| 44 | Some random samples: |
| 45 | |
| 46 | [http://echo.mpiwg-berlin.mpg.de/ECHOdocuView/ECHOzogiLib?pn=37&ws=1&wx=0.0258&wy=0.1388&ww=0.7586&wh=0.1189&mode=imagepath&url=%2Fmpiwg%2Fonline%2Fpermanent%2Flibrary%2FA0VHBVNN%2Fpageimg p.37] (part of the work sample) |
| 47 | |
| 48 | {{{ |
| 49 | vero $i <sc>A</sc> $it ip$ius <sc>B</sc> dimidius] _In Græco codice $ic legitur_. χαί γὰρ συναμφοτέραυ α β γ |
| 50 | τ\~ου β τριπλάσιος μὲν ἔςιν, ἐι διπλασιος ἐιη ἑιη ὁ β τοῦ α. ἡμιόλιος δὲ ἡ θ α τ\~ου β ἠμισις ἔιη. |
| 51 | _Sed legendum Videtur_. {καὶ} γὰρ συναμφότεος α β τριπλάσιος μὲν ἔςιν, ἐι διπλάσιος |
| 52 | ἔιη ο`; α τ\~ου β, ἡμιόλιος δέ ἐι α τοῦ β ἡμισις ἔιη. _E$t enim_ <sc>D</sc> _ad_ <sc>E</sc>, _bt_ |
| 53 | <sc>A B</sc> _ad_ <sc>B</sc>, _Vel Vt_ <sc>B C</sc> |
| 54 | _ad_ <sc>C</sc> _ex lis_, _quc ante demon$trata $unt. Po$tquam Vero o$tendit ex analogia æqualitatis_ |
| 55 | }}} |
| 56 | |
| 57 | |
| 58 | [http://echo.mpiwg-berlin.mpg.de/ECHOdocuView/ECHOzogiLib?pn=153&ws=1&wx=0.0238&wy=0.6595&ww=0.7714&wh=0.1914&mode=imagepath&url=%2Fmpiwg%2Fonline%2Fpermanent%2Flibrary%2FA0VHBVNN%2Fpageimg p.153] |
| 59 | |
| 60 | {{{ |
| 61 | <h it>COMMENTARIVS.</h> |
| 62 | <p it><ac A>_Dimidium eius, quod fit a recta linea <sc>HF</sc>]_</ac> Græcus codex habet τὸ ἢμισυ τ{οῦ} ἀπὸ τῆς |
| 63 | {ἐπὶ} τά θ ζ. Sed nos per$picuitatis cau$$a ita Vtendum cen$uimus.</p> |
| 64 | <p it><ac B>_Hoc enim in XX. Theoremate e$t demon$tratum]_</ac> In Græco codice legitur τ{οῦ}το γαρ ἐν |
| 65 | {τῷ} δευτέρω θεωρήματι δέδ{ει}χθ{αι}.</p> |
| 66 | <p it><ac C>_Sed rectantgulo <sc>BAL</sc> vna cum eo, quod <sc>BA</sc>, <sc>LR</sc>, continetur, hoc e$t rectangulo_ |
| 67 | _<sc>BAR</sc>]_</ac> Ex prima $ecundi libri elementorum.</p> |
| 68 | <p it><ac D>_Aequale e$t quod fit ex <sc>AG</sc>]_</ac> iuncta enim <sc>_BG_</sc> triangula <sc>_ABGAGR_</sc> $imilia $unt ex octaua |
| 69 | $exti libri elementorum. ergo vt <sc>_BA_</sc> ad <sc>_AG_</sc>, ita <sc>_GA_</sc> ad <sc>_AR_</sc>, ac propterea rectangulo <sc>_BAR_</sc> |
| 70 | <mgr>4 $exti. |
| 71 | 17</mgr> |
