motu circulari circa pilam capularem A: </s>
					<s id="N2886E"><!-- NEW --><lb/>&longs;ecundo, motu circulari circa centrum di&longs;tans 3/4 &agrave; capul&ograve;, tertio, motu <lb/>recto ducto &longs;cilicet gladio dextror&longs;um, vel &longs;ini&longs;tror&longs;um horizonti pa&shy;<lb/>rallelo; primus modus pe&longs;&longs;imus e&longs;t, quia totum corpus, defectum manet. </s>
					<s id="N28877"><lb/>Tertius proxim&egrave; ad priorem accedit propter <expan abbr="e&atilde;dem">eandem</expan> rationem. </s>
					<s id="N2887F">Secun&shy;<lb/>dus optimus omnium, &amp; communis e&longs;t, quia &longs;emper gladius tegit <lb/>corpus. </s>
				</p>
				<p id="N28886" type="main">
					<s id="N28888"><!-- NEW -->Non&ograve;, &longs;i primo modo declinatur ictus repul&longs;o petentis gladio maxi&shy;<lb/>ma vis erit; &longs;i punctum contactus fiat circa 2/3 de quo infr&agrave;, quod ver&ograve; <lb/>&longs;pectat ad gladium, qui repellitur, e&ograve; facili&ugrave;s repellitur, qu&ograve; punctum <lb/>contactus propi&ugrave;s ad eius mucronem accedet. </s>
					<s id="N28892"><!-- NEW -->Si tertio modo, &amp; gla&shy;<lb/>dius &longs;olus ita libraretur maxima vis e&longs;&longs;et circa centrum eius grauitatis; </s>
					<s id="N28898"><!-- NEW --><lb/>in hoc enim puncto maximum ictum infligunt, qu&aelig; motu recto mo&shy;<lb/>uentur; quia ver&ograve; totum &longs;egmentum brachij, quod inter manum, &amp; <pb pagenum="404" xlink:href="026/01/438.jpg"/>caput cubiti intercipitur, mouetur &longs;imul cum gladio motu recto, circa <lb/>capulum erit maxima vis, c&ugrave;m propi&ugrave;s accedat ad centrum grauitatis <lb/>totius conflati ex illo &longs;egmento brachij, &amp; gladio. </s>
				</p>
				<p id="N288A8" type="main">
					<s id="N288AA">Decim&ograve;, denique &longs;i &longs;ecundo modo declinetur ictus, idem dicendum <lb/>e&longs;t quod de motu circulari dictum, mutato dumtaxat centro, v.g. <!-- REMOVE S-->&longs;it gla&shy;<lb/>dius declinantis RG, &longs;itque IG 1/4 totius RG circa I &longs;it motus circula&shy;<lb/>tis, centrum percu&longs;&longs;ionis erit circa 2/3 IG, vel IR. </s>
				</p>
				<p id="N288B5" type="main">
					<s id="N288B7"><!-- NEW -->Vndecim&ograve;, vix tamen ita acurat&egrave; hoc &longs;ecundo modo declinatur ictus, <lb/>quin tertius etiam cum &longs;ecundo coniunctus &longs;it, vt patet experienti&acirc;; </s>
					<s id="N288BD"><!-- NEW --><lb/>rotatur autem manus declinantis vt illo qua&longs;i gyro maiorem impetum <lb/>acquirat, de quo iam &longs;upr&agrave;: imm&ograve; ni&longs;i tertius modus cum &longs;ecundo e&longs;&longs;et <lb/>coniunctus, non po&longs;&longs;et delinari ictus, &longs;i contactus gladiorum fieret in <lb/>centro illius motus, vt patet. </s>
				</p>
				<p id="N288C8" type="main">
					<s id="N288CA"><!-- NEW -->Duodecim&ograve;, qu&ograve; longior e&longs;t gladius declinantis, cum iuxta mucro&shy;<lb/>nem fit contactus &longs;ine impactione e&longs;t vis debilior, qu&agrave;m e&longs;&longs;et in breuio&shy;<lb/>re, patet ex vecte; &longs;i ver&ograve; &longs;it impactio iuxta &longs;ecundum. </s>
					<s id="N288D2"><!-- NEW -->n.10. vis maior <lb/>e&longs;t cum gladius longior e&longs;t; </s>
					<s id="N288D8"><!-- NEW -->e&longs;t enim maior motus; </s>
					<s id="N288DC"><!-- NEW -->igitur maior ictus li&shy;<lb/>c&egrave;t tardior; </s>
					<s id="N288E2"><!-- NEW -->hinc longiore gladio equidem forti&ugrave;s auertitur ictus qu&agrave;m <lb/>breuiore, &longs;ed tardi&ugrave;s; breuiore ver&ograve; citi&ugrave;s qu&agrave;m longiore, &longs;ed debili&ugrave;s, <lb/>vt patet ex dictis. </s>
				</p>
				<p id="N288EA" type="main">
					<s id="N288EC">Decimoterti&ograve;, longior gladius &longs;u&longs;tinetur facil&egrave; opera capularis pil&aelig;, <lb/>qu&aelig; momentum longitudinis gladij &longs;upplet, vt con&longs;tat ex &longs;tatera, cuius <lb/>proportiones videbimus lib.&longs;eq. </s>
					<s id="N288F3">quippe &longs;i pila faciat &aelig;quipendium, cum <lb/>lamella manus &longs;u&longs;tinet tant&ugrave;m pondus ab&longs;olutum &longs;ine momento, &amp;c. </s>
				</p>
				<p id="N288F8" type="main">
					<s id="N288FA"><!-- NEW -->Decimoquart&ograve;, hinc gladius, qui in mucronem ita de&longs;init, vt ea por&shy;<lb/>tio, qu&aelig; ad capulum propi&ugrave;s accedit, &longs;it cra&longs;&longs;ior, facili&ugrave;s &longs;u&longs;tineri pote&longs;t, <lb/>lic&egrave;t &longs;it eiu&longs;dem ponderis cum alio; quia &longs;cilicet non e&longs;t tantum mo&shy;<lb/>mentum. </s>
				</p>
				<p id="N28904" type="main">
					<s id="N28906"><!-- NEW -->Decimoquint&ograve;, mucro intentatus per lineam rectam horizonti pa&shy;<lb/>rallelus difficili&ugrave;s excipitur, &amp; auertitur; </s>
					<s id="N2890C"><!-- NEW -->certa e&longs;t experientia, cuius <lb/>ratio in promptu e&longs;t, quia vel gladius declinantis e&longs;t horizonti paralle&shy;<lb/>lus, vel non parallelus: &longs;i primum; </s>
					<s id="N28914"><!-- NEW -->igitur vix excipere pote&longs;t, quia cum <lb/>alia non decu&longs;&longs;atur; &longs;i ver&ograve; &longs;ecundum; </s>
					<s id="N2891A"><!-- NEW -->pl&ugrave;s &aelig;quo demitti capulum opor&shy;<lb/>tet; </s>
					<s id="N28920"><!-- NEW -->hinc non mod&ograve; manus debilior e&longs;t; </s>
					<s id="N28924"><!-- NEW -->ver&ugrave;m etiam corpus detegitur: <lb/>adde quod ictus validior e&longs;t per lineam perpendicularem. </s>
				</p>
				<p id="N2892A" type="main">
					<s id="N2892C"><!-- NEW -->Decimo&longs;ext&ograve;, hinc ita debet extremitas manus per horizontalem <lb/>porrigi &amp; brachium contractum explicari, vt maiorem lineam rectam <lb/>de&longs;cribat; </s>
					<s id="N28934"><!-- NEW -->acquiritur enim maior impetus in maiori &longs;patio, quod per&shy;<lb/>curritur motu accelerato, vt con&longs;tat ex dictis, &longs;ed qu&ograve; brachium con&shy;<lb/>tractius e&longs;t, c&ograve; maiorem lineam eius extremitas motu recto decurrit: <lb/>adde quod impre&longs;&longs;io totius corporis, quod in <expan abbr="e&atilde;dem">eandem</expan> partem agitur, <lb/>mult&ugrave;m auget vim brachij mucronem in aduer&longs;um pectus inten&shy;<lb/>tantis. </s>
				</p>
				<p id="N28946" type="main">
					<s id="N28948">Decimo&longs;eptim&ograve;, &longs;i longior e&longs;t gladius impetus, h&aelig;c videntur e&longs;&longs;e <lb/>commoda. </s>
					<s id="N2894D"><!-- NEW -->Prim&ograve;, eius mucro longi&ugrave;s producitur, &amp; procul attingit. <pb pagenum="405" xlink:href="026/01/439.jpg"/>Secund&ograve; maiorem ictum infligit, vt iam &longs;upra dictum e&longs;t de &longs;ari&longs;&longs;a, mo&shy;<lb/>d&ograve; in eadem ratione aucta &longs;it cra&longs;&longs;itudo; non de&longs;unt tamen incommo&shy;<lb/>da. </s>
					<s id="N2895A">Prim&ograve; ratione vectis maius e&longs;t illius pondus. </s>
					<s id="N2895D">Secund&ograve; facili&ugrave;s de&shy;<lb/>clinatur ictus propter <expan abbr="e&atilde;dem">eandem</expan> rationem. </s>
					<s id="N28966">Terti&ograve;, &longs;i tantill&ugrave;m deflecte&shy;<lb/>tur, corpus omnin&ograve; detegit propter maiorem cum, &longs;unt enim arcus <lb/>vt radij, vel longitudines. </s>
					<s id="N2896D">Quart&ograve;, hinc pugiles facili&ugrave;s decu&longs;&longs;atis gla&shy;<lb/>dijs &longs;e&longs;e mutu&ograve; pr&aelig;hendunt, &amp; luct&acirc; decernunt. </s>
				</p>
				<p id="N28972" type="main">
					<s id="N28974"><!-- NEW -->Decimooctau&ograve;, ni&longs;i per lineam horizontali parallelam mucro in&longs;en&shy;<lb/>tetur, minor e&longs;t vis ictus, quia obliqu&egrave; cadit; </s>
					<s id="N2897A"><!-- NEW -->igitur debilior e&longs;t: </s>
					<s id="N2897E"><!-- NEW -->&longs;i porr&ograve; <lb/>extante brachio mucro intenditur; haud dubi&egrave; ictus obliquus erit, c&ugrave;m <lb/>circa extremum humerum brachium libretur. </s>
				</p>
				<p id="N28986" type="main">
					<s id="N28988">Decimonon&ograve;, cum auertitur, &longs;eu repellitur impetus gladius, ferro <lb/>directo id fieri debet, &longs;cilicet iuxta &longs;ecundum modum n. </s>
					<s id="N2898D"><!-- NEW -->10. alioquin <lb/>ferrum l&aelig;uigatum in alio l&aelig;uigato facil&egrave; decurrit, &longs;i obliqu&egrave; in ip&longs;um <lb/>cadat; </s>
					<s id="N28995"><!-- NEW -->porr&ograve; ex hac repercu&longs;&longs;ione mucro impetens mouetur motu mixto, <lb/>dextror&longs;um &longs;cilicet vel &longs;ini&longs;tror&longs;um declinante: hinc qui impetit id po&shy;<lb/>ti&longs;&longs;imum curare debet, vt eius ferrum ferro alterius obliqu&egrave; accidat. </s>
				</p>
				<p id="N2899D" type="main">
					<s id="N2899F"><!-- NEW -->Vige&longs;im&ograve;, eodem ni&longs;u pote&longs;t quis ictum aduer&longs;arij declinare, ip&longs;ique <lb/>adeo ictum infligere, quod gladiatoribus valde familiare e&longs;t; </s>
					<s id="N289A5"><!-- NEW -->hinc autem <lb/>&longs;ingulari motu mouetur manus, mixto &longs;cilicet ex recto, &amp; circulari; cir&shy;<lb/>culari quidem iuxta &longs;ecundum modum traditum n. </s>
					<s id="N289AD">10. recto ver&ograve; iuxta <lb/>modum traditum n.15. quod cert&egrave; &longs;i expedit&egrave;, &amp; accurat&egrave; fiat, imparatus <lb/>ho&longs;tis intercipitur, vt vix ictum excipere po&longs;&longs;it. </s>
				</p>
				<p id="N289B4" type="main">
					<s id="N289B6"><!-- NEW -->Vige&longs;imoprim&ograve;, ita ho&longs;tis gladio impeti debet, vt corpus impetentis <lb/>tectum remaneat: omitto alia, qu&aelig; ad hanc artem pertinent v.g corporis <lb/>&longs;itum, gladiorum temperaturam, cochleam gladij, &amp;c. </s>
					<s id="N289BE"><!-- NEW -->qu&aelig; c&ugrave;m ad mo&shy;<lb/>tum minim&egrave; &longs;pectent, huius loci e&longs;&longs;e non po&longs;&longs;unt: </s>
					<s id="N289C4"><!-- NEW -->omitto etiam illos <lb/>ictus, qui c&aelig;&longs;im infliguntur, quia ex dictis de baculo &longs;upr&agrave; facil&egrave; intelli&shy;<lb/>gi po&longs;&longs;unt; denique omitto varios illos gladij breuioris latiori&longs;que gyros, <lb/>quibus &longs;e&longs;e qua&longs;i, vt vulg&ograve; aiunt, induit qui contra plures &longs;e&longs;e tuetur. </s>
				</p>
				<p id="N289CE" type="main">
					<s id="N289D0"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 23.<emph.end type="center"/></s>
				</p>
				<p id="N289DC" type="main">
					<s id="N289DE"><emph type="italics"/>Explicari po&longs;&longs;unt omnia ph&oelig;nomena percu&longs;&longs;ionis, qu&aelig; infligitur &agrave; <lb/>corpore graui deor&longs;um &longs;ua &longs;ponte cadente motu naturaliter accele&shy;<lb/>rato.<emph.end type="italics"/></s>
				</p>
				<p id="N289E9" type="main">
					<s id="N289EB"><!-- NEW -->Prim&ograve;, corpus graue cadens ex maiore altitudine forti&ugrave;s ferit: ratio <lb/>e&longs;t; </s>
					<s id="N289F1"><!-- NEW -->quia de&longs;cendit motu naturaliter accelerato; </s>
					<s id="N289F5"><!-- NEW -->igitur maiorem acqui&shy;<lb/>rit impetum; </s>
					<s id="N289FB"><!-- NEW -->igitur maiorem impetum ad extra producit; igitur maio&shy;<lb/>rem ictum infligit. </s>
				</p>
				<p id="N28A01" type="main">
					<s id="N28A03"><!-- NEW -->Secund&ograve;, &longs;unt 4. combinationes grauium; </s>
					<s id="N28A07"><!-- NEW -->vel enim e&longs;t idem pondus <lb/>e&longs;t altitudo; </s>
					<s id="N28A0D"><!-- NEW -->vel idem pondus, diuer&longs;a altitudo; </s>
					<s id="N28A11"><!-- NEW -->vel eadem altitudo di&shy;<lb/>uer&longs;um pondus; </s>
					<s id="N28A17"><!-- NEW -->vel diuer&longs;um pondus &amp; diuer&longs;a altitudo; addi pote&longs;t <lb/>diuer&longs;us incidenti&aelig; angulus, imm&ograve; diuer&longs;a figura corporis cadentis, qu&aelig; <lb/>omnia infr&agrave; demon&longs;trabimus. </s>
				</p>
				<p id="N28A1F" type="main">
					<s id="N28A21"><!-- NEW -->Terti&ograve;, &longs;i &longs;it &aelig;quale pondus, &amp; &aelig;qualis altitudo &longs;uppo&longs;ito ca&longs;u <pb pagenum="406" xlink:href="026/01/440.jpg"/>perpendiculari &aelig;quales &longs;unt ictus, patet; quia eadem cau&longs;a <expan abbr="e&utilde;dem">eundem</expan> ha<lb/>bet effectum. </s>
				</p>
				<p id="N28A31" type="main">
					<s id="N28A33"><!-- NEW -->Quart&ograve;, &longs;i &longs;it &aelig;quale pondus, &amp; in&aelig;qualis altitudo, ictus &longs;unt in ra&shy;<lb/>tione &longs;ubduplicata altitudinum v.g. <!-- REMOVE S-->&longs;it altitudo 4. cubitorum, &amp; altera <lb/>tantum cubitalis; </s>
					<s id="N28A3D"><!-- NEW -->cert&egrave; c&ugrave;m acquirantur &aelig;qualibus temporibus &aelig;qua&shy;<lb/>lia velocitatis momenta, velocitates acqui&longs;it&aelig; &longs;unt vt tempora, impetus <lb/>vt velocitates, ictus vt impetus; </s>
					<s id="N28A45"><!-- NEW -->&longs;ed tempora &longs;unt in ratione &longs;ubdupli&shy;<lb/>cata &longs;patiorum vel altitudinem; </s>
					<s id="N28A4B"><!-- NEW -->igitur &amp; ictus; igitur ictus inflictus &agrave; <lb/>corpore cadente ex altitudine 4. cubitorum e&longs;t duplus ictus eiu&longs;dem <lb/>corporis cadentis ex altitudine cubitali. </s>
				</p>
				<p id="N28A53" type="main">
					<s id="N28A55"><!-- NEW -->Quint&ograve;, &longs;i &longs;it &aelig;qualis altitudo, &amp; diuer&longs;um pondus, ictus per &longs;e &longs;unt <lb/>vt pondera: </s>
					<s id="N28A5B"><!-- NEW -->probatur facil&egrave;, quia e&longs;t duplus impetus in corpora duplo, <lb/>non quidem ratione inten&longs;ionis, &longs;ed ratione exten&longs;ionis, vt patet: dixi <lb/>per &longs;e, quia diuer&longs;a ratio re&longs;i&longs;tenti&aelig; medij hanc proportionem mutare <lb/>pote&longs;t. </s>
				</p>
				<p id="N28A65" type="main">
					<s id="N28A67"><!-- NEW -->Sext&ograve;, &longs;i &longs;int infinita in&longs;tantia, e&longs;t infinita proportio inter actum in&shy;<lb/>flictum &agrave; corpore cadente, &amp; vim grauitationis eiu&longs;dem; </s>
					<s id="N28A6D"><!-- NEW -->quia dato quo&shy;<lb/>cunque tempore po&longs;&longs;et dari minus, &amp; minus; igitur dato quocunque <lb/>ictu po&longs;&longs;et dari minor, &amp; minor in infinitum, quod ex illa hypothe&longs;i <lb/>nece&longs;&longs;ari&ograve; con&longs;equitur. </s>
				</p>
				<p id="N28A77" type="main">
					<s id="N28A79"><!-- NEW -->Septim&ograve;, imm&ograve; &longs;i &longs;int infinita in&longs;tantia, &longs;ique infinita proportio in&shy;<lb/>ter ictum inflictum &agrave; corpore cadente, &amp; vim grauitationis eiu&longs;dem, e&longs;t <lb/>etiam infinita proportio inter <expan abbr="eumd&etilde;">eumdem</expan> ictum, &amp; vim grauitationis cuiu&longs;&shy;<lb/>libet alterius corporis quantumuis immen&longs;i, inter duas grauitationes <lb/>duorum corporum datur proportio, vt con&longs;tat; </s>
					<s id="N28A89"><!-- NEW -->&longs;unt enim vt pondera; <lb/>igitur &longs;i nullam habet proportionem cum ictu corporis grauis cadentis, <lb/>nullam etiam habebit altera, vt patet ex elementis. </s>
				</p>
				<p id="N28A91" type="main">
					<s id="N28A93"><!-- NEW -->Octau&ograve;, hinc negamus e&longs;&longs;e infinita illa in&longs;tantia; </s>
					<s id="N28A97"><!-- NEW -->quia ex illa hypothe&shy;<lb/>&longs;i hoc ab&longs;urdum nece&longs;&longs;ari&ograve; &longs;equitur, quod experimento repugnat; quis <lb/>enim neget maiorem e&longs;&longs;e vim 100000. librarum ferri in modicum cy&shy;<lb/>lindrum plumbi incubantis, qu&agrave;m modici granuli in <expan abbr="e&utilde;dem">eundem</expan> cylin&shy;<lb/>drum ex altitudine line&aelig; cadentis. </s>
				</p>
				<p id="N28AA7" type="main">
					<s id="N28AA9">Non&ograve;, &longs;i altitudo &longs;it diuer&longs;a, &amp; pondus diuer&longs;um, ictus &longs;unt in ratione <lb/>compo&longs;ita ex ratione ponderum, &amp; &longs;ubduplicata altitudinum, patet ex <lb/>dictis. </s>
				</p>
				<p id="N28AB0" type="main">
					<s id="N28AB2">Decim&ograve;, &longs;i &longs;int infinita in&longs;tantia dato ictu cuiu&longs;libet corporis caden&shy;<lb/>tis ex quacunque altitudine, non pote&longs;t dari vlla corporis moles, qua <lb/>&longs;uo pondere id pr&aelig;&longs;tat, quod illud pr&aelig;&longs;titit &longs;uo ca&longs;u. </s>
					<s id="N28ABB">Probatur ex n. </s>
					<s id="N28ABE"><!-- NEW -->7. <lb/>hinc fru&longs;tr&agrave; proponitur h&aelig;c qu&aelig;&longs;tio ab ijs, qui agno&longs;cunt infinitos tar&shy;<lb/>ditatis gradus, per quos propagatur motus; nam reuer&acirc; ex hac hypothe&longs;i <lb/>e&longs;t infinita proportio inter ictum, &amp; vim grauitationis. </s>
				</p>
				<p id="N28AC8" type="main">
					<s id="N28ACA"><!-- NEW -->Vndecim&ograve;, &longs;i tamen ponantur finita in&longs;tantia; </s>
					<s id="N28ACE"><!-- NEW -->haud dubi&egrave; h&aelig;c pro&shy;<lb/>po&longs;itio non e&longs;t infinita; </s>
					<s id="N28AD4"><!-- NEW -->&longs;it enim quodlibet corpus cadens ex quacun&shy;<lb/>que data altitudine per 100. in&longs;tantia, &longs;eu partes temporis &aelig;quales pri&shy;<lb/>mo in&longs;tanti quo mouetur; </s>
					<s id="N28ADC"><!-- NEW -->haud dubi&egrave; ictus ab eo inflictus cadendo e&longs;t <pb pagenum="407" xlink:href="026/01/441.jpg"/>ad vim grauitationis eiu&longs;dem vt 1001. ad 1. c&ugrave;m enim &longs;ingulis in&longs;tan&shy;<lb/>tibus &aelig;qualibus acquirantur &aelig;qualia velocitatis momenta, &longs;eu &aelig;qualis <lb/>impetus; </s>
					<s id="N28AE9"><!-- NEW -->cert&egrave; 1000. in&longs;tantibus, quibus mouetur acqui&longs;iuit 1000. gra&shy;<lb/>dus impetus &aelig;quales primo, quem habebat in prima grauitatione; </s>
					<s id="N28AEF"><!-- NEW -->&amp; <lb/>qui fuit cau&longs;a motus primi in&longs;tantis; </s>
					<s id="N28AF5"><!-- NEW -->igitur &longs;i hic addatur 1000. erunt <lb/>1001. hinc &longs;i corpus moueatur tant&ugrave;m vno in&longs;tanti, ictus erit duplus <lb/>tant&ugrave;m grauitationis: &longs;uppono autem nullam e&longs;&longs;e medij re&longs;i&longs;tentiam, <lb/>ictumque infligi per lineam directam. </s>
				</p>
				<p id="N28AFF" type="main">
					<s id="N28B01">Duodecim&ograve;, hinc, &longs;i a&longs;&longs;umatur corpus, cuius pondus &longs;it ad pondus <lb/>corporis pr&aelig;dicti vt 1001. ad 1. idem erit effectus eius grauitationis, &amp; <lb/>illius ictus vno in&longs;tanti. </s>
					<s id="N28B08"><!-- NEW -->Probatur manife&longs;t&egrave;, quia, qu&aelig; habent <expan abbr="e&utilde;dem">eundem</expan> <lb/>rationem ad aliud tertium; </s>
					<s id="N28B12"><!-- NEW -->&longs;unt &aelig;qualia; dixi vno in&longs;tanti; nam reuer&acirc; <lb/>corpus graue, quod primo in&longs;tanti imprimit aliquid impetus primo in&shy;<lb/>&longs;tanti, illum auget, &longs;ecundo, tertio, &amp;c. </s>
					<s id="N28B1A">quod maxim&egrave; ob&longs;eruandum e&longs;t; <lb/>alioqui maxima erit hallucinatio. </s>
				</p>
				<p id="N28B1F" type="main">
					<s id="N28B21"><!-- NEW -->Decimoterti&ograve;, hinc non pote&longs;t determinari proportio corporis ca&shy;<lb/>dentis, &amp; grauitantis, ni&longs;i ex hypothe&longs;i; </s>
					<s id="N28B27"><!-- NEW -->quia nemo &longs;cit quot fluxerint <lb/>in&longs;tantia in dato motu; </s>
					<s id="N28B2D"><!-- NEW -->quoad reuer&acirc; &longs;ciri po&longs;&longs;et &longs;i po&longs;&longs;et aliqua arte in&shy;<lb/>ueniri corpus, cuius grauitatio haberet <expan abbr="effect&utilde;">effectum</expan>, quem habet alterius ictus, <lb/>quod nec &longs;ciri pote&longs;t per depre&longs;&longs;um cylindrum cereum vel <expan abbr="plumbe&utilde;">plumbeum</expan>, vel <lb/>alterius mollioris materi&aelig;, quia &aelig;qualis depre&longs;&longs;io accurat&egrave; cogno&longs;ci non <lb/>pote&longs;t; &longs;i quis enim diceret dee&longs;&longs;e, vel &longs;upere&longs;&longs;e 1000. &longs;uperficies, qu&agrave; <lb/>ratione conuinci po&longs;&longs;et? </s>
					<s id="N28B43"><!-- NEW -->non pote&longs;t etiam &longs;ciri oper&acirc; libr&aelig;, in cuius al&shy;<lb/>terum brachium cadat mobile, quia &longs;unt fer&egrave; infiniti motus in&longs;en&longs;ibiles, <lb/>vt con&longs;ideranti patebit; igitur proportio h&aelig;c tant&ugrave;m, determinari pote&longs;t <lb/>ex hypothe&longs;i data, vt clari&longs;&longs;im&egrave; con&longs;tat ex dictis. </s>
				</p>
				<p id="N28B4D" type="main">
					<s id="N28B4F"><!-- NEW -->Decimoquart&ograve;, hinc maxima e&longs;t proportio inter ictum, &amp; grauita&shy;<lb/>tionem; </s>
					<s id="N28B55"><!-- NEW -->c&ugrave;m modicus malleoli ca&longs;us eum effectum pr&aelig;&longs;tet, quem in&shy;<lb/>gens corporis moles &longs;ua grauitatione pr&aelig;&longs;tare non po&longs;&longs;et; </s>
					<s id="N28B5B"><!-- NEW -->non e&longs;t tamen <lb/>infinita proportio, quia pote&longs;t tanta e&longs;&longs;e moles grauitatis, &amp; tam par&shy;<lb/>uum corporis cadentis pondus, vt illa pr&aelig;ualeat, vt con&longs;tat experienti&acirc;, <lb/>qu&aelig; nobis euidenti&longs;&longs;imam &longs;uggerit rationem; </s>
					<s id="N28B65"><!-- NEW -->quia reiicimus infinitos <lb/>illos tarditatis gradus, quos a&longs;&longs;ump&longs;it Galil&aelig;us ad probandam &longs;uam <lb/>hypothe&longs;im de motu accelerato, &amp; infinita eiu&longs;dem &amp; aliorum multo&shy;<lb/>rum in&longs;tantia, de quibus alibi in Metaphy&longs;ic&acirc;; </s>
					<s id="N28B6F"><!-- NEW -->e&longs;t tamen maxima illa <lb/>proportio, vt dixi; </s>
					<s id="N28B75"><!-- NEW -->quia perexigua temporis pars infinitis fer&egrave; in&longs;tanti&shy;<lb/>bus con&longs;tat; </s>
					<s id="N28B7B"><!-- NEW -->quorum cert&egrave; numerum recen&longs;ere po&longs;&longs;emus, &longs;i quis mo&shy;<lb/>dum inueniat, quo po&longs;&longs;it ab&longs;olut&egrave; ad&aelig;quare grauitationis dati corporis <lb/>effectum cum effectu ictus alterius cadentis: quod meo iudicio non <lb/>modo geometric&egrave;, ver&ugrave;m etiam mechanic&egrave;, &longs;altem accurat&egrave; fieri non <lb/>pote&longs;t. </s>
				</p>
				<p id="N28B87" type="main">
					<s id="N28B89">Decimoquint&ograve;, nec illud, quod habet Dominus Hobs apud Mer&longs;en&shy;<lb/>num, in ph&oelig;nom. </s>
					<s id="N28B8E">Mech. </s>
					<s id="N28B91">pr. <!-- REMOVE S-->25. videtur &longs;atisfacere. </s>
					<s id="N28B96">Prim&egrave;, quia &longs;up&shy;<lb/>ponit primum illum conatum cylindri AB, &amp; puncti phy&longs;ici A&apos;C, <lb/>&longs;ed non tradit modum, quo po&longs;&longs;it cogno&longs;ci. </s>
					<s id="N28B9D"><!-- NEW -->Secund&ograve;, quia dicit cona-<pb pagenum="408" xlink:href="026/01/442.jpg"/>tum primum puncti AC, &amp; totius axis AB, quamdiu de&longs;cendit vterque, <lb/>e&longs;&longs;e &aelig;qualem; </s>
					<s id="N28BA8"><!-- NEW -->quod tamen dici non pote&longs;t, quia conatus &longs;ingulorum <lb/>punctorum &longs;eor&longs;im &longs;unt &aelig;quales; </s>
					<s id="N28BAE"><!-- NEW -->&longs;ed conatus omnium coniunctim e&longs;t <lb/>maior conatu &longs;ingulorum; </s>
					<s id="N28BB4"><!-- NEW -->nam &longs;ingula habent &longs;uum impetum; verum <lb/>e&longs;t quidem moueri motu &aelig;quali, quia &longs;ingula &aelig;quali impetu mouentur. </s>
					<s id="N28BBA"><!-- NEW --><lb/>Terti&ograve;, quia vult po&longs;ito cylindro &longs;upra ba&longs;im 4. illam immediat&egrave; premi <lb/>&agrave; puncto EB, hoc ver&ograve; punctum &agrave; puncto DE, &amp; hoc ab CD, &amp; hoc ab <lb/>AC; </s>
					<s id="N28BC3"><!-- NEW -->quod tamen dici non pote&longs;t; quis enim dicat granulum &longs;uperpo&longs;i&shy;<lb/>tum rupi in illam grauitare? </s>
					<s id="N28BC9">Equidem cum illa grauitat grauitatione <lb/>communi, vt dictum e&longs;t &longs;upr&agrave;, non tamen in illam. </s>
					<s id="N28BCE"><!-- NEW -->Quart&ograve;, quia dicit <lb/>pumum B cum conatu totius cylin&egrave;ri incubantis eo tempore, quo pun&shy;<lb/>ctum AC conficeret AC, conficere AB, quod repugnat progre&longs;&longs;ioni <lb/>Galilei, quam &longs;equitur ip&longs;e; </s>
					<s id="N28BD8"><!-- NEW -->quia conatus &longs;unt, vt velocitates; </s>
					<s id="N28BDC"><!-- NEW -->h&aelig; ver&ograve; <lb/>vt tempora; &longs;ed &longs;patia in ratione duplicata temporum. </s>
				</p>
				<p id="N28BE2" type="main">
					<s id="N28BE4"><!-- NEW -->Denique non video, quomodo ex his etiam datis demon&longs;tret pro&shy;<lb/>portionem qu&aelig;&longs;itam percu&longs;&longs;ionis, &amp; grauitationis; </s>
					<s id="N28BEA"><!-- NEW -->igitur non e&longs;t con&longs;u&shy;<lb/>lendum &longs;patium, &longs;ed tempus eo modo, quo diximus; </s>
					<s id="N28BF0"><!-- NEW -->&longs;i enim punctum <lb/>moueatur per 1000. in&longs;tantia, acquiret mille puncta impetus; </s>
					<s id="N28BF6"><!-- NEW -->igitur ha&shy;<lb/>bebit 1001. igitur &longs;i a&longs;&longs;umatur corpus, quod con&longs;tet 1001. punctis habe&shy;<lb/>bit 1001. puncta impetus, id e&longs;t &longs;ingula in &longs;ingulis; qu&aelig; cum omnia gra&shy;<lb/>uitent grauitatione communi, &aelig;qualis e&longs;t priori effectus. </s>
				</p>
				<p id="N28C00" type="main">
					<s id="N28C02"><!-- NEW -->Decimo&longs;ext&ograve;, hinc vides, qu&agrave;m &longs;it difficilis, vel poti&ugrave;s impo&longs;&longs;ibilis <lb/>huius proportionis inuentio, ex cuius cognitione tempus re&longs;oluitur in <lb/>&longs;ua in&longs;tantia, imm&ograve; &amp; quantitas in &longs;ua puncta: primum quidem; </s>
					<s id="N28C0A"><!-- NEW -->&longs;it enim <lb/>data moles, cuius grauitatio &aelig;qualis e&longs;t ictui alterius cadentis dato <lb/>tempore; haud dubi&egrave; tot &longs;unt in&longs;tantia in toto illo tempore, quoties <lb/>pondus cadens continetur in grauitante, vt patet ex dictis. </s>
				</p>
				<p id="N28C14" type="main">
					<s id="N28C16">Decimo&longs;eptim&ograve;, pote&longs;t a&longs;&longs;umi perexigua pars temporis pro in&longs;tanti <lb/>phy&longs;ico, nec tam &longs;en&longs;ibilis erit error, &amp; modicum &longs;patium pro puncto <lb/>phy&longs;ico, vt deinde mechanic&egrave; procedatur ad indagandam hanc propor&shy;<lb/>tionem percu&longs;&longs;ionis, &amp; grauitationis. </s>
				</p>
				<p id="N28C1F" type="main">
					<s id="N28C21">Decimooctau&ograve;, pote&longs;t explicari quomodo defigatur palus ab ictu <lb/>corporis deor&longs;um cadentis. </s>
					<s id="N28C26">Prim&ograve; enim, ide&ograve; defigitur, quia materia <lb/>mollior cedit non &longs;ine aliqua compre&longs;&longs;ione. </s>
					<s id="N28C2B"><!-- NEW -->Secund&ograve;, hinc in mucro&shy;<lb/>nem de&longs;inere debet, vt facili&ugrave;s penetret, quod ad cuneum reducemus <lb/>alibi: idem dico de &longs;ecuri, gladio, en&longs;e, &amp;c. </s>
					<s id="N28C33"><!-- NEW -->Terti&ograve;, initio facili&ugrave;s <lb/>defigitur, con&longs;tat experienti&acirc;; ratio e&longs;t, quia plures partes deinde com&shy;<lb/>primuntur propter longitudinem, &amp; cra&longs;&longs;itudinem pali &longs;eu claui. </s>
					<s id="N28C3B"><!-- NEW -->Quar&shy;<lb/>t&ograve;, hinc min&ugrave;s defigitur &longs;ecundo ictu, qu&agrave;m primo; </s>
					<s id="N28C41"><!-- NEW -->igitur maiore ni&longs;u <lb/>opus e&longs;t: </s>
					<s id="N28C47"><!-- NEW -->in qua ver&ograve; proportione difficil&egrave; dictu e&longs;t; inueniri tamen po&shy;<lb/>te&longs;t de qua numero &longs;equenti. </s>
					<s id="N28C4D">Quint&ograve;, pote&longs;t etiam dici vel po&longs;ito &longs;e&shy;<lb/>cund&ocirc; ictu &aelig;quali primo quantum defigat &longs;upra primum, vel po&longs;ita de&shy;<lb/>fixione illa, qua defigitur &longs;ecundo ictu &aelig;quali prim&aelig;, quam proportio&shy;<lb/>nem habeant ictus. </s>
					<s id="N28C56">Terti&ograve;, po&longs;ito vtroque in&aelig;quali, qu&aelig; &longs;it etiam vtriu&longs;&shy;<lb/>que proportio. </s>
				</p>
				<pb pagenum="409" xlink:href="026/01/443.jpg"/>
				<p id="N28C5F" type="main">
					<s id="N28C61">Decimonon&ograve;, &longs;i &aelig;qualis &longs;it &longs;ecundus ictus. </s>
					<s id="N28C64"><!-- NEW -->Prim&ograve;, pote&longs;t determina&shy;<lb/>ri proportio iuxta quam defigitur palus, quod vt melius explicetur, &longs;it <lb/>cuneus BE, cuius &longs;olidum facil&egrave; demon&longs;tratur; </s>
					<s id="N28C6C"><!-- NEW -->e&longs;t enim &longs;ubduplum pa&shy;<lb/>rallelipedi, cuius ba&longs;is &longs;it quadratum AC, &amp; altitudo RE; </s>
					<s id="N28C72"><!-- NEW -->&longs;i enim trian&shy;<lb/>gulum ADE ducatur in latus AB vel EF habebitur &longs;olidum cunci, vt <lb/>con&longs;tat, vnde cunei eiu&longs;dem latitudinis &longs;unt, vt triangula, v.g. <!-- REMOVE S-->cuneus A <lb/>F ad eumdem YF; </s>
					<s id="N28C7E"><!-- NEW -->vt triangulum ADE ad triangulum YHE: </s>
					<s id="N28C82"><!-- NEW -->hoc po&shy;<lb/>&longs;ito &longs;it triangulum MKN &aelig;qualis ADF, &amp; primo ictu tota EI vel N <lb/>Z &longs;ecundo ictu defigitur, non quidem &aelig;quali altitudine, &longs;ed &aelig;quali &longs;oli&shy;<lb/>do; </s>
					<s id="N28C8C"><!-- NEW -->c&ugrave;m autem triangulum XZN &longs;it &longs;ubquadruplum trianguli QON <lb/>&longs;it media proportionalis N inter NZNO, triangulum N <foreign lang="greek">b</foreign> Y e&longs;t du&shy;<lb/>plum NZX; </s>
					<s id="N28C98"><!-- NEW -->igitur &longs;ecundo ictu defigetur N <foreign lang="greek">b</foreign>: </s>
					<s id="N28CA0"><!-- NEW -->&longs;imiliter &longs;i vt NZ ad N <lb/><foreign lang="greek">b</foreign>, ita N <foreign lang="greek">b</foreign> ad N. Tertio, ita defigetur NT, &amp; quarto NO dupla NI: ra&shy;<lb/>tio e&longs;t, quia &aelig;quales ictus &aelig;quales habent effectus. </s>
				</p>
				<p id="N28CAF" type="main">
					<s id="N28CB1"><!-- NEW -->Vige&longs;im&ograve;, &longs;i &aelig;quales accipiantur altitudines &longs;ingulis ictibus, ictus <lb/>&longs;unt in ratione duplicata altitudinum, &longs;uppo&longs;it&acirc; pr&aelig;dicta hypothe&longs;i cunei <lb/>v.g.&longs;i dato ictu defigatur NZ, &amp; altero NO, &longs;ecundus e&longs;t ictus quadruplus <lb/>primi; </s>
					<s id="N28CBB"><!-- NEW -->&longs;i ver&ograve; tertio ictu defigatur N<foreign lang="greek">q</foreign> tripla NZ, ictus e&longs;t ad primum <lb/>in ratione 9/1. &longs;i denique dato ictu defigatur NM, ictus e&longs;t ad primum <lb/>in ratione 36/3, vt patet ex dictis; &longs;i ver&ograve; primo ictu defigatur NZ, &longs;ecundo <lb/>ZO, tertio O <foreign lang="greek">q</foreign>, quarto <foreign lang="greek">q</foreign> M, ictus &longs;unt, vt numeri impares 1. <lb/>3. 7. 9. </s>
				</p>
				<p id="N28CD5" type="main">
					<s id="N28CD7"><!-- NEW -->Vige&longs;imoprim&ograve;, hinc &longs;i dentur duo ictus, &amp; eorum proportio deter&shy;<lb/>minari, vt pote&longs;t proportio altitudinum, qu&aelig; defiguntur, qu&aelig; &longs;unt in <lb/>ratione &longs;ubduplicata ictuum, &longs;uppo&longs;ito cuneo: </s>
					<s id="N28CDF"><!-- NEW -->&longs;imiliter, &longs;i dentur alti&shy;<lb/>tudines, carumque proportio, determinari pote&longs;t proportio ictum; </s>
					<s id="N28CE5"><!-- NEW -->&longs;unt <lb/>enim in ratione duplicata, vt patet ex dictis; porr&ograve; vtrumque pote&longs;t <lb/>con&longs;iderari duobus modis. </s>
					<s id="N28CED">Prim&ograve;, coniunctim, &longs;i &longs;ecundus ictus &longs;ucce&shy;<lb/>dat primo, &amp; eius altitudinem augeat. </s>
					<s id="N28CF4">Secund&ograve;, &longs;i &longs;eor&longs;im vterque <lb/>con&longs;ideretur, &amp;c. </s>
				</p>
				<p id="N28CF9" type="main">
					<s id="N28CFB"><!-- NEW -->Vige&longs;imo&longs;ecund&ograve;, in clauis, vel conis altitudines &longs;unt in ratione <lb/>&longs;ubtriplicata <expan abbr="ictu&utilde;">ictuum</expan>, &amp; ictus in ratione triplicata altitudinum defixarum, <lb/>qu&ograve;d manife&longs;tum e&longs;t ex Geometria; </s>
					<s id="N28D07"><!-- NEW -->&longs;it enim conus BAF, qui defigatur <lb/>vno ictu; </s>
					<s id="N28D0D"><!-- NEW -->&longs;itque alter ictus, quo defigatur tant&ugrave;m FD &longs;ubdupla FA: </s>
					<s id="N28D11"><!-- NEW --><lb/>c&ugrave;m ictus &longs;int vt defixa &longs;olida; </s>
					<s id="N28D16"><!-- NEW -->cert&egrave; conus FD e&longs;t ad conum FA in <lb/>ratione triplicata, id e&longs;t vt cubus FD ad cubum FA, id e&longs;t vt 1. ad 8. <lb/>qu&aelig; omnia con&longs;tant: </s>
					<s id="N28D1E"><!-- NEW -->idem dico de pyramide, quod de cono: hinc vi&shy;<lb/>detur differentia ictuum, quibus defigitur cuneus, &amp; conus, </s>
				</p>
				<p id="N28D24" type="main">
					<s id="N28D26"><!-- NEW -->Vige&longs;imoterti&ograve;, pote&longs;t explicari quomodo deprimatur cylindrus con&shy;<lb/>&longs;tans ex molliori materia; </s>
					<s id="N28D2C"><!-- NEW -->nam prim&ograve; deprimitur prima &longs;uperficies <lb/>cylindri, &amp; extenditur; quia c&ugrave;m materia. </s>
					<s id="N28D32">&longs;it mollior, prematurque a <lb/>duobus corporibus duris vtrinque, &longs;cilicet ab vtraque ba&longs;i, cedit &amp; di&shy;<lb/>latatur propter humorem in cauitatibus contentum. </s>
					<s id="N28D39">Secund&ograve;, aliquan&shy;<lb/>do totus cylindrus deprimitur &longs;eruat&agrave; &longs;emper cylindri licet cra&longs;&longs;io&shy;<lb/>ris figur&acirc;, quod vt fiat, molli&longs;&longs;imam materiam e&longs;&longs;e nece&longs;&longs;e e&longs;t. </s>
					<s id="N28D40"><!-- NEW -->Ter-<pb pagenum="410" xlink:href="026/01/444.jpg"/>ti&ograve;, aliquando prim&aelig; tant&ugrave;m &longs;uperficies extenduntur, vt videmus in <lb/>capite, &longs;eu ba&longs;i cuneorum; quia materies durior mult&ugrave;m re&longs;i&longs;tit. </s>
					<s id="N28D4B"><!-- NEW -->Quart&ograve;, <lb/>limbus ba&longs;is dilatat&aelig; contrahitur deinde, &longs;eu retorquetur deor&longs;um; </s>
					<s id="N28D51"><!-- NEW -->quia <lb/>c&ugrave;m interiores circuli dilatentur, deberet facere limbus ille maiorem <lb/>circulum; quod c&ugrave;m fieri non po&longs;&longs;it, contrahitur &longs;eu incuruatur deor&shy;<lb/>&longs;um, quod facil&egrave; &longs;ine figura intelligi pote&longs;t. </s>
					<s id="N28D5B"><!-- NEW -->Quint&ograve;, pote&longs;t deter&shy;<lb/>minari proportio ictuum, quibus deprimuntur cylindri; </s>
					<s id="N28D61"><!-- NEW -->&longs;i enim &longs;up&shy;<lb/>ponatur eadem altitudo, &longs;eu linea depre&longs;&longs;ionis, &amp; diuer&longs;a cra&longs;&longs;i&shy;<lb/>tudo cylindrorum ictus, erunt vt ba&longs;es; </s>
					<s id="N28D69"><!-- NEW -->nam qu&ograve; plures partes de&shy;<lb/>primend&aelig; &longs;unt, maiore ictu opus e&longs;t, &longs;i opponatur eadem cra&longs;&longs;itudo <lb/>vtriu&longs;que cylindri &longs;ed diuer&longs;a depre&longs;&longs;ionis linea vel altitudo, ictus <lb/>erunt vt altitudines; </s>
					<s id="N28D73"><!-- NEW -->&longs;i vtraque &longs;upponitur diuer&longs;a, ictus erunt in ra&shy;<lb/>tione compo&longs;ita ex ratione ba&longs;ium, &amp; altitudinum; qu&aelig; omnia con&longs;tant <lb/>ex dictis. </s>
				</p>
				<p id="N28D7B" type="main">
					<s id="N28D7D">Ob&longs;eruabis tamen cre&longs;cere re&longs;i&longs;tentiam ex duplici capite. </s>
					<s id="N28D80"><!-- NEW -->Prim&ograve;, <lb/>ex eo quod aliqu&aelig; vacuitates occupentur &agrave; partibus depre&longs;&longs;is, ac proin&shy;<lb/>de cylindrus induretur; &longs;ic intus durior euadit &longs;ub malleo, &amp; &amp; pila <lb/>lignea &longs;ub ictibus. </s>
					<s id="N28D8A"><!-- NEW -->Secund&ograve;, latiorem illam &longs;uperficiem impedire di&shy;<lb/>latationem aliarum partium: </s>
					<s id="N28D90"><!-- NEW -->hinc vari&egrave; di&longs;cerpitur eius limbus, vt <lb/>videre e&longs;t in cuneo ferreo: </s>
					<s id="N28D96"><!-- NEW -->atqui in explicandis &longs;upr&agrave; ictuum propor&shy;<lb/>tionibus, hoc geminum re&longs;i&longs;tenti&aelig; caput nullo modo con&longs;iderauimus: </s>
					<s id="N28D9C"><!-- NEW --><lb/>&longs;ext&ograve;, qu&aelig;runt aliqui dato ictu, quo deprimitur cylindrus data alti&shy;<lb/>tudine, quantum pondus e&longs;&longs;e debeat, quod &longs;ua grauitatione eum&shy;<lb/>dem pr&aelig;&longs;tet effectum; &longs;ed profect&ograve; id nemo vnquam determinauit, <lb/>ni&longs;i prim&ograve; inueniat pondus, cuius ca&longs;u pr&aelig;dictus cylindrus eodem <lb/>modo deprimatur. </s>
					<s id="N28DA9"><!-- NEW -->Secund&ograve;, ni&longs;i &longs;ciat quot in&longs;tantibus de&longs;cendat, vt <lb/>patet ex his qu&aelig; diximus &longs;upr&agrave;; vt autem comparetur ictus inflictus <lb/>&agrave; brachio cum ictu inflicto &agrave; pondere cadente, debet con&longs;uli diuer&longs;a <lb/>depre&longs;&longs;io, vel defixio. </s>
				</p>
				<p id="N28DB3" type="main">
					<s id="N28DB5"><!-- NEW -->Vige&longs;imoqnart&ograve;, corpus cadens in planum horizontale per lineam <lb/>perpendicularem, maximum ictum infligit: </s>
					<s id="N28DBB"><!-- NEW -->maiorem, cum cadit in pla&shy;<lb/>num decliue, quod manife&longs;tum e&longs;t; </s>
					<s id="N28DC1"><!-- NEW -->pote&longs;t autem determinari propor&shy;<lb/>tio ictuum ratione planorum; </s>
					<s id="N28DC7"><!-- NEW -->&longs;it enim perpendicularis KN cadens in <lb/>planum horizontale AD, erit maximus ictus; </s>
					<s id="N28DCD"><!-- NEW -->&longs;it vt AD; </s>
					<s id="N28DD1"><!-- NEW -->fiat quadrans <lb/>ADG: </s>
					<s id="N28DD7"><!-- NEW -->&longs;it planum decliue AE, in quod cadit KM; </s>
					<s id="N28DDB"><!-- NEW -->ducatur EC vel <lb/>EI; </s>
					<s id="N28DE1"><!-- NEW -->primus ictus e&longs;t ad &longs;ecundum, vt AD ad AC vel IE; </s>
					<s id="N28DE5"><!-- NEW -->&longs;it aliud <lb/>planum decliue AF, in quod cadit KN; </s>
					<s id="N28DEB"><!-- NEW -->ducantur FBFH, primus e&longs;t <lb/>ad tertium, vt AD ad AB; patet ex dictis &longs;upr&agrave;, cum de planis in&shy;<lb/>clinatis. </s>
				</p>
				<p id="N28DF3" type="main">
					<s id="N28DF5"><!-- NEW -->Vige&longs;imoquint&ograve;, &longs;i ver&ograve; cadat corpus graue in globum, a&longs;&longs;umenda e&longs;t <lb/>Tangens puncti contactus v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;it globus centro A &longs;it corpus cadens <lb/>per FD; </s>
					<s id="N28E01"><!-- NEW -->&longs;it punctum contactus D; </s>
					<s id="N28E05"><!-- NEW -->&longs;it Tangens CE; </s>
					<s id="N28E09"><!-- NEW -->idem e&longs;t ictus, <lb/>qui e&longs;&longs;et, &longs;i corpus graue caderet in planum inclinatum CE; </s>
					<s id="N28E0F"><!-- NEW -->&longs;i ver&ograve; <lb/>globus cadat in aliud corpus v. <!-- REMOVE S-->g. <!-- REMOVE S-->globus A in corpus HG <lb/>per lineam RG; </s>
					<s id="N28E1B"><!-- NEW -->ducatur AG, t&ugrave;m GS, ictus in G e&longs;t ad ictum <pb pagenum="411" xlink:href="026/01/445.jpg"/>in L vt SA ad AL: denique &longs;i globus cadat in globum, id pote&longs;t fieri <lb/>duobus modis. </s>
					<s id="N28E26">Prim&ograve;, &longs;i L cadat in X, id e&longs;t linea directionis ducatur <lb/>per centrum vtriu&longs;que, &amp; tunc maximus ictus. </s>
					<s id="N28E2B"><!-- NEW -->Secund&ograve;, &longs;i &longs;ecus v.g. <!-- REMOVE S-->&longs;i <lb/>globus A cadat in globum O, &longs;itque punctum contactus in M; &longs;ic autem <lb/>ictus e&longs;t ad priorem in compo&longs;ita ex OYZA ad compo&longs;itam ex MO <lb/>MA vel vt chorda MY, &longs;eu MP ad diametrum LB, qu&aelig; omnia patent <lb/>ex dictis. </s>
				</p>
				<p id="N28E39" type="main">
					<s id="N28E3B"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N28E47" type="main">
					<s id="N28E49"><!-- NEW -->Ob&longs;erua &longs;upere&longs;&longs;e tertium modum percu&longs;&longs;ionis, qui fit emi&longs;&longs;ione; cum <lb/>autem emi&longs;&longs;io tribus modis fieri po&longs;&longs;it.1&degree;. </s>
					<s id="N28E4F">&longs;implici impul&longs;ione &longs;ine ictu, <lb/>&amp; proiectione. </s>
					<s id="N28E54">2&degree;. Percu&longs;&longs;ione. </s>
					<s id="N28E57"><!-- NEW -->3&degree;. Proiectione, cui adde eiaculationem, <lb/>vel euibrationem; de his tribus &longs;equentibus Theorematis agendum e&longs;t. </s>
				</p>
				<p id="N28E5D" type="main">
					<s id="N28E5F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 16.<emph.end type="center"/></s>
				</p>
				<p id="N28E6B" type="main">
					<s id="N28E6D"><emph type="italics"/>Explicari po&longs;&longs;unt omnia ph&oelig;nomena emi&longs;&longs;ionis, qu&aelig; fit primo modo, &longs;cilicet <lb/>per meram impul&longs;ionem.<emph.end type="italics"/></s>
				</p>
				<p id="N28E76" type="main">
					<s id="N28E78"><!-- NEW -->Prim&ograve;, emittitur vt plurim&ugrave;m globus, &longs;eu pila Tudicul&acirc; dumtaxat <lb/>minori; vix enim e&longs;&longs;e pote&longs;t alius emi&longs;&longs;ionis modus, qui ad hunc facil&egrave; <lb/>non reuocetur. </s>
				</p>
				<p id="N28E80" type="main">
					<s id="N28E82"><!-- NEW -->Secund&ograve;, imprimitur impetus Tudicul&aelig; &longs;imul, &amp; globo, quia <expan abbr="vtrumq;">vtrumque</expan> <lb/>motum brachij impedit; hoc etiam demon&longs;trauimus lib.1. <!-- KEEP S--></s>
				</p>
				<p id="N28E8D" type="main">
					<s id="N28E8F"><!-- NEW -->Terti&ograve;, qu&ograve; maior e&longs;t Tudicula, tardi&ugrave;s mouetur, vt patet: </s>
					<s id="N28E93"><!-- NEW -->hinc po&shy;<lb/>tentia manet diuti&ugrave;s applicata; </s>
					<s id="N28E99"><!-- NEW -->non tamen propterea globus veloci&ugrave;s <lb/>mouetur, vt patet, quia &longs;ingulis in&longs;tantibus min&ugrave;s in eo producitur; </s>
					<s id="N28E9F"><!-- NEW -->e&longs;t <lb/>enim qua&longs;i pars Tudicul&aelig;; &longs;ecus tamen accidit, &longs;i Tudicula verberet <lb/>pilam, de quo infr&agrave;. </s>
				</p>
				<p id="N28EA7" type="main">
					<s id="N28EA9"><!-- NEW -->Quart&ograve;, &longs;i Tudicula &longs;it longior, longi&ugrave;s emittitur pila; </s>
					<s id="N28EAD"><!-- NEW -->ratio e&longs;t, quia <lb/>diuti&ugrave;s manet potentia applicata pil&aelig;; </s>
					<s id="N28EB3"><!-- NEW -->quippe magis contrahitur bra&shy;<lb/>chium: hinc longi&ugrave;s porrigitur, vt clarum e&longs;t. </s>
				</p>
				<p id="N28EB9" type="main">
					<s id="N28EBB"><!-- NEW -->Quint&ograve;, &longs;i maior &longs;it Tudicula, &amp; pila emittatur verberatione, longi&ugrave;s <lb/>emittitur; </s>
					<s id="N28EC1"><!-- NEW -->ratio e&longs;t, quia maior impetus imprimitur Tudicul&aelig; &agrave; potentia <lb/>diuti&ugrave;s applicata; diuti&ugrave;s autem applicatur maiori, quia tardi&ugrave;s moue&shy;<lb/>tur, vt &longs;upr&agrave; diximus. </s>
				</p>
				<p id="N28EC9" type="main">
					<s id="N28ECB"><!-- NEW -->Sext&ograve;, pila emi&longs;&longs;a veloci&longs;&longs;im&egrave; mouetur eo in&longs;tanti, quo vltimo tan&shy;<lb/>gitur &agrave; Tudicula; quia deinceps nihil pror&longs;us impetus accedit, ac proin&shy;<lb/>de continu&ograve; &longs;en&longs;im de&longs;truitur ab eo in&longs;tanti. </s>
				</p>
				<p id="N28ED3" type="main">
					<s id="N28ED5"><!-- NEW -->Septim&ograve;, nunquam mouetur pila emi&longs;&longs;a veloci&ugrave;s ip&longs;a Tudicul&acirc;, cum <lb/>&longs;cilicet emi&longs;&longs;io fit per meram impul&longs;ionem; </s>
					<s id="N28EDB"><!-- NEW -->quia &longs;cilicet vltimo in&longs;tanti, <lb/>contactus veloci&longs;&longs;im&egrave; mouetur pila; </s>
					<s id="N28EE1"><!-- NEW -->&longs;ed eo in&longs;tanti &aelig;qu&egrave; velociter mo&shy;<lb/>uetur Tudicula, vt con&longs;tat: porr&ograve; ideo emittitur pila, quia retinetur Tu&shy;<lb/>dicula, ne longi&ugrave;s recedat. </s>
				</p>
				<p id="N28EE9" type="main">
					<s id="N28EEB"><!-- NEW -->Octau&ograve;, cum ver&ograve; emittitur pila per verberationem; </s>
					<s id="N28EEF"><!-- NEW -->haud dubi&egrave;, &longs;i <lb/>pila leuior e&longs;t Tudicula, mouetur deinde veloci&ugrave;s; </s>
					<s id="N28EF5"><!-- NEW -->&longs;ecus ver&ograve;, &longs;i grauior <lb/>e&longs;t &amp; &aelig;qu&egrave; velocior, &longs;i &aelig;qualis e&longs;t grauitatis; </s>
					<s id="N28EFB"><!-- NEW -->patet ex dictis de impetu; <pb pagenum="412" xlink:href="026/01/446.jpg"/>hinc vides emi&longs;&longs;ionem c&aelig;teris paribus maiorem e&longs;&longs;e per verberationem, <lb/>qu&agrave;m per meram impul&longs;ionem. </s>
				</p>
				<p id="N28F06" type="main">
					<s id="N28F08"><!-- NEW -->Non&ograve;, pila grauior emi&longs;&longs;a eodem ni&longs;u potenti&aelig; grauiorem ictum in&shy;<lb/>fligit occurrenti globo, quia &longs;cilicet pl&ugrave;s habet impetus; </s>
					<s id="N28F0E"><!-- NEW -->nam diuti&ugrave;s <lb/>potentia fuit applicata: adde quod, &longs;i tardiore motu mouetur propter <lb/>maiorem molem, diuti&ugrave;s pila intacta manet applicata, de quo infr&agrave;. </s>
				</p>
				<p id="N28F16" type="main">
					<s id="N28F18"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N28F24" type="main">
					<s id="N28F26">Ob&longs;eruabis e&longs;&longs;e plura alia ph&oelig;nomena in ludo minoris Tudicul&aelig; <lb/>v.g. <!-- REMOVE S-->1&degree;.quod &longs;pectat ad proportionem ictuum ratione puncti contactus, <lb/>de qua idem dicendum e&longs;t, quod &longs;upr&agrave; dictum e&longs;t Th. 15. num. </s>
					<s id="N28F2F">25. <lb/>2&degree;.quod &longs;pectat ad lineam motus, per quam pila impacta impellit aliam, <lb/>de qua lib.1. Th.50. 51. 52.&amp; alibi pa&longs;&longs;im. </s>
					<s id="N28F36">3&degree;. </s>
					<s id="N28F39">quod &longs;pectat ad reflexio&shy;<lb/>nem, de qua fus&egrave; lib.6. &agrave; Th.62. ad 75. </s>
				</p>
				<p id="N28F3E" type="main">
					<s id="N28F40"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 17.<emph.end type="center"/></s>
				</p>
				<p id="N28F4C" type="main">
					<s id="N28F4E"><emph type="italics"/>Explicari po&longs;&longs;unt omnia ph&oelig;nomena emi&longs;&longs;ionum, qu&aelig; fiunt cum percu&longs;&longs;ione.<emph.end type="italics"/></s>
				</p>
				<p id="N28F55" type="main">
					<s id="N28F57"><!-- NEW -->Prim&ograve;, &longs;it percu&longs;&longs;io minoris Tudicul&aelig; v.g. <!-- REMOVE S-->eo maior e&longs;t, qu&ograve; Tudi&shy;<lb/>cula maior e&longs;t; rationem iam attulimus &longs;upr&agrave; num.5.Th.16. </s>
				</p>
				<p id="N28F5F" type="main">
					<s id="N28F61"><!-- NEW -->Secund&ograve;, quo Tudicula longior e&longs;t, maior ictus, &amp; emi&longs;&longs;io; quia <lb/>&longs;cilicet diuti&ugrave;s potentia manet applicata, quia brachium longi&ugrave;s extens <lb/>pote&longs;t, vt diximus numero 4. Th.16. <!-- KEEP S--></s>
				</p>
				<p id="N28F6A" type="main">
					<s id="N28F6C">Terti&ograve;, quod &longs;pectat ad &longs;ecundum ictum, idem pror&longs;us dicendum e&longs;t <lb/>quod dictum e&longs;t Theoremate &longs;uperiore num.9. </s>
				</p>
				<p id="N28F71" type="main">
					<s id="N28F73"><!-- NEW -->Quart&ograve;, quod &longs;pectat ad Tudiculam maiorem, iam &longs;upr&agrave; explicuimus <lb/>cuncta illius ph&oelig;nomena, cum de malleo: certum e&longs;t enim prim&ograve; ma&shy;<lb/>iorem &agrave; maiore ictum infligi, c&aelig;teris partibus, qu&agrave;m &agrave; minore propter <lb/>pr&aelig;dictum rationem. </s>
					<s id="N28F7D">Secund&ograve;, certum e&longs;t longitudinem manubrij fle&shy;<lb/>xibilitatem, in&aelig;qualitatem, materiem, duritiem mallei, &aelig;qualitatem ba&longs;is <lb/>&amp;c. </s>
					<s id="N28F84">mult&ugrave;m conferre ad maiorem c&ugrave;m ictus. </s>
					<s id="N28F87">Terti&ograve; certum e&longs;t mino&shy;<lb/>rem globum, in quem impingitur Tudicula, citi&ugrave;s moueri, inaiorem tar&shy;<lb/>di&ugrave;s, c&aelig;teris paribus. </s>
					<s id="N28F8E"><!-- NEW -->Quart&ograve;, globus maior in alium impactus Tudicul&acirc; <lb/>maiorem ictum infligit, vt con&longs;tat experienti&acirc;; rat&icirc;; </s>
					<s id="N28F94"><!-- NEW -->e&longs;t, quia tardi&ugrave;s <lb/>mouetur; </s>
					<s id="N28F9A"><!-- NEW -->igitur diuti&ugrave;s applicatur: Equidem globus proiectus in alium <lb/>fortiorem ictum infligit ex duplici capite, vt dicam infr&agrave;. </s>
					<s id="N28FA0">1&degree;. </s>
					<s id="N28FA3"><!-- NEW -->Quia ma&shy;<lb/>iorem impetum &agrave; potentia diuti&ugrave;s applicata.2&degree;.Quia diuti&ugrave;s applicatur <lb/>globo in quem impingitur; at ver&ograve; quando impingitur Tudicul&acirc; maiore, <lb/>ex duplici quoque capite cre&longs;cit ictus.1&degree;.quia globus globo diuti&ugrave;s ma&shy;<lb/>net applicatus, c&ugrave;m tardior motus dicat pl&ugrave;s temporis. </s>
					<s id="N28FAF">2&degree;. </s>
					<s id="N28FB2"><!-- NEW -->quia malleus <lb/>tardiorem motum imprimis globo; </s>
					<s id="N28FB8"><!-- NEW -->igitur diuti&ugrave;s manet applicatus: e&longs;t <lb/>enim h&aelig;c abta lex agentium, vt longiore tempore maior effectus produ&shy;<lb/>catur, minor ver&ograve; minore, reliqua ex dictis facil&egrave; intelligentur. </s>
				</p>
				<p id="N28FC2" type="main">
					<s id="N28FC4"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 18.<emph.end type="center"/></s>
				</p>
				<p id="N28FD0" type="main">
					<s id="N28FD2"><emph type="italics"/>Explicari po&longs;&longs;unt omnia ph&oelig;nomena emi&longs;&longs;ionum, qu&aelig; fiunt per iactum.<emph.end type="italics"/></s>
				</p>
				<p id="N28FD9" type="main">
					<s id="N28FDB"><!-- NEW -->Prim&ograve;, Iactus duobus modis fieri pote&longs;t: prim&ograve; brachio: </s>
					<s id="N28FDF"><!-- NEW -->&longs;ecund&ograve;, <lb/>aliquo organo; </s>
					<s id="N28FE5"><!-- NEW -->e&longs;t autem multiplex organi genus, de quo infr&agrave;; omitto <pb pagenum="413" xlink:href="026/01/447.jpg"/>enim iactum illum, qui fit pede mini&longs;tro, cuius eadem e&longs;t ratio, qu&aelig; <lb/>brachij. </s>
				</p>
				<p id="N28FF0" type="main">
					<s id="N28FF2"><!-- NEW -->Secund&ograve;, iactu lapidis maioris, maior ictus infligitur; </s>
					<s id="N28FF6"><!-- NEW -->ratio e&longs;t, quia <lb/>diuti&ugrave;s manet lapis applicatus potenti&aelig;, ip&longs;ique adeo corpori, in quod <lb/>impingitur; </s>
					<s id="N28FFE"><!-- NEW -->vtrumque cert&egrave;, quia tardi&ugrave;s mouetur, ergo tardi&ugrave;s &longs;epara&shy;<lb/>tur &agrave; manu; ergo etiam in&longs;tans contactus maius e&longs;t. </s>
				</p>
				<p id="N29004" type="main">
					<s id="N29006"><!-- NEW -->Terti&ograve;, hinc proportio ictuum &longs;atis facil&egrave; ex dictis &longs;upr&agrave; determinari <lb/>pote&longs;t; </s>
					<s id="N2900C"><!-- NEW -->&longs;i enim habeatur tant&ugrave;m ratio impetus maioris, qui imprimitur <lb/>&longs;axo ab ip&longs;a potentia, ictus &longs;unt in ratione &longs;ubduplicata ponderum, id <lb/>e&longs;t, vt tempora, quibus &longs;axum adh&aelig;ret manui; </s>
					<s id="N29014"><!-- NEW -->&longs;i ver&ograve; habeatur ratio <lb/>contactus, ictus &longs;unt vt motus permutando, &longs;uppo&longs;ito &aelig;quali impetu; </s>
					<s id="N2901A"><!-- NEW --><lb/>igitur, &longs;i habeatur ratio vtriu&longs;que, ictus &longs;unt in ratione compo&longs;ita ex ra&shy;<lb/>tione &longs;ubduplicata ponderum, &amp; ratione permutata motuum v. <!-- REMOVE S-->g. <!-- REMOVE S-->&longs;int <lb/>&longs;axa AB &longs;it A 4.librarum, B vnius; </s>
					<s id="N29027"><!-- NEW -->ratio &longs;ubduplicata e&longs;t 2/1 motus A e&longs;t <lb/>vt velocitas; </s>
					<s id="N2902D"><!-- NEW -->igitur e&longs;t ad motum B, vt 1/2. permutetur, erit 2/1 componatur <lb/>vtraque ratio, eritque ratio 4/1; </s>
					<s id="N29033"><!-- NEW -->igitur ictus lapidis &longs;unt vt pondera; qu&aelig; <lb/>omnia con&longs;tant ex dictis &longs;upr&agrave;. </s>
				</p>
				<p id="N29039" type="main">
					<s id="N2903B"><!-- NEW -->Quart&ograve;, leui&longs;&longs;imi lapides vix iaciuntur ad modicam di&longs;tantiam v. <!-- REMOVE S-->g. <lb/><!-- REMOVE S-->granula &longs;abuli; ratio e&longs;t, 1&degree;. </s>
					<s id="N29044">quia accipiunt min&ugrave;s impetus, quia citi&ugrave;s <lb/>&longs;eparantur &agrave; iaciente manu, vt patet. </s>
					<s id="N29049">2&degree;. </s>
					<s id="N2904C"><!-- NEW -->quia mouetur initio veloci&ugrave;s in <lb/>a&euml;re; </s>
					<s id="N29053"><!-- NEW -->igitur &longs;ingulis in&longs;tantibus pl&ugrave;s impetus de&longs;truitur, vt con&longs;tat; nam <lb/>in maiori &longs;patio a&euml;ris e&longs;t maior re&longs;i&longs;tentia. </s>
					<s id="N29059"><!-- NEW -->3&degree;.quia c&ugrave;m a&euml;r perpetuo <lb/>motu agitetur, vt certum e&longs;t, in leuiori corpore impetum imprimit; igi&shy;<lb/>tur aliam &longs;i&longs;tit vel deflectit. </s>
					<s id="N29061">4&degree;.quia manu non pote&longs;t rect&egrave; prehendi ia&shy;<lb/>ciendus lapillus &amp;c. </s>
				</p>
				<p id="N29066" type="main">
					<s id="N29068"><!-- NEW -->Quint&ograve;, grauior lapis ad modicam tant&ugrave;m di&longs;tantiam iacitur; ratio <lb/>e&longs;t 1&degree;.quia producitur remi&longs;&longs;ior impetus, c&ugrave;m &longs;cilicet pluribus partibus <lb/>&longs;ubiecti di&longs;tribuatur. </s>
					<s id="N29070">2&degree;.quia impetus grauitationis citi&ugrave;s de&longs;truit impe&shy;<lb/>tum extrin&longs;ecus aduenientem. </s>
				</p>
				<p id="N29075" type="main">
					<s id="N29077"><!-- NEW -->Sext&ograve;, figura corporis iacti mult&ugrave;m confert ad iactum, quia ratione <lb/>figur&aelig; pote&longs;t a&euml;r pl&ugrave;s, vel min&ugrave;s re&longs;i&longs;tere: </s>
					<s id="N2907D"><!-- NEW -->hinc figura circularis depre&longs;&shy;<lb/>&longs;ior apti&longs;&longs;ima e&longs;t ad iactum; </s>
					<s id="N29083"><!-- NEW -->quia minor e&longs;t a&euml;ris re&longs;i&longs;tentia, qualis e&longs;t <lb/>figura lenticularis: </s>
					<s id="N29089"><!-- NEW -->hinc &longs;cabri corporis, qualis e&longs;t tophus, iactus e&longs;t <lb/>difficilior; </s>
					<s id="N2908F"><!-- NEW -->quia &longs;cilicet a&euml;r &longs;alebris illis, vel a&longs;peritatibus interceptus <lb/>magis re&longs;i&longs;tit: hinc &longs;ibilus propter colli&longs;ionem a&euml;ris &amp;c. </s>
				</p>
				<p id="N29095" type="main">
					<s id="N29097">Septim&ograve;, iacitur lapis multis modis 1&degree;. </s>
					<s id="N2909A">rotato infr&agrave; brachio extento: </s>
					<s id="N2909D"><!-- NEW --><lb/>&longs;ic vulg&ograve; iaciuntur grauiora &longs;axa; </s>
					<s id="N290A2"><!-- NEW -->ad iactum autem conferunt vires po&shy;<lb/>tenti&aelig;, brachium longi&ugrave;s, longior arcus, Tangens, per quam emittitur di&shy;<lb/>mi&longs;&longs;um &longs;axum, qu&aelig; debet facere cum horizontali angulum grad.45. ma&shy;<lb/>nus &longs;imul explicata; </s>
					<s id="N290AC"><!-- NEW -->&longs;i enim vna pars ante aliam dimittatur, retinetur <lb/>iactus, vt vulg&ograve; dicitur, figura, &amp; moles lapidis; </s>
					<s id="N290B2"><!-- NEW -->&longs;i enim maior e&longs;t, non <lb/>procul emittitur pr&aelig;uia brachij gyratio, quia impetus augetur: denique <lb/>impre&longs;&longs;us toti corpori impetus, qu&aelig; omnia mirific&egrave; maiorem iactum ef&shy;<lb/>ficiunt, vt con&longs;tat ex dictis &longs;upr&agrave;. </s>
					<s id="N290BD"><!-- NEW -->2&degree;.iacitur lapis rotato quidem deor&longs;um <lb/>brachio, &longs;ed non &longs;iue aliqua eiu&longs;dem brachij contractione, &amp; aliquot <pb pagenum="414" xlink:href="026/01/448.jpg"/>gyris: &longs;ic vulg&ograve; iaciuntur &longs;axa minora, tuncque pr&aelig;&longs;ertim contentis ner&shy;<lb/>uis toti corpori impetus accedit, qui deinde ad augendam iactum in <lb/>ip&longs;um brachium qua&longs;i refunditur.3&degree;. </s>
					<s id="N290CC">iacitur lapis negligenti qua&longs;i ni&longs;u, <lb/>&longs;eu reiectione circumacta manu horizonti parallela, &amp; contracto tan&shy;<lb/>till&ugrave;m brachio. </s>
					<s id="N290D3">4&degree;. </s>
					<s id="N290D6">additur aliquando deflexio vel declinatio iactui <lb/>pr&aelig;&longs;ertim in ludo trunculorum, pr&aelig;&longs;ertim c&ugrave;m trunculorum line&aelig; ad&shy;<lb/>uer&longs;&aelig; omnin&ograve; &amp; direct&aelig; iacienti re&longs;pondens. </s>
					<s id="N290DD"><!-- NEW -->5&degree;.denique, iacitur &longs;axum <lb/>rotato &longs;upra brachio implicatis gyris, qui reuer&acirc; iactus augetur ex ii&longs;&shy;<lb/>dem omnin&ograve; capitibus; de quibus iam &longs;upr&agrave;, quorum omnium cau&longs;&aelig; &amp; <lb/>rationes parent manife&longs;t&aelig; ex dictis. </s>
				</p>
				<p id="N290E7" type="main">
					<s id="N290E9"><!-- NEW -->Octau&ograve;, corporis iacti impetus de&longs;truitur &longs;en&longs;im, t&ugrave;m ab impetu nati&shy;<lb/>uo ab occur&longs;u aliorum corporum; </s>
					<s id="N290EF"><!-- NEW -->hinc in plano a&longs;periore citi&ugrave;s rota&shy;<lb/>tus globus &longs;i&longs;tit; qu&aelig; cert&egrave; omnia &longs;unt facilia. </s>
				</p>
				<p id="N290F5" type="main">
					<s id="N290F7"><!-- NEW -->Non&ograve;, eiaculatio e&longs;t iactus &longs;eu vibratio alicuius mi&longs;&longs;ilis oblongi, qua&shy;<lb/>le e&longs;t iaculum vel telum, pro qua non e&longs;t difficultas; </s>
					<s id="N290FD"><!-- NEW -->fit enim porrecto <lb/>ant&egrave; per &longs;uperiorem arcum brachio; infligetur autem maior ictus, cum <lb/>1&degree;. </s>
					<s id="N29105"><!-- NEW -->iaculum e&longs;t maius, propter eandem rationem quam &longs;upr&agrave; attulimus <lb/>pro &longs;ari&longs;&longs;a.2&degree;.cum directus e&longs;t ictus; </s>
					<s id="N2910B"><!-- NEW -->pote&longs;t autem e&longs;&longs;e obliquus, vel quia <lb/>in planum cadit obliqu&egrave;, lic&egrave;t non declinet telum &agrave; &longs;ua linea, vel quia &agrave; <lb/>&longs;ua linea declinat, qu&aelig; cadit alioquin perpendiculariter in planum, vel <lb/>denique ex vtroque capite: omitto alia capita, qu&aelig; maiorem vim ictui <lb/>conciliant, de quibus &longs;upr&agrave; num.7. 3&degree;. </s>
					<s id="N29117"><!-- NEW -->mult&ugrave;m facit ad maiorem ictum <lb/>concitatus in eam partem equus, in quam vibratur telum; hinc equites <lb/>antiquioris militi&aelig; telis &amp; iaculis pugnabant. </s>
				</p>
				<p id="N2911F" type="main">
					<s id="N29121">Decim&ograve;, iactus fieri pote&longs;t multiplici organo ejaculatorio, 1&degree;. </s>
					<s id="N29124">&longs;ypho&shy;<lb/>ne, 2&degree;.fi&longs;tula tormentaris, 3&degree;.arcu, 4&degree;.funda, 5&degree;. </s>
					<s id="N29129"><!-- NEW -->reticulo pilari vel cla&shy;<lb/>uula denique infinita e&longs;t fer&egrave; organorum huiu&longs;modi &longs;uppellex; </s>
					<s id="N2912F"><!-- NEW -->omitto <lb/>motus omnes rei tormentari&aelig;, balli&longs;tic&aelig;, hydraulic&aelig;, &amp; pneumatic&aelig;, de <lb/>quibus fus&egrave; Tomo &longs;equenti; </s>
					<s id="N29137"><!-- NEW -->quod &longs;pectat ad &longs;yphonem, quo aquam vel <lb/>globulos ejaculari &longs;olemus, non e&longs;t dubium quin illa ejaculatio &longs;it effe&shy;<lb/>ctus compre&longs;&longs;ionis, de qua etiam, Tomo &longs;equenti; igitur &longs;uper&longs;unt tan&shy;<lb/>t&ugrave;m duo pr&aelig;dictorum organorum genera, &longs;cilicet funda &amp; pilaris cla&shy;<lb/>uula. </s>
				</p>
				<p id="N29143" type="main">
					<s id="N29145">Vndecim&ograve;, funda vulgare e&longs;t organum iactus, cuius ph&oelig;nomena fa&shy;<lb/>cil&egrave; explicari po&longs;&longs;unt.1&degree;. </s>
					<s id="N2914A"><!-- NEW -->rotatur vt maiorem impetum acquirat ad mo&shy;<lb/>tus reticulo lapis, 2&degree;.qu&ograve; longior e&longs;t funda, longi&ugrave;s lapis abigitur, quia <lb/>diuti&ugrave;s manet applicatus, c&ugrave;m maiorem arcum decurrat, 3&degree;.lapis in reti&shy;<lb/>culo fund&aelig; retinetur; quia c&ugrave;m per Tangentem lineam &longs;ingulis in&longs;tanti&shy;<lb/>bus determinetur, vt con&longs;tat ex dictis &longs;upr&agrave;, impeditur &amp; retinetur &agrave; re&shy;<lb/>ticulo, per quod Tangens illa duci tant&ugrave;m pote&longs;t, e&longs;t eadem ratio, qu&aelig; <lb/>orbis rotati, de quo Th.3.num.10. 4&degree;. </s>
					<s id="N2915A">hinc demi&longs;&longs;o altero fund&aelig; funi&shy;<lb/>culo lapis iacitur, quia nihil e&longs;t &agrave; quo retineri ampli&ugrave;s queat. </s>
					<s id="N2915F">5&degree;. </s>
					<s id="N29162"><!-- NEW -->qu&ograve; <lb/>maior e&longs;t lapis c&aelig;teris paribus, tardi&ugrave;s rotatur funda, at maior impetus <lb/>lapidi imprimitur; quia diuti&ugrave;s manet applicatus. </s>
					<s id="N2916A">6&degree;. </s>
					<s id="N2916D"><!-- NEW -->tenditur conti&shy;<lb/>nu&ograve; rota, quantumuis rotetur; quia &longs;cilicet non quidem &agrave; pondere <pb pagenum="415" xlink:href="026/01/449.jpg"/>lapidis, &longs;ed ab eius impetu ad Tangentem determinato e&ograve; trahitur. </s>
					<s id="N29178"><lb/>Septim&ograve;, quod autem ad Tangentem continu&ograve; determinetur linea mo&shy;<lb/>tus, patet ex dictis, cum de motu circulari. </s>
					<s id="N29180">Octau&ograve;, longi&longs;&longs;imus erit ia&shy;<lb/>ctus, &longs;i Tangens, ad quam motus lapidis determinatur, eo in&longs;tanti, quo <lb/>demittitur faciat angulum 45. grad. <!-- REMOVE S-->cum horizontali. </s>
					<s id="N29189"><!-- NEW -->Non&ograve;, vt rect&egrave; <lb/>collimetur, &longs;eu dirigatur lapis ad propo&longs;itum &longs;copum, egregium artifi&shy;<lb/>cium e&longs;&longs;e pote&longs;t; quod totum in eo po&longs;itum e&longs;t, vt inueniatur illa Tan&shy;<lb/>gens, qu&aelig; ducitur ad &longs;copum. </s>
					<s id="N29193"><!-- NEW -->Decim&ograve;, ad fundam reuocari pote&longs;t, li&shy;<lb/>nea illa fi&longs;&longs;i baculi furca, cui &longs;i lapis in&longs;eratur, facil&egrave; deinde emittitur; </s>
					<s id="N29199"><!-- NEW --><lb/>&longs;it enim linea furca AB; </s>
					<s id="N2919E"><!-- NEW -->&longs;it lapis in&longs;ertus B, &longs;i rotetur maximo ni&longs;u furca <lb/>AB circa centrum A, vel circa centrum humeri; </s>
					<s id="N291A4"><!-- NEW -->haud dubi&egrave; lapis B <lb/>cum aliquo impetu di&longs;cedet: ratio e&longs;t, quia c&ugrave;m &longs;tatim retineatur furca <lb/>impre&longs;&longs;a pri&ugrave;s maxima impetus vi, t&ugrave;m lapidi t&ugrave;m furc&aelig;, &longs;uperat vis <lb/>illa impetus, qu&aelig; lapidi ine&longs;t, modicam illam &longs;trictionem fi&longs;&longs;&aelig; rim&aelig;, <lb/>nec e&longs;t alia difficultas. </s>
				</p>
				<p id="N291B0" type="main">
					<s id="N291B2">Vndecim&ograve;, ad fundam reuocabis vibrationes arietis, Tudicul&aelig;, &aelig;ris <lb/>campani, &amp; omnium funependulorum, quas &longs;uis vibrationibus aliquod <lb/>corpus eiaculantur, vel ictum infligunt. </s>
				</p>
				<p id="N291B9" type="main">
					<s id="N291BB">Duodecim&ograve;, claua pilaris, &longs;eu reticulum notum e&longs;t omnibus or&shy;<lb/>ganum, cuius ph&oelig;nomena clari&longs;&longs;ima &longs;unt. </s>
					<s id="N291C0">Prim&ograve;, reticulo longi&ugrave;s <lb/>emittitur pila, qu&agrave;m clauicul&acirc;, propter ten&longs;ionem &amp; reditum chordarum. </s>
					<s id="N291C5"><lb/>Secund&ograve;, qu&ograve; longi&ugrave;s e&longs;t clauul&aelig; manubrium, longi&ugrave;s abigitur pila. </s>
					<s id="N291C9"><lb/>Terti&ograve;, vt &longs;u&longs;tineatur ictus breui manubrio, reticulo opus e&longs;t. </s>
					<s id="N291CD">Quart&ograve;, <lb/>auer&longs;a manu impacto reticulo, pila longi&ugrave;s emittitur. </s>
					<s id="N291D2">Quint&ograve;, qu&ograve; &longs;unt <lb/>ten&longs;iores chord&aelig; reticuli, maior e&longs;t ictus. </s>
					<s id="N291D7"><!-- NEW -->Sext&ograve;, hinc recens reticulum <lb/>veteri, &amp; iam attrito pr&aelig;ferri debet; hinc ille chordarum &longs;onus. </s>
					<s id="N291DD"><!-- NEW -->Septim&ograve; <lb/>pote&longs;t a&longs;&longs;ignari clauul&aelig; locus, in quo &longs;i fiat percu&longs;&longs;io, fit maximus ictus, <lb/>&longs;it enim clauula AE, cuius centrum grauitatis &longs;it C; </s>
					<s id="N291E5"><!-- NEW -->haud dubi&egrave;, &longs;i mo&shy;<lb/>ueatur motu recto, maximum ictum infliget in C; </s>
					<s id="N291EB"><!-- NEW -->&longs;i ver&ograve; motu circu&shy;<lb/>lari circa E e&longs;t aliud centrum percu&longs;&longs;ionis, de quo infr&agrave;; </s>
					<s id="N291F1"><!-- NEW -->&longs;i tamen reticu&shy;<lb/>lum propter ten&longs;ionem chordarum, qu&aelig; maximum addit momentum in <lb/>centro reticuli, erit fer&egrave; maximus ictus in linea AD, &longs;iue &longs;it reticulum, <lb/>&longs;iue &longs;it clauula, debet fieri contactus; alioqui &longs;i in F, v.g. <!-- REMOVE S-->fieret declina&shy;<lb/>ret planum clauul&aelig;, vt patet. </s>
					<s id="N291FF"><!-- NEW -->Non&ograve;, cra&longs;&longs;itudo clauul&aelig; mult&ugrave;m facit ad <lb/>augendam vim ictus; e&longs;t enim eadem pror&longs;us ratio, qu&aelig; mallei. </s>
					<s id="N29205"><!-- NEW -->Decim&ograve;, <lb/>firmitas, &amp; qua&longs;i ten&longs;io carpi mult&ugrave;m facit ad ictum; </s>
					<s id="N2920B"><!-- NEW -->pr&aelig;&longs;ertim c&ugrave;m pila <lb/>retorquetur; quia &longs;cilicet ratione vectis fer&egrave; circa extremitatem manu&shy;<lb/>brij pellitur clauula ab immi&longs;&longs;a pil&acirc;. </s>
					<s id="N29213"><!-- NEW -->Vndecim&ograve;, vt &longs;it maior ictus, ali&shy;<lb/>quo tempore reticulum comitatur pilam, adh&aelig;retque &agrave; tergo: </s>
					<s id="N29219"><!-- NEW -->ratio e&longs;t, <lb/>quia potentia manet diuti&ugrave;s applicata: vide alia, qu&aelig; pertinent ad de&shy;<lb/>flexionem pil&aelig;, &amp; reflexionem lib.6. de motu reflexo &agrave; Th.75. ad 81. </s>
				</p>
				<p id="N29221" type="main">
					<s id="N29223"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 19.<emph.end type="center"/></s>
				</p>
				<p id="N2922F" type="main">
					<s id="N29231"><emph type="italics"/>Ali&aelig; &longs;unt plurim&aelig; motionum &longs;pecies, quas in hoc Theoremate exponi&shy;<lb/>mus.<emph.end type="italics"/></s>
				</p>
				<pb pagenum="416" xlink:href="026/01/450.jpg"/>
				<p id="N2923E" type="main">
					<s id="N29240"><!-- NEW -->Prim&ograve;, occurrit pre&longs;&longs;io, &amp; dilatatio: </s>
					<s id="N29244"><!-- NEW -->premitur corpus ab impetu <lb/>impre&longs;&longs;o &agrave; circumferentia ad centrum; </s>
					<s id="N2924A"><!-- NEW -->&longs;ic premitur a&euml;r, &amp; aqua intra <lb/>vas; </s>
					<s id="N29250"><!-- NEW -->dilatatur ver&ograve; per impetum &agrave; centro ad circumferentiam; &longs;ed mira&shy;<lb/>biles &longs;unt pre&longs;&longs;ionis &amp; dilatationis effectus, qui propterea librum &longs;ingu&shy;<lb/>larem de&longs;iderant. </s>
				</p>
				<p id="N29258" type="main">
					<s id="N2925A">Secund&ograve;, intru&longs;io, &amp; extru&longs;io: </s>
					<s id="N2925D"><!-- NEW -->illa e&longs;t impul&longs;io intror&longs;um; </s>
					<s id="N29261"><!-- NEW -->h&aelig;c ver&ograve; <lb/>extror&longs;um: </s>
					<s id="N29267"><!-- NEW -->vtraque fit vt plurim&ugrave;m cum pre&longs;&longs;ione; </s>
					<s id="N2926B"><!-- NEW -->&longs;ic defig&icirc;tur clauus; <lb/>vi mallei; </s>
					<s id="N29271"><!-- NEW -->&longs;ic excluditur alius: </s>
					<s id="N29275"><!-- NEW -->ad intru&longs;ionem &amp; extru&longs;ionem reuocari <lb/>pote&longs;t ductus auri, vel argenti, vel alterius ductilis materi&aelig;; &longs;ed hunc <lb/>rei ductilis &longs;tatum Tomo quinto explicabimus cum alijs corporeum &longs;ta&shy;<lb/>tibus. </s>
				</p>
				<p id="N2927F" type="main">
					<s id="N29281"><!-- NEW -->Terti&ograve;, di&longs;po&longs;itio fit per eiaculationem, vel minimarum partium, qu&aelig; <lb/>&longs;imul omnes vno iactu demittuntur manu; </s>
					<s id="N29287"><!-- NEW -->&longs;it plura grana tritici vel <lb/>aren&aelig; iaciuntur, vel alicuius corporis, cuius partes &longs;eparantur in ip&longs;o <lb/>iactu; cur ver&ograve; vna per hanc lineam, alia per aliam feratur, determi&shy;<lb/>natur vel &agrave; concur&longs;u cum alia parte, vel &agrave; &longs;itu, quem &longs;ingul&aelig; in iacien&shy;<lb/>tis manu habebant pri&ugrave;s, vel ab ordine, quo &longs;ingul&aelig; proce&longs;&longs;erunt. </s>
				</p>
				<p id="N29293" type="main">
					<s id="N29295"><!-- NEW -->Quart&ograve;, adductio ad tractionem reuocari pote&longs;t; </s>
					<s id="N29299"><!-- NEW -->&longs;unt tamen plures <lb/>illius modi; </s>
					<s id="N2929F"><!-- NEW -->vel enim per meram tractionem; </s>
					<s id="N292A3"><!-- NEW -->&longs;ic adducitur clauus, vel <lb/>truncus, vel per circuitionem &longs;implicem, &longs;ic adducitur rotati baculi ex&shy;<lb/>tremitas; vel per circuitionem mixtam: </s>
					<s id="N292AB"><!-- NEW -->&longs;ic adducitur extremitas funis <lb/>flagelli; vel cum aliquo iactu; </s>
					<s id="N292B1"><!-- NEW -->&longs;ic adducitur pulmentum vt in va&longs;e <lb/>optim&egrave; commi&longs;ceatur v.g. <!-- REMOVE S-->&longs;ic coqui adducunt frixum &amp; inuertunt, por&shy;<lb/>recto tantill&ugrave;m, t&ugrave;m deinde rotato &longs;artaginis manubrio: </s>
					<s id="N292BB"><!-- NEW -->&longs;i enim e&longs;&longs;et <lb/>vera rotatio, frixum per Tangentem erit; at ver&ograve; propter motum rectum <lb/>po&longs;t inuer&longs;ionem ab ip&longs;a &longs;artagine minim&egrave; recedit. </s>
				</p>
				<p id="N292C3" type="main">
					<s id="N292C5"><!-- NEW -->Quint&ograve;, ventilatio e&longs;t motio, qu&acirc; frumentum excernitur vanno; </s>
					<s id="N292C9"><!-- NEW -->van&shy;<lb/>nus circuli e&longs;t vulgare &longs;atis frumentarium organum duabus an&longs;is in&longs;tru&shy;<lb/>ctum, quibus vibratur t&ugrave;m in aduer&longs;am partem, vt ip&longs;o &longs;uccu&longs;&longs;u pale&aelig;, <lb/>ari&longs;t&aelig;, &amp; ali&aelig; fe&longs;tuc&aelig; auolent; </s>
					<s id="N292D3"><!-- NEW -->t&ugrave;m dextror&longs;um &longs;ini&longs;tror&longs;umque libratur <lb/>vt leuior materia extet; </s>
					<s id="N292D9"><!-- NEW -->triticum enim grauius e&longs;t; </s>
					<s id="N292DD"><!-- NEW -->igitur deor&longs;um ten&shy;<lb/>dit; palea ver&ograve; &longs;ur&longs;um; </s>
					<s id="N292E3"><!-- NEW -->ideo ver&ograve; attollitur, &longs;ub&longs;ultatque triticum in van&shy;<lb/>no, quia po&longs;t impre&longs;&longs;um impetum per vibrationem &longs;ur&longs;um, manus ip&longs;a <lb/>deor&longs;um cum aliquo impetu truditur, in quo non e&longs;t difficultas, alio <lb/>ver&ograve; motu qua&longs;i recto repit frumentum in vanni aluo, quia per addu&shy;<lb/>ctionem vanni impul&longs;&aelig; pri&ugrave;s &longs;ini&longs;tror&longs;um frumentum in eam partem <lb/>adhuc propter priorem impetum fertur; &longs;ic cum nauis illic&ograve; &longs;i&longs;tit in <lb/>potu, qui &longs;unt in ea &amp; portum a&longs;piciunt, proni cadunt, de quo iam <lb/>&longs;upr&agrave;. </s>
				</p>
				<p id="N292F5" type="main">
					<s id="N292F7"><!-- NEW -->Sext&ograve;, remigatio fit pellendo, trahendoque, de qua iam &longs;upr&agrave; Th. 6. <lb/>16.longior &amp; latior remus maiorem vim aqu&aelig; impellit; </s>
					<s id="N292FD"><!-- NEW -->difficili&ugrave;s taman <lb/>mouetur, qu&ograve; maior e&longs;t illius portio &agrave; centro motus ver&longs;us manum re&shy;<lb/>migantis, facili&ugrave;s mouetur propter rationem vectis; </s>
					<s id="N29305"><!-- NEW -->facili&ugrave;s mouetur, &longs;i <lb/>aduer&longs;o flumine feratur nauis: </s>
					<s id="N2930B"><!-- NEW -->ratio e&longs;t, quia aqua pul&longs;a ver&longs;us eam <lb/>partem, in quam fluit min&ugrave;s re&longs;i&longs;tit, quando eundem remum tractant, <pb pagenum="417" xlink:href="026/01/451.jpg"/>ille plus confert, qui ad extremitatem propi&ugrave;s accedit; ratio clara e&longs;t: </s>
					<s id="N29316"><!-- NEW --><lb/>&longs;ed de re nautica ali&agrave;s; vide interim locum citatum. </s>
				</p>
				<p id="N2931B" type="main">
					<s id="N2931D"><!-- NEW -->Septim&ograve;, tritus fit, cum ab impacto aliquo duriore corpore malleo, <lb/>v.g. <!-- REMOVE S-->vel pilo aliud teritur, quod &longs;cilicet impetus partibus illis impre&longs;&longs;is <lb/>&longs;uperet vim implicationis, vel vnionis partium; </s>
					<s id="N29327"><!-- NEW -->e&longs;t etiam eadem ratio <lb/>fractur&aelig; eadem ten&longs;ionis, vel inflexionis; per quid ver&ograve; corpus ip&longs;um <lb/>&longs;it vel friabile, vel fragile, vel flexibile, fus&egrave; explicamus Tomo <lb/>quinto. </s>