| 72 | æquale e$t quadratum ex <sc>_AG_</sc>.</p> |
| 73 | <p it><ac E>_Ergo & quod fit ex <sc>AG</sc> vna cum rectangulo <sc>GHK</sc>]_</ac> Græcus codex mancus e$t, qui ita |
| 74 | re$tituetur ἲσον ἂρα καὶ τὸ ἀπὸ τῆς α γ {μὲν} τ{οῦ} {ὑπὸ} η θ κ.</p> |
| 75 | <p it><ac F>_Et ante o$ten$um e$t figuram quidem con$tantem ex $uperficiebus conicis.]_</ac> In Græ |
| 76 | co codice legitur. καὶ ἐδεχθη πρὸ ἑνος. Illud Vero o$ten$um e$t in 24. propo$itione huius.</p> |
| 77 | }}} |
| 78 | |
| 79 | [http://echo.mpiwg-berlin.mpg.de/ECHOdocuView/ECHOzogiLib?pn=183&ws=1&wx=0.0178&wy=0.4192&ww=0.7276&wh=0.2606&mode=imagepath&url=%2Fmpiwg%2Fonline%2Fpermanent%2Flibrary%2FA0VHBVNN%2Fpageimg p.183] |
| 80 | |
| 81 | {{{ |
| 82 | <p it><ac K>_Erunt quadrata ex <sc>BK</sc>, <sc>KM</sc> quadrati ex <sc>FG</sc> tripla._</ac> Nam cum quadratum quidem ex |
| 83 | <sc>_FG_</sc> ad quadratum ex <sc>_BH_</sc> proportionem habeat, quam quinque ad tria, quadrata vero ex <sc>_BK_ |
| 84 | _KM_</sc> ad idem quadratum ex <sc>_BH_</sc> eam habeat, quam quinque ad Vium, hoc e$t quam quinde- |
| 85 | cim ad tria, habebunt quadrata ex <sc>_BK_</sc>, <sc>_KM_</sc> ad quadratum ex <sc>_FG_</sc> proportionem eandem, quam |
| 86 | quindecim ad quinque, Videlicet triplam. In Græco codice omnia ferè $unt corrupta; qui $ic |
| 87 | habet ἐν δὲ {τῷ} α β ω τὰ ἀπὸ β ζ, ζ θ πενδαπλάσια τ{οῦ} ἀπὸ β θ. τὰ ἀρα ἀπὸ β ζ, ζ θ {τρ}ιπλά- |
| 88 | σια τ{οῦ} ἀπὸ ζ η. ego $ic corrigendum arbitror. ἐν δὲ {τῷ} ι τὰ ἀπὸ β κ, κ μ πενδαπλάσια τ{οῦ} |
| 89 | @πὸ β θ. τὰ ἂρα ἀπὸ β κ, κ μ {τρ}ιπλάσια τ{οῦ} ἀπο ζ η.</p> |
| 90 | <p it><ac L>_Vtin tertiodecimo libro elementorum demon$tratur]_</ac> propo$itione 1 @.</p> |
| 91 | <p it><ac M>_Ergo ex ante demon$tratis vt <sc>BK</sc>, ad <sc>NX</sc>, ita <sc>KM</sc> ad <sc>NO</sc>, & eorum quadrata, &_ |
| 92 | _vt vnum ad vnum, ita omnia ad omnia. quadrata igitur ex <sc>BK</sc>, <sc>KM</sc> tripla $unt quadra-_ |
| 93 | _torum ex <sc>NX</sc>, <sc>NO</sc>]_</ac> e$t eni nex 45. huius vt <sc>_BK_</sc> ad _<sc>KM</sc>,_ ita <sc>_XN_</sc> ad <sc>_NO_</sc> permutandoque |