				</p>
				<p id="N29331" type="main">
					<s id="N29333"><!-- NEW -->Octau&ograve;, &longs;uccu&longs;&longs;us e&longs;t impetus impre&longs;&longs;us repetito frequenti ni&longs;u; </s>
					<s id="N29337"><!-- NEW -->&longs;ic <lb/>vulg&ograve; &longs;uccutiuntur arbores, vt fructus maturi cadant; </s>
					<s id="N2933D"><!-- NEW -->excuti ver&ograve; ali&shy;<lb/>quid dicitur, cum impetus vi ab alio &longs;eparatur; </s>
					<s id="N29343"><!-- NEW -->&longs;ic excuti dicuntur den&shy;<lb/>tes; &longs;ic excutitur malleo marmoris fragmentum, &amp;c. </s>
					<s id="N29349"><!-- NEW -->in quo non e&longs;t <lb/>difficultas; </s>
					<s id="N2934F"><!-- NEW -->nam quoties maior e&longs;t vis impetus, qu&agrave;m implicationis par&shy;<lb/>tium, vel vnionis, tunc aliqua pars auolat ab ictu: </s>
					<s id="N29355"><!-- NEW -->denique ca&longs;us alicuius <lb/>corporis facil&egrave; intelligi pote&longs;t; </s>
					<s id="N2935B"><!-- NEW -->periculo&longs;ior e&longs;t altioris hominis, qu&agrave;m <lb/>pu&longs;illi: </s>
					<s id="N29361"><!-- NEW -->hinc animalcula cadentia vix quidquam detrimenti &agrave; <lb/>ca&longs;u accipiunt: </s>
					<s id="N29367"><!-- NEW -->pr&aelig;terea ictus grauior e&longs;t, &longs;i quis cadat in eam partem, <lb/>ver&longs;us quam &longs;ummo ni&longs;u fertur; </s>
					<s id="N2936D"><!-- NEW -->quia impetus grauitatis augetur ab alio <lb/>impre&longs;&longs;o: </s>
					<s id="N29373"><!-- NEW -->deinde pars illa corporis, qu&aelig; ca&longs;u altitudine mult&ugrave;m auget <lb/>vel imminuit grauitatem ictus, vt certum e&longs;t; </s>
					<s id="N29379"><!-- NEW -->imm&ograve; corpus illud, cui <lb/>alliditur: </s>
					<s id="N2937F"><!-- NEW -->hinc caput in marmor impactum graui&longs;&longs;imum ictum refert: </s>
					<s id="N29383"><!-- NEW --><lb/>hinc tybi&aelig;, vel brachij os ita impingitur ca&longs;u, vt frangatur, vel propter <lb/>rationem vectis, vel propter in&aelig;qualitatem corporis, in quod impingi&shy;<lb/>tur; </s>
					<s id="N2938C"><!-- NEW -->hinc franguntur o&longs;&longs;a facil&egrave; modico ictu, &longs;i vtrimque &longs;u&longs;tineantur; </s>
					<s id="N29390"><!-- NEW --><lb/>in medio vero ab&longs;it fulcrum: &longs;ed h&aelig;c pertinent ad re&longs;i&longs;tentiam corporum, <lb/>de qua Tomo &longs;equenti, </s>
				</p>
				<p id="N29397" type="main">
					<s id="N29399"><!-- NEW -->Non&ograve;, explo&longs;io fit, cum aliquid emittitur, vel cum aliquo &longs;trepitu, <lb/>vt glans &egrave; fi&longs;tula, vel per continuam pre&longs;&longs;ionem digitorum; </s>
					<s id="N2939F"><!-- NEW -->&longs;ic nucleus <lb/>cera&longs;i vulgo exploditur &agrave; pueris: </s>
					<s id="N293A5"><!-- NEW -->Ratio e&longs;t, quia propter vliginem nu&shy;<lb/>clei recenter extracti digiti in eius &longs;uperficie conuexa facil&egrave; repunt; </s>
					<s id="N293AD"><!-- NEW -->hinc <lb/>aucto &longs;emper impetu, &amp; nouo etiam addito ex porrecto brachio pro&shy;<lb/>cul exploditur: &longs;ic omnia lubrica &egrave; manibus facil&egrave; elabuntur, vt &longs;&aelig;p&egrave; <lb/>pi&longs;ces, &amp;c. </s>
				</p>
				<p id="N293B7" type="main">
					<s id="N293B9"><!-- NEW -->Decim&ograve;, re&longs;i&longs;tentia corporum procedit tum ex impenetrabilitate <lb/>t&ugrave;m ex duritie, t&ugrave;m ex den&longs;itate; </s>
					<s id="N293BF"><!-- NEW -->nos ver&ograve; hos &longs;tatus alio Tomo expli&shy;<lb/>cabimus; </s>
					<s id="N293C5"><!-- NEW -->e&longs;t autem duplex re&longs;i&longs;tentia; </s>
					<s id="N293C9"><!-- NEW -->prima e&longs;t formalis, qu&aelig; in eo <lb/>po&longs;ita e&longs;t, quod non corpus impediat motum alterius, non per aliquid <lb/>contrarium, quod in eo producat, &longs;ed vel per &longs;uam impenetrabilitatem, <lb/>vel per &longs;uam duritiem, vel per &longs;uam molem; </s>
					<s id="N293D3"><!-- NEW -->nam inde oritur noua de&shy;<lb/>terminatio, vt alibi explicuimus, vel denique per &longs;uam grauitationem, <lb/>&amp;c, &longs;ecunda e&longs;t actiua, vt cum imum corpus imprimit alteri impetum; <lb/>&longs;ed h&aelig;c facil&egrave; ex dictis intelligi po&longs;&longs;unt. </s>
				</p>
				<p id="N293DD" type="main">
					<s id="N293DF">Vndecim&ograve;, omitto varias motiones corporis humani. </s>
					<s id="N293E2"><!-- NEW -->Prim&ograve;, motum <lb/>progre&longs;&longs;iuum &longs;iue fiat cur&longs;u, &longs;iue lentiore gradu: quipp&egrave; t&ugrave;m cox&aelig; <lb/>mouentur motu mixto ex duobus circularibus. </s>
					<s id="N293EA">&amp; crura ex tribus. </s>
					<s id="N293ED">Se-<pb pagenum="418" xlink:href="026/01/452.jpg"/>cund&ograve;, &longs;altum. </s>
					<s id="N293F5">Terti&ograve;, luctum. </s>
					<s id="N293F8">Quart&ograve;, chorum, &longs;eu numero&longs;am &longs;alta&shy;<lb/>tionem. </s>
					<s id="N293FD"><!-- NEW -->Quint&ograve; denique aliorum animalium motus, qui reuer&acirc; huius <lb/>loci e&longs;&longs;e non po&longs;&longs;unt; nam perfectam mu&longs;culorum, atque adeo totius <lb/>fabric&aelig; corporis humani cognitionem &longs;upponunt, quam trademus &longs;uo <lb/>loco, cum de homine, addemu&longs;que alios motus v.g. <!-- REMOVE S-->re&longs;pirationis, &longs;ter&shy;<lb/>nutationis, tu&longs;&longs;is, &longs;ingultus, o&longs;citationis, ri&longs;us, fletus, fi&longs;toles, &amp; dia&longs;to&shy;<lb/>les, &amp;c. </s>
					<s id="N2940D"><!-- NEW -->quorum omnium veri&longs;&longs;imas cau&longs;as afferemus; </s>
					<s id="N29411"><!-- NEW -->omitto etiam <lb/>cau&longs;as phy&longs;icas motuum c&oelig;le&longs;tium, quas cert&egrave;, ni&longs;i me veritas fallit, <lb/>Tomo &longs;equenti demon&longs;trabimus per &longs;implici&longs;&longs;ima principia, cum aliquo <lb/>&longs;altem rei a&longs;tronomic&aelig; incremento: denique omitto alios motus, qui <lb/>cert&aelig; materi&aelig; affiguntur v.g.&aelig;&longs;tus maris, libr&aelig; motus, fluuiorum fluxus, <lb/>ventorum vis, fluminis ira, magnetis virtus, &amp; electri, &amp;c. </s>
					<s id="N2941F">de quibus <lb/>&longs;uo loco: quippe hoc loco con&longs;ideramus tant&ugrave;m motiones, quatenus <lb/>cert&aelig; materi&aelig; copulantur. </s>
				</p>
				<p id="N29426" type="main">
					<s id="N29428"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 20.<emph.end type="center"/></s>
				</p>
				<p id="N29434" type="main">
					<s id="N29436"><!-- NEW --><emph type="italics"/>Explicari po&longs;&longs;unt &longs;ingulares aquarum motus,<emph.end type="italics"/> quod tantum h&icirc;c breuiter <lb/>pr&aelig;&longs;tabimus: </s>
					<s id="N29441"><!-- NEW -->itaque prim&ograve;, aqua fluit cum plano decliui, quod liquo&shy;<lb/>ris proprium e&longs;t; </s>
					<s id="N29447"><!-- NEW -->ideo ver&ograve; fluit, quia cum vna pars alteri extare non <lb/>po&longs;&longs;it; nec enim leuior e&longs;t, deor&longs;um fluit, de quo ali&agrave;s fus&egrave;. </s>
				</p>
				<p id="N2944D" type="main">
					<s id="N2944F"><!-- NEW -->Secund&ograve;, &longs;tillatim cadit, quia &longs;cilicet colligitur in &longs;ph&aelig;rulas, qu&aelig; <lb/>tandem proprio pondere deor&longs;um eunt; cur ver&ograve; in &longs;ph&aelig;rulas torne&shy;<lb/>tur, veri&longs;&longs;imam rationem dabimus &longs;uo loco. </s>
				</p>
				<p id="N29457" type="main">
					<s id="N29459">Terti&ograve;, &longs;tillicidium facil&egrave; re&longs;i&longs;tit, quia &longs;cilicet aqu&aelig; partes, qu&aelig; tan&shy;<lb/>t&ugrave;m modico glutine continentur, diuelluntur facil&egrave;, &amp; repercu&longs;&longs;u illo, <lb/>pr&aelig;&longs;ertim &longs;i &agrave; corpore duriore fiat, in omnem partem eunt. </s>
				</p>
				<p id="N29460" type="main">
					<s id="N29462"><!-- NEW -->Quart&ograve;, a&longs;per&longs;io aqu&aelig; vald&egrave; familiaris e&longs;t, quod &longs;cilicet vi i&agrave;ctus mi&shy;<lb/>nutim emittatur aqua, in quo non e&longs;t vlla difficultas; nam aqua facil&egrave; <lb/>diuiditur. </s>
				</p>
				<p id="N2946A" type="main">
					<s id="N2946C"><!-- NEW -->Quint&ograve;, aqua diluit facil&egrave; t&ugrave;m alios liquores; quia facil&egrave; mi&longs;cetur <lb/>t&ugrave;m corpora &longs;pongio&longs;a, quorum poros, &amp; cauitates facil&egrave; &longs;ubit. </s>
				</p>
				<p id="N29472" type="main">
					<s id="N29474">Sext&ograve;, abluit corpora, quibus &longs;cilicet facil&egrave; adh&aelig;ret, &amp; denique cum <lb/>&longs;ordibus exprimitur. </s>
				</p>
				<p id="N29479" type="main">
					<s id="N2947B">Septim&ograve;, aqua fluit, qu&aelig; &longs;cilicet in minuti&longs;&longs;imas particulas di&longs;tincta <lb/>&longs;en&longs;im lique&longs;cente vapore in terram cadit. </s>
				</p>
				<p id="N29480" type="main">
					<s id="N29482"><!-- NEW -->Octau&ograve;, infunditur ex vno &longs;cilicet va&longs;e in aliud; </s>
					<s id="N29486"><!-- NEW -->affunditur, &longs;ubiectis <lb/>&longs;cilicet manibus; effunditur, &longs;cilicet ex &longs;uo va&longs;e. </s>
				</p>
				<p id="N2948C" type="main">
					<s id="N2948E"><!-- NEW -->Non&ograve;, exundat &longs;&aelig;pi&ugrave;s v. <!-- REMOVE S-->g. <!-- REMOVE S-->fluuius alueo; </s>
					<s id="N29496"><!-- NEW -->&longs;ic palus etiam &amp; mare <lb/>re&longs;tagnant propter nimiam aquarum copiam: hinc &longs;&aelig;p&egrave; terram in&shy;<lb/>undat. </s>
				</p>
				<p id="N2949E" type="main">
					<s id="N294A0"><!-- NEW -->Decim&ograve;, libratur &longs;&aelig;pi&ugrave;s in &longs;uo va&longs;e v.g. <!-- REMOVE S-->in latiore cratere; </s>
					<s id="N294A6"><!-- NEW -->nam facil&egrave; <lb/>a&longs;cendit per planum modic&egrave; inclinatum, reditque per diuer&longs;as vices; fa&shy;<lb/>cili&ugrave;s tamen in latiori, qu&agrave;m in angu&longs;tiore calice. </s>
				</p>
				<p id="N294AE" type="main">
					<s id="N294B0"><!-- NEW -->Vndecim&ograve;, fluctuat, cum &longs;cilicet eius &longs;uperficies agitatur ventorum <lb/>vi; e&longs;t enim aqua corpus facil&egrave; mobile. </s>
				</p>
				<pb pagenum="419" xlink:href="026/01/453.jpg"/>
				<p id="N294BA" type="main">
					<s id="N294BC">Duodecim&ograve;, cri&longs;patur, cum &longs;cilicet vel leuior e&longs;t afflatus, vel tremu&shy;<lb/>lo &longs;uccutitur motu vas illud, in quo continetur. </s>
				</p>
				<p id="N294C1" type="main">
					<s id="N294C3"><!-- NEW -->Decimoterti&ograve;, in circulos agitur, cum aliquod corpus immergitur <lb/>quia <expan abbr="tant&utilde;dem">tantundem</expan> aqu&aelig; attollitur &longs;en&longs;im; </s>
					<s id="N294CD"><!-- NEW -->quod quia extare non pote&longs;t, in <lb/>orbem &longs;uperficiei reliqu&aelig; coextenditur: hinc continu&ograve; illius circuli, <lb/>tantill&ugrave;m extantis decre&longs;cit tumor. </s>
				</p>
				<p id="N294D5" type="main">
					<s id="N294D7"><!-- NEW -->Decimoquart&ograve;, facil&egrave; mi&longs;cetur cum aqua; quia facil&egrave; partes aqu&aelig; mi&shy;<lb/>nimo &longs;cilicet impetu diuiduntur. </s>
				</p>
				<p id="N294DD" type="main">
					<s id="N294DF"><!-- NEW -->Decimoquint&ograve;, feruet aqua calore; quia &longs;cilicet partes calidiores <lb/>in vaporem conuer&longs;&aelig; retent&aelig; in bullis &longs;ur&longs;um eas attollunt in &longs;pu&shy;<lb/>mam. </s>
				</p>
				<p id="N294E7" type="main">
					<s id="N294E9"><!-- NEW -->Decimo&longs;ext&ograve;, &longs;altitat aqua, cum &longs;cilicet aluei fundum e&longs;t paul&ograve; a&longs;pe&shy;<lb/>rius: ratio clari&longs;&longs;ima e&longs;t, quia &agrave; &longs;axis occurrentibus repercutitur. </s>
				</p>
				<p id="N294EF" type="main">
					<s id="N294F1">Decimo&longs;eptim&ograve;, agit verticem &longs;&aelig;pius, cum &longs;cilicet tractu re&longs;pondet <lb/>profundiori, vel cum repellitur &agrave; littore, remo, &amp;c. </s>
				</p>
				<p id="N294F6" type="main">
					<s id="N294F8"><!-- NEW -->Decimooctau&ograve;, agitatur facil&egrave; &longs;eu baculo, &longs;eu libratione va&longs;is: </s>
					<s id="N294FC"><!-- NEW -->&longs;ed <lb/>h&aelig;c tant&ugrave;m breuiter indica&longs;&longs;e &longs;ufficiat, qu&aelig; alibi &longs;uis locis fus&egrave; omnin&ograve; <lb/>explicabimus: atque h&aelig;c de diuer&longs;is motionibus &longs;int &longs;atis. <lb/><figure id="id.026.01.453.1.jpg" xlink:href="026/01/453/1.jpg"/></s>
				</p>
				<pb pagenum="420" xlink:href="026/01/454.jpg"/>
				<figure id="id.026.01.454.1.jpg" xlink:href="026/01/454/1.jpg"/>
				<p id="N29513" type="main">
					<s id="N29515"><emph type="center"/>APPENDIX PRIMA <lb/>PHYSICOMATHEMATICA,<emph.end type="center"/></s>
				</p>
				<p id="N2951E" type="main">
					<s id="N29520"><emph type="center"/><emph type="italics"/>De centro percu&longs;sionis.<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N2952B" type="main">
					<s id="N2952D"><!-- NEW -->DE duplici centro hactenus actum e&longs;t, <lb/>magnitudinis, &longs;cilicet, &amp; grauitatis; <lb/>pr&aelig;&longs;ertim de hoc vltimo: </s>
					<s id="N29535"><!-- NEW -->in quo cert&egrave; <lb/>opere non &longs;ine maxima laude pr&aelig;&shy;<lb/>&longs;tanti&longs;&longs;imi Mathematici de&longs;udarunt, <lb/>&longs;cilicet Archimedes, Commandinus, Lucas Vale&shy;<lb/>rius, Steuinus, Guldinus, Galileus paucis: </s>
					<s id="N29541"><!-- NEW -->&longs;ed du&shy;<lb/>plex aliud centrum con&longs;iderari pote&longs;t; </s>
					<s id="N29547"><!-- NEW -->primum di&shy;<lb/>citur centrum impre&longs;&longs;ionis: vtrumque pror&longs;us inta&shy;<lb/>ctum aliis doct&acirc; paucarum lic&egrave;t propo&longs;itionum co&shy;<lb/>ron&acirc;, vel peripheria in hac appendice corona&shy;<lb/>mus. <lb/><gap desc="hr tag"/></s>
				</p>
				<p id="N29556" type="main">
					<s id="N29558"><emph type="center"/><emph type="italics"/>DEFINITIO I.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N29564" type="main">
					<s id="N29566"><emph type="italics"/>CEntrum grauitatis e&longs;t punctum, quod omnia grauitatis momenta &aelig;qua&shy;<lb/>liter dirimit.<emph.end type="italics"/></s>
				</p>
				<p id="N2956F" type="main">
					<s id="N29571"><!-- NEW -->Clara e&longs;t definitio; centrum enim grauitatis e&longs;t illud punctum, ex <lb/>quo pendulum corpus per quamlibet lineam &longs;eruat &aelig;quilibrium. </s>
				</p>
				<p id="N29577" type="main">
					<s id="N29579"><emph type="center"/><emph type="italics"/>Definitio<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N29586" type="main">
					<s id="N29588"><emph type="italics"/>Centrum impre&longs;&longs;ionis e&longs;t illud, per quod, &longs;i ducatur planum vtrimque, di&shy;<lb/>rimit &aelig;qualem impetum.<emph.end type="italics"/></s>
				</p>
				<p id="N29591" type="main">
					<s id="N29593"><!-- NEW -->H&aelig;c etiam clara e&longs;t; </s>
					<s id="N29597"><!-- NEW -->con&longs;ideratur autem impetus non mod&ograve; ratione <pb pagenum="421" xlink:href="026/01/455.jpg"/>inten&longs;ionis ver&ugrave;m etiam exten&longs;ionis; debet etiam accipi punctum illud <lb/>in linea motus. </s>
				</p>
				<p id="N295A2" type="main">
					<s id="N295A4"><emph type="center"/><emph type="italics"/>Definitio<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N295B1" type="main">
					<s id="N295B3"><emph type="italics"/>Centrum percu&longs;&longs;ionis e&longs;t punctum illud corporis impacti in quo &longs;i contactus <lb/>fiat, maximus ictus infligitur.<emph.end type="italics"/></s>
				</p>
				<p id="N295BC" type="main">
					<s id="N295BE"><emph type="center"/><emph type="italics"/>Definitio<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N295CB" type="main">
					<s id="N295CD"><emph type="italics"/>Linea directionis e&longs;t linea motus centri grauitatis.<emph.end type="italics"/></s>
				</p>
				<p id="N295D4" type="main">
					<s id="N295D6"><emph type="center"/><emph type="italics"/>Po&longs;itiones<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N295E3" type="main">
					<s id="N295E5"><emph type="italics"/>Centrum grauitatis dirigit linea motus aliorum punctorum.<emph.end type="italics"/></s>
				</p>
				<p id="N295EC" type="main">
					<s id="N295EE"><emph type="center"/><emph type="italics"/>Po&longs;itiones<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N295FB" type="main">
					<s id="N295FD"><emph type="italics"/>Si percu&longs;&longs;io ita fiat, vt totus impetus corporis impacti impediatur maxi&shy;<lb/>ma e&longs;t.<emph.end type="italics"/></s>
				</p>
				<p id="N29606" type="main">
					<s id="N29608"><emph type="center"/><emph type="italics"/>Po&longs;itiones<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N29615" type="main">
					<s id="N29617"><emph type="italics"/>Momenta &longs;unt, vt di&longs;tanti&aelig;.<emph.end type="italics"/></s>
				</p>
				<p id="N2961E" type="main">
					<s id="N29620"><emph type="center"/><emph type="italics"/>Po&longs;itiones<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2962D" type="main">
					<s id="N2962F"><emph type="italics"/>Omnes partes corporis, quod mouetur motu recto, mouentur &aelig;qua&shy;<lb/>liter.<emph.end type="italics"/></s>
				</p>
				<p id="N29638" type="main">
					<s id="N2963A"><emph type="center"/><emph type="italics"/>Po&longs;itiones<emph.end type="italics"/> 5.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N29647" type="main">
					<s id="N29649"><emph type="italics"/>Corpus graue &longs;u&longs;tinetur in &aelig;quilibrio, cum &longs;u&longs;tinetur in linea dire&shy;<lb/>ctionis.<emph.end type="italics"/></s>
				</p>
				<p id="N29652" type="main">
					<s id="N29654"><emph type="center"/><emph type="italics"/>Po&longs;itiones<emph.end type="italics"/> 6.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N29661" type="main">
					<s id="N29663"><emph type="italics"/>Centrum percu&longs;&longs;ionis e&longs;t in illa linea, qu&aelig; dirimit vtrimque momenta, t&ugrave;m <lb/>ratione impetus, t&ugrave;m ratione di&longs;tanti&aelig;.<emph.end type="italics"/></s>
				</p>
				<p id="N2966C" type="main">
					<s id="N2966E"><emph type="center"/><emph type="italics"/>Po&longs;itiones<emph.end type="italics"/> 7.<emph.end type="center"/></s>
				</p>
				<p id="N2967A" type="main">
					<s id="N2967C"><!-- NEW --><emph type="italics"/>Si pondera in&aelig;qualia &longs;unt in &aelig;quilibrio, di&longs;tanti&aelig; &longs;unt, vt pondera per&shy;<lb/>mutando; vel collectio di&longs;tantiarum e&longs;t ad maiorem, vt collectio ponderum ad <lb/>alterum pondus, quod maius est, &amp;c.<emph.end type="italics"/></s>
				</p>
				<p id="N29688" type="main">
					<s id="N2968A"><emph type="center"/><emph type="italics"/>Po&longs;itiones<emph.end type="italics"/> 8.<emph.end type="center"/></s>
				</p>
				<p id="N29696" type="main">
					<s id="N29698"><emph type="italics"/>Maximus ictus infligitur in linea directionis, per &longs;e,<emph.end type="italics"/> vt con&longs;tat ex <lb/>po&longs;.5.6.2. </s>
				</p>
				<p id="N296A2" type="main">
					<s id="N296A4"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N296B1" type="main">
					<s id="N296B3"><emph type="italics"/>Centrum percu&longs;&longs;ionis line&aelig; mobilis motu recto e&longs;t idem cum centro graui&shy;<lb/>tatis eiu&longs;dem.<emph.end type="italics"/></s>
				</p>
				<p id="N296BC" type="main">
					<s id="N296BE"><!-- NEW -->Sit enim linea AC, horizonti parallela, v.g. <!-- REMOVE S-->qu&aelig; cadat perpendi&shy;<lb/>culariter; </s>
					<s id="N296C6"><!-- NEW -->&longs;it eius centrum grauitatis B, quod &longs;cilicet vtrimque &aelig;qua&shy;<lb/>liter di&longs;tat ab AC; </s>
					<s id="N296CC"><!-- NEW -->centrum percu&longs;&longs;ionis e&longs;t in B. Probatur; </s>
					<s id="N296D0"><!-- NEW -->quia c&ugrave;m <lb/>in B impediatur totus impetus; </s>
					<s id="N296D6"><!-- NEW -->quippe neutrum &longs;egmentum pr&aelig;ualere <lb/>pote&longs;t; e&longs;t enim vtrimque &aelig;qualis impetus, per po&longs;it. </s>
					<s id="N296DC">3. 4. cert&egrave; maxi&shy;<lb/>ma percu&longs;&longs;io e&longs;t in B, per po&longs;it.2. igitur e&longs;t centrum percu&longs;&longs;ionis per <pb pagenum="422" xlink:href="026/01/456.jpg"/>def.5. igitur centrum percu&longs;&longs;ionis e&longs;t idem cum centro grauitatis, quod <lb/>erat dem. </s>
				</p>
				<p id="N296E8" type="main">
					<s id="N296EA"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N296F7" type="main">
					<s id="N296F9">Hinc quatuor centra concurrunt in idem punctum, &longs;cilicet magni&shy;<lb/>tudinis, grauitatis, impre&longs;&longs;ionis, &amp; percu&longs;&longs;ionis. </s>
				</p>
				<p id="N296FE" type="main">
					<s id="N29700"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2970D" type="main">
					<s id="N2970F">Idem pror&longs;us dicendum e&longs;t de Rectangulo, Parallelogrammate, Cir&shy;<lb/>culo, Ellip&longs;i, Cylindro, Pri&longs;mate, Parallelipedo, Sph&aelig;ra, &amp;c. </s>
					<s id="N29714">in quibus <lb/>po&longs;ito motu recto, h&aelig;c quatuor centra in eodem plano, imm&ograve; &amp; linea <lb/>reperiuntur. </s>
				</p>
				<p id="N2971B" type="main">
					<s id="N2971D"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2972A" type="main">
					<s id="N2972C"><emph type="italics"/>Si planum triangulare cadat motu recto deor&longs;um, v.g. <!-- REMOVE S-->horizonti paralle&shy;<lb/>lum, centrum percu&longs;&longs;ionis e&longs;t idem cum centro grauitatis eiu&longs;dem.<emph.end type="italics"/></s>
				</p>
				<p id="N29737" type="main">
					<s id="N29739"><!-- NEW -->Sit enim triangulare planum FBH, cuius centrum grauitatis &longs;it I: </s>
					<s id="N2973D"><!-- NEW --><lb/>dico e&longs;&longs;e centrum percu&longs;&longs;ionis; </s>
					<s id="N29742"><!-- NEW -->quia, c&ugrave;m &longs;it &aelig;qualis motus, &amp; impetus <lb/>omnium partium plani, &longs;i &longs;u&longs;tineatur in I, &longs;tat in &aelig;quilibrio, per def.1. <lb/>igitur totus impetus impeditur; igitur e&longs;t maxima percu&longs;&longs;io, per <lb/>Po&longs;. <!-- REMOVE S-->2. <!-- KEEP S--></s>
				</p>
				<p id="N2974F" type="main">
					<s id="N29751"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2975D" type="main">
					<s id="N2975F"><!-- NEW -->Ob&longs;eruabis punctum I po&longs;&longs;e haberi duobus modis; </s>
					<s id="N29763"><!-- NEW -->Prim&ograve;, &longs;i ducatur <lb/>FC diuidens &aelig;qualiter HB; </s>
					<s id="N29769"><!-- NEW -->diuidit etiam &aelig;qualiter GA, &amp; omnes alias <lb/>parallelas HB; </s>
					<s id="N2976F"><!-- NEW -->igitur in FC e&longs;t centrum grauitatis: </s>
					<s id="N29773"><!-- NEW -->&longs;imiliter ducatur <lb/>HD diuidens &aelig;qualiter FB, centrum grauitatis erit etiam in HD; </s>
					<s id="N29779"><!-- NEW -->igi&shy;<lb/>tur in communi puncto I. Secund&ograve;, ita diuidatur FH in G, vt FG &longs;it <lb/>dupla GH, ducaturque GA: </s>
					<s id="N29781"><!-- NEW -->&longs;imiliter ducatur KE diuidens HB eodem <lb/>modo, punctum communis &longs;ectionis I e&longs;t centrum grauitatis; </s>
					<s id="N29787"><!-- NEW -->quippe <lb/>duo triangula DIC, FIH &longs;unt proportionalia; </s>
					<s id="N2978D"><!-- NEW -->igitur vt DC ad FH, <lb/>ita DI ad IH, &longs;ed DC e&longs;t &longs;ubdupla FH; </s>
					<s id="N29793"><!-- NEW -->igitur DI &longs;ubdupla IH: </s>
					<s id="N29797"><!-- NEW -->&longs;imi&shy;<lb/>liter IC &longs;ubdupla IF; </s>
					<s id="N2979D"><!-- NEW -->igitur GH &longs;ubdupla GF; igitur inuentum e&longs;t <lb/>centrum grauitatis, quod erat faciendum. </s>
				</p>
				<p id="N297A3" type="main">
					<s id="N297A5"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N297B2" type="main">
					<s id="N297B4"><!-- NEW --><emph type="italics"/>Si planum triangulare cadat parallelum line&aelig; verticali,<emph.end type="italics"/> v. <!-- REMOVE S-->g. <!-- REMOVE S-->in &longs;itu FH <lb/>B, ita vt FH &longs;it parallela horizonti, centrum percu&longs;&longs;ionis e&longs;t in G; </s>
					<s id="N297C3"><!-- NEW -->c&ugrave;m <lb/>enim GA ducatur per centrum grauitatis I, &longs;itque parallela HB, e&longs;t <lb/>linea directionis, per def.4. igitur &longs;i &longs;u&longs;tineatur in G, &longs;tabit in &aelig;quili&shy;<lb/>brio, per p.5. igitur totus impetus impeditur, vt patet; igitur e&longs;t maxi&shy;<lb/>ma percu&longs;&longs;io per p. </s>
					<s id="N297CF">2. igitur centrum percu&longs;&longs;ionis e&longs;t G, quod erat de&shy;<lb/>mon&longs;t. </s>
				</p>
				<p id="N297D4" type="main">
					<s id="N297D6"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N297E3" type="main">
					<s id="N297E5"><!-- NEW -->Hinc corpus &longs;olidum ex multis huiu&longs;modi triangulis &aelig;qualibus qua&longs;i <lb/>conflatum, idem pror&longs;us percu&longs;&longs;ionis centrum habet; &longs;iue cadat line&aelig; <lb/>verticali parallelum, &longs;iue ip&longs;i verticali. </s>
				</p>
				<pb pagenum="423" xlink:href="026/01/457.jpg"/>
				<p id="N297F1" type="main">
					<s id="N297F3"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N29800" type="main">
					<s id="N29802"><!-- NEW -->Hinc etiam ad Mechanicam reduci pote&longs;t inuentio praxis pr&aelig;dict&aelig;; </s>
					<s id="N29806"><!-- NEW --><lb/>&longs;it enim triangulum AGD; </s>
					<s id="N2980B"><!-- NEW -->diuidatur AD in tres partes in BC; </s>
					<s id="N2980F"><!-- NEW -->du&shy;<lb/>cantur BI, CH, parallel&aelig; DG, itemque IE, HF parallel&aelig; AD; </s>
					<s id="N29815"><!-- NEW -->&longs;u&longs;ti&shy;<lb/>neaturque pr&aelig;dictum planum erectum in C, &longs;tabit in &aelig;quilibrio; </s>
					<s id="N2981B"><!-- NEW -->c&ugrave;m <lb/>enim momenta ponderum &aelig;qualium &longs;int vt di&longs;tanti&aelig;, rectangulo CE <lb/>re&longs;pondet &aelig;quale, &amp; &aelig;quedi&longs;tans CI, itemque trianguli EHK, &aelig;quale <lb/>&amp; &aelig;quedi&longs;tans IKD, triangulo demum GHE, triangulum &longs;ubduplum <lb/>AIB, cuius momentum ad&aelig;quat momentum alterius dupli GHB; quia <lb/>di&longs;tantia e&longs;t dupla. </s>
				</p>
				<p id="N29829" type="main">
					<s id="N2982B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N29838" type="main">
					<s id="N2983A"><!-- NEW --><emph type="italics"/>Si Pyramis, cuius axis &longs;it parallela horizonti, cadat deor&longs;um; </s>
					<s id="N29840"><!-- NEW -->centrum <lb/>percu&longs;&longs;ionis e&longs;t in linea derectionis, qu&aelig; &longs;cilicet ducetur deor&longs;um &agrave; centro gra&shy;<lb/>tatis,<emph.end type="italics"/> quod eodem modo demon&longs;tratur, quo &longs;upr&agrave;; </s>
					<s id="N2984B"><!-- NEW -->e&longs;t autem centrum <lb/>grauitatis illud punctum, quod ita axem diuidit, vt &longs;egmentum ver&longs;us <lb/>ba&longs;im &longs;it &longs;ubtriplum alterius ver&longs;us verticem, quod multi hactenus de&shy;<lb/>mon&longs;trarunt, &longs;cilicet Commandinus, Valerius, Steuinus, Galileus; &longs;it <lb/>enim conus ENI, &longs;it axis AI diui&longs;us in 4. partes &aelig;quales BCD, pa&shy;<lb/>rallelus horizonti, &longs;u&longs;tineatur in M, &longs;tabit in &aelig;quilibrio. </s>
				</p>
				<p id="N29859" type="main">
					<s id="N2985B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 5.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N29868" type="main">
					<s id="N2986A"><!-- NEW --><emph type="italics"/>Si quodlibet aliud planum, vel corpus, deor&longs;um cadat, motu recto, cen&shy;<lb/>trum percu&longs;&longs;ionis e&longs;t in linea directionis<emph.end type="italics"/>; </s>
					<s id="N29875"><!-- NEW -->quod eodem modo probatur, quo <lb/>&longs;upr&agrave;: </s>
					<s id="N2987B"><!-- NEW -->quodnam ver&ograve; &longs;it centrum grauitatis omnium corporum, plano&shy;<lb/>rum, figurarum, h&icirc;c non di&longs;putamus; con&longs;ulantur authores citati, quibus <lb/>addatur La Faille, qui egregi&egrave; centrum grauitatis partium circuli, &amp; <lb/>Eclip&longs;is demon&longs;trauit. </s>
				</p>
				<p id="N29885" type="main">
					<s id="N29887"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 6.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N29894" type="main">
					<s id="N29896"><!-- NEW --><emph type="italics"/>Si linea circa centrum immobile mobilis, voluatur, centrum percu&longs;&longs;ionis <lb/>non e&longs;t centrum grauitatis<emph.end type="italics"/>; </s>
					<s id="N298A1"><!-- NEW -->&longs;it enim linea AD, qu&aelig; voluatur circa cen&shy;<lb/>trum A; </s>
					<s id="N298A7"><!-- NEW -->diuidatur bifariam in G, punctum G e&longs;t centrum grauitatis: vt <lb/>con&longs;tat; </s>
					<s id="N298AD"><!-- NEW -->non tamen e&longs;t centrum percu&longs;&longs;ionis, quia in &longs;egmento GD e&longs;t <lb/>quidem &aelig;quale momentum ratione di&longs;tanti&aelig;, &longs;ed maius ratione impe&shy;<lb/>tus; quippe GD mouetur veloci&ugrave;s, qu&agrave;m GA vt certum e&longs;t. </s>
				</p>
				<p id="N298B5" type="main">
					<s id="N298B7"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 7.<emph.end type="center"/></s>
				</p>
				<p id="N298C3" type="main">
					<s id="N298C5"><!-- NEW --><emph type="italics"/>In hac eadem hypothe&longs;i centrum percu&longs;&longs;ionis non e&longs;t idem cum centro im&shy;<lb/>pre&longs;&longs;ionis<emph.end type="italics"/>; </s>
					<s id="N298D0"><!-- NEW -->diuidatur enim AD in M, ita vt AM, &longs;it media propor&shy;<lb/>tionalis inter AG, &amp; AD; </s>
					<s id="N298D6"><!-- NEW -->cert&egrave; M e&longs;t centrum impre&longs;&longs;ionis, vt de&shy;<lb/>mon&longs;tratum e&longs;t lib.  1.non tamen e&longs;t centrum percu&longs;&longs;ionis; </s>
					<s id="N298DC"><!-- NEW -->quia &longs;eg&shy;<lb/>mentum MA habet quidem &aelig;qualem impetum cum &longs;egmento MD; </s>
					<s id="N298E2"><!-- NEW -->ha&shy;<lb/>bet tamen maius momentum, quia maiorem habet di&longs;tantiam; igitur <lb/>non erit &aelig;quilibrium in M. </s>
				</p>
				<pb pagenum="424" xlink:href="026/01/458.jpg"/>
				<p id="N298EE" type="main">
					<s id="N298F0"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 8.<emph.end type="center"/></s>
				</p>
				<p id="N298FC" type="main">
					<s id="N298FE"><!-- NEW --><emph type="italics"/>Si diuidatur AD in tres partes &aelig;quales, &longs;it que ID<emph.end type="italics"/> 1/3 <emph type="italics"/>centrum percu&longs;&longs;io&shy;<lb/>nis erit in I<emph.end type="italics"/>; </s>
					<s id="N2990F"><!-- NEW -->demon&longs;tratur, quia impetus puncti G e&longs;t ad impetum pun&shy;<lb/>cti D; </s>
					<s id="N29915"><!-- NEW -->vt arcus EG, ad arcum BD; </s>
					<s id="N29919"><!-- NEW -->&longs;it autem DC &aelig;qualis DB; </s>
					<s id="N2991D"><!-- NEW -->ducatur <lb/>AC, triangulum ACD erit &aelig;quale &longs;ectori ADB, vt con&longs;tat; impetus in <lb/>D erit, vt recta DC, &amp; in I, vt recta IH, &amp; in G, vt recta GF, &amp;c. </s>
					<s id="N29925">igi&shy;<lb/>tur perinde &longs;e habet impetus, qui ine&longs;t puncto D, atque &longs;i incubaret ip&longs;i <lb/>D.DC, &amp; I, IH, &amp; G, GF, &amp;c. </s>
					<s id="N2992C"><!-- NEW -->atqui &longs;i hoc e&longs;&longs;et, centrum grauitatis <lb/>e&longs;&longs;et in I, vt patet ex dictis; ibique e&longs;&longs;et percu&longs;&longs;ionis, per Th. 3. igitur <lb/>I e&longs;t centrum percu&longs;&longs;ionis. </s>
				</p>
				<p id="N29934" type="main">
					<s id="N29936"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N29942" type="main">
					<s id="N29944">Colligo prim&ograve;, ex dictis in hac hypothe&longs;i tria centra &longs;eparari. </s>
				</p>
				<p id="N29947" type="main">
					<s id="N29949">Secund&ograve; &longs;i nullum e&longs;&longs;et momentum ratione di&longs;tanti&aelig;, centrum per&shy;<lb/>cu&longs;&longs;ionis idem e&longs;&longs;et cum centro impre&longs;&longs;ionis. </s>
				</p>
				<p id="N2994E" type="main">
					<s id="N29950"><!-- NEW -->Terti&ograve;, centrum percu&longs;&longs;ionis line&aelig; circa alteram extremitatem mo&shy;<lb/>bilis; </s>
					<s id="N29956"><!-- NEW -->idem e&longs;&longs;e cum centro percu&longs;&longs;ionis trianguli, &longs;eu plani triangula&shy;<lb/>ris; de quo &longs;upr&agrave;. </s>
				</p>
				<p id="N2995C" type="main">
					<s id="N2995E"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 9.<emph.end type="center"/></s>
				</p>
				<p id="N2996A" type="main">
					<s id="N2996C"><!-- NEW --><emph type="italics"/>Si rotetur planum rectangulum circa alterum laterum centrum percu&longs;&longs;ionis <lb/>e&longs;t in linea, qu&aelig; diuidit rectangulum &aelig;qualiter, &amp; cadit perpendiculariter <lb/>in axem, circa quem rotatur<emph.end type="italics"/>; </s>
					<s id="N29979"><!-- NEW -->v.g. <!-- REMOVE S-->&longs;it rectangulum CF, rotatum circa C <lb/>A; </s>
					<s id="N29981"><!-- NEW -->&longs;it BG, dirimens &aelig;qualiter CA &amp; HF, centrum grauitatis e&longs;t in <lb/>BG; quia e&longs;t &aelig;quale momentum in BF &amp; BH, t&ugrave;m ratione impetus, <lb/>t&ugrave;m ratione di&longs;tanti&aelig;, vt pater per p.6. </s>
				</p>
				<p id="N29989" type="main">
					<s id="N2998B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 10.<emph.end type="center"/></s>
				</p>
				<p id="N29997" type="main">
					<s id="N29999"><!-- NEW --><emph type="italics"/>Si BG diuidatur in tres partes &aelig;quales B, D, I, G, rotetur que circa CA, <lb/>vt dictum e&longs;t &longs;upr&agrave;, centrum percu&longs;&longs;ionis e&longs;t in I<emph.end type="italics"/>; </s>
					<s id="N299A4"><!-- NEW -->quia &longs;i volueretur &longs;ola <lb/>AF, e&longs;&longs;et in E, &longs;i &longs;ola CH, e&longs;&longs;et in K, &longs;i &longs;ola BG, e&longs;&longs;et in I, per Th. 8. <lb/>igitur centra percu&longs;&longs;ionis omnium &longs;unt in linea EK; &longs;ed line&aelig; EK, cuius <lb/>&longs;ingula puncta mouentur &aelig;quali motu, centrum percu&longs;&longs;ionis e&longs;t in I, per <lb/>Th.1. igitur centrum percu&longs;&longs;ionis totius CF acti circum CA, e&longs;t in I, <lb/>quod erat demon&longs;tr. </s>
				</p>
				<p id="N299B2" type="main">
					<s id="N299B4"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N299C0" type="main">
					<s id="N299C2">Prim&ograve;, &longs;i rotetur circa CH, eodem modo inuenietur centrum per&shy;<lb/>cu&longs;&longs;ionis, &longs;cilicet N ita vt NO &longs;it 1/3 MO. </s>
				</p>
				<p id="N299C7" type="main">
					<s id="N299C9"><!-- NEW -->Secund&ograve;, &longs;i rotetur circa OM rectangulum CF; </s>
					<s id="N299CD"><!-- NEW -->diuidatur in tres <lb/>partes &aelig;quales, &longs;itque PG 1/3 NG, centrum percu&longs;&longs;ionis e&longs;t P; </s>
					<s id="N299D3"><!-- NEW -->e&longs;t enim <lb/>eadem ratio, qu&aelig; &longs;upr&agrave;; </s>
					<s id="N299D9"><!-- NEW -->nec e&longs;t minor ictus, qu&agrave;m in I; </s>
					<s id="N299DD"><!-- NEW -->rotato &longs;cilicet <lb/>rectangulo circa CA; quia e&longs;t &aelig;qualis impetus. </s>
				</p>
				<p id="N299E3" type="main">
					<s id="N299E5">Terti&ograve;, &longs;i rotetur circa BR, in quam AH cadit perpendiculariter, e&longs;t <lb/>alia ratio, de qua infr&agrave;. </s>
				</p>
				<pb pagenum="425" xlink:href="026/01/459.jpg"/>
				<p id="N299EE" type="main">
					<s id="N299F0"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 11.<emph.end type="center"/></s>
				</p>
				<p id="N299FC" type="main">
					<s id="N299FE"><!-- NEW --><emph type="italics"/>Si<emph.end type="italics"/> <emph type="italics"/>triangulum BIG voluatur circa CA, in quam BH cadit perpendi&shy;<lb/>culariter, &longs;itque BH axis per centrum grauitatis ductus, diui&longs;u&longs;que in<emph.end type="italics"/> 4. <lb/><emph type="italics"/>partes &aelig;quales B.F.E.D.H. centrum percu&longs;&longs;ionis e&longs;t in D<emph.end type="italics"/>; quod facil&egrave; de&shy;<lb/>mon&longs;tratur; </s>
					<s id="N29A18"><!-- NEW -->nam IG in i&longs;to motu de&longs;cribit &longs;uperficiem cylindri, &amp; <lb/>triangulum GBI de&longs;cribit, vt &longs;ic loquar, &longs;ectorem cylindri; </s>
					<s id="N29A1E"><!-- NEW -->igitur im&shy;<lb/>petus in IG e&longs;t ad impetum in NM, vt &longs;uperficies curua terminata in I <lb/>G, ad &longs;uperficiem terminatam in NM, &longs;ub eodem &longs;cilicet angulo; </s>
					<s id="N29A26"><!-- NEW -->vel vt <lb/>ba&longs;is pyramidis IG, ad ba&longs;im NM; igitur perinde &longs;e habet IG, ac &longs;i <lb/>incumberet pr&aelig;dicta ba&longs;is, itemque NM, &amp;c. </s>
					<s id="N29A2E"><!-- NEW -->igitur ac &longs;i e&longs;&longs;et &longs;olida <lb/>pyramis quadrilatera; &longs;ed pyramidis centrum grauitatis e&longs;t D, per <lb/>Theorema 4. <!-- KEEP S--></s>
				</p>
				<p id="N29A37" type="main">
					<s id="N29A39"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 12.<emph.end type="center"/></s>
				</p>
				<p id="N29A45" type="main">
					<s id="N29A47"><!-- NEW --><emph type="italics"/>Si idem triangulum GIB voluatur circa IG, centrum percu&longs;&longs;ionis e&longs;t in <lb/>E, quod diuidit HB bifariam &aelig;qualiter<emph.end type="italics"/>; </s>
					<s id="N29A52"><!-- NEW -->quod vt demon&longs;tretur, perinde <lb/>&longs;e habet triangulum BGI circumactum, atque &longs;i &longs;ingulis partibus in&shy;<lb/>cumberent perpendiculares, qu&aelig; e&longs;&longs;ent vt earumdem partium motus; </s>
					<s id="N29A5A"><!-- NEW --><lb/>&longs;it autem triangulum BAC &aelig;quale priori; </s>
					<s id="N29A5F"><!-- NEW -->ba&longs;is cunei ABHKDC; </s>
					<s id="N29A63"><!-- NEW --><lb/>ducatur planum DBA, quod dirimat cuneum in duo &longs;olida, &longs;cilicet in <lb/>pyramidem ABHKD, &amp; &longs;olidum ABDC; </s>
					<s id="N29A6A"><!-- NEW -->pyramis continet 2/3 totius <lb/>cunei, vt con&longs;tat; </s>
					<s id="N29A70"><!-- NEW -->e&longs;t enim pr&aelig;dictus cuneus &longs;ubduplus pri&longs;matis, cuius <lb/>ba&longs;is &longs;it HA, &amp; altitudo ID; </s>
					<s id="N29A76"><!-- NEW -->cuius pyramis pr&aelig;dicta continet 1/3; </s>
					<s id="N29A7A"><!-- NEW -->igitur <lb/>&longs;i pri&longs;ma &longs;it vt 6. pyramis erit vt 2. &amp; cuneus vt 3. igitur pyramis conti&shy;<lb/>net 2/3 cunci; </s>
					<s id="N29A82"><!-- NEW -->igitur alterum &longs;olidum ABDC e&longs;t 1/3 cunei; </s>
					<s id="N29A86"><!-- NEW -->cunei cen&shy;<lb/>trum grauitatis idem e&longs;t, quod trianguli HKD, per Corol. <!-- REMOVE S-->1. Th.3.igi&shy;<lb/>tur e&longs;t in linea directionis MF.ita vt IM &longs;it 1/3 totius ID, per Th 3. py&shy;<lb/>ramidis ver&ograve; centrum grauitatis e&longs;t in linea NG, ita vt IN &longs;it 1/4 totius <lb/>ID, per Th.4. igitur &longs;i e&longs;t NM ad ML, vt &longs;olidum ABDC ad pyra&shy;<lb/>midem AHD, id e&longs;t vt 1.ad 2. cert&egrave; NI, &amp; NL erunt &aelig;quales; </s>
					<s id="N29A96"><!-- NEW -->&longs;ed IN <lb/>e&longs;t 1/4 totius ID; igitur IL 1/2 ergo L dirimit &aelig;qualiter ID, quod erat <lb/>demon&longs;tr. </s>
					<s id="N29A9E">&longs;it ID 12.IN 3.IM 4. IL 6. <!-- KEEP S--></s>
				</p>
				<p id="N29AA2" type="main">
					<s id="N29AA4"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 13.<emph.end type="center"/></s>
				</p>
				<p id="N29AB0" type="main">
					<s id="N29AB2"><!-- NEW --><emph type="italics"/>Si voluatur &longs;ector circa axem parallelum &longs;ubten&longs;&aelig;, determinari pote&longs;t cen&shy;<lb/>trum percu&longs;&longs;ionis, dato centro grauitatis &longs;ectoris, quod tantum hactenus in&shy;<lb/>uentum e&longs;t ex &longs;uppo&longs;ita circuli quadratura<emph.end type="italics"/>: </s>
					<s id="N29ABF"><!-- NEW -->&longs;it enim &longs;ector AKHM, &longs;ub&shy;<lb/>ten&longs;a KM; </s>
					<s id="N29AC5"><!-- NEW -->diuidatur AI in tres partes &aelig;quales ADFI, item AH, in <lb/>tres &aelig;quales AEGH, centrum grauitatis &longs;ectoris non e&longs;t in F, quod e&longs;t <lb/>centrum grauitatis trianguli AMK, &longs;ed propi&ugrave;s accedit ad H; </s>
					<s id="N29ACD"><!-- NEW -->nec <lb/>etiam e&longs;t in G, quod e&longs;t centrum grauitatis trianguli ALN, &longs;ed propi&ugrave;s <lb/>accedit ad A; </s>
					<s id="N29AD5"><!-- NEW -->ergo e&longs;t inter FG, v.g. <!-- REMOVE S-->in R, ita vt AH &longs;it ad AR vt arcus <lb/>MHK ad 2/3 &longs;ubten&longs;&aelig; MK; </s>
					<s id="N29ADD"><!-- NEW -->id e&longs;t ad MP; </s>
					<s id="N29AE1"><!-- NEW -->vt demon&longs;trat La Faille Prop. <!-- REMOVE S--><lb/>34. pote&longs;t etiam haberi centrum grauitatis &longs;egmenti circuli; </s>
					<s id="N29AE8"><!-- NEW -->&longs;it enim <lb/>&longs;egmentum FCHI cuius centrum &longs;it B; </s>
					<s id="N29AF0"><!-- NEW -->&longs;int BC. BI. BH. diuidens &aelig;-<pb pagenum="426" xlink:href="026/01/460.jpg"/>qualiter CI; </s>
					<s id="N29AF9"><!-- NEW -->&longs;itque D centrum grauitatis trianguli BCI; </s>
					<s id="N29AFD"><!-- NEW -->&longs;it E centrum <lb/>grauitatis &longs;ectoris BCHI, &longs;itque vt &longs;ectio FCHI, ad triangulum BEI, <lb/>ita DE ad EG, vel vt &longs;ectio ad &longs;ectorem, ita DE ad DG; G e&longs;t centrum <lb/>grauitatis &longs;ectionis, per p.7. </s>
				</p>
				<p id="N29B07" type="main">
					<s id="N29B09"><!-- NEW -->His po&longs;itis voluatur &longs;ector AKHM, circa axem CB, perinde &longs;e ha&shy;<lb/>bet circumactus, atque &longs;i &longs;ingulis partibus incumberent rect&aelig;, qu&aelig; e&longs;&longs;ent <lb/>vt motus earumdem pretium, vt con&longs;tat ex dictis; </s>
					<s id="N29B11"><!-- NEW -->igitur &longs;it &longs;ector AEF <lb/>D, &aelig;qualis priori, perinde &longs;e habet, atque &longs;olidum AEFDCB, quod <lb/>&longs;cilicet con&longs;tat ex pyramide AEDCB, &amp; &longs;egmento cylindri EFDCB; </s>
					<s id="N29B19"><!-- NEW --><lb/>pyramidis centrum grauitatis &longs;it I, ita vt IG &longs;it 1/4 GA, &longs;it M centrum <lb/>grauitatis &longs;egmenti &longs;olidi, &longs;eu poti&ugrave;s &longs;it terminus perpendicularis deor&shy;<lb/>&longs;um, qu&aelig; ducatur per centrum grauitatis eiu&longs;dem &longs;olidi; </s>
					<s id="N29B22"><!-- NEW -->diuidatur IM <lb/>in N, ita vt IN &longs;it ad NM, vt &longs;egmentum cylindri GEFDCB, ad <lb/>pyramidem AEDCB; cert&egrave; N e&longs;t centrum grauitatis &longs;olidi AEFDCHB, <lb/>per p.7. igitur N e&longs;t centrum percu&longs;&longs;ionis &longs;ectoris circumacti. </s>
				</p>
				<p id="N29B2C" type="main">
					<s id="N29B2E"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 14.<emph.end type="center"/></s>
				</p>
				<p id="N29B3A" type="main">
					<s id="N29B3C"><!-- NEW --><emph type="italics"/>Si<emph.end type="italics"/> <emph type="italics"/>&longs;ector AKHM voluatur circa Tangentem NHL, determinari <lb/>pote&longs;t centrum percu&longs;&longs;ionis eodem modo<emph.end type="italics"/>; </s>
					<s id="N29B4D"><!-- NEW -->nam a&longs;&longs;umi pote&longs;t cuneus, vt &longs;upr&agrave;, <lb/>cuius ba&longs;is &longs;it &longs;egmentum cylindri; </s>
					<s id="N29B53"><!-- NEW -->t&ugrave;m pyramis cum eadem ba&longs;i; </s>
					<s id="N29B57"><!-- NEW -->t&ugrave;m in&shy;<lb/>ueniri centrum grauitatis vtriu&longs;que; </s>
					<s id="N29B5D"><!-- NEW -->t&ugrave;m detracta pyramide ex cuneo, <lb/>haberi re&longs;iduum &longs;olidum, cuius centrum grauitatis inuenietur, iuxta pr&etail;&shy;<lb/>dictam praxim; quippe hoc erit centrum percu&longs;&longs;ionis qu&aelig;&longs;itum. </s>
				</p>
				<p id="N29B65" type="main">
					<s id="N29B67"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 15.<emph.end type="center"/></s>
				</p>
				<p id="N29B73" type="main">
					<s id="N29B75"><!-- NEW --><emph type="italics"/>Si voluatur<emph.end type="italics"/> <emph type="italics"/>triangulum FBH circa FM, in quam cadit HF perpen&shy;<lb/>diculariter: </s>
					<s id="N29B83"><!-- NEW -->&longs;i a&longs;&longs;umatur NH<emph.end type="italics"/> 1/4 <emph type="italics"/>FI, ducaturque NP parallela HB, &longs;e&shy;<lb/>cans FC in O, dico punctum O e&longs;&longs;e centrum percu&longs;&longs;ionis<emph.end type="italics"/>; quod eodem modo <lb/>probatur quo &longs;upr&agrave; Th.11. <!-- KEEP S--></s>
				</p>
				<p id="N29B95" type="main">
					<s id="N29B97"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 16.<emph.end type="center"/></s>
				</p>
				<p id="N29BA3" type="main">
					<s id="N29BA5"><!-- NEW --><emph type="italics"/>Si voluatur quodlibet triangulum circa angulum rectum, determinari pe&shy;<lb/>test centrum percu&longs;&longs;ionis<emph.end type="italics"/>; </s>
					<s id="N29BB0"><!-- NEW -->&longs;it enim triangulum ABC; </s>
					<s id="N29BB4"><!-- NEW -->ducatur qu&aelig;libet <lb/>linea Tangens angulum, v.g. <!-- REMOVE S-->DBE, circa quam voluatur triangulum, du&shy;<lb/>cantur AE, CD perpendiculares AD; </s>
					<s id="N29BBE"><!-- NEW -->ali&aelig; du&aelig; ip&longs;is &aelig;quales AFCG, <lb/>perpendicularis in AC; </s>
					<s id="N29BC4"><!-- NEW -->t&ugrave;m FG connectantur; </s>
					<s id="N29BC8"><!-- NEW -->eleueturque Trapezus <lb/>AG, donec AF, CG incubent perpendiculariter plano ABC; </s>
					<s id="N29BCE"><!-- NEW -->denique <lb/>&agrave; B ducantur rect&aelig; ad omnia puncta Trapezi erecti, habebitur pyramis, <lb/>cuius centrum grauitatis, dabit centrum percu&longs;&longs;ionis qu&aelig;&longs;itum, per Th. <!-- REMOVE S--><lb/>11. quod vt fiat, inueniatur centrum grauitatis Trapezi AG, modo di&shy;<lb/>cto, ducta &longs;cilicet FC, a&longs;&longs;umptoque I centro grauitatis trianguli FGC <lb/>&amp; L centro grauitatis trianguli FAC; </s>
					<s id="N29BDD"><!-- NEW -->&longs;i enim ducatur LI, &longs;itque LI <lb/>ad LP, vt Trapezium AG, ad triangulum FGC; </s>
					<s id="N29BE3"><!-- NEW -->cert&egrave; P e&longs;t centrum <lb/>grauitatis Trapezij per p.7. t&ugrave;m ex P erecto ducatur recta ad B, h&aelig;c erit <lb/>axis pyramidis; </s>
					<s id="N29BEB"><!-- NEW -->porr&ograve; &longs;i ducatur perpendicularis PO; </s>
					<s id="N29BEF"><!-- NEW -->t&ugrave;m BO habebi-<pb pagenum="427" xlink:href="026/01/461.jpg"/>tur orthogonium POB; denique a&longs;&longs;umatur OR 1/4 totius OB, R erit <lb/>centrum percu&longs;&longs;ionis trianguli ACB per Th. 11. </s>
				</p>
				<p id="N29BFA" type="main">
					<s id="N29BFC"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N29C08" type="main">
					<s id="N29C0A"><!-- NEW -->Hinc colligo quid dicendum &longs;it de rectangulo ita rotato, vt diagona&shy;<lb/>lis cadat perpendiculariter in axem, circa quem rotatur; </s>
					<s id="N29C10"><!-- NEW -->&longs;it enim re&shy;<lb/>ctangulum CF, cuius diagonalis AIA, axis circa quem voluitur BR, in&shy;<lb/>ueniantur centra percu&longs;&longs;ionis vtriu&longs;que trianguli &longs;eor&longs;im AFH, ACH, <lb/>rotati circa axem BR per Th. 16. connectantur rect&acirc;, in hac erit cen&shy;<lb/>trum percu&longs;&longs;ionis totius rectanguli; </s>
					<s id="N29C1C"><!-- NEW -->c&ugrave; di&longs;tanti&aelig; &agrave; centro communi <lb/>&longs;int vt pyramides permutando per p.7. vt con&longs;tat ex dictis; ex quibus <lb/>etiam &longs;atis intelligetur quid de alijs planis, t&ugrave;m regularibus, t&ugrave;m irre&shy;<lb/>gularibus dicendum &longs;it, c&ugrave; &longs;cilicet po&longs;&longs;int in triangula diuidi. </s>
				</p>
				<p id="N29C26" type="main">
					<s id="N29C28"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 17.<emph.end type="center"/></s>
				</p>
				<p id="N29C34" type="main">
					<s id="N29C36"><!-- NEW --><emph type="italics"/>Si voluatur triangulare planum parallelum circulo, in quo voluitur, deter&shy;<lb/>minari pote&longs;t eius centrum percu&longs;&longs;ionis<emph.end type="italics"/>; </s>
					<s id="N29C41"><!-- NEW -->&longs;it enim triangulum AFH, quod <lb/>ita voluatur, vt extremitas H de&longs;cribat arcum HS, &amp; F arcum FR; </s>
					<s id="N29C47"><!-- NEW -->cert&egrave; <lb/>F mouetur veloci&ugrave;s qu&agrave;m H iuxta rationem AF ad AH; </s>
					<s id="N29C4D"><!-- NEW -->&longs;it ergo FM &aelig;&shy;<lb/>qualis FA, &amp; HN &aelig;qualis HA; </s>
					<s id="N29C53"><!-- NEW -->ducatur MN, erigatur Trapezus FN, <lb/>donec incubet plano AFH, &amp; cen&longs;eantur duct&aelig; ab A rect&aelig; ad puncta <lb/>MN erecta; </s>
					<s id="N29C5B"><!-- NEW -->habebitur pyramis; </s>
					<s id="N29C5F"><!-- NEW -->&longs;it autem centrum grauitatis L, Trapezij <lb/>FN, &longs;itque LG perpendicularis in FH, ducatur AG, a&longs;&longs;umaturque DG <lb/>1/4 AG; </s>
					<s id="N29C67"><!-- NEW -->haud dubi&egrave; D e&longs;t centrum grauitatis huius; </s>
					<s id="N29C6B"><!-- NEW -->&longs;it linea directionis <lb/>DC; </s>
					<s id="N29C71"><!-- NEW -->quippe punctum D mouetur per Tangentem: </s>
					<s id="N29C75"><!-- NEW -->quod etiam de alijs <lb/>punctis dictum e&longs;to; </s>
					<s id="N29C7B"><!-- NEW -->e&longs;t enim h&aelig;c ratio motus circularis; igitur maximus <lb/>ictus erit in C per p. </s>
					<s id="N29C81">8. igitur C e&longs;t centrum percu&longs;&longs;ionis. </s>
				</p>
				<p id="N29C84" type="main">
					<s id="N29C86"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N29C93" type="main">
					<s id="N29C95">Collige perinde &longs;e habere motum puncti F, atque &longs;i ip&longs;i incumberet <lb/>linea FM, &amp; puncto H, HN. </s>
				</p>
				<p id="N29C9A" type="main">
					<s id="N29C9C"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N29CA9" type="main">
					<s id="N29CAB"><!-- NEW -->Pr&aelig;terea centrum percu&longs;&longs;ionis aliquando e&longs;&longs;e extra rectam AH, cum <lb/>&longs;cilicet angulus circa, quem voluitur e&longs;t min&ugrave;s acutus, &longs;it enim trian&shy;<lb/>gulum AGL quod voluatur circa A, &longs;itque centrum grauitatis Trapezij <lb/>E, de quo &longs;upr&agrave;; </s>
					<s id="N29CB5"><!-- NEW -->ducantur EC, AC, &longs;it CB 1/4 AC, ducatur linea dire&shy;<lb/>ctionis BI; vides I e&longs;&longs;e extra AL. <!-- KEEP S--></s>
				</p>
				<p id="N29CBC" type="main">
					<s id="N29CBE"><emph type="center"/><emph type="italics"/>Corollarium<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N29CCB" type="main">
					<s id="N29CCD"><!-- NEW -->Pr&aelig;terea o&longs;tendi po&longs;&longs;e long&egrave; facili&ugrave;s totam rem i&longs;tam; </s>
					<s id="N29CD1"><!-- NEW -->&longs;it enim tri&shy;<lb/>angulum ABD; </s>
					<s id="N29CD7"><!-- NEW -->ducatur HBG &aelig;qualis BA, perpendicularis in BD; </s>
					<s id="N29CDB"><!-- NEW --><lb/>diuidatur AD bifariam &aelig;qualiter in L; </s>
					<s id="N29CE0"><!-- NEW -->a&longs;&longs;umatur DE &aelig;qualis DL, <lb/>r&ugrave;m ducantur HL, GE; </s>
					<s id="N29CE6"><!-- NEW -->inueniatur centrum grauitatis C, Trapezij H <lb/>LEG; </s>
					<s id="N29CEC"><!-- NEW -->ducatur AC, cuius KC &longs;it 1/4 ducatur KD perpendicularis in <lb/>AC, punctum D e&longs;t centrum percu&longs;&longs;ionis; </s>
					<s id="N29CF2"><!-- NEW -->quippe &longs;i vertatur Trapezus <lb/>HE, circa axem BD, donec AD cadat in illum perpendiculariter, &longs;it-<pb pagenum="428" xlink:href="026/01/462.jpg"/>que &longs;ectio communis BD; cert&egrave; habebitur ba&longs;is pyramidis, cuius axis <lb/>erit AC, qu&aelig; omnia con&longs;tant. </s>
				</p>
				<p id="N29CFF" type="main">
					<s id="N29D01"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 18.<emph.end type="center"/></s>
				</p>
				<p id="N29D0D" type="main">
					<s id="N29D0F"><!-- NEW --><emph type="italics"/>Determinari pote&longs;t centrum percu&longs;&longs;ionis in latere orthogonij &longs;ubten&longs;o angulo <lb/>recto<emph.end type="italics"/>; </s>
					<s id="N29D1A"><!-- NEW -->&longs;it enim AGB, latu&longs;que &longs;ubten&longs;um angulo recto AB, &longs;it Trape&shy;<lb/>zus KD, eo modo quo diximus, cuius centrum grauitatis &longs;it H, ducatur <lb/>AH, a&longs;&longs;umatur IH 1/4: </s>
					<s id="N29D22"><!-- NEW -->AH, ducatur IM perpendicularis in AH: dico <lb/>punctum M e&longs;&longs;e centrum percu&longs;&longs;ionis, quod demon&longs;tratur per Theo&shy;<lb/>rema 17. </s>
				</p>
				<p id="N29D2A" type="main">
					<s id="N29D2C"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 19.<emph.end type="center"/></s>
				</p>
				<p id="N29D38" type="main">
					<s id="N29D3A"><!-- NEW --><emph type="italics"/>Si voluatur triangulum pr&aelig;dictum, circa angulum rectum, determinari <lb/>pote&longs;t<emph.end type="italics"/> <emph type="italics"/>centrum percu&longs;&longs;ionis<emph.end type="italics"/>; </s>
					<s id="N29D4B"><!-- NEW -->&longs;it enim triangulum ABH, quod voluatur <lb/>circa centrum B; </s>
					<s id="N29D51"><!-- NEW -->motus puncti A e&longs;t ad motum H, vt BA, ad BH; </s>
					<s id="N29D55"><!-- NEW -->&longs;it ergo <lb/>Trapezus MG, cuius latus ML &longs;it &aelig;quale AB, &amp; GI &aelig;quale BH; </s>
					<s id="N29D5B"><!-- NEW -->erit <lb/>pyramis, eo modo, quo diximus &longs;upr&agrave;; </s>
					<s id="N29D61"><!-- NEW -->&longs;it autem D centrum grauitatis <lb/>ba&longs;is, &longs;eu Trapezij, &amp; AD axis; </s>
					<s id="N29D67"><!-- NEW -->&longs;it KD 1/4 BD; </s>
					<s id="N29D6B"><!-- NEW -->&longs;it denique KE perpen&shy;<lb/>dicularis in DB: dico punctum E e&longs;&longs;e centrum percu&longs;&longs;ionis, quod co&shy;<lb/>dem modo demon&longs;tratur, quo &longs;upr&agrave;. </s>
				</p>
				<p id="N29D73" type="main">
					<s id="N29D75"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N29D81" type="main">
					<s id="N29D83">Hinc colligo prim&ograve;, de omni triangulo idem pror&longs;us dicendum e&longs;&longs;e, <lb/>e&longs;t enim eadem ratio, vt con&longs;ideranti patebit. </s>
				</p>
				<p id="N29D88" type="main">
					<s id="N29D8A"><!-- NEW -->Secund&ograve;, &longs;i voluatur circa punctum aliquod lateris, po&longs;&longs;e determinari <lb/>centrum percu&longs;&longs;ionis; </s>
					<s id="N29D90"><!-- NEW -->&longs;it enim triangulum ABC; </s>
					<s id="N29D94"><!-- NEW -->a&longs;&longs;umatur punctum <lb/>M, circa quod voluatur mode pr&aelig;dicto, motus puncti C, e&longs;t ad motum <lb/>puncti A, vt MC, vel DX, ad MA, vel PO; </s>
					<s id="N29D9C"><!-- NEW -->hinc Trapezus DPOX, id e&longs;t <lb/>ba&longs;is pyramidis, cuius axis e&longs;t MG, &amp; centrum grauitatis K: </s>
					<s id="N29DA4"><!-- NEW -->&longs;imiliter <lb/>habetur Trapezus DRNX; </s>
					<s id="N29DAA"><!-- NEW -->id e&longs;t ba&longs;is alterius pyramidis, cuius axis e&longs;t <lb/>MV, &amp; centrum grauitatis H; </s>
					<s id="N29DB0"><!-- NEW -->fiat autem vt vtraque pyramis ad eam, cuius <lb/>axis e&longs;t MG, ita tota HK, ad HI; </s>
					<s id="N29DB6"><!-- NEW -->dico I e&longs;&longs;e centrum commune graui&shy;<lb/>tatis; </s>
					<s id="N29DBC"><!-- NEW -->ducatur IL perpendicularis in IM; dico L e&longs;&longs;e centrum percu&longs;&shy;<lb/>&longs;ionis qu&aelig;&longs;itum. </s>
				</p>
				<p id="N29DC2" type="main">
					<s id="N29DC4">Terti&ograve;, &longs;i voluatur circa aliud punctum, res eodem modo &longs;uc&shy;<lb/>cedet. </s>
				</p>
				<p id="N29DC9" type="main">
					<s id="N29DCB"><!-- NEW -->Quart&ograve;, &longs;i &longs;it &longs;olidum ad in&longs;tar cunei, con&longs;tans &longs;cilicet ex multis pla&shy;<lb/>nis triangularibus, qu&aelig; prob&egrave; inter &longs;e conueniant; idem etiam accidet, <lb/>qu&aelig; omnia ex &longs;upr&agrave; dictis clari&longs;&longs;ima efficiuntur. </s>
				</p>
				<p id="N29DD3" type="main">
					<s id="N29DD5">Quint&ograve;, &longs;i &longs;it triangulum EAD, fig. </s>
					<s id="N29DD8"><!-- NEW -->quod ita voluatur circa centrum <lb/>A, vt latus AE, mod&ograve; accedat ad CB, mod&ograve; recedat; </s>
					<s id="N29DDE"><!-- NEW -->&longs;itque ita diui&longs;a AS <lb/>in R, vt RS &longs;it 1/4 AS, &longs;i ducatur RN, centrum percu&longs;&longs;ionis erit in N, <lb/>quia R e&longs;t centrum grauitatis gemin&aelig; pyramidis; </s>
					<s id="N29DE6"><!-- NEW -->igitur RN linea di&shy;<lb/>rectionis in&longs;tanti percu&longs;&longs;ionis; &longs;i ver&ograve; producatur AS in G, &longs;intque I &amp; <lb/>M centra grauitatis pyramidum ducanturque IF, MF perpendiculares <lb/>in AI. AM, centrum percu&longs;&longs;ionis erit F, vt con&longs;tat ex dictis. </s>
				</p>
				<pb pagenum="429" xlink:href="026/01/463.jpg"/>
				<p id="N29DF4" type="main">
					<s id="N29DF6"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 20.<emph.end type="center"/></s>
				</p>
				<p id="N29E02" type="main">
					<s id="N29E04"><!-- NEW --><emph type="italics"/>Sectoris minoris quadrante determinari pote&longs;t centrum percu&longs;&longs;ionis, cum <lb/>&longs;cilicet voluitur in plano, cui eiu&longs;dem planum e&longs;t parallelum<emph.end type="italics"/>; </s>
					<s id="N29E0F"><!-- NEW -->&longs;it enim <lb/>quadrans BAI; </s>
					<s id="N29E15"><!-- NEW -->ducatur BI, &longs;it pyramis cuius ba&longs;is &longs;it &longs;ectio cylindri, <lb/>erectis, &longs;cilicet perpendicularibus tran&longs;uer&longs;is &longs;upra arcum BTI, eo <lb/>modo, quo &longs;upr&agrave; iam &longs;&aelig;p&egrave; diximus; </s>
					<s id="N29E1D"><!-- NEW -->v.g. <!-- REMOVE S-->ducta &longs;it Tangens ZT, diui&longs;a bi&shy;<lb/>fariam in C, puncto &longs;cilicet contactus, qu&aelig; tandiu voluatur circa CA, <lb/>dum &longs;ecet arcum ad angulos rectos: </s>
					<s id="N29E27"><!-- NEW -->idem fiat in alijs punctis arcus; </s>
					<s id="N29E2B"><!-- NEW -->de&shy;<lb/>nique ad extremitates Tangentium ducantur vtrimque &agrave; centro A rect&aelig;, <lb/>&amp; habebitur pr&aelig;dicta pyramis mixta, cuius centrum grauitatis inuen&shy;<lb/>tum dabit centrum percu&longs;&longs;ionis; </s>
					<s id="N29E35"><!-- NEW -->quod vt meli&ugrave;s oculo &longs;ubijciatur, &longs;it <lb/>triangulum ZTA, voluatur circa CA, donec eius planum &longs;ecet ad an&shy;<lb/>gulos iectos planum quadrantis BAI; </s>
					<s id="N29E3D"><!-- NEW -->t&ugrave;m in eo &longs;itu voluatur axis AC <lb/>per totum arcum BI, &amp; habebitur &longs;olidum qu&aelig;&longs;itum, cuius centrum gra&shy;<lb/>uitatis ita pote&longs;t inueniri; </s>
					<s id="N29E45"><!-- NEW -->ducatur BI, t&ugrave;m AC diuidens BI bifariam <lb/>in E, centrum grauitatis e&longs;t in AC; </s>
					<s id="N29E4D"><!-- NEW -->a&longs;&longs;umatur GE 1/4 totius AE; </s>
					<s id="N29E51"><!-- NEW -->cert&egrave; G <lb/>e&longs;t centrum grauitatis pyramidis ABEI; </s>
					<s id="N29E57"><!-- NEW -->&longs;it autem D centrum grauitatis <lb/>reliqui &longs;olidi BEIC, &longs;itque vt hoc &longs;olidum ad pyramidem ABEI, ita <lb/>GF ad FD: dico F e&longs;&longs;e centrum grauitatis per p. </s>
					<s id="N29E5F">7. ducatur FK perpen&shy;<lb/>dicularis in AC, K e&longs;t centrum percu&longs;&longs;ionis per Th.17. <!-- KEEP S--></s>
				</p>
				<p id="N29E65" type="main">
					<s id="N29E67"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N29E73" type="main">
					<s id="N29E75">Colligo prim&ograve;; </s>
					<s id="N29E78"><!-- NEW -->pr&aelig;dictam pyramidem mixtam e&longs;&longs; 2/3 &longs;ectoris cylindrj; </s>
					<s id="N29E7C"><!-- NEW --><lb/>&longs;it enim triangulum ACZ erectum, atque &icirc;ta voluatur per totam pe&shy;<lb/>ripheram IBPVI. fiet &longs;olidum cauum, cuius cauitas erit conus, cuius <lb/>altitudo erit CZ, &amp; ba&longs;is orbis BPVI; </s>
					<s id="N29E85"><!-- NEW -->&longs;ed hic conus e&longs;t 1/3 cylindri, &longs;ub <lb/>eadem ba&longs;i, &amp; altitudine; </s>
					<s id="N29E8B"><!-- NEW -->igitur &longs;olidum, quod &longs;upere&longs;t, continet 2/3 cy&shy;<lb/>lindri &longs;ub altitudine CZ, &amp; ba&longs;i BPVI; </s>
					<s id="N29E91"><!-- NEW -->&longs;ed cauum BAI de quo &longs;upr&agrave; <lb/>e&longs;t 1/3 totius; igitur reliquum continet 2/3 &longs;ectoris cylindri BA, &longs;ub alti&shy;<lb/>tudine CT. </s>
				</p>
				<p id="N29E99" type="main">
					<s id="N29E9B"><!-- NEW -->Secund&ograve; colligo, &longs;i a&longs;&longs;umatur &longs;emicirculus PBI momentum quadran&shy;<lb/>tis PBA, &aelig;quale e&longs;&longs;e momento quadrantis IA <foreign lang="greek">b</foreign>, vt con&longs;tat; nam I, per <lb/>IM, idem pr&aelig;&longs;tat quod P, per PQ, &amp; S per SR, idem quod L, <lb/>per LV, &amp;c. </s>
				</p>
				<p id="N29EA9" type="main">
					<s id="N29EAB"><!-- NEW -->Terti&ograve;, &longs;i voluatur tant&ugrave;m triangulum ABI, ducaturque GX per&shy;<lb/>pendicularis in AC punctum X erit centrum percu&longs;&longs;ionis; quid mirum <lb/>igitur, &longs;i addito &longs;egmento BCIE, &longs;it in K? </s>
				</p>
				<p id="N29EB3" type="main">
					<s id="N29EB5">Quart&ograve;, &longs;i quadrans AI <foreign lang="greek">b</foreign> trahat deor&longs;um adducto filo ex K, cert&egrave; in <lb/>K erit centrum percu&longs;&longs;ionis, vt con&longs;tat. </s>
				</p>
				<p id="N29EBE" type="main">
					<s id="N29EC0">Quint&ograve;, &longs;i vterque quadrans BI <foreign lang="greek">b</foreign> A &longs;imul cadat, centrum percu&longs;&longs;io&shy;<lb/>nis erit in K, &longs;ed dupl&ograve; maior ictus. </s>
				</p>
				<p id="N29EC9" type="main">
					<s id="N29ECB">Sexto, &longs;i &longs;emicirculus APBI cadar, centrum etiam percu&longs;&longs;ionis erit <lb/>in K, quia quadrans PBA &aelig;quiualet quadranti A <foreign lang="greek">b</foreign> I. <!-- KEEP S--></s>
				</p>
				<p id="N29ED5" type="main">
					<s id="N29ED7"><!-- NEW -->Septim&ograve;, &longs;i a&longs;&longs;umatur &longs;ector maior quadrante, &longs;ed minor &longs;emicirculo, <lb/>v.g. <!-- REMOVE S-->ASBI, &longs;it BAC &aelig;qualis BAS; </s>
					<s id="N29EDF"><!-- NEW -->inueniatur centrum grauitatis BA <pb pagenum="430" xlink:href="026/01/464.jpg"/>C eodem modo, quo inuentum e&longs;t centrum F quadrant&iacute;s rotati: </s>
					<s id="N29EEC"><!-- NEW -->&longs;imili&shy;<lb/>ter inueniatur centrum grauitatis TAI rotati; </s>
					<s id="N29EF2"><!-- NEW -->connectantur rect&acirc; h&aelig;c <lb/>duo centra inuenta, &longs;itque vt duplum BAC ad CAI, ita &longs;egmentum <lb/>connectent&iuml;s centra, quod terminatur in centro CAI ad aliud &longs;egmen&shy;<lb/>tum; punctum diuidens &longs;egmenta erit centrum grauitatis qu&aelig;&longs;itum, &agrave; <lb/>quo &longs;i ducatur perpendicularis, eo modo, quo diximus, h&aelig;c dabit cen&shy;<lb/>trum percu&longs;&longs;ionis. </s>
				</p>
				<p id="N29F00" type="main">
					<s id="N29F02"><!-- NEW -->Octau&ograve;, &longs;i a&longs;&longs;umatur &longs;ector maior &longs;emicirculo, v.g. <!-- REMOVE S-->AVBL, eodem <lb/>modo procedendum e&longs;t; quippe PAV &aelig;quiualet CAB, &amp; IAL &aelig;quiua&shy;<lb/>let CAI, &amp; BAP &aelig;quiualet BAI, nec e&longs;t noua difficultas. </s>
				</p>
				<p id="N29F0C" type="main">
					<s id="N29F0E">Non&ograve;, hinc &longs;i circulus integer circa centrum voluatur, centrum per&shy;<lb/>cu&longs;&longs;ionis erit in K, &longs;ed ictu quadruplo ictus inflicti &agrave; quadrante. </s>
				</p>
				<p id="N29F13" type="main">
					<s id="N29F15"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 21.<emph.end type="center"/></s>
				</p>
				<p id="N29F21" type="main">
					<s id="N29F23"><!-- NEW --><emph type="italics"/>Si rotetur circulus circa punctum circumferentia vel circa Tangentem, <lb/>determinari pote&longs;t centrum percu&longs;&longs;ionis<emph.end type="italics"/>; </s>
					<s id="N29F2E"><!-- NEW -->&longs;it enim centro B, ANCP, rota&shy;<lb/>tus circa TA, in quam diameter AC cadit perpendiculariter; </s>
					<s id="N29F34"><!-- NEW -->a&longs;&longs;umatur <lb/>RC 1/3 AC: </s>
					<s id="N29F3A"><!-- NEW -->dico R e&longs;&longs;e centrum percu&longs;&longs;ionis; quia motus C e&longs;t ad mo&shy;<lb/>tum R, vt CF ad RH, &amp; ad motum B, vt CF ad BL, &amp;c. </s>
					<s id="N29F40"><!-- NEW -->igitur perinde <lb/>&longs;e habet planum ANCP, atque &longs;i &longs;emicylindrus ACF ip&longs;i incubaret, <lb/>vt patet, &longs;ed centrum grauitatis huius &longs;olidi e&longs;t X in quo CL &amp; FB de&shy;<lb/>cu&longs;&longs;antur; </s>
					<s id="N29F4A"><!-- NEW -->&longs;ed vt demon&longs;tratum e&longs;t &longs;upr&agrave;, &longs;i ducatur HXR, RC e&longs;t 2/3 <lb/>totius AC; igitur R e&longs;t centrum percu&longs;&longs;ionis. </s>
				</p>
				<p id="N29F50" type="main">
					<s id="N29F52"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N29F5E" type="main">
					<s id="N29F60"><!-- NEW -->Prim&ograve; colligo, &longs;i &longs;egmentum circuli voluatur: </s>
					<s id="N29F64"><!-- NEW -->&longs;imiliter haberi pote&longs;t <lb/>centrum percu&longs;&longs;ionis, inuento &longs;cilicet centro grauitatis ba&longs;is vtriu&longs;que <lb/>v.g. <!-- REMOVE S-->&longs;i &longs;egmentum OAQ voluatur circa TA, inueniri debet centrum <lb/>grauitatis eiu&longs;dem &amp; ad illud &agrave; puncto H recta ducenda; </s>
					<s id="N29F70"><!-- NEW -->itemque in&shy;<lb/>ueniendum e&longs;t centrum grauitatis &longs;egmenti Ellip&longs;eos HAI, &amp; ad illud <lb/>&agrave; puncto R ducenda recta; nam vtriu&longs;que decu&longs;&longs;ationis punctum dabit <lb/>centrum grauitatis huius &longs;olidi, ex qua &longs;i ducatur perpendicularis in AR, <lb/>extremitas dabit centrum percu&longs;&longs;ionis. </s>
				</p>
				<p id="N29F7D" type="main">
					<s id="N29F7F">Secund&ograve;, &longs;i voluatur circulus CNAH circa PN, habebitur centrum <lb/>percu&longs;&longs;ionis eodem modo, inuentis &longs;cilicet centris grauitatis &longs;emicir&shy;<lb/>culi PNC, &amp; &longs;emiellip&longs;eos, cuius altera &longs;emidiameter &longs;it BF, altera BP, <lb/>vt con&longs;tat ex dictis, </s>
				</p>
				<p id="N29F88" type="main">
					<s id="N29F8A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 22.<emph.end type="center"/></s>
				</p>
				<p id="N29F96" type="main">
					<s id="N29F98"><!-- NEW --><emph type="italics"/>Si voluatur circulus circa punctum circumferentia in circulo parallelo &longs;uo <lb/>plano, determinari pote&longs;t centrum percu&longs;&longs;ionis, quod di&longs;tat <emph.end type="italics"/>2/3 <emph type="italics"/>diametri &agrave; cen&shy;<lb/>tro motus<emph.end type="italics"/>; </s>
					<s id="N29FB1"><!-- NEW -->&longs;it enim circulus ACFG, centro B, qui voluatur circa cen&shy;<lb/>trum A; </s>
					<s id="N29FB7"><!-- NEW -->motus puncti F e&longs;t ad motum puncti B, vt recta AF ad rectam <lb/>AD, &amp; ad motum puncti C, vt AF ad AC; </s>
					<s id="N29FBD"><!-- NEW -->idem dico de alis punctis; </s>
					<s id="N29FC1"><!-- NEW --><lb/>&longs;it EH &aelig;qualis AF, diui&longs;a bifariam in F, qu&aelig; tandiu voluatur, donec <pb pagenum="431" xlink:href="026/01/465.jpg"/>&longs;ecet arcum CFG ad angulos rectos; idem pror&longs;us fiat in aliis punctis <lb/>peripheri&aelig;, a&longs;&longs;umptis &longs;cilicet lineis &aelig;qualibus &longs;ubten&longs;is arcuum, v.g. <!-- REMOVE S-->in <lb/>puncto D, a&longs;&longs;umpta linea &aelig;quali AD, in puncto C, a&longs;&longs;umpta &aelig;quali AC, <lb/>&amp;c. </s>
					<s id="N29FD3"><!-- NEW -->hoc po&longs;ito habetur &longs;olidum, quod facil&egrave; vocauerim Elliptico cylin&shy;<lb/>dricum, cuius con&longs;tructio talis e&longs;t, &longs;it cylindrus RI, cuius diameter <lb/>ba&longs;is &longs;it KI, &aelig;qualis diametro AF circuli prioris; </s>
					<s id="N29FDB"><!-- NEW -->&longs;it etiam altitudo KR, <lb/>&aelig;qualis pr&aelig;dict&aelig; diametro KI, &longs;it KR diui&longs;a bifariam in L, &longs;itque pla&shy;<lb/>num IL &longs;ecans cylindrum, itemque alterum LP, vtraque &longs;ectio Ellip&longs;is <lb/>e&longs;t, vt patet; </s>
					<s id="N29FE5"><!-- NEW -->ac proinde habetur &longs;olidum qu&aelig;&longs;itum LIP con&longs;tans gemi&shy;<lb/>na ba&longs;i LI. &amp; LP Elliptica, &amp; reliqua circumferenti&agrave; cylindric&acirc;, cuius <lb/>centrum grauitatis e&longs;t in N, id e&longs;t in puncto decu&longs;&longs;ationis rectarum PM, <lb/>IS, qu&aelig; diuidunt ILPL bifariam &aelig;qualiter, e&longs;t autem NO 1/3 totius <lb/>LO, per Sch. <!-- REMOVE S-->Th.2. hoc po&longs;ito &longs;it XF 1/3 totius AF: dico e&longs;&longs;e centrum <lb/>percu&longs;&longs;ionis qu&aelig;&longs;itum circuli ACFG rotati circa A, quia perinde &longs;e <lb/>habet, atque &longs;i puncto X incubaret pr&aelig;dictum &longs;olidum ellipticocylindri&shy;<lb/>cum, cuius X e&longs;&longs;et centrum grauitatis. </s>
				</p>
				<p id="N29FF9" type="main">
					<s id="N29FFB"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2A007" type="main">
					<s id="N2A009">Ob&longs;eruabis prim&ograve;, in plano ACFG, vt punctum X &longs;it centrum per&shy;<lb/>cu&longs;&longs;ionis, incidendam e&longs;&longs;e &longs;triam quamdam, &longs;eu rimam, qu&aelig; termi&shy;<lb/>netur in X. <!-- KEEP S--></s>
				</p>
				<p id="N2A011" type="main">
					<s id="N2A013">Secund&ograve;, idem e&longs;&longs;e centrum percu&longs;&longs;ionis rect&aelig; AF, qu&aelig; voluitur <lb/>circa A, &longs;iue &longs;it &longs;implex linea, &longs;iue diameter circuli. </s>
				</p>
				<p id="N2A018" type="main">
					<s id="N2A01A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 23.<emph.end type="center"/></s>
				</p>
				<p id="N2A026" type="main">
					<s id="N2A028"><!-- NEW --><emph type="italics"/>Si voluatur rectangulum parallelum orbi in quo voluitur determinari<emph.end type="italics"/> <emph type="italics"/>po&shy;<lb/>test centrum percu&longs;&longs;ionis<emph.end type="italics"/>; </s>
					<s id="N2A039"><!-- NEW -->&longs;it enim rectangulum AD, quod voluatur circa <lb/>centrum A, eo modo, quo dictum e&longs;t &longs;it ducta AD, inueniatur centrum <lb/>I, trianguli ABD; </s>
					<s id="N2A041"><!-- NEW -->itemque centrum H, trianguli ADF, per Th. 17. <lb/>t&ugrave;m ducta IH, diuidatur bifariam in K; </s>
					<s id="N2A047"><!-- NEW -->ducatur AK, t&ugrave;m GK perpen&shy;<lb/>dicularis in AK: dico G e&longs;&longs;e centrum percu&longs;&longs;ionis, per po&longs;.7.&amp; Theo&shy;<lb/>rema 17. </s>
				</p>
				<p id="N2A04F" type="main">
					<s id="N2A051"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2A05D" type="main">
					<s id="N2A05F"><!-- NEW -->Colligo ex his facil&egrave; po&longs;&longs;e determinari centrum percu&longs;&longs;ionis in alijs <lb/>figuris planis; quia diuidi po&longs;&longs;unt in plura triangula. </s>
				</p>
				<p id="N2A065" type="main">
					<s id="N2A067"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 24.<emph.end type="center"/></s>
				</p>
				<p id="N2A073" type="main">
					<s id="N2A075"><!-- NEW --><emph type="italics"/>Pote&longs;t determinari centrum percu&longs;&longs;ionis &longs;olidi<emph.end type="italics"/> <emph type="italics"/>trium facierum ABDE<emph.end type="italics"/>; </s>
					<s id="N2A084"><!-- NEW --><lb/>vt demon&longs;tretur centrum percu&longs;&longs;ionis pyramidis, &amp; pri&longs;matis, pr&aelig;mitti <lb/>debuit hoc &longs;olidum; </s>
					<s id="N2A08B"><!-- NEW -->&longs;it enim &longs;olidum priori &longs;imile, A.M. G.C. motus <lb/>puncti M, e&longs;t ad motum puncti G, vt recta BM ad rectam BG; </s>
					<s id="N2A091"><!-- NEW -->igitur &longs;it <lb/>NK ad OH, vt BM ad BG; </s>
					<s id="N2A097"><!-- NEW -->cert&egrave; perinde &longs;e habet punctum M, atque <lb/>&longs;i NMK incubaret, non quidem per MG, &longs;ed per lineam perpendicu&shy;<lb/>larem ductam in BM, vt patet ex dictis: </s>
					<s id="N2A09F"><!-- NEW -->idem dico de puncto G, quod <lb/>perinde &longs;e habet, atque &longs;i incubaret OGH; </s>
					<s id="N2A0A5"><!-- NEW -->itaque inuenire oportet <lb/>centrum grauitatis &longs;olidi ACHKNOA, quod vt fiat, a&longs;&longs;umatur IP <pb pagenum="432" xlink:href="026/01/466.jpg"/>&aelig;qualis AC; </s>