| 94 | Vt <sc>_BK_</sc> ad _<sc>XN</sc>,_ ita <sc>_KM_</sc> ad _<sc>NO</sc>._ Vt quadratum ex <sc>_BK_</sc> ad quadratum ex _<sc>NX</sc>,_ ita quidratum |
| 95 | <mgr>22. $exti.</mgr> |
| 96 | ex <sc>_KM_</sc> ad quadratum ex _<sc>NO</sc>._ vt autem vnum ad Vnum, ita omnia ad omnia. Sed quadra |
| 97 | <mgr>12. quinti</mgr> |
| 98 | tum ex <sc>_BK_</sc> triplum e$t quadrati ex _<sc>NX</sc>._ quadrata igitur ex _<sc>BK</sc>,_ <sc>_KM_</sc> quadratorum ex _<sc>NX</sc>,_ |
| 99 | <sc>_NO_</sc> $unt tripla. In codice græco legitur διὰ τὸ ἐν αρχῆ τοίνυν {ἐστι}ν ὡς ἡ β ζ τῆς ν ξ, ἡ ζ η |
| 100 | {τρ}ὸς ν ο, {καὶ} τὰ τε{τρ}άγωνα, {καὶ} ὡς ἒμ{πρ}ο{σθ}εν πάντα {πρ}ος πάντα, τὰ ἄρα {ἀπὸ} β κ η {τῶν} {ἀπὸ} ξ ν ο |
| 101 | {ἐστι} {τρ}ιπλάσια. quæ nos <gap> emead tuimus διὰ τὸ ἐν αρχῆ τοὶνυν {ἐστι}ν ὡς ἡ β κ {πρ}ὸς ν ξ, ἡ |
| 102 | κ μ {πρ}ὸς ν ο {καὶ} τὰ τε{τρ}άγονα. {καὶ} ὡς ἐν {πρ}ὸς ἐν, πάντα {πρ}ὸς πάντα. τὰ ἂρα {ἀπὸ} β η μ τῆς |
| 103 | {ἀπὸ} ξ ν ο {ἐστι} {τρ}ιπλάσια.</p> |
| 104 | }}} |
| 105 | |
| 106 | [http://echo.mpiwg-berlin.mpg.de/ECHOdocuView/ECHOzogiLib?pn=282&ws=1&wx=0.227&wy=0.2796&ww=0.7439&wh=0.1185&mode=imagepath&url=%2Fmpiwg%2Fonline%2Fpermanent%2Flibrary%2FA0VHBVNN%2Fpageimg p] |
| 107 | |
| 108 | {{{ |
| 109 | <p><ac F>Ita rectangulum <sc>FDE</sc> ad rectangulum <sc>AEC</sc>, & componendo, vt <sc>DB</sc> ad <sc>BE</sc>, ita re- |
| 110 | ctangulum <sc>FDE</sc> vna cum rectangulo <sc>AEC</sc> ad rectangulum <sc>AEC</sc>. Sed rectangulum |
| 111 | <sc>FDE</sc> vna cum rectangulo <sc>AEC</sc> æquale e$t rectangulo <sc>ADC</sc> ex anteced\~ete]</ac> _Hun@ loc\~u_ |
| 112 | _ita re$tituendum cen$uimus, in Græco enim codice $ic legebatur {οὐ}τω τὸ {ὑπὸ} {τῶν} α ε γ διά τὸ {πρ}ο-_ |
| 113 | _γεγραμμένον ἲσον {ἐστὶ} τὸ {ὑπὸ} {τῶν} α δ γ, $ed forte ita re$tituetur. {οὑ}τω τὸ {ὑπὸ} {τῶν} ζ δ ε. {πρ}ὀς_ |
| 114 | _τὸ {ὑπὸ} {τῶν} α ε γ συνθέντι ἂρα ὠς ἡ δ β πρ ς {τὸν} β ε {οὒ}τω τὸ {ὑπὸ} {τῶν} ζ δ ε μετά {τοῦ} {ὑπὸ} {τῶν} α ε γ_ |
| 115 | _πρὸς τὸ {ὑπὸ} {τῶν} α ε γ ἂλλα τὸ {ὑπὸ} {τῶν} ζ δ ε μετά {τοῦ} {ὑπὸ} {τῶν} α ε γ διά τὸ {πρ}οτετρὰμμενον ἲσον_ |
| 116 | _{ἐστὶ} {τῷ} {ὑπὸ} {τῶν} α δ γ._</p> |