					<s id="N2A0B0"><!-- NEW -->ducantur AP, CI centrum grauitatis &longs;olidi ACIKNP <lb/>re&longs;pondet per lineam directionis puncto E, ita vt EG &longs;it 1/3 GB per Co&shy;<lb/>roll.1. Th.3.&longs;i autem a&longs;&longs;umatur FG 1/4 totius BG, &longs;itque linea QFX, <lb/>&amp; ex puncto F &longs;u&longs;tineatur vtraque pyramis AOPN, &amp; CIHK, erit <lb/>perfectum &aelig;quilibrium per Th. 4. igitur &longs;it FE ad ED, vt &longs;olidum <lb/>ACHKNO ad vtramque pyramidem AOPN, CIHK, cert&egrave; pun&shy;<lb/>ctum D erit centrum grauitatis &longs;olidi ACHKNO, per p.7. a&longs;&longs;umatur <lb/>GL &aelig;qualis GD; </s>
					<s id="N2A0C2"><!-- NEW -->ducatur BL, h&aelig;c e&longs;t axis vt patet, mod&ograve; GM &longs;it &aelig;qua&shy;<lb/>lis GB; </s>
					<s id="N2A0C8"><!-- NEW -->&longs;i enim in&aelig;qualis e&longs;t, &longs;it GL ad GM, vt GD ad GB: </s>
					<s id="N2A0CC"><!-- NEW -->pr&aelig;terea <lb/>ducatur DR parallela GM; </s>
					<s id="N2A0D2"><!-- NEW -->denique ducatur perpendicularis FR in B <lb/>L; </s>
					<s id="N2A0D8"><!-- NEW -->dico F e&longs;&longs;e centrum percu&longs;&longs;ionis, vt patet ex dictis &longs;upr&agrave;, pr&aelig;&longs;ertim in <lb/>Th. 17. &amp; alibi pa&longs;&longs;im, ne toties eadem repetere cogar ad nau&longs;eam; <lb/>quamquam enim h&aelig;c &longs;atis noua &longs;unt, illa tamen indicanda poti&ugrave;s, qu&agrave;m <lb/>fus&egrave; tractanda e&longs;&longs;e putaui. </s>
				</p>
				<p id="N2A0E2" type="main">
					<s id="N2A0E4"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 25.<emph.end type="center"/></s>
				</p>
				<p id="N2A0F0" type="main">
					<s id="N2A0F2"><!-- NEW --><emph type="italics"/>Pote&longs;t determinari centrum percu&longs;&longs;ionis pyramidis, cum voluitur circa <lb/>verticem<emph.end type="italics"/>; </s>
					<s id="N2A0FD"><!-- NEW -->&longs;it enim &longs;olidum, de quo &longs;upr&agrave; ABCGM, fitque aliud &longs;oli&shy;<lb/>dum ABCHKMNOG, cuius axis &longs;it BL &amp; centrum grauitatis R, <lb/>hoc ip&longs;um e&longs;t centrum percu&longs;&longs;ionis &longs;olidi ABCGM, ducta &longs;cilicet RF, <lb/>per Th.24. iam ver&ograve; &longs;i ex &longs;olido ACIKNP, detrahatur pr&aelig;dictum <lb/>&longs;olidum ABCGM, &longs;upere&longs;t vtrimque integra pyramis, &longs;cilicet CMK <lb/>IG, &amp; AMNPG, cuius axis communis erit eadem BL, vt patet; </s>
					<s id="N2A10B"><!-- NEW -->itaque <lb/>a&longs;&longs;umatur LY 1/4 LB, Y re&longs;pondebit centrum percu&longs;&longs;ionis &longs;olidi ACIK <lb/>NP per Corol.4. Th.19. igitur &longs;it vt vtraque pyramis ANPG, &amp; AK <lb/>IG, ad reliquum &longs;olidum ABCGM, ita RY, ad YZ; </s>
					<s id="N2A115"><!-- NEW -->dico Z e&longs;&longs;e cen&shy;<lb/>trum percu&longs;&longs;ionis vtriu&longs;que pyramidis, duct&acirc; &longs;cilicet perpendiculari <lb/>Z <foreign lang="greek">d</foreign>, vt con&longs;tat ex dictis; quare in axe pyramidis a&longs;&longs;umatur &aelig;qualis BZ, <lb/>&amp; habebitur intentum. </s>
				</p>
				<p id="N2A123" type="main">
					<s id="N2A125"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2A131" type="main">
					<s id="N2A133"><!-- NEW -->Ob&longs;eruabis prim&ograve;, &longs;olidum integrum AKNPI e&longs;&longs;e &longs;ubduplum pri&longs;&shy;<lb/>matis eiu&longs;dem altitudinis &amp; ba&longs;is NI; pyramidem ver&ograve; CMI e&longs;&longs;e 1/6 <lb/>eiu&longs;dem pri&longs;matis, ergo vtramque &aelig;qualem 1/3 igitur &longs;olidum ABCGM <lb/>1/6. igitur &aelig;quale alteri pyramidum, igitur RY duplam e&longs;&longs;e YZ. </s>
				</p>
				<p id="N2A13E" type="main">
					<s id="N2A140">Secund&ograve;, ob&longs;eruabis punctum Z dici po&longs;&longs;e centrum percu&longs;&longs;ionis in&shy;<lb/>terius, &agrave; quo deinde &longs;i ducatur recta Z <foreign lang="greek">d</foreign> perpendicularis in BL, termi&shy;<lb/>nabitur in <foreign lang="greek">d</foreign>, quod dici pote&longs;t centrum percu&longs;&longs;ionis exterius. </s>
				</p>
				<p id="N2A14F" type="main">
					<s id="N2A151">Terti&ograve;, ob&longs;eruabis, centrum percu&longs;&longs;ionis exterius aliquando e&longs;&longs;e in <lb/>ip&longs;a facie, &longs;eu linea BG, cum &longs;cilicet angulus MPG e&longs;t vald&egrave; acutus, <lb/>aliquando e&longs;&longs;e extra &longs;uperficiem corporis, v. <!-- REMOVE S-->g. <!-- REMOVE S-->in <foreign lang="greek">d</foreign>, cum &longs;cilicet an&shy;<lb/>gulus MBG e&longs;t obtu&longs;ior, quod iam &longs;upr&agrave; ob&longs;eruatum e&longs;t, cum de trian&shy;<lb/>gulo Cor.2. Th.17. <!-- KEEP S--></s>
				</p>
				<pb pagenum="433" xlink:href="026/01/467.jpg"/>
				<p id="N2A169" type="main">
					<s id="N2A16B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 26.<emph.end type="center"/></s>
				</p>
				<p id="N2A177" type="main">
					<s id="N2A179"><!-- NEW --><emph type="italics"/>Pote&longs;t determinari centrum percu&longs;&longs;ionis parallelipedi<emph.end type="italics"/>; </s>
					<s id="N2A182"><!-- NEW -->&longs;it enim paralle&shy;<lb/>lipedum MF quod voluatur circa MK; </s>
					<s id="N2A188"><!-- NEW -->&longs;it rectangulum LE &longs;ecans bifa&shy;<lb/>riam &aelig;qualiter parallelipedum; </s>
					<s id="N2A18E"><!-- NEW -->centrum percu&longs;&longs;ionis erit in plano re&shy;<lb/>ctanguli LE; </s>
					<s id="N2A194"><!-- NEW -->ducatur LE, diagonalis; </s>
					<s id="N2A198"><!-- NEW -->inueniatur centrum percu&longs;&longs;ionis <lb/>rectanguli LE, per Th.23. &longs;itque N, v.g. <!-- REMOVE S-->ducatur NO, dico O e&longs;&longs;e cen&shy;<lb/>trum percu&longs;&longs;ionis qu&aelig;&longs;itum, &longs;cilicet exterius, vt patet ex dictis; </s>
					<s id="N2A1A2"><!-- NEW -->pote&longs;t <lb/>etiam determinari, &longs;i voluatur circa AC, vel circa PR, nam perinde <lb/>&longs;e habet pr&aelig;dictum parallelipedum, atque ip&longs;um rectangulum; hoc ver&ograve; <lb/>atque ip&longs;um triangulum, in quo nulla pror&longs;us e&longs;t difficultas. </s>
				</p>
				<p id="N2A1AC" type="main">
					<s id="N2A1AE"><!-- NEW -->Pote&longs;t etiam determinari centrum percu&longs;&longs;ionis cunei, id e&longs;t &longs;emipa&shy;<lb/>rallelipedi, &longs;iue circa MK, &longs;ine circa IG voluatur; qu&aelig; omnia pa&shy;<lb/>tent ex dictis. </s>
				</p>
				<p id="N2A1B6" type="main">
					<s id="N2A1B8"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 27.<emph.end type="center"/></s>
				</p>
				<p id="N2A1C4" type="main">
					<s id="N2A1C6"><!-- NEW --><emph type="italics"/>Determinari<emph.end type="italics"/> <emph type="italics"/>pote&longs;t centrum percu&longs;&longs;ionis &longs;olidi ABDE, &longs;i voluatur circa <lb/>axem IDH<emph.end type="italics"/>; </s>
					<s id="N2A1D7"><!-- NEW -->nam motus puncti C e&longs;t ad motum puncti E, vt DC ad <lb/>DE, vel vt BN &aelig;qualis DC ad LK &aelig;qualem ED; </s>
					<s id="N2A1DD"><!-- NEW -->mouentur enim AC <lb/>B &aelig;quali motu; </s>
					<s id="N2A1E3"><!-- NEW -->itaque perinde &longs;e habet pr&aelig;dictum &longs;olidum in ordine <lb/>ad percu&longs;&longs;ionem, atque &longs;i e&longs;&longs;et &longs;olidum BMKLD; </s>
					<s id="N2A1E9"><!-- NEW -->id e&longs;t duplex pyra&shy;<lb/>mis, &longs;cilicet DNMKL, &amp; DMNBA, quarum centra grauitatis &longs;int <lb/>PQ, &amp; commune vtriu&longs;que &longs;it R iuxtam modum &longs;upr&agrave; po&longs;itum; </s>
					<s id="N2A1F1"><!-- NEW -->duca&shy;<lb/>tur SR perpendicularis in RD: dico S e&longs;&longs;e centrum percu&longs;&longs;ionis exte&shy;<lb/>rius qu&aelig;&longs;itum, quod eodem modo probatur, quo &longs;upr&agrave;. </s>
				</p>
				<p id="N2A1F9" type="main">
					<s id="N2A1FB"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2A207" type="main">
					<s id="N2A209"><!-- NEW -->Prim&ograve; colligo inde, vbi &longs;it centrum percu&longs;&longs;ionis cylindri, &longs;iue volua&shy;<lb/>tur circa Tangentem ba&longs;is, &longs;iue circa diametrum eiu&longs;dem; nam idem de <lb/>cylindro dicendum e&longs;t, quod de parallelipedo dictum e&longs;t Th.26. </s>
				</p>
				<p id="N2A211" type="main">
					<s id="N2A213"><!-- NEW -->Secund&ograve; colligo, centrum percu&longs;&longs;ionis coni; quippe vt &longs;e habet pyra&shy;<lb/>mis ad pri&longs;ma, ita &longs;e habet conus ad cylindrum. </s>
				</p>
				<p id="N2A219" type="main">
					<s id="N2A21B">Terti&ograve;, colligo centrum percu&longs;&longs;ionis Pyramidis quando voluitur cir&shy;<lb/>ca latus ba&longs;is per Th.27. </s>
				</p>
				<p id="N2A220" type="main">
					<s id="N2A222"><!-- NEW -->Quart&ograve;, colligo centrum percu&longs;&longs;ionis cylindri; cum voluitur circa <lb/>Tangentem parallelum axi per Th.22. <!-- KEEP S--></s>
				</p>
				<p id="N2A229" type="main">
					<s id="N2A22B"><!-- NEW -->Quint&ograve;, colligo centrum grauitatis pri&longs;matis, &longs;iue voluatur circa la&shy;<lb/>tus ba&longs;is; </s>
					<s id="N2A231"><!-- NEW -->tunc enim idem pror&longs;us dicendum e&longs;t, quod de parallelipedo; </s>
					<s id="N2A235"><!-- NEW --><lb/>&longs;iue circa lineam parallelam axi; tunc enim centrum percu&longs;&longs;ionis co&shy;<lb/>gno&longs;citur ex centro percu&longs;&longs;ionis ba&longs;is cognito, &longs;i voluatur in circulo &longs;uo <lb/>plano parallelo per Cor. <!-- REMOVE S-->Th.22. <!-- KEEP S--></s>
				</p>
				<p id="N2A241" type="main">
					<s id="N2A243">Sext&ograve; denique, colligo centrum percu&longs;&longs;ionis cuiu&longs;libet alterius <lb/>&longs;olidi, planis rectilineis contenti, quod &longs;cilicet in pyramides diui&shy;<lb/>di pote&longs;t. </s>
				</p>
				<pb pagenum="434" xlink:href="026/01/468.jpg"/>
				<p id="N2A24E" type="main">
					<s id="N2A250"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2A25C" type="main">
					<s id="N2A25E"><!-- NEW -->Ob&longs;eruabis non dee&longs;&longs;e fort&egrave; aliquos, quibus centrum grauitatis Py&shy;<lb/>ramidos difficile inuentu videatur; </s>
					<s id="N2A264"><!-- NEW -->quare in eorum gratiam facilem de&shy;<lb/>mon&longs;trationem &longs;ubijcio; </s>
					<s id="N2A26A"><!-- NEW -->&longs;it enim pyramis EFBA, cuius ba&longs;is &longs;it trian&shy;<lb/>gularis EFB; </s>
					<s id="N2A270"><!-- NEW -->ducatur EC diuidens bifariam FB, &longs;itque DC 1/3 totius <lb/>EC, centrum grauitatis ba&longs;is EFB e&longs;t D, per Sch.Th.2. ducatur AD, id <lb/>e&longs;t axis pyramidos, per communem definitionem; </s>
					<s id="N2A278"><!-- NEW -->quippe axis e&longs;t recta <lb/>ducta &agrave; vertice ad centrum grauitatis ba&longs;is oppo&longs;it&aelig;; </s>
					<s id="N2A27E"><!-- NEW -->ducatur AC, diui&shy;<lb/>dens BF bifariam &aelig;qualiter; </s>
					<s id="N2A284"><!-- NEW -->a&longs;&longs;umatur GC, 1/3 AC, ducatur EG, h&aelig;c <lb/>e&longs;t axis, vt patet ex dictis; </s>
					<s id="N2A28A"><!-- NEW -->a&longs;&longs;umatur autem triangulum AEC, &longs;itque HO <lb/>K maioris claritatis gratia, &longs;intque gemini axes HL, OI, centrum py&shy;<lb/>ramis e&longs;t in OI &amp; in HL; igitur in M; </s>
					<s id="N2A292"><!-- NEW -->&longs;ed ML e&longs;t 1/4 totius LH, quod <lb/>&longs;ic demon&longs;tro; </s>
					<s id="N2A298"><!-- NEW -->triangula PIM, OLM &longs;unt &aelig;quiangula; </s>
					<s id="N2A29C"><!-- NEW -->igitur propor&shy;<lb/>tionalia; </s>
					<s id="N2A2A2"><!-- NEW -->itemque duo HIN, &amp; HKO; </s>
					<s id="N2A2A6"><!-- NEW -->igitur vt HK ad KO, ita HI ad <lb/>IN; </s>
					<s id="N2A2AC"><!-- NEW -->&longs;ed HI continet 2/4 HK, per hypothe&longs;im; </s>
					<s id="N2A2B0"><!-- NEW -->igitur IN continet 2/3 KO; </s>
					<s id="N2A2B4"><!-- NEW --><lb/>igitur IN e&longs;t &aelig;qualis LO; </s>
					<s id="N2A2B9"><!-- NEW -->igitur vt IP e&longs;t ad LO, ita PM ad ML; &longs;ed <lb/>PI e&longs;t ad LO vt 2. 2/3 ad 8. id e&longs;t vt 3. ad 9. nam &longs;it OK 12. IN &aelig;qualis <lb/>LO e&longs;t 8.igitur PM e&longs;t ad ML, vt 3. ad 9. vel vt 1. ad 3. igitur &longs;it HL <lb/>12. PL erit 4. igitur PM 1. ML 3. igitur ML e&longs;t 1/4 LH, quod erat <lb/>demon&longs;trandum. </s>
				</p>
				<p id="N2A2C5" type="main">
					<s id="N2A2C7"><!-- NEW -->Si ver&ograve; pyramidos ba&longs;is &longs;it quadrilatera, vel polygona, diuidi pote&longs;t in <lb/>plures, quarum ba&longs;is &longs;it trilatera; quare in omni pyramide facil&egrave; de&shy;<lb/>mon&longs;tratur centrum grauitatis ita dirimere axem, vt &longs;egmentum ver&longs;us <lb/>ba&longs;im &longs;it 1/4 totius. </s>
				</p>
				<p id="N2A2D1" type="main">
					<s id="N2A2D3"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 28.<emph.end type="center"/></s>
				</p>
				<p id="N2A2DF" type="main">
					<s id="N2A2E1"><!-- NEW --><emph type="italics"/>Determinari pote&longs;t centrum percu&longs;&longs;ionis coni mixti, cuius ba&longs;is &longs;it portio <lb/>&longs;uperficiei &longs;ph&aelig;r&aelig;, cuius centrum &longs;it in apice coni<emph.end type="italics"/>; </s>
					<s id="N2A2EC"><!-- NEW -->quia vt &longs;e habet triangu&shy;<lb/>lum I&longs;o&longs;celes ad conum, ita &longs;e habet &longs;ector &longs;ub eodem angulo ad pr&aelig;di&shy;<lb/>ctum conum mixtum, vt patet; </s>
					<s id="N2A2F4"><!-- NEW -->quia vt conus ille rectus formatur a trian&shy;<lb/>gulo circa &longs;uum axem circumacto, ita &amp; mixtus formatur &agrave; &longs;ectore circa <lb/>&longs;uum axem circumuoluto; </s>
					<s id="N2A2FC"><!-- NEW -->igitur vt &longs;e habet di&longs;tantia inter centrum vel <lb/>apicem trianguli, circa quem voluitur, &amp; centrum percu&longs;&longs;ionis eiu&longs;dem <lb/>ad di&longs;tantiam inter eo&longs;dem terminos in cono recto, ita &longs;e habet di&longs;tan&shy;<lb/>tia inter eo&longs;dem terminos in &longs;ectore, ad di&longs;tantiam inter eo&longs;dem termi&shy;<lb/>nos in pr&aelig;dicto cono mixto; </s>
					<s id="N2A308"><!-- NEW -->&longs;ed cogno&longs;cuntur ex dictis &longs;upr&agrave; tres pri&shy;<lb/>mi termini huius proportionis; igitur cogno&longs;ci pote&longs;t quartus, igitur <lb/>determinari centrum percu&longs;&longs;ionis, quod erat demon&longs;trandum. </s>
				</p>
				<p id="N2A310" type="main">
					<s id="N2A312"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2A31E" type="main">
					<s id="N2A320">Colligo prim&ograve;, ex his facil&egrave; cogno&longs;ci po&longs;&longs;e centrum percu&longs;&longs;ionis &longs;e&shy;<lb/>ctoris &longs;ph&aelig;r&aelig;, nam vt &longs;e habet conus rectus ad pyramidem, ita &longs;e habes <lb/>pr&aelig;dictus conus mixtus ad &longs;ectorem, &longs;ub eodem &longs;cilicet angulo. </s>
				</p>
				<p id="N2A327" type="main">
					<s id="N2A329"><!-- NEW -->Colligo &longs;ecund&ograve;, etiam po&longs;&longs;e cogno&longs;ci centrum percu&longs;&longs;ionis eiu&longs;dem <lb/>&longs;ectoris circumacti, non tant&ugrave;m circa centrum &longs;ph&aelig;r&aelig;, &longs;ed circa radium; </s>
					<s id="N2A32F"><!-- NEW --><pb pagenum="435" xlink:href="026/01/469.jpg"/>imm&ograve; gemini &longs;ectoris coniuncti, &longs;eu quart&aelig; partis &longs;ph&aelig;r&aelig;, ex quo etiam <lb/>&longs;equitur determinatio centri grauitatis Hemi&longs;ph&aelig;rij, atque adeo totius <lb/>&longs;ph&aelig;r&aelig;; qu&aelig; omnia pendent ex dictis &longs;upr&agrave;. </s>
				</p>
				<p id="N2A33B" type="main">
					<s id="N2A33D"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2A349" type="main">
					<s id="N2A34B">Ob&longs;eruabis &longs;upere&longs;&longs;e innumeras fer&egrave; corporum rationes, v.g.&longs;ph&aelig;ram <lb/>ex dato puncto &longs;uperficiei libratam, t&ugrave;m elliptica &longs;olida, parabolica, hy&shy;<lb/>perbolica, &amp;c. </s>
					<s id="N2A352"><!-- NEW -->quorum centra percu&longs;&longs;ionis determinari po&longs;&longs;unt; &longs;ed ab&shy;<lb/>&longs;tineo, t&ugrave;m quia cum multam mathe&longs;im de&longs;iderent, vix habent aliquem <lb/>in phy&longs;ica locum, t&ugrave;m quia plura excerpere non potui, ex innumeris pe&shy;<lb/>n&egrave;, qu&aelig; apud &longs;e no&longs;ter Philo&longs;ophus habet. </s>
				</p>
				<p id="N2A35C" type="main">
					<s id="N2A35E"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 29.<emph.end type="center"/></s>
				</p>
				<p id="N2A36A" type="main">
					<s id="N2A36C"><!-- NEW --><emph type="italics"/>Determinari pote&longs;t centrum impre&longs;&longs;ionis, t&ugrave;m in linea, t&ugrave;m in plano, t&ugrave;&mtail; <lb/>in &longs;olido qu&aelig; circumaguntur<emph.end type="italics"/>; quia pote&longs;t diuidi bifariam, t&ugrave;m planum illud <lb/>&longs;i &longs;it linea, t&ugrave;m &longs;olidum, &longs;i planum vel &longs;olidum, vt patet per def.2. </s>
				</p>
				<p id="N2A379" type="main">
					<s id="N2A37B"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 30.<emph.end type="center"/></s>
				</p>
				<p id="N2A387" type="main">
					<s id="N2A389"><!-- NEW --><emph type="italics"/>Si linea rigida libretur circa alteram extremitatem immobilem a&longs;&longs;uma&shy;<lb/>turque funependulum, cuius longitudo contineat<emph.end type="italics"/> 2/3 <emph type="italics"/>pr&aelig;dict&aelig; line&aelig;, vibrationes <lb/>vtriu&longs;que erunt &aelig;quediuturn&aelig;<emph.end type="italics"/>; quod demon&longs;tratur; </s>
					<s id="N2A39C"><!-- NEW -->quia centrum percu&longs;&shy;<lb/>&longs;ionis pr&aelig;dict&aelig; line&aelig; di&longs;tat 2/3 ab altera extremitate immobili per Th.8. <lb/>atqui centrum percu&longs;&longs;ionis in hoc motu circulari dirigit motum aliorum <lb/>punctorum; </s>
					<s id="N2A3A6"><!-- NEW -->quia defungitur munere centri grauitatis, vt patet ex dictis; </s>
					<s id="N2A3AA"><!-- NEW --><lb/>nec enim alterum &longs;egmentorum pr&aelig;ualet; </s>
					<s id="N2A3AF"><!-- NEW -->&longs;ed totus motus impeditur, <lb/>per po&longs;.2. igitur perinde &longs;e habet atque &longs;i totum pondus, vel totam vim <lb/>collectam haberet; </s>
					<s id="N2A3B7"><!-- NEW -->&longs;ed in hoc ca&longs;u e&longs;&longs;et ad in&longs;tar funependuli, in quo <lb/>non habetur vlla ratio fili, &longs;ed ponderis appen&longs;i; igitur eius vibratio e&longs;t <lb/>&aelig;quediuturna cum vibratione pr&aelig;dicti funependuli quod erat demon&shy;<lb/>&longs;trandum. </s>
				</p>
				<p id="N2A3C1" type="main">
					<s id="N2A3C3"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2A3CF" type="main">
					<s id="N2A3D1"><!-- NEW -->Ob&longs;eruabis, ex hoc vno certi&longs;&longs;imo principio egregium experimentum <lb/>mirific&egrave; comprobari; nemp&egrave; &longs;&aelig;pi&ugrave;s compertum e&longs;t innumeris fer&egrave; expe&shy;<lb/>rimentis, t&ugrave;m ab erudito Mer&longs;enno, t&ugrave;m &agrave; no&longs;tro Philo&longs;opho longitu&shy;<lb/>dinem funependuli i&longs;ochroni cum cylindro continere 2/3 cylindri. </s>
				</p>
				<p id="N2A3DB" type="main">
					<s id="N2A3DD"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 31.<emph.end type="center"/></s>
				</p>
				<p id="N2A3E9" type="main">
					<s id="N2A3EB"><!-- NEW --><emph type="italics"/>Si voluatur planum rectangulum circa alterum laterum, funependulum <lb/>i&longs;ochronum continet duas tertias<emph.end type="italics"/>; probatur eodem modo; nam perinde &longs;e <lb/>habet illud planum, atque &longs;i mult&aelig; line&aelig; parallel&aelig; &longs;imul volueren&shy;<lb/>tur. </s>
				</p>
				<p id="N2A3FA" type="main">
					<s id="N2A3FC"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 32.<emph.end type="center"/></s>
				</p>
				<p id="N2A408" type="main">
					<s id="N2A40A"><!-- NEW --><emph type="italics"/>Si voluatur planum triangulare circa angulum, eo modo quo diximus in <lb/>Th.<emph.end type="italics"/>11. <emph type="italics"/>funependulum i&longs;ochronum continet<emph.end type="italics"/> 3/4 <emph type="italics"/>axis pr&aelig;dicti trianguli<emph.end type="italics"/>; quia in <lb/>1/4 e&longs;t centrum percu&longs;&longs;ionis per Th. 11. </s>
				</p>
				<pb pagenum="436" xlink:href="026/01/470.jpg"/>
				<p id="N2A428" type="main">
					<s id="N2A42A"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 33.<emph.end type="center"/></s>
				</p>
				<p id="N2A436" type="main">
					<s id="N2A438"><!-- NEW --><emph type="italics"/>Si voluatur pr&aelig;dictum planum circa ba&longs;im eo modo, quo dictum e&longs;t Th.<emph.end type="italics"/>12. <lb/><emph type="italics"/>funependulum i&longs;ochronum continet<emph.end type="italics"/> 1/2 <emph type="italics"/>eiu&longs;dem axis<emph.end type="italics"/>; quod eodem modo de&shy;<lb/>mon&longs;tratur per Th.12. </s>
				</p>
				<p id="N2A450" type="main">
					<s id="N2A452"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2A45E" type="main">
					<s id="N2A460">Colligo prim&ograve;, cuilibet &longs;ectori funependulum i&longs;ochronum po&longs;&longs;e a&longs;&longs;i&shy;<lb/>gnari, quia cuiu&longs;libet &longs;ectoris, qui voluitur circa angulum, eo modo <lb/>quo diximus Th.13. centrum percu&longs;&longs;ionis determinatum e&longs;t. </s>
				</p>
				<p id="N2A467" type="main">
					<s id="N2A469">Colligo &longs;ecund&ograve;, &longs;i rotetur planum circulare, eo modo quo diximus <lb/>Th.21. funependuli i&longs;ochroni longitudinem continere 2/3 diametri eiu&longs;&shy;<lb/>dem circuli, quia ibi e&longs;t centrum percu&longs;&longs;ionis eiu&longs;dem circuli, per <lb/>Th. 21. </s>
				</p>
				<p id="N2A472" type="main">
					<s id="N2A474">Colligo terti&ograve;, &longs;i rotetur planum circulare circa diametrum, etiam <lb/>po&longs;&longs;e determinari ex centro percu&longs;&longs;ionis inuento, longitudinem fune&shy;<lb/>penduli i&longs;ochroni, vt patet ex dictis. </s>
				</p>
				<p id="N2A47B" type="main">
					<s id="N2A47D"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 34.<emph.end type="center"/></s>
				</p>
				<p id="N2A489" type="main">
					<s id="N2A48B"><!-- NEW --><emph type="italics"/>Quando voluitur planum triangulare parallelum plano in quo voluitur, <lb/>determinari pote&longs;t longitudo funependuli i&longs;ochroni<emph.end type="italics"/>; &longs;it enim AFH, cuius <lb/>centrum extrin&longs;ecum percu&longs;&longs;ionis fit C, longitudo funependuli i&longs;ochro&shy;<lb/>ni erit AC, quod eodem modo demon&longs;tratur. </s>
				</p>
				<p id="N2A49A" type="main">
					<s id="N2A49C"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2A4A8" type="main">
					<s id="N2A4AA"><!-- NEW -->Colligo prim&ograve;, etiam determinari po&longs;&longs;e, quando ita voluitur vt latus <lb/>in quo fit percu&longs;&longs;io &longs;u&longs;tineat angulum rectum, v.g. <!-- REMOVE S-->triangulum AGB <lb/>circumactum circa A, habet centrum percu&longs;&longs;ionis in M; igitur AM e&longs;t <lb/>longitudo funependuli i&longs;ochroni. </s>
				</p>
				<p id="N2A4B6" type="main">
					<s id="N2A4B8"><!-- NEW -->Secund&ograve;, &longs;i voluatur circa angulum rectum; </s>
					<s id="N2A4BC"><!-- NEW -->v.g. <!-- REMOVE S-->triangulum ABH <lb/>circa B, centrum percu&longs;&longs;ionis e&longs;t in E; igitur BE e&longs;t longitudo funepen&shy;<lb/>duli i&longs;ochroni. </s>
				</p>
				<p id="N2A4C6" type="main">
					<s id="N2A4C8"><!-- NEW -->Terti&ograve;, aliquando longitudo pr&aelig;dicta e&longs;t minor latere, in quo fit <lb/>percu&longs;&longs;io, vt patet in exemplis adductis; </s>
					<s id="N2A4CE"><!-- NEW -->aliquando e&longs;t &aelig;qualis, vt in <lb/>triangulo ABD volutum circa A, nam centrum percu&longs;&longs;ionis e&longs;t D; </s>
					<s id="N2A4D4"><!-- NEW -->igi&shy;<lb/>tur longitudo funependuli i&longs;ochroni e&longs;t AD; </s>
					<s id="N2A4DA"><!-- NEW -->aliquando e&longs;t maior, vt <lb/>videre e&longs;t in triangulo ALG, quod voluitur circa A; nam longitudo fu&shy;<lb/>nependuli i&longs;ochroni e&longs;t AI, qu&aelig; e&longs;t maior AL. <!-- KEEP S--></s>
				</p>
				<p id="N2A4E3" type="main">
					<s id="N2A4E5">Quart&ograve;, &longs;i coniungantur duo triangula v.g. <!-- REMOVE S-->EAS. ADS. voluan&shy;<lb/>turque &longs;imul circa A, eo modo quo diximus &longs;cilicet parallela plano, in <lb/>quo voluuntur, longitudo i&longs;ochroni funependuli erit AF, po&longs;ito qu&ograve;d <lb/>F &longs;it centrum percu&longs;&longs;ionis, vt dictum e&longs;t &longs;upr&agrave; Corol. <!-- REMOVE S-->5. Th.19. </s>
				</p>
				<p id="N2A4F2" type="main">
					<s id="N2A4F4">Quint&ograve;, hinc vides rationem egregij experimenti, quod &longs;&aelig;p&egrave; Doctus <lb/>Mer&longs;ennus propo&longs;uit, &longs;cilicet longitudinem funependuli i&longs;ochroni e&longs;&longs;e <lb/>fer&egrave; quadruplam perpendicularis duct&aelig; in ba&longs;im trianguli I&longs;o&longs;celis, li&shy;<lb/>brati circa angulum verticis 150.grad. </s>
					<s id="N2A4FD">quod cert&egrave; ad veritatem tam pro&shy;<lb/>p&egrave; accedit ex geometrica calculatione, vt nullum pror&longs;us di&longs;crimen <pb pagenum="Tabula sexta" xlink:href="026/01/471.jpg"/><pb xlink:href="026/01/473.jpg"/><pb pagenum="437" xlink:href="026/01/473.jpg"/>e&longs;&longs;e videatur, methodus huius calculationis facilis e&longs;t, &amp; &agrave; mediocri <lb/>Logi&longs;ta haberi pote&longs;t. </s>
				</p>
				<p id="N2A509" type="main">
					<s id="N2A50B"><!-- NEW -->Sext&ograve;, hinc etiam habetur longitudo funependuli i&longs;ochroni, &longs;i vol&shy;<lb/>uatur planum circulare parallelum plano, in quo voluitur, continet <lb/>enim 2/3 diametri circuli, qui voluitur; vt patet ex Th. 22. idem dico de <lb/>quolibet &longs;ectore, qui eodem modo voluatur. </s>
				</p>
				<p id="N2A515" type="main">
					<s id="N2A517"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 35.<emph.end type="center"/></s>
				</p>
				<p id="N2A523" type="main">
					<s id="N2A525"><!-- NEW --><emph type="italics"/>Si voluatur pyramis circa verticem, determinari pote&longs;t longitudo funepen&shy;<lb/>duli i&longs;ochroni, idem dico de parallelipedo, pri&longs;mate, cono, cylindro, &amp;c.<emph.end type="italics"/> per <lb/>Th.25. 26. &amp; Corollaria; </s>
					<s id="N2A532"><!-- NEW -->quia inuento centro percu&longs;&longs;ionis extrin&longs;eco, <lb/>habetur pr&aelig;dicta longitudo; idem dico de cono mixto, &longs;ectore &longs;olido, <lb/>&amp;c. </s>
					<s id="N2A53A">per Th.28. &amp; Coroll. <!-- KEEP S--></s>
				</p>
				<p id="N2A53E" type="main">
					<s id="N2A540"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2A54C" type="main">
					<s id="N2A54E">Hinc colligo prim&ograve; ex dato centro percu&longs;&longs;ionis extrin&longs;eco, dari &longs;tatim <lb/>longitudinem funependuli i&longs;ochroni, &amp; vici&longs;&longs;im. </s>
				</p>
				<p id="N2A553" type="main">
					<s id="N2A555">Secund&ograve;, data quacunque longitudine funependuli i&longs;ochroni, v. <!-- REMOVE S-->g. <lb/><!-- REMOVE S-->tripla perpendicularis, cadentis in ba&longs;im trianguli i&longs;o&longs;celis, dari po&longs;&longs;e <lb/>triangulum, cuius libratio &longs;it &aelig;quediuturna, &longs;ed h&aelig;c breuiter indica&longs;&longs;e <lb/>&longs;ufficiat. <lb/><figure id="id.026.01.473.1.jpg" xlink:href="026/01/473/1.jpg"/></s>
				</p>
				<pb pagenum="438" xlink:href="026/01/474.jpg"/>
				<figure id="id.026.01.474.1.jpg" xlink:href="026/01/474/1.jpg"/>
				<p id="N2A570" type="main">
					<s id="N2A572"><emph type="center"/>APPENDIX SECVNDA.<emph.end type="center"/></s>
				</p>
				<p id="N2A579" type="main">
					<s id="N2A57B"><emph type="center"/><emph type="italics"/>DE PRINCIPIO PHYSICOSTATICO, <lb/>ad mouenda ingentia pondera.<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N2A588" type="main">
					<s id="N2A58A"><!-- NEW -->DVo &longs;unt in Statica, qu&aelig; demon&longs;trationem de&longs;idera&shy;<lb/>re po&longs;&longs;unt; Primum e&longs;t, quod &longs;pectat ad proportio&shy;<lb/>nes potentiarum, ponderum, re&longs;i&longs;tenti&aelig;, motuum, <lb/>temporum, di&longs;tantiarum, &amp;c. </s>
					<s id="N2A594">Secundum pertinet <lb/>ad cau&longs;as Phy&longs;icas huiu&longs;modi effectuum, qui c&ugrave;m &longs;int <lb/>naturales, &amp; &longs;en&longs;ibiles, &longs;ua cau&longs;a carere non po&longs;&longs;unt. </s>
					<s id="N2A59B"><lb/>Primum &longs;an&egrave; quod ad Mathe&longs;im attinet egregi&egrave; pr&aelig;&shy;<lb/>&longs;titerunt hactenus docti&longs;&longs;imi viri Vbaldus, Steuinus, Galileus, &amp;c. </s>
					<s id="N2A5A1"><!-- NEW --><lb/>ita vt nihil amplius de&longs;iderari po&longs;&longs;it; </s>
					<s id="N2A5A6"><!-- NEW -->Secundum tamen quod iuris phy&shy;<lb/>&longs;ici e&longs;t, vix, ac ne vix quidem delibatum inuenio; quare ad huius libri <lb/>calcem principium Phy&longs;ico&longs;taticum breuiter explicandum &longs;u&longs;cipio, per <lb/>quod duntaxat illi omnes mirifici effectus ad &longs;uas cau&longs;as reducantur, <lb/>quod ni&longs;i fallor huic tractatui dee&longs;&longs;e videtur. <lb/><gap desc="hr tag"/></s>
				</p>
				<p id="N2A5B5" type="main">
					<s id="N2A5B7"><emph type="center"/><emph type="italics"/>AXIOMA<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2A5C4" type="main">
					<s id="N2A5C6"><emph type="italics"/>AB eadem potenti&acirc; facili&ugrave;s producitur in eodem mobili minor motus, <lb/>quam maior.<emph.end type="italics"/></s>
				</p>
				<p id="N2A5CF" type="main">
					<s id="N2A5D1"><!-- NEW -->Hoc Axioma manife&longs;tum redditur ex ijs, qu&aelig; pa&longs;&longs;im habentur in lib. <!-- REMOVE S--><lb/>1. de impetu; </s>
					<s id="N2A5D8"><!-- NEW -->quippe motus ex duplici tant&ugrave;m capite minor e&longs;&longs;e pote&longs;t; </s>
					<s id="N2A5DC"><!-- NEW --><lb/>prim&ograve;, ex eo qu&ograve;d &longs;ingulis partibus mobilis pauciores partes impetus <lb/>in&longs;int; </s>
					<s id="N2A5E3"><!-- NEW -->&longs;ecund&ograve; ex eo qu&ograve;d imperfectior impetus mobili imprimatur; </s>
					<s id="N2A5E7"><!-- NEW --><lb/>atqui ex vtroque capite facili&ugrave;s producit ut minor motus; quia facili&ugrave;s <lb/>imprimitur minor, vel imperfectior impetus, nempe minore ni&longs;u agit <lb/>potentia. </s>
				</p>
				<p id="N2A5F0" type="main">
					<s id="N2A5F2"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2A5FF" type="main">
					<s id="N2A601"><emph type="italics"/>Qu&ograve; maiore tempore datum &longs;patium percurritur, e&ograve; minor e&longs;t motus, id e&longs;t <lb/>tardior, vt patet ex dictis l.<emph.end type="italics"/>1. </s>
				</p>
				<pb pagenum="439" xlink:href="026/01/475.jpg"/>
				<p id="N2A60F" type="main">
					<s id="N2A611"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2A61E" type="main">
					<s id="N2A620"><!-- NEW --><emph type="italics"/>Qu&ograve; minus &longs;patium decurritur dato tempore minor, &amp; tardior e&longs;t motus<emph.end type="italics"/>; <lb/>hoc etiam con&longs;tat ex eadem dem. </s>
				</p>
				<p id="N2A62B" type="main">
					<s id="N2A62D"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2A63A" type="main">
					<s id="N2A63C"><emph type="italics"/>Maiore tempore potentia applicata &longs;i &longs;emper agit, plus agit.<emph.end type="italics"/></s>
					<s id="N2A643"> Quid clarius? </s>
				</p>
				<p id="N2A646" type="main">
					<s id="N2A648"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 5.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2A655" type="main">
					<s id="N2A657"><!-- NEW --><emph type="italics"/>Pondus alteri &aelig;quale illud mouere tantum non pote&longs;t motu &aelig;quali<emph.end type="italics"/>; </s>
					<s id="N2A660"><!-- NEW -->cur <lb/>enim pondus A mouebit B poti&ugrave;s qu&agrave;m B. A: quod certum e&longs;t. </s>
				</p>
				<p id="N2A666" type="main">
					<s id="N2A668"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 6.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2A675" type="main">
					<s id="N2A677"><!-- NEW --><emph type="italics"/>Pondus alteri &aelig;quale mouere pote&longs;t illud motu minore<emph.end type="italics"/>; </s>
					<s id="N2A680"><!-- NEW -->quia c&ugrave;m &aelig;quali <lb/>mouere tant&ugrave;m non po&longs;&longs;it, &amp; c&ugrave;m po&longs;&longs;it facili&ugrave;s minore, qu&agrave;m maiore; <lb/>cert&egrave; minore mouere pote&longs;t. </s>
				</p>
				<p id="N2A68A" type="main">
					<s id="N2A68C"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 7.<emph.end type="center"/></s>
				</p>
				<p id="N2A698" type="main">
					<s id="N2A69A"><emph type="italics"/>Pondus minus pote&longs;t mouere maius motu minore, &longs;i maior &longs;it proportio mo&shy;<lb/>tuum, qu&agrave;m ponderum,<emph.end type="italics"/> v.g. <!-- REMOVE S-->pondus duarum librarum quod mouetur <lb/>motu vt 3.pote&longs;t mouere pondus 4.librarum motu vt 1.vt patet ex dictis. </s>
				</p>
				<p id="N2A6A8" type="main">
					<s id="N2A6AA"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 8.<emph.end type="center"/></s>
				</p>
				<p id="N2A6B6" type="main">
					<s id="N2A6B8"><!-- NEW --><emph type="italics"/>E&ograve; facili&ugrave;s mouetur pondus per inclinatam, qu&agrave;m per ip&longs;um perpendicu&shy;<lb/>lum, qu&ograve; inclinata maior e&longs;t perpendiculo<emph.end type="italics"/>; vt patet ex ijs, qu&aelig; dicta &longs;unt l.5. <lb/>de planis inclinatis. </s>
				</p>
				<p id="N2A6C5" type="main">
					<s id="N2A6C7"><emph type="center"/><emph type="italics"/>Axioma<emph.end type="italics"/> 9.<emph.end type="center"/></s>
				</p>
				<p id="N2A6D3" type="main">
					<s id="N2A6D5"><emph type="italics"/>Pondus maius mouet tant&ugrave;m minus motu maiore, cum e&longs;t maior proportio <lb/>ponderum qu&agrave;m motuum,<emph.end type="italics"/> vt patet. </s>
				</p>
				<p id="N2A6DF" type="main">
					<s id="N2A6E1"><emph type="center"/><emph type="italics"/>Problema vniuer&longs;ali&longs;&longs;imum.<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N2A6EC" type="main">
					<s id="N2A6EE"><emph type="italics"/>Mouere quodcumque pondus &agrave; qualibet applicata potentia moueatur motu <lb/>minore, ita vt &longs;it maior proportio motuum, qu&agrave;m ponderum,<emph.end type="italics"/> per Ax. 7. </s>
				</p>
				<p id="N2A6F8" type="main">
					<s id="N2A6FA"><emph type="center"/><emph type="italics"/>Coroll. <!-- REMOVE S-->vniuer&longs;ali&longs;&longs;imum.<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N2A707" type="main">
					<s id="N2A709"><!-- NEW -->Hinc colligo, in eo tant&ugrave;m po&longs;itam e&longs;&longs;e indu&longs;triam, qua po&longs;&longs;int <lb/>pondera moueri, vt minore, &amp; minore motu moueantur; igitur, qua <lb/>proportione imminues motum, e&acirc;dem maius pondus mouebis. </s>
				</p>
				<p id="N2A711" type="main">
					<s id="N2A713"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 1.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2A720" type="main">
					<s id="N2A722"><emph type="italics"/>&AElig;qualia pondera &aelig;quali vtrimque brachio libr&aelig; appen&longs;a &longs;unt in &aelig;quilibrio<emph.end type="italics"/><lb/>per Ax.5. <!-- KEEP S--></s>
				</p>
				<p id="N2A72C" type="main">
					<s id="N2A72E"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 2.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2A73B" type="main">
					<s id="N2A73D"><!-- NEW --><emph type="italics"/>In &aelig;qualia pondera in&aelig;quali brachio librata faciunt &aelig;quilibrium &longs;i &longs;it ea&shy;<lb/>dem proportio brachiorum qu&aelig; ponderum permutando<emph.end type="italics"/>; </s>
					<s id="N2A748"><!-- NEW -->quia e&longs;t eadem pro&shy;<lb/>portio motuum, qu&aelig; brachiorum, vt patet; igitur &longs;unt in &aelig;quilibrio nec <lb/>enim minus pondus attolli pote&longs;t &agrave; maiori per Ax.9.nec maius &agrave; mino&shy;<lb/>re per Ax.7. igitur &longs;unt in &aelig;quilibrio. </s>
				</p>
				<pb pagenum="440" xlink:href="026/01/476.jpg"/>
				<p id="N2A756" type="main">
					<s id="N2A758"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2A764" type="main">
					<s id="N2A766"><!-- NEW -->Hinc collige omnes rationes, qu&aelig; &longs;pectant ad libram; </s>
					<s id="N2A76A"><!-- NEW -->hinc vulgare <lb/>illud dictum mechanicum: Si pondera &longs;int vt di&longs;tanti&aelig;, &longs;unt in &aelig;qui&shy;<lb/>librio. </s>
				</p>
				<p id="N2A772" type="main">
					<s id="N2A774">Hinc coniugari po&longs;&longs;unt infinitis modis pondera, &amp; di&longs;tanti&aelig;, quorum <lb/>omnium rationes compo&longs;it&aelig; ob&longs;eruari debent. </s>
				</p>
				<p id="N2A779" type="main">
					<s id="N2A77B">Hinc etiam obliqua libra, &amp; inclinata, &longs;i &longs;upponantur brachia adin&shy;<lb/>&longs;tar line&aelig; indiui&longs;ibilis facit &aelig;quilibrium. </s>
				</p>
				<p id="N2A780" type="main">
					<s id="N2A782"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 3.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2A78F" type="main">
					<s id="N2A791"><!-- NEW --><emph type="italics"/>Ideo facil&egrave; ingens pondus attollitur vecte, quia mouetur motu minore iux&shy;<lb/>ta <expan abbr="e&atilde;dem">eandem</expan> rationem, de quo &longs;upr&agrave;<emph.end type="italics"/>; </s>
					<s id="N2A7A0"><!-- NEW -->c&ugrave;m enim &longs;upponatur in vecte pun&shy;<lb/>ctum immobile, quod certo nititur fulcro; </s>
					<s id="N2A7A6"><!-- NEW -->nece&longs;&longs;e e&longs;t vtrimque moueri <lb/>&longs;egmenta vectis motu circulari, <expan abbr="eo&qacute;ue">eoque</expan> in&aelig;quali; </s>
					<s id="N2A7B0"><!-- NEW -->quia &longs;unt in&aelig;qualia; </s>
					<s id="N2A7B4"><!-- NEW -->igi&shy;<lb/>tur altero minore; &amp; h&aelig;c e&longs;t prima ratio imminuendi motus. </s>
				</p>
				<p id="N2A7BA" type="main">
					<s id="N2A7BC"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2A7C8" type="main">
					<s id="N2A7CA"><!-- NEW -->Hinc datum quodcunque pondus attollitur vecte; hinc qu&ograve; &longs;egmen&shy;<lb/>tum, quod &agrave; fulcro porrigitur ver&longs;us pondus quod attollitur e&longs;t breuius, <lb/>e&ograve; maius pondus attolli pote&longs;t. </s>
				</p>
				<p id="N2A7D2" type="main">
					<s id="N2A7D4">Hinc vectis per Tangentem &longs;emper attolli debet, vt maiorem pr&aelig;&longs;tet <lb/>effectum, vt con&longs;tat ex ijs, qu&aelig; diximus l.4. </s>
				</p>
				<p id="N2A7D9" type="main">
					<s id="N2A7DB"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 4.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2A7E8" type="main">
					<s id="N2A7EA"><!-- NEW --><emph type="italics"/>Ideo facil&egrave; attollitur ingens pondus trochlea, quia mouetur motu minor&etail;, <lb/>vt manife&longs;tum e&longs;t<emph.end type="italics"/>; </s>
					<s id="N2A7F5"><!-- NEW -->e&longs;t autem minor motus in ea proportione, in qua lon&shy;<lb/>gitudo funis adducti &longs;uperat altitudinem &longs;patij decur&longs;i &agrave; pondere, quod <lb/>attollitur; mirabile &longs;an&egrave; inuentum, &longs;i quod aliud. </s>
				</p>
				<p id="N2A7FD" type="main">
					<s id="N2A7FF"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2A80B" type="main">
					<s id="N2A80D"><!-- NEW -->Hinc, &longs;i funis adducatur deor&longs;um, vnica rotula non iuuat potentiam; </s>
					<s id="N2A811"><!-- NEW --><lb/>quia longitudo funis adducti e&longs;t &aelig;qualis altitudini &longs;patij decur&longs;i &agrave; pon&shy;<lb/>dere; </s>
					<s id="N2A818"><!-- NEW -->&longs;i ver&ograve; adducatur &longs;ur&longs;um vnica rotula duplicat potentiam; </s>
					<s id="N2A81C"><!-- NEW -->quia lon&shy;<lb/>gitudo pr&aelig;dicta funis adducti e&longs;t dupla pr&aelig;dict&aelig; altitudinis; </s>
					<s id="N2A822"><!-- NEW -->igitur mo&shy;<lb/>tus ponderis a&longs;cendentis e&longs;t &longs;ubduplus; </s>
					<s id="N2A828"><!-- NEW -->igitur duplum pondus eadem po&shy;<lb/>tentia attollet, vel idem pondus &longs;ubdupla per Ax. 1. &longs;i ver&ograve; &longs;int du&aelig; ro&shy;<lb/>tul&aelig; adducaturque deor&longs;um, duplum etiam pondus attollet eadem po&shy;<lb/>tentia; </s>
					<s id="N2A832"><!-- NEW -->quia longitudo funis adducti e&longs;t dupla altitudinis; ex his reliqua <lb/>de trochlea facil&egrave; intelligentur, </s>
				</p>
				<p id="N2A838" type="main">
					<s id="N2A83A"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2A846" type="main">
					<s id="N2A848"><!-- NEW -->Equidem demon&longs;trari pote&longs;t aliter &agrave; debili potentia &longs;u&longs;tineri po&longs;&longs;e <lb/>ingens pondus oper&acirc; trochle&aelig;; </s>
					<s id="N2A84E"><!-- NEW -->quia &longs;cilicet pluribus di&longs;tribuitur &longs;u&longs;ti&shy;<lb/>nendi munus, vt clarum e&longs;t; </s>
					<s id="N2A854"><!-- NEW -->quod ver&ograve; &longs;pectat ad motum, vnum tant&ugrave;m <lb/>e&longs;t illius principium, &longs;cilicet potentia, qu&aelig; trahit; lic&egrave;t enim clauus, cui <lb/>affigitur altera extremitas funis po&longs;&longs;it &longs;u&longs;tinere, non tamen mouere. </s>
				</p>
				<p id="N2A85C" type="main">
					<s id="N2A85E"><!-- NEW -->Hinc demum ratio, cur &longs;i multiplicentur funes, &amp; orbiculi ingens-<pb pagenum="441" xlink:href="026/01/477.jpg"/>etiam pondus perexiguis fu&longs;ciculis &longs;u&longs;tineri po&longs;&longs;it; </s>
					<s id="N2A867"><!-- NEW -->quia pluribus di&longs;tri&shy;<lb/>buitur: hinc, &longs;i plura e&longs;&longs;ent arane&aelig; fila, maximum &longs;axum &longs;u&longs;tinere po&longs;&longs;ent. </s>
				</p>
				<p id="N2A86D" type="main">
					<s id="N2A86F"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 5.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2A87C" type="main">
					<s id="N2A87E"><!-- NEW --><emph type="italics"/>Ideo mouetur ingens pondus oper&acirc; axis, vel &longs;ucul&aelig;; quia &longs;cilicet imminuitur <lb/>matus,<emph.end type="italics"/> vt clarum e&longs;t. </s>
				</p>
				<p id="N2A889" type="main">
					<s id="N2A88B"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2A897" type="main">
					<s id="N2A899"><!-- NEW -->Hinc, qu&ograve; minor e&longs;t diameter axis, maius pondus attollitur &longs;eu mo&shy;<lb/>uetur; </s>
					<s id="N2A89F"><!-- NEW -->quia c&ugrave;m circulorum peripheri&aelig; &longs;int vt &longs;emidiametri, qu&ograve; minor <lb/>e&longs;t diameter axis cui aduoluitur funis ductarius, e&longs;t minor motus; </s>
					<s id="N2A8A7"><!-- NEW -->igi&shy;<lb/>tur maius pondus attollitur; </s>
					<s id="N2A8AD"><!-- NEW -->igitur &longs;i longitudo vectis &longs;it dupla &longs;emidia&shy;<lb/>metri &longs;ucul&aelig;, duplum pondus attollitur; &longs;i tripla, triplum, &amp;c. </s>
				</p>
				<p id="N2A8B3" type="main">
					<s id="N2A8B5">Huc reuoca terebra&sacute;, &amp; manubria, &amp;c. </s>
				</p>
				<p id="N2A8B8" type="main">
					<s id="N2A8BA"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 6.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2A8C7" type="main">
					<s id="N2A8C9"><!-- NEW --><emph type="italics"/>Ideo cochlea mouet ingens pondus<emph.end type="italics"/>; quia imminuit motum, vt videre e&longs;t <lb/>in torcularibus, in quibus Helicis opera ingens pri&longs;ma attollitur. </s>
				</p>
				<p id="N2A8D4" type="main">
					<s id="N2A8D6"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2A8E2" type="main">
					<s id="N2A8E4"><!-- NEW -->Hinc qu&ograve; &longs;unt plures Helices, &amp; decliuiores motus rectus e&longs;t minor; <lb/>hinc facili&ugrave;s attollitur pondus; &longs;i enim longitudo &longs;pir&aelig; e&longs;t decupla axis, <lb/>potentia decuplum pondus attollet. </s>
				</p>
				<p id="N2A8ED" type="main">
					<s id="N2A8EF"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 7.<emph.end type="center"/></s>
				</p>
				<p id="N2A8FB" type="main">
					<s id="N2A8FD"><emph type="italics"/>Ide&ograve; tant&aelig; &longs;unt cunei vires, quia motum imminuit.<emph.end type="italics"/></s>
				</p>
				<p id="N2A904" type="main">
					<s id="N2A906"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2A912" type="main">
					<s id="N2A914"><!-- NEW -->Hinc qu&ograve; angulus cunei e&longs;t acutior, maius pondus attollitur eius ope&shy;<lb/>r&acirc;; hinc proportiones omnes demon&longs;trari po&longs;&longs;unt, hinc cuneus ad angu&shy;<lb/>lum 45. &amp; &longs;upr&agrave; non iuuat potentiam, &longs;ecus infr&agrave;, ad cuneum reuoca <lb/>clauos &amp; gladios. </s>
				</p>
				<p id="N2A920" type="main">
					<s id="N2A922"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 8.<emph.end type="center"/></s>
				</p>
				<p id="N2A92E" type="main">
					<s id="N2A930"><!-- NEW --><emph type="italics"/>Ideo rotis denticulatis mouetur ingens pondus<emph.end type="italics"/>; quia imminuitur motus, <lb/>vt clarum e&longs;t. </s>
				</p>
				<p id="N2A93B" type="main">
					<s id="N2A93D"><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2A949" type="main">
					<s id="N2A94B">Ob&longs;eruabis huius organi oper&acirc; imminui po&longs;&longs;e motum in infinitum, <lb/>atque ad eo maius &longs;emper pondus, &amp; maius in infinitum attolli po&longs;&longs;e. </s>
				</p>
				<p id="N2A950" type="main">
					<s id="N2A952"><emph type="center"/><emph type="italics"/>Corollarium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2A95E" type="main">
					<s id="N2A960">Ex his facil&egrave; colliges ad mouenda pondera in eo tant&ugrave;m po&longs;itam e&longs;&longs;e <lb/>indu&longs;triam, vt motus imminuatur, &amp; vnicum illud e&longs;&longs;e principium phy&shy;<lb/>&longs;icomechanicum. </s>
				</p>
				<p id="N2A967" type="main">
					<s id="N2A969"><emph type="center"/><emph type="italics"/>Theorema<emph.end type="italics"/> 9.<emph.end type="center"/></s>
				</p>
				<p id="N2A975" type="main">
					<s id="N2A977"><emph type="italics"/>Vt pondus attollatur adhiberi pote&longs;t alia indu&longs;tria &longs;cilicet plani inclinati, in <lb/>quo facili&ugrave;s pondus attollitur, qu&agrave;m in verticali,<emph.end type="italics"/> de quo iam &longs;upr&agrave; in lib. 5.<!-- REMOVE S--><emph type="center"/><emph type="italics"/>Scholium.<emph.end type="italics"/><emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2A98D" type="main">
					<s id="N2A98F"><!-- NEW -->Ob&longs;eruabis autem, organum mechanicum adhiberi po&longs;&longs;e ad mouen-<pb pagenum="442" xlink:href="026/01/478.jpg"/>dum pondus per omne planum, in plano horizontali facillim&egrave; ingens <lb/>pondus moueri pote&longs;t; pr&aelig;&longs;ertim &longs;i plani &longs;cabrities non impediat motum. </s>
				</p>
				<p id="N2A99A" type="main">
					<s id="N2A99C">Hinc modico organo ingentem nauim facil&egrave; mouebat Archimedes, <lb/>quam &longs;ine organo tota ciuitas non mouere poterat. </s>
				</p>
				<p id="N2A9A1" type="main">
					<s id="N2A9A3">Qu&aelig;res, quot &longs;int potenti&aelig; mechanic&aelig;? </s>
					<s id="N2A9A6"><!-- NEW -->Re&longs;p. quinque hactenus <lb/>numeratas e&longs;&longs;e, qu&aelig; &longs;unt, vectis, trochlea, axis, cuneus, cochlea; addi <lb/>po&longs;&longs;unt rot&aelig; denticulat&aelig;. </s>
				</p>
				<figure id="id.026.01.478.1.jpg" xlink:href="026/01/478/1.jpg"/>
				<p id="N2A9B3" type="main">
					<s id="N2A9B5"><emph type="center"/>APPENDIX TERTIA.<emph.end type="center"/><!-- KEEP S--></s>
				</p>
				<p id="N2A9BD" type="main">
					<s id="N2A9BF"><emph type="center"/><emph type="italics"/>DE PRINCIPIO PHYSICO&shy;<lb/>mechanico impre&longs;sionis.<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N2A9CC" type="main">
					<s id="N2A9CE"><!-- NEW -->NON ago h&icirc;c de impre&longs;&longs;ione, qu&aelig; fit oper&acirc; pulueris tormen&shy;<lb/>tarij, vel nerui ten&longs;i, vel a&euml;ris compre&longs;&longs;i; nec enim e&longs;t huius&shy;<lb/>loci, &longs;ed de ill&acirc;, qu&aelig; fit oper&acirc; alterius potenti&aelig; motricis. </s>
				</p>
				<p id="N2A9D6" type="main">
					<s id="N2A9D8"><!-- NEW -->Iniactu duo tant&ugrave;m con&longs;iderari debent: </s>
					<s id="N2A9DC"><!-- NEW -->Primum e&longs;t po&shy;<lb/>tentia, &longs;ecundum linea directionis, quod &longs;pectat ad primum, <lb/>commune e&longs;t iactui &amp; percu&longs;&longs;ioni; de &longs;ecundo iam &longs;upr&agrave; dictum e&longs;t lib.4. <lb/>vbi diximus maximum iactum fieri ad angulum &longs;emirectum. </s>
				</p>
				<p id="N2A9E6" type="main">
					<s id="N2A9E8"><emph type="center"/><emph type="italics"/>Principium vniuer&longs;ali&longs;&longs;imum.<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N2A9F3" type="main">
					<s id="N2A9F5"><!-- NEW --><emph type="italics"/>Qu&ograve; diutius potentia manet applicata maior e&longs;t impre&longs;&longs;io<emph.end type="italics"/>; veritas huius <lb/>axiomatis certi&longs;&longs;ima e&longs;t, &amp; con&longs;tat ex Ax.13. l.1.n.4. ad hoc autem reuo&shy;<lb/>cari po&longs;&longs;unt omnia organa, qu&aelig; potentia motrix adhibet ad motum im&shy;<lb/>primendum. </s>
				</p>
				<p id="N2AA04" type="main">
					<s id="N2AA06"><emph type="center"/><emph type="italics"/>Corollaria.<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N2AA11" type="main">
					<s id="N2AA13"><!-- NEW -->1. Hinc diu rotatum brachium maiorem ictum infligit; </s>
					<s id="N2AA17"><!-- NEW -->hinc rotatum <lb/>pendulum fune plumbum forti&longs;&longs;im&egrave; ferit; </s>
					<s id="N2AA1D"><!-- NEW -->hinc fund&aelig; iactus potentior; <lb/>hinc longior funda longiorem iactum pr&aelig;&longs;tat, &amp;c. </s>
				</p>
				<p id="N2AA23" type="main">
					<s id="N2AA25"><!-- NEW -->2. Hinc pertica longior, qu&aelig; diu vibratur propter maiorem arcum <lb/>validum ictum incutit; adde fu&longs;tem, flagellum, <expan abbr="l&otilde;gum">longum</expan> mallei manubrium. </s>
				</p>
				<p id="N2AA2F" type="main">
					<s id="N2AA31"><!-- NEW -->3. Hinc corpus diu cadens deor&longs;um grauius ferit; hinc aries ille, <lb/>cuius ca&longs;us pali figuntur. </s>
				</p>
				<p id="N2AA37" type="main">
					<s id="N2AA39">4. Hinc maius &longs;axum, vel grauior &longs;udes maiorem ictum infligit. </s>
				</p>
				<p id="N2AA3C" type="main">
					<s id="N2AA3E"><!-- NEW -->5. Hinc trochus ductario funiculo vibratus celerrim&egrave; agitur; </s>
					<s id="N2AA42"><!-- NEW -->hinc <lb/>etiam plani orbes explicata, &amp; exporrecta zona procul abiguntur; quia <lb/>&longs;cilicet potentia diu manet applicata. </s>
				</p>
				<p id="N2AA4A" type="main">
					<s id="N2AA4C">6. Hinc antiquus aries diu vibratus, ita verberabat muros, vt &longs;tatim <lb/>di&longs;ijceret propter eandem rationem. </s>
				</p>
				<p id="N2AA51" type="main">
					<s id="N2AA53"><!-- NEW -->7. Hinc demum antiqu&aelig; ill&aelig; machin&aelig;, quarum opera ingentia &longs;axa <lb/>iaciebantur; h&aelig;c &amp; innumera propemodum alia ex eodem principio <lb/>con&longs;equuntur. </s>
				</p>
				<pb pagenum="443" xlink:href="026/01/479.jpg"/>
				<figure id="id.026.01.479.1.jpg" xlink:href="026/01/479/1.jpg"/>
				<p id="N2AA64" type="main">
					<s id="N2AA66"><emph type="center"/>APPENDIX QVARTA.<emph.end type="center"/></s>
				</p>
				<p id="N2AA6D" type="main">
					<s id="N2AA6F"><emph type="center"/><emph type="italics"/>DE PRINCIPIO PHYSICO <lb/>Rationis duplicat&aelig; Phy&longs;ic&aelig;.<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N2AA7C" type="main">
					<s id="N2AA7E">VIx credi pote&longs;t quam multis effectibus naturalibus h&aelig;c <lb/>duplicata ratio affigatur, aliquos cur&longs;im indicabo vt ve&shy;<lb/>rum germanumque illius principium &longs;tatuatur. </s>
				</p>
				<p id="N2AA85" type="main">
					<s id="N2AA87"><!-- NEW -->1. In motu recto naturaliter accelerato, decur&longs;a &longs;patia <lb/>&longs;unt in ratione duplicata temporum, id e&longs;t vt temporum <lb/>quadrata; dixi in motu recto, t&ugrave;m eo, qui fit deor&longs;um in perpendiculo, <lb/>t&ugrave;m eo, qui fit in plano inclinato. </s>
				</p>
				<p id="N2AA91" type="main">
					<s id="N2AA93">2. Si iaciantur lapides in&aelig;qualis ponderis &agrave; potentia toto ni&longs;u agente <lb/>&amp; eodem arcu, lapides &longs;unt in ratione duplicata inflictorum ictuum. </s>
				</p>
				<p id="N2AA98" type="main">
					<s id="N2AA9A">3. Si impingantur &longs;udes in&aelig;quales eodem brachiorum arcu, pondera <lb/>&longs;unt in ratione duplicata ictuum. </s>
				</p>
				<p id="N2AA9F" type="main">
					<s id="N2AAA1">4. Si malleus impingatur diuer&longs;o arcu ab eadem potentia, arcus &longs;unt <lb/>in ratione duplicata ictuum. </s>
				</p>
				<p id="N2AAA6" type="main">
					<s id="N2AAA8">5. Si ex tubis erectis eiu&longs;dem cauitatis &aelig;qualique foramine fluat aqua, <lb/>longitudines tuborum &longs;unt in ratione duplicata quantitatum aqu&aelig;, qu&aelig; <lb/>ex tubis &aelig;quali tempore fluunt. </s>
				</p>
				<p id="N2AAAF" type="main">
					<s id="N2AAB1">6. Similiter &longs;i ex &longs;iphonibus fluat aqua &aelig;quali foramine, longitudines <lb/>&longs;iphonum &longs;unt in ratione duplicata quantitatum aqu&aelig;, &amp;c. </s>
					<s id="N2AAB6">vt &longs;upr&agrave;. </s>
				</p>
				<p id="N2AAB9" type="main">
					<s id="N2AABB">7. Si chord&aelig; ten&longs;&aelig; eiu&longs;dem longitudinis appendantur in&aelig;qualia pon&shy;<lb/>dera, h&aelig;c &longs;unt in ratione duplicata &longs;onorum in ratione acuti &amp; grauis. </s>
				</p>
				<p id="N2AAC0" type="main">
					<s id="N2AAC2">8. Si chord&aelig; ten&longs;&aelig; &longs;int eiu&longs;dem longitudinis &amp; diuer&longs;&aelig; cra&longs;&longs;itiei, ba&shy;<lb/>&longs;es &longs;unt in ratione duplicata &longs;onorum permutando. </s>
				</p>
				<p id="N2AAC7" type="main">
					<s id="N2AAC9">9. Lumen ita propagatur vt lumina propagata &longs;ub eodem angulo, &amp; <lb/>cono &longs;int in ratione duplicata di&longs;tantiarum permutando. </s>
				</p>
				<p id="N2AACE" type="main">
					<s id="N2AAD0">10. Idem dico pror&longs;us de propagatione &longs;onorum, imm&ograve; au&longs;im dicere <lb/>toti rei &longs;onorum familiari&longs;&longs;imam e&longs;&longs;e hanc rationem duplicatam. </s>
				</p>
				<p id="N2AAD5" type="main">
					<s id="N2AAD7"><!-- NEW -->11. In funependulis res e&longs;t clari&longs;&longs;ima; nam longitudines &longs;unt in ratio&shy;<lb/>ne duplicata temporum quibus vibrationes perficiuntur. </s>
				</p>
				<p id="N2AADD" type="main">
					<s id="N2AADF">12. Non e&longs;t omittendum quod in humana voce ob&longs;eruatur pro ratio&shy;<lb/>ne grauis &amp; acuti, &longs;cilicet ni&longs;us e&longs;&longs;e in ratione duplicata <expan abbr="&longs;onor&utilde;">&longs;onorum</expan>. </s>
					<s id="N2AAE8">Omitto <lb/>infinita fer&egrave; alia qu&aelig; huic rationi duplicat&aelig; &longs;ub&longs;unt, &longs;ed iam principia <lb/>phy&longs;ica his effectibus quibus ine&longs;t h&aelig;c ratio duplicata, tribuamus. </s>
				</p>
				<p id="N2AAEF" type="main">
					<s id="N2AAF1"><!-- NEW -->Primum caput &amp; vndecimum hoc principio nituntur, eadem cau&longs;a <lb/>&aelig;quali tempore &aelig;qualem effectum producit vnde illud; corpus graue <lb/>&aelig;qualibus temporibus &aelig;qualia acquirit velocitatis momenta, de quo lib. <!-- REMOVE S--><lb/>2. Ex hoc principio demon&longs;trauimus in partibus temporis &longs;en&longs;ibilibus <lb/>&longs;patia e&longs;&longs;e temporum quadrata. </s>
				</p>
				<pb pagenum="444" xlink:href="026/01/480.jpg"/>
				<p id="N2AB02" type="main">
					<s id="N2AB04">Secundum &amp; tertium hoc principio nituntur, motus impre&longs;&longs;i diuer&longs;is <lb/>corporibus ab eadem potentia &aelig;quali tempore &longs;unt vt corpora permu&shy;<lb/>tando v.g.motus impre&longs;&longs;us corpori vnius libr&aelig; e&longs;t ad motum impre&longs;&longs;um <lb/>corpori quatuor librarum vt 4.ad 1.&aelig;quali &longs;cilicet tempore quod clarum <lb/>e&longs;t, igitur graue 4.librarum decurrit tant&ugrave;m quartam partem arcus, igitur <lb/>&longs;ecundo tempore &aelig;quali decurrit tres alias partes, vide qu&etail; diximus l.10. </s>
				</p>
				<p id="N2AB11" type="main">
					<s id="N2AB13">Quartum nititur hoc principio &longs;patia &longs;unt quadrata temporum, ve&shy;<lb/>locitates &longs;unt vt tempora, ictus vt velocitates. </s>
				</p>
				<p id="N2AB18" type="main">
					<s id="N2AB1A"><!-- NEW -->Quintum, &longs;extum, &longs;eptimum habent hoc commune principium: </s>
					<s id="N2AB1E"><!-- NEW -->eadem <lb/>e&longs;t proportio effectuum qu&aelig; cau&longs;arum; </s>
					<s id="N2AB24"><!-- NEW -->quippe cau&longs;a qu&aelig; aquam excu&shy;<lb/>dit e&longs;t pondus &longs;uperimpo&longs;itum, igitur cum imprimat motum pluribus <lb/>partibus, velociorem imprimit &longs;ingulis, igitur ex duplici capite cre&longs;cit <lb/>effectus, &longs;cilicet ex maiore <expan abbr="qu&atilde;titate">quantitate</expan> aqu&aelig; &amp; ex velociore motu; &longs;it enim <lb/>v.g.maior tubus quadruplus alterius cau&longs;a e&longs;t quadrupla, igitur duplam <lb/>quantitatem aqu&aelig; extrudet &aelig;quali tempore, quia duplo velociore motu. </s>
					<s id="N2AB36"><!-- NEW --><lb/>nam extrudere &aelig;qualem quantitatem duplo velociore motu e&longs;t effectus <lb/>duplus; igitur duplam quantitatem extrudere duplo velociore motu e&longs;t <lb/>effectus quadruplus, igitur e&longs;t eadem proportio cau&longs;&ecedil; qu&aelig; effectus. </s>
					<s id="N2AB3F">De &longs;i&shy;<lb/>phone idem dictum e&longs;to, pr&aelig;&longs;tat enim <expan abbr="e&utilde;dem">eundem</expan> effectum trahendo, quem <lb/>tubus aqu&aelig; pellendo, denique vnica vibratio chord&aelig; ten&longs;&aelig; duplo velo&shy;<lb/>cior e&longs;t effectus duplus, igitur du&aelig; duplo velociores effectus quadruplus. </s>
				</p>
				<p id="N2AB4C" type="main">
					<s id="N2AB4E"><!-- NEW -->Octauum habet idem principium, nam chord&aelig; eiu&longs;dem longitudinis <lb/>&longs;unt vt ba&longs;es, &longs;it vna quadrupla alterius v. <!-- REMOVE S-->g. <!-- REMOVE S-->appendatur vtrique &aelig;quale <lb/>pondus, ten&longs;io maioris e&longs;t &longs;ubquadrupla; </s>
					<s id="N2AB5A"><!-- NEW -->igitur &longs;i huic appendatur pon&shy;<lb/>dus quadruplum &longs;onum edet duplo acutiorem; igitur ba&longs;es &longs;unt vt qua&shy;<lb/>drata &longs;onorum. </s>
				</p>
				<p id="N2AB62" type="main">
					<s id="N2AB64"><!-- NEW -->Nonum, &amp; decimum nituntur hoc principio, lumen minus e&longs;t in ea <lb/>proportione in qua plus di&longs;trahitur; igitur lumina &longs;unt vt ba&longs;es permu&shy;<lb/>tando, &longs;ed ba&longs;es &longs;unt in ratione duplicata di&longs;tantiarum, idem dico de &longs;ono. </s>
				</p>
				<p id="N2AB6C" type="main">
					<s id="N2AB6E"><!-- NEW -->Duodecimum denique idem principium habet cum &longs;eptimo: </s>
					<s id="N2AB72"><!-- NEW -->vis enim <lb/>illa &longs;eu ni&longs;us quo adducitur arteria &aelig;quiualet ponderi; &longs;ed de his &longs;atis. </s>
				</p>
				<p id="N2AB78" type="main">
					<s id="N2AB7A"><emph type="center"/><emph type="italics"/>Schol. <!-- REMOVE S-->quod pertinet ad reflexionem.<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N2AB87" type="main">
					<s id="N2AB89"><!-- NEW -->Ob&longs;erua&longs;ti in Th.8.l.6.quo&longs;dam nolui&longs;&longs;e impetum in reflexione pro&shy;<lb/>duci propter compre&longs;&longs;ionem, vel corporis reflexi, vel reflectentis, vel <lb/>vtriu&longs;que, quod cert&egrave; fieri non pote&longs;t, alioquin &longs;it globus reflexus; </s>
					<s id="N2AB91"><!-- NEW -->cert&egrave; <lb/>comprimitur nece&longs;&longs;ari&ograve; &agrave; puncto contactus ver&longs;us centrum quod certum <lb/>e&longs;t; </s>
					<s id="N2AB99"><!-- NEW -->igitur redit nece&longs;&longs;ari&ograve; per lineam ductam &agrave; puncto contactus per <lb/>idem centrum quod fal&longs;um e&longs;t vt patet; igitur e&longs;t alia cau&longs;a huius motus <lb/>&longs;cilicet pr&aelig;uius impetus. </s>
				</p>
				<p id="N2ABA1" type="main">
					<s id="N2ABA3">Quidam etiam volunt hunc impetum produci ab ip&longs;o corpore re&shy;<lb/>flectente quod tamen ab&longs;urdum e&longs;t, alioquin per <expan abbr="e&atilde;dem">eandem</expan> lineam ductam <lb/>&agrave; puncto contactus per centrum globi fieret reflexio, &longs;ic enim globus <lb/>tant&ugrave;m impelli pote&longs;t, vt demon&longs;tratum e&longs;t lib.1. &longs;ed de his fatis. </s>
				</p>
				<pb pagenum="445" xlink:href="026/01/481.jpg"/>
				<p id="N2ABB4" type="main">
					<s id="N2ABB6"><emph type="center"/><emph type="italics"/>Schol. <!-- REMOVE S-->pag.<emph.end type="italics"/> 217. <emph type="italics"/>num.<emph.end type="italics"/>8.<emph.end type="center"/></s>
				</p>
				<p id="N2ABCA" type="main">
					<s id="N2ABCC"><!-- NEW -->Ob&longs;eruabis prim&ograve;, f&oelig;datam e&longs;&longs;e pulcherrimam demon&longs;trationem qu&aelig; <lb/>habetur loco citato innumeris propemodum mendis, qua &longs;cilicet pro&shy;<lb/>batur omnium inclinatarum, qu&aelig; ab eodem horizontalis puncto ad <lb/>idem perpendiculum ducuntur, cam qu&aelig; e&longs;t ad angulum 45. grad. <!-- REMOVE S-->bre&shy;<lb/>ui&longs;&longs;imo tempore decurri; </s>
					<s id="N2ABDA"><!-- NEW -->&longs;it enim Fig.49. Tab.2. in qua &longs;it EC diui&longs;a <lb/>bifariam in A, ex quo ducatur circulus radio AC, &longs;it AB perpendicula&shy;<lb/>ris in AC; </s>
					<s id="N2ABE4"><!-- NEW -->ducantur BC.BR.BM. dico BC breuiore tempore qu&agrave;m B <lb/>R, BM, percurri, quod breuiter demon&longs;tro: </s>
					<s id="N2ABEA"><!-- NEW -->ducatur AH perpendicula&shy;<lb/>ris in BC, &longs;itque vt BH ad BI, ita BI ad BC; </s>
					<s id="N2ABF0"><!-- NEW -->cert&egrave; BH &amp; AC &aelig;quali <lb/>tempore percurruntur; &longs;it autem tempus quo percurritur BH, vel AC <lb/>vt. </s>
					<s id="N2ABF8">BH; </s>
					<s id="N2ABFB"><!-- NEW -->haud dubi&egrave; tempus quo percurretur BC erit vt BI, e&longs;t autem B <lb/>I &aelig;qualis AC,, qu&aelig; e&longs;t media proportionalis inter BC &amp; BH, vt con&shy;<lb/>&longs;tat; </s>
					<s id="N2AC03"><!-- NEW -->&longs;it autem BR dupla AR, &amp; angulus ABR 30. grad. <!-- REMOVE S-->ducatur BY <lb/>perpendicularis in BR, cert&egrave; RY e&longs;t dupla BR, &longs;unt enim triangula RB <lb/>A, RBY proportionalia; </s>
					<s id="N2AC0D"><!-- NEW -->igitur BR &amp; YR perpendicularis eodem tem&shy;<lb/>pore percurruntur; </s>
					<s id="N2AC13"><!-- NEW -->&longs;ed YR e&longs;t maior EC, nam EC e&longs;t dupla AB, &amp; R <lb/>Y dupla RB, qu&aelig; e&longs;t maior AB, ergo YR maiore tempore percurritur <lb/>quam CE, igitur BR quam BC, &longs;imiliter ducatur BM ad angulum ABM <lb/>60. grad. <!-- REMOVE S-->&longs;it QB perpendicularis in BM; </s>
					<s id="N2AC1F"><!-- NEW -->igitur QM e&longs;t dupla QB, <lb/>igitur maior EC; </s>
					<s id="N2AC25"><!-- NEW -->igitur maiore tempore percurritur; </s>
					<s id="N2AC29"><!-- NEW -->&longs;ed BM &amp; QM <lb/>&aelig;quali tempore decurruntur; igitur BM maiore tempore, quam BC <lb/>quod erat demon&longs;trandum. </s>
				</p>
				<p id="N2AC31" type="main">
					<s id="N2AC33"><!-- NEW -->Ob&longs;eruabis &longs;ecund&ograve; BM &amp; BR &aelig;quali tempore decurri, vnde quod <lb/>&longs;an&egrave; mirificum e&longs;t, &longs;i pariter vtrimque cre&longs;cat, &amp; decre&longs;cat angulus in <lb/>puncto B, &longs;upra &amp; infra BC, &aelig;quali tempore percurrentur duo plana in&shy;<lb/>clinata; v.g.angulus RBA detrahit angulo ABC angulum CBR 15.grad. <lb/></s>
					<s id="N2AC3E">&amp; angulus ABM addit angulum CBM 15.grad. </s>
					<s id="N2AC41">motus per BR &amp; B <lb/>M fient &aelig;qualibus temporibus, vt con&longs;tat ex dictis. </s>
				</p>
				<p id="N2AC46" type="main">
					<s id="N2AC48"><!-- NEW -->Ob&longs;eruabis terti&ograve; rationem &agrave; priori inde e&longs;&longs;e ducendam; </s>
					<s id="N2AC4C"><!-- NEW -->quod cum <lb/>perpendiculum &longs;eu diagonalis qu&aelig; &longs;u&longs;tinet angulum rectum &longs;it regula <lb/>temporis quo decurritur omnis inclinata, diagonalis quadrati &longs;it om&shy;<lb/>nium aliarum minima in rectangulis quorum minus latus &longs;it maius &longs;e&shy;<lb/>midiagonali quadrati, in eodem &longs;cilicet perpendiculo; </s>
					<s id="N2AC58"><!-- NEW -->v.g. <!-- REMOVE S-->&longs;it diagona&shy;<lb/>lis EC, &longs;int latera quadrati EBC, ducatur infra BA qu&aelig;libet recta, v.g. <!-- REMOVE S--><lb/>BR, &amp; in BR ducatur perpendicularis BY, cert&egrave; YR e&longs;t maior EC, <lb/>quia vt e&longs;t RA ad AB, ita AB ad AY, igitur AB e&longs;t media proportionalis <lb/>communis; </s>
					<s id="N2AC67"><!-- NEW -->&longs;ed collectum ex extremis in&aelig;qualibus, e&longs;t &longs;emper maius <lb/>collecto ex &aelig;qualibus, po&longs;ita &longs;cilicet eadem media proportionali; </s>
					<s id="N2AC6D"><!-- NEW -->&longs;i enim <lb/>&longs;unt &aelig;qualia, media proportionalis e&longs;t &longs;emidiameter circuli cuius dia&shy;<lb/>meter e&longs;t &aelig;qualis collecto; </s>
					<s id="N2AC75"><!-- NEW -->&longs;i ver&ograve; &longs;unt in&aelig;qualia, media proportiona&shy;<lb/>lis e&longs;t &longs;unicorda circuli, cuius diameter e&longs;t &aelig;qualis collecto; igitur col&shy;<lb/>lectum i&longs;tud e&longs;t maius priore, &longs;ed h&aelig;c &longs;unt &longs;atis clara. </s>
				</p>
				<p id="N2AC7D" type="main">
					<s id="N2AC7F">Quod &longs;pectat ad demon&longs;trationem num. </s>
					<s id="N2AC82">9. ibidem po&longs;itam, &amp; peni-<pb pagenum="446" xlink:href="026/01/482.jpg"/>tus mendis f&aelig;datam, duces &longs;pongiam v&longs;que ad lineam 22. pag.214. vbi <lb/>legis h&aelig;c verba, adde quod pr&aelig;&longs;ertim, c&ugrave;m illam alibi, &longs;cilicet lib.  8. de&shy;<lb/>mon&longs;tremus. </s>
				</p>
				<p id="N2AC8E" type="main">
					<s id="N2AC90"><!-- NEW -->C&aelig;terum vnum ob&longs;eruabis in Fig. <!-- REMOVE S-->1.Tab.4. &longs;i diuidatur BE bifariam <lb/>&aelig;qualiter in T ducaturque FTG, fore vt mobile citi&ugrave;s decurrat BTF <lb/>facto initio motus in B, quam chordam BF: </s>
					<s id="N2AC9A"><!-- NEW -->cum enim FG &longs;it dupla FT, <lb/>&longs;it media proportionalis inter GT, GF; haud dubi&egrave; quadratum illius erit <lb/>duplum quadr. </s>
					<s id="N2ACA2">TF, &amp; &longs;ubduplum quadr.BF, igitur &longs;it EG 4.ET 2FT erit <lb/>Rad. </s>
					<s id="N2ACA7"><expan abbr="q.">que</expan> 20. igitur FG rad. </s>
					<s id="N2ACAD"><expan abbr="q.">que</expan> 80. igitur media proportionalis &lpar;qu&aelig; &longs;it, <lb/>v.g. <!-- REMOVE S-->G <foreign lang="greek">m</foreign>&rpar; rad. </s>
					<s id="N2ACBB"><expan abbr="q.">que</expan> 40. igitur &longs;i &longs;ubtrahatur GT, id e&longs;t rad. </s>
					<s id="N2ACC1"><!-- NEW -->q.20. id e&longs;t 4. <lb/>1/2 paul&ograve; min&ugrave;s, &longs;ed pl&ugrave;s qu&agrave;m 4. 1/3 ex G <foreign lang="greek">m</foreign>; id e&longs;t ex rad. </s>
					<s id="N2ACCB"><!-- NEW -->q.40. id e&longs;t 6. <lb/>1/3 paul&ograve; min&ugrave;s &longs;upere&longs;t <foreign lang="greek">tm</foreign>, qu&aelig; minor e&longs;t 2. &longs;ed &longs;i tempore BT, per&shy;<lb/>curritur BT, &aelig;quali tempore percurretur tripla BT; </s>
					<s id="N2ACD7"><!-- NEW -->igitur tempus quo <lb/>percurritur dupla BE, e&longs;t vt BE; </s>
					<s id="N2ACDD"><!-- NEW -->&longs;ed tempus quo percurritur BTF e&longs;t vt <lb/>BT <foreign lang="greek">m</foreign>; </s>
					<s id="N2ACE7"><!-- NEW -->atqui T <foreign lang="greek">m</foreign> e&longs;t minor TE; </s>
					<s id="N2ACEF"><!-- NEW -->id e&longs;t 2. igitur breuiore tempore percur&shy;<lb/>ritur BTF, quam dupla DE; </s>
					<s id="N2ACF5"><!-- NEW -->&longs;ed quo tempore percurritur dupla BE, <lb/>etiam percurritur BF; </s>
					<s id="N2ACFB"><!-- NEW -->igitur BTF breuiore tempore percurritur quam <lb/>BF; </s>
					<s id="N2AD01"><!-- NEW -->vt autem &longs;cias quantum percurritur in perpendiculari, quo tempore <lb/>percurritur BTF, &longs;it FE 100000. erit FT 111800. igitur G <foreign lang="greek">m</foreign> 151657. <lb/>igitur &longs;i vt BT 50000. ad BT <foreign lang="greek">m</foreign>, id e&longs;t ad 89857. ita BT <foreign lang="greek">m</foreign> ad aliam, h&aelig;c <lb/>erit 161485. hoc &longs;patium decurretur in perpendiculari, vides quam &longs;it <lb/>minor dupla BE, id e&longs;t 200000. Si autem accipis Fig.1. Tab.3. BZE &longs;it <lb/>GP 100000.GZ 42265.&longs;it etiam vt EZ ad EY ita EY ad CB; GZ erit <lb/>87757. igitur acquiretur in perpendiculari 182253.eo tempore quo per&shy;<lb/>curretur GZB, facto initio motus &agrave; G, &longs;ed h&aelig;c e&longs;t minor dupla GP, id <lb/>e&longs;t 200000. accedit tamen propi&ugrave;s quam &longs;uperior, igitur longiore tem&shy;<lb/>pore decurit duas GZB huius figur&aelig; quam duas BTF &longs;uperioris fig. </s>
				</p>
				<p id="N2AD23" type="main">
					<s id="N2AD25"><!-- NEW -->Denique in Fig. <!-- REMOVE S-->32. Tab. <!-- REMOVE S-->3.&longs;it BY ita vt angulus BYA &longs;it grad.15.&longs;itque <lb/>v.g. <!-- REMOVE S-->vt YZ, ad YL, ita YL ad YB; </s>
					<s id="N2AD31"><!-- NEW -->iuxta canonem &longs;inuum BY erit 386370. <lb/>YL 330171. ZL 47739. EZ 73205. ELZ 120944. igitur acquiretur in <lb/>perpendiculari 199814. quo tempore decurretur EZB; vides qu&agrave;m pro&shy;<lb/>xim&egrave; accedat ad duplam EM id e&longs;t ad 200000. </s>
				</p>
				<p id="N2AD3D" type="main">
					<s id="N2AD3F"><!-- NEW -->Denique &longs;i percurrat EMB, &longs;cilicet EM motu accelerato, tum MB <lb/>&aelig;quabili; </s>
					<s id="N2AD45"><!-- NEW -->cert&egrave; MB percurret &longs;ubduplo tempore illius, quo percurrit E <lb/>M, vt con&longs;tat; igitur &longs;it EM tempus quo percurrit EM v. <!-- REMOVE S-->g. <!-- REMOVE S-->2.percurret <lb/>EMB tempore EMS &longs;cilicet 3. &longs;ed &longs;i percurrat EM tempore EM, du&shy;<lb/>plam decurrit tempore EB, &longs;ed EB e&longs;t minor EMS, e&longs;t enim rad. </s>
					<s id="N2AD53">quadr. </s>
					<s id="N2AD56"><lb/>8. igitur EB decurritur citi&ugrave;s qu&agrave;m EMB, &longs;ed de his &longs;atis. <lb/><gap desc="hr tag"/></s>
				</p>
				<p id="N2AD5D" type="main">
					<s id="N2AD5F"><emph type="center"/><emph type="italics"/>ERRATA.<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
				<p id="N2AD6A" type="main">
					<s id="N2AD6C"><emph type="italics"/>Pag.<emph.end type="italics"/> 10. <emph type="italics"/>lin. 4<emph.end type="italics"/> magnete. <emph type="italics"/>p.13 l.vlt.<emph.end type="italics"/>non decre&longs;cit <emph type="italics"/>p.<emph.end type="italics"/>17.<emph type="italics"/>Th.<emph.end type="italics"/> 10.<emph type="italics"/>l.<emph.end type="italics"/> 2. non exigeret.<emph type="italics"/>p.<emph.end type="italics"/>20. <lb/><emph type="italics"/>l .ult.<emph.end type="italics"/> in &longs;e ip&longs;o. <emph type="italics"/>p.21.t.26.l.2.<emph.end type="italics"/> non pote&longs;t. <emph type="italics"/>p.<emph.end type="italics"/>24.<emph type="italics"/>t.<emph.end type="italics"/>32.<emph type="italics"/>l.<emph.end type="italics"/>5. duabus. <emph type="italics"/>p.<emph.end type="italics"/>25.<emph type="italics"/>t.<emph.end type="italics"/> 33. <emph type="italics"/>l.<emph.end type="italics"/> 15.terti&ograve; <lb/>probatur. <emph type="italics"/>Ca&longs;tiga ibidem multas interpunctiones p.<emph.end type="italics"/>28.<emph type="italics"/>l.<emph.end type="italics"/> 1. maioris. <emph type="italics"/>p .<emph.end type="italics"/>31 <emph type="italics"/>l.<emph.end type="italics"/>3. Ax. 12. <lb/><emph type="italics"/>l.<emph.end type="italics"/>8 primo <emph type="italics"/>l.9. &longs;ecundo l.35.<emph.end type="italics"/> cum tu. <emph type="italics"/>p.<emph.end type="italics"/>33.<emph type="italics"/>l.<emph.end type="italics"/> 1. motus.<emph type="italics"/>p.<emph.end type="italics"/> 35. min 5s. <emph type="italics"/>t.<emph.end type="italics"/> 51.&amp; 52. fig.2. <lb/><emph type="italics"/>t.<emph.end type="italics"/> 55.<emph type="italics"/>l.<emph.end type="italics"/>2. immobilis A. <emph type="italics"/>p.<emph.end type="italics"/>36. fig.2. <emph type="italics"/>p.<emph.end type="italics"/>49.<emph type="italics"/>t.<emph.end type="italics"/>86.<emph type="italics"/>l.<emph.end type="italics"/>3.lib.2.<emph type="italics"/>p.<emph.end type="italics"/>54.<emph type="italics"/>l.<emph.end type="italics"/>1. Th. 81.<emph type="italics"/>p.<emph.end type="italics"/>25.<emph type="italics"/>l.<emph.end type="italics"/>17. in EL. <pb xlink:href="026/01/483.jpg"/><emph type="italics"/>l.<emph.end type="italics"/>38.AB ad GB, id e&longs;t vt 1.ad 5.<emph type="italics"/>p.<emph.end type="italics"/>66.<emph type="italics"/>t.<emph.end type="italics"/>137.<emph type="italics"/>l.<emph.end type="italics"/>4. AD &amp; AB.<emph type="italics"/>t.<emph.end type="italics"/>738.<emph type="italics"/>l.<emph.end type="italics"/>5. tota AC. <emph type="italics"/>t.<emph.end type="italics"/>140<lb/>fig. </s>