| 117 | }}} |
| 118 | |
| 119 | [http://echo.mpiwg-berlin.mpg.de/ECHOdocuView/ECHOzogiLib?pn=370&ws=1&wx=0.2173&wy=0.3829&ww=0.7681&wh=0.2249&mode=imagepath&url=%2Fmpiwg%2Fonline%2Fpermanent%2Flibrary%2FA0VHBVNN%2Fpageimg p.370] |
| 120 | |
| 121 | {{{ |
| 122 | <p><ac D>Et ei, quod ad quadratum ex <sc>DB</sc> eandem, quam <sc>AD</sc> ad <sc>DB</sc> proportionem habet, |
| 123 | & præterea ei, quod ad quadratum ex <sc>DC</sc> eandem habet proportionem, quam <sc>AB</sc> ad |
| 124 | <sc>BD</sc> ]</ac> _Græcus codex {καὶ} {τῷ} λὸγον ἒχοντι {πρ}ὸς τὸ {ἀπὸ} α β {τὸν} ἀυτὸ {τῷ} τῆς α δ πρὸς {τὴν} δ β {καὶ}_ |
| 125 | _@ν {τῷ} λόγον ἔχοντι {πρ}ὸς τὸ {ἀπὸ} α β {τὸν} ἀυτὸν {τῷ} τῆς α β {πρ}ὸς {τὴν} β δ. Sed legendum e$t, {καὶ}_ |
| 126 | _τὸ λὸγον ἒχοντι {πρ}ὸς τὸ {ἀπὸ} δ β {τὸν} ἀυτὸ {τῷ} τῆς α δ {πρ}ὸς τὴν δ β {καὶ} {ἐστι} {τῷ} λόγον ἔχοντι_ |
| 127 | _{πρ}ὸς τὸ {ἀπὸ} δ γ {τὸν} ἀυτόν {τῷ} τῆς α β πρὸς τὴν β δ. Quæ vero $equuntur in Græco codice V$-_ |
| 128 | _que eo. τὸ ἂρα ἁπὸ α γ & c. $uperuacanea videntur_.</p> |
| 129 | <p><ac E>Quadratum igitur ex <sc>AC</sc>, & id, quod ad quadratum ex <sc>CB</sc> proportionem habet |
| 130 | eandem, quam <sc>AD</sc> ad <sc>DB</sc>, hoc e$t datam, æquale e$t quadrato ex <sc>AD</sc>, & proportio- |
| 131 | nem habenti ad quadratum ex <sc>DE</sc> eandem quam <sc>AD</sc> ad <sc>DB</sc>, hoc e$t æquale rectan- |
| 132 | gulo <sc>BAD</sc>, videlicet dato, & adhuc æquale ei, quod ad quadratum ex <sc>DC</sc> eandem ha- |
| 133 | bet, quam <sc>AE</sc> ad <sc>BD</sc> proportionem, nimirum datam]</ac> _Græcts codex corruptus, & man._ |
| 134 | _cus e$t, quem ita re$tituendum cen$eo. τὸ ἂρα ἄπὸ α γ {καὶ} τὸ λὸγον ἒχον πρὸς τὸ ἁπὸ γ β,_ |
| 135 | _@ ἁντὸ@ {τῷ} τῆς α δ πρὸς {τὴν} δ β {τοῦ}τ{ἐστι} {τῷ} δοθὲντι ἲσον {ἐστι} {τῷ}τε ἀπὸ α δ {καὶ} {τῷ} λόγον ἒχοντι_ |
| 136 | _προς τὸ ἀπό δ β {τὸν} ἁυτον {τῷ} τῆς α δ πρὸς {τὴν} δ β {τοῦ}τ{ἐστι} {τῷ}τε {ὑπὸ} β α δ, {τοῦ}τ{ἐστι} δοθὲντι {καὶ}_ |
| 137 | _{τῷ} λόγον ἒχοντι πρὸς τὸ ἁπὸ δ γ τόν ἁυτον {τῷ} τῆς α β πρὸς {τὴν} β δ, {τοῦ}τ{ἐστι} δοθὲντι._</p> |
| 138 | }}} |
| 139 | |
| 140 | |
| 141 | |