					<s id="N2AE60">15.tab.1. <emph type="italics"/>p.<emph.end type="italics"/>80.<emph type="italics"/>l.<emph.end type="italics"/> 3. idem e&longs;&longs;et, <emph type="italics"/>p.<emph.end type="italics"/>83.<emph type="italics"/>l.<emph.end type="italics"/>20. non e&longs;t.<emph type="italics"/>p.<emph.end type="italics"/>88.<emph type="italics"/>l.<emph.end type="italics"/>4. &longs;ecundo erunt, <emph type="italics"/>p.<emph.end type="italics"/>89. <emph type="italics"/>in <lb/>Sch.l.<emph.end type="italics"/>5. 1.&longs;patium, <emph type="italics"/>l.<emph.end type="italics"/> 7, <emph type="italics"/>ca&longs;tiga interpunctionem, p.<emph.end type="italics"/>90, <emph type="italics"/>t.<emph.end type="italics"/>41.<emph type="italics"/>l.<emph.end type="italics"/>3. terminus &longs;it 1.<emph type="italics"/>t.<emph.end type="italics"/>43. <emph type="italics"/>lege <lb/>ter<emph.end type="italics"/> rad.q. <emph type="italics"/>p.<emph.end type="italics"/>91 <emph type="italics"/>l.<emph.end type="italics"/>5. <emph type="italics"/>dele hac verba<emph.end type="italics"/> qu&agrave;m &longs;patij quod, &amp;c. </s>
					<s id="N2AECD">v&longs;que ad qu&agrave;m, <emph type="italics"/>p.92.l.<emph.end type="italics"/> 15. <lb/>&amp; 17. <emph type="italics"/>ca&longs;tiga interpunctiones p.<emph.end type="italics"/> 101. <emph type="italics"/>l.<emph.end type="italics"/> 10. perticam, <emph type="italics"/>l.<emph.end type="italics"/>26. proportionis prim&aelig;. <emph type="italics"/>l.<emph.end type="italics"/>39. <lb/>&aelig;quales AC.<emph type="italics"/>l.<emph.end type="italics"/>42. 1/4 &longs;ed, <emph type="italics"/>p.<emph.end type="italics"/>102. <emph type="italics"/>l.<emph.end type="italics"/>17. minim&aelig;, <emph type="italics"/>p.<emph.end type="italics"/>104.<emph type="italics"/>l.<emph.end type="italics"/>4.acceditur. <emph type="italics"/>l.<emph.end type="italics"/>7.di&longs;cerni.<emph type="italics"/>p.<emph.end type="italics"/>105. <lb/><emph type="italics"/>l.<emph.end type="italics"/> 6, BI, <emph type="italics"/>l.<emph.end type="italics"/>32 igitur tertio. <emph type="italics"/>l.<emph.end type="italics"/>33. FM, <emph type="italics"/>p.<emph.end type="italics"/>106.<emph type="italics"/>l.<emph.end type="italics"/>1. toties, <emph type="italics"/>l.<emph.end type="italics"/>8. &amp; 10. AFM, <emph type="italics"/>p.<emph.end type="italics"/>108.<emph type="italics"/>l.<emph.end type="italics"/>27.in&shy;<lb/>&longs;tantia illud 1. 1/2 <emph type="italics"/>l.<emph.end type="italics"/>4. &longs;i 9. continet 1. 4/5 &longs;i 10. 1. &lpar;9/12&rpar; <emph type="italics"/>Coroll.<emph.end type="italics"/>4.<emph type="italics"/>l.<emph.end type="italics"/>4. <emph type="italics"/><expan abbr="q.">que</expan><emph.end type="italics"/>2.<emph type="italics"/>l.<emph.end type="italics"/>6.q.4. <emph type="italics"/>p.<emph.end type="italics"/> 109.<emph type="italics"/>l.<emph.end type="italics"/>1. <lb/>q.4. <emph type="italics"/>l.<emph.end type="italics"/>2. q.2. <emph type="italics"/>Cor.<emph.end type="italics"/>6. <emph type="italics"/>l.<emph.end type="italics"/>20. &amp; 22. vbicationem, <emph type="italics"/>l.<emph.end type="italics"/>30. phy&longs;ica minora. <emph type="italics"/>l.<emph.end type="italics"/>32. &longs;ecundo in&shy;<lb/>&longs;tanti, <emph type="italics"/>p.<emph.end type="italics"/> 113.<emph type="italics"/>t.<emph.end type="italics"/>64.<emph type="italics"/>l.<emph.end type="italics"/>1. &longs;ectam, <emph type="italics"/>t.<emph.end type="italics"/>65.<emph type="italics"/>l.<emph.end type="italics"/>4.primum in&longs;tans. </s>
					<s id="N2AFC3"><!-- NEW -->1.<emph type="italics"/>l.<emph.end type="italics"/>7.tertium. &lpar;5/11&rpar; <emph type="italics"/>t.<emph.end type="italics"/>66.<emph type="italics"/>l.<emph.end type="italics"/>1.aliqua <lb/><emph type="italics"/>l.<emph.end type="italics"/>7. minore CD.<emph type="italics"/>p.<emph.end type="italics"/>115. <emph type="italics"/>t.<emph.end type="italics"/>70.<emph type="italics"/>l.<emph.end type="italics"/>7.primo e&longs;t rad.q.2. <emph type="italics"/>l.<emph.end type="italics"/>8. tria rad.q.3.<emph type="italics"/>Th.<emph.end type="italics"/>71-<emph type="italics"/>l.<emph.end type="italics"/>2.nullum <lb/>e&longs;&longs;et. <emph type="italics"/>p.<emph.end type="italics"/>116.<emph type="italics"/>t.<emph.end type="italics"/>76. <emph type="italics"/>l.<emph.end type="italics"/>5.vel communis qua grauitat, <emph type="italics"/>l.<emph.end type="italics"/>6. de quo ali&agrave;s, vel &longs;ingularis, <emph type="italics"/>p,<emph.end type="italics"/> 117. <lb/><emph type="italics"/>in Sch.l.<emph.end type="italics"/>12. materi&aelig;, <emph type="italics"/>p.<emph.end type="italics"/>118.<emph type="italics"/>t.<emph.end type="italics"/>81. <emph type="italics"/>l.<emph.end type="italics"/>7. extrudi, <emph type="italics"/>p.<emph.end type="italics"/>123. <emph type="italics"/>t.<emph.end type="italics"/> 103.<emph type="italics"/>l.<emph.end type="italics"/>6. vel diuer&longs;&aelig; grauitatis, <lb/>&amp; mollitiei, <emph type="italics"/>p,<emph.end type="italics"/> 124. <emph type="italics"/>l.<emph.end type="italics"/>4. grauioris, <emph type="italics"/>t.<emph.end type="italics"/>104. <emph type="italics"/>l<emph.end type="italics"/> 5. &longs;ecunda eiu&longs;dem materi&aelig;, &amp; figur&aelig; ter&shy;<lb/>tia.<emph type="italics"/>l.<emph.end type="italics"/>12. vel eadem vel diuer&longs;a <emph type="italics"/>p.<emph.end type="italics"/>125.<emph type="italics"/>t.<emph.end type="italics"/>109.<emph type="italics"/>L.B.K.L. t.<emph.end type="italics"/>110.<emph type="italics"/>l.<emph.end type="italics"/>1. diui&longs;ione, <emph type="italics"/>p.<emph.end type="italics"/>127.<emph type="italics"/>l.<emph.end type="italics"/>25. <lb/>cubo minori, <emph type="italics"/>p.<emph.end type="italics"/>128.<emph type="italics"/>l.<emph.end type="italics"/>7.mouent, <emph type="italics"/>l.<emph.end type="italics"/>10. a&euml;re repellitur. <emph type="italics"/>l.<emph.end type="italics"/> 14. permeat, <emph type="italics"/>t.<emph.end type="italics"/>112. <emph type="italics"/>l<emph.end type="italics"/> 2. actiui&shy;<lb/>tatis vnius.<emph type="italics"/>l.<emph.end type="italics"/>7. motum retardat; cum.<emph type="italics"/>l.<emph.end type="italics"/>16. modicus ventus.<emph type="italics"/>p.<emph.end type="italics"/>129. <emph type="italics"/>t.<emph.end type="italics"/>114.<emph type="italics"/>l.<emph.end type="italics"/>5.acuto. <emph type="italics"/>l.<emph.end type="italics"/><lb/>6. mobile, <emph type="italics"/>l.<emph.end type="italics"/>7.maior e&longs;t.<emph type="italics"/>l.<emph.end type="italics"/>8. &longs;emiperipheri&aelig;, <emph type="italics"/>l.vlt.<emph.end type="italics"/> illam cauam, <emph type="italics"/>p.<emph.end type="italics"/>130.<emph type="italics"/>l.<emph.end type="italics"/>2.alter grauior <lb/><emph type="italics"/>t.<emph.end type="italics"/>123.<emph type="italics"/>l.<emph.end type="italics"/>2. intru&longs;us, <emph type="italics"/>p.<emph.end type="italics"/>133.<emph type="italics"/>l.<emph.end type="italics"/>7. in hoc agemus, <emph type="italics"/>p.<emph.end type="italics"/>13.<emph type="italics"/>l.<emph.end type="italics"/>1. ad&longs;tantibus, <emph type="italics"/>p.<emph.end type="italics"/>137. <emph type="italics"/>l.<emph.end type="italics"/>4. produ&shy;<lb/>ctum. <emph type="italics"/>p<emph.end type="italics"/> 143.<emph type="italics"/>l.<emph.end type="italics"/>7. accidit <emph type="italics"/>l.<emph.end type="italics"/>12. producto.<emph type="italics"/>p.<emph.end type="italics"/>145. <emph type="italics"/>habes.<emph.end type="italics"/> v.g. <!-- REMOVE S-->pro R, Q, &amp; radices 4. pro <lb/><expan abbr="q.">que</expan> <emph type="italics"/>&amp; alibi pa&longs;&longs;im<emph.end type="italics"/> 9.<emph type="italics"/>pro Q, t.<emph.end type="italics"/>47. <emph type="italics"/>l.<emph.end type="italics"/>9. &longs;ubduplicata. <emph type="italics"/>p.<emph.end type="italics"/>151. <emph type="italics"/>l.<emph.end type="italics"/>11. &longs;i loquamur. <emph type="italics"/>l.<emph.end type="italics"/>14. di&shy;<lb/>&longs;tinctiones, <emph type="italics"/>l.<emph.end type="italics"/>21. de&longs;cenderet. <emph type="italics"/>p.<emph.end type="italics"/>154.<emph type="italics"/>l.<emph.end type="italics"/>1. determinatum, <emph type="italics"/>l.<emph.end type="italics"/>5. inclinatam &longs;ur&longs;um.<emph type="italics"/>p.<emph.end type="italics"/>256. <lb/><emph type="italics"/>t.<emph.end type="italics"/>13, <emph type="italics"/>l.<emph.end type="italics"/>4.IM.&longs;eq.fig.pro fig.37. lege 13. <emph type="italics"/>p.<emph.end type="italics"/>157.<emph type="italics"/>l,<emph.end type="italics"/> 3.partis.<emph type="italics"/>l<emph.end type="italics"/>28. ita vt, <emph type="italics"/>l.<emph.end type="italics"/> 37. non dati.<emph type="italics"/>p.<emph.end type="italics"/><lb/>158.<emph type="italics"/>t.<emph.end type="italics"/> 19.<emph type="italics"/>l.<emph.end type="italics"/> 6. parallela.<emph type="italics"/>p.<emph.end type="italics"/>161.l.12. &aelig;quabilitas. <emph type="italics"/>l.<emph.end type="italics"/>15. primo &aelig;quabibi <emph type="italics"/>p.<emph.end type="italics"/> 162.<emph type="italics"/>t.<emph.end type="italics"/>39. <emph type="italics"/>l.<emph.end type="italics"/>1. <lb/>vtcumque, <emph type="italics"/>l.<emph.end type="italics"/>6. EO &aelig;quali.<emph type="italics"/>p.<emph.end type="italics"/>165.<emph type="italics"/>t.<emph.end type="italics"/>42.<emph type="italics"/>l,<emph.end type="italics"/> 3. violento.<emph type="italics"/>p.<emph.end type="italics"/>167.fig.47.<emph type="italics"/>Th.<emph.end type="italics"/>57. <emph type="italics"/>l.<emph.end type="italics"/>2. decre&longs;cit. <lb/><emph type="italics"/>p.<emph.end type="italics"/>173.<emph type="italics"/>c.<emph.end type="italics"/> 1.<emph type="italics"/>l.<emph.end type="italics"/>4. linea motus accedit, <emph type="italics"/>p.<emph.end type="italics"/>172. <emph type="italics"/>t.<emph.end type="italics"/>2.<emph type="italics"/>l.<emph.end type="italics"/>15. QR &lpar;2/16&rpar; in X.<emph type="italics"/>l.<emph.end type="italics"/> 19.EB.<emph type="italics"/>l.<emph.end type="italics"/>31.EYEZ. <lb/><emph type="italics"/>p.<emph.end type="italics"/>137.<emph type="italics"/>l.<emph.end type="italics"/>8. infra.<emph type="italics"/>l.<emph.end type="italics"/>10 maximam <emph type="italics"/>t.<emph.end type="italics"/> 66 <emph type="italics"/>l.<emph.end type="italics"/>7. BG. l. <!-- REMOVE S-->12. &aelig;qualem RK. <emph type="italics"/>p.<emph.end type="italics"/> 174. <emph type="italics"/>l.<emph.end type="italics"/>7. diffe&shy;<lb/>rentiam, <emph type="italics"/>l.<emph.end type="italics"/> 9. tendere, centrum, <emph type="italics"/>l.<emph.end type="italics"/>16.erit AE, <emph type="italics"/>l.<emph.end type="italics"/>18.totus ille, <emph type="italics"/>t.<emph.end type="italics"/>62 <emph type="italics"/>l.<emph.end type="italics"/>2. inclinatiorem, <emph type="italics"/>l.<emph.end type="italics"/>4. <lb/>detrahi, <emph type="italics"/>p.<emph.end type="italics"/>175.<emph type="italics"/>l.<emph.end type="italics"/>35. re&longs;i&longs;tentiam, <emph type="italics"/>p.<emph.end type="italics"/>176.<emph type="italics"/>t.<emph.end type="italics"/>70.fig. </s>
					<s id="N2B2C1">54.<emph type="italics"/>l.<emph.end type="italics"/>9.in E &longs;ed.<emph type="italics"/>p.<emph.end type="italics"/>177.<emph type="italics"/>l<emph.end type="italics"/>7.debet. <emph type="italics"/>t.<emph.end type="italics"/>72. <lb/>tab.2.<emph type="italics"/>l.<emph.end type="italics"/> 5. &aelig;qualis CR.<emph type="italics"/>l.vlt.<emph.end type="italics"/> demittatur, <emph type="italics"/>p.<emph.end type="italics"/>178.<emph type="italics"/>t.<emph.end type="italics"/>77.<emph type="italics"/>l.<emph.end type="italics"/> 3.eadem ratio.<emph type="italics"/>t.<emph.end type="italics"/>78.<emph type="italics"/>l.<emph.end type="italics"/>1.excepta. <lb/><emph type="italics"/>t.<emph.end type="italics"/>80.<emph type="italics"/>l.<emph.end type="italics"/>4.motus mixtus, <emph type="italics"/>p.<emph.end type="italics"/> 179.<emph type="italics"/>l.<emph.end type="italics"/>2. motus terr&aelig;, <emph type="italics"/>l<emph.end type="italics"/> 24. AK. tab.2.<emph type="italics"/>l.<emph.end type="italics"/>27.AD.<emph type="italics"/>l.<emph.end type="italics"/>28. DE <emph type="italics"/>p.<emph.end type="italics"/><lb/>180.<emph type="italics"/>l.<emph.end type="italics"/>7. 20 .<emph type="italics"/>l.<emph.end type="italics"/> 33. imum malum, <emph type="italics"/>p.<emph.end type="italics"/>18 1.<emph type="italics"/>l.<emph.end type="italics"/>11.rapietur.<emph type="italics"/>l.<emph.end type="italics"/>32.&longs;i ver&ograve;.<emph type="italics"/>p.<emph.end type="italics"/>182.<emph type="italics"/>l.<emph.end type="italics"/>2.FA, <emph type="italics"/>p.<emph.end type="italics"/>183.<emph type="italics"/>l<emph.end type="italics"/> 3. <lb/>mixtus EB denique, <emph type="italics"/>l<emph.end type="italics"/> 6. ad quam.<emph type="italics"/>l.<emph.end type="italics"/>27. cum impetu, <emph type="italics"/>l.<emph.end type="italics"/>29. ex verticali.<emph type="italics"/>p.<emph.end type="italics"/>184.<emph type="italics"/>l.<emph.end type="italics"/>6.parte. <lb/><emph type="italics"/>l.<emph.end type="italics"/>9. &aelig;qualem IK, <emph type="italics"/>l.<emph.end type="italics"/>15. recidit.<emph type="italics"/>l.<emph.end type="italics"/>26. mobile, <emph type="italics"/>l.<emph.end type="italics"/>29. rhedis. <emph type="italics"/>p.<emph.end type="italics"/>185.<emph type="italics"/>l.<emph.end type="italics"/>2. motu non a&longs;&longs;imi&shy;<lb/>lem.<emph type="italics"/>p.<emph.end type="italics"/>186. <emph type="italics"/>l.<emph.end type="italics"/>8. oppo&longs;itam, <emph type="italics"/>p.<emph.end type="italics"/>187.<emph type="italics"/>l<emph.end type="italics"/> 2. arcu <emph type="italics"/>p.<emph.end type="italics"/>188. <emph type="italics"/>l.<emph.end type="italics"/>10. ad GM, <emph type="italics"/>l.<emph.end type="italics"/>28. puncto Z, <emph type="italics"/>p.<emph.end type="italics"/>189. <lb/><emph type="italics"/>l.<emph.end type="italics"/>24. &longs;ubduplam, <emph type="italics"/>l.<emph.end type="italics"/>31.&longs;agittam AR.<emph type="italics"/>p.<emph.end type="italics"/>190.<emph type="italics"/>l.<emph.end type="italics"/>14. erit KI inclinata KC, <emph type="italics"/>l.<emph.end type="italics"/>37.quam &longs;up&shy;<lb/>pono.<emph type="italics"/>l.<emph.end type="italics"/>38. ca&longs;t.interpunct.<emph type="italics"/>p.<emph.end type="italics"/>191.<emph type="italics"/>t.<emph.end type="italics"/>107.<emph type="italics"/>l.<emph.end type="italics"/>6.e&longs;t AH.<emph type="italics"/>p.<emph.end type="italics"/>92.<emph type="italics"/>t.<emph.end type="italics"/>109.<emph type="italics"/>l.<emph.end type="italics"/>5. &longs;it AE.<emph type="italics"/>l.<emph.end type="italics"/>6.&longs;it HN, <lb/><emph type="italics"/>l.<emph.end type="italics"/>7. AO &amp; FG.<emph type="italics"/>l.<emph.end type="italics"/>15. &amp; EM.<emph type="italics"/>l.<emph.end type="italics"/>16. AM, ca&longs;t.interp.<emph type="italics"/>t.<emph.end type="italics"/>110.<emph type="italics"/>l.<emph.end type="italics"/>5.<emph type="italics"/>p.<emph.end type="italics"/>193.<emph type="italics"/>n.<emph.end type="italics"/>4.<emph type="italics"/>l.<emph.end type="italics"/>5. &egrave; naui. <emph type="italics"/>n.<emph.end type="italics"/>8. <lb/><emph type="italics"/>l,<emph.end type="italics"/> 3. ex ABAF, <emph type="italics"/>p.<emph.end type="italics"/>197.<emph type="italics"/>l.<emph.end type="italics"/>38. tantum I, <emph type="italics"/>l.<emph.end type="italics"/>28. BAI.<emph type="italics"/>p.<emph.end type="italics"/>198.<emph type="italics"/>l.<emph.end type="italics"/>6. CA. nam.<emph type="italics"/>l.<emph.end type="italics"/>7.fune DB.<emph type="italics"/>l.<emph.end type="italics"/>10. <lb/>EA.<emph type="italics"/>l.<emph.end type="italics"/> 12.AC ver&longs;us E.<emph type="italics"/>l.<emph.end type="italics"/> 13.ad BA.<emph type="italics"/>l.<emph.end type="italics"/> 34. EO, <emph type="italics"/>l.<emph.end type="italics"/>40. vt RF, <emph type="italics"/>l.<emph.end type="italics"/>41. vel in B vt PR.<emph type="italics"/>p.<emph.end type="italics"/>199. <lb/><emph type="italics"/>l.<emph.end type="italics"/>7. LM.vt SR.<emph type="italics"/>l<emph.end type="italics"/> 35.&longs;inui.<emph type="italics"/>p.<emph.end type="italics"/>200.<emph type="italics"/>t.<emph.end type="italics"/>70.<emph type="italics"/>l.<emph.end type="italics"/>4.non de&longs;cendit.<emph type="italics"/>t.<emph.end type="italics"/> 9.<emph type="italics"/>l.<emph.end type="italics"/>1. BAE, <emph type="italics"/>t.<emph.end type="italics"/>10. <emph type="italics"/>l.<emph.end type="italics"/>2. lib.2. <emph type="italics"/>p.<emph.end type="italics"/><lb/>201.<emph type="italics"/>l.<emph.end type="italics"/>7. innato, <emph type="italics"/>l. <!-- REMOVE S-->vlt.<emph.end type="italics"/> eodem. <emph type="italics"/>in Sch.<emph.end type="italics"/>fig.26.tab. <!-- REMOVE S-->1. <emph type="italics"/>p.<emph.end type="italics"/>202.<emph type="italics"/>l.<emph.end type="italics"/>2.AD.fig.27, <emph type="italics"/>l.<emph.end type="italics"/> 30. vt AD. <lb/>Th. 16.Fig. </s>
					<s id="N2B52F">31. Tab.2.<emph type="italics"/>p.<emph.end type="italics"/>203.<emph type="italics"/>l.<emph.end type="italics"/>8. in A.<emph type="italics"/>l.<emph.end type="italics"/>21. GD.<emph type="italics"/>p.<emph.end type="italics"/>205 <emph type="italics"/>t.<emph.end type="italics"/>18.<emph type="italics"/>l.<emph.end type="italics"/>15.ducatur LE.<emph type="italics"/>l.<emph.end type="italics"/>6.DG. <emph type="italics"/>l. <!-- REMOVE S--><lb/>vlt.<emph.end type="italics"/> FP.DN, <emph type="italics"/>p.<emph.end type="italics"/>206. <emph type="italics"/>n.<emph.end type="italics"/>8.<emph type="italics"/>l.<emph.end type="italics"/>3.AIFD, <emph type="italics"/>l.<emph.end type="italics"/>4. in AG.<emph type="italics"/>p.<emph.end type="italics"/>207.<emph type="italics"/>t.<emph.end type="italics"/>19.<emph type="italics"/>habes<emph.end type="italics"/> L pro G.<emph type="italics"/>p.<emph.end type="italics"/>209.<emph type="italics"/>t.<emph.end type="italics"/>25. <lb/><emph type="italics"/>l.<emph.end type="italics"/>3. ducatur, <emph type="italics"/>t.<emph.end type="italics"/>26.<emph type="italics"/>l.<emph.end type="italics"/>2. AF.<emph type="italics"/>p.<emph.end type="italics"/>210.<emph type="italics"/>l.<emph.end type="italics"/>4.de&longs;cendet fig.42.tab.2. <emph type="italics"/>t.<emph.end type="italics"/>28.loco B.lege X.<emph type="italics"/>t.<emph.end type="italics"/> 30.<emph type="italics"/>l.<emph.end type="italics"/>7. <lb/>ad KA.<emph type="italics"/>t,<emph.end type="italics"/> 30. <emph type="italics"/>l.<emph.end type="italics"/>8.petcurritur A.D.<emph type="italics"/>p.<emph.end type="italics"/>211.<emph type="italics"/>l.<emph.end type="italics"/>6. longitudinum, <emph type="italics"/>p.<emph.end type="italics"/>212.<emph type="italics"/>l.<emph.end type="italics"/>12. ad BC ducatur <lb/>BG. </s>
					<s id="N2B5F6">Si non e&longs;&longs;et maior 5. CF, <emph type="italics"/>l.<emph.end type="italics"/> 14. CF fer&egrave; 2. 1/2 <emph type="italics"/>l.<emph.end type="italics"/> 30, BKAK, <emph type="italics"/>p.<emph.end type="italics"/>213.<emph type="italics"/>l.<emph.end type="italics"/>41.&longs;it rad. </s>
					<s id="N2B611"><lb/>q.8.<emph type="italics"/>l.<emph.end type="italics"/>20.GED.num. <!-- REMOVE S-->8, &amp; 9.&longs;catent mendis tu ca&longs;tigabis iuxta Sch. <!-- REMOVE S-->vltim&aelig; appendicis. <lb/><emph type="italics"/>p.<emph.end type="italics"/>215. <emph type="italics"/>t.<emph.end type="italics"/>37.<emph type="italics"/>l.<emph.end type="italics"/>7. vel AFC. <emph type="italics"/>p.<emph.end type="italics"/>216. <emph type="italics"/>t.<emph.end type="italics"/>38.<emph type="italics"/>l.<emph.end type="italics"/>11. conficeret per AF. <emph type="italics"/>l. <!-- REMOVE S-->vlt.<emph.end type="italics"/> a&longs;cen&longs;um. </s>
					<s id="N2B64C">Th.40. <lb/><emph type="italics"/>l.<emph.end type="italics"/>4. MA <emph type="italics"/>t.<emph.end type="italics"/>41.fig.3.tab, 3.<emph type="italics"/>p.<emph.end type="italics"/>217. <emph type="italics"/>l.<emph.end type="italics"/>6.21.22. E.pro C.<emph type="italics"/>p.<emph.end type="italics"/>218.<emph type="italics"/>t.<emph.end type="italics"/>47.<emph type="italics"/>l.<emph.end type="italics"/>4. &longs;ubduplus impetus <lb/><emph type="italics"/>t.<emph.end type="italics"/>49. <emph type="italics"/>l.<emph.end type="italics"/>11. vt &longs;ubdupla BC <emph type="italics"/>l.<emph.end type="italics"/>13. <emph type="italics"/>dele<emph.end type="italics"/> a, quia v&longs;que vt ver&ograve;, <emph type="italics"/>p.<emph.end type="italics"/>219. <emph type="italics"/>l.<emph.end type="italics"/>2. vt &longs;ubdupla GF <lb/><emph type="italics"/>l.<emph.end type="italics"/>5. vt &longs;ubdupla BC.<emph type="italics"/>l.<emph.end type="italics"/>7. quadruplum AB.<emph type="italics"/>p.<emph.end type="italics"/>220.<emph type="italics"/>l.<emph.end type="italics"/> 8.perpendicularis GH.<emph type="italics"/>l.<emph.end type="italics"/>11.paral&shy;<lb/>lela EG.<emph type="italics"/>t.<emph.end type="italics"/> 56. habes Y lege &amp; <emph type="italics"/>t.<emph.end type="italics"/>58. <emph type="italics"/>l.<emph.end type="italics"/>2. ver&longs;us E, <emph type="italics"/>p.<emph.end type="italics"/>221.<emph type="italics"/>t.<emph.end type="italics"/>60, Y pro &amp; <emph type="italics"/>t.<emph.end type="italics"/>62. V pro <foreign lang="greek">g</foreign>, <lb/><emph type="italics"/>l.<emph.end type="italics"/>8.puta <foreign lang="greek">b.</foreign><emph type="italics"/>t.<emph.end type="italics"/>64. T pro <foreign lang="greek">t</foreign> <emph type="italics"/>p.<emph.end type="italics"/>222.<emph type="italics"/>l.<emph.end type="italics"/>9. &aelig;qualis.<emph type="italics"/>t.<emph.end type="italics"/>65. X pro &amp; <emph type="italics"/>l.<emph.end type="italics"/>10.in plano.<emph type="italics"/>t.<emph.end type="italics"/>66 P &amp; <emph type="italics"/>t<emph.end type="italics"/>68. <lb/><emph type="italics"/>l.<emph.end type="italics"/>3.vt planum fig.7, tab. </s>
					<s id="N2B727"><!-- NEW -->3. <emph type="italics"/>p.<emph.end type="italics"/>223. <emph type="italics"/>l.<emph.end type="italics"/>11.per KA vt DC ad CA, <emph type="italics"/>l.<emph.end type="italics"/>13. EPPEEA, <emph type="italics"/>l.<emph.end type="italics"/>37. <lb/>enotum, <emph type="italics"/>p.<emph.end type="italics"/>225.<emph type="italics"/>l.<emph.end type="italics"/>3. non e&longs;t <emph type="italics"/>p.<emph.end type="italics"/>228.<emph type="italics"/>t.<emph.end type="italics"/>86.<emph type="italics"/>l.<emph.end type="italics"/>6. LC.<emph type="italics"/>l.<emph.end type="italics"/>7. maior <emph type="italics"/>t.<emph.end type="italics"/>87.<emph type="italics"/>l.<emph.end type="italics"/>6. in&longs;erte.<emph type="italics"/>t,<emph.end type="italics"/> 89 <emph type="italics"/>t.<emph.end type="italics"/>8.an-<pb xlink:href="026/01/484.jpg"/>tecedentia.<emph type="italics"/>p.<emph.end type="italics"/>219.<emph type="italics"/>t.<emph.end type="italics"/>93. <emph type="italics"/>l.<emph.end type="italics"/> 17. accedit.<emph type="italics"/>p.<emph.end type="italics"/>230.<emph type="italics"/>t.<emph.end type="italics"/>97.<emph type="italics"/>l.<emph.end type="italics"/> 90. tum QP. &amp; EI.&aelig;qualia QYA <lb/>D.<emph type="italics"/>p.<emph.end type="italics"/>231.<emph type="italics"/>t.<emph.end type="italics"/>98.<emph type="italics"/>l.<emph.end type="italics"/>6, MK.<emph type="italics"/>l.<emph.end type="italics"/>11. &longs;upra C.<emph type="italics"/>l.<emph.end type="italics"/>12. arcus MGP.<emph type="italics"/>l.<emph.end type="italics"/>14.&longs;i ver&ograve; in V.<emph type="italics"/>t.<emph.end type="italics"/>99.<emph type="italics"/>l.<emph.end type="italics"/>11.in 4. <lb/>vt AZ.<emph type="italics"/>l.<emph.end type="italics"/>4. 3 E.<emph type="italics"/>l.<emph.end type="italics"/>5. TBE <emph type="italics"/>p.<emph.end type="italics"/>232.<emph type="italics"/>t.<emph.end type="italics"/>100.<emph type="italics"/>l.<emph.end type="italics"/>12. in&longs;erto.<emph type="italics"/>l.<emph.end type="italics"/>33. &amp; ratione. <emph type="italics"/>l.<emph.end type="italics"/>13. EQE.<emph type="italics"/>l.<emph.end type="italics"/>27. <lb/>ad AT ad A <foreign lang="greek"><expan abbr="q.">que</expan></foreign><emph type="italics"/>l.<emph.end type="italics"/>36. motum per AC.<emph type="italics"/>l.<emph.end type="italics"/>37. per AC.<emph type="italics"/>p.<emph.end type="italics"/>233.<emph type="italics"/>l.<emph.end type="italics"/>3.e&longs;&longs;et. <emph type="italics"/>l.<emph.end type="italics"/>4.debet e&longs;&longs;e <emph type="italics"/>co.<emph.end type="italics"/>4. <lb/><emph type="italics"/>l<emph.end type="italics"/> 5 de&longs;cendant.<emph type="italics"/>p.<emph.end type="italics"/>235.<emph type="italics"/>l.<emph.end type="italics"/>20. ADG.<emph type="italics"/>l.<emph.end type="italics"/>39. vbi e&longs;t motus.<emph type="italics"/>p.<emph.end type="italics"/>238.<emph type="italics"/>l.<emph.end type="italics"/>3. totum agit. <emph type="italics"/>p.<emph.end type="italics"/>240.<emph type="italics"/>t.<emph.end type="italics"/><lb/>17.<emph type="italics"/>l.<emph.end type="italics"/>4. atque, <emph type="italics"/>p.<emph.end type="italics"/>241.<emph type="italics"/>t.<emph.end type="italics"/>20.<emph type="italics"/>l.<emph.end type="italics"/>2. lib.  1.<emph type="italics"/>t.<emph.end type="italics"/>23.<emph type="italics"/>l.<emph.end type="italics"/>8. horizontalis.<emph type="italics"/>l.<emph.end type="italics"/>13. GD ad AB. <emph type="italics"/>p.<emph.end type="italics"/>243.<emph type="italics"/>l.<emph.end type="italics"/>5. D <lb/>G. <emph type="italics"/>l.<emph.end type="italics"/>17. ad DA.<emph type="italics"/>l.<emph.end type="italics"/>19. dele GO, <emph type="italics"/>p.<emph.end type="italics"/>244.<emph type="italics"/>t.<emph.end type="italics"/>33.<emph type="italics"/>l.<emph.end type="italics"/>6. volunt.<emph type="italics"/>p.<emph.end type="italics"/>246.<emph type="italics"/>l.<emph.end type="italics"/>19.&amp; 23. G <foreign lang="greek">d.</foreign><emph type="italics"/>l.<emph.end type="italics"/>24. Th. <!-- REMOVE S--><lb/>40.<emph type="italics"/>l.<emph.end type="italics"/>42. idque duobus.<emph type="italics"/>p.<emph.end type="italics"/>248.<emph type="italics"/>l.<emph.end type="italics"/>38. motum.<emph type="italics"/>p.<emph.end type="italics"/>249:<emph type="italics"/>t.<emph.end type="italics"/>41.<emph type="italics"/>l.<emph.end type="italics"/> 11. PD &aelig;qualis, <emph type="italics"/>p.<emph.end type="italics"/>250.<emph type="italics"/>t.<emph.end type="italics"/>44.<emph type="italics"/>l.<emph.end type="italics"/>8. <lb/>&amp; hic GDK.<emph type="italics"/>p.<emph.end type="italics"/>251.<emph type="italics"/>l.<emph.end type="italics"/>9. G <foreign lang="greek">d.</foreign><emph type="italics"/>p.<emph.end type="italics"/>252.<emph type="italics"/>l.<emph.end type="italics"/>4. quie&longs;cit vt vult; &longs;ed rem demon&longs;traui.<emph type="italics"/>p.<emph.end type="italics"/>253. <lb/><emph type="italics"/>l.<emph.end type="italics"/>7. quod dum.<emph type="italics"/>l.<emph.end type="italics"/>17.&amp; 36.atterantur.<emph type="italics"/>l.<emph.end type="italics"/>39.cedit.<emph type="italics"/>p.<emph.end type="italics"/> 254.<emph type="italics"/>l.<emph.end type="italics"/> 13.atterantur, <emph type="italics"/>p.<emph.end type="italics"/>253. <emph type="italics"/>t.<emph.end type="italics"/>59.<emph type="italics"/>l.<emph.end type="italics"/> 1. <lb/>de&longs;truitur.<emph type="italics"/>p.<emph.end type="italics"/>254.<emph type="italics"/>t.<emph.end type="italics"/>62.<emph type="italics"/>l.<emph.end type="italics"/>12. oppo&longs;itam.<emph type="italics"/>p.<emph.end type="italics"/>255.<emph type="italics"/>l.<emph.end type="italics"/>34. DBM. <emph type="italics"/>p.<emph.end type="italics"/>266.<emph type="italics"/>l.<emph.end type="italics"/>9. ver&ograve; 60.<emph type="italics"/>t.<emph.end type="italics"/>64. <emph type="italics"/>l.<emph.end type="italics"/><lb/>19. &longs;ubdupla habent &longs;&aelig;pius V.pro <foreign lang="greek">g.</foreign><emph type="italics"/>l.<emph.end type="italics"/>21.detrahatur <foreign lang="greek">d</foreign> H.<emph type="italics"/>l.<emph.end type="italics"/>28. 1 1/2 <emph type="italics"/>p.<emph.end type="italics"/>257..<emph type="italics"/>l.<emph.end type="italics"/>12.FAN <lb/>C. fig.23. tab. </s>
					<s id="N2B9BC"><!-- NEW -->3. <emph type="italics"/>p.<emph.end type="italics"/>258.<emph type="italics"/>t.<emph.end type="italics"/>68.<emph type="italics"/>l.<emph.end type="italics"/> 3 autem &longs;ic <emph type="italics"/>l.<emph.end type="italics"/>10. Th. 135. lib.  1.<emph type="italics"/>t.<emph.end type="italics"/> 67. <emph type="italics"/>habes &longs;&aelig;pius<emph.end type="italics"/> <foreign lang="greek">n</foreign><lb/>pro <foreign lang="greek">g.</foreign><emph type="italics"/>p.<emph.end type="italics"/>259.<emph type="italics"/>l.<emph.end type="italics"/>14. globus B. <emph type="italics"/>l.<emph.end type="italics"/>31. globi B. <emph type="italics"/>l.<emph.end type="italics"/>29. a&longs;&longs;umatur M <foreign lang="greek">q</foreign>, <emph type="italics"/>p.<emph.end type="italics"/> 262. <emph type="italics"/>l.<emph.end type="italics"/>2. re&longs;ilit. <emph type="italics"/>p.<emph.end type="italics"/><lb/>264. Th.90.<emph type="italics"/>l.<emph.end type="italics"/>6. line&aelig;.<emph type="italics"/>l.<emph.end type="italics"/>9. &longs;ed mox.<emph type="italics"/>p.<emph.end type="italics"/> 265. <foreign lang="greek">u</foreign> pro <foreign lang="greek">g</foreign> <emph type="italics"/>p.<emph.end type="italics"/>266. <emph type="italics"/>t.<emph.end type="italics"/>93. in&longs;tanti. <emph type="italics"/>t.<emph.end type="italics"/>97.<emph type="italics"/>in Sch. <!-- REMOVE S--><lb/>l.<emph.end type="italics"/>1. cau&longs;as multiplices.<emph type="italics"/>p.<emph.end type="italics"/>267.<emph type="italics"/>l.<emph.end type="italics"/>6. an fort&egrave;.<emph type="italics"/>l.<emph.end type="italics"/>26. lumine.<emph type="italics"/>l.<emph.end type="italics"/>39: fori.<emph type="italics"/>p.<emph.end type="italics"/>268, <emph type="italics"/>l.<emph.end type="italics"/>40. rectam. <lb/><emph type="italics"/>p.<emph.end type="italics"/>269.<emph type="italics"/>l,<emph.end type="italics"/> 7. e&longs;t minor 3 1/2 &amp; eius quadr.minus 31.<emph type="italics"/>l.<emph.end type="italics"/>8. e&longs;t 8.<emph type="italics"/>l<emph.end type="italics"/> 9. igitur h&aelig;c. <emph type="italics"/>l.<emph.end type="italics"/>14. <emph type="italics"/>dele<emph.end type="italics"/><lb/>non <emph type="italics"/>in hac pa.&amp; &longs;up. </s>
					<s id="N2BA9B">legs <foreign lang="greek">g</foreign> pro n. </s>
					<s id="N2BAA2">p.<emph.end type="italics"/>270. <emph type="italics"/>l.<emph.end type="italics"/>8.ali&aelig;. <emph type="italics"/>p.<emph.end type="italics"/>273.<emph type="italics"/>l.<emph.end type="italics"/>9. lineam LM. <emph type="italics"/>p.<emph.end type="italics"/>274.<emph type="italics"/>t.<emph.end type="italics"/>6.<emph type="italics"/>l.<emph.end type="italics"/><lb/>17.vnus <emph type="italics"/>p.<emph.end type="italics"/>275.<emph type="italics"/>l.<emph.end type="italics"/>13.<emph type="italics"/>dele.<emph.end type="italics"/>A, <emph type="italics"/>l.<emph.end type="italics"/>21.<emph type="italics"/>dele<emph.end type="italics"/> non, <emph type="italics"/>l.<emph.end type="italics"/>25. vix in.<emph type="italics"/>p.<emph.end type="italics"/>276.<emph type="italics"/>l.<emph.end type="italics"/>1.LM.<emph type="italics"/>p.<emph.end type="italics"/>278.<emph type="italics"/>t.<emph.end type="italics"/>15.<emph type="italics"/>l.<emph.end type="italics"/>7. QR. <lb/><emph type="italics"/>p.<emph.end type="italics"/>279.<emph type="italics"/>l.<emph.end type="italics"/>2.locis.<emph type="italics"/>l.<emph.end type="italics"/>9, <expan abbr="q.">que</expan><emph type="italics"/>p.<emph.end type="italics"/>280.<emph type="italics"/>t.<emph.end type="italics"/> 19. <emph type="italics"/>lege<emph.end type="italics"/> L pro T.<emph type="italics"/>p.<emph.end type="italics"/>281.<emph type="italics"/>l.<emph.end type="italics"/>11.&longs;i motus.<emph type="italics"/>l.<emph.end type="italics"/> 14.inten&longs;um.<emph type="italics"/>t.<emph.end type="italics"/>21. <lb/>A.<emph type="italics"/>p,<emph.end type="italics"/> 283. <emph type="italics"/>t.<emph.end type="italics"/>29.<emph type="italics"/>l.<emph.end type="italics"/>2. DC.<emph type="italics"/>t.<emph.end type="italics"/>30.<emph type="italics"/>l.<emph.end type="italics"/>5. C &longs;ur&longs;um.<emph type="italics"/>p.<emph.end type="italics"/>284.<emph type="italics"/>t.<emph.end type="italics"/>34.<emph type="italics"/>l.<emph.end type="italics"/>8. &agrave; &longs;e. <emph type="italics"/>p.<emph.end type="italics"/> 286. <emph type="italics"/>t.<emph.end type="italics"/> 42.<emph type="italics"/>l.<emph.end type="italics"/>7. cono <lb/><emph type="italics"/>l.<emph.end type="italics"/>4. cuius axis, conus, <emph type="italics"/>p.<emph.end type="italics"/>287.<emph type="italics"/>t.<emph.end type="italics"/>45.<emph type="italics"/>l.<emph.end type="italics"/>7.maior, <emph type="italics"/>p.<emph.end type="italics"/>288.<emph type="italics"/>t.<emph.end type="italics"/>48.<emph type="italics"/>l.<emph.end type="italics"/>18.FC.<emph type="italics"/>p.<emph.end type="italics"/>289.<emph type="italics"/>t.<emph.end type="italics"/>50.<emph type="italics"/>l.<emph.end type="italics"/> 10.ad AE <lb/>permutando, <emph type="italics"/>p.<emph.end type="italics"/>292.<emph type="italics"/>t.<emph.end type="italics"/>57, <emph type="italics"/>l.<emph.end type="italics"/>7. &longs;ubdupl&aelig;, <emph type="italics"/>p.<emph.end type="italics"/>293.<emph type="italics"/>t.<emph.end type="italics"/>61.<emph type="italics"/>l.<emph.end type="italics"/>5. A <foreign lang="greek">q</foreign>, <emph type="italics"/>l.<emph.end type="italics"/>6, puncto A, <emph type="italics"/>ibidem lege<emph.end type="italics"/><lb/>Y <emph type="italics"/>pro<emph.end type="italics"/> V.<emph type="italics"/>p.<emph.end type="italics"/>298.<emph type="italics"/>def,<emph.end type="italics"/> 9.<emph type="italics"/>l.<emph.end type="italics"/>1. corpori, <emph type="italics"/>l.<emph.end type="italics"/>6. &agrave; moto, <emph type="italics"/>p.<emph.end type="italics"/>299. <emph type="italics"/>l.<emph.end type="italics"/>6. corporis, <emph type="italics"/>l.<emph.end type="italics"/>22. mixtam, <emph type="italics"/>p.<emph.end type="italics"/>300. <lb/><emph type="italics"/>t.<emph.end type="italics"/>2.<emph type="italics"/>l<emph.end type="italics"/> 3. L, <emph type="italics"/>p.<emph.end type="italics"/>131.<emph type="italics"/>l.<emph.end type="italics"/>8. motus, <emph type="italics"/>p.<emph.end type="italics"/>302. <emph type="italics"/>Lem.<emph.end type="italics"/>1, <emph type="italics"/>l.<emph.end type="italics"/>12. &aelig;qualibus, <emph type="italics"/>Lem.<emph.end type="italics"/>3. <emph type="italics"/>l.<emph.end type="italics"/> 13. <emph type="italics"/>dele<emph.end type="italics"/> Q, <emph type="italics"/>l.<emph.end type="italics"/>18. <lb/>&aelig;quales, <emph type="italics"/>p.<emph.end type="italics"/> 303. <emph type="italics"/>Lem.<emph.end type="italics"/>4.<emph type="italics"/>l.<emph.end type="italics"/>7. &longs;it QR, <emph type="italics"/>l.<emph.end type="italics"/>12. ad quintam, <emph type="italics"/>l<emph.end type="italics"/> 15. Ax.rationem, <emph type="italics"/>l.<emph.end type="italics"/>17. Ax.<emph type="italics"/>Lem.<emph.end type="italics"/><lb/>6.<emph type="italics"/>l.<emph.end type="italics"/>4. <emph type="italics"/>in DG, p.<emph.end type="italics"/>303. <emph type="italics"/>Lem.<emph.end type="italics"/> 10.<emph type="italics"/>l.<emph.end type="italics"/>12. maius, <emph type="italics"/>Lem.<emph.end type="italics"/>12.<emph type="italics"/>l.<emph.end type="italics"/> 4. <emph type="italics"/>dele<emph.end type="italics"/> cuius con&longs;tructionis <emph type="italics"/>l.<emph.end type="italics"/>5. <lb/>TQA, <emph type="italics"/>l.<emph.end type="italics"/>7. qu&aelig; AB, <emph type="italics"/>l.<emph.end type="italics"/>8. quad.45.<emph type="italics"/>l.<emph.end type="italics"/>12. BE, <emph type="italics"/>p.<emph.end type="italics"/>306 <emph type="italics"/>in Sch l,<emph.end type="italics"/> 2. <foreign lang="greek">m a</foreign>, YR, <emph type="italics"/>p.<emph.end type="italics"/>307.<emph type="italics"/>Lem<emph.end type="italics"/> 15. <lb/><emph type="italics"/>l.<emph.end type="italics"/>23.ad BG, B 4, <emph type="italics"/>p.<emph.end type="italics"/>308. <foreign lang="greek">u</foreign> <emph type="italics"/>pro <foreign lang="greek">g</foreign> pa&longs;&longs;im, l.<emph.end type="italics"/> 17. vt YZF, <emph type="italics"/>Lem.<emph.end type="italics"/> 16. <emph type="italics"/>l.<emph.end type="italics"/>11. quinam, <emph type="italics"/>p<emph.end type="italics"/> 307. <lb/><emph type="italics"/>l.<emph.end type="italics"/>9. <foreign lang="greek">a</foreign> ad BZ, <emph type="italics"/>p.<emph.end type="italics"/>310.<emph type="italics"/>l.<emph.end type="italics"/>1, recta, <emph type="italics"/>t.<emph.end type="italics"/>8, <emph type="italics"/>l,<emph.end type="italics"/> 2. in&aelig;qualia, <emph type="italics"/>l.<emph.end type="italics"/>6. in quo, <emph type="italics"/>p.<emph.end type="italics"/>311.<emph type="italics"/>l.<emph.end type="italics"/>36. 34.grad.<emph type="italics"/>p.<emph.end type="italics"/> 313. <lb/><emph type="italics"/>Cor.<emph.end type="italics"/>3.<emph type="italics"/>l.<emph.end type="italics"/>6.angulum ip&longs;a.<emph type="italics"/>p.<emph.end type="italics"/>316. <emph type="italics"/>l<emph.end type="italics"/> 36. percurritur, <emph type="italics"/>p.<emph.end type="italics"/>317.<emph type="italics"/>t.<emph.end type="italics"/>16. fig.3. Tab.4.<emph type="italics"/>l.<emph.end type="italics"/>4, tempore <lb/>&aelig;quali, <emph type="italics"/>p.<emph.end type="italics"/>319.<emph type="italics"/>t.<emph.end type="italics"/> 20.<emph type="italics"/>l.<emph.end type="italics"/>13. ad H <emph type="italics"/>t.<emph.end type="italics"/>22.<emph type="italics"/>l.<emph.end type="italics"/> 3.enim, <emph type="italics"/>l,<emph.end type="italics"/> 4. impetus quo a&longs;cendat in <foreign lang="greek">w</foreign> dele h&aelig;c <lb/>verba haud dubi&egrave; per arcum ferretur in <foreign lang="greek">w</foreign> <emph type="italics"/>p.<emph.end type="italics"/>320.<emph type="italics"/>l.<emph.end type="italics"/> 1. perueniet in <foreign lang="greek">q</foreign> <emph type="italics"/>l.<emph.end type="italics"/>4. C fertur, <emph type="italics"/>t,<emph.end type="italics"/> 23. <lb/><emph type="italics"/>l<emph.end type="italics"/> 1, ni&longs;it, <emph type="italics"/>p.<emph.end type="italics"/> 321 <emph type="italics"/>l.<emph.end type="italics"/>6, &longs;patiis, <emph type="italics"/>l.<emph.end type="italics"/>15.primo a&longs;cen&longs;u, <emph type="italics"/>l<emph.end type="italics"/> 34. ferri, <emph type="italics"/>p.<emph.end type="italics"/> 322.<emph type="italics"/>t.<emph.end type="italics"/>26.<emph type="italics"/>l.<emph.end type="italics"/>6.prim&aelig;, &longs;ecun&shy;<lb/>d&aelig;, <emph type="italics"/>p<emph.end type="italics"/> 323.<emph type="italics"/>l.<emph.end type="italics"/> 34. ignota, <emph type="italics"/>p.<emph.end type="italics"/> 324.<emph type="italics"/>l vlt.<emph.end type="italics"/> prima, <emph type="italics"/>p.<emph.end type="italics"/>326. <emph type="italics"/>cor.<emph.end type="italics"/>3.<emph type="italics"/>l.<emph.end type="italics"/>2. ita vt, <emph type="italics"/>p.<emph.end type="italics"/>327.<emph type="italics"/>cor.<emph.end type="italics"/> 5 <emph type="italics"/>l.<emph.end type="italics"/>4. de&shy;<lb/>&longs;cenderet, <emph type="italics"/>l<emph.end type="italics"/> 33.ferri, <emph type="italics"/>p.<emph.end type="italics"/>329 <emph type="italics"/>l.<emph.end type="italics"/>5. medullaceum, <emph type="italics"/>l.<emph.end type="italics"/> 17.quamdam, <emph type="italics"/>l<emph.end type="italics"/> 18. <emph type="italics"/>dele<emph.end type="italics"/> conficiet, <emph type="italics"/>l<emph.end type="italics"/> 19. <lb/>conficiet tres, <emph type="italics"/>l.<emph.end type="italics"/>41. huius motus <emph type="italics"/>p.<emph.end type="italics"/> 331. <emph type="italics"/>cor.<emph.end type="italics"/>2.l.3. in F. <emph type="italics"/>cor.<emph.end type="italics"/>3. <emph type="italics"/>l<emph.end type="italics"/> 1 in hoc &amp; <emph type="italics"/>cor.<emph.end type="italics"/> 5.<emph type="italics"/>l.<emph.end type="italics"/>3. <lb/>quia enim, <emph type="italics"/>cor.<emph.end type="italics"/>6.<emph type="italics"/>l.<emph.end type="italics"/>1. &longs;u&longs;pendatur, <emph type="italics"/>p.<emph.end type="italics"/>332.<emph type="italics"/>l.<emph.end type="italics"/>3. pondus, C. <emph type="italics"/>t.<emph.end type="italics"/>41. <emph type="italics"/>l.<emph.end type="italics"/> 5. puncto, <emph type="italics"/>p.<emph.end type="italics"/> 333. <emph type="italics"/>l.<emph.end type="italics"/> 2. <lb/>quam maiores, <emph type="italics"/>p.<emph.end type="italics"/>334. <emph type="italics"/>def.<emph.end type="italics"/> 1 <emph type="italics"/>l.<emph.end type="italics"/>3. curuam, <emph type="italics"/>def<emph.end type="italics"/> 2.<emph type="italics"/>l.<emph.end type="italics"/> 3. ex duobus rectis &amp; <emph type="italics"/>p<emph.end type="italics"/> 335 <emph type="italics"/>t.<emph.end type="italics"/> 1.<emph type="italics"/>l<emph.end type="italics"/> 12. <lb/>LQA. <emph type="italics"/>p.<emph.end type="italics"/> 336 <emph type="italics"/>l<emph.end type="italics"/> 2. vel MI, <emph type="italics"/>l.<emph.end type="italics"/> 4. &amp; motus <emph type="italics"/>cor.<emph.end type="italics"/>1 <emph type="italics"/>l<emph.end type="italics"/> 6, L <foreign lang="greek">g</foreign>, <emph type="italics"/>cor.<emph.end type="italics"/> 2. <emph type="italics"/>l<emph.end type="italics"/> 3. AC, &amp; <emph type="italics"/>l<emph.end type="italics"/> 4.&amp; quo <lb/><emph type="italics"/>cor.<emph.end type="italics"/>4.<emph type="italics"/>l.<emph.end type="italics"/>2 <emph type="italics"/>p<emph.end type="italics"/> 2 <emph type="italics"/>cor<emph.end type="italics"/> 5.<emph type="italics"/>l<emph.end type="italics"/> 4. LH, &amp; <emph type="italics"/>p.<emph.end type="italics"/>337. <emph type="italics"/>cor.<emph.end type="italics"/>6.<emph type="italics"/>l<emph.end type="italics"/> 5.<emph type="italics"/>dele,<emph.end type="italics"/> vt <emph type="italics"/>l<emph.end type="italics"/> 6.Z, 9, <emph type="italics"/>l.<emph.end type="italics"/> 10. &longs;inguli. <emph type="italics"/>cor.<emph.end type="italics"/>7 <emph type="italics"/>l.<emph.end type="italics"/><lb/>3.9.grad <emph type="italics"/>p.<emph.end type="italics"/>338. <emph type="italics"/>t.<emph.end type="italics"/> 5 <emph type="italics"/>l.<emph.end type="italics"/> 2. AB, &aelig;qualem arcui AV. <emph type="italics"/>l.<emph.end type="italics"/> 3. &aelig;qualem XV, id e&longs;t arcum <lb/>&longs;ious AV, &longs;ed, <emph type="italics"/>t.<emph.end type="italics"/>6.<emph type="italics"/>l<emph.end type="italics"/> 2 OPDL 4. OZP, <emph type="italics"/>p.<emph.end type="italics"/>339.<emph type="italics"/>l.<emph.end type="italics"/>4. A. 18. <emph type="italics"/>t.<emph.end type="italics"/>7.<emph type="italics"/>l.<emph.end type="italics"/>4.&longs;inus ex gradu, <emph type="italics"/>l.<emph.end type="italics"/> 11. <lb/>a&longs;&longs;umas, <emph type="italics"/>l<emph.end type="italics"/> 13. vero 1.<emph type="italics"/>t.<emph.end type="italics"/>8. <emph type="italics"/>l<emph.end type="italics"/> 1. rota, <emph type="italics"/>p.<emph.end type="italics"/>340.<emph type="italics"/>l.<emph.end type="italics"/>15. puncta B, punctum B, <emph type="italics"/>l.<emph.end type="italics"/>25. a&longs;cenderet. <emph type="italics"/>l.<emph.end type="italics"/><lb/>39 centro M, <emph type="italics"/>l.<emph.end type="italics"/>41. &longs;implici, <emph type="italics"/>l.<emph.end type="italics"/>42. punctum P, <emph type="italics"/>l.<emph.end type="italics"/>44 circa centrum, <emph type="italics"/>p.<emph.end type="italics"/>341.<emph type="italics"/>n.<emph.end type="italics"/>8.<emph type="italics"/>l<emph.end type="italics"/> 2.illum <lb/>fig.10 tab.4, lib.10 quadrat IA, <emph type="italics"/>l.<emph.end type="italics"/>15. KD, <emph type="italics"/>l.<emph.end type="italics"/>16. HF, <emph type="italics"/>n<emph.end type="italics"/> 9.<emph type="italics"/>l.<emph.end type="italics"/>6. profecto, <emph type="italics"/>p.<emph.end type="italics"/>342. <emph type="italics"/>n.<emph.end type="italics"/>12 <emph type="italics"/>l.<emph.end type="italics"/>4. <lb/>in&longs;uperabilem <emph type="italics"/>l<emph.end type="italics"/> 6.&longs;ibi non, <emph type="italics"/>l.<emph.end type="italics"/>8. non tangit, <emph type="italics"/>p.<emph.end type="italics"/>343 <emph type="italics"/>l.<emph.end type="italics"/>21 huiu&longs;modi contactus, <emph type="italics"/>l.<emph.end type="italics"/>25.DN, <lb/><emph type="italics"/>l.<emph.end type="italics"/>5. ne diu, <emph type="italics"/>l.<emph.end type="italics"/>13. arcu BD, <emph type="italics"/>l<emph.end type="italics"/> 14. contactu medio, <emph type="italics"/>p.<emph.end type="italics"/>344. <emph type="italics"/>dele<emph.end type="italics"/> non n 18.fig 12. tab.4. <emph type="italics"/>l<emph.end type="italics"/> 2. <lb/>imaginarium, <emph type="italics"/>n<emph.end type="italics"/> 20. DC primum, <emph type="italics"/>p.<emph.end type="italics"/>345 <emph type="italics"/>l.<emph.end type="italics"/>8. quod n.24 <emph type="italics"/>l<emph.end type="italics"/> 2. duo, <emph type="italics"/>p.<emph.end type="italics"/>346.n.27. <emph type="italics"/>l<emph.end type="italics"/> 3.in K, <lb/><emph type="italics"/>l<emph.end type="italics"/> 4. &longs;ecet, <emph type="italics"/>l.<emph.end type="italics"/>9. <emph type="italics"/>lege <foreign lang="greek">g</foreign> pro<emph.end type="italics"/> V, &longs;it ZX n.28.<emph type="italics"/>l.<emph.end type="italics"/>4 colliguntur, <emph type="italics"/>p<emph.end type="italics"/> 347.<emph type="italics"/>l<emph.end type="italics"/> 5. puncto D. <emph type="italics"/>in Sch.l. </s>
					<s id="N2C0F1"><!-- NEW --><lb/>vlt<emph.end type="italics"/> experientia, <emph type="italics"/>p<emph.end type="italics"/> 348.<emph type="italics"/>l, vlt<emph.end type="italics"/> lignea, <emph type="italics"/>p.<emph.end type="italics"/>349 <emph type="italics"/>l.<emph.end type="italics"/>9. nam, <emph type="italics"/>p.<emph.end type="italics"/>350. <emph type="italics"/>t.<emph.end type="italics"/>15. <emph type="italics"/>l.<emph.end type="italics"/> 3. centro A, lege <foreign lang="greek">t</foreign><lb/><emph type="italics"/>pro<emph.end type="italics"/> T, ter, <emph type="italics"/>p.<emph.end type="italics"/>351. <emph type="italics"/>l.<emph.end type="italics"/>1. qui e&longs;t, <emph type="italics"/>n.<emph.end type="italics"/> 5.<emph type="italics"/>l.<emph.end type="italics"/>3 in P, <emph type="italics"/>n.<emph.end type="italics"/>6.<emph type="italics"/>l<emph.end type="italics"/> 3. BGDP, <emph type="italics"/>l.<emph.end type="italics"/>4.p.6. igitur BD e&longs;t qua&shy;<lb/>drupla BV, <emph type="italics"/>l.<emph.end type="italics"/>11. oppo&longs;itorum, <emph type="italics"/>l<emph.end type="italics"/> 12. rectilineo, <emph type="italics"/>lege<emph.end type="italics"/> <foreign lang="greek">t</foreign> pro T bis, <emph type="italics"/>p.<emph.end type="italics"/>352 <emph type="italics"/>n<emph.end type="italics"/> 9 &amp; 10 <emph type="italics"/>pa&longs;&shy;<lb/>&longs;im lege<emph.end type="italics"/> <foreign lang="greek">r</foreign> pro X <emph type="italics"/>n<emph.end type="italics"/> 9.<emph type="italics"/>l.<emph.end type="italics"/>7. ad C, <foreign lang="greek">m</foreign> 10.<emph type="italics"/>l.<emph.end type="italics"/>3. BT non &longs;ingula <foreign lang="greek">r a</foreign> &longs;ingulis <foreign lang="greek">r</foreign> B <emph type="italics"/>t.<emph.end type="italics"/>16.<emph type="italics"/>l.<emph.end type="italics"/>1. rot&aelig;, <lb/>qu&aelig; <emph type="italics"/>p.<emph.end type="italics"/>353. <emph type="italics"/>n<emph.end type="italics"/> 5.<emph type="italics"/>l<emph.end type="italics"/> 3. motu, <emph type="italics"/>l<emph.end type="italics"/> 6. triplo maior, <emph type="italics"/>t<emph.end type="italics"/> 17.<emph type="italics"/>l<emph.end type="italics"/> 3.<emph type="italics"/>dele<emph.end type="italics"/> T, <emph type="italics"/>p.<emph.end type="italics"/>354 <emph type="italics"/>n<emph.end type="italics"/> 3 <emph type="italics"/>l.<emph.end type="italics"/>2. configit BG,. <lb/>I 3 <emph type="italics"/>dele<emph.end type="italics"/> I, <emph type="italics"/>n,<emph.end type="italics"/> 6.<emph type="italics"/>l<emph.end type="italics"/> 5.KT, <emph type="italics"/>n.<emph.end type="italics"/>7.<emph type="italics"/>l.<emph.end type="italics"/>3. vt quadrans <emph type="italics"/>l<emph.end type="italics"/> 6. contactus, <emph type="italics"/>t.<emph.end type="italics"/>13. <emph type="italics"/>l.<emph.end type="italics"/>3. <emph type="italics"/>dele<emph.end type="italics"/> 4 <emph type="italics"/>p,<emph.end type="italics"/> 355 <emph type="italics"/>n.<emph.end type="italics"/>2 <emph type="italics"/>l,<emph.end type="italics"/><pb xlink:href="026/01/485.jpg"/>8. VTD, <emph type="italics"/>n.<emph.end type="italics"/>3.<emph type="italics"/>l.<emph.end type="italics"/> nam AV, <emph type="italics"/>n.<emph.end type="italics"/>4. AC, <emph type="italics"/>n.<emph.end type="italics"/> 6 <emph type="italics"/>l.<emph.end type="italics"/>2. TVY, <emph type="italics"/>l.<emph.end type="italics"/>3. radius PCTV &longs;umantur <foreign lang="greek">t g</foreign> Y <lb/>YT: <emph type="italics"/>l.<emph.end type="italics"/>4.6 T <foreign lang="greek">d</foreign>, <emph type="italics"/>n.<emph.end type="italics"/>8.<emph type="italics"/>l.<emph.end type="italics"/>1.PC, <emph type="italics"/>l.<emph.end type="italics"/>5.igitur cum, <emph type="italics"/>p.<emph.end type="italics"/>356.<emph type="italics"/>l.<emph.end type="italics"/>5.rectam in Coroll.ita peccatum e&longs;t <lb/>vt errata ca&longs;tigati vix po&longs;&longs;int <emph type="italics"/>p.<emph.end type="italics"/>358.<emph type="italics"/>n.<emph.end type="italics"/> 5 <emph type="italics"/>l.<emph.end type="italics"/>1. partes are&aelig;, <emph type="italics"/>l<emph.end type="italics"/> 2. conficient, <emph type="italics"/>l.<emph.end type="italics"/>4. mouetur, <lb/><emph type="italics"/>t.<emph.end type="italics"/>20.<emph type="italics"/>n.<emph.end type="italics"/>3. <emph type="italics"/>l.<emph.end type="italics"/>8, cinguntur, <emph type="italics"/>p.<emph.end type="italics"/>359.<emph type="italics"/>l.<emph.end type="italics"/>1. B &amp; C, <emph type="italics"/>n,<emph.end type="italics"/> 11.<emph type="italics"/>l.<emph.end type="italics"/>9. a&euml;ris, <emph type="italics"/>p,<emph.end type="italics"/> 360 <emph type="italics"/>n.<emph.end type="italics"/> 14.<emph type="italics"/>l<emph.end type="italics"/> 1.ce&longs;&longs;at motus, <lb/><emph type="italics"/>n.<emph.end type="italics"/> 17. tab. </s>
					<s id="N2C2F3"><!-- NEW -->5.<emph type="italics"/>n.<emph.end type="italics"/>20. citi&longs;&longs;imus, <emph type="italics"/>n.<emph.end type="italics"/>22.<emph type="italics"/>l<emph.end type="italics"/> 1 ce&longs;&longs;at motus, <emph type="italics"/>n.<emph.end type="italics"/>24.<emph type="italics"/>l.<emph.end type="italics"/>1. &longs;i grauior, <emph type="italics"/>p,<emph.end type="italics"/> 361.<emph type="italics"/>t.<emph.end type="italics"/>21.<emph type="italics"/>n.<emph.end type="italics"/>2. <lb/><emph type="italics"/>l.<emph.end type="italics"/>4. nec dextror&longs;um, <emph type="italics"/>p,<emph.end type="italics"/> 362.<emph type="italics"/>l.<emph.end type="italics"/>1. ip&longs;am DA, velis, <emph type="italics"/>l<emph.end type="italics"/> 2. ex recto, <emph type="italics"/>l<emph.end type="italics"/> 5. motus orbis, <emph type="italics"/>l<emph.end type="italics"/> 11. <lb/>pollant, <emph type="italics"/>t.<emph.end type="italics"/>23.<emph type="italics"/>l<emph.end type="italics"/> 1. plumbi, <emph type="italics"/>l.<emph.end type="italics"/>2. &longs;int, <emph type="italics"/>l.<emph.end type="italics"/>7. quia, <emph type="italics"/>l<emph.end type="italics"/> 9. <foreign lang="greek">a</foreign>, <emph type="italics"/>n.<emph.end type="italics"/> 6.<emph type="italics"/>l.<emph.end type="italics"/>1. adde, <emph type="italics"/>t.<emph.end type="italics"/>25. <emph type="italics"/>l.<emph.end type="italics"/>2. &longs;erpentis, <emph type="italics"/>p.<emph.end type="italics"/><lb/>363.<emph type="italics"/>t.<emph.end type="italics"/>25 <emph type="italics"/>l.<emph.end type="italics"/>13. conoidicus, <emph type="italics"/>p.<emph.end type="italics"/>364.<emph type="italics"/>l.<emph.end type="italics"/>2. ver&longs;us G, <emph type="italics"/>t.<emph.end type="italics"/>27.<emph type="italics"/>n.<emph.end type="italics"/>4.<emph type="italics"/>l.<emph.end type="italics"/>4. motum, <emph type="italics"/>p.<emph.end type="italics"/>365.<emph type="italics"/>n<emph.end type="italics"/> 9.<emph type="italics"/>l<emph.end type="italics"/> 6.rota&shy;<lb/>t&aelig;, <emph type="italics"/>p.<emph.end type="italics"/> 366.<emph type="italics"/>l,<emph.end type="italics"/> 12. re&longs;ilit., <emph type="italics"/>t.<emph.end type="italics"/>29 <emph type="italics"/>l.<emph.end type="italics"/>4. ni&longs;u, <emph type="italics"/>l.<emph.end type="italics"/>10.faciet vero, <emph type="italics"/>l.<emph.end type="italics"/> 14.AI, <emph type="italics"/>l.<emph.end type="italics"/>23.extremitatem.<emph type="italics"/>p.<emph.end type="italics"/>367. <lb/><emph type="italics"/>n.<emph.end type="italics"/>13. <emph type="italics"/>l<emph.end type="italics"/> 4.manus, <emph type="italics"/>p.<emph.end type="italics"/> 368.<emph type="italics"/>l.<emph.end type="italics"/>1. erectam, <emph type="italics"/>n.<emph.end type="italics"/>10.<emph type="italics"/>l.<emph.end type="italics"/>3. qu&aelig;, <emph type="italics"/>n.<emph.end type="italics"/>1.<emph type="italics"/>l<emph.end type="italics"/>6 5. libretur, <emph type="italics"/>n.<emph.end type="italics"/> 17.<emph type="italics"/>l.<emph.end type="italics"/> 6. EL, <emph type="italics"/>p.<emph.end type="italics"/><lb/>369.<emph type="italics"/>l,<emph.end type="italics"/> 1. qua, <emph type="italics"/>p.<emph.end type="italics"/>370 <emph type="italics"/>n<emph.end type="italics"/> 24.<emph type="italics"/>l.<emph.end type="italics"/>24. rudiaria <emph type="italics"/>lege pa&longs;&longs;im<emph.end type="italics"/> G <emph type="italics"/>pro<emph.end type="italics"/> C, <emph type="italics"/>t<emph.end type="italics"/> 30.<emph type="italics"/>l<emph.end type="italics"/> 7. vt C, <emph type="italics"/>p.<emph.end type="italics"/>371.<emph type="italics"/>l.<emph.end type="italics"/>6. <lb/>qui, <emph type="italics"/>p.<emph.end type="italics"/>372 <emph type="italics"/>n.<emph.end type="italics"/>13.<emph type="italics"/>l.<emph.end type="italics"/>10. GE cum in I, erit in L, <emph type="italics"/>n.<emph.end type="italics"/>15.<emph type="italics"/>l.<emph.end type="italics"/>4. mitius, <emph type="italics"/>p.<emph.end type="italics"/>373.<emph type="italics"/>l.<emph.end type="italics"/>7.terram <emph type="italics"/>p.<emph.end type="italics"/>374.<emph type="italics"/>t.<emph.end type="italics"/><lb/>33.fig.13 tab.4.<emph type="italics"/>p.<emph.end type="italics"/>375. <emph type="italics"/>lege<emph.end type="italics"/> Q <emph type="italics"/>pro<emph.end type="italics"/> K <emph type="italics"/>pa&longs;&longs;im<emph.end type="italics"/> LB erect&aelig;, <emph type="italics"/>l<emph.end type="italics"/> 1.delineari fig.8.tab.5.<emph type="italics"/>l.<emph.end type="italics"/>16 ita <lb/>vt, <emph type="italics"/>l<emph.end type="italics"/> 17.quadratum AM 16.<emph type="italics"/>l<emph.end type="italics"/> 17. quadratum AO, <emph type="italics"/>p<emph.end type="italics"/> 377.<emph type="italics"/>l<emph.end type="italics"/> 3. nec producitur, <emph type="italics"/>t.<emph.end type="italics"/>1 <emph type="italics"/>l<emph.end type="italics"/> 4.ali&shy;<lb/>quid, <emph type="italics"/>p<emph.end type="italics"/> 378.<emph type="italics"/>l.<emph.end type="italics"/>4 anima, <emph type="italics"/>p<emph.end type="italics"/> 379.<emph type="italics"/>l.<emph.end type="italics"/>1. effectus, <emph type="italics"/>l.<emph.end type="italics"/>8.brachium, <emph type="italics"/>l penult.<emph.end type="italics"/> vol&aelig;, <emph type="italics"/>p.<emph.end type="italics"/>380.<emph type="italics"/>t.<emph.end type="italics"/>2 <emph type="italics"/>l.<emph.end type="italics"/>2.ali&shy;<lb/>quid &longs;ic globus pendulus, <emph type="italics"/>p.<emph.end type="italics"/>381.<emph type="italics"/>t.<emph.end type="italics"/>3 <emph type="italics"/>l.<emph.end type="italics"/>5. &aelig;quitem capiti, <emph type="italics"/>l<emph.end type="italics"/> 18. imo equus, <emph type="italics"/>l.<emph.end type="italics"/>26 determi&shy;<lb/>nata, <emph type="italics"/>l<emph.end type="italics"/> 36. cruris, <emph type="italics"/>p.<emph.end type="italics"/> 392.<emph type="italics"/>n.<emph.end type="italics"/>10.fig 28.<emph type="italics"/>l<emph.end type="italics"/> 21. omittendus, <emph type="italics"/>n.<emph.end type="italics"/>11.fig.27.<emph type="italics"/>l.<emph.end type="italics"/>9 vt BC <emph type="italics"/>p<emph.end type="italics"/> 383.<emph type="italics"/>l.<emph.end type="italics"/>10. <lb/>facilia, <emph type="italics"/>p.<emph.end type="italics"/>384.<emph type="italics"/>l.<emph.end type="italics"/>4. productum, <emph type="italics"/>p.<emph.end type="italics"/> 385 n.8.<emph type="italics"/>l<emph.end type="italics"/> 10, fune; </s>
					<s id="N2C5A7"><!-- NEW --><emph type="italics"/>n.<emph.end type="italics"/>9.<emph type="italics"/>l<emph.end type="italics"/> 5. funes, <emph type="italics"/>p.<emph.end type="italics"/>386 <emph type="italics"/>l.<emph.end type="italics"/>15. ad DL, <lb/><emph type="italics"/>n.<emph.end type="italics"/>11, fig.31.<emph type="italics"/>l<emph.end type="italics"/> 7.fig.30 <emph type="italics"/>p.<emph.end type="italics"/>388.<emph type="italics"/>l.<emph.end type="italics"/>3.etiam nauis, <emph type="italics"/>l.<emph.end type="italics"/>11. duo tauri, <emph type="italics"/>t.<emph.end type="italics"/>7.<emph type="italics"/>l.<emph.end type="italics"/>10. &longs;e ip&longs;o, <emph type="italics"/>l<emph.end type="italics"/> 11. corpore <lb/>impul&longs;o, <emph type="italics"/>p.<emph.end type="italics"/>389.<emph type="italics"/>t<emph.end type="italics"/> 8 <emph type="italics"/>l.<emph.end type="italics"/>8. finem, <emph type="italics"/>p.<emph.end type="italics"/>390.<emph type="italics"/>t.<emph.end type="italics"/>11.<emph type="italics"/>l<emph.end type="italics"/> 4, arcus BC, <emph type="italics"/>p.<emph.end type="italics"/>392.<emph type="italics"/>n.<emph.end type="italics"/>4.<emph type="italics"/>l.<emph.end type="italics"/>6.ABC, <emph type="italics"/>p.<emph.end type="italics"/>194.<emph type="italics"/>n.<emph.end type="italics"/>6. <lb/><emph type="italics"/>l<emph.end type="italics"/> 8. conficit, <emph type="italics"/>l.<emph.end type="italics"/>18. &longs;ubduplam, <emph type="italics"/>p.<emph.end type="italics"/>395.<emph type="italics"/>n.<emph.end type="italics"/>8. <emph type="italics"/>l.<emph.end type="italics"/>8. &longs;e iuncto, <emph type="italics"/>p<emph.end type="italics"/> 396.<emph type="italics"/>n.<emph.end type="italics"/>21.<emph type="italics"/>l.<emph.end type="italics"/>6. de <emph type="italics"/>p.<emph.end type="italics"/>399. <emph type="italics"/>l<emph.end type="italics"/> 9. <lb/>proportionem, <emph type="italics"/>n.<emph.end type="italics"/>3 <emph type="italics"/>l.<emph.end type="italics"/>3. vt radix CD, <emph type="italics"/>n.<emph.end type="italics"/>9.<emph type="italics"/>l.<emph.end type="italics"/>4. &longs;it 1 pondus 2. cert&egrave;, <emph type="italics"/>p<emph.end type="italics"/> 401.<emph type="italics"/>l.<emph.end type="italics"/>6. arcum, <emph type="italics"/>l.<emph.end type="italics"/><lb/>15. circa K, <emph type="italics"/>p.<emph.end type="italics"/>402.<emph type="italics"/>l<emph.end type="italics"/> 2. medium, <emph type="italics"/>l<emph.end type="italics"/> 22. agant, <emph type="italics"/>t.<emph.end type="italics"/>14.<emph type="italics"/>l.<emph.end type="italics"/>9. &longs;int, in hoc Th. affige literas af&shy;<lb/>firas mucroni gladij ipfi capulari pil&aelig;, &amp; vici&longs;&longs;im, <emph type="italics"/>p.<emph.end type="italics"/>403.<emph type="italics"/>n.<emph.end type="italics"/>7.<emph type="italics"/>l.<emph.end type="italics"/>8.&aelig;quali vtriu&longs;que, <emph type="italics"/>n.<emph.end type="italics"/> 8. <lb/><emph type="italics"/>l.<emph.end type="italics"/>5. detectum, <emph type="italics"/>p<emph.end type="italics"/> 404 <emph type="italics"/>n.<emph.end type="italics"/>13.<emph type="italics"/>l<emph.end type="italics"/> 3. &aelig;quipondium, <emph type="italics"/>n.<emph.end type="italics"/> 15.<emph type="italics"/>l.<emph.end type="italics"/>5. alio, <emph type="italics"/>p.<emph.end type="italics"/>405 <emph type="italics"/>n.<emph.end type="italics"/>18.<emph type="italics"/>l.<emph.end type="italics"/>1. intentetur, <lb/><emph type="italics"/>l.<emph.end type="italics"/>3.extento, <emph type="italics"/>n<emph.end type="italics"/> 19.<emph type="italics"/>l<emph.end type="italics"/> 1. impetens gladius, <emph type="italics"/>t.<emph.end type="italics"/>23 <emph type="italics"/>n.<emph.end type="italics"/>2.<emph type="italics"/>l.<emph.end type="italics"/>2. &amp; eadem altitudo, <emph type="italics"/>p.<emph.end type="italics"/>406. <emph type="italics"/>n.<emph.end type="italics"/>5.<emph type="italics"/>l.<emph.end type="italics"/>2. <lb/>corpore <emph type="italics"/>n.<emph.end type="italics"/> 6 <emph type="italics"/>l.<emph.end type="italics"/>1. ictum, <emph type="italics"/>n.<emph.end type="italics"/>10.<emph type="italics"/>l.<emph.end type="italics"/>2. qu&aelig;, <emph type="italics"/>n.<emph.end type="italics"/>11.<emph type="italics"/>l.<emph.end type="italics"/>2. proportio, <emph type="italics"/>l.<emph.end type="italics"/>3: 1000.<emph type="italics"/>p.<emph.end type="italics"/>407.<emph type="italics"/>l.<emph.end type="italics"/>4.gradus, <emph type="italics"/>n.<emph.end type="italics"/><lb/>12.<emph type="italics"/>l.<emph.end type="italics"/>3. <expan abbr="e&atilde;dem">eandem</expan>, <emph type="italics"/>p.<emph.end type="italics"/>409.<emph type="italics"/>n.<emph.end type="italics"/>19.fig.20.<emph type="italics"/>l.<emph.end type="italics"/>11. P <foreign lang="greek">n</foreign> N <foreign lang="greek">b g.</foreign><emph type="italics"/>n.<emph.end type="italics"/>22. fig. </s>
					<s id="N2C7AF">16.<emph type="italics"/>p.<emph.end type="italics"/>410. <emph type="italics"/>n.<emph.end type="italics"/>24.<emph type="italics"/>l.<emph.end type="italics"/>2. mino&shy;<lb/>rem, <emph type="italics"/>lege<emph.end type="italics"/> N, <emph type="italics"/>pro<emph.end type="italics"/> F, <emph type="italics"/>p.<emph.end type="italics"/>411.<emph type="italics"/>l.<emph.end type="italics"/>5. vt <emph type="italics"/>l.<emph.end type="italics"/>6. vt chorda MV, <emph type="italics"/>l.vlt.<emph.end type="italics"/>velociter, <emph type="italics"/>p.<emph.end type="italics"/>402. <emph type="italics"/>t.<emph.end type="italics"/>17.<emph type="italics"/>l.<emph.end type="italics"/>5.ex&shy;<lb/>tendi, <emph type="italics"/>l.<emph.end type="italics"/>12. pr&aelig;dictam, <emph type="italics"/>l.<emph.end type="italics"/>24. imprimit, <emph type="italics"/>l.<emph.end type="italics"/>25. certa.<emph type="italics"/>p.<emph.end type="italics"/>413.<emph type="italics"/>n.<emph.end type="italics"/>4.<emph type="italics"/>l.<emph.end type="italics"/>3. mouentur, <emph type="italics"/>l.<emph.end type="italics"/>7. alium, <lb/><emph type="italics"/>p.<emph.end type="italics"/>414.<emph type="italics"/>l.<emph.end type="italics"/>2. augendum, <emph type="italics"/>n.<emph.end type="italics"/>10.<emph type="italics"/>l.<emph.end type="italics"/>2. tormentaria, <emph type="italics"/>l.<emph.end type="italics"/>3.<emph type="italics"/>n.<emph.end type="italics"/>11. reticulo in fig. </s>
					<s id="N2C84D">24. tab. </s>
					<s id="N2C850">5. adhibe <lb/>H &longs;ub G tum L &longs;ub Z, in fig.22. adhibe omnes literas in quadrante AGD, in fig. </s>
					<s id="N2C855">25. <lb/>tab. </s>
					<s id="N2C85A">lege C inter BA, <emph type="italics"/>p.<emph.end type="italics"/>415.<emph type="italics"/>l.<emph.end type="italics"/>12. fig.37. tab. </s>
					<s id="N2C869"><!-- NEW -->3.<emph type="italics"/>n.<emph.end type="italics"/>11.<emph type="italics"/>l.<emph.end type="italics"/>2. qu&aelig;, <emph type="italics"/>n.<emph.end type="italics"/> 12.<emph type="italics"/>l.<emph.end type="italics"/> 12. tamen &longs;it <emph type="italics"/>l<emph.end type="italics"/> 14. <lb/>octauo, in <emph type="italics"/>p.<emph.end type="italics"/>416.<emph type="italics"/>n.<emph.end type="italics"/>2.<emph type="italics"/>l.<emph.end type="italics"/>5. corporum, <emph type="italics"/>n.<emph.end type="italics"/>3.<emph type="italics"/>l.<emph.end type="italics"/>1. di&longs;per&longs;io, <emph type="italics"/>l.<emph.end type="italics"/>2. &longs;ic <emph type="italics"/>n.<emph.end type="italics"/>3.<emph type="italics"/>l.<emph.end type="italics"/>2. vannus autem; <emph type="italics"/>l.<emph.end type="italics"/><lb/>12.portu, <emph type="italics"/>n.<emph.end type="italics"/>6.<emph type="italics"/>l.<emph.end type="italics"/>6. quando duo, <emph type="italics"/>p.<emph.end type="italics"/>417.<emph type="italics"/>l.<emph.end type="italics"/>4.impre&longs;&longs;us, <emph type="italics"/>n.<emph.end type="italics"/>8.<emph type="italics"/>l.<emph.end type="italics"/> 11. cadit, <emph type="italics"/>n.<emph.end type="italics"/>9.<emph type="italics"/>l.<emph.end type="italics"/>6.&longs;apo.<emph type="italics"/>n.<emph.end type="italics"/>10.<emph type="italics"/>l.<emph.end type="italics"/>4. <lb/>vnum corpus, <emph type="italics"/>l.<emph.end type="italics"/>8. vnum corpus <emph type="italics"/>p.<emph.end type="italics"/>418.<emph type="italics"/>l.<emph.end type="italics"/>9.luctam, <emph type="italics"/>l.<emph.end type="italics"/> 12. fulminis, <emph type="italics"/>t.<emph.end type="italics"/> 20. <emph type="italics"/>l.<emph.end type="italics"/>2. in plano, <lb/><emph type="italics"/>l.<emph.end type="italics"/>8.re&longs;ilit, <emph type="italics"/>l.<emph.end type="italics"/> 18. pluit, <emph type="italics"/>p.<emph.end type="italics"/> 419. <emph type="italics"/>l.<emph.end type="italics"/> 14. vorticem, <emph type="italics"/>p.<emph.end type="italics"/> 421. <emph type="italics"/>l.<emph.end type="italics"/> 9. lineas, <emph type="italics"/>lege pa&longs;&longs;im<emph.end type="italics"/> po&longs;itio <lb/>propo&longs;itiones, <emph type="italics"/>p.<emph.end type="italics"/>423.<emph type="italics"/>l.<emph.end type="italics"/>7.triangulo, <emph type="italics"/>l.<emph.end type="italics"/>8. IKD, <emph type="italics"/>p.<emph.end type="italics"/>426.<emph type="italics"/>t.<emph.end type="italics"/>15.rig.12. <emph type="italics"/>t.<emph.end type="italics"/>16. <emph type="italics"/>l.<emph.end type="italics"/>5. perpendi&shy;<lb/>culares,. 427.<emph type="italics"/>l.<emph.end type="italics"/>6. AH, <emph type="italics"/>cor.<emph.end type="italics"/>2.fig.14.<emph type="italics"/>p.<emph.end type="italics"/>430<emph type="italics"/>l.<emph.end type="italics"/> 32. CNAP, <emph type="italics"/>t.<emph.end type="italics"/>22.<emph type="italics"/>l.<emph.end type="italics"/>4. D vt. </s>
				</p>
				<p id="N2C9A5" type="main">
					<s id="N2C9A7"><emph type="center"/><emph type="italics"/>FINIS,<emph.end type="italics"/><emph.end type="center"/></s>
				</p>
			</chap>
			<pb xlink:href="026/01/486.jpg"/>
		</body>
		<back>
			<section>
				<pb xlink:href="026/01/487.jpg"/>
				<figure id="id.026.01.487.1.jpg" xlink:href="026/01/487/1.jpg"/>
				<p id="N2C9BF" type="head">
					<s id="N2C9C1"> TABVLA I </s>
				</p>
				<pb xlink:href="026/01/488.jpg"/>
				<figure id="id.026.01.488.1.jpg" xlink:href="026/01/488/1.jpg"/>
				<p id="N2C9CC" type="head">
					<s id="N2C9CE"> TABVLA 2  </s>
				</p>
				<pb xlink:href="026/01/489.jpg"/>
				<figure id="id.026.01.489.1.jpg" xlink:href="026/01/489/1.jpg"/>
				<p id="N2C9D9" type="head">
					<s id="N2C9DB"> TABVLA TERTIA </s>
				</p>
				<pb xlink:href="026/01/490.jpg"/>
				<figure id="id.026.01.490.1.jpg" xlink:href="026/01/490/1.jpg"/>
				<p id="N2C9E6" type="head">
					<s id="N2C9E8"> TABVLA QVARTA </s>
				</p>
				<pb xlink:href="026/01/491.jpg"/>
				<figure id="id.026.01.491.1.jpg" xlink:href="026/01/491/1.jpg"/>
				<p id="N2C9F3" type="head">
					<s id="N2C9F5"> TABVLA QVINTA </s>
				</p>
			</section>
		</back>
	</text>
</archimedes